
HAL Id: tel-01865020
https://hal.science/tel-01865020v1

Submitted on 30 Aug 2018 (v1), last revised 5 Apr 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatio-temporal grid mining applied to image
classification and cellular automata analysis.

Romain Deville

To cite this version:
Romain Deville. Spatio-temporal grid mining applied to image classification and cellular automata
analysis.. Data Structures and Algorithms [cs.DS]. Université de Lyon, 2018. English. �NNT : �.
�tel-01865020v1�

https://hal.science/tel-01865020v1
https://hal.archives-ouvertes.fr

N° d’ordre : 2018LYSEI046

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée au sein de l’insa de Lyon

École doctorale no 512
InfoMaths

Spécialité de doctorat :
Informatique

Soutenue publiquement le 30/05/2018, par

Romain Deville

Spatio-temporal grid mining applied to
image classification and cellular automata

analysis

Devant le jury composé de :

M. Bruno Crémilleux Professeur des Universités Université de Caen Normandie Rapporteur
M. Jean-Yves Ramel Professeur des Universités Polytech Tours Rapporteur
M. Jean-Christophe Janodet Professeur des Universités Université d’Evry Examintateur
Mme Céline Rouveirol Professeure des Universités Université Paris XIII Examinatrice
Mme Christine Solnon Professeure des Universités INSA Lyon Directrice de thèse
Mme Élisa Fromont Professeure des Universités Université de Rennes 1 Co-directrice de thèse
M. Baptiste Jeudy Maitre de Conférence Université de Saint Étienne Co-directeur de thèse

This thesis is available at https://github.com/RDeville/GriMA-Grid-Mining-Algorithm
© R. Deville, 2018, insa Lyon, all rights reserved.

https://github.com/RDeville/GriMA-Grid-Mining-Algorithm

Département fedora – insa Lyon – Écoles doctorales

Quinquennal 2016–2020

SIGLE ÉCOLE DOCTORALE NOM ET COORD. RESPONSABLE

Chimie CHIMIE DE LYON
http://www.edchimie-lyon.fr

Sec. : Renée El Melhem

Bât. Blaise Pascal, 3e étage
secretariat@edchimie-lyon.fr
insa : R. Gourdon

M. Stéphane Daniele

Institut de recherches sur la catalyse et l’environnement de
Lyon
ircelyon-umr 5256
Équipe cdfa

2 Avenue Albert Einstein

69 626 Villeurbanne cedex

directeur@edchimie-lyon.fr

E.E.A ÉLECTRONIQUE, ÉLECTROTECHNIQUE,
AUTOMATIQUE
http://edeea.ec-lyon.fr

Sec. : M.C. Havgoudoukian

ecole-doctorale.eea@ec-lyon.fr

M. Gérard Scorletti

École Centrale de Lyon
36 Avenue Guy de Collongue

69 134 Écully
T 04.72.18.60.97 v 04.78.43.37.17
gerard.scorletti@ec-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,
MICROBIOLOGIE, MODÉLISATION
http://e2m2.universite-lyon.fr

Sec. : Sylvie Roberjot

Bât. Atrium, ucb Lyon 1
T 04.72.44.83.62
insa : H. Charles

secretariat.e2m2@univ-lyon1.fr

M. Fabrice Cordey

cnrs umr 5276 Lab. de géologie de Lyon
Université Claude Bernard Lyon 1
Bât. Géode
2 Rue Raphaël Dubois

69 622 Villeurbanne cedex

T 06.07.53.89.13
cordey@univ-lyon1.fr

ediss INTERDISCIPLINAIRE SCIENCES-SANTÉ
http://www.ediss-lyon.fr

Sec. : Sylvie Roberjot

Bât. Atrium, ucb Lyon 1
T 04.72.44.83.62
insa : M. Lagarde

secretariat.ediss@univ-lyon1.fr

Mme Emmanuelle Canet-Soulas

inserm U1060, CarMeN lab, Univ. Lyon 1
Bâtiment imbl

11 Avenue Jean Capelle insa de Lyon
69 621 Villeurbanne
T 04.72.68.49.09 v 04.72.68.49.16
emmanuelle.canet@univ-lyon1.fr

InfoMaths INFORMATIQUE ET MATHÉMATIQUES
http://edinfomaths.universite-lyon.fr

Sec. : Renée El Melhem

Bât. Blaise Pascal, 3e étage
T 04.72.43.80.46 v 04.72.43.16.87
infomaths@univ-lyon1.fr

M. Luca Zamboni

Bât. Braconnier
43 Boulevard du 11 novembre 1918
69 622 Villeurbanne cedex

T 04.26.23.45.52
zamboni@maths.univ-lyon1.fr

Matériaux MATÉRIAUX DE LYON
http://ed34.universite-lyon.fr

Sec. : Marion Combe

T 04.72.43.71.70 v 04.72.43.87.12
Bât. Direction
ed.materiaux@insa-lyon.fr

M. Jean-Yves Buffière

insa de Lyon
mateis

Bât. Saint-Exupéry
7 Avenue Jean Capelle

69 621 Villeurbanne cedex

T 04.72.43.71.70 v 04.72.43.85.28
ed.materiaux@insa-lyon.fr

mega MÉCANIQUE, ÉNERGÉTIQUE, GÉNIE
CIVIL, ACOUSTIQUE
http://edmega.universite-lyon.fr

Sec. : Marion Combe

T 04.72.43.71.70 v 04.72.43.87.12
Bât. Direction
mega@insa-lyon.fr

M. Philippe Boisse

insa de Lyon
Laboratoire lamcos

Bâtiment Jacquard
25 bis Avenue Jean Capelle

69 621 Villeurbanne cedex

T 04.72.43.71.70 v 04.72.43.72.37
philippe.boisse@insa-lyon.fr

ScSo SCSO *
http://ed483.univ-lyon2.fr

Sec. : Viviane Polsinelli

Brigitte Dubois

insa : J.Y. Toussaint

T 04.78.69.72.76
viviane.polsinelli@univ-lyon2.fr

M. Christian Montes

Université Lyon 2
86 Rue Pasteur
69 365 Lyon cedex 07
christian.montes@univ-lyon2.fr

* ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie.

http://www.edchimie-lyon.fr
mailto:secretariat@edchimie-lyon.fr
mailto:directeur@edchimie-lyon.fr
http://edeea.ec-lyon.fr
mailto:ecole-doctorale.eea@ec-lyon.fr
mailto:gerard.scorletti@ec-lyon.fr
http://e2m2.universite-lyon.fr
mailto:secretariat.e2m2@univ-lyon1.fr
mailto:cordey@univ-lyon1.fr
http://www.ediss-lyon.fr
mailto:secretariat.ediss@univ-lyon1.fr
mailto:emmanuelle.canet@univ-lyon1.fr
http://edinfomaths.universite-lyon.fr
mailto:infomaths@univ-lyon1.fr
mailto:zamboni@maths.univ-lyon1.fr
http://ed34.universite-lyon.fr
mailto:ed.materiaux@insa-lyon.fr
mailto:ed.materiaux@insa-lyon.fr
http://edmega.universite-lyon.fr
mailto:mega@insa-lyon.fr
mailto:philippe.boisse@insa-lyon.fr
http://ed483.univ-lyon2.fr
mailto:viviane.polsinelli@univ-lyon2.fr
mailto:christian.montes@univ-lyon2.fr

v

Remerciements

Je tiens à remercier :

– Baptiste Jeudy, Elisa Fromont et Christine Solnon de m’avoir donné l’oc-
casion de réaliser cette thèse et de m’avoir encadré durant ces quatre années.
Je les remercie également pour leur conseil, leur disponibilité, leur compré-
hension et leur soutien lors de certains moments délicats.

– Messieurs Bruno Crémilleux et Jean-Yves Ramel d’avoir accepté la respon-
sabilité et d’avoir pris le temps de rapporter cette thèse, ainsi que le reste des
membres de mon jury, M. Jean-Christophe Janodet et Mme Céline Rouverol
pour leur présence et l’ensemble de leur retour lors de ma soutenance.

– L’ensemble de l’équipe pédagogique du Département Informatique de l’INSA
de Lyon pour leurs enseignements et le savoir dont ils m’ont fait profiter
m’ayant permis de réaliser cette thèse et plus particulièrement ceux que j’ai
continué de côtoyer au sein du bâtiment Blaise Pascal à la suite de ma for-
mation initiale.

– L’ensemble de l’équipe administrative du LIRIS et du Département IF.
Plus particulièrement Yannick P. et Gilles B. pour les discussions que j’ai
pu avoir concernant des problèmes informatiques qui n’étaient pas forcément
liés à ma thèse et l’ensemble des secrétaires, Catherine L., Sylvie O., Faty
B. Caroline F., Dominique B., Marie R. et Renée E-M, pour leur sympa-
thie, leur accueil, leur accompagnement lors des démarches administratives
et pour certain.e.s d’entre eux les pauses cigarettes partagées sur le balcon.

– Mes collègues doctorants de bureau, Julien S., Maël M., Loïc B., Maxime
C., Vanessa L., Mickaël S-G., Lucas F., Yann C., Lucas G. (et j’espère ne pas
en oublier) pour avoir partagé tout ou partie de ces quatre années, pour les
pauses thé/café et/ou gouter, pour les moments d’échange qui n’étaient pas
forcément en rapport avec nos thèses respectives mais humainement intéres-
sant et aussi pour les moments parfois un plus difficiles.

– L’ensemble de mes collègues doctorants, incluant mes collègues de bureau,
dans le désordre Sullivan D, Diana N., Aimene B., Adnene B., Romain M,
Mohamed M., Mohamed A. H., Tarek A., Marie L. G., Sébastien D., Vincent
P., Vincent B., Manel C., Yvan L, Rémi C., Léopold G., Maëlle M, et tout
ceux que j’ai pu oublier pour les repas/débats que nous avons partagés et de
manière générale le temps passé en leur compagnie.

– Mes amis, que je ne vois que trop peu pour la plupart, mais qui ont été
présent avant et pendant cette thèse et m’ont soutenu dans les hauts comme
dans les bas, à savoir Crina C., Virgil R., Ophélie A., Rémi C., Maréva D.,
John T., Stan H., Olivier R., Jérémy P-M. Sloane E. et Julien L.

– Les membres des diverses associations dans lesquelles je suis membre, Graines
d’Images, Illyse et la Maison pour Tous, surtout Sébastien E., Sandrine N.
et Laura K., de m’avoir permis de m’épanouir en dans ce cadre que j’af-
fectionne particulièrement qu’est le bénévolat, la compréhension dont ils ont
fait preuve lors de mes périodes d’indisponibilités, mais aussi lors de moment
plus réjouissant autour d’un barbecue ou d’une raclette/CA.

– Et tout ceux que j’aurai oublié et/ou qui de près ou de loin ont participé
et m’ont suivi dans cet épopée que furent ces quatre années.

Enfin, je souhaite remercier tout particulièrement :

– Damien F. et Bérengère M., amis doctorants, qui m’ont permis de pas-
ser un moment mémorable à Clermont-Ferrand suivi d’une année tout aussi
inoubliable, pour le partage de doutes, mais aussi de réjouissance (surtout
lorsqu’un de nos papiers soumis a été accepté).

– Sloane E., pour son point de vue sur le monde, les nombreuses discussions,
parfois tard dans la nuit, mais aussi pour sa présence, sa bonne humeur et
son imagination débordante.

– Jeannine R., secrétaire du département IF de l’INSA de Lyon, alias "La
maman du département" (surnom plus que mérité), pour ce qu’elle est, son
soutien, sa bonne humeur, les pauses cafés en sa compagnie qui se sont par-
fois un peu trop éternisées et ces huit années (ou presque).

– Ma famille, mon père, ma mère, ma soeur et mon frère notamment, pour les
sacrifices qu’ils ont dû faire pour me permettre d’en arriver là. Merci aussi
à eux pour leur soutien inébranlable, surtout dans les moments de doute
et de fatigue tout au long de ces nombreuses années d’études, cela n’a pas
été toujours facile. Je tiens aussi à les remercier de me permettre de garder
les pieds sur terre et de m’avoir permis d’être tel que je suis. Merci aussi
d’avoir été (et d’être) une oreille attentive et de m’avoir permis de profiter,
en quelque sorte, d’un havre de paix et de solitude, loin des grandes villes, et
ainsi profiter différemment des choses simples et du temps qui passe avec eux.

– Enfin, merci à ces quatre années. Grâce à elles, ce que représente le tra-
vail d’une thèse, et grâce à toutes les personnes précédemment mentionnées,
j’ai énormément appris sur moi-même et sur ce que j’attends du Monde qui
m’entoure. Elles m’ont permis de mieux envisager le futur, de revoir certaines
priorités et mieux envisager la suite.

Bref, merci à tou.te.s pour ces quatre années (et beaucoup plus pour cer-
tain.e.s).

ix

Contents

1 Introduction 5

2 Background on Graphs 9
2.1 Basic definitions . 9
2.2 Graph and subgraph isomorphism 11
2.3 Geometric graphs . 14
2.4 Plane graphs . 16
2.5 Depth-first search of a graph . 18
2.6 Discussion . 21

3 Existing Graph Mining Algorithms 23
3.1 The Graph Mining Problem . 24

3.1.1 General Pattern Mining Problem 24
3.1.2 Constraint-based Pattern Mining 25

3.2 Graph Mining Strategies . 30
3.2.1 Graph Canonical Representation 31
3.2.2 Exploring a Search Space of Canonical Codes 33
3.2.3 Expansion Strategies . 34

3.3 Most Related Algorithms . 36
3.3.1 Generic Depth-First Algorithm 36
3.3.2 gSpan . 37
3.3.3 Plagram . 38
3.3.4 FreqGeo and MaxGeo 39

3.4 Other Graph Mining Algorithms 40
3.4.1 Exact Mining algorithms 41
3.4.2 Inexact and Incomplete Mining Algorithms 43

3.5 Discussion . 46

4 Definitions on Grids 49
4.1 2D grids . 50
4.2 2D + t grids . 52
4.3 Discussion . 55

5 Description of GriMA 59
5.1 Definition of the grid mining problem 60
5.2 Canonical Code . 61
5.3 Canonicity Test . 64
5.4 Extension strategy . 65
5.5 Theoretical analysis of GriMA 70
5.6 Node Induced GriMA . 73
5.7 Algorithm for enumerating occurrences 75
5.8 Discussion . 76

6 Application of GriMA to Image Classification 77
6.1 Background on image classification 78

6.1.1 Supervised classification 78
6.1.2 BoW-based representation of images 79
6.1.3 Pattern mining for image classification 80

6.2 BoG-based representation of images 81
6.2.1 Construction of 2D grids 81
6.2.2 Construction of BoGs . 83

6.3 Experimental setup . 84
6.3.1 Datasets . 85
6.3.2 Overview of the learning process and parameter settings 87
6.3.3 Overview of the classification process 89

6.4 Efficiency analysis . 90
6.5 Accuracy results . 92
6.6 Discussion . 94

7 Application of GriMA to Cellular Automata Analysis 97
7.1 Background on Cellular Automata 98
7.2 Experimental Setup . 101

7.2.1 Dataset construction . 101
7.2.2 Representation of Game of Life initial states by histograms

of frequent patterns . 103
7.2.3 Overview of the learning process 104
7.2.4 Overview of the classification process 105

7.3 Efficiency analysis . 105
7.3.1 Mining efficiency . 105
7.3.2 Counting the number of occurrences in grids 107

7.4 Accuracy results . 108
7.5 Discussion . 111

8 Conclusion 113

Bibliography 117

1

Résumé en français

Dans de nombreuses applications, les graphes sont utilisés pour modéliser des
objets structurés tels que des molécules, des documents, des réseaux sociaux ou
des images. Dans ce contexte, des algorithmes de fouille de graphes (tels que
gSpan [Jiang et al. 2013], par exemple) peuvent être utilisés pour caractériser
ces objets en termes de motifs fréquents, i.e., des sous-graphes qui apparaissent
dans un grand nombre de graphes. Cependant, ces algorithmes génériques de
fouille de graphes passent difficilement à l’échelle pour des applications réelles.
La difficulté vient d’une part du fait que, dans le cas général, il n’existe pas
d’algorithme efficace pour tester l’isomorphisme de graphes, et d’autre part
du grand nombre de combinaisons permettant d’étendre un graphe durant la
fouille [Cook et al. 2006]. Des algorithmes de fouille efficaces ont été proposés pour
certains cas particuliers de graphes, pour lesquels il existe des algorithmes de
complexité polynomiale pour résoudre le problème d’isomorphisme tels que, par
exemple, les graphes plans [Prado et al. 2013], et les graphes géométriques [Ari-

mura et al. 2007].
Dans cette thèse, nous abordons le problème de la fouille exhaustive de

motifs pour un cas particulier de graphes : les grilles. Ces grilles peuvent être
utilisées pour modéliser des objets ayant une structure régulière, i.e., des ob-
jets dont les composants sont régulièrement répartis dans l’espace ou le temps.
Ces structures de grille sont naturellement présentes dans de nombreux jeux
de plateaux (les dames, les échecs, ou le go, par exemple) ou encore dans les
modélisations d’écosystèmes utilisant des automates cellulaires. On les retrouve
également à un plus bas niveau dans les images, qui sont des grilles 2D de pixels,
les vidéos, qui sont des grilles spatio-temporelles 2D + t de pixels, ou encore
les images tomographiques de volumes, qui sont des grilles 3D de voxels. Des
motifs fréquents dans ces grilles bas niveau peuvent capturer une information
structurelle de plus haut niveau, et constituer une alternative aux approches
structurelles modélisant des images sous forme de graphes de plus haut niveau
(tels que, par exemple, les graphes d’adjacence de régions ou les triangulations
de points d’intérêts).

Contributions et organisation de la thèse. Dans le chapitre 2, nous
rappelons des définitions concernant les graphes, en mettant l’accent sur les

2 Contents

problèmes d’isomorphisme de graphes (utilisés pour décider si deux graphes
sont équivalents) et d’isomorphisme de sous-graphes (utilisés pour décider si
un graphe motif apparait dans un graphe cible). Nous introduisons aussi des
graphes particuliers pour lesquels il existe des algorithmes de fouille efficaces,
i.e., les graphes géométriques et les graphes plans.

Dans le chapitre 3, nous décrivons les algorithmes de fouille de graphes exis-
tants. Nous nous concentrons plus particulièrement sur les algorithmes utilisant
un code canonique pour représenter les graphes et effectuant une exploration
en profondeur d’abord de l’espace des codes canoniques. Ces algorithmes sont
décrits dans un contexte unifié, sous la forme d’instantiations d’un algorithme
générique, afin de mettre en évidence leurs points communs et leurs différences.

Dans le chapitre 4, nous définissons les grilles qui sont un cas particulier
des graphes géométriques. Pour les grilles 2D, les sommets ont des coordon-
nées 2D. Pour les grilles 2D + t, une troisième coordonnée, correspondant à
la dimension temporelle, est associée à chaque sommet. Dans les deux cas, les
arêtes ne peuvent relier que des sommets ayant des coordonnées voisines (i.e.,
dont la distance est égale à un). Nous définissons l’isomorphisme de grilles,
qui permet de déterminer si deux motifs sont équivalents, ainsi que l’isomor-
phisme de sous-grilles, qui permet de déterminer si un motif apparait dans une
grille. Ces définitions d’isomorphisme sont tolérantes aux rotations spatiales
ainsi qu’aux translations spatio-temporelles, de sorte que deux motifs ayant
une même structure mais apparaissant avec des orientations différentes ou à
des endroits différents de la grille sont considérés comme équivalents.

Dans le chapitre 5, nous décrivons la principale contribution de cette thèse,
qui est un nouvel algorithme de fouille de grilles appelé GriMA. Etant donnés
une base D de n grilles et un seuil σ ∈ [1, n], GriMA recherche tous les motifs
qui apparaissent dans au moins σ grilles de D. GriMA est présenté comme une
instantiation de l’algorithme générique décrit au chapitre 3, ce qui nous permet
de nous concentrer sur ses spécificités : le code canonique utilisé pour réprésenter
de façon unique un motif, et la stratégie d’extension utilisée pour récursivement
étendre les motifs. Nous prouvons que GriMA est correct et complet. Nous
montrons également que la complexité en temps pour extraire un motif est
polynomiale, et que cette complexité est inférieure à celles des algorithmes de
l’état de l’art pour la fouille de graphes géométriques et de graphes plans. Enfin,
nous introduisons un algorithme efficace pour dénombrer les occurrences d’un
motif donné dans une grille.

Dans le chapitre 6, nous évaluons expérimentalement l’efficacité ainsi que
l’intérêt de GriMA sur une tâche de classification d’images. Nous proposons

Contents 3

de modéliser les images à l’aide de grilles de mots visuels et d’extraire les mo-
tifs fréquents de ces grilles afin de pouvoir caractériser les images par des sacs
de grilles (Bag-of-Grids, BoG). Dans un premier temps, nous étudions les pro-
priétés de passage à l’échelle de GriMA pour la fouille de grilles 2D, et nous
le comparons avec des algorithmes de fouille de l’état de l’art. Ensuite, nous
comparons notre représentation par BoG avec une représentation simple et non
structurée sous la forme de sacs de mots (Bag-of-Words, BoW). Nous montrons
sur trois jeux d’images que la structuration en grilles BoG peut améliorer la
classification par rapport à l’approche non structurée BoW.

Dans le chapitre 7, nous nous intéressons à une seconde application de
GriMA, à savoir l’analyse d’automates cellulaires. Là encore, l’objectif est
double : il s’agit d’évaluer d’une part l’efficacité en pratique de GriMA, et
d’autre part son intérêt pour une tâche de classification. Les automates cellu-
laires sont des grilles régulières de cellules dont l’état évolue dans le temps, en
utilisant pour cela des règles locales et simples. Typiquement, l’état futur d’une
cellule est calculé à partir de l’état présent de ses cellules voisines. Les auto-
mates cellulaires sont utilisés pour modéliser des phénomènes spatio-temporels
tels que, par exemple, la propagation d’espèces invasives ou l’équilibre de diffé-
rentes espèces dans un éco-système. Ces systèmes sont complexes, et il est géné-
ralement difficile de prévoir leur état à long terme (par exemple, leur convergence
vers un état stable ou non) à partir de l’état initial. Nous nous intéressons plus
particulièrement au jeu de la vie de Conway, et nous montrons que cet automate
cellulaire peut être tout naturellement modélisé sous la forme d’une grille 2D+t.
Nous étudions les propriétés de passage à l’échelle de GriMA pour la fouille de
ces grilles 2D + t. Nous montrons ensuite que les motifs fréquents extraits par
GriMA peuvent être utilisés pour prévoir l’état à long terme d’une instance du
jeu de la vie, étant donnés ses k premiers états.

Enfin, nous discutons au chapitre 8 de quelques prolongations possibles pour
nos travaux de recherche.

5

Chapter 1

Introduction

In many applications, graphs are used to model structured objects such as, for
example, molecules, documents, social networks, or images. In this context,
subgraph mining algorithms [Jiang et al. 2013] may be used to characterize struc-
tured objects by means of frequent patterns, i.e., subgraphs that frequently
occur. However, general-purpose subgraph mining algorithms are seldom used
in real-world applications due to the high complexity of the mining process
mostly based on isomorphism tests and countless expansion possibilities during
the search [Cook et al. 2006]. Efficient algorithms have been proposed for special
cases for which there exist polynomial-time algorithms for graph isomorphism
such as, for example, plane graphs [Prado et al. 2013], geometric graphs [Arimura

et al. 2007], and outerplanar graphs under the block-and-bridge preserving con-
straint [Horváth et al. 2010].

In this thesis we tackle the problem of exhaustive graph mining for a spe-
cial case of graphs called grids. These grids may be used to model objects
that have a regular structure, i.e., their components are spatially embedded
on a regular grid structure. This grid structure is naturally present in many
boardgames (Checkers, Chess, Go, etc) or to model ecosystems using cellular
automata [Hogeweg 1988], for example. In addition, this grid structure may be
useful to capture low-level topological relationships whenever a high-level graph
structure is not obvious to design. In computer vision in particular, it is now
widely acknowledged that high-level graph-based image representations (such
as region adjacency graphs or interest point triangulations, for example) are
sensitive to noise so that slightly different images may result in very differ-
ent graphs [Samuel et al. 2010, Prado et al. 2013]. However, at a low-level, images
basically are grids: 2D grids of pixels for images, and 3D grids of voxels for
tomographic or MRI images modelling 3D objects. When considering videos,
we may add a temporal dimension to obtain spatio-temporal grids.

Contributions and outline of the thesis. In Chapter 2, we recall defini-
tions on graphs, with a particular emphasis on graph isomorphism, which is

6 Chapter 1. Introduction

used to decide whether two graphs are equivalent, and subgraph isomorphism
which is used to decide whether a copy of a pattern graph occurs in a target
graph. We also introduce special kinds of graphs for which there exist efficient
graph mining algorithms, i.e., geometric graphs and plane graphs.

In Chapter 3, we describe existing graph mining algorithms. We more par-
ticularly focus on algorithms that use canonical codes to represent graphs and
perform a recursive depth-first exploration of the search space of all canonical
codes. These algorithms are described within a unifying framework that will
allow us to clearly position our new algorithm with respect to other related
graph mining algorithms.

In Chapter 4, we define grids which are particular cases of labeled graphs.
For 2D grids, vertices have 2D coordinates, and edges only link vertices which
have neighbor coordinates. For 2D+ t grids, we associate a third coordinate to
each vertex, corresponding to the temporal dimension. We define grid isomor-
phism, which is used to decide whether two patterns are equivalent or not, and
subgrid isomorphism, which is used to decide whether a pattern occurs in grid
or not.

In Chapter 5, we describe the main contribution of this thesis, which is a
new algorithm called GriMA. GriMA mines frequent patterns in a database
of grids, and it follows the unifying framework introduced in Chapter 3. We
study the theoretical time complexity of GriMA, and prove that it is correct
and complete.

In Chapter 6, we experimentally evaluate GriMA on an image classification
task. To assess the relevance of using a grid structure for this task, we propose
to model images by means of grids of visual words and to extract frequent
patterns in these grids. We first study scale-up properties of GriMA for mining
frequent patterns in 2D grids, and compare it with state-of-the-art graph mining
algorithms. Then, we show how to use frequent patterns to obtain Bags-of-Grids
(BoGs). We compare these BoGs with a standard classification method which
uses simple unstructured Bags-of-Visual-Words (BoWs) in order to compare an
unstructured set of descriptors and a set of descriptors structured by a grid
topology.

In Chapter 7, we show how GriMA may be used to mine spatio-temporal
patterns in Cellular Automata (CA). CA are regular grids of cells which evolve
through time, giving rise to the emergence of spatio-temporal patterns which
are characteristics of different ecosystem outcomes. We first study scale-up
properties of GriMA for mining frequent patterns in 2D + t grids. We also
report experimental results on a classification task that aims at forecasting the
outcome of CA.

Chapter 1. Introduction 7

Publications related to the thesis. A first version of our grid mining al-
gorithm dedicated to 2D grids, and its application to image classification, has
been described in the following paper:

Romain Deville, Élisa Fromont, Baptiste Jeudy, Christine Solnon:
GriMA: A Grid Mining Algorithm for Bag-of-Grid-Based Classi-
fication, in Structural, Syntactic, and Statistical Pattern Recogni-
tion - Joint IAPR International Workshop (S+SSPR) 2016. Lecture
Notes in Computer Science 10029, pages 132-142

The extension of GriMA to mine 2D + t grids, and its application to the
analysis of cellular automata, has been described in the following paper:

Romain Deville, Élisa Fromont, Baptiste Jeudy, Christine Solnon:
GriMA2D+t: Mining Frequent Patterns in 2D + t Grid Graphs
for Cellular Automata Analysis, in Graph-Based Representations
in Pattern Recognition - 11th IAPR-TC-15 International Workshop
(GbRPR) 2017. Lecture Notes in Computer Science 10310, pages
177-186

An extended version of these papers is currently submitted to the special issue
of Pattern Recognition Letters dedicated to GbRPR 2017.

9

Chapter 2

Background on Graphs

Contents
2.1 Basic definitions . 9

2.2 Graph and subgraph isomorphism 11

2.3 Geometric graphs . 14

2.4 Plane graphs . 16

2.5 Depth-first search of a graph 18

2.6 Discussion . 21

In this chapter, we first recall basic definitions on graphs, and then de-
fine two problems that are at the core of the graph mining problem: graph
isomorphism, which is used to decide whether two graphs are equivalent, and
subgraph isomorphism, which is used to decide whether a copy of a pattern
graph occurs in a target graph. Then, we describe two classes of graphs which
are used to describe objects embedded in spaces, and for which there exist effi-
cient algorithms for solving the subgraph isomorphism problem: plane graphs
and geometric graphs. Finally, we describe graph traversal algorithms, which
are used to define canonical codes in graph mining algorithms.

2.1 Basic definitions

Graphs are used to model objects by means of a set of components (called
vertices) and a binary relation between these components (called edges). Labels
may be associated with vertices or edges.

Definition 2.1 Labeled graph
A labeled graph is defined by a triple G = 〈V,E, L〉 such that:

• V is the set of vertices,

• E ⊆ V × V is the set of edges,

10 Chapter 2. Background on Graphs

0

1 2

3 4

(a) A graph .

1 2

3 4

(b) An induced subgraph
of (a) obtained by
removing vertex 0.

1 2

3 4

(c) A partial subgraph of
(a) obtained by removing
vertex 0 and edges (1, 4)

and (2, 3).

Figure 2.1 – Examples of graph, induced and partial subgraphs. Vertex and
edge labels are represented by colors.

• L : V ∪ E → N is a function that associates a label L(c) with every
component (vertex or edge) c ∈ V ∪ E.

When the relation defined by E is symmetric, i.e., ∀(vi, vj) ∈ V ×V, (vi, vj) ∈
E ⇔ (vj, vi) ∈ E and L(vi, vj) = L(vj, vi), the graph is undirected. When the
relation defined by E is not symmetric, the graph is directed. In this thesis, we
only consider undirected labeled graphs, and call them graphs for short.

Figure 2.1(a) displays an example of graph with five vertices that have three
different labels (labels are represented by colours).

Given a vertex v, the vertices that are linked with v by an edge are called
neighbors of v. For example, vertex 0 in the graph of Figure 2.1(a) has two
neighbors: 2 and 4.

Definition 2.2 Path and cycle
Let G = 〈V,E, L〉 be a graph. A path is a sequence of vertices (v1, . . . , vn) such
that (vi, vi+1) ∈ E, for all i ∈ [1, n− 1]. The length of a path (v1, . . . , vn) is the
number of its edges, i.e., n − 1. A cycle is a path such that v1 = vn. A path
or a cycle is elementary if all its vertices are different (except the first and last
vertices for a cycle).

For example, (0, 2, 3, 1) is an elementary path, and (1, 2, 4, 3, 1) is an ele-
mentary cycle of the graph displayed in Figure 2.1(a).

Definition 2.3 Distance
The distance between two vertices in a graph is the length of the shortest path
between these two vertices.

For example, the distance between vertices 0 and 1 is 2 in the graph displayed
in Figure 2.1(a).

Definition 2.4 Connected graph
A graph G = 〈V,E, L〉 is connected if for every pair of vertices (vi, vj) ∈ V 2,
there is a path between vi and vj.

2.2. Graph and subgraph isomorphism 11

For example, the graph displayed in Figure 2.1(a) is connected.

Definition 2.5 k-connected graph
A graph G = 〈V,E, L〉 is k-connected if for every subset of k − 1 vertices, the
induced subgraph of G obtained by removing these k− 1 vertices is connected.

For example, the graph displayed in Figure 2.1(a) is 2-connected because
the subgraph obtained by removing any of its vertices is connected. However,
it is not 3-connected because the subgraph obtained when removing vertices 2
and 4 is no longer connected.

Definition 2.6 Induced subgraph
A graph G′ = 〈V ′, E ′, L′〉 is an induced subgraph of a graph G = 〈V,E, L〉 if:

• V ′ ⊆ V ,

• E ′ = E ∩ V ′ × V ′,

• L′ is the restriction of L to V ′ ∪ E ′.

In other words, an induced subgraph is obtained by deleting some vertices,
and every edge incident to a deleted vertex.

Definition 2.7 Partial subgraph
A graph G′ = 〈V ′, E ′, L′〉 is a partial subgraph of a graph G = 〈V,E, L〉 if:

• V ′ ⊆ V ,

• E ′ ⊆ E ∩ V ′ × V ,

• L′ is the restriction of L to V ′ ∪ E ′.

In other words, a partial subgraph is obtained by removing both vertices
and edges. Figure 2.1 displays examples of induced and partial subgraphs.

2.2 Graph and subgraph isomorphism

Two graphs G and G′ are isomorphic if they are equivalent up to a renaming of
their vertices, i.e., if there exists a bijective function that maps each vertex of
G to a vertex of G′ and that preserves edges and labels.

Definition 2.8 Graph isomorphism
Two graphs G′ = 〈V ′, E ′, L′〉 and G = 〈V,E, L〉 are isomorphic if there exists a
bijective function f : V → V ′ such that:

• ∀i, j ∈ V, (vi, vj) ∈ E ⇔ (f(vi), f(vj)) ∈ E ′,

• ∀i ∈ V, L(vi) = L′(f(vi)),

• ∀(vi, vj) ∈ E,L(vi, vj) = L′(f(vi), f(vj)).
This bijection f is called an isomorphism function.

12 Chapter 2. Background on Graphs

0

1 2

3 4

(a) A graph.

a

bc

d

(b) An induced
sub-isomorphic graph of
(a). An occurrence is

a→ 1, b→ 2, c→ 3, d→
4.

a

bc

d

(c) A partial
sub-isomorphic graph of
(a). An occurrence is

a→ 1, b→ 2, c→ 3, d→
4.

Figure 2.2 – Examples of induced and partial subgraph isomorphisms.

A graph G = 〈V,E, L〉 is automorphic if it is isomorphic with itself, i.e.,
there exists a bijective function from V to V (different from the identity) that
preserves edges and labels. In this case, the bijective function is called an
automorphism. For instance, the graph of Figure 2.1(b) is automorphic because
the bijective function 1→ 4, 2→ 3, 3→ 2, 4→ 1 is an automorphism.

Definition 2.9 Subgraph isomorphism
A graph G is sub-isomorphic to a graph G′, denoted G ⊆ G′, if there exists a
subgraph G′′ of G′ such that G is isomorphic to G′′.

Depending on the subgraph relation considered (induced or partial), we
obtain two different definitions of subgraph isomorphism, respectively called
induced subgraph isomorphism (denoted ⊆i) and partial subgraph isomorphism
(denoted ⊆p).

When a graph G1 is sub-isomorphic to another graph G2, the isomorphism
function between the vertices of G1 and the vertices of the subgraph of G2 is
called an occurrence of G1 in G2. Figure 2.2 displays examples of subgraph
isomorphisms and occurrences.

Computational complexity and algorithms. The complexity of graph iso-
morphism is still an open question. If it clearly belongs to NP , no polynomial-
time algorithm has been found for this problem, and it has not been shown to
be NP-complete. There exist many dedicated algorithms for solving the graph
isomorphism such as, e.g., [Ullmann 1976, McKay et al. 1981, Cordella et al. 2001, Sorlin

et al. 2008]. These algorithms are often very efficient, even though their worst
case time complexities are exponential. In 2016, Babai described an algorithm
in quasipolynomial (exp((log n)O(1))) time [Babai 2016].

Subgraph isomorphism is more general than graph isomorphism (in the sense
that graph isomorphism may be reduced to subgraph isomorphism) and it has

2.2. Graph and subgraph isomorphism 13

been shown to be NP-complete [Garey et al. 1979]. Subgraph isomorphism prob-
lems may be solved by a systematic exploration of the search space consisting
of all possible injective matchings from the vertices of the pattern graph to the
vertices of the target graph: starting from an empty matching, one incremen-
tally extends a partial matching by matching a non-matched pattern vertex to
a non-matched target vertex until either some edges are not matched by the
current matching (so the search must backtrack to a previous choice point and
go on with another extension), or all pattern vertices have been matched (a so-
lution has been found). To reduce the search space, this exhaustive exploration
is combined with filtering techniques that aim at removing candidate pairs of
non-matched pattern-target vertices. Different filtering techniques may be con-
sidered; some are stronger than others (they remove more candidate pairs), but
also have higher time complexities.

The simplest form of filtering is to propagate difference constraints (which
ensure that the matching is injective) and edge constraints (which ensure that
the matching preserves pattern edges). This simple filtering (called Forward-
Checking) is very fast to achieve and is used, for example, in McGregor’s al-
gorithm [McGregor 1979] and in VF2 [Cordella et al. 2004]. Régin [Régin 1994] in-
troduced a stronger filtering for difference constraints, which ensures that all
pattern vertices can be matched with different target vertices, all together. For
edge constraints, Ullman [Ullmann 1976] introduced a filtering (called Arc Con-
sistency) that removes more candidate pairs than Forward-Checking, but that
is also more time consuming. Stronger filtering may be obtained by propagat-
ing edge constraints in a more global way, as proposed in [Larrosa et al. 2002,

Solnon 2010, Audemard et al. 2014, McCreesh et al. 2015]. These different algorithms
have been compared in [Kotthoff et al. 2016] on a large benchmark set of 5725
instances, grouped in 12 different classes. This comparison has shown that the
algorithm of [McCreesh et al. 2015] is able to solve more instances than all others
when considering large CPU time limits, and that some of these algorithms
have complementary performance.

Finally, let us note that if subgraph isomorphism is NP-complete in the
general case, there exist subclasses of graphs for which this problem becomes
polynomial such as, for example, trees [Matula 1978], 2-connected outerplanar
graphs [Syslo 1982] and outerplanar graphs under the block-and-bridge preserving
constraint [Horváth et al. 2010]. Also, there exist polynomial-time algorithms for
the two classes of graphs introduced in the next two sections, i.e., geometric
graphs and plane graphs.

14 Chapter 2. Background on Graphs

2.3 Geometric graphs

In some applications, vertices correspond to components which have spatial co-
ordinates. In this case, subgraph isomorphism may be solved in polynomial
time by exploiting geometrical information when matching pattern vertices to
target vertices. As a consequence, efficient pattern mining algorithms may be
designed for these graphs, as proposed in [Kuramochi et al. 2002, 2007]. These algo-
rithms are described in the next chapter. In this section, we describe geometric
graphs and define geometric (sub)graph isomorphism.

Definition 2.10 Geometric graph
A geometric graph is defined by a tuple G = 〈V,E, L, C〉 such that:

• 〈V,E, L〉 is a graph,

• C : V → R2 is a function that associates 2D coordinates with each vertex
v ∈ V .

The extension of subgraph definitions to geometric graphs is straightforward.

Definition 2.11 Geometric subgraph
Let G′ = 〈V ′, E ′, L′, C ′〉 and G = 〈V,E, L, C〉 be two geometric graphs. G′ is a
geometric subgraph of G if :

• 〈V ′, E ′, L′〉 is a subgraph of 〈V,E, L〉,

• C ′ is the restriction of C to N ′

Figures 2.3(b) and 2.3(c) are, respectively, examples of a partial geometric
subgraph and an induced geometric subgraph of the geometric graph of Fig-
ure 2.3(a).

If the extension of the subgraph definition is straightforward, the definition
of isomorphism for geometric graphs deserves a discussion. We may consider a
straightforward extension of Definition 2.8, that simply checks that the isomor-
phism function preserves vertex coordinates. However, since vertex coordinates
depend on the particular reference coordinate axes, it is more natural to define
geometric isomorphism that allows homogeneous transforms on coordinates,
prior to establishing a match, as proposed in [Kuramochi et al. 2002, Arimura et

al. 2007]. More precisely, they define the class Trgeo of rigid transformations as
follows.

Definition 2.12 Class Trgeo of rigid transformations
Trgeo is the class of all 2D affine transformations T : x→ Ax+ t where A = λR

is the product of a scaling factor λ and a 2 × 2 rotation matrix R and t is a
2−vector.

2.3. Geometric graphs 15

x

y

(a) A geometric graph.

x

y

(b) A partial geometric
subgraph of (a).

x

y

(c) An induced geometric
subgraph of (a).

x

y

G0

G1

G2 G3

(d) Examples of geometrically isomorphic graphs: for G0 and G2, the rigid
transformation is a translation of 3 units along the y axis, i.e., A = (1 0

0 1) and
t = (0, 3); for G0 and G1, the rigid transformation is composed of a rotation with

A = (0 −11 0) and a translation with t = (2, 3); for G0 and G3, the rigid transformation
is composed of a scaling with A = (2 0

0 2) and a translation with t = (1, 1).

Figure 2.3 – Examples of geometric graphs, geometric subgraphs, and
geometric graph isomorphism.

These rigid transformations preserve the angles between lines and can be
determined by a set of three non-collinear points and their images (see [Arimura

et al. 2007] for more details). These rigid transformations allow us to define
geometric graph isomorphism.

Definition 2.13 Isomorphism of geometric graphs
Let G = 〈V,E, L, C〉 and G′ = 〈V ′, E ′, L′, C ′〉 be two geometric graphs. G and
G′ are geometrically isomorphic if:

• There exists an isomorphism function f between the graphs 〈V,E, L〉 and
〈V ′, E ′, L′〉.

• There exists a rigid transformation T ∈ Trgeo that preserves coordinates
of matched vertices, i.e. T (C(v)) = C ′(f(v)),∀v ∈ V .

16 Chapter 2. Background on Graphs

Given this definition of geometric graph isomorphism, the definition of geo-
metric subgraph isomorphism is straightforward.

Definition 2.14 Geometric subgraph isomorphism
Let G = 〈V,E, L, C〉 and G′ = 〈V ′, E ′, L′, C ′〉 be two geometric graphs. G is
a geometric subisomorphic graph of G′, denoted G ⊆geo G

′, if there exists a
geometric subgraph G′′ of G′ such that G is geometrically isomorphic to G′′.

Depending on whether G′′ is an induced subgraph or a partial subgraph
of G′, we obtain two different definitions of geometric subgraph isomorphism,
respectively denoted ⊆i

geo and ⊆p
geo.

2.4 Plane graphs

Plane graphs are special cases of geometric graphs, such that embedded edges
do not intersect except at their endpoints.

Definition 2.15 Plane graph
A plane graph G is a geometric graph G = 〈V,E, L, C〉 such that for any pair of
different edges {(v1, v2), (v3, v4)} ⊆ E, the two open line segments]C(v1), C(v2)[

and]C(v3), C(v4)[have an empty intersection.

A planar graph is a graph G = 〈V,E, L〉 for which there exists a 2D embed-
ding C : V → R2 of its vertices such that 〈V,E, L, C〉 is a plane graph. Note
that a planar graph has an infinite number of 2D embeddings, and that not all
these embeddings correspond to plane graphs.

Line segments associated with edges of a plane graph split the 2D plane
into regions that are called faces. One of these faces is unbounded and called
the external face; all other faces are bounded by a cycle and are called internal
faces.

Figure 2.4(a) displays an example of a plane graph composed of five internal
faces (respectively bounded by the cycles (3, 8, 7, 5, 3), (2, 5, 6, 2), (2, 6, 4, 1, 2),
(1, 4, 3, 1), and (1, 3, 5, 2, 1)) and one external face (corresponding to the un-
bounded region outside the cycle (5, 6, 4, 3, 8, 7, 5)).

As a plane graph is a special case of geometric graph, the geometric sub-
graph definition still holds for plane graphs. However, removing a vertex may
change internal faces. Let us consider for example the plane graph displayed in
Figure 2.4(a): when removing vertex 1 and its three incident edges, we merge
three internal faces into a single face bounded by (2, 6, 4, 3, 5, 2) as displayed in
Figure 2.4(c). In [Higuera et al. 2013], a constraint is added to ensure that each
internal face of the original graph is also an internal face of the subgraph. This
is called face-induced plane subgraph.

2.4. Plane graphs 17

1

2

3 4

5 6

7

8

(a) A plane graph.

g

h

e

c

b

a

d

f

(b) A plane graph isomorphic to (a).

2

3 4

5 6

7

8

(c) A subgraph of (a) which is not
face-induced.

1

2

3 4

5 6

(d) A face-induced plane
subgraph (a).

Figure 2.4 – Example of plane graphs. The external face is represented by
the blue area around graphs.

Definition 2.16 Face-induced plane subgraph
Let G′ = 〈V ′, E ′, L′, C ′〉 and G = 〈V,E, L, C〉 be two plane graphs. G′ is a
face-induced plane subgraph of G if:

• G′ is a geometric subgraph of G,

• each internal face of G′ is also an internal face of G.

For instance, the plane graph displayed in Figure 2.4(d) is a face-induced
plane subgraph of the plane graph displayed in Figure 2.4(a) as all its faces are
preserved. The plane graph in Figure 2.4(c) is not a face-induced plane subgraph
because the yellow face, bounded by (2, 6, 4, 3, 5), is indeed an internal face but
does not correspond to any internal face of the graph in Figure 2.4(a). The
extension of the definition of graph isomorphism to plane graphs also deserves
a discussion as we may consider different extensions, whether they preserve the
embedding in R2, the geometry (as defined for geometric graphs) or the faces.
The extension that preserved faces was proposed by [Higuera et al. 2013] and is
defined below.

Definition 2.17 Plane graph isomorphism
Let G = 〈V,E, L, C〉 and G′ = 〈V ′, E ′, L′, C ′〉 be two plane graphs. G′ and G
are plane graph isomorphic if there exists an isomorphism function f : V → V ′

that preserves all internal faces, i.e., for each internal face bounded by vertices

18 Chapter 2. Background on Graphs

(v1, . . . , vn) in G there is an internal face bounded by vertices (f(v1), . . . , f(vn))

in G′.

For instance, the two graphs of Figures 2.4(b) and 2.4(a) are plane isomor-
phic. Indeed, the isomorphism function 1 → a, 2 → b, 3 → c, 4 → d, 5 →
e, 6 → f, 7 → g, 8 → h preserves all internal faces. For example, the internal
face (3, 8, 7, 5, 3) is matched by the isomorphism function to the internal face
(c, h, g, e, c). Note that these two graphs are not geometrically isomorphic as
there does not exist a rigid transformation between them.

Finally, we can define face-induced subgraph isomorphism as an isomorphism
between a plane graph and a face-induced subgraph of another plane graph.

Definition 2.18 Face-induced plane subgraph isomorphism
Let G and G′ be two plane graphs. G is face-induced plane subgraph isomorphic
to G′, denoted G ⊆face G

′, if there exists a face-induced plane subgraph G′′ of
G′ such that G and G′′ are plane isomorphic.

For example, the graph of figure 2.4(d) is face-induced plane subgraph iso-
morphic to the graph of figure 2.4(b).

Computational complexity and algorithms. If subgraph isomorphism is
an NP-complete problem in the general case, [Higuera et al. 2013] introduces a
polynomial-time algorithm to decide whether a pattern graph is face-induced
plane sub-isomorphic to a target graph, provided that the pattern graph is 2-
connected. It also shows us that the problem becomes NP-complete when the
pattern graph is not 2-connected. [Solnon et al. 2015] gives an FPT algorithm to
decide whether a pattern graph is face-induced plane sub-isomorphic to a target
graph when the pattern graph is not 2-connected: The time-complexity of this
algorithm is exponential only in the number of 2-connected components in the
pattern graph, and polynomial in the sizes of the two graphs (this algorithm is
described in the context of generalized maps which are data structures to model
plane graphs).

2.5 Depth-first search of a graph

Graph traversals are used to visit all vertices that may be reached from an initial
vertex v0. They use an exploration strategy to systematically explore the graph
starting from v0 and using edges to visit new vertices. Two main strategies are
possible as described in [Cormen et al. 2009]:

• Breadth-first search (BFS), which expands the frontier between visited
and unvisited vertices uniformly across the breadth of the frontier. It visits
all vertices at distance k from v0 before visiting any vertex at distance k+1.

2.5. Depth-first search of a graph 19

• Depth-first search (DFS), which explores the graph from the most recently
visited vertex vi that still has unvisited neighbors. Once all neighbors of vi
have been visited, the search "backtracks" to visit neighbors of the vertex
from which vi was visited. This process continues until it has visited all
the vertices that are reachable from v0.

In this thesis, we focus on DFS, which is used to define canonical codes in
some graph mining algorithms. Also, we only consider connected graphs, such
that all vertices can be reached from the initial vertex v0.

DSF uses colors to keep track of the progress of the traversal and associates a
unique number to each vertex, corresponding to the order of visit of the vertices.
It also marks every edge used to visit a new vertex as a forward edge. Other
edges (that have not been used to visit vertices) are called backward edges.

DFS is described in algorithm 1. The input is an undirected graph G =

〈V,E, L〉 and an initial vertex v0 ∈ V . At the beginning of the search, all
vertices are white, and the counter nbvisited that is used to number vertices is
initialized to 0 (line 2). The first vertex to be visited is the initial vertex v0 (line
3). Vertices are recursively visited by the Visit procedure. When a vertex vi
is visited, it is colored in gray and is given a new number (lines 5-6). Then, for
each white neighbor vj of vi, the edge (vi, vj) is marked as forward (line 9), and
vj is recursively visited (line 10). Once all neighbors of vi are either black or
gray, vi is colored in black and the visit of vi ends (line 11).

Algorithm 1 Depth-first search traversal.

1: procedure DFS(G = 〈V,E, L〉, v0)
2: Color all vertices of V in white and initialize nbvisited to 0
3: Visit(v0)

4: procedure Visit(vi)
5: Color vi in gray
6: Increment nbvisited, and give number nbvisited to vi
7: for all vertex vj which is neighbor of vi in G do
8: if vj is white then
9: Mark edge (vi, vj) as forward
10: Visit(vj)
11: color vi in black

At the end of DFS(G, v0), each vertex has a unique visit number, and edges
used to visit vertices are marked as forward edges. Figure 2.5 illustrates step
by step the progress of DFS on a graph.

The set of forward edges defines a tree, called DFS tree. The root of this tree
is the initial vertex v0; each other vertex vi ∈ V \{v0} has a unique parent which

20 Chapter 2. Background on Graphs

1
v4 v5

v2v1 v3

v6

(a) Visit(v4).

1 2
v4 v5

v2v1 v3

v6

(b) Visit(v5).

1 2

3

v4 v5

v2v1 v3

v6

(c) Visit(v2).

1 2

34

v4 v5

v2v1 v3

v6

(d) Visit(v1).

1 2

34

v4 v5

v2v1 v3

v6

(e) End of Visit(v1).

1 2

34

v4 v5

v2v1 v3

v6

(f) End of Visit(v2).

1 2

34 5

v4 v5

v2v1 v3

v6

(g) Visit(v3).

1 2

34 5

6
v4 v5

v2v1 v3

v6

(h) Visit(v6).

1 2

34 5

6
v4 v5

v2v1 v3

v6

(i) End of Visit(v6).

1 2

34 5

6
v4 v5

v2v1 v3

v6

(j) End of Visit(v3).

1 2

34 5

6
v4 v5

v2v1 v3

v6

(k) End of Visit(v5).

1 2

34 5

6
v4 v5

v2v1 v3

v6

(l) End of Visit(v4).

Figure 2.5 – Illustration of the different steps of a DFS algorithm starting
from vertex v4. Numbers assigned to vertices are displayed in the circles,

and forward edges are displayed in green.

is the vertex that has called Visit(vi). Note that the DFS tree depends on the
initial vertex v0 and on the order used to select the neighbors of vi (line 7).
Different results may be obtained when changing them. For instance, Fig. 2.6
displays three examples of DFS trees for a same graph.

Properties of DFS. The time complexity of algorithm 1 is linear with respect
to the number of edges in the graph (provided that the graph is represented
with adjacency lists).

For each forward edge (vi, vj), such that Visit(vi) has called Visit(vj), the
number associated with vi is always smaller than the number associated with
vj. This is a straightforward consequence of the fact that numbers are given

2.6. Discussion 21

v4 v5

v2v1 v3

v6

(a)

1

2

3

4

5

6

(b) DFS tree when
starting from v4 and

successively visiting v5,
v2, v1, v3, and v6.

1

2

3

4

5

6

(c) DFS tree when
starting from v2 and

successively visiting v5,
v3, v6, v4, and v1.

1

2

3

4

5

6

(d) DFS tree when
starting from v1 and

successively visiting v4,
v5, v3, v6, and v2.

Figure 2.6 – A graph (a) and three possible depth-first tree (b), (c) and (d).
Forward edges are represented in green, and visit numbers are displayed

inside the circles.

to vertices at the beginning of the Visit procedure, and that numbers are
incremented after each number assignment.

2.6 Discussion

In this first chapter, we have defined geometric graphs and plane graphs which
are special cases of labeled graphs. These graphs are of particular interest
for this thesis because they are used to model the geometry of objects. Grid
graphs, which are defined in Chapter 4 and for which we propose a new mining
algorithm in Chapter 5, are closely related to these graphs.

Graph mining algorithms search for frequent patterns in graph databases.
These patterns are sub-isomorphic to the database graphs. We have seen in this
chapter that we may consider different definitions for the sub-isomorphism rela-
tion, depending on the properties that must be preserved by the sub-isomorphism.
Table 2.1 summarizes these different sub-isomorphism relations.

Finally, graph mining algorithms usually represent graph patterns by canon-
ical codes which are built by performing DFS traversals, and are a compact
representation of DFS trees. Hence, we have described in this chapter the DFS
algorithm and introduced DFS trees.

22 Chapter 2. Background on Graphs

Table 2.1 – Different kinds of graphs and subisomorphism relations
introduced in this chapter.

Kind of graph Sub-isomorphism relation
Graph Partial subgraph isomorphism (G′ ⊆p G) preserves labels

and pattern edges
Induced subgraph isomorphism (G′ ⊆i G) preserves labels
and both pattern and target edges

Geometric graph Partial geometric subgraph isomorphism (G′ ⊆p
geo G) pre-

serves labels, pattern edges, and geometry (up to a rigid
transformation)
Induced geometric subgraph isomorphism (G′ ⊆i

geo G) pre-
serves labels, both pattern and target edges, and geometry
(up to a rigid transformation)

Plane graph Face-induced plane subgraph isomorphism (G′ ⊆face G)
preserves labels, both pattern and target edges, and internal
faces

23

Chapter 3

Existing Graph Mining Algorithms

Contents
3.1 The Graph Mining Problem 24

3.1.1 General Pattern Mining Problem 24

3.1.2 Constraint-based Pattern Mining 25

3.2 Graph Mining Strategies 30

3.2.1 Graph Canonical Representation 31

3.2.2 Exploring a Search Space of Canonical Codes 33

3.2.3 Expansion Strategies 34

3.3 Most Related Algorithms 36

3.3.1 Generic Depth-First Algorithm 36

3.3.2 gSpan . 37

3.3.3 Plagram . 38

3.3.4 FreqGeo and MaxGeo 39

3.4 Other Graph Mining Algorithms 40

3.4.1 Exact Mining algorithms 41

3.4.2 Inexact and Incomplete Mining Algorithms 43

3.5 Discussion . 46

In this chapter, we first define the general problem of pattern mining and fo-
cus on the particular case of graph patterns which are the main objects studied
in this document. In order to understand our graph mining algorithm (pre-
sented in chapter 5), we also introduce in this chapter the related graph mining
algorithms through their key ingredients: 1) the graph canonical representa-
tion used to avoid pattern duplicates; 2) the pattern search space exploration
strategy; 3) the pattern expansion strategy and 4) the completeness and the
correctness of the algorithm according to the general pattern mining problem.

24 Chapter 3. Existing Graph Mining Algorithms

3.1 The Graph Mining Problem

Data mining methods aim at processing large datasets to extract relevant in-
formation/pieces of knowledge for further use in a knowledge discovery process
[Fayyad et al. 1996]. In this thesis, we focus on a particular subfield of data mining
called pattern mining. The pattern mining goal is to find regularities in data,
usually without using any knowledge about what to find in the data (no super-
vised information) but with a strong assumption on the shape of the regularities
that should be found.

In this document, we are interested in graph patterns, which means that
regularities take the shape of graphs (as defined in the previous chapter). Most
of the definitions related to graph patterns are relevant for all types of pat-
terns. We thus first present the generic definitions about pattern mining before
discussing graph mining algorithms.

3.1.1 General Pattern Mining Problem

The pattern mining problem has been formally described in [Mannila et al. 1997]:

Definition 3.1 General Pattern Mining Problem
Given a database D, a language L for expressing the type of regularities we
want to find and, a set of constraints C used for evaluating whether a pattern
P ∈ L is interesting. The task is to find Th(L,D,C) where:

Th(L,D,C) = {P ∈ L | C(P,D) is true}

In other words, we want to find all patterns P ∈ L satisfying the constraint
C in D.

One of the first successful algorithm to tackle this task was Apriori [Agrawal

et al. 1994]. This algorithm was originally developed to analyze supermarket
customer baskets and in particular, to understand for marketing purposes, which
food items (e.g. beer, pizza, etc.) were bought together. The target language
in this case was the set of all possible subsets of food items that could be
bought together. This target class of patterns, called itemsets, has been used,
since then, in many types of applications where the goal is to find unstructured
subsets of elements (e.g., gene expression levels in micro-arrays, co-occurring
words in texts, co-occurring patches in images, etc.) that often occur together
in the data. However, if n is the number of items in a given application (e.g.,
food products in a supermarket), the number of possible subsets that can be
extracted is 2n (the number of possible subsets of a set with n elements). This
number is usually much larger than the number of transactions considered (e.g.,

3.1. The Graph Mining Problem 25

higher than the number of baskets ever bought in the supermarket). Finding
such a huge number of patterns is thus at the same time, computationally
intractable, but also useless to analyze.

The literature in pattern mining thus focuses on three core research prob-
lems: 1) defining relevant constraints to limit the number of patterns that
should be output by the mining algorithm, 2) implementing algorithms that
can make use of constraints in the most efficient way, 3) defining new types of
regularities (itemsets, sequences, episodes, intervals, graphs, etc.). Itemsets are
the "simplest" type of patterns tackled by existing pattern mining algorithms.
Finding other types of regularities turned out to be even more complex, making
essential the research works on the two first points.

3.1.2 Constraint-based Pattern Mining

A naive approach to tackle the general pattern mining problem could be to im-
plement a simple "generate and test" algorithm: generate all possible patterns
P ∈ L, and test if the constraint C is satisfied. However, as explained before,
the number of possible candidate patterns is exponential in the dimension of the
data. A huge effort has been made to define interestingness measures that can
be used to constrain the space of candidates and reduce the number of produced
patterns. The interestingness measures can be divided into two categories (see
[Geng et al. 2006, Leeuwen et al. 2016] for survey papers): 1) objective measures, that
depend only on the structure of the class of patterns and on the data, and 2)
subjective measures, that can take into account user preferences to return more
specific type of patterns.

In this document, we consider the measures, thus the constraints, in another
way:

• Pruning Constraints which are tractable constraints that can be pushed
during the mining process and allow to prune the search space of possible
patterns.

• Post-processing Constraints which allow to refine the amount of in-
teresting patterns found after the mining process.

Pruning Constraints

Mining algorithms usually explore the space of candidate patterns from the
smallest ones to the largest ones, with respect to some size measure (e.g., num-
ber of items in itemsets, number of edges in graphs, etc.): they iteratively
expand current acceptable patterns to obtain larger ones, with respect to some
expansion strategy (e.g., adding an item to an itemset, adding an edge to a

26 Chapter 3. Existing Graph Mining Algorithms

graph, etc). Considering the huge size of this search space (see complexity
arguments before), it is crucial to stop considering an expansion branch (i.e.,
to prune the search space) as early as possible if the expansion branch has no
chance to lead to patterns that fulfill the given constraints.

This pruning step can be done efficiently with constraints that present spe-
cial properties such as monotonicity or anti-monotonicity properties. In this
thesis, we mainly focus on anti-monotone constraints.

Definition 3.2 Anti-monotone constraint
A constraint C is anti-monotone if and only if, for all patterns p and p′:

• if p ⊆ p′ and p′ satisfies C, then p satisfies C.

where ⊆ is a sub-pattern relation such that p ⊆ p′ if p′ may be obtained
from p by a sequence of expansions.

In other words, if a pattern p′ satisfies a constraint C, any sub-pattern p of
p′ also satisfies this constraint C. Conversely, if a pattern p does not satisfy
a constraint C, then all its super-patterns p′ do not satisfy this constraint C
either. When exploring the search space, an anti-monotone constraint C is used
to safely prune a branch rooted at a pattern p if p does not satisfy the constraint
C since none of the expansions of p satisfy C.

The most commonly used anti-monotone constraint is the support/frequency
of a pattern p.

Definition 3.3 Pattern Support & Frequency
The support of a pattern p in a database D = {e0, e1, ..., en} corresponds to the
number of transactions ei in the database D which contain p:

supportD(p) = |{ei|p ⊆ ei and ei ∈ D}|

The frequency of p in D is the ratio of its support by the number of transactions
(or examples) in the considered database:

frequencyD(p) = supportD(p)
|D|

In the particular case of graph mining, it is possible to either mine patterns
in a single graph or in a database of graphs. These two settings lead to two
different definitions of the support of a graph pattern [Bringmann et al. 2008]. In
figure 3.1, the pattern p1 has only one occurrence in the graph G while the
pattern p2 has 4 different occurrences. Therefore in this case, the support is
usually considered for non overlapping occurrences. This can be done by first
building the overlap graph of the occurrences. Then, the support of a pattern p
is the size of the Maximum Independent Set (MIS) of the overlap graph of the
occurrences of p, which is anti-monotonic [Gudes et al. 2006]. In this thesis, we

3.1. The Graph Mining Problem 27

(a) A pattern p1 (b) A pattern p2 ⊃ p1 (c) A graph G

Figure 3.1 – Patterns with non-monotonic support. If the support is defined
as the number of occurrences, then the support of p1 in G is less than the

support of p2 even though p1 ⊂ p2.

consider the second setting and we define the anti-monotonic constraint support
of a graph pattern p as:

Definition 3.4 Support of a graph pattern
The support of a graph pattern p in an database of graphs D = {G0, G1, ..., Gn}
is the number of graphs Gi ∈ D to which the graph pattern is subgraph isomor-
phic:

supportD(p) = |{Gi|P ⊆ Gi and Gi ∈ D}|

The support/frequency constraint can be combined with other constraints
to further prune the pattern space [Yan et al. 2006]. In this line, some algorithms
propose to search for maximal patterns. A pattern is said to be maximal when
it has no super-pattern that is frequent. For example, SPIN [Huan et al. 2004] is
one of the first graph mining algorithm that uses the maximal graph pattern
constraint on graphs. Another constraint is the closedness of a pattern. A
pattern is said to be closed when it has no super-pattern with the same sup-
port. Maximal patterns are a subset of closed ones. In [Yan et al. 2003], authors
proposed an algorithm to find closed graph patterns. More recently, [Bendimerad

et al. 2017] used the closedness constraint in urban data analysis context. With
some supervised information about the targeted problem, one can constrain the
patterns to be frequent in some part of the dataset (e.g., for some classes) but
not in others. Patterns that rely on this type of contraint, which are not es-
pecially anti-monotonic, are called emerging or contrast patterns [Borgelt et al.

2002].
Other anti-monotinic constraints have been designed to constrain the struc-

ture of the targeted patterns such as the size constraint, the total number of
vertices or edges in graph patterns, planarity constraints, etc. Some constraints
are not anti-monotone but can be converted into anti-monotone ones by prepro-
cessing the attributes: they are called convertible constraints. [Pei et al. 2000, 2004]

have characterized some constraints (among them, the convertible ones) that
can be pushed into the mining process to prune the search space of patterns.

28 Chapter 3. Existing Graph Mining Algorithms

In [Soulet et al. 2005], authors propose a framework, as well as a new algorithm
based on it, that use constraint based on SQL-like and syntactic primitives. By
introducing the use of lower and uppper bounds of the constraint on an inter-
val, it allows to use complexe constraints (such as area of a pattern) by using
boolean combinations of the usual constraint (e.g. monotonic, anti-monotonic
and convertible ones). On the other hand, authors of [Cerf et al. 2008] propose
a new class of constraint to mine closed n-set, the piecewise (anti-)monotonic
constraint which includes monotonic and ant-monotic constraints. To be able to
use nonmonotonic contrasints during the mining process, authors of [Buzmakov et

al. 2015] introduced the notion of "generalized monotonicity". They introduced
a new class of constraints which are monontonic w.r.t. a chain of projections
as well as an algorithm which use this constraint to be able to find patterns in
polynomial time for interval tuple data.

Post-processing Constraints

Unfortunately, even when using pruning constraints, the number of output pat-
terns is often too important to be humanly processed as noted by [Piatetsky-

Shapiro et al. 1994]. Thus, it may be needed to further reduce the output and
select only relevant patterns by applying constraints a posteriori, i.e., after the
mining step.

In this line of work, researchers have tried to find constraints that do not
require any expert knowledge but are entirely data dependent: this is the case
of Minimum Description Length-based constraints (MDL), that are used for
example in KRIMP [Vreeken et al. 2011] or in SLIM [Smets et al. 2012], or entropy-
based constraints [Bie et al. 2010, Bie 2011, Cheng et al. 2007, Fernando et al. 2014]. In
MDL-based works, the aim is to find patterns that well compress the data. The
intuition is that redundant patterns will not improve the compression criterion
during the selection step and will thus not be selected. [Vreeken et al. 2011] have
shown that, in practice, the compression criterion is also good to obtain patterns
that have a high discriminative power, i.e., patterns that can be successfully
used as inputs for supervised machine learning (classification) algorithms. In
the entropy-based framework [Bie et al. 2010, Bie 2011], algorithms rely on prior
information on the data to choose the most interesting patterns. For example,
they can use the class information available for each example when the targeted
application is a classification problem.

In the following, we detail the post-processing constraints used in [Cheng

et al. 2007] and [Fernando et al. 2014], as we have used them in our experiments (see
Chapter 7) to select a set of discriminative patterns.

3.1. The Graph Mining Problem 29

Let C be a set of classes, such that each class c ∈ C is composed of a set
Ic of elements/examples (images in [Fernando et al. 2014]). Let I = ∪c∈CIc be the
set of all elements. Each element i ∈ I is represented by a set of features F ,
and for every feature f ∈ F and every element i ∈ I, i[f] is the value associated
with feature f in i (for example, the number of occurrences of feature f in
element i). The authors of [Fernando et al. 2014] propose two criteria to select
the most discriminative features of P : redundancy and relevance which further
allow to sort the features of F according to a combined redundancy/relevance
interestingness measure.

Definition 3.5 Feature Redundancy
A feature redundancy measure is a function R : F × F → R such that, the
higher R(f, f ′), the more redundant the two features f and f ′.

If the redundancy measure R(f, f ′) is high enough (depending on a user-
defined threshold), it is useless to select both features f and f ′ since they
will express similar information according to R. In [Fernando et al. 2014], the
redundancy between two features f and f ′ is defined as follows:

R(f, f ′) = exp
(
p(f)·

∑
i∈I

p(i|f) log
p(i|f)

p(i|{f, f ′})
+p(f ′)·

∑
i∈I

p(i|f ′) log
p(i|f ′)

p(i|{f, f ′})

)
(3.1)

where

∀f ∈ F, ∀i ∈ I, p(i|f) =
i[f]∑

i′∈I i
′[f]

(3.2)

∀f, f ′ ∈ F, ∀i ∈ I, p(i|{f, f ′}) =
i[f] + i[f ′]∑

i′∈I(i
′[f] + i′[f ′])

(3.3)

∀f ∈ F, p(f) =

∑
i∈I i[f]∑

f ′∈F,i∈I i[f
′]

(3.4)

Note that, in this case, 0 ≤ R(f, f ′) ≤ 1 and R(f, f ′) = R(f ′, f).

Definition 3.6 Relevance of a feature
The relevance measure is a function S : F → R such that the higher S(f) the
more relevant the feature f ∈ F .

Authors of [Fernando et al. 2014] define a relevance score S derived from the
Shannon entropy proposed in [Cheng et al. 2007] as:

S(f) = D(f)×O(f) (3.5)

30 Chapter 3. Existing Graph Mining Algorithms

where the discriminating score D(f) is:

D(f) = 1 +

∑
c∈C p(c|f) · log p(c|f)

log |C|
(3.6)

where p(c|f) is the probability of a class c ∈ C given a feature f ∈ F :

p(c|f) =

∑
i∈Ic i[f]∑
i′∈I i

′[f]
(3.7)

Note that the use of the term log |C|, where |C| is the number of class c, from
equation 3.6 ensures that 0 ≤ D(f) ≤ 1.

The second part of Equation 3.5, O(f), is the representativity score of a
feature: it "says" how well a feature represents a given class. To compute
this, [Fernando et al. 2014] compare each feature f distribution over all elements
i ∈ Ic which belong to a given class c ∈ C, to the feature, f ∗c , with the "optimal"
distribution for the class c. f ∗c is such that:

• The feature f only appears in the elements of class c, i.e, p(c|f ∗c) = 1 and
∀c′ 6= c, p(c|f ∗c′) = 0,

• The feature follows a uniform distribution for all elements i in class c, i.e.
∀i, i′ ∈ Ic, p(i|f ∗c) = p(i′|f ∗c) = (1/|Ic|).

Thus, the representativity score of a feature f , O(f), is the divergence be-
tween the feature distribution p(i|f) and the optimal one p(i|f ∗c). It is defined
by:

O(f) = maxc∈C(exp{
∑
i∈Ic

p(i|f ∗c) log
p(i|f ∗c)

p(i|f)
}) (3.8)

Finally, given a subset of features F that have already been selected, [Fer-

nando et al. 2014] define the gainG(f) brought by a feature f ∈ F\F by combining
relevancy and redundancy measures as follows:

G(f) = S(f)−maxf ′∈F{R(f, f ′) ·min(S(f), S(f ′))} (3.9)

This gain may be used to greedily select k features from F as follows (where k
is a user-defined parameter). First, F is initialized to the empty set. Then, we
iteratively select the feature f ∈ F \ F that maximizes the gain G(f) and add
it to F , until F contains k features. Finally, we return the set F .

3.2 Graph Mining Strategies

After having defined the general constraint-based pattern mining problem, we
now focus on the particular case of graph mining which is the main topic of this

3.2. Graph Mining Strategies 31

thesis. We present the state-of-the-art graph mining algorithms through their
mining strategies.

3.2.1 Graph Canonical Representation

In graph mining, for efficiency reasons, it is crucial to avoid discovering the
same graph pattern multiple times during the mining process. This prevents the
mining algorithm from considering multiple times the same expansion branch
and thus, it prunes the graph pattern space drastically. To do so, one needs to
compare a candidate graph pattern with all the previously discovered patterns
using a costly (see Chapter 2) isomorphism test. To make this comparison
as efficient as possible, a usual trick in graph mining consists in converting
each graph into a unique code (usually a list of elements of the graph) called a
canonical code, such that two graphs are isomorphic if and only if their canonical
codes are equals. Then, the graph pattern space becomes a code space and
avoiding duplicates boils down to comparing codes. Building such a code for a
given graph has the same theoretical complexity as doing an isomorphism test
(in practice, heuristics are used to alleviate this step): given the canonical codes
of two graphs, we can decide whether the two graphs are isomorphic or not by
comparing their canonical codes, and this is done in linear time with respect to
the length of the codes.

For instance, in [Inokuchi et al. 2000], the AGM algorithm represents a graph
by concatenating the elements in the upper triangle of its adjacency matrix into
a sequence. For example, suppose that a graph with n vertices has the following
adjacency matrix :

x1,1 x1,2 · · · x1,n−1 x1,n

x2,1 x2,2 · · · x2,n−1 x2,n
...

... · · ·
xn−1,1 x1,2 · · · xn−1,n−1 xn−1,n

xn,1 xn,2 · · · xn,n−1 xn,n

The corresponding code of such a graph is:

code(Xn) = x1,1x1,2x2,2x1,3x2,3x3,3 · · ·xn−1,nxn,n

It is possible to represent a graph by different sequences by permuting rows
(and columns accordingly) of the adjacency matrix. Thus, before building the
graph code, the indexes of the matrix are sorted based on the labels of the
vertices. An order is defined on those codes and the minimum one is defined as
the canonical code of the graph.

32 Chapter 3. Existing Graph Mining Algorithms

X

Y

X

Z

Z

a

b

c

d

b

a

(a)

X

Y

X

Z

Z

V0

V1

V2

V3

V4

a

b

c

d

b

a

(b)

Y

X

X

Z

Z

V0

V1

V2

V3

V4

a

a

c

d

b

b

(c)

X

X

Y

Z Z

V0

V1

V2

V3 V4

a

a

b d

c

b

(d)

Figure 3.2 – A graph (a) and three possible DFS tree (b), (c) and (d).
Forward edges are represented in plain lines and backward edges are

represented in dashed ones.

edge (b) (c) (d)
0 (0,1,X,a,Y) (0,1,Y,a,X) (0,1,X,a,X)
1 (1,2,Y,b,X) (1,2,X,a,X) (1,2,X,a,Y)
2 (2,0,X,a,X) (2,0,X,b,Y) (2,0,Y,b,X)
3 (2,3,X,c,Z) (2,3,X,c,Z) (2,3,Y,b,Z)
4 (3,1,Z,b,Y) (3,0,Z,b,Y) (3,0,Z,c,X)
5 (1,4,Y,d,Z) (0,4,Y,d,Z) (2,4,Y,d,Z)

Table 3.1 – DFS codes for the corresponding DFS trees of Figure 3.2, [Yan
et al. 2002].

gSpan [Yan et al. 2002], one of the most popular graph mining algorithm,
introduced another canonical representation: the code of a graph is built by
performing a DFS traversal of the graph (see Section 2.5 for the definition of a
DFS traversal). Figure 3.2 shows an example of a graph (a) and three possible
DFS trees (b), (c) and (d), among all possible DFS trees. The code associated
with a DFS tree is a sequence of m edge codes, where m is the number of edges
of the graph, such that the kth edge code describes the kth traversed edge and
is a tuple (i, j, li, l(i,j), lj) where:

• i and j are the visit numbers associated with the vertices of the kth edge,

• li and lj are the labels of the vertices of the kth edge,

• l(i,j) is the label of the kth edge.
There is one possible code per different depth-first traversal. The respective

codes of the three DFS trees of Figure 3.2 are reported in Table 3.1.
In [Yan et al. 2002], the canonical code is defined as the smallest code (ac-

cording to a lexicographic order), among all codes corresponding to all possible
DFS traversals of the graph. For example, let us consider the codes of Table 3.1

3.2. Graph Mining Strategies 33

∅

. . .

...
...

. . .

Figure 3.3 – Partial search space of all graph patterns with only two
different vertex labels (red and blue).

and let us consider the alphabetical order to compare labels. The code of the
first edge of the DFS code (b) is smaller than the code of the first edge of the
DFS code (c), because X < Y . In this example, the code (d) is the minimum
code in lexicographical order among those presented: it is the the canonical
code associated to the graph (a) of Figure 3.2.

3.2.2 Exploring a Search Space of Canonical Codes

The search space of all possible patterns may be explored by building a search
tree. Each node of this search tree corresponds to a pattern, and the parent of
a pattern of size k is the pattern of size k− 1 from which it has been expanded.
For instance, Figure 3.3 presents a part of the search tree built to explore all
possible graph patterns when there are only two vertex labels (red and blue),
when the size of a graph pattern is defined as the number of its vertices. Each
node is associated with a different graph pattern P , and has one child for every
graph that may be obtained by adding a vertex to P .

As explained in Section 3.1.2, the size of the search tree is exponential in the
number of vertices of the patterns and in the number of edge and vertex labels.
Anti-monotone constraints such as the minimum frequency constraint are thus
mandatory to prune the search tree.

There exist two main approaches to explore the search tree, the Apriori -like
one and the pattern growth-based one. They respectively explore the search tree
in a Breadth-First and in a Depth-First manner.

34 Chapter 3. Existing Graph Mining Algorithms

Figure 3.4 – Scheme of the BF exploration (on the left) and of the DF
exploration (on the right) of a search space of patterns.

The Breadth-First strategy, popularized on itemsets by the Apriori algo-
rithm [Agrawal et al. 1994], computes all patterns of size k before generating can-
didate patterns of size k+ 1 that share a common subgraph of size k previously
computed. This approach is represented by the scheme on the left of Figure 3.4.
One of the main drawback of this method is that it needs to generate and store
all candidate patterns of size k + 1 before computing their frequency, thus it
requires a lot of memory. Some of the first graph mining algorithms using this
approach are AGM [Inokuchi et al. 2000] and FSG [Kuramochi et al. 2001]

The pattern growth strategy generates new candidate patterns by recursively
adding an edge or a vertex to an already found pattern until all super-patterns
are discovered. It explores a branch of the tree until no further expansion is
possible, then backtracks to explore another branch as shown by the scheme
on the right of Figure 3.4. This approach is less costly in memory than the
Apriori one as it only needs to store the graph patterns of the currently explored
branch. The first graph mining algorithm to use this approach was gSpan [Yan

et al. 2002]. It was later used by many other graph mining algorithms such as
FreqGeo [Arimura et al. 2007] or Plagram [Prado et al. 2013].

Note that there is no clear best strategy to explore the search space of
patterns. The performances of Breadth-First and Depth-First strategies depend
on the data and are usually assessed through experimental studies.

3.2.3 Expansion Strategies

Once the exploration strategy set, one has to decide how to expand a particular
graph pattern. This depends on the exploration strategy but also on the type of
graphs that are mined or on the type of targeted patterns. AGM [Inokuchi et al.

2000] algorithm uses a Breadth-First strategy and grows patterns of size k + 1

at each iteration by adding two vertices and at least two edges that connect
the two new vertices to the original common pattern of size k − 1 as shown in
Figure 3.5. Because it is undetermined whether there is an edge connecting the
two additional vertices, AGM can actually generate two possible candidates.

3.2. Graph Mining Strategies 35

(a) A graph pattern
p1 of size 5

(b) Another graph
pattern p5 of size 5

(c) A possible
candidate of size 6

(d) Another possible
candidate of size 6

Figure 3.5 – Example of the behaviour of a level-join based expansion done
by AGM where pattern p1 and p2 share a common subgraph, represented

inside the dot line, and allow to construct two possible candidates

Figure 3.5 displays two patterns of size 5 and the two possible candidates of
size 6 that AGM is able to generate. FSG [Kuramochi et al. 2001] uses an edge
expansion strategy. In this paper, the size of a pattern is defined as its number
of edges and two patterns of size k are merged if and only if they share the
same subgraph having k − 1 edges. The joining operation between graphs can
be complex as shown in [Kuramochi et al. 2001].

Algorithms that use the pattern-growth exploration strategy usually expand
a pattern by adding one elementary component. Usually, an elementary com-
ponent is an edge or a vertex. One of the first graph mining algorithm using
this approach was gSpan [Yan et al. 2002]. gSpan uses a right-most extension
strategy to extend a graph pattern with an edge. Let v0 and vn be the first
and the last vertices visited when performing the DFS traversal of a pattern
graph to build its DFS code. Vertex vn is called the right-most vertex and the
direct path between v0 and vn in the DFS tree is called the right-most path. To
ensure a valid expansion, the expansions are done either with forward edges on
vertices of the right-most path or with backward edges on the right-most vertex
of the DFS tree. With this property, gSpan avoids the generation of invalid
extensions, thus reducing the size of the search space. Also any non canonical
DFS code can be pruned without missing any canonical DFS code, similarly to
the anti-monotonicity property of the frequency constraint.

Some algorithms can use multiple expansion strategies to build the search
space such as FFSM [Huan et al. 2003] that uses both level-wise join operations
between pairs of patterns of size k, where k is the number of edges, and a
pattern-growth approach by adding one edge to a pattern of size k to produce
a candidate pattern of size k + 1. In this category, DPMine [Vanetik et al. 2002]

reduces the number of candidate graph patterns by extending patterns with
edge-disjoint paths instead of a simple vertex or edge. It starts by searching
all frequent paths in the database and all frequent graph patterns with two
paths. Then, using an Apriori-like exploration strategy, it merges pairs of graph

36 Chapter 3. Existing Graph Mining Algorithms

patterns with k paths that have k− 1 paths in common to generate candidates
with k + 1 paths.

3.3 Most Related Algorithms

Our algorithm is presented in details in Chapter 5. It is closely related to
gSpan [Yan et al. 2002], a general graph mining algorithm, Plagram [Prado et

al. 2013], a plane graph mining algorithm, and FreqGeo [Arimura et al. 2007],
a geometric graph mining algorithm. These algorithms are presented in this
section as instantiations of a same generic depth-first graph mining algorithm
to better highlight their common points and differences.

3.3.1 Generic Depth-First Algorithm

gSpan, Plagram, and FreqGeo all consider a same mining scheme: they
use DFS canonical codes to represent graphs and perform a recursive Depth-
First exploration of the search space of all canonical codes as described in Sec-
tion 3.2.1. Algorithm 2 describes a generic graph mining algorithm that is a
generalization of these algorithms. It enumerates all frequent patterns by re-
cursively growing pattern codes: starting from basic pattern codes composed
of a single elementary component which is frequent and canonical (lines 1-2),
it recursively calls the extend procedure to grow pattern codes by adding ele-
mentary components. More precisely, given the canonical code P of a pattern,
extend(P) outputs all canonical codes P ′ such that P is a prefix of P ′. It first
outputs P , and then builds the set E of all elementary components that may
be added at the end of P (lines 6-9): for each graph Gi of D, it computes the
set of every elementary component e such that the pattern graph corresponding
to the code P.e occurs at least once in Gi and adds all these extensions to E.
Finally, extend is called recursively for each extension e ∈ E such that P.e is
frequent and canonical (lines 9-10).

For each instantiation of Algorithm 2, the key points are (i) to define codes
that describe elementary components, (ii) to define what is a valid extension
of a pattern in a graph, and (iii) to implement a canonicity test to decide
whether a given code is canonical or not. The following sections present the
instantiations of the generic algorithm for gSpan, Plagram and FreqGeo
and discuss differences between these algorithms around four axes:

• Type of graph mined

• Elementary component and extension strategy

• Canonical code

3.3. Most Related Algorithms 37

Algorithm 2 General DFS Frequent Subgraph Mining

Input: A database of graph D = {G1, ..., Gn} and a frequency threshold σ.
Output: All patterns P such that freq(P,D) ≥ σ.
1: for all elementary component e do
2: if The elementary component is frequent and is canonical then extend(e)
3:
4: procedure extend(Pattern code P)
5: Output P . P is canonical and frequent
6: Initialization of an empty set E of possible extensions
7: for all graph Gi in D do
8: Compute all possible and valid extensions of P in Gi

9: Add these extensions to E
10: for all possible extensions e ∈ E do
11: if the pattern P with the extension e is frequent and is canonical then
12: extend(P.e)

Table 3.2 – Characteristics of subgraph mining algorithms. The type of
mined patterns is a consequence of the sub-isomorphism relation and

extension choices.

Algorithm Relation Mined Patterns Extensions
gSpan ⊆ connected subgraphs one edge

FreqGeo ⊆geo geometric subgraphs one edge/node
Plagram ⊆face 2-connected plane subgraphs one face

• Computational complexity
Table 3.2 summarizes the kind of mined patterns and elementary compo-

nents considered by gSpan, FreqGeo, and Plagram as an extension.

3.3.2 gSpan

Graph mined and subgraph relation. gSpan mines general connected
labeled graphs without any restriction on them. It uses the classical subgraph
relation ⊆ and does not consider structural informations hold by the graphs,
i.e. it does not consider the topology neither the geometry of the graphs. Thus,
gSpan consider two graphs as isomorphic whereas they can be geometrically
different. For instance, for gSpan, graphs of Figures 3.6(a) and 3.6(b) are
isomorphic whereas they have different geometric structures.

Elementary component and extension strategy. For gSpan an elemen-
tary component from which the mining process starts (line 1-2) is the code of
a frequent edge in the database of graphs. The code of an edge is represented
by a tuple (i,j,li,l(i,j),lj) as described in section 3.2.1.

38 Chapter 3. Existing Graph Mining Algorithms

x

y 1 2

3

(a) A graph G1

x

y

1 2

3

(b) A graph G2

Figure 3.6 – For gSpan, graph G1 and G2 are isomorphic. However, their
geometries are different, and they are considered as non isomorphic for

FreqGeo.

Then, gSpan uses the right-most path extension strategy to construct a set
of valid extensions from each occurrence of a pattern P in the database (line
8). It searches for incident edges from each occurrence of pattern P , ensures
that they are on the right-most path, if so, adds edge codes to the set of valid
extensions and update their frequency.

Canonical code. At each call of the function extend, the code of the pattern
P grows by a new edge code. The canonical code of a pattern for gSpan is
the minimal code as described in section 3.2.1. To check if the pattern code is
canonical, gSpan constructs every possible DFS code for the pattern P . If one
of these DFS codes is smaller than the code of the pattern P , it means that this
code is not canonical and the branch can be pruned.

Computational complexity. The subgraph isomorphism problem that gSpan
has to solve to find all pattern occurrences is an NP-complete problem. There-
fore, the runtime of gSpan is exponential. Still, if measured by the number
of subgraph and/or graph isomorphism tests, the runtime of gSpan can be
bounded byO(kFS+rF), where k is the maximum number of subgraph isomor-
phisms existing between a frequent graph pattern and a graph in the database,
F is the number of frequent patterns, S the size of the database, i.e., the num-
ber of graphs, and r is the maximum number of possible codes of a frequent
pattern that grow from other minimum codes.

3.3.3 Plagram

Graph mined and subgraph relation. Plagram only considers 2-connected
plane graphs and plane subgraph patterns. Moreover, it searches for face-
induced patterns (described in section 2.4). Thus, it considers the face-induced

3.3. Most Related Algorithms 39

plane subgraph relation ⊆face and cannot mine graphs depicted in Figure 3.6 as
they are not 2-connected.

Elementary component and extension strategy. The elementary com-
ponent for Plagram (line 1-2) is the code of a frequent edge. Like gSpan,
the code of an edge is represented by a tuple (i,j,li,l(i,j),lj) as described in sec-
tion 3.2.1. Contrary to gSpan, these elementary components do not represent
the first possible patterns.

Each call to extend finds occurrences of a pattern P (for the first call, it finds
occurrences of frequent edges) and searches for valid extensions. A valid exten-
sion is a sequence of incident edges such that the end vertices of this sequence
are two different vertices on the external face of the pattern. Thus, adding this
extension to the pattern adds a new face to the pattern. As a consequence, all
patterns are composed of faces and the smallest possible subgraph pattern is a
single face. For the first call, when starting from a frequent edge, this creates a
pattern with only one internal face.

Canonical code. At each call of extend, the code of pattern P grows by a
sequence of edge codes forming a face lying in the outer face of the pattern
(the pattern grows by one face at each level of the search space instead of one
edge for gSpan). The lexicographic order is used to compare DFS codes. The
canonical code for a pattern is the maximal one for this order.

Computational complexity. The canonical code of a pattern is computed
in quadratic time with respect to the number of edges of the pattern. As a
consequence, Plagram has an incremental polynomial time complexity, which
is O(p3kn2) per pattern, where k is the number of graphs in D, and p and n

are, respectively, the number of edges in the pattern and in the largest graph
in D.

3.3.4 FreqGeo and MaxGeo

Graph mined and subgraph relation. FreqGeo and MaxGeo consider
only geometric graphs as described in section 2.3: graphs of the database and
mined patterns hold geometric information (vertex coordinates). The subgraph
relation used by the algorithm is ⊆geo (two graphs are isomorphic if one is the
image of the other by a composition of a translation, a rotation and a scaling
function). For instance, graphs of Figures 3.6(a) and 3.6(b) are not isomorphic
for FreqGeo.

40 Chapter 3. Existing Graph Mining Algorithms

Moreover, for FreqGeo, the frequency of a pattern is defined as the number
of its occurrences in the database D as discussed in section 3.1.2 (for gSpan
and Plagram, the frequency of a pattern is defined as the number of graphs
of D which contain the pattern). MaxGeo is the restriction of FreqGeo to
maximal patterns.

Elementary component and extension strategy. The initial component
from which FreqGeo starts mining is an empty graph, thus the line (1-2) can
be replaced by a single call of extend with an empty pattern in the place of
elementary component.

An extension is defined as either a new vertex or an edge connecting two
vertices already in the pattern.

Canonical code. The code of a pattern for FreqGeo differs from the one
used by gSpan and Plagram. It is a sorted list of edges and vertices. The
canonical code is the lexicographically minimum code.

Computational complexity. Computing extensions and testing the canon-
icity are done in polynomial time. As a consequence, FreqGeo has an incre-
mental polynomial time complexity, which is O(k2n4 · log n) per pattern, where
k is the number of graphs in D, and p and n are the number of edges in the
pattern and the number of edges in the largest graph in D, respectively. Both
FreqGeo and MaxGeo can be seen as a generalization of our grid mining
algorithm. Since they mine geometric graphs, they are not optimized for cases
where the graph structure is known (such as grids) and we show in Chapter 5
that their complexity is higher than the complexity of our approach. Besides,
the authors did not provide any implementation (thus, also no experiment) of
their proposed algorithm neither in [Arimura et al. 2007] nor in further publications
which could allow an experimental comparison with our method.

3.4 Other Graph Mining Algorithms

According to Definition 3.1 given at the beginning of this chapter, pattern min-
ing algorithms output all the patterns that fulfill the given constraints C. If
most algorithms stick to this definition (the exact mining algorithms), some al-
gorithms have relaxed this definition to either output some (ideally interesting)
patterns or to fulfill the constraints only up to a certain extent (the inexact
mining algorithms). Before discussing the inexact mining algorithms and for
the sake of completeness, we present the existing exact graph mining algorithms
that were not mentioned in the previous sections.

3.4. Other Graph Mining Algorithms 41

3.4.1 Exact Mining algorithms

MoFa [Borgelt et al. 2002] is a well known Depth-First graph mining algorithm.
It stores all occurrences of the frequent graph patterns to generate only graph
patterns that appear in the database. Moreover, when a new graph pattern
is generated, finding its occurrences to compute its support is based on the
occurrences of the sub-pattern from which it has been grown and which only
match the newly added edge. MoFa also defines an order on the vertices of a
graph pattern based on their time of addition to it. Thus, when a vertex is added
to a pattern, an extension can only happen at this vertex or the ones added
after it. This strategy allows to limit the generation of duplicate candidates but
do not avoid it. GASTON [Nijssen et al. 2004] also stores the list of occurrences
but its main feature is that it speeds up the mining process by splitting it into
path mining, then subtree mining and finally subgraph mining.

An extensive comparison of gSpan, MoFa, FFSM and GASTON was pre-
sented in [Wörlein et al. 2005]. It concluded that storing occurrences does not
considerably speed up the mining process. Even if gSpan does not use it, it
remains competitive with other algorithms unless graph patterns become too
large. Authors noted that the candidate generation and the computation of
the isomorphism tests (to compute occurrences list or to compute the support)
cost more in computational time than the pruning of duplicate candidates. The
use of a canonical representation to detect duplicates is more efficient than di-
rectly performing the isomorphism test, and GASTON strategy to delay the
generation of graph to later stages is even more efficient.

Previously described algorithms mine all frequent graph patterns without
any constraints on the target patterns. gFSG, proposed in [Kuramochi et al. 2007],
focuses on mining frequent geometric subgraphs. It uses an Apriori-like search
strategy to explore the search space, also stores lists of occurrences of patterns
to decrease the number of isomorphism tests and constructs a k-edge pattern by
joining pairs of (k− 1)-edge patterns that share a common subgraph. However,
it only allows three rigid transformations, described in section 2.3, with the
possibility to set a tolerance threshold on the vertex coordinates when testing
if two graph patterns are isomorphic.

CloseGraph [Yan et al. 2003] is based on gSpan but mines closed subgraphs
only. It explores the search space in a Depth-First manner, uses DFS codes to
represent graphs and uses the right-most extension strategy. However, contrary
to gSpan, it prunes the search space by detecting if an extension can lead to a
new closed pattern.

SPIN [Huan et al. 2004] is inspired by GASTON but mines maximal sub-
graphs. It first mines frequent trees which are later extended into graphs by

42 Chapter 3. Existing Graph Mining Algorithms

adding edges to them.
Some other graph mining algorithms focus on discovering clique patterns,

which are graphs where every two distinct vertices are adjacent. For example,
CLAN [Wang et al. 2006] mines frequent closed cliques in a database of graphs
with labels only on vertices. It uses the fact that cliques are fully connected
sets of vertices, thus any two cliques with the same vertices have the exact same
structure. Therefore the representation of a clique can be a simple sequence
of the labels of its vertices and the canonical code is the minimum sequence
according to a lexicographic order. It explores the search space in a Depth-
First way and an extension is a vertex adjacent to all other vertices already in
a pattern. It also benefits of the fact that for a clique composed of k vertices,
each vertex must have a degree of at least k − 1. Thus, when scanning the
database of graphs to find possible extensions of a pattern, only vertices with a
degree of at least k − 1 are considered.

An extension of CLAN was proposed by [Zeng et al. 2006]: the algorithm
Cocain, which mines closed γ-quasi-cliques from large and dense graph. A graph
of size k is a γ-quasi-clique if the degree of all its vertices is above γ(k−1), where
0.5 ≤ γ ≤ 1 is a user parameter. Similarly to CLAN, Cocain uses canonical
representations for quasi-cliques, explores the search space in a Depth-First
manner and prunes the exploration using structural properties of quasi-cliques,
i.e. the fact that in cliques, there exists an edge between every pair of vertices.

Finally, mSpan [Gosselin et al. 2011] is another algorithm that mines frequent
pattern from combinatorial maps. A combinatorial map can be seen as the
generalization of plane graphs in nD: it describes the subdivision of an nD

object in cells (vertices, edges, faces, volumes, etc), and incidence and adjacency
relations between these cells. mSpan starts from all frequent patterns composed
of one face, then combine these one face patterns to create new patterns. It also
uses a signature as a canonical code that allows to do the isomorphism test in
linear complexity.

Instead of mining graph databases, some algorithms search for frequent
graph patterns in a single graph. [Kuramochi et al. 2004, 2005] presented two
algorithms (called hSigram and vSigram) that mine a single graph. They
respectively explore the search space using a Breadth-First and Depth-First
approach. The support of a graph pattern is defined as its number of non
overlapping occurrences as described in section 3.1.2 using the MIS measure.
Authors implemented several variations of the MIS measures, exact and approx-
imate, thus leading to hSigram and vSigram to be able to mine exact and
approximate frequent graph patterns. They show that both algorithms scale
well on large sparse graphs, although vSigram is faster than hSigram. This

3.4. Other Graph Mining Algorithms 43

is due to the fact that it stores occurrences of the frequent graph patterns along
the DFS path resulting in less isomorphism tests.

More recently, the GraMi algorithm, presented in [Elseidy et al. 2014], pro-
posed an alternative approach that does not maintain a complete list of pattern
occurrences. It models the graph pattern evaluation as a constraint satisfaction
problem (CSP). During each iteration, it solves the CSP until it finds the mini-
mal set of occurrences that satisfy the minimum support threshold and ignores
other occurrences.

Interested readers can refer to the survey on frequent graph mining in [Jiang

et al. 2013] to learn more about the frequent graph mining algorithms described
previously and other techniques not reported here such as tree mining algo-
rithms or relational pattern mining.

More recently, researchers have investigated the use of parallelization and
GPUs to improve the efficiency of existing graph mining algorithms [Kessl et al.

2014] such as gSpan or GASTON. Like gSpan, they mine frequent patterns
in a Depth-First manner and like GASTON they store a list of all occurrences
of patterns. They observed that GPU memory allocation and I/O transfers
between the CPU and the GPU induce a large overhead.

3.4.2 Inexact and Incomplete Mining Algorithms

Sometimes, user can accept minor variations between graph patterns mined.
Thus, inexact frequent graph mining algorithm allows patterns with some minor
variation to be considered as one same pattern. While this increases the possible
number of frequent graph patterns, these techniques are usually not interested
in finding all of them. Instead, inexact mining algorithms focus on extracting
more interesting patterns that capture information in the data. They are able
to find patterns that would have not been found by exact frequent graph mining
algorithm because of small variations in the graphs of the databases or in the
patterns.

One of the first popular of such algorithm is SUBDUE [Holder et al. 1994]. It
uses a graph edit distance to measure the similarity between two graphs. The
edit distance is the minimal number of operations needed, in terms of vertex
and edge additions, deletions and label modifications, to transform a graph into
another. It performs a Beam Search of the search space.

Another well known approximate graph mining algorithm is GREW [Ku-

ramochi et al. 2004]. It focuses on finding graph patterns which do not have vertex
in common in a single large graph. It explores the search space in a Breadth-
First manner. New possible graph patterns are built by merging frequent graph
patterns of previous iterations connected by one or several vertices. It also uses

44 Chapter 3. Existing Graph Mining Algorithms

some heuristics that can rewrite the input graph by collapsing vertices of occur-
rences of frequent patterns into a single vertex, reducing the relative size of the
graph mined at each iteration. As a consequence, GREW underestimates the
frequency of a pattern leading to missed patterns that can actually be frequent.
Experiments show that GREW outperforms SUBDUE as it can discover larger
patterns in less time.

Monkey is another approximate subgraph mining algorithm presented in [Zhang

et al. 2007] that mines a dabatase of graphs. Authors define a β-edge isomorphism
relation. Two graphs G1 and G2 are β-edge isomorphic it there is a subgraph
isomorphism between G1 and G2 for which at most β-edges are not preserved.
Unlike GREW and SUBDUE, it explores the search space with a Depth-First
strategy to discover frequent approximate trees. Then, those approximate fre-
quent trees are recursively extended by adding an edge connecting two of their
vertices. Authors show that Monkey was able to find interesting patterns that
exact frequent graph mining algorithms could not find. But increasing β drasti-
cally slows it down due to the explosion of the number of approximate frequent
patterns.

This concept of β-edge isomorphism is also used by RAM algorithm [Zhang et

al. 2008]. It uses feature vectors instead of canonical codes to check if a candidate
graph pattern has already been found. Like using canonical codes, if a pattern
is found and has an equivalent feature vector of another already found pattern,
then the search space is pruned. The use of this representation implies that two
isomorphic patterns have the same feature vector, but it is also possible that two
different patterns share the same feature vector. Thus, some pattern might be
eluded during the mining process. To limit this impact, the algorithm extends
a pattern by adding edges in a random order. This means that multiple runs
of the algorithm can lead to different outputs. Experiments showed that RAM
could discover interesting patterns that are missed by exact mining algorithms
and multiple runs of the algorithm can allow to miss less patterns.

gApprox algorithm proposed in [Chen et al. 2007] mines frequent patterns in a
single large graph. It allows differences in edges and, if the user provides a list
of admissible replacements, differences in labels. But structural differences in
vertices, i.e., the facts that some vertices are not present in some occurrences,
are not allowed as it requires a bijective function between the vertex sets of
matching graphs. Authors use a variant of the graph edit distance measure to
define if two patterns are similar. Finally, the search space is explored in a
Depth-First manner where the pattern support is determined by computing an
upper bound of the maximum number of vertex disjoint occurrences.

The authors of APGM [Jia et al. 2011] proposed to use a compatibility real

3.4. Other Graph Mining Algorithms 45

matrix M , indexed by the vertex labels and where an entry M(i, j) represents
the probability of the label i to be mistaken with label j. With this repre-
sentation, authors define a similarity measure and define that two graphs are
approximately isomorphic if their similarity is below a user defined threshold
σ. This algorithm mines a database of graphs in a Depth-First way and the
support of a graph pattern is defined as the number of graphs G in the database
of graphs that hold an approximate occurrence of the pattern.

Authors of [Jia et al. 2011] mentioned that their idea can be extended to
take into account edge labels. This extension was proposed in [Acosta-Mendoza

et al. 2012] with the algorithm VEAM. Similar to APGM, VEAM defines an
approximate sub-isomorphism in which they take into account the probability
of vertex and edge label substitutions. Thus, VEAM allows variations of labels
but it requires that two graphs are approximately isomorphic if they have the
same topology.

More recently, [Flores-Garrido et al. 2015] presented AGraP, an algorithm that
focuses on searching frequent patterns in a single graph using inexact match-
ing allowing structural differences in vertices and edges. They handle the fact
that pattern occurrences can differ in their edge and vertex labels, similarly to
gApprox, but also in their number of edges and vertices, i.e., they can have dif-
ferent numbers of edges and vertices. Authors propose two similarity functions
to compare graphs using inexact matching. Their algorithm explores the search
space in a Depth-First manner using these similarity functions and a new search
strategy to identify patterns that can have structural differences with respect
to their occurrences. Experiments showed that AGraP is able to find all pat-
terns found by gApprox and additional patterns up to twelve times as more as
gApprox. Moreover, these additional patterns positively affected the accuracy
in a classification experiment. However, AGraP generally requires more time
that gApprox to mine a given database.

Other approaches focus on mining probabilistic graphs, i.e., graphs with a
probability of existence assigned to each edge. In this case, uncertain graphs
are graphs G = 〈VG, EG, P 〉 where P (e) is the probability of existence of an
edge e ∈ EG. An uncertain graph implicates a set of exact graphs I(G) = {I =

〈VG, Ei〉|EI ⊆ EG}. The probability that an uncertain graph G implies an exact
graph I is :

P (G =⇒ I) =
∏
e∈EI

P (e)
∏

e′∈EG\EI

(1− P (e′))

In [Zou et al. 2009], authors present MUSE, an algorithm that searches for
frequent graph patterns in a database of uncertain graphs. In this case, for a
given database of uncertain graphs D = {G1, G2, ..., Gn}, the probability that

46 Chapter 3. Existing Graph Mining Algorithms

a pattern p occurs in one of the uncertain graph Gi is :

P (p ⊆ Gi) =
∑

I∈I(Gi)

P (Gi =⇒ I).Φ(I, p)

where Φ(I, p) = 1 if p is subgraph isomorphic to I, 0 otherwise. The expected
support of p in the database D is defined as:

esupD(p) =
1

|D|

|D|∑
i=1

P (p ⊆ Gi)

MUSE performs a Depth-First exploration of the search space of possible
graph patterns and approximates their expected support. Experiments showed
that the approximation of the expected support leads to few false positive,
i.e., patterns considered as frequent while they are not. Moreover, authors
also showed that MUSE has a time complexity that increases linearly with the
number of uncertain graphs in the database.

Other algorithms mine graphs to find a specific subset of graph patterns.
SpiderMine presented in [Zhu et al. 2011] focuses on mining Top-K largest patterns
mainly in a single graph, i.e., finding the K largest frequent patterns with a
maximum diameter. The diameter of a graph is the maximal distance between
any pair of vertices, where the distance between two vertices is the length of
the shortest path between them. As finding all exact Top-K largest patterns
means to compute all possible pattern sets, authors use a randomized framework
to compute the top-K largest patterns with a user defined probability 1 − ε.
To do so, they propose a new graph representation they called spider. These
spiders are all frequent patterns with a specified diameter from which a subset of
them are randomly selected and used to construct pattern candidates. Authors
conducted experiments mainly on a single graph but also on a database of
graphs and show the efficiency and the scalability of their method.

3.5 Discussion

In this chapter, we defined the graph mining problem, and described exist-
ing graph mining algorithms, with a specific focus on algorithms that explore
a search space of canonical codes in a Depth-First way. We have described
a generic algorithm that follows this basic principle, and show how it may
be instantiated to define well-known algorithms dedicated to general graphs
(gSpan), plane graphs (Plagram), and geometric graphs (FreqGeo and
MaxGeo).

3.5. Discussion 47

Our new algorithm, GriMA, is described in Chapter 5 as an instantiation of
this generic algorithm, and it is dedicated to graphs that have a grid geometry.
This allows us to compare our new algorithm with existing ones, and better
highlight their common points and differences.

49

Chapter 4

Definitions on Grids

Contents
4.1 2D grids . 50

4.2 2D + t grids . 52

4.3 Discussion . 55

Many objects have a regular structure, as illustrated in Figure 4.1: images
are regular grids of pixels; game boards for playing go or chess are regular
grids of squares on which pieces are placed; cellular automata are regular grids
of cells that have a state. In Section 4.1, we formally define these spatial
regular structures, called 2D grids, as well as isomorphism and sub-isomorphism
relations that are used to compare them.

In some applications, these grids evolve through time. This is the case for
the three examples of Figure 4.1: a video is a temporal sequence of grids of
pixels; go boards evolve during a game; cell states of a cellular automata evolve
through time. In Section 4.2, we formally define these spatio-temporal regular
structures, called 2D + t grids, and extend isomorphism and sub-isomorphism
relations to them.

Figure 4.1 – Examples of objects modeled by grids: An image (left), a go
board (middle), and a cellular automata (right)

50 Chapter 4. Definitions on Grids

x

y 1

2 3

4

5

67

89

(a) Example of 2D grid.

x

y 1

2 3

4

5

67

(b) An induced subgrid
of (a).

x

y 1

2 3

4

5

67

(c) A partial subgrid
of (a).

Figure 4.2 – Example of a 2D grid, and induced and partial 2D subgrids

4.1 2D grids

2D Grids are particular cases of geometric graphs, i.e., they are labeled undi-
rected graphs whose vertices have 2D coordinates. However, these coordinates
must have integer values, and edges can only connect vertices which have neigh-
bor coordinates. By definition, grids are also particular cases of plane graphs
because edges cannot intersect as they only connect vertices that have neighbor
coordinates.

Definition 4.1 2D grid
A 2D grid (or grid for short) is defined by a tuple G = 〈V,E, L, x, y〉 such
that:

• 〈V,E, L〉 is a graph,

• x : V → Z and y : V → Z are two functions that map each vertex v ∈ V
to coordinates in 2D, i.e., (xv, yv) ∈ Z2,

• ∀(u, v) ∈ E, u and v have neighbor coordinates, i.e.,

|xu − xv|+ |yu − yv| = 1.

In other words, each vertex v is linked by an edge with at most four vertices
which are at distance 1 from v. Figure 4.2(a) displays an example of 2D grid.
Vertex 1 has coordinates x1 = 1 and y1 = 1, and is connected by an edge
with vertices 2 (at coordinates x2 = 1 and y2 = 2), and 4 (at coordinates
x4 = 2 and y4 = 1). It cannot be connected by an edge with vertex 3 as
|x1 − x3|+ |y1 − y3| = 2.

Definitions of induced subgraph and partial subgraph can be applied to 2D
grid: an induced subgrid is obtained by deleting vertices (and every incident
edge to a deleted vertex) from a grid, and a partial subgrid is obtained by

4.1. 2D grids 51

deleting vertices and edges. For example, the grid of figure 4.2(b) is an induced
subgrid of the grid of figure 4.2(a) obtained by removing vertices 8 and 9 whereas
the grid of figure 4.2(c) is a partial subgrid obtained by removing vertices 8 and
9, and edges (7, 3) and (1, 2).

Looking for patterns in a grid amounts to searching for subgrid isomor-
phisms. Patterns in grid mining context should be invariant to translations and
rotations. Therefore, similarly to geometric graph isomorphism, grid isomor-
phism allows rigid transformations which are translations and rotations.

Definition 4.2 Translation of a 2D grid
Let G = 〈V,E, L, x, y〉 be a 2D grid and T ∈ Z2 be a translation vector. The
translation of G by t, denoted G+ t, is the grid obtained by moving all vertices
of G by t, i.e., G+ T = 〈V,E, L, x′, y′〉 where ∀v ∈ V, (x′v, y′v) = (xv, yv) + T .

Definition 4.3 Rotation of a 2D grid
Let G = 〈V,E, L, x, y〉 be a 2D grid and Θ2D = {

(
1 0
0 1

)
,
(

0 1
−1 0

)
,
(−1 0

0 −1
)
,
(
0 −1
1 0

)
}

be the set of rotation matrices corresponding to 0, π/2, π and 3π/2 angles,
respectively. The rotation of G by θ ∈ Θ2D, denoted θ · G, is the 2D grid
obtained by applying rotation θ to all vertices of G, i.e., θ ·G = 〈V,E, L, x′, y′〉
where ∀v ∈ V, (x′v, y′v) = (xv, yv) · θ.

For geometric graphs, it is also possible to apply scaling transformations,
besides rotations and translations. However, this transformation is meaningless
in a grid context as edges only connect vertices that have neighbor coordinates.

2D grid isomorphism searches for an isomorphism function between two
grids that preserves the geometry up to a translation and a rotation.

Definition 4.4 2D grid isomorphism
Let G = 〈V,E, L, x, y〉 and G′ = 〈V ′, E ′, L′, x′, y′〉 be two 2D grids. G and G′

are 2D grid isomorphic if:
• There exists an isomorphism function f between the graphs 〈V,E, L〉 and
〈V ′, E ′, L′〉.

• There exist a translation t ∈ Z2 and a rotation θ ∈ Θ2D which preserves
vertex coordinates, i.e. G′ = θ ·G+ T

For example, the two grids displayed in Figure 4.3(a) are 2D grid isomorphic
as the right-hand side grid may be obtained from the left-hand side grid by
applying rotation π and translation t = (3, 4). However, the grid of Figure 4.3(b)
is not 2D grid isomorphic to any of the grids of Figure 4.3(a) as it cannot be
obtained by rotating or translating them.

Finally, the definition of subgrid isomorphism follows from the definition of
subgrids and isomorphism.

52 Chapter 4. Definitions on Grids

x

y

x

y

(a) Two isomorphic grids.

x

y

(b) A grid not
isomorphic to any grid

of (a).

Figure 4.3 – Example of 2D grid isomorphisms

Definition 4.5 2D subgrid isomorphism
A 2D grid G is subgrid isomorphic to a 2D grid G′, denoted G′ ⊆grid2D

G′, if
there exists a subgrid G′′ of G′ such that G is 2D grid isomorphic to G′′.

Depending on whether the subgrid relation is induced or partial, we obtain
two different definitions of subgrid isomorphism, respectively denotedG ⊆i

grid2D
G′

and G ⊆p
grid2D

G′′.

4.2 2D + t grids

A 2D + t grid is a temporal sequence of 2D grids, where vertices in two con-
secutive 2D grids of the sequence may be linked with temporal edges. 2D + t

grids may be used to model the temporal evolution of structured objects such
as, for example, videos, board games or cellular automata.

Definition 4.6 2D + t grid
A 2D + t grid is defined by a tuple G = 〈V,E, L, x, y, t〉 such that:

• 〈V,E, L〉 is a graph.

• x : V → Z, y : V → Z, and t : V → Z are functions that map each
vertex v ∈ V to 2D + t coordinates (xv, yv, tv) ∈ Z3. (xv, yv) are spatial
coordinates whereas tv is a temporal coordinate.

• ∀(u, v) ∈ E, u and v have neighbor coordinates, i.e.,

|xu − xv|+ |yu − yv|+ |tu − tv| = 1.

If |xu − xv| + |yu − yv| = 1, then (u, v) is a spatial edge (and in this case
tu = tv). If |tu − tv| = 1 , then (u, v) is a temporal edge (and in this case
xu = xv and yu = yv).

Figure 4.4(a) displays a 2D + t grid with three time steps. Edges (4, 7),
(3, 6), (5, 8), (6, 10) and (9, 12) are temporal edges and are displayed in gray. In

4.2. 2D + t grids 53

x

y 1 2

34 5

t = 0

x

y

67 8

9

t = 1

x

y

10

11

12 13

t = 1 t = 2

(a) A 2D + t grid with three time steps. Temporal edges are displayed in gray.

x

y 1 2

34 5

t = 0

x

y

67 8

9

t = 1

x

y

10

11

12 13

t = 2

(b) Same 2D + t grid as (a), but where temporal edges are not displayed: We
implicitely assume that whenever two vertices have the same spatial coordinates,
and neighbor temporal coordinates, then they are linked by a temporal edge.

Figure 4.4 – Example of 2D + t grid

this thesis, we often consider 2D + t grids such that there is always a temporal
edge between two vertices u and v that have the same spatial coordinates (i.e.,
xu = xv and yu = yv), and neighbor temporal coordinates (i.e., |tu−tv| = 1). In
this case, we shall not display temporal edges (that are implicit) as illustrated
in Figure 4.4(b).

Definitions of induced and partial subgraphs may be applied to 2D+ t grids,
and Figure 4.5 displays the induced subgrid of the 2D + t grid displayed in
Figure 4.4 obtained by removing vertices 5, 7, 10, 11, 12 and 13, and the partial
subgrid obtained by further deleting edges (4, 3) and (1, 2).

The extension of 2D grid isomorphism to 2D+ t grids deserves a discussion.
Indeed, in many applications the temporal dimension is directed: a vertex label
that is turned from red to blue from time step t to time step t + 1 (such as,
for example, vertex 3 at time step 0 which becomes vertex 6 at time step 1 in
Figure 4.4) may have a different meaning than when a vertex is turned from blue
to red. Therefore, we have chosen to consider that a temporal edge connecting
a vertex with label l at time t1 with a vertex with label l′ at time t1 + 1 is not

54 Chapter 4. Definitions on Grids

x

y 1 2

34

t = 0

x

y

6 8

9

t = 1

x

y 1 2

34

t = 0

x

y

6 8

9

t = 1

Figure 4.5 – Examples of induced (top) and partial (bottom) 2D + t
subgrids of the 2D + t grid displayed in Figure 4.4(b)

isomorphic to a temporal edge connecting a vertex with label l′ at time t2 with
a vertex with label l at time t2 + 1. For example, we consider that edges (4, 7)

and (5, 8) are not isomophic, whereas we consider that edges (4, 1) and (3, 5)

are isomorphic. By means of rotations, this implies that we only allow rotations
around the temporal axis. This leads us to the following definition of 2D + t

grid rotations.

Definition 4.7 Rotation of 2D + t grids
LetG = 〈V,E, L, x, y, t〉 be a 2D+t grid and Θ2D+t = {

(1 0 0
0 1 0
0 0 1

)
,
(0 1 0
−1 0 0
0 0 1

)
,
(−1 0 0

0 −1 0
0 0 1

)
,
(0 −1 0
1 0 0
0 0 1

)
}

be the set of rotation matrices around the temporal axis. The rotation of G by
θ ∈ Θ2D+t, denoted θ · G, is the 2D + t grid obtained by applying rotation θ

to every vertex of G, i.e., θ · G = 〈N,E,L, x′, y′, t〉 where ∀v ∈ V, (x′v, y′v, t) =

(xv, yv, tv) · θ.

We extend the translation definition to 2D + t grids in a straightforward
way.

Definition 4.8 Translation of 2D + t grids
Let G = 〈V,E, L, x, y, t〉 be a 2D + t grid and T ∈ Z3 be a translation vector.
The translation of G by T , denoted G+T , is the grid obtained by moving every

4.3. Discussion 55

vertex of G by T , i.e. G + T = 〈V,E, L, x′, y′, t′〉 where ∀v ∈ V, (x′v, y′v, t′v) =

(xv, yv, tv) + T .

Like in the 2D case, 2D + t grid isomorphism searches for an isomorphism
function between two grids that preserves the topology up to a translation and
a rotation.

Definition 4.9 2D + t grid isomorphism
Let G = 〈V,E, L, x, y, t〉 and G′ = 〈V ′, E ′, L′, x′, y′, t′〉 be two 2D + t grids. G
and G′ are 2D + t grid isomorphic if:

• There exists an isomorphism function f between the graphs 〈V,E, L〉 and
〈V ′, E ′, L′〉.

• There exist a translation T ∈ Z3 and a rotation θ ∈ Θ2D+t such that
G′ = θ2D+t ·G+ T

Finally, the definition of subgrid isomorphism follows from the definition of
subgrids and isomorphism.

Definition 4.10 2D + t subgrid isomorphism
A 2D+t grid G is subgrid isomorphic to a 2D+t grid G′, denoted G ⊆grid2D+t

G′,
if there exists a subgrid G′′ of G′ such that G′ is 2D + t grid isomorphic to G′′.

Again, depending on whether the subgrid relation is induced or partial, we
obtain two different definitions of subgrid isomorphism, respectively denoted
G ⊆i

grid2D+t
G′ and G ⊆p

grid2D+t
G′′. Figure 4.6 gives an example of induced

subgrid isomorphism.
In this thesis, if the type of grid (2D or 2D + t) is not explicitly specified,

then both definitions may be used. This also applies to notations. For instance,
the notation ⊆grid means that both ⊆grid2D

and ⊆grid2D+t
may be used.

4.3 Discussion

In this chapter, we have introduced regular grids. We have considered two
different kinds of regular grids: 2D grids, such that each vertex has at most
4 neighbors, and 2D + t grids, such that each vertex has at most 4 spatial
neighbors, and at most 2 temporal neighbors. 2D grids may be viewed as
special cases of 2D + t grids with no temporal edges. Hence, our grid mining
algorithm (described in the next chapter) will be described for 2D+ t grids, but
may be applied to 2D grids as well.

When mining grids, we search for frequent patterns, where a pattern is de-
fined as a sub-isomorphic grid. Hence we have defined subgrid isomorphism.
Subgrid isomorphism is close to geometric isomorphism, as it allows rotations

56 Chapter 4. Definitions on Grids

x

y 1 2

34 5

t = 0

x

y

7 6 8

t = 1

(a) A 2D + t grid G1.

t = 0

x

y

A

BC

D

t = 1

x

y F

H

t = 2

(b) A 2D + t grid G2 such that G2 ⊆i
grid G1: G2 is obtained from G1 by removing

vertices 5 and 8, by rotating vertices of π/2 around the temporal axis and
translating them by (4,−1, 1).

x

y DE

F GH

t = 1

x

y

ABC

t = 0

(c) A 2D + t grid which is not grid isomorphic to G1 because rotations around
spatial axis are not allowed (it is isomorphic to G1 with a rotation of π around y

axis and a translation).

Figure 4.6 – Example of 2D + t subgrid isomorphism.

and translations. This allows our mining algorithm to be invariant to rotations
and translations. However, the rigid transformations we consider are different
from those defined for geometric graphs: we do not allow scaling transforma-
tions, as this is meaningless in a grid context, and we only consider rotations of
multiples of π/2 around the temporal axis.

Table 4.1 summarizes properties which are preserved by subgrid isomor-
phism, and compares subgrid isomorphism with other sub-isomorphism rela-
tions described in section 2.1. Given a pattern graph Gp, a target graph Gt,
and a sub-isomorphism function f from Gp and Gt, we consider the following
properties:

Edges: for each edge (u, v) of Gp, (f(u), f(v)) is also an edge of Gt;

4.3. Discussion 57

Table 4.1 – Comparison of sub-isomorphism relations.

Sub-isomorphism relation between a Features of Gp preserved in Gt

pattern graph Gp and a target graph Gt Edges Non edges Internal Angles Neighbor Distance Edge
faces order ratio length

Gp ⊆p Gt (partial subgraph) X
Gp ⊆i Gt (induced subgraph) X X
Gp ⊆face Gt (face-induced plane subgraph) X X X X
Gp ⊆p

geo Gt (partial geometric subgraph) X X X X
Gp ⊆i

geo Gt (induced geometric subgraph) X X X X X
Gp ⊆p

grid Gt (partial subgrid) X X X X X
Gp ⊆i

grid Gt (induced subgrid) X X X X X X

Non edges: for each couple (u, v) of vertices of Gp such that (u, v) is not an
edge, (f(u), f(v)) is not an edge of Gt;

Internal faces: for each internal face bounded by the vertex cycle (v1, . . . , vn)

in Gp, there is an internal face in Gt which is bounded by the vertex cycle
(f(v1), . . . , f(vn));

Angles: for each vertex triple (u, v, w) of Gp, the angle between [u, v] and [v, w]

is equal to the angle between [f(u), f(v)] and [f(v), f(w)] in Gt;

Neighbor order: for each vertex u of Gp, the order we encounter the neigh-
bors of u when turning around u in clockwise order is preserved when
turning around f(u) in clockwise order (i.e., if the neighbors of u in clock-
wise order are v1, . . . vk, then the neighbors of f(u) in clockwise order are
f(v1), . . . , f(vk));

Distance ratio: for each couple of edges (u1, v1) and (u2, v2) in Gp, we have
d(u1,v1)
d(u2,v2)

= d(f(u1),f(v1))
d(f(u2),f(v2))

(where d(u, v) is the euclidian distance between u

and v);

Edge length: for each edge (u, v) in Gp, we have d(u, v) = d(f(u), f(v)) = 1.

Subgrid isomorphism is not a special case of face-induced plane subgraph
isomorphism (because it relaxes the constraint that faces must be preserved),
neither it is a generalization of it (because it adds the constraint that angles must
be preserved, for example). Subgrid isomorphism is a special case of geometric
subgraph isomorphism, where edges are constrained to connect vertices with
neighbor coordinates.

59

Chapter 5

Description of GriMA

Contents
5.1 Definition of the grid mining problem 60

5.2 Canonical Code . 61

5.3 Canonicity Test . 64

5.4 Extension strategy . 65

5.5 Theoretical analysis of GriMA 70

5.6 Node Induced GriMA 73

5.7 Algorithm for enumerating occurrences 75

5.8 Discussion . 76

As mentioned in the previous chapter, many objects exhibit a regular struc-
ture and may be modeled by grids, which are particular cases of geometrical
graphs. Mining algorithms that are dedicated to geometric graphs (such as
FreqGeo and MaxGeo, for example) may be used to mine grids. However,
they do not exploit the fact that grids have regular structures. In this chapter,
we introduce a novel Grid Mining Algorithm, called GriMA, in order to find
frequent subgrid structures in a database of 2D + t grids.

In Section 5.1, we define the grid mining problem, and relate it with the gen-
eral graph mining problem (solved by gSpan), the plane graph mining problem
(solved by Plagram), and the geometric graph mining problem (solved by
FreqGeo).

Then, we describe GriMA as an instantiation of the generic graph mining
algorithm (Algorithm 2) introduced in Section 3.3: canonical codes for identi-
fying grids are defined in Section 5.2; the canonicity test procedure is defined
in Section 5.3; the extension strategy of a pattern during the mining process
is described in Section 5.4. The complete GriMA algorithm is summarized in
Section 5.5, and its theoretical properties are studied.

60 Chapter 5. Description of GriMA

In Section 5.6, we introduce node-induced GriMA, which is an optimization
of the mining process when all grids of the database are complete and all edges
have the same label.

When using frequent patterns to characterize grids (to classify them, for
example), we also need to count the number of occurrences of a given pattern
in a grid. In Section 5.7, we describe an algorithm for achieving this task.

5.1 Definition of the grid mining problem

Let us recall that the frequency of a pattern is the number of graphs of the
database in which it occurs at least once. More precisely, in our grid context,
the frequency of a pattern grid GP in a database D of 2D + t grids is defined
by

freq(GP , D) = |{GT ∈ D : GP ⊆grid GT}|

The grid mining problem aims at finding all frequent patterns in a database
of grids.

Definition 5.1 Grid Mining Problem
Let D be a database of 2D + t grids, and σ be a positive integer. The grid
mining problem is to find every pattern grid GP such that freq(GP , D) ≥ σ

The difference with other graph mining problems lays in the kind of graphs
that belong to the database D and the kind of subgraph isomorphism consid-
ered to match patterns. In the general graph mining problem solved by gSpan,
D is a database of general graphs and the sub-isomorphism relation is ⊆p (par-
tial subgraph isomorphism). As a consequence, gSpan does not consider any
geometrical information when comparing patterns and it considers as isomor-
phic two subgraphs that are different from a grid point of view as shown in
Figure 5.1(b) and 5.1(c)

In the plane graph mining problem solved by Plagram, D is a database
of plane graphs and the sub-isomorphism relation is ⊆face (face-induced plane
subgraph isomorphism). In this case, the smallest possible subgraph is a single
face. Using Plagram to mine grids is possible but the problem needs to be
transformed such that each grid vertex becomes a face. This transformation
is illustrated in Figure 5.1. However, this artificially increases the number of
vertices and edges which may cause scalability problems for Plagram.

In the geometrical graph mining problem solved by FreqGeo and Max-
Geo, D is a database of geometrical graphs and the sub-isomorphism relation
is ⊆p

geo (partial geometric subgraph isomorphism). If D only contains 2D grids,
then the grid mining problem may be solved by FreqGeo and MaxGeo.

5.2. Canonical Code 61

(a) (b) (c)

(d) (e) (f)

Figure 5.1 – Examples of sub-isomorphism relations. If we consider that (a),
(b), and (c) are graphs, then (b) and (c) are isomorphic, and they are both
subgraphs of (a). If we consider that (a), (b), and (c) are grids, then angles
must be preserved by isomorphism functions, so that (b) and (c) are not
grid isomorphic, and (b) is a subgrid of (a) whereas (c) is not. The plane
graphs (d), (e), and (f) are obtained from (a), (b), and (c), respectively, by
replacing each vertex with a 4-vertex face (with the same label on the 4
vertices). (e) and (f) are not isomorphic, and (e) is a face-induced plane

subgraph of (d) whereas (f) is not.

However, these algorithms are not optimized for grids and have higher time-
complexities. When D contains 2D + t grids, the grid mining problem cannot
be solved by FreqGeo and MaxGeo because rotations around the spatial
axis are not allowed when mining 2D + t grids (to take into account the fact
that the temporal axis is oriented).

These differences motivate us to design a new algorithm, GriMA, which
is dedicated to grids. A first interest is that GriMA takes advantage of the
regular grid structure to lower the mining complexity. A second interest is
that the mined patterns are more relevant for applications where objects have
a regular grid structure as they fully preserve angle information, while being
tolerant to translations and rotations along the temporal axis.

5.2 Canonical Code

A key point when mining graphs is to efficiently detect isomorphic patterns.
Similarly to gSpan and Plagram, this is done in GriMA by using canonical
codes to represent patterns. A code of a grid G is a sequence of n edge codes
C(G) = 〈ec0, ..., ecn−1〉 which is associated with a depth-first traversal of G
starting from a given initial vertex. During this traversal, each edge is visited
once, and vertices are numbered (as described in Section 2.5): the initial vertex
has number 0, and each time a new vertex is discovered, it is numbered with the
smallest integer not already used in the traversal. Each edge code corresponds

62 Chapter 5. Description of GriMA

x

y A B C

D

t = 0
x

y F E

t = 1

Code 1
DFS tree edge δ i j a Li Lj Lij

0

1

2

3

4

5

(D,B) 0 0 1 0 0
(B,C) 0 1 2 3π/2 0
(C,E) 0 2 3 -1 0
(E,F) 0 3 4 0 0
(F,B) 1 4 1 -2 0
(B,A) 0 1 5 π/2 0

Code 2 Code 3
DFS tree edge δ i j a Li Lj Lij DFS tree edge δ i j a Li Lj Lij

0

1

2 3

4

5

(D,B) 0 0 1 0 0 0

1

2

3

4 5

(C,E) 0 0 1 -1 0
(B,A) 0 1 2 π/2 0 (E,F) 0 1 2 0 0
(B,C) 0 1 3 3π/2 0 (F,B) 0 2 3 -2 0
(C,E) 0 3 4 -1 0 (B,D) 0 3 4 π/2 0
(E,F) 0 4 5 0 0 (B,A) 0 3 5 π 0
(F,B) 1 5 1 -2 0 (B,C) 1 3 0 0 0

Figure 5.2 – Top left: A 2D+ t grid (temporal edges are displayed in red, all
edges have the same label 0, and vertex labels are represented by colors with

= 0, = 1, and = 2). Top right and bottom: three examples of codes
for this grid with the corresponding DFS trees (forward edges are
represented with plain lines, and backward edges with dashed lines.

to a different edge of G and the order of edge codes in C(G) corresponds to the
order edges are visited. Hence, eck is the code associated with the kth visited
edge. This edge code eck is the tuple (δ, i, j, a, li, lj, l(i,j)) where:

• i and j are the numbers associated with the vertices of the visited edge.

• δ ∈ {0, 1} is the direction of the visited edge:

– δ = 0 if it is forward, i.e., j is a new vertex reached for the first time;

– δ = 1 if it is backward, i.e., j already appears in eck′ with k′ < k.

• a ∈ {−2,−1, 0, π/2, π, 3π/2} is the angle value of the visited edge (i, j):

– if (i, j) is a temporal edge, then a = −2 if ti = tj + 1, and a = −1 if
ti = tj − 1;

– else, (i, j) is a spatial edge:

∗ If (i, j) is the first spatial edge encountered since the beginning
of the traversal, then a = 0.

∗ Else, let (l,m) be the first spatial edge in 〈ec0, ..., eck−1〉 such that
(xi, yi) = (xm, ym). a is the angle between [(xl, yl), (xm, ym)] and
[(xi, yi), (xj, yj)].

• li, lj, l(i,j) are labels of i, j, and (i, j), respectively.

5.2. Canonical Code 63

For instance, Figure 5.2 displays three possible codes (among all possible
codes) for a grid. Code 1 corresponds to a traversal starting from edge (D,B),
and successively visiting edges (B,C), (C,E), (E,F), (F,B), and (B,A). For
each visited edge, code 1 contains a tuple (δ, i, j, a, Li, Lj, L(i,j)). i and j corre-
spond to the order of discovery of the edge endnodes during the traversal. In
this traversal, this order is D = 0, B = 1, C = 2, E = 3, F = 4, and A = 5.
For all edges but (F,B), δ = 0 because all edges but (F,B) are forward edges,
i.e., they reach new vertices that have not yet been discovered before. (F,B)

is a backward edge because B has been discovered before F . Finally, a is the
angle value. For the first visited edge, (D,B), which is a spatial edge, we have
a = 0. For the other spatial edges e ∈ {(B,C), (E,F), (B,A)}, the value of a
corresponds to the angle between e and the first spatial edge (X, Y) such that
Y has the same spatial coordinates as the first endnode of e. For (B,C) (resp.
(E,F) and (B,A)), this edge is (D,B) (resp. (B,C) and (D,B)), and therefore
a = 3π/2 (resp. a = 0 and π/2). For the temporal edges, (C,E) and (F,B), a
is equal to −1 and −2 because tC = tE − 1 whereas tF = tB + 1.

There exist different possible codes for a given grid, as illustrated in Fig-
ure 5.2: each code corresponds to a different traversal that can be obtained by
starting from a different initial vertex and choosing edges in a different order.
We define a total order on the set of all possible codes by considering a lexico-
graphic order (as all code components have numerical values). Among all the
possible codes for a grid, the largest one according to this order is the canonical
code of this grid and it is unique.

Let us consider the codes displayed in Figure 5.2. As code 1 and code
2 share the same first edge code, we compare the second edge code, corre-
sponding to (B,C) and (B,A), respectively. They have a different angle value
(D̂BC = 3π/2 and D̂BA = π/2) and code 1 is greater than code 2. The same
consideration can be done with the first edge of code 1 and code 3. Moreover,
code 1 is also greater than all other possible codes for this grid (not shown in
the figure), thus code 1 is canonical.

Proposition 5.1
Every prefix of a canonical code is canonical.

Proof. Given a code C with n vertices, the right most path of C (denoted
rmp(C)) is the path from vertex number 0 to vertex number n − 1 using only
forward edges. For example, in Figure 5.2, rmp(Code1) = 〈D,B,A〉 as the last
vertex is A, and edges (D,B) and (B,A) are forward edges. As the right-most
path is built from a DFS traversal and only contains forward edges, it has the
property that numbers associated with vertices are necessarily increasing (see
Section 2.5).

64 Chapter 5. Description of GriMA

Let G be a grid with n > 1 edges and C = 〈ec0, . . . ecn−1〉 be its canonical
code. Let D = 〈ec0, . . . ecn−2〉 be the prefix of C that contains all edges of C
but the last one, and let e be this last edge (whose edge code in C is ecn−1).
D is a code corresponding to the grid G without edge e. Suppose that D is
not canonical, i.e., it is not the greatest possible code. This implies that there
exists a code D′ = 〈ec′0, . . . ec′n−2〉 such that D′ > D and D′ represents the same
grid as D. We have to consider two cases: either e is incident to one vertex of
rmp(D′), or not.
Case 1: Edge e is incident to one vertex of rmp(D′). In this case, we can build
the code C ′ = D′.〈ec′n−1〉 corresponding to the same depth first traversal as the
one used to build D′, but where we traverse edge e just after traversing the edge
associated with ec′n−2 and where ec′n−1 corresponds to the edge code of e in this
traversal. In this case, we have C ′ > C, because D′ > D, and C ′ is a code for
G. This is in contradiction with the assumption that C is canonical.
Case 2: Edge e is not incident to rmp(D′). In this case, there necessarily exists
a prefix P = 〈ec′0, . . . ec′k〉 of D′, with k < n − 2, such that e is incident to a
vertex i in rmp(P) but not to any vertex in rmp(P.〈ec′k+1〉). Let us consider
a depth-first traversal identical to the one that has been done to build P , but
where edge e is traversed just after the edge associated with ec′k and then, all
remaining edges are traversed. LetM be the code associated with this traversal.
M is a code for G, and we haveM = P.〈ece〉.Q, where ece is the code associated
with edge e when it is traversed just after the edge associated with ec′k, and
Q is the code associated with the end of the traversal. Let j be the number
of the vertex of rmp(P) which is incident to the edge associated with ec′k+1.
By definition of P , e is not incident to a vertex in rmp(P.〈ec′k+1〉) and thus: i)
ec′k+1 is forward and ii) i is "after" j in rmp(P). As the numbers associated
with the vertices in rmp(P) are increasing, i > j. Thus, if edge e is forward, ece
is either (0, i, ...), or if edge e is backward, ece is (1, i, ...) which are both larger
than ec′k+1 which is (0, j, ...), since ec′k+1 is forward. Therefore, M = P.〈ece〉.Q
is greater than C, and this is in contradiction with the assumption that C is
the canonical code of G.

5.3 Canonicity Test

The canonicity test, called line 11 in Algorithm 2, decides whether a code P is
canonical. This is done in two steps. First we reconstruct the grid pattern G
from the code P . This step is done in linear time with respect to the number
of edges in P since edges are listed in P together with angles and labels. Then,
for each edge (i, j) in G, we build two codes P(i,j) and P(j,i) corresponding to

5.4. Extension strategy 65

two different depth-first traversals: P(i,j) (resp. P(j,i)) is obtained by starting
the traversal on i (resp. j) and first choosing edge (i, j) (resp. (j, i)). At each
step of the traversal, if we have to choose between different edges, we always
choose first according to the direction of the edge (backward edges first as the
first value of edge code is δ) then according to the angle to maximize the code
(as choosing another edge will necessarily lead to a smaller code so that it will
not be canonical).

In Figure 5.2, for example, when starting the traversal on D and first choos-
ing edge (D,B), for the second traversed edge we have to choose between (B,A)

and (B,C). As none of them is backward and the angle D̂BA is π/2 while the
angle D̂BC is 3π/2, we choose edge (B,C) which leads to a larger code (Code
1) and we do not generate the code obtained when choosing (B,A) (Code 2)
because we know by construction that it will be smaller.

Whenever we find a code P(i,j) which is strictly greater than P , we conclude
that P is not canonical, whereas if all codes P(i,j) are smaller than or equal to
P , we conclude that P is canonical.

Complexity of the canonicity test. If P contains p edges, we have to
perform at most 2p traversals, and each traversal is done in O(p). So, the
complexity of the canonicity test is O(p2). However, each traversal may be
stopped as soon as an edge code in P(i,j) is different from the edge code at the
same position in P . So this worst-case complexity is nearly never reached in
practice: it is reached only when the pattern is fully symmetric and all codes
are equals, whatever the first edge is. Furthermore, the first edge of the code
must be one with maximal labels on vertices and edges. Therefore, we do 2p

traversals only if all labels are equals. For instance, on Figure 5.2, there are
only two vertices (D and B) with the greatest label (i.e., 2, represented by the
red colour). Therefore, the canonicity test will only build the two codes P(D,B)

and P(B,D) corresponding to traversals starting from edges (D,B) and (B,D),
respectively.

5.4 Extension strategy

Like gSpan, Plagram and FreqGeo, GriMA uses the pattern-growth ap-
proach to explore a search space of canonical codes in a depth-first manner:
each time a frequent pattern is found, it is extended into a bigger candidate
pattern. The elementary component used to start the mining process (line 2
of Algorithm 2) is an edge, which is also the smallest pattern considered by

66 Chapter 5. Description of GriMA

v1

v2 v3 v4

v5 v6 v7

v8
G1

vA vB

vC vD vE

vF

G2

0 1

2
P

〈(0, 0, 1, 0, , , 0),

(0, 1, 2, 3π/2, , , 0)〉
Canonical code of P

Figure 5.3 – Left: A database of grids D = {G1, G2} (all edges have the
same label 0, and vertex labels are represented by colors with = 0, = 1,

and = 2). Right: A pattern P together with its canonical code

GriMA. Then at each recursive call to Extend (lines 12 of Algorithm 2), the
pattern given as input to Extend is grown with one edge.

Extend(P) only generates promising candidate patterns, i.e., patterns that
actually occur in the grid database D. More precisely, for each grid Gi ∈ D, it
gathers in a list Exti all possible and valid extensions of P in Gi ∈ D (line 8 of
algorithm 2). To this aim, we first need to know the list of all occurrences of P
in Gi. To save space, this list, called Occi, only contains the first edge of each
occurrence of P as all other edges may be obtained from the pattern code P .

For example, let us consider the database of grids D and the pattern P

displayed in Figure 5.3. P occurs twice in G1 and once in G2, and the three
corresponding sub-isomorphism functions are:

0→ v2, 1→ v3, 2→ v1

0→ v6, 1→ v5, 2→ v8

0→ vB, 1→ vD, 2→ vE

Hence, the two occurrence lists of P in G1 and G2, respectively, are:

Occ1 = ((v2, v3), (v6, v5))

Occ2 = ((vB, vD))

Given the list Occi of all occurrences of a pattern P in a grid Gi, we build
the list Exti of all possible extensions of P in Gi as follows: for each edge
(u, v) in Occi, we build the sets V(u,v) and E(u,v) of vertices and edges that
belong to the occurrence of P starting from edge (u, v) in Gi, and we search for
every edge (u′, v′) of Gi such that {u′, v′} ∩ V(u,v) 6= ∅ and (u′, v′) 6∈ E(u,v). For
each of these edges, we compute the corresponding edge code (i.e., the tuple
(δ, u′, v′, a, Lu′ , Lv′ , L(u′,v′)) as described in Section 5.2), and add it to the list
Exti of extensions of P in Gi (while removing duplicates if any).

5.4. Extension strategy 67

On our running example, for the occurrence (v2, v3) of pattern P in G1, we
have:

V(v2,v3) = {v2, v3, v1}
E(v2,v3) = {(v2, v3), (v3, v1)}.

The set of edges of G1 that are possible extensions of this occurrence in G1

is {(v3, v4), (v3, v6), (v2, v5)} and the corresponding edge codes respectively are
(0, 1, 3, π, , , 0), (0, 1, 3, π/2, , , 0) and (0, 0, 3, 3π/2, , , 0).

For the occurrence (v6, v5) of pattern P in G1, we have:

V(v6,v5) = {v6, v5, v8}
E(v6,v5) = {(v6, v5), (v5, v8)}.

The set of edges of G1 that are possible extensions of this occurrence in G1

is {(v5, v2), (v6, v3), (v6, v7)} and the corresponding edge codes respectively are
(0, 1, 3, π/2, , , 0), (0, 0, 3, 3π/2, , , 0) and (0, 0, 3, π, , , 0).

Hence, the list of all possible extensions of P in G1 is:

Ext1 = 〈(0, 1, 3, π, , , 0), (0, 1, 3, π/2, , , 0),

(0, 0, 3, 3π/2, , , 0), (0, 0, 3, π, , , 0)〉

Similarly, we build the list of all possible extensions of P in G2:

Ext2 = 〈(0, 1, 3, π, , , 0), (0, 1, 3, π/2, , , 0), (0, 0, 3, 3π/2, , , 0)〉

Finally, all the Exti lists are merged into a single list (line 9 of algorithm 2),
and for each different extension we memorise its frequency (i.e., the number of
lists Exti in which the extension appears). This final list is used to iterate on
all possible extensions (line 10 of Algorithm 2) and, for each of these extensions
that leads to a frequent and canonical pattern, extend is recursively called (line
12 of Algorithm 2).

On our running example, for example, we merge Ext1 and Ext2 to obtain
the following possible extensions of P in D:
- (0, 1, 3, π, , , 0), whose frequency is 2 as it both occurs in Ext1 and Ext2,
- (0, 1, 3, π/2, , , 0), whose frequency is 1 as it only occurs in Ext1,
- (0, 1, 3, π/2, , , 0), whose frequency is 1 as it only occurs in Ext2,
- (0, 0, 3, 3π/2, , , 0), whose frequency is 1 as it only occurs in Ext1,
- (0, 0, 3, 3π/2, , , 0), whose frequency is 1 as it only occurs in Ext1,
- (0, 0, 3, π, , , 0), whose frequency is 1 as it only occurs in Ext2,

68 Chapter 5. Description of GriMA

0 1

0 12

0 1

2 0 1

2

0 1

2 0 1

2 0 1

2 0 1

2

0 1

2
0 1 2

0 1

2 0 1

2 0 1

2

0 1

2

3

0 1

2

3

0 1

2

3

0 1

2

3

0 1

2

3

0 1

2

3

0 1 2

3

0 1 2

3 0 1 2

3

0 1 2

3 0 1 2

3 0 1 2

3

...

Figure 5.4 – Search space explored by GriMA when starting from edge
0 1 for the database D = {G1, G2} displayed in Figure 5.3, with a frequency
threshold σ = 2. Black (resp. red) crosses indicate branches that are pruned
because the pattern is not frequent (resp. not canonical). Red branches are

not pruned and patterns in red rectangles are frequent and canonical.

Illustration of the extension strategy. Figure 5.4 illustrates the exten-
sion strategy on our running example, composed of the two grids displayed in
Figure 5.3, when starting from the initial edge 0 1 . Many branches are pruned
because the current pattern is no longer frequent (branches with black crosses).
Two branches are pruned because the current pattern is frequent but it is not
canonical (branches with red crosses):

• Pattern
0 1

2 is not canonical, and it is output when starting from the
initial edge 0 1 ;

• Pattern 0 1 2

3

is not canonical and has already been output in a previous
branch of the tree.

Finally, four patterns are frequent and canonical (those displayed in red rect-
angles).

5.4. Extension strategy 69

Incremental management of occurrence lists. A key point for an efficient
implementation is to manage occurrence lists incrementally. More precisely,
before each recursive call to Extend(P.e), the list Occi contains all occurrences
of P in Gi. It is updated by removing occurrences which do not contain edge
e (we test whether an occurrence contains edge e in constant time as we know
the coordinates of e relatively to P).

We use sparse sets [Briggs et al. 1993, Saint-Marcq et al. 2013] to restore occurrence
lists in constant time when backtracking, i.e., to restore the occurrence list of
P in Gi from the occurrence list of P.e in Gi when returning back from the
recursive call to extend(P.e). When using sparse sets, the current occurrence
list of P in Gi is represented by a couple (Ti, Si) where Ti is an array that
contains occurrences, and Si is the number of occurrences. Ti is initialized
before the first call to extend (line 2 of Algorithm 2) when the pattern P is
only composed of a single edge e: it is initialized to the set of all occurrences
of edge e in Gi, and Si is initialized to the number of occurrences of e in Gi.
Each time we recursively call the extend procedure (line 12 of Algorithm 2),
some occurrences must be removed from the occurrence list. However, instead
of removing them from Ti, we push them at the end of the array. More precisely,
for each occurrence to remove, we swap it with the last occurrence, which is
at index Si − 1 in Ti and decrease Si. Hence, when we return back from the
recursive call extend(P.e), we restore the list of occurrences of P from the
list of occurrences of P.e in constant time, by increasing Si by the number of
occurrences that have been removed before the recursive call.

On our running example, let us assume that the frequency threshold σ is
equal to 2. The single edge pattern P = 〈(0, 0, 1, , , 0)〉 is frequent, and
before trying to extend it, we build the following sparse sets:

T1 = (v2, v3) (v2, v5) (v6, v3) (v6, v5) T2 = (vA, vC) (vB, vD)

0 1 2 3 0 1

S1 = 4 S2 = 2

During the execution of extend(P), we find that e = (0, 1, 2, 3π/2, ,) is
a valid extension and that the pattern P.e is canonical and frequent. Hence,
before recursively calling extend(P.e), we update occurrence lists. There are
two occurrences of P.e in G1, and their first edges are (v2, v3) and (v6, v5). To
remove (v2, v5) from the occurrence list associated with G1, we swap it with the
last element (which is at index S1 − 1 = 3) of T1 and decrement S1 to 3. We

70 Chapter 5. Description of GriMA

obtain:

T1 = (v2, v3) (v6, v5) (v6, v3) (v2, v5) T2 = (vA, vC) (vB, vD)

0 1 2 3 0 1

S1 = 3 S2 = 2

To remove (v6, v3) from the occurrence list, we swap it with the last element
(which is at index S1 − 1 = 2). However, as (V6, v3) already is the last element
of T1, this does not change anything. We decrement S1 to 2, and we obtain:

T1 = (v2, v3) (v6, v5) (v6, v3) (v2, v5) T2 = (vA, vC) (vB, vD)

0 1 2 3 0 1

S1 = 2 S2 = 2

There is only one occurrence of P.e in G2, and its first edge is (vB, vD). To
remove (vA, vC), we swap it with the last element (which is at index S2−1 = 1)
of T2 and decrement S2 to 1. We obtain:

T1 = (v2, v3) (v6, v5) (v6, v3) (v2, v5) T2 = (vB, vD) (vA, vC)

0 1 2 3 0 1

S1 = 2 S2 = 1

When returning back from the recursive call to extend(P.e), the initial
occurrence lists are restored in constant time by setting S1 and S2 to 4 and 2,
respectively.

Note that sparse sets also allow us to reduce memory complexity: we do not
need to save the full list of occurrences at each recursive call, but we only save
the sizes of the sparse sets.

5.5 Theoretical analysis of GriMA

Algorithm 3 gives a more detailed description of GriMA: it basically follows the
generic algorithm displayed in Algorithm 2, but includes more details related
to the management of sparse sets, and to the computation of extensions, as
described in the previous sections.

The time complexity of this algorithm depends on the number of frequent
patterns. In some cases, this number may be null, allowing the algorithm to
process the mining more quickly. This is the case, for example, when σ > 1

and, for every pair of grids {G1, G2} ⊆ D, the labels in G1 are all different
from the labels in G2. However, in some other cases, the number of frequent
patterns may be exponential in the size of the grids in D. This is the case, for

5.5. Theoretical analysis of GriMA 71

Algorithm 3 GriMA.

Input: A database of grids D = {G1, ..., Gn} and a frequency threshold σ.
Output: Print all patterns P such that |{Gi ∈ D : P ⊆grid Gi}| ≥ σ.
1: for all canonical edge code e do
2: for all grid Gi ∈ D do
3: Build the sparse set (Ti, Si) that contains all occurrences of e in Gi

4: if at least σ sparse sets contain e then extend(e, {(Ti, Si) : Gi ∈ D})
5:
6: procedure extend(P , {(Ti, Si) : Gi ∈ D}) . P is a frequent canonical code and
∀Gi ∈ D, (Ti, Si) is a sparse set that contains all occurrences of P in Gi.

7: Output P
8: for all grid Gi in D do
9: Initialise Exti to en empty set
10: for all edge (u, v) in the sparse set (Ti, Si) do
11: Let G(u,v) be the occurrence of P starting from (u, v) in Gi

12: for all vertex u′ of G(u,v) do
13: for all edge (u′, v′) of Gi st (u′, v′) is not an edge of G(u,v) do
14: Add to Exti the edge code corresponding to (u′, v′)

15: FreqExt← {e ∈
⋃

Gi∈D Exti : |{Gi ∈ D : e ∈ Exti}| ≥ σ}
16: for all edge code e ∈ FreqExt do
17: if the pattern P.e is canonical then
18: for all grid Gi in D do
19: Save Si
20: Remove from (Ti, Si) every edge that is not an occ. of P.e in Gi

21: extend(P.e, {(Ti, Si) : Gi ∈ D})
22: for all grid Gi in D do
23: Restore Si to the value saved line 19

example, when σ = 1 and all grids in D are such that all their vertices have
different labels. Hence, to study the time complexity of GriMA, we evaluate
its time complexity per pattern. The next proposition shows us that it has a
polynomial delay time complexity, i.e., the time complexity between the output
of two frequent patterns is polynomial with respect to the size of the database.

Proposition 5.2
The time complexity of GriMA (Algorithm 3) is O(knp3) per frequent and
canonical pattern P , where k is the number of grids in the base D, n the
number of edges of the largest grid in D and p the number of edges in P .

Proof. Lines (1-3) basically involve traversing all grids of D to collect all dif-
ferent kinds of edges and build their initial occurrence lists (using sparse sets).
This is done once before searching for patterns and the time complexity of lines
(1-3) is O(kn).

Each call to extend(P) outputs exactly one frequent and canonical pattern
(i.e., P). Let us study the time complexity of one of these calls.

72 Chapter 5. Description of GriMA

Lines 8-14 build the list Exti of all possible extensions of P in Gi, for each
grid Gi in D. There are k grids in D and at most 2n occurrences of
P in each grid Gi (because for each edge of Gi there are at most two
occurrences of P that start from this edge, depending on the edge direction
considered). Therefore, we iterate O(kn) times on lines 11-14. For each
of these iterations, we first build the subgrid G(u,v) that starts from edge
(u, v) in Gi (line 11). This is done in O(p), by performing a traversal
that starts from (u, v) and is guided by P . Then, lines (12-14) collect all
possible extensions of this subgrid in Gi, and this is done in O(p) as there
are at most 5 possible extensions for each vertex of G(u,v).

Hence, the time complexity of lines 8-14 is O(pkn).

Line 15 merges the k Exti lists into a single list FreqExt, while removing edge
codes that are not frequent. This is done in linear time with respect to the
size of all Exti lists (provided that we use a map that allows us to decide
in constant time whether an edge code already belongs to FreqExt).
Each list Exti contains at most 10pn extensions as there are at most 2n

occurrences of P in Gi, and each of these occurrences has at most 5p

possible extensions.

Hence, the time complexity of line 15 is O(kpn).

Lines 16-17 test whether P.e is canonical, for each extension e in FreqExt.
As each pattern P.e has p+ 1 edges, each canonicity test is done in O(p2)

(see Section 5.3). FreqExt contains O(pkn) different extensions, as there
are k lists Exti, and each of these lists contains at most 10pn extensions.

Hence, the time complexity of lines 16-17 is O(p3kn).

Lines 18-20 and 22-23 are done exactly once for each recursive call to extend.
Lines 18-20 update sparse sets by removing edges that do not correspond
to occurrences of P.e. There are k sparse sets, and each sparse set contains
at most n edges. We test in constant time whether an edge corresponds
to an occurrence of P.e, because we can compute the coordinates of e in
Gi. Lines 22-23 simply restore sizes in O(k).

Hence the time complexity of lines 18-20 and 22-23 is O(kn) for each call
to extend.

Therefore, the complexity of GriMA is O(knp3) per pattern P .

Proposition 5.3
GriMA is correct.

5.6. Node Induced GriMA 73

Proof. GriMA is correct if it only outputs frequent subgrids. This is ensured
by the fact that patterns are output at the first line of extend (line 7), and
extend is called only if the pattern is frequent:

• when extend is called with a single edge pattern (line 4), we first check
that there are at most σ sparse sets such that Si > 0, implying that there
are at least σ non empty occurrence lists;

• when extend is called to extend a pattern P.e (line 22), we ensure that
P.e is frequent because FreqExt only contains extensions that occur in
at least σ grids (line 15).

Proposition 5.4
GriMA is complete.

Proof. To show that GriMA is complete, we must prove that it cannot miss
any frequent subgrid. Since GriMA explores a search-space of grid codes, and
since each grid has exactly one canonical grid code, we must prove that GriMA
does not miss any frequent canonical code. Given a frequent canonical code P ,
we already know from proposition 5.1 that every prefix of P is canonical. If
G′ is a subgrid of G, then it is obvious from the definition of frequency that
freq(G′, D) ≥ freq(G,D). When there are two canonical codes P and P ′ such
that P = P ′.e, this implies that the grid GP corresponding to P is a subgrid
of the grid GP ′ corresponding to P ′: GP ′ is obtained from GP by removing one
edge (and also one vertex if e is a forward edge). As a consequence, if P = P ′.e,
then freq(GP ′ , D) ≥ freq(GP , D) and thus if P is frequent then every prefix of P
is also frequent. Thus any prefix of a frequent canonical code is also a frequent
canonical code. This means that GriMA will find P because only infrequent
codes and non-canonical codes are pruned from the search-space (lines 15 and
17).

5.6 Node Induced GriMA

Some graph mining algorithms may be improved by mining only closed patterns.
For this, a closure operator is used to expand patterns: in line 11 of Algorithm 2,
P.e is replaced by Closure(P.e). In general, the closure of a pattern is the
maximal super-pattern with the same occurrence list. This closure operator
has been adapted for general graphs in [Yan et al. 2003] and geometric graphs in
MaxGeo [Arimura et al. 2007]. Closure computation adds some complexity but
closed patterns are less numerous and thus sometimes faster to enumerate.

74 Chapter 5. Description of GriMA

v1 v2 v3

v4 v5 v6

v7 v8 v9

v10 v11 v12

P1

P2

P3

P4

Figure 5.5 – Example of a complete 2D grid, and of four patterns that all
occur twice in it and that all share the same subset of vertices. P1 is an
induced subgrid of the complete grid whereas P2, P3, and P4 are partial

subgrids of it.

In the two applications considered in our experiments (reported in the next
two chapters), there is no label on edges (or edges all have the same label).
However, with the canonical code used by GriMA, it is possible to use grid
data that have label on edges. Furthermore, the mined grids are complete,
i.e., whenever two vertices have neighbor coordinates, they are connected by
an edge. In this case, only vertices are important in patterns. More precisely,
given two patterns P1 and P2 such that P1 is a partial grid of P2 (i.e., P1 has
the same vertices as P2, but the set of edges of P1 is a subset of the set of edges
of P2), and given a grid G, P1 and P2 have the same occurrence lists in G. As a
consequence, if one of these two patterns is frequent, then the other one is also
frequent. Therefore, when mining frequent pattern, we only consider patterns
which are induced subgrids of the initial grids or, in other words, that have a
maximal number of edges. The resulting algorithm is called i-GriMA.

For example, let us consider Figure 5.5. P2, P3, and P4 are partial grids of
P1, obtained by removing some of its edges. These four patterns have the same
occurrence lists in the grid G, and each of them is frequent if and only if all
others are frequent. i-GriMA only outputs P1, whereas GriMA outputs P1,
P2, P3, and P4.

The implementation of i-GriMA is derived from the implementation of
GriMA in a rather straightforward way. Before calling extend(P.e), we check
whether P.e is a complete grid, i.e., whether all couples of vertices which have
neighbour coordinates are connected by an edge. If this is not the case, we add
edges to P.e. More precisely, we add to P.e every edge (u, v) such that u and v
are vertices of P.e and have neighbour coordinates, but (u, v) is not an edge of
P.e.

i-GriMA may be viewed as a loosening of a grid mining algorithm that

5.7. Algorithm for enumerating occurrences 75

Algorithm 4 Enumerating pattern occurrences.

1: function enumOcc(a grid G, a pattern code P)
2: Initialise the counter to 0
3: for all edge (u, v) of G do
4: if there is an occurrence of P in G that starts from u→ v then
5: increment the counter
6: if there is an occurrence of P in G that starts from v → u then
7: increment the counter

Return c

only mines closed patterns, as it considers a relaxation of the closure operator
restricted to edges. The interest is that this relaxed closure is very fast to
compute and significantly reduces the number of patterns, as shown in our
experiments. Moreover, experiments showed us that in our datasets almost all
node-induced grids are actually closed. Therefore, computing the "full" closure
operator would be more expensive and would not decrease significantly the
number of patterns.

5.7 Algorithm for enumerating occurrences

In the two applications considered in the next two chapters, we show how to
use GriMA for classifying objects that have a regular grid structure (images in
Chapter 6 and cellular automata in Chapter 7). In both applications, we con-
sider a similar process: we first use GriMA to extract frequent patterns; then
we use these patterns to characterise objects by means of occurrence histograms.
These occurrence histograms give, for each frequent pattern, the number of its
occurrences in the grids. This occurrence enumeration task is actually achieved
by GriMA during the mining process, as it maintains occurrence lists for each
pattern and each grid of the database. However, in a classification context, we
need to enumerate occurrences of patterns in new grids, that have not been used
to compute frequent patterns. Hence, in this section we describe an algorithm
for achieving this task.

This algorithm is displayed in Algorithm 4. Given the canonical code P of
a pattern and a grid G, it iterates on each edge (u, v) of G and performs at
most two traversals of P for each of these edges: a traversal that starts from u

and visits v just after u (line 4), and a traversal that starts from v and visits
u just after v (line 6). Each traversal uses the code P to deterministically
choose edges of G to visit. More precisely, given the angle a of the next edge
in P , if this angle corresponds to a temporal edge (a < 0), then we choose the
corresponding temporal edge in G. If this angle corresponds to a spatial edge
(a > 0), then we use this angle to choose the corresponding spatial edge in G.

76 Chapter 5. Description of GriMA

For each visited edge, if vertex or edge labels are different from those in P , or if
there is no edge in G corresponding to the current edge of P , then the traversal
stops and we conclude that there is no occurrence of P from this starting point
of G. If all edges match and all labels are equal, then we conclude that there is
an occurrence of P from this starting point of G and we increment the counter.

The time complexity of Algorithm 4 is O(np) where n and p are the number
of edges in G and P , respectively, as we perform at most 2n traversals and each
traversal has a linear time complexity with respect to p. This complexity is an
upper bound that considers a worst case where there is an occurrence of P for
each possible starting edge in G. In practice, we stop the traversal of P as soon
as a difference occurs, and this usually happens very soon in the traversal. For
example, in the application described in Chapter 7, traversals are stopped at
the fourth edge of P , on average, when P has 70 vertices.

As we usually have to enumerate occurrences of a large number of differ-
ent patterns in a same grid G, we optimize the enumeration process by pre-
computing, for each possible kind of initial edge (i.e., each possible label triple
(li, lj, l(i,j)) associated with the two endnodes and the edge, respectively), the
list of its occurrences in G. Then, given a pattern P , we search for occurrences
of P only from the list associated with the label triple of the first edge of P .

5.8 Discussion

In this chapter, we have described GriMA, a Grid Mining Algorithm. This
algorithm follows the same DFS exploration of the search space than gSpan,
Plagram, and FreqGeo: to explore the search space, it recursively grows pat-
terns by adding edges. However, it uses a different canonical code for uniquely
representing patterns. This canonical code contains angle information that
allows us to reconstruct a grid given its code, or to test for isomorphism in
quadratic time with respect to the number of edges. We also use sparse sets
to manage occurrence lists: this allows us to restore occurrence lists in con-
stant time when returning back from a recursive call; this also allows us to
reduce memory complexity as we do not need to save the current state of each
occurrence list before each recursive call.

We have proven that GriMA is complete and correct, and that its time
complexity is O(knp3) per pattern P , where k is the number of grids in the base
D, n the number of edges of the largest grid in D and p the number of edges in
P . This is a significant improvement over FreqGeo which has a complexity
of O(k2n4. lnn) per pattern, and over Plagram which has a complexity of
O(kn2p3) per pattern.

77

Chapter 6

Application of GriMA to Image
Classification

Contents
6.1 Background on image classification 78

6.1.1 Supervised classification 78

6.1.2 BoW-based representation of images 79

6.1.3 Pattern mining for image classification 80

6.2 BoG-based representation of images 81

6.2.1 Construction of 2D grids 81

6.2.2 Construction of BoGs 83

6.3 Experimental setup 84

6.3.1 Datasets . 85

6.3.2 Overview of the learning process and parameter settings 87

6.3.3 Overview of the classification process 89

6.4 Efficiency analysis . 90

6.5 Accuracy results . 92

6.6 Discussion . 94

In the previous chapter, we have described GriMA, an algorithm for mining
frequent patterns in 2D+ t grids. In this chapter, we describe a first application
of GriMA to image classification. A first goal is to study scale-up properties
for extracting frequent patterns from large sets of 2D grids that model images.
A second goal is to study the interest of using grid patterns to classify images.

First, we present a quick background overview on image classification in
section 6.1. We introduce a new image representation, based on frequent grid
patterns, and called Bag-of-Grids (BoG) in section 6.2. We describe the ex-
perimental setup in section 6.3. We study scale-up properties of GriMA and

78 Chapter 6. Application of GriMA to Image Classification

compare it with gSpan and Plagram in section 6.4. Finally, we present ac-
curacy results of our approach for image classification in section 6.5.

6.1 Background on image classification

Image classification is a subfield of computer vision that aims at associating
predefined classes to images. In this section, we first briefly recall basic back-
ground on supervised classification. Then, we describe the Bag-of-Words ap-
proach, where images are described by means of visual word histograms prior
to classifying them. Finally, we briefly overview existing approaches that use
data mining for image classification

6.1.1 Supervised classification

Given a set of objects, a set of classes, and a subset of objects (called the learning
set) such that we know the class of each object in the learning set, the goal of
supervised classification is to build a classifier which is able to predict the class
of every object. This classifier is evaluated on a testing set of objects whose
intersection with the learning set is empty, and for which we have a ground truth,
i.e., we know the class of each object in the testing set. Different performance
indicators may be considered. In this thesis, we consider the classification rate,
which is the percentage of objects in the testing set for which the predicted
class is equal to the ground truth class.

When there are not enough objects for which we know the ground truth class,
we may consider an n fold cross-validation process: Given the set of objects for
which we know the class, we partition it into n subsets O1, . . . , On, and build
n classifiers such that each classifier is trained on the learning set composed of
all subsets but Oi and evaluated on the testing set Oi, with i ∈ [1, n]. In this
case, we report the average accuracy for the n classifiers.

There exist many different approaches for learning a classifier such as, for
example, Neural Networks, or k Nearest Neighbours. In this thesis, we use
Support Vector Machines (SVMs). SVMs are binary classifiers, dedicated to
the specific case where there are 2 classes.

To classify a vector x with a linear SVM, a linear combination of dot products
< xi, x > between learning vectors xi and x is computed, and the sign of
the result determines the class. The separator is thus an hyperplane. The
coefficients of this linear combination are optimized to maximize the margin
m (i.e., no training point is allowed to lie within distance m of the separator).
Most of the coefficient are zero, the non zero coefficients corresponds to so-called
support vectors. However, learning data are generaly not linearly separable.

6.1. Background on image classification 79

Figure 6.1 – Standard 16× 16 SIFT descriptor with 4× 4 bins.

Thus, errors are allowed (errors are learning vectors xi lying within the margin
or miss-classified) and the sum of errors is used as a regularization (weighted
by an hyper-parameter C) in the optimization process.

The optimization of the coefficients of this linear combination only involves
the computation of dot products between pairs of training vectors < xi, xj >.
Indeed, it is possible to replace these dot products < x, y > by any positive semi-
definite function k(x, y) (which is the same as doing a dot product in another
vector space implicitly defined by k, this is the so-called kernel trick). Such
functions k are called kernels and allow to learn non linear SVM classifiers (the
final classifier will be a linear combination of k(ti, x), but k can be non-linear).

When there are more than 2 classes, we use SVMs to build an n-ary classifier
as follows: for each class Ci, we build a binary SVM classifier which is trained
to discriminate objects of Ci against objects of all other classes. To predict the
class of an object of the testing set, we collect the answer of each binary SVM,
which is a probability of belonging to the class associated with the binary SVM,
and select the class for which the probability is the highest.

6.1.2 BoW-based representation of images

A key point of image classification is the choice of image representation. In
this thesis, we consider Bag-of-Words (BoW) based representations. These
representations no longer give state-of-the-art results. In particular, [Chatfield

et al. 2014] reports that the features discovered using deep learning techniques
give much better accuracy results than the BoWs and all their extensions on
classification problems. However, our aim is to compare an unstructured set
of descriptors and a set of descriptors structured by the grid topology. The
method presented in this thesis is generic and may be used with any low-level
features (e.g. deep-learned features) as labels.

The idea of BoWs is to describe images by frequency histograms of visual
words [Chatfield et al. 2011, Csurka et al. 2004].

80 Chapter 6. Application of GriMA to Image Classification

Construction of a visual vocabulary. Given a learning set of images, the
set of visual words is called the visual vocabulary and is built in two steps.

In a first step, patches (i.e., small connected sets of pixels corresponding to
image regions) are extracted from images, and each of these patches is repre-
sented by a descriptor. In this thesis, we use SIFT descriptors [Lowe 2004] which
are numerical vectors describing gradient information in a square pixel patch
as represented in Figure 6.1. The standard SIFT descriptor is extracted from a
patch of 16× 16 pixels which is split into 16 areas, called bins, of 4× 4 pixels.
In each of these bins, image gradient is represented by a vector of 8 values, thus
leading to a SIFT vector in 16× 8 = 128 dimensions.

In a second step, the set of all SIFT descriptors (associated with all patches
extracted from all learning images) is partitioned into k clusters. For each
cluster, a representative SIFT descriptor is chosen. These k representative SIFT
descriptors are the visual words that constitute the visual vocabulary. Here, k
is a parameter which defines the size of the visual vocabulary.

Construction of BoWs. Given this vocabulary of k visual words, each image
is described by a frequency histogram of k values which is computed as follows:
first patches are extracted from the image, and the SIFT descriptor of each
patch is computed; then, for each SIFT descriptor, the closest visual word in
the vocabulary is added to the bag of visual words associated with the image;
finally, the image is represented by a vector of k values, such that the ith value
in this vector is the number of occurrences of the ith visual word in the bag.

6.1.3 Pattern mining for image classification

Pattern mining techniques have recently been very successfully used in image
classification [Fernando et al. 2014, Voravuthikunchai et al. 2014] as a mean to obtain
more discriminative mid-level features. However, these approaches consider the
extracted features used to describe images (e.g., BoWs) as spatially independent
from each other.

The problem of using bag-of-graphs instead of BoWs has been mentioned in
[Silva et al. 2013, Özdemir et al. 2010, Silva et al. 2014] for satellite image classification
and biological applications. However, none of these papers provide a general
graph representation nor a graph mining algorithm to extract the patterns. In
their case, graphs associate vertices with image patch regions and edges are
computed using Voronoi tessellations. Besides, they are interested in counting
how many times a given subgraph occurs in an image graph using a maximum
independent set support, whereas we are interested in counting the number of
image graphs where a given subgraph occurs which defines a different, maybe

6.2. BoG-based representation of images 81

more usual, pattern support. Delaunay triangulation has already been used for
image classification in [Samuel et al. 2010]. However, the triangulation structure
is unstable to illumination changes, scale or rotation of objects in images and
thus can hardly be used in practice for general image classification purposes.

Recent works from [Silva et al. 2013, Silva et al. 2014] have also mentioned the
use of bag-of-graphs for classification purposes. However, the authors mainly
focus on describing the entire bag-of-graph creation process on an abstract level
and do not precisely discuss the automated extraction of subgraph patterns
nor the creation of the original graphs (they consider it as being driven by the
application and handcrafted). Besides, they apply their method on biological
graph problems and not on image processing. In [Nowozin et al. 2007], authors have
already shown that, by combining graph mining and boosting, they can obtain
classification rules based on subgraph features that contain more information
than sets of features. In their graph, each interest point is represented by one
vertex labeled with a discretized descriptor of the point as label. All vertices
are connected by undirected edges to obtain a complete graph. For each edge, a
discretized temporary continuous-valued edge label vector is used to represent
the ratio of scales, a normalized distance and a horizontal orientation measure,
respectively. gSpan algorithm is then used to compute the subgraph patterns
but a limited number of features per image is used to be able to scale on real-life
datasets.

6.2 BoG-based representation of images

More than a decade ago, patches used to create the visual vocabulary were
selected by using interest point detectors or segmentation methods. However,
[Nowak et al. 2006] has shown that randomly sampling patches on grids (called
dense sampling) gave as good (and often better) results for image classification
than when using complex detectors. In this thesis, we propose to go one step
further, and to model images by 2D grids of visual words. Our goal is to study
the interest of extracting structural information, by means of frequent subgrids,
for characterizing images.

6.2.1 Construction of 2D grids

More precisely, given a visual vocabulary (computed on the set of learning
images as described in the previous section), each image is described by a 2D
grid which is computed as follows. First, patches are extracted regularly, every
s pixels, from the image, and the SIFT descriptor of each patch is computed, as
shown in figure 6.2(a). Then, for each SIFT descriptor, we search for the closest

82 Chapter 6. Application of GriMA to Image Classification

(a) SIFT descriptors densely applied on
an image with a step s of 16 pixels

between each SIFT center.
(b) Visual words associated with the

same image as (a).

(c) 2D grid associated with the same
image as (a).

Figure 6.2 – Representation of an image by a 2D grid of visual words.

visual word in the vocabulary (according to the squared euclidean distance),
as shown in figure 6.2(b). Finally, we build a 2D grid such that each vertex
corresponds to a pixel patch and is labeled with the visual word associated
with this patch. In this grid, two vertices are connected by an edge iff the two
corresponding patches are neighbors, i.e., they are separated by exactly s pixels.
As a result, every vertex is connected to at most 4 vertices (it is connected to
less than 4 vertices if it is on a border), as shown in figure 6.2(c). Note that
edges do not have labels.

When the number k of visual words in the vocabulary is low, we noticed
that, for many images, we obtain 2D grids with large connected components
that have a same label on all their vertices. In this case, we obtain a huge
number of frequent patterns such that all vertices in the pattern have the same
label. These patterns are not relevant for a classification purpose. To prevent us
from mining these uniform patterns, for each 2D grid associated with an image,
we remove every vertex v such that all neighbours of v have the same label as
v. This create holes in our grids, where each hole corresponds to a connected
subset of vertices that all have a same label and that is surrounded by vertices

6.2. BoG-based representation of images 83

Figure 6.3 – Example of image (left), its associated 2D grid (left) and its 2D
grid with holes (right), such that every vertex surrounded by vertices with

the same label is removed.

with the same label. An example of a 2D grid with holes is given in Figure 6.3.

6.2.2 Construction of BoGs

We propose to use GriMA to mine frequent subgrids, and to use these frequent
subgrids to characterize images. As 2D grids generated from images do not
have labels on their edges, we use i-GriMA for mining frequent patterns: this
allows us to reduce the number of mined patterns, and to speed-up the mining
process. The mining process is done on each class separately. By mining each
class separately, we ensure finding all relevant patterns for each class separately.
For instance, let us assume that there are two classes, and that a pattern occurs
in all images of the first class whereas it never occurs in the second class. In
this case, if we mine all images of both classes together and if the frequency
threshold σ is greater than 50%, then i-GriMA will not output this pattern,
whereas it is relevant for distinguishing images of the two classes.

More precisely, let m be the number of classes, and L1, . . . , Lm be the m
learning sets of images, such that all images in Li belong to the ith class, for
i ∈ [1,m]. For each class i, we use i-GriMA to build the set Pi of grid patterns
that are frequent in Li. Then, all these patterns are merged to build the set
of frequent patterns P = ∪mi=1Pi. Finally, these frequent patterns are used to
characterize images by means of Bags of Grids (BoGs), corresponding to grid
frequency histograms: each image is characterized by a vector of |P | values such
that the jth value corresponds to the number of occurrences of the jth pattern
of P in the 2D grid associated with the image.

However, if a pattern has a > 1 automorphisms, then there are a occurrences
of the pattern for each subset of vertices S in the target grid such that the
subgrid induced by S is isomorphic to the pattern. For example, let us consider
pattern (a) in Fig. 6.4. It has four automorphisms, corresponding to the four
isomorphism functions: (a → a, b → b, c → c, d → d), (a → d, b → a, c →

84 Chapter 6. Application of GriMA to Image Classification

a b

cd

(a) Pattern with 4
automorphisms.

e f

gh

(b) Pattern with 2
automorphisms.

i j

kl

(c) Pattern without
automorphism (different

from the identity).

0 1

23

4 5

67

8

9

(d) Target grid.

Figure 6.4 – Pattern (a) has four occurrences in (d), corresponding to the
four subisomorphism functions: (a→ 0, b→ 1, c→ 2, d→ 3),
(a→ 1, b→ 2, c→ 3, d→ 0), (a→ 2, b→ 3, c→ 0, d→ 1), and

(a→ 3, b→ 0, c→ 1, d→ 2). Pattern (b) has 2 occurrences in (d),
corresponding to the two subisomorphism functions:

(h→ 4, g → 7, f → 6, e→ 5), and (h→ 6, g → 5, f → 4, e→ 7). Pattern (c)
has 1 occurrence in (d), corresponding to the subisomorphism function:

(j → 6, i→ 9, l→ 8, k → 5).

b, d→ c), (a→ c, b→ d, c→ a, d→ b), and (a→ b, b→ c, c→ d, d→ a). As a
consequence, there are four different occurrences of (a) in (d). Similarly, pattern
(b) has two automorphisms and therefore it has two occurrences in (d). Finally,
pattern (c) has no automorphism different from the identity and therefore it
has only one occurrence in (d).

Hence, patterns that have automorphisms have a number of occurrences
which is artificially increased, and this may introduce a bias. Therefore, we
divide the number of occurrences of each pattern by its number of automor-
phisms. The number of automorphisms of a pattern is computed by searching
for all occurrences of the pattern in itself, with the algorithm described in Sec-
tion 5.7.

6.3 Experimental setup

BoW- and BoG-based classification processes are experimentally evaluated and
compared in the next two sections. In this section, we first describe the datasets
considered for these experiments. Then, we give an overview of the full classi-
fication process, and describe the parameter settings considered in our experi-
ments.

6.3. Experimental setup 85

(a)

(b)

(c)

(d)

Figure 6.5 – Examples of images from classes bluebell (a), iris (b), snowdrop
(c), and tigerlily (d) of the Flowers dataset [Nilsback et al. 2008].

6.3.1 Datasets

We consider three datasets.
Flowers [Nilsback et al. 2008] is composed of 17 classes where each class corre-

sponds to a different kind of flower. Each class contains 80 different images of
this kind of flower. Figure 6.5 displays five images of the classes bluebell, iris,
snowdrop and tigerlily.

15-Scenes [Lazebnik et al. 2006] is composed of 15 classes where each class
corresponds to a natural scene category such as, for example, kitchen, street,
and forest. Each class contains between 210 and 410 images. The complete
dataset contains 4485 images. Figure 6.6 displays five images of the classes
bedroom, highway, kitchen and street.

Caltech-101 [Li et al. 2004] is composed of 101 classes of various kinds. There
are 40 to 800 images per class. As we mine frequent patterns for each class sepa-
rately, if a class only contains a few images in the learning set, then the number
of frequent patterns may be very large for this class. Hence, we consider a subset
of Caltech-101 which is composed of the 26 classes of Caltech-101 that contain at
least 80 pictures per class. These classes are: airplaines, bonsai, brain, buddha,

86 Chapter 6. Application of GriMA to Image Classification

(a)

(b)

(c)

(d)

Figure 6.6 – Examples of images from classes bedroom (a), highway (b),
kitchen (c), and street (d) of the 15-Scenes dataset [Lazebnik et al. 2006].

butterfly, car_side, chandelier, ewer, faces, faces_easy, grand_piano, hawks-
bill, helicopter, ibis, kangaroo, ketch, laptop, leopards, menorah, motorbikes,
revolver, scorpion, starfish, sunflower, trilobite and watch. For each class, we
randomly select 80 images. This subset will be referred as Caltech-26. Figure 6.7
displays five images of the classes watch, starfish, kangaroo and brain.

Table 6.1 summarizes informations on our three datasets.
For Flowers and Caltech-26, we consider a 10-fold cross-validation process

since the number of images is the same for each class. For 15-Scenes, we have
created 10 different folds: For each fold, we randomly select 100 images per
class for training and 50 images per class for testing.

Table 6.1 – Dataset information summary: For each dataset, #Class gives
the number of classes, #Images/Class gives the minimum, average and
maximum number of images per class, and #Pixels/Image gives the

minimum, average and maximum number of pixels per image.

#Class # Images/Class # Pixels/Image
Min Avg Max Min Avg Max

Flowers 17 80 80 80 249,001 319,381 546,500
15Scene 15 210 298 410 44,660 66,328 121,440
Caltech-26 26 80 80 80 24,576 71,782 313,040

6.3. Experimental setup 87

(a)

(b)

(c)

(d)

Figure 6.7 – Examples of images from classes bonsai (a), brain (b), ibis (c),
and trilobite (d) from the Caltech-26 dataset [Li et al. 2004].

6.3.2 Overview of the learning process and parameter set-
tings

Figure 6.8 gives an overview of the whole process for building BoW- and BoG-
based classifiers from the learning set L of images.

Construction of the visual vocabulary. The first step for building BoW-
and BoG-based classifiers is to build a visual vocabulary V . This is done by
extracting a patch of 16 × 16 pixels every s pixels and computing the SIFT
descriptor in 128 dimensions corresponding to this patch. In our experiments,
we set s to 8. This way, there is an overlapping between patches such that every
pixel occurs in 4 patches (except for pixels that are close to image borders).
Then, the resulting set of SIFT descriptors is partitioned into k clusters. In our
experiments, we have computed clusters with the k-means algorithm, and we
have used the squared euclidean distance to compare SIFT descriptors.

Depending on the dataset, it may happen that there are too many SIFT
descriptors for running k-means within a reasonable amount of time. Hence,
we limit the maximum number of SIFT descriptors to 100, 000: When there

88 Chapter 6. Application of GriMA to Image Classification

Construction of
visual vocabulary

Construction of BoW-based classifier

Construction of BoG-based classifier

Learning
set L

Build visual
vocabulary

k visual
words V

Build BoW
histograms hBoW Train

SVMs
BoW-based
classifier

Build
2D grids 2D grids

GriMA

Frequent grid
patterns P

Build BoG
histograms hBoG Train

SVMs
BoG-based
classifier

Figure 6.8 – Overview of the learning process for BoW (top right) and BoG
(bottom right). The construction of the visual vocabulary (left) is shared by

BoW and BoG.

are more than 100, 000 SIFT descriptors, we randomly select 100, 000 of them
according to a uniform distribution. At the end of the clustering process, the
visual vocabulary V contains the k SIFT descriptors which are the centroids of
the k clusters.

The value of k has a strong impact on the results, and the value which
gives the best results both depends on the dataset and on the classification
process (BoW or BoG). Hence, we report results with the following set of values:
k ∈ {100, 500, 1000, 2000, 4000}.

Construction of a BoW-based Classifier. For each image i ∈ L of the
learning set, we first extract a patch of 16 × 16 pixels every s pixels, with
s = 8, and compute the corresponding SIFT descriptors in 128 dimensions, to
obtain a collection Ci of SIFT descriptors. Then, we describe i by an histogram
hBoW
i in k dimensions, such that for each j ∈ [1, k], the jth value of hBoW

i

is the number of SIFT descriptors of Ci that belong to the jth cluster, i.e.,

6.3. Experimental setup 89

hBoW
i [j] = |{s ∈ Ci : ∀l ∈ [1, k], d(s, Vj) ≤ d(s, Vl)}| where Vj is the jth SIFT

descriptor in the visual vocabulary V , and d is the squared euclidean distance.
All hBoW

i histograms are normalized to obtain real values ranging between
0 and 1: for each dimension j ∈ [1, k] and each image i ∈ L, hBoW

i [j] is replaced
with hBoW

i [j]−minl∈L hBoW
l [j]

maxl∈L hBoW
l [j]−minl∈L hBoW

l [j]
.

Finally, normalized histograms are used to train an SVM classifier. We have
used the SVM implementation of Libsvm [Chang et al. 2011] with the intersection
kernel presented in [Odone et al. 2005] as it is reported to be one of the best
kernels for image classification. The value of the C parameter (corresponding
to the cost of constraint violations) is optimized by 5-fold cross-validation on
the learning set, for all powers of 2 ranging between 2−10 and 210

Construction of a BoG-based Classifier. For each image i ∈ L of the
learning set, we build a 2D grid with holes Gi as described in Section 6.2.1.
Then, for each class, we use i-GriMA to mine frequent patterns in the grids
associated with images of this class. The frequency threshold parameter σ has
a strong impact on the results: when σ is set to very high values, such as 95%,
the number of frequent patterns may not be large enough to allow SVM to
learn a good model; when σ is set to very low values, such as 5%, the number
of frequent patterns is usually so huge that neither the mining process nor the
learning process can be completed within a reasonable amount of time. Hence,
we report results with different values for σ.

Given the set P of all frequent patterns, in all classes, we build a frequency
histogram hBoG

i in |P | dimensions such that the jth value of hBoG
i is the num-

ber of occurrences of the jth pattern of P in Gi, divided by the number of
automorphisms of the pattern.

Like for the BoW-based classification, hBoG
i histograms are normalised to

obtain real values ranging between 0 and 1: for each dimension j ∈ [1, |P |] and
each image i ∈ L, hBoG

i [j] is replaced with hBoG
i [j]−minl∈L hBoG

l [j]

maxl∈L hBoG
l [j]−minl∈L hBoG

l [j]
.

Finally, normalised histograms are used to train an SVM classifier, and we
consider the same process as for the BoW-based classifier.

6.3.3 Overview of the classification process

Figure 6.9 gives an overview of the process used to classify a test image with
BoW- and BoG-based classifiers. In both cases, we use the visual vocabulary
V built during the learning process.

BoW-based classification. Given an image i ∈ T of the testing set and the
visual vocabulary V , we build a normalized histogram hBoW

i as described in the

90 Chapter 6. Application of GriMA to Image Classification

BoW-based classification

BoG-based classification

Testing image
i ∈ T

k visual
words V

Build BoW
histograms hBoW

i Classification

BoW-based
classifier

Class of i

Build
2D grids 2D grids Build BoG

histograms

Frequent grid
patterns P

hBoG
i Classification

BoG-based
classifier

Class of i

Figure 6.9 – Overview of the testing process for BoW (top) and Bog
(bottom).

previous section. The only difference is during the normalization step. Indeed,
it may happen that a value in hBoW

i , before normalization, is greater than the
maximal value for all histograms associated with images of the learning set. In
this case, the normalized value is set to 1. This normalized histogram hBoW

i is
given as input to the BoW-based classifier which returns in output the predicted
class for i.

BoG-based classification. Given an image i ∈ T of the testing set and the
visual vocabulary V , we build a normalized histogram hBoG

i as described in the
previous section. Like for BoW-based classification, the only difference is in
the normalization step, and values greater than 1 are set to 1. This normalized
histogram hBoG

i is given as input to the BoG-based classifier which returns in
output the predicted class for i.

6.4 Efficiency analysis

Let us first evaluate scale-up properties of GriMA, and compare it with gSpan
and Plagram. For this first experiment, we consider the Flowers dataset. We
consider the 2D grids computed with a visual vocabulary that contains k = 100

6.4. Efficiency analysis 91

 10

 100

 1000

 10000

 60 65 70 75 80 85 90 95 100

N
u
m

b
e
r

o
f

p
a
tt

e
rn

s
fo

u
n
d

Relative minimum threshold (in %)

Plagram
gSpan
GriMA

node-induced-GriMA
 0.1

 1

 10

 100

 1000

 60 65 70 75 80 85 90 95 100

T
im

e
 (

s)

Relative minimum threshold (in %)

Plagram
gSpan
GriMA

node-induced-GriMA

Figure 6.10 – Number of frequent patterns (left) and time to compute all
frequent patterns (right) with respect to different frequency threshold values
of σ (average for all classes of Flowers), for gSpan, Plagram, GriMA and

i-GriMA. Time is limited to 1 hour per class.

words (i.e., the number of different vertex labels is 100), and with the parameter
s (that defines the number of pixels between two vertices) set to 4. Therefore,
for each class of the dataset, we have 80 2D grids that have 17, 963 vertices on
average (31, 388 for the largest grid, and 13, 689 for the smallest one).

Figure 6.10 compares GriMA, i-GriMA, gSpan and Plagram and re-
ports both the CPU time needed to mine frequent patterns, and the number of
mined patterns, for different values of the frequency threshold σ ranging from
100% to 65% by steps of 5%. Each class is mined separately, and we report av-
erage results for the 17 classes. We set a timeout of 1 hour, i.e., if an algorithm
needs more than one hour to mine at least one class of the dataset, then we
report a time-out for this algorithm. This occurs when σ ≤ 85% for Plagram
and gSpan, when σ ≤ 70% for GriMA, and when σ ≤ 60% for i-GriMA. In
this case, we do not display the number of mined patterns with this algorithm.

Note that, as explained in Section 3.3.3, the face-based expansion strategy of
Plagram does not allow it to find patterns with no face. To allow Plagram
to mine the same patterns as its competitors, each vertex of the original grid
graph is replaced by a four-vertex face (as illustrated in Figure 5.1). This way,
each frequent subgrid in the original grid is found by Plagram in the expanded
grid. However, some patterns found by Plagram do not correspond to patterns
in the original grid, e.g., faces in the expanded grid which correspond to edges
without their end vertices in the original grid. For this reason, the number of
patterns that are mined by Plagram and its computation time are higher than
the ones reported for its competitors.

gSpan does not consider edge angles when mining subgraphs, and two iso-
morphic subgraphs may have different edge angles so that they do not corre-
spond to isomorphic subgrids, as illustrated in Figure 3.6. Therefore, gSpan
and GriMA compute different sets of frequent patterns. However, Figure 6.10
shows us that the number of patterns is rather similar (slightly higher for gSpan

92 Chapter 6. Application of GriMA to Image Classification

Table 6.2 – Classification results. Each line reports results on the three
datasets for a different number of visual words k: classification rates

obtained with BoW and BoG, followed by the frequency threshold σ used
for BoG (i.e., the largest value that allows i-GriMA to mine at least 4000
patterns) and the number #pat of frequent patterns extracted by i-GriMA

with this value of σ.

K 15 Scenes Flowers Caltech-26
BoW BoG #pat. σ BoW BoG #pat. σ BoW BoG #pat. σ

100 70.7% 70.0% 4,190 60% 48.0% 63.3% 5,284 80% 71.7% 73.7% 6,473 80%
500 73.7% 72.0% 4,027 40% 59.6% 63.9% 4,377 55% 76.3% 75.4% 4,240 60%
1000 73.8% 73.1% 4,877 30% 63.7% 64.6% 4,545 45% 77.3% 76.9% 6,044 45%
2000 73.2% 73.8% 6,128 20% 67.5% 66.9% 4,640 35% 77.0% 77.2% 4,502 40%
4000 74.2% 75.0% 4,218 20% 66.9% 67.0% 5,822 25% 77.2% 75.7% 16,345 35%

than for GriMA). GriMA clearly scales better than gSpan: it is able to com-
pute all frequent patterns within one hour per class for values of σ down to
75%, whereas gSpan has time-outs when σ ≤ 85%. Finally, the node-induced
version of GriMA, i-GriMA, scales better than GriMA, as explained in Sec-
tion 5.6, and it is able to find all frequent patterns in less than 100s on average
for each class when σ = 65% whereas GriMA has not completed its execution
after 3600s for at least one class.

6.5 Accuracy results

Global accuracy results. We report in Table 6.2 the results obtained for
our three datasets with different values for the number k of visual words. As
pointed out in the previous section, the value of the frequency threshold σ has
a strong impact on the number of mined patterns, and this number of mined
patterns also depends on the size k of the vocabulary: when k is small, many
vertices share the same labels, and therefore the number of frequent patterns
is higher. First experiments have shown us that better classification results
are obtained when the number of mined patterns (which corresponds to the
dimension of the vectors given as input to SVM) is close to 4000. Therefore,
we automatically set the value of σ (for each dataset and each value of k) as
follows: starting from σ = 100%, we progressively decrease σ, by steps of 5, and
mine frequent patterns with i-GriMA for each value of σ until the number of
mined patterns becomes greater than 4000. We report in Table 6.2 the largest
value of σ for which the number of mined patterns is greater than 4000, together
with the actual number of mined patterns for this value of σ. As expected, we
need to lower the value of σ to obtain at least 4000 patterns when the number
of visual words increases: When k = 100, σ is set to 60%, 80%, and 80% for

6.5. Accuracy results 93

BoW BoG
75% 70% 65% 60% 55% 50% 45% 40% 35% 30% 25% 20%

suburb 99.1 99.1 99.1 99.1 99.1 99.2 99.2 99.2 99.2 99.3 99.3 99.3 99.3
coast 97.4 97.4 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.2 97.1 97.2
forest 98.8 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.9 98.8 98.7

highway 97.5 97.7 97.7 97.6 97.7 97.6 97.5 97.5 97.4 97.3 97.3 97.2 97.1
moutain 97.7 97.6 97.6 97.6 97.7 97.6 97.6 97.5 97.5 97.5 97.5 97.4 97.3
street 97.8 97.9 97.8 97.8 97.7 97.7 97.8 97.7 97.7 97.5 97.3 97.1 96.8

industrial 94.6 94.7 94.9 94.8 95.0 95.1 95.1 95.1 95.2 95.3 95.6 95.4 95.4

Table 6.3 – Classification rates of binary SVMs for 7 classes of the 15-scenes
dataset with a vocabulary of k = 1000 visual words and a threshold

σ ∈ [75%, 20%]. For each class, we highlight in bold BoG results that are
better than BOW, and in green (resp. red) BoG results that are

significantly better (resp. worse) than BOW. For the other 8 classes, BOW
and BoG are never significantly different.

15 scenes, Flowers, and Caltech-26, respectively, whereas when k = 4000, σ is
decreased to 20%, 25%, and 35%, respectively.

We provide a Student two-tailed t-test (with p-value set to 0.05) to statis-
tically compare classification rates of BoW and BoG for each dataset: results
in green (resp. red) are statistically better (resp. worse). On 15-Scenes, the
use of structural information statistically improves accuracy only for k = 4000,
but this also gives the best accuracy results. On Flowers on the contrary, BoG
greatly improves the results for low numbers of visual words (k ≤ 500) but it
is not statistically better (nor worse) for higher numbers (k ≥ 1000) where the
classification rate is the best (k = 4000). For Caltech-26, BoG slightly improves
the results when k = 100, and it is not significantly different for higher values
of k. Overall, those results show that adding structural information does not
harm and sometimes improves the representation of images and that our grid
mining algorithm can be used in a real-life context.

Binary classification results. Table 6.3 provides an insight into each class
separately for the 15-scenes dataset (similar results were observed for the two
other datasets). Only the 7 classes with statistically significant differences are
shown in the table.

Note that these classification rates are not comparable with the ones of Ta-
ble 6.2, where we report n-ary classification results: Table 6.3 reports binary
classification results, i.e., for each class C, we report the percentage of images
of the whole dataset which are well classified with respect to the two classes
“∈ C" and “ 6∈ C". We can see that some classes really benefit from the use of
structured patterns for almost all frequency thresholds (e.g., industrial, coast,
suburb, forest) whereas for some classes, using unstructured information gives
better results (e.g., street or moutain). This is due to the fact that for some

94 Chapter 6. Application of GriMA to Image Classification

classes, the structure is too similar from this class to another to use it to dis-
criminate classes.

6.6 Discussion

In this chapter, we have described a first application of GriMA to mine frequent
patterns in 2D grids that represent images. Our first goal was to evaluate scale-
up properties of GriMA, and to show that it may be used to efficiently mine
frequent patterns within real-world data. Experimental results have shown us
that GriMA scales better than gSpan and Plagram, and that the node-
induced variant of GriMA, i-GriMA, scales even better.

Our second goal was to evaluate the interest of integrating structural in-
formation, by means of frequent grid patterns, for image classification. Experi-
ments on three datasets have shown us that these patterns may improve classifi-
cation accuracies compared to an unstructured BoW-based approach. However,
these experiments do not give state-of-the-art results on image classification as
mentioned in Section 6.3. If BoW-based approaches were state-of-the-art ap-
proaches a decade ago, they are now clearly outperformed by other approaches,
such as Convolutional Neural Networks [Rastegari et al. 2016, Huang et al. 2017].
Hence, we plan to improve our approach by integrating new image descriptors.
Indeed, our grid-based model is general, and it is possible to use other descrip-
tors than SIFT descriptors, such as SURF or descriptors computed with deep
learning approaches, for instance. It is also possible to combine different de-
scriptors: each image may be represented by multiple grids, such that each grid
considers a different kind of descriptor, and GriMA may be used to extract
frequent patterns from these different grids.

Another possibility is to consider multiple step sizes between descriptors for
each image. For instance, each image may be represented by 3 grids obtained
with a step s set to 4, 8, and 16, respectively. This leads us to the idea of multi-
scale grids, and the mining process may be performed on grids at different
scales, thus allowing us to discover patterns that do not have the same scale on
different images.

Similarly to the multi-scale representation, another approach that could be
studied is the representation of image using Spatial Pyramid Matching [Lazebnik

et al. 2006]. This approach aims at partitioning images into sub-regions and rep-
resenting them by a combination of BoW-based histograms of each sub-regions.
This approach could be extended using our BoG-based method in order to add
grid-based structural information that could benefit to image classification.

6.6. Discussion 95

Finally, all these proposed improvements could lead to a huge number of pat-
terns. Hence, it could be interesting to select a smaller number of relevant pat-
terns using post-processing techniques such as those described in Section 3.1.2.

97

Chapter 7

Application of GriMA to Cellular
Automata Analysis

Contents
7.1 Background on Cellular Automata 98

7.2 Experimental Setup 101

7.2.1 Dataset construction 101

7.2.2 Representation of Game of Life initial states by his-
tograms of frequent patterns 103

7.2.3 Overview of the learning process 104

7.2.4 Overview of the classification process 105

7.3 Efficiency analysis . 105

7.3.1 Mining efficiency . 105

7.3.2 Counting the number of occurrences in grids 107

7.4 Accuracy results . 108

7.5 Discussion . 111

In the previous chapter, we have presented a first application of GriMA to
image classification, where frequent patterns in 2D grids are used to characterize
images. In this chapter, we describe a second application of GriMA to cellular
automata analysis. A first goal is to study scale-up properties of GriMA for
extracting frequent patterns from large sets of 2D + t grids that represent the
temporal evolution of cellular automata. A second goal is to study the interest
of characterizing cellular automata by means of frequent 2D + t patterns for
predicting their outcomes.

In Section 7.1, we briefly introduce cellular automata, with a specific fo-
cus on Conway’s Game of life which is the cellular automata considered in our
experiments. In Section 7.2, we describe the datasets considered in our exper-
iments, and introduce our experimental setup for predicting the outcomes of

98 Chapter 7. Application of GriMA to Cellular Automata Analysis

cellular automata. In Section 7.3, we study scale-up properties of GriMA and
compare it with gSpan for mining and with a subgraph isomorphism algorithm
for enumerating pattern occurrences. Finally, in Section 7.4 we present accuracy
results of our approach to predict cellular automata outcomes.

7.1 Background on Cellular Automata

Cellular Automata (CA) are discrete models that are often used to model the
temporal evolution of complex systems such as, for example, ecosystems [Wolfram

1984, Wootton 2001, Breckling et al. 2011]. Indeed, biodiversity of ecosystems is
increasingly recognized as an important element of global change. CA-based
models are used to understand, predict and control spatio-temporal spread of
species which is a key issue to preserve biodiversity [Marco et al. 2002].

More formally, a CA is a regular grid of cells. This grid defines a neighbor-
hood relation between cells, such that each cell has a finite number of neighbor
cells. Initially, each cell has some given state. Then, cell states evolve through
time: at each time step, the new state of each cell is computed by using some
given transition rule. Usually, the same transition rule is used for all cells, and
it computes the new state of a cell given its current state as well as the states
of its neighbor cells.

When executing a CA from a given initial state, one may observe the emer-
gence of spatio-temporal patterns, and these patterns are characteristic of dif-
ferent outcomes. In the context of CA that model ecosystems, for example,
[Wolfram 1984] distinguishes four possible outcomes: (1) development of a homo-
geneous fixed pattern, (2) development of a periodic pattern, (3) development
of a chaotic pattern, and (4) development of patterns composed of homogeneous
regions and regions containing complex localized structures.

In this chapter, we study the scale-up properties of GriMA and assess
the relevance of the mined patterns to predict outcomes of one of the most
famous CA which is the Game of Life [Conway 1970]. In this CA, grids are
in two dimensions, and are usually toric. Hence, if a grid has n × m cells,
then each cell at coordinates (x, y) ∈ [0, n − 1] × [0,m − 1] has exactly eight
neighbors: two horizontally, at coordinates ((x − 1)%n, y) and ((x + 1)%n, y),
two vertically, at coordinates (x, (y − 1)%m) and (x, (y + 1)%m), and four
diagonally, at coordinates ((x − 1)%n, (y − 1)%m), ((x − 1)%n, (y + 1)%m),
((x + 1)%n, (y − 1)%m), and ((x + 1)%n, (y + 1)%m). There are two possible
cell states which are alive and dead. Initially (at time t = 0), each cell is either
alive or dead. The state at time t + 1 of a cell depends on its state and on

7.1. Background on Cellular Automata 99

+

+ +

+ +

0 1 2 3
0

1

2

3

4

t = 0

+ +

+

+ +

0 1 2 3
0

1

2

3

4

t = 1

+

+

+

0 1 2 3
0

1

2

3

4

t = 2

+ +

0 1 2 3
0

1

2

3

4

t = 3

0 1 2 3
0

1

2

3

4

t = 4

Figure 7.1 – Example of initial state of a game of life of size 4× 5 (t=0),
and its next four states (t=1 to t=4). Dead cells are represented by small
gray circles and living cells are represented by large black circles. Grids are

toric, though we do not represent edges that connect every vertex at
coordinates (0, j) (resp. (i, 0)) with vertex at coordinates (3, j) (resp. (i, 4)).

the state of its 8 neighbors at time t. It is computed by applying the following
rules:

1. an alive cell with less than two alive neighbors at time t becomes dead at
time t+ 1, as if caused by underpopulation;

2. an alive cell with more than three alive neighbors at time t becomes dead
at time t+ 1, as if caused by overcrowding;

3. an alive cell with two or three alive neighbors at time t stays alive at time
t+ 1;

4. a dead cell with exactly three alive neighbors at time t becomes alive at
time t+ 1;

5. a dead cell with a number of alive neighbors different from three at time
t stays dead at time t+ 1.

Figure 7.1 displays an example of initial state, and its next four states ob-
tained when applying the rules of the Game of Life. For example, at time t = 0,
the cell on (1, 1) is dead and has exactly three living neighbors, at coordinates
(2, 1), (2, 2), and (1, 2), so that it becomes dead at time t = 1.

Different outcomes may be observed for a Game of Life CA. Examples of
outcomes are:

• Dead outcome, where all cells are dead at some time step t. In this case,
all further states, at any time step t′ > t will be dead. This is the case,
for example, for the initial state displayed in Figure 7.1: all cells are dead
at any time step t ≥ 5.

• Stable outcome, where at some time step t the grid state becomes stable,
i.e., the state of each cell at time t′ > t is the same as its state at time t

100 Chapter 7. Application of GriMA to Cellular Automata Analysis

+ +

+ +

0 1 2 3 4 5
0

1

2

3

t = 0

+ +

+ +

0 1 2 3 4 5
0

1

2

3

t = 1

+ +

+ +

0 1 2 3 4 5
0

1

2

3

t = 2

(a) Example of initial state with stable outcome: states at all time steps t′ ≥ 1 are
all equal.

+

+

+

0 1 2 3 4
0

1

2

3

4

t = 0

+ + +

0 1 2 3 4
0

1

2

3

4

t = 1

+

+

+

0 1 2 3 4
0

1

2

3

4

t = 2

(b) Example of initial state with periodic outcome of period p = 2: the state at time
t = 0 is equal to the state at time t = 2, and different from the state at time t = 1.

Figure 7.2 – Examples of initial states with stable and periodic outcomes.

(and there is at least one cell which is alive, to distinguish this outcome
from the dead outcome). This is the case, for example, for the initial state
displayed in Figure 7.2(a).

• Periodic outcome, where there exist two time steps t1 and t2 = t1 +p with
p > 1 such that the grid state at time t1 is the same as the grid state at
time t2 whereas for every other time step t3 such that t1 < t3 < t2, the
grid state at time t3 is different from the grid state at time t1. The integer
p > 1 is called the period. For example, Figure 7.2(b) displays an initial
state with periodic outcome of period p = 2.

The Game of Life has been shown to be Turing-complete, i.e., it has the
same computational capacity as Turing machines [Rendell 2014]. This implies
that the problem of deciding whether a given initial state leads to some given
final state (such as, for example, a state where all cells are dead) is undecidable.

The Game of Life is well suited to evaluate our grid mining algorithm
GriMA. Indeed, the successive states of a grid may be modeled with 2D + t

grids in a straightforward way. Mining these grids is challenging, as they may be
very large. Furthermore, frequent patterns may be useful to characterize out-
comes, and our goal is to evaluate their interest for predicting final outcomes
given the first states.

7.2. Experimental Setup 101

7.2 Experimental Setup

The goal of the experiments reported in this chapter is to predict the outcome
at time t = 1000, given the first k states of a Game of Life, from time t = 1

to time t = k. In this section, we first describe the datasets considered in our
experiments. Then, we show how to represent the first k states of a Game of
Life by means of frequent 2D + t grid pattern histograms. Finally, we describe
the learning and the classification processes used to predict outcomes.

7.2.1 Dataset construction

We consider four sizes of n × n grids, with n ∈ {20, 30, 40, 50}. For each size,
we have generated four sets of initial states, corresponding to four different
outcomes at time t = 1000: (D) Dead, i.e., all cells are dead at time t = 1000;
(S) Stable, i.e., the state at time t = 1000 is equal to the state at time t = 999,
and at least one cell is alive; (P) Periodic with a period p = 2, i.e., the state at
time t = 1000 is equal to the state at time t = 998, but different from the state
at time t = 999; and (O) Other, i.e., the states at times t = 1000, t = 999, and
t = 998 are all different.

Each initial state is generated by randomly and independently choosing the
initial state (dead or alive) of each cell with respect to a probability pn. We
have empirically chosen pn in such a way that the outcome at time t = 1000 is
either D or one of the three other possible outcomes with equal probabilities:
this probability pn is 74%, 78%, 80%, and 81% for n = 20, 30, 40, and 50,
respectively. Besides, to avoid trivial predictions due to the fact that outcomes
may be reached before the kth time step, we only select initial states such that
there is at least one cell alive at time t = 50, and such that states at times
t = 50, t = 49 and t = 48 are all different. For each size n ∈ {20, 30, 40, 50},
and for each possible outcome X ∈ {D,S, P,O}, we have generated a set SX

n

of 1000 initial states such that the outcome at time t = 1000 is X. We note
Sn = ∪X∈{D,S,P,O}S

X
n .

Figure 7.3 displays the first four states (from t = 0 to t = 3), and the
last 3 states (from t = 998 to t = 1000), of one element of each set SX

n with
X ∈ {D,S, P,O}. The state at time t = 0 is very different from all other states,
at times t > 0: if the percentage of living cells is higher than 70% at time t = 0,
it drops down to less than 4% at time t = 1, for every grid size n, and this
percentage stays rather low for all time steps until t = 1000. Hence, the initial
states that are stored in Sn actually are states at time t = 1, instead of states
at time t = 0.

102 Chapter 7. Application of GriMA to Cellular Automata Analysis

Other Stable Periodic Dead

t = 0

t = 1

t = 2

t = 3

...
...

...
...

t = 998

t = 999

t = 1000

Figure 7.3 – Examples of grids: 4 first states and last 3 states, for each class.

We have split each set SX
n into two equal parts for Learning (LX

n) and Testing
(TX

n), and we note Ln = ∪X∈{D,S,P,O}L
X
n and Tn = ∪X∈{D,S,P,O}T

X
n .

7.2. Experimental Setup 103

7.2.2 Representation of Game of Life initial states by his-
tograms of frequent patterns

The goal of our experiments is to predict the outcome of a Game of Life at
time t = 1000 given the states from time t = 1 to time t = k. We consider
different values for the temporal horizon k ∈ {1, 2, 5, 10, 20} used for predicting
the outcome. This allows us to evaluate the interest of using spatio-temporal
patterns compared to purely spatial patterns. Hence, for each state si ∈ Sn

(with n ∈ {20, 30, 40, 50}), and for each temporal horizon k ∈ {1, 2, 5, 10, 20}
we build a 2D + t grid G(si, k) which is a temporal sequence of k 2D grids,
such that each grid is build in a straightforward way from the corresponding
state: grid vertices correspond to cells, and are labeled with either 0 (if the cell
is dead) or 1 (if the cell is alive). All edges have the same label.

Like for the image classification application, we create holes in grids to
prevent mining a huge number of uniform patterns, i.e., patterns where all
vertices have the same labels. Indeed, preliminary experiments showed us that
the number of frequent patterns is huge because all grids contain a lot of patterns
composed of dead cells only. For example, there are more than five millions of
frequent patterns in the grids associated with LO

20 when setting the time horizon
to k = 1 and the frequency threshold σ to 100% (i.e., patterns must occur in
all the grids). Hence, to reduce the number of frequent patterns, and avoid
mining useless patterns only composed of dead cells, we remove every vertex
corresponding to a dead cell and whose neighbors are all dead cells. When
mining the resulting grids with holes, the number of frequent patterns associated
with LO

20 (with k = 1 and σ = 100%) is reduced to 24.
The second step is to mine frequent patterns from 2D + t grids. As all

edges have the same label, we use i-GriMA for mining frequent patterns: this
allows to reduce the number of mined patterns and to speed-up the mining
process. The mining process is done on each class separately to avoid missing
relevant patterns relative to a single class. The set of all frequent patterns is
the union of the result of each mining process. More formally, for each size n ∈
{20, 30, 40, 50}, each temporal horizon k ∈ {1, 2, 5, 10, 20}, and each outcome
X ∈ {D,S, P,O}, we use i-GriMA to build the set PX

n,k of grid patterns that
are frequent in the database of grids D = {G(si, k) : si ∈ LX

n }. Then, we
construct the set Pn,k = ∪X∈{D,S,P,O}P

X
n,k that contains the union of all frequent

patterns mined for each class.
The last step is to build a frequency histogram for each Game of Life initial

state (that may either belong to the learning set, during the training process,
or to the testing set, during the classification process). More precisely, given
an initial state s ∈ Sn, a temporal horizon k ∈ {1, 2, 5, 10, 20}, and the set

104 Chapter 7. Application of GriMA to Cellular Automata Analysis

Pn,k of frequent patterns, we build an histogram hs which is a vector of |Pn,k|
values such that hs[j] = o/a where o is the number of occurrences of the jth
pattern Pn,k[j] in the 2D+ t grid G(s, k) associated with s, and a is the number
of automorphisms of Pn,k[j]. We divide the number of occurrences of Pn,k[j]

by its number of automorphisms because there are a occurrences of Pn,k[j] for
each subset of vertices in G(s, k) such that the subgrid induced by this subset
is isomorphic to Pn,k[j], as discussed in Section 6.2.2

7.2.3 Overview of the learning process

To train a classifier on a learning set Ln, the first step is to build a frequency
histogram hs for every initial state in Ln, as described in Section 7.2.2. We
consider two different frequency thresholds σ ∈ {50%, 100%} for the mining
process: When σ = 50% (resp. σ = 100%), a pattern is frequent if it is present
in half of the grids (resp. all the grids) of a given class. Each mining pro-
cess has been limited to 12 hours of CPU time: If it is not completed after 12
hours, we stop it and consider the subset of patterns that have been extracted
within this time limit. This subset of patterns depends on the order used by
GriMA to extend patterns. In particular, we may consider two different strate-
gies: a spatial-first strategy, where GriMA first extends patterns with spatial
edges, and a temporal-first strategy, where GriMA first extends patterns with
temporal edges. When the mining process is completed within the time limit,
the final set of output patterns is the same with the two strategies. However,
when the mining process is stopped at the time limit, before its end, the two
strategies output different subsets of patterns: the spatial-first (resp. temporal-
first) strategy outputs patterns with more spatial (resp. temporal) edges and
less temporal (resp. spatial) edges. Preliminary experiments have shown us
that better classification results are obtained with the temporal-first strategy.
Therefore, we consider this strategy during the mining process.

In some cases, the number of frequent patterns in Pn,k is huge (larger than
one million), which causes scaling issues for the learning process. Hence, when
the number of mined patterns is larger than 100000, we randomly select a subset
of 100000 patterns. We note P 100000

n,k this subset (when |Pn,k| < 100000, P 100000
n,k =

Pn,k).
We also report accuracy results obtained when considering a smaller sub-

set of patterns which are selected in P 100000
n,k by post-processing. This post-

processing selection is performed using the relevance score and the greedy se-
lection algorithm presented in [Fernando et al. 2014] and described in Section 3.1.2.
We report results obtained with 1000 and 4000 selected patterns, respectively,
and we note P 1000

n,k and P 4000
n,k the resulting subsets of selected patterns.

7.3. Efficiency analysis 105

Once an histogram hs has been built for each initial state s ∈ Ln, the second
step is to normalize all these histograms to obtain real values ranging between
0 and 1: for each dimension j ∈ [1, |P l

n,k|] and each initial state s ∈ Ln, hs[j] is
replaced with hs[j]−mins′∈Ln

hs′ [j]

maxs′∈Ln
hs′ [j]−mins′∈Ln

hs′ [j]
.

Finally, these normalized histograms are used to train a binary SVM clas-
sifier κX for each class X ∈ {D,S, P,O}, the same way we did for images. We
have used the SVM implementation of LibSVM [Chang et al. 2011] with the in-
tersection kernel presented in [Odone et al. 2005]. The value of the C parameter
(corresponding to the cost of the constraint violation) is optimized by 5-fold
cross-validation on the learning set, for all powers of 2 ranging between 2−10 to
210.

7.2.4 Overview of the classification process

The accuracy of the trained classifier is evaluated on the testing set of initial
states Tn. Given the set of frequent patterns P l

n,k mined from the learning set,
we build a frequency histogram hs for every initial state s ∈ Tn, by counting
occurrences of P l

n,k in the 2D + t grid associated with s. This histogram is
normalized, as described in Section 7.2.3, except that if a normalized value is
smaller than 0 (resp. larger than 1), then it is set to 0 (resp. 1).

This normalized histogram is given as input to each binary SVM classifier κX

with X ∈ {D,S, P,O}. The predicted class corresponds to the binary classifier
with maximal output probability.

7.3 Efficiency analysis

7.3.1 Mining efficiency

We cannot experimentally compare GriMA with FreqGeo, as there is no
known implementation of FreqGeo. Also, we do not compare GriMA with
Plagram because Plagram can only mine patterns composed of faces. If it
is possible to transform each grid vertex into a four-node face, as explained in
Section 5.1, experimental results reported in the previous chapter show us that
Plagram does not scale well compared to GriMA.

Hence, in this section we experimentally compare GriMA with gSpan to
assess the advantages of using an ad hoc algorithm on 2D + t grids. To allow
gSpan to discriminate spatial and temporal edges, we label every spatial (resp.
temporal) edge with label 0 (resp. 1). However, gSpan mines general graphs
and does not consider the angle information between spatial edges while GriMA
does. Also, grid isomorphism does not allow rotations along spatial axes. This

106 Chapter 7. Application of GriMA to Cellular Automata Analysis

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100

N
u
m

b
e
r

o
f

m
in

e
d
 p

a
tt

e
rn

s

Frequency threshold (%)

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

M
in

in
g
 C

P
U

 t
im

e

Frequency threshold (%)

k=1 k=2 k=5 k=10 k=20 gSpan GriMA i-GriMA

Figure 7.4 – Number of mined patterns (left) and CPU time to mine
patterns (right) with respect to the frequency threshold σ for different
temporal horizons k ∈ {1, 2, 5, 10, 20} and three different algorithms
(gSpan, GriMA, and i-GriMA). The size of the mined grids is

20× 20× k, and there are 100 grids.

implies that a grid G1 composed of two nodes with different labels, and a single
temporal edge between these two nodes, is not grid-isomorphic to another grid
G2 obtained by swapping the two node labels. If gSpan were able to handle
directed graphs, we could prevent gSpan from considering that G1 and G2

are isomorphic by directing temporal edges. However, gSpan considers non
directed graphs and, therefore, it considers that G1 and G2 are isomorphic.
As a consequence, for every grid G, the number of different patterns that are
subgrid-isomorphic to G is greater than or equal to the number of different
patterns that are subgraph-isomorphic to G. As a counterpart, given a pattern
P , the number of subgrids of G that are grid-isomorphic to P is lower than or
equal to the number of subgraphs of G that are isomorphic to P .

Figure 7.4 compares the number of mined patterns and the CPU time of
the mining process of gSpan, GriMA and i-GriMA, for different temporal
horizons k ∈ {1, 2, 5, 10, 20}, when changing the value of the frequency threshold
σ from 2% to 100%. In all cases, the mining process has been performed on 100
grids built from the 100 first initial states of LO

20: These grids have 20× 20× k
nodes. The time limit has been set to 12 hours. When the mining process is
not completed within this time limit, we do not display the number of mined
patterns.

When k = 1, the number of mined patterns is comparable for gSpan,
GriMA and i-GriMA whereas the time is up to 10 times as low for GriMA
and i-GriMA. When k increases, these differences increase. i-GriMA mines
less patterns and has the lowest computation times in all cases. All three al-
gorithms cannot reach the lowest support threshold when k > 1. For k = 2

7.3. Efficiency analysis 107

(resp. k = 5), gSpan cannot complete the mining process within the time limit
when the frequency threshold σ is lower than 80 (resp. 100). For k ∈ {10, 20},
gSpan cannot complete the mining process within the time limit for any fre-
quency threshold. GriMA scales better than gSpan, and it is able to complete
the mining process within the time limit for all frequency thresholds when k = 1,
and down to 25% (resp. 85% and 100%) when k = 2 (resp. k = 5 and k = 10).

Finally, i-GriMA mines less patterns than GriMA and scales even better.
It is the only algorithm able to complete the mining process within the time
limit when k = 20 (for σ = 100%).

This shows that our temporal grid mining algorithm is efficient and can
tackle real life problems that cannot be tackled by a general graph mining
algorithm.

7.3.2 Counting the number of occurrences in grids

We also conduct experiments to study scale-up properties of the algorithm that
counts the number of occurrences of a pattern in a grid, as described in Sec-
tion 5.7. We compare this algorithm, dedicated to 2D+t grids, with LAD [Solnon

2010]. LAD is a state-of-the-art algorithm for solving the subgraph isomorphism
problem, and it may be used to count the number of occurrences of a pattern
graph in a target graph. Grids are transformed into graphs in a straightforward
way. To allow LAD to discriminate spatial and temporal edges, we label every
spatial (resp. temporal) edge with label 0 (resp. 1). Also temporal edges are
directed, to prevent LAD from considering that a graph composed of two nodes
with different labels, and a single temporal edge between these two nodes, is
isomorphic to another graph obtained by swapping the two node labels. How-
ever, LAD does not consider spatial edge angles, and two grids that are not
grid-isomorphic may be graph-isomorphic if they only differ with respect to an
angle between two spatial edges. As a consequence, the number of occurrences
found by LAD is always larger than the number of occurrences found by our
algorithm.

To evaluate scale-up properties, for each grid size n ∈ {20, 30, 40, 50}, we
have selected in Pn,20 a subset of 100 different patterns that have 80 nodes,
denoted P 80

n . Then, for each size i ∈ [2, 79], we have built a set P i
n of 100

patterns that have i nodes by randomly removing one node in each pattern
of P i+1

n . Finally, for each target grid size n ∈ {20, 30, 40, 50}, each pattern
size i ∈ [2, 80], and each pattern p ∈ P i

n, we measure the CPU time spent by
our algorithm and LAD, respectively, for counting all occurrences of p in one
n× n× 20 grid.

108 Chapter 7. Application of GriMA to Cellular Automata Analysis

 0.001

 0.01

 0.1

 1

 0 20 40 60

C
P
U

 T
im

e

Number of nodes in patterns

n=20
n=30
n=40
n=50
GriMA

LAD

Figure 7.5 – Time (in seconds) spent by GriMA and LAD to enumerate all
occurrences of a pattern in a grid of size n× n× 20 with respect to the

number of nodes in the pattern (average on 100 patterns), for
n ∈ {20, 30, 40, 50}. Time is limited to 1 second.

Figure 7.5 displays these CPU times. It shows us that GriMA is much
faster than LAD, and never spends more than 0.01 second. Furthermore, the
time spent by GriMA does not increase when the size of the pattern increases.
The theoretical complexity O(e1e2), where e1 and e2 are the number of edges in
the target and pattern grids, respectively, is an upper bound that considers a
worst case where there is an occurrence of the pattern for each possible starting
edge in the target. In practice, we stop the traversal of the pattern code as soon
as a difference occurs, and this usually happens very soon in the traversal (for
example, at the fourth edge, on average, when the pattern has 70 nodes). As a
comparison, the time spent by LAD increases when the pattern increases, and
the time limit of 1 second is reached when the pattern has more than 15 nodes
when n = 40, and for all patterns when n = 50.

7.4 Accuracy results

We report accuracy results (i.e., the percentage of states for which the fore-
casted outcome is equal to the true outcome) in Table 7.1. When increasing
the temporal horizon k (i.e., the temporal size of the mined grids) from 1 to 20,
accuracy results are strongly improved: from about 43% when k = 1 to 68%

when k = 20 on the smallest grids of size 20× 20, and from 47% when k = 1 to
75% when k = 20 on the largest grids of size 50× 50. This shows the relevance
of GriMA when mining spatio-temporal patterns, compared to GriMA when
mining spatial 2D grids (i.e., when k = 1).

The number of mined patterns |Pn,k| is smaller when the frequency threshold
σ = 100% than when it is 50%. For small temporal horizons k ∈ {1, 2}, the

7.4. Accuracy results 109

Table 7.1 – Accuracy results for the classification of states in Tn. For each
size n ∈ {20, 30, 40, 50}, line |Pn,k| reports the number of frequent patterns,
and the cell is colored in red if the 12 hour time-out has been reached and
green otherwise. Lines All , 1000 , and 4000 report accuracy results with
vectors of size min(|Pn,k|, 100000), 1000, and 4000, respectively (if |Pn,k| is
lower than 1000 or 4000, results are not given for vectors of size 1000 or

4000). Each line gives results for k ∈ {1, 2, 5, 10, 20}, and with
σ ∈ {50%, 100%}.

k=1 k=2 k=5 k=10 k=20
n 50% 100% 50% 100% σ=50% 100% σ=50% σ=100% σ=50% σ=100%

20

|Pn,k| 757 24 37055 90 1110172 3938 929039 195974 766219 555785
All 43.40 34.30 48.80 43.85 56.70 57.65 62.55 63.70 67.20 67.65

1000 47.90 57.40 58.30 62.30 62.50 63.55 67.70
4000 48.85 57.90 63.55 64.45 63.60 68.05

30

|Pn,k| 696 23 35529 93 1291083 4701 1044726 295785 778995 591969
All 44.20 33.95 54.20 45.75 62.70 63.45 65.55 67.05 69.25 71.50

1000 51.75 62.30 62.90 65.50 68.75 67.65 72.00
4000 53.25 62.90 63.55 67.50 69.75 67.40 71.30

40

|Pn,k| 725 27 37674 95 1320971 5563 1114497 357265 834531 618569
All 45.05 32.45 57.45 48.60 63.10 65.35 69.25 70.05 72.40 71.90

1000 55.85 65.50 64.45 68.70 70.15 71.75 73.50
4000 57.25 66.30 65.40 69.25 71.00 72.25 74.15

50

|Pn,k| 760 29 42609 100 1325108 6964 1026214 554505 853811 639770
All 46.95 36.05 58.05 48.70 65.45 67.05 70.15 71.15 74.00 73.95

1000 54.95 66.30 65.95 69.90 71.25 72.10 74.35
4000 56.80 67.80 66.55 71.10 72.40 72.65 74.90

number of mined patterns is not large enough (smaller than 29 for k = 1

and than 100 for k = 2). In this case, the classification results obtained with
σ = 100% are much lower than those obtained with σ = 50%. However, for
larger time horizons k ∈ {5, 10, 20}, the number of mined patterns becomes
large enough for σ = 100% while it becomes so large for σ = 50% that the
mining process is never completed before reaching the timeout of 12h. In this
case, accuracy results obtained with σ = 100% are often slightly better than
those obtained with σ = 50%.

Finally, let us compare the results obtained when all patterns of Pn,k are
used for the classification (or 100000 patterns if |Pn,k| > 100000|) with the
results obtained when we only use the patterns selected by post-processing
(1000 or 4000 patterns): The difference is usually rather small, and in most
cases selecting patterns by post-processing improves results, and better results
are obtained with 4000 selected patterns than with 1000. However, the post-
processing improves the efficiency of the counting step: Even if counting all
occurrences of a pattern in a grid is done in less than 0.01 second (see Figure 7.5),
counting all occurrences of 100000 patterns becomes time-consuming, whereas
this is done in a few seconds when the number of patterns is 4000.

Confusion matrices. Tables 7.2 displays confusion matrices for each size
n ∈ {20, 30, 40, 50} with a temporal horizon k = 20, when we use 4000 patterns
selected by post-processing. These confusion matrices are quite different from

110 Chapter 7. Application of GriMA to Cellular Automata Analysis

Table 7.2 – Confusion matrices when k = 20, σ = 100%, and when using
4000 patterns.

(a) Confusion matrix when n = 20.

O S P D
O 86.0 2.0 1.4 5.6
S 2.0 73.0 19.8 11.0
P 5.4 14.0 58.4 28.6
D 6.6 11.0 20.4 54.8

(b) Confusion matrix when n = 30.

O S P D
O 71.4 3.6 2.8 4.4
S 3.4 67.6 18.6 9.4
P 4.2 16.0 68.0 8.0
D 21.0 12.8 10.6 78.2

(c) Confusion matrix when n = 40.

O S P D
O 63.8 5.2 4.0 5.8
S 3.8 69.0 11.4 6.2
P 10.4 16.2 78.4 2.6
D 22.0 9.6 6.2 85.4

(d) Confusion matrix when n = 50.

O S P D
O 59.4 6.8 6.8 7.0
S 6.0 75.2 10.8 3.8
P 12.2 8.8 78.4 2.6
D 22.4 9.2 4.0 86.6

Table 7.3 – Average and Maximum (in parenthesis) depth (D) and number
of cells (C) for all patterns of Pn,k (All) or only those selected with post
processing (1000) when mining with a frequency threshold σ = 50%.

k 1 2 5 10 20
n All 1000 All 1000 All 1000 All 1000 All 1000

20 D 0.0(0) 0.0(0) 0.9(1) 1.0(1) 2.1(4) 2.3(4) 5.7(8) 4.6(8) 10.3(17) 7.6(17)
C 6.5(11) 6.5(11) 8.5(16) 8.5(15) 14.2(29) 12.2(25) 22.6(46) 13.8(33) 31.8(83) 14.1(39)

30 D 0.0(0) 0.0(0) 0.9(1) 0.9(1) 2.2(4) 2.2(4) 5.7(9) 5.5(8) 11.1(17) 8.1(17)
C 6.4(11) 6.4(11) 8.3(16) 8.3(15) 13.8(28) 11.7(23) 23.8(46) 20.3(34) 34.0(78) 18.2(41)

40 D 0.0(0) 0.0(0) 0.9(1) 1.0(1) 2.2(4) 2.3(4) 5.9(9) 6.0(9) 11.8(18) 7.7(17)
C 6.5(11) 6.5(11) 8.5(17) 8.9(16) 14.2(29) 12.1(23) 25.7(46) 20.5(34) 41.0(83) 33.8(43)

50 D 0.0(0) 0.0(0) 0.9(1) 0.9(1) 2.2(4) 2.3(4) 6.2(9) 6.1(9) 13.8(19) 7.8(15)
C 6.5(11) 6.5(11) 8.6(17) 8.7(17) 14.2(29) 12.9(24) 25.9(46) 25.8(35) 44.1(83) 22.8(50)

a value of n to another. For example, when n = 20, classification errors mainly
come from classes Dead and Periodic, whereas when n = 50 these two classes
have the best results. Hence, we cannot really draw conclusions from these
matrices.

Pattern statistics. Table 7.3 reports some statistics about the mined pat-
terns (all patterns in Pn,k, or the 1000 ones selected by post-processing). We
report the average and maximum (in parenthesis) number of nodes of the mined
patterns as well as their depth, where the depth of a pattern P is defined by
maxu∈L tu − minu∈L tu. The number of nodes and the depth of the patterns
logically increase with k. These values tend to be smaller when considering
the subset of 1000 patterns selected by post-processing. This may come from
the fact that deep patterns are not diverse enough to be selected by the post-
processing step which in turn suggests that, when the timeout is reached, the
diversity of the mined pattern is not high enough. To further increase this di-
versity, stochastic search methods such as Monte-Carlo Tree Search [Bosc et al.

7.5. Discussion 111

2016] could be integrated in our algorithm.

7.5 Discussion

In this chapter, we have described a second application of GriMA to mine
frequent patterns in 2D + t grids that represent Conway’s Game of Life. Our
first goal was to evaluate scale-up properties of GriMA, and to show that it may
be used to mine frequent patterns within real-world 2D + t data. Like for 2D,
experimental results have shown us that GriMA scales better that gSpan and
that its node induced variant, i-GriMA, scales even better. We also conduct
series of experiments to evaluate scale-up properties of our algorithm to count
occurrences of patterns in 2D+ t grids. These experiments have shown us that
our algorithm outperforms LAD as it benefits from the grid structure.

Our second goal was to evaluate the interest of using spatio-temporal fre-
quent grid patterns to predict the outcome of a well know cellular automata,
the Conway’s Game of Life. Experimental results have shown us that we can
predict the outcome, among four different possible outcomes, at time t = 1000

given the k first states, with a classification rate close to 75%. The reliability of
the prediction increases with the temporal horizon k, thus showing the interest
of mining spatio-temporal patterns instead of purely spatial patterns.

GriMA is a complete approach which exhaustively mines all frequent pat-
terns. When the frequency threshold is low, the number of frequent patterns
may become huge, so that the mining process cannot be completed within a
reasonable amount of time. Furthermore, some frequent patterns may not be
relevant for a classification purpose, and experimental results have shown us
that we may obtain similar results (if not better) when selecting a small subset
of relevant patterns. Hence, we plan to explore the interest of using heuristic
algorithms that can directly mine a small number of relevant patterns, by using
Monte-Carlo Tree Search as proposed in [Bosc et al. 2016], for example.

Besides, GriMA should to be evaluated on other, even more challenging,
applications such as, for example, action recognition in videos represented by
2D + t grids, or the extraction of winning spatio-temporal patterns in board
games like chess or go.

Finally, we plan to extend GriMA to mine other kinds of regular structures
such as, for example, 3D + t grids, to search for spatio-temporal patterns in
dynamic 3D objects. Other types of regular structures may be studied, like
honeycomb, or any other regular polygon face-based structure.

113

Chapter 8

Conclusion

Graph mining aims at extracting patterns from graph databases. If this problem
hardly scales in the general case, there exist efficient algorithms when consider-
ing special kinds of graphs, for which there exist polynomial-time algorithms for
solving (sub)graph isomorphism problems such as, for example, plane graphs
and geometric graphs. In this thesis, we consider the graph mining problem
when graphs have a grid structure.

Summary of our contributions

We have defined grids as a special case of geometric graphs. Like for geometric
graphs, grid vertices have coordinates: 2D coordinates for 2D grids, and 2D+ t

coordinates for 2D + t grids. However, these coordinates are constrained to
take integer values, and edges can only connect vertices that are neighbors on
the grids (i.e., the distance between two vertices connected by an edge must be
equal to one). These regular grids are used to model objects in many real-life
applications such as, for example, game boards, cellular automata, or images.
Furthermore, the evolution through time of these objects may be modeled with
2D + t grids.

We have defined grid isomorphism, to decide whether two grids are equiv-
alent, and subgrid isomorphism, to decide whether a pattern grid occurs in
a target grid. These isomorphisms are invariant to translations and to some
rotations (those around the temporal axis): two patterns that have the same
structure but have been translated or rotated around the temporal axis are
considered as equivalent.

We have introduced new algorithms dedicated to grid mining:

• GriMA, an efficient algorithm for mining frequent patterns in a database
of grids. This algorithm performs a depth-first exploration of a search
space of canonical codes, like many other graph mining algorithms such
as gSpan for general graphs, Plagram for plane graphs, and FreqGeo
for geometric graphs. This canonical code is used to uniquely characterize

114 Chapter 8. Conclusion

isomorphic patterns, and it is computed in polynomial time by exploit-
ing the grid topology. Hence, the time complexity of GriMA is O(knp3)

per frequent and canonical pattern P , where k is the number of grids in
the database, n the number of edges of the largest grid in the database,
and p the number of edges in the pattern P . This is a significant im-
provement over gSpan (which has an exponential time complexity per
pattern), FreqGeo (which has a complexity of O(k2n4 · lnn) per pat-
tern), and Plagram (which has a complexity of O(kn2p3) per pattern).
GriMA has been implemented with sparse sets, so that occurrence lists
are restored in constant time when backtracking during the depth-first
exploration of the canonical code search space.

• i-GriMA, a variant of GriMA dedicated to the case where all grids of
the database are complete (i.e., if the distance between two vertices is one,
then they are connected by an edge), and all edges have the same label.
In this case, if a pattern P is frequent, then every pattern obtained by
adding edges to P is also frequent. Hence, i-GriMA only mines complete
frequent patterns: this relaxed closure allows us to significantly reduce
the number of mined patterns and speed-up the mining process.

• an efficient algorithm for enumerating all occurrences of a pattern P in
a grid G in O(np) where n and p are the number of edges in G and P ,
respectively.

We have evaluated scale-up properties of our algorithms, and the interest of
exploiting grid structures for characterizing objects, on two applications: image
classification, and cellular automata analysis.

For the image classification application, we have introduced a new way of
representing images by means of frequency histograms of 2D grid patterns,
called Bag-of-Grids. We have shown that GriMA and i-GriMA are more
efficient than other existing graph mining algorithms. In particular, i-GriMA is
able to find all frequent patterns in less than one hour in a database composed of
80 2D grids that have 18, 000 vertices on average when the frequency threshold σ
is set to 65% whereas gSpan and Plagram cannot complete the mining process
within one hour when σ is smaller than or equal to 85%. Also, we have shown
the interest of exploiting a grid structure to represent images, compared to a
classical unstructured representation based on bags of visual words. However,
as discussed in Section 6.6, these results are not competitive with state-of-the-
art approaches for image classification, that are usually based on convolutional
neural networks.

Chapter 8. Conclusion 115

For the cellular automata analysis application, we have used 2D+ t grids to
model the temporal evolution of well-known cellular automata: Conway’s Game
of life. Like for the image classification application, we have studied scale-up
properties of our algorithms, and we have shown that our mining algorithms
scale better that gSpan on 2D + t grids. Also, we have shown the interest of
using spatio-temporal frequent patterns to predict the outcome of a Game-of-
Life CA, given its k first initial states. In particular, we have shown that the
percentage of well-classified outcomes reaches 58% (resp. 67%, 72%, and 75%)
when k = 2 (resp. 5, 10, and 20), when the initial states are composed of 50×50

cells, and when considering four different outcomes.
These two different applications showed that grid mining may be useful to

retrieve structural information and may be applied on real world datasets.

Future work

Our grid mining algorithm is complete and outputs all frequent patterns. In
many cases, the number of frequent patterns is huge and, therefore, the mining
process cannot be completed within a reasonable amount of time. This moti-
vated us to introduce i-GriMA, which reduces the number of patterns by only
considering complete grid patterns, and our experiments (on images and cellu-
lar automata) have shown that i-GriMA actually scales better than GriMA.
However, in many cases the number of frequent patterns found by i-GriMA is
huge (e.g., larger than one million when mining game-of-life 2D + t grids). In
this case, we have shown that we may select a small number of relevant pat-
terns, using a post-processing selection procedure, and that we obtain similar
classification results (if not better) when only using these selected patterns, in-
stead of all mined patterns. Hence, we plan to explore approaches for reducing
the number of mined patterns. A first possibility to achieve this goal is to use
an incomplete heuristic algorithm, able to randomly sample a subset of rele-
vant patterns within the set of all frequent patterns, by using Monte-Carlo Tree
Search approaches as proposed in [Bosc et al. 2016], for example. Another possi-
bility could be to incrementally add new constraints during the mining process,
to forbid mining patterns similar to already mined patterns: pushing these con-
straints during the mining process (instead of using them a posteriori to select
relevant patterns), could allow us to find more diversified patterns quicker.

Our grid mining algorithms have been designed for tackling 2D + t grids
such that each node has at most 6 neighbors (4 spatial neighbors, and 2 tem-
poral neighbors, all at distance one from the node). We could easily extend
it to tackle other kinds of regular grids. First, we could consider other spatial
neighborhoods. For example, each node could have k spatial neighbors, evenly

116 Chapter 8. Conclusion

distributed around the node. Second, we may also consider larger dimensions
such as, for example, 3D + t grids. These grids could be used to model the
evolution through time of 3D objects modeled with voxels. The extension of
GriMA and i-GriMA to these new kinds of grids is rather straightforward: we
mainly have to change the angle information in edge codes.

From the applicative point of view, if the two applications studied in this
thesis have shown that frequent grid patterns may be used to characterize im-
ages and CAs, there is still room for improvements. In particular, as discussed in
Section 6.6, image classification results obtained with BoGs are far from state-
of-the-art results. Hence, we plan to investigate the interest of using other kinds
of labels instead of visual words computed by clustering SIFT descriptors. In
particular, we could use labels learned with convolutional neural networks.

CAs are widely used to model ecosystems. In this case, a key point for
preserving biodiversity is to understand the mechanisms that lead to the loss
of some species that should be preserved or, conversely, the spread of invasive
species that should be eradicated. Hence, it could be interesting to study the
interest of using our grid mining algorithms to identify spatio-temporal patterns
that lead to these outcomes.

Finally, many games are played on boards that have regular grid structures
such as, for example, chess, draughts, or go. In this case, a game may be
modeled by a 2D+t grid in a straightforward way. Hence, it could be interesting
to evaluate the interest of using GriMA to identify winning spatio-temporal
patterns.

117

Bibliography

Acosta-Mendoza, N., A. G. Alonso, and J. E. Medina-Pagola (2012). “Frequent
approximate subgraphs as features for graph-based image classification.”
Knowl.-Based Syst. 27, pp. 381–392 (cit. on p. 45).

Agrawal, R. and R. Srikant (1994). “Fast Algorithms for Mining Association
Rules in Large Databases.” In: VLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, September 12-15, 1994, Santiago
de Chile, Chile. Ed. by J. B. Bocca, M. Jarke, and C. Zaniolo. Morgan
Kaufmann, pp. 487–499 (cit. on pp. 24, 34).

Arimura, H., T. Uno, and S. Shimozono (2007). “Time and Space Efficient Dis-
covery of Maximal Geometric Graphs.” In: Discovery Science, 10th Interna-
tional Conference, DS 2007, Sendai, Japan, October 1-4, 2007, Proceedings.
Ed. by V. Corruble, M. Takeda, and E. Suzuki. Vol. 4755. Lecture Notes in
Computer Science. Springer, pp. 42–55 (cit. on pp. 1, 5, 14, 15, 34, 36, 40,
73).

Audemard, G., C. Lecoutre, M. S. Modeliar, G. Goncalves, and D. C. Porumbel
(2014). “Scoring-Based Neighborhood Dominance for the Subgraph Isomor-
phism Problem.” In: Principles and Practice of Constraint Programming
- 20th International Conference, CP 2014, Lyon, France, September 8-12,
2014. Proceedings. Ed. by B. O’Sullivan. Vol. 8656. Lecture Notes in Com-
puter Science. Springer, pp. 125–141 (cit. on p. 13).

Babai, L. (2016). “Graph isomorphism in quasipolynomial time [extended ab-
stract].” In: Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016. Ed. by D. Wichs and Y. Mansour. ACM, pp. 684–697 (cit. on p. 12).

Bendimerad, A., M. Plantevit, and C. Robardet (2017). “Mining exceptional
closed patterns in attributed graphs.” Knowledge and Information Systems
(cit. on p. 27).

Bie, T. D. (2011). “Maximum entropy models and subjective interestingness: an
application to tiles in binary databases.” Data Min. Knowl. Discov. 23(3),
pp. 407–446 (cit. on p. 28).

118 BIBLIOGRAPHY

Bie, T. D., K. Kontonasios, and E. Spyropoulou (2010). “A framework for mining
interesting pattern sets.” SIGKDD Explorations, 12(2), pp. 92–100 (cit. on
p. 28).

Borgelt, C. and M. R. Berthold (2002). “Mining Molecular Fragments: Finding
Relevant Substructures of Molecules.” In: Proceedings of the 2002 IEEE In-
ternational Conference on Data Mining (ICDM 2002), 9-12 December 2002,
Maebashi City, Japan, pp. 51–58 (cit. on pp. 27, 41).

Bosc, G., C. Raïssi, J. Boulicaut, and M. Kaytoue (2016). “Any-time Diverse
Subgroup Discovery with Monte Carlo Tree Search.” CoRR, abs/1609.08827.
arXiv: 1609.08827 (cit. on pp. 110, 111, 115).

Breckling, B., G. Pe’er, and Y. G. Matsinos (2011). “Cellular Automata in
Ecological Modelling.” In: Modelling Complex Ecological Dynamics: An In-
troduction into Ecological Modelling for Students, Teachers & Scientists.
Springer Berlin Heidelberg, pp. 105–117 (cit. on p. 98).

Briggs, P. and L. Torczon (1993). “An Efficient Representation for Sparse Sets.”
LOPLAS, 2(1-4), pp. 59–69 (cit. on p. 69).

Bringmann, B. and S. Nijssen (2008). “What Is Frequent in a Single Graph?”
In: Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia
Conference, PAKDD 2008, Osaka, Japan, May 20-23, 2008 Proceedings,
pp. 858–863 (cit. on p. 26).

Buzmakov, A., S. O. Kuznetsov, and A. Napoli (2015). “Fast Generation of Best
Interval Patterns for Nonmonotonic Constraints.” In: Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD
2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part II. Ed. by
A. Appice, P. P. Rodrigues, V. S. Costa, J. Gama, A. Jorge, and C. Soares.
Vol. 9285. Lecture Notes in Computer Science. Springer, pp. 157–172 (cit. on
p. 28).

Cerf, L., J. Besson, C. Robardet, and J.-F. Boulicaut (2008). “Data-Peeler:
Constraint-based Closed Pattern Mining in n-ary Relations.” In: SIAM In-
ternational Conference on Data Mining SDM’08. Atlanta, United States,
pp. 37–48 (cit. on p. 28).

Chang, C. and C. Lin (2011). “LIBSVM: A library for support vector machines.”
ACM TIST, 2(3), 27:1–27:27 (cit. on pp. 89, 105).

Chatfield, K., V. S. Lempitsky, A. Vedaldi, and A. Zisserman (2011). “The
devil is in the details: an evaluation of recent feature encoding methods.”
In: British Machine Vision Conference, BMVC 2011, Dundee, UK, August

http://arxiv.org/abs/1609.08827

BIBLIOGRAPHY 119

29 - September 2, 2011. Proceedings. Ed. by J. Hoey, S. J. McKenna, and
E. Trucco. BMVA Press, pp. 1–12 (cit. on p. 79).

Chatfield, K., K. Simonyan, A. Vedaldi, and A. Zisserman (2014). “Return of
the Devil in the Details: Delving Deep into Convolutional Nets.” In: British
Machine Vision Conference, BMVC 2014, Nottingham, UK, September 1-5,
2014. Ed. by M. F. Valstar, A. P. French, and T. P. Pridmore. BMVA Press
(cit. on p. 79).

Chen, C., X. Yan, F. Zhu, and J. Han (2007). “gApprox: Mining Frequent
Approximate Patterns from a Massive Network.” In: Proceedings of the 7th
IEEE International Conference on Data Mining (ICDM 2007), October 28-
31, 2007, Omaha, Nebraska, USA. IEEE Computer Society, pp. 445–450
(cit. on p. 44).

Cheng, H., X. Yan, J. Han, and C. Hsu (2007). “Discriminative Frequent Pat-
tern Analysis for Effective Classification.” In: Proceedings of the 23rd Inter-
national Conference on Data Engineering, ICDE 2007, The Marmara Hotel,
Istanbul, Turkey, April 15-20, 2007. Ed. by R. Chirkova, A. Dogac, M. T.
Özsu, and T. K. Sellis. IEEE Computer Society, pp. 716–725 (cit. on pp. 28,
29).

Chirkova, R., A. Dogac, M. T. Özsu, and T. K. Sellis, eds. (2007). Proceed-
ings of the 23rd International Conference on Data Engineering, ICDE 2007,
The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007. IEEE Computer
Society.

Conway, J. (1970). “The game of life.” Scientific American, 223(4), p. 4 (cit. on
p. 98).

Cook, D. and L. Holder (2006). Mining Graph Data. J. Wiley & Sons (cit. on
pp. 1, 5).

Cordella, L. P., P. Foggia, C. Sansone, and M. Vento (2004). “A (Sub)Graph
Isomorphism Algorithm for Matching Large Graphs.” IEEE Trans. Pattern
Anal. Mach. Intell. 26(10), pp. 1367–1372 (cit. on p. 13).

Cordella, L. P., P. Foggia, C. Sansone, and M. Vento (2001). “An improved al-
gorithm for matching large graphs.” In: 3rd IAPR-TC15 workshop on graph-
based representations in pattern recognition, pp. 149–159 (cit. on p. 12).

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2009). Introduction
to Algorithms, 3rd Edition. MIT Press (cit. on p. 18).

120 BIBLIOGRAPHY

Csurka, G., C. Dance, L. Fan, J. Willamowski, and C. Bray (2004). “Visual
categorization with bags of keypoints.” In: Workshop on statistical learning
in computer vision, ECCV. Vol. 1. 1-22. Prague, pp. 1–2 (cit. on p. 79).

Elseidy, M., E. Abdelhamid, S. Skiadopoulos, and P. Kalnis (2014). “GRAMI:
Frequent Subgraph and Pattern Mining in a Single Large Graph.” PVLDB,
7(7), pp. 517–528 (cit. on p. 43).

Fayyad, U. M. and R. Uthurusamy, eds. (1994).Knowledge Discovery in Databases:
Papers from the 1994 AAAI Workshop, Seattle, Washington, July 1994.
Technical Report WS-94-03. AAAI Press.

Fayyad, U. M., G. Piatetsky-Shapiro, and P. Smyth (1996). “From Data Mining
to Knowledge Discovery: An Overview.” In: Advances in Knowledge Discov-
ery and Data Mining, pp. 1–34 (cit. on p. 24).

Fernando, B., É. Fromont, and T. Tuytelaars (2014). “Mining Mid-level Features
for Image Classification.” International Journal of Computer Vision, 108(3),
pp. 186–203 (cit. on pp. 28–30, 80, 104).

Flores-Garrido, M., J. A. Carrasco-Ochoa, and J. F. Martínez Trinidad (2015).
“AGraP: an algorithm for mining frequent patterns in a single graph using
inexact matching.” Knowl. Inf. Syst. 44(2), pp. 385–406 (cit. on p. 45).

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman (cit. on p. 13).

Geng, L. and H. J. Hamilton (2006). “Interestingness measures for data mining:
A survey.” ACM Comput. Surv. 38(3), p. 9 (cit. on p. 25).

Gosselin, S., G. Damiand, and C. Solnon (2011). “Frequent Submap Discovery.”
In: Combinatorial Pattern Matching - 22nd Annual Symposium, CPM 2011,
Palermo, Italy, June 27-29, 2011. Proceedings. Ed. by R. Giancarlo and G.
Manzini. Vol. 6661. Lecture Notes in Computer Science. Springer, pp. 429–
440 (cit. on p. 42).

Gudes, E., S. E. Shimony, and N. Vanetik (2006). “Discovering Frequent Graph
Patterns Using Disjoint Paths.” IEEE Trans. Knowl. Data Eng. 18(11),
pp. 1441–1456 (cit. on p. 26).

Higuera, C. de la, J. Janodet, É. Samuel, G. Damiand, and C. Solnon (2013).
“Polynomial algorithms for open plane graph and subgraph isomorphisms.”
Theor. Comput. Sci. 498, pp. 76–99 (cit. on pp. 16–18).

Hogeweg, P. (1988). “Cellular Automata As a Paradigm for Ecological Model-
ing.” Appl. Math. Comput. 27(1), pp. 81–100 (cit. on p. 5).

BIBLIOGRAPHY 121

Holder, L. B., D. J. Cook, and S. Djoko (1994). “Substucture Discovery in
the SUBDUE System.” In: Knowledge Discovery in Databases: Papers from
the 1994 AAAI Workshop, Seattle, Washington, July 1994. Technical Report
WS-94-03. Ed. by U. M. Fayyad and R. Uthurusamy. AAAI Press, pp. 169–
180 (cit. on p. 43).

Horváth, T., J. Ramon, and S. Wrobel (2010). “Frequent subgraph mining in
outerplanar graphs.” Data Min. Knowl. Discov. 21(3), pp. 472–508 (cit. on
pp. 5, 13).

Huan, J., W. Wang, and J. Prins (2003). “Efficient Mining of Frequent Sub-
graphs in the Presence of Isomorphism.” In: Proceedings of the 3rd IEEE
International Conference on Data Mining (ICDM 2003), 19-22 December
2003, Melbourne, Florida, USA. IEEE Computer Society, pp. 549–552 (cit.
on p. 35).

Huan, J., W. Wang, J. Prins, and J. Yang (2004). “SPIN: mining maximal fre-
quent subgraphs from graph databases.” In: Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Seattle, Washington, USA, August 22-25, 2004. Ed. by W. Kim, R.
Kohavi, J. Gehrke, and W. DuMouchel. ACM, pp. 581–586 (cit. on pp. 27,
41).

Huang, G., Z. Liu, L. van der Maaten, and K. Q. Weinberger (2017). “Densely
Connected Convolutional Networks.” In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017. IEEE Computer Society, pp. 2261–2269 (cit. on p. 94).

Inokuchi, A., T. Washio, and H. Motoda (2000). “An Apriori-Based Algorithm
for Mining Frequent Substructures from Graph Data.” In: Principles of Data
Mining and Knowledge Discovery, 4th European Conference, PKDD 2000,
Lyon, France, September 13-16, 2000, Proceedings. Ed. by D. A. Zighed,
H. J. Komorowski, and J. M. Zytkow. Vol. 1910. Lecture Notes in Computer
Science. Springer, pp. 13–23 (cit. on pp. 31, 34).

Jia, Y., J. Zhang, and J. Huan (2011). “An efficient graph-mining method for
complicated and noisy data with real-world applications.” Knowl. Inf. Syst.
28(2), pp. 423–447 (cit. on pp. 44, 45).

Jiang, C., F. Coenen, and M. Zito (2013). “A survey of frequent subgraph mining
algorithms.” Knowledge Eng. Review, 28(1), pp. 75–105 (cit. on pp. 1, 5, 43).

Kessl, R., N. Talukder, P. Anchuri, and M. J. Zaki (2014). “Parallel Graph
Mining with GPUs.” In: Proceedings of the 3rd International Workshop on
Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems,

122 BIBLIOGRAPHY

Programming Models and Applications, BigMine 2014, New York City, USA,
August 24, 2014. Ed. by W. Fan, A. Bifet, Q. Yang, and P. S. Yu. Vol. 36.
JMLR Workshop and Conference Proceedings. JMLR.org, pp. 1–16 (cit. on
p. 43).

Kim, W., R. Kohavi, J. Gehrke, and W. DuMouchel, eds. (2004). Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Seattle, Washington, USA, August 22-25, 2004. ACM.

Kotthoff, L., C. McCreesh, and C. Solnon (2016). “Portfolios of Subgraph Iso-
morphism Algorithms.” In: Learning and Intelligent Optimization - 10th In-
ternational Conference, LION 10, Ischia, Italy, May 29 - June 1, 2016,
Revised Selected Papers. Ed. by P. Festa, M. Sellmann, and J. Vanschoren.
Vol. 10079. Lecture Notes in Computer Science. Springer, pp. 107–122 (cit.
on p. 13).

Kuramochi, M. and G. Karypis (2001). “Frequent Subgraph Discovery.” In:
Proceedings of the 2001 IEEE International Conference on Data Mining, 29
November - 2 December 2001, San Jose, California, USA. Ed. by N. Cercone,
T. Y. Lin, and X. Wu. IEEE Computer Society, pp. 313–320 (cit. on pp. 34,
35).

— (2002). “Discovering Frequent Geometric Subgraphs.” In: Proceedings of the
2002 IEEE International Conference on Data Mining (ICDM 2002), 9-12
December 2002, Maebashi City, Japan, pp. 258–265 (cit. on p. 14).

— (2004). “Finding Frequent Patterns in a Large Sparse Graph.” In: Proceed-
ings of the Fourth SIAM International Conference on Data Mining, Lake
Buena Vista, Florida, USA, April 22-24, 2004. Ed. by M. W. Berry, U.
Dayal, C. Kamath, and D. B. Skillicorn. SIAM, pp. 345–356 (cit. on pp. 42,
43).

— (2005). “Finding Frequent Patterns in a Large Sparse Graph.” Data Min.
Knowl. Discov. 11(3), pp. 243–271 (cit. on p. 42).

— (2007). “Discovering frequent geometric subgraphs.” Inf. Syst. 32(8), pp. 1101–
1120 (cit. on pp. 14, 41).

Larrosa, J. and G. Valiente (2002). “Constraint Satisfaction Algorithms for
Graph Pattern Matching.” Mathematical Structures in Computer Science,
12(4), pp. 403–422 (cit. on p. 13).

Lazebnik, S., C. Schmid, and J. Ponce (2006). “Beyond Bags of Features: Spa-
tial Pyramid Matching for Recognizing Natural Scene Categories.” In: 2006

BIBLIOGRAPHY 123

IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR 2006), 17-22 June 2006, New York, NY, USA. IEEE Com-
puter Society, pp. 2169–2178 (cit. on pp. 85, 86, 94).

Leeuwen, M. van, T. D. Bie, E. Spyropoulou, and C. Mesnage (2016). “Subjec-
tive interestingness of subgraph patterns.” Machine Learning, 105(1), pp. 41–
75 (cit. on p. 25).

Li, F., R. Fergus, and P. Perona (2004). “Learning Generative Visual Models
from Few Training Examples: An Incremental Bayesian Approach Tested
on 101 Object Categories.” In: IEEE Conference on Computer Vision and
Pattern Recognition Workshops, CVPR Workshops 2004, Washington, DC,
USA, June 27 - July 2, 2004. IEEE Computer Society, p. 178 (cit. on pp. 85,
87).

Lowe, D. G. (2004). “Distinctive Image Features from Scale-Invariant Key-
points.” International Journal of Computer Vision, 60(2), pp. 91–110 (cit.
on p. 80).

Mannila, H. and H. Toivonen (1997). “Levelwise Search and Borders of Theories
in Knowledge Discovery.” Data Min. Knowl. Discov. 1(3), pp. 241–258 (cit.
on p. 24).

Marco, D. E., S. A. Páez, and S. A. Cannas (2002). “Species invasiveness in bio-
logical invasions: a modelling approach.” Biological Invasions, 4(1), pp. 193–
205 (cit. on p. 98).

Matula, D. W. (1978). “Subtree Isomorphism in O(n5/2).” In: Algorithmic As-
pects of Combinatorics. Ed. by P. H. B. Alspach and D. Miller. Vol. 2. Annals
of Discrete Mathematics. Elsevier, pp. 91 –106 (cit. on p. 13).

McCreesh, C. and P. Prosser (2015). “A Parallel, Backjumping Subgraph Iso-
morphism Algorithm Using Supplemental Graphs.” In: Principles and Prac-
tice of Constraint Programming - 21st International Conference, CP 2015,
Cork, Ireland, August 31 - September 4, 2015, Proceedings. Ed. by G. Pe-
sant. Vol. 9255. Lecture Notes in Computer Science. Springer, pp. 295–312
(cit. on p. 13).

McGregor, J. J. (1979). “Relational consistency algorithms and their application
in finding subgraph and graph isomorphisms.” Inf. Sci. 19(3), pp. 229–250
(cit. on p. 13).

McKay, B. D. et al. (1981). “Practical graph isomorphism” (cit. on p. 12).

Nijssen, S. and J. N. Kok (2004). “A quickstart in frequent structure mining can
make a difference.” In: Proceedings of the Tenth ACM SIGKDD International

124 BIBLIOGRAPHY

Conference on Knowledge Discovery and Data Mining, Seattle, Washington,
USA, August 22-25, 2004. Ed. by W. Kim, R. Kohavi, J. Gehrke, and W.
DuMouchel. ACM, pp. 647–652 (cit. on p. 41).

Nilsback, M. and A. Zisserman (2008). “Automated Flower Classification over a
Large Number of Classes.” In: Sixth Indian Conference on Computer Vision,
Graphics & Image Processing, ICVGIP 2008, Bhubaneswar, India, 16-19
December 2008. IEEE Computer Society, pp. 722–729 (cit. on p. 85).

Nowak, E., F. Jurie, and B. Triggs (2006). “Sampling Strategies for Bag-of-
Features Image Classification.” In: Computer Vision - ECCV 2006, 9th Eu-
ropean Conference on Computer Vision, Graz, Austria, May 7-13, 2006,
Proceedings, Part IV. Ed. by A. Leonardis, H. Bischof, and A. Pinz. Vol. 3954.
Lecture Notes in Computer Science. Springer, pp. 490–503 (cit. on p. 81).

Nowozin, S., K. Tsuda, T. Uno, T. Kudo, and G. H. Bakir (2007). “Weighted
Substructure Mining for Image Analysis.” In: 2007 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2007), 18-
23 June 2007, Minneapolis, Minnesota, USA. IEEE Computer Society (cit.
on p. 81).

Odone, F., A. Barla, and A. Verri (2005). “Building kernels from binary strings
for image matching.” IEEE Trans. Image Processing, 14(2), pp. 169–180
(cit. on pp. 89, 105).

Özdemir, B. and S. Aksoy (2010). “Image Classification Using Subgraph His-
togram Representation.” In: 20th International Conference on Pattern Recog-
nition, ICPR 2010, Istanbul, Turkey, 23-26 August 2010. IEEE Computer
Society, pp. 1112–1115 (cit. on p. 80).

Pei, J. and J. Han (2000). “Can We Push More Constraints into Frequent Pat-
tern Mining?” In: Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’00. Boston,
Massachusetts, USA: ACM, pp. 350–354 (cit. on p. 27).

Pei, J., J. Han, and L. V. S. Lakshmanan (2004). “Pushing Convertible Con-
straints in Frequent Itemset Mining.” Data Min. Knowl. Discov. 8(3), pp. 227–
252 (cit. on p. 27).

Piatetsky-Shapiro, G. and C. J. Matheus (1994). “The Interingness of Devia-
tions.” In: Knowledge Discovery in Databases: Papers from the 1994 AAAI
Workshop, Seattle, Washington, July 1994. Technical Report WS-94-03. Ed.
by U. M. Fayyad and R. Uthurusamy. AAAI Press, pp. 25–36 (cit. on p. 28).

BIBLIOGRAPHY 125

Prado, A., B. Jeudy, É. Fromont, and F. Diot (2013). “Mining spatiotemporal
patterns in dynamic plane graphs.” Intell. Data Anal. 17(1), pp. 71–92 (cit.
on pp. 1, 5, 34, 36).

Rastegari, M., V. Ordonez, J. Redmon, and A. Farhadi (2016). “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks.” In:
Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part IV. Ed. by B.
Leibe, J. Matas, N. Sebe, and M. Welling. Vol. 9908. Lecture Notes in Com-
puter Science. Springer, pp. 525–542 (cit. on p. 94).

Régin, J. (1994). “A Filtering Algorithm for Constraints of Difference in CSPs.”
In: Proceedings of the 12th National Conference on Artificial Intelligence,
Seattle, WA, USA, July 31 - August 4, 1994, Volume 1. Ed. by B. Hayes-
Roth and R. E. Korf. AAAI Press / The MIT Press, pp. 362–367 (cit. on
p. 13).

Rendell, P. W. (2014). “Turing machine universality of the game of life.” PhD
thesis. University of the West of England, Bristol, UK (cit. on p. 100).

Saint-Marcq, V. l. C. de, P. Schaus, C. Solnon, and C. Lecoutre (2013). “Sparse-
sets for domain implementation.” In: CP workshop on Techniques foR Imple-
menting Constraint programming Systems (TRICS), pp. 1–10 (cit. on p. 69).

Samuel, É., C. de la Higuera, and J. Janodet (2010). “Extracting Plane Graphs
from Images.” In: Structural, Syntactic, and Statistical Pattern Recogni-
tion, Joint IAPR International Workshop, SSPR&SPR 2010, Cesme, Izmir,
Turkey, August 18-20, 2010. Proceedings. Ed. by E. R. Hancock, R. C. Wil-
son, T. Windeatt, I. Ulusoy, and F. Escolano. Vol. 6218. Lecture Notes in
Computer Science. Springer, pp. 233–243 (cit. on pp. 5, 81).

Silva, F. B., S. Goldenstein, S. Tabbone, and R. da Silva Torres (2013). “Image
classification based on bag of visual graphs.” In: IEEE International Con-
ference on Image Processing, ICIP 2013, Melbourne, Australia, September
15-18, 2013. IEEE, pp. 4312–4316 (cit. on pp. 80, 81).

Silva, F. B., S. Tabbone, and R. da Silva Torres (2014). “BoG: A New Approach
for Graph Matching.” In: 22nd International Conference on Pattern Recogni-
tion, ICPR 2014, Stockholm, Sweden, August 24-28, 2014. IEEE Computer
Society, pp. 82–87 (cit. on pp. 80, 81).

Smets, K. and J. Vreeken (2012). “Slim: Directly Mining Descriptive Patterns.”
In: SDM. SIAM / Omnipress, pp. 236–247 (cit. on p. 28).

126 BIBLIOGRAPHY

Solnon, C. (2010). “AllDifferent-based filtering for subgraph isomorphism.” Ar-
tif. Intell. 174(12-13), pp. 850–864 (cit. on pp. 13, 107).

Solnon, C., G. Damiand, C. de la Higuera, and J. Janodet (2015). “On the com-
plexity of submap isomorphism and maximum common submap problems.”
Pattern Recognition, 48(2), pp. 302–316 (cit. on p. 18).

Sorlin, S. and C. Solnon (2008). “A parametric filtering algorithm for the graph
isomorphism problem.” Constraints, 13(4), pp. 518–537 (cit. on p. 12).

Soulet, A. and B. Crémilleux (2005). “An Efficient Framework for Mining Flex-
ible Constraints.” In: Advances in Knowledge Discovery and Data Mining,
9th Pacific-Asia Conference, PAKDD 2005, Hanoi, Vietnam, May 18-20,
2005, Proceedings. Ed. by T. B. Ho, D. W. Cheung, and H. Liu. Vol. 3518.
Lecture Notes in Computer Science. Springer, pp. 661–671 (cit. on p. 28).

Syslo, M. M. (1982). “The Subgraph Isomorphism Problem for Outerplanar
Graphs.” Theor. Comput. Sci. 17, pp. 91–97 (cit. on p. 13).

Ullmann, J. R. (1976). “An Algorithm for Subgraph Isomorphism.” J. ACM,
23(1), pp. 31–42 (cit. on pp. 12, 13).

Vanetik, N., E. Gudes, and S. E. Shimony (2002). “Computing Frequent Graph
Patterns from Semistructured Data.” In: Proceedings of the 2002 IEEE In-
ternational Conference on Data Mining (ICDM 2002), 9-12 December 2002,
Maebashi City, Japan, pp. 458–465 (cit. on p. 35).

Voravuthikunchai, W., B. Crémilleux, and F. Jurie (2014). “Histograms of Pat-
tern Sets for Image Classification and Object Recognition.” In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2014, Colum-
bus, OH, USA, June 23-28, 2014. IEEE Computer Society, pp. 224–231 (cit.
on p. 80).

Vreeken, J., M. van Leeuwen, and A. Siebes (2011). “Krimp: mining itemsets
that compress.” Data Min. Knowl. Discov. 23(1), pp. 169–214 (cit. on p. 28).

Wang, J., Z. Zeng, and L. Zhou (2006). “CLAN: An Algorithm for Mining
Closed Cliques from Large Dense Graph Databases.” In: Proceedings of the
22nd International Conference on Data Engineering, ICDE 2006, 3-8 April
2006, Atlanta, GA, USA. Ed. by L. Liu, A. Reuter, K. Whang, and J. Zhang.
IEEE Computer Society, p. 73 (cit. on p. 42).

Wolfram, S. (1984). “Cellular automata as models of complexity.” Nature, 311(5985),
pp. 419–424 (cit. on p. 98).

BIBLIOGRAPHY 127

Wootton, J. T. (2001). “Local interactions predict large-scale pattern in empir-
ically derived cellular automata.” Nature, 413(6858), pp. 841–844 (cit. on
p. 98).

Wörlein, M., T. Meinl, I. Fischer, and M. Philippsen (2005). “A Quantitative
Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston.” In:
Knowledge Discovery in Databases: PKDD 2005, 9th European Conference
on Principles and Practice of Knowledge Discovery in Databases, Porto,
Portugal, October 3-7, 2005, Proceedings. Ed. by A. Jorge, L. Torgo, P.
Brazdil, R. Camacho, and J. Gama. Vol. 3721. Lecture Notes in Computer
Science. Springer, pp. 392–403 (cit. on p. 41).

Yan, X. and J. Han (2002). “gSpan: Graph-Based Substructure Pattern Mining.”
In: Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM 2002), 9-12 December 2002, Maebashi City, Japan, pp. 721–724 (cit.
on pp. 32, 34–36).

— (2003). “CloseGraph: mining closed frequent graph patterns.” In: Proceed-
ings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003.
Ed. by L. Getoor, T. E. Senator, P. M. Domingos, and C. Faloutsos. ACM,
pp. 286–295 (cit. on pp. 27, 41, 73).

— (2006). “Discovery of frequent substructures.” Mining graph data, 5, pp. 99–
115 (cit. on p. 27).

Zeng, Z., J. Wang, L. Zhou, and G. Karypis (2006). “Coherent closed quasi-
clique discovery from large dense graph databases.” In: Proceedings of the
Twelfth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Philadelphia, PA, USA, August 20-23, 2006. Ed. by T.
Eliassi-Rad, L. H. Ungar, M. Craven, and D. Gunopulos. ACM, pp. 797–802
(cit. on p. 42).

Zhang, S., J. Yang, and V. Cheedella (2007). “Monkey: Approximate Graph
Mining Based on Spanning Trees.” In: Proceedings of the 23rd International
Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul,
Turkey, April 15-20, 2007. Ed. by R. Chirkova, A. Dogac, M. T. Özsu, and
T. K. Sellis. IEEE Computer Society, pp. 1247–1249 (cit. on p. 44).

Zhang, S. and J. Yang (2008). “RAM: Randomized Approximate Graph Min-
ing.” In: Scientific and Statistical Database Management, 20th International
Conference, SSDBM 2008, Hong Kong, China, July 9-11, 2008, Proceed-
ings. Ed. by B. Ludäscher and N. Mamoulis. Vol. 5069. Lecture Notes in
Computer Science. Springer, pp. 187–203 (cit. on p. 44).

Zhu, F., Q. Qu, D. Lo, X. Yan, J. Han, and P. S. Yu (2011). “Mining Top-K
Large Structural Patterns in a Massive Network.” PVLDB, 4(11), pp. 807–
818 (cit. on p. 46).

Zou, Z., J. Li, H. Gao, and S. Zhang (2009). “Frequent subgraph pattern mining
on uncertain graph data.” In: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM 2009, Hong Kong, China,
November 2-6, 2009. Ed. by D. W. Cheung, I. Song, W. W. Chu, X. Hu,
and J. J. Lin. ACM, pp. 583–592 (cit. on p. 45).

130

List of Figures

2.1 Graphs, induced and partial subgraphs 10
2.2 Induced and partial subgraph isomorphisms 12
2.3 Geometric graphs . 15
2.4 Plane graphs . 17
2.5 Illustration of the different steps of a DFS algorithm 20
2.6 A graph and three possible depth-first tree (b) 21

3.1 Patterns with non-monotonic support 27
3.2 A graph (a) and three possible DFS tree (b), (c) and (d) 32
3.3 Example of a partial search space 33
3.4 Scheme of the BF exploration and of the DF exploration of a

search space of patterns . 34
3.5 Example of the behaviour of a level-join based expansion done

by AGM . 35
3.6 Example of graphs isomorphic for gSpan but not isomorphic for

FreqGeo . 38

4.1 Objects modeled by grids . 49
4.2 2D grids, induced and partial 2D subgrids 50
4.3 2D grid isomorphisms . 52
4.4 2D + t grid . 53
4.5 Induced and partial 2D + t subgrids 54
4.6 2D + t subgrid isomorphism . 56

5.1 Sub-isomorphism relations . 61
5.2 A 2D + t grid and three possible codes 62
5.3 A database of grids and a pattern 66
5.4 A subset of the search space explored by GriMA 68
5.5 An illustration of node-induced pattern in a complete 2D grid . 74

6.1 Standard 16× 16 SIFT descriptor with 4× 4 bins. 79
6.2 Representation of an image by a 2D grid of visual words. 82
6.3 From images to grids of visual words with holes 83
6.4 Automorphism of patterns . 84

6.5 Images of the Flowers dataset 85
6.6 Images of the 15-Scenes dataset 86
6.7 Images of the Caltech-26 dataset 87
6.8 Overview of the learning process 88
6.9 Overview of the testing process 90
6.10 Efficiency results of GriMA, i-GriMA, gSpan and Plagram 91

7.1 Initial state of a game of life and its next four states 99
7.2 Examples of initial states with stable and periodic outcomes. . . 100
7.3 Examples of grids: 4 first states and last 3 states, for each class. 102
7.4 Efficiency GriMA and gSpan to mine 2D + t grids 106
7.5 Efficiency of GriMA and LAD to enumerate pattern in grid . . 108

132

List of Tables

2.1 Different kinds of graphs and subisomorphism relations 22

3.1 DFS codes for the corresponding DFS trees of Figure 3.2 32
3.2 Characteristics of subgraph mining algorithms 37

4.1 Comparison of subisomorphism relations 57

6.1 Image dataset information summary 86
6.2 Image classification results . 92
6.3 Classification rates of binary SVMs for 7 classes of the 15-scenes 93

7.1 Game of life classification results 109
7.2 Confusion matrices for game of life classification 110
7.3 Patterns statistics . 110

FOLIO ADMINISTRATIF

THÈSE DE L’UNIVERSITÉ DE LYON OPÉRÉE AU SEIN DE L’INSA
LYON

Nom : Deville Date de soutenance : 30 Mai 2018
Prénom : Romain
Titre : Spatio-temporal grid mining applied to image classification and cel-
lular automata analysis
Nature : Doctorat Numéro d’ordre : 2018LYSEI046
École doctorale : InfoMaths
Spécialité : Informatique
Résumé :

Au cours de cette thèse, nous avons proposé un nouvel algorithme de
fouille de motifs fréquents dédié aux grilles spatio-temporelles : GriMA.
L’usage des grilles régulières permet à notre algorithme de réduire la
complexité des tests d’isomorphismes. Ces tests sont souvent utilisés
par les algorithmes génériques de fouilles de graphes mais ayant une
complexité importante, cela limite leur usage sur des données réelles.
Deux applications ont été proposées pour évaluer notre algorithme :
la classification d’images pour la fouille de grilles 2D et la prédiction
d’automates cellulaires pour la fouille de grilles 2D+t.

Mots-clefs : Grids mining - Spatio-temporal patterns - Image classification
- Cellular automata
Laboratoire de recherche : liris
Directrice de thèse : Christine Solnon
Président de jury :
Composition du jury :

Bruno Crémilleux
Elisa Fromont
Jean-Christophe Janodet
Baptiste Jeudy
Jean-Yves Ramel
Céline Rouveirol
Christine Solnon

	Introduction
	Background on Graphs
	Basic definitions
	Graph and subgraph isomorphism
	Geometric graphs
	Plane graphs
	Depth-first search of a graph
	Discussion

	Existing Graph Mining Algorithms
	The Graph Mining Problem
	General Pattern Mining Problem
	Constraint-based Pattern Mining

	Graph Mining Strategies
	Graph Canonical Representation
	Exploring a Search Space of Canonical Codes
	Expansion Strategies

	Most Related Algorithms
	Generic Depth-First Algorithm
	gSpan
	Plagram
	FreqGeo and MaxGeo

	Other Graph Mining Algorithms
	Exact Mining algorithms
	Inexact and Incomplete Mining Algorithms

	Discussion

	Definitions on Grids
	2D grids
	2D+t grids
	Discussion

	Description of GriMA
	Definition of the grid mining problem
	Canonical Code
	Canonicity Test
	Extension strategy
	Theoretical analysis of GriMA
	Node Induced GriMA
	Algorithm for enumerating occurrences
	Discussion

	Application of GriMA to Image Classification
	Background on image classification
	Supervised classification
	BoW-based representation of images
	Pattern mining for image classification

	BoG-based representation of images
	Construction of 2D grids
	Construction of BoGs

	Experimental setup
	Datasets
	Overview of the learning process and parameter settings
	Overview of the classification process

	Efficiency analysis
	Accuracy results
	Discussion

	Application of GriMA to Cellular Automata Analysis
	Background on Cellular Automata
	Experimental Setup
	Dataset construction
	Representation of Game of Life initial states by histograms of frequent patterns
	Overview of the learning process
	Overview of the classification process

	Efficiency analysis
	Mining efficiency
	Counting the number of occurrences in grids

	Accuracy results
	Discussion

	Conclusion
	Bibliography

