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1. INTRODUCTION

This dissertation, written for the purpose of obtaining the French � Habilitation à diriger des recherches �
from Université Paris-Est, presents our main contributions to the �eld of image analysis and understanding.
This presentation includes work made after our PhD defense (2007), as well as work done before it, hence
covering a period of more than ten years of research. A cut separating these two periods would be somehow
arbitrary since :

� the time of a research project is long and its boundaries are fuzzy. It is most of the time not clear
to establish the beginning and the end of a research work. As illustrations, we can highlight the fact
that many of the results included in our PhD dissertation [74] are published, often with some further
enrichments, after the date of the defense or that some source codes corresponding to some work
published in the form of an article in 2017 [23] were already available online in 2007 before our PhD
defense ;

� the consistency between the research initiated before and after our PhD is strong. A goal of this
dissertation is to highlight this consistency with the perspectives of showing the ability to continue
in the same fruitful directions. This consistency covers both topics and points of view. For instance,
concerning application topics, we work in 2004 on augmenting X-ray images made available to the
cardiologists who perform catheter-based electrical intervention with 3D heart models acquired be-
fore the intervention (this work was published after 2008 in the form of two patents [75, 76]). The
PhD topic of Ketan Bacchuwar, which we co-advise and which should be defended in 2018, includes
merging information acquired, through X-ray images, at di�erent steps of cardiac catheter-based
interventions in order to annotate the intention of the clinician during stenting procedures. Concer-
ning the point of view, three main objectives are carried out in most of our research projects : (i)
establishing the correctness of the proposed solutions in the form of formal properties o�ering gua-
rantees on the proposed solutions and helping to understand precisely in which sense they solve a
given problem, (ii) proposing computable solutions with e�cient algorithms, (iii) assessing qualita-
tively and quantitatively the proposed solutions in the context of real-world problems, coming, for
instance, from industry collaborations.

We emphasize that every project presented in this dissertation is the result of a collaboration, some
of the collaborators being experienced researchers while some others are advised PhD students or interns.
Each collaborator has an impact on the presented work. Besides deep propositions or problems raised by
collaborators, naive questions or misunderstandings often lead to new developments and better explana-
tions. The resulting interactions are always valuable contributions. The virtue of team-work has not to
be demonstrated here, and the � Habilitation à diriger des recherches � which we seek to obtain with the
present dissertation is a step forward to guarantee the development of our work as a team in the future.

Producing reproducable and teachable research is an important goal of our work. To this end, a precise
mathematical formalization of the problems, of their analyses, and of the provided solutions is necessary
to avoid, or at least to reduce, ambiguity. Additionally, to ease reproducability and dissemination of our
research results, the source codes of many proposed algorithms are made available online. The list of this
available resources is given in the appendix chapter of the dissertation. However, for the sake of concision,
this dissertation provides only a literary introduction to our major contributions rather than a detailed and
formalized presentation of the results. Such presentation has the advantage of providing a survey of our
main contributions which is readable in a limited amount of time. However, only a detailed presentation
would allow one to reproduce the provided results and, for this purpose, the reader is invited to refer to
the cited articles and to test the provided programs.

This dissertation is organized into four main sections that are all related to image analysis, mathematical
morphology and digital topology. Each section corresponds to one part of the dissertation title.
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Segmentation. Section 2 introduces our contributions to the �eld of image, or more generally data,
segmentation. In particular, we detail in Section 2.1 our main results concerning region merging methods,
and watershed segmentation in the framework of vertex-weighted graphs. This framework is adapted when
one seeks for a separation of the segmented regions located on the pixels of an image, or more generally
on the vertices of a graph whose vertex set is to be segmented. Section 2.2 details our contributions to the
watershed segmentation problem in edge-weighted graph. In this framework, the set of obtained regions is
a partition of the space (i.e. the image pixels, or the vertices of the graph) and the separation is located
between the pixels, that is on the edges of the grid of pixels or on the edges of the graph. Finally, Section 2.3
studies watersheds of maps de�ned on pseudomanifolds handled in the framework of simplicial complexes.
Such framework allows us to establish links between the watershed transform (i.e., the process allowing to
obtain the watershed of a map) and the homotopic transforms (i.e., continuous deformation that preserves
topological invariants of the object under transformation).

Hierarchy. Section 3 details our contribution to hierarchical analysis, a hierarchy being a series of
nested partitions. We �rst present in Section 3.1, equivalent representations of hierarchies which are useful
to propose new hierarchical analysis methods and to design algorithms to build and to process these
hierarchies. In Section 3.2, we detail some problems and solutions related to hierarchies of watersheds in
edge-weighted graphs. In Section 3.3, we show how one can combine hierarchies of partitions, such as,
watershed hierarchies obtained from several distinct regional attributes. In Section 3.4, we introduce some
methodological tools to hierachize an important class of image segmentation methods which depend on a
scale parameter but do not lead to hierarchies of segmentations under the variation of this scale parameter.
Finally, Section 3.5 presents the notion of a directed component hierarchy which allows generalizing the
connected operators developed in the framework of mathematical morphology to the case of directed graphs
where asymmetric information between pixels, or more generally data, can be taken into account for �ltering
and segmenting.

Mathematical morphology �ltering. Section 4 introduces our contributions to the problem of shape
and image regularization by mathematical morphology �ltering based on adjunctions. In Section 4.1, we
study new mathematical morphology operators that are in particular able to deal with subgraphs of a given
graph, considered as the working space and, in Section 4.2, we present an extension to simplicial complexes
which are richer topological structures. This framework allows the processing of images, when the image
is structured as a graph or as a simplicial complex, and also paves the way towards more general data
regularization with mathematical morphology �lters by adjunction.

Application to image analysis. Section 5 presents a series of application problems which are solved
with the tools presented in the three �rst parts of the dissertation combined with classical tools from the
domains of image processing and computer vision. For these application problems, an important e�ort is
devoted to quantitative and qualitative assessments in conjunction with experts of the di�erent application
�elds. Sections 5.1 and 5.2 present methods allowing the detection of functional and anatomical diseases in
cardiology from Magnetic Resonance and X-Ray computerized tomography images, respectively. The two
following sections, namely Sections 5.3 and 5.4, present image processing methods and softwares designed
to help cardiologists during minimally invasive cardiac surgery monitored by X-ray imaging systems. In
Section 5.5, the interest of mathematical morphology regularization by adjunction (see Section 4) as a
preprocessing step to optical character recognition softwares is assessed. In Section 5.6, we present a novel
evaluation framework for the hierarchies of partitions designed to capture various aspects of those represen-
tations corresponding to their use in computer vision and image analysis tasks. Based on this framework,
we assess that hierarchical watershed methods, as presented in Section 3.2, are valuable candidates for such
tasks. Finally, we present in Section 5.7, a search engine dedicated to browsing a database of digitized 3D
artwork models. Each model is described by regional attributes computed on the regions of a watershed
partition such as described in Sections 2.2 and 2.3.
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This dissertation is completed by the full list of our publications (Section 7) and by our CV provided
in appendix.
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2. IMAGE SEGMENTATION AND WATERSHEDS

2.1. Region merging and watershed on vertices

2.1.1. Fusion graphs, region merging and thinness of binary watersheds

Image segmentation is the task of delineating objects of interest that appear in an image. For this
important and di�cult task, connectivity often plays an essential role : in many cases, the result of such a
process, also called a segmentation, is a set of connected regions lying in a background which constitutes
the separation between regions. To de�ne regions, an image is often considered as a graph whose vertex
set is made of the pixels of the image and whose edge set is given by an adjacency relation on these
pixels. In this framework � , the regions correspond to the connected components of foreground pixels (see
for instance Figure 1) and are separated by a background. When the background set cannot be reduced, by
point removal, while preserving the number of regions of the foreground set, it is called acleft or a (binary)
watershed[6, 96]. The notion of a cleft can be seen as a formalization of the intuitive notion of a frontier.

A popular approach to image segmentation, called region merging [246, 269], consists of progressively
merging pairs of regions, starting from an initial segmentation that contains too many regions (see, for
instance, Figures 1a and b). Given a subsetS of an image equipped with an adjacency relation, merging
two neighboring regions (connected components) ofS is not straightforward. A problem occurs when we
want to merge a pair of neighboring regionsA and B of S and when each point adjacent to these two regions
is also adjacent to a third one that we want to preserve during the merging operation. Figure 1c illustrates
such a situation, wherex is adjacent to regionsA; B; C and y to A; B; D . Thus, we cannot mergeA and B
while preserving both C and D. This problem has been identi�ed in particular by T. Pavlidis (see [246],
section 5.6 : �When three regions meet�), and, as far as we know, has not been solved in general.

A second question arises when dealing with such segmentations, called clefts, on a graph. Given a pixel
adjacency graph, such as the one induced by the usual 4-adjacency relation [192] on a set of image pixels (see
Figure 1b), we observe that a cleft may contain some � inner points �, i.e., points which are not adjacent
to any point outside the cleft (see Figure 1d,e). We can say that a cleft on this graph is not necessarily
thin. On the other hand, such inner points do not seem to appear in any cleft when the considered graph
is induced by the 8-adjacency relation (see,e.g., Figure 1f ). We prove in [6] that this assertion is indeed
true. More interestingly, we provide in [6, 9] a framework to study properties of thinness of clefts in any
kind of graph, and we identify the class of graphs in which any cleft is necessarily thin.

Four classes of fusion graphs. A �rst major contribution of [6] is the de�nition of a merging operation
and the study of four nested classes of graphs in which the problematic situations, such as the one pointed
out in the previous paragraph, are progressively avoided. These graphs are called the weak fusion graphs,
the fusion graphs, the strong fusion graphs and the perfect fusion graphs. In particular, a graph is afusion
graph if any region A in this graph can always be merged with another regionB , while preserving all other
regions. We provide local characterizations of two of these classes and show that the two others cannot be
locally characterized. Furthermore, we show that the class of perfect fusion graphs is a subset of the one of
line graphs, which is well studied in graph theory (see,e.g., [94]).

Thinness of separations. One of the most striking outcomes of [6] is that the class of fusion graphs
is exactly the class of graphs in which any cleft is thin (i.e., a cleft in which any point is adjacent to at
least one region).

� . Another framework, popular in image analysis, consists of considering a segmentation as a partition of the
image domain where each element of the partition represents a segmented region. Thus the regions are not separated
by �background pixels�. As we will see in Section 2.2, in many cases, this framework also falls in the scope of the
present study.
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Figure 1. (a) : Original image (cross-section of a brain, after applying a gradient operator). (b) : A
segmentation of (a) (obtained by a watershed algorithm [219] using the 4-adjacency relation). (c) : A zoom
on a part of (b) ; the graph induced by the 4-adjacency relation is superimposed in gray. (d) : The inner
points (black points not adjacent to any white point) of (a). (e) Another zoom on (b) showing two inner
points w and z. (f) : A segmentation of (a) with the 8-adjacency relation : there is no inner point.

Region merging with usual adjacency relations. Using this framework, we analyze the status of
the graphs which are the most widely used for image analysis in 2D and in 3D. In one of the four classes of
graphs which we have introduced and that we call the class of theperfect fusion graphs, any two neighboring
regionsA and B can always be merged, while preserving all other regions, by removing from the separation
all the pixels which are adjacent to bothA and B . In 2-dimensional image analysis, two adjacency relations
on Z2, called the 4- and the 8-adjacencies[192], are commonly used. With the 4-adjacency (resp. the 8-
adjacency), each point is adjacent to its 4 (resp. 8) closest neighbors. For instance, the graph in Figure 1c
is induced by the 4-adjacency. As seen above, the two neighboring regionsA and B cannot be merged,
while preserving all other regions, by removingx and y from the set of black vertices. Thus, in general, the
graphs induced by the 4-adjacency are not perfect fusion graphs. Similar con�gurations can be found with
the 8-adjacency. Thus the graphs induced by the 8-adjacency are not perfect fusion graphs either. More
generally, the graphs induced by the direct and the indirect adjacencies [188, 192], which generalize the
4- and the 8-adjacencies toZd, are not perfect fusion graphs (see Section 6 in [6]). Additionally, we have
proved that the graphs induced by the 8-adjacency relation are fusion graphs. Hence, any cleft is thin in
these graphs. On the other hand, no other graph induced by the direct and indirect adjacency relations is
a fusion graph, hence thick clefts may be found on these graphs.

Uniqueness of perfect fusion grids in arbitrary dimension. In [6], we introduce a family of graphs
on Zd that we call the perfect fusion grids, which can be used in image analysis, which are indeed perfect
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Figure 2. Illustration of the two perfect fusion grids on Z2. The gray squares constitute subsets of the
two chessboard onZ2 and the associated graphs are the subgraphs of the perfect fusion grids(Z2; � 2
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Figure 3. (a) A segmentation of Figure 1a obtained on a perfect fusion grid. (b) A zoom on a part of
(a) ; the regionsA, B , C and D correspond to the ones of Figure 1c ; the corresponding perfect fusion grid
is shown in gray. (c) Same as (b) after having mergedB and C to form a new regionE.

fusion graphs, and which are � between � the graphs induced by the direct and the indirect adjacencies. Let
us give an intuitive presentation of these graphs in the two dimensional case. Consider the setC of all black
squares in a chessboard (see Figure 2). The perfect fusion grid is simply the graph obtained, by setting
adjacent any two corners which belong to a same square inC (see, for instance, the two graphs depicted
Figure 2). Figure 3a shows a set of regions obtained in this grid thanks to a watershed algorithm [7]. It
can be seen on Figure 3b that the problems pointed out in the previous paragraphs do not exist in this
case : any pair of neighboring regions can be merged by simply removing from the black vertices the points
which are adjacent to both regions (see Figure 3b,c). Furthermore, it can be veri�ed on Figure 2 that
any two points which are 4-adjacent are necessarily adjacent for the perfect fusion grid and that any two
points adjacent for the perfect fusion grid are necessarily 8-adjacent. In this sense, the perfect fusion grid
satis�es the geometric constraint of being � between � the graphs induced by the 4- and the 8-adjacency
relations. The main result of [9] establishes that the perfect fusion grid is the only perfect fusion graph
on Zd which is between the direct and the indirect adjacency relations, whatever the dimensiond 2 N?. As
far as we know, up to now, in digital topology, there exists only one other result of unicity of an adjacency
relation in arbitrary dimension. It is due to Kong [191] and, informally, it states that the only Alexandro�
topology on Zd � between the direct and the indirect adjacency relations � is the topology proposed by
Khalimsky [184].
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2.1.2. Weighted fusion graphs and watersheds

Given a grayscale image, or more generally a vertex-weighted graph (i.e., a graph and a map that
assigns a scalar value to each vertex), the watershed transform [102, 134, 144, 219, 307] is a powerful tool
to obtain an initial segmentation for a region merging procedure. Let us consider a 2D grayscale image as
a topographical relief, where the dark pixels correspond to basins and valleys, whereas the bright pixels
correspond to hills and crests. Suppose that we are interested in segmenting dark regions. Intuitively, the
watersheds of an image are constituted by the crests which separate the basins corresponding to regional
minima. This notion is illustrated in Figure 4, where the white points in Figure 4(c) constitute a watershed
of the image in Figure 4(a) equipped with the 8-adjacency relation. Due to noise and texture, real-world
images often have a huge number of regional minima, hence the mosaic aspect of Figure 4(c). Nevertheless,
it has been shown in numerous applications that this segmentation is an interesting starting point for a
region merging process (see,e.g., [105, 168, 179])y.

B
A

R
p
q

x
w

z

S

T

U

(a) (b) (c) (d)

Figure 4. (a) : Original image (cross-section of a brain, after applying a gradient operator) ;(b) : a
topological watershed of(a) with the 8-adjacency ; (c) : the divide X (white points) of the topological
watershed shown in b ;(d) : a zoom on a part of c. The pointx is interior for X and w and z are adjacent
to a unique connected component of the complementary setX of X .

In a merging process, in order to identify the next pair of neighboring regions to be merged, many
methods are based on the values of the points that belong to the initial separation between regions. In par-
ticular, in mathematical morphology, several methods [100, 222, 236] are implicitly based on the assumption
that the initial separation satis�es a fundamental constraint : the values of the points in the separation
must convey a notion of contrast, called connection value, between the minima of the original image. The
connection value between two minimaA and B is the minimal value  such that there exists a path fromA
to B the maximal value of which is  . From a topographical point of view, this value can be intuitively
interpreted as the minimal altitude that a global �ooding of the relief must reach in order to merge the
basins that �ood A and B . As studied in [234], obtaining a separation which is guaranteed to satisfy such
constraint is not straightforward.

In the topological approach to the watershed [96, 134, 136], we consider a transformation that iteratively
lowers the value of a mapF while preserving some topological properties, namely the number of connected

y. Note that, in the framework of mathematical morphology, there exists another approach, calledwatershed from
markers [102], to reduce the so-called over-segmentation problem. In many cases, this approach may be seen as a
region merging procedure (see [221]).
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components of each lower threshold ofF . This transform and its result are called W-thinning ; a topological
watershed being a W-thinning that is minimal for the relation � on maps. This notion is illustrated in
Figure 4 where the mapH (Figure 4(b)) is a topological watershed ofF (Figure 4(a)) equipped with the
8-adjacency relation. The divide of a map is the set of points that do not belong to any regional minimum
(see the divide ofH in Figure 4(c)). It has been proved in [96, 234] that the values of the points in the divide
of a W-thinning convey the connection value between the minima of the original map. More remarkably,
any set of points that veri�es this property can be obtained by a W-thinning. Therefore, the divide of a
W-thinning is a good choice for the initial segmentation in many region merging methods.

The divide of a W-thinning and, in particular, of a topological watershed is not necessarily thin. Firstly,
we observe that the divide of a topological watershed can contain some points adjacent to a unique connected
component of its complement (see the pointsw and z in Figure 4(d), which depicts a zoom on a part of
Figure 4(c)). Secondly, it may also contain some inner points,i.e., points that are not adjacent to any
point outside the divide (see point x in Figure 4(d)). For implementing region merging schemes, these two
kinds of thickness are problems. For instance, in Figure 4(d), regionsA and B , which we would intuitively
consider as neighbors, could hardly be considered as candidate to be merged in a computerized procedure
since there is no point in the divide which is adjacent to both. To solve the �rst problem, we want any
divide to be a cleft, that is a set of vertices that does not contain any point adjacent to a unique connected
component of its complement. However, in general, a cleft is not necessarily thin. It can indeed contain
some inner points and thus the second problem remains.

Thinness of watershed separations. In order to propose a solution to these issues, we have studied
topological watersheds in vertex-weighted perfect-fusion graphs. One of our main result in [7] establishes
that in a perfect fusion graph the divide of any topological watershed is always a thin cleft. In addition we
have also been able to establish the following original contributions.

Thinness of maps. We introduce a notion of thinness for maps and characterize, thanks to a merging
property, the class of graphs in which any topological watershed is thin.

Monotone immersion-like watershed. We introduce a transformation, called C-watershed, that ne-
cessarily produces a map whose divide is a cleft. We give a local characterization of the class of graphs
in which any C-watershed is a W-thinning, this class being a sub-class of the class of fusion graphs and a
super-class of the one of the perfect fusion graphs, allowing us to deduce the result of thinness of topolo-
gical watershed in perfect fusion graphs. In order to compute C-watersheds on perfect fusion graphs, we
introduce a linear-time immersion-like monotone algorithm, whereas, in general, a linear-time W-thinning
algorithm does not exist and a monotone �ooding algorithm does not lead to a divide satisfying the contrast
preservation property mentioned above.

Grayscale characterizations of perfect fusion graphs. Finally, we derive some characterizations
of perfect fusion graphs based on thinness properties of both C-watersheds and topological watersheds.

From these results, we can state that the perfect fusion grids constitute an interesting alternative to
classical grids for watershed-based region merging methods when the obtained regions are intended to be
separated by image pixels. An example of such a procedure could be described, starting from a cleft which
is the divide of a C-watershed, by the iteration of the following three steps : (i) select the most signi�cant
region A according to a given criterion (e.g. the one with least dynamics described in [97, 164]) ; (ii) select
a region B such that A and B are neighbors and the minimal value of the points adjacent to bothA and B
is minimal ; and (iii) merge A and B by removing from the cleft all points adjacent to both A and B . An
illustration of such a scheme using the dynamics is shown in Figure 5.

Due to the notion of a line graph, which is well studied in graph theory, we show that the properties
established for vertex-weighted perfect fusion graphs also hold true for edge-weighted graphs. This last
result invites us to investigate in depth a notion of watersheds for edge-weighted graphs.
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(a) (b) (c) (d)

Figure 5. Region merging on a perfect fusion grid ;(a), the divide of a C-watershed of Figure 4(a) ; and
(b; c; d), several steps of region merging starting from(b).

2.2. Watershed on edges

Since the early work of Zahn [318], several e�cient tools for image segmentation have been expressed in
the framework of edge-weighted graphs. In general, they extract a cut from a pixel adjacency graph (i.e.,
a graph whose vertex set is the set of image pixels and whose edge set is given by an adjacency relations
on these pixels). Informally, a cut is a set of edges which, when removed from the graph, separates it into
di�erent connected components : it is an inter-pixel separation which partition the image. Given a set of
seed-vertices, which �mark� regions of interest in the image, the goal of these operators is to �nd a cut for
which each induced connected component contains exactly one seed and which best matches a criterion
based on the image contents. In order to de�ne such a criterion, each edge of the graph is weighted by
a measure of similarity (or dissimilarity) between the two pixels linked by this edge. In this context, the
principle of min-cut segmentation [111] (and its variant [286]) is to �nd a cut for which the (weighted)
sum of edge weights is minimal. Shortest-path forest approaches such as [151, 270] are also expressed in
edge-weighted graphs. They look for a cut such that each vertex is connected to the closest seed for a
particular distance in the graph. In [162], the author considers another approach where the weight of an
edge is interpreted as the probability that a random walker chooses this edge, when standing at one of its
extremities. Then, the proposed segmentation operator �nds a cut for which each vertex is connected to
the seed that this random walker starting at this vertex will �rst reach.

For topographic purposes, the watershed has been extensively studied during the 19th century by
Maxwell [216] and Jordan [182] among others. One hundred years later, the watershed transform was
introduced by Digabel and Lantuéjoul [144] for image segmentation and is now used as a fundamental step
in many powerful segmentation procedures such as the region merging segmentation methods presented in
the previous section. Many approaches [7, 101, 103, 134, 218�220, 235, 307] have been proposed to de�ne
and/or compute the watershed of a vertex-weighted graph corresponding to a grayscale image. The digital
image is seen as a topographic surface : the gray level becomes the elevation, the basins and valleys of the
topographic surface correspond to dark areas, whereas the mountains and crest lines correspond to light
areas. Intuitively, the watershed is a subset of the domain, located on the ridges of the topographic surface,
that delineates its catchment basins. One of the most popular method to obtain a watershed consists of
simulating a �ooding of the topographic surface from its regional minima [102, 219, 307]. The divide is
made of � dams � built at those points where water coming from di�erent minima would meet. Another
approach, called topological watershed [96, 134, 136] (presented in the previous section), allows the authors
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to rigorously de�ne the notion of a watershed in a discrete space and to prove important properties not
guaranteed by most watershed algorithms [234]. It consists of lowering the values of a map (e.g., the grayscale
mage) while preserving some topological properties, namely, the number of connected components of each
lower cross-section. In this case, the watershed divide is the set of points which are not in any regional
minimum of the transformed map.

An important motivation of our work in [8, 10] is to provide a notion of watershed in the unifying
framework of edge-weighted graphs that can help to precisely determine the relation between watersheds
and the popular methods presented in the �rst paragraph. In this framework, a watershed is a cut. Before
going further, let us emphasize that any practical comparison between watersheds in edge-weighted graphs
and in vertex- weighted graphs should be made with care. Indeed, in general, the choice of one of these
frameworks depends on the application. In particular, the framework of vertex-weighted graphs is adapted
when the segmented regions must be separated by pixels. In this case, note that the watershed separation
is not necessarily one pixel width and can be arbitrary thick (see a study of this problem in the previous
section). On the contrary, when an inter-pixel separation is desired, the framework of edge-weighted graphs
is appropriate.

Before presenting the watershed in edge-weighted graphs in the next paragraphs, let us brie�y introduce
some basic ways to de�ne an edge-weighted graph for segmenting a digital image. The graph can be obtained
as a pixel or as a region adjacency graph : its vertex set is either the domain of the image to be processed
or the set of regions of an initial partition of the image domain. In the latter case, the regions are often
called the �image superpixels� (see,e.g., [83]). In both cases, two typical settings for the edge set can be
considered : (1) the edges are obtained from an adjacency relation between the image pixels, such as the
well known 4- or 8-adjacency relations ; and (2) the edges are obtained by considering, for each vertex, its
nearest neighbors for a distance in a features space onto which the vertices are mapped. A common feature
space (see,e.g., [153]) is the one where each pixel of a color image is mapped to a vector in dimension 5
made of the two spatial coordinates and the three spectral values describing the color of the pixel. The
weight of an edge represents the dissimilarity of the pixels linked by this edge. For instance, in the case
where the vertices are the pixels of a grayscale image, the weight of an edge can be the absolute di�erence of
intensity between the two linked pixels. More elaborated weight map can be considered including distances
in feature spaces as done in [153] or learned gradient such as the one of [146]. The precise setting of the
graph depends on the application context and will be discussed with more details in Section 5.6.

Drop of water principle. Our �rst contribution on the watershed problem in edge weighted graphs
is a new de�nition of a watershed. Unlike previous approaches in discrete frameworks, the watersheds-
cuts [8, 10] are de�ned thanks to the formalization of the intuitive �drop of water principle�. Intuitively, a
watershed cutis a cut for the minima of the original map (i.e., each connected component induced by the
cut contains one and only one minimum of the map) which satis�es the drop of water principle (i.e., from
each edgeu of the cut, there exists two descending paths starting atu, ending in two distinct minima of
the map, and not crossing any edge in the cut). An illustration of this notion of watershed cut is provided
in Figure 6(a,b).

Consistency. Our second contribution in [8, 10] establishes the consistency of watershed-cuts. In par-
ticular, we prove that they can be equivalently de�ned by their �catchment basins� (through a steepest
descent property) or by the �dividing lines� separating these catchment basins (through the drop of water
principle presented in the previous paragraph). As far as we know, in discrete frameworks, our de�nition is
the �rst one that satis�es such a property.

Optimality. Our third contribution in [8, 10] establishes the optimality of watershed-cuts. In [221], F.
Meyer shows the link between minimum spanning forests (MSF) and �ooding from marker algorithms. We
extend the problem of minimum spanning forests and show that there is indeed an equivalence between the
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Figure 6. Illustration of watershed and MSF cuts on edge-weighted graph. (a) A graphG and an edge-
weight map w ; the minima of w are depicted in bold ;(b), the set of dashed edges is a watershed cut ofw ;
and (c), the subgraph in bold is an MSF rooted in the minima ofw and the induced MSF-cut is composed
by the dashed edges.

watershed-cuts and the cuts induced by minimum spanning forest rooted in the minima of the weight map.
Such minimum spanning forest and its induced cut are illustrated in Figure 6

Linear-time algorithm. Our fourth contribution in [8, 10] consists of a linear-time algorithm to
compute the watershed-cuts of an edge-weighted graph. The proposed algorithm does not require any
sorting step, nor the use of any sophisticated data structure such as a hierarchical queue or a representation
to maintain unions of disjoint sets. Thus, whatever the range of the edge weights, it runs in linear time
with respect to the size (i.e., the number of edges) of the input graph. Furthermore, this algorithm does not
need to compute the minima in a preliminary step. To the best of our knowledge, this is the �rst watershed
algorithm satisfying such properties.

Thinning. Our �fth contribution in [8, 10] is a new thinning paradigm to characterize and compute
the watershed cuts. Intuitively, a thinning is obtained from an edge-weighted graph by iteratively lowering
the values of the edges that satisfy a certain property. We propose three di�erent properties for selecting
the edges which are to be lowered. They lead to three di�erent thinning strategies. The e�ect of these
transforms is to extend the minima of the original map in a way such that the minima of the transformed
map constitute a minimum spanning forest rooted in the minima of the original map. Thus, we can prove that
these thinnings allow for characterizing watershed cuts. The �rst of these three schemes uses a purely local
strategy to detect the edges which are to be lowered. It is therefore well suited to parallel implementations.
The second one leads to a sequential algorithm which runs in linear-time (with respect to the number of
edges of the graph) whatever the range of the weight function and which is di�erent than the one quoted in
the previous paragraph. In practice, this second linear-time watershed cut algorithm is more �exible than
the �rst one. Indeed, it allows the user to choose (with respect to the application requirements) between
several strategies for setting the watershed position in the case where multiple acceptable solutions exist
(e.g., when the watershed must be positioned across a plateau of constant altitude). Finally, our third
thinning strategy establishes the link between watershed cuts and the popular �ooding algorithms.

Connection value. Due to noise and texture, the weight maps derived from real world images often
have a huge number of regional minima. Thus, their watersheds de�ne too many catchment basins. As
presented in Section 2.1.2, a common issue to reduce this so-called over-segmentation is to use the result of
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the watershed as a starting point for a region merging procedure. In order to identify the pairs of neighboring
regions to be merged, many methods are based on the values of the points or edges that belong to the initial
separation between regions. In particular, in mathematical morphology, several methods [100, 222, 236]
assume that the values of the points or edges in the separation convey the connection value between any
two minima of the original map. We recall that the connection value [96, 97, 234] between two minimaA
and B is the minimal value  such that there exists a path fromA to B along which the maximal weight
is  . Surprisingly, in vertex-weighted graphs, several watershed algorithms do not produce a separation
that veri�es this property. In this case, the watershed is not on the most � signi�cant contours � [234] and
cannot be used to correctly compute morphological hierarchies such as those proposed in [100, 222, 236].
Our seventh contribution in [8, 10] is to establish that the values of the edges in any watershed cut (resp.,
more generally, in any cut induced by a minimum spanning forest) are su�cient to recover the connection
values between the minima of the original map (resp., between the roots of the forest).

Shortest paths. In fact, the connection value itself is used for de�ning several important segmentation
methods such as the fuzzy connectedness segmentation [123, 270, 301, 302], the image foresting transform
[151] or the topological watershed [96]. Indeed, the two �rst methods fall in the category of shortest-path
forests if a shortest path between two pointsx and y is de�ned as a path which � realizes � the connection
value betweenx and y. In other words, in this setting, the length of a path is the maximum value of an
edge along the path. Such a shortest-paths forest is called a -shortest-path forest. Our eighth contribution
in [8, 10] is a proof that any minimum spanning forest is a -shortest-path forest and that the converse is,
in general, not true. We also show that any watershed cut is a topological cut (i.e., a separation induced by
a topological watershed de�ned in an edge-weighted graph) but that the converse is, in general, not true.
We emphasize that this study helps, in practice, to choose among these segmentation techniques the one
which will best solve a particular problem.

Figure 7 summarizes our main contributions on the watershed problem in edge-weighted graphs. The
interest of watershed cuts to segment grayscale or color images and its versatility to segment, tensors medical
images is illustrated in Figures 8 and 9. Note also that the minimum spanning forest cuts, presented for
showing the optimality property of watershed cut, can be used as a marker-based segmentation procedure
when the forest is rooted in user-provided markers (or in markers provided by an automated algorithm). An
illustration of such procedure is shown in Figure 10. In forthcoming Section 5, watershed-based softwares
solving real-world application problems are assessed.

As shown with the above contributions, the watershed cut framework is interesting and fruitfulper-se.
Additionally, following the publication of [8, 10], this framework was shown seminal by opening the water-
shed doors towards other popular problems of combinatorial optimization and image processing. Indeed, a
new type of convergence, under some (power) transformation of edge-weights, towards minimum spanning
forests has been established in [32, 84, 118, 133, 141] for min-cuts [111], random-walks [162], usual shortest
paths (where the length of a path is de�ned as the sum of the successive edge weights) [151], and spectral
clustering [310]. This work allows certain watershed and MSF segmentation results to be embedded into
an energy minimization framework. Conversely, when there exist multiple solutions to the watershed pro-
blems, this framework allows one to select an optimal MSF/watershed segmentation in the sense of these
enegies. Note that results in the same spirit are presented in [124] for the fuzzy-connectedness segmentation
methods. The thinning paradigm introduced to characterize watershed cuts in the edge-weighted graphs
also invite us to study the link between the watersheds and the homotopic thinning and, then, to revisit
some topological properties of watersheds which were studied in continuous settings during the 70s. The
investigation of such links is precisely the topic of the next section.
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Figure 7. Summary of our main contributions on the watershed problem in edge-weighted graphs. In
the �gure, N ! N 0 means that the notion N is a particular case of the notionN 0, hence,N $ N 0 means
that the notions N and N 0 are equivalent ;A 99KN means that the notion N can be computed thanks to
algorithm A.

2.3. Homotopy, collapses and watersheds on simplicial complexes

The notion of topological W-thinning, introduced and studied in [96, 134], shows that the watershed
transformation ( i.e., the process that computes a topological watershed from a map) can be investiga-
ted through a process involving the preservation of a single topological invariant, namely the number of
connected components. Figure 11 depicts an objectX that has two connected components. It has also
two holes, meaning in 2D that its background contains two �nite connected components. The number
of holes is another topological invariant, that is, a quantity which is left unchanged by any continuous
deformation. The intuitive notion of continuous deformation (see an example with Figure 11(b) and a
counter-example with Figure 11(c)) is formalized by the notion of homotopy (the interested reader may
refer to, e.g., [215] for a complete exposition). Transformations that preserve all topological characteristics,
known as topology-preserving transformations, are used in many applications of image analysis. Homotopic
skeletonization [135, 192] is the best known and the most used transformation of this kind, with many ap-
plications both in 2D and 3D. In particular, skeletons are often used as a simpli�cation of the original data,
which facilitates shape recognition, registration, or animation. In Figure 12, we show in (c) an example of
homotopic skeleton, obtained from the 2D object depicted in (a).

For our purpose, it is important to mention the medial axis, a geometrical notion introduced by Blum.
for image analysis in the 60s [108, 109]. Intuitively, the medial axis of an objectX is the set of the points
in X with at least two closest points on the boundary ofX (see Figure 13a). It is thus �centered� inX , and
in the continuous framework, it has nice topological properties which assess that the medial axis is thin and
contains the same topological information as the original object. More precisely, if we consider an objectX
that is an open subset ofRn and its medial axis MA (X ), then :

� there is a homotopy between MA (X ) and X , as stated by G. Matheron in [212, 213] and proved by
A. Rivière in [259, 260] and by A. Lieutier in [199] ; and

� the interior of MA (X ) is empty [212, 213] and moreover,MA (X ) is Lebesgue negligible [259, 260].
Furthermore, if we denote byDX the distance map ofX (that is, the map that associates to each pointx

of X the Euclidean distance fromx to the boundary of X ), the medial axis MA (X ) can be obtained by
extracting the �crests� of DX , or more precisely, the pointsx of X such that there exists at least two
distinct steepest descent paths forDX starting from x. This property is illustrated in Figure 13(b), where
the distance map of a rectangle is depicted as a topographical relief, and steepest descent paths issued from
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(a) (c) (e) ( f )

(b) (d) ( f ) (g)

Figure 8. Results obtained by applying a grayscale watershed on a �ltered map.(a), The cameraman
grayscale image and(b), an image representation of an edge-weighted graph derived from(a) where the
edges are given by the 4-adjacency relation and the weight of an edge is the absolute di�erence of intensity
between the pixels linked by this edge.(c; d) A watershed-cut (with a image area �ltering parameter k = 22
pixels) superimposed in white to the original imageI ; (e; f ) a watershed in a vertex weighted graph (�ooding
algorithm of [219]) of the �ltered (area parameter k = 22 pixels) Deriche optimal edge detector ; and(g; h)
same as(c; d) from a morphological gradient. In each image, the image resolution is doubled in order to
superimpose the resulting contours.

two crest points are shown. Also in Figure 12, the map depicted in (b) is the distance map of the object in
Figure 12(a), and the skeleton shown in Figure 12(c) corresponds to a discrete notion of a medial axis.

Through the notion of distance map, an interesting link between watershed and medial axis has been
stated by L. Najman and M. Schmitt in [235]. They showed that the watershed ofDX is a subset of
the medial axis MA (X ). This property is illustrated in Figure 12, where it can be observed that the
watershed (Figure 12(d)) of the distance map (Figure 12(b)) of Figure 12(a) is indeed a subset of the
skeleton (Figure 12(c). More precisely, the watershed is composed by all the points of the skeleton that are
adjacent to several connected components of its complementary set.

As far as we know, such a link between watershed and medial axis had never been established in a discrete
framework. Moreover, in the framework of digital topology which is used in a majority of applications in
image processing, fundamental properties like homotopy and thinness of skeletons cannot be both satis�ed,
as shown by the counter-examples of Figure 14.

Watershed on simplicial complexes. The work presented in [15], which aims at establishing such
links between watersheds and homotopy, holds true in a large family ofn-dimensional discrete spaces,
namely the pseudomanifolds. It is developed in the framework of simplicial complexes (triangulated objects)
of arbitrary dimension, a pseudomanifold of dimensionn being a simplicial complex without any � pinching
of dimensionn � 1 � (see examples and counter-examples of pseudomanifolds in Figure 15). The �rst main
contribution of [15] is the de�nition of a watershed on these spaces that is based on the drop of water
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(a) (b) (c)

Figure 9. Di�usion tensor images segmentation.(a) : A close-up on a cross-section of a 3D brain DTI.
(b) : Image representation of the markers (same cross-section as(a)), obtained from a statistical atlas, for the
corpus callosum (dark gray) and for its background (light gray) (c) : Segmentation of the corpus callosum
by an MSF-cut for the markers. The tensors belonging to the component of the MSF which extends the
marker labeled �corpus callosum� are removed from the initial DTI : thus the corresponding voxels appear
black.

principle presented in Section 2.2.

Homotopy and watersheds. The second main contribution of [15] is a property that establishes
a relation between watershed and homotopy in this discrete framework. This link is even more general
than the one discussed above in the continuous framework, as it holds true for arbitrary maps, distance
maps being just a particular case, and for skeletons which are not necessarily medial axes. The notion of
homotopy considered in [15] relies on the collapse operation [313], a topology-preserving transformation
known in algebraic topology. Then, it is proved in [15] that any watershed of a mapF is made of the closed
contours of an ultimate collapse of the divideX of F (the elements of the space that do not belong to any
regional minimum of F ), establishing a direct link between the watersheds ofF and the homotopy type
of X .

Watershed characterization with map homotopy. The third main contribution of [15] is an equi-
valence result that establishes a deep link between watersheds and homotopy of maps, which is de�ned
in [99, 139] by considering the homotopy of every level sets of the considered maps. Intuitively, it states
that a set X is a watershed of a mapF if and only if there exists a so-called ultimate collapseH of F (this
ultimate collapse is also a map) such thatX is exactly the set of points adjacent to several distinct minima
of H . To the best of our knowledge, no result of this kind has been obtained until now. Furthermore, due to
this result, e�cient algorithms based on homotopic transforms can be derived for computing a watershed
of a map.

Watershed dimension. An additional contribution of [15] is a property of thinness of watersheds and
ultimate collapses in pseudomanifolds : in a pseudomanifold of dimensionn, the dimension of any watershed
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(a) (b)

(c) (d) (e)

Figure 10. Illustration of di�erent watersheds from markers. (a) Original image ; (b) the markers are
superimposed in black. In the second row the resulting watersheds are superimposed in black to the original
image.(c) : Relative MSF ; (d) : watershed by �ooding of the Deriche optimal edge detector ;(e) : watershed
by �ooding of a morphological gradient of the image.

connected components

holes

(a) (b) (c)

Figure 11. Illustration of some topological invariants in 2D. (a,b,c) are objects with 2 connected com-
ponents and 2 holes, (b) can be obtained from (a) by a continuous deformation, whereas (c) cannot. Any
continuous deformation preserves the topological invariants such as the number of connected components
and the number of holes.

and of any ultimate collapse is at mostn � 1.

The proposed notions can be used for segmenting the triangulated surfaces of 3D objects (see,e.g.,
Figure 16). Within this application context, the segmentation of simplicial complexes was the subject
of many articles in the last decade. L. De Floriani et al. [128, 155] tackled the problem as a Smale-
like decomposition in discrete Morse theory (see also [180]) where the simplicial complex is segmented
into ascending and descending subcomplexes. Based on the same theory, H. Edelsbrunner and J. Harer
[148] proposed another decomposition algorithm and they informally discuss some links with watershed
algorithms. Furthermore, since the pioneering work of Mangan et al. [205], many applications involving the
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(a) (b) (c) (d)

Figure 12. Illustration of a relation between watersheds and homotopic skeletons. (b) An set. (b) : the
distance map of (a) represented as a topographical relief. (c) : a homotopic skeleton of (a). (d) : A watershed
of (b).
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Figure 13. Illustration of the medial axis. (a) The object X is the interior of the depicted rectangle.
The points a; b (resp. c; d) are the points of the boundary of X closest to x (resp. y), hence x and y are
medial axis points. The point z has only one closest pointe on the boundary, thus it is not a medial axis
point. The medial axis of X , made of �ve straight line segments, is depicted. (b) Illustration of the relation
between medial axis and distance map.

segmentation of 3-dimensional meshes have been developed, often without mentioning explicitly simplicial
complexes. The interested reader may refer to surveys articles [89, 285] or to the recentSHREC'12 Track :
3D mesh segmentation challenge[196]. However, as far as we know, before the publication of [15], a formal
study of watersheds in simplicial complexes was not available.

The proposed framework can also be used for segmenting digital images equipped with triangular or
cubical grids (see,e.g., Figure 17). Indeed, all notions and properties presented for simplicial complexes
(which include the triangular grids) can be easily transposed (see [4]) to the framework of cubical complexes
(which include the cubical grids). Cubical complexes have been promoted in particular by V. Kovalevsky
[193] in order to provide a sound topological basis for image analysis. Recent advances in this framework
include the design of new image processing operators [135, 201, 261], new theoretical developments for
considering the topology of digital label images [217], as well as applications in di�erent �elds such as
computer graphics [241] or medical imaging [115, 116].
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Figure 14. Illustration of homotopic skeleton in 2D digital topology ( X; Y; V; W) and in cubical complexes
(Z ) : the object Y (black pixels) is an ultimate skeleton ofX (black pixels). The foreground object in black
is equipped with the indirect adjacency relation (also called 8-adjacency relation) and its complement, the
background object in white, is equipped with the direct adjacency relation (also called 4-adjacency relation).
A homotopic skeleton (namely an ultimate collapse)Z of the two black objectsX and Y considered in the
framework of cubical complexes.(V ) : A homotopic skeleton in the hexagonal grid. The 6-adjacency relation
is used for both the foreground (black) and background (white) objects. Any hexagon that is 6-adjacent to
the black hexagonz is also black.(W ) A homotopic skeleton in the triangular grid. In this grid, we consider
that any two black triangles that share a side or a vertex are adjacent. Note that any triangle adjacent to
the black triangle z is also black. Thus, the three homotopic skeletonsZ , V and W may be considered as
�thick objects�.

(a) (b) (c)

Figure 15. Illustration of 2D simplicial complexes made of the depicted triangles (dark gray), their
sides (medium gray) and their corners (sides intersection). (a) A topological torus. (b,c) Pinched tori :
the pinchings (of dimensions 0 and 1 respectively) are marked in light gray. The tori in (a) and (b) are
pseudomanifolds of dimension 2 whereas the one in (c) is not a pseudomanifold.
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(a) (b) (c) (d)

Figure 16. (a) Rendering of a 2-pseudomanifoldM. (b) A map F on M (which behaves like the inverse
of the mean curvature of the surface, see [12]) (c) A watershed (in black) ofF . (d) Zoom on a part of (c).
The object M shown in (a) is provided by the French Museum Center for Research)
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F H X (in white)

Figure 17. A map F , an ultimate skeleton H of F and a watershedX of F . The map F , de�ned on
the two dimensional cubical complex associated to the square grid (seee.g. [98]), is obtained after some
morphological �ltering of an uranium oxyde image. The second (resp. third) row provides crops on a part
of the images of the �rst (resp. second) row. The images of the third row also provide the interpretation of
the images in terms of cubical complexes. As an illustration of the main result of this paper, it can be seen
that the watershed X of F is also the set of the faces that are adjacent to two distinct regional minima
of H .
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3. HIERARCHICAL ANALYSIS

3.1. Hierarchical segmentations with graphs

Many image segmentation methods, such as the watershed cut method presented in Section 2.2, look
for a partition of the set of image pixels such that each region of the partition corresponds to an object of
interest in the image. Hierarchical segmentation methods, instead of providing a unique partition, produce
a sequence of nested partitionsz at di�erent detail levels, allowing the description of an object of interest
as a union or a merging of several objects of interest that appear at lower detail levels. The level of a
segmentation in the hierarchy is also called a scale (of observation). As noted by Guigueset al. [165], a
hierarchy satis�es two important principles of multi-scale image analysis.

� First, the causality principle states that a contour presents at a scalek1 should be present at any
scalek2 < k 1.

� Second, the location principle states that contours should be stable, in the sense that they do neither
move nor deform from one scale to another.

Since the early work of [246], hierarchical image analysis has been the subject of intense research. For
instance, one can refer to hierarchical watersheds, pioneered in [100, 222, 236], to quasi-�at zone hierarchies,
studied notably in [225, 233, 291], to binary partition trees, introduced in [278], and to the scale-set theory,
initiated in [165]. In the last few years, hierarchical segmentation has become a hot topic as attested by the
popularity of [87], which presents a hierarchical segmentation machinery that reaches excellent practical
results on the Berkeley image segmentation dataset [210, 211].

In [23], we investigate a theory of hierarchical segmentation in graphs as used in image processing. More
precisely, we investigate the relations between di�erent representations of a hierarchy : by a dendrogram
(direct set representation), by a saliency map (a characteristic function), and by a minimum spanning tree
(a reduced domain of de�nition).

Intuitively, the saliency map of a hierarchical segmentation, as introduced in [236], can be seen as an
image of contours where the brightness of a region contour is proportional to the scale of the region in the
hierarchy. More formally, given a graph G = ( V; E) and a hierarchy H = ( P0; : : : ; P ` ) of partitions of V
which is connected forG (i.e., any region in any partition of H is connected inG), the saliency map ofH
is the edge weight map� G(H ) such that the weight of an edgeu joining two vertices x and y is equal to
the minimum index of a partition of H for which x and y belong to a same region. Figure 18 presents a
(connected) hierarchy together with its dendrogram and saliency map representations.

The previous transform associates an edge weight map to any hierarchy. For our purpose of investigating
relations between hierarchical representations, it is important to consider a � reverse � transform which
associates a hierarchy to any edge weight map. To this end, the quasi-�at zones hierarchy of an edge-
weighted graph is fundamental. Given an edge weight mapw, the basic idea is to consider the connected
component partitions of the (lower-) thresholds or level-sets of the mapw, the threshold of w at a given
level � being simply the graph obtained by removing all edges whose weight is above� . The series of
(connected component) partitions obtained when the weight map is thresholded, in increasing order, at
every possible weight value is a hierarchy, called thequasi-�at zones hierarchy of w. The quasi-�at zones
hierarchy transform has long been used in image processing as a hierarchical image segmentation tool.

Bijection between saliency maps and hierarchies. The �rst major contribution of [23] is a bijection
theorem between connected hierarchies and saliency maps. In particular, it is shown that the inverse of the

z. There also exist hierarchical image segmentation and �ltering methods, such as,e.g., [279] and [227] or watershed
methods on the vertices of a graph (seee.g., Section 2.1), that deal with series of nested partial partitions (i.e., nested
partitions of subsets of the image pixels). The study of these methods is beyond the scope of this manuscript. The
interested reader can refer to [266] for an algebraic study encompassing these methods.
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Figure 18. (a-d) Illustration of a hierarchy H = ( P0; P1; P2; P3). For every partition, each region is
represented by a gray level : two dots with the same gray level belong to the same region. (e) The hierarchyH
is represented as a (component) tree, often called a dendrogram, where the inclusion relation between the
regions of the successive partitions is represented by line segments. (f) A graphG such that the hierarchy H
is connected forG. (g) The saliency map� G(H ) for the hierarchy H on G.

saliency map transform is the quasi-�at zones transform. In other words, given a hierarchyH, the quasi-�at
zones hierarchy of the saliency map ofH is necessarilyH . Conversely, given a saliency mapw, the saliency
map of the quasi-�at zones hierarchy ofw is preciselyw. In this sense, we can say thatH and � G(H ) are
two equivalent representations of a same hierarchy.

Characterization of saliency maps. The second major contribution of [23] is a new characterization
of the saliency map of a given hierarchy as the minimum function whose quasi-�at zones hierarchy is
precisely the given hierarchy.

Characterization of minimum spanning trees. The third major contribution of [23] is a new
characterization of the minimum spanning trees of a given edge-weighted graph as the minimum subgraphs
(for inclusion) whose quasi-�at zone hierarchies are the same as the one of the given graph. This result
indicates that the quasi-�at zone hierarchy of a graph and of its minimum spanning trees are identical.
Furthermore, it indicates that there is no proper subgraph of a minimum spanning tree that induces
the same quasi-�at zone hierarchy as the initial weighted graph. Thus, a minimum spanning tree of the
initial graph is a minimal graph representation of the quasi-�at zone hierarchy of the initial graph. More
remarkably, a minimal representation of the quasi-�at zones hierarchy of an edge-weighted graph in this
sense is necessarily a minimum spanning tree of the original graph. As far as we know, this characterization
of minimum spanning tree is the �rst one relying on a notion introduced for image processing.

E�cient algorithms for saliency maps and quasi-�at zones hierarchy. We provide e�cient
original algorithms for computing (1) the quasi-�at zones hierarchy of an edge-weighted graph and (2) the
saliency map of a hierarchy. Leveraging on the links established between quasi-�at zones hierarchies and
minimum spanning trees, the algorithm that we propose in [55] to compute quasi-�at zones hierarchies is a
variation around Kruskal minimum spanning tree algorithm [194], [129, chapter 23]. The time complexity of
this algorithm is quasi-linear with respect to the size of the graph provided that the graph edges are either
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already sorted or can be sorted in linear time. Due to the algorithm that we propose in [23], the saliency map
of a hierarchy can be computed in linear-time from its tree-based (dendrogramme) representation. It has
also to be noted that a minimum spanning tree of an edge weighted graph can also be e�ciently computed
in quasi-linear time [119]. Hence, there is an e�cient algorithm for obtaining any of the three studied
hierarchical representations from any other one, allowing one to easily switch from one representation to
another in applications.

The links established between the maps that weight the edges of a graph, the hierarchies on the vertex
set of this graph, the saliency maps on the edges of this graph, and the minimum spanning trees for the
maps that weight the edges of this graph are summarized in the diagram of Figure 19. These links constitute
a necessary theoretical basis for the hierarchical analysis tools presented in the next sections.

Q F Z

Saliency maps onE(G)

Q F Z

Connected hierarchies onV(G)

Maps onE(G) Minimum spanning trees�

(P2): constrained minimization for

(P3): constrained minimization for
the inclusion relationv on graphs.

the� ordering on maps.

Y G

F G (P1): F � 1
G = Q F Z

Figure 19. A diagram that summarizes the results of this section. The solutions to problems(P1), (P2),
and (P3) are quasi-�at zones, saliency maps and minimum spanning trees, respectively. The constraint
involved in (P2) and (P3) is to leave the induced quasi-�at zones hierarchy unchanged. In the diagram,
the symbols G, V (G), and E(G) are used to denote a connected graph, its vertex set, and its edge set
respectively. The symbol QFZ stands for quasi-�at zones, and the symbols� G and 	 G stand for the
saliency map of a hierarchy and of a map respectively.

3.2. Hierarchical watershed cuts and minimum spanning forests

As seen in Section 2.2, a watershed cut of a map associates a region to every regional minimum of this
map. We recall that, due to noise and texture, the maps derived from real-world images often have a huge
number of regional minima, hence the mosaic aspect of watershed partitions (Figure 2.1(a)). In order to
reduce this so-called over-segmentation, which is often unwanted in applications, two main processes have
been considered in mathematical morphology.

1. The �rst one consists, starting from the watershed partitions, of iteratively merging pairs of adjacent
regions until a certain criterion is satis�ed.

2. The second process consists of �ltering the map in order to reduce the number of its minima and
considering the watershed partitions of the �ltered map. In this case, the �ltering is often controlled
by a scalar parameter associated to the amount of minima (or the geometry, contrast, size, of
the minima etc.) which must be suppressed by the �ltering. The connected �lters developed in
mathematical morphology are well adapted to this task.

By its very construction, the �rst process builds a hierarchy and the second one builds a series of
watershed partitions. It is therefore interesting to consider the following problems :
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1. �nd some conditions such that the successive partitions produced by the �rst process are watershed
segmentations.

2. Find some conditions that guarantee that the series of watershed partitions obtained under the
variations of the �ltering parameters in the second process make up a hierarchy (i.e. such that the
partitions are nested).

These problems have long been considered in mathematical morphology and have shown to be closely
related one to each other. However, as far as we know, before the publication of [42, 54, 55], they do not
receive any formal solution in discrete settings. Furthermore, the result of these processes is not in general
a hierarchy of watersheds. The di�culties to tackle these questions are mainly due to the connection
value preservation problem presented in Section 2.1.2 and to the region merging problems observed in
Section 2.1.1. As shown in Section 2.2, in the framework of edge-weighted graphs, these two problems can
be tackled with less di�culties. Therefore, we investigate in [42, 54, 55] hierarchical watershed in edge-
weighted graphs.

Hierarchies of minimum spanning forests and of watershed cuts. The �rst contribution of [42]
is a de�nition of minimum spanning forests (MSF) hierarchies and of watershed cuts hierarchies. MSFs
can be used for marker-based segmentation (see [8] and Section 2.2). Given an edge-weighted graph over
the set of points to be studied (e.g., the pixels of an image) and a subset of points that mark the objects
of interest, the problem is to �nd a spanning forest of minimum total weight such that each connected
component is rooted in (i.e., contains exactly) one marker. The segmentation is then obtained as the
connected components partition of the MSF. The resulting segmentation is therefore optimal in the sense
of minimum spanning forests. If the markers are ranked by importance, anMSF hierarchy relative to these
ranked markers is de�ned as a series of nested MSF such that thek-th MSF is rooted in the k-most
important markers according to the ranking. Thus, when such series exists, one can obtain a series of
associated nested partitions, hence a hierarchy of partitions where every partition is optimal. We recall
that when the markers are the regional minima of the weight map the associated minimum spanning forest
partitions are watershed segmentations de�ned by the drop of water principle [8]. The minima are often
ranked according to extinction values obtained from regional attributes [304]. Extinction values can be
computed from the component tree [279] of the weight map or directly from its quasi-�at zone hierarchy.
Typical attributes are related to the area of the regions, their depth (also called dynamics [97, 164]) or
their volume. Intuitively, the extinction value of a minimum M for a given regional attribute is the smallest
value � M such that the minimum M � disappears � when all components with an attribute smaller than � M

are removed. The resulting hierarchies of partitions are calledhierarchical watersheds. Figure 20 displays
hierarchical watersheds of three images. For each image, two hierarchies are computed : for the �rst one,
the minima are ranked with an area attribute and, for the second one, they are ranked by a dynamics
attribute. Figure 21 shows the application of the same method for the segmentation of the surface of a 3D
object represented as a mesh. The vertices of the considered graph are the triangles of the mesh and two
vertices are linked by an edge if the corresponding triangles share a common side. The edges are weighted
thanks to a curvature function.

Uprootings and MSF hierarchies. The second contribution of [42] is the introduction of the uproo-
ting transformation, which is a formalization of the �rst process presented above in the context of edge-
weighted graphs, and a property which states that uprootings and MSFs hierarchies are equivalent, hence,
providing a solution to the �rst problem stated above. Roughly speaking, given a weight mapw and a
ranking of the minima of w, an uprooting for w is a sequence of graphs(X 0; : : : ; X ` ) such that :

� X 0 is an MSF rooted in the minima of w ;
� X i is obtained by adding to X i � 1 the cheapest edge linking the connected component ofX i � 1

containing the minimum of rank i with a another connected componentC0 of X i � 1. Hence, the
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Figure 20. First column : three color images ; second and third columns : hierarchies of watersheds
(saliency maps) driven by area attribute and by dynamics attribute respectively.

connected component ofX i � 1 containing the minimum of rank i is �merged� to its neighboring
connected component linked by the cheapest cost.

Compatibility with morphological reconstruction. A desirable compatibility property in the
context of morphological �ltering is that any partition of a watershed hierarchy is a watershed cut of
the geodesic reconstruction of the original map by the corresponding markers. In other words, it is desi-
rable that under certain conditions (namely the �ltering step is done by geodesic reconstruction) the two
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Figure 21. Illustration of the segmentation of the surface of a 3D object. First row : a triangular mesh, a
crop on its associated dual graph, and its pseudo-inverse curvature. Second row : a saliency map representing
a hierarchical segmentation of the surface. A framework for the indexing and retrieval of ancient artwork
3D models, using shape descriptors adapted to the surface regions of the segmentations, is detailed in
Section 5.7. The mesh is provided by the French Museum Center for Research and Restoration (C2RMF,
Le Louvre, Paris).

strategies presented in the introduction of this section provide the �same results�. A third major contribu-
tion of [42] is a property stating that this is indeed true in the framework of edge weighted graphs. More
precisely, given a hierarchyH = ( P0; : : : ; P ` ) of partitions and a ranking of the minima of a weight mapw,
the hierarchy H is an MSF hierarchy for this ordering if and only if, the partition Pi is a watershed cut
partition of the geodesic reconstruction ofw by the markers of rank abovei , for any i in f 1; : : : ; `g.

Log-linear time MSF hierarchies algorithm. The fourth major contribution of [42] is an algorithm
to compute an uprooting of a map given any ranking of its minima, hence an MSF cut hierarchy relative
to the given ranking of the minima. This algorithm runs in log-linear time with respect to the size of
graph. It uses Tarjan's union �nd [300] and Fredman and Tarjan's Fibonnacci heap [156] algorithms to
manage collections of connected components and of edges adjacent to these connected components. It is
also interesting to observe that this algorithm computes the resulting hierarchy in the form of a saliency
map de�ned on the minimum spanning tree of the original graph, making use of the bijection between
saliency maps and hierarchies presented in Section 3.1. If one needs the dendrogram representation of the
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hierarchy, the quasi-�at zone algorithm presented in [55] can be used. An additional interesting feature of
this algorithm is its incremental behavior : the �rst levels of the hierarchy are computed based only on the
knowledge of the ranking of the less important minima. Thus, the ranking can be incrementally provided
to the algorithm without any additional computational cost. As far as we know, the algorithm proposed
in [42], is the �rst saliency map algorithm compatible with the morphological �ltering framework.

Constructive links between morphological hierarchies. In [54], we provide a uni�ed presentation
of a family of popular morphological hierarchies in edge-weighted graphs : min-component trees, quasi �at
zone hierarchies, binary partition trees (by altitude ordering), and hierarchy of watershed cuts. For any
hierarchy of this family, we show if (and how) it can be obtained from any other element of the family. In
this sense, the main contribution of [54] is the study of all constructive links between these hierarchies.

Quasi-linear MSF hierarchies algorithm. Leveraging on these links, we derive in [55] e�cient
quasi-linear time or linear time algorithms to compute these hierarchies. In particular, we provide in [55] :

� a quasi-linear time algorithm that computes the binary partition tree by altitude ordering of an
edge-weight map, provided that the edges are either already sorted or can be sorted in linear time.
This binary partition tree is the fundamental structure that we substantially post-process to obtain
the other hierarchies ;

� a linear time post-processing algorithm that computes the quasi-�at zones hierarchy of the edge
weight map ;

� a linear time post-processing algorithm that computes a hierarchy of watershed cuts given a ranking
of the minima of the weight map ;

� a linear time post processing that ranks the minima of the weight map according to extinctions
values by area, dynamics or volume.

As far as we know, these algorithms are the most e�cient known algorithms to compute the aforementioned
hierarchies. Like the uprooting algorithm, this watershed cut hierarchy algorithm produces the resulting
hierarchy in the form of a saliency map de�ned over the edges of the minimum spanning tree of the given
edge-weighted graph, making again use of the bijection between saliency maps and hierarchies presented in
Section 3.1.

3.3. Combinations of hierarchies

One di�culty in the design of many segmentation methods relies on combining di�erent kinds of mea-
sures that are not necessarily homogeneous (e.g., the Mumford and Shah functional integrates photometric
and boundary lengths measures). The same di�culty can occur with hierarchical segmentations, where
di�erent methods can capture distinct properties. With the hierarchical method presented in the previous
section, the use of di�erent attributes to rank the minima leads to hierarchies featuring di�erent aspects
of the image. For instance, with the area attribute, at the highest levels of the hierarchy, small regions
vanish but low contrasted regions can remain. A high level of the area based hierarchies of Figure 20 is
represented in the �rst column of Figure 23. On the other hand, with the dynamics attribute, the highest
levels only contain contrasted regions but very small regions may remain. The second column of Figure 23
presents a high level of each of the dynamics based hierarchy shown in Figure 20. Attributes combining
contrast and area can be designed, but such attributes would probably not be increasing. Attributes that
are not increasing are known to be di�cult to handle [279, 303] and to lead to hierarchies lacking some
important stability properties such as the compatibility with the morphological �ltering. Another approach,
which we investigate in this section, consists of combining hierarchies. To this end, making use of the results
presented in Section 3.1, we work on saliency maps instead of on the direct representation of the hierarchy.
More precisely, the idea is to (1) consider the saliency maps of the hierarchy which are to be merged, (2)
combine the weight of the saliency maps according to some functions fromR2 into R, such as,e.g., the min,
the max or the average of the weights, and (3) consider the quasi �at zones hierarchy of the combination of
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saliency maps as the combined hierarchy. This approach was pioneered in [37] in the framework of graphs
and with illustration in image segmentation. It was also investigated in [185] in the framework of Jordan
nets in the Euclidean 2D planeR2, with applications to fusion of ground truths.

An important contribution of [23, 68] is to explicit and to assess this later approach in the framework
of graphs, which allows, in particular, for processing images of arbitrary dimension. Another contribution
of [23, 68] is to provide an e�cient quasi-linear algorithm for the combinations of hierarchy by in�mum,
by supremum, and by average. Figure 22 presents, for each image of Figure 20 the saliency maps of the
combination by average of the hierarchies obtained with the area and depth attributes (second and third
column of Figure 20). One level of each of these hierarchies is represented in the third row of Figure 23

Figure 22. Hierarchies of partitions (depicted as saliency maps) obtained from the images of Figure 20
(�rst column). Each hierarchy is the combination by average of the hierarchical watersheds by area attribute
(second column of Figure 20) and by dynamics attribute (third column of Figure 20) obtained from the
images of Figure 20 (�rst column).

3.4. Hierarchizing graph-based image segmentation

In order to go beyond hierarchical watershed segmentations and to account for larger class of segmen-
tation criteria, based on the framework of [23], we made in [21, 48] a �rst attempt towards a general theory
for hierarchizing non-hierarchical image segmentation methods depending on a parameter which controls
the desired level of simpli�cation : each level of the hierarchy is �as close as possible� to the result that one
would obtain with the non-hierarchical method using the corresponding scale as simpli�cation parameter.
The introduction of this hierarchization problem in the form of an optimization problem, as well as the
proposed tools to tackle it, is an important contribution of [21] which is detailed below. Indeed, with the
hierarchized version of a segmentation method, the user can just select the level in the hierarchy, controlling
the desired number of regions or can leverage on any of the tools introduced in hierarchical analysis. The
main example investigated in this study is the criterion proposed by Felzenszwalb and Huttenlocher [153].

As seen in Section 3.1, hierarchical analysis is closely related to minimum spanning trees. The �rst use
of this tree in this context dates back to the seminal work of [318]. Lately, its use for image segmentation
was introduced by Morris et al. [230] in 1986. In 2004, both Felzenszwalb and Huttenlocher [153] and Nock
and Nielsen [240] proposed an image segmentation method in which the pixel-merging order is similar to
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Figure 23. First and second column : one level of the hierarchies depicted in Figure 20 ; third column :
one level of the hierarchies depicted in Figure 22. First (resp. second, and third) row : the partitions contain
500 (resp. 75, and 250) regions.

the creation of an MST, so-called �scale of observation�. The methods, while being very e�ective in its own
right, do not produce a hierarchy, and users face some major issues while tuning the method parameters.

� First, the number of regions may increase when the scale parameter increases. This should not be
possible if this parameter was a true scale of observation : indeed, it violates thecausality principle
of multi-scale analysis. Such unexpected behavior of the Felzenszwalb-Huttenlocher method [153] is
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(a) Original

(b) 4 regions (k = 10000) (c) 7 regions (k = 8000) (d) 8 regions (k = 9000)

(e) 4 regions (f) 7 regions (g) 8 regions

Figure 24. Examples illustrating the results of the method proposed by [153] and it hierarchization,
obtained from the original image (a) : three image segmentations, shown in (b), (c) and (d), are obtained
by the method proposed in [153] when the observation scalek is set such thatk = 10000; 8000; 9000that
lead to 4, 7 and 8 regions, respectively. In Figures (b), (c) and (d), the number of regions is not monotonic,
when k increases, and the contours between two di�erentk are clearly not stable ; they illustrate the
violation of the causality and location principles. In contrast, three image segmentations, shown in (e), (f)
and (g), are extracted from the hierarchy computed by our hierarchized version of [153] : both causality
and location principles are respected.

demonstrated in Fig. 24 (b-d).
� Second, even when the number of regions decreases, contours are not stable : they can move

when the scale parameter varies, violating thelocation principle. Such situations generated by the
Felzenszwalb-Huttenlocher method [153] are also illustrated in Fig. 24 (b-d).

Rather than trying to directly build the optimal hierarchy, a current trend in computer vision is to modify
a �rst hierarchy into a second one, putting forward in the process the most salient regions. A seminal work
in that direction is the one of Guigues et al. [165], which �nds optimal cuts in the �rst hierarchy. This
work has been extended in several directions, see for example [114] and [186]. It is shown in [237] that
mathematical morphology provides tools and operators to modify hierarchies, in a spirit similar to what is
achieved in [165]. In fact, hierarchies can be seen as weighted graphs (i.e., in the form of dendrograms whose
nodes are equipped with a regional attribute) on which we can apply any graph-based operator [316], and
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the well-known watershed operator is itself related to an MST [8]. However, such approaches cannot deal
with criteria such as the ones proposed in [153, 240] for the merging of regions. It should be also mentioned
that several authors [166, 169�171] proposed to build a hierarchy based on measures which are similar to
the one proposed in [153]. A survey of such hierarchical image segmentation methods can be found in [209].

In [153], given a region dissimilarity and a scale of observation� , a partition is said to be too �ne at
scale� if there exits an adjacent-region pair whose dissimilarity is below the scale� and the segmentation is
said to betoo coarse at scale� , if there exists a re�nement of the segmentation (i.e. a partition obtained by
� splitting � some regions of the initial segmentation) which is not too �ne. The method proposed in [153],
provides, given a certain observation scale� , a partition which is neither too �ne nor too coarse at scale�
when a particular dissimilarity is used.

Not-too-coarse/not-too-�ne hierarchies. The �rst contribution of [21] is the extension of this de�-
nition to hierarchies : a hierarchy is not-too-coarse (resp., �ne) if, for any level � , the partition at scale � in
the hierarchy is not too coarse (resp. �ne) at scale� . The example of Figure 24 shows that in general there
is no hierarchy which is neither too coarse nor too �ne. This di�culty motivates us to focus on hierarchies
that are not-too-coarse (resp. �ne) without being not-too-�ne (coarse) at the same time. Such hierarchies
always exist, whatever the chosen dissimilarity measure. Indeed, the trivial hierarchy whose levels are all
the partition into singletons (resp., the partition into a single region containing all the points) is not too
coarse (resp. �ne). However, in general, there exist many hierarchies that are not too coarse (resp. �ne) and
one needs to choose among them.

Optimal not-too-coarse/not-too-�ne hierarchies. The second contribution of [21] is the introduc-
tion of an optimization problem in the lattice of hierarchies in order to make a choice in the large set of the
hierarchies that are not-too-coarse (resp. �ne). In order to present this problem, it is necessary to recall some
notions for ordering hierarchies. A partition P is saidsmaller (or �ner) than another partition P0 and P0 is
said larger (or coarser) than P if the partition P is a re�nement of P0, i.e., the partition P can be obtained
from P0 by splitting regions of and, conversely,P0 can be obtained fromP by merging regions . The set of
all partitions of V , together with the relation �is larger than�, is a lattice [266, 284]. The order relation �is
larger than� on the partitions can be easily extended to the hierarchies : a hierarchy islarger than another if,
at every level, the partition of the �rst hierarchy is larger than the partition of the second hierarchy. Having
a lattice structure for hierarchies, it is then possible to de�ne a notion of minimal/maximal hierarchies,
leading to optimization in the lattice of hierarchies. Indeed, given a setH of hierarchies, an elementH of H
is said minimal (resp. maximal), whenever, for any hierarchyG of H such that G is smaller (resp. larger)
than H, we haveH = G. Hence, coming back to hierarchical image segmentation, it is relevant to consider
the following optimization problem : �nd a maximal (resp. minimal) hierarchy in the set of all hierarchies
which are not too coarse (resp. �ne). In general, �nding such a hierarchy is a complex task.

Hierarchizing method. The third contribution of [21] is the proposition of a method to search for
optimal not-too-coarse hierarchy, hence for hierarchizing the methods based on region dissimilarity such
as [153]. The proposed method is greedy and we cannot guarantee that the obtained hierarchy is not-
too-coarse. However, its computational cost makes it practicable for processing images. A �rst crux of
the method is the handling of hierarchies by (saliency) maps de�ned over minimum spanning trees. The
relation �is larger/smaller than� on hierarchies can be characterized using the relation �is less/greater than�
on saliency maps. In particular, given two edge saliency mapsw and w0 such that w(u) � w0(u) for any
edgeu, the associated quasi-�at-zone hierarchy ofw is larger than the one ofw0. The algorithm presented
in [21] for searching a largest not-too-coarse hierarchy consists of iteratively lowering every weight of a map
(while a certain condition is satis�ed) starting from a map where all edges are initialized to a maximal
value, i.e., a map corresponding to the smallest (not-too-coarse) hierarchy where all regions at all levels are
singletons. Hence, the sequence of hierarchies associated to this sequence of maps are ordered from small
to large.
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When the dissimilarity measure of [153] is considered it is shown in [21] that the results on the Berkeley
segmentation dataset [210, 211] of the hierarchized version of the segmentation method are better than those
of the original one with the added property that it satis�es the strong causality and location principles from
scale-sets image analysis. This technique being generic, it was furthermore applied in [167] and [62] to the
measures presented in [240] and [247] respectively. Last, but not the least, considering the current trend in
computer vision, an interesting perspective is obviously, on a speci�c application, to use learning techniques
and train a measure to choose the correct region. First results in that direction are encouraging [131].

3.5. Directed component hierarchies

As seen in previous sections, graph algorithms are e�ective for processing and analyzing images. Graphs
allow for the representation of various adjacency relations (the edges) between pixels (the vertices). Weights
can be de�ned both on the vertices in order to represent some information (e.g. luminance) and on the
edges as a relationship measure. Following the historical symmetric de�nition of adjacency [267, 268], most
methods rely on undirected graphs as studied in previous sections. Some recent work aims at extending these
methods beyond the symmetry hypothesis in order to improve popular image segmentation algorithms. This
work leads to di�erent algorithms based on the directed graph framework, and generally shows an ability to
take into account more information than their symmetric counterparts. Such work includes min-cuts [110],
random-walkers [290], and shortest path forests [226]. Following these successful attempts, we explore in [18]
how directed graphs can enrich and improve another family of graph operators based on hierarchies : the
connected operators.

Connected operators [112, 172, 274] are e�ective image processing tools studied in the framework of
mathematical morphology. They have been successful in a wide spectrum of applications (see [275, 276]
for recent surveys). Connected operators focus on the notion of connected components. The basic idea is
that the only allowed operation is the deletion of a connected component (either from the object or from
its complementary set), thus ensuring that the operators can neither create nor shift any contour. The
extension of this approach to grayscale images (vertex or edge weighted graphs) leads to the de�nition
of several hierarchical representations : the component tree [279], the binary partition tree [278], the tree
of shapes [228] or the quasi-�at zones hierarchy [225]. Signi�cant e�ort has been devoted to e�ciently
construct these hierarchies [55, 117, 158, 238, 279] and to understand the relations that exist between them
[54]. A general de�nition scheme for a connected operator consists of four steps : (1) construct the image
hierarchical representation ; (2) compute attributes for each region / node of the representation ; (3) select
relevant nodes according to these attributes ; and (4) produce a �ltered image or a segmentation map. For
instance, the ranking of the minima by extinction value and the geodesic reconstruction used for hierarchical
watersheds fall in the category of connected �lters. More generally, connected operators have been used for
�ltering [279], segmentation [181], interactive segmentation [245, 312], retrieval [120], classi�cation [303],
and registration [214]. Applications range from biomedical imaging [147, 314], to astronomy [95, 248], via
remote sensing [85, 195] and document analysis [232, 249]. Connected operators provide well-established
solutions for digital image processing, typically in conjunction with hierarchical schemes. In graph-based
frameworks, such operators basically rely on symmetric adjacency relations between pixels.

Directed connected component. The �rst contribution of [18] is the introduction of the notion of
a directed connected component (see also [265] for an algebraic framework generalizing this graph-based
notion). Given any vertex x of a directed graph, the directed connected component, or D-component, of
basepointx is the set of all vertices which can be reached fromx with an ordered path (see illustration in
Figure 25). When the graph is symmetric, the D-component of basepointx is the connected component
containing x and the set of allD-componentsof any symmetric graph partitions the graph vertices. However,
when the graph is not symmetric, the D-components of two di�erent basepoints may overlap without being
equal. Hence, the the set of all D-components of a non-symmetric directed graph is no longer a partition
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Figure 25. Some elementary directed graphs. The set of D-components in (a) (resp. (b) and (c)) are
ff a; bg; f bgg (resp. ff a; bg; f c; bg; f bgg and ff ag; f b; a; cg; f cgg).

of the graph vertices. We have establish a bijection between the D-components of a graph and its strongly
connected components, the strongly connected component of a vertexx being the set of all vertices of the
graph that can be reached fromx and from which we can come back tox with ordered paths. Strongly
connected components are well studied in graph theory and partition graph vertices. Hence, this bijection
result helps in practice the handling of directed connected component.

Directed components hierarchy. The second main contribution of [18] is the uni�cation and the gene-
ralization to directed graphs of the de�nitions of the min/max-tree of a vertex weighted graph, min/max-tree
of an edge-weighted graph, and the quasi-�at zones hierarchy of an edge-weighted graph. The generaliza-
tion is obtained by (1) considering a series of nested directed graphs, called a stack of graphs, instead of
a weighted undirected graph, and (2) considering the set of all D-components of each graph in this stack
instead of its connected components. Thedirected component hierarchyof a stack of graphs is then the set
of the D-components of all the directed graphs in the stack. When the stack of graphs is induced by thre-
sholding at every possible values, in increasing/decreasing order, a vertex weighted undirected graph, then
the notion of min/max-tree of a vertex weighted graph is recovered. When the stack of graphs is induced by
thresholding at every possible values an edge-weighted undirected graph, then the notion of min/max-tree
of an edge-weighted graph is recovered, and when every single vertex is furthermore added to every graph
of the stack, the notion of quasi-�at zones hierarchy is recovered. Note that this framework also allows
one to consider a graph which is weighted simultaneously on both its edges and vertices. However, when
the graphs of the stack are directed and not symmetric, the set of all D-components, namely the directed
component hierarchy of the stack, is no more a tree of components but a directed acyclic graph (DAG)
of components. The directed component hierarchy is the key representation to perform directed connected
�ltering as presented in the following paragraphs.

Algorithm for directed components hierarchy. The third main contribution of [18] is an e�cient
algorithm for building the directed component hierarchy of a stack of graphs. The algorithm has aO(`:n )
time complexity, where n is the size of the graph and wherè is the number of levels in the stack, that is
to say the number of weight values when the stack is induced by a weight function.

Directed connected �ltering. The fourth main contribution of [18] is the introduction of several
strategies, calleddirected connected �lterings, to select relevant nodes of a D-component hierarchy in order to
handle the increased complexity of D-component hierarchies compared to standard component trees. These
strategies are designed to ensure the consistency of the node selection process in terms of D-components.
Thinking in terms of directed connected operators, one may desire to mark each D-component as selected
or as discarded. However, in contrast to the case of connected operators, we may fall into situations such as
the one depicted in Fig. 4(b), where two D-components overlap. This creates an ambiguous situation if one
of them is selected while the other is not selected, hence discarded. It is not obvious to decide whether the
overlaping of the components (vertex labeledb in Figure 25(b)) must be �ltered out or kept in the result.
Given a Boolean criterion on components (examples of criteria are presented in the next paragraph), this
observation leads us to the proposition of two strategies for �ltering the D-components of a graph where
priority is either given to the selected components (in our example of Figure 25(b),f bg would then be kept)
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or to the discarded ones (in our example of Figure 25(b),f bg would then be removed). When a stack of
graphs is considered, one faces a similar choice when the criterion holds true for a regionA at a given level
and holds false for a regionB which includesA at a higher level. Overall, given a �ltering Boolean criterion
on components, we identify in [18] a total of four strategies to �lter the D-component hierarchy, hence to
perform directed connected �ltering of an image.

Image processing with directed connected �lters. The �fth main contribution of [18] is the
illustration of the relevance and of the versatility of directed connected �ltering for processing images. To
this end, three applications are presented where asymmetric information is taken into account in the form of
a directed graph de�ned over the image pixels. The �rst application deals with blood vessels segmentation
in retinal images. The basic idea is to consider the image as a directed graph where each pixelx is adjacent
(1) to its four closest spatial neighbors as usually done with the 4-adjacency symmetric relation and (2) to
its k nearest neighbors in a feature space in which all pixels are mapped. Here, we consider that a pixelx is
closer toy than to z in the feature space ify is brighter than z. Whereas the neighboring relation resulting
from (1) is symmetric the one resulting from (2) is strongly asymmetric, hence the need for directed �lters
to perform the segmentation. Note that this graph construction is often used in application (see,e.g., [153])
without considering its asymmetric aspect, i.e., the symmetric closure of the graph is generally used :
when an arc is found from a vertexx to a vertex y, the reverse arc fromy to x is also added to obtain
a symmetric graph. Then, the segmentation mask is obtained by discarding all D-components that are
too small or not elongated enough. Figure 26 presents a result obtained by this method. Quantitatively,
this method also compares favorably to other methods used on the standard DRIVE dataset [293] and it
is shown that considering the directed graph leads to better performance than considering its symmetric
closure. The second application is the �ltering of neurite images (see Figure 27). Finally, the last application
considers the integration of prior asymmetric knowledge in a marker-based MRI myocardium segmentation
procedure. Here, the criterion is to select the components of the hierarchy (induced by an edge-weighted
graph) which intersect the user provided foreground marker but which do not intersect the background
marker. For this application, it is known that some extremal intensity pixels are likely to not belong to the
myocardium since they in general correspond to blood and fat (very bright) or to lungs (very dark). To
prevent the connection of this pixel from the object marker the arcs ending at these pixels are penalized
by multiplying their cost by a constant greater than one. Here, the graph is symmetric, but the weight of
an arc from a vertexx to a vertex y is not necessarily the same as the weight of the arc fromy to x (when
one of them is preclassi�ed as background while the other is not). The results of this procedure and of its
symmetric counterpart (i.e. when the weight of the arcs ending at background preclassi�ed pixels is not
multiplied) are presented in Figure 28.

Directed connection value and oriented Image Foresting Transform . Interestingly, the last
marker-based segmentation procedure presented in the previous paragraph and which is de�ned through the
notion of a D-component hierarchy is the same as the oriented Image Foresting Transform (IFT) presented
in [226]. We recall that the Image Foresting Transform is de�ned thanks to shortest paths forests and can be
computed, in the case of undirected graphs, with Dijkstra algorithm. In order to show the relation between
the IFT and the proposed method, a notion of directed connection value is introduced in [18]. Thedirected
connection value from a vertexx to a vertex y is the minimum value  such that there is a directed path
from x to y the maximum value of which is  . It can be shown that the segmentation method presented
in the previous paragraph solve the following problem : �nd the set of vertices whose directed connection
value from a vertex marked as object is less than the one to a vertex marked as background. This, second
characterization of the marker-based segmentation method presented in the previous paragraph corresponds
exactly to the method called oriented IFT in [226].
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(a) Image 2 of DRIVE (b) Filter I H
� RV

(c) Segmentation

(d) Image 19 of DRIVE (e) Filter I H
� RV

(f) Segmentation

Figure 26. Segmentation results on the DRIVE database. On each row, from left to right : pre-processed
image, �ltering result, and evaluation of the segmentation.

(a) (b)

Figure 27. (a) Neurite image ; (b) directed connected �ltering.
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(a) Original (b) O : myocardium (c) B : background (d) Symmetric result

(e) S0 : Over-segm. (f) Directed result

Figure 28. Segmentation based on the D-component hierarchy. (b,c,e) The considered sets are superim-
posed in red to the original image. (d,f) The internal border of the segmentation results are superimposed
in red to the original image.
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4. MATHEMATICAL MORPHOLOGY FILTERING BY ADJUNCTION

From a formal point of view, digital image processing historically consists of analyzing the transforma-
tions that act on the subsets ofZ2 (the sets of pixels in a binary image) and the transformations that act on
the maps from Z2 to N (the images themselves). In such a perspective, mathematical morphology provides
a set of �ltering and segmenting tools that are very useful in applications.

On the other hand, there is a growing interest for considering digital objects not only composed of
points but also composed of elements lying between them and carrying structural information about how
the points are glued together (see [8, 16, 107, 135, 202, 296] for recent examples). The simplest of these
representations are the graphs. In Section 2.3, we have also quoted simplicial complexes, a generalization of
the graphs allowing one to consider more topological invariants. Some recent work also shows the interest
of hypergraphs [107] and of formal concepts [88, 106] for processing images or even more general data.
The domain of an image is then considered as a structure whose vertex set is made of the pixels and
whose edge set is given by an adjacency relation on these pixels. Note that this adjacency relation can
be either spatially invariant or spatially variant leading to operators that are either spatially invariant or
spatially variant (see e.g. [198, 294, 299, 306] for examples of spatially variant morphological operators). In
this context, it becomes relevant to consider the transformations acting on the set of all subgraphs (or all
subcomlexes, etc.) and not only those acting on the set of all subsets of pixels. Such trend is also recently
observed in signal processing [287].

The di�erent operators created in the �eld of mathematical morphology can be regarded with respect
to two main axiomatic sources sometimes referred to as connection and adjunction. The �rst one relies on
preserving topological invariants (such as the number of connected components) of the image. The associated
operators encompass the watershed transforms and region merging schemes presented in Section 2, the
hierarchical segmentation tools and the connected �lters presented in Section 3 as well as homotopic-
thinning and skeletonization operators (see a brief introduction in Section 2.3 or more complete surveys
in [138, 271]). The operators of the second category focus on regularizing or simplifying the shapes of
an image (or more generally of a dataset) regardless to an explicit connected component preservation
constraint. They rely on an algebraic relation between operators called a Galois connection [104] or an
adjunction [282]. Such relation leads to morphological opening and closing by adjunction and encompass
well-known mathematical morphology operators based on structuring elements. The two sources are not
incompatible, and one can combine their axioms. Whereas Section 2 and 3 focus on connections, the present
section is exclusively devoted to mathematical morphology �ltering by adjunction on two discrete settings :
the graph and the simplicial complexes. Before presenting the main contributions of [14, 16, 22, 41] on this
matter x, let us introduce some fundamental notions related to morphological �ltering by adjunction.

The algebraic basis of mathematical morphology by adjunction is the lattice structure and the mor-
phological operators act on lattices [174, 262, 282]. In other words, the morphological operators map the
element of a �rst lattice to the elements of a second one (which is not always the same as the �rst one).
A (complete) lattice is a partially ordered set such that for any family of elements, we can always �nd a
least upper bound and a greatest lower bound (called a supremum and an in�mum). The supremum (resp.,
in�mum) of a family of elements is then the smallest (greatest) element among all elements greater (smaller)
than or equal to every element in the considered family. The classical lattice for binary image processing
contains all shapes which can be drawn in the considered image, namely it is the family of all subsets of
image pixels. The supremum is given by the union and the in�mum by the intersection. A morphological
operator is then a mapping that associates to any subset of pixels (a shape) another subset of pixels. In the
lattice setting, a �lter is an operator which is both increasing and idempotent meaning that (1) if we have
two ordered elements, then the results of the operator applied to these elements are also ordered, so the

x. A part of this work was developed during the PhDs of Fabio Dias [78] and Imane Youkana [81].
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morphological operators preserve order and (2) after applying a �lter to an element of the lattice, applying
it again does not change the result. When a �lter is extensive (i.e., when the result is always larger than
the operand), it is called aclosingand when it is anti-extensive (i.e., when the result is always smaller than
the operand) it is called an opening. Intuitively, a �lter can the be seen as an abstraction of the sieving
process performed,e.g., by a gold miner who wants to separate gold nuggets form sand. Indeed, in such a
process if the miner puts what remains in his sieve a second time in the same sieve then he does not remove
any more sand (idempotence of the process) and if he has two bucketsA and B of materials, if he puts the
content of A and B together at the same time in his sieve then the quantity of gold remaining in his sieve
is necessarily more important than if he puts only the content ofA (increasingness of the process).

As said previously, the algebraic framework of morphology relies mostly on a relation between operators
called an adjunction [174, 282]. Two operators� : L 1 ! L 2 and � : L 2 ! L 1 form an adjunction (�; � ) when
for any X in L 2 and any Y in L 1, we have� (X ) � 1 Y if and only if X � 2 � (Y ), where � 1 and � 2 denote
the order relations on respectively the latticeL 1 and the lattice L 2. In this case� is called anerosion and �
is called adilation. It is well known that an operator is a dilation ( resp., erosion) if and only if it commutes
under supremum (resp., in�mum). This adjunction relation is particularly interesting because it allows the
extension of a single operator to a whole family of other interesting operators : having a dilation (resp., an
erosion), an (adjunct) erosion (resp., a dilation) can always be derived, then by applying successively these
two adjunct operators a closing and an opening are obtained in turn (depending which of the two operators
is �rst applied), and composing this opening and closing leads to alternating �lters. Furthermore, when the
elementary dilations/erosions are iterated, series of ordered �lters, called granulometries, can be obtained
leading to size distribution analysis. Each of these operators satisfy a set of remarkable properties that are
interesting in particular in the context of noise cleaning (more details on the use of morphological operators
for image denoising are provided in the next paragraphs).

4.1. Filtering on graphs

Mathematical morphology on graphs was pioneered by Vincent [308] who considers the lattice of all
subsets of vertices of a graph. In this lattice the supremum and in�mum are simply the union and intersection
of subsets of vertices. Hence, the operators investigated in [308] act on the vertices of a graph. In this
lattice, a � natural � dilation maps any subset of vertices to the vertices that are neighbors of a vertex
in that subset. This � natural � dilation is called the vertex-vertex dilation in the following. The adjunct
vertex-vertex erosionis then the set of all vertices whose neighborhood is included in the initial set. From
a methodological viewpoint, in the usual framework of mathematical morphology, one has to choose a
structuring element that parametrizes the operator. With morphology on graph, the choice of a structuring
element is, in general, replaced by the choice of the edge set that indicates which data are connected
(see [175, 176] for a framework of morphology in graphs where one must choose both an edge set and
a second �graph� that plays the role of a structuring element). In the digital setting, there is a direct
correspondence between these two approaches. Indeed, when the vertex set of the graph is a subset of the
grid points Zd and when the edge set is obtained from a symmetrical structuring element, then the vertex-
vertex dilations and erosions de�ned above are equivalent to the usual binary dilation and erosion by the
considered structuring element as presented in standard textbook of mathematical morphology. However,
the use of graphs opens the door to the processing of many kind of data and to new operators such as those
described in the next paragraphs.

In particular, one can guess that dealing also with the edges of a graph can help for reaching a better
� precision � [8, 14, 223, 224]. This was the motivation for de�ning the analog �natural� dilation of a subset
of edges [14, 38]. In order to account for the edges of a graph, one can a straightforwardly consider the
lattice of all subsets of edges [14, 38]. The supremum and in�mum in this lattice are also the union and
the intersection. Then, the � natural � edge-edge dilationof a subset of edges contains all edges which are
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adjacent to (i.e. which share a common vertex with) an edge in the initial subset. The adjunctedge-edge
erosion of a subset of edges contains each edge whose neighborhood (i.e. the set of all edges adjacent to a
given edge) is included in the initial subset.

Lattice of graphs. To bring mathematical morphology on graphs one step further, it interesting to
consider a lattice whose elements are graphs, so that the operands and the results of the operators are
both graphs. In particular, when the workspace is a graph, it is interesting to consider the lattice of all
its subgraphs [14, 38] : a graph is a subgraph of another when both the vertex and edge sets of the two
graphs are included in each other. In the lattice of subgraphs, the supremum or union (resp., the in�mum
or intersection) of two graphs is de�ned by the union (resp., intersection) of the vertex and edge sets. Some
elementary properties of this lattice are investigated in [14]. In particular, it is shown that the lattice is not
complemented and a minimal sup-generator of this lattice is provided.

� Natural � dilation/erosion on graphs. The �rst main contribution of [14, 38] is the study of
elementary operators in this lattice of graphs. Interestingly, when one applies simultaneously the vertex-
vertex and edge-edge dilations to the vertex and edge sets of a subgraph, the resulting pair of edge and
vertex sets is still a subgraph, thus de�ning a � natural � dilation on subgraphs [14, 38]. The adjunct erosion
is obtained by the simultaneous applications of the vertex-vertex and edge-edge erosions. We emphasize
that, contrarily to the previous work on morphology in graphs (such as [107, 176, 202, 223, 224, 296, 308]),
the operand and the result of these operators are both graphs. This property can impact the results of
further processing where connectivity and adjacency are involved [243, 263, 274]. For instance, using the
de�nition of a vertex-vertex dilation [308], dilating the subset X of red and blue vertices of Figure 29a
leads to the set of red and blue vertices of Figure 29c which is connected. On the other hand, using the
de�nition of a dilation of a subgraph [14], dilating the subgraph induced by X (depicted in red and blue
in Figure 29b) leads to the red and blue subgraph shown in Figure 29d which is not connected. However,
in the last example the two connected components (i.e. the red and the blue subgraphs of Figure 29d) are
adjacent to each other. Intuitively, one may say that, on this example, the operator acting on subgraphs
reaches a better precision than the one acting on subsets of vertices by allowing to make the distinction
between adjacency and connectedness. The evaluation of the practical impact of such distinction is beyond
the scope of this chapter. In fact, as we will see in the next paragraphs the usual framework can be further
enriched when one also considers operators which map set of edges to set of vertices and vice-versa.

Edge-vertex adjunctions. A second major contribution of [14, 38] is the de�nition and study of four
operators that are elementary building blocks for morphology in graphs. The originality of these operators
lies in the fact that the operands and the results do not belong to the same lattice : one is a vertex set
whereas the other is an edge set. Interestingly, these operators allow us to characterize and enrich the
morphological operators presented the previous paragraph. More precisely :

1. the vertex-edge dilationis a dilation that maps any set of vertices to the set of edges that contain at
least one of these vertices ;

2. the edge-vertex erosion, which is the adjunct erosion of the previous vertex-edge dilation, maps any
set of edges to the set of vertices completely surrounded by edges of this set of edges (i.e., vertices
whose adjacent edges all belong to this set of edges) ;

3. the edge-vertex dilationis a dilation that maps any set of edges to the set of vertices which are
contained in one of these edges ; and

4. the vertex-edge erosion, which is the adjunct erosion of the previous edge-vertex dilation, maps any
set of vertices to the set of edges whose two extremities lie in the initial set of vertices.

These operators are illustrated in Figure 30. The vertex-vertex (resp., edge-edge) dilation is simply the
composition of the vertex-edge (resp., edge-vertex) dilation and the edge-vertex (resp., vertex-edge) dilation,
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(a) X (b) X +

(red and blue vertices) (red and blue subgraph)

(c) dilation of X (d) dilation of X +

(red and blue vertices) (red and blue subgraph)

Figure 29. Illustration of a vertex-dilation and of a graph-dilation.

whereas the adjunct vertex-vertex erosion (resp., edges) is the composition of the vertex-edge (resp., edge-
vertex) erosion and the edge-vertex (resp., vertex-edge) erosion. Since the four operators de�ned above
can be grouped as pairs of adjunct operators, they also lead to openings and closings. For instance, the
successive application of the vertex-edge dilation and the edge-vertex erosion is the closing which, given a
set of vertices, �lls in the points which do not belong to the set but which are completely surrounded by that
set (i.e. the points whose (strict) neighborhood is completely included in that set). Note that this closing
is not the same as the one obtained by composition of the vertex-vertex dilation and the vertex-vertex
erosion. In fact, one can prove that the results of the two closings are ordered (when applied to the same
subset of vertices the result of the �rst one is always included in the result of the second one). This leads
to original interesting granulometries and alternating sequential �lters which are further presented in the
next paragraph.

Iterated operators. The third main contribution of [14, 38] is the de�nition of new morphological �lters
(based on the composition and iteration of the basic building blocks presented in the previous paragraph)
which allow regularizing images more precisely than the usual morphological operators based on structuring
elements. The composition of any two dilations is still a dilation. Hence, by successive applications of
elementary dilations (a same dilation can possibly be applied several times), one obtains series of dilations,
adjunct erosions, openings and closings. When the dilations used in the compositions are those described
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a : G b : X = ( X � ; X � ) c : � � (X � ) d : � � (X � ) e : � � (X � )

f : � � (X � ) g : [�; �] ( X ) h : [�; E] (X ) i : � 3(X ) j : � 3(X )

Figure 30. Illustration of dilations and erosions on graphs. The working space is the graphG and we
consider the subgraphX of G whose vertex set isX � and whose edge set isX � . The edge-vertex dilation
and erosion ofX � are represented in (c) and (e) respectively. The vertex-edge erosion and dilation ofX �

are represented in (d) and (f) respectively. The � natural � dilation and erosion of X are presented in (g)
and (h) whereas (i) and (j) presents the result of another dilation and erosion on graphs (see more details
on this operator in [14])

in the previous paragraphs (i.e., the vertex-vertex dilation or the vertex-edge and edge-vertex dilations),
the associated series of closings (resp., openings) is ordered : when applied to a same object, the result
obtained with one closing (resp., opening) of the series is always smaller (resp., greater) than the result
obtained with the next closings of the series. Note that, in such series, the number� of iterations of
the considered dilation/erosion constitutes a parameter of the �ltering that is related to the size of the
features to be preserved or removed. It is therefore often referred to as a size parameter of the dilations,
erosions and �lters. These series of openings and closings, called granulometries, are interesting for studying
size distributions of subsets of vertices, subsets of edges and subgraphs of a graph (seee.g. [137, 262]).
Furthermore, from granulometries, series of alternating sequential �lters can be derived : each of them is
a sequence of intermixed openings and closings of increasing size. These operators (which, contrarily to
openings and closings, are not extensive or anti-extensive) progressively �lter the objects in a balanced and
progressive way. They constitute interesting tools for simplifying subsets of vertices, subsets of edges and
subgraphs of a graph. Figure 31 (top row) presents the result of such a �ltering procedure for a subset of
pixels considered in the 4-adjacency graph. In this illustration, the edge-vertex and vertex-edge dilations
and erosions were used to obtain the alternating sequential �lters. As detailed in [14], if, instead of the
edge-vertex and vertex-edge dilations/erosions, only the vertex-vertex dilation/erosion was used, then the
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resulting �lter would be less performing (see Figure 32). A quantitative assessment of this statement is
provided in Section 5.5.

Figure 31. Illustration of morphological alternating sequential �lters in graphs. The alternating sequen-
tial �lters are obtained thanks to the vertex-edge and edge-vertex dilations. Top (resp., bottom) row :
the �ltering (right) is applied to a binary ( resp., grayscale) image (left) considered in the 4-adjacency
graphs (resp., in a spatially variant adjacency graph). The corresponding �lterings in the usual pixel-based
framework of structuring elements (i.e. the �lters obtained on graphs from the natural dilation) are less
performing (seee.g. Figure 32).

Distance maps and dilations on graphs. The �rst main contribution of [22] is the study of distance
maps on graphs that allow characterizing every (possibly iterated) dilation/erosion on graphs presented in
previous paragraphs. A classical problem in graph theory is to �nd the minimal length of a path linking two
vertices [145]. Depending of the application context, several notions of length can be associated to paths.
In our context, we consider the simplest one which consists of counting the number of vertices in the path.
The map which associates to any pair of vertices the minimal length of a path joining them clearly satis�es
the axiom of a distance and is called thegraph distance. Vincent shows in [308] an interesting relation

45



(a) usual ASF (b) usual ASF of double size (c) usual ASF (double resolution)

Figure 32. illustration of usual ASF applied to the image of Figure 31(top, left). In (a) and (c) the
size parameter of the �lter is the same as in Figure 31(top, right) whereas in (b) and (c) the number of
iterations of basic operators are the same as in Figure 31(top, right).

between the graph distance and the iterated vertex-vertex dilations : a vertexx of the graph belongs to
the result of the vertex-vertex dilation of size parameter� of a given subsetX of vertices if and only if
there exists a point y of X such that the distance betweenx and y is less than� . In other words, if we
denote by DX the distance map toX (that is, the map that associates to any vertex of the graph the least
distance between this vertex and a vertex inX ), the vertex-vertex dilation of size parameter � is the set
of all points whose distance map value is below� . In [22], this link is extended to edge-edge, vertex-edge,
and edge-vertex dilations. To this end, the paths between two edges and between an edge and a vertex are
also considered and the length of a path becomes the number of edges and vertices along the path. Thus,
following the morphological approach based on distance maps, three original notions of distance maps on
graphs called edge-edge, edge-vertex, and vertex-edge distance maps are introduced in [22]. Given a set
of edges, the edge-edge (resp. edge-vertex) distance map provides for each edge (resp. each vertex) of the
graph a distance to the closest edge in the input set. Given a set of vertices, the vertex-edge distance map
provides for each edge a distance to the closest vertex in the input set. Then, all the dilations and erosions
on graphs presented in the previous paragraph are characterized as a threshold set of one of these distance
maps.

Linear-time dilation algorithms. A linear-time algorithm to compute the elementary dilations can
be easily designed. Therefore, based on the straightforward de�nition, the time complexity of the naive
algorithms to compute the iterated version of a dilation increases with the size parameter. More precisely,
for a parameter value of � , the algorithms run in O(�:n ) time, where n is the size of the underlying
graph. However, based on the links between distance maps and dilations/erosions recalled in the previous
paragraph, a O(n) time-complexity algorithm can be obtained for performing the same task. To this end,
one needs to compute a distance map and to threshold it. In graph theory, it is well known that breadth-
�rst search algorithm provides an e�cient linear-time complexity solution to obtain the length of a shortest
path from one given vertex of the graph to all others. As presented in [22], such an algorithm can be
adapted to compute in linear-time any of the distance maps presented in the previous paragraph. The
simple thresholding operation can be performed in linear time with respect to the size of the graph. Hence,
based on the distance map algorithm presented in [22], the result of any (possibly iterated) dilation or
erosion on graphs presented in [14] can be obtained in linear-time complexity with respect to the size of
the underlying graph.

Parallel algorithms for morphological operators on graphs. The major contribution of [22] is
a parallel algorithm to compute the proposed distance maps, hence the morphological operators of [14].
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Parallel and/or separable algorithms for morphological operators and distance maps on images have been
widely studied [122, 125, 204, 250, 272, 288, 292, 295]. Based on the regular structure of the space, such
computations use a static partitioning of the image into rows, columns or blocks processed in parallel. In
order to handle the non-regular structure of a graph, our parallelization strategy is based on a dynamic
partitioning of the space which depends on the input set and which is iteratively computed during the
execution. More precisely, our strategy iteratively considers the successive level-sets of the distance maps,
each level set being partitioned and then traversed in parallel. The time complexity of our parallel algorithm
is analyzed in [22]. Under some reasonable assumptions about the graph and set under consideration, our
algorithm runs in O(n=p + K log2 p) time, where n, p, and K are the size of the underlying graph, the
number of available processors and the number of distinct level sets of the distance map, respectively.
In [22], an implementation of the proposed algorithm on a shared-memory multicore architecture is described
and assessed on datasets of 45 images and 6 textured 3-dimensional meshes, showing a reduction of the
processing time by a factor up to 55 over the previously available implementations on a 8 core architecture
such as those available in nowadays desktop computers.

Stack operators. The morphological operators presented in the previous paragraphs are all increasing.
As such, they all induce stack operators acting on functions weighting the vertices and/or edges of a graph
(see [311] for stack operators, [173, 207, 264, 283] for stack operators in the context of �at mathematical
morphology, and [96, 97] for stack operators in the context of watershed image segmentation). This allows
for the de�nition of morphological operators for weighted graphs, and thus for grayscale images, to be
systematically inferred from the ones on non-weighted graphs (see [14]). The idea is to decompose a function
into level-sets by thresholding, then to apply a same operator to each level-set, before reconstructing a
resulting function by �stacking� these results. Figure 31 (bottom row) presents the results obtained with
the grayscale extension of the graph alternating sequential �lters presented in the previous paragraph. Here
the operator is applied to a grayscale image structured by a spatially variant graph obtained by removing
the edges of the 4 adjacency graph connecting two pixels with a high di�erence of intensity.

4.2. Filtering on simplicial complexes

In the framework of graphs, it is di�cult to characterize the topology of the considered objects. For
example, given the set of vertices of a graph or more simply a graph, it is di�cult to say if this object is a
volumic object (3D), a surfacic object (2D), or a linear object (1D).

Introduced by Poincaré [251] for studying the topology of spaces of arbitrary dimensions, a simplicial
complex can be seen as a mesh,i.e. a space with a triangulation. The basic building block of the complex
is the cell, which can be thought of as a set of elements having various dimensions glued together according
to certain rules (e.g., a triangle, its edges and vertices, see Figure 33 and Figure 34). Although simplicial
complexes have a wide variety of di�erent usages (e.g., in computer graphics, in Computer-Aided Design or
in modeling), their processing has mostly been considered in term of simpli�cation, for example to obtain
a simpler model with less details. However, it is more and more frequent to have data associated with
the elements of a mesh (e.g. a curvature or a texture). Processing (�ltering) the values associated with a
mesh is not a common problemper se in the literature. On the other hand, �ltering is a common theme
in image processing, and abstract (simplicial or cubical) complexes have been promoted, in particular by
Kovalevsky [193], in order to provide a sound topological basis for image analysis, and are more and more
popular [15, 135, 163]. Then again, the values are most of the time located on one of the elements of the
cell, usually the facet,i.e. the largest element of the cell. In a purely discrete perspective, being able to deal
with smaller elements of the cell will allow a kind of �subpixelic� processing.

In this perspective, mathematical morphology provides a useful toolbox made of non-linear operators.
Thanks to their algebraic de�nitions in the framework of lattices, those morphological operators can be
applied to many kinds of organized information, and in particular to simplicial complexes.
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(a) (b) (c) (d)

Figure 33. Graphical representation of (a) a 0-simplex, (b) a 1-simplex, (c) a 2-simplex, and (d) a
2-cell.

(a) X (b) Y (c) Z

Figure 34. Illustration of morphological dilations and erosions on complexes. The working spaceC is
the simplicial complex represented in black and gray. Some subcomplexesX; Y and Z of C are depicted in
gray : Y is a dilation of X and Z is an erosion ofX .

The complexes can be considered as a natural generalization of the graphs in the sense that a (symmetric)
graph is a one dimensional complex. Mathematical morphology operators on graphs are well developed
(see [176, 223, 296, 308] and Section 4.1). However, to the best of our knowledge, very few studies exist
about basic morphological operators on complexes [202], and none deal with the �ltering problem. The goal
of [16, 41] is to help bridging this gap. As said previously, a simplicial complex is a generalization of a graph
to an arbitrary dimension. If the workspace is an-dimensional complex, the objects (i.e., the subsets of the
workspace) to which one applies the morphological operators, as well as the results of the operators, can
contain elements of various dimension between0 and n. It then becomes possible to obtaindimensional
operators that are able of �ltering the parts of an objects according to their dimension. A large number
of di�erent dimensional operators can be considered : indeed, depending on the needs, for all values ofi
and j between0 and n, it is possible to condition the presence or the absence of an element of dimensioni
in the result of a �ltering with the presence / absence of some elements of dimensionj in the object
that one seeks to �lter. The main result of [16, 41] is a framework for building morphological operators
on complex spaces. As main examples of application, we present a set of operators (erosions/dilations,
granulometries/anti-granulometry, and alternate sequential �lters) that act on the subcomplexes of a space
which is itself a simplicial complex. Although this work is settled in the framework of simplicial complexes,
all the results extend to cubical complexes. Overall, the panel of mathematical morphology operators
introduced on simplicial complexes can be thought of as enrichment of the panel of operators on graphs
which can themselves be seen as an enrichment of those on grid points. This is quantitatively veri�ed in [61]
where the operators on complexes provide better regularization results than those on graphs and on grid
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points. More details on this study is provided in Section 5.5.
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5. APPLICATIONS AND ASSESSMENTS

5.1. Cardiac function assessment with MRI

In cardiology, obtaining precise information on the size and function of the left ventricle (LV) is essential
both in clinical applications diagnosis, prognostic, therapeutic decisions and in the research �elds. Thanks
to 3D images acquired at di�erent times of the heart cycle, (cine) magnetic resonance (MR) imagery permits
a complete morphological LV characterization. The precision on the measures extracted from MR images
has been demonstrated to be excellent [113] and this is why MR imagery is a � gold standard � for LV
analysis. Cine MR imagery provides temporal sequences of 3D cardiac images which can be seen as 3d+t
images that allow for assessing the cardiac function of a patient through a computerized processing of the
images. Based on the watershed cuts (see Section 2.2), we proposed in [11] a method and a software (see a
screenshot in Figure 35) to automatically segment the left ventricle in such images and to compute some
characteristic parameters of the cardiac function such as the ejection fraction,i.e., the volume of blood
ejected during a heart cycle expressed as a fraction of the tele-diastolic volume (the volume of the �lled
ventricle). Due to the use of a watershed cut in a 4D edge-weighted graph, the successive segmentations
obtained during the heartbeat are temporally consistent. To assess the quality of the results produced by
the proposed software three main actions were carried out :

1. through a collaboration with the CHU Henri Mondor de Créteil, we have been able to compare, on a
database of 18 patients, the segmentations produced by the software with those produced manually
by two cardiologists ; the database [33] including ground truths is made available to the scienti�c
community ;

2. we participated to the Cardiac MR Left Ventricle Segmentation Challengeat MICCAI conference in
2009. This allowed us to compare our results with those obtained by other teams : a set of images of
15 patients was analyzed from our laboratory, before the conference, and a set of 15 other patients
was analyzed in 3 hours on the site of the conference [40] ;

3. we participated to the Medi-Eval and ImPeic actions of the GDR STIC-santé. This led to the
development of an evaluation platform for cardiac image segmentation algorithms [13]. This also led
to the proposition of a method for estimating cardiac function from the results of several segmentation
methods and we showed that the estimation was improved over the estimation from each method
individually [19].

The participation to these three actions allowed us to con�rm, by comparison of our results with those
produced manually by cardiologists and automatically by other computerized procedures, that the proposed
method is at the level of the state of the art of the �eld.

5.2. Coronary lesions detection and quanti�cation in cardiac CT angiography

Coronary heart diseases refer to the group of disorders that a�ect the coronary artery vessels. They
are the world leading cause of mortality (7.3 million deaths worldwide, according to the World Health
Organization). Therefore, early detection of these diseases using less invasive techniques provides better
therapeutic outcome, as well as reduces costs and risks, compared to an interventionist approach. Recent
studies showed that X-ray computed tomography (CT) may be used to accurately locate and grade heart
lesions in a non invasive way [208]. However, analysis of cardiac CT exams for coronaries lesions inspection
remains a tedious and time consuming task as it is based on the manual analysis of the vessel cross sections.
High accuracy is required, and thus only highly experienced clinicians are able to analyze and interpret
the data for diagnosis. Computerized tools are critical to reduce processing time and to ensure quality of
diagnostics. The goal of Imen Melki's PhD work [80] is to provide automated coronaries analysis tools to
help in non-invasive CT angiography examination.
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(a) (b)

Figure 35. Example of Left Ventricular Myocardium segmentation. (a) Three orthogonal sections of
a volume of the 3D+t cardiac MR image superimposed with the internal border of the segmented LV
myocardium ; and (b) a 3D rendering of the segmented LV myocardium.

Figure 36. Automated coronary stenosis detection and quanti�cation from CT angiography pipeline.

A stenosis is a narrowing of a coronary artery, which happens in case of coronary artery disease. A
typical processing pipeline allowing the detection of coronary artery stenoses is illustrated in Figure 36.
Di�erent algorithms covering the di�erent processing steps of this pipeline were studied in [80]. The major
contributions of [80] include (i) a novel algorithm to segment the heart volume in CT images [50, 51] and
(ii) an algorithm to detect the stenosis from the centerline of the coronary arteries [52].

Heart segmentation in CT images. The �rst main contribution of [80] is an algorithm dedicated to
heart volume segmentation in CT images. The approach extracts the heart as one single object that can
be used as an input mask for automated coronary arteries segmentation. This work eliminates the tedious
and time consuming step of manual removing obscuring structures around the heart (lungs, ribs, sternum,
liver...) and quickly provides a clear and well de�ned view of the coronaries. Previous works related to
heart segmentation have mainly focused on heart cavities delineation, which is not suited for coronaries
visualization. In contrast, the algorithm proposed in [50, 51, 80] extracts the heart cavities, the myocardium,
and the coronaries as a single object. The proposed approach is based on the �tting of a geometric model of
the heart, namely an ellipse, to a set of automatically extracted 3D points lying on the heart shell [154]. A
novel two-stage �tting scheme is used to improve the robustness to the outliers. The �tting result is further
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re�ned using a Random Walker (RW) segmentation approach [162]. A segmentation result obtained with
this approach is illustrated in Figure 37. Qualitative analysis of results obtained on a 70 exam database
shows the e�ciency and the accuracy of this approach.

Figure 37. A 3D rendering of a segmented heart for coronaries visualization. Top left : The original
volume. Top right : Anterior view of the heart to visualize the right coronary artery (RCA). Bottom left :
Inferior view to inspect the posterior descending artery (PDA). Bottom right : Left view showing the left
coronary artery with the left anterior descending (LAD) and the circum�ex (CX) arteries.

Stenoses detection in CT images . The second main contribution of [80] is an algorithm [52] to detect
the severe cardiac stenoses from CT angiography images. The proposed approach comprises three main
steps. The �rst one consists of extracting the vessel centerlines from the segmented heart volume. To perform
this task, we have used the method proposed in [159]. The second step consists of segmenting the lumen of
the vessels and their contours. We have used a watershed based procedure (see Section 2) where the vessel
centerlines are used as markers. The watershed results are further re�ned to obtain a subpixelic contours.
Finally, we perform an analysis of the area of the vessel sections along the vessel centerline in order to detect
the stenoses. A regression on the area pro�le along the whole vessel provides a model for the theoretical
healthy vessel of the patient and we detect the stenoses by considering vessel parts that signi�cantly
deviates from this ideal model (see Figure 5.2). We have tested our algorithm on the 48 multi-vendor CT
angiography datasets of typical patients provided by the � MICCAI Stenosis detection/quanti�cation and
lumen segmentation challenge � organized in conjunction with the 15th International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI 2012) [187]. The proposed approach
ranked third among 11 algorithms during the on-site evaluation of this challenge.
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Figure 38. Vessel Area Pro�le : (Top) A lumen view of a diseased vessel. (Bottom) Original and smoothed
vessel area pro�le per 2D section. The vessel theoretic pro�le is constructed using a robust linear regression

5.3. PCI procedures modeling through image processing

Percutaneous Coronary Intervention (PCI) is a minimally invasive procedure employed for the treatment
of coronary artery stenosis. As described in the previous section, a stenosis is a narrowing of a coronary,
which happens in case of coronary artery disease, a common pathology with its acute state being the heart
attack potentially leading to death. PCI is a very mature procedure relying on the deployment of a stent,
i.e., a �ne metallic mesh having the shape of the artery at the location of the narrowing. Physicians are
able to treat simple lesions, which impact a single vessel and complex lesions, with the narrowing extending
over the di�erent branches of a bifurcation or extreme cases when the vessel is completely occluded. These
procedures require the visualization of the lumen of the coronary arteries which is achieved by injecting an
iodine based contrast media at the ostia of each coronary tree (left or right). The contrast media is rapidly
washed out by the blood �ow. The propagation of the contrast media is documented under X-ray radiation
to acquire the angiography sequences which are further used to diagnose the stenoses. The procedure is
overall bene�cial to the patient but has several side e�ects. The tolerance to the contrast agent is limited
to some amount. Another side e�ect is the use of ionizing radiation which a�ects both the patient and the
medical team present in the interventional room including the interventional cardiologist.

Physicians expect that the behavior of the imaging equipment is continuously optimized to ensure
optimum image quality with minimum dose delivery or automatized processing of some sequences to enhance
some details of interest at a particular moment.PCI procedure modelingcan help to improve the interaction
of the clinician with the imaging equipment. This concept refers to determining the intention of the clinician
along the procedure. For this purpose, a continuous monitoring and labeling of the sequence is necessary.
The key steps of the PCI procedure are : vessel diagnosis, guidewire navigation, stent positioning, stent
deployment (balloon in�ation), stenting assessment. Getting this information directly from the human
operator is not acceptable from a work�ow point of view. The PhD work of Ketan Bacchuwar [77] is
dedicated to the design of image processing algorithms to identify the presence of di�erent interventional
tools in the images and link this information to high-level knowledge describing the steps of the procedure
and the user expectations for each of them. This is a form of semantic analysis which is fundamentally
di�erent from the traditional automatic X-ray exposure control combining user interactions and measure
of the statistics of the image.

Empty catheter segmentation. From �rst analysis of this PCI procedure, we observe that the seg-
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Figure 39. Empty catheter appearance in record image (left) and �uoroscopic image (right), all other
components of the imaging situation (patient, geometry) are identical. Fluoroscopic images are noisier and
the contrasts are weaker than in the record images. Our work is focused on �uoroscopic images which is
the main image source during PCI.

mentation of guiding catheter is of outmost importance. A guiding catheter is a tool that appears throughout
the PCI procedure. It can contribute to signi�cant semantic information since (i) it is the �rst tool to appear
in the �eld of view, (ii) it is �xed at ostia for the rest of the procedure, and (iii) it is the conduct for all
other tools/devices. Thus, its segmentation can help in procedure modeling to determine the events/phases
of the arrival and removal location of other devices (guide wire, marker balls). We address in [20] the empty
catheter case,i.e., when it is not �lled with contrast media or a guidewire. Such empty catheter appears
in 20% of the images acquired during PCI procedures and mostly in the �rst steps of the procedures where
the analysis shall start. Contrary to a �lled catheter, which is a highly contrasted structure relatively easy
to segment, an empty catheter is relatively di�cult to segment. Indeed, in the interventional �uoroscopic
X-ray images, it appears as a low contrasted structure with two parallel and partially disconnected edges
because it is just an empty tubular pipe made of a material with little radio-opacity (see Figure 39).

We devise a bottom up approach for segmenting the empty catheter in �uoroscopic images. We �rst
use the level-set scale-space,i.e. , the hierarchy of all the level sets of the gray scale image, called the min-
tree, to extract curve blobs, small dark persistent regions that are potentially part of the empty catheter
(see an illustration of this step in Figure 40). These curve blobs are disconnected in the image space. We
then propose a structural graph-based scale-space, in the form of a hierarchy, where these curve blobs
are connected. We analyze this hierarchy to select the cluster of curve blobs that maximizes a score of
likelihood to be an empty catheter (see an illustration of this step in Figure 41). To evaluate our work,
we use a database of 1250 �uoroscopic images from 6 patients. The results of the proposed method are
illustrated in Figure 42. The centerline of the catheter in this dataset was manually delineated by a trained
observer to de�ne the ground truth. On this dataset, the mean precision and recall of the proposed method
are 80.48 and 63.04% respectively. These experimental results are encouraging, showing that it is possible
to locate with good precision the empty catheter in such noisy images.

Vessel of intervention dynamic detection. During a PCI procedure, the vessel of intervention
(VOI) is the branch of the coronary vessel tree between the ostia and the distal end of the vessel across
the coronary lesion. In the work presented in [25, 70], we develop methods for automatic detection of VOI
by combining the information from X-ray image sequences acquired at di�erent steps of the procedure.
Coronary lesions are treated by navigating a guidewire through the VOI, followed by implantation of a
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Figure 40. Curve blobs extraction, from left to right : Input image ; lower level-sets of input image ;
corresponding min tree where each node is one of the connected components of the level-sets ; centerlines
of the selected curve blobs overlayed on input image.

Figure 41. Curve blobs clustering ; from left to right : extracted curve blobs (see Fig 40) ; connection of
curve blobs on structural scale-space ; hierarchy of deep connected components (clusters of curve blobs at
di�erent scales) ; selected deep connected component.

stent at the lesion in the VOI. Our aim is to automatically identify the guidewire arrival at the ostia of the
coronary vessel tree and to determine the VOI which is going to be treated in the following steps of the
PCI procedure, such as lesion reparation with angioplasty balloon, stenting, post-dilatation.

The main contribution of [25, 70] is the proposition and the assessment of a method, called VOIDD,
to automatically detect the so-called vessel of intervention, from the X-ray images acquired during the
progress of PCI procedure. We combine information from two types of X-ray image sequences : i) the cine
images from thereference sequence, in which the vasculature is depicted by injected contrast agent (see, for
instance, Figure 43(top, right)), and ii) the �uoroscopic images from the �uoroscopic image stream, which
are acquired following the reference sequence to aid navigation of various tools and especially the guidewire
(see, for instance, Figure 43(top, left)). The proposed algorithm is able to recognize from the �uoroscopic
image stream, the period corresponding to the guidewire navigation and to exploit it to determine the vessel
of intervention location (see Figure 43) without adding any constraints to the procedure work�ow. In order
to reach this goal, a general tracking algorithm is proposed. It relies on features extracted from the two
considered types of X-ray image sequences. These features consist of coronary vessel centerlines extracted
from the reference sequence and of guidewire tip location candidates detected in the �uoroscopic image
stream. Hessian based vesselness techniques are used to obtain the vasculature from the reference sequence.
Guidewire tip detection is tackled with advanced approaches involving the use of min tree [275]. Frèchet
distance based curve matching approaches derived from [93] are used to match the guidewire tip location
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(a) Empty catheter segmentation on �uoroscopic images.

(b) Empty catheter segmentation on �uoroscopic images (in presence of other elongated interventional and anato-
mical objects)

(c) Estimated centerline of segmented empty catheter from 3 di�erent patients.

Figure 42. Results of empty catheter segmentation in X-ray �uoroscopic images. In (a) and (b), from left
to right : input image, selected cluster of curve blobs from hierarchy, �tted curve on the cluster (estimated
centerline)
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candidates to the detected vessels. Figure 43 presents the obtained results (input images, detected tip,
matching, and detected vessel of intervention) for one image of one patient. In order to illustrate the variety
of situations which can occur, Figure 44 presents the detected vessel of interventions for 12 patients. In [25],
we also present an evaluation methodology designed to characterize the correctness of the guidewire tip
detection and the correct identi�cation of the VOI location. These developments are assessed on 15 clinical
sequences dataset from 14 patients and comprising 9989 images with expert annotations. Encouraging
results have been obtained with mean VOI retrieval rate of93:22% (proportion of the annotated vessel
of intervention that is recovered by the automated method) and mean tip detection accuracy of99:05%
(proportion of the navigation period of the guidewire which is correctly identi�ed). These results tend to
prove the robustness over di�erent patient and imaging conditions.

5.4. Cardiac Electrophysiology

During a number of interventional procedures related to the improvement of electrical therapy of the
heart (e.g. to cure some forms of cardiac arrhythmias), the physicians have to manipulate catheters inside
the heart chambers. One of the surgical techniques involves positioning of catheters in the left atrium guided
by interventional �uoroscopic images. The main anatomical structures of interest are not visible on these
images and thus, the interventions can last up to seven hours.

In order to augment the quality of the interventional images, we propose a software [75, 76] to super-
impose preinterventional 3D models of the atrium acquired, for instance, by CT devices.

To reach this goal, we search for a geometric transformation which maps a catheter inserted inside the
coronary sinus to the medial axis of the sinus. Segmentations of the catheter in �uoroscopic images and
of the sinus in preinterventional CT images can be obtained, for instance, by watershed-based procedures.
The registration is then computed by energy minimization through a gradient descent algorithm.

A prototype has been installed in an electrophysiology laboratory. The software achieved a satisfying
registration in 85% of the 20 cases which have been assessed.

5.5. Optical character recognition (OCR)

Mathematical morphology o�ers powerful tools that are widely recognized for their utilities for appli-
cation purposes, in particular for �ltering out many image defects. The old opening and closing based on
structuring elements are still widely used and are described in most image analysis textbooks, although
their combination at various scales, namely the granulometries [137, 283], are not as well known. Their main
implementation is on the usual 4, 6 or 8 connected grids [192], [283, chapter VI]. However, there exist several
recent variations of these operators, depending on the space on which they are de�ned : we are especially
interested in this section in graphs (see Section 4.1), �rst by considering only the vertices (corresponding to
the pixels) [175, 308] and then, by considering edges (between pixels) and vertices [14, 223]. The incentive
for using more evolved space representations is to enhance the performance by getting �subpixelic� accuracy.
Such an idea has been pushed a step further by considering simplicial complexes (Section 4.2), a generali-
zation of graphs. Although these new frameworks look promising from a theoretical point of view, to the
best of our knowledge, to date, a systematic comparison of these old and novel operators for a dedicated
application has not yet been performed. The goal of the work presented in [61] is to �ll that gap, focusing
on Optical Character Recognition, or OCR. As it is well known that connected �lters, and especially area
opening and closing [309] are well adapted to document image analysis, we include them in this study.

The �ltering step is generally just one step in the many ones composing the full application chain. Linear
�lters can be evaluated by their response to some model of noise. It is more di�cult to apply the same
evaluation process to the non-linear morphological �lters. This is why we choose to assess the performance
of an OCR against some model of noise/degradation dedicated to documents [91, 92, 183]. Indeed, OCR is
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Figure 43. Illustration of VOIDD algorithm. (top) Iso-phase image pair, i.e., a �uoroscopic image (left)
with guidewire tip acquired during the navigation of the tool and the reference image (right) at the same
cardiac phase acquired with contrast agent injection before the navigation of the tool ; (bottom left) segmen-
ted guidewire tip in �uoroscopic images and (bottom right) the result of matching the detected guidewire
to the vasculature as well as the detected vessel of intervention in red.

58



Figure 44. Detected VOI in 12 patient sequences.
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Figure 45. (a) : Rendering of the coronary sinus segmented from a CT image.(b) : Rendering of the
left atrium segmented from a CT image.(c) : An interventional �uoroscopic X-ray image ; a radiocontrast
agent is injected in the atrium to evaluate the quality of the resulting registration. (d) Superimposition of
the CT model to the �uoroscopic image produced by the proposed software.

the process of converting a scanned document to machine-encoded text [258]. Such an operation is generally
impacted by the quality of the original document and by the introduction of artifacts during the scanning
process. Our performance evaluation is hence a measure of the ability of the aforementioned morphological
operators to improve OCR performance when used as a preprocessing step on degraded binary document
images. In this work, the statistics-based degradation models described in [183] was used.

It is clear following this experiment that morphological �ltering can greatly improve OCR accuracy
when used as a preprocessing step. The di�erent results shown in this experiment are potent indicators
of the e�ciency of several morphological �lters in the context of OCR. Indeed, preprocessing using such
�lters leads to an increase of respectively up to 65.49% and up to 69.06% in character and word accuracy
on binary documents. It is shown that the best accuracy improvement of the OCR is obtained with a
preprocessing performed on simplicial complexes, followed by the one on graphs, and the one on regular
grid (classical framework based on structuring elements). Furthermore, it is also shown that area opening
and closing [309] do not perform as well as ASF (see Section 4) on complexes and on graphs for this task and
that the results can be further improved when image resolution is upscaled before �ltering. Finally, it is also
assessed that the original image (i.e., before applying the degradation model) is better recovered when the
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degraded image is �ltered on simplicial complexes than on graphs or on grids. This con�rms that practically,
mathematical morphology �ltering on simplicial complexes is an enrichment of mathematical morphology
�ltering on graphs, which itself is an enrichment of mathematical morphology �ltering on regular grids with
structuring elements.

5.6. Evaluation of hierarchies for natural image analysis

Hierarchies of partitions are multi-scale image representations that were �rst proposed in [178, 298].
They have since appeared under various names : pyramids, hierarchies of segmentations, partition trees,
scale-sets. In a hierarchy (of partitions), an image is represented as a sequence of coarse to �ne partitions
satisfying the strong causality principle [190, 229] : any partition is a re�nement of the previous one in the
sequence (see Section 3). They have various applications in computer vision and image analysis : image
segmentation [18, 87, 165, 252, 257, 277, 278, 315], occlusion boundary detection [177], image simpli�cation
[18, 165, 291], object detection [278], object proposal [252], visual saliency estimation [317]. In particular,
they have gained a large popularity with the work presented in [87] whose hierarchical approach to the
general problem of natural image segmentation outperformed state-of-the-art approaches.

In order to assess the results of hierarchical watersheds (as described in Section 3.2) in the context of
natural image segmentation, the �rst main contribution of [24] is a novel evaluation framework for hierarchies
of partitions speci�cally designed to capture the various aspects of those representations : 1) quality of
regions and contours, 2) quality of produced segmentations with horizontal cuts (i.e. partitions extracted
from the hierarchy where every region is taken at the same scale) and optimal non-horizontal cuts (i.e.
partitions extracted from the hierarchy where the regions can be taken at di�erent scales), and 3) easiness of
�nding a set of regions representing a semantic object (see [60] for a preliminary study on this aspect). These
measures are evaluated on two types of natural image datasets : 1) Pascal Context segmentation dataset [231]
(2 498 images), and 2) MS-COCO [200] and Pascal VOC'12 [150] object segmentation datasets (291 875
objects from 40 504 images and 3 427 objects from 1 449 images respectively). Compared to the classical
approach for hierarchy evaluation that focuses only on the horizontal cuts and on the image segmentation
problem, we believe that the proposed framework o�ers a richer assessment that better accounts for the
hierarchical nature of the representations and it is not limited to a single use case, which better suits to the
wide spectrum of applications in computer vision and image analysis.

This framework can be used to evaluate and understand the strengths and weaknesses of the considered
hierarchies of segmentations. In particular, it allows us to identify a watershed hierarchy based on a novel
extinction value, the number of parent nodes, that outperforms the other hierarchies of morphological
segmentations, namely, the quasi-�at zones hierarchy, the watershed hierarchy based on dynamics, area,
and volume extinction values, cited in increasing order of mean score according to [24].

Then, we study the importance of the gradient measure for all these methods and the bene�t to perform
a post-�ltering of some hierarchies. The most simple gradient measures use only colorimetric information
from the two pixels of an edge to set up the weight of this edge : in this category, we consider an Euclidean
distance in the RGB color space and an Euclidean distance in the Lab color space, the latter being more
compliant with human color perception [160]. However, recent advances on contour detection have led to
non local supervised gradient estimators achieving better performance on contour detection benchmarks :
in this category, we consider the structured edge detector (SED) from [146]. We do not observe a clear
improvement with Lab gradient compared to RBG gradient. However, there is almost always a large gain
by switching from a local RGB or Lab gradient to the supervised non-local gradient SED. We noticed
also that the segmentations extracted from quasi-�at zones hierarchies and watershed hierarchies based on
dynamics failed to retrieve the main objects of interest of the image unless the hierarchies are post-processed
to remove the smallest regions.
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Finally, the properties of the best hierarchical watershed solutions are discussed and compared to state-
of-the-art approaches proposed in the computer vision �eld. As reference state-of-the-art results, we include
Multiscale Combinatorial Grouping (MCG) hierarchies from [252], Convolutional Object Boundaries (COB)
hierarchies from [206], and Least E�ort Segmentation (LEP) from [319] in our assessments. Comparing to
state-of-the-art methods, the hierarchical watershed method does not perform as well as other methods in
terms of mean score but is competitive for a certain number of measures (such as the measures based on
non-horizontal cuts).

In terms of execution times, the watershed approach is at least an order of magnitude faster than other
methods (mean execution time of 90ms on images of size481� 321 pixels for the hierarchical watershed
methods vs 800 ms, 2s, and 24s for the methods described in [206], [319] and [252], respectively). We also
performed tests on high resolution RGB images (4160� 2340pixels) giving a mean processing time of 5.5 s
composed of 4 s to compute SED gradient and 1.5 s to construct the watershed hierarchy.

Overall, we concluded from the experiments that watershed hierarchies are valuable candidates for
various computer vision tasks.

5.7. Artwork 3D models indexing and classi�cation

3D shape modeling and digitizing have received more and more attention for a decade, leading to an
increasing amount of 3D model warehouses, either in domain-speci�c or wide-usage contexts. These 3D
model databases require new tools for indexing, classifying, and retrieving the objects in order to provide
the end-user with easy access to the models.

Content-based document retrieval (CBDR) has been a very active research �eld for a few years, and
concerns textual documents, images, videos, and more recently 3D models. Usually CBDR is divided into
two di�erent steps : (i) an o�-line step performs the document indexing by computing descriptors and
features that are easily and fast compared, and thus builds an e�cient summary of each document, called a
signature ; (ii) an on-line step, in which the user performs a search in the database thanks to a search engine.
By means of signature comparison, the system ranks the database models according to their similarity to
a query given as input. A feedback loop based on user interaction re�nes the results.

In [12], we focus on 3D model indexing and retrieval. The �rst interactive 3D model search engines
appear on the web around 2001�2002. ThePrinceton 3D Model Search Engine, associated to the widely used
Princeton Shape Benchmark (PSB), (http://shape.cs.princeton.edu/benchmark/ ) allows the user to
perform text queries, 2D sketch queries, and to compare 3D models through some 3D shape descriptors [157].
The 3D Search Tool from the University of Thessaloniki (http://3d-search.iti.gr/3DSearch ) is based
on the 3D generalized Radon transform and make comparisons within a 2.000 model database [142] ; the
results are only based on geometric comparisons, without learning, leading to some mis-classi�cations of
the database. The European Network of ExcellenceAim@Shape(http ://www.aimatshape.net.) presents
a geometric search enginewhich provides content-based retrieval with di�erent matching methods (global
or local, etc.). The SHREC 3D Shape Retrieval Contests allowed the comparison of 3D shape descriptors
and 3D retrieval methods thanks to databases associated with ground-truths [305]. Ohbuchiet al. [242]
proposed a retrieval system based on multiresolution global features, which retrieves object categories from
a single example.

In [12], we present a 3D indexing and retrieval search engine, called �RETIN-3D�, dedicated to 3D
artwork model databases. Some examples of such 3D artwork models are presented in Figure 46. The aim is
to provide user friendly tools for classi�cation, for content-based indexing, for retrieval, and for visualization
of such dataset. These tools are �rstly dedicated to historians and archaeologists, who will be able to �nd,
display and compare artworks in a few clicks. One can also imagine that museum visitors, provided with
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their smartphone, could have the opportunity to query a database in front of a statue and thus get a lot of
additional information.

Figure 46. Some objects of the EROS-3D database : �gurines, moulds, vases. The 3D model collection
EROS-3D used in this work is provided by the C2RMF (Le Louvre, Paris).

The database classi�cation is addressed by means of global shape indexing. Unlike CAD models or
arti�cial models that are often used in 3D model warehouses, artwork models are digitized in a high
resolution (between 30,000 and 300,000 vertices) and do not exhibit regular surfaces. We compare several
global shape descriptors for a classi�cation task. The RETIN-3D search engine uses these shape descriptors
to retrieve similar objects thanks to an active learning strategy. Unlike search engines which are asked
by textual requests or 2D/3D sketches, the query consists in a 3D model, and the search engine extracts
from the database a category of models similar in a certain way to the query. The user leads the search to
the desired category, annotating some objects as relevant or irrelevant to his search. A screenshot of the
proposed search engine is presented in Figure 47.

Not surprisingly, global shape descriptors are not su�cient to discriminate objects di�ering by some
speci�c details. Thus, we propose to use local shape descriptors computed on regions of the surface. To
obtain regions of the surface, we consider watershed cuts of maps de�ned on the surface of the 3D object and
which behaves like a local curvature estimator. The framework of watershed cuts on simplicial complexes,
presented in Section 2.3, is particularly adapted to this task. Then, shape descriptors are computed for
each region of the surface partition, and the search engine is adapted to 3D region descriptor bags. Partial
matching results are therefore also possible.

Experiments show that the combination of an accurate surface segmentation and local shape descriptors
signi�cantly improves the database classi�cation. The end-user (a museum curator, for instance) may be
particularly interested in partial shape matching, for example to classify fragments or to classify objects
according to minor details. The active learning strategy, developed in our search engine RETIN-3D is thus
an important tool for the end-user.
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Figure 47. RETIN-3D user interface : left, the 3D models are ranked by their classi�cation rate, top left
is the model query ; relevant (resp. irrelevant) objects are annotated with a green (resp. red) mark ; at the
bottom, the active learning panel. The zoom selected model (right panel) is colored according to the cord
length values at each 3D surface point : yellow the low values, blue the high. The RETIN-3D interface allow
to zoom and rotate the selected model.
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6. CONCLUSION

This dissertation is an overview of our main research results. It covers a period of almost �fteen years
of activity. Our primary interest is image segmentation (Sections 2 and 3) and �ltering (Section 4) with
applications to medical imaging (Sections 5.1, 5.2, 5.3, and 5.4), optical character recognition (Section 5.5),
computer vision (Section 5.6 and the ongoing PhD work of Karla Otiniano et Edward Cayllahua about
human action recognition and scene parsing, respectively), 3D surfaces analysis (Section 5.7), biological
imaging (ongoing PhD work of Diane Genest about classifying images of �sh embryos according to potential
anatomical malformations), video processing [56, 73] (not described in this dissertation), and multimedia
processing (pending call for projects to extend preliminary works of our collaborators [140, 280] using
algorithms presented in this dissertation). We have provided new solutions to image processing problems
(watershed segmentation, hierarchical analysis, and mathematical morphology �ltering by adjunctions)
with associated algorithms and implementations. We highlighted the interests of these novel solutions from
theory, computational e�ciency, and application points of view. In particular, these solutions have been
embedded in a wide variety of robust and fast softwares solving application problems.

An important part of our work relies on graphs. This framework is adapted to discrete spaces (thus
to images stored in a computer memory), allows the versatility of the proposed tools (thus, their use
in various applications), and relies on solid theoretical and algorithmic bases. In addition to providing
original solutions to image processing problems by working in this graph framework, we have been able to
highlight new graph problems (and their solutions) in relation with image processing applications. As main
examples, we point out (i) the introduction of four original classes of graphs, namely the fusion graphs,
presented in Section 2.1.1, which are adapted to some region merging image analysis methods, and (ii)
the original characterization of the minimum spanning trees of a given edge-weighted graph relying on an
image segmentation method, namely the quasi-�at zone hierarchical segmentation method. So far these
results have not yet been used outside the �eld of image processing but this could happen in the future. In
this dissertation, we also mentioned some results concerning segmentation and �ltering in the framework
of simplicial complexes. This framework is a generalization of the one of graphs. It is then richer and also
more complex than the framework of graphs. It allows to better account for the topological properties of
the object under considerations and the operators de�ned on such spaces can reach a better precision than
their counterparts on graphs. Finally, we have recently explored watershed segmentation in hypergraphs
which is a kind of generalization of simplicial complexes adapted to deal with other kind of data such as
movie datasets or authorship datasets [69] which are less structured than the digital images or the discrete
surfaces.

In order to close this dissertation, we would like to sketch six interesting directions for future midterm
research work.

1. Recent advances in machine learning [197] provide disruptive innovations in computer vision leading
to a large improvement of results for numerous tasks such as object recognition [281] or scene
labeling [152]. Following this trend, a large gap of performance is obtained in [206] for the natural
image segmentation problem. However, the results are still far from human performance which
leaves room for improvements in a near future. First attempts to learn gradients measure for (non-
hierarchical) watershed segmentation [90, 255] show that it is a promising but not easy direction.
Providing a complete framework allowing the learning of adapted gradient and regional attributes
for hierarchical watershed segmentation would surely be a step forward in the �eld.

2. For image segmentation, the question of evaluation is a fundamental one. A considerable amount of
work is nowadays devoted to the construction of a sound evaluation framework [24, 60, 87, 253, 254].
The assessment is performed with the existing ground-truth segmentations available in the literature
[150, 200, 210, 231]. These works mainly focus on comparing a hierarchical segmentation provided
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by a computer with one or several ground-truth segmentations provided by humans. One should
note that such ground-truth segmentations are not hierarchical, and as such, we can not truly assess
the bene�t of a hierarchical organization. Although the question of the evaluation of hierarchies is
an even more complex question, we are deeply convinced that the computer-vision community at
large would bene�t of hierarchical ground truths, i.e., the full decomposition of a complex image in
its semantic parts and the iterative re�nement of those parts into subparts. Up to our knowledge,
the work presented in [203] is the single attempt to provide a hierarchical ground-truth dataset. The
authors of [203] de�ne a hierarchical ontology of semantic objects with 3 levels and asked human
subjects to decompose scenes according to it : the dataset is thus strongly oriented towards the
category identi�ed in the ontology and does not correspond to a general segmentation objective.
Building a hierarchical ground-truth dataset and an associated evaluation framework for the general
image segmentation problem is a full research topic for the future. It includes notably the design of
computerized tools allowing the user to hierarchically annotate the images, as well as measures to
compare a human provided hierarchy to the results of the hierarchical segmentation algorithms.

3. An important aspect of the work presented in [23], which is brie�y recalled in Section 3.1, is to
underline and to make precise the close link that exists between hierarchical classi�cation [161, 239,
289] and hierarchical image segmentation. Indeed, the work presented in [23] allows us to recover and
to generalize some results known in hierarchical clustering. Whereas classi�cation methods were used
as image segmentation tools for a long time, our results incite us to use hierarchical methods initially
designed for image segmentation for processing non image data. We showed preliminary results of
the use of hierarchical watersheds and saliency maps for analyzing and visualizing a small dataset
of US cities [82]. Some illustrations of this analysis are presented in Figures 48, 49, 50, and 51. With
the emergence of the so-called �big-data�, exploring large databases with the tools presented in this
dissertation seems a promising direction for future research. To go one step further, leveraging on
the relations between the notions of watershed and homotopy (Section 2.3), new insights for such
classi�cation of large datasets could be obtained by establishing links between the presented notions
and the topological persistence theory [149]. Moreover, the links between mean shift and topological
persistence established in [244], the links between spectral clustering and minimum spanning tree
investigated in [118] as well as relations with the notion of a tree of shapes introduced in [227] and
further studied in [158] also deserve our attention in this future research direction.

4. We have not reviewed in this manuscript numerous other interesting graph-based approaches which
are related to mathematical morphology. Di�erential equations is one of them. Indeed, discrete set-
tings are recently becoming the subject of numerous studies [143, 163] : the main idea is that one
can write on graphs an exact discrete version of di�erential equations, and e�ciently solve many
problems. For example, some graph generalizations of the partial di�erential equations of mathema-
tical morphology [86] can be written [256, 273, 297], o�ering a greater �exibility than the continuous
framework (notably, an easy integration of patch-based processing and novel applications). Following
the characterization of watersheds in terms of minimum spanning forests, presented in Section 2.2,
and the links established in [84] between min-cuts and watersheds, the power-watershed framework
is proposed in [133] to unify in a same energy minimization formulation several well-known opti-
mization methods, namely, random-walks, min cuts, shortest path forests and watersheds. Many
applications can be designed within this framework including some that are surprising for mathe-
matical morphology : for example the (power) watershed can be used to perform an anisotropic
di�usion process [132] or to produce a surface reconstruction from unstructured cloud points [130].
Many other links with seemingly unrelated methods can be searched and found : for example, the
popular mean-shift approach [121, 127] can be seen [244] as computing a max-tree in the feature
space, and �ltering this max-tree with a depth criterion. We also believe that further exploring the
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Figure 48. Saliency map of a hierarchical watershed (driven by population attribute) on the Knuth
Miles dataset (i.e., 128 representative US cities with positions and populations). Each vertex is a city and
two neighboring cities are linked by an edge if they share an edge in the Voronoi diagram of the cities. The
width and gray-level of an edge is the inverse of its weight in the associated saliency map.

links with variational methods, which have bee widely studied in image processing, may lead to new
interesting methods. Exploring the convergence of discrete di�erential methods towards their conti-
nuous counterparts when the space is re�ned might also lead to interesting results (see,e.g., [126]).
Indeed, this family of properties, studied under the name of multigrid convergence [189], o�ers the
guarantee that the discrete methods behave as one would wait from a modelization in a continuous
and regular space. Exploring, detailing and emphasizing such links with other methods is indeed a
promising research direction.

5. In Section 4.2, �rst bases for mathematical morphology �ltering on simplicial complexes are presen-
ted. In this context, it is possible to obtain a large number of distinct �lters since we can choose
to condition the presence / absence of an element of dimensioni in the result of the �lter to the
presence / absence of a group of elements of any dimensionj between 0 and n in the operand.
This increased degree of complexity compared to frameworks based on structuring elements or on
graphs is di�cult to handle. In particular, the work presented in [16, 41] investigates some examples
of operators which can be designed on simplicial complexes to reach a better precision on the re-
sults but it does not provide systematic means to build all possible morphological operators of the
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Figure 49. Same as Figure 48 but the size of the vertices and of the labels are given by the extinction
value (for the population attribute) of the cities.

framework. Consequently, we cannot guarantee that the most e�cient operators have been found.
Providing such construction, which we callmorphological calculus on simplicial complexes, will be
an interesting topic for our future research.
We also note that the morphological operators presented in Section 4.2 relies on an elementary
� block � distance in the sense that any edge of the graph (or more generally any element of the
complex) has a unit contribution to the length of the geodesics. As a consequence, the results of
the operators presented in Section 4.2 depict some digitization artifacts known as � blockinness �
e�ects (see Figure 52). With morphological calculus, we intend to integrate an additional degree
of �exibility by letting the operators depend on an arbitrary distance between the elements of
the graphs or complexes. For instance, the set of edges and vertices of a 4-adjacency graph can be
embedded into an Euclidean space, the distance between two elements is then given as the Euclidean
distance between the barycenters of the elements. As illustrated in Figure 52, this setting seems to
be an e�ective way to reduce the � blockiness � e�ect observed when the implicit distance mentioned
above is used.

6. Finally, we notice that the �ve perspectives presented above, as well as the current improvement in
sensor resolutions both result in larger datasets, larger object descriptors, a larger size of working
spaces, and higher numbers of iterations of the operators. Hence, this current trend induces a need
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Figure 50. Saliency map of a hierarchical watershed (driven by population attribute) on the Knuth
Miles dataset (i.e., 128 representative US cities with positions and populations). The saliency weights are
projected on the edges of the Voronoi diagram of the cities.

of extensive computation. In order to cope with this need, advanced hardware architectures might
be considered. This includes multi-core shared memory architecture and GPU available on nowadays
desktop computers as well as computer clusters. In order to bene�t from such architectures, some
strategies for distributing the computation must be designed at large grain level. At a �ner grain
level, it might also be interesting to consider parallelization strategies of the proposed algorithms
as well as block computing when the size of the data is too large to �t within the memory of the
computation unit. Being able to propose such strategies will probably be an important factor of
success to develop the perspectives drawn in this conclusion.
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Figure 51. Ranking (from top to bottom and left to right) of the Knuth Miles dataset cities according
to catchment basins size (i.e., extinction value of the cities by population attribute).
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Figure 52. Morphological �ltering on graphs with implicit block distance (middle) and with Euclidean
distance (right) from the original image depicted on the left.
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État civil et Coordonnées

Nom Jean Cousty
Date de naissance 2 mars 1981
Nationalité Française
Adresse Département Informatique, ESIEE Paris, Cité Descartes BP 99, 93 162 Noisy-

le-Grand cedex
Téléphone +33 (0)1 45 92 60 28
Adresse électronique j.cousty@esiee.fr
Page web http://perso.esiee.fr/~coustyj

Situation professionnelle actuelle

� Depuis octobre 2008
� Enseignant-chercheur en informatique àESIEE Paris
� Membre duLaboratoire d'Informatique Gaspard-Monge (UMR 8049), Université Paris-Est

� Depuis septembre 2010
� Co-responsable de la �lière informatique d'ESIEE Paris

� Depuis septembre 2017, jusqu'à août 2018
� Délégation CNRS au laboratoire MAP5 (Mathématiques Appliquées à Paris 5) (UMR

8145), Université Paris Descartes

Domaine de recherche

� Mots-clés : Traitement et analyse d'images, morphologie mathématique, théorie des graphes, to-
pologie discrète, géométrie discrète, analyse hiérarchique, imagerie médicale 3D et 3D+t, imagerie
cardiaque, imagerie cérébrale.

Formation
2004/2007 Doctorat en informatique de l'Université de Marne-la-Vallée

2003/2004 DEA IFA (Informatique Fondamentale et Applications) de l'Université de Marne-la-
Vallée, mention très bien

1999/2004 Ingénieur ESIEE
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Expérience professionnelle

2015/2017 Professeur étranger invité au Brésil
� pendant 4 à 6 semaines par an
� dans deux Universités : Université Fédéral du Minas Gerais (UFMG) et PUC

Minas
� �nancé par la CAPES (agence de coordination du perfectionnement du per-

sonnel de l'enseignement supérieur brésilien)

2007/2008 Stage post-doctoral à l'INRIA Sophia-Antipolis au sein du projet de recherche
ASCLEPIOS , sous la direction deX. Pennec et �nancé dans le cadre de l'ARC
(Action de Recherche Coopérative) BrainVar

� Sujet : Traitement et analyse d'IRM de di�usion du cerveau

2004/2007 Doctorat à l'Université Paris-Est , au Laboratoire d'Informatique Gaspard-Monge
(UMR 8049), sous la direction deL. Najman

� Sujet : Lignes de partage des eaux discrètes : théorie et application à la
segmentation d'images cardiaques

� Jury : F. Meyer (président), G. Malandain (rapporteur), J. Roerdink
(rapporteur), G. Bertrand , P. Clarysse , M. Crochemore , J. Garot et
R. Vaillant

2004/2007 Enseignant en informatique (contrat de moniteur) dans le cursus ingénieur du groupe
ESIEE , 66 heures équivalent travaux dirigés par an

Mars-
Septembre
2004

Stage de recherche chezGeneral Electric Healthcare , France, au sein du dépar-
tement des Applications Médicales Avancées, sous la direction deR. Vaillant

� Sujet : Fusion d'images CT et �uoroscopiques cardiaques pour l'aide au po-
sitionnement des cathéters enélectrophysiologie interventionnelle

Mai-août 2003 Stage de recherche à l'Université de Pennsylvanie, USA , au sein de l'équipe de
traitement d'images médicales (Medical Image Processing Group), sous la direction
de J.K. Udupa

� Sujet : Connexité �oue et ligne de partage des eaux :classi�cation des
tissus du cerveau en IRM 3D

Septembre-
octobre 2001

Stage de technicien à la Délégation Générale de l'Armement , au sein du service
Géographie-Imagerie-Perception sous la direction deD. Dufour et A. Dalgalar-
rondo

� Sujet : Mise en ÷uvre d'un télémètre laser à balayage et élaboration d'algo-
rithmes de cartographie 2D en vue de l'intégration du télémètre sur un robot
mobile autonome
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Distinctions

� 'Best Student Paper Award' de la conférence19th IAPR international conference on Discrete Geo-
metry for Computer Imagery - DGCI'2016 pour un article [64] co-écrit avec une doctorante (I.
Youkana )

� Prix de thèse de l'Université Paris Est pourR. Kiran , doctorant co-encadré avecJ. Serra
� Mention spéciale 2008 décernée par l'AFRIF (Association Française pour la Reconnaissance et l'In-

terprétation des Formes ) pour la thèse de doctorat deJean Cousty
� Deuxième prix de la compétition jeunes chercheurs des Journées Européennes de la Société Française

de Cardiologie (2006) pour un article co-écrit avecT. Goissen [27]

Indicateurs

Articles de revue : 19 dont 13 depuis 2011
Articles de revue soumis : 1 dont 1 depuis 2011
Chapitres de livre : 5 dont 0 depuis 2008
Brevets : 2 dont 0 depuis 2008
Communication en conférences avec actes : 48 dont 33 depuis 2011
H-index (google scholar) : 19
Citations (google scholar) : 1309
Co-encadrements de doctorants : 9 dont 9 depuis 2011
Co-encadrements de post-docs : 1 dont 1 depuis 2011
Co-encadrements de stagiaires : 9 dont 4 depuis 2011
Enseignement : 196h équivalent TD par an depuis 2008

Travaux éditoriaux

2016 Co-organisateur duWorkshop on Discrete Geometry and Mathematical Morphology for
Computer Vision (WDGMM4CV) , en conjonction avec la conférenceAsian Conference
on Computer Vision (ACCV'2016) à Taipei, Taiwan, avecY. Kenmochi et Akihiro
Sugimoto : http://www.dgcv.nii.ac.jp/DGMM4CV2016/index.html .

2015 Co-organisateur desjournées �informatique et géométrie� 2015 (JIG2015), avec M.
Couprie , X. Goaoc , Y. Kenmochi , N. Mustafa et D. Rohmer . Les journées
sont soutenues par les Groupements de Recherche Informatique Mathématique (GdR
IM) et Informatique Géométrique et Graphique, Réalité Virtuelle et Visualisation
(GdR IG-RV) du CNRS : https://jig2015.sciencesconf.org/ .

Depuis 2007 Rapporteur régulier pour les revues d'analyse d'images et vision par ordinateur (IEEE
trans. on Pattern Analysis and Machine Intelligence, Pattern Recognition, Journal of
Mathematical Imaging and Vision. . .).

Depuis 2006 Rapporteur régulier pour les séries de conférencesDGCI (Discrete Geometry for Com-
puter Imagery) et ISMM (International Symposium on Mathematical Morphology)
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Participation à des projets de recherche �nancés

� Professeur étranger invité (PVE) à l'Univesrsité Fédéral du Minas Gerais (UFMG) et à l'Université
PUC-Minas au Brésil (2015-2017).
� Financement de deux séjours par an pour J. Cousty (4/6 semaines par an) au Brésil.
� Financement de deux post-doctorants pendant un an.
� Financement d'un doctorant brésilien pour e�ectuer une année sandwich en France.
� Financement CAPES (agence de coordination du perfectionnement du personnel de l'enseigne-

ment supérieur brésilien).
� Participation au projet ANR Kidico (2010-2015).
� Participation au projet franco-brésilien CAPES-COFECUB (2008-2014) avec l'Université Paris 6,

l'ENSEA, l'UFMG et l'Université de Campinas. Ce projet �nance des missions de professeurs français
au Brésil et de professeurs brésiliens en France.

� Professeur à l'école d'automne de morphologie mathématique organisé par l'Indian Statistical Ins-
titute de Bangalore du 19 au 22 octobre 2010 à Bangalore, Inde,http://www.isibang.ac.in/
~cwjs70/ .

Logiciels et données mis à disposition de la communauté scienti�que

� Participation au développement de la bibliothèque libre de traitement d'image PINK : http://
perso.esiee.fr/~coupriem/Pink/doc/html/index.html .

� Développement de la bibliotèque SM de segmentation hiérarchiques d'images sur graphes :http:
//perso.esiee.fr/~dpt-it/sm .

� Développement d'une base de données dédiée à l'évaluation de méthodes de segmentation du myo-
carde ventriculaire gauche dans des images cardiaques :http://www.laurentnajman.org/heart/
index.html .

� Développement, avec Imane Youkana, d'une bibliothèque pour le calcul parallèle de cartes de dis-
tance adaptés au �ltrage morphologique sur graphe :http://perso.esiee.fr/~dpt-it/MorphoPar/
ParDMaps.tgz.
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Principaux enseignements

Systèmes d'exploitation.

Fonction : responsable et intervenant en cours/TD/TP.

Période : depuis 2008.

Promotion : bac +3.

Volume horaire : 30h de cours +25h de projet optionnel.

Morpho, Graphes et Imagerie.

Fonction : créateur, responsable et intervenant en cours/TD/TP.

Période : depuis 2010.

Filières : �lière internationale �Master Computer Science�.

Promotions : bac+4.

Volume horaire : 60h.

Particularité : cours en anglais.

Originalité pédagogique : combinaison de deux disciplines (théorie et algorithmes des
graphes et traitement d'image par morphologie mathématique)
habituellement enseignées séparément.

Cours en ligne : http://perso.esiee.fr/~coustyj/EnglishMorphoGraph/

Traitement algorithmique de l'information.

Fonction : responsable et intervenant pour moitié du cours.

Période : depuis 2008.

Promotions : bac+4.

Volume horaire : 30h.

Originalité pédagogique : la moitié du cours pour laquelle j'interviens porte sur le traite-
ment de séquences et la seconde, prise en charge par un parte-
naire industriel, porte sur l'analyse linéaire des images.

Initiation à la programmation avec Java.

Fonction : intervenant TD/TP.

Période : depuis 2008.

Promotions : bac+1.

Volume horaire : entre 20h et 50h selon les années.
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Algèbre linéaire

Fonction : intervenant et concepteurs de TP.

Période : depuis 2012.

Promotions : bac+3.

Volume horaire : 12h.
Originalité pédagogique : Séquence de 12H de TP permettant de réaliser un projet de vi-

sion par ordinateur mettant en ÷uvre les opérations élémentaires
d'algèbre linéaire. Cette séquence est intégrée au cours d'algèbre
linéaire d'ESIEE Paris.

Cours en ligne : http://perso.esiee.fr/~perretb/a3pal/
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Encadrement de stagaires et doctorants depuis 2011

Doctorat de Deise Santana Maia

Sujet : Apprentissage de hiérarchies de segmentations d'images.
Fonction : co-encadrant avecL. Najman et B. Perret .
Période : 2016-.
Financement : bourse MSER.

Doctorat d' Edward Cayllahua Cahuina

Sujet : Morphologie mathématique pour l'anotation de vidéo.
Fonction : co-encadrant avecY. Kenmochi , M. Couprie A. de Albuquerque

Araujo et G. Cámara Chávez .
Période : 2016-.
Financement : thèse en co-tutelle Brésil/France, bourses brésilienne et péruvienne.

Doctorat de Karla Otiniano

Sujet : Morphologie mathématique pour la reconnaissance d'actions humaines.
Fonction : directeur et co-encadrant avecB. Perret , A. de Albuquerque Araujo

et G. Cámara Chávez .
Période : 2016-.
Financement : thèse en co-tutelle Brésil/France, bourses brésilienne et péruvienne.

Doctorat de Diane Genest

Sujet : Imagerie du modèle embryon de poisson / application à la toxicologie du
développement.

Fonction : co-encadrement avecH. Talbot et N. de Crozé .
Période : 2016-.
Financement : bourse CIFRE avec L'Oréal.

Doctorat de Ketan Bacchuwar

Sujet : Traitement d'images pour l'analyse sémantique du déroulement des procé-
dures interventionnelles en cardiologie.

Fonction : co-encadrant avecL. Najman et R. Vaillant .
Période : 2015-.
Financement : bourse CIFRE avec General Electric Healthcare.

Doctorat d' Imane Youkana

Sujet : Imagerie 2D/3D et opérateurs de morphologie basés sur les graphes : paral-
lélisation sur des architectures multi-c÷urs CPU/GPU.

Fonction : co-encadrant avecM. Akil et I. Saouli .
Période : 2013-2017.
Financement : bourse franco-alégrienne PROFAS B+.

Doctorat d' Imen Melki

Sujet : Vers un systeme automatisé pour la detection et la quanti�cation des lésions
coronaires dans des angiographies ct cardiaques.

Fonction : co-encadrant avecL. Launay, L. Najman et H. Talbot .
Période : 2011-2015.
Financement : Bourse CIFRE avec GE Healthcare.
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Doctorat de Ravi Kiran

Sujet : L'optimisation par treillis énergétique.
Fonction : co-encadrant avecJ. Serra .
Période : 2011-2014.
Financement : Bourse MESR.

Doctorat de Fabio Dias

Sujet : Une étude de certains opérateurs morphologiques dans les complexes sim-
pliciaux.

Fonction : co-encadrant avecL. Najman .
Période : 2009-2012.
Financement : contrat FUI DematFactory.

Stage post-doctoral d' Albertro Pimentel

Sujet : Stochastic hierarchical watersheds.
Fonction : co-encadrant avecS. Guimaraes et L. Najman
Période : 2015-2016.
Financement : projets franco-brésilien CAPES-COFECUB et projet CAPES-PVE

Master de Deise Santana Maia

Sujet : Combinaison de hiérarchies pour améliorer les résultats de segmentation
d'images.

Fonction : co-encadrant avecB. Perret .
Période : 2016.
Financement : bourse du labex Bézout.

Stage ingénieur de Mohamad Onayssi

Sujet : Edge weight functions for graph-based hierarchical image analysis.
Fonction : co-encadrant avecB. Perret .
Période : 2016.

Stage ingénieur de Jean Carlo Rivera Ura

Sujet : Evaluation de représentations hiérarchiques pour la segmentation d'images.
Fonction : co-encadrant avecB. Perret .
Période : 2014.

Stage ingénieur de Laurent Mennillo

Sujet : Évaluation de certains �ltres morphologiques pour la reconnaissance op-
tique de document.

Fonction : co-encadrant avecL. Najman .
Période : 2012.
Financement : contrat FUI DematFactory.
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Collaborations scienti�ques

Imagerie médicale

Entreprise : GE Healthcare.
Sujet : Imagerie cardio-vasculaire (thèses d'Imen Melki et de Ke-

tan Bacchuwar ), électrophysiologie interventionnelle (stage de
DEA de Jean Cousty ).

Ingénieurs impliqués : Régis Vaillant, Laurent Launay .
Période : depuis 2004.
Institut : CHU Henri Mondor de Créteil, Institut Jacques Cartier à Massy.
Sujet : Imagerie cardiaque.
Cardiologues impliqués : Jérôme Garot, Stéphanie Clément, Thomas Goissen .
Période : 2005-2012.
Institut : action IMPEIC puis MEDIEVAL du GDR STIC-santé (CNRS).
Sujet : Évaluation de méthodes de segmentation cardiaque.
Période : 2008-2012.

Imagerie biologique

Entreprise : L'Oréal.
Sujet : Étude de toxicité par imagerie d'embryons de poissons (thèse de

Diane Genest )
Ingénieurs impliquées : Marc Léonard et Noémie de Crozé .
Période : depuis 2016.

Indexation et classi�cation d'objets d'art 3D

École d'ingénieurs : ENSEA (équipe ETIS).
Chercheurs impliquées : Sylvie Philipp-Foliguet, Michel Jordan .
Période : 2007-2011.

Segmentation hiérarchique d'images

Université : PUC Minas et UFMG (Belo Horizonte, Brésil) .
Personne impliquée : Silvio Guimaraes and Arnaldo de Albuquerque

Araujo .
Période : depuis 2010.
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