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RESUME

Ce document présente la description statistique des sections efficaces neutroniques dans le do-
maine en énergie des résonances non résolues. La modélisation de la section efficace totale et
de la section efficace ”shape-elastic” est basée sur le formalisme de la ”Matrice-R moyenne”.
Les sections efficaces partielles décrivant les réactions de captures radiatives, de diffusion
élastique, de diffusion inélastique et de fission sont calculées à l’aide du formalisme Hauser-
Feshbach avec fluctuations des largeurs. Dans le domaine des résonances non résolues, ces
modèles dépendent des paramètres de résonances moyens (”neutron strenght function” Sc,
espacement moyen entre les résonances Dc, largeur moyenne de réaction partielle 〈Γc〉, rayon
de voie ac, rayon effectif R′ et paramètre des niveaux distants R

∞
c ). Les codes (NJOY, CAL-

ENDF ...) dédiés au traitement des bibliothèques de données nucléaires (JEFF, ENDF/B,
JENDL, CENDL, BROND ...) utilisent les paramètres moyens pour prendre en compte le
phénoméne d’autoprotection des résonances non résolues, indispensable à la simulation du
transport des neutrons par les codes stochastiques (MCNP, TRIPOLI ...) et déterministes
(APOLLO, ERANOS ...). Le travail d’évaluation consiste à établir un ensemble cohérent
de paramètres moyens dépendants du moment angulaire total du systéme J et du moment
orbital du neutron incident l. Les travaux exposés dans ce document s’attachent à décrire
les liens entre les formalismes de la Matrice-S et celui de la ”Matrice-R moyenne” pour le
calcul des paramètres Sc, R

∞
c , ac et R′.
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Chapter 1

Introduction

Whenever the nuclei of a given species are bombarded with neutrons, nuclear reactions can
be observed with probabilities expressed as cross sections in units of barns. In the range of
neutron reactions from thermal to MeV energies, two processes can be distinguished: the
compound nucleus reactions and the direct reactions.

When neutrons collide with a nucleus, they may form long-lived compound states of very
high complexity, decaying usually via particle production, γ-decay of fission. A resonance
is observed when the energy of the compound system corresponds to that of an excited
state. In the framework of the Bohr compound nucleus theory, a neutron induced reaction
is considered as a two-step process:

A
ZX + n︸ ︷︷ ︸
entrance
channel c

→ A+ 1
Z
X∗ → Y + i︸ ︷︷ ︸

exit
channel c’

The complex interactions between the nucleons lead to the independence hypothesis accord-
ing to which the formation and the decay of the compound nucleus are independent. In some
events, the incident neutron may be directly absorbed without intermediate state. The direct
reaction is a one-step reaction in which the nucleons which do not participate to the reaction
are left undisturbed. Direct reactions play a dominant role at neutron energies higher than
few hundred of keV. Direct processes of interest for this work are the direct inelastic and
shape-elastic cross sections. In the case where the target is in an excited state, the direct
process to the ground state is often call superelastic (Fig. 1.1).

At intermediate energies, the resonances are not fully resolved owing to the limitation of the
experimental resolution of the facility. Thus, two resonance regions can be distinguished,
that of the resolved resonances (RRR) and that of the unresolved resonances (URR). The
former is parameterized in terms of R-Matrix parameters (resonance energies and partial
widths). The URR is analyzed on the basis of the statistical properties of the resonance
parameters. Figure 1.2 shows the energy limits of the Unresolved Resonance Range for the
capture cross sections of 238U, 235U and 239Pu. The comparison with a neutron spectrum
of sodium-cooled fast reactor (SFR) indicate the energy range of interest for fast reactor
applications.

The URR is characterized by the coexistence of the compound nucleus and direct reactions.
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INTRODUCTION

Figure 1.1: Simplified representation of the compound and direct processes [4].

This coexistence makes it difficult for the interpretation of the neutron cross sections in terms
of average parameters. In the low energy range, the neutron cross sections are calculated with
the Single-Level Breit-Wigner, Multi-Level Breit-Wigner or Reich-Moore approximations of
the R-Matrix theory [1]. They involve arbitrary boundary condition parameters that do not
play a very conspicuous role [2]. Direct reactions do not readily emerge from them. Usually,
their contributions arise from unknown distant levels.

In the high neutron energy range, the neutron cross sections are calculated with optical and
statistical models. The optical model calculations rely on the wave description of the nuclear
scattering through the S-matrix theory. The aim of the present document is to accommodate
such a wave description within the R-Matrix framework. This idea was introduced in the
early 60s but never used to produce consistent sets of average parameters for Evaluated
Nuclear Data Files in ENDF-6 format [3].

This document is structured as follows. The 2nd chapter will introduce the context of the
present studies, the theoretical framework and the type of experimental data used for the
analysis of the Unresolved Resonance Range. Chapter 3 will give elementary wave descrip-
tions of the nuclear scattering in the S-Matrix formalism. The average R-Matrix formalism
will be presented in chapter 4. Few perspectives and the overall conclusions will be given
in chapters 5 and 6. Documents reported in appendix present relationships between the
S-Matrix and the R-Matrix theories, thanks to the generalization of the SPRT method, and
provide results for fissile (Neptunium) and non-fissile (Hafnium) isotopes.
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Figure 1.2: Capture cross sections of 238U, 235U and 239Pu compared to SFR neutron spec-
trum.
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Chapter 2

The Unresolved Resonance Range
of the neutron cross sections

The evaluation of the neutron cross sections aims to provide model parameters that describe
the Resolved Resonance Range (RRR) and the ”continuum” of the neutron induced reactions
up to tens of MeV. Between the RRR and the ”continuum”, one has to distinguish the
Unresolved Resonance Range (URR). This chapter summarizes the context of the studies
carried out on the URR by the nuclear data group of Cadarache with the participation of
students and collaborators from different institutes (Institute for Reference Materials and
Measurements, Faculty of Physics of Bucarest, Horia Hulubei National Institute of Physics
and Nuclear Engineering, Serco Assurance, Oak Ridge National Laboratory, Centre d’Etudes
Nucleaires de Bordeaux Gradignan, Nuclear Research and Consultancy Group NRG). A short
introduction of the theoretical background is given, followed by a presentation of the integral
and microscopic data of interest for this work.

2.1 Context

The Unresolved Resonance Range is an energy range between the resolved resonances and
the ”continuum”. In the URR, the spacing between the resonances and the time resolution
of the time-of-flight spectrometers no longer allow the analysis of individual resonances. As
a consequence, the evaluation work consists of modeling the average behavior of the neutron
cross sections with ”average resonance parameters”. The average parameters of interest are
the neutron strenght function Sc, the mean level spacing Dc and the average value of the
partial reaction widths 〈Γc〉.

Average parameters are essential for neutron transport simulations. Processing codes, such
as CALENDF and NJOY, use the average parameters for generating Probability Tables (PT)
associated with the capture, fission elastic and inelastic reactions [5]. The PT are then used
by the deterministic (APOLLO2, ERANOS) and stochastic (TRIPOLI, MCNP) codes to
simulate the ”natural” fluctuations of the cross sections.

There is an abundant literature exploring the formalism of the Probability Tables and its
impact on neutronic calculations [6, 7]. A recent study was performed on well-defined as-
semblies of the MASURCA reactor in order to quantify the effect of the Probability Tables
on the reactivity calculated by ERANOS, MCNP and TRIPOLI [8]. This study focuses on

13
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Figure 2.1: Comparison of the Unresolved Resonance Range for 240Pu in JEFF-3.0 and
JEFF-3.1.1. The experimental data were retrieved from EXFOR.

the Probability Tables of 238U and 239Pu. For benchmark systems where uranium is present,
non-negligible changes on the multiplication factor ranging from 300 pcm to 1000 pcm are
observed. The magnitude of the calculated effects depends on the shape of the neutron flux
and on the energy bounds of the URR (Fig. 1.2).

A better understanding of the URR was motivated by several problems found in the evaluated
nuclear data files. One of the recurrent problems can be illustrated with the URR of 240Pu
recommended in a previous version of the European library JEFF-3.0, released in the early
2000s. Integral results reported in Ref. [9, 10] showed a systematic overestimation greater
than 4% of the experimental ratio 241Pu/240Pu by the ERANOS calculations. Sensitivity
studies indicated that the origin of the overestimation was the inconsistent description of the
unresolved resonance and ”continuum” ranges around 40 keV for 240Pu (Fig. 2.1).

More recently, works performed in the frame of the international working group WPEC/SG-
32 have confirmed several inconsistencies in the modeling of the Unresolved Resonance Range
of 239Pu [11]. One of them was identified with a simplified simulation of a plutonium sphere
and with a more realistic simulation of a ZONA2 assembly of MASURCA [8, 12]. Signif-
icant differences close to 300 pcm between MCNP and TRIPOLI calculations showed the
inconsistent interpretation of the average parameters by the processing codes CALENDF
and NJOY.

Some of the observed problems were corrected in the latest version of the European library.
However, few questions still remain concerning the representation of the fluctuations of the
neutron cross sections between the RRR and the “continuum”.
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CHAPTER 2

2.2 Theoretical framework

The statistical theory is the basic principle of the analytical treatment of the Unresolved
Resonance Range. In the late 80s, this treatment was implemented by Frohner in his FI-
TACS code in the analyze of the 238U neutron cross sections below 200 keV [13]. FITACS
uses the average R-Matrix theory to describe the total and shape-elastic cross sections. The
Hauser-Feshbach formalism with Moldauer’s prescriptions for the width fluctuations is used
to describe the partial cross sections (radiative capture, fission, elastic and inelastic scatter-
ing). For the fission reaction, the transmission coefficients through a parabolic barrier are
calculated with the Hill-Wheeler formula. The average parameters introduced in the FITACS
calculations are the mean level spacing Dl, the neutron strength function Sl, the average ra-
diation width 〈Γγ〉, the channel radius ac and the distant level parameter R∞l .

The treatment of the Unresolved Resonance Range of the neutron cross sections has changed
little since the 90s. More than 10 years after the work of Frohner on 238U, a similar analysis
was carried out by introducing FITACS in the nuclear data code SAMMY [14]. Recently,
the work of Frohner has also been introduced in the CONRAD code in order to investigate
marginalization techniques for the propagation of the uncertainties in the URR [15]. In 2001,
Koyumdjieva proposed a new modeling of the URR based on the characteristic function of
the R-matrix [16]. In 2003, Leal analyzed the Unresolved Resonance Range of 235U by using
the principle of the Probability Tables [17]. More recently, Sirakov proposed to use optical
model calculations to analyze the Unresolved Resonance Range of 232Th [18]. A similar
approach was developed by the nuclear data group of Cadarache [19].

The methodology consists in replacing FITACS by optical and statistical model calculations.
Parameters of the high energy models are determined from the least square fit of experimental
data with constraints on s-wave average parameters. The latter constraints are deduced from
the statistical analysis of the resolved resonance parameters. This approach facilitates the
modeling of the URR and enhances the long and tedious Neutron Resonance Shape Analysis.
However, the agreement between the low and high energy ranges is not always achieved. This
requires further studies to understand and eliminate the discontinuities. Several iterations
are needed to find a satisfactory compromise between the average parameters. Studies carried
out on non-fissile and fertile isotopes have shown the relevance of the existing approaches [20–
22]. However, the systematic behavior with the target mass of the average parameters cannot
be improved without reliable and accurate experimental data.

2.3 Microscopic and integral measurements

The evaluation of the neutron cross sections requires a precise knowledge of the experimental
conditions and of the main sources of uncertainties, which affect the accuracy of the data.
For these reasons, the nuclear data group of Cadarache is often involved in experimental pro-
grams through collaborations with national or European institutes (Institut Laue-Langevin,
Centre d’Etudes Nucléaire de Bordeaux Gradignan, Institute for Reference Materials and
Measurements, Institute of Isotopes Hungarian Academy of Sciences).

Among measurements of interest for the modelling of the Unresolved Resonance Range, we
have to distinguish the integral and microscopic measurements (differential data). For the
integral data, the evaluation work can take into account results provided by the CEA facilities
(PHENIX, MINERVE, EOLE and MASURCA reactors). For the microscopic data, we often
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Figure 2.2: 151Sm capture cross section deduced from the PROFIL experiment with the IDA
technique of the CONRAD code. The theoretical calculations were performed with the ECIS
and TALYS codes. The experimental data were retrieved from EXFOR.

use time of flight measurements performed on the GELINA facility and results provided by
the Van der Graaff facility of FZK. In the latest evaluation work on 241Am, we also take
into account fission probabilities measured on the Tandem accelerator of Orsay thanks to
the transfer reaction technique.

2.3.1 Post Irradiated Experiments

The evaluation procedure of the neutron cross sections requires integral results which are
sensitive to a limited number of nuclear data. Post Irradiated Experiments performed on
separate samples, such as PROFIL and PROFIL-2 in the PHENIX reactor of CEA Marcoule,
represent valuable sources of information to determine reliable average parameters over a
large number of isotopes [9, 10].

The PROFIL results have already been used to improve the 242Pu capture cross sections with
a standard evaluation procedure [23]. The procedure consists in optimizing the values of the
model parameters on microscopic measurements and to test the final evaluation with integral
data. In order to simplify such a procedure, the Integral Data Assimilation technique (IDA)
has been developed in the CONRAD code [24]. The IDA allows analyzing simultaneously or
sequentially integral and microscopic experiments. Figure 2.2 shows the 151Sm capture cross
sections deduced from the PROFIL data with the IDA technique [25].

2.3.2 Time of flight technique

The time of flight technique is the experimental method used to measure energy depen-
dent cross-section data. In Europe, experimental results are produced at the nTOF facility
(CERN) and at the GELINA facility of the IRMM (Geel, Belgium). In the early 2000s, ma-
jor upgrades of the GELINA facility allowed to achieve excellent level of accuracy on fission
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Figure 2.3: capture yield and transmission data for 241Am measured at the GELINA facility
with the time of flight technique [69].

and capture cross sections and transmission measurements. These high-resolution data are
crucial in the data evaluation process.

Neutron Resonance Shape Analysis (NRSA) consists of determining the energies and the
partial widths of the observed structures with the R-Matrix theory. Numerous experimental
corrections have to be included in the analysis. The main corrections are related to the
Doppler effect, the time resolution of the spectrometer, the normalization, the background
and the sample composition. The resonance evaluation code REFIT [27] is the reference
code for the analysis of the data measured at the GELINA facility (Fig. 2.3). One goal of
the nuclear data group of Cadarache is to produce equivalent results with the CONRAD
code.
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2.3.3 Measurements on Van Der Graaff accelerator

Beyond the threshold of the inelastic cross section, GELINA are not suitable for precise
measurements of radiative capture cross sections. It is thus preferable to use data measured
with accelerators such as the Van der Graaff facility of Karlsruhe (see Figs. 2.1 and 2.2).
Many experimental results covering the needs of sodium fast reactors have been measured
in the context of stellar nucleosynthesis studies. Indeed, the temperatures of interest for the
existing models range from kT = 5 keV to 1 MeV. Such measures have been used in the
compilations of the neutron resonances in order to recommend capture cross sections at 30
keV for a large number of isotopes [28, 29]. These recommended values are of great interest
to determine reliable values for the γ-ray transmission coefficients involved in the statistical
modeling of the capture cross sections.

2.3.4 Surrogate measurements

The experimental databases have many shortcomings. Some of them are mainly due to
technical difficulties related to the direct measurement of neutron cross sections of radioac-
tive isotopes. The experimental activities conducted at the Centre d’Etudes Nucleaires de
Bordeaux Gradignan (CENBG) have shown that these difficulties could be overcome for the
fission cross sections with transfer reactions induced by light charged particles. The validity
of such measurements is still under investigation [30].

One of the latest experimental campaign [31] provided fission probabilities which were used
for the modeling of the 241Am neutron induced reactions. Figure 2.4 shows the fission and
capture cross sections calculated in CONRAD with ”bin-by-bin” correction factors given the
fission probability of 242Am.
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Figure 2.4: 241Am fission and capture cross sections calculated from the fission probability
measured by the surrogate technique [31].

19



Chapter 3

Wave description of the nuclear
scattering in the external region

Before introducing the theory of average cross sections used to establish the average reso-
nance parameters, a short description of the wave description of the nuclear scattering is
presented in this chapter. The main expressions of interest for the modeling of the Unre-
solved Resonance Range in terms of partial-wave channels are given with a special emphasis
on the connections between the channel radius ac, nuclear radius R, potential scattering
length R′, matching radius rm and distant level parameter R

∞
c .

3.1 Definition of the partial-wave channel

The neutron cross section formalisms presented in this document give a phenomenological
description of binary reactions between a projectile and a target nucleus in terms of wave
functions for the entrance and exit channels. This presentation guesses the definition of what
we call a ”partial-wave” channel c. As indicated in Ref. [32], the concept of reaction channel
was first introduced by Wigner and Eisenbud (unpublished) and Breit [33]. It corresponds
to the identification of a pair of particles characterized by a total angular momentum J and
a parity π.

3.1.1 Conservation laws

In the definition of the entrance channel c (incoming particle+target nucleus), it is convenient
to include the spin I (and the parity πI) of the target nucleus, the spin i (and the parity
πi) of the incident particle and features of their relative motion via the orbital momentum
l. The same set of quantum numbers with a prime are commonly used to define the exit
channel c′ (outgoing particle+residual nucleus).

An interaction may occur if the total angular momentum and parity J ′π
′

of the exit channel
c′ is equal to the Jπ value of the entrance channel c. According to the conservation laws
−→
J =

−→
J ′ and π = π′. The parity and the total angular momentum of the compound system

are given, respectively, by:
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Figure 3.1: Coupling scheme used in the R-matrix formalism (left hand plot) and in optical
model calculations (right hand plot).

π =

{
(−1)lπIπi,

(−1)l
′
πI′πi′ ,

(3.1)

and

−→
J =

{ −→
l +
−→
i +
−→
I ,

−→
l′ +

−→
i′ +

−→
I ′ .

(3.2)

As introduced by Lane and Thomas [1], two extreme vector combinations can be applied
to reach the total angular momentum J of the compound system. By analogy with the
spectroscopic notations in atomic physics [34], a coupling scheme which is nearly equivalent
to the ”L-S” coupling shell-model is historically used to solve the vector combination problem
at low incident energies while the ”j-j” coupling shell-model is adopted for high bombarding
energies (Fig. 3.1).

3.1.2 ”L-S” coupling scheme for the R-Matrix formalism

The ”L-S” coupling scheme is suitable for the R-Matrix representation of the compound
nucleus in the Resolved Resonance Range where a limited number of angular momenta can
contribute to a neutron induced reaction. At low neutron energies, it is convenient to presume
that the individual spin of the target and projectile are coupled to produce the channel spin
s [35]. In this case, the total angular momentum J is formed by combining l and s as
follows:

−→
J =

−→
l +−→s , (3.3)

where

21



CHAPTER 3

−→s =
−→
I +
−→
i . (3.4)

Their vectorial combinations lead to the following expressions:

|I − i| ≤ s ≤ I + i, (3.5)

and

|l − s| ≤ J ≤ l + s. (3.6)

In the resonance range, it is impossible in most experimental cases to distinguish between
channels which differ only in their channel spins s. As a consequence, the channel spin can
be arbitrarily removed from the set of quantum numbers and the index c will refer simply
to the pair {l, J}.

3.1.3 ”j-j” Coupling scheme for Optical Model calculations

At high energy, the spin-orbit interactions become as strong as the interactions between the
individual spins of the target and projectile. In this case, we can couple vectorially the spin
i of the projectile to its orbital angular momentum l and define a total angular momentum
j. The channel c is defined by the set of quantum numbers {l, j, J}. The total angular
momentum J of the whole system is defined by:

−→
J =

−→
I +
−→
j , (3.7)

where

−→
j =

−→
l +
−→
i . (3.8)

For neutron induced reactions, j can take two different values:

{
j = l − 1

2 ,
j = l + 1

2 ,
(3.9)

and the total angular momentum can take values between:

|j − I| ≤ J ≤ j + I, (3.10)

In the ground state channel, for target nucleus with I = 0, we have J = j. In that case, the
”L-S” and ”j-j” coupling schemes become equivalents.
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3.2 Notions of configuration space for nuclear reactions

3.2.1 The internal and external regions

Central to the R-Matrix and Optical Model frameworks is the division of the configuration
space at an appropriate matching radius chosen to match the solution of the Schrodinger
equation with its corresponding asymptotic expression.

The notions of ”internal” (or ”interior”) and ”external” regions were introduced by Kapur
and Peierls [36] and re-formulated by Wigner and Eisenbud in the 1940s. In this early picture,
the compound nucleus in which all of the nucleons are in a resonance state is assumed to

exist within the volume defined by the ”internal” region. So that, the total cross section σ
(n)
t

for the interaction between a neutron and a nucleus in the ground state (n = 0), or in an
excited state (n > 0), can be viewed as being partitioned as [4]:

σ
(n)
t (E) = σ

(n)
C (E) +

∑
n′

σ
(n,n′)
D (E). (3.11)

The cross section σ
(n)
C for formation of the compound nucleus corresponds to the contribution

of the various partial-wave channels c through which the compound nucleus can be formed
when the target is at the n-th level.

The combined cross sections σ
(n,n′)
D denote the reactions which proceed through direct and

pre-equilibrium mechanisms from the n-th to the n′-th levels. Suitable expressions for the
cross sections of the nuclear reactions, that take place outside the ”internal” region, emerge
from the partial wave analysis of the scattering process (see section 3.3).

In the present work, we limit ourselves to consider neutron-induced reactions in channels cor-
responding to the ground-state of the target (n = 0) for incident energies below the excitation
energy of the second inelastic level (n′ = 0, 1). The expression (3.11) becomes:

σ
(0)
t (E) = σ

(0)
C (E) + σ

(0,0)
D (E) + σ

(0,1)
D (E). (3.12)

If the emission of charged light particles are not energetically possible, the special cases n′ = 0
and n′ = 1 are the shape-elastic (σe) and the direct inelastic-scattering (σD) cross sections,
respectively. The former is defined as the cross section for scattering without change of the
quantum state of the nucleus [37]. In that case, the total cross section is given by:

σt(E) = σr(E) + σe(E), (3.13)

where the reaction cross section σr is defined as:

σr(E) = σC(E) + σD(E), (3.14)

in which the absence of index n is equivalent to the notation n = 0. Figure 3.2 displays
the total, shape-elastic and reaction cross sections calculated with the optical model code
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Figure 3.2: Total, shape-elastic and reaction cross sections for 241Am+n calculated with the
ECIS code by using the optical model parameters reported in the Japanese library JENDL-4.
The data for the total cross section were retrieved from EXFOR.

ECIS [38] for the nuclear reaction 241Am+n.

3.2.2 The nuclear radius R of spherical nuclei

The division of the configuration space is based on the condition that all particles are rel-
atively close together. In other word, the physical reason why the space can be divided
into such external and internal regions is that the strong nuclear forces between nucleons are
rather short range. For practical reasons, the internal region of many nuclei can be described
by independent particle motion in a mean field potential that has spherical symmetry. In
the 50s, optical model calculations showed that the experimental neutron total cross sections
as well as the angular dependence of the elastic scattering data were well reproduced in the
MeV energy range assuming that the A nucleons are uniformly distributed throughout a
sphere of radius:

R = r0A
1/3. (3.15)

Wrong values of nuclear radius were often reported because the earlier models had an unre-
alistic amount of wave reflexion [39]. Therefore, the attenuation of absorption was probably
compensated by an increase of r0. First values found in the literature range between 1.4 fm
to 1.5 fm, while values lower than 1.3 fm are expected with the latest optical model calcula-
tions [40].
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3.2.3 The channel radius ac

The abrupt separation between the internal and external region is made by a choice of an
imaginary closed surface of radius ac which is not necessarily equal to the nuclear radius
R [41]. The quantity ac is called the ”interaction radius” by Lane and Thomas [1] or the
”matching radius” when it explicitly refers to a boundary condition parameter between the
internal and external regions [42]. Here, we adopt the widely accepted definition of ”channel
radius”.

The size of the internal region is not defined. Kapur and Peierls suggest making the internal
region as small as possible but slightly larger than the radius of the nucleus to ensure that
all nuclear effects are confined to the internal region [36]. Similar prescriptions were given
by Wigner and Eisenbud [35] and recalled by Vogt in Ref. [43]. In many applications the
values of ac are chosen more or less arbitrarily. In the community of the evaluated nuclear
data, the channel radius ac is defined as a simple function of the target mass plus a constant
term [3]:

ac = 1.23m
1/3
A + 0.8 (in fm). (3.16)

Such a phenomenological representation dates back to 1950. Values of the parameters equal
to 1.26 fm and 0.75 fm were reported by Drell in Ref. [44]. The order of magnitude of the
constant term (0.8 fm) could also be explained by using the Droplet Model nuclear density
distribution proposed by Myers [45] with a parameterization given in Ref. [46]. It takes into
account the dilatation due to several effects such as the surface tension, the neutron excess
and the Coulomb repulsion that occurs for finite nuclei.

The relationship between ac and the nuclear radius R is clarified in section 3.4 assuming that
the nuclear mean-field has a diffuse-edge of the Wood Saxon type with a mid-point radius
equal to R.

3.2.4 The effective radius R′

At low neutron energies, the shape-elastic cross section σe of Eq. (3.13) becomes the potential
scattering cross section σp [47] whose expression is similar to the scattering of a hard sphere
of radius R′:

σp = 4πR′2, (3.17)

The so-called potential scattering length R′ mimics the classical radius of an impenetrable
sphere described by a hard-sphere potential that is infinitely repulsive for r < R′ and zero
outside.

The relationship between the effective radius R′ and the channel radius ac is established in
section 4.2.3 via the distant level parameter R

∞
c involved in the average R-Matrix formal-

ism.
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3.3 Elementary wave description of the nuclear scattering

Usually, the index c (entrance channel) and c′ (exit channel) are used to label the generic
quantities involved in the mathematical description of the nuclear reactions. In the present
work, we are interested only on the angle-integrated probability of getting the final results
for c′ given c. Therefore, in the following expressions, the subscript c′ is dropped.

3.3.1 The forward scattering amplitude

Many of the literatures and lecture notes on the scattering theory give a short review of
the ingredients involved in the description of the neutron cross sections. Some of them
are presented below. For our purpose, we consider the idealized situation where a ”free”
neutron with a well defined energy and momentum is scattered by a single nucleus which is
fixed in position. A solution of this simple scattering process is given by solving the time-
independent Schrodinger equation for a plane wave exp(i

−→
k .−→r ) impinging on a localized

repulsive centrifugal potential. The potential refers to the motion of particles under the
influence of central forces ”directed” away from the origin [34]. The asymptotic form of the
external wave function far away the scattering region (r → ∞) is the sum of the incident
plane wave plus an outgoing spherical wave (Fig. 3.3):

ψ(E, r, θ, φ) ∝ eikr cos(θ) + f(E, θ, φ)
eikr

r
. (3.18)

The scattering amplitude f(E, θ, φ) has the dimension of length and the angles (θ, φ) are
measured with respect to the ingoing direction. The wave nature of the neutron is defined
by the neutron wave number of length k. For non-relativistic neutrons, the wave number is
given by:

k =

√
2mnE

h−2 . (3.19)

If the neutron energy E is in eV, k is calculated as follows:

k = 2.1968× 10−3
(

A

A+ 1

)√
E (3.20)

If we consider a spherically symmetric potential V (r), the scattering amplitude f(E, θ, φ) of
Eq. (3.18) becomes independent of the azimutal angle φ:

f(E, θ, φ) = f(E, θ), (3.21)

and the partial wave expansion of the original plane wave in Legendre polynomials allows to
break the scattering amplitude f(E, θ) into partial wave components
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Figure 3.3: Illustration of the scattering of an incoming plane wave (top plot) by a localized
repulsive centrifugal potential. The outgoing wave function (middle plot) beyond the range
of the potential has the form given by Eq. (3.18).

f(E, θ) =
1

k

∑
c

(2l + 1)Cc(E)Pl(cos(θ)), (3.22)

where Cc(E) represents the forward scattering amplitude (θ = 0) of the outgoing wave in
the channel c that accounts for the phase shift φc originating from the potential:

Cc(E) = e2iφc(E) sin(2φc(E)). (3.23)

The amplitude Cc(E) can be conveniently rewritten as follows:

Cc(E) =
1

2i
(Sc(E)− 1) , (3.24)

with
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Sc(E) = e2iφc(E). (3.25)

The latter expression of the S-matrix elements shows that all what scattering did is to shift
the phase of the emerging wave by 2φc. Eq. (3.25) is valid in the case where there is no
absorption of the incident particle, otherwise Sc must be redefined by:

Sc(E) = |Sc(E)|e2iφc(E). (3.26)

In the ”L-S” coupling scheme (section 3.1.2), the S-matrix elements are:

Sc(E) = SlJ(E), (3.27)

and for the ”j-j” coupling scheme (section 3.1.3):

Sc(E) = SJlj(E). (3.28)

In the ground-state channels (n = 0), Eqs. (3.27) and (3.28) become formally identical when
the ground-state spin of the target nucleus is zero (I = 0):

SJlj=J(E) = SlJ(E) (3.29)

3.3.2 The total and shape-elastic cross sections

According to Eq. (3.24), the forward scattering amplitude Cc(E) is related to the S-matrix
elements by the expression [42]:

Sc(E) = 1 + 2iCc(E). (3.30)

The S-matrix elements may be used as an alternative to the phase shift to parameterize the
angle-integrated cross section. Convenient expressions for the total and shape-elastic cross
sections have been reported in major papers as a function of the diagonal component (c = c′)
of the S-matrix [32, 37]:

σt(E) =
2π

k2

∑
c

glJ(2l + 1){1− Re[Sc(E)]}, (3.31)

and

σe(E) =
π

k2

∑
c

glJ(2l + 1)|1− Sc(E)|2. (3.32)
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The statistical spin factor glJ may be defined as the ratio of the favorable spin cases to
all possible spin cases. It gives out the probability of getting the allowed total angular
momentum J from the intrinsic spins of the target nucleus and of the incident particle:

glJ =
2J + 1

(2i+ 1)(2I + 1)(2l + 1)
. (3.33)

By introducing expression (3.30) into Eqs. (3.31) and (3.32), the total cross section in the
channel c becomes proportional to the imaginary part of the forward scattering amplitude
Cc(E):

σtc(E) =
4π

k2
Im[Cc(E)], (3.34)

and the shape-elastic cross section is given by the squared of the absolute value of Cc(E):

σec(E) =
4π

k2
|Cc(E)|2. (3.35)

The connection between the imaginary part of Cc and σtc is known as the ”optical theorem”.
The physical origin of this theorem can be illustrated via the picture given by Hodgson [48]
in which the incident particle is represented by a flux. After scattering, the flux loss along
the incident direction (θ = 0) is proportional to the total cross section or equivalently to the
imaginary part of the forward scattering amplitude.

3.3.3 The compound-nucleus cross section

A simple expression of the neutron transmission coefficient can be established in the par-
ticular case corresponding to the ground state channel of the target nucleus. According to
Eq. (3.13), the cross section for formation of the compound nucleus can be obtained as the
following difference:

σC(E) = σt(E)− σe(E)− σD(E). (3.36)

By introducing Eqs. (3.31) and (3.32) in Eq. (3.36), σC appears to be the product of the
maximum possible cross section times the neutron transmission coefficient Tc:

σC(E) =
π

k2

∑
c

glJ(2l + 1)Tc(E), (3.37)

in which Tc is defined as:

Tc(E) = Tc(E)− TDc(E). (3.38)
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The coefficient TDc represents the contribution of the direct reactions and Tc has the form
reported by Blatt and Weisskopf [32]:

Tc(E) = 1− |Sc(E)|2. (3.39)

By introducing expression (3.30) into Eq. (3.39), the neutron transmission coefficient can be
written as follow:

Tc(E) = 4Im[Cc(E)]− 4|Cc(E)|2 − TDc(E). (3.40)

In the case of spherical nucleus, the contribution TDc of the direct reactions are negligible.
The transmission coefficients become:

Tc(E) = 4Im[Cc(E)]− 4|Cc(E)|2 (3.41)

A simple physical meaning of Tc is given by Hodgson [48]. He suggests imagining that
a certain amount of flux (representing the incident projectile) ”enters” the target nucleus
(in order to form the compound nucleus) and it subsequently escapes through the open
reaction channels. For each of these channels, a transmission coefficient Tc can be defined
for representing the ”readiness” of the channel to transmit a certain amount of flux. In the
case where there is no flux loss (no absorption of the incident particle), we find the condition
|Sc(E)| = 1 as given by Eq. (3.25).

The neutron transmission coefficient is also called penetrability of the incident particles by
Hauser and Feshbach in the paper that lays the basis of the eponymous statistical model [49].
These quantities are different from the so-called penetration factor Pc. The relationship
between Tc and Pc is given in section 4.1.4.

3.4 Connections between the matching and channel radius

The purpose of this section is to accommodate the wave description of the nuclear scattering,
presented up-above, within the R-Matrix framework. Several works address this issue [39,
43, 50]. Here, we focus on the role of the channel radius ac. This parameter is one of the
boundary condition introduced in the R-matrix theory assuming an abrupt division of the
configuration space. Therefore, the resonance theory has some undesirable features of the
square-well potential for which the nuclear radius R and the channel radii ac are the same
quantities chosen more or less arbitrarily. In the following sections, the definition of ac is
clarified thanks to the review of the R-Matrix theory proposed by Vogt in Ref. [51].

3.4.1 Diffuse-edge potential

In the optical model, the incident nucleon interacts with a complex mean-field potential of
the generic form:
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V (r) = Re[V (r)] + i Im[V (r)], (3.42)

in which the real part of the potential refracts the incoming waves and the imaginary part
absorbs them. The real and imaginary part of the optical potential may be expressed as a
sum of the volume (v), surface (s) and spin-orbit (so) components:

V (r) = Vv(r) + Vs(r) + Vso(r), (3.43)

The difficulty of this model is to find the appropriate potential V (r), which will reproduce
the experimental data when it is introduced in the Schrodinger equation. In this work, we
use a phenomenological description of the volume, surface and spin-orbit contributions to
the nuclear-nucleon interaction v(r). If the matter density distribution ρm(r) is defined as
the sum of the neutron and proton distributions:

ρm(r) = ρn(r) + ρp(r), (3.44)

the volume component of the potential V (r) can be written as [48]:

Vv(r) ∝
∫
ρm(r′)v(r − r′)dr′. (3.45)

Such a potential follows the nuclear density. The shape of ρm(r) is assumed ”flat” almost
up to the nuclear radius R and falls off in a distance a. As shown in Fig. 3.4 (top plot), a
Wood-Saxon form factor can be used to represent these features:

f(r,R, a) =
1

1 + e
r−R
a

. (3.46)

The fall-off parameter of the nuclear density is called the diffuseness. Its value is lower than
1 fm. In optical model calculations, the natural choice for the nuclear radius is R = r0A

1/3.
The meaning of the reduced radius r0 is close to that of the constant called the ”effective
range” of the nuclear forces in Ref. [52]. In using this terminology, it should be pointed out
that r0 depends on the depth of the potential. The value of r0 is subject to variations from
element to element with some evidence that r0 is smaller for high values of A. Numerical
calculations with global spherical optical models show that the reduced radius for the real
part of the volume component lies in general between 1.23 fm and 1.3 fm [53, 54]. Among the
optical model parameters reported in the Reference Input Parameter Library RIPL-3 [40],
Morillon and Romain proposed simple expressions for nuclei heavier than iron:

r0 = 1.295− 2.7× 10−4 A (in fm), (3.47)

a = 0.566 + 5× 10−9 A3 (in fm). (3.48)
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Figure 3.4: Matter density distribution (top plot) and real part of the volume potential
(bottom plot) for the nuclear system 241Am+n. The densities ρn and ρp are taken from
the AMEDE data base [56]. The channel radius ac is calculated with the ENDF convention
(3.16).

In optical model calculations, it is common to treat the radius and the diffuseness of the
nuclear matter distribution as an adjustable parameter. These parameters can be determined
by comparison with experimental data [48]. As a consequence, the channel radius (called
matching radius) can be evaluated directly from the analysis of the neutron cross sections
via phenomenological relationships. In the spherical optical model of the CONRAD code,
the matching radius is calculated with the convention used in the SCAT code [55]:

rm = ac = 1.5(R + 7.0 a) with R = r0A
1/3. (3.49)
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3.4.2 Square-well potential approximation

At low energy, the conventional treatment of nuclear reactions in the resonance theories is
essentially a square-well treatment. One of the motivations for using square-well potentials
into the analysis is the explicit form of the resulting expressions for small values of kR [35].
Below 3 MeV, Feshbach shows that a square well potential of the simple form

V (r) =

{
V0 (1 + i α) for r < R
0 for r > R

(3.50)

is good enough to represent the variations with the mass number A of the total cross sections
and of the angular distributions of the elastically-scattered neutrons [37]. The real part
represents the average potential in the nucleus (Re[V (r)] = V0) and the imaginary part
is a constant fraction of the real part (Im[V (r)] ∝ V0). The spin-orbit contribution is
omitted.

The pioneer work of Feshbach is clearly unphysical. However, in the late 60s, interesting
conclusions were reported in Ref. [39] about the connections between real and square-well
potentials. Thanks to the study of the wave properties of the optical model, it was found
that for each diffuse-edge optical potential an equivalent square well can be defined uniquely.
An additional result was reported by Vogt in the 90s about the unique ”natural” choice of
ac for each reaction channel [43]. The dominant conclusion is that the R-Matrix yields the
correct results for a square well if and only if the channel radius ac is chosen to be the square
well radius R.

These earlier studies indicate how the physics of the nuclear mean field could be accommo-
dated in the resonance theory. The potential V (r) (Eq. 3.43) does not have to be a square-well
shape. However, we have to assume that it vanishes in the external region, and thus we have
to find the channel radius ac for which the following conditions are satisfied:

{
V (r) = Re[V (r)] + i Im[V (r)] for r < ac
V (r) ' 0 for r > ac

(3.51)

For typical nuclear reactions, the choice of ac is not obvious because the square-well model has
more reflection than a real nucleus and gives absorption cross sections that are too small [48].
This attenuation of absorption can be compensated by an appropriate increase of the channel
radius [39]. Therefore, we would choose ac not too close to the usual nuclear radius R and
large enough so that most of the mean field is in the internal region. Vogt suggests to chose
a radius greater than R by an amount roughly equal to the diffuseness [51]:

ac ' R + a with R = r0A
1/3. (3.52)

An estimation of ac can be obtained by using the geometrical parameters (r0 and a) of the
real volume potentials reported in the Reference Input Parameter Library [40] or given by
Eqs. (3.47) and (3.48). Figure 3.5 shows that the combination of the empirical formula (3.52)
with the expressions (3.47) and (3.48) provides values of ac close to those obtained with the
expression (3.16) routinely used in the Evaluated Nuclear Data Files, in which r0 ' 1.23 fm
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Figure 3.5: Comparison of the channel radius calculated with the expressions (3.16)
and (3.52). The reduced radius r0 and the surface diffuseness a of the real part of the
volume potential are calculated with Eqs (3.47) and (3.48).

and a = 0.8 fm. However, the lower plot of Fig. 3.4 indicates that Eq. (3.51) is not satisfied
for the system 241Am+n if the ENDF convention is used to calculate ac (V (ac) 6= 0).

The impact on the choice of the channel radius on the optical model calculations was inves-
tigated with the reaction 208Pb+n. The total, shape and reaction cross sections obtained
with the two extreme cases (Eqs. (3.49) and (3.52)) are reported in Fig. 3.6. Comparison
with different combinations between R and a seems to indicate that R should be increased
by three (or four) times the diffuseness. The present results suggest replacing the ENDF
convention for 208Pb by the expression:

ac ≥ R + 3 a. (3.53)

3.4.3 Equivalent hard-sphere scattering

As indicated by Eqs (3.51), the abrupt change of V (r) at the channel radius introduces
square-well phase shifts. Therefore, instead of using the empiric formulas (3.52) and (3.53),
we can choose ac such that the optical model and its equivalent square-well provide the same
phase shifts at the common channel radii.

Beyond the range of the potential, the asymptotic expression (3.18) of the partial-wave
solution to the Schrodinger equation with zero potential is a linear combination of spherical
Bessel functions. As a consequence, the phase shift of Eq. (3.25) becomes a simple function
of ρ = kac:

φc(E) = φl(ρ) = tan−1
(
jl(ρ)

ηl(ρ)

)
, (3.54)

where jl(ρ) and ηl(ρ) stand for the spherical Bessel and Neumann functions of the 1st and 2nd
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Figure 3.6: Total, shape and reaction cross sections for 208Pb+n calculated with the spherical
optical model of CONRAD with parameters of Ref. [54] for different values of channel radius.
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kind respectively. All the jl and ηl functions can be generated from the Rayleigh’s recurrence
formulas:

jl(ρ) = (−1)lρl
(

1

ρ

d

dρ

)l
j0(ρ), (3.55)

ηl(ρ) = (−1)lρl
(

1

ρ

d

dρ

)l
η0(ρ). (3.56)

For l = 0, 1, 2, the solutions are:

j0(ρ) =
sin(ρ)

ρ
, (3.57)

j1(ρ) =
sin(ρ)

ρ2
− cos(ρ)

ρ
, (3.58)

j2(ρ) =

(
3

ρ3
− 1

ρ

)
sin(ρ)− 3 cos(ρ)

ρ2
, (3.59)

η0(ρ) = −cos(ρ)

ρ
, (3.60)

η1(ρ) = −cos(ρ)

ρ2
− sin(ρ)

ρ
, (3.61)

η2(ρ) = −
(

3

ρ3
− 1

ρ

)
cos(ρ)− 3 sin(ρ)

ρ2
. (3.62)

Simple analytical expressions of the phase shift for small angular momentum l are not im-
mediately evident from the usual presentation of the Bessel functions written as a mix of
powers and trigonometric functions. After few simplifications, the Eqs (3.57) to (3.62) lead
to the following expressions:


φ0(ρ) = ρ,
φ1(ρ) = ρ− tan−1(ρ),

φ2(ρ) = ρ− tan−1
(

3ρ
3−ρ2

)
.

(3.63)

Fig. 3.7 shows the behavior of the phase shift φc(E) for s, p, and d-waves. They were
calculated with the optical model code ECIS for the nuclear system 241Am+n. We used the
optical model parameters recommended in the Japanese library JENDL-4.

Equivalent hard-sphere radii can be obtained from the least squares fit of φc(E) with Eqs. (3.63).
Values for the channels c = {l, J} are reported in Table 3.1. Radii for s-waves (l = 0) are
summarized in Table 3.2. The ENDF convention (3.16) underestimates by 1 fm the equiv-
alent hard-sphere radius. The latter is correctly predicted by the empirical formula (3.53)
established for the nuclear system 208Pb+n.
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Figure 3.7: Energy dependence of the phase shift (l = 0, 1, 2) calculated with the optical
model code ECIS for the nuclear system 241Am+n in log-log and log-lin scales. The open
circles represent the equivalent hard-sphere phase shift calculated with Eq. (3.63).
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Table 3.1: Equivalent hard-sphere channel radii obtained from the least squares fit of the
phase shift calculated by ECIS for the nuclear system 241Am+n.

Channel Orbital momentum
radius l = 0 l = 1 l = 2

al,J=0 9.26 fm
al,J=1 5.51 fm 9.41 fm
al,J=2 9.51 fm 7.66 fm 8.79 fm
al,J=3 9.52 fm 7.81 fm 8.22 fm
al,J=4 6.07 fm 8.83 fm
al,J=5 8.88 fm

al 9.52 fm 7.20 fm 8.76 fm

Table 3.2: Comparison of the equivalent hard-sphere radius for the nuclear system 241Am+n
with results obtained from Eqs. (3.16), (3.52) and (3.53).

Channel radius Ref. Value

Vogt’s prescription (Eq. (3.52)) [51] 8.28 fm
ENDF convention (Eq. (3.16)) [3] 8.43 fm
Empirical formula (Eq. (3.53)) ≥ 9.56 fm

Equivalent hard-sphere (l = 0) 9.52 fm

These results show how the ideas of the optical model can be incorporated in the resonance
theory. Indeed, in the early 60s, Vogt suggested that a better approximation than Eq. (3.63)
could be obtained by replacing all the phase shifts by those of the diffuse-edge potential
in order that the elements of the scattering matrix (Eq. (3.30)) no longer has an artificial
dependence on the channel radii [50]. This conclusion has a significant impact on the deter-
mination of the neutron strenght functions involved in the theory of average cross section.
The latter is described in chapter 4.
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Theory of average cross section
within the Reich-Moore
approximation

Experimentally we can observe that there is a continuous transition from the extreme situa-
tion of well-isolated resonances to complete overlap. This transition can be described within
the R-Matrix theory [1] by using appropriate approximations. One of the first description of
the theory of average cross section was proposed in 1954 by Feshbach et al. [37]. This work
indicates how the R-Matrix and optical models coexist between the ”resonance region” and
the ”continuum region”. The main ingredients of the theory of average cross section and
links with the S-matrix formalism are exemplified in this chapter.

4.1 Average R-Matrix approximation

For the sake of clarity, we define Uc, U c and Sc the elements of the scattering matrix respec-
tively used in the Resolved Resonance Range, in the Unresolved Resonance Range and in the
”continuum” for c = c′. Historically, U c is called the average collision function by analogy
with the collision matrix Uc involved in the R-Matrix theory.

4.1.1 Average collision function in the Bethe’s assumptions

In the resonance region, the elements of the collision matrix Uc exhibit rapid fluctuations
coming from the numerous close-spaced resonances of the compound nucleus. An average
value of Uc can be defined over an interval ∆E containing many overlapping levels. This
condition can be written as follow:

∆E >> Dc, (4.1)

where Dc stands for the average spacing of the compound levels. However, ∆E must be small
enough so that the elements of the scattering matrix can be regarded as energy independent.
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In that case, the average value of the total and shape elastic cross sections can be evaluated
with Eqs. (3.31) and (3.32) (or alternatively with Eqs. (3.34) and (3.35)):

σtc '
2π

k2
(1−Re[U c]), (4.2)

σec '
π

k2
|1− U c|2, (4.3)

and the neutron transmission coefficients are obtained from Eq. (3.39):

Tc = 1− |Uc|2, (4.4)

in which Sc is replaced by the average collision function:

U c =
1

∆E

∫
∆E

Uc(E) dE. (4.5)

Soon after the publication of Feshbach [37], Thomas [57] discussed two opposite approxima-
tions of the collision matrix for the compound nucleus due to Newton [58] and Bethe [59].
The former approximation is characterized by very strong correlations between the matrix
elements, while for the second approximation they vanish.

The main parameters involved in these assumptions are the reduced width amplitudes γλc
and γλc′ of the resonance λ. By definition, γλc is the probability amplitude for the formation
of compound state λ via the entrance channel c, and γλc′ is the probability amplitude for
the decay of compound state via the exit channel c′. Cross sections formulae are usually
written in terms of partial widths Γλc rather than decay amplitudes. The square of the
reduced width amplitude is related to the partial width via the penetration factor Pc of the
centrifugal barrier for the compound system at the channel radius ac [41]:

γ2
λc =

Γλc
2Pc

. (4.6)

According to Thomas, the work of Newton leads to strange prediction while Bethe provides
the fundamental assumptions of the statistical model: γλc and γλc′ are independent, uncor-
related and have random signs. These assumptions are consistent with the complicated wave
function of the nuclear states. They imply that the statistical properties of the exit channel
c’ contain no memory of the entrance channel, which is the essential feature of the Bohr
compound nucleus mechanism.

One of the consequence of the Bethe’s assumptions is that the average contribution of the
reduced width amplitudes tends to cancel for c 6= c′:

〈γλcγλc′〉∆E ' 0. (4.7)
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In the absence of correlations among channel width amplitudes, Moldauer [60] concludes
that the formula relating elements of the average collision matrix with the average reduced
width amplitudes should be the same as for the single-channel case, which is given by:

Uc(E) = e2iφc(E) 1 + iPc(E)Rc(E)

1− iPc(E)Rc(E)
. (4.8)

If the interval ∆E is small enough to assume constant the phase shift φc, the penetration
factor Pc and the reduced R-function Rc, it follows that the average collision function is
simply given by:

U c ' e2iφc 1 + iPcRc

1− iPcRc
for c = c′. (4.9)

An identical relationship was found by Thomas in the case where the competing channels
have small transmission factors [57]. The work of Moldauer seems to provide a more general
validity of the relations given above. We can just keep in mind that the R-function rather
than the full R-Matrix can be used for the calculations of the average total and shape elastic
cross sections when all the partial widths, except the entrance-channel width, are small
compared with the level spacing Dc.

4.1.2 Average R-function in the uniform level approximation

In this work, we introduce in Eq. (4.8) the reduced R-function given by the Reich-Moore
approximation of the R-Matrix theory [61]:

Rc(E) =
∑
λ

γ2
λnc

Eλ − E − iΓλγc/2
+Rc(E), (4.10)

in which Eλ is the resonance energy, γλnc is the reduced neutron width amplitude and Γλγc is
the partial radiation width of the compound state λ. The background term Rc(E) was intro-
duced in the R-Matrix theory by Wigner and Eisenbud [35] as an arbitrary real-symmetric
matrix independent of the energy. In the idealized situation, the continuity requirement at
ac between the internal and external regions should leads to Rc = 0.

Additional works were performed by Lynn in order to provide explicit expressions for the
background term Rc(E). He derived an expression for the cross sections in which Rc is
complex [62]:

Rc(E) =
∑
λ

γ2
λnc

Eλ − E − iΓλγc/2
+R∞c (E) +Rloc

c (E) + iπsloc
c (E). (4.11)

The real part of Rc can be split into the contributions of neighboring (Rloc
c ) and far-off levels

(R∞c ). Feshbach [37] assumes that only the immediate-neighbor resonances Rloc
c contribute

appreciably. He suggests that such a contribution may formally be replaced by sums over an
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Figure 4.1: Modelisation of the 239Pu capture cross section with non zero background sloc
c .

infinite number of external levels, having negative or positive energies, which may provide a
finite contribution:

Rloc
c (E) '

∑
µ

γ2
µnc

|Eµ| − E − iΓµγc/2
. (4.12)

As the consequence, the contribution of these ”fictitious” resonances can be easily included
in the sum over levels λ of the reduced R-matrix (Eq. (4.10)):

Rc '
∑
η=λ,µ

γ2
ηnc

|Eη| − E − iΓηγc/2
+R∞c (E) + iπsloc

c (E). (4.13)

Throughout the R-matrix theory, R∞c is called the distant level parameter. Its value is
lower than unity [50]. Lynn [63] indicates that the far away contribution R∞c modifies the
hard-sphere potential scattering length ac to give the true potential scattering length R′.
By analogy, the imaginary part Im[Rc] = πsloc

c will modify the absorption cross section.
Figure 4.1 displays the impact of non zero background sloc

c between the first and second
resonances of 239Pu.

In the uniform level approximation, where the amplitude γ2
ηnc

are all equal and the levels
η are uniformly spaced by an amount Dc, the average value of the reduced R-function Rc
is:

Rc '
∫ b

a

sc
E′ − z

dE′ +
1

∆E

∫ b

a
R∞c (E′)dE′ +

iπ

∆E

∫ b

a
sloc
c (E′)dE′, (4.14)

with
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z = E + i
Γγ
2
, (4.15)

in which Γγ represents the average radiation width. The lower and upper bounds of the
integral are defined by the midpoint of the interval ∆E:

a = ε− ∆E

2
, (4.16)

b = ε+
∆E

2
. (4.17)

The first integral of the expression (4.14) is called the Stieltjes transform of the pole strength
function sc, where sc is a probability density function defined as the ratio of the average
reduced width to level spacings:

sc =
〈γ2
nc
〉

Dc
. (4.18)

The method used by Thomas [57] for assigning a value to the Stieltjes transform of the pole
strength function relies on the Sokhotsky’s formula (see Sokhotsky-Weierstrass theorem).
The latter state that:

lim
x→0

1

x∓ iε
= P

(
1

x

)
± iπδ(x), (4.19)

where δ(x) is the delta function and P is the Cauchy principal value of the inverse function
1/x. According to the expression (4.14), we have ε = Γγ/2 and x = E′−E. The Sokhotsky-
Weierstrass theorem can be applied if Γγ is small. This criteria is satisfied in the unresolved
resonance range of many isotopes, such as actinides, for which the order of magnitude of
the average radiation widths is close to 50 meV. As a consequence, the well established
identity (4.19) can be introduced in Eq. (4.14) to give:

Rc ' iπsc + P
∫ b

a

sc
E′ − E

dE′ +
1

∆E

∫ b

a
R∞c (E′)dE′︸ ︷︷ ︸

R
∞
c

+iπ
1

∆E

∫ b

a
sloc
c (E′)dE′︸ ︷︷ ︸
sloc
c

. (4.20)

This mathematical trick allows to distinguish, without much complication, the ”statistical
R-function” iπsc and the background contribution R

∞
c . By using this notation, the Stieltjes

transform of the pole strength function becomes:

Rc ' R
∞
c + iπ (sc + sloc

c ) . (4.21)
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4.1.3 Average cross sections

According to Eq. (4.21), the average collision function (4.9) can be rearranged into the
form:

U c ' e2iφc 1− πPc(sc + sloc
c ) + iPcR

∞
c

1 + πPc(sc + sloc
c )− iPcR

∞
c

. (4.22)

By introducing Eq. (4.22) in Eqs. (4.2) and (4.3), the total and shape-elastic cross sections
can be written as:

σtc =
2π

k2

1− [P 2
c (R

∞2

c + π2s2)− 1] cos(2φc)− 2PcR
∞
c sin(2φc)

(1 + πPcs)2 + P 2
l R
∞2

c

 , (4.23)

and

σec =
2π

k2

1− [P 2
c (R

∞2

c + π2s2)− 1] cos(2φc)− 2PcR
∞
c sin(2φc)− 2πPls

(1 + πPcs)2 + P 2
l R
∞2

c

 , (4.24)

where

s = sc + sloc
c . (4.25)

Equivalent expressions relying on the Bethe’s assumption and uniform level approximation
can be found in many papers. If sloc

c = 0, Eq. (4.22) corresponds to the formulation of the
average R-Matrix approximation reported by Moldauer in Ref. [60]. This approximation was
implemented in the nuclear data codes SAMMY and CONRAD. These implementations use
a modified form provided by Frohner in his code FITACS [13] in which the pole strength
function sc and the background term R

∞
c are free parameters.

Fig. 4.2 compares the total cross sections for the hafnium isotopes obtained by using the
average R-Matrix formalism introduced in the CONRAD code with the results provided by
the optical model code ECIS. A good agreement between CONRAD and ECIS is observed
up to few hundred of keV. Detailed explanations are given in Ref. [20] (see Appendix).

4.1.4 Neutron transmission coefficients

In the average R-Matrix approximation, the neutron transmission coefficients are obtained
by introducing Eq. (4.22) in Eq. (4.4):

Tc =
4πPc(sc + sloc

c )

[1 + πPc(sc + sloc
c )]2 + P 2

c R
∞2

c

. (4.26)
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Figure 4.2: Total cross sections for the hafnium isotopes obtained with the average R-Matrix
formalism of the CONRAD code. The optical model calculations, performed with the ECIS
code, are based on the parameters given in Ref [20]. Parameters β2 and β4 define the dipole
and quadrupole deformation parameters. The data for the total cross section were retreived
from EXFOR.
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The latter expression can be split in two contributions:

Tc =
4πPcsc

[1 + πPc(sc + sloc
c )]2 + P 2

c R
∞2

c︸ ︷︷ ︸
Tc

+
4πPcs

loc
c

[1 + πPc(sc + sloc
c )]2 + P 2

c R
∞2

c

.︸ ︷︷ ︸
TDc

(4.27)

For spherical or weakly deformed nuclei, the contribution of the direct reactions TDc disap-
pears (sloc

c = 0), and the expression of the neutron transmission coefficient becomes:

Tc = Tc =
4πPcsc

(1 + πPcsc)2 + P 2
c R
∞2

c

(4.28)

By using the notation

f =
1

(1 + πPcsc)2 + P 2
c R
∞2

c

, (4.29)

the expression (4.28) can be rewritten as:

Tc = 4πPcscf. (4.30)

The latter result indicates that the neutron transmission coefficient and the penetration
factor differ by a factor equal to 4πscf . In Ref. [39], f was also introduced to account for
the difference in reflexion between a diffuse-edge optical potential and its equivalent square-
well. If we consider the external wave function for channel c as a combination of Bessel jl
and Neumann ηl functions (see section 3.4.3), the ”square-well” penetration factor at ac was
found to have a l-dependent function of ρ = kac [57]:

Pc = Pl(ρ) =
ρ

ρ2 j2
l (ρ) + ρ2 η2

l (ρ)
. (4.31)

Eqs. (3.57) to (3.62) give the following expressions for l = 0, 1, 2:


P0(ρ) = ρ,

P1(ρ) = ρ3

1+ρ2 ,

P2(ρ) = ρ5

9+3ρ2+ρ4 .

(4.32)

4.2 Average R-Matrix parameters

In the frame of the average R-Matrix approximation, the parameter R
∞
c , the pole strength

function sc and the background term sloc
c involved in Eq. (4.22) are free parameters. Prior
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Figure 4.3: Schematic description of the SPRT method established by Delaroche et al. [64].
The standard SPRT method provides an estimate of the neutron strength functions (S0

and S1) and potential scattering length R’ via the neutron transmission coefficients and the
shape-elastic cross section calculated by Optical Model.

values can be estimated from the statistical analysis of the resolved resonance parameters
or deduced from optical model parameters. Links with results provided by optical model
calculations are discussed below.

4.2.1 Generalization of the SPRT method

The SPRT method is used to study the consistency between the average R-Matrix parameters
adjusted on experimental data and those given by optical model calculations. The standard
SPRT method [64] was developed for s- and p-wave parameters (l = 0, 1). Figure 4.3 presents
a schematic description of the standard SPRT method. The method was generalized in
order to provide pole strength functions and parameter R

∞
c for higher order partial wave

(l ≥ 1) [19]. A detailed description of the SPRT method is reported in Appendix A. The
work consists of determining sc and R∞c as:

σtc(U c) =
4π

k2
Im[Cc], (4.33)

σec(U c) =
4π

k2
|Cc|2. (4.34)

By using Eqs. (4.23) and (4.24), the system of equations (4.33) and (4.34) lead directly to
the following solution:

PcR
∞
c =

2αc cos[2φc] + (1− 2βc) sin[2φc]

1 + 2γ2
c − 2βc + (1− 2βc) cos[2φc]− 2αc sin[2φc]

, (4.35)

πPc(sc + sloc
c ) =

2(βc − γ2
c )

1 + 2γ2
c − 2βc + (1− 2βc) cos[2φc]− 2αc sin[2φc]

. (4.36)

in which αc, βc and γc are free parameters. General expressions for these parameters are
given in Ref. [19]. In the ground state channel, for target nucleus with I = 0, they represent
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Figure 4.4: Partial wave breakdown calculations performed with the generalization of the
SPRT method on 131Xe+n up to l = 4.

the real part, the imaginary part and the absolute value of the forward scattering amplitude
Cc:


αc = Re[Cc]
βc = Im[Cc]
γc = |Cc|

(4.37)

Fig. 4.4 illustrates the partial wave breakdown calculations performed with the generalization
of the SPRT method on the nuclear system 131Xe+n. Due to the proximity of the magic
number N = 82 and Z = 50, xenon isotopes should be weakly deformed. In this work, we
have adopted parameters of the spherical potential established in Ref. [22].

4.2.2 Neutron strength function

The neutron widths Γλnc with the same total angular momentum and parity strongly fluc-
tuate among resonances. According to Eq. (4.6), the fluctuations must be attributed to
the reduced neutron width amplitude γλnc because of the smooth energy dependence of the
penetration factor Pc. On the basis of the Bethe’s assumptions, γλnc have random signs
which nearly cancel positive and negative contributions. Thus, the most objective probabil-
ity distribution for γλnc is a Gaussian with zero mean. This argument accounts for the fact
that the reduced neutron width amplitudes are chosen as real. This assumption leads to the
one-channel reduced neutron width distribution hypothesized by Hughes and Harvey [65],
which was found to be a chi-squared function with one degree of freedom by Porter and
Thomas [66]:

P (x)dx =
e−

x
2

√
2πx

dx, (4.38)
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with

x =
Γlλnc

〈Γlλnc
〉
, (4.39)

in which the reduced neutron widths at the resonance energy Eλ is defined as follow:

ΓlλnJ
= ΓλnlJ

P0

Pl

√
1 eV

Eλ
. (4.40)

As indicated by Porter and Thomas, the definition of the dimensionless variable x relies
on the existence over a given energy interval ∆E with a reasonably well-defined average
reduced neutron width 〈Γlλnc

〉. The existence of such an average was suggested by the
work of Feshbach [37] and Lane [67] relying on the pole strength function (Eq. (4.18)). By
introducing the reduced neutron width amplitude γλnc , we obtain:

Γlλnc
= 2γ2

λnc
P0

√
1 eV

Eλ
. (4.41)

If the interval ∆E is small enough so that the penetration factor may be considered as
constant, the average value of the reduced neutron width divided by the mean level spacing,
defined as the neutron strength function Sc, is given by:

Sc =
〈Γlnc
〉

Dc
= 2
〈γ2
nc
〉

Dc
P0

√
1 eV

E
. (4.42)

From Eq. (4.18), the relationship between the neutron strength function Sc and the pole
strength function sc is:

Sc = 2scP0

√
1 eV

E
. (4.43)

The systematic trends of the s- and p-wave neutron strength functions with respect to the
mass number of the compound nucleus are shown in Fig. 4.5. Results reported for Iodine[68],
Xenon [22], Hafnium [20], Neptunium [21] and Americium [69] are compared with values
recommended in the Reference Input Parameter Library RIPL-3. For s-waves, the neutron
strength functions were deduced from the statistical analysis of the resolved resonance pa-
rameters by using the ESTIMA method [70, 71]. The p-wave values were calculated with
the generalized SPRT method. Examples for fissile (Neptunium) and non-fissile (Hafnium)
isotopes are reported in Appendix B and C, respectively.
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Figure 4.5: Systematic behavior of the s- and p-wave neutron strength functions with the
mass number of the compound nucleus. Values for Iodine, Xenon, Hafnium, Neptunium and
Americium are compared with data compiled in the RIPL library.

4.2.3 Low neutron energy approximations

This latest section aims to show how the SPRT method in association with the equivalent
hard-sphere radius makes it possible the coexistence of the direct and compound nucleus
reactions at low energy in in the frame of the R-Matrix theory. Simple expressions valid
for slow neutrons are given for the neutron transmission coefficient and for the shape elastic
cross section.

When the neutron transmission coefficients are much smaller than unity, Eq. (4.30) can be
approximated by the ”low-energy” expression (f ' 1):

Tl ' 4πPlsl. (4.44)

The l-dependent neutron transmission coefficient can be rearranged by introducing the ex-
pression (4.43) of the neutron strength function and the s-wave penetration factor P0 =
kac:

Tl ' 2π
Pl
P0
Sl
√
E. (4.45)

The product PlSl/P0 can be calculated with the SPRT method (Eq. 4.36). Figure. 4.6 shows
the neutron strength function Sl and the distant level parameter R

∞
l obtained for the nuclear

system 241Am+n by using the optical model parameters proposed in the evaluated nuclear
data file of the Japanese library JENDL-4. The (l, J) dependent distance level parameters
R
∞
lJ are shown in Fig 4.7. The 241Am neutron strength functions were deduced from the SPRT

results by introducing the equivalent hard sphere radii listed in Table 3.1 and the channel
radius of the ENDF convention reported in Table 3.2. A Lagrange polynomial interpolation
was used to extrapolate the low energy behavior of Sl and R

∞
l . Results reported in Table 4.1

are given at the binding energy. As expected, non negligible differences is obtained for p-
and d-wave neutron strength functions. However, when the equivalent hard sphere radii are
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Figure 4.6: Neutron strength functions (top plot) and distant level parameters (bottom plot)
obtained with the SPRT method (Eqs. (4.35) and (4.36)) for the nuclear system 241Am+n.
Channel radii calculated in the equivalent hard-sphere approximation and in the ENDF con-
vention are reported in Tables 3.1 and 3.2. The coupled channel calculations were performed
with ECIS by using the parameters reported in the Japanese library JENDL-4.

used, the distant level parameter vanishes (R
∞
l ' 0) which allows to remove the artificial

dependence on the channel radius.

The neutron transmission coefficients calculated in the equivalent hard sphere approxima-
tion are compared in Fig. 4.8 with those provided by the ECIS code. Below 10 keV, the
discrepancies between the low energy approximation (4.45) and the optical model calcula-
tions remains below 1%. The present results confirm that the penetration factor Pl used in
the Resolved Resonance Range can be deduced from the expression (4.45) by introducing
neutron transmission coefficients given by optical model calculations.

For the shape elastic cross section, the low energy expression becomes similar to the potential
scattering cross section for which the s-wave channels dominates:

σpot =
∑
J

gl=0,J lim
E→0

σel=0,J
(E). (4.46)
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Figure 4.7: Distant level parameters obtained with the SPRT method (Eq. (4.35)) for the
nuclear system 241Am+n by using the channel radius of the ENDF convention (3.2). The
coupled channel calculations were performed with ECIS by using the parameters reported in
the Japanese library JENDL-4.

52



CHAPTER 4

Figure 4.8: Comparison of the neutron transmission coefficients provided by the ECIS code
and calculated with Eqs. (4.45) for the nuclear system 241Am+n. The equivalent hard sphere
radii of Table 3.1 are used. The coupled channel calculations were performed with ECIS by
using the parameters reported in the Japanese library JENDL-4.

By introducing the average collision function (4.22), σpot turns into a simple function of R
∞
lJ ,

slJ and sloc
lJ :

σpot ' 4π
∑
J

gl=0,Ja
2
l=0,J

[
(1−R∞l=0,J)2 + π2(sl=0,J + sloc

l=0,J)2
]
. (4.47)

The definition of the potential scattering cross section (Eq. (3.17)):

σpot = 4πR′2, (4.48)

leads to the radius R′ whose value can be calculated via the SPRT results:

R′ '
√∑

J

gl=0,Ja
2
l=0,J

[
(1−R∞l=0,J)2 + π2(sl=0,J + sloc

l=0,J)2
]
. (4.49)

The latest term of this expression is negligible because the order of magnitude of the pole
strength function is close to 10−2:

R′ '
√∑

J

gl=0,Ja
2
l=0,J(1−R∞l=0,J)2. (4.50)
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Table 4.1: Neutron strenght functions Sl and distant level parameters R
∞
l obtained with

the SPRT method (Eqs. (4.35) and (4.36)) for the nuclear system 241Am+n. The channel
radii ac are taken from Tables 3.1 and 3.2. The coupled channel calculations were performed
with ECIS by using the parameters reported in the Japanese library JENDL-4. Results are
compared with those reported in Refs. [28, 69].

ENDF Equivalent
Parameters convention hard sphere Mughabghab [28] Lampoudis [69]

Eq. (3.16) Eq. (3.63)

104S0 1.01 1.01 0.90 ± 0.09 0.98 ± 0.10
104S1 2.19 2.82
104S2 1.31 1.06

R
∞
0 -0.13 0

R
∞
1 0.11 0

R
∞
2 -0.05 0

ac (l = 0) 8.43 9.52
ac (l = 1) 8.43 7.20
ac (l = 2) 8.43 8.76

According to the results reported in Table 4.1, the equivalent hard-sphere approximation
also allows to remove the parameter R

∞
lJ from the expression of the effective radius:

R′ '
√∑

J

gl=0,Ja
2
l=0,J . (4.51)

In the case of a target nucleus of spin zero, the potential scattering length R′ becomes strictly
equivalent to the channel radius for s-waves. It represents the ”effective” radius of the target
at zero energy. This result confirms that the concept of ”effective” radius is applicable only
in the low-energy limit and only for l = 0 [72]. The potential scattering lengths obtained for
the xenon, hafnium, neptunium and americium isotopes are reported in Table 4.2.
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Table 4.2: Effective radius R′ calculated with optical models described in Refs. [20–22] and
reported in the Atlas of Neutron Resonances [28]. For 241Am+n, the given radius is a
preliminary result.

Nuclear system Optical Model Mughaghab [28]
124Xe+n 5.9 ± 0.2 fm
126Xe+n 5.8 ± 0.3 fm
128Xe+n 5.7 ± 0.3 fm
129Xe+n 5.6 ± 0.3 fm
130Xe+n 5.6 ± 0.3 fm
131Xe+n 5.5 ± 0.3 fm
132Xe+n 5.5 ± 0.3 fm
134Xe+n 5.3 ± 0.4 fm
136Xe+n 5.2 ± 0.4 fm
174Hf+n 7.9 ± 0.1 fm 7.5 ± 0.6 fm
176Hf+n 7.8 ± 0.1 fm 7.6 ± 0.7 fm
177Hf+n 7.4 ± 0.1 fm
178Hf+n 7.7 ± 0.1 fm 7.5 ± 0.7 fm
179Hf+n 7.6 ± 0.1 fm
180Hf+n 7.8 ± 0.1 fm 8.0 ± 0.7 fm
237Np+n 9.8 ± 0.1 fm
241Am+n 9.5 ± 0.6 fm
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Conclusions

The present document gives an overview of the link between the R-Matrix and the S-Matrix
formalisms. We focus the discussion on the role of the neutron strength function Sc, distant
level parameter R

∞
c , channel radius ac and potential scattering lenght (or ”effectif” radius)

R′. The mathematical relationships between these parameters are explicited by using ”stan-
dard” boundary conditions.

The theory of average cross sections was established in the 1950s. The mathematical treat-
ment relies on the statistical nature of the neutron resonances. Average resonance parameters
for s-waves (mean level spacings, neutron strength functions and average partial widths) can
be determined from the statistical analysis of the resonance parameters extracted from the
Resolved Resonance Range (RRR). For higher order partial waves (l ≥ 1), we show that
channel radii and neutron strength functions can be obtained by using the S-Matrix average
cross section theory in conjunction with optical model calculations.

The main difficulty is the treatment of the distant level parameters R
∞
c . In applications of

the R-Matrix theory, the latter mimic the contribution of the shape elastic reaction. Other
direct reactions such as those involved in the inelastic process do not easily emerge from the
R-matrix framework. The present work indicates how this problem can be solved according
to the parameterization of the reduced R-function established by Lynn [62, 63]. We found
that the final average expressions of the reduced R-function (Eq. (4.21)) and collision func-
tion (Eq. (4.22)) depend not only on the pole strength function sc and distant level parameter
R
∞
c , but also of a third parameter sloc

c which accounts for the direct mechanisms. The gener-
alized expressions of the SPRT method (Eqs. (4.35) and (4.36)) and the neutron transmission
coefficient (Eq. (4.27)) were rearranged accordingly. In a second step, their artificial depen-
dence on the channel radius can be removed by calculating the phase shift (Eq. (3.63)) and
penetration factor (Eq. (4.32)) with equivalent hard-sphere radii deduced from optical model
calculations. For the nuclear system 241Am+n, we found that this condition is satisfied if
R
∞
c = 0.

In summary, the work presented here provides a description of the existing theory for treating
the unresolved resonance range of the neutron induced reactions. New developments and
methodologies are also presented. Parts of this work were implemented in existing nuclear
data codes (CONRAD, TALYS) and applied to non-fissile (Hf, Xe) and fertile (Am, Np)
isotopes. Results obtained for the nuclear system 241Am+n were included in the version
JEFF-3.2 of the Joint Evaluated Fission and Fusion File library.
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Perspectives

This document aims at presenting the knowledge acquired on the theory of average cross
sections via the generalization of the SPRT method. This methodology is described in
Appendix A. It was sucessfully used to analyse the unresolved resonance range of fissile and
non-fissile nuclear systems. Examples for the Neptunium and Hafnium isotopes are reported
in Appendices B and C. From these earlier studies, three main perspectives can be identified
for improving the modeling of the neutron cross sections in the Resolved and Unresolved
Resonance Ranges. The first perspective deals with the statistical nature of the neutron
resonances in the low energy range. The second perspective consists in studying the limit
of the theory of average cross section in order to extend the resolved resonance range. Such
issues rely on the systematic behavior of the average parameters with the target mass.

6.1 Statistical nature of the neutron resonances

The new URR methodology, shortly presented in this document, has been implemented in the
nuclear data code TALYS. This model relies on the conversion of the transmission coefficients
calculated by the TALYS code in average resonance parameters. Furthermore, processing
codes, such as the NJOY and CALENDF codes, can use these average parameters to calculate
self-shielding factors or to generate ladders of statistical resonances. The latter treatment
is illustrated in Fig. 6.1. The URR model of TALYS was applied to split the JEFF-311
pointwise representation of the 135Xe capture cross section in three distinct energy ranges,
namely Resolved Resonance Range, Unresolved Resonance Range and continuum. Some
unknown or poorly known cross sections of intermediate-mass and heavy nuclei could take
advantage of a similar modeling of the Resolved and Unresolved Resonance Ranges. In the
TENDL library, the resolved resonance parameters and the average resonance parameters
are generated via the URR model of TALYS [73]. With this new approach, all resonances
are unique, following only statistical rules.

6.2 Extension of the Resolved Resonance Range

The statistical nature of the neutron resonances are of great interest to produce ladders
of pseudo resonances able to reproduce the average behavior of the neutron cross sections.
Figure 6.2 illustrates such a result for the nuclear system 241Am+n. A deeper investigation
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Figure 6.1: 135Xe capture cross section from JEFF-311 (top plot) and reconstructed via
average R-Matrix parameters calculated with the SPRT method under the Equivalent hard-
sphere approximation (bottom plot). The optical model used for the SPRT calculations is
described in Ref. [22].

of this result is needed in order to quantify the agreement between the R-Matrix and S-
Matrix treatments over broad energy groups. Conclusions of this study will help to verify
if the link between the low and high energy model calculations is correctly described by the
generalization of the SPRT method.

6.3 Systematic behavior of the average parameters

Preliminary results presented in sections 6.1 and 6.2 rely on the statistical nature of the
neutron resonances. The increasing amount of time-of-flight data, taken in last decade,
will allow further analysis of the systematic behavior of the average parameters with the
compound nucleus mass number. For non-fissile nuclei, evidence for non-statistical effects
in both s- and p- wave radiative neutron capture could be useful to identify mass regions
compatible with the ”extreme” statistical model. For fissile nuclei, the link between the
phenomenological fission widths of the Reich-Moore approximation and the transmission
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Figure 6.2: Extension of the Resolved Resonance Range of 241Am with ladders of resonances
whose partial widths were calculated via the SPRT method and the equivalent hard-sphere
radius formalism.

coefficients through the fission barrier could be clarified. And finally, a reliable order of
magnitude for the correlations between the reduced neutron widths and the radiative widths
could be established for a correct processing of the Probability Tables.
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Abstract – For the modeling of the neutron cross sections, three energy ranges can be distinguished. The
resolved resonance range can be interpreted in terms of single-level, multilevel, Reich-Moore, or R-matrix
parameters. The unresolved resonance range (URR) is described with the average R-matrix and Hauser-
Feshbach formalisms. For the high energies (“continuum”), optical model parameters are used in
association with statistical and preequilibrium models. One of the main challenges of such a work is to
study the consistency of the average parameters obtained by these different calculations. With the
ESTIMA and SPRT methods, we provide a set of parameters for partial s-waves and p-waves (strength
functions Sl and effective potential scattering radius R '). However, accurate analysis of the URR domain
needs more information than parameters R ' and Sl associated with orbital moments l � 0 and l �1. Using
links between the average R-matrix formalism and the optical model calculations, we propose a general-
ization of the SPRT method for l � 1 and a new description of the URR domain in terms of Sl and RlJ

`.

I. INTRODUCTION

The neutron cross sections of a given isotope are
generally divided into three parts, each one being treated
with a different formalism. At low energy, the resolved
resonance range ~RRR! can be analyzed by using appro-
priate approximations of the R-matrix formalism. The
unresolved resonance range ~URR! is commonly ana-
lyzed with the average R-matrix formalism. At higher
energy ~“continuum”!, optical model calculations ~direct
interaction! are used in association with statistical and
preequilibrium models.

One systematic challenge for this kind of work is the
consistent description of the overlapping energy ranges.
The link between the resolved and unresolved energy
ranges is treated with statistical tests based on the distri-
butions of the resonance parameters ~see ESTIMA method
described in Ref. 1!. Concerning the relationships be-
tween the unresolved and continuum energy ranges, we

use the SPRT approach.2 The latter consists of compar-
ing the strength function ~S0, S1! and the scattering ra-
dius R ' by using mathematical models valid at low energy.

The link between the average R-matrix formalism
and the optical model proposed in this paper is inspired
from the work of Lane and Thomas.3 Relationships be-
tween these two models will be used to generalize the
SPRT method to higher-order l values ~l. 1!. Moreover,
as the parameterization in terms of l-dependent scatter-
ing radius R ' is equivalent to a parameterization in terms
of distant level parameter R` ~Ref. 4!, we decided to
propose a new description of the URR in terms of RlJ

`.
In Secs. II and III, basic features of the R-matrix

formalism and optical model are given. Section IV fo-
cuses on the SPRT method and its generalization. Aver-
age parameters obtained for the compound systems
232Th � n, 238U � n, 240Pu � n, and 242Pu � n are
presented in Sec. V. Our results are then compared with
those reported in the literature before concluding on the
impact of such a work for the nuclear data evaluation
activities.*E-mail: gilles.noguere@cea.fr

NUCLEAR SCIENCE AND ENGINEERING: 162, 76–86 ~2009!
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II. AVERAGE R-MATRIX FORMALISM

The scattering theory, also called the R-matrix theory,
is a phenomenological description of measured cross sec-
tions. It does not constitute a nucleon-nucleus model be-
cause it does not rely on physical phenomena of the
interaction. It is a parameterization of the cross sections
in terms of resonance parameters. From the theoretical
point of view, the R-matrix formalism rests on the de-
scription of binary reactions between a projectile and a
target nucleus in terms of wave functions of the entrance
and exit channels. This presentation guesses the defini-
tion of what we call a channel c, corresponding to the
identification of a pair of particles ~in the entrance and
exit channels! characterized by a given channel spin s,
angular momentum J, and parity p. Considering the spin
I of the target, the spin i of the projectile and its orbital
momentum l, the total angular momentum J of the com-
pound system satisfies the quantum-mechanical triangle
relations as follows:

:J � :l � ?s ,

where

?s � :I � :i . ~1!

Their vectorial combination leads to the following
expressions:

6 l � s6 � J � l � s

and

6I � i 6 � s � I � i . ~2!

If pI and pi stand, respectively, for the parity of the
target nucleus and of the projectile, the parity of the
nuclear system is given by

p � ~�1!lpIpi . ~3!

The nuclear forces being short-range interactions,
the system can be divided into two parts: one inside a
sphere of radius ac , where the compound nucleus pro-
cess takes place, and one outside the sphere where direct
interactions take place. According to the rules used in
the Evaluated Nuclear Data Files,5 a reasonable choice
for the channel radius ac in the actinide region is

ac � 1.35A103 fm . ~4!

The internal range ~where nuclear forces dominate!
will be treated in terms of the collision matrix because
the complexity of the interactions inside the compound
nucleus does not allow the ab initio knowledge of the
nuclear system wave function. This theory uses the non-
relativistic quantum mechanics because the nucleon ve-
locity is supposed to be very low compared to the light
speed. However, it is possible to use this theory for rel-

ativistic neutron energies and to correct the result for
relativistic effects.

In the R-matrix formalism, the collision matrix is
generally called U. The matrix element Ucc ' ~E ! repre-
sents the amplitude of the exit wave c ' induced by the
interaction between the target and the projectile in the
entrance channel c. The probability for this interaction to
take place is given as

Pcrc ' � 6Ucc ' ~E !62 . ~5!

In the frame of the collision matrix formalism, the
total cross section st ~E ! and the shape elastic cross sec-
tion se~E ! are described as follows:

st ~E ! �
2p

k 2 (
l

~2l � 1! (
J

glJ $1 � Re@UlJ ~E !#% ~6!

and

se~E ! �
p

k 2 (
l

~2l � 1! (
J

glJ 61 � UlJ ~E !62 , ~7!

where glJ stands for the statistical spin factor:

glJ �
2J � 1

~2i � 1!~2I � 1!~2l � 1!
. ~8!

In the URR, the experimental resolution is not suf-
ficient to distinguish the individual resonances. How-
ever, these resonances exist and may have a significant
impact on the self-shielding calculations. As cross sec-
tions cannot be analyzed with Eqs. ~6! and ~7!, average
expressions are used to characterize the physics in this
energy range. In practice, the average formulation of the
R-matrix theory is used to describe the total and shape
elastic cross sections.

In the frame of the average R-matrix formalism, the
total cross section, the shape elastic cross section, and
the neutron transmission coefficients are modeled in terms
of neutron strength function SlJ and distant level param-
eter RlJ

`. By using the standard boundary conditions as
defined in Ref. 6, the average collision matrix averaged
over resonances is given by Ref. 7:

PUlJ ~E ! �
e�2ifl ~E ! ~1 � iPl ~E !RlJ

`� slJ Pl ~E !p!

1 � iPl ~E !RlJ
`� slJ Pl ~E !p

.

~9!

Parameter slJ is called the pole strength. It can be written
in terms of the dimensionless neutron strength function
SlJ as follows:

SlJ �
SlJME

2kac

. ~10!

SPRT METHOD 77

NUCLEAR SCIENCE AND ENGINEERING VOL. 162 MAY 2009



If the neutron incident energy is given in electron volts,
the neutron wave number k is defined as

k �
1

|
�
M2mn Ecm

\
� 2.1968 � 10�4� A

A � 1�ME .

~11!

In Eq. ~9!, Pl ~E ! and fl ~E ! are, respectively, the
penetration factor of the centrifugal barrier and the phase
shift of the incident wave scattered by a sphere. In the
case of a neutral incident particle, Pl ~E ! and fl ~E ! are
given by

Pl ~E ! �
r2~E !Pl�1~E !

~l � Fl�1~E !!
2 � Pl�i

2 ~E !

with

P0~E ! � r~E ! ~12!

and

fl ~E ! � fl�1~E !� tan�1� Pl�1~E !

l � Fl�1~E !
�

with

f0~E ! � r~E ! . ~13!

The Fl ~E ! factor represents the phase shift factor. Its
standard expression is

Fl ~E ! �
r2~E !~l � Fl�1~E !!

~l � Fl�1~E !!
2 � Pl�i

2 ~E !
� l

with

F0~E ! � 0 . ~14!

In Eqs. ~12!, ~13!, and ~14!, r~E ! is the product of the
wave number by the channel radius:

r~E ! � kac . ~15!

Equation ~9! permits obtaining a simple expression of
the transmission coefficient in terms of slJ and RlJ

`. For a
given orbital momentum l and a given Jp , we have

TlJ ~E ! � 1 � 6 PUlJ ~E !62 �
4pPl ~E !slJ

~1 �pPl ~E !slJ !
2 � Pl ~E !

2RlJ
p2 . ~16!

By the same way, introducing the average collision matrix expression given by Eq. ~9! in Eq. ~6!, the average total
cross section for a given l and a given Jp can be written as

st
lJ~E ! �

2p

k 2 �1 �
@Pl ~E !

2~RlJ
`2

�p2slJ
2 !� 1# cos~2fl ~E !!� 2Pl ~E !RlJ

` sin~2fl ~E !!

~1 �pPl ~E !slJ !
2 � Pl ~E !

2RlJ
`2 � . ~17!

The shape elastic cross section for a given l and Jp can be easily deduced from Eq. ~7! by combining Eqs. ~16!
and ~17! as follows:

se
lJ~E ! � st

lJ~E !�
p

k 2
TlJ ~E ! . ~18!

We obtain

se
lJ~E ! �

2p

k 2 �1 �
@Pl ~E !

2~RlJ
`2

�p2slJ
2 !� 1# cos~2fl ~E !!� 2Pl ~E !RlJ

` sin~2fl ~E !!� 2pPl ~E !slJ

~1 �pPl ~E !slJ !
2 � Pl ~E !

2RlJ
`2 � . ~19!

After that, the potential cross section spot is defined as the limit value of se~E ! as follows:

spot �(
J

gl�0, J lim
Er0
se

l�0, J~E ! . ~20!

At low energy, only s-waves contribute:

spot � 4pac
2(

J

gl�0, J $~1 � Rl�0, J
` !2 �p2sl�0, J

2 % . ~21!
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As sl�0, J is lower than unity, Eq. ~21! becomes

spot � 4pR '2 , ~22!

where R ' stands for the effective scattering radius. For
s-waves, it is defined as

R ' � Rl�0
' � ac�(

J

gl�0, J ~1 � Rl�0, J
` !2 . ~23!

For a ground-state spin I � 0, only one value is possible
for J ~J � 1

2
_ !. In this case, R ' becomes a simple function

of the distant level parameter:

R ' � ac~1 � R0
`! . ~24!

This expression is used to take into account the link be-
tween the scattering radius and the entrance channel ra-
dius ac . The variation of the effective radius R ' with the
entrance channel can be approximated as follows8:

Rl
' � ac @1 � ~2l � 1!Rl

`#10~2l�1! . ~25!

III. OPTICAL MODEL CALCULATIONS

In the optical model, we consider that the incident
nucleon interacts with a complex mean-field potential.
These calculations consist of solving the Schrödinger
equation by separating the space of the system states into
two orthogonal spaces: The first one is relative to the
case of the separated nucleon and the target nucleus,
when the second one concerns the compound nucleus.
The difficulty of this model is to find the appropriate
potential, which will reproduce the experimental data
when it is introduced in the Schrödinger equation. Two
types of approaches can be used to build an optical po-
tential as follows:

1. the semimicroscopic approach, which tries to eval-
uate the potential based on fundamental elements
~as the nucleon-nucleon interaction, for example!

2. the phenomenological approach, which consists
in parameterizing a potential and adjusting its pa-
rameters to be consistent with the experimental
data.

In this work, we have used a phenomenological de-
scription of the potential whose volume, surface, and
spin-orbit components are described with Wood-Saxon
form factors. Parameters of the model ~well depths, ra-
dius, diffuseness, etc.! are compiled in the Reference
Input Parameter Library9 ~RIPL!. Many papers address
the parameterization of local or global potentials above
the kilo-electron-volt neutron energy range. An example
of parameterization for nonspherical nuclei and a spe-
cific discussion on the effect of the nuclear deformation
on the scattering properties at low neutron energies ~be-
low a few mega-electron-volts! can be found in Ref. 10.

In practice, the total cross section, the shape elastic
cross section, and the transmission coefficients are ob-
tained by using the real and imaginary parts of the col-
lision matrix. In optical model calculations, the collision
matrix is generally noted C. The matrix elements are
related to the elements of the scattering matrix S by the
expression

Scc ' ~E ! � 1 � 2iCcc ' ~E ! . ~26!

In this representation, the reaction channel defini-
tion is slightly different from the one used in the R-matrix
formalism. In the case of elastic or inelastic neutron scat-
tering reactions where spin-orbit interactions are large, it
is convenient to define the neutron with angular mo-
menta l and j. The latter quantum number can take two
different values as follows:

�j � l � 2
1�

j � l � 2
1� ,

~27!

so that the total angular momentum J of the target and
the neutron is given by

6 j � In 6 � J � j � In . ~28!

In represents the spin of the fundamental levels of rota-
tional bands ~“head bands”! used to model the collective
excitation modes by a vibrational coupling. The level
n � 1 is the fundamental level of the target nucleus hav-
ing a ground-state spin I.

By using the definitions proposed in Eqs. ~6!, ~7!,
and ~8!, the total cross section st ~E ! and the shape elas-
tic cross section se~E ! can be written as

st ~E ! �
2p

k 2 (
l

~2l � 1! (
j
(

J

glJ $1 � Re@Slj
J~E !#%

~29!

and

se~E ! �
p

k 2 (
l

~2l � 1! (
j
(

J

glJ 61 � Slj
J~E !62 . ~30!

By introducing expression ~26! into Eqs. ~29! and
~30!, we obtain a more compact formulation for the total
and shape elastic cross sections. For a given couple ~l, j !,
st

lj~E ! and se
lj~E ! are written as

st
lj~E ! �

4p

k 2
Im@Clj

J~E !# ~31!

and

se
lj~E ! �

4p

k 2
6Clj

J~E !62 . ~32!
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The neutron transmission coefficients are related to
the total reaction cross section. They can be obtained by
combining the expression of the total cross section and
those of shape elastic and direct inelastic cross sections.
We obtain

Tlj ~E ! � 4 Im@Clj
J~E !#� 4 6Clj

J~E !62

� 4 (
l '�l
(
j '�j

6Cl 'j '
J ~E !62 . ~33!

In the case of optical model calculations using a spheri-
cal potential ~no coupling!, the last term of Eq. ~33! dis-
appears, and the expression of the Tlj~E ! becomes

Tlj ~E ! � 4 Im@Clj
J~E !#� 4 6Clj

J~E !62 . ~34!

The aim of the work presented in this paper consists
of linking Eqs. ~31! and ~32! to Eqs. ~17! and ~19!.

IV. SPRT METHOD

IV.A. Presentation of the Standard Method

The SPRT method is used to study the consistency
between the average R-matrix parameters adjusted on
experimental data and those given by optical model cal-
culations. The standard method proposed in Ref. 2 is
applied to strength functions ~S0 and S1! and effective
scattering radius R ' . In the case of the “low-energy” ap-
proximation of the average R-matrix formalism, trans-
mission coefficients involved in Eq. ~16! become

Tl ~E ! � 4pPl ~E !sl . ~35!

In the frame of the optical model calculations, the
l-dependent transmission coefficients can be calculated
as follows:

Tl ~E ! �(
j
(

J

glJ Tlj ~E ! . ~36!

By replacing the pole strength sl in Eq. ~35! with the
following expression:

sl �
SlME

2kac

, ~37!

and by using Eq. ~36!, the neutron strength function is
then given by

Sl �
1

2p

kacME

Pl ~E !
(

j
(

J

glJ Tlj ~E ! . ~38!

Another parameter involved in the SPRT method is
the scattering radius R ' . At low energy, it could be sim-
ply deduced from the shape elastic cross section as
follows:

R ' � � 1

4p
se~E ! . ~39!

This relationship allows a direct comparison of the po-
tential scattering obtained from optical model calcula-
tions with values reported in the literature. Its domain of
application is rather limited because Eq. ~39! supposes a
weak variation of the shape elastic cross section with the
incident neutron energy.

The TALYS code11 uses this standard SPRT method
to provide values of S0, S1, and R ' below 100 keV. The
interest of such a process is to obtain the energy depen-
dence of each parameter and to extrapolate if necessary
their value at Bn ~i.e., E � 0!. However, this method is
limited because it is restricted to l � 1 and gives an R '

value that is not directly present in the R-matrix formal-
ism. The use of the average collision matrix elements
will be the starting point to generalize the SPRT method
in order to deduce average parameters useful for the mod-
eling of the URR.

IV.B. Generalization of the Method

The generalization of the SPRT method could not be
only supported by neutron transmission coefficients. Ac-
tually, R-matrix formalism does not reproduce the direct
contribution of inelastic reactions, which is, on the other
hand, correctly taken into account by coupled-channel
calculations. Then, in order to generalize the SPRT ap-
proach, we decided to use the expressions of the total
and shape elastic cross sections. In the URR domain, the
exercise consists of determining the parameters slJ and
RlJ
` as

�st ~slJ , RlJ
` , E ! � st ~Im@Clj

J~E !# !

se~slJ , RlJ
` , E !� se ~6Clj

J~E !6! .
~40!

Expressions of the total cross section st and of the
shape elastic cross section se used in the R-matrix for-
malism and the optical model calculations are very sim-
ilar. Equations ~29! and ~30! become identical to
expressions ~6! and ~7! when the ground-state spin of
the target nucleus is zero ~I � 0!. In this case, the
scattering matrix elements and the average collision ma-
trix become formally identical:

Slj�J
J ~E ! � PUlJ ~E ! . ~41!

Consequently, Eq. ~41! leads directly to the following
analytical expressions. For a couple ~l, J !, we obtain
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RlJ
` �

2alJ ~E !cos@2fl ~E !#� ~1 � 2blJ ~E !!sin@2fl ~E !#

Pl ~E !~1 � 2clJ
2 ~E !� 2blJ ~E !� ~1 � 2blJ ~E !!cos@2fl ~E !#� 2alJ ~E !sin@2fl ~E !# !

~42!

and

slJ �
2~blJ ~E !� clJ

2 ~E !!

pPl ~E !~1 � 2clJ
2 ~E !� 2blJ ~E !� ~1 � 2blJ ~E !!cos@2fl ~E !# !� 2alJ sin@2fl ~E !#

. ~43!

For a ground-state spin I � 0, parameters alJ ~E !,
blJ ~E !, and ClJ ~E ! are defined as

�
alJ ~E ! � Re@Clj�J

J ~E !#

blJ ~E !� Im@Clj�J
J ~E !#

clJ ~E !� 6Clj�J
J ~E !6 .

~44!

The expressions above are very close to those coming
from Ref. 12. The generalization of these relationships
to the target nucleus having a ground-state spin different
from zero consists of combining the real and imaginary
parts of the collision matrix elements and of calculating
the average value of the following quantities:

alJ
2 ~E ! � clJ

2 ~E !� blJ
2 ~E ! , ~45!

blJ ~E ! � ^Im@Clj
J~E !#&j , ~46!

and

clJ
2 ~E ! � ^6Clj

J~E !62 &j . ~47!

Equations ~42! through ~47! constitute a system of
expressions that will be used to generalize the SPRT
method. Equations ~42! through ~47! permit obtaining
the strength function and the distant level parameter for
a given couple ~l, J !.

In the frame of the low-energy approximation, the
phase shift fl of the incident wave scattered on a sphere
can be considered as lower than unity and leads to these
following asymptotic expressions:

Rlj
` �

alJ ~E !� fl ~E !

Pl ~E !
~48!

and

slJ �
blJ ~E !� clj

2~E !

pPl ~E !
. ~49!

In practice, the treatment of the URR domain with the
average R-matrix formalism implies the knowledge of
the average parameters for a given orbital momentum l.
The system to be solved is now

�
st

l~sl , Rl
` , E ! �(

J
(

j

glJst
lj~Im@Clj

J~E !# !

se
l~sl , Rl

` , E !�(
J
(

j

glJset
lj~6Clj

J~E !6! .
~50!

Expressions of parameters sl and Rl
` satisfying the con-

ditions given above are formally identical to Eqs. ~42!
and ~43!. Parameters alJ ~E !, blJ ~E !, and cLJ ~E ! are re-
placed by al ~E !, bl ~E !, and cl ~E !, which are defined as

al
2~E ! � cl

2~E !� bl
2~E ! , ~51!

bl ~E ! �(
J
(

j

glJ Im@Clj
J~E !# , ~52!

and

cl
2~E ! �(

J
(

j

glJ 6Clj
J~E !62 . ~53!

This formalism is very powerful because the total
and shape elastic cross sections are defined by a re-
stricted set of parameters. Two parameters are sufficient
to calculate the contribution of each partial wave. How-
ever, as we want to build a consistent modeling of the
neutron-induced reaction cross sections from the ther-
mal to mega-electron-volt energy ranges, combining sl

and Rlj
` parameters is a priority. In the R-matrix frame,

the distant level parameter for a given ~l, J ! couple has a
more physical sense than the scattering radius, and we
want to maintain it over the URR. For the strength func-
tion, parameterization in terms of l is sufficient as it is
generally difficult to extract realistic average reduced
neutron width for a given J. Then, the generalization of
the SPRT method consists of determining the Rlj

` param-
eters with Eq. ~42!. The sl parameter is determined by
minimization of the following conditions:

�st
l~sl , Rlj

` , E ! � st
l~slJ , Rlj

` , E !

se
l~sl , Rlj

` , E !� se
l~slJ , Rlj

` , E ! .
~54!

For analyzing the RRR, the REFIT shape analysis
code13 allowed the parameterization in terms of Rlj

`. To
satisfy the coherence criteria, this choice was also in-
cluded in the CONRAD code,14 dedicated to the neutron
cross-section analysis in the RRR and URR.
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V. APPLICATION OF THE GENERALIZED
SPRT METHOD TO ACTINIDES

V.A. Comparison of the Results Obtained
with the ECIS and OPTMAN Codes

The generalized SPRT method was applied to sev-
eral actinides, 232Th, 238U, 240Pu, and 242Pu. For the op-
tical model calculations, the coupled-channel codes ECIS
~Ref. 15! and OPTMAN ~Refs. 16 and 17! were used
with the optical model parameters reported in RIPL
~Ref. 9!. The final SPRT values reported in this work are
based on the results of these coupled-channel codes.

For this study, coupled-channel calculations were per-
formed by using the optical model parameters estab-
lished by Capote et al.18 This dispersive and relativistic
potential is one of the most recent proposed in RIPL,
which is dedicated to the modeling of the neutron-
induced reactions in the actinide region for incident en-
ergies ranging from 1 keV to 200 MeV. Results obtained
by Capote et al. prove that its coupled-channel optical
potential with dispersive relations can be used for pre-
diction of optical data for nucleon-induced reactions on
experimentally uninvestigated minor actinide nuclei. For
proof, results obtained with this potential are in excel-
lent agreement with the experimental data for the 238U � n
and 232Th � n reactions.

As we chose the optical model parameters deter-
mined by Capote et al., the OPTMAN code must be
preferred to ECIS because the geometry is different for
the Hartree-Fock real potential Vhf and the imaginary
potential Wv . However, as OPTMAN provides only
l-dependent results and ECIS gives collision matrix ele-
ments for a given couple ~l, j !, we decided to apply our
generalized SPRT method by running the ECIS code with
the optical model parameters of Capote et al. Average
parameters for 232Th � n and 238U � n obtained with
ECIS and OPTMAN are reported in Table I. The com-
parison of the SPRT results in both cases shows that the

discrepancy between these two different codes can be
disregarded.

V.B. Comparison of the Results Obtained with
the Standard and Generalized SPRT Methods

The most important contribution of the generaliza-
tion of the SPRT method is the better consideration of
the energy dependence of the average parameters, like
strength functions and distant level parameters. This is
done by extending the calculation to any orbital momen-
tum, using the energy-dependent S-matrix elements.

As 232Th and 238U have a ground-state spin I � 0,
the solid curves of Fig. 1 represent the generalized SPRT
results calculated with Eqs. ~42!, ~43!, and ~44!. The
dashed curves stand for the results obtained with the
standard SPRT method. They have been obtained with
Eq. ~49!, i.e., in the frame of the low-energy approxima-
tion. These results are consistent with those coming from
the TALYS calculations. At low energy, Eq. ~38! used in
TALYS is equivalent to Eq. ~49!.

Below 10 keV, all the investigated methods give con-
sistent results. Above this arbitrary energy limit, the for-
malism based on the low-energy approximation becomes
rapidly inappropriate to describe the energy indepen-
dence of the average parameters. At 100 keV, the discrep-
ancy between the two formalisms is ;10%.

V.C. Results on Actinides

The 232Th and 238U strength functions Sl and distant
level parameters Rl

` ~for s-, p-, d-, and f-waves! obtained
with the generalized SPRT method as a function of the
incident neutron energy are presented in Figs. 2 and 3.
The energy dependence of each parameter is described
with an interpolating polynomial in the Lagrange form.

The values of the distant level parameters and scat-
tering radii obtained with the generalized SPRT method
and extrapolated to the binding energy Bn are given
in Table II for 232Th � n, 238U � n, 240Pu � n, and
242Pu � n. The scattering radius R ' is calculated using
Eq. ~24!. Concerning this last parameter, the results pro-
vided by the generalized SPRT method are in good agree-
ment with those reported in the last edition of the Atlas
of Neutron Resonances19 and remain within the limits
of the recommended uncertainties.

The strength functions obtained with the general-
ized SPRT method and extrapolated to the binding en-
ergy Bn are given in Table III for the same nuclear systems.
Our s-wave strength functions are in good agreement
with those reported in RIPL. They are either within the
limits of the associated uncertainties ~for 232Th and 240Pu!
or at the lower limits of them ~for 238U and 242Pu!. How-
ever, the comparison of our results with the values re-
ported in the Atlas of Neutron Resonances highlights
significant discrepancies for 232Th � n and 238U � n.
The agreement could be improved by tuning slightly the

TABLE I

Strength Functions ~S0 !, Distant Level Parameters ~R0
`!,

and Scattering Radius R ' for 232Th � n and 238U � n
Obtained with the Generalized SPRT Method by Using the

OPTMAN and ECIS Codes with the Optical Model
Parameters Determined by Capote et al.*

OPTMAN ECIS
SPRT

Parameters 232Th � n 238U � n 232Th � n 238U � n

104S0 0.86 0.93 0.86 0.93
R0
` �0.17 �0.15 �0.17 �0.15

R ' 9.71 fm 9.66 fm 9.70 fm 9.67 fm

*Reference 18.
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quadrupole deformation b2 within the accepted limits of
the Möller and Nix systematic.20

V.D. The Generalized SPRT Method
and CONRAD

The average parameters reported in this work have
been determined to be used as input parameters of the
FITACS option of the SAMMY and CONRAD codes.6,14

The latter codes were designed to adjust l-dependent
strength functions, distant level parameters, and average
partial widths on experimental total and partial cross
sections. The total cross section is calculated with the

average R-matrix formalism, using strength functions and
distant level parameters at Bn . For the partial cross sec-
tions, these codes use the Hauser-Feshbach formulas with
the Moldauer prescriptions for the width fluctuations.
The energy dependence of the average radiation width is
described by a Giant Dipole Resonance formalism. In
CONRAD and SAMMY, values of the l-dependent mean
level spacing are calculated with the Gilbert-Cameron
formulas, and the fission barrier transmission coeffi-
cients are based on the Hill-Wheeler treatment.

As our results obtained on 242Pu are consistent with
those reported in RIPL and in the Atlas of Neutron Res-
onances, we decided to compare the theoretical 242Pu

Fig. 1. The 232Th and 238U strength functions obtained
with the generalized SPRT method by using the ECIS code
with the optical model parameters established by Capote et al.18

Our results are compared with those given by the standard
SPRT method2 and the TALYS code.11

Fig. 2. The s-, p-, d-, f-wave strength functions for
~a! 232Th � n and ~b! 238U � n obtained with the generalized
SPRT method by running the ECIS code with the optical model
parameters established by Capote et al.18

SPRT METHOD 83

NUCLEAR SCIENCE AND ENGINEERING VOL. 162 MAY 2009



total cross section obtained with ECIS and CONRAD
with two experimental data sets retrieved from the
EXFOR database. Results are shown in Fig. 4. The
older experiment was carried out at the Material Testing
Reactor fast chopper of Idaho.21 The second data set
was measured at the pulsed neutron facility of Los Ala-
mos National Laboratory22 ~LANL!. Both experiments
used the time-of-flight method. The first one was de-
signed to investigate the low-energy range ~i.e., from
1.3 meV to 7.7 keV!, and the LANL experiment
was dedicated to the high-energy range ~from 676 keV to
175 MeV!.

The ECIS calculations were done with the optical
model parameters established by Capote et al. The CON-
RAD code uses the average parameters provided by the
generalized SPRT method ~Tables II and III!. At low
energy, experimental and theoretical results are in good
agreement. Between 100 keV and 1 MeV, the discrep-
ancy remains lower than 4%. The agreement could be
significantly improved by introducing energy-dependent
neutron strength function and distant level parameters

in the CONRAD code. This functionality is under
development.

VI. CONCLUSIONS

Comparison between the average parameters ex-
tracted from high-energy calculations and those adjusted
on experimental data with the average R-matrix formal-
ism is crucial for the accurate modeling of the URR. In
the present work, the generalized SPRT method, used in
association with the optical model parameters estab-
lished by Capote et al., leads to a consistent description
of the total cross section up to 1 MeV. This study can be
easily repeated with other spherical or deformed optical
potentials. For the modeling of neutron-induced reac-
tions on a large number of nonfissile isotopes, the con-
sistency of the l-dependent average parameters reported
in the literature is under investigation with phenomeno-
logical optical model potential containing dispersive terms
and based on refined microscopical calculations.23,24

TABLE II

Distant Level Parameters ~Rlj
`! and Scattering Radii ~R ' ! Obtained with the Generalized SPRT Method, Using the ECIS Code

with the Optical Model Parameters Established by Capote et al.*

Nuclear Systems This Work Mughabghab19

232Th � n
l � 0 R0

`� �0.170 R0,102
` � �0.170

l � 1 R1
`� 0.101 R1,102

` � 0.044 R1,302
` � 0.137

l � 2 R2
`� �0.097 R2,302

` � �0.151 R2,502
` � �0.053

l � 3 R3
`� 0.217 R3,502

` � 0.198 R3,702
` � 0.228

R '� 9.7 fm R '� 9.656 0.08 fm
238U � n

l � 0 R0
`� �0.155 R0,102

` � �0.155
l � 1 R1

`� 0.119 R1,102
` � 0.066 R1,302

` � 0.159
l � 2 R2

`� �0.074 R2,302
` � �0.127 R2,502

` � �0.028
l � 3 R3

`� 0.219 R3,502
` � 0.227 R3,702

` � 0.211
R '� 9.67 fm R '� 9.66 0.1 fm

240Pu � n
l � 0 R0

`� �0.138 R0,102
` � �0.138

l � 1 R1
`� 0.127 R1,102

` � 0.083 R1,302
` � 0.160

l � 2 R2
`� �0.053 R2,302

` � �0.100 R2,502
` � �0.014

l � 3 R3
`� 0.219 R3,502

` � 0.218 R3,702
` � 0.218

R '� 9.55 fm R '� 9.66 0.2 fm
242Pu � n

l � 0 R0
`� �0.137 R0,102

` � �0.137
l � 1 R1

`� 0.130 R1,102
` � 0.082 R1,302

` � 0.167
l � 2 R2

`� �0.055 R2,302
` � �0.104 R2,502

` � �0.014
l � 3 R3

`� 0.229 R3,502
` � 0.231 R3,702

` � 0.226
R '� 9.56 fm R '� 9.86 0.2 fm

*Reference 18.
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This work reports 237Np neutron resonance parameters obtained from the simultaneous analysis of time-
of-flight data measured at the GELINA, ORELA, KURRI, and LANSCE facilities. A statistical analysis of
these resonances relying on average R-matrix and optical model calculations was used to establish consistent
l-dependent average resonance parameters involved in the description of the unresolved resonance range of the
237Np neutron cross sections. For neutron orbital angular momentum l = 0, we obtained an average radiation
width 〈�γ 〉 = 39.3 ± 1.0 meV, a neutron strength function 104S0 = 1.02 ± 0.14, a mean level spacing D0 =
0.60 ± 0.03 eV, and a potential scattering length R′ = 9.8 ± 0.1 fm.

DOI: 10.1103/PhysRevC.81.044607 PACS number(s): 24.60.Dr, 25.40.Ny, 25.40.Lw, 25.60.Dz

I. INTRODUCTION

Neutron-induced reactions important for transmutation
studies have been widely investigated within the frame of a
collaboration between the Institute for Reference Materials
and Measurements (IRMM) and the French Atomic Energy
Commission (CEA). Previous neutron resonance spectroscopy
of 237Np, 99Tc, 127I, and 129I are reported in Refs. [1–4]. These
works provide consistent sets of s-wave mean level spacing D0

and neutron strength function S0. However, statistical analysis
of the resolved resonances of the iodine isotopes points out
the difficulties in establishing unambiguous average values for
higher-order partial waves (l > 0).

The focus of the present work is a statistical analysis of the
237Np resonance parameters with methodologies relying on
optical model and average R-matrix calculations. The average
R-matrix cross sections are parameterized in terms of neutron
strength functions Sl and distant level parameters R∞

l [5]. At
low energy, R∞

l=0 is related to the potential scattering length
R′. Optical model calculations were used to establish simple
relationships between the s-wave parameters (S0 and D0) and
the average R-matrix parameters (Sl and R∞

l ).
The R-matrix code CONRAD [6], the optical model code

ECIS [7], and the statistical model code TALYS [8] were used
to reconstruct 237Np neutron cross sections. Nuclear models
implemented in CONRAD are parameterized in terms of neutron
strength function Sl , distant level parameter R∞

l , mean level
spacing Dl , and average radiation width 〈�γ 〉. Comparison of
the theoretical cross section with data reported in the literature
confirmed the model parameters established in this work.

II. RESONANCE SHAPE ANALYSIS

Neutron resonances of the n+ 237Np nuclear system have
been studied with data measured at the GELINA facility [1]
and with capture cross sections retrieved from EXFOR [9].
Neutron resonances λ were parametrized in terms of resonance
energy Eλ, neutron width �λ,n, and radiation width �λ,γ by
using the Reich-Moore approximation of the R-matrix theory

*gilles.noguere@cea.fr

[10]. Fission widths were taken from the European library
JEFF-3.1 [11].

Measurements carried out at the GELINA facility were
performed with the neutron transmission technique. Li-glass
detectors (NE912) located 30 and 50 m from the neutron
source were used to collect a wide number of experimental
data. Detailed descriptions of the experimental setup are given
elsewhere [1]. The resolved and unresolved resonance ranges
were investigated from 0.3 eV to 2.0 keV by using four
NpO2 samples of different thicknesses. The (n, γ ) reaction
was analyzed with experimental values measured at the
ORELA [12], KURRI [13,14], and LANSCE [15] facilities.
The KURRI and LANSCE data sets were used below 10 eV.
ORELA data were analyzed up to 100 eV. Tables I and II
summarize briefly the main characteristics of the transmission
and capture data adopted in our resonance shape analysis.

The least-squares fitting code REFIT [16] was used to adjust
the resonance parameters for the data. For transmission data,
REFIT simulates the attenuation of the incident neutron beam
as follows:

T (E) =
∫ ∞

0
RT

E(E′) exp

(
−

∑
i

niσt,i(E
′)

)
dE′, (1)

where i labels the isotopes contained in the sample, ni stands
for the atomic surface density as atoms per barn, σt,i(E)
represents the Doppler broadened total cross section, and RT

E

is the experimental resolution of the GELINA spectrometer.
For modeling of the experimental capture cross section,

neutron scattering corrections in thin neptunium samples were
assumed to be negligible. The following expression of the
capture yield was used in our REFIT calculations:

Y (E) = N

∫ ∞

0
RY

E(E′) (1 − T (E′))
σγ (E′)
σt (E′)

dE′, (2)

where σγ (σt ) stands for the 237Np Doppler broadened
capture (total) cross section, N represents the normalization
factor, and RY

E is the experimental resolution for the capture
measurements.

A preliminary analysis of the low-energy resonances
(<10 eV) was reported in Ref. [17]. The latter demonstrates
that Monte Carlo techniques can be used to propagate the

0556-2813/2010/81(4)/044607(13) 044607-1 ©2010 The American Physical Society
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TABLE I. Experimental characteristics of the capture data used
in this work.

Author(s) Ref. Facility Flight Sample Sample
no. length diameter thickness

(mm) (mm) (at/b)

Weston and Todd [12] ORELA 20 50.8 0.25 × 10−3

Kobayashi et al. [13] KURRI 12 30 0.35 × 10−3

Shcherbakov et al. [14] KURRI 24.2 30 0.35 × 10−3

Esch et al. [15] LANSCE 20 6.4 0.0035 × 10−3

experimental uncertainties during the least-squares fitting pro-
cedure. Monte Carlo algorithms and uncertainty propagation
techniques are presented in Refs. [18] and [19]. In the present
analysis, similar stochastic techniques were used to determine
the 237Np resonance parameters up to 500 eV.

Examples of least-squares fits are shown in Fig. 1. Parame-
ters <100 eV are reported in Table III. The given uncertainties
take into account the experimental information summarized
in Table IV. Comparison of our results with the parameters
recommended in the European library JEFF-3.1 points out
discrepancies of <2% on average. However, as shown in
Fig. 2, significant discrepancies, >10%, can be observed
for the neutron widths. The increasing contribution of the
experimental resolution makes unambiguous identification of
complex overlapping structures above a few tens of electron
volts difficult.

Negative resonances (“external levels”) reported in Sec. III
were adjusted to accurately reproduce the thermal capture
cross section of 180 ± 5 b measured at the ILL facility [20]
and the contribution of the shape-elastic cross section observed
between the resonances in the transmission data. This analysis
yielded a potential scattering length of

R′ = 9.8 ± 0.1 fm.

In the frame of the R-matrix theory, contributions of the
direct interaction can be simulated with the so-called distant
level parameter R∞

l . For an s wave, the relationship between
R′ and R∞

0 is given by

R′ = ac

(
1 − R∞

0

)
. (3)

15.0 17.0 19.0 21.0 23.0 25.0 27.0
Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
ra

ns
m

is
si

on

15.0 17.0 19.0 21.0 23.0 25.0 27.0
Energy (eV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
ap

tu
re

 c
ro

ss
 s

ec
tio

n 
(k

ba
rn

s)

FIG. 1. Examples of n + 237Np resonance peaks observed in the
experimental capture cross section measured by Weston and Todd
[12] and in the transmission spectra measured by Gressier [1]. Solid
lines represent the theoretical curves adjusted by the REFIT code [16].

According to conventions used in the Evaluated Nuclear Data
Files [21], the channel radius ac is defined as follows:

ac = 1.23

(
A

mn

)1/3

+ 0.8 (fm), (4)

where (A/mn) = 235.012 is defined as the ratio of the target
mass to the neutron mass. By using ac = 8.39 fm and R′ =
9.8 fm, the s-wave distant level parameter for the n+ 237Np
nuclear system is

R∞
0 = −0.168 ± 0.012.

The average radiation width was determined from the
individual �λ,γ values of 19 resonances observed below 23 eV.
If they are assumed to be independent, the weighted mean value
is close to 39.2 ± 0.2 meV. By taking into account correlation
coefficients between the resonance parameters, the mean value

TABLE II. Main characteristics of the transmission measurements performed by Gressier
[1] at the GELINA facility.

Date Flight Frequency Sample “Antioverlap” Sample thickness
length (m) (Hz) temperature (K) filter (at/b)

Feb. 1997 26.453 100 290 Cd 2.49 ± 0.02
Feb. 1997 26.453 100 290 Cd 0.497 ± 0.003
Oct. 1997 49.332 800 300 10B 5.03 ± 0.03
Jan. 1998 26.453 800 300 Cd 7.52 ± 0.04
Feb. 1998 49.332 100 300 Cd 5.03 ± 0.03
June 1998 49.332 800 300 10B 5.03 ± 0.03
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TABLE III. 237Np resonance parameters below 100 eV.

Eλ (eV) J This work (meV) JEFF-3.1 (meV)

�λ,γ �λ,n �λ,γ �λ,n

−2.8 ± 0.03 2.0 40.0 ± 0.4 2.794 ± 0.050 40.0 2.176
−0.91 ± 0.02 3.0 40.0 ± 0.4 1.182 ± 0.098 40.0 0.450

0.49 ± 0.01 2.0 39.4 ± 0.7 0.047 ± 0.001 40.5 0.047
1.32 ± 0.01 3.0 37.9 ± 0.4 0.031 ± 0.001 40.3 0.032
1.48 ± 0.01 2.0 41.6 ± 0.9 0.184 ± 0.004 40.5 0.184
1.97 ± 0.01 3.0 37.2 ± 0.6 0.014 ± 0.001 39.5 0.014

3.05 [3.0] 40.8 <0.001
3.86 ± 0.01 3.0 40.4 ± 0.6 0.211 ± 0.002 39.7 0.212
4.26 ± 0.01 2.0 40.0 ± 0.9 0.033 ± 0.001 40.4 0.033
4.86 ± 0.01 2.0 40.1 ± 1.2 0.043 ± 0.001 40.0 0.042
5.78 ± 0.01 3.0 42.1 ± 0.8 0.533 ± 0.009 41.9 0.528
6.38 ± 0.01 3.0 38.8 ± 1.2 0.079 ± 0.001 39.6 0.079
6.68 ± 0.01 2.0 39.3 0.014 ± 0.001 40.1 0.013
7.19 ± 0.00 2.0 39.3 0.010 ± 0.001 40.0 0.009
7.42 ± 0.01 3.0 39.0 ± 1.5 0.124 ± 0.001 38.4 0.122
7.67 ± 0.01 2.0 39.3 0.003 ± 0.001 40.0 0.002
8.30 ± 0.01 3.0 39.7 ± 1.4 0.093 ± 0.001 37.6 0.090
8.98 ± 0.01 3.0 37.2 ± 1.3 0.104 ± 0.001 37.0 0.102
9.30 ± 0.01 2.0 41.8 ± 0.9 0.611 ± 0.006 41.4 0.602

10.23 ± 0.01 2.0 39.3 0.030 ± 0.001 40.0 0.028
10.68 ± 0.01 3.0 39.3 0.439 ± 0.005 40.0 0.432
10.84 ± 0.01 3.0 39.3 0.701 ± 0.011 40.0 0.689
11.10 ± 0.01 2.0 42.2 ± 1.1 1.032 ± 0.013 43.8 1.010
12.20 ± 0.01 3.0 39.3 0.048 ± 0.001 40.0 0.049
12.62 ± 0.01 2.0 38.9 ± 1.2 0.925 ± 0.010 40.2 0.911
13.13 ± 0.01 3.0 39.3 0.017 ± 0.001 40.0 0.017
14.39 ± 0.01 2.0 39.3 0.002 ± 0.001 40.0 0.002
15.79 ± 0.01 3.0 39.3 0.069 ± 0.001 40.0 0.069
15.94 ± 0.01 3.0 39.3 0.038 ± 0.001 40.0 0.038
16.08 ± 0.01 2.0 38.1 ± 1.8 1.069 ± 0.012 40.0 1.052
16.86 ± 0.01 2.0 39.3 0.304 ± 0.002 37.8 0.299
17.59 ± 0.01 3.0 39.3 0.159 ± 0.001 39.1 0.156
17.90 ± 0.01 2.0 39.3 0.018 ± 0.001 40.0 0.018
17.94 ± 0.01 3.0 39.3 0.003 ± 0.001 40.0 0.003
18.89 ± 0.02 2.0 39.3 0.048 ± 0.001 40.0 0.048
19.13 ± 0.02 3.0 39.3 0.089 ± 0.001 40.0 0.088
19.92 ± 0.01 3.0 39.3 0.069 ± 0.001 40.0 0.070
20.40 ± 0.01 2.0 37.1 ± 1.9 1.395 ± 0.015 39.4 1.368
21.09 ± 0.02 3.0 39.3 0.450 ± 0.003 40.0 0.446
21.31 ± 0.02 2.0 39.3 0.032 ± 0.001 40.0 0.028
22.01 ± 0.02 2.0 36.5 ± 1.8 1.521 ± 0.018 39.5 1.498
22.86 ± 0.02 3.0 38.2 ± 2.4 0.386 ± 0.003 38.5 0.380
23.67 ± 0.02 3.0 39.3 1.436 ± 0.018 38.0 1.420
23.99 ± 0.02 2.0 39.3 0.182 ± 0.002 40.0 0.191
24.85 ± 0.02 3.0 39.3 0.034 ± 0.006 40.0 0.026
24.98 ± 0.02 3.0 39.3 3.661 ± 0.059 40.0 3.665
26.19 ± 0.02 3.0 39.3 0.196 ± 0.002 40.0 0.199
26.56 ± 0.02 3.0 39.3 2.389 ± 0.039 40.7 2.336
27.09 ± 0.02 2.0 39.3 0.039 ± 0.001 40.0 0.038
28.46 ± 0.02 2.0 39.3 0.093 ± 0.006 40.0 0.094
28.61 ± 0.02 3.0 39.3 0.031 ± 0.007 40.0 0.031
28.93 ± 0.02 2.0 39.3 0.138 ± 0.002 40.0 0.137
29.48 ± 0.02 2.0 39.3 0.083 ± 0.002 40.0 0.084
30.42 ± 0.02 3.0 39.3 3.135 ± 0.055 38.2 3.145
30.74 ± 0.02 2.0 39.3 0.358 ± 0.007 40.0 0.371

TABLE III. (Continued.)

Eλ (eV) J This work (meV) JEFF-3.1 (meV)

�λ,γ �λ,n �λ,γ �λ,n

31.30 ± 0.02 3.0 39.3 0.245 ± 0.003 40.0 0.245
31.66 ± 0.03 3.0 39.3 0.042 ± 0.001 40.0 0.043
32.48 ± 0.03 2.0 39.3 0.011 ± 0.002 40.0 0.011
33.42 ± 0.02 3.0 39.3 0.395 ± 0.005 40.0 0.395
33.90 ± 0.03 2.0 39.3 0.487 ± 0.006 40.0 0.487
34.08 ± 0.03 3.0 39.3 0.039 ± 0.006 40.0 0.035
34.69 ± 0.03 3.0 39.3 0.163 ± 0.002 40.0 0.170
35.20 ± 0.03 2.0 39.3 0.413 ± 0.004 40.0 0.409
36.38 ± 0.03 3.0 39.3 0.121 ± 0.002 40.0 0.126
36.82 ± 0.03 2.0 39.3 0.085 ± 0.003 40.0 0.087
37.15 ± 0.03 3.0 39.3 1.152 ± 0.011 37.4 1.138
37.83 ± 0.03 2.0 39.3 0.042 ± 0.004 40.0 0.042
38.05 ± 0.03 2.0 39.3 0.208 ± 0.007 40.0 0.208
38.19 ± 0.03 3.0 39.3 1.199 ± 0.013 40.0 1.193
38.91 ± 0.03 3.0 39.3 0.820 ± 0.013 40.0 0.816
39.01 ± 0.03 2.0 39.3 0.410 ± 0.014 40.0 0.410
39.24 ± 0.03 3.0 39.3 0.532 ± 0.007 40.0 0.529
39.80 ± 0.03 2.0 39.3 0.088 ± 0.004 40.0 0.088
39.93 ± 0.03 3.0 39.3 0.453 ± 0.005 40.0 0.450
41.36 ± 0.03 3.0 39.3 1.963 ± 0.027 38.9 1.947
42.38 ± 0.03 3.0 39.3 0.084 ± 0.017 40.0 0.084
42.84 ± 0.03 3.0 39.3 0.083 ± 0.004 40.0 0.083

43.19 3.0 40.6 0.004
43.65 ± 0.03 2.0 39.3 0.345 ± 0.007 40.0 0.339
44.28 ± 0.04 2.0 39.3 0.026 ± 0.012 40.0 0.026
44.92 ± 0.04 2.0 39.3 0.012 ± 0.002 40.0 0.012
45.71 ± 0.04 2.0 39.3 0.516 ± 0.009 40.0 0.511
46.03 ± 0.04 3.0 39.3 0.584 ± 0.010 40.0 0.570
46.36 ± 0.04 3.0 39.3 2.604 ± 0.023 45.3 2.629
47.33 ± 0.04 2.0 39.3 2.900 ± 0.025 38.2 2.863
48.44 ± 0.04 2.0 39.3 0.105 ± 0.006 40.0 0.104
48.77 ± 0.04 3.0 39.3 0.347 ± 0.007 40.0 0.349
48.89 ± 0.04 2.0 39.3 0.172 ± 0.008 40.0 0.172

49.27 2.0 40.0 0.007
49.82 ± 0.04 3.0 39.3 4.194 ± 0.061 36.5 4.169

50.34 2.0 31.3 2.101
50.40 ± 0.04 3.0 39.3 7.399 ± 0.157 46.8 7.396
51.69 ± 0.04 3.0 39.3 0.096 ± 0.005 40.0 0.112
52.21 ± 0.04 2.0 39.3 0.399 ± 0.006 40.0 0.401
52.65 ± 0.04 2.0 39.3 0.886 ± 0.010 40.0 0.880
53.05 ± 0.04 3.0 39.3 0.061 ± 0.005 40.0 0.058
53.89 ± 0.04 2.0 39.3 0.491 ± 0.006 40.0 0.490
54.27 ± 0.04 2.0 39.3 0.167 ± 0.005 40.0 0.157
55.04 ± 0.04 3.0 39.3 0.261 ± 0.004 40.0 0.259
56.02 ± 0.04 2.0 39.3 1.351 ± 0.035 40.0 1.213
56.16 ± 0.05 3.0 39.3 0.613 ± 0.020 40.0 0.718
56.57 ± 0.05 2.0 39.3 0.036 ± 0.007 40.0 0.036

56.86 3.0 40.0 0.013
57.40 2.0 56.0 0.006

58.40 ± 0.04 3.0 39.3 0.397 ± 0.010 40.0 0.372
58.63 ± 0.05 3.0 39.3 0.218 ± 0.007 40.0 0.245
59.51 ± 0.04 2.0 39.3 2.339 ± 0.021 40.0 2.337
60.06 ± 0.04 3.0 39.3 2.325 ± 0.030 40.0 2.274
60.96 ± 0.04 3.0 39.3 1.595 ± 0.018 40.0 1.562

61.37 3.0 40.0 0.015
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TABLE III. (Continued.)

Eλ (eV) J This work (meV) JEFF-3.1 (meV)

�λ,γ �λ,n �λ,γ �λ,n

61.62 3.0 40.2 0.122
61.65 ± 0.04 3.0 39.3 0.451 ± 0.005 40.0 0.452
62.39 ± 0.05 2.0 39.3 0.421 ± 0.035 40.0 0.382
62.50 ± 0.05 3.0 39.3 1.403 ± 0.027 40.0 1.415
62.92 ± 0.05 3.0 39.3 1.529 ± 0.019 40.0 1.485
63.45 ± 0.05 2.0 39.3 0.083 ± 0.005 40.0 0.083
63.95 ± 0.05 3.0 39.3 0.230 ± 0.004 40.0 0.247
64.97 ± 0.05 3.0 39.3 0.867 ± 0.009 40.0 0.855
65.71 ± 0.05 3.0 39.3 4.003 ± 0.069 47.4 3.787

66.36 2.0 40.0 0.028
66.80 2.0 40.8 0.017

67.48 ± 0.05 3.0 39.3 5.070 ± 0.077 42.8 4.866
67.98 ± 0.05 2.0 39.3 2.932 ± 0.034 40.0 2.824
68.78 ± 0.06 3.0 39.3 0.326 ± 0.015 40.0 0.308

69.28 2.0 40.0 0.013
70.26 ± 0.05 3.0 39.3 1.683 ± 0.023 40.0 1.663
70.68 ± 0.06 2.0 39.3 0.598 ± 0.060 40.0 0.624
71.22 ± 0.06 3.0 39.3 2.008 ± 0.200 40.0 1.824
71.48 ± 0.06 2.0 39.3 3.063 ± 0.224 40.0 2.407

71.55 3.0 40.0 0.584
72.30 2.0 40.8 0.005
72.97 2.0 40.0 0.010

73.87 ± 0.06 3.0 39.3 0.278 ± 0.016 40.0 0.276
74.29 ± 0.06 2.0 39.3 1.770 ± 0.044 40.0 1.694
74.59 ± 0.06 3.0 39.3 0.462 ± 0.051 40.0 0.455
75.14 ± 0.06 2.0 39.3 0.170 ± 0.020 40.0 0.146

75.65 3.0 40.0 0.010
76.22 ± 0.06 3.0 39.3 0.029 ± 0.010 40.0 0.029
76.59 ± 0.06 2.0 39.3 0.206 ± 0.017 40.0 0.175
77.00 ± 0.06 3.0 39.3 0.305 ± 0.008 40.0 0.281
77.57 ± 0.06 2.0 39.3 0.033 ± 0.019 40.0 0.033

77.83 3.0 40.8 0.017
78.33 ± 0.06 3.0 39.3 1.383 ± 0.135 40.0 1.470
78.44 ± 0.06 2.0 39.3 0.896 ± 0.200 40.0 0.693
79.28 ± 0.06 2.0 39.3 3.041 ± 0.041 40.0 2.933

79.90 3.0 40.8 0.010
80.39 ± 0.06 2.0 39.3 0.237 ± 0.030 40.0 0.214
80.65 ± 0.06 3.0 39.3 0.460 ± 0.018 40.0 0.428
81.63 ± 0.07 2.0 39.3 0.504 ± 0.015 40.0 0.478
82.13 ± 0.07 3.0 39.3 0.740 ± 0.014 40.0 0.688

82.40 2.0 40.0 0.063
83.43 ± 0.07 2.0 39.3 3.894 ± 0.200 40.0 3.271
83.74 ± 0.06 2.0 39.3 6.526 ± 0.207 40.0 3.152

83.82 2.0 40.0 2.507
85.22 ± 0.07 3.0 39.3 0.935 ± 0.020 40.0 0.933
86.09 ± 0.07 2.0 39.3 0.994 ± 0.060 40.0 1.022
86.53 ± 0.06 3.0 39.3 4.810 ± 0.064 40.0 4.789
87.60 ± 0.06 2.0 39.3 1.950 ± 0.199 40.0 1.626
87.77 ± 0.07 3.0 39.3 1.639 ± 0.150 40.0 1.835
88.18 ± 0.07 3.0 39.3 0.899 ± 0.043 40.0 0.922
88.96 ± 0.07 3.0 39.3 1.561 ± 0.029 40.0 1.602
89.47 ± 0.07 3.0 39.3 3.393 ± 0.058 40.0 3.568

89.94 2.0 40.8 0.068
90.88 ± 0.07 3.0 39.3 4.357 ± 0.064 40.0 4.291

91.01 2.0 40.8 0.362

TABLE III. (Continued.)

Eλ (eV) J This work (meV) JEFF-3.1 (meV)

�λ,γ �λ,n �λ,γ �λ,n

91.37 ± 0.07 2.0 39.3 0.176 ± 0.036 40.0 0.187
91.99 ± 0.07 3.0 39.3 0.493 ± 0.009 40.0 0.482
92.78 ± 0.07 3.0 39.3 0.178 ± 0.007 40.0 0.160
93.41 ± 0.07 2.0 39.3 2.228 ± 0.031 40.0 2.180
94.25 ± 0.08 3.0 39.3 0.332 ± 0.011 40.0 0.309
94.52 ± 0.08 2.0 39.3 0.100 ± 0.016 40.0 0.098
94.98 ± 0.08 3.0 39.3 0.066 ± 0.006 40.0 0.072
95.43 ± 0.08 2.0 39.3 0.444 ± 0.015 40.0 0.424
96.18 ± 0.08 3.0 39.3 0.071 ± 0.011 40.0 0.076
96.64 ± 0.08 2.0 39.3 0.528 ± 0.016 40.0 0.467

97.39 2.0 40.8 0.018
97.77 ± 0.07 2.0 39.3 4.080 ± 0.054 40.0 3.967
98.51 ± 0.08 2.0 39.3 2.740 ± 0.037 40.0 2.596
99.12 ± 0.08 3.0 39.3 0.080 ± 0.010 40.0 0.098
99.54 ± 0.08 3.0 39.3 1.578 ± 0.040 40.0 1.593

100.23 ± 0.08 3.0 39.3 4.496 ± 0.072 40.0 4.327
101.08 ± 0.08 2.0 39.3 6.437 ± 0.098 40.0 6.218
101.68 ± 0.08 2.0 39.3 1.632 ± 0.128 40.0 1.681
102.02 ± 0.08 2.0 39.3 2.134 ± 0.141 40.0 2.087

and its uncertainty become

〈�γ 〉 = 39.3 ± 1.0 meV.

Table V compares the average radiation width obtained in
this work with those reported in the literature. Although our
work suggests a slight decrease in 〈�γ 〉, agreement between
the different values remains within the limit of the given
uncertainties.

III. STATISTICAL ANALYSIS OF RESONANCE
PARAMETERS

The s-wave mean level spacing D0 and neutron strength
function S0 can be determined from the distribution of the
reduced neutron widths. For an s-wave resonance, the reduced
neutron width is defined as the ratio of the neutron width to
the square root of the resonance energy:

�0
λ,n = �λ,n√

Eλ

. (5)

TABLE IV. Experimental uncertainties introduced in
the resonance shape analysis.

Parameter Uncertainty

Normalization capture yield 2.8%
Effective temperature 10 K
Transmission background 0.005–0.01
Transmission flight length 2.0 cm
Initial delay 5.0 ns
Sample composition 0.5%–0.8%
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FIG. 2. Comparison of neutron width values obtained in this work and those recommended in the European library JEFF-3.1 below 100 eV.
Top: ratio of the neutron widths as a function of the neutron energy. Bottom: distribution of this ratio.

The distribution of this parameter is a chi-square function
with 1 degree of freedom [26]:

P (x)dx = e−(x/2)

√
2πx

dx, (6)

with

x = �0
λ,n〈

�0
λ,n

〉 , (7)

where 〈�0
λ,n〉 stands for the average value of the s-wave reduced

neutron width. The relationship among 〈�0
λ,n〉, D0, and S0 can

be written as follows: 〈
�0

λ,n

〉 = S0D0, (8)

with

D0 = Emax − Emin

N − 1
, (9)

where N stands for the number of s-wave resonances between
Emin and Emax. This number of resonances can be suggested
from the cumulative distribution function of P (x) [Eq. (6)]:

N (x0) = N

∫ ∞

x0

P (x)dx = N

(
1 − erf

√
x0

2

)
, (10)

TABLE V. 237Np average radiation width obtained in this work
and reported in the literature.

Author(s) Ref. no. Value (meV)

Paya [22] 40.0 ± 1.2
Mewissen et al. [23] 41.2 ± 2.9
Weston and Todd [12] ∼40
Gressier [1] 40.0 ± 2.0
Noguere et al. [17] 39.5 ± 0.7
Mughaghab [24] 40.7 ± 0.5
RIPL-2 [25] 40.8 ± 1.2
This work 39.3 ± 1.0

By using expressions (8) and (9), Eq. (10) becomes

N (X0) =
(

Emax − Emin

D0
+ 1

) (
1 − erf

√
X0

2S0D0

)
, (11)

with

X0 = x0S0D0. (12)

This distribution gives the number of resonances λ having
a reduced neutron width �0

λ,n higher than a threshold value
X0. This statistical approach is called the ESTIMA method.
Detailed explanations are given elsewhere [3].

For the nuclear systems n+ 237Np, the only s-wave states
of the compound nucleus allowed in the resonance range are
those with total angular momenta J = 2 and J = 3. The
corresponding statistical spin factors are gJ=2 = 5/12 and
gJ=3 = 7/12. A satisfactory agreement between the theo-
retical curve [Eq. (11)] and the experimental distribution of
the J -dependent reduced neutron widths was observed below
Emax = 90 eV. Results provided by the ESTIMA method are
shown in Fig. 3. The s-wave neutron strength function and
mean level spacing can be deduced from the J -dependent
values by using the following relationships:

S0 =
3∑

J=2

gJ S0,J , (13)

D0 =
(

3∑
J=2

1

D0,J

)−1

. (14)

The combination of the J -dependent results provides

104S0 = 1.02 ± 0.14,

D0 = 0.60 ± 0.03 eV.

The quoted uncertainties take into account the uncertainties
of the resonance parameters (Table III) and of the statistical
analysis.

Figure 4 compares the final s-wave results with the
“staircase” plots of the reduced neutron widths and of the
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FIG. 3. Cumulative distribution functions of the reduced neutron
widths determined in this work (solid lines) and calculated with
Eq. (10) (dashed lines). The energy range for the statistical analysis
is [Emin = 0.49 eV; Emax = 90 eV].

cumulated number of resonances. The discrepancies observed
on the cumulated number of resonances confirm the increasing
number of missing small resonances above 100 eV.

Table VI compares the average parameters obtained in this
work with those reported in the literature. Our 104S0 and D0

results are consistent with the expected values close to unity
and 0.6 eV, respectively.

IV. l-DEPENDENT MEAN LEVEL SPACING

For the nuclear system n+ 237Np, the l-dependent mean
level spacing Dl can be calculated as follows, assuming equal
probability for both parities:

1

D0
= 1

2

3∑
J=2

ρJ (Bn), (15)

TABLE VI. 237Np neutron strength function S0 and mean level
spacing D0 reported in the literature and obtained in this work.

Author(s) Ref. no. Emax 104S0 D0

(eV) (eV)

Slaughter et al. [27] 30 0.96 ± 0.13 1.15 ± 0.12
Mewissen et al. [23] 100 1.02 ± 0.14 0.74 ± 0.06
Weston and Todd [12] 100 1.02 ± 0.06 0.45 ± 0.10
Gressier [1] 90 1.00 ± 0.07 0.58 ± 0.03
Mughaghab [24] 1.02 ± 0.06 0.52 ± 0.04
RIPL-2 [25] 0.97 ± 0.07 0.57 ± 0.03
This work 90 1.02 ± 0.14 0.60 ± 0.03

1

D1
= 1

2

4∑
J=1

ρJ (Bn), (16)

1

D2
= 1

2

5∑
J=0

ρJ (Bn). (17)

In this work, the J -dependent level density ρJ (E) was
calculated using the formula established by Gilbert and
Cameron [28]:

ρJ (E) = ρ(E)
2J + 1

4σ 2(E)
exp

(
− (J + 1/2)2

2σ 2(E)

)
. (18)

The parametrization of ρ(E) is given by the constant-
temperature approximation (E < Em) and the Fermi-gas
model (E > Em),

ρ(E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

T
exp

(
E − E0

T

)
, E < Em,

exp(2
√

a(E − �))

12
√

2a1/4(E − �)5/4σ (E)
, E > Em,

(19)

where σ (E) stands for the spin cut-off parameter:

σ 2(E) = 0.0888A2/3
√

a(E − �). (20)

The pairing energy � = 0 because the nuclear system
n+ 237Np is characterized by odd values of N and Z.
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FIG. 4. Comparison of the results provided by the ESTIMA method (dashed line) and “staircase” plots of the s-wave reduced neutron
widths (left) and of the cumulative number of s-wave resonances (right).
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FIG. 5. Cumulated number of levels taken from RIPL [25] for
the nuclear system n + 237Np. The solid (lower) curve was calculated
with Eq. (21).

The level density parameter a is calculated from the s-wave
mean level spacing D0 = 0.60 ± 0.03 eV. By introducing the
Fermi-gas model in Eq. (15), we obtain

a = 27.90 ± 0.12 MeV−1.

The corresponding mean level spacings for l = 1 and l = 2
[Eqs. (16) and (17)] are

D1 = 0.309 ± 0.015 eV,

D2 = 0.218 ± 0.011 eV.

The nuclear temperature T was determined by fitting the
cumulative numbers of low-lying nuclear levels N (Ex) with
the following expressions [29,30]:

N (Ex) = N (Ed ) + e−E0/T (eEx/T − e−Ed/T ), (21)

E0 = Em − T ln

(
T exp(2

√
a(Em − �))

12
√

2a1/4(Em − �)5/4σ (Em)

)
, (22)

Em = T

2
(aT − 3 +

√
aT (aT − 6)) + �. (23)

The value of the nuclear temperature depends on the upper
energy level Ed , where the “continuum” is supposed to start.
The solid (lower) curve in Fig. 5 was obtained for Ed = 0.4±

TABLE VII. Parameters involved in the
constant-temperature model for the nuclear system
n + 237Np.

Parameter Value in this work

T 0.41 ± 0.01 MeV
Em 3.33 ± 0.15 MeV
E0 −1.36 ± 0.09 MeV

0.1 MeV. Results for T , Em, and E0 are reported in Table VII.
The given uncertainties are dominated by the choice of Ed .

V. l-DEPENDENT NEUTRON STRENGTH FUNCTION

The l-dependent neutron average parameters of interest in
this work are the neutron strength function Sl and the distant
level parameter R∞

l . Within the frame of the average R-matrix
theory proposed by Frohner [5], the neutron total cross section
is given by

σt (E) = 2π

k2

∑
l

(1 − Re[Ul(E)]), (24)

in which Ul represents the collision matrix elements,

Ul(E) = e−2iϕl (E) 1 + iPl(E)R∞
l − slPl(E)π

1 − iPl(E)R∞
l + slPl(E)π

, (25)

where Pl and ϕl are, respectively, the penetration factor of
the centrifugal barrier and the phase shift of the incident
wave scattered by a sphere. The parameter sl stands for the
pole strength function, which is closely related to the strength
function Sl :

sl = Sl

√
E

2kac

. (26)

Above a few tens of kilo–electron volts, the increasing contri-
bution of the higher-order partial waves makes it impossible
to separate the cross sections into l-dependent parameters.
This problem was recently solved with the generalized SPRT
method [31]. The latter method establishes simple relation-
ships between the optical model and the average R-matrix
parameters. According to this method, the energy dependence
of the distant level parameter and pole strength function is
given by

R∞
l (E) = 2al(E) cos[2ϕl(E)] + (1 − 2bl(E)) sin[2ϕl(E)]

Pl(E)
(
1 + 2c2

l (E) − 2bl(E) + (1 − 2bl(E)) cos[2ϕl(E)] − 2al(E) sin[2ϕl(E)]
) , (27)

sl(E) = 2(bl(E) − c2
l (E))

πPl(E)
(
1 + 2c2

l (E) − 2bl(E) + (1 − 2bl(E)) cos[2ϕl(E)]
) − 2al sin[2ϕl(E)]

, (28)

with

a2
l (E) = c2

l (E) − b2
l (E), (29)

bl(E) = 1

2l + 1

l+1/2∑
j=l−1/2

j+5/2∑
J=|j−5/2|

gJ Im
[
CJ

lj (E)
]
, (30)
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TABLE VIII. Optical model parameters, uncertainties, and correlation matrix obtained in this work.

Parameter Relative Correlation matrix
uncertainty

r0 (fm) 1.23 ± 0.02 1.6% 100
a (fm) 0.63 ± 0.03 5.3% −8 100
VHF (MeV) −82.7 ± 4.4 5.3% 98 −8 100
Av (MeV) −15.2 ± 0.5 3.3% 9 −17 5 100
As (MeV) −12.7 ± 0.9 7.1% 9 −6 5 4 100
β2 0.207 ± 0.010 4.8% −37 11 −35 −16 −5 100
β4 0.102 ± 0.004 3.9% −37 −8 −32 9 1 −34 100

c2
l (E) = 1

2l + 1

l+1/2∑
j=l−1/2

j+5/2∑
J=|j−5/2|

gJ

∣∣CJ
lj (E)

∣∣2
. (31)

In the present work, the optical model code ECIS [7] was
used to calculate the collision matrix elements CJ

lj involved
in Eqs. (29) to (31). As suggested by the work on neptunium
reported in Ref. [32], optical model parameters established by
Morillon et al. [33,34] are suitable to reproduce the direct
contribution in n+ 237Np reactions up to several tens of
mega–electron volts (see Appendix).

Consistent l-dependent average parameters can be deduced
from the reduced neutron width values �0

λ,n and the potential
scattering R′ by introducing Eq. (28) into Eq. (11) and Eq. (27)
into Eq. (3). This statistical approach was successfully used
to analyze the 242Pu neutron cross sections [35] and the
unresolved resonance range of the hafnium isotopes [36].

Realistic uncertainties in the average resonance and optical
model parameters were determined by using a Monte Carlo
technique specifically designed to derive model parameter
uncertainties without changing the value of the param-
eters [37]. Optical model parameters of interest for the
uncertainty propagation analysis are the reduced radius r0,
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ρ=0.978

FIG. 6. Correlation between the Hartree-Fock contribution VHF

and the reduced radius r0. Open circles represent the uniform
distribution of the prior values. Filled circles represent the posterior
values obtained for 104S0 = 1.02 ± 0.14 and R′ = 9.8 ± 0.1 fm.

the diffuseness a, the depths (VHF, Av , and As), and the
deformation parameters (β2 and β4). A collection of ECIS

results (total cross section, neutron transmission coefficient,
collision matrix element, neutron strength function, distant
level parameter, etc.) was generated by randomly varying these
optical model parameters according to uniform distributions.
Posterior values were selected according to the potential
scattering length (R′ = 9.8 ± 0.1 fm) and neutron strength
function (104S0 = 1.02 ± 0.14) obtained in Secs. II and III.
Final results, reported in Table VIII, were deduced from the
first two moments of the posterior distributions. Figure 6
illustrates the strong correlation (∼0.98) obtained between the
reduced radius r0 and the depth VHF.

The distributions of the l-dependent average parameters
[Eqs. (27) and (28)] are shown in Fig. 7. Table IX reports results
for the s-, p-, and d-wave parameters. The s-wave distant level
parameter R∞

0 = −0.18 ± 0.03 gives a potential scattering
length R′ = 9.9 ± 0.25 fm [see Eq. (3)]. The latter uncertainty
is twice as large as the uncertainty determined in the resonance
range. By contrast, the final S0 value of 1.01 ± 0.13 is in
excellent agreement with the expected value of 1.02 ± 0.14
reported in Sec. III. Average parameters obtained in this work
are summarized in Table X and compared with values compiled
in the Atlas of Neutron Resonances [24] and RIPL-2 [25].

VI. NEUTRON CROSS SECTIONS

The parametrization established in this work (see
Tables VIII and IX) was verified with experimental data
retrieved from the EXFOR database [9]. For the total cross
section, time-of-flight data measured by Gressier [1], Aucham-
paugh et al. [38], and Paya [22] were averaged over a

TABLE IX. Average R-matrix parameters, uncertainties, and
correlation matrix obtained in this work.

Parameter Relative Correlation matrix
uncertainty

104S0 1.01 ± 0.13 12.9% 100
104S1 1.81 ± 0.37 20.4% 19 100
104S2 1.57 ± 0.23 14.6% 92 24 100
R∞

0 −0.18 ± 0.03 16.7% −19 60 −38 100
R∞

1 0.18 ± 0.02 11.1% −11 65 −15 85 100
R∞

2 −0.10 ± 0.03 30.0% −4 61 −25 98 86 100
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FIG. 7. Posterior distributions of the neutron strength function Sl (left-hand plots) and distant level parameters R∞
l (right-hand plots) for

l = 0, 1, 2.
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TABLE X. Comparison of l-dependent neutron strength functions
obtained in this work (ESTIMA and SPRT methods) and reported in
the literature.

ESTIMA SPRT Mughaghab [24] RIPL2 [25]

104S0 1.02 ± 0.14 1.01 ± 0.13 1.02 ± 0.06 0.97 ± 0.07
104S1 1.81 ± 0.37 2.0 ± 0.2
104S2 1.57 ± 0.23

suitable energy mesh and corrected for finite-sample-thickness
effects. The SESH and CALENDF codes [39,40] were used
to calculate this sample thickness correction by generating
resonances with Monte Carlo techniques. The SESH code uses
the single-level Breit-Wigner formalism to calculate neutron
cross sections, while the CALENDF code uses the multilevel
Breit-Wigner formalism. The latter is able to account for level-
level interferences. This technique is routinely used within
the neutron spectroscopy community [41,42] to calculate
average total cross sections 〈σt (E)〉 from average transmission
data 〈T (E)〉 by combining the sample thickness correction
CT (E) and the sample thickness n (atoms per barn) as
follows:

〈σt (E)〉 = −1

n
ln

〈T (E)〉
CT (E)

. (32)

Correction factors CT (E) obtained for the Paya and Aucham-
paugh et al. data are compared in Fig. 8. A good agreement
is obtained between the SESH and the CALENDF codes.
The discrepancies remain lower than 5%. They become
negligible above 2 keV. Similar calculations were per-
formed for the transmission data measured at the GELINA
facility.

The top plot in Fig. 9 compares the experimental data with
the total cross section provided by the optical model code
ECIS [7]. Calculations performed with and without correla-
tions between the optical model parameters demonstrate the
significant impact of our retroactive analysis up to 100 keV.
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FIG. 8. Sample thickness corrections calculated with the SESH

and CALENDF codes for transmission data measured by Paya [22] and
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FIG. 9. (Color online) 237Np cross sections (solid line) and
uncertainties (shaded area) calculated by ECIS and TALYS. Dashed
lines represent the uncertainties calculated without correlations
between the model parameters. Experimental data were retrieved
from the EXFOR database [9].

The good agreement observed between the data measured by
Auchampaugh et al. and those measured by Gressier confirms
the correct parametrization of the direct interaction used in this
work.

The bottom plot in Fig. 9 shows the 237Np capture cross
section calculated with the statistical model code TALYS

[8]. The correlations among the optical model parame-
ters (Table VIII), the uncertainty of 1.0 meV quoted for
the average radiation width (Table V), and the 5% relative
uncertainty obtained in the mean level spacing (Table VI)
were propagated through the TALYS calculations via direct
Monte Carlo techniques [18]. The good agreement obtained
with the capture cross section measured at the ORELA facility
[12] confirms the magnitude of the 237Np γ -ray strength
function 104Sγ = 655 ± 37 provided by the statistical analysis
of the resolved resonance parameters.

The 237Np total and capture cross sections obtained in
this work are given in Table XI. Results provided by the
ECIS and TALYS codes are compared with those calculated
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TABLE XI. 237Np total and capture cross sections (barns) calcu-
lated with the ECIS, TALYS, and CONRAD codes below 200 keV.

Energy Total cross section Capture cross section

(keV)
CONRAD ECIS CONRAD TALYS

0.5 31.11 31.23 ± 2.64 16.11 15.90 ± 1.76
0.6 29.47 29.58 ± 2.43 14.54 14.35 ± 1.57
0.8 27.15 27.28 ± 2.13 12.35 12.19 ± 1.30
1.0 25.57 25.71 ± 1.93 10.88 10.74 ± 1.12
2.0 21.67 21.82 ± 1.43 7.33 7.25 ± 0.71
3.0 19.94 20.09 ± 1.22 5.85 5.78 ± 0.54
4.0 18.92 19.07 ± 1.09 5.00 4.94 ± 0.45
5.0 18.21 18.37 ± 1.00 4.44 4.39 ± 0.39
6.0 17.70 17.85 ± 0.93 4.06 4.00 ± 0.35
7.0 17.30 17.45 ± 0.88 3.76 3.71 ± 0.32
8.0 16.97 17.12 ± 0.84 3.53 3.49 ± 0.30
9.0 16.70 16.85 ± 0.80 3.34 3.30 ± 0.28

10.0 16.47 16.62 ± 0.77 3.19 3.15 ± 0.27
20.0 15.19 15.32 ± 0.60 2.45 2.42 ± 0.22
30.0 14.57 14.68 ± 0.52 2.16 2.13 ± 0.20
40.0 14.16 14.24 ± 0.47 1.93 1.91 ± 0.18
50.0 13.83 13.90 ± 0.44 1.79 1.77 ± 0.17
60.0 13.56 13.61 ± 0.41 1.65 1.67 ± 0.15
70.0 13.33 13.35 ± 0.39 1.51 1.52 ± 0.14
80.0 13.11 13.12 ± 0.38 1.41 1.42 ± 0.13
90.0 12.91 12.90 ± 0.37 1.32 1.34 ± 0.12

100.0 12.72 12.70 ± 0.36 1.25 1.27 ± 0.12
200.0 11.20 11.10 ± 0.34 0.79 0.83 ± 0.08

with the CONRAD code [6]. The latter uses the average
R-matrix theory [Eqs. (24) and (25)] to calculate the total
cross section with the average parameters reported in Table IX.
The same code calculates the compound nucleus reactions
(capture, elastic, inelastic, and fission reactions) via the
Hauser-Feshbach formula with width fluctuation corrections
based on the Moldauer’s prescriptions. The good agreement
between ECIS/CONRAD and TALYS/CONRAD demonstrates the
correct description of the cross sections with the l-dependent
average parameters established in this work.

VII. CONCLUSIONS

Results presented in this work demonstrate the performance
of the combined analysis of the resolved and unresolved
resonance ranges to predict the behavior of the neutron-
induced capture reaction up to several tens of kilo–electron
volts. The good agreement between the theoretical and the
experimental values is confirmed by the uncertainties obtained
with Monte Carlo techniques.

The analysis of several time-of-flight data provided a poten-
tial scattering length R′ = 9.8 ± 0.1 fm, an average radiation
width 〈�γ 〉 = 39.3 ± 1.0 meV, an s-wave mean level spacing
D0 = 0.60 ± 0.03 eV, and an s-wave neutron strength function
104S0 = 1.02 ± 0.14. For higher-order partial waves (l > 0),
the statistical analysis of the resonances with the generalized
SPRT method led to p- and d-wave neutron strength functions
equal to 104S1 = 1.81 ± 0.37 and 104S2 = 1.57 ± 0.23. By

introducing these l-dependent average parameters in the
average R-matrix code CONRAD, we obtained total and capture
cross sections in excellent agreement with the ECIS and TALYS

calculations.
Investigations of the complex nuclear mechanisms involved

above the mega–electron volt energy range are in progress.
Works performed by A. Tudora at the Faculty of Physics of
the University of Bucharest will be used to describe the fission
process.
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APPENDIX: OPTICAL MODEL POTENTIAL FOR
ECIS CALCULATIONS

This Appendix presents the optical model parametrization
used to calculate the collision matrix elements CJ

lj involved in
Eqs. (29) to (31). The dispersive optical potential proposed by
Morillon et al. [33,34] can be written as

V (r, E) = [(Vv(E) + �Vv(E)) + iWv(E)]f (r, r0, a)

− 4a[�Vs(E) + iWs(E)]
df (r, r0, a)

dr

− [(Vso(E) + �Vso(E)) + iWso(E)]

(
h

mπc

)2

× 1

r

df (r, r0, a)

dr

−→
l .−→s , (A1)

where the Woods-Saxon form factors f (r, r0, a) for the
volume (v), surface (s), and spin-orbit (so) potentials share
the same geometrical parameters (reduced radius r0, diffuse-
ness a).

TABLE XII. Optical model parameters estab-
lished by Morillon et al.Values of parameters are
reported in Refs [33] and [34].

Parameter Value

r0 1.231 fm
a 0.633 fm
VHF −82.8 MeV
β 1.114 fm
γ 0.093 fm
Av −15.24 MeV
Bv 90.44 MeV
As −12.73 MeV
Bs 13.0 MeV
Cs 0.025 MeV
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In the dispersion relation treatment, �Vi(E) is used to
connect the real Vi(E) and imaginary Wi(E) terms of each
component (i = v, s, so). For the spin-orbit contributions,
Vso(E) and Wso(E) were taken from Ref. [43]. For the real
part of the surface potential the Hartree-Fock contribution of
the mean field is given by

Vv(E) = VHFe

(
− µβ2[E−EF ]

2h−2

)
e

(
4µ2γ 2[E−EF ]2

h−4

)
. (A2)

This contribution is defined by the depth VHF, the re-
duced mass of the system µ, and the nonlocality ranges β

and γ . For the volume and surface imaginary terms, the
energy dependences are symmetric about the Fermi energy

EF :

Wv(E) = Av(E − EF )2

(E − EF )2 + B2
v

, (A3)

Ws(E) = As(E − EF )2

(E − EF )2 + B2
s

exp (−Cs(E − EF )) . (A4)

Optical model parameters established by Morillon et al.
[33,34] are given in Table XII. Parameters of interest in this
work are the reduced radius r0, the diffuseness a, and the
depths VHF, Av , and As . For coupled-channel calculations,
deformation parameters β2 and β4 were retrieved from the
Moller and Nix database [44]:

β2 = 0.215 and β4 = 0.102.
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Abstract

The neutron transmission of natural hafnium samples have been measured within the 2 eV to 50 keV
energy range at the white neutron source GELINA of the Institute for Reference Materials and Measure-
ments (IRMM) in Geel, Belgium. Data sets for two temperatures (77 K and 300 K) and three sample
thicknesses (1 mm, 2 mm, 15 mm) have been simultaneously analyzed in terms of Reich–Moore param-
eters. The ESTIMA technique in association with the generalized SPRT method were used to obtain a
consistent set of l-dependent average resonance parameters. For each hafnium isotope, scattering radius R′,
neutron strength function Sl , distant level parameter R∞

l
, mean level spacing Dl and average radiation

width 〈Γγ 〉 are given and compared with results reported in the literature. The capture and total cross sec-
tions calculated by the CONRAD code using this set of average parameters were successfully compared to
experimental data retrieved from EXFOR.
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1. Introduction

Hafnium is a ductile metal which does not exist as a free element in nature. The hafnium iso-
topes 174Hf, 176Hf, 177Hf, 178Hf, 179Hf and 180Hf are found combined in zirconium compounds
with a respective abundance of 0.16%, 5.26%, 18.60%, 27.28%, 13.62% and 35.08%. In the neu-
tron epi-thermal energy range, experimental works on natural and isotopic hafnium samples are
scarce in the literature. Available data are rather old and the given results are often incomplete.

The first resonance spectroscopy which has established resolved resonance parameters for the
hafnium isotopes over a wide energy range was reported by Fuketa et al. [1,2]. Single level pa-
rameters were extracted up to 1.2 keV from neutron transmission data of natural and isotopically
enriched samples measured at the 45 m-flight path of the Oak Ridge National Laboratory fast
chopper, and at the 25 m-flight path of the Linac facility of the Rensselaer Polytechnic Institute
(RPI). Recently, the public release of a classified Multi-Level analysis, performed by Moxon on
data measured at the Linac facility of the Harwell laboratory [3], provides one of the most reli-
able set of resonance parameters for 174Hf, 176Hf, 177Hf, 178Hf and 179Hf below 30 eV. In his
work, Moxon reports for the first time a strong 176,178Hf doublet near 8 eV. For 177Hf, resonance
parameters used in the Evaluated Neutron Data Files are mainly based on results obtained in the
mid 70s from high resolution neutron time-of-flight measurements performed at the Columbia
University Nevis synchrotron by Liou et al. [4], and at the GELINA facility of the Institute for
Reference Materials and Measurements (IRMM) by Rohr et al. [5]. The given resonance pa-
rameters are in good agreement within the energy range of overlap of both sets of data (below
300 eV). The last relevant transmission and capture measurements were performed at the RPI
facility up to 200 eV [6]. The analysis performed by Trbovich with the modern R-matrix code
SAMMY [7] provided a consistent set of parameters for a large number of 177,179Hf resonances.
Complementary studies over a larger energy range are required for improving the average nuclear
properties of the even/even Hf isotopes, characterized by a higher mean level spacing.

In this paper, an attempt was made to establish an unambiguous set of l-dependent average
parameters for the six Hf isotopes by using six transmission data measured at the Doppler sta-
tion of the GELINA facility at low (77 K) and room (300 K) temperatures. These measurements
were firstly performed to test Hf nuclear data by comparison of measured and calculated aver-
age transmission spectra [8]. Preliminary analysis [9,10] have demonstrated the possibilities to
extract resonance energies and partial widths up to 1 keV.

The strength and originality of the present work lie in the Reich–Moore interpretation of the
resolved resonance range with the shape analysis code REFIT [11] in association with optical
model calculations based on parameters established by Morillon et al. [12,13] with deformation
parameters initially proposed by Avrigeanu et al. [14,15]. Links between the collision matrix
elements calculated by the optical model code ECIS [16] and the average R-Matrix parameters
(neutron strength function Sl and distant level parameters R∞

l ) were established by using the
ESTIMA [17] and SPRT methods [18]. The consistency of the resulting mean level spacing Dl

and average radiation width 〈Γγ 〉 was tested by comparing experimental capture cross sections
retrieved from EXFOR [19] with statistical model calculations performed with the TALYS [20]
and CONRAD [21] codes.

2. Experimental techniques

The transmission experiments were performed at the Doppler station of the 150 MeV pulsed
neutron source GELINA of the IRMM. A scheme of the experimental areas is shown in Fig. 1.
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Fig. 1. Scheme of the Doppler station of the GELINA facility.

Table 1
Thicknesses of the three hafnium samples at different temperatures.

Sample 300 ± 1 K 77 ± 1 K
thickness (atom/barn) (atom/barn)

e = 1 mm 0.00475 ± 0.00005 0.00476 ± 0.00005
e = 2 mm 0.00938 ± 0.00006 0.00941 ± 0.00006
e = 15 mm 0.06645 ± 0.00009 0.06664 ± 0.00009

Neutrons are produced by using (γ ,xn) and (γ ,f) processes induced by electrons incident on a
rotating U-target. Fast neutrons are moderated by a 36 mm water slab in a 2 mm Be canning. The
accelerator conditions were 1 ns pulse-width at 800 Hz repetition rate. Neutrons produced by
the target-moderator assembly were crossing a filter setup and the Hf samples in the cryostatic
sample changer located at 10 m from the neutron source. They were detected at 26.443±0.005 m
with a 110 mm diameter and 10 mm thick Li-glass detector (NE912). The scintillator was viewed
by two 5′′ EMI 9823 photo-multiplier tubes which were placed orthogonal to the beam axis and
out of the neutron beam itself.

The natural hafnium samples were metal discs with diameter of 55 mm and thickness of 1 mm.
The hafnium content was given by the manufacturer to be 97%. The largest impurity was 2.8%
zirconium. The discs were combined to generate the three different sample thicknesses given
in Table 1. For the measurements at 77 K, the sample thickness was calculated using a linear
expansion coefficient of α = 6.0 × 10−6 K−1. The samples are moved “in” (sample-in) and
“out” (sample-out) of the neutron beam by an electro-mechanical sample changer. The sample
position is located after 600 mm borax-resin collimator with an aperture of 40 mm.

The low temperature measurements were performed using a cryostat based on a Gifford–
McMahoon cycle. Temperature stabilization was assured by monitoring the temperature with
two platinum temperature sensors and adjusting the current through a heating resistor close to
the sample position. This allows sample temperatures between 10 K and 350 K with an accuracy
and stability better than 1 K. In order to avoid differences in the transmission spectra due to
temperature differences between materials of the sample holder, both sample-in and sample-out
positions were cooled and stabilized.

To avoid slow neutron background from the previous accelerator cycle, an anti-overlap filter
was placed in the neutron beam in front of the sample changer. It was made from 0.0053 atoms/b
rhodium disc and a 0.032 atoms/b cadmium sheet. To reduce the influence of the γ -flash, coming
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from the neutron producing target, a 5 mm thick high purity lead filter was permanently placed
in the beam.

3. Data reduction

Transmission experiments measure the attenuation of the incident neutron flux going through
a sample. Measurements are routinely performed in cycles with a preset count rate for the sample-
in and sample-out positions. This resulted in a cycle length of about 10 minutes, which minimized
the effects of the inherent instabilities of the neutron flux. The transmission factor is then ob-
tained from the ratio of the sum of the sample-in Cin,i and sample-out Cout,i measurements, both
corrected for the dead time (ain and aout) and background contributions (Bin and Bout):

T (t) = N
ain(t)

∑
i Cin,i (t) − Bin(t)

aout(t)
∑

i Cout,i (t) − Bout(t)
(1)

in which i labels the cycle numbers and N stands for the normalization factor. The latter accounts
for the differences in integrated intensities of the incident neutron beam during the sample-in and
sample-out cycles. The normalization was obtained by monitoring the neutron flux using two BF3
proportional counters located in the concrete roof above the neutron source. These detectors give
an accurate normalization of the transmission spectra with a dispersion of about 0.5%.

The electronic dead time of the acquisition system was measured and recorded online. For
the present experiments, corrections were well below 3%. After summation of the correspond-
ing sample-in and sample-out cycles, the raw data were corrected for the timing offset and the
compressed time channels were transferred to a linear scale.

The time dependent background was determined with the black resonance technique. Black
resonances of Cd, Rh and Hf were adjusted in order to obtain the real transmission value for the
minima. In a second stage, the time dependence of the background was fitted on the reconstructed
values and subtracted from the raw data. Typical values for the background were 4.5% at 1 keV
and 1.1% at 5 eV. For practical purpose, the black resonance regions were smoothed in order to
avoid oscillations in the final TOF transmission spectra.

At this stage of the analysis, the contribution of the 2.8% impurity of zirconium in the hafnium
sample was corrected. The experimental transmission data were divided by the theoretical trans-
mission of the natural zirconium reconstructed by taken into account the sample temperature
and experimental resolution. Final transmission spectra are shown in Fig. 2 as a function of the
incident neutron energy.

4. Resonance shape analysis

The six transmission spectra measured at the GELINA facility were analyzed with the simul-
taneous fitting procedure of the REFIT code [11]. The transmission data were interpreted in term
of Reich–Moore parameters by using the following expression:

T (E) =
∞∫

0

R(E,E′)Tth(E
′)dE′ (2)

with

Tth(E) = exp

[
−

∑
i

niσi(E)

]
(3)
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Fig. 2. Transmission spectra measured at the GELINA facility at 300 K.

in which i labels the contribution of the six Hf isotopes, ni represents the atomic surface den-
sity in atom per barn, σi is the Doppler broadened total cross section and R accounts for the
experimental resolution of the Doppler station.

The determination of meaningful nuclear resonance parameters from neutron time-of-flight
data requires a correct description of the energy resolution of the facility as a function of neu-
tron energies. In the REFIT code, the variance and the skewness of the resolution function are
determined by two parameters λ1 and λ2. They represent the “effective” mean free path of the
neutron respectively in the water slab and in the vicinity of the target-moderator assembly. The
value of λ1 = 5.7 ± 0.7 mm was calculated from 56Fe capture data measured at the GELINA
facility [22]. This result was confirmed by Monte-Carlo simulations [23,24]. For the determi-
nation of λ2, we have used a technique proposed in Ref. [25], that consists to fit the bottom of
the nearly black resonances. The analysis of the transmission data of the 15-mm thick sample
leads to λ2 = 55.6 ± 2.1 mm. Example of resolution function given in distance is presented in
Fig. 3.
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Fig. 3. Experimental resolution function at 10 eV as a function of the flight distance calculated in this work and compared
with independent Monte-Carlo simulations [23,24].

Table 2
Debye temperature for mono-atomic hafnium crystal.

Author Year Ref. ΘD (K)

Wolcott 1955 [28] 261
Kneip 1963 [29] 252.3 ± 0.9

251.5 ± 1.2
Betterton 1968 [30] 252 ± 1
Gao 1999 [32] 250
Ostanina 2000 [31] 215
Feranchuka 2002 [33] 280

Average value 251.7
Standard deviation 19.3

a Calculated value.

The contribution of the Doppler effect was taken into account by using the Free Gas Model
with an effective temperature [26]. The effective temperature Teff corresponding to T = 300 ±
1 K was calculated using a simple Einstein model valid for pure element above room temperature:

Teff = TEcoth

(
TE

T

)
(4)

The first two term of the Taylor expansion of this expression suffice and give [27]:

Teff � T

[
1 + 1

3

(
TE

T

)2]
(5)

where TE stands for the Einstein temperature which is related to the Debye temperature
TE = 3

8θD . Table 2 reports experimental and calculated values of Debye temperature for hafnium
found in the literature. Although large discrepancies are observed, the average value remains con-
sistent with the value of 252 K reported in Ref. [34]. By introducing the average value of θD and
its standard deviation in Eq. (5), we obtain an effective temperature equal to Teff = 309.8±1.8 K.



112 G. Noguere et al. / Nuclear Physics A 831 (2009) 106–136

Fig. 4. Effective temperature determined with the REFIT code [11].

For the transmission spectra measured at 77 K, Teff was fitted on the data together with the res-
onance parameters. Results are shown in Fig. 4 as a function of the incident neutron energy. The
average value is Teff = 99.4 K and the standard deviation is close to 11.5 K.

Examples of transmission data are shown in Fig. 5 together with the least-square adjusted
theoretical curves. The strength of the present analysis lies in the successful use of transmission
data measured at low temperature. Their simultaneous analysis within the fitting algorithm of the
REFIT code allowed confirmation of the existence of broad multiplets of overlapping resonances
(Fig. 6).

The final resonance shape analysis accounts for the contribution of a large variety of nui-
sance parameters (effective temperature, parameters of the resolution function, flight path length,
atomic surface density). Realistic variance and covariance between the model parameters were
calculated by means of Monte-Carlo techniques relying on conditional probabilities. Detail ex-
planations can be found elsewhere [35,36]. The resonance energies and partial widths for the
even/even hafnium isotopes are given in Table 3. Those obtained below 200 eV for 177,179Hf are
listed in Tables 4 and 5. The complete set of hafnium parameters is reported in Ref. [37]. Our
results are compared with the parameters available in the latest version of the European library
JEFF-3.1.1 [38]. Below 200 eV, parameters of JEFF-3.1.1 were established by Trbovich et al. [6]
from the resonance shape analysis of data measured at the RPI facility. The agreement between
both sets of neutron widths is close to 5% in average. However, owing to the complex overlap-
ping resonant structures of the natural hafnium cross sections, huge local discrepancies greater
than 15% can be observed, especially for the less abundant 174Hf isotope.

The analysis of the 15 mm-thick sample allowed the simultaneous adjustment of the neutron
and radiation widths for several broad s-wave resonances mainly observed below 100 eV. For the
n+177Hf and n+179Hf nuclear systems, we were able to extract Γγ values for 28 and 13 reso-
nances respectively. Their independent behavior with the neutron energy is shown in Fig. 7. For
the even/even hafnium isotopes, the number of individual Γγ accessible by means of the shape
analysis method is more limited because of their larger mean level spacing and the increasing
competition with the experimental resolution. Two radiation width values were obtained for the
n+180Hf nuclear system, and three values for n+174Hf, n+176Hf and n+178Hf. The average
radiation widths 〈Γγ 〉 obtained in this work are compared in Table 6 with results compiled in
Refs. [39,40]. Agreement between the different values remains within the limit of the given un-
certainties, excepted in the case of the compound system n+179Hf.
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Fig. 5. Examples of theoretical curves adjusted with the REFIT code on the transmission data measured at the Doppler
station of the GELINA facility (T = 300 K).
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Fig. 6. Examples of multiplets of overlapping resonances around 72 eV and 103 eV. The label numbers denote the mass
number of the target nucleus.

Table 3
Resonance parameters for the even/even hafnium isotopes obtained below 1 keV.

Energy
(eV)

Jπ This work JEFF-3.1.1

Γγ (meV) Γn (meV) Γγ (meV) Γn (meV)

Nuclear system n+174Hf
4.06 ± 0.04 1/2+ 52.0 0.015 52.0 0.015
13.38 ± 0.02 1/2+ 54.4 ± 2.6 3.7 ± 0.1 65.0 5.7
29.98 ± 0.05 1/2+ 58.7 ± 3.5 31.6 ± 0.2 65.0 36.3
70.53 ± 0.11 1/2+ 59.2 10.2 ± 0.4 65.0 24.0
77.81 ± 0.12 1/2+ 71.6 ± 9.4 68.6 ± 1.2 51.0 83.0
106.97 ± 0.17 1/2+ 59.2 90.4 ± 1.3 65.0 117.0
124.6 1/2+ 65.0 680.0
147.69 ± 0.23 1/2+ 59.2 116.5 ± 5.0 102.0 358.0
153.42 ± 0.23 1/2+ 59.2 219.0 ± 17.0 65.0 219.0
211.56 ± 0.33 1/2+ 59.2 112.3 ± 5.2 60.0 180.0

Nuclear system n+176Hf
7.89 ± 0.01 1/2+ 61.8 10.1 61.8 10.1
48.24 ± 0.07 1/2+ 51.2 ± 4.3 108.5 ± 1.7 49.0 107.0
53.27 ± 0.08 1/2+ 50.7 ± 6.7 1.4 ± 0.1 55.0 1.7
67.23 ± 0.10 1/2+ 55.2 26.0 ± 0.6 55.0 26.0
124.05 ± 0.19 1/2+ 57.0 ± 2.7 45.9 ± 2.4 55.0 32.0
177.15 1/2+ 55.0 86.0
201.72 ± 0.32 1/2+ 55.2 33.4 ± 2.8 51.0 39.0
243.53 ± 0.38 1/2+ 55.2 18.5 ± 2.0 51.0 22.0
255.02 ± 0.39 1/2+ 55.2 95.0 51.0 95.0
286.79 ± 0.45 1/2+ 55.2 216.2 ± 4.6 51.0 285.0
304.62 ± 0.48 1/2+ 55.2 17.3 ± 0.4 51.0 21.0
347.21 ± 0.54 1/2+ 55.2 167.0 ± 4.1 51.0 173.0
435.66 ± 0.67 1/2+ 55.2 167.0 51.0 167.0
444.12 ± 0.72 1/2+ 55.2 122.7 ± 44.6 51.0 173.0
557.13 ± 0.86 1/2+ 55.2 335.0 51.0 335.0
626.13 ± 0.97 1/2+ 55.2 512.0 ± 154.1 51.0 640.0
659.37 ± 1.02 1/2+ 55.2 58.2 ± 3.5 51.0 270.0
873.03 ± 1.35 1/2+ 55.2 236.9 ± 15.5 51.0 280.0
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Table 3 (continued)

Energy
(eV)

Jπ This work JEFF-3.1.1

Γγ (meV) Γn (meV) Γγ (meV) Γn (meV)

928.15 ± 1.44 1/2+ 55.2 286.5 ± 17.6 51.0 145.0
958.87 ± 1.48 1/2+ 55.2 489.9 ± 10.2 51.0 300.0
994.04 ± 1.54 1/2+ 55.2 186.1 ± 10.7 51.0 270.0
1068.5 ± 1.65 1/2+ 55.2 449.5 ± 13.3 51.0 250.0

Nuclear system n+178Hf
7.79 ± 0.01 1/2+ 56.9 ± 0.6 49.7 ± 0.3 53.0 53.8
28.76 ± 0.05 1/2+ 54.6 �0.009
104.86 ± 0.16 1/2+ 54.8 ± 4.1 8.3 ± 0.2 53.0 7.2
164.73 ± 0.25 1/2+ 54.6 13.5 53.0 13.5
255.36 ± 0.39 1/2+ 54.6 239.9 ± 2.4 45.0 220.0
275.09 ± 0.43 1/2+ 52.3 ± 8.9 225.5 ± 3.0 52.0 230.0
351.78 ± 0.55 1/2+ 54.6 9.2 ± 0.3 51.0 160.0
382.56 ± 0.60 1/2+ 54.6 442.5 ± 10.5 59.0 425.0
445.81 ± 0.70 1/2+ 54.6 137.8 ± 3.4 51.0 160.0
502.02 ± 0.78 1/2+ 54.6 66.5 ± 2.5 51.0 850.0
526.27 ± 0.82 1/2+ 54.6 223.6 ± 7.1 44.0 130.0
577.56 ± 0.89 1/2+ 54.6 360.0 54.0 360.0
604.88 ± 0.95 1/2+ 54.6 60.1 ± 2.1 51.0 15.0
720.16 ± 1.13 1/2+ 54.6 1138.9± 13.2 51.0 1050.0
780.74 ± 1.22 1/2+ 54.6 795.2 ± 12.4 49.0 1300.0
869.69 ± 1.35 1/2+ 54.6 285.1 ± 9.1 46.0 190.0
893.90 ± 1.38 1/2+ 54.6 68.6 ± 2.9 50.0 8.0
1090.0 ± 1.70 1/2+ 54.6 661.8 ± 15.7 47.0 550.0
1155.4 ± 1.81 1/2+ 54.6 1972.3± 20.2 51.0 1160.0
1180.1 ± 1.85 1/2+ 54.6 891.5 ± 20.9 51.0 190.0

Nuclear system n+180Hf
72.43 ± 0.11 1/2+ 34.7 ± 2.3 65.5 ± 0.9 28.9 63.3
171.92 ± 0.27 1/2+ 51.9 ± 16.8 118.1 ± 4.7 52.0 115.0
447.24 ± 0.70 1/2+ 43.3 204.4 ± 9.9 46.0 210.0
474.99 ± 0.74 1/2+ 43.3 161.0 ± 6.1 41.0 130.0
584.40 ± 0.91 1/2+ 43.3 69.6 ± 6.6 46.0 78.0
788.49 ± 1.23 1/2+ 43.3 2020.5 ± 13.1 51.0 1900.0
919.99 ± 1.43 1/2+ 43.3 85.4 ± 3.8 42.0 65.0
1169.8 ± 1.83 1/2+ 43.3 431.9 ± 13.5 51.0 680.0

5. Statistical analysis of the Reich–Moore parameters

Inherent difficulties in assessing unambiguous average resonance parameters from neutron
spectroscopy measurements are not only the correct determination of the s-wave parameters but
also the generalization of the obtained results to higher order partial waves (l = 1,2,3, . . .).
These difficulties can be partially solved with a sequential (and iterative) analysis of the low and
high neutron energy ranges. The consistency of the final results depends mainly of the quality
of the experimental data available in the unresolved resonance range, and of the choice of the
optical model parameters established for the nuclei involved in the nuclear reactions of interest.

In the present work, we decided to focus our attention on the links between the average
resonance parameters of the hafnium isotopes (i.e. neutron strength function Sl , mean level spac-
ing Dl , distant level parameters R∞

l ) and the systematic behavior of the deformation parameters
needed for coupled channel calculations.
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Table 4
177Hf resonance parameters obtained below 200 eV.

Energy
(eV)

Jπ This work JEFF-3.1.1

Γγ (meV) Γn (meV) Γγ (meV) Γn (meV)

1.10 3.0− 65.2 2.2
2.39 ± 0.01 4.0− 60.7 8.0 60.7 8.0
5.90 ± 0.01 3.0− 64.0 ± 1.2 5.4 ± 0.1 62.0 5.3
6.58 ± 0.01 4.0− 54.5 ± 2.0 8.6 ± 0.2 55.6 8.2
8.88 ± 0.01 4.0− 60.7 ± 1.3 5.8 ± 0.1 57.3 5.9
10.96 ± 0.02 3.0− 62.2 ± 2.1 0.5 ± 0.1 57.0 0.5
11.74 ± 0.02 3.0− 58.9 ∼ 0.005
13.68 ± 0.02 4.0− 60.7 ± 2.4 0.6 ± 0.1 57.0 0.6
13.97 ± 0.02 3.0− 63.7 ± 1.0 3.0 ± 0.1 57.0 2.7
21.99 ± 0.03 4.0− 55.1 ± 2.0 1.8 ± 0.1 57.0 1.8
22.29 ± 0.03 3.0− 64.8 ± 3.2 0.8 ± 0.1 57.0 0.8
23.43 ± 0.04 4.0− 52.5 ± 1.4 1.2 ± 0.1 57.0 1.3
25.64 ± 0.04 3.0− 60.6 ± 3.6 0.5 ± 0.1 57.0 0.5
27.04 ± 0.04 3.0− 60.4 ± 4.6 3.0 ± 0.1 57.0 2.8
31.60 ± 0.05 3.0− 58.9 0.3 ± 0.1 57.0 0.4
32.84 ± 0.05 4.0− 58.5 ± 3.2 1.3 ± 0.1 57.0 1.3
36.10 ± 0.06 3.0− 49.9 ± 4.5 3.2 ± 0.1 57.0 3.5
36.97 ± 0.06 4.0− 58.6 ± 3.2 9.6 ± 0.1 57.0 8.9
43.07 ± 0.07 4.0− 65.2 ± 2.5 5.0 ± 0.1 57.0 5.1
45.16 ± 0.07 4.0− 57.6 ± 4.0 3.2 ± 0.1 57.0 3.4
46.26 ± 0.07 4.0− 58.9 7.0 57.0 7.0
48.84 ± 0.08 3.0− 63.1 ± 4.4 40.6 ± 0.6 57.0 36.0
49.61 ± 0.08 4.0− 53.8 ± 4.5 5.9 ± 0.1 57.0 5.9
54.79 ± 0.09 4.0− 50.4 ± 1.7 21.0 ± 0.4 57.0 20.6
56.38 ± 0.09 3.0− 62.6 ± 2.4 14.4 ± 0.2 57.0 14.2
57.06 ± 0.09 4.0− 62.0 ± 4.7 4.2 ± 0.1 57.0 4.2
59.31 ± 0.09 3.0− 70.4 ± 4.6 4.2 ± 0.1 57.0 4.2
62.22 ± 0.09 3.0− 58.9 1.4 ± 0.1 57.0 1.6
63.56 ± 0.10 4.0− 54.3 70.2 54.3 70.2
66.78 ± 0.10 3.0− 58.9 41.6 ± 4.2 119.0 41.6
70.06 ± 0.11 4.0− 58.9 0.4 ± 0.1 57.0 0.7
71.41 ± 0.11 4.0− 53.5 ± 4.6 13.8 ± 0.2 57.0 14.1
72.26 ± 0.11 3.0− 58.9 1.7 ± 0.3 72.0 2.2
75.71 ± 0.12 3.0− 58.9 2.8 ± 0.1 57.0 2.9
76.11 ± 0.12 4.0− 57.3 ± 7.0 15.6 ± 0.2 57.0 15.0
82.42 ± 0.13 4.0− 58.9 0.4 ± 0.1 57.0 0.6
84.78 ± 0.13 4.0− 58.9 23.5 57.0 23.5
85.26 ± 0.13 3.0− 58.9 0.4 57.0 0.4
86.84 ± 0.14 4.0− 58.9 1.0 ± 0.1 57.0 1.1
88.65 ± 0.14 3.0− 58.9 5.4 ± 0.1 57.0 4.6
93.25 ± 0.15 3.0− 58.9 5.1 ± 0.1 57.0 4.7
97.17 ± 0.15 4.0− 56.4 ± 4.0 19.7 ± 0.5 98.0 17.4
99.13 ± 0.15 4.0− 58.9 0.9 ± 0.1
103.19 ± 0.16 3.0− 58.9 59.1 ± 0.6 57.0 59.0
111.62 ± 0.17 3.0− 58.9 2.4 ± 0.1 57.0 2.3
112.01 ± 0.17 4.0− 58.9 3.9 ± 0.1 57.0 4.1
115.23 ± 0.18 4.0− 58.9 3.8 ± 0.1 57.0 4.1
121.34 ± 0.19 3.0− 58.9 4.4 ± 0.1 57.0 4.2
122.10 3.0− 57.0 2.5
122.18 3.0− 57.0 0.5
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Table 4 (continued)

Energy
(eV)

Jπ This work JEFF-3.1.1

Γγ (meV) Γn (meV) Γγ (meV) Γn (meV)

123.86 ± 0.19 3.0− 58.9 11.2 ± 1.4 57.0 8.0
126.38 ± 0.20 4.0− 58.9 0.8 57.0 0.8
131.77 ± 0.21 3.0− 56.7 ± 5.1 63.1 ± 1.5 67.0 59.0
134.22 ± 0.21 4.0− 58.9 3.7 ± 0.1 57.0 4.2
136.38 ± 0.21 3.0− 58.9 0.6 ± 0.1 57.0 1.7
138.09 ± 0.21 4.0− 58.9 10.0 ± 0.6 57.0 16.2
141.28 ± 0.22 4.0− 58.9 22.2 ± 0.4 57.0 21.1
143.23 ± 0.23 3.0− 58.9 3.8 ± 0.2 57.0 3.7
143.90 ± 0.23 4.0− 58.9 14.3 ± 0.3 57.0 9.5
145.72 ± 0.23 3.0− 58.9 7.2 ± 0.1 57.0 7.6
148.70 ± 0.23 3.0− 58.9 21.1 ± 0.4 57.0 21.0
151.21 ± 0.23 4.0− 58.9 0.2 ± 0.1 57.0 0.7
152.69 ± 0.24 4.0− 58.9 3.8 57.0 3.8
154.90 ± 0.24 3.0− 58.9 1.5 57.0 1.5
160.17 ± 0.25 4.0− 58.9 3.3 ± 0.1 57.0 3.9
163.20 ± 0.26 3.0− 58.9 47.1 ± 1.0 57.0 45.8
167.52 ± 0.26 3.0− 58.9 8.0 ± 0.2 57.0 9.3
171.25 ± 0.26 3.0− 58.9 14.0 ± 1.0 57.0 10.0
174.36 ± 0.27 4.0− 58.9 55.0 ± 0.5 57.0 27.0
176.28 ± 0.28 3.0− 58.9 58.2 ± 0.8 57.0 45.0
177.07 ± 0.28 4.0− 58.9 43.1 ± 0.4 57.0 9.0
179.31 4.0− 57.0 0.5
181.27 ± 0.28 4.0− 58.9 4.8 ± 0.1 57.0 5.6
184.85 ± 0.29 4.0− 58.9 1.1 ± 0.1 57.0 1.7
188.45 ± 0.29 4.0− 58.9 1.8 57.0 1.8
193.03 ± 0.30 4.0− 58.9 15.0 57.0 15.0
194.30 ± 0.30 3.0− 58.9 8.4 ± 0.3 57.0 9.8
199.39 ± 0.31 4.0− 58.9 19.7 ± 0.9 57.0 21.0
202.03 ± 0.31 4.0− 58.9 14.9 ± 1.2 65.0 19.2

Table 5
179Hf resonance parameters below 200 eV.

Energy
(eV)

Jπ This work JEFF-3.1.1

Γγ (meV) Γn (meV) Γγ (meV) Γn (meV)

5.69 ± 0.01 5.0+ 48.8 ± 0.7 4.3 ± 0.1 47.0 4.3
17.66 ± 0.03 4.0+ 54.7 ± 1.5 2.2 ± 0.1 52.0 2.1
19.13 ± 0.03 5.0+ 48.9 ± 4.6 0.1 ± 0.1 52.0 0.1
23.66 ± 0.04 5.0+ 49.7 ± 0.9 8.6 ± 0.1 52.0 7.5
26.54 ± 0.04 4.0+ 50.7 ± 3.2 1.2 ± 0.1 52.0 1.3
27.42 ± 0.04 5.0+ 51.8 0.4 52.0 0.4
31.16 ± 0.05 4.0+ 51.5 ± 1.8 8.5 ± 0.1 52.0 8.1
36.51 ± 0.06 5.0+ 51.5 ± 4.1 28.7 ± 0.4 52.0 26.0
40.13 ± 0.06 5.0+ 47.1 ± 1.4 26.3 ± 0.4 61.0 23.5
42.32 ± 0.07 4.0+ 51.6 ± 1.7 15.9 ± 0.2 52.0 15.3
50.79 ± 0.08 5.0+ 51.8 1.1 ± 0.1 52.0 1.1
51.14 ± 0.08 4.0+ 51.8 0.6 ± 0.1 52.0 0.7
54.08 4.0+ 52.0 0.3
69.07 ± 0.11 4.0+ 53.1 ± 5.4 10.7 ± 0.2 52.0 10.6
73.57 ± 0.12 4.0+ 54.3 ± 7.1 9.5 ± 0.1 52.0 9.2

(continued on next page)
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Table 5 (continued)

Energy
(eV)

Jπ This work JEFF-3.1.1

Γγ (meV) Γn (meV) Γγ (meV) Γn (meV)

76.68 ± 0.12 5.0+ 64.9 ± 6.6 3.3 ± 0.1 52.0 3.3
83.00 ± 0.13 4.0+ 46.0 ± 9.8 4.5 ± 0.1 52.0 4.7
85.43 ± 0.13 4.0+ 51.8 11.5 ± 0.4 52.0 11.8
92.12 ± 0.14 4.0+ 51.8 11.1 ± 0.2 52.0 11.7
92.74 ± 0.15 5.0+ 51.8 28.4 ± 0.5 52.0 27.0
101.32 ± 0.16 5.0+ 51.8 116.9 ± 1.4 52.0 113.8
103.77 ± 0.16 5.0+ 51.8 10.2 ± 0.2 52.0 9.8
107.85 ± 0.17 4.0+ 51.8 11.7 ± 0.4 52.0 9.5
117.23 ± 0.18 5.0+ 51.8 34.5 ± 0.8 44.0 31.0
120.33 ± 0.19 4.0+ 51.8 3.5 52.0 3.5
121.96 ± 0.19 4.0+ 51.8 7.6 ± 0.1 52.0 3.7
122.63 ± 0.19 5.0+ 51.8 17.1 ± 0.3 52.0 15.8
130.01 ± 0.20 4.0+ 51.8 9.4 ± 0.2 52.0 10.2
137.36 ± 0.21 5.0+ 51.8 32.9 ± 0.7 52.0 36.6
144.31 ± 0.23 5.0+ 51.8 25.2 ± 0.8 52.0 32.0
147.07 ± 0.23 4.0+ 51.8 14.3 ± 0.3 52.0 15.2
156.29 ± 0.24 5.0+ 51.8 47.4 ± 1.2 58.0 45.0
158.82 ± 0.25 4.0+ 51.8 3.4 ± 0.2 52.0 4.7
165.74 ± 0.26 5.0+ 51.8 23.6 ± 0.7 52.0 23.7
174.98 ± 0.27 4.0+ 51.8 31.2 ± 0.7 52.0 77.0
177.89 ± 0.28 5.0+ 51.8 61.2 ± 1.4 52.0 66.0
182.69 ± 0.29 4.0+ 51.8 33.6 ± 1.0 52.0 32.8
188.72 ± 0.29 4.0+ 51.8 6.1 52.0 6.1
189.86 ± 0.30 5.0+ 51.8 22.3 ± 0.8 52.0 20.2
191.25 4.0+ 52.0 0.9
198.00 ± 0.31 5.0+ 51.8 14.0 ± 0.4 52.0 16.1
202.67 ± 0.32 5.0+ 51.8 61.7 ± 3.8 66.0 81.8

Fig. 7. Individual 177Hf and 179Hf radiation widths obtained in this work.

5.1. The ESTIMA and SPRT methods

For modeling neutron induced reactions on the deformed hafnium nuclei, the coupled-
channels model of the ECIS code was used with optical model parameters retrieve from the
RIPL-2 database [40]. Some inconclusive calculations performed with phenomenological poten-
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Table 6
Average radiation widths for the nuclear systems of interest for this work.

Nuclear systems Mughabghab [39] RIPL-2 [40] This work

n+174Hf 60.0 ± 1.0 meV 59.2 ± 3.4 meV
n+176Hf 59.0 ± 3.0 meV 60.0 ± 10.0 meV 55.2 ± 2.5 meV
n+177Hf 65.0 ± 5.0 meV 66.0 ± 10.0 meV 58.9 ± 2.3 meV
n+178Hf 53.0 ± 1.5 meV 54.0 ± 5.0 meV 54.6 ± 3.9 meV
n+179Hf 62.0 ± 6.0 meV 66.0 ± 5.0 meV 51.8 ± 3.1 meV
n+180Hf 50.0 ± 5.0 meV 50.0 ± 5.0 meV 43.3 ± 8.2 meV

Fig. 8. Systematic behavior of the β2 and β4 deformation parameters retrieve from the Moller and Nix data base [41].

tial established in the mid 80s lead us to choose the more recent dispersive and global optical
model of Morillon et al. [12,13] established for target mass ranging from A = 24 to 209.

For the deformation parameters, prior β2 and β4 values were retrieved from the Moller and
Nix data base [41]. As shown in Fig. 8, values of β2 for the 174,176,177,178,179,180Hf isotopes are
close to 0.27. Therefore, β2 has to be considered as a free parameter under the condition to get
a nearly constant final value for all the stable hafnium isotopes. This condition was achieved
by using phenomenological relationships between the deformation parameters and the s-wave
neutron strength functions provided by the ESTIMA and SPRT methods.

Relationships between these model parameters for neutron orbital angular momentum l = 0,1
were firstly given through the low energy approximation of the SPRT approach [42]. Its gener-
alization was recently derived from the real and imaginary parts of the collision matrix elements
calculated by ECIS [18]. For deformed nuclei, the l-dependent neutron strength function Sl and
distant level parameter R∞

l at the binding energy can be formally expressed as a function of the
channel radius ac and of the deformation parameters βi (i = 2,4):

Sl = lim
E→0

Sl(E,ac,βi) (6)

R∞
l = lim

E→0
R∞

l (E, ac,βi) (7)
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According to the rules used in the Evaluated Nuclear Data Files [43], a reasonable choice for the
channel radius ac is:

ac = 1.23

(
A

mn

)1/3

+ 0.8 in fm (8)

For s-wave channel, the relationship between the potential scattering length, the distant level
parameters and the channel radius is explicitly defined as:

R′ = ac

(
1 − R∞

0

)
(9)

In absence of resonances, equivalent expressions are obtained with the low energy approximation
of the Reich–Moore and Multi-Level Breit–Wigner formalisms. Therefore, distant level parame-
ters reported in this work can be used to describe the contribution of the direct interaction in the
resolved resonance range.

The generalized SPRT method provides l dependent model parameters that can be directly
compared with those deduced from the statistical ESTIMA analysis of the resolved resonance
parameters [17]. The latter analysis is routinely used within the low neutron energy spectroscopy
community [44,45] to suggest the neutron strength function S0 and mean level spacing D0 from
a confident s-wave resonance sample by taking into account experimentally missed small reso-
nances.

The determination of the s-wave average parameters is sensitive to the contamination of
p-wave resonances. The quantity usually measured in capture or transmission measurements
is the product of the statistical spin factor gJ with the neutron width Γn. Therefore, the posterior
probability that a resonance with a given gJ Γn value is a p-wave resonance can be formally
expressed as follow:

P(l = 1|gJ Γn) ∝ P(gJ Γn|l = 1)P (l = 1) (10)

In which P(l = 1) stands for the probability that a resonance is a p-wave resonance. Such a
probabilistic method fails to provide unique l assignments since there is an overlap between the
weak s-wave and the strong p-wave resonances. A confident sample of s-wave resonances is
suggested according to a threshold probability P(l = 1|gJ Γn) > PB . Below PB , the s- and p-
wave probability become indistinctive. Within the ESTIMA method, the PB threshold is chosen
to minimize the discrepancies between the experimental and calculated integral of the Porter–
Thomas reduced neutron width distribution P(x):

N(x0) = N

∞∫
x0

P(x)dx = N erfc

(√
x0

2

)
(11)

with

x = gJ Γ 0
n

〈gJ Γ 0
n 〉 (12)

Expression N(x0) stands for the number of s-wave resonances having x > x0 in which N and
〈gJ Γ 0

n 〉 are free parameters. They represent respectively the estimated number of resonances
for x0 = 0 and the average value of the s-wave reduced neutron width. The s-wave mean level
spacing D0 and neutron strength function S0 are calculated as follows:

D0 = Emax − Emin

N − 1
(13)
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S0 = 〈gJ Γ 0
n 〉

D0
(14)

In which Emin and Emax represent the lower and upper energy limits of the resolved resonance
range under investigation.

Expressions (6), (7), (13) and (14) show the relationships that exist on the one hand between
βi (i = 2,4), Sl and R∞

l via the generalized SPRT method, and on the other hand between
S0 and D0 via the ESTIMA method. The combination of the two methods gives constraints
for the determination of the deformation parameters (involved in the description of the direct
interactions) and of the mean level spacing (involved in the statistical modeling of the compound
nucleus reactions).

5.2. Deformation parameters

The magnitude of the deformation parameters β2 and β4 was deduced from the statistical
analysis of the 177Hf and 179Hf resonance parameters. An iterative analysis was needed to
adopt the coupling scheme and to establish consistent ESTIMA parameters such as PB and
Emax (Eq. (13)). Minima in the variance of the neutron strength functions were observed for
Emax(

177Hf) < 200 eV and Emax(
179Hf) < 300 eV. The Bayesian formulation of the probability

P(l = 1|gJ Γn) given in Eq. (10) suggests that all the levels measured below these energy limits
are s-wave resonances. The ESTIMA results are shown in Fig. 9. The corresponding results are
reported on the “staircase” plots of the s-wave reduced neutron widths and on the cumulative
number of resonances. The slope of the curves yields respectively the s-wave neutron strength
function S0 and the level density 1/D0. Above Emax, we can observed a rapid increase of the
number of missing resonances. At 500 eV, it represents approximately more than 40% of the
observed levels.

The generalized expression of the SPRT method, given in Eqs. (6) and (7), were used to link
the ESTIMA results and the deformation parameters. Fig. 10 illustrates the SPRT results for the
n+177Hf and n+179Hf nuclear systems. By combining these results with the systematic behavior
shown in Fig. 8, we were able to optimize a consistent set of β2 and β4 parameters accordingly to
prior values proposed by Avrigeanu et al. [14,15]. Our study suggests to normalize the β2 and β4

parameters of Moller and Nix with correction factors of 0.86±0.11 and 0.42±0.06 respectively.
Final model parameters are listed in Table 7. Values of the 177,179Hf neutron strength functions
(104S0 = 2.48 and 104S0 = 2.15) are consistent with those reported in Fig. 9 (104S0 = 2.51 and
104S0 = 2.11). The given uncertainties are dominated by the accuracy of the statistical formalism
used within the ESTIMA approach. The simultaneous analysis of the integral formulation of the
Porter–Thomas distribution (Eq. (11)) with the “staircase” plot of the reduced neutron width
could reduce the relative uncertainty of each parameter down to 10%. This improved ESTIMA
approach is under study in the frame of the CONRAD code.

Table 8 compares our neutron strength function and potential scattering length values with
those compiled in Refs. [39,40]. If R′ results are in reasonable agreement, the l-dependent neu-
tron strength functions are characterized by larger discrepancies. For l = 0, an excellent agree-
ment is observed for n+177Hf, n+178Hf and n+180Hf, while results proposed by Mughabghab
for S2 are systematically lower. The order of magnitude of our results was verified with optical
model parameters as used in Ref. [15]. The generalized SPRT method leads to d-wave strength
function close to 3.0 × 10−4 and distant level parameters compatible with those reported in Ta-
ble 7.
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Fig. 9. Comparison of the 177,179Hf ESTIMA results with the Porter–Thomas integral distributions (top plots), the
staircase plots of the s-wave reduced neutron widths (middle plots) and the cumulative number of s-wave resonances
(bottom plots). Emin and Emax stand for the lower and upper limit of the energy range within which the average resonance
parameters have been obtained (see Eq. (13)).

5.3. s-wave mean level spacing

For the compound systems n+177Hf and n+179Hf, D0 values have been estimated with the
ESTIMA method (see Section 5.2). Results are reported in Fig. 9. For the even/even hafnium
isotopes, ESTIMA parameters were fine tuning in order to converge to S0 values consistent with
results reported in Table 7. This methodology was successfully applied on our 174Hf and 178Hf
resonance parameters. ESTIMA analysis suggested that all the levels observed below 200 eV and
1 keV respectively are s-wave resonances. For n+180Hf, the statistical analysis was performed up
to 5 keV with a Bayesian criteria P(l = 1|gJ Γn) > 0.5. Among the 57 observed levels, ESTIMA
suggested that 31 resonances are s-wave and 26 resonances could be p-wave.
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Fig. 10. Systematic behavior of the 177,179Hf neutron strength functions with respect to the deformation parameters β2
and β4.

The same methodology fails to provide a consistent set of D0 and S0 values for the compound
system n+176Hf. We tried to solve this difficulty by using the systematic behavior of the s-wave
gamma-ray strength function Sγ . At low energy, the latter can be explicitly defined as follow:

Sγ = 〈Γγ 〉
D0

(15)

Assuming that only s-wave contributes, Sγ may alternatively be obtained by integrating the γ -ray
transmission coefficients for multipolarity E1 over the density of final states (including discrete
states) that may be reached in the first step of the γ -ray cascade. For n+176Hf, we have:

Sγ � N

Sn∫
0

[
ρ1/2−(Sn − Eγ ) + ρ3/2−(Sn − Eγ )

]
fE1(Eγ )E3

γ dEγ , (16)

in which fE1 stands for the energy-dependent spectral factor for E1 transition and N represents a
normalization factor. In the present work, the latter factor was deduced from the Sγ values of the
n+174,178,180Hf compound systems by calculating the giant dipole resonance shape fE1 with the
standard Brink–Axel Lorentzian form [47,48] and with the incoherent sum of two generalized
Lorentzian terms as proposed by Kopecky and Uhl [49]. Results given in Fig. 11 were produced
without introducing in the calculations systematic uncertainties on the giant dipole resonance
parameters. The least squares fit of our experimental values with the Kopecky–Uhl and Brink–
Axel shapes provided a γ -ray strength function for the compound system n+176Hf equal to
10−4Sγ = 16.3±0.9. The quoted uncertainty is mainly due to the discrepancy observed between
the Brink–Axel and Kopecky–Uhl models. The latter discrepancy ranges from 2% for n+180Hf to
8% for n+174Hf. By combining this Sγ result with the n+176Hf average radiation width reported
in Table 6, we obtained a s-wave mean level D0 = 33.9 ± 2.4 eV.

Results obtained for the s-wave mean level spacing of interest for this work are summarized
in Table 9. For the n+174Hf, n+178Hf and n+180Hf nuclear systems, the agreement between the
D0 values obtained with the ESTIMA method (by fine tuning to the S0 value, see Table 7) and
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Table 7
Model parameters established with the SPRT analysis: βi (i = 2,4) stand for the deformation parameters, Sl (l = 0, . . . ,3) are the neutron strenght functions, R∞

l
(l = 0, . . . ,3)

represent the distant level parameters, R′ is the potential scattering length and ac is the so-called channel radius.

n+174Hf n+176Hf n+177Hf n+178Hf n+179Hf n+180Hf

β2 0.246 ± 0.033 0.239 ± 0.032 0.239 ± 0.032 0.240 ± 0.032 0.240 ± 0.032 0.241 ± 0.033

β4 −0.0149 ± 0.0021 −0.0264 ± 0.0038 −0.0264 ± 0.0038 −0.0340 ± 0.0049 −0.0344 ± 0.0050 −0.0408 ± 0.0059

104S0 2.18 ± 0.38 2.09 ± 0.38 2.48 ± 0.35 2.20±0.29 2.15 ± 0.38 1.93 ± 0.40

104S1 1.17 ± 0.54 1.01 ± 0.44 0.94 ± 0.38 0.93±0.38 0.97 ± 0.44 0.95 ± 0.50

104S2 3.42 ± 0.35 3.42 ± 0.34 2.97 ± 0.36 3.08±0.42 3.20 ± 0.38 3.01 ± 0.29

104S3 1.26 ± 0.43 1.12 ± 0.36 1.01 ± 0.62 1.05±0.40 1.10 ± 0.44 1.05 ± 0.38

R∞
0 −0.032 −0.020 0.042 −0.011 0.012 0.005

R∞
1 0.068 0.076 0.074 0.093 0.084 0.098

R∞
2 0.039 0.012 0.035 0.081 0.020 −0.027

R∞
3 0.201 0.207 0.262 0.242 0.267 0.226

ac (fm) 7.64 7.67 7.68 7.69 7.71 7.72
R′ (fm) 7.89 ± 0.03 7.82 ± 0.02 7.36 ± 0.62 7.74 ± 0.04 7.61 ± 0.17 7.76 ± 0.02
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Table 8
Comparison of the neutron strength functions and potential scattering length.

Nuclear systems Parameters Mughabghab [39] RIPL-2 [40] This work

n+174Hf 104S0 2.8 ± 1.8 2.6 ± 0.6 2.18 ± 0.38
R′ (fm) 7.5 ± 0.6 7.89 ± 0.03

n+176Hf 104S0 2.6 ± 0.3 1.7 ± 0.4 2.09 ± 0.38
104S1 0.87 ± 0.07 1.01 ± 0.44
104S2 2.0 ± 0.2 3.42 ± 0.34
R′ (fm) 7.6 ± 0.7 7.82 ± 0.02

n+177Hf 104S0 2.60 ± 0.25 2.6 ± 0.3 2.48 ± 0.35
104S1 1.00 ± 0.05 0.94 ± 0.38
104S2 2.10 ± 0.07 2.97 ± 0.36

n+178Hf 104S0 2.2 ± 0.7 2.1 ± 0.3 2.20 ± 0.29
104S1 0.51 ± 0.03 0.93 ± 0.38
104S2 1.66 ± 0.11 3.08 ± 0.42
R′ (fm) 7.5 ± 0.7 7.74 ± 0.04

n+179Hf 104S0 1.74 ± 0.18 2.5 ± 0.4 2.15 ± 0.38
104S1 0.83 ± 0.10 0.97 ± 0.44
104S2 2.10 ± 0.17 3.20 ± 0.38

n+180Hf 104S0 1.9 ± 0.6 1.9 ± 0.6 1.93 ± 0.40
104S1 0.44 ± 0.05 0.95 ± 0.50
104S2 1.8 ± 0.1 3.01 ± 0.29
R′ (fm) 8.0 ± 0.7 7.76 ± 0.02

Fig. 11. Comparison of our experimental γ -ray strength functions with the systematic trends for the standard (Brink–
Axel) and generalized (Kopecky–Uhl) Lorentzian shapes calculated with the TALYS code [20]. The estimated Sγ values
were deduced from the normalized theoretical values (Brink–Axel and Kopecky–Uhl).

deduced from the γ -ray strength function (by using our 〈Γγ 〉 results, see Table 6) remains within
the limit of the uncertainties.

Fig. 12 compares the experimental trends (deduced from the resolved resonance range) with
the theoretical curves (deduced from the systematics). As expected, the larger discrepancies
can be observed on the “staircase” plots of the reduced neutron widths for the compound sys-
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Fig. 12. Comparison of the 174,176,178,179Hf ESTIMA results with the Porter–Thomas integral distributions (left
hand plots), the staircase plots of the s-wave reduced neutron widths (middle plots) and the cumulative number of s-
wave resonances (right hand plots). Emin and Emax define the energy range of interest for the ESTIMA method (see
Eq. (13)).
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Table 9
s-wave mean level spacing (in eV) for the nuclear systems of interest for this work. For the even/even isotopes, results
obtained with the ESTIMA method are compared with those deduced from the radiative strength.

Nuclear system Mughabghab [39] RIPL-2 [40] ESTIMA From Sγ

n+174Hf 21.5±5.0 18.0±5.0 15.2±4.2 16.4±1.5
n+176Hf 29.0±3.0 30.0±7.0 33.9±2.4
n+177Hf 2.4±0.3 2.4±0.3 2.4±0.1
n+178Hf 44.1±2.9 57.0±6.0 59.4±5.1 68.7±5.2
n+179Hf 4.1±0.3 4.6±0.3 4.4±0.2
n+180Hf 94.0±11.0 94.0±15.0 138.0±7.2 115.2±22.0

tems n+176Hf and n+180Hf. Missing resonances and incorrect isotopic assignments of several
weak resonances could explain the deviation of the experimental results from the systematic.
For n+180Hf, similar conclusions arise when we compare our results with those reported in the
literature (Table 9). New time-of-flight measurements on isotopically enriched hafnium samples
are needed to solve these ambiguous results.

5.4. Level density parameters

The unresolved resonance range is characterized by a weak energy dependence of the model
parameters. Therefore, if the energy dependence of the level density parameter a is neglected, the
continuum spectra of the compound nucleus can be adequately described by the semi-empirical
composite level density formula of Gilbert and Cameron [50]. The adopted expression can be
written as follows:

ρJ (E) = ρ(E)
2J + 1

4σ 2(E)
exp

(
− (J + 1/2)2

2σ 2(E)

)
(17)

with

σ 2(E) = 0.0888A2/3
√

a(E − Δ) (18)

On both sides of the matching energy Em, behavior of the lower levels is described by the con-
stant temperature approximation (E < Em) and the Fermi-gas model (E > Em):

ρ(E) =
⎧⎨
⎩

1
T

exp(
E−E0

T
) E < Em

exp(2
√

a(E−Δ))

12
√

2a1/4(E−Δ)5/4σ(E)
E > Em

(19)

The matching energy Em, corrected for pairing energy Δ, can be calculated as follow [51,52]:

Em = T

2

(
aT − 3 + √

aT (aT − 6)
) + Δ (20)

The energy shift E0 is given by:

E0 = Em − T ln

(
T exp(2

√
a(Em − Δ))

12
√

2a1/4(Em − Δ)5/4σ(Em)

)
(21)

Assuming equal probability for both parities (+ and −), the level density parameter a can be
determined by solving transcendental equations that depend of the ground state spin I of the
target nucleus:

1/D0 =
{

1
2ρ1/2(Bn) I = 0
1
2ρJ−1/2(Bn) + ρJ+1/2(Bn) I �= 0

(22)
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Fig. 13. Comparison of the experimental cumulated number of levels [40] with the constant temperature model (Eq. (19))
for the compound nuclei of interest for this work. The energy Ed where the level continuum was supposed to start is
marked by an arrow (see Table 10).

Nuclear level density parameters and matching conditions established in the frame of the Gilbert–
Cameron model are reported in Table 10. For the nuclear temperature T , values ranging from
0.53 MeV to 0.57 MeV were determined by fitting the cumulative numbers of low-lying nu-
clear levels (Fig. 13). The mean value of T is close to 0.549 MeV and the standard deviation is
about 0.014 MeV (2.5%). Nuclear temperatures with variations in the same order of magnitude
(0.52 MeV–0.54 MeV) are compiled in RIPL-2 [40]. However, a closer inspection of the major
discrepancy of about 7% between the temperature obtained for the n+178Hf and n+179Hf nu-
clear systems provides clear evidence of the dependence of T with the Ed threshold of the fitting
region and with the number of missing levels. The degree of completeness of the discrete level
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Table 10
Level density parameters established in the frame of the Gilbert–Cameron formula [50]. The accuracies quoted for the
nuclear temperature T , the energy shift E0 and the matching energy Em are fit uncertainties.

n+174Hf n+176Hf n+177Hf n+178Hf n+179Hf n+180Hf

D0 (eV) 15.17 ± 4.24 33.90 ± 2.40 2.44 ± 0.05 59.41±5.12 4.41 ± 0.23 137.96 ± 7.21
D1 (eV) 3.22 ± 0.54 11.67 ± 0.83 1.27 ± 0.03 20.47±2.80 2.28 ± 0.12 47.60 ± 2.49
D2 (eV) 3.33 ± 0.93 7.47 ± 0.54 0.90 ± 0.06 13.12±1.80 1.61 ± 0.08 30.60 ± 0.61
D3 (eV) 2.61 ± 0.74 5.88 ± 0.42 0.74 ± 0.02 10.35±1.43 1.31 ± 0.07 24.24 ± 1.28
a (1/MeV) 22.39 ± 0.71 21.83 ± 0.16 22.32 ± 0.05 21.60±0.34 21.71 ± 0.11 21.22 ± 0.12
σ 5.62 ± 0.04 5.53 ± 0.01 5.65 ± 0.01 5.46 ± 0.02 5.58 ± 0.01 5.35 ± 0.01
Em (MeV) 5.78 ± 0.11 5.61 ± 0.10 6.88 ± 0.11 5.33±0.16 7.13 ± 0.11 5.31 ± 0.20
E0 (MeV) −1.31 ± 0.07 −1.17 ± 0.07 −0.55 ± 0.07 −1.00±0.10 −0.77 ± 0.07 −0.98 ± 0.13
T (MeV) 0.545 ± 0.005 0.545 ± 0.005 0.555 ± 0.005 0.535±0.008 0.575 ± 0.005 0.540 ± 0.010
Nd 15 32 41 30 61 8
Ed (MeV) 0.475 0.883 1.698 0.936 1.839 0.329

Fig. 14. Parity ratio (Eq. (23)) as a function of the excitation energy for the even/even Hf isotopes. The dashed line are
systematics calculated with parameters reported in Ref. [46].

schemes adopted for the even/even Hf isotopes has been investigated by checking the smooth
behavior with the excitation energy of the parity ratio parameter:

π(E) = ρ+(E)

ρ+(E) + ρ−(E)
(23)

Fig. 14 shows the parity ratio constructed by calculating the ratio of the number of positive
parity levels to the total number of levels in that bin. Comparisons with systematics taken from
Ref. [46] show the reasonable behavior of the n+174Hf and n+180Hf discrete level schemes,
while discrepancies observed for the n+176Hf and n+178Hf nuclear systems suggest missing
experimental information in the level schemes adopted in this work. Therefore, an improved
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Fig. 15. Natural hafnium total cross section calculated from the CONRAD results obtained for each Hf isotope. The
experimental data were retrieved from EXFOR [19].

methodology is needed to account for these poorly know sources of experimental uncertainties
during the adjustment of the nuclear temperature.

6. Modeling of the neutron cross sections

The focus of this section is to describe the neutron induced reactions within the energy limit
of the unresolved resonance range of the Hf isotopes. In the present work, the upper limit of this
energy range was extended up to 1 MeV.

Average parameters determined in this work (see Tables 6, 7 and 10) were introduced in
the CONRAD code. The corresponding total and capture cross sections were compared with
results obtained from two independent calculations. The first one is based on ECIS and TALYS
using the optical model parameters established by Morillon et al. [12,13]. The second calculation
uses a local approach as given in Ref. [15] with ECIS results based on deformed optical model
parameters of Young. In both cases, ECIS calculations were performed by using βi=2,4 values of
Table 7.

ECIS and CONRAD basically share the same formalism to calculate the total, shape elastic
and reaction cross sections. In ECIS, elements of the collision matrix are calculated from a given
phenomenological optical model potential, while CONRAD uses an average formulation of the
R-Matrix theory parameterized in terms of l-dependent neutron strength function Sl and distant
level parameters R∞

l [53,54]. Figs. 15 and 16 compare the CONRAD results with experimental
total cross sections retrieved from EXFOR [19]. The uncertainties on the calculated total cross
sections (gray zones) were deduced from the accuracy of the deformation parameters reported
in Table 7. Measurements for each Hf isotope and for the natural element are well reproduced
by the theoretical curves. A closer inspection of the CONRAD and ECIS results indicates that
the discrepancies with the calculations based on the optical model parameters of Morillon et
al. [12,13] remain below 5% at 1 MeV. The total cross section obtained with the optical model
parameters of Young (see Ref. [15]) remains within the limit of the theoretical uncertainties.
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Fig. 16. CONRAD results compared with ECIS calculations based on the optical model parameters of Morillon et al.
[12,13] and Young (see Ref. [15]) using deformation parameters from Table 7. Experimental data were measured at the
VdG facility of Karlsruhe with the time-of-flight technique [19].
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Fig. 17. CONRAD results (solid line) and uncertainties (gray zones) obtained by using the average parameters and
the uncertainties reported in Tables 6, 7 and 10. They are compared with calculations (dashed line) based on the local
approach and parameters given in Section 3.2.4 of Ref. [15] with the average radiation widths from Table 6 of this work.
The experimental data were retrieved from EXFOR [19].
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Fig. 18. Comparison of the capture cross sections produced by the CONRAD and TALYS codes.

For the modelling of the partial cross sections, CONRAD uses the Hauser–Feshbach for-
malism with width fluctuations corrections based on the Moldauer’s prescriptions [55]. For the
capture cross section, the treatment of the γ -ray strength function is somewhat simpler than
the models included in high energy codes. CONRAD takes only into account the electric- and
magnetic-dipole transmission coefficients for multipolarity l = 1. The E1 radiation is described
in the form of a Brink–Axel Lorentz line [47,48], while the energy dependence of the M1
γ strengths is given by a simple model as proposed by Blatt and Weisskopf [56]. Parameters
of the photon transmission coefficients are taken from Ref. [57]. The consistency of the average
radiation widths (Table 6) and of the level density parameters (Table 10) obtained in this work
was verified with capture cross sections retrieved from EXFOR. As shown Fig. 17, agreements
between the CONRAD results (solid line) and the experimental data remain within the limit of the
theoretical uncertainties (gray zones). An overall good agreement is also obtained with the cap-
ture cross sections (dashed line) based on the local approach of Ref. [15]. In the latter approach,
the energy-dependent spectral factor for E1 transition fE1(Eγ ) has been obtained by means of a
modified energy-dependent Breit–Wigner (EDBW) model [58,59]. Systematic correction factors
FSR within the EDBW formula were obtained by using the average radiation widths 〈Γγ 〉 of the
s-wave neutron resonances given in Table 6, and assuming that FSR = 〈Γγ 〉/Γ EDBW

γ . Actually,
the fE1(Eγ ) thus obtained have been checked within the calculations of capture cross sections of
Hf, Ta, and W isotopes in the neutron energy range from keV to 2–3 MeV (Refs. [14,15] as well
as the present work), by using the OMP and nuclear level density parameters described above
and global estimations [60] of the γ -ray strength functions for multipoles λ � 3.

As CONRAD and TALYS use the same statistical formalism to describe the compound nu-
cleus reactions, results produced by the two codes are compared in Fig. 18. For the TALYS
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calculations, the γ -ray strength function model for E1 radiation is based on the Kopecky–Uhl
Lorentzian form [49]. The Brink–Axel shape is used for all transition types other than E1. The
Giant Dipole Resonance parameters are taken from RIPL-2. In the lower energy part of the un-
resolved resonance range, where Sγ is nearly constant, values of the Hf capture cross sections
calculated via the average parameters are close to those provided by the TALYS calculations.
The increasing discrepancies observed above few hundreds of keV (∼300 keV) mainly depend
on the parameterization of the giant dipole resonance shape used in both codes.

7. Conclusion

This paper reports a consistent set of l-dependent model parameters for the Hf isotopes
(γ -strength function, neutron strength function, potential scattering, distant level parameters,
level density parameters). It was established by merging results provided by the statistical anal-
ysis of the resolved resonance range (ESTIMA approach) with results given by a generalized
formulation of the conventional SPRT method. The average value of the parameters was mainly
deduced from recent time-of-flight measurements performed at the GELINA facility and from
the smooth behavior of the deformation parameters around A = 177 proposed by Moller and Nix.
As suggested in previous works, we have obtained β2 values close to 0.24 and β4 values ranging
from −0.015 to −0.04. These results lead to neutron strength functions for s- and p-waves close
to 2.1 × 10−4 and 1.0 × 10−4 respectively. For S2, values higher than 3.0 × 10−4 are confirmed
by the present work.

These Hf model parameters were successfully used in the cross section models of CONRAD
(average R-Matrix formalism and Hauser–Feshbach calculations) to accurately reproduce exper-
imental data within the unresolved resonance range. Our study has demonstrated the need to
merge conventional resonance shape analysis with systematics to determine reliable normaliza-
tion factors for the 176Hf capture cross section. Additional calculations have also shown that the
CONRAD code provides cross section values consistent with those calculated by the sequential
application of the ECIS and TALYS codes. Discrepancies remain below 5% up to few hundreds
of keV (∼300 keV).

Parallel studies were performed to provide reliable uncertainties on the model parameters. In
a first approximation, the present work confirm the magnitude of the 〈Γγ 〉 and D0 uncertainties
recommended by Mughabghab in his Atlas of Neutron Resonances. However, for the neutron
strength functions and deformation parameters, the method used for the statistical analysis of the
resolved resonance parameters represents the main source of uncertainties. Additional works are
needed to reduce this contribution in order to favorize impact of the well known experimental
uncertainties inherent to time-of-flight measurements.

Acknowledgements

Thanks are addressed to Arjan Koning for the valuable discussions and its relevant advices
on using TALYS. We also express our gratitude to M. Moxon and T. Ware for the help in the
correction of this work. This work was also partly supported by the CNCSIS-Bucharest project
No. ID_43/2008 and the European Commission within the Sixth Framework Program through
NUDAME (EURATOM contract No. FP6-516487).

References

[1] T. Fuketa, J.A. Harvey, Report ORNL-3778, Oak Ridge National Laboratory, 1965.



G. Noguere et al. / Nuclear Physics A 831 (2009) 106–136 135

[2] T. Fuketa, J.E. Russell, R.W. Hockenbury, Report RPI-328-68, Rensselaer Polytechnic Institute, 1966.
[3] M.C. Moxon, et al., Report AERE-R7864, Harwell laboratory, 1974.
[4] H.I. Liou, et al., Phys. Rev. C 11 (1975) 2022.
[5] G. Rohr, H. Weigmann, Nucl. Phys. A 264 (1976) 93.
[6] M.J. Trbovich, et al., Nucl. Sci. Eng. 161 (2009) 303.
[7] N.M. Larson, et al., in: O. Bersillon, et al. (Eds.), Proceedings of the International Conference on Nuclear Data for

Science and Technology, Nice, France, 2007, EDP Science, 2008, p. 641.
[8] P. Siegler, K. Dietze, P. Ribon, J. Nucl. Sci. Tech. Suppl. 2 (2002) 940.
[9] G. Noguere, et al., in: Proceedings of PHYSOR-2006 Topical Meeting on Reactor Physics, Vancouver, Canada,

2006, American Nuclear Society, 2006.
[10] G. Noguere, et al., in: O. Bersillon, et al. (Eds.), Proceedings of the International Conference on Nuclear Data for

Science and Technology, Nice, France, 2007, EDP Science, 2008, p. 301.
[11] M.C. Moxon, J.B. Brisland, Report CBNM/ST/90-131/1, Harwell Laboratory, 1990.
[12] B. Morillon, P. Romain, Phys. Rev. C 70 (2004) 014601.
[13] B. Morillon, P. Romain, Phys. Rev. C 74 (2006) 014601.
[14] V. Avrigeanu, et al., NEA Nuclear Data Services document EFFDOC-928, 2005.
[15] V. Avrigeanu, et al., Nucl. Phys. A 765 (2006) 1.
[16] J. Raynal, in: Proceedings of the Specialists’ Meeting on the Nucleon Nucleus Optical Model up to 200 MeV,

Bruyeres-le-Chatel, France, 1996, Nuclear Energy Agency, 1997.
[17] E. Fort, J.P. Doat, Report NEANDC-161U, NEA Nuclear Data Committee, 1983.
[18] E. Rich, et al., Nucl. Sci. Eng. 162 (2009) 76.
[19] H. Henriksson, et al., in: O. Bersillon, et al. (Eds.), Proceedings of the International Conference on Nuclear Data

for Science and Technology, Nice, France, 2007, EDP Science, 2008, p. 737.
[20] A.J. Koning, S. Hilaire, M.C. Duijvestijn, in: R.C. Haight, et al. (Eds.), Proceedings of the International Conference

on Nuclear Data for Science and Technology, Santa Fe, New Mexico, 2004, American Institute of Physics, 2005,
p. 1154.

[21] C. De Saint Jean, et al., in: O. Bersillon, et al. (Eds.), Proceedings of the International Conference on Nuclear Data
for Science and Technology, Nice, France, 2007, EDP Science, 2008, p. 251.

[22] G. Noguere, Report CEA-R-6071, CEA/DEN Cadarache, 2005.
[23] C. Coceva, A. Magnani, Report GE/R/ND/06/96, Institut for Reference Material and Measurements, 1996.
[24] M. Flaska, et al., Nucl. Instrum. Methods A 531 (2004) 392.
[25] V. Gressier, Report DAPNIA/SPHN-99-04T, CEA/DSM Saclay, 1999.
[26] W.E. Lamb, Phys. Rev. 55 (1939) 190.
[27] H.J. Stone, et al., J. Appl. Phys. 98 (2005) 064905.
[28] N.M. Wolcott, in: Proceedings of the Conference de physique des basses temperature, Paris, 1955, Centre National

de la Recherche Scientifique, 1956, p. 286.
[29] G.D. Kneip, et al., Phys. Rev. 130 (1963) 1687.
[30] J.O. Betterton, J.O. Scarbrough, Phys. Rev. 168 (1968) 715.
[31] S.A. Ostanin, V.Yu. Trubitsin, Comput. Mater. Sci. 17 (2000) 174.
[32] H.X. Gao, L.-M. Oeng, Acta Cryst. 55 (1999) 926.
[33] I.D. Feranchuk, A.A. Minkevich, A.P. Ulyanenkov, Eur. Phys. J. Appl. Phys. 19 (2002) 95.
[34] C. Kittel, Introduction to Solid State Physics, 7th ed., Wiley, New York, 1995.
[35] G. Noguere, et al., Nucl. Sci. Eng. 160 (2008) 108.
[36] C. De Saint Jean, et al., Nucl. Sci. Eng. 161 (2009) 363.
[37] G. Noguere, Report NT-SPRC/LEPH-9/208, CEA/DEN Cadarache, 2009.
[38] A. Santamarina, et al., JEFF Report 22, NEA Nuclear Data Services, 2009.
[39] S.F. Mughabghab, Atlas of Neutron Resonances, 5th ed., Elsevier, Amsterdam, 2006.
[40] T. Belgya, et al., Report IAEA-TECDOC-1506, IAEA Nuclear Data Services, 2005.
[41] P. Moller, et al., At. Data Nucl. Data Tables 59 (1995) 185.
[42] J.-P. Delaroche, Ch. Lagrange, J. Salvy, Report IAEA-190, IAEA Nuclear Data Services, 1976.
[43] M. Herman, Report BNL-NCS-44945-05-Rev, Brookhaven National Laboratory, 2005.
[44] F. Gunsing, et al., Phys. Rev. C 61 (2000) 054608.
[45] S. Marrone, Phys. Rev. C 73 (2006) 034604.
[46] S.I. Al-Quraishi, et al., Phys. Rev. C 67 (2003) 015803.
[47] D.M. Brink, Nucl. Phys. 4 (1957) 215.
[48] P. Axel, Phys. Rev. 126 (1962) 671.



136 G. Noguere et al. / Nuclear Physics A 831 (2009) 106–136

[49] J. Kopecky, M. Uhl, Phys. Rev. C 41 (1990) 1941.
[50] A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43 (1965) 1446.
[51] G. Vladuca, et al., Nucl. Phys. A 720 (2003) 274.
[52] G. Vladuca, et al., Nucl. Phys. A 740 (2004) 3.
[53] A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 17 (1960) 563.
[54] F.H. Frohner, Nucl. Sci. Eng. 103 (1989) 119.
[55] P. Moldauer, Phys. Rev. 123 (1961) 968.
[56] J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics, John Wiley and Sons, New York, 1952.
[57] J.A. Holmes, et al., At. Data Nucl. Data Tables 15 (1976) 306.
[58] D.G. Gardner, F.S. Dietrich, Report UCRL-82998, LLNL-Livermore, 1979.
[59] M. Avrigeanu, V. Avrigeanu, G. Cata, M. Ivascu, Rev. Roum. Phys. 32 (1987) 837.
[60] C.H. Johnson, Phys. Rev. C 16 (1977) 2238.


