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Introduction

Whenever the nuclei of a given species are bombarded with neutrons, nuclear reactions can be observed with probabilities expressed as cross sections in units of barns. In the range of neutron reactions from thermal to MeV energies, two processes can be distinguished: the compound nucleus reactions and the direct reactions.

When neutrons collide with a nucleus, they may form long-lived compound states of very high complexity, decaying usually via particle production, γ-decay of fission. A resonance is observed when the energy of the compound system corresponds to that of an excited state. In the framework of the Bohr compound nucleus theory, a neutron induced reaction is considered as a two-step process:

A Z X + n entrance channel c → A + 1 Z X * → Y + i exit channel c'
The complex interactions between the nucleons lead to the independence hypothesis according to which the formation and the decay of the compound nucleus are independent. In some events, the incident neutron may be directly absorbed without intermediate state. The direct reaction is a one-step reaction in which the nucleons which do not participate to the reaction are left undisturbed. Direct reactions play a dominant role at neutron energies higher than few hundred of keV. Direct processes of interest for this work are the direct inelastic and shape-elastic cross sections. In the case where the target is in an excited state, the direct process to the ground state is often call superelastic (Fig. 1.1).

At intermediate energies, the resonances are not fully resolved owing to the limitation of the experimental resolution of the facility. Thus, two resonance regions can be distinguished, that of the resolved resonances (RRR) and that of the unresolved resonances (URR). The former is parameterized in terms of R-Matrix parameters (resonance energies and partial widths). The URR is analyzed on the basis of the statistical properties of the resonance parameters. Figure 1.2 shows the energy limits of the Unresolved Resonance Range for the capture cross sections of 238 U, 235 U and 239 Pu. The comparison with a neutron spectrum of sodium-cooled fast reactor (SFR) indicate the energy range of interest for fast reactor applications.

The URR is characterized by the coexistence of the compound nucleus and direct reactions. This coexistence makes it difficult for the interpretation of the neutron cross sections in terms of average parameters. In the low energy range, the neutron cross sections are calculated with the Single-Level Breit-Wigner, Multi-Level Breit-Wigner or Reich-Moore approximations of the R-Matrix theory [1]. They involve arbitrary boundary condition parameters that do not play a very conspicuous role [2]. Direct reactions do not readily emerge from them. Usually, their contributions arise from unknown distant levels.

In the high neutron energy range, the neutron cross sections are calculated with optical and statistical models. The optical model calculations rely on the wave description of the nuclear scattering through the S-matrix theory. The aim of the present document is to accommodate such a wave description within the R-Matrix framework. This idea was introduced in the early 60s but never used to produce consistent sets of average parameters for Evaluated Nuclear Data Files in ENDF-6 format [3]. This document is structured as follows. The 2 nd chapter will introduce the context of the present studies, the theoretical framework and the type of experimental data used for the analysis of the Unresolved Resonance Range. Chapter 3 will give elementary wave descriptions of the nuclear scattering in the S-Matrix formalism. The average R-Matrix formalism will be presented in chapter 4. Few perspectives and the overall conclusions will be given in chapters 5 and 6. Documents reported in appendix present relationships between the S-Matrix and the R-Matrix theories, thanks to the generalization of the SPRT method, and provide results for fissile (Neptunium) and non-fissile (Hafnium) isotopes. 

Chapter 2

The Unresolved Resonance Range of the neutron cross sections

The evaluation of the neutron cross sections aims to provide model parameters that describe the Resolved Resonance Range (RRR) and the "continuum" of the neutron induced reactions up to tens of MeV. Between the RRR and the "continuum", one has to distinguish the Unresolved Resonance Range (URR). This chapter summarizes the context of the studies carried out on the URR by the nuclear data group of Cadarache with the participation of students and collaborators from different institutes (Institute for Reference Materials and Measurements, Faculty of Physics of Bucarest, Horia Hulubei National Institute of Physics and Nuclear Engineering, Serco Assurance, Oak Ridge National Laboratory, Centre d'Etudes Nucleaires de Bordeaux Gradignan, Nuclear Research and Consultancy Group NRG). A short introduction of the theoretical background is given, followed by a presentation of the integral and microscopic data of interest for this work.

Context

The Unresolved Resonance Range is an energy range between the resolved resonances and the "continuum". In the URR, the spacing between the resonances and the time resolution of the time-of-flight spectrometers no longer allow the analysis of individual resonances. As a consequence, the evaluation work consists of modeling the average behavior of the neutron cross sections with "average resonance parameters". The average parameters of interest are the neutron strenght function S c , the mean level spacing D c and the average value of the partial reaction widths Γ c . Average parameters are essential for neutron transport simulations. Processing codes, such as CALENDF and NJOY, use the average parameters for generating Probability Tables (PT) associated with the capture, fission elastic and inelastic reactions [5]. The PT are then used by the deterministic (APOLLO2, ERANOS) and stochastic (TRIPOLI, MCNP) codes to simulate the "natural" fluctuations of the cross sections.

There is an abundant literature exploring the formalism of the Probability Tables and its impact on neutronic calculations [6,7]. A recent study was performed on well-defined assemblies of the MASURCA reactor in order to quantify the effect of the Probability Tables on the reactivity calculated by ERANOS, MCNP and TRIPOLI [8]. This study focuses on the Probability Tables of 238 U and 239 Pu. For benchmark systems where uranium is present, non-negligible changes on the multiplication factor ranging from 300 pcm to 1000 pcm are observed. The magnitude of the calculated effects depends on the shape of the neutron flux and on the energy bounds of the URR (Fig. 1

.2).

A better understanding of the URR was motivated by several problems found in the evaluated nuclear data files. One of the recurrent problems can be illustrated with the URR of 240 Pu recommended in a previous version of the European library JEFF-3.0, released in the early 2000s. Integral results reported in Ref. [9,10] showed a systematic overestimation greater than 4% of the experimental ratio 241 Pu/ 240 Pu by the ERANOS calculations. Sensitivity studies indicated that the origin of the overestimation was the inconsistent description of the unresolved resonance and "continuum" ranges around 40 keV for 240 Pu (Fig. 2.1).

More recently, works performed in the frame of the international working group WPEC/SG-32 have confirmed several inconsistencies in the modeling of the Unresolved Resonance Range of 239 Pu [11]. One of them was identified with a simplified simulation of a plutonium sphere and with a more realistic simulation of a ZONA2 assembly of MASURCA [8,12]. Significant differences close to 300 pcm between MCNP and TRIPOLI calculations showed the inconsistent interpretation of the average parameters by the processing codes CALENDF and NJOY. Some of the observed problems were corrected in the latest version of the European library. However, few questions still remain concerning the representation of the fluctuations of the neutron cross sections between the RRR and the "continuum".

Theoretical framework

The statistical theory is the basic principle of the analytical treatment of the Unresolved Resonance Range. In the late 80s, this treatment was implemented by Frohner in his FI-TACS code in the analyze of the 238 U neutron cross sections below 200 keV [13]. FITACS uses the average R-Matrix theory to describe the total and shape-elastic cross sections. The Hauser-Feshbach formalism with Moldauer's prescriptions for the width fluctuations is used to describe the partial cross sections (radiative capture, fission, elastic and inelastic scattering). For the fission reaction, the transmission coefficients through a parabolic barrier are calculated with the Hill-Wheeler formula. The average parameters introduced in the FITACS calculations are the mean level spacing D l , the neutron strength function S l , the average radiation width Γ γ , the channel radius a c and the distant level parameter R ∞ l . The treatment of the Unresolved Resonance Range of the neutron cross sections has changed little since the 90s. More than 10 years after the work of Frohner on 238 U, a similar analysis was carried out by introducing FITACS in the nuclear data code SAMMY [14]. Recently, the work of Frohner has also been introduced in the CONRAD code in order to investigate marginalization techniques for the propagation of the uncertainties in the URR [15]. In 2001, Koyumdjieva proposed a new modeling of the URR based on the characteristic function of the R-matrix [16]. In 2003, Leal analyzed the Unresolved Resonance Range of 235 U by using the principle of the Probability Tables [17]. More recently, Sirakov proposed to use optical model calculations to analyze the Unresolved Resonance Range of 232 Th [18]. A similar approach was developed by the nuclear data group of Cadarache [19].

The methodology consists in replacing FITACS by optical and statistical model calculations. Parameters of the high energy models are determined from the least square fit of experimental data with constraints on s-wave average parameters. The latter constraints are deduced from the statistical analysis of the resolved resonance parameters. This approach facilitates the modeling of the URR and enhances the long and tedious Neutron Resonance Shape Analysis. However, the agreement between the low and high energy ranges is not always achieved. This requires further studies to understand and eliminate the discontinuities. Several iterations are needed to find a satisfactory compromise between the average parameters. Studies carried out on non-fissile and fertile isotopes have shown the relevance of the existing approaches [20][21][22]. However, the systematic behavior with the target mass of the average parameters cannot be improved without reliable and accurate experimental data.

Microscopic and integral measurements

The evaluation of the neutron cross sections requires a precise knowledge of the experimental conditions and of the main sources of uncertainties, which affect the accuracy of the data. For these reasons, the nuclear data group of Cadarache is often involved in experimental programs through collaborations with national or European institutes (Institut Laue-Langevin, Centre d'Etudes Nucléaire de Bordeaux Gradignan, Institute for Reference Materials and Measurements, Institute of Isotopes Hungarian Academy of Sciences).

Among measurements of interest for the modelling of the Unresolved Resonance Range, we have to distinguish the integral and microscopic measurements (differential data). For the integral data, the evaluation work can take into account results provided by the CEA facilities (PHENIX, MINERVE, EOLE and MASURCA reactors). For the microscopic data, we often use time of flight measurements performed on the GELINA facility and results provided by the Van der Graaff facility of FZK. In the latest evaluation work on 241 Am, we also take into account fission probabilities measured on the Tandem accelerator of Orsay thanks to the transfer reaction technique.

Post Irradiated Experiments

The evaluation procedure of the neutron cross sections requires integral results which are sensitive to a limited number of nuclear data. Post Irradiated Experiments performed on separate samples, such as PROFIL and PROFIL-2 in the PHENIX reactor of CEA Marcoule, represent valuable sources of information to determine reliable average parameters over a large number of isotopes [9,10].

The PROFIL results have already been used to improve the 242 Pu capture cross sections with a standard evaluation procedure [23]. The procedure consists in optimizing the values of the model parameters on microscopic measurements and to test the final evaluation with integral data. In order to simplify such a procedure, the Integral Data Assimilation technique (IDA) has been developed in the CONRAD code [24]. The IDA allows analyzing simultaneously or sequentially integral and microscopic experiments. Figure 2.2 shows the 151 Sm capture cross sections deduced from the PROFIL data with the IDA technique [25].

Time of flight technique

The time of flight technique is the experimental method used to measure energy dependent cross-section data. In Europe, experimental results are produced at the nTOF facility (CERN) and at the GELINA facility of the IRMM (Geel, Belgium). In the early 2000s, major upgrades of the GELINA facility allowed to achieve excellent level of accuracy on fission and capture cross sections and transmission measurements. These high-resolution data are crucial in the data evaluation process.

Neutron Resonance Shape Analysis (NRSA) consists of determining the energies and the partial widths of the observed structures with the R-Matrix theory. Numerous experimental corrections have to be included in the analysis. The main corrections are related to the Doppler effect, the time resolution of the spectrometer, the normalization, the background and the sample composition. The resonance evaluation code REFIT [27] is the reference code for the analysis of the data measured at the GELINA facility (Fig. 2.3). One goal of the nuclear data group of Cadarache is to produce equivalent results with the CONRAD code. CHAPTER 2

Measurements on Van Der Graaff accelerator

Beyond the threshold of the inelastic cross section, GELINA are not suitable for precise measurements of radiative capture cross sections. It is thus preferable to use data measured with accelerators such as the Van der Graaff facility of Karlsruhe (see Figs. 2.1 and 2.2). Many experimental results covering the needs of sodium fast reactors have been measured in the context of stellar nucleosynthesis studies. Indeed, the temperatures of interest for the existing models range from kT = 5 keV to 1 MeV. Such measures have been used in the compilations of the neutron resonances in order to recommend capture cross sections at 30 keV for a large number of isotopes [28,29]. These recommended values are of great interest to determine reliable values for the γ-ray transmission coefficients involved in the statistical modeling of the capture cross sections.

Surrogate measurements

The experimental databases have many shortcomings. Some of them are mainly due to technical difficulties related to the direct measurement of neutron cross sections of radioactive isotopes. The experimental activities conducted at the Centre d'Etudes Nucleaires de Bordeaux Gradignan (CENBG) have shown that these difficulties could be overcome for the fission cross sections with transfer reactions induced by light charged particles. The validity of such measurements is still under investigation [30].

One of the latest experimental campaign [31] provided fission probabilities which were used for the modeling of the 241 Am neutron induced reactions. Figure 2.4 shows the fission and capture cross sections calculated in CONRAD with "bin-by-bin" correction factors given the fission probability of 242 Am. 

Chapter 3

Wave description of the nuclear scattering in the external region Before introducing the theory of average cross sections used to establish the average resonance parameters, a short description of the wave description of the nuclear scattering is presented in this chapter. The main expressions of interest for the modeling of the Unresolved Resonance Range in terms of partial-wave channels are given with a special emphasis on the connections between the channel radius a c , nuclear radius R, potential scattering length R , matching radius r m and distant level parameter R ∞ c .

Definition of the partial-wave channel

The neutron cross section formalisms presented in this document give a phenomenological description of binary reactions between a projectile and a target nucleus in terms of wave functions for the entrance and exit channels. This presentation guesses the definition of what we call a "partial-wave" channel c. As indicated in Ref. [32], the concept of reaction channel was first introduced by Wigner and Eisenbud (unpublished) and Breit [33]. It corresponds to the identification of a pair of particles characterized by a total angular momentum J and a parity π.

Conservation laws

In the definition of the entrance channel c (incoming particle+target nucleus), it is convenient to include the spin I (and the parity π I ) of the target nucleus, the spin i (and the parity π i ) of the incident particle and features of their relative motion via the orbital momentum l. The same set of quantum numbers with a prime are commonly used to define the exit channel c (outgoing particle+residual nucleus).

An interaction may occur if the total angular momentum and parity J π of the exit channel c is equal to the J π value of the entrance channel c. According to the conservation laws -→ J = -→ J and π = π . The parity and the total angular momentum of the compound system are given, respectively, by: 

π = (-1) l π I π i , (-1) l π I π i , (3.1) 
and

- → J = - → l + - → i + - → I , - → l + - → i + - → I . (3.2)
As introduced by Lane and Thomas [1], two extreme vector combinations can be applied to reach the total angular momentum J of the compound system. By analogy with the spectroscopic notations in atomic physics [34], a coupling scheme which is nearly equivalent to the "L-S" coupling shell-model is historically used to solve the vector combination problem at low incident energies while the "j-j" coupling shell-model is adopted for high bombarding energies (Fig. 3.1).

"L-S" coupling scheme for the R-Matrix formalism

The "L-S" coupling scheme is suitable for the R-Matrix representation of the compound nucleus in the Resolved Resonance Range where a limited number of angular momenta can contribute to a neutron induced reaction. At low neutron energies, it is convenient to presume that the individual spin of the target and projectile are coupled to produce the channel spin s [35]. In this case, the total angular momentum J is formed by combining l and s as follows:

- → J = - → l + - → s , (3.3) 
where 21 CHAPTER 3

- → s = - → I + - → i . (3.4)
Their vectorial combinations lead to the following expressions:

|I -i| ≤ s ≤ I + i, (3.5) 
and

|l -s| ≤ J ≤ l + s. (3.6)
In the resonance range, it is impossible in most experimental cases to distinguish between channels which differ only in their channel spins s. As a consequence, the channel spin can be arbitrarily removed from the set of quantum numbers and the index c will refer simply to the pair {l, J}.

"j-j" Coupling scheme for Optical Model calculations

At high energy, the spin-orbit interactions become as strong as the interactions between the individual spins of the target and projectile. In this case, we can couple vectorially the spin i of the projectile to its orbital angular momentum l and define a total angular momentum j. The channel c is defined by the set of quantum numbers {l, j, J}. The total angular momentum J of the whole system is defined by:

- → J = - → I + - → j , (3.7) 
where

- → j = - → l + - → i . (3.8) 
For neutron induced reactions, j can take two different values:

j = l -1 2 , j = l + 1 2 , (3.9) 
and the total angular momentum can take values between:

|j -I| ≤ J ≤ j + I, (3.10) 
In the ground state channel, for target nucleus with I = 0, we have J = j. In that case, the "L-S" and "j-j" coupling schemes become equivalents.

Notions of configuration space for nuclear reactions

The internal and external regions

Central to the R-Matrix and Optical Model frameworks is the division of the configuration space at an appropriate matching radius chosen to match the solution of the Schrodinger equation with its corresponding asymptotic expression.

The notions of "internal" (or "interior") and "external" regions were introduced by Kapur and Peierls [36] and re-formulated by Wigner and Eisenbud in the 1940s. In this early picture, the compound nucleus in which all of the nucleons are in a resonance state is assumed to exist within the volume defined by the "internal" region. So that, the total cross section σ

(n) t
for the interaction between a neutron and a nucleus in the ground state (n = 0), or in an excited state (n > 0), can be viewed as being partitioned as [4]:

σ (n) t (E) = σ (n) C (E) + n σ (n,n ) D (E). (3.11)
The cross section σ

(n)
C for formation of the compound nucleus corresponds to the contribution of the various partial-wave channels c through which the compound nucleus can be formed when the target is at the n-th level.

The combined cross sections σ (n,n ) D denote the reactions which proceed through direct and pre-equilibrium mechanisms from the n-th to the n -th levels. Suitable expressions for the cross sections of the nuclear reactions, that take place outside the "internal" region, emerge from the partial wave analysis of the scattering process (see section 3.3).

In the present work, we limit ourselves to consider neutron-induced reactions in channels corresponding to the ground-state of the target (n = 0) for incident energies below the excitation energy of the second inelastic level (n = 0, 1). The expression (3.11) becomes:

σ (0) t (E) = σ (0) C (E) + σ (0,0) D (E) + σ (0,1) D (E).
(3.12)

If the emission of charged light particles are not energetically possible, the special cases n = 0 and n = 1 are the shape-elastic (σ e ) and the direct inelastic-scattering (σ D ) cross sections, respectively. The former is defined as the cross section for scattering without change of the quantum state of the nucleus [37]. In that case, the total cross section is given by:

σ t (E) = σ r (E) + σ e (E), (3.13) 
where the reaction cross section σ r is defined as:

σ r (E) = σ C (E) + σ D (E), (3.14) 
in which the absence of index n is equivalent to the notation n = 0. Figure 3.2 displays the total, shape-elastic and reaction cross sections calculated with the optical model code Figure 3.2: Total, shape-elastic and reaction cross sections for 241 Am+n calculated with the ECIS code by using the optical model parameters reported in the Japanese library JENDL-4.

The data for the total cross section were retrieved from EXFOR.

ECIS [38] for the nuclear reaction 241 Am+n.

The nuclear radius R of spherical nuclei

The division of the configuration space is based on the condition that all particles are relatively close together. In other word, the physical reason why the space can be divided into such external and internal regions is that the strong nuclear forces between nucleons are rather short range. For practical reasons, the internal region of many nuclei can be described by independent particle motion in a mean field potential that has spherical symmetry. In the 50s, optical model calculations showed that the experimental neutron total cross sections as well as the angular dependence of the elastic scattering data were well reproduced in the MeV energy range assuming that the A nucleons are uniformly distributed throughout a sphere of radius:

R = r 0 A 1/3 . (3.15)
Wrong values of nuclear radius were often reported because the earlier models had an unrealistic amount of wave reflexion [39]. Therefore, the attenuation of absorption was probably compensated by an increase of r 0 . First values found in the literature range between 1.4 fm to 1.5 fm, while values lower than 1.3 fm are expected with the latest optical model calculations [40].

The channel radius a c

The abrupt separation between the internal and external region is made by a choice of an imaginary closed surface of radius a c which is not necessarily equal to the nuclear radius R [41]. The quantity a c is called the "interaction radius" by Lane and Thomas [1] or the "matching radius" when it explicitly refers to a boundary condition parameter between the internal and external regions [42]. Here, we adopt the widely accepted definition of "channel radius".

The size of the internal region is not defined. Kapur and Peierls suggest making the internal region as small as possible but slightly larger than the radius of the nucleus to ensure that all nuclear effects are confined to the internal region [36]. Similar prescriptions were given by Wigner and Eisenbud [35] and recalled by Vogt in Ref. [43]. In many applications the values of a c are chosen more or less arbitrarily. In the community of the evaluated nuclear data, the channel radius a c is defined as a simple function of the target mass plus a constant term [3]:

a c = 1.23m 1/3 A + 0.8 (in fm). (3.16)
Such a phenomenological representation dates back to 1950. Values of the parameters equal to 1.26 fm and 0.75 fm were reported by Drell in Ref. [44]. The order of magnitude of the constant term (0.8 fm) could also be explained by using the Droplet Model nuclear density distribution proposed by Myers [45] with a parameterization given in Ref. [46]. It takes into account the dilatation due to several effects such as the surface tension, the neutron excess and the Coulomb repulsion that occurs for finite nuclei.

The relationship between a c and the nuclear radius R is clarified in section 3.4 assuming that the nuclear mean-field has a diffuse-edge of the Wood Saxon type with a mid-point radius equal to R.

The effective radius R

At low neutron energies, the shape-elastic cross section σ e of Eq. (3.13) becomes the potential scattering cross section σ p [47] whose expression is similar to the scattering of a hard sphere of radius R :

σ p = 4πR 2 , (3.17) 
The so-called potential scattering length R mimics the classical radius of an impenetrable sphere described by a hard-sphere potential that is infinitely repulsive for r < R and zero outside.

The relationship between the effective radius R and the channel radius a c is established in section 4.2.3 via the distant level parameter R ∞ c involved in the average R-Matrix formalism.

Elementary wave description of the nuclear scattering

Usually, the index c (entrance channel) and c (exit channel) are used to label the generic quantities involved in the mathematical description of the nuclear reactions. In the present work, we are interested only on the angle-integrated probability of getting the final results for c given c. Therefore, in the following expressions, the subscript c is dropped.

The forward scattering amplitude

Many of the literatures and lecture notes on the scattering theory give a short review of the ingredients involved in the description of the neutron cross sections. Some of them are presented below. For our purpose, we consider the idealized situation where a "free" neutron with a well defined energy and momentum is scattered by a single nucleus which is fixed in position. A solution of this simple scattering process is given by solving the timeindependent Schrodinger equation for a plane wave exp(i

- → k . - → r ) impinging on a localized
repulsive centrifugal potential. The potential refers to the motion of particles under the influence of central forces "directed" away from the origin [34]. The asymptotic form of the external wave function far away the scattering region (r → ∞) is the sum of the incident plane wave plus an outgoing spherical wave (Fig. 3.3):

ψ(E, r, θ, φ) ∝ e ikr cos(θ) + f (E, θ, φ) e ikr r . (3.18) 
The scattering amplitude f (E, θ, φ) has the dimension of length and the angles (θ, φ) are measured with respect to the ingoing direction. The wave nature of the neutron is defined by the neutron wave number of length k. For non-relativistic neutrons, the wave number is given by:

k = 2m n E h -2 . (3.19)
If the neutron energy E is in eV, k is calculated as follows:

k = 2.1968 × 10 -3 A A + 1 √ E (3.20)
If we consider a spherically symmetric potential V (r), the scattering amplitude f (E, θ, φ) of Eq. (3.18) becomes independent of the azimutal angle φ:

f (E, θ, φ) = f (E, θ), (3.21) 
and the partial wave expansion of the original plane wave in Legendre polynomials allows to break the scattering amplitude f (E, θ) into partial wave components 

f (E, θ) = 1 k c (2l + 1)C c (E)P l (cos(θ)), (3.22) 
where C c (E) represents the forward scattering amplitude (θ = 0) of the outgoing wave in the channel c that accounts for the phase shift φ c originating from the potential:

C c (E) = e 2iφc(E) sin(2φ c (E)). (3.23)
The amplitude C c (E) can be conveniently rewritten as follows:

C c (E) = 1 2i (S c (E) -1) , (3.24) 
with CHAPTER 3

S c (E) = e 2iφc(E) . (3.25)
The latter expression of the S-matrix elements shows that all what scattering did is to shift the phase of the emerging wave by 2φ c . Eq. (3.25) is valid in the case where there is no absorption of the incident particle, otherwise S c must be redefined by:

S c (E) = |S c (E)|e 2iφc(E) . (3.26)
In the "L-S" coupling scheme (section 3.1.2), the S-matrix elements are:

S c (E) = S lJ (E), (3.27) 
and for the "j-j" coupling scheme (section 3.1.3):

S c (E) = S J lj (E). (3.28)
In the ground-state channels (n = 0), Eqs. (3.27) and (3.28) become formally identical when the ground-state spin of the target nucleus is zero (I = 0):

S J lj=J (E) = S lJ (E) (3.29)

The total and shape-elastic cross sections

According to Eq. (3.24), the forward scattering amplitude C c (E) is related to the S-matrix elements by the expression [42]:

S c (E) = 1 + 2iC c (E). (3.30) 
The S-matrix elements may be used as an alternative to the phase shift to parameterize the angle-integrated cross section. Convenient expressions for the total and shape-elastic cross sections have been reported in major papers as a function of the diagonal component (c = c ) of the S-matrix [32,37]:

σ t (E) = 2π k 2 c g lJ (2l + 1){1 -Re[S c (E)]}, (3.31) 
and

σ e (E) = π k 2 c g lJ (2l + 1)|1 -S c (E)| 2 . (3.32) CHAPTER 3
The statistical spin factor g lJ may be defined as the ratio of the favorable spin cases to all possible spin cases. It gives out the probability of getting the allowed total angular momentum J from the intrinsic spins of the target nucleus and of the incident particle: 

g lJ = 2J + 1 (2i + 1)(2I + 1)(2l + 1) . ( 3 
σ tc (E) = 4π k 2 Im[C c (E)], (3.34) 
and the shape-elastic cross section is given by the squared of the absolute value of C c (E): .35) The connection between the imaginary part of C c and σ tc is known as the "optical theorem". The physical origin of this theorem can be illustrated via the picture given by Hodgson [48] in which the incident particle is represented by a flux. After scattering, the flux loss along the incident direction (θ = 0) is proportional to the total cross section or equivalently to the imaginary part of the forward scattering amplitude.

σ ec (E) = 4π k 2 |C c (E)| 2 . ( 3 

The compound-nucleus cross section

A simple expression of the neutron transmission coefficient can be established in the particular case corresponding to the ground state channel of the target nucleus. According to Eq. (3.13), the cross section for formation of the compound nucleus can be obtained as the following difference: 

σ C (E) = σ t (E) -σ e (E) -σ D (E). ( 3 
σ C (E) = π k 2 c g lJ (2l + 1)T c (E), (3.37) 
in which T c is defined as:

T c (E) = T c (E) -T Dc (E). (3.38)
The coefficient T Dc represents the contribution of the direct reactions and T c has the form reported by Blatt and Weisskopf [32]:

T c (E) = 1 -|S c (E)| 2 . (3.39)
By introducing expression (3.30) into Eq. (3.39), the neutron transmission coefficient can be written as follow:

T c (E) = 4Im[C c (E)] -4|C c (E)| 2 -T Dc (E). (3.40)
In the case of spherical nucleus, the contribution T Dc of the direct reactions are negligible.

The transmission coefficients become:

T c (E) = 4Im[C c (E)] -4|C c (E)| 2 (3.41)
A simple physical meaning of T c is given by Hodgson [48]. He suggests imagining that a certain amount of flux (representing the incident projectile) "enters" the target nucleus (in order to form the compound nucleus) and it subsequently escapes through the open reaction channels. For each of these channels, a transmission coefficient T c can be defined for representing the "readiness" of the channel to transmit a certain amount of flux. In the case where there is no flux loss (no absorption of the incident particle), we find the condition |S c (E)| = 1 as given by Eq. (3.25).

The neutron transmission coefficient is also called penetrability of the incident particles by Hauser and Feshbach in the paper that lays the basis of the eponymous statistical model [49]. These quantities are different from the so-called penetration factor P c . The relationship between T c and P c is given in section 4.1.4.

Connections between the matching and channel radius

The purpose of this section is to accommodate the wave description of the nuclear scattering, presented up-above, within the R-Matrix framework. Several works address this issue [39,43,50]. Here, we focus on the role of the channel radius a c . This parameter is one of the boundary condition introduced in the R-matrix theory assuming an abrupt division of the configuration space. Therefore, the resonance theory has some undesirable features of the square-well potential for which the nuclear radius R and the channel radii a c are the same quantities chosen more or less arbitrarily. In the following sections, the definition of a c is clarified thanks to the review of the R-Matrix theory proposed by Vogt in Ref. [51].

Diffuse-edge potential

In the optical model, the incident nucleon interacts with a complex mean-field potential of the generic form:

CHAPTER 3 V (r) = Re[V (r)] + i Im[V (r)], (3.42) 
in which the real part of the potential refracts the incoming waves and the imaginary part absorbs them. The real and imaginary part of the optical potential may be expressed as a sum of the volume (v), surface (s) and spin-orbit (so) components:

V (r) = V v (r) + V s (r) + V so (r), (3.43) 
The difficulty of this model is to find the appropriate potential V (r), which will reproduce the experimental data when it is introduced in the Schrodinger equation. In this work, we use a phenomenological description of the volume, surface and spin-orbit contributions to the nuclear-nucleon interaction v(r). If the matter density distribution ρ m (r) is defined as the sum of the neutron and proton distributions:

ρ m (r) = ρ n (r) + ρ p (r), (3.44) 
the volume component of the potential V (r) can be written as [48]:

V v (r) ∝ ρ m (r )v(r -r )dr . (3.45) 
Such a potential follows the nuclear density. The shape of ρ m (r) is assumed "flat" almost up to the nuclear radius R and falls off in a distance a. As shown in Fig. 3.4 (top plot), a Wood-Saxon form factor can be used to represent these features:

f (r, R, a) = 1 1 + e r-R a . ( 3.46) 
The fall-off parameter of the nuclear density is called the diffuseness. Its value is lower than 1 fm. In optical model calculations, the natural choice for the nuclear radius is R = r 0 A 1/3 . The meaning of the reduced radius r 0 is close to that of the constant called the "effective range" of the nuclear forces in Ref. [52]. In using this terminology, it should be pointed out that r 0 depends on the depth of the potential. The value of r 0 is subject to variations from element to element with some evidence that r 0 is smaller for high values of A. Numerical calculations with global spherical optical models show that the reduced radius for the real part of the volume component lies in general between 1.23 fm and 1.3 fm [53,54]. Among the optical model parameters reported in the Reference Input Parameter Library RIPL-3 [40], Morillon and Romain proposed simple expressions for nuclei heavier than iron:

r 0 = 1.295 -2.7 × 10 -4 A (in fm), (3.47) 
a = 0.566 + 5 × 10 -9 A 3 (in fm).

(3.48) Figure 3.4: Matter density distribution (top plot) and real part of the volume potential (bottom plot) for the nuclear system 241 Am+n. The densities ρ n and ρ p are taken from the AMEDE data base [56]. The channel radius a c is calculated with the ENDF convention (3.16).

In optical model calculations, it is common to treat the radius and the diffuseness of the nuclear matter distribution as an adjustable parameter. These parameters can be determined by comparison with experimental data [48]. As a consequence, the channel radius (called matching radius) can be evaluated directly from the analysis of the neutron cross sections via phenomenological relationships. In the spherical optical model of the CONRAD code, the matching radius is calculated with the convention used in the SCAT code [55]:

r m = a c = 1.5(R + 7.0 a) with R = r 0 A 1/3 . (3.49)

Square-well potential approximation

At low energy, the conventional treatment of nuclear reactions in the resonance theories is essentially a square-well treatment. One of the motivations for using square-well potentials into the analysis is the explicit form of the resulting expressions for small values of kR [35]. Below 3 MeV, Feshbach shows that a square well potential of the simple form

V (r) = V 0 (1 + i α) for r < R 0 for r > R (3.50)
is good enough to represent the variations with the mass number A of the total cross sections and of the angular distributions of the elastically-scattered neutrons [37]. The real part represents the average potential in the nucleus (Re[V (r)] = V 0 ) and the imaginary part is a constant fraction of the real part (Im[V (r)] ∝ V 0 ). The spin-orbit contribution is omitted.

The pioneer work of Feshbach is clearly unphysical. However, in the late 60s, interesting conclusions were reported in Ref. [39] about the connections between real and square-well potentials. Thanks to the study of the wave properties of the optical model, it was found that for each diffuse-edge optical potential an equivalent square well can be defined uniquely.

An additional result was reported by Vogt in the 90s about the unique "natural" choice of a c for each reaction channel [43]. The dominant conclusion is that the R-Matrix yields the correct results for a square well if and only if the channel radius a c is chosen to be the square well radius R.

These earlier studies indicate how the physics of the nuclear mean field could be accommodated in the resonance theory. The potential V (r) (Eq. 3.43) does not have to be a square-well shape. However, we have to assume that it vanishes in the external region, and thus we have to find the channel radius a c for which the following conditions are satisfied:

V (r) = Re[V (r)] + i Im[V (r)] for r < a c V (r) 0 for r > a c (3.51) 
For typical nuclear reactions, the choice of a c is not obvious because the square-well model has more reflection than a real nucleus and gives absorption cross sections that are too small [48]. This attenuation of absorption can be compensated by an appropriate increase of the channel radius [39]. Therefore, we would choose a c not too close to the usual nuclear radius R and large enough so that most of the mean field is in the internal region. Vogt suggests to chose a radius greater than R by an amount roughly equal to the diffuseness [51]:

a c R + a with R = r 0 A 1/3 . (3.52)
An estimation of a c can be obtained by using the geometrical parameters (r 0 and a) of the real volume potentials reported in the Reference Input Parameter Library [40] or given by Eqs. (3.47) and (3.48). 

Equivalent hard-sphere scattering

As indicated by Eqs (3.51), the abrupt change of V (r) at the channel radius introduces square-well phase shifts. Therefore, instead of using the empiric formulas (3.52) and (3.53), we can choose a c such that the optical model and its equivalent square-well provide the same phase shifts at the common channel radii.

Beyond the range of the potential, the asymptotic expression (3.18) of the partial-wave solution to the Schrodinger equation with zero potential is a linear combination of spherical Bessel functions. As a consequence, the phase shift of Eq. (3.25) becomes a simple function of ρ = ka c :

φ c (E) = φ l (ρ) = tan -1 j l (ρ) η l (ρ) , (3.54) 
where j l (ρ) and η l (ρ) stand for the spherical Bessel and Neumann functions of the 1 st and 2 nd kind respectively. All the j l and η l functions can be generated from the Rayleigh's recurrence formulas:

j l (ρ) = (-1) l ρ l 1 ρ d dρ l j 0 (ρ), (3.55) 
η l (ρ) = (-1) l ρ l 1 ρ d dρ l η 0 (ρ). (3.56) 
For l = 0, 1, 2, the solutions are:

j 0 (ρ) = sin(ρ) ρ , (3.57 
)

j 1 (ρ) = sin(ρ) ρ 2 - cos(ρ) ρ , (3.58) 
j 2 (ρ) = 3 ρ 3 - 1 ρ sin(ρ) - 3 cos(ρ) ρ 2 , (3.59) 
η 0 (ρ) = - cos(ρ) ρ , (3.60) 
η 1 (ρ) = - cos(ρ) ρ 2 - sin(ρ) ρ , (3.61) 
η 2 (ρ) = - 3 ρ 3 - 1 ρ cos(ρ) - 3 sin(ρ) ρ 2 . (3.62) 
Simple analytical expressions of the phase shift for small angular momentum l are not immediately evident from the usual presentation of the Bessel functions written as a mix of powers and trigonometric functions. After few simplifications, the Eqs (3.57) to (3.62) lead to the following expressions:

     φ 0 (ρ) = ρ, φ 1 (ρ) = ρ -tan -1 (ρ), φ 2 (ρ) = ρ -tan -1 3ρ 3-ρ 2 .
(3.63) Fig. 3.7 shows the behavior of the phase shift φ c (E) for s, p, and d-waves. They were calculated with the optical model code ECIS for the nuclear system 241 Am+n. We used the optical model parameters recommended in the Japanese library JENDL-4.

Equivalent hard-sphere radii can be obtained from the least squares fit of φ c (E) with Eqs. (3.63).

Values for the channels c = {l, J} are reported in Table 3.1. Radii for s-waves (l = 0) are summarized in Table 3.2. The ENDF convention (3.16) underestimates by 1 fm the equivalent hard-sphere radius. The latter is correctly predicted by the empirical formula (3.53) established for the nuclear system 208 Pb+n. These results show how the ideas of the optical model can be incorporated in the resonance theory. Indeed, in the early 60s, Vogt suggested that a better approximation than Eq. (3.63) could be obtained by replacing all the phase shifts by those of the diffuse-edge potential in order that the elements of the scattering matrix (Eq. (3.30)) no longer has an artificial dependence on the channel radii [50]. This conclusion has a significant impact on the determination of the neutron strenght functions involved in the theory of average cross section. The latter is described in chapter 4.

Chapter 4

Theory of average cross section within the Reich-Moore approximation

Experimentally we can observe that there is a continuous transition from the extreme situation of well-isolated resonances to complete overlap. This transition can be described within the R-Matrix theory [1] by using appropriate approximations. One of the first description of the theory of average cross section was proposed in 1954 by Feshbach et al. [37]. This work indicates how the R-Matrix and optical models coexist between the "resonance region" and the "continuum region". The main ingredients of the theory of average cross section and links with the S-matrix formalism are exemplified in this chapter.

Average R-Matrix approximation

For the sake of clarity, we define U c , U c and S c the elements of the scattering matrix respectively used in the Resolved Resonance Range, in the Unresolved Resonance Range and in the "continuum" for c = c . Historically, U c is called the average collision function by analogy with the collision matrix U c involved in the R-Matrix theory.

Average collision function in the Bethe's assumptions

In the resonance region, the elements of the collision matrix U c exhibit rapid fluctuations coming from the numerous close-spaced resonances of the compound nucleus. An average value of U c can be defined over an interval ∆E containing many overlapping levels. This condition can be written as follow:

∆E >> D c , (4.1) 
where D c stands for the average spacing of the compound levels. However, ∆E must be small enough so that the elements of the scattering matrix can be regarded as energy independent.

In that case, the average value of the total and shape elastic cross sections can be evaluated with Eqs. (3.31) 

σ tc 2π k 2 (1 -Re[U c ]), (4.2) 
σ ec π k 2 |1 -U c | 2 , (4.3) 
and the neutron transmission coefficients are obtained from Eq. (3.39):

T c = 1 -|U c | 2 , (4.4) 
in which S c is replaced by the average collision function:

U c = 1 ∆E ∆E U c (E) dE. (4.5)
Soon after the publication of Feshbach [37], Thomas [57] discussed two opposite approximations of the collision matrix for the compound nucleus due to Newton [58] and Bethe [59].

The former approximation is characterized by very strong correlations between the matrix elements, while for the second approximation they vanish.

The main parameters involved in these assumptions are the reduced width amplitudes γ λc and γ λc of the resonance λ. By definition, γ λc is the probability amplitude for the formation of compound state λ via the entrance channel c, and γ λc is the probability amplitude for the decay of compound state via the exit channel c . Cross sections formulae are usually written in terms of partial widths Γ λc rather than decay amplitudes. The square of the reduced width amplitude is related to the partial width via the penetration factor P c of the centrifugal barrier for the compound system at the channel radius a c [41]:

γ 2 λc = Γ λc 2P c . (4.6) 
According to Thomas, the work of Newton leads to strange prediction while Bethe provides the fundamental assumptions of the statistical model: γ λc and γ λc are independent, uncorrelated and have random signs. These assumptions are consistent with the complicated wave function of the nuclear states. They imply that the statistical properties of the exit channel c' contain no memory of the entrance channel, which is the essential feature of the Bohr compound nucleus mechanism.

One of the consequence of the Bethe's assumptions is that the average contribution of the reduced width amplitudes tends to cancel for c = c :

γ λc γ λc ∆E 0. (4.7)
In the absence of correlations among channel width amplitudes, Moldauer [60] concludes that the formula relating elements of the average collision matrix with the average reduced width amplitudes should be the same as for the single-channel case, which is given by:

U c (E) = e 2iφc(E) 1 + iP c (E)R c (E) 1 -iP c (E)R c (E) . (4.8)
If the interval ∆E is small enough to assume constant the phase shift φ c , the penetration factor P c and the reduced R-function R c , it follows that the average collision function is simply given by:

U c e 2iφc 1 + iP c R c 1 -iP c R c for c = c . (4.9) 
An identical relationship was found by Thomas in the case where the competing channels have small transmission factors [57]. The work of Moldauer seems to provide a more general validity of the relations given above. We can just keep in mind that the R-function rather than the full R-Matrix can be used for the calculations of the average total and shape elastic cross sections when all the partial widths, except the entrance-channel width, are small compared with the level spacing D c .

Average R-function in the uniform level approximation

In this work, we introduce in Eq. (4.8) the reduced R-function given by the Reich-Moore approximation of the R-Matrix theory [61]:

R c (E) = λ γ 2 λnc E λ -E -iΓ λγc /2 + R c (E), (4.10) 
in which E λ is the resonance energy, γ λnc is the reduced neutron width amplitude and Γ λγc is the partial radiation width of the compound state λ. The background term R c (E) was introduced in the R-Matrix theory by Wigner and Eisenbud [35] as an arbitrary real-symmetric matrix independent of the energy. In the idealized situation, the continuity requirement at a c between the internal and external regions should leads to R c = 0.

Additional works were performed by Lynn in order to provide explicit expressions for the background term R c (E). He derived an expression for the cross sections in which R c is complex [START_REF] Lynn | The Theory of Neutron Resonance Reactions[END_REF]:

R c (E) = λ γ 2 λnc E λ -E -iΓ λγc /2 + R ∞ c (E) + R loc c (E) + iπs loc c (E). (4.11)
The real part of R c can be split into the contributions of neighboring (R loc c ) and far-off levels (R ∞ c ). Feshbach [37] assumes that only the immediate-neighbor resonances R loc c contribute appreciably. He suggests that such a contribution may formally be replaced by sums over an infinite number of external levels, having negative or positive energies, which may provide a finite contribution:

R loc c (E) µ γ 2 µnc |E µ | -E -iΓ µγc /2 . ( 4.12) 
As the consequence, the contribution of these "fictitious" resonances can be easily included in the sum over levels λ of the reduced R-matrix (Eq. (4.10)):

R c η=λ,µ γ 2 ηnc |E η | -E -iΓ ηγc /2 + R ∞ c (E) + iπs loc c (E). (4.13)
Throughout the R-matrix theory, R ∞ c is called the distant level parameter. Its value is lower than unity [50]. Lynn [START_REF] Lynn | Proc. Phys. Soc[END_REF] indicates that the far away contribution R ∞ c modifies the hard-sphere potential scattering length a c to give the true potential scattering length R . By analogy, the imaginary part Im[R c ] = πs loc c will modify the absorption cross section. In the uniform level approximation, where the amplitude γ 2 ηnc are all equal and the levels η are uniformly spaced by an amount D c , the average value of the reduced R-function R c is:

R c b a s c E -z dE + 1 ∆E b a R ∞ c (E )dE + iπ ∆E b a s loc c (E )dE , (4.14) 
with

z = E + i Γ γ 2 , (4.15) 
in which Γ γ represents the average radiation width. The lower and upper bounds of the integral are defined by the midpoint of the interval ∆E:

a = - ∆E 2 , (4.16) b = + ∆E 2 . (4.17)
The first integral of the expression (4.14) is called the Stieltjes transform of the pole strength function s c , where s c is a probability density function defined as the ratio of the average reduced width to level spacings:

s c = γ 2 nc D c . (4.18)
The method used by Thomas [57] for assigning a value to the Stieltjes transform of the pole strength function relies on the Sokhotsky's formula (see Sokhotsky-Weierstrass theorem). The latter state that:

lim x→0 1 x ∓ iε = P 1 x ± iπδ(x), (4.19) 
where δ(x) is the delta function and P is the Cauchy principal value of the inverse function 1/x. According to the expression (4.14), we have ε = Γ γ /2 and x = E -E. The Sokhotsky-Weierstrass theorem can be applied if Γ γ is small. This criteria is satisfied in the unresolved resonance range of many isotopes, such as actinides, for which the order of magnitude of the average radiation widths is close to 50 meV. As a consequence, the well established identity (4.19) can be introduced in Eq. (4.14) to give:

R c iπs c + P b a s c E -E dE + 1 ∆E b a R ∞ c (E )dE R ∞ c +iπ 1 ∆E b a s loc c (E )dE s loc c . (4.20) 
This mathematical trick allows to distinguish, without much complication, the "statistical R-function" iπs c and the background contribution R ∞ c . By using this notation, the Stieltjes transform of the pole strength function becomes:

R c R ∞ c + iπ (s c + s loc c ) . (4.21)

Average cross sections

According to Eq. (4.21), the average collision function (4.9) can be rearranged into the form: 3), the total and shape-elastic cross sections can be written as:

U c e 2iφc 1 -πP c (s c + s loc c ) + iP c R ∞ c 1 + πP c (s c + s loc c ) -iP c R ∞ c . ( 4 
σ tc = 2π k 2    1 - [P 2 c (R ∞ 2 c + π 2 s 2 ) -1] cos(2φ c ) -2P c R ∞ c sin(2φ c ) (1 + πP c s) 2 + P 2 l R ∞ 2 c    , (4.23) 
and

σ ec = 2π k 2    1 - [P 2 c (R ∞ 2 c + π 2 s 2 ) -1] cos(2φ c ) -2P c R ∞ c sin(2φ c ) -2πP l s (1 + πP c s) 2 + P 2 l R ∞ 2 c    , (4.24) 
where

s = s c + s loc c . (4.25) 
Equivalent expressions relying on the Bethe's assumption and uniform level approximation can be found in many papers. If s loc c = 0, Eq. (4.22) corresponds to the formulation of the average R-Matrix approximation reported by Moldauer in Ref. [60]. This approximation was implemented in the nuclear data codes SAMMY and CONRAD. These implementations use a modified form provided by Frohner in his code FITACS [13] in which the pole strength function s c and the background term R ∞ c are free parameters. Fig. 4.2 compares the total cross sections for the hafnium isotopes obtained by using the average R-Matrix formalism introduced in the CONRAD code with the results provided by the optical model code ECIS. A good agreement between CONRAD and ECIS is observed up to few hundred of keV. Detailed explanations are given in Ref. [20] (see Appendix).

Neutron transmission coefficients

In the average R-Matrix approximation, the neutron transmission coefficients are obtained by introducing Eq. (4.22) in Eq. (4.4): The latter expression can be split in two contributions:

T c = 4πP c (s c + s loc c ) [1 + πP c (s c + s loc c )] 2 + P 2 c R ∞ 2 c . (4.26)
T c = 4πP c s c [1 + πP c (s c + s loc c )] 2 + P 2 c R ∞ 2 c Tc + 4πP c s loc c [1 + πP c (s c + s loc c )] 2 + P 2 c R ∞ 2 c . T Dc (4.27)
For spherical or weakly deformed nuclei, the contribution of the direct reactions T Dc disappears (s loc c = 0), and the expression of the neutron transmission coefficient becomes:

T c = T c = 4πP c s c (1 + πP c s c ) 2 + P 2 c R ∞ 2 c (4.28)
By using the notation

f = 1 (1 + πP c s c ) 2 + P 2 c R ∞ 2 c , (4.29) 
the expression (4.28) can be rewritten as:

T c = 4πP c s c f. (4.30) 
The latter result indicates that the neutron transmission coefficient and the penetration factor differ by a factor equal to 4πs c f . In Ref. [39], f was also introduced to account for the difference in reflexion between a diffuse-edge optical potential and its equivalent squarewell. If we consider the external wave function for channel c as a combination of Bessel j l and Neumann η l functions (see section 3.4.3), the "square-well" penetration factor at a c was found to have a l-dependent function of ρ = ka c [57]:

P c = P l (ρ) = ρ ρ 2 j 2 l (ρ) + ρ 2 η 2 l (ρ) . (4.31) 
Eqs. (3.57) to (3.62) give the following expressions for l = 0, 1, 2:

       P 0 (ρ) = ρ, P 1 (ρ) = ρ 3 1+ρ 2 , P 2 (ρ) = ρ 5 9+3ρ 2 +ρ 4 . (4.32)

Average R-Matrix parameters

In the frame of the average R-Matrix approximation, the parameter R values can be estimated from the statistical analysis of the resolved resonance parameters or deduced from optical model parameters. Links with results provided by optical model calculations are discussed below.

Generalization of the SPRT method

The SPRT method is used to study the consistency between the average R-Matrix parameters adjusted on experimental data and those given by optical model calculations. The standard SPRT method [START_REF] Delariche | Proceedings of a Consultants Meeting on the Use of Nuclear Theory in Neutron Nuclear Data Evaluation[END_REF] was developed for s-and p-wave parameters (l = 0, 1). Figure 4.3 presents a schematic description of the standard SPRT method. The method was generalized in order to provide pole strength functions and parameter R ∞ c for higher order partial wave (l ≥ 1) [19]. A detailed description of the SPRT method is reported in Appendix A. The work consists of determining s c and R ∞ c as:

σ tc (U c ) = 4π k 2 Im[C c ], (4.33) 
σ ec (U c ) = 4π k 2 |C c | 2 . (4.34)
By using Eqs. (4.23) and (4.24), the system of equations (4.33) and (4.34) lead directly to the following solution:

P c R ∞ c = 2α c cos[2φ c ] + (1 -2β c ) sin[2φ c ] 1 + 2γ 2 c -2β c + (1 -2β c ) cos[2φ c ] -2α c sin[2φ c ] , (4.35 
)

πP c (s c + s loc c ) = 2(β c -γ 2 c ) 1 + 2γ 2 c -2β c + (1 -2β c ) cos[2φ c ] -2α c sin[2φ c ] . (4.36)
in which α c , β c and γ c are free parameters. General expressions for these parameters are given in Ref. [19]. In the ground state channel, for target nucleus with I = 0, they represent the real part, the imaginary part and the absolute value of the forward scattering amplitude

C c :      α c = Re[C c ] β c = Im[C c ] γ c = |C c | (4.37) 
Fig. 4.4 illustrates the partial wave breakdown calculations performed with the generalization of the SPRT method on the nuclear system 131 Xe+n. Due to the proximity of the magic number N = 82 and Z = 50, xenon isotopes should be weakly deformed. In this work, we have adopted parameters of the spherical potential established in Ref. [22].

Neutron strength function

The neutron widths Γ λnc with the same total angular momentum and parity strongly fluctuate among resonances. According to Eq. (4.6), the fluctuations must be attributed to the reduced neutron width amplitude γ λnc because of the smooth energy dependence of the penetration factor P c . On the basis of the Bethe's assumptions, γ λnc have random signs which nearly cancel positive and negative contributions. Thus, the most objective probability distribution for γ λnc is a Gaussian with zero mean. This argument accounts for the fact that the reduced neutron width amplitudes are chosen as real. This assumption leads to the one-channel reduced neutron width distribution hypothesized by Hughes and Harvey [START_REF] Hughes | [END_REF], which was found to be a chi-squared function with one degree of freedom by Porter and Thomas [66]:

P (x)dx = e -x with x = Γ l λnc Γ l λnc , (4.39) 
in which the reduced neutron widths at the resonance energy E λ is defined as follow:

Γ l λn J = Γ λn lJ P 0 P l 1 eV E λ . (4.40)
As indicated by Porter and Thomas, the definition of the dimensionless variable x relies on the existence over a given energy interval ∆E with a reasonably well-defined average reduced neutron width Γ l λnc . The existence of such an average was suggested by the work of Feshbach [37] and Lane [67] relying on the pole strength function (Eq. (4.18)). By introducing the reduced neutron width amplitude γ λnc , we obtain:

Γ l λnc = 2γ 2 λnc P 0 1 eV E λ . (4.41) 
If the interval ∆E is small enough so that the penetration factor may be considered as constant, the average value of the reduced neutron width divided by the mean level spacing, defined as the neutron strength function S c , is given by:

S c = Γ l nc D c = 2 γ 2 nc D c P 0 1 eV E . (4.42)
From Eq. (4.18), the relationship between the neutron strength function S c and the pole strength function s c is:

S c = 2s c P 0 1 eV E . (4.43)
The systematic trends of the s-and p-wave neutron strength functions with respect to the mass number of the compound nucleus are shown in Fig. 4.5. Results reported for Iodine [68], Xenon [22], Hafnium [20], Neptunium [21] and Americium [69] are compared with values recommended in the Reference Input Parameter Library RIPL-3. For s-waves, the neutron strength functions were deduced from the statistical analysis of the resolved resonance parameters by using the ESTIMA method [START_REF] Fort | Neutron Width Level Spacing, Neutron Strength Function of S-Wave, P-Wave Resonances[END_REF][START_REF] Litaize | Proceedings of the International Conference on Nuclear Data for Science and Technology[END_REF]. The p-wave values were calculated with the generalized SPRT method. Examples for fissile (Neptunium) and non-fissile (Hafnium) isotopes are reported in Appendix B and C, respectively. 

Low neutron energy approximations

This latest section aims to show how the SPRT method in association with the equivalent hard-sphere radius makes it possible the coexistence of the direct and compound nucleus reactions at low energy in in the frame of the R-Matrix theory. Simple expressions valid for slow neutrons are given for the neutron transmission coefficient and for the shape elastic cross section.

When the neutron transmission coefficients are much smaller than unity, Eq. (4.30) can be approximated by the "low-energy" expression (f 1):

T l 4πP l s l . (4.44)
The l-dependent neutron transmission coefficient can be rearranged by introducing the expression (4.43) of the neutron strength function and the s-wave penetration factor P 0 = ka c :

T l 2π P l P 0 S l √ E. (4.45)
The product P l S l /P 0 can be calculated with the SPRT method (Eq. 4.36). Figure . 4.6 shows the neutron strength function S l and the distant level parameter R ∞ l obtained for the nuclear system 241 Am+n by using the optical model parameters proposed in the evaluated nuclear data file of the Japanese library JENDL-4. The (l, J) dependent distance level parameters R ∞ lJ are shown in Fig 4.7. The 241 Am neutron strength functions were deduced from the SPRT results by introducing the equivalent hard sphere radii listed in Table 3.1 and the channel radius of the ENDF convention reported in Table 3.2. A Lagrange polynomial interpolation was used to extrapolate the low energy behavior of S l and R ∞ l . Results reported in Table 4.1 are given at the binding energy. As expected, non negligible differences is obtained for pand d-wave neutron strength functions. However, when the equivalent hard sphere radii are Channel radii calculated in the equivalent hard-sphere approximation and in the ENDF convention are reported in Tables 3.1 and 3.2. The coupled channel calculations were performed with ECIS by using the parameters reported in the Japanese library JENDL-4.

used, the distant level parameter vanishes (R ∞ l 0) which allows to remove the artificial dependence on the channel radius.

The neutron transmission coefficients calculated in the equivalent hard sphere approximation are compared in Fig. 4.8 with those provided by the ECIS code. Below 10 keV, the discrepancies between the low energy approximation (4.45) and the optical model calculations remains below 1%. The present results confirm that the penetration factor P l used in the Resolved Resonance Range can be deduced from the expression (4.45) by introducing neutron transmission coefficients given by optical model calculations.

For the shape elastic cross section, the low energy expression becomes similar to the potential scattering cross section for which the s-wave channels dominates: 

σ pot = J g l=0,J lim E→0 σ e l=0,J (E).
σ pot 4π J g l=0,J a 2 l=0,J (1 -R ∞ l=0,J ) 2 + π 2 (s l=0,J + s loc l=0,J ) 2 . (4.47)
The definition of the potential scattering cross section (Eq. (3.17)):

σ pot = 4πR 2 , (4.48) 
leads to the radius R whose value can be calculated via the SPRT results:

R J g l=0,J a 2 l=0,J (1 -R ∞ l=0,J ) 2 + π 2 (s l=0,J + s loc l=0,J ) 2 . (4.49)
The latest term of this expression is negligible because the order of magnitude of the pole strength function is close to 10 -2 : )) for the nuclear system 241 Am+n. The channel radii a c are taken from Tables 3.1 and 3.2. The coupled channel calculations were performed with ECIS by using the parameters reported in the Japanese library JENDL-4. Results are compared with those reported in Refs. [28,69].

R J g l=0,J a 2 l=0,J (1 -R ∞ l=0,J ) 2 . (4.50)

ENDF

Equivalent Parameters convention hard sphere Mughabghab [28] Lampoudis [69] Eq. ( According to the results reported in Table 4.1, the equivalent hard-sphere approximation also allows to remove the parameter R ∞ lJ from the expression of the effective radius:

R J g l=0,J a 2 l=0,J . (4.51) 
In the case of a target nucleus of spin zero, the potential scattering length R becomes strictly equivalent to the channel radius for s-waves. It represents the "effective" radius of the target at zero energy. This result confirms that the concept of "effective" radius is applicable only in the low-energy limit and only for l = 0 [START_REF] Frohner | Evaluation and analysis of nuclear resonance data[END_REF]. The potential scattering lengths obtained for the xenon, hafnium, neptunium and americium isotopes are reported in Table 4.2.

Table 4.2: Effective radius R calculated with optical models described in Refs. [20][21][22] and reported in the Atlas of Neutron Resonances [28]. For 241 Am+n, the given radius is a preliminary result.

Nuclear system Optical Model Mughaghab [28] 124 Xe+n 5.9 ± 0. 

Conclusions

The present document gives an overview of the link between the R-Matrix and the S-Matrix formalisms. We focus the discussion on the role of the neutron strength function S c , distant level parameter R ∞ c , channel radius a c and potential scattering lenght (or "effectif" radius) R . The mathematical relationships between these parameters are explicited by using "standard" boundary conditions.

The theory of average cross sections was established in the 1950s. The mathematical treatment relies on the statistical nature of the neutron resonances. Average resonance parameters for s-waves (mean level spacings, neutron strength functions and average partial widths) can be determined from the statistical analysis of the resonance parameters extracted from the Resolved Resonance Range (RRR). For higher order partial waves (l ≥ 1), we show that channel radii and neutron strength functions can be obtained by using the S-Matrix average cross section theory in conjunction with optical model calculations.

The main difficulty is the treatment of the distant level parameters R ∞ c . In applications of the R-Matrix theory, the latter mimic the contribution of the shape elastic reaction. Other direct reactions such as those involved in the inelastic process do not easily emerge from the R-matrix framework. The present work indicates how this problem can be solved according to the parameterization of the reduced R-function established by Lynn [START_REF] Lynn | The Theory of Neutron Resonance Reactions[END_REF][START_REF] Lynn | Proc. Phys. Soc[END_REF]. We found that the final average expressions of the reduced R-function (Eq. (4.21)) and collision function (Eq. (4.22)) depend not only on the pole strength function s c and distant level parameter R ∞ c , but also of a third parameter s loc c which accounts for the direct mechanisms. The generalized expressions of the SPRT method (Eqs. (4.35) and (4.36)) and the neutron transmission coefficient (Eq. (4.27)) were rearranged accordingly. In a second step, their artificial dependence on the channel radius can be removed by calculating the phase shift (Eq. (3.63)) and penetration factor (Eq. (4.32)) with equivalent hard-sphere radii deduced from optical model calculations. For the nuclear system 241 Am+n, we found that this condition is satisfied if R ∞ c = 0. In summary, the work presented here provides a description of the existing theory for treating the unresolved resonance range of the neutron induced reactions. New developments and methodologies are also presented. Parts of this work were implemented in existing nuclear data codes (CONRAD, TALYS) and applied to non-fissile (Hf, Xe) and fertile (Am, Np) isotopes. Results obtained for the nuclear system 241 Am+n were included in the version JEFF-3.2 of the Joint Evaluated Fission and Fusion File library.

Chapter 6 Perspectives

This document aims at presenting the knowledge acquired on the theory of average cross sections via the generalization of the SPRT method. This methodology is described in Appendix A. It was sucessfully used to analyse the unresolved resonance range of fissile and non-fissile nuclear systems. Examples for the Neptunium and Hafnium isotopes are reported in Appendices B and C. From these earlier studies, three main perspectives can be identified for improving the modeling of the neutron cross sections in the Resolved and Unresolved Resonance Ranges. The first perspective deals with the statistical nature of the neutron resonances in the low energy range. The second perspective consists in studying the limit of the theory of average cross section in order to extend the resolved resonance range. Such issues rely on the systematic behavior of the average parameters with the target mass.

Statistical nature of the neutron resonances

The new URR methodology, shortly presented in this document, has been implemented in the nuclear data code TALYS. This model relies on the conversion of the transmission coefficients calculated by the TALYS code in average resonance parameters. Furthermore, processing codes, such as the NJOY and CALENDF codes, can use these average parameters to calculate self-shielding factors or to generate ladders of statistical resonances. The latter treatment is illustrated in Fig. 6.1. The URR model of TALYS was applied to split the JEFF-311 pointwise representation of the 135 Xe capture cross section in three distinct energy ranges, namely Resolved Resonance Range, Unresolved Resonance Range and continuum. Some unknown or poorly known cross sections of intermediate-mass and heavy nuclei could take advantage of a similar modeling of the Resolved and Unresolved Resonance Ranges. In the TENDL library, the resolved resonance parameters and the average resonance parameters are generated via the URR model of TALYS [START_REF] Koning | [END_REF]. With this new approach, all resonances are unique, following only statistical rules.

Extension of the Resolved Resonance Range

The statistical nature of the neutron resonances are of great interest to produce ladders of pseudo resonances able to reproduce the average behavior of the neutron cross sections. Figure 6.2 illustrates such a result for the nuclear system 241 Am+n. A deeper investigation Figure 6.1: 135 Xe capture cross section from JEFF-311 (top plot) and reconstructed via average R-Matrix parameters calculated with the SPRT method under the Equivalent hardsphere approximation (bottom plot). The optical model used for the SPRT calculations is described in Ref. [22]. of this result is needed in order to quantify the agreement between the R-Matrix and S-Matrix treatments over broad energy groups. Conclusions of this study will help to verify if the link between the low and high energy model calculations is correctly described by the generalization of the SPRT method.

Systematic behavior of the average parameters

Preliminary results presented in sections 6.1 and 6.2 rely on the statistical nature of the neutron resonances. The increasing amount of time-of-flight data, taken in last decade, will allow further analysis of the systematic behavior of the average parameters with the compound nucleus mass number. For non-fissile nuclei, evidence for non-statistical effects in both s-and p-wave radiative neutron capture could be useful to identify mass regions compatible with the "extreme" statistical model. For fissile nuclei, the link between the phenomenological fission widths of the Reich-Moore approximation and the transmission Figure 6.2: Extension of the Resolved Resonance Range of 241 Am with ladders of resonances whose partial widths were calculated via the SPRT method and the equivalent hard-sphere radius formalism. coefficients through the fission barrier could be clarified. And finally, a reliable order of magnitude for the correlations between the reduced neutron widths and the radiative widths could be established for a correct processing of the Probability Tables.

I. INTRODUCTION

The neutron cross sections of a given isotope are generally divided into three parts, each one being treated with a different formalism. At low energy, the resolved resonance range ~RRR! can be analyzed by using appropriate approximations of the R-matrix formalism. The unresolved resonance range ~URR! is commonly analyzed with the average R-matrix formalism. At higher energy ~"continuum"!, optical model calculations ~direct interaction! are used in association with statistical and preequilibrium models.

One systematic challenge for this kind of work is the consistent description of the overlapping energy ranges. The link between the resolved and unresolved energy ranges is treated with statistical tests based on the distributions of the resonance parameters ~see ESTIMA method described in Ref. 1!. Concerning the relationships between the unresolved and continuum energy ranges, we use the SPRT approach. 2 The latter consists of comparing the strength function ~S0 , S 1 ! and the scattering radius R ' by using mathematical models valid at low energy.

The link between the average R-matrix formalism and the optical model proposed in this paper is inspired from the work of Lane and Thomas. 3 Relationships between these two models will be used to generalize the SPRT method to higher-order l values ~l . 1!. Moreover, as the parameterization in terms of l-dependent scattering radius R ' is equivalent to a parameterization in terms of distant level parameter R `~Ref. 4!, we decided to propose a new description of the URR in terms of R lJ `.

In Secs. II and III, basic features of the R-matrix formalism and optical model are given. Section IV focuses on the SPRT method and its generalization. Average parameters obtained for the compound systems 232 Th ϩ n, 238 U ϩ n, 240 Pu ϩ n, and 242 Pu ϩ n are presented in Sec. V. Our results are then compared with those reported in the literature before concluding on the impact of such a work for the nuclear data evaluation activities.
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II. AVERAGE R-MATRIX FORMALISM

The scattering theory, also called the R-matrix theory, is a phenomenological description of measured cross sections. It does not constitute a nucleon-nucleus model because it does not rely on physical phenomena of the interaction. It is a parameterization of the cross sections in terms of resonance parameters. From the theoretical point of view, the R-matrix formalism rests on the description of binary reactions between a projectile and a target nucleus in terms of wave functions of the entrance and exit channels. This presentation guesses the definition of what we call a channel c, corresponding to the identification of a pair of particles ~in the entrance and exit channels! characterized by a given channel spin s, angular momentum J, and parity p. Considering the spin I of the target, the spin i of the projectile and its orbital momentum l, the total angular momentum J of the compound system satisfies the quantum-mechanical triangle relations as follows:

: J ϭ :l ϩ ?s , where ?s ϭ : I ϩ :i . ~1!
Their vectorial combination leads to the following expressions:

6l Ϫ s6 Յ J Յ l ϩ s and 6I Ϫ i6 Յ s Յ I ϩ i . ~2!
If p I and p i stand, respectively, for the parity of the target nucleus and of the projectile, the parity of the nuclear system is given by

p ϭ ~Ϫ1! l p I p i . ~3!
The nuclear forces being short-range interactions, the system can be divided into two parts: one inside a sphere of radius a c , where the compound nucleus process takes place, and one outside the sphere where direct interactions take place. According to the rules used in the Evaluated Nuclear Data Files, 5 a reasonable choice for the channel radius a c in the actinide region is

a c Х 1.35A 103 fm . ~4!
The internal range ~where nuclear forces dominate! will be treated in terms of the collision matrix because the complexity of the interactions inside the compound nucleus does not allow the ab initio knowledge of the nuclear system wave function. This theory uses the nonrelativistic quantum mechanics because the nucleon velocity is supposed to be very low compared to the light speed. However, it is possible to use this theory for rel-ativistic neutron energies and to correct the result for relativistic effects.

In the R-matrix formalism, the collision matrix is generally called U. The matrix element U cc ' ~E ! represents the amplitude of the exit wave c ' induced by the interaction between the target and the projectile in the entrance channel c. The probability for this interaction to take place is given as

P crc ' ϭ 6U cc ' ~E !6 2 .
~5!

In the frame of the collision matrix formalism, the total cross section s t ~E ! and the shape elastic cross section s e ~E ! are described as follows:

s t ~E ! ϭ 2p k 2 ( l ~2l ϩ 1! ( J g lJ $1 Ϫ Re@U lJ ~E !# % ~6!
and

s e ~E ! ϭ p k 2 ( l ~2l ϩ 1! ( J g lJ 61 Ϫ U lJ ~E !6 2 , ~7!
where g lJ stands for the statistical spin factor:

g lJ ϭ 2J ϩ 1 ~2i ϩ 1!~2I ϩ 1!~2l ϩ 1! . ~8!
In the URR, the experimental resolution is not sufficient to distinguish the individual resonances. However, these resonances exist and may have a significant impact on the self-shielding calculations. As cross sections cannot be analyzed with Eqs. ~6! and ~7!, average expressions are used to characterize the physics in this energy range. In practice, the average formulation of the R-matrix theory is used to describe the total and shape elastic cross sections.

In the frame of the average R-matrix formalism, the total cross section, the shape elastic cross section, and the neutron transmission coefficients are modeled in terms of neutron strength function S lJ and distant level parameter R lJ `. By using the standard boundary conditions as defined in Ref. 6, the average collision matrix averaged over resonances is given by Ref. 7:

P U lJ ~E ! ϭ e Ϫ2if l ~E ! ~1 ϩ iP l ~E !R lJ `Ϫ s lJ P l ~E !p! 1 Ϫ iP l ~E !R lJ `ϩ s lJ P l ~E !p . ~9!
Parameter s lJ is called the pole strength. It can be written in terms of the dimensionless neutron strength function S lJ as follows:

S lJ ϭ S lJ ME 2ka c . ~10!
If the neutron incident energy is given in electron volts, the neutron wave number k is defined as

k ϭ 1 | ϭ M2m n E cm \ ϭ 2.1968 ϫ 10 Ϫ4 ͩ A A ϩ 1 ͪ ME . ~11!
In Eq. ~9!, P l ~E ! and f l ~E ! are, respectively, the penetration factor of the centrifugal barrier and the phase shift of the incident wave scattered by a sphere. In the case of a neutral incident particle, P l ~E ! and f l ~E ! are given by

P l ~E ! ϭ r 2 ~E !P lϪ1 ~E ! ~l Ϫ F lϪ1 ~E !! 2 ϩ P lϪi 2 ~E ! with P 0 ~E ! ϭ r~E ! 12!
and

f l ~E ! ϭ f lϪ1 ~E ! Ϫ tan Ϫ1 ͩ P lϪ1 ~E ! l Ϫ F lϪ1 ~E ! ͪ with f 0 ~E ! ϭ r~E ! . ~13!
The F l ~E ! factor represents the phase shift factor. Its standard expression is

F l ~E ! ϭ r 2 ~E !~l Ϫ F lϪ1 ~E !! ~l Ϫ F lϪ1 ~E !! 2 ϩ P lϪi 2 ~E ! Ϫ l with F 0 ~E ! ϭ 0 . ~14!
In Eqs. ~12!, ~13!, and ~14!, r~E ! is the product of the wave number by the channel radius:

r~E ! ϭ ka c . ~15!
Equation ~9! permits obtaining a simple expression of the transmission coefficient in terms of s lJ and R lJ `. For a given orbital momentum l and a given J p , we have

T lJ ~E ! ϭ 1 Ϫ 6 P U lJ ~E !6 2 ϭ 4pP l ~E !s lJ ~1 ϩ pP l ~E !s lJ ! 2 ϩ P l ~E ! 2 R lJ p 2 .

~16!

By the same way, introducing the average collision matrix expression given by Eq. ~9! in Eq. ~6!, the average total cross section for a given l and a given J p can be written as

s t lJ ~E ! ϭ 2p k 2 ͭ 1 Ϫ @P l ~E ! 2 ~RlJ `2 ϩ p 2 s lJ 2 ! Ϫ 1# cos~2f l ~E !! Ϫ 2P l ~E !R lJ `sin ~2f l ~E !! ~1 ϩ pP l ~E !s lJ ! 2 ϩ P l ~E ! 2 R lJ `2 ͮ . ~17!
The shape elastic cross section for a given l and J p can be easily deduced from Eq. ~7! by combining Eqs. ~16! and ~17! as follows:

s e lJ ~E ! ϭ s t lJ ~E ! Ϫ p k 2 T lJ ~E ! . ~18!
We obtain

s e lJ ~E ! ϭ 2p k 2 ͭ 1 Ϫ @P l ~E ! 2 ~RlJ `2 ϩ p 2 s lJ 2 ! Ϫ 1# cos~2f l ~E !! Ϫ 2P l ~E !R lJ `sin ~2f l ~E !! Ϫ 2pP l ~E !s lJ ~1 ϩ pP l ~E !s lJ ! 2 ϩ P l ~E ! 2 R lJ `2 ͮ . ~19!
After that, the potential cross section s pot is defined as the limit value of s e ~E ! as follows:

s pot ϭ ( J g lϭ0, J lim Er0 s e lϭ0, J ~E ! . ~20!
At low energy, only s-waves contribute:

s pot ϭ 4pa c 2 ( J g lϭ0, J $~1 Ϫ R lϭ0, J `!2 ϩ p 2 s lϭ0, J 2 % . ~21!
As s lϭ0, J is lower than unity, Eq. ~21! becomes

s pot ϭ 4pR '2 , ~22!
where R ' stands for the effective scattering radius. For s-waves, it is defined as

R ' ϭ R lϭ0 ' ϭ a c Ί ( J g lϭ0, J ~1 Ϫ R lϭ0, J `!2 . ~23!
For a ground-state spin I ϭ 0, only one value is possible for J ~J ϭ 1 2 _ !. In this case, R ' becomes a simple function of the distant level parameter:

R ' ϭ a c ~1 Ϫ R 0 `! . ~24!
This expression is used to take into account the link between the scattering radius and the entrance channel radius a c . The variation of the effective radius R ' with the entrance channel can be approximated as follows 8 :

R l ' Ϸ a c @1 Ϫ ~2l ϩ 1!R l `# 10~2lϩ1! . ~25! III. OPTICAL MODEL CALCULATIONS
In the optical model, we consider that the incident nucleon interacts with a complex mean-field potential. These calculations consist of solving the Schrödinger equation by separating the space of the system states into two orthogonal spaces: The first one is relative to the case of the separated nucleon and the target nucleus, when the second one concerns the compound nucleus. The difficulty of this model is to find the appropriate potential, which will reproduce the experimental data when it is introduced in the Schrödinger equation. Two types of approaches can be used to build an optical potential as follows:

1. the semimicroscopic approach, which tries to evaluate the potential based on fundamental elements ~as the nucleon-nucleon interaction, for example! 2. the phenomenological approach, which consists in parameterizing a potential and adjusting its parameters to be consistent with the experimental data.

In this work, we have used a phenomenological description of the potential whose volume, surface, and spin-orbit components are described with Wood-Saxon form factors. Parameters of the model ~well depths, radius, diffuseness, etc.! are compiled in the Reference Input Parameter Library 9 ~RIPL!. Many papers address the parameterization of local or global potentials above the kilo-electron-volt neutron energy range. An example of parameterization for nonspherical nuclei and a specific discussion on the effect of the nuclear deformation on the scattering properties at low neutron energies ~below a few mega-electron-volts! can be found in Ref. 10.

In practice, the total cross section, the shape elastic cross section, and the transmission coefficients are obtained by using the real and imaginary parts of the collision matrix. In optical model calculations, the collision matrix is generally noted C. The matrix elements are related to the elements of the scattering matrix S by the expression

S cc ' ~E ! ϭ 1 ϩ 2iC cc ' ~E ! . ~26!
In this representation, the reaction channel definition is slightly different from the one used in the R-matrix formalism. In the case of elastic or inelastic neutron scattering reactions where spin-orbit interactions are large, it is convenient to define the neutron with angular momenta l and j. The latter quantum number can take two different values as follows:

ͭ j ϭ l Ϫ 2 1 Ϫ j ϭ l ϩ 2 1 Ϫ , ~27!
so that the total angular momentum J of the target and the neutron is given by

6 j Ϫ I n 6 Յ J Յ j ϩ I n . ~28!
I n represents the spin of the fundamental levels of rotational bands ~"head bands"! used to model the collective excitation modes by a vibrational coupling. The level n ϭ 1 is the fundamental level of the target nucleus having a ground-state spin I. By using the definitions proposed in Eqs. ~6!, ~7!, and ~8!, the total cross section s t ~E ! and the shape elastic cross section s e ~E ! can be written as

s t ~E ! ϭ 2p k 2 ( l ~2l ϩ 1! ( j ( J g lJ $1 Ϫ Re@S lj J ~E !# % ~29!
and

s e ~E ! ϭ p k 2 ( l ~2l ϩ 1! ( j ( J g lJ 61 Ϫ S lj J ~E !6 2 . ~30!
By introducing expression ~26! into Eqs. ~29! and ~30!, we obtain a more compact formulation for the total and shape elastic cross sections. For a given couple ~l, j !, s t lj ~E ! and s e lj ~E ! are written as

s t lj ~E ! ϭ 4p k 2 Im@C lj J ~E !# ~31!
and

s e lj ~E ! ϭ 4p k 2 6C lj J ~E !6 2 . ~32!
The neutron transmission coefficients are related to the total reaction cross section. They can be obtained by combining the expression of the total cross section and those of shape elastic and direct inelastic cross sections. We obtain

T lj ~E ! ϭ 4 Im@C lj J ~E !# Ϫ 46C lj J ~E !6 2 Ϫ 4 ( l ' l ( j ' j 6C l ' j ' J ~E !6 2 . ~33!
In the case of optical model calculations using a spherical potential ~no coupling!, the last term of Eq. ~33! disappears, and the expression of the T lj ~E ! becomes

T lj ~E ! ϭ 4 Im@C lj J ~E !# Ϫ 46C lj J ~E !6 2 . ~34!
The aim of the work presented in this paper consists of linking Eqs. ~31! and ~32! to Eqs. ~17! and ~19!.

IV. SPRT METHOD

IV.A. Presentation of the Standard Method

The SPRT method is used to study the consistency between the average R-matrix parameters adjusted on experimental data and those given by optical model calculations. The standard method proposed in Ref. 2 is applied to strength functions ~S0 and S 1 ! and effective scattering radius R ' . In the case of the "low-energy" approximation of the average R-matrix formalism, transmission coefficients involved in Eq. ~16! become

T l ~E ! Ϸ 4pP l ~E !s l . ~35!
In the frame of the optical model calculations, the l-dependent transmission coefficients can be calculated as follows:

T l ~E ! ϭ ( j ( J g lJ T lj ~E ! . ~36!
By replacing the pole strength s l in Eq. ~35! with the following expression:

s l ϭ S l ME 2ka c , ~37!
and by using Eq. ~36!, the neutron strength function is then given by

S l Ϸ 1 2p ka c ME P l ~E ! ( j ( J g lJ T lj ~E ! . ~38!
Another parameter involved in the SPRT method is the scattering radius R ' . At low energy, it could be simply deduced from the shape elastic cross section as follows:

R ' Ϸ Ί 1 4p s e ~E ! . ~39!
This relationship allows a direct comparison of the potential scattering obtained from optical model calculations with values reported in the literature. Its domain of application is rather limited because Eq. ~39! supposes a weak variation of the shape elastic cross section with the incident neutron energy.

The TALYS code 11 uses this standard SPRT method to provide values of S 0 , S 1 , and R ' below 100 keV. The interest of such a process is to obtain the energy dependence of each parameter and to extrapolate if necessary their value at B n ~i.e., E ϭ 0!. However, this method is limited because it is restricted to l Յ 1 and gives an R ' value that is not directly present in the R-matrix formalism. The use of the average collision matrix elements will be the starting point to generalize the SPRT method in order to deduce average parameters useful for the modeling of the URR.

IV.B. Generalization of the Method

The generalization of the SPRT method could not be only supported by neutron transmission coefficients. Actually, R-matrix formalism does not reproduce the direct contribution of inelastic reactions, which is, on the other hand, correctly taken into account by coupled-channel calculations. Then, in order to generalize the SPRT approach, we decided to use the expressions of the total and shape elastic cross sections. In the URR domain, the exercise consists of determining the parameters s lJ and R lJ `as

ͭ s t ~slJ , R lJ `, E ! ϭ s t ~Im@C lj J ~E !# ! s e ~slJ , R lJ `, E ! ϭ s e ~6C lj J ~E !6! . ~40!
Expressions of the total cross section s t and of the shape elastic cross section s e used in the R-matrix formalism and the optical model calculations are very similar. Equations ~29! and ~30! become identical to expressions ~6! and ~7! when the ground-state spin of the target nucleus is zero ~I ϭ 0!. In this case, the scattering matrix elements and the average collision matrix become formally identical:

S ljϭJ J ~E ! ϭ P U lJ ~E ! . ~41!
Consequently, Eq. ~41! leads directly to the following analytical expressions. For a couple ~l, J !, we obtain

R lJ `ϭ 2a lJ ~E !cos@2f l ~E !# ϩ ~1 Ϫ 2b lJ ~E !!sin@2f l ~E !# P l ~E !~1 ϩ 2c lJ 2 ~E ! Ϫ 2b lJ ~E ! ϩ ~1 Ϫ 2b lJ ~E !!cos@2f l ~E !# Ϫ 2a lJ ~E !sin@2f l ~E !# ! ~42!
and

s lJ ϭ 2~b lJ ~E ! Ϫ c lJ 2 ~E !! pP l ~E !~1 ϩ 2c lJ 2 ~E ! Ϫ 2b lJ ~E ! ϩ ~1 Ϫ 2b lJ ~E !!cos@2f l ~E !# ! Ϫ 2a lJ sin@2f l ~E !# . ~43!
For a ground-state spin I ϭ 0, parameters a lJ ~E !, b lJ ~E !, and C lJ ~E ! are defined as

Ά a lJ ~E ! ϭ Re@C ljϭJ J ~E !# b lJ ~E ! ϭ Im@C ljϭJ J ~E !# c lJ ~E ! ϭ 6C ljϭJ J ~E !6 .

~44!

The expressions above are very close to those coming from Ref. 12. The generalization of these relationships to the target nucleus having a ground-state spin different from zero consists of combining the real and imaginary parts of the collision matrix elements and of calculating the average value of the following quantities:

a lJ 2 ~E ! ϭ c lJ 2 ~E ! Ϫ b lJ 2 ~E ! , ~45! b lJ ~E ! ϭ ^Im@C lj J ~E !#& j , ~46! and c lJ 2 ~E ! ϭ ^6C lj J ~E !6 2 & j . ~47!
Equations ~42! through ~47! constitute a system of expressions that will be used to generalize the SPRT method. Equations ~42! through ~47! permit obtaining the strength function and the distant level parameter for a given couple ~l, J !.

In the frame of the low-energy approximation, the phase shift f l of the incident wave scattered on a sphere can be considered as lower than unity and leads to these following asymptotic expressions:

R lj `Ϸ a lJ ~E ! ϩ f l ~E ! P l ~E ! ~48! and 
s lJ Ϸ b lJ ~E ! Ϫ c lj 2 ~E ! pP l ~E ! . ~49!
In practice, the treatment of the URR domain with the average R-matrix formalism implies the knowledge of the average parameters for a given orbital momentum l.

The system to be solved is now 

Ά s t l ~sl , R l `, E ! ϭ ( J ( j g lJ s t lj ~Im@C lj J ~E !# ! s e l ~sl , R l `, E ! ϭ ( J ( j g lJ s et lj ~6C lj J ~E !6! .
a l 2 ~E ! ϭ c l 2 ~E ! Ϫ b l 2 ~E ! , ~51! b l ~E ! ϭ ( J ( j g lJ Im@C lj J ~E !# , ~52! and c l 2 ~E ! ϭ ( J ( j g lJ 6C lj J ~E !6 2 . ~53!
This formalism is very powerful because the total and shape elastic cross sections are defined by a restricted set of parameters. Two parameters are sufficient to calculate the contribution of each partial wave. However, as we want to build a consistent modeling of the neutron-induced reaction cross sections from the thermal to mega-electron-volt energy ranges, combining s l and R lj `parameters is a priority. In the R-matrix frame, the distant level parameter for a given ~l, J ! couple has a more physical sense than the scattering radius, and we want to maintain it over the URR. For the strength function, parameterization in terms of l is sufficient as it is generally difficult to extract realistic average reduced neutron width for a given J. Then, the generalization of the SPRT method consists of determining the R lj `param- eters with Eq. ~42!. The s l parameter is determined by minimization of the following conditions:

ͭ s t l ~sl , R lj `, E ! ϭ s t l ~slJ , R lj `, E ! s e l ~sl , R lj `, E ! ϭ s e l ~slJ , R lj `, E ! . ~54!
For analyzing the RRR, the REFIT shape analysis code 13 allowed the parameterization in terms of R lj `. To satisfy the coherence criteria, this choice was also included in the CONRAD code, 14 dedicated to the neutron cross-section analysis in the RRR and URR.

V. APPLICATION OF THE GENERALIZED SPRT METHOD TO ACTINIDES

V.A. Comparison of the Results Obtained with the ECIS and OPTMAN Codes

The generalized SPRT method was applied to several actinides, 232 Th, 238 U, 240 Pu, and 242 Pu. For the optical model calculations, the coupled-channel codes ECIS ~Ref. 15! and OPTMAN ~Refs. 16 and 17! were used with the optical model parameters reported in RIPL ~Ref. 9!. The final SPRT values reported in this work are based on the results of these coupled-channel codes.

For this study, coupled-channel calculations were performed by using the optical model parameters established by Capote et al. 18 This dispersive and relativistic potential is one of the most recent proposed in RIPL, which is dedicated to the modeling of the neutroninduced reactions in the actinide region for incident energies ranging from 1 keV to 200 MeV. Results obtained by Capote et al. prove that its coupled-channel optical potential with dispersive relations can be used for prediction of optical data for nucleon-induced reactions on experimentally uninvestigated minor actinide nuclei. For proof, results obtained with this potential are in excellent agreement with the experimental data for the 238 U ϩ n and 232 Th ϩ n reactions.

As we chose the optical model parameters determined by Capote et al., the OPTMAN code must be preferred to ECIS because the geometry is different for the Hartree-Fock real potential V hf and the imaginary potential W v . However, as OPTMAN provides only l-dependent results and ECIS gives collision matrix elements for a given couple ~l, j !, we decided to apply our generalized SPRT method by running the ECIS code with the optical model parameters of Capote et al. Average parameters for 232 Th ϩ n and 238 U ϩ n obtained with ECIS and OPTMAN are reported in Table I. The comparison of the SPRT results in both cases shows that the discrepancy between these two different codes can be disregarded.

V.B. Comparison of the Results Obtained with the Standard and Generalized SPRT Methods

The most important contribution of the generalization of the SPRT method is the better consideration of the energy dependence of the average parameters, like strength functions and distant level parameters. This is done by extending the calculation to any orbital momentum, using the energy-dependent S-matrix elements.

As 232 Th and 238 U have a ground-state spin I ϭ 0, the solid curves of Fig. 1 represent the generalized SPRT results calculated with Eqs. ~42!, ~43!, and ~44!. The dashed curves stand for the results obtained with the standard SPRT method. They have been obtained with Eq. ~49!, i.e., in the frame of the low-energy approximation. These results are consistent with those coming from the TALYS calculations. At low energy, Eq. ~38! used in TALYS is equivalent to Eq. ~49!.

Below 10 keV, all the investigated methods give consistent results. Above this arbitrary energy limit, the formalism based on the low-energy approximation becomes rapidly inappropriate to describe the energy independence of the average parameters. At 100 keV, the discrepancy between the two formalisms is ;10%.

V.C. Results on Actinides

The 232 Th and 238 U strength functions S l and distant level parameters R l `~for s-, p-, d-, and f-waves! obtained with the generalized SPRT method as a function of the incident neutron energy are presented in Figs. 2 and3. The energy dependence of each parameter is described with an interpolating polynomial in the Lagrange form.

The values of the distant level parameters and scattering radii obtained with the generalized SPRT method and extrapolated to the binding energy B n are given in Table II for 232 Th ϩ n, 238 U ϩ n, 240 Pu ϩ n, and 242 Pu ϩ n. The scattering radius R ' is calculated using Eq. ~24!. Concerning this last parameter, the results provided by the generalized SPRT method are in good agreement with those reported in the last edition of the Atlas of Neutron Resonances 19 and remain within the limits of the recommended uncertainties.

The strength functions obtained with the generalized SPRT method and extrapolated to the binding energy B n are given in Table III for the same nuclear systems. Our s-wave strength functions are in good agreement with those reported in RIPL. They are either within the limits of the associated uncertainties ~for 232 Th and 240 Pu! or at the lower limits of them ~for 238 U and 242 Pu!. However, the comparison of our results with the values reported in the Atlas of Neutron Resonances highlights significant discrepancies for 232 Th ϩ n and 238 U ϩ n. The agreement could be improved by tuning slightly the quadrupole deformation b 2 within the accepted limits of the Möller and Nix systematic. 20

V.D. The Generalized SPRT Method and CONRAD

The average parameters reported in this work have been determined to be used as input parameters of the FITACS option of the SAMMY and CONRAD codes. 6,14 The latter codes were designed to adjust l-dependent strength functions, distant level parameters, and average partial widths on experimental total and partial cross sections. The total cross section is calculated with the average R-matrix formalism, using strength functions and distant level parameters at B n . For the partial cross sections, these codes use the Hauser-Feshbach formulas with the Moldauer prescriptions for the width fluctuations. The energy dependence of the average radiation width is described by a Giant Dipole Resonance formalism. In CONRAD and SAMMY, values of the l-dependent mean level spacing are calculated with the Gilbert-Cameron formulas, and the fission barrier transmission coefficients are based on the Hill-Wheeler treatment.

As our results obtained on 242 Pu are consistent with those reported in RIPL and in the Atlas of Neutron Resonances, we decided to compare the theoretical 242 Pu Fig. 1. The 232 Th and 238 U strength functions obtained with the generalized SPRT method by using the ECIS code with the optical model parameters established by Capote et al. 18 Our results are compared with those given by the standard SPRT method 2 and the TALYS code. 11 Fig. 2. The s-, p-, d-, f-wave strength functions for ~a! 232 Th ϩ n and ~b! 238 U ϩ n obtained with the generalized SPRT method by running the ECIS code with the optical model parameters established by Capote et al. 18 total cross section obtained with ECIS and CONRAD with two experimental data sets retrieved from the EXFOR database. Results are shown in Fig. 4. The older experiment was carried out at the Material Testing Reactor fast chopper of Idaho. 21 The second data set was measured at the pulsed neutron facility of Los Alamos National Laboratory 22 ~LANL!. Both experiments used the time-of-flight method. The first one was designed to investigate the low-energy range ~i.e., from 1.3 meV to 7.7 keV!, and the LANL experiment was dedicated to the high-energy range ~from 676 keV to 175 MeV!.

The ECIS calculations were done with the optical model parameters established by Capote et al. The CON-RAD code uses the average parameters provided by the generalized SPRT method ~Tables II and III!. At low energy, experimental and theoretical results are in good agreement. Between 100 keV and 1 MeV, the discrepancy remains lower than 4%. The agreement could be significantly improved by introducing energy-dependent neutron strength function and distant level parameters in the CONRAD code. This functionality is under development.

VI. CONCLUSIONS

Comparison between the average parameters extracted from high-energy calculations and those adjusted on experimental data with the average R-matrix formalism is crucial for the accurate modeling of the URR. In the present work, the generalized SPRT method, used in association with the optical model parameters established by Capote et al., leads to a consistent description of the total cross section up to 1 MeV. This study can be easily repeated with other spherical or deformed optical potentials. For the modeling of neutron-induced reactions on a large number of nonfissile isotopes, the consistency of the l-dependent average parameters reported in the literature is under investigation with phenomenological optical model potential containing dispersive terms and based on refined microscopical calculations. 23,24 

I. INTRODUCTION

Neutron-induced reactions important for transmutation studies have been widely investigated within the frame of a collaboration between the Institute for Reference Materials and Measurements (IRMM) and the French Atomic Energy Commission (CEA). Previous neutron resonance spectroscopy of 237 Np, 99 Tc, 127 I, and 129 I are reported in Refs. [1][2][3][4]. These works provide consistent sets of s-wave mean level spacing D 0 and neutron strength function S 0 . However, statistical analysis of the resolved resonances of the iodine isotopes points out the difficulties in establishing unambiguous average values for higher-order partial waves (l > 0).

The focus of the present work is a statistical analysis of the 237 Np resonance parameters with methodologies relying on optical model and average R-matrix calculations. The average R-matrix cross sections are parameterized in terms of neutron strength functions S l and distant level parameters R ∞ l [5]. At low energy, R ∞ l=0 is related to the potential scattering length R . Optical model calculations were used to establish simple relationships between the s-wave parameters (S 0 and D 0 ) and the average R-matrix parameters (S l and R ∞ l ). The R-matrix code CONRAD [6], the optical model code ECIS [7], and the statistical model code TALYS [8] were used to reconstruct 237 Np neutron cross sections. Nuclear models implemented in CONRAD are parameterized in terms of neutron strength function S l , distant level parameter R ∞ l , mean level spacing D l , and average radiation width γ . Comparison of the theoretical cross section with data reported in the literature confirmed the model parameters established in this work.

II. RESONANCE SHAPE ANALYSIS

Neutron resonances of the n + 237 Np nuclear system have been studied with data measured at the GELINA facility [1] and with capture cross sections retrieved from EXFOR [9]. Neutron resonances λ were parametrized in terms of resonance energy E λ , neutron width λ,n , and radiation width λ,γ by using the Reich-Moore approximation of the R-matrix theory * gilles.noguere@cea.fr [10]. Fission widths were taken from the European library JEFF-3.1 [11].

Measurements carried out at the GELINA facility were performed with the neutron transmission technique. Li-glass detectors (NE912) located 30 and 50 m from the neutron source were used to collect a wide number of experimental data. Detailed descriptions of the experimental setup are given elsewhere [1]. The resolved and unresolved resonance ranges were investigated from 0.3 eV to 2.0 keV by using four NpO 2 samples of different thicknesses. The (n, γ ) reaction was analyzed with experimental values measured at the ORELA [12], KURRI [13,14], and LANSCE [15] facilities. The KURRI and LANSCE data sets were used below 10 eV. ORELA data were analyzed up to 100 eV. Tables I andII summarize briefly the main characteristics of the transmission and capture data adopted in our resonance shape analysis.

The least-squares fitting code REFIT [16] was used to adjust the resonance parameters for the data. For transmission data, REFIT simulates the attenuation of the incident neutron beam as follows:

T (E) = ∞ 0 R T E (E ) exp - i n i σ t,i (E ) dE , ( 1 
)
where i labels the isotopes contained in the sample, n i stands for the atomic surface density as atoms per barn, σ t,i (E) represents the Doppler broadened total cross section, and R T E is the experimental resolution of the GELINA spectrometer.

For modeling of the experimental capture cross section, neutron scattering corrections in thin neptunium samples were assumed to be negligible. The following expression of the capture yield was used in our REFIT calculations:

Y (E) = N ∞ 0 R Y E (E ) (1 -T (E )) σ γ (E ) σ t (E ) dE , (2) 
where σ γ (σ t ) stands for the 237 Np Doppler broadened capture (total) cross section, N represents the normalization factor, and R Y E is the experimental resolution for the capture measurements.

A preliminary analysis of the low-energy resonances (<10 eV) was reported in Ref. [17]. The latter demonstrates that Monte Carlo techniques can be used to propagate the 0556-2813/2010/81(4)/044607 (13) 044607-1 ©2010 The American Physical Society experimental uncertainties during the least-squares fitting procedure. Monte Carlo algorithms and uncertainty propagation techniques are presented in Refs. [18] and [19]. In the present analysis, similar stochastic techniques were used to determine the 237 Np resonance parameters up to 500 eV.

Examples of least-squares fits are shown in Fig. 1. Parameters <100 eV are reported in Table III. The given uncertainties take into account the experimental information summarized in Table IV. Comparison of our results with the parameters recommended in the European library JEFF-3.1 points out discrepancies of <2% on average. However, as shown in Fig. 2, significant discrepancies, >10%, can be observed for the neutron widths. The increasing contribution of the experimental resolution makes unambiguous identification of complex overlapping structures above a few tens of electron volts difficult.

Negative resonances ("external levels") reported in Sec. III were adjusted to accurately reproduce the thermal capture cross section of 180 ± 5 b measured at the ILL facility [20] and the contribution of the shape-elastic cross section observed between the resonances in the transmission data. This analysis yielded a potential scattering length of R = 9.8 ± 0.1 fm.

In the frame of the R-matrix theory, contributions of the direct interaction can be simulated with the so-called distant level parameter R ∞ l . For an s wave, the relationship between R and R ∞ 0 is given by [12] and in the transmission spectra measured by Gressier [1]. Solid lines represent the theoretical curves adjusted by the REFIT code [16].

R = a c 1 -R ∞ 0 . ( 3 
)
According to conventions used in the Evaluated Nuclear Data Files [21], the channel radius a c is defined as follows:

a c = 1.23 A m n 1/3 + 0.8 (fm), (4) 
where (A/m n ) = 235.012 is defined as the ratio of the target mass to the neutron mass. By using a c = 8.39 fm and R = 9.8 fm, the s-wave distant level parameter for the n + 237 Np nuclear system is R ∞ 0 = -0.168 ± 0.012. The average radiation width was determined from the individual λ,γ values of 19 resonances observed below 23 eV. If they are assumed to be independent, the weighted mean value is close to 39.2 ± 0.2 meV. By taking into account correlation coefficients between the resonance parameters, the mean value and its uncertainty become

γ = 39.3 ± 1.0 meV.
Table V compares the average radiation width obtained in this work with those reported in the literature. Although our work suggests a slight decrease in γ , agreement between the different values remains within the limit of the given uncertainties.

III. STATISTICAL ANALYSIS OF RESONANCE PARAMETERS

The s-wave mean level spacing D 0 and neutron strength function S 0 can be determined from the distribution of the reduced neutron widths. For an s-wave resonance, the reduced neutron width is defined as the ratio of the neutron width to the square root of the resonance energy: The distribution of this parameter is a chi-square function with 1 degree of freedom [26]:

0 λ,n = λ,n √ E λ . ( 5 
)
P (x)dx = e -(x/2) √ 2πx dx, (6) 
with

x = 0 λ,n 0 λ,n , (7) 
where 0 λ,n stands for the average value of the s-wave reduced neutron width. The relationship among 0 λ,n , D 0 , and S 0 can be written as follows:

0 λ,n = S 0 D 0 , ( 8 
)
with

D 0 = E max -E min N -1 , ( 9 
)
where N stands for the number of s-wave resonances between E min and E max . This number of resonances can be suggested from the cumulative distribution function of P (x) [Eq. ( 6)]: By using expressions ( 8) and ( 9), Eq. ( 10) becomes

N (x 0 ) = N ∞ x 0 P (x)dx = N 1 -erf x 0 2 , ( 10 
)
N(X 0 ) = E max -E min D 0 + 1 1 -erf X 0 2S 0 D 0 , ( 11 
)
with

X 0 = x 0 S 0 D 0 . ( 12 
)
This distribution gives the number of resonances λ having a reduced neutron width 0 λ,n higher than a threshold value X 0 . This statistical approach is called the ESTIMA method. Detailed explanations are given elsewhere [3].

For the nuclear systems n + 237 Np, the only s-wave states of the compound nucleus allowed in the resonance range are those with total angular momenta J = 2 and J = 3. The corresponding statistical spin factors are g J =2 = 5/12 and g J =3 = 7/12. A satisfactory agreement between the theoretical curve [Eq. (11)] and the experimental distribution of the J -dependent reduced neutron widths was observed below E max = 90 eV. Results provided by the ESTIMA method are shown in Fig. 3. The s-wave neutron strength function and mean level spacing can be deduced from the J -dependent values by using the following relationships:

S 0 = 3 J =2 g J S 0,J , ( 13 
)
D 0 = 3 J =2 1 D 0,J -1 . ( 14 
)
The combination of the J -dependent results provides 10 4 S 0 = 1.02 ± 0.14, D 0 = 0.60 ± 0.03 eV.

The quoted uncertainties take into account the uncertainties of the resonance parameters (Table III) and of the statistical analysis.

Figure 4 compares the final s-wave results with the "staircase" plots of the reduced neutron widths and of the 044607-5 Table VI compares the average parameters obtained in this work with those reported in the literature. Our 10 4 S 0 and D 0 results are consistent with the expected values close to unity and 0.6 eV, respectively.

IV. l-DEPENDENT MEAN LEVEL SPACING

For the nuclear system n + 237 Np, the l-dependent mean level spacing D l can be calculated as follows, assuming equal probability for both parities: 

1 D 0 = 1 2 3 J =2 ρ J (B n ), (15) 
1 D 1 = 1 2 4 J =1 ρ J (B n ), (16) 
1

D 2 = 1 2 5 J =0 ρ J (B n ). (17) 
In this work, the J -dependent level density ρ J (E) was calculated using the formula established by Gilbert and Cameron [28]:

ρ J (E) = ρ(E) 2J + 1 4σ 2 (E) exp - (J + 1/2) 2 2σ 2 (E) . ( 18 
)
The parametrization of ρ(E) is given by the constanttemperature approximation (E < E m ) and the Fermi-gas model (E > E m ),

ρ(E) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 1 T exp E -E 0 T , E<E m , exp(2 √ a(E -)) 12 √ 2a 1/4 (E -) 5/4 σ (E) , E > E m , (19) 
where σ (E) stands for the spin cut-off parameter:

σ 2 (E) = 0.0888A 2/3 a(E -). (20) 
The pairing energy = 0 because the nuclear system n + 237 Np is characterized by odd values of N and Z. The level density parameter a is calculated from the s-wave mean level spacing D 0 = 0.60 ± 0.03 eV. By introducing the Fermi-gas model in Eq. ( 15), we obtain a = 27.90 ± 0.12 MeV -1 .

The corresponding mean level spacings for l = 1 and l = 2 [Eqs. ( 16) and ( 17 The nuclear temperature T was determined by fitting the cumulative numbers of low-lying nuclear levels N (E x ) with the following expressions [29,30]:

N(E x ) = N (E d ) + e -E 0 /T (e E x /T -e -E d /T ), (21) 
E 0 = E m -T ln T exp(2 √ a(E m -)) 12 √ 2a 1/4 (E m -) 5/4 σ (E m ) , (22) 
E m = T 2 (aT -3 + aT (aT -6)) + . ( 23 
)
The value of the nuclear temperature depends on the upper energy level E d , where the "continuum" is supposed to start. The solid (lower) curve in Fig. 5 was obtained for E d = 0.4± 

V. l-DEPENDENT NEUTRON STRENGTH FUNCTION

The l-dependent neutron average parameters of interest in this work are the neutron strength function S l and the distant level parameter R ∞ l . Within the frame of the average R-matrix theory proposed by Frohner [5], the neutron total cross section is given by

σ t (E) = 2π k 2 l (1 -Re[U l (E)]), (24) 
in which U l represents the collision matrix elements,

U l (E) = e -2iϕ l (E) 1 + iP l (E)R ∞ l -s l P l (E)π 1 -iP l (E)R ∞ l + s l P l (E)π , (25) 
where P l and ϕ l are, respectively, the penetration factor of the centrifugal barrier and the phase shift of the incident wave scattered by a sphere. The parameter s l stands for the pole strength function, which is closely related to the strength function S l :

s l = S l √ E 2ka c . ( 26 
)
Above a few tens of kilo-electron volts, the increasing contribution of the higher-order partial waves makes it impossible to separate the cross sections into l-dependent parameters. This problem was recently solved with the generalized SPRT method [31]. The latter method establishes simple relationships between the optical model and the average R-matrix parameters. According to this method, the energy dependence of the distant level parameter and pole strength function is given by

R ∞ l (E) = 2a l (E) cos[2ϕ l (E)] + (1 -2b l (E)) sin[2ϕ l (E)] P l (E) 1 + 2c 2 l (E) -2b l (E) + (1 -2b l (E)) cos[2ϕ l (E)] -2a l (E) sin[2ϕ l (E)] , ( 27 
)
s l (E) = 2(b l (E) -c 2 l (E)) πP l (E) 1 + 2c 2 l (E) -2b l (E) + (1 -2b l (E)) cos[2ϕ l (E)] -2a l sin[2ϕ l (E)] , ( 28 
)
with 

a 2 l (E) = c 2 l (E) -b 2 l (E), ( 29 
) b l (E) = 1 2l + 1 l+1/2 j =l-1/2 j +5/2 J =|j -5/2| g J Im C J lj (E) , (30) 044607-7 
c 2 l (E) = 1 2l + 1 l+1/2 j =l-1/2 j +5/2 J =|j -5/2| g J C J lj (E) 2 . ( 31 
)
In the present work, the optical model code ECIS [7] was used to calculate the collision matrix elements C J lj involved in Eqs. ( 29) to (31). As suggested by the work on neptunium reported in Ref. [32], optical model parameters established by Morillon et al. [33,34] are suitable to reproduce the direct contribution in n + 237 Np reactions up to several tens of mega-electron volts (see Appendix).

Consistent l-dependent average parameters can be deduced from the reduced neutron width values 0 λ,n and the potential scattering R by introducing Eq. ( 28) into Eq. ( 11) and Eq. ( 27) into Eq. ( 3). This statistical approach was successfully used to analyze the 242 Pu neutron cross sections [35] and the unresolved resonance range of the hafnium isotopes [36].

Realistic uncertainties in the average resonance and optical model parameters were determined by using a Monte Carlo technique specifically designed to derive model parameter uncertainties without changing the value of the parameters [37]. Optical model parameters of interest for the uncertainty propagation analysis are the reduced radius r 0 , the diffuseness a, the depths (V HF , A v , and A s ), and the deformation parameters (β 2 and β 4 ). A collection of ECIS results (total cross section, neutron transmission coefficient, collision matrix element, neutron strength function, distant level parameter, etc.) was generated by randomly varying these optical model parameters according to uniform distributions. Posterior values were selected according to the potential scattering length (R = 9.8 ± 0.1 fm) and neutron strength function (10 4 S 0 = 1.02 ± 0.14) obtained in Secs. II and III. Final results, reported in Table VIII, were deduced from the first two moments of the posterior distributions. Figure 6 illustrates the strong correlation (∼0.98) obtained between the reduced radius r 0 and the depth V HF .

The distributions of the l-dependent average parameters [Eqs. ( 27) and ( 28)] are shown in Fig. 7. Table IX reports results for the s-, p-, and d-wave parameters. The s-wave distant level parameter R ∞ 0 = -0.18 ± 0.03 gives a potential scattering length R = 9.9 ± 0.25 fm [see Eq. ( 3)]. The latter uncertainty is twice as large as the uncertainty determined in the resonance range. By contrast, the final S 0 value of 1.01 ± 0.13 is in excellent agreement with the expected value of 1.02 ± 0.14 reported in Sec. III. Average parameters obtained in this work are summarized in Table X and compared with values compiled in the Atlas of Neutron Resonances [24] and RIPL-2 [25].

VI. NEUTRON CROSS SECTIONS

The parametrization established in this work (see Tables VIII andIX) was verified with experimental data retrieved from the EXFOR database [9]. For the total cross section, time-of-flight data measured by Gressier [1], Auchampaugh et al. [38], and Paya [22] were averaged over a 

σ t (E) = - 1 n ln T (E) C T (E) . ( 32 
)
Correction factors C T (E) obtained for the Paya and Auchampaugh et al. data are compared in Fig. 8. A good agreement is obtained between the SESH and the CALENDF codes. The discrepancies remain lower than 5%. They become negligible above 2 keV. Similar calculations were performed for the transmission data measured at the GELINA facility.

The top plot in Fig. 9 compares the experimental data with the total cross section provided by the optical model code ECIS [7]. Calculations performed with and without correlations between the optical model parameters demonstrate the significant impact of our retroactive analysis up to 100 keV. The bottom plot in Fig. 9 shows the 237 Np capture cross section calculated with the statistical model code TALYS [8]. The correlations among the optical model parameters (Table VIII), the uncertainty of 1.0 meV quoted for the average radiation width (Table V), and the 5% relative uncertainty obtained in the mean level spacing (Table VI) were propagated through the TALYS calculations via direct Monte Carlo techniques [18]. The good agreement obtained with the capture cross section measured at the ORELA facility [12] confirms the magnitude of the 237 Np γ -ray strength function 10 4 S γ = 655 ± 37 provided by the statistical analysis of the resolved resonance parameters.

The 237 Np total and capture cross sections obtained in this work are given in Table XI. Results provided by the ECIS and TALYS codes are compared with those calculated with the CONRAD code [6]. The latter uses the average R-matrix theory [Eqs. (24) and (25)] to calculate the total cross section with the average parameters reported in Table IX.

The same code calculates the compound nucleus reactions (capture, elastic, inelastic, and fission reactions) via the Hauser-Feshbach formula with width fluctuation corrections based on the Moldauer's prescriptions. The good agreement between ECIS/CONRAD and TALYS/CONRAD demonstrates the correct description of the cross sections with the l-dependent average parameters established in this work.

VII. CONCLUSIONS

Results presented in this work demonstrate the performance of the combined analysis of the resolved and unresolved resonance ranges to predict the behavior of the neutroninduced capture reaction up to several tens of kilo-electron volts. The good agreement between the theoretical and the experimental values is confirmed by the uncertainties obtained with Monte Carlo techniques.

The analysis of several time-of-flight data provided a potential scattering length R = 9.8 ± 0.1 fm, an average radiation width γ = 39.3 ± 1.0 meV, an s-wave mean level spacing D 0 = 0.60 ± 0.03 eV, and an s-wave neutron strength function 10 4 S 0 = 1.02 ± 0.14. For higher-order partial waves (l > 0), the statistical analysis of the resonances with the generalized SPRT method led to pand d-wave neutron strength functions equal to 10 4 S 1 = 1.81 ± 0.37 and 10 4 S 2 = 1.57 ± 0.23. By introducing these l-dependent average parameters in the average R-matrix code CONRAD, we obtained total and capture cross sections in excellent agreement with the ECIS and TALYS calculations.

Investigations of the complex nuclear mechanisms involved above the mega-electron volt energy range are in progress. Works performed by A. Tudora at the Faculty of Physics of the University of Bucharest will be used to describe the fission process.

This Appendix presents the optical model parametrization used to calculate the collision matrix elements C J lj involved in Eqs. (29) to (31). The dispersive optical potential proposed by Morillon et al. [33,34] can be written as

V (r, E) = [(V v (E) + V v (E)) + iW v (E)]f (r, r 0 , a) -4a[ V s (E) + iW s (E)] df (r, r 0 , a) dr -[(V so (E) + V so (E)) + iW so (E)] h m π c 2 × 1 r df (r, r 0 , a) dr -→ l . -→ s , (A1)
where the Woods-Saxon form factors f (r, r 0 , a) for the volume (v), surface (s), and spin-orbit (so) potentials share the same geometrical parameters (reduced radius r 0 , diffuseness a). In the dispersion relation treatment, V i (E) is used to connect the real V i (E) and imaginary W i (E) terms of each component (i = v, s, so). For the spin-orbit contributions, V so (E) and W so (E) were taken from Ref. [43]. For the real part of the surface potential the Hartree-Fock contribution of the mean field is given by

V v (E) = V HF e - µβ 2 [E-E F ] 2h -2 e 4µ 2 γ 2 [E-E F ] 2 h -4 . ( A2 
)
This contribution is defined by the depth V HF , the reduced mass of the system µ, and the nonlocality ranges β and γ . For the volume and surface imaginary terms, the energy dependences are symmetric about the Fermi energy

E F : W v (E) = A v (E -E F ) 2 (E -E F ) 2 + B 2 v , (A3) W s (E) = A s (E -E F ) 2 (E -E F ) 2 + B 2 s exp (-C s (E -E F )) . (A4)
Optical model parameters established by Morillon et al. [33,34] are given in Table XII. Parameters of interest in this work are the reduced radius r 0 , the diffuseness a, and the depths V HF , A v , and A s . For coupled-channel calculations, deformation parameters β 2 and β 4 were retrieved from the Moller and Nix database [44]: 

β 2 = 0.

Introduction

Hafnium is a ductile metal which does not exist as a free element in nature. The hafnium isotopes 174 Hf, 176 Hf, 177 Hf, 178 Hf, 179 Hf and 180 Hf are found combined in zirconium compounds with a respective abundance of 0.16%, 5.26%, 18.60%, 27.28%, 13.62% and 35.08%. In the neutron epi-thermal energy range, experimental works on natural and isotopic hafnium samples are scarce in the literature. Available data are rather old and the given results are often incomplete.

The first resonance spectroscopy which has established resolved resonance parameters for the hafnium isotopes over a wide energy range was reported by Fuketa et al. [1,2]. Single level parameters were extracted up to 1.2 keV from neutron transmission data of natural and isotopically enriched samples measured at the 45 m-flight path of the Oak Ridge National Laboratory fast chopper, and at the 25 m-flight path of the Linac facility of the Rensselaer Polytechnic Institute (RPI). Recently, the public release of a classified Multi-Level analysis, performed by Moxon on data measured at the Linac facility of the Harwell laboratory [3], provides one of the most reliable set of resonance parameters for 174 Hf, 176 Hf, 177 Hf, 178 Hf and 179 Hf below 30 eV. In his work, Moxon reports for the first time a strong 176,178 Hf doublet near 8 eV. For 177 Hf, resonance parameters used in the Evaluated Neutron Data Files are mainly based on results obtained in the mid 70s from high resolution neutron time-of-flight measurements performed at the Columbia University Nevis synchrotron by Liou et al. [4], and at the GELINA facility of the Institute for Reference Materials and Measurements (IRMM) by Rohr et al. [5]. The given resonance parameters are in good agreement within the energy range of overlap of both sets of data (below 300 eV). The last relevant transmission and capture measurements were performed at the RPI facility up to 200 eV [6]. The analysis performed by Trbovich with the modern R-matrix code SAMMY [7] provided a consistent set of parameters for a large number of 177,179 Hf resonances. Complementary studies over a larger energy range are required for improving the average nuclear properties of the even/even Hf isotopes, characterized by a higher mean level spacing.

In this paper, an attempt was made to establish an unambiguous set of l-dependent average parameters for the six Hf isotopes by using six transmission data measured at the Doppler station of the GELINA facility at low (77 K) and room (300 K) temperatures. These measurements were firstly performed to test Hf nuclear data by comparison of measured and calculated average transmission spectra [8]. Preliminary analysis [9,10] have demonstrated the possibilities to extract resonance energies and partial widths up to 1 keV.

The strength and originality of the present work lie in the Reich-Moore interpretation of the resolved resonance range with the shape analysis code REFIT [11] in association with optical model calculations based on parameters established by Morillon et al. [12,13] with deformation parameters initially proposed by Avrigeanu et al. [14,15]. Links between the collision matrix elements calculated by the optical model code ECIS [16] and the average R-Matrix parameters (neutron strength function S l and distant level parameters R ∞ l ) were established by using the ESTIMA [17] and SPRT methods [18]. The consistency of the resulting mean level spacing D l and average radiation width Γ γ was tested by comparing experimental capture cross sections retrieved from EXFOR [19] with statistical model calculations performed with the TALYS [20] and CONRAD [21] codes.

Experimental techniques

The transmission experiments were performed at the Doppler station of the 150 MeV pulsed neutron source GELINA of the IRMM. A scheme of the experimental areas is shown in Fig. 1. Neutrons are produced by using (γ ,xn) and (γ ,f) processes induced by electrons incident on a rotating U-target. Fast neutrons are moderated by a 36 mm water slab in a 2 mm Be canning. The accelerator conditions were 1 ns pulse-width at 800 Hz repetition rate. Neutrons produced by the target-moderator assembly were crossing a filter setup and the Hf samples in the cryostatic sample changer located at 10 m from the neutron source. They were detected at 26.443 ± 0.005 m with a 110 mm diameter and 10 mm thick Li-glass detector (NE912). The scintillator was viewed by two 5 EMI 9823 photo-multiplier tubes which were placed orthogonal to the beam axis and out of the neutron beam itself. The natural hafnium samples were metal discs with diameter of 55 mm and thickness of 1 mm. The hafnium content was given by the manufacturer to be 97%. The largest impurity was 2.8% zirconium. The discs were combined to generate the three different sample thicknesses given in Table 1. For the measurements at 77 K, the sample thickness was calculated using a linear expansion coefficient of α = 6.0 × 10 -6 K -1 . The samples are moved "in" (sample-in) and "out" (sample-out) of the neutron beam by an electro-mechanical sample changer. The sample position is located after 600 mm borax-resin collimator with an aperture of 40 mm.

The low temperature measurements were performed using a cryostat based on a Gifford-McMahoon cycle. Temperature stabilization was assured by monitoring the temperature with two platinum temperature sensors and adjusting the current through a heating resistor close to the sample position. This allows sample temperatures between 10 K and 350 K with an accuracy and stability better than 1 K. In order to avoid differences in the transmission spectra due to temperature differences between materials of the sample holder, both sample-in and sample-out positions were cooled and stabilized.

To avoid slow neutron background from the previous accelerator cycle, an anti-overlap filter was placed in the neutron beam in front of the sample changer. It was made from 0.0053 atoms/b rhodium disc and a 0.032 atoms/b cadmium sheet. To reduce the influence of the γ -flash, coming from the neutron producing target, a 5 mm thick high purity lead filter was permanently placed in the beam.

Data reduction

Transmission experiments measure the attenuation of the incident neutron flux going through a sample. Measurements are routinely performed in cycles with a preset count rate for the samplein and sample-out positions. This resulted in a cycle length of about 10 minutes, which minimized the effects of the inherent instabilities of the neutron flux. The transmission factor is then obtained from the ratio of the sum of the sample-in C in,i and sample-out C out,i measurements, both corrected for the dead time (a in and a out ) and background contributions (B in and B out ):

T (t) = N a in (t) i C in,i (t) -B in (t) a out (t) i C out,i (t) -B out (t) (1)
in which i labels the cycle numbers and N stands for the normalization factor. The latter accounts for the differences in integrated intensities of the incident neutron beam during the sample-in and sample-out cycles. The normalization was obtained by monitoring the neutron flux using two BF 3 proportional counters located in the concrete roof above the neutron source. These detectors give an accurate normalization of the transmission spectra with a dispersion of about 0.5%. The electronic dead time of the acquisition system was measured and recorded online. For the present experiments, corrections were well below 3%. After summation of the corresponding sample-in and sample-out cycles, the raw data were corrected for the timing offset and the compressed time channels were transferred to a linear scale.

The time dependent background was determined with the black resonance technique. Black resonances of Cd, Rh and Hf were adjusted in order to obtain the real transmission value for the minima. In a second stage, the time dependence of the background was fitted on the reconstructed values and subtracted from the raw data. Typical values for the background were 4.5% at 1 keV and 1.1% at 5 eV. For practical purpose, the black resonance regions were smoothed in order to avoid oscillations in the final TOF transmission spectra.

At this stage of the analysis, the contribution of the 2.8% impurity of zirconium in the hafnium sample was corrected. The experimental transmission data were divided by the theoretical transmission of the natural zirconium reconstructed by taken into account the sample temperature and experimental resolution. Final transmission spectra are shown in Fig. 2 as a function of the incident neutron energy.

Resonance shape analysis

The six transmission spectra measured at the GELINA facility were analyzed with the simultaneous fitting procedure of the REFIT code [11]. The transmission data were interpreted in term of Reich-Moore parameters by using the following expression:

T (E) = ∞ 0 R(E, E )T th (E ) dE (2) 
with in which i labels the contribution of the six Hf isotopes, n i represents the atomic surface density in atom per barn, σ i is the Doppler broadened total cross section and R accounts for the experimental resolution of the Doppler station. The determination of meaningful nuclear resonance parameters from neutron time-of-flight data requires a correct description of the energy resolution of the facility as a function of neutron energies. In the REFIT code, the variance and the skewness of the resolution function are determined by two parameters λ 1 and λ 2 . They represent the "effective" mean free path of the neutron respectively in the water slab and in the vicinity of the target-moderator assembly. The value of λ 1 = 5.7 ± 0.7 mm was calculated from 56 Fe capture data measured at the GELINA facility [22]. This result was confirmed by Monte-Carlo simulations [23,24]. For the determination of λ 2 , we have used a technique proposed in Ref. [25], that consists to fit the bottom of the nearly black resonances. The analysis of the transmission data of the 15-mm thick sample leads to λ 2 = 55.6 ± 2.1 mm. Example of resolution function given in distance is presented in Fig. 3. The contribution of the Doppler effect was taken into account by using the Free Gas Model with an effective temperature [26]. The effective temperature T eff corresponding to T = 300 ± 1 K was calculated using a simple Einstein model valid for pure element above room temperature:

T th (E) = exp - i n i σ i (E) (3) 
T eff = T E coth T E T (4)
The first two term of the Taylor expansion of this expression suffice and give [27]:

T eff T 1 + 1 3 T E T 2 (5) 
where T E stands for the Einstein temperature which is related to the Debye temperature T E = 3 8 θ D . Table 2 reports experimental and calculated values of Debye temperature for hafnium found in the literature. Although large discrepancies are observed, the average value remains consistent with the value of 252 K reported in Ref. [34]. By introducing the average value of θ D and its standard deviation in Eq. ( 5), we obtain an effective temperature equal to T eff = 309.8 ± 1.8 K. For the transmission spectra measured at 77 K, T eff was fitted on the data together with the resonance parameters. Results are shown in Fig. 4 as a function of the incident neutron energy. The average value is T eff = 99.4 K and the standard deviation is close to 11.5 K.

Examples of transmission data are shown in Fig. 5 together with the least-square adjusted theoretical curves. The strength of the present analysis lies in the successful use of transmission data measured at low temperature. Their simultaneous analysis within the fitting algorithm of the REFIT code allowed confirmation of the existence of broad multiplets of overlapping resonances (Fig. 6).

The final resonance shape analysis accounts for the contribution of a large variety of nuisance parameters (effective temperature, parameters of the resolution function, flight path length, atomic surface density). Realistic variance and covariance between the model parameters were calculated by means of Monte-Carlo techniques relying on conditional probabilities. Detail explanations can be found elsewhere [35,36]. The resonance energies and partial widths for the even/even hafnium isotopes are given in Table 3. Those obtained below 200 eV for 177,179 Hf are listed in Tables 4 and5. The complete set of hafnium parameters is reported in Ref. [37]. Our results are compared with the parameters available in the latest version of the European library JEFF-3.1.1 [38]. Below 200 eV, parameters of JEFF-3.1.1 were established by Trbovich et al. [6] from the resonance shape analysis of data measured at the RPI facility. The agreement between both sets of neutron widths is close to 5% in average. However, owing to the complex overlapping resonant structures of the natural hafnium cross sections, huge local discrepancies greater than 15% can be observed, especially for the less abundant 174 Hf isotope.

The analysis of the 15 mm-thick sample allowed the simultaneous adjustment of the neutron and radiation widths for several broad s-wave resonances mainly observed below 100 eV. For the n+ 177 Hf and n+ 179 Hf nuclear systems, we were able to extract Γ γ values for 28 and 13 resonances respectively. Their independent behavior with the neutron energy is shown in Fig. 7. For the even/even hafnium isotopes, the number of individual Γ γ accessible by means of the shape analysis method is more limited because of their larger mean level spacing and the increasing competition with the experimental resolution. Two radiation width values were obtained for the n+ 180 Hf nuclear system, and three values for n+ 174 Hf, n+ 176 Hf and n+ 178 Hf. The average radiation widths Γ γ obtained in this work are compared in Table 6 with results compiled in Refs. [39,40]. Agreement between the different values remains within the limit of the given uncertainties, excepted in the case of the compound system n+ 179 Hf. 

Statistical analysis of the Reich-Moore parameters

Inherent difficulties in assessing unambiguous average resonance parameters from neutron spectroscopy measurements are not only the correct determination of the s-wave parameters but also the generalization of the obtained results to higher order partial waves (l = 1, 2, 3, . . .). These difficulties can be partially solved with a sequential (and iterative) analysis of the low and high neutron energy ranges. The consistency of the final results depends mainly of the quality of the experimental data available in the unresolved resonance range, and of the choice of the optical model parameters established for the nuclei involved in the nuclear reactions of interest.

In the present work, we decided to focus our attention on the links between the average resonance parameters of the hafnium isotopes (i.e. neutron strength function S l , mean level spacing D l , distant level parameters R ∞ l ) and the systematic behavior of the deformation parameters needed for coupled channel calculations. 

The ESTIMA and SPRT methods

For modeling neutron induced reactions on the deformed hafnium nuclei, the coupledchannels model of the ECIS code was used with optical model parameters retrieve from the RIPL-2 database [40]. Some inconclusive calculations performed with phenomenological poten- tial established in the mid 80s lead us to choose the more recent dispersive and global optical model of Morillon et al. [12,13] established for target mass ranging from A = 24 to 209. For the deformation parameters, prior β 2 and β 4 values were retrieved from the Moller and Nix data base [41]. As shown in Fig. 8, values of β 2 for the 174,176,177,178,179,180 Hf isotopes are close to 0.27. Therefore, β 2 has to be considered as a free parameter under the condition to get a nearly constant final value for all the stable hafnium isotopes. This condition was achieved by using phenomenological relationships between the deformation parameters and the s-wave neutron strength functions provided by the ESTIMA and SPRT methods.

Relationships between these model parameters for neutron orbital angular momentum l = 0, 1 were firstly given through the low energy approximation of the SPRT approach [42]. Its generalization was recently derived from the real and imaginary parts of the collision matrix elements calculated by ECIS [18]. For deformed nuclei, the l-dependent neutron strength function S l and distant level parameter R ∞ l at the binding energy can be formally expressed as a function of the channel radius a c and of the deformation parameters β i (i = 2, 4):

S l = lim E→0 S l (E, a c , β i ) (6) R ∞ l = lim E→0 R ∞ l (E, a c , β i ) (7) 
According to the rules used in the Evaluated Nuclear Data Files [43], a reasonable choice for the channel radius a c is:

a c = 1.23 A m n 1/3 + 0.8 in fm (8) 
For s-wave channel, the relationship between the potential scattering length, the distant level parameters and the channel radius is explicitly defined as:

R = a c 1 -R ∞ 0 (9) 
In absence of resonances, equivalent expressions are obtained with the low energy approximation of the Reich-Moore and Multi-Level Breit-Wigner formalisms. Therefore, distant level parameters reported in this work can be used to describe the contribution of the direct interaction in the resolved resonance range. The generalized SPRT method provides l dependent model parameters that can be directly compared with those deduced from the statistical ESTIMA analysis of the resolved resonance parameters [17]. The latter analysis is routinely used within the low neutron energy spectroscopy community [44,45] to suggest the neutron strength function S 0 and mean level spacing D 0 from a confident s-wave resonance sample by taking into account experimentally missed small resonances.

The determination of the s-wave average parameters is sensitive to the contamination of p-wave resonances. The quantity usually measured in capture or transmission measurements is the product of the statistical spin factor g J with the neutron width Γ n . Therefore, the posterior probability that a resonance with a given g J Γ n value is a p-wave resonance can be formally expressed as follow:

P (l = 1|g J Γ n ) ∝ P (g J Γ n |l = 1)P (l = 1) (10) 
In which P (l = 1) stands for the probability that a resonance is a p-wave resonance. Such a probabilistic method fails to provide unique l assignments since there is an overlap between the weak s-wave and the strong p-wave resonances. A confident sample of s-wave resonances is suggested according to a threshold probability P (l = 1|g J Γ n ) > P B . Below P B , the sand pwave probability become indistinctive. Within the ESTIMA method, the P B threshold is chosen to minimize the discrepancies between the experimental and calculated integral of the Porter-Thomas reduced neutron width distribution P (x):

N(x 0 ) = N ∞ x 0 P (x) dx = N erfc x 0 2 (11) 
with

x = g J Γ 0 n g J Γ 0 n ( 12 
)
Expression N(x 0 ) stands for the number of s-wave resonances having x > x 0 in which N and g J Γ 0 n are free parameters. They represent respectively the estimated number of resonances for x 0 = 0 and the average value of the s-wave reduced neutron width. The s-wave mean level spacing D 0 and neutron strength function S 0 are calculated as follows:

D 0 = E max -E min N -1 (13) S 0 = g J Γ 0 n D 0 (14) 
In which E min and E max represent the lower and upper energy limits of the resolved resonance range under investigation.

Expressions ( 6), ( 7), ( 13) and ( 14) show the relationships that exist on the one hand between β i (i = 2, 4), S l and R ∞ l via the generalized SPRT method, and on the other hand between S 0 and D 0 via the ESTIMA method. The combination of the two methods gives constraints for the determination of the deformation parameters (involved in the description of the direct interactions) and of the mean level spacing (involved in the statistical modeling of the compound nucleus reactions).

Deformation parameters

The magnitude of the deformation parameters β 2 and β 4 was deduced from the statistical analysis of the 177 Hf and 179 Hf resonance parameters. An iterative analysis was needed to adopt the coupling scheme and to establish consistent ESTIMA parameters such as P B and E max (Eq. ( 13)). Minima in the variance of the neutron strength functions were observed for E max ( 177 Hf) < 200 eV and E max ( 179 Hf) < 300 eV. The Bayesian formulation of the probability P (l = 1|g J Γ n ) given in Eq. (10) suggests that all the levels measured below these energy limits are s-wave resonances. The ESTIMA results are shown in Fig. 9. The corresponding results are reported on the "staircase" plots of the s-wave reduced neutron widths and on the cumulative number of resonances. The slope of the curves yields respectively the s-wave neutron strength function S 0 and the level density 1/D 0 . Above E max , we can observed a rapid increase of the number of missing resonances. At 500 eV, it represents approximately more than 40% of the observed levels.

The generalized expression of the SPRT method, given in Eqs. ( 6) and (7), were used to link the ESTIMA results and the deformation parameters. Fig. 10 illustrates the SPRT results for the n+ 177 Hf and n+ 179 Hf nuclear systems. By combining these results with the systematic behavior shown in Fig. 8, we were able to optimize a consistent set of β 2 and β 4 parameters accordingly to prior values proposed by Avrigeanu et al. [14,15]. Our study suggests to normalize the β 2 and β 4 parameters of Moller and Nix with correction factors of 0.86 ± 0.11 and 0.42 ± 0.06 respectively. Final model parameters are listed in Table 7. Values of the 177,179 Hf neutron strength functions (10 4 S 0 = 2.48 and 10 4 S 0 = 2.15) are consistent with those reported in Fig. 9 (10 4 S 0 = 2.51 and 10 4 S 0 = 2.11). The given uncertainties are dominated by the accuracy of the statistical formalism used within the ESTIMA approach. The simultaneous analysis of the integral formulation of the Porter-Thomas distribution (Eq. ( 11)) with the "staircase" plot of the reduced neutron width could reduce the relative uncertainty of each parameter down to 10%. This improved ESTIMA approach is under study in the frame of the CONRAD code.

Table 8 compares our neutron strength function and potential scattering length values with those compiled in Refs. [39,40]. If R results are in reasonable agreement, the l-dependent neutron strength functions are characterized by larger discrepancies. For l = 0, an excellent agreement is observed for n+ 177 Hf, n+ 178 Hf and n+ 180 Hf, while results proposed by Mughabghab for S 2 are systematically lower. The order of magnitude of our results was verified with optical model parameters as used in Ref. [15]. The generalized SPRT method leads to d-wave strength function close to 3.0 × 10 -4 and distant level parameters compatible with those reported in Table 7. 177,179 Hf ESTIMA results with the Porter-Thomas integral distributions (top plots), the staircase plots of the s-wave reduced neutron widths (middle plots) and the cumulative number of s-wave resonances (bottom plots). E min and E max stand for the lower and upper limit of the energy range within which the average resonance parameters have been obtained (see Eq. ( 13)).

s-wave mean level spacing

For the compound systems n+ 177 Hf and n+ 179 Hf, D 0 values have been estimated with the ESTIMA method (see Section 5.2). Results are reported in Fig. 9. For the even/even hafnium isotopes, ESTIMA parameters were fine tuning in order to converge to S 0 values consistent with results reported in Table 7. This methodology was successfully applied on our 174 Hf and 178 Hf resonance parameters. ESTIMA analysis suggested that all the levels observed below 200 eV and 1 keV respectively are s-wave resonances. For n+ 180 Hf, the statistical analysis was performed up to 5 keV with a Bayesian criteria P (l = 1|g J Γ n ) > 0.5. Among the 57 observed levels, ESTIMA suggested that 31 resonances are s-wave and 26 resonances could be p-wave. The same methodology fails to provide a consistent set of D 0 and S 0 values for the compound system n+ 176 Hf. We tried to solve this difficulty by using the systematic behavior of the s-wave gamma-ray strength function S γ . At low energy, the latter can be explicitly defined as follow:

S γ = Γ γ D 0 (15) 
Assuming that only s-wave contributes, S γ may alternatively be obtained by integrating the γ -ray transmission coefficients for multipolarity E1 over the density of final states (including discrete states) that may be reached in the first step of the γ -ray cascade. For n+ 176 Hf, we have:

S γ N S n 0 ρ 1/2 -(S n -E γ ) + ρ 3/2 -(S n -E γ ) f E1 (E γ )E 3 γ dE γ , (16) 
in which f E1 stands for the energy-dependent spectral factor for E1 transition and N represents a normalization factor. In the present work, the latter factor was deduced from the S γ values of the n+ 174,178,180 Hf compound systems by calculating the giant dipole resonance shape f E 1 with the standard Brink-Axel Lorentzian form [47,48] and with the incoherent sum of two generalized Lorentzian terms as proposed by Kopecky and Uhl [49]. Results given in Fig. 11 were produced without introducing in the calculations systematic uncertainties on the giant dipole resonance parameters. The least squares fit of our experimental values with the Kopecky-Uhl and Brink-Axel shapes provided a γ -ray strength function for the compound system n+ 176 Hf equal to 10 -4 S γ = 16.3 ± 0.9. The quoted uncertainty is mainly due to the discrepancy observed between the Brink-Axel and Kopecky-Uhl models. The latter discrepancy ranges from 2% for n+ 180 Hf to 8% for n+ 174 Hf. By combining this S γ result with the n+ 176 Hf average radiation width reported in Table 6, we obtained a s-wave mean level D 0 = 33.9 ± 2.4 eV.

Results obtained for the s-wave mean level spacing of interest for this work are summarized in Table 9. For the n+ 174 Hf, n+ 178 Hf and n+ 180 Hf nuclear systems, the agreement between the D 0 values obtained with the ESTIMA method (by fine tuning to the S 0 value, see deduced from the γ -ray strength function (by using our Γ γ results, see Table 6) remains within the limit of the uncertainties. Fig. 12 compares the experimental trends (deduced from the resolved resonance range) with the theoretical curves (deduced from the systematics). As expected, the larger discrepancies can be observed on the "staircase" plots of the reduced neutron widths for the compound sys-Fig. 12. Comparison of the 174,176,178,179 Hf ESTIMA results with the Porter-Thomas integral distributions (left hand plots), the staircase plots of the s-wave reduced neutron widths (middle plots) and the cumulative number of swave resonances (right hand plots). E min and E max define the energy range of interest for the ESTIMA method (see Eq. ( 13)). For n+ 180 Hf, similar conclusions arise when we compare our results with those reported in the literature (Table 9). New time-of-flight measurements on isotopically enriched hafnium samples are needed to solve these ambiguous results.

Level density parameters

The unresolved resonance range is characterized by a weak energy dependence of the model parameters. Therefore, if the energy dependence of the level density parameter a is neglected, the continuum spectra of the compound nucleus can be adequately described by the semi-empirical composite level density formula of Gilbert and Cameron [50]. The adopted expression can be written as follows:

ρ J (E) = ρ(E) 2J + 1 4σ 2 (E) exp - (J + 1/2) 2 2σ 2 (E) ( 17 
)
with σ 2 (E) = 0.0888A 2/3 a(E -Δ) (18) On both sides of the matching energy E m , behavior of the lower levels is described by the constant temperature approximation (E < E m ) and the Fermi-gas model (E > E m ):

ρ(E) = ⎧ ⎨ ⎩ 1 T exp( E-E 0 T ) E<E m exp(2 √ a(E-Δ)) 12 √ 2a 1/4 (E-Δ) 5/4 σ (E) E > E m ( 19 
)
The matching energy E m , corrected for pairing energy Δ, can be calculated as follow [51,52]:

E m = T 2 aT -3 + aT (aT -6) + Δ ( 20 
)
The energy shift E 0 is given by:

E 0 = E m -T ln T exp(2 √ a(E m -Δ)) 12 √ 2a 1/4 (E m -Δ) 5/4 σ (E m ) (21) 
Assuming equal probability for both parities (+ and -), the level density parameter a can be determined by solving transcendental equations that depend of the ground state spin I of the target nucleus:

1/D 0 = 1 2 ρ 1/2 (B n ) I = 0 1 2 ρ J -1/2 (B n ) + ρ J +1/2 (B n ) I = 0 (22) 
Fig. 13. Comparison of the experimental cumulated number of levels [40] with the constant temperature model (Eq. ( 19)) for the compound nuclei of interest for this work. The energy E d where the level continuum was supposed to start is marked by an arrow (see Table 10).

Nuclear level density parameters and matching conditions established in the frame of the Gilbert-Cameron model are reported in Table 10. For the nuclear temperature T , values ranging from 0.53 MeV to 0.57 MeV were determined by fitting the cumulative numbers of low-lying nuclear levels (Fig. 13). The mean value of T is close to 0.549 MeV and the standard deviation is about 0.014 MeV (2.5%). Nuclear temperatures with variations in the same order of magnitude (0.52 MeV-0.54 MeV) are compiled in RIPL-2 [40]. However, a closer inspection of the major discrepancy of about 7% between the temperature obtained for the n+ 178 Hf and n+ 179 Hf nuclear systems provides clear evidence of the dependence of T with the E d threshold of the fitting region and with the number of missing levels. The degree of completeness of the discrete level 23)) as a function of the excitation energy for the even/even Hf isotopes. The dashed line are systematics calculated with parameters reported in Ref. [46]. schemes adopted for the even/even Hf isotopes has been investigated by checking the smooth behavior with the excitation energy of the parity ratio parameter:

π(E) = ρ + (E) ρ + (E) + ρ -(E) (23) 
Fig. 14 shows the parity ratio constructed by calculating the ratio of the number of positive parity levels to the total number of levels in that bin. Comparisons with systematics taken from Ref. [46] show the reasonable behavior of the n+ 174 Hf and n+ 180 Hf discrete level schemes, while discrepancies observed for the n+ 176 Hf and n+ 178 Hf nuclear systems suggest missing experimental information in the level schemes adopted in this work. Therefore, an improved Fig. 15. Natural hafnium total cross section calculated from the CONRAD results obtained for each Hf isotope. The experimental data were retrieved from EXFOR [19].

methodology is needed to account for these poorly know sources of experimental uncertainties during the adjustment of the nuclear temperature.

Modeling of the neutron cross sections

The focus of this section is to describe the neutron induced reactions within the energy limit of the unresolved resonance range of the Hf isotopes. In the present work, the upper limit of this energy range was extended up to 1 MeV.

Average parameters determined in this work (see Tables 6, 7 and 10) were introduced in the CONRAD code. The corresponding total and capture cross sections were compared with results obtained from two independent calculations. The first one is based on ECIS and TALYS using the optical model parameters established by Morillon et al. [12,13]. The second calculation uses a local approach as given in Ref. [15] with ECIS results based on deformed optical model parameters of Young. In both cases, ECIS calculations were performed by using β i=2,4 values of Table 7.

ECIS and CONRAD basically share the same formalism to calculate the total, shape elastic and reaction cross sections. In ECIS, elements of the collision matrix are calculated from a given phenomenological optical model potential, while CONRAD uses an average formulation of the R-Matrix theory parameterized in terms of l-dependent neutron strength function S l and distant level parameters R ∞ l [53,54]. Figs. 15 and 16 compare the CONRAD results with experimental total cross sections retrieved from EXFOR [19]. The uncertainties on the calculated total cross sections (gray zones) were deduced from the accuracy of the deformation parameters reported in Table 7. Measurements for each Hf isotope and for the natural element are well reproduced by the theoretical curves. A closer inspection of the CONRAD and ECIS results indicates that the discrepancies with the calculations based on the optical model parameters of Morillon et al. [12,13] remain below 5% at 1 MeV. The total cross section obtained with the optical model parameters of Young (see Ref. [15]) remains within the limit of the theoretical uncertainties. Fig. 17. CONRAD results (solid line) and uncertainties (gray zones) obtained by using the average parameters and the uncertainties reported in Tables 6, 7 and 10. They are compared with calculations (dashed line) based on the local approach and parameters given in Section 3.2.4 of Ref. [15] with the average radiation widths from Table 6 of this work. The experimental data were retrieved from EXFOR [19]. For the modelling of the partial cross sections, CONRAD uses the Hauser-Feshbach formalism with width fluctuations corrections based on the Moldauer's prescriptions [55]. For the capture cross section, the treatment of the γ -ray strength function is somewhat simpler than the models included in high energy codes. CONRAD takes only into account the electric-and magnetic-dipole transmission coefficients for multipolarity l = 1. The E1 radiation is described in the form of a Brink-Axel Lorentz line [47,48], while the energy dependence of the M1 γ strengths is given by a simple model as proposed by Blatt and Weisskopf [56]. Parameters of the photon transmission coefficients are taken from Ref. [57]. The consistency of the average radiation widths (Table 6) and of the level density parameters (Table 10) obtained in this work was verified with capture cross sections retrieved from EXFOR. As shown Fig. 17, agreements between the CONRAD results (solid line) and the experimental data remain within the limit of the theoretical uncertainties (gray zones). An overall good agreement is also obtained with the capture cross sections (dashed line) based on the local approach of Ref. [15]. In the latter approach, the energy-dependent spectral factor for E1 transition f E1 (E γ ) has been obtained by means of a modified energy-dependent Breit-Wigner (EDBW) model [58,59]. Systematic correction factors F SR within the EDBW formula were obtained by using the average radiation widths Γ γ of the s-wave neutron resonances given in Table 6, and assuming that F SR = Γ γ /Γ EDBW γ . Actually, the f E1 (E γ ) thus obtained have been checked within the calculations of capture cross sections of Hf, Ta, and W isotopes in the neutron energy range from keV to 2-3 MeV (Refs. [14,15] as well as the present work), by using the OMP and nuclear level density parameters described above and global estimations [60] of the γ -ray strength functions for multipoles λ 3.

As CONRAD and TALYS use the same statistical formalism to describe the compound nucleus reactions, results produced by the two codes are compared in Fig. 18. For the TALYS calculations, the γ -ray strength function model for E1 radiation is based on the Kopecky-Uhl Lorentzian form [49]. The Brink-Axel shape is used for all transition types other than E1. The Giant Dipole Resonance parameters are taken from RIPL-2. In the lower energy part of the unresolved resonance range, where S γ is nearly constant, values of the Hf capture cross sections calculated via the average parameters are close to those provided by the TALYS calculations. The increasing discrepancies observed above few hundreds of keV (∼300 keV) mainly depend on the parameterization of the giant dipole resonance shape used in both codes.

Conclusion

This paper reports a consistent set of l-dependent model parameters for the Hf isotopes (γ -strength function, neutron strength function, potential scattering, distant level parameters, level density parameters). It was established by merging results provided by the statistical analysis of the resolved resonance range (ESTIMA approach) with results given by a generalized formulation of the conventional SPRT method. The average value of the parameters was mainly deduced from recent time-of-flight measurements performed at the GELINA facility and from the smooth behavior of the deformation parameters around A = 177 proposed by Moller and Nix. As suggested in previous works, we have obtained β 2 values close to 0.24 and β 4 values ranging from -0.015 to -0.04. These results lead to neutron strength functions for sand p-waves close to 2.1 × 10 -4 and 1.0 × 10 -4 respectively. For S 2 , values higher than 3.0 × 10 -4 are confirmed by the present work.

These Hf model parameters were successfully used in the cross section models of CONRAD (average R-Matrix formalism and Hauser-Feshbach calculations) to accurately reproduce experimental data within the unresolved resonance range. Our study has demonstrated the need to merge conventional resonance shape analysis with systematics to determine reliable normalization factors for the 176 Hf capture cross section. Additional calculations have also shown that the CONRAD code provides cross section values consistent with those calculated by the sequential application of the ECIS and TALYS codes. Discrepancies remain below 5% up to few hundreds of keV (∼300 keV).

Parallel studies were performed to provide reliable uncertainties on the model parameters. In a first approximation, the present work confirm the magnitude of the Γ γ and D 0 uncertainties recommended by Mughabghab in his Atlas of Neutron Resonances. However, for the neutron strength functions and deformation parameters, the method used for the statistical analysis of the resolved resonance parameters represents the main source of uncertainties. Additional works are needed to reduce this contribution in order to favorize impact of the well known experimental uncertainties inherent to time-of-flight measurements.
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 18 Fig. 18. Comparison of the capture cross sections produced by the CONRAD and TALYS codes.
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Table 3 .

 3 1: Equivalent hard-sphere channel radii obtained from the least squares fit of the phase shift calculated by ECIS for the nuclear system 241 Am+n.

	Channel	Orbital momentum
	radius	l = 0	l = 1	l = 2
	a l,J=0		9.26 fm
	a l,J=1		5.51 fm 9.41 fm
	a l,J=2	9.51 fm 7.66 fm 8.79 fm
	a l,J=3	9.52 fm 7.81 fm 8.22 fm
	a l,J=4		6.07 fm 8.83 fm
	a l,J=5		8.88 fm
	a l	9.52 fm 7.20 fm 8.76 fm
	Table 3.2: Comparison of the equivalent hard-sphere radius for the nuclear system 241 Am+n
	with results obtained from Eqs. (3.16), (3.52) and (3.53).	
	Channel radius		Ref.	Value
	Vogt's prescription (Eq. (3.52)) [51]	8.28 fm
	ENDF convention (Eq. (3.16)) [3]		8.43 fm
	Empirical formula (Eq. (3.53))		≥ 9.56 fm
	Equivalent hard-sphere (l = 0)		9.52 fm

  and (3.32) (or alternatively with Eqs. (3.34) and (3.35)):

Table 4 .

 4 1: Neutron strenght functions S l and distant level parameters R

	∞ l obtained with

TABLE I Strength

 I Functions ~S0 !, Distant Level Parameters ~R0 `!, and Scattering Radius R ' for 232 Th ϩ n and 238 U ϩ n Obtained with the Generalized SPRT Method by Using the OPTMAN and ECIS Codes with the Optical Model Parameters Determined by Capote et al.*

		OPTMAN	ECIS
	SPRT				
	Parameters 232 Th ϩ n 238 U ϩ n 232 Th ϩ n 238 U ϩ n
	10 4 S 0	0.86	0.93	0.86	0.93
	R 0 `Ϫ0.17	Ϫ0.15	Ϫ0.17	Ϫ0.15
	R '	9.71 fm	9.66 fm	9.70 fm	9.67 fm

*Reference 18.

TABLE II Distant

 II Level Parameters ~Rlj `! and Scattering Radii ~R' ! Obtained with the Generalized SPRT Method, Using the ECIS Code with the Optical Model Parameters Established by Capote et al.* 232 Th ϩ n and ~b! 238 U ϩ n obtained with the generalized SPRT method by running the ECIS code with the optical model parameters established by Capote et al.18 

	Nuclear Systems		This Work	Mughabghab 19
	232 Th ϩ n			
	l ϭ 0	R 0 `ϭ Ϫ0.170	R 0, 102 `ϭ Ϫ0.170	
	l ϭ 1	R 1 `ϭ 0.101	R 1, 102 `ϭ 0.044	R 1, 302 `ϭ 0.137
	l ϭ 2	R 2 `ϭ Ϫ0.097	R 2, 302 `ϭ Ϫ0.151	R 2, 502 `ϭ Ϫ0.053
	l ϭ 3	R 3 `ϭ 0.217	R 3, 502 `ϭ 0.198	R 3, 702 `ϭ 0.228
		R ' ϭ 9.7 fm		R ' ϭ 9.65 6 0.08 fm
	238 U ϩ n			
	l ϭ 0	R 0 `ϭ Ϫ0.155	R 0, 102 `ϭ Ϫ0.155	
	l ϭ 1	R 1 `ϭ 0.119	R 1, 102 `ϭ 0.066	R 1, 302 `ϭ 0.159
	l ϭ 2	R 2 `ϭ Ϫ0.074	R 2, 302 `ϭ Ϫ0.127	R 2, 502 `ϭ Ϫ0.028
	l ϭ 3	R 3 `ϭ 0.219	R 3, 502 `ϭ 0.227	R 3, 702 `ϭ 0.211
		R ' ϭ 9.67 fm		R ' ϭ 9.6 6 0.1 fm
	240 Pu ϩ n			
	l ϭ 0	R 0 `ϭ Ϫ0.138	R 0, 102 `ϭ Ϫ0.138	
	l ϭ 1	R 1 `ϭ 0.127	R 1, 102 `ϭ 0.083	R 1, 302 `ϭ 0.160
	l ϭ 2	R 2 `ϭ Ϫ0.053	R 2, 302 `ϭ Ϫ0.100	R 2, 502 `ϭ Ϫ0.014
	l ϭ 3	R 3 `ϭ 0.219	R 3, 502 `ϭ 0.218	R 3, 702 `ϭ 0.218
		R ' ϭ 9.55 fm		R ' ϭ 9.6 6 0.2 fm
	242 Pu ϩ n			
	l ϭ 0	R 0 `ϭ Ϫ0.137	R 0, 102 `ϭ Ϫ0.137	
	l ϭ 1	R 1 `ϭ 0.130	R 1, 102 `ϭ 0.082	R 1, 302 `ϭ 0.167
	l ϭ 2	R 2 `ϭ Ϫ0.055	R 2, 302 `ϭ Ϫ0.104	R 2, 502 `ϭ Ϫ0.014
	l ϭ 3	R 3 `ϭ 0.229	R 3, 502 `ϭ 0.231	R 3, 702 `ϭ 0.226
		R ' ϭ 9.56 fm		R ' ϭ 9.8 6 0.2 fm
	*Reference 18.			

Fig. 3. The s-, p-, d-, f-wave distant level parameters for ~a!

TABLE III Neutron

 III Strength Functions ~Sl ! Obtained with the Generalized SPRT Method by Using the ECIS Code with the Optical Model Parameters Established by Capote et al.* Capote et al. Our results are compared with those reported in RIPL ~Ref. 9! and in the Atlas of Neutron Resonances.19 

		232 Th ϩ n	238 U ϩ n	240 Pu ϩ n	242 Pu ϩ n
	This work				
	10 4 S 0	0.86	0.93	1.05	0.89
	10 4 S 1	1.82	1.83	1.88	2.07
	10 4 S 2	1.25	1.34	1.51	1.22
	10 4 S 3	1.85	2.03	2.02	2.15
	RIPL ~Ref. 9!				
	10 4 S 0	0.87 6 0.07 1.03 6 0.08 1.05 6 0.1 0.98 6 0.08
	10 4 S 1		1.60 6 0.40		
	Mughabghab 19				
	10 4 S 0	0.71 6 0.04 1.29 6 0.13 1.11 6 0.08 0.92 6 0.10
	10 4 S 1	1.35 6 0.04 2.17 6 0.19 2.80 6 0.80	
	10 4 S 2	1.12 6 0.06			
	*Reference 18,			

TABLE I .

 I Experimental characteristics of the capture data used in this work.

	Author(s)	Ref. Facility Flight Sample	Sample
		no.	length diameter	thickness
			(mm) (mm)	(at/b)
	Weston and Todd [12] ORELA 20	50.8	0.25 × 10 -3
	Kobayashi et al.	[13] KURRI	12	30	0.35 × 10 -3
	Shcherbakov et al. [14] KURRI	24.2	30	0.35 × 10 -3
	Esch et al.	[15] LANSCE 20	6.4 0.0035 × 10 -3

TABLE II .

 II Main characteristics of the transmission measurements performed by Gressier[1] at the GELINA facility.

	Date	Flight	Frequency	Sample	"Antioverlap" Sample thickness
		length (m)	(Hz)	temperature (K)	filter	(at/b)
	Feb. 1997	26.453	100	290	Cd	2.49 ± 0.02
	Feb. 1997	26.453	100	290	Cd	0.497 ± 0.003
	Oct. 1997	49.332	800	300	10 B	5 .03 ± 0.03
	Jan. 1998	26.453	800	300	Cd	7.52 ± 0.04
	Feb. 1998	49.332	100	300	Cd	5.03 ± 0.03
	June 1998	49.332	800	300	10 B	5 .03 ± 0.03
				044607-2		

TABLE III .

 III 237 Np resonance parameters below 100 eV.

									TABLE III. (Continued.)
	E λ (eV)	J	This work (meV)	JEFF-3.1 (meV)	E λ (eV)	J	This work (meV)	JEFF-3.1 (meV)
			λ,γ	λ,n	λ,γ	λ,n			λ,γ	λ,n	λ,γ	λ,n
	-2.8 ± 0.03 2.0 40.0 ± 0.4 2.794 ± 0.050 40.0	2.176	31.30 ± 0.02	3.0	39.3	0.245 ± 0.003	40.0	0.245
	-0.91 ± 0.02 3.0 40.0 ± 0.4 1.182 ± 0.098 40.0	0.450	31.66 ± 0.03	3.0	39.3	0.042 ± 0.001	40.0	0.043
	0.49 ± 0.01 2.0 39.4 ± 0.7 0.047 ± 0.001 40.5	0.047	32.48 ± 0.03	2.0	39.3	0.011 ± 0.002	40.0	0.011
	1.32 ± 0.01 3.0 37.9 ± 0.4 0.031 ± 0.001 40.3	0.032	33.42 ± 0.02	3.0	39.3	0.395 ± 0.005	40.0	0.395
	1.48 ± 0.01 2.0 41.6 ± 0.9 0.184 ± 0.004 40.5	0.184	33.90 ± 0.03	2.0	39.3	0.487 ± 0.006	40.0	0.487
	1.97 ± 0.01 3.0 37.2 ± 0.6 0.014 ± 0.001 39.5	0.014	34.08 ± 0.03	3.0	39.3	0.039 ± 0.006	40.0	0.035
	3.05	[3.0]			40.8	<0.001	34.69 ± 0.03	3.0	39.3	0.163 ± 0.002	40.0	0.170
	3.86 ± 0.01 3.0 40.4 ± 0.6 0.211 ± 0.002 39.7	0.212	35.20 ± 0.03	2.0	39.3	0.413 ± 0.004	40.0	0.409
	4.26 ± 0.01 2.0 40.0 ± 0.9 0.033 ± 0.001 40.4	0.033	36.38 ± 0.03	3.0	39.3	0.121 ± 0.002	40.0	0.126
	4.86 ± 0.01 2.0 40.1 ± 1.2 0.043 ± 0.001 40.0	0.042	36.82 ± 0.03	2.0	39.3	0.085 ± 0.003	40.0	0.087
	5.78 ± 0.01 3.0 42.1 ± 0.8 0.533 ± 0.009 41.9	0.528	37.15 ± 0.03	3.0	39.3	1.152 ± 0.011	37.4	1.138
	6.38 ± 0.01 3.0 38.8 ± 1.2 0.079 ± 0.001 39.6	0.079	37.83 ± 0.03	2.0	39.3	0.042 ± 0.004	40.0	0.042
	6.68 ± 0.01 2.0	39.3	0.014 ± 0.001 40.1	0.013	38.05 ± 0.03	2.0	39.3	0.208 ± 0.007	40.0	0.208
	7.19 ± 0.00 2.0	39.3	0.010 ± 0.001 40.0	0.009	38.19 ± 0.03	3.0	39.3	1.199 ± 0.013	40.0	1.193
	7.42 ± 0.01 3.0 39.0 ± 1.5 0.124 ± 0.001 38.4	0.122	38.91 ± 0.03	3.0	39.3	0.820 ± 0.013	40.0	0.816
	7.67 ± 0.01 2.0	39.3	0.003 ± 0.001 40.0	0.002	39.01 ± 0.03	2.0	39.3	0.410 ± 0.014	40.0	0.410
	8.30 ± 0.01 3.0 39.7 ± 1.4 0.093 ± 0.001 37.6	0.090	39.24 ± 0.03	3.0	39.3	0.532 ± 0.007	40.0	0.529
	8.98 ± 0.01 3.0 37.2 ± 1.3 0.104 ± 0.001 37.0	0.102	39.80 ± 0.03	2.0	39.3	0.088 ± 0.004	40.0	0.088
	9.30 ± 0.01 2.0 41.8 ± 0.9 0.611 ± 0.006 41.4	0.602	39.93 ± 0.03	3.0	39.3	0.453 ± 0.005	40.0	0.450
	10.23 ± 0.01 2.0	39.3	0.030 ± 0.001 40.0	0.028	41.36 ± 0.03	3.0	39.3	1.963 ± 0.027	38.9	1.947
	10.68 ± 0.01 3.0	39.3	0.439 ± 0.005 40.0	0.432	42.38 ± 0.03	3.0	39.3	0.084 ± 0.017	40.0	0.084
	10.84 ± 0.01 3.0	39.3	0.701 ± 0.011 40.0	0.689	42.84 ± 0.03	3.0	39.3	0.083 ± 0.004	40.0	0.083
	11.10 ± 0.01 2.0 42.2 ± 1.1 1.032 ± 0.013 43.8	1.010	43.19	3.0			40.6	0.004
	12.20 ± 0.01 3.0	39.3	0.048 ± 0.001 40.0	0.049	43.65 ± 0.03	2.0	39.3	0.345 ± 0.007	40.0	0.339
	12.62 ± 0.01 2.0 38.9 ± 1.2 0.925 ± 0.010 40.2	0.911	44.28 ± 0.04	2.0	39.3	0.026 ± 0.012	40.0	0.026
	13.13 ± 0.01 3.0	39.3	0.017 ± 0.001 40.0	0.017	44.92 ± 0.04	2.0	39.3	0.012 ± 0.002	40.0	0.012
	14.39 ± 0.01 2.0	39.3	0.002 ± 0.001 40.0	0.002	45.71 ± 0.04	2.0	39.3	0.516 ± 0.009	40.0	0.511
	15.79 ± 0.01 3.0	39.3	0.069 ± 0.001 40.0	0.069	46.03 ± 0.04	3.0	39.3	0.584 ± 0.010	40.0	0.570
	15.94 ± 0.01 3.0	39.3	0.038 ± 0.001 40.0	0.038	46.36 ± 0.04	3.0	39.3	2.604 ± 0.023	45.3	2.629
	16.08 ± 0.01 2.0 38.1 ± 1.8 1.069 ± 0.012 40.0	1.052	47.33 ± 0.04	2.0	39.3	2.900 ± 0.025	38.2	2.863
	16.86 ± 0.01 2.0	39.3	0.304 ± 0.002 37.8	0.299	48.44 ± 0.04	2.0	39.3	0.105 ± 0.006	40.0	0.104
	17.59 ± 0.01 3.0	39.3	0.159 ± 0.001 39.1	0.156	48.77 ± 0.04	3.0	39.3	0.347 ± 0.007	40.0	0.349
	17.90 ± 0.01 2.0	39.3	0.018 ± 0.001 40.0	0.018	48.89 ± 0.04	2.0	39.3	0.172 ± 0.008	40.0	0.172
	17.94 ± 0.01 3.0	39.3	0.003 ± 0.001 40.0	0.003	49.27	2.0			40.0	0.007
	18.89 ± 0.02 2.0	39.3	0.048 ± 0.001 40.0	0.048	49.82 ± 0.04	3.0	39.3	4.194 ± 0.061	36.5	4.169
	19.13 ± 0.02 3.0	39.3	0.089 ± 0.001 40.0	0.088	50.34	2.0			31.3	2.101
	19.92 ± 0.01 3.0	39.3	0.069 ± 0.001 40.0	0.070	50.40 ± 0.04	3.0	39.3	7.399 ± 0.157	46.8	7.396
	20.40 ± 0.01 2.0 37.1 ± 1.9 1.395 ± 0.015 39.4	1.368	51.69 ± 0.04	3.0	39.3	0.096 ± 0.005	40.0	0.112
	21.09 ± 0.02 3.0	39.3	0.450 ± 0.003 40.0	0.446	52.21 ± 0.04	2.0	39.3	0.399 ± 0.006	40.0	0.401
	21.31 ± 0.02 2.0	39.3	0.032 ± 0.001 40.0	0.028	52.65 ± 0.04	2.0	39.3	0.886 ± 0.010	40.0	0.880
	22.01 ± 0.02 2.0 36.5 ± 1.8 1.521 ± 0.018 39.5	1.498	53.05 ± 0.04	3.0	39.3	0.061 ± 0.005	40.0	0.058
	22.86 ± 0.02 3.0 38.2 ± 2.4 0.386 ± 0.003 38.5	0.380	53.89 ± 0.04	2.0	39.3	0.491 ± 0.006	40.0	0.490
	23.67 ± 0.02 3.0	39.3	1.436 ± 0.018 38.0	1.420	54.27 ± 0.04	2.0	39.3	0.167 ± 0.005	40.0	0.157
	23.99 ± 0.02 2.0	39.3	0.182 ± 0.002 40.0	0.191	55.04 ± 0.04	3.0	39.3	0.261 ± 0.004	40.0	0.259
	24.85 ± 0.02 3.0	39.3	0.034 ± 0.006 40.0	0.026	56.02 ± 0.04	2.0	39.3	1.351 ± 0.035	40.0	1.213
	24.98 ± 0.02 3.0	39.3	3.661 ± 0.059 40.0	3.665	56.16 ± 0.05	3.0	39.3	0.613 ± 0.020	40.0	0.718
	26.19 ± 0.02 3.0	39.3	0.196 ± 0.002 40.0	0.199	56.57 ± 0.05	2.0	39.3	0.036 ± 0.007	40.0	0.036
	26.56 ± 0.02 3.0	39.3	2.389 ± 0.039 40.7	2.336	56.86	3.0			40.0	0.013
	27.09 ± 0.02 2.0	39.3	0.039 ± 0.001 40.0	0.038	57.40	2.0			56.0	0.006
	28.46 ± 0.02 2.0	39.3	0.093 ± 0.006 40.0	0.094	58.40 ± 0.04	3.0	39.3	0.397 ± 0.010	40.0	0.372
	28.61 ± 0.02 3.0	39.3	0.031 ± 0.007 40.0	0.031	58.63 ± 0.05	3.0	39.3	0.218 ± 0.007	40.0	0.245
	28.93 ± 0.02 2.0	39.3	0.138 ± 0.002 40.0	0.137	59.51 ± 0.04	2.0	39.3	2.339 ± 0.021	40.0	2.337
	29.48 ± 0.02 2.0	39.3	0.083 ± 0.002 40.0	0.084	60.06 ± 0.04	3.0	39.3	2.325 ± 0.030	40.0	2.274
	30.42 ± 0.02 3.0	39.3	3.135 ± 0.055 38.2	3.145	60.96 ± 0.04	3.0	39.3	1.595 ± 0.018	40.0	1.562
	30.74 ± 0.02 2.0	39.3	0.358 ± 0.007 40.0	0.371	61.37	3.0			40.0	0.015
						044607-3			

TABLE III .

 III (Continued.) 

								TABLE III. (Continued.)		
	E λ (eV)	J	This work (meV)	JEFF-3.1 (meV)	E λ (eV)	J	This work (meV)	JEFF-3.1 (meV)
			λ,γ	λ,n	λ,γ	λ,n			λ,γ	λ,n	λ,γ	λ,n
	61.62	3.0			40.2	0.122	91.37 ± 0.07	2.0	39.3	0.176 ± 0.036	40.0	0.187
	61.65 ± 0.04	3.0	39.3	0.451 ± 0.005	40.0	0.452	91.99 ± 0.07	3.0	39.3	0.493 ± 0.009	40.0	0.482
	62.39 ± 0.05	2.0	39.3	0.421 ± 0.035	40.0	0.382	92.78 ± 0.07	3.0	39.3	0.178 ± 0.007	40.0	0.160
	62.50 ± 0.05	3.0	39.3	1.403 ± 0.027	40.0	1.415	93.41 ± 0.07	2.0	39.3	2.228 ± 0.031	40.0	2.180
	62.92 ± 0.05	3.0	39.3	1.529 ± 0.019	40.0	1.485	94.25 ± 0.08	3.0	39.3	0.332 ± 0.011	40.0	0.309
	63.45 ± 0.05	2.0	39.3	0.083 ± 0.005	40.0	0.083	94.52 ± 0.08	2.0	39.3	0.100 ± 0.016	40.0	0.098
	63.95 ± 0.05	3.0	39.3	0.230 ± 0.004	40.0	0.247	94.98 ± 0.08	3.0	39.3	0.066 ± 0.006	40.0	0.072
	64.97 ± 0.05	3.0	39.3	0.867 ± 0.009	40.0	0.855	95.43 ± 0.08	2.0	39.3	0.444 ± 0.015	40.0	0.424
	65.71 ± 0.05	3.0	39.3	4.003 ± 0.069	47.4	3.787	96.18 ± 0.08	3.0	39.3	0.071 ± 0.011	40.0	0.076
	66.36	2.0			40.0	0.028	96.64 ± 0.08	2.0	39.3	0.528 ± 0.016	40.0	0.467
	66.80	2.0			40.8	0.017	97.39	2.0			40.8	0.018
	67.48 ± 0.05	3.0	39.3	5.070 ± 0.077	42.8	4.866	97.77 ± 0.07	2.0	39.3	4.080 ± 0.054	40.0	3.967
	67.98 ± 0.05	2.0	39.3	2.932 ± 0.034	40.0	2.824	98.51 ± 0.08	2.0	39.3	2.740 ± 0.037	40.0	2.596
	68.78 ± 0.06	3.0	39.3	0.326 ± 0.015	40.0	0.308	99.12 ± 0.08	3.0	39.3	0.080 ± 0.010	40.0	0.098
	69.28	2.0			40.0	0.013	99.54 ± 0.08	3.0	39.3	1.578 ± 0.040	40.0	1.593
	70.26 ± 0.05	3.0	39.3	1.683 ± 0.023	40.0	1.663	100.23 ± 0.08	3.0	39.3	4.496 ± 0.072	40.0	4.327
	70.68 ± 0.06	2.0	39.3	0.598 ± 0.060	40.0	0.624	101.08 ± 0.08	2.0	39.3	6.437 ± 0.098	40.0	6.218
	71.22 ± 0.06	3.0	39.3	2.008 ± 0.200	40.0	1.824	101.68 ± 0.08	2.0	39.3	1.632 ± 0.128	40.0	1.681
	71.48 ± 0.06	2.0	39.3	3.063 ± 0.224	40.0	2.407	102.02 ± 0.08	2.0	39.3	2.134 ± 0.141	40.0	2.087
	71.55	3.0			40.0	0.584						
	72.30	2.0			40.8	0.005						
	72.97	2.0			40.0	0.010						
	73.87 ± 0.06	3.0	39.3	0.278 ± 0.016	40.0	0.276						
	74.29 ± 0.06	2.0	39.3	1.770 ± 0.044	40.0	1.694						
	74.59 ± 0.06	3.0	39.3	0.462 ± 0.051	40.0	0.455						
	75.14 ± 0.06	2.0	39.3	0.170 ± 0.020	40.0	0.146						
	75.65	3.0			40.0	0.010						
	76.22 ± 0.06	3.0	39.3	0.029 ± 0.010	40.0	0.029						
	76.59 ± 0.06	2.0	39.3	0.206 ± 0.017	40.0	0.175						
	77.00 ± 0.06	3.0	39.3	0.305 ± 0.008	40.0	0.281						
	77.57 ± 0.06	2.0	39.3	0.033 ± 0.019	40.0	0.033						
	77.83	3.0			40.8	0.017						
	78.33 ± 0.06	3.0	39.3	1.383 ± 0.135	40.0	1.470						
	78.44 ± 0.06	2.0	39.3	0.896 ± 0.200	40.0	0.693						
	79.28 ± 0.06	2.0	39.3	3.041 ± 0.041	40.0	2.933						
	79.90	3.0			40.8	0.010						
	80.39 ± 0.06	2.0	39.3	0.237 ± 0.030	40.0	0.214						
	80.65 ± 0.06	3.0	39.3	0.460 ± 0.018	40.0	0.428						
	81.63 ± 0.07	2.0	39.3	0.504 ± 0.015	40.0	0.478						
	82.13 ± 0.07	3.0	39.3	0.740 ± 0.014	40.0	0.688						
	82.40	2.0			40.0	0.063						
	83.43 ± 0.07	2.0	39.3	3.894 ± 0.200	40.0	3.271						
	83.74 ± 0.06	2.0	39.3	6.526 ± 0.207	40.0	3.152						
	83.82	2.0			40.0	2.507						
	85.22 ± 0.07	3.0	39.3	0.935 ± 0.020	40.0	0.933						
	86.09 ± 0.07	2.0	39.3	0.994 ± 0.060	40.0	1.022						
	86.53 ± 0.06	3.0	39.3	4.810 ± 0.064	40.0	4.789						
	87.60 ± 0.06	2.0	39.3	1.950 ± 0.199	40.0	1.626						
	87.77 ± 0.07	3.0	39.3	1.639 ± 0.150	40.0	1.835						
	88.18 ± 0.07	3.0	39.3	0.899 ± 0.043	40.0	0.922						
	88.96 ± 0.07	3.0	39.3	1.561 ± 0.029	40.0	1.602						
	89.47 ± 0.07	3.0	39.3	3.393 ± 0.058	40.0	3.568						
	89.94	2.0			40.8	0.068						
	90.88 ± 0.07	3.0	39.3	4.357 ± 0.064	40.0	4.291						
	91.01	2.0			40.8	0.362						

TABLE IV .

 IV Experimental uncertainties introduced in the resonance shape analysis. FIG. 2. Comparison of neutron width values obtained in this work and those recommended in the European library JEFF-3.1 below 100 eV. Top: ratio of the neutron widths as a function of the neutron energy. Bottom: distribution of this ratio.
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TABLE V .

 V 237 Np average radiation width obtained in this work and reported in the literature.

	Author(s)	Ref. no.	Value (meV)
	Paya	[22]	40.0 ± 1.2
	Mewissen et al.	[23]	41.2 ± 2.9
	Weston and Todd	[12]	∼40
	Gressier	[1]	40.0 ± 2.0
	Noguere et al.	[17]	39.5 ± 0.7
	Mughaghab	[24]	40.7 ± 0.5
	RIPL-2	[25]	40.8 ± 1.2
	This work		39.3 ± 1.0

TABLE VI .

 VI 237 Np neutron strength function S 0 and mean level spacing D 0 reported in the literature and obtained in this work.

	Author(s)	Ref. no. E max	10 4 S 0	D 0
			(eV)		(eV)
	Slaughter et al.	[27]	3 0	0 .96 ± 0.13 1.15 ± 0.12
	Mewissen et al.	[23]	100	1.02 ± 0.14 0.74 ± 0.06
	Weston and Todd	[12]	100	1.02 ± 0.06 0.45 ± 0.10
	Gressier	[1]	9 0	1 .00 ± 0.07 0.58 ± 0.03
	Mughaghab	[24]		1 .02 ± 0.06 0.52 ± 0.04
	RIPL-2	[25]		0 .97 ± 0.07 0.57 ± 0.03
	This work		90	1.02 ± 0.14 0.60 ± 0.03

TABLE VII .

 VII Parameters involved in the constant-temperature model for the nuclear system n + 237 Np. MeV. Results for T , E m , and E 0 are reported in Table VII. The given uncertainties are dominated by the choice of E d .

	Parameter	Value in this work
	T	0.41 ± 0.01 MeV
	E m	3.33 ± 0.15 MeV
	E 0	-1.36 ± 0.09 MeV
	0.1	

TABLE VIII .

 VIII Optical model parameters, uncertainties, and correlation matrix obtained in this work.

		Parameter	Relative			Correlation matrix	
				uncertainty						
	r 0	(fm)	1.23 ± 0.02	1.6%	100					
	a	(fm)	0.63 ± 0.03	5.3%	-8	100				
	V HF	(MeV)	-82.7 ± 4.4	5.3%	98	-8	100			
	A v	(MeV)	-15.2 ± 0.5	3.3%	9	-17	5	100		
	A s	(MeV)	-12.7 ± 0.9	7.1%	9	-6	5	4	100	
	β 2		0.207 ± 0.010	4.8%	-37	11	-35	-16	-5	100
	β 4		0.102 ± 0.004	3.9%	-37	-8	-32	9	1	-34	100

TABLE IX .

 IX Average R-matrix parameters, uncertainties, and correlation matrix obtained in this work.

	Parameter	Relative	Correlation matrix
			uncertainty	
	10 4 S 0	1.01 ± 0.13	12.9%	100
	10 4 S 1	1.81 ± 0.37	20.4%	19 100
	10 4 S 2	1.57 ± 0.23	14.6%	92 24 100
	R ∞ 0 R ∞ 1 R ∞ 2	-0.18 ± 0.03 0.18 ± 0.02 -0.10 ± 0.03	16.7% 11.1% 30.0%	-19 60 -38 100 -11 65 -15 85 100 -4 61 -25 98 86 100
	044607-8 044607-9			

FIG. 7. Posterior distributions of the neutron strength function S l (left-hand plots) and distant level parameters R ∞ l (right-hand plots) for l = 0, 1, 2.

TABLE X .

 X Comparison of l-dependent neutron strength functions obtained in this work (ESTIMA and SPRT methods) and reported in the literature. The SESH and CALENDF codes[39,40] were used to calculate this sample thickness correction by generating resonances with Monte Carlo techniques. The SESH code uses the single-level Breit-Wigner formalism to calculate neutron cross sections, while the CALENDF code uses the multilevel Breit-Wigner formalism. The latter is able to account for levellevel interferences. This technique is routinely used within the neutron spectroscopy community[41,42] to calculate average total cross sections σ t (E) from average transmission data T (E) by combining the sample thickness correction C T (E) and the sample thickness n (atoms per barn) as follows:

	ESTIMA	SPRT	Mughaghab [24] RIPL2 [25]
	10 4 S 0 1.02 ± 0.14 1.01 ± 0.13	1.02 ± 0.06	0.97 ± 0.07
	10 4 S 1	1.81 ± 0.37	2.0 ± 0.2
	10 4 S 2	1.57 ± 0.23	
	suitable energy mesh and corrected for finite-sample-thickness
	effects.		

TABLE XI .

 XI 237 Np total and capture cross sections (barns) calculated with the ECIS, TALYS, and CONRAD codes below 200 keV.

	Energy	Total cross section	Capture cross section
	(keV)	CONRAD	ECIS	CONRAD	TALYS
	0.5	31.11	31.23 ± 2.64	16.11	15.90 ± 1.76
	0.6	29.47	29.58 ± 2.43	14.54	14.35 ± 1.57
	0.8	27.15	27.28 ± 2.13	12.35	12.19 ± 1.30
	1.0	25.57	25.71 ± 1.93	10.88	10.74 ± 1.12
	2.0	21.67	21.82 ± 1.43	7.33	7.25 ± 0.71
	3.0	19.94	20.09 ± 1.22	5.85	5.78 ± 0.54
	4.0	18.92	19.07 ± 1.09	5.00	4.94 ± 0.45
	5.0	18.21	18.37 ± 1.00	4.44	4.39 ± 0.39
	6.0	17.70	17.85 ± 0.93	4.06	4.00 ± 0.35
	7.0	17.30	17.45 ± 0.88	3.76	3.71 ± 0.32
	8.0	16.97	17.12 ± 0.84	3.53	3.49 ± 0.30
	9.0	16.70	16.85 ± 0.80	3.34	3.30 ± 0.28
	10.0	16.47	16.62 ± 0.77	3.19	3.15 ± 0.27
	20.0	15.19	15.32 ± 0.60	2.45	2.42 ± 0.22
	30.0	14.57	14.68 ± 0.52	2.16	2.13 ± 0.20
	40.0	14.16	14.24 ± 0.47	1.93	1.91 ± 0.18
	50.0	13.83	13.90 ± 0.44	1.79	1.77 ± 0.17
	60.0	13.56	13.61 ± 0.41	1.65	1.67 ± 0.15
	70.0	13.33	13.35 ± 0.39	1.51	1.52 ± 0.14
	80.0	13.11	13.12 ± 0.38	1.41	1.42 ± 0.13
	90.0	12.91	12.90 ± 0.37	1.32	1.34 ± 0.12
	100.0	12.72	12.70 ± 0.36	1.25	1.27 ± 0.12
	200.0	11.20	11.10 ± 0.34	0.79	0.83 ± 0.08

TABLE XII .

 XII Optical model parameters established by Morillon et al.Values of parameters are reported in Refs[33] and[34].

	Parameter	Value
	r 0	1.231 fm
	a	0.633 fm
	V HF	-82.8 MeV
	β	1.114 fm
	γ	0.093 fm
	A v	-15.24 MeV
	B v	90.44 MeV
	A s	-12.73 MeV
	B s	13.0 MeV
	C s	0.025 MeV
	044607-11	

Table 1

 1 Thicknesses of the three hafnium samples at different temperatures.

	Sample	300 ± 1 K	77 ± 1 K
	thickness	(atom/barn)	(atom/barn)
	e = 1 mm	0.00475 ± 0.00005	0.00476 ± 0.00005
	e = 2 mm	0.00938 ± 0.00006	0.00941 ± 0.00006
	e = 15 mm	0.06645 ± 0.00009	0.06664 ± 0.00009

Table 2

 2 Debye temperature for mono-atomic hafnium crystal.

	Author	Year	Ref.	Θ D (K)
	Wolcott	1955	[28]	261
	Kneip	1963	[29]	252.3 ± 0.9
				251.5 ± 1.2
	Betterton	1968	[30]	252 ± 1
	Gao	1999	[32]	250
	Ostanin a	2000	[31]	215
	Feranchuk a	2002	[33]	280
	Average value			251.7
	Standard deviation			19.3

a Calculated value.

Table 3

 3 Resonance parameters for the even/even hafnium isotopes obtained below 1 keV.

	Energy	J π	This work		JEFF-3.1.1	
	(eV)		Γ γ (meV)	Γ n (meV)	Γ γ (meV)	Γ n (meV)
	Nuclear system n+ 174 Hf					
	4.06 ± 0.04	1/2 +	52.0	0.015	52.0	0 .015
	13.38 ± 0.02	1/2 +	54.4 ± 2.6	3.7 ± 0.1	65.0	5 .7
	29.98 ± 0.05	1/2 +	58.7 ± 3.5	31.6 ± 0.2	65.0	3 6 .3
	70.53 ± 0.11	1/2 +	59.2	10.2 ± 0.4	65.0	2 4 .0
	77.81 ± 0.12 106.97 ± 0.17	1/2 + 1/2 +	71.6 ± 9.4 59.2	68.6 ± 1.2 90.4 ± 1.3	51.0 65.0	8 3 .0 117.0
	124.6	1/2 +			65.0	680.0
	147.69 ± 0.23	1/2 +	59.2	116.5 ± 5.0	102.0	358.0
	153.42 ± 0.23 211.56 ± 0.33	1/2 + 1/2 +	59.2 59.2	219.0 ± 17.0 112.3 ± 5.2	65.0 60.0	219.0 180.0
	Nuclear system n+ 176 Hf					
	7.89 ± 0.01 48.24 ± 0.07	1/2 + 1/2 +	61.8 51.2 ± 4.3	10.1 108.5 ± 1.7	61.8 49.0	1 0 .1 107.0
	53.27 ± 0.08 67.23 ± 0.10	1/2 + 1/2 +	50.7 ± 6.7 55.2	1.4 ± 0.1 26.0 ± 0.6	55.0 55.0	1 .7 2 6 .0
	124.05 ± 0.19 177.15	1/2 + 1/2 +	57.0 ± 2.7	45.9 ± 2.4	55.0 55.0	3 2 .0 8 6 .0
	201.72 ± 0.32 243.53 ± 0.38	1/2 + 1/2 +	55.2 55.2	33.4 ± 2.8 18.5 ± 2.0	51.0 51.0	3 9 .0 2 2 .0
	255.02 ± 0.39	1/2 +	55.2	95.0	51.0	9 5 .0
	286.79 ± 0.45	1/2 +	55.2	216.2 ± 4.6	51.0	285.0
	304.62 ± 0.48	1/2 +	55.2	17.3 ± 0.4	51.0	2 1 .0
	347.21 ± 0.54 435.66 ± 0.67	1/2 + 1/2 +	55.2 55.2	167.0 ± 4.1 167.0	51.0 51.0	173.0 167.0
	444.12 ± 0.72	1/2 +	55.2	122.7 ± 44.6	51.0	173.0
	557.13 ± 0.86	1/2 +	55.2	335.0	51.0	335.0
	626.13 ± 0.97	1/2 +	55.2	512.0 ± 154.1	51.0	640.0
	659.37 ± 1.02	1/2 +	55.2	58.2 ± 3.5	51.0	270.0
	873.03 ± 1.35	1/2 +	55.2	236.9 ± 15.5	51.0	280.0

Table 5

 5 Fig. 7. Individual 177 Hf and 179 Hf radiation widths obtained in this work.

	(continued)					
	Energy	J π	This work		JEFF-3.1.1	
	(eV)		Γ γ (meV)	Γ n (meV)	Γ γ (meV)	Γ n (meV)
	76.68 ± 0.12	5.0 +	64.9 ± 6.6	3.3 ± 0.1	52.0	.3
	83.00 ± 0.13 85.43 ± 0.13	4.0 + 4.0 +	46.0 ± 9.8 51.8	4.5 ± 0.1 11.5 ± 0.4	52.0 52.0	.7 .8
	92.12 ± 0.14 92.74 ± 0.15	4.0 + 5.0 +	51.8 51.8	11.1 ± 0.2 28.4 ± 0.5	52.0 52.0	.7 .0
	101.32 ± 0.16 103.77 ± 0.16	5.0 + 5.0 +	51.8 51.8	116.9 ± 1.4 10.2 ± 0.2	52.0 52.0	113.8 .8
	107.85 ± 0.17 117.23 ± 0.18	4.0 + 5.0 +	51.8 51.8	11.7 ± 0.4 34.5 ± 0.8	52.0 44.0	.5 .0
	120.33 ± 0.19	4.0 +	51.8	3.5	52.0	.5
	121.96 ± 0.19	4.0 +	51.8	7.6 ± 0.1	52.0	.7
	122.63 ± 0.19	5.0 +	51.8	17.1 ± 0.3	52.0	.8
	130.01 ± 0.20	4.0 +	51.8	9.4 ± 0.2	52.0	.2
	137.36 ± 0.21	5.0 +	51.8	32.9 ± 0.7	52.0	.6
	144.31 ± 0.23	5.0 +	51.8	25.2 ± 0.8	52.0	.0
	147.07 ± 0.23	4.0 +	51.8	14.3 ± 0.3	52.0	.2
	156.29 ± 0.24 158.82 ± 0.25	5.0 + 4.0 +	51.8 51.8	47.4 ± 1.2 3.4 ± 0.2	58.0 52.0	.0 .7
	165.74 ± 0.26	5.0 +	51.8	23.6 ± 0.7	52.0	.7
	174.98 ± 0.27	4.0 +	51.8	31.2 ± 0.7	52.0	.0
	177.89 ± 0.28	5.0 +	51.8	61.2 ± 1.4	52.0	.0
	182.69 ± 0.29	4.0 +	51.8	33.6 ± 1.0	52.0	.8
	188.72 ± 0.29 189.86 ± 0.30	4.0 + 5.0 +	51.8 51.8	6.1 22.3 ± 0.8	52.0 52.0	.1 .2
	191.25	4.0 +			52.0	.9
	198.00 ± 0.31	5.0 +	51.8	14.0 ± 0.4	52.0	.1
	202.67 ± 0.32	5.0 +	51.8	61.7 ± 3.8	66.0	.8

Table 6

 6 Average radiation widths for the nuclear systems of interest for this work. Systematic behavior of the β 2 and β 4 deformation parameters retrieve from the Moller and Nix data base[41].

	Nuclear systems	Mughabghab [39]	RIPL-2 [40]	This work
	n+ 174 Hf	60.0 ± 1.0 meV		59.2 ± 3.4 meV
	n+ 176 Hf	59.0 ± 3.0 meV	60.0 ± 10.0 meV	55.2 ± 2.5 meV
	n+ 177 Hf	65.0 ± 5.0 meV	66.0 ± 10.0 meV	58.9 ± 2.3 meV
	n+ 178 Hf	53.0 ± 1.5 meV	54.0 ± 5.0 meV	54.6 ± 3.9 meV
	n+ 179 Hf	62.0 ± 6.0 meV	66.0 ± 5.0 meV	51.8 ± 3.1 meV
	n+ 180 Hf	50.0 ± 5.0 meV	50.0 ± 5.0 meV	43.3 ± 8.2 meV

Table 7 )

 7 and G. Noguere et al. / Nuclear Physics A 831 (2009) 106-136 Table Model parameters established with the SPRT analysis:β i (i = 2, 4) stand for the deformation parameters, S l (l = 0, . . . , 3) are the neutron strenght functions, R ∞ l (l = 0, . . . , 3) represent the distant level parameters, R is the potential scattering length and a c is the so-called channel radius.

		n+ 174 Hf	n+ 176 Hf	n+ 177 Hf	n+ 178 Hf	n+ 179 Hf	n+ 180 Hf
	β 2	0.246 ± 0.033	0.239 ± 0.032	0.239 ± 0.032	0.240 ± 0.032	0.240 ± 0.032	0.241 ± 0.033
	β 4	-0.0149 ± 0.0021	-0.0264 ± 0.0038	-0.0264 ± 0.0038	-0.0340 ± 0.0049	-0.0344 ± 0.0050	-0.0408 ± 0.0059
	10 4 S	2.18 ± 0.38	2.09 ± 0.38	2.48 ± 0.35	2.20±0.29	2.15 ± 0.38	1.93 ± 0.40
	10 4 S	1.17 ± 0.54	1.01 ± 0.44	0.94 ± 0.38	0.93±0.38	0.97 ± 0.44	0.95 ± 0.50
	10 4 S	3.42 ± 0.35	3.42 ± 0.34	2.97 ± 0.36	3.08±0.42	3.20 ± 0.38	3.01 ± 0.29
	10 4 S	1.26 ± 0.43	1.12 ± 0.36	1.01 ± 0.62	1.05±0.40	1.10 ± 0.44	1.05 ± 0.38
	R ∞ 0	-0.032	-0.020	0.042	-0.011	0.012	0.005
	R ∞ 1	0.068	0.076	0.074	0.093	0.084	0.098
	R ∞ 2	0.039	0.012	0.035	0.081	0.020	-0.027
	R ∞ 3	0.201	0.207	0.262	0.242	0.267	0.226
	a c (fm)	7.64	7.67	7.68	7.69	7.71	7.72
	R (fm)	7.89 ± 0.03	7.82 ± 0.02	7.36 ± 0.62	7.74 ± 0.04	7.61 ± 0.17	7.76 ± 0.02

Table 8

 8 Comparison of the neutron strength functions and potential scattering length.

	Nuclear systems	Parameters	Mughabghab [39]	RIPL-2 [40]	This work
	n+ 174 Hf	10 4 S 0	2.8 ± 1.8	2.6 ± 0.6	2.18 ± 0.38
		R (fm)	7.5 ± 0.6		7.89 ± 0.03
	n+ 176 Hf	10 4 S 0 10 4 S 1 10 4 S 2	2.6 ± 0.3 0.87 ± 0.07 2.0 ± 0.2	1.7 ± 0.4	2.09 ± 0.38 1.01 ± 0.44 3.42 ± 0.34
		R (fm)	7.6 ± 0.7		7.82 ± 0.02
	n+ 177 Hf n+ 178 Hf	10 4 S 0 10 4 S 1 10 4 S 2 10 4 S 0 10 4 S 1 10 4 S 2	2.60 ± 0.25 1.00 ± 0.05 2.10 ± 0.07 2.2 ± 0.7 0.51 ± 0.03 1.66 ± 0.11	2.6 ± 0.3 2.1 ± 0.3	2.48 ± 0.35 0.94 ± 0.38 2.97 ± 0.36 2.20 ± 0.29 0.93 ± 0.38 3.08 ± 0.42
		R (fm)	7.5 ± 0.7		7.74 ± 0.04
	n+ 179 Hf n+ 180 Hf	10 4 S 0 10 4 S 1 10 4 S 2 10 4 S 0 10 4 S 1 10 4 S 2	1.74 ± 0.18 0.83 ± 0.10 2.10 ± 0.17 1.9 ± 0.6 0.44 ± 0.05 1.8 ± 0.1	2.5 ± 0.4 1.9 ± 0.6	2.15 ± 0.38 0.97 ± 0.44 3.20 ± 0.38 1.93 ± 0.40 0.95 ± 0.50 3.01 ± 0.29
		R (fm)	8.0 ± 0.7		7.76 ± 0.02

Table 9 s

 9 -wave mean level spacing (in eV) for the nuclear systems of interest for this work. For the even/even isotopes, results obtained with the ESTIMA method are compared with those deduced from the radiative strength. Hf and n+180 Hf. Missing resonances and incorrect isotopic assignments of several weak resonances could explain the deviation of the experimental results from the systematic.

	Nuclear system	Mughabghab [39]	RIPL-2 [40]	ESTIMA	From S γ
	n+ 174 Hf	21.5±5.0	18.0±5.0	15.2±4.2	16.4±1.5
	n+ 176 Hf	29.0±3.0	30.0±7.0		33.9±2.4
	n+ 177 Hf	2.4±0.3	2.4±0.3	2.4±0.1	
	n+ 178 Hf	44.1±2.9	57.0±6.0	59.4±5.1	68.7±5.2
	n+ 179 Hf	4.1±0.3	4.6±0.3	4.4±0.2	
	n+ 180 Hf	94.0±11.0	94.0±15.0	138.0±7.2	115.2±22.0
	tems n+ 176				

Table 10

 10 Level density parameters established in the frame of the Gilbert-Cameron formula[50]. The accuracies quoted for the nuclear temperature T , the energy shift E 0 and the matching energy E m are fit uncertainties. -1.31 ± 0.07 -1.17 ± 0.07 -0.55 ± 0.07 -1.00±0.10 -0.77 ± 0.07 -0.98 ± 0.13 T (MeV) 0.545 ± 0.005 0.545 ± 0.005 0.555 ± 0.005 0.535±0.008 0.575 ± 0.005 0.540 ± 0.010

			n+ 174 Hf	n+ 176 Hf	n+ 177 Hf	n+ 178 Hf	n+ 179 Hf	n+ 180 Hf
	D 0 (eV)	15.17 ± 4.24	33.90 ± 2.40	2.44 ± 0.05	59.41±5.12	4.41 ± 0.23	137.96 ± 7.21
	D 1 (eV)	3.22 ± 0.54	11.67 ± 0.83	1.27 ± 0.03	20.47±2.80	2.28 ± 0.12	47.60 ± 2.49
	D 2 (eV)	3.33 ± 0.93	7.47 ± 0.54	0.90 ± 0.06	13.12±1.80	1.61 ± 0.08	30.60 ± 0.61
	D 3 (eV)	2.61 ± 0.74	5.88 ± 0.42	0.74 ± 0.02	10.35±1.43	1.31 ± 0.07	24.24 ± 1.28
	a	(1/MeV) 22.39 ± 0.71	21.83 ± 0.16	22.32 ± 0.05	21.60±0.34	21.71 ± 0.11	21.22 ± 0.12
	σ		5.62 ± 0.04	5.53 ± 0.01	5.65 ± 0.01	5.46 ± 0.02	5.58 ± 0.01	5.35 ± 0.01
	E m (MeV)	5.78 ± 0.11	5.61 ± 0.10	6.88 ± 0.11	5.33±0.16	7.13 ± 0.11	5.31 ± 0.20
	E 0	(MeV)						
	N d		15	32	41	30	61	8
	E d	(MeV)	0.475	0.883	1.698	0.936	1.839	0.329

√2πx dx,(4.38) 
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