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Abstract

The motivation behind this thesis stems from verification tasks that check whether a given
piece of code conforms to its specification. Properties of a certain state of the program are
described through formulae pertaining to a chosen underlying logic, and it is often needed to
test whether they hold and, more importantly, whether they entail the target specification.
Satisfiability modulo theory (SMT) solvers are commonly used in practice to answer such
queries. They are powerful tools due to their ability to combine decision procedures for
several different theories.

We want to provide proof systems for entailments encountered when verifying programs
that work with recursive data structures. This adds a layer of complexity to the entailment
problem, as the formulae describing program states will need to make use of inductively
defined predicates characterizing the data structures. Moreover, the programs will use dy-
namic allocation to create as many instances of the data as needed. Thus, we are interested
in using separation logic to express properties of these programs, as it is a framework that
addresses many of the difficulties posed by reasoning about dynamically allocated heaps.

The main contribution of this thesis is a sound and complete proof system for entailments
between inductively defined predicates. We give a generalized cyclic proof system for first-
order logic, which uses the principle of infinite descent to close recurring branches of a
proof, and then adapt it to separation logic. In order to ensure soundness and completeness,
four semantic restrictions are introduced, and we analyse their decidability and complexity.
We also propose a proof-search semi-algorithm that becomes a decision procedure for the
entailment problem when the semantic restrictions hold.

This higher-order reasoning about entailments requires first-order decision procedures for
the underlying logic when applying some inference rules and during proof search. To this
end, we introduce two decision procedures for separation logic, considering the quantifier-
free and the 3*V*-quantified fragments. We study the decidability and complexity of these
fragments and show evaluation results of their respective decision procedures, which were
integrated in the open-source, DPLL(T)-based SMT solver CVC4.

Finally, we also present an implementation of our proof system for separation logic, which
makes use of the above decision procedures in CVC4. Given inductive predicate definitions
and an entailment query as input, a warning is issued when one or more semantic restrictions
are violated. If the entailment is found to be valid, the output is a proof. Otherwise, one or
more counterexamples are provided.






Résumé

Cette these est motivée par les taches de verification formelle qui établissent si un morceau
de code donné est conforme & sa spécification. Les propriétés des états du programme sont
décrites par des formules appartenant a la logique sous-jacente choisie, et il est souvent
nécessaire de tester si elles sont correctes et, plus important encore, si elles impliquent la
spécification cible. Les solveurs pour la satisfiabilité modulo des théories (SMT) sont utilisés
dans la pratique pour répondre a de telles requétes. Ce sont des outils puissants grace a leur
capacité de combiner des procédures de décision pour plusieurs théories.

Nous voulons fournir des systemes de preuve pour les probléemes rencontrés lors de la
vérification des programmes qui utilisent des structures de données récursives. Cela ajoute
une couche de complexité au probleme d’implication, car les formules décrivant les états
du programme devront se servir de prédicats définis de fagon inductive, qui caractérisent
les structures de données. De plus, les programmes utiliseront ’allocation dynamique pour
créer autant d’instances de données que nécessaire. D’ou l'intérét d’utiliser la logique de
séparation pour exprimer les propriétés de ces programmes, car c¢’est un cadre qui répond
aux plusieurs difficultés posées par le raisonnement sur les tas alloués dynamiquement.

La contribution principale de cette these est un systeme de preuve correct et complet pour
les implications entre les prédicats définis de fagon inductive. Nous donnons un systeéme de
preuve cyclique généralisé pour la logique du premier ordre, qui utilise le principe de la
descente infinie pour fermer les branches récurrentes d’une preuve, puis nous l'adaptons a
la logique de séparation. Afin d’assurer la correction et la complétude, quatre restrictions
sémantiques sont introduites et nous analysons leur décidabilité et leur complexité. Nous
fournissons également un semi-algorithme de recherche de preuve qui devient une procédure
de décision pour le probleme d’implication lorsque les restrictions sémantiques sont respectés.

Ce raisonnement d’ordre supérieur sur les implications nécessite des procédures de décision
de premier ordre pour la logique sous-jacente lors de ’application de certaines regles d’inférence
et lors de la recherche des preuves. A fin, nous introduisons deux procédures de décision
pour la logique de séparation, en considérant le fragment sans quantificateurs et le fragment
quantifié F*V*. Nous étudions la décidabilité et la complexité de ces fragments et montrons
les résultats d’évaluation de leurs procédures de décision, qui ont été intégrées dans le solveur
SMT open source CVCA4.

Enfin, nous fournissons une implémentation de notre systeme de preuve pour la logique
de séparation, qui utilise les procédures de décision ci-dessus. Etant donné un ensemble
de definitions de prédicats inductifs et une requéte d’implication, un avertissement est émis
lorsqu’une ou plusieurs restrictions sémantiques sont violées. Nous obtenons une preuve si
I'implication est valide. Sinon, un ou plusieurs contre-exemples sont fournis.
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Introduction

Program verification is the use of formal and mathematical methods to provide proof that a
program meets its specification. The importance of specifying and verifying code lies in the
numerous advantages that it brings. The formal specification of a program, usually a formula
written in a suitable logic, can serve both as documentation and a guideline for implemen-
tation. It also dictates that a lot more care and scrutiny be put on software requirements,
thus contributing to the elimination of inaccuracies during early development stages, when
the cost of changes is much lower compared to later stages. Moreover, verification can help
reduce the time and cost of testing, debugging and maintaining big systems, since code that
is specified and verified is much easier to understand, reuse and maintain. In the case of
safety-critical systems, the proof that the code meets its specification serves as certification
for correct performance at all times.

Early approaches to program verification used manual annotation with assertions de-
scribing the state of the execution. A rigorous formalization of this process is given by
Hoare logic, introduced by C. A. R. Hoare [22] and based on previous work by Robert W.
Floyd, who proposed a similar system for flowcharts [17]. Hoare logic is a formal system
used to reason about Hoare triples {P}C{Q}, where C is a piece of code, P is a formula
called the precondition, describing the state before C' executes, and @ is a formula called a
postcondition, describing the state after C executes.

Example 1. Consider a function swap(x, y), which swaps the values of the variables
x and y. We would like such a function to satisfy the specification given by the triple
{x =z Ny =yo} swap(x, y) {x =yo Ay = xo}, where ¢ and y, are constants denoting
the initial values of x and y. |

However, manually annotating programs required a substantial effort from the user and
was prone to human mistakes. As software complexity increased and verification techniques
advanced, automated methods gained in popularity. It has become very easy and cheap
to automatically compute the postcondition for an entire block of code starting from the
precondition (or vice versa) using deduction rules. The focus has shifted from manual an-
notation to automated verification of entire functions or components given very little user
input.

Decision procedures are building blocks that lie at the basis of automated verification.
They are algorithms that, given a decision problem (i.e. a problem that can be posed as a
yes or no question of the input, usually formulae limited to a particular theory), terminate
with a correct answer [30]. Given a problem, we are interested in its decidability and we
want a clear definition for the decidable fragment of the underlying theory. Given a decision
procedure for a problem, we want it to be sound (i.e. every instance proven by the procedure
is valid) and complete (i.e. every valid instance can be proven by the procedure).

9
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In practice, however, the decidable theory fragment that guarantees completeness can be
quite restrictive and lacking in expressiveness. In consequence, we want a decision procedure
to be general enough that it can be run on any instance of a problem. Then, soundness is
enough to give us a semi-algorithm that might not terminate on some inputs, but can still
provide a correct answer on others. Additionally, a warning can be issued to the user when
termination is not guaranteed for the given input.

From a practical standpoint, the usefulness of decision procedures is highlighted by sat-
isfiability modulo theory (SMT) solvers. They are very powerful reasoning tools, able to
combine decision procedures for different theories, while preserving their soundness and
completeness. It is common practice for software verifiers to translate any kind of assertion
(e.g. preconditions, postconditions or loop conditions) into SMT formulae and use an SMT
solver to determine whether the properties can hold.

Proving entailments is a problem that regularly arises during these verification tasks due
to the rule of consequence: if a piece of code satisfies precondition P and postcondition @,
then it also satisfies precondition P’ and postcondition @’ if P’ = P and @ = @’. Variations
of this rule take into account only one of these entailments and either strengthen P with P’ or
weaken Q with Q'. In practice, proving that a program conforms to a given specification can
be done by starting with the given precondition, computing the strongest postcondition of the
code and then proving that it entails the postcondition from the specification. Conversely,
we can start with the given postcondition, compute the weakest precondition of the code
and then prove that it is entailed by the precondition from the specification.

Example 2. Consider the following in-place implementation of the swap(x, y) function
from Example 1.

swap(x, y)
{t=20Ny=1yo} Precondition
X 1= x +y
{r=20+y0Ny=1yo}
yi=x-y
{z=20+yo ANy=20+Yyo—yo}
X =X -y

{:C =9+ Yo — (:EO + Yo — yo) ANy =x9+ Yo — yo} Strongest postcondition

We try to verify that it satisfies the required specification by starting with the precondi-
tion and computing its strongest postcondition. Because x = xg + yo — (o + Yo — Yo) Ny =
o+ Yo — Yo = T = yo Ay = zo, we can conclude that this implementation of swap(x, y)
meets its specification. <

Function calls also introduce the necessity of proving entailments, as we need to check
that the formula describing the state before the function call entails the precondition from the
function specification. This ensures the safety of the function call and that the postcondition
given by the function specification will hold afterwards.

Example 3. If the state before a call of swap(x, y) from Example 1 is described by the
formula z = zg Ay = yo Ao < Yo, then, because x = 2o Ay = yoAzo < Yo = & = 20 AY = Yo,
we can safely call the function and the triple {x = o Ay = yo A zo < Yo} swap(x, y)
{x =yo ANy = xo} is true. <

Modern software is required to handle data in a systematic fashion and to adapt to
any amount of information. This reflects onto the formulae that describe program states
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during verification — they must be able to capture complex data properties. Thus, the
ability to arrange data into suitable data structures is essential. As defined by Cormen, data
structures represent a way to organize data in order to facilitate access and modifications
[14]. Of particular interest are recursive data structures, due to their ubiquitous presence in
real-life software.

We can distinguish two tiers when it comes to recursive data structures. Firstly, there is
a higher tier of inductive data types, which are explicitly supported by functional languages.
They represent an abstraction for the lower, concrete tier of more classic recursive structures
used by imperative programming languages, such as linked lists, stacks, queues, and several
types of trees that may be balanced or partially balanced such as binary search trees, AVL
trees, 2-3 trees or red-black trees [14].

Inductively defined predicates can be used to describe recursive data types and, in the
case of programs that use dynamic allocation, they can also specify the shape of the memory
where the structures are stored. Thus, the ability to automatically reason about inductive
predicates becomes an important tool for program verification. Furthermore, decision pro-
cedures that incorporate inductive predicates are essential for reasoning at both the abstract
and concrete data structure tiers.

Example 4. Perhaps the simplest example of an inductive predicate is the one for natural
numbers that uses the successor function succ from Peano arithmetic:

Natural(z) ==z =0 Jy.x = succ(y) A Natural(y)

Similarly, we can define predicates that describe even and odd natural numbers:

Even(z) :=2 =0 Jy.x = succ(y) A Odd(y)

Odd(z) ::=3Jy.x = succ(y) A Even(y) <

Abstract data structures, as proposed by Hoare [23, 38], have an associated constructor
function ¢ and k selector functions si,..., sk, which satisfy abstract structural properties
referring to:

(i) Construction: c¢(s1(x),...,sk(x)) = x;
(ii) Selection: s;(c(z1,...,xk)) = x; for 1 <i < k;

(iii) Acyclicity: s;(x) #x for 1 <i <k, si(s;(x)) #xfor 1 <i,j <k, ....

These types can be easily defined in first-order logic under the Herbrand interpretation.
Alternatively, extensions of first-order logic with recursive definitions, such as Dryad [34],
have been introduced.

Example 5. A well-known implementation of an abstract data structure is the list in LISP,
with constructor cons and selectors car and cdr. A list is either nil or constructed using
cons by prepending an element to another list. The selector car returns the first element of
a list and the selector cdr returns the rest of the list. An inductively defined predicate for
this list would be

list(z) ==z =nil | Jy, z.x = cons(y, z) Alist(z)

Note how inductive definitions can only cover the construction axioms, but not selection and
acyclicity. |
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Since the amount of data a program has to work with is hardly ever predetermined,
dynamic allocation is used to create as many instances as needed. Reasoning about dynam-
ically allocated heaps poses several difficulties. Expressing the state of the memory within a
formula is hard, as it needs to cover the properties of the unbounded heap, while also taking
care of other aspects such as aliasing and reachability. Furthermore, it has been observed
that, in practice, pre- and postconditions can become very large and complex, describing
parts of the heap that a function, for instance, does not touch, but whose properties have to
be carried through the body of the function during verification.

Separation logic is a framework introduced by Ishtiaq, O’Hearn, Reynolds and Yang
[29, 37, 45] that emerged to address these issues. Its separating operators together with the
frame rule enable local reasoning by breaking down the heap into disjoint parts and allowing
only those manipulated by a certain portion of the code to be taken into consideration while
performing verification tasks.

Example 6. Consider swap®, a variant of the swap function from Example 1 that works
with variables representing memory locations and swaps their content. Its specification is
given by the triple {z — x¢ *y — yo} swap™(x, y) {z — yo*y — zo}. The — predicate
indicates a single allocated cell and the * connective indicates two disjoint heaps (i.e. heaps
in which two disjoint sets of locations are allocated). The implementation and verification
of swap® are done in a similar fashion as in Example 2, the difference being that, instead of
variable assignment, we use mutation to change the values stored at the addresses indicated
by the variables x and y. <

Moreover, switching from first-order logic under the canonical interpretation to separation
logic allows for more expressiveness when defining recursive data structures. Instead of being
limited to types that can only be represented as trees, separation logic allows us to define
more complex and realistic data structures, such as doubly linked lists and trees with parent
pointers or linked leaves.

Example 7. Structurally, a separation logic definition for a doubly-linked list is analogous
to the LISP definition of a list from Example 5 — it is either empty or obtained by prepending
an element to another list. The difference lies in how the focus is shifted towards the heap
in which the list is allocated. For the former case, the head of the list z is nil and nothing is
allocated in the heap. For the latter case, the head of the list points to the next and previous
locations y and p, and, disjointly, there is a doubly-linked list starting at y with previous
location x.

dii(z,p) =2 =nilAemp | Jy.x — (y,p) xdll(y, z)

Defining a binary tree is similar. Either the root is nil and the heap is empty, or the root
is allocated and points to the left and right subtrees.

tree(x) =z =nil Aemp | Ty, 2.z — (y, 2) * tree(y) * tree(z)

This definition of a tree can be expanded to obtain a binary tree with at least one allocated
node and linked leaves (i.e. there is a linked list from its leftmost leaf to its rightmost leaf).

tree' (x,ll,Ir) == o =l Az~ (nil, nil, lr)
| Jy,z,u.z— (y,znil) «tree’ (y, 1, u) * tree' (z,u, lr)
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Contributions

The main contribution of this thesis targets proof systems for entailments involving induc-
tively defined predicates. Influenced by an antichain-based method designed for checking
language inclusion of nondeterministic finite tree automata [24], we build a generic cyclic
proof system for first-order logic, which we later adapt to separation logic. The actions
performed by our proof system are generalized to fit a wider class of entailment problems,
but certain successions of steps can be translated back to those of the above language in-
clusion check. A key aspect is the reliance on the principle of Infinite Descent [10], initially
formalized by Fermat, which is ubiquitous in cyclic proof systems [9]. In short, this principle
allows us to close recurring branches of a proof on the premise that, if a counterexample
were to be discovered on that branch, then it would lead to an infinite sequence of strictly
decreasing counterexamples in a well-founded domain, which constitutes a contradiction.

Since language inclusion is decidable for nondeterministic finite tree automata [12, Corol-
lary 1.7.9], our proof system is sure to be complete for entailment problems equivalent to
those of this restricted class. In consequence, we tried to establish some boundaries for the
inductive predicates within which the proof system remains sound and complete for more
general problems. As a result, we obtained one semantic condition that ensures soundness,
and three additional other restrictions that warrant completeness. All four constraints can
be checked using existing decision procedures, with varying complexities dictated by the cho-
sen underlying logic. This contrasts with other similar approaches, in which the inductive
predicate definitions are bounded by syntactic constraints.

Multiple inference rules from our proof system rely on existing decision procedures for
the non-inductive fragment of the underlying logic. In this sense, there are extensive, well-
established results for first order logic [13, 39], but this is not also the case for separation
logic. Therefore, we provide two decision procedures geared towards the quantifier free and
the F*V*-quantified fragments of separation sogic, respectively. We study the decidability
and complexity of the satisfiability problem in both of these fragments. Furthermore, these
procedures were integrated in the DPLL(T)-based SMT solver CVC4 and we show the results
of their performance evaluation.

Finally, we present an entailment checker tool, Inductor, which implements our proof
search method for the specialized separation logic proof system. Inductor is written in C++
and utilizes our dedicated decision procedures for separation logic from CVC4. Given a proof
search strategy, along with an SMT-LIB script containing inductive predicate definitions and
entailments that need to be checked, Inductor uses a compact tree structure to explore all
the possible derivations enabled by the strategy, in a breadth-first fashion. The search stops
whenever a proof or a counterexample is discovered and the output is either a successful
one, accompanied by the proof, or an unsuccessful one, supported by the counterexample.
The result of the search may also be inconclusive, when all possibilities are explored without
yielding either a proof or a counterexample. The search strategy and whether the inductive
system satisfies the constraints ensuring soundness and completeness are key factors that
can lead to such situations. Appropriate warnings are displayed whenever one or more of
the constraints are violated.

Organization

This thesis studies complete proof systems for entailments involving inductive predicates, in
both first-order logic and separation logic. Chapter 1 introduces the syntax and semantics of
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inductive systems of predicates, while Chapter 2 presents proof systems for the entailment
of predicates defined by an inductive system, together with the necessary restrictions that
an inductive system needs to satisfy in order to allow for the soundness and completeness of
the proof system. Adjacently, Chapter 3 focuses on decision procedures for separation logic
in SMT, for both the quantifier-free and the 3*V*-quantified fragments. Chapter 4 describes
an implementation for our proof system targeting inductive entailments in separation logic,
which employs the decision procedures from Chapter 3, and then goes on to analyse some
insightful case studies.

Notations

The following notations will be frequently used throughout this work:
— [¢,4], [i] — For two integers 0 < i < j, [¢,j] denotes the set {i,i+1,...,7} and [i] is
shorthand for [1, ], with [0] being the empty set;
— | S| Given a finite set S, |S| denotes its cardinality;

- P(S), R.(S) — Given a set S, P(S) denotes its powerset and R,(S) the set of finite
subsets of S

— dom(f),img(f) — For a (total or partial) mapping f : A — B, dom(f) = A denotes the
set of values on which f is defined and img(f) = f(dom(f)) C B is the set of values
in the range of f;

— B4 — For two sets A and B, B4 denotes the set of all functions f : A — B;

— f™ — For a function f: A — B and n € N, f™ denotes the result of composing f with
itself n — 1 times. By convention, f° = id4 (i.e. the identity function on the domain

of f) and f* = f;

- N, Z, R — We use N, Z, R to denote the sets of natural, integer and real numbers,

respectively;

— {E;}_, — For conciseness, we use this notation to mean the set {FE1,...,E,} (or,
equivalently, {F; | ¢ € [n]}), where each E; is an element indexed in some way by
i€ [n];

— flp — Given a function f, we use this notation to refer to its restriction to the domain
D C dom(f).

- s,§—Weuses =1{s1,...,8,} and § = (s1,...,8,) for sets and ordered tuples, respec-
tively. Given a tuple S, we denote its length by |S|, the element at position i € [|S]] by
pos;(8), and the set of all variables in § by set(8) = {z | = pos, () for some i € [|s|]}.

We call a tuple § unique when each of its elements occurs only once (i.e. |8]| = |set(s)]).
Given two tuples § = (s1,...,8,) and § = (s},...,s),), we use §-§ to denote their

concatenation, i.e. §-8 = (s1,...,8n,81,. .+, 50)-

' 9m



Chapter 1

Inductive Systems

In this chapter, we first introduce basic syntax and semantics for both first-order logic
(Section 1.1) and separation logic (Section 1.2). We consider general first-order theories and
show how separation logic formulae can be built on top of them. We then define systems
of inductive definitions, together with their (least) solutions (Section 1.3), for a fixed first-
order theory and a more restricted class of separation logic formulae. Lastly, we describe
the entailment problem for inductive systems and show how it is undecidabile under several
interpretations (Section 1.4).

1.1 First-Order Logic (FOL)

1.1.1 Syntax

We introduce the syntax of first-order logic (FOL) in the context of a pair ¥ = (X%, %f),
which we call a signature, such that:

o 3¢ = {01,09,...} is a set of sort symbols. We assume the existence of a location sort
Loc € ¥° and a boolean sort Bool = {T, L} € X% where we write T and L for the
constants true and false, respectively;

o Xf = {f g,h, .} is aset of function symbols. For a function symbol fo1+% n >0
is its arity and o1 ...0,0 is its signature, where o1,...,0, € X° are the sorts of its
arguments and o € 3° is the sort of its result. A function symbol with arity 0 is a
constant symbol ¢ of sort o € ¥°. We omit specifying the signature of a function
symbol when it is not important.

Let Var = {x,y, 2, ...} be a countable set of first-order variables. Each variable z° € Var
has an associated sort o € 3°. As we do with function symbols, we omit the sort of a variable
if it is not necessary. We write x, y, z, ... C Var and X, ¥, , ... € [, Var" for sets of
first-order variables and tuples of first-order variables, respectively.

Definition 1.1.1 (Term). A term t of sort o € X%, denoted as t7, over a signature X (also
called a ¥-term) is defined recursively by the grammar:

15
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17 = x, x? € Var (variable)

| ¢, @ cxf (constant)

| (t1,.. . tn),  t7Y, ..., 80" terms, 0 =01 X ... X Oy (tuple)

| fty,. . ty), forone e xf t7h, ..., 2" terms (function application)
Any variable or constant symbol of sort ¢ is a term of sort o. If ¢1,...,¢, are terms of sorts
01,...,0, and foron7 € Xf then (t1,...,t,) is a term of sort oy x ... x 0, and f(t1,...,t,)

is a term of sort o.

We denote by Ts(x) the set of all terms constructed using function symbols in - and
variables in the set x and extend this notation to tuples X such that 7 (X) = Tx(set(X)).
We write Ty, for the set T (0) of ground terms, which contain no variable occurrences.

Definition 1.1.2 (First-order formula). A first-order formula over a signature X (also called
a Y-formula) is defined recursively by the grammar:

Qo =T (true)
| L (false)
| ¢, 8o term (boolean term)
| t1 ~ta, 17, tg terms (equality)
| -t (negation)
| 5o A5 (conjunction)
VARV (disjunction)
| Jax. o x € FV(¢F)  (existential quantification)
| V.o x € FV(¢™)  (universal quantification)

The constants T and L, a boolean term, and the equality between two terms of the same
sort are FOL formulae. The negation, conjunction, disjunction, existential and universal
quantification of FOL formulae are also FOL formulae.

For a formula ¢, we denote by FV(¢) the set of variables not occurring under the scope of a
quantifier in ¢. Writing ¢(X, . .., X, ) means that [ J;_, set(X;) C FV(¢), where n > 0. These
notations are lifted to sets of formulae F' such that FV(F) = Uy FV(¢) and F (X1, ..., X,)
means that |, set(X;) C FV(F), where n > 0.

Given a formula ¢ and a tuple of variables X = (x1,...,2,) (a set x = {x1,...,2,}) we
use 3X. ¢ (Ix.¢) as a shorthand for Jz; ...3z, . ». We do the same for VX. ¢ (Vx.¢). For
formulae ¢, 1 and ¢, we denote by ¢[t)] the fact that v is a subformula of ¢ and by ¢[¢)’ /1]
the result of replacing ¢ with ¢’ in ¢. We also write ¢ = 1 for —¢ V 1.

We also introduce variable substitutions, which will be useful in defining certain properties
of inductive systems.

Definition 1.1.3 (Substitution and flat substitution). Given sets of variables x and y, a
substitution 6 : x — T (y) maps each variable in x to a term in Tx(y). We denote the image
of x under the substitution 6 by x6 = {6(x) | x € x}. A substitution 6§ is flat if Varf C Var,
i.e. each variable is mapped to a variable. A flat substitution 0 : x — y is injective if, for all
Z1,%9 € X, 0(x1) = O(x2) implies z1 = z9. A flat substitution is surjective if for any y € y
there exists « € x such that (x) = y or, in other words, x0 =y.
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For a formula ¢(x), we denote by ¢f the result obtained by replacing each occurrence
of z € x in ¢ with the term 6(z). This notation is lifted to sets of formulae such that

Fo={¢0]|¢ec F}.

1.1.2 Semantics

The semantics of FOL formulae are defined using interpretations of the sorts and functions
in the signature X, and valuations of the variables in Var.

Definition 1.1.4 (Interpretation). An interpretation Z for ¥ (also called a X-interpretation)
maps each sort symbol ¢ € ¥° to a non-empty set o7, each function symbol fo1ono ¢ f
with n > 0 to a total function fZ : oF x ... x 0Z — o7, and each constant symbol ¢” € ¥f

to an element of oZ.

Let T be an interpretation, f71:% a function symbol and « : 07 x ... x 0L — o a

function. We write Z[f < «] for an interpretation such that: (i) Z[f + a](o) = Z(o) for
any sort o € 3%, (i) Z[f + a](f) = «, and (iii) Z[f <+ a](g) = g* for any g € Xf with g # f.
We extend this notation to tuples f = (f1,..., f,) of function symbols and @ = (s, ..., a,)
of functions and write Z[f < @] for the interpretation Z[f; < a1]...[fn < au)-

Definition 1.1.5 (Valuation). Given an interpretation Z, a valuation v maps each variable
2% € Var to an element of oZ.

We use Val = [J, ¢y o to refer to the set of all possible sort values under the interpreta-
tion Z. Also, we denote by V7 the set of all possible valuations under Z. Given a valuation
v, a tuple of variables X = (x1,...,x,), and a set of variables x, we write v(X) for the tuple
(w(z1),...,v(zy)) and v(x) for the set {v(z) | = € x}.

Let Z be an interpretation, v € Vr a valuation, x° € Var a variable, and o € o7 a value.
We write v[z < o] for a valuation such that: (i) v[z < a|(z) = «, and (ii) v[z < a](y) = v(y)
for any y € Var with y # x. We extend this notation to tuples X = (z1,...,x,) of variables
and @ = (aq, ..., a,) of values, writing v[X + @] for the valuation vz < aq]... [T, < ap].

Definition 1.1.6 (Interpretation of a term). Given an interpretation Z and a valuation
v € Vz, we denote by tZ the interpretation of t, defined inductively on the structure of ¢:

I = v(x), 2% € Var
k=T, @ exf
(t1, .oy tn)E = (12, . t,T), t9h, ..., t9" terms
(f(th s 7tn))g = fI(t1§7 s atng)a fglmgng € Ef7 ttljlw ) t%n terms

In other words, the interpretation of ¢ relative to Z and v is obtained by replacing each
function symbol f occurring in ¢ by its interpretation fZ and each variable 2 occurring in ¢
by its valuation v(z).

Knowing how to interpret terms when given a valuation, as per Definition 1.1.6, we can
further extend the notion of interpretation to first-order formulae.

Definition 1.1.7 (Semantics of first-order formulae). Given an interpretation Z and a val-
uation v € Vz, we write Z, v |= ¢ if the first-order formula ¢ is interpreted to true under T
and v. This relation is defined inductively on the structure of ¢:
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ZvET always holds
vl never holds
vt iff tZ = T, t8° term

Tvlti~ty iff 1L =toL, t and tg terms

ZvE— iff Z, v =14 does not hold

v Ay i Z,v = and Z,v =19

vy Vi, it ZvEy or Z,v =1

TvEIr.y ff Z,v[z < o] v, 2° € FV(v), for some a € ot
I,vEVe.y  iff Z,vjr + o] Ey, 27 € FV(v), for any o € o

Using these semantics, we define satisfiability and entailment for FOL formulae under a
given interpretation Z.

Definition 1.1.8 (Satisfiability and validity). An FOL formula ¢ is satisfiable in the inter-
pretation Z if there exists a valuation v such that Z,v = ¢ and unsatisfiable otherwise. If
Z,v = ¢ for any v, then ¢ is valid and —¢ is unsatisfiable.

Definition 1.1.9 (Entailment and equivalence). Given FOL formulae ¢ and 1, we write
¢ =T 4 and say that ¢ entails 1 in the interpretation I if and only if Z, v = ¢ implies Z, v =),
for any valuation v. We call ¢ and 9 equivalent whenever ¢ =% ¢ and v =7 ¢.

We encapsulate all the notions pertaining to FOL into a first-order theory.

Definition 1.1.10 (First-order theory). A first-order theory is a pair T' = (X, M) such that
Y is a signature and M is a non-empty set of (Z,v) pairs, called the models of T, where T
is a Y-interpretation and v € V7 is a valuation.

Given a first-order theory T' = (X, M), any X-term ¢ can also be called a T-term and, sim-
ilarly, any X-formula ¢ can also be called a T-formula. A pair (Z,v) € M such that Z,v E ¢
is a T'-model of ¢. We denote the set of all T-models of ¢ by [¢], = {(Z,v) e M | Z,v |= ¢}.

Definition 1.1.11 (T-satisfiability and T-validity). Given a first-order theory T = (3, M),
a T-formula ¢ is T-satisfiable if [¢] # 0, and T-unsatisfiable otherwise. If ¢ is T-satisfiable
if and only if v is T-satisfiable, then ¢ and 1 are equisatisfiable in T. If [¢], = M, then ¢
is T-valid and —¢ is T-unsatisfiable.

Definition 1.1.12 (T-entailment and T-equivalence). Given a first-order theory T' = (3, M)
and two T-formulae ¢ and 1, we write ¢ =1 and say that ¢ T-entails 1 if and only if

[6]+ € [¥] . We call ¢ and ¢ T-equivalent whenever ¢ =1 and ¢ = ¢.

Throughout the rest of Chapter 1 and also in Chapter 2, we only refer to satisfiability and
entailment under a specific interpretation (Definitions 1.1.8 and 1.1.9). In Chapter 3, when
discussing the satisfiability of separation logic formulae built on top a first-order theory, we
refer to the more general Definitions 1.1.11 and 1.1.12, where multiple interpretations can
be considered.
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1.2 Separation Logic (SL)

1.2.1 Syntax

The syntax for separation logic (SL) is built upon the syntax for FOL, defined in Section
1.1.1. We consider a first-order theory T' = (3, M) such that ¥ contains the sorts Loc and
Data, while Xf contains a special constant nil"°c.

Definition 1.2.1 (Separation logic formula). A separation logic formula over the first-order
theory T'= (X, M), also called an SL(T')-formula, is defined recursively by the grammar:

ot =T (true)
| L (false)
| ¢, tBo°l i a T-term (boolean term)
|t ~to, t9,tg are T-terms (equality)
| emp (empty heap)
| t— u, thoc yPata are T-terms (singleton heap)
| —, (negation)
| ¥5- A3 (conjunction)
| Y5t Vs, (disjunction)
| 3t *x 3, (separating conjunction)
| 5 =k s, (separating implication)
| Jx.¢™, x € FV(y™) (existential quantification)
| V., x € FV(¢™) (universal quantification)

The true and false constants, a boolean T-term, and the equality between two T-terms are
SL(T") formulae. The two new atoms describing empty and singleton heaps are also SL(T")
formulae. The negation, conjunction, disjunction, separating conjunction and implication,
existential and universal quantification of SL(7T") formulae are SL(T") formulae as well.

If an SL(T)-formula contains at least one occurrence of emp, —, % or —, it is called a
spatial formula. Otherwise, it is a pure formula. We extend the % operator to an iterated
version %k that can be applied on a set of formulae such that % § = emp and *{¢1,...,Pn} =
O1 % ...k ¢y if n>1.

We retain the notations FV(¢) (FV(F)) for the free variables of the SL(T')-formula ¢ (set
of SL(T)-formulae F), 3x.¢ and Ix.¢ (VX.¢ and Vx.¢) for Jxy ...z, . ¢ (Vi ... 3z, . @)
when X = (z1,...,z,) and x = {x1,...,2,}, @[] for when ¢ is a subformula of ¢, ¢[¢)’ /1]
for the result of replacing ¢ with ¢’ in ¢, and also ¢ = v for —¢ V 1.

Most definitions of common recursive data structures, such as lists or trees, use a re-
stricted fragment of quantifier-free SL(T) called symbolic heaps, which has a simpler syntax.

Definition 1.2.2 (Symbolic heap formula). A symbolic heap formula is a conjunction IIA O
between a pure (II) and a spatial (O) part, defined as:
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=T (true)
| L (false)
| t, 8ol is a T-term (boolean variable)
| t1~ta, thoc t5oc are T-terms (equality)
| —(ti~ts), t+o° thoc are T-terms (disequality)
| II; AT, (conjunction)
O ::=emp (empty heap)
| t—u, thoc yPata are T-terms (singleton heap)
| ©1 %0, (separating conjunction)

The pure part may consist of true and false constants, a boolean variable, the equality and
disequality between two T-terms, and the conjunction of pure parts. The spatial part, on
the other hand, may consist of the empty and singleton heaps, as well as the separating
conjunction of two spatial parts.

1.2.2 Semantics

In order to define the semantics of SL(T), we use the same notion of interpretation and
valuation described in Definition 1.1.5, but, additionally, we introduce heaps.

Definition 1.2.3 (Heap). Given an interpretation Z, a heap is a finite partial mapping
h: Loct —in Data® associating locations with data. We use HeapsI to denote the set of all
heaps under the interpretation Z.

Two heaps hy and hy are disjoint if dom(h;) Ndom(hy) = () and we write hy#hs. In this
case, hi W ho denotes their disjoint union, which is undefined if h; and hsy are not disjoint.
We write [4) H for the disjoint union of the heaps in the set H C Heaps.

Definition 1.2.4 (Semantics of separation logic formulae). Given an interpretation Z, a
valuation v € Vr and a heap h € Heaps, we write Z, v, h £ ¢ if the SL formula ¢ is interpreted
to true under Z, v and h. This relation is defined inductively on the structure of ¢:

T,v,h|E L never holds
Z,v,h T always holds
T,v,hEt iff tZ =T, t8°° is a T-term

T,u,h Bty ~ty  iff hZ = t,L, 19,15 are T-terms

Z,v,hEemp iff dom(h) =0

T,v,hEt—su  iff tZ #nilf and h = {(tL,ul)}, tHoc, utoe are T-terms
T,v,h = iff Z,v, h =4 does not hold

v, h By Ay i v, h by and Z, v, h B qho

v, hEY Vpy iff T, h ey or Z,v,h by

7, u,h|%1p1 x o iff JhyFho . h = hy Whe and Z, v, by '%wl and Z,v, ho %wg
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T,v,h BEapy — by iff Vhg . h#thg and Z,v, ho B 1by imply that Z,v, h W hg = 1y
T,v,h B3z .9 iff Z,v[r « v],h B, 2° € FV(¢), for some v € o
T,v,hEVz. ¢ iff Z,v[z < v],h o, 27 € FV (1), for any v € 0T

A triple (Z, v, h) such that (Z,v) € M and Z,v, h £ ¢ is an SL(T)-model for the SL(T)-
formula ¢. We denote the set of all SL(T’)-models of ¢ by [¢]s ) = {(Z,v,h) | (Z,v) € M,

h € HeapsI and Z,v,h £ ¢}. Using these notations and the above semantics, we define
satisfiability and entailment for SL(T')-formulae.

Definition 1.2.5 (SL(T)-satisfiability and SL(T")-validity). Given a first-order theory T' =
(3,M), an SL(T)-formula ¢ is SL(T)-satisfiable if [¢]g 7y # 0, and SL(T)-unsatisfiable
otherwise. If ¢ is SL(T)-satisfiable if and only if ¢ is SL(T)-satisfiable, then ¢ and ¢ are
equisatisfiable in SL(T'). If [¢]g (7 = M, then ¢ is SL(T)-valid and ¢ is SL(T)-unsatisfiable.

Definition 1.2.6 (SL(T)-entailment and SL(T)-equivalence). Given a first-order theory T' =
(£,M) and two SL(T)-formulae ¢ and v, we write ¢ =+ and say that ¢ SL(T')-entails 1
if and only if [¢] () € [¥]s (7). We call ¢ and ) SL(T)-equivalent whenever ¢ F=, ¢ and

v Frd.

For the notions discussed throughout the rest of Chapter 1 and also in Chapter 2, we
consider a restricted fragment of SL(T"). The first-order theory T = (3, M) is fixed such
that X5 = {Loc, Data, Bool}, &f = {nil"°“} and Data = Loc” with k > 1 also fixed. Terms are
reduced to just nil and variables, while Tx(x) = x for any x C Var. Moreover, we also fix
an interpretation Z, where Z(Loc) = L is a countably infinite set containing a value £; such
that nil¥ = £y;. Then M = {(Z,v) | v € Vz}. In this context, we omit to specify T or Z any
further and we use simpler definitions for satisfiability and equivalence, closer to their FOL
equivalents described by Definitions 1.1.8 and 1.1.9.

Definition 1.2.7 (Satisfiability and validity). An SL formula ¢ is satisfiable if there exists
a valuation v and a heap h such that v, h £ ¢ and unsatisfiable otherwise. If v, h = ¢ for any
v and h, then ¢ is valid and —¢ is unsatisfiable.

Definition 1.2.8 (Entailment and equivalence). Given SL formulae ¢ and 1, we write ¢ £ 1)
and say that ¢ entails ¢ if and only if v, h £ ¢ implies v, h =), for any valuation v and heap
h. We call ¢ and 1 equivalent whenever ¢ =) and 9 = ¢.

1.3 Systems of Inductive Definitions

Throughout this work we will use the phrases “system of inductive (predicate) definitions”
and “inductive system (of predicates)” interchangeably. To prevent confusion with the proof
systems introduced in Chapter 2, we will avoid using the word “system” by itself.

We can define inductive systems using both first-order and separation logic. The only
syntactical difference lies in the types of formulae accepted as constraints for the predicate
rules of an inductive system, which are specific to the underlying logic. As a result, we will
describe the syntax (Section 1.3.1) in the context of any signature ¥ = (X°, %) and refer
to formulae without specifying their type (FOL or SL). The semantics of inductive systems,
however, are highly reliant on formula semantics and on the valuation of predicate rules
(e.g. using either classic or separating conjunction). As such, we independently describe the
semantics for inductive systems in FOL (Section 1.3.2) and in SL (Section 1.3.3).
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1.3.1 Syntax

Consider a signature ¥ = (X5, %f) and let Pred be a countable set of predicate symbols. For
a predicate symbol p?t-?n € Pred, n > 1 is its arity and o1, ...,0, € X° are the sorts of its
arguments. Given a tuple of terms (¢7*,...,to"), we call p(t1,...,t,) a predicate atom. We

denote by Atom = {p(ti1,...,t,) | p7* " € Pred,t]* € Tx(Var) for each i € [n]} the set of
all possible predicate atoms.

Definition 1.3.1 (Predicate rule). A predicate rule is a pair

PX),{o(X,X1,.., Xn), 1 (K1), -, gn(Xn)}),n >0

where X,X1,...,X, are unique tuples of variables such that set(X),set(X1),...,set(X,) are
pairwise disjoint sets. Then ¢ is a formula called the constraint, p(X) is a predicate atom
called the goal, and ¢1(X1), .. ., ¢, (X,) are predicate atoms called subgoals. Consequently, the
variables in X are called goal variables, whereas the ones in | J;-_; set(X;) are subgoal variables.
Equalities between the variables in X, X1, . . . , X, may be captured by the constraint. We refer
to {d(X, X1, -+, Xn),q1(X1), -+, qn(Xn)} as the body of the predicate rule.

Whenever we consider a predicate rule (p(X), {¢(X,X1,...,Xn), ¢1(X1), .-, qn(Xn)}), it is
implied that X,Xj,...,X, respect the conditions from Definition 1.3.1. We often refer to
a predicate rule body R = {¢(X,X1,...,Xn),q1(X1),---,q(Xn)} by fixing specific tuples of
goal and subgoal variables and writing R(X,Xi,...,X,) or, more compactly, R(X,¥), where
Y =X1-...-X,. Regardless of the variables with which R was initially specified, by R(X,y) we
mean the variant of R in which X and ¥ replace the goal and subgoal variables, respectively.
By writing only R(X) or R we consider all variants of R with fixed goal variables X or without
any fixed variables, respectively.

Definition 1.3.2 (Inductive system of predicates). An inductive system of predicates S is

a finite set of predicate rules.

Without loss of generality, we assume there are no goals with the same predicate and
different goal variables. We use the condensed notation p(X) <—s Ri(X) | ... | R (X) when
{{p(X), R1(X)), ..., (P(X), Rm(X))} is the set of all predicate rules with goal p(X) in S. We
also write S and S° for the sets of predicate symbols and of constraints, respectively, that
occur in the rules of S.

Definition 1.3.3 (Size of an inductive system). The size of an inductive system S is the
sum of the sizes of all constraints occurring in its predicate rules:

1= 9|

peS*”

1.3.2 Solution of an Inductive System in FOL

Let S be an inductive system in FOL and Z an interpretation for the sorts and function
symbols in S. An assignment X maps each predicate p?+» € S to a set X(p) C of x
. X oL, We extend the application of X to a predicate atom p(ty,...,t,) such that

X(p(ty,-.. tn)) = {v | (tar, - tay) € X (D)}

toaset FF={¢1,...0k,q1(X1),.-.,qn(Xn)} of formulae and predicate atoms such that

X(N\F)={v|ZvEdi A... ¢ and v € X(q:(%)), Vi € [n]}
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and to a predicate rule (p(X), R(X)) such that
X(A\R®) = {v|v(X) =+(%) and v € X(/\ RX¥))}
Given two sets F} and F5 of formulae and predicate atoms, the following holds:

X(N\FANE)=X(\F)NnX(\F)

and we also define the application of X on a disjunction of such sets
X(/\Fl v /\FQ) = X(/\Fl) UX(/\FQ)

The set of all assignments on the predicates in S is Assign(S®). We identify two special
elements of this set: A as the assignment that maps all predicates in S” to the empty set,

and X, as the assignment that maps each predicate p?t~-9» € S° to the set 0% x ... x 0.

Given X, Xy € Assign(SP), we introduce the relation =, together with its strict variant
=, such that

XX & VpeS . Xi(p) C Xa(p)
X1-<X2<:>X1<X2/\X1¢X2

We define the union of two assignments X, Xo € Assign(SP?) as
(X1 Y X)(p) = Xi(p) U Xa(p), Vp € S
and their intersection as
(X1 A X2)(p) = X1 (p) N AXa(p),Vp € S

We write Y X and A\ X for the application of Y and A, respectively, among the elements of
the set X C Assign(SP).

Partial orderings and complete lattices. We briefly go over some notions about partial
orderings and complete lattices that are relevant for assignments, as they are described in
[36, Appendix A]. A partial ordering on a set L is a relation <; C L x L that is reflezive
(ie. VI € L.I<.1), transitive (i.e. Vi, lo,ls € L. 11 <, la Nlo<yl3 = 11 <. l3) and anti-
symmetric (i.e. Vig,lo € L.l <, la Nlo <y 1y = l1 =13). A partially ordered set (L,<.) is a
set L equipped with a partial ordering <;. A set Y C L has a lower bound [ ifVI' € Y .1 <. I'.
The greatest lower bound of Y is a lower bound [y such that [ <, [y for any other lower bound
I of Y. Conversely, Y C L has an upper bound | if VI’ € Y .l <. 1, and the least upper bound
of Y is an upper bound [y such that [y <; [ for any other upper bound [ of Y. Not all subsets
of a partially ordered set L need to have an greatest lower bound or a least upper bound,
but, due to <;, being anti-symmetric, they are unique when they do exist and are denoted
[1Y and | ]Y, where [] is called the meet operator and | | the join operator. A complete
lattice L = (L,<,) = (L, <p,|],[ ], L., T1) is a partially ordered set such that any of its
subsets has a least upper bound and greatest lower bound. Furthermore, 1, = | |0 =[]L
is the least element of L and T, =[]0 =| | L is the greatest element of L.

A classic example of complete lattice is the powerset of any set S together with the set
inclusion relation — (P(S),<,UJ,(),0,S). The join and meet operators are set union and
intersection, respectively. The least element of P(S) is () and its greatest element is S.
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Since =, Y and A are defined pointwise based on set inclusion, union and intersec-
tion, respectively, it is easy to show that < is a partial ordering and that Assign(S?) =
(Assign(SP), =) = (Assign(S°), <, Y, A, Xy, Xy) is a complete lattice.

The relation < is reflexive because, given any X' € Assign(S®),

Vpe S . X(p) CX(p) XX

The relation < is transitive because, for any X, Ao, X5 € Assign(S®),

Vp € 8. (Xi(p) C Xalp) A Xa(p) C Xs(p) = Xi(p) C Xs(p)) =
(Vp es’ .Xl(p) - Xg(p)) AN (Vp es? .Xg(p) - Xg(p)) =
(Vpe & . Xi(p) CAs(p) © XX AXox Xy = X< X3

The relation =< is anti-symmetric because, for any X7, Xs € Assign(SP),

Vp € 8. (Xip) € Xa(p) A Xa(p) C Xi(p) = Xilp) = Xa(p)) =
(Vp S Xl(p) - Xg(p)) A (Vp S Xz(p) - Xl(p)) =
(Vp S SP.Xl(p) = Xg(p)) S XA IKIHLNLSX = X =4
Thus, (Assign(S*), <) is partially ordered set. For any X C Assign(S®), its greatest lower
bound is A\ X and its least greater bound is Y X. It follows that (Assign(SP), <) is a complete

lattice with Xy = Y 0 = \ Assign(S?) and X, = Y Assign(S°) = A 0 as its least and greatest
elements, respectively.

The inductive system S and the interpretation Z induce a function on assignments,
FZ : Assign(S°) — Assign(S®), such that

U{I/ |1/€X/\R

where p(X) s R1(X) | ... | Rn(X).

Definition 1.3.4 (Solution of an FOL inductive system). A solution of S is an assign-
ment X' € Assign(S?) such that FL(X)<X. The set of all solutions of S is Solg = {X |
FZ(X) <IX} A least solution of S is uST € Sols such that, for any assignment X < uSZ,
X & Sol.

Lemma 1.3.1. The extension of an assignment is monotonically increasing, i.e. if X1, X5 €
Assign(SP) such that &X; < Xs, then

Xi(p(t1,...,tn)) C Xo(p(te,...,t,)) for any p(ty,...,t,) € Atom and p € S° (1.1)
X (/\R ) Cc X ( )) for any (p(X),R(X)) € S (1.2)
Proof. Since X x X, it follows that X (p) C Xa(p), Vp € S°. Therefore,

Xl(p(tlv s 7tn)) = {V | (tlg, s ,tnf) € Xl(p)}
- {V | (tlz, c. ,tn%) S Xg(p)} = Xg(p(tl, R ,tn))

for any p(t1,...,t,) € Atom with p € §*. We have successfully proven (1.1).
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Let R(X,y) = {o(X,X1,...,Xn),q1(X1), -+, ¢n(Xpn)} such that (p(X),R(X)) € S and y =
X1 - ... Xp. By the extension of assignments, for any i € [2] we obtain

% (A\NREY)) = {v | Tl o(% %) and v € Xi(q;(%;)), V) € [n]}
= (V| Ty &)} N {r | v € Xi(g;(K,)), V) € n]}

={v|Zv o ¥)} N () Xilg; (X)) (1.3)

j=1
Since X; < X, it follows from (1.1) that X1(¢;(X;)) C Xa(q;(X;)), Vs € [n]. Therefore,

ﬂ X1(g;(%;5)) € ﬂ Xa(q;(%;5)) (1.4)

j=1 j=1
Because {v | Z,v = ¢} C {v | Z,v |= ¢} holds trivially, it easily follows from (1.3) and (1.4)
that

(V| Tyl () Xu(g;(x)) C{v [ Tvo}n () Xalg; (X))
j=1 j=1
and, thus, that X1 (A R(X,y)) C X2(A\ R(X,y)). We also obtain X; (A R(X)) C Ao(A R(X)).
As R was chosen arbitrarily, we conclude that (1.2) was successfully proven. O

Theorem 1.3.2 (Monotonicity of F5). The function F% : Assign(S?) — Assign(S*), induced
by the inductive system S and the FOL interpretation Z, is monotonically increasing, i.e
FZ(A)) < FL(Xy) if Ay, Xy € Assign(SP) such that Xy < As.

Proof. Let p € S° be any predicate symbol defined by the inductive system S such that
p(X) s Ri(X) | ... | Rn(X). Then, as per the definition of FZ,

U{u \ueX(/\R )} W(x |VGOX(/\R )},We[Q]

(1.5)
Because X} < Ay, it follows from Lemma 1.3.1 that

m

% (AR) < 0 (AR) 4 bl U (Am) < _[j % (N R)
From (1.5) and (1.6) we can quickly gather that
FE()(p) = (v(®) | v € le (AR} C v v e 6»«2 (AR®)} = X))
As p was chosen arbitrarily, we can conclude that FL(X)) < FL(Xs). 0

Ascending chains. To make a case for the continuity of F%, we introduce ascending
chains, as they are defined in [36, Appendix A]. Given a partially ordered set (L,<.), a
subset Y C L is a chain if Viy,lo € Y .13 < I3 or I3 <; 11, i.e. a chain is a (possibly empty)
subset of L that is totally ordered. A sequence (I;);en of elements from L is an ascending
chain if Vi,9 e N.i < = 1; <, ly.

In the following lemma and theorem, we use ascending chains of assignments from
Assign(SP), denoted (X;);cn, where, as per the above definition, Vi, i’ € N.i < = X; < Xy.
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Lemma 1.3.3. The extension of an assignment is continuous, i.e. if (X;);cn is an ascending
chain in Assign(S®), then

<Y XZ-) (p(t1,...,tn)) = U Xi(p(t1,...,tn)), for any p(t1,...,t,) € Atom,p € S* (1.7)

1€N i€eN
(Y /”Q) (/\ R(i)) =« (/\ R(i)) , for any (p(X),R(X)) € S (1.8)
€N €N

Proof. By the extension of assignments and the definition of assignment union,

<Y X) (pts, - ) = {v | (ti, . tay) € (Y Xi> (»)}

1€N €N
={v|(t,....tnx) € | Xi(0)}
€N
= J{v| L. tar) € Xi(p)} = | Xi(p(ta, .., )
1€N €N

for any p(t1,...,t,) € Atom with p € §*. We have successfully proven (1.1).
Let R(X,Y) = {d(X,X1,-.-,%p),q1(X1), - -, ¢n(Xpn)} such that (p(X),R(X)) € S and y =

X1 ... Xp. By the extension of assignments,
(YX) (ABES) = {v | TvEo®y) and v € (Yx) (;(%)). Vi € [n]}
—{v | Tr oy} {v|ve (Yx> 4;(%})), Vj € [n]}
= {v | Ty & F)}HN m (Yx) (4(%5)) (1.9)

(X;)ien is an ascending chain, so it follows from (1.7) that (Y;cy Xi) (4;(X;)) = Usen Xi(¢5(X;))
and we can rewrite (1.9) as

<Y »a-) (NR&) = v Troyn U b)) (110

i€EN j=14€eN

Moreover, since (X;);cn is an ascending chain and the extension of assignments is monoton-
ically increasing, as per Lemma 1.3.1, then Vi,i" € N.i < = X;(¢;(X;)) C X (g;(X;)) and
ﬂj 1 Uien (45 (X)) = Usen ﬂ?zl Xi(q;(X;)),Vj € [n]. In consequence, (1.10) becomes

(Y Xi) (/\R(ii)) ={vIZvEenJ X))

ieN ieNjﬂ

- U ({V|I ykq&}mﬂéf 4;(%;) )UX (Ar=¥)

1€N 1€EN

It easily follows that also (Y,cy&i) (AR(X)) = Ueny Xi(AR(X)) and, as R was chosen
arbitrarily, we can conclude that (1.2) was successfully proven. O
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Theorem 1.3.4 (Continuity of F5). The function F% : Assign(S”) — Assign(S°), induced
by the FOL inductive system S and the interpretation Z, is continuous, i.e Fg(Y XZ-) =
Yien FLZ(A;) if (X;)ien is an ascending chain in Assign(S®).

1€EN

Proof. Let p € S° be any predicate symbol defined by the inductive system S such that

p(X) s Ri(X) | ... | Rn(X). Then, as per the definition of FZ,
F% (Y ) U{u )|ve (Y Xi> (/\Rj(i))} (1.11)
ieN ieN

Since (X;)ien is an ascending chain, it follows by Lemma 1.3.3 that (Y,cy ;) (A R;(X)) =
Uien Xi(A R;(X)),Vj € [m], so we can rewrite (1.11) as

IB%(Y) U{z/ |VEUX</\R )

ieN ieN

-U U@ vex (AR®))
j=14ieN

_UU{V Jlve i (A\R®))
ieNj=1

= [JFs(x) () = (Y Fg(/‘%)) (p)
ieN ieN

As p was chosen arbitrarily, we can conclude that F% (Y, oy Xi) = Yien F5 (X)) O

Theorem 1.3.5 (FOL least solution). An FOL inductive system S has a unique least solution
equal to the least fixed point of F%, i.e. uST = Ifp(F%). Moreover, uS* = an(X@), where

n € N is the smallest value for which anﬂ(ﬂc’@) =TFL"(Ap).

Proof. Let Fp(F%) = {X | F5(X) = X'} be the set of all fixed points of F%. Since (Assign(S®), <)
is a complete lattlce and IFI is monotonically increasing, as shown by Theorem 1.3.2, it fol-
lows from Tarski’s fixed point theorem [47] that (Fp(F%), <) is also a complete lattice.

This ensures the existence of a unique least fixed point for Fg and, furthermore, [47] gives
us a way to compute this least fixed point as

Ifp(FE) = A{X | FE(X) <X} = ) Sol

Thus, Ifp(F%) is the greatest lower bound of Sol% C Assign(S®) and it is unique because any
subset of a complete lattice has a unique greatest lower bound. Also, due to the reflexiveness
of ¥,

FE%(Ifp(F%)) = Ifp(F%) < Ifp(FE) = Ifp(F%) € Sol%

So Ifp(F%) is also a solution of S. Suppose Ifp(F%) is not a least solution of S. Then, by
definition 1.3.4, there must exist some X < Ifp(F%) such that X € Sol5. But, since Ifp(F%)
is the greatest lower bound of Solg, it must be the case that pr(]Fg) < X, which leads to a
contradiction. Consequently, Ifp(F%) is the unique least solution of S.
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Additionally, because Fg is also continuous, it follows from Kleene’s fixed point theorem
that we can compute pr(]Fg) as the least upper bound of the chain

Xy <FE(Xp) < FEA(Xp) < .. < FE' (X)) <...,i €N

obtained by iterating F% on the least element Xj of Assign(S®). Thus,

Ifp(F5) = uST = Y F5' (%) = F§ (X))
€N

where n € N is the smallest value for which anH(XQ) =TFL"(xp). O

1.3.3 Solution of an Inductive System in SL

Let & be an inductive system in SL. An assignment X maps each predicate p € S° of arity
n to a set X(p) C L™ x Heaps. We extend X to a predicate atom p(X) such that

X)) ={(h) | (»(X),h) € X(p)}
toaset FF={¢1,...0k,q1(X1),.-.,qn(Xn)} of formulae and predicate atoms such that
X(x F)={(v,ho ¥ &J?:l hi) | v, ho EE 1 ... x ¢g and (v, ;) € X (qi(X:)), Vi € [n]}
and to a predicate rule (p(X), R(X)) such that
Xk R(X)) = {(v,h) | v(X) = ~(X) and (7,h) € X(* R(X,¥))}

The set of all assignments on the predicates in S is Assign®(S?). We write X for the
assignment that maps all predicates in S” to the empty set, and X, for the assignment that
maps each predicate p € S” of arity n to the set L™ x Heaps.

We use the relation <, its strict variant <, and the operators Y and A with a similar
meaning as in Section 1.3.2, except they are now applied to assignments in Assign®(S®).
Furthermore, by a similar argument as in Section 1.3.2, Assign®(S?) = (Assign®(S*), <) =
(Assign™(8°), %, Y, A, Xp, X») is a complete lattice

The inductive system S induces a function F% : Assign®(S”) — Assign® (S®) such that

m

F$(X)(p) = (J{W(®), 1) | (v,h) € X(k Ri(x))}

i=1

where p(X) <—s Ri1(X) | ... | Rn(X).
Due to the semantics introduced above, the proofs for the following lemmas and theorems

will handle subsets of V x Heaps and L™ x Heaps. We introduce the following notation such
that, when A, B C V X Heaps,

AYB={(v,h&n')|(v,h) € A, (v,h') € B and h,h’ disjoint}
and, when A, B C L™ x Heaps,

AWB={(v -V, hul') | (v,h) € A,(V,h') € B and h,h’ disjoint}
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Consider two other sets A’, B’ such that A, A’, B, B’ are all subsets of either V x Heaps
or L™ x Heaps. Then it easily follows that

(AUAYWwB=(AWB)U (A" W B)
because, when A, B C V x Heaps,
(AUAYWY B ={(v,hwWh')| (y,h) € AUA (v,h) € B, and h,h’ disjoint}
={(y,hWh') | (v,h) € A, (v,h’) € B, and h,h’ disjoint}
U{(v,hwh') | (v,h) € A',(v,h') € B, and h, ' disjoint}
=(AwB)U (A" ¥ B)
and, when A, B C L™ x Heaps,
(AUAYWB={(v-V,hWh') | (Vv,h) € AUA' (V',l)) € B, and h, I disjoint}
={(v-V,hwh')| (V,h) € A, (¥',1) € B, and h, ] disjoint}
u{(v-v,hu h) | (v,h) € A, (V/,h') € B, and h,h’ disjoint}
=(AWB)U (A"w B)
This enables the following property relative to set inclusion:
AWwBC A W B when A C A’
because AW B = (AW B) U ((A"\ A) W B), which is clearly a superset of AW B.
Based on these properties, it is also true that
(AUAYW(BUB')=(AwB)U(A"WB’') when AC A" and BC B’
because (AUA)W(BUB') = (AW (BUB")U(A' W(BUB'))= (AW (BUB'))UA'WB =
(AwB)U(AWB)YU(A WB')=(AWB)U (A"w B’)
Given now two sets F; and Fy of formulae and predicate atoms, the following holds:
and, as we did for the FOL assignments, we also define
X(kF1V%kFy) =Xk F)UX(k F)

Definition 1.3.5 (Solution of an SL inductive system). A solution of S is an assignment X €
Assign® (8°) such that F%(X) < X. The set of all solutions of S is Soly = {X | F&(X) < X'}
A least solution of S is uS* € Sol§ such that, for any assignment X < uS*, X & Sol%.

Lemma 1.3.6. The extension of an assignment is monotonically increasing, i.e if X7, X5 €
Assign®(S”) such that X < X», then

X1 (p(X)) C Xo(p(X)), for any p(X) € Atom and p € S° (1.12)
X1 (k R(X)) € X2(k R(X)), for any (p(X), R(X)) € S (1.13)

Proof. Since X; < Xy, it follows that X;(p) C Xa(p),Vp € S°. Thus,

X1 (p(x) = {(v, h) | (v(%), ) € X1(p)}
SH{w,h) | (v(X), h) € X2(p)} = X2(p(X)))
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for any p(X) € Atom with p € S*. We have successfully proven (1.12).

Let R(X,y) = {0(X,X1,.--,Xn),q1(X1), - - -, ¢n(Xn)} such that (p(X),R(X)) € S and y =
X1 ... Xp. By the extension of assignments, for any i € [2],

X ( R(x)) ={(.ho W 4] hy) | v.ho FE S(X,¥) and (v, hy) € Xi(q;(X;)), V5 € [n]}

j=1
={(v, ho) | v, ho B ¢} W [H Xi(q;())) (1.14)
j=1
Since X; < Xs, it follows from (1.12) that Xi(¢;(X;)) € Aa(¢;(X;)), Vs € [n]. Thus, by
chaining the property of W relative to subsets,

n

1(g(%5)) € | Xi(q;(%;)) (1.15)

j:

HC:

From (1.14) and (1.15) we obtain that

{(v,ho) [ v, ho B2 0(%,7)} & 4 X1(g;(%5)) € {(v: ho) | v ho 2 6(X,3)} W |4 Xa(a;(%;))

Jj=1 Jj=1

and, thus, that X; () R(X,¥)) C X2(k R(X,¥)). It easily follows that also X (% R(X)) C
Xo(*k R(X)). As R was chosen arbitrarily, we conclude that (1.13) was successfully proven.
O

Theorem 1.3.7 (Monotonicity of F%). The function F% : Assign®™(S?) — Assign®(S*),
induced by the SL inductive system S, is monotonically increasing, i.e F§ (1) xF¥(As) if
X1, Xo € Assign®(S”) such that X < As.

Proof. The proof is similar to the one of Theorem 1.3.2, by using Lemma 1.3.6 to justify the
monotonicity of assignment extension. O

Lemma 1.3.8. The extension of an assignment is continuous, i.e if (X;);en is an ascending
chain in Assign®(S®), then

(Y Xi> (p(X)) = | X:(p(¥)), for any p(X) € Atom and p € S° (1.16)

ieN ieN
<Y XZ-) (k R(X)) = U X;(k R(X)), for any (p(X),R(X)) €S (1.17)
iEN ieN

Proof. By the extension of assignments and the definition of assignment union,

(Y 24-) (p(®) = {(v.h) | (W) 1) € (Y 24-) (n)}

ieN 1€N
= {(v,h) e Ja

€N

= Ul h) | (v(®),h) € Xi(p)} = | X(p(x))

€N €N
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for any p(X) € Atom with p € §*. We have successfully proven (1.12).
Let R(X,¥) = {#(X,X1,...,%Xn),q1(X1), .- -, ¢ (X5)} such that (p(X), R(X)) € S and § =

X1 ... X,. By the extension of assignments,
<YX> *ny))—{uhOUUh | v, ho =0, (v, hj) <YX> 4j(%;)),Vj € [n]}
€N j=1 1€N

={( ho) | v, ho F ¢(X,¥)} U (YX> q;(X;)) (1.18)

j=1 \ieN

(X;)ien is an ascending chain, so it follows from (1.16) that (Yo &) (¢;(%;)) = U,en Xi(g5(X;))
and we can rewrite (1.18) as

(Y»a) (% R%.)) = {(, ho>|uho#¢<xy}uu(ux 4(%)) ) (1.19)

i€N j=1 V4N

Due to the properties of W, and because (X;);en is an ascending chain and the extension of
assignments is monotonically increasing, as per Lemma 1.3.6, then L—ﬂ?zl Uien Xi(g5(X5)) =
Uien Wj=1 i(g;(X;)). In consequence, (1.19) becomes

<Y2¢> (% RE.)) = {(v,ho) | v.ho = o6&, 9} | (Ux 4(%)) )

i€N i€N

—U( l/ho |Vh0':¢}UUX q; X] ):UXZ(*R(XaY))

iEN j=1 i€N

It easily follows that also (Y,oyXi) (k R(X)) = Ueny Xi(AR(X)) and, as R was chosen
arbitrarily, we can conclude that (1.13) was successfully proven. O

Theorem 1.3.9 (Continuity of F%). The function F% : Assign®(S”) — Assign®(S*), induced
by the SL inductive system S, is continuous, i.e F% (U;cy X)) = Ujen F(X:) if (Xi)ien is an
ascending chain in Assign®(S?).

Proof. The proof is similar to the one of Theorem 1.3.4, by using Lemma 1.3.8 to justify the
continuity of assignment extension. O

Theorem 1.3.10 (Least solution of an SL inductive system). An SL inductive system S has
a unique least solution equal to the least fixed point of F%, i.e. uS™ = Ifp(F%). Moreover,
pS* = F%"(Xp), where n € N is the smallest value for which F&" ! (Xy) = FE"(Xp).

Proof. The proof is similar to the one of Theorem 1.3.5, using Theorem 1.3.7 and Theorem
1.3.9 to justify the monotonicity and continuity of F%, respectively. O

1.4 The Entailment Problem

In order to refer to any inductive system, regardless of its underlying logic (FOL or SL), we
use uS and s to mean either uS? and % or uS™ and 4, depending on the context.
The main concern of this thesis is the following entailment problem, which we define in the
general context of any inductive system S.
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Definition 1.4.1 (Entailment problem). Given an inductive system S and predicates p?t--7m,

g7 o™, L, qgr 7 € 8P with the same tuple of argument sorts, does uS(p) C Ui, #S(q;)
(denoted p =5 g1, - - -, gn) hold?

We consider inductive systems for which the set of constraints §¢ consists of quantifier-free
formulae in which no disjunction occurs positively (i.e. under an even number of — applica-
tions) and no conjunction occurs negatively (i.e. under an odd number of — applications).
Without loss of generality, disjunctions can be eliminated from quantifier-free constraints by
splitting each predicate rule (p(X), {1 V...V Pm,q1(X1),...,¢.(Xn)}) into m predicate rules
of the form (p(X), {di, q1(X1),---,¢qn(Xn)}), one for each i € [m].

Additionally, we assume that every p € S° is the goal of at least one predicate rule of
S. Otherwise, the least solution is empty for that predicate, i.e. uSZ(p) = (). Furthermore,
from the way assignments (and, consequently, least solutions) are extended to predicate rule
bodies, uST will be empty for any predicate ¢ € S® for which p is a subgoal. Thus, all such
predicates and all the predicate rules in which they occur can be safely eliminated from S.

Example 1.4.1 (Entailment problem in FOL). Consider the following inductive system,
with FOL constraints:

p(x) s a=f(z1,22),p1(21),p2(x2)  q(z) s 1’~f($1a952)a q1(71), g2(2)

p1(z) s amg(z1),pi(z1) |z~a |z~ f(z1,22), ¢2(21), q1(22)

p2(7) s x~g(w1),pa(z1) |2~ ¢1(z) +s $~9($1) 1(z1) |z~a
g2(z) s r=g(r1),q2(z1) | x =D

Intuitively, S models two tree automata with initial states given by the predicates p and g,
where p accepts trees of the form f(g"(a),g™ (b)), n,m € N, while ¢ accepts both trees of
the form f(g™(a),g™(b)) and f(g"(b),g™(a)), n,m € N. The entailment p =% ¢ expresses
the language inclusion between the two states and it holds. On the other hand, ¢ =% p does
not hold. <

Example 1.4.2 (Entailment problem in SL). Consider the following inductive system, with
symbolic heap constraints:

st (zy) sz =y lymy Ao 2 st (2, y)
Is°(z,y) +sx=yAemp |ymy Nz 2/ 1s°(a',y)
I5°(2,y) sz =y |y~y Ao’ 152, y)

~+

Is (,y) +symy Ao «s®(a y) |y=y Ao — 2’ x1s°(2,y)

Intuitively, Is*(x,y) defines the set of finite list segments of at least one element between

z and y, Is® and [s® are list segments of even and odd length, respectively, and Z\;(x,y)
is the definition of a list segment consisting of one element followed by an even or an odd

list segment. Entailments that hold include: (i) Is* = s, (ii) Is” = is, (iii) Is™ B 1s°, Is°
and (iv) Is' [&1s¢,1s°. Some entailments that do not hold are: (i) Is° B Ise, (i) Is“ B2 ls™,
(iii) Is° F= Is' and (iv) Is" s, <

1.4.1 Entailments under the Canonical Interpretation

Let N* be the set of sequences of natural numbers, where € € N* is the empty sequence and
p - q is the concatenation of two sequences p,q € N*. We call p a prefix of ¢ if and only if
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there exists some r € N* such that p-r = ¢q. A set X C N* is prefiz-closed if p € X implies
that p’ € X for every prefix p’ of p.

A tree over the signature ¥ = (X%, %) is a ground term t € Ty, viewed as a finite
partial function t : N* —g, ©f where dom(t) is prefix-closed and, for all a € dom(t) such
that t(a) = f7r "9, we have [n] = {i e N| «-i € dom(t)}, i.e. t is defined at consecutive
positions from « -1 to « - n for every argument of f. The tree t is of sort o € ¥° (written as
t7) if t(g) = fo1+o7°, for some for-on7 € %,

The set fr(t) = {a € dom(¢) | -1 & dom(¢)} is called the frontier of ¢t. Given a tree t
and a position a € dom(t), we denote by t| the subtree of ¢ rooted at p, where, for each
B € N*, we have t|_(83) = t(a- ). The subtree order is defined by v Ct if and only if u = #|_,
for some a € dom(t). For a function symbol fo1»7 € % and trees t{*,...,t" € Tx, we
denote by 7,(f,t1,...,t,) the tree t such that t(¢) = f and t|, = t;, for all i € [n].

The Herbrand (canonical) interpretation H is the one in which each constant symbol is
interpreted as itself and each function symbol as the function that applies it, as described,
for instance, in [48, Section 3.1]. Thus, terms become both syntactical objects and values.
In other words, H maps (i) each sort ¢ € ¥° into Ty, (ii) each constant symbol ¢ into
the tree ¢® = {(e,¢)} consisting of a leaf which is also the root, and (iii) each function
symbol f717n% into the function f* such that f*(t1,...,tn) = 7u(f,t1,...,ts), for any
t7',...,t7" € Tx. Under this interpretation, t; =ty if and only if ¢1(g) = ta(e) = foron7
and tlli %tngVZ € [’ﬂ]

Even in this simple case, where function symbols do not have any equational properties
(e.g. commutativity, associativity, etc.) entailment problems are undecidable, as stated by
the following theorem.

Theorem 1.4.1. The entailment problem is undecidable for inductive systems under the
Herbrand interpretation.

Proof. This undecidability result can be shown by reduction from the inclusion problem for
context-free languages, which is a known undecidable problem [25, Theorem 9.22 (e)].

Consider a context-free grammar G = (2, %, A), where E is the set of nonterminals,
is the alphabet of terminals, and A is a set of productions (X,w) € E x (EU X)*. For a
nonterminal X € Z, £(G, X) C ¥* is the language produced by G starting with X as axiom.
The problem “Given X,Y € =, does L(G,X) C L(G,Y)?” is undecidable.

To reduce this inclusion problem to the entailment problem under the Herbrand inter-
pretation, we define an inductive system S¢ based on a context-free grammar G = (E, 2, A),
as follows:

(i) Each nonterminal X € = corresponds to a predicate X (z7,y”), where o is the only
sort used in the reduction;

(ii) Each alphabet symbol a € ¥ corresponds to a function symbol a°?, and a word w =
aj ...an € X* is encoded by the context (i.e. the term with a hole) w = a1 (... an(.));

(iii) Each grammar rule (X, u1 X1 ... u, Xpupnt1) € A corresponds to a predicate rule of the
inductive system Sg:

<X(£L’,y), {¢’(9€,y,$1,y1, e axnayn)le(xlvyl)a s aXn(xnvyn)}>

where ¢ = z=a1(x1) A /\?;11 Yi U1 (Ti41) A Yn X Upg1(y). In addition, a grammar
rule (X, €) € A is mapped into a rule (X (x,y), {z~y}) € Sg.
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For any nonterminals X,Y € =, we must show that we have £(G,X) C L(G,Y) if and
only if X =% Y. This is proved using the invariant

YVwe X, (Vt e &% . [z 0(t),y + t] € uSE(X)) & w € L(G, X)

where [z < w(t),y < t] denotes the valuation mapping x to w(¢t) and y to t. O

1.4.2 Entailments with Symbolic Heap Constraints

Considering inductive systems with symbolic heap constraints, as described by Definition
1.2.2, there already exist negative results regarding the decidability of entailment problems,
such as [27, Theorem 2] and [1, Theorem 3].

Theorem 1.4.2. The entailment problem is undecidable for inductive systems with symbolic
heap constraints.



Chapter 2

Proof Systems for Entailments

In this chapter, we describe cyclic proof systems suited for entailments involving inductively
defined predicates. More specifically, we give a generalized one for FOL and adapt it to
SL (Section 2.3). Their design was influenced by an antichain-based method for checking
language inclusion of top-down nondeterministic finite tree automata (Section 2.1). We give
a general proof search semi-algorithm (Section 2.2), which can become a decision procedure
when soundness and completeness are assured. In order to achieve this, additional restric-
tions (Section 2.4) are necessary, and we show how they indeed guarantee the soundness and
completeness of our proof systems (Section 2.5).

2.1 Downwards Inclusion Check for Tree Automata

Consider top-down nondeterministic finite tree automata (NFTA) over a ranked alphabet §
[12], where # f is the rank of the symbol f € §. Then A = {Qa, T, 4, Aa} is an NFTA where
Q4 is a set of states, [4 C Q4 are the initial states of A and A4 is a set of transition rules
q EN (q1,--,Gn), where n = #f for some f € §. Note that NFTA also have an equivalent
bottom-up representation, where the initial states become final states and transitions are

written as (g1, ...,qn) EN q.
In the top-down sense, an NFTA A = {Qa,§, 14, A4} labels an input tree with states
starting at the root and moving downwards. A transition ¢ EN (q1,---,qn) € A4 means

that, if the input is a tree with root f labelled by state ¢, then the automaton can move
downwards and label the children of f with the states q1, ..., qn, in this order. This process,
called a run, can start by using any state from I4 to label the root of the input tree, and
ends successfully for each leaf a of the input labelled by state r if there exists a transition
rule 7 % (). An input tree is accepted if there exists a successful run of A on it. Then £(A)
— called the language of A — is the set of all inputs accepted by A. Also, L(A, q) — called the
language of q in A — is the set of all inputs accepted starting from state ¢ € Q4. Note that
£(4) =U,er, £(A,q).

An NFTA can be naturally viewed as an inductive system, where predicates represent
states and predicate rules are obtained by translation from transition rules. For instance,

f . . .
q = (q1,-..,qn) is equivalent to (¢(z),{z~ f(z1,...,zn), ¢1(x1),-..,¢n(zyn)}). This means
that x is a tree whose root is f and, if the automaton has labelled x with state ¢, then

35
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it can label its subtrees x1,...,x, with ¢1,...,q,, respectively. The variables range over
ground terms and the function symbols are interpreted in the canonical (Herbrand) sense.
Note that, when describing transition rules for NFTA, the direction of the arrows denotes
either the top-down or the bottom-up representation. While similar, our ¢(z) s R1,..., Ry
notation simply means that the set of models for q is the union of the sets of models given
by the predicate rules Ry, ..., Ry, and it is not meant to indicate a certain representation.
Moreover, L£(A, q) is equivalent to uS*(q) for any state g and its translation into a predicate.

Given two NFTA A = {Qa,5,14,A4} and B = {Qp,F, I, Ap}, a common problem
is language inclusion, i.e. whether £(A) C £(B). This can be translated into a language
inclusion problem for states, as it is equivalent to asking whether £(A,p) € U, £(B,q)
for every p € I4. Considering two states p and ¢, and an inductive system S representing
the translation of A and B, the language inclusion problem L(A,p) C L(B,q) is equivalent
to the entailment problem p =% ¢, which asks whether every tree model of p (defined as an
inductive predicate) is a model of ¢ (also defined as an inductive predicate).

Example 2.1.1. The inductive system from Example 1.4.1 describes two NFTA A =
{{paplapZ}vga {p}a AA} and B = {{qa q1, qQ}a 37 {q}a AB}a where S = {f(7 )79()7 a, b} and

f [
Aa=1{p> (p1,p2), p1 >p1, D1
g
P2 — P2, P2

s
Ap={q> (q1,0), «>a, «
q i> (QQ7Q1)7 q2 i> q2, 42

Then L£(A) = L(A,p) = uS*(p) and L(B) = L(B,q) = uS*(q). The language inclusion
problem £(A) C L£(B) is then equivalent to L(A,p) C L(B, q), which is furthermore equiva-
lent to the entailment problem p =% g¢. |

Since language inclusion is decidable for NFTA [12, Corollary 1.7.9], we leverage an
existing algorithm for this problem by Holik et al. [24] to build a complete set of inference
rules and derive a proof search technique. The downwards inclusion check proposed by Holik
et al. searches for counterexamples of L(A,p) C Ule L(B, ¢;) by building a tree containing
pairs (r,{s1,...,8,}), where r is a state that can be reached from p via a series of transitions
in Ag, and {s1,...,s,} are all the states that can be reached from ¢, ..., g via a series of
transitions in A with the same symbols. A counterexample is discovered when the algorithm

encounters a pair (r,{s1,...,sp}) such that there exists a transition r EN (rf,...r}) in Ay

and there exists no transition s; - (sh,...8,) in Ap for any i € [n]. In this situation, we

reach a leaf of the form ((r},...,r.),0), where m > 0. On a different note, if a leaf ((),S)
with () € S is reached, then the check was successful on its corresponding branch. This type
of leaves indicate a transition with a symbol of rank 0 that exists for both r and some state
s, with @ € [n], of the parent pair (r, {s1,...,8,}).

One important aspect is that, by the nature of tree automata, it is possible to have transi-

tions such as p EN (ri,...,ry) and q EN (si,...,81),....q EN (s¥,...,sF). Thus, the inclusion
L(A,p) C L(B,q) holds only if L(A, (r1,...,7)) C Ule L(B,(si,...,s)) also holds. In
this case, the algorithm reaches a pair ((r1,...,7,),{(s3,...,8L),...,(s,...,8)}). Be-

cause the union Ule L(B,(st,...,s%)) = Ule (L(B,s}) x ... x L(B,s)) cannot be sim-
ply computed component-wise, there is no easy check that can be performed on such a
pair. Instead, using some properties of the Cartesian product, we can perform a split ac-

tion and obtain several groups of simpler inclusions L£(A,7;) C U,cgq, £(B,s), with S; C
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{s},...,s¥} and i € [n], such that, if all the inclusions hold in at least one group, then

L(A,(r1,...,m)) C Ule L(B,(si,...,s%)) also holds (see [24, Theorem 1]). Then the pair

((r1,.--srn), {(s},...,8L),...,(s¥,...,55)}) can also be broken down into several groups of

pairs (r;,S;) and, if a counterexample is encountered for at least one pair in every group,
then there also exists a counterexample for ((ry,...,7,), {(s}, ..., s2), ..., (sh, ... s%)}).

The algorithm also keeps a workset of previously checked pairs and stops successfully
whenever it encounters a pair identical to one of its ancestors. This is justified by the fact
that, if the inclusion does not hold, it is not because of the sequence of pairs obtained
from the ancestor to the current one. Otherwise, by infinite descent, there would exist a
counterexample that is a strictly smaller tree than the one obtained from the ancestor and,
by repeating the path infinitely often, we would obtain an infinite sequence of strictly smaller
counterexamples, which is impossible, as we only consider finite trees.

Example 2.1.2. Consider the NFTA A and B from Example 2.1.1. To check L£(A,p) C
L(B,q), we start with (p, {g}). A run of the algorithm is depicted below, where the enumer-
ated pairs are organized as a tree. The algorithm perform two types of actions: transitions
(indicated by arrows labelled with symbols) and split actions (indicated by unlabelled edges).

(p,{a})
f‘
|((p1, p2), {(41, 42), (a2, @1)})|

(p2,{q2,¢1})

(p1,{q1}) (P2, {92})

(p1,{q1,q2})

(p2,{a2, @1 })!

_________

:Ep_l,_{qhqz}):

Note that, for the pair ((p1,p2), {(q1,¢2), (¢2,q1)}), this run checks the group (p1,{q1,42}),
(p1, {1 }), (p2,{g2}) and (p2,{q2,q1}). By [24, Theorem 1], the other possibilities are:

- (p17{QI7q2})7 (p1,{q1}), (pla{QZ}) and (pZa {Q27Q1});
- (ph{QhQQ})v (pQ’{ql})v (plv{q2}) and (p2a {6127(11});
- (plv{QhQQ})v (p27{q1})7 (p27{q2}) and (pZa {6127Q1})~

On the other hand, note how £L(B,q) € L(A,p). There exists only one run of the algorithm
starting with the pair (g, {p}), as depicted below.

(¢, {p})

(a1, 42), {(p1,p2)})] (a2, @1), {(p1,p2)})|

(q1,{p1}) (g2, {p2}) (q2,{p1}) (q1,{p=})
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Because both sets in ((g1,4q2), {(p1,p2)}) and ((g2,¢1), {(p1,p2)}) contain only one tuple, the
pairs can be split in only one way, component-wise. The counterexamples in this case are
f(bya), f(b,x) with z € L(B,q1), and f(x,a) with x € L(B, ¢2). <

2.2 A Proof Search Semi-algorithm

The main idea behind the proof systems we want to build is to view a complete, counter-
example-free search tree for an inclusion problem L£(A,p) C Ule L(B,g;) (such as the one
depicted in Example 2.1.2) as a proof for the validity of the entailment p =¥ ¢, .. ., gi, where
S contains the predicate definitions corresponding to the two NFTA in which p and ¢, ..., qx
are states. We view the pairs (r, {s1,..., s, }) explored by the downwards inclusion check as
sequents r(x) F si(x), ..., sy,(x) in the proof and apply the principle of Infinite Descent to
close those branches leading to an infinite sequence of strictly decreasing counterexamples.

We write I' A to denote a sequent. Typically, the left-hand side T is a set of quantifier-
free formulae and predicate atoms, while the right-hand side A is a set of (possibly ex-
istentially quantified) conjunctions over quantifier-free formulae and predicate atoms. In
FOL, the left-hand sides are interpreted as classic conjunctions, while in SL they use the
separating conjunction. In both cases, the right-hand sides are interpreted as disjunctions.
When writing sequents we usually omit the braces in both I" and A. A sequent of the form
p(X)F 1(X), ..., q.(X) is called basic.

Definition 2.2.1 (Proof system). A proof system R is a set of inference rule schemata:

A ...T,FA
IR ! 1F|—.An ™ side conditions

C

T, b A,

We call I'; = A; the antecedents and I' = A the consequent of the inference rule. When the
list of antecedents is empty (i.e. n = 0), an inference rule may have a pivot I', F A, (which
is always a sequent preceding the consequent in the transitive closure of the consequent-
antecedent relation or, in other words, an ancestor of the consequent) and C is a pivot
constraint on the path between the pivot and the consequent.

An inference rule schema (or simply inference rule, for short) allows for infinite instances
that share the same structure. We refer to these as inference rule instances or inference rule
applications. For any inference rule IR we assume that there are finitely many instances
of IR with pivot I', F A, and consequent I' = A. We denote by #(IR) the number of
its antecedents and write T for the antecedent list whenever #(IR) = 0. It is possible to
have inference rules for which #(IR) > 0 and only a particular instance can determine the
exact number of antecedents. Thus, we say that #(ir) = 0 if an instance ir of IR generates
an empty list of antecedents and also write T for this particular instance. Naturally, if
#(IR) = 0, then also #(ir) = 0 for any instance ir of IR.

Definition 2.2.2 (Derivation). A derivation using the proof system R is a (possibly infinite)
tree D = (V,vg, Seq, Rule, Par, Piv), where V is a set of vertices, vy € V is the root node,
Seq is a total mapping from V to sequents, Rule : V. — R, Par : V \ {vp} — V and
Piv: V \ {vo} — V such that:

(i) Each v € V is labelled by a sequent Seq(v) and Rule(v), if defined, indicates the
inference rule schema whose instance is applied on Seq(v);
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(ii) For each v € V' \ {wg}, Par(v) € V is the parent node of v and Seq(v) is an antecedent
of the Rule(Par(v)) instance applied on Seq(Par(v)). If this inference rule instance
generates an empty list of antecedents, then Seq(v) = T;

(iii) If the instance of Rule(v) applied on Seq(v) has a pivot, where v € V' \ {vg}, then
Piv(v) € V denotes a node such that Seq(Piv(v)) is the pivot of this instance.

Definition 2.2.3 (Proof). A proof is a finite derivation D = (V, vy, Seq, Rule, Par, Piv) such
that Seq(v) = T for all leaves v € V — i.e. on every branch of the derivation, the last
inference rule application has an empty list of antecedents.

Having formalized derivations and proofs, we now define backlinks, traces and paths.
These notions are instrumental to formulating properties of derivations and proofs, while
also playing an important role in establishing soundness and completeness results later on.

Definition 2.2.4 (Backlink). Given a derivation D = (V,vo, Seq, Rule, Par, Piv), a backlink
is a pair (u,v) with u,v € V such that Piv(u) = v.

Definition 2.2.5 (Trace). A trace in a derivation D = (V, vg, Seq, Rule, Par, Piv) is a (possi-
bly infinite) sequence of vertices 7 = vy, vo, ... such that, for all ¢ > 1 either v;_; = Par(v;)
or Piv(v;—1) = v;. We say that 7 contains a backlink if Piv(v;—1) = v; for some i > 1.

Definition 2.2.6 (Path). A path in a derivation D = (V, vg, Seq, Rule, Par, Piv) is a sequence
of vertices m = vy, ..., v, such that, for all ¢ € [2, n], we have v;_; = Par(v;). If, furthermore,
Piv(v,) = vy, then 7 is a direct path.

Note that, since the branching degree of a proof is finite, by Konig’s Lemma every
path in a proof must also be finite. Traces, however, can be infinite, in both derivations
and proofs. Given a path or a finite trace @ = vy,...,vg, we write A(m) for the sequence
Rule(vy), ..., Rule(vg) of inference rule schemata applied along 7. We can also decompose 7
into several subsequences p1, ..., pn, such that their concatenation is equal to m. We denote
this by @ = p1 - ... p;m and, in this case, we also write A(7) = A(p1) - ... A(pm)-

The pivot constraint C of an inference rule schema IR is a set of finite sequences of
inference rule schemata, such that, for any instance ir of IR, if  is the direct path from the
pivot of ir to its consequent, then A(7) € C. We usually specify C using regular expressions.

Proposition 2.2.1. Any infinite trace in a proof contains infinitely many direct paths.

Proof. Let 7 be an infinite trace in the proof D = (V| vy, Seq, Rule, Par, Piv). Since V is
finite, 7 must contain infinitely many backlinks. Moreover, V' x V is also finite and there can
only be a finite number of backlinks, thus there must exist a backlink (v;_1,v;) that repeats
infinitely often in 7.

We now show that, for every finite trace p = v;,...,v;_1, where (v;_1,v;) is a backlink,
there exists a direct path in p, by induction on the number N of backlinks in p. If N =0
the direct path is trivially p. For the induction step N > 0, we suppose that the property
holds for any N’ < N. Let p = v;,...,vj_1,vj,...,0;—1, where (vj_1,v;) is the last backlink
on p. Then the suffix v;...v;—1 of p is a path. Since (v;—1,v;) is a backlink, then v; is a
predecessor of v;_1 in D), thus v;,v; and v;_; are on the same branch on D. We distinguish
two cases:

1. If v; is v; or a predecessor of v; then p ends in a direct path from v; to v;—1 in p and we
are done, because p = v;,...,vj_1,v;,...,0;,...,v;—1 and there are no more backlinks
between v; and v;_;.
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2. Else, if v; is a strict predecessor of v;, we show that there must exist another occurrence
of v; in the prefix v;,...,v;—1 of p. Note that v;,v; and v;_; occur on the same branch
in D. Suppose, by contradiction, that vi # vj, for all k € [i,j — 1]. To reach v;_4
from v; there must exist a strict predecessor u € V of v; and a subsequence of p from
u to some strict successor u’ € V of v; that goes through one or more backlinks (see
the figure below). However this is not possible, since each backlink leads from a leaf
of D to one of its predecessors, thus any trace starting at v;, passing through u and
then following a different branch than the one on which v;, v; and v;_; reside, can only
return to this branch at u or predecessors of u, whereas u’ is a strict successor of u.

|
~ I
|
L)
|
|
v @

We have shown that there exists k € [i,j — 1] such that vy = v;, thus we have a
subsequence p’ = vg,...,vj_1 of p, where (vj_1,vy) is a backlink, containing N’ < N
backlinks. By the induction hypothesis, p’ contains a direct path, which concludes the
induction proof.

Therefore, each finite subtrace v;_1,...,v; contains a direct path. Because the backlink
(vi—1,v;) occurs infinitely often in 7, there are infinitely many such subtraces in 7, we can
conclude that 7 contains infinitely many direct paths. O

We want our proof systems to be sound and, ideally, complete. Having introduced all
the above notions, we can now define soundness and completeness.

Definition 2.2.7 (Soundness and completeness). Given an inductive system S and an in-
terpretation Z, a proof system R is sound if, for every sequent p(X) - ¢1(X), ..., ¢,(X) that
is the root of a proof constructed with R, the entailment p )zg qi,---,qn holds. Moreover,
R is complete if for every valid entailment p =% g1, ..., g, there exists a proof starting with
p(X) F ¢1(X), ..., qn(X) that can be constructed with R.

Trying to build a proof with no guidance on what inference rule schema to apply at any
point can become quite a gruelling task. To this end, we introduce the notion of a strategy,
which can be used to guide a proof-search algorithm.

Definition 2.2.8 (Strategy). A strategy is a set S of inference rule schema sequences. A
derivation (or proof) D is an S-derivation (or S-proof) if the sequences of inference rule
applications along every maximal path in D belong to S.

Definition 2.2.9 (Valid prefix). Given a strategy S, a sequence s of inference rule schemata
is a walid prefix for S if there exists another, possibly empty, sequence s’ such that their
concatenation s - s’ belongs to S.

Figure 2.1 describes the data structure Node, which represents the nodes in any derivation
built using the proof system R. We also consider a constructor Node (sequent, rule, parent,



2.2. A Proof Search Semi-algorithm 41

Node { sequent : A sequent I' - A,
rule : An inference rule schema from R
parent : Parent of the current node, also of type Node,
piwot  : Pivot of rule, also of type Node,
children : A list with elements of type Node }

Figure 2.1: The data structure Node, representing a node in a derivation

pivot, children) which takes four arguments of the same types as its fields and initializes
them. The proof-search semi-algorithm we propose uses this data structure, and also the
notion of applicable inference rule schema, for which we provide the following definition.

Algorithm 1: Proof search semi-algorithm.

Input

: An inductive system S, a basic sequent p(X) F ¢1(X), ..., qn(X), a proof
system R and a strategy S

Output: A proof starting with p(X) F ¢1(X), ..., ¢u(X)

© 00 N O oA W N -

[
N = O

13
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16
17
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Root + Node(p(X) F ¢1(X), . . ., qn(X), null, null, null, [])
WorkQueue + {Root}
while WorkQueue # [] do

Dequeue a node N from WorkQueue
Let 7 be the path between Root and N
Let Ry = {IR | IR € R and IR applicable on N.sequent and 7}
Let Ry = {IR | IR € Ry and #(IR) = 0}
if A(m) - IR walid prefiz of S for some IR € RY then
N.rule + IR
if IR has a pivot then
Let P be the pivot for this instance of IR
L N.pivot < P

B Mark N as closed

if N not closed and A(w) - IR wvalid prefix of S for some IR € Ry then
N.rule < IR
Let ir be an application of IR on N.sequent
foreach antecedent T = A’ of ir do
N < Node(I” F A’, null, N, null, [])
Append N’ to N.children
Enqueue N’ in WorkQueue

if N.children is empty then
L Mark N as closed

Definition 2.2.10 (Applicable inference rule schema). Given an inference rule IR, a sequent
'+ A and path 7 starting at the root of a derivation and ending at v, where Seq(v) =T + A,
we say that IR is applicable on T' = A and 7 if there exists an instance ir of IR such that:

(i) T+ A matches the consequent of ir such that the side conditions are satisfied;

(ii) There exists v, # v along m, where Seq(v,) matches the pivot of ir such that the side
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conditions are satisfied, and, if 7 = p- v, -5 v, then A(v,-n) € C, where C is the pivot
constraint of ir.

Given an input sequent p(X) F ¢1(X), ..., ¢ (X), a set R of inference rule schemata and a
strategy S, the proof search semi-algorithm 1 iterates over a work queue of nodes to build a
derivation. The root node is initialized with the input sequent, an empty list of children and
nil for the parent pointer and the inference rule schema. The work queue initially contains
only the root. When a node is removed from the work queue, the path between the root
sequent and the current sequent is extracted using the parent pointers. The semi-algorithm
then computes the sets Ry (of inference rule schemata applicable on the current sequent and
derivation path) and RY (the subset of Ry containing only those inference rule schemata
with a guaranteed empty list of antecedents). Inference rule schemata in R% matching the
strategy are applied eagerly and the node is marked as closed, indicating a successfully
proved path. Otherwise, the semi-algorithm chooses nondeterministically an application of
an inference rule schema in Ry that matches the strategy. Then, for every antecedent, a
new child node is created, which is then added to the work queue. If the inference rule
application generated an empty list of antecedents, the current node is marked as closed.

Note that, if a proof of p(X) F ¢1(X),...,q,(X) exists, then there also exists a finite
execution of the semi-algorithm 1 on this sequent. Moreover, if the strategy S is chosen in a
way that forbids infinite derivations, this turns 1 into an algorithm, which can furthermore
become a decision procedure for the entailment problem if the input set of inference rules is
complete for the input inductive system.

2.3 Cyclic Proof Systems for Inductive Entailments

2.3.1 The Inference Rule Set R,,q for FOL Entailments

We introduce the proof system Rj,g = {LU,RU,RD, AR, SP, AX,ID}, suited for FOL entail-
ments. Its inference rule schemata are depicted in Figures 2.2, 2.3, 2.4 and 2.5, where long
side conditions are written underneath each respective inference rule schema instead of to
the right.
LU <Ri(ia yi)7 r \p(i) + A)?:l px)€rl, ¥i,...,y, fresh
FFA p(i) s Rl(i) ‘ |Rn(§)

RU '+ {Elyi . /\Ri(i7yi)}?:l AN\ p(X) p(X) €A, ¥1,...,¥, fresh
kA p(X) s Bi(X) | ... | Bn(X)

Figure 2.2: Inference rule schemata for predicate unfolding.

The inference rules of type LU and RU (Figure 2.2) unfold a predicate atom p(X) which
occurs on either the left- or right-hand side of a sequent I' F A, respectively. By unfolding
p(X), the atom is replaced with the set of predicate rules p(X) <—s R1(X) | ... | Rn(X), in
which we use fresh subgoal variables. The left unfolding yields a set of sequents that must be
all proved, one for each R;, thus creating several new branches in the derivation that need to
be all valid in order to obtain a proof. In contrast, the right unfolding simply replaces p(X)
on the right-hand side of the sequent with a set of formulae obtained by applying conjunction
over each R;,i € [n] and existentially quantifying the fresh subgoal variables in them.
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Example 2.3.1. Consider the inductive system from Example 1.4.1. In order to prove the
entailment p =5 g, we start a derivation from the sequent p(z) - ¢(z). By applying LU on
this sequent to unfold p(z), we obtain:

z =~ f(x1,z2),p1(z1), p2(x2) F q(z)
p(z) - q(z)

LU

We can further apply RU on the resulting sequent and unfold ¢(x):

x = f(x1,m2),p1(21), p2(x2) F Iy, y2 . = fly1,¥2) Aqi(yr) A ga(y2),

Fy1,y2 -2 = f(y1, y2) A g(y1) A qi(ye)
RU

z =~ f(x1,z2),p1(x1), p2(22) F ¢(z)

Note that, by unfolding, we have introduced the new subgoal variables x1, 2 on the left-hand
side and the new, existentially quantified subgoal variables v, yo for each conjunction on the
right-hand side. <

PE), - pu(Ea) F{Q5(7,0) | 6 € 5},
Qb(i, X1, ,in)7p1(i1>, .. ,pn(in) [ {Hyj ~¢j(i, yj) A Qj(yj)}f:l

where ¢ =7 ALy Jy; .y, & BT VE_,, 3y, .95, S; C VIS(6,45),j € 1]

RD

PEpR)ANQA THqeX)AQA

M @A @A QA

Figure 2.3: Inference rule schemata for reducing constraints and for removal of predicate
conjunctions over the same arguments.

The inference rules of type RD (Figure 2.3) simplify sequents by eliminating the con-
straints from both the left- and right-hand sides. This is done by checking the entailments
oL 3y, -1, J € [k] between the left constraint and each of the constraints on the right. If
the entailment does not hold, the corresponding conjunction 3y ;. ;(X,¥;) A Q;(¥;) from
the right-hand side is ignored. If the entailment holds, however, it is witnessed by a finite set
of substitutions S; C VIS(¢, ) for the existentially quantified subgoal variables ¥, where
VIS(,9) = {0 : U=, set(y;) — Ts(set(X) U Ui, set(Xi)) | ¢ =2 4#}. For each valid en-
tailment, we eliminate the constraint 1;(X,y;) together with the existential quantification,
and add every conjunction of predicates Q; (%—9) with 6 € S; on the right-hand side of the
antecedent. Finally, the left-hand side of the antecedent is obtained from the left-hand side
of the consequent by simply eliminating the constraint.

Note that the application of RD, which substitutes the subgoal variables on the right-hand
side, may generate conjunctions of predicates sharing the same tuple of arguments (if there
originally were more subgoals on the right-hand side before the application of RD). These
cases are eagerly eliminated using an inference rule of type AR (Figure 2.3). We assume
that every application of RD is followed by a cleanup of the right-hand side of its antecedent
using sufficiently many applications of AR to eliminate all conjunctions of predicates with
the same arguments from the right-hand side.



44 Chapter 2. Proof Systems for Entailments

Example 2.3.2. Continuing the derivation from Example 2.3.1, we apply RD on the an-
tecedent of RU:

p1(z1),p2(22) F q1(71) A g2(22), g2(w1) A qa(2)

RD
& f(x1,22),p1(z1), p2(x2) 3y, 92 . ¢ = fy1,y2) A qi(y1) A qz2(y2),
3y, y2 .z = fyr,y2) Age(y1) A qi(ye)

This application of RD checks the entailment x ~ f(z1,72) =X Jyi,y2.2 =~ f(y1,y2) for
both parts of the right-hand side (since they happen to have the same constraint). The
entailment holds and is witnessed by the substitution 6 = {(y1, 1), (y2,x2)}. The constraints
z ~ f(x1,22) and © ~ f(y1,y2) together with the quantification Jy;,y2 are removed and 6
is applied on both conjunctions from the right-hand side. <

(pr, (%s,) H{af, (%s,) | £ € K], £5(Q) = 3,17,

p1(X1)s - on(Xn) F{Q;(X1,...,Xn) ?:1

where set(X;) Nset(X;) = 0,V4,j € [n],
Qj = /\?:1 qg(ii)v éj = <q{7""q7j’b>7 Vj S [k]
_ L k
.F(Ql,-.-,Qk) = {fl:---7fnk}v S [n]n

SP

Figure 2.4: Inference rule schema for splitting sequents without constraints.

The transition actions performed by the algorithm for tree automata inclusion checking
detailed in Section 2.1 are equivalent to applying the LU, RU and RD inference rules all at
once. This is a natural consequence of how the function symbol labelling the root of the
current input controls the transition rules for tree automata. Function symbols can only be
compared via equality, thus the constraints of the predicate rules corresponding to a tree
automata match unambiguously. For instance, z ~ f(z1,z2) E® Jy13y2 . x = g(y1,y2) if and
only if f and g are the same function symbol, in which case the only substitution witnessing
the validity of the entailment is 8(x;) = y;, for i € [2].

However, when considering general constraints, matching requires the discovery of non-
trivial substitutions that prove an entailment between existentially quantified formulae.
Moreover, the matching step implemented by the RD rule is crucial for the completeness
of the proof system. We generalize from the simple case of tree automata constraints and
identify general properties for the set of constraints that allow matching to be complete.
Such properties are detailed in Section 2.4.

The inference rules of type SP (Figure 2.4) split a sequent without constraints, of the from
p1(X1)s - on(Xn) F {Qj(Xq, ... ,in)}é?:l, where Q;(Xi,....X,) = A, ¢/ (X;), into basic
sequents, with left-hand sides p;(X1), .. ., pn(Xy). This inference rule corresponds to the split
action performed by the inclusion check from Section 2.1. Given a set of predicate tuples
{Q1,..., 9k} C Pred", for some n > 1, a choice function f maps each tuple Q;,j € [n] into
an index f(Q;) € [n] corresponding to a given position in the tuple. Let F(Qy,..., Q) =
{f1,--, far} be the set of all such choice functions. This set has cardinality n*, for any set
of n-tuples of predicates. Consider now a tuple of length n* containing index choices from
1 to n, each corresponding to a choice function fi,..., f,». The set of all such choices is
[n]"*. Given a choice 7 € [n]"k, let 7; = pos; (7). Then, for each 7 there exists an application
of SP, generating n* antecedents with left hand-side Py, (X3,),J € [n*] and right hand-side
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consisting of all predicate atoms qu (Xz,),¢ € [k] obtained from predicates at position 7; in
the tuples @, which are mapped to 7; by the choice function f;. In order to obtain a proof,
there must exist some application of SP — and, therefore, some 7 € [n]“lc — for which all the
generated antecedents can be proven. It is important to note, however, that these tuples are
meant to encode the transformation of a formula from CNF to DNF and, as such, not all
possibilities are relevant. More precisely, as shown in [24, Section 3], any 7 for which there
exists j € [n*] such that 7; & img(f;) can be discarded.

To apply SP, it is necessary that all the conjunctions on the right-hand side of the
consequent contain the same number of predicate atoms as the left-hand side. This might
not always be the case after applying RD and as many instances of AR as possible. Note
that the substitutions from RD which map the subgoal variables ¥; to the subgoal variables
X1,...,X, ensure that there cannot be fewer predicate atoms on the left-hand side than on
the right-hand side. Otherwise at least two predicate atoms on the right-hand side would
share the same tuple of subgoals X; for some i € [n] and AR would be enabled, which

contradicts the assumption that we applied AR as many times as possible.

In order to enable the application of SP on sequents that have, on the right-hand side,
conjunctions of fewer predicate atoms than the left-hand side, we introduce a set of universal
predicate rules S, = {(pF(z1,...,2%),{T}) | K > 0} and assume that any system S contains
it by default. If there are conjunctions of predicates Q on the right-hand side such that there
exist tuples of subgoal variables X; for which 3p € S*.p(X;) € T', but Vg € S°.¢(X;) does
not occur in Q, then we add pﬂi" I (X;) to Q. This change does not alter the semantics of the
entailment and is done implicitly when applying SP.

Example 2.3.3. Continuing the derivation from Example 2.3.1, we can immediately apply
SP on the antecedent of RD. As shown in [24, Section 3], using properties of the Cartesian
product, an inclusion of the form Ry x Ry C S x So UT; X Ty corresponding to this sequent
can be rewritten as

(R CSTUT)A(RL CS VR CTo)A(Ry CTh VR CS5)A(Re CSaUTy)
and, by translating this formula into DNF, we would obtain
(R CSIUT)AN(RICS)H) AR CTH)A (R CS2UTy) V
(R CSHUTI)A (R CS1)A (R CTS2)A(Ry CS2UTy) V
(R CSTUTH)AN (R CTo) AR CTH)AN(RyC Sy UTh) Vv
(R CS1UTIH) A (R CTo)A(Ra C S2)A(Ry C S UTh)
SP encodes this transformation for uS™(p1) x uS*(p2) C uS™(q1) x uS™(g2) U uS™(gqz) x

uS™(q1) as follows. Let Q1 = (q1,¢2) and Qo = (g2, q1) be the tuples of predicates corre-
sponding to the right-hand side. The set of choice functions is F(Q1, Q2) = {f1, fo, f3, fa}:

‘ Ji fo fs fa
o:l1 1 2 2
Q1 2 1 2

The set {ci,...,ci6} of all possible index choice tuples for F(Qy, Qo) is:

‘01 Ca €3 C4 C5 Cp C7r Cg Cg Cip C11 Ci2 C13 Ci4 C15 Ci6

filr 111 1 1 1 1 2 2 2 2 2 2 2 2
fofv 111 2 2 2 2 1 1 1 1 2 2 2 2
fs;11 12 2 1 1 2 2 1 1 2 2 1 1 2 2
fal12 1 2 1 2 1 2 1 2 1 2 1 2 1 2
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The antecedent of RD corresponds to a valid entailment if there exists some ¢ € [16] such
that, if we choose 7 = ¢;, the application of SP with 7 leads to a proof. For this example, the
relevant tuples (the ones in which 7; € img(f;) for every j € [4]) are ca, c4, ¢ and cg. We
choose 7= ¢4 = (1, 1,2,2), generating the following application of SP:

pi(z1) Fqi(z1),q2(z1)  pi(zn) Faqi(z)  pa(z2) Fga(ze)  p2(xe) F q2(2), q1(22)

SP
p1(z1),p2(x2) F gi(z1) A g2(x2), g2(x1) A q1(x2)

At this point, in order to prove the entailment, it is necessary to continue the derivation
and obtain a proof from each branch created by this application of SP. <

T 0 is a flat, injective substitution
ToF A9 ACA
- (Ring)*™ - LU - (Rina)*
I+ A

T T
AX s ATETVA 1D

Figure 2.5: Inference rule schemata for closing a valid branch of the proof.

The inference rule schema AX (Figure 2.5) closes the current branch of the proof, if the
sequent from its consequent can be proved using a decision procedure for the underlying
constraint logic, while treating all predicate symbols as uninterpreted function symbols of
boolean sort.

Example 2.3.4. Consider the sequent p;(z1) F g1(x1), g2(x1) obtained from the application
of SP in Example 2.3.3. We continue the derivation by applying LU to unfold p;(z;) and
RU to unfold ¢ (z1). In order to arrive at an application of AX, we only look at the branch
generated by LU for the rule (p;(x1),{z1 ~a}). We obtain the following derivation:

z1=abzi~a Iy .21 = g(y) Aq(yr),gz(z1)
RU

1 =~ at qi(21),q2(21)
LU

p1(w1) F qi(z1), g2(21)

Note how x =~ a appears both on the left- and right-hand sides. Any decision procedure
for FOL that treats q; and ¢o as uninterpreted functions will indicate that = ~ a ="z ~
aV Ty .-z~ g(y1) Aqi(y1)) V g2(x) holds. Therefore, it is possible to apply AX:

-
r1~aba~a,Iy.ar = g(y) Aa(y), g2(21)

AX

Thus, this particular branch of our derivation is closed and, moreover, it represents a valid
branch for the proof we are seeking. <

The inference rules ID (Figure 2.5), short for Infinite Descent, work as follows. A sequent
T'0 = A’f denotes a valid entailment whenever the pivot I' = A, encountered earlier in the
proof, is a similar sequent up to the renaming of variables by a flat, injective substitution 6.
The pivot condition (Ring)* - LU - (Ring)* asks that a rule of type LU is applied somewhere
on the path between the pivot I' = A and the consequent I'6 - A’6 in the proof. Rules
of type ID are sound if the inductive system is ranked (Definition 2.4.3), by an application
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of Fermat’s Infinite Descent principle [10]. The soundness of ID is based on the following
argument, proven in more detail in Section 2.5.1.

Consider, by contradiction, that I' A does not denote a valid entailment. From the
soundness of Rina \ {ID}, we show how there exists a counterexample v € uST(AT) \
uST(\/ A), which can be propagated along the path from the pivot to the consequent of ID,
such that we obtain v/ € uST(AT0)\uST(\/ A’6) and v/ is strictly smaller than v in a chosen
well-founded ordering. This is due to the requirement that LU must be applied along this
direct path, which, in turn, requires RD to also be applied, guaranteeing a strict decrease in
the multiset image of the counterexample. Since @ is flat, injective and also surjective by con-
struction, its inverse exists and we obtain a counterexample 1’61 for I' = A, which is strictly
smaller than v. Then, for any infinite trace along which we can propagate a counterexample,
because such a trace contains infinitely many direct paths (see Proposition 2.2.1) causing a
strict decrease in the counterexample, we obtain an infinite strictly decreasing sequence of
multisets, contradicting the well-foundedness of the chosen order. Thus AT =L\ A must
hold and the proof branch can be closed.

Example 2.3.5. Similar to how we proceeded in Example 2.3.4, we consider the sequent
p1(x1) b ¢1(x1), g2(z1) and apply LU to unfold p(x) and RU twice to unfold both ¢ (x) and
g2(x). This time, however, we only look at the branch generated by LU for the predicate
rule (p1(21), {z1 = g(z11),p1(211)})-

We then apply RD, which checks the following entailments:

z1 = glan) i ~a (2.1)
Tr =~ g(SEll) ':II1 ~b (22)
z1 2~ g(r11) EL yin - 21 = g(yn) (2.3)

Entailments (2.1) and (2.2) two do not hold and their respective conjunctions from the
right-hand side are ignored. Entailment (2.3) holds and is witnessed by the substitution
0 = {(y11,711)}. This entailment corresponds to two conjunctions from the right-hand side,
from which we remove the constraint and the existential quantification, we apply 6, and add
the results to the right-hand side of the next sequent.

.
D
pi(z11) Fqi(z11), q2(z11) ~---------- -~
RD
z a2 g(z11), pr(zn) 2 = a, Iy 21 = g(yin) A qu(yn),
x1 b, Iy - x = g(yir) A gz(y11)

z1 =~ g(zn), pi(zin) F = a, Iy 21 = g(y) Aq(yn), g2(x1)

RU
z1 ~ g(z11), p1(z11) F qi(x1), g2(21)

1
|
|
|
|
RU |
|
|
!
!
!

LU
pi(z11) F qi(z11), g2(x11) <----------- -

Thus, we obtain py(z11) F ¢1(z11),¢2(x11) and we can apply ID using the pivot pi(x1)
q1(x1), g2(x1) to close this valid branch of our derivation. Note that, by combining Examples
2.3.4 and 2.3.3, we obtain a proof for the sequent p;(x1) F q1(z1),g2(z1). The other three
sequents obtained from SP in Example 2.3.3 can be proved in a similar manner. <

2.3.2 The Inference Rule Set R, for SL Entailments

In order to prove SL entailments, we modify the Rj,q proof system from Section 2.3.1 such
that the sets on the left-hand sides of sequents are interpreted as separating conjunctions, and
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those on the right-hand sides are interpreted as disjunctions over separating conjunctions.
Thus, we obtain the proof system Rj.; = {LU, RUy, RDg, AR, SPs , AXy, ID}, where the in-
ference rule schemata RUg , RDg , SPs and AXg have been modified from their counterparts
in Ry,g and are depicted in Figures 2.6, 2.7, 2.8 and 2.9.

RU E{3y;. % Ri(iayi)}?:l AN\ p(X) p(X) € A, ¥41,...,¥, fresh,
kA p(X) s B1(X) | ... | Rn(X)

Figure 2.6: Inference rule schema for right-hand side predicate unfolding in SL.

Applying RU, (Figure 2.6) to a sequent is similar to applying its RU counterpart. When
p(X) s R1(X) | ... | Rn(X), the singleton predicate atom p(X) on the right-hand side of a
sequent is replaced with a set of formulae obtained by applying the separating conjunction
over each R;,i € [n], and existentially quantifying the fresh subgoal variables in them.

Example 2.3.6. Consider the inductive system from Example 1.4.2. In order to prove the
entailment [s™ £ Z;’Jr, we start a derivation from the sequent Is*(z,y) F Z,\s+(x, y). We apply
LU on this sequent to unfold Is*(x,y) and consider only the branch corresponding to the
predicate rule (Is*(z,y), {y =22 Az > 21,1ls" (21, 22)}). We obtain:

~+
YRz AT 21, lsT(21,22) F s (m,y)

LU —
Is*(z,y) Fls (2,y)

We can further apply RUg on the resulting sequent and unfold Z:9+($, Y):

Yy 2o Ax > 21, IsT (21, 22) F Jui, us . y M us A x> ug * s (ur, uz),
Fur,ug . yus Az — uy % Is°(ur, uz)

RUsL "
YRz Ax > 21,187 (21,22) F s (z,9)

Note that, by unfolding, we have introduced the new subgoal variables z1,zo on the left-
hand side and the new, existentially quantified subgoal variables uq,us for each separating
conjunction on the right-hand side. |

pl(i1)7 s 7pn(in) F {Qj(?ﬂ) | 0 e Sj};":l
(JS(E, Xiye-- ai'rL)ypl(il)v cee ;pn(in) = {Ely] "‘r/)j(ia y_]) * Qj(yj)}?:1
where ¢ A\ 3y, .95, ¢V 35, ¢, S5 CVIS(¢,45),4 € [i]

RDs,

Figure 2.7: Inference rule schema for reducing constraints in SL.

The inference rules of type RDs, (Figure 2.7) operate similarly to their RD counterparts,
but check the entailments ¢ £ Jy; 5.0 € [k] between the left constraint and each of the
right constraints. Here, VIS(¢,v) = {6 : UL, set(¥;) — set(X) U U, set(Xi) | ¢ =10}
Furthermore, the form of the right-hand sides is changed to accommodate the new interpre-
tation of the sequents and each Q;,j € [n], is a separating conjunction of predicate atoms.

Example 2.3.7. Continuing the derivation from Example 2.3.6, we apply RDg on the
antecedent of RUg,:
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Ist(z1,22) F 1s%(21, 22), 1s°(21, 22)
RDs.

Yy zo Ao > 21,187 (21, 22) F Jur, uz .y R us A x> ug * s (u1, uz2),
Jui,uz .y uz Az — ug * 1s°(u1, u2)

This application of RDg, checks the entailment y = zo Ax — 21 |% JuiFus .y = us Ax — uyq
for both parts of the right-hand side (since they happen to have the same constraint). The
entailment holds and is witnessed by the substitution 6 = (uy, 21), (u2, 22). The constraints
are removed and 6 is applied on both separating conjunctions from the right-hand side. <

(p, (%5,) - {at, (%)) | £ € K], £;(Q0) = T,1)7L,
pl(il), - ,pn(in) F {Qj(ilv e 7271)}?:1
where seﬁ(ii) N set(X;) = @,Vi,j € [n],
Qj = *?:1 qg(ij)a é] = <q{7---7qgl>7 V] ek[k]
f(@l»"'7§k) = {fl""vfnk}z S [n]n

SPq,

Figure 2.8: Inference rule schema for splitting sequents without constraints in SL.

The inference rules of type SPq (Figure 2.8) and AX,, (Figure 2.9) differ from their Rinqg
counterparts in the form and interpretation of sequents. The right-hand side for the conse-
quent of SPg contains separating conjunctions of predicate atoms, while the side condition
of AX, contains a separating conjunction over the the left-hand side of its consequent.

AX *TRVA

T
“TFA

Figure 2.9: Axiom inference rule schema for SL.

Example 2.3.8. Continuing the derivation from Example 2.3.7, note that an application
of SPg, is not needed. We apply LU to unfold Is*(z1, 22) and we separately analyse the two
branches that result for each predicate rule in the definition of Is™.

On the branch obtained by left unfolding Is*(z1, 22) with the predicate rule {Is* (21, 22),
{z1 — 22}), we can apply RUj_ to unfold Is°(z1, 22) on the right-hand side. Then we can close
the branch by applying AXg, because any decision procedure for SL that treats [s® as an
uninterpreted function will indicate that z; +— 25 % Is°(21,22) V 21— 29 V Juq, us . 29 X ug A
21 > uq x 1s%(uq, uz) holds.

T

z1 > 2o B 1s9(21,22), 21 = 22, ui, uz . 2o Ruz A z1 — ug * s (ur, uz)

AXsL

RUsL
21 > 22 b 1s%(21, 22), 1s° (21, 22)

Ist(21,22) I 1s%(21, 22), 1s°(21, 22)

LU

On the branch obtained by left unfolding Is* (21, 22) with the predicate rule (Is* (21, 22), {y ~
ug Azy = ug, IsT(ug,u2)}), we apply RUg twice to unfold both predicate atoms on the right-
hand side, we eliminate the constraints by RDs and then we can close the branch by ID.
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T

Ist(u1,u2) b Is®(ur, u2), Is(ur,ug) - = -------------- N

1D

RDs.

zomus A 21— ut, st (ur, ue) 21 & 20 Aemp, Jur,va . 22 R va A 21— 1 x 15°(v1, v2),
21 > 22, 01,02 . 22 R V2 A 21 > v1 * [s%(v1, v2)

RUs.

Is°(z1, z2)
RUs.

1
|
|
|
|
|
|
zomus A 21— ut, st (ur,ue) 21 =22 Aemp, v, va . 22 R Us A 21— v1 * 18°(v1,v2),
|
|
|
|
|
1

2o us A 21 = ur, IsT (ur, u2) F 1s%(21, 22), 1s°(21, 22)
LU

IsT(21,22) F Is(21,22),18°(21,22) <--------=------ -

2.4 Restricting the Set of Constraints

The undecidability results of Theorems 1.4.1 and 1.4.2 indicate that a number of restric-
tions on the constraints of an inductive system are required to ensure the soundness and
completeness of our proof systems. Checking whether a given inductive system respects
the restrictions that we propose is subject to the existence of a decision procedure of the
J*V*-quantified fragment of the underlying logic, in which the constraints in every predi-
cate rule are expressed. For first-order logic with the canonical interpretation, this problem
is known as disunification and has been shown decidable in [13], with tighter complexity
bounds in [39]. For separation logic, we provide our own decision procedures in Chapter 3.
We only consider SL inductive systems whose constraints are —-free, since the presence of
the separating implication leads to the undecidability of the satisfiability problem for the
F*V*-quantified fragment (see Section 3.3.1).

2.4.1 Well-quasi-orderings

We introduce the notion of quasi-ordering as it is defined in [31]. It is useful in defining
ranked inductive systems in Section 2.4.3 and necessary for proving certain results related
to derivation and proof trees in Section 2.5. Given a set D, a quasi-ordering or go is a
relation <, C D x D that is reflexive (i.e. Vd € D.d <y d) and transitive (i.e. Vdy,ds,ds €
D .d; <pds and da <, d3 = dj <;,d3). An infinite sequence dy,ds, ... from D is saturating
if it contains an increasing pair d; <y, d; for some i < j.

A quasi-ordering <, on D is a well-quasi-ordering or wqo if every infinite sequence in D
is saturating. A quasi-ordering <, on D is well-founded or a wfgo if and only if there are no
infinite decreasing sequences dy >p ds >p ... in D, where dy >p do < do <p d; and dy # ds.
Every wqo is a wfqo, but not vice versa.

Example 2.4.1. A simple example of wqo is (N, <), the set of natural numbers together
with the standard number ordering. Note that its integer counterpart, (Z, <), is not a wqo
because it is not well-founded. On the other hand, (N, |), the set of natural numbers ordered
by the divisibility relation, is a wfqo, but not a wqo, because the prime numbers form an
infinite, non-saturating sequence.

A wfqo that is relevant for our work is (7, C), as defined by the Herbrand interpretation
in Section 1.4.1. Since Ty consists only of finite trees, it is impossible to build an infinite
strictly decreasing sequence of subtrees, thus making it well-founded. On the other hand,

infinite non-saturating sequences do exist. Consider, for instance, ¥° = {¢} and ¥f =
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{a%, f79,9°°}. Then the sequence f(a), f(g(a)),..., f(¢"(a)),...,n € N is infinite and non-
saturating. Therefore (7x,C) is not a wqo. <

We extend any qo (D, <p) to the following order on the set of finite subsets of D. For
all finite sets Y, Z € R, (D), we have Y <3 Z if and only if for all d € Y there exists d’' € Z
such that d <, d’. The following result is a consequence of Higman’s lemma [21].

Lemma 2.4.1. Given a countable set D, if (D, <,) is a wqo, then (B,(D),<%?) is also a
wqo.

Proof. Let D* be the set of finite sequences of elements from D, where u; denotes the i-th
element of u € D* and |u] is the length of u. The subword order <% on D* is defined as
uw<¥wv if and only if there exists a strictly increasing mapping f : [[u]] — [|v|] such that
u; = vy for all i € [Jul]. The qo <, on D induces the following ordering on the set D*: for
all u,v € D*, u <] v if there exists v/ <% v such that |u| = |[v'| and u; <p v/, for all i € [|u]].
We have obtained a set of sequences D* over a well-quasi-ordered alphabet D, with the
subsequence relation S; which allows the replacement of elements with smaller ones in the
well-quasi-ordering <p, of D. Then, according to Higman’s lemma [21], (D*,<.) is a wqo.
Because D is countable, there is an indexing of its elements. Then we can uniquely represent
each finite set S € R, (D) as a finite word and R, (D) as subset of D*, with the ordering <Y

on R,(D) being the equivalent of < on D*. Consequently, (R,(D),<}?) is also a wqo. [

A multiset over D is a mapping M : D — N. The multiset M is finite if M(d) > 0 for a
finite number of elements d € D. Given two sets A, B and a function f: A — B, we define
the multiset f[A] : f(A) — N, where f[A](y) = |[{z | z € A, f(z) = y}| for every y € f(A).

The set of finite multisets over D is M(D). Given two multisets M, My € M(D),
we define the membership and inclusion relations, as well as the union, intersection and
difference operations:

de My < 3de D.M(d) >0
M, C My, & Vd e DMl(d) < Mg(d)
(M1 U M3)(d) = max(M; (d), Ma(d)),Vd € D
(M1 N Mg)(d) = mll’l(Ml(d), Mg(d)),Vd eD
(M1 \Mg)(d) = HlaX(O, Ml(d) — Mg(d)),Vd eD
The multiset order induced by <, is defined as follows: M gL N if and only if either
M = N, or there exists a non-empty finite multiset X C N and a (possibly empty) multiset
Y,such that Vy e Y3z € X .y<px and M = (N \ X)UY. In other words, M is obtained
by replacing a non-empty subset of N with a possibly empty multiset of smaller elements.
An equivalent definition is given by Huet and Oppen in [26]: M <l N if and only if M # N

and, for all x € D, M(z) > N(z) = 3y € D.x<py and M(y) < N(y). The following
theorem was proved by Dershowittz and Manna in [15].

Theorem 2.4.2. (M(D),<l) is a wiqo if and only if (D, <,) is a wiqo.

2.4.2 Non-filtering

The non-filtering condition for an inductive system requires that, given any models for the
subgoals of a predicate rule, it be possible to find an all-encompassing model that also satisfies



52 Chapter 2. Proof Systems for Entailments

the constraint of the rule. This property is important because inductive systems that are
filtering lead, in general, to the undecidability of the entailment problem. Such is the case,
for instance, of tree automata with equality and disequality constraints [12, Theorem 4.2.10].

The Non-filtering Property in FOL

Definition 2.4.1 (Non-filtering in FOL). Given an interpretation Z and an FOL inductive
system S, a predicate rule (p(X),{®,q1(X1),...,q.(Xn)}) € S is non-filtering if and only if,
for all i € [n] and V; € uS%(g;), there exists a valuation v such that v(X;) = v; and Z, v = ¢.
The inductive system S is non-filtering if and only if each rule in S is non-filtering.

Example 2.4.2. Consider the inductive system in Example 1.4.1. It is easy to see that it
satisfies the non-filtering property. However, if we were to change, for instance, the predicate
rule for p into

p(x) <5 = f(r1,22) A 1~ 29, p1(21), p2(T2)
then S would become filtering, as all the subgoals models for which the values of x; and o
differ would be rejected by the new predicate rule. <

Checking whether a given inductive system in FOL is non-filtering is undecidable, as
shown by the following lemma.

Lemma 2.4.3. The problem “Given an inductive system S with FOL constraints, is S
non-filtering?” is undecidable in the Herbrand interpretation.

Proof. We show the undecidability of the non-filtering problem in FOL by reduction from
the disjointness problem for context-free languages, which is a known undecidable problem
[25, Theorem 9.22 (a)].

As in the proof of Theorem 1.4.1, consider a context-free grammar G = (=, 3, A), where
= is the set of nonterminals, ¥ is the alphabet of terminals, A is a set of productions
(X,w) € Ex (EUX)*, and L(G, X) C X* denotes the language produced by G starting with
the nonterminal X as axiom. The problem “Given two nonterminals XY € =, is it the case
that L(G, X)NL(G,Y) # 07" is undecidable.

We can encode G as an inductive system Sg, in the same way as done in the proof of
Theorem 1.4.1, each nonterminal Z € E corresponding to a predicate Z(z,y). Then we add
the following predicate rule:

(PO, {z1 =z Ayr = y2, X(21,91), Y (32, 92)})
Then S¢ is non-filtering if and only if £(G,X) N L(G,Y) # 0. O

This negative result prompts us to adopt a stronger sufficient condition requiring that
VX ...VX,3X.6(X,X1,...,X,) holds for each constraint ¢ € S°. Checking this condition
becomes decidable in the canonical Herbrand interpretation, because each constraint ¢ is
a conjunction of equalities s~t¢ and disequalities (s~ t) between terms s,t € Tx(set(X) U
Ui, set(X;)). Establishing the validity of VX;...VX,3X.¢(X,X1,...,X,) is equivalent to
checking the unsatisfiability of the equational problem 3X; ... 3%, VX. =¢(X, X1, ..., Xpn)-

Because the constraints in S do not contain disjunctions, —¢ is a disjunction of equalities
and disequalities, thus it is trivially in conjunctive normal form. By [39, Theorem 5.2], the
satisfiability of formulae IyVX.¢(X,y) in conjunctive normal form is NP-complete. Thus,
our validity problem (and, consequently, the problem of checking the non-filtering property
using this sufficient condition) is in co-NP.



2.4. Restricting the Set of Constraints 53

The Non-filtering Property in SL

Definition 2.4.2 (Non-filtering in SL). Given an SL inductive system S, a predicate rule
(p(X), {6, q1(X1), .-, qn(Xn)}) € S is non-filtering if and only if, for all i € [n] and (¢;, h;) €
uS*(q;), where all h; are pairwise disjoint, there exists a valuation v and a heap h, disjoint
from W, h;, such that v(X;) = ¢; and v,h =@, for all i € [n]. The inductive system S is
non-filtering if and only if each rule in S is non-filtering.

Example 2.4.3. The inductive system from Example 1.4.2 is non-filtering because there
exists a model v, h Fry~y’ Az — 2, such that v(2’) = ¢y, v(y') = £ and dom(h)Ndom(h’) =
(), for each given pair ((f1,%2),h') in puS*(Is*), uS*(Is), or uS*(ls°). Since the set L is
infinite, it is always possible to find a value v(z) &€ dom(h'). <

The non-filtering property is decidable for inductive systems with SL constraints, unlike
the case with FOL constraints under the Herbrand interpretation (Lemma 2.4.3). This is
because it is possible to build an over-approximation of the least solution, that is both
necessary and sufficient to characterize the satisfiability of a quantifier-free SL formula using
predicate atoms [7]. The lemma below establishes the upper bound for the complexity of
deciding whether a given inductive system is non-filtering.

Lemma 2.4.4. The problem “Given an inductive system S with —-free SL constraints, is
S non-filtering?” is in EXPSPACE.

Proof. The abstraction we need is defined as the least fixed point uS* of an operator ]Fg
We introduce an abstract assignment ) that maps a predicate p?*~» into a set of pairs
(A, E), where A € P([n]) is a set of positions corresponding to allocated arguments and
E C [n] x [n] is a set of equality constraints. For each model ({(¢1,...,¢,),h) € uS™(p)
there exists a corresponding pair (A4, E) € uS*(p) in which A = {i € [n] | ¢; € dom(h)} and
B ={(i,j) € [n] x [n] | & = £;}.

Given a quantifier-free SL formula ¢, we define the following sets:

alloc™(p) = {x € FV(p) | o A2y ... 32 .2+ (21,...,2;) * T is satisfiable}
alloc™(p) = {z € FV(p) | o321 ... T2k . x> (21,...,26) * T}
eq(p) = {(z.y) EFV(p) x FV(p) | p Fa~y}

Intuitively, alloct () is the set of all variable that may represent allocated locations,
alloc™ () is the set of all variables that must represent allocated locations and eq(y) is the
equality relation induced by ¢. Computing these sets can be done in polynomial space for
general, —«-free SL formulae, using the decision procedures for quantifier-free and Bernays-
Schoenfinkel-Ramsey SL formulae given in Chapter 3. For symbolic heaps, it can be done in
polynomial time.

Dually, for any set U C Var and relation V' C Var x Var, we consider the following formulae
that build the corresponding heap and equality constraints:

A(U): k E'Zl...EZk.I'—)(Zl,”-;Zk)

zeU
EV)= A z=yn N\ @~y
(@.y)eV (@y) &V

For the remainder of this proof, consider a predicate rule R of S, where R = (), {o(X,
Yoo s Ym ) 0 F1)s o @ (F ) })s X = (21,...,2,) and §; = (yi,...,y5,), Vi € [m]. For
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any relation Rel C FV(¢) x FV(¢) and tuple P = ((A1, E1), ..., (Am, En)) € uS*(q1) x
oo X uS*(gm), we define:

wr(P, Rel) = >[l< A({z; | j € AY) NE{(yp,92) | (r,5) € Eii € [m]}) AE(Rel)

i€

]
nR(?v R@l) = Eyl ce aym . (¢(i7 yl> s 7ym) * wR(?v Rel))

We extend the abstract assignment ) to predicate rules and define Y(R) as the set of
pairs (A, E) for which there exists a tuple P € uS*(q1) x ... x uS*(¢,) and a relation
Rel CFV(¢) x FV(¢) such that:

A={i¢cn]|x; € All, alloc” (nr(P, Rel)) C All C alloc* (nr(P, Rel))}

E ={(i,j) € [n] x [n] | (zi,7;) € eq(nr(P, Rel))}

If nr(P, Rel) is unsatisfiable, then alloc™ (nz (P, Rel)) = set(X), alloc™ (nz (P, Rel)) = § and
there can be no choice for the set All — thus there exists no corresponding pair (4, F) either.

If p(X) +s R1 | ... | Ry are all the predicate rules for p in S, then the abstract
assignment Fg()}) maps the predicate p to the set Fi V)(p) =U;~, Y(R;). Similarly to F%
and pS*t in Section 1.3.3, the operator F?s is monotone and continuous, with uS* as its least
fixed point.

Considering again the arbitrary predicate rule R € S described above, let P = ((A;, E),
oy Ay Ep)) € uS*(q1) x ... x uS*(gm) be a tuple of pairs and Rel C FV(¢) x FV(¢)
a relation on variables, such that wr(P, Rel) is satisfiable. We claim that, if the for-
mula ¢ * wr(P, Rel) is satisfiable, then for each tuple of models {(¢1,h1),..., lm, hm)) €
uS*(q1) X ... x uS*(qy), there exist a valuation v and a heap h such that v, h ¢ and
v, hi BEwgr(P, Rel), where v(y,;) = {;, Yi € [m], and dom(h) N (U;~, dom(h;)) = 0.

The proof idea for this claim is that, because wr (P, Rel) specifies exactly those variables
which are allocated, as well as those which are not, and the pairs of variables which are equal,
along with the ones which are not, the truth value of ¢ * wr(P, Rel) is invariant under the
renaming of the values of set(X) U [ J~, set(¥;), as long as the allocations and equalities are
preserved. Moreover, each tuple of models {(£1,h1),. .., (b, hm)) € uS*(q1) X . .. x uS*(gm)
is a model of wr(P, Rel), for some P = (A1, Ey),...,(An, En)) € uSHq1) x ... x uS*(qm)
and Rel C FV(¢) x FV(¢). Then, for each predicate rule R € S we need to check the
satisfiability of ¢ x wgr(P, Rel), for each P and Rel for which wg (P, Rel) is satisfiable.

Since there are finitely many variables in S, for a predicate p7* 7" € S° the set of
pairs (A, E) is finite, of cardinality at most 27+7* " Then uS*(p) can be computed in an
exponential number of steps', each step requiring polynomial space. These pairs can be
stored in a table that requires 2°("") space, indexed by O(n?) bits, where each pair occupies
O(n) bits. Checking the satisfiability of a formula ¢ * wr(P, Rel) is possible in polynomial
space.

In conclusion, we can check if a predicate rule in S is non-filtering, by checking the
satisfiability of an exponential number of SL formulae, where each satisfiability check can
be done in polynomial space. Thus, the overall complexity of checking if an SL inductive
system is non-filtering is EXPSPACE. O

1See [7, Lemma 4.6] for an analogous construction for inductive systems with symbolic heap constraints.
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2.4.3 Ranked

The ranked condition requires that, in any predicate rule of an inductive system, each value
assigned to a subgoal variable is strictly smaller (with respect to a chosen wiqo) than the
value of some goal variable. This property ensures that the principle of Infinite Descent [10]
can be applied to close a branch of the proof tree.

The Ranked Property in FOL

We fix an interpretation Z and assume that (O'I, <1,.) is a wiqo, for each o € ¥°. Given a
valuation v and a set of variables x C Var, we write [x], for the multiset [v(z) | z € x]. For

two valuations v and « and two multisets [x], and [y]., we define an order SII and a strict

version <iZ such that [x], Siz [y], and, respectively, [x], <iz [y],. if and only if for each

x7 € x there exists y? €y, of the same sort o, such that v(z) <z, v(y) and, respectively,
v(r) <z, 7(y). Given a chain [x1], ~ [x2],, ~ ...~ [xk],,, where ~ is either >t or >1
it easily follows that we have [x1],, >iI [xx],, if and only if [x;],, >§ [xit+1] for at least

Vit1
some i € [k —1].

Proposition 2.4.5. Given a signature ¥ and an interpretation Z, (M(Val), <%) is a wfqo
provided that, for each o € 3%, (¢7,<z,) is a wfqo.

Proof. Consider two valuations v and v and two multisets [x], and [y],. Then [x], <§
[y], trivially gives us [x], = ([y], \ [y],) U [x],, where for all a € [x], there exists

b € [y], such that a <z, b and a,b € o for some o € ¥°. Therefore, [x], <TI [v],,
where <TI is the Manna-Dershowitz wfqo on multisets (see Theorem 2.4.2). Then an infinite

strictly decreasing sequence in <§ would imply the existence of an infinite strictly decreasing

sequence in <!, contradicting [15, Theorem 1]. O

Definition 2.4.3 (Ranked in FOL). Given an interpretation Z and an FOL inductive sys-
tem S, let ¢(x,%1,...,X,) be any constraint in §¢ with goal variables x and subgoal vari-
ables |, x;. Then S is ranked if, given any valuation v such that Z,v |= ¢, we have

(Ui set(x:)],, <% [set(x)],.

Example 2.4.4. The inductive system from Example 1.4.1 is ranked. The only constraints
involving subgoal variables are (i) = f(z1,2z2) and (ii) 2~ g(x1). For each valuation v we
have v(z1) Cv(z) and v(xs) CTv(z), if v satisfies the constraint (i), and v(x;) Cv(z), if v
satisfies the constraint (ii). <

Lemma 2.4.6. The problem “Given an inductive system & with FOL constraints, is S
ranked in the subtree order (7s,E)?” is in co-NP.

Proof. For each constraint ¢(x, X1, ...,x,) with goal variables x and subgoal variables x; U
... Ux,, we need to check if the formula

ono( A Vousa)=on( YV Awmevaea)) e

yex1U...Ux, T€xX yexi1U...Ux,, T€x

is unsatisfiable. The satisfiability of the quantifier-free fragment of FOL with a subterm
relation is an NP-complete problem [49]. Since the size of the formula (2.4) is polynomially
bounded by the number of variables occurring in ¢, if follows that the problem of checking
if a given inductive system is ranked is in co-NP. O
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The Ranked Property in SL

Since there are no relations other than equality defined on the set of locations L, there does
not exist a natural wfqo on L. Therefore, we consider the following wfqo on heaps. For any
h1, ho € Heaps, we have hy < hs if and only if there exists h € Heaps such that ho = hy W h.
If, moreover, h # (), then we write hy <1 ho.

Definition 2.4.4 (Ranked in SL). Given an SL inductive system S, let (p(X), {#, ¢1(X1), - - -,

¢n(Xn)}) be any predicate rule in S. Then S is ranked if, for any pairs (¢;,h;) € uS(q;),
i € [n], where hyq, ..., h, are disjoint, there exists (¢, h) € uS(p) such that W', h; < h.

Note that this property targets only the predicate rules in S that have at least one subgoal
and requires that their constraints do not admit an empty heap model. The constraints of
predicate rules without subgoals, however, are allowed to admit models with empty heaps.

Example 2.4.5. The inductive system from Example 1.4.2 is ranked because each predicate
rule with at least one subgoal has a constraint y~y’ A x — 2/, which does not admit an
empty heap model. |

Lemma 2.4.7. The problem “Given an inductive system S with SL constraints, is S ranked
in the subheap order (Heaps,<0)?” is in PSPACE. When considering symbolic heap con-
straints, the problem is in P.

Proof. Since all SL constraints in an inductive system S are quantifier-free SL formulae, we
can determine if S is ranked by checking the validity of ¢ Ft —emp, which is equivalent to
checking the satisfiability of ¢ A emp for each constraint ¢ belonging to predicate rules with
subgoals. We know that the latter is in PSPACE [11].

The PSPACE bound drops to P for inductive systems with symbolic heap constraints
because a symbolic heap II A © admits an empty heap model if and only if © does not
contain any atoms of the form @ +— (y1,...,yx). This check can be performed in polynomial
time, proportional to the number of atoms (or the number of * occurrences) in ©. O

2.4.4 Finite Variable Instantiation

The finite variable instantiation condition requires that, for any two constraints ¢ and v
from an inductive system, having the same goal variables, there exist a finite number of
substitutions # mapping each group of subgoal variables in ¥ to a group of subgoal variables
in ¢ such that ¢ entails ¥§. This property guarantees that all constraints can be eliminated
from a proof sequent by instantiating the subgoal variables on the right-hand side using
finitely many substitutions that map them to the subgoal variables from the left-hand side.

The Finite Variable Instantiation Property in FOL
When the constraints ¢(X, Xy, ...,X,) and ¥(X,¥q,...,¥,,) occur in a sequent

and the entailment ¢ =7 3y, ... 3y,, . ¢ is valid, we want to continue the derivation with the
sequent

pl(il)v s 7pn(in) F {QI(yla) AR /\Qm(yma) ‘ 0 e S}
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where S is a finite set of substitutions witnessing the entailment, i.e. ¢ =0, for each
0 € S. This elimination of constraints from sequents is generally sound but incomplete. For
instance, the entailment

HE, X1, X)) ET IV, T, (K Vs Tom)

is valid if and only if ¢(X,Xy,...,%X,) FL¥'(X,X1,...,%,), where ¢’ is obtained from 1
by replacing each y € U;nzl set(y;) with a Skolem function symbol f,(X,X1,...,X,) not
occurring in ¢ or 12

A complete proof rule based on this replacement has to consider every possible interpreta-
tion of these Skolem witnesses. However, in general, this is impossible, because the definitions
of these functions are not bound to any particular form. In order to achieve completeness, we
require that these functions are always flat substitutions defined on the quantified variables
Uj, set(¥;) and ranging over the free variables of the entailment set(X) U{J;_, set(X;). This
condition ensures, moreover, that there are finitely many possible interpretations of these
Skolem witnesses.

Definition 2.4.5 (Finite variable instantiation in FOL). An FOL inductive system S has
the finite instantiation (fi) property if and only if for any two constraints ¢(X,X1,...,X,)
and ¥(X,¥q,...,¥,) from S, with goal variables set(X) and subgoal variables | J_; X; and
Uj= 1 set(¥;), respectively, the set VIS(¢,¢) = {6 : ;L set(¥;) — Tx(set(X)UU,_, set(X;)) |
¢ =T 0} is finite. Moreover, S has the finite variable instantiation (fvi) property if, given
any 0 € VIS(¢, 1), for all j € [m] there exists i € [n] such that set(y;)0 = set(X;).

Note that, whenever an FOL inductive system S has the fvi property, a constraint ¢(X)
with no subgoal variables cannot entail a constraint ¥(X,yy,...,¥,,), where U;nzl set(y;) #
(). If this were the case, ¢(X) =L 3y .. IV, - V(X Vi, - - -, Yon) Would imply that VIS(¢, ) #
(). But then each flat substitution 8 € VIS(¢,) would have an empty range, which is not
possible.

Example 2.4.6. Consider the inductive system in Example 1.4.1. It can easily be shown
that it has the fvi property. Take, for instance, the constraints ¢ = x= f(x1,22) and
¥ =z~ f(y1,y2). The entailment ¢ =" Jy;Jy, .1 is witnessed by a single substitution
with 0(x1) = y1 and 0(z2) = y2, which means that VIS(¢, ) = {6}. <

The following lemma gives an upper bound for the complexity of checking whether
whether a given FOL inductive system has the fvi property under the canonical Herbrand
interpretation. It is unclear, for now, whether the bound can be tightened, because the exact
complexity of the satisfiability of equational problems is still unknown, in general.

Lemma 2.4.8. The problem “Given an FOL inductive system S, does S have the fvi prop-
erty?” is in NEXPTIME under the Herbrand interpretation. If there exists a constant K > 0,
independent of the input, such that for each constraint ¢(X,X1,...,X,) in S, with goal vari-
ables X and subgoal variables  J;__, set(X;), respectively, we have |X;| < K, then the problem
is in NP.

Proof. An FOL inductive system S has the fvi property if, for any two constraints ¢(X, X1, . . - ,
X,) and Y(X, ¥, ..., ¥,,) in S, with goal variables set(X) and subgoal variables [ J!-_, set(X;)

2We assume w.l.o.g. that these function symbols belong to the signature, i.e. fy € =f
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and Ujm=1 set(¥;), respectively, the following entailment is not valid:
m n
O(X, X1, %) E* IF, .. T3, <1/)(x,y1,...,ym) IAVAVANE %yj))
j=1i=1

where X; = ¥, is shorthand for (/\yeset(yj) Vieser:) x%y) A (/\zeSet(ii) \/yeset(yj) x%y)
This entailment is equivalent to the formula

VRV, ... VX, . <—\¢(X,X1,...,xn) V3y, ... 3, (w(x,yl,...,ym) AN - %yj)>)

which, in turn, can be rewritten as
m

n
IXIK) ... 3K, VY, .. Y, <¢(X,X1,...,xn) A (—m/;(x,yl,...,ym) v/ %yj>)
=1

j=1

This formula is not in conjunctive normal form (CNF) and expanding X; = ¥, to obtain
the CNF causes an exponential blowup. Since checking the satisfiability of an equational
problem in CNF is NP-complete, the above check can be performed in NEXPTIME. If the
size of each set of subgoal variables is bound to a constant K, independent of the input,
the size of each clause in the CNF expansion of the above formula is bound by a constant.
Since there are at most polynomially many such constants, we can apply [39, Theorem 5.2]
to obtain the NP upper bound. O

The Finite Variable Instantiation Property in SL

Definition 2.4.6 (Finite variable instantiation in SL). An SL inductive system S has the
finite instantiation (fi) and finite variable instantiation (fvi) properties under the same con-
ditions as the ones in Definition 2.4.5, where VIS(¢,v) = {0 : Uj_, set(¥;) — set(X) U
Ul set(X;) | ¢ =40} for any two constraints ¢(X, X1, ...,X,) and Y(X, ¥, ...,¥,,) from S,
with goal variables set(X) and subgoal variables | J!"_, set(X;) and Ujm=1 set(¥;), respectively.

Example 2.4.7. The system from Example 1.4.2 has the fvi property, because the entail-
ment y~y' Az o’ B3Iy Iz"  y~y” Ax— 2" is witnessed by a single substitution § with
O(z")=2" and O(y") =y'. <
Lemma 2.4.9. The problem “Given an SL inductive system S, does S have the fvi prop-

erty?” is in PSPACE if § has quantifier-free and —-free SL constraints, and in X5 if S has
symbolic heap constraints.

Proof. Similarly to the proof for Lemma 2.4.8, an SL inductive system S has the fvi property
if, for any two constraints ¢(X,X1,...,X,) and ¥(X,¥q,...,¥,,) in S, with goal variabl