N

N
N

HAL

open science

Spectre d’équations différentielles p-adiques

Tinhinane Amina Azzouz

» To cite this version:

Tinhinane Amina Azzouz. Spectre d’équations différentielles p-adiques.

[math.GM]. Université Montpellier, 2018. Francais. NNT: 2018MONTS033 . tel-01853794v2

HAL Id: tel-01853794
https://hal.science/tel-01853794v2
Submitted on 8 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Mathématiques générales


https://hal.science/tel-01853794v2
https://hal.archives-ouvertes.fr

THESE POUR OBTENIR LE GRADE DE DOCTEUR
DE L'UNIVERSITE DE MONTPELLIER

En Mathématiques et Modélisation

Ecole doctorale Information, Structures, Systemes

Unité de recherche Institut Montpelliérain Alexander Grothendieck

Spectre d’équations différentielles p-adiques

Présentée par Tinhinane Amina AZZOUZ

Le 11 juin 2018

Sous la direction de Andrea PULITA

et Jérome POINEAU

Devant le jury composé de

M. Francesco BALDASSARRI, Universita di Padova,

M. Frits BEUKERS, Utrecht University,

M. Bruno CHIARELLOTTO, Universita di Padova,

M. Antoine DUCROS, Sorbonne Université,

M. Fran¢ois LOESER, Sorbonne Université,

Mme Ariane MEZARD, Sorbonne Université,

M. Jérome POINEAU, Université de Caen Basse-Normandie,
M. Andrea PULITA, Université Grenoble alpes,

UNIVERSITE
DE MONTPELLIER

Rapporteur

Examinateur

Examinateur

Rapporteur, Président du jury
Examinateur

Examinatrice

Directeur de these

Directeur de thése






Résumé : Les équations différentielles constituent un important outil pour 1’étude
des variétés algébriques et analytiques, sur les nombres complexes et p-adiques. Dans
le cas p-adique, elles présentent des phénomenes qui n’apparaissent pas dans le cas
complexe. En effet, le rayon de convergence des solutions d"une équation différentielle
linéaire peut étre fini, et cela méme en 1’absence de poles.

La connaissance de ce rayon permet d’obtenir de nombreuses informations inter-
essantes sur 1’équation. Plus précisément, depuis les travaux de F. Baldassarri, on sait
associer un rayon de convergence a tout point d’une courbe p-adique au sens de Ber-
kovich munie d’une connexion. Des travaux récents de F. Baldassarri, K. Kedlaya, J.
Poineau et A. Pulita ont révélé que ce rayon se comporte de maniere trés contrainte.
Afin de pousser 1’étude, on introduit un objet géométrique qui raffine aussi ce rayon,
le spectre au sens de Berkovich d"une équation différentielle.

Dans ce mémoire de these, nous définissons le spectre d’'un module différentiel
et donnons ses premieres propriétés. Nous calculons aussi les spectres de quelques
classes de modules différentiels: modules différentiels d"une équations différentielles
a coefficients constants, modules différentiels singuliers réguliers et enfin modules dif-
férentiels sur un corps de séries de Laurent.

Mots clés : Equations differentielles p-adiques, Espace de Berkovich, Theorie spéc-
trale.




Abstract : Differential equations constitute an important tool for the investigation of
algebraic and analytic varieties, over the complex and the p-adic numbers. In the p-adic
setting, they present phenomena that do not appear in the complex case. Indeed, the
radius of convergence of the solutions of a linear differential equation may be finite,
even without presence of poles.

The knowledge of that radius permits to obtain several interesting informations
about the equation. More precisely, since the works of F. Baldassarri, we know how to
associate a radius of convergence to all points of a p-adic curve in the sense of Berko-
vich endowed with a connection. Recent works of F. Baldassarri, K.S. Kedlaya, J. Poi-
neau, and A. Pulita have proved that this radius behaves in a very controlled way. The
radius of convergence can be refined using subsidiary radii, that are known to have
similar properties. In order to push forward the study, we introduce a geometric object
that refines also this radius, the spectrum in the sense of Berkovich of a differential
equation.

In the present thesis, we define the spectrum of a differential equation and provide
its first properties. We also compute the spectra of some classes of differential modules:
differential modules of a differential équation with constant coefficients, singular regu-
lar differential modules and at last differential modules over the field of Laurent power
series.

Keywords : p-adic differential equations, Berkovich spaces, spectral Theory.
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Introduction (version francaise)

Les équations différentielles constituent un important outil pour 1’étude des varié-
tés algébriques et analytiques, sur les nombres complexes et p-adiques. Notamment,
la cohomologie de de Rham est 1'un des moyens les plus puissants pour obtenir des
informations algébriques et analytiques. Par ailleurs, les phénomenes ultramétriques
apparaissent naturellement en étudiant les solutions formelles de Taylor d"une équa-
tion autour des points singuliers et réguliers.

Aussitot que la théorie des équations différentielles est devenue un sujet d’étude
central autour des années 1960, apres les travaux de B. Dwork, P. Robba (et al.), plu-
sieurs phénomenes intéressants sont apparus: dans le cas ultramétrique, les solutions
d’une équation différentielle linéaire, contrairement au cas complexe, peuvent diver-
ger, méme si les coefficients de I’équation sont des fonctions entieres. Par exemple, sur
le corps de base QQ, des nombres p-adiques, la série entiere exponentielle exp(7") =

S >0 = qui est solution de 1'équation 3’ = y a un rayon de convergence égal a |p]p+1
méme si 'équation ne présente pas de singularités. Cependant, le comportement du
rayon de convergence est trés contraint et sa connaissance permet d’obtenir plusieurs
informations sur I’équation. Notamment, il controle la finitude de la dimension de la co-
homologie de de Rham.

L'usage du langage de Berkovich introduit dans [Ber90] et [Ber93] a permis de
montrer que la variation de ce rayon est bien controlée par un sous-graphe fini d’une
courbe, au sens de Berkovich. Plus précisément, depuis les travaux de F. Baldassarri et
L. Di Vizio [BDO08] et F. Baldassarri dans [Ball0] on sait associer un rayon de conver-
gence a un point d"une courbe p-adique au sens de Berkovich munie d’une connexion.
Dans la publication [Bal10] F. Baldassarri démontre que le rayon de convergence dans
le cadre d"une courbe est une fonction continue. Il conjecture également qu’il se fac-
torise a travers un graphe localement fini sur lequel la courbe se rétracte, graphe qui
est appelé graphe controlant dans les travaux J. Poineau et A. Pulita. C’est dans l'article
[Pull5] que A. Pulita démontre cette conjecture pour le rayon de convergence d'un
module différentiel sur un domaine affinoide de la droite analytique affine A" Tl
généralise aussi ce résultat aux rayons subsidiaires, c’est-a-dire aux rayons correspon-
dant a chacune des solutions de 1'équation. Ces résultats sont généralisés au cas des
courbes quasi-lisses au sens de Berkovich et approfondis dans les articles de ]. Poineau
et A. Pulita [PP15], [PP13a]. Dans le papier [PP13b] ils fournissent un critéere nécessaire
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et suffisant pour la finitude de la cohomologie de de Rham. Ce critére est vérifié dans
le cas ot le graphe contrdlant est fini.

Dans notre travail, nous nous intéressons a un invariant plus fin que le rayon de
convergence, le spectre au sens de Berkovich d’'un module différentiel. Notre objectif
principal est de pouvoir relier cet invariant aux les résultats mentionnés ci-dessus, et
d’en déduire des informations supplémentaires sur I’équation. Dans ce mémoire, nous
introduisons le spectre associé a un module différentiel et donnons ses premieres pro-
priétés. Nous calculons aussi les spectres de quelques classes de modules différentiels:
modules différentiels d’équations différentielles a coefficients constants, modules dif-
férentiels singuliers réguliers et enfin modules différentiels sur le corps des séries de
Laurent.

1 Motivation

Le point de départ de ce mémoire est I'intéressante relation entre le rayon de conver-
gence et la notion de spectre (au le sens de Berkovich). En effet, soit A un anneau muni
d’une dérivation d : A — A. Un module differentiel sur (A, d) est un A-module libre de
rang fini muni d"une application Z-linéaire

V:M—-M

vérifiant la relation V(fm) = d(f)m + fV(m) pour tous m € M et f € A. Sil’on se
donne un isomorphisme M ~ A¥, alors V coincide avec un opérateur de la forme

d+G: AY = A

ol d opeére sur A” composante par composante et G est une matrice carrée a coefficients
dans A.

Si de plus A est une algebre de Banach pour une norme donnée ||.|| et A” est munie
la norme max, alors on peut munir l’algebre des endomorphismes Z-linéaires bornés
de la norme d’opérateur, qu’on notera aussi par ||.||. La norme spectrale de V est don-
née par

1
Y n L
IVllsp = Jim [[V"][.

n—o0

Le lien entre le rayon de convergence de V et son spectre est le suivant: d"une part,
dans le cas ot1 ||.|| correspond a un point de Berkovich x de la droite affine analytique
affine et A est le corps correspondant a ce point, la norme spectrale || V||s, coincide avec
I'inverse du rayon de convergence de M en x multiplié par une certaine constante (cf.
[CDY94, p. 676] or [Ked10, Definition 9.4.4]). D’autre part, la norme spectrale || V||, est
aussi égale au rayon du plus petit disque centré en zéro et contenant le spectre de V
au le sens de Berkovich (cf. [Ber90, Theorem 7.1.2]).
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Le spectre apparait alors comme un nouvel invariant de la connexion V, qui géné-
ralise et raffine le rayon de convergence. Cela était notre premiére motivation. Cepen-
dant I’étude du spectre d'un opérateur a son propre intérét et mérite d’avoir sa propre
théorie.

2 Théorie spectrale au sens de Berkovich

Soient k£ un corps arbitraire et £ une k-algébre unitaire non nulle. On rappelle que
classiquement, le spectre ¥ (£) d'un élément f de £ est 'ensemble des éléments A
de k tels que f — A\.1g n’est pas inversible dans E (cf. [Bou07, §1.2. Définition 1]). Dans
le cas ou k = C et (£,].||) est une C-algebre de Banach, le spectre de f vérifie les
propriétés suivantes:

¢ [l est non vide et compact.

* Le plus petit disque centré en 0 et contenant X ;(E) a un rayon égal a || f|s, =
. 1
im |17

e La fonction résolvante Ry : C\ X 4(E) — E, A — (f — A.1g)~! est une fonction
analytique a valeurs dans E.

Malheureusement, cela n’est plus vrai dans le cas ultramétrique. Dans [Vis85] M. Vi-
shik fournit un exemple d’opérateur avec un spectre vide et une résolvante non globa-
lement analytique. Nous illustrons cette pathologie avec un exemple de notre contexte,
ot des connexions avec un spectre vide apparaissent.

Exemple 2.1. Soit k un corps algébriquement clos de caractéristique zero muni de la
valeur absolue triviale. Soit A := k((.5)) le corps des séries formelles de Laurent muni de
la valeur absolue S-adique donnée par | 3,55, @, S™| = 7, sia,, # 0,00 |S| =1 < lest
un nombre réel non nul. On considére un module différentiel irrégulier de rang un sur
A défini par I'opérateur - +¢ : A — A, oli g € Aaune valuation S-adique ny < —2.0On
considere la connexion V = % + g comme un élément de la k-algebre de Banach £ :=
Li(A) des applications k-linéaires bornées de A pour la norme d’opérateur usuelle:

o]l = sup e a g0y %, pour tout ¢ € E. Le spectre classique de 1'opérateur différentiel

& + gestvide. En effet, | || = L et (g — a)~'| < r? pour tout a € k, donc ||(g — a) ' o

(3s)]l < 7 (resp. [|(55) © (9 — a)7'[| < r) etla série S0(—1)" - (9 — a) ™" o (j5))" (resp.
Suso(—1)"((55)o(9—a) ™)) converge dans Ly, (k((.S))). Par conséquent, pour tout a € k,
(Snzo(=1)"((g—a) " o(55))") o (g—a)~* (resp. (g—a) ' o(Lnzo(—1)" ((55) o (9—a)~")")
est un inverse a gauche (resp. droite) de <t + (g — a) dans £,(k((S))) et a n’appartient
pas au spectre. Donc le spectre classique est vide.
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Pour faire face a ce probleme V. Berkovich a compris qu’au lieu de définir le spectre
comme un sous-ensemble du corps de base £k, il fallait le définir comme un sous-
ensemble de la droite affine analytique A;*", qui un espace plus grand. Sa théorie des
espaces analytiques (cf. [Ber90], [Ber93]) vérifie plusieurs bonnes propriétés topolo-
giques locales telles la compacité, la connexité par arcs... Dans ce cadre Berkovich a
développé une théorie spectrale pour les opérateurs ultramétriques [Ber90, Chapter
7]. La définition du spectre donnée par Berkovich est la suivante: Soit (&, |.|) un corps
ultramétrique complet pour |.| et soit A, la droite affine de Berkovich. Pour un point
x € A;™ on note /7 (z) le corps résiduel complet associé. On fixe sur A,*" une fonc-
tion coordonnée 7'. Le spectre ¥, (E) d'un élément f d'une k-algebre de Banach £ est
I'ensemble des points z € A,*", tels que f ® 1 — 1 ® T(z) n’est pas inversible dans
E&.7 (). On peut montrer (cf. [Ber90, Proposition 7.6]) que cela est équivalent a dire
qu’il existe un corps valué complet (2 contenant isométriquement % et une constante
c € Qtel que

e l'image de c par la projection canonique Ag*" — A,;™" est z;

* f®1—1® cn’est pas inversible dans F&®;.

Dans un certain sens 2 = J#(x) et ¢ = T'(x) est le choix possible minimal. Ce
spectre est non vide si E est non nulle, compact et vérifie les propriétés mentionnées
ci-dessus (cf. [Ber90, Theorem 7.1.2]. Remarquons que si f = V est une connexion et si
E = Li(M) est la k-algebre de Banach des endomorphismes k-linéaires bornés de M,
alors f ® 1 — 1 ® c n’est plus un opérateur. En effet, £, (M)&, ne coincide pas avec
Lo(M ®kQ), sauf dans le cas ou () est une extension finie. En particulier, le théoréme de
l'indice ne peut étre utilisé dans I’étude de la bijectivité ensemblistede V® 1 — 1 ® c.

Revenant a notre exemple précédant, en utilisant cette définition on peut montrer
que le spectre de L + g est réduit maintenant a un seul point non rationel zg,n € Ag™
(cf. Chapitre 6). La dépendance en r montre que le spectre de Berkovich dépend du
choix de la valeur absolue sur k, contrairement au spectre classique qui est une notion

purement algébrique.

3 Description des chapitres

Dans cette partie nous décrivons le contenu et les résultats principaux de chaque
chapitre. On donne avant quelques notations:

Notation 3.1. Soit (k, |.|) un corps ultramétrique complet de caractéristique zero. Soient
¢ € ketr € R..On note D*(c,r) le disque fermé de A,*" centré en c et de rayon r,
lan 1,an

et D~ (c,r) le disque ouvert de A, ™" centré en c et de rayon r. Le point z., € A,
correspond au bord de Shilov du disque D™ (c, ).
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3.1 Chapitre 1: Basic notions

Le premier chapitre concerne les notions de bases. Nous rappelons les définitions
et propriétés concernant les espaces de Banach. Nous rappelons aussi la définition gé-
néral des espaces analytiques au sens de Berkovich et de leurs morphismes. Nous dé-
crivons précisément la droite affine analytique A ;™"

3.2 Chapitre 2: Spectral theory in the sense of Berkovich

Le deuxieme chapitre est consacré a 1’étude du spectre au sens de Berkovich. Nous
nous intéressons en particulier a la variation de ce spectre. Pour cela nous définis-

1,an

sons en premier lieu une topologie sur K (A, *"), I'ensemble des sous-ensembles com-
pacts non vides de A;*". Nous montrons que, dans le cas ot A;*" est un espace mé-
trique, cette topologie coincide avec la topologie induite par la métrique d’"Hausdorff

sur K (A;™). Nous étudions ensuite la continuité de Iapplication

Six(E):E — KA
f — Zf,k(E),

ol X ,(E) est le spectre de f vu comme élément de £. Nous remarquons qu’en gé-
néral cette application n’est pas continue. Cependant, nous obtenons les résultats de
continuité suivants:

Théoréme 3.2. Soit E une k-algebre de Banach commutative. L'application
Yi(E): B — K(A™)
est continue.
Théoreme 3.3. Soient E une k-algebre de Banach et f € E. Si ¥ . (E) est totalement discon-

tinu, alors I'application ©_;(F) : E — K(A;™) est continue en f.

Ces résultats existent déja dans le cas complexe. Les preuves sont inspirées par le
cas complexe. Nous donnerons aussi un exemple ou cette application n’est pas conti-
nue.

3.3 Chapitre 3: Differential modules and Spectra

Dans le troisiéme chapitre, on introduit et étudie le spectre associé a un module dif-
férentiel. Le chapitre est organisé comme suit. Dans la premiere partie, nous donnons
les notions de bases concernant les modules différentiels.



6 Chapitre 0. Introduction

Dans la deuxieme partie, nous introduisons le spectre associé a un module différen-
tiel. Nous procédons comme suit. Soient X un domaine affinoide de A, et 2 un point
de type (2), (3) ou (4). Pour éviter les confusions nous fixons une autre fonction coor-
donnée S de X. Posons A := O(X) ou #(z) et d = g(S)<; avec g(S) € A. Soit (M, V)
un module différentiel sur (A, d). Comme M =~ A” pour un certain » € N\ {0}, on
peut munir M de la structure de k-espace de Banach de A” (c’est un espace de Banach
pour la norme max). Dans ce cas, V € L;(M) (la k-algebre de Banach des applications
k-linéaires bornées de M pour la norme d’opérateur). Le spectre associé a (M, V) est
le spectre v (L, (M)) de V vu comme élément de £, (M ). Ce spectre ne dépend pas
du choix de l'isomorphisme M ~ AV. Nous montrons comment il se comporte dans
une suite exacte, et démontrons que pour des modules différentiels (A, V), (M, V)
et (M, Vy) tels que (M, V) = (M, V1) @ (M, V) dans la catégorie des modules diffé-
rentiels sur (A, d), nous avons:

Yvi(Lr(M)) = X, x(Lr(Ma2)) U By, 1 (Lx(M)). (1)

Le résultat le plus important de cette partie est le suivant:

Proposition 3.4. On suppose que k est algébriquement clos. Soient X un domaine affinoide de
A etz € Ap™ un point de type (2), (3) ou (4). On pose A == O(X) ou S (x) et d = g(5) &
avec g € A. Soit (M, V) un module différentiel sur (A, d) tel qu'il existe une base pour laquelle
la matrice associée G est a coefficients constants (i.e. G € M, (k)). Alors le spectre de V est
Yvi(Lip(M)) == Uy (ai + Xax(Lr(A))), oit {a1,--- ,a,} C k est I'ensemble des valeurs
propres de G.

En particulier le spectre dépend fortement du choix de la dérivation d. Cette pro-
position montre I'importance du calcul de ¥, (L, (A)). C'est pour cela qu'une grande
partie des Chapitres 4 et 5 est dédiée au calcul du spectre de <& et S-&. Dans la troi-
siéme partie, nous démontrons la version spectrale en rang un du théoréme de Young
[You92], [Ked10, Theorem 6.5.3], [CMO02, Theorem 6.2].

Théoréme 3.5 (Young). Soit = € A,lﬁ’a“ un point de type (2), (3) ou (4). Soit L = i gn_id%i
=0

avec gy = let g; € (x), et soit (M, V) le module différentiel associé sur (7€ (x),d). On pose

[Llsp = max |gi|7. St |L]sp >[|d]] alors [V]sp = |£]sp.

Notre énoncé est le suivant:

Théoréme 3.6. On suppose que k est algébriquement clos. Soient ) une extension non-algébrique
complete de k et mq, : Ag™ — A la projection canonique. Soient d : Q — Q une k-
dérivation bornée et (2, V) un module différentiel sur(Q2,d) avec V := d + fet f € Q. Si
re(mam(f)) >||d|| ot ri(mak(f)) est le rayon du point wq . (f), alors on a

Yy k(Lr(2) = {mam(f)}-
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Nous essayons d’étendre actuellement ce résultat a un rang quelconque. Nous conjec-
turons 1"énoncé suivant:

Conjecture 3.7. Soit = € A, un point de type (2), (3) ou (4). Soit d une dérivation bornée
sur J(x) et soit (M,V) module différentiel sur (#(x),d). Soit {m,V(m),--- , V" (m)}
une base cyclique et soit G la matrice associée dans cette base. Soit Y (M, (H())) =
{vr,- -+ ,yn}. Alors pour chaque il existe Ci; := (Cy,, -+ ,C,) € RY qui ne dépend que de
G, tel que

re(y) > Cylldl = y: € Swa(La(M)).

Side plus, pour tout y; € X (M, (€ (x))) on a ry(y;) > C,l|d||. Alors

v k(Lr(M)) = X k(M (H(2)).

Dans la derniere partie, nous observons que le spectre est un invariant par le push-
forward par un morphisme étale. Plus précisément: soit ¢ : ¥ — X un morphisme
étale. Soit y € Y un point de type différent de (1) et z := ¢(y). L'application ¢ induit une
extension finie J7(z) — J(y). Soit d une dérivation bornée sur J# (), et soit p*d le
pull-back de d par ¢, qui est bornée et prolonge d. Pour tout module différentiel (M, V)
sur (7 (y), p*d) le push-forward (.M, ¢, V) (obtenu par restriction de scalaires) est un
module différentiel sur (¢ (z), d). Comme (M, V) et (¢.M, ¢.V) coincident comme k-
espaces de Banach, leurs spectres respectifs vérifient:

Evk(Li(M)) = X, vk (Li(puM)). (2)

Méme si il n’est pas difficile de voir cela, cette propriété nous permet de calculer les
spectres d'une classe importante de modules différentiels (cf. Chapters 5 and 6).

3.4 Chapitre 4: Spectrum of a differential equation with constant co-
efficients

Le quatrieme chapitre est dédié au calcul du spectre d"une équation différentielle a
coefficients constants et a I'étude de sa variation. Nous distinguerons la notion d’équa-
tion différentielle dans le sens d’un polyndme différentiel P(d) opérant sur A de la
notion de module différentiel (M, V) sur (A, d) associé a P(d) dans une base cyclique.
En effet, il n’est pas difficile de montrer que le spectre de P(5) = (55)" +a,-1(55)" ' +
-+ 4+ ap comme élément de L4 (A), ot a; € k, est donné par la formule (cf. [BouO7, p. 2]
and Lemma 2.1.16)

Yip(a)(Li(A)) = P(E .4 (Lk(A))). )

Cet ensemble est toujours soit un disque fermé soit I’adhérence d"un disque ouvert (cf.
Lemma 2.1.16, Remark 4.2.4). De fagon assez surprenante, il est différent du spectre
Sv(Lx(M)) du module différentiel (M, V) associé a P(<%) dans une base cyclique (i.e
le spectre de V comme élément de £, (1])). En effet, ce dernier est une union finie soit
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de disques fermés soit d’adhérences de disques ouverts (cf. Theorem 3.8) centrés en les
racines du polyndme (commutatif) () = X" + a, 1 X =l 4 ag € k[X] associé a P.
Afin d’introduire notre résultat suivant, on note k le corps résiduel de k et on pose:
1 ~
=T si k) =
o [l sicarB) = p "
1 sicar(k) =0

Le résultat principal de ce chapitre est le suivant:

Théoréme 3.8. On suppose que k est algébriquement clos. Soient X un domaine affinoide
connexe de Ay™™ et x € Ay™ un point de type (2), (3) ou (4). On pose A := O(X) ou H# ().
Soit (M, V) un module différentiel sur (A, <) tel qu'il existe une base pour laquelle la matrice
associée G est a coefficients constants (i.e. G € M, (k)). Soit {ay,...,an} C k I'ensemble des
valeurs propres de G. Le comportement du spectre X (L (M)) de V comme élément de Ly, (M)

est récapitulé dans le tableau suivant:

A= O(X) ()
X =D*(c,r) X = D*(co,m0) \ G D™ (¢;,r;) | « de type (2) ou (3) ‘ x de type (4)
i=1
- N N N
car(k) =p >0 U D*(a;, %) U D*(ai, =5-) U D*(a, T(“T))
i=1 i=1 j J i=1
- N N N N
carB) =0 | (D (@) Ufr, 1) U 0¥ i) U0ty | U0 ) U d, )

La preuve de tout ces cas consiste a calculer le spectre de =& et appliquer la Propo-
sition 3.4.

En utilisant ce résultat nous démontrons que la variation du spectre vérifie une
propriété de continuité:

Soit X un domaine affinoide de A;*". Soit (1, V) un module différentiel sur (O(X), L)
tel qu’il existe une base pour laquelle la matrice associée G est a coefficients constants.
Pour un point z € X de type différent de (1), le module différentiel (M, V) s’étend
a un module différentiel sur (7(z), &). Dans la base correspondante de (M, V,) la
matrice associée est G.

Théoreme 3.9. On suppose que k est algébriguement clos. Soient X = D™ (co, 10)\Uiey D™ (ciy 74)
un domaine affinoide et v € X un point de type (2), (3) ou (4). Soit (M, V) un module différen-
tiel sur (O(X), <) tel qu'il existe une base pour laquelle la matrice associée G est a coefficients
constants. On pose:
U [r, 2] — KA
y = Xy, (Le(My))

Alors on a

* Pour tout y € [z, T, ], 1a restriction de ¥ a [z, y| est continue en y.
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* Siy € [z, .,] est un point de type (3), alors U est continue en y.

e Sichar(k) =0ety € [x, 2] est un point de type (4), alors W est continue en y.

3.5 Chapitre 5: Spectrum of a regular singular differential module

Le cinquiéme chapitre est consacré au calcul du spectre d’'un module différentiel
singulier régulier (M, V) sur (J(z), SL), avec € A;™ un point de type (2), (3) ou
(4). Nous entendons par module différentiel singulier régulier sur (7 (xz), S5 ), un mo-
dule différentiel (M, V) tel qu’il existe une base pour laquelle la matrice associée G est
A coefficients constants (i.e. G € M, (k)). Soit Log, : D~ (c,|¢|) — A;* la fonction

analytique associée au morphisme d’anneaux

K[T] — O(D(c,|e])

i 5
T = Ypen{o (can)L (T — o). ©)

Le résultat principal de ce chapitre est le suivant:

Théoréme 3.10. On suppose que k est algébriquement clos. Soit = € A,*" un point de type (2),
(3) ou (4). Soit (M, N) un module différentiel sur (A (x), S<5) tel qu'il existe une base pour
laquelle G est a coefficients constants (i.e. G € M,,(k)). Soit {as,...,an} C k l'ensemble des
valeurs propres G. Le comportement du spectre Yo (L (M)) de NV vu comme élément de L. (M)
est récapitulé dans le tableau suivant:

T =T, xz € D™ (¢, |c|) avec ¢ € k \ {0}
x de type (2) | x de type (3) x de type (2) ou (3) | x de type (4)
- N N A 3
car(k) =p >0 191 a; +7Z, Uy D*(a; + 7, m)

i=1jEN

- N N N N
car(k) =0 191 Dt(a;, 1) iL:Jl a; + (ZU{xzoa}) | U D™ (ai, omos o) iL:J1(D7(ai’ s ay) Y {xam})

i=1

La stratégie de la preuve consiste a calculer d’abord le spectre de la dérivation
S-<&. Ensuite, comme déja mentionné, nous appliquons la proposition 3.4. Par consé-
quent, les cas récapitulés ci-dessus découlent des différentes formes du spectre de
S Dans le cas ou # = g, pour r > 0, les méthodes employées dans les trois cas
pour calculer X 4 o (Li(F(x))) sont completement différentes. En effet, dans le cas ot

car(k) = p > 0, nous obtenons le spectre grace au push-forward par la fonction Fro-
benius. En revanche, pour les autres cas nous calculons le spectre directement. Dans
lecas otz € D (c,|c|) ot c € k\ {0}, al’aide de la formule (2), le push-forward par
Log. nous permet de réduire le calcul au calcul du spectre d"'un module différentiel

sur (A (Log,.(z)), &%) a coefficients constants. Comme le degré de Log, dans le cas ou

car(k) = p > 0 différe du cas ou1 car(k) = 0, les spectres sont légerement différents.
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Ce résultat montre que: contrairement au cas traité dans le chapitre 4, dans le cas

car(k) = 0, la variation du spectre peut ne pas étre du tout continue. Néanmoins, nous
avons le resultat de continuité:

Soit X un domaine affinoide de A;". Soit (M, V) un module différentiel sur (O(X), S d%)
tel qu’il existe une base pour laquelle la matrice associée G est a coefficients constants.
Pour un point z € X de type différent de (1), le module différentiel (M, V) s’étend a
un module différentiel sur (#(z), S<). Dans la base correspondante de (M,,V,) la
matrice associée est G.

Théoreme 3.11. On suppose que k est algébriquement clos et car(k) = p > 0 ou |k| = R,.
Soient X = D (co, o) \ Uiey D~ (¢4, ;) un domaine affinoide et x € X un point de type (2),
(3) ou (4). Soit (M, V) un module différentiel sur (Ox (X)), S<5) tel qu'il existe une base pour
laquelle G est a coefficients constants. On pose:

U2, Zeyro] — K(A,lc’an)
Yy = Evy,k(ﬁk(My))'

Alors on a:

® poury € [x, T, ), la restriction de V a [z, y| est continue en y.
* Siy € [z, 2] est un point de la forme xq g, alors U est continue en y.

* Siy € [x, 2 .,) est un poin de type (3), alors U est continue en y.

3.6 Chapitre 6: Spectrum of a linear differential equation over a field
of formal power series

Dans le sixieme chapitre nous calculons le spectre d"un module différentiel (M, V)
sur (k((S)), S<L), ou k est trivialement valué et algébriquement clos, et k((.5)) est le corps
des séries formelles de Laurent et muni de la valeur absolue S-adique donnée par
| YisnaiSY := 1", siay # 0, avec r < 1. On fait remarquer que le choix de r identifie
(non canoniquement) (k((S)), |.|) avec le corps .#(z,,) du point z, € A,*". Le résultat
de ce chapitre dépend fortement de cette identification. Il semblerait, en particulier,
que le spectre de Berkovich n’est pas indépendent de r, méme si la notion classique du

spectre est purement algébrique.

Théoreme 3.12. Soit (M, V) un module différentiel sur (k((S)), S<%). Soit {y1, -+ , %, } l'en-
semble des pentes de (M, V). Soit {ay,- - ,a,,} I'ensemble des exposants de la partie réguliére
de(M, V) . Le spectre de V vu comme élément de L, (M) est:

Ev,k(ﬁk(M)) = {xo’r*ﬂ, T 71'0’T*WV1 } U U (Gi + Z)

i=1
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Nous exposons maintenant 'idée de la preuve. La décomposition selon les pentes
du polygone de Newton d'un module différentiel nous permet de décrire (1, V) comme

une somme directe de modules différentiels sur (k((.5)), S<):

(M7 V) = (Mreg7 Vreg) D (Mirr7 Virr)

Ol (Mreg, Vieg) €st un module différentiel singulier régulier et (M;, Vi) est un mo-
dule différentiel irrégulier sans partie réguliére. Par la formule (cf. (1)), nous avons
Sk (Li(M)) = Ev, k(Li(M1)) U Xv, k(L (Ma)).

Par conséquent, afin d’obtenir ¥y (L, ()), il suffit de connaitre le spectre d'un
module singulier régulier et le spectre d"un module irrégulier sans partie réguliere. Le
premier cas est déja traité dans le Chapitre 5. Il reste a traiter le cas purement irrégu-
lier. Pour ce cas nous procédons comme suit. On sait que, tout module différentiel peut
s’écrire comme extension de modules différentiels de rang un apres extension des sca-
laires (cf. [Tur55]). En particulier, pour (Mi, Vi), les modules différentiels de rang un
obtenus vérifient les conditions du Théoréme 3.6. Par conséquent, le spectre d"un tel
module différentiel de rang un est {z,~}, ott 7 correspond a une pente de (M, Vi ).
Nous montrons par des techniques de push-forward et pull-back que, le spectre de
(Mise, Virr) coincide avec le spectre du module différentiel obtenu par une extension de
scalaires et nous concluons la preuve.

4 Perspectives

Notre stratégie pour calculer le spectre d"'un module différentiel quelconque défini
sur un domaine affinoide de A;™" est la suivante. On a besoin de démontrer d’abord la
Conjecture 3.7. Apres, on doit montrer que le push-forward par la fonction Frobenius
(ou un autre morphisme étale convenable) du module différentiel vérifie les conditions
de la conjecture. Nous nous attendons a ce que le spectre ait la forme suivante:

Conjecture 4.1. Supposons que k est algébriquement clos. Soit x € Ap™ un point de type (2),
(3) ou (4). Soit d : 7 (x) — H(x) une dérivation k-linéaire bornée. Soit (M, V) un module
différentiel sur (7€ (x), d) de rang n. Si V — a est injective pour tout a € k alors X (L (M))
est un ensemble fini de points de type différent de (1). Plus généralement, le spectre est de la
forme

Yo r(Lr(M)) = (Q a; + Bap(Lr(M))) U{z1,- - 2N}

avec a; € k, x; € Ay™ sont des points de type différent de (1) et N < n. Notons que N' peut
étre plus grand que n.






Introduction (english version)

Differential equations constitute an important tool for the investigation of algebraic
and analytic varieties, over the complex and the p-adic numbers. Notably, de Rham
cohomology is one of the most powerful way to obtain algebraic and analytic infor-
mations. Besides, ultrametric phenomena appeared naturally studying formal Taylor
solutions of the equation around singular and regular points.

As soon as the theory of ultrametric differential equations became a central topic of
investigation around 1960, after the work of B. Dwork, P. Robba (et al.), the following
interesting phenomena appeared. In the ultrametric setting, the solutions of a linear
differential equation may fail to converge as expected, even if the coefficients of the
equation are entire functions. For example, over the ground field Q, of p-adic num-
bers, the exponential power series exp(T) = 3,59 =+ which is solution of the equation

y' = y has radius of convergence equal to | p[ﬁ even though the equation shows no
singularities. However, the behaviour of the radius of convergence is well controlled,
and its knowledge permits to obtain several informations about the equation. Namely
it controls the finite dimensionality of the de Rham cohomology.

The use of Berkovich language introduced in [Ber90] and [Ber93] allowed to show
that the variation of this radius is well controlled by a finite sub-graph of an analytic
curve, in the sense of Berkovich. More precisely, since the works of F. Baldassari and L.
Di Vizio in [BD08] and E. Baldassari in [Bal10], we know in which way we associate a
radius of convergence to a point that belongs to a p-adic curve endowed with a connec-
tion, in the sense of Berkovich. In the paper [Bal10], F. Baldassari shows that the radius
of convergence, in the setting of a curve, is a continuous function. He also conjectures
that it factorizes trough a locally finite graph, moreover the curve retracts on this graph.
In the work of J. Poineau and A. Pulita, this graph is called controlling graph. In paper
[Pull5], A. Pulita proves the conjecture for the case of a differential module defined
over an affinoid domain of the analytic line A;™". He also generalizes these results to
the subsidiary radii, i.e. the respective radii of each solutions of the equation. These re-
sults are generalized and investigated in the setting of a quasi-smooth curve in the pa-
pers of . Poineau and A. Pulita [PP15] and [PP13a]. In [PP13b], they provide necessary
and sufficient criterion for the finiteness of the de Rham cohomology. This criterion is
tulfilled if the controlling graph is finite.
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In our work, we focus on the study of an invariant more finer then the radius of
convergence, the spectrum in the sense of Berkovich of a differential module. Our main
goal is to connect the above results with the spectrum of the connection in the sense of
Berkovich. In the present thesis, we introduce the spectrum associated to a differential
module, and provide some properties. We also compute the spectra of some classes
of differential modules: differential modules of a differential equation with constant
coefficients, singular regular modules and at last differential modules over the field of
Laurent power series.

1 Motivation

The starting point of the thesis is an interesting relation between this radius and
the notion of spectrum (in the sense of Berkovich). Indeed, consider a ring A together
with a derivation d : A — A. A differential module on (A, d) is a finite free A-module M
together with a Z-linear map

V:M-—-M

satisfying for all m € M and all f € A the relation V(fm) = d(f)m + fV(m). If an
isomorphism M = A" is given, then V coincides with an operator of the form

d+G: A" - A
where d acts on A componentwise and G is a square matrix with coefficients in A.

If A is moreover a Banach algebra with respect to a given norm ||.|| and A" is en-
dowed with the max norm, then we can endow the algebra of bounded Z-linear endo-
morphisms with the operator norm, that we still denote by |.||. The spectral norm of V
is given by

1
s
I¥llsp = lim |77+,

The link between the radius of convergence of V and its spectrum is then the fol-
lowing: on the one hand, when ||.|| is a Berkovich point = of type other than 1 of the
analytic affine line and A is the field of this point, the spectral norm ||V||s, coincides
with the inverse of the radius of convergence of M at x multiplied by some constant
(cf. [CD94, p. 676] or [Ked10, Definition 9.4.4]). On the other hand the spectral norm
| V||sp is also equal to the radius of the smallest disk centred at zero and containing the
spectrum of V in the sense of Berkovich (cf. [Ber90, Theorem 7.1.2]).

The spectrum appears then as a new invariant of the connection V generalizing
and refining the radius of convergence. This has been our first motivation, however
the study of the spectrum of an operator has its own interest and it deserves its own
independent theory.
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2 Spectral theory in the sense of Berkovich

Let k be an arbitrary field and E be a non-zero k-algebra with unit. Recall that
classically, the spectrum X (E) of an element f of E (cf. [Bou07, §1.2. Defintion 1]) is
the set of elements A of k£ such that f — A\.1g is not invertible in E. In the case where
k = C and (E,||.||) is a C-Banach algebra, the spectrum of f satisfies the following
properties:

¢ [tis not empty and compact.

* The smallest disk centred at 0 and containing ¥, (£) has radius equal to || f||s, =
i |77

* The resolvent function R; : C\ X;x(E) = E, A — (f — A.1g)~! is an analytic
function with values in F.

Unfortunately, this may fail in the ultrametric case. In [Vis85] M. Vishik provides an
example of operator with empty spectrum and with a resolvent which is only locally
analytic. We illustrate this pathology with an example in our context, where connec-
tions with empty classical spectrum abound.

Example 2.1. Let £ be an algebraically closed field of characteristic zero endowed with
the trivial absolute value. Let A := k((9)) be the field of Laurent power series endowed
with the S-adic absolute value given by | Y5, @,S™| = ™, if a,, # 0, where |S| =
r < 1is a nonzero real number '. We consider a rank one irregular differential module
over A = k((S)) defined by the operator -t + g : A — A, where g € A has S-adic
valuation n that is less than or equal to —2. We consider the connection V = £ + g as
an element of the k-Banach algebra £ = L£;(k((S))) of bounded k-linear maps of k((5))

with respect to the usual operator norm: [|¢| = su\yg } “ﬂ(f"c‘)‘, for all ¢ € E. Then, the

FeA{o
classical spectrum of the differentiel operator =t + g is empty. Indeed, since ||| = £
and |(g—a)'| <r?*foralla € k, then ||(g —a) o (%)H < r (resp. ||(;—S) o(g—a) | <)
and the series o(—1)"((g—a) 'o( &))" (resp. o~ 1)"((:&)o(g—a) 1)) converges
in £, (k((S)). Hence, for all a € k, (Xns0(—1)" - ((g —a)™' o (£5))") o (9 — a)~* (resp.
(9—a)™ o (Tuso(—1)"- ((55) o (9 — a)~)") is a left (resp. right) inverse of & + (g — a)
in £;(k((S)) and a does not belong to the spectrum.? Thus the classical spectrum is
empty.

1. In the language of Berkovich, this field can be naturally identified with the complete residual field
of the point z,, € A, ™"

2. Notice that it is relatively easy to show that any non trivial rank one connection over k((.9)) is set
theoretically bijective. This follows from the classical index theorem of B. Malgrange [Mal74]. However,
the set theoretical inverse of the connection may not be automatically bounded. This is due to the fact
that the base field  is trivially valued and the Banach open mapping theorem does not hold in general.
However, it is possible to prove that any such set theoretical inverse is bounded (cf. Chapter 6).
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To deal with this issue V. Berkovich understood that it was better not to define the
spectrum as a subset of the base field k, but as a subset of the analytic line A, ™", which is
a bigger space’. His theory of analytic spaces (cf. [Ber90], [Ber93]) enjoys several good
local topological properties such as compactness, path connectedness ... In this setting
Berkovich developed a spectral theory for ultrametric operators [Ber90, Chapter 7]. The
definition of the spectrum given by Berkovich is the following: Let (k, |.|) be complete
field with respect to an ultrametric absolute value and let A;*" be the Berkovich affine
line. For a point z € A, we denote by .7 () the associated completed residue field.
We fix on A, ™" a coordinate function 7. The spectrum ¥;;(E) of an element f of a k-
Banach algebra E is the set of points = € A,*", such that f ®1—1®T(x) is not invertible
in E®y 7 (x). It can be proved (cf. [Ber90, Proposition 7.1.6]) that this is equivalent to
say that there exists a complete valued field (2 containing isometrically £ and a constant
c € (2 such that

e the image of ¢ by the canonical projection A;™ — A*" is x;

e f®1—1® cisnotinvertible as an element of E&;S).

In some sense (2 = .7 (x) and ¢ = T'(z) are the minimal possible choices. This spectrum
is compact, non-empty if F is non-zero algebra and it satisfies the properties listed
above (cf. [Ber90, Theorem 7.12]). Notice that if f = V is a operator and if £ = L (M)
is the k-Banach algebra of bounded k-linear endomorphisms of M, then f ® 1 —1® ¢
is no more a connection as an element of F®,(). Indeed, Ly (M )®kQ does not coincide
with Lo(M®;), unless 2 is a finite extension. In particular, no index theorem can be used
to test the set theoretical bijectivity of V® 1 -1 ® c.

Coming back to the above example, using this definition it can be proved that the
spectrum of & + g is now reduced to the individual non-rational point xg .~ € A (cf.
Chapter 6). The dependence on r shows that the Berkovich spectrum depends on the cho-
sen absolute value on k; whereas, instead, the classical spectrum is a completely algebraic
notion.

3 Description of chapters

In this part we describe the contain and main statements of each chapter. Before,
we provide some notation:

Notation 3.1. Let (k, |.|) be an ultrametric complete field of characteristic zero. Let ¢ €
k and r € R,. We denote by D*(c,r) the closed disk of A;™ centred at ¢ and with
radius 7, and D~ (c,) the open disk of A,*" centred at ¢ and with radius r. The point
., € Ay™ will corespond to the Shilov boundary of the disk D*(c, 7).

3. This can be motivated by the fact that the resolvent is an analytic function on the complement of
the spectrum.
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3.1 Chapter 1: Basic notions

The first chapter is devoted to providing setting and notation. We recall definitions
and properties related to Banach spaces. We also recall the general definition of analytic
spaces and maps in the sense of Berkovich, and more specifically the analytic affine line
A

3.2 Chapter 2: Spectral theory in the sense of Berkovich

The second chapter is devoted to the study of the spectrum in the sense of Berko-
vich. We are interested, more precisely, to the variation of the spectrum. For that we
first define a topology on K (A;™") the set of nonempty compact subsets. We prove
that, in the case where A;™ is metrisable, this topology coincides with the topology

induced by the Hausdorff metric on K (A;*"). We then study the continuity of the map

YiE):E — KA
fo= Bp(B),

where ¥, (E) is the spectrum of f as an element of £. We observe that in general this
map is not continuous. Nevertheless, we have the following continuity results.

Theorem 3.2. Let E be a commutative k-Banach algebra. The spectrum map
Skt B K(AF™)
is continuous.

Theorem 3.3. Let E be a k-Banach algebraand f € E. If ¥ (E) is totally disconnected, then
themap ¥ . - E — K(A;™) is continuous at f.

These results already exist in the complex case. The proofs are inspired by the com-
plex case. We provide also an example where this function is not continuous.

3.3 Chapter 3: Differential modules and Spectra

The third chapter is devoted to introducing and studying the spectrum associated
to a differential module. The chapter is organized as follows. In the first part, we pro-
vide setting and notations related to differential modules.

In the second part, we introduce the spectrum associated to a differential module.

1,an

We proceed as follows. Let X be an affinoid domain of A, *" and = a point of type
(2), (3) or (4). To avoid confusion we fix another coordinate function S over X. We set
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A=0(X)or #(z) and d = g(5)<L with g(S) € A. Let (M, V) be a differential module
over (A, d). Since M ~ A" for some v € N\ {0}, we can endow M with the structure of
k-Banach space of A”. In this setting, V is an element of £, (M) (the k-Banach algebra
of bounded k-linear map of M with respect to the usual operator norm). Then the spec-
trum associated to (M, V) is the spectrum Yy (L (M)) of V as an element of L (M).
This spectrum does not depend on the choice of the isomorphism M ~ A”. Then we
show how it behaves under exact sequences, and prove that for differential modules
(M, V), (M, V;) and (M,, Vs) such that (M, V) = (M, V;) & (Ms, V2) in the category
of differential modules over (A, d), we have:

Yvp(Le(M)) = Xy, k(Lie(M2)) U Xg, (L (M)). (6)

The most important result of this part is the following;:

Proposition 3.4. We suppose that k is algebraically closed. Let X be an affinoid domain of

A and x € A™ a point of type (2), (3) or (4). We set A = O(X) or (x), and let

d = g(S)d/dS, with g € A. Let (M, V) be a differential module over (A,d) such that there

exists a basis for which the associated matrix G has constant entries (i.e G € M, (k)). Then

the spectrum of V is Yy (L (M)) = 6 (a; + Xar(Lx(A))), where {ay,...,a,} C kis the
i=1

multiset of the eigenvalues of G.

In particular the spectrum highly depends on the choice of the derivation d. This
claim shows the importance of computing the spectrum of ¥, (L;(A)). Therefore, in
Chapters 4 and 5, a large part is devoted to the computation of the spectrum of & and
54

In the third part, we prove a spectral version in rank one of Young’s theorem [You92],
[Ked10, Theorem 6.5.3], [CMO02, Theorem 6.2], which states the following :

Theorem 3.5 (Young). Let x € A,™" be a point of type (2), (3) or (4). Let £ = 3 gn,idisi with
=0

go = Land g; € 7 (x), and let (M, V) be the associated differential module over (J (x), £5).
We set |L]s, = max 91 IF |L1sp > 155 | then | V]|sp = |L]s,

Our statement is the following;:

Theorem 3.6. Assume that k is algebraically closed. Let ) be a non-algebraic complete exten-
sion of k and ma : Ag™ — Ay™ be the canonical projection. Let (2, V) be the differential
module over (Q, d) with V := d + fand f € Q. If ri.(mo/w(f)) >||d|| where ri(mqax(f) is the
radius of the point mq i (f), then we have

Vv k(Lr(82) = {mam(f)}-

We are currently trying to extend the statement to higher rank. We conjecture the
following;:



3. Description of chapters 19

Conjecture 3.7. Let A;™ be a point of type (2), (3) or (4). Let d be a bounded derivation on
() and let (M, V) be a differential module over (7 (z),d). Let {m,V(m),--- , V" *(m)}
be a cyclic basis and let G be the associated matrix in this basis. Let Y¢ (M, (7€ (x))) =
{vr,--- ,yn}. Then there exists Cq = (Cy,, -+ ,Cyy) € RY that depends only on G, such
that

re(yi) > Cylldl] = yi € Bop(Lr(M)).

If moreover, for all y; € Y (M, (H(x))) we have r(y;) > Cy,||d||, then

YNvk(Lr(M)) = X p (M (H(2)).

In the last part, we observe that the spectrum is invariant by a push-forward by
an étale map. By that, we mean the following: let ¢ : ¥ — X an étale morphism. Let
y € Y be a point not of type (1) and = := ¢(y). The map ¢ induces a finite extension
() — H(y). Let d be a bounded derivation on #(x), and let ¢*d be the pull-back
of d by ¢, which is a bounded derivation that extends d. For a differential module
(M, V) over ((y), p*d) the push-forward (¢, M, ¢, V) (obtained by restriction of sca-
lars) is a differential module over (7 (z), d). Since (M, V) and (.M, ¢.V) coincides as
k-Banach space, their respective spectra satisfy

Yo k(Le(M)) = X, vk (Li(peM)). (7)

Even though it is not hard to see this, it allows us to compute spectra of important
classes of differential modules (cf. Chapters 5 and 6).

3.4 Chapter 4: Spectrum of a differential equation with constant co-
efficients

The fourth chapter is devoted to the computation of the spectrum of a differential
equation with constant coefficients and the study of its variation. We will distinguish
the notion of differential equation in the sense of a differential polynomial P(d) acting
on A from the notion of differential module (M, V) over (A, d) associated to P(d) in

a cyclic basis. Indeed, it is not hard to prove that the spectrum of P(%5) = (&£)" +

Ay (%)”_1 +---4ap as an element of £, (A), where a; € k, is given by the easy formula

(cf. [BouO7, p. 2] and Lemma 2.1.16)
(Lk(A)))- (8)

|

ZP(%)(E;C(A)) = P(Zd

1921

This set is always either a closed disk or the topological closure of an open disk (cf.
Lemma 2.1.16, Remark 4.2.4). On the other hand, surprisingly enough, this differs form
the spectrum Yy (L;(M)) of the differential module (M, V) associated to P(%) in a
cyclic basis (i.e the spectrum of V as an element of £;(1/)). Indeed, this latter is a finite
union of either closed disks or topological closures of open disks (cf. Theorem 3.8)
centered on the roots of the (commutative) polynomial Q = X" +a,_1 X" '+ 4ay €
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k[X] associated to P. In order to introduce our next result, we denote by k the residual
field of £ and we set:

1 if char(k) =0 ®

The main statement of this chapter is then the following:

o {]p|p1 if char(k) =p

Theorem 3.8. We suppose that k is algebraically closed. Let X be a connected affinoid domain
of Ay™™ and x € Ay a point of type (2), (3) or (4). Weset A = O(X) or #(x). Let (M, V) be
a differential module over (A, <) such that there exists a basis for which the associated matrix
G has constant entries (i.e. G € M, (k)). Let {a1,...,an} C k be the set of eigenvalues of G.
Then the behaviour of the spectrum Yo (L (M)) of V as an element of Li.(M) is summarized
in the following table:

A= O(X) S (1)

X = D(c,r) X = D% (co,m0) \ G D~ (¢, m;) | x of type (2) or (3) ‘ x of type (4)
i=1
- N N N
char(k) =p >0 U D*(a;, 2) U D*(as, o) U D (a;, o)
i=1 i=1 T i=1
- N N L N L N o L
char(k) =0 791(D (@i, 1) U{zy, 1 }) L=J1 D (a min”) 7:L=J1 D*(ai, 75) 7:L=J1(D (ai, ;55) Y {za“%})

The proof in all cases consists of the computation of -& and application of Proposi-
tion 3.4.

Using this result we prove that the variation of the spectrum satisfies a continuity
property:

Let X be an affinoid domain of A;™. Let (M, V) be a differential module over

(O(X), &) such that there exists a basis for which the associated matrix G has constant
entries. For a point z € X not of type (1), the differential module (M, V) extends to a
differential module (M,,V,) over (J#(x), %). In the corresponding basis of (M,, V)

» dS
the associated matrix is G.

Theorem 3.9. Assume that k is algebraically closed. Let X = D% (co,r0) \ Uley D™ (ci,74)
be a connected affinoid domain and x € X be a point of type (2), (3) or (4). Let (M, V) be a

differential module over (O(X), <t) such that there exists a basis for which the corresponding
matrix G has constant entries. We set:

U2, e ry] — K(Ai’an)
—

Then we have:

* foreachy € [z, x|, the restriction of U to [x,y] is continuous at y.
o Ify € [z, 2, is a point of type (3), then U is continuous at y.
e Ifchar(k) = 0and y € [x, 2, ,) is a point of type (4), then W is continuous at y.
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3.5 Chapter 5: Spectrum of a regular singular differential module

The fifth Chapter is devoted to the computation of the spectrum of a regular singu-
lar differential module (1, V) over (/' (z), S <L), withz € A;™" a point of type (2), (3)
or (4). By regular differential module over (#(z), S;), we mean a differential module
(M, V) such that there exists a basis for which the associated matrix G has constant en-
tries (i.e. G € M, (k)). We set Log, : D~ (c, |¢|) — A;™ to be the analytic map associated

with the ring morphism:

K[T] — O(D(c,|e]))

_yn 10
T = Seemo ST o)™ 10

The main result of the chapter is the following;:

1,an

Theorem 3.10. We suppose that k is algebraically closed. Let x € A,>™" a point of type (2), (3)
or (4). Let (M, V) be a differential module over (' (x), S<%) such that there exists a basis for
which the associated matrix G has constant entries (i.e. G € M, (k)). Let {ay,...,an} C k be
the set of eigenvalues of G. Then the behaviour of the spectrum Y (L (M)) of V as an element

of L,(M) is summarized in the following table:

T = To, z € D™ (¢, |c|) with ¢ € k\ {0}
x of type (2) | x of type (3) z of type (2) or (3) | x of type (4)
. N N " . w
char(k) =p >0 igl a; + Zy, jL:J] jgND (a; + 7, m)

char(k) = 0 ,ﬁ] D*(ai, 1) Ql a; + (ZU {z0,))

N N
g w g w "
U DM, srragay) | U (D7 (0 smgey) Y A% msoy )

The strategy of the proof consists in computing firstly the spectrum of the deri-
vation S-&. After, as we have mentioned before, we apply Proposition 3.4. Therefore,
the cases summarized in this table follow from the different forms of the spectrum
of S (f—s. In the case where x = z(, for some r > 0, the methods used in the three
cases to compute ¥ga o (Ly(H(x))) are completely different. Indeed, in the case where

char(k) = p > 0, we obtain the spectrum by using the push-forward by the Frobenius
map. However, for the other cases, as in the constant case, we compute directly the
spectrum. In the case where x € D™ (c,|c|) with ¢ € k \ {0}, since we have the equa-
lity in the formula (7), the push-forward by Log, allows us to reduce our computation
to the computation of a spectrum of a differential module over (#(Log,(z)), <) with
constant coefficients. As the degree of Log, in the case where char(k) = p > 0 differs

from char(k) = 0, the spectra in these cases are slightly different.

We observe from this result that: contrary to the case treated in Chapter 4, in the

case char(k) = 0, the continuity of the variation of the spectrum may completely fail.
Nonetheless, we have the following continuity result:
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Let X be an affinoid domain of A;™. Let (M, V) be a differential module over
(O(X), S£5) such that there exists a basis for which the associated matrix G has constant
entries. For a point z € X not of type (1), the differential module (M, V) extends to a
differential module (M,, V) over (#(z), S<&). In the corresponding basis of (M,, V)

the associated matrix is G.

Theorem 3.11. We assume that k is algebraically closed and char(k) = p > 0 or |k| = R,.
Let X = D*(co,r0) \ Uiz D™ (ci, ;) be a connected affinoid domain and x € X be a point
of type (2), (3) or (4). Let (M, V) be a differential module over (Ox(X), S<t) such that there
exists a basis for which the corresponding matrix G has constant entries. We set:

U [z, T ry] — K(A,lf’an)
Yy = Evy,kz(ﬁk(My))'

Then we have:

* foreachy € [z, x|, the restriction of U to [x,y] is continuous at y.
° Ify € [z, ey IS a point of the form xq g, then U is continuous at y.

° Ify € [z, x., ] is a point of type (3), then U is continuous at y.

3.6 Chapter 6: Spectrum of a linear differential equation over a field
of formal power series

The sixth chapter is devoted to the computation of the spectrum of a differential
module (M, V) over (k((S)), S<k), where k is trivially valued and algebraically closed,
and £((.9)) is the field of Laurent power series endowed with the S-adic absolute value
given | Vs n a;57] :=rV, if ay # 0, with r < 1. Before discussing our result, we point
out that the choice of r identifies (non canonically) (k((.5)), |.|) with the field #(z ) of
the point zy, € A;™. The results of this chapter will depend highly on this identifi-
cation. It will appears, in particular, that the Berkovich Spectrum is not independent
on r while the classical notion of spectrum is a completely algebraic notion. The main
statement is the following:

Theorem 3.12. Let (M, V) be a differential module over (k((S)),S=k). Let {vi,--+ , 7, } be
the set of the slopes of (M, V) counted without multiplicity. Let {ay,--- ,a,,} be the set of the
exponents of the regular part of (M, V) again counted without multiplicity. Then the spectrum
of V as an element of Li(M) is:

Ev,k(ﬁk(M)) = {xo’qﬂfﬁ’lj T 71'0’T*WV1 } U U (Gi + Z)

i=1
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We now discribe the idea of the proof. The decomposition according to the slopes
of Newton polygon of a differential module allows us to write (M, V) as a direct sum

of differential modules over (k((S)), S<%):

(M7 V) = (Mreg7 Vreg) D (Mirr7 Virr)

where (Mieg, Vieg) is regular singular differential module and (M;, V) is irregular
differential module without regular part. As we have seen above (cf. (6)), we have
Ev,k(ﬁk(M)) = EVl,k(Ek(Ml))UEVQ,k(‘Ck(MQ))' Therefore, in order to obtain Ev,k(ﬁk(M»;
it is enough to know the spectrum of a regular singular module and the spectrum of a
differential module without regular part. The first case is already done in Chapter 5. It
just remains to treat the case of an irregular differential module without regular part.
For this case, we proceed as follows. We know that, any differential module by some
extension of scalars is an extension of differential modules of rank one (cf. [Tur55]). In
particular, for (M, Vi), the differential modules of rank one so obtained fulfill the
condition of Theorem 3.6. Therefore, more precisely, the spectrum of such a rank one
module is {z(,~ }, where v corresponds to a slope of (M, Vi:). We prove in this situa-
tion by using push-forward and pull back techniques that, the spectrum of (Mj, Vir)
coincides with the spectrum of the differential module obtained by extension of scalars.
Hence, we conclude.

4 Perspectives

Our strategy to compute the spectrum of a general differential module defined over
an affinoid domain of A,*" is the following. We need to prove first Conjecture 3.7.
Then, we need to show that push-froward by the Frobenius ( or another suitable étale
morphism) of the differential module fulfills the condition of the conjecture. Then, we

expect that the spectrum has the form:

Conjecture 4.1. Assume that k is algebraically closed. Let = € A, be a point of type (2), (3)
or (4). Let (M, V) be a differential module over (7 (x), d), with rank n. if V — a is injective for
all a € k then Xy (L (M)) is a finite set of point not of type (1). More generally, the spectrum
has the form:

S (Le(M)) = (I ai + Zar(Lr(M))) U{z, - zn}

i=1

with a; € k, x; € Ay™ are points not of type (1) and N < n. Note that, N’ can be greater then
n.
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This Chapter is mainly devoted to introducing the objects involved in the next chap-
ters. In the first section, we recall the definitions and properties related to Banach
spaces. In the second section, we recall generally the construction of analytic spaces in
sense of Berkovich, in order to describe more precisely the analytic line.

Notation 1.0.1. We denote by R the field of real numbers, and R, = {r € R| » > 0}.

Convention 1.0.2. We will assume that all the rings are with unit element.

1.1 Banach spaces and the analytic spectrum

This section is organized as follows. In the first part, we provide settings and no-
tations related to modules over an ultrametric ring. The second part is devoted to
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recalling the definition and properties of the analytic spectrum. In the last part we will
state and prove some additional properties related to Banach spaces.

1.1.1 Ultrametric normed rings and modules

Definition 1.1.1. Let M be an abelian group. An ultrametric semi-norm on M is a map
|.]| : M — Ry satisfying the following properties:

* [l0]f = 0.

* Vm,n € M;|[m —nl| < max{|m], [|n[|}.
If moreover we have: Vm € M; [|m|| = 0 = m = 0, we say that ||.|| is a norm.

A semi-norm (resp. norm) ||.|| : M — R, induces a pseudometric (resp. metric)
over M. In this condition, we will say that (), ||.||) is either a semi-normed or normed
abelian group. We say that (M, ||.||) is complete if it is complete with respect to its
pseudometric.

Definition 1.1.2. Let ||.|[; and ||.||2 be two semi-norms on an abelian group M. We say
that [|.||; bounds ||.||2, if we have:

3C eRY; VYme M, ||mly < C|ml|,

Properties 1.1.3. Let ||.||; and ||.||2 be two semi-norms an abelian group M. If they bound each
other then the respective induced topologies are equivalent.

Definition 1.1.4. Let (M, ||.||a) and (&V, ||.||x) be two semi-normed abelian groups, and
let ¢ : M — N be a groups morphism. We say that ¢ is bounded if we have:

3C e Ry Vm e M, ||p(m)||n < Clm|| .

In the case where C' = 1 we say that ¢ is a contracting map. If moreover we have
lo(m)||n =||m|| ;s we say that ¢ is an isometry.

Definition 1.1.5. Let (M, ||.||a) and (N, ||.||x) be two semi-normed abelian groups, and
let ¢ : M — N b a bounded group morphism. If ¢ is an isomorphism, we say that it is
a bi-bounded isomorphism if ¢! is bounded too.

Definition 1.1.6. Let (17, ||.||) be a semi-normed abelian group and N be a subgroup
of M. Let® : M — M/N be the canonical projection. The semi-norm ||.|| induces a
residual semi-norm on the quotient group M /N as follows:

“-Hres:M/N — Ry
fo= M flles = inf{{|glllg € 7~ ()}
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Properties 1.1.7. The residual semi-norm is a norm if and only if N is closed in M. In
the case where (M., ||.||) is a complete normed abelian group and N a closed subgroup, then
(M/N,||.||res) is a complete normed group.

Definition 1.1.8. Let (1, ||.||as) and (&V, ||.|| ) be semi-normed groups and let ¢ : M —
N be a bounded morphism of groups. We say that ¢ is admissible if the induced map
M/ Ker(p) — Im(yp) is a bi-bounded isomorphism.

Definition 1.1.9. Let A be a ring. An ultrametric semi-norm on A is an ultrametric semi-
norm ||.|| : A — R on the abelian group (A, +) , satisfying the additional properties:

e ||1]]=1if1#0.

* Vm,n € A; [lmn]| <[lml|-[|n]
If moreover, for all m, n € Awe have ||mn| =||m/||-||n||, we say that ||.|| is a multiplicative
semi-norm.

Definition 1.1.10. A normed ring (A, ||.||) is a ring A endowed with an ultrametric norm
.|| - A = R.. If in addition it is complete, we say that it is a Banach ring. If the norm is
multiplicative, we will call ||.|| an absolute value and (A, ||.||) a valued ring.

Definition 1.1.11. Let (A, ||.||) be a normed ring. The spectral semi-norm associated to
||| is the map:
[ lspa: A — Ry

. T (1.1)
Foe )R

In the case where for all f € A we have || f"|| =||f||", in other words ||.| =||.||sp, We say
that (A, ||.||) is uniform.

Lemma 1.1.12. Let (A, ||.||) and (B, ||.||") be two normed rings. Let ¢ : A — B be a bounded

ring morphism. If B is uniform then  is a contracting map.

Proof. Since ¢ is bounded, there exists C' > 0 such that for all f € A we have

(NI < -
Hence, for all n € N we have
le(HIl =lle(fHlT < Cxllf (= < Cx I f]-

Consequently, we obtain

le(HIF<IIfII
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Definition 1.1.13. Let (A, |.|) be a normed ring. Let M be an A-module and ||.|| an
ultrametric semi-norm (resp. norm) on M. We say that (A1, ||.||) is a semi-normed (resp.
normed) A-module, if ||.|| satisfies the additional property:

3C ERY; Vme MYf € Allfm] < Clf|ml. (1.2)
In the case where (M, ||.||) is complete we say that it is a Banach A-module.

Remark 1.1.14. If the property above is satisfied, we can always find an equivalent norm
||| such that:
vm e M,Vf € A | fm|" <[f]{lm]". (1.3)

Remark 1.1.15. In the case where (A, |.|) is a valued field, the inequality in (1.3) is an
equality. Indeed, for each f € A\ {0}, m € M, we have:

Il =f~ fmll < |f7HAfmll = L7 fm]l-
Then,
| flmll <[l fmll.

Notation 1.1.16. We will denote by (A, |.|) (resp. (M, ||.||)) the completion (A, |.|) (resp.
(M, ||.1)) with respect to |.| (resp. ||.|]).

Given two normed A-modules (M, ||.||) and (N, |.||'). We denote by L4(M, N) the
A-module of bounded A-linear maps ¢ : M — N.If (N, ||.||") = (M, ||.||) we will denote
itby L4(M) . We endow L4(M, N) with the operator norm:

[p(m) ||’
¢ = ellop == sup : (1.4)
P meM\{0} ||mH
We set:
Lae(M,N):={p € La(M,N)| [[pllop <1}

Lemma 1.1.17. If (N, ||.||') is a Banach A-module, then (La(M,N),||.||lop) is a Banach A-
module.

Let {(M;, ||.||;) }ier be a family of normed A-modules. We endow the direct sum
& M; with the following norm

el

Il PM — Ry
iel (1.5)

(mi)ier — HingHmiHi

The completion of @5 M; will be denoted by @MZ

icl iel
Remark 1.1.18. In the case where A is a Banach ring, / is a finite set and the M,’s are
Banach A-modules, we have @;c; M; = @1 M.
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Let (M, ||.||a) and (V, ||.||v) be two ultrametric normed A-modules. We endow the
tensor product M ®4 N with the following semi-norm

Il Mos N — R,

o inf{mas (il f = Smeny - (1

The completion of M ®4 N with respect to this norm, denoted by M& 4N, is a Banach
A-module.

Definition 1.1.19. Let (4, |.||) be a Banach ring. The category Ban, (resp. Banj') is
the category whose objects are Banach A-modules and whose morphisms are bounded
A-linear maps (resp. A-linear contracting maps).

Lemma 1.1.20. Let {(M;, ||.||)}ics be a set of objects in Ban<'. The coproduct of this family
exists in the category Ban3' and is equal to:

C(H M;) = {(my;)ier € HMZ| grgo m; = 0}.

icl icl
endowed with the norm:
(mi)iEI — SUPHmi”i
icl

where [[;e; M; is the set-theoretic product. We mean by lim;_,.. m; = 0; m; converges to
zero with respect to the filter of complements of finite subsets of I, i.e for all € > 0, we have
|mill; < e foralmostall i € I.

Lemma 1.1.21. Let {(M;, ||.||;) }ier be a family of Banach A-modules. Then we have:

D, M = «[] M.

el

Lemma 1.1.22. Let {(M;, ||.]|) }ies be a set of objects in Ban<'. The product of the M;’s exists
in the category Ban3' and is equal to:

b(IT M;) = {(mi)iesr € [] Ml SU}D||mi||i < oo}

iel iel 1€
endowed with the norm:
(my)ier — sup||m;|;.
el

Definition 1.1.23. Let (A, ||.||) be a normed ring. A normed A-algebra is a normed ring
(B, |.]]") equipped with a bounded ring morphism ¢ : (A, ||.||) — (B, ||.||’). If moreover
(B, ||.1") is complete, we say that it is a Banach A-algebra.

Let (B, |.|") and (C, ||.||”) be two normed A-algebras. The tensor norm (cf. (3.5))
induces a structure of normed A-algebra on B @4 C.
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1.1.2 Analytic spectrum of ring

In this part, we refer the reader to [Ber90, Chapter 1] for the proofs.

Definition 1.1.24. Let (A, ||.||) be a commutative Banach ring. The analytic spectrum of
A, denoted by M(A), is the set of multiplicative semi-norms bounded by ||.||.

For a point x of M(A) we can associate a residue field as follows. The point x is
associated to a multiplicative semi-norm |.|,. The set:

p. ={f € Al [f]. =0}

is a prime ideal of A. Therefore, the semi-norm |.|, extends to a multiplicative norm on
the fraction field of Frac(A/p,). We will denote by .77 (x) the completion of Frac(A/p,)
with respect to |.|,, and by |.| the valuation on .7#(x) induced by |.|,. We have the
natural bounded ring morphism:

Xa o (A1) = (A (), [.]).
For all f € A, write f(z) instead of x.(f).

Abounded morphism x : (4, ||.]]) = (K, |.|) where (K, |.|) is a valued complete field
is called character of (A, ||.||). Two characters ' : (4, |.]]) = (K’,|.]") and x” : (A4, ||.|| =
(K",].|") are said to be equivalent if there exists a character x : (A, |.||) — (&,].])
and isometric embeddings (X, |.|) — (K',|.|') and (X,|.|) — (K”",|.]") such that the
following diagram commutes:

(K 1)

=

(A D) — (L)

\\

([{'//7 | . ’//)
Remark 1.1.25. The map x — Y, identifies M(A) with the set of equivalence classes of

characters of A.

Topology on M(A)

We endow M (A) with the initial topology with respect to the map

Y M(A) — RY
z = ([f(@)])pea
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Let f = (f1,---, fn) where f; € A. For every i, let I; be an interval of R, open in R, .
Then
{o e M) [fi@) € I, 1 <i < n)

is an open subset, and subsets of this form generate the topology of M (A).

Let (A4,].]]) and (B, |.||') be two commutative Banach rings, let ¢y : (A4,].|]) —
(B, |.]|') be a bounded morphism of rings. Then ¢ induces a continuous map defined

as follows:
" M(B) — M(A)

z = e le(h@)]. (1.7)

Proposition 1.1.26. Let A be a nonzero commutative Banach ring. The analytic spectrum
M(A) is a nonempty, compact Hausdorff space.

Corollary 1.1.27. An element f € A is invertible if and only if f(x) # 0 for all x € M(A).

The spectral semi-norm defined on a commutative Banach ring (A, |.||) (c.f (1.1))
satisfies the following property:

Properties 1.1.28. For all element f in A we have:

[fllsp.a = max [f(z)]

zeEM(A)

Corollary 1.1.29. Let A be a commutative Banach ring. Then the spectral semi-norm satisfies:

* Vf g€ A fgllse <Iflsp-llgllsp-

* Vi, g€ A S +gllso Il fllsp+llgllsp-

Lemma 1.1.30. Let (A4, ||.||) be a Banach ring, let (B, ||.||") and (C,||.||") be two Banach A-
algebras. Let f € B®,C. Then f is not invertible in B&,C' if and only if there exists
x € M(C) such that the image of f by the natural map B& 4C — B& 4 (x) is not invertible.

Proof. 1t is obvious that if the image of f is not invertible in B® 4.7 (z) for some z €
M(C), then it is the same for f in B&4C. We suppose now that f is not invertible in
B&C. By Corollary 1.1.27 there exists z € M(B&4C) such that f(z) = 0 in 5 (z). We
have the following commutative diagram:

B&AC
N
C H(2)

By remark 1.1.25 there exists v € M(C') such that we have the following diagram:
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Therefore, we obtain the commutative diagram

\\}

/y

Then, f(z) = 0 implies that the image of f in B ®4 % (z) is not invertible.

B

]

Corollary 1.1.31. Let (A, ||.||) be a Banach ring, let (B, ||.||") and (C,||.||") be two Banach
A-algebras. Let f € B&aC. If f is not invertible in B® 4C' then there exists v € M(C)
and y € M(B) such that the image of [ by the natural map BR,C' — H (y)& a5 () is not
invertible.

1.1.3 Banach spaces

Notation 1.1.32. We fix a valued field (%, |.|) of characteristic zero, complete with re-
spect to the absolute value |.|. We set |k| := {r € R, | 3t € k;r = [t[}, [k*] := |k] \ {0},
k°:={a €k||a| <1}, k*° :={a €kl |a| <1}and k := k°/k*°.

Notation 1.1.33. Let £(k) be the category whose objects are (€2, |.|), where (2 is an iso-
metric field extension of k complete with respect to |.|, and whose morphisms are the
isometric rings morphisms. For (Q,|.|) € E(k), we set Q% to be an algebraic closure

of Q, |.| extends uniquely to an absolute value defined on Q9. We denote by el the
completion of Q% with respect its absolute value.

The categories of Banach k-spaces

Notation 1.1.34. We will denote by Ban,; the category whose objects are Banach k-
spaces and whose arrows are the bounded k-linear maps, and by Ban; ' the subcat-
egory of Ban, whose objects are Banach k-spaces and whose arrows are the k-linear
contracting maps.
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Lemma 1.1.35. The category Bany, admits finite products and co-products.
Lemma 1.1.36. The category Ban; " admits small (indexed by a set) products and co-products.

Remark 1.1.37. The category Ban,, has no infinite products and co-products of any col-
lection of nonzero objects.

Definitions and basic properties:

Lemma 1.1.38. Let QQ € E(k) and let M be a k-Banach space. Then, the inclusion M —
M @y, Q) is an isometry. In particular, for all v € M and ¢ € K we have ||v @ ¢|| = |c|-||v]].

Proof. Since ) contains isometrically k, the morphism M — M & (resp. Q — M @;Q)
is an isometry (cf. [Poil3, Lemma 3.1]). By definition [|v ® ¢|| < |¢|-||v] = |¢|-[|[v @ 1]
forallv € M and c € ). Therefore, by Remark 1.1.15 the tensor norm is a norm on
M &, as an Q-vector space. Consequently, we obtain |[v ® ¢|| = |¢|-||v|| for all v € M
and c € (. O

Proposition 1.1.39. Let M be a k-Banach space, and B be a uniform k-Banach algebra. Then
we have in M&B :

Vm e M, Vf € B, [m& f| =[m|-|f]

Proof. Let M(B) be the analytic spectrum of B. For all z in M(B) the canonical map
B — 4 (z) is a contracting map, therefore the map M &, B — M &7 (z) is a contract-
ing map too. Then, by Lemme 1.1.38 we have:

Ve e M(B):Vme M, VfeB, |m]-[f(x)] =lme f(z)] <[lme fl| <[lml]-]f]

thus,

Vm e M, Vf € B, ||m|\ng1§(>§B) [ (@)] <[lm @ fIF <[lm]-[| ]}

Since B is uniform, we have rr/{%(}%) \f(x)] =[|fllsp =||f]| (cf. [Ber90, Theorem 1.3.1]),
xe

and [[ml[-|[f[| <lfm @ fI| <[lml]-][f]]

O
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The algebra of bounded linear operators £, (M) of M

Lemma 1.1.40. Let Q2 € E(k). There exists an isometric k-linear map
Y:Ly(M) — Lo(M&Q)
v = el
which extends to an Q-linear contracting map

To: Ly(M)&RQ — Lo(M&i0Q)
pR®a = eRa

Proof. Let ¢ € L;,(M). We have the bilinear map:

eXxX1: MxQ — M®;
(r,0) = pr)®a

where M x Q) is endowed with product norm and M ®,, Q2 with tensor norm (cf. (3.5)).
The map ¢ x 1is bounded. Then we have the following commutative diagram:

ex1

M x Q—"= M ®;

®

M @ Q

where ¢ ® 1 is bounded k-linear map. By construction, the map ¢ ® 1 is 2-linear and
extends to a bounded Q-linear map p®1 : M&,Q — M&;Q. So we obtain a k-linear
map
T:L(M) — L(M&.Q)
e = el '
We now prove that it is an isometry. Indeed, let m € M and a € ) then by Lemma
1.1.38:
lp1(m @ a)ll =lle(m) ® all =lle(m)ll - lal <lle]-Im] - la| =[¢ll-lm @ al|

Then for xz = > m; ® a; € M ®;, {2 we have:

lpe1(@)]| < inf{max(lle(ma)llail) | © = > mi@a;} <l inf{max|jm||-|ail| x = > mi@a;}.

By density we obtain
peol(z) <[l]-[l=]
For any = € M ;. Consequently,

lee1]l <ll]-
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On the other hand, since M — M&,(2 is an isometry and p®1,, = ¢, we have [|¢|| <
le®1]).
The map Y : Li(M) — Lqo(M®,1) extends to a bounded Q-linear map

Yo: Lp(M)@pQ — Lo(M&LQ)
p®a = pRa

Y

with p®a := ap®1. We need to prove now that it is a contracting map. Let ) = 3" ; @ a;
be an element of L, (M)®;, its image in Lo (M &) is the element 3°; a;¢;&1. we have:

1> aipi®1]| < max [laip;®1]| = max||@i]| - |ai].

By density, this inequality extends to any element ¢ = ¥; ¢; ® a; of L(M)®;Q (the
sum is infinite and converges). Consequently,

I Zaiwi®1ll < inf{max||gi| - fas|| ¢ = Zsoi ® a;} =[[¥]|.
Hence we obtain the result.

O

Lemma 1.1.41. Let M be a k-Banach space and L be a finite extension of k. Then we have a
bi-bounded isomorphism of k-algebras:

Proof. As L may be written as a sequence of finite intermediate extensions generated
by one element, by induction we can assume that L = k(«), where « is an algebraic
element over k. By Lemma 1.1.40 we have a bounded morphism

St = S ei®at
As L = k(«), we have a k-isomorphism

n—1

M&iL ~ P M® (o - k).

=0
Let ¢ € L (M®L). The restriction is of the form

¢‘A{®1 : M ® ]- _> M®kL ‘
me1l = Yrloi(m)®@a’

where ¢; € L,(M) and uniquely determined .This means that ¢ = 37"} p;&a’. There-
fore, we obtain the map:
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which is the inverse of Ly(M)&,L — L(M®iL). In the case where k is not triv-
ially valued, by the open mapping theorem (see [BGR84, Section 2.8 Theorem of Ba-
nach]) the last map is bounded. Otherwise, the extension L is trivially valued. Con-
sequently, we have an isometric k-isomorphism: L ~ @/~ k equipped with the max
norm. Therefore, we have the isometric isomorphisms L, (M )&, L ~ @7~ L,(M) and
M&i L ~ @~ M with respect to the max norm. Then for ¢ = 37~ ¢,®a’ we obtain:

n—1
1> i @ o] = max||gil| <[l | <[I¥]l-
i=0

Hence, we obtain the result.

]

Let M, and M, be two k-Banach spaces, let M = M; & M, endowed with the max
norm (cf. (1.5) ). We set:

Ly L
M(My, M) = {(L; Li) |Ly € Ly(My), Ly € Ly(Ms, My), Ly € Lip(My, My), Ly € Ek(Mz)}

We define the multiplication in M (M, M>) as follows:

(Al A2> (Bl B2> - <A1B1 + AyBs A Dy +AzB4>
Ag A4 B3 B4 o A3B1 —|—A4B4 AgBQ +A4B4 '

Then M(M;, M;) endowed with the max norm is a k-Banach algebra.

Lemma 1.1.42. We have a bi-bounded isomorphism of k-Banach algebras:

L (M) ~ M(My, M,).

Proof. Let p; be the projection of M onto M; and i; be the inclusion of M; into M, where
J € {1,2}. We define the following two k-linear maps:

\Ifl . ,Ck(M) — M(Ml,Mg)
o <p1%0i1 plWé)
P2ply  Papio
\112 : M(Ml, MQ) — ,Ck(M)

L L . , ) . .
b 1 Lipr + i1 Lops + iaL3py + 12 Laps
Ly Ly

Since the projections and inclusions are bounded maps, the maps ¥; and ¥, are bounded
too. It is easy to show that ¥, o Uy = id (s, a1,) and Wy 0 ¥y = idy, (rr). Hence we have
an isomorphism of k-Banach spaces.

O
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1.2 Berkovich analytic line

This section is organized as follows. The first and the second part are highly in-
spired by [Ber90, Chapter 2, 3]. They are devoted to recalling the definition of analytic
spaces and maps in the sense of Berkovich. The last one is devoted to describing more
precisely the analytic line A, ™"

Convention 1.2.1. We fix here (£, |.|) to be a valued field, complete with respect to its
absolute value.

1.2.1 Affinoid spaces
Forry,--- ,r, >0, we set:

k{rl_lTla o 7T7:1Tn} = k{f_lz} - {f - Z CLVIV| ay, € ka VEIEOO |al/|rl/ = 0}

v=0

wherev = (v, ,v,,), V| =1+ 41, TV =17 - - - T and r” = r{* - - - rl». Equipped
with the usual addition and multiplication k{r~'T}isa k-algebra. The norm:

/I = max|ay |r”

induces a structure of k-Banach algebra on k{r T}

Definition 1.2.2. A k-affinoid algebra A is a k-Banach algebra, such that there exists a
surjective admissible morphism of k-algebra k{r 'T} — A. We will say that it is strict
if we may find such morphism with r = (1,---,1). An affinoid algebra over k is a Q-
affinoid algebra for some 2 € E(k).

The category of k-affinoid algebras will be the category whose objects are k-affinoid
algebras and morphisms are bounded morphisms of k-algebras. The category of affi-
noid algebras over k will be the category whose objects are affinoid algebras over k and
morphisms are bounded morphisms of k-algebras.

Remark 1.2.3. Note that, for Q@ € E(k) we have a natural functor from the category of
k-affinoid algebras to the category of 2-affinoid algebras, which associates A&, to A.

Properties 1.2.4. An affinoid algebra is noetherian, and all its ideals are closed.

Let Abe an affinoid k-algebra. A Banach A-module is said to be finite if there exists a
surjective admissible morphism A" — M. We will denote the category of finite Banach
A-modules with bounded A-linear as morphisms by Mod] (A). The category of finite
A-modules is denoted by Mod’ (A).



40 Chapter 1. Basic notions

Proposition 1.2.5. The forgetful functor Modj (A) — Mod’ (A) induce an equivalence of
categories.

Definition 1.2.6. Let A be an affinoid k-algebra, we set X = M(A). A closed subset
V. C M(A) is called an affinoid domain, if there exists a k-affinoid algebra A, and a
bounded k-algebra morphism A — Ay such that we have the following properties:

* The image of M(Ay) in X liesin V.

* Let B be an affinoid algebra over k and let ¢ : A — B be a bounded k-algebra
morphism, such that p*(M(B)) C V. There exists a unique bounded morphism
of k-algebra Ay — B such that the following diagram commutes:

.A*MAV

N

B

Example 1.2.7.  ® Laurentdomain: Let f = (f1, -+, f,) € A%and g = (g1, - ,gm) €
A™and let R = (Ry,--- ,R,) and R’ = (R}, - -, R],) be real positive numbers tu-
ples. Then the set:

X(R'f,Ryg):={z e X||fi(x)| < Ri, |g;(x)| = R}, 1 <i<n, 1<j<m}
is an affinoid domain in X represented by the morphism:
A— A{R_1f> R/g} - A{Rl_lTlv o RngTw R/151_17 T 7R;YLST7LI}/(E - fi7ngj - 1)

Affinoid domains of this form are called Laurent domains. If moreover m = 0, they
are called Weierstrass domains. The Laurent neighbourhoods of a point z € X form
a basis of closed neighbourhoods of the point.

e Rational domain: Let g, fi1,- - , f, € ADbe elements without common zeros in X.
Let R = (Ry,--- , R,) be a real positive numbers tuple. Then the set:

X&) = o € XlIAto) < Rlg@)l. 1< 0 <)
is an affinoid domain in X represented by the morphism:
A AR = ARD T BT 6T - 1)

Affinoid domains of this form are called rational domains.

Properties 1.2.8. Let A and B be two k-affinoid algebras. We have the following properties:

o If V is an affinoid domain of X then the map A — Ay induces an homeomorphism
between M(Ay) and V.
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* Let ¢ : A — B be a bounded k-algebra morphism. For an affinoid (resp. Weierstrass,
resp. Laurent, resp. rational) domain V- C M(A), the set p* (V') is an affinoid (resp.
Weierstrass, resp. Laurent, resp. rational) domain in M(B). The associated affinoid
k-algebra is B& 4 Ay

e For U and V two affinoid (resp. Weirestrass, resp. Laurent, resp. rational) domains,
U NV is an affinoid domain in M(A); the respective k-affinoid algebra is Ay & 4 Ay

Theorem 1.2.9 (Tate’s Acyclicity Theorem). Let A be a k-affinoid algebra. If V = {V,}ier
is a finite cover of X := M(A) by affinoid domains and M is a finite A-module, then the Cech
complex
0=M—=][[MoaAy, - [[MoiAy, = -
K3 2,7

is exact.

Definition 1.2.10. A subset V' of X is said to be special if it is a finite union V' = JV;
of affinoid domains. We set then Ay = Ker([]; Ay, — [I,,; Av;,). By Tate’s acyclicity
theorem Ay does not depend on the choice of the cover.

Let A be a k-affinoid algebra and X := M(A). Using Tate’s Acyclicity Theorem, we
can define a sheaf of functions over X as follows. For an open i/ C X, we set:

Ox(U) = lim Ay
VcUu

where V' is a special subset of X and A is the associated k-Banach algebra. The stalk
Ox . of Ox at z is a local noetherian ring.

Definition 1.2.11. A k-affinoid space is the data of a locally ringed space (X, Ox), a k-
affinoid algebra.A and an homeomorphism between X and M(A). An affinoid space
over k is an -affinoid space for some 2 € E(k).

The category of k-affinoid spaces is the category whose objects are k-affinoid spaces
and morphisms are the morphisms of locally ringed spaces induced by morphisms of
k-affinoid algebras. The category of affinoid spaces over k is the category whose objects
are affinoid spaces over k and morphisms are the morphisms of locally ringed spaces
induced by morphisms of affinoid algebras over k.

Remark 1.2.12. Note that the functor A — M|(A) induce an anti-equivalence of cate-
gories between the category of k-affinoid algebras and k-affinoid spaces. Therefore,
for 2 € E(k) we have a natural functor from the category k-affinoid spaces to the cat-
egory Q-affinoid spaces. For a k-affinoid space (X, Ox) we denote by (Xg,Ox,,) the
associated Q2-affinoid space.

Definition 1.2.13. Let A and B be two k-affinoid algebras. Let A — B be a morphism
of k-affinoid algebras, such that B is a finite A-module. We will call finite morphism of k-
affinoid spaces any morphism of k-affinoid spaces ¥ — X induced by such a morphism
of k-affinoid algebras.
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A boundary in M(.A), where A is a k-Banach algebra, is a closed subset I' of M(A),
such that every element of A has its maximum in I'. Minimal boundaries (with respect
to the inclusion) exist. If there is a smallest boundary, it called the Shilov boundary of A,
and it is denoted by I'(A).

Proposition 1.2.14. Let A be a k-affinoid algebra. The Shilov boundary I'(A) of A exists and
it is finite.

1.2.2 Good analytic spaces
Quasiaffinoid spaces

A k-quasiaffinoid space is the data of a pair (I, 1), where U is a locally ringed space
and ¢ is an open immersion of / in a k-affinoid space X := M(.A). A closed subset V' C
U is called an affinoid domain if ¢/(V') is an affinoid domain in X. The corresponding -
affinoid algebra is denoted by Ay. Let (i, ) and (V,¢') be two k-quasiaffinoid spaces
and let A and B their respective associated k-affinoid algebras. A morphism of k-
quasiaffinoid spaces 7 : (U,v) — (V,v’) is a morphism of locally ringed spaces that
satisfies: for each affinoid domains U C U and V' C V with 7(U) C Int(V/V) (the
topological interior of V' in V), the induced morphism By — Ay is bounded.

Definition 1.2.15. Let X be a locally ringed space. A local k-analytic chart of X is a
k-quasiaffinoid space (U/,1), where U is a sub-locally ringed open space of X.

Definition 1.2.16. A k-analytic atlas A on X is the data of a collection of charts {(U;, V) }ier,
that satisfies the following conditions:

* UierU; = X.

e [The compatibility of the charts] The morphisms of locally ringed spaces v;1; " :
i (U; NU;) — 1 (U; NU;) are isomorphisms of k-quasiaffinoid spaces.

We define an equivalence relation over the set of k-analytic atlas over X as follows:
A ~ A’if and only if A U A’ is an atlas on X (i.e. the charts of A are compatible with

the charts of A’). The equivalence class associated to an atlas A will be denoted by A.

Definition 1.2.17. A good k-analytic space is a locally ringed space equipped with an
equivalence class of k-analytic atlases on X. A good analytic space over k is a good §)-
analytic space for some 2 € E(k).

A morphism between two good k-analytic spaces X and Y is a morphism of locally
ringed spaces ® : X — Y such that there exists an atlas {(¢/,%)}; € A on X and
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an atlas {(V;,¢})}; € A’ on Y, such that @D}Q)w[l s i(Us) — 5(V;) is a morphism of k-
quasiaffinoid spaces. We define in an analogous way morphisms between two analytic
good spaces over k. This define the category of good k-analytic spaces and the category of
good analytic spaces over k.

Remark 1.2.18. Note that, for Q2 € E(k) there exists an natural functor from the category
of good k-analytic spaces to the category of good (2-analytic spaces. For a good k-
analytic space (X, Ox) we denote by (X, Ox,,) the associated good (2-analytic space.

Remark 1.2.19. We have a canonical surjective morphism, that we will call a projection:
Tosr ¢+ (Xa, Ox,) = (X, Ox) (1.8)

For x € X, the set theoretic fiber Wf_z/lk(x) of x is homeomorphic to M (5 (x)@; ).

The category of good k-analytic spaces admits fiber products. However, the category
of good analytic spaces over k does not admit fiber products in general except in special
cases. We give the following important examples. Let ® : Y — X be a morphism of
good k-analytic spaces, and let + € X. Then the fiber product Y, := Y xx M(J(z))
exists. Indeed there exists an isomorphism Y, = Yy(@) Xx,,,, M(H(z)). This is a
good 7 (x)-analytic space called the fiber of  at x.

Definition 1.2.20. A morphism of k-analytic spaces ® : Y — X is called an analytic
domain if ® induces a homeomorphism of Y with its image in X, and if, for any mor-
phism ¥ : Z — X with ¥(Z) C ®(Y), there exists a unique morphism o : Z — Y such
that the following diagram commutes:

Z—7"—=Y.
DN
X
If in addition ®(Y') is a k-affinoid (resp. k-quasiaffinoid) space, it is called affinoid (resp.
quasiaffinoid) domain.

Properties 1.2.21. Let X be a good k-analytic space and x € X. The affinoid neighbourhoods
of x form a basis of neighbourhoods of x.

Note that, if V' an affinoid neighbourhood of z, the completed residue field .77 (z)
does not depend on the choice of this affinoid domain. Indeed, on the one hand we
have Ox , ~ Oy .. On the other hand the residue field of the local ring Oy, is naturally
valued and 7 (z) is its completion.

Definition 1.2.22. A morphism of good k-analytic spaces ¢ : Y — X is said to be finite
at a point y € Y if there exist affinoid neighbourhoods V' of y and U of ¢(y) such that ¢
induces a finite morphism V' — U. It is said to be quasifinite if it is finite at any point
yeyY.
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Definition 1.2.23. A quasifinite morphism of good k-analytic spaces ¢ : Y — X is said
to be étale at a point y if Oy, /m,Oy, is a unramified finite separable extension of the
field x(z) := Ox,/m,Ox,, and Oy, is flat over Ox ,, where = := ¢(y).

Definition 1.2.24. An analytic map ¢ : Y — X is said to be étale, if it for all y there
exists an affinoid neighbourhood V' (resp. U) of y (resp. ¢(x)) such that |y : V — U is
étale at y.

Affine analytic space

The affine analytic space of dimension n over k is the set A;™" of multiplicative semi-
norms on k[T7,- -+ ,T,] that whose restrictions to k coincide with the absolute value of

k. As for the analytic spectrum (cf. 1.1.2), we endow A} with the initial topology
kIT1

of the map A;™ — RV "] The closed disk centred at ¢ = (cy,- - - , ¢,,) with radius
r=(ry, - ,1m) € (RY)"is the set:
Di(c.r) :={x € AY™||Ti(z) =il <ri, 1<i <},
The open disk centred at ¢ = (¢, -, ¢,) withradiusr = (r1,--- ,7,) € (R} )" is the set:
Dy (c,r) = {z € Ay™||T;(z) — ;| <7y, 1 <i <}
We may delete the index k& when it is obvious from the context.
We have Ap™ = U,ew:)» D¥(0, 7). The topological space D (0, r) is homeomorphic
to M(k{r~'T}). This induces a structure of good k-analytic space on A}™".

Remark 1.2.25. Note that, for Q € E(k) the good Q-analytic space (A;*")q coincides
with AL™.

1.2.3 Analytic line in the sens of Berkovich
The analytic line

The affine analytic line is the analytic affine space A;™ of dimension one. The
projective analytic line P;*"is obtained by gluing M(k{T}) and M(k{T~'}) through
M{T, T~} by the maps:

AT}

S

k{T, T~}

7

K{T-'}
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We can describe the analytic affine line A;*". For that purpose we can assume that
k is algebraically closed. Indeed, the Galois group Gal(k*9/k) acts over k9 and the
natural map:

A%’g /Gal(k%9 /) = A™

is a homeomorphism (cf. [Ber90, Corollary 1.3.6]).

Affinoid domains of A"

In the case where k is algebraically closed, the affinoid domains of A" are finite
unions of connected affinoid domains of the form:

m

X =D"(co,m0) \ U D™ (¢s,72)

=1

where ¢, - -, ¢, € kwith |¢;—co| < roforeachiand 0 < rg,--- ,7, < r( (the case where
p = 0 is included). The associated affinoid algebra is

@{ Z \ ai;; € k; lim |aglr;? =0}y @@ k{ro (T — o)}
i=1 ]GN* Jorteo
where || 3 jen (T‘iié)]H = max;, |a;;|r;? and the direct sum above is equipped with the

maximum norm (cf. [FV04, Proposition 2.2.6]).

For r1, 1o € R, such that 0 < r; < 7y, we will call a closed annulus the affinoid
domain
C’,j(c, T1,T9) 1= D,j(c, r9) \ Dy (¢,71)

and for r; < 7y, we will call open annulus the open set
C; (¢,r1,7m3) := Dy (¢,m2) \ Dif (¢, m1).

We may delete the index k£ when it is obvious from the context.

Type of points of A,*"

Let 2 € E(k), we set Eq, := dimg(|Q2*]/|k*| ®z Q) (dimension as Q-vector space)

and Fo), = tr. deg(€/k)( transcendence degree of 2 over k). For a point 2 € A™
have Abhyankar’s inequality:
Eyw@yke + Frw@m < 1. (1.9)

Therefore, there are four types of points A, *™:
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 xisa point of type (1): if 7 (x) C ol

* xisa point of type (2): if Fyp(z) ) = 1.

* xisapoint of type (3): it Ep(zy /i = 1.

* xisapoint of type (4): it E )/ = Fur(z)/e = 0 and x is not of type (1).

In the case where £ is algebraically closed we can discribe the nature of this points
more explicitly:

Type (1): if x is a point of type (1), then there exists ¢ € k such that:

Lo K[T] — Ry
P(T) = |P()]"

e Type (2): if x is a point of type (2), then there exists ¢ € k and r € |k*| such that:

Lo K[T] — Ry

m . .
. — 1 gt
ZaT =o' = ma jalr

We will denote such point by z.,.

e Type (3): if  is a point of type (3), then its multiplicative semi-norm is defined as
for the points of type (2) but with € R \ |k| and we will denote it also by =,

* Type (4): if x is a point of type (4), then there exists a family of nested closed disks
& (i.e the closed disks of & are indexed by a totally ordred set (/, <) and for each
i < jwehave D" (c;,rj) C DV (¢;,m;)) with (e DT (¢4, 7)) Nk = @ such that:

Ll k[T] — Ry
P(T) > inf|P(T)

Note that here, we have N;c; D" (¢, 1) = {x}.

Remark 1.2.26. Note that a point z., of type (2) or (3) correspond to the unique point of
the Shilov boundary of the closed disk D*(c, ).

Definition 1.2.27. Let z € A, and y € Wkiall\q/k(x). We defined the radius of = to be the

value:
ri(x) = inf |T(y) — c|.

c€kaly

It does not depend on the choice of y. We may delete  if it is obvious from the context.

Remark 1.2.28. Assume that k is algebraically closed. For a point ., of type (1), (2) or
(3), we have ry(z.,) = r; and for a point z of type (4), we have rj(z) = inf,c; r; where
the r; are the radii of the disks of & (introduced above).
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Remark 1.2.29. Let Q € E(k) and mq s, : Ag™ — A;™ be the canonical projection. Let
ze A andy e Wg_z/lk(a:). In general, we have

() 7 ra(y).
We will show further when the equality holds.

Assume that k is algebraically closed. Let ¢ € k. The following map

[0,+00) — A,ﬁ’an
T Tey

induces a homeomorphism between [0, +00) and its image.

Notation 1.2.30. We will denote by [z, 00) (resp. (z.,, 00)) the image of [r, +00) (resp.
(r,00)), by (e, Tey| (xeSp. (Tep, Teyl, [Teys Teyr), (Ter, Te,r)) the image of [r, 7] (resp.

(ry7), [r,r), (r,1)).

Completed residue fields of the points of A"

In the case where £ is algebraically closed, we can describe the field .77 (x), where
z is a point of A;*", in a more explicit way. In the case where z is of type (1), we have
€ (x) = k. If x is of type (3) of the form = = x., where ¢ € k and r ¢ |k|, then it is easy
to see that 77 (x) = O(C™* (¢, r,r)). But for the points of type (2) and (4), a description is
not obvious, we have the following Propositions.

Convention 1.2.31. In this section we assume that £ is algebraically closed.

Proposition 1.2.32 (Mittag-Leffler Decomposition). Let = = z., be a point of type (2) of
AS™ (c € kand r € |k*|). We have the decomposition:

H(x) = B O(D*(c,r))
where E is the closure in 7€ (x) of the ring of rational fractions in k(1" — c) whose poles are in
D*(e,r). ie. fory € kwith |y| =r:
Bi= @il 3 g iy oo € i ol = 0}

where o is an element of k that corresponds to the class é.

Proof. In the case where k is not trivially valued we refer to [Chr83, Theorem 2.1.6].
Otherwise, the only point of type (2) of A;™" is x;, which corresponds to the trivial
norm on k[T]. Therefore, we have .77 (z) = k(T). O

Lemma 1.2.33. Let = € A;™ be a point of type (4). The field 7 (x) is the completion of k[T
with respect to the norm |.|,.
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Proof. Recall that for a point z € A,™" of type (4), the field .7#(z) is the completion of
k(T) with respect to |.|,. To prove that 7 (x) is the completion of k[7, it is enough to
show that k[T is dense in k(7") with respect to |.|,. For all a € k it is then enough to
show that there exists a sequence (P,);en C k[T] which converges to 7. Leta € k.
Since z is of type (4), there exists ¢ € k such that |1 — ¢|, < |T" — a|,. Therefore we have
|c — al, = |T — a|, and we obtain:

So we conclude. O

Proposition 1.2.34. Let = € A,™ be a point of type (4). Then there exists an isometric
isomorphism ) : (’)(D;}(w)(T(x), () — H(x)@y 5 (x) of #(x)-Banach algebras.

Proof. Note that, for any element f € 7(z)®;, 5 (x) with | f| < r4(z), we can define a
morphism of .7 (z)-Banach algebras 1 : O(D}(I)(T(as), re(2))) — H(2)@5 (), that
associates f toT'—T'(x). To prove the statement we choose f = T'(x)®1—1®7(z). This
is possible since, forall « € kwehave I'(z)®1—-1®71(z) = (T'(x)—a)@1 -1 (T(x)—a),
hence,

T(@) © 1~ 10 T()| < infmax((T() - )|, (T() - a)]) = inf [T(2) - a] = r4(a)

By construction ) is a contracting ¢ (x)-linear map. In order to prove that it is an
isometric isomorphism, we need to construct its inverse map and show that it is also
a contracting map. For all a € k, |T'(z) — a| > ri(z), hence T — a is invertible in
O(D;;(x) (T'(x),rk(x))). This means that k£(7") C O(Djf(x) (T'(x),rr(z))) as k-vector space.
As for all a € k£ we have:

T = af = max(ry(2), [T(x) — al) = [T(z) —al,

the restriction of the norm of O(D}(I)(T(x), rr(x))) to k(T) coincides with |.|,. Con-
sequently, the closure of k(T) in O(D}(m) (T'(z),ri(x))) is exactly 7 (x), which means
that we have an isometric embedding .7 (z) — (’)(Djﬂx) (T'(x),r4(x))) of k-algebras
which associates 7'(x) to 7. This map extends uniquely to a contracting morphism of
€ (x)-algebras:

H (1) ———— O(D o) (T(w), 74()))

| =

Then we have ¢(T'(z)®1-1®7(x)) = T—T(x). Since (T'—T'(z)) (resp. T'(z)@1—-1T(x))
is a topological generator of the .7 (x)-algebra D;}(x) (T'(x),r(x)) (resp. H(v) ® H(x))
and both of ¢ o ¢ and 9 o ¢ are bounded morphisms of k-Banach algebras, we have
pot =Idopt (7(a) () AN Y © ¢ = Id )0, () Hence, we obtain the result. [
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Universal points and fiber of a point under extension of scalars

Definition 1.2.35. A point © € A, is said to be universal if, for any Q € E(k), the
tensor norm on the algebra 7 (2)&,( is multiplicative. In this case, it defines a point

1,an

of 7, () in Ag™ that we denote by g ().
Proposition 1.2.36. In the case where k is algebraically closed, any point x € A,™ is univer-
sal.
Proof. See [Poil3, Corollary 3.14.]. O
Theorem 1.2.37. Suppose that k is algebraically closed. Let Q) € E(k) algebraically closed.
* If x has type (i), where i € {1,2}, then oq,,(x) has type (i). If x has type (j), where
J € {3,4}, then o i (x) has type (j) or (2).

* The fiber ﬂg_z/lk(x) is connected and the connected components of Wg_z/lk(l‘) \ {oqa/(x)} are

1,an

open disks with boundary {oq(x)}. Moreover they are open in Ag

Proof. See [PP15, Theorem 2.2.9]. O

Remark 1.2.38. In the case where z is a point of type (4), we have

”;fl(z)/k(ﬁ) = D}Lzﬂ(x) (T'(x), ()
(cf. Remark 1.2.19 and Proposition 1.2.34) and 0 »(2) k(%) = T1(2)ry(2)-

Corollary 1.2.39. Let 2 € A,™ be a point of type (i), where i € {2,3,4}. Let Q € E(k)
algebraically closed such that there is no isometric k-embedding 7€ (x) — Q. Then

o) = {oa(@)}.

Proof. Recall that 7T§_2/1k<l')\{0'9 /e(x)} is a disjoint union of open disks (cf. Theorem 1.2.37).
Therefore, if it is not empty, it contains points of type (1) which gives rise to isometric
k-embeddings .77 (x) < €2, which contradict the hypothesis. O

Lemma 1.2.40. Let € E(k) such that k%9 C Q. Let x € A;™. Then for any y € wk:all\g/k(x)

we have:
(0, (1) = (@)

Proof. If x is of type (1), then for any y € w;/(%/k(x), the point ag/m(y) is of type (1).

Hence, we obtain TQ(UQ/@(Q)) =ri(z) =0.
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If = is of type (2) or (3), then any y € ﬂk:all\g/k(x) is of the form .., (,), where ¢ € k9.

Since the morphism O(D;/E(C’ ri(z))) — F(y) is isometric, then so is
O(D¢ (e, ri(z))) — j‘f(y)@@Q

. 1,an
Therefore, we have aﬂ/ﬁ(y) = Tepy(2) iN Ag™. Hence TQ(JQ/@ (y)) = re(z).

Now suppose that z is a point of type (4), then for any y € wlilll\q/k(a:) there exists a

family of nested disks & indexed by (1, <) such that "¢, D%E(ci, ri) = {y}. Note that
we have r(z) = r,(y) = inf;c; ;. Then we have:
-1 — e r
ﬂ-ﬂ/];ﬂ\q(y) - Q DQ (Cu 7"1)-

We distinguish two cases: the first is N;c; D¢ (c;, 1) = { (y)}. Then, we have:

g——
k.alg/Q

M0 i) = inf rs = rim () = (o).

77 kalg

The second is Nie; D (ci, i) = Dg(c,7—(y)), where ¢ € Q\ Joals. Here, aﬂ/k/@(y)

coincides with the Shilov boundary of D¢ (c, r—7(y)). Therefore we have

M0 ) = e (4) = ra(e).

Sheaf of differential forms and étale morphisms

Here we do not give the general definition of sheaf of differential forms given in
[Ber93, §1.4.], but only how it looks like in the case of an analytic domain of A,*". Let
X be an analytic domain of A;*". Let T be the global coordinate function on A, fixed
above. It induces a global coordinate function 7" on X. The sheaf of differential forms
Qx/, of X is free with dT as a basis.

Let % : Ox — Ox be the formal derivation with respect to 7'. In this setting the
canonical derivation dy/ satisfies:

)

x/k(U)

L (f)-dT

dX/k : Ox(U> —
= T

; (1.10)

o

where U is an open subset of X.

1,an

Lemma 1.2.41. Let X and Y be two connected open analytic domain of A, ™" and let T (resp.
S) be a coordinate function defined on X (resp. Y). Let ¢ : Y — X be a finite morphism of k-
affinoid spaces and let % : Ox(X) — Oy (Y') be the induced morphism of k-affinoid algebras.
Then ¢ is étale if and only if the morphism

Qx/e(X) ®ox(x) Oy (Y) — Qyp(Y)

hdl' ®g — <(p#(h))g.dS (L11)



1.2. Berkovich analytic line 51

is an isomorphism of Ox (X )-Banach modules.

Proof. See [Ber93, Proposition 3.5.3]. ]

Remark 1.2.42. Note that, any morphism ¢ : ¥ — X between two connected open
analytic domains of A,*" is obtained by a convenient choice of an element f of Oy (Y),
which is the image of T' by ¢*. In this setting, assume that ¢ is finite, then ¢ is étale if
and only if - (f) is invertible in Oy (V).

Corollary 1.2.43. Let ¢ : Y — X be a finite morphism between connected open analytic
domains of Ay, If char(k)= 0, then for each x € X of type (2), (3) or (4) there exists an
affinoid neighbourhood U of x in X such that ¢|,—1 ) : ¢~ (U) — U is an étale morphism.

Proof. Let f := @#(T). Since char(k) = 0, for each z € X not of type (1) we have:
dds( f)(z) = 01if and only if f € k. Since v is finite, f ¢ k. Hence, there exists an
affinoid neighbourhood U of z such that -&(f) is invertible in O(U). The result follows

by Remark 1.2.42. O

Lemma 1.2.44. Let ¢ : Y — X be a finite morphism between affinoid domains of A" and let
T (resp. S) be a coordinate function defined on X (resp. Y). Let y be a point of type (2), (3) or
(4). Then the induced extension 7 (p(y)) — H (y) is finite and we have

H () = H ) (SW) = B # (o) - S

Proof. Since ¢ : Y — X is finite, we have [ (y) : 7€ (¢(y))] = n for some n € N (cf.
[PP15, Lemma 2.24]). Therefore, S(y) is algebraic over .77 ((y)). Hence, 77 (¢(y))(S(y))
is a complete intermediate finite extension , that contains k(S(y)). As k(S(y)) is dense
in 77 (y), we obtain

]

Proposition 1.2.45. Assume that k is algebraically closed. Let v : Y — X be a finite étale
cover between two analytic domains of Ay™. Let y € Y and x = ¢(y). Let U be an neigh-
bourhood of y such that U is a connected component of o' (p(U)). Then we have

[ (y) - A ()] = #U N (D)

foreach b € o(U)N k.

Proof. See [BR10, Corollary 9.17] and [Duc, (3.5.4.3)]. ]
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This chapter is organized as follows. The first section is divided into two parts, the
tirst is to recall the definition and first properties of the spectrum given by Berkovich.
In the second part, we prove some additional properties of the spectrum. In the second
section, we will expose the map that plays the role of the Cauchy integral. The last
section is devoted to proving continuity results for the variation of the spectra.
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2.1 Definition and first properties

2.1.1 Definition and first properties

Recall the definition of the sheaf of analytic functions with values in a k-Banach
space over an analytic space and the definition of the spectrum given by V. Berkovich
in [Ber90, Chapter 7].

Definition 2.1.1. Let X be a k-affinoid space and B be a k-Banach space. We define the
sheaf of analytic functions with values in B over X to be the sheaf:

U~ Ox(B)(U) = lim B&,Ay
vcU

where U is an open subset of X, V' a special subset and Ay the k-Banach algebra asso-
ciated to V' (cf. Definition 1.2.10).

As each k-analytic space is obtained by gluing k-affinoid spaces (see [Ber90], [Ber93]),
we can extend the definition to k-analytic spaces.

Let U be an open subset of X. Every element f € Ox(B)(U) induces a function:

f:U — ]é[UB®k<%”(:L‘)
z = f(z)

9

where f(x) is the image of f by the map Ox(B)(U) — By ().

Definition 2.1.2. Assume that X is reduced. We will call analytic function over U with
value in B any function ¢ : U + [[,ep B, () induced by an element f € Ox(B)(U).

Convention 2.1.3. Until the end, we will assume that all the Banach algebras are with
unit element and morphisms preserve the unit elements.

Definition 2.1.4. Let E be a k-Banach algebra and f € E. The spectrum of f is the set
Y, 1(E) of points x € A,™" such that the element f ® 1 — 1 ® T(x) is not invertible in the
k-Banach algebra F&;,7 (). The resolvent of f is the function:

Rf : A}l{,an \ Zf’k(E) — H E@k%(ﬁ)

2€AY*™M\ By 1 (A)
r — (f®l1-1T(x))!

Remark 2.1.5. If there is no confusion we denote the spectrum of f, as an element of E,
just by .

Theorem 2.1.6. Let E be a Banach k-algebra and f € E. Then:
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l,an

1. The spectrum X is a compact subset of A,*" and non-empty if £ # 0.

2. The radius of the smallest (with respect to inclusion) closed disk with center at zero which
contains X is equal to || f||sp.

3. The resolvent R extends to an analytic function on Py \ ¥ which is equal to zero at
infinity.

Proof. See [Ber90, Theorem 7.1.2]. O

Remark 2.1.7. Note that the set 3 N k coincides with the classical spectrum, i.e.
YNk ={a€ k| f— aisnotinvertible in £'}.
Remark 2.1.8. Let E be a k-Banach algebra and » € R?.. Note that we have

0,10 (B)(D* (a,1)) = E&O(D*(a, 1)),

k

i.e any element of O, 1. (E)(D"(a,r)) has the form ey f; ® (T — a)' with f; € E
(which follows from Tate’s acyclicity Theorem and the good behaviours of complete
tensor product under exacte sequences (cf.[Gru66, Theorem 3.2.1])). Let ¢ = Y e fi ®
(T — a)" be an element of (’)A}c,an(E)(D*(a,r)). Since ||f; @ (T — a)*|| =[| (T — a)||* in
(@) len (E)(D*(a,r)) (cf. Proposition 1.1.39), the radius of convergence of ¢ with respect

. o 1
toT' — ais equal to I%ngof”ﬁ” i

Lemma 2.1.9. Let E be a non-zero Banach k-algebra and f € E. Ifa € (Ay™ \ 2;) Nk, then
the biggest open disk centered in a contained in Ay™™ \ ¥y has radius R =||(f — a)~! ”S_pl'

Proof. Since X, is compact and not empty, the biggest disk D~ (a, R) C A;™ \ &, has
finite positive radius R. Since R; is analytic on D~ (a, R), Ry = Yien fi @ (T — a)’ in
OAIIC,an(E)(D—i_(CL, r)) for all 0 < r < R and has a radius convergence with respect to
(T' — a) equal to R. In the neighbourhood of the point a, for formal reasons we have:

Ry = (f@1-18T)" = (f-a)®l-10(T-a))"" = (f-a) ' ®1) 3 (f—la)

The radius of convergence of the latter series with respect to (7" — a) is equal to ||(f —
a)"*|sy (cf. Remark 2.1.8). Therefore, we have ||(f —a) |5y > R If[|(f —a) sy > R,

then f @1 —1® T () forallz € D~ (a, ||(f —a)™'||s, ), this contradicts the assumption.
Hence, we have R =||(f —a)™*(|s, - O

®(T—a)".

Proposition 2.1.10. Let E be a commutative k-Banach algebra element, and f € E.

* The spectrum ¢ of f coincides with the image of the analytic spectrum M(E) by the
map *f : M(E) — Ay™ induced by the ring morphism k[T] — E, T + f.
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* The canonical map

fer
v - f@)

induces a homeomorphism of M(E) with its image.

Proof. See [Ber90, Proposition 7.1.4]. O

Definition 2.1.11. Let £ be a k-Banach algebra and B a commutative k-subalgebra of
E. We say that B is a maximal commutative subalgebra of F, if for any commutative
subalgebra B’ of E we have the following property:

(BC B'CE)< (B'=DB).

Remark 2.1.12. A maximal subalgebra B is necessarily closed in E, hence a k-Banach
algebra.

Proposition 2.1.13. Let I be a k-Banach algebra. For any maximal commutative subalgebra
B of E, we have:
Vf e B; Ef(B):Ef(E)

Proof. See [Ber90, Proposition 7.2.4]. O

Definition 2.1.14. Let E be a k-algebra and let B be a k-subalgebra of E. If any element
of B invertible in £ is invertible in B, we say that B is a saturated subalgebra of £.

Proposition 2.1.15. Assume that k is not trivially valued. Let E be a k-Banach algebra and
let B be a saturated k-Banach subalgebra of E. Then we have:

Vf € B; Ef(B):Ef(E)
Proof. See [Ber90, Proposition 7.2.4]. O

Let P(T) € k[T, let E be a Banach k-algebra and let f € E. We set P(f) to be the
image of P(T) by the morphism k[T] — FE, T + f,and P : A;™ — A,™ to be the
analytic map associated to k[T] — k[T], T — P(T).

Lemma 2.1.16. Let P(T') € k[T, let E be a Banach k-algebra and let f € E. We have the
equality of sets:
Xp(s) = P(5y)

Proof. Let B a maximal commutative k-subalgebra of E containing f (which exists by
Zorn’s Lemma). Then B contains also P(f). By Proposition 2.1.13 we have ¥;(E) =
Ef(B) and Zp(f)(E) = 2p(f)<B). Let *f : M(B) — A}Q’an (resp. *P(f) : M(B) — A}C’an)
be the map induced by k[T] — E, T — f (resp. T +— P(f)). By Proposition 2.1.10
we have ¥;(B) =" f(M(B)) and Xps(B) =* P(f)(M(B)). Since *P(f) = P o* f, we
obtain the equality. O
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Remark 2.1.17. Note that we can imitate the proof provided in [Bou07, p.2] to prove the
statement of Lemma 2.1.16.

Lemma 2.1.18. Let E and E' be two Banach k-algebras and ¢ : E — E’ be a bounded
morphism of k-algebras. If f € E then we have:

S (E) C Zp(E).

If moreover o is a bi-bounded isomorphism then we have the equality.

Proof. Consequence of the definition. O

Proposition 2.1.19. Let E be a k-Banach algebra, and let f € E. Let Q € E(k), and let
Task : Ag™ — Ap™ be the canonical projection (cf. (6.3)). Then we have

Siera(EQkQ) = Wﬂ}k(zf,k(E))-

Proof. See [Ber90, Proposition 7.1.6]. O

2.1.2 Additional properties

Lemma 2.1.20. Let M, and M, be k-Banach spaces and let M = M; & M, endowed with
the max norm. Let py, ps be the respective projections associated to M, and M, and iy, is be
the respective inclusions. Let ¢ € Li(M)and set o, = p1piy € Li(My) and oo = papis €
Ly (Ms). If (M) C My, then we have:

i) By, (Lr(M;)) C Xy (Ly(M)) U, (Le(M;)), whereid, j € {1,2} and i # j.

ii) X, (Ly(M)) C o, (Li(M1)) U o, (Li(Ms)). Furthermore, if o(Ms) C Mo, then we
have the equality.

iii) If ¥, (L3, (M1))NEy, (Lp(Ma)) = @, then X, (L, (M) = Xy, (L (My))UE,, (Li(Ms)).
Proof. By Lemma 1.1.42, we can represent the elements of £, (/M) as follows:

Ly L
Li(M) = {(L; Li) Ly € Lp(My), Ly € Ly(My, My), L € Li(My, My), Ly € Ek(Mg)}

and ¢ has the form (%1 ;), where L € L. (M, My).
2

Let » € A,*". We have an isomorphism of k—Banach algebras:

A - Ll LQ L1 c £k<Ml)®k%($), L2 < Ek(MQ, M1)®k%(x),
[’k(M)@k%(x) o {(Lg L4> L3 S ﬁk(Ml,Mz)(gk%(I), L4 € ﬁk(Mg)@)kjf(l’)
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Consequently,
- (1 ®1-1®T(x) L&l
1 1®T(ZB)—( 0 el —10T@))

We first prove i). Let (Ll O) be an invertible element of L, (M )&, (x). We

0 Ls
claim that if, for i € {1,2}, L; is invertible in £;(M;)®; 7 (z), then so is L;, where j # i.

/ !

Indeed, let Ly C, such that we have:
B L

Ly C\ (L, ¢\ (1 0\ (L, C'"\(L C\ (10
0 L,)\B 1) " \o 1) \B ,)\0o L,) " \o 1)

Then we obtain:

LiLy+CB=1 L\l =1
LiC'"+CLy=0  |LiC+C'Ly=0
LyB =0 " |BL; =0
Lyl =1 BC + L)Ly =1

On the one hand, we deduce that L, is left invertible and L, is right invertible. If L,
is invertible, then B = 0 which implies that L, is left invertible, hence invertible. If
L, is invertible, then B = 0 which implies that L, is right invertible, hence invertible.

On the other hand, if <[E)1 g) is an element of £;(M)®; 7 (x) with L; is invertible in
2

Ly (M), (x) for i € {1,2}, then ([E)l f) is invertible in £, (M )& ().
2
Therefore, if p ® 1 — 1 ® T'(z) and ¢; ® 1 — 1 ® T'(z) are invertible where i € {1, 2},
then ¢; ® 1 —1® T'(z) is invertible for j € {1,2} \ {i}. We conclude that ¥, C ¥,UX,,
where i, j € {1,2} and i # j.

We now prove ii). If o ® 1 —1® T'(z) and ¢, ® 1 — 1 ® T'(x) are invertible, then
¢ ®1—1® T(x) is invertible. This proves that ¥, C X,, U X,. If o(M;) C M,, then
C' = 0 which implies that: if p ® 1 — 1 ® T'(x) is invertible, then p; ® 1 — 1 ® T'(x) and
2 ® 1 —1® T'(x) are invertible. Hence we have the equality.

We now prove iii). If ¥, N>, = &, then by the above we have ¥, C ¥, and
Y, C Xy. Therefore, ¥, U X, C X,.

]

Remark 2.1.21. We keep the notation of Lemma 2.1.20. In the proof above, we showed
also: if p ® 1 — 1 ® T'(z) is invertible, then ¢; ® 1 — 1 ® T'(z) is left invertible and
©2 ®1 —1® T'(x) is right invertible.
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Lemma 2.1.22. Let Q2 € E(k), let E be an Q2-Banach algebra and f € E. Then we have
Yik(E) = ma(Ep0(E)),

1 1 . . . .
where o, : Ag™ — A™" is the canonical projection.

Proof. Let B be a maximal commutative 2-subalgebra of F containing f. Let B’ be a
commutative k-subalgebra of £ such that B C B’. Then B’ is also an )-subalgebra of
E. Therefore B is also maximal as a commutative k-subalgebra of E. Let z € A;™", we
have an isometric isomorphism B&;, 5 (1) ~ B&q(Q&,.5 () (cf. [BGR84, Section 2.1,
Proposition 7]). For each y € ﬂg}k(x), we have a contracting map Q& (x) — (y).
Therefore, the induced map By (z) — B®q# (y) is contracting too. Hence, if
f®1—-1®T(y) isnotinvertible in B&q.#(y), then f ® 1 —1® T(z) is not invertible too
in B&y (). Therefore, mox(Er0(B)) C Xp4(B). Let now z € X, (B). Since f ® 1 —
1 ® T(y) is not invertible in B&; 7 (x) ~ B®q (&5 (1)), according to Lemma 1.1.30,
there exists y € M(Q®y(z)) = wg}k(x) such that f ® 1 — 1 ® T'(y) is not invertible
in B&o# (y). Therefore, ¥ 4(B) C mq/k(Xr0(B)). Hence, by Proposition 2.1.13 we
obtain
Yik(E) = mam(Ep0(E))-

[
Definition 2.1.23. Let Q@ € E(k) and f € M,,(Q?). Let {ay, - - - an } be the set of eigenval-
ues of fin Q9. We will call the set 7—— ({ai,--- ,an}) the set of eigenvalues of f in

Qelg /Q
1,an
AN

Corollary 2.1.24. Let Q € E(k) and f € M, (Q2). Let {ay,--- ,an} be the set of eigenvalues
of f in Ag™. Then we have

YreMn(Q) = mom({ar, - -+ an}).

Corollary 2.1.25. Suppose that k is not trivially valued. Let Q € E(k) and f € M,,(2). Let
{a1,--- ,an} be the set of rigid points of Ag™ that correspond to the eigenvalues of f in some
finite extension of €. Then we have

Yra(Lr(QM) = mom({a, -+ an}).

Proof. Since M,,((2) is a saturated subalgebra of £ (£2"), according to Proposition 2.1.15,
we have X (M,,(Q2)) = X, (L(Q2")). By Corollary 2.1.24, we obtain the result. O

2.2 The Cauchy integral

This section is devoted to the presentation of the map that plays the role of the
Cauchy integral along a contour around a compact set introduced by Berkovich. In the
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tirst part, we will give the necessary notations and definitions. In the second part, we
will explain the construction of the map and refer the reader to [Ber90, Chapter 8] for
the proofs.

Convention 2.2.1. For simplicity we will assume that £ is algebraically closed.

2.2.1 Notations and definitions

Definition 2.2.2. Let X be an analytic domain of P;*". Let F be a k-Banach algebra.
Let 3 be a compact subset of X. The k-algebra of analytic functions defined in a neigh-
bourhood of ¥ with value in E is the following:

Ox(E)() = lim Ox(E)(U)

sct
where U is an open subset of X. We endow Ox (FE) with the semi-norm
1£1l5 := max | f ()]
We set Ox(X) := Ox(k)(2).
Notation 2.2.3. Let V be an affinoid domain of ]p]?an. If o € V, we set
(Av)o :={f € Av| f(o0) = 0}.
Otherwise, we set (Ay)o := Ay.
Notation 2.2.4. Let ¥ be a compact (resp. open) subset of P,*". If co € ¥, we set
(Oppon (B)( D)o = {f € Optn (B)(S)] f(00) = 0}.

Otherwise, we set ((’)P}C,an(E)(E))O = Opllg,an(E)(E).
Theorem 2.2.5 (Holomorphic functional calculus,[Ber90, Corollary 7.3.4]). Let E be a
k-Banach algebra and let f € E. The morphism of k-algebras K[T| — E which assigns f toT
extends to a bounded morphism

OAi,an(Zf,k(E)) — E.
The image of an element g € (’)Ai,an(Efyk(E)) will be denoted by g(f).
Theorem 2.2.6 (Shilov Idempotent Theorem, [Ber90, Theorem 7.4.1]). Let E be a com-

mutative k-Banach algebra, and let U be an open and closed subset of M(E). Then there exists
a unique idempotent e € E which is equal to 1 on U and 0 outside U.
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A closed disk D of P,*" is a set of the form D*(a,r) or P,** \ D~ (a,r) with a € k.
Its radius (D) is equal to 7. Any affinoid domain of P,’*" is a finite disjoint union of
connected affinoid domains. Note that any connected affinoid domain V' C P;*" is a
finite intersection of closed disks of P,*". Moreover, we can represent V uniquely as
V =N, D;, where D; are closed disks in IP’,I;“" with D; ¢ D, for any i # j.

Notation 2.2.7. Let V be a connected affinoid domain of P;*". Let V = N, D; be the
unique representation introduced above. We set

EWV):={Dy,---,D,}.

Let V be an affinoid domain of IP’,lg’“" and let Vi, --- .V, be its connected components.
We set

Remark 2.2.8. In the case where V' is not connected, we can find D and D’ in &(V') such

that D C D'. For example (P, \ D=(0,1)) U D*(0, 1).

Notation 2.2.9. We denote by A the set of affinoid domain of P,*" and by A. the set of
connected affinoid domain of P,*". The set of finite unions of closed disks which are
not equal to P, will be denoted by A,.

Example 2.2.10. The affinoid domain (P, \ D~(0,1)) U D*(0, 1) is an element of A,.

Let V := [/, V; C P, be an affinoid domain. Using the Mittag-Leffler decompo-
sition for connected affinoid domains [FV04, Proposition 2.2.6], we obtain an isometric
isomorphism of Banach spaces:

(Ap)o — (Av)o

De&(V)

(fp)pecqy + fizgj( > )fD|w)-1w

1=1 De&(V;

2.1)

where 1y, is the characteristic function of V;.

Let D and D’ be two disks. We say that D and D’ are of the same type if {co} N D =
{0} N D'".

Let V and V' be two connected affinoid domains such that V' C V’. We assume that
oo € Voroo ¢ V'. Then each disk D’ € &(V’) contains exactly one disk D € &(V'). We
thus get a map:

EV) — &)
D' — D '

Notation 2.2.11. Let V and V' be two connected affinoid domains. We write V' < V/,
if the map &(V') — &(V): D' — D is a bijection and D # D’ for all D’ € &(V’). More
generally, for V, V' € A where V = (J/_, Vi (resp. V' = Ui, V) is the decomposition
into connected affinoids, we write V' < V’, if for each i € {1,--- ,v} there exists j €
{1,---,v} such that V; < V.
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Definition 2.2.12. Let D and D’ be two disks. We say that D and D’ are complementary if
they are of different types, DUD’ = P,*", and (D) # r(D’'). Let V, V' € A. We say that
V and V' are complementary if V U V' = P,*" and there exists a bijection & (V) — & (V")
sending each disk D € &(V) to a complementary disk D' € &(V”).

Remark 2.2.13. If such bijection exists then it is unique.

Example 2.2.14. Let V = C*(0,1,2) U D*(0,1). The affinoid V' = (P,;*" \ D~(0,1)) U

7272
1 3

C*(0, 5,7) is a complementary set of V.

Remark 2.2.15. Note that, there exist affinoid domains that do not admit complemen-
tary sets. Indeed, for example the closed annulus C*(a,r,r) does not admit comple-
mentary sets. Indeed, we have &(C*(a,r,7)) = {D*(a,7), Py \ D~ (a,r)}. If V'is a
complementary affinoid set then we must have &(V') = {D*(a,r;), P, \ D~ (a,73)}
with r; > rand r, < r. Then the unique possibility is V' = C*(a, r3, 71) which does not
verify V' U C*(a,r,7) = P,

Notation 2.2.16. We denote by A’ the set of affinoid domains which admits comple-
mentary sets. We set A, := A, N A"

Lemma 2.2.17. Let V € A. Then V' € A’ if and only if there exists V' € Awith V' < V.

Lemma 2.2.18. Let V :=[[', V; € A, are the V; are connected affinoid domains. Let U be a
complementary set of V. Then we have:

v=N U » (2.2)

i=1 De&(V;)

where D' € &(U) is the complementary disk of D. In particular, If V1, Vo € A’, then
ViuV, e A

Proof. We set X := (L, Upesvy) D' = Nizy Ujiy Dj;. Since the bijection D+ D' is
unique, it is enough to show that &(X) = &(U) and X UV = P;™. We set [ :=

{1, ,n;}, the we have X := s N7z, Dj,- Since for each i the Dj;’s does not
have the same radius if they are of the same type, then for each i and j there exits ¢ € I
such that D;; € &(NiL, Diy,). Hence, &(X) = &(U). We now prove that V U X = P,

1,an

By construction we have P,*" \ V' C X, hence we obtain the result.

Lemma 2.2.19. Let (U, V') be a pair of complementary subsets. Then

unv= |J (OnD),
De&(V)

where D' is the disk in &(U) complementary to D.
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Proof. It follows from the decomposition (2.2). O

Lemma 2.2.20. Let X C P,*" be a closed subset with %> # @, P,*". Then the intersection of
the affinoid neighbourhoods of ¥ that belong to A’ coincides with 3.

Proof. Since A’ is stable under union and > is compact, the V' € A’ containing > form a
basis of neighbourhood of ¥. Hence, the result holds. O

LetV € A. We can represent V as intersection N}, V; of elements in A; with V,UV, =
P, " for i # j as follows. Let V' € A, such that V < V' and let U be a complementary
setof V. Then &(V) = &(U), D — D'. Let Uy, - - - , U, be the connected components of
U. We set V; = Upesw,) D. Then we have

V= ﬂ |7 and Vi#j o VUV, =Py (2.3)

This representation does not depend on the choice of U.

Example 2.2.21. Let V = C*(0,1,2) U D™(0, 1). Then V = V; N V5 with

27

3
W=D"(0,5) and  Vo=(B"\D (0

1 o1
SN UD0, ).

Using Mayer-Vietoris sequence we obtain an isomorphism (Ay )y — @, (Ay,)o of

Banach space. By combining this isomorphism with (2.1), we obtain the isomorphism:
LB (Ap)o — (Avo

(fP)pesoy = f=2( > (fP.1p)lv

=1 DEF(vi)

(2.4)

where 1p is the characteristic function of D.

Remark 2.2.22. Note that if V' is belong A, or A, then the isomorphisms (2.1) and (2.4)
coincide. Indeed, in the case where V' € A;, any complementary set U is a connected
affinoid domain, hence V' = prcs(uy D. In the case where V' € A, then an complemen-
tary set U is an element of A,, therefore the disks D € &(V') coincide with the V;’s of
(2.3).

Remark 2.2.23. The isomorphisms (2.1) and (2.4) are connected as follows: fp = 3 f*'
where the sum is taken over all D’ € &(V) with D C D'.

Example 2.2.24. Let V' =
D*(0,1), Dy := D%(0,3),

(0 g> U D*F(0,1). We set X; := c (o,;,g) X, =

Ct
D,
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of (2.3) are: V; = D; and Vo = D, U D3. The image of (fP1, fP2 fP3) by the isomor-
Phlsm (24) is f = fD1|V + (fD2'1D2 + fD3‘1D3)|V' We have fD1|V - fDl'le + fDl'ler
(fD2.1D2)’V = fD2.1X1 and (fD3.1D3)|V = fD3.1X2. Then,

f= "+ )0+ (F7 + 7)1,
Consequently, we have fp, = [P, fp, = fP2and fp, = P + fPs.
Example 2.2.25. Let V = C*(0,1,1) U C™(1,%3). We set X; := C7(0,%,3), Xo =

1402 1402

C*(1,%3), Dy == D¥(0,3), Dy := D*(1,3}), D3 := P\ D7(0, 1) and D, = P;"" \
D—(1, i) Then the Vs of (2.3) are: V; = Dy U Dy, Vo = Dy and V3 = D,. The image
of (fPr, P2 fDs | fD4) by the isomorphism (2.4) is f = (fP'.1p, + fP2.1p,)|v + fP*|v +
fP4v. We have (f71.1p,)lv = fP . 1x,, (f721p,)lv = fP21x, ()l = f72.1x, +
ng.le and (fD4>|V = fD4.1X1 + fD4.1X2. Here, fD3.1X2 € .AD2 and fD4.1X1 € ADl-
Then,

F=0 4 2 2L + (F7 + 7+ f70) Dk,
Consequently, we have fp, = [P + fP4, fp, = fP2 + fPs, fp, = fP3 and fp, = P4
Definition 2.2.26. Let D be a closed disk. The residue operator Resp : Ap — k is defined
as follows. If D ¢ A, then Resp = 0. If D = P\ D~ (a,r) with a € k then

Resp : Ap — k
Yo il —a)™ = fi
It does not depends on the choice of a.

Remark 2.2.27. Tt easy to see that, if D = P,y \ D~ (a,r) then Resp is bounded and
| Resp|| = r. Otherwise, || Resp|| = 0.

Let D and D’ be complementary closed disks. Since we have the isomorphism (2.4):

(Ap)o® (Ap)o — (Apnp)o
(. f) = florpo + f'lpap

we can define:

Resprp : (Apnpr)o — k

f = ReSD(fD) + RGSD/(fD/), (25)

Moreover, if D C A;™ (resp. D' C Ay™) then Respnp (f) = Resp(fpr) (resp.
ReSDﬁD/(f) = RGSD(fD)).

Remark 2.2.28. Let B be a k-Banach space. The operators Resp and Respnp extend
naturally to bounded operators Resp : B&,.Ap — B and Respnpr : B&x(Apnp)o — B.

Definition 2.2.29. Let X be a closed subset of P,*" different from @& and P,*". A contour
around ¥ is a pair (U, V') of complementary subsets such that U is a neighbourhood of
Yand V C P\ X

Example 2.2.30. Let ¥ = {a,b} be a subset of k. Let U := D" (a,r,) LU D*(b,r;,) and
V =P\ (D (a,7.) LU D~ (b,r})) with 7, < r, and 7 < r,. Then (U, V') is a contour of
Yand UNV =CH(a,rl,1r,) UCT (b1}, 7).

Y a?
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2.2.2 The Cauchy integral

We now expose the Cauchy integral. Let E be a k-Banach algebra and let ¥ be a
compact subset of P,". Let v = (U, V) be a contour of . Then the Cauchy integral
around 7 is the bounded k-linear map € : EQy(Ayv)o — Li((Ar)o, E)) defined as fol-
lows:

E E@k(/lv)o — Ek((.AU)Q,E) /
R DG%;(V)(RBSDHD’)(JCD |pp - @plpnp’) (2.6)

where D' is the disk in &(U) complementary to D.

Proposition 2.2.31. Let E be a k-Banach algebra and let g € E. Let (U, V') be a contour of
Y x(E). Then we have

ERy(f) = f(9),
where f(g) is the image of g by the map of Theorem 2.2.5.

Proof. See [Ber90, Theorem 8.1.1, Remark 8.1.2] O

2.3 Variation of the spectrum and continuity results

In this section we will discuss the behaviour of the spectrum in in families, and
especially its continuity properties. For that we need to define a topology on the set
K(A;™) of nonempty compact subsets of A;*". Note that in the case where A;™ is
metrizable, we can endow K (A,;*") with a metric called Hausdorff metric. However,
in general A, is not metrizable. Indeed, it is metrizable if and only if k is countable.
In the first part of the section, we will introduce the topology on K(7) (the set of
nonempty compact subsets of a Hausdorff topological space 7), that coincides in the
metrizable case with the topology induced by the Hausdorff metric. In the second
part, we will prove continuity results of the spectrum, analogous to the complex case.
For the continuity results for the spectrum in the complex case, we refer the reader to
[Aup79].

2.3.1 The topology on K(7)

Let 7 be a Hausdorff topological space. We will denote by K (7) the set of nonempty
compact subsets of 7. Recall that in the case where 7 is metrizable, for an associated
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metric .#, the respective Hausdorff metric .#; defined on K(7T) is given as follows.
Let, ¥ € K(T)

My (2, Y) = max{sup inf . («,),sup inf A (a,f)}. (2.7)

Bexr acd aey BEY!

We introduce below a topology on K (7) for an arbitrary Hausdorff topological space
T, that coincides with the topology induced by the Hausdorff metric in the metrizable
case.

The topology on K(7): Let U be an open of 7 and {U, }ic; be a finite family of open
subsets of U. We set:

(UAUitier) ={X € K(T)| X CU, ¥NU; # @ Vi}. (2.8)
The family of sets of this form is stable under finite intersection. Indeed, we have:
(U AUikier) N (Vi {Vitjes) = U NV AU N Viier U{V; N UL jes).
We endow K (7) with the topology generated by this family of sets.
Lemma 2.3.1. The topological space K (T) is Hausdorff.

Proof. Let ¥ and ¥’ be two compact subsets of 7 such that ¥ # >'. We may assume
that X' ¢ . Letz € ¥\ ¥'. Since 7T is a Hausdorff space, there exists an open neigh-
bourhood U, of x and an open neighbourhood U’ of ', such that U, N U’ = @. Let U
be an open neighbourhood of ¥ such that U, C U. Then the open set (U, {U,}) (resp.
(U',{U’})) is a neighbourhood of ¥ (resp. ¥') in K (7)) such that (U, {U,})N(U',{U'}) =
J.

]

Lemma 2.3.2. Assume that T is metrizable. The topology on K (T') coincides with the topology
induced by the Hausdorff metric.

Proof. Let . be a metric associated to 7. For z € T and r € R’ we set
Bu(x,r):={y e T| A (x,y) <r}.

For ¥ € K(T)and r € R, weset B 4, (2,r) :={¥ € K(T)| #u(X,Y) <r}. Let¥ e
K (T). To prove the statement, we need to show that for all » € R there exists an open
neighbourhood (U, {U, }.cr) of ¥ such that (U, {U, }icr) C B.4,(2,7), and for each open
neighbourhood (U, U;);cr of ¥, there exists r € R such that B 4, (3,7) C (U, {U, }ic1)-

Letr € RY. Let{c1, -+ ,cm} C Ysuchthaty C U, B.y(ci, 5), wesetU = UL, B.y(ci, 5)-
We claim that (U, {B.#(ci, 5)}i21) C Bz (X, 7). Indeed, let X' € (U, {B.4(ci, 5) }i21)- As
¥ C U, forall y € ¥ we have min,<;<,,(.# (y, ¢;)) < 5. Therefore,

r
sup inf A (y,x) < = <.
yeszzez (y )_3
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Since for each ¢; there exists y € ¥’ such that .#(c;,y) < £, for each x € ¥ there exists
y € X such that . (z,y) < %. Indeed, there exists ¢; such that z € B(¢;, §), therefore

we have
2r

%(I‘, y) < %<Ci7 y) + ‘%<Ci7 I) < ?
This implies

2r
sup inf A (z,y) < — <.
zeIE) yeX’ ( y) -3

Consequently, #y(X,%') <.

Now let (U, {U;}icr) be an open neighbourhood of ¥. Let o = infyc\p infes A (2, y),
since > C U we have o # 0. Foreach 1 <i < m, let¢; € X N U;. There exists 0 < § < «
such that forall 0 < r < fwe have B ,(¢;,r) C U; foreach 1 <i < m.

We claim that B 4, (X,r) C (U,{U;}I",). Indeed, let ¥/ € B 4,, (¥, r) this means that:

sup inf A (z,y) <r; sup inf A (z,y) <r.
yey TEX zey YEX/

The first inequality implies X' C U. The second implies that for each c; there exists
y € ¥/ such that . (¢;,y) < r. Hence, ¥’ N U; = & for each 1. O

Lemma 2.3.3. The following function is continuous

Y:K(T)x K(T) — K(T)
(£,5) = DUy

Proof. Let ¥ and ¥’ be two non-empty compact subset of 7. Let (U, {U;};c/) be an open
neighbourhood of ¥ U ¥’. We set
J=iellXNU;#@}and J :={i € I| X' NU; # <}

Then (U,{U;}ics) (resp. (U, {U,}ics)) is an open neighbourhood of ¥ (resp. ¥’) and we
have
(U AUs}ies) x (U AUi}iesr) € T H(U{Ui}ier))-

Hence we obtain the result. ]
2.3.2 Continuity results

Continuity of spectrum function

Notation 2.3.4. For a non-zero k-Banach algebra F, we set

YiE): B — K(AS™)

[ Ep(E), @9)

where ¥, (E) is the spectrum of f as an element of E.
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Since the spectral semi-norm ||.||s, : £ — R, may not be continuous, the map
¥ ;(E) may fail to be continuous. For that we provide the following example:

Example 2.3.5. This example is inspired by the example given in [Aup79, p. 34]. As-

sume that char(k) = p > 0. Let E := L (k{T'}). Let Sh € E be the operator defined
by
¥neN, Sh(T") = a, T,
where
" pt ifn=22m+1)—1with/ e N\ {0}, meN
" ]l1  otherwise '

For ! e N\ {0}, let S, € E be the operator defined by

0 ifn=22m+1) —1withm €N

VneN, S, (T")=
" o1") {Sh(T”) otherwise

Then we have (Sh — Sp)(Yien @ T7) = Ymen pZaQZ(QmH),lTQe@m“). Therefore, ||Sh — Sy|| <

p' and S, “=%° Sh. On the one hand we have $2 = 0. Hence, ||S|ls, = 0 and
Ys, k(E) = {0}. On the other hand, since Sh™ (T™) = pipy1 -+ Q1 T, we have

/
HSh“ H = SEIN) |an@n+1 .. 'Oén+n’fl|~
n
By construction we have:
=l iol—j—1 ZZ—I i9—i—1,9¢
041042"'0422—1:HPJ = (p&i=t’ )
j=1
thus,
1 N gt
lagaz + -+ age o[ ?1 > (p 2=192 )%
We set 0 = 3252, j27/~". Then we obtain

2o . L
0<p < lim " [ =[Shlls,

Consequently, the sequence (X, 1 (£))eeny does not converge to gy, x(E) and X ,(E) is
not continuous at Sh.

In the following, we will prove that under some assumption the map ¥ . (£) : £ —
K (A;™) is continuous.

Lemma 2.3.6. Let E be a k-Banach algebra and let f € E. For any open neighbourhood
U C Ay of Y51 (E), there exists a positive real number § such that

If =gl <0 =2gx(E) CU.



2.3. Variation of the spectrum and continuity results 69

Proof. We set X := X, (E) and 3, := X, ;(E). Let U be an open neighbourhood of ¥ .
Let e > 0, we have:

AU = [(Ay™\U) 0 DHO, | fllsp + )T UIAL™ \ (U U DO, [Ifllsp +))-
Since the spectral semi-norm is upper semi-continuous, there exists ny > 0 such that
1f =gl <m0 =llgllsp <[l fllsp +&-
Therefore, we obtain
Sy C D0, llgllsp) € DO, || fllsp + €)

(cf. Theorem 2.1.6). Hence, we have

If = gll <m0 = A\ (U UDT(0, [ fllsp +€)) €A™\ By,
We now prove that there exists 1; > 0 such that

If =gl <m = A \NU)NDH(O, [IfIsp +€) C A\ Sy

Letz € A"\ U, and let V, € A;™ \ ¥ be an affinoid neighbourhood of z. Then

f®1—1®Tisinvertible in E®;Ay,. Wesetn, =|(f ® 1 —1® T)7||7*. Since for all
g € Ewehave ||f —g| =||f ® 1 — g ® 1] (cf. Proposition 1.1.39), if || f — g|| < 7, then

g®1—1®T is invertible in B&;.Ay, (cf. [Bou07, §2.4 Proposition 3]). Therefore, we
obtain

Hf - g” <n. =V, C Allg’an \ Xy

As (A \ U) N D0, || fllsp + €) is compact, there exists a finite subset {2, -+ , 2z} C
Allcjan \ U such that (Allc,an \ U) N D+(O> HfHSp + 5) - U?l1 sz We set = minlﬁiﬁm Nz, -
Hence, we obtain

1f = gll <m = (A" \NU) N D0, [ fllsp +¢) € U Ve, © AL\ By

i=1

We set § := min(, ;). Consequently, we obtain:
If = gll <6 = A\ U C A\ 5,
Theorem 2.3.7. Let £/ be a commutative k-Banach algebra. The spectrum map

St E— K(A™)

1S continuous.
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Proof. We will prove the statement by contradiction. Suppose that there exists an ele-
ment f € £ and a sequence (f,).en that converges to f, such that (X, 1(£)),en does
not converges to X, (E). We set Xy := X4(F) and Xy, = X, x(£). Note that, by
Lemma 2.3.6 for any open neighbourhood U C A,™" of ¥, there exists N € N such
that for all n > N we have ¥y C U for all n > N. Therefore, we can assume that there
exists € 3; and an open neighbourhood U, of z, such that ¥;, N U, = @. We know
that W;;}(x)/k(ilfn) = Y} e1,20) (E©rH (x))(cf. Proposition 2.1.19). Then we have

Efml%(w)(E@k%p(fU)) N Tr;fl(a:)/k<UI) =9

Since w;fl(w) /1 (Uz) isaneighbourhood of T'(x), there exists ¢ > O such that D, (T'(z),€) C
w(;fl(x)/k(Ux). Hence, we have D, (T'(2),¢) C A;;‘(rlx) \ Xt 01,20 (EQ (x)). There-

fore, we obtain )
I(fa @1 =1®T(x)  lsp < <

(cf. Lemma 2.1.9). Since E®;.(z) is commutative, the spectral semi-norm is sub-
multiplicative (cf. Corollary 1.1.29). Wesetu := f®1—-1®T(z)and u, = f, 81 —1®
T'(x). Therefore, we obtain

11— ey Hlsp =l (un — w)llsp <l llspllun — wllsp < =llun —ul.

|
Since f,, converges to f, u, converges to u. This implies that uu, ' is invertible and u
is right invertible. By analogous arguments, u,, '« is invertible and u is left invertible.
Hence, u is invertible which contradicts the hypothesis.

O
Lemma 2.3.8. Let E be a k-Banach algebra and f € E. Let S be a closed and open subset of

s x(E). For any open subset U C Ay™ containing S, there exists a positive real number &
such that

1f—gll <0=3u(E)NU+# 2.

Proof. We set Xy := X, (E). We suppose that there exists an open neighbourhood U/
of S and a sequence (f,,)en that converges to f with ¥y, ,(E) NU = @ foralln € N.
Let (U, V') be a contour of ¥ (which exists by Proposition 2.2.20) such that U = U; U U,
where U, (resp. U,) is an affinoid neighbourhood of S (resp. X7\ §) and U; N U; = @.
We can assume that ©;, (F) C U (cf. Lemma 2.3.6) and V. C A;™ \ &, «(E) for
all n € N, hence (U,V) is a contour of ¥, »(E) for all n € N. We can assume that
Uy C U. Let 1y, € Ay be the characteristic function of U;. By Proposition 2.2.31, we
have ER;(1y,) = 1y, (f), which is an idempotent element of £ (cf. Propositions 2.1.10,
2.1.13 and Theorem 2.2.6), since U; is non-empty 1, (f) is not equal to 0. Since X, N
Uy = o, by Theorem 2.2.5 we have f,(1y,) = 0. Hence, by Proposition 2.2.31 we
obtain ER;, (1y,) = fu(ly,) = 0. On the one hand we have (Ry, ),y converges to Ry
in E®;Ay. On the other hand, the map & : E&®y(Av)o — Li((Ap)o, E) is continuous.
Hence we obtain a contradiction since 1y, (f) # 0. O
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Theorem 2.3.9. Let E be a k-Banach algebra and f € E. If ¥ ,(E) is totally disconnected,
then the map . - E — K (Ay™) is continuous at f.

Proof. Let (f,)nen C F be a sequence that converges to f. Let (U, {Us}icr) € K(A,™)
be an open neighbourhood of ¥/, (E). Let v € X;,(E), since Xy,(E) is totally dis-
connected, the closed-open subsets of ¥, (E) form a fondamental system of neigh-
bourhoods of z. Hence, for each i there exists a closed-open subset S C X, (E) such
that S C U,;. By Lemma 2.3.6, there exists IV, € N such that for all n > N, we have
Y. x(E) C U. By Lemma 2.3.8, we have for all ¢ € [ there exists N; € N such that
forall n > N;, ¥y, x(E) N U; # @. Therefore, for all n > max(/Ny, max;c;(N;)) we have
Y1 k(E) € (U A{U;}ier). Hence, we obtain the result. O

Corollary 2.3.10. Let Q € E(k). The map ¥ x(M,,()) : M,,(Q) — K (A™) is continuous.

Other continuity result

Assume that k is algebraically closed. Let ¢ € k, we set

Df :[0,00) — K(A™)
r — Df(er) (2.10)

Proposition 2.3.11. The function D} satisfies the following continuity properties:

1. it is right continuous;

2. it is continuous at r if and only if r & |k|.

Proof. Letr > 0. Let (U, {U, }icr) be an open neighbourhood of D (r). We may assume
that of U is an open disk. Let R > 0 be the radius of U.

1. Forallr <" < R, Df(r) C DI (r'). Therefore, for all* < " < Rand alli € I,
D (r') N U; # @. Then we obtain [r, R) C (D)~ (U, {U, }icr)-

2. (i) Assume thatr € |k|. Then there exists b € (D" (c,r)\ D~ (¢, 7)) N k. As for all
0<7v <r, DX (r")N D (b,r), wehave DI (r) & (U, {U;} U{D~(b,r)}) for all
0 < r' < r. Therefore D} is not left continuous at r.

(ii) Assume that r ¢ k. Then Df(r) = D (¢,r) U {x.,}. In order to prove
the continuity at r it is enough to prove that D} is left continuous (by the
above results, which ensures right continuity at r). Let 0 < »’ < r. We have
Df(r") € Df(r) C U. In order to obtain the result, it is enough to prove that
there exists R’ < r such thatforall R <" <r, DX (r')NU; # @.
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Let ay, -+, € DI (r) such that a; € D (r) N U; for each i. Since DI (r) is a
disk we can assume that q; is either of type (1) or (3)! for each i.

If o; is a point of type (1), then o; € D~ (c,r). Since the open disks form a
basis of neighbourhoods for the point of type (1), there exists D~ (o, L;) C
D= (c,r) N U;. We set R; := max(|c — «;|,L;). Then for all R; < " < r,
D~ (ay, R;) C D™ (¢, r") C DI (r").

Suppose now that o; = 3,1, is a point of type (3). If oy # z.,, we set
R; := max(|c — b, L;). Forall R; < r' < r, we have o; € D™ (c,r’) C DI (r").
Assume now that o; = z.,. Open annulus C~(c, L}, L?) form a basis of
neighbourhoods of «;. Therefore, there exists C~(c, L}, L?) C U; containing
«;. This implies that there exists C*(c, R;,r) C D} (r) N U;. Then for all
R; < 1" < rwehave C* (¢, R;,r) N DF(r") = C* (¢, R;,"). Then we obtain
Df (") NU; # @. Consequently, for all max; R; <’ <r, Df(7")NU; = @.

O
Corollary 2.3.12. The function
0,D;:[0,00) — K(A™)
=1
roo— 6 D (¢, 1)
=1
satisfies the following continuity properties:
1. it is right continuous;
2. it is continuous at r if and only if r & |k|.
Proof. The result follows form Proposition 2.3.11 and Lemma 2.3.3. O]

1. Note that in the case where & is not trivially valued, we may assume that the «; are of type (1).
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This chapter is organized as follows. In the first section, we recall the definition of
differential modules and their main properties. In the second section, we explain in
which way we associate a spectrum to a differential module, and show how it behaves
under exact sequences. In the third one, we state and prove the analogue of Young's
theorem in rank one (cf. Theorem 3.3.1, [You92]). In the last one, we will explain how
the spectrum behaves under push-forward.

3.1 Preliminaries

Recall that a differential k-algebra, denoted by (A4, d), is a commutative k-algebra A
endowed with a non zero k-linear derivation d : A — A. A differential module (M, V)
over (A,d) is a finite free A-module M equipped with a k-linear map V : M — M,
called connection of M, satisfying V(fm) = df.m + f.V(m) forall f € Aand m € M.
If we fix a basis of M, then we get an isomorphism of A-modules M = A", and the
operator V is given in the induced basis {ej, - - - , e, } by the formula:
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N1 df1 fi

Vo= |+G 1 ¢

[ dfn fn

where G € M,,(A) is the matrix that its i th column is the vector V(e;). Conversely

the data of such a matrix defines a differential module structure on A" by the formula
(3.1).

(3.1)

A morphism between differential modules is a k-linear map M — N commuting
with connections.

Remark 3.1.1. In particular £ endowed with the zero derivation is a differential k-
algebra. The differential modules over (&, 0) are vector spaces of finite dimension en-
dowed with an endomorphism.

We set Z4 = @ A.D' to be the ring of differential polynomials equipped with the
ieN
non-commutative multiplication defined by the rule: D.f = df + f.D for all f € A.
Let P(D) = go + -+ - + g,—1 D"~ + D" be a monic differential polynomial. The quotient
Da)/P4.P(D) is a finite free A-module of rank v. Equipped with the multiplication by
D, itis a differential module over (A, d). In the basis {1, D, ..., D'} the multiplication

by D satisfies:

Ji df: 0 0~ Ji
10 0
D - vlo
fo) N ) o0 1 —g )\ I

Remark 3.1.2. Equip a free finite A-module M with a differential module over (A, d)
structure is equivalent to equip M with a Z,-left-module structure.

Theorem 3.1.3 (The cyclic vector theorem). Let (A, d) be a k-differential field (i.e A is a
field), with d # 0, and let (M, V) be a differential module over (A, d) of rank n. Then there
exists m € M such that {m,V(m),...V" 1 (m)} is a basis of M. In this case we say that m
is cyclic vector.

Proof. See [Ked10, Theorem 5.7.2.]. O

Remark 3.1.4. The last theorem means that there exists an isomorphism of differential
modules between (M, V) and (Z4/%4.P(D), D) for some monic differential polyno-
mial P(D) of degree n.

Lemma 3.1.5. Let L, P and () be differential polynomials, such that L = QP. Then we have
an exact sequence of differential modules:

OEQA/@AQ%@A/@ALL@A/@APEO
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where the maps i and p are defined as follows: for a differential polynomial R, i(R) = RP and
p(R) = R.

Proof. See [Chr83, Section 3.5.6]. O

Notation 3.1.6. Let (A,d) be a differential k-algebra. We denote by d — Mod(A) the
category whose objects are differential modules over (A, d) and arrows are morphisms
of differential modules.

Let (M, V;) and (M,, V2) be two differential modules over (A, d), respectively of
rank n; and n,. The tensor product M; ®4 M, equipped with the map:

VM1®AM2 = V1®1+1®VQ (32)

is a differential module over (A, d).

Let (A,d) and (A, d') be two differential k-algebras. We assume that A’ is an A-
algebra and the following diagram

commutes. Then we have a functor:

d—Mod(A) — d —Mod(A)
(Mv v) = (M XA A/7 V]\/[<§§>A14')
Note that, if (M, V) has rank equal to n, then so has (M ®4 A', Vg, a)-

(3.3)

If moreover A’ is a finite free A-algebra with rank equal to 4, then we have another
functor

d —Mod(4") — d—Mod(A)

(M, V) +—  (My,Va)
where M, is the restriction of scalars of M via A — A, and V = V4 are equal as
k-linear maps. If (M, V) has rank equal to n, then the rank of (M4, V 4) is equal to n.n,.

(3.4)

3.2 Spectrum associated to a differential module

Convention 3.2.1. From now on A will be either a k-affinoid algebra associated to an
affinoid domain of A;™ or a non-algebraic complete extension 2 € E(k) of k. Let d be
a bounded derivation on A.
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Let (M, V) be a differential module over (A, d). In order to associate to this differ-
ential module a spectrum we need to endow it with a structure of k-Banach space.

Definition 3.2.2. A Banach A-module M is said to be finite if there exists an admissible !
epimorphism 7 : A" — M.

Proposition 3.2.3. The Forgetful functor induces an equivalence of category between the cat-
egory of finite Banach A-modules with bounded A-linear maps as morphisms and the category
of finite A-modules with A-linear maps as morphisms.

Proof. See [Ber90, Proposition 2.1.9]. O

These Propositions mean that we can endow M with a structure of finite Banach A-
module isomorphic to A" equipped with the maximum norm, and any other structure
of finite Banach A-module on M is equivalent to the previous one. This induces a
structure of Banach k-space on M. As V satisfies the rule (3.1) and d € £;(A), we have
V € L;(M). The spectrum associated to (M, V) is denoted by Yy 1 (Lx(M))? (or just by
Yy if the dependence is obvious from the context).

Let ¢ : (M,V) — (N,V’) be a morphism of differential modules. If we endow
M and N with structures of k-Banach spaces (as above) then ¢ is automatically an
admissible bounded k-linear map (see [Ber90, Proposition 2.1.10]). In the case ¢ is
an isomorphism, then it induces a bi-bounded k-linear isomorphism and according to
Lemma 2.1.18 we have:

Yvk(Lp(M)) = Eg k(Lr(N)). (3.5)

This prove the following proposition:

Proposition 3.2.4. The spectrum of a connection is an invariant by bi-bounded isomorphisms
of differential modules.

Proposition 3.2.5. Let 0 — (M;,Vy) = (M,V) — (M, Vy) — 0 be an exact sequence of
differential modules over (A, d).

Then we have: Yy (L (M)) C Xv, (Lx(My)) U Xy, (Li(Ms)), with equality if

Yvy (Le(Mh)) N X, (Lr(Ms)) = 2.

Proof. As My, M, and M are free A-modules, the sequence:

f

0 M, M —2— M, 0

splits. Hence, we can identify M with M; & M, so that f corresponds to the inclusion
of M, into M and g to projection of M onto M,. Let p; be the projection of M onto M;

1. Which means that: A"/ Ker m endowed with the quotient norm is isomorphic as Banach A-module
to Im .

2. Note that, since all the structures of finite Banach A-module on M are equivalent, the spectrum
does not depend on the choice of such a structure.
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and i, be the inclusion of M, into M. As both f and ¢ are morphisms of differential
modules, we have V(M;) C M;, V; = p;Vf and V,; = ¢gVi,. By Lemma 2.1.20 and
Remark 2.1.21 we obtain the result. O

Lemma 3.2.6. We keep the assumptions of Proposition 3.2.5. If in addition we have an other
exact sequence of the form:

0 — (Ma, Va) = (M, V) — (M, Vy) — 0,

then we have Yy (L (M)) = Xy, (Lr(My)) U Xg, (Lr(Ms)).

Proof. This is a consequence of Remark 2.1.21. Indeed, If V® 1 — 1 ® T'(x) is invertible,
then the first exact sequence shows that V; ® 1 — 1 ® T'(x) is left invertible and V,; ®
1 — 1 ® T(x) is right invertible, the second exact sequence to Vo, ® 1 — 1 ® T'(x) is left
invertible and V; ® 1 — 1 ® T'(z) is right invertible. Therefore, bothof V, ® 1 — 1 ® T'(z)
and V, ® 1 — 1 ® T'(z) are invertible. Hence, we obtain ¥y, U Xy, C Xy. O

Remark 3.2.7. In particular, if we have (M,V) = (M, V) & (Ms, Vs) as differential
modules then we have Yy = Yy, U Xy,.

Proposition 3.2.8. Let P € 2,4 be a differential polynomial. Let (M, V) := (Pa/P4.P™, D)
and (N, N') := (D) P.P, D). Then we have

Vv k(Lr(M)) = X 1 (Le(N)).

Proof. By Lemma 3.1.5, we have the exact sequences:
0— (QA/@A.Pm_l, D) — (D4/Pa.P", D) — (Da/Pa.P,D) — 0
and
0— (@A/@AP,D) — (@A/@Apm,D) — (@A/@A.Pm_l,D) —0
By induction and Lemma 3.2.6, we obtain Xy (L, (M)) = v/ 4 (Li(N)). O
Remark 3.2.9. From the last proposition we observe clearly that the spectrum does not

take multiplicity into account.

Remark 3.2.10. Set notation as in Proposition 3.2.5. We suppose that A = 7 (x) for
some point = € A, not of type (1). It is then known (see [Ked10, Lemma 6.2.8]) that
we have:

Vlsp = max{|[Villsp [[Vallsp }-

Definition 3.2.11. We say that a differential module (M, V) over (A, d) of rank n is
trivial if it isomorphic to (A", d) as a differential module.

Remark 3.2.12. From now on, for any differential module (1, V) over (A, d), we con-
sider Ker V as a differential module over (k, 0) with connection equal to 0.
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Lemma 3.2.13. Let (M, V) be a differential module of rank n over a differential field (K, d). If
(KerV @, A, dxervea) =~ (M, V) as differential module, then (M, V) is a trivial differential
module.

Proof. See [Chr83, Proposition 3.5.3]. O

Corollary 3.2.14. We suppose that A = () for some x € Ay™ not of type (1). Let (M, V)
be a differential module over (A, d). If (Ker Vi A, dxervea) ~ (M, V) as differential module,

Proof. Direct consequence of Proposition 3.2.4 and Remark 3.2.7. [

Lemma 3.2.15. We suppose that k is algebraically closed. Let (M, V) be a differential module
over (A, d) such that G € M,,(k)(cf. (3.1)) and {ay,--- ,an} is the set of the eigenvalues of G.
Then we have an isomorphisme of differential modules:

(M)~ (P P Pa/Pu(D—a;)", D)

1<i<N 1<<N;

where the n, j are positive integers such that Z;V:Zi n; ; is the multiplicity of a, for each i.

Proof. Let P € GL,(k) such that J := P~'GP has form of Jordan. Since d(P) = 0
(derivation component by component), in some basis we have :

fi df fi
: = : +J|
fn dfy, fn
Hence, we obtain the result. ]

Lemma 3.2.16. Let (M, V) be the differential module over (A, d) associated to the differential
polynomial (D — a)", where a € k. The spectrum of V is Xy j(Lx(M)) = a + Xqi(Lr(A))
(the image of X41(Li(A)) by the polynomial T + a).

\Y

Proof. From Proposition 3.2.7, we have Xy (L, (M)) = gt r(Li(A)). By Lemma 2.1.16,
we obtain Xy (L (M)) = a + Xgx(Li(A)).

]

Proposition 3.2.17. We suppose that k is algebraically closed. Let (M, V) be a differential
module over (A, d) such that:

il dfy fi
= : +G | o,
In dfn I

with G € M, (k). The spectrum of V is Yy x(Li(M)) = UN (a; + Lax(Lr(A))), where
{a1, ..., an} are the eigenvalues of G.

\Y
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Proof. Using the decomposition of Lemma 3.2.15, Lemma 3.2.16 and Remark 3.2.7, we
obtain the result.

O
Remark 3.2.18. This claim shows that the spectrum of a connection depends highly on
the choice of the derivation d.

Remark 3.2.19. In the next chapters (cf. 4 and 5), in order to obtain the spectra of im-
portant classes of differential equations, we will use Proposition 3.2.17 to reduce to the
computation of the spectrum of a suitable derivation d.

3.3 Spectral version of Young’s theorem in rank one

In this section we will give a spectral version in rank one of Young’s theorem
[You92], [Ked10, Theorem 6.5.3], [CM02, Theorem 6.2], which states the following :

Theorem 3.3.1 (Young). Let = € A,™ be a point of type (2), (3) or (4). Let £ = Z Gni '

with g9 = 1 and g; € 5 (x), and let (M,N) be the associated differential module over
(A (), ds) We set |C|s, = max |gil*. If |C|s, > g5l| then |[Vls, = |C]s;.

In this section, for the definitions and notation we refer the reader to Section 1.2.3.
In order to state and prove the main statement of the section, we will need the follow-
ing additional notations and results.

Convention 3.3.2. We suppose in this section that % is algebraically closed.

Notation 3.3.3. Let X be an affinoid domain of A;*" and let f € Ox(X). We can see f
as an analytic morphism X — A;*" that we still denote f.

Lemma 3.3.4. Let 2 € E(k). Consider the isometric embedding of k-algebras

Q — L)
a — br—ab’

With respect to this embedding, € is a maximal commutative subalgebra of L;,(2).

Proof. Let Abe a commutative subalgebra of £, (€2) such that (2 C A. Then each element
of A is an endomorphism of () that commutes with the elements of ). Therefore, A C
Lo (2) = Q. Hence, we have A = Q. N

Lemma 3.3.5. Let Q € E(k) and gy, : Ag™ — Ap™ be the canonical projection. Let o € €.
The spectrum of o as an element of L1,(2) is Xo(Lr(2)) = {ma/k(a)}.
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Proof. By Proposition 2.1.10, the spectrum of « as an element of (2 is the point which
corresponds to the character k[T] — €, T +— «. By Lemma 3.3.4 and Proposition 2.1.15
we conclude. O

We now state the spectral version in rank one of Young’s theorem:

Theorem 3.3.6. Assume that k is algebraically closed. Let Q € E(k)and d : Q@ — Q be a
bounded k-linear derivation. Let (2, V) be the differential module over (€2, d) with V := d+ f
for some f € QU If ri(mai(f)) >||d|| (cf. Definition 1.2.27), then we have

Yv k(Lr(2)) = {mas(f)}-

Proof. By Lemma 3.3.5, we have X, (Lr(Q2)) = {mq/u(f)}. Let us prove now that
Evyk(ﬁk(Q» = {ﬂ;Q/k(f)} Let Yy € Ai,an \ {WQ/k(f)}A We know that f ®R1—-—1® T(y)
is invertible in Q®;.7(y), hence invertible in £;(Q)®;#(y). Sinced® 1 = (V& 1 —
1®T(y) — (f®1—-1®T(y)), in order to prove that V® 1 — 1 ® T'(y) is invertible, it is
enough to show that

ld@ 1l <I(f®1-1&T(y) """

In order to do so, since ||d|| =||d ® 1|| (cf. Lemma 1.1.38) and 7,(mq/k(f)) >||d||, it is
enough to show that ry (o (f)) <[[(f ®1 —1® T(y))"'|~". On the one hand, since
Q — L;(Q) is an isometric embedding, then so is Q&7 (y) — L(Q)&r#(y) (cf.
[P0i13, Lemme 3.1]). On the other hand, the norm on Q®;.%#(y) is multiplicative (cf.
Proposition 1.2.36). Therefore, we have

I(f®1-1aTE) " =lfel-1aT@)].

1,an

To avoid confusion, let S be an other coordinate function on A,*". Note that we have
an isometric embedding JZ (mq/(f)) — €, that assigns to S(mq/.(f)) the element
f. By the same argument as above, we have an isometric embedding of k-algebra
A (ma(f) @A (y) — Q&H (y). Therefore, it enough to show that

ri(mok(f)) <I(S(ram(f)) @1 =1@T(y))|-

The natural map 7 (mq,,(f)) @k (y) — H (075 k(Tayr(f))) is an isometric map (cf.
Lemma 1.1.12). The image of S(mq/i(f)) ® 1 =1 ® T'(y) by this map is

S(ny(y)/k(ﬂﬂ/k(f))) - T(y)-
By Lemma 1.2.40, we have 7 () (¢ /k(Ta/k(f))) = me(ma/k(f)). Therefore, we obtain

rr(mak(f)) < 1S(aewm(mam(f)) = TW)| <[IS(maum(f) @ 1 -1 T(y)|.

Since Xv (L (€2)) is not empty, we conclude that X (L (7o (f))) = {mou(f)}. O
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Note that for higher rank equations, in order to compute the spectra of the differ-
ential modules that are extensions of differential module of rank one, we can combine
Proposition 3.2.5 and Theorem 3.3.6. More generally, we conjecture the following:

Conjecture 3.3.7. Let Ay™ be a point of type (2), (3) or (4). Let d be a bounded derivation on
() and let (M, V) be a differential module over (7 (x),d). Let {m,V(m),--- , V" *(m)}
be a cyclic basis and let G be the associated matrix in this basis. Let Y (M, (H(2))) =
{v1,--- ,yn}. Then there exists C; := (Cy,,---,Cyy) € RY that depends only on G, such
that

re(yi) > Cylldl] = yi € Box(Lr(M)).
If moreover, for all y; € X (M, (€ (x))) we have ri,(y;) > C,,||d||, then

Yvp(Lp(M)) = Xg (M, (H(x)).

3.4 Push-forward and spectrum

In this section, we refer the reader to the last part of Section 1.2.3 for the definitions
and notation.

Notation 3.4.1. From now on we will fix S to be the coordinate function of the analytic
domain (of the affine line) where the linear differential equation is defined and 7" to be

l,an

the coordinate function on A;*" (for the computation of the spectrum).

Let Y and X be two connected affinoid domains of A,i’an and Z (resp. S) a co-
ordinate function on X (resp. Y). Let ¢ : ¥ — X be a finite étale morphism and
¢* : Ox — ¢.Oy the induced sheave morphism. Let f := ¢#(Z) and [ := (f).
Since ¢ is étale, f’ is invertible in Oy (Y') (cf. Lemma 1.2.41). To any bounded deriva-
tion d = g3 on X we assign the bounded derivation

#
.99 d
o d = 7 ds (3.6)

on Y, so-called the pull-back of d by ¢.

Lety € Y and © = ¢(y). Since the derivation {& (resp. 1) extends to a bounded
derivation on Y (resp. X), the derivation d (resp. ¢*d) extends to a bounded derivation
onY (resp. X). We have the commutative diagram:

H (2)—— A (y)

|

H (1) —— H(y)
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Since ¥ induce a finite extension ¢ (z) — J#(y), we have the push-forward functor by
¢ defined as in (3.4):

. p*d —Mod(H(y)) — d— Mod(s(z))

3.7
(MY) = (@M0.9) ©7)

and the pull-back functor by ¢ defined as in (3.3):
©* :d—Mod(H(z)) — ¢*d— Mod(H(y)) (3.8)

(M,V) = (¢"M,p*V)

Remark 3.4.2. In chapters 5 and 6, we will discribe the above functors more explicitly.

Proposition 3.4.3. We have the set-theoretic equality:

v k(Le(M)) = X, vk (Li(peM)).

Proof. Since M and ¢, M are the same as 7 (x)-Banach spaces, then they are isomor-
phic as k-Banach spaces. As V and ¢,V coincide as k-linear maps, the equality of
spectra holds. O
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This chapter is devoted to the computation of the spectrum of a differential equa-
tion with constant coefficients. It is divided into three parts. The first one we compute
the spectrum of <%, the second one we state and prove the main result which is the
computation of the spectrum associated to a linear differential equation with constant
coefficients and in the last we describe the variation of the spectrum of such equations.

Convention 4.0.1. In this chapter we will suppose that % is algebraically closed.

Notation 4.0.2.

w = P ifchar(k) =p. (4.1)
1 if char(k) =0

Lemma4.0.3. © Let X := D% (cp,10)\Ule1 D~ (ci, 1) be a connected affinoid domain and
set r = Orgi<n ri. The operator norm of (<5)" as an element of L,(O(X)) satisfies:
SIS

1y L N _
35 lewocn = 55 llggllspeworcen =
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o Let x € Ay™ bea point of type (2), (3) or (4). The operator norm of (L) as an element

of Ly, (A (x)) satisfies:

1y _ _ @

where r(x) is the value defined in Definition 1.2.27.

Proof. See [Pull5, Lemma 4.4.1]. O

Remark 4.0.4. Let X be an affinoid domain of A;*". Let (X;) be the finite family of
connected components of X. We have O(X) = é O(X;). As =& stabilises each Banach
i=1

space of the direct sum, we have:

d d
II£IISp,ck(O(X>) = gg%llalls,p,ckw(xi»

Let Q € E(k) and let X be an affinoid domain of A,*". Letd = f (S)% be a deriva-
tion defined on O(X). We can extend it to a derivation do = f(S)<& defmed on O(Xgq).
The derivation dq, is the image of d ® 1 by the morphism £, (O(X ))®kQ — La(0O(Xq))
defined in Lemma 1.1.40.

Lemma 4.0.5. Let 7y, : Xq — X be the canonical projection. We have:

Ta/k(Zag.0(La(0(Xq))) C Xar(Lr(O(X))).

Proof. By Lemma 1.1.40 and 2.1.18 we have ¥, o (Lo (O(Xq))) C Zas1.0(Lr(O(X))&:0Q).
Since Ygg1.0(Li(O(X)&rQ)) = ﬁﬂ/k(Ed k(Lr(O(X)))) (see [Ber90, Proposition 7.1.6]),
we obtain the result. H

4.1 The spectrum of -{ on several domains

Let X be an affinoid domain of A,** and z € A, be a point of type (2), (3) or
(4). In this part we compute the spectrum of - as a derivation of A = O(X) or ()
as an element of L£;(A). We treat the case of positive residue characteristic separately.
We will also distinguish the case where X is a closed disk from the case where it is a
connected affinoid subdomain, and the case where z is point of type (4) from the others
ones.
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4.1.1 The case of positive residue characteristic

In this section we assume that char(k) = p > 0. In this case w = |p| =y

Proposition 4.1.1. Let X = D" (co,70) \ Uie1 D~ (¢4, 7:) be a connected affinoid domain of
Ay, The spectrum of L as an element of L£,,(O(X)) is:

2 4 (L(O(X)) = D0,

Proof. We distinguish the case of the disk from the other one.

o Caseu=0:Weset A= O(D%(c,r)) and d = <. We prove firstly this claim for
a field £ that is spherically complete and satisfies |k| = R,. By Lemma 4.0.3 the
spectral norm of d is equal to ||d||s, = ¢. By Theorem 2.1.6 we have X3 C D" (0, %).
We prove now that D*(0, %) C Xg.

Letz € D™(0,%) N k. Then

de1-1@T(x)=(d—a)®1
where T'(z) = a € k. The element d ® 1 — 1 ® T'(x) is invertible in £, (A& (z) if
and only if d — a is invertible in £ (A) [Ber90, Lemma 7.1.7].

If |[a| < ¢, then exp(a(S — ¢)) = Ynen(%)(S — ¢)" exists and it is an element of
A. Hence, exp(a(S — ¢)) € ker(d — a), in particular d — a is not invertible. Conse-
quently, D=(0, %) Nk C Xy

Now we suppose that |a| = <. We prove that d — a is not surjective.

Let g(S) = Ynenbn(S — )" € A. If there exists f(S) = Y enan(S — ¢)" € Asuch
that (d — a) f = g, then for each n € N we have:

(S04 dlb;a™ ) + a”ag
1=0
n! '

(4.2)

Ay —

We now construct a series g € A such that its pre-image f does not converge on
the closed disk D*(c, 7). Let a, 8 € k, such that |a| = r and |3| = |p|'/%. Forn € N
we set:

o _ o ifn=p —1with (€N
"o otherwise

Then, |b,|r" is either 0 or [p|°&("*Y) and g € A. If we suppose that there exists
f € Asuch that (d — a)f = g then we have:

e 1 4 . .
\V%EN; 0, = a® 1[2 (p]_l)'ﬁj

(P! & @ Tar

+ aag).
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As [p'l| = w?* =1 (cf. [DGS94, p. 51]) we have:

1 K@ -1p
laye| = ellz(p]. ).ﬁ + aap.

re°— = a?’ —lap’ -1

M|:

apd—1qp7—1

Since | Ip|~7/2, we have:

63
|Z — DY e (o972 = [pl 2,

aP’ —lap’—1 0<j<t
therefore |a . P 2%, + o0, which proves that the power series f is notin A and
this is a contradiction. Hence, D*(0,%) Nk C ¥,. As the points of type (1) are
dense in D" (0, “) and ¥, is compact, we deduce that D (0, %) C .

Let us now consider an arbitrary field k. Let 2 € E(k) algebraically closed, spher-
ically complete such that || = R,. We set Aq = O(Xg) and dq = < the deriva-
tion on Ag. From above, we have ¥y, = D{(0,%), then mq/,(Xq,) = DT(0,%).
By Lemma 4.0.5 we have D¥(0,%) = mq/x(24,) C X4. As ||d||s, = £, we obtain
S = D*(0,%).

Case 1 > 1 We set A = O(X) and d = {;. The spectral norm of d is equal to
ld|lsp = —a—; (cf. Lemma 4.0.3), which 1mp11es X4 C DY(0, 52 )- Itis easy
0<i<p 0<i<p
to see that 0 € ¥4. Now, let z € D¥(0, 2—-) \ {0}. We set Ay(u) = O(Xpw))
0<i<p
and d ) = % : Aw@ — Aw). From Lemma 1.1.40 we have the bounded
morphism:

Li(A)@r () = Lor@)(Aw)-

The image of d® 1 by this morphism is the derivation d (.. By the Mittag-Leffler
decomposition, we have:

@{ Z ’ aij € H(x), jliﬁloo jailr;? = 0y O(D, () (€0 T0))-

i=1 jGN*

Each Banach space of the direct sum above is stable under d (,)
We set F; = {3 en- (a”)| a;; € H(x), lim |aijlr;? = 0}, and d; = d @), -
By Lemma 2.1.20, ¥4, (») = UXq4,. Let ¢g > 0 be the index such that r;;, = min 7;.

0 <i<p
We will prove that d;, — 7'(z) is not surjective. Indeed, let g(S) = " ,en- m €
%0
),

F,,, if there exists f(S) = 3 en- m € F,, such that (d;, — T'(z))f(S) = g(S
then for each n € N* we have:

(n—l n x))i_1
n = (=T'(z))" Z (i —1)! bi-

i=1
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We choose ¢(S5) = S%CO, in this case a,, = (_(T;(;)))' and |a,| = ‘\YT} w;I’U' As |T(x)] <
-~ the sequence |a,|r;," diverges. We obtain contradiction since f € F;,. Hence,
di(; — T'(x) is not invertible, and so neither is d () — T'(x) is not invertible too.
Therefore, its pre-image d ® 1 — 1 ® T(x) in L;(A)&5(x) cannot be invertible.
Hence = € X,.

]

Remark 4.1.2. The statement holds even if the field k is not algebraically closed. Indeed,
we did not use this assumption.

Corollary 4.1.3. Let X be an affinoid domain of A;™. The spectrum of L as an element of
L(O(X)) is:
24 (L(O(X)) = D (0, Sy

Proof. In this case we may write X = [Ji“, X;, where the X, are connected affinoid
domain of A,;*" such that X; N X; = @ for i # j. We have:

:éO(X)

Each Banach space of the direct sum above is stable under d, we denote by d; the re-
striction of d to O(X;). We have Hd”Sp = max d; (cf. Remark 4.0.4). By Lemma 2.1.20

and Proposition 4.1.1 we have ¥, = D*(O \d:llsp) = DT (0, max;||d;||sp). Hence, we
obtain the result. O

Proposition 4.1.4. Let - € A,™ be a point of type (2), (3) or (4). The spectrum of <& as an
element of L (. (x)) is:

W

7)7

r(z)

24 (Lu(A(2)) = D*(0,

where r(x) is the value defined in Definition 1.2.27.

Proof. We set d = <. We distinguish three cases:

* 7 is point a of type (2): Let ¢ € k such that v = z.,(,). By Proposition 1.2.32, we

have:
H(x ) = E® O(D*(c,r(x))).
E = =
@aek{zg* —cC + Yo )
where a is an element of £ that corresponds to the class a.
As both E and O(D™ (¢, r(z))) are stable under d, by Lemma 2.1.20 we have
_ — DH(0. -«

Ya= EdlE U g |o<p+<m<z>>> By Proposition 4.1.1 Ed‘owﬂc P D*(0, r(z)).
Since ||d||sp = 0 (cf. Lemma 4.0.3), then X4 = D*(0, ==

| ani € k, le lagi|r™" =0},

' r(z) )
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* z is point a of type (3): Let ¢ € k such that x = 2.,(;). In this case 7 (z) =
O(C*(e,r(x),r(x))). By Proposition 4.1.1 we obtain the result.

* 1 is point a of type (4): By Proposition 1.2.34 we have
H ()@ () = O(D () (S(2), ()
From Lemma 1.1.40 we have the bounded morphism:
Li(H ()@ (1) = L) (O(D ) (S(x),7(2))))-
The image of d ® 1 by this morphism is the derivation
d

@) = 75+ OD%p (S(@),7(@))) = O(Dly(,) (S (), 7(2)))-

From Proposition 4.1.1 we have ¥4, = = Djf(x)(o, %), then ij(x)/k(Zd%,(m)) =
D*(0,;&5)- By Lemma 4.0.5 we have D™(0, ;%5) C g Since |[df|s, = ;55 (cf.

’ r(x)

Lemma 4.0.3), we obtain ¥, = DT (0, %) (cf. Theorem 2.1.6).

4.1.2 The case of residue characteristic zero

In this section we assume that char(k) = 0.

Proposition 4.1.5. The spectrum of <& as an element of L,(O(D " (c,r))) is:
54 (L(OD* () = D(0.7) = D(0. ) U{ro s}

(the topological closure of D~ (0, 2)).

Proof. Recall here that w = 1. We set A = O(D(c, 7)) and d = -&. The spectral norm
of d is equal to ||d||s, = % (cf. Lemma 4.0.3), which implies that X; € D*(0,%) (cf.
Theorem 2.1.6). Let x € D™(0, ). We set Ay = A&y (x) = O(Dly,(c,)) and
dy(z) = % : Aw@) — Aw(). From Lemma 1.1.40 we have the bounded morphism:

Ly (A& (1) = Lopa)(Aw())

The derivation d (. is the image of d ® 1 by this morphism. As |T'(z)(S — ¢)| < 1,
[ = exp(T(z)(S — c)) exists and it is an element of A,y . As f € Ker(dy) — T(x)),
dy () — T(x) is not invertible. Therefore d ® 1 — 1 ® T'(x) is not invertible which is
equivalent to saying that z € ;. By compactness of the spectrum we have D—(0, %) C
¥g4. In order to conclude the proof, we need to first prove the statement for the case
where £ is trivially valued.
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* Trivially valued case: We need to distinguish two cases:

— r # 1 : In this case we have D" (0, %) = D=(0,1), hence £, = D=(0,1).

— r = 1 : In this case we have O(D*(c, 1)) = k[S — ] equipped with the trivial
valuation, and L;(k[S — ¢]) is the k-algebra of all k-linear maps equipped
with the trivial norm (i.e. ||¢|| = 1 for all ¢ € Li(k[S —¢|) \ {0}). Leta €
k\ {0}. Since the power series exp(a(S — ¢)) = Yen %7(S — ¢)" does not
converge in O(D™ (¢, 1)), the operator d — a : k[S — ¢] — k[S — ¢] is injective.
It is also surjective. Indeed, let g(S) = 37 (b,(S — ¢)" € O(D*(c,1)). The
polynomial f(S) = S ja,(S — )" € O(D"(c, 1)) whose coefficients are
given by the formula

_n—=1 m

a N
ay, = ' Zz!bia ’

n.

for all 0 < n < m, satisfies (d — a)f = g. Hence, d — a is invertible in
Ly (k[S—c]). Since the norm is trivial on £, (k[S—c]), we have ||(d—a) |5, =
1. Therefore, by Lemma 2.1.9 , for all x € D~ (a, 1) the elementd ® 1 — 1 ®
T'(z) is invertible. Consequently, for all a« € k \ {0} the disk D~ (qa,1) is
not meeting the spectrum ¥,. This means that 3, is contained in D*(0,1) \
Uaerfoy D~ (a, 1) = [0, 20,1]. Since [0, 1] = D=(0,1) we have ¥; = D=(0, 1).

* Non-trivially valued case: We need to distinguish two cases:

— r ¢ |k*| : In this case we have D*(0, ) = D=(0,1), hence £, = D=(0,1).

- r € |k*| : We can reduce our case to » = 1. Indeed, since & is algebraically
closed, there exists an isomorphism of k-Banach algebras

O(D*(e,r)) = O(D*(c, 1)),

that associates to S — ¢ the element «(S — ¢), with a € k and |a| = r. This
induces an isomorphism of k-Banach algebras

Li(O(D"(¢,r))) = Le(O(D(c, 1)),

[=
o

which associates to d : O(D*(c,r)) — O(D*(c,r)) the derivation
O(D*(c,1)) = O(D*(c,1)). By Lemmas 2.1.18 and 2.1.16 we obtain

Sa(Lx(O(D* (e,1) = ~ 34 (LO(D* (e, 1))

We now suppose that = 1. Let £’ be a maximal (for the partial order given
by the inclusion) trivially valued field included in & (which exists by Zorn's
Lemma). As k is algebraically closed then so is £’. The complete residue field
of zg, € A is H(x0,) = k'(S) endowed with the trivial valuation, so the
maximality of £’ implies that ¢ (x( ;) cannot be included in k, therefore k ¢
E(7(x,)). By Proposition 1.2.39, we obtain w,;/lk,(xo,l) = {x01}. Wesetd =
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dd—s as an element of L/ (O(D}:(c,1))). We know by [Ber90, Proposition 7.1.6]
that the spectrum of d’ ® 1, as an element of £;/(O(Dj(c, 1))@k, satisfies

Yol = W,;/lk, (X)), by the previous result we have
7Tk_/1k,(2d/) - D_(O, ].) U 7Tk_/1k/<$071) - _D_(O7 1) U {{L‘Om}.

From Lemma 1.1.40 we have a bounded morphism Ly (O(Dj(c, 1)))&pk —
L,(O(D*(c,1))), the image of d’ ® 1 by this morphism is d. Therefore, ¥, C

un /1,§,(Ed/) = D=(0, 1). Then we obtain the result.

]

Proposition 4.1.6. Let X = D% (co,70) \ Uy D~ (¢4, 7:) be a connected affinoid domain of
A with pp > 1. The spectrum of & as an element of L,(O(X)) is:

1
by = D%
4 (E(O(X))) = D0, ——
0<i<p
Proof. The proof is similar to that of the case ;1 > 1 of Proposition 4.1.1. O

Corollary 4.1.7. Let X be an affinoid domain of A,* which does not contain a closed disk as
a connected component. The spectrum of <5 as an element of L;,(O(X)) is:

d
4 (Li(O0(X))) = D70, [| g llsp)-
Remark 4.1.8. Let X be an affinoid domain of A;*. Then X = YD, where Y is an

affinoid domain as in the corollary above and D is a disjoint union of disks. We set

dy = g5 , and dp = d%low)' If |dylsp >[ldpllsp then ¥a = D*(0, [|dy|lsp). Otherwise,
Ya =

O
4 =D (0, [dpllsy)-

Proposition 4.1.9. Let x € A, be a point of type (2), (3) . The spectrum of < as an element
of Li,(F(x)) is:

L,

r(z)

S 4 (L4 (@) = D0,

where r(x) is the value defined in Definition 1.2.27.
Proof. We set d = <. We distinguish two cases:

* 7 is point of type (2): Let ¢ € k such that v = z.,(,). By Proposition 1.2.32 we
have
H(x) =F @ O(C™(c,r(x),r(2)))
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where,

F = ®a€k\{0}{z T’y)| Api - k ZE?OO ‘aail’]" = 0}7

EN*

where « is an element of k£ that corresponds to the class &. We use the same
arguments as in Proposition 4.1.4.

* z is point of type (3): Let ¢ € k such that v = z.,). In this case J#(z) =
O(C*(e,r(x),r(x))), by Proposition 4.1.6 we conclude.

]

Proposition 4.1.10. Let = € A.™ be a point of type (4). The spectrum of L as an element of
Ly (H(x)) is:

2 (L @) = D-(0, ).

where r(x) is the value defined in Definition 1.2.27

Proof. We set d = <. By Proposition 1.2.34 we have
H ()@ H () = O(D () (S(2), 7(2)))-
From Lemma 1.1.40 we have the bounded morphism:
Li(H (x)rH () = L) (O(D ) (S(2), 7())))

which associates to d ® 1 the derivation

d

= 5 O (5(2),1(x))) = O(D (S(), ().

dr(w)

From Proposition 4.1.5 we have Xy, - = D, (0, T(lx) ), hence

Tt ()6 (Bd o)) = D(0, ——)-

By Lemma 4.0.5 we have D~ (0, T(I)) C X4. From now on we set r = r(x). Since ||d||sp, =
L (cf. Lemma 4.0.4) and X4 C D7(0, ||d||sp) (cf. Theorem 2.1.6), in order to prove the
statement it is enough to show that for all a € k such that |a| = £, we have D™ (a, 1) C
A™\ Sy Let a € k such that [a| = 1. The restriction of d — a to the normed k-algebra
k[S] is a bijective bounded map d — a : k[S] — k[S] with respect to the restriction of
|- We set p = (d — a),,- As H(x) is the completion of k[S] with respect to |.[,; (cf.
Lemma 1.2.33). It suffices to prove that ¢! : k[S] — k[S] is a bounded k-linear map.
Indeed, by density of k[S] inside J#(z), this will ensure that ¢! extends to a bounded
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endomorphism ¢ : J#(z) — (x), and we will then necessarily have ¢ o (d — a) =
(d—a) o1 = Id, because this holds on the dense subset k[S] of 7# (). A family of closed
disks { D" (¢y, 1) }ees is called nested if the set of index I is endowed with total order <
and for i < j we have D (¢;,r;) C D (¢;,r;). Since z is a point of type (4), then there
exists a family of nested disks { D" (¢cy, 7¢) }ses such that Ny D (¢, 7)) = {z} and 7, > r
forall ¢ € I. If we consider d — a as an element of L, (O(D* (¢, 1¢))), then it is invertible
(cf. Proposition 4.1.5) and its restriction to k[S] coincides with ¢ as k-linear map. Let
f(S) = Sienai(S — ¢)' and g(S) = Sien bi(S — ¢¢)* be two elements of O(D™(cy, 1))
such that (d—a)f = g. Using the same induction to obtain the equation (6.6) we obtain:
foralln e N

_an—l )
ay = ‘ Zi!bia”. (4.3)
n! =
Hence,
|| ! 1> ilba™'| < b max |b;|r" < rmax |b|r"™" < rmax |b|r) " < " max b7
" nollae = pn—1 sy U = sy = s e =y oicn e
- (4.4)
Therefore,
|an|ry < rmax [bi[r. (4.5)
>n
Consequently,

|f|$c£,re S T|g|$c5,r£
In the special case where f and g are in k[S], then f = ¢ !(g) and we have forall [ € N:

07D aeyr, <79

Tegyrg *

Hence,

o™ (9)]. = inf [p™(g) <infrlgle,,,, = rlgle

leN Feore = 1eN
This means that ! is bounded, hence d—a is invertible in £;,(2# (x)) and ||(d—a) || <
r, hence [|(d — a)™"||sp < r. Since ||(d — a)~!||5, is the radius of the biggest disk centred
in a contained in A, \ 3, (cf. Lemma 2.1.9), we obtain D~ (a, hc A\ 2.

]

4.2 Spectrum of a linear differential equation with con-
stant coefficients

Let X be an affinoid domain of A, and z € X a point of type (2), (3) or (4). We set
here A = O(X) or #(z) and d = <. Recall that a linear differential equation with con-
stant coefficients is a differential module ()M, V) over (A, d) associated to a differential

polynomial P(D) =go+ 1D+ -+ g,—1D" ' + D” with ¢g; € k, or in an equivalent
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way there exists a basis for which the matrix G of the formula (3.1) has constant coef-
ficients (i.e G € M, (k)). Here we compute the spectrum of V as an element of £, (M)
(cf. Section 3.2).

Theorem 4.2.1. Let X be a connected affinoid domain of A;™. We set here A = O(X). Let
(M, V) be a defferential module over (A, d) such that the matrix G of the formula (3.1) has
constant entries (ie. G € M,(k)), and let {ay,--- ,an} be the set of eigenvalues of G. Then
we have:

* If X = D*(co,70),

N — -
U D~(a;, =) Ifchar(k) =0
i=1 0

° IfX = D+<607r0) \ U?:l D_(Ciari) with 2 > 1,

Ev,k(ﬁk(M)) = U D*(ai, —_—

Where w is the positive real number introduced in (4.1).

Proof. By Propositions 4.1.1,4.1.1,4.1.5, 4.1.6 and 3.2.17 we obtain the result. ]

Theorem 4.2.2. Let z € A,™ be a point of type (2), (3) or (4). We set here A = (x). Let
(M, ) be a defferential module over (A, d) such taht the matrix G of the formula (3.1) has
constant entries (i.e. G € M, (k)), and let {a;,--- ,ax} be the set of eigenvalues of G. Then
we have:

e If x is a point of type (2) or (3),

Sean(Li(D) = U D" (@i )

e If x is a point of type (4),

N .
U D*(ay, &y) If char(k) >0

i=1

Yy i(Lr(M)) = :
U D~ (ay, ﬁ) If char(k) = 0

i=1
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where w is the positive real number introduced in (4.1).

Proof. By Propositions 4.1.4,4.1.9,4.1.10 and 3.2.17 we obtain the result. O

Remark 4.2.3. Notice that since the spectrum of V is independant of the choice of the
basis, if G’ is another associated matrix to the differential module (M, V) with constant
entries, then the set of eigenvalues {a},- - ,a)y,} of G’ can not be arbitrary, namely it
must satisfy: for each a there exists a; such that a; belongs to the connected compo-
nente of the spectrum containing a;.

Remark 4.2.4. If we consider the differential polynomial P(d) as an element of £;(A),
then its spectrum is ¥ p(g) = P(24) (cf. Lemma 2.1.16) which is in general diffrent from
the spectrum of the associated connexion.

4.3 Variation of the spectrum

In this section, we will discuss the behaviour of the spectrum of (M, V) over (7 (z), d),
when we make z vary inside [z, 23] C A,lg’an, where z; and z, are points of type (2), (3)
or (4).

Let X be an affinoid domain of A,*. Let (M, V) be a differential module over
(O(X), (f—s) such that there exists a basis for which the associated matrix G has constant
entries. For a point z € X not of type (1), the differential module (), V) extends to a
differential module (M,, V,) over (J#(x), %). In the corresponding basis of (M,, V)

» dS
the associated matrix is G.

Theorem 4.3.1. Let X = D% (co,70) \ Uiy D™ (¢i,7;) be a connected affinoid domain and
x € X be a point of type (2), (3) or (4). Let (M, V) be a differential module over (O(X), &)
such that there exists a basis for which the corresponding matrix G has constant entries. We
set:

U [r, 2] — KA

y = Ny, (Le(My))

Then we have:

1. foreachy € [x, %, ], the restriction of U to [z, y] is continuous at y.

2. fory € (x, ¢, V is continuous at y if and only if y is a point of type (3), .

3. If char(k) = 0 and x is a point of type (4), then U is continuous at .
Proof. Let {a1,--- ,an} C k be the set of eigenvalues of G. We identifie [z, 2, ,,] with
the interval [r(z), 7] by the map y — r(y) (cf. Definition 1.2.27). Let y € [z, z,,].- We

set ) = Y, (£x(M,)). By Theorem 4.2.2, for all y' € (2, 2y, (4’ can not be a point of
type (4)) we have Ey/ = Ui\il D+(Gi, %)
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* For the claims 1. and 2. it follows from Corollary 2.3.12.

e We assume that char(k) = 0. Lety € [z,2.,.,,] be a point of type (4). Since
¥, = UX (D (a;, %) U {xam%}) (cf. Theorem 4.2.2), using Lemma 2.3.3 the
proof is similar to the second case of Proposition 2.3.11.
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This chapter is devoted to the computation of the spectrum of a regular singular
module (M, V) over (J(z),SL), with z € A;*" a point of type (2), (3) or (4). We will
proceed as follows. Firstly we compute the spectrum of the derivation S-& by using
the push-forward functor (cf. (3.7)). We treat the case of positive residual characteristic
separately. As in the previous chapters, we have different spectra in the positive and
zero residual characteristics cases. In the end, we will use Proposition 3.2.15 in order to
prove the main result, which is the computation of the spectrum of a regular singular
differential module. We will discuss at the end the variation of the spectrum.

Convention 5.0.1. In this chapter, we assume that % is algebraically closed.

Definition 5.0.2. A differential module (M, V) over (J7(z), S<%) is said to be regular
singular, if there exists a basis for which the associated matrix G (cf. (3.1)) has constant
entries (i.e G € M, (k)).
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5.1 Spectrum of the derivation S%

Lemma 5.1.1. Let © := xq,, with r > 0. The norm and spectral semi-norm of S< as an
element of L (.7(x)) satisfy:

IS5l =1, IS5l =1

Proof. Since ||S|| = |S| = r and ||| = % (cf. Lemma 4.0.3), we have ||S
also, ||.S < 1. The map

Li(H(x) — Li(H(2))
0 = SloposS

dS|| < 1. Hence

dsHSp

is bi-bounded and induces change of basis. Therefore, as S7lo(SE)eS=5&+1,we
have [|S <& lsp =[[S<5 + 1]|sp. Since 1 commutes with S, we have

ds’
d d d
1=|1 =||S— < 1
I1llsp =15 55 +1 = S35 llsp < max((5& + Llsps 15 o)

(cf. Corollary 1.1.29). Consequently, we obtain

1551l =I5 g llsp =

5.1.1 The case of positive residual characteristic

We assume here that char(l;:) p > 0. We start with the case where = = z;,.. In order
to compute the spectrum of S, we will use the push-forward by the Frobenius map.
We refer the reader to Section A.2.1 for the definition of Frobenius map Frob,, : A, —
A" and its properties. Since it induces an étale map (Frob, )" A,lc 2’m\{O} — Al an\{0},
the push-forward functor (cf. (3.7)) is well defined for any =, € Ak "withr > 0. Recall
that (Frob,)"(xo,) = 2+~ and [ (xo,) : H(xq,n)] = p" (cf. Properties A.2.1).

Let x := ¢, and y := (Frob,)"(z). According to formula (3.6) the pull-back of the
derivation p"SL : S (y) — A (y) is the derivation S& : J#(z) — (z). To avoid
confusion in the following we set p"S(y) 5y = P"S 45 and S() z5(7 = S5

Now let (M, V,») be the push-forward of the differential module (77(z), S<&) by
(Frob,)". Since M,» >~ J#(z) as an .7 (y)-Banach space and according to Lemma 1.2.44,
we can take {1, S(z),---,S(x)"" "'} as a basis of (M, V). Since
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in this basis we have:

S p"S(y)ﬁ(y)fl 0 0 0 S
fpn p S(y) mfp” 0 0 p"—1 fpn

In other terms, we have an isomorphism of differential modules

pt—1 d
Myn,Vpn) ~ ), p"S(y)—— +1). 5.2
(M, Vpn) iE_BO( ). P"5) G55y +7) (52)
Notation 5.1.2. For the simplecity, we still denote here S(z)-2— & by S
Proposition 5.1.3. Let r > 0. We set x := xq,. The spectrum of S as an element of

Lo(A(x)) is
ZS%k(ﬁk(%(‘T))) = Zy.

Proof. Since for all | € N we have S-£(S(z)") — 1(S(z)") = 0, we obtain
N C gy oLl A#)).

By compactness of the spectrum, we obtain
Zy © S (L (2).

Letn € N\ {0}. We set y := (Frob,)"(z) = zon. Let (M, V,n) be the push-froward of
(A (z), S<L) by (Frob,)". On the one hand, according to Proposition 3.4.3 we have

Vg a 5 (Li(H(2))) = Ev,n k(L (Mpn))-

On the other hand, since we have the isomorphism (5.2), we have

e slEep) = U Syl Ce ) = U #"E g sl )+

(cf. Remark 3.2.7 and Lemma 2.1.16). By Lemma 5.1.1, we know that ||S|ls, = 1
in L(7(y)). Therefore, we have Yga #(Li(A(y))) € DF(0,1) (cf. Theorem 2.1.6).

Consequently, ¥y, x(Lr(Mpn)) C Ui—g il D™ (i, |p|™). Applying this process for all n, we

obtain
pt—1

Yga  (Le(H(x))) C ﬂ U D*(i, |p|") = Zy,

ds?
neN\{0} i=0

which ends the proof. O
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We now assume that = € A;™ is a point of type (2), (3) or (4) not of the form .
Then there exists ¢ € k\{0} such thatz € D~ (c, |¢|). The logarithm map (cf. Section A.1)

Log.: D™ (c,|c|) — Ai’an

is well defined and induces an infinite étale cover. We set y := Log,(z). Let 7, : A,* —
R be the radius map (cf. Definition 1.2.27) and w = [p|?-T. We have:

° if 0 < rp(z) < |cw, then 0 < 1(y) < w and [ (x) : H(y)] = 1.
o Letn € N\ {0}, if |clw T < ry(z) < [clw, then 2 < ri(y) < 2 and [#(x) -

H(y)] =p"

(cf. Properties A.1.4). Note that, since |7'(z)| = |c| the inequalities above do not depend
on the choice of ¢. According to formula (3.6) the pull-back of the derivation 3
A (y) — A (y) is the derivation Sk : ' (x) — A (x).

as .

Let (M, V) be the push-forward of the differential module (#(z), S <) by Log,. As-

sume that \c|wp"%1 < ri(z) < |clw?™. By Lemma 1.2.44, we can take {1, S(x), - , S(z)”" 1}
as a basis of (M, V). Since

(A d (A A
V(S(2)) = S=o(S()) = iS())
in this basis we have:
f ap) (00 0 N[
ap —
fpn ds/p 0 0 p"—1 fpn

Proposition 5.1.4. Let x € A,™ be a point of type (2), (3) or (4) not of the form x,. Let
¢ € k\ {0} such that x € D~ (c, |c|). We set y := Log,(z). In the case where r.(x) < |c|w, the
spectrum of S<& as an element of L,(A (x)) is

Tk(y))'

Sga 4 (Lu(A(2))) = DO,

1
In the case where |c|wr™™" < () < |c|wﬁ with n € N\ {0}, the spectrum is a disjoint union
of p" closed disks
pr—1

a g (Lu(H U D*(i

W

ok
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Proof. Assume that r;(z) < |clw. Since [#(x) : € (y)] = 1, the push-forward of
(A (z), S<L) by Log, is isomorphic to (#(y), <&). Therefore, by Propositions 4.1.4 and
3.4.3 we obtain

i(y)

Tsa w(Lre(H(x))) = Ta 1 (Le(H(y))) = DT(0, )-

We now assume that |c|wp"#*1 < rp(x) < ]c\wz%" with n € N\ {0}. Let (M, V) be the
push-forward of ((z), S<k) by Log,. Since we have the formula (5.3) and according
to Propositions 3.4.3 and 4.2.2, we have

pt—1

w
ZS%k(ﬁk(%(iﬂ))) Sk (Le(M U D (i W

If moreover |c|wp”%1 < 1i(x), then |p|" < iy < Ip|"~!. Consequently, the spectrum

ES%k(ﬁk(%(x))) is a disjoint union of p" disks. For the case where 7(z) = ]c]wpi”

with n € N, we have r(y) = o (cf. Properties A.1.4). Forall 0 < i < p" — 1 and
1 <l<p-1,wehave D" (i,|p|") = D*(i + lp", |p|"). Hence, we obtain

prti-1 pr—1

4 (L(H U D*(i,|p[") U D* (i, p|")
which is obviously a disjoint union. ]

Corollary 5.1.5. Let 2 € A;™ be a point of type (2), (3) or (4) not of the form x,. Let
¢ € k\ {0} such that x € D™ (c, |c|). We set y := Log,(x). The spectrum of S<& as an element
of Li,(H(x)) is

+ -
(Ek % b k(y)

Proof. By Proposition 5.1.4, we have Xga ,(Lx(H (7)) = Uy D (i,
n € N. Since for all I € N we have S%(S( ) ) —1(S(z)!
)

e ) for some

) = 0, we obtain
N CXga ,(Lu(H(x))).

Therefore, for each | € N there exists 0 < i, < p"—1 such that D" (1, m:fy)) = D7 (i, #(y))

Consequently, we obtain (J;ey D (1, ) € Bs 4 (Ly((7))) which ends the proof.
]

5.1.2 The case of residue characteristic zero

We assume here that char(k) = 0.
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Proposition 5.1.6. Let = € A,™ be a point of type (2) of the form .. The spectrum of S 4
as an element of L, (7 (x)) is

Sy (Lk(A(2))) = D¥(0,1).

Proof. We set d := S and %y = X44(Lp(H(2))). Since ||d||s, = 1, we have &, C
D+(O, 1). Let Y € D+(0, 1). We set A(yf(y) = %(m)@k%ﬂ(y) and d{%ﬁ(y) = Sdis : A,yf(y) —
A (y)- From Lemma 1.1.40 we have a bounded morphism:

Li(H () @nH (y) = Lorw)(Ar)).

The image of d ® 1 by this morphism is the derivation d (). We now show that the
image of d ® 1 — 1 ® T'(y) is not invertible in L () (A (). Let a an element of £ that
corresponds to the class & in k. We have the following decomposition

H @)= Bl gy magi] ot € I Jaailr™ = 0} O(D(0.1)

zEN*

with v € k and |y| = r (cf. Proposition 1.2.32). Therefore, we obtain the isometric
isomorphism

H (1)@ (y) _@aek{z S+ )Z | ani € A (y), iggloo|am|r = 0}o0( %(y)(o,r)).

zEN*

Each Banach space of the completed direct sum is stable under d(,, — T'(y). The
operator d(y) — T(y) is not surjective. Indeed, let ¢ := ya with @ € &\ {0} and let
g= (v )®k<%”( ) such that (d ) — T(y))(f) = g, then we can
choose f of the form f = YieN\{0} 5ayis such that for each i€ N\ {0} we have

(=c)'(i = 1)!
§=1<T(y> + ) '
We observe that |a;|r > 1 for each i € N\ {0}. This means that such f does not exist in

H(2)&,7 (y). Hence, d ® 1 — 1 ® T(y) is not invertible in £, (.7 (z)) and we conclude
that D*(0,1) C 5. 0

a; = —

Proposition 5.1.7. Let x € A.™ be a point of type (3) of the form x,,. The spectrum of S4
as an element of L,(7 (x)) is

Vga x(Lr(H(2))) = Z U {0}
Proof. We setd := St and Sy, := Sy i (Li(H(2))). As [|d||s, = 1 (cf. Lemma 5.1.1),
we have ¥; C D*(0,1). Recall that

H(x) = O(CH(0,r,7) ={>_ a;5| lim_ |a;|r" = 0}.

€7 lil—
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Leta € kN D*(0,1). If a € Z, then we have (d —a)(S*) = 0. Hence, d — a is not injective
and Z C X,. As the spectrum is compact, we have Z U {z¢1} C ¥, If a ¢ Z, then
d — a is invertible in £,(7#(z)). Indeed, let g(S) = Yz b:S' € H#(x), if there exists
[ =Sieza;S" € #(z) such that (d — a)f = g, then for each i € Z we have
bi

(i —a)

If there exists iy € 7Z such that a € D~ (ig, 1), then for each i # iy we have |a;| = |b;]
and |a;,| = | Jé’_ol . Otherwise, for each i € Z we have |a;| = |b;|. This means that f

al

a; =

it is unique and converges in .7 (x). We obtain also |f| < %4 or |f| = |g|. Conse-

lio—al
quently, the set theoretical inverse (d — a)™! is bounded. We claim that if a € D~ (i, 1)
then ||(d — a)!||sp = =, otherwise ||(d — a)~!||s, = 1. Indeed, in the first case, sim-

lio—al’ )
ilar computations show that ||(d — a)™"| < |1.0_1a|n. Since (d — a) ™(S%™) = ﬁ, the

equality holds and we obtain ||(d — a)™!||sp, = ( 1 ;- In the second case, by the above

0—a

computations (d — a)~! is an isometry. Therefore, we have ||(d — a)~!||s, = 1. Setting
R, := infiez |i — al, we have [|(d — a) 7 !||sp = R%' According to Lemma 2.1.9, we have
D~ (a,R,) C A™ \ 2.

In order to end the proof, since D(0,1) = Usermz D~ (a, Ra) U Unez[n, zo1], it is
enough to show that (n,z0,) C Ay™ \ %, for all n € Z. Let n € Z. Then we have an
equality of spaces in Ban}' (cf. Notations 1.1.34 and Lemma 1.1.21)

H () = kS" & P,y koS

The operator (d — n) stabilises both £.5™ and @iez\{n}k‘.Si. Wesset (d —n)|xs» = Vi and
(d—n)‘é " }k:.Si = VQ. We set Evl = thk(ﬁk(kSn)) and ZVQ = EVQ,k(‘Ck(@ZeZ\{n}kSZ))

We have V; = 0. By Lemma 2.1.20, we have:
Ydon =2y, UXy, = {0} U Xg,.

We now prove that
D (0,1)NXy, = 2.

The operator V, is invertible in Ek(@iez\{n}k.si). Indeed, let g(S) = Yien ) b:S* €
@iez\{n}kﬂi. If there exists [ = Y ez (n) @S € @iez\{n}k.b’i such that Vy(f) = g, then
foreachi € Z \ {n} we have
bi

(i —n)

Since |a;| = [b;, the element [ exists and it is unique, moreover |f| = [g|. Hence, V,
is invertible in Lk(@iez\{n}k.Si) and as a k-linear map it is isometric. Therefore, we
have |V;'|sp, = 1. Hence, by Lemma 2.1.9 D=(0,1) C A;™ \ By,. Consequently,
D=(0,1)N¥4_, = {0}. As 3y = ¥4, +n (cf. Lemma 2.1.16), we have D~ (n,1) N %, =
{n}. Therefore, for all n € Z we have (n, z9,) C A;™ \ ¥4 and the claim follows. O

a; =
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Proposition 5.1.8. Let = € A;™ be a point of type (2) (3) or (4) not of the form x,. Let
¢ € k\ {0} such that x € D~ (c, |c|). The spectrum of S< as an element of Ly, (A (x)) is

D—=(0, Tk'—?'z)) if z is of type (4)

S 4(Lx(H(2))) =
D(0, rk'—?z)) otherwise

Proof. Let Log, : D~ (c,|c|) — D~ (0, 1) be the logarithm and setting y := Log.(x). Since
char(k) = 0, Log, is an isomorphism analytic map and [ (z) : #(y)] = 1. Therefore,
the push-forward of (' (), S<&) by Log, is isomorphic to (2#(y), &&). Therefore, by
Propositions 4.2.2 and 3.4.3 we obtain

D~(0 1

- (y)) if x is of type (4)

S 4 (Lk(H(@))) = Sy (LA (W))) =

D*(0, ——) otherwise

Since 7 (y) = | ), the result follows. O

5.2 Spectrum of a regular singular differential module

As we have mentioned at the beginning of the chapter, the computation of the spec-
trum of a regular differential module follows directly from the computation of the
spectrum done above and Proposition 3.2.17. In this section, we will summarize all the
different case discussed in the previous section. We will also discuss the variation of
the spectrum.

5.2.1 Spectrum of a regular singular differential module

Notation 5.2.1. We denote by Z the topological closure of Z in A"

Theorem 5.2.2. Assume that char(k) = p > 0. Let v € A,™ be a point of type (2), (3) or (4).
Let (M, V) be a regular singular differential module over (A (x), S<5). Let G be the matrix
associated to V with constant entries (ie. G € M, (k)), and let {ay,--- ,an} be the set of
eigenvalues of G.

e If x is a point of the form x,, then we have

N

i=1



5.2. Spectrum of a regular singular differential module 107

e Otherwise, let ¢ € k \ {0} such that v € D~ (¢, |c|) and y := Log_(z). Then we have

N
U D*(a;, 2) if () € (0, ]cw ]

=1

Eon(L(M)) =1 y , . BN
U U D¥(a;+1i,:05)  ifri(z) € (lewr™ T, elwrr ]

Jj=14=0
withn € N\ {0}.

Theorem 5.2.3. Assume that char(k) = 0. Let x € A,™ be a point of type (2), (3) or (4).
Let (M, V) be a regular singular differential module over (A (x), S<5). Let G be the matrix
associated to V with constant entries (ie. G € M,(k)), and let {ay,--- ,an} be the set of
eigenvalues of G.

e If x is a point of type (2) of the form x,, then we have

D+(CL]', 1)

=

Yy p(Le(M)) =

1

J

e If x is a point of type (3) of the form x ,, then we have
N

Svi(Lr(M)) = a; + Z.

J=1

e Otherwise, let ¢ € k\ {0} such that x € D~ (c,|c|). Then we have

U D~(a;, -5)  ifa is of type (4)

=1

N
+(q. ]
jL:Jl D™ (a;, 7 75)  otherwise

5.2.2 Variation of the spectrum

Let X be an affinoid domain of A;*". Let (M, V) be a differential module over
(O(X), S£5) such that there exists a basis for which the associated matrix G has con-
stant entries. For a point z € X not of type (1), the differential module (M, V) ex-
tends to a differential module (M,, V) over (7 (z), S<5). In the corresponding basis

of (M,, V) the associated matrix is G.
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The case of positive residue characteristic

Assume that char(k) = p > 0. We observe from Theorem 5.2.2 that: although the
spectrum is roughly different from the constant case studied in Chapter 4, it satisfies
analogous continuity properties.

Theorem 5.2.4. Let X = D% (co,10) \ ULy D™ (ci,7;) be a connected affinoid domain and
x € X bea point of type (2), (3) or (4). Let (M, V) be a differential module over (Ox(X), S<%)
such that there exists a basis for which the corresponding matrix G has constant entries. We
set:

U2, 2] — K(AS™)

y = Yu,s(Le(My))

Then we have:

* foreachy € [, x|, the restriction of U to [x,y] is continuous at y.

® Lety € [x,%eyr). The map W is continuous at y if and only if y is of type (3) or of the
form xg g.

Proof. We identify [z, z, ,,] with the interval [r(z), ro] by the map y — r(y) (cf. Def-
inition 1.2.27). Lety € [z,%. ). Assume that there exists ' € [z,z,,,,) such that
[z,2'] N (0,00) = @ and [z,y] C [z,2']. Let ¢y’ € [z,2']. By Theorem 5.2.2 and Corol-
lary 5.1.5, we have ¥(y) = UY, D™ (a;,¢(y)) and ¥(y') = UY, D (a;, p(y')), where
¢ : [z,y] = R, is a decreasing continuous function and ¢(y) ¢ |k| if y is of type (3).
Therefore, the claims:

* W is continuous at y if and only if y is of type (3),

e the restriction of ¥ to [z, y] is continuous at y,

holds by Corollary 2.3.12.

Now assume that y € [z g, Ty, this means that z., ,, = z¢,,. In the case where
y # xo.r, the restriction of U to [z g, T, ] is constant (cf. Theorem 5.2.2). Hence the
restriction of W to [x¢ g, T, 1| iS continuous. Otherwise, on the one hand the restriction
of U to [y, ¢, is continuous at y. On the other hand, since for all ¥ € [z, y] we have
U(y) =UN; o + 34 4 £(Lr(H(y))), it is enough to show the result for the differential
module (Ox (X), S5) (cf. Lemma 2.3.3). Hence, we reduce to the case where ¥(y) = 7,

and U(y') = Uien DT (2, 0(y')), with ¢ : [z,y) — R, a decreasing continuous function
and lim ¢(y') = 0 (cf. Theorem 5.2.2 and Corollary 5.1.5). Let (U, {U,}ic1) be an open
Y=y

neighbourhood of ¥(y). Since ¥(y) is a set of points of type (1), we can assume that
the U; are open disks. Since Z, is the topological closure of N in A", for each i € I
we have NN U; # @. Therefore, for each i € I we have ¥(y') N U; # @. We now prove
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that there exists 2’ € [z, y) such that for all ¢ € (2/,y) we have U(y') C U. Let L be the
smallest radius of the disks U;. Since ¢ is a decreasing continuous function, there exists
yr, such that for all ' € (y.,y) we have ¢(y') < L. Therefore, since N C U = (J;e; U;,
for all j € N there exists ¢ € I such that D™ (j,¢(y")) C U;. Consequently, we have
\I/(y’) C U and \I/(y’) S (U, {Uz}zel>

O

The case of residue characteristic zero

Assume that char(k) = 0. We observe from Theorem 5.2.3 that, the spectrum be-

haves differently from the case where char(k) = p > 0. In the special case where £ is
not trivially valued and |k| # R, the map

U (0,00) — K(AS™)
y = Xy, x(Lr(M,y))

is not continuous at all. Indeed, let y € (0,00) be a point of type (2). Assume that
(M,V) = (Ox(X),S5:%). Then we have U(y) = D¥(0,1). Let U be an open neigh-
bourhood of ¥(y) in A;™. Leta € (D*(0,1) Nk)\ Z and let 0 < r < 1 such that
D= (a,r) NZ = @. For any y' € (0,00) of type (3) we have V(y') = Z U {z(,}, hence
U(y')N D™ (a,r) = @. Therefore, U(y') & (U, {U, D*(a,r)}).

In the case where £ is trivially valued the only point where there is no continuity is
xo,1. For the other points of (0, c0), since W is constant it is continuous on (0, 00) \ {z 1 }.

For branches (c, zg | | with ¢ € k\ {0}, the map

U (c,aoy] — KAZ™)
y = Yv,s(Le(My))
satisfies the same continuity properties as those of Theorem 4.3.1. Indeed, for any
y € (¢,z.)) we have U(y) = UX, D (a;, 0(y)) with ¢ : (¢,z0)] — R, a decreasing
continuous function and ¢(y) € |k| if y is of type (3).

We have the following results:

Theorem 5.2.5. Assume that |k| = R,. Let X = D" (co,10) \ Uiy D™ (¢4, 1) be a connected
affinoid domain and x € X be a point of type (2), (3) or (4). Let (M, V) be a differential module
over (Ox(X), S<L) such that there exists a basis for which the corresponding matrix G has
constant entries. We set:
U2, Ty 0] — K(A™)
y = Lv,w(Le(My))

Then we have:
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* foreachy € [z, x|, the restriction of U to [x,y] is continuous at y.

* Lety € [x,xey . The map W is continuous at y if and only if y is of type (3), (4) or of
the form x g.

Proof. The proof is analogous to the proof of Theorem 4.3.1 and 5.2.4. O
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Let £((.5)) be the field of Laurent power series. This chapter is devoted to the com-
putation of the spectrum of a differential module (M, V) over (k((S)), S-%), which is an
application of the results already proved in the previous chapters.

Convention 6.0.1. In this chapter, we assume that £ is trivially valued and algebraically
closed.

Convention 6.0.2. We fix » € (0,1) and endow k((.S)) with the S-adic absolute value
given by

’ Z aZSZ’ = TN?

i>N

if ay # 0. In this setting k((.S)) coincides with .7 (), where z, € A;™.
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6.1 Spectrum of a differential module after ramified ground
field extension

Recall that if F is a finite extension of k((S)) of degree m, then we have F ~ k(S ))
[VS12, Proposition 3.3]. The absolute value |.| on k((.S)) extends uniquely to an absolute
value on F'. The pair (£}, |.|) is an element of £(k) and can be identified with 7 (z, 1).

The derivation S5 extends uniquely to a derivation d on F, where d(Sw) = LS o

Then (F,d) is a finite differential extension of (k((5)), S<&). Now, if we set Z = S ",
then we have F = k((Z)) and d = Z 3. Since F =~ ' (z_ 1) and k((S)) =~ 2 (x0,), we

mdzZ’ n
can see k((S)) — F as the inclusion induced by the power function (.)™ : A;™ — A
(cf. Section A.2), we set [y := (.)™. The derivation d is nothing but then the pull-back
of d. Note that we can see (F, Z-1) as a differential module over (k((S)),SL). In the
basis {1,Z,--- , Z™ '} we have:

0 0 0
h S4f L h
0 L
Z d omo
Z - — W 6.1
m dZ + 0 (6-1)
Jm Sasfm 0 0 mt Jm

We have a functor (cf. (3.8)):

Ip* 1S4 — Mod(k((S)) — Z4 —Mod(F)

(M) (T M, [V 6.2)

where Ip"M = M ®j(s) F and the connection "V is defined as follows:

. Z d
IFPV=Veltlo ——

Let (M, V) be an object of S-<& — Mod(k((S)) of rank n. If {e;, ..., e,} is a basis of M
such that we have:

fi Sish fi
Vi | = : +G |,
Ja S/ fn
with G € M(k((5))), then (Ir*M, Ir*V) is of rank n and in the basis {e; ® 1,...,¢, ® 1}
we have:
fi Zah fi
"V | | = : +G | (6.3)
We have also the push-forward functor (cf. (3.7)):
Ip,: 24 —Mod(F) — S& —Mod(k((9)) 6.4)
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Let (M,V) be an object of St — Mod(k((S))) of rank n. The differential module
(Iplp*M, Ip, Ip*V) has rank nm. Let {e},--- ,e,} be a basis of (M,V) and let G be
the associated matrix in this basis. Then the associated matrix of (/. [r*M, I, I[r*V)
inthebasis {e; ®1,--- e, ®1,e, 7, e, @Z,-++ ,e; Z™ L - vv e, @ Z™ !} is:

G 0 0
0. G+Lt-1,
0 0 Gamtg,

Therefore we have the following isomorphism:

m—1
(Ip Ip* M, Ip, Ip*V EB (M, +— (6.5)
As k-Banach spaces Iy, [p*M and Iz M are the same, and [p.[r"V as a k-linear map

coincides with /*V. Therefore, by Remark 3.2.7 and Lemma 2.1.16 we have:

m—1

Ererva(Lelle' M) = U — + Sva(Lu(M)). (6.6)

=0

6.2 Newton polygon and the decomposition according to
the slopes

Letv: k(Sw)) — Z U {oo} be the Valuatlon map associated to the absolute value of
k(S ), that satisfies v(Sw) = L. LetP = Z 9;D" be an element of Z;(s). Let Lp to be
i=0

the convex hull in R? of the set of points

{(5,v(g:))] 0 <@ <} U{(0, min v(g;))}-

0<i<n

Definition 6.2.1 ([VS12, Definition 3.44]). The Newton polygon NP(P) of P is the
boundary of Lp. The finite slopes ~; of P are called the slopes of NP(P). The hori-
zontal width of the segment of N P(P) of slope v; is called the multiplicity of ;.

Proposition 6.2.2. Let (M, V) be a differential module over (k((S)), S <) The following prop-
erties are equivalent:
* (M,V) is reqular singular;

* There exists differential polynomial P(D) with only one slope equal to 0 such that (M, V) ~
)/ Dus)-L(D);
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e There exists P(D) = gy + 1D + -+ + g1 D" ' + D" with g; € k[S], such that
(M, V) = (Zws)/ Zus)-P (D), D);

 There exists P(D) = go+g1D+ -+ g,_1 D" ' + D" with g; € k, such that (M, V) =~
(Zrs)/ Zr(s)-P (D), D);

Proof. See [Ked10, Corollary 7.1.3] and [Chr, Proposition 10.1]. O

Proposition 6.2.3 ([Ked10, Proposition 7.3.6]). Let P(D) = go+g1 D+ - -+g, 1 D" '+D"
such that g; € k[S]. Then we have the isomorphism in S — Mod (k((9))):

(Zr(s)/ Drsy-P(D), D) = (Dr(sy/ Drsy-Fo(D)),
where Py(D) = go(0) + g1(0)D + - - - g,_1(0)D"~' + D",

Remark 6.2.4. This Proposition means in particular that for all f € k[S] there exists
d
g € E(S)) \ {0} such that f — S%(w = f(0). Indeed, by Proposition 6.2.3 we have

(k(9), S + f) =~ (k(S)), S + f(0)). This is equivalente to say that there exists
g € k(9) \ {0} such that

d d
-1 “ _o"
Definition 6.2.5. Let (M, V) be a differential module of S — Mod(k((5))), and let
P(D) € -@k((s)) such that (M, V) ~ (-@k((s))/.@k((s))-P(D), D). If all the slopes of P(D) are
different from 0, then we say that (1, V) is without regular part.

Proposition 6.2.6. Let P € Zys) and ~y a slope of P. Let v be the multiplicity of . Then
there exist differential polynomials R, R', () and Q' which satisfy the following properties:

P=RQ=0QFR.

The degree of R and R’ is equal to v, and their only slopes are v with multiplicity equal
tov.

All the slopes of () and Q' are different from -.

Proof. See [Chr, Proposition 12.1] and [VS12, Theorem 3.48]. O

Corollary 6.2.7. Let (M, V) be a differential module over (k((S)), S<k). Then we have the
decomposition in S5 — Mod(k((5))):

(M, V) = (Mreg7 vreg) S (Mrrz Vz'rr)

where (Myeq, Vyeg) is a regular singular differential module and (M, Vi) is a differential
module without reqular part.

D(sy/ Zr(sy-P = Disy! Drs)- B Dr(s)/ Dris)-Q = Zr(s)/ Zr(s)-Q & Zw(s)/ Drs) -1t
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6.3 Spectrum of a differential module

In this section we compute the spectrum of a differential module (M, V) over
(k(9)), S+5), which is the aim of this chapter. According to Corollary 6.2.7 we have the
decomposition:

(M7 V) = (Mreg> Vreg) D (Mirr7 Virr)

We know that Xy = Yy, U Xy, (cf. Remark 3.2.7). Therefore, in order to obtain the
general statement, it is enough to know the spectrum of a regular singular differential
module and the spectrum of a pure irregular singular differential module. The case of
a regular singular is done in Chapter 5. It just remains to treat the case of differential
module without regular part.

Recall the statement for the case of a regular singular module.

Theorem 6.3.1. Let (M, V) be a regular singular differential module over (k((S)),S<5). Let
G the matrix associated to V with constant entries (i.e. G € M, (k)), and let {ay,--- ,ay} be
the set of eigenvalues of G. The spectrum of V is

=z

EVJC(E]C(M)) = (CLZ‘ + Z) U {13071}.

i=1

Proof. Since k((S)) ~ 7 (x) where x is a point of type (3), it follows directly from The-
orem 5.2.3. 0

Lemma 6.3.2 ([VS12, Proposition 3.12]). We can assume that the set of the eigenvalues
{a1,--- ,an} satisfies a;, — a; & 7Z for each i # j.

Definition 6.3.3. We will call the a; of Theorem 6.3.1 the exponents of (M, V).

Recall the following Theorem, which is the celebrated theorem of Turrittin. It en-
sures that any differential module becomes extension of rank one differential modules
after pull-back by a convenient ramification ramified extension.

Theorem 6.3.4 ([Tur55]). Let (M, V) be a differential module over (k((S)), S<%). There exists
a finite extension F' = k((.S ) such that we have:

N

(I*M, [*V) = @ (Dr/ Dre.(D — f,)*, D) (6.7)

i=1

where f; € k[S~w] and a; € N.

Proof. See [VS12, Theorem 3.1]. O
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Now, in order to compute the spectrum, we need Theorem 3.3.1, that we recall here
under the hypotheses of the chapter.

1 1

Lemma 6.3.5. Let [ = Yyep a;5w an element of k(Sw)) and let (k(S™)), V) be the differ-
ential module of rank one such that V = S<& + f. If v(f) < 1, then the spectrum of V as an

1

element of Ly, (k(S™))) is:

1

vk (Lr(k(S™)) = {xgmm }-

Proof. We can assume that f = ey ;S . Indeed, since [ = f-+ fr with f_ =
Sico ;S and fy = Y50 a;S 7, according to Proposition 6.2.3 there exists g € k(S )

1

such that f, —ag = @. Therefore, we have (k((S)), V) ~ (k((S)), S+ f- +ao).
By Theorem 3.3.6, we know that S (L (k(S7)) = {f(z. 1)} (cf. Notation 3.3.3).

0,rm

As f(z, 1) = Ty = g0, the statement follows. O

Proposition 6.3.6. Let (M, V) be a differential module over (k((S)), S<5) without regular
part. The spectrum of V as an element of Li,(M) is:

Yvp(Le(M)) = {2 00, 5 g wtin

where the f; are as in the formula (6.7).

Proof. We set Xy := Yy (L (M)). By Theorem 6.3 4, there exists F' = k((S#)) such

N
(Ip"M, 1p"V) = @@F/@F.(D — fo)
i=1
where f; € k[S~w]. We set £,«v = Sp,vi(Li(Ip*M)). Since (M, V) is purely ir-

regular singular, we have f; € k[S~#] \ k. By Proposition 3.2.8 and Remark 3.2.7, we
have:

N
Sreev = U Bgayp, (Lr(F)).
i=1
By Lemma 6.3.5, we have Yed oy, (Li(F)) = {7g w00 }- Hence,

Yiprw = {%,Tv(fm T ;xo,rv(fm}.

By the formula (6.6), we have:
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Since r*(i) > 1 forall 1 < i < N, then each element of Y1~y is invariant by translation
by L where 1 < j < m. This means that ¥y = ¥y + L. Therefore, we have ¥j, -y =
Yy. ]

Remark 6.3.7. Note that, it is not easy to compute the f; of the formula (6.7). However,
the values —uv(f;) coincide with the slopes of the differential module (cf. [Kat87] and
[VS12, Remarks 3.55]).

We now announce the main statement that summarizes all the previous result of
the chapter:

Theorem 6.3.8. Let (M, V) be a differential module over (k((S)), S<%). Let {v1,- -+, 7, } be
the set of the slopes of (M, V) and let {a1,--- ,a,,} be the set of the exponents of the reqular
part of (M, V). Then the spectrum of V as an element of L,(M) is:

Ev,k(ﬁk(M)> = {'CEO,T’W? te ,370’70*%1 } U U ((ZZ' -+ Z)

i=1

Proof. According to Theorem 6.3.1, Proposition 6.3.6 and Remark 6.3.7 we obtain the

result. O
Remark 6.3.9. We observe that although differential modules over (k((S)), S+) are al-
gebraic objects, their spectra in the sense of Berkovich depends highly on the choice of
the absolute value on k((.5)).
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Description of some étale morphisms

This part is devoted to summarizing the properties of the analytic morphisms: log-
arithm and power map.

A1 Logarithm

Leta € k\ {0}. We define the logarithm function Log, : D~ (a, |a|) — A;*" to be the
analytic map associated to the ring morphism:

K[T] — O (a, |6_l\1)2l_1

T ZneN\{o}( ar)zn (T —a)"

We define the exponential function exp, : D~ (0,w) — D~ (a, |a|w) to be the analytic
map associated to the ring morphism:

O (a]alw)) — O(D"(0.0)
a_a = ZnENW 7

where
o p|77  if char(k) = p
1 if char(k) =0

Lemma A.1.1. Let b € D (a,|a|) N k. Then we have Log, = Log, — Log,(b).
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Proof. We have Log,(T) = Log, (%), in particular Log, (%) is well defined. Therefore,

Log,(T) = Log, (f) = Log, (é) = Log, <€> — Log; (Z) = Log,(T) — Log,(b).

]

Lemma A.1.2. The logarithm function Log, induces an analytic isomorphism D~ (a, |a|w) —
D~ (0,w), whose reverse isomorphism is exp,.

Proof. Since exp, : D™ (0,w) — D~ (a, |a|lw) is surjective, we obtain the isomorphism.
[

Lemma A.1.3. Assume that k is algebraically closed and char(k) = p > 0. Let (,» be a p"th
root of the unity. Then we have

1
* G —1f=wrh

* ifx € D™ (a,|al) Nk, then Log,(z) =0 <= z = a(yn.
Proof. It is easy to see that Log,(a(,») = 0. Indeed,

Log,(aCy) = Log, (Gr) = plnLogm) 0.

Since Log,(T) = Log,(%), it is enough to show that Log,(z) = 0 <= =z = (.
By Lemma A.1.2, we have Log,(z) = 0 <= 2 =1ifz € D (1,w) N k. Now let
x € D7(1,1) Nk, we have

2 —1=(x—17+p(z— 1)§p—1<];) (z — 1)

Therefore,
|27 — 1| < max(|p[x — 1], [z — 1|7).

Hence, there exists n € N such that [zF" —1| < w. Since Log, (27") = Log, (), if Log, (z) =
0 then 27" = 1. Then we obtain the result.

]

Properties A.1.4. Assume that k is algebraically closed and char(k) = p > 0. Let D* (b, ) be
a closed subdisk of D~ (a, |a|). Then :

e The logarithm function induces an étale cover D~ (a, |a|) — A"



A.1. Logarithm 123

Proof.

Log,(D*(b,r)) = D™ (Log,(b), ¢(r)) where

90:(07’@‘) — IRJr )
r | Log,(z,)|

The function ¢ depends only on the choice of the radius of the disk D* (b, r). In particular,
it is an increasing continuous function and piecewise logarithmically affine on (0, |a|) and

go(|a|wr%”) =, wheren € N.
Iflalws™ T < 7 < |aws™, then Log, " (Log,(b)) N D*(b,r) = {b¢i.|0 < i < p" — 1}
where (,n 1s a p"th root of the unity.

Since S Log,(T) = 7 is invertible in O(D~(a, |al)), by Remark 1.2.42 Log, is lo-
cally étale. Hence, it is an étale cover.

We know that the image of the disk D*(b,r) by the analytic map Log, is the
disk D*(Log,(b), ¢(r)) with radius is equal to ¢(r) = | Log,(x,) — Log,(b)|. By
Lemma A.1.1 we obtain ¢(r) = | Log,(x)|.

Since |b| = |a| and ¢(r) = |Logy(xs,)|, by construction it depends only on the
value 7. Since Log, is an analytic map well defined on (b, z,,,/), the map ¢ is an
increasing continuous function piecewise logarithmically affine on (0, |a|).

R
n

We have gp(]a|¢uz%") = MaX;en\ {0} ]z’|—1wpin = .

Since Log, = Log, — Log,(b), we conclude by Lemma A.1.3.

]

Proposition A.1.5. Assume that char(k) = p > 0. Let y € D™ (a,|a|) and x := Log,(y),
then we have:

If 0 < ri(y) < |a|lw, then [ (y) : H(x)] =1

o Iflalwm™ < ry(y) < |alw?™ withn € N\ {0}, then [#(y) : #(x)] = p".

Proof. Consequence of Propositions A.1.4 and 1.2.45. O



124 Appendix A. Description of some étale morphisms

A.2 Power map

For the details of this part we refer the reader for example to [Pull5, Section 5] and
[Ked10, Chapter 10]. We define the nth power map A, : A,* — A, to be the analytic
map associated to the ring morphism:

7]

E[T] — k
T — 1"

A.2.1 Frobenius map

We assume here that char(k) = p, with p > 0.
We define the Frobenius map to be the pth power map. We will denote it by Frob,,.

Properties A.2.1. Let a € kand r € R.. The Frobenius map satisfies the following properties:

e It induces an finite étale morphism Ay \ {0} — A"\ {0}.
* Frob,(D*(a,r)) = D*(a", p(a,r)) where p(a,r) = max(|p|laf’~"r, 17).
L4 FI‘Obp(iL'a,r) = ZTap p(a,r)

Proposition A.2.2. Let y := x,, withr > 0. We set x := Frob,(y). Then we have:

o Ifr < wlal, then [ (y) : 7 (z)] = 1.
o Ifr > wlal, then [ (y) : A (x)| = p.

Corollary A.2.3. Let y := g, withr > 0. Let n € N\ {0}, we set x := (Frob,)"(y). Then
we have [ (y) : 7 (x)] = p".

A.2.2 Tame case

Letn € N\ {0}. We assume that n is prime to char(k).

Properties A.2.4. Let a € kand r € R*.. The nth power map satisfies the following propreties:

e It induces a finite étale morphism Ay \ {0} — A\ {0}.
e A, (D" (a,r)) = D" (a", p(a,r)) where ¢(a,r) = max(|a|" " r,r").

® An(xa,r) - xa”,tp(a,r)-
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Proposition A.2.5. Let y := x,, withr > 0. We set x := A,,(y), then we have:

o Ifr <lal, then [ (y) : 7 (x)] = 1.
o Ifr > |al, then [ (y) : 7 (x)] = n.
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