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Problem Statement Context

Context

Localization

critical function

needed to assert mission requirements

huge impact on the mission plan

cannot rely on GNSS systems Daurade

Autonomous Underwater Navigation

no external positioning system

dead-reckoning like navigation

weak prior knowledge environment

long term mission > 24h
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Problem Statement Localization

Localization

real pose

Challenges

get the best estimation

get reliable error bounds
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Problem Statement Localization

Simultaneous Localization And Mapping

De�nition

The simultaneous localization and mapping (SLAM) problem, for an

autonomous vehicle moving in an unknown environment, is to build a map

of this environment while simultaneously using this map to compute its

location.

Localisation Mapping
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Problem Statement Localization

Feature-based localization

Observation equation{
z = g (x,p)
p ∈ Rn

well studied in the literature

data association problem

features are hard to detect in

underwater environment

indistinguishable objects

M
z
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Problem Statement Unstructured Environment

Side-scan sonar images

Images taken with Daurade (Klein 5000)
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Problem Statement Unstructured Environment

Side-scan sonar images
Douarnenez 2008 (700m x 700m)
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Problem Statement Unstructured Environment

Shape-based localization

M
M

Z

Observation equation

Z = g (x,M)

each point of the measurement

can be labeled

occupancy grids in a

probabilistic context

no data association problem

use reliable information
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Constraint Propagation Notation

Notation

x an element of R e.g. 1, 10.2,

[x ] an interval of R e.g. [1, 4]

x a vector of Rn e.g. (1, 2, 3)ᵀ

[x] a box of Rn e.g. [1, 4]×[2, 5]
X a subset of Rn

X the complement set of X

R
x

[x]
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Constraint Propagation Notation

Notation

f : a function from Rn to R
f : a function from Rn to Rm

f(X) = {f(x) | x ∈ X}

x1

x2

y1

y2
f(x)

x

y
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Constraint Propagation Set inversion

Set inversion

Set inversion

With Y ∈ Rp and f : Rn → Rm, the set inversion problem aims at

characterizing the set:

X = {x ∈ Rn | f(x) ∈ Y}
= f−1(Y)

x1

x2

y1

y2
YYf−1(Y)

X
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Constraint Propagation Set inversion

Example

Example with a disk

With f (x) =
√

x21 + x22 :

−1.5 0.5

−1.5

0.5

x

y

X = f −1([0, 2])

−1.5 0.5

−1.5

0.5

x

y

X = f −1([1, 2])
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Constraint Propagation Constraint network

Constraint network



Variables:

x(t1), x0, d1, d2

Constraints:

ẋ(t) = f(x(t))
x(0) = x0

d1 = gm1(x(t1))
d2 = gm2(x(t1))

Domains:

Xt1 , [x0], [d1], [d2]

with gm(x) =
√

(m1 − x1)2 + (m2 − x2)2

m1

m2
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Constraint Propagation Constraint network

Constraint network



Variables:

x(.),u(.),Z(ti ),M

Constraints:

ẋ(.) = f(x(.),u(.))
x(0) = x0

Z(ti ) = g(x(ti ),M)

Domains:

[x(.)], [u(.)], [Z](ti ), [M]

with ti ∈ T ⊂ R R0

M
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Thick Set De�nition

Thick set

De�nition

A thick set [X] of Rn is an interval of (P(Rn),⊂) such as :

[X] = [X−,X+]
= {X ∈ P(Rn) | X− ⊂ X ⊂ X+}

X P (Rn)

X
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Thick Set Examples

Examples of interval shapes

R0

M
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Thick Set Examples

Examples of interval shape

0	m

7.5	m

250 0 250 500 750 1000	m

15	m

Base	Litto3D	®

22.5	m

30	m

MNT from litto3D R© database

250 0 250 500 750 1000	m
Base	Litto3D	®

Interval	shape
Out
In
Penumbra

Legend

Interval shape representation
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Thick Set Operations

Operations on thick sets

Two types of operations can be de�ned on thick sets. For instance:

[X] ∩ [Y] = {Z ∈ P(Rn) |Z = X ∩ Y,X ∈ [X] ,Y ∈ [Y]}
=
[
X− ∩ Y−,X+ ∩ Y+

]
[X] u [Y] = {Z ∈ P(Rn) |Z ∈ [X] ,Z ∈ [Y]}

=
[
X− ∪ Y−,X+ ∩ Y+

]
y

x

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3[X]
y

x

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3[Y]
y

x

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3[X] ∩ [Y]
y

x

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3[X] u [Y]
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Thick Set Uncertain set inversion

Uncertain set inversion

Problem statement

Given Y ∈ Rm and f : Rn → Rm, the set inversion problem aims at

characterizing the set :

X = f−1(Y)

In our case:

1 Y ∈ [Y] is a thick set

2 f ∈ F ⊂ F(Rn,Rm) is an uncertain function

The uncertain set inversion aims at �nding the smallest thick set which

encloses all feasible sets such as:

∃f ∈ F,∃Y ∈ [Y],X = f−1(Y)
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Thick Set Uncertain set inversion

Uncertain set inversion

Theorem

Given f ∈ F ⊂ F(Rn,Rm) and [Y] = [Y−,Y+], the smallest thick set

solution of [X] = [f]−1 ([Y]) is:

[X] =
[
X−,X+

]
=

[⋂
f∈F

f−1(Y−),
⋃
f∈F

f−1(Y+)

]
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Thick Set Uncertain set inversion

Example with an uncertain disk

Given [y ] = [0, 2], [m] ∈ [−0.5, 0.5]2 and

f[m](x) =
√

(x1 − [m1])2 + (x2 − [m2])2

We aim at �nding the thick set [X] = f −1[m] ([y ])
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Shape Registration and Carving Problem Statement

Shape registration and carving

Constraint network 
f(A,p) = B,
A ∈ [A],
B ∈ [B],
p ∈ P

where fp(·) = f(p, ·) is a bijective function.

Since

f(A) = B⇔
{

f(A) ⊂ B
A ⊂ f−1(B)

only the elementary constraint f(A) ⊂ B needs to be handled.

Two subproblems:

the registration problem: �nd the smallest set P w.r.t [A] and [B]
the carving problem: contract [A] and [B] for a given P
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Shape Registration and Carving Registration

Registration

Problem statement

Given two shapes A ⊂ Rn, B ⊂ Rm and a function f : Rn × Rp → Rm, we

are looking for the set:
P = {p | f(A,p) ⊂ B}

A
B

p1

p2

b2

b1

a2

a1
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Shape Registration and Carving Registration

Registration

Proposition 1

Given A ∈ P(Rn), B ∈ P(Rn) and f : Rn × Rp → Rm, we have:

P = {p ∈ Rp | f(A,p) ⊂ B}

=
{
p ∈ Rp | ¬

(
∃a ∈ A, (a,p) ∈ f −1(B)

)}
= projp

{
(A× Rp) ∩ f−1(B)

}
Proposition 2

Given A ∈ [A−,A+], B ∈ [B−,B+] and f : Rn × Rp → Rm, we have:

{p | f(A,p) ⊂ B} ⊂
{
p | f(A−,p) ⊂ B+

}
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Shape Registration and Carving Carving

Shape carving

Proposition

Given two shapes A ∈ [A], B ∈ [B], f : Rp × Rn → Rm and p ∈ [p].
A contractor for [A] is:

C([A]) = [A] u f−1[p] ([B])

[A] = [A−,A+]
[B] = [B−,B+]
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Shape Registration and Carving Example

Example

Find the feasible set of translations

between p1 and p2 such as:

x1

y1

p1

x2

y2

p2

[A]

[B]
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Shape Registration and Carving Example

Example
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Shape Registration and Carving Example

Results

Registrations:

[p0] = [4, 11]× [9, 16] [p] = [6.85, 7.04]× [10.829, 11.001]

Carving:

−20 −15 −10 −5 0 5 10

−20
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−10
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0
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10

x

y

[B]
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[B] u f−1[p] ([A])
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Shape SLAM

Outline

1 Problem Statement
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5 Shape SLAM
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Shape SLAM Problem Statement

Shaped SLAM

Problem statement

Given x ∈ Rn the state vector, u ∈ Rm the input vector, f : Rn ×Rm → Rn

the evolution function, g : Rn × Rq → Rr the observation function,
ẋ(t) = f(x(t),u(t)) t ∈ R
Z(ti ) = gx(ti )(M) ti ∈ T ⊂ R
x(0) = x0

where M ∈ P(Rq) and Z ∈ P(Rr ).
We assume that gx(ti ) is bijective.

Example

With x(t) ∈ R2 and m ∈ R2:
gx(t)(m) = m− x(t)

g−1
x(t)(z) = z+ x(t)
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Shape SLAM Inter-temporal formulation

Inter-temporal formulation

Since for (ti , tj) ∈ T2 ⊂ R2 , we have:{
Zi = gx(ti )(M)
Zj = gx(tj )(M)

⇔ Zi = gx(ti ) ◦ g−1x(tj )(Zj)

⇔ Zi = hpij
(Zj)

M can be removed from the unknowns of the problem.

Example

With gx(t)(m) = m− x(t):

Zi + x(ti ) = Zj + x(tj)

⇔Zi = Zj + x(tj)− x(ti )

⇔Zi = Zj + ptij
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Shape SLAM Constraint network

Constraint network



Variables:

x(·), u(·), Zti , pti tj

Constraints:

1 ẋ(·) = f(x(·),u(·))
2 pti tj = x(tj)− x(ti ) with (ti , tj) ∈ T2 ⊂ R2

3 Zti = Ztj + pti tj

Domains:

[x](·), [u](·), [Zi ], [pti tj ]
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Shape SLAM Illustration

Inter-temporal formulation

R0

M
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Shape SLAM Simulated test case

Simulated test case
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Shape SLAM Simulated test case

Test case

x(t2)
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Shape SLAM Simulated test case
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Shape SLAM Experimental mission

Experimental mission with Daurade

4h30 experimental mission in the bay of Roscanvel

30 km long trajectory

data collected using a SeaBat 7125 Multibeam Echo Sounder

100 0 100 200 300 400	m
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Shape SLAM Experimental mission

Experimental mission with Daurade

100 0 100 200 300 400	m

0 20 40 60 80	m 0 20 40 60 80	m

Benoît Desrochers Shape SLAM 45 / 49



Shape SLAM Experimental mission

Experimental mission with Daurade
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Conclusion

Conclusion and Prospects

Conclusion:

shape related constraints

development of new tools and

algorithms

application on robotics examples

implementation on pyibex

Prospects:

multi sensors, multi views,

multi resolution

need for reliable classi�ers

real-time implementation

3D shapes
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Conclusion
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B. Desrochers and L. Jaulin. IEEE Transaction on Automatic Control (2017)

Thick set inversion.
B. Desrochers and L. Jaulin. Arti�cial Intelligence (2017)

Conferences papers:

Relaxed intersection of thick sets.
B. Desrochers and L. Jaulin. SCAN'16, Uppsala

Thick separators.
L. Jaulin and B. Desrochers. COPROD'16, Uppsala

Minkowski operations of sets with application to robot localization.
B. Desrochers and L. Jaulin. SNR'2017, Uppsala, 2017 .

Chain of set inversion problems; Application to reachability analysis.
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Conclusion

Simultaneous Localization and Mapping in Unstructured

Environments
A Set-Membership Approach

� Thank you for your attention! �
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