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Problem Statement Context

Context

Localization

e critical function

@ needed to assert mission requirements
@ huge impact on the mission plan
°

cannot rely on GNSS systems

Autonomous Underwater Navigation

@ no external positioning system
@ dead-reckoning like navigation
@ weak prior knowledge environment

@ long term mission > 24h
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Problem Statement Localization

Localization

= real pose
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Problem Statement Localization

Localization

= real pose
> estimated pose

Challenges

@ get the best estimation

@ get reliable error bounds
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Problem Statement Localization

Simultaneous Localization And Mapping

Definition

The simultaneous localization and mapping (SLAM) problem, for an
autonomous vehicle moving in an unknown environment, is to build a map
of this environment while simultaneously using this map to compute its

location.
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Problem Statement Localization

Feature-based localization

Observation equation Q

{z:g(x,p) z

peR” > / M

o well studied in the literature

@ data association problem

o features are hard to detect in
underwater environment

@ indistinguishable objects
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Problem Statement Unstructured Environment

Side-scan sonar images




Problem Statement Unstructured Environment

Side-scan sonar images

i) ¥ 5 4 A

Images taken with Daurade (Klein 5000)
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Side-scan sonar images

i) ¥ 5 4 A

Images taken with Daurade (Klein 5000)
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Problem Statement Unstructured Environment

Side-scan sonar images
Douarnenez 2008 (700m x 700m)
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Problem Statement Unstructured Environment

Shape-based localization

Observation equation

@ each point of the measurement
can be labeled

@ occupancy grids in a
probabilistic context

@ no data association problem

@ use reliable information
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Problem Statement Unstructured Environment

Shape-based localization

Observation equation

@ each point of the measurement
can be labeled

v @ occupancy grids in a
\ probabilistic context

i @ no data association problem

@ use reliable information

Benoit Desrochers Shape SLAM 10 /49



Constraint Propagation

Outline

© Constraint Propagation

Benoit Desrochers Shape SLAM 11/49



Constraint Propagation Notation

Notation

@ x anelementof R eg. 1, 10.2,
@ [x] an interval of R e.g. [1,4]
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Constraint Propagation Notation

Notation

ADP2
x|
@ x anelementof R eg 1, 10.2, /
@ [x] an interval of R e.g. [1,4] Tk - - — - - -+ X

@ x avector of R” eg. (1,2,3)7 |
o [x] a box of R" e.g. [1,4]x[2,5]

b1
— il »
| | g
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Constraint Propagation Notation

Notation

AD2

@ x anelementof R eg 1, 10.2,
@ [x] an interval of R e.g. [1,4]

@ x avector of R” eg. (1,2,3)7
o [x] a box of R” e.g. [1,4]%[2,5] X
e X a subset of R”

o X the complement set of X

PAl
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Constraint Propagation Notation

Notation

o f : a function from R” to R
o f: a function from R" to R™
o f(X) ={f(x) | x e X}

) 4 Y2

f(x)

| T,

x.

T 1

Benoit Desrochers Shape SLAM 13 /49



Constraint Propagation Notation

Notation

o f : a function from R” to R
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) 4 Y2

£(X)

™

X Y
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Constraint Propagation  Set inversion

Set inversion

Set inversion

With Y € RP and f : R" — R™, the set inversion problem aims at
characterizing the set:

X = {xeR"|f(x)eY}

- W)
To f—l (Y) Y2 %
\
X
T Y1
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Constraint Propagation  Set inversion

Example with a disk
With f(x) = \/x? + x&:

X = f~1([0,2])
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Constraint Propagation  Set inversion

e

Example with a disk

With f(x) = \/x? + x&:
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Constraint Propagation Constraint network

Constraint network

Variables:
x(t1), %0, d1, d>

Constraints:
x(t) = f(x(t)) .
x(0) = xq m;

di = gm, (x(t1))
dy = gm, (x(t1))

Domains:
Xt17 [XO]a [d1]7 [d2]

with gm(x) = /(m1 — x1)2 + (M2 — x)?
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Constraint Propagation Constraint network

Constraint network

Variables:
X(tl), X0, dl, d2

Constraints:
x(t) = f(x(t)) o
x(0) = xg m
dh = gm (x(11)) ,f |
d = Emy (X(tl)) "-_/dlv ™

Domains:

th? [X0]7 [dl]v [d2]

with gm(X) = \/(ml — X1)2 + (mz — X2)2
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Constraint network

Variables:
X(tl), X0, dl, d2

Constraints:

x(t) = f(x(t))
x(0) = xg

di = gm, (x(t1)) :

d2 = gm, (x(t1)) el
Domains: \
Xiy, [xo], [dh], [d2]
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Constraint Propagation Constraint network

Constraint network

Variables:
X(?fl)7 X0, dl, d2

Constraints:
() = F(x(£)) U
x(0) = xg m;
dh = gm, (x(t1)) : '.
da = gm, (X(t1)) ™ ,5
Domains: ;

th? [X0]7 [d1]7 [d2] X, /
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Constraint Propagation Constraint network

Constraint network

Variables: e -~
X(tl),Xo,dl,dg ’

Constraints:
x(t) = f(x(t)) i’ %‘3
x(0) = xg m2 !

di = gm, (x(t1))
d> = gm, (x(t1))
Domains:

th? [X0]7 [dl]v [d2] X1 /
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Constraint Propagation Constraint network

Constraint network

Variables:
X(?fl)7 X0, dl, d2
Constraints: O

x(t) = f(x(t))

X(O) = X0 'mz

o
Domains: Q\ )
Xy, [xol, [dh], [da] % Xi0%,

with gm(X) = \/(ml — X1)2 + (mz — X2)2
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Constraint Propagation Constraint network

Constraint network

Variables:
X(tl), X0, dl, d2

Constraints:

x(t) = f(x(t))

x(0) = xg ‘m,

[XO] «my

Domains:
X4y, [xo], [d1], [d2]

with gm(X) = \/(ml — X1)2 + (mz — X2)2
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Constraint Propagation

Constraint network

Variables:
X(tl), X0, dl, d2

Constraints:

x(t) = f(x(t))
x(0) = xg

[xo]

Domains:
Xiy, [xo], [dh], [d2]

with gm(X) = \/(ml — X1)2 + (mz — X2)2

Benoit Desrochers

Constraint network

Shape SLAM
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Constraint Propagation Constraint network

Constraint network

Variables: e -
x(t1), %o, ch, d ,;[x(m]

Constraints: G}
x(t) = f(x(t)) : ) %‘3
x(0) = xo i . /

IL 777)//
[xo] m
0. .% \ »
Domains: ;\
" SXNX
Xty [xo], [d1], [d2] 1N X

with gm(X) = \/(ml — X1)2 + (mz — X2)2
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Constraint Propagation Constraint network

Constraint network

Variables: e
x(t1), xo, d1, d )
(t1) '0 1,02 %, L
Constraints: 3
x(t) = F(x(£)) / ‘3

X(O) = Xp 7 ‘ o /‘/ ] \\\\\ my
I Y S - \ \

Domains:
Xiy, [xo], [dh], [d2]

with gm(X) = \/(ml — X1)2 + (mz — X2)2
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Constraint Propagation Constraint network

Constraint network

Variables:
x(.),u(.), Z(t;),M

Constraints:
Xg)): f(x(.),u(.))
x(0) = xp y
Z(t;) = g(x(t), M) @

Domains:

(], [ [Z](8), V] L

witht e TCR Ro
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Thick Set

Outline

© Thick Set
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Thick Set Definition

Thick set

Definition
A thick set [X] of R” is an interval of (P(R"), C) such as :

[X] = X7, X*]
= {XePR")|X cXcXt}
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Thick Set Definition

Thick set

Definition
A thick set [X] of R” is an interval of (P(R"), C) such as :

[X] = X7, X*]
= {XeP®R"|X cXcX'}

+

X7 = X+\ X~

Benoit Desrochers Shape SLAM 19 /49



Thick Set Definition

Thick set

Definition
A thick set [X] of R” is an interval of (P(R"), C) such as :

[X] = X7, X*]
= {XePR")|X cXcXt}

+

X- X+
—— [ ! —
D ¢ P (R")
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Thick Set Definition

Thick set

Definition
A thick set [X] of R” is an interval of (P(R"), C) such as :

[X] = X7, X*]
= {XePR")|X cXcXt}

+

X- Xt
= 1+ >
| L ! _] ] '
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Thick Set Examples

Examples of interval shapes

M

Q%

Ro
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Thick Set Examples

Examples of interval shape

Legend

Interval shape
[ out
B in

[ Penumbra
Base Litto3D ® ,’ Base Litto3D ®
MNT from litto3D®) database Interval shape representation
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Thick Set Operations

Operations on thick sets

Two types of operations can be defined on thick sets. For instance:

o XIN[Y]={ZecPR")|Z=XNY,Xe[X],Y e [Y]}
= [XTNnY , Xt NnY"]

o X]M[Y]={ZecPR")|Zc[X],Zc [Y]}
= [XTUY Xt NY"]
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Thick Set Uncertain set inversion

Uncertain set inversion

Problem statement

Given Y € R™ and f : R” — R™, the set inversion problem aims at

characterizing the set :
X =f1(Y)

In our case:
Q Y € [Y] is a thick set
Q@ fcFcC F(R",R™) is an uncertain function

The uncertain set inversion aims at finding the smallest thick set which
encloses all feasible sets such as:

3If € F,3Y € [V],X = f (V)

Benoit Desrochers Shape SLAM
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Thick Set Uncertain set inversion

Uncertain set inversion

Theorem

Given f € F C F(R",R™) and [Y] = [Y~, Y], the smallest thick set
solution of [X] = [f] ! ([Y]) is:

X] = [X7,X"]
= |, Ui
fel fer
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Thick Set Uncertain set inversion

Uncertain set inversion

Theorem

Given f € F C F(R",R™) and [Y] = [Y~, Y], the smallest thick set
solution of [X] = [f] ! ([Y]) is:

X] = [x.X"]
= |, Ui
feF feF

X" ={X|VfeF X=f1(Y)}
X = f' (V)
Xt ={X|3IF eFX=F1(Y"}

X = £ () —
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Thick Set Uncertain set inversion

Example with an uncertain disk

Given [y] = [0,2], [m] € [-0.5,0.5]> and
fim () = 1/ G — [ma])? + (xz — [ma]?

We aim at finding the thick set [X] = f[r_n]l([y])

L.
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Thick Set Uncertain set inversion

Example with an uncertain disk

Given [y] = [0,2], [m] € [-0.5,0.5]> and
(%) = /(20— [mu])? + (2 — [ma])?
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Thick Set Example
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Thick Set Example

Example with uncertain disk

Given [y] = [0,2], [m] € [-0.5,0.5]? and
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Shape Registration and Carving

Outline

@ Shape Registration and Carving
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Shape Registration and Carving = Problem Statement

Shape registration and carving

Constraint network

f(Aa p) =B,
A€ [A],
B € [B],
peP

where fp(-) = f(p, ) is a bijective function.

Since

fA) =B < { Af(ficl(lffé)

only the elementary constraint f(A) C B needs to be handled.
Two subproblems:

@ the registration problem: find the smallest set P w.r.t [A] and [B]
@ the carving problem: contract [A] and [B] for a given P

Benoit Desrochers Shape SLAM
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Shape Registration and Carving  Registration

Registration

Problem statement

Given two shapes A C R”, B ¢ R™ and a function f: R” x RP — R™, we

are looking for the set:
P = {p[f(A p)CB}

2
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Shape Registration and Carving  Registration

Registration

Problem statement

Given two shapes A C R”, B ¢ R™ and a function f: R” x RP — R™, we

are looking for the set:
P = {p[f(A p)CB}

A Q2 f(A, p)

2
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Shape Registration and Carving  Registration

Registration

Problem statement

Given two shapes A C R”, B ¢ R™ and a function f: R” x RP — R™, we

are looking for the set:
P = {p[f(A p)CB}

f(A,p)
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Registration

Problem statement

Given two shapes A C R”, B ¢ R™ and a function f: R” x RP — R™, we

are looking for the set:
P = {p[f(A p)CB}
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Shape Registration and Carving  Registration

Registration

Proposition 1
Given A € P(R"), B € P(R") and f : R” x R? — R™, we have:

P = {peR’|f(Ap)CB}
= {peRP|-(FacA (ap)cfi(B))

= projp {(A x RP)Nf-1(B)}

Proposition 2
Given A € [A~,A"], Be [B~,B"] and f : R” x R — R™, we have:

{p|f(A,p)CB} C{p|f(A™,p)CB"}
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Carving

Shape Registration and Carving

Shape carving

Proposition
Given two shapes A € [A], B € [B], f: R?P x R” — R™ and p € [p].

A contractor for [A] is:

C([A]) = [A] M fi; ([B])

; %

>

[A] = [A7,

32/49
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Shape carving

Proposition
Given two shapes A € [A], B € [B], f: R?P x R” — R™ and p € [p].

A contractor for [A] is:

C([A]) = [A] M f; ([B])
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Carving

Shape Registration and Carving

Shape carving

Proposition
Given two shapes A € [A], B € [B], f: R?P x R” — R™ and p € [p].

A contractor for [A] is:

C([A]) = [A] 7 £, ((2])

32/49

Shape SLAM

Benoit Desrochers



Shape Registration and Carving =~ Example

e

Find the feasible set of translations
between p; and p, such as:

[A]
D1 l—~ Ty
yf
o
[B]
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Shape Registration and Carving

e

10

=

-20

|
=

|
1S

!
=
o
e
5

grayscale image

Benoit Desrochers

Example

W - - - .
st |
0 o
s -5 F -
—10} 1
i5f |
—20} {
. .

—20 —15 —10 =5 5 10
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Shape Registration and Carving =~ Example

Results
Registrations:

o [po] = [4,11] x [9, 16] o [p] = [6.85,7.04] x [10.829,11.001]
Carving:

10

~10 —10 ffo

~20 ~15 -10 -5 0 5 10 20 15 10 0 5 10

B -1 ((A])

x
[B] [
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Shape SLAM Problem Statement

Shaped SLAM

Problem statement
Given x € R” the state vector, u € R™ the input vector, f: R” x R™ — R”"
the evolution function, g : R” x R9 — R" the observation function,

x(t) f(x(t),u(t)) teR

Z(t,') = gx(t;)(M) tie TCR
x(0) = xo

where M € P(R9) and Z € P(R").
We assume that g,(;,) is bijective.
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Shape SLAM Problem Statement

Shaped SLAM

Problem statement

Given x € R” the state vector, u € R™ the input vector, f: R” x R™ — R”"
the evolution function, g : R” x R9 — R" the observation function,

x(t) = f(x(t),u(t)) teR
Z(t,') = gx(t;)(M) tie TCR
x(0) = xo

where M € P(R9) and Z € P(R").
We assume that g,(;,) is bijective.

With x(t) € R? and m € R?:
gx(t)(m) =m— X(t)

By (@) = 2+ x(1)
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Shape SLAM Inter-temporal formulation

Inter-temporal formulation

Since for (i, t;) € T2 C R?, we have:
Zi = gx(t;)(M) 1
! & Li = 8y(t: \Z;
{ Zj = x(t;)(M) Bx(s) © Bu() (2]
& Zi = hp;(Z))

M can be removed from the unknowns of the problem.

Example
With g, (¢)(m) = m — x(t):

Zi +x(ti) = Zj + x(t))
ST = Zj -+ X(tj) = X(t,')
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Shape SLAM Constraint network

Constraint network

( Variables:
x(+), u(+), Zy;, Pyt
Constraints:
@ %(-) = f(x(),u()
© by, = x(t) — x(t;) with (8, ;) € T C R?
O Zy = Ze; + pyy;

Domains:

[ KXIC) [Ul(), [Zi), [Py
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Shape SLAM Illustration

Inter-temporal formulation
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Shape SLAM Illustration
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Simulated test case
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Shape SLAM Simulated test case

Test case
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Test case
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Shape SLAM Experimental mission

Experimental mission with Daurade

@ 4h30 experimental mission in the bay of Roscanvel
@ 30 km long trajectory
@ data collected using a SeaBat 7125 Multibeam Echo Sounder
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Experimental mission with Daurade
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Experimental mission with Daurade
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Experimental mission with Daurade
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Conclusion
Conclusion and Prospects

Conclusion: Prospects:
@ shape related constraints @ multi sensors, multi views,
o development of new tools and multi resolution
algorithms @ need for reliable classifiers

@ application on robotics examples @ real-time implementation
3D shapes

@ implementation on pyibex

Benoit Desrochers Shape SLAM 47 / 49



Conclusion

Publications

Journal papers:

@ A Minimal Contractor for the Polar Equation; Application to Robot Localization.
B. Desrochers and L. Jaulin. Engineering Applications of Artificial Intelligence (2016)

@ Computing a guaranteed approximation the zone explored by a robot.
B. Desrochers and L. Jaulin. [EEE Transaction on Automatic Control (2017)

@ Thick set inversion.
B. Desrochers and L. Jaulin. Artificial Intelligence (2017)

Conferences papers:

@ Relaxed intersection of thick sets.
B. Desrochers and L. Jaulin. SCAN’16, Uppsala

@ Thick separators.
L. Jaulin and B. Desrochers. COPROD’16, Uppsala

@ Minkowski operations of sets with application to robot localization.
B. Desrochers and L. Jaulin. SNR’2017, Uppsala, 2017 .

@ Chain of set inversion problems; Application to reachability analysis.
B. Desrochers and L. Jaulin. IFAC'2017, Toulouse

Benoit Desrochers Shape SLAM 48 / 49



Simultaneous Localization and Mapping in Unstructured

Environments
A Set-Membership Approach

— Thank you for your attention! —
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