Simultaneous Localization and Mapping in Unstructured Environments A Set-Membership Approach

Benoît Desrochers

DGA Techniques Navales, Ensta Bretagne

May 24, 2018









# Outline

#### 1 Problem Statement

2 Constraint Propagation

#### 3 Thick Set

- 4 Shape Registration and Carving
- 5 Shape SLAM

#### Context

# Context

#### Localization

- critical function
- needed to assert mission requirements
- huge impact on the mission plan
- cannot rely on GNSS systems

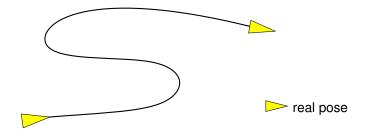


Daurade

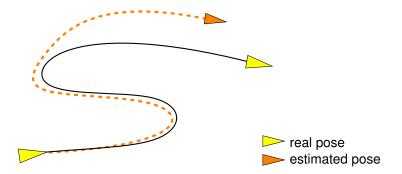
#### Autonomous Underwater Navigation

- no external positioning system
- dead-reckoning like navigation
- weak prior knowledge environment
- long term mission > 24h

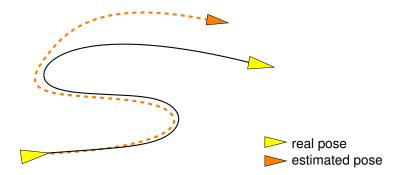
# Localization



## Localization



### Localization



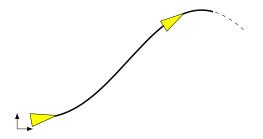
#### Challenges

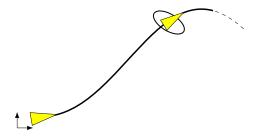
- get the best estimation
- get reliable error bounds

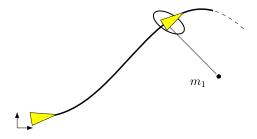
#### Definition

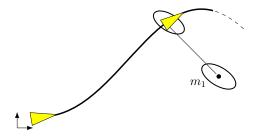
The simultaneous localization and mapping (SLAM) problem, for an autonomous vehicle moving in an unknown environment, is to build a map of this environment while simultaneously using this map to compute its location.

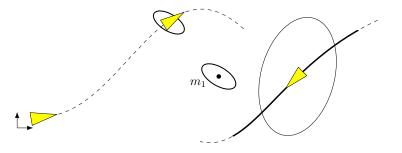


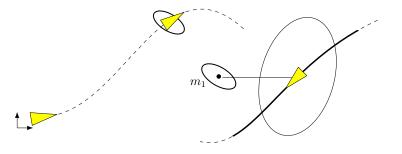


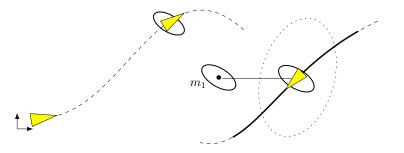










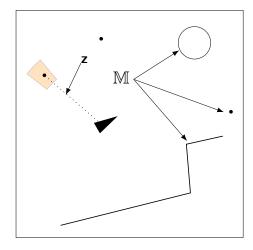


### Feature-based localization

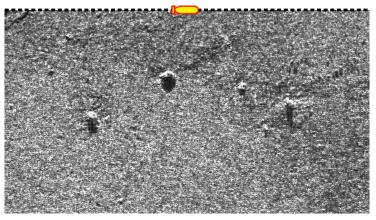
#### Observation equation

$$\left\{ \begin{array}{l} \mathbf{z} = \mathbf{g} \left( \mathbf{x}, \mathbf{p} \right) \\ \mathbf{p} \in \mathbb{R}^n \end{array} \right.$$

- well studied in the literature
- data association problem
- features are hard to detect in underwater environment
- indistinguishable objects

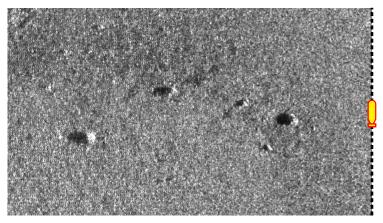


### Side-scan sonar images



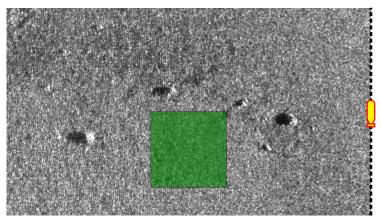
Images taken with Daurade (Klein 5000)

### Side-scan sonar images



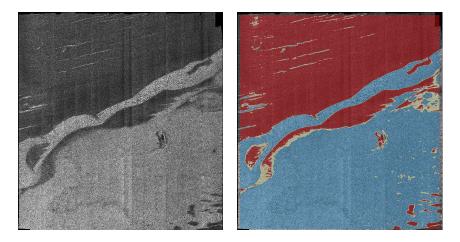
Images taken with Daurade (Klein 5000)

### Side-scan sonar images

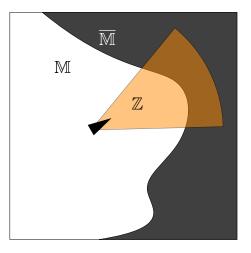


Images taken with Daurade (Klein 5000)

#### Side-scan sonar images Douarnenez 2008 (700m x 700m)



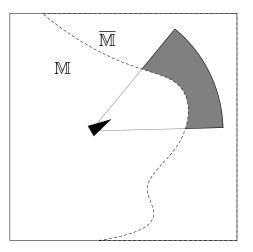
#### Shape-based localization



Observation equation 
$$\mathbb{Z} = \mathbf{g}\left(\mathbf{x}, \mathbb{M}
ight)$$

- each point of the measurement can be labeled
- occupancy grids in a probabilistic context
- no data association problem
- use reliable information

### Shape-based localization



Observation equation 
$$\mathbb{Z} = \mathbf{g}\left(\mathbf{x}, \mathbb{M}
ight)$$

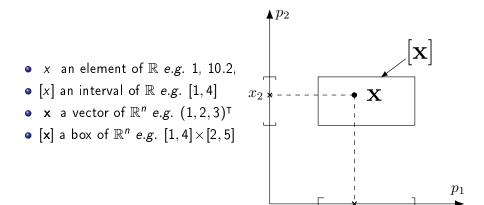
- each point of the measurement can be labeled
- occupancy grids in a probabilistic context
- no data association problem
- use reliable information

# Outline

- Problem Statement
- 2 Constraint Propagation
  - 3 Thick Set
  - 4 Shape Registration and Carving
  - 5 Shape SLAM

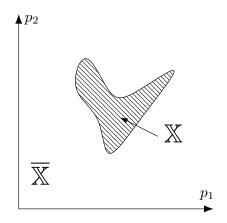
- x an element of  $\mathbb{R}$  e.g. 1, 10.2,
- [x] an interval of  $\mathbb{R}$  e.g. [1, 4]



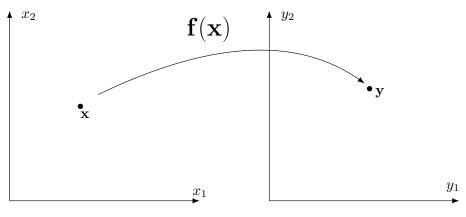


 $x_1$ 

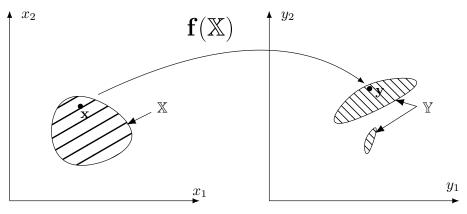
- x an element of  $\mathbb{R}$  e.g. 1, 10.2,
- [x] an interval of  $\mathbb{R}$  e.g. [1, 4]
- **x** a vector of  $\mathbb{R}^n$  e.g.  $(1,2,3)^{\mathsf{T}}$
- $[\mathbf{x}]$  a box of  $\mathbb{R}^n$  e.g.  $[1, 4] \times [2, 5]$
- X a subset of  $\mathbb{R}^n$
- $\overline{\mathbb{X}}$  the complement set of  $\mathbb{X}$



- f : a function from  $\mathbb{R}^n$  to  $\mathbb{R}$
- $\mathbf{f}$  : a function from  $\mathbb{R}^n$  to  $\mathbb{R}^m$
- $f(\mathbb{X}) = \{f(x) \mid x \in \mathbb{X}\}$



- f : a function from  $\mathbb{R}^n$  to  $\mathbb{R}$
- $\mathbf{f}$  : a function from  $\mathbb{R}^n$  to  $\mathbb{R}^m$
- $f(\mathbb{X}) = \{f(x) \mid x \in \mathbb{X}\}$

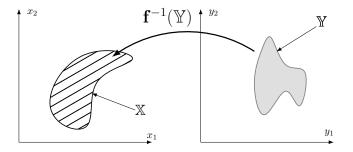


# Set inversion

#### Set inversion

With  $\mathbb{Y} \in \mathbb{R}^p$  and  $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ , the set inversion problem aims at characterizing the set:

$$\mathbb{X} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{f}(\mathbf{x}) \in \mathbb{Y} \}$$
  
=  $\mathbf{f}^{-1}(\mathbb{Y})$ 



# Example

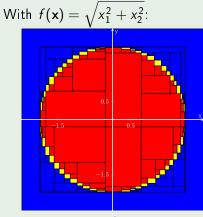
#### Example with a disk

With 
$$f(\mathbf{x}) = \sqrt{x_1^2 + x_2^2}$$
:

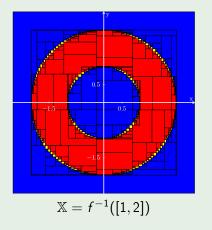
$$\mathbb{X}=f^{-1}([0,2])$$

# Example

#### Example with a disk



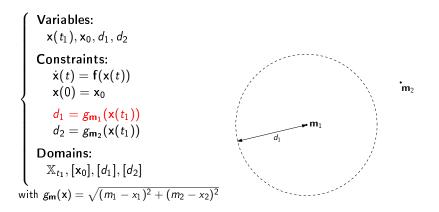
$$X = f^{-1}([0, 2])$$

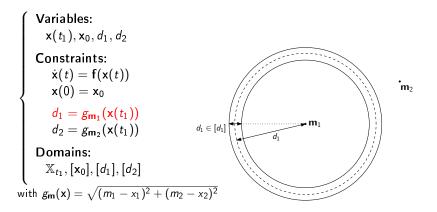


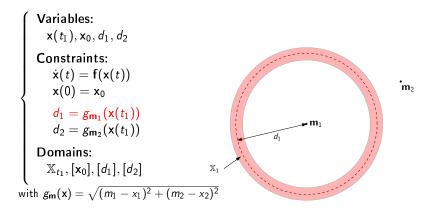
Variables:  $x(t_1), x_0, d_1, d_2$ Constraints:  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t))$  $x(0) = x_0$  $d_1 = g_{\mathbf{m}_1}(\mathbf{x}(t_1))$  $d_2 = g_{\mathbf{m}_2}(\mathbf{x}(t_1))$ Domains:  $X_{t_1}, [x_0], [d_1], [d_2]$ with  $g_{m}(\mathbf{x}) = \sqrt{(m_1 - x_1)^2 + (m_2 - x_2)^2}$ 

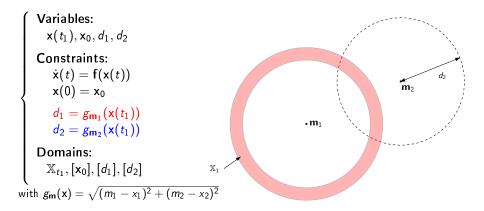
**. m**<sub>2</sub>

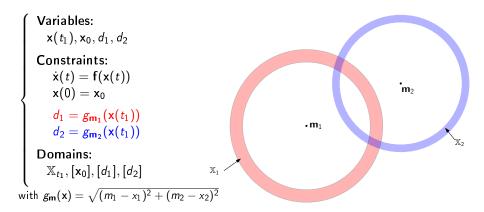
• m<sub>1</sub>

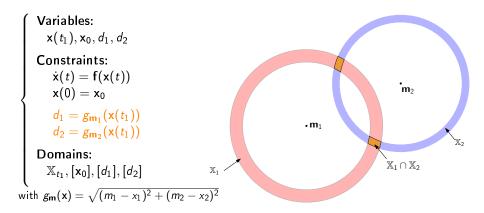










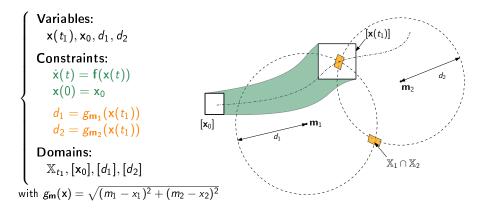


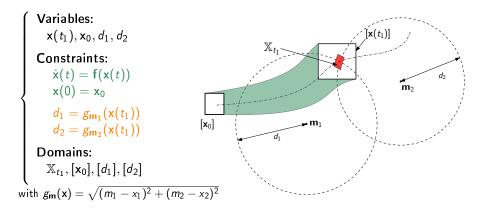
Variables:  $x(t_1), x_0, d_1, d_2$ Constraints:  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t))$ ·m<sub>2</sub>  $x(0) = x_0$  $d_1 = g_{\mathsf{m}_1}(\mathsf{x}(t_1))$  $[\mathbf{x}_0]$ • m1  $d_2 = g_{m_2}(\mathbf{x}(t_1))$ Domains:  $X_{t_1}, [x_0], [d_1], [d_2]$ with  $g_{m}(\mathbf{x}) = \sqrt{(m_1 - x_1)^2 + (m_2 - x_2)^2}$ 

Variables:  $x(t_1), x_0, d_1, d_2$ Constraints:  $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t))$  $x(0) = x_0$  $d_1 = g_{m_1}(\mathbf{x}(t_1))$  $[\mathbf{x}_0]$ • m1  $d_2 = g_{m_2}(\mathbf{x}(t_1))$ Domains:  $X_{t_1}, [x_0], [d_1], [d_2]$ with  $g_m(\mathbf{x}) = \sqrt{(m_1 - x_1)^2 + (m_2 - x_2)^2}$ 

 $[\mathbf{x}(t_1)]$ 

·m<sub>2</sub>



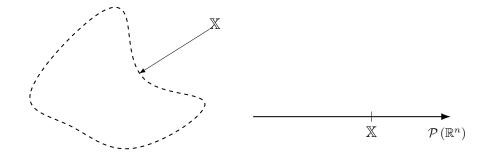


## Outline

- Problem Statement
- 2 Constraint Propagation
- 3 Thick Set
- 4 Shape Registration and Carving
- 5 Shape SLAM

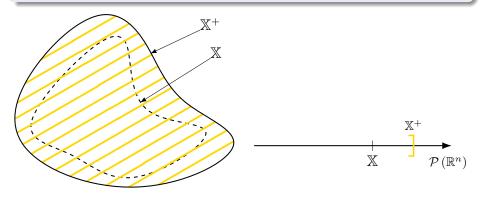
### Definition

$$\begin{split} [\mathbb{X}] &= & [\mathbb{X}^-, \mathbb{X}^+] \\ &= & \{\mathbb{X} \in \mathcal{P}(\mathbb{R}^n) \mid \mathbb{X}^- \subset \mathbb{X} \subset \mathbb{X}^+\} \end{split}$$



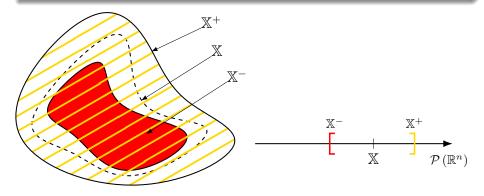
### Definition

$$\begin{split} [\mathbb{X}] &= & [\mathbb{X}^-, \mathbb{X}^+] \\ &= & \{\mathbb{X} \in \mathcal{P}(\mathbb{R}^n) \mid \mathbb{X}^- \subset \mathbb{X} \subset \mathbb{X}^+\} \end{split}$$



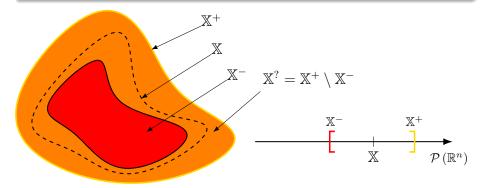
### Definition

$$\begin{split} [\mathbb{X}] &= & [\mathbb{X}^-, \mathbb{X}^+] \\ &= & \{\mathbb{X} \in \mathcal{P}(\mathbb{R}^n) \mid \mathbb{X}^- \subset \mathbb{X} \subset \mathbb{X}^+\} \end{split}$$



### Definition

$$\begin{split} [\mathbb{X}] &= & [\mathbb{X}^-, \mathbb{X}^+] \\ &= & \{\mathbb{X} \in \mathcal{P}(\mathbb{R}^n) \mid \mathbb{X}^- \subset \mathbb{X} \subset \mathbb{X}^+\} \end{split}$$



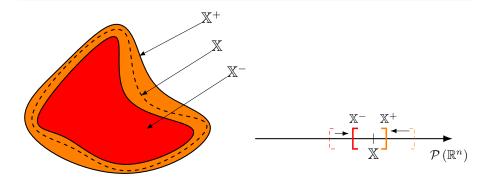
### Definition

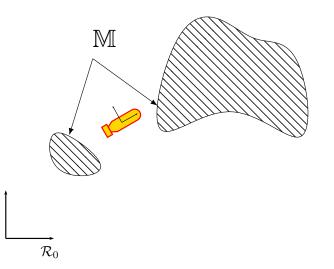
$$\begin{split} [\mathbb{X}] &= & [\mathbb{X}^-, \mathbb{X}^+] \\ &= & \{\mathbb{X} \in \mathcal{P}(\mathbb{R}^n) \mid \mathbb{X}^- \subset \mathbb{X} \subset \mathbb{X}^+\} \end{split}$$

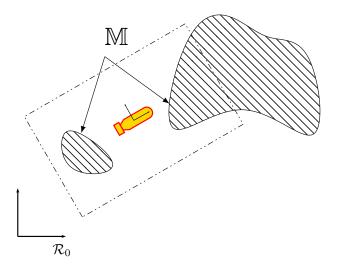


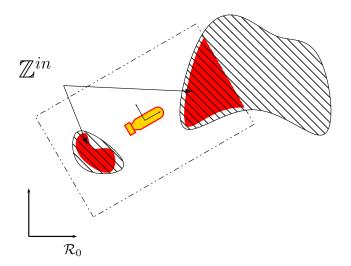
### Definition

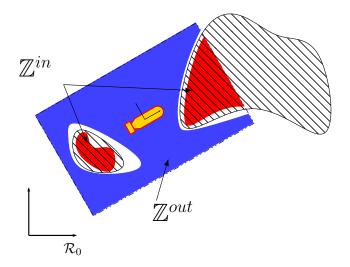
$$\begin{split} [\mathbb{X}] &= & [\mathbb{X}^-, \mathbb{X}^+] \\ &= & \{\mathbb{X} \in \mathcal{P}(\mathbb{R}^n) \mid \mathbb{X}^- \subset \mathbb{X} \subset \mathbb{X}^+\} \end{split}$$

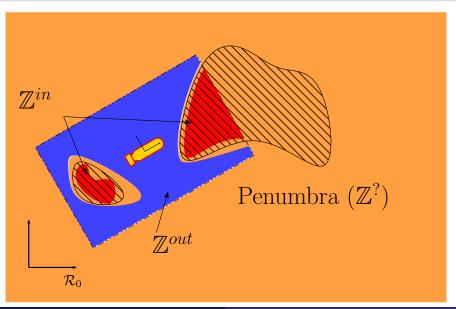


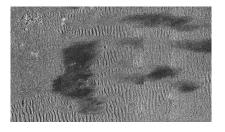




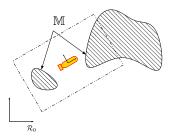


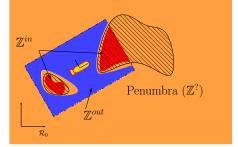


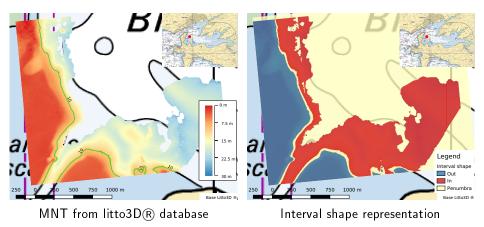










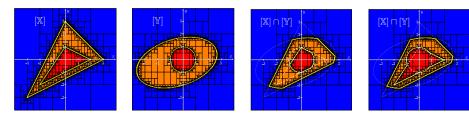


### Operations on thick sets

Two types of operations can be defined on thick sets. For instance:

• 
$$[\mathbb{X}] \cap [\mathbb{Y}] = \{\mathbb{Z} \in \mathcal{P}(\mathbb{R}^n) \mid \mathbb{Z} = \mathbb{X} \cap \mathbb{Y}, \mathbb{X} \in [\mathbb{X}], \mathbb{Y} \in [\mathbb{Y}]\}$$
  
=  $[\mathbb{X}^- \cap \mathbb{Y}^-, \mathbb{X}^+ \cap \mathbb{Y}^+]$ 

• 
$$[\mathbb{X}] \sqcap [\mathbb{Y}] = \{\mathbb{Z} \in \mathcal{P}(\mathbb{R}^n) \mid \mathbb{Z} \in [\mathbb{X}], \mathbb{Z} \in [\mathbb{Y}]\}\$$
  
=  $[\mathbb{X}^- \cup \mathbb{Y}^-, \mathbb{X}^+ \cap \mathbb{Y}^+]$ 



### Problem statement

Given  $\mathbb{Y} \in \mathbb{R}^m$  and  $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ , the set inversion problem aims at characterizing the set :

$$\mathbb{X} = \mathbf{f}^{-1}(\mathbb{Y})$$

In our case:

- $\mathbb{Y} \in [\mathbb{Y}]$  is a thick set
- **2**  $\mathbf{f} \in \mathbb{F} \subset \mathcal{F}(\mathbb{R}^n, \mathbb{R}^m)$  is an uncertain function

The uncertain set inversion aims at finding the smallest thick set which encloses all feasible sets such as:

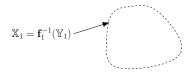
$$\exists \mathbf{f} \in \mathbb{F}, \exists \mathbb{Y} \in [\mathbb{Y}], \mathbb{X} = \mathbf{f}^{-1}(\mathbb{Y})$$

### Theorem

$$egin{array}{rcl} \mathbb{X} &=& ig[\mathbb{X}^-,\mathbb{X}^+ig] \ &=& igg[igcap_{\mathbf{f}\in\mathbb{F}}\mathbf{f}^{-1}(\mathbb{Y}^-),igcup_{\mathbf{f}\in\mathbb{F}}\mathbf{f}^{-1}(\mathbb{Y}^+)igg] \end{array}$$

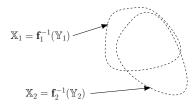
### Theorem

$$egin{array}{rcl} \mathbb{X} &=& \left[ \mathbb{X}^{-}, \mathbb{X}^{+} 
ight] \ &=& \left[ igcap_{\mathbf{f} \in \mathbb{F}} \mathbf{f}^{-1}(\mathbb{Y}^{-}), igcup_{\mathbf{f} \in \mathbb{F}} \mathbf{f}^{-1}(\mathbb{Y}^{+}) 
ight] \end{array}$$



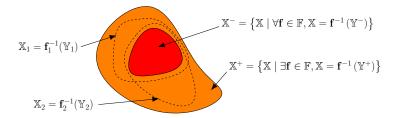
### Theorem

$$egin{array}{rcl} \mathbb{X} &=& \left[ \mathbb{X}^{-}, \mathbb{X}^{+} 
ight] \ &=& \left[ igcap_{\mathbf{f} \in \mathbb{F}} \mathbf{f}^{-1}(\mathbb{Y}^{-}), igcup_{\mathbf{f} \in \mathbb{F}} \mathbf{f}^{-1}(\mathbb{Y}^{+}) 
ight] \end{array}$$

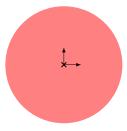


### Theorem

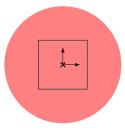
$$egin{array}{rcl} \mathbb{X} &=& \left[ \mathbb{X}^{-}, \mathbb{X}^{+} 
ight] \ &=& \left[ igcap_{\mathbf{f} \in \mathbb{F}} \mathbf{f}^{-1}(\mathbb{Y}^{-}), igcup_{\mathbf{f} \in \mathbb{F}} \mathbf{f}^{-1}(\mathbb{Y}^{+}) 
ight] \end{array}$$



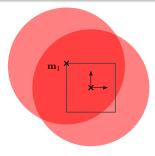
Given 
$$[y] = [0,2]$$
,  $[\mathbf{m}] \in [-0.5,0.5]^2$  and  $f_{[\mathbf{m}]}(\mathbf{x}) = \sqrt{(x_1 - [m_1])^2 + (x_2 - [m_2])^2}$ 



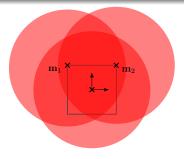
Given 
$$[y] = [0,2]$$
,  $[\mathbf{m}] \in [-0.5,0.5]^2$  and  $f_{[\mathbf{m}]}(\mathbf{x}) = \sqrt{(x_1 - [m_1])^2 + (x_2 - [m_2])^2}$ 



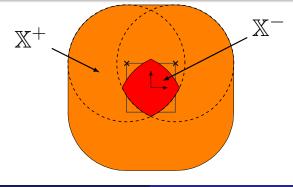
Given 
$$[y] = [0,2], [\mathbf{m}] \in [-0.5, 0.5]^2$$
 and  $f_{[\mathbf{m}]}(\mathbf{x}) = \sqrt{(x_1 - [m_1])^2 + (x_2 - [m_2])^2}$ 



Given 
$$[y] = [0,2]$$
,  $[\mathbf{m}] \in [-0.5,0.5]^2$  and  $f_{[\mathbf{m}]}(\mathbf{x}) = \sqrt{(x_1 - [m_1])^2 + (x_2 - [m_2])^2}$ 



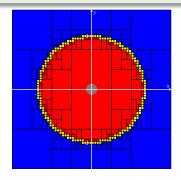
Given 
$$[y] = [0,2]$$
,  $[\mathbf{m}] \in [-0.5,0.5]^2$  and  $f_{[\mathbf{m}]}(\mathbf{x}) = \sqrt{(x_1 - [m_1])^2 + (x_2 - [m_2])^2}$ 



Given 
$$[y] = [0,2]$$
,  $[\mathbf{m}] \in [-0.5,0.5]^2$  and  $f_{[\mathbf{m}]}(\mathbf{x}) = \sqrt{(x_1 - [m_1])^2 + (x_2 - [m_2])^2}$ 

Thick Set

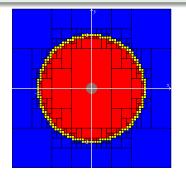
Example

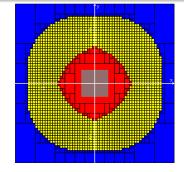


Given 
$$[y] = [0,2]$$
,  $[\mathbf{m}] \in [-0.5,0.5]^2$  and  $f_{[\mathbf{m}]}(\mathbf{x}) = \sqrt{(x_1 - [m_1])^2 + (x_2 - [m_2])^2}$ 

Thick Set

Example

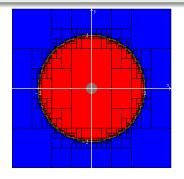


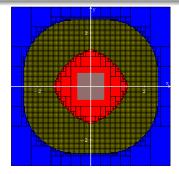


Given 
$$[y] = [0,2]$$
,  $[\mathbf{m}] \in [-0.5,0.5]^2$  and  $f_{[\mathbf{m}]}(\mathbf{x}) = \sqrt{(x_1 - [m_1])^2 + (x_2 - [m_2])^2}$ 

Thick Set

Example

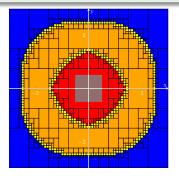


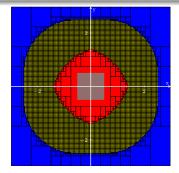


Given 
$$[y] = [0,2]$$
,  $[\mathbf{m}] \in [-0.5,0.5]^2$  and  $f_{[\mathbf{m}]}(\mathbf{x}) = \sqrt{(x_1 - [m_1])^2 + (x_2 - [m_2])^2}$ 

Thick Set

Example





# Outline

- Problem Statement
- 2 Constraint Propagation
- 3 Thick Set
- 4 Shape Registration and Carving
- 5 Shape SLAM

### Shape registration and carving

#### Constraint network

$$\begin{split} \mathbf{f}(\mathbb{A},\mathbf{p}) &= \mathbb{B}, \\ \mathbb{A} \in [\mathbb{A}], \\ \mathbb{B} \in [\mathbb{B}], \\ \mathbf{p} \in \mathbb{P} \end{split}$$

where  $f_p(\cdot) = f(p, \cdot)$  is a bijective function.

Since

$$\mathsf{f}(\mathbb{A}) = \mathbb{B} \Leftrightarrow \left\{ egin{array}{c} \mathsf{f}(\mathbb{A}) \subset \mathbb{B} \ \mathbb{A} \subset \mathsf{f}^{-1}(\mathbb{B}) \end{array} 
ight.$$

only the elementary constraint  $f(\mathbb{A})\subset \mathbb{B}$  needs to be handled. Two subproblems:

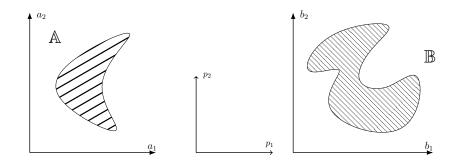
- the registration problem: find the smallest set  $\mathbb{P}$  w.r.t  $[\mathbb{A}]$  and  $[\mathbb{B}]$
- ullet the carving problem: contract  $[\mathbb{A}]$  and  $[\mathbb{B}]$  for a given  $\mathbb{P}$

# Registration

#### Problem statement

Given two shapes  $\mathbb{A} \subset \mathbb{R}^n$ ,  $\mathbb{B} \subset \mathbb{R}^m$  and a function  $\mathbf{f} : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^m$ , we are looking for the set:

$$\mathbb{P} = \{ \mathsf{p} \mid \mathsf{f}(\mathbb{A},\mathsf{p}) \subset \mathbb{B} \}$$

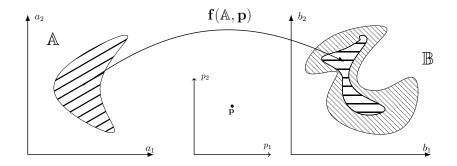


# Registration

#### Problem statement

Given two shapes  $\mathbb{A} \subset \mathbb{R}^n$ ,  $\mathbb{B} \subset \mathbb{R}^m$  and a function  $\mathbf{f} : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^m$ , we are looking for the set:

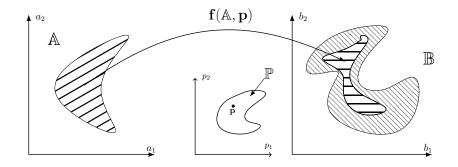
$$\mathbb{P} = \{ \mathbf{p} \mid \mathbf{f}(\mathbb{A}, \mathbf{p}) \subset \mathbb{B} \}$$



#### Problem statement

Given two shapes  $\mathbb{A} \subset \mathbb{R}^n$ ,  $\mathbb{B} \subset \mathbb{R}^m$  and a function  $f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^m$ , we are looking for the set:

$$\mathbb{P} = \{ \mathbf{p} \mid \mathbf{f}(\mathbb{A}, \mathbf{p}) \subset \mathbb{B} \}$$

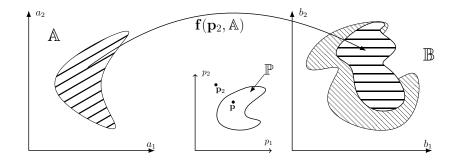


# Registration

#### Problem statement

Given two shapes  $\mathbb{A} \subset \mathbb{R}^n$ ,  $\mathbb{B} \subset \mathbb{R}^m$  and a function  $\mathbf{f} : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^m$ , we are looking for the set:

$$\mathbb{P} = \{ \mathbf{p} \mid \mathbf{f}(\mathbb{A}, \mathbf{p}) \subset \mathbb{B} \}$$



#### Proposition 1

Given  $\mathbb{A} \in \mathcal{P}(\mathbb{R}^n)$ ,  $\mathbb{B} \in \mathcal{P}(\mathbb{R}^n)$  and  $f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^m$ , we have:

$$\mathbb{P} = \{ \mathbf{p} \in \mathbb{R}^{p} \mid \mathbf{f}(\mathbb{A}, \mathbf{p}) \subset \mathbb{B} \}$$
$$= \{ \mathbf{p} \in \mathbb{R}^{p} \mid \neg (\exists \mathbf{a} \in \mathbb{A}, (\mathbf{a}, \mathbf{p}) \in f^{-1}(\overline{\mathbb{B}})) \}$$
$$= \overline{proj_{\mathbf{p}} \{ (\mathbb{A} \times \mathbb{R}^{p}) \cap \mathbf{f}^{-1}(\overline{\mathbb{B}}) \} }$$

#### Proposition 2

Given  $\mathbb{A} \in [\mathbb{A}^-, \mathbb{A}^+]$ ,  $\mathbb{B} \in [\mathbb{B}^-, \mathbb{B}^+]$  and  $f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^m$ , we have:

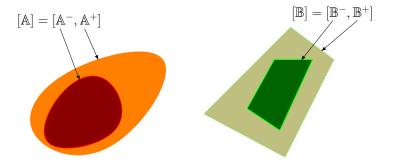
$$\{ \mathsf{p} \mid \mathsf{f}(\mathbb{A},\mathsf{p}) \subset \mathbb{B} \} \subset \left\{ \mathsf{p} \mid \mathsf{f}(\mathbb{A}^{-},\mathsf{p}) \subset \mathbb{B}^{+} 
ight\}$$

# Shape carving

#### Proposition

Given two shapes  $\mathbb{A} \in [\mathbb{A}]$ ,  $\mathbb{B} \in [\mathbb{B}]$ ,  $\mathbf{f} : \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^m$  and  $\mathbf{p} \in [\mathbf{p}]$ . A contractor for  $[\mathbb{A}]$  is:

$$\mathcal{C}([\mathbb{A}]) = [\mathbb{A}] \sqcap \mathsf{f}_{[\mathsf{p}]}^{-1}([\mathbb{B}])$$

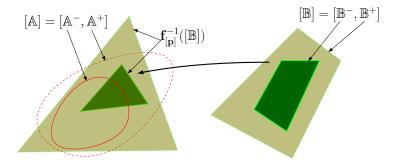


#### Shape carving

#### Proposition

Given two shapes  $\mathbb{A} \in [\mathbb{A}], \mathbb{B} \in [\mathbb{B}], \mathbf{f} : \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^m$  and  $\mathbf{p} \in [\mathbf{p}]$ . A contractor for  $[\mathbb{A}]$  is:

 $\mathcal{C}([\mathbb{A}]) = [\mathbb{A}] \sqcap \mathsf{f}_{[\mathsf{p}]}^{-1}([\mathbb{B}])$ 



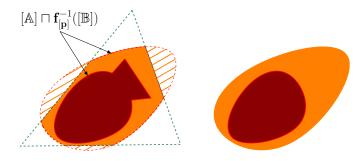
#### Carving

# Shape carving

#### Proposition

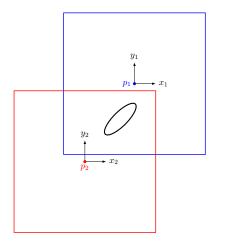
Given two shapes  $\mathbb{A} \in [\mathbb{A}]$ ,  $\mathbb{B} \in [\mathbb{B}]$ ,  $\mathbf{f} : \mathbb{R}^p \times \mathbb{R}^n \to \mathbb{R}^m$  and  $\mathbf{p} \in [\mathbf{p}]$ . A contractor for  $[\mathbb{A}]$  is:

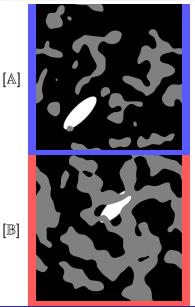
 $\mathcal{C}([\mathbb{A}]) = [\mathbb{A}] \sqcap \mathsf{f}_{[\mathsf{p}]}^{-1}([\mathbb{B}])$ 



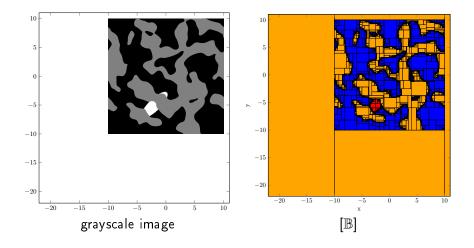
# Example

Find the feasible set of translations between  $\mathbf{p}_1$  and  $\mathbf{p}_2$  such as:





# Example



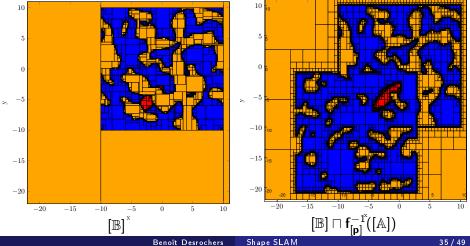
#### Example

# Results

#### **Registrations**:

• 
$$[\mathbf{p}_0] = [4, 11] \times [9, 16]$$
 •  $[\mathbf{p}] = [6.85, 7.04] \times [10.829, 11.001]$ 

#### Carving:



# Outline

- Problem Statement
- 2 Constraint Propagation
- 3 Thick Set
- 4 Shape Registration and Carving
- 5 Shape SLAM

# Shaped SLAM

#### Problem statement

Given  $\mathbf{x} \in \mathbb{R}^n$  the state vector,  $\mathbf{u} \in \mathbb{R}^m$  the input vector,  $\mathbf{f} : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$  the evolution function,  $\mathbf{g} : \mathbb{R}^n \times \mathbb{R}^q \to \mathbb{R}^r$  the observation function,

$$\left\{ egin{array}{ll} \dot{\mathbf{x}}(t) &=& \mathsf{f}(\mathbf{x}(t), \mathbf{u}(t)) \quad t \in \mathbb{R} \ \mathbb{Z}(t_i) &=& \mathsf{g}_{\mathbf{x}(t_i)}(\mathbb{M}) \quad t_i \in \mathbb{T} \subset \mathbb{R} \ \mathbf{x}(0) &=& \mathsf{x}_0 \end{array} 
ight.$$

where  $\mathbb{M} \in \mathcal{P}(\mathbb{R}^q)$  and  $\mathbb{Z} \in \mathcal{P}(\mathbb{R}^r)$ . We assume that  $\mathbf{g}_{\mathbf{x}(t_i)}$  is bijective.

# Shaped SLAM

#### Problem statement

Given  $\mathbf{x} \in \mathbb{R}^n$  the state vector,  $\mathbf{u} \in \mathbb{R}^m$  the input vector,  $\mathbf{f} : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$  the evolution function,  $\mathbf{g} : \mathbb{R}^n \times \mathbb{R}^q \to \mathbb{R}^r$  the observation function,

$$\left\{ egin{array}{ll} \dot{\mathbf{x}}(t) &=& \mathsf{f}(\mathbf{x}(t),\mathbf{u}(t)) \quad t\in\mathbb{R} \ \mathbb{Z}(t_i) &=& \mathsf{g}_{\mathbf{x}(t_i)}(\mathbb{M}) \quad t_i\in\mathbb{T}\subset\mathbb{R} \ \mathbf{x}(0) &=& \mathsf{x}_0 \end{array} 
ight.$$

where  $\mathbb{M} \in \mathcal{P}(\mathbb{R}^q)$  and  $\mathbb{Z} \in \mathcal{P}(\mathbb{R}^r)$ . We assume that  $\mathbf{g}_{\mathbf{x}(t_i)}$  is bijective.

#### Example

With 
$$\mathbf{x}(t) \in \mathbb{R}^2$$
 and  $\mathbf{m} \in \mathbb{R}^2$ :  
 $\mathbf{g}_{\mathbf{x}(t)}(\mathbf{m}) = \mathbf{m} - \mathbf{x}(t)$   
 $\mathbf{g}_{\mathbf{x}(t)}^{-1}(\mathbf{z}) = \mathbf{z} + \mathbf{x}(t)$ 

Since for  $(t_i, t_j) \in \mathbb{T}^2 \subset \mathbb{R}^2$  , we have:

$$\begin{cases} \mathbb{Z}_{i} = g_{\mathbf{x}(t_{i})}(\mathbb{M}) \\ \mathbb{Z}_{j} = g_{\mathbf{x}(t_{j})}(\mathbb{M}) \end{cases} \Leftrightarrow \mathbb{Z}_{i} = g_{\mathbf{x}(t_{i})} \circ g_{\mathbf{x}(t_{j})}^{-1}(\mathbb{Z}_{j}) \\ \Leftrightarrow \mathbb{Z}_{i} = \mathbf{h}_{\mathbf{p}_{ij}}(\mathbb{Z}_{j}) \end{cases}$$

 ${\mathbb M}$  can be removed from the unknowns of the problem.

#### Example

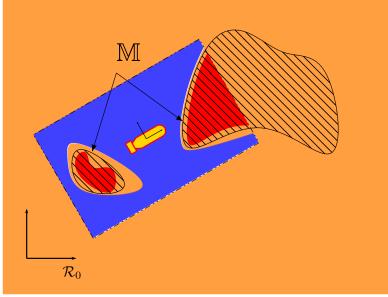
With  $\mathbf{g}_{\mathbf{x}(t)}(\mathbf{m}) = \mathbf{m} - \mathbf{x}(t)$ :

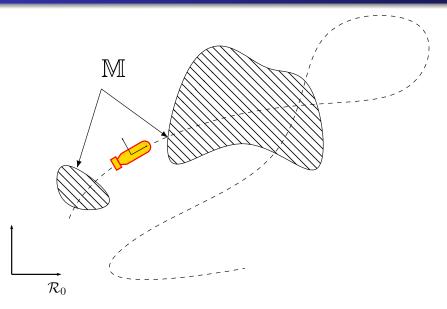
$$egin{aligned} \mathbb{Z}_i + \mathbf{x}(t_i) &= \mathbb{Z}_j + \mathbf{x}(t_j) \ \Leftrightarrow \mathbb{Z}_i &= \mathbb{Z}_j + \mathbf{x}(t_j) - \mathbf{x}(t_i) \ \Leftrightarrow \mathbb{Z}_i &= \mathbb{Z}_j + \mathbf{p}_{t_{ij}} \end{aligned}$$

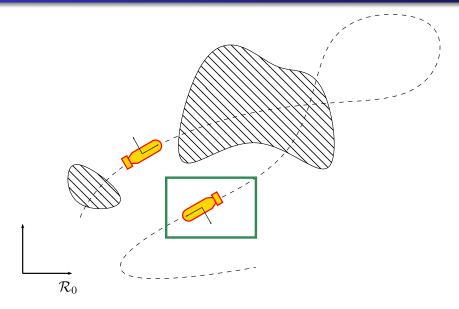
### Constraint network

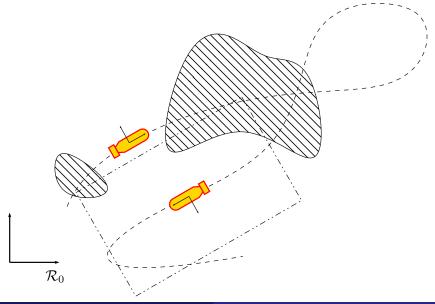
Variables:  $\mathbf{x}(\cdot), \mathbf{u}(\cdot), \mathbb{Z}_{t_i}, \mathbf{p}_{t_i t_j}$ Constraints: **a**  $\dot{\mathbf{x}}(\cdot) = \mathbf{f}(\mathbf{x}(\cdot), \mathbf{u}(\cdot))$  **a**  $\mathbf{p}_{t_i t_j} = \mathbf{x}(t_j) - \mathbf{x}(t_i)$  with  $(t_i, t_j) \in \mathbb{T}^2 \subset \mathbb{R}^2$  **b**  $\mathbb{Z}_{t_i} = \mathbb{Z}_{t_j} + \mathbf{p}_{t_i t_j}$ Domains:  $[\mathbf{x}](\cdot), [\mathbf{u}](\cdot), [\mathbb{Z}_i], [\mathbf{p}_{t_i t_j}]$ 

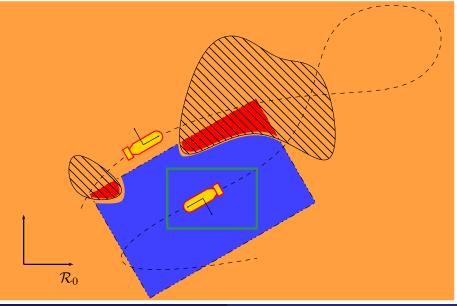
#### Shape SLAM Illustration



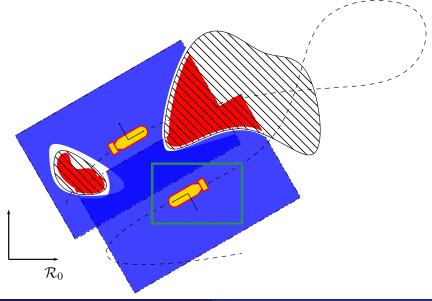


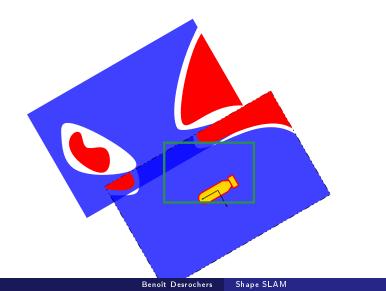


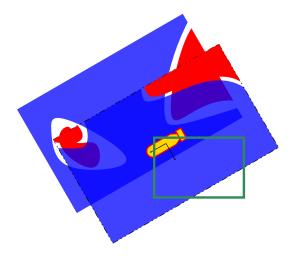




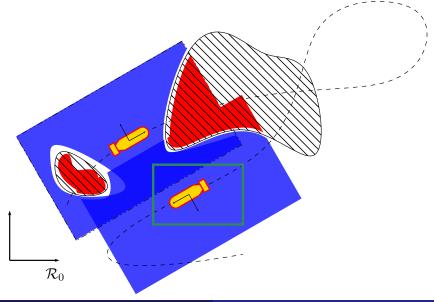
#### Shape SLAM Illustration



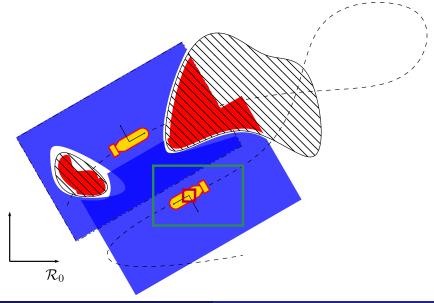


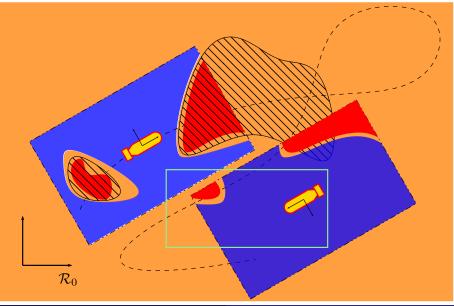


#### Shape SLAM Illustration

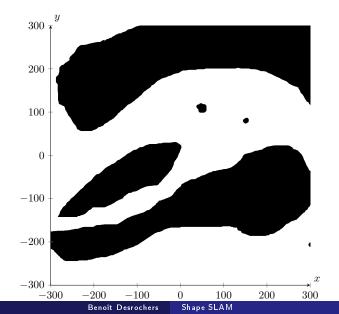


#### Shape SLAM Illustration

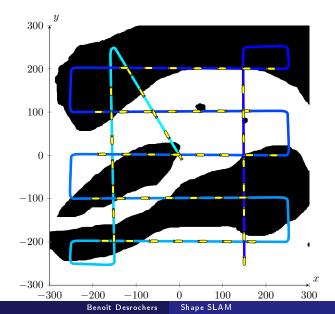




### Simulated test case

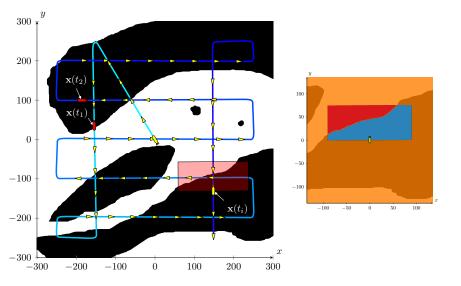


# Simulated test case



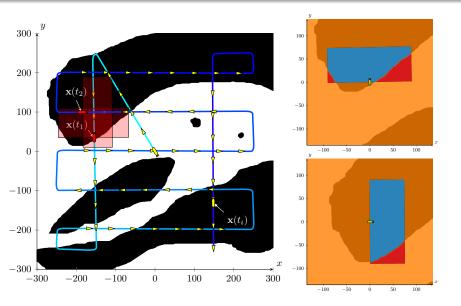
#### Shape SLAM Simulated test case

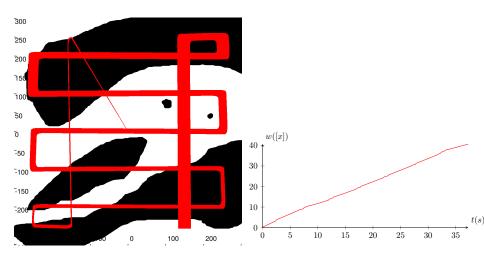
### Test case

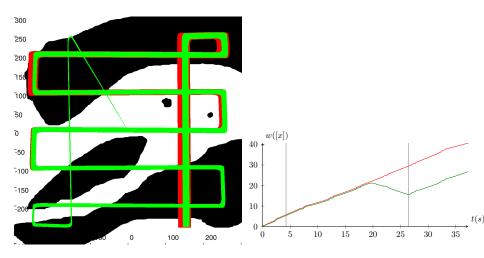


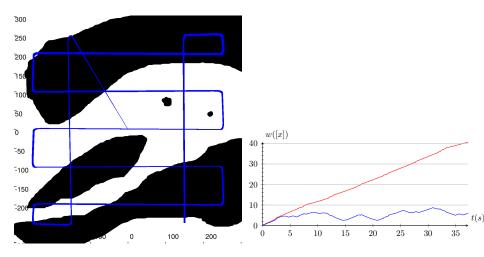
#### Shape SLAM Simulated test case

### Test case

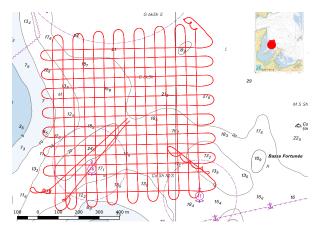




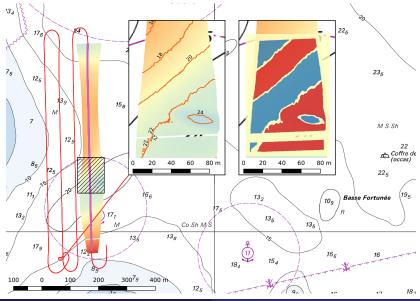




- 4h30 experimental mission in the bay of Roscanvel
- 30 km long trajectory
- data collected using a SeaBat 7125 Multibeam Echo Sounder



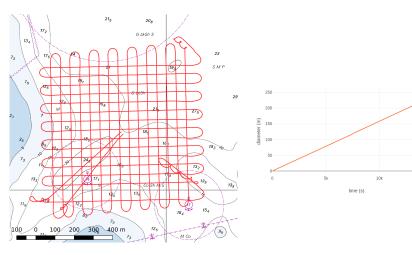
### Experimental mission with Daurade



Benoît Desrochers

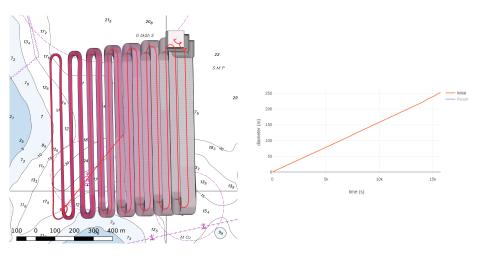
Shape SLAM

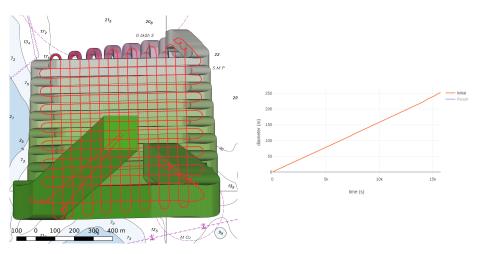
# Experimental mission with Daurade

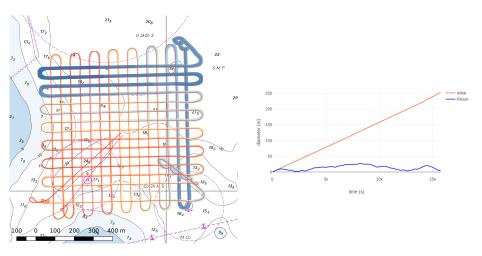


Initial

15k







# Conclusion and Prospects

#### Conclusion:

- shape related constraints
- development of new tools and algorithms
- application on robotics examples
- implementation on *pyibex*

#### Prospects:

- multi sensors, multi views, multi resolution
- need for reliable classifiers
- real-time implementation
- 3D shapes

## Publications

Journal papers:

- A Minimal Contractor for the Polar Equation; Application to Robot Localization. B. Desrochers and L. Jaulin. Engineering Applications of Artificial Intelligence (2016)
- Computing a guaranteed approximation the zone explored by a robot. B. Desrochers and L. Jaulin. *IEEE Transaction on Automatic Control (2017)*
- Thick set inversion. B. Desrochers and L. Jaulin. Artificial Intelligence (2017)

Conferences papers:

- Relaxed intersection of thick sets.
   B. Desrochers and L. Jaulin. SCAN'16, Uppsala
- Thick separators.
   L. Jaulin and B. Desrochers. COPROD'16, Uppsala
- Minkowski operations of sets with application to robot localization. B. Desrochers and L. Jaulin. SNR'2017, Uppsala, 2017 .
- Chain of set inversion problems; Application to reachability analysis. B. Desrochers and L. Jaulin. *IFAC'2017, Toulouse*

# Simultaneous Localization and Mapping in Unstructured Environments A Set-Membership Approach

#### — Thank you for your attention! —