
HAL Id: tel-01844077
https://hal.science/tel-01844077v2

Submitted on 20 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient contact determination between solids with
boundary representations (B-Rep)

Sébastien Crozet

To cite this version:
Sébastien Crozet. Efficient contact determination between solids with boundary representations (B-
Rep). Modeling and Simulation. Université Grenoble Alpes, 2017. English. �NNT : 2017GREAM089�.
�tel-01844077v2�

https://hal.science/tel-01844077v2
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES

Spécialité : Mathématiques & Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Sébastien Crozet

Thèse dirigée par Jean-Claude Léon, Professeur, Laboratoire
Jean Kuntzmann - INRIA équipe IMAGINE, et
co-encadrée par Xavier Merlhiot, Ingénieur Chercheur,
Commissariat à l’Énergie Atomique et Énergies Alternatives

préparée au sein du Laboratoire Jean Kuntzmann, et
Commissariat à l’Énergie Atomique et Énergies Alternatives
dans l'École Doctorale Mathématiques, Sciences et
Technologies de l'Information, Informatique

Efficient contact determination
between solids with boundary
representations (B-Rep)

Détermination efficace des contacts
entre solides représentés par
modélisation surfacique (BRep)

Thèse soutenue publiquement le 08 décembre 2017,
devant le jury composé de :

Prof. Laurent Grisoni
Professeur, Université de Lille 1, Rapporteur

Dr. Paul Kry
Professeur associé, McGill University, Rapporteur

Dr. Bernard Brogliato
Directeur de Recherches, INRIA, Président du jury

Dr. Frédéric Dubois
Ingénieur de Recherche, CNRS, Examinateur

Prof. Jean-Claude Léon
Professeur, Grenoble INP, Directeur de thèse

Dr. Xavier Merlhiot
Ingénieur Chercheur, CEA List, Co-encadrant de thèse

2

Acknowledgements

First, I would like to thank all the members of the jury, Laurent Grisoni and Paul Kry for
accepting the heavy task of being reviewers of this manuscript, as well as Bernard Brogliato for
accepting to be the president of the jury.

I thank my outstanding thesis director Jean-Claude Léon as well as my supervisor Xavier
Merlhiot for their trust during those three years, for their very complementary contributions to
the various scientific discussions, as well as their great support and guidance.

I thank my colleagues from the team of the Laboratoire de Simulation Interactive of the
CEA. In particular I thank Laurent Chodorge for hosting me in his laboratory and providing
resources for completing this thesis. A special thank to Francois Keith and Bruno Bodin who
helped integrating my work into the Unity environment. This allowed the setup of nice demos
as well as the use of haptic devices to interact with simulations involving my work.

I thank my colleagues from the team Imagine from Inria for their support and logistical
assistance.

Finally, I would like to thank deeply my family, Lucile, and Viola, for their everlasting sup-
port and encouragements during the whole thesis.

Of course, I thank as well any person not mentioned here whom I had the pleasure to interact
with during this thesis.

Thank you!

i

ii

Résumé

Avec le développement de systèmes robotiques avancés et de tâches de téléopération complexes,
le besoin pour la réalisation de simulations en amont des opérations sur les systèmes réels se
fait de plus en plus ressentir. Cela concerne en particulier les tests de faisabilité, d’entraînement
d’opérateurs humains, de planification de mouvements, etc. Ces simulations doivent générale-
ment être réalisées avec une représentation précise des phénomènes physiques, notamment si
l’opérateur humain est supposé faire face aux mêmes comportements mécaniques dans le monde
réel qu’avec la scène virtuelle. La détection de collisions, c’est-à-dire le calcul de points de con-
tact et des normales de contact entre des objets rigides en mouvement et susceptibles d’interagir
entre eux, occupe une portion significative des temps de calcul pour ce type de simulations. La
précision, ainsi que l’ordre de continuité de ces informations de contact, sont de première impor-
tance afin de produire des comportements réalistes des objets simulés. Cependant, la qualité des
informations de contact ainsi calculées dépend fortement de la représentation géométrique des
parties de la scène virtuelle directement impliquées dans la simulation mécanique. D’une part, les
représentations géométriques basées sur des volumes discrets (voxels, arbres de sphères, etc.) ou
des tessellations permettent une génération de contacts extrêmement rapide mais, en contrepar-
tie, peuvent introduire des artefacts numériques dûs à l’approximation des formes en contact.
D’autre part, l’utilisation de représentations surfaciques lisses (composées de courbes et surfaces
lisses) produites par les modeleurs CAO permet d’éliminer ce problème d’approximation. Cepen-
dant, ces approches sont actuellement considérées trop lentes en pratique pour des applications
en temps réel.

Cette thèse est dédiée au développement d’un premier module informatique de détection de
collisions entre solides représentés par une modélisation surfacique lisse et suffisamment efficace
pour offrir des performances temps-réel pour certaines applications industrielles nécessitant un
niveau de précision élevé. Ces applications prennent typiquement la forme de la simulation
d’opérations d’insertion de composants en présence de jeu faible. L’approche proposée est basée
sur une hiérarchie de volumes englobants et tire profit de caractéristiques clefs des composants
mécaniques industriels. En particulier, les surfaces sujettes à des contacts fonctionnels sont
généralement modélisées par des surfaces canoniques (cylindres, sphères, cônes, plans, tores).
Les contacts sur des surfaces gauches telles que les NURBS sont généralement accidentels et
rencontrés lors d’opérations de maintenance et d’assemblage. Notre hiérarchie de volumes en-
globants est améliorée par l’identification d’entités supermaximales afin d’éviter la localisation
redondante de points de contacts entre surfaces canoniques parfois découpées en plusieurs entités
distinctes par le modeleur CAO. De plus, le concept de cônes polyédriques de normales est défini
afin d’établir des bornes de normales plus précises que les cônes de normales de révolution exis-
tants. De plus, le module ainsi développé est étendu afin de supporter des configurations incluant
des câbles modélisés par des courbes de Bézier dilatées. Enfin, l’exploitation de la cohérence
temporelle, ainsi que la parallélisation de l’ensemble des traitements clefs permet l’exécution en
temps réel de certains scénarios industriels.

iii

Mots-clefs:

BRep, CAO, Détermination du contact, Distance minimal locale, Détection de collision, Dy-
namique multi-corps, Moteur physique

iv

Abstract

With the development of advanced robotic systems and complex teleoperation tasks, the need
to perform simulations before operating on physical systems becomes of increasing interest for
feasibility tests, training of human operators, motion planning, etc. Such simulations usually
need to be performed with great accuracy of physical phenomena if the operator is expected to
face the same ones in the real world as well as in the virtual scene. Collision detection, i.e., the
computation of contact points and contact normals between interacting rigid bodies, occupies
a time-consuming part of such a mechanical simulation. The accuracy and smoothness of such
contact information is of primary importance to produce a realistic behavior of the simulated
objects. However, the quality of the computed contact information strongly depends on the
geometric representation of the bodies of the virtual scene directly involved in the mechanical
simulation. On the one hand, discrete volumes-based (voxels, sphere trees, etc.) and tessellation-
based geometric representations allow very fast contact generation at the cost of the potential
introduction of numerical artifacts due to the approximation of the interacting geometric shapes.
On the other hand, the use of boundary representations (as issued by CAD modelers) composed
of smooth curves and surfaces removes this approximation problem but is practically considered
too slow for real-time applications.

This Ph.D focuses on developing a first complete collision detection framework on solids with
smooth boundary representations that achieves real-time performances. Our goal is to reach the
real-time simulation of industrial scenarios that require a high level of accuracy. Typical appli-
cations are insertion tasks with small mechanical clearances. The proposed approach is based
on a bounding-volume hierarchy and takes advantage of key features of industrial mechanical
components. Indeed, they are often modeled using surfaces describing functional contacts with
canonical surfaces (cylinder, sphere, cone, plane, torus) while contacts over free-form surfaces
like B-Splines are mostly accidental and encountered during approaching movements prior to
effective insertions. We augment our bounding volume hierarchy with the identification of super-
maximal features in order to avoid redundant exact localization of contact points on canonical
surfaces that may be represented as distinct features of the CAD model. In addition, we de-
fine polyhedral normal cones that offer tighter bounds of normals than existing normal cones of
revolution. Moreover, we extend our method to handle configurations that involve deformable
beams modeled as dilated Bézier curves. Finally, the parallelization of the full approach enables
the processing of industrial scenarios to be simulated in real-time.

Keywords:

BRep, CAD, Boundary representation, Contact determination, Local minimal distance, Collision
detection, Multibody dynamics, Physics engine

v

vi

Contents

Acknowledgements i

Abstract v

Introduction 1

1 Computing contact points between industrial CAD models: representation-
dependent approaches 7
1.1 Collision detection throughout the communities 7
1.2 Equations of motion and definition of contact constraints 9

1.2.1 Lagrangian formalism for constrained equations of motion 10
1.2.2 Integration schemes of the equation of motion 12
1.2.3 Handling deformable curves . 14
1.2.4 Why the continuity of contact normals is desirable 14

1.3 Choice of a geometric contact model . 16
1.3.1 Distance-based geometric contact models 16

1.3.1.1 Handling either multiple or conformal contacts 17
1.3.1.2 Working around the non-negativity of distance functions 19
1.3.1.3 Characterization of Local Minimal Distances (LMD) 20
1.3.1.4 Characterization of quasi-LMD 23
1.3.1.5 Summary and recommended choice of gap function 26

1.3.2 Penetration-based contact models . 26
1.4 Choice of geometric representation . 28

1.4.1 Discrete volume representations: fast with low accuracy 29
1.4.2 Piecewise linear boundary representation: polyhedral approximations . . . 30
1.4.3 Smooth boundary representations: toward optimal accuracy 31

1.5 Distance computation on smooth boundary representations: existing methods . . 36
1.5.1 Subdivision methods . 36

1.5.1.1 Solution existence tests . 38
1.5.1.2 Search space subdivision methods 39
1.5.1.3 Ensuring the uniqueness of a solution 39

1.5.2 Numerical resolution of the optimization problem 40
1.5.2.1 Finding an initial guess . 40
1.5.2.2 Finding the solution . 41

1.5.3 Handling trimmed surfaces . 42
1.5.4 Methods based on alternative representations 43

1.6 Conclusion and presentation of the objectives . 45

vii

2 From the CAD model to a data structure for distance computation 47
2.1 Why pre-computing a data structure is necessary 47
2.2 Curvature-based surface compatibility . 49
2.3 Introducing supermaximal features to avoid redundant computations 52

2.3.1 Definition and identification . 53
2.3.2 Data structures of supermaximal features 54

2.4 Constructing the Bounding Volume Hierarchy (BVH) 57
2.4.1 Splitting features into quasi-flat areas and processing non simply con-

nected domains . 57
2.4.2 BVH node structure and choice of bounding volumes 61
2.4.3 The culling tests . 62
2.4.4 Top-Down construction . 64

2.5 Conclusion . 64

3 Tightening the bounds on solutions: take orientation into account with normal
and tangent cones 67
3.1 How and why bounding the normals of a BRep feature 67
3.2 Obtaining tighter normal bounds with polyhedral cones 70

3.2.1 Definitions from convex analysis . 70
3.2.2 Checking that two normal cones contain antipodal directions 71

3.3 Generation of polyhedral normal cones . 73
3.3.1 Meridian or line of latitude on S2 . 74
3.3.2 Canonical surfaces . 74
3.3.3 Edges, vertices, and Bézier surfaces . 75

3.4 Dilating polyhedral normal cones to improve conformal contacts handling 76
3.5 More culling tests for Bézier curves using tangent cones and solution line cones . 78

3.5.1 The existing: tangent cones and solution line cones of revolution 79
3.5.1.1 Orthogonality test between cones of revolution 80
3.5.1.2 Tangent cones of revolution for C1 Bézier curves 80
3.5.1.3 Solution line cones of revolution for two C1 Bézier curves 81

3.5.2 Tighter bounds for C1 Bézier curves with polyhedral tangent cones and
polyhedral solution line cones . 82
3.5.2.1 Orthogonality test between two polyhedral cones 82
3.5.2.2 Computation for Bézier curves 84

3.6 Conclusion . 85

4 Achieving real-time simulations: a parallelized runtime CD pipeline with tem-
poral coherence 87
4.1 Description of the sequential CD pipeline . 87
4.2 The BVH traversal . 88

4.2.1 Simultaneous traversal and the Bounding Volume Test Tree 89
4.2.2 Simplified polyhedral cones and leaf-leaf tests 89
4.2.3 Avoiding redundant computations with supermaximal faces 93

4.3 Exact contact points computation . 94
4.3.1 Algorithmic choices for non-deformable features 94
4.3.2 Handling some conformal contact configurations with sampling 96

4.3.2.1 Conformal contacts of dimension two 97
4.3.2.2 Conformal contacts of dimension one 98

4.3.3 An hybrid approach for deformable Bézier curves 99
4.4 Validation of closest points computed onto individual features 103

viii

4.4.1 Testing the potential LMD against trimming curves 104
4.4.2 Filtering the potential LMD using exact tangent cone polars 105

4.5 Exploiting temporal coherence . 106
4.5.1 Front tracking . 106
4.5.2 Temporal coherence for bounding volumes 108
4.5.3 Temporal coherence for LMD computation 110

4.6 Parallelization of the CD pipeline . 112
4.6.1 Parallel front nodes status assignment with partial pruning 112
4.6.2 Parallel front traversal and construction of the new BVTT front 113
4.6.3 Parallel LMD computation and trimming 114
4.6.4 Discussion regarding load-balancing . 115

4.7 Conclusion . 115

5 Experimentations and benchmarks on industrial models 117
5.1 First scenario: telerobotics insertion task . 117

5.1.1 Models description . 118
5.1.2 Running times comparisons . 120

5.1.2.1 Comparison of the BRep-based framework with a Polyhedron-
based framework . 120

5.1.2.2 Evaluation of the tasks parallelism 122
5.1.2.3 Contribution-based evaluation of performance improvements . . 125

5.2 Second scenario: ROV teleoperation insertion task 126
5.2.1 Models description . 126
5.2.2 Running times comparisons . 129

5.3 Third scenario: curve deformation . 130
5.4 Conclusion . 133

Conclusion and perspectives 135

ix

x

Introduction

Context of collision detection and multibody dynamics simulation

Collision Detection (CD) encompasses several geometric queries of varying complexities ranging
from simple binary interference tests to the computation of all the contact points between virtual
3D objects evolving in complex environments. The choice of a geometric query type and the
required accuracy of their output strongly depend on the targeted application. For example,
applications like accessibility tests and motion planning [113] rely mostly on binary interference
tests. Thus, the task of the collision framework is simply the detection of intersections between
multiple solids without necessarily producing any additional information regarding the geometric
description of the intersection itself. Haptic simulations, animation, video games, and virtual
training require more complex geometric informations whenever two solids touch each other or
are about to collide. Such information is at the root of the definition of contact constraints that
can be simulated by a dynamics simulation software. However, contact information can take
several forms depending on the geometric representation of the objects being simulated, and on
the desired accuracy and performance of the whole application:

• Applications like haptic simulations require the physical phenomena to be simulated in
real-time and at a very high update rate (∼1000Hz). Those generally require fast responses
of the collision detection engine in order to output force feedbacks at a high frequency.
Thus, accuracy is typically sacrificed for performance using coarse approximations of the
objects’ geometric models (see Section 1.4.1) and approximate computations to estimate
their penetration (see Section 1.3.2). That way, they benefit from the efficiency of penalty-
based methods [115];

• Applications like video games rely on a lower update rate (∼60Hz) and require physical
simulations to be efficient enough to allow real-time interactions while staying accurate
enough to be visually appealing and plausible. Often, the geometric queries include the
computation of penetrations, contact normals and tangents (for friction) and, sometimes,
the localization of closest points. The accuracy of objects’ geometric models is generally
sacrificed in favor of approximate ones so that CD can be fast enough. Popular simulation
packages include Bullet Physics [31], the Open Dynamics Engine [123] and PhysX [101].
A more exhaustive list and comparison can be found in [18];

• The real-time simulation of high-accuracy applications like interactive assembly and vir-
tual training in real-time often allows smaller update rates (30 to 60Hz). This lets the
application allocate more time for the simulation of the physical phenomena which must
be more realistic as well. Update rates down to 30Hz remain acceptable because this gives
the user an acceptable power of interaction with the simulated components. The executed
geometric queries are similar to those required by video games though a higher level of
accuracy is necessary so that penetrations can be avoided as much as possible. Thus,
they may rely on distance informations (see Section 1.3.1) and polyhedral approximations

1

(see Section 1.4.2) or smooth representations (BRep, see Section 1.4.3) of their boundaries,
depending on the specification of the application. Popular simulation packages include the
eXtended Dynamics Engine (XDE) [91], Vortex [30], and AGX [6].

• Finally, some applications like accessibility test for maintenance operations require a high
level of accuracy but tolerate non real-time execution of the simulation as long as the
capabilities of the user to interact with the physical scene is not too inconvenient. In those
cases the simulated physical phenomena appear as if they are slowed down since the time
evolves more slowly in the simulated scene than in the real world.

This thesis aims at contributing to the third category, i.e., applications where accuracy is
more important than computation times as long as the simulation remains real-time and with a
reasonable update rate. Ideally, an update rate of 60Hz is targeted, implying that at most 16ms
can be allocated to update the physical scene (including CD). Indeed, the multibody systems
of the targeted industrial applications become increasingly complex with geometric models that
are highly curved and mechanical clearances between assembly components that become of the
order of tenths of millimeters or smaller. As an example, the scenario depicted by Figures 1
and 2 involves a simulated underwater Remotely Operated Vehicle (ROV) performing a docking
procedure1. This application can be seen as the simulation of an insertion task with small
mechanical clearances. Additionally, once the insertion is complete as shown in Figure 2a, the
fingers are deployed thanks to an hydraulic actuator (see Figure 2b) and have to be simulated
as well in order to complete the docking. The original 3D models of the tips being inserted and
the hole are mostly represented as smooth pieces of cylinders and cones. Other examples, with
benchmarks of our methods, are presented in Chapter 5.

The real-time and haptic simulation of this type of applications with solids fitting together
with small mechanical clearances and involving rolling and sliding motions that occur frequently,
is still a challenge. Indeed, efficient methods based on geometric approximations (such as trian-
gle meshes) are hardly applicable without using an excessively high number of approximating
elements. For example, tessellation-based solutions produce fast and accurate results for most
common industrial use-cases, but fail for such insertion tasks since high accuracy of the contact
geometry is necessary to achieve the required level of realism while keeping acceptable perfor-
mances. Indeed, as discussed in Section 1.4.2, polyhedral approximations induce numerical errors
with noticeable consequences from the user point of view like, e.g., unrealistic shocks during the
simulation causing "jumps" or an inconsistent loss of kinetic energy, or even the impossibility
to insert an object completely into another one containing its imprinted cavity or socket.

Limitations of existing approaches

Existing real-time simulation frameworks for industrial real-time multibody simulations rely on
approximate geometric representations of the input models of their constitutive objects in order
to keep the computational cost of CD sufficiently low. One of the most commonly used approx-
imations, the polyhedral representation which is a piecewise-linear approximation of the object
models boundaries, introduces numerical errors into the simulations that may affect significantly
the trajectory of the simulated objects. Indeed, the set of positions reachable by the dynamic
objects cannot be represented exactly due to the fact that non-penetration constraints inherit
their accuracy and smoothness from the conformity of the geometric models used for CD with
regard to the ones being manufactured. This issue can be worked around, e.g., when using
polyhedral representations with an increasing the number of polygons and hence, refining the

1The structure on which the ROV is docking is hidden on the pictures due to confidentiality restrictions.

2

Figure 1: Underwater ROV about to dock to a structure (hidden in black) by inserting two orange components
into the orange sockets. Image courtesy of TechnipFMC.

approximation. But this is achieved at a great performance cost since more polygons imply an in-
creased computation time dedicated to collision detection, a greater memory footprint, and more
contact constraints to be solved (see Figure 3), which slows down the dynamics solver as well.
Consequently, there is a point where switching to smooth geometric representations becomes
necessary for some application in order to meet the required performances while maintaining an
optimal accuracy.

Indeed, a drastic solution for dealing with those inaccuracy issues consists of getting rid of
all kinds of geometric approximations of the input geometric models and use the actual smooth
geometries produced by CAD2 modelers. For example, most CAD modelers output 3D mod-
els represented as a smooth BRep solids. Roughly speaking, the boundary of a BRep solid is
composed of points, curves, and surfaces, connected together (see Section 1.4.3). Using this
kind of smooth representation has the immediate benefit of allowing the non-penetration con-
straints as well as the set of reachable configurations, to be represented without approximation.
However, while this setting produces optimal accuracy, the corresponding existing CD methods
still suffer from performance or accuracy issues. Moreover, only few approaches in the literature
attempt to compute collisions between full CAD models rather than isolated curves and surfaces
(see Section 1.5). Attempting to fill this gap is the purpose of our CD framework.

Structure of the manuscript

The goal of this manuscript is to describe a new framework for the computation of Local Minimal
Distances (LMD) between smooth industrial BRep models (representing the geometrical shape
of rigid bodies) and deformable Bézier curves (representing the geometrical shape of deformable
beams with circular cross-sections). It is organized into five chapters:

• Chapter 1 states formally the context and objectives through the mathematical descrip-
tion and interpretation of non-penetration constraints and LMDs. The questions about
the choice of a geometric contact model as well as the geometric representations of the

2Computer-Aided Design

3

(a) (b)

(c)

Figure 2: Side view of the docking procedure. (a) After insertion. (b) After locking by deploying two fingers. (c)
Close view where some contact points are visible is small red arrows. Images courtesy of TechnipFMC.

simulated objects are addressed and contextualized for the applications targeted by the
proposed framework in order to motivate its objectives. The latter are the fast and effi-
cient computation of LMDs between smooth BRep models to accurately describe rolling
and sliding motions between components. Existing methods for the computation of dis-
tances between smooth curves and surfaces are detailed;

• Chapter 2 describes all the operations performed only once as an initialization step, i.e.,
before the execution of any actual geometric query. The goal of this offline phase is to build
a bounding volume hierarchy for each BRep model and deformable curve. This hierarchy
is filled up with attributes that are widely used in the literature like oriented bounding
boxes and cones of revolution. Additionally, we add logical informations resulting from an
analysis of the shape structure of the input model. This analysis includes the grouping
of similar surfaces and curves into new types of entities called supermaximal faces and
supermaximal surfaces. As a complement, the curvatures of various surfaces are studied to

4

(a) (b)

Figure 3: Simulation of the insertion of an hotstab (orange) operated by a ROV into a container (blue). The
mechanical clearance is small (1/100th of the hotstab outer diameter). All the red marks in (b) identify a contact
constraint. There are approximately 800 linear contact constraints while this work output around 10 non-linear
contact constraints. Refer to Section 5.2 for more details on this scenario.

determine compatibility attributes that identify some pair of surface types that can never
contain closest points;

• Chapter 3 defines a new bounding volume dedicated to LMD directions. This bounding
volume, defined as a mathematical cone with a polygonal base, is used to bound normals,
tangents, and directions of projection. As a tight bounding volume, it leads to a more dis-
criminative culling test in order to identify more efficiently the areas from two objects that
may contain closest points. Additionally, methods for computing those bounding volumes
for vertices, edges, and faces areas depending on their actual geometric representation, are
provided;

• Chapter 4 describes how the pre-computed data generated by the offline phase is exploited
at run-time to compute the LMDs between two smooth BRep models or deformable Bézier
curves. The common tree-traversal approach is detailed and adapted to take into account
our new bounding volume as well as the supermaximal entities and compatibility at-
tributes. An hybrid method that combines the bounding volume hierarchy with dynamic
subdivisions is proposed for deformable curves. Computation times are then significantly
improved by the parallelization of the whole CD pipeline and the incorporation of temporal
coherence to avoid repeated computations from one time-step of the dynamics simulation
to the next;

• Chapter 5 analyzes the performance of the proposed framework applied to various tasks
that require smooth geometric representations to be properly simulated in real-time. Per-
formance comparison is provided between our framework and an alternative distance-based
CD framework handling polyhedral representations during simulations.

Finally, the conclusion summarizes the contributions brought by our work and highlights some
limitations of our framework. Potential directions for research leading to improvements over-
coming those limitations and increasing further the simulation accuracy when our framework is
integrated to a dynamics simulation engine, are proposed.

5

6

Chapter 1

Computing contact points between
industrial CAD models:
representation-dependent approaches

This first chapter describes the context of the work presented in this manuscript together with
some existing methods that partially address the various steps required for fast and real-time
computations of closest points between industrial CAD1 models. The goals of a collision detec-
tion framework, seen as part of a multibody dynamics simulation, is first presented in order to
identify its objectives. After clarifying that the main goal of this work is the computation of
geometric informations as required by the dynamics integrator in order to generate constraints
and avoid penetration between the different simulated solids, two of the main geometric contact
models for real-time simulations are presented. Various geometric representations are detailed as
well and compared from the point of view of the accuracy of their resulting non-penetration con-
straints. Those discussions lead to the identification of our objectives: the real-time computation
of local minimal distances between smooth boundary representations of the objects’ shape geome-
tries. This removes inconsistencies that would be introduced into the non-penetration constraints
by approximations of the component shapes. Several existing methods addressing the distance
computation between smooth curves and surfaces are then presented and categorized. Overall,
the complexity of closest point computation between smooth industrial models yield performance
issues that will be under focus in the subsequent chapters.

1.1 Collision detection throughout the communities

Collision Detection (CD) is a broad field of research with applications throughout a wide range of
communities. Depending on their applications, various communities have been motivated to dis-
cover methods with extremely different characteristics depending on the required computational
efficiency and geometric accuracy. Three of those communities that played a significant role
through the contributions to CD methods used for dynamics simulations can be characterized
as follows:

1. The mechanics community is mostly concerned by the realistic modeling and analysis of
the equations of motion and its related constraints, including non-penetration constraints,

1Computer-Aided Design

7

frictional 3D contacts and impacts, kinematic constraints, etc. In particular, substantial
research has been made regarding the definition of contact models and the well-posedness,
conditions of existence, and uniqueness of solutions for the constrained equations of mo-
tion [142, 10, 20, 37, 4]. Because this community studies the mechanical systems from
motions and forces points of view, the problems related to collision detection and of rep-
resentation of the geometric models are most often not addressed explicitly. Indeed, it is
generally considered that CD provides whichever geometric information necessary to de-
fine contact constraints that are often assumed to be smooth functions (see Section 1.2.1).
Such a smoothness naturally derives from the smooth shapes of the components;

2. The computer graphics (CG) community relies on dynamics simulation in order to generate
interactions between solids, such that their behaviors seem either credible for the user or
follow custom ‘physical’ laws in order to generate specific artistic effects. Video games,
animations, and generation of special effects for movies are typical applications where
the use of physical simulations is common. Because of the low requirement regarding
the accuracy of the simulation compared to the prominence given to highly efficient user
interactions, a focal point of the CG community is the development of fast algorithms for
the simulation of the dynamics of rigid body systems. This motivated the creation of fast
CD algorithms relying on geometric approximations of the shape of the rigid bodies. These
approximations are mostly nonsmooth (e.g. triangle meshes which have discontinuous
normals) but lead to the design of efficient CD algorithms. Particularly, the design of
fast data structures including bounding volume hierarchies like sphere trees [111, 104, 64],
OBB2 trees [52, 34], and trees of k-DOPs3 [75] made several CD queries like interference
tests, distance computations, and intersection computation, applicable within real-time
applications.

As discussed into more details in Section 1.4, methods based on polyhedral approximations
may affect significantly the behavior of the simulated objects that departs from the real
ones. Therefore, the generation of smooth contact constraints with continuous normals is of
increasing interest. For example Kry et al. [80] combine contact kinematics equations with
the equations of dynamics to propose a reduced-coordinates approach for the simulation
of exactly one contact between two smooth surfaces. Zhang et al. [144] propose a method
to approximate smoothly the contact space while using polyhedral models;

3. Other communities like robotics and digital manufacturing have needs that range from sim-
ple geometric queries, e.g., accessibility and clearance tests [78] or motion planing [113],
to full-featured dynamics simulation for the simulation of tele-operations, the training of
human operators using virtual equipments, etc. In addition, haptic rendering would signif-
icantly benefit from CD between smooth objects because discontinuous contacts normals
with respect to the motion parameters may generate unrealistic force feedbacks causing
sensations of ‘bumps’ while the touched surface is actually smooth. In particular, Johnson
et al. [68] did perform some preliminary works for the haptic rendering of contacts between
a probe and a smooth curve or surface modeled as using splines.

Several surveys about CD methods bring in-depth information that can be synthesized as
follows. Lin et al. [84] sort methods in accordance with the geometric representations while
they are sorted by algorithmic schemes in [66]. Teschner et al. [131] present various methods
for deformable objects and Kockara et al. [77] describe common approaches for CD frameworks
based on two phases: the broad-phase that determines which pairs of objects are about to

2Oriented Bounding Box
3k-Discrete Oriented Polytopes

8

interact and the narrow-phase that generates detailed geometric informations about each pair of
objects. Those two phases have been introduced by Hubbard [63] and are standard throughout
all efficient CD framework for multibody dynamics simulation.

Let us note that this manuscript describes only the narrow-phase of our CD framework.
Indeed, as discussed in Section 1.2.1, the focus is placed on the computation of contact informa-
tions between two solids, only. Thus, it is assumed that a broad phase has already identified the
pairs of solids that may interact. Because existing broad phases like the sweep-and-prune [11]
one or the hierarchical hash table [92] do not depend on the representation of the geometric
models (but solely on bounding volumes that contain them), they are applicable as-is before
executing our methods that are devoted to two objects. More details regarding the typical CD
pipeline and various common algorithms for real-time collision detection can be found in the
reference book [40].

This chapter introduces fundamental concepts motivating the choices made within the pro-
posed framework as well as fundamental properties of closest points that can be exploited to
design efficient algorithms:

• Section 1.2 details the equations of motion using the Lagrangian formalism applied to a
system of rigid bodies as well as a system involving deformable solids. Non-penetration con-
straints are presented abstractly and combined with the motion equations. The two main
numerical approaches for integrating those unilaterally constrained equations of motion in
order to compute new velocities and position of the system across time, are presented as
well;

• Section 1.3 discusses the first choice that must be made before designing our CD frame-
work: the choice of a geometric contact model used to define the geometric information
that must be computed by the CD framework to provide enough information to build
the contact kinematics needed by the envisioned mechanical contact models (e.g. Sig-
norini [122], Signorini-Coulomb, contact with rolling resistance, etc.) The distance-based
and penetration-based geometric contact models are presented and their respective advan-
tages and limitations are highlighted;

• Section 1.4 discusses the second choice that must be made before designing our CD frame-
work: the choice of a geometric representation of the shapes of the bodies. Discrete-volume,
polyhedral, and smooth boundary representations (BReps) are discussed and compared;

• Finally, Section 1.5 justifies our choices: a distance-based geometric contact model com-
bined with smooth BReps. The general algorithmic schemes and existing methods for
distance computation between two smooth trimmed surfaces or curves are presented as
well.

1.2 Equations of motion and definition of contact constraints

This section provides an overview of the development of the equations of motion and non-
penetration constraints governing multibody dynamics systems. Reference books [105, 44, 4, 129]
give in-depth treatments of this topic. Here, only the mandatory subsets required to introduce
the context where the proposed CD framework will be developed, are detailed:

• The equations of motion derived from the Lagrangian formalism are presented in Sec-
tion 1.2.1. Perfect unilateral constraints that prevent objects from penetrating are defined
abstractly and their addition to the equations of motion highlighted;

9

• Methods for integrating the constrained equations of motion are introduced in Section 1.2.2
with a reference of the fact that the proposed work is integrated into a time-stepping
integration scheme;

• And Section 1.2.3 discusses the extension of motion equations presented so far to the case
where some of the solids are deformable.

1.2.1 Lagrangian formalism for constrained equations of motion

Let us consider a mechanical assembly as a multibody system "MS" containing a set of N
bodies Bk, k ∈ {1, . . . , N}. The work of this thesis falls within the scope of nonsmooth dy-
namics simulations, i.e., the dynamic simulation of solids subjected to constraints that generate
discontinuous jumps of the bodies velocities.

In a first place, let us assume the Bk are rigid solids with motions subjected to kinematic
constraints. Those kinematic constraints interact with MS in such a way that the overall system
has n degrees of freedom. The spatial configuration ofMS can be described by a set of generalized
coordinates q(t) ∈ Rn. Following the developments and notations from Acary et al. [4], the
equations of motion governing MS can be obtained from Lagrange’s equations:

d

dt

(
∂L(q(t),v(t))

∂vi

)
− ∂L(q(t),v(t))

∂qi
= Qi(q(t), t), i ∈ [1, n], (1.1)

where v(t) = q̇(t) are the derivative of the generalized coordinates with respect to time, i.e.,
they are the generalized velocities. The quantity Qi designates the generalized forces applied
to the the body Bk. The Lagrangian L is obtained as the difference of the kinetic energy T
and potential energy V of the system, i.e., L(q, v) = T (q, v) − V (q) where V is provided as an
additional input to the system. Given M , the inertia matrix of the system, the kinetic energy
is defined as:

T (q, v) =
1

2
vtM(q)v. (1.2)

Developing Equation (1.1) yields the usual equations of motion:

M(q(t))
dv

dt
(t) = Q(q(t), t)−∇V (q(t))−N(q(t),v(t)), (1.3)

where N denotes the gyroscopic accelerations.
Equation (1.3) does not account for contacts between the Bk and thus, may lead to values

of q(t) ∈ Rn corresponding to geometric configurations of MS that are not feasible due to non-
interpenetration constraints. In particular, some of them correspond to configurations where
the space occupied by some Bk overlap with others, i.e., ∃Bi, Bj/Bi ∩∗ 4Bj 6= ∅. As a conse-
quence, Equation (1.3) is augmented with perfect unilateral constraints called non-penetration
constraints5 to avoid the generation of configurations where penetrations occur. Those con-
straints are expressed through m inequalities:

gi(q) ≥ 0, i ∈ [1,m], (1.4)

where each gi : Rn → R is referred to as a gap function. The subset of Rn where q may evolve
without generating any penetration is called the feasible space C:

C = {q ∈ Rn | gi(q) ≥ 0, i ∈ [1,m]} . (1.5)
4∩∗ designates the regularized Boolean operator of intersection.
5Note that we are only interested in (time-independent) non-penetration constraints in this manuscript. Typ-

ical dynamics simulations also include bilateral constraints to model, e.g., joints between two Bk, and other
unilateral constraints to model, e.g., joint limits. All those are not included in our derivations though they could
be added without affecting choices made for the design of our CD framework.

10

These constraints can be taken into account by the equations of motion Equation (1.3) with
the addition of Lagrange multipliers λ ∈ Rn: M(q(t))dvdt (t) = Q(q(t), t)−∇V (q(t))−N(q(t),v(t)) +

m∑
i=0
∇gi(q)λi,

0 ≤ gi(q)⊥λi ≥ 0, i ∈ [1,m],
(1.6)

where the last complementarity condition 0 ≤ gi(q)⊥λi ≥ 0 is the Signorini condition [122] that
forces both λi and gi to remain positive and to be such that only one is non-zero at a time,
i.e., λigi(q) = 0. Moreover, whenever a gap function gi originates from the geometric definition
of a punctual contact (between two solids) its gradient ∇gi (seen here as a column vector) is
intrinsically linked with the geometrical notion of contact normal as discussed in Section 1.2.4.

Considering only two bodies Bi and Bj , let A(q) ⊂ R3 and B(q) ⊂ R3 be two compact sets
expressing their respective shapes as well as their spatial location at the configuration q. Within
this manuscript the explicit mention of the parameter q is generally omitted for conciseness.
Figure 1.1 shows an example of a simple planar rigid body system with A a mobile disk and B a
static obstacle. Note that the boundary of C noted ∂C corresponds to the generalized coordinates
for which A and B touch each other exactly (without penetration), i.e., their boundaries intersect
but not their interiors. Some of those configurations are shown in Figure 1.2b using dotted lines.

(a) (b)

Figure 1.1: (a) A rigid body system including a disk A with two degrees of freedom and a non-convex solid B
with zero degree of freedom. (b) The space of generalized coordinates R2 and the subset that is not feasible R2 \C
due to non-penetration constraints between the shapes of A and B.

Figure 1.2 shows a similar example where the disk is constrained to rotate around a fixed
point p in the plane. Thus, it has only one degree of freedom, which is the rotation angle around
p. Therefore, C is the set of rotation angles where the disk does not intersect the rectangle.

(a) (b)

Figure 1.2: (a) A rigid body system including a 2D disk A with only one (rotational) degree of freedom because
it is attached to the ground with a revolute joint. The rectangular obstacle is static. (b) The space of generalized
coordinates is the interval Iq, q ∈ [0, 2π] and non-penetration constraints between the disk and the rectangle
removes a real interval from Iq to form C.

Let us note that gi being arbitrary functions, only one constraint is sufficient to describe
C completely. However, such a constraint could contain singular points, i.e. points where a

11

discontinuity of ∇gi occurs, if ∂C has corners. Such singularities generally cause issues regarding
the convergence of the constraint solver. Therefore, it is often preferable to rely on a set of gi
which are regular, and restrict our applications to configurations where only a finite number of
gi, defined on a domain Di ⊂ Rn, is sufficient to represent C. As discussed in [4], this is not
too restrictive for most applications with practical interest6. Moreover, each gi is restricted to
describe a non-penetration constraint of only two Bk such that their values can be interpreted
geometrically as follows:

gi(q) > 0⇒ A(q) ∩ B(q) = ∅, (1.7)

gi(q) = 0⇒
{

Int(A(q)) ∩ Int(B(q)) = ∅,
∂A(q) ∩ ∂B(q) 6= ∅, (1.8)

gi(q) < 0⇒ Int(A(q)) ∩ Int(B(q)) 6= ∅, (1.9)

where ∂A and ∂B designate the boundary of A and B, respectively. The operator Int computes
the topological interior of a set, e.g., Int(A) = A\∂A. Those three configurations are illustrated
in Figure 1.3. Note that multiple gi can be assigned to the same pair of solids when any of them
is not convex.

(a) gi(q) > 0 (b) gi(q) = 0 (c) gi(q) < 0

Figure 1.3: Gap function gi between two solids A and B that are (a) separated, (b) touching, or (c) penetrating.

Typical applications simulate MS with N > 2. In that case, all the computations are
performed pairwise and combined by collecting all the resulting non-penetration constraints
using Equation (1.5). Consequently, all the concepts and algorithms described throughout this
manuscript apply to a pair of setsA and B only, since it is the core configuration of any simulation
of multibody systems. Moreover, in practice, the gi can take different forms depending on their
chosen geometric contact model as detailed in Section 1.3. We will go back to more details about
gap functions and contact kinematics in Section 1.2.4.

1.2.2 Integration schemes of the equation of motion

Given an initial configuration of MS at the time t0 ∈ R, the numerical computation of an
approximation the velocities and positions of each Bk at the time t∗ > t0, taking into account
the constrained equations of motion described by Equation (1.6), is the task of a so-called
integration scheme, generally taking one of two forms:

1. Starting at the time t0, an event-driven integration scheme first detects (on the basis of a
smooth ODE integration trajectory estimate) the next time t1 where a nonsmooth evolu-
tion of the accelerations or velocities should occur, e.g., because of a closing contact. Those
occurrences are called events. Then, the smooth equations of motion (see Equation (1.1))
are integrated on the interval [t0, t1] using an ordinary differential equation (ODE) or dif-
ferential algebraic equation (DAE) solver (refer to [55, 56] for in-depth treatments of the

6The simulation of a cylinder with its circular base resting on a table is a counter-example.

12

resolution each of ODEs and DAEs). Then, all the nonsmooth velocity changes at the
time t1 are determined using dedicated equations, yielding new values of the velocities of
each Bk. Then, this procedure is repeated until the simulation is advanced to the time t∗.
This iterative procedure is illustrated by Figure 1.4a;

2. Starting at the time t0, a time-stepping integration scheme computes the evolution of the
positions and velocities of each Bk using a subdivision of the interval [t, t∗] into several
sub-intervals. For simplicity, let us assume that every sub-interval have an equal size
∆t. Each times ti = t + i∆t is referred to as a time-step. At each successive time-
step, the equations of motion together with the smooth functions modeling the constraints
generating nonsmooth velocity changes (see Equation (1.6)) are discretized on the time
interval [ti, ti+1]. This can usually be formulated as a Nonlinear Complementarity problem
(NCP) or a Linear Complementarity Problem (LCP) (see [4] for definitions), which are
solved to determine new velocities and positions. This process is illustrated in Figure 1.4b.

Compute time of
next nonsmooth event

Integrate the smooth
equations of motion

on

Time of the event

Resolve nonsmooth
events at the time

New positions at time and
velocities before velocity jumps

New velocities at time
after velocity jumps

Positions and velocities
at time .

(a)

Build a set of constraints (modeling
non-smooth laws) possibly generating

non-smooth events over the
time interval .

Discretize (in time) the
equations of motions and the
smooth constraints on

(e.g. using Moreau-Jean scheme).

Solve the NSP to
obtain new velocities,

accelerations, or positions.

Set of constraints considered
possibly active during the

interval

NSP (Non Smooth Problems)
describing the relation between
velocities (or accelerations) and
forces that enforce constraints.

New velocities and positions
at time .

Update positions and
velocities.

Positions and velocities
at time .

(b)

Figure 1.4: (a) One iteration of an event-driven integration scheme. (b) One iteration of a time-stepping inte-
gration scheme. Computations are shown in blue, and their outputs in red.

13

Further details regarding each integration scheme can be found in [4, 129].
The generation of contact information is the typical task of a CD engine. This can take

different forms depending on the chosen integration scheme. On the one hand, event-driven
integration schemes require the computation of the exact time ti where any two Bi, Bk touch
each other. On the other hand, time-stepping integration schemes require the definition of the
constraints as smooth functions so that they can be discretized.

For the remainder of this manuscript, a time-stepping integration scheme is assumed. Thus,
all the geometric computations described on the subsequent chapters are dedicated to comput-
ing all the informations necessary for the definition of the smooth contact constraints defined
in Section 1.2.

1.2.3 Handling deformable curves

It has to be observed that the equations presented so far characterize the dynamics simulation of a
mechanical system composed of rigid solids. In this manuscript, deformable bodies geometrically
modeled as deformable Bézier curves are considered as well (refer to Section 1.3.1.2 for the
definition of dilation). Following Acary et al. [4], deformable solids spatially discretized, e.g.,
using a finite element method, can be handled with the same equations as Equation (1.10), except
that extra terms appear in the motion equations to account for forces due to deformations: M(q(t))dvdt (t) = Fint(t,q(t),v(t))− Fext(t)−N(q(t),v(t)) +

m∑
i=0
∇gi(q)λi,

0 ≤ gi(q)⊥λi ≥ 0, i ∈ [1,m],
(1.10)

where Fint designates nonlinear internal forces, e.g., elasticity, and Fext external forces, e.g.,
gravity. Overall, contact constraints for deformable curves can rely on the same geometric
contact model as presented in Section 1.3 for rigid bodies.

1.2.4 Why the continuity of contact normals is desirable

The combination of contact constraints with the equations of motion given by Equations (1.6)
and (1.10) involve the gradients ∇gi of the gap functions gi. If a gi originates from the geometric
definition of a punctual contacts between two solids A and B, then its definition is given by
a geometric contact model (refer to Section 1.3 for further details). Roughly speaking, gi is
expected to behave like some sort of signed distance function between A and B and must
be continuous in order to have a meaningful physical interpretation. Moreover, its gradient
should be continuous as required by time-stepping integration schemes (at least by Moreau-
Jean’s scheme presented in Figure 1.4b and its variants), even in the simplest case of perfect
unilateral non-penetration constraints like the Signorini condition [122].

Now assume that the mechanical system MS is composed of two rigid bodies with strictly
convex shapes A(q),B(q). And let gi measure the smallest distance between A(q) and B(q) as
shown in Figure 1.5.
Simple kinematic derivations (see [4]) yield:

ġi(q) = −
〈
viA/B(q),niA(q)

〉
, (1.11)

where viA/B refers to the velocity of the point piA seen instantaneously as belonging to A(q)

moving with respect to B(q). The vector niA is the normal of A(q) at piA. Note that because
A and B are assumed rigid, we could equivalently write (noting viB/A the velocity of piB seen
instantaneously as belonging to B(q) moving with respect to A(q)):

ġi(q) = −
〈
viB/A(q),niB(q)

〉
, (1.12)

14

Figure 1.5: Two solids A and B with closest points piA and piB separated by a distance gi. The vectors niA (resp.
niB design the normals of A (resp. B) at piA (resp. piB)

by equiprojectivity of the point velocity field. Our following derivations refer to Equation (1.11)
only. We assume that the equations of rigid body kinematics provide a Jacobian J ∈ R3×n

(with n the number of degree of freedoms of MS) that relate the spatial velocity viA/B with the
generalized velocities q̇:

viA/B(q) = J(q)q̇. (1.13)

Here, J is generally smooth (C∞). Combining Equation (1.11) with Equation (1.14) gives:

∇gi(q) = −J(q)TniA(q) (Recall that ∇gi is a column vector of size n). (1.14)

As a consequence, gi(q) generally has the same regularity as niA. This motivates the desire of
having continuous contact normals with respect to the generalized coordinates if the constrained
equations of motion are being integrated by a time-stepping scheme. Referring to the contact
kinematic equations derived by Montana [93] and generalized by Visser et al. [139] to the case
where A(q) and B(q) are not touching (i.e. gi(q) 6= 0) provides an in-depth derivation of the
relation between gi and niA.

Furthermore, note that the simulation of physical phenomena like sliding friction or rolling
resistance also require the niA and niB to be continuous with respect to the generalized co-
ordinates. Indeed, friction models like the Signorini-Coulomb law rely of the computation of
tangential sliding velocities. Assuming (niA, t

i,1
A , t

i,2
A) forms an orthonormal basis where ti,1A , t

i,2
A

lie on the tangent plane of A at piA, we have the tangential sliding velocity noted viT ∈ R2:

viT (q) =

 〈viA/B(q), ti,1A (q)
〉〈

viA/B(q), ti,2A (q)
〉 , (1.15)

=

[
ti,1A (q)T

ti,2A (q)T

]
J(q)q̇. (1.16)

Clearly, discontinuity of niA cause the discontinuity of ti,1A and ti,2A . Therefore, if niA is discontin-
uous, viT (q) is discontinuous as well. Such a discontinuity is likely to imped the convergence of
non-linear, nonsmooth contact constraint methods (referring for example to the methods from
Acary et al. [4]).

As a conclusion, it is clear that continuity of the contact normal at each contact point is
a desired property for the robust integration of the equations of motion subjected to contact
constraints. Note that, among the developments given in this section, the work presented in this
manuscript is focused only on the design of a CD framework generating of contact informations
with continuous contact normals. This requirement motivates our choice to combine distance-
based geometric contact model presented in Section 1.3 with smooth representations of the
geometrical shapes in contact presented in Section 1.4.3.

15

1.3 Choice of a geometric contact model

In practice, the exact nature of the gi depends on the chosen geometric contact model, i.e.,
the geometric informations required by the dynamics solver in order to define non-penetration
constraints, which will also be referred to as contact constraints. The two main models available
display completely different features and drawbacks:

• Distance-based geometric contact models detailed in Section 1.3.1 rely on distance func-
tions. While they have well-defined formulations, they fail to cover the case where gi is
negative because of the inherent positivity of distance functions;

• Penetration-based geometric contact models specifically require the objects to inter-penetrate
in order to generate contact constraints. This condition enables algorithms to use some
geometric representations with fast, but generally low accuracy, collision detection algo-
rithms (see Section 1.4.1). However, these models often suffer from configurations where
the gap function or its gradient becomes either discontinuous or is not well-defined. This
approach and its limitations are detailed in Section 1.3.2

Note that we exclude here asymmetric contact models, e.g., point-versus-surface contact
models [88, 13].

1.3.1 Distance-based geometric contact models

The main idea behind a distance-based geometric contact model is to predict future contacts,
i.e., it outputs geometric informations to the dynamics solver so that contact constraints may be
generated for actual contacts (where the objects actually touch) as well as for potential contacts
(where the objects might touch in the near future). Moreover, potential contacts with contact
points that are too distant, i.e., separated by a distance greater than some user-defined limit
dmax (chosen such that no point of the Bk of MS is fast enough to travel this distance in one
time-step), are ignored since they have no chance of becoming active during a time-step. In
the remaining of this manuscript, potential contacts and actual contacts are both referred to as
contacts.

A natural candidate solution to gap functions g is to use a notion of distance between A
and B. For example, a pair of points pA ∈ A and pB ∈ B such that their Euclidean distance
d = ‖pA−pB‖ is minimal, are the closest points betweenA and B. Then, dG is the global minimal
distance and can be seen as a function of the generalized coordinates, i.e., dG(q) : Rn → R+.
The gap function can then be defined as:

g(q) = dG(q), q ∈ Rn. (1.17)

While simple, this formulation has two major flaws:

1. It is hardly usable as part of a nonsmooth contact dynamics solver based on a time-
stepping scheme. Indeed, whenever A and/or B is non-convex, a single such constraint
fails to capture non-punctual contacts configurations like conformal contacts, i.e., when
the contact is either a curve or a surface, and configurations with multiple contact points.
Both scenarios are shown on Figure 1.6;

2. It cannot reach negative values. Therefore, it does not distinguish between contacts (Equa-
tion (1.8)) and penetrations (Equation (1.9)). Indeed, dG is identically zero in Rn \ C
and in C since in both sets A ∩ B 6= ∅ and the closest points can be chosen such that
pA = pB ∈ A ∩ B.

16

(a) (b) (c) (d)

Figure 1.6: (a) Configuration with multiple punctual contact points. (b) Configuration with a contact area that
is not a single point. For both configurations, if only one pair of contact points is chosen at a time (blue), the
dynamics solver will generate unrealistic rotations with respect to this point, generating the penetrations shown
in (c,d)

The next sections present alternatives addressing those two issues. Section 1.3.1.1 describes
the concept of Local Minimal Distances (LMD) targeted to handle multiple punctual contacts.
Existing solutions for conformal contacts are described for the case where A and B are modeled
as polyhedra. Section 1.3.1.2 modifies the definition of gap functions aforementioned with the
introduction of an implicit dilation of the shape of Bk. Section 1.3.1.3 summarizes the methods
that can be retained for the framework described in the subsequent chapters and provides some
useful characterizations of LMDs.

1.3.1.1 Handling either multiple or conformal contacts

The first issue can be partially addressed with the generation of multiple gap functions for a
single pair of Bk [90]. Instead of using only the global minimum of the Euclidean distance
function, all the local minima called local minimal distances (LMD) are collected. For example
in Figure 1.6a, the Euclidean distance function between A and B has two local minima. Thus,
there exists two neighborhoods of q noted Di ⊂ Rn, i ∈ {1, 2} on which two smooth functions
di : Di → R+, i ∈ {1, 2} that track those LMDs and thus, implicitly the two pairs of closest points
(referred to as LMD footpoints), can be defined. Those two functions are used simultaneously as
gap functions for this pair of rigid bodies. Therefore, instead of using one gap function associated
with the global minimal distance between A and B as in Equation (1.17), multiple gap functions
are defined:

gi(q) = di(q), q ∈ Di, (1.18)

and combined using Equation (1.5) to delimit C.
While using LMDs has the advantage of dealing with configurations where the set of contacts

is composed of isolated points as in Figure 1.6a, this still does not handle conformal contacts
like in Figure 1.6b. Several approaches with different levels of accuracy are possible, depending
on the simulation. On the one hand, if A and B are deformable and are modeled in such a way
that they may actually generate non-punctual contacts, then a finite set of contact points is no
longer sufficient since a non null interaction force at any isolated point of the contact area results
in deformations. Consequently, the isolated contact point becomes a contact surface between A
and B. Alternative contact models are thus necessary to render those constraints accurately. On
the other hand, if the objects being simulated are strictly rigid, then it is reasonable to assume
the contact area can be represented by a finite set of points. Two situations may occur:

1. It may be possible to select a finite set of pairs of closest points in the contact area such
that they bound C exactly, i.e., any additional constraint would be redundant as shown
in Figure 1.7. This is the approach taken by Merlhiot [90] when solids are represented by

17

simplicial complexes [96], i.e., sets of points, segments, and triangles together with adja-
cency informations. The main idea is simple: the contact area being necessarily polyhedral,
contact constraints are generated at each vertex of the contact surface (see Figure 1.8b).

This requires the definition of quasi-local minimal distances (quasi-LMD), which is pre-
sented at Section 1.3.1.4, in order to ensure that some LMD functions remain defined over
the neighborhood of conformal contact configurations. Let us note that this approach is
generally not sufficient when the geometric shapes are curved because the contact areas
will be curved as well (see Figure 1.8c);

(a) (b)

Figure 1.7: Two scenarios with identical feasible spaces. (a) is composed of a capsule A and an infinite horizontal
plane B. (b) replaces the capsule by a pair of rigidly linked disks. In both scenarios, A has three degrees of
freedom (two translations and one rotation) and B is static. In the two illustrated configurations, only a finite
number of constraints (blue in (b)) is sufficient even if (a) has an infinite number of local minimizers of the
distance function.

(a) (b) (c)

Figure 1.8: (a) A conformal contact between two tetrahedra. (b) The contact area is approximated by the six
pairs of contact points pi, i ∈ [1, 6] corresponding to isolated LMD between two edges or a vertex and an edge.
(c) Configuration involving curved surfaces and curved edges. A finite set of contact points corresponding to the
isolated LMDs is not sufficient as a small rotation, e.g., around the segment p2p3 would generate a penetration.

2. It may be impossible to determine a finite set of constraints that delimits C exactly or
it may be too computationally intensive to do so. This is for example the case for a
cylinder resting upright on a plane: the boundary of the conformal contact describes a
circle that cannot be described by a finite number of contact points. In that case, the
fact that manufactured rigid bodies never correspond exactly to the virtual models can be
exploited (at least from a mathematical point of view). Indeed, manufacturing produces
geometric errors that can lead to, e.g., misaligned axis of a hole with the axis of the shape
being inserted, or lack of parallelism of some faces where conformal contacts should occur.
In addition, manufactured surfaces are never perfectly smooth as shown is Figure 1.9.
In both situations, the contacts between the real solids end up being actually punctual
instead of conformal. Indeed, the actual locations of contact points are hardly predictable
because their location depend on the real instance of a component. A naive approach is
to sample the contact areas as proposed in the framework presented in this manuscript

18

(see Section 4.3.2) to partially address this issue when conformal contacts occur between
two canonical surfaces or between an edge and a canonical surface. However, fast and
accurate methods that apply to all configurations are yet to be found. More realistic
simulations could be obtained with a more detailed study of the contact areas as performed
by the tribology community [114]. Thus, alternative contact models, including statistical
ones, between rough surfaces may be used [53]. Referring to Bhushan [17] gives access to
a comparison of several rough contact models.

Figure 1.9: Zoom-in on what seems to be a conformal contact area between two rigid solids A and B. Since the
surfaces cannot be perfectly manufactured, asperities are present causing the actual contact to be localized at
only a finite number of points (here, three) with distinct normals instead of one continuous contact surface.

Overall, it seems reasonable to state that whenever such a conformal contact case arises,
the validity (from the point of view of mechanical modelling) of the approaches relying on the
generation of distributions of punctual contacts should be questioned on a case-by-case basis.

1.3.1.2 Working around the non-negativity of distance functions

Distance functions as well as their global or local minima, are inherently positive. Therefore,
no distinction between penetration and exact contact is possible since they both correspond
to a distance equal to zero. This is problematic because a constraint solver typically needs to
be able to explore numericaly configurations with negative gaps during its algorithmic work.
Moreover, contact forces are generated when exact contacts occur in order to prevent penetra-
tions at the next time-step, but some schemes or solvers may leave the system with residual
penetrations after the current time step (constraints ‘drifts’). In some applications, the presence
of such penetrations requires additional constraint stabilization terms, i.e., terms that will push
the objects out of the unrealistic configuration in which they currently are. Those constraint
stabilization terms are often function of some measure of the penetration: the deeper the pene-
tration, the stronger will be the stabilization terms. A common example of such stabilization is
the Baumgarte Stabilization Method [14] and other examples can be found in [3, 21].

One could argue that the whole benefit of using distance-based methods is to avoid penetra-
tions altogether. While theoretically true, the use of iterative methods for solving the equations
of the dynamics system, the approximations performed by the differential equation integrators,
and the limited accuracy of floating point operations, tend to generate deviations with respect
to the theoretical solution that can be sufficiently large to output positions of the Bk with small
inter-penetrations. Therefore, while the ability of handling large penetrations is not necessary,
small ones (depending on the accuracy of the dynamics solver, the integration scheme, the
time-step length, etc.) must be detected and stabilized.

A common approach for generating negative values using distance computations holds in the
definition of the gap function gi associated to the i-th LMD function di as:

gi(q) = di(q)− 2ε, ε ∈ R+∗, (1.19)

19

where ε is a small positive value. A geometric interpretation of Equation (1.19) is to see
each Bk shape as being implicitly dilated (see Figure 3.10) using a spherical envelope of radius
ε. Implicitly means that the boundaries of Bk are not actually modified but 2ε is systematically
subtracted from any distance computation result. This is equivalent to the definition of new
boundaries of A and B such that they are obtained using envelopes of spheres whose centers lie
on ∂A and ∂B as shown in Figure 3.10.

(a) (b) (c) (d)

Figure 1.10: Solids A and B dilated by ε (dashed lines). (a) d(q) > 2ε: non-intersecting configuration. (b)
d(q) = ε: touching configuration, i.e., the constraints solver will prevent them from getting closer because
g(q) = 0 even if the non-dilated shapes are not actually touching. (c) d(q) < 2ε: penetration configuration and
g(q) < 0. (d) The non-dilated shape are penetrating so the gap function is no longer defined.

This completes the definition of gap function that now tolerates negative values down to −2ε
(see Figure 3.10c). The ε should be kept as small as possible because the constraints solver will
not allow A and B to get closer than 2ε from each other (see Figure 3.10b). But it must be large
enough to cope with non linear constraints discretization and computation roundoff. Its value is
typically user-defined depending on the nature of the constraints solver and the time-stepping
size, which usually affect the amplitude of the discretization errors generated.

The main drawback of this approach is that the simulated objects can appear to be ‘floating’,
instead of actually touching each other, because they are always separated by a distance equal
to 2ε, at least. Moreover, the simulation of insertions with mechanical clearances smaller than
2ε become impossible since the dilations would be larger than the gaps. Those issues can be
addressed by a preliminary work of preparation of the models involved in the simulation. Such
a preparation accounts for applying an erosion of ε to all BRep (such an operation is often
readily available on CAD modelers). Therefore, the implicit dilation of ε will almost recover
the original shape as shown in Figure 1.11. An unavoidable consequence is that convex sharp
features (edges and vertices) are rounded off by the implicit dilation (see Figure 1.11c). However,
this is usually an acceptable limitation in practice because sharp edges are generally avoided for
mechanical parts where functional contacts occur since they can damage the parts or accelerate
their wearing. In addition, different dilations could be applied to different solids. For example,
if the simulation involves only two solids A and B, an erosion and implicit dilation of 2ε could be
applied to A while B is left unchanged. This can be useful if, e.g., this erosion/dilation changes
the shape of A in a way that is less significant than modifying B.

1.3.1.3 Characterization of Local Minimal Distances (LMD)

LMDs between two solids A and B can be characterized as in [90, 32]. Indeed the direction of
the LMD, i.e., the line passing through both footpoints, appears as a key feature that can be
characterized using the concepts of tangents, tangent cones, and cone polars, as defined in the
field of convex analysis [15]. Let us recall some definitions from Bertsekas et al. [15] where S
designates either A or B. Given a point pS ∈ S, which can be either in the interior or on the

20

(a) (b) (c)

Figure 1.11: (a) The original geometric shape of Bk. (b) The shape after an erosion of ε. (c) In green, the shape
seen by the dynamics simulation because of the implicit dilation of radius ε. Note how most vertices have been
rounded off by the dilation.

boundary of S, its tangents are the vectors y ∈ R3 such that there exists a sequence of points
{pk} ⊂ S,pk 6= pS, and:

pk → pS,
pk − pS

‖pk − pS‖
→ y

‖y‖
. (1.20)

The set of all tangents at pS forms a cone (in the sense of convex analysis) called tangent cone
TS(pS). The tangent cone polar :

TS(pS)∗ =
{
d ∈ R3 | ∀v ∈ TS(pS), 〈d,v〉 ≤ 0

}
, (1.21)

is the set of vectors opposite to all the tangents at pS. Some tangent cones and their polars are
depicted in Figure 1.12 to illustrate common configurations. For sake of simplicity, a 2D domain
is used rather than a 3D one. The tangent cone in Figure 1.12c is larger than a half-space,
therefore its polar degenerates to the singleton {0}.

Let us note that the tangent cone at a point of a C1 surface (resp. C1 curve) is a plane
(resp. line). Consequently, vectors of their tangent cone polars are orthogonal to all vectors of
their tangent cone:

TS(pS)∗ =
{
d ∈ R3 | ∀v ∈ TS(pS), 〈d,v〉 = 0

}
. (1.22)

(a) (b) (c)

Figure 1.12: A tangent cone TA(p) and its polar T ∗A(p) at a point p which is: (a) convex; (b) on an edge; (c) at
a point such that T ∗A is degenerate.

The previous concepts produce the tools characterizing critical points of the squared distance
function between A and B. Indeed, two points pA ∈ A and pB ∈ B are critical points if and
only if the following condition holds [32, 90]:

pB − pA ∈ TA(pA)∗ ∩ −TB(pB)∗. (1.23)

21

Configurations where Equation (1.23) is satisfied are illustrated in Figure 1.13. Configura-
tions where it is not satisfied are shown in Figure 1.14. Let us note that in this second case, the
tangent cone polars TA(pA)∗ and −TB(pB)∗ do not even intersect (except at the null vector 0)
so Equation (1.23) has no chance of being satisfied, no matter the direction of the line passing
through pB and pA.

(a) (b) (c)

Figure 1.13: Configurations where pA and pB are critical points. (a) The tangent cone polars are the normals of
A and B. They are collinear with the difference vector (pB − pA). (b) The tangent cone polars at vertices of A
and B contain more than one direction. They are superimposed in (c) to highlight the fact that Equation (1.23)
is satisfied.

(a) (b) (c)

Figure 1.14: Configurations where pA and pB are not critical points. (a) The tangent cone polars are the
normals of the solids and they are not collinear with each other nor with pB − pA. (b) The tangent cone polars
at vertices of the solid contain more than one direction. They are superimposed in (c) to highlight the fact
that Equation (1.23) is not satisfied because pB − pA 6∈ −TB(pB)∗.

The goal of the proposed method being the computation of closest points, which are also
critical points, the Equation (1.23) can be used to distinguish subsets of features that may or
may not contain some closest points, as addressed in Chapter 3. More precisely, the Equa-
tion (1.23) is used only in Section 3.5 to design a tangent-based culling test on Bézier curves and
in Section 4.4.2 for filtering potential LMDs that have been computed. The remaining culling
tests based on tangent cones and tangent cone polars rely on a weaker condition, which is a
direct consequence of Equation (1.23):

TA(pA)∗ ∩ −TB(pB)∗ = {0} ⇒ pA,pB are not critical points. (1.24)

Let us observe that this definition can cover non-isolated critical points, i.e., conformal
contacts configurations, which are handled by the sampling method described in Section 4.3.2.
Finally, Equation (1.23) has two immediate consequences regarding the location of the footpoints
of a LMD (which must be critical points):

1. LMD footpoints cannot be located in Int(A) or Int(B) as they would have tangent cones
polars that degenerate to {0}. Thus, the problem reduces to finding contact points on ∂A

22

and ∂B only, i.e., directly on their boundary representations without any consideration of
their interiors because Equation (1.24) is guaranteed to be satisfied on interior points;

2. All edges exclusively formed of points with tangent cone polars containing exactly one
non-zero direction could be ignored by the whole CD pipeline because their intersecting
surfaces are sufficient to locate the same LMD footpoints. On a BRep model, those edges
are referred to as G1 edges in Section 1.4.3. Their systematic identification in order to
ignore them for LMD computation is left to future works but some preliminary results are
illustrated in Chapter 5.

1.3.1.4 Characterization of quasi-LMD

The goal of quasi-LMDs is to enlarge the domain of definition of the LMD functions di presented
in Section 1.3.1.1. In other words, if Di ⊂ Rn is the domain of definition of di, then a quasi-LMD
function is a function d̃i with a domain of definition D̃i ⊃ Di on which it is as smooth as di, and
such that ∀q ∈ Di, d̃i(q) = di(q). For reasons that will be clarified in the following developments,
the process of extending di into d̃i is called the angular regularization of di. The quasi-LMD
function d̃i is also called a regularized LMD function. Just like di, the quasi-LMD functions can
be used to model gap functions either by taking gi(q) = d̃i(q) (similarly to Equation (1.18)), or
by taking (similarly to Equation (1.19)):

gi(q) = d̃i(q)− 2ε, q ∈ D̃i, (1.25)

if the dilation introduced in Section 1.3.1.2 is to be taken in account.
In order to understand why Di should be enlarged, Figure 1.15 shows a simple system

composed of two bodies Bi, Bj , with respective geometric shapes A and B. Here, Bi has one
rotational degree of freedom, θ ∈ R, around its center of mass and Bj stands still. Figure 1.15b
illustrates a conformal contact configuration with θ = 0. Note that our use of conformal contact
here refers to the area composed of non-strict minima of the distance function, i.e., even if there
is no effective contact because di(q) 6= 0. Figures 1.15a and 1.15c show the evolution of the
LMD functions when A is subject to arbitrary small rotations εθ and −εθ. The tangent cone
polars of some vertices of each rectangle is shown is yellow. Two major stability issues can be
highlighted:

1. In the conformal configuration of Figure 1.15b, no LMD function is defined since there is
no isolated minimum. Therefore, no constraint will be generated unless additional work is
performed;

2. It could be considered that the configuration of Figure 1.15b never happens in practice
because of the numerical errors introduced by the integration and the limited precision of
floating point numbers. In that situation, the system ends up into either of the configura-
tions shown on Figure 1.15a and Figure 1.15c. Let us take as reference configuration (a).
If A and B come into contact in this configuration at a time-step ti, then a small impulse
applied to the points related to the LMD function d1 will tip A in such a way that the
configuration at the time-step ti+1 becomes configuration (b). For similar reasons, ti+2

brings the system back into the configuration (a). Repeated indefinitely, this results into
an unstable behavior of A with respect to B.

One way to avoid this is to refer to multiple distance functions defined simultaneously in all
three configurations. The concept of quasi-LMD was introduced in [90] for the case of LMD
computation between tessellated models. First of all, the polyhedral models are decomposed
into a simplicial complex structure. Please, refer to Munkres [96] regarding details about this

23

(a) (b) (c)

Figure 1.15: A static box B and a box A with one rotational degree of freedom. (a) A is sightly tilted by an
angle εθ that can be chosen arbitrarily small. (b) Conformal contact configuration. (c) A is sightly tilted by an
angle −εθ.

structure. Here, one of its main features only is of interest for the definition of a quasi-LMD.
Let us describe this feature. A simplicial complex is composed of geometric linear elements of
various dimensions subjected to convexity constraints. For example, a 3D simplicial complex
is composed of vertices (0-dimensional, points), edges (1-dimensional, segments) and faces (2-
dimensional, triangular areas) as shown in Figure 1.16. Those elements, are referred to as
features in the remaining of this section and are related to each other by an inclusion relation
where a n-dimensional entity contributes to the boundary of some entities of dimension m with
m > n. In practice, this means that a polyhedral model can be described using a simplicial
complex structure (see Figure 1.16a) by:

1. Creating one face per triangle;

2. Creating one edge per segment at the junction between each adjacent pair of triangles;

3. Creating one vertex at each common intersection point of several edges.

Note that this is an overly simplified presentation of the properties of a simplicial complex.
A more complete and accurate description can be found in [90, 96]. Figure 1.16b shows the
decomposition of the boundary of A and B (from Figure 1.15) into simplicial complex structures.

(a) (b)

Figure 1.16: (a) A tetrahedron and its boundary decomposition as a simplicial complex. Its vertices are identified
as pi, its visible faces as F i, and some of its edges as Ei,j with i, j the indices of its adjascent faces. (b) The
scenario of Figure 1.15b with the boxes shown as simplicial complexes.

24

Once this decomposition is obtained, one distance function is assigned to each feature pair
where one feature belongs to A and the other to B. The restriction of those distance functions
to the subsets of C such that Equation (1.23) is satisfied yields the LMD functions. Doing so has
one immediate consequence for the scenario shown in Figure 1.15b. Indeed, if d1 (resp. d2) is the
LMD functions between E1,2

A and p4
B (resp. between E3,4

B and p2
A), then domains of definition of

d1 and d2 both contain the element θ = 0. Indeed, the Equation (1.23) holds for d1 (resp. d2),
and d1(0) (resp. d2(0)) properly represent isolated minima of the Euclidean distance between
p4
B and E1,2

A (resp. p2
A and E2,4

B). This modification however, does not address the fact that
any arbitrary small rotation angle εθ applied to A will leave at least one of d1 or d2 undefined.

To avoid this issue, the vertices’ tangent cone polars are dilated with a user-defined angle,
as shown in Figure 1.17. The quasi-LMD functions d̃1, d̃2 are then defined as equal to d1 and

(a) (b)

Figure 1.17: (a) A 2D tangent cone before (yellow) and after (green) dilation by an angle α. (b) Shape A
from Figure 1.18 after decomposition into a simplicial complex, with all its vertices tangent cone polars (yellow)
and their dilated versions (green).

d2, except that they rely on those dilated tangent cone polars for the condition of criticality
expressed by Equation (1.23). Overall, those two quasi-LMD functions remain defined on a
neighborhood of the conformal configuration (see Figure 1.15b) as shown in Figure 1.18.

(a) (b) (c)

Figure 1.18: The regularized distance functions d̃1 and d̃2 remain defined over all three configurations. (a) The
dilation of TB(p1

B)∗ allowed d̃2 to remain defined on εθ. (b) The decomposition into simplicial complex allowed
d̃1 and d̃2 to be seen as LMD between isolated local minimizers of the distance function. (c) The dilation of
TA(p2

A)∗ allowed d̃1 to remain defined on −εθ.

Overall, the quasi-LMD model has three requirements that constrain the geometric descrip-
tion of shapes as well as the conditions characterizing a critical point:

• The decomposition of the shapes boundaries into a simplicial complex structure;

• The dilation of all the tangent cone polars associated to each feature of the simplicial
complex decomposition that have a dimension lower than two (or than one for 2D models),

25

as shown in Figure 1.17. The actual value of the angle is user-defined as it depends on
the simulation. Typically, simulations involving larger angular velocities will require larger
values;

• The definition of LMD functions for each feature pair. Their domain of definition is
bounded by the positions for which the Equation (1.23) is satisfied now using the enlarged
tangent cone polars instead of the original ones.

1.3.1.5 Summary and recommended choice of gap function

To summarize the analysis of the previous sections, the following combination of variants of the
distance-based approach are recommended to achieve stable simulations:

• Use several LMDs (see Section 1.3.1.1) instead of one global minimal distance functions
in order to properly handle multiple isolated contact points between non-convex shapes;

• Incorporate implicit dilations of the geometric models (see Section 1.3.1.2) in order to
set up a definition of gap functions able to represent small penetrations to account for
numerical roundoffs deriving from the various approximations performed by the dynamics
solver;

• Apply angular regularization to the LMD functions (see Section 1.3.1.4) to ensure that all
the gap functions are properly defined in a neighborhood of the conformal configurations
occuring at the current time-step. As pointed out in Section 1.3.1.1, this is not sufficient
to handle conformal contacts properly when the considered shapes are curved. However,
this covers a range of configurations wide enough to be useful in practice, even with
curved shapes. The issue of conformal contacts for curved shapes is further addressed
in Section 4.3.2.

Overall, the gap functions considered by the mechanical simulation software targeted by our CD
methods is given by Equation (1.25). Keeping this goal in mind is necessary as this specifies the
required output of the proposed CD framework.

1.3.2 Penetration-based contact models

Penetration-based geometric contact models approach contact constraints from a point of view
that is opposite to distance-based models. Indeed, instead of computing distances while the
objects are disjoint, penetration-based approaches wait for the contacts to actually happen, i.e.,
it requires A and B to intersect in order to compute a measure of their penetration. Then,
this measure is used as a gap function yielding negative values proportional to the amount of
penetration between A and B.

The most common penetration measure is the penetration depth (or minimal translational
distance), which is the magnitude of the minimal translational vector [22] assigned to two in-
tersecting objects. Assuming A and B are penetrating each other, the minimal translational
vector is the vector representing the smallest translation needed to translate one of them, say,
A, such that: A∩∗B = ∅7. Its direction is referred to as the penetration direction. Consequently,
the exact computation of the penetration depth is a complex problem. For example, it has a
time complexity of O(m3n3) between two polyhedral models where m and n are their respective
number of triangles [35]. Efficient iterative methods [138] exist, especially for convex polyhedra.

To avoid the issue of multiple contact points mentioned in Section 1.3.1.1, a penetration
depth can be computed locally [112, 72]. Those local measures rely on a partition of A and

7The operator ∩∗ stands for regularized Boolean intersection.

26

B into several connected regions where the penetration depth can be computed. This includes
the convex decomposition of concave shapes with, for example, the method proposed by Lien
et al. [83] or the use of the graphics hardware to render the 3D volumes prior to the search
for the intersecting volumes [112]. Combining both was also attempted by Kim et al. [73].
The difference between the minimal translational distance and the local penetration depths is
highlighted on Figure 1.19.

(a) (b)

Figure 1.19: (a) The minimal translational vector t between A and B. As shown by dotted lines, translating A
along t would position A and B just touching each other. (b) The local penetration vectors t1 and t2 deriving
from the two overlapping regions of A and B.

Penetration-based approaches have two major downsides:

1. The significant reliance on constraint stabilization. Indeed, penetration depths corre-
spond to negative values of the gap functions and thus to measures of violation of the
non-penetration constraints described in Section 1.2. Therefore, constraints stabilization
like [14, 8, 56] has to be taken in account by the dynamics solver, as mentioned in Sec-
tion 1.3.1.2. This causes several limitations.

Firstly, if the amount of constraint violation is too large, then stabilization methods like [14]
are likely to artificially introduce a sufficiently large kinetic energy into MS to disturb the
behaviors of some Bi. Moreover, depending on the chosen stabilization method, the pene-
trating objects may be subjected to oscillations before converging to a stable position. In
practice, those stability issues can be observed during simulations of component insertions,
e.g., of A into B, involving small mechanical clearances between them, which are the main
applications targeted by the work presented in this manuscript.

Secondly, some configurations similar to the ones shown on Figure 1.20 cannot be solved
satisfyingly solely using the minimal translational distance or local penetration depths,
due to the limited informations provided by the penetration depth. This is highlighted
by Zhang et al. [143] and can be addressed by proposing an alternative penetration mea-
sure that includes rotational informations: the generalized penetration depth [143] shown
in Figure 1.20c;

2. Whenever the medial axis of the penetrated objects intersect as shown at Figure 1.21,
the contact kinematics equations are no longer well-defined as discussed by Pfeiffer and
Glocker [105]. Indeed, crossing the medial axes may produce discontinuous changes of the
penetration vector direction, causing the contact position and normals to be discontinuous
with respect to the motion parameters because of the non uniqueness of the penetration
vector direction (see Figure 1.21b) at the crossing point itself. Let us note that this issue
occurs with distance-based approaches as well if one of the objects is concave as shown
in Figure 1.21d. However, this is less of a concern since this does not cause uncertainties
regarding the movement of A, as long as the multiple potential contact points can be
represented as footpoints of multiple LMDs.

27

(a) (b) (c)

Figure 1.20: Configurations where non-penetration constraints are violated. (a) Local penetration depths fail to
handle this case because the two constraints have opposite directions. (b) Minimal translational distances can
be used to resolve the violation, but this would result in the unrealistic traversal of A through the bottom of B.
(c) Generalized penetration depth provides algorithms with a more realistic solution using both a rotation and a
translation.

(a) (b) (c) (d)

Figure 1.21: A disk A with its medial axis reduced to its center and a free-form shape B with its medial axis
shown as a dotted line and penetration vectors as blue arrows. (a) The center of A lies right before the medial
axis of B. (b) The center of A lies on the medial axis of B and the penetration vector is non-unique. (c) A slight
movement of A on the right caused the penetration vector direction to evolve discontinuously from (a) to (c). (d
A similar singularity with distance computation with one concave shape (c).

Alternatives to the penetration depth were proposed as an attempt to overcome the normal
discontinuity issue. Some approaches define an alternative notion of penetration depth that
is continuous with respect to the motion parameters [11, 28, 47, 144].

One of the most typical use of geometric contact models based on penetration-depth is for
haptic rendering [89, 13]. Indeed, penalty-based methods, that rely only on penetration depths
to compute contact forces, have been shown by Sagardia et al. [115] to be the most efficient
approaches for haptic rendering in practice compared to impulse-based and constraint-based
approaches (that may rely on distance-based geometric contact models instead).

1.4 Choice of geometric representation

The choice of a geometric representation for the Bk strongly impacts the performances and ac-
curacy of the simulation as well. The two main families of representation are discrete volume
representations and boundary representations. The former (see Section 1.4.1) approximates the
shape interior with simple volumetric elements (typically spheres or cubes) while the latter only
represents their boundary. This second family can be split into nonsmooth representations,
i.e., triangle-based which are piecewise linear representations of the shape boundaries (see Sec-
tion 1.4.2), or smooth representations, which represent CAD model boundaries with smooth
curves and surfaces (see Section 1.4.3). It is noteworthy that the most accurate export formats
used by CAD modelers are typically smooth boundary representations. Within the remaining
of this manuscript, the term BRep will refer to smooth boundary representations only (that is,
excluding polyhedral representations).

28

The following sections describe each category as well as their consequences on non-penetration
constraints.

1.4.1 Discrete volume representations: fast with low accuracy

Volumetric representations are based on a discretization of the volume describing each Bk. The
elementary volumes used by this discretization depend on the specific method chosen. Here,
two popular approaches are described. One allows algorithms to be equipped with penetra-
tion depth computations Section 1.3.2 only while the other enables distance computations as
well Section 1.3.1.

1. Voxels are cuboidal axis-aligned elements forming a grid (see Figure 1.22a) that can be
used for penetration depth computations when they are combined with distance maps
to represent an implicit surface (that may have continuous normals). They rely on two
different geometric representations. When two shapes, say A and B, are in a state of
interpenetration, A has its volume approximated with voxels while B has its boundary
covered by a finite number of points. The voxels, if any, of A in which points of B lie,
are found and are used to estimate the penetration depth. Those approaches are very well
suited to parallelization, including on high performance Graphics Processing Units (GPU)
(See for example [38]);

2. Inner spheres trees [141] are another approach that fill the volume of each Bk with spheres
of various diameters in a very compact way Figure 1.22b. Those spheres are organized into
a tree structure in a way enabling the fast search of the closest spheres among those that
approximate A and B. Those closest spheres are used to obtain an approximate value of
the distance. In case of interpenetration, the intersecting spheres can be found efficiently
and used to produce an estimation of the penetration volume.

(a) (b)

Figure 1.22: A motor approximated with (a) voxels and (b) spheres of various diameters. Image credit [141].

Image-space based approaches (see for example [97, 9, 76, 59]) is a similar family of methods
where the volume of each Bk is not explicitly approximated. Instead, the image of each Bk
is rendered from different points of views using a traditional graphics rendering pipeline. The
resulting 2D images are then exploited to observe the penetration depth or volume of A and B.
While being very fast because they exploit the power of GPU, the accuracy of these methods is
strongly dependent upon the capabilities of the GPU rasterization pipeline itself (the resolution
of its output in particular).

All the methods presented in this section suffer from similar issues which are inherent to
volume-based approaches:

29

• Accuracy: the approximations performed induce significant deviations from the effective
contact normal obtained from the shapes ‘as manufactured’ of A and B;

• Lack of reliable information about tangents: a proper definition of tangents is often not
readily available with those methods. The absence of accurate tangent directions prevents
the simulation of friction.

This makes them unsuitable for applications where realism of the simulated phenomena is favored
over performances. They are however, particularly adapted to applications requiring a high
refresh rate where the computational time allocated to CD is scarce. Haptic simulations with
force feedback is thus a typical example of use-case for volumetric representations.

1.4.2 Piecewise linear boundary representation: polyhedral approximations

Polyhedral approximations are the most popular approach throughout several communities be-
cause they offer a great balance between accuracy and efficiency of geometric queries. They are
piecewise-linear representations of the boundary of Bk. Typically, a 3D modeler is used to create
smooth representation of Bk. This smooth model is input into another software that generates a
piecewise-linear approximation of the boundary of Bk. Most often, this generation process can
be customized, e.g., to control the maximal chordal deviation between the original shape and
its approximation, to refine the mesh in highly-curved areas, to homogenize the aspect of the
triangles, i.e., to avoid elongated triangles, etc. All these parameters contribute to the accuracy
of the geometric approximation of Bk and thus, to the accuracy of the overall simulation.

However, approximating the shape of Bk has one important drawback: it implies that the
non-penetrations constraints are approximated as well, as shown in Figure 1.23. Let us note
however that for more general cases, the approximation of ∂C would not be piecewise-linear if
some Bk has at least one rotational degree of freedom. Indeed, rotations introduce additional
non-linearities to the contact constraints.

(a)
Reentrant corners

(b)

Figure 1.23: (a) The 2-degrees of freedom scenario from Figure 1.1 after tessellation. The original shapes
are shown in grey behind their approximations in order to visualize their deviations. (b) The corresponding
approximated feasible space C and approximated obstacle Rn \ C. The original obstacle is represented in gray.

In practice, since the normals at contact points no longer have continuous first order deriva-
tives with respect to the generalized coordinates, the user may experience unrealistic interac-
tions between A and B that may change their behavior in sudden and unexpected ways because
of unrealistic impacts and jamming. Moreover, the necessary existence of reentrant corners
(see Figure 1.23b) in the approximation of ∂C has been shown by Pfeiffer and Glocker [105, 50]
to impede the stability of dynamics constraint solvers.

The discontinuity of contact normals is actually a well-understood problem for Finite Element
Model simulations based on tetrahedral or triangular meshes. Indeed, multiple attempts to dodge
this issue are made using 3D smoothing methods, i.e., the piecewise-linear contact surfaces are

30

interpolated smoothly by surface patches [109, 54, 110, 99]. In the context of interactive and
real-time dynamics simulations, the two main approaches attempt to address this issue are:

1. Reducing the chordal deviation. Indeed, using more triangles produces a better approxi-
mation of curved areas of each Bk. This reduces the approximation errors of the contact
constraints and thus, the adverse effects of impacts on edges and vertices added at the
cost of a higher number of contact points. Such an increase of the number of contacts
raises important performance issues because the number of constraints passed on to the
dynamics solver increases as well. Therefore, this method is not applicable to simulations
where a very high level of accuracy is desired;

2. Choosing a geometric contact model that yields smooth constraints even if the contacting
shapes are not smooth. As mentioned in Section 1.1, penetration-based geometric contact
models based on smooth measure of penetrations exist, i.e., the growth distance [47, 28] or
the continuous penetration depths [144]. However, their ranges of application are limited:
the former applies only to convex shapes while the latter produces contact constraints that
cover only a smooth approximation of C.

1.4.3 Smooth boundary representations: toward optimal accuracy

Smooth boundary representations are the most common native output of industrial CAD mod-
elers. The BRep data structure describes the boundary ∂Bk of Bk as a 2-manifold CW-complex
which is connected, closed, oriented, without self-intersections. The previous properties define
a volume, which is also commonly called a ‘solid’ in the CAD community. The CW-complex
structure (see Figure 1.24) includes three types of entities with a distinction between topolog-
ical entities (vertices, edges, faces with restrictions over their parametric domains) and their
corresponding geometric counterparts (points, curves, and surfaces) [128]:

Topology Geometry

PointVertex

References

References

Parametric surface
NURBS, Bézier, Cylinder, Cone,
Sphere, Torus, Plane, Linear extrusion,
Surface of revolution.

Face
Domain restriction (trimming curves),
References to adjascent edges.

Contains

Parametric curve
NURBS, Bézier, Conic sections (segment,
circle, hyperbola, parabola).

Edge
Domain restriction (real interval),
References to adjascent vertices.

Contains

Contains
One element of .

Figure 1.24: Constitutive entities of the BRep data structure.

1. Faces correspond to 2-manifold smooth entities. They combine a surface represented as
a mapping σ : R2 → R3 with trimming curves that reduces their parametric domain to a
closed proper subset of the 2D plane R2. Each trimming curve corresponds to an edge of
the BRep model;

2. Edges are 1-manifold entities located at the intersection of exactly two faces. The 2-
manifold structure of the BRep guarantees that two faces cannot intersect without forming
an edge, and three faces cannot meet at a single edge either. Edges are modeled by curves
represented by the mapping α : R→ R3;

31

3. Vertices are 0-manifold entities located at the intersection of edges. Note that two in-
tersecting edges do so at a vertex only. The geometry of a vertex is a single point of
R3.

Each face of a BRep model associates a surface with a set of trimming loops composed of multiple
smooth curves embedded in its 2D parametric plane R2. Those loops are necessarily satisfying
the following properties:

• They do not self-intersect and do not intersect each-other;

• Exactly one of the loops named the external loop splits the 2D plane into two parts defining
its interior and exterior such that all the other loops lie on its interior;

• A distinction can be made between the solid domain of a face and the part of R2 that is
trimmed out. The solid domain is the subset of R2 corresponding to the material points of
the solid represented by the BRep model. The trimmed out domain is the complement of
the solid domain. To characterize this property, each loop (and thus each curve composing
it) is oriented in such a way that given a point p ∈ R2, the point p∗, which is the closest
to p and located on a trimming curve, and t∗ the tangent of this curve at p∗, then:

t∗ × (p− p∗) > 0⇒ p ∈ solid domain, (1.26)

where the operator × is the cross product, i.e., a×b = axby−aybx. Informally speaking,
the point p is inside the solid domain if and only if it is located on the left hand side of t∗.

A valid set of trimming curves, as well as various invalid configurations are depicted in Fig-
ure 1.25.

(a) (b) (c) (d)

Figure 1.25: Various arrangements of trimming curves with their orientations (depicted by arrows). (a) has
one external loop and one internal loop and is valid. Its solid domain is filled in blue. Other configurations
are forbidden because (b) there are two external loops, (c) the curves are oriented in such a way that the solid
domain is unbounded, and (d) the trimming curves intersect.

The orientation of faces is part of the orientation of a solid to enable the definition of its interior
and exterior, which is also equivalent to the definition of the normal n at any G2 point of ∂Bk
such that n points either outward or inward with respect to the interior of Bk. Refer to [43] for
definitions of the geometric continuities G1 and G2.

Within the remaining chapters, a feature designates either a vertex, an edge, or a face together
with their associated geometric entity. Surfaces are categorized as being either canonical or non-
canonical depending on their types. Canonical surfaces include spheres, cylinders, cones, tori,
and planes. Non-canonical surfaces, also called free-form surfaces, are all the other types of
surface that can participate to the definition of a BRep model which include Bézier, B-Spline

32

surfaces or, more generally, NURBS8 surfaces. Let us observe that each NURBS surface can be
subdivided into a finite number of rational Bézier surfaces [107] without loss of accuracy, i.e.,
the set of rational Bézier surfaces derived from a NURBS surface matches the latter exactly.
Therefore, the design of algorithms that take into account rational Bézier surfaces rather than
NURBS surfaces do not incorporate any deviation from ∂Bk. A similar distinction can be applied
to curves. Canonical curves designate line segments and conics, i.e., circle, ellipse, hyperbola
and parabola. Non-canonical curves are Bézier, B-Spline curves or, more generally, NURBS
curves. Just like surfaces, NURBS curves can be decomposed into several rational Bézier curves
without loss of accuracy. Here again, the design of algorithms that take into account rational
Bézier curves rather than NURBS curves do not incorporate any deviation from ∂Bk.

Let us now assume that the orientation of ∂Bk is such that the faces normals n point
outward. Then, the faces associated with each of these canonical surfaces can be subdivided
into two disjoint categories:

1. Concave canonical faces have their normals pointing toward the reference curvature center
of their associated surface, whatever the point considered, to conform to the concept of
orientation index as defined by Li et al. [82];

2. Convex canonical surfaces have their normal pointing toward the direction opposite to the
reference curvature center of their associated face.

All the types of convex and concave canonical surfaces are shown on Figure 1.26. Because the
concept of concavity/convexity refers to the curvature of surfaces, the orientation index does
not apply to a plane. The concept of concavity/convexity can be extended to a set of adjacent
faces, including planar faces, based on the face normals, as defined over ∂Bk.

Figure 1.26: Distinction between convex and concave canonical surfaces.

The concepts of convex and concave edges however, are quite different from that of faces.
It has first been introduced for edges lying at the intersection of two planar faces [74, 116, 117]
and then mentioned by Sakerau et al. [117] for curved objects. The status of an edge depends
on the status of each of its points. At a point along an edge, its status depends on the type,
parameters, and relative position of the two surfaces that meet where it appears. A point edge
p is said to be:

• G1 if the two surfaces meeting at this point share the same tangent plane. In addition,
the corresponding normals must point toward the same directions (their scalar product is
positive). This definition distinguishes cases like Figure 1.27b from cases like Figure 1.27c
which is not considered G1 in this manuscript;

8Non Uniform Rational B-Splines.

33

• Convex if the angle α between the outward normals of the two faces F 1
A, F

2
A, intersecting

at the edge E12
A containing this point is such that 0 < α < π. The value α is refered to as

the solid angle at point p and is computed as:

α = 〈n1 × n2, t12〉 , (1.27)

where n1 (resp. n2) is the normal of F 1
A (resp F 2

A) at p and t12 the tangent of the edge at p
with its orientation defined in accordance with the orientation of E12

A in F1 (the orientation
of an edge is inherited from the orientation of its corresponding trimming curve);

• Concave if the solid angle α at p is such that −π < α < 0.

An edge is assigned a status if all its points share the same status, e.g., an edge is convex if
and only if all its points are convex. Prior work about edge status does not exhibit a complete
taxonomy of edge statuses. The assignment of an edge status when some of its points are convex
while others are concave is still an open problem. Likewise, a complete taxonomy of edge statuses
requires complementary work.

(a) (b) (c)

Figure 1.27: (a) Examples of convex edges (green), concave edges (red), and G1 edges (blue). (b) Example of G1

edge. The normals n1 and n1 of the surface of each face F 1
A and F 2

A at a common point of the edge are shown
to be collinear. (c) An edge that is not considered G1 in this manuscript. While both surface of F 1

A and F 1
B

share the same tangent plane along this edge, their normals n1,n2 at their common point p along the edge are
antipodal, i.e., 〈n1,n2〉 < 0.

Those distinctions between canonical and non-canonical curves and surfaces is necessary to
design fast, accurate and robust algorithms to compute tight bounding volumes (see Section 3.3),
exploit known curvature information to filter potential contact pairs (see Section 2.2), and
compute exact contact points using analytic methods (see Section 4.3.1).

The taxonomy of canonical and non-canonical faces is also at the basis of grouping criteria for
faces, thus avoiding redundant computations (see Section 2.3). Actually, the real-time efficiency
of the methods presented in this work comes from the observation that ∂Bk of industrial BRep
models are mostly composed of canonical faces [118]. If free-form surfaces are encountered in
∂Bk, they often participate to blends between canonical areas or connection surfaces, which are
small and sometimes not even represented in the CAD model (see Figure 1.28), e.g., chamfers.
Moreover, ∂Bk contains canonical faces for simplicity of the corresponding modelling process as
well as manufacturing purposes. Such observations lead to the existence of conformal contacts
as well as smooth rolling and sliding motions.

Using smooth BRep models for CD has several clear advantages:

• Because the original shapes are exploited, no geometric approximation is performed over
∂Bk compared to approaches described in Sections 1.4.2 and 1.4.1. Therefore, maximal
fidelity with respect to real physical behavior of MS is preserved;

• Because features of the BRep models are smooth, the distance function is smooth as well
and so will be the gap functions and thus, the contact constraints. Therefore, unrealistic
shocks due to contact constraints discretization are avoided. This consequence preserves
also the fidelity with respect to the real physical behavior of MS ;

34

(Free-form surfaces)

Chamfers

Blending areas

(Canonical surfaces)

Blending areas
(Canonical surfaces)

Expected functional
contacts location
(Canonical surfaces)

Figure 1.28: A mechanical part is composed mostly of canonical curves and surfaces. Free-form surfaces are
mostly located in blending areas.

• A whole part of the boundary of C can be described with only one contact constraint
corresponding to a LMD. This is possible due to the existence of exact contact kinematic
function that provides the evolution of the location of closest points as a function of
Bk’s motion [93, 139]. Overall, less constraints are necessary to ensure non-penetration
compared to methods based on polyhedral models that require several constraints to obtain
a piecewise-linear approximation (see Section 1.4.2);

• No geometric approximation algorithm, i.e., tessellation, voxelization, etc., has to be ex-
ecuted on ∂Bk, and the user has less parameter to tune for model preparation before
simulation. Indeed, there are cross influences between the distance function discretization,
kinematic constraint discretization, and chordal deviation related to the geometry pro-
cessing of ∂Bk. Those are significant advantages from the ergonomic standpoint as they
reduce significantly the time spent for the model preparation and the monitoring of the
quality of a simulation.

On the other hand, disadvantages are significant as well:

• While the gap functions gi used for non-penetration constraints in the Equation (1.6) are
non-linear because of the non-linearity of the parametrization of the positions (particularly
the rotations), the use of smooth BRep adds even more nonlinear terms to gi because of
the non-linearity of the contact kinematics that depend explicitly on the shape of the
models [93, 139]. This can reduce the accuracy of dynamics constraint solvers based on
constraint linearizations performed at the beginning of the time-step. Heading toward
optimal accuracy requires the use of a non-linear constraints solver [4] though it induces
additional computation times. This leads to a clear issue related to the balance between
model accuracy and computation time;

• The literature about real-time collision detections applied to smooth BRep models is scarce
since most existing methods deal with only one individual surface or curve which would be
inefficient if used as-is for complete BRep models. Some of them still rely on polyhedral
approximations to yield the final outputs. The most representative methods are detailed
in Section 1.5.

This last mentioned performance issue is the main topic of this manuscript. The study of
non-linear constraints solvers mentioned in the first point is left to future works.

35

1.5 Distance computation on smooth boundary representations:
existing methods

As mentioned in the introduction, this thesis aims at contributing to the CD component of dy-
namics simulation engines targeting applications where accuracy is more important than compu-
tation times as long as they remain real-time and with a reasonable update rate (above 30Hz and
ideally 60Hz). Given the observations made regarding the choice of a geometric contact model
in Section 1.3 and the choice of a geometric representation of the simulated objects in Section 1.4,
a natural choice to favor accuracy is to combine a distance-based geometric contact model using
LMD or quasi-LMD with implicitly dilated smooth BRep models to avoid most errors due to
geometric approximations (the only remaining errors being at sharp edges that are rounded off
by the erosion/dilation process discussed in Section 1.3.1.2).

However, existing approaches computing LMDs between pairs of smooth BRep models mostly
deal with a pair of features (curves, surfaces, or points) only instead of entire geometric models.
Thus, applying those methods to all possible feature pairs of two BRep solids would be inefficient
since it would have a quadratic algorithmic complexity O(mn) where m and n are the total
number of features in each model. Nishita et al. and Zou et al. [100, 147] are two noticeable
alternatives handling entire models using recursive feature tests of lower dimensions whenever a
LMD footpoint is found to lie outside of the domain of a higher dimension feature.

The following sections analyze various existing methods addressing the three stages of typical
LMD computation algorithms over a pair of features:

• Coarse localization of feature areas that may contain LMD footpoints. This operation
identifies feature areas where LMD footpoints are likely to be located. Two families
of methods can be distinguished: methods based on subdivisions of the feature domain
(see Section 1.5.1) and methods based on a secondary (polyhedral or volumetric) represen-
tation (see Section 1.5.4). Let us note that methods based on secondary representations
are generally applicable to full BRep models though there is no guarantee of generating
all the possible LMD footpoints (with distances smaller than the user-defined threshold
dmax);

• Exact computation of the LMDs footpoints between the individual features (see Sec-
tion 1.5.2);

• Removal of footpoints that lie outside of each face domain delimited by trimming curves
(see Section 1.5.3). Footpoints lying outside of an edge domain have to be removed as well
but this is straightforward since an edge domain reduces to a real interval.

For simplicity, until the end of this manuscript, the term LMD is generically used to identify
either the footpoints of an LMD, their parametric coordinates, or the actual distance between
those points. Either meaning should be clear from the context. For example, ‘locating a LMD’
implicitly means ‘locating LMD footpoints and computing their parametric coordinates’.

1.5.1 Subdivision methods

Subdivision methods are algorithms localizing feature areas that may contain LMDs. Given
a pair of features, all subdivision-based methods follow the same recursive procedure detailed
in Algorithms 1 and 2. First of all, the whole domain of definition of both features is taken into
account. Then, pairs of sub-domains that may contain a critical point of d̃ are recursively sub-
divided into smaller pieces until candidate solutions are isolated into independent sub-domains.
Those small sub-domains are then stored for future processing in order to locate exactly the

36

LMD. The accurate locations of the critical points are computed by a numerical unconstrained
optimization method initialized using a point chosen as accurately as possible in this small
sub-domain. This last step is detailed in Section 1.5.3.

This simple scheme is summarized by Algorithm 1 for the LMD computation between the
point p and the surface σ, and by Algorithm 2 for the LMD computation between two surfaces
σ1 and σ2. The list R will be filled up with the parameters defining the LMD footpoints. Let
us note that both algorithms are very similar besides the fact that both surfaces need to be
subdivided in the second one.

Algorithm 1 Algorithmic scheme to compute LMDs between a point and a surface.
function ComputeLMDs(σ, p, R)

if MayContainUniqueSolution(σ, p) then
guess ← InitialGuess(σ, p)
R← R ∪ NumericalResolution(σ, p, guess)

else
σ′ ← Subdivide(σ)
for all σ′i ∈ σ′ do

if MayContainSolution(σ′i, p) then
ComputeLMDs(σ′i, p, R)

end if
end for

end if
end function

Algorithm 2 Algorithmic scheme to compute LMDs between two surfaces.
function ComputeLMDs(σ1, σ2, R)

if MayContainUniqueSolution(σ1, σ2) then
guess ← InitialGuess(σ1, σ2)
R← R ∪ NumericalResolution(σ1, σ2, guess)

else
σ′1 ← Subdivide(σ1)
σ′2 ← Subdivide(σ2)
for all (σ′1,i, σ

′
2,j) ∈ (σ′1, σ

′
2) do

if MayContainSolution(σ′1,i, σ′2,j) then
ComputeLMDs(σ′1,i, σ′2,j , R)

end if
end for

end if
end function

Methods for LMD computation between a point and a curve, between two curves, or between
a curve and a surface would follow the same subdivision schemes. In addition, both methods
could be applied even if the surfaces were deformable as long as all the computations, including
subdivisions, occur at runtime. If the cache storing intermediate subdivision results proposed
by Johnson et al. [70] is used then, deformable features cannot be handled without additional
work for updating such a cache.

Both algorithms rely on several procedures, the details of which are subject to debates as
expressed through the literature:

• MayContainSolution, also referred to as the culling test, tests whether a pair of features
may contain a LMD (on a specific rectangular sub-domain for surfaces or on a specific real
interval for curves) or not. If not, there is no need to subdivide either feature any further.
This test must be conservative, i.e., it must not discard pairs that contain a solution, but
not overly, i.e., it should do its best to discard as many pairs as it can that will not lead

37

to any solution. Thus, an ideal culling test would be fast to execute and would identify
all the sub-domains that do not contain any LMD. Existing approaches are described
in Section 1.5.1.1;

• MayContainUniqueSolution tests whether or not the given pairs of features may
contain a single solution, at most. If so, an exact numerical computation of the LMD
can be performed without risking to miss other local solutions if multiple solutions were
existing over the features. Existing approaches are described in Section 1.5.1.3;

• Subdivide returns an array of feature areas σ′ (or σ′1 and σ′2) by cutting the features’
parametric domains into several parts. Also, it subdivides NURBS and Bézier curves and
surfaces explicitly at their geometric level to meet the test conditions for MayContain-
Solution. Existing approaches are described in Section 1.5.1.2;

• InitialGuess returns the initial solution parameters to initialize the computation of ac-
curate footpoint locations. The closer it is to the exact solution, the faster the iterative
numerical resolution algorithm will converge. Existing approaches are detailed in Sec-
tion 1.5.2.1;

• NumericalResolution is an iterative numerical optimizer that finds the exact closest
pair of points. Existing approaches are detailed in Section 1.5.2.2.

1.5.1.1 Solution existence tests

Most authors focused mainly on the determination of an accurate test to identify areas of the
search domain guaranteed not to contain any LMD. Most approaches rely on characteristics
specific to one particular type of surface or curve to design efficient tests. Zhou et al. [146] and
Elber et al. [39] exploit the fact that the distance function gradient involving B-spline curves
and surfaces only, can be formulated as a B-spline form as well, i.e., it is a closed form. That
way, the convex hull property of B-splines can be used to detect zones of the solution space that
may contain the origin, i.e., points where the gradient vanishes correspond to critical points of
the LMD function.

On the one hand, Zhou et al. [146] set up a test based on the graph of the distance func-
tion. It simultaneously checks that a solution exists on the given parameter ranges and, at
the same time, reduces its size in such a way that the new sub-domain converges quadrati-
cally toward the solution. This leads to expensive computations involving either the explicit
construction of O(n2) 2D convex hulls where n is the number of distance function parameters
(the Projected-Polyhedron algorithm), or its reformulation as the resolution of n minimization
and maximization problems with n constraints (the Linear Programming algorithm) to obtain a
better refinement of the current solution search space and avoid explicit computation of convex
hulls.

Beside root-finding algorithms based on the reformulation of the distance function gradient
under a B-spline form, methods using bounding volumes of the curve/surface and its deriva-
tive(s) have been proposed. Snyder et al. [125] use interval arithmetic, which is equivalent to
manipulating AABBs9, on time-varying curves/surfaces to bound the distance function and its
gradient. Then, if the origin is located inside of the bounds of the gradient, the corresponding
curve or surface areas can be subdivided to refine the solution search.

Finally, regarding the point and/or NURBS (curve or surface) cases, some authors do not
explicitly use any derivative (of the surfaces and of the distance function) to design a culling

9Axis Align Bounding Boxes are boxes with axes aligned along the coordinate axes of the reference frame of
MS.

38

test [36, 87, 120]. Let us note that both Dyllong et al. [36] and Ma et al. [87] are known to
erroneously exclude some curve/surface patches that may contain a solution: counterexamples
are given in Selimovic and Chen [120, 25]. Given the interpolation property of NURBS, i.e., the
fact that the control polygon (resp. polyhedron) endpoints coincide with the curve segment (resp.
rectangular surface patch) extremities, Selimovic et al. [120] characterize whether the candidate
point is to be projected onto the curve (resp. surface) interior or on one of its extremities. If
the projection stands at an endpoint, there is no need to carry on the subdivision algorithm on
this curve (resp. surface). This detection is performed in linear time with respect to the number
of control points of the NURBS object. The test checks the existence of a plane containing one
endpoint while having no intersection with the curve’s (resp. surface’s) control polygon (resp.
polyhedron) and separating the candidate point from the curve (resp. surface) itself. If such a
plane exists, then the corresponding curve or surface can be ignored.

1.5.1.2 Search space subdivision methods

The search space must be split into smaller areas in order to refine the localization of LMDs
and discard the areas guaranteeing to contain any. Depending on the type of features involved
in the distance computation problem, subdividing their parametric domains may impact their
geometric representations. Notably, Bézier, NURBS curves (resp. surfaces) are usually explicitly
subdivided into two other curves (resp. four other surfaces) of identical nature with new control
points. This allows culling tests to exploit their geometric properties like endpoint interpolation,
hodograph, and convex hull [107].

In any case, a choice must be made regarding how the parametric domain itself is subdi-
vided. The simplest choice is to split the current parametric rectangle either along its largest
dimension [39] in case of a Bézier surface or inside the domain at an interior knot when the
curve/surface is a NURBS [103, 120].

A more adaptive approach proposed by Chang et al. [24] when the curves (resp. surfaces) are
under Bézier form is to apply the GJK algorithm [48] to compute the closest point(s) between
the convex hulls of their control points and retain their barycentric coordinates (obtained as a
by-product of the GJK algorithm). Those barycentric coordinates are then exploited to locate
a point along the curve (resp. surface) that is close to the result of this projection. Actually,
this approach is identical to algorithms that find an initial guess for the numerical optimization
algorithm presented shortly in Section 1.5.2.1 and detailed further in Section 4.3.1. However,
this guess is used as a curve (resp. surface) subdivision point rather than an initialization of the
exact LMD computation.

1.5.1.3 Ensuring the uniqueness of a solution

Very few approaches exist that rigorously ensure the uniqueness of a solution for a given pair
of features. The usual method assumes that the flatter the involved feature areas are, the more
likely unique a LMD will be over its sub-domain. Several authors propose flatness conditions
that serve as a heuristic to assume the solution uniqueness. Johnson et al. [70] assume a feature
area is flat if the half-angles of its tangent cones bounded with cones of revolution are small
enough. In the special case of NURBS, Zhao et al. [145] claim that a feature area will be flat if
all the weight (refer to [107] for detailed definitions) associated to each control point is bellow
a given threshold. Finally, [36, 87, 120] propose to compute the distance from a Bézier patch
control polyhedron to its planar approximation under the assumption that small distances imply
flatness. Though in practice those small distances actually imply small thickness as shown by
the Figure 1.29, the corresponding curve/surface can be erroneously reported as being flat.

39

Figure 1.29: A Bézier curve (in red) erroneously considered flat by [36, 87, 120] because its control points (blue
dots) are close to being collinear. Its control polygon is shown in blue.

Because they are only heuristics, none of these approaches actually ensure the uniqueness
of a LMD for all configurations. A few robust methods exist [125, 39, 102] but might often
require a very large number of subdivisions, in practice, before becoming conclusive over the
subdivided sub-domains. Other methods rely on properties that are specific to a given type of
geometric object, e.g., for the projection of a point on a NURBS curve, Chen et al. [26] exploit
the variation diminishing property of the distance function also expressed as a NURBS curve.
However, this is no longer applicable to surfaces because they do not benefit from this property
(details about the properties of NURBS curves and surfaces can be found in [107]).

Within our framework, the tangent-cone based method presented by Johnson et al. [70] is
used for splitting curves and surfaces into almost-flat areas at pre-computation time as described
in Section 2.4.1. Moreover, special cases are made at runtime for LMD computation between
some pairs of canonical surfaces to find all the closest points robustly using analytical solutions
(see Section 4.3.1).

1.5.2 Numerical resolution of the optimization problem

The exact localization of one LMD between two points, surface areas, or curve areas can be ob-
tained either analytically or using an iterative method, depending on the geometric properties
of the two objects considered. On the one hand, choices of analytical methods to process canon-
ical curves and surfaces are discussed in Section 4.3. On the other hand, iterative methods are
two-steps processes. Firstly, a guess must be performed regarding the location of closest points
(see Section 1.5.2.1) over the sub-domains identified by the recursive subdivision previously de-
tailed in Section 1.5.1. Then, this guess is iteratively refined until it converges toward the exact
LMD (see Section 1.5.2.2). As mentioned in Section 1.5.1.3, relying on methods generating only
one LMD per feature area is sound as each pair of such sub-domain is assumed to contain only
one LMD.

1.5.2.1 Finding an initial guess

Whenever the parametric domain of the input features are sufficiently narrowed by a subdivision
method in such a way that they may only contain a unique solution, a solution guess must be
chosen in order to initialize an iterative numerical solver. The naive method consists in taking
the barycenter of the parametric sub-domain defining the feature area after subdivision [39, 145].
However, obtaining a better guess is desirable as it will affect directly the convergence rate of
the numerical resolution method.

A significantly more accurate method relies on the approximation of the feature areas us-
ing polyhedrons (or polylines for curves), and on computing the closest points between those
approximations. Then, parametrization functions that map any point on those polyhedra to a
parametric coordinate are defined. Applying those functions to the closest points between the
polyhedra provide the initial solution guesses. Several variants exist, depending on the choice of
polyhedral approximation:

• Polyhedral approximations with vertices located onto the surface area (resp. curve seg-
ment), forming a mesh (reps. polyline), is used by [124] (See Figure 1.30a);

40

• As a special case, Bézier surfaces areas (resp. curves segments) are handled by Thompson
et al. [134]. The polyhedral approximation chosen is their control polyhedrons (resp.
polygons) (See Figure 1.30b);

• Similarly to [106], each surface area (resp. curve segment) can be approximated by a
quadrilateral (resp. a line segment) (See Figure 1.30c).

This method, and the specific declination (similar to [124]) used by the framework presented
in this thesis, is further detailed in Section 4.3.1.

(a) (b) (c)

Figure 1.30: Various methods to set an initial solution between two surfaces A and B using polyhedral approxi-
mations. (a) Polyhedral approximation with all points located on the surface. (b) Using the control polyhedron
of Bézier surfaces (points are not necessarily located on the surface). (c) Quadrilateral approximation. In all
scenarios, pA and pB are the closest points between the polyhedral approximations.

1.5.2.2 Finding the solution

It is necessary to improve the initialization solution in order to find an accurate location of a
local extrema of d̃. The problem to solve is usually a difficult minimization problem that has
no closed-form solution, hence the use of iterative solvers. The most common method used is a
bisection combined with a Newton-Raphson algorithm to cancel the gradient of d̃, or one of its
variants like the Globalized Newton Method [108] for better robustness.

Authors have been more prolific regarding the point-projection problem, i.e., the localization
of the point onto a curve or a surface closest to the given point. While Newton-Raphson based
methods are still largely used, attempts were made to find alternatives using a local approx-
imation of the curve/surface with a first or second order curve/surface that is tangent to the
current iteration. The algorithmic scheme of those geometric iterative methods is the following
one: the point is projected onto a local approximation of the curve/surface and then, it is in-
verted, i.e., the associated parameters on the original curves/surfaces are found approximately.
This three-steps process (approximation, projection, and inversion) is repeated using those new
parameters until convergence is achieved. Figure 1.31 illustrates one iteration of four approaches
that follow this procedure. The simplest geometric iteration methods are based on a first-order
approximation of the curve/surface [61, 58] (see Figure 1.31b). This approximation corresponds
to the tangent plane (resp. line) of the surface (resp. curve) at the current iteration. A more
accurate approach proposed by Hu et al. [62] replaces the line by a circle with a radius and
center deduced from the normal curvature at the current iteration (see Figure 1.31c). Then,
Liu et al. [86] improve further the convergence rate of this second order approximation for the
3D case using a torus patch instead of a circle (see Figure 1.31d). The torus radii are deduced
from the surface principal curvatures at the current iteration. However, the inversion step is not
easy because it requires the resolution of a bivariate over-constrained quadratic equation, which
is solved approximately by a Newton-type iteration method. In the 2D case, Song et al. [126]

41

improves [62] further using a local approximation of the curve with a biarc (see Figure 1.31e).
A biarc is a curve that is tangent to the normal curvature circles of two points located on the
curve (the current iteration and another one a little further along the direction of the projection
point).

(a)

Inversion

Approximation

Projection

(b) (c)

(d) (e)

Figure 1.31: Section view of the four geometric iteration methods. (a) The initial configuration with the point
p to project, the initialization solution p0, and the actual optimum p∗ that has to be found. (b) one tangent-
based [61, 58] iteration. (c) one circle-based [62] iteration. (d) one torus-based [86] iteration. (e) one biarc-
based [126] iteration. The results of the three steps of each iteration are shown: approximation (blue), projection
(green) and inversion (gray) to obtain the next iterate p1.

1.5.3 Handling trimmed surfaces

Trimming curves introduced in Section 1.4.3 must be taken in account by the collision detection
framework in order to avoid generating LMD between non-solid areas of the objects that have
no material existence because they are trimmed out. To detect whether the parameters of a
LMD footpoint lie inside the solid domain of a face, [100] relies on the even-odd rule (illustrated
in Figure 1.32), which is well-known for testing the containment of a point inside a polyhedron [5].
The method [119] used in our framework relies on a more efficient exploitation of the even-odd
rule that does not require an explicit 2D ray cast and is presented in detail in Section 4.4.1.

In the context of contact tracking for haptic rendering, Nelson and Thompson [98, 133] make
sure a point does not leave the solid domain bounded by trimming curves. This is achieved with
a grid overlaid on the 2D plane and marking the grid cells intersecting a trimming curve as shown
in Figure 1.33. Thus, the transition between the solid domain and the domain trimmed out is
detected after testing if some of the marked cells are traversed after an update of the location of
the LMD footpoint. The condition of Equation (1.26) is tested on the trimming curve segments
intersecting those cells to determine whether the new LMD footpoint has to be trimmed out or

42

Figure 1.32: The even-odd rule for classifying a point with respect to trimming loops. A 2D ray is cast horizontally
from the point. The ray associated to the point a intersects the trimming loop an odd number of times (one
time), thus it is inside of the solid domain. The ray associated to the point b intersects the trimming loop twice,
which is even, so it must be trimmed out.

not. This is straightforward since both approaches are restricted to trimming curves described
as line segments.

(a) (b) (c)

Figure 1.33: Detecting a transition between the solid domain and the trimmed-out domain using a grid in the
parametric plane. (a) A polygonal trimming loop (dark gray), the probe point (green), and the segment (blue)
linking its new position (green circle) to its last one (dotted green circle) in the parametric plane. (b) The grid
overlaid and the marked cells (pink). (c) Marked grid cells that intersect the segment linking the two positions
of the probe point are identified in red.

1.5.4 Methods based on alternative representations

The other family of methods that attempt to solve the LMD computation problem is based
on an alternative representation of either the geometric models or the distance function itself
that exhibits useful properties to be exploited in combination with the original models. Any
additional computation needed to produce such a representation is performed offline, i.e., before
the dynamics simulation is started.

Firstly, if the surface is known by construction to be a convex NURBS patch, a first approach
is to use the Newton method to compute the support-mapping function of the surface [137].
Recall that a support-mapping function fS : R3 → S on a set S returns the point p ∈ S that
maximizes the scalar product with the direction v ∈ R3 given as input, i.e.:

fS(v) = argmax
p∈S

〈v,p〉 . (1.28)

This enables the use of existing support-map based algorithms like Gilbert-Foo et al. [49] to
compute the exact smallest surface/surface or point/surface distance.

43

Secondly, many other methods [85, 106, 60, 29] are based on a polyhedral (resp. polygonal)
approximation of the surface(s) (resp. curve(s)) involved in the distance computation. Given
such an approximation, it is possible to use algorithms identifying common closest points between
meshes to obtain an estimation of their original position on the exact model. Those approximate
solutions can then be improved by any numerical method described in Section 1.5.2. Those mesh-
based approaches mainly differ in the way the approximations are constructed and the guarantees
they offer in relation with the original models. Lin et al. [85] approximate the surfaces of convex
Bézier surfaces with ε-polytopes that guarantee a maximum distance error of ε > 0 between the
approximated surface and the original one. Piegl et al. [106] restrict its input to surfaces that
do not bend more than 180 degrees and cover them with a quadrilateral mesh without cracks.
Chou et al. [29] simultaneously uses two meshes to approximate a single oriented surface. While
the first one is a typical mesh obtained by a tessellation, the second one, called proxy mesh, is
obtained after offsetting the former at a distance δ toward the exterior of the object as defined
by the surface normals (which is roughly equivalent to computing a tessellation of the surface
dilated using a spherical envelop of radius δ). Thus, whenever the proxy mesh of one surface
intersects the first mesh of the other, the two objects are separated by a distance smaller than δ.
Then, an initialization of the solution location can be obtained by projecting the center of the
triangle intersection loop back onto each surface. Typically, one would choose δ ≥ dmax (with
dmax the maximal LMD of interest as defined in Section 1.3.1). Note that none of these methods
are conservative, i.e., none are able to guarantee that no LMD on the original model will be
missed since polyhedral approximations do not reflect properly the curvature of the underlying
smooth shapes.

Other very different approaches work directly on the formulation of the distance computation
problem as a higher dimensional one [121, 81]. Such approaches are hard to use in practice
because they often require complex pre-computations involving a symbolic computation system
often leading to high memory usages.

On the one hand, Sohn et al. [81] use Line Geometry to transform the problem of LMD
computation between two surfaces to an intersection problem between two 2-dimensional surfaces
embedded in a four-dimensional manifold. The main idea is to exploit the fact that the two
surface normals of the LMD must be collinear at the footpoints. At that position, each point
onto each surface is replaced by an infinite line that passes through it and that is parallel to its
normal. This representation is called the Plücker image of the normal congruence of the original
surface. Finding the intersections of the Plücker image of two surfaces is then equivalent to
finding the locations of critical points of the distance function. However, computing the Plücker
images is not simple for arbitrary free-form surfaces. Sohn et al. [81] propose solutions for some
canonical surfaces. In those cases, the LMD computation problem can be reformulated as a
two-variables root finding problem.

One the other hand, Seong et al. [121] transform the distance minimization problem into a
ray-cast against a higher-dimensional surface; the dimension of which depends on the degrees of
freedom assigned to each body Bk plus the number of parameters of each feature. For example,
the LMD computation between a 2D point and a 2D curve can be reformulated as a higher-
dimensional problem parametrized by the position of a point relative to the curve. That is, if
γ(t) : R → R2 is a 2D curve and p ∈ R2 the point being projected, rather than searching for
critical points from the problem extracting the roots of the 1-dimensional function:

f(t) =
〈
γ(t)− p, γ′(t)

〉
, (1.29)

the problem is reformulated as the root extraction of the 3-dimensional function:

f̃(t, x, y) =
〈
γ(t)− (x, y), γ′(t)

〉
, (1.30)

44

where x and y are the (variable) coordinates of p. Consequently, the implicit hypersurface
f̃(t, x, y) = 0 contains all the possible LMD parameters for any position of p in the plane. To
solve a LMD computation query, one has to cast on this hypersurface a ray that starts at p
(and taking t equal to the parameter of the first endpoint of γ) and that propagates along a
direction collinear with the coordinate axis representing parameter t in the high-dimensional
space. However, the formulation of f̃ when the Bk have more degrees of freedom (typically 6 for
3D simulations) is hard and the resulting ray-casting problem on the corresponding hypersurface
is expensive since it operates on a high-dimensional space.

1.6 Conclusion and presentation of the objectives

Contact constraints have been defined as a set of smooth constraints that delimit the valid posi-
tions of the various bodies Bk as parts of a complex mechanical system MS. Alternatively, they
can be called non-penetration constraints since they prevent objects from being in a configura-
tion where they overlap in space, which would be unrealistic provided that they are solid. The
set of generalized coordinates without overlaps of the Bk has been named the feasible space C.
Contact constraints can be constructed from various geometric contact models among which:

1. The distance-based model is accurate and conveniently characterized in term of tangent
cone polars (as defined in the field of convex analysis), but fails to represent small penetra-
tions that are unavoidable due to numerical approximations generated by the integration
process and the limited accuracy of floating point numbers. Moreover, multiple and con-
formal contacts are problematic if only one non-penetration constraint is defined for a
pair of solids. Therefore, the existing concept of quasi-LMD has been described as an
approach that generates multiple constraints using the local minima of the distance func-
tion between the solid boundaries represented as CW complexes. In addition, the dilation
of tangent cone polars in order to enlarge the domain of definition of LMD functions has
been described as an angular regularization of the distance functions that produces a better
stability of the simulation near conformal configurations;

2. The penetration-based model is widely used for haptic and real-time simulations. The
literature for the efficient computation of penetration information is massive and existing
methods for volumetric models are extremely efficient. However, penetration-based ap-
proaches suffer from singularities when penetrations are too deep. Indeed, if the medial
axis of the penetrating objects intersect, the contact kinematics are no longer well-defined
and nonsmooth changes of the contact normals may occur. Moreover, penetration-based
approaches require systematically the stabilization of contact constraints which may intro-
duce potentially large ammounts of fictitious energy into the system. This is particularly
problematic from a stability standpoint for simulations with small mechanical clearances.

Therefore, selecting a geometric contact model adapted to the targeted application is important
since it strongly influences the accuracy and performance of the overall simulation.

In addition, a suitable representation of the geometric models of Bk has to be chosen as well.
Discrete volume representations have been discussed to be less accurate though they lead to fast
computations of penetration informations. Polyhedral representations are the current de facto
choice for a good balance between accuracy and performance of the distance and penetration
depth computation. However, contact constraints built from such representations approximate
the feasible space, which causes some simulations to require prohibitively detailed approxima-
tions in order to achieve a satisfying level of accuracy at the cost of high computation times for

45

CD and a high number of contact constraints. Finally, smooth BRep representations provide
the solver with an optimal accuracy of Bk, thus allowing the feasible space to be represented
accurately with few constraints, only. Distances between two BRep models however, are hardly
computed efficiently.

After discussing the types of applications targeted by the framework described in this
manuscript, the choice of maximizing the accuracy of the contact constraints has been made.
Indeed, our framework will be based on the computation of LMD or quasi-LMD between smooth
BRep models. It is integrated as part of the complete real-time multibody dynamics simula-
tion engine XDE [91]. Existing algorithms computing closest points between points, curves and
surfaces have been presented but efficient methods for complete BRep models do not exist yet.
Therefore, the objectives of the proposed approach enumerate:

• Design new data structures in order to accelerate the identification of feature areas of
smooth (implicitly dilated) BRep models or deformable curves that may contain LMDs
(or quasi-LMDs) smaller than a user-defined threshold dmax. As analyzed in Section 1.5,
robust solution location mechanisms is a clear issue to the improvement of CD during
insertion tasks with small clearances. To this end, our contributions are the definition of
curvature-based compatibility attributes (see Section 2.2), supermaximal features (see Sec-
tion 2.3), and feature splitting into quasi-flat parts at pre-computation time (see Sec-
tion 2.4.1). Moreover, we define a new type of cone for bounding directions (like normals
and tangents): the polyhedral cones (see Chapter 3). The dilation of polyhedral cones is
also supported (see Section 3.4) in order to allow algorithms to compute quasi-LMDs;

• Select and improve existing methods for the exact computation of the LMD footpoints.
Once again, Section 1.5 has shown that the computation of exact solutions is often slow
and inadequate for real-time simulations. As a contribution, we present a region selection
that depends on the types of features involved in the LMD computation (see Section 4.3)
and a hybrid approach for deformable Bézier curves (see Section 4.3.1). The goal is to be
as fast as possible while remaining sufficiently robust;

• Combine those new data structures and methods with existing approaches in order to
build a CD framework able to handle complete BRep models as well as deformable curves,
efficiently. Therefore, our new polyhedral tangent cones, supermaximal features, and com-
patibility attributes are added to a bounding volume hierarchy at pre-computation time
(see Section 2.4.2). The traversal of the BVH and the implication of the added informa-
tions are presented in Section 4.2. The exploitation of temporal coherence (see Section 4.5)
and the parallelization (see Section 4.6) of the whole CD pipeline are addressed as well in
order to achieve real-time performances.

Finally, our framework is tested in the Chapter 5 on industrial scenarios for the real-time simu-
lation of insertion tasks with small mechanical clearances.

46

Chapter 2

From the CAD model to a data
structure for distance computation

Pre-computing data structures is necessary to transform the input geometric data into a repre-
sentation that can be efficiently explored at runtime to compute the LMDs between BRep models
after they have been arbitrarily moved in space. This chapter justifies the selection and describes
the construction of a structure designed for representing the input BRep models: a bounding vol-
ume hierarchy filled with spatial bounding volumes (oriented bounding boxes), orientation-based
bounding volumes (normal cones), and compatibility attributes. To that end, the input models
are first analyzed in order to identify areas of the model that play no role with respect to collision
detection, and pairs of features that have no chance of ever being in contact, so that they can be
ignored at runtime. In addition, the new concept of supermaximal features is introduced to group
BRep features with similar geometric shapes into a single one and avoid redundant computations
at runtime. Finally, all remaining features are split into almost-flat areas and the tree structure
hierarchizes them. Each such structure is then ready to be input to the runtime phase of the
framework as detailed in the subsequent chapters.

2.1 Why pre-computing a data structure is necessary

Let NA and NB be the number features on the BRep modeling the shapes A and B of two bodies
Bk and Bl. An example of a naive approach to find all LMD between them could be to:

1. Form each possible pair of features (SiA, S
j
B) where SiA is the i-th feature of A with i ∈

{1, . . . , NA}, and SjB the j-th feature of B with j ∈ {1, . . . , NB};

2. For each such pair of features, compute all critical points between their underlying untrimmed
geometry (curve, surface or point) using a method capable of finding all the critical points
of the corresponding distance function. Examples of such methods, like subdivision-based
methods, were presented in Section 1.5;

3. Filter the critical points computed between the untrimmed geometry, i.e., remove any
point that is not a LMD, remove any LMD that is larger than the user-defined threshold
dmax. Also, take into account the BRep structure to check that they do not lie in a hole
and that the characterization with Equation (1.23) is verified. More details about this
step are provided in Section 4.4.

47

While functional and implementable using methods already available in the literature, this
approach would lead to very poor performances in practice. Indeed, the steps (2) and (3) have
to be executed between all (NA ×NB) pairs of features, even if some of them are too far away
from one another to be of interest from the dynamics simulation standpoint. Step (2) requires a
minimization algorithm that may be very computationally intensive. For example, subdivision
methods (see Section 1.5.1) rely on the recursive subdivision of curves and surfaces which are
costly if performed at run-time. Finally, some critical points will be unnecessarily computed
because they will be removed at step (3).

Pre-computed data structures aim at reducing those computation times based on an anal-
ysis of the input models and additional informations on top of the BRep structures to reduce
the amount of work being performed at run-time. Typically, bounding volumes arranged into
bounding volume hierarchies can be used to determine lower bounds on the distance between two
features. In practice, these hierarchies reduce the quadratic complexity of the naive algorithm
presented above since whole groups of features can be detected at once as being too far from one
another. This is the purpose of the culling test presented in Section 2.4.3. Bounding volumes as
well as the computation of the bounding volume hierarchy (BVH) for smooth BRep models are
detailed in Section 2.4. Moreover, during the construction of the BVH, the features themselves
are split into small areas that are almost flat to exploit local solution search algorithms instead
of global methods. Also, this subdivision process helps to identify in advance subsets of the
curves and surfaces domains that lie into a hole (See Section 2.4.1 for details).

In addition and because the pre-computation phase of a simulation is executed only once, it
must incorporate as much analysis of the BRep model as possible in order to:

• Replace any NURBS curve/surface with its equivalent set of rational Bézier curves/sur-
faces. This contributes to lowering run-time computation costs since evaluating a NURBS
is more expensive that evaluating a Bézier curve;

• Identify pairs of features that can never contain any LMD, independently from their spatial
position and orientation. This can be achieved by defining curvature-based compatibility
attributes as described in Section 2.2.

• Identify and group similar shapes so that, e.g., faces with the same geometric representa-
tions are considered as a single one. Those groups form supermaximal features as intro-
duced in Section 2.3.

The Figure 2.1 summarizes all the operations performed at pre-computation time in order
to produce a BVH. It has to be mentioned that the use of BVH is already very popular for CD
between tessellated models [7, 41].

Split edges and faces
into almost-flat areas

Build one BVH node per
area and construct the BVH

Bounding Volume
Hierarchy

Construct the bounding
volumes and compatibility

attributes of each area

Identify
supermaximal features

Convert all NURBS
curve/surface to Bézier

BRep model

Figure 2.1: Successive steps to produce a Bounding Volume Hierarchy from a BRep model.

48

2.2 Curvature-based surface compatibility

It can be proven than no LMD can be found between some types of surfaces, independently
from their relatives positions. Indeed, this sections aims at proving that, e.g., any critical point
of the distance function between two concave cylinders will end up not being an LMD so finding
them is not necessary in the first place.

Let FA and FB be two faces of BRep models describing A and B, respectively. Let p∗A and
p∗B be the critical points of the distance function satisfying the Equation (1.23), i.e.:

p∗B − p∗A ∈ TA(p∗A)∗ ∩ −TB(p∗B)∗ (2.1)

⇐⇒
{
〈p∗B − p∗A,nA〉 = d,
〈p∗B − p∗A,nB〉 = −d, (2.2)

where d = ‖p∗B − p∗A‖ > 0 and nA (resp. nB) is the normal of FA (resp. FB) at p∗A (resp. p∗B).
Now, let us consider the plane P with a normal vector nP orthogonal to nA and nB and

such that p∗A ∈ P and p∗B ∈ P. Then, the intersection of P with FA (resp. FB) yields a curve
with parametrization γA : R→ R3 (resp. γB) which can be assumed, without loss of generality,
to be such that γA(0) = p∗A (resp. γB(0) = p∗B), and to have an arc-length parametrization, i.e.,
their tangents always have a unit magnitude (including at 0). Thus:

‖γ′A(0)‖ = ‖γ′B(0)‖ = 1. (2.3)

Those elements are illustrated in Figure 2.2.

Figure 2.2: Example of configuration with two critical points p∗A,p∗B, the corresponding outward normals nA,nB ,
and a choice of plane P containing the line passing through p∗A and p∗B and the curves γA and γB

By definition of the normal curvature [23], the second derivatives of γA and γB are such that:

γ′′A(0) = −nAκA, (2.4)
γ′′B(0) = −nBκB, (2.5)

where κA (resp. κB) designate the normal curvature of FA (resp. FB) at p∗A (resp. p∗B) along
the tangent direction γ′A(0) (which is the same as the direction of γ′B(0)). Let us point out the
minus sign in Equations (2.4) and (2.5) that come from the fact that the orientation convention
chosen in Section 1.4.3 regarding the solid boundary is such that their normals point outward
the solid.

Clearly, for p∗A and p∗B to be local minimizers of the distance function between FA and FB,
they must also be the local minimizers of the squared distance function dP(s, t) = ‖γB(s) −

49

γA(t)‖2 between the curves γA and γB obtained for any choice of P, as defined above. Let us
assume P fixed; p∗A and p∗B are local minimizers of dP if and only if its Hessian H(dP) at zero,
i.e.:

H(dP)(0, 0) = 2

[
〈γ′′A(0), γA(0)− γB(0)〉+ ‖γ′A(0)‖2 −〈γ′A(0), γ′B(0)〉

− 〈γ′B(0), γ′A(0)〉 − 〈γ′′B(0), γA(0)− γB(0)〉+ ‖γ′B(0)‖2
]
,

= 2

[
dκA + 1 ±1
±1 dκB + 1

]
,

(2.6)

is symmetric definite positive (SDP). The actual sign of the off-diagonal elements depends on
whether γ′A(0) and α′B(0) point toward the same direction or not (though in any case, they must
be collinear since they are both orthogonal to nP and to (p∗B − p∗A)).

Let us recall that both eigenvalues ofH(dP)(0, 0) must be positive for it to be SDP. Therefore,
a necessary and sufficient condition for H(dP)(0, 0) to be SDP is to have a positive trace and
determinant, i.e.:

d(κA + κB) > −2, (2.7)
(dκA + 1)(dκB + 1)− 1 > 0. (2.8)

In particular, Equation (2.8) can be developed, under the assumption that d 6= 0, as:

κA + κB > −dκAκB. (2.9)

The following properties depend on the signs of κA and κB only and can be deduced
from Equations (2.7) and (2.9):

• If κA > 0 and κB ≥ 0 (or κA ≥ 0 and κB > 0), then H(dP)(0, 0) is SDP since both
conditions are verified;

• If κA = 0 and κB ≤ 0 (or κA ≤ 0 and κB = 0), then H(dP)(0, 0) is not SDP because
the Equation (2.9) is violated. Indeed, assuming κA = 0, κB ≤ 0:

κA + κB > −dκAκB, (2.10)
⇔ κB > 0, which is contradictory. (2.11)

• If κA and κB are both negative (and non-zero), then H(dP)(0, 0) is not SDP because Equa-
tions (2.7) and (2.9) cannot be satisfied simultaneously. Indeed we have:{

d(κA + κB) > −2,
κA + κB > −dκAκB,

(2.12)

⇔
{
d(κA + κB)κAκB > −2κAκB,
(κA + κB)2 < −dκAκB(κA + κB),

(2.13)

⇔
{
d(κA + κB)κAκB > −2κAκB,
d(κA + κB)κAκB < −(κA + κB)2,

(2.14)

⇒ − 2κAκB < −(κA + κB)2, (2.15)

⇒ − 2κAκB < −2κAκB − κ2
A − κ2

B, (2.16)

⇒ 0 < −κ2
A − κ2

B, which is contradictory. (2.17)

50

Now, those developments can be used to prove that certain pairs of canonical surfaces never
produce any LMD. To this end, the canonical surfaces are categorized in Table 2.1 with respect
to the sign of the principal curvatures at each of their points. Note that the surface types have
to be understood following the typology of canonical surfaces shown in Figure 1.26, i.e., this
conforms to the concept of orientation index [82] mentioned in Section 1.4.3.

Surface type The principal curvatures at each point are. . .
Plane . . . both zero.
Convex sphere . . . both positive.
Convex cone or cylinder . . . one is zero while the other is positive.
Convex torus . . . both positive or have opposite signs.
Concave torus . . . both negative or have opposite signs.
Concave cone, cylinder or sphere . . . both non-positive.

Table 2.1: Principal curvatures of the points of all the types of canonical surfaces.

Let us assume that FA and FB are represented by two non-intersecting canonical surfaces. If
there exists a relative position of FA and FB such that a LMD with footpoints p∗A and p∗B
can be found, then the conditions given by Equations (2.7) and (2.8) must hold for all choices
of planes P as previously defined, i.e., with P containing the line passing through p∗A and p∗B.
Conversely, if for all possible relative positions of FA with respect to FB, all pairs of critical points
satisfying Equation (1.23) are such that there exists a choice of P such that the conditions given
by Equations (2.7) and (2.8) are not validated, then none of them are LMD footpoints and no
LMD can be found between FA and FB, no matter their relative positions. In particular:

• No LMD can be found between two surfaces with all points having two non-positive prin-
cipal curvatures. Indeed, the principal curvatures κmin, κmax of a surface point correspond
to the minimal and maximum normal curvature values along all possible tangent direc-
tion [23]. Therefore, if any two critical points p∗A and p∗B are found between FA and FB,
then any choice of P will yield two intersection curves γA and γB with normal curvatures
κA ∈ [κAmin, κ

A
max] and κB ∈ [κBmin, κ

B
max] where κAmin, κ

A
max (resp. κBmin, κ

B
max) are the prin-

cipal curvatures of FA (resp. FB) at the point p∗A (resp. p∗B). Thus, since κAmax ≤ 0 and
κBmax ≤ 0, we have κA ≤ 0 and κB ≤ 0. The developments from Equation (2.10) to Equa-
tion (2.11) or from Equation (2.12) to Equation (2.17) are then applicable to prove that
the SDP conditions Equations (2.7) and (2.9) are violated;

• Following a similar reasoning, no LMD can be found between, e.g., a convex cylinder
(or convex cone) with a plane since, following the same definitions as in the preceding
developments, for each possible pair of critical points p∗A,p

∗
B, there exists a plane P such

that κA = κB = 0 resulting in the violation of the condition of Equation (2.9). However,
non-isolated minimizers corresponding to conformal contacts may exist.

Given the previous observations, each feature area of a shape is assigned compatibility at-
tributes. Those attributes indicate whether or not a given pair of surfaces can contain any LMD
at all. The Table 2.2 summarizes the incompatible pairs of surfaces. Convex spheres and convex
tori are not included in this table since they are compatible with all the canonical surface types.

This concept of compatibility can be implemented extremely efficiently with the help of bit
masks. An initialization phase assigns to each surface type a distinct feature type ID represented
as integers. Convex canonical surface types do not have the same identifier than their concave
counterpart, e.g., the identifier assigned to the ‘convex sphere’ surface type is not the same that
of the ‘concave sphere’ surface type. Overall, we distinguish nine types of canonical surfaces are

51

Plane Cone/Cylinder Concave sp/cy/co Concave torus
Plane × × × ×

Cone/Cylinder × + × +
Concave sp/cy/co × × × ×
Concave torus × + × ×

Table 2.2: Compatibilities between different types of surfaces . A symbol × indicates an incompatibility. A
symbol + indicates a compatibility and any pair missing from this table are compatible. Concave sp/cy/co
designates concave spheres, concave cylinders, and concave cones.

illustrated by Figure 1.26, therefore the feature type IDs only range from 0 to 8. With those
IDs at hand, an algorithm assigns to each feature area two bit masks:

1. A type mask with a 1 set to the position indicated by the feature type ID and zeros
elsewhere;

2. A compatibility mask with 1 set to the positions indicated by all the feature type IDs it
can collide with. For example, assuming the index 1 (resp. 5) corresponds to cylinders
(resp. concave spheres), then the first bit of the cylinder’s compatibility mask will be 1
because two convex cylinders may collide while its fifth entry will be 0 because a cylinder
and a concave sphere cannot collide.

At runtime, those masks produce efficient compatibility tests between two nodes of the BVH.
Indeed, algorithms only have to perform a bitwise or between the type mask of each node and
the compatibility mask of the other. If any result is non-zero, then the nodes are compatible and
the tree traversal can proceed under those nodes. If it is zero then, the nodes are incompatible
and can be ignored.

Finally, the compatibility masks derived in this section solely take into account the type of
canonical surface, that is, independently from their relative positions and dimensions. Filtering
could be further improved with their incorporation the masks. For example, it seems clear that
no LMD is possible between a sphere with a radius equal to rA and a concave torus with minor
radius equal to rB < rA. Indeed, at any critical point, a plane P, as defined at the beginning
of this section, could be chosen such that Equation (2.9) is violated for any choice of d > 0. All
the criteria for each possible pair of canonical surfaces are yet to be determined to extend the
use of the bit masks and the efficiency of curvature-based criterion described in this section.

Furthermore, the conditions expressed by Equations (2.7) and (2.9) depend on the distance
d between the critical points. Therefore, bounds on the principal curvatures of all points of
each face FA and FB combined with bounds of the distance separating them could be used to
design a curvature-based culling test that takes into account the relative position of these faces.
However, bounding the distance, e.g., using bounding volumes, proved either too inaccurate or
too expensive in practice to be of any use to set up such an extended curvature-based test.
Further works may lead to better results following these proposals.

2.3 Introducing supermaximal features to avoid redundant com-
putations

This section introduces the new notion of supermaximal features that are geometric entities built
on top of the initial BRep CAD structure imported into the CD framework. The supermaximal

52

features group features with similar geometric shapes. Their definition and identification meth-
ods are given in Section 2.3.1 and the corresponding data structures in Section 2.3.2. These
data structures are exploited to avoid redundant computations at runtime in Section 4.2.3.

2.3.1 Definition and identification

Because of topological restrictions prescribed by their CW-complex structure, BRep models
often contain disjoint areas of the same surface or curve that appear as several independent
geometric entities (see faces F 7

A and F 8
A in Figure 2.3a). Such configurations derive from the

geometric modelling process producing each body Bk ∈ MS. Indeed, the basic principle of a
solid modelling process combines solid primitives that repeatedly trim surfaces of ∂Bk, hence
the existence of adjacent and/or disjoint areas of the same surface in the BRep CAD model
input for each Bk.

These areas coincide with faces or edges of the BRep data structure. Formally, given the
BRep model A of a Bk, the ith set sF iA of possibly disjoint areas of the same canonical surface
consisting of the BRep face set {F lA, FmA , . . . , FnA}, sharing the same orientation such that all
entities of sF iA share the same intrinsic geometric properties, forms a supermaximal face. In
other words, these areas are embedded into the same untrimmed surface. Examples are given
in Figure 2.3. One of the supermaximal faces of A is sF 1

A = {F 1
A, F

2
A, F

9
A} because these faces

are areas of the same unbounded cylinder. The Figure 2.3c lists all the supermaximal faces of
A (shown in Figure 2.3a).

Similarly, the jth set sEjA composed of the edges, with possible disjoint curves, {ElA, EmA , . . . , EnA},
at the intersection of two supermaximal faces sF iA and sF kA which are part of the same connected
component of the intersection between the underlying untrimmed surfaces is a supermaximal
edge. In other words, these curves are embedded into a single (continuous) intersection curve
between two untrimmed surfaces. Examples are given in Figure 2.3. The supermaximal edges
of A (shown in Figure 2.3a) that are not singletons are listed in Figure 2.3d (with Ei,jA de-
noting the edges at the intersection of F iA and F jA). One of those supermaximal edges is
sF 5
A = {E1,10

A , E2,10
A , E9,10

A } (a circle) because all its component edges lie at the intersection
of the two supermaximal faces sF 1

A = {F 1
A, F

2
A, F

9
A} (green cylinder) and sF 5

A = {F 10
A } (gray

plane).
It has to be mentioned that supermaximal faces and supermaximal edges are somewhat

similar to the maximal edges and maximal surfaces introduced by Li et al. [82] and Boussuge
et al. [19] without requiring their constitutive elements to be adjacent into the BRep structure
of A. The term supermaximal feature designates either a supermaximal face or a supermaximal
edge.

Finally, even if this definition of supermaximal edges is sufficiently general to include Bézier
curves and surfaces, the current interest holds in the identification of supermaximal edges with
canonical curves (Line, Circle, Ellipse, Hyperbola, Parabola) and canonical surfaces in order to
apply the runtime optimization proposed in Section 4.2.3.

All the sF iA and sEjA can be generated at precomputation-time for each category of canonical
surface without any knowledge about the construction tree of the solid A and in O(n2) time
without any particular algorithm optimization. n stands for the number of edges or surfaces of a
targeted category. Figure 2.4 shows the intrinsic properties that must be checked for each type
of canonical face. It is important to point out that these supermaximal features, sF iA or sEjA,
are set up independently from the underlying parametrization of each constitutive area, F lA or
EpA. By definition of sF iA, all its constitutive faces are either concave or convex.

53

(a) (b)

Supermaximal face Surface type
sF 1
A = {F 1

A, F
2
A, F

9
A} Cylinder

sF 2
A = {F 3

A, F
4
A} Plane

sF 3
A = {F 5

A, E
6
A} Cylinder

sF 4
A = {F 7

A, F
8
A} Plane

sF 5
A = {F 10

A } Plane
sF 6
A = {F 11

A } Plane

(c)

Supermaximal edge Curve type
sE1
A = {E5,10

A , E6,10
A } Circle

sE2
A = {E3,10

A , E4,10
A } Line

sE3
A = {E7,10

A , E8,10
A } Line

sE4
A = {E1,10

A , E2,10
A , E9,10

A } Circle
sE5
A = {E5,11

A , E6,11
A } Circle

sE6
A = {E3,11

A , E4,11
A } Line

sE7
A = {E7,11

A , E8,11
A } Line

sE8
A = {E1,11

A , E2,11
A , E9,11

A } Circle

(d)

Figure 2.3: (a) A solid A and its faces. The hidden planar face parallel to F 10
A will be referred to as F 11

A
(not shown here). The three edges E1,10

A , E2,10
A , E9,10

A are represented in red. (b) BRep face-edge adjacency
graph structure of A. All the supermaximal faces are circled in red. (c) List of all supermaximal faces and
their underlying (untrimmed) surface type. (d) List of all supermaximal edges that are not singletons and their
underlying (untrimmed) curve type.

Surface type Grouping conditions
Planes Parallel normals

Other axes are coplanar.
Cylinders Collinear principal axes

Same radius.
Cones Collinear principal axes

Same apices and half-angles.
Torus Collinear axis

Other axes are coplanar
Same center
Same radii.

Spheres Same center
Same radius.

Figure 2.4: Canonical faces grouping conditions.

2.3.2 Data structures of supermaximal features

As described in Section 1.4.3, BRep faces domains Di ∈ F iA are subsets of R2 and bounded by
trimming curves that form a set of simple loops. Those loops are such that the parametrization

54

functions Φi : Di −→ R3 are global homeomorphisms, even for periodic surfaces. One of those
loops is identified as the external loop, which delimits the contour of F iA. There cannot be several
exterior loops since F iA contains only one connected component. Let Di be the parametrization
domain of the ith surface of the face F iA. A supermaximal face sF jA can be defined as the set
of triplets {(Φref ,Diref ,Ξi) | i ∈ I}, where Φref is a fixed reference parametrization over the
largest (untrimmed) domain noted Dref . The domains Diref ⊂ Dref , are such that ∀u ∈ R2,u ∈
Diref ⇐⇒ Φ−1

i (Φref (u)) ∈ Di. Ξi are sets of modeler-dependent per-feature attributes and
metadata. This definition can be improved by observing that all Diref delimit subsets of Dref .
Therefore, sF jA can be completely characterized with a single triplet (Φref ,

sDref ,
∐
i∈I

Ξi) where

sDref =
⋃
i∈I
Diref is the supermaximal domain and

∐
i∈I

Ξi is the disjoint union of all attributes

and metadata.
Because a supermaximal face may have multiple connected components, the trimming curves

over its domain do not follow the same rules as trimming curves do over the domain of a single
face. Indeed, each component F iA ∈ sF jA is delimited by loops that cannot intersect but can be
nested into each other. For any two areas (F iA, F

k
A) of sF jA, three configurations may arise:

• Both are non-nested as in Figure 2.5a;

• Either F iA is inside a hole of F kA as in Figure 2.5b or the opposite. The alternation between
solid and empty areas is automatically handled by [119] detailed in Section 4.4.1 without
any algorithmic modification as it relies on the concept of even-odd-rule which makes no
assumption regarding the existence of an outer loop for classification;

• F iA, F
k
A, i 6= k, actually form a maximal face, i.e., they share at least one edge as in Fig-

ure 2.5c. If two trimming curves that define a common edge end up superimposed in the
parametric domain then, they can be safely removed as their contributions will annihilate
during point classification by the even-odd-rule.

The generalization to an arbitrary number of face areas is immediate. Let us observe that
because faces of a BRep never intersect apart along their bounding edges and because super-
imposed trimming curves are removed, the boundary domain of A covered by sF jA contains an
arbitrary number of faces that can be merged but never overlap.

(a) (b) (c)

Figure 2.5: Three configurations for merging two parametric domainsD1
ref andD

2
ref . The resulting supermaximal

domain sDref may have (a) two non-nested loops delimiting disjoint faces; (b) nested loops which alternately
delimit boundary areas and holes; (c) only one loop: the two coinciding vertical trimming curves are no longer
needed and have been removed.

Finally, given a domain of reference Dref , constructing the domain Diref , i ∈ I requires
the transformation of the trimming curves of Di to ensure that both domains delimit the same
boundary areas. Indeed, both faces may not have the same local coordinate systems because they
may be generated by different operations during the construction process of A and each of these

55

operations may lead to two isometric surfaces that coincide. Even if the intrinsic properties of
these surfaces do match, as shown in Figure 2.6, their reference frames may differ. The isometry
depends on the reparametrization Φ−1

i ◦Φref required to achieve the coincidence between these
surfaces. The type of isometry required for each category of canonical face is summarized in
Table 2.3.

(a) (b) (c) (d) (e)

Figure 2.6: Supermaximal faces composed of two areas which have different local coordinate systems (shown as
arrows) even if their intrinsic geometric properties match.

Surface type Reparametrization type
Planes 2D isometry and reflexion.
Cylinders Translation of both parameters and reflection.
Cones Translation of the angular parameter and reflection.
Torus Translation of both parameters and reflection.
Spheres 2D isometry.

Table 2.3: Categories of re-parametrization for a change of local coordinate system of canonical surface areas
belonging to the same supermaximal face.

The reasoning regarding supermaximal edges is similar to the case of supermaximal faces
except that the types of re-parametrizations are necessarily shifts of a real interval.

To conclude, the data structure used for CD representing a supermaximal edge is given in List-
ing 2.1.

Listing 2.1: Data structure for one supermaximal edge.

struct SupermaximalEdge {
Array<RealInterval > domain;
Curve reference_curve;

}

The structure Array<RealInterval> designates an array of real intervals, themselves repre-
sented by the structure on Listing 2.2. Each interval contains the domain of each curve form-
ing the supermaximal edge. The reference curve corresponds to the curve with the reference
parametrization Φref identified in the previous discussion.

Listing 2.2: A real interval.

struct RealInterval {
Real min;
Real max;

// Constructor.
RealInterval(Real lowerBound , Real upperBound) {

min = lowerBound;
max = upperBound;

56

}
}

The data structure for supermaximal faces is given by Listing 2.3. It is composed of a set
of trimming curves that have been properly re-parametrized as per Table 2.3, and the reference
surface with the reference parametrization Φref .

Listing 2.3: Data structure for one supermaximal surface.

struct SupermaximalFace {
Array<Curve2D > restriction_curves;
Surface reference_surface;

}

Let us note that the metadata Ξ mentioned in this section are of no use for CD and thus not
inserted into those data structures.

2.4 Constructing the Bounding Volume Hierarchy (BVH)

The grouping of edges and faces into supermaximal entities defines a description of the boundary
of each Bk with a minimal number of the B-Rep features: LMDs may be searched directly over
these features rather than over every individual face or edge of the BRep model input. Further, to
speed up CD queries between ∂A and ∂B, they are embedded into a Bounding Volume Hierarchy
(BVH) that takes into account not only the spatial extent of their vertices and supermaximal
entities, but also their orientations.

2.4.1 Splitting features into quasi-flat areas and processing non simply con-
nected domains

The objective of a BVH is to efficiently and accurately narrow down the location of the points of
the BRep features defining LMDs. On the one hand, that is why polyhedron based approaches
typically build a tree structure in such a way that each node contains at most one of its elemen-
tary geometric components, i.e., a triangle, and edge, or a point1. This is particularly efficient
because those geometrical entities are generally quite small in term of spatial occupation. More-
over, they are all convex, implying that only one LMD can be found between any two of them,
except when two segments are parallel or two triangles have parallel normals. Those last two
cases are still easy to handle since they correspond to conformal configurations where the contact
area a convex polyhedron and the corresponding contact constraints can be represented using a
finite set of LMDs as discussed in Section 1.3.1.1.

On the other hand, the elementary geometric components of a BRep model are trimmed
surfaces (for faces), trimmed curves (for edges), and points (for vertices). Often, they are
both large in term of spatial occupation, and non-convex. Moreover, most of them contain
holes. Using those as-is is thus extremely inadequate because they generate inefficient bounding
volumes that are not tight enough and any two bounding volumes can potentially contain a
large number of LMD footpoints. Therefore, solely using such nodes of the BVH to represent
one feature of the BRep is not efficient. Instead, the domain of each feature can be split into
smaller parts and each of them can be assigned to a node of the BVH. The subdivision should
be such that:

1Most collision detection methods represent polyhedral models using a set of triangles without connection
between them, i.e., a triangle soup. However, approaches like [90] also represent edges and vertices explicitly
with their connections to obtain a simplicial complex structure.

57

• Each feature area assigned to one BVH node can be bounded tightly by one bounding
volume. Such a bounding volume should be computed efficiently in order to avoid a large
increase of pre-computation times;

• Any two such feature areas contain at most one pair of points forming a LMD because, as
discussed in Section 4.2, some distance computation algorithms rely on numerical methods
like Newton-Raphson, to obtain closest points between two features. The local nature of
those methods leads us to generate leaves such that for any two of them, only one local
solution exists, thus improving the robustness of the proposed approach. As much as
possible, this generation process must rely on properties ensuring the desired uniqueness
property.

Unfortunately, those two conditions are difficult to meet whenever non-convex BRep models
are to be considered. Moreover, the second condition depends on the relative position of the
two shapes, which cannot be predicted at pre-computation time. An experimentally satisfying
method presented in the literature to head toward the satisfaction of these two assumptions is
to ensure that each feature area bounded by a leaf is almost flat [70, 120]. This flatness may be
obtained by subdividing the geometric feature into subsets that have a sufficiently small, up to a
user-defined tolerance, tangent cone (for curves) or tangent cone polar (for surfaces). Figure 2.7
shows an example where a feature subdivision leads to much tighter bounding volumes. Here,
they are chosen as Oriented Bounding Boxes (OBB). In practice, cones of revolution bounding
the tangent cones (for curves) and tangent cone polars (for surfaces) are used to estimate the
flatness as in [70]. If the apex-angle of the cone of revolution is smaller than a user-defined
tolerance αmax, then the corresponding feature area is considered almost flat.

(a) (b) (c) (d)

Figure 2.7: (a) A surface with a hole, bounded by an OBB. (b) After subdivision, the parts are more tightly
bounded by four OBBs and a part of the hole is not even inside any OBB. (c) A tube and its associated OBB
touching its outermost cylinder. By definition, this OBB contains also all the other features located inside of the
cylinder. (d) After being split into four parts, the outermost cylinder is bounded much more tightly with four
OBB.

The subdivision process is a recursive procedure detailed by Algorithm 3 for the special case
of a parametric surface S. The input of this algorithm is a parametric surface S with parameter
bounds (umin, umax, vmin, vmax) characterizing the rectangular parametric domain of S. Its
output sub-domains form a set of rectangular sub-domains Ri on which S is almost flat. Let us
note that this is the most general approach that applies to Bézier surfaces as well. A dedicated
process for each type of canonical surface can be set up since their curvature distribution can
be fully characterized independently of their dimensions. For example, considering a cylinder
defined on a rectangular parametric domain and such that, at each point the direction of principal
curvature equal to 0 corresponds to the parametric direction u then, exactly vmax−vmin

αmax
uniform

subdivisions are needed. Indeed, the resulting areas will have v-coordinates that span a range of
αmax, at most, and thus, a tangent cone polar inscribed into a cone of revolution of apex-angle
equal αmax. Similar straightforward approaches apply to other canonical surfaces.

58

Approaches for curves are identical, except that the parametric domain to be split is one-
dimensional only, and a bound of its tangent cone is used instead of a bound of its tangent cone
polar.

Algorithm 3 Outputs to sub-domains the list of rectangular sub-domains resulting from the subdivision of the
parametric domain of a given surface S such that each part is almost flat, i.e., has a tangent cone polar contained
in a cone of revolution with apex-angle smaller than αmax.

function SplitSurface(S, umin, umax, vmin, vmax, sub-domains)
C ← cone of revolution bounding the tangent cone polar of S.
if C has an apex angle greater than αmax then

. Cut the current domain into four parts.
umid ← umin+umax

2

vmid ← vmin+vmax
2

SplitSurface(S, umin, umid, vmin, vmid)
SplitSurface(S, umin, umid, vmid, vmax)
SplitSurface(S, umid, umax, vmin, vmid)
SplitSurface(S, umid, umax, vmid, vmax)

else
Append (umin, umax, vmin, vmax) to sub-domains.

end if
end function

The subdivision procedure described in Algorithm 3 does not take into account trimming
curves, which are likely to make the domain of the surface non-rectangular. Two measures are
taken in order to properly handle trimming curves:

1. The subdivision procedure is initialized with smallest and largest allowed parameters. This
is equivalent to taking the Axis Aligned Bounding Box of the trimming curves;

2. Most of the remaining developments in this thesis (including the computation of bound-
ing volumes) that apply to surfaces will work on rectangular domains only. Trimming
curves will be ignored until the very end, i.e., they are taken into account only to deter-
mine if a LMD found between the untrimmed features is effectively valid, as described
in Section 4.4.1.

Figure 2.8 shows an example of domain subdivision of S with a curvature distribution shown
with a color code that evolves from green to red. The closer to red a point on the parametric
space is, the greater is the largest absolute curvature of the corresponding point on S. Recall
that the absolute curvature κabs of a point p on S is defined as the sum of the absolute values
of its principal curvatures κmin and κmax [23, 42]:

κabs = |κmin|+ |κmax| . (2.18)

It highlights how the subdivision algorithm is adaptive by generating more subdivisions on
highly curved areas. Moreover, because trimming curves are not taken into account during
the subdivision, some rectangular sub-domains output may lie completely outside the domain
delimited by the trimming contours. Those sub-domains filled in white on Figure 2.8c are simply
not included into the BVH because they do not define active contact areas of the CD process.

Checking whether a rectangular sub-domain, R, lies completely outside the domain delimited
by a trimmed contour, T , is a two-steps process:

1. Check whether any of the edges of R intersects any curve of T . This is a one-variable root-
finding problem that is straightforward to solve for simple curves (circles, lines, hyperbola,
parabola). Iterative methods are needed for Bézier curves of degree higher than four.

59

(a) (b) (c)

Figure 2.8: (a) A set of trimming curves (black plain lines) and their AABB (dashed lines). Colors on the
background indicate the curvature distribution of a surface defined over this domain. Red stands for high
curvatures and green for low ones. (b) Example of domain subdivision resulting from Algorithm 3. (c) All
the rectangular sub-domains filled in white are not included in the BVH because they fall outside the domain
delimited by the trimmed contours.

Robustness is of foremost importance as the rejection of a R impacts the efficiency and
accuracy of the whole framework. Indeed, rejecting erroneously R might prevent some con-
tacts from being found, while retaining erroneously one induces unnecessary computations
at runtime. Thus, a robust root isolation approach like the interval newton method [57] is
preferred (and can be stopped as soon as one root can be proven to exist since its exact
location is not needed);

2. If no such intersection exists, test whether any vertex of R lies inside T , or not. If none
does then, the whole rectangular sub-domain is located outside and does not have to be
included into the BVH.

Besides the fact that feature areas resulting from this subdivision are quasi-flat, it also makes
OBB tighter in practice by preventing them from containing areas with holes, i.e., a sub-domain
R containing a trimmed contour T , except when those holes are small enough to lie completely
inside of a surface area that is almost flat. Those small holes will be ignored until the last
stage of the CD procedure, i.e., when it is verified that LMD footpoints actually lie on the solid
domain of some features (see Section 4.4.1).

Planes, however, are special cases where the Algorithm 3 always terminates without recurring
at all. Therefore, even planar surfaces with large holes and a non-rectangular shape like Fig-
ure 2.9 will be entirely contained into a single node of the BVH. Consequently, a special case is
mandatory to subdivide the solid domain D ⊂ R2, delimited by the trimming curves of a planar
face, into smaller regions Ri so that every Ri contains either no or only very small holes:

• As shown in Figure 2.9b, D is first tessellated such that the resulting mesh approximates
its planar contours up to a user-defined maximal chordal error δmax. The choice of δmax
dependends on how long and curved are contours of the holes on the considered planar
face. However, this has no influence upon the accuracy of our framework, but this affects
performances since the smaller the δmax is, the less likely any resulting regions will contain
holes;

• Then, each triangle is bounded by a 2D bounding box noted R̃i aligned with the axes of
the reference frame where D lies. Note that because of the maximal error δmax induced
by the approximation, some areas of D may not be covered by any R̃i;

60

• Each side of R̃i is enlarged by the maximal chordal deviation δmax as shown in Figure 2.9c.
The enlarged regions are noted Ri. That way, D is guaranteed to be covered completely
by the union of all Ri, D ⊂

⋃
iRi. In the end, each leaf of the BVH containing an area of

the plane defined on D will correspond to a region Ri.

Moreover, the tessellation algorithm should abide to a shape constraint, i.e., it must favor
triangles with similar shapes and that are as close to being equilateral as possible. This reduces
the amount of overlap between the computed AABB.

(a) (b) (c)

Figure 2.9: (a) The parametric domain of a non-rectangular plane face with a hole. (b) An example of tessellation
and the bounding box associated with one of its triangles. Vertices highlighted in yellow have been generated in
order to respect the shape constraint. (c) Zoom on the R̃i with the red bounding box. Every bounding box is
enlarged by the maximal chordal error δmax to account for tessellation approximations and make sure areas not
covered by any triangle is covered by one Ri, at least.

Finally, it is important to point out that this tessellation is solely used to compute the subdi-
vision of the parametric space of planes. It is not used to compute a polyhedral approximation
of a trimmed plane later used for CD.

2.4.2 BVH node structure and choice of bounding volumes

The choice of bounding volumes and the data structure for the BVH presented here is shown
in Listing 2.4. Its content is given in a pseudo-C++ form with inheritance to highlight the
similarities and differences between leaves of the BVH and other nodes which are called here
internal nodes.

Listing 2.4: Data structures for the BVH.

// Abstract node with a reference to its parent and to bounding volumes.
class BVHNode {

BVHNode parent;

OBB obb;
RevolutionCone normalCone;
CompatiblityMask mask;

}

// BVH Node that is not a leaf.
class BVHInternal: BVHNode {

BVHNode rightChild;
BVHNode leftChild;

}

// Leaf of the BVH.
class BVHLeaf: BVHNode {

PolyhedralCone polyhedralNormalCone;

61

SupermaximalFeature supermax_feature;
int feature_id;
Real umin, umax;
Real vmin, vmax;

}

This BVH is a binary tree with reference to parents, i.e., each node contains references to
their children (except for leaves of course) and a reference to their parent. The parent reference
is crucial to allow performance improvements introduced in Section 4.5.1. The root is assumed
to have a parent set to Null.

The choice of bounding volumes is inspired from the Spacialized Normal Cone Hierarchy
introduced by Johnson and Cohen [67] and incorporated by Merlhiot et al. [90] into the LMD
computation between non-convex polyhedral shapes. This hierarchy combines two bounding
volumes at each tree node:

1. A spatial bounding volume that bounds the space occupied by all the feature areas con-
tained into the leaves of the sub-tree rooted by the considered node. While Johnson et
al. [67] use bounding spheres, Oriented Bounding Boxes (OBB) are preferred here. Indeed,
OBB are much tighter than bounding spheres, especially for surface and curve areas that
are almost flat;

2. An orientation-based bounding volume, Ci, that bounds some orientation-dependent quan-
tities like normals and tangents. Those bounds, like the cone of revolution, attached to
each internal tree node, and polyhedral cones, attached to each leaf, are described in de-
tails in Chapter 3. Section 4.2.2 justifies the choice of using polyhedral cones at leaves,
only.

References to BRep feature areas are only present at leaves of the BVH. To take into account
both the concepts of supermaximal feature detailed in Section 2.3 and the subdivision into quasi-
flat areas with Ri domains presented in Section 2.4.1, three elements are necessary:

1. The field supermax_feature references the subset of supermaximal feature this node rep-
resents (see Section 2.3);

2. Because supermaximal features may group several BRep features Sj of the input BRep
CAD model, the index feature_id identifies which of the Sj is to be approximated by
this node. In the remaining algorithm pseudo-code, indexing the BVH node supermaximal
feature field, e.g., node.supermax_feature[node.feature_id], returns the corresponding
BRep feature Sj ;

3. Finally, as described in Section 2.4.1, each leaf contains only one feature area with its
associated parametric rectangular domain Ri. The limits of Ri are expressed by the fields
(umin, umax) for the parameter u and (vmin, vmax) for the parameter v. If the feature area
is a curve segment, then only (umin, umax) are used. Both are ignored if the feature is a
vertex.

2.4.3 The culling tests

The culling test between two BVHNode decides whether they have no chance of containing a
LMD or not. The culling test is said to succeed if it successfully detects that no LMD will be
found by continuing the search on a given pair of BVHNode, and to fail otherwise. Such a test
must be conservative, i.e., while the test must never succeed on pairs that actually support a
LMD, it is acceptable for it to fail on two pairs that do not actually contain any LMD. The test
combines all the bounding volumes set up in Section 2.4.2 into a specific order:

62

1. Test the curvature-based compatibility masks using the method described in Section 2.2;

2. Test whether normal cones of revolution contain antipodal directions, i.e., that they sat-
isfy Equation (1.24). If they do not, then the given pair of BVHNode cannot lead to any
LMD;

3. Test whether the two OBB, Oi and Oj , are separated by a distance greater than the user-
defined maximal LMD of interest dmax or not. The naive method shown in Figures 2.10a
and 2.10b computes the smallest distance d between Oi and Oj , and compares it with
dmax. If d > dmax, then the culling test succeeds since d is an upper bound of the distance
between Oi and Oj . However, computing the exact distance between Oi and Oj is more
expensive than testing if they intersect. Indeed, while both methods can be performed
in constant-time, the former has to locate exactly the closest points, e.g., using the GJK
algorithm [49], while the latter only has to find a plane splitting R3 into two half-spaces,
each containing either Oi or Oj (refer to the Separating Axis Theorem [52]).

Thus, the distance-based test is transformed into an intersection test by enlarging each
extent of one OBB, say Oi, by dmax, producing OMi. Then, OMi contains all the points
of Oj that are closer than dmax from Oi so OMi must necessarily intersect Oj if the latter
contains one of those points. Let us note that this test is slightly less discriminative than
the distance-based test. Indeed, enlarging the extent of Oi actually includes also some
points that are farther than dmax but the test stays conservative;

4. If both BVH nodes are leaves then, test whether their associated polyhedral normal cones
Ci and Cj contain antipodal directions as described in Algorithm 4 or not. If no such
direction exists, then the features contained into those leaves, Si and Sj , have no chance
of containing a LMD inside their Ri and Rj , respectively.

(a) (b)

(c) (d)

Figure 2.10: OBB culling test that succeeds in (a, c), and fails in (b, d). (a) and (b) compute the distance d
between Oi and Oj , and compute it with the maximum LMD dmax needed. (c) and (d) transforms the distance
computation into an intersection test with the enlargement of Oi by dmax.

The sequence of those tests is critical because they start with the cheapest one to end with
the most expensive one. As soon as one test finds that no LMD exists using one of the test of
the sequence, then the culling test succeeds and its following tests are no longer required.

63

2.4.4 Top-Down construction

In practice, the BVH is built using a top-down scheme. Firstly, all the vertices, faces, and edges
are gathered together. Then, all faces and edges are subdivided into quasi-flat areas. Each
such area and vertex has its spatial, Oi, and orientation-based, Ci, bounding volumes computed
and stored together with a reference to the supermaximal feature (as defined in Section 2.3) it
belongs to into a new BVH leaf. Finally, the binary tree structure is built by splitting recursively
this set of leaves into two parts. For example, the following simple splitting rule is used, similarly
to [52], that results in good results in practice:

• Given a set L of BVH leaves, compute the covariance matrix Σ obtained from all the
centers ci of the OBBs Oi associated with the leaf li;

• Compute the eigenvector vmax of Σ associated with the largest eigenvalue;

• Collect all the values of the scalar product 〈vmax, ci〉 or all Oi in L, and compute their
median m;

• Finally, L is split into two subsets L1, L2 such that Li = {li ∈ L | 〈vmax, ci〉 ≤ m} and
Lj = {li ∈ L | 〈vmax, ci〉 > m}.

The construction method of a BVH that produce an efficient traversal is an active topic of
research and may rely on various cost functions that measure the quality of the possible slitting
options [95, 51, 140]. Refer to the survey from Andersen et al. [7] and to Erleben et al. [41] for
further details regarding various BVH construction approaches, including methods that do not
follow a top-down scheme.

2.5 Conclusion

This chapter described the various analyses and steps performed to pre-compute a data structure
necessary for the fast computation of LMDs. Firstly, two analyses are performed on the input
BRep models:

1. Each canonical surface or curve is given compatibility attributes that indicates other surface
and curve types with which no LMD is possible because of their respective curvatures;

2. Features are grouped into supermaximal features whenever their underlying geometries are
identical if they were not trimmed.

Those three analyses allow algorithms to avoid unnecessary computations as explained in Chap-
ter 4.

Besides those analyses, choices are made regarding the data structure used for LMD com-
putation at runtime: the BVH. The efficiency of this data structure depends strongly on the
bounding volumes capability of detecting efficiently when two areas of two BRep models have
no chance to contain LMDs. Combining spatial bounding volumes, like bounding spheres that
bound the space occupied by the objects, with orientation-based bounding volumes, like cones of
revolution that bound the normals or tangents of the objects, is known to yield good results [70].
However, OBB are much tighter than bounding spheres when bounding surface and curve ar-
eas. Moreover, a tighter orientation-based bounding volume, the polyhedral cone, is described
in Chapter 3.

Secondly, with all those observations in hand, the construction of a BVH is performed. It
starts by splitting the domains of all the features into rectangular sub-domains over which they
are almost flat. This has the benefit to:

64

• Ensure the tightness of the bounding volumes for features with high curvature and/or
holes;

• Evolve toward the property where two such almost-flat areas will contain at most one
LMD to be satisfied most of the time in practice. This is crucial for the use of iterative
root-finding methods for the exact localization of a LMD and Section 4.3.1) enforces this
property for some canonical faces;

• Ignore completely, for the rest of the LMD localization process, each rectangular sub-
domain that lies completely outside of the domain delimited by restriction curves.

All computations described in the remainder of this thesis are performed on those almost-
flat feature areas (or on their unions) defined on the rectangular subdomains Ri. Trimming
curves are taken into account again only at the very end of the LMD computation process
(see Section 4.4.1) to remove solutions that lie outside of the trimmed sub-domains.

65

66

Chapter 3

Tightening the bounds on solutions:
take orientation into account with
normal and tangent cones

The efficiency of a BVH is strongly correlated with the tightness of its bounding volumes and the
computational cost of the corresponding culling tests. While plenty of spatial bounding volumes
have been designed (bounding spheres, AABB, OBB, k-DOP, etc.), only one orientation-based
bounding volume exists in the literature: the cone of revolution. To reduce this gap, this chap-
ter defines a new orientation-based bounding volume that is much tighter at the cost of more
computation-intensive culling tests: the polyhedral cone. After the definition of polyhedral cones,
polyhedral normal cones, and polyhedral tangent cones, their generation methods for face areas
parametrized on a rectangular domain, for edges areas, and for vertices, are described. Then,
two culling tests are designed on pairs of polyhedral cones. The first one checks the existence of
antipodal directions on both cones and is used for pairs of BRep features or a BRep feature and a
deformable curve. The second test checks the existence of orthogonal directions and is designed
for a pair of deformable curves. However, those tests are shown to have a high complexity, cubi-
cally proportional to the number of vectors used for the definition of each polyhedral cones. This
performance issue will be mitigated in the next chapter.

3.1 How and why bounding the normals of a BRep feature

Bounding volumes, as those shown in Figure 3.1, are popular tools of early detection when two
objects are too far to be of interest for CD. Indeed, they provide algorithms with an efficient
way to compute a lower bound of the global minimal distance between the bounded objects.
Though for this bound to be accurate, the bounding volumes themselves must be as close to
the shape geometry as possible. However, the tighter a bounding volume is, the harder the
actual distance bound computation becomes. For example, computing the distance between
two bounding spheres is straightforward while computing the distance between two convex hulls
requires complex iterative methods like the GJK algorithm [46]. Thus, a compromise must be
reached between tightness and cost of the distance computation.

Because all those bounding volumes account only for the space occupied by the solids, they
are called spatial bounding volumes. Section 1.3.1 has shown that critical points of the dis-
tance function are characterized by a condition of intersection between their tangent cone polars

67

(a) (b) (c) (d)

Figure 3.1: Common spatial bounding volumes sorted from the loosest to the tightest: (a) bounding sphere,
(b) axis-aligned bounding box, (c) oriented bounding box, (d) convex hull. Other spatial bounding volumes not
listed here exist, e.g., k-DOP and spherical shells [79]. This list is not exhaustive.

(see Equation (1.23)). Thus, similarly to spatial bounding volumes, it would be useful to define
volumes that bound those cones. Then, if two such bounding volumes are disjoint, it is safe to
conclude that the underlying tangent cone polars are disjoint as well. Because those volumes
would depend on the shapes orientations, they are called orientation-based bounding volumes.
The idea of bounding the tangent cone polars appeared in the context of CD with the intro-
duction of normal cones (of revolution) on polyhedral models by Johnson et al. [67] but have
not been formalized rigorously (as bounds of tangent cone polars) before their generalization
to simplicial complexes by Merlhiot et al. [90]. Normal cones of revolution have been applied
earlier to the distance computation problem between smooth surfaces as well [71, 132] but not
for complete BRep models, which include edges and vertices at the boundaries of faces.

However, from a tightness point of view, one could say that cones of revolution are quite
analog to bounding spheres except that they operate with angles and directions instead of
distances and points. Equations (3.1) and (3.2) highlight their similarities: a bounding sphere
B is defined with a center c and its radius r, while a cone of revolution C is defined with an
axis n and its half apex-angle α:

B =
{
p | ‖p− c‖ ≤ r,p ∈ R3

}
, c ∈ R3, r ∈ R, (3.1)

C =
{
v | angle(v,n) ≤ α,v ∈ R3

}
, n ∈ S2, α ∈ [0, π], (3.2)

where angle(v,n) = arccos
(〈

v
‖v‖ ,n

〉)
is the angle between v and n, and S2 ⊂ R3 the unit

sphere. Moreover, the intersection test between two bounding spheres BA and BB is also very
similar to the intersection test between two cones of revolution CA and CB:

BA ∩BB 6= ∅ ⇐⇒ ‖pA − pB‖ ≤ rA + rB, (3.3)
CA ∩ CB 6= ∅ ⇐⇒ angle(nA,nB) ≤ αA + αB. (3.4)

Given those similarities, it is natural to wonder whether one could draw some inspiration from,
say, OBB and convex hulls to design tighter orientation-based bounding volumes. The answer
is positive when resorting to cones having a polygonal base, as illustrated in Figure 3.2.

(a) (b)

Figure 3.2: (a) a cone of revolution and (b) a polyhedral cone. Their intersection with S2 is highlighted.

68

Section 3.2 introduces the definition of polyhedral cones and provides an algorithm for defin-
ing two of them. Section 3.3 details computation of polyhedral cones that bound the tangent
cone polar of a feature area. The dilation of those cones is presented in Section 3.4 in order
to address conformal contact configurations. Finally, Section 3.5 describes the usage of polyhe-
dral cones to bound the difference of two features and tangents and how they can characterize
the non-existence of LMDs between two curves. Note that, as specified in Section 2.5, all the
presented algorithms that operate on surfaces do so on rectangular domains because processing
their trimming curves is postponed to the runtime phase in Section 4.4.1. Finally, those contri-
butions are summarized in Figure 3.3 (the technical terms not mentioned so far are explained
in the subsequent chapters).

Collect generators which
span cover the input's

gauss-map

Apply dilation

Compute the convex
hull on of the

generators.

Feature area
or vertex

Family of vectors
generating a polyhedral

normal cone

Polyhedral normal
cone with a minimal
numer of generators

Polyhedral normal cone
with non-empty interior

(a) Successive steps necessary to compute a dilated polyhedral normal cone that bounds tightly the
tangent cone polars of a vertex or feature area.

Compute the control points
of its hodograph

Bézier curve
segment

Polyhedral tangent cone
with generators equal

to the hodograph control points

Compute the control points
their Minkowski difference

Two Bézier curve
segments

Polyhedral solution line cone
with generators equal

to the Minkowski diff. control points

(b) Successive steps necessary to compute a tangent cone that bounds tightly the tangent cone of a curve
segment.

Polyhedral solution line cone
with generators equal

to the Minkowski diff. control points

Polyhedral tangent cone
with generators equal

to the hodograph control points

Polyhedral normal cone
with non-empty interior

Orthogonality test

Intersection test

(BRep vs. Curve)

(Curve vs. Curve)

(BRep vs. BRep)

(c)

Figure 3.3: Summary of the proposed methods to compute (a) polyhedral normal cones for BRep feature areas,
(b) tangent cones for curve segments, and (c) solution line cones for pairs of curve segments.

69

3.2 Obtaining tighter normal bounds with polyhedral cones

This section describes new tight bounds for the tangent cone polar of a vertex, a curve segment,
or a surface patch of a BRep model. Following the literature [90, 71, 132, 67], we call those
bounds normal bounds or normal cones even thouh they only bound the tangent cones polars
but not necessarily the normal cone, as defined in convex analysis [16].

Let us first recall the concept of Gauss Map, G, of a surface. G is a function G : R3 → S2

that maps each surface point to its normal n. Each such n is a unit normal defining a point
on the unit sphere S2 := {n ∈ R3 | ‖n‖ = 1}. This concept is extended to edges, and vertices,
when considering that G maps a point p of any feature to the set of unit vectors on its tangent
cone polar. The Gauss Map Image of a subset of a given feature is the union of the Gauss maps
of all its points. To address the construction methods of the polyhedral normal cone introduced
in Section 3.2, S2 is embedded into an Euclidean space and given a local direct coordinate system
centered at the origin. Its two poles are located at +y and −y. As a reminder, the intersection
curve of S2 with any plane passing through these poles (and the origin) is called a meridian
(see Figure 3.4a) and planes orthogonal to the y axis (but not necessarily containing the origin)
intersect S2 along lines of latitude (see Figure 3.4b).

(a) (b) (c)

Figure 3.4: The unit sphere with its local coordinate system. An example of meridian (a), and line of latitude
(b). (c) Points p1,p2, and p3 respectively on a face, an edge, and a vertex. The surfaces normals at those points
are shown as arrows and their Gauss map images are drawn on S2.

While cones of revolution can be satisfyingly tight to bound normals of complex surfaces
like Bézier surfaces, it is clear that they can be extremely loose for edges and canonical faces
for which tangent cone polars often reduce to an arc on S2. Polyhedral cones are significant
improvements for those cases.

3.2.1 Definitions from convex analysis

Following the usual definition of polyhedral cones from convex analysis [16], letG = {g1, . . . ,gn}
be a finite set of vectors in R3. One calls:

C = cone(G) = cone(g1, . . . ,gn) =

v | v =
n∑
j=1

µjgj , µj ≥ 0, j = 1, . . . , n

 , (3.5)

a finitely generated (polyhedral) cone and the gi are its generators. A finitely generated poly-
hedral cone is always convex and the origin is its apex except when it spans the whole space
C = R3. In particular, the finite set G = {g1, ...,gn} ⊂ S2 of unit vectors is a minimal set of
unit generators if and only if none of its proper subsets generates the same cone, i.e.:

∀G′ ⊂ G G′ 6= G⇒ cone(G) 6= cone(G′). (3.6)

According to the Minkowski-Weil theorem [16], polyhedral cones can equivalently be de-
fined as the intersection of a set of half-spaces whose boundary pass through the origin: C =

70

{v | 〈nj ,v〉 ≤ 0}, nj ∈ N where the finite set of vectors N = {n1, . . . ,nm} are the (outward)
normals of the planes of each half-space. Let us note that because each edge of a polyhedral
cone is necessarily collinear with a generator of C, each face normal is necessarily related to two
generators, i.e.:

∀n ∈ N,∃(gi,gj) ∈ G2 such that n = gi × gj . (3.7)

In particular, if G is a minimal set of unit generators, G is sorted if:

∀i ∈ [0, n] ni = gi+1 (mod n) × gi. (3.8)

Figure 3.5 shows a 3D polyhedral cone, its normals, and various possible sets of generators.
Both the normal-based and the minimal generator set-based representations have practical uses.
On the one hand, the normal-based representation is useful to characterize efficiently the position
of a vector with regard to the polyhedral normal cone. In particular, whenever a closest point
between a vertex and another feature is computed, one must check that the computed contact
normal actually lies inside the vertex normal cone. This is easily performed when checking that
the image of the contact normal on S2 lies on the same side of all the polyhedral cone half-
spaces. On the other hand, the sorted minimal generator set-based representation is used by the
intersection test described in the Section 3.2.2.

(a) (b) (c)

Figure 3.5: A polyhedral cone with its (outward) faces normals N = {n1,n2,n3}. Its generators set: (a)
G = {g1, . . . ,g4} is not minimal because g4 is a linear combination of g1, g2 and g3; (b) G = {g1,g2,g3} is
minimal but not sorted because, e.g., n1 6= g2 × g1; (c) G = {g1,g2,g3} is minimal and sorted.

In the following sections, −C = {−c | c ∈ C} designates the cone opposite to C. This
means, if G and N are respectively sets of generators (resp. face normals) of C, then −G =
{−g | g ∈ G} (resp. −N = {−n | n ∈ N}) are the generators (resp. face normals) of −C.

3.2.2 Checking that two normal cones contain antipodal directions

Let CA = cone(ga1 ,g
a
2 , . . . ,g

a
m) and CB = cone(gb1,g

b
2, . . . ,g

b
n) be two polyhedral cones with

nonempty interiors andm and n generators, respectively. The existence of LMDs given by Equa-
tion (1.23) and Figure 1.12e is satisfied if and only if their tangent cone polars contain antipodal
directions, which we call antipodal normals here. Thus, given the two bounds CA and CB of
those tangent cone polars, it is useful to identify feature pairs such that CA ∩−CB = ∅ because
they are guaranteed not to contain any LMD. First, let us consider the following property:

Proposition 1. If the interior Int(CA) and Int(CB) of two polyhedral cones CA and CB contain
antipodal directions then, their Minkowski sum CA ⊕ CB is equal to the whole space R3, i.e:

Int(CA) ∩ Int(−CB) 6= ∅ ⇒ CA ⊕ CB := cone(ga1 , . . . ,g
a
m,g

b
1, . . . ,g

b
n) = R3. (3.9)

Proof. Let v be any vector of R3. If Int(CA) ∩ Int(−CB) 6= ∅ then, there exists a unit vector
u ∈ Int(CA) such that −u ∈ Int(CB). Let p be a vector defining a point p on the half-line
starting at the origin with direction vector u, i.e., p = λu with λ ∈ R?+. Let α be the angle
between the vector (v − p) and the direction −u. It follows:

71

cos(α) =

〈
v − λu
‖v − λu‖

,−u
〉
, (3.10)

cos(α) =
λ− 〈v,u〉
‖v − λu‖

. (3.11)

Then, it is possible to obtain any value of cos(α) ∈ [cos(β), 1[where cos(β) = −〈v,u〉
‖v‖ is the

cosine of the angle between v and −u. Thus, λ can be chosen such that α takes any value in
]0, β]. The Figure 3.6a illustrates those elements.

(a) (b)

Figure 3.6: (a) 2D example of configuration of the elements of this proof. (b) A choice of ε and the corresponding
location of p = λu.

In addition, because Int(CB) is open, there exists an ε ∈ [0, π] such that:

∀d ∈ R3, arccos(〈−u,d〉) ≤ ε⇒ d ∈ Int(CB). (3.12)

When choosing λ such that α = min(ε, β) (as shown in Figure 3.6b), it comes that (v − p) ∈
CB ⇒ v ∈ {cB + λu | cB ∈ CB} ⇒ v ∈ CA ⊕ CB because ∀λ ∈ R?+, λu ∈ CB by definition of
a cone. Thus, R3 ⊂ CA ⊕ CB. Because CA ⊕ CB is clearly a subset of R3, we conclude that
CA ⊕ CB = R3.

Polyhedral cones with empty interiors are not handled by this proposition. However, this
limitation is avoided by dilating cones with empty interiors using the method described in Sec-
tion 3.4.

The contrapositive of this property provides an efficient and conservative culling test, which
we refer to as intersection test : any pair of BVH node for which the associated normal cones
are such that CA ⊕ CB 6= R3 can be rejected as their underlying feature areas do not have any
antipodal normals. Moreover, because CA ⊕ CB is itself a finitely-generated polyhedral cone, it
is convex and CA ⊕CB is clearly either equal to R3 or has a support plane passing through the
origin. Note that to find a support plane of any convex cone, it is sufficient to find a plane that
contains one of its face and all its generators into a single half-space. Because of the relationship
between the normals ni ∈ N and the cone generators gaj (Equation (3.7)), normals to faces of
CA ⊕ CB can be obtained from the cross products of all combinations of generator pairs, i.e.,
gai × gaj , g

a
i × gbj , and gbi × gbj for all i ∈ [0 . . m], j ∈ [0 . . n].

The intersection test is summarized by Algorithm 4. For each potential face normal of
CA⊕CB computed at line 5, the algorithm checks that all the generators of CA⊕CB lie on the
same half-space. If they do so, a separating plane passing through the origin has been found
and it is possible to conclude at line 7 that Int(CA) ∩ Int(−CB) = ∅ because of Proposition 1.
If this test fails for all face normals of CA ⊕ CB, then the algorithm concludes at line 11 that

72

(a) Support plane of CA ⊕ CB passing
through the origin found.

(b) No support plane of CA ⊕CB passing
through the origin found.

Figure 3.7: (a) Configuration where the two cones do not contain any antipodal directions, i.e., CA ∩ −CB = ∅.
(b) Configuration where the two cones contain antipodal directions.

CA and CB contain antipodal directions. The two possible results of the algorithm is shown
on Figure 3.7

Let m and n be the number of generators of CA and CB, the test at line 6 performs O(m+n)
scalar products and comparisons. This is repeated for all potential normals of CA ⊕ CB, i.e.,
O(m2 + n2 + mn) times. Therefore, the overall complexity of the intersection test is O(m3 +
nm2 + n3 +mn2 + nm2 +mn2), which can be assimilated to O(n3) assuming that the number
of generators of both polyhedral cones does not differ by more than a small constant factor.

The polynomial complexity of this test makes polyhedral cones with a moderately large
number of generators, inadequate for real-time applications. In order to avoid this issue, a
practical implementation should rely on simplified polyhedral cones with limited numbers of
generators as described in Section 4.2.2. Moreover, the exploitation of temporal coherence
shown in Section 4.5.2 significantly reduces the cost of repeated intersection tests.

Algorithm 4 Polyhedral Normal Cone intersection test

1: Inputs: the generators GA,GB of two polyhedral cones CA and CB.
2: Output: whether or not Int(CA) ∩ Int(−CB) 6= ∅.
3: for all (g1,g2) ∈ (GA ×GA) ∪ (GB ×GB) ∪ (GA ×GB) do
4: if g1 and g2 are not collinear then
5: n← g1 × g2 . A normal of a potential face of CA ⊕ CB.
6: if all the scalar products 〈g,n〉 have the same sign for all g ∈ GA ∪GB then
7: return FALSE . All generators lie in the same half-space.
8: end if
9: end if

10: end for
11: return TRUE . No separating plane found.

3.3 Generation of polyhedral normal cones

The computation of polyhedral normal cones for surfaces, edges, and vertices is carried out on
a case-by-case basis in order to obtain tight bounds. It is sufficient to represent almost-minimal
normal cones of all canonical surfaces, and to provide bounds that are not too loose for complex
surfaces, edges, and vertices. Let us recall that the intersection test presented in Section 3.2.2
required polyhedral cones to have nonempty interiors. The following sections only compute

73

closed polyhedral normal bounds. Then, they are dilated in Section 3.4 to guarantee the non-
empty interior property.

3.3.1 Meridian or line of latitude on S2

Polyhedral normal cones are necessarily convex, hence we assume that any arc of meridian or
line of latitude to be bounded, describes an arc of S2 with a spanning angle θ < π. Otherwise,
the resulting cone would contain all R3. If θ > π, the corresponding surface must be subdivided
into smaller pieces with smaller Gauss Map images.

On the one hand, arcs of meridians are straightforward to bound because they are at the
intersection of S2 with a plane passing through its poles. A minimal (closed) polyhedral bound of
an arc of a meridian can thus be generated by the two vectors at its extremities (see Figure 3.8a).
On the other hand, arcs of lines of latitude are the result of the intersection of S2 with a plane
orthogonal to its revolution axis. Because this plane does not necessarily contain the origin, this
intersection cannot be bounded as straightforwardly as meridians. Here, we limit our bounding
method to the four half-spaces depicted through Figures 3.8b, 3.8c and 3.8d as a trade-off
between the intersection test efficiency (see Section 3.2.2) and the thightness of the bounding
volume. Figure 3.8e compares the resulting polyhedral cone to a cone of revolution that is much
looser as it does not account for the lack of thickness of a single line of latitude.

(a) (b) (c) (d) (e)

Figure 3.8: (a) Bounding an arc of meridian requires only the two generators {g1,g2}. Bounding arc of line of
latitude is achieved using four planes: (b) two at its extremities, (c) one passing through the origin and both
extremities, and (d) one passing though the origin and tangent to the curve (e.g. tangent to its middle point).
(e) The resulting polyhedral cone (left) and cone of revolution (right) of the same line of latitude. The cone of
revolution is much looser.

3.3.2 Canonical surfaces

The polyhedral normal cone of a plane is trivial as it contains only one generator coinciding with
the plane normal. Moreover, given the procedure presented above for a meridian or a line of
latitude on S2, the computation of the polyhedral cone becomes straightforward for all canonical
surfaces as well. As shown in Figure 3.9, we can always rotate the shape such that:

• The Gauss Map image of a cylindrical area coincides with a meridian;

• The Gauss Map image of a conical area coincides with a line of latitude;

• The Gauss Map image of an area of a sphere, a torus, or an arbitrary revolution surface
bounded by isoparametric curves, is exactly delimited by two meridians and two lines of
latitude. Its bounds can be derived from that of each individual line and their combination
with a half-space representation ends up with four half-spaces.

74

(a) (b) (c)

Figure 3.9: An area, named A, of a cylinder (a), a cone (b) a sphere and a torus (c), with their respective Gauss
map images on S2 noted G(A) and bounded with a polyhedral cone.

3.3.3 Edges, vertices, and Bézier surfaces

Computing the Gauss map image of edges, vertices, and free-form surfaces is more difficult
because the contour of their Gauss map images neither may coincide with a meridian nor a line
of latitude. They are processed with a more general approach in three steps.

Firstly, the algorithm collects enough generators to form a polyhedral cone that bounds, not
necessarily minimally, the polyhedral normal cone polar of each feature area. The exact method
depends on the feature type:

• Bézier surfaces: an explicit computation of the scaled normal surface [71] is performed,
which is also a Bézier surface. Its control points can be used as generators because they
benefit from a convex hull property [107];

• Edges: a polyhedral normal cone is generated using the subsets of each surface adjacent
to the given edge. Then, the sets of generators of both cones are merged;

• Vertices: the generators are given by the normals of the surfaces meeting at this point.

Secondly, a minimal set of generators bounding the area of the feature’s tangent cone polar is
computed. Because the polyhedral cone is necessarily convex, this can be achieved by a convex
hull algorithm performed on the unit sphere. Such an approach has been used by Merlhiot et
al. [90] with a method based on the Gift-wrapping convex hull algorithm for the construction of
normal cones of revolution, but no specific details were provided.

Thus, a new approach is proposed based on the 2D QuickHull algorithm [12] now operating
on the unit sphere, i.e., it works similarly to extract the smallest polyhedral cone containing
all the given generators on S2. This method is named Spherical QuickHull and the resulting
polyhedral cone is the spherical convex hull.

Now, let us state some definitions. Given a direction d ∈ R3, an extremal point toward d,
noted p? ∈ P ⊂ R3, is the one that maximizes the product p? = argmaxp∈P 〈p,d〉. Analogously,
given a direction d and an axis a ∈ R3 orthogonal to d, we define the notion of extremal
generator toward d with respect to a which is the generator g? that maximizes the angle g? =
argmaxp∈P arccos (〈p,a× d〉) and 〈p,d〉 ≥ 0.

The proposed method is equivalent to a 2D QuickHull algorithm where the notion of extremal
points is replaced by the notion of extremal generators. It is detailed in Algorithm 5. The method
requires all g ∈ G to lie strictly in a single half-space, i.e., cone(G) 6= R3. In particular, no
two generators are allowed to be antipodal. Edges or faces with a set of normal cone generators
that do not comply with those properties must be subdivided into areas with smaller normal
cones. The algorithm is initialized with a finite set of unit generators G ⊂ S2 collected with the
procedure described above, and two generators g?1 and g?2 known to be extremal. For example,
given two distinct generators (chosen arbitrarily) gi,gj ∈ G, the algorithm can compute g?1
(resp. g?2) as the extremal generator toward d = gi × gj (resp. −d) with respect to the axis

75

a = gj − gi (resp. −a). A first partial spherical convex hull represented by a set F of pairs of
directions that delimit its faces is formed by cone(g?1,g

?
2) (line 3). Then, the algorithm enlarges

this partial spherical convex hull with new extremal generators pointing toward the normals of
the faces computed so far (lines 5,6) and using them to form new faces (line 8). Once each
computed face normal has been used to attempt to expand the partial spherical convex hull,
the computation ends and F contains the minimal set of generators. Similarly to the original
QuickHull algorithm, the line 9 is the main reason for its average O(n log(n)) complexity instead
of O(n2): whenever a new extremal generator is identified, generators on G that can be proven
not to be extremal generators, are removed.

Algorithm 5 Spherical Polyhedral Cone generation

1: Inputs: the generators G ⊂ S2 and two extremal generators g?1 and g?2.
2: Outputs: the convex hull generators.
3: F ← {(g?1,g?2), (g?2,g

?
1)}

4: repeat
5: (g1,g2)← the next unvisited pair of F
6: m← g1+g2

2
7: g? ← argmax

g∈G∨〈g,m〉≥0
arccos (〈g,a〉) . Find an extremal generator toward g1 × g2 wrt. the

axis g2 − g1.
8: if g? 6= g1 and g? 6= g2 then
9: Replace {(g1,g2)} by {(g1,g

?), (g?,g2)} in F . O(1) if G is a linked list.
10: G← {g ∈ G | g 6∈ cone(g1,g

?,g2)} . Remove generators contained by the convex
hull.

11: end if
12: until each pair on F has been visited once.
return F

3.4 Dilating polyhedral normal cones to improve conformal con-
tacts handling

To ensure the intersection test shown in Section 3.2.2 is applicable, polyhedral cones computed
in Section 3.3 must have non-empty interiors, even when bounding a part of a meridian. More-
over, enlarging bounds of the polyhedral normal cone is useful to support the computation of
quasi-LMD which were detailed in Section 1.3.1.4. This is needed to ensure the stable simula-
tion of some (near-) conformal contact configurations, e.g., when a box rests on a table and is
subject to small rotations. This process of cone enlargement is called dilation. Given a dilation
angle α ∈ R+?, dilating a polyhedral cone C amounts to computing a new polyhedral cone,
called dilated polyhedral cone, that bounds the set:

C̃ = {ṽ | ∃v ∈ C such that arccos (〈v, ṽ〉) ≤ α}. (3.13)

Figure 3.10 shows examples of such sets that must be bounded by a dilated polyhedral cone.
Three cases may arise and are illustrated in Figure 3.10.

Let us now describe how the dilated polyhedral cone of C̃ with a dilation angle α is computed.
At first, it is assumed that Int(C) 6= ∅ (see Figures 3.10b and 3.10c). The cone’s minimal sorted
set of n unit generators G = {g1,g2, . . . ,gn} is given.

When a polyhedral cone C has an empty interior, it is either a single point or an arc of
S2. In the former case, any polyhedral cone bounding the cone of revolution centered at that

76

(a) (b) (c)

Figure 3.10: Polyhedral cones C and the set C̃ that must be bounded by another polyhedral cone to account for
the dilation of angle α. (a) C has an empty interior. (b) C has a non-empty interior. (c) C has a non-empty
interior but C̃ is so large it cannot be bounded by a polyhedral cone other than R3.

Algorithm 6 Dilation of polyhedral normal cone with nonempty interior

1: Inputs: a minimal sorted set of unit generators G of a polyhedral cone C with nonempty
interior.

2: Output: The polyhedral cone dilated by α.
3: Ñ← ∅ . The dilated polyhedral cone faces normals.
4: for all (gi,gi+1) ∈ G do
5: a← gi+1 − gi
6: n← gi+1 × gi.
7: R← rotation of angle α and axis a.
8: Append to Ñ the normal n rotated by R.
9: end for
return the new polyhedral cone generators computed from the faces normals Ñ.

point and having a radius α can be used. In the latter case, the minimal set of generators of C
contains exactly two elements, namely g1 and g2. The dilation using an angle α is illustrated
in Figure 3.11. Figure 3.11a stands for the computation of two auxiliary generators g′1 and
g′2 expressing the rotation of g1 and g2 with an angle α and −α around the axis (g2 × g1).
Those auxiliary generators are then split into four in order to add a thickness to the cone
(see Figure 3.11b). Those new generators {g̃1, . . . , g̃4} are obtained by rotating g′1 and g′2 with
an angle α and −α with respect to (g2 − g1).

(a) (b)

Figure 3.11: Dilation of a polyhedral cone with an empty interior.

77

3.5 More culling tests for Bézier curves using tangent cones and
solution line cones

This section describes how tangent cones, as defined in Section 1.3.1, and the solution line
cone [67] defined as the set of directions of all the difference vectors between all points of two
(possibly infinite) sets of points, can be used to further check that two objects cannot contain
a LMD. Given A and B, two sets of points, their solution line cone is defined as S(A,B) =
{λ(a − b),a ∈ A,b ∈ B, λ ∈ R}. Given a vector v ∈ S(A,B), the set {λv, λ ∈ R} is called a
solution line. It is noteworthy that:

• S(A,B) = S(B,A). Indeed:

S(B,A) = {λ(b− a),a ∈ A,b ∈ B, λ ∈ R},
= {(−λ)(a− b),a ∈ A,b ∈ B, λ ∈ R}.

And, because (−λ) ∈ R, it follows that: −λ = λ′, λ′ ∈ R+:

= {λ′(a− b),a ∈ A,b ∈ B, λ′ ∈ R},
= S(A,B);

• As shown in Figure 3.12, the solution line cone can be seen as the union of all the lines
passing through the points of the Minkowski sum (A ⊕ −B), i.e., A ⊕ −B = {a − b,a ∈
A,b ∈ B} with −B = {−b | b ∈ B}. We introduce the notation A	B which we refer to
as the Minkowski difference of A and B given by A	B = A⊕−B;

• S(A,B) is independent from the origin because translating both objects using the same
vector v ∈ R3 does not modify the solution line cone, i.e., S(A + v, B + v) = S(A,B),
where: A+ v = {a + v | a ∈ A} (resp. B + v = {b + v | b ∈ B}) designate the points of
A (resp. B) translated by v ∈ R3. This is enforced by the fact that:

(A+ v)	 (B + v) = {(a + v)− (b + v),a ∈ A,b ∈ B},
= {a− b + v − v,a ∈ A,b ∈ B},
= {a− b,a ∈ A,b ∈ B},
= A	B.

Therefore, the reference frame of A and B on Figures 3.12a and 3.12c is not required.

(a) (b) (c) (d)

Figure 3.12: (a) Two sets A,B ⊂ R2. (b) Their Minkowski difference A	B and the corresponding solution line
cone S(A,B). (c, d) If A and B are convex and have intersecting interiors, their solution line cone is the whole
space, i.e., S(A,B) = R2 for a 2D scenario.

78

Let us now describe how tangent cones and solution line cones can be used to design a con-
servative test of non-existence of LMD between two features. Initially, this has been introduced
loosely by Johnson et al. [70] but only for LMD computation between a point and a curve or
a surface. A similar idea appears in Johnson et al. [67] as well for the case of two polyhedral
models but lacks proper formalism.

Let A and B be two solids (or curves). Equation (1.23) can be split into two conditions that
must be simultaneously met for two points pA and pB to be critical points:

pA − pB ∈ TA(pA)∗,

pA − pB ∈ −TB(pB)∗.
(3.14)

Considering curves and surfaces, at least of class C1, those conditions are themselves equiv-
alent to the following ones because of Equation (1.22):

∃tA ∈ TA(pA), 〈tA,pA − pB〉 = 0,

∃tB ∈ TB(pB), 〈tB,pA − pB〉 = 0.
(3.15)

Thus, it comes that a pair of C1 curves or surfaces A and B cannot contain local minimal
distances if none of their solution lines is orthogonal to any of their tangents, i.e., if any of the
following orthogonality conditions is met:

∀s ∈ S(A,B),∀tA ∈ TA(A), 〈tA, s〉 6= 0,

∀s ∈ S(A,B), ∀tB ∈ TB(B), 〈tB, s〉 6= 0,
(3.16)

where TA(A) =
⋃

pA∈A
TA(pA) (resp. TB(B) =

⋃
pB∈B

TB(pB)) is the union of all the tangent cones

of all points of A (resp. B).
Now, those cones may have complex shapes and even non-convex ones. Thus, existing

literature bound them with cones of revolution [67] and design a conservative test to check if
any inequality of Equation (3.16) is met. Details are provided in Section 3.5.1. Those bounds
are then improved using polyhedral cones in Section 3.5.2.

On the one hand, designing a culling test based on Equation (3.16) is essential for non-
rectilinear curves that do not represent a BRep edge, e.g., deformable curves used for the sim-
ulation of beams, since the intersection test presented in Section 3.2.2 would be inefficient on
them. Indeed, each point of such a curve has a Gauss map that spans an entire meridian of
S2, which cannot be bounded tightly with a dilated polyhedral cone since it would have to
contain R3 completely because of its convexity. Therefore, the following definitions and results
are focused on Bézier curves even if most of them are applicable to any C1 curve or surface.
Figure 3.3 summarizes which types of cones are used for the culling tests depending on the types
of feature areas involved in the LMD computation.

On the other hand, it likely that computing solution line cones for pairs of BRep features
would not be worth it in practice since the intersection test based on polyhedral normal cone is
already very discriminative.

3.5.1 The existing: tangent cones and solution line cones of revolution

The simplest and only method described in the literature so far, is the use of cones of revolution
for bounding the tangent cones and solution lines cones. It was first presented in [70] for
projecting a point on free-form curves and surfaces. A similar concept to solution line cones also
exists under the name of dual view cone between two surfaces/curves [67].

79

3.5.1.1 Orthogonality test between cones of revolution

With a tangent cone and a solution line cone available, an efficient test can be proposed to
check whether the orthogonality conditions of Equation (3.16) hold for some bounded subsets of
curves. Such a test has been designed by Johnson et al. [70] when bounding the exact solution
line cones and the tangent cones with cones of revolution. Let CS(A,B) be a cone of revolution
bounding the solution line cone formed by A and B. In addition, let CTA(A) (resp. CTB(B)) be a
cone of revolution bounding all the tangents of A (resp. B). The conditions of Equation (3.16)
can be rewritten as:

∀s ∈ CS(A,B),∀tA ∈ TA(A), 〈tA, s〉 6= 0, (3.17)

∀s ∈ CS(A,B), ∀tB ∈ TB(B), 〈tB, s〉 6= 0. (3.18)

Let vS ,vA, and vB be the principal axis of CS(A,B), CTA(A), and CTB(B), respectively and
θS , θA, θB be their apex half-angles. Then, Equation (3.17) is satisfied if and only if any of the
two following conditions are verified:

angle(vS ,vA)− θS − θA >
π

2
, (3.19)

angle(vS ,vA) + θS + θA <
π

2
. (3.20)

Similarly, Equation (3.18) is equivalent to:

angle(vS ,vB)− θS − θB >
π

2
, (3.21)

angle(vS ,vB) + θS + θB <
π

2
. (3.22)

This can be seen by expanding Equations (3.17) and (3.18) with the definition of cones of
revolution. For example, Equations (3.19) and (3.20) are obtained from Equation (3.17) with:

∀s ∈ CS(A,B), ∀tA ∈ TA(A), 〈tA, s〉 6= 0, (3.23)

⇔ ∀s ∈ CS(A,B), ∀tA ∈ TA(A), angle(tA, s) 6=
π

2
, (3.24)

⇔
{

∀s ∈ CS(A,B),∀tA ∈ TA(A), angle(tA, s) >
π
2 ,

or ∀s ∈ CS(A,B),∀tA ∈ TA(A), angle(tA, s) <
π
2 ,

(3.25)

⇔

min

s∈CS(A,B),tA∈TA(A)
angle(tA, s) >

π
2 ,

or max
s∈CS(A,B),tA∈TA(A)

angle(tA, s) <
π
2 ,

(3.26)

⇔
{

angle(vS ,vA)− θS − θA > π
2 ,

or angle(vS ,vA) + θS + θA <
π
2 .

(3.27)

The transition from Equation (3.26) to Equation (3.27) is obtained from the fact that no
vector of CS(A,B) (resp. TA(A)) forms an angle greater than θS (resp. θA) with their axis vS
(resp. vA).

3.5.1.2 Tangent cones of revolution for C1 Bézier curves

The tangent cone (defined in Section 1.3.1.3) at any point pA of a C1 curve segment γA : DA →
R2 is the line containing its tangent vector at that point (see Figure 3.13a), i.e., given a t ∈ R:

TγA(γA(t)) = {λγ′A(t) | λ ∈ R}. (3.28)

80

Thus, our objective is to compute a bound of the tangent cones of all the points of γA, i.e., a
bound of:

TγA(γA) =
⋃
t∈DA

TγA(γA(t)) (3.29)

Computing TγA(γA) amounts to bound the directions of its derivatives at all its points.
Assuming γA is a Bézier curve of degree n with control points {a0, . . . ,an}:

γA(t) =
n∑
i=0

Bi,n(t)ai, (3.30)

its derivative γ′A : DA → R3 can be expressed as a Bézier curve of degree (n − 1) called its
hodograph:

γ′A(t) = n

n−1∑
i=0

Bi,n−1(t)(ai+1 − ai). (3.31)

Because the hodograph takes itself the form of a Bézier curve (see Figure 3.13b), it benefits
the convex hull property [107]. Hence, it can be bounded by a cone of revolution C1

A containing
its control points as shown in Figure 3.13c. Doing so provides bounds of all the (oriented)
tangents at all points of γA. However, this provides only half of the lines spanned by the
tangent cones defined by Equation (3.28). To bound the other halves, it is necessary to compute
an additional cone of revolution C2

A = −C1
A that contains the control points of −γ′A(t) as shown

in Figure 3.13d. That way, we have: TγA(γA) ⊂ (C1
A ∪ C2

A).

(a) (b)

(c) (d)

Figure 3.13: (a) A Bézier curve γA of degree n = 3, its control points ai, and its derivative at the point γA(t0).
The tangent cone at γA(t0) is the dotted line TγA(γA(t0)). This first drawing has been scaled by a factor of 3.
(b) The hodograph a′ seen as a Bézier curve with control points n(ai+1 − ai). The derivative at t0 corresponds
to the vector γ′A(t0). (c) The cone of revolution that bounds the hodograph. (b) Two cones of revolution are
necessary to bound TγA(γA) completely.

3.5.1.3 Solution line cones of revolution for two C1 Bézier curves

The solution line cone is obtained by finding a double revolution cone tangent to the bounding
sphere of both curves simultaneously as shown in Figure 3.14a. A simpler approach for producing

81

an equally good result is to bound the Minkowski difference of both bounding spheres with a
revolution cone (Figure 3.14a). Indeed, let BA and BB be the bounding spheres for the Bézier
curves γA and γB. Let us note cA and rA (resp. cB and rB) their centers and radii, i.e.,
BA = {p ∈ R3 | ‖p − cA‖ ≤ rA}. Their Minkowski difference is given by: BA 	 BB = {p ∈
R3 | ‖p− (cA− cB)‖ ≤ rA+ rB}. Then, if the sphere BA	BB does not contain the origin, it is
easy to determine that the solution line cone of revolution has its principal axis v and half apex
angle θ given by:

v =
cA − cB
‖cA − cB‖

, θ = arcsin

(
rA + rB
‖cA − cB‖

)
.

(a) (b)

Figure 3.14: Computation of the solution line cone of revolution (a) from the bounding spheres of both curves;
(b) from the Minkowski difference of the curves’ bounding spheres.

3.5.2 Tighter bounds for C1 Bézier curves with polyhedral tangent cones and
polyhedral solution line cones

Tighter bounds can be obtained using polyhedral tangent cones and polyhedral solution line
cones. To achieve this, an orthogonality test between two polyhedral cones and methods to
compute them for C1 Bézier curves are proposed.

3.5.2.1 Orthogonality test between two polyhedral cones

Given Equation (3.15), the difference (pA − pB) of two points pA and pB, lying on the curves
γA and γB and forming a LMD, is necessarily orthogonal to the tangents of both curves at those
points. Thus, given a polyhedral tangent cone CA and the solution line cone CB, the purpose of
the test is to determine if any of the directions bounded by CA can be orthogonal to a direction
bounded by CB. If none can be found, then the corresponding curves cannot contain LMDs. To
this end, Proposition 2 describes an orthogonality test between two polyhedral cones. Each cone
is assumed not to contain any antipodal generator (further discussion regarding this restriction
follows). The corresponding algorithm is described by Algorithm 7.

Proposition 2. Let GA = {a1,a2, . . . ,an} ⊂ R3 and GB = {b1,b2, . . . ,bm} ⊂ R3 be the
respective sets of n and m nonzero generators of two polyhedral cones CA and CB. All vectors
of CA (resp. CB) are assumed not to contain any opposite directions, i.e:

∀a1,a2 ∈ CA, angle(a1,a2) < π,

∀b1,b2 ∈ CB, angle(b1,b2) < π.

Then, CA does not contain any direction orthogonal to any direction of CB ⇔ all scalar product
〈ai,bi〉 , i ∈ [1..n], j ∈ [1..m] are nonzero and have the same sign.

82

Proof. Let a and b be two nonzero vectors of CA and CB. They can be written as: a =
∑n

i αiai
and b =

∑m
j βjbj with all αi, βj ∈ R+ except for at least one αi and one βj which must

be nonzero (setting all coefficient to 0 would produce a null vector which does not define any
direction). Thus, their scalar product is:

〈a,b〉 =

n∑
i

m∑
j

αiβi 〈ai,bi〉 . (3.32)

Then, the purpose is to show that the condition:

∀ai ∈ CA,∀bj ∈ CB, 〈a,b〉 6= 0, (3.33)

which is equivalent to (still assuming at least one αi and at least one βj is nonzero):

∀αi, βj ∈ R+,∀i ∈ [1..n], j ∈ [1..m],

n∑
i

m∑
j

αiβj 〈ai,bj〉 6= 0, (3.34)

is satisfied if and only if all 〈ai,bj〉 are nonzero and have the same sign.

Firstly, let us assume that Equation (3.34) holds. The objective is to prove that all 〈ai,bj〉
must be (1) nonzero and (2) of same sign:

1. If there exists indices (i1, j1) such that 〈ai1 ,bj1〉 = 0, we can choose: a = ai1 and b = bj1
by setting all αi and βj to 0, except for α1 and β1 set to 1. Then, 〈a,b〉 = 0, which
contradicts Equation (3.33);

2. Assume there exists indices i1, i2 ∈ [1..n] and j1 ∈ [1..m] such that 〈ai1 ,bj1〉 > 0 and

〈ai2 ,bj1〉 < 0. Let αi2 = −〈ai1 ,bj1〉〈ai2 ,bj1〉
> 0 and choose a = ai1 + αi2ai2 ∈ CA and b = bj1 ∈

CB. We have: 〈a,b〉 = 0, which contradicts Equation (3.33). Thus, the scalar product of
all generators of CA with one chosen generator of CB must have the same sign. The same
reasoning applies by exchanging the roles of a and b. Applying this observation to four
arbitrarily-chosen generators ai1 ,ai2 ,bj1 ,bj2 , it comes:

sign (〈ai1 ,bj1〉) = sign (〈ai2 ,bj1〉) ,
sign (〈ai1 ,bj2〉) = sign (〈ai2 ,bj2〉) ,
sign (〈ai1 ,bj1〉) = sign (〈ai1 ,bj2〉) ,
sign (〈ai2 ,bj1〉) = sign (〈ai2 ,bj2〉) .

By transitivity, all those signs are the same. This proves that all 〈ai,bj〉 must have the
same sign for all i and j.

Conversely, it is clear that if all products are nonzero and have the same sign then, Equa-
tion (3.34) is necessarily satisfied because all αi, βj are positive and do not all vanish.

Now, Proposition 2 is applicable only if CA and CB do not contain any antipodal directions.
Because of their convexity, the only polyhedral cones that contain antipodal directions are those
that span a subspace of R3 completely. As illustrated by Figure 3.15, a polyhedral cone equal to
a line (resp. plane) can be split into two half-lines (resp. four quarters) to apply Proposition 2
on each of them. If one cone is equal to R3 then, the orthogonality test always succeeds.

Finally, let us observe that the result of Algorithm 7 is the same if CA and/or CB is reversed.
Consequently, as long as the orthogonality of CA and CB is tested, there is no need to test
orthogonality between, e.g., −CA and CB as well, even if solution line cones and tangent cones
are bounded with two opposite polyhedral cones as discussed in the next paragraphs.

83

Algorithm 7 Polyhedral Cone Orthogonality test

1: Inputs: the generators GA,GB of two polyhedral cones CA and CB.
2: Output: TRUE if ∃a ∈ CA,b ∈ CB such that 〈a,b〉 = 0.
3: d← 〈a1,a2〉
4: for all (ai,bj) ∈ (GA ×GB) do
5: if d 〈ai,bj〉 ≤ 0 then
6: return TRUE
7: end if
8: end for
9: return FALSE

(a) (b)

Figure 3.15: Polyhedral cones that contain antipodal directions. (a) A line CA is split into two half line CA =
C1
A ∪ C2

A. (b) A plane CA is split into four quarters CA = C1
A ∪ C2

A ∪ C3
A ∪ C4

A.

3.5.2.2 Computation for Bézier curves

Computing a polyhedral tangent cone is straightforward when following a procedure similar to
that of the tangent cone of revolution presented in Section 3.5.1.2: first compute the control
points of the Bézier curve hodograph and use them directly as generators of the polyhedral
tangent cone. Consequently, the obtained tangent bound is both tighter and cheaper to construct
than the tangent cone of revolution, which necessitates further computations to find the principal
axis and apex angle of the cone.

Furthermore, it is also possible to compute efficiently a tight polyhedral cone for bounding
the solution line cone of two Bézier curves. First, let us observe that the Minkowksi difference of
two Bézier curves γA : DA ⊂ R → R2 and γB : DB ⊂ R → R2 with control points {a0, . . . ,am}
and {b0, . . . ,bm}, can be expressed as a Bézier surface:

γA(u) =
m∑
i=0

Bi,m(u)ai,

γB(v) =
n∑
j=0

Bj,n(v)bj ,

σ(u, v) = γA(u)− γB(v) =
m∑
i=0

n∑
j=0

Bi,m(u)Bj,n(v)(ai − bj). (3.35)

Then, the solution line cone is given by S(γA, γB) = {λA 	 B, λ ∈ R} = {λσ(u, v), λ ∈
R, (u, v) ∈ DA ×DB}. Because of the convex hull property of Bézier surfaces [107], all points of
A 	 B are bounded by the convex hull of their control points {(ai − bj), i ∈ [0,m], j ∈ [0, n]}.
Thus, their solution line cone can be bounded by the polyhedral cone generated by the control
points of their Minkowski difference:

S(γA, γB) ⊂ cone({ai − bj , i ∈ [0,m], j ∈ [0, n]}). (3.36)

84

Figure 3.16 shows an example of solution line cone obtained from two curves. Let us observe
that in this case the bounding spheres of both curves intersect. Thus, a tight cone of revolution
cannot be computed using the methods previously discussed in Section 3.5.1.3. Similarly, if
the control polyhedron of two curves intersect, which is not the case in Figure 3.16a, a tight
polyhedral solution line cone cannot be computed using the method presented in this section.
In that case, this method outputs a cone containing R3 entirely.

(a) (b)

Figure 3.16: (a) Two Bézier curves γA and γB. (b) Their solution line cone S(γA, γB) obtained from their
difference surface σ(u, v) = γA(u)− γB(v).

To summarize, tight polyhedral cone bounds for the solution line cone formed by two Bézier
curves can be obtained when computing the control points of their Minkowski difference (seen
as a surface) and using them as generators. This polyhedral cone bounding S(γA, γB) together
with a polyhedral cone bounding all the tangents of either γA or γB can then be input to
the Proposition 2 in order to perform an orthogonality test.

3.6 Conclusion

Starting with the observation that a massive amount of bounding volumes exist in the literature
for bounding the space occupied by 3D objects (aka. spatial bounding volumes), this chapter
highlights the fact that among the bounding volumes aimed at bounding directions like tangents
and normals, only one exists in the literature: the cone of revolution. Therefore, a completely
new, orientation-based bounding volume, related to concepts of convex hulls now applied to the
unit sphere, has been introduced.

This new bounding volume, called a polyhedral cone, is much tighter than the existing cones
of revolution. It is used to bound the tangent cone polars of BRep features. For the case of
isolated deformable curves it is used to bound their tangent cones as well as the solution line cone
formed by two curves. Moreover, a method for dilating any polyhedral cone has been described.
Such a dilation allows the use of the concept of quasi-LMD recalled in Section 1.3.1.4.

Bounds of the tangent cone polars attached to areas of canonical surfaces cut along isopara-
metric curves are straightforward to obtain given methods for bounding meridians and lines of
latitude of the unit sphere.

Bounds for edge segments can be obtained by merging polyhedral bounds of the tangent
cone polar of surface areas intersecting at that edge.

Finally, tight bounds of tangent cone polar for Bézier surfaces, and bounds of solution line
cones and tangent cones for Bézier curves can be obtained from the control points of their
difference, normals, and tangents, formulated under Bézier form.

Those bounds help finding feature areas that cannot contain any LMD. Indeed, two tests are
known to follow from the characterization of local minimal distances:

85

1. If no direction of one tangent cone polar is antipodal with no direction of the other tangent
cone polar then, no LMD is possible for the bounded feature areas. This is the intersection
test ;

2. If no direction of one tangent cone polar is orthogonal with no direction of the solution
line cone formed by the two feature areas, then no LMD is possible between them. This
is the orthogonality test.

While those tests can be adapted to polyhedral cones, they have high polynomial complexities
compared to those based on cones of revolution, which are constant-time. Therefore, practical
implementations of polyhedral cones must rely on additional constructions described in the next
chapter to obtain efficient timing performances while preserving much of their tightness.

86

Chapter 4

Achieving real-time simulations: a
parallelized runtime CD pipeline with
temporal coherence

This chapter details all the operations executed at runtime. Given the pre-computed elements
presented in the previous chapters, and given the new positions of the objects after a time-
step, the goal of the runtime phase is to compute all the LMD between each pair of bodies. The
sequential simultaneous traversal of the bounding volume hierarchies that identifies all the feature
areas that may contain a LMD is first presented. Then, choices regarding the exact closest point
computation method between points, curves segments, and surfaces defined over a rectangular
domain are detailed: analytical algorithms are always preferred whenever possible, depending on
the nature of the interacting features. Some conformal contact configurations are also handled
by a sample-based approach. Finally, once all the LMD footpoints are found, they have to be
trimmed to select only those that do not lie in a hole. Furthermore, the computational efficiency
of this pipeline can be significantly improved by introducing the assumption of temporal coherence,
i.e., the fact that objects are assumed to follow a continuous motion such that successive positions
do not vary too much between two time-steps. Finally, a complete parallel pipeline is presented
to make this CD framework usable for real-time applications.

4.1 Description of the sequential CD pipeline

At run time, the computation of all LMDs between two BRep models A and B is performed
through the three steps illustrated by Figure 4.1:

1. The two BVHs representing the BRep models are traversed simultaneously (see Fig-
ure 4.1(a)) to output all BVH leaf pairs containing feature areas that may contain a
LMD. See Section 4.2 for details, i.e., pairs of leaves on which the culling tests presented
in Section 2.4.3 failed;

2. A closest point algorithm is executed on the identified pairs’ underlying untrimmed features
(see Figure 4.1(b)), i.e., even points outside of the domains delimited by trimming curves
may be output (see Section 4.3 for details);

3. Whenever one of the closest point pairs contains a point located on an edge or a vertex,
further tests are applied with Equation (1.23) to make sure it is actually a LMD. Moreover,

87

the parametric coordinates of each closest point are tested for containment within the rele-
vant curve/surface trimming loops (see Figure 4.1(c)) using a CPU version of Schollmeyer
et al. [119]. Those validations of the computed closest points is described in Section 4.4.

Simultaneous BVH
traversal

Exact LMD
comptutation

LMD trimming

BVH of the first
BREP or curve

BVH of the second
BREP or curve

Potential pairs of
areas containing LMDs

LMDs on vertices or
untrimmed rectangular
surface/curve patches

LMD on vertices or
solid domains of trimmed

curves and surfaces.

(a) (b)

(c)

Figure 4.1: The proposed sequential collision detection pipeline that computes all LMDs between two BRep
models of deformable curves.

The CD pipeline for the computation of LMD when one, or both, body models Bk is a
deformable curve is a sightly modified version of Figure 4.1 where the simultaneous BVH traversal
is:

• Ahead of the update of the bounding volumes stored into the pre-computed BVH for
deformable curves in order to fit properly and tightly the new curve segments obtained
after deformation;

• Followed, by the dynamic BVH traversal, i.e., for each pair of leaf reached by the original
BVH traversal, the traversal is carried on with a dynamic subdivision of the deformable
curves.

Because this process combines the traversal of pre-computed BVHs with the traversal of dy-
namically computed BVHs, this approach is identified as a hybrid approach and detailed in Sec-
tion 4.3.3.

Finally, significant improvements of computations times of the whole CD pipeline are added
when exploiting temporal coherence (see Section 4.5) and using parallelization (see Section 4.6).

4.2 The BVH traversal

Chapter 2 has detailed the offline computations used to prepare the data structure necessary to
accelerate LMD computations at runtime. This data structure encompassing all the elements
presented in Chapter 2 and Chapter 3 is the Bounding Volume Hierarchy (BVH). Each BRep
model and deformable curve has one BVH that is filled with feature areas, bounding volumes,
and several other attributes enumerated by Listing 2.4. This section describes how the BVH of
two B-Rep solids A and B are exploited at runtime in order to locate, as efficiently as possible,
areas that may contain LMD footpoints. Section 4.2.1 describes the traversal of the BVHs as
it is typically performed in the literature for CD whenever BVHs are used, independently from
the thosen geometric representation. Section 4.2.2 provides additional constructions to address
performance concerns identified in Section 3.2.2 regarding polyhedral cones intersection tests
during this traversal. Section 4.2.3 shows the benefits of supermaximal faces to avoid redundant
traversals.

88

4.2.1 Simultaneous traversal and the Bounding Volume Test Tree

The simultaneous BVH traversal’s goal is the identification of pairs of leaves corresponding to
feature areas that potentially contain LMD footpoints through a simultaneous depth-first traver-
sal. On the one hand, this identification makes use of conservative culling test (see Section 2.4.3),
i.e., pairs that actually support a LMD must not be missed to avoid the generation of false neg-
atives. On the other hand, it is acceptable to output pairs that do not actually contain any
LMD, i.e., false positives are allowed.

A BVH has here a binary tree structure. Thus, traversing two of them simultaneously is the
same as traversing a single one where each node describes a pair of BVH nodes (one belonging to
the BVH of each BRep). This tree illustrated by Figure 4.2 is often referred to as the Bounding
Volume Test Tree (BVTT). Indeed, the concept of BVTT is simply an abstract structure to help
describe and understand the traversal: it is never persistent in computer memory explicitly,
except for a few nodes forming a front. Such a front is used for temporal coherence and is
detailed in Section 4.5.1. One node of a BVTT can be seen as a structure with three fields as
listed by Listing 4.1.

Listing 4.1: Data structure for a node of the Bounding Volume Test Tree.

struct BVTTNode {
BVHNode bvhNode1;
BVHNode bvhNode2;
BVTTStatus status;

// Constructor from two BVTT nodes.
BVTTNode(BVHNode node1 , BVHNode node2) {

bvhNode1 = node1;
bvhNode2 = node2;
status = ToTraverse;

}
}

The third field status and its default value ToTraverse are used for temporal coherence
optimizations detailed in Section 4.5.1. The two children of one BVTT node are identified
when visiting the children of one of its two BVH nodes, i.e., either of bvhNode1 or of bvhNode2
(See Algorithm 8). A simple heuristic to choose which one to traverse is to select the one with
the largest OBB, where largest means the one with the greatest volume. The effect of actual
choice modifies only the performances, i.e., the conservative aspect of the traversal is preserved.

The traversal using the concept of BVTT is detailed in Algorithm 9. The CullingTest
procedure determines whether two BVHNode have any chance of leading to LMD footpoints.
This was described in Section 2.4.3.

4.2.2 Simplified polyhedral cones and leaf-leaf tests

In practice, the cubic time complexity of the polyhedral cone intersection test described in Sec-
tion 3.2.2 is too high to be affordable during the BVTT traversal. Therefore, two measures are
taken to reduce its cost:

• As initially mentioned in Section 2.4.2, the intersection tests between polyhedral cones
are preformed only at the leaves of the BVTT, i.e., it is the ultimate culling test before
performing the exact contact point computation. Internal nodes rely on normal cones of
revolution only;

• Simplify the polyhedral cones by placing an upper bound on the number of generators.

89

Algorithm 8 Computes a 2-element array containing the two children of a BVTT node, if any.
function BVTTNodeChildren(node)

if node.bvhNode1 and node.bvhNode2 are leaves then
. This BVTTNode is a leaf, return nothing.
return NULL

else if node.bvhNode2 is a leaf or node.bvhNode1.obb has a greater volume than node.bvhNode2.obb then
. Traverse the first BVH node.
child1 ← BVTTNode(node.bvhNode1.leftChild, node.bvhNode2)
child2 ← BVTTNode(node.bvhNode1.rightChild, node.bvhNode2)
return [child1, child2]

else
. Traverse the second BVH node.
child1 ← BVTTNode(node.bvhNode1, node.bvhNode2.leftChild)
child2 ← BVTTNode(node.bvhNode1, node.bvhNode2.rightChild)
return [child1, child2]

end if
end function

Algorithm 9 Simultaneous BVH traversal, initialized by a BVTT node. The output array newContacts is filled
with the LMD computed at the leaves of the BVTT.

function TraverseBVTT(node, newContacts)
if CullingTest(node.bvhNode1, node.bvhNode2) then

. No LMD possible, do nothing.
else

children ← BVTTNodeChildren(node)
if children = NULL then

Add to newContacts the closest points on node.bvhNode1 and node.bvhNode2
else

. Recursive calls on the children.
TraverseBVTT(children[0], newContacts)
TraverseBVTT(children[1], newContacts)

end if
end if

end function

A maximum of 4 generators is adopted by analogy with a 2D OBB which contains 4 vertices
and is known to be a good compromise between tightness and complexity.

Limiting the number of sides of the polyhedral normal cones amounts to bounding the cone
computed by the spherical convex hull described by Algorithm 5 with another cone having only
four sides, i.e., its generator set has four elements. Computing efficiently the smallest four-sided
cone is not straightforward and, due to time constraints, a combinatorial approach has been set
up and the minimization of the algorithmic complexity has been left for future works.

The main idea of this construction method is to establish an analogy between the four-sided
polyhedral cone, which is called a Spherical Oriented Bounding Box (SOBB) in this manuscript,
and a 2D OBB. A simple brute-force method to compute the minimal 2D OBB of a convex
polygon is illustrated in Figure 4.3 and detailed by Algorithm 10. It follows the property along
which the minimal 2D OBB has necessarily a side that contains at least one side of the bounded
polygon [45]. The method (see Algorithm 11) to compute an SOBB is similar to that of a
2D OBB when replacing the concept of extremal point by the concept of extremal generator
presented in Section 3.3.3. While this brute-force procedure is O(n2), n being the number
of generators, it could be much improved to work in O(n) time when testing each side in a
convenient order and exploiting an adaption of the rotating calipers method [135] on S2.

90

(a) (b)

(c)

Figure 4.2: (a, b) Two small BVH with nodes identified by numbers and letters. (c) A BVTT with each node
grouping one node from (a) and one from (b).

Algorithm 10 Brute-force minimal 2D OBB computation algorithm

1: Inputs: The sorted list of vertices V of a convex polygon.
2: Outputs: The minimal OBB containing V .
3: Res← the degenerate OBB containing R2.
4: for all pair (vi,vi+1) ∈ V of successive vertices. do
5: n1 ← vi+1 − vi
6: n2 ← any nonzero vector orthogonal to n1.
7: (n3,n4)← (−n1,−n2)
8: v?k ← extremal point of V along nk, k ∈ [1, 4].
9: OBB ← the OBB with four faces fk with normals nk and passing through v?k.

10: Res← OBB if it has a smaller area than Res.
11: end for
return Res

One iteration of the Algorithm 11 is illustrated step-by-step in Figure 4.4 for a polyhedral
cone with five generators, i.e., G = {g1, . . . ,g5}. Let us unfold the following steps:

(a) Let us consider any two successive generators g1 and g2 and compute the axis a1 = g2−g1

(and a2 pointing toward the opposite direction);

(b) Set the extremal generators g?1 (resp. g?2) toward g2 × g1 (resp. g1 × g2) with respect to
a1 (resp. with respect to a2 := −a1);

91

(a) (b) (c)

(d) (e)

Figure 4.3: The five iterations of Algorithm 10 for the 2D OBB computation for a convex polygon. The goal
is the selection of the smallest one among the five options, each with a side containing an edge of the polygon
shown in green.

Algorithm 11 Brute-force SOBB computation algorithm

1: Inputs: The sorted minimal generator set G of a polyhedral cone C.
2: Outputs: An SOBB containing G.
3: Res← the degenerate polyhedral cone containing R3.
4: for all pair (gi,gi+1) ∈ G of successive generators. do
5: n1 ← gi+1 × gi
6: a1 ← gi+1 − gi
7: (n2,a2)← (−n1,−a1)
8: g?k ← extremal generator of C toward nk wrt. ak, k ∈ [1, 2].
9:

10: n3 ← g?1 × g?2
11: a3 ← g?2 − g?1
12: (n4,a4)← (−n3,−a3)
13: g?k ← extremal generator of C toward nk wrt. ak, k ∈ [3, 4].
14:
15: SOBB ← the polyhedral cone with four faces fk containing ak and g?k.
16: Res← SOBB if it has a smaller intersection area with S2.
17: end for
return Res

(c) Compute the axis a3 and finds the extremal generators g?3 and g?4;

(d) Finally, an SOBB is obtained from the planes passing through the computed axes and the
related extremal points.

While this method computes a polyhedral cone with only four generators that bounds tightly
the original one, it is not necessarily the minimal one. Several arbitrary choices are made in this
algorithm. For example: g?2 could have been chosen equal to g2 (instead of g1), which would

92

have resulted in a completely different cone. The design of an algorithm producing the minimal
polyhedral cone with at most four generators is left for future works.

(a) (b) (c) (d)

SOBB

(e)

Figure 4.4: One iteration of Algorithm 11.

4.2.3 Avoiding redundant computations with supermaximal faces

Preserving a link between a feature area and the supermaximal feature (see the supermax_feature
field of the BVHLeaf structure detailed in the Listing 2.4) plays an important role during BVTT
traversal. Indeed, it would be a loss of computational efficiency to compute multiple times all
contact points between A and B for which analytical solution exist. This may happen in a
typical BVTT traversal as several nodes of the BVTT may contain pieces of the same pair of
features.

For example, let (l1A, l
1
B) and (l2A, l

2
B) be two pairs of BVH leaves potentially containing LMD

footpoints. Let us assume that l1A and l2A contain the areas f1
A and f2

A of the faces F 1
A and F 2

A,
themselves belonging to the same supermaximal face, i.e., f1

A ⊂ F 1
A ∈ sF 1

A and f2
A ⊂ F 2

A ∈ sF 1
A.

Similarly, let us assume that the leaves l1B and l2B contain the edges segments e1
B ⊂ E1

B ∈ sE1
B

and e2
B ⊂ E2

B ∈ sE1
B as depicted in Figure 4.5.

Figure 4.5: Segments e1B and e2B of a circular supermaximal edge sE1
B = {E1

B, E
2
B, E

3
B} in potential contact with

the areas f1
B and f2

B of a planar supermaximal face sF 1
A = {F 1

A, F
2
A}.

Now, let us assume that there exists a method able to compute simultaneously and robustly
all the LMDs between the underlying geometries of sF 1

A and sE1
B. This is typically the case

for canonical features, as discussed in Section 4.3, when referring to analytical methods. Then,
as soon as the step (a) of Figure 4.1 (the BVTT traversal) encounters the pair (l1A, l

1
B), it is

saved for later processing by the step (b) of Figure 4.1 (the exact LMD footpoints computation
stage). In addition, a reference to the pair of supermaximal features (sF 1

A,
sE1
B) is saved into a

set E (which typically takes the form of a hash-set on popular programming languages’ standard
libraries). Then, when the other candidate pair (l2A, l

2
B) is found by the step (a), it can safely

be ignored, i.e., it does not have to be saved for later processing by the step (b). Indeed, the
step (b) will already compute all the LMD footpoints between the underlying geometries of sF 1

A
and sE1

B when it processes the pair (l1A, l
1
B). Processing the pair (l2A, l

2
B) as well would have been

93

wasteful since the same LMD footpoints would have been found as they belong to the same
supermaximal features.

4.3 Exact contact points computation

Once potential contact pairs have been identified, the actual contact points (if any) must be
computed. This is achieved differently for non-deformable features (see Section 4.3.1) and for
deformable curves (see Section 4.3.3). Indeed, the latter requires further analysis at runtime to
isolate contact points on curves after their deformations.

As mentioned in Section 2.4.1, recall that the contact point computation is performed on
surface areas with a rectangular sub-domain, i.e., trimming curves are ignored until after contact
points are actually computed. Therefore, the search of LMD in Section 4.3.1 is limited to
rectangular domains only. Processing the trimming curves is described in Section 4.4.1.

4.3.1 Algorithmic choices for non-deformable features

Analytic algorithms that compute simultaneously all closest points between canonical features
often exist and are much cheaper than more general iterative methods. Therefore, whenever
possible, a method dedicated to the types of features involved in the closest points computation
is preferred. This choice of exact closest point algorithm depending on the feature geometry type
is summarized in Table 4.1. Each intersection of a row and a column indicates the corresponding
LMD computation approach, which is either:

• An analytic method using a specific algorithm like normal matching [27] or reducing the
problem into a simpler straightforward one. For example, the Cylinder-Cylinder case is
equivalent to computing closest points between two lines. The Extr. Pt. entry states
that the algorithm has to compute the extremal point only (which definition was given
in Section 3.3.3) of the torus or conic section toward the direction opposite to the plane’s
normal;

• The resolution of a quartic polynomial to compute its analytic solutions or use fast iterative
methods [127] that can yield more robust results;

• An iterative root-finding method whenever the LMD computation amounts to finding roots
of a polynomial of degree higher than 4 [27] for which no analytic solution exist.

Not represented in Table 4.1 are Bézier curves and surfaces, general surfaces of revolution, and
surfaces of linear extrusion, for which an iterative method is systematically used.

Cone Cyl./Line Plane Torus/Circle Sphere/Point Conic section
Cone Analytic [27] Analytic [27] N/A Iterative Point-Line Iterative
Cyl./Line sym Line-Line N/A Quartic Point-Line Iterative
Plane sym sym N/A Extremal point Point-Plane Extremal point
Torus sym sym sym Iterative Point-Circle Iterative
Sphere/Point sym sym sym sym Point-Point Point-Conic sctn.
Conic section sym sym sym sym sym Iterative

Table 4.1: Computation methods for LMDs depending on the type of surfaces. Pnt, Cyl., and Conic sctn.
indicate respectively points, cylinders, and conic sections. sym indicates that this table is symmetric so the
lower-triangular part has to be seen as identical as its upper-triangular part.

Whenever an iterative method is necessary, the Newton method can be used to find critical
points of the squared distance function between the two features by canceling its gradient using

94

an iterative root-finding algorithm like the Gauss-Newton method. Given two leaves of distinct
BVH trees containing two feature areas, an initial solution guess is necessary to initialize the
iterative method. Because the BVH leaves conform to the properties described in Section 2.4.1,
they contain feature areas defined on rectangular domains which are almost flat. Therefore, it
is likely in practice that the closest points between polyhedral approximations of the surface on
this rectangular domain are not too far from the actual closest points. The following method
detailed by Algorithm 12 and illustrated by Figure 4.6a computes such an initial guess for two
surface areas defined on the rectangular domains delimited by the BVH leaves. This procedure
follows three steps which are easily adaptable to configurations, as shown in Figure 4.6b, where
one or both feature areas are curves:

(a) (b)

Figure 4.6: Use of polyhedral approximation to obtain a guess for the location of LMD footpoints. (a) Between
two surfaces. (b) Between one curve and one surface.

1. Retrieve the parametric surfaces fA, fB wrapped by both BVH nodes (lines 2 and 3). For
both surfaces, retrieve the parametric coordinates (noted uiA and uiB for i ∈ [0, 4]) of all
four corners of their rectangular sub-domain and compute the corresponding corner points
piA,p

i
B (line 4 to 8). They are located on the surfaces. All four non-degenerate triangles

constructed from those corner points form polyhedra ΣA and ΣB (lines 10 and 11) which
can be seen as tetrahedral volumes;

2. Linear mappings gA : ∂ΣA → R2 and gB : ∂ΣB → R2 between points on the boundary
of each tetrahedron and the parametric plane are defined such that gA(piA) = uiA and
gB(piB) = uiB. Then note that each point on the boundary of a tetrahedron can be
obtained as a linear combination of its vertices:

p∗A =
4∑
i=1

αip
i
A, p∗B =

4∑
i=1

βip
i
B. (4.1)

The coefficient αi, βi are called barycentric coordinates of p∗A,p
∗
B. They are positive and

such that
∑4

i=1 αi = 1 and
∑4

i=1 βi = 1, and at least one αi and one βi is zero. Thus,
given a point p∗A (resp. p∗B) on ΣA (resp. ΣB), the mappings gA and gB can be written
as:

gA(p∗A) = gA

(
4∑
i=1

αip
i
A

)
=

4∑
i=1

αigA
(
piA
)

=
4∑
i=1

αiu
i
A,

gB(p∗B) = gB

(
4∑
i=1

αip
i
B

)
=

4∑
i=1

αigB
(
piB
)

=

4∑
i=1

αiu
i
B;

(4.2)

95

3. The closest points between the tetrahedra are computed using the GJK algorithm [49],
which also produces their barycentric coordinates, are by-products (line 12). Those closest
points are input to the mapping Equation (4.2) to obtain the parameters g∗A,g

∗
B of the

solution guesses on both surfaces (lines 13 and 14).

Algorithm 12 Estimates a good guess between two BVH leaves lA, lB containing surface areas. Refer to List-
ing 2.4 for the exact meaning of each field of lA and lB. The GJK algorithm is presented here as a function
parametrized by two tetrahedra and returning the barycentric coordinates their closest points.
1: function FindGuess(lA, lB)
2: fA ← lA.supermax_feature[lA.feature_id]
3: fB ← lB.supermax_feature[lB.feature_id]
4: u1

A ← (lA.umin, lA.vmin)
5: u2

A ← (lA.umin, lA.vmax)
6: u3

A ← (lA.umax, lA.vmin)
7: u4

A ← (lA.umax, lA.vmax)
8: piA ← fA(uiA) for i ∈ [1, 4]
9: Compute uiB,p

i
B similarly using lB.

10: ΣA ← tetrahedron with vertices {p1
A,p

2
A,p

3
A,p

4
A}

11: ΣB ← tetrahedron with vertices {p1
B,p

2
B,p

3
B,p

4
B}

12: (αi, βi)← GJK(ΣA,ΣB)
13: g∗A ←

∑4
i=0 αiu

i
A

14: g∗B ←
∑4
i=0 βiu

i
B

15: return (g∗A,g
∗
B)

16: end function

The mapping given by Equation (4.2) is easily generalizable to polyhedra with an arbitrary
number of points. Thus, better guesses might be achievable when considering more vertices
located on each surface, and executing the GJK on their convex hulls. This would however,
increase the computation time.

Now, if the polyhedral approximations of A and B intersect, this method cannot be used
since the GJK algorithm will fail. As a brute-force alternative, the computation of the closest
points takes place between all edge-edge and vertex-face pairs explicitly and the best pair is
selected. Nevertheless, this second case barely occurs when A and B are kept separated with
a small distance from each other, especially if it results from the implicit dilation presented
in Section 1.3.1.2.

Even though they have a O(1) time complexity, the GJK or its brute-force alternative involve
a significant amount of arithmetic operations. Thus, Section 4.5.3 shows how the exploitation of
the time coherence enables an update of the guess points at a much lower price during subsequent
time steps.

4.3.2 Handling some conformal contact configurations with sampling

In Section 1.3.1, conformal contact configurations appear as non-punctual connected sets of non-
strict local minima of the distance function between A and B. Therefore, using the distance-
based geometric contact model, conformal contacts do not necessarily correspond to effective
contacts as shown in Figure 4.7. For example, a convex sphere concentric with (but not inter-
secting) a concave sphere are in a conformal contact configuration even if their radii are not
equal (see Figure 4.7b).

As a classification of conformal contact configurations, two categories are proposed, based
on the dimensionality of the contact area:

• 2-dimensional conformal contacts (see Section 4.3.2.1) are contact surfaces and may arise
only between pairs of surfaces;

96

(a) (b)

Figure 4.7: Two configurations considered ‘conformal’ even if there is no effective contact between A and B. The
conformal contact areas, i.e., the footpoints of the non-punctual non-strict local minima of the squared ditance
function, are highlighted in blue.

• 1-dimensional conformal contacts (see Section 4.3.2.2) are contact curves and may arise
between two surfaces, a surface and a curve, or two curves.

Conformal configurations require special care because they cause LMD computation methods
presented in Section 4.3.1 to fail since the local minimizers are no longer isolated points. The
following sections propose some preliminary work that helps handling some simple cases occur-
ring either between two canonical surfaces or a canonical surface and a curve of any type that is
located at the intersection of two canonical surfaces. Note that it must be kept in mind that the
modeling of the dynamics of conformal contacts as part of a time-stepping integration scheme is
still an open problem since it triggers issues regarding both the geometrical and the mathematical
well-posedness of the unilateral contact problem. Therefore, while our sampling-based approach
can help reduce penetrations in conformal contact configurations by allowing the definition of a
finite set of non-penetration constraints, this is by no mean a robust solution to overcome the
limitations of existing geometric contact models exploited by time-stepping integration schemes.

Detection of conformal contact configurations other than the ones presented in the following
sections are left to future works.

4.3.2.1 Conformal contacts of dimension two

As far as canonical surfaces are concerned, it is clear that a 2-dimensional conformal contact can
occur between two surfaces if and only if they are of the same type with opposite normals. In
that case, straightforward conditions on their intrinsic geometric parameters (center, axis, radius,
etc.) can be found to detect a conformal contact configuration. Let F 1

A be a face modeled by a
convex canonical surface and F 1

B modeled by a concave canonical surface (refer to Figure 1.26
for the typology of canonical surfaces). The following conditions must hold depending on the
surfaces types:

• Planes must have collinear and opposite normals nA and nB, and two points pA ∈ F 1
A

and pB ∈ F 2
B with pA 6= pB chosen arbitrarily on each planes, must be such that

〈pB − pA,nA〉 ≥ 0. Indeed, 〈pB − pA,nA〉 < 0 could correspond to configurations where
the Equation (1.23) characterizing critical points of the squared distance functions is vio-
lated for any pair of points on F 1

A and F 2
B;

• Spheres must have the same center and the radius of F 1
A must be smaller than the radius

of F 1
B;

• Cylinders must be coaxial and the radius of F 1
A must be smaller than the radius of F 1

B;

97

• Cones must have the same apex angles and be coaxial. Moreover, it is necessary that
〈aA,aB〉 > 0, and 〈pB − pA,aA〉 ≤ 0 where aA, a2 are their axes, and pA, pB their
apexes;

• Tori must have the same axis, center, and average radius. The minor radius of F 1
A must

be smaller than the minor radius of F 1
B.

Detecting conformal contacts between two non-canonical surfaces is much more involved and
not performed as part of the presented framework since they are very unlikely to happen, except
at a discrete set of feasible configurations of the system MS. In practice, industrial models are
generally designed such that conformal contacts are usually functional contacts and thus, often
occur at canonical faces [118], which have well-known curvature distributions that can be more
easily and accurately manufactured.

Once detected, the contact area on F 1
A is sampled with a finite set of points. Those points

are then projected on F 1
B in order to obtain pairs of closest points that are used to define

non-penetration constraints with the distance-based geometric model presented in Section 1.3.1.

4.3.2.2 Conformal contacts of dimension one

On the one hand, let us observe that conformal contacts between two curves are extremely
rare and transitory. Thus, identifying them is generally of no interest for dynamics simulations.
Conformal contacts between a curve and a canonical face, on the other hand, are more frequent
and may arise in scenarios as common as a cylindrical bottle resting upright on a flat table.
Only canonical surfaces are considered here. Other types of surfaces like developable surfaces
could be of interest but left to future works.

Let F 1
B be a canonical face and E1,2

A an edge. On the one hand, Figure 4.8 shows that it is
sufficient to verify that F 1

B is in 2-dimensional conformal contact with either F 1
A or F 2

A. If so,
then any point of the (untrimmed) surface F 1

B can be paired with a point of the (untrimmed)
surface F 1

A to be LMD footpoints between A and B. Moreover, because E1,2
A ⊂ F 1

A, all points of
E1,2
A can be paired with a point from F 1

B to form a local minimizer as well. Therefore, E1,2
A and

F 1
B are in 1-dimensional conformal contact. With a similar reasoning, it can be deduced that
E1,2
B and F 1

A are in 1-dimensional conformal contact too.
On the other hand, in the other, less common case, where F 1

B is not in conformal contact
with neither F 1

A nor F 2
A, then the derivation of criteria for the existence of a conformal contact

between E1,2
A and F 1

B with an arbitrary relative position is nontrivial and left for future works.

Figure 4.8: Example of configuration generating curve-surface conformal contacts. In this configuration, the cone
A has a cylindrical hole bounded by F 2

A while the cube B has a conical hole bounded by F 1
B.

Furthermore, it can be speculated that in order to keep the relative curvature constant
along the whole contact curve, 1-dimensional conformal contacts between two non-intersecting
canonical surfaces may only occur along their lines of curvature. The identification of those lines

98

of curvature, depending on the shapes orientation and types yield lines or circles that can be
determined by studying each pair of surfaces individually.

Whenever a 1-dimensional conformal contact configuration is detected for the features asso-
ciated to two leaves of the BVHs of A and B, the contact curve is discretized using a user-defined
number of uniformly distributed points. If the conformal contact involves two surfaces, the cor-
responding curves follow lines of curvature (which are either line segments or circles) from both
surfaces. If it involves a face and a curve, namely F 1

B and E1,2
A , then samples are computed on

E1,2
A and projected on F 1

B. Because F
1
B is assumed to be represented as a canonical surface, this

projection is always straightforward and does not require an iterative root finder. Indeed, the
samples themselves may be pre-computed offline and updated at run-time to take into account
the relative displacement of A with respect to B.

As a final note regarding conformal contact configurations, we stress the fact that the presented
sampling-based approach can help dealing with penetration that may be induced by conformal
contact configurations, but is not a robust solution. Indeed, some conformal contacts may induce
configurations where the feasible space C is no longer manifold since the contact constraints may
completely lock one (or multiple) degree of freedom of a solid. For example, a convex sphere
travelling in a concave cylinder with the same radius loses two of its translational degrees of
freedom as shown in Figure 4.9. The stable simulation of those configurations is still an open
problem when using a time-stepping integration scheme and the mathematical well-posedness
of the dynamics of smooth constrained multibody systems is at least unclear to us as it fails to
satisfy the constraint qualification conditions described in Acary et al. [4].

(a) (b)

Figure 4.9: (a) A ball A with 6 degrees of freedom and a static tube B. (b) After insertion of A into B, the ball
is only allowed to translate along the concave cylinder’s axis. In other words, the number of degrees of freedom
of the ball are reduced to 4 (three rotations and one translation).

4.3.3 An hybrid approach for deformable Bézier curves

Deformable curves, e.g., used to model deformable beams to be simulated, are handled in a
slightly different way than curves defined through BRep features. Because they are deformable,
their distribution of curvature may change arbitrarily and significantly at each time step. Thus,
following the same approach of BRep features, i.e., subdividing them offline into quasi-flat pieces,
is problematic for several reasons:

1. After each deformation, the bounding volumes must be updated so that they continue
to wrap properly the underlying curves, as shown in Figure 4.10. Those updates can be
expensive on deep BVHs;

2. Increased curvature in some segments of the curve may break the flatness assumption
presented in Section 2.4. Thus, it would not be accurate to execute a single Newton
method during the step (b) of Figure 4.1 on a pair of such deformed curves since no
assumption regarding the uniqueness of the LMD can be formulated;

99

3. Self-collision must be handled. This is especially complex when simulating knots and wind-
ings because they typically involve configurations prone to conformal contact generation.

(a) (b)

Figure 4.10: (a) The initial curve without deformation. The OBBs of its initial subdivision into quasi-flat pieces
are shown. (b) After deformation, the initial OBBs (gray, dashed) no longer fit it so they have to be updated.
Additionally, the bounded curves are no longer quasi-flat.

A typical approach to tackle those issues is the search for LMDs using dynamic subdivi-
sions, as proposed by Johnson et al. [70]. The algorithm is then similar to those presented
in Section 1.5.1 with a recursion that stops as soon as the subdivided pieces meet the flatness
condition. One issue is the cost of computing the bounding volumes on-the-fly. One solu-
tion for rigid curves is to save the dynamically generated subdivision tree [70] to avoid future
re-computations. However, this is not applicable for deformable curves since their bounding
volume and geometry have to be updated at each time step.

Instead, the approach presented in this section combines pre-computed and runtime subdi-
visions as follows:

1. At pre-computation time, subdivide the deformable curves into a user-defined number of
pieces at equidistant parameter values (see Figure 4.11a). Cluster the curve bounding
volumes into a BVH in accordance with their adjacencies (see Figure 4.11b). This pre-
computed tree structure will not be modified after deformation of the curve;

2. After a runtime deformation, update the bounding volumes in the tree structures (see Fig-
ure 4.11c). This is a bottom-up procedure: first, the bounding volumes of the leaves
(containing one piece of curve each) are recomputed. Bounding volumes of parent nodes
are computed such that they bound the bounding volumes of their children;

3. During the contact determination, all the steps of Figure 4.1 are performed though the
first one is slightly modified. Those modifications are the subject of the remaining section.

The step (a), shown in Figure 4.1, is modified as follows for the computation of LMDs
between two objects A and B where at least one, say, A, is a deformable curve and the other one
either a deformable curve or a rigid body, i.e., an invariant BRep model. The case where both are
BRep was already addressed in Section 4.2. In a first place, the simultaneous traversal described
in Section 4.2 is performed using the BVH computed offline but now, the culling tests executed
during the descent depends on the types of the objects involved in the LMD computation:

1. If B is a rigid body, the culling test consists in an OBB-OBB intersection test followed by
an orthogonality test between the BRep nodes’ normal cones of revolution and the curve
nodes’ tangent cones;

2. If B is also a deformable curve then, only the OBB-OBB intersection test is performed.

Whenever a leaf of the BVTT corresponding to this traversal is reached, two cases may arise:

100

(a) (b) (c)

Figure 4.11: (a) the domain of the Bézier curve is split into several (here, 6) equal parts. Each part is shown
with one color. (b) The tree structure groups adjacent parts together. (c) After a deformation, the tree structure
has to be updated but its topology remains identical. The deformed curve is shown at the root of the tree.

1. If the curve segments contained into the BVTT leaves of the deformable curves validates the
flatness condition discussed in Section 2.4.1, then the algorithm can proceed immediately
to the step (b) of Figure 4.1 to perform the exact LMD computation;

2. If the curve segment contained into the BVTT leaves of the deformable curve does not
validate the flatness condition discussed in Section 2.4.1 then, the localization of curve
segments that may contain an LMD is not accurate enough to proceed to exact LMD
computation. Therefore, the simultaneous BVH traversal carries on with an on-the-fly
computation of new BVH nodes for the deformable curve(s) until the computed curve
segments are almost flat. This process is described in details in Algorithm 13 for the case
where A and B are both deformable curves, and in Algorithm 14 for the case where A is
a deformable curve and B a rigid body.

Both dynamic traversal algorithms start with a bounding volume test in order to check if
the curve segment obtained so far still has a chance of containing a LMD. There, the tests
performed during the traversal with dynamics subdivisions are exclusively orientation-based.
Indeed, between two deformable curve segments, only the orthogonality test presented in Sec-
tion 3.5 between the solution line cone (see Section 3.5.1.3) and the tangent cones represented as
polyhedral cones (see Section 3.5.2) is performed. Between one deformable curve segment and
one BRep feature area, the same orthogonality test is performed but between the curve segment
normal cone and the BRep feature area normal cone represented as polyhedral cones.

The choice of solely relying on orientation-based bounding volumes for the dynamic subdivi-
sions come from practical experimentations (see Section 5.3) that lead to the following conclusion:

• The traversal executed between the pre-computed BVH already included OBB for their
culling tests. Even if a deformation process reduces the tightness of these OBB, they
remain useful enough to filter most pairs that are far from each other;

• Tight OBB are too expensive to be computed at runtime for each dynamic subdivision.
In addition, tight polyhedral tangent cones, normal cones, and solution-line cones can
be computed very efficiently from the control points of the curve derivatives, as shown
in Section 3.5.2.2;

• Because the curve segments become flatter during the dynamic subdivision, the polyhedral
tangent cones become smaller, making them very discriminatory even if A and B are
extremely close to each other.

101

Algorithm 13 Simultaneous BVH traversal with recursive dynamic subdivisions. Case where both inputs are
Bézier curves.
1: function DynamicTraversalCurveCurve(bezierA, bezierB)
2: CA, CB ← polyhedral tangent cones of bezierA and bezierB.
3: S ← solution line cone S(A,B).
4: if S is orthogonal to CA and CB then
5: (bezier1

A, bezier
2
A)← split bezierA at its middle parameter.

6: (bezier1
B, bezier

2
B)← split bezierB at its middle parameter.

7: if bezierA and bezierB are both almost flat then
8: Compute exact LMD between bezierA and nodeB.
9: else if bezierA is almost flat then

10: . Recursive calls splitting bezierB only.
11: DynamicTraversalCurveCurve(bezierA, bezier1

B)
12: DynamicTraversalCurveCurve(bezierA, bezier2

B)
13: else if bezierB is almost flat then
14: . Recursive calls splitting bezierA only.
15: DynamicTraversalCurveCurve(bezier1

A, bezierB)
16: DynamicTraversalCurveCurve(bezier2

A, bezierB)
17: else
18: . Recursive calls splitting both curves.
19: DynamicTraversalCurveCurve(bezier1

A, bezier
1
B)

20: DynamicTraversalCurveCurve(bezier1
A, bezier

2
B)

21: DynamicTraversalCurveCurve(bezier2
A, bezier

1
B)

22: DynamicTraversalCurveCurve(bezier2
A, bezier

2
B)

23: end if
24: end if
25: . Otherwise, no possible LMD between those curve segments.
26: end function

Algorithm 14 Simultaneous BVH traversal with recursive dynamic subdivisions. Case where both one input is
a deformable Bézier curves and the other a BRep feature area identified by its BVH node nodeB.

1: function DynamicTraversalCurveBRep(bezierA,nodeB)
2: CA ← polyhedral tangent cone of bezierA.
3: if CA is orthogonal to node2.polyhedralNormalCone then
4: if bezierA is almost flat then
5: Compute exact LMD between bezierA and nodeB.
6: else
7: (bezier1

A, bezier
2
A)← split bezierA at its middle parameter.

8: . Recursive calls.
9: DynamicTraversalCurveBRep(bezier1

A,nodeB)
10: DynamicTraversalCurveBRep(bezier2

A,nodeB)
11: end if
12: end if
13: . Otherwise, no possible LMD between this curve segment and the BRep feature area.
14: end function

102

4.4 Validation of closest points computed onto individual fea-
tures

Whenever an analytical method exists, the procedures presented in the Section 4.3 computes
all the LMDs between two untrimmed canonical surfaces, curves, or point, or, if an iterative
minimization method must be used, they compute a LMD between two features trimmed to
rectangular sub-domains that passed the culling test described in Section 2.4.3. In both cases,
trimming curves potentially lying on a rectangular sub-domain are ignored. Therefore, it is
necessary to check if the computed LMD footpoints do not actually lie in a hole.

Moreover, there is no guarantee that the LMD footpoints computed by a method from Sec-
tion 4.3 between two points, curve segments, or surface areas will actually be LMD footpoints of
the corresponding feature areas in A and B. For example let γA : DA → R3 and γB : DB → R3

be two curves segments defined on domains DA and DB such that ∀t ∈ DA, γA(t) ∈ A and
∀t ∈ DB, γB(t) ∈ B. To clarify the notations, we note here the sets:

ΓA = {γA(t) | t ∈ DA} ⊂ A, (4.3)
ΓB = {γB(t) | t ∈ DB} ⊂ B. (4.4)

The methods from Section 4.3 executed on γA and γB will output LMD footpoints pA ∈ ΓA and
pB ∈ ΓB such that the characterization of LMDs from Equation (1.23) is satisfied. Note that
pA and pB are seen here as point on ΓA and ΓB, therefore:{

pB − pA ∈ TΓA(pA)∗,
pB − pA ∈ −TΓB(pB)∗.

(4.5)

Now, since pA ∈ ΓA ⊂ A (resp. pB ∈ ΓB ⊂ B), we have:

TA(pA)∗ ⊆ TΓA(pA)∗, (4.6)
TB(pB)∗ ⊆ TΓB(pB)∗. (4.7)

Therefore, additional tests must be done in order to check that:{
pB − pA ∈ TA(pA)∗,
pB − pA ∈ −TB(pB)∗,

(4.8)

to ensure pA and pB are LMD footpoints when they are seen as points on A and B.

To summarize, some of the LMD footpoints computed between two surfaces, curves, or points
in Section 4.4 may:

• Actually lie into a hole delimited by trimming curves. Note that this case is not so frequent
since the BVHs already filter out some closest points that would lie into holes. Indeed, the
subdivision of each feature into quasi-flat areas presented in Section 2.4.1 took care of re-
moving any rectangular sub-domain that lies entirely into a hole. The Section 4.4.1 details
the necessary additional checks to be executed on LMD footpoints found on rectangular
subdomains that intersect or contain some trimming curves.

• Not actually be LMD footpoints when seen as points of A and B. The Section 4.4.2
provides the necessary additional checks. This case is not so frequent either since the
Equation (1.23) that provides necessary conditions about the criticality of two points on
A and B is already partially enforced by the orientation-based bounding volumes and
the related culling tests during the BVH traversal, as described in Section 2.4.3. Indeed,

103

while the computation of normal cones of revolution and polyhedral normal cones do take
into account the effective BRep model from an edge and vertex standpoint, they are only
conservative bounds for all points on a feature area. Therefore they may contain more
elements than the exact tangent cone polars.

4.4.1 Testing the potential LMD against trimming curves

To check whether a point lies into a hole of a face, or not, a CPU version of Schollmeyer et
al. [119] is applied. The method is outlined in this section for completeness. First, a set of
operations are performed at pre-computation time on the trimming curves of each face treated
independently of the others:

• All the 2D trimming curves of the face are split into bi-monotonic subsets. The v co-
ordinates of the splitting points (the red points in Figure 4.12b). Also, the locations of
the extremities of each trimming curve (the blue points in Figure 4.12b) are collected and
added into an unique array V = {v1, v2, ..., vn}, assuming there is a total of n such points,
altogether;

• Each curve is then split again at all points with v-coordinates equal to those collected on
V (see the green points in Figure 4.12b);

• Assuming V is sorted in increasing order, trimming curve segments obtained after those
splits are collected into (n−1) sets V1, V2, ..., Vn−1. The set Vi contains the curve segments
such that the v coordinate of their two extremities are equal to vi,vi+1, respectively;

• The bounding box of each curve segment in each Vi is computed. If any two such boxes
intersect then, the corresponding curves are split again such that the resulting curves have
non-intersecting bounding boxes;

• Within each set Vi the curves are sorted in increasing order, i.e., such that the bounding
box of the k-th curve segment lies completely on the left of the (k + 1)-th curve segment.

An example of this splitting and sorting procedure is illustrated in Figure 4.12b. Once this
is performed, each Vi is partitioned into several u-intervals U ik that contain at most one bi-
monotonic curve segment. Using the even-odd-rule [100] to check if a point lies inside a closed
loop, it is possible to identify, at pre-computation time, some intervals that lie completely inside
the solid domain, or completely outside. The only intervals where no decision can be made are
those containing a trimming curve (see Figure 4.12a).

At run-time, given the parametric coordinates (u, v) of a point p, it is possible to check very
efficiently, with the following procedure, if it lies into a hole:

1. Find the Vi that contains the parametric coordinate v with a dichotomic search;

2. Find the interval U ik of Vi that contains the parametric coordinate u with a dichotomic
search;

3. If U ik does not contain any trimming curve segment, then the decision regarding the trim-
ming of p can be taken without further computations given the previous observations.
Indeed, p is valid if U ik has been identified at pre-computation time as lying inside of the
solid domain (green in Figure 4.12c), or invalid if U ik has been identified at pre-computation
time as lying outside on the solid domain (red in Figure 4.12c).

104

(a) (b)

(c)

Figure 4.12: (a) Four trimming curves with their extremities highlighted with disks. (b) Each curve is split
into bi-monotonic parts and sorted into intervals Vi. (c) The final partitioning of the parametric plane. The
partitioning of V2 into the u-intervals U2

k are explicitly named here. All points on the red (resp. green) parts are
known to lie outside (resp. inside) of the delimited domain. Each white part contains a trimming curve segment.

4. If U ik contains one trimming curve segment ξ, the location of the (u, v) parameters of the
point p with regard to ξ can be determined with a few iterations of a bisection method
on the v parametric coordinate axis. Referring to the terminology and discussions in Sec-
tion 1.4.3 regarding the orientation of trimming curves, the point p is considered part of
the solid domain if it is proven to lies on the left hand side (as defined in Section 1.4.3) of
the tangent of the point on ξ closest to (u, v). Otherwise is considered outside of the solid
domain. Note that such a bisection is both efficient and accurate since all trimming curve
segments are guaranteed to be bi-monotonic.

Further details and experiments can be found in Schollmeyer et al. [119].

4.4.2 Filtering the potential LMD using exact tangent cone polars

A pair of points pA ∈ A and pB ∈ B computed as described in Section 4.3 have to be evaluated
using Equation (1.23) in order to check whether they really are footpoints of an LMD between
A and B, or not. To that matter, TA(pA)∗ and TB(pB)∗ have to be computed. This procedure
depends on the feature each point belongs to. The following description addresses the point pA
(the same applies for pB):

• If pA is a point on a face then its tangent cone polar equals the normal of the corresponding
surface at this point;

• If pA is a point on an edge then TA(pA)∗ equals the polyhedral cone generated by the
normals to the two faces intersecting at pA. An exception occurs when pA is a concave
point, as defined in Section 1.4.3, in which case TA(pA)∗ = {0};

105

• If pA matches a vertex, then computing TA(pA)∗ exactly is more involved. The case where
pA lies at the intersection of planar faces has been studied by Merlhiot [90] to address
configurations where A and B have polyhedral boundaries. In order to extend this work
to cases where pA is at the intersection of smooth faces, the first-order approximation
of ∂A at the point pA is taken. Indeed, ∂A can be assimilated to its piecewise-linear
approximation on an arbitrarily small neighborhood of pA. Each edge of this polyhedral
approximation is collinear to the tangent at pA of one of the curve on ∂A meeting at pA.
Moreover, each triangle of this polyhedral approximation is orthogonal to the normal at
pA of one of the surface on ∂A meeting at pA.

If the targeted application of the physics simulation justifies the use of quasi-LMD, then the
aforementioned cones assigned to edges and vertices have to be enlarged with a user-defined
angle α. This enlargement is straightforward for the tangent cone polar of a point along an
edge and was shown on Figure 1.17a since it is similar to the planar case. The enlarged the
tangent cone polar of a vertex can be pre-computed offline using the dilation procedure described
in Section 3.4.

4.5 Exploiting temporal coherence

The concept of temporal coherence is essential for re-using some intermediate results from the
previous time step to speed up CD at the current one. It has been subjected to extensive
researches, as highlighted by the literature [69, 136, 130]. The basic hypothesis is to assume
that objects do not move too much, i.e., their positions evolve continuously and their velocities
and time-step length are such that one position update generates small enough changes on the
object positions to make whatever geometric results produced at the time step tn very likely to
be still valid, or at least easy to update, for the time step tn+1. This basic assumption works
well in practice and is beneficial to all stages of the CD pipeline:

• To avoid restarting the BVTT traversal from the root using the concept of front tracking,
see Section 4.5.1;

• To, sometimes, avoid having to perform complex culling tests (see Section 4.5.2);

• To initialize more accurately and more efficiently iterative methods that locate LMD foot-
points (see Section 4.5.3).

4.5.1 Front tracking

Front tracking is a common method for reducing the cost of the simultaneous BVH traversal
using an explicit construction and storage of the BVH nodes where the traversal ended at the
last time-step, tn. Those stored nodes are then used as starting points for the traversal at the
next time step , tn+1. The array storing those nodes is called a BVTT front. Front tracking
requires three steps:

1. Front nodes status assignment (see Figure 4.13b): one state is assigned to a BVTT node
depending on the result of the culling test between the bounding volumes contained by its
two underlying BVH nodes. ToTraverse is assigned if the culling test fails (new contacts
are possible). Otherwise, ToDelete is assigned (no contact is possible);

2. Front traversal (see Figure 4.13c): the BVTT traversal presented in Section 4.2.1 is re-
sumed starting with each node marked ToTraverse. Then, those nodes are replaced with
the list of nodes the traversal stopped on. The procedure is detailed in Algorithm 17;

106

3. Partial front pruning (see Figure 4.13d): it removes some pairs of BVTT nodes marked
as ToDelete. Such removal occurs only if the two following conditions are simultaneously
satisfied:

(a) Both BVTT nodes share the same BVTT parent node. This can be checked by
the Algorithm 15, which tests if they have one BVH node is common and if their
other BVH nodes share the same parent;

(b) The culling test on their common BVTT parent node succeeds. Indeed, if the parent
culling test fails it is extremely likely that the next time step will mark it as ToTra-
verse, meaning the next front may include its children again. So, it would be wasteful
to perform such an unnecessary removal.

If pruning occurs, one of the node being deleted is replaced by their common parent, while
the other is marked Deleted. This is an efficient O(1) in-place modification adequate for
the parallelization described in Section 4.6. Because the BVTT tree is never completely
constructed, this BVTT parent node is not readily available. It can be recovered easily
by looking at the parents of the BVH nodes contained by this BVTT nodes. Indeed, the
BVTT parent node is the node containing the common parents (from the BVH trees) of
its two underlying BVH nodes as described by Algorithm 16.

Let us observe that the third step is called partial front pruning because it makes the new
front one level closer to the root of the BVTT, at most, than the previous one. A complete
front pruning would have no such limit because it would basically apply this pruning process
recursively and may even reduce the BVTT front to the root in extreme cases where all chances
of LMD are lost. Such a variant is not adopted here because it interferes badly with the
parallelization introduced in Section 4.6.

Algorithm 15 Test whether two BVTT nodes n1
A and n2

A share a common parent.
function HaveCommonBVTTParent(n1

A, n2
A)

if n1
A.bvhNode1 = n2

A.bvhNode1 and n1
A.bvhNode2.parent = n2

A.bvhNode2.parent then
. The second BVH node was traversed.
return True

else if n1
A.bvhNode2 = n2

A.bvhNode2 and n1
A.bvhNode1.parent = n2

A.bvhNode1.parent then
. The first BVH node was traversed.
return True

else
return False

end if
end function

The very first BVTT front is initialized with the root of the BVTT, which contains the
roots of the two BVH being traversed. Pruning requires two neighboring BVTT nodes to be
performed, so it cannot occur at its root.

The memory layout of the front is crucial for performance issues. Indeed, its nodes should be
ordered in the same way as they would be encountered into a depth-first traversal of the BVTT,
i.e., two nodes sharing the same parent must be adjacent in the BVTT front. This simplifies
the pruning procedure described in Section 4.5.1 since it becomes straightforward to determine
when two BVTT nodes have a common BVTT parent node. In this chapter, a BVTT front
represented that way is said to be sorted. For example, the BVTT front shown on Figure 4.13a
should be represented with the contiguous array:

[(A2, B2)(A2, B3)(A3, B2)(A4, B3)(A5, B3)].

107

(a) (b)

(c) (d)

Figure 4.13: (a) A BVTT front. (b) Front nodes status assignment: BVTT front nodes are marked as ToDelete
(red) or ToTraverse (green). (c) Front traversal: the node (A2, B2) is already a leaf while the node (A3, B2) is
replaced by the result of the traversal (A4, B2) and (A5, B2). (d) Front pruning: the node (A2, B3) does not have
any neighbor marked ToDelete. The nodes (A4, B3) and (A5, B3) are both marked ToDelete and share the same
parent. They are thus replaced by (A3, B3).

After status assignment/traversal/pruning, the new front must retain this depth-first layout.
For example, in Figure 4.13d, it should be represented with the contiguous array:

[(A2, B2)(A2, B3)(A4, B2)(A5, B2)(A3, B3)].

4.5.2 Temporal coherence for bounding volumes

Each bounding volume has its own intersection test that can benefit from temporal coherence:
OBB: As detailed in Section 2.4, the OBB culling test is an intersection test. When two

OBB do not intersect, the Separating Axis Theorem [52] states that there exists one plane, at
least, delimiting two half-spaces, each one containing one of the two OBBs. The normal of this
plane is called a separating axis. Thus, if one such axis is found at one time-step, it is saved as
it is likely to remain a separating axis during the next few time steps as long as the objects do
not move too much (see Figure 4.14). At the next time-step, it is tested first, before trying to
find another separating axis for the intersection test.

Normal cones of revolution: The intersection test between two cones of revolution com-
putes the angle between both cone axes and compares them with the cones apex-angles. One
way to benefit from coherence when the cones do not intersect would be compute the angle of
the relative rotation movement between the objects A and B and track if it would exceed the
minimal angle required to make the two normal cones of revolution contain antipodal directions.

108

Algorithm 16 Computes the common parent of two BVTT nodes n1
A and n2

A. This assumes both nodes
are already known to have a common parent as tested by the procedure HaveCommonBVTTParent. The
BVTTNode procedure constructs a new BVTT nodes from two BVH nodes as show in Listing 4.1.

function BVTTNodeParent(n1
A, n2

A)
prerequisite HaveCommonBVTTParent(n1

A, n2
A)

if n1
A.bvhNode1 = n2

A.bvhNode1 then
. The second BVH node was traversed.
return BVTTNode(n1

A.bvhNode1, n1
A.bvhNode2.parent)

else
. The first BVH node was traversed.
return BVTTNode(n1

A.bvhNode1.parent, n1
A.bvhNode2)

end if
end function

Algorithm 17 BVTT front node traversal. The TraverseBVTTFrontNode subroutine is similar to Algo-
rithm 9, except that the front nodes are collected whenever the recursion stops. Difference are highlighted in
red.
function TraverseBVTTFrontNode(node, newFront, newContacts)

if node.status = ToTraverse then
if CullingTest(node.bvhNode1, node.bvhNode2) then

. The + operator design array concatenation.
Append node to newFront

else
children ← BVTTNodeChildren(node)
if children = NULL then

Append node to newFront
Add to newContacts the closest points on node.bvhNode1 and node.bvhNode2

else
. Recursive calls on the children.
TraverseBVTTAndCollectFront(children[0], newFront, newContacts)
TraverseBVTTAndCollectFront(children[1], newFront, newContacts)

end if
end if

else
. The node is marked ToDelete, so no need to traverse it.
Append node to newFront

end if
end function

function TraverseBVTTFront(front, newFront, newContacts)
newFront ← Empty array.
newContacts ← Empty array.
for all node ∈ front do

TraverseBVTTFrontNode(node, newFront, newContacts)
end for

end function

However, estimating this angle is costly. Thus, in practice, no coherence is implemented for
normal cones of revolution, which already have a very cheap culling test.

109

Algorithm 18 Procedure to replace pairs of BVTT nodes n1
A, n

2
A marked ToDelete by their common parent.

function PruneFront(front)
for all i ∈ 0.. front.size() - 1 do

n1
A ← front[i];
n2
A ← front[i+ 1];

if n1
A.status = n2

A.status = ToDelete then
if n1

A.bvhNode1 = n2
A.bvhNode1 then

if n1
A.bvhNode2.parent = n2

A.bvhNode2.parent then
. Replace n1

A by their common parent.
n1
A.bvhNode2 = n1

A.bvhNode2.parent
n2
A.status ← Deleted

end if
else if n1

A.bvhNode2 = n2
A.bvhNode2 then

. Do the same but reverting the roles of n1
A and n2

A.
if n1

A.bvhNode1.parent = n2
A.bvhNode1.parent then

. Replace n1
A by their common parent.

n1
A.bvhNode2 = n1

A.bvhNode2.parent
n2
A.status ← Deleted

end if
end if

end if
end for

end function

(a) Time step ti (b) Time step ti+1 (c) Time step ti+2

Figure 4.14: (a) Two OBBs Oi, Oj at the time step ti and one of their separating axis in blue on which their
projection do not overlap. (b) After small rotations and translations, the same axis is still a separating axis at
the time step ti+1 so a complete intersection test will not be necessary. (c) After further movements before the
time-step ti+2 the axis is no longer a separating axis: an intersection test is still needed.

Polyhedral normal cone: As shown by Proposition 1, if Algorithm 4 finds a plane con-
taining two generators of the Minkowski difference of two polyhedral cones that is also one of
its supporting plane then, they do not contain any antipodal direction. If the related feature
areas do not rotate much, a plane containing the same (rotated) generators is extremely likely
to still be a supporting plane of the Minkowski difference of the new polyhedral normal cones
(See Figure 4.15). Reusing previously computed support plane dramatically improves the inter-
section test because, if it is still a support plane, the original O(m3) intersection test does not
have to be executed.

4.5.3 Temporal coherence for LMD computation

Iterative LMD computation can benefit from temporal coherence when the relative positions
of two rigid bodies A and B do not change too much then, the location of their closest points
will do so. Thus, the closest points found during the time-step tn could very well be re-used as
the starting point of the iterative method at time-step tn+1. This, in practice, provides good

110

(a) Time step ti (b) Time step ti+1 (c) Time step ti+2

Figure 4.15: (a) Two polyhedral cones at the time step ti and a support plane of Ca ⊕ Cb shown in blue. Here,
this plane passes through two of the generators g1,g2 of Cb. (b) Small rotations occurred before the time-step
ti+1 but the plane passing through the same two generators g1,g2 is still a support plane of Ca⊕Cb. No further
polyhedral cone intersection test is necessary. (c) Further rotations occurred before the time-step ti+2, making
the plane passing through g1 and g2 no longer a support plane: the original O(n3) intersection test still needs
to be executed.

convergence but can be further improved by exploiting contact kinematics [93, 139] to estimate
how the closest points moved. Indeed, contact kinematics provides the relationship between
the velocities q̇A, q̇B of the closest points parameters and the relative velocities ω,v of A and
B expressed in a local coordinate system attached to those closest points. For example, the
following equations were found by Visser et al. [139] for closest points lying on a pair of surfaces
corresponding to a face of A and of B:

q̇A = M−1
A R(KB(dRKAR+ I) +RKAR)−1

([
−ωy
ωx

]
+KB

[
vx
vy

])
,

q̇B = M−1
B ((dRKAR+ I)KB +RKAR)−1

(
(dRKAR+ I)

[
−ωy
ωx

]
+RKAR

[
vx
vy

])
,

ḋ = vz.

(4.9)

The terms MA/B,KA/B, and R are obtained from the fundamental forms of the surfaces and
are detailed in Visser et al. [139]. The quantity d designates the LMD and ḋ its evolution with
respect to time.

To summarize, exploiting temporal coherence to find the new position at time-step tn+1 of
footpoints found at the time-step tn, amounts to:

1. Integrate the contact kinematic differential equations (Equation (4.9)) taking as starting
points the footpoints at tn. The chosen integration scheme can remain quite basic because
the real change in positions is assumed small. For example, an explicit Euler method is
fast and accurate enough in practice;

2. Use the result of this integration as the solution guess for the iterative methods to find the
actual new closest points;

3. If the iterative method converged to new footpoints, save their parameters so that they
can be input to the contact kinematic equations at tn+2.

Using this method, the GJK-based or brute-force solution guess estimation methods pre-
sented in Section 4.3.1 are needed only to find new closest points or before each execution of the
iterative method that do not find any solution.

However, the temporal coherence assumption ends up being wrong in some cases, and closest
points move significantly, or even disappear. In those cases, integrating contact kinematics with a

111

simple explicit integration scheme can end up generating new solution guesses that are extremely
far from the solution at time tn+1, preventing new closest points from being found on the original
pair of feature areas because the convergence of the iterative method can no longer be obtained.
To avoid this issue, whenever the integration of contact kinematic equations generates solution
guesses that lie outside of the rectangular domains of the pair of feature area considered, the
GJK-based guess estimation algorithm presented in Section 4.3.1 is used instead.

4.6 Parallelization of the CD pipeline

The CD pipeline presented in Section 4.2 can be slightly modified to take advantage of multi-
core microprocessor architectures. The main idea is to split the pipeline into several components
that can themselves be parallelized easily. Such an approach fits well with the front tracking
strategy since each element of the front can be handled independently from the others. This
approach is very similar to other front-tracking schemes based on parallel BVH traversal for
triangle meshes like Tang et al. [130], except that here, it is necessary to handle a few inter-
thread communications to avoid redundant computations over supermaximal features. The
corresponding process is summarized in Figure 4.16.

Parallel front marking
(parallel map & reduction)

Parallel front traversal
with partial prunning

(parallel map & reduction)

Parallel contact
computation and

trimming
(parallel map)

Previous front
Front nodes marked as:
to delete, to traverse,

to ignore
New front

Potential contact pairs Contact information

Final output

Figure 4.16: Parallel collision detection pipeline with front-tracking. Data are shown in red and algorithmic
treatments in blue.

The following sections provide details about each stage. Parallelization has been implemented
using the Intel Threading Building Blocks [1] (TBB) to benefit from efficient work balancing
among threads. In particular, TBB is task-based, i.e., the user defines a set of tasks to be
executed concurrently and TBB automatically distributes those tasks between several threads.

4.6.1 Parallel front nodes status assignment with partial pruning

Parallel front nodes status assignment is performed with a parallel mapping and reduction
procedure. Recall that such a procedure combines two phases. Firstly, the mapping phase
applies a treatment to each task in parallel. Secondly, the reduction phase merges successively
several tasks together and applies another treatment on each pair of tasks being merged in
parallel. The reduction proceeds until all tasks have been merged into a single one.

The front, represented as a sorted (see Section 4.5) array of BVTT nodes is split into equally-
sized tasks to be handled in parallel. The parallel mapping operates on each such task, thus
performing all the culling tests along the front. The decision of whether or not a node is to be
traversed can be taken during this phase as well. However, deciding whether a node must be
deleted or not depends on the status of its immediate neighbor (if any) that shares the same
BVTT parent node. In the following developments, the term neighbor will be dedicated to nodes
that share the same BVTT parent. Two scenarios may occur:

1. The node and its neighbor belong to the same task. In that case, the decision can be taken
immediately;

112

2. The node and its neighbor are located into different tasks. That situation is handled during
the parallel reduction phase when reading the culling test result for the corresponding nodes
of each task.

Figure 4.17 illustrates this procedure, starting with the front shown in Figure 4.13a. At the
first step, i.e., Map, each task assigns either a ToDelete (red) or ToTraverse (green) flag to each
node. In this example, there is only one node per task so no pruning is performed sequentially at
this point. During the first reduction, the nodes (A2, B2) and (A2, B3) are neighbors and being
merged into the same task. It is the automatic scheduling provided by TBB that is responsible
for selecting which adjacent tasks are being merged and in which order. However, they have
different marks so they are left unchanged. During the second reduction, the nodes (A4, B3) and
(A5, B3) are the only ones being neighbors and being merged into the same task. In addition,
they are both tagged ToDelete. Therefore, the culling test is performed on their common parent.
Here, the culling test passed, meaning pruning is applicable. This is done by replacing the node
(A4, B3) by its parent (A3, B3), and setting the status of its neighbor (A5, B3) to Deleted. The
third reduction does not do anything because the nodes (A2, B3) and (A3, B2) have different
marks.

Let us point out that all these status assignment operations can be performed in-place
without race-conditions since each task operates on different front nodes. Here also, the pruning
only ends up setting the Deleted status to the removed nodes, i.e., the size of the array containing
the front is not modified. Thus, all tasks share a pointer to the same array representing the
front, i.e. the division into tasks is purely logical, and modify the nodes when assigning them a
status and modifying it as required during pruning process.

Map Reduce 1 Reduce 2 Reduce 3

Figure 4.17: Parallel front nodes status assignment with partial pruning. One orange rectangle represents one
task. Here, one partial pruning occurs during the second reduction.

4.6.2 Parallel front traversal and construction of the new BVTT front

Parallel front traversal is also a parallel mapping and reduction procedure. In the following, we
assume the front is sorted (as defined in Section 4.5.1) and each of its BVTT nodes are referred
to as Nk where the index is such that Ni appears before Nj in the front if and only if i < j:

113

• At first, one task Tk is created for each Nk of the BVTT front that has not been marked
Deleted ;

• Then, the mapping phase operates on each Tk in parallel. If a Tk contains a Nk marked
ToTraverse, then the BVTT traversal presented in Section 4.2 is executed on the sub-tree
of the BVTT rooted by Nk. The new BVTT nodes reached by this traversal form a partial
front which is stored into an array Ak. If a Tk contains a Nk not marked ToTraverse, then
Ak is simply initialized to Ak = {Nk}.

• Finally, the parallel reduction phase recursively combines pairs of tasks Tk and Tk+1 by
appending Ak+1 to Ak. The recursive combination of all the Ak yield the new BVTT front.
Moreover, all BVTT leaves on which the culling test failed are identified and collected for
future processing by the parallel procedure presented in Section 4.6.3 for the exact LMD
computation.

Special care must be taken regarding the optimization related to supermaximal features
presented in Section 4.2.3. Indeed, this optimization relies on a set E that stores pairs of
supermaximal features that do not need to be collected more than once for processing by the
exact LMD computation algorithms. Thus, to avoid erroneous concurrent accesses to E during
the parallel front traversal, the data structure containing E is replaced by a concurrent set
(tbb::concurrent_unordered_set) that allows parallelized algorithms to perform concurrent
modifications of E in a thread-safe way. Fortunately, the use of this concurrent data structure
reduces the performances marginally only, because very few write operations occur compared
to the number of read operations. This is due to the fact that only one write operation is
performed per pair of supermaximal features for which an analytical LMD computation method
exists, while one read operation is performed per pair of feature areas.

4.6.3 Parallel LMD computation and trimming

Parallel LMD computation is achieved through:

1. Preallocating a sufficiently large output buffer for the computation of LMDs between all
pairs of BVH leaves collected during the parallel front traversal;

2. Executing in parallel each exact LMD computation algorithm over each selected pairs of
BVH leaves. Each such algorithm execution is given a pointer to a sufficiently large number
of free slots of the output buffer in order to store the computed LMD footpoints.

As mentioned in Section 4.3.1, the exact choice of LMD computation algorithms, and thus the
size of their outputs, depends on the feature types referenced by each BVH leaf.

On the one hand, if the LMD computation algorithm being executed is based on the Newton
method then, only one pair of LMD footpoints will be generated for the selected pair of BVH
leaves. On the other hand, pairs of features where an analytical method can be executed may
output more than one pair of LMD footpoints. This number of pairs of LMD footpoints generated
is actually equal, at most, to four since no analytic root-finding algorithm can be set up for
polynomials of degree greater than four, as stated by Abel’s Impossibility Theorem [2]. To sum
up, if N is the total number of BVH leaf pairs to be processed, preallocating a buffer able to
store 4N pairs of LMD footpoints at most, is sufficient.

While very efficient, this approach uses more memory than necessary because four slots will
be allocated to the output buffer even for, e.g., pairs relying on the Newton method where only
one would have been sufficient. Therefore, if memory usage is of concern, several alternatives
are possible to:

114

• Perform a sequential pass on each BVH leaf pair to determine the actual maximum number
of solutions each of them can produce, i.e., ni. This can be used to allocate a smaller array
whose size equals

∑
i ni. Simultaneously, an index corresponding to the location where

the LMD computation algorithm should output its results is associated to each BVH leaf
pair;

• Perform a parallel map and reduction where each LMD computation algorithm will output
LMD footpoints into a local array during the map phase. The reduction then concatenates
those arrays.

Within our application scope, the memory overhead of the method presented here is small enough
to avoid relying on other approaches that induce runtime overheads.

4.6.4 Discussion regarding load-balancing

Work balancing is essential for good performances. Indeed, assigning work to each thread evenly
helps keeping them busy and maximize the amount of computations performed simultaneously.
While designing an efficient scheduler from the ground-up is a task too heavy to be undertaken
during this thesis, simple observations can help selecting a good one among those available from
a parallelization framework like TBB. Each phase of the parallel CD pipeline has its specificities:

1. Parallel status assignment with partial pruning: an equipartition of the number of front
node among each thread provides a good load balancing in practice because the effective
computations (culling test) are of the same nature and complexity for all the nodes of the
BVTT front;

2. Parallel front traversal is a very unbalanced operation, and it is hard to predict accurately
the amount of work induced by one traversal starting at one BVTT node. Moreover, the
traversed sub-trees tend to have small depths so parallelization of the traversal of one
sub-tree itself proved inefficient in practice. The work-stealing scheduling strategies, as
provided by TBB, are good choices since it can adapt dynamically the work load when
some tasks require more time that others;

3. Experiments show that the parallel LMD computation is fairly well balanced, even if the
nature of the exact LMD computation algorithms differ. Indeed, Newton-based approaches
generally converge quickly enough if they are started at the same convergence point (if
any) found at the last time-step. Thus, an equipartition of the work among threads is an
efficient choice.

These different workload characteristics justify the choice of splitting the CD pipeline into
three steps. Indeed, it is possible to start the traversal as soon as a node is marked ToTraverse,
and it is possible to perform the exact contact computation as soon as the traversal reaches a leaf.
However, merging those three phases in any way would make the work load to be too unbalanced
and reduce the efficiency of the parallelization. The Chapter 5 shows that the proposed parallel
pipeline achieves real-time performances.

4.7 Conclusion

From a technical point of view, this chapter has described choices that can be made in order to
compute efficiently LMDs between smooth BRep models as well as deformable curves.

A sequential approach based on simultaneous BVH traversals has been described to introduce
choices made regarding exact LMD computations algorithms depending on the type of curves

115

or surfaces involved. Indeed, analytic algorithms can be used for most of them, which leads
to better computational performances than the generic Newtown-based iterative root-finding
algorithms. In addition, these analytical methods are very robust and helpful to enforce the
existence of a unique solution over each feature. Also, analytical methods combined with the
concept of supermaximal features avoid redundant computations, which also contributes to the
performance improvements. A simplification of the polyhedral cone has been introduced to
bound LMD directions and reduce the computational cost of the culling tests while keeping
them sufficiently discriminative.

Deformable curves are special cases as they do not have tight normal cones like vertices,
curves, and face areas of BRep models do. Therefore, polyhedral tangent cones and polyhedral
solution line cones are much more suited to filter areas that may not contain LMD footpoints.
In addition, their curvature distribution may vary between time steps. Consequently, a static
subdivision in almost-flat parts at pre-computation time does not make sense. Thus, it is more
efficient to rely on an hybrid approach where few regularly spaced static subdivisions, updated
at each iteration, are combined with dynamic subdivisions to locate more accurately LMDs.

In order to achieve real-time simulations, improvements of bounding volumes, smart algo-
rithmic choices, and avoidance of redundant LMD computations using supermaximal faces is
not enough. Much is to be gained by considering two common approaches:

1. Taking advantage of temporal coherence: assuming the objects do not move much between
two time steps, it is possible to avoid having to perform simultaneous BVH traversal from
their roots. Instead, the traversal may be restarted from its stop after the last update.
Moreover, this assumption improves dramatically intersection tests between polyhedral
cones because the execution of the O(n3) intersection algorithm may not always be neces-
sary;

2. The parallelization of the CD pipeline: this can be achieved in a three-step process in order
to maximize load balancing. Performance gains are significant since the computation of
exact LMDs is the most time-consuming part of the CD pipeline and can be efficiently
parallelized without implementation difficulties.

The next chapter shows this CD framework, implemented as part of a complete multibody
dynamics simulation engine with intermittent contacts, in action on industrial CAD models.

116

Chapter 5

Experimentations and benchmarks on
industrial models

Our CD method is implemented within the interactive multibody physics simulation framework
XDE [91] developed by the CEA1. Simulations are performed with no friction, no penetration,
and are based on a time-stepping scheme inspired from the seminal work of Moreau [94] and
Jean [65]. Contact constraints follow the Signorini contact law [122] and are solved using a
Gauss-Seidel based iterative solver, similar to the algorithms described in Acary et al. [4].

In this chapter, the proposed approach is compared to a state-of-the art distance-based CD
method that operates tessellated models only [90] and that is also integrated into the XDE
simulation framework. The benchmarks presented in Sections 5.1 and 5.2 are performed on
two scenarios simulating insertions with small mechanical clearances. The third benchmark,
in Section 5.3, highlights performances improvements brought by polyhedral tangent cones and
polyhedral solution line cones as part of our hybrid method for CD between deformable Bézier
curves. However, no actual dynamics simulation involving those curves is demonstrated as it is
not yet supported by the XDE framework.

5.1 First scenario: telerobotics insertion task

The first scenario presented is derived from use-cases belonging to the field of the teleoperation of
robot arms performing insertion tasks inside a hostile (extremely hot or irradiated) environment.
In particular, the models are inspired from industrial models2 belonging to the French multi-
national company Areva, specializing into nuclear and renewable energy.

The simulation at hand addresses the slave arm side of a force-feedback teleoperation system.
A robotic arm has to be manipulated by an operator (here, through a 3D mouse) in order to
insert the conical mobile solid (see Figure 5.2b) into a receptacle with a static hole that has
a similar shape (see Figure 5.2a). The mechanical clearance between the mobile solid and the
hole after insertion is small, i.e., equal to 1% of the hole’s largest radius. Various steps of
the simulation are depicted in Figure 5.1. In order to complete the insertion task, the tooth
pictured in Figure 5.2a on the receptacle must be properly aligned with the channel depicted
in Figure 5.2b. The connection is of type bayonet locking system, which requires translational
and rotational sliding motions.

1The French Alternative Energies and Atomic Energy Commission
2The actual models provided by the manufacturer are not demonstrated in this manuscript for confidentiality

reasons. The replacement models proposed here have been assembled following slightly different shapes.

117

(a) (b)

(c) (d)

Figure 5.1: Interactive insertion of a conical solid (with a cylindrical end) into a hole with a similar shape.

Tooth

(a) (b)

Figure 5.2: (a) Cut view of the static object hole. (b) Close view of the manipulated solid. It has to be translated
then rotated such that the tooth circled in (a) follows the path marked in (b).

Section 5.2.1 describes the geometric models used for this simulation. Comparisons of com-
putation times for CD between our framework and the polyhedron-based LMD computation
framework LMD++ [90] are analyzed in Section 5.1.2.1. Scalability analysis of our parallel CD
pipeline as well as a detailed view of the performance improvements brought by each of our
contributions are presented as well in the Sections 5.1.2.2 and 5.1.2.3.

5.1.1 Models description

This section describes the geometry of the two input models. Both are depicted in Figures 5.3
and 5.4 with the following color code:

118

Colour Signification
Gray Planes
Dark blue Cones
Light blue Cylinders
Red (curve) G1 or concave curve

Also, both models contain few tori forming blending areas. Those figures display some
elementary results of ongoing works regarding the identification of G1 and concave edges. As
mentioned in Section 1.3.1.3, these edges could be ignored by the CD framework since they
cannot contain any LMD footpoint.

Figure 5.3: The manipulated solid. Coloured crosses indicate some faces parts of the same supermaximal face.

Figure 5.4: The receptacle with a conical hole (bottom-right).

Edges are mostly lines and circles, with a few Bézier curves. The Table 5.1 lists the exact
number of faces and edges, as well as the number of supermaximal faces and edges. Clearly, the
number of supermaximal edges and faces are more significant for the manipulated solid because
the solid repetitive patterns highlighted in Figure 5.3 since the overall shape is almost symmetric
with respect to a single axis. For example, the outermost conical (resp. cylindrical) surfaces
marked with yellow (resp. orange) crosses are composed of several areas of the same untrimmed
cone (resp. cylinder).

Because of the requirements described in Section 1.3.1.2 regarding the ability of a distance-
based methods to output negative values of the gap function, the manipulated model is eroded
then implicitly dilated by a margin equal to 0.5% of the largest radius of the manipulated solid.
This dilation does not modify the mechanical clearance between the two solids and its only
downside is to round some corners which does not influence the quality of the simulation here.

119

Conical solid Receptacle
Num. of faces 108 15
Num. of supermax faces 65 13
Num. of edges 194 25
Num. of supermax edges 136 24

Table 5.1: Number of faces and edges, and supermaximal entities for the first simulated scenario.

5.1.2 Running times comparisons

Three phases of the simulation can be distinguished through the benchmarks because they all
show significantly different performance characteristics:

1. From the beginning to the time step 800: the free flight phase that corresponds to Fig-
ure 5.1a where the operator adjusts the position of the conical solid so that the insertion
process can begin as in Figure 5.1b. Objects start being in contact at the time step 500;

2. Between the steps 801 to 1300: the insertion and locking phase where the operator slides
(see Figure 5.1c) and rotates the solid into the receptacle hole in such a way that it becomes
fully inserted. Let us note that some precise rotational manipulations are necessary in order
to account for the tooth shown in Figure 5.2. Once fully inserted as in Figure 5.1d, small
rotations are applied to the solid.

3. Finally, from time step 1301 to the end of the simulation, the extraction phase removes
the solid from the hole. Objects stop being in contact at the time step 1400.

The following sections propose various benchmarks in order to validate the efficiency of
our CD framework. Firstly, Section 5.1.2.1 compares the proposed framework with the distance
based framework LMD++ [90], which was already integrated into the XDE dynamics simulation
engine. LMD++ relies on polyhedral approximations of the two input models. The chosen
polyhedral approximations are such that the maximal chordal error (on each model) is equal
to the minimal mechanical clearance between the two solids. That way, the insertion using the
polyhedral models is possible even though the resulting user experience is not optimal because of
unrealistic interactions due to the numerical deviations caused by the geometric approximations.
Using a finer tessellation would improve the simulation realism at worse performance price.

Secondly, the scalability of the parallel CD pipeline (see Section 4.6) is evaluated in Sec-
tion 5.1.2.2. In addition, the computation times of each of its three components (parallel
front marking, parallel front traversal, and parallel exact LMD computation) of the parallel
CD pipeline are studied separately. Finally, Section 5.1.2.3 highlights the performance improve-
ments brought by each contribution presented in this manuscript.

5.1.2.1 Comparison of the BRep-based framework with a Polyhedron-based frame-
work

Figure 5.5 shows the computation times dedicated to CD using our framework compared to the
time spent by LMD++. Let us observe that LMD++ does not exploit parallelism for the case
of the LMD computation between two models only. Therefore, in addition to the computation
times of our parallel CD pipeline described in Section 4.6, the following benchmarks also include
computation times using our sequential pipeline presented in Section 4.1. As discussed in Sec-
tion 5.1.2.2, the LMD++ framework is less likely to be able to benefit from parallelization as

120

much as our method does. Overall, one can see that the proposed method matches the per-
formances of LMD++ when multithreading is disabled and even can perform the simulation in
real-time when its parallelization (here, with 4 threads) is enabled.

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600 1800

C
D

 t
im

e
 (

m
s)

Timestep index

LMD++
Our method (sequential)

Our method (parallel)

Figure 5.5: Times for the computation of LMDs during the simulation of the insertion depicted in Figure 5.1.
Each curve corresponds to a different choice of CD method.

Besides computation times for CD, the number of generated LMD has a significant impact
on the performance of the overall simulation. Indeed, each LMD represents at least one contact
constraint that has to be handled by the dynamics solver (and even more constraints-per-contact
can be necessary to simulate, e.g., friction) so the higher the number of contacts, the larger
the time to solve the constraints. Figure 5.6 shows that the number of LMDs our method
generates corresponds to less than 40% of the number of LMDs generated by the tessellation-
based approach.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400 1600 1800

N
u
m

b
e
r

o
f

LM
D

s

Timestep index

LMD++
Our method

Figure 5.6: Number of LMDs generated by the LMD++ (grey) compared to our method (orange).

Finally, Figure 5.7 shows the computation times required by the whole physics engine to
execute one time-step, i.e., including CD, resolution of the contact constraints, and position

121

updates. These curves highlight the fact that the lower number of LMDs generated further
improves the overall performance of the proposed CD framework. Indeed, even the sequential
version of our framework leads to better performances because of the lower number of contact
constraints to be solved. However, it must be kept in mind that the XDE dynamics simulation
engine relies on a linear constraints solver. As mentioned in Section 1.4.3, a non-linear constraints
solver should be preferred when smooth BRep are used to represent the solid geometries. Such
a non-linear constraints solver would induce additional computation times that are not reflected
by the Figure 5.7.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400 1600 1800

Ti
m

e
-s

te
p
p
in

g
 t

im
e
 (

m
s)

Timestep index

LMD++
Our method (sequential)

Our method (parallel)

Figure 5.7: Times for the one step of the dynamics simulation engine (including CD, contact constraints resolution,
and position updates) for the insertion depicted by Figure 5.1. Each curve correspond to one different choice of
CD pipeline.

Overall, for this insertion task, the method presented in this manuscript is faster than the
tessellation-based approach and generates much less contact points, making the overall simu-
lation clearly more efficient and more accurate since it is not perturbed by numerical artifacts
intrinsically generated by geometric approximations.

5.1.2.2 Evaluation of the tasks parallelism

Each curve of Figure 5.8 shows computation times for CD using the parallel CD pipeline de-
scribed in Section 4.6 with various number of threads. The use of two threads brings an immedi-
ate performance improvement of 50%, allowing our framework to target real-time applications.
Four threads, which equals the number of physical cores of the microprocessor used, brings an
additional improvement of around 30%.

Figures 5.9 to 5.11 show similar benchmarks but for each elementary parallel stage (marking,
traversal, and LMD computation) of the parallel pipeline as described in Figure 4.16. Each stage
has a different amplitude in terms of CD times. Indeed:

• Parallel front marking takes at most 4.3ms in a single-threaded setting. Beyond 2 threads,
the benefit of parallelism is reduced. This is mostly due to the uneven costs of the culling
tests. Indeed, the cost of one culling test may vary significantly depending on what steps
(refer to Section 2.4.3) is executed completely or only partially, due to temporal coherence
(see Section 4.5.2);

122

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600 1800

C
D

 t
im

e
 (

m
s)

Timestep index

1 thread
2 threads
4 threads

Figure 5.8: Computation times of the parallel CD pipeline during the insertion task. Each curve corresponds to
a different number of threads.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 200 400 600 800 1000 1200 1400 1600 1800

Fr
o
n
t

m
a
rk

in
g
 c

o
m

p
u
ta

ti
o
n
 t

im
e
 (

m
s)

Timestep index

1 thread
2 threads
4 threads

Figure 5.9: Parallel front marking computation times.

• Parallel front traversal takes at most 2ms in a single-threaded setting. Those low com-
putation times come from the fact that the incremental updates of the BVTT front are
cheap. At this point, most of this time is spent in the parallel reduction that assembles
the new BVTT front, which intrinsically does not significantly benefit from parallelism;

• Parallel computation of the exact LMDs takes up to 19ms in a single-threaded setting.
This is a quite well-balanced step that benefits greatly from parallelism because each
LMD computation can be performed completely independently from the others. Moreover,
temporal coherence often accelerates the convergence of iterative methods, making them
as cheap as the analytical ones. Please, refer to Section 4.3 about the choices of LMD
computation methods, and Section 4.5.3 about the related benefits of temporal coherence.

123

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400 1600 1800

Fr
o
n
t

tr
a
v
e
rs

a
l
co

m
p
u
ta

ti
o
n
 t

im
e
 (

m
s)

Timestep index

1 thread
2 threads
4 threads

Figure 5.10: Parallel front traversal computation times.

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800

E
x
a
ct

 L
M

D
 c

o
m

p
u
ta

ti
o
n
 t

im
e
 (

m
s)

Timestep index

1 thread
2 threads
4 threads

Figure 5.11: Parallel exact LMDs computation times (including checking that their footpoints do not not lie in
a hole with the approach described in Section 4.4.1).

Clearly, the proposed CD pipeline is dominated by the exact LMD computation phase in
terms of computation times. This can be explained by the cost of the analytical and iterative
LMD computation methods identified in Section 4.3 compared to the low cost of the culling
tests and front traversal when temporal coherence is exploited, as emphasized in Section 4.5.2.
Those observations justify the choice (discussed in Section 4.6.4) of splitting the CD pipeline into
three parallel phases since all of them have different peak computation times and characteristics
regarding load-balancing.

Finally, the exact LMDs computation stage is the most time-consuming stage but also the
one that benefits the most from parallelism. Therefore, the overall CD pipeline itself benefits
significantly from parallelism. This is a clear distinction with polyhedron-based methods for
which the most computationally-intensive phase is the BVTT traversal (since the exact LMD
computation between segments and triangles is cheap), which is much less straightforward to
parallelize efficiently.

124

5.1.2.3 Contribution-based evaluation of performance improvements

Figure 5.13 shows several computation times for CD. The topmost curve corresponds to the CD
times spent by the implementation of the complete sequential CD pipeline illustrated in Fig-
ure 4.1. However, the culling test described in Section 2.4.3 only includes the curvature-based
compatibility masks (see Section 2.2) and OBB intersection tests. Orientation-based bounding
volumes are ignored. Moreover, identification of supermaximal features (see Section 2.3) has
been disabled together with the corresponding optimization as per Section 4.2.3. Finally, ex-
ploitation of temporal coherence, as described in Section 4.5, has been deactivated as well, i.e.,
the whole BVTT traversal is restarted at its root at each time step. The other curves show
how the successive additions of our contributions improve CD times. Figure 5.12 shows which
contribution are taken into account for each performance curve and each curve can be identified
using the same block color.

Culling test:
OBB intersection
Compatibility masks

Culling test:
OBB intersection
Compatibility masks

Runtime improvements:
Supermax. features optimizations

Culling test:
OBB intersection
Compatibility masks
Normal cones of revolution

Runtime improvements:
Supermax. features optimizations

Culling test:
OBB intersection
Compatibility masks
Normal cones of revolution
Polyhedral normal cones

Runtime improvements:
Supermax. features optimizations

Culling test:
OBB intersection
Compatibility masks
Normal cones of revolution
Polyhedral normal cones

Runtime improvements:
Supermax. features optimizations
Temporal coherence

Culling test:
OBB intersection
Compatibility masks
Normal cones of revolution
Polyhedral normal cones

Runtime improvements:
Supermax. features optimizations
Temporal coherence
Parallelization (4 threads)

Figure 5.12: Features activated for the CD computation times shown in Figure 5.13. Each coloured box cor-
responds to the CD time curve with the same color. Each successive benchmark takes in account exactly one
additional contribution highlighted in bold red.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 200 400 600 800 1000 1200 1400 1600 1800

C
D

 t
im

e
 (

m
s)

Timestep index

BVH with OBBs
+ supermax

+ revo. normal cones
+ poly. normal cones

+ time coherence
+ parallelization

Figure 5.13: CD times at each time step during the whole insertion task. Each curves shows the effect of an
added contribution on the computation times.

Several observations are noteworthy:

125

• The supermaximal feature-based optimization brings a slight performance improvement
that becomes noticeable only once the full insertion is achieved. Indeed, that is the only
configuration where the redundant computations discussed in Section 2.3 can occur, con-
sidering the localization of the supermaximal features identified (see Figure 5.3);

• The new polyhedral normal cones, presented in Chapter 3, brings a significant performance
improvement over the normal cones of revolution from Johnson et al. [70], which has been
adapted to entire BReps rather than isolated curves and surfaces, only. This validates
the observation expressed in Section 3.1 regarding the fact that tighter orientation-based
bounding volumes can lead to better performances;

• The parallelization of the CD pipeline presented in Section 4.6 is the most efficient con-
tribution and contributes to the generation of an overall real-time simulation because it
keeps CD times bellow 10ms, even after the complete insertion phase.

5.2 Second scenario: ROV teleoperation insertion task

The second scenario depicted in Figure 5.14 features the underwater insertion of a hotstab into
a receptacle using a Remotely Operated Vehicle (ROV). A hotstab is a cylindrical object used
to establish or prevent hydraulic connections. This scenario requires a great level of simulation
accuracy since the smallest mechanical clearance is equal to 0.1mm where the largest hotstab
diameter is of 40mm. Similarly to the previous scenario, the task is divided into different steps.
Firstly, the hotstab is initialized outside of the receptacle and is inserted. Then, once fully
inserted, the user applies small rotations to the hotstab with respect to its symmetry axis.
Finally, it is extracted from the receptacle to recover its initial position.

Section 5.2.1 describes the geometric models used for this simulation. Comparison of com-
putation times for CD between our framework and the polyhedron-based LMD computation
framework LMD++ [90] are available in Section 5.2.2. The scalability analysis of the proposed
parallel CD pipeline and the performance improvements brought by each of the contributions,
are not presented for this second scenario since the results lead to the same conclusions than
the first one.

5.2.1 Models description

This simulation scenario involves two solids. The receptacle is static and shown in Figure 5.15.
Figure 5.15b gives a transparent view of the receptacle in order to visualize the hole. Note that
the hole itself has a complex shape composed of successions of several conical and cylindrical
surfaces.

The hotstab is mobile and user-driven with a 3D mouse, and shown in Figure 5.16. It comes
into two versions for comparison:

• Figure 5.16a shows the original industrial hotstab model as given by our industrial partner.
Let us note that it contains several details such as engraved writings and a handle that is
not expected to interact with the receptacle;

• Figure 5.16b shows a simplified hotstab model, also made available by our industrial part-
ner, where functional features are represented, only. Several geometric details have been
removed since they are not influencing the quality of the simulation. In practice, they
are needed by the real system to ensure hydraulic connections. Moreover, the tip of the
hotstab has been replaced by a spherical area whereas the original solid contained NURBS
surfaces and conical areas. While this slightly modifies the shape of the tip, this does not

126

(a)

(b)

(c) (d)

Figure 5.14: An underwater (yellow and gray) ROV about to operate on a (orange) manifold. (a) Seen from
several angles. (b) Closeup view. (c) The hotstab (orange) before insertion into the receptacle (blue). (d) The
hotstab after insertion into the receptacle.

significantly influence the simulation from the point of view of our industrial partner be-
cause contacts with the tip are not functional contacts and tend generally to be avoided.
Besides the tip, dimensions of the functional parts and thus, the mechanical clearance
expected after insertion have not been altered.

No simplification has been made on the original receptacle model. All the models presented
in this section follow the colour code hereunder:

127

(a)

(b)

Figure 5.15: (a) Industrial model of a receptacle. (b) Transparent view.

(a)

(b)

Figure 5.16: (a) Original industrial model of a hotstab. (b) Defeatured and simplified model.

Colour Signification
Light blue Cylinders
Dark blue Tori (handle) and Cones
Green (surface) Spheres
Red (surface) Bézier surfaces or NURBS
Green (curve) Non-G1 and non-concave curve
Red (curve) G1 or concave curve

Also, Figures 5.16 and 5.16a display some elementary results about ongoing works regarding
the identification of G1 and concave edges (some of them are not properly identified yet). As
mentioned in Section 1.3.1.3, such edges could be ignored by the CD framework since they
cannot contain any LMD footpoint. Just like the first scenario, edges are mostly lines and
circles. The Table 5.2 lists the exact number of faces and edges, as well as the number of
supermaximal faces and edges.

128

Original hotstab Simplified hotstab Receptacle
Num. of faces 993 15 64
Num. of supermax faces 759 7 58
Num. of edges 1608 10 78
Num. of supermax edges 1451 5 72

Table 5.2: Number of entities and supermaximal entities for the hotstab scenario.

5.2.2 Running times comparisons

The performance comparison between LMD++ and the proposed framework regarding the in-
sertion of the hotstab follows a similar procedure than the one described in Sections 5.1.2
and 5.1.2.1. In particular, when the LMD++ framework is used, the input models are tes-
sellated with a maximal chordal error of 0.1mm, which corresponds to the smallest mechanical
clearance allowed between the hotstab and the receptacle. This results in a much higher number
of triangles than in the first scenario, thus causing even larger performance differences between
our framework and LMD++. The three graphs presented here (see Figures 5.17 to 5.19) are
analogous to the Figures 5.5 to 5.7 presented for the first scenario, i.e., they respectively plot
the time for CD, the number of LMD generated, and the total time required by XDE to perform
one time step. The hotstab model used for those benchmarks is the simplified model (see Fig-
ure 5.16b). However, Figure 5.17 also includes, in green, the CD times spent by the parallel
CD pipeline using the original hotstab model. The hotstab is in a fully inserted position and is
being applied small rotations in-place during the time steps 650 to 850.

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600 1800

C
D

 t
im

e
 (

m
s)

Timestep index

LMD++
Our method (sequential)

Our method (parallel)
Our method (original hotstab)

Figure 5.17: Times for the computation of LMDs during the simulation of the insertion depicted by Figure 5.14.

The conclusions are the same as for the first scenario in Section 5.1.2.1; especially since the
benefits of the proposed framework appear even more clearly. Indeed, the number of LMDs gen-
erated after insertion is reduced to less than 50 (instead of more than 700 when using LMD++).
Thus, the overall computation time for one time step is almost divided by 7 when using the
simplified model, which does not induce any geometric approximation that has a consequence
regarding functional contacts, i.e., the mechanical clearances remain the same as in the original
hotstab model.

129

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400 1600 1800

N
u
m

b
e
r

o
f

LM
D

s

Timestep index

LMD++
Our method

Figure 5.18: Number of LMDs generated by the LMD++ (grey) compared to our method (orange).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

Ti
m

e
-s

te
p
p
in

g
 t

im
e
 (

m
s)

Timestep index

LMD++
Our method (sequential)

Our method (parallel)

Figure 5.19: Times for one step of the dynamics simulation engine (including CD, contact constraints resolution,
and position updates) for the insertion depicted by Figure 5.14. Each curve correspond to one different choice of
CD pipeline.

5.3 Third scenario: curve deformation

Due to time constraints and the limited support of the dynamics of deformable beams in the
XDE framework, the experimentation on deformable beams is limited to prescribed deforma-
tions, without any dynamic contact interaction with other solids. Therefore, the purpose of
this benchmark is to show the efficiency of our main contribution regarding LMD computation
between isolated curves: our new polyhedral tangent cones and polyhedral solution line cones
presented in Section 3.5.2. To this end, the simulation scenario incorporates the difficult case of
the self-collision detection on a spring subjected to a cycle of compression and released configu-
rations, as shown in Figure 5.20. From a CD standpoint, this type of self-collision detection is
difficult to handle because, when the spring gets compressed, it reaches a configuration close to
a conformal contact with itself (the contact being a spatial curve).

130

Figure 5.20: A spring represented as a set of dilated Bézier curves. (a) Before compression. (b) During compres-
sion. (c) After compression.

In Figure 5.20, the spring is described with a set of six Bézier curves of degree three. Each
such curve is implicitly dilated by a margin equal to the spring’s cross-section radius. This
choice of curves is motivated by the future objective to simulate beams with circular cross-
sections using a Finite Element Method with spatial discretization. Each such finite element
would be represented as a cubic Hermite spline, which is equivalent to a Bézier curve of degree
three. Moreover, note that similar almost-conformal self-collision may occur as well when the
curves represent beams wound around another component, e.g., a pulley.

Figure 5.21 highlights the efficiency of the polyhedral cones when it comes to the culling
test. It shows, at each time-step, how many potential contact pairs have been identified by the
dynamic subdivision method given by Algorithm 13. In particular, the culling test on the line 4
of Algorithm 13 is modified to be either:

• The orthogonality test between the curves’ tangent cones and solution line cones bounded
by cones of revolution, as described in Section 3.5. This is the method from Johnson et
al. [70] (gray curve);

• The orthogonality test from Johnson et al. [70] combined with intersection tests of OBBs
in order to filter curve segments that are too far apart from each other (black curve);

• The orthogonality test between the curves’ tangent cones and solution line cones bounded
by the polyhedral cones described in Section 3.5.2 (orange curve);

• The orthogonality test between the polyhedral tangent and solution line cones combined
with intersection tests of OBBs in order to filter curve segments that are too far apart
(yellow curve).

In all cases, the recursive subdivision stops whenever the culling tests succeed or when the
curves become almost flat because of the line 7 of Algorithm 13.

As discussed in Section 2.4.1, the flatness condition leads to test whether the tangent cone
of each curve can be bounded by a cone of revolution smaller than a user-defined threshold
(here 0.5rad), or not. This flatness criterion remains the same independently from the choice of
orientation-based bounding volume for the line 4 of Algorithm 13 in order to keep the comparison
fair.

Let us observe that among all those culling tests, the method based on cones of revolution
alone (without OBBs) is the less discriminative. Actually, polyhedral cones are sufficiently tight
to reduce the effect of the OBBs to a negligible proportion, here.

131

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160 180 200

N
u
m

b
e
r

o
f

p
o
te

n
ti

a
l
co

n
ta

ct
 p

a
ir

s

Timestep index

Rev. cones
Poly. cones

Rev. cones + OBB
Poly cones + OBB

Figure 5.21: Number of curve segments pairs potentially containing LMD footpoints. Each curve corresponds to
a different combination of bounding volumes for the culling test.

Finally, Figure 5.22 shows the overall CD times for each combination of bounding volumes.
It is noteworthy that in this scenario the OBB culling test (including the computation of the
OBBs themselves) is too costly to be beneficial. Ignoring it in favor of the polyhedral-cone based
orthogonality test alone is thus preferable since it is sufficiently tight to filter as many potential
pairs as when it is combined with OBBs.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120 140 160 180 200

C
D

 t
im

e
 (

m
s)

Timestep index

Rev. cones
Poly. cones

Rev. cones + OBB
Poly cones + OBB

Figure 5.22: Self-collision detection times during the compression and extension of the spring. Each curve
corresponds to a different combination of bounding volumes for the culling test.

Overall, it has been shown that the proposed polyhedral cones are significantly tighter than
cones of revolution when it comes to identify potential pairs containing LMD footpoints along
isolated curves. Moreover, the better reduction of potential pairs offered by polyhedral cones
leads to lower computation times for the whole CD process because less executions of the iter-
ative root-finding method, here a Newton-based approach as discussed in Section 4.3.1, will be
necessary to find the exact location of LMDs.

132

5.4 Conclusion

The CD framework presented in this manuscript has been implemented as part of a real-time
multibody dynamics simulation framework and tested on several scenarios motivated by in-
dustrial needs. The two first ones focused on insertion tasks with small mechanical clearances
performed by teleoperated robotic components. The typical goal of such simulations is the train-
ing of human operators using a virtual scene before operating on the real system. This reduces
the cost and complexity of setting up a mock-up as training environment, and avoids damaging
any real equipment because of human errors naturally expected during their learning process.
Additionally, a high level realism of the simulated interactions, while keeping the simulation
real-time, is necessary to learn skills directly applicable on the real equipment.

Benchmark results show how each of the contributions helps reaching the real-time perfor-
mance observed on the industrial scenarios. Moreover, these benchmarks show that performing
CD on smooth BRep can provide better performances and accuracy than a tessellation-based,
distance-based approach [90], especially when carrying out simulations of insertion tasks with
small mechanical clearances. Indeed, the parallel framework performs more than twice as fast
as a distance-based tessellation-based approach while producing a much smoother simulation
because of the lack of any linear approximation of the geometric shapes. Moreover, the number
of LMDs is reduced by an order of magnitude, which significantly lowers the computation times
required for the resolution of the contact dynamics since this results in much less constraints to
be solved. Overall, real-time performances are achieved while not suffering from any numerical
artifact due to the rigid body geometry.

A third scenario has been presented to compare the proposed framework with pre-existing
works [67] to demonstrate the efficiency of the proposed polyhedral tangent cones and polyhedral
solution line cones presented in Chapter 3 compared to cones of revolution for self-collision
detection of deformable Bézier curves. In the future, this will allow the dynamics engine to handle
the simulation of smooth Bézier curves with finite elements relying on spatial discretization and
Hermite shape functions. Indeed, Hermite curve being special cases of Bézier curves, this will
allow the CD framework to operate on the same geometric representation than the finite element
method.

133

134

Conclusion and perspectives

The work presented in this manuscript has been strongly motivated by the simulation of multi-
body dynamics in the case of insertion tasks under small mechanical clearances. Such simulations
involve sliding motions requiring the preservation of the smooth representations of the CAD ge-
ometric models. These representations are mandatory in order to generate accurate motions,
i.e., without discontinuities of the contact normals. Indeed, relying on alternative representa-
tions like polyhedra introduces numerical errors and normal discontinuities that may prevent
the simulation to be feasible at all without resorting to tessellations that are so thin that the
CD and the resolution of the contact constraints becomes too computationally intensive to
be performed in real-time. Some works toward the improvements of LMD computation on self-
colliding curves were also proposed but are yet to be tested and exploited on industrial scenarios.

A first, complete, real-time framework for the computation of LMD or quasi-LMD between
two smooth BRep models has been presented. This framework combines the adaptation of data
structures widely used for CD between polyhedral models with a new orientation-based bounding
volume and several analyses of the input models, in order to benefit from the specificities of
smooth BRep representations. The key elements of the proposed framework are:

• The definition of supermaximal features, i.e., groups of edges and groups of surfaces
that share the same underlying untrimmed geometry. This grouping prevents the CD
framework from executing too many analytical LMD computation methods whenever sev-
eral pairs of trimmed canonical features would involve the same underlying (untrimmed)
geometrical shapes;

• The definition of compatibility attributes that avoids attempting to compute LMD
between pairs of surfaces that never can contain any LMD because of their respective
curvature distributions. In particular, it is proven than one shape exclusively composed of
points with negative principal curvatures never can contain an LMD with another surface
composed exclusively of points with at least one non-positive principal curvature. As part
of future works, this analysis could be refined to derive culling tests based on curvature
bounds of two surface areas. Such tests will allow the design of curvature-based bounding
volumes that would elegantly complete the family of bounding volumes currently composed
of spatial bounding volumes and orientation-based bounding volumes;

• The active use of bounding volume hierarchies for LMD and quasi-LMD computation
between complete smooth BRep models derived from CAD models. This hierarchy relies
on a specific combination of bounding volumes: an OBB and a normal cone for BRep
feature areas, and an OBB and a tangent cone for deformable curves. These bounding
volumes are tight, especially because all feature areas are split into almost-flat areas, i.e.,
such that any two such areas can be assumed to contain at most one LMD;

• The definition of a new bounding volume, the polyhedral cone (polyhedral normal cone,
polyhedral tangent cone, and polyhedral solution line cone) that can be used to bound

135

LMD directions. This orientation-based bounding volume is much tighter than the only
existing alternative, i.e., the cone of revolution [67, 70]. Our experiments show that using
this bounding volume helps culling out more pairs of feature areas that cannot contain any
LMD. A method for taking temporal coherence into account to accelerate the culling
tests involving two polyhedral cones is also provided;

• The proposition of an hybrid method for the computation of LMD between two de-
formable curves. This combines curve subdivisions performed at runtime with a small
pre-computed BVH updated whenever the curve is deformed. The use of polyhedral tan-
gent cones and polyhedral solution line cones improves significantly the efficiency of the
culling test compared to approaches based on cones of revolution [67, 70];

• The proposed CD pipeline has been completely parallelized. In particular, the load
balance between the different stages of the algorithm motivates the separation of three
distinct phases of the CD pipeline, which are parallelized individually. Most of the gains
come from the parallelization of the last stage, i.e., the execution of iterative (or analytical)
methods to locate exactly the LMD footpoints.

Overall the simulation of insertions with small mechanical clearances using smooth repre-
sentations is made possible in real time by the framework described in this manuscript.

We presented the design of our sequential CD pipeline including the identification of super-
maximal features and the exploitation of temporal coherence in Crozet et al. [32]. Moreover,
the curvature-based compatibility attributes and our new orientation-based bounding volume,
the polyhedral normal cone, have been presented in Crozet et al. [33]. Our parallel pipeline,
the polyhedral tangent cones and polyhedral solution line cones, and our hybrid method for
handling deformable curves have not been published outside of this manuscript yet. Our CD
framework has been integrated completely into the industrial-grade multibody dynamics engine
XDE [91], making it the first real-time oriented physics engine with such a feature reaching this
level computational of performance.

Several improvements can be made in order to further improve the performance and accuracy
of the multibody dynamics simulation of complex industrial scenarios:

• The Section 2.2 derived curvature-based compatibility conditions that can be used to
determine if two surfaces can result in any LMDs. However, the Equations (2.7) and (2.9)
could be further exploited in order to design what could be called curvature-based culling
tests. For example, given bounds on the distance between two surface areas and tight
bounds on their principal curvatures, it may be possible exploit Equations (2.7) and (2.9)
to determine if they cannot contain any LMD. However, some preliminary works showed
that bounding the distance, e.g., using bounding volumes, proved either too inaccurate or
too expensive in practice to be of any use to set up such an extended curvature-based test.
Further works may lead to better results following these proposals.

• Our framework strongly rely on the subdivision into almost flat feature areas for computing
LMD between free-form curves and surfaces. As discussed in Section 2.4.1, this flatness
condition originates from the need to ensure that at most one LMD exists between two
pairs of feature. While this works well in practice, this is not a robust guarantee. Therefore,
increased robustness could be achieved by designing tests of uniqueness of LMD between
two feature areas that are both robust and cheap.

136

• A method for limiting the number of sides of a polyhedral normal cone was presented
in Section 4.2.2. However, the proposed approach was a brute-force algorithms that com-
putes some of the possible results and selects the best one. The efficient computation of
the smallest four-sided polyhedral cone bounding a n-sided polyhedral cone is not straight-
forward but could further improve the tightness of those polyhedral normal cones. This
would make the culling test even more discriminative.

• Some preliminary works have been presented in Section 4.3.2 for the identification and
handling of conformal contacts. However, only the special case of conformal contacts
between a surface and a curve located at the intersection of two canonical surfaces has
been studied. Configurations like 1-dimensional conformal contacts between two surfaces
are yet to be detected robustly. In addition, besides the geometric aspect of the detection
of conformal contact configurations, we stress that their accurate modeling as part of a
dynamics engine based on a time-stepping scheme is still an open problem given the current
limitation of existing geometric contact models. Indeed, conformal contacts are prone to
generate singularities on the feasible space C that may no longer be manifold;

• On the one hand, computing LMDs on polyhedral approximations allow algorithms to
generate contact constraints that correspond to an approximation of the feasible space
boundary ∂C. On the other hand, computing LMDs on smooth BRep models generates
much less constraints to represent ∂C exactly while those constraints contain non-linearities
due to the curvature of the surfaces and curves they involve. Such non-linearities allow
configurations where the LMD footpoints may move quickly even if the simulated bodies
move only slightly. This causes stability problems to constraint solvers that systematically
linearise the contact constraints. Unfortunately, most existing real-time dynamics engines
do so. Thus, in practice, the non-linear non-penetration constraints defined from the
smooth LMD functions cannot be enforced properly, leading to penetrations. One way of
reducing those penetrations is to lower the time step. However, it is necessary to switch
to a non-linear constraint solver as in the Non-Linear Non-Smooth Contact Dynamics
(non-linear NSCD) method described by Acary et al. [4] if the prevention of penetrations
is essential. The actual implementation of such a method requires further work from the
CD standpoint because the LMD footpoints must be tracked while the solver iteratively
applies virtual displacements to the solids in order to solve the non-linear constraints.
Such tracking, while theoretically resolved by contact kinematics equations [93, 139] for
individual curves and surfaces, can be hard in practice when the LMD footpoints may
move from one feature to another adjacent one;

• Several industrial scenarios involve manipulations that combine functional contacts that
need to be simulated with high accuracy on the one hand, and non-functional contacts
which are transitory but necessary to switch from one task to another. For example, the
insertion task presented in Section 5.1 is actually a subset of a much more complex scene
and scenario where the teleoperated robot arm has to perform several insertions on various
holes of the receptacle. Accidental contact during the transition between one insertion and
another are not functional contacts and thus do not necessitate a smooth representation
of the geometric models to be simulated with a satisfying level of accuracy. Therefore, the
need to mix several geometric representations could be anticipated by, e.g., allowing fast
CD on polyhedra for non-functional contacts, while the proposed method is applied using
a smooth BRep model in configurations of functional contacts. Such a hybrid approach
could offer the user the best of those two representations both in terms of performances
and accuracy.

137

• Finally, given the current level of performance of our CD framework, we can expect to be
able to run haptic simulations on high-end machines. The use of smooth BReps would
significantly improve the user-experience as the continuity of the contact normals would
generate a realistic feeling of sliding motion when the user manipulates a curved object.

While the various improvements presented above have yet to be developed, the previous
chapters have shown that some industrial use-cases requiring a high level of accuracy can already
be processed in real-time using our CD framework.

138

Bibliography

[1] Intel threading building blocks. https://www.threadingbuildingblocks.org/.

[2] Abel N.H. Beweis der unmöglichkeit, algebraische gleichungen von höheren graden als dem vierten allgemein
aufzulösen. Journal für die reine und angewandte Mathematik, 1:65–84, 1826.

[3] Acary Vincent. Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with
unilateral contact and Coulomb’s friction. Computer Methods in Applied Mechanics and Engineering,
256:224–250, apr 2013.

[4] Acary Vincent and Brogliato Bernard. Numerical Methods for Nonsmooth Dynamical Systems. Springer,
2008.

[5] Alciatore David G. and Miranda Rick. A winding number and point-in-polygon algorithm. Department of
Mechanical Engineering Colorado State University, Fort Collins, CO, 1995.

[6] Algoryx . AGX Dynamics.

[7] Andersen K A. A survey of algorithms for construction of optimal Heterogeneous Bounding Volume
Hierarchies. Technical report, University of Copenhagen, 2006.

[8] Anitescu Mihai and Hart Gary D. A constraint-stabilized time-stepping approach for rigid multibody
dynamics with joints, contact and friction. International Journal for Numerical Methods in Engineering,
60(14):2335–2371, 2004.

[9] Baciu G., Wong Wingo Sai-Keung Wong Wingo Sai-Keung, and Sun Hanqiu Sun Hanqiu. RECODE: an
image-based collision detection algorithm. Proceedings Pacific Graphics ’98. Sixth Pacific Conference on
Computer Graphics and Applications (Cat. No.98EX208), 1998.

[10] Ballard P. The dynamics of discrete mechanical systems with perfect unilateral constraints. Archive for
Rational Mechanics and Analysis, 154(3):199–274, 2000.

[11] Baraff David. Dynamic Simulation of Non-Penetrating Rigid Bodies. PhD thesis, Cornell University, 1992.

[12] Barber C. Bradford, Dobkin David P., and Huhdanpaa Hannu. The quickhull algorithm for convex hulls.
ACM Transactions on Mathematical Software, 22(4):469–483, dec 1996.

[13] Barbic J. and James D.L. Six-DoF Haptic Rendering of Contact Between Geometrically Complex Reduced
Deformable Models. IEEE Transactions on Haptics, 1(1):39–52, 2008.

[14] Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods
in Applied Mechanics and Engineering, 1:1–16, 1972.

[15] Bertsekas Dimitri P. Convex Analysis and Optimization. Athena Scientific, 2003.

[16] Bertsekas DP, Nedić A, and Ozdaglar AE. Convex analysis and optimization. 2003.

[17] Bhushan Bharat. Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribology
Letters, 4:1–35, 1998.

[18] Boeing Adrian and Bräunl Thomas. Evaluation of real-time physics simulation systems. In Proceedings
of the 5th international conference on Computer graphics and interactive techniques in Australia and
Southeast Asia - GRAPHITE ’07, volume 1, page 281, New York, New York, USA, 2007. ACM Press.

139

https://www.threadingbuildingblocks.org/

[19] Boussuge Flavien, Léon Jean-Claude, Hahmann Stéfanie, and Fine Lionel. Extraction of generative pro-
cesses from B-Rep shapes and application to idealization transformations. Computer-Aided Design, 46:79–
89, 2014.

[20] Brogliato Bernard and Thibault Lionel. Well-posedness results for non-autonomous dissipative comple-
mentarity systems. (June), 2006.

[21] Brüls Olivier, Acary Vincent, and Cardona Alberto. Simultaneous enforcement of constraints at position
and velocity levels in the nonsmooth generalized-alpha scheme. Computer Methods in Applied Mechanics
and Engineering, 281(1):131–161, nov 2014.

[22] Cameron S A and Culley R K. Determining the Minimum Translational Distance between Two Convex
Polyhedra. Proceedings of the IEEE International Conference on Robotics and Automation(ICRA), 3:591–
596, 1986.

[23] Carmo MP Do. Differential geometry of curves and surfaces. 1976.

[24] Chang Jung-Woo, Choi Yi-King, Kim Myung-Soo, and Wang Wenping. Computation of the minimum
distance between two Bézier curves/surfaces. Computers & Graphics, 35(3):677–684, jun 2011.

[25] Chen Xiao-Diao, Su Hua, Yong Jun-Hai, Paul Jean-Claude, and Sun Jia-Guang. A counterexample on
point inversion and projection for NURBS curve. Computer Aided Geometric Design, 24(5):302, jul 2007.

[26] Chen Xiao-Diao, Yong Jun-Hai, Wang Guozhao, Paul Jean-Claude, and Xu Gang. Computing the minimum
distance between a point and a NURBS curve. Computer-Aided Design, 40(10-11):1051–1054, oct 2008.

[27] Chen Xiao-Diao, Yong Jun-Hai, Zheng Guo-Qin, Paul Jean-Claude, and Sun Jia-Guang. Computing
minimum distance between two implicit algebraic surfaces. Computer-Aided Design, 38(10):1053–1061, oct
2006.

[28] Chong Jin Ong and Gilbert E.G. Growth distances: new measures for object separation and penetration.
IEEE Transactions on Robotics and Automation, 12(6):888–903, 1996.

[29] ChouWusheng and Xiao Jing. Real-time and Accurate Multiple Contact Detection between General Curved
Objects. In International Conference on Intelligent Robots and Systems, pages 556–561. IEEE, oct 2006.

[30] CMLabs . Vortex Studio Simulation Platform.

[31] Coumans Erwin. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses on - SIGGRAPH ’15,
page 1, New York, New York, USA, 2015. ACM Press.

[32] Crozet Sébastien, Léon Jean-Claude, and Merlhiot Xavier. Fast Computation of Contact Points for Robotic
Simulations Based on CAD Models Without Tessellation. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 937–944, Daejeon, Korea, 2016. IEEE.

[33] Crozet Sébastien, Léon Jean-Claude, and Merlhiot Xavier. Fast and Accurate Local Minimal Distance
Computation between Industrial CAD Models for Interactive Dynamics Simulations. In CAD’17, pages
191–195, Okayama, aug 2017. CAD Solutions LLC.

[34] Diktas Engin and Sahiner Ali Vahit. Distance computation using OBB-trees. In 2009 24th International
Symposium on Computer and Information Sciences, pages 426–431. IEEE, sep 2009.

[35] Dobkin David, Hershberger John, Kirkpatrick David, and Suri Subhash. Computing the intersection-depth
of polyhedra. Algorithmica, 9(6):518–533, Jun 1993.

[36] Dyllong Eva and Luther Wolfram. Distance calculation between a point and a NURBS surface. 2000.

[37] Dzonou Raoul and Monteiro Marques Manuel D.P. A sweeping process approach to inelastic contact
problems with general inertia operators. European Journal of Mechanics, A/Solids, 26(3):474–490, 2007.

[38] ElBadrawy Asma A., Hemayed Elsayed E., and Fayek Magda B. Rapid collision detection for deformable
objects using inclusion-fields applied to cloth simulation. Journal of Advanced Research, 3(3):245–252,
2012.

140

[39] Elber Gershon and Kim Myung-Soo. Geometric constraint solver using multivariate rational spline func-
tions. In Proceedings of the sixth ACM symposium on Solid modeling and applications - SMA ’01, pages
1–10, New York, New York, USA, 2001. ACM Press.

[40] Ericson Christer. Real-Time Collision Detection. CRC Press, Inc., Boca Raton, FL, USA, 2004.

[41] Erleben Kenny, Sporring Jon, Henriksen Knud, and Dohlman Kenrik. Physics-based Animation (Graphics
Series). Charles River Media, Inc., Rockland, MA, USA, 2005.

[42] Farin Gerald. Curves and Surfaces for Computer-Aided Geometric Design (Third Edition). Academic
Press, Boston, third edition edition, 1993.

[43] Farin Gerald. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Elsevier,
2002.

[44] Featherstone Roy. Rigid Body Dynamics Algorithms. 2008.

[45] Freeman H and Shapira R. Determining the minimum-area encasing rectangle for an arbitrary closed curve.
Communications of the ACM, 18(7):409–413, jul 1975.

[46] Gilbert E., Johnson D., and Keerthi S. A fast procedure for computing the distance between complex
objects in three space. In Proceedings. 1987 IEEE International Conference on Robotics and Automation,
volume 4, pages 1883–1889. Institute of Electrical and Electronics Engineers, 1987.

[47] Gilbert E.G. and Chong Jin Ong . New distances for the separation and penetration of objects. In
Proceedings of the 1994 IEEE International Conference on Robotics and Automation, volume 1, pages
579–586. IEEE Comput. Soc. Press, 1994.

[48] Gilbert E.G. and Foo C.P. Computing the distance between smooth objects in three dimensional space. In
Proceedings, 1989 International Conference on Robotics and Automation, pages 158–163. IEEE Comput.
Soc. Press, 1989.

[49] Gilbert EG and Foo CP. Computing the distance between general convex objects in three-dimensional
space. IEEE Transactions on Robotics and Automation, 6(1):53–61, 1990.

[50] Glocker Christoph. Impacts with global dissipation index at reentrant corners. Contact Mechanics
International Symposium, (June 2001):45–52, 2002.

[51] Goldsmith Jeffrey and Salmon John. Automatic Creation of Object Hierarchies for Ray Tracing. IEEE
Computer Graphics and Applications, 7(5):14–20, may 1987.

[52] Gottschalk S, Lin M. C., and Manocha D. OBBTree: A Hierarchical Structure for Rapid Interference
Detection. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques
- SIGGRAPH ’96, number 8920219, pages 171–180, New York, New York, USA, 1996. ACM Press.

[53] Greenwood J. A. and Williamson J. B. P. Contact of Nominally Flat Surfaces. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 295(1442):300–319, 1966.

[54] Hachani Maha and Fourment Lionel. 3D Contact Smoothing Method Based on Quasi-C1 Interpolation. In
Trends in Computational Contact Mechanics, pages 23–40. 2011.

[55] Hairer Ernst and Wanner Gerhard. Solving Ordinary Differential Equations I, volume 8 of Springer Series
in Computational Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.

[56] Hairer Ernst andWanner Gerhard. Solving Ordinary Differential Equations II, volume 14 of Springer Series
in Computational Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, feb 1996.

[57] Hansen E.R. and Greenberg R.I. An interval Newton method. Applied Mathematics and Computation,
12(2-3):89–98, may 1983.

[58] Hartmann Erich. On the curvature of curves and surfaces defined by normalforms. Computer Aided
Geometric Design, 16(5):355–376, jun 1999.

[59] Heidelberger Bruno, Teschner M., and Gross M. Detection of collisions and self-collisions using image-space
techniques. Journal of WSCG, 12(3):145–152, 2004.

141

[60] Henshaw W. D. An Algorithm for Projecting Points onto a Patched CAD Model. Engineering with
Computers, 18(3):265–273, oct 2002.

[61] Hoschek Josef and Lasser Dieter. Fundamentals of computer-aided geometric design. Peters, Wellesley,
Mass, 1993.

[62] Hu Shi-Min and Wallner Johannes. A second order algorithm for orthogonal projection onto curves and
surfaces. Computer Aided Geometric Design, 22(3):251–260, mar 2005.

[63] Hubbard Philip M. Interactive collision detection. In Proceedings of IEEE Symposium on Research
Frontiers in Virtual Reality, pages 24–31, 1993.

[64] Hubbard Philip M. Approximating polyhedra with spheres for time-critical collision detection. ACM
Transactions on Graphics, 15(3):179–210, jul 1996.

[65] Jean M. The non-smooth contact dynamics method. Computer Methods in Applied Mechanics and
Engineering, 177(3-4):235–257, jul 1999.

[66] Jiménez P., Thomas F., and Torras C. 3D collision detection: A survey. Computers and Graphics,
25(2):269–285, 2001.

[67] Johnson David E. and Cohen Elaine. Spatialized normal cone hierarchies. In Proceedings of the 2001
symposium on Interactive 3D graphics - SI3D ’01, pages 129–134, New York, New York, USA, 2001. ACM
Press.

[68] Johnson DE. Minimum distance queries for haptic rendering. Zhurnal Eksperimental’noi i Teoreticheskoi
Fiziki, (May 2005), 2005.

[69] Johnson D.E. and Cohen E. Bound coherence for minimum distance computations. In Proceedings 1999
IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), volume 3, pages
1843–1848. IEEE, 1999.

[70] Johnson DE and Cohen E. Distance extrema for spline models using tangent cones. Graphics Interface,
2005.

[71] Kim Deok-Soo, Papalambros Panos Y., and Woo Tony C. Tangent, normal, and visibility cones on Bézier
surfaces. Computer Aided Geometric Design, 12(3):305–320, may 1995.

[72] Kim Y.J., Lin M.C., and Manocha D. DEEP: dual-space expansion for estimating penetration depth be-
tween convex polytopes. In Proceedings 2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292), volume 1, pages 921–926. IEEE.

[73] Kim Young J., Lin Ming C., and Manocha Dinesh. Fast Penetration Depth Estimation Using Rasterization
Hardware and Hierarchical Refinement. In Springer Tracts in Advanced Robotics, volume 7 STAR, pages
505–521. 2004.

[74] Kim Y.S. Recognition of form features using convex decomposition. Computer-Aided Design, 24(9):461–
476, sep 1992.

[75] Klosowski J.T., Held M., Mitchell J.S.B., Sowizral H., and Zikan K. Efficient collision detection using
bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics,
4(1):21–36, 1998.

[76] Knott Dave and Pai D.K. CInDeR: Collision and interference detection in real-time using graphics hard-
ware. Computer Graphics Forum, 2003.

[77] Kockara S, Halic T, Iqbal K, Bayrak C., and Rowe Richard. Collision detection: A survey. In International
Conference on Systems, Man and Cybernetics, pages 4046–4051. IEEE, oct 2007.

[78] Krishnamurthy Adarsh, McMains Sara, and Haller Kirk. GPU-accelerated minimum distance and clearance
queries. IEEE transactions on visualization and computer graphics, 17(6):729–42, jun 2011.

[79] Krishnan S., Gopi M., Lin M., Manocha D., and Pattekar A. Rapid and Accurate Contact Determination
between Spline Models using ShellTrees. Computer Graphics Forum, 17(3):315–326, aug 1998.

142

[80] Kry Paul G. and Pai Dinesh K. Continuous contact simulation for smooth surfaces. ACM Transactions on
Graphics, 22(1):106–129, jan 2003.

[81] Kyung-Ah Sohn , Juttler B., Myung-Soo Kim , and Wenping Wang . Computing distances between
surfaces using line geometry. In 10th Pacific Conference on Computer Graphics and Applications, 2002.
Proceedings., pages 236–245. IEEE Comput. Soc, 2002.

[82] Li K., Foucault G., Léon J.-C., and Trlin M. Fast global and partial reflective symmetry analyses using
boundary surfaces of mechanical components. Computer-Aided Design, 53:70–89, aug 2014.

[83] Lien Jyh-Ming and Amato Nancy M. Approximate convex decomposition of polyhedra and its applications.
Computer Aided Geometric Design, 25(7):503–522, oct 2008.

[84] Lin M and Gottschalk Stefan. Collision detection between geometric models: A survey. In Proc. of IMA
conference on mathematics of surfaces, pages 37–56, 1998.

[85] Lin Ming C. and Manocha Dinesh. Fast interference detection between geometric models. The Visual
Computer, 11(10):542–561, 1995.

[86] Liu Xiao-Ming, Yang Lei, Yong Jun-Hai, Gu He-Jin, and Sun Jia-Guang. A torus patch approximation
approach for point projection on surfaces. Computer Aided Geometric Design, 26(5):593–598, jun 2009.

[87] Ma Ying Liang and Hewitt W.T. Point inversion and projection for NURBS curve and surface: Control
polygon approach. Computer Aided Geometric Design, 20(2):79–99, may 2003.

[88] McNeely William A, Puterbaugh Kevin D, and Troy James J. Six degree-of-freedom haptic rendering using
voxel sampling. In ACM SIGGRAPH 2005 Courses on - SIGGRAPH ’05, page 42, New York, New York,
USA, 2005. ACM Press.

[89] McNeely William A, Puterbaugh Kevin D, and Troy James J. Six degree-of-freedom haptic rendering using
voxel sampling. In ACM SIGGRAPH 2005 Courses on - SIGGRAPH ’05, page 42, New York, New York,
USA, 2005. ACM Press.

[90] Merlhiot Xavier. A robust, efficient and time-stepping compatible collision detection method for non-smooth
contact between rigid bodies of arbitrary shape. In Multibody Dynamics, Eccomas Thematic Conference,
2007.

[91] Merlhiot Xavier, Garrec Jérémie Le, Saupin Guillaume, and Andriot Claude. The XDE mechanical ker-
nel: Efficient and robust simulation of multibody dynamics with intermittent nonsmooth contacts. In
International Conference on Multibody System Dynamics, pages 5–6, 2012.

[92] Mirtich BV. Impulse-based dynamic simulation of rigid body systems. PhD thesis, University of California,
Berkeley, 1996.

[93] Montana D. J. The Kinematics of Contact and Grasp. The International Journal of Robotics Research,
7(3):17–32, jun 1988.

[94] Moreau J. J. Unilateral Contact and Dry Friction in Finite Freedom Dynamics. In Nonsmooth Mechanics
and Applications, pages 1–82. Springer Vienna, Vienna, 1988.

[95] Muller G., Schafer S., and Fellner D.W. Automatic creation of object hierarchies for radiosity clustering.
In Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293),
volume 7, pages 21–29,. IEEE Comput. Soc, may 1987.

[96] Munkres James R. Elements of Algebraic Topology. Addison-Wesley, 1993.

[97] Myszkowski Karol, Okunev Oleg G, and Kunii Tosiyasu L. Fast collision detection between complex solids
using rasterizing graphics hardware empu er. pages 497–511, 1995.

[98] Nelson Donald D., Johnson David E., and Cohen Elaine. Haptic rendering of surface-to-surface sculpted
model interaction. In ACM SIGGRAPH 2005 Courses on - SIGGRAPH ’05, page 97, New York, New York,
USA, 2005. ACM Press.

143

[99] Neto D.M., Oliveira M.C., Menezes L.F., and Alves J.L. A contact smoothing method for arbitrary surface
meshes using Nagata patches. Computer Methods in Applied Mechanics and Engineering, 299:283–315,
feb 2016.

[100] Nishita Tomoyuki, Sederberg Thomas W., and Kakimoto Masanori. Ray tracing trimmed rational surface
patches. ACM SIGGRAPH Computer Graphics, 24(4):337–345, sep 1990.

[101] NVIDIA . NVIDIA physX SDK.

[102] Oh Young Taek, Kim Yong Joon, Lee Jieun, Kim Myung Soo, and Elber Gershon. Efficient point-projection
to freeform curves and surfaces. Computer Aided Geometric Design, 29(5):242–254, jun 2012.

[103] Page Francis and Guibault Frangois. Collision detection algorithm for NURBS surfaces in interactive
applications. In Canadian Conference on Electrical and Computer Engineering. Toward a Caring and
Humane Technology, volume 2, pages 1417–1420. IEEE, 2003.

[104] Palmer I. J. and Grimsdale R. L. Collision Detection for Animation using Sphere-Trees. Computer Graphics
Forum, 14(2):105–116, may 1995.

[105] Pfeiffer Friedrich and Glocker Christoph. Multibody Dynamics with Unilateral Contacts. Wiley-VCH Ver-
lag GmbH, Weinheim, Germany, aug 1996.

[106] Piegl LA and Tiller W. Parametrization for surface fitting in reverse engineering. Computer-Aided Design,
33(8):593–603, jul 2001.

[107] Piegl Les and Tiller Wayne. The NURBS Book. Monographs in Visual Communication. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997.

[108] Polak Elijah. Optimization Algorithms and Consistent Approximations, volume 124 of Applied
Mathematical Sciences. Springer New York, New York, NY, 1997.

[109] Puso Michael Anthony and Laursen Tod A. A 3D contact smoothing method using Gregory patches.
International Journal for Numerical Methods in Engineering, 54(8):1161–1194, jul 2002.

[110] Qian Xiaoxiang, Yuan Huina, Zhou Mozhen, and Zhang Bingyin. A general 3D contact smoothing method
based on radial point interpolation. Journal of Computational and Applied Mathematics, 257:1–13, feb
2014.

[111] Quinlan S. Efficient distance computation between non-convex objects. In Proceedings of the 1994 IEEE
International Conference on Robotics and Automation, pages 3324–3329. IEEE Comput. Soc. Press.

[112] Redon Stephane and Lin Ming C. A Fast Method for Local Penetration Depth Computation. Journal of
Graphics, GPU, and Game Tools, 11(2):37–50, jan 2006.

[113] Reggiani M., Mazzoli M., and Caselli S. An experimental evaluation of collision detection packages for
robot motion planning. In International Conference on Intelligent Robots and System, volume 3, pages
2329–2334. IEEE, 2002.

[114] Rohatgi Pradeep K., Tabandeh-Khorshid Meysam, Omrani Emad, Lovell Michael R., and Menezes
Pradeep L. Tribology for Scientists and Engineers. 2013.

[115] Sagardia Mikel and Hulin Thomas. Evaluation of a penalty and a constraint-based haptic rendering al-
gorithm with different haptic interfaces and stiffness values. Proceedings - IEEE Virtual Reality, pages
64–73, 2017.

[116] Sakurai Hiroshi and Chin Chia-Wei. Definition and Recognition of Volume Features for Process Planning.
pages 65–80. 1994.

[117] Sakurai Hiroshi and Dave Parag. Volume decomposition and feature recognition, part II: curved objects.
Computer-Aided Design, 28(6-7):519–537, jun 1996.

[118] Samuel N. M., Requicha Aristides A. G., and Elkind S. A. Methodology and Results of an Industrial Part
Survey. Technical report, University of Rochester, 1979.

144

[119] Schollmeyer Andre and Fröhlich Bernd. Direct trimming of NURBS surfaces on the GPU. ACM
Transactions on Graphics, 28(3):1, 2009.

[120] Selimovic Ilijas. Improved algorithms for the projection of points on NURBS curves and surfaces. Computer
Aided Geometric Design, 23(5):439–445, jul 2006.

[121] Seong Joon-Kyung, Johnson David E, and Cohen Elaine. A higher dimensional formulation for robust and
interactive distance queries. In Proceedings of the 2006 ACM symposium on Solid and physical modeling
- SPM ’06, page 197, New York, New York, USA, 2006. ACM Press.

[122] Signorini Antonio. Sopra alcune questioni di elastostatica. Atti della Societa Italiana per il Progresso delle
Scienze, 1933.

[123] Smith Russell. The Open Dynamics Engine.

[124] Snyder John M. An interactive tool for placing curved surfaces without interpenetration. In Proceedings
of the 22nd annual conference on Computer graphics and interactive techniques - SIGGRAPH ’95, pages
209–218, New York, New York, USA, 1995. ACM Press.

[125] Snyder John M., Woodbury Adam R., Fleischer Kurt, Currin Bena, and Barr Alan H. Interval methods for
multi-point collisions between time-dependent curved surfaces. In Proceedings of the 20th annual conference
on Computer graphics and interactive techniques - SIGGRuAPH ’93, pages 321–334, New York, New York,
USA, 1993. ACM Press.

[126] Song Hai-Chuan, Xu Xin, Shi Kan-Le, and Yong Jun-Hai. Projecting points onto planar parametric curves
by local biarc approximation. Computers & Graphics, 38:183–190, feb 2014.

[127] Strobach Peter. The fast quartic solver. Journal of Computational and Applied Mathematics, 234(10):3007–
3024, 2010.

[128] Stroud Ian. Boundary Representation Modelling Techniques. Springer London, London, 2006.

[129] Studer Christian. Numerics of Unilateral Contacts and Friction, volume 47 of Lecture Notes in Applied
and Computational Mechanics. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[130] Tang Min, Manocha Dinesh, and Tong Ruofeng. MCCD: Multi-core collision detection between deformable
models using front-based decomposition. Graphical Models, 72(2):7–23, mar 2010.

[131] Teschner M and Kimmerle S. Collision Detection for Deformable Objects. Computer Graphics Forum,
24(x):61 – 81, 2005.

[132] Thomas F, Turnbull Colin, Ros L., and Cameron S. Computing signed distances between free-form objects.
In International Conference on Robotics and Automation, volume 4, pages 3713–3718. IEEE, 2000.

[133] Thompson Thomas V. and Cohen Elaine. Direct haptic rendering of complex trimmed NURBS models. In
ACM SIGGRAPH 2005 Courses on - SIGGRAPH ’05, page 89, New York, New York, USA, 2005. ACM
Press.

[134] Thompson Thomas V., Johnson David E., and Cohen Elaine. Direct haptic rendering of sculptured models.
In Proceedings of the 1997 symposium on Interactive 3D graphics - SI3D ’97, number Figure 1, pages 167–
176, New York, New York, USA, 1997. ACM Press.

[135] Toussaint Godfried. Solving Geometric Problems with the Rotating Calipers. In IEEE Melecon83, number
May, pages 1–8, 1983.

[136] Tropp Oren, Tal Ayellet, Shimshoni Ilan, and Dobkin David P. Temporal Coherence in Bounding Volume
Hierarchies for Collision Detection. International Journal of Shape Modeling, 12(02):159–178, dec 2006.

[137] Turnbull C. and Cameron S. Computing distances between NURBS-defined convex objects. In Proceedings.
1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), volume 4, pages
3685–3690. IEEE, 1998.

[138] van den Bergen Gino. Collision Detection in Interactive 3D Environments. Elsevier, 2003.

145

[139] Visser M., Stramigioli S., and Heemskerk C. Screw bondgraph contact dynamics. In IEEE/RSJ
International Conference on Intelligent Robots and System, volume 3, pages 2239–2244. IEEE, 2002.

[140] Wald Ingo. On fast Construction of SAH-based Bounding Volume Hierarchies. In 2007 IEEE Symposium
on Interactive Ray Tracing, volume 1, pages 33–40. IEEE, sep 2007.

[141] Weller Rene and Zachmann Gabriel. A unified approach for physically-based simulations and haptic ren-
dering. Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games, Sandbox ’09, c:151–160,
2009.

[142] Yao Jen-Chih. Variational Inequalities with Generalized Monotone Operators. Mathematics of Operations
Research, 19(3):691–705, aug 1994.

[143] Zhang Liangjun, Kim Young J., Varadhan Gokul, and Manocha Dinesh. Generalized penetration depth
computation. Computer-Aided Design, 39(8):625–638, aug 2007.

[144] Zhang Xinyu, Kim Young J., and Manocha Dinesh. Continuous penetration depth. Computer Aided
Design, 46(1):3–13, 2014.

[145] Zhao Wei and Lan Ying. A Fast Collision Detection Algorithm Based on Distance Calculations between
NURBS Surfaces. In 2012 International Conference on Computer Science and Electronics Engineering,
pages 534–537. IEEE, mar 2012.

[146] Zhou Jingfang, Sherbrooke Evan C., and Patrikalakis Nicholas M. Computation of stationary points of
distance functions. Engineering with Computers, 9(4):231–246, dec 1993.

[147] Zou Zhihua and Xiao Jing. Tracking minimum distances between curved objects with parametric surfaces
in real time. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003) (Cat. No.03CH37453), volume 3, pages 2692–2698. IEEE, 2003.

146

	Acknowledgements
	Abstract
	Introduction
	Computing contact points between industrial CAD models: representation-dependent approaches
	Collision detection throughout the communities
	Equations of motion and definition of contact constraints
	Lagrangian formalism for constrained equations of motion
	Integration schemes of the equation of motion
	Handling deformable curves
	Why the continuity of contact normals is desirable

	Choice of a geometric contact model
	Distance-based geometric contact models
	Handling either multiple or conformal contacts
	Working around the non-negativity of distance functions
	Characterization of Local Minimal Distances (LMD)
	Characterization of quasi-LMD
	Summary and recommended choice of gap function

	Penetration-based contact models

	Choice of geometric representation
	Discrete volume representations: fast with low accuracy
	Piecewise linear boundary representation: polyhedral approximations
	Smooth boundary representations: toward optimal accuracy

	Distance computation on smooth boundary representations: existing methods
	Subdivision methods
	Solution existence tests
	Search space subdivision methods
	Ensuring the uniqueness of a solution

	Numerical resolution of the optimization problem
	Finding an initial guess
	Finding the solution

	Handling trimmed surfaces
	Methods based on alternative representations

	Conclusion and presentation of the objectives

	From the CAD model to a data structure for distance computation
	Why pre-computing a data structure is necessary
	Curvature-based surface compatibility
	Introducing supermaximal features to avoid redundant computations
	Definition and identification
	Data structures of supermaximal features

	Constructing the Bounding Volume Hierarchy (BVH)
	Splitting features into quasi-flat areas and processing non simply connected domains
	BVH node structure and choice of bounding volumes
	The culling tests
	Top-Down construction

	Conclusion

	Tightening the bounds on solutions: take orientation into account with normal and tangent cones
	How and why bounding the normals of a BRep feature
	Obtaining tighter normal bounds with polyhedral cones
	Definitions from convex analysis
	Checking that two normal cones contain antipodal directions

	Generation of polyhedral normal cones
	Meridian or line of latitude on S2
	Canonical surfaces
	Edges, vertices, and Bézier surfaces

	Dilating polyhedral normal cones to improve conformal contacts handling
	More culling tests for Bézier curves using tangent cones and solution line cones
	The existing: tangent cones and solution line cones of revolution
	Orthogonality test between cones of revolution
	Tangent cones of revolution for C1 Bézier curves
	Solution line cones of revolution for two C1 Bézier curves

	Tighter bounds for C1 Bézier curves with polyhedral tangent cones and polyhedral solution line cones
	Orthogonality test between two polyhedral cones
	Computation for Bézier curves

	Conclusion

	Achieving real-time simulations: a parallelized runtime CD pipeline with temporal coherence
	Description of the sequential CD pipeline
	The BVH traversal
	Simultaneous traversal and the Bounding Volume Test Tree
	Simplified polyhedral cones and leaf-leaf tests
	Avoiding redundant computations with supermaximal faces

	Exact contact points computation
	Algorithmic choices for non-deformable features
	Handling some conformal contact configurations with sampling
	Conformal contacts of dimension two
	Conformal contacts of dimension one

	An hybrid approach for deformable Bézier curves

	Validation of closest points computed onto individual features
	Testing the potential LMD against trimming curves
	Filtering the potential LMD using exact tangent cone polars

	Exploiting temporal coherence
	Front tracking
	Temporal coherence for bounding volumes
	Temporal coherence for LMD computation

	Parallelization of the CD pipeline
	Parallel front nodes status assignment with partial pruning
	Parallel front traversal and construction of the new BVTT front
	Parallel LMD computation and trimming
	Discussion regarding load-balancing

	Conclusion

	Experimentations and benchmarks on industrial models
	First scenario: telerobotics insertion task
	Models description
	Running times comparisons
	Comparison of the BRep-based framework with a Polyhedron-based framework
	Evaluation of the tasks parallelism
	Contribution-based evaluation of performance improvements

	Second scenario: ROV teleoperation insertion task
	Models description
	Running times comparisons

	Third scenario: curve deformation
	Conclusion

	Conclusion and perspectives

