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L.

Introduction

What drives the assembly of ecological

communities?

Science consists in finding patterns in a collection of isolated observations so as to gain
understanding of the processes that generated them. Natural sciences began with
attempts at classifying the diversity of the living organisms into categories (Aristotle,
[Vth cent. BC), and this classification has been developed and perfected over the
centuries into the modern binomial nomenclature (Linnaeus, 1753). But classification
efforts were not limited to the description of species. Associations of species, and in
particular plant associations, were named using the same model, and were carefully
described based on their taxonomic composition and the abiotic properties of their
environment (Braun-Blanquet & Pavillard, 1922). Even though forest plant associations
were observed shifting through time, this phenomenon was described as mirroring the
life cycle of individual organisms, from ‘youth’ to ‘senescence’ (Clements, 1916). The
underlying idea was that the organization of the living world obeyed static and
deterministic rules, which were to be uncovered. This idea was encouraged by the

discovery of the elegant laws that govern physics and chemistry.

By contrast, early discoveries on evolution and biogeography (Darwin, 1859;
Wallace, 1876) brought the idea that chance and history have played an overwhelming
role in shaping the modern living world. Gleason (1926) and Tansley (1935) were the
first to contend that the diversity of plant associations was not well described by
discrete vegetation types, and that species associations were rather the transient
outcome of random dispersal events, constrained by abiotic conditions and species
interactions. Later, Hutchinson (1961), MacArthur (1972), Diamond (1975), Hubbell
(1979), Ricklefs (1987), and Brown (1995), among others, have successively elaborated
on this idea, laying the foundations of modern community ecology. The term
‘community’ refers to all the organisms coexisting in a given location and at a given
time. It may also refer to a taxonomic subgroup of these organisms, such as a ‘plant
community’.
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Introduction

The question of the relative role played by deterministic and stochastic
processes in shaping ecological communities remains central to ecology. In this section,
[ first argue that addressing this question is key to our ability to preserve natural
ecosystems and to predict their response to human perturbations. I then briefly review

the mechanisms of community assembly that have been proposed.

1. Motivations

The increasing awareness of the threats posed to natural ecosystems by human
activities has added a sense of urgency to the study of ecological processes. Indeed, the
fate of the Earth’s biodiversity, and beyond it, of the ecosystems on which human
societies rely for food, water, clean air, health, and raw materials, has become a major
source of concern (Daily, 1997). As a consequence, theoretical advances in ecology can
no longer be considered in isolation from their practical implications. In particular,
many predictions relevant to policy-making strongly depend on assumptions regarding
the mechanisms of community assembly. Thus, data-driven understanding of
community assembly is critical to well-informed policy-making. Three examples are
given below: the prediction of ecosystem stability and state shifts in response to human
perturbations, the prediction of the impact of climate change, and the conservation of

biodiversity.

Measuring ecosystem stability to perturbations is a subject of active research, as
is the relationship between biodiversity and ecosystem stability (McCann, 2000; Tilman
et al, 2006; Loreau & de Mazancourt, 2013). In this context, natural ecosystems are
commonly represented as stable communities held together by species interactions, in
part because this representation lends itself well to theoretical approaches (Arnoldi et
al, 2016). Drawing on this framework, it has been hypothesized that the response of
ecosystems to perturbations may bear a similarity with that of physical systems
exhibiting critical phase transitions (cf. Fig. 1; Scheffer et al., 2012). Accordingly, ‘tipping

points’, sudden and difficult-to-reverse shifts in a system’s state in response to
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perturbation, should be expected (Brook et al,, 2013). Moreover, such state shifts could
be possibly predicted in advance through the identification of early-warning signals
(Carpenter et al, 2011; Scheffer et al., 2012). While this type of non-linear behaviour
has been evidenced in lake ecosystems (Carpenter et al, 2011), it remains difficult to
study empirically, and knowledge of community assembly processes is key to provide

realistic assumptions for the theoretical prediction of possible tipping points.

State

o

State
oo
O?/%g
==

Stress Stress
Modularity | Connectivity
Hetero;eneity Homoa-eneity
\ 4 \ 4
Adaptive capacity Resistance to change
LocaITosses Local :-epairs
Graduarchange Critical t:;msitions

Figure 1. The response of ecosystems to human-induced stress is commonly studied using a
network representation of ecological communities, envisioned as stable entities held together
by interactions. Depending on network connectivity and modularity, the response may be linear
(left) or exhibit a tipping point (right). Data-driven knowledge of community assembly
processes is much needed to inform such models. Adapted from Scheffer et al. (2012).

Climate change has become the foremost threat to many ecosystems, especially
those that are less directly impacted by human activities. Species distribution modelling
is an important tool to predict the effect of climate change on biodiversity (Miller,
2010). It consists in inferring the abiotic requirements of individual species from their
observed geographic distribution, and predicting their future distribution based on

predicted changes in abiotic conditions. The need to take into account processes other
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than abiotic requirements, such as species interactions, dispersal limitation, adaptation,
and phenotypic plasticity, has long been acknowledged (Guisan & Thuiller, 2005),
nevertheless most predictions are still obtained while ignoring these processes (Wisz et
al, 2013). Another approach to predicting the effect of climate change on ecosystems is
through the dynamical simulation of ecosystems, either by simulating each organism
individually or using coarser models (Fisher et al, 2014). Building such models,
especially at the level of individual organisms, requires a clear understanding of the

processes relevant to community assembly and dynamics.

Lastly, knowledge of community assembly is necessary to guide conservation
efforts. Assumptions on the mechanisms of community assembly play a key role in the
debate on the optimal design of natural reserves (Cabeza & Moilanen, 2001) or on
species sensitivity to extinction (Tilman et al, 1994). Such assumptions are also
required to estimate the amount of biodiversity harboured in species-rich and poorly
known ecosystems. A straightforward way to proceed is to assume that the relationship
between the number of individuals and the number of species, observed for a sample of
individuals, holds for the entire ecosystem. This reasoning implies that community
assembly can be regarded as random at the scale of the ecosystem. It has been for
instance applied to Amazonian trees, yielding an estimated total of 16,000 tree species

extrapolated from about 5,000 observed species (ter Steege et al., 2013).

2. Deterministic processes

The deterministic processes of community assembly can be decomposed into two major

components: abiotic filtering and biotic interactions.

‘Abiotic filtering’ is a metaphor referring to the fact that species can only
establish themselves in locations where abiotic conditions suit their needs: hence, any
given location hosts only a subset of the species that would have the ability to reach it
(Kraft et al, 2015). While this concept is very general, it has its roots in the study of

plant community assembly (Noble & Slatyer, 1977). In this context, abiotic filters may
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include temperature, precipitation, soil nutrients, soil pH, soil grain size, soil water

content, soil depth and bedrock.

Biotic interactions refer to any type of interaction between organisms, either
between or within species, and can be broadly categorized into competition, predation,
parasitism, commensalism and mutualism (Schemske et al,, 2009). Biotic interactions
may facilitate or hinder the establishment of a species in a community depending on the
type of interaction, and as such their action on community assembly may be referred to
as ‘biotic filtering’. Biotic and abiotic filtering are sometimes jointly referred to as
‘habitat filtering’ (Maire et al, 2012). Indirect biotic interactions across trophic levels
may have complex and non-trivial outcomes. For instance, if we assume that a trophic
network can be decomposed into discrete trophic levels, increasing abundances among
the species belonging to a given trophic level (e.g., carnivores) lead to decreasing
abundances in the trophic level immediately below (e.g., herbivores), and in turn to
increasing abundances one level lower (primary producers), a process known as a
‘trophic cascade’ (Paine, 1980; Polis et al, 2000). Interspecific interaction may also take
the form of a modification of surrounding abiotic conditions by organisms, for instance
by so-called ‘ecosystem engineer’ species (Wright et al, 2002), or simply through

shading in the case of plants, thus blurring the line between abiotic and biotic filtering.

Within a single trophic level, competition is considered to be the dominant type
of biotic interactions (Chesson, 2000). The ‘competitive exclusion principle’ states that
the coexistence of two species competing for the same resource is not stable (Gause,
1932; MacArthur, 1958; Hutchinson, 1961; Armstrong & McGehee, 1980). Indeed, if one
of the species has an even slight competitive advantage, it will eventually outcompete
the other. Thus, any set of coexisting species is expected to exhibit differences in the
way they exploit their habitat. This has led to the concept of ‘niche’, which refers in its
broader meaning to the relationship between a species and its habitat, including its
resource use, its interactions with other species, and the way its occupies its habitat
both spatially and temporally (cf. Fig. 2; Grinnell, 1917; Hutchinson, 1957; Chase &
Leibold, 2003). A species’ niche may be represented as a hypervolume in the space of all

available resources and possible habitat uses.
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Figure 2. A classical example of niche partitioning: habitat preferences among closely related
warbler species in the boreal forests of North America. (A) Cape May, (B) Blackburnian, (C) Bay-
breasted, (D) Yellow-rumped, and (E) Black-throated Green warblers favour different tree
layers and different tree heights when foraging for insects during the breeding season. Adapted
from MacArthur (1958).

In spite of theoretical predictions, the coexistence of many similar species
competing for a common resource in homogeneous environments is a common
occurrence in nature. This is for instance the case in species-rich communities such as
tropical forest trees and oceanic phytoplankton communities. This apparent paradox

has been called the ‘paradox of the plankton’ (Hutchinson, 1961). Thus, additional
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mechanisms need to be considered to account for species coexistence in such
communities (Tilman, 1982; Chesson, 2000). Even though a vast number of potential
mechanisms of species coexistence has been proposed (Palmer, 1994), they can be
roughly divided into ‘equalizing’ mechanisms, that reduce competitive differences
between species, and ‘stabilizing’ mechanisms, that balance the effect of interspecific

competition (Chesson, 2000).

Intraspecific competition represents one stabilizing mechanism. It has indeed
been found empirically that competition among conspecific individuals is often at least
as intense as among different species (Connell, 1983). Predation and parasitism are
another important cause of negative intraspecific interactions among prey or host
species. Indeed, the fact that predators and parasites tend to specialize on one or a few
species induces a ‘negative density-dependence’, i.e. favours lower population densities.
This effect, known as the Janzen-Connell effect, was first proposed for tropical forest
trees (Connell, 1970; Janzen, 1970). Lastly, spatial and temporal fluctuations in
environmental conditions are also a stabilizing mechanism favouring species

coexistence (Chase & Leibold, 2003; see section [.4 below).

Competition, predation and parasitism act also as equalizing mechanisms.
Indeed, interspecific competition eliminates less competitive species from the
community, while predation and parasitism effectively offsets the competitive
advantage of the most successful species (Chesson, 2000). The importance of equalizing
mechanisms and intraspecific competition in species-rich communities has prompted
some ecologists to propose that competitive differences between organisms could be

altogether neglected in such systems (Hubbell, 2001), as discussed in the following.

3. Stochastic processes

However complex and fascinating the interplay of species’ niches is, community
assembly cannot be fully understood without considering the influence of geography

and history on community composition (MacArthur, 1972; Ricklefs, 1987). Firstly, the
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capacity to disperse is finite in all species: offspring are more likely to be found near
parent individuals. Thus, community composition in a given location is dependent on
the pool of species that are within dispersal distance of that location, and on random
dispersal events. The limited dispersal of individuals generates spatial clusters in the
distribution of a species (Houchmandzadeh, 2009), and thus causes spatial variations in
community composition even in the absence of other mechanisms. Secondly, if there are
no competitive differences between two competing species, the fact than one is locally
common and the other rare is due to chance alone. The relative abundances of the two
species are expected to fluctuate randomly over time, until one eventually goes extinct.
Thus, over a sufficiently long period of time, competitive exclusion is expected to take
place even in the absence of competitive differences. The larger the number of
competing species in a given location, the lower the average population of each species
is, and the faster the community will lose species to random demographic fluctuations.
This process has been called demographic or ecological drift, by analogy to the process

of genetic drift in population genetics (Etienne & Alonso, 2007).

The ‘neutrality’ assumption is defined as the absence of any competitive
differences among individuals, irrespective of the species they belong to (Watterson,
1974; Caswell, 1976). Since dispersal limitation and demographic drift take place
independently of any competitive differences between organisms, they are often
referred to as ‘neutral’ processes, even though they are also present in non-neutral
systems. Under a dynamics governed by dispersal limitation and demographic drift,
ecological communities never reach equilibrium: their composition indefinitely shifts
over time. Nevertheless, if the total number of individuals, the species richness, and the
dispersal capacity of individuals remain constant over time, community structure
reaches a stationary state that can be described statistically as a function of these

parameters.

MacArthur & Wilson (1967) were the first to build dispersal limitation and
demographic drift into a model, which they used as a foundation for a ‘theory of island
biogeography’ aimed at explaining species richness on islands. They reasoned that the

number of species found on a coastal island results from an equilibrium between
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immigration of new species from the mainland and species extinction on the island
through demographic drift, even though they did not explicitly interpret their theory as
neutral. The two processes are stochastic and their relative frequency determines the
number of species found on the island at any given time (cf. Fig. 3). They further
assumed that the immigration rate depends on the distance to the mainland, and that
the extinction rate depends on the island’s area, thus enabling empirical comparison of

their theory to observations (Simberloff & Wilson, 1969).

Island near
mainland Island
/ source area small

Island

far \

Immigration Rate
9jey] uonounxy

large

: ! '\
s/ | \53 >

Number of Species on Island

4

Figure 3. MacArthur & Wilson (1967) were the first to combine dispersal limitation and
demographic drift into a simple model, that aims at explaining the number of species found on
islands. They assumed that the number of species results from a dynamic equilibrium between
stochastic immigration and extinction, which are dependent on distance to the mainland and on
island size, respectively. Adapted from Hubbell (2001).

The theory of island biogeography was later expanded to better account for
empirical observations (Brown & Kodric-Brown, 1977). It was also proposed that it
might apply more generally to any patch of isolated habitat (Brown, 1978). In parallel,
Watterson (1974) and Caswell (1976) used the mathematical tools of population
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genetics to model neutral communities at the level of individual organisms instead of
the level of species, thus providing a more mechanistic description of the processes, but
without including dispersal limitation. Hubbell (1979, 1997, 2001) eventually combined
both ideas into an influential neutral model, which he used as a basis to propose a
‘unified neutral theory of biodiversity and biogeography’. His theory not only states the
importance of demographic drift and dispersal limitation for community assembly, but
also proposes that they may be the dominating mechanisms in some species-rich
communities, especially tropical forest trees and coral reefs. Indeed, strong interspecific
competition and predation could act as equalizing mechanisms between species in
these communities, as mentioned earlier, and combine with strong intraspecific
competition to make all individuals of all species effectively equivalent (Scheffer & van
Nes, 2006). Another hypothesis is that in highly diversified communities, complex
interspecific interactions could average out at the scale of the community, leading to an

‘emergent neutrality’ (Holt, 2006).

In Hubbell's model, the mainland’s species reservoir, called the
‘metacommunity’, undergoes a demographic drift where random extinctions are offset
by random speciation events. The island, or ‘local community’, also undergoes a
demographic drift, but random extinctions are offset by the dispersal, or immigration, of
individuals from the source metacommunity. Since the model is neutral, all individuals
are considered to have the same dispersal capacity, irrespective of the species they
belong to. The scope of the theory is not limited to isolated habitat patches: the local
community may represent any spatially delineated ecological community, while the
metacommunity represents the regional pool of species constituted by the aggregation
of all local communities. The model is controlled by two parameters, the frequency of
speciation events in the metacommunity, which determines the regional species
richness, and the frequency of immigration into the local community. The immigration
flux into the local community modulates its connectivity with the metacommunity: the
stronger the immigration flux, the more species-rich and the more similar to the
metacommunity the local community is. Hubbell’s model and subsequent related

neutral models (Etienne & Alonso, 2007) are amenable to several quantitative
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predictions, and thus to statistical testing (this is discussed in more details in sections

[1.1 and II1.4).

Two distinct neutrality assumptions can be distinguished in Hubbell’s neutral
theory: one regarding the metacommunity dynamics, over an evolutionary timescale,
and one regarding the local community dynamics, over the timescale of an individual’s
lifetime. Predictions regarding local community structure, namely the relationship
between area and species richness, the decay of taxonomic similarity with distance, and
the distribution of relative species abundances (see section II.1), integrate both
assumptions. They are in good qualitative agreement with empirical data (Hubbell,
2001), nevertheless most datasets exhibit quantitative departure from neutrality
(McGill et al, 2006). The assumption of a neutral diversification dynamics in the
metacommunity can be tested separately, and has been shown to be unrealistic. Indeed,
the mean species age predicted by Hubbell’s model are not consistent with empirical
measurements (Ricklefs, 2003, 2006), and the shape of the predicted phylogenetic trees
does not match that of empirically reconstructed trees (Davies et al., 2011). Hence,
recent approaches have instead focused on testing separately the assumption of local
neutral assembly through immigration, with contrasting results depending on the

system (Sloan et al., 2006; Jabot et al., 2008; Ofiteru et al.,, 2010; Harris et al., 2015).

Even though comparison of empirical patterns to model predictions suggests
that real ecological communities are rarely neutral, Hubbell’s neutral theory retains
important merits (Alonso et al, 2006). Indeed, it has been pointed out that all the
processes of community ecology are underpinned by only four fundamental processes:
natural selection, demographic drift, speciation, and dispersal (Vellend, 2010). Yet, the
majority of ecological literature focuses on only one of them, natural selection, which
underpins all niche differences between species and thus all deterministic ecological
processes. In contrast, Hubbell’s neutral theory focuses on the three remaining
fundamental processes, which are inherently stochastic, and places them in a
quantitative framework. In practice, neutral models are essential tools for two main
uses (Rosindell et al, 2012). Firstly, they may serve as a ‘null model’ against which

empirical patterns can be contrasted, so as to identify cases where neutral processes are
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sufficient to explain the data and cases where they are not. Secondly, they may serve as
a parsimonious approximation to real systems, and as a foundation for incorporating
relevant non-neutral mechanisms, such as niche differences (Chisholm & Pacala, 2010),
environmental stochasticity (Kalyuzhny et al., 2015), negative density-dependence (Du

etal, 2011), or a more realistic speciation dynamics (Rosindell et al., 2010).

4. Spatial and temporal scales

Community assembly involves a range of temporal and spatial scales spanning many
orders of magnitude - from the evolutionary timescale to the behaviour of individual
organisms, and from the global scale to the scale of microorganisms (Chave, 2013). The
continental scale is the realm of biogeography, where species distribution reflects the
geological and evolutionary history of continents (Cox et al, 2016), as well the
latitudinal gradient of diversity (Hillebrand, 2004). At the opposite end, most studies on
species interactions focus on a limited number of individuals. Community ecology is
concerned with the intermediate scales (Lawton, 1999): namely, within a biogeographic
unit (Morrone, 2015), but encompassing a number of individuals large enough for
statistical patterns to emerge. The scale at which statistical patterns start emerging
depends on the type of organisms considered, and will differ by many orders of

magnitude between plants and bacteria.

Niche and neutral processes might alternately dominate at different spatial and
temporal scales. Firstly, locally observed species interactions do not preclude random
species assembly over larger spatial and temporal scales. Indeed, the majority of
interspecific interactions are opportunistic and vary across space and time (Holt, 1996;
Poisot et al, 2014), despite much-studied instances of specialized interspecific
interactions such as plant-pollinator mutualisms (Rgnsted et al, 2005). Secondly,
species dynamically adapt their niche to the local competitive context, either through
plasticity or through natural selection. For instance, closely related species with mostly

disjoint geographical distributions are known to display greater phenotypic differences
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(such as a difference in size) wherever they co-occur, a process known as ‘character
displacement’ (Brown & Wilson, 1956). Natural selection has been found to have
measureable effects on phenotype over timescales as short as a few generations when
species are confronted with a sudden change in their biotic or abiotic environment, thus
questioning the legitimacy of the traditional separation between the timescales of

evolutionary and community assembly processes (Ghalambor et al.,, 2015).

Figure 4. Community assembly processes depend on the spatial and temporal scales
considered: current geographical patterns of tree diversity in Europe might reflect on-going
dispersal from ice age tree refugia, which started 14,000 years ago. Top right, bottom left and
bottom right: geographical distribution of tree diversity (increasing from yellow to blue) for all
60 European tree species, the 45 temperate species and the 15 boreal species, respectively. Top
left: accessibility through dispersal from ice age tree refugia (black dots). Adapted from
Svenning & Skov (2007).

Another key aspect of community assembly is how fast community composition
responds to abiotic change, relative to the pace of the abiotic change itself. Indeed, if
abiotic change is fast enough relative to community response, the community may

never reach equilibrium, thus leading to an apparently random dynamics. This
18
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phenomenon may be more pervasive than it seems: for instance, it has been shown that
the dispersal of tree species in Europe following the end of the last ice age is still an on-
going process (cf. Fig. 4; Svenning & Skov, 2007). In contrast, organisms with short
generation time and high dispersal ability are able to track environmental changes
more efficiently. Additionally, if several local communities are connected by a
permanent and strong enough dispersal flux, they may never reach the optimal
composition that would be expected based on local abiotic conditions (Gravel et al,
2006). A local community will also be more prone to demographic stochasticity if it
hosts a smaller population size (Fisher & Mehta, 2014). These observations have led to
the development in the last decade of ‘metacommunity theory’, a family of mathematical
models aiming at reconciling neutral and niche processes by explicitly accounting for
spatial and temporal dynamics (Leibold et al., 2004). However, unlike simpler neutral
models, these models do not provide predictions that are easily amenable to statistical

comparison with empirical data.

Lastly, most of the existing knowledge on community assembly comes from the
study of plants and vertebrates, and the extension of community ecology to
microorganisms is comparatively very recent (Curtis & Sloan, 2005; Martiny et al,
2006; see section I1.2). While the fundamental processes of community assembly apply
to all living organisms, they operate over very different scales for microorganisms, and
their relative importance is likely to differ (Hanson et al, 2012). It has long been
considered that microorganisms had effectively infinite dispersal capacity, and that
abiotic filtering was the dominant process of community assembly (Baas Becking,
1934). Microbial communities have indeed been found to be very sensitive to local
abiotic conditions and dominated by specialist taxa (Ramirez et al., 2014; Mariadassou
etal, 2015). Nevertheless, this view has now been nuanced, and dispersal limitation has
been shown to play a role as well (Ofiteru et al., 2010; Martiny et al., 2011; Roguet et al.,
2015). While microorganisms tend to be more cosmopolitan than larger organisms,
biogeographic patterns do exist (Hanson et al, 2012; Livermore & Jones, 2015).
Microorganisms have also been found able of complex interactions beyond competition

(Cordero etal., 2012).
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Introduction

DNA-based biodiversity patterns

Most of ecological knowledge comes from studies performed at the level of individual
species, and from this perspective, the singularity of each species and sometimes of
each individual is striking. Thus, ecologists have long wondered whether general laws
were hiding behind the collection of idiosyncrasies (Lawton, 1999). Integrative data on
species richness, abundance and spatial occurrence have been gathered with the hope
that they would yield insight into the general mechanisms of community assembly
(Brown, 1995). The underlying idea is that, as in statistical physics, informative
statistical properties might emerge from the observation of a large enough number of

individuals and species irrespective of the details of species identities.

In this section, I first introduce two types of integrative patterns that have been
widely studied in community ecology: the distribution of species abundances, and
spatial patterns. I then discuss why the emergence of automated data collection is
opening new horizons for the study of these patterns. Lastly, I briefly present the
ecosystem that this thesis more specifically focuses on, the tropical forests of French

Guiana.

1. Integrative biodiversity patterns

a. Species relative abundances

The distribution of species abundances in a random sample of individuals takes two
forms in the ecological literature: the ‘rank-abundance distribution’ (RAD), or
‘Whittaker’s plot’, consists of the abundances n; of all S species in the sample ranked by

decreasing abundance, while the ‘species abundance distribution’ (SAD), or ‘Preston’s
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plot’, is the distribution of the number ®,, of species having abundance n for all the
possible n values in {n,,..,ng} (cf. Fig. 5; Preston, 1948; Whittaker, 1965). To
accommodate the limited amount of data, the SAD is usually binned into abundance
categories. This binning step leads to a loss of information, thus the RAD is more
informative than the SAD. Nevertheless, the SAD has often been the preferred
distribution because it is easier to handle mathematically and to derive from theoretical
models. This is linked to the fact that it can be interpreted upon normalization as the
probability distribution for the abundance of a randomly chosen species in the sample.
Because of the wide range of abundances typically observed in empirical data,
abundances are often log-transformed in SAD and RAD - in SAD, this amounts to
binning species into abundance classes of exponentially increasing width from the
lowest abundance class (one individual) to the highest, following the example of

Preston (1948).

[t was noticed early on that the distribution of species abundances tended to be
similar in species-rich communities. Indeed, within a single trophic level, there are
usually a few common species and a long tail of rare species - simply put, ‘most species
are rare’ (cf. Fig. 5). This spurred attempts at finding a general explanation for this
pattern. Fisher et al. (1943) and Preston (1948) were the first to propose statistical

distributions to fit the distribution of species abundances.

Fisher assumed that the sampled species abundances followed a negative-
binomial distribution without the zero-abundance class, and derived a SAD of the form
E[®,] = ax™/n, where « is a constant parameter, x is a function of o and of sample size
N (with 0 < x < 1), and E[®,,] is the statistically expected value of ®,, (cf. section I11.3.b;
Chave, 2004). Since Y.o°_; E[®,,] = —aIn(1 — x), this distribution is called the ‘log-
series’. A remarkable property of this model is that the expected number of species E[S]
in the sample is given as a function of the number of sampled individuals N by
E[S] = aln(1 + N/a). Hence, the parameter a is sufficient to predict the observed
species richness as a function of the sampling effort. It can thus be used as a sampling-

independent measure of the community’s diversity. The value of @ can be easily
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visualized in the RAD representation, since the log-transformed abundances are

expected to decrease linearly with slope —1/«a as a function of species rank (cf. Fig. 5).
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Figure 5: Species
Abundance Distribution
(top) and Rank Abundance
Distibution (bottom) for
mature trees in the 50-ha
Barro Colorado Island
(BCI) monitored forest plot
(Panama). Mature trees are
defined as stems with
diameter larger than 10 cm
at breast height (or > 10
cm dbh”). The dispersal-
limited Hubbell’s model is
fitted to the data (68 = 50,
m = 0.1), and is compared
with the log-normal SAD
(top; dashed line), and
with the RAD of Fisher’s
model (bottom; dashed
line). Fisher’s model is
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limitation (i.e., case m = 1)
for large sample size. Error
bars indicate +1 standard
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Preston (1948) argued in contrast that a log-normal SAD best fitted empirical

data, i.e. E[®,,] x e—(nn-w/(20%) with ¢ and o constant parameters. A notable difference

between the two SADs is that the log-normal distribution exhibits a mode (i.e., the

abundance class with the most species is not the lowest abundance class), while Fisher’s

log-series does not. Preston explained the fact that both situations could be encountered

in empirical data by the effect of sampling: a community in which the ‘true’ SAD (i.e., for
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an infinite number of individuals) is log-normal can lose its mode if under-sampled, and
be mistaken for a log-series. It has since then been acknowledged that the effect of
sampling is indeed paramount in our ability to distinguish between differently-shaped
SAD by curve-fitting (Sloan et al, 2007). In the RAD representation with log-
transformed abundances, a log-normal SAD takes the form of an S-shaped curve, the

common species being commoner and the rare species rarer than in Fisher’s log-series.

Later models have focused on finding a mechanistic justification for the
proposed distributions. MacArthur (1957) proposed that species relative abundances
resulted from the random partitioning of the niche space between the different species
of the community. A number of more sophisticated niche partitioning models’ were
subsequently proposed (Tokeshi, 1996; McGill et al., 2007). However, Hubbell’s neutral
model is the mechanistic model that has been the most successful at fitting empirical
SADs (Hubbell, 2001; cf. section 1.3 and Ill.4). Indeed, the metacommunity SAD
converges toward Fisher’s log-series for a large enough sample size and is characterized
by a ‘fundamental biodiversity number’ 6 that converges toward Fisher’s a (Chave,
2004). In the absence of dispersal limitation, the local community is a random sample
from the regional metacommunity, and hence also exhibits a log-series-like SAD. In the
presence of dispersal limitation however, the depletion of rare species and the increase
in abundance of locally common species lead to a log-normal-like SAD (cf. Fig. 5). Thus,
Hubbell’s neutral model can approximate both the log-series and the log-normal SADs,
while providing a mechanistic justification for them and fully accounting for sampling

effects.

Nevertheless, it has been shown that many types of non-neutral processes could
yield SADs similar to neutral ones (Chave et al, 2002; Pueyo et al., 2007; Chisholm &
Pacala, 2010). It has also been argued that the log-normal distribution fits empirical
SADs at least as well as Hubbell’s local community SAD (McGill, 2003). The log-normal is
still the most popular choice when it comes to choosing a realistically-shaped SAD for
modelling purposes irrespective of the underlying mechanisms (Connolly et al.,, 2017). A
log-normal SAD is not in itself very informative on the mechanisms of community

assembly. Indeed, the log-normal distribution is the limiting probability distribution for
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any product of sufficiently many random variables, as a consequence of the central limit
theorem (cf. section III.2 and II1.3.a), thus a log-normal SAD could arise as the result of
any type of multiplicative process. More generally, it has been suggested that the range
of empirically observed SADs could simply result from the iterative spatial aggregation
of smaller-scale SADs, a phenomenon described as a ‘spatial analogy of central limit
theorem’ (Sizling et al., 2009). As a consequence, it has been called for, on the one hand,
more statistically powerful tests than simple curve-fitting (Chave et al, 2006; Al
Hammal et al, 2015), and on the other hand, testing multiple predicted patterns
simultaneously instead of solely the SAD (McGill et al., 2007).

b. Spatial patterns

Spatial patterns form a second family of integrative patterns in ecology. The
relationship between the sampled area and the number of sampled species is the oldest
such pattern to have been studied (Watson, 1859). This curve was first regarded as a
mean to assess whether a community had been adequately sampled, i.e. to ensure that
only a marginal number of new species would appear in the sample if the sampled area
were to be increased. It was soon realized that the species-area relationship (SAR)
might also contain valuable information regarding spatial community structure. Indeed,
at the regional scale, the number of species S was found to consistently follow a power
law S o A% as a function of area A, where the exponent z takes values between 0.15 and
0.40 (Arrhenius, 1921; Williamson, 1988). This ‘law’ has later been observed to break
down at the extremes, either for areas that are below approximately 1 km? (for plants
or vertebrates), or conversely for areas that exceed the boundaries of a single
biogeographic unit (cf. Fig. 6; Preston, 1960; Shmida & Wilson, 1985). The resulting
curve exhibits an ‘S’ shape on a log-log scale, with a linear domain in the central part
corresponding to the power-law behaviour described above, and steeper slopes at both

ends.
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The three domains of the SAR reflect different processes at play. At the local
scale, the SAR directly results from sampling the local species abundance distribution:
the number of detected species first increases linearly with area and then progressively
slows down as only the rarer species remain to be sampled. At the global scale, the SAR
approaches linearity again as species with distinct evolutionary history are sampled in
different biogeographic zones. At intermediate scales, the power-law regime reflects a
slow increase in species richness with area once the local species richness has been fully
sampled. This increase corresponds to a shift in species composition with distance,
referred to as ‘beta-diversity’ by Whittaker (1960), i.e. the link between ‘alpha-
diversity’, the number of species in the local community, and ‘gamma-diversity’, the

number of species at the regional scale.
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Figure 6: Number of bird species as a function of area; data from Preston (1960). The S-shaped
Species-Area Relationship introduces two characteristic spatial scales for a given taxonomic
group (vertical dashed lines), separating ‘local’, ‘intermediate’, and ‘large’ scales. The study of
beta diversity mostly focuses on ‘intermediate’ scales, while biogeography is mostly concerned
with ‘large’ scales. Adapted from Hubbell (2001).

Conceptually, beta-diversity is the variation in taxonomic composition among
sites within a region of interest. However, several quantitative definitions coexist. One

approach is to consider beta-diversity as a quantity [ that links the mean local diversity
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o to the regional diversity y throughy = aff, so that the regional diversity can be
partitioned into independent within-community and among-community components
(Whittaker, 1960; Jost, 2007). The spatial scale that separates alpha- and beta-diversity
may be defined as the scale witnessing the regime shift in the SAR. Another approach is
to measure beta-diversity independently of alpha- and gamma-diversity as the mean
taxonomic similarity between sites or as the variance of the community matrix
(Legendre & De Caceres, 2013). The community matrix is the matrix describing the
number of individuals per species and per sites, taking usually species as columns and
sites as rows. A wealth of similarity metrics can be used to compare sites to each other,
depending for instance on the weight given to rare species, on whether the sampling
effort is homogeneous among sites or not, and on whether abundance information or

only species occurrence should be taken into account (Legendre & De Caceres, 2013).

Taxonomic similarity is well known to decrease with distance, a general pattern
of ecology that is related to the monotonous increase of diversity with area (Soininen et
al, 2007). Depending on the mechanisms of community assembly, this ‘distance-decay
of similarity’ can be interpreted either as the result of dispersal limitation, or as the
consequence of new habitats and community types being encountered. A major
motivation for the study of beta-diversity lies in the fact that it is an indirect means to
investigate the drivers of community assembly. Indeed, taxonomic similarity between
sites can be compared to distance and to environmental similarity, so as to empirically
assess the relative importance of dispersal and abiotic filtering in shaping community
composition (Tuomisto et al, 2003). This question may also be addressed by directly
comparing taxonomic composition with quantitative environmental descriptors using
multivariate statistical methods, an approach deemed more statistically powerful

(Legendre et al., 2005, 2008; cf. section IIL.2).

Formally, the distance-decay of similarity can be described using the pair-
correlation function of statistical physics, i.e. the probability for two individuals at a
given distance to belong to the same species (Chave & Leigh, 2002; Zillio et al, 2005;
Houchmandzadeh, 2009). Predictions for both the SAR and the distance-decay of

similarity can be obtained from a spatially explicit version of Hubbell’s neutral model.
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The neutral predictions are in qualitative agreement with observations, including the
tri-phasic SAR (Hubbell, 2001; Condit et al, 2002). Nevertheless, as in the case of
species abundance distributions, this does not preclude other mechanisms from being

involved.

2. Environmental DNA data

Collecting the large amounts of data required to study integrative patterns has long
been a tedious and challenging task (Lawton et al, 1998). Direct taxonomic
identification relies on rare expert knowledge, and is prone to errors. Sampling
protocols are difficult to standardize, and owing to the amount of work involved, data
collection may spread over long periods of time - sometimes years - which may
introduce biases. Last but not least, only a small fraction of biodiversity can be directly
sampled and identified by a human observer, mostly vertebrates and plants. As a result,
datasets available for the study of integrative biodiversity patterns have long been
relatively rare and limited in their taxonomic extent. However, major technological
advances have been made over the last decades that now allow for the automatic
collection of ecological data. These advances are all related to the exponential increase
in computer power that took place over the same period of time, and that has

dramatically impacted all fields of science and industry.

For instance, remote sensing of ecological features over large spatial scales can
be achieved using Lidar and hyperspectral imaging. Lidar is a small-wavelength
equivalent of radar (either airborne or ground-based) that allows for fine-grain 3D
imaging. Hyperspectral imaging consists in recording images (from a plane or a
satellite) for a much larger spectrum of electromagnetic wavelengths than the human
eye does: the additional information may for instance be used for the automated
identification of tree species from their spectral signature, especially when combined

with Lidar data (Alonzo et al,, 2014).
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Arguably, the one recent technological innovation with the strongest impact on
biology has been high-throughput DNA sequencing (Schuster, 2007). While DNA
sequencing methods have existed since the 1970s (Sanger et al., 1977), a breakthrough
occurred around 2005 by which sequencing speed was multiplied by several orders of
magnitude for a fraction of the cost of previous methods (cf. Fig. 7; Margulies et al,
2005). Since 2011, the dominant high-throughput DNA sequencing method is Illumina
sequencing, which consists in spreading and attaching the target DNA strands on a flat
surface and synthesizing the complementary strands using four-colour fluorescent
nucleotides (Bentley et al., 2008). By recording the order of appearance of the different
colours at the location of each DNA strand with a fast and high-resolution camera,
millions of strands can be simultaneously sequenced with high accuracy. The main
limitation of the method is on the length of the sequenced strands, which currently

cannot exceed 150 or 300 base pairs, depending on the exact technology.

The idea of using DNA sequencing to study biodiversity predates high-
throughput sequencing, and was introduced as a mean to study microorganisms
(Giovannoni et al, 1990). Indeed, most microorganisms can only be detected in the
environment through their DNA, collected from soil or water samples (Pace, 1997). The
idea was to identify a short DNA sequence satisfying two properties. First, it should
have conserved extremities across the range of targeted taxa, so that it can be amplified
by PCR using a single pair of primers from bulk DNA. Second, its central part should
exhibit random mutations making the different taxa distinguishable, i.e. it should not be
under strong evolutionary selection. Such a sequence is called a barcode, and the first
that has been used is the 16S rRNA gene of prokaryotes, which codes for the RNA
forming the small (16S) subunit of the prokaryotic ribosome (Giovannoni et al., 1990;
Pace, 1997). DNA barcodes have soon also been recognized as a mean to bypass the
need for traditional taxonomic expertise in identifying larger organisms, for which DNA
can be directly extracted from tissue (Hebert et al, 2003). Nevertheless, barcode
sequences can only be attributed to known taxa once a reference database has been
established for the barcode. When no reference database is available for the organisms

under study, molecular Operational Taxonomic Units (OTUs) defined based on
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sequence similarity are substituted for species in analyses. Moreover, depending on the
frequency at which mutations occur in the barcode sequence, the comparison of
sequences across species may not be congruent with traditional species delineation, and
two barcodes targeting the same taxonomic group may have widely differing levels of

taxonomic resolution.
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With the advent of high-throughput sequencing, several thousands to several
millions of barcode sequences can now be readily sequenced from a single bulk DNA
sample. As a consequence, the use of barcode sequencing to measure biodiversity from
environmental DNA - or ‘metabarcoding’ - has boomed (Bik et al., 2012; Taberlet et al,
2012b,a; Bohmann et al.,, 2014). The vast diversity of the microbial world only starts to
be fully grasped, and whole new swathes of the tree of life are being discovered (Hug et
al, 2016). Ambitious projects aim at sampling microbial diversity across the globe,
either on land (Gilbert et al, 2014) or in the ocean (de Vargas et al, 2015). In parallel,
metabarcoding can be used as a fast and standardized means to gather information on
macroscopic organisms, either using environmental DNA or, for small enough
organisms, DNA extracted from a ‘soup’ of sampled specimen (Andersen et al., 2012; Yu
et al, 2012; Gibson et al., 2014). This wealth of data has led to a renewal of interest in
the study of integrative biodiversity patterns and biogeography, which were until
recently entirely unknown for microorganisms (Martiny et al, 2006; Fuhrman, 2009;
Hanson et al, 2012). Since metabarcoding is but the simplest method to exploit the
information contained in environmental DNA, and is being replaced by approaches
making use of a larger fraction of the organisms’ genome as sequencing capacity keeps
increasing (Taberlet et al.,, 2012b), the trend toward incorporating sequencing data into

ecological studies is probably just starting.

3. The tropical forests of French Guiana

Tropical forests are estimated to concentrate half of global biodiversity, and are as such
the archetypical ‘hyperdiverse’ ecosystem (Scheffers et al., 2012). They have played an
historical role in generating hypotheses in ecology and evolution, especially regarding
the mechanisms of species coexistence (Wright, 2002). Indeed, like the phytoplanktonic
communities at the origin of the ‘paradox of the plankton’ (Hutchinson, 1961), they
harbour for many taxonomic groups a wide range of species competing for the same

resources. Hubbell’s neutral theory of biodiversity has been elaborated based primarily
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on the observation of tropical forest tree communities (Hubbell, 2001), and much of the
ensuing debate has initially focused on these communities as well (McGill, 2003;
Ricklefs, 2003; Volkov et al, 2003). In addition to their unparalleled biodiversity,
tropical forests are also thought to harbour the majority of the non-microbial terrestrial
taxa still unknown to science (Scheffers et al, 2012). Hence, the automated
measurement of integrative patterns is well suited to their study, and is in particular

uniquely comprehensive compared to other possible approaches.

Steady state 15,000 years ago Steady statein 28,000 years
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Figure 8. Whether ecosystems can be considered pristine depends on the temporal scale
considered: map showing estimated changes in phosphorus (P) concentrations over time in
South America following the sudden extinction of most large mammal species 12,000 years ago
and the consecutive disruption of nutrient transport through dung, likely caused by human
arrival. Adapted from Doughty et al. (2013).

Unlike most land ecosystems on Earth, a significant, if fast dwindling, fraction of

tropical forests can still be considered to be in a pristine state, thus guaranteeing access
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to natural processes unaffected by human activities. Amazonia represents the world’s
largest tropical forest, and within it, French Guiana counts among its least disturbed
parts (Hansen et al., 2013). Nevertheless, recent findings have challenged the idea of an
entirely pristine Amazonian basin. Indeed, it appears that human population density
was relatively high in places until the European conquest (Heckenberger et al, 2008).
Moreover, on a longer timescale, the Amazonian basin may still be in a transient state
following the sudden disappearance of most large mammal species 12,000 years ago,
which was likely caused by the arrival of human hunters and has had deep

consequences on nutrient transport and seed dispersal (cf. Fig. 8; Doughty et al,, 2013).

Two research stations have been established in French Guiana in the 1980s for
research on Amazonian biodiversity. This is where the data used in this thesis have
been collected. The Nouragues research station is about 100 km inland, in the heart of
the Nouragues natural reserve, and is devoted to the study of the undisturbed lowland
forest as well as of the neighbouring inselberg. The Paracou research station, near the
coast, is devoted to the study of the long-term effects of logging on biodiversity
(Gourlet-Fleury et al, 2004). In both stations, soils are acidic and nutrient-poor, as is
typical in tropical forests, with a more sandy soil in Paracou and a more clayey soil in
Nouragues. The mean rainfall is about 3,000 mm per year, with relatively strong

seasonal variation, and temperature is around 26°C throughout the year.
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Statistical approaches

In this section, I introduce the statistical approaches used in this thesis. I first briefly
review the classical approaches of community ecology. I then introduce Hubbell’'s
neutral model and Dirichlet mixture models, which are respectively the foci of the
second and third chapters of this thesis, by emphasizing their common mathematical

structure based on the Dirichlet distribution and its Dirichlet process extension.

1. Comparing models to data in ecology

In physics, empirical data can often be satisfyingly characterized by a one-dimensional
mathematical function fitted to the data (‘curve fitting’). This is not the case in ecology,
because observations do not as a rule tightly follow the prediction of a theoretical
model, and because data points are always relatively scarce and costly to acquire. To
take full advantage of the available data, it is hence essential to account for the
statistical distribution of the observations around the fitted model, and often for the
statistical dependence between observations. In the absence of a theoretical prediction,
deterministic trends in the relationship between variables are conversely assumed to
be very simple (e.g., linear). Thus, ecological models aiming at comparison with data
need to be expressed in probabilistic terms, and model fitting heavily relies on

likelihood-based inference (Fisher, 1925; Pawitan, 2001).

The likelihood function of a model is given by the probability distribution p(X|8)
for the data X to be observed conditional on the model’s parameters 8. The model is
fitted to data by maximizing the likelihood function L(6|X) = p(X|6), which is a means
of simultaneously estimating the model’s parameters as (X) = argmaxg[L(6|X)] and
measuring the goodness-of-fit as L(X) = maxg[L(0|X)]. In practice, the logarithm of the
likelihood is maximized, and the normalization factor in the likelihood expression is

discarded. Depending on the situation, the focus may be on measuring goodness-of-fit
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or on estimating and interpreting model parameters. If several alternative models are to
be compared to each other, this can be achieved by comparing the Akaike Information
Criterion for each model, equal to 2K — 21In L(X), where K is the number of parameters
in the model (Akaike, 1974; Burnham & Anderson, 2002). If only one model is to be
compared to the data, the most popular approach is to assess how likely the data at
hand would be to be observed if they were to be generated by the probabilistic model
under consideration. To this end, the value taken by a ‘test statistics’ - for instance the
log-likelihood In L(X) - is compared to its theoretical distribution given the model. The
threshold for rejecting the model with reasonable confidence is traditionally set at 5%

probability, following the example of Fisher (1925).

Another approach to likelihood-based inference consists in estimating the full
probability distribution of the model’s parameters conditional on the data instead of
only their most likely value (Gelman et al, 2014). This approach is called Bayesian
inference, in contrast to maximum-likelihood inference, since the full probability
distribution of the model’s parameters 8 is given by Bayes’ equation p(6|X) =
p(X|0)p(0)/p(X) (Bayes & Price, 1763). Another distinction between both approaches
is that maximum-likelihood inference assumes that
argmaxg[p(0]X)] = argmaxy[p(X|6)], and thus implicitly that p(@) is a uniform
distribution. In contrast, p(6) is often used to express prior belief on parameter values

in Bayesian inference. The normalization factor p(X) = fep(X|9)p(9), or marginal

likelihood, can then be used as a measure of goodness-of-fit accounting for all possible
parameter choices. Because it is less analytically tractable than maximum-likelihood
inference, Bayesian inference has been less employed historically. However, it can now
be performed numerically, and even though it is usually more computationally
demanding than maximum-likelihood inference, it has become increasingly popular
with the steady increase in computer power. One of the reasons of its success is that it

can accommodate complex models in which the likelihood is difficult to maximize.
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2. The statistical tools of community ecology

Univariate models such as simple linear regression, where observations are regarded as
realizations of a singe random variable, can be distinguished from multivariate models
where observations result from several non-independent random variables. The
analysis of community matrices relies on multivariate statistical methods, where the
abundance, or the occurrence, of each of the p taxa is regarded as a random variable
with a realization at each of the n sampling sites. Not all of the many multivariate
methods classically used in community ecology are explicitly model-based: they
typically combine multivariate linear regression, eigenvalue decomposition and the use
of (dis)similarity metrics (Legendre & Legendre, 2012). Their results are often
interpreted within the framework of the ‘analysis of variance’ (ANOVA), which consists
in partitioning the variance of the observed variables into components corresponding to

different sources of variation.

The multivariate methods that include an eigenvalue decomposition step (or a
generalized version of it) are called ‘ordination’ methods. A cornerstone of multivariate
analysis is Principal Component Analysis (PCA), a simple ordination method of
widespread use well beyond ecology. It consists in rotating p observed variables around
their mean so as to obtain p uncorrelated variables ordered by decreasing variance.
Namely, the n-by-p matrix T containing the p new variables is obtained as the matrix
product T = XW, where X is the n-by-p matrix containing the centred original variables,
and W the p-by-p matrix formed by the eigenvectors of the covariance matrix
1/(n — 1) XTX ordered by decreasing eigenvalues. The first use of PCA is to decorrelate
the data. It may also be used for reducing data dimensionality by discarding the
independent variables accounting for the least variance. Thus, PCA allows for
conveniently representing the data by projecting them on the two or three axes that
account for the most variance. To investigate the dependence of a community matrix on
a set of explanatory variables, such as environmental variables measured at the
sampling sites, a classical method is to perform a multivariate linear regression of the
community matrix on the explanatory variables, followed by a PCA on the matrix of
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fitted coefficients, a method known as Canonical Redundancy Analysis (RDA). Using
partial linear regression, RDA can be extended into ‘partial RDA’ to compare the effect

of several sets of explanatory variables on the community matrix.

Clustering methods constitute another family of extensively used statistical
methods in ecology (Legendre & Legendre, 2012), as well as more generally in data
mining and machine learning (Bishop, 2006; Jain, 2010). They aim at partitioning the
data into ‘natural’ clusters of observations, by searching for structure in the matrix of
pairwise similarity between observations. As such, their scope overlaps to some extent
with that of exploratory ordination methods such as PCA. In the terminology of machine
learning, clustering algorithms are ‘unsupervised’ algorithms, i.e. they aim at
discovering patterns without being provided any prior information, in contrast to

‘supervised’ algorithms aiming at classifying patterns based on pre-existing criteria.

The most popular clustering algorithms in ecology are ‘hierarchical’ ones. They
consist in recursively splitting the data into clusters of observations starting from the
whole dataset - or conversely, recursively agglomerating clusters of observations
starting from the individual observations - by maximizing between-cluster dissimilarity
at each step. Dissimilarity between two clusters is most commonly measured as the
mean pairwise dissimilarity between the observations of each cluster, a method called
UPGMA (‘Unweighted Pair Group Method with Arithmetic Mean’). The pairwise
dissimilarity between observations can be measured using any dissimilarity metrics,
which is often an advantage in ecology owing to the wide range of dissimilarity metrics
in use (Legendre & De Caceres, 2013; cf. section II.1.b). Another advantage of
hierarchical clustering is that the result can be displayed as a tree of hierarchically
nested clusters (or ‘dendrogram’): in addition to visualizing data structure, this helps
choose the number of clusters according to the desired level of similarity within
clusters. Hierarchical clustering is however computationally intensive for large datasets.
Moreover, because splits - or merges — decided at each hierarchical step cannot be
undone and have a strong impact on the subsequent steps, the algorithm may be easily

trapped in suboptimal solutions for large and noisy datasets.
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‘Partitional’ algorithms, which consist in searching for the optimal partition of
the data into a predefined number of clusters, form a second family of algorithms that
are better adapted to large datasets (Jain, 2010). The most widespread partitional
algorithm is k-means clustering, which formally consists in finding the k clusters that
minimize within-cluster variance in the Euclidian space of observations, with k a fixed
parameter. Unlike hierarchical clustering, which is purely heuristic, the problem of k-
means clustering can be reframed as the fit of a multivariate statistical model to the
data (specifically, a ‘Gaussian mixture model’). This is however achieved using heuristic
algorithms, which may converge to suboptimal solutions. The most common algorithm
consists in randomly setting the position of the k cluster centres in the space of
observations, delineating the clusters by assigning each observation to the closest
cluster centre based on Euclidian distance, and then iteratively reshaping the clusters
using their mean in the previous step as their new centre, until convergence. Lastly,
‘network science’ provides a range of clustering algorithms that are based on a graph
representation of the similarity matrix (Rosvall et al, 2009; Fortunato, 2010). These
methods that are well adapted to large datasets have recently enjoyed a rise in
popularity in ecology (Vilhena & Antonelli, 2015; Bloomfield et al, 2017; Wang et al,
2017).

A pervasive assumption in classical statistical models is that observations are
normally distributed - i.e., follow Gaussian probability distributions. This assumption
may be explicit, or sometimes implicit. For instance, model fitting by least-square
regression amounts to maximizing the log-likelihood of independent identically
distributed normal variables centred on the fitted model. Likewise, the assumption in
PCA that the observed variables can be entirely characterized by their mean and
variance implies that they are normally distributed, since this property is unique to the
Gaussian distribution. A justification for the normality assumption is that an
observation on a sample can typically be regarded as the sum, or the mean outcome, of
many random draws, yet the central limit theorem states that the mean of a sufficiently
large number of random variables is always normally distributed. Thank to the many

convenient mathematical properties of the Gaussian distribution, exact analytical
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expressions have been obtained for maximum-likelihood estimators and for the
theoretical distribution of test statistics. Prior to the advent of computers, such
analytical results were an essential condition for the practical usefulness of statistical
models. This is however not the case anymore, and the exploration of models that are

not based on the Gaussian distribution is now possible.

3. The Dirichlet distribution and its Dirichlet process extension

a. The Dirichlet distribution

Not all natural processes are additive, and as a consequence, not all quantities can be
assumed to be normally distributed as the sum of a large number of random draws.
Some processes are multiplicative, and a direct consequence of the central limit
theorem is that the product of a large number of random draws will follow a log-normal
distribution. Indeed, for N random variables X;, In(TT, X;) = Y¥,InX;. Hence, the
central limit theorem states that In([T, X;) is normally distributed for large N. It
follows from the definition of the log-normal distribution that [T, X; is log-normally
distributed. As mentioned in section Il.1.a, this is a possible explanation for the often-
observed log-normal distribution of species abundances. Indeed, if the abundances of
species are independent of each other, a species’ change in abundance through time
may take the form of a random multiplicative factor applied to its reproductive output

at each generation, depending for instance on environmental fluctuations.

However, if changes in species abundance are rather driven by demographic
drift, as assumed in a neutral framework, relative species abundances are better
described by the following process: starting from abundances (a4, ..., ag), where a; is
the number of individuals in species i, one of the S species is picked at each time step
with probability equal to its relative abundance (or equivalently, one individual is
picked at random in the population), and its abundance is increased by one individual. If

this sampling scheme, called a Pélya urn, is repeated indefinitely, the distribution of
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species relative abundances (x,,...,x5) will follow the Dirichlet distribution of
parameters (ay, ..., @s), which may be regarded as a distribution over distributions

(Blackwell & MacQueen, 1973):

S
p(xy, ., Xs_1|Ay, ..., ) = —F(Zis=1ai) | |xf“_1
1 Xs-1(Aq, -0, Ag s T(ay) | | i

s-1
xs=1-— z X;
i=1

['is the gamma function generalizing the factorial to real numbers and taking value
I'(a) = (a — 1)! when a is a positive integer. Note that the description of the Pélya urn
originally involves drawing balls of different colours from an urn instead of individuals

of different species from a community.

If there is no a priori reason to assume differences between the S species,
parsimony leads to setting all initial abundances a; to the same value a (‘symmetric’
Dirichlet distribution). In that case, some species will randomly emerge as more
abundant than others over time in the Pdlya urn sampling scheme, since any above-
average abundance tends to be amplified. The shape of the limiting distribution after an
infinite number of time steps is heavily influenced by the ‘concentration parameter’ a,
which can formally take any positive real value. If a is much smaller than 1, the first
species to be picked by the sampling scheme will have its abundance updated toa + 1,
and will have a disproportionately higher probability to be picked again at the next time
step. Conversely, if a is much larger than 1, the fact that a species’ abundance is
increased by 1 has little influence on its subsequent probability to be picked. Thus,
depending on the value of a relative to 1, the symmetric Dirichlet distribution can either
describe a species abundance distribution with a few dominant species and many rare
one (a < 1), reminiscent of the structure observed in species-rich communities, or in
contrast a very even species abundance distribution (a > 1). In the general case, any
set of parameters (ay, ..., as) can be rewritten as (6py, ..., 0ps), with ¥3_, a; = 6 and
p; = a;/0, so that ¥$_, p; = 1. The Dirichlet distribution with asymmetric parameters

behaves similarly to the symmetric case, except that the relative abundance x; of
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species i has mean p; over all possible draws from the Dirichlet distribution, while its

variance is determined by the value of /8.

The symmetric Dirichlet distribution is the distribution that Fisher (1943)
implicitly assumed for relative species abundances to derive the log-series SAD, defined
as E[®,] = ax™/n (cf. section Il.1.a). He assumed that the number of sampled
individuals per species followed a negative-binomial distribution of parameters
(a/S,x) (without the zero-abundance class, because the latter cannot be observed), as
the result of Poisson sampling from a large number S of Gamma-distributed species
abundances with shape parameter a/S and rate parameter (1 — x)/x. The negative-
binomial distribution Pyg can indeed be obtained as
Pyg(kla/S,x) = fooo Pp(k|Dps (A a/S,(1 —x)/x)dA, where P, and p; denote the
Poisson and Gamma distributions. Yet, if S species have abundances n; identically
distributed as Gamma(a/S,0), their relative abundances n;/N, where N = Z§=1 n;,
follow a symmetric Dirichlet distribution with concentration parameter a/S (Devroye,
1986). Since Fisher assumed a/S « 1 to obtain the log-series, this indeed corresponds

to the regime of very uneven relative species abundances.

b. The Dirichlet process and the Ewens sampling formula

As it is apparent in the case of Fisher’s log-series, a limitation of the Dirichlet
distribution as a mean to describe species relative abundances is that it requires the
number S of species to be fixed in advance. It is hence appealing to generalize the
Dirichlet distribution by making S tend toward infinity. Let us consider the time step
N + 1 of the Polya urn sampling scheme with symmetric concentration parameter a,
where N individuals have already been added to the original Sa individuals. The
probability to pick species i is (n; + a)/(N + Sa), where n; is the number of times
species i has already been picked. Hence, the probability to pick one of the Sy species
that have already been picked at least once is (N + Sya)/(N + Sa), while the

probability to pick one of the S —Sy species that have never been picked is
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(S —Sy)a/(N + Sa). If we simultaneously make S tend toward infinity and a tend
toward 0, keeping the product Sa equal to a constant 8, we obtain an infinite-
dimensional version of the Pélya urn, called the Hoppe urn, where the probability to
pick an existing species i at time step N + 1isn;/(N + 0) and the probability to pick a
new species is 8 /(N + 6) (Hoppe, 1984). After an infinite number of time steps, species
relative abundances are distributed according to a Dirichlet process of concentration
parameter 8 and uniform base distribution, which can be regarded as the limit of the S-
dimensional symmetric Dirichlet distribution of concentration parameter /S when S

tends toward infinity (Ferguson, 1973; Teh et al., 2006).

More generally, a Dirichlet process of concentration parameter 8 and base
distribution p = (p;);en* can be regarded as the limit of the S-dimensional Dirichlet
distribution of concentration parameters (6p, ..., ps), where Y;_, p; = 1, when S tends
toward infinity (Ferguson, 1973). The infinite base distribution p is the distribution
from which new species are sampled during the Hoppe urn scheme of parameter 6:
each new species is sampled from an infinite number of possible species labels with
probability weights p. If the base distribution is uniform, as assumed in the previous

paragraph, a never-encountered label is simply assigned to each new species.

The Dirichlet process is most intuitively understood by sampling from it. If N
individuals are sampled from relative species abundances described by a Dirichlet
process of parameter € and uniform base distribution, their partition (®,, ..., ®y) into S
species, where @, is the number of species with abundance n, obeys the ‘Ewens

sampling formula’ of parameters (6, N) (Ewens, 1972):

N @
P(dy, ..., Dy, N) = - 1_[ ! <9> ’
SRR OO § EN At

where (8)y = T'(6 + N)/T'(0). This formula also describes the partition of N individuals
into S species obtained by stopping a Hoppe urn scheme of parameter 6 at step N, thus
the Dirichlet process does not need to be explicitly defined for the Ewens formula to
emerge from the Hoppe urn scheme. For a large enough sample, the &, are

approximately drawn from independent Poisson random variables with parameter 6 /n
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(Crane, 2016). A remarkable property of the Ewens formula is that it yields a sampling-
invariant description of relative species abundances characterized by the parameter 6:
indeed, any random subsample of N; < N individuals taken from the initial sample
obeys the Ewens sampling formula of parameters (8, N;). Moreover, the probability of
observing S species in a sample of N individuals does not depend on the exact partition
but only on 8 and N, as P(5|6,N) = s(N,S) 85/(8)y, where the function s denotes the
absolute value of the Stirling numbers of the first kind (Ewens, 1972). Thus, 8 can be
regarded as a sampling-invariant measure of diversity in a species pool described by

Ewens sampling formula, irrespective of whether this species pool is finite or infinite.

4. Neutral models

The Ewens formula was first discovered by Ewens (1972) in the context of population
genetics. Indeed, it arises as the stationary distribution of allele frequency in the
Wright-Fisher and Moran models, which describe the neutral dynamics of alleles in a
population (Fisher, 1930; Wright, 1931; Moran, 1958; Wakeley, 2009). More
importantly for ecologists, the Ewens formula is also the stationary distribution of
species frequency in Hubbell’s neutral model of biodiversity, which was directly
inspired by population genetics (Hubbell, 2001). These models all bear some
resemblance to the Hoppe urn sampling scheme, except that they account for the death
of individuals, so that the total number of individuals remains constant over time. The
Wright-Fisher model assumes that all N individuals die at each time step and are
replaced by a new generation of N new individuals. The alleles of these new individuals
are sampled (with replacement) from the alleles in the previous generation, except for a
small probability in each new individual of mutating into a never-encountered allele.
This translates into a demographic drift of allele frequency through time, and, over
longer time scales, by a turnover in the pool of alleles through random mutation and
extinction events. The Moran model is similar but assumes than individuals die and are
replaced one at a time, which allows for overlapping generations. Hubbell’s model is

almost identical to the Moran model, except that alleles are reinterpreted as species and
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mutation as speciation, and that dying individuals cannot be replaced by their own
offspring. Even though all three models have the same stationary abundance
distribution described by Ewens formula, the exact expression of 8 depends on the
model’s dynamics (Etienne & Alonso, 2007). In Hubbell’'s model, 8 = (N — 1) v/(1 —v),
where v is the speciation probability at each time step, i.e. the probability that the dying

individual is replaced by a new species.

The key innovation of Hubbell’s model compared to population genetics models
is that it also includes the description of a dispersal-limited local community connected
to the regional metacommunity through immigration. The dynamics of the local
community is identical to that of the metacommunity, except that new species arise
through immigration instead of speciation: at each time step, an individual dies and
there is probability m that the replacing individual results from immigration from the
metacommunity instead of from local reproduction (if m = 1, there is no limitation to
dispersal). The difference is that unlike individuals arising through speciation, an
immigrating individual may belong to a species that is already present in the local
community. Thus, the stationary distribution of species frequency in a local community
of size N obeys a Ewens sampling formula of parameter I = (N —1)m/(1 —m),
modified to account for the fact that the immigrating ancestors to the current local
community are sampled from the Ewens formula of parameter 8 (Etienne & Olff, 2004).
The resulting two-layer sampling formula was derived by Etienne (2005). The ‘Etienne
sampling formula’ can also be regarded as the result of ‘dispersal-limited sampling’
from Ewens formula, which can be defined as a type of skewed sampling (Etienne &
Alonso, 2005). Importantly, Etienne formula still satisfies the sampling-invariance
property of Ewens formula, i.e. any random subsample of N; < N individuals will follow

the Etienne formula of parameters (6, I, N,).

Ewens and Etienne sampling formula allow for likelihood-based inference of the
neutral parameters 8 and /, as well as for rigorous statistical tests of model fit (cf. Fig. 9;
Etienne & OIff, 2005; Etienne, 2007; Al Hammal et al, 2015). In practice, the
metacommunity cannot be directly observed and is usually regarded as infinite, while

the local community is equated with the observed sample of individuals. Thus, 8 and m
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are often chosen as model parameters instead of 8 and I, reflecting the fact that the
number of individuals is known in the local community but not in the metacommunity. /
can be interpreted as the effective number of individuals in the metacommunity that are
in direct competition with the local community for reproduction. Furthermore, data
usually consist of samples from several local communities. This considerably increases
statistical power, since statistical inference does not only rely on the shape of the local
abundance distributions, but also on the taxonomic overlap between local communities.
Exact sampling formulas have been derived both for the case where all local
communities have the same immigration parameter m (Etienne, 2007) and for the case

where they do not (Etienne, 2009).
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Figure 9. Bayesian inference of neutral parameters based on the ‘Etienne sampling formula’:
map showing the joint posterior probability density of 8 and m for the tree abundance data
(>10 cm dbh) of the 50-ha Barro Colorado Island monitored plot. Adapted from Etienne & OIff
(2004).
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Despite the interest of exact sampling formulas for statistical inference,
approximate approaches have proved more practical in some instances. When the
number of samples is large enough, the metacommunity composition may be simply
approximated as the sum of all samples, instead of being explicitly modelled. In so
doing, one can avoid making any assumption on the metacommunity when estimating
immigration rates, or when testing the assumption of dispersal-limited neutral
community assembly (Sloan et al, 2006; Jabot et al, 2008; Harris et al, 2015).
Furthermore, when abundance data are unavailable or unreliable, the immigration rate
from the metacommunity may be estimated solely based on the occurrence of species
across samples (Sloan et al, 2006). A limitation of exact sampling formulas is that their
computation is numerically demanding when the number of individuals becomes large.
An alternative approach is then to represent the sample as continuous species relative
abundances rather than in a fully discrete way. The species relative abundances
(x4, ...,Xs) in a large dispersal-limited sample containing S species may be
approximated as following the Dirichlet distribution of parameters (Ipy, ..., Ips), where
(p1, ..., ps) are the relative abundances of those S species in the metacommunity (Sloan
et al, 2007). In turn, (py,...,ps) can be approximated as following the symmetric
Dirichlet distribution of parameter /S (Woodcock et al, 2007). As is apparent from
section IIL.b, these continuous approximations may be extended to the case of an infinite
number of species S by modelling the relative abundances x in the local community as a
Dirichlet process of parameter and base distribution p = (p;);en+, and the relative
abundances p in the metacommunity as a Dirichlet process of parameter 8 and uniform
base distribution (Harris et al, 2015). Such a model is referred to as a ‘hierarchical

Dirichlet process’ in the language of machine learning.

While multivariate likelihood expressions are powerful tools for statistical
inference, they are difficult to visualize, and one-dimensional SADs may be better suited
for intuitively understanding the model’s behaviour. For instance, the non dispersal-
limited SAD in Hubbell’s model is equal to (Moran, 1958; Vallade & Houchmandzadeh,
2003):
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6(N+1—n),

E|®,|0,N] = ———7——
(@010, N} n(N+6—n),

and converges toward Fisher’s log-series with 8 = « for a large enough number N of
individuals (Chave, 2004). In general, the SAD can be regarded as the first moment of

the multivariate sampling formula, since it is obtained as:

E[®,]6,N] =Z ®,P(Py, ..., Py|0,N)
{@4,.. NIV, id;=N}

A more straightforward approach to deriving this quantity is to express Hubbell’s
dynamical model through the approximate conditional transition probabilities
P(n+1|n,0), P(n — 1|n,0) and P(n|n, ) that a given species with current abundance n
will have abundancesn+1,n—1, or n at the next time step, respectively. The
stationary probability distribution of this ‘master equation’ then provides an estimate of
E[®,,]6, N], once multiplied by the observed number S of species in the sample (Volkov
et al, 2003; Alonso & McKane, 2004; McKane et al., 2004; O'Dwyer et al, 2009). Unlike
the exact ‘genealogical’ approach described above, this approach typical of statistical
physics does not explicitly account for the interdependence between species, induced
by the constraint of a fixed total number of individuals through time (‘mean field’
approach). While this constraint was originally deemed a key element of the model
since it accounts for competition between species (Hubbell, 2001), both the
genealogical and the master equation approaches have been found to yield the same

SAD expression for a large enough sample (Etienne et al., 2007).
5. Categorical mixture models

Let us assume that the relative abundances x = (x, ..., x5) of S species, with ¥3_, x; = 1,
follow a Dirichlet distribution of parameters a = (ay,...,as) . The categorical
distribution describes the choice of one out of S species (or categories) with probability
weights x. [t can be regarded as a special case of the multinomial distribution, defined

as P(n|N,x) = N!/(ny! ...ny!) x;* ...x;ls, which describes more generally the outcome
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of N successive categorical draws with probability weights x. A remarkable property of
the Dirichlet distribution is that it is the conjugate prior of the categorical and
multinomial distributions. Namely, if a multinomial sample n = (n,, ..., ng) is observed
from x, with ¥3_, n; = N, then the posterior distribution of x given the observations n
still follows a Dirichlet distribution, but with parameters updated toa + n = (a; +
ny, .., as + Ng) to account for the observations. Fundamentally, this means that the
Dirichlet distribution is the “natural distribution occurring when the probability that a
forthcoming observation is of certain class only depends on the number of times this class
has already been observed and on the total number of observations made so far” (Crane,

2016).

The posterior distribution of x given the observations n is defined as
p(x|n,N,a) = P(n|N,x)p(x|a)/P(n|N,a) . The marginal likelihood P(n|N,a) =
fo(nIN, x)p(x|a) dx is the ‘Dirichlet-multinomial’ distribution of parameters (N, a),
i.e. the distribution of a N-individual multinomial sample with Dirichlet-distributed
probability weights of parameters a. The Dirichlet-multinomial distribution can be

regarded as a finite-dimensional version of the Ewens formula (Crane, 2016).

Because the Dirichlet distribution is the conjugate prior of the categorical and
multinomial distributions, it is the natural prior in any probabilistic model involving
categorical or multinomial sampling from discrete classes. This is the case of
‘categorical mixture models’, which describe observations as sampled from a mixture of
K classes, with ‘mixture weights’ ), = (0 )ke[L k), Verifying Xx_; 0, = 1. The different
classes are typically not directly observable: instead, each is characterized by a
probability distribution of parameters ¢* from which all the observations assigned to
class k are sampled. The probability distribution associated with each class may be for
instance Gaussian if observations are continuous, or categorical if observations are
discrete. If the goal of statistical inference is to capture data structure, the focus will be
on estimating the mixture weights 8, of the different classes given the observations, as
well as the parameters ¢¥ of the probability distribution associated with each class. If
the goal is to cluster the observations (or to classify them, if inference is conducted in a
supervised way), the focus will be on assigning to each observation its most likely class
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k. In a fully Bayesian setting, the parameters ¢* of the probability distribution
associated with class k may also be given a prior distribution, such as a Dirichlet prior in
the case of categorical observations. In this latter case, the model may be referred to as
a ‘Dirichlet mixture model’, since it describes observations as categorical or multinomial

samples from a mixture of Dirichlet-distributed classes.

This family of models has found applications in many fields. In particular, Holmes
etal (2012) applied such a model to investigate the structure of microbial communities
sampled by environmental DNA sequencing. They assume that each sample is a local
community belonging to one of K possible classes, which they interpret as
‘metacommunities’. To each of these metacommunities is assigned a mixture weight 6y,
which is the probability for a sample to originate from it. A metacommunity k is defined

by probability weights ¢p* = (¢){‘)i over the S OTUs observed in the dataset, from

€l1,5]
which local OTU abundances are sampled. These probability weights are themselves

Dirichlet-distributed with parameters ak = (ag‘)ie[[ls]]. For practical purposes, the

parameters af may be further assumed to follow a ‘hyperprior’ distribution
parameterized by ‘hyperparameters’, so as to reduce the number of fixed parameters to

estimate.

A version of this model was introduced earlier in population genetics, and
implemented in the software Structure (Pritchard et al, 2000). In the context of
population genetics, each sample is an individual, each class is a population, and
observations consist in the alleles found at a number of loci in each individual. As a
consequence, the model exhibits a few minor differences compared to that of Holmes et

al. (2012). Since there are L observed loci per individual, each class k is not defined by

one distribution, but by L distributions ¢*! = (¢}

over the §; possible alleles at
ief1,5;]

locus [, each of these distributions having Dirichlet prior. Moreover, only one categorical
draw from ¢*! is observed at each locus in each individual, instead of a multinomial

sample.
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Proportion

Figure 10. Valle et al (2014) applied Latent Dirichlet Allocation to identify forest tree
assemblages in the Eastern United States, based on tree census data from 34,174 forest plots.
Maps show the relative proportion of each of the K = 11 LDA classes in each forest plot.
Adapted from Valle et al. (2014).

In the same paper, Pritchard et al. (2000) proposed a second slightly more
sophisticated model, which includes the possibility of admixture between populations.
This is achieved by relaxing the assumption that each individual m originates from a
single population, and by assuming instead that it originates from a mixture of K

populations with individual-specific weights 8™ = (6;*)ye[1 x7- As in the model without

admixture, the K populations are each defined by a single set of L distributions ¢**

across the dataset. Thus, each observed allele is the result of a categorical draw from the
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individual-specific weights 8™, followed by a second categorical draw from the
population-specific and locus-specific weights ¢*!. Another version of this model with
admixture was independently proposed under the name ‘Latent Dirichlet Allocation’
(LDA) by Blei et al. (2003) in the field of natural language processing, a subfield of
machine learning, to address the problem of ‘topic modelling’. In this context, the aim of
the model is to decompose text documents into topics based on their word content.

Each class or topic k is defined by its distribution ¢p* = (d){‘)ie[[l s Over the S distinct

words observed in the whole text corpus, and each document m is a mixture, with

document-specific weights 8™, of multinomial samples from these distributions.

This model with admixture has proved very successful and has been
subsequently extended, both in its population genetics version (Falush et al, 2003,
2007; Hubisz et al., 2009) and in its topic modelling version (Griffiths & Steyvers, 2004;
Rosen-Zvi et al.,, 2004; Teh et al., 2006; Blei, 2012). The latter (LDA) has been applied to
a wide range of domains pertaining to machine learning where its ability to handle large
and complex datasets has been praised, including satellite image processing (Vaduva et
al, 2013), bioinformatics (Liu et al, 2010), fraud detection in telecommunications
(Olszewski, 2012) and social sciences (Mauch et al., 2015). In particular, it has been
recently applied to spatially and temporally explicit forest tree composition data in
ecology, where its ability to decompose samples into classes learnt over the whole
dataset allows for capturing smooth spatial and temporal gradients across the samples
(cf. Fig. 10; Valle et al.,, 2014). Related models have also been applied to the detection of
different source environments in microbial community samples, with a focus on
supervised inference: Knights et al. (2011) applied this approach to the detection of
contamination in a medical environment, while Shafiei et al. (2015) proposed a more
sophisticated two-layer model, where each class is itself a mixture of higher-level

classes.

As in the case of neutral models, a limitation of Dirichlet-multinomial models is
that the number of classes must be specified in advance. A number of methods have
been used to help select the number of classes (Airoldi et al, 2010). Nevertheless, the
most rigorous approach is to design a model with a potentially infinite number of
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classes, an approach referred to as ‘nonparametric Bayesian’, since the size of the model
is not fixed in advance by a parameter. This can be achieved by setting a Dirichlet
process prior over the mixture weights, since the Dirichlet process is, like the Dirichlet
distribution, conjugate to the categorical and multinomial distributions (Crane, 2016).

This amounts to making the number K of classes tend toward infinity.

In the infinite-dimensional extension of the model without admixture, the
mixture weights @ = (0 )en* OVer classes follow a Dirichlet process of uniform base
distribution over class labels, while each class k is defined as in the finite-dimensional

case by its distribution ¢p* = (gb{‘)ie[[l .

over the S possible observations (Teh et al,
2006). In the model with admixture however, a hierarchical Dirichlet process needs to
be defined. Indeed, if an independent Dirichlet process of uniform base distribution
were to be assigned in each sample m as a prior to the mixture weights ™ = (6;") xen*,
two documents would not have any class in common. Thus, in the infinite-dimensional
extension of the model with admixture, the mixture weights 8™ in each sample m
originate from a Dirichlet process of base distribution # over classes, while the
distribution B follows itself a Dirichlet process of uniform base distribution over class
labels (Teh et al, 2006). Likewise, two local communities in the infinite-dimensional

approximation of Hubbell’s neutral model would not have any species in common if not

for the hierarchical Dirichlet process construction (cf. section 111.4).
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IV. Objectives and outline

1. Objectives

Most of Earth’s biodiversity is concentrated in a few hyperdiverse ecosystems, such as
tropical forests. Yet, the mechanisms that permit the coexistence of such a large number
of species are not fully understood. In particular, the relative influence of deterministic
niche processes and stochastic dispersal limitation has long been debated. One
approach to address this question is through the study of integrative biodiversity
patterns, such as the distribution of species abundances and the turnover of species
composition through space. At a time when human activities threaten both biodiversity
and the associated ecosystems, a better understanding of these patterns and of the

underlying mechanisms is much needed.

A major obstacle lies in the difficulty to measure biodiversity. Indeed, it has long
relied on direct human observation. However, recent technological advances now make
automated data collection possible, which could alleviate this problem. Environmental
DNA sequencing is especially promising for improving our understanding of
biodiversity patterns. Indeed, it eases and standardizes the measurement of
biodiversity, increases the amount of available data by orders of magnitude, and
dramatically expands the range of accessible taxa. In particular, it allows for taking into

account microbial diversity, arguably the ‘hidden part of the biodiversity iceberg’.

Nevertheless, taking advantage of this new type of data is challenging. First, the
range of information types that can be collected is restricted, in that no complementary
measurements, such as size for instance, can be made on organisms. In most cases, even
taxonomic information is relatively imprecise owing to the lack of reference database
for the retrieved DNA sequences. Thus, inference is mostly based on patterns of
unidentified OTUs. Second, because observations are indirect and noisy, their

interpretation is not as straightforward as in the case of direct censuses of individual
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organisms. Third, the high diversity of microbial communities makes for large and

sparse datasets, to which existing statistical approaches are not well suited.

The overarching goal of this thesis was to investigate how environmental DNA
sequencing, and more generally the automated collection of ecological data, could
contribute to our understanding of biodiversity patterns and of their underlying
mechanisms. This work was motivated by two observations. First, theoretical models in
ecology are for the most part not oriented toward comparison with data, and when they
are, as in the case of Hubbell’s neutral model, they are centred on individual organisms,
which hampers their comparison to environmental DNA data. Second, existing
statistical methods in ecology have limitations in their ability to tackle such data. Thus,
this work has an important methodological component. A second goal of this thesis was
to apply the developed approaches to soil DNA data collected in the forests of French
Guiana, so as to better understand community assembly in tropical forests. This

includes a dataset that was collected as part of this thesis.

2. Outline

The first chapter addresses the issue of measuring beta diversity patterns from
environmental DNA data, and of using these patterns to disentangle dispersal-limited
and niche-based processes across the different domains of life. To this end, a soil DNA
dataset was collected in French Guiana, in forest plots that are approximately regularly
spaced on a logarithmic scale. A range of soil properties was also measured from the
soil samples. Three approaches are compared: distance-based analyses using
dissimilarity metrics, raw-data analyses using multivariate ordination, and fitting the
neutral prediction for the decay of taxonomic similarity with distance. These
approaches are typical of those used to analyse classical biodiversity census data. In
addition, the effect on human disturbance through logging is assessed, based on a more

limited number of plots presenting a gradient of logging intensities.
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The second chapter focuses on species abundance distributions measured from
environmental DNA data, and addresses the problem of comparing this pattern to the
prediction of Hubbell’s neutral model. Indeed, it was unknown to what extent this
pattern may remain informative in spite of the potential noise. Simulation results are
presented, that quantify how the estimates of the neutral diversity and dispersal
parameters are biased when inferred from environmental DNA data. A benchmark
dataset of limited extent is used to assess the level of noise that is to be expected in real

data.

Like the first chapter, the third chapter discusses spatial patterns in
environmental DNA data, but it proposes an approach differing from those classically
followed in ecology. It investigates the potential of a model-based statistical method,
Latent Dirichlet Allocation, to decompose the data into assemblages of spatially co-
occurring OTUs. In addition, a method is proposed to measure the stability of the
decomposition. The approach is tested through simulations, and by applying it to a large
soil DNA dataset. This dataset follows a regular spatial sampling scheme over a forest
plot, and was collected in French Guiana before the start of this thesis. The insights on
soil community structure provided by the approach are discussed, making use of Lidar

measurements of environmental features.

Finally, the discussion provides a synthesis of the results, and discusses the

perspectives arising from this thesis.
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Chapter outline

Beta diversity patterns, i.e. how taxonomic composition shifts through space, have long
been used to infer the mechanisms of community assembly. Indeed, depending on
whether taxonomic composition covaries with environmental conditions or with
geographical distance, it can be inferred whether community assembly is driven by
deterministic niche processes or by neutral dispersal limitation. In this chapter, this
reasoning is applied to a soil DNA dataset collected in various 1-ha forest plots in French
Guiana, for a range of barcodes spanning most of the tree of life. To enable both types of
processes to be distinguished, the sampled plots cover a range of soil types as well as a
range of inter-plot distances. Inter-plot distances are approximately regularly spaced on
a logarithmic scale, so as to better assess the effect of dispersal limitation on taxonomic
composition. Indeed, neutral dispersal limitation is predicted to yield a linear decrease
of taxonomic similarity with log-distance. As a side question, the effect of past logging

activities on soil biodiversity is assessed based on a set of disturbed forest plots.
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Abstract

Disentangling the processes that cause the assembly of ecological communities is a key
challenge, and these include both stochastic (neutral) processes and deterministic
niche filtering. Progress in biodiversity assessment using environmental DNA now
streamlines the study of biodiversity patterns across domains of life. Using soil DNA
samples, we quantified the causes of variation in beta diversity patterns across major
taxonomic groups in the lowland tropical forest of French Guiana on a spatial scale
ranging from 40 m to 140 km, for a range of soil physico-chemical properties. We
quantified the respective influence of soil conditions, dispersal limitation, and human
disturbances on beta diversity. In undisturbed forest plots, we found that the beta
diversity of bacteria and protists was primarily driven by soil conditions, while the
observed patterns in plants, and to a lesser extent in annelids, were best explained by
dispersal limitation. Both factors had an effect on fungi, arthropods and insects,
whereas we could not detect influence of either factor on nematodes and flat worms.
This analysis was consistent with a comparison of our data to the similarity decay
predicted by the neutral theory of biodiversity. These results suggest that spatial
patterns of plant biodiversity across the Amazon do not necessarily extend to other
taxonomic groups, and that environmental factors play a foremost role in explaining
these patterns in tropical soils. Along the disturbance gradient, we found a significant
shift in taxonomic composition in two functionally important groups, plants and

annelids, a smaller effect on fungi, and no effect in the other groups.
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Chapter 1 - DNA-based Beta Diversity

Introduction

Beta diversity describes the turnover of taxonomic composition through geographical
and environmental space, and yields insight into the mechanisms of community
assembly (Whittaker, 1960, 1972; Rosenzweig, 1995; Gaston & Blackburn, 2008). As a
measure of the spatial variability of taxonomic composition, it may be broadly defined as
the difference or ratio between regional (gamma) diversity and local (alpha) diversity
(Whittaker, 1960; Chao et al, 2012). This has important practical implications for
biodiversity estimates and conservation (Basset et al,, 2012; Hubbell, 2013; ter Steege et

al, 2013; Socolar et al., 2017).

The extent of beta diversity and its causal mechanisms are dependent on the
spatial scale at which taxonomic turnover is considered (Soininen et al, 2007). Beta
diversity is often quantified within a biogeographic region, so that it is not caused by a
large climatic difference or a different biogeographic history between stations (Kreft &
Jetz, 2010). Variation in beta diversity can be ascribed to two types of processes: niche-
based processes, when abiotic and biotic environmental heterogeneity determines the
spatial distribution of taxa based on their phenotypic differences, and neutral processes,
when turnover in taxonomic composition results from demographic stochasticity
combined with limited dispersal (Leibold et al.,, 2004). However, because environmental
differences tend to also be spatially structured, both types of processes are often difficult

to disentangle (Gilbert & Lechowicz, 2004).

One frontier in the study of beta diversity is that it has most often been restricted
to a single taxonomic group, and especially forest trees (Whittaker, 1960, 1972; Nekola
& White, 1999; Condit et al., 2002), amphibians (Baselga et al., 2012), and arthropods
(Harrison et al, 1992; Novotny et al., 2007; Hortal et al., 2011), and freshwater taxa
(Cottenie, 2005). Studies that have attempted to compare patterns of beta diversity
across taxa are scarce (but see Harrison et al, 1992). This is largely because the effort
needed to coordinate inventories of biological diversity across taxa is enormous, and
increases dramatically for smaller-bodied taxa (Lawton et al, 1998). DNA-based

methods have lifted this constraint and they have dramatically widened the range of
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taxa for which diversity patterns can be measured. Instead of collecting organisms and
assigning them a taxon label based on observation and on expert knowledge,
identification is based on minute amounts of biological material and on the sequencing
of universal DNA amplicons (DNA barcodes), a method first developed for
microorganisms (Pace, 1997). This method has been extended to rapid taxonomic
surveys: bulk DNA is extracted from environmental samples and DNA is amplified using
universal primers, then sequenced (Taberlet et al, 2012, Yu et al. 2012). This
environmental DNA approach to biological diversity inventory aims at detecting the
presence of cells or of extracellular DNA for a range of taxa in a sample. Such an
approach is in principle applicable to any taxonomic group in the tree of life (Bahram et
al, 2013; Schuldt et al, 2015; Siles & Margesin, 2016; Vincent et al, 2016). Since it is
possible to normalize the DNA extraction and sequencing procedures for many samples

at once, such an approach is suited to the exploration of beta diversity patterns.

We expect that smaller organisms with short generation times display higher
beta diversity at short spatial scale, i.e. over a few meters, than larger organismes,
because they are locally filtered by environmental heterogeneity (Ramirez et al.,, 2014;
Mariadassou et al, 2015). Conversely, the beta diversity of small organisms is predicted
to be less dependent on distance compared to large organisms, owing to their higher
dispersal ability (Soininen et al, 2007). Thus, we expect the spatial distribution of small
organisms to be primarily governed by niche effects, while we expect large organisms to
better comply with distance-limited neutral dynamics (Hubbell, 2001; Martiny et al.,
2011). These predictions have direct implications for the maintenance of biodiversity in
disturbed landscapes. Organisms with higher dispersal abilities should be found even in
heavily disturbed habitats. On the other hand, slow dispersers should be more affected

by disturbances, and would also take longer to recolonize habitats after abandonment.

In this study, we compare soil beta diversity patterns across domains of life in a
lowland tropical rainforest. We collected soil samples at locations separated by a
geographical distance ranging from 40 m to 140 km, and spanning a variety of soil
types, which we quantified, as well as a range of human disturbance intensities. We
targeted taxonomic groups using barcodes with different levels of taxonomic
resolution, which allowed us to test the robustness of the observed patterns. We thus

address the following questions: 1) What is the relative importance of dispersal
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limitation and environmental filtering in explaining beta diversity across taxonomic
groups? 2) How good a fit is the dispersal-limited neutral theory for the various
taxonomic groups? 3) How does beta diversity depend on forest disturbance by logging
activities? Finally, we explore the implications of our findings for community ecology

and for the conservation of tropical forest ecosystems.
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Methods

1. Sampling scheme

We sampled fifteen 1-ha plots in the undisturbed lowland rain forest of French Guiana,
to which we added four 1-ha plots in disturbed habitats (see below). Geographical
distances between plots in pristine forest are approximately regularly spaced on a
logarithmic scale. This choice was motivated by the expectation of a linear relationship
between taxonomic similarity and log-distance in a spatially explicit neutral model
(Chave & Leigh, 2002). Twelve plots are located at the Nouragues research station
(about 100 km inland; latitude 4° 5° 17" N and longitude 52° 40’ 48" W; Bongers et al,
2001), and three at the Paracou research station (near the coast; latitude 5° 18" N and
longitude 52° 53’ W; Gourlet-Fleury et al. 2004); see Fig. 1 for locations. All plots consist

of terra firme forest, but cover a range of soil types (see below).

In addition to sampling plots in undisturbed forest, we also sampled areas that
have undergone disturbances of different intensities. At Paracou, some plots have been
experimentally logged at several logging intensities starting in 1986
(https://paracou.cirad.fr/experimental-design). In the two heaviest logging treatments
(T2 and T3), 33-56% of the aboveground biomass was lost due to the felling operations.
Eighteen years after logging, the impact of logging activities was still visible. We sampled
two contiguous 1-ha plots in one of the most heavily impacted areas (P12 plot). We also
sampled two contiguous 1-ha plots in a 25-ha area (Arbocel plot) 14 km away from

Paracou, that was fully clear-cut in 1976 and left regenerating since then.

Within each 1-ha plot, we collected eighty soil samples of about 30 g each with an
auger from the mineral soil horizon (~10 cm deep) along a square grid. To minimize
sampling bias and coarsen the spatial grain, we pooled soil samples five by five following
a cross-shaped pattern about 15 meters across, with one sample at the centre and four
samples in the corners (Fig. 2). This resulted in sixteen pooled samples per plot. We

extracted DNA from about 10 g of soil per pooled sample within a few hours after
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sample collection, using the protocol described in Zinger et al. (2016). The remaining

soil was dried for subsequent analyses of soil properties.

“Inselberg
summit

Paracou

French
—_Guiana

Figure 1: Sampling scheme. Relative position of all sampled 1-ha forest plots, in (A) Paracou,
and (B) Nouragues; (C) relative position of the Paracou, Arbocel, and Nouragues sites.
Undisturbed plots are in red and the four disturbed plots (two in Paracou and two in Arbocel) in
yellow. In Nouragues, PP and GP denote respectively the Petit Plateau and Grand Plateau
permanent monitored plots, and ‘GP-liana’ denotes the L18 subplot in Grand Plateau.

DNA amplification and sequencing yielded read counts for Operational
Taxonomic Units (OTUs) at sixteen sites per plot (see below). We further pooled these
samples four by four by averaging relative OTU abundances, so as to obtain one
sampling point per 0.25-ha plot (Fig. 2). We defined the distance between two sampling
points as the distance between the centres of the two sets of pooled samples. Some
samples were removed from the dataset owing to insufficient PCR yields (see below);

hence some sampling points have fewer than four samples or are missing.
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Soil samples were also pooled four by four to obtain a single composite sample
per 0.25-ha subplot. For each pooled soil sample, twelve measurements were made from
about 60 g of dry soil. Granulometry distinguished the clay (0-2 um), silt (2-63 um) and
sand fractions (63-2000 um). The pH of soil in water solution was measured, as well as
total carbon (C) and nitrogen (N) mass fractions. The mass fraction of plant-available
phosphorus (P205) was measured using the Olsen extraction method. Lastly, a BaClz
extraction was performed and the concentration of major elements was measured using

ICPMS (Ca, Mg, K, Fe, Mg, and Al).

2. Molecular and sequence analyses

We amplified five barcodes by PCR from soil samples, targeting bacteria (16S rRNA gene
V5-V6 regions; Fliegerova et al., 2014), eukaryotes (18S rRNA gene v7 region; Guardiola
etal, 2015), Viridiplantae (chloroplastic trnL-P6 loop; Taberlet et al., 1991), fungi (ITS1)
and insects (mitochondrial 16S rRNA; Clarke et al, 2014). Each soil sample was
amplified thrice independently by PCR, following the same protocol as in Zinger et al
(2017). Amplicons were labelled with a distinct nucleotide tag for each PCR, and six
sequencing libraries, one per barcode, were prepared. Sequencing was carried out using
paired-end Illumina sequencing (MiSeq 2x250 for 16S bacteria, 16S insects and ITS
fungi; HiSeq 2x100 for 18S eukaryotes and trnL plants). Negative PCR controls were
included in the protocol to help detect contaminants. The PCRs that yielded less than

1,000 reads were discarded from subsequent analyses.

Data analyses were conducted as in Zinger et al. (2017). Sequencing data were
curated using the OBITools package (Boyer et al, 2016): paired-end reads were
assembled, dereplicated, and low-quality sequences were excluded. The resulting
sequences were clustered into OTUs using the Infomap algorithm (Rosvall et al, 2009),
with a dissimilarity threshold of three mismatches and exponentially decreasing weights
on edges. OTUs represented by a single sequence were removed, and the most abundant
sequence in the cluster was taken to be the true sequence. Taxonomic identifications
were assigned to OTUs using the ecotag program in the OBITools package based on

Genbank and SILVA databases (Zinger et al., 2017). OTUs with less than 75% similarity

78



Chapter 1 - DNA-based Beta Diversity

to any reference sequence were removed, as well as those with a taxonomic
identification outside of the taxonomic group targeted by the barcode. Further steps
were taken to minimize the number of contaminant OTUs as described in Zinger et al.
(2017). Rare OTUs were not removed, and only the relative OTU abundances in each

sample were used for further analyses.

Sampling scheme

1-ha plot
o
S -
=
¢} ¢} o o o ¢} ¢} o
o _|
S .\\ /p o °
¢} v P o o o o o
N 7
P m]
SN
o /;:r ‘&\ o o o o o
7 N
8 . ) . )
o o o o o o o o
) ° [} [>) o [} [} o
O N /I
S - » 5N ° °
° © [} © o o o o
m] m]
) ° [} [>) o o o o
O ~ /’
Q . ] [} °
° © ° © o ¢} ¢} o
o -
I T T T T 1
0 20 40 60 80 100

Figure 2: Sampling scheme in each 1-ha forest plot. In each of the nineteen plots (fifteen
undisturbed and four disturbed), eighty soil samples were collected (open and full black circles),
and were pooled five by five (small dashed crosses). After conducting the molecular and
sequence analyses on the sixteen pooled samples (full black circles), results were pooled four by
four (large dashed cross), and statistical analyses were performed on the resulting four effective
sampling points (open squares). The sixteen pooled soil samples were also directly pooled four
by four for conducting soil analyses.

Taxonomic identifications for the eukaryote 18S marker were used to assign

OTUs to sub-clades (Table S1): arthropods, insects, annelids, nematodes, flat worms
(Platyhelminthes), protists, fungi, and plants (Viridiplantae). The 18S marker was
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compared with more specific markers for fungi, plants, and insects (ITS1, trnL, and 16S,
respectively; Table S1). A rarefaction analysis was performed for each marker by
sampling with replacement between 1 and 8,000 reads per sample (Fig. S1). For all

markers, the number of OTUs reached near saturation in most samples.

3. Statistical analyses

We performed all statistical analyses in R using the ‘vegan’ package (version 2.4-2,

available at https://cran.r-project.org/), and followed the guidelines of Legendre &

Legendre (2012). Analyses were performed separately for each taxonomic group.

We performed a PCA on soil variables after centering and normalizing them (i.e.,
subtracting their mean and dividing them by their standard deviation over all sampling
points). Since clay, silt and sand fractions sum to 1, they yield only two independent
measurements; we chose to keep clay and silt fractions, as clay and sand fractions were
almost perfectly anticorrelated (correlation coefficient of -0.97; see Results, Table S3).
Before conducting the PCA, we lumped Ca, Mg, Mn and K concentrations together into a
single ‘exchangeable cations’ variable. In all further analyses, we used the first four PCA

axes as environmental variables.

We first studied the taxonomic dissimilarity among pairs of sampled locations
(‘distance-based’ approach). We computed the Sorensen taxonomic dissimilarity index
(number of non-shared OTUs divided by number of OTUs in both samples), which is one
possible measure of occurrence-based beta diversity (Koleff et al., 2003). The Sorensen
index between pairs of sampling points was regressed against their environmental
dissimilarity and against the logarithm of their geographical distance (measured in
meters). The environmental dissimilarity between two sampling points was defined as
their Euclidian distance with respect to the four soil PCA axes. To test the significance of
regressions of the Sorensen index against environmental and geographical distances, we
performed Mantel tests with 999 permutations using simple and partial Pearson'’s

correlation coefficients as test statistics (functions ‘mantel’ and ‘mantel.partial’).
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Figure 3. Principal Component Analysis of soil variables for the fifteen undisturbed plots,
projected on the first two axes (40% and 30% of total variance). ‘GP-bottom‘ corresponds to the
lower half of the GP-013 plot, which belongs to a bottomland.

We then directly compared the taxonomic composition of sampled locations
using canonical ordination ('raw-data' approach; Legendre et al,, 2005). We regressed
the OTU abundance data on environmental and spatial variables using Canonical
Redundancy Analysis (RDA; function ‘rda’). We first applied the Hellinger
transformation to OTU abundance data (i.e., square-root of the relative OTU abundances
at each sampling point) and centred them per OTU (i.e., subtracted the mean over
sampling points). We used the six selected soil variables as explanatory environmental
variables, after centring and normalization. We used Principal Coordinates of Neighbour
Matrices (PCNM) as spatial explanatory variables representing different possible
patterns of spatial autocorrelation in the data (Borcard & Legendre, 2002; Borcard et al.,
2004). Two separate PCNM decompositions were performed for the Nouragues and
Paracou sites (function 'pcnm'; Borcard & Legendre, 2002), i.e. in each site we
performed a Principal Coordinates Analysis of the distance matrix between sampling
points, after setting all distances larger than a threshold distance to four times this
threshold distance (chosen as the minimal distance required to connect all sampling
points). We obtained seventeen PCNM variables with positive eigenvalues for

Nouragues, and six for Paracou. PCNM variables from both sites were assembled into a
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single staggered matrix. The two submatrices were connected by adding a ‘dummy’
variable distinguishing Nouragues and Paracou sites by two different values. At each
site, we added UTM coordinates (northings and eastings) as two additional explanatory
variables after centring and normalization, so as to account for linear spatial trends that

cannot be captured by PCNM variables.

The total variance of taxonomic composition was partitioned between an
environmental component and a spatial component (function 'varpart'; Borcard et al,
1992; Legendre et al, 2005). Two RDA-based forward selections of environmental
variables and spatial variables were performed separately (function 'ordiR2step’ with
0.05 threshold p-value for adding a variable to the model; Blanchet et al., 2008), yielding
two RDA-based linear models. We only proceeded with variable selection when the RDA
conducted on all variables was significant (p < 0.05; Blanchet et al,, 2008); when it was

not for either environmental or spatial variables, we did not partition the variance.

We then tested the predictions of the dispersal-limited neutral theory on the
dataset. Neutral processes are predicted to yield a decay of taxonomic similarity with
distance in the absence of dispersal barrier (Chave & Leigh, 2002). We used here
F,(A,B) = ¥5_, p4pF as a measure of taxonomic similarity between samples 4 and B,
where p# is the proportion of species s in sample 4, p? that in sample B, and S the total
number of species. Chave and Leigh (2002) predicted that in a continuous spatially
explicit dispersal-limited neutral model with spatial density of individuals p, dispersal
parameterized by a Gaussian kernel with variance o2, and a rate of apparition of new
species equal to v, F,(4, B) depends only on the pairwise distance r between samples,
and can be expressed as F,(r) = —aln(r) +b, with b/a = ln(\/E/ZU) + y (wherey is
Euler’s constant) and 1/a = pma? — In(v)/2 (cf. Appendix). We measured F, among
pairs of sampling points, regressed it against the log-transformed geographical distance
In(r), and assessed significance by Mantel test for 999 permutations, using Pearson’s
correlation coefficient as test statistics. The mean dispersal distance per generation v2¢
can be obtained provided that an estimate of p is available. For plants, we assumed that
most of DNA retrieved came from tree species, and that the forest holds 500 mature

2

trees (= 10 cm dbh) per hectare, i.e. p = 0.05 m™=, which is close to observed densities
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(see Condit et al. 2002). We also computed the quantity a2 /v, which may be interpreted

as the ratio between dispersal ability and diversification rate.
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Figure 4: Occurrence-based (Sorensen) dissimilarity as a function of log-distance. The red
line figures the linear regression.

Finally, we conducted a separate analysis to explore how beta diversity depends

on logging activities. Because our sampling effort along this disturbance gradient was
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limited, we simply investigated the relative effect of disturbance and soil conditions on
the various taxonomic groups without accounting for spatial structure. We measured
the Sorensen dissimilarity index among pairs of sampling points in all Paracou and
Arbocel plots, both disturbed and undisturbed. We quantified logging intensity by a
dummy variable taking value 0 in undisturbed locations (Paracou P6 and P11 areas), 1
in mildly disturbed ones (Paracou P12 area), and 2 in strongly disturbed ones (clear
cutting; Arbocel). We then followed a similar approach as for the comparison between
soil effects and spatial aggregation in the main dataset. We performed a multivariate
linear regression (i.e., a one-dimensional RDA) of the OTU abundance data (Hellinger-
transformed and OTU-centred) against the logging intensity variable (centred and
normalized). When the linear regression was significant, we partitioned the total
variance of taxonomic composition between a logging intensity component and a soil
component. We obtained the soil component as previously: we performed a PCA on soil
variables, kept the first four axes, and built a RDA-based model by forward variable

selection.
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Results

Chemical and physical soil properties varied across the samples (Table S2). The pH
ranged from 3.8 to 5.5, C content from 1.9% to 4.2%, N content from 0.12 to 0.31%, and
P content was very low (see also Grau et al., 2017). Soils were also poor in terms of
exchangeable cation content (K*, Ca%*, Mg?*, Mn?*), and varied significantly in terms of
texture, with sandy (up to 80% sand) to clayey (up to 80% clay) soils. Paracou soils
tended to be sandier and more nutrient-poor than Nouragues soils. This suggests that
the Nouragues-Paracou comparison compounds geographical distance and
environmental distance effects. The first PCA axis (40% of total variance) corresponds
to organic matter (total carbon and nitrogen) and clay contents, which are correlated to
aluminium concentration and anticorrelated to pH; the second PCA axis (30% of
variance) corresponds to nutrient and silt contents, the third to phosphorus (13% of

variance) and the fourth to iron (7%; Fig. 3).

Geographical distance Soil
Mean
Desroncen Tgist  Tdistpart slopeg;s: Tsoil Tsoilpart  SIOP€soil
Plants trnL 0.42 0.65%**  0.61*** 0.038 0.29%** 0.06 0.011
Bacteria 16S 0.49 0.16* -0.02 0.014 0.46%** 0.44%** 0.028
Protists 18S 0.60 0.16** 0.05 0.012 0.30%*** 0.26%** 0.015
Fungi ITS 0.87 0.43%F*  (0.29%** 0.029 0.54*** 0.45%** 0.025
Arthropods 18S 0.53 0.36%**%  (0.29%** 0.026 0.28%*** 0.17* 0.014
Insects 16S 0.89 0.23%**  0.16%* 0.013 0.25%** 0.18** 0.010
Annelids 18S 0.35 -0.031 -0.08 -0.004 0.10 0.12 0.009
Nematodes 18S 0.70 0.11* 0.09 0.012 0.05 0.02 0.004
Platyhelminthes 18S 0.57 -0.079  -0.11* -0.015 0.07 0.10 0.009

Table 1: Linear regression of taxonomic dissimilarity (Sorensen index) against soil and
geographical distance. 745, 7501, Taist part: Tsoil,part are the simple and partial Pearson’s

correlation coefficients. Significance was assessed using Mantel tests: *** for p < 0.001; ** for
0.001 <p<0.01; *for 0.01 <p < 0.05.
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Sorensen dissimilarity varied across taxonomic groups, and for the same group
depending on the tested DNA barcode (Table 1; see Table S4, Fig. S2 and S3 for a
comparison between barcodes within group). It was highest for insects 16S and fungi
ITS (ca. 0.9 in average), and lowest for annelids and plants trnL (ca. 0.4 in average).
When plotted against log-transformed geographical distance (Fig. 4), Sorensen
dissimilarity showed a strongly significant correlation for plants, fungi, arthropods and
insects, a weak correlation for protists, bacteria, and nematodes, and no correlation for
annelids and flat worms (by decreasing order of correlation coefficient; Table 1).
Sorensen dissimilarity was also regressed against soil dissimilarity (Fig. 5). We found a
strong correlation to soil dissimilarity in fungi, bacteria, protists, plants, arthropods and
insects, and no correlation in annelids, flat worms and nematodes (Table 1). To test a
possible collinearity between soil dissimilarity and geographical distance, we finally
computed the partial correlation ruis;part to log-distance conditional on soil dissimilarity.
The partial correlation to log-distance was significant in plants, fungi, arthropods, and
insects, but not in the other groups. Conversely, when computing the partial correlation
Isoilpart to soil dissimilarity conditional on log-distance, the correlation was retained in

fungi, bacteria, protists, insects and arthropods, but lost in plants.

RDA-based partitioning of beta-diversity showed that environmental factors and
spatial aggregation together explained a proportion of beta-diversity that ranged from
45% in bacteria to zero in flat worms (Fig. 6, Tables 2, S5). Within the fraction of beta
diversity explained by soil effects, the first two soil PCA axes were the main explanatory
factors, with the silt-nutrient axis playing a particularly important role in bacteria (Fig.
S4). The relative contribution of spatial aggregation and soil properties varied across
groups, with a major effect of spatial aggregation relative to soil in annelids and plants,
while both effects were of the same magnitude for bacteria. While the collinearity
between environmental and spatial variables introduced uncertainty as to their actual
relative importance to beta diversity, pure spatial aggregation explained an equal or
higher proportion of the variation compared to pure environmental factors in all groups.

For bacteria and protists, this contrasts with the conclusions of distance-based analyses.

The fit of the neutral prediction for the decay of taxonomic similarity F, with
geographical distance was statistically significant for plants, bacteria, protists, fungi,

insects and annelids, but not for arthropods, nematodes and flat worms (Table S6, Fig.
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S6). At a given geographical distance, the F, statistic tended to be more scattered than
Sorensen dissimilarity and to exhibit outliers (Fig. S6). Assuming a density of one plant
individual per 20 m?, as measured for mature neotropical forest trees, we estimated a
mean dispersal distance per generation of 43 m in plants. The dispersal to
diversification ratio 02 /v was highest for fungi and insects, intermediate for plants and

annelids, and smallest for protists and bacteria (Table S6).

Finally, we found that past logging activities had the strongest effect on plant
composition (Table S7, Fig. S6). They also had an effect on annelids, which was larger
than the effect of soil conditions, and a small but strongly significant effect on fungi.

However, they had little to no detectable effect on other groups.

Pure soil . . Pure spatial Total explained

fraction Mixed fraction fraction variance
Plants trnL 2.4%%* 7.8 11.0%** 21.1%*
Bacteria 16S 12.7%%* 18.5 14.0%** 45.2%%*
Protists 18S 2.2%* 8.7 10.0%** 20.8%**
Fungi ITS 3.8%** 4.9 5.9%x* 14.5%*%*
Arthropods 18S 1.5% 2.8 2.4 6.7***
Insects 16S 0.1 1.3 1.5%* 2.9%%%
Annelids 18S 5.5%* 5.5 15.3%** 26.2%x*
Nematodes 18S 1.4%* 1.4 2.4 5.2%¥x*
Platyhelminthes 18S NA NA NA NA

Table 2: Fractions of variance (adjusted R2, in %) explained by Canonical Redundancy
Analysis for environment-only and spatial-only models. Significance: *** for p < 0.001; ** for
p <0.01; *for p < 0.05.
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Discussion

We have explored the patterns of soil beta diversity in the tropical forests of French
Guiana based on fifteen undisturbed 1-ha plots, as well as four disturbed plots. Distance-
based analyses using Sorensen dissimilarity suggest that at our study scale, plant beta
diversity is driven predominantly by geographical distance, bacteria and protist beta
diversity by soil properties, while fungi, arthropod and insect beta diversity depends on
both types of factors. Finally, annelid, nematode and flat worm beta diversity did not
correlate with any of these factors. The observation that both geographical distance and
environment play a role in explaining community assembly has already been reported
for a range of taxonomic groups, either in eukaryotes or in bacteria (Cottenie, 2005;
Thompson & Townsend, 2006; Martiny et al., 2011). However, our results are one of the
rare case studies where beta diversity has been quantified across the same sites over a

broad range of taxonomic groups.

The dependence of plant beta diversity on geographical distance in tropical
forests has been reported in the past, and has been presented as evidence for the
importance of dispersal-limited neutral processes in shaping these ecological
communities (Condit et al, 2002). Likewise, the strong dependence of beta diversity on
soil conditions in unicellular organisms (bacteria and protists) is in agreement with
expectations (Soininen et al., 2007; Ramirez et al, 2014). While we could expect fungi to
be primarily responsive to environmental conditions owing to their good dispersal
abilities, widespread plant-fungi associations may be responsible for the observed
dependence on both environmental conditions and geographical distance (Bahram et al,
2013). Indeed, dispersal is hampered by host specificity, and the the distribution of host-

specific fungal taxa reflects that of their plant hosts.

For insects, previous studies have reported a low betadiversity (Novotny et al.,
2007; Basset et al., 2012). However, these studies have primarily focused on above-
ground herbivores, which are known to have good dispersal ability. In contrast, we have
sampled soil-dwelling insects, and thus our finding that these organisms have high beta

diversity, influenced by both soil properties and dispersal limitation, does not
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necessarily contradicts the results of previous publications. However, our finding is
significant because it shows that spatial patterns of biodiversity in insects cannot be
easily generalized across ecosystem compartments. Finally, annelids, nematodes and
flatworms are represented by a limited number of OTUs (Table S1), and the lack of

patterns in these groups might be due to a lack of statistical power.

Bacteria 16S Protists 18S Fungi ITS
o | o <
o | @ | o |
o o o
© | © | o |
o o o
< | < | ha
o o o
[V N N
o o o
o | e e
o o o
T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Plants trnL Arthropods 18S
e ] e | e ]
o | «© | «© |
o o o
© | © |
o o
< | <
o o
o N
o o
o | < |
o o
T T T T T T T T
0 2 4 6 8 0 2 4 6 8
Nematodes 18S Platyhelminthes 18S

1.0

— o O OO OEEEEEND® 0O® O O 000 o

1.0

Sorensen dissimilarity

Soil dissimilarity

89



Chapter 1 - DNA-based Beta Diversity

Figure 5: Occurrence-based (Sorensen) dissimilarity as a function of soil dissimilarity. Soil
dissimilarity is computed as the Euclidian distance between the first four PCA axes of the
measured soil variables. The red line figures the linear regression.

The RDA (‘raw data’) approach led to slightly different conclusions than Mantel-
based correlations, and brought additional insight. A significant fraction of annelid beta
diversity could be explained by spatial aggregation, while distance-based analyses using
Sorensen dissimilarity did not detect any signal in this group. This is in line with the
limited dispersal abilities reported for annelids in this area (Decaéns et al, 2016).
Spatial aggregation was also found to be an important factor explaining the spatial
distribution of protists and bacteria in addition to soil properties. In contrast, we found
little explanatory power for insects and arthropods. Overall, this is in line with the
higher sensitivity to spatial structure reported in the literature for ‘raw data’ analyses
(Legendre et al., 2005), even though the interpretation of this spatial structure as being
indicative of neutral processes is not straightforward (Smith & Lundholm, 2010).
However, a potential problem in our study design is that the logarithmic geographic
sampling scheme is not ideally suited to the description by PCNM variables. Because of
the challenging nature of extracting DNA onsite to minimize contaminations, we could
not multiply the number of sampling points, but we hope to address the issue of the

sampling design for DNA-based beta diversity analyses in a forthcoming contribution.

The fit of the neutral prediction for the decay of similarity with distance was
significant for all taxonomic groups except arthropods, nematodes and flat worms, but
was poorer than the fit of Sorensen dissimilarity to log-distance. A possible confounding
factor is that unlike the Sorensen index, the F, similarity measure is sensible to noise in
OTU abundances, and may also be biased by uneven sampling effort among samples in
DNA-based data. Overall, a decay of F, similarity with distance was detected in the
groups for which raw-data analyses showed an effect of spatial aggregation, which is
consistent with the fact that both types of analysis rely on abundance information. In
particular, a decay of F, similarity with distance was found in annelids while none was
detected using Sorensen dissimilarity, which suggests that in this group, differences
between samples lie in the abundance pattern of OTUs rather in their occurrence

pattern.
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Figure 6: Variance partitioning between soil PCA axes and spatial structure (PCNM
decomposition). The spatial model is the reunion of two independent PCNM decompositions,
one for the Nouragues sampling sites and one for the Paracou sampling sites, plus the UTM
coordinates in both groups of sites. The two PCNM decompositions are connected by a dummy
variable that takes one value in Nouragues and another in Paracou. Forward variable selection is
performed on soil and spatial variables before variance partitioning. Hatching indicates non-
significant pure fractions.

Our estimate of 43 m for the mean dispersal distance per generation in plants
was close to that measured empirically for neotropical trees (39 m; Condit et al.,, 2002),
and to that estimated by fitting the neutral similarity distance-decay prediction to tree
census data (between 40 and 73 m; Condit et al, 2002). Because an important part of
the retrieved plant DNA originates from the tree root system, conflating the density of
plant individuals with that measured for trees may be a reasonable assumption,

however such estimates for the density of individuals are difficult to obtain in the other
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taxonomic groups. The dispersal to diversification ratio 62 /v is directly measured as the
ratio between the intercept b and the slope a of the linear regression of F, against log-
distance (cf. Appendix). Lower 62 /v in fungi and insects reflects the low mean level of
similarity between samples in these groups, which is, under a neutral model, indicative
of faster diversification than dispersal, while the reverse would hold true in higher-o2 /v

bacteria and protists (Table S6).

The challenge of measuring beta diversity is critical in conservation biology
(Koleff et al,, 2003; Socolar et al, 2017), and today the vast majority of the lowland
tropical landscapes are partly deforested or at least degraded by human activities, with
direct and measurable impact on biological diversity (Barlow et al, 2016). The tropical
forests of French Guiana have experienced low rates of forest clearance over the past
decade (Hansen et al, 2013) and our sampling sites can therefore be considered as
undisturbed, and a baseline for the many studies focused on disturbed landscapes.
Hence, in our study, the processes shaping community assembly are unlikely to be
ascribed to human factors. We acknowledge that humans may have had previously
unnoticed impacts on biodiversity especially on cultivated plants (Heckenberger et al,
2008) or earthworms (Marichal et al, 2010), however the great majority of our
undisturbed sites are located far from present or historical locations of disturbances and
we are therefore fairly confident that the patterns we have uncovered are contingent on
natural processes. However, to better quantify the possible magnitude of human
disturbances, we also studied how beta diversity is altered by intensive logging and by
clear-cutting, at sites where the forest has had at least 18 years to recover. Differences in
vegetation are easily noticeable on the field, and are indeed reflected in our DNA-based
study. This analysis, although limited in the number of samples, also shows an effect of
past logging activities on annelids and to a lesser extent on fungi; however little impact

on the other components of soil biodiversity can be detected.

The current study is predicated on our assumption that DNA-based metrics of
beta diversity do capture the same ecological processes as classic ones. We did find that
our data capture most of the diversity present in our soil samples, as indicated by
rarefaction analyses (Fig. S1). We also tested whether our results were dependent on
the choice of the DNA barcode, by comparing the results obtained for the same
taxonomic group with two distinct DNA barcodes (Tables S4, S5, Fig. S4, S5). In most
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cases, the results appear robust to the choice of the DNA barcode, even though we
detected, as expected, more signal in the specific barcodes for plants, insects and fungi
than in the generic 18S barcode of lower taxonomic resolution. Overall, although we
emphasize that current DNA-based inventories do not always capture the same
taxonomic grain as classic surveys, this approach has the advantage of being scalable,
and it should thus be appropriate for rapid biodiversity inventories, especially in fragile,

or threatened ecosystems.
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Supplementary Information

# OTUs # Reads
Plants trnL 776 5,142,400
Plants 18S 71 366,646
Bacteria 16S 11,380 3,863,620
Protists 18S 295 240,223
Fungi ITS 4,312 2,151,746
Fungi 18S 386 832,153
Arthropods 18S 342 463,057
Insects 16S 3,497 1,331,880
Insects 18S 70 185,446
Annelids 18S 18 145,044
Nematodes 18S 81 10,672
Platyhelminthes 18S 32 15,619

Table S1: Number of OTUs and read count per taxonomic group.
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PH Cwt Nt P20s  Clay  Silt Sand Al Fe Mg Mn K Ca

Unit None (g/kg) 5‘1?5 %) (%) (%) (cmol+/kg)

iﬁflﬁftrg 49 305 18 <50 275 46 679 21 0081 027 0011 0.097 0.08
PP-F21 49 291 19 58 336 40 626 26 0068 013 0011 0.088 0.09
PP-H20 43 343 21 73 481 45 474 25 0.144 046 0018 0.127 0.26
PP-H21 48 311 22 60 510 43 447 23 0063 037 0017 0082 0.25
GP-L11 50 357 30 53 733 128 139 12 0006 0.67 0125 0113 1.48
GP-L12 46 370 31 73 718 168 114 16 0006 043 0215 0112 0.75
GP-013 43 326 21 68 717 128 156 35 0.030 051 0.070 0114 0.75
GP-Liana 52 276 26 78 520 304 17.6 0.4 0005 1.65 0252 0143 3.64
Balanfois-1 3.9 418 29 <50 787 7.6 138 35 0041 022 0028 0.084 0.35
Balanfois-2 3.9 407 29 <50 796 60 144 33 0046 031 0025 0.087 027
Parare-5 44 359 26 103 645 123 233 28 0056 059 0020 0114 0.1
Parare-6 40 381 25 113 555 192 254 40 0058 024 0019 0116 0.16
Paracou-06.3 50 192 12 65 134 72 794 12 0043 022 <0.010 0.078 0.10
Paracou-06.4 49 201 13 83 122 70 809 12 0035 0.16 <0.010 0.058 0.11
Paracou-11.1 50 201 12 68 163 80 757 1.6 0053 023 <0010 0.080 0.14
Paracou-121 4.6 278 17 <50 270 7.6 655 23 0124 024 <0010 0080 007
Paracou-122 4.6 206 12 73 165 65 771 1.9 0113 021 <0010 0079 016
Arbocel-7.3 46 307 19 70 220 100 680 16 0143 032 <0.010 0085 0.13
Arbocel-7.4 46 303 19 <50 246 107 647 17 0147 029 <0.010 0076 0.16

Table S2: Mean soil variables in all nineteen 1-ha plots. Each value is the average of four

separate measurements, each made on twenty pooled soil samples. Al, Fe, Mg, Mn, K, and Ca

concentrations are expressed in cmol of positive charges per kg. Values in italics correspond to

disturbed plots.
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pH Crot Niot P05 Cly Silt Al Fe Mg Mn K Ca

pH 1 -0.59 -0.41 -0.02 -0.53 0.09 -0.82 -0.17 0.27 0.19 -0.01 0.32
Ciot 1 091 -0.04 0.74 0.11 0.60 -0.03  0.05 0.08 0.33 -0.01
Neot 1 -0.01 083 036 035 -0.31 0.33 0.41 0.47 0.31
P05 1 -0.01 0.27  0.08 -0.13  0.12 0.14 0.30 0.07
Clay 1 0.24 048 -045 027 041 0.51 0.29
Silt 1 -0.22  -039 0.76 0.67 0.52 0.76
Al 1 0.15 -0.38 -0.38 0.04 -0.45
Fe 1 -034 -0.56 -0.23 -0.48
Mg 1 0.70  0.60 0.91
Mn 1 0.56 0.81
K 1 0.59
Ca 1

VIF | 5.0 359 448 15 12.5 45 8.3 3.3 7.2 5.0 3.2 10.8

Table S3: Correlation coefficients between soil variables in the fifteen undisturbed plots.
Bold font indicates correlation coefficients above 0.70. Variance Inflation Factors (VIF) are

computed as the diagonal elements of the inverse correlation matrix.
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Geographical distance Soil
Mean
Dsorensen Tdist Tdist,part slopeg;se Tsoil Tsoilpart slopeg,i
Plants trnL 0.42 0.65%** 0.61%** 0.038 0.29%x* 0.06 0.011
Plants 18S 0.50 0.22%* 0.15* 0.022 0.24%x* 0.17* 0.016
Fungi ITS 0.87 0.43%** 0.29%** 0.029 0.54%x* 0.45%** 0.025
Fungi 18S 0.45 0.31%** 0.20* 0.022 0.39%x* 0.31%x* 0.019
Insects 16S 0.89 0.23%** 0.16** 0.013 0.25%x* 0.18** 0.010
Insects 18S 0.57 0.07 0.05 0.008 0.06 0.03 0.005

Table S4: Linear regression of taxonomic dissimilarity (Sorensen index) against soil and
geographical distance: comparison between barcodes within taxonomic groups (cf. Table
2). Taist Tsoil» Tdist,parts Tsoilpart are the simple and partial Pearson’s correlation coefficients.
Significance was assessed using Mantel tests: *** for p < 0.001; ** for 0.001 <p < 0.01; * for 0.01
<p<0.05.

Pure soil . . Pure spatial Total explained
fraction Mixed fraction fraction variance
Plants trnL 2.4%%* 7.8 11.0%** 271.1%*
Plants 18S 1.4 6.8 15.1%%* 23.3%%*
Fungi ITS 3.8%** 4.9 5.9%k* 14.5%**
Fungi 18S 4 1% 15.2 11.8%** 31.2%%*
Insects 16S 0.1 1.3 1.5%* 2.9%%%
Insects 18S NA NA NA NA

Table S5: Fractions of variance (adjusted R2, in %) explained by Canonical Redundancy

Analysis for environment-only and spatial-only models: comparison between barcodes

within taxonomic groups (cf. Table 3). Significance: *** for p < 0.001; ** for p < 0.01; * for p <

0.05.
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R e bla  logi,o?/v
Plants trnL 0.26%** 0.55 24 -20
Plants 18S 0.16%* 0.24 33 -28
Bacteria 16S 0.22%%* 6.8 48 -42
Protists 18S 0.33%** 0.075 46 -40
Fungi ITS 0.14%* 2.3 13 -11
Fungi 18S 0.23%x 0.76 31 -26
Arthropods 18S 0.07 0.71 43 -37
Insects 16S 0.08** 1.1 15 -13
Insects 18S 0.09 0.11 33 -28
Annelids 18S 0.25%** 0.061 30 -26
Nematodes 18S 0.06 1.0 53 -46
Platyhelminthes 18S 0.10 0.13 34 -30

Table S6: Fitting the neutral prediction for the decay of taxonomic similarity with
distance (Chave & Leigh, 2002). F,(4,B) = Y5_, p&pZ, where pZ is the proportion of species s
in sample A and p? that in sample B, is regressed against the log-transformed geographical
distance r between samples (expressed in meters), as F,(r) = alnr + b: R is the correlation
coefficient; ***** and * denote the significance assessed by Mantel test (p < 0.001,p < 0.01 and
p < 0.05, respectively); and 2 /v (expressed in square meters) is the ratio between the variance
o2 of the dispersal kernel and the neutral speciation probability v.
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Logging Pure logging Mix.ed Pure §oil exgl(;ti?lled
only fraction fraction fraction variance
Plants trnL 12.9%** 4. Q*** 9.0 3.5%* 16.4***
Plants 18S 10.9%** 3.1* 7.8 2.3 13.1%**
Bacteria 16S 11.9%** 1.9* 10.0 18.2%** 30.1%**
Protists 18S 4.8** 1.1 3.6 4.8** 9.6**
Fungi ITS 4 3H* 1.6%** 2.6 5. 2% 9.4%*x*
Fungi 18S 7.6%** 4. 7%H* 2.9 8.6%** 16%**
Arthropods 18S 1.7 NA NA NA NA
Insects 16S 1.6* NA NA NA NA
Insects 18S 3.4 NA NA NA NA
Annelids 18S 6.0* 6.4* -0.3 5.4%* 11.4**
Nematodes 18S 1.9* NA NA NA NA
Platyhelminthes 18S 0.6 NA NA NA NA

Table S7: Fractions of variance (adjusted Rz, in %) explained by Canonical Redundancy
Analysis for logging intensity and for soil conditions. Significance: *** for p < 0.001; ** for p
<0.01; * for p < 0.05.
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Selected spatial variables

Bacteria 16S

Protists 18S
Plants trnL

Plants 18S

Fungi ITS
Fungi 18§
Arthropods 18S

Annelids 18S
Nematodes 18S

Platyhelminthes 18S

Insects 16S

Insects 18S

UTMN.Nouragues
UTMN.Nouragues
UTMN.Nouragues
Paracou.Nouragues
UTMN.Nouragues
Nouragues.MEM.5
Nouragues.MEM.16
UTMN.Nouragues
UTMN.Nouragues
UTMN.Nouragues
UTMN.Nouragues
UTMN.Nouragues
No selected model
UTME.Nouragues
Nouragues.MEM.11

No selected model

UTME.Nouragues
UTME.Nouragues
UTME.Nouragues
UTME.Paracou
UTME.Nouragues
Nouragues.MEM.8

UTME.Nouragues
UTME.Nouragues
UTME.Nouragues
Nouragues.MEM.1

Paracou.Nouragues
Nouragues.MEM.15

Nouragues.MEM.1

Nouragues.MEM.1
Nouragues.MEM.1

Nouragues.MEM.1
Nouragues.MEM.12

Nouragues.MEM.1
Nouragues.MEM.1

Paracou.MEM.3

Nouragues.MEM.2

Nouragues.MEM.5

Paracou.MEM.1
Nouragues.MEM.5

Nouragues.MEM.4
Nouragues.MEM.15

Table S8: Selected spatial models after forward variable selection. Selection is applied on
the following variables: UTM coordinates in Nouragues and Paracou (‘UTMN.Nouragues’,
‘UTME. Nouragues’, ‘UTMN.Paracou’, ‘UTME.Paracou’), the dummy variable connecting
Nouragues and Paracou sites (‘Paracou.Nouragues’), and PCNM variables in Nouragues
(‘Nouragues.MEM.1’ to ‘Nouragues.MEM.17’) and (‘Paracou.MEM.1’ to
‘Paracou.MEM.7’), which represent different possible patterns of spatial autocorrelation.

Paracou
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Figure S1: Rarefaction analyses. In each sample and for each barcode, we sampled with
replacement between 1 and 8,000 reads, and plotted the corresponding number of OTUs (one
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Figure S2: Occurrence-based (Sorensen) dissimilarity as a function of log-distance;
comparison between barcodes within taxonomic groups (cf. Fig. 4). The red line figures the
linear regression.
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Figure S3: Occurrence-based (Sorensen) dissimilarity as a function of log-distance;
comparison between barcodes within taxonomic groups (cf. Fig. 5). The red line figures the
linear regression.
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Figure S5: Testing the neutral prediction for the decay of taxonomic similarity with
geographical distance: F; similarity as a function of log-distance. Red line denotes linear
regression. Note that y-scale varies across taxonomic groups.

110



Chapter 1 - DNA-based Beta Diversity

Appendix: Fitting the neutral prediction for the distance-decay of

similarity

Chave & Leigh (2002) derived an analytical prediction for the decay of taxonomic
similarity with distance in a continuous spatially explicit version of Hubbell’s neutral
model of biodiversity, where individuals have spatial density p and where dispersal
follows a radially symmetric Gaussian probability density
P(r) = (1/2n0?)exp(—1?/20?%) as a function of distance r. They predict that the

stationary probability F,(r) that two randomly selected individuals distant of r belong

rv2v
ZKO( /2 )

In>+ 2pma?

to the same species decreases as:

Fy(r) =~

provided that r is larger than o. In our dataset, the minimal value taken by r is 40 m,
which is approximately equal to the mean dispersal distance per generation for tropical
trees (Condit et al., 2002). Because the mean dispersal distance per generation is V2o in
the model, and because trees are likely to be the organisms with the largest o in our

study, the assumption that r is larger than o can be regarded here as reasonable.

The parameter v it is the speciation probability in the underlying neutral
dynamics, i.e. the probability for a newly born individual to belong to a new species. This
parameter characterizes the regional species diversity for a given population size. The
function K, (#) is the modified Bessel function of the second kind and of zeroth order,
that can be approximated as K,(#) =~ —In(#/2) — y if ¥ < 1, where y is Euler’s constant.

Because v «< 1, this approximation can be regarded as valid in our case where 7 =

rv2v/c. The probability F,(r) then becomes:

rvV2v
21n( 55 >+2y

ln% + pmo?

F(r) = —
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In empirical data, the probability F, (4, B) that a randomly selected individual in
site A belongs to the same species as a randomly selected individual in site B can be
measured as F,(4,B) = Y5_, pApE, where p2 is the proportion of species s in site A4 and
pE that in site B, and S is the total number of species in both sites (Chave & Leigh, 2002).
We can thus compute the quantity F,(4, B) for every pair of sampling points and
performed the linear regression F, = —aln(r) +b, where r is the distance between two
sampling points (in meters). By identification with the model’s prediction, we obtain:

V2v
=ln<¥>+y

NP
= pro’ +zIn—

Q|l~ Q%

The first equation provides the value of o as a function of v, a and b as

0%/v = 1/V2exp(— b/a + y), while the sum of the two equations provides the value of
o as a function of p, a and b as the solution of: pno? —In(20) + (b+1)/a+y +

In(2)/2.
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Chapter outline

The distribution of species abundances has been one of the most intensively studied
patterns in ecology, and the use of environmental DNA could dramatically increase our
ability to measure empirical species abundance distributions over a wide range of taxa.
However, DNA-based abundance measurements are noisy and difficult to interpret
compared to classical censuses of individual organisms. This chapter discusses to which
extent and under which conditions the whole species abundance distribution may
nevertheless remain informative. The bias on the estimates of Hubbell's neutral
parameters is taken as a measure of this loss of information. Indeed, Hubbell's neutral
theory has been the first to propose a realistic quantitative prediction for this pattern on
mechanistic grounds. Even though the underlying assumptions have been much
debated, this model remains fundamental as a null model against which non-neutral
effects can be contrasted. It also provides a characterization of species abundance
distributions based on two parameters, one measuring intrinsic diversity, and the other
measuring the connectivity between local and regional communities through migration.
The problem is addressed by simulating several plausible sources of bias, based on

literature and on assumptions backed by a benchmark dataset.
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Abstract

The DNA present in the environment is a unique and increasingly exploited source of
information for conducting fast and standardized biodiversity assessments for any
type of organisms. The datasets resulting from these surveys are however rarely
compared to the quantitative predictions of biodiversity models. In this study, we
simulate neutral taxa-abundance datasets, and add simulated noise typical of DNA-
based biodiversity surveys. The resulting noisy taxa abundances are used to assess
whether the two parameters of Hubbell's neutral theory of biodiversity can still be
estimated. We find that parameters can be inferred provided that PCR noise on taxa
abundances does not exceed a certain threshold. However, inference is seriously
biased by the presence of artifactual taxa. The uneven contribution of organisms to
environmental DNA owing to size differences and barcode copy number variability
does not impede neutral parameter inference, provided that the number of sequence
reads used for inference is smaller than the number of effectively sampled individuals.
Hence, estimating neutral parameters from DNA-based taxa abundance patterns is
possible but requires some caution. In studies that include empirical noise
assessments, our comprehensive simulation benchmark provides objective criteria to

evaluate the robustness of neutral parameter inference.
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Introduction

The observation of biodiversity patterns such as the diversity, relative abundance and
spatial distribution of organisms underpins much of ecological theory (Brown, 1995;
Rosenzweig, 1995; Hubbell, 2001). Yet empirical measurements of these patterns are
noisy. In all cases, some taxa are counted more effectively than others, and error is
generated by misidentification. A major question is whether this noise is significant
enough to undermine comparisons between empirical measurements and models
(Hilborn & Mangel, 1997; Legendre & Legendre, 2012). This issue has recently taken
on new significance following the advent of DNA-based biodiversity exploration
methods, which are developing fast and hold the promise of rapid, repeatable and
comprehensive biodiversity measurements (Bik et al., 2012; Taberlet et al, 2012). Yet
they are also less direct than classic biodiversity surveys and entail poorly assessed
noise sources. In this study, we ask how the parameter estimates of Hubbell’s neutral
theory, one of the most prominent quantitative biodiversity models of the last decade
(Hubbell, 2001; Etienne & Alonso, 2007; Rosindell et al., 2012), are affected by noise in
taxa-abundance datasets. We focus on the type of noise generated in DNA-based
surveys, and specifically in DNA metabarcoding surveys (see below; Taberlet et al,
2012), currently the most popular method for environmental DNA analysis.

Nevertheless, our results can apply more generally.

DNA metabarcoding is a multi-taxa extension of the DNA-based identification of
single specimen from tissue samples using a universal DNA-barcode sequence (Hebert
et al, 2003). It consists in amplifying a short DNA barcode by PCR from the DNA
extracted from an environmental sample (e.g. soil, water, bulk sample of organisms),
and sequencing the product by high-throughput sequencing. This method is not
restricted to the detection of known taxa and hence allows for comprehensive
biodiversity measurement. DNA metabarcoding was initially developed to study
bacterial communities (Giovannoni et al, 1990; Huber et al., 2007; Roesch et al., 2007;
Zinger et al., 2012), but has since been extended to many other groups including

archaea (Schleper et al,, 2005) and eukaryotic clades (e.g. plants, earthworms, insects,
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fungi; Bienert et al., 2012; Yoccoz et al., 2012; Yu et al, 2012; Tedersoo et al., 2014). It
is hence now possible to study patterns of diversity across all domains of life (Ramirez
et al., 2014; Tedersoo et al., 2015). However, DNA metabarcoding observations have
seldom been compared to the predictions of biodiversity models (Hubbell, 2001;
Ricklefs, 2004).

Over the past decade, the neutral theory of biodiversity has represented a
significant advance in interpreting empirical biodiversity patterns within an ecological
guild (Hubbell, 2001; Etienne & Alonso, 2007; Rosindell et al, 2012). Hubbell’s neutral
model is simple, easily generates biodiversity patterns, allows for exact maximum-
likelihood parameter inference from taxa-abundance distributions, and neutral
predictions on taxa-abundance distributions compare well with empirical surveys
(Etienne, 2005; Etienne & Alonso, 2005; Jabot & Chave, 2009). In Hubbell’s model, sites
vacated by the death of an individual are replaced by the offspring of local individuals
or by immigrants. Birth, death and immigration all occur irrespective of the taxon the
organism belongs to (neutrality hypothesis). Immigrants are drawn from a much larger
(regional) pool of individuals, and the addition of new taxa in the regional pool is made
possible by (rare) speciation events. Hubbell’s model has two parameters: 6 describes
the taxon diversity of the regional pool, and m is the immigration rate from the

regional pool into the sampled community (see Supplementary Note 1).

The predictions of Hubbell’s neutral model have so far been primarily compared
to integrative patterns obtained for macroorganisms using classic census data, such as
the abundance distribution of tropical forest trees (Hubbell, 2001). Some studies have
also applied neutral models to environmental DNA data to interpret the composition of
microbial communities. Sloan et al. (2006, 2007) and (Woodcock et al, 2007)
Woodcock et al. (2007) developed a continuous approximation to Hubbell’s model
adapted to large-sized bacterial populations. They focused on estimating the rate of
immigration into the local community independently of assumptions on the regional
pool of taxa, by comparing taxa occurrence in multiple samples (Sloan et al, 2006;
Drakare & Liess, 2010; Ostman et al, 2010; Ayarza & Erijman, 2011; Roguet et al,
2015) or by measuring the turnover of taxa over time (Ofiteru et al, 2010). The

composition of many microbial communities was found to be compatible with
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stochastic immigration of taxa of equivalent fitness from a regional pool, at odds with
the classic assumption that deterministic niche sorting explains the assemblage of
microbial communities (Baas Becking, 1934; Fenchel & Finlay, 2004). Another
approach is to simultaneously estimate the diversity and immigration parameters by
fitting the taxa-abundance distribution, as it has been commonly done for classic
censuses of macroorganisms. Dumbrell et al. (2010) and Lee et al. (2013) did so on
fungal and bacterial DNA data using maximum-likelihood parameter inference based
on the exact Etienne sampling formulas (Etienne, 2005, 2007, 2009), while Harris et al.

(2015) followed a Bayesian approach inspired by the field of machine learning.

Most DNA-based studies comparing empirical abundance patterns to the
predictions of neutral models have been limited by the poor detectability of rare taxa
owing to the methods used (Sanger sequencing, DGGE, t-RFLP, ARISA). High-
throughput sequencing now allows for improved sampling and provides better quality
data. Nevertheless, metabarcoding data are not directly comparable with classic census
data owing to both experimental and biological factors. First, both PCR amplification
and sequencing produce artifacts. During the PCR amplification, DNA polymerase
makes mistakes when replicating DNA strands, at a rate that depends on enzyme types.
DNA strands suffer further damage during the high-temperature denaturation step
(Pienaar et al, 2006; Quince et al, 2011; Degnan & Ochman, 2012). Furthermore,
[llumina sequencing generates between 10-3 and 10-2 errors per base pair (Ross et al,
2013). Clustering algorithms are used to cluster the reads displaying errors with
respect to the original sequence into a single Molecular Operational Taxonomic Unit
(MOTU; Sipos et al, 2010; Coissac et al, 2012; Mahe et al, 2014). While these
approaches strongly reduce the number of artifacts in the data, they do not exclude
artifactual MOTUs that are more difficult to detect (e.g. chimerical fragments, highly
degraded sequences). Second, unbalanced PCR amplification and sequencing among
taxa distorts the relative abundances of MOTUs (Sipos et al.,, 2007; Amend et al., 2010;
Aird etal, 2011; Nguyen et al., 2015). Third, relative abundances are further biased by
noise sources inherent to the use of DNA barcodes, such as the strong variability of the
barcode copy number among taxa (Kembel et al, 2012; Weber & Pawlowski, 2013).
This problem is even more serious for multicellular organisms because the read count

should also depend on cell abundance. Abundances are further biased by the variable
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rate of DNA release into the environment through excreted, sloughed or decaying

material (Andersen et al., 2012; Maruyama et al., 2014; Klymus et al., 2015).

In this paper, we conduct simulations to address how the sources of uncertainty
mentioned above may distort parameter estimates in Hubbell’s neutral theory, and we
discuss the conceptual differences between individual-based and environmental DNA
approaches to the measurement of biodiversity. We ask the following questions: 1)
what is the effect of artifactual MOTUs and abundance noise on estimating the neutral
diversity parameter? 2) Can we use the same approach for multicellular as for
unicellular organisms? 3) What are the effects of the different noise sources on neutral

parameter inference when accounting for dispersal limitation?
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Methods

1. Sampling from Hubbell’s neutral model

We generated samples of J individuals following the stationary taxa-abundance
distribution of Hubbell’s neutral model. The immigration from the regional pool of

diversity parameter 6 into the sampled community can be either characterized by the
immigration rate m or by the normalized immigration parameter | = & (J — 1) that

does not depend on the sample size J and is thus invariant by sampling. I[f m < 1, I is

approximated by the product /m, noted Nrym in Sloan et al. (2006, 2007).

We first assumed no dispersal limitation (i.e. m = 1). We generated a sample by
running J times the following algorithm parameterized by 6: at step j, draw individual
j+1 from a new taxon with probability 8/(j + 6), or draw one of the j individuals
already present and add an individual j+1 of the same taxon. This algorithm, due to
Hoppe (1984), partitions J individuals into a random number T of taxa according to the

Ewens distribution of parameter 8(Ewens, 1972).

We then generated samples from a dispersal-limited neutral community using
the two-step procedure provided in Etienne (2005) which partitions J individuals into
a random number T of taxa. First, we run J times Hoppe’s algorithm as described above
but with parameter I, so as to partition the J individuals into A immigrating ancestors.
Second, we run A times the algorithm with parameter 6, so as to partition the A
immigrating ancestor into T taxa, thus taking into account the taxa-abundance
distribution in the regional pool. Finally, we assign the J individuals to the taxonomic

identity of their immigrating ancestor.

We generated samples of /=10 individuals. We explored a realistic range of

parameter values: fin [1, 500] and m in [0.001, 1].
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2. Simulating noise in DNA sequence reads: experimental noise

We simulated the DNA metabarcoding procedure by sampling N sequence reads from
the relative taxa abundances of the neutral model, possibly after modifying the relative

abundances according to simulated noise sources (see below). We present the results

obtained for the value N=10", a typical number of Illumina sequence reads for one

environmental sample.

In order to test the effect of misidentification bias on neutral parameter
inference, we added artifactual MOTUs to the data, while keeping the number of reads
constant. We assumed that each true MOTU with a read abundance r generates a
random number of artifactual MOTUs, drawn from a multinomial distribution with
weight r. We added either singletons, or MOTUs with larger read abundances. We
obtained an example of artifactual MOTUs with realistic abundance structure from a
benchmark experiment (see below and Supplementary Methods). Drawing on these
empirical data, we simulated read abundances in the following way: each artifactual

MOTU was assumed to have an abundance of 1 read if r<50, or an abundance x if

r 250, where x lies between 1 and r /50 with a probability density p(x)= W.

Molecular experimental procedures introduce biases also in read abundances,
because the efficiency of PCR amplification and sequencing is variable across MOTUs.
For instance, PCR amplification is less efficient if PCR priming sites differ from the
primer sequence (Sipos et al., 2007), or if the barcode sequence is too long or GC-rich
(Aird et al,, 2011). As a result, the read abundance distribution of MOTUs is noised with
respect to the DNA barcode abundance distribution in the sample. We assumed that
the noise takes the form of a lognormally distributed multiplicative noise on relative
abundances, with mean 1 and log standard deviation g;,4. This choice is parsimonious
because this noise is predominantly due to PCR (Aird et al, 2011), and the
multiplicative amplification of DNA strands by PCR generates a multiplicative noise on
abundances. This multiplicative noise can be further assumed to result from the
product of random independent variables and thus to be lognormally distributed by

virtue of the central limit theorem. We tested the effect of noise intensity g;,4 on
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neutral parameter inference. For completeness, we also tested the effect of an additive
Gaussian noise of standard deviation o,44 on MOTUs relative abundances, for different
0444 Values. This type of noise can be regarded as simulating the noise generated in the

sequencing step.

To illustrate our modelling choices with empirical data, we produced a
benchmark dataset obtained by mixing the DNA of 16 plant species in known
quantities. The experiment and its results are detailed in the Supplementary Methods.
After following standard data curation protocols, we found that the dataset contained
33% of artifactual MOTUs and displayed a lognormally distributed multiplicative noise

on relative abundances of log standard deviation g;,5, = 1.2. We reported these values

on the figures as examples of realistic noise intensities.

3. Simulating noise in DNA sequence reads: ‘biological’ noise

Irrespective of experimental noise, variability in the number of barcode copies per
individual may cause bias in the interpretation of read abundances. For bacteria (16S
rDNA) or protists (18S rDNA), barcode copy number variability in nuclear DNA is an
important contribution to abundance noise (Kembel et al., 2012; Weber & Pawlowski,
2013): Kembel et al. (2012) found that the barcode copy number of the 16S rDNA gene
follows a zero-truncated Poisson distribution of parameter A = 4 across a range of
bacterial clades. For multicellular eukaryotes, organellic barcodes are typically used,
and they similarly display variable copy numbers per cell across taxa and tissue types.
To assess this issue, we tested how a zero-truncated Poisson-distributed multiplicative
noise affects neutral parameter inference, for various values of the parameter A. The
intensity of this noise is measured by the coefficient of variation (i.e., standard
deviation over mean) of the zero-truncated Poisson distribution. Since it reaches a

maximum at A =1.8, noise intensity is maximal for this value.

For multicellular organisms, the variability in the number of barcode copies per
individual is further amplified because the number of cells may vary vastly across

individuals, owing to body-size differences. We simulated size differences between
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individuals following a simple and generic approach. As in O’'Dwyer et al. (2009), we
assumed that all individuals, irrespective of the taxon they belong to, grow in size over

time at a constant rate g from an initial number of cells ny at birth, and die at a constant

rate d. The stationary probability density p, ,(n) of having a number n of cells for a

randomly chosen individual is given by the solution of the von Foerster equation

d
Lo
¢

(O’Dwyer etal., 2009): p;pa(n) = ge mo) (see Supplementary Note 2). We used this

distribution to draw a number n of cells between ny and infinity for each individual,
and modified the MOTUs relative abundances accordingly. Note that we simulated size
differences between individuals and not between taxa, which would have been akin to

simulating a multiplicative noise on taxa abundances as above. We tested the effect on

neutral parameter inference for a range of values of dL;O + 1, the ratio of the mean cell
number % + n, divided by the initial cell number n,. Noise intensity is measured by the
coefficient of variation 1/(1 + gno) of the probability density p;,4(n). It is bounded by
1 fordgTO > 1, which corresponds to the case of taxa spanning large ranges of body
sizes, such as trees or vertebrates.

Organisms may be entirely contained in the environmental sample if they are
sufficiently small, or when DNA is extracted from a mixture of directly sampled live
organisms, such as insects from a light trap (bulk samples; Yu et al, 2012). However, in
most cases, only small fractions of these organisms are sampled (e.g. roots, pollen,
seeds, spores, faeces, and different secretion types), or even only extracellular DNA
resulting from cell death and subsequent destruction of cell structure (Levy-Booth et
al, 2007; Taberlet et al, 2012). Thus, the abundance distribution of environmental
DNA also depends on the kinetics of DNA release and degradation in the environment.
We assumed that this dynamics is fast with respect to changes in community
composition, so that the ‘stock’ of environmental DNA is in a steady state. Under this
assumption, the rate of DNA release through the death of organisms is roughly
proportional to the total number of cells of the currently living individuals. In addition,
the rate of environmental DNA release by a living organism reflects its metabolic rate
and we assumed it to scale as the power 3/4 of body mass (or cell number), as

predicted by the metabolic theory of ecology®l. DNA degradation rate was assumed
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uniform across individuals. Even though we focus here on multicellular organisms,

unicellular organisms do excrete DNA material and differ in metabolic rates as well.

Based on the assumptions of the previous paragraph, we simulated the
abundance distribution of environmental DNA as follows. We (1) generated a neutral
sample of individuals, (2) assigned a number of cells n between np and infinity to each
individual as above, (3) counted a first contribution dn of each individual to the stock

of environmental DNA, with d the death rate, (4) and counted a second contribution

3
ron+ of each individual to the stock of environmental DNA, with ryp the rate of DNA

release for a hypothetical one-cell individual. Thus, environmental DNA abundance per
3
individual is proportional ton + %"ni rather than n. We tested the effect on neutral

parameter inference by varying r,/d, the parameter controlling the relative

contribution of living and dead organisms to environmental DNA.

4. Estimating the neutral model parameters from the taxa-abundance

distribution

We estimated the parameters of Hubbell’s neutral model by maximum-likelihood
inference from the simulated taxa-abundance distribution for a number of simulated
noise sources. To test the influence of noise, we compared the estimated parameter
values 6 and I with the values of 6 and I used to generate the initial samples of
individuals. For each set of parameters and noise intensity, we generated 100
simulated samples. We reported the mean and standard deviation of the relative biases

(6 — 0)/6 and log,,(I/I) over the 100 realizations.

In the absence of dispersal limitation, the Ewens distribution permits the

inference of 6 by likelihood maximization. The maximum-likelihood estimator of 6,

. e : -1 9
hereafter referred to as the Ewens estimator, is implicitly given by T = Z§=éﬁj as a

function of the number T of taxa and the number J of individuals (Ewens, 1972). In the
dispersal-limited case, the Etienne distribution provides an exact likelihood expression

for the simultaneous inference of 6 and I (Etienne, 2005), as implemented in the
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software Tetame (Jabot et al, 2008). As noted previously in the literature, the
likelihood landscape of the Etienne formula often displays two local maxima (Etienne
etal, 2006; Jabot & Chave, 2009). To find the true parameter values, we first estimated
0 using the Ewens estimator, and selected the local maximum with the @ estimate
closest to the value yielded by the Ewens estimator. Prior to these analyses, we tested
the performances of both estimators on unbiased neutral data depending on

parameter values and sample size (see Supplementary Note 3).

In typical environmental DNA data, the number J of individuals in the sample is
unknown. As already done in previous studies (Lee et al., 2013), we used the number
of sequence reads as an effective number of individuals. This is possible owing to a
mathematical property of the Ewens and Etienne distributions: both distributions are
invariant by sampling without replacement (Etienne & Alonso, 2005), hence maximum-
likelihood inference yields the same results on any random sample from the
community, and on any random subsample from an initial sample (up to a possible bias
in the estimator). As a consequence, read abundances can be used for neutral
parameter inference, as long as the reads can be regarded as forming a subsample
without replacement of the initial individuals. This assumption is however not always
verified in empirical data (see Discussion). The invariance property of Etienne
distribution only holds if the distribution is expressed as a function of I, therefore we
used here the immigration parameter [ instead of m for the purpose of inference. In the

following, m always refers to the value in the initial sample of J individuals.

In the absence of dispersal limitation, 6 can also be estimated from the slope of
the ranked log-abundance curve, a method that has the advantage of being
independent of J. Indeed, the logarithm of E[P;], the expected relative abundance of the
it most abundant taxon, is given by: log(E[P;]) = —log6 — ilog(1 + 1/6) (Ewens &
Tavaré, 1997). For simulated abundance noise, we estimated 6 using this method in
addition to Ewens estimator. We restricted the linear regression to the linear domain
of the ranked log-abundance curve. We also compared the performance of both
inference methods in the absence of simulated noise for samples of 102, 103, 10* and
105 sequence reads and for initial samples of individuals of different sizes (see

Supplementary Note 4).
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Results

We first included artifactual MOTUs in a simulated sample and tested the effect on
estimating the diversity parameter 6 of the neutral model without dispersal limitation.
The relative bias (8 — 6)/6 increased with the proportion of artifactual MOTUs, first
linearly and then faster than linearly (Fig. 1a-b). It did not depend on the initial 8 value
or on the read abundance of the introduced artifactual MOTUs. The standard deviation

of 8 was not modified by the presence of artifactual MOTUs.

Next, we simulated PCR noise, modelled as a lognormally distributed

multiplicative noise with log standard deviation g;,4. This noise had no effect on the
inference of the 6 parameter below a thresholday,g . For gi5 > 0199n, 6 was
underestimated. The value of g;,4 ¢, decreased with increasing 6 but remained of the
order of 1 for 6 between 1 and 500 (0;54,r ~ 5 for & = 1 and 044, = 0.5 for & = 500;
see Fig. 1c-d). We also applied an additive Gaussian noise of standard deviation g,,4,4 to
the relative abundances. This type of noise introduced a bias in 8 for values of o4, at
least one order of magnitude larger than the relative abundance of the least abundant
MOTUs (Supplementary Fig. S1). Neither type of noise affected the standard deviation

of @ (Fig. 1, Supplementary Fig. S1). These results held both in maximum-likelihood

inference and when using linear regression on the ranked log-abundance.

We then simulated the variability in barcode copy number by applying a
multiplicative noise distributed according to a zero-truncated Poisson distribution.
This type of noise had no effect on @inference, even for the maximum noise intensity at
A = 1.8 (Fig. 1e-f). We accounted for body size differences by assuming a steadily
growing cell number n over the course of an individual’s life, and by varying the ratio
g/dny + 1 of the mean number of cells g/d + n, divided by the initial number of cells
ny. We found that this ratio had no effect on the mean and standard deviation of 0,

even at large values (Fig. 1g-h). We also tested the effect of assigning an environmental

3
DNA mass proportional ton+2—°n2 to individuals (where n is the cell number) to

3
reflect the joint effect of mortality (n term) and cellular turnover (n# term, proportional
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to metabolic rate). We did not find any effect on 6 inference even for large values of

1o/ d (Supplementary Fig. S1).
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Figure 1: Neutral parameter inference without dispersal limitation. Left panels: mean MOTU
rank abundance distributions over 100 realizations for 8 = 20 in a 104-read sample, without
(dashed blue line) and with (black line) simulated noise: (a) 30% artifactual MOTUs added (as
measured in benchmark dataset), (c) multiplicative lognormal noise of log standard deviation
Olog = 1.2 (as measured in benchmark dataset), (e) multiplicative zero-truncated Poisson

noise simulating barcode copy number variability (Poisson parameter A = 4; cf. Kembel et al.

2012), and (g) size structure among individuals, for a ratio ﬁ = 1000 (mean body mass over
0

birth mass). Right panels: mean and standard deviation over 100 realizations of the relative
bias on the 6 estimate in a 10%read sample, for 6 = 1 (green), 6 = 20 (black) and 6 = 500
(red), as a function of (b) the proportion of artifactual MOTUs (dashed blue line underlines the
linear dependence), (d) the lognormal noise intensity o4, (f) the Poisson parameter 4, and (h)

the ratio g/(dng) ﬁ.
0

Finally, we replicated the analysis in the presence of dispersal limitation (i.e.
assuming that m < 1). We found that the dispersal-limited maximum-likelihood
estimator can be strongly biased even in the absence of simulated noise when dispersal
limitation is too strong or too weak, especially for large 0 values (see Supplementary
Note 3). Therefore, we limited ourselves to parameter values that could be well
estimated in the absence of simulated noise. Provided the immigration rate is large
enough (m > 0.1), the relative bias (§ —8)/6 depended on the proportion of
artifactual MOTUs similarly to the m=1 m = 1case. For lower values of m, the
dependence of (6 — 8)/6 on the proportion of artifactual MOTUs was even stronger
(Fig. 2a-b). The relative biaslog;,(f/I) on the normalized immigration parameter
increased linearly with the proportion of artifactual MOTUs. Applying a lognormal

multiplicative noise of log standard deviation g;,; on MOTUs relative abundances did
not bias the estimation of (6 I) below a noise threshold g, ., identical to the one
found without dispersal limitation. The threshold gy, ., decreased only slightly with
decreasing m value. Above g;,4 ¢, @ was underestimated and [ overestimated (Fig. 2c-

d). Applying an additive Gaussian noise of standard deviation g,4, to the relative
abundances introduced a bias for values of g,,4,4 larger than the relative abundance of
the least abundant MOTUs (Supplementary Fig. S2). A multiplicative noise distributed
according to a zero-truncated Poisson had no influence on the parameter estimates
(Fig. 2e-f), and likewise an exponentially distributed number of cells still had no effect

on parameter inference in the dispersal-limited case (Fig. 2g-h, Supplementary Fig. S2).
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Discussion

Although they provide an unparalleled amount of information, biodiversity studies
based on environmental DNA also have limitations. One of them is that the abundance
of sequence reads corresponding to a given molecular taxonomic unit does not
necessarily reflect the true population abundance of the corresponding taxon. Our
analysis offers a quantitative assessment of the importance of this issue in attempting

to relate environmental DNA datasets with theoretical model predictions.

Our goal was to assess when amplicon-based DNA read abundance data can
offer biological insights into the predictions of Hubbell’s neutral theory. We selected
Hubbell’s model over other models predicting taxa-abundance distributions because it
incorporates a number of key features for any biodiversity model such as demographic
stochasticity and dispersal limitation (Vellend, 2010). Estimating the parameters 6 and
m of the neutral model is useful in interpreting biodiversity patterns even if the
community is not governed by purely neutral mechanisms (Jabot et al., 2008). Indeed,
0 is closely related to Fisher’s biodiversity index, and is an unbiased index of
biodiversity, while m quantifies how the local sample is connected to its surroundings.
We simulated taxa abundance datasets from a neutral model and added noise to them
using a range of plausible noise types and intensities. We showed that the parameters
0 and I could still be reliably estimated by maximum likelihood inference from the
simulated sequence reads, provided that artifactual MOTUs are rare, and that
lognormal noise on relative read abundances is below a log standard deviation
threshold that depends on 6. We also showed that under our modelling assumptions,
neutral inference is unbiased for assemblages of multicellular organisms and for
variable barcode copy numbers. Finally, we found that the noise terms had a similar
effect on parameter inference when fitting the one-parameter version of the model

(without dispersal limitation) and when fitting Hubbell’s dispersal-limited model.

One of the major differences between environmental DNA surveys and classic

biodiversity surveys is that the number of sampled individuals is usually not measured.
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Yet, most biodiversity measures assume the knowledge of the organisms’ sample size.
To solve this problem, we assumed in our simulations that the number of reads is
several times smaller than the number of effectively sampled individuals: N = 10*
sequence reads for /] = 10° initial individuals. Under this assumption, sequence reads
may be seen as a random subsample of the individuals, and because the maximum-
likelihood approach of the neutral theory relies on sampling formulas that are
invariant under subsampling, it follows that the inference on reads is unbiased (see
Supplementary Note 4). Generating a larger number of individuals did not alter our

results but was computationally prohibitive with our algorithm.

The assumption that the number of sampled individuals exceeds that of
sequence reads is reasonable for prokaryotes (Whitman et al, 1998) and
microorganisms in general, but is unrealistic for larger organisms. One empirical
method to test whether the sequencing data meet the requirement for neutral
maximum-likelihood inference is to take a smaller subsample of reads and check that
the parameter estimates are unchanged. If not, one should decrease sample size until
stability is achieved (see Supplementary Note 4). If environmental DNA data do not
consist of a discrete number of reads, as is the case in t-RFLP and ARISA, an arbitrarily
set sample size may be used (Lee et al, 2013). The number of individuals can also be
estimated empirically, as in Woodcock et al. (2007) or Dumbrell et al. (2010). In the
neutral model without dispersal limitation, a more straightforward approach is to infer
0 from the slope of the ranked log-abundance distribution, but this requires an
arbitrary delimitation of the linear domain of the curve, and it is reliable only if the
read sample is large enough and contains a large enough taxonomic diversity. A
general rule is that the sampling scheme should be suited to the size and spatial
density of the target organisms: for large organisms, multiple spatially distributed
environmental samples should be pooled so as to sample a sufficiently large number of
individuals. For instance, capturing the abundance distribution of plant taxa from soil
DNA samples requires pooling a sufficient number of soil samples over a sufficiently

large area.
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Figure 2: Neutral parameter inference in the presence of dispersal limitation. We simulated a
10%*-read sample and computed the mean and standard deviation over 100 realizations of
(6 —6)/6 and log,o(I/I). Results are plotted for & = 20 and for m = 1 (black), m = 0.1
(green), m = 0.01 (blue) and m = 0.001 (red). Panels a-b: variation with the proportion of
artifactual MOTUs (dashed blue line underlines the linear dependence). Panels c-d: variation
with the log standard deviation oj,g of a multiplicative lognormal noise on relative

abundances. Panels e-f: variation with the parameter A of a multiplicative zero-truncated

Poisson noise. Panels g-h: variation with the body size ratio g/(dny) ﬁ.
0

When accounting for dispersal limitation, a single sample of sequence reads
does not always provide enough information to reliably infer both 8and I from the
taxa-abundance distribution, even in the absence of additional noise source. The
maximum-likelihood estimator may be strongly biased when the immigration rate into
the local community is either too low or too high, and increasingly so for larger
Ovalues (see Supplementary Note 3). Since these biases decrease with larger read
sample size, the number of sequence reads should be as large as possible as long as it
does not preclude using the sequence reads for parameter inference. Moreover, in
order to avoid bias in the case of weak dispersal limitation, the Ewens estimator should
be favoured whenever it yields a higher likelihood value than the dispersal-limited

estimator.

In practice, environmental DNA studies often sample the same regional species
pool in different locations, which allows for more robust multi-sample maximum-
likelihood inference (Etienne, 2007, 2009). It should be noted however that exact
maximum-likelihood inference can be computationally prohibitive in the dispersal-
limited case for larger numbers of reads than we used in this study or in the case of a
multi-sample approach with large read samples (Lee et al, 2013). Continuous
approximations drawing on the work of Sloan et al. (2006, 2007) and Woodcock et al.
(2007) might then be preferred, such as the Bayesian formulation of Harris et al.

(2015).

Our analysis reveals that the presence of artifactual MOTUs is the most
detrimental to neutral parameter inference. Bioinformatics methods aiming at limiting
the number of artifactual MOTUs should be carefully applied to the sequencing data
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before any attempt at estimating biodiversity indices (Sipos et al., 2010; Coissac et al.,
2012; Mahe et al, 2014). However, these methods do not guarantee a complete
filtering of artifactual MOTUs from empirical datasets. In particular, chimeric
sequences formed at the PCR stage may be misconstrued as MOTUs. Because these
sequences are generated by rare error-generating PCR events, they should be
predominantly represented by few reads. Thus one strategy for removing artifactual
MOTUs consists in ignoring all MOTUs below an empirically set abundance threshold.
However, in doing so, we lose the information on the relationship between the number
of reads and the number of MOTUs. Hence we suggest that a more satisfactory method
to mitigate this problem is to take a sufficiently small subsample of the sequence reads

so as to trim out the artifactual MOTUs.

The presence of artifactual MOTUs in our simulated taxa assemblages manifests
itself by a break in the slope of the ranked log-abundance curve (Fig. 1a, see also Fig. S3
in Supplementary Methods). Thus, the adequate subsample size for an empirical
dataset may be chosen so as to trim out the MOTUs with abundances below an
observed break in the ranked log-abundance curve. Another finding of our study is that
for the same proportion of artifactual MOTUs, the 0 estimate has a similar relative bias
across 6 values and the I estimate a similar relative bias across I values. Therefore, if
artifactual MOTUs cannot be entirely excluded in an environmental DNA dataset,
conclusions should be based on ratios of neutral parameter estimates among samples

rather than on absolute values.

We modelled PCR noise using a lognormally distributed multiplicative noise
term. We found a threshold noise value beyond which the inference of the neutral
parameters becomes biased. This threshold was found to be lower for larger 6 values.
For instance, the empirical noise intensity 0j,, = 1.2 measured on our benchmark
dataset was near or below the threshold ;4 ¢4 for 6 values up to ca. 8 = 20, while for
larger 6 values, it was responsible for a moderate underestimation of 6 (20% for
6 = 500) and for a serious overestimation of I. Nevertheless, our benchmark dataset
was here used for illustrative purposes, and noise intensity may differ in other
datasets. In metabarcoding studies, noise intensity likely depends on the barcode,

taxonomic group and wet laboratory protocol. Therefore we strongly advise to include
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at least one benchmark dataset as part of any environmental DNA study to quantify
noise intensity. Empirical noise assessments can then be compared to our simulation

results.

We also simulated a Gaussian additive noise on abundance data and found that
it had a disproportionate effect on the least abundant MOTUs, thus distorting the taxa-
abundance distribution: parameter inference was biased if the standard deviation of
the noise was larger than the abundance of the least abundant MOTUs. Here again, it is
possible to correct for this type of noise in empirical datasets by subsampling the
sequence reads. Additive noise can be considered to model the abundance noise
generated by the sequencing step or by a single PCR cycle, while the succession of

several PCR cycles produces a multiplicative abundance noise.

Another potential bias is due to the indirect relationship between the
number of DNA barcode sequences in the sample and the number of sampled
individuals. In particular, in the case of multicellular individuals, some of them may
contribute disproportionately more than others. Given the variability and complexity
of the associated noise structure, we chose to follow a modelling approach retaining as
much generality as possible. We size-biased our samples by assuming that DNA
availability in the environment is proportional to body mass, or to the turnover of body
mass (i.e. the metabolic rate). We found that neutral parameter estimates are not
modified by size structure in the community, irrespective of how strongly structured

the community is, which is an interesting and general result.

Our approach to accounting for body size is directly inspired from the size-
structured neutral model of O'Dwyer et al. (2009). This model integrates the growth of
individuals into a neutral population dynamics without dispersal limitation, and may
offer analytical predictions for the neutral “Species Biomass Distribution” (SBD) while
accounting for the dependence of birth, death and growth rates on the size of
individuals. When individuals grow in body size at a constant rate and neither birth
nor death rates depend on size, this model predicts the same SBD as obtained
analytically under our assumption of independent exponentially distributed sizes (see
Supplementary Note 2). Our choice of a rate of environmental DNA release scaling with

the 3/4t power of body mass is motivated by a prediction of the metabolic theory of
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ecology, which relates the metabolic rate to the body mass in one of the few general

laws of ecology (West et al., 1997).

Even though our modelling approach derives from theoretical considerations, it
is also supported by some empirical evidence: it has been shown that the rate of DNA
detection in the environment is biased by the size of organisms (Andersen et al., 2012;
Maruyama et al., 2014; Klymus et al, 2015), and the fact that DNA abundance should
scale non-linearly with body mass has been experimentally verified in fishes
(Maruyama et al, 2014). Nevertheless, the noise introduced by size structure,
fragments of organisms and extracellular DNA certainly has a far more complicated
structure than we simulated. For instance, rates of DNA release into the environment
and of DNA degradation both depend on taxa and on local conditions, and fluctuate
temporally (Levy-Booth et al, 2007; Barnes et al, 2014; Strickler et al, 2015).
Moreover, the uneven spatial distribution of environmental DNA may prevent properly
sampling the taxa-abundance distribution in the community, especially if whole pieces
of living or decaying multicellular organisms are contained in the environmental
sample. Pooling multiple spatially distributed samples should help average out local

heterogeneity.

In this study, we considered that departure of the number of DNA barcode reads
from the real taxon abundance is a source of bias. However, this source of bias may be
generally seen as the accumulation of mutations during replication. In ecology, the only
type of replication taken into consideration is demography, but DNA metabarcoding
data are also the result of cellular and PCR replication processes. Since the
assumptions of the neutral theory are generic and apply to any collection of replicating,
mutating, and potentially dispersing entities, we could replace individual organisms by
DNA barcodes as our basic replicating entities, and reinterpret the neutral parameters
accordingly. As a consequence, we expect the taxa-abundance structure predicted by
the neutral theory to be robust as long as the DNA barcodes do not differ too much in

their replicating, mutating and dispersing abilities.

This study demonstrates that inferring the parameters of Hubbell's neutral

model from the taxa-abundance distribution is possible even in noised biodiversity
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datasets. We tested this hypothesis for a range of biologically plausible noise terms on
simulated metabarcoding data, and we provide guidance for neutral parameter
inference from such data. Our results indicate that whether an environmental DNA
dataset really reflects the sampled community depends on noise intensity. They also
suggest that this question can be answered by computing simple metrics on a
benchmark dataset and comparing them to our simulations. The only way to quantify
the noise level is to conduct careful benchmarking experiments, which will depend on

the exact sampling and analysis protocol.
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Figure S1: Effect of additive noise and metabolic rate on neutral parameter inference. Left
panels: mean MOTU rank abundance distributions over 100 realizations for = 20 in a 10*-
read sample, without (dashed blue line) and with (black line) simulated noise: (a) additive
Gaussian noise of standard deviation 6,44 = 5.107* (5 times the relative abundance 1/N =
10~* of the least abundant MOTUs), and (c) size structure among individuals and non-linear

scaling of DNA release with body mass, for a body size ratio % = 1,000 and a ratio ;—0 =100
0

between metabolic rate and death rate. Right panels: mean and standard deviation over 100
realizations of the relative bias on the 6 estimate in a 10*-read sample, for 8 = 1 (green),
6 = 20 (black) and 8 = 500 (red), as a function of (b) the additive noise intensity ¢,44, and (d)

the ratio %’.
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Figure S2: Effect of additive noise and metabolic rate on neutral parameter inference in the
presence of dispersal limitation. We simulated a 10*-read sample and computed the mean and
standard deviation over 100 realizations of (§ — 8)/6 and log,,(I/I). Results are plotted for
6 = 20 and for m = 1 (black), m = 0.1 (green), m = 0.01 (blue) and m = 0.001 (red). Panels
a-b: variation with the noise intensity o,454 of an additive Gaussian noise on relative
abundances (1/N = 10~* is the relative abundance of the least abundant MOTUs). Panels c-d:

variation with the ratio 2 between metabolic rate and death rate.
d
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Supplementary Methods: Quantifying noise using a benchmark

dataset

To build our benchmark dataset, we mixed the genomic DNA extracted from 16 Alpine
plant species in known quantities (Table S1), and we amplified and sequenced the
chloroplast trnL P6-loop barcode (primer g-h; Taberlet et al., 2007). Amplification and
sequencing were replicated eight times. The DNA concentrations of the different
species in the mixture scaled logarithmically, with a doubling in genomic DNA
concentration from one species to the next more abundant. The 16 species thus
spanned a large range of DNA concentration (1.10-> ng/uL to 1 ng/uL), representative

of the DNA abundances found in environmental samples.

The PCR mixtures comprised 2 ng DNA template, 10 ul of AmpliTaq Gold®
Master Mix (Life Technologies, Carlsbad, CA, USA), 0.25 pM of each primer, 3.2 pg of
BSA (Roche Diagnostic, Basel, Switzerland) for a final reaction volume of 20 pl
Thermocycling conditions consisted of an initial denaturation step (95°C, 10 min)
followed by 35 cycles of denaturation at 95°C (30 s), primer annealing at 50°C (30 s)
and elongation at 72°C (1 min), and by a final extension step (72°C, 7 min). Amplicons
were then purified (MinElute™ PCR purification kit, Qiagen), pooled, loaded on a HiSeq
[llumina lane and sequenced using the paired-end technology. The read coverage was

about 105 Illumina sequence reads for each of the eight replicates.

The sequencing data were first curated following classical procedures using the
OBITools package (Boyer et al, 2016), consisting in paired-end read assembly, read
assignation to their respective samples and dereplication. Sequences of length shorter
than 10 nucleotides or containing ambiguous nucleotides were excluded. The
sequences were then processed using the Infomap clustering algorithm (Rosvall et al,
2009), to minimize the number of artifactual MOTUs by clustering sequences together
based on their similarity. The dataset is considered as a network of sequences
connected by links weighted according to sequence similarity. We used weights
decreasing exponentially with the number of nucleotide differences between
sequences and we discarded the links for more than 5 nucleotide differences. All

replicates were lumped for this clustering analysis. In parallel, all sequences were
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assigned to a taxon using the barcodes of the 16 species as a reference database (Table

S1).

The clustering algorithm yielded 48 clusters (i.e. MOTUs), 24 of which were
found only in some of the replicates (Fig. S3a). Each input species was represented as
the most abundant sequence of a MOTU found in all 8 realizations. Taking only into
account the MOTUs shared across replicates, the proportion of artifactual MOTUs in
the curated dataset is 33% (Fig. S3b). Using the taxonomic assignation of all sequences
to the most similar of the 16 species, we found that each artifactual MOTU originates
from a single species and is at least 50 times less abundant than the species that
generated it (Fig. S3a). Therefore, artifactual MOTUs have little impact on the
abundance of the true MOTUs in the dataset. Moreover, the number of artifactual
MOTUs generated by a species is proportional to the latter’s read abundance r (Fig.
S3c), and the log-abundance of these artifactual MOTUs is uniformly distributed
between 0 and log(r/50). Our modeling choice for simulating artifactual MOTUs with

realistic abundances built on these empirical observations.

The amplification factor, i.e. the ratio between the read abundance and the
initial DNA concentration, was found to be approximately constant over the range of
DNA concentrations spanned in the dataset (Fig. S3d). However, it varied across
species and replicates. This results in a multiplicative noise on relative abundances
that is approximately lognormally distributed, with logarithm standard deviation
0109 = 1.2 (Fig. S3e). Seventy-three percent of the variance of the logarithm is
explained by differences among species (likely related to the variability in barcode
copy number and in efficiency of PCR amplification) while the remaining variance

corresponds to the variability among realizations (Fig. S3d).
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Species Dilution Sequence Sequence  Sequence
factor length (nt) GC content
(%)

Taxus baccata 1.000000  atccgtattataggaacaataattttattttctagaaaagg 41 24.39

Salvia pratensis 0.500000  atcctgttttctcaaaacaaaggttcaaaaaacgaaaaaaaaaag 45 26.67
atcctatttttcgaaaacaaacaaaaaaacaaacaaaggttcataaagaca

Populus tremula 0.250000 gaataagaatacaaaag 68 25.00

Rumex acetosa 0.125000  ctcctectttccaaaaggaagaataaaaaag 31 35.48
atcctgttttcccaaaacaaataaaacaaatttaagggttcataaagegaga

Carpinus betulus 0.062500 ataaaaaag 61 27.87

Fraxinus excelsior 0.031250  atcctgttttcccaaaacaaaggttcagaaagaaaaaag 39 33.33

Picea abies 0.015625  atccggttcatggagacaatagtttcttcttttattctcctaagataggaaggg 54 38.89

Lonicera xylosteum 0.007813  atccagttttccgaaaacaagggtttagaaagcaaaaatcaaaaag 46 32.61

Abies alba 0.003906  atccggttcatagagaaaagggttictctcctictcctaaggaaagg 47 44.68
atcctgttttacgagaataaaacaaagcaaacaagggttcagaaagegag

Acer campestre 0.001953  aaaggg 56 39.29
atccgtgttttgagaaaacaagggggttctcgaactagaatacaaaggaaa

Briza media 0.000977 ag 53 39.62

Rosa canina 0.000488  atcccgttttatgaaaacaaacaaggtttcagaaagcgagaataaataaag 51 31.37

Capsella bursa-pastoris 0.000244  atcctggtttacgcgaacacaccggagtttacaaagcgagaaaaaagg 48 45.83
atccttttttacgaaaataaagaggggctcacaaagcegagaatagaaaaaa

Geranium robertianum 0.000122 ag 53 33.96

Rhododendron ferrugineum 0.000061  atccttttttcgcaaacaaacaaagattccgaaagctaaaaaaaag 46 30.43

atcctgctttacgaaaacaagggaaagttcagttaagaaagegacgagaa
Lotus corniculatus 0.000031  aaatg 55 38.18

Table S1: List and characteristics of the 16 plant species included in the benchmark dataset.
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Figure S3: Empirical results for the benchmark dataset obtained by mixing the DNA of 16
plant species, then amplifying by PCR and sequencing on an Illumina platform the chloroplast
trnL P6-loop barcode, with eight replicates. Panel a: Read abundance of the 16 species (*) and
of the artifactual MOTUs (o, o), averaged over the replicates, as a function of the species initial
abundance. Some artifactual MOTUs were found in every realization (o), but others were not
(o). The blue dotted lines delineate the abundance domain chosen to model the abundances of
artifactual MOTUs. Panel b: Number of reads per MOTU as a function of the MOTU’s
abundance rank, including and excluding artifactual MOTUs (black and dashed blue,
respectively). Panel c: Linear relationship between the number of artifactual MOTUs and the
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relative abundance of the species that generated them (the most abundant species is excluded,
as well as the MOTUs found in only some of the replicates). Panel d: Logarithm of the
amplification factor, i.e. the ratio between the read abundance and the initial DNA
concentration, as a function of the initial DNA concentration of the species (dotted lines:
standard deviation 0,4, = 1.2 over all species and all replicates). Panel e: Probability density
of the logarithm of the amplification factor over the 16 species and the 8 realizations,
approximately normally distributed.
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Supplementary Note 1: Hubbell’s neutral model

Hubbell’s neutral model of biodiversity describes a large pool of Jy individuals
undergoing random death, birth and speciation events in the following way: at each
time step, one individual at random dies, and is replaced by a new individual. This new
individual belongs to a taxon not previously found in the community with probability
v, or to one of the already existing taxa with probability 1-v. In the latter case, each
taxon has a probability to be picked proportionally to its abundance in the
community!. In the absence of dispersal limitation, the multivariate steady-state

distribution of taxa abundances is called the Ewens distribution and is characterized
by the single parameter 6 = 1E—V(IM — 1) (Ewens, 1972; Etienne & Alonso, 2005). Any

sample consisting of /] < J,, individuals drawn at random from the community follows

also the Ewens distribution of parameter 6.

A dispersal-limited version of this model is defined as follows (Hubbell, 2001;
Etienne & Alonso, 2005). New taxa disperse into a single local community by
immigration from a regional pool, which follows the model without dispersal limitation
described above. When an individual dies, it is replaced by an immigrating individual
with probability m, and by the offspring of a local individual with probability 1-m. Two
immigrants may belong to the same taxon. The multivariate steady-state distribution

of taxa abundances in the dispersal-limited local community depends on two
parameters: the dispersal parameter [ = %(] — 1), where J is the number of
individuals in the local community, and the diversity parameter 6 of the regional pool
(Etienne, 2005). Any sample drawn at random from the local community also follows

the Etienne distribution of parameters 8 and I (Etienne & Alonso, 2005).
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Supplementary Note 2: Modeling size differences

1. Modeling size differences using the von Foerster equation

The von Foerster equation (von Foerster, 1959; O’'Dwyer et al, 2009) describes a
population where individuals grow in number of cells (or mass) n with a growth rate
g(n), and where they die with a death rate d(n). The evolution of the number j(n, t)dn

of individuals with a number of cells between n and n+dn at time ¢ is given by:

i) 3(gmj(n1)
- on

o — d)j(n, 1)

When g(n) and d(n) are independent of n, the stationary (i.e., time-independent)

solution of the von Forster equation is:

_4

) =) %es
n)=J—e
J g

(n—-ng)

where ] is the constant population size, given by:
1= [ jeoan
No

Therefore, a randomly chosen individual in the population has a number n of cells with

probability density:

We used this probability density to draw a number of cells between ny and infinity for
each individual of the neutral sample. The mean < n > and the coefficient of variation

0,/< n > of the number of cells of a randomly chosen individual are given by:

<n>=g+n0

d
On 1
<n> d
—ng+1
g
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2. Comparison with O'Dwyer et al. (2009)’s size-structured neutral model

O’'Dwyer et al. (2009) transformed the deterministic von Foerster equation into a
probabilistic equation, and integrated it into the master equation of Volkov et al
(2003), which describes a neutral dynamics without dispersal limitation in a
probabilistic way. The resulting size-structured neutral model predicts that, in steady
state, if the growth rate g(n), the birth rate b(n) and the death rate d(n) are

independent of n, and if % > ny (i.e., individuals grow much larger than their size at

birth), a randomly chosen species will have a total number of cells (or a total biomass)
n with probability density:

d-b d

v == £
() =3—-(e 7" —e 9")

where v is the speciation rate of the neutral model (v/b « 1). Adding size structure

does not modify the probability for a randomly chosen species to have J individuals:

0= 0)

While the model of O'Dwyer et al. (2009) explicitly accounts for the coupling

J

between the demographic dynamics and the growth of individuals, we generated a
neutral sample of individuals and then assigned an independent number of cells to
each individual. Therefore, under our assumptions, the numbers of cells of the different

individuals are described by independent and identically distributed exponential
random variables N;, and for% > n,, the total number of cells of a species with |

individuals follows an Erlang distribution:

]
z N; ~ Erlang(g,])
i=1

with probability density:

J d

~ I (AP
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The probability density for a species of having a total number of cells n is then given

by:
Pp() = ) Poy(Dpsp(nl))
J=1

Combining the expressions of P, (/) and ps,(n|/) above, we obtain the same
expression for pg,(n) as predicted by the size-structured model of O’'Dwyer et al
(2009). Therefore, in the simple case where g(n), b(n) and d(n) are independent of the
number of cells n, explicitly accounting for the coupling between demographic
dynamics and individual growth is equivalent to assuming as we did that all individuals

have independent and identically distributed numbers of cells.

The modelling approach of Volkov et al. (2003) and O’'Dwyer et al. (2009)
differs from that of Ewens (1972) and Etienne (2005). The former consists in
describing the population dynamics of a single species with a fluctuating number of
individuals, independently of the remaining of the community, and then considering
that the results hold for every species in the community (“mean-field” approach). In
contrast, the Ewens and Etienne distributions are obtained by explicitly considering a
community with a constant number of individuals and a fluctuating number of species
through time. However, the two approaches yield identical stationary distributions

provided that the number of species is large enough (Etienne et al,, 2007).
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Supplementary Note 3: Estimator performance without simulated

noise

We explored how the maximume-likelihood neutral estimators behave in the absence of
simulated noise over the range of tested parameter values (6 in [1, 500] and m in
[0.001, 1]). We found that while the Ewens estimator is very little biased (Fig. S4a-b),
the dispersal-limited estimator can be strongly biased depending on parameter values
and sample size (Fig. S4c-f). The dispersal-limited estimator underestimates 6and
overestimates [ when the immigration rate into the local community is too small, and
overestimates fand underestimates / when the immigration rate is too large. In the
case of our 10*-read sample, values of I around I = 103 (i.e. m = 0.01 in the 10°-
individual sample) allow for the least biased estimation of (8, ). Biases are strongest

for 8 > 100.

For both estimators standard deviation and bias decrease with sample size, but
a much larger sample size is required to obtain accurate estimates in the dispersal-
limited case than in the absence of dispersal limitation. While sample sizes of ca.
N = 100 are sufficient for the Ewens estimator, sample sizes of N = 10* are still not
sufficient for some parameter values in the dispersal-limited case. Larger 6 values and
smaller I values require larger sample sizes. Estimating the neutral parameters

simultaneously from several read samples reduces these biases (Etienne, 2007).
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Figure S4: Neutral parameter inference without simulated noise, for different parameter
values. The mean and standard deviation of the relative biases on parameter estimates are
plotted over 500 realizations.
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Supplementary Note 4: Neutral parameter inference with the number

of individuals unknown

Because exact maximume-likelihood inference of the neutral parameters relies on
sampling formulas that are invariant under subsampling, it is possible to use the
sequence reads as effective individuals as long as we can consider the reads as a
subsample from the initial individuals. Therefore, there should be less reads than
individuals. A further complication is that the sequence reads are sampled with
replacement from the initial individuals in our simulations (i.e. they are a multinomial
sample from the relative abundances) instead of without replacement as required for
the invariance property to hold. Hence there should be in fact several times less reads
than individuals, because sampling with and without replacement are equivalent only

in this case.

To illustrate this assumption, we explored how the Ewens maximum-likelihood
estimator behaves in the absence of simulated noise depending on the initial number
of individuals J, for N = 10%,N = 103,N = 10* and N = 10°, and for 8 = 20. As
expected, the Ewens estimator yields an unbiased 0 estimate as long as the initial
number of individuals is ca. one order of magnitude larger than the number of reads
(Fig. S5a-d). We then simulated a number of reads larger than the initial number of
individuals (N = 10° reads for J = 10* individuals, and N = 10* reads for /] = 103
individuals), and took smaller subsamples of reads from the original read sample until
reaching a stable § maximum-likelihood estimate. As expected, the 6 estimate becomes
stable under subsampling for samples at least one order of magnitude smaller than the
initial number J of individuals. Using this method, we achieved an unbiased estimation
of 8 in spite of the small initial number of individuals (Fig. S5e-f). In the dispersal-
limited case, we expect the maximum likelihood estimator based on the Etienne

sampling formula to behave similarly.

We also compared estimating 6 using the Ewens estimator and estimating 6 by
linear regression on the ranked log-abundance. We found that both methods perform
similarly when the number of reads is one order of magnitude larger than the initial

number of individuals, and that when this condition is not met, linear regression still

159



provides an unbiased 6 estimate (Fig. S5a-d). However, unlike maximum likelihood
inference, linear regression on the ranked log-abundance is not reliable when either
the number of reads or the initial number of individuals is too low (lower than ca. 500
for 8 = 20; Fig. S5a-d), or when there is too little taxonomic diversity in the sample.

Moreover, the 6 estimate depends on the arbitrary delimitation of the linear domain of

the curve.
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Figure S5: 6 inference without dispersal limitation and without simulated noise for 8 = 20.
The mean and standard deviation of the relative bias on the 8 estimate are plotted over 100
realizations. Panels a-d: 6 inference by maximum likelihood (black) and by linear regression
on the ranked log-abundance (blue), as a function of the initial number of individuals J, (a)
for N = 10° reads, (b) N = 10* reads, (c) N = 103 reads and (d) N = 102 reads (linear
regression too inaccurate to be plotted for N = 10%). Panels e-f: Maximum-likelihood 6
estimate as a function of the size Ngypsqampie Of the read subsample used for estimation, starting
from an original sample of (e) N = 10° reads or (f) N = 10* reads. An unbiased 6 estimate is
obtained when Ngypsampie 1S at least one order of magnitude smaller than the initial number of
individuals (e) /] = 10* or (f) ] = 103.
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Chapter outline

The second chapter explored the effect of noise on the interpretability of environmental
DNA data. In this third chapter, another challenge of environmental DNA data is
addressed, namely the fact that microbial datasets typically yield a large number of rare
OTUs, and that sampling effort cannot be controlled across samples. As in the first
chapter, the focus is here on datasets containing many spatially distributed samples.
However, while the first chapter aimed at comparing the taxonomic composition of
samples with respect to their spatial layout and to environmental descriptors, this
chapter describes a method to explore the structure of an environmental DNA dataset
independently of any additional information. The results can then be interpreted in
regard of contextual data. This method, which is closely related to methods already in
use in microbiology, is suited to large and sparse datasets, and accounts for sampling
effects. It consists in decomposing the data into assemblages of OTUs based on their
propensity to co-occur across samples. In this chapter, it is tested using simulations and
by applying it to a large soil DNA dataset collected over a forest plot following a regular
sampling scheme. A measure of the stability of the decomposition is also proposed.
Lastly, the application of this approach to ecological data is discussed more generally. Of
particular interest is that this method is model-based, and could thus be extended by
modifying the underlying model, including by the addition of more mechanistic

elements.

164



Chapter 3 - Topic Modelling

Abstract

High-throughput sequencing of amplicons from environmental DNA samples has
become a major method for rapid, standardized and comprehensive biodiversity
assessments, allowing for the study of all life forms within a single sample. However,
data interpretation is often difficult because a large number of rare taxa confound
patterns. Hence, retrieving and describing the structure of such datasets requires
efficient methods for dimensionality reduction. Here, we describe the first application of
Latent Dirichlet Allocation (LDA) to an environmental DNA dataset. LDA uses a
probabilistic model to decompose samples into overlapping assemblages based on the
co-occurrence of taxa and the covariance of their abundances. It accounts for sampling
effects and accommodates large and sparse datasets. We show that the grouping of taxa
into assemblages can be tested statistically, and to this end develop a measure of
assemblage stability. We then apply a LDA algorithm to a large soil survey of bacteria,
protists and metazoans in a 12-ha plot of primary tropical forest. The LDA analysis
reveals that bacterial and protist assemblages display a strong spatial structure while
metazoans do not. Furthermore, bacteria and protists exhibit very similar spatial
patterns, which match the topographical features of the plot. We conclude that LDA is a
computationally efficient and robust method to detect and interpret the structure of
large DNA-based biodiversity datasets. We discuss the possible future applications of

this approach in biodiversity science.
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Introduction

High-throughput sequencing is shedding a new light on the study of biodiversity
patterns across domains of life. A simple and efficient method is ‘DNA metabarcoding’
(Taberlet et al., 2012), which consists in amplifying and sequencing a genomic marker
(‘DNA barcode’) in the DNA contained in environmental samples such as soil, water or
feces (Thomsen & Willerslev, 2015). The resulting sequences can then be clustered into
molecular Operational Taxonomic Units (OTUs), which serve as proxies of species in
biodiversity assessments, and which can possibly be assigned to known taxa after
comparison to reference databases. Metabarcoding data typically consist of a
‘community matrix’ that lists the OTUs found in each environmental sample, as well as

their read counts.

A goal of community ecology is to understand patterns of species co-occurrence
and turnover across space. Let us assume that many samples have been collected across
space, in a regular fashion. So far, the search for community structure has been
performed using multivariate ordination, as well as distance-based or partitioning-
based clustering (Legendre & Legendre, 2012). These methods have proven their
efficiency, but they have limitations when it comes to analysing datasets with a very
large number of OTUs, and many rare OTUs, resulting in large and sparse community
matrices (Holmes et al, 2012). Their results are also biased by the uneven sampling
effort across samples in metabarcoding data, since sampling effort depends on the

amount of DNA retrieved and on PCR yield for each sample.

Probabilistic approaches to detecting data structure offer an alternative to
ordination methods by explicitly modelling the sampling process that underlies the data
(Holmes et al, 2012). This can be achieved using a so-called mixture model, which
assumes that the data are structured into a mixture of several (unobserved) component
units, each with a distinctive taxonomic composition. Under this model, the observed

discrete samples of sequence reads, which may be of different sizes, are sampled from
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this mixture. The component units can then be inferred from the data using maximum-
likelihood or Bayesian inference, which provide rigorous means of assessing goodness-
of-fit and of selecting the number of component units. Mixture models have been
successfully used in microbiology (Knights et al, 2011; Holmes et al., 2012; Ding &
Schloss, 2014; Shafiei et al., 2015) and in community ecology (Valle et al., 2014), either
in an unsupervised way (data clustering) or in a supervised way (data classification). In
particular, Valle et al. (2014) used Latent Dirichlet Allocation (LDA) to cluster tree
abundance data across forest plots into component assemblages - or ‘component
communities’. They showed that this method performed better than hierarchical and k-
means clustering on simulated data. Here, we explore the potential of this method for

the analysis of large metabarcoding datasets.

LDA decomposes samples into a mixture of component assemblages, which may
themselves overlap in their taxonomic composition. The component assemblages can be
interpreted as communities of co-occurring taxa. Because each sample is represented by
a mixture of component assemblages, the model captures the smooth turnover in
species composition along environmental gradients (Valle et al., 2014). This model was
originally introduced by Blei et al. (2003) to decompose large sets of text documents
into topics (a problem known as ‘topic modelling’), based solely on their word
frequency, and has been subsequently extended to the analysis of large and complex
datasets in various fields (see Blei (2012) for a review). The same model has been
independently introduced in population genetics to model population structure using
the distribution of alleles across individuals, and is now a cornerstone of population
genetics analyses (model with admixture in the Structure software; Pritchard et al,

2000).

One issue for the application of LDA to metabarcoding is that the interpretation
that can be made of abundance information, i.e. the DNA read count per OTU, remains
debated (Nguyen et al, 2015; Sommeria-Klein et al, 2016). For bacteria, it seems
possible to relate the read count to the number of cells in the sample (Kembel et al,
2012), while in the case of macro-organisms, the read count may be indicative of the
taxon’s biomass in the environment (Andersen et al, 2012; Klymus et al, 2015).
Nevertheless, metabarcoding data are often best used as occurrence data, and it is thus

important to evaluate the applicability of LDA to occurrence-based datasets. Second,
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depending on how strongly structured the data are, the LDA algorithm may fail to
converge to an optimal solution. It is indeed acknowledged in the literature that the
result of LDA decomposition may vary from one run to the other (Steyvers & Griffiths,
2007; Balagopalan, 2012; Valle et al., 2014). Hence, it would be important to quantify the
robustness of the LDA decomposition, especially since environmental DNA data are
noisy. We first address these problems on simulated data, and then turn to the analysis
of an empirical metabarcoding dataset describing the soil biodiversity of bacteria,
protists and metazoans over a large tropical forest plot in French Guiana (Zinger et al.,
2017). We thus address here the following questions: (1) can LDA accurately retrieve
assemblages from occurrence data, (2) can we define a stability metric for the
decomposition of metabarcoding data into component assemblages, and (3) can
component assemblages retrieved from empirical data be related to variation in abiotic
conditions? Finally, we discuss our results in light of those obtained by multivariate

methods (Zinger et al., 2017).
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Methods

1. Latent Dirichlet Allocation

LDA decomposition takes as an input a community matrix representing samples by
columns and OTUs by lines, where the entries are the read counts per OTU in each
sample. Occurrence data can also be provided as an input, since they are a special case of
abundance data where OTU abundances only take values 0 or 1. Inference consists in
fitting a generative model to the observed community matrix. The generative model
describes a way to generate the data based on two assumptions: the data are structured
into K assemblages, where K is a fixed parameter, and each sample is a mixture of the K
assemblages in Dirichlet-distributed proportions. The model involves unobserved
(‘latent’) variables describing the underlying decomposition of the data into the K
assemblages, and the fitting process consists in estimating the most likely value of the

latent variables and of the model’s parameters given the observed data (Fig. 1).

The generative model consists of the following steps. For sequence read n in
sample m, assemblage membership z, is generated by a categorical draw from a vector
of K mixture weights (6;") e k7 (i-€., one out of K categories is chosen at random with

probability weights (67" )ke1x7)- Then, the OTU membership w, is generated by a

categorical draw from a vector of V mixture weights (¢f”)ve[[1 " where Vis the number

of distinct OTUs in the whole dataset. The mixture weights 8;" represent the
decomposition of each sample m into the K assemblages, while the mixture weights ¢X
represent the taxonomic composition of each assemblage k. The model further assumes
that the mixture weights 6, follow for each sample m a symmetric Dirichlet distribution

of mixing parameter ¢. Therefore, for each sample m:
0™ = (61" )reprxy ~ Dirichlet(a)
And then, for each sequence read n in sample m:

z, ~ Categorical(@™)
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. ~ Categorical(¢p*)

Thus, fitting the generative model to the observed data consists in finding the
most likely assemblage mixtures 6™ for the M samples, the most likely OTU
compositions ¢¥ for the K assemblages, and the most likely value for the mixing
parameter « of the Dirichlet distribution. The value of ¢ indicates whether the samples
tend to be decomposed into an even mixture of component assemblages with similar
abundances (case @ > 1) or into an uneven mixture dominated by one or a few
component assemblages (case a < 1). A sharp spatial segregation of the assemblages is
associated with a « value markedly lower than unity. The Dirichlet distribution is used
as a prior primarily because it is the conjugate prior of the categorical distribution,

which eases analytical calculations.

_--- ﬁ_---

oTU1lm EEEN oTU1lHl EEEE
OTU 2 % * ** * ok k OTU 2 % * ** 2.8.8.9
oTuU3 & 2 L 2 2 2 oTuU3 ¢ 2 L 2 2 2
(oA _---
decomposition Assemblage 1 1
K=2 assemblages Assemblage 2 0
oTulm 0.75
OoTU 2 % 0.25 0 5
OoTU3 & 0 0.5

Figure 1. Illustration of Latent Dirichlet Allocation’s (LDA) principle. LDA decomposes a
community matrix with discrete abundance information (e.g., read count) into K assemblages
based on the co-occurrence of OTUs and the covariance of their abundances across samples. K is
fixed beforehand and can be selected using likelihood-based model selection methods. The
assemblage mixture (] )kepikp in each sample m, with ¥x_; 6;* =1, and the taxonomic

composition (¢ ) of each assemblage k, with Y.V _; ¢¥ = 1, are inferred from the data.

€l1v]

2. Inference using a Variational Expectation-Maximization algorithm

We fitted the generative model to the observed data using the Variational Expectation-

Maximization (VEM) algorithm proposed and implemented by Blei et al. (2003), and

171



Chapter 3 - Topic Modelling

wrapped into the R package ‘topicmodels’ by Griin & Hornik (2011). Compared to the
often-followed Bayesian approach of Griffiths & Steyvers (2004), this approach is
computationally faster, estimates all parameters and allows for a better-justified use of
AIC for selecting the number of assemblages. The algorithm uses approximate likelihood

maximization to estimate the parameters ¢ and ¢ = ((¢1’;)UE[[1'V]])I(E[[1 Ky 38 well as the

posterior distribution of the latent variables Z:((Z”)"E[[l""m]])me[nm]] and 0 =

((B,Q")ke[[llK]])me[[LM]] given the dataw = ((Wn)ne[[l.Nm]])me[[LM]]'

First, we set the model parameters to ¢ = 0.1 and to randomly chosen values for
¢. Then, the following two steps are repeated until the likelihood (or more precisely, a
lower bound for the likelihood) converges. The variational step approximates the
posterior distribution P(z, 8|w, a, ¢) of z and 6, given the data w and given the current
values of a and ¢. This is achieved by minimizing the Kullback-Leibler divergence
between a variational approximation and the true posterior. The Expectation-
Maximization (EM) step estimates the parameters ¢ and ¢ by maximizing the marginal
log-likelihood L(a@, ¢) = In[P(w|a, )], making use of the approximation to the
posterior distribution P(z, 8|w, a, ¢) found in the variational step (Blei et al., 2003; Griin
& Hornik, 2011). We used a convergence threshold of 107 for the EM step and a

convergence threshold of 10-8 for the variational step in all our analyses.

This algorithm provides an estimate of the marginal log-likelihood In[P (w|a, ¢p)]
of the final decomposition, that can be used to compare different realizations of the
algorithm or to compute the model’s AIC. It is a deterministic algorithm in the sense that
it consists in a simple iterative optimization. However, the result may depend on the

initialization for the taxonomic composition ¢ of assemblages.

3. Computing the optimal number of assemblages

We selected the number K of assemblages based on AIC. There is no rigorous expression
of AIC for a model such as LDA (Burnham & Anderson, 2002), but we chose to compute
the AIC as 2(L(a,¢) + K(V — 1) + 1), where L(a, ¢$) = In[P(w|a, ¢)] is the marginal

log-likelihood of the LDA decomposition. Indeed, there are K(V — 1) free parameters to
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be estimated in ¢p = ((¢5)VE[[1’V]])I(E[[1 o plus the mixing parameter a. This is the same

expression as the one used elsewhere (Than & Ho, 2012). We used the lower bound on
the marginal log-likelihood computed as part of the VEM algorithm as an approximation

for L(a,¢p). We also tried to correct the AIC for small sample size as 2[L(a, ) +
(KV-1)+1) (1 + i)], where M is the number of samples (Burnham & Anderson,

2002), but this did not modify our results, and we do not report these analyses here.
4. Assessing the stability of the decomposition

The LDA decomposition reflects the co-occurrence structure of 0TUs among samples, as
well as the covariance structure of their abundances in the case of abundance data. If the
data are not strongly structured, they may exhibit a complex likelihood landscape, which
increases the chance that the algorithm reaches a local likelihood maximum. To address
this issue, we ran the algorithm a hundred times starting from random initial
assemblages ¢¥, and we selected only the realization with the highest likelihood value
for interpretation. We also measured the stability of the decomposition across the
hundred realizations, with two goals in mind: measuring how strongly structured the
data are, and assessing whether the realization with highest likelihood has indeed
reached the optimal solution. We removed the occasional realizations with « values
much larger than 1 from the analysis, because they correspond to non-informative

solutions where all samples contain all assemblages in similar proportions.

To measure the stability of the decomposition across realizations, we first needed
to define a measure of similarity between two possible decompositions of the data. We
computed it as the mean similarity between the assemblages of the two decompositions.
Therefore, it boils down to defining a measure of similarity between two assemblages.
We used the symmetrised Kullback-Leibler (sKL) divergence, a measure of dissimilarity
between two distributions that stems from information theory and that is commonly
used in statistics and machine learning (Burnham & Anderson, 2002; Meila, 2006;
Steyvers & Griffiths, 2007). The Kullback-Leibler divergence (or relative entropy) of a

distribution q = (q;);eq1n7 relative to a distribution p = (p;)iep1ny is defined as
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D(plg) =YY piIn(p;/q;) , with ¥¥ . p;=1 and XY ,q; =1 (Kullback, 1959). It
measures the amount of information lost when approximating the distribution p by the
distribution q. The symmetrised Kullback-Leibler divergence between p and q is then
defined as Ds(p,q) = (D(plq) + D(q|p))/2. Between two assemblages k; and k,, the
sKL divergence can be computed either based on their spatial distribution, i.e.
Ds(O,/Ym=1 61 , 01,/ Y=y i), or based on their OTU composition, i.e. Ds(¢p*1, p*2).
Thus, we were able to measure both the spatial and the taxonomic similarity between
two assemblages. Since Ds(p, @) is infinite as soon as there is at least one i in [1, N] that
verifies p; = 0 or ¢; = 0, we avoided infinite sKL divergence values by setting a lower
bound in every entry of 8 and ¢, equal to the inverse of the sum of all elements in the
community matrix (i.e., the inverse of the total number of reads in the case of abundance
data, or the inverse of the total number of occurrences in the case of occurrence data).
Therefore, every point where both distributions take values below this threshold has a

null contribution to D¢(p, q).

We wused the sKL divergence to define the similarity measure
o(ky, ky) = ((Ds(kl,kz))md — Ds(kl,kz))/(Ds(kl,kz))md between two assemblages k;
and k,, where (Ds(k1, k3))rmq is the average sKL divergence over 1000 randomizations
of the assemblages. When computing spatial similarity, we performed randomizations
by randomly shifting the spatial distribution of one assemblage with respect to the
other, so as to account for spatial autocorrelation (Fortin & Payette, 2002). When
computing taxonomic similarity, we performed random permutations of the OTUs in one
distribution with respect to the other. The similarity o (k,, k,) is equal to 1 for a perfect
match, and to 0 when the assemblages are as similar as expected by chance. We then
defined the similarity between two decompositions d; and d, as the mean similarity
between their best-matching assemblages, i.e. S(d;,d;) = Ik{1=1 o(ky, k3(ky))/K, where
assemblage k;(k;) is the best match in decomposition d, of assemblage k; in
decomposition d,, as deduced from the comparison of ¢ values. When more than one
assemblage k; in decomposition d; had a best match with assemblage k; in
decomposition d,, we forced a one-to-one correspondence between the assemblages of

both decompositions by giving priority to higher o values. This situation should be
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rarely encountered however, since assessing stability mostly involves comparing

decompositions that closely resemble each other.
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Figure 2. Assessing the stability of the LDA decomposition using the metric I. Each panel
represents 100 realizations of the LDA algorithm with random assemblage initializations for a
mock dataset. In both cases, the realization with highest likelihood (i.e., the best realization) is
compared to each of the 99 others by plotting their similarity S as a function of their log-
likelihood difference. The metric I is defined as the intercept of the linear regression (dashed
blue line). Two cases are illustrated: (a) realizations grow increasingly similar to the best
realization as their likelihood increases (I = 1), and (b) dissimilar realizations with similar
likelihood coexist (I = 0.5). Values of I close to 1 indicate that the best realization is likely to
have reached the optimal solution.

We measured the stability of the decomposition across n = 100 realizations by
computing two metrics. First, we computed the mean similarity across all pairs of
realizations (S), = X4, 4, S(dy,d>)/(n(n — 1)/2). The more similar the realizations are
irrespective of the initial condition, the more strongly structured the data are likely to
be. Second, we compared the realization with highest likelihood (i.e., the best
realization) to each of then — 1 others. To assess whether the best realization had
indeed reached the optimal solution, we plotted for each pair their similarity S as a
function of their log-likelihood difference (Fig. 2). We performed a linear regression of

the similarity against the log-likelihood difference, and used the intercept I,, as a metric.
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This metric I,, assesses whether the realizations tend to be increasingly similar to the
best realization as their likelihood increases, i.e. to ‘converge’ toward the best
realization. Values of I,, close to 1 mean that we can be confident that the best
realization has reached the global likelihood maximum, provided that the space of
possible initializations has been adequately sampled. We computed both metrics for
spatial ((Sspat)n» Ispat,n) and taxonomic ((Siaxo)n, ltaxo,n) Similarities between

assemblages.

5. Simulated data

To test the performance of the LDA algorithm on occurrence-transformed data with
respect to the original abundance data, we simulated a metabarcoding dataset. This
simulated dataset comprised 1,131 samples containing a total of 1,000 OTUs and
decomposed into 5 assemblages. We first defined the assemblages by drawing their OTU
composition from a Dirichlet distribution of mixing parameter 0.02. We then assigned to
each sample a mixture of assemblages in proportions determined by a sinusoidal
function of the sample’s index, so that the relative abundances of all 5 assemblages
successively peak at 100% (Fig. 3). Combining the assemblage mixture and the
taxonomic composition of assemblages, we obtained the relative abundances of OTUs in
each sample. We generated the simulated dataset by sampling 1,000 sequence reads per
sample from these relative abundances, which resulted in an average diversity of 105

OTUs per sample.
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Figure 3: LDA decomposition of simulated occurrence and abundance data. LDA applied to
a simulated dataset with 5 assemblages, 1,000 MOTUs, 1,131 samples, and 1,000 sequence reads
per sample, (a) for the original abundance data, and (b) for the occurrence data derived from the
same dataset. Each plot shows the assemblage proportions estimated by LDA for K =5 (coloured
lines; only the realization with highest likelihood out of 100 is shown) and the simulated

assemblage proportions (dashed black lines).

6. Tropical forest soil metabarcoding dataset

We applied LDA to an empirical metabarcoding dataset describing the biodiversity of
bacteria, protists and metazoans over a 300x400 m tropical forest plot (called Petit
Plateau; Chave et al, 2008) at the Nouragues Ecological Research Station, in a lowland
tropical forest of central French Guiana (Bongers et al, 2001). Site conditions, data
collection, laboratory procedures, and sequencing filtering procedures are all described

in detail in Zinger et al. (2017) and are only briefly summarized here.

The sampling campaign was conducted towards the end of the 2012 dry season.
Soil samples were collected from the mineral horizon (~10 cm deep) using a soil auger
every 10 m on a square grid covering the plot and excluding the edges, which resulted in
1,131 soil samples (Fig. S1). Extracellular DNA was extracted in the field from each

sample (Zinger et al, 2016). The present study uses data from two DNA barcodes
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amplified by PCR and sequenced on high-throughput Illumina sequencers, targeting
bacteria (16S rDNA), and all eukaryotes (18S rDNA). The sequencing data were curated
using the OBITools package (Boyer et al., 2016). Sequences were clustered into OTUs
based on their similarity using the Infomap algorithm (Rosvall et al, 2009) with a
similarity cut-off of 3 mismatches, so as to cluster spurious sequences resulting from
PCR and sequencing errors. Each OTU was given a taxonomic assignation by comparing
its sequence to the following reference databases: GenBank r197 for the eukaryotic 18S
marker, and SILVA for the bacterial 16S marker. Sequence matching to databases was
conducted using the ecotag program included in the OBITools package. Based on these
taxonomic assignations, we further split the eukaryotic 18S dataset into protists,

arthropods, annelids, nematodes, and flat worms (Platyhelminthes).

Out of the 1,131 samples, a number of samples were excluded from the
sequencing results for each barcode due to insufficient PCR yields (7.2% of samples for
bacteria and 0.2% for eukaryotes). We interpolated the content of the missing samples
by sampling with replacement the mean number of reads per sample from the (up to
eight) non-empty nearest neighbouring samples on the grid. We then applied the LDA on
either the read-abundance data, or on the occurrence-transformed data, defining the
absence of an OTU in a sample strictly as zero read-abundance in the sample. We did not

trim the data for rare OTUs, or for OTUs represented in a single sample.

A fine-grained description of the forest canopy structure and topography was
obtained using a small-footprint LiDAR survey carried out over the sampling site in the
same year as the soil sampling (2012; Rejou-Mechain et al, 2015). This allowed the
generation of maps of topography, slope, and canopy height from the LiDAR cloud of
points. The topography of the plot is relatively smooth, with a maximal difference in
elevation of 30 m. Maps of soil wetness (Beven & Kirkby, 1979) and light at ground level
were also derived from the LiDAR measurements (Tymen et al, 2017). We compared
the LiDAR-derived data with the metabarcoding data by computing the mean values of
the environmental variables over 10-m-by-10-m cells centred on the soil sampling
points. We sought a biological interpretation for the retrieved assemblages by
comparing their spatial distribution to the distribution of LiDAR-obtained
environmental variables. To do so, we computed Pearson’s correlation coefficient

between the spatial distributions and assessed the significance of the correlation by
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shifting randomly one spatial

distribution with respect to the other, so as to account for spatial autocorrelation.

K=3

Richness Kmincaicy  (Sspat.)100

Ispat,100 (Staxo.)100 ltax0,100  @best real.

Bacteria 16S 20,162 5 0.85
Protists 18S 1,648 2 0.68
Arthropods 18S 1,881 2 0.62
Nematodes 18S 378 2 0.33
Platyhelminthes 18S 126 2 0.52
Annelids 18S 51 2 0.41

1.0
1.0
0.62
0.49
0.50
0.57

0.95
0.95
0.91
0.88
0.86
0.83

1.0

1.0

0.93

0.94

0.88

0.90

0.16
0.082
0.11
0.05
7.0

0.035

Table 1: Stability of LDA decomposition for occurrence data. For each of the taxonomic

groups under study: total number of MOTUs; optimal number of assemblages Kpjn(aicy obtained

from AIC minimization; spatial and taxonomic stability for three assemblages as measured by

the (S)100 and ;o metrics; estimated value of the mixing parameter « in the best realization out

of 100 for three assemblages.
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Results

We first applied Latent Dirichlet Allocation decomposition to a simulated dataset, and
compared the results for abundance and occurrence data. AIC minimization correctly
recovered the simulated number of assemblages (five) in both cases (Fig. S2). In the case
of occurrence data, LDA yielded more even assemblage mixtures than simulated (Fig. 3).
The algorithm reached the optimal solution more reliably for occurrence data than for
abundance data ({Sgpat.)100 = 0.98 for occurrence data, (Sspat.)100 = 0.89 for abundance
data, Ispa,100 = 1.0 in both cases; cf. Fig. S2). Next, we applied the analysis to the
tropical forest soil dataset. Using the read-abundance data, the optimal number of
assemblages was always larger than 50, while it ranged between 2 and 5 for the
occurrence data, depending on the taxonomic group (Table 1). As also observed on the
simulated data, the LDA algorithm converged more reliably toward the optimal solution
for occurrence data than for abundance data (Table S1). Thus we conclude that LDA can
be effectively applied to occurrence-based biodiversity data. In the rest, we describe
results obtained using occurrence data and assuming K = 3 assemblages, a value close

to that minimizing the AIC across taxonomic groups.

We found clear differences when comparing bacteria and unicellular eukaryotes
(henceforth denoted as protists) to metazoans (arthropods, annelids, flat worms and
nematodes). Bacteria and protists displayed a stronger spatial structure at the scale of
our study plot, as deduced from the spatial stability of the decomposition: the similarity
intercept Ispat, 100 Was equal to 1.0 (Table 1, Fig. S3), with a mean similarity across
realizations (Sspat )100 0f 0.85 and 0.68, respectively (Table 1). In contrast, metazoans
displayed a lower similarity intercept (0.49 < Ipat 100 < 0.62), and also a lower
similarity across realizations (0.33 < (Sspat)100 < 0.62). We also found that spatial
structure was positively correlated to taxonomic diversity, measured by OTU richness
(correlation coefficient p = 0.85 between (Sgpat }100 and the number of OTUs; Fig. 4).
The taxonomic stability of the assemblages was higher than their spatial stability,
following the same trends as the spatial stability, but with less pronounced differences

among taxonomic groups (Table 1).
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Figure 4. Stability for occurrence data measured as the mean similarity across
realizations (S)1¢¢, as a function of the number of OTUs. The metric (S),,, is measured based
on the (a) spatial and (b) taxonomic similarity between assemblages. The blue line figures a
linear regression, and the shaded area its standard error. Pearson’s correlation coefficient is
p = 0.85 for spatial stability and p = 0.92 for taxonomic stability.

For all taxonomic groups except flat worms, the estimates of the mixing
parameter & were much smaller than 1 (Table 1), indicating a strong spatial segregation
among assemblages. In bacteria and protists, the decomposition into three assemblages
was strongly linked to topographical features (Fig. 4, Table S2). The blue assemblage of
Fig. 4 was associated with terra firme areas, defined as areas of higher topography,
gentler slope, and lower soil wetness. The green assemblage was associated with
hydromorphic areas, defined as displaying the opposite environmental correlations
(Table S2). Finally, the spatial distribution of the red assemblage matched the location of
exposed rock patches that are scattered across the forest plot, based on direct
observations. In metazoans, we were unable to identify similar terra firme and
hydromorphic assemblages (Fig. S4, Table S2), however one assemblage in arthropods
and nematodes did match the exposed rock spatial pattern (Table S3). This exposed rock
assemblage was indeed consistently found to be the most taxonomically distinctive in all
taxonomic groups. Neither light at ground level nor canopy height explained the LDA

decomposition in any of the taxonomic groups.
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Discussion

Large environmental DNA datasets offer a unique opportunity to unlock some of the
major challenges in community ecology, yet as a result data accumulation is
accelerating, thus creating the need for novel methods adapted to these data. Here we
have presented the potential of the Latent Dirichlet Allocation method for the analysis of
metabarcoding data. This model-based method is adapted to large and sparse datasets.
It assigns a probability weight for each sample to belong to an assemblage based on the
OTUs in this sample, and also infers the composition in OTUs of each assemblage (see
Table S4). It thus goes beyond a categorical classification of samples and generates
biologically interpretable assemblages. Here, we further elaborate on the advantages
and limitations of this approach, and on the implications to the analysis of the forest soil

dataset.

Discussing the assumptions of LDA. Unlike in classical multivariate methods, no prior
transformation of the data is required: input data consist of discrete OTU abundances, or
occurrences, and sample sizes may vary across samples. Input data are not required to
meet a normality assumption, the definition of a dissimilarity metric is not required, and
LDA thus makes a more parsimonious use of the data. The assumptions made by the
underlying model are minimal: the Dirichlet prior is the natural prior for the parameters
of the categorical distribution, and it is sufficiently flexible to fit most datasets (O’Brien
& Record, 2016). One could take a step toward more mechanistic modelling by adding
more assumptions to the LDA approach. For instance, one could assume that a neutral
dynamics takes place within assemblages, so that their taxonomic composition follows
the taxa-abundance distribution predicted by Hubbell’s neutral theory of biodiversity
(Hubbell, 2001; Harris et al,, 2015). Assuming a Dirichlet prior also on the taxonomic
composition of assemblages, as done in the Bayesian version of LDA (Griffiths &
Steyvers, 2004; Valle et al, 2014), is a first step in that direction, since the Dirichlet
distribution approximates the neutral taxa-abundance distribution for a large number of

taxa.
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Assessing the robustness of the LDA decomposition and selecting the number of
assemblages. In many applications of LDA, the question of the robustness of the
decomposition is crucial. However the robustness of the algorithm, as measured by the
similarity of the output across runs, has rarely been assessed, probably because it
entails a serious computational burden. Here we have proposed a practical way to
measure the similarity across runs based on the symmetrised Kullback-Leibler
divergence, and have used it to quantify how stable the decomposition is with respect to
initialization. We have computed two complementary stability metrics. First, (S)
measures the mean similarity across pairs of realizations. This stability metric is general
since it is not centred on the best realization, and measures how strongly structured the
data are. Second, I is the similarity intercept obtained by comparing the highest-
likelihood realization to all others through a linear regression of their similarity against
their log-likelihood difference. This second stability metric takes account of the
likelihood information, is less computationally intensive, and is used to assess whether

the realization with highest likelihood has reached the optimal solution.

The symmetrised Kullback-Leibler (sKL) divergence is suited to assessing
stability because it is sensitive to small differences between distributions. However, it is
unbounded, which makes it difficult to interpret. By normalizing the sKL divergence by
its mean value over randomizations, we defined a similarity index o equal to 1 when the
distributions are identical and to 0 when they are no more similar than expected by
chance. This index also accounts for spatial autocorrelation in the data by performing

spatial randomizations.

To compute the similarity between two decompositions, we consider only the
similarity between the best-matching assemblages of both decompositions, thus
discarding part of the information. This method works well when the decompositions
are similar, however similarity is undesirably low when assemblages are merged or split
between the two decompositions. This could be corrected by computing the sKL
divergence between the full partitioning of the data in both decompositions, i.e. the
assignment of every sequence read to an assemblage, instead of comparing pairs of

assemblages. While this is the approach advocated for in the clustering literature (Meila,
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2006; Vinh et al, 2010), it would likely be very computationally intensive in the case of
LDA.

There is no unique method to select the number of LDA component units (Airoldi
et al, 2010). Here we use AIC minimization as an indication of the optimal number of
assemblages. Another commonly used method consists in splitting the data into a
learning set and a test set, and optimizing the predictive power of the model on the test
set, as measured by a perplexity function (Blei et al, 2003). A more sophisticated
method is to follow the non-parametric modelling approach of (Teh et al, 2006), where
the number of assemblages is modelled as a random latent variable that is estimated
from the data. However, this method proved to have convergence issues on our
empirical data. Stability of the algorithm’s output could also be used as a criterion to
select the number of assemblages. When a large number of LDA component units is
selected, an additional step of analysis using simpler statistical methods may be needed

to represent and interpret the result of the LDA decomposition (Mauch et al.,, 2015).

Tropical forest soil biodiversity decomposition. By applying LDA to an
environmental DNA dataset, we described the spatial structure of bacterial, protist and
metazoan soil communities in a 12-ha tropical forest plot. The spatial patterns retrieved
by LDA for these taxonomic groups allowed us to shed light on soil community structure

(see also Zinger et al., 2017).

We applied the LDA algorithm to metabarcoding data with no further
transformation than clustering the sequences to avoid defining spurious OTUs. We
verified that the interpolation of missing samples played no role in generating the
observed patterns. The AIC minimization yielded between 2 and 5 assemblages for
occurrence data depending on the taxonomic group, but we used the value K = 3 across
groups to facilitate intercomparison and because the LDA decomposition is robust to the
number of assemblages close to the optimum (Fig. S7). For the 20,162-OTU bacterial
dataset, the largest dataset considered in this study, numerical inference of the LDA
decomposition for three assemblages took about 25 minutes for occurrence data and 35
minutes for abundance data, which amounts to respectively 48 and 60 hours when

running 100 realizations of the algorithm to test stability.
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microorganism
assemblages, for K = 3
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Spatial distribution of the
assemblages obtained from
independent LDA
decompositions of bacteria
and protists, for (a-b)
abundance and (c-d)
occurrence data. Sampled
locations are indicated by
dark dots, and the
assemblage mixture between
samples has been
interpolated using ordinary
kriging. Terra firme (in blue),
hydromorphic (in green) and
exposed rock (in red)
assemblages can be
identified in each taxonomic
group, based on correlations
to (e-f) Lidar-derived
topography, Topographic
Wetness Index and slope, as
well as on field observations.
The spatial patterns
retrieved for abundance data
are similar to those obtained
with occurrence data but less
strongly correlated to
topographic variables.
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The stability analysis of the algorithm indicates that communities of unicellular
organisms (i.e. bacteria and protists) are markedly structured at the scale of the plot,
while metazoan communities are less so. The stability of the decomposition is also
strongly correlated with the number of OTUs, which spans several orders of magnitude
across taxonomic groups (Fig. 4, Table 1). Thus, the lower statistical power in groups
containing fewer OTUs could explain this pattern. However, it is more likely due to
ecological differences between groups. Indeed, this pattern is confirmed by Zinger et al.
using ordination-based variation partitioning between environmental and spatial

components.

Furthermore, the two unicellular organism groups can each be decomposed into
three spatially segregated assemblages matching plot topography. While the covariation
of microorganism composition with topography was already detected in Zinger et al,,
spatial patterns can here be directly represented under the form of assemblages that are
characteristic of the different topographic conditions (Fig. 5, Table S4). These spatial
patterns can also be shown to be similar between bacteria and protists, which is both a
novel insight and a hint that the assemblages retrieved by LDA do reflect community
structure. One assemblage associated with patches of exposed rock was retrieved in
bacteria and protists but also in arthropods and nematodes. Its taxonomic composition
is particularly distinctive (Fig. S7), which might be explained by the high amount of
decaying organic matter retained between the boulders in these patches. A current
limitation of LDA is that its ability to compare taxonomic composition to environmental
data is limited to computing simple correlations between the spatial distribution of
retrieved assemblages and environmental variables. This is in contrast to ordination-
based methods such as Canonical Redundancy Analysis, and improving on this aspect

would be a useful direction of research.

Using occurrence versus abundance data. The use of occurrence data was
computationally faster, and led to more stable and more interpretable patterns. Because
biodiversity data typically display a wide range of taxonomic abundances (Fig. S5),
switching from abundance to occurrence data amounts to dramatically increasing the

weight of rare taxa. In the empirical dataset, these OTUs constitute the bulk of the
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diversity: OTUs tallying on average less than one sequence read per sample make up
over 85% of the total number of OTUs in bacteria and protists (Fig. S5). They play a
significant role in shaping the patterns, since removing them erases the retrieved
occurrence-based spatial patterns (Fig. S6). This hints at the importance of rare taxa in
defining communities of microorganisms. A possible caveat however is that some of
those rare OTUs might be generated by remnant PCR errors in the data. If PCR errors are
repeatable for a given DNA sequence, this would produce groups of consistently co-

occurring OTUs and thus artificially increase the stability of occurrence-based patterns.

Conclusion. LDA is an efficient method to detect structure in the large and complex
datasets generated by environmental DNA sequencing methods. The representation of
spatial biodiversity patterns derived from LDA is easily interpretable, and the method
comes with a measure of how strongly this representation is supported by the data. LDA
could be used to explore the biogeographic patterns arising in larger-scale DNA-based
biodiversity surveys such as the Earth Microbiome Project (Gilbert et al., 2014) and the
Tara Oceans Project (Sunagawa et al., 2015). It could also be applied in non-spatial
sampling designs, such as time series. Lastly, LDA is one example of a family of models,
which could for instance find applications in the study of plant-microorganism
interactions (Rosen-Zvi et al, 2004). We hope this study will stimulate research on
model-based methods of data analysis for the ecological interpretation of environmental

DNA studies.
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Topography Wetness Slope
Bacteria 16S 0.36** -0.27** -0.26**
Protists 18S 0.23** -0.15** -0.17**
i Arthropods 18S 0.18** -0.16%** -0.027
Terra firme
Nematodes 18S 0.15%* -0.091** -0.081**
Platyhelminthes 18S 0.12%** -0.11%* -0.043
Annelids 18S 0.023 0.042 -0.091*
Bacteria 16S -0.43%** 0.40%** 0.31**
Protists 18S -0.23%* 0.10%* 0.271%**
) Arthropods 18S -0.097* 0.10** -0.015
Hydromorphic
Nematodes 18S -0.096%** 0.10** 0.045
Platyhelminthes 18S 0.044 -0.099** 0.0087
Annelids 18S -0.057 0.058 0.022
Bacteria 16S 0.00024 -0.078** 0.0084
Protists 18S -0.052 0.084 -0.025
Arthropods 18S -0.12* 0.083 0.070
Exposed rock
Nematodes 18S -0.071 -0.018 0.049
Platyhelminthes 18S -0.14** 0.19** 0.027
Annelids 18S 0.0098 -0.072* 0.075**

Table S2: Correlation coefficients between the spatial distribution of assemblages and
abiotic variables. p-values p were computed based on 100,000 spatial randomizations.
Significant correlation coefficients are indicated by ****** (p < 0.05,p < 0.01,p < 0.001), and
additionally by bold font when they are consistent with a hydromorphic or terra firme
interpretation. Taxonomic groups in bold are those that can be assigned a ‘terra firme’ or
‘hydromorphic’ label based on correlations to topography, wetness and slope, or an ‘exposed
rock’ label based on correlation to the ‘exposed rock’ bacterial assemblage (see Table S3).
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Bacteria 16S

Terra firme Hydromorphic Exposed rock
Protists 18S 0.76*** -0.40%** -0.53%**
1stassemblage  Arthropods 18S 0.23%** 0.12** -0.43%**
- Nematodes 18S 0.24%** -0.19%** -0.098***
Terra firme Platyhelminthes 18S 0.32%** -0.10** -0.29%**
Annelids 18S 0.23%** 0.0046 -0.29%**
Protists 18S -0.45%** 0.51%** 0.022
2nd agssemblage  Arthropods 18S 0.16*** -0.27%** 0.022
- Nematodes 18S 0.10%** 0.16%** -0.29%**
Hydromorphic  Platyhelminthes 18S 0.20%* -0.13%*x -0.12%*
Annelids 18S -0.064 0.13* -0.059*
Protists 18S -0.56*** -0.055 0.76***
3rd assemblage  Arthropods 18S -0.65%** 0.12* 0.69%**
- Nematodes 18S -0.48%*** 0.045 0.56%**
Exposedrock  Platyhelminthes 18S -0.48*** 0.20%** 0.38%**
Annelids 18S -0.18*** -0.076** 0.31%**

Table S3: Correlation coefficients pg,,; between the spatial distribution of bacterial
assemblages and the assemblages in other taxonomic groups. p-values p were computed
based on 100,000 spatial randomizations. Significant correlation coefficients are indicated by
xR (p<0.05p<0.01,p<0.001), and correlation coefficients larger than 0.50 are
indicated by bold font. Labels of assemblages are the same as in Table S2.
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OTU proportion Taxonomic assignment

8.1.104 Acidobacteria

8.1.10* Acidobacteriaceae (Subgroup 1) sp.

8.1.10* Acidobacteriaceae (Subgroup 1) sp.
Terra firme

8.0.104 Acetobacteraceae sp.

8.0.10# uncultured Holophaga sp.

6.2.10* Acidothermaceae sp.

6.2.10* uncultured Holophaga sp.
Occurrence-based 6.1.10-4

Nitrosomonadaceae sp.
assemblages Hydromorphic

5.9.10+# uncultured Holophaga sp.
5.9.10+# Haliangiaceae sp.

6.1.10-4 Rhizobiales Incertae Sedis sp.

5.8.10-4 uncultured Acetobacteraceae bacterium

5.8.10-4 uncultured Acidobacteriaceae bacterium
Exposed rock

5.7.10-4 Acidobacteriaceae (Subgroup 1) sp.

5.7.10-4 Bacteria

4.0.10-2 Acidobacteria

3.0.10-2 uncultured Nitrosococcus sp.

2.6.10-2 uncultured Bacillaceae bacterium
Terra firme

2.2.10-2 Acidothermaceae sp.

1.9.10-2 Alcaligenaceae sp.

1.7.10-2 Alcaligenaceae sp.

1.6.10-2 uncultured Thermosporotrichaceae bacterium
Abundance-based 1.6.10-2 uncultured Bacillaceae bacterium
assemblages Hydromorphic

1.4.10-2 Acidobacteria

1.3.10-2 Acidothermaceae sp.

3.8.10-2 Acidothermaceae sp.

1.6.10-2 Acidothermaceae sp.

1.5.10-2 uncultured Nitrosococcus sp.

Exposed Rock

1.0.10-2 uncultured Steroidobacter sp.
1.0.10-2 Xanthobacteraceae sp.

Table S4: Five most abundant OTUs per bacterial assemblage (out of 20,162 bacterial
OTUs), for occurrence and abundance data.
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Figure S1. Soil sampling over 12 ha of tropical forest. 1,131 soil samples (one every 10
meters) were taken from the mineral soil horizon on a permanent plot of relatively
homogeneous primary plateau forest at the Nouragues Ecological Research Station, French

Guiana.
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Figure S2. LDA applied to a simulated dataset with 5 assemblages, 1,000 MOTUs, 1,131 samples,
and 1,000 sequence reads per sample, (a,c) for the original abundance data, and (b,d) for the
occurrence data derived from the same dataset. Panels (a,b) show the comparison between the
realization with highest likelihood and the 99 others using the spatial similarity Sgp,¢ -
(Sspat.)100 = 0.98 for occurrence data, (Sspat.)100 = 0.89 for abundance data, Ispat, 100 = 1.0 in
both cases; cf. Fig. 2. Panels (c,d) show AIC comparison between different K values, with 3
realizations per K value.
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Figure S3. Stability of LDA decomposition (K = 3) for the different taxonomic groups. The
realization with highest likelihood out of 100 is compared to the 99 others based on their spatial
similarity (y-axis) and on their log-likelihood difference (x-axis), for occurrence data and for all
the taxonomic groups under study. The intercept I of the linear regression (dashed blue line)
shows a difference between unicellular organisms (I = 1.0) and metazoans (I < 0.62).
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Figure S4: Spatial distribution of eukaryotic assemblages, for K = 3 assemblages. Spatial
distribution of the assemblages obtained from independent LDA decompositions of arthropods,
nematodes, flat worms (Platyhelminthes) and annelids, for occurrence (a-d) and abundance (e-
h) data. As in figure 4, sampled locations are indicated by dark dots, and the assemblage mixture
between samples has been interpolated using ordinary kriging. For occurrence data, an ‘exposed
rock’ assemblage (in red) can be identified in arthropods and nematodes based on spatial
correlation to the bacterial ‘exposed rock’ assemblage (Table S3). An ‘exposed rock’ assemblage
may be distinguished in flat worms and annelids as well but is less conspicuous there.
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Figure S5: Ranked log-abundance distribution for bacteria and protists.

200



Chapter 3 - Topic Modelling

Bacteria Protists

Occurrence

Occurrence, no
single-sample
MOTU

-cb-(-)-m

o
c O
s
0T 2
556
-

I
38=
SIS

(@K

Figure S6: Effect of data pre-processing on LDA decomposition. Spatial distribution of the
assemblages obtained from independent LDA decompositions of bacteria and protists for
occurrence data, (a-b) without any filtering of rare OTUs, (c-d) after removing OTUs occurring
only in a single sample, and (e-f) after removing OTUs with less than one read per sample on
average (low-abundance OTUs). Removing single-sample OTUs brought little change to the
decomposition. Removing low-abundance OTUs on the other hand yielded very degraded spatial
patterns in bacteria and protists, hinting at the important role of rare MOTUs in defining the
retrieved assemblages.
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Figure S7: Spatial distribution of microorganism assemblages for occurrence data, for
K =3 and for K = Kyjq[aic) assemblages (bacteria: Kyin[aic) = 5; protists: Kpyin[aic) = 2)-
Decompositions for K = Kpinjaic) and for K = 3 differ primarily through splitting or merging of
assemblages, without major disruption of the spatial patterns. This illustrates the robustness of
LDA decomposition to the number of assemblages close to the optimum. The exposed rock
assemblage (dark red) is left unchanged for K between 2 and 5 in bacteria and protists, which
indicates a strong taxonomic distinctiveness.
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Discussion

Synthesis

While data acquisition in ecology has long been dominated by low-technology
approaches relying mostly on direct human observation, the field has recently witnessed
a trend toward automated data acquisition. In particular, automated biodiversity
measurements can now be obtained through the sequencing of environmental DNA. This
method has originated in microbiology, where it is often the only means to obtain
information on the organisms under study, but can now be applied with increasing ease
to any type of organism. This provides ecologists with an unprecedented influx of data,

which also creates new challenges.

While DNA-based data are a unique means to obtain exhaustive and standardized
biodiversity measurements, it remains uncertain to what extent they will help solve the
classical questions of community ecology. Indeed, these data are obtained through
indirect observation of the targeted organisms, and lack in detail and accuracy
compared to direct observations: in a sense, quality is traded for quantity. This entails a
shift from studies rich in biological details toward the study of structure and patterns in
large datasets. Moreover, the sheer amount of data produced is in itself an obstacle to
the use of the classical statistical approaches of ecology. Conversely, current theoretical

models in ecology are often not well suited for comparison with data.

The characteristics of environmental DNA data make them well suited to the
study of integrative patterns of biodiversity, for which the quantity and exhaustiveness
of available data matter more than detailed information on individual taxa. Integrative
patterns have long been a key source of information for addressing one of the core
questions of community ecology: what are the drivers of community assembly, and in
particular, when do dispersal limitation and demographic drift supersede abiotic
filtering and species interactions as the main drivers? The first and third chapters of this
thesis explore the use of environmental DNA data for the study of spatially explicit
biodiversity patterns, while the second chapter focuses on relative species abundances.

These patterns are studied in the tropical forest of French Guiana, a ‘hyperdiverse’ and

204



Discussion

poorly known ecosystem; two characteristics that make automated data collection most

needed.

The first chapter shows how environmental DNA data can be used to investigate
the drivers of beta diversity in a spatially explicit context, as it has been done previously
for classical data such as tree censuses in monitored forest plots. On a spatial scale
ranging from 40 m to 140 km between sampling points, a decay of taxonomic similarity
with distance is observed in most groups, i.e. plants, fungi, arthropods, insects, annelids,
bacteria, and protists, but not in nematodes and flat worms. Clear differences can be
observed between domains of life regarding the relative influence of geographic
distance and abiotic conditions on beta diversity: the data hint at a predominant effect of
dispersal limitation in plants and annelids, a predominant effect of abiotic filtering in
bacteria and protists, and a mixture of both in fungi, arthropods and insects. The beta
diversity of fungi and soil insects appears to be especially high. These findings are in
agreement with expectations and previous empirical results for plants and unicellular
organisms (Condit et al, 2002; Soininen et al., 2007; Ramirez et al., 2014), but bring
some novel insight for annelids, fungi and insects. In addition, the inclusion of a few
forest plots subject to past logging activities indicates that even after two decades at
least, an effect can be detected on plant and annelid composition, as well as on fungi to a
lesser extent, whereas it is not the case for other groups. Thus, large-scale patterns of
biodiversity can now be readily measured and compared across a tropical forest’s whole

range of taxa using environmental DNA.

The second chapter focuses on relative species abundances, a pattern that has
been extensively used to test the predictions of theoretical models of community
assembly, especially since Hubbell’s work on the neutral theory of biodiversity (Hubbell,
2001). A major obstacle in exploiting species abundance patterns generated using
environmental DNA is that abundance information is unreliable, because it is noisy and
difficult to interpret. However, simulations show that even if abundance measurements
are unreliable for individual taxa, valuable information can still be retrieved from the
species abundance distribution as a whole, as long as the noise is not too strong. In
particular, the parameters that characterize diversity and connectivity in a neutral
community may still be reliably estimated. Thank to the sampling-invariance property of

neutral models, sequencing reads may be used as discrete abundance units in place of
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individuals as long as the DNA originates from a number of individuals larger than the
number of reads. While it is usually the case for microorganisms, this condition may not
be verified for larger organisms. Lastly, great care should be taken in clustering spurious
OTUs generated during PCR amplification and DNA sequencing, since they strongly bias

neutral parameter estimates.

When the spatial distribution of species is shaped at least partly by niche
processes or by limited dispersal, the structure of spatially distributed environmental
DNA data should be marked by these processes. However, this signal may be faint and
complex. Moreover, it is usually obscured by a large number of rare species and an
uneven sampling effort across samples. The third chapter shows how a categorical
mixture model similar to some of the models used in microbiology, population genetics
or text document modelling, Latent Dirichlet Allocation, can be used to retrieve spatial
patterns in a regularly-sampled 12-ha forest plot. Unlike the classical pattern-detection
tools of community ecology, such as simple ordination and clustering algorithms, this
model is designed to accommodate discrete abundance data in a large number of
unevenly sized samples, and performs well on large and sparse community matrices.
Even though the fitted model parameters may depend on the initialization of the
inference algorithm, this uncertainty can be quantified by measuring the similarity
between the outputs of different runs. The stability of the output across initial
conditions may even be used as an empirical measure of how strong the spatial

structure is.

In the 12-ha forest plot, the strongest structure is detected for bacteria and
protists. Moreover, the spatial patterns of these two groups are very similar, and match
the topography of the forest plot. This is in agreement with the findings of the first
chapter, since abiotic filtering was found there to strongly influence the beta diversity of
these groups. In contrast, spatial structure in arthropods and annelids is weak, which
indicates that the spatial scale and the level of environmental heterogeneity in a 12-ha
plot are insufficient to detect the processes that were found to act on these groups at

larger spatial scales.

Overall, we conclude that environmental DNA data can offer a uniquely

comprehensive, if somewhat crude, perspective on community structure in a complex
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and species-rich ecosystem. In addition to the classical tools of community ecology,
model-based statistical methods can be borrowed from fields more accustomed to large
and complex datasets, and put to good use to take full advantage of these data. The
development of ecology into a data-rich field should foster the development of
theoretical models that can be compared to data using rigorous statistical approaches,
following the example of Hubbell’s neutral model and its subsequent theoretical
developments (Etienne, 2005; Harris et al, 2015). Building on generative models
stemming from machine learning, such as Latent Dirichlet Allocation, is one possible

avenue for the development of such models, as discussed in the following.
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Discussion

Perspectives

1. Aquatic communities

This thesis aimed at exploring general approaches for the analysis and interpretation of
large biodiversity datasets, with the underlying goal of understanding community
assembly processes from biodiversity patterns. Nevertheless, it mostly focuses on
community assembly in land ecosystems, especially as studied through the amplification
and sequencing of DNA extracted from soil samples. One may follow a similar approach
for studying communities of aquatic organisms by extracting DNA from water samples.
Experimentally, the method consists in filtering water through a mesh so as to collect
small living organisms as well as fragments or sloughed material from larger organisms.
In particular, this approach allows for the study of planktonic microorganisms (i.e.,
suspended in the water column and passively transported by water movements), the
knowledge of which is so far very fragmented, despite them forming the basis of the
ocean’s food web and being responsible for the production of half of the atmospheric

dioxygen (Field et al., 1998).

The Tara project is an unprecedented and on-going effort to sample marine
planktonic communities in various locations spread across the world’s oceans (de
Vargas et al, 2015). Sampling was conducted chiefly in the open ocean from 2009 to
2012, with more recent campaigns focusing on more specific habitats. Samples were
collected at different depths, and using different mesh sizes so as to assign the sampled
organisms to different size ranges. The Latent Dirichlet Allocation approach of the third
chapter is currently being applied to this dataset, so as to understand the biogeography

and community structure of planktonic eukaryotes across the world’s ocean.
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Figure 1: Biogeographic patterns in oceanic plankton predicted by a neutral agent-based
model. Transport by oceanic current was simulated during 1,400 years with constant mutation
rate starting from a single genome. Biogeographic regions are distinguished based on their
dominant OTUs, defining OTUs at either (top) 99.9% similarity or (bottom) 99.5% similarity.
Adapted from Hellweger et al. (2014).

However, it is unclear what a suitable neutral model would be for planktonic
communities. Indeed, unlike land organisms, planktonic organisms do not actively
disperse. Instead, the local community is transported over time along oceanic currents,
and slowly mixes with surrounding communities along the way. Hubbell’s model of a
local community under constant immigration flow could be regarded as a suitable model
for a planktonic community followed through time along an oceanic current
(‘Lagrangian’ perspective). However, whether several simultaneously sampled
communities can be considered as independent and undergoing immigration from the

same metacommunity depends on their positions relative to oceanic currents.
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Simulations of the transport of plankton by currents between stations could help
measure their level of connectivity (see Fig. 1; Follows et al, 2007; Ward et al., 2012;

Hellweger et al., 2014), and serve as the basis for inference-oriented modelling efforts.

2. Topic modelling of biodiversity data

As discussed in the section IIL.5 of the Introduction, Latent Dirichlet Allocation is a very
versatile method, that has been employed in a variety of contexts far beyond its original
intended use as a ‘natural language processing’ method. It could become a routine tool
for the analysis of environmental DNA data, as the very similar Structure software has
become in population genetics. While the third chapter focuses on the analysis of
spatially distributed samples, LDA could prove equally useful for the analysis of time
series, or when both a spatial and a temporal dimensions are present, as in Valle et al.
(2014). It could also be used to analyse samples that are neither spatially nor temporally
distributed. This is for instance often the case of human microbiome data, which are
currently collected in large quantities, and the interpretation of which is an active
domain of research in medical sciences (Huttenhower et al, 2012). Another potential
application is the analysis of the bacterial communities found in sewage plants, the
understanding of which is of critical importance for the optimization of wastewater

treatment (Ofiteru et al., 2010).

The use of generative mixture models is not new in microbiology: these methods
have been first introduced to the field with the works of Knights et al. (2011) and
Holmes et al. (2012). However, probably because ecology and microbiology are still
relatively separate scientific fields, and because the use of environmental DNA data is
more recent in ecology, generative mixture models have been little used so far in
ecology, except for the effort of Valle et al (2014) on classical tree census data.
Furthermore, focus in microbiology appears to have been mostly on models without
admixture (i.e., where samples belong to a single assemblage, cf. Introduction), unlike
topic models. While LDA is one of the simplest topic models (along with the earlier
Probabilistic Latent Semantic Analysis model, or PLSA; Hofmann, 2001), many

extensions have been developed for the analysis of text documents since its original

210



Discussion

introduction. The adaptation of these methods to bioinformatics, e.g. for the
classification of DNA sequences or the identification of protein function, has been
extensively explored (Liu et al, 2016). Ecology, and microbiology, would benefit from a
similar effort oriented toward biodiversity data. In the following, I review a few possible

examples.
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Figure 2: Terrestrial biogeographic units of the world inferred from the distribution of
21,037 species of amphibians, birds and mammals. Inference was performed using UPGMA
hierarchical clustering on phylogenetic dissimilarity. Thick lines denote main biogeographic
boundaries (separating ‘realms’) and dotted lines denote minor ones (separating ‘regions’).
Adapted from Holt et al. (2013).

First, the approach presented in the third chapter can be used irrespective of the
spatial scale at which the data are collected, and may for instance be applied to the
definition of biogeographic units. Aside from the sequencing of environmental DNA, the
development of DNA sequencing methods now allows for efficiently and accurately
assigning to a taxon any collected biological material, once a suitable reference database
has been established. Thus, a better use can be made of the large number of specimens
either collected in the field or stored in museum collections, and the resulting data may
be used to study biogeographic patterns in a data-driven way. In recent years,
alternatives to the classical hierarchical clustering approach (followed for instance in
Holt et al, 2013; see Fig. 2) have been sought to address this problem (Vilhena &
Antonelli, 2015; Bloomfield et al., 2017). The Appendix illustrates the potential of LDA in
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this respect, by applying it to a large dataset of Amazonian frogs assembled with the
help of DNA identification. LDA proved in this case an efficient way to infer the optimal
number of biogeographic units, assess the strength of the underlying signal, and

distinguish between sharp and diffuse boundaries between biogeographic units.

Nevertheless, unlike distance-based clustering, LDA does not allow for taking
phylogenetic information into account, and improving on this aspect could be a useful
research avenue. This problem could be for instance approached through the
Generalized Polya urn LDA model (Mimno et al, 2011). Furthermore, despite its
shortcomings, distance-based hierarchical clustering is appreciated by ecologists
because it provides additional hindsight on the relationship between the different
samples, and because it offers the possibility of choosing the number of clusters based
on the hierarchical tree. The hierarchical LDA model (or hLDA; Griffiths et al, 2004),

which describes a hierarchy of nested topics, could be appealing in this respect.

Second, the study of interactions between taxa constitutes a central interest of
community ecology. Large environmental DNA datasets provide indirect information on
potential interactions between taxa through the co-occurrence of OTUs and the
covariance of their abundances (see Fig. 3; Faust & Raes, 2012). LDA assemblages are
inferred based on this information, and thus reflect the presence of potential
interactions within each assemblage. Nevertheless, the application of LDA
decomposition separately to different taxonomic groups, as done in the third chapter,
does not provide any information on the possible interactions between these groups.
Conversely, when LDA is applied to the whole dataset, it is not possible to explicitly
distinguish between subgroups of preferentially interacting taxa, such as plants and
fungi for instance. This shortcoming could be addressed by using the ‘author-topic
model’, an extension of LDA aiming at accounting for sample ‘metadata’, such as authors
in a text document (Rosen-Zvi et al, 2004, 2010). This model is identical to LDA except
that each document (or sample) is not directly characterized by a mixture of topics (or
assemblages), but by its authors, to each of which is assigned a mixture of topics. In
practice, authors may be any discrete labels, and could for instance correspond to the
one or few tree species surrounding each soil sample if one is interested in tree-fungi
interactions. The method would thus yield a mixture of fungi assemblages for each tree

species, and indirectly a mixture of assemblages for each sample based on the tree
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species surrounding it. A simpler version of this model might also be considered where a

single assemblage characterizes each tree species.
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Figure 3: Occurrence-based inference of interactions between prokaryotic OTUs from a
global data set (Chaffron et al,, 2010). Each node represents an OTU, and edges between nodes
represent significant associations based on co-occurrence. Edge thickness increases with
significance. Adapted from Faust & Raes (2012).

More generally, ecological studies often do not limit themselves to exploring the
structure of a single type of data, but attempt at uncovering statistical relationships
between different types of data, such as taxonomic and environmental data. While the
author-topic model only allows for adding discrete labels to each sample, other models
such as Dirichlet-multinomial Regression (Mimno & McCallum, 2012) can also
accommodate continuous attributes, and could be used to account for environmental

measurements in the model. The goodness-of-fit of the model without environmental
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data could then be compared to that of the model accounting for these data, ideally using
AIC. This would entail a slightly different use of topic modelling than that of the third
chapter: namely, shifting the focus from the exploration of data structure toward

hypothesis testing. However, both approaches have their own merits.

Finally, the application of topic modelling to ecology needs not be limited to taxa
abundance and occurrence data. It could for instance be extended to exon sequencing
data describing functional types, or to RNA sequencing data characterizing gene
expression. Moreover, aside from the major technological revolution that is high-
throughput DNA sequencing, other promising technologies are currently being adapted
to automated data collection in ecology, notably Lidar and hyperspectral imaging. Topic
modelling has been successfully used to retrieve patterns from images (Luo et al.,, 2015),
and could possibly also find application in the analysis of remote-sensing ecological

data.

3. Statistical versus mechanistic modelling

Topic modelling is but one of many competing branches of machine learning that are
currently actively developed to exploit the ever-increasing amount of data produced by
current technologies (Bishop, 2006). Over the recent years, some branches of machine
learning have become particularly prominent, especially multi-layered neural networks
under the name of ‘deep learning’ (LeCun et al,, 2015). Such methods are indeed efficient
at detecting structure in large datasets, and have been recently applied to bioinformatics
problems such as DNA sequence classification (Rizzo et al, 2016). However, these
methods are not based on an easily interpretable model. As such, they can only be
fruitfully applied to supervised learning tasks, i.e. to situations where correct and
incorrect results can be told apart a priori, which are more typical of engineering than

basic science.

In contrast, topic models have a mathematical structure that is similar to the
multivariate formulation of neutral models, as discussed in Harris et al. (2015) and in

the third part of the Introduction. This parallel could be exploited to build mixed models
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combining the advantages of both types of models. For instance, a local community, such
as an island, may receive immigrating individuals from different source communities
that have distinct (known) taxonomic compositions. By assuming a neutral dynamics in
the local community, and modelling the origin of immigrating individuals by a topic
model, one could possibly infer from the local taxonomic composition the relative
contribution of the different source communities. Conversely, starting from a topic
model as in the third chapter, one could assume that a neutral dynamics takes place

within each assemblage.

While topic and neutral models may seem to be of different nature, the
distinction between statistical and mechanistic models is more tenuous than may
appear at first glance. The first topic modelling papers mentioned mechanistic
arguments to justify their models, arguing than they mirrored the way humans write
text documents, and some subsequent developments try to better account for the
structure of natural language (Wallach, 2006). When applied to ecological data, the
assumption that local communities are a mixture of several assemblages of co-occurring
taxa constitutes a genuine biological hypothesis. Conversely, the realism of the
hypotheses in Hubbell’s neutral model has been much debated (Rosindell et al., 2012),
and one might argue that its most valuable hindsight is on the nature of the species
abundance distribution pattern itself: namely, that most empirical species abundance
distributions can be approximately decomposed into orthogonal diversity and
connectivity components, irrespective of their exact mechanistic interpretation (Jabot et

al,, 2008).

While a very flexible model is undesirable when one aims at testing modelling
hypotheses on data, it becomes an advantage when one aims at characterizing the
system at hand through a limited number of relevant parameters. This is often a more
realistic prospect when faced with large datasets resulting from automated data
collection. However, as illustrated by the case of Hubbell’s neutral model, relevant
parameters cannot be determined without an understanding of the basic processes at
play. Moreover, characterizing a system is of little use if this does not entail the
possibility of predictions and generalization. A right balance is thus to find between

flexibility and falsifiability in building models for the analysis of large datasets, and the
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shift toward inference-oriented models should not preclude building them on first

principles (Marquet et al., 2014).
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Introduction

Amazonia encompasses about 40% of the world’s tropical forests (Sioli, 1984; Hubbell et
al, 2008; Hoorn & Wesselingh, 2010), and many taxonomic groups reach their highest
species richness in this region (Antonelli & Sanmartin, 2011; Jenkins et al, 2013). The
processes that have given rise to this exceptionally high diversity have long intrigued
biologists (Wallace, 1852; Bates, 1863). Amazonia gives an appearance of homogeneity,
because it is a vast and seemingly uniform extent of forest that is faunistically very
distinct from other Neotropical regions (Dinerstein et al, 1995; Olson et al, 2001;
Antonelli & Sanmartin, 2011; Vilhena & Antonelli, 2015). However, this is misleading:
temperatures and rainfall vary widely across Amazonia (Mayle & Power, 2008), and so
do vegetation types (Anderson, 2012; Hughes et al., 2013). Moreover, Amazonia had a
tumultuous climatological and geological past, mainly caused by the Andean uplift and
the setting-up of the Rio Amazonas watershed during the late Tertiary (Hoorn et al,

2010).

The distribution of species within Amazonia is known to relate to this large-scale
environmental heterogeneity. The observed congruence between the geographic
distribution of birds and primates on the one hand and the major interfluves on the
other hand (Wallace, 1852; Haffer, 1974) led to the definition of biogeographic
subregions (BSRs), coined as “Amazonian areas of endemism” (Wallace, 1852; Haffer,
1974; Cracraft, 1985). However, there is still little consensus on how to best delimit and
name BSRs, with many terms being used interchangeably (Vilhena & Antonelli, 2015). In
fact, the very existence and boundaries of different BSRs across Amazonia and the
relative degree of endemism within them have simply never been analysed using
modern analytic tools (e.g., clustering) and large species assemblages having
unambiguous distribution data (Nelson et al, 1990; Morrone, 2005; Naka et al., 2012).
Moreover, current knowledge on the delimitation of Amazonian BSRs is mainly based on
birds, the best-known taxonomic group, as well as primates and plants displaying
limited distributions in Amazonia. The explanatory power of the Amazonian BSR as

currently defined remains questionable until their boundaries are proven to match
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across multiple taxonomic groups. However, this seems unlikely because these groups
have overall high dispersal abilities, and their distribution patterns may be poor
predictors for less vagile taxa (Claramunt et al.,, 2011; Pigot & Tobias, 2015; Zizka et al.,
2016).

Because small terrestrial vertebrates such as anurans have more limited
dispersal abilities and possibly a greater sensitivity to environmental variation, they are
better suited to the delineation of relevant bioregions (Zeisset & Beebee, 2008). Anuran
assemblages may display different or finer geographic patterns than those previously
described at the continental (Vilhena & Antonelli, 2015) or the regional scale
(Vasconcelos et al., 2014). For instance, one of the rare studies unambiguously
delimiting BSRs in Amazonia found well-delimited bioregions in the Guiana Shield based
on the distribution of bird species, including a large homogeneous region spanning the
eastern part of the Guiana Shield (Naka et al,, 2012). Yet, studies on anuran amphibians
suggest a finer biogeographic structure in the Eastern Guiana Shield, where divergent
lineages of frogs exhibit concordant distribution limits (Fouquet et al, 2012d, 2013,
2016). In this paper, we aim at delimiting Amazonian bioregions in a data-driven way
based on a newly collected dataset of molecular anuran diversity, with a particular focus

on the Eastern Guiana Shield.

Revealing the basic geographical structure of species diversity in Amazonia is not
only of crucial importance for conservation (Da Silva et al., 2005), it is also an important
prerequisite for the study of the processes that gave rise to present-day diversity
patterns. Identifying BSRs in Amazonia may help identify the physical barriers relevant
to speciation, define the contact zones between closely related parapatric taxa, and
capture the effects of dispersal limitation in the structure of Amazonian communities
(e.g., Moura et al, 2016). Many hypotheses have been proposed to explain
heterogeneities in species distribution across Amazonia, including landscape change
induced by late Tertiary climate fluctuations (Haffer 1969), the uplift of the Andes, and
continuous dispersal across large rivers (Hayes & Sewlal, 2004; Antonelli et al, 2010;
Hoorn et al, 2010), or past environmental gradients (Colinvaux et al, 2000). These
different hypotheses have been verified for some taxonomic groups at different spatial
and temporal scales (Hall & Harvey, 2002), but there is still no consensus about the main

drivers of diversification within Amazonia.
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Two major challenges to our understanding of the basic structure of Amazonian
biodiversity are the scarcity of occurrence data and the imprecision of species
delineation (Wallacean and Linnean shortfalls). These shortfalls are particularly obvious
in small terrestrial vertebrates such as anurans (Ficetola et al, 2014). Almost all anuran
taxa with large ranges in Amazonia exhibit deep divergences when analysed with
genetic tools, suggesting that they comprise several species, each with a restricted
distribution (Fouquet et al, 2007a; Funk et al.,, 2012; Gehara et al, 2014; Fouquet et al.,
2015b; Ferrao et al, 2016; Fouquet et al., 2016). These studies typically imply that the
actual species richness in these groups is more than twice that estimated from
morphology only. Therefore, ranges of Amazonian amphibians used in broad
biodiversity assessments such as the International Union for the Conservation of Nature
(IUCN) Red list are likely to be largely inaccurate (Ficetola et al., 2014). Out of 427
amphibian species inhabiting the 6 million km? of Amazonia according to IUCN, at least
150 species (35%) are distributed over more than 1 million km? (Fouquet et al.,, 2007a).
Such a high proportion of broadly-distributed species seems unlikely (Wynn & Heyer,
2001), because amphibians usually display low dispersal capacities and often have small
niches (Duellman & Trueb, 1994; Wells, 2010). This gap in our understanding of the
actual diversity and distribution of species could seriously invalidate conclusions drawn
from IUCN data (Foden et al, 2013; Jenkins et al., 2013, 2015; Pimm et al, 2014; Feeley
& Silman, 2016).

The overall aims of this study were (1) to obtain a new georeferenced dataset of
Amazonian anurans based on molecular diversity, with a focus on the eastern Guiana
Shield (EGS) (east of the Tepuis, and north of Rio Negro and Rio Amazonas), (2) to
provide estimates of the number of species and of their distributions in this part of
Amazonia, (3) to infer data-driven spatial boundaries between BSRs, as well as to re-
assess their rate of endemism. Given that anuran species boundaries and distributions
are plagued with uncertainty in Amazonia and that [UCN data are often out-dated and
imprecise, it is necessary to use occurrence records linked to taxonomic frameworks
based on clear criteria. Therefore, we conducted extensive fieldwork to collect
specimens representative of present-day diversity at the scale of the entire region, and
obtained mitochondrial DNA sequences (16S rDNA) from these specimens. We also

included in our analyses publicly available sequences from other specimens. Based on
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these sequences, we generated two new taxonomic frameworks for Amazonian anurans.
Our dataset represents the largest molecular diversity dataset gathered so far in

Amazonia for any taxonomic group.
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Material and methods

1. Fieldwork

We undertook fieldwork in several localities throughout the Guiana Shield, notably in
southern Suriname, French Guiana, and the Brazilian states of Amapa and Roraima. We
collected specimens of as many anuran species as possible per locality by nocturnal and
diurnal active searches (visual and acoustic). Each specimen was identified and
photographed. They were subsequently euthanized using an injection of Xylocaine®
(lidocaine chlorhydrate). Tissue samples (liver or muscle tissue from thigh or toe-clip)
were removed and stored in 95% ethanol, while specimens were tagged and fixed (using
formalin 10%) before being transferred to 70% ethanol for permanent storage. These
field surveys allowed us to cover the anuran communities of the EGS at an
unprecedented fine scale (Fig. 1A). We completed these data for the rest of Amazonia
with loans of material from several institutions, notably from Universidad de Sao Paulo
for the upper Madeira, lower Xingu, Abacaxis and Purus Rivers. Ultimately, the total

number of analysed samples reached 4,681.

2. Molecular data

We extracted DNA from the samples using the Wizard Genomic extraction protocol
(Promega; Madison, WI, USA). We targeted a c.a. 400bp fragment of the mitochondrial
16S rDNA using MiSeq and Sanger techniques (Supplementary Methods). We eventually

generated 4,492 sequences.

Additionally, we retrieved from GenBank (as of the 1st August 2015) all
sequences of species congeneric with those occurring in the Guiana Shield, as well as
sequences of Adelphobates and Phyzelaphryne, two genera restricted to southern

Amazonia. We removed low-quality or too short sequences, as well as duplicates from
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the same specimen. We obtained approximate geographical coordinates for most of

these records searching the original papers, locality information, or collection databases.

The final dataset contained 11,166 sequences, 10,254 of which were geotagged.
This barcode dataset is probably the most extensive gathered so far in Amazonia for any
vertebrate group. 8,181 records are from Amazonia proper, including 4,634 from the
EGS, while the remaining are from adjacent regions. The obtained sequences were
aligned with MAFFT v.7 (Katoh & Standley, 2013). We used the resulting alignment to
generate a neighbour-joining tree using pairwise deletion and p-distance model with

MEGA v.7.0.16 (Kumar et al.,, 2016).

3. Taxonomic frameworks

While there is valid criticism against reliance on simplistic single-sequence approaches
to species delineation (Goldstein & DeSalle, 2011; Krishna Krishnamurthy & Francis,
2012), such approaches can take us further toward the comparative quantification of
biodiversity over different spatial scales (Emerson et al,, 2011; Yu et al,, 2012; Ji et al,,
2013). In the case of Amazonian anurans, clear and exhaustive delimitation of species
boundaries based on morphology, acoustics and molecular data remains out of reach. As
a consequence, many species groups have a very confused taxonomy leading to frequent
misidentification, lumping of undescribed species within a single taxon, and assigning
species to polyphyletic groups. This results in largely inaccurate IUCN data. In order to
compare our sequence dataset to IUCN data, we built two different taxonomic
frameworks. The TAXO1 taxonomic framework is conservative, linking as much as
possible each sequence to a nominal taxon so as to form a monophyletic group, while the
TAXO2 taxonomic framework results from a purely DNA-based species delineation (see

below).

For TAXO1, our goal was to group under nominal taxa the sequences forming a
monophyletic group according to the neighbour-joining tree, so as to obtain the
geographic range of the lineages already considered by the IUCN. Original fieldwork and

GenBank assignments were often contradictory because of the above-mentioned
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reasons and because of taxonomic changes subsequent to identification, and were thus
often modified. We first identified the sequences that could be unambiguously linked to
a nominal taxon by considering the literature (e.g. sequences from type series), the
known range of the taxon, and the location of the type locality. Then, we checked wether
this identification was in accordance with the ID of the most closely related sequences. If
in accordance, this taxon ID was applied to the sequences until another taxon was
applicable to more distant lineage. When a taxon was found to be paraphyletic, we
checked for possible misidentification, and whether one of the lineages could be
identified as another taxon. When paraphyly was ambiguous, we kept the original
identification. When paraphyly was unambiguous, one of the lineages was identified as
the nominal taxon while the other ones were identified as “sp.” if they did not share
affinities with another taxon. In a few cases, two or more taxa were largely intricate with
shallow genetic distances among sequences and remained ambiguous despite the
allopatric distribution of the lineages. We then considered them as single taxon (e.g.
Atelopus hoogmoedi, A. flavescens) given they represent single lineage and single patch of
distribution. Ultimately, we think that TAXO1 provides a representative update of the
current taxonomic knowledge for Amazonian anurans. 941 species were considered in

TAXO1, including 365 occurring in Amazonia.

For TAXO2 we applied the Automatic Barcode Gap Discovery (ABGD) species
delineation method (Puillandre et al., 2012) to our sequence dataset. We performed
ABGD analyses from the source code with default settings (JC69, Pmin: 0.001, Pmax: 0.1,
steps: 10, Nb bins: 20) on each genus, and attributed a number to each candidate species
retrieved in the analysis. Computations were performed on the EDB-Calc Cluster hosted
by the laboratory "Evolution et Diversité Biologique" (EDB), using a software developed
by the Rocks(r) Cluster Group (San Diego Supercomputer Center, University of
California, San Diego and its contributors. In 24 instances (17 concerning Amazonian
taxa), different nominal taxa in TAXO1 were lumped into a unique candidate species in
TAXO2 because of a shallow mtDNA divergence between them (notably in Atelopus spp.
and Osteocephalus ssp.). As these correspond to clearly distinct species based on
morphology and acoustic, and form monophyletic groups in previous studies (but herein
with shallow divergence or recovered ambiguously paraphyletic due to the low

resolution in our 400 bp-long 16S fragment), we considered them as false negative and
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we applied to them the same taxonomic assignment as in TAXO1. Ultimately, 1,246

species were considered in TAX02, including 746 occurring in Amazonia.

Third, we compiled amphibian species range data from the IUCN

(http://www.iucnredlist.org/technical-documents/spatial-data#amphibians), which is

the most widely used amphibian distribution database. In order to make this dataset
comparable with TAX01 and TAX02, we excluded 22 genera (433 species) that are only
partly overlapping with our focal area, i.e., western Amazonia, northern Andes, Caatinga
and Cerrados. One genus from the Tepuis (Metaphryniscus) was also omitted given that
no sequences were available, as well as two introduced species (Eleutherodactylus

johnstonei and Lithobates catesbeianus). Overall, 51 genera were used in our analyses.

4. Study area and species distribution data

Our analyses focused on a rectangular area that includes the whole central, eastern and
northern parts of Amazonia (excluding most of the western and southern parts). The
limits of our study area were W 72° W 47° and S 11° N 9°. We applied a grid of 1° X 1°
(500 cells) to this area. This includes the Guiana Shield (Lujan & Armbruster, 2011), the
central and eastern parts of the Rio Amazonas drainage, and the northern parts of the
Rio Purus, Rio Madeira, Rio Tapajos, Rio Xingt, and Rio Tocantins drainages (Fig. 1A) as

well as peripheral non-Amazonian areas.

We then estimated the putative range of each species by creating convex
polygons out of our occurrence datasets TAXO1 (358 species total within the focal area)
and TAXO02 (596 species) with the sp package implemented in R (R Development Core
Team, 2016). The numbers of Amazonian species included in TAXO1 and TAXO02 differ
from those occurring within the focal area because this area encompasses non-
Amazonian areas and excludes western and southern parts of Amazonia. We then
interpolated the occurrence of species in each cell of our study area for the three
datasets. We excluded species occurring in less than three localities and cells with less
than five species in them, thus removing poorly sampled species, that did not provide

enough information for range reconstruction, and poorly sampled peripheral cells. 118
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species were discarded in TAXO1 and 318 in TAXOZ. Finally, we considered 240 species
in TAXO1, 278 in TAXOZ2, and 440 in the IUCN dataset within the focal area (Fig. 1D, E,
F).

Occurrences Amazonian Areas of Endemism
- (Smith et al 2014)

Delta Orinoco

lha Marajé

Figure 1. (A) All occurrences in the barcoding dataset and inset of the focal area; (B) Amazonian
Areas of Endemism from Smith et al., 2014; (C) species richness mapped from occurrences data
from TAXO01 and TAXO02, which provide identical results; (D) species richness mapped from
TAXO1 after polygon transformation and exclusion of rare species; (E) species richness mapped
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from TAXOZ2 after polygon transformation and exclusion of rare species; (F) species richness
mapped from the distribution data of IUCN considered in our analyses.

5. Identification of Biogeographic Subregions

To delimit BSRs based on species occurrence, we decomposed the community matrix -
i.e.,, the matrix listing the species occurring in each grid cell - using Latent Dirichlet
Allocation (Blei et al, 2003; Valle et al, 2014). LDA is an unsupervised clustering
method based on a probabilistic model, which assumes that several species assemblages
coexist over the study area, the number K of which is fixed beforehand. This method has
major advantages compared to classic clustering (e.g., hierarchical or k-means
clustering). First, it is likelihood-based, thus providing rigorous tools for selecting the
number of assemblages and comparing decompositions. Second, assemblages may
partially overlap in taxonomic composition, and a given grid cell may either be
dominated by one assemblage or contain a mixture of assemblages. Thus, it allows for
modelling gradual changes in taxonomic composition over space. A mixing parameter o
is estimated as part of the inference procedure, and indicates whether the samples tend
to be decomposed into an even mixture of assemblages (case ¢ > 1) or into an uneven

mixture dominated by one assemblage (case a < 1).

We used the Variational Expectation Maximization (EM) algorithm implemented
by Blei et al. (2003) and wrapped into the R package topicmodels (Griin & Hornik, 2011)
for parameter inference, with a convergence threshold of 107 for the EM step and 1078
for the variational step. We assessed the reliability of the solution by comparing the
taxonomic composition of assemblages between 100 realizations of the algorithm
starting from random initial conditions. We only interpreted the decomposition
corresponding to the realization with the highest likelihood out of 100. We selected the
number K of assemblages by AIC minimization. We represented the spatial distribution
of assemblages on a map after ordinary Kriging between cells (R package gstat ;
Pebesma, 2004). We also computed the Jaccard taxonomic dissimilarity between

assemblages and displayed it as a dendrogram. Additionally, we decomposed the
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datasets into K=3 assemblages to assess the coarser biogeographic structure of the

study area. See Sommeria-Klein et al. (in prep.) for further methodological details.
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Results

Underestimation of species richness. Based on our analyses, among the 363
Amazonian species found in TAXO1, 53 genetic lineages could not be associated with
any nominal taxa. In the EGS, most of these undescribed lineages were already
documented (e.g., Adelophryne sp., Scinax sp. 2, or Pristimantis sp. 1) (Fouquet et al,
2007b, 2012b). In southern and western Amazonia however, several lineages are
reported here for the first time (e.g., Allobates sp. “Divisor”, Amazophrynella sp. “Acre”,
Dendropsophus sp. “Xingu”), This suggests that species diversity has been well sampled
in the lowlands of the Guiana Shield, but not in the rest of Amazonia. Our datasets also
provide evidence of range extension for many taxa compared to previous knowledge.
This is for example the case of Scinax nasicus, which extends to the Sipaliwini savannah
(Suriname), Pristimantis koheleri, to the southern part of the Guiana Shield, or
Synapturanus mirandariberoi, to the southern part of the Amazonas drainage. However,
most of these newly documented populations are highly genetically divergent from the
populations lying within the known range of the species and are considered as

independent species in TAXOZ2.

In fact, 246 TAXO1 species display splits, yielding 568 species (X 2.3) in TAXOZ2.
TAXO2 provides 1,548 pairwise comparisons among species that are lumped as
conspecific in TAXO1. 39% of these average pairwise distances (p-distance pairwise
deletion) were above 6%, a threshold believed to conservatively delimit species (Vences
et al, 2005; Fouquet et al, 2007a) and 85% were above 3% (Fig. 2A). In terms of
taxonomy, 436 TAXOZ2 species cannot be assigned to any of the 310 nominal taxa of
TAXO1. These observations suggest that the TAXO1 framework remains

overconservative in many instances.
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Figure 2. A: Histogram of the average pairwise distances among TAX02 species considered as a
single TAXO1 species (white bars) and among TAXO2 species considered as different TAXO1
species (red bars; this last distribution was randomly sampled to harbour the same number of
comparisons than in the previous one); (B-C) Examples of genetic and geographic patterns for
two Panamazonian single TAXO1 species that provide drastically different patterns in TAX02;
Leptodactylus petersii being split into 16 species whereas Hypsiboas calcaratus is only split in
two candidate species in TAXO2. The colours of the lineages on the tree correspond to the
colours of the occurrence points and areas on the map. T indicates candidate species that were
discarded from the analyses in TAXO2 (less than three locality records).
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A number of distinct patterns of distribution emerge from the occurrence data of
TAXO1 and TAXO2. We highlight three of them that segregate groups of species
occurring in the EGS: Guiana Shield endemic groups; Panamazonian allopatric groups
and widespread species. The first pattern concerns five groups that are endemic to the
Guiana Shield and occur in both the highlands and the lowlands: Adelophryne (4 species
in TAXO1 vs. 4 in TAX02), Otophryne (3 vs. 3 species), Synapturanus (3 vs. 4 species),
Anomaloglossus (15 vs. 29 species), Vitreorana ritae clade (3 vs. 3 species), Hypsiboas
benitezi clade (3 vs. 3 species). Among them, only Anomaloglossus seems to have
substantially diversified in the lowlands. Secondly, the vast majority of species occurring
in the EGS are nested in widespread Amazonian or lowlands Neotropical clades (Fig.
2B). Most of these clades display deep divergence among populations (above 6%; e.g.
Leptodactylus petersii - 16 candidate species in TAX02) and contain several candidate
species with more restricted ranges. Finally, 78 species out of 358 (22%) in TAXO1, 45
out of 596 (8%) in TAXO2 and 142 out of 440 (32%) in IUCN actually have broad

distributions (>1 millions km?) within our focal study area (e.g., H. calcaratus) (Fig. 2C).

Biogeographical subregions. We decomposed the TAX01, TAXO2 and IUCN datasets
using Latent Dirichlet Allocation. AIC minimization yielded an optimal number of species
assemblages close to K = 8 for all three datasets (Fig. S2). The retrieved assemblages
were found to be spatially segregated (mixing parameter o much smaller than 1:
Aryen = 0.021, arax01 = 0.019, @rax02, = 0.016 ) and contiguous. We could thus
interpret them as BSRs. The LDA decomposition was found to be reliable for the three

datasets based on its stability over 100 realizations (Fig. S2).
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Figure 3. Maps generated by interpolating the eight-assemblage Latent Dirichlet Allocation
(LDA) decomposition of the species occurrence data (A, B, C), and corresponding dendrograms
showing the relationships between the eight assemblages recovered in the LDA decomposition
using average Jaccard taxonomic dissimilarity (based on the presence/absence of species in
assemblages). (A) TAXO01; (B) TAXO2; (C) IUCN data. The white dashed lines represent the
approximate boundaries of the BSR for a three-assemblage LDA decomposition (in panel [B], the
north-western and south-eastern regions belong to the same assemblage). The numbers on the
maps correspond to the numbers attributed to assemblages for each dataset. (D) TAXO1; (E)
TAXO02; (F) IUCN data.

Even though not identical, the spatial boundaries of the eight BSRs retrieved for
TAXO1 and TAXO2 were very similar (Fig. 3A-B). The lowlands of the EGS were clearly
separated from the rest of the study area by the Rio Amazonas and the Pantepui region.
Moreover, the EGS was also found to exhibit some internal structure, since this area was
composed of three independent BSRs, all found in both TAXO1 and TAXO2 despite large
differences in the distribution of the species considered (e.g., Leptodactylus petersii). One
of these three BSRs (BSR1 on Fig. 3A-B) comprised the southern part of Guyana,
Roraima and the Northern parts of Para and Amazonas states (Brazil). A second one
(BSR2 on Fig. 3A-B) comprised the northern part of Guyana and adjacent Venezuela.

Finally, a third one (BSR3 on Fig. 3A-B) comprised the state of Amapa (Brazil), French

237



Appendix - Biogeography of Amazonian Anurans

Guiana, and Suriname. These three BSR were retrieved as a single cluster in the coarser
3-assemblage LDA decomposition. Taxonomic comparison between assemblages
indicated that among these three BSR, BSR1 and BSR3 were more similar to each other,
in both TAXO1 and TAXO2 (Fig. 1D, E). The only notable difference between TAXO1 and
TAXOZ2 in the EGS area was that the boundaries of BSR1 matched well the Rio Negro and
Rio Amazonas in TAXO02, while BSR1 extended somewhat further west across the
Rupununi savannah in TAXO1. The boundaries between BSRs in this specific area were
also sharper in TAXO2 than in TAXO1. Outside of the EGS area, there was a striking
match between BSR boundaries and Rio Madeira in TAXO1 that was already recovered
in the 3-assemblage decomposition. In contrast, the Purus and Tapajos Rivers were

found to be each at the center of a BSR in both TAXO1 and TAXO?2.

The distribution of BSRs using the IUCN database provided a markedly different
pattern, notably not matching the EGS boundaries. The three Guianas (Guyana,
Suriname, and French Guiana) were grouped together in one BSR, excluding the north-
western part of Guyana and including adjacent areas of Amapa and Para (Brazil). The
southern part of the EGS was grouped with the southern part of the Amazon drainage,

thus encompassing Rio Amazonas (Fig. 3C).

Species richness and endemism. In terms of species richness and endemism, the three
datasets are radically different. The BSR1 of IUCN is composed of 119 species, 27.7 % of
which are endemic (Table 1), and is geographically comparable to the lumping together
of BSR2 and 3 in TAX01 and TAXOZ2. Yet, despite encompassing a smaller geographical
area, the BSR3 of TAXO1 alone displays similar values of richness and endemism as the
BSR1 of IUCN. When considering the three Guiana Shield BSRs together in TAXO1,
richness (184 species) and endemism (57 %) are much higher than in the BSR1 of IUCN.
These metrics increase to 250 species and 82.4 % endemism in TAXO2 for the EGS
(Table 1). BSR2 (Northern Guyana) contains the highest number of endemic species in
both taxonomic frameworks, reaching 75 % endemism in TAXO2 (Table 1), while the
highest species richness (130 in TAX02) is found in BSR3 (Suriname, French Guiana and
Amapa).
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UICN TAXOl1 TAXO2
Partition BSR  Species Endemic  Endemism | Species  Endemic  Endemism | Species  Endemic  Endemism
richness species rate (%) richness species rate (%) richness species rate (%)
1 119 33 27.7 89 4 0.4 71 25 35.2
K=8 2 - - - 85 46 54.1 90 68 75.5
3 - - - 118 30 25.4 130 77 59.2
K=3 1 - - - 184 105 57 250 206 82.4

Table 1: Species richness and endemism in each of the BSRs covering the EGS. The figures
presented in this table include singletons (species with only one occurrence point) and species
that occur in less than three cells. BSR numbers correspond to those displayed in Fig. 3. For K=3,
assemble 1 actually corresponds to the EGS.
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Discussion

Underestimation of species richness and regional endemism in Amazonia. We
analysed our molecular diversity data using two alternative taxonomic frameworks: a
conservative framework TAXO1 in which sequences were as much as possible clustered
into monophyletic groups around previously described nominal taxa, and a framework
TAXO2 in which species were delineated solely based on the molecular distance
between sequences. Our species delineation analysis corroborates previous suggestions
that the actual number of anuran species occurring in Amazonia remains vastly
underestimated (Fouquet et al, 2007a; Funk et al, 2012; Ferrdo et al, 2016). The
number of species retrieved in TAX02 (746) and the level of divergence among them are

particularly striking in many groups.

Our TAXO1 dataset comprises 363 Amazonian species, which is close to the 427
species recorded by the IUCN. However, our sampling effort is low outside the EGS, as
illustrated by the fact that we do not retrieve several nominal taxa included in the [UCN
database. Therefore, the actual number of species is likely to be largely underestimated
in TAXO1 outside the EGS. Moreover, TAXO1 remains over-conservative in many
instances, as the level of genetic divergence within species is often very high. TAX02
suggests the existence of more than twice the number of species found in TAXO1.
Considering that uneven sampling is even more of an issue in TAXO2 than in TAXO1, as
many of our candidate species are only retrieved in one or a few localities, the actual
species count for Amazonia is likely to be substantially more than twice the current
count. Hence, comparisons between taxonomic frameworks should be limited to the
EGS, where our sampling effort is highest. When considering solely the EGS, the number
of candidate species retrieved in TAXOZ2 is 1.34 times higher than for TAXO1 (Table 2).

A species delineation solely based on mtDNA divergence remains overly
simplistic and cannot reliably delineate the species occurring in the region since it
necessarily overestimates the actual number of species in some cases (false positives)
and underestimates in others (false negatives) (Hickerson et al, 2006). The pitfalls

inherent to the sole use of short mtDNA sequences for species delineation have been
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already extensively discussed (Hubert & Hanner, 2015). Nevertheless, in most groups
for which the boundaries among species have been investigated using integrative
taxonomy, mtDNA divergence of similar magnitude as used in this study to differentiate
between intra- and interspecific genetic divergence was generally associated with
phenotypic or acoustic differentiation as well (Funk et al., 2012; Fouquet et al., 2015b;
Ortega-Andrade et al.,, 2015; Fouquet et al, 2016). Moreover, TAX0O2 subdivisions have
already been proven to be associated with morphological or acoustic differences in
several groups (Jansen et al., 2011; Fouquet et al, 2013; Ferrao et al., 2016). Thus, the
TAXO2 taxonomic framework takes into account finer subdivisions that certainly
correspond to phenotypically distinct species in many cases, and it is highly probable
that the prevalence of false positives remains limited. In contrast, some false negatives
were detected since several nominal taxa were retrieved as a single candidate species
using ABGD (e.g., Atelopus flavescens and A. hoogmoedi, O. oophagus and O. taurinus).
These were corrected in TAXO2 but the prevalence of false negatives remains difficult to
evaluate in most groups where species boundaries have not been investigated using
phenotypic traits. Overall, the present work provides an important update to the
documentation of Amazonian anuran diversity, which will undoubtedly contribute to

stimulate the process of species delineation and description.

If our work provides a glimpse of how far we still are from reaching a realistic
estimate of the number of species occurring throughout Amazonia, it also provides an
even more striking view of the degree of regional endemism. Our estimates of the rate of
endemism for the frogs of the EGS reach 57.0 % based on TAXO1 and 82.4 % based on
TAXOZ2. These figures are two to four times higher than the estimate of the IUCN for the
same area. They are also 1.0 to 1.4 times higher than the rate of endemism of frogs in the
whole geologically defined Guiana Shield, which also encompasses Venezuela and part of
Colombia (Sefiaris & MacCulloch, 2005). In comparison, only 7.7% of bird species are
endemic to the whole Guiana Shield, 29 % of reptile species, and 11 % of mammal
species (Hollowell & Reynolds, 2005). These figures are still certainly underestimated
(Lim, 2012), especially for reptiles (Geurgas & Rodrigues, 2010; de Oliveira et al, 2016),
but taxonomy has probably reached a much more stable level for birds and mammals in

the Guiana Shield than for anurans. In comparison with other tropical American regions,
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51.3% of the vertebrate species from the Atlantic Forest of Brazil are endemic, and 46.2

% of the vertebrates from the tropical Andes are endemic (Myers et al., 2000).

A simple and rough extrapolation based on the species richness and endemism
we obtained for the EGS (184-250 species with 57-82 % endemism) applied to the eight
Amazonian BSRs retrieved in our analysis leads to ca. 1,472-2,000 species in our focal
area, which represent about three to five times the 427 species that are supposed to
occur in Amazonia according to the I[UCN. Enhancing data coverage in order to refine
these estimations would require extensive fieldwork in remote areas. Nevertheless, new
predictive approaches based on the detection of cryptic diversity (Espindola et al., 2016)
may permit to get a more precise estimate of species richness and endemism in each

BSR, and therefore would help targeting areas where to focus sampling.

Biogeographic division of the eastern Guiana Shield. The extent of the BSRs
retrieved for TAXO1 and TAXO2 are very similar in spite of the use of two drastically
different taxonomic frameworks. In contrast, the BSRs retrieved from the IUCN database
are very different and do not correspond to any landscape feature. No barrier effect of
the lower Rio Amazonas is even distinguishable. This is most likely resulting from the
artificially large distribution of many species contained in this database on both sides of

this river.

The location of the Rio Madeira matches well the boundary between BSR5 and
BSR6 in TAXO1, which is in accordance with what has already been shown for other
groups of terrestrial vertebrates, such as birds (Fernandes et al, 2012; Ribas et al,
2012) and primates (Cortés-Ortiz et al, 2003). The sharpness of this pattern is not
obvious in TAXO02, but this is probably due to the removal of many singletons from the
dataset after species delineation. Another interesting aspect is the lack of apparent
suture effect between the Purus and the Solimdes drainages, also in accordance with
what has previously been found for other group of terrestrial vertebrates (Cortés-Ortiz
etal, 2003; Fernandes et al, 2012; Ribas et al., 2012). These rivers display a meandering
behaviour associated with an unstable course over time, thus enabling gene flow
through connection between populations located on both sides and dispersal of species

from one interfluve to the other (Aleixo, 2004, 2006; Bates et al.,, 2004; Jackson et al,
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2013). On the contrary, wide rivers in the Brazilian shield such as Rio Madeira display a
putatively more stable course over time and are more likely to act as long lasting suture
zones that might have promoted diversification or at least been more efficient in
preventing dispersal (Antonelli et al., 2010; Moraes et al.,, 2016). Such characteristics are
also found in rivers of the EGS (Fernandes et al., 2012; Fouquet et al., 2012a, 2015a), but
except for the Rio Branco and Rio Negro, the impact of the Guiana Shield rivers on gene
flow through dispersal limitation might not be as important as for the Amazonian rivers
of the Brazilian Shield, owing to the smaller extent of the catchments and the smaller
width of the rivers themselves. This is reflected in our results, as the suture zones
between the three BSRs of the EGS do not correspond to any major drainage. In fact, it is
more likely that the delimitation of these assemblages resulted from the combined
influence of past climatic and landscape changes (Fouquet et al, 2012c). The current
climatic characteristics of the EGS are heterogeneous, with a large dryer corridor
observed in the southern part (Mayle & Power, 2008), where patches of savannahs are
found today. This corridor also matches the suture zone between BSR1 vs. BSR2 and
BSR3. The strong climatic fluctuations in the Neotropics during the Miocene and
Pliocene played a crucial role in the diversification of several organisms (Antonelli et al.,
2010). More recent climate fluctuations and associated landscape modifications during
the Pleistocene certainly helped maintain the diversity that resulted from diversification

events during the Miocene and Pliocene periods (Carnaval & Bates, 2007).

The outer limits of the three BSRs match well the delimitation of the Guianan area
retrieved for birds (Naka, 2011), confirming the relevance of qualifying the EGS as a
biogeographic area. Nonetheless, using anuran assemblages as a model revealed
biogeographic heterogeneity within this region that could not be detected with bird
assemblages, likely because birds have much higher dispersal abilities than anurans
(Pigot & Tobias, 2015). The distinctiveness of the BSRs compared to the remaining of
the dataset is also reflected in the structure of the dendrogram illustrating the level of
taxonomic similarity between assemblages (Fig. 3D, E). The southern limit of BSR1
corresponds to Rio Amazonas for both TAXO1 and TAXOZ2. This is congruent with
previous studies on terrestrial vertebrates indicating that this river is a strong barrier to
gene flow and that it structures species assemblages (Cortés-Ortiz et al, 2003; Haffer,

2008; Ribas et al, 2012). The delineation of the western part of BSR1 differs across
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datasets. It coincides perfectly with the lower Rio Negro, and the Rio Branco and
associated savannahs (Rupununi) in TAXO2 but extends further west in TAXO1. These
differences are inherent to the scarcer sampling west and south-west of the Rio Negro
and Rio Branco, weakening the sharpness of the analysis in that zone, a phenomenon
that becomes even more prevalent in TAXO2 because of the further taxonomic
subdivisions. Another reason could be the inclusion of both forest and open habitat
species in our analysis, which could blur the pattern in areas where both savannah and

forest are found.

[t is interesting to note that the limits of the BSRs of the EGS are rather similar
when considering either a K=3 or a K=8 decomposition, for both TAXO1 and TAXO2.
This indicates that a strong co-occurrence signal underlies the delineation of these BSRs,
especially in the case of the two northernmost ones (BSR2Z and BSR3) whose western
and eastern boundaries coincide perfectly with the ones retrieved in the three-

assemblage decomposition (Fig. 3).

Conclusion. Despite being far from exhaustive, our barcoding dataset is the largest ever
gathered for Amazonia, and we argue that it is close from being exhaustive within the
EGS. Of course, the patterns we obtained need to be confirmed in other taxonomical
groups, and need even for the anurans to be much improved outside the EGS.
Nevertheless, our results help us understand the spatial scale of the sampling efforts
needed to capture the actual diversity of Amazonia. It implies notably that the
magnitude of the Linnean and Wallacean shortfalls in Amazonia is so large that we could
question the conclusions of large-scale studies based on currently admitted biodiversity
data in Amazonia (Feeley & Silman, 2011; Foden et al, 2013). In fact, even with very
coarse data (IUCN), they estimated that Amazonian amphibians are highly threatened by
climate change. Considering that many species were not included and that they actually
harbour much narrower distributions, we can hypothesise that the situation is even
more worrying. If a degree of endemism similar to the one we estimated within the EGS
actually occurs across Amazonia, the impact of habitat loss could have been
underestimated. It is especially the case along the Arc of deforestation (Vedovato et al.,

2016), where entire faunal assemblages that may harbour a high degree of endemism

244



Appendix - Biogeography of Amazonian Anurans

are at risk of extinction (Da Silva et al.,, 2005). Moreover, only BSR3 encompasses a large
proportion of protected areas in the EGS. In contrast, BSR2 (northern Guyana) only
harbours two protected areas and the BSR1 only encompasses three biological reserves
(REBIO), four national forests (FLONA) and three national parks (PARNA) in its
Brazilian part. Such results demonstrate the importance of deciphering the basic

structure of the Amazonian diversity in order to conserve it efficiently.
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Amazonian forest, the Earth’s most diverse land ecosystem.

Two broad types of mechanisms are classically invoked to explain the assembly
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Résumé: La distribution de I'abondance des especes en un site, et la similarité de la composition
taxonomique d’un site a I'autre, sont deux mesures de la biodiversité ayant servi de longue date
de base empirique aux écologues pour tenter d’établir les reégles générales gouvernant
I'assemblage des communautés d’organismes. Pour ce type de mesures intégratives, le
séquencage haut-débit d'ADN prélevé dans l'environnement (« ADN environnemental »)
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a des échantillons de sol prélevés selon une grille réguliere au sein d’'une grande parcelle
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