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I. What	drives	the	assembly	of	ecological	

communities?	

	

Science	consists	in	finding	patterns	in	a	collection	of	isolated	observations	so	as	to	gain	

understanding	 of	 the	 processes	 that	 generated	 them.	 Natural	 sciences	 began	 with	

attempts	 at	 classifying	 the	diversity	 of	 the	 living	 organisms	 into	 categories	 (Aristotle,	

IVth	 cent.	 BC),	 and	 this	 classification	 has	 been	 developed	 and	 perfected	 over	 the	

centuries	 into	 the	modern	binomial	nomenclature	 (Linnaeus,	1753).	But	 classification	

efforts	were	 not	 limited	 to	 the	 description	 of	 species.	 Associations	 of	 species,	 and	 in	

particular	 plant	 associations,	 were	 named	 using	 the	 same	model,	 and	 were	 carefully	

described	 based	 on	 their	 taxonomic	 composition	 and	 the	 abiotic	 properties	 of	 their	

environment	(Braun-Blanquet	&	Pavillard,	1922).	Even	though	forest	plant	associations	

were	observed	shifting	through	time,	this	phenomenon	was	described	as	mirroring	the	

life	 cycle	 of	 individual	 organisms,	 from	 ‘youth’	 to	 ‘senescence’	 (Clements,	 1916).	 The	

underlying	 idea	 was	 that	 the	 organization	 of	 the	 living	 world	 obeyed	 static	 and	

deterministic	 rules,	 which	 were	 to	 be	 uncovered.	 This	 idea	 was	 encouraged	 by	 the	

discovery	of	the	elegant	laws	that	govern	physics	and	chemistry.		

By	 contrast,	 early	 discoveries	 on	 evolution	 and	 biogeography	 (Darwin,	 1859;	

Wallace,	1876)	brought	the	idea	that	chance	and	history	have	played	an	overwhelming	

role	in	shaping	the	modern	living	world.	Gleason	(1926)	and	Tansley	(1935)	were	the	

first	 to	 contend	 that	 the	 diversity	 of	 plant	 associations	 was	 not	 well	 described	 by	

discrete	 vegetation	 types,	 and	 that	 species	 associations	 were	 rather	 the	 transient	

outcome	 of	 random	 dispersal	 events,	 constrained	 by	 abiotic	 conditions	 and	 species	

interactions.	 Later,	 Hutchinson	 (1961),	 MacArthur	 (1972),	 Diamond	 (1975),	 Hubbell	

(1979),	Ricklefs	(1987),	and	Brown	(1995),	among	others,	have	successively	elaborated	

on	 this	 idea,	 laying	 the	 foundations	 of	 modern	 community	 ecology.	 The	 term	

‘community’	 refers	 to	 all	 the	 organisms	 coexisting	 in	 a	 given	 location	 and	 at	 a	 given	

time.	 It	may	 also	 refer	 to	 a	 taxonomic	 subgroup	 of	 these	 organisms,	 such	 as	 a	 ‘plant	

community’.	
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The	 question	 of	 the	 relative	 role	 played	 by	 deterministic	 and	 stochastic	

processes	in	shaping	ecological	communities	remains	central	to	ecology.	In	this	section,	

I	 first	 argue	 that	 addressing	 this	 question	 is	 key	 to	 our	 ability	 to	 preserve	 natural	

ecosystems	and	to	predict	their	response	to	human	perturbations.	I	then	briefly	review	

the	mechanisms	of	community	assembly	that	have	been	proposed.		

	

 Motivations	1.

	

The	 increasing	 awareness	 of	 the	 threats	 posed	 to	 natural	 ecosystems	 by	 human	

activities	has	added	a	sense	of	urgency	to	the	study	of	ecological	processes.	Indeed,	the	

fate	 of	 the	 Earth’s	 biodiversity,	 and	 beyond	 it,	 of	 the	 ecosystems	 on	 which	 human	

societies	rely	for	food,	water,	clean	air,	health,	and	raw	materials,	has	become	a	major	

source	of	concern	(Daily,	1997).	As	a	consequence,	theoretical	advances	in	ecology	can	

no	 longer	 be	 considered	 in	 isolation	 from	 their	 practical	 implications.	 In	 particular,	

many	predictions	relevant	to	policy-making	strongly	depend	on	assumptions	regarding	

the	 mechanisms	 of	 community	 assembly.	 Thus,	 data-driven	 understanding	 of	

community	 assembly	 is	 critical	 to	 well-informed	 policy-making.	 Three	 examples	 are	

given	below:	the	prediction	of	ecosystem	stability	and	state	shifts	in	response	to	human	

perturbations,	 the	prediction	of	 the	 impact	of	climate	change,	and	 the	conservation	of	

biodiversity.		

Measuring	ecosystem	stability	to	perturbations	is	a	subject	of	active	research,	as	

is	the	relationship	between	biodiversity	and	ecosystem	stability	(McCann,	2000;	Tilman	

et	 al.,	 2006;	 Loreau	 &	 de	Mazancourt,	 2013).	 In	 this	 context,	 natural	 ecosystems	 are	

commonly	represented	as	stable	communities	held	together	by	species	interactions,	in	

part	because	this	representation	lends	itself	well	to	theoretical	approaches	(Arnoldi	et	

al.,	 2016).	Drawing	on	 this	 framework,	 it	 has	been	hypothesized	 that	 the	 response	of	

ecosystems	 to	 perturbations	 may	 bear	 a	 similarity	 with	 that	 of	 physical	 systems	

exhibiting	critical	phase	transitions	(cf.	Fig.	1;	Scheffer	et	al.,	2012).	Accordingly,	‘tipping	

points’,	 sudden	 and	 difficult-to-reverse	 shifts	 in	 a	 system’s	 state	 in	 response	 to	
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perturbation,	should	be	expected	(Brook	et	al.,	2013).	Moreover,	such	state	shifts	could	

be	 possibly	 predicted	 in	 advance	 through	 the	 identification	 of	 early-warning	 signals	

(Carpenter	et	al.,	 2011;	 Scheffer	et	al.,	 2012).	While	 this	 type	of	 non-linear	behaviour	

has	been	evidenced	 in	 lake	ecosystems	 (Carpenter	et	al.,	 2011),	 it	 remains	difficult	 to	

study	empirically,	and	knowledge	of	community	assembly	processes	 is	key	 to	provide	

realistic	assumptions	for	the	theoretical	prediction	of	possible	tipping	points.	

	

	

Figure	 1.	 The	 response	 of	 ecosystems	 to	 human-induced	 stress	 is	 commonly	 studied	 using	 a	
network	 representation	of	 ecological	 communities,	 envisioned	as	 stable	entities	held	 together	
by	interactions.	Depending	on	network	connectivity	and	modularity,	the	response	may	be	linear	
(left)	 or	 exhibit	 a	 tipping	 point	 (right).	 Data-driven	 knowledge	 of	 community	 assembly	
processes	is	much	needed	to	inform	such	models.	Adapted	from	Scheffer	et	al.	(2012).	

	

Climate	change	has	become	the	foremost	threat	to	many	ecosystems,	especially	

those	that	are	less	directly	impacted	by	human	activities.	Species	distribution	modelling	

is	 an	 important	 tool	 to	 predict	 the	 effect	 of	 climate	 change	 on	 biodiversity	 (Miller,	

2010).	It	consists	in	inferring	the	abiotic	requirements	of	individual	species	from	their	

observed	 geographic	 distribution,	 and	 predicting	 their	 future	 distribution	 based	 on	

predicted	changes	in	abiotic	conditions.	The	need	to	take	into	account	processes	other	

Anticipating Critical Transitions
Marten Scheffer,1,2* Stephen R. Carpenter,3 Timothy M. Lenton,4 Jordi Bascompte,5
William Brock,6 Vasilis Dakos,1,5 Johan van de Koppel,7,8 Ingrid A. van de Leemput,1 Simon A. Levin,9
Egbert H. van Nes,1 Mercedes Pascual,10,11 John Vandermeer10

Tipping points in complex systems may imply risks of unwanted collapse, but also opportunities
for positive change. Our capacity to navigate such risks and opportunities can be boosted by
combining emerging insights from two unconnected fields of research. One line of work is
revealing fundamental architectural features that may cause ecological networks, financial
markets, and other complex systems to have tipping points. Another field of research is uncovering
generic empirical indicators of the proximity to such critical thresholds. Although sudden
shifts in complex systems will inevitably continue to surprise us, work at the crossroads of these
emerging fields offers new approaches for anticipating critical transitions.

About 12,000 years ago, the Earth sud-
denly shifted from a long, harsh glacial
episode into the benign and stable Hol-

ocene climate that allowed human civilization to
develop. On smaller and faster scales, ecosystems
occasionally flip to contrasting states. Unlike grad-
ual trends, such sharp shifts are largely unpre-
dictable (1–3). Nonetheless, science is now carving
into this realm of unpredictability in fundamental
ways. Although the complexity of systems such
as societies and ecological networks prohibits ac-
curate mechanistic modeling, certain features turn
out to be generic markers of the fragility that may
typically precede a large class of abrupt changes.
Two distinct approaches have led to these in-
sights. On the one hand, analyses across networks
and other systems with many components have
revealed that particular aspects of their structure
determine whether they are likely to have critical
thresholds where they may change abruptly; on
the other hand, recent findings suggest that cer-
tain generic indicators may be used to detect if a
system is close to such a “tipping point.”We high-
light key findings but also challenges in these

emerging research areas and discuss how excit-
ing opportunities arise from the combination of
these so far disconnected fields of work.

The Architecture of Fragility
Sharp regime shifts that punctuate the usual fluc-
tuations around trends in ecosystems or societies
may often be simply the result of an unpredict-
able external shock. However, another possibility
is that such a shift represents a so-called critical
transition (3, 4). The likelihood of such tran-
sitions may gradually increase as a system ap-
proaches a “tipping point” [i.e., a catastrophic
bifurcation (5)], where a minor trigger can invoke
a self-propagating shift to a contrasting state. One
of the big questions in complex systems science
is what causes some systems to have such tipping

points. The basic ingredient for a tipping point
is a positive feedback that, once a critical point
is passed, propels change toward an alternative
state (6). Although this principle is well under-
stood for simple isolated systems, it is more chal-
lenging to fathom how heterogeneous structurally
complex systems such as networks of species,
habitats, or societal structures might respond to
changing conditions and perturbations. A broad
range of studies suggests that two major features
are crucial for the overall response of such sys-
tems (7): (i) the heterogeneity of the components
and (ii) their connectivity (Fig. 1). How these
properties affect the stability depends on the na-
ture of the interactions in the network.

Domino effects. One broad class of networks
includes those where units (or “nodes”) can flip
between alternative stable states and where the
probability of being in one state is promoted by
having neighbors in that state. Onemay think, for
instance, of networks of populations (extinct or
not), or ecosystems (with alternative stable states),
or banks (solvent or not). In such networks, het-
erogeneity in the response of individual nodes
and a low level of connectivity may cause the net-
work as a whole to change gradually—rather than
abruptly—in response to environmental change.
This is because the relatively isolated and differ-
ent nodes will each shift at another level of an en-
vironmental driver (8). By contrast, homogeneity
(nodes beingmore similar) and a highly connected
network may provide resistance to change until a
threshold for a systemic critical transition is reached
where all nodes shift in synchrony (8, 9).

This situation implies a trade-off between lo-
cal and systemic resilience. Strong connectivity
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Fig. 1. The connectivity and homogeneity of the units affect the way in which distributed systems with
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that they adjust gradually to change. By contrast, in highly connected networks, local losses tend to be
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particular structure of connections also has important consequences for the robustness of networks,
depending on the kind of interactions between the nodes of the network.
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than	abiotic	requirements,	such	as	species	interactions,	dispersal	limitation,	adaptation,	

and	 phenotypic	 plasticity,	 has	 long	 been	 acknowledged	 (Guisan	 &	 Thuiller,	 2005),	

nevertheless	most	predictions	are	still	obtained	while	ignoring	these	processes	(Wisz	et	

al.,	2013).	Another	approach	to	predicting	the	effect	of	climate	change	on	ecosystems	is	

through	 the	 dynamical	 simulation	 of	 ecosystems,	 either	 by	 simulating	 each	 organism	

individually	 or	 using	 coarser	 models	 (Fisher	 et	 al.,	 2014).	 Building	 such	 models,	

especially	 at	 the	 level	 of	 individual	 organisms,	 requires	 a	 clear	 understanding	 of	 the	

processes	relevant	to	community	assembly	and	dynamics.	

Lastly,	 knowledge	 of	 community	 assembly	 is	 necessary	 to	 guide	 conservation	

efforts.	Assumptions	on	the	mechanisms	of	community	assembly	play	a	key	role	in	the	

debate	 on	 the	 optimal	 design	 of	 natural	 reserves	 (Cabeza	 &	 Moilanen,	 2001)	 or	 on	

species	 sensitivity	 to	 extinction	 (Tilman	 et	 al.,	 1994).	 Such	 assumptions	 are	 also	

required	 to	estimate	 the	amount	of	biodiversity	harboured	 in	 species-rich	and	poorly	

known	ecosystems.	A	straightforward	way	to	proceed	is	to	assume	that	the	relationship	

between	the	number	of	individuals	and	the	number	of	species,	observed	for	a	sample	of	

individuals,	 holds	 for	 the	 entire	 ecosystem.	 This	 reasoning	 implies	 that	 community	

assembly	 can	 be	 regarded	 as	 random	 at	 the	 scale	 of	 the	 ecosystem.	 It	 has	 been	 for	

instance	applied	to	Amazonian	trees,	yielding	an	estimated	total	of	16,000	tree	species	

extrapolated	from	about	5,000	observed	species	(ter	Steege	et	al.,	2013).		

	

 Deterministic	processes	2.

	

The	deterministic	processes	of	community	assembly	can	be	decomposed	into	two	major	

components:	abiotic	filtering	and	biotic	interactions.	

‘Abiotic	 filtering’	 is	 a	 metaphor	 referring	 to	 the	 fact	 that	 species	 can	 only	

establish	themselves	in	locations	where	abiotic	conditions	suit	their	needs:	hence,	any	

given	location	hosts	only	a	subset	of	the	species	that	would	have	the	ability	to	reach	it	

(Kraft	et	al.,	 2015).	While	 this	 concept	 is	 very	 general,	 it	 has	 its	 roots	 in	 the	 study	of	

plant	community	assembly	(Noble	&	Slatyer,	1977).	 In	this	context,	abiotic	 filters	may	
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include	 temperature,	 precipitation,	 soil	 nutrients,	 soil	 pH,	 soil	 grain	 size,	 soil	 water	

content,	soil	depth	and	bedrock.		

Biotic	 interactions	 refer	 to	 any	 type	 of	 interaction	 between	 organisms,	 either	

between	or	within	species,	and	can	be	broadly	categorized	into	competition,	predation,	

parasitism,	 commensalism	 and	mutualism	 (Schemske	 et	al.,	 2009).	 Biotic	 interactions	

may	facilitate	or	hinder	the	establishment	of	a	species	in	a	community	depending	on	the	

type	of	interaction,	and	as	such	their	action	on	community	assembly	may	be	referred	to	

as	 ‘biotic	 filtering’.	 Biotic	 and	 abiotic	 filtering	 are	 sometimes	 jointly	 referred	 to	 as	

‘habitat	 filtering’	 (Maire	et	al.,	 2012).	 Indirect	biotic	 interactions	 across	 trophic	 levels	

may	have	complex	and	non-trivial	outcomes.	For	instance,	 if	we	assume	that	a	trophic	

network	can	be	decomposed	into	discrete	trophic	levels,	increasing	abundances	among	

the	 species	 belonging	 to	 a	 given	 trophic	 level	 (e.g.,	 carnivores)	 lead	 to	 decreasing	

abundances	 in	 the	 trophic	 level	 immediately	 below	 (e.g.,	 herbivores),	 and	 in	 turn	 to	

increasing	 abundances	 one	 level	 lower	 (primary	 producers),	 a	 process	 known	 as	 a	

‘trophic	cascade’	(Paine,	1980;	Polis	et	al.,	2000).	Interspecific	interaction	may	also	take	

the	form	of	a	modification	of	surrounding	abiotic	conditions	by	organisms,	for	instance	

by	 so-called	 ‘ecosystem	 engineer’	 species	 (Wright	 et	 al.,	 2002),	 or	 simply	 through	

shading	in	the	case	of	plants,	thus	blurring	the	line	between	abiotic	and	biotic	filtering.	

Within	a	single	trophic	level,	competition	is	considered	to	be	the	dominant	type	

of	biotic	interactions	(Chesson,	2000).	The	‘competitive	exclusion	principle’	states	that	

the	 coexistence	 of	 two	 species	 competing	 for	 the	 same	 resource	 is	 not	 stable	 (Gause,	

1932;	MacArthur,	1958;	Hutchinson,	1961;	Armstrong	&	McGehee,	1980).	Indeed,	if	one	

of	 the	species	has	an	even	slight	competitive	advantage,	 it	will	eventually	outcompete	

the	 other.	 Thus,	 any	 set	 of	 coexisting	 species	 is	 expected	 to	 exhibit	 differences	 in	 the	

way	they	exploit	their	habitat.	This	has	led	to	the	concept	of	‘niche’,	which	refers	in	its	

broader	 meaning	 to	 the	 relationship	 between	 a	 species	 and	 its	 habitat,	 including	 its	

resource	 use,	 its	 interactions	with	 other	 species,	 and	 the	way	 its	 occupies	 its	 habitat	

both	 spatially	 and	 temporally	 (cf.	 Fig.	 2;	 Grinnell,	 1917;	 Hutchinson,	 1957;	 Chase	 &	

Leibold,	2003).	A	species’	niche	may	be	represented	as	a	hypervolume	in	the	space	of	all	

available	resources	and	possible	habitat	uses.		
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Figure	 2.	A	classical	example	of	niche	partitioning:	habitat	preferences	among	closely	 related	
warbler	species	in	the	boreal	forests	of	North	America.	(A)	Cape	May,	(B)	Blackburnian,	(C)	Bay-
breasted,	 (D)	 Yellow-rumped,	 and	 (E)	 Black-throated	 Green	 warblers	 favour	 different	 tree	
layers	and	different	tree	heights	when	foraging	for	insects	during	the	breeding	season.	Adapted	
from	MacArthur	(1958).	

	

In	 spite	 of	 theoretical	 predictions,	 the	 coexistence	 of	 many	 similar	 species	

competing	 for	 a	 common	 resource	 in	 homogeneous	 environments	 is	 a	 common	

occurrence	in	nature.	This	is	for	instance	the	case	in	species-rich	communities	such	as	

tropical	 forest	 trees	 and	 oceanic	 phytoplankton	 communities.	 This	 apparent	 paradox	

has	 been	 called	 the	 ‘paradox	 of	 the	 plankton’	 (Hutchinson,	 1961).	 Thus,	 additional	

 October, 1958 WARBLER POPULATION ECOLOGY W (3

 feeding. For this reason, differences between the
 species' feeding positions and behavior have been
 observed in detail.

 For the purpose of describing the birds' feeding
 zone, the number of seconds each observed bird
 spent in each of 16 zones was recorded. (In the
 summer of 1956 the seconds were counted by
 saying "thousand and one, thousand and two, . . ."
 all subsequent timing was done by stop watch.
 When the stop watch became available, an attempt
 was made to calibrate the counted seconds. It
 was found that each counted second was approxi-
 mately 1.25 true seconds.) The zones varied with
 height and position on branch as shown in Figure
 2. The height zones were ten foot units measured
 from the top of the tree. Each branch could be

 divided into three zones, one of bare or lichen-
 covered base (B), a middle zone of old needles

 (M), and a terminal zone of new (less than 1.5
 years old) needles or buds (T). Thus a measure-
 ment in zone T3 was an observation between 20
 and 30 feet from the top of the tree and in the
 terminal part of the branch. Since most of the
 trees were 50 to 60 feet tall, a rough idea of the
 height above the ground can also be obtained from

 the measurements.
 There are certain difficulties concerning these

 measurements. Since the forest was very dense,
 certain types of behavior rendered birds invisible.
 This resulted in all species being observed slightly
 disproportionately in the open zones of the trees.
 To combat this difficulty each bird was observed

 for as long as possible so that a brief excursion
 into an open but not often-frequented zone would
 be compensated for by the remaining part of the
 observation. I believe there is no serious error
 in this respect. Furthermore, the comparative
 aspect is independent of this error. A different
 difficulty arises from measurements of time spent
 in each zone. The error due to counting should
 not affect results which are comparative in nature.
 If a bird sits very still or sings, it might spend a

 large amount of time in one zone without actually
 requiring that zone for feeding. To alleviate this
 trouble, a record of activity, when not feeding, was
 kept. Because of these difficulties, non-parametric
 statistics have been used throughout the analysis
 of the study to avoid any a priori assumptions
 about distributions. One difficulty is of a dif-
 ferent nature; because of the density of the vegeta-
 tion and the activity of the warblers a large number
 of hours of watching result in disappointingly few
 seconds of worthwhile observations.

 The results of these observations are illustrated
 in Figures 2-6 in which the species' feeding zones
 are indicated on diagrammatic spruce trees. While
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 FIG. 2. Cape May warbler feeding position. The zones
 of most concentrated activity are shaded until at least
 50% of the activity is in the stippled zones.

 the base zone is always proximal to the trunk of
 the tree, as shown, the T zone surrounds the M,
 and is exterior to it but not always distal. For
 each species observed, the feeding zone is illus-
 trated. The left side of each illustration is the
 percentage of the number of seconds of observa-
 tions of the species in each zone. On the right
 hand side the percentage of the total number of
 times the species was observed in each zone is
 entered. The stippled area gives roughly the area
 in which the species is most likely to be found.
 More specifically, the zone with the highest per-
 centage is stippled, then the zone with the second
 highest percentage, and so on until at least fifty
 percent of the observations or time lie within the
 stippled zone.

 Early in the investigation it became apparent
 that there were differences between the species'
 feeding habits other than those of feeding zones.
 Subjectively, the black-throated green appeared
 omnervous," the bay-breasted slow and "deliberate."
 In an attempt to make these observations objective,
 the following measurements were taken on feeding
 birds. Then a bird landed after a flight, a count
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 FIG. 5. Blackburnian warbler feeding position. The
 zones of most concentrated activity are shaded until at
 least 50% of the activity is in the stippled zones.

 tion. To give a nonparametric test of the signifi-
 cance of these differences Table III is required.

 Each motion was classified according to the di-
 rection in which the bird moved farthest. Thus, in
 47 bay-breasted warbler observations of this type,
 the bird moved predominantly in a radial direction
 32 times. Applying a X9 test to these, bay-breasted
 and blackburnian are not different but all others
 are significantly (P<.O1) different from one
 another and from bay-breasted and blackburnian.

 There is one further quantitative comparison
 which can be made between species, providing ad-
 ditional evidence that during normal feeding be-
 havior the species could become exposed to dif-
 ferent types of food. During those observations
 of 1957 in which the bird was never lost from
 sight, occurrence of long flights, hawking, or
 hovering was recorded. A flight was called long
 if it went between different trees and was greater
 than an estimated 25 feet. Hawking is dis-
 tinguished from hovering by the fact that in hawk-
 ing a moving prey individual is sought in the air,
 while in hovering a nearly stationary prey indi-
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 FIG. 6. Bay-breasted warbler feeding position. The
 zones of most concentrated activity are shaded until at
 least 50,01 of the activity is in the stippled zones.

 duall is sought amid the foliage. This informa-
 tion is summarized in Table IV.

 Both Cape May and myrtle hawk and undertake
 long flights significantly more often than any of
 the other species. Black-throated green hovers
 significantly more often than the others.

 At this point it is possible to summarize differ-
 ences in the species' feeding behavior in the breed-
 ing season. Unfortunately, there are very few
 original descriptions in the literature for com-
 parison. The widely known writings of William
 Brewster (Griscom 1938), Ora Knight (1908),
 and S. C. Kendeigh (1947) include the best ob-
 servations that have been published. Based upon
 the observations reported by, these authors, the
 other scattered published observations, and the
 observations made during this study, the following
 comparison of the species' feeding behavior seems
 warranted.

 Cape May W~arbler. The foregoing data show
 that this species feeds more consistently near the
 top of the tree than any species expect black-
 burnian, from which it differs principally in type

This content downloaded from 129.199.24.197 on Tue, 09 May 2017 16:57:19 UTC
All use subject to http://about.jstor.org/terms

 604 ROBERT H. MACARTHUR Ecology, Vol. 39, No. 4

 1 Al I t

 9.8-I

 _______~ 3 1_ HMlA

 7.s/ l 1.*.* 10. 6

 3~~~~~** '<34

 / l:,53.6 93.6\ ' \

 /

 5em.

 % OF TOTAi. 7 OF TOTAL
 NUMBER (477 7) NUMBER (z263)

 OF 5ECONDS OF OF

 OZ5ERVATION OB5ERVATIONS

 FIG. 3. Myrtle warbler feeding position. The zones
 of most concentrated activity are shaded until at least
 50% of the activity is in the stippled zones.

 of seconds was begun and continued until the bird
 was lost from sight. The total number of flights
 (visible uses of the wing) during this period was
 recorded so that the mean interval between uses
 of the wing could be computed.

 The results for 1956 are shown in Table I. The
 results for 1957 are shown in Table II. Except
 for the Cape May fewer observations were taken
 than in 1956.

 By means of the sign test (Wilson, 1952),
 treating each observation irrespective of the num-
 ber of flights as a single estimate of mean interval
 between flights, a test of the difference in activity
 can be performed. These data are summarized in

 the following inequality, where < is interpreted

 to mean "has smaller mean interval between
 flights. with 95% certainty."
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 FIG. 4. Black-throated green warbler feeding position.
 The zones of most concentrated activity are shaded until
 at least 50% of the activity is in the stippled zones.

 their time searching in the foliage for food, some

 appear to crawl along branches and others to hop
 across branches. To measure this the following
 procedure was adopted. All motions of a bird
 from place to place in a tree were resolved into

 components in three independent directions. The
 natural directions to use were vertical, radial, and
 tangential. When an observation was made in
 which all the motion was visible, the number of
 feet the bird moved in each of the three direc-
 tions was noted. A surpringing degree of di-
 versity was discovered in this way as is shown in
 Figure 7. Here, making use of the fact that the
 sum of the three perpendicular distances from
 an interior point to the sides of an equilateral
 triangle is independent of the position of the point,
 the proportion of motion in each direction is re-
 corded within a triangle. Thus the Cape May

 Black-throated green 95 Blackburnian 99 f Cape May t K< Myrtle f < |Bay-breastedf
 The differences in feeding behavior of the

 warblers can be studied in another way. For,
 while all the species spend a substantial part of

 moves predominantly in a vertical direction, black-
 throated green and myrtle in a tangential direction,
 bay-breasted and blackburnian in a radial direc-
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mechanisms	 need	 to	 be	 considered	 to	 account	 for	 species	 coexistence	 in	 such	

communities	 (Tilman,	 1982;	 Chesson,	 2000).	 Even	 though	 a	 vast	 number	 of	 potential	

mechanisms	 of	 species	 coexistence	 has	 been	 proposed	 (Palmer,	 1994),	 they	 can	 be	

roughly	 divided	 into	 ‘equalizing’	 mechanisms,	 that	 reduce	 competitive	 differences	

between	 species,	 and	 ‘stabilizing’	mechanisms,	 that	 balance	 the	 effect	 of	 interspecific	

competition	(Chesson,	2000).	

Intraspecific	 competition	 represents	 one	 stabilizing	 mechanism.	 It	 has	 indeed	

been	found	empirically	that	competition	among	conspecific	individuals	is	often	at	least	

as	 intense	 as	 among	 different	 species	 (Connell,	 1983).	 Predation	 and	 parasitism	 are	

another	 important	 cause	 of	 negative	 intraspecific	 interactions	 among	 prey	 or	 host	

species.	Indeed,	the	fact	that	predators	and	parasites	tend	to	specialize	on	one	or	a	few	

species	induces	a	‘negative	density-dependence’,	i.e.	favours	lower	population	densities.	

This	 effect,	 known	 as	 the	 Janzen-Connell	 effect,	was	 first	 proposed	 for	 tropical	 forest	

trees	 (Connell,	 1970;	 Janzen,	 1970).	 Lastly,	 spatial	 and	 temporal	 fluctuations	 in	

environmental	 conditions	 are	 also	 a	 stabilizing	 mechanism	 favouring	 species	

coexistence	(Chase	&	Leibold,	2003;	see	section	I.4	below).	

Competition,	 predation	 and	 parasitism	 act	 also	 as	 equalizing	 mechanisms.	

Indeed,	 interspecific	 competition	 eliminates	 less	 competitive	 species	 from	 the	

community,	 while	 predation	 and	 parasitism	 effectively	 offsets	 the	 competitive	

advantage	of	the	most	successful	species	(Chesson,	2000).	The	importance	of	equalizing	

mechanisms	 and	 intraspecific	 competition	 in	 species-rich	 communities	 has	 prompted	

some	 ecologists	 to	 propose	 that	 competitive	 differences	 between	 organisms	 could	 be	

altogether	neglected	in	such	systems	(Hubbell,	2001),	as	discussed	in	the	following.		

	

 Stochastic	processes	3.

	

However	 complex	 and	 fascinating	 the	 interplay	 of	 species’	 niches	 is,	 community	

assembly	 cannot	 be	 fully	 understood	without	 considering	 the	 influence	 of	 geography	

and	history	on	community	composition	(MacArthur,	1972;	Ricklefs,	1987).	Firstly,	 the	
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capacity	 to	disperse	 is	 finite	 in	 all	 species:	 offspring	are	more	 likely	 to	be	 found	near	

parent	 individuals.	Thus,	 community	 composition	 in	 a	 given	 location	 is	dependent	on	

the	pool	of	 species	 that	are	within	dispersal	distance	of	 that	 location,	 and	on	 random	

dispersal	 events.	 The	 limited	dispersal	 of	 individuals	 generates	 spatial	 clusters	 in	 the	

distribution	of	a	species	(Houchmandzadeh,	2009),	and	thus	causes	spatial	variations	in	

community	composition	even	in	the	absence	of	other	mechanisms.	Secondly,	if	there	are	

no	competitive	differences	between	two	competing	species,	the	fact	than	one	is	locally	

common	and	the	other	rare	is	due	to	chance	alone.	The	relative	abundances	of	the	two	

species	are	expected	to	fluctuate	randomly	over	time,	until	one	eventually	goes	extinct.	

Thus,	over	a	sufficiently	 long	period	of	time,	competitive	exclusion	is	expected	to	take	

place	 even	 in	 the	 absence	 of	 competitive	 differences.	 The	 larger	 the	 number	 of	

competing	species	in	a	given	location,	the	lower	the	average	population	of	each	species	

is,	and	the	faster	the	community	will	lose	species	to	random	demographic	fluctuations.	

This	process	has	been	called	demographic	or	ecological	drift,	by	analogy	to	the	process	

of	genetic	drift	in	population	genetics	(Etienne	&	Alonso,	2007).		

The	 ‘neutrality’	 assumption	 is	 defined	 as	 the	 absence	 of	 any	 competitive	

differences	 among	 individuals,	 irrespective	 of	 the	 species	 they	 belong	 to	 (Watterson,	

1974;	 Caswell,	 1976).	 Since	 dispersal	 limitation	 and	 demographic	 drift	 take	 place	

independently	 of	 any	 competitive	 differences	 between	 organisms,	 they	 are	 often	

referred	 to	 as	 ‘neutral’	 processes,	 even	 though	 they	 are	 also	 present	 in	 non-neutral	

systems.	 Under	 a	 dynamics	 governed	 by	 dispersal	 limitation	 and	 demographic	 drift,	

ecological	 communities	 never	 reach	 equilibrium:	 their	 composition	 indefinitely	 shifts	

over	time.	Nevertheless,	if	the	total	number	of	individuals,	the	species	richness,	and	the	

dispersal	 capacity	 of	 individuals	 remain	 constant	 over	 time,	 community	 structure	

reaches	 a	 stationary	 state	 that	 can	 be	 described	 statistically	 as	 a	 function	 of	 these	

parameters.		

MacArthur	 &	 Wilson	 (1967)	 were	 the	 first	 to	 build	 dispersal	 limitation	 and	

demographic	drift	into	a	model,	which	they	used	as	a	foundation	for	a	‘theory	of	island	

biogeography’	aimed	at	explaining	species	richness	on	islands.	They	reasoned	that	the	

number	 of	 species	 found	 on	 a	 coastal	 island	 results	 from	 an	 equilibrium	 between	
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immigration	 of	 new	 species	 from	 the	 mainland	 and	 species	 extinction	 on	 the	 island	

through	demographic	drift,	even	though	they	did	not	explicitly	interpret	their	theory	as	

neutral.	The	 two	processes	are	stochastic	and	 their	 relative	 frequency	determines	 the	

number	 of	 species	 found	 on	 the	 island	 at	 any	 given	 time	 (cf.	 Fig.	 3).	 They	 further	

assumed	that	 the	 immigration	rate	depends	on	the	distance	to	 the	mainland,	and	that	

the	extinction	rate	depends	on	the	island’s	area,	thus	enabling	empirical	comparison	of	

their	theory	to	observations	(Simberloff	&	Wilson,	1969).	

	

	

Figure	 3.	 MacArthur	 &	 Wilson	 (1967)	 were	 the	 first	 to	 combine	 dispersal	 limitation	 and	
demographic	drift	into	a	simple	model,	that	aims	at	explaining	the	number	of	species	found	on	
islands.	They	assumed	that	the	number	of	species	results	from	a	dynamic	equilibrium	between	
stochastic	immigration	and	extinction,	which	are	dependent	on	distance	to	the	mainland	and	on	
island	size,	respectively.	Adapted	from	Hubbell	(2001).	

	

The	 theory	 of	 island	 biogeography	 was	 later	 expanded	 to	 better	 account	 for	

empirical	 observations	 (Brown	 &	 Kodric-Brown,	 1977).	 It	 was	 also	 proposed	 that	 it	

might	apply	more	generally	to	any	patch	of	isolated	habitat	(Brown,	1978).	In	parallel,	

Watterson	 (1974)	 and	 Caswell	 (1976)	 used	 the	 mathematical	 tools	 of	 population	

MacARTHUR AND WILSON’S RADICAL THEORY

Fig. 1.3. Various enhancements to the basic equilibrium hypothe-
sis of MacArthur and Wilson do not change the dispersal assembly
assumption underlying the model. Downwardly bowing immigration
and extincton curves were added to characterize the effects of compe-
tition on these rates, but all species, whether early or late colonizers,
good or bad competitors, experience the same changes in rates. Sim-
ilarly, the effects of island distance from the mainland and island size
on immigration and extinction rates, respectively, operate equally on
all species.

and Wilson fully appreciated the implications of this rad-
ical assumption. A majority of their 1967 monograph
was devoted to discussing such topics as species differ-
ences in colonization strategies, causes of species differ-
ences in extinction rates, temporal patterning in the order
in which species would successfully establish, and so on—all
differences forbidden by their model! Although MacArthur
and Wilson (1967) wrote about traditional ecological pro-
cesses such as competition, the actual parameters of their
model were immigration and extinction rates, distance from

17
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genetics	 to	model	neutral	 communities	at	 the	 level	of	 individual	organisms	 instead	of	

the	level	of	species,	thus	providing	a	more	mechanistic	description	of	the	processes,	but	

without	including	dispersal	limitation.	Hubbell	(1979,	1997,	2001)	eventually	combined	

both	 ideas	 into	 an	 influential	 neutral	 model,	 which	 he	 used	 as	 a	 basis	 to	 propose	 a	

‘unified	neutral	theory	of	biodiversity	and	biogeography’.	His	theory	not	only	states	the	

importance	of	demographic	drift	and	dispersal	limitation	for	community	assembly,	but	

also	 proposes	 that	 they	 may	 be	 the	 dominating	 mechanisms	 in	 some	 species-rich	

communities,	especially	tropical	forest	trees	and	coral	reefs.	Indeed,	strong	interspecific	

competition	 and	 predation	 could	 act	 as	 equalizing	 mechanisms	 between	 species	 in	

these	 communities,	 as	 mentioned	 earlier,	 and	 combine	 with	 strong	 intraspecific	

competition	to	make	all	individuals	of	all	species	effectively	equivalent	(Scheffer	&	van	

Nes,	 2006).	 Another	 hypothesis	 is	 that	 in	 highly	 diversified	 communities,	 complex	

interspecific	interactions	could	average	out	at	the	scale	of	the	community,	leading	to	an	

‘emergent	neutrality’	(Holt,	2006).	

In	 Hubbell’s	 model,	 the	 mainland’s	 species	 reservoir,	 called	 the	

‘metacommunity’,	undergoes	a	demographic	drift	where	random	extinctions	are	offset	

by	 random	 speciation	 events.	 The	 island,	 or	 ‘local	 community’,	 also	 undergoes	 a	

demographic	drift,	but	random	extinctions	are	offset	by	the	dispersal,	or	immigration,	of	

individuals	from	the	source	metacommunity.	Since	the	model	is	neutral,	all	individuals	

are	 considered	 to	 have	 the	 same	 dispersal	 capacity,	 irrespective	 of	 the	 species	 they	

belong	 to.	The	 scope	of	 the	 theory	 is	not	 limited	 to	 isolated	habitat	patches:	 the	 local	

community	 may	 represent	 any	 spatially	 delineated	 ecological	 community,	 while	 the	

metacommunity	represents	the	regional	pool	of	species	constituted	by	the	aggregation	

of	all	 local	communities.	The	model	 is	controlled	by	two	parameters,	 the	 frequency	of	

speciation	 events	 in	 the	 metacommunity,	 which	 determines	 the	 regional	 species	

richness,	and	the	frequency	of	immigration	into	the	local	community.	The	immigration	

flux	into	the	local	community	modulates	its	connectivity	with	the	metacommunity:	the	

stronger	 the	 immigration	 flux,	 the	 more	 species-rich	 and	 the	 more	 similar	 to	 the	

metacommunity	 the	 local	 community	 is.	 Hubbell’s	 model	 and	 subsequent	 related	

neutral	 models	 (Etienne	 &	 Alonso,	 2007)	 are	 amenable	 to	 several	 quantitative	
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predictions,	and	thus	to	statistical	testing	(this	 is	discussed	in	more	details	 in	sections	

II.1	and	III.4).	

Two	 distinct	 neutrality	 assumptions	 can	 be	 distinguished	 in	 Hubbell’s	 neutral	

theory:	 one	 regarding	 the	metacommunity	 dynamics,	 over	 an	 evolutionary	 timescale,	

and	one	regarding	the	local	community	dynamics,	over	the	timescale	of	an	individual’s	

lifetime.	 Predictions	 regarding	 local	 community	 structure,	 namely	 the	 relationship	

between	area	and	species	richness,	the	decay	of	taxonomic	similarity	with	distance,	and	

the	 distribution	 of	 relative	 species	 abundances	 (see	 section	 II.1),	 integrate	 both	

assumptions.	 They	 are	 in	 good	 qualitative	 agreement	 with	 empirical	 data	 (Hubbell,	

2001),	 nevertheless	 most	 datasets	 exhibit	 quantitative	 departure	 from	 neutrality	

(McGill	 et	 al.,	 2006).	 The	 assumption	 of	 a	 neutral	 diversification	 dynamics	 in	 the	

metacommunity	can	be	tested	separately,	and	has	been	shown	to	be	unrealistic.	Indeed,	

the	mean	 species	 age	predicted	by	Hubbell’s	model	 are	not	 consistent	with	 empirical	

measurements	(Ricklefs,	2003,	2006),	and	the	shape	of	the	predicted	phylogenetic	trees	

does	 not	 match	 that	 of	 empirically	 reconstructed	 trees	 (Davies	 et	 al.,	 2011).	 Hence,	

recent	 approaches	have	 instead	 focused	on	 testing	 separately	 the	assumption	of	 local	

neutral	 assembly	 through	 immigration,	 with	 contrasting	 results	 depending	 on	 the	

system	(Sloan	et	al.,	2006;	Jabot	et	al.,	2008;	Ofiteru	et	al.,	2010;	Harris	et	al.,	2015).		

Even	 though	 comparison	 of	 empirical	 patterns	 to	 model	 predictions	 suggests	

that	 real	 ecological	 communities	 are	 rarely	 neutral,	 Hubbell’s	 neutral	 theory	 retains	

important	 merits	 (Alonso	 et	 al.,	 2006).	 Indeed,	 it	 has	 been	 pointed	 out	 that	 all	 the	

processes	of	community	ecology	are	underpinned	by	only	four	fundamental	processes:	

natural	selection,	demographic	drift,	speciation,	and	dispersal	(Vellend,	2010).	Yet,	the	

majority	of	 ecological	 literature	 focuses	on	only	one	of	 them,	natural	 selection,	which	

underpins	 all	 niche	 differences	 between	 species	 and	 thus	 all	 deterministic	 ecological	

processes.	 In	 contrast,	 Hubbell’s	 neutral	 theory	 focuses	 on	 the	 three	 remaining	

fundamental	 processes,	 which	 are	 inherently	 stochastic,	 and	 places	 them	 in	 a	

quantitative	 framework.	 In	 practice,	 neutral	 models	 are	 essential	 tools	 for	 two	main	

uses	 (Rosindell	 et	 al.,	 2012).	 Firstly,	 they	 may	 serve	 as	 a	 ‘null	 model’	 against	 which	

empirical	patterns	can	be	contrasted,	so	as	to	identify	cases	where	neutral	processes	are	
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sufficient	to	explain	the	data	and	cases	where	they	are	not.	Secondly,	they	may	serve	as	

a	 parsimonious	 approximation	 to	 real	 systems,	 and	 as	 a	 foundation	 for	 incorporating	

relevant	non-neutral	mechanisms,	such	as	niche	differences	(Chisholm	&	Pacala,	2010),	

environmental	stochasticity	(Kalyuzhny	et	al.,	2015),	negative	density-dependence	(Du	

et	al.,	2011),	or	a	more	realistic	speciation	dynamics	(Rosindell	et	al.,	2010).	

		

 Spatial	and	temporal	scales	4.

	

Community	 assembly	 involves	 a	 range	 of	 temporal	 and	 spatial	 scales	 spanning	many	

orders	 of	magnitude	 -	 from	 the	 evolutionary	 timescale	 to	 the	 behaviour	 of	 individual	

organisms,	and	from	the	global	scale	to	the	scale	of	microorganisms	(Chave,	2013).	The	

continental	 scale	 is	 the	realm	of	biogeography,	where	species	distribution	reflects	 the	

geological	 and	 evolutionary	 history	 of	 continents	 (Cox	 et	 al.,	 2016),	 as	 well	 the	

latitudinal	gradient	of	diversity	(Hillebrand,	2004).	At	the	opposite	end,	most	studies	on	

species	 interactions	 focus	 on	 a	 limited	 number	 of	 individuals.	 Community	 ecology	 is	

concerned	with	the	intermediate	scales	(Lawton,	1999):	namely,	within	a	biogeographic	

unit	 (Morrone,	 2015),	 but	 encompassing	 a	 number	 of	 individuals	 large	 enough	 for	

statistical	 patterns	 to	 emerge.	 The	 scale	 at	 which	 statistical	 patterns	 start	 emerging	

depends	 on	 the	 type	 of	 organisms	 considered,	 and	 will	 differ	 by	 many	 orders	 of	

magnitude	between	plants	and	bacteria.			

Niche	and	neutral	processes	might	alternately	dominate	at	different	spatial	and	

temporal	 scales.	Firstly,	 locally	observed	species	 interactions	do	not	preclude	random	

species	 assembly	 over	 larger	 spatial	 and	 temporal	 scales.	 Indeed,	 the	 majority	 of	

interspecific	interactions	are	opportunistic	and	vary	across	space	and	time	(Holt,	1996;	

Poisot	 et	 al.,	 2014),	 despite	 much-studied	 instances	 of	 specialized	 interspecific	

interactions	 such	 as	 plant-pollinator	 mutualisms	 (Rønsted	 et	 al.,	 2005).	 Secondly,	

species	dynamically	 adapt	 their	niche	 to	 the	 local	 competitive	 context,	 either	 through	

plasticity	or	through	natural	selection.	For	instance,	closely	related	species	with	mostly	

disjoint	geographical	distributions	are	known	to	display	greater	phenotypic	differences	
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(such	 as	 a	 difference	 in	 size)	wherever	 they	 co-occur,	 a	 process	 known	 as	 ‘character	

displacement’	 (Brown	 &	 Wilson,	 1956).	 Natural	 selection	 has	 been	 found	 to	 have	

measureable	effects	on	phenotype	over	timescales	as	short	as	a	few	generations	when	

species	are	confronted	with	a	sudden	change	in	their	biotic	or	abiotic	environment,	thus	

questioning	 the	 legitimacy	 of	 the	 traditional	 separation	 between	 the	 timescales	 of	

evolutionary	and	community	assembly	processes	(Ghalambor	et	al.,	2015).	

	

Figure	 4.	 Community	 assembly	 processes	 depend	 on	 the	 spatial	 and	 temporal	 scales	
considered:	 current	 geographical	 patterns	 of	 tree	 diversity	 in	 Europe	 might	 reflect	 on-going	
dispersal	from	ice	age	tree	refugia,	which	started	14,000	years	ago.	Top	right,	bottom	left	and	
bottom	right:	geographical	distribution	of	tree	diversity	(increasing	from	yellow	to	blue)	for	all	
60	European	tree	species,	the	45	temperate	species	and	the	15	boreal	species,	respectively.	Top	
left:	 accessibility	 through	 dispersal	 from	 ice	 age	 tree	 refugia	 (black	 dots).	 Adapted	 from	
Svenning	&	Skov	(2007).	

Another	key	aspect	of	community	assembly	is	how	fast	community	composition	

responds	 to	 abiotic	 change,	 relative	 to	 the	pace	 of	 the	 abiotic	 change	 itself.	 Indeed,	 if	

abiotic	 change	 is	 fast	 enough	 relative	 to	 community	 response,	 the	 community	 may	

never	 reach	 equilibrium,	 thus	 leading	 to	 an	 apparently	 random	 dynamics.	 This	

present time, i.e. extrinsic ecogeographical factors. Notably,
it is easy to imagine that the cold-hardy Quercus robur had
more and more northerly located refugia than Q. cerris and
for this reason could achieve an earlier and faster postglacial
spread. The first tree species to spread would have met
much less competition from other tree species than late-
spreading species, which would have had to spread through
well-established late-successional forest communities. Sven-
ning & Skov (2004) did in fact find a relatively strong
positive correlation between range filling and cold hardiness
in European trees.

C A N C U R R E N T P A T T E R N S O F T R E E D I V E R S I T Y B E
P R E D I C T E D F R O M A S I M P L E M E A S U R E O F
A C C E S S I B I L I T Y F R O M G L A C I A L R E F U G I A ?

While it is evident that climate and to a lesser extent other
environmental factors such as soil do constrain Europe-
wide tree species diversity and distribution patterns (Walter
& Breckle 1986; Pigott 1991; Sykes et al. 1996; Svenning &

Skov 2005), we will now consider the extent to which these
patterns could entirely be caused by dispersal.

If diversity patterns were entirely driven by limited
dispersal out of the glacial refugia, we expect that the areas
that are most accessible from the refugia, i.e. located closest
to the greatest number of refugia, would harbour the greatest
number of species. Figure 2 shows the pattern of accessi-
bility across Central and Northern Europe as well as the
observed pattern of tree species richness. The accessibility
(ACC) of each grid cell in the receiving area (Central and
Northern Europe) was computed as the inverse of the
summed distances to all grid cells in the source area. Hence,
the more distant a receiving grid cell on average is located
from any one source cell the lower its accessibility. The
source area was set to be Southern Europe at 43–46! N, as
postglacial expansions into Central and Northern Europe
primarily took place from or via this region (e.g. Petit et al.
2002; Magri et al. 2006). Albeit some of the most cold-
tolerant tree species had LGM refugia somewhat further
north, especially in eastern Europe (Willis & van Andel

Figure 2 Top-left: The accessibility of each 50 · 50 m grid cell in Central and Northern Europe to postglacial immigration from the ice age
tree refugia, computed as the inverse of the summed distances to all grid cell in the source area (Southern Europe at 43–46! N). Top-right:
The current native species richness of tree species (60 species in total, 2–31 species per cell) in Europe. Right: Bottom-left: The current native
species richness of temperate tree species (45 species in total, 0–22 species per cell). Bottom-right: The current native species richness of
boreal tree species (15 species in total, 0–10 species per cell). Colour coding corresponds to 10 equal frequency categories, with yellow over
green to blue representing low to high accessibility and few to many species, respectively.

456 J.-C. Svenning and F. Skov Idea and Perspective

" 2007 Blackwell Publishing Ltd/CNRS
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phenomenon	may	be	more	pervasive	than	it	seems:	for	instance,	it	has	been	shown	that	

the	dispersal	of	tree	species	in	Europe	following	the	end	of	the	last	ice	age	is	still	an	on-

going	 process	 (cf.	 Fig.	 4;	 Svenning	 &	 Skov,	 2007).	 In	 contrast,	 organisms	 with	 short	

generation	 time	 and	 high	 dispersal	 ability	 are	 able	 to	 track	 environmental	 changes	

more	 efficiently.	 Additionally,	 if	 several	 local	 communities	 are	 connected	 by	 a	

permanent	 and	 strong	 enough	 dispersal	 flux,	 they	 may	 never	 reach	 the	 optimal	

composition	 that	 would	 be	 expected	 based	 on	 local	 abiotic	 conditions	 (Gravel	 et	 al.,	

2006).	 A	 local	 community	 will	 also	 be	more	 prone	 to	 demographic	 stochasticity	 if	 it	

hosts	a	smaller	population	size	(Fisher	&	Mehta,	2014).	These	observations	have	led	to	

the	development	in	the	last	decade	of	‘metacommunity	theory’,	a	family	of	mathematical	

models	 aiming	 at	 reconciling	neutral	 and	niche	processes	by	 explicitly	 accounting	 for	

spatial	and	 temporal	dynamics	 (Leibold	et	al.,	2004).	However,	unlike	simpler	neutral	

models,	these	models	do	not	provide	predictions	that	are	easily	amenable	to	statistical	

comparison	with	empirical	data.		

Lastly,	most	of	the	existing	knowledge	on	community	assembly	comes	from	the	

study	 of	 plants	 and	 vertebrates,	 and	 the	 extension	 of	 community	 ecology	 to	

microorganisms	 is	 comparatively	 very	 recent	 (Curtis	 &	 Sloan,	 2005;	 Martiny	 et	 al.,	

2006;	see	section	II.2).	While	the	fundamental	processes	of	community	assembly	apply	

to	all	living	organisms,	they	operate	over	very	different	scales	for	microorganisms,	and	

their	 relative	 importance	 is	 likely	 to	 differ	 (Hanson	 et	 al.,	 2012).	 It	 has	 long	 been	

considered	 that	 microorganisms	 had	 effectively	 infinite	 dispersal	 capacity,	 and	 that	

abiotic	 filtering	 was	 the	 dominant	 process	 of	 community	 assembly	 (Baas	 Becking,	

1934).	 Microbial	 communities	 have	 indeed	 been	 found	 to	 be	 very	 sensitive	 to	 local	

abiotic	conditions	and	dominated	by	specialist	taxa	(Ramirez	et	al.,	2014;	Mariadassou	

et	al.,	2015).	Nevertheless,	this	view	has	now	been	nuanced,	and	dispersal	limitation	has	

been	shown	to	play	a	role	as	well	(Ofiteru	et	al.,	2010;	Martiny	et	al.,	2011;	Roguet	et	al.,	

2015).	 While	 microorganisms	 tend	 to	 be	 more	 cosmopolitan	 than	 larger	 organisms,	

biogeographic	 patterns	 do	 exist	 (Hanson	 et	 al.,	 2012;	 Livermore	 &	 Jones,	 2015).	

Microorganisms	have	also	been	found	able	of	complex	interactions	beyond	competition	

(Cordero	et	al.,	2012).	



	

	

	

	

Introduction	

	

	 	

20	

	 	



	

	

	

	

Introduction	

	

	 	

21	

	

II. DNA-based	biodiversity	patterns	

	

Most	of	ecological	knowledge	comes	 from	studies	performed	at	 the	 level	of	 individual	

species,	 and	 from	 this	 perspective,	 the	 singularity	 of	 each	 species	 and	 sometimes	 of	

each	 individual	 is	striking.	Thus,	ecologists	have	 long	wondered	whether	general	 laws	

were	hiding	behind	the	collection	of	idiosyncrasies	(Lawton,	1999).	Integrative	data	on	

species	richness,	abundance	and	spatial	occurrence	have	been	gathered	with	the	hope	

that	 they	 would	 yield	 insight	 into	 the	 general	 mechanisms	 of	 community	 assembly	

(Brown,	 1995).	 The	 underlying	 idea	 is	 that,	 as	 in	 statistical	 physics,	 informative	

statistical	properties	might	emerge	 from	the	observation	of	a	 large	enough	number	of	

individuals	and	species	irrespective	of	the	details	of	species	identities.		

In	this	section,	I	first	introduce	two	types	of	integrative	patterns	that	have	been	

widely	 studied	 in	 community	 ecology:	 the	 distribution	 of	 species	 abundances,	 and	

spatial	 patterns.	 I	 then	 discuss	 why	 the	 emergence	 of	 automated	 data	 collection	 is	

opening	 new	 horizons	 for	 the	 study	 of	 these	 patterns.	 Lastly,	 I	 briefly	 present	 the	

ecosystem	 that	 this	 thesis	more	 specifically	 focuses	 on,	 the	 tropical	 forests	 of	 French	

Guiana.		

	

 Integrative	biodiversity	patterns	1.

	

a. Species	relative	abundances		

	

The	 distribution	 of	 species	 abundances	 in	 a	 random	 sample	 of	 individuals	 takes	 two	

forms	 in	 the	 ecological	 literature:	 the	 ‘rank-abundance	 distribution’	 (RAD),	 or	

‘Whittaker’s	plot’,	consists	of	the	abundances	ni	of	all	S	species	in	the	sample	ranked	by	

decreasing	 abundance,	while	 the	 ‘species	 abundance	distribution’	 (SAD),	 or	 ‘Preston’s	
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plot’,	 is	 the	 distribution	 of	 the	 number	Φ!	of	 species	 having	 abundance	 n	 for	 all	 the	

possible	 n	 values	 in	 𝑛!,… ,𝑛! 	(cf.	 Fig.	 5;	 Preston,	 1948;	 Whittaker,	 1965).	 To	

accommodate	 the	 limited	 amount	 of	 data,	 the	 SAD	 is	 usually	 binned	 into	 abundance	

categories.	 This	 binning	 step	 leads	 to	 a	 loss	 of	 information,	 thus	 the	 RAD	 is	 more	

informative	 than	 the	 SAD.	 Nevertheless,	 the	 SAD	 has	 often	 been	 the	 preferred	

distribution	because	it	is	easier	to	handle	mathematically	and	to	derive	from	theoretical	

models.	This	 is	 linked	 to	 the	 fact	 that	 it	 can	be	 interpreted	upon	normalization	as	 the	

probability	distribution	for	the	abundance	of	a	randomly	chosen	species	in	the	sample.	

Because	 of	 the	 wide	 range	 of	 abundances	 typically	 observed	 in	 empirical	 data,	

abundances	 are	 often	 log-transformed	 in	 SAD	 and	 RAD	 –	 in	 SAD,	 this	 amounts	 to	

binning	 species	 into	 abundance	 classes	 of	 exponentially	 increasing	 width	 from	 the	

lowest	 abundance	 class	 (one	 individual)	 to	 the	 highest,	 following	 the	 example	 of	

Preston	(1948).	

It	was	noticed	early	on	that	the	distribution	of	species	abundances	tended	to	be	

similar	 in	 species-rich	 communities.	 Indeed,	 within	 a	 single	 trophic	 level,	 there	 are	

usually	a	few	common	species	and	a	long	tail	of	rare	species	–	simply	put,	‘most	species	

are	 rare’	 (cf.	 Fig.	 5).	 This	 spurred	 attempts	 at	 finding	 a	 general	 explanation	 for	 this	

pattern.	 Fisher	 et	 al.	 (1943)	 and	 Preston	 (1948)	 were	 the	 first	 to	 propose	 statistical	

distributions	to	fit	the	distribution	of	species	abundances.		

Fisher	 assumed	 that	 the	 sampled	 species	 abundances	 followed	 a	 negative-

binomial	distribution	without	the	zero-abundance	class,	and	derived	a	SAD	of	the	form	

𝔼 Φ! = 𝛼𝑥! 𝑛,	where	α	is	a	constant	parameter,	𝑥	is	a	function	of	α	and	of	sample	size	

N	(with	0 < 𝑥 < 1),	and	𝔼 Φ! 	is	the	statistically	expected	value	of	Φ!	(cf.	section	III.3.b;	

Chave,	 2004).	 Since	 𝔼 Φ!
!
!!! = −𝛼 ln(1− 𝑥),	 this	 distribution	 is	 called	 the	 ‘log-

series’.	A	remarkable	property	of	this	model	is	that	the	expected	number	of	species	𝔼 𝑆 	

in	 the	 sample	 is	 given	 as	 a	 function	 of	 the	 number	 of	 sampled	 individuals	 N	 by	

𝔼 𝑆  = 𝛼 ln(1+ 𝑁 𝛼).	 Hence,	 the	 parameter	𝛼	is	 sufficient	 to	 predict	 the	 observed	

species	richness	as	a	function	of	the	sampling	effort.	It	can	thus	be	used	as	a	sampling-

independent	 measure	 of	 the	 community’s	 diversity.	 The	 value	 of	𝛼 	can	 be	 easily	
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visualized	 in	 the	 RAD	 representation,	 since	 the	 log-transformed	 abundances	 are	

expected	to	decrease	linearly	with	slope	−1 𝛼	as	a	function	of	species	rank	(cf.	Fig.	5).	

	

	

	

Preston	 (1948)	 argued	 in	 contrast	 that	 a	 log-normal	 SAD	 best	 fitted	 empirical	

data,	i.e.	𝔼 Φ! ∝ 𝑒! !"!!! !!! 	with	𝜇	and	𝜎	constant	parameters.	A	notable	difference	

between	 the	 two	 SADs	 is	 that	 the	 log-normal	 distribution	 exhibits	 a	 mode	 (i.e.,	 the	

abundance	class	with	the	most	species	is	not	the	lowest	abundance	class),	while	Fisher’s	

log-series	does	not.	Preston	explained	the	fact	that	both	situations	could	be	encountered	

in	empirical	data	by	the	effect	of	sampling:	a	community	in	which	the	‘true’	SAD	(i.e.,	for	

METACOMMUNITY DYNAMICS

Fig. 5.7. Preston-type plot of relative species abundance for tree
species >10 cm dbh in the 50 ha BCI plot, compared with expecta-
tions from the lognormal, and from the zero-sum multinomial of the
unified neutral theory, for θ = 50 and m = 0"10. The error bars are
±1 standard deviation.

Fig. 5.8. Preston-type plot of relative species abundance for tree
species >10 cm dbh in the 50 ha Pasoh plot, compared with expecta-
tions from the lognormal, and from the zero-sum multinomial of the
unified neutral theory, for θ = 180 and m = 0"15. The error bars are
±1 standard deviation.
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METACOMMUNITY DYNAMICS

Fig. 5.9. Fitted and observed dominance-diversity distributions for
trees >10 cm dbh in the 50 ha plot on Barro Colorado Island, Panama.
The best fit θ had a value of 50. Note the departure of the metacom-
munity distribution for very rare species, but that the observed distri-
bution is fit well once dispersal limitation (m = 0"10) is taken into
account. The error bars are ±1 standard deviation.

each figure. The metacommunity logseries distribution is
the diagonal line extending downward beyond the empirical
curves to the lower right. The metacommunity distribution
was calculated for a fitted θ value of 50 in the case of the
BCI forest, and for a fitted θ value of 180 in the Pasoh for-
est. Then the parameters for dispersal limitation and local
community size were included to predict the local commu-
nity dominance-diversity curves in each forest plot. Local
community size was 20,541 trees > 10 cm dbh in the BCI
plot, but it was 28% higher (26,331) in the Pasoh plot. The
previously estimated values of m of 0.10 and 0.15 for BCI
and Pasoh, respectively, were used. The precision of the
predicted local dominance-diversity curves in each plot is
readily apparent from figures 5.9 and 5.10. The expected
distributions fit even the abundances of the rarest species

137

Figure	5:	Species	
Abundance	Distribution	
(top)	and	Rank	Abundance	
Distibution	(bottom)	for	
mature	trees	in	the	50-ha	
Barro	Colorado	Island	
(BCI)	monitored	forest	plot	
(Panama).	Mature	trees	are	
defined	as	stems	with	
diameter	larger	than	10	cm	
at	breast	height	(or	‘>	10	
cm	dbh’).	The	dispersal-
limited	Hubbell’s	model	is	
fitted	to	the	data	(𝜃 = 50,	
𝑚 = 0.1),	and	is	compared	
with	the	log-normal	SAD	
(top;	dashed	line),	and	
with	the	RAD		of	Fisher’s	
model	(bottom;	dashed	
line).	Fisher’s	model	is	
equivalent	to	Hubbell’s	
model	without	dispersal	
limitation	(i.e.,	case	𝑚 = 1)	
for	large	sample	size.	Error	
bars	indicate	±1	standard	
deviation.			
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an	infinite	number	of	individuals)	is	log-normal	can	lose	its	mode	if	under-sampled,	and	

be	 mistaken	 for	 a	 log-series.	 It	 has	 since	 then	 been	 acknowledged	 that	 the	 effect	 of	

sampling	is	indeed	paramount	in	our	ability	to	distinguish	between	differently-shaped	

SAD	 by	 curve-fitting	 (Sloan	 et	 al.,	 2007).	 In	 the	 RAD	 representation	 with	 log-

transformed	 abundances,	 a	 log-normal	 SAD	 takes	 the	 form	 of	 an	 S-shaped	 curve,	 the	

common	species	being	commoner	and	the	rare	species	rarer	than	in	Fisher’s	log-series.	

	Later	 models	 have	 focused	 on	 finding	 a	 mechanistic	 justification	 for	 the	

proposed	 distributions.	MacArthur	 (1957)	 proposed	 that	 species	 relative	 abundances	

resulted	from	the	random	partitioning	of	the	niche	space	between	the	different	species	

of	 the	 community.	 A	 number	 of	 more	 sophisticated	 niche	 partitioning	 models’	 were	

subsequently	proposed	(Tokeshi,	1996;	McGill	et	al.,	2007).	However,	Hubbell’s	neutral	

model	 is	 the	mechanistic	model	 that	has	been	 the	most	 successful	 at	 fitting	empirical	

SADs	 (Hubbell,	 2001;	 cf.	 section	 I.3	 and	 III.4).	 Indeed,	 the	 metacommunity	 SAD	

converges	toward	Fisher’s	log-series	for	a	large	enough	sample	size	and	is	characterized	

by	 a	 ‘fundamental	 biodiversity	 number’	 θ	 that	 converges	 toward	 Fisher’s	𝛼	(Chave,	

2004).	 In	the	absence	of	dispersal	 limitation,	the	 local	community	 is	a	random	sample	

from	the	regional	metacommunity,	and	hence	also	exhibits	a	log-series-like	SAD.	In	the	

presence	of	dispersal	limitation	however,	the	depletion	of	rare	species	and	the	increase	

in	abundance	of	locally	common	species	lead	to	a	log-normal-like	SAD	(cf.	Fig.	5).	Thus,	

Hubbell’s	neutral	model	can	approximate	both	the	log-series	and	the	log-normal	SADs,	

while	providing	a	mechanistic	 justification	 for	 them	and	 fully	accounting	 for	sampling	

effects.	

Nevertheless,	it	has	been	shown	that	many	types	of	non-neutral	processes	could	

yield	SADs	 similar	 to	neutral	ones	 (Chave	et	al.,	 2002;	Pueyo	et	al.,	 2007;	Chisholm	&	

Pacala,	 2010).	 It	 has	 also	 been	 argued	 that	 the	 log-normal	 distribution	 fits	 empirical	

SADs	at	least	as	well	as	Hubbell’s	local	community	SAD	(McGill,	2003).	The	log-normal	is	

still	 the	most	popular	choice	when	it	comes	to	choosing	a	realistically-shaped	SAD	for	

modelling	purposes	irrespective	of	the	underlying	mechanisms	(Connolly	et	al.,	2017).	A	

log-normal	 SAD	 is	 not	 in	 itself	 very	 informative	 on	 the	 mechanisms	 of	 community	

assembly.	Indeed,	the	log-normal	distribution	is	the	limiting	probability	distribution	for	
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any	product	of	sufficiently	many	random	variables,	as	a	consequence	of	the	central	limit	

theorem	(cf.	section	III.2	and	III.3.a),	thus	a	log-normal	SAD	could	arise	as	the	result	of	

any	type	of	multiplicative	process.	More	generally,	it	has	been	suggested	that	the	range	

of	empirically	observed	SADs	could	simply	result	from	the	iterative	spatial	aggregation	

of	 smaller-scale	 SADs,	 a	 phenomenon	 described	 as	 a	 ‘spatial	 analogy	 of	 central	 limit	

theorem’	(Sizling	et	al.,	2009).	As	a	consequence,	it	has	been	called	for,	on	the	one	hand,	

more	 statistically	 powerful	 tests	 than	 simple	 curve-fitting	 (Chave	 et	 al.,	 2006;	 Al	

Hammal	 et	 al.,	 2015),	 and	 on	 the	 other	 hand,	 testing	 multiple	 predicted	 patterns	

simultaneously	instead	of	solely	the	SAD	(McGill	et	al.,	2007).	

	

b. Spatial	patterns	

	

Spatial	 patterns	 form	 a	 second	 family	 of	 integrative	 patterns	 in	 ecology.	 The	

relationship	between	the	sampled	area	and	the	number	of	sampled	species	is	the	oldest	

such	pattern	 to	have	been	studied	 (Watson,	1859).	This	curve	was	 first	 regarded	as	a	

mean	to	assess	whether	a	community	had	been	adequately	sampled,	i.e.	to	ensure	that	

only	a	marginal	number	of	new	species	would	appear	in	the	sample	if	the	sampled	area	

were	 to	 be	 increased.	 It	 was	 soon	 realized	 that	 the	 species-area	 relationship	 (SAR)	

might	also	contain	valuable	information	regarding	spatial	community	structure.	Indeed,	

at	the	regional	scale,	the	number	of	species	S	was	found	to	consistently	follow	a	power	

law	𝑆 ∝ 𝐴!	as	a	function	of	area	A,	where	the	exponent	z	takes	values	between	0.15	and	

0.40	(Arrhenius,	1921;	Williamson,	1988).	This	 ‘law’	has	 later	been	observed	to	break	

down	at	the	extremes,	either	for	areas	that	are	below	approximately	1	km2	(for	plants	

or	 vertebrates),	 or	 conversely	 for	 areas	 that	 exceed	 the	 boundaries	 of	 a	 single	

biogeographic	 unit	 (cf.	 Fig.	 6;	 Preston,	 1960;	 Shmida	 &	Wilson,	 1985).	 The	 resulting	

curve	exhibits	an	 ‘S’	 shape	on	a	 log-log	scale,	with	a	 linear	domain	 in	 the	central	part	

corresponding	to	the	power-law	behaviour	described	above,	and	steeper	slopes	at	both	

ends.	
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The	 three	 domains	 of	 the	 SAR	 reflect	 different	 processes	 at	 play.	 At	 the	 local	

scale,	the	SAR	directly	results	from	sampling	the	local	species	abundance	distribution:	

the	number	of	detected	species	first	increases	linearly	with	area	and	then	progressively	

slows	down	as	only	the	rarer	species	remain	to	be	sampled.	At	the	global	scale,	the	SAR	

approaches	linearity	again	as	species	with	distinct	evolutionary	history	are	sampled	in	

different	biogeographic	zones.	At	 intermediate	scales,	 the	power-law	regime	reflects	a	

slow	increase	in	species	richness	with	area	once	the	local	species	richness	has	been	fully	

sampled.	 This	 increase	 corresponds	 to	 a	 shift	 in	 species	 composition	 with	 distance,	

referred	 to	 as	 ‘beta-diversity’	 by	 Whittaker	 (1960),	 i.e.	 the	 link	 between	 ‘alpha-

diversity’,	 the	 number	 of	 species	 in	 the	 local	 community,	 and	 ‘gamma-diversity’,	 the	

number	of	species	at	the	regional	scale.		

	

Figure	6:	Number	of	bird	species	as	a	function	of	area;	data	from	Preston	(1960).	The	S-shaped	
Species-Area	 Relationship	 introduces	 two	 characteristic	 spatial	 scales	 for	 a	 given	 taxonomic	
group	 (vertical	dashed	 lines),	 separating	 ‘local’,	 ‘intermediate’,	 and	 ‘large’	 scales.	The	 study	of	
beta	diversity	mostly	focuses	on	‘intermediate’	scales,	while	biogeography	is	mostly	concerned	
with	‘large’	scales.	Adapted	from	Hubbell	(2001).	

	

Conceptually,	 beta-diversity	 is	 the	 variation	 in	 taxonomic	 composition	 among	

sites	within	a	region	of	interest.	However,	several	quantitative	definitions	coexist.	One	

approach	is	to	consider	beta-diversity	as	a	quantity	β	that	links	the	mean	local	diversity	

CHAPTER S IX

Fig. 6.2. Species-area curve for the world’s avifauna, spanning spa-
tial scales from less than one acre to the entire surface of the Earth.
The S-shaped curve suggests that the sampling units change as area is
increased, from individuals, to species ranges, and finally to different
biogeographic realms at local, regional to subcontinental, and finally
to intercontinental spatial scales. Data from Preston (1960).

steep once again over large intercontinental spatial scales,
until the area of the entire world was included. The change
in slope implies that scale-dependent changes in sampling
units are occurring, a possibility of which Preston (1960) was
clearly well aware. I will discuss this scale-dependent change
in a more formal theoretical treatment shortly.
A similar S-shaped curve was obtained by Shmida and

Wilson (1985), who plotted plant species-area relationships
on local to global scales (fig. 6.3). They argued that the
change in the form of the curve reflected changes in the
biological determinants of plant species richness. On very
local scales, niche-assembly rules would dominate. On some-
what larger spatial scales, mass effects and habitat diver-
sity would become important. They define mass effects as an
immigration subsidy from regional populations of a species
that would go locally extinct without this immigration sub-
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α	 to	 the	 regional	 diversity	 γ	 through	𝛾 = 𝛼𝛽,	 so	 that	 the	 regional	 diversity	 can	 be	

partitioned	 into	 independent	 within-community	 and	 among-community	 components	

(Whittaker,	1960;	Jost,	2007).	The	spatial	scale	that	separates	alpha-	and	beta-diversity	

may	be	defined	as	the	scale	witnessing	the	regime	shift	in	the	SAR.	Another	approach	is	

to	measure	 beta-diversity	 independently	 of	 alpha-	 and	 gamma-diversity	 as	 the	mean	

taxonomic	 similarity	 between	 sites	 or	 as	 the	 variance	 of	 the	 community	 matrix	

(Legendre	 &	 De	 Caceres,	 2013).	 The	 community	 matrix	 is	 the	 matrix	 describing	 the	

number	of	individuals	per	species	and	per	sites,	taking	usually	species	as	columns	and	

sites	as	rows.	A	wealth	of	similarity	metrics	can	be	used	to	compare	sites	to	each	other,	

depending	 for	 instance	on	 the	weight	 given	 to	 rare	 species,	 on	whether	 the	 sampling	

effort	 is	homogeneous	among	sites	or	not,	 and	on	whether	abundance	 information	or	

only	species	occurrence	should	be	taken	into	account	(Legendre	&	De	Caceres,	2013).	

Taxonomic	similarity	is	well	known	to	decrease	with	distance,	a	general	pattern	

of	ecology	that	is	related	to	the	monotonous	increase	of	diversity	with	area	(Soininen	et	

al.,	2007).	Depending	on	the	mechanisms	of	community	assembly,	this	 ‘distance-decay	

of	 similarity’	 can	 be	 interpreted	 either	 as	 the	 result	 of	 dispersal	 limitation,	 or	 as	 the	

consequence	 of	 new	 habitats	 and	 community	 types	 being	 encountered.	 A	 major	

motivation	for	the	study	of	beta-diversity	lies	in	the	fact	that	it	is	an	indirect	means	to	

investigate	 the	drivers	of	 community	 assembly.	 Indeed,	 taxonomic	 similarity	between	

sites	can	be	compared	to	distance	and	to	environmental	similarity,	so	as	to	empirically	

assess	 the	relative	 importance	of	dispersal	and	abiotic	 filtering	 in	shaping	community	

composition	 (Tuomisto	et	al.,	 2003).	This	question	may	also	be	 addressed	by	directly	

comparing	 taxonomic	 composition	with	 quantitative	 environmental	 descriptors	 using	

multivariate	 statistical	 methods,	 an	 approach	 deemed	 more	 statistically	 powerful	

(Legendre	et	al.,	2005,	2008;	cf.	section	III.2).	

Formally,	 the	 distance-decay	 of	 similarity	 can	 be	 described	 using	 the	 pair-

correlation	 function	 of	 statistical	 physics,	 i.e.	 the	 probability	 for	 two	 individuals	 at	 a	

given	distance	 to	belong	 to	 the	same	species	 (Chave	&	Leigh,	2002;	Zillio	et	al.,	 2005;	

Houchmandzadeh,	 2009).	 Predictions	 for	 both	 the	 SAR	 and	 the	 distance-decay	 of	

similarity	can	be	obtained	from	a	spatially	explicit	version	of	Hubbell’s	neutral	model.	
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The	neutral	 predictions	 are	 in	 qualitative	 agreement	with	 observations,	 including	 the	

tri-phasic	 SAR	 (Hubbell,	 2001;	 Condit	 et	 al.,	 2002).	 Nevertheless,	 as	 in	 the	 case	 of	

species	abundance	distributions,	 this	does	not	preclude	other	mechanisms	from	being	

involved.	

	

 Environmental	DNA	data	2.

	

Collecting	 the	 large	 amounts	 of	 data	 required	 to	 study	 integrative	 patterns	 has	 long	

been	 a	 tedious	 and	 challenging	 task	 (Lawton	 et	 al.,	 1998).	 Direct	 taxonomic	

identification	 relies	 on	 rare	 expert	 knowledge,	 and	 is	 prone	 to	 errors.	 Sampling	

protocols	are	difficult	 to	standardize,	and	owing	to	the	amount	of	work	involved,	data	

collection	 may	 spread	 over	 long	 periods	 of	 time	 –	 sometimes	 years	 –	 which	 may	

introduce	biases.	Last	but	not	least,	only	a	small	fraction	of	biodiversity	can	be	directly	

sampled	and	identified	by	a	human	observer,	mostly	vertebrates	and	plants.	As	a	result,	

datasets	 available	 for	 the	 study	 of	 integrative	 biodiversity	 patterns	 have	 long	 been	

relatively	 rare	 and	 limited	 in	 their	 taxonomic	 extent.	 However,	 major	 technological	

advances	 have	 been	 made	 over	 the	 last	 decades	 that	 now	 allow	 for	 the	 automatic	

collection	of	ecological	data.	These	advances	are	all	related	to	the	exponential	increase	

in	 computer	 power	 that	 took	 place	 over	 the	 same	 period	 of	 time,	 and	 that	 has	

dramatically	impacted	all	fields	of	science	and	industry.	

For	 instance,	remote	sensing	of	ecological	 features	over	 large	spatial	scales	can	

be	 achieved	 using	 Lidar	 and	 hyperspectral	 imaging.	 Lidar	 is	 a	 small-wavelength	

equivalent	 of	 radar	 (either	 airborne	 or	 ground-based)	 that	 allows	 for	 fine-grain	 3D	

imaging.	 Hyperspectral	 imaging	 consists	 in	 recording	 images	 (from	 a	 plane	 or	 a	

satellite)	 for	a	much	 larger	spectrum	of	electromagnetic	wavelengths	 than	 the	human	

eye	 does:	 the	 additional	 information	 may	 for	 instance	 be	 used	 for	 the	 automated	

identification	 of	 tree	 species	 from	 their	 spectral	 signature,	 especially	when	 combined	

with	Lidar	data	(Alonzo	et	al.,	2014).	
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Arguably,	 the	one	recent	technological	 innovation	with	the	strongest	 impact	on	

biology	 has	 been	 high-throughput	 DNA	 sequencing	 (Schuster,	 2007).	 While	 DNA	

sequencing	methods	have	existed	since	the	1970s	(Sanger	et	al.,	1977),	a	breakthrough	

occurred	around	2005	by	which	sequencing	speed	was	multiplied	by	several	orders	of	

magnitude	 for	 a	 fraction	 of	 the	 cost	 of	 previous	methods	 (cf.	 Fig.	 7;	 Margulies	 et	 al.,	

2005).	Since	2011,	the	dominant	high-throughput	DNA	sequencing	method	is	Illumina	

sequencing,	which	consists	in	spreading	and	attaching	the	target	DNA	strands	on	a	flat	

surface	 and	 synthesizing	 the	 complementary	 strands	 using	 four-colour	 fluorescent	

nucleotides	(Bentley	et	al.,	2008).	By	recording	the	order	of	appearance	of	the	different	

colours	 at	 the	 location	 of	 each	 DNA	 strand	 with	 a	 fast	 and	 high-resolution	 camera,	

millions	 of	 strands	 can	 be	 simultaneously	 sequenced	 with	 high	 accuracy.	 The	 main	

limitation	 of	 the	 method	 is	 on	 the	 length	 of	 the	 sequenced	 strands,	 which	 currently	

cannot	exceed	150	or	300	base	pairs,	depending	on	the	exact	technology.	

The	 idea	 of	 using	 DNA	 sequencing	 to	 study	 biodiversity	 predates	 high-

throughput	 sequencing,	 and	 was	 introduced	 as	 a	 mean	 to	 study	 microorganisms	

(Giovannoni	 et	 al.,	 1990).	 Indeed,	 most	 microorganisms	 can	 only	 be	 detected	 in	 the	

environment	through	their	DNA,	collected	from	soil	or	water	samples	(Pace,	1997).	The	

idea	 was	 to	 identify	 a	 short	 DNA	 sequence	 satisfying	 two	 properties.	 First,	 it	 should	

have	conserved	extremities	across	the	range	of	targeted	taxa,	so	that	it	can	be	amplified	

by	PCR	using	 a	 single	 pair	 of	 primers	 from	bulk	DNA.	 Second,	 its	 central	 part	 should	

exhibit	random	mutations	making	the	different	taxa	distinguishable,	i.e.	it	should	not	be	

under	strong	evolutionary	selection.	Such	a	sequence	 is	called	a	barcode,	and	the	first	

that	 has	 been	 used	 is	 the	 16S	 rRNA	 gene	 of	 prokaryotes,	 which	 codes	 for	 the	 RNA	

forming	the	small	 (16S)	subunit	of	 the	prokaryotic	ribosome	(Giovannoni	et	al.,	1990;	

Pace,	 1997).	 DNA	 barcodes	 have	 soon	 also	 been	 recognized	 as	 a	mean	 to	 bypass	 the	

need	for	traditional	taxonomic	expertise	in	identifying	larger	organisms,	for	which	DNA	

can	 be	 directly	 extracted	 from	 tissue	 (Hebert	 et	 al.,	 2003).	 Nevertheless,	 barcode	

sequences	 can	 only	 be	 attributed	 to	 known	 taxa	 once	 a	 reference	 database	 has	 been	

established	for	the	barcode.	When	no	reference	database	is	available	for	the	organisms	

under	 study,	 molecular	 Operational	 Taxonomic	 Units	 (OTUs)	 defined	 based	 on	
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sequence	similarity	are	substituted	for	species	in	analyses.	Moreover,	depending	on	the	

frequency	 at	 which	 mutations	 occur	 in	 the	 barcode	 sequence,	 the	 comparison	 of	

sequences	across	species	may	not	be	congruent	with	traditional	species	delineation,	and	

two	barcodes	targeting	the	same	taxonomic	group	may	have	widely	differing	 levels	of	

taxonomic	resolution.	

	

	

before 2003, hundreds of articles have been published
since the emergence of the DNA barcoding concept.
Clearly, standardization was an important step in the
development of DNA-based species identification, and it
has encouraged extensive international efforts to build tax-
onomic reference libraries of the standardized regions.
However, the barcoding standards were designed to iden-
tify species from more or less intact DNA isolated from
single specimens using Sanger sequencing, and focus
more on the variability of the amplified region than on
the nonvariability of the primer sites and the length of the
targeted DNA region.

The emergence of DNA metabarcoding in relation

to next-generation sequencing and to the needs

of the scientific community

Here, we introduce the term ‘DNA metabarcoding’ to desig-
nate high-throughput multispecies (or higher-level taxon)
identification using the total and typically degraded DNA
extracted from an environmental sample (i.e. soil, water, fae-
ces, etc.). Species identification from bulk samples of entire
organisms (e.g. Chariton et al. 2010; Creer et al. 2010; Pora-
zinska et al. 2010; Hajibabaei et al. 2011), where the organ-
isms are isolated prior to analysis, can also be considered as
DNA metabarcoding. Below, we will restrict our consider-

ations to the analysis of environmental DNA (eDNA),
because analysis of bulk samples has very relaxed technical
constraints compared to that of environmental samples.
Bulk samples are usually composed of a restricted taxo-
nomic group and provide high-quality DNA allowing the
use of a longer barcode, even the standardized ones. We will
also emphasize that because the goal of DNA metabarcoding
is to identify taxa, it should be clearly differentiated from
metagenomics that ‘describes the functional and sequence-
based analysis of the collective microbial genomes contained
in an environmental sample’ (Riesenfeld et al. 2004).

The emergence of DNA metabarcoding was because of
technology catching up to a scientific need. Standardized
(‘traditional’) DNA barcoding does not fulfil all the needs
of ecologists. As it is designed to identify single specimens
with DNA that is more or less intact, it typically requires
the isolation of a suitable specimen to be analysed, which
is time-consuming and, for some taxonomic groups, diffi-
cult or virtually impossible. Consequently, standardized
barcoding is limited in the number of specimens that it can
identify. We must therefore accept that standardized DNA
barcoding is not ideal for high-throughput species identifi-
cation for use in ecological studies, although it has an obvi-
ous added value in many situations where classical species
identification is difficult and in facilitating the discovery of
new species. These limitations have been surmounted by
the increasing availability of NGS machines that permit
high-throughput techniques such as DNA metabarcoding.
At the moment, sequencing platforms can produce up to
6 billions of sequence reads of 100 bp per run, with the
possibility to implement paired-end experiments (Glenn
2011). Thus, it is not any more a problem to obtain several
thousands of sequence reads per amplicon, and the length
of the sequence reads is already fully compatible with the
short fragment lengths required for eDNA metabarcoding.
There is no doubt that the technology will improve still
further. As a consequence, NGS has the potential to pro-
vide an enormous amount of information per experiment
from in-depth sequencing of uniquely tagged amplicons
(Binladen et al. 2007; Valentini et al. 2009). So, why not use
eDNA to simultaneously identify many species in a single
experiment? After some initial experiments based on
PCR ⁄ cloning ⁄ sequencing (Willerslev et al. 2003, 2007), the
approach using NGS has already demonstrated its poten-
tial, for analysing plant communities using soil samples
(Yoccoz et al. 2012), for reconstructing past plant or animal
communities using permafrost or ice samples (Haile et al.
2009; Sønstebø et al. 2010; Boessenkool et al. 2012; Jørgen-
sen et al. 2012a,b; Epp et al. submitted), for tracking earth-
worms using soil samples (Bienert et al. 2012), for
monitoring vertebrate biodiversity (Andersen et al. 2012),
or for diet analysis using faeces or stomach content as a
source of DNA (see review in Pompanon et al. 2012).

However, there are significant constraints when designing
an eDNA metabarcoding study. First, eDNA is often highly
degraded, and long fragments of several hundreds of base
pairs cannot be reliably amplified (Willerslev et al. 2004;
Hansen et al. 2006). Second, because many species have to
be amplified in the same PCR experiment, it is extremely
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Fig. 1 DNA-based species identification. Past and current
approaches, and possible future trends.
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Figure	7:	Evolution	of	
DNA-based	species	
identification	over	time.	
The	successive	
introduction	of	Polymerase	
Chain	Reaction	(PCR)	and	
High-throughput	(or	Next	
Generation)	Sequencing	to	
ecology	have	transformed	
the	field,	and	automated	
data	collection	using	
molecular	approaches	is	
developing	fast.	Adapted	
from	Taberlet	et	al.	
(2012b).	
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With	 the	 advent	 of	 high-throughput	 sequencing,	 several	 thousands	 to	 several	

millions	of	 barcode	 sequences	 can	now	be	 readily	 sequenced	 from	a	 single	bulk	DNA	

sample.	As	a	consequence,	the	use	of	barcode	sequencing	to	measure	biodiversity	from	

environmental	DNA	–	or	‘metabarcoding’	–	has	boomed	(Bik	et	al.,	2012;	Taberlet	et	al.,	

2012b,a;	Bohmann	et	al.,	2014).	The	vast	diversity	of	the	microbial	world	only	starts	to	

be	fully	grasped,	and	whole	new	swathes	of	the	tree	of	life	are	being	discovered	(Hug	et	

al.,	 2016).	 Ambitious	 projects	 aim	 at	 sampling	 microbial	 diversity	 across	 the	 globe,	

either	on	land	(Gilbert	et	al.,	2014)	or	in	the	ocean	(de	Vargas	et	al.,	2015).	In	parallel,	

metabarcoding	can	be	used	as	a	fast	and	standardized	means	to	gather	information	on	

macroscopic	 organisms,	 either	 using	 environmental	 DNA	 or,	 for	 small	 enough	

organisms,	DNA	extracted	from	a	‘soup’	of	sampled	specimen	(Andersen	et	al.,	2012;	Yu	

et	al.,	2012;	Gibson	et	al.,	2014).	This	wealth	of	data	has	led	to	a	renewal	of	interest	in	

the	 study	 of	 integrative	 biodiversity	 patterns	 and	 biogeography,	 which	 were	 until	

recently	 entirely	 unknown	 for	microorganisms	 (Martiny	 et	al.,	 2006;	 Fuhrman,	 2009;	

Hanson	 et	 al.,	 2012).	 Since	 metabarcoding	 is	 but	 the	 simplest	 method	 to	 exploit	 the	

information	 contained	 in	 environmental	 DNA,	 and	 is	 being	 replaced	 by	 approaches	

making	use	of	a	larger	fraction	of	the	organisms’	genome	as	sequencing	capacity	keeps	

increasing	(Taberlet	et	al.,	2012b),	the	trend	toward	incorporating	sequencing	data	into	

ecological	studies	is	probably	just	starting.	

	

 The	tropical	forests	of	French	Guiana	3.

	

Tropical	forests	are	estimated	to	concentrate	half	of	global	biodiversity,	and	are	as	such	

the	archetypical	‘hyperdiverse’	ecosystem	(Scheffers	et	al.,	2012).	They	have	played	an	

historical	role	 in	generating	hypotheses	 in	ecology	and	evolution,	especially	regarding	

the	mechanisms	of	species	coexistence	(Wright,	2002).	Indeed,	like	the	phytoplanktonic	

communities	 at	 the	 origin	 of	 the	 ‘paradox	 of	 the	 plankton’	 (Hutchinson,	 1961),	 they	

harbour	 for	many	 taxonomic	 groups	 a	wide	 range	 of	 species	 competing	 for	 the	 same	

resources.	Hubbell’s	neutral	theory	of	biodiversity	has	been	elaborated	based	primarily	
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on	the	observation	of	tropical	forest	tree	communities	(Hubbell,	2001),	and	much	of	the	

ensuing	 debate	 has	 initially	 focused	 on	 these	 communities	 as	 well	 (McGill,	 2003;	

Ricklefs,	 2003;	 Volkov	 et	 al.,	 2003).	 In	 addition	 to	 their	 unparalleled	 biodiversity,	

tropical	forests	are	also	thought	to	harbour	the	majority	of	the	non-microbial	terrestrial	

taxa	 still	 unknown	 to	 science	 (Scheffers	 et	 al.,	 2012).	 Hence,	 the	 automated	

measurement	of	 integrative	patterns	 is	well	 suited	 to	 their	 study,	 and	 is	 in	particular	

uniquely	comprehensive	compared	to	other	possible	approaches.	

	

	

Figure	 8.	 Whether	 ecosystems	 can	 be	 considered	 pristine	 depends	 on	 the	 temporal	 scale	
considered:	 map	 showing	 estimated	 changes	 in	 phosphorus	 (P)	 concentrations	 over	 time	 in	
South	America	following	the	sudden	extinction	of	most	large	mammal	species	12,000	years	ago	
and	 the	 consecutive	 disruption	 of	 nutrient	 transport	 through	 dung,	 likely	 caused	 by	 human	
arrival.	Adapted	from	Doughty	et	al.	(2013).		

	

Unlike	most	land	ecosystems	on	Earth,	a	significant,	if	fast	dwindling,	fraction	of	

tropical	forests	can	still	be	considered	to	be	in	a	pristine	state,	thus	guaranteeing	access	
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Figure 3 |Map showing changing ecosystem P concentrations in South America due to megafauna extinctions. a, The steady-state estimate of P
concentrations in the Amazon basin before the megafaunal extinctions with a lateral diffusivity �excreta value of 4.4 km2 yr�1. b, The current-day estimate
of P concentrations 12,000 years after the extinctions with current animals and a �excreta value of 0.027 km2 yr�1. c, Estimated P concentrations in the
Amazon basin 28,000 years in the future. d, The difference between the pre- and post-extinction equilibrium (a and c).

Table 1 |Average�excreta ⇤↵B (km2 yr�1) for each continent calculated for modern species and modern plus extinct species.

North America South America Australia Eurasia Africa

Number of species extinct 65 64 45 9 13
Mean weight of extinct animals (kg) 846 1,156 188 2,430 970
Modern �excreta ⇤↵B 13,876 12,934 21,804 21,779 265,621
Modern+extinct fauna �excreta ⇤↵B 140,716 (±38,000) 283,854 (±81,000) 48,250 (±8,000) 118,349 (±29,000) 324,848 (±18,000)
Percentage of original 10% (±2%) 5% (±1%) 45% (±6%) 18% (±4%) 82% (±4%)

Bottom row is the percentage of the original �excreta ⇤↵B remaining. The error represents an uncertainty in extinct species distribution of 30%.

on the loss rate (K ) which is a large source of uncertainty.).
Our simulated modern-day distribution of P does not include
the large diversity of parent material and soil evolutionary stages
which greatly impact observations of soil P across Amazonia
(Supplementary Fig. S3), and instead represents the change in
accessible P in the biomass-necromass-soil continuum (‘ecosystem
P’) andnot total P. EcosystemP concentrations in intact Amazonian
forests could, therefore, potentially continue to decrease (to >90%
of steady state) for 17 (between 3 and 43) thousand years into the
future as a legacy of the Pleistocenemegafauna extinctions.

Although we have concentrated our analysis on Amazonia, it
is likely that there were similar changes in nutrient transfer on
all continents that experienced megafaunal extinction, albeit with
variations in the local nutrient gradients and the key limitingmacro-
or micronutrients. Using data on Pleistocene megafaunal body
masses, we estimate that � decreased drastically on all continents.
Africa, the continent on which modern humans co-evolved with
megafauna, is the only continent with most (82%) of the lateral
nutrient distribution capacity still intact (Table 1). The largest
declines (90–95%) were in the Americas. It seems that Eurasia also
showed a large decline despite only nine extinctions, because the
extinct megafauna were large (for example mammoths) whereas
Australia showed a moderate decline despite a large number
of extinctions, because the extinct megafauna were relatively
small. However, these are estimates of non-pressured population
densities, and ranges and current values for Africa and Eurasia

are probably reduced owing to current pressures on megafauna,
because of decreases in megafaunal population size and restrictions
on their free movement across landscapes.

Following the extinction of the megafauna, humans eventually
appropriated much of the net primary production that had been
consumed by the extinct animals23,24. Did we also take over their
role of nutrient dispersal? People currently provide nutrients as
fertilizer to agricultural systems, but much of this gets concentrated
near agriculture, suggesting that humans act as concentrating
agents rather than diffusive agents like the herbivorous megafauna.
Therefore, compared to earlier eras, the post-megafaunal world is
characterized by greater heterogeneity in nutrient availability25.

Our framework for estimating nutrient diffusion by animals can
be applied to modern ecosystems globally, and even incorporated
into global land biosphere models demonstrating the ecosystem
service of nutrient dispersal. This service is analogous to that played
by arteries in the human body, with large animals acting as arteries
of ecosystems transporting nutrients further and smaller animals
acting as capillaries distributing nutrients to smaller subsections
of the ecosystem. Therefore, after the demise of its large animals,
the Amazon basin has lost its nutrient ‘arteries’ and the widespread
assumption of P limitation in the Amazon basin may be a relic of
an ecosystem without the functional connectedness it once had3.
This new mathematical framework provides a potential tool of
quantifying the important but rarely recognized biogeochemical
services provided by existing large animals. Therefore, those
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to	natural	processes	unaffected	by	human	activities.	Amazonia	 represents	 the	world’s	

largest	 tropical	 forest,	 and	within	 it,	 French	 Guiana	 counts	 among	 its	 least	 disturbed	

parts	(Hansen	et	al.,	2013).	Nevertheless,	recent	findings	have	challenged	the	idea	of	an	

entirely	 pristine	 Amazonian	 basin.	 Indeed,	 it	 appears	 that	 human	 population	 density	

was	relatively	high	 in	places	until	 the	European	conquest	 (Heckenberger	et	al.,	2008).	

Moreover,	on	a	 longer	timescale,	 the	Amazonian	basin	may	still	be	 in	a	transient	state	

following	 the	 sudden	disappearance	of	most	 large	mammal	 species	12,000	years	 ago,	

which	 was	 likely	 caused	 by	 the	 arrival	 of	 human	 hunters	 and	 has	 had	 deep	

consequences	on	nutrient	transport	and	seed	dispersal	(cf.	Fig.	8;	Doughty	et	al.,	2013).	

Two	research	stations	have	been	established	in	French	Guiana	in	the	1980s	for	

research	 on	 Amazonian	 biodiversity.	 This	 is	 where	 the	 data	 used	 in	 this	 thesis	 have	

been	collected.	The	Nouragues	research	station	is	about	100	km	inland,	in	the	heart	of	

the	Nouragues	natural	reserve,	and	is	devoted	to	the	study	of	the	undisturbed	lowland	

forest	as	well	as	of	the	neighbouring	inselberg.	The	Paracou	research	station,	near	the	

coast,	 is	 devoted	 to	 the	 study	 of	 the	 long-term	 effects	 of	 logging	 on	 biodiversity	

(Gourlet-Fleury	et	al.,	 2004).	 In	both	 stations,	 soils	 are	 acidic	 and	nutrient-poor,	 as	 is	

typical	 in	tropical	 forests,	with	a	more	sandy	soil	 in	Paracou	and	a	more	clayey	soil	 in	

Nouragues.	 The	 mean	 rainfall	 is	 about	 3,000	 mm	 per	 year,	 with	 relatively	 strong	

seasonal	variation,	and	temperature	is	around	26°C	throughout	the	year.			
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III. Statistical	approaches	

	

In	 this	 section,	 I	 introduce	 the	 statistical	 approaches	used	 in	 this	 thesis.	 I	 first	 briefly	

review	 the	 classical	 approaches	 of	 community	 ecology.	 I	 then	 introduce	 Hubbell’s	

neutral	 model	 and	 Dirichlet	 mixture	 models,	 which	 are	 respectively	 the	 foci	 of	 the	

second	 and	 third	 chapters	 of	 this	 thesis,	 by	 emphasizing	 their	 common	mathematical	

structure	based	on	the	Dirichlet	distribution	and	its	Dirichlet	process	extension.	

	

 Comparing	models	to	data	in	ecology	1.

	

In	physics,	empirical	data	can	often	be	satisfyingly	characterized	by	a	one-dimensional	

mathematical	function	fitted	to	the	data	(‘curve	fitting’).	This	is	not	the	case	in	ecology,	

because	 observations	 do	 not	 as	 a	 rule	 tightly	 follow	 the	 prediction	 of	 a	 theoretical	

model,	 and	because	data	points	 are	 always	 relatively	 scarce	 and	 costly	 to	 acquire.	To	

take	 full	 advantage	 of	 the	 available	 data,	 it	 is	 hence	 essential	 to	 account	 for	 the	

statistical	 distribution	 of	 the	 observations	 around	 the	 fitted	model,	 and	 often	 for	 the	

statistical	dependence	between	observations.	In	the	absence	of	a	theoretical	prediction,	

deterministic	 trends	 in	 the	 relationship	between	variables	 are	 conversely	 assumed	 to	

be	 very	 simple	 (e.g.,	 linear).	 Thus,	 ecological	models	 aiming	 at	 comparison	with	 data	

need	 to	 be	 expressed	 in	 probabilistic	 terms,	 and	 model	 fitting	 heavily	 relies	 on	

likelihood-based	inference	(Fisher,	1925;	Pawitan,	2001).		

The	likelihood	function	of	a	model	is	given	by	the	probability	distribution	𝑝(𝑋|𝜃)	

for	 the	 data	X	 to	 be	 observed	 conditional	 on	 the	model’s	 parameters	𝜃.	 The	model	 is	

fitted	to	data	by	maximizing	the	likelihood	function	𝐿 𝜃 𝑋 = 𝑝(𝑋|𝜃),	which	is	a	means	

of	 simultaneously	 estimating	 the	model’s	 parameters	 as	𝜃(𝑋) = argmax! 𝐿(𝜃|𝑋) 	and	

measuring	the	goodness-of-fit	as	𝐿(𝑋) = max! 𝐿(𝜃|𝑋) .	In	practice,	the	logarithm	of	the	

likelihood	 is	 maximized,	 and	 the	 normalization	 factor	 in	 the	 likelihood	 expression	 is	

discarded.	Depending	on	the	situation,	 the	 focus	may	be	on	measuring	goodness-of-fit	
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or	on	estimating	and	interpreting	model	parameters.	If	several	alternative	models	are	to	

be	compared	to	each	other,	this	can	be	achieved	by	comparing	the	Akaike	Information	

Criterion	for	each	model,	equal	to	2𝐾 − 2 ln  𝐿(𝑋),	where	K	is	the	number	of	parameters	

in	 the	model	 (Akaike,	 1974;	 Burnham	&	Anderson,	 2002).	 If	 only	 one	model	 is	 to	 be	

compared	 to	 the	 data,	 the	most	 popular	 approach	 is	 to	 assess	 how	 likely	 the	 data	 at	

hand	would	be	to	be	observed	if	they	were	to	be	generated	by	the	probabilistic	model	

under	consideration.	To	this	end,	the	value	taken	by	a	‘test	statistics’	-	for	instance	the	

log-likelihood	ln  𝐿(𝑋)	-	is	compared	to	its	theoretical	distribution	given	the	model.	The	

threshold	for	rejecting	the	model	with	reasonable	confidence	is	traditionally	set	at	5%	

probability,	following	the	example	of	Fisher	(1925).		

Another	 approach	 to	 likelihood-based	 inference	 consists	 in	 estimating	 the	 full	

probability	 distribution	 of	 the	model’s	 parameters	 conditional	 on	 the	 data	 instead	 of	

only	 their	 most	 likely	 value	 (Gelman	 et	 al.,	 2014).	 This	 approach	 is	 called	 Bayesian	

inference,	 in	 contrast	 to	 maximum-likelihood	 inference,	 since	 the	 full	 probability	

distribution	 of	 the	 model’s	 parameters	 𝜃 	is	 given	 by	 Bayes’	 equation	 𝑝 𝜃 𝑋 =

𝑝(𝑋|𝜃)𝑝(𝜃)/𝑝(𝑋)	(Bayes	&	Price,	1763).	Another	distinction	between	both	approaches	

is	 that	 maximum-likelihood	 inference	 assumes	 that	

argmax! 𝑝(𝜃|𝑋) = argmax! 𝑝(𝑋|𝜃) ,	 and	 thus	 implicitly	 that	 𝑝(𝜃) 	is	 a	 uniform	

distribution.	In	contrast,	𝑝(𝜃)	is	often	used	to	express	prior	belief	on	parameter	values	

in	 Bayesian	 inference.	 The	 normalization	 factor	𝑝 𝑋 = 𝑝(𝑋|𝜃)𝑝(𝜃)! ,	 or	 marginal	

likelihood,	can	then	be	used	as	a	measure	of	goodness-of-fit	accounting	for	all	possible	

parameter	 choices.	 Because	 it	 is	 less	 analytically	 tractable	 than	 maximum-likelihood	

inference,	Bayesian	inference	has	been	less	employed	historically.	However,	it	can	now	

be	 performed	 numerically,	 and	 even	 though	 it	 is	 usually	 more	 computationally	

demanding	 than	 maximum-likelihood	 inference,	 it	 has	 become	 increasingly	 popular	

with	the	steady	increase	in	computer	power.	One	of	the	reasons	of	its	success	is	that	it	

can	accommodate	complex	models	in	which	the	likelihood	is	difficult	to	maximize.		
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 The	statistical	tools	of	community	ecology	2.

	

Univariate	models	such	as	simple	linear	regression,	where	observations	are	regarded	as	

realizations	of	a	singe	random	variable,	can	be	distinguished	from	multivariate	models	

where	 observations	 result	 from	 several	 non-independent	 random	 variables.	 The	

analysis	 of	 community	matrices	 relies	 on	multivariate	 statistical	methods,	 where	 the	

abundance,	 or	 the	occurrence,	 of	 each	of	 the	p	 taxa	 is	 regarded	as	 a	 random	variable	

with	 a	 realization	 at	 each	 of	 the	 n	 sampling	 sites.	 Not	 all	 of	 the	 many	 multivariate	

methods	 classically	 used	 in	 community	 ecology	 are	 explicitly	 model-based:	 they	

typically	combine	multivariate	linear	regression,	eigenvalue	decomposition	and	the	use	

of	 (dis)similarity	 metrics	 (Legendre	 &	 Legendre,	 2012).	 Their	 results	 are	 often	

interpreted	within	the	framework	of	the	‘analysis	of	variance’	(ANOVA),	which	consists	

in	partitioning	the	variance	of	the	observed	variables	into	components	corresponding	to	

different	sources	of	variation.		

The	multivariate	methods	 that	 include	 an	 eigenvalue	decomposition	 step	 (or	 a	

generalized	version	of	it)	are	called	‘ordination’	methods.	A	cornerstone	of	multivariate	

analysis	 is	 Principal	 Component	 Analysis	 (PCA),	 a	 simple	 ordination	 method	 of	

widespread	use	well	beyond	ecology.	It	consists	in	rotating	p	observed	variables	around	

their	 mean	 so	 as	 to	 obtain	 p	 uncorrelated	 variables	 ordered	 by	 decreasing	 variance.	

Namely,	 the	n-by-p	matrix	T	 containing	 the	p	 new	variables	 is	obtained	as	 the	matrix	

product	𝑇 = 𝑋𝑊,	where	𝑋	is	the	n-by-p	matrix	containing	the	centred	original	variables,	

and	𝑊 	the	 p-by-p	 matrix	 formed	 by	 the	 eigenvectors	 of	 the	 covariance	 matrix	

1 𝑛 − 1 𝑋!𝑋	ordered	by	decreasing	eigenvalues.	The	first	use	of	PCA	is	to	decorrelate	

the	 data.	 It	 may	 also	 be	 used	 for	 reducing	 data	 dimensionality	 by	 discarding	 the	

independent	 variables	 accounting	 for	 the	 least	 variance.	 Thus,	 PCA	 allows	 for	

conveniently	 representing	 the	 data	 by	 projecting	 them	 on	 the	 two	 or	 three	 axes	 that	

account	for	the	most	variance.	To	investigate	the	dependence	of	a	community	matrix	on	

a	 set	 of	 explanatory	 variables,	 such	 as	 environmental	 variables	 measured	 at	 the	

sampling	sites,	a	classical	method	is	to	perform	a	multivariate	 linear	regression	of	the	

community	matrix	 on	 the	 explanatory	 variables,	 followed	 by	 a	 PCA	 on	 the	matrix	 of	
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fitted	 coefficients,	 a	 method	 known	 as	 Canonical	 Redundancy	 Analysis	 (RDA).	 Using	

partial	linear	regression,	RDA	can	be	extended	into	‘partial	RDA’	to	compare	the	effect	

of	several	sets	of	explanatory	variables	on	the	community	matrix.	

Clustering	 methods	 constitute	 another	 family	 of	 extensively	 used	 statistical	

methods	 in	 ecology	 (Legendre	 &	 Legendre,	 2012),	 as	 well	 as	more	 generally	 in	 data	

mining	and	machine	 learning	 (Bishop,	2006;	 Jain,	2010).	They	aim	at	partitioning	 the	

data	 into	 ‘natural’	 clusters	of	observations,	by	searching	 for	structure	 in	 the	matrix	of	

pairwise	similarity	between	observations.	As	such,	their	scope	overlaps	to	some	extent	

with	that	of	exploratory	ordination	methods	such	as	PCA.	In	the	terminology	of	machine	

learning,	 clustering	 algorithms	 are	 ‘unsupervised’	 algorithms,	 i.e.	 they	 aim	 at	

discovering	 patterns	 without	 being	 provided	 any	 prior	 information,	 in	 contrast	 to	

‘supervised’	algorithms	aiming	at	classifying	patterns	based	on	pre-existing	criteria.	

The	most	popular	clustering	algorithms	 in	ecology	are	 ‘hierarchical’	ones.	They	

consist	 in	recursively	splitting	 the	data	 into	clusters	of	observations	starting	 from	the	

whole	 dataset	 –	 or	 conversely,	 recursively	 agglomerating	 clusters	 of	 observations	

starting	from	the	individual	observations	–	by	maximizing	between-cluster	dissimilarity	

at	 each	 step.	 Dissimilarity	 between	 two	 clusters	 is	 most	 commonly	measured	 as	 the	

mean	pairwise	dissimilarity	between	the	observations	of	each	cluster,	a	method	called	

UPGMA	 (‘Unweighted	 Pair	 Group	 Method	 with	 Arithmetic	 Mean’).	 The	 pairwise	

dissimilarity	 between	 observations	 can	 be	measured	 using	 any	 dissimilarity	 metrics,	

which	is	often	an	advantage	in	ecology	owing	to	the	wide	range	of	dissimilarity	metrics	

in	 use	 (Legendre	 &	 De	 Caceres,	 2013;	 cf.	 section	 II.1.b).	 Another	 advantage	 of	

hierarchical	 clustering	 is	 that	 the	 result	 can	 be	 displayed	 as	 a	 tree	 of	 hierarchically	

nested	 clusters	 (or	 ‘dendrogram’):	 in	 addition	 to	 visualizing	data	 structure,	 this	helps	

choose	 the	 number	 of	 clusters	 according	 to	 the	 desired	 level	 of	 similarity	 within	

clusters.	Hierarchical	clustering	is	however	computationally	intensive	for	large	datasets.	

Moreover,	 because	 splits	 –	 or	 merges	 –	 decided	 at	 each	 hierarchical	 step	 cannot	 be	

undone	and	have	a	strong	impact	on	the	subsequent	steps,	the	algorithm	may	be	easily	

trapped	in	suboptimal	solutions	for	large	and	noisy	datasets.	
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‘Partitional’	 algorithms,	which	 consist	 in	 searching	 for	 the	 optimal	 partition	 of	

the	data	into	a	predefined	number	of	clusters,	form	a	second	family	of	algorithms	that	

are	 better	 adapted	 to	 large	 datasets	 (Jain,	 2010).	 The	 most	 widespread	 partitional	

algorithm	 is	k-means	 clustering,	which	 formally	 consists	 in	 finding	 the	k	 clusters	 that	

minimize	within-cluster	variance	in	the	Euclidian	space	of	observations,	with	k	a	fixed	

parameter.	Unlike	hierarchical	 clustering,	which	 is	purely	heuristic,	 the	problem	of	k-

means	 clustering	 can	 be	 reframed	 as	 the	 fit	 of	 a	multivariate	 statistical	model	 to	 the	

data	(specifically,	a	‘Gaussian	mixture	model’).	This	is	however	achieved	using	heuristic	

algorithms,	which	may	converge	to	suboptimal	solutions.	The	most	common	algorithm	

consists	 in	 randomly	 setting	 the	 position	 of	 the	 k	 cluster	 centres	 in	 the	 space	 of	

observations,	 delineating	 the	 clusters	 by	 assigning	 each	 observation	 to	 the	 closest	

cluster	centre	based	on	Euclidian	distance,	and	 then	 iteratively	reshaping	 the	clusters	

using	 their	mean	 in	 the	 previous	 step	 as	 their	 new	 centre,	 until	 convergence.	 Lastly,	

‘network	science’	provides	a	 range	of	clustering	algorithms	 that	are	based	on	a	graph	

representation	 of	 the	 similarity	matrix	 (Rosvall	 et	 al.,	 2009;	 Fortunato,	 2010).	 These	

methods	 that	 are	 well	 adapted	 to	 large	 datasets	 have	 recently	 enjoyed	 a	 rise	 in	

popularity	 in	 ecology	 (Vilhena	&	Antonelli,	 2015;	Bloomfield	et	al.,	 2017;	Wang	et	al.,	

2017).	

A	 pervasive	 assumption	 in	 classical	 statistical	 models	 is	 that	 observations	 are	

normally	 distributed	 –	 i.e.,	 follow	Gaussian	 probability	 distributions.	 This	 assumption	

may	 be	 explicit,	 or	 sometimes	 implicit.	 For	 instance,	 model	 fitting	 by	 least-square	

regression	 amounts	 to	 maximizing	 the	 log-likelihood	 of	 independent	 identically	

distributed	normal	variables	centred	on	 the	 fitted	model.	Likewise,	 the	assumption	 in	

PCA	 that	 the	 observed	 variables	 can	 be	 entirely	 characterized	 by	 their	 mean	 and	

variance	implies	that	they	are	normally	distributed,	since	this	property	is	unique	to	the	

Gaussian	 distribution.	 A	 justification	 for	 the	 normality	 assumption	 is	 that	 an	

observation	on	a	sample	can	typically	be	regarded	as	the	sum,	or	the	mean	outcome,	of	

many	random	draws,	yet	the	central	limit	theorem	states	that	the	mean	of	a	sufficiently	

large	number	of	 random	variables	 is	 always	normally	distributed.	Thank	 to	 the	many	

convenient	 mathematical	 properties	 of	 the	 Gaussian	 distribution,	 exact	 analytical	
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expressions	 have	 been	 obtained	 for	 maximum-likelihood	 estimators	 and	 for	 the	

theoretical	 distribution	 of	 test	 statistics.	 Prior	 to	 the	 advent	 of	 computers,	 such	

analytical	 results	were	an	essential	 condition	 for	 the	practical	usefulness	of	 statistical	

models.	This	 is	however	not	the	case	anymore,	and	the	exploration	of	models	that	are	

not	based	on	the	Gaussian	distribution	is	now	possible.			

	

 The	Dirichlet	distribution	and	its	Dirichlet	process	extension	3.

	

a. The	Dirichlet	distribution	

	

Not	all	natural	processes	are	additive,	and	as	a	consequence,	not	all	quantities	can	be	

assumed	 to	 be	 normally	 distributed	 as	 the	 sum	 of	 a	 large	 number	 of	 random	 draws.	

Some	 processes	 are	 multiplicative,	 and	 a	 direct	 consequence	 of	 the	 central	 limit	

theorem	is	that	the	product	of	a	large	number	of	random	draws	will	follow	a	log-normal	

distribution.	 Indeed,	 for	 N	 random	 variables	𝑋! ,	ln 𝑋!!
!!! = ln𝑋!!

!!! .	 Hence,	 the	

central	 limit	 theorem	 states	 that	ln 𝑋!!
!!! 	is	 normally	 distributed	 for	 large	 N.	 It	

follows	 from	 the	 definition	 of	 the	 log-normal	 distribution	 that	 𝑋!!
!!! 	is	 log-normally	

distributed.	As	mentioned	 in	section	II.1.a,	 this	 is	a	possible	explanation	 for	 the	often-

observed	 log-normal	distribution	of	 species	 abundances.	 Indeed,	 if	 the	 abundances	of	

species	 are	 independent	 of	 each	 other,	 a	 species’	 change	 in	 abundance	 through	 time	

may	take	the	form	of	a	random	multiplicative	factor	applied	to	its	reproductive	output	

at	each	generation,	depending	for	instance	on	environmental	fluctuations.	

However,	 if	 changes	 in	 species	 abundance	 are	 rather	 driven	 by	 demographic	

drift,	 as	 assumed	 in	 a	 neutral	 framework,	 relative	 species	 abundances	 are	 better	

described	 by	 the	 following	 process:	 starting	 from	 abundances	 𝑎!,… ,𝑎! ,	 where	𝑎! 	is	

the	number	of	 individuals	 in	species	 i,	one	of	the	S	species	 is	picked	at	each	time	step	

with	 probability	 equal	 to	 its	 relative	 abundance	 (or	 equivalently,	 one	 individual	 is	

picked	at	random	in	the	population),	and	its	abundance	is	increased	by	one	individual.	If	

this	 sampling	 scheme,	 called	 a	 Pólya	 urn,	 is	 repeated	 indefinitely,	 the	 distribution	 of	
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species	 relative	 abundances	 𝑥!,… , 𝑥! 	will	 follow	 the	 Dirichlet	 distribution	 of	

parameters	 𝑎!,… ,𝑎! ,	 which	 may	 be	 regarded	 as	 a	 distribution	 over	 distributions	

(Blackwell	&	MacQueen,	1973):	

𝑝 𝑥!,… , 𝑥!!!|𝑎!,… ,𝑎! =
Γ 𝑎!!

!!!

Γ 𝑎!!
!!!

𝑥!
!!!!

!

!!!

𝑥! = 1− 𝑥!
!!!

!!!
	

Γ	is	 the	 gamma	 function	 generalizing	 the	 factorial	 to	 real	 numbers	 and	 taking	 value	

Γ 𝑎 = 𝑎 − 1 !	when	𝑎	is	a	positive	integer.	Note	that	the	description	of	the	Pólya	urn	

originally	involves	drawing	balls	of	different	colours	from	an	urn	instead	of	individuals	

of	different	species	from	a	community.	

If	 there	 is	 no	 a	 priori	 reason	 to	 assume	 differences	 between	 the	 S	 species,	

parsimony	 leads	 to	 setting	 all	 initial	 abundances	𝑎! 	to	 the	 same	 value	𝑎	(‘symmetric’	

Dirichlet	 distribution).	 In	 that	 case,	 some	 species	 will	 randomly	 emerge	 as	 more	

abundant	 than	 others	 over	 time	 in	 the	 Pólya	 urn	 sampling	 scheme,	 since	 any	 above-

average	abundance	tends	to	be	amplified.	The	shape	of	the	limiting	distribution	after	an	

infinite	number	of	 time	steps	 is	heavily	 influenced	by	the	 ‘concentration	parameter’	𝑎,	

which	 can	 formally	 take	 any	 positive	 real	 value.	 If	𝑎	is	much	 smaller	 than	 1,	 the	 first	

species	to	be	picked	by	the	sampling	scheme	will	have	its	abundance	updated	to	𝑎 + 1,	

and	will	have	a	disproportionately	higher	probability	to	be	picked	again	at	the	next	time	

step.	 Conversely,	 if	𝑎	is	 much	 larger	 than	 1,	 the	 fact	 that	 a	 species’	 abundance	 is	

increased	 by	 1	 has	 little	 influence	 on	 its	 subsequent	 probability	 to	 be	 picked.	 Thus,	

depending	on	the	value	of	𝑎	relative	to	1,	the	symmetric	Dirichlet	distribution	can	either	

describe	a	species	abundance	distribution	with	a	few	dominant	species	and	many	rare	

one	 (𝑎 ≪ 1),	 reminiscent	of	 the	 structure	observed	 in	 species-rich	communities,	or	 in	

contrast	 a	 very	even	 species	 abundance	distribution	 (𝑎 ≫ 1).	 In	 the	general	 case,	 any	

set	 of	 parameters	 𝑎!,… ,𝑎! 	can	 be	 rewritten	 as	 𝜃𝑝!,… ,𝜃𝑝! ,	 with	 𝑎!!
!!! = 𝜃	and	

𝑝! = 𝑎! 𝜃,	 so	 that	 𝑝!!
!!! = 1.	 The	Dirichlet	 distribution	with	 asymmetric	 parameters	

behaves	 similarly	 to	 the	 symmetric	 case,	 except	 that	 the	 relative	 abundance	𝑥! 	of	
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species	 i	 has	mean	𝑝! 	over	all	possible	draws	 from	 the	Dirichlet	distribution,	while	 its	

variance	is	determined	by	the	value	of	𝜃 𝑆.		

The	 symmetric	 Dirichlet	 distribution	 is	 the	 distribution	 that	 Fisher	 (1943)	

implicitly	assumed	for	relative	species	abundances	to	derive	the	log-series	SAD,	defined	

as	𝔼 Φ! = 𝛼𝑥! 𝑛 	(cf.	 section	 II.1.a).	 He	 assumed	 that	 the	 number	 of	 sampled	

individuals	 per	 species	 followed	 a	 negative-binomial	 distribution	 of	 parameters	

(𝛼 𝑆 , 𝑥)	(without	the	zero-abundance	class,	because	the	latter	cannot	be	observed),	as	

the	 result	 of	 Poisson	 sampling	 from	 a	 large	 number	 S	 of	 Gamma-distributed	 species	

abundances	 with	 shape	 parameter	𝛼 𝑆	and	 rate	 parameter	 1− 𝑥 𝑥.	 The	 negative-

binomial	 distribution	 𝑃!" 	can	 indeed	 be	 obtained	 as	

𝑃!" 𝑘|𝛼 𝑆 , 𝑥 = 𝑃! 𝑘|𝜆 𝑝!(𝜆|𝛼 𝑆 , (1− 𝑥) 𝑥)𝑑𝜆!
! ,	 where	 𝑃! 	and	 𝑝! 	denote	 the	

Poisson	 and	 Gamma	 distributions.	 Yet,	 if	 S	 species	 have	 abundances	𝑛! 	identically	

distributed	 as	 Gamma 𝛼 𝑆 ,𝜃 ,	 their	 relative	 abundances	𝑛! 𝑁 ,	 where	𝑁 = 𝑛!!
!!! ,	

follow	a	symmetric	Dirichlet	distribution	with	concentration	parameter	𝛼 𝑆	(Devroye,	

1986).	Since	Fisher	assumed	𝛼 𝑆 ≪ 1	to	obtain	the	log-series,	this	indeed	corresponds	

to	the	regime	of	very	uneven	relative	species	abundances.	

	

b. The	Dirichlet	process	and	the	Ewens	sampling	formula	

	

As	 it	 is	 apparent	 in	 the	 case	 of	 Fisher’s	 log-series,	 a	 limitation	 of	 the	 Dirichlet	

distribution	 as	 a	mean	 to	 describe	 species	 relative	 abundances	 is	 that	 it	 requires	 the	

number	 S	 of	 species	 to	 be	 fixed	 in	 advance.	 It	 is	 hence	 appealing	 to	 generalize	 the	

Dirichlet	 distribution	by	making	S	 tend	 toward	 infinity.	 Let	 us	 consider	 the	 time	 step	

𝑁 + 1	of	 the	 Pólya	 urn	 sampling	 scheme	 with	 symmetric	 concentration	 parameter	𝑎,	

where	 N	 individuals	 have	 already	 been	 added	 to	 the	 original	𝑆𝑎 	individuals.	 The	

probability	 to	 pick	 species	 i	 is	(𝑛! + 𝑎) 𝑁 + 𝑆𝑎 ,	 where	𝑛! 	is	 the	 number	 of	 times	

species	 i	has	already	been	picked.	Hence,	 the	probability	 to	pick	one	of	 the	𝑆!	species	

that	 have	 already	 been	 picked	 at	 least	 once	 is	 (𝑁 + 𝑆!𝑎) 𝑁 + 𝑆𝑎 ,	 while	 the	

probability	 to	 pick	 one	 of	 the	 𝑆 − 𝑆! 	species	 that	 have	 never	 been	 picked	 is	
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(𝑆 − 𝑆!)𝑎 𝑁 + 𝑆𝑎 .	 If	 we	 simultaneously	 make	 S	 tend	 toward	 infinity	 and	𝑎	tend	

toward	 0,	 keeping	 the	 product	𝑆𝑎 	equal	 to	 a	 constant	𝜃 ,	 we	 obtain	 an	 infinite-

dimensional	 version	 of	 the	 Pólya	 urn,	 called	 the	Hoppe	 urn,	where	 the	 probability	 to	

pick	an	existing	species	i	at	time	step	𝑁 + 1	is	𝑛! 𝑁 + 𝜃 	and	the	probability	to	pick	a	

new	species	is	𝜃 𝑁 + 𝜃 	(Hoppe,	1984).	After	an	infinite	number	of	time	steps,	species	

relative	 abundances	 are	 distributed	 according	 to	 a	 Dirichlet	 process	 of	 concentration	

parameter	𝜃	and	uniform	base	distribution,	which	can	be	regarded	as	the	limit	of	the	S-

dimensional	 symmetric	 Dirichlet	 distribution	 of	 concentration	 parameter	𝜃 𝑆	when	 S	

tends	toward	infinity	(Ferguson,	1973;	Teh	et	al.,	2006).	

	More	 generally,	 a	 Dirichlet	 process	 of	 concentration	 parameter	𝜃 	and	 base	

distribution	𝒑 = 𝑝! !∈ℕ∗ 	can	 be	 regarded	 as	 the	 limit	 of	 the	 S-dimensional	 Dirichlet	

distribution	of	concentration	parameters	 𝜃𝑝!,… ,𝜃𝑝! ,	where	 𝑝!!
!!! = 1,	when	S	tends	

toward	 infinity	 (Ferguson,	 1973).	 The	 infinite	 base	 distribution	 p	 is	 the	 distribution	

from	which	 new	 species	 are	 sampled	 during	 the	 Hoppe	 urn	 scheme	 of	 parameter	𝜃:	

each	 new	 species	 is	 sampled	 from	 an	 infinite	 number	 of	 possible	 species	 labels	with	

probability	weights	p.	 If	 the	 base	distribution	 is	 uniform,	 as	 assumed	 in	 the	previous	

paragraph,	a	never-encountered	label	is	simply	assigned	to	each	new	species.		

The	 Dirichlet	 process	 is	most	 intuitively	 understood	 by	 sampling	 from	 it.	 If	N	

individuals	 are	 sampled	 from	 relative	 species	 abundances	 described	 by	 a	 Dirichlet	

process	of	parameter	𝜃	and	uniform	base	distribution,	their	partition	 Φ!,… ,Φ! 	into	S	

species,	 where	Φ! 	is	 the	 number	 of	 species	 with	 abundance	 n,	 obeys	 the	 ‘Ewens	

sampling	formula’	of	parameters	(𝜃,𝑁)	(Ewens,	1972):		

𝑃 Φ!,… ,Φ!|𝜃,𝑁 =
𝑁!
𝜃 !

1
Φ!!

𝜃
𝑛

!!
!

!!!

	

where	 𝜃 ! = Γ(𝜃 + 𝑁) Γ(𝜃).	This	formula	also	describes	the	partition	of	N	individuals	

into	S	species	obtained	by	stopping	a	Hoppe	urn	scheme	of	parameter	𝜃	at	step	N,	thus	

the	Dirichlet	 process	does	not	 need	 to	 be	 explicitly	 defined	 for	 the	Ewens	 formula	 to	

emerge	 from	 the	 Hoppe	 urn	 scheme.	 For	 a	 large	 enough	 sample,	 the	Φ! 	are	

approximately	drawn	from	independent	Poisson	random	variables	with	parameter	𝜃 𝑛	
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(Crane,	2016).	A	remarkable	property	of	the	Ewens	formula	is	that	it	yields	a	sampling-

invariant	description	of	relative	species	abundances	characterized	by	the	parameter	𝜃:	

indeed,	 any	 random	 subsample	 of	𝑁! < 𝑁	individuals	 taken	 from	 the	 initial	 sample	

obeys	the	Ewens	sampling	formula	of	parameters	(𝜃,𝑁!).	Moreover,	 the	probability	of	

observing	S	species	in	a	sample	of	N	individuals	does	not	depend	on	the	exact	partition	

but	 only	 on	𝜃	and	N,	 as	𝑃 𝑆 𝜃,𝑁 = 𝑠(𝑁, 𝑆)𝜃! 𝜃 ! ,	where	 the	 function	𝑠	denotes	 the	

absolute	value	of	 the	Stirling	numbers	of	 the	 first	 kind	 (Ewens,	1972).	Thus,	𝜃	can	be	

regarded	 as	 a	 sampling-invariant	measure	 of	 diversity	 in	 a	 species	 pool	 described	by	

Ewens	sampling	formula,	irrespective	of	whether	this	species	pool	is	finite	or	infinite.	

	

 Neutral	models	4.

	

The	Ewens	formula	was	first	discovered	by	Ewens	(1972)	in	the	context	of	population	

genetics.	 Indeed,	 it	 arises	 as	 the	 stationary	 distribution	 of	 allele	 frequency	 in	 the	

Wright-Fisher	 and	Moran	models,	which	describe	 the	neutral	dynamics	of	 alleles	 in	 a	

population	 (Fisher,	 1930;	 Wright,	 1931;	 Moran,	 1958;	 Wakeley,	 2009).	 More	

importantly	 for	 ecologists,	 the	 Ewens	 formula	 is	 also	 the	 stationary	 distribution	 of	

species	 frequency	 in	 Hubbell’s	 neutral	 model	 of	 biodiversity,	 which	 was	 directly	

inspired	 by	 population	 genetics	 (Hubbell,	 2001).	 These	 models	 all	 bear	 some	

resemblance	to	the	Hoppe	urn	sampling	scheme,	except	that	they	account	for	the	death	

of	individuals,	so	that	the	total	number	of	individuals	remains	constant	over	time.	The	

Wright-Fisher	 model	 assumes	 that	 all	 N	 individuals	 die	 at	 each	 time	 step	 and	 are	

replaced	by	a	new	generation	of	N	new	individuals.	The	alleles	of	these	new	individuals	

are	sampled	(with	replacement)	from	the	alleles	in	the	previous	generation,	except	for	a	

small	 probability	 in	 each	 new	 individual	 of	mutating	 into	 a	 never-encountered	 allele.	

This	 translates	 into	 a	 demographic	 drift	 of	 allele	 frequency	 through	 time,	 and,	 over	

longer	 time	 scales,	 by	 a	 turnover	 in	 the	pool	of	 alleles	 through	 random	mutation	and	

extinction	events.	The	Moran	model	is	similar	but	assumes	than	individuals	die	and	are	

replaced	 one	 at	 a	 time,	which	 allows	 for	 overlapping	 generations.	 Hubbell’s	model	 is	

almost	identical	to	the	Moran	model,	except	that	alleles	are	reinterpreted	as	species	and	
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mutation	 as	 speciation,	 and	 that	 dying	 individuals	 cannot	 be	 replaced	 by	 their	 own	

offspring.	 Even	 though	 all	 three	 models	 have	 the	 same	 stationary	 abundance	

distribution	 described	 by	 Ewens	 formula,	 the	 exact	 expression	 of	𝜃	depends	 on	 the	

model’s	dynamics	(Etienne	&	Alonso,	2007).	In	Hubbell’s	model,	𝜃 = (𝑁 − 1) 𝜈 (1− 𝜈),	

where	𝜈	is	the	speciation	probability	at	each	time	step,	i.e.	the	probability	that	the	dying	

individual	is	replaced	by	a	new	species.		

The	key	innovation	of	Hubbell’s	model	compared	to	population	genetics	models	

is	that	it	also	includes	the	description	of	a	dispersal-limited	local	community	connected	

to	 the	 regional	 metacommunity	 through	 immigration.	 The	 dynamics	 of	 the	 local	

community	 is	 identical	 to	 that	 of	 the	 metacommunity,	 except	 that	 new	 species	 arise	

through	 immigration	 instead	 of	 speciation:	 at	 each	 time	 step,	 an	 individual	 dies	 and	

there	 is	probability	m	 that	 the	replacing	 individual	results	 from	immigration	 from	the	

metacommunity	 instead	of	 from	 local	 reproduction	(if	𝑚 = 1,	 there	 is	no	 limitation	 to	

dispersal).	 The	 difference	 is	 that	 unlike	 individuals	 arising	 through	 speciation,	 an	

immigrating	 individual	 may	 belong	 to	 a	 species	 that	 is	 already	 present	 in	 the	 local	

community.	Thus,	the	stationary	distribution	of	species	frequency	in	a	local	community	

of	 size	 N	 obeys	 a	 Ewens	 sampling	 formula	 of	 parameter	𝐼 = (𝑁 − 1)𝑚 (1−𝑚) ,	

modified	 to	 account	 for	 the	 fact	 that	 the	 immigrating	 ancestors	 to	 the	 current	 local	

community	are	sampled	from	the	Ewens	formula	of	parameter	𝜃	(Etienne	&	Olff,	2004).	

The	resulting	two-layer	sampling	formula	was	derived	by	Etienne	(2005).	The	‘Etienne	

sampling	 formula’	 can	 also	 be	 regarded	 as	 the	 result	 of	 ‘dispersal-limited	 sampling’	

from	Ewens	 formula,	which	 can	 be	 defined	 as	 a	 type	 of	 skewed	 sampling	 (Etienne	&	

Alonso,	 2005).	 Importantly,	 Etienne	 formula	 still	 satisfies	 the	 sampling-invariance	

property	of	Ewens	formula,	i.e.	any	random	subsample	of	𝑁! < 𝑁	individuals	will	follow	

the	Etienne	formula	of	parameters	 𝜃, 𝐼,𝑁! .	

Ewens	and	Etienne	sampling	formula	allow	for	likelihood-based	inference	of	the	

neutral	parameters	𝜃	and	I,	as	well	as	for	rigorous	statistical	tests	of	model	fit	(cf.	Fig.	9;	

Etienne	 &	 Olff,	 2005;	 Etienne,	 2007;	 Al	 Hammal	 et	 al.,	 2015).	 In	 practice,	 the	

metacommunity	cannot	be	directly	observed	and	 is	usually	regarded	as	 infinite,	while	

the	local	community	is	equated	with	the	observed	sample	of	individuals.	Thus,	𝜃	and	m	
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are	 often	 chosen	 as	 model	 parameters	 instead	 of	𝜃	and	 I,	 reflecting	 the	 fact	 that	 the	

number	of	individuals	is	known	in	the	local	community	but	not	in	the	metacommunity.	I	

can	be	interpreted	as	the	effective	number	of	individuals	in	the	metacommunity	that	are	

in	 direct	 competition	 with	 the	 local	 community	 for	 reproduction.	 Furthermore,	 data	

usually	consist	of	samples	from	several	local	communities.	This	considerably	increases	

statistical	power,	since	statistical	inference	does	not	only	rely	on	the	shape	of	the	local	

abundance	distributions,	but	also	on	the	taxonomic	overlap	between	local	communities.	

Exact	 sampling	 formulas	 have	 been	 derived	 both	 for	 the	 case	 where	 all	 local	

communities	have	the	same	immigration	parameter	m	(Etienne,	2007)	and	for	the	case	

where	they	do	not	(Etienne,	2009).		

	

	

Figure	 9.	 Bayesian	 inference	 of	 neutral	 parameters	 based	 on	 the	 ‘Etienne	 sampling	 formula’:	
map	 showing	 the	 joint	 posterior	 probability	 density	 of	𝜃	and	m	 for	 the	 tree	 abundance	 data	
(>10	cm	dbh)	of	the	50-ha	Barro	Colorado	Island	monitored	plot.	Adapted	from	Etienne	&	Olff	
(2004).	

	

As our approach focuses on the full multivariate
probability distribution P ½~JS jI ; H; J ", all information in
the data is used, or in other words, the curve-fitting exercise
is applied to the dominance-diversity (rank-abundance)
curve. This is in contrast with McGill (2003) and Volkov
et al. (2003) who lump abundances in (arbitrary) logarithmic
abundance classes, and then fit a curve through the resulting
species-abundance distribution.

In our analysis we only accounted for process error, the
error inherent in the stochastic model, and not for
measurement error (false identifications of species or
incorrect abundance counts) that may play a very important
role as well. The Bayesian framework is ideally suited to
accommodate such errors. This is however beyond the
scope of this paper, as our primary goal is to present a new
genealogical modelling approach rather than a detailed
Bayesian data analysis.

We have presented a novel approach that shines new
lights on the neutral model improving our understanding of
biodiversity and particularly of the role of immigration. Like
Volkov et al. (2003), we expect our analysis to have

important consequences in population genetics and
evolutionary biology, but in a more complete way than
their approach, because our model predicts the relatedness
of individuals and thus illustrates that genetic and species
diversity are inseparable aspects of biodiversity. It provides a
new test of the neutral model: positive correlation between
genetic and species diversity (Vellend 2003) may be
interpreted as evidence of neutral processes.
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plot of the two model parameters h (funda-
mental biodiversity number measuring
regional diversity) and m (immigration prob-
ability m :¼ I

I þ J % 1) for trees with diameter
at breast height equal to or larger than 10 cm
in the 1982 census of the Barro Colorado
Island dataset (J ¼ 20 741, Condit et al.

1996). The maximum occurs at hopt ¼ 44.6
and mopt ¼ 0.20 and the correlation coeffi-
cient is r ¼ )0.61. The joint posterior
density is obtained with a Metropolis–
Hastings Markov Chain Monte Carlo
algorithm, treating the elements of the
species-ancestry abundance vector ~nSA as
latent variables. We used the Jeffreys prior
distribution for h and I. Total sample size (of
five parallel chains) and lag were 7 875 000
and five iterations respectively.

Table 1 Interpretation of the Bayes factor B10 in comparing model
1 to model 0 (Kass & Raftery 1995)
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1–3 Not worth more than a bare mention
3–20 Positive
20–150 Strong
>150 Very strong
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Despite	 the	 interest	 of	 exact	 sampling	 formulas	 for	 statistical	 inference,	

approximate	 approaches	 have	 proved	 more	 practical	 in	 some	 instances.	 When	 the	

number	 of	 samples	 is	 large	 enough,	 the	metacommunity	 composition	may	 be	 simply	

approximated	 as	 the	 sum	 of	 all	 samples,	 instead	 of	 being	 explicitly	 modelled.	 In	 so	

doing,	one	can	avoid	making	any	assumption	on	the	metacommunity	when	estimating	

immigration	 rates,	 or	 when	 testing	 the	 assumption	 of	 dispersal-limited	 neutral	

community	 assembly	 (Sloan	 et	 al.,	 2006;	 Jabot	 et	 al.,	 2008;	 Harris	 et	 al.,	 2015).	

Furthermore,	when	abundance	data	are	unavailable	or	unreliable,	the	immigration	rate	

from	the	metacommunity	may	be	estimated	solely	based	on	the	occurrence	of	species	

across	samples	(Sloan	et	al.,	2006).	A	limitation	of	exact	sampling	formulas	is	that	their	

computation	is	numerically	demanding	when	the	number	of	individuals	becomes	large.	

An	alternative	approach	is	then	to	represent	the	sample	as	continuous	species	relative	

abundances	 rather	 than	 in	 a	 fully	 discrete	 way.	 The	 species	 relative	 abundances	

𝑥!,… , 𝑥! 	in	 a	 large	 dispersal-limited	 sample	 containing	 S	 species	 may	 be	

approximated	as	following	the	Dirichlet	distribution	of	parameters	 𝐼𝑝!,… , 𝐼𝑝! ,	where	

𝑝!,… ,𝑝! 	are	the	relative	abundances	of	those	S	species	in	the	metacommunity	(Sloan	

et	 al.,	 2007).	 In	 turn,	 𝑝!,… ,𝑝! 	can	 be	 approximated	 as	 following	 the	 symmetric	

Dirichlet	 distribution	 of	 parameter	𝜃 𝑆	(Woodcock	 et	 al.,	 2007).	 As	 is	 apparent	 from	

section	III.b,	these	continuous	approximations	may	be	extended	to	the	case	of	an	infinite	

number	of	species	S	by	modelling	the	relative	abundances	𝒙	in	the	local	community	as	a	

Dirichlet	 process	 of	 parameter	𝐼	and	 base	 distribution	𝒑 = 𝑝! !∈ℕ∗ ,	 and	 the	 relative	

abundances	p	in	the	metacommunity	as	a	Dirichlet	process	of	parameter	𝜃	and	uniform	

base	 distribution	 (Harris	 et	 al.,	 2015).	 Such	 a	 model	 is	 referred	 to	 as	 a	 ‘hierarchical	

Dirichlet	process’	in	the	language	of	machine	learning.	

While	 multivariate	 likelihood	 expressions	 are	 powerful	 tools	 for	 statistical	

inference,	they	are	difficult	to	visualize,	and	one-dimensional	SADs	may	be	better	suited	

for	 intuitively	 understanding	 the	model’s	 behaviour.	 For	 instance,	 the	 non	 dispersal-

limited	SAD	in	Hubbell’s	model	is	equal	to	(Moran,	1958;	Vallade	&	Houchmandzadeh,	

2003):	
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𝔼 Φ!|𝜃,𝑁 =
𝜃
𝑛
𝑁 + 1− 𝑛 !

𝑁 + 𝜃 − 𝑛 !
	

and	 converges	 toward	 Fisher’s	 log-series	with	𝜃 = 𝛼	for	 a	 large	 enough	 number	N	 of	

individuals	(Chave,	2004).	 In	general,	 the	SAD	can	be	regarded	as	 the	 first	moment	of	

the	 multivariate	 sampling	 formula,	 since	 it	 is	 obtained	 as:	

𝔼 Φ!|𝜃,𝑁 = Φ!𝑃 Φ!,… ,Φ!|𝜃,𝑁
!!,…,!!| !!!!!!

!!!

	

A	 more	 straightforward	 approach	 to	 deriving	 this	 quantity	 is	 to	 express	 Hubbell’s	

dynamical	 model	 through	 the	 approximate	 conditional	 transition	 probabilities	

𝑃(𝑛 + 1|𝑛,𝜃),	𝑃(𝑛 − 1|𝑛,𝜃)	and	𝑃(𝑛|𝑛,𝜃)	that	a	given	species	with	current	abundance	n	

will	 have	 abundances	𝑛 + 1 ,	𝑛 − 1 ,	 or	 n	 at	 the	 next	 time	 step,	 respectively.	 The	

stationary	probability	distribution	of	this	‘master	equation’	then	provides	an	estimate	of	

𝔼 Φ!|𝜃,𝑁 ,	once	multiplied	by	the	observed	number	S	of	species	in	the	sample	(Volkov	

et	al.,	2003;	Alonso	&	McKane,	2004;	McKane	et	al.,	2004;	O’Dwyer	et	al.,	2009).	Unlike	

the	 exact	 ‘genealogical’	 approach	 described	 above,	 this	 approach	 typical	 of	 statistical	

physics	does	not	 explicitly	 account	 for	 the	 interdependence	between	 species,	 induced	

by	 the	 constraint	 of	 a	 fixed	 total	 number	 of	 individuals	 through	 time	 (‘mean	 field’	

approach).	 While	 this	 constraint	 was	 originally	 deemed	 a	 key	 element	 of	 the	 model	

since	 it	 accounts	 for	 competition	 between	 species	 (Hubbell,	 2001),	 both	 the	

genealogical	 and	 the	master	 equation	 approaches	 have	 been	 found	 to	 yield	 the	 same	

SAD	expression	for	a	large	enough	sample	(Etienne	et	al.,	2007).		

	

 Categorical	mixture	models	5.

	

Let	us	assume	that	the	relative	abundances	𝒙 = 𝑥!,… , 𝑥! 	of	S	species,	with	 𝑥!!
!!! = 1,	

follow	 a	 Dirichlet	 distribution	 of	 parameters	 𝒂 = 𝑎!,… ,𝑎! .	 The	 categorical	

distribution	describes	the	choice	of	one	out	of	S	species	(or	categories)	with	probability	

weights	𝒙.	 It	can	be	regarded	as	a	special	case	of	the	multinomial	distribution,	defined	

as	𝑃 𝒏 𝑁,𝒙 = 𝑁! 𝑛!!…𝑛!! 𝑥!
!! … 𝑥!

!! ,	 which	 describes	more	 generally	 the	 outcome	
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of	N	successive	categorical	draws	with	probability	weights	𝒙.	A	remarkable	property	of	

the	 Dirichlet	 distribution	 is	 that	 it	 is	 the	 conjugate	 prior	 of	 the	 categorical	 and	

multinomial	distributions.	Namely,	 if	a	multinomial	sample	𝒏 = 𝑛!,… ,𝑛! 	is	observed	

from	𝒙,	with	 𝑛!!
!!! = 𝑁,	 then	 the	posterior	distribution	of	𝒙	given	 the	observations	𝒏	

still	 follows	 a	 Dirichlet	 distribution,	 but	 with	 parameters	 updated	 to	𝒂+ 𝒏 = 𝑎! +

𝑛!,… ,𝑎! + 𝑛! 	to	 account	 for	 the	 observations.	 Fundamentally,	 this	 means	 that	 the	

Dirichlet	 distribution	 is	 the	 “natural	distribution	occurring	when	the	probability	 that	a	

forthcoming	observation	is	of	certain	class	only	depends	on	the	number	of	times	this	class	

has	already	been	observed	and	on	the	total	number	of	observations	made	so	far”	 (Crane,	

2016).	

The	 posterior	 distribution	 of	 𝒙 	given	 the	 observations	 𝒏 	is	 defined	 as	

𝑝 𝒙|𝒏,𝑁,𝒂 = 𝑃 𝒏 𝑁,𝒙 𝑝 𝒙 𝒂 /𝑃(𝒏|𝑁,𝒂) .	 The	 marginal	 likelihood	 𝑃 𝒏|𝑁,𝒂 =

𝑃 𝒏 𝑁,𝒙 𝑝 𝒙 𝒂 𝑑𝒙𝒙 	is	 the	 ‘Dirichlet-multinomial’	 distribution	 of	 parameters	 𝑁,𝒂 ,	

i.e.	 the	 distribution	 of	 a	 N-individual	 multinomial	 sample	 with	 Dirichlet-distributed	

probability	 weights	 of	 parameters	𝒂.	 The	 Dirichlet-multinomial	 distribution	 can	 be	

regarded	as	a	finite-dimensional	version	of	the	Ewens	formula	(Crane,	2016).		

Because	 the	Dirichlet	 distribution	 is	 the	 conjugate	 prior	 of	 the	 categorical	 and	

multinomial	 distributions,	 it	 is	 the	 natural	 prior	 in	 any	 probabilistic	model	 involving	

categorical	 or	 multinomial	 sampling	 from	 discrete	 classes.	 This	 is	 the	 case	 of		

‘categorical	mixture	models’,	which	describe	observations	as	sampled	from	a	mixture	of	

K	 classes,	with	 ‘mixture	weights’	𝜽𝒌 = 𝜃! !∈ !,! ,	 verifying	 𝜃!!
!!! = 1.	 The	 different	

classes	 are	 typically	 not	 directly	 observable:	 instead,	 each	 is	 characterized	 by	 a	

probability	distribution	of	parameters	𝝓𝒌	from	which	all	 the	observations	assigned	 to	

class	k	are	sampled.	The	probability	distribution	associated	with	each	class	may	be	for	

instance	 Gaussian	 if	 observations	 are	 continuous,	 or	 categorical	 if	 observations	 are	

discrete.	If	the	goal	of	statistical	inference	is	to	capture	data	structure,	the	focus	will	be	

on	estimating	the	mixture	weights	𝜽𝒌	of	the	different	classes	given	the	observations,	as	

well	as	 the	parameters	𝝓𝒌	of	 the	probability	distribution	associated	with	each	class.	 If	

the	goal	is	to	cluster	the	observations	(or	to	classify	them,	if	inference	is	conducted	in	a	

supervised	way),	the	focus	will	be	on	assigning	to	each	observation	its	most	likely	class	
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k.	 In	 a	 fully	 Bayesian	 setting,	 the	 parameters	𝝓𝒌 	of	 the	 probability	 distribution	

associated	with	class	k	may	also	be	given	a	prior	distribution,	such	as	a	Dirichlet	prior	in	

the	case	of	categorical	observations.	In	this	latter	case,	the	model	may	be	referred	to	as	

a	‘Dirichlet	mixture	model’,	since	it	describes	observations	as	categorical	or	multinomial	

samples	from	a	mixture	of	Dirichlet-distributed	classes.	

This	family	of	models	has	found	applications	in	many	fields.	In	particular,	Holmes	

et	al.	(2012)	applied	such	a	model	to	investigate	the	structure	of	microbial	communities	

sampled	 by	 environmental	DNA	 sequencing.	 They	 assume	 that	 each	 sample	 is	 a	 local	

community	 belonging	 to	 one	 of	 K	 possible	 classes,	 which	 they	 interpret	 as	

‘metacommunities’.	To	each	of	these	metacommunities	is	assigned	a	mixture	weight	𝜃! ,	

which	is	the	probability	for	a	sample	to	originate	from	it.	A	metacommunity	k	is	defined	

by	probability	weights	𝝓𝒌 = 𝜙!! !∈ !,!
	over	 the	S	OTUs	observed	 in	 the	dataset,	 from	

which	 local	 OTU	 abundances	 are	 sampled.	 These	 probability	 weights	 are	 themselves	

Dirichlet-distributed	 with	 parameters	𝒂𝒌 = 𝑎!! !∈ !,!
.	 For	 practical	 purposes,	 the	

parameters	 𝑎!! 	may	 be	 further	 assumed	 to	 follow	 a	 ‘hyperprior’	 distribution	

parameterized	by	‘hyperparameters’,	so	as	to	reduce	the	number	of	fixed	parameters	to	

estimate.	

A	 version	 of	 this	 model	 was	 introduced	 earlier	 in	 population	 genetics,	 and	

implemented	 in	 the	 software	 Structure	 (Pritchard	 et	 al.,	 2000).	 In	 the	 context	 of	

population	 genetics,	 each	 sample	 is	 an	 individual,	 each	 class	 is	 a	 population,	 and	

observations	 consist	 in	 the	 alleles	 found	 at	 a	 number	 of	 loci	 in	 each	 individual.	 As	 a	

consequence,	the	model	exhibits	a	few	minor	differences	compared	to	that	of	Holmes	et	

al.	(2012).	Since	there	are	L	observed	loci	per	individual,	each	class	k	is	not	defined	by	

one	distribution,	but	by	L	distributions	𝝓𝒌,𝒍 = 𝜙!
!,!

!∈ !,!!
	over	the	𝑆! 	possible	alleles	at	

locus	l,	each	of	these	distributions	having	Dirichlet	prior.	Moreover,	only	one	categorical	

draw	 from	𝝓𝒌,𝒍	is	 observed	 at	 each	 locus	 in	 each	 individual,	 instead	 of	 a	multinomial	

sample.	
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Figure	 10.	 Valle	 et	 al.	 (2014)	 applied	 Latent	 Dirichlet	 Allocation	 to	 identify	 forest	 tree	
assemblages	 in	 the	Eastern	United	States,	based	on	 tree	census	data	 from	34,174	 forest	plots.	
Maps	 show	 the	 relative	 proportion	 of	 each	 of	 the	𝐾 = 11	LDA	 classes	 in	 each	 forest	 plot.	
Adapted	from	Valle	et	al.	(2014).	

	

In	 the	 same	 paper,	 Pritchard	 et	 al.	 (2000)	 proposed	 a	 second	 slightly	 more	

sophisticated	model,	which	includes	the	possibility	of	admixture	between	populations.	

This	 is	 achieved	 by	 relaxing	 the	 assumption	 that	 each	 individual	m	 originates	 from	 a	

single	 population,	 and	 by	 assuming	 instead	 that	 it	 originates	 from	 a	 mixture	 of	 K	

populations	with	individual-specific	weights	𝜽𝒎 = 𝜃!! !∈ !,! .	As	in	the	model	without	

admixture,	 the	 K	 populations	 are	 each	 defined	 by	 a	 single	 set	 of	 L	 distributions	𝝓𝒌,𝒍	

across	the	dataset.	Thus,	each	observed	allele	is	the	result	of	a	categorical	draw	from	the	
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Figure 4 Spatial and temporal patterns for tree plots in Eastern United States. Panel (a) depicts the spatial distribution of the proportion of each
component community. Each subpanel corresponds to a component community (numbers in the lower right corner, see Table S1) except for the colour key
in the lower right. Panel (b) shows temporal patterns of relative abundance of the oak community in Minnesota (left subpanels) and Indiana (right
subpanels). Upper subpanels show the relative abundance of community 4 in earlier and current forest inventories (numbers in red are the proportion of
plots indicating a decline in relative abundance). Lower subpanels show the spatial distribution of this decline, based on an inverse-distance weighted
interpolation. Data from Minnesota refer only to re-measured plots while data from Indiana were grouped into latitude–longitude bins because no plots
were re-measured. Only bins with at least four plots in 1998 and 2008–2012 are used.
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individual-specific	 weights	𝜽𝒎 ,	 followed	 by	 a	 second	 categorical	 draw	 from	 the	

population-specific	and	locus-specific	weights	𝝓𝒌,𝒍.	Another	version	of	this	model	with	

admixture	 was	 independently	 proposed	 under	 the	 name	 ‘Latent	 Dirichlet	 Allocation’	

(LDA)	 by	 Blei	 et	 al.	 (2003)	 in	 the	 field	 of	 natural	 language	 processing,	 a	 subfield	 of	

machine	learning,	to	address	the	problem	of	‘topic	modelling’.	In	this	context,	the	aim	of	

the	model	 is	 to	 decompose	 text	 documents	 into	 topics	 based	 on	 their	 word	 content.	

Each	 class	 or	 topic	k	 is	 defined	 by	 its	 distribution	𝝓𝒌 = 𝜙!! !∈ !,!
	over	 the	S	 distinct	

words	 observed	 in	 the	 whole	 text	 corpus,	 and	 each	 document	m	 is	 a	 mixture,	 with	

document-specific	weights	𝜽𝒎,	of	multinomial	samples	from	these	distributions.	

This	 model	 with	 admixture	 has	 proved	 very	 successful	 and	 has	 been	

subsequently	 extended,	 both	 in	 its	 population	 genetics	 version	 (Falush	 et	 al.,	 2003,	

2007;	Hubisz	et	al.,	2009)	and	in	its	topic	modelling	version	(Griffiths	&	Steyvers,	2004;	

Rosen-Zvi	et	al.,	2004;	Teh	et	al.,	2006;	Blei,	2012).	The	latter	(LDA)	has	been	applied	to	

a	wide	range	of	domains	pertaining	to	machine	learning	where	its	ability	to	handle	large	

and	complex	datasets	has	been	praised,	including	satellite	image	processing	(Vaduva	et	

al.,	 2013),	 bioinformatics	 (Liu	 et	 al.,	 2010),	 fraud	 detection	 in	 telecommunications	

(Olszewski,	 2012)	 and	 social	 sciences	 (Mauch	 et	 al.,	 2015).	 In	 particular,	 it	 has	 been	

recently	 applied	 to	 spatially	 and	 temporally	 explicit	 forest	 tree	 composition	 data	 in	

ecology,	 where	 its	 ability	 to	 decompose	 samples	 into	 classes	 learnt	 over	 the	 whole	

dataset	allows	for	capturing	smooth	spatial	and	temporal	gradients	across	the	samples	

(cf.	Fig.	10;	Valle	et	al.,	2014).	Related	models	have	also	been	applied	to	the	detection	of	

different	 source	 environments	 in	 microbial	 community	 samples,	 with	 a	 focus	 on	

supervised	 inference:	 Knights	 et	 al.	 (2011)	 applied	 this	 approach	 to	 the	 detection	 of	

contamination	 in	 a	medical	 environment,	while	 Shafiei	et	al.	 (2015)	proposed	a	more	

sophisticated	 two-layer	 model,	 where	 each	 class	 is	 itself	 a	 mixture	 of	 higher-level	

classes.	

As	in	the	case	of	neutral	models,	a	limitation	of	Dirichlet-multinomial	models	is	

that	 the	 number	 of	 classes	must	 be	 specified	 in	 advance.	 A	 number	 of	methods	 have	

been	used	to	help	select	 the	number	of	classes	(Airoldi	et	al.,	2010).	Nevertheless,	 the	

most	 rigorous	 approach	 is	 to	 design	 a	 model	 with	 a	 potentially	 infinite	 number	 of	
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classes,	an	approach	referred	to	as	‘nonparametric	Bayesian’,	since	the	size	of	the	model	

is	 not	 fixed	 in	 advance	 by	 a	 parameter.	 This	 can	 be	 achieved	 by	 setting	 a	 Dirichlet	

process	prior	over	the	mixture	weights,	since	the	Dirichlet	process	is,	like	the	Dirichlet	

distribution,	conjugate	 to	 the	categorical	and	multinomial	distributions	(Crane,	2016).	

This	amounts	to	making	the	number	K	of	classes	tend	toward	infinity.	

In	 the	 infinite-dimensional	 extension	 of	 the	 model	 without	 admixture,	 the	

mixture	 weights	𝜽 = 𝜃! !∈ℕ∗ 	over	 classes	 follow	 a	 Dirichlet	 process	 of	 uniform	 base	

distribution	over	class	labels,	while	each	class	k	 is	defined	as	in	the	finite-dimensional	

case	 by	 its	 distribution	𝝓𝒌 = 𝜙!! !∈ !,!
	over	 the	 S	 possible	 observations	 (Teh	 et	 al.,	

2006).	In	the	model	with	admixture	however,	a	hierarchical	Dirichlet	process	needs	to	

be	 defined.	 Indeed,	 if	 an	 independent	 Dirichlet	 process	 of	 uniform	 base	 distribution	

were	to	be	assigned	in	each	sample	m	as	a	prior	to	the	mixture	weights	𝜽𝒎 = 𝜃!! !∈ℕ∗ ,	

two	documents	would	not	have	any	class	in	common.	Thus,	in	the	infinite-dimensional	

extension	 of	 the	 model	 with	 admixture,	 the	 mixture	 weights	𝜽𝒎	in	 each	 sample	 m	

originate	 from	 a	 Dirichlet	 process	 of	 base	 distribution	𝜷 	over	 classes,	 while	 the	

distribution	𝜷	follows	 itself	a	Dirichlet	process	of	uniform	base	distribution	over	class	

labels	 (Teh	 et	 al.,	 2006).	 Likewise,	 two	 local	 communities	 in	 the	 infinite-dimensional	

approximation	of	Hubbell’s	neutral	model	would	not	have	any	species	in	common	if	not	

for	the	hierarchical	Dirichlet	process	construction	(cf.	section	III.4).		
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IV. Objectives	and	outline	

	

 Objectives	1.

	

Most	of	Earth’s	biodiversity	is	concentrated	in	a	few	hyperdiverse	ecosystems,	such	as	

tropical	forests.	Yet,	the	mechanisms	that	permit	the	coexistence	of	such	a	large	number	

of	species	are	not	fully	understood.	In	particular,	the	relative	influence	of	deterministic	

niche	 processes	 and	 stochastic	 dispersal	 limitation	 has	 long	 been	 debated.	 One	

approach	 to	 address	 this	 question	 is	 through	 the	 study	 of	 integrative	 biodiversity	

patterns,	 such	 as	 the	 distribution	 of	 species	 abundances	 and	 the	 turnover	 of	 species	

composition	through	space.	At	a	time	when	human	activities	threaten	both	biodiversity	

and	 the	 associated	 ecosystems,	 a	 better	 understanding	 of	 these	 patterns	 and	 of	 the	

underlying	mechanisms	is	much	needed.		

A	major	obstacle	lies	in	the	difficulty	to	measure	biodiversity.	Indeed,	it	has	long	

relied	on	direct	human	observation.	However,	recent	technological	advances	now	make	

automated	data	collection	possible,	which	could	alleviate	this	problem.	Environmental	

DNA	 sequencing	 is	 especially	 promising	 for	 improving	 our	 understanding	 of	

biodiversity	 patterns.	 Indeed,	 it	 eases	 and	 standardizes	 the	 measurement	 of	

biodiversity,	 increases	 the	 amount	 of	 available	 data	 by	 orders	 of	 magnitude,	 and	

dramatically	expands	the	range	of	accessible	taxa.	In	particular,	it	allows	for	taking	into	

account	microbial	diversity,	arguably	the	‘hidden	part	of	the	biodiversity	iceberg’.	

Nevertheless,	taking	advantage	of	this	new	type	of	data	is	challenging.	First,	the	

range	of	information	types	that	can	be	collected	is	restricted,	in	that	no	complementary	

measurements,	such	as	size	for	instance,	can	be	made	on	organisms.	In	most	cases,	even	

taxonomic	 information	 is	 relatively	 imprecise	owing	 to	 the	 lack	of	 reference	database	

for	 the	 retrieved	 DNA	 sequences.	 Thus,	 inference	 is	 mostly	 based	 on	 patterns	 of	

unidentified	 OTUs.	 Second,	 because	 observations	 are	 indirect	 and	 noisy,	 their	

interpretation	 is	not	as	 straightforward	as	 in	 the	case	of	direct	 censuses	of	 individual	
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organisms.	 Third,	 the	 high	 diversity	 of	 microbial	 communities	 makes	 for	 large	 and	

sparse	datasets,	to	which	existing	statistical	approaches	are	not	well	suited.	

The	overarching	goal	of	 this	 thesis	was	 to	 investigate	how	environmental	DNA	

sequencing,	 and	 more	 generally	 the	 automated	 collection	 of	 ecological	 data,	 could	

contribute	 to	 our	 understanding	 of	 biodiversity	 patterns	 and	 of	 their	 underlying	

mechanisms.	This	work	was	motivated	by	two	observations.	First,	theoretical	models	in	

ecology	are	for	the	most	part	not	oriented	toward	comparison	with	data,	and	when	they	

are,	as	in	the	case	of	Hubbell’s	neutral	model,	they	are	centred	on	individual	organisms,	

which	 hampers	 their	 comparison	 to	 environmental	 DNA	 data.	 Second,	 existing	

statistical	methods	in	ecology	have	limitations	in	their	ability	to	tackle	such	data.	Thus,	

this	work	has	an	important	methodological	component.	A	second	goal	of	this	thesis	was	

to	apply	 the	developed	approaches	 to	soil	DNA	data	collected	 in	 the	 forests	of	French	

Guiana,	 so	 as	 to	 better	 understand	 community	 assembly	 in	 tropical	 forests.	 This	

includes	a	dataset	that	was	collected	as	part	of	this	thesis.	

	

 Outline	2.

	

The	 first	 chapter	 addresses	 the	 issue	 of	 measuring	 beta	 diversity	 patterns	 from	

environmental	DNA	data,	 and	of	 using	 these	patterns	 to	disentangle	dispersal-limited	

and	niche-based	processes	across	the	different	domains	of	life.	To	this	end,	a	soil	DNA	

dataset	was	collected	in	French	Guiana,	in	forest	plots	that	are	approximately	regularly	

spaced	on	a	 logarithmic	 scale.	A	 range	of	 soil	properties	was	also	measured	 from	 the	

soil	 samples.	 Three	 approaches	 are	 compared:	 distance-based	 analyses	 using	

dissimilarity	metrics,	 raw-data	 analyses	 using	multivariate	 ordination,	 and	 fitting	 the	

neutral	 prediction	 for	 the	 decay	 of	 taxonomic	 similarity	 with	 distance.	 These	

approaches	 are	 typical	 of	 those	 used	 to	 analyse	 classical	 biodiversity	 census	 data.	 In	

addition,	the	effect	on	human	disturbance	through	logging	is	assessed,	based	on	a	more	

limited	number	of	plots	presenting	a	gradient	of	logging	intensities.		
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The	second	chapter	focuses	on	species	abundance	distributions	measured	from	

environmental	DNA	data,	and	addresses	 the	problem	of	comparing	 this	pattern	 to	 the	

prediction	 of	 Hubbell’s	 neutral	 model.	 Indeed,	 it	 was	 unknown	 to	 what	 extent	 this	

pattern	may	 remain	 informative	 in	 spite	of	 the	potential	noise.	 Simulation	 results	 are	

presented,	 that	 quantify	 how	 the	 estimates	 of	 the	 neutral	 diversity	 and	 dispersal	

parameters	 are	 biased	 when	 inferred	 from	 environmental	 DNA	 data.	 A	 benchmark	

dataset	of	limited	extent	is	used	to	assess	the	level	of	noise	that	is	to	be	expected	in	real	

data.	

Like	 the	 first	 chapter,	 the	 third	 chapter	 discusses	 spatial	 patterns	 in	

environmental	DNA	data,	 but	 it	proposes	an	approach	differing	 from	 those	 classically	

followed	 in	 ecology.	 It	 investigates	 the	 potential	 of	 a	model-based	 statistical	method,	

Latent	 Dirichlet	 Allocation,	 to	 decompose	 the	 data	 into	 assemblages	 of	 spatially	 co-

occurring	 OTUs.	 In	 addition,	 a	 method	 is	 proposed	 to	 measure	 the	 stability	 of	 the	

decomposition.	The	approach	is	tested	through	simulations,	and	by	applying	it	to	a	large	

soil	DNA	dataset.	This	dataset	 follows	a	regular	spatial	sampling	scheme	over	a	 forest	

plot,	and	was	collected	in	French	Guiana	before	the	start	of	this	thesis.	The	insights	on	

soil	community	structure	provided	by	the	approach	are	discussed,	making	use	of	Lidar	

measurements	of	environmental	features.	

Finally,	 the	 discussion	 provides	 a	 synthesis	 of	 the	 results,	 and	 discusses	 the	

perspectives	arising	from	this	thesis.		
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Chapter	outline	

Beta	diversity	patterns,	i.e.	how	taxonomic	composition	shifts	through	space,	have	long	

been	 used	 to	 infer	 the	 mechanisms	 of	 community	 assembly.	 Indeed,	 depending	 on	

whether	 taxonomic	 composition	 covaries	 with	 environmental	 conditions	 or	 with	

geographical	 distance,	 it	 can	 be	 inferred	 whether	 community	 assembly	 is	 driven	 by	

deterministic	 niche	 processes	 or	 by	 neutral	 dispersal	 limitation.	 In	 this	 chapter,	 this	

reasoning	is	applied	to	a	soil	DNA	dataset	collected	in	various	1-ha	forest	plots	in	French	

Guiana,	for	a	range	of	barcodes	spanning	most	of	the	tree	of	life.	To	enable	both	types	of	

processes	to	be	distinguished,	the	sampled	plots	cover	a	range	of	soil	types	as	well	as	a	

range	of	inter-plot	distances.	Inter-plot	distances	are	approximately	regularly	spaced	on	

a	logarithmic	scale,	so	as	to	better	assess	the	effect	of	dispersal	limitation	on	taxonomic	

composition.	Indeed,	neutral	dispersal	limitation	is	predicted	to	yield	a	linear	decrease	

of	 taxonomic	similarity	with	 log-distance.	As	a	side	question,	 the	effect	of	past	 logging	

activities	on	soil	biodiversity	is	assessed	based	on	a	set	of	disturbed	forest	plots.	

	 	



	

	

	
Chapter	1	–	DNA-based	Beta	Diversity	

	

	 	

71	

Abstract	

Disentangling	the	processes	that	cause	the	assembly	of	ecological	communities	is	a	key	

challenge,	 and	 these	 include	 both	 stochastic	 (neutral)	 processes	 and	 deterministic	

niche	 filtering.	 Progress	 in	 biodiversity	 assessment	 using	 environmental	 DNA	 now	

streamlines	 the	 study	of	biodiversity	patterns	 across	domains	of	 life.	Using	 soil	DNA	

samples,	we	quantified	the	causes	of	variation	in	beta	diversity	patterns	across	major	

taxonomic	 groups	 in	 the	 lowland	 tropical	 forest	 of	 French	 Guiana	 on	 a	 spatial	 scale	

ranging	 from	 40	 m	 to	 140	 km,	 for	 a	 range	 of	 soil	 physico-chemical	 properties.	 We	

quantified	the	respective	 influence	of	soil	conditions,	dispersal	 limitation,	and	human	

disturbances	 on	 beta	 diversity.	 In	 undisturbed	 forest	 plots,	 we	 found	 that	 the	 beta	

diversity	 of	 bacteria	 and	 protists	 was	 primarily	 driven	 by	 soil	 conditions,	 while	 the	

observed	patterns	in	plants,	and	to	a	lesser	extent	in	annelids,	were	best	explained	by	

dispersal	 limitation.	 Both	 factors	 had	 an	 effect	 on	 fungi,	 arthropods	 and	 insects,	

whereas	we	could	not	detect	 influence	of	either	factor	on	nematodes	and	flat	worms.	

This	 analysis	 was	 consistent	 with	 a	 comparison	 of	 our	 data	 to	 the	 similarity	 decay	

predicted	 by	 the	 neutral	 theory	 of	 biodiversity.	 These	 results	 suggest	 that	 spatial	

patterns	 of	 plant	 biodiversity	 across	 the	 Amazon	 do	 not	 necessarily	 extend	 to	 other	

taxonomic	groups,	 and	 that	 environmental	 factors	play	a	 foremost	 role	 in	 explaining	

these	patterns	in	tropical	soils.		Along	the	disturbance	gradient,	we	found	a	significant	

shift	 in	 taxonomic	 composition	 in	 two	 functionally	 important	 groups,	 plants	 and	

annelids,	a	smaller	effect	on	fungi,	and	no	effect	in	the	other	groups.	
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Introduction	

	 	

Beta	 diversity	 describes	 the	 turnover	 of	 taxonomic	 composition	 through	 geographical	

and	 environmental	 space,	 and	 yields	 insight	 into	 the	 mechanisms	 of	 community	

assembly	(Whittaker,	1960,	1972;	Rosenzweig,	1995;	Gaston	&	Blackburn,	2008).	As	a	

measure	of	the	spatial	variability	of	taxonomic	composition,	it	may	be	broadly	defined	as	

the	difference	or	 ratio	between	regional	 (gamma)	diversity	and	 local	 (alpha)	diversity	

(Whittaker,	 1960;	 Chao	 et	 al.,	 2012).	 This	 has	 important	 practical	 implications	 for	

biodiversity	estimates	and	conservation	(Basset	et	al.,	2012;	Hubbell,	2013;	ter	Steege	et	

al.,	2013;	Socolar	et	al.,	2017).		

The	 extent	 of	 beta	 diversity	 and	 its	 causal	 mechanisms	 are	 dependent	 on	 the	

spatial	 scale	 at	 which	 taxonomic	 turnover	 is	 considered	 (Soininen	 et	 al.,	 2007).	 Beta	

diversity	is	often	quantified	within	a	biogeographic	region,	so	that	it	is	not	caused	by	a	

large	climatic	difference	or	a	different	biogeographic	history	between	stations	(Kreft	&	

Jetz,	2010).	Variation	in	beta	diversity	can	be	ascribed	to	two	types	of	processes:	niche-

based	processes,	when	abiotic	 and	biotic	 environmental	heterogeneity	determines	 the	

spatial	distribution	of	taxa	based	on	their	phenotypic	differences,	and	neutral	processes,	

when	 turnover	 in	 taxonomic	 composition	 results	 from	 demographic	 stochasticity	

combined	with	limited	dispersal	(Leibold	et	al.,	2004).	However,	because	environmental	

differences	tend	to	also	be	spatially	structured,	both	types	of	processes	are	often	difficult	

to	disentangle	(Gilbert	&	Lechowicz,	2004).	

One	frontier	in	the	study	of	beta	diversity	is	that	it	has	most	often	been	restricted	

to	a	single	taxonomic	group,	and	especially	forest	trees	(Whittaker,	1960,	1972;	Nekola	

&	White,	1999;	Condit	et	al.,	 2002),	 amphibians	 (Baselga	et	al.,	 2012),	 and	arthropods	

(Harrison	 et	 al.,	 1992;	 Novotny	 et	 al.,	 2007;	 Hortal	 et	 al.,	 2011),	 and	 freshwater	 taxa	

(Cottenie,	 2005).	 Studies	 that	 have	 attempted	 to	 compare	 patterns	 of	 beta	 diversity	

across	taxa	are	scarce	(but	see	Harrison	et	al.,	1992).	This	 is	 largely	because	the	effort	

needed	 to	 coordinate	 inventories	 of	 biological	 diversity	 across	 taxa	 is	 enormous,	 and	

increases	 dramatically	 for	 smaller-bodied	 taxa	 (Lawton	 et	 al.,	 1998).	 DNA-based	

methods	 have	 lifted	 this	 constraint	 and	 they	 have	 dramatically	widened	 the	 range	 of	
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taxa	for	which	diversity	patterns	can	be	measured.	Instead	of	collecting	organisms	and	

assigning	 them	 a	 taxon	 label	 based	 on	 observation	 and	 on	 expert	 knowledge,	

identification	is	based	on	minute	amounts	of	biological	material	and	on	the	sequencing	

of	 universal	 DNA	 amplicons	 (DNA	 barcodes),	 a	 method	 first	 developed	 for	

microorganisms	 (Pace,	 1997).	 This	 method	 has	 been	 extended	 to	 rapid	 taxonomic	

surveys:	bulk	DNA	is	extracted	from	environmental	samples	and	DNA	is	amplified	using	

universal	 primers,	 then	 sequenced	 (Taberlet	 et	 al.,	 2012,	 Yu	 et	 al.	 2012).	 This	

environmental	 DNA	 approach	 to	 biological	 diversity	 inventory	 aims	 at	 detecting	 the	

presence	 of	 cells	 or	 of	 extracellular	 DNA	 for	 a	 range	 of	 taxa	 in	 a	 sample.	 Such	 an	

approach	is	in	principle	applicable	to	any	taxonomic	group	in	the	tree	of	life	(Bahram	et	

al.,	 2013;	 Schuldt	et	al.,	 2015;	 Siles	&	Margesin,	 2016;	Vincent	et	al.,	 2016).	 Since	 it	 is	

possible	to	normalize	the	DNA	extraction	and	sequencing	procedures	for	many	samples	

at	once,	such	an	approach	is	suited	to	the	exploration	of	beta	diversity	patterns.		

We	 expect	 that	 smaller	 organisms	 with	 short	 generation	 times	 display	 higher	

beta	 diversity	 at	 short	 spatial	 scale,	 i.e.	 over	 a	 few	 meters,	 than	 larger	 organisms,	

because	they	are	 locally	 filtered	by	environmental	heterogeneity	(Ramirez	et	al.,	2014;	

Mariadassou	et	al.,	2015).	Conversely,	the	beta	diversity	of	small	organisms	is	predicted	

to	 be	 less	 dependent	 on	 distance	 compared	 to	 large	 organisms,	 owing	 to	 their	 higher	

dispersal	ability	(Soininen	et	al.,	2007).	Thus,	we	expect	the	spatial	distribution	of	small	

organisms	to	be	primarily	governed	by	niche	effects,	while	we	expect	large	organisms	to	

better	 comply	 with	 distance-limited	 neutral	 dynamics	 (Hubbell,	 2001;	 Martiny	 et	 al.,	

2011).	These	predictions	have	direct	implications	for	the	maintenance	of	biodiversity	in	

disturbed	landscapes.	Organisms	with	higher	dispersal	abilities	should	be	found	even	in	

heavily	disturbed	habitats.	On	the	other	hand,	slow	dispersers	should	be	more	affected	

by	disturbances,	and	would	also	take	longer	to	recolonize	habitats	after	abandonment.		

In	this	study,	we	compare	soil	beta	diversity	patterns	across	domains	of	life	in	a	

lowland	 tropical	 rainforest.	 We	 collected	 soil	 samples	 at	 locations	 separated	 by	 a	

geographical	 distance	 ranging	 from	 40	m	 to	 140	 km,	 and	 spanning	 a	 variety	 of	 soil	

types,	which	we	 quantified,	 as	well	 as	 a	 range	 of	 human	disturbance	 intensities.	We	

targeted	 taxonomic	 groups	 using	 barcodes	 with	 different	 levels	 of	 taxonomic	

resolution,	which	allowed	us	to	test	the	robustness	of	the	observed	patterns.	We	thus	

address	 the	 following	 questions:	 1)	 What	 is	 the	 relative	 importance	 of	 dispersal	
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limitation	 and	 environmental	 filtering	 in	 explaining	 beta	 diversity	 across	 taxonomic	

groups?	 2)	 How	 good	 a	 fit	 is	 the	 dispersal-limited	 neutral	 theory	 for	 the	 various	

taxonomic	groups?	3)	How	does	beta	diversity	depend	on	forest	disturbance	by	logging	

activities?	Finally,	we	explore	the	 implications	of	our	 findings	 for	community	ecology	

and	for	the	conservation	of	tropical	forest	ecosystems.	
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Methods	

	

 Sampling	scheme	1.

	

We	sampled	fifteen	1-ha	plots	in	the	undisturbed	lowland	rain	forest	of	French	Guiana,	

to	 which	 we	 added	 four	 1-ha	 plots	 in	 disturbed	 habitats	 (see	 below).	 Geographical	

distances	 between	 plots	 in	 pristine	 forest	 are	 approximately	 regularly	 spaced	 on	 a	

logarithmic	scale.	This	choice	was	motivated	by	the	expectation	of	a	linear	relationship	

between	 taxonomic	 similarity	 and	 log-distance	 in	 a	 spatially	 explicit	 neutral	 model	

(Chave	 &	 Leigh,	 2002).	 Twelve	 plots	 are	 located	 at	 the	 Nouragues	 research	 station	

(about	100	km	inland;	latitude	4°	5’	17"	N	and	longitude	52°	40’	48"	W;	Bongers	et	al.,	

2001),	and	three	at	the	Paracou	research	station	(near	the	coast;	 latitude	5°	18′	N	and	

longitude	52°	53′	W;	Gourlet-Fleury	et	al.	2004);	see	Fig.	1	for	locations.	All	plots	consist	

of	terra	firme	forest,	but	cover	a	range	of	soil	types	(see	below).		

In	addition	 to	 sampling	plots	 in	undisturbed	 forest,	we	also	sampled	areas	 that	

have	undergone	disturbances	of	different	intensities.	At	Paracou,	some	plots	have	been	

experimentally	 logged	 at	 several	 logging	 intensities	 starting	 in	 1986	

(https://paracou.cirad.fr/experimental-design).	 In	 the	 two	heaviest	 logging	 treatments	

(T2	and	T3),	33-56%	of	the	aboveground	biomass	was	lost	due	to	the	felling	operations.	

Eighteen	years	after	logging,	the	impact	of	logging	activities	was	still	visible.	We	sampled	

two	contiguous	1-ha	plots	in	one	of	the	most	heavily	impacted	areas	(P12	plot).	We	also	

sampled	 two	 contiguous	 1-ha	 plots	 in	 a	 25-ha	 area	 (Arbocel	 plot)	 14	 km	 away	 from	

Paracou,	that	was	fully	clear-cut	in	1976	and	left	regenerating	since	then.		

Within	each	1-ha	plot,	we	collected	eighty	soil	samples	of	about	30	g	each	with	an	

auger	 from	 the	mineral	 soil	 horizon	 (~10	 cm	deep)	 along	 a	 square	 grid.	 To	minimize	

sampling	bias	and	coarsen	the	spatial	grain,	we	pooled	soil	samples	five	by	five	following	

a	cross-shaped	pattern	about	15	meters	across,	with	one	sample	at	the	centre	and	four	

samples	 in	 the	 corners	 (Fig.	 2).	 This	 resulted	 in	 sixteen	 pooled	 samples	 per	 plot.	We	

extracted	 DNA	 from	 about	 10	 g	 of	 soil	 per	 pooled	 sample	 within	 a	 few	 hours	 after	
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sample	 collection,	 using	 the	 protocol	 described	 in	 Zinger	 et	al.	 (2016).	 The	 remaining	

soil	was	dried	for	subsequent	analyses	of	soil	properties.	

	

	
	

Figure	1:	Sampling	scheme.	Relative	position	of	all	sampled	1-ha	forest	plots,	in	(A)	Paracou,	
and	 (B)	 Nouragues;	 (C)	 relative	 position	 of	 the	 Paracou,	 Arbocel,	 and	 Nouragues	 sites.	
Undisturbed	plots	are	in	red	and	the	four	disturbed	plots	(two	in	Paracou	and	two	in	Arbocel)	in	
yellow.	 In	 Nouragues,	 PP	 and	 GP	 denote	 respectively	 the	 Petit	 Plateau	 and	 Grand	 Plateau	
permanent	monitored	plots,	and	‘GP-liana’	denotes	the	L18	subplot	in	Grand	Plateau.	

	

DNA	 amplification	 and	 sequencing	 yielded	 read	 counts	 for	 Operational	

Taxonomic	Units	(OTUs)	at	sixteen	sites	per	plot	(see	below).	We	further	pooled	these	

samples	 four	 by	 four	 by	 averaging	 relative	 OTU	 abundances,	 so	 as	 to	 obtain	 one	

sampling	point	per	0.25-ha	plot	(Fig.	2).	We	defined	the	distance	between	two	sampling	

points	 as	 the	 distance	 between	 the	 centres	 of	 the	 two	 sets	 of	 pooled	 samples.	 Some	

samples	were	 removed	 from	 the	dataset	owing	 to	 insufficient	PCR	yields	 (see	below);	

hence	some	sampling	points	have	fewer	than	four	samples	or	are	missing.		
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Soil	samples	were	also	pooled	 four	by	 four	 to	obtain	a	single	composite	sample	

per	0.25-ha	subplot.	For	each	pooled	soil	sample,	twelve	measurements	were	made	from	

about	60	g	of	dry	soil.	Granulometry	distinguished	the	clay	(0-2	µm),	silt	(2-63	µm)	and	

sand	fractions	(63-2000	µm).	The	pH	of	soil	in	water	solution	was	measured,	as	well	as	

total	 carbon	 (C)	 and	nitrogen	 (N)	mass	 fractions.	 The	mass	 fraction	 of	 plant-available	

phosphorus	 (P2O5)	 was	 measured	 using	 the	 Olsen	 extraction	 method.	 Lastly,	 a	 BaCl2	

extraction	was	performed	and	the	concentration	of	major	elements	was	measured	using	

ICPMS	(Ca,	Mg,	K,	Fe,	Mg,	and	Al).	

	

 Molecular	and	sequence	analyses	2.

	

We	amplified	five	barcodes	by	PCR	from	soil	samples,	targeting	bacteria	(16S	rRNA	gene	

V5-V6	regions;	Fliegerova	et	al.,	2014),	eukaryotes	(18S	rRNA	gene	v7	region;	Guardiola	

et	al.,	2015),	Viridiplantae	(chloroplastic	trnL-P6	loop;	Taberlet	et	al.,	1991),	fungi	(ITS1)	

and	 insects	 (mitochondrial	 16S	 rRNA;	 Clarke	 et	 al.,	 2014).	 Each	 soil	 sample	 was	

amplified	 thrice	 independently	by	PCR,	 following	 the	 same	protocol	 as	 in	Zinger	et	al.	

(2017).	 	 Amplicons	were	 labelled	with	 a	 distinct	 nucleotide	 tag	 for	 each	 PCR,	 and	 six	

sequencing	libraries,	one	per	barcode,	were	prepared.	Sequencing	was	carried	out	using	

paired-end	 Illumina	 sequencing	 (MiSeq	 2x250	 for	 16S	 bacteria,	 16S	 insects	 and	 ITS	

fungi;	 HiSeq	 2x100	 for	 18S	 eukaryotes	 and	 trnL	 plants).	 Negative	 PCR	 controls	 were	

included	 in	 the	protocol	 to	 help	detect	 contaminants.	 The	PCRs	 that	 yielded	 less	 than	

1,000	reads	were	discarded	from	subsequent	analyses.	

Data	 analyses	were	 conducted	 as	 in	Zinger	et	al.	 (2017).	 Sequencing	data	were	

curated	 using	 the	 OBITools	 package	 (Boyer	 et	 al.,	 2016):	 paired-end	 reads	 were	

assembled,	 dereplicated,	 and	 low-quality	 sequences	 were	 excluded.	 The	 resulting	

sequences	were	clustered	into	OTUs	using	the	Infomap	algorithm	(Rosvall	et	al.,	2009),	

with	a	dissimilarity	threshold	of	three	mismatches	and	exponentially	decreasing	weights	

on	edges.	OTUs	represented	by	a	single	sequence	were	removed,	and	the	most	abundant	

sequence	 in	 the	 cluster	was	 taken	 to	 be	 the	 true	 sequence.	 Taxonomic	 identifications	

were	 assigned	 to	 OTUs	 using	 the	 ecotag	 program	 in	 the	 OBITools	 package	 based	 on	

Genbank	and	SILVA	databases	(Zinger	et	al.,	2017).	OTUs	with	less	than	75%	similarity	
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to	 any	 reference	 sequence	 were	 removed,	 as	 well	 as	 those	 with	 a	 taxonomic	

identification	 outside	 of	 the	 taxonomic	 group	 targeted	 by	 the	 barcode.	 Further	 steps	

were	 taken	to	minimize	 the	number	of	contaminant	OTUs	as	described	 in	Zinger	et	al.	

(2017).	 Rare	OTUs	were	 not	 removed,	 and	 only	 the	 relative	OTU	 abundances	 in	 each	

sample	were	used	for	further	analyses.	

	

	

Figure	 2:	 Sampling	 scheme	 in	 each	 1-ha	 forest	 plot.	 In	 each	 of	 the	 nineteen	plots	 (fifteen	
undisturbed	and	four	disturbed),	eighty	soil	samples	were	collected	(open	and	full	black	circles),	
and	 were	 pooled	 five	 by	 five	 (small	 dashed	 crosses).	 After	 conducting	 the	 molecular	 and	
sequence	analyses	on	the	sixteen	pooled	samples	(full	black	circles),	results	were	pooled	four	by	
four	(large	dashed	cross),	and	statistical	analyses	were	performed	on	the	resulting	four	effective	
sampling	points	(open	squares).	The	sixteen	pooled	soil	samples	were	also	directly	pooled	four	
by	four	for	conducting	soil	analyses.	

	

Taxonomic	 identifications	 for	 the	 eukaryote	 18S	 marker	 were	 used	 to	 assign	

OTUs	 to	 sub-clades	 (Table	 S1):	 arthropods,	 insects,	 annelids,	 nematodes,	 flat	 worms	

(Platyhelminthes),	 protists,	 fungi,	 and	 plants	 (Viridiplantae).	 The	 18S	 marker	 was	
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compared	with	more	specific	markers	for	fungi,	plants,	and	insects	(ITS1,	trnL,	and	16S,	

respectively;	 Table	 S1).	 A	 rarefaction	 analysis	 was	 performed	 for	 each	 marker	 by	

sampling	 with	 replacement	 between	 1	 and	 8,000	 reads	 per	 sample	 (Fig.	 S1).	 For	 all	

markers,	the	number	of	OTUs	reached	near	saturation	in	most	samples.	

	

 Statistical	analyses	3.

	

We	 performed	 all	 statistical	 analyses	 in	 R	 using	 the	 ‘vegan’	 package	 (version	 2.4-2,	

available	 at	 https://cran.r-project.org/),	 and	 followed	 the	 guidelines	 of	 Legendre	 &	

Legendre	(2012).	Analyses	were	performed	separately	for	each	taxonomic	group.	

We	performed	a	PCA	on	soil	variables	after	centering	and	normalizing	them	(i.e.,	

subtracting	their	mean	and	dividing	them	by	their	standard	deviation	over	all	sampling	

points).	 Since	 clay,	 silt	 and	 sand	 fractions	 sum	 to	 1,	 they	 yield	 only	 two	 independent	

measurements;	we	chose	to	keep	clay	and	silt	fractions,	as	clay	and	sand	fractions	were	

almost	perfectly	anticorrelated	 (correlation	coefficient	of	 -0.97;	 see	Results,	Table	S3).	

Before	conducting	the	PCA,	we	lumped	Ca,	Mg,	Mn	and	K	concentrations	together	into	a	

single	‘exchangeable	cations’	variable.	In	all	further	analyses,	we	used	the	first	four	PCA	

axes	as	environmental	variables.	

We	 first	 studied	 the	 taxonomic	 dissimilarity	 among	 pairs	 of	 sampled	 locations	

(‘distance-based’	approach).	We	computed	 the	Sorensen	 taxonomic	dissimilarity	 index	

(number	of	non-shared	OTUs	divided	by	number	of	OTUs	in	both	samples),	which	is	one	

possible	measure	of	occurrence-based	beta	diversity	(Koleff	et	al.,	2003).	The	Sorensen	

index	 between	 pairs	 of	 sampling	 points	 was	 regressed	 against	 their	 environmental	

dissimilarity	 and	 against	 the	 logarithm	 of	 their	 geographical	 distance	 (measured	 in	

meters).	The	environmental	dissimilarity	between	two	sampling	points	was	defined	as	

their	Euclidian	distance	with	respect	to	the	four	soil	PCA	axes.	To	test	the	significance	of	

regressions	of	the	Sorensen	index	against	environmental	and	geographical	distances,	we	

performed	 Mantel	 tests	 with	 999	 permutations	 using	 simple	 and	 partial	 Pearson’s	

correlation	coefficients	as	test	statistics	(functions	‘mantel’	and	‘mantel.partial’).			
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Figure	 3.	 Principal	 Component	 Analysis	 of	 soil	 variables	 for	 the	 fifteen	 undisturbed	 plots,	
projected	on	the	first	two	axes	(40%	and	30%	of	total	variance).	‘GP-bottom‘	corresponds	to	the	
lower	half	of	the	GP-O13	plot,	which	belongs	to	a	bottomland.	

	

We	 then	 directly	 compared	 the	 taxonomic	 composition	 of	 sampled	 locations	

using	 canonical	 ordination	 ('raw-data'	 approach;	 Legendre	et	al.,	 2005).	We	 regressed	

the	 OTU	 abundance	 data	 on	 environmental	 and	 spatial	 variables	 using	 Canonical	

Redundancy	 Analysis	 (RDA;	 function	 ‘rda’).	 We	 first	 applied	 the	 Hellinger	

transformation	to	OTU	abundance	data	(i.e.,	square-root	of	the	relative	OTU	abundances	

at	 each	 sampling	 point)	 and	 centred	 them	 per	 OTU	 (i.e.,	 subtracted	 the	 mean	 over	

sampling	points).	We	used	the	six	selected	soil	variables	as	explanatory	environmental	

variables,	after	centring	and	normalization.	We	used	Principal	Coordinates	of	Neighbour	

Matrices	 (PCNM)	 as	 spatial	 explanatory	 variables	 representing	 different	 possible	

patterns	of	spatial	autocorrelation	in	the	data	(Borcard	&	Legendre,	2002;	Borcard	et	al.,	

2004).	 Two	 separate	 PCNM	 decompositions	 were	 performed	 for	 the	 Nouragues	 and	

Paracou	 sites	 (function	 'pcnm';	 Borcard	 &	 Legendre,	 2002),	 i.e.	 in	 each	 site	 we	

performed	 a	 Principal	 Coordinates	 Analysis	 of	 the	 distance	matrix	 between	 sampling	

points,	 after	 setting	 all	 distances	 larger	 than	 a	 threshold	 distance	 to	 four	 times	 this	

threshold	 distance	 (chosen	 as	 the	 minimal	 distance	 required	 to	 connect	 all	 sampling	

points).	 We	 obtained	 seventeen	 PCNM	 variables	 with	 positive	 eigenvalues	 for	

Nouragues,	and	six	for	Paracou.	PCNM	variables	from	both	sites	were	assembled	into	a	
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single	 staggered	 matrix.	 The	 two	 submatrices	 were	 connected	 by	 adding	 a	 ‘dummy’	

variable	 distinguishing	 Nouragues	 and	 Paracou	 sites	 by	 two	 different	 values.	 At	 each	

site,	we	added	UTM	coordinates	(northings	and	eastings)	as	two	additional	explanatory	

variables	after	centring	and	normalization,	so	as	to	account	for	linear	spatial	trends	that	

cannot	be	captured	by	PCNM	variables.	

The	 total	 variance	 of	 taxonomic	 composition	 was	 partitioned	 between	 an	

environmental	 component	 and	 a	 spatial	 component	 (function	 'varpart';	 Borcard	et	al.,	

1992;	 Legendre	 et	 al.,	 2005).	 Two	 RDA-based	 forward	 selections	 of	 environmental	

variables	 and	 spatial	 variables	were	performed	 separately	 (function	 'ordiR2step'	with	

0.05	threshold	p-value	for	adding	a	variable	to	the	model;	Blanchet	et	al.,	2008),	yielding	

two	RDA-based	linear	models.	We	only	proceeded	with	variable	selection	when	the	RDA	

conducted	on	all	variables	was	significant	(p < 0.05;	Blanchet	et	al.,	2008);	when	it	was	

not	for	either	environmental	or	spatial	variables,	we	did	not	partition	the	variance.	

We	 then	 tested	 the	 predictions	 of	 the	 dispersal-limited	 neutral	 theory	 on	 the	

dataset.	Neutral	 processes	 are	predicted	 to	 yield	 a	 decay	of	 taxonomic	 similarity	with	

distance	 in	 the	 absence	 of	 dispersal	 barrier	 (Chave	 &	 Leigh,	 2002).	 We	 used	 here	

𝐹! 𝐴,𝐵 = 𝑝!!𝑝!!!
!!! 	as	 a	measure	 of	 taxonomic	 similarity	 between	 samples	A	 and	B,	

where	𝑝!!	is	the	proportion	of	species	s	in	sample	A,	𝑝!! 	that	in	sample	B,	and	S	the	total	

number	 of	 species.	 Chave	 and	 Leigh	 (2002)	 predicted	 that	 in	 a	 continuous	 spatially	

explicit	 dispersal-limited	neutral	model	with	 spatial	 density	 of	 individuals	𝜌,	 dispersal	

parameterized	by	a	Gaussian	kernel	with	variance	𝜎!,	 and	a	 rate	of	 apparition	of	new	

species	 equal	 to	𝜈, 𝐹! 𝐴,𝐵 	depends	 only	 on	 the	 pairwise	 distance	𝑟	between	 samples,	

and	 can	 be	 expressed	 as	𝐹! 𝑟 = − 𝑎 ln 𝑟 +𝑏,	 with	𝑏 𝑎 = ln 2𝜈 2𝜎 + 𝛾	(where	𝛾	is	

Euler’s	 constant)	 and	1 𝑎 = 𝜌𝜋𝜎! − ln 𝜈 /2 	(cf.	 Appendix).	 We	 measured	𝐹! 	among	

pairs	of	sampling	points,	regressed	it	against	the	log-transformed	geographical	distance	

ln 𝑟 ,	 and	 assessed	 significance	 by	Mantel	 test	 for	 999	 permutations,	 using	 Pearson’s	

correlation	coefficient	as	test	statistics.	The	mean	dispersal	distance	per	generation	 2𝜎	

can	be	obtained	provided	that	an	estimate	of	𝜌	is	available.	For	plants,	we	assumed	that	

most	 of	 DNA	 retrieved	 came	 from	 tree	 species,	 and	 that	 the	 forest	 holds	 500	mature	

trees	(≥	10	cm	dbh)	per	hectare,	i.e.	𝜌 = 0.05 m!!,	which	is	close	to	observed	densities	
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(see	Condit	et	al.	2002).	We	also	computed	the	quantity	𝜎! 𝜈,	which	may	be	interpreted	

as	the	ratio	between	dispersal	ability	and	diversification	rate.	

	

	

Figure	4:	Occurrence-based	(Sorensen)	dissimilarity	as	a	function	of	log-distance.	The	red	
line	figures	the	linear	regression.	

	

Finally,	we	conducted	a	separate	analysis	to	explore	how	beta	diversity	depends	

on	 logging	 activities.	 Because	 our	 sampling	 effort	 along	 this	 disturbance	 gradient	was	
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limited,	we	simply	investigated	the	relative	effect	of	disturbance	and	soil	conditions	on	

the	 various	 taxonomic	 groups	without	 accounting	 for	 spatial	 structure.	We	measured	

the	 Sorensen	 dissimilarity	 index	 among	 pairs	 of	 sampling	 points	 in	 all	 Paracou	 and	

Arbocel	 plots,	 both	 disturbed	 and	 undisturbed.	 We	 quantified	 logging	 intensity	 by	 a	

dummy	variable	taking	value	0	in	undisturbed	locations	(Paracou	P6	and	P11	areas),	1	

in	mildly	 disturbed	 ones	 (Paracou	 P12	 area),	 and	 2	 in	 strongly	 disturbed	 ones	 (clear	

cutting;	Arbocel).	We	then	followed	a	similar	approach	as	for	the	comparison	between	

soil	 effects	 and	 spatial	 aggregation	 in	 the	main	 dataset.	We	 performed	 a	multivariate	

linear	 regression	 (i.e.,	 a	one-dimensional	RDA)	of	 the	OTU	abundance	data	 (Hellinger-

transformed	 and	 OTU-centred)	 against	 the	 logging	 intensity	 variable	 (centred	 and	

normalized).	 When	 the	 linear	 regression	 was	 significant,	 we	 partitioned	 the	 total	

variance	 of	 taxonomic	 composition	 between	 a	 logging	 intensity	 component	 and	 a	 soil	

component.	We	obtained	the	soil	component	as	previously:	we	performed	a	PCA	on	soil	

variables,	 kept	 the	 first	 four	 axes,	 and	 built	 a	 RDA-based	 model	 by	 forward	 variable	

selection.		
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Results	

	

Chemical	 and	 physical	 soil	 properties	 varied	 across	 the	 samples	 (Table	 S2).	 The	 pH	

ranged	from	3.8	to	5.5,	C	content	from	1.9%	to	4.2%,	N	content	from	0.12	to	0.31%,	and	

P	 content	was	 very	 low	 (see	 also	 Grau	 et	al.,	 2017).	 Soils	were	 also	 poor	 in	 terms	 of	

exchangeable	cation	content	(K+,	Ca2+,	Mg2+,	Mn2+),	and	varied	significantly	 in	 terms	of	

texture,	with	 sandy	 (up	 to	 80%	 sand)	 to	 clayey	 (up	 to	 80%	 clay)	 soils.	 Paracou	 soils	

tended	 to	be	sandier	and	more	nutrient-poor	 than	Nouragues	soils.	This	 suggests	 that	

the	 Nouragues-Paracou	 comparison	 compounds	 geographical	 distance	 and	

environmental	distance	effects.	The	first	PCA	axis	(40%	of	 total	variance)	corresponds	

to	organic	matter	(total	carbon	and	nitrogen)	and	clay	contents,	which	are	correlated	to	

aluminium	 concentration	 and	 anticorrelated	 to	 pH;	 the	 second	 PCA	 axis	 (30%	 of	

variance)	 corresponds	 to	 nutrient	 and	 silt	 contents,	 the	 third	 to	 phosphorus	 (13%	 of	

variance)	and	the	fourth	to	iron	(7%;	Fig.	3).		

	

	 	 Geographical	distance	 	 Soil	 	

	 Mean	
𝐷!"#$%&$% 	

𝑟𝒅𝒊𝒔𝒕	 𝑟𝒅𝒊𝒔𝒕,𝒑𝒂𝒓𝒕	 slope𝒅𝒊𝒔𝒕	 𝑟!"#$ 	 𝑟𝒔𝒐𝒊𝒍,𝒑𝒂𝒓𝒕	 slope𝒔𝒐𝒊𝒍	

Plants	trnL	 0.42	 0.65***	 0.61***	 0.038	 0.29***	 0.06	 0.011	

Bacteria	16S	 0.49	 0.16*	 -0.02	 0.014	 0.46***	 0.44***	 0.028	

Protists	18S	 0.60	 0.16**	 0.05	 0.012	 0.30***	 0.26***	 0.015	

Fungi	ITS	 0.87	 0.43***	 0.29***	 0.029	 0.54***	 0.45***	 0.025	

Arthropods	18S	 0.53	 0.36***	 0.29***	 0.026	 0.28***	 0.17*	 0.014	

Insects	16S	 0.89	 0.23***	 0.16**	 0.013	 0.25***	 0.18**	 0.010	

Annelids	18S	 0.35	 -0.031	 -0.08	 -0.004	 0.10	 0.12	 0.009	

Nematodes	18S	 0.70	 0.11*	 0.09	 0.012	 0.05	 0.02	 0.004	

Platyhelminthes	18S	 0.57	 -0.079	 -0.11*	 -0.015	 0.07	 0.10	 0.009	

	

Table	1:	Linear	regression	of	taxonomic	dissimilarity	(Sorensen	index)	against	soil	and	
geographical	distance.	𝑟!"#$ ,	𝑟!"#$ ,	𝑟!"#$,!"#$ ,	𝑟!"#$,!"#$	are	the	simple	and	partial	Pearson’s	
correlation	coefficients.	Significance	was	assessed	using	Mantel	tests:	***	for	p	<	0.001;		**	for	
0.001	<	p	<	0.01;	*	for	0.01	<	p	<	0.05.	
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Sorensen	dissimilarity	varied	across	 taxonomic	groups,	 and	 for	 the	same	group	

depending	 on	 the	 tested	 DNA	 barcode	 (Table	 1;	 see	 Table	 S4,	 Fig.	 S2	 and	 S3	 for	 a	

comparison	between	barcodes	within	 group).	 It	was	highest	 for	 insects	16S	and	 fungi	

ITS	 (ca.	 0.9	 in	 average),	 and	 lowest	 for	 annelids	 and	 plants	 trnL	 (ca.	 0.4	 in	 average).	

When	 plotted	 against	 log-transformed	 geographical	 distance	 (Fig.	 4),	 Sorensen	

dissimilarity	showed	a	strongly	significant	correlation	for	plants,	fungi,	arthropods	and	

insects,	a	weak	correlation	for	protists,	bacteria,	and	nematodes,	and	no	correlation	for	

annelids	 and	 flat	 worms	 (by	 decreasing	 order	 of	 correlation	 coefficient;	 Table	 1).	

Sorensen	dissimilarity	was	also	regressed	against	soil	dissimilarity	(Fig.	5).	We	found	a	

strong	correlation	to	soil	dissimilarity	in	fungi,	bacteria,	protists,	plants,	arthropods	and	

insects,	 and	no	correlation	 in	annelids,	 flat	worms	and	nematodes	 (Table	1).	To	 test	a	

possible	 collinearity	 between	 soil	 dissimilarity	 and	 geographical	 distance,	 we	 finally	

computed	the	partial	correlation	rdist,part	to	log-distance	conditional	on	soil	dissimilarity.	

The	partial	 correlation	 to	 log-distance	was	significant	 in	plants,	 fungi,	 arthropods,	and	

insects,	but	not	in	the	other	groups.	Conversely,	when	computing	the	partial	correlation	

rsoil,part	 to	 soil	dissimilarity	 conditional	on	 log-distance,	 the	 correlation	was	 retained	 in	

fungi,	bacteria,	protists,	insects	and	arthropods,	but	lost	in	plants.		

	RDA-based	partitioning	of	beta-diversity	showed	that	environmental	factors	and	

spatial	aggregation	 together	explained	a	proportion	of	beta-diversity	 that	ranged	 from	

45%	in	bacteria	to	zero	in	flat	worms	(Fig.	6,	Tables	2,	S5).	Within	the	fraction	of	beta	

diversity	explained	by	soil	effects,	the	first	two	soil	PCA	axes	were	the	main	explanatory	

factors,	with	the	silt-nutrient	axis	playing	a	particularly	important	role	in	bacteria	(Fig.	

S4).	 The	 relative	 contribution	 of	 spatial	 aggregation	 and	 soil	 properties	 varied	 across	

groups,	with	a	major	effect	of	spatial	aggregation	relative	to	soil	in	annelids	and	plants,	

while	 both	 effects	 were	 of	 the	 same	 magnitude	 for	 bacteria.	 While	 the	 collinearity	

between	environmental	and	spatial	variables	 introduced	uncertainty	as	 to	 their	actual	

relative	 importance	 to	 beta	 diversity,	 pure	 spatial	 aggregation	 explained	 an	 equal	 or	

higher	proportion	of	the	variation	compared	to	pure	environmental	factors	in	all	groups.	

For	bacteria	and	protists,	this	contrasts	with	the	conclusions	of	distance-based	analyses.		

The	 fit	 of	 the	 neutral	 prediction	 for	 the	 decay	 of	 taxonomic	 similarity	𝐹!	with	

geographical	 distance	 was	 statistically	 significant	 for	 plants,	 bacteria,	 protists,	 fungi,	

insects	and	annelids,	but	not	for	arthropods,	nematodes	and	flat	worms	(Table	S6,	Fig.	
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S6).	At	a	given	geographical	distance,	 the	𝐹!	statistic	 tended	to	be	more	scattered	than	

Sorensen	dissimilarity	and	to	exhibit	outliers	(Fig.	S6).	Assuming	a	density	of	one	plant	

individual	per	20	m2,	as	measured	 for	mature	neotropical	 forest	 trees,	we	estimated	a	

mean	 dispersal	 distance	 per	 generation	 of	 43	 m	 in	 plants.	 The	 dispersal	 to	

diversification	ratio	𝜎! 𝜈	was	highest	for	fungi	and	insects,	intermediate	for	plants	and	

annelids,	and	smallest	for	protists	and	bacteria	(Table	S6).	

Finally,	 we	 found	 that	 past	 logging	 activities	 had	 the	 strongest	 effect	 on	 plant	

composition	 (Table	S7,	Fig.	S6).	They	also	had	an	effect	on	annelids,	which	was	 larger	

than	 the	 effect	 of	 soil	 conditions,	 and	 a	 small	 but	 strongly	 significant	 effect	 on	 fungi.	

However,	they	had	little	to	no	detectable	effect	on	other	groups.	

	

	 Pure	soil	
fraction	 Mixed	fraction	 Pure	spatial	

fraction	
Total	explained	

variance	

Plants	trnL	 2.4***	 7.8	 11.0***	 21.1***	
Bacteria	16S	 12.7***	 18.5	 14.0***	 45.2***	
Protists	18S	 2.2**	 8.7	 10.0***	 20.8***	
Fungi	ITS	 3.8***	 4.9	 5.9***	 14.5***	
Arthropods	18S	 1.5*	 2.8	 2.4**	 6.7***	
Insects	16S	 0.1	 1.3	 1.5**	 2.9***	
Annelids	18S	 5.5**	 5.5	 15.3***	 26.2***	
Nematodes	18S	 1.4**	 1.4	 2.4***	 5.2***	
Platyhelminthes	18S	 NA	 NA	 NA	 NA	

	

Table	 2:	 Fractions	 of	 variance	 (adjusted	 R2,	 in	%)	 explained	 by	 Canonical	 Redundancy	
Analysis	for	environment-only	and	spatial-only	models.	Significance:	***	for	p	<	0.001;		**	for	
p	<	0.01;	*	for	p	<	0.05.	
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Discussion	

	

We	 have	 explored	 the	 patterns	 of	 soil	 beta	 diversity	 in	 the	 tropical	 forests	 of	 French	

Guiana	based	on	fifteen	undisturbed	1-ha	plots,	as	well	as	four	disturbed	plots.	Distance-

based	analyses	using	Sorensen	dissimilarity	suggest	 that	at	our	study	scale,	plant	beta	

diversity	 is	 driven	 predominantly	 by	 geographical	 distance,	 bacteria	 and	 protist	 beta	

diversity	by	soil	properties,	while	fungi,	arthropod	and	insect	beta	diversity	depends	on	

both	 types	 of	 factors.	 Finally,	 annelid,	 nematode	 and	 flat	worm	beta	 diversity	 did	 not	

correlate	with	any	of	these	factors.	The	observation	that	both	geographical	distance	and	

environment	play	a	role	 in	explaining	community	assembly	has	already	been	reported	

for	 a	 range	 of	 taxonomic	 groups,	 either	 in	 eukaryotes	 or	 in	 bacteria	 (Cottenie,	 2005;	

Thompson	&	Townsend,	2006;	Martiny	et	al.,	2011).	However,	our	results	are	one	of	the	

rare	case	studies	where	beta	diversity	has	been	quantified	across	the	same	sites	over	a	

broad	range	of	taxonomic	groups.		

The	 dependence	 of	 plant	 beta	 diversity	 on	 geographical	 distance	 in	 tropical	

forests	 has	 been	 reported	 in	 the	 past,	 and	 has	 been	 presented	 as	 evidence	 for	 the	

importance	 of	 dispersal-limited	 neutral	 processes	 in	 shaping	 these	 ecological	

communities	(Condit	et	al.,	2002).	Likewise,	the	strong	dependence	of	beta	diversity	on	

soil	 conditions	 in	 unicellular	 organisms	 (bacteria	 and	 protists)	 is	 in	 agreement	 with	

expectations	(Soininen	et	al.,	2007;	Ramirez	et	al.,	2014).	While	we	could	expect	fungi	to	

be	 primarily	 responsive	 to	 environmental	 conditions	 owing	 to	 their	 good	 dispersal	

abilities,	 widespread	 plant-fungi	 associations	 may	 be	 responsible	 for	 the	 observed	

dependence	on	both	environmental	conditions	and	geographical	distance	(Bahram	et	al.,	

2013).	Indeed,	dispersal	is	hampered	by	host	specificity,	and	the	the	distribution	of	host-

specific	fungal	taxa	reflects	that	of	their	plant	hosts.		

For	 insects,	 previous	 studies	have	 reported	 a	 low	betadiversity	 (Novotny	et	al.,	

2007;	 Basset	 et	 al.,	 2012).	 However,	 these	 studies	 have	 primarily	 focused	 on	 above-

ground	herbivores,	which	are	known	to	have	good	dispersal	ability.	In	contrast,	we	have	

sampled	soil-dwelling	insects,	and	thus	our	finding	that	these	organisms	have	high	beta	

diversity,	 influenced	 by	 both	 soil	 properties	 and	 dispersal	 limitation,	 does	 not	
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necessarily	 contradicts	 the	 results	 of	 previous	 publications.	 However,	 our	 finding	 is	

significant	 because	 it	 shows	 that	 spatial	 patterns	 of	 biodiversity	 in	 insects	 cannot	 be	

easily	 generalized	 across	 ecosystem	 compartments.	 Finally,	 annelids,	 nematodes	 and	

flatworms	 are	 represented	 by	 a	 limited	 number	 of	 OTUs	 (Table	 S1),	 and	 the	 lack	 of	

patterns	in	these	groups	might	be	due	to	a	lack	of	statistical	power.	
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Figure	5:	Occurrence-based	(Sorensen)	dissimilarity	as	a	function	of	soil	dissimilarity.	Soil	
dissimilarity	 is	 computed	 as	 the	 Euclidian	 distance	 between	 the	 first	 four	 PCA	 axes	 of	 the	
measured	soil	variables.	The	red	line	figures	the	linear	regression.	

	

The	RDA	(‘raw	data’)	approach	led	to	slightly	different	conclusions	than	Mantel-

based	correlations,	and	brought	additional	insight.	A	significant	fraction	of	annelid	beta	

diversity	could	be	explained	by	spatial	aggregation,	while	distance-based	analyses	using	

Sorensen	 dissimilarity	 did	 not	 detect	 any	 signal	 in	 this	 group.	 This	 is	 in	 line	with	 the	

limited	 dispersal	 abilities	 reported	 for	 annelids	 in	 this	 area	 (Decaëns	 et	 al.,	 2016).	

Spatial	 aggregation	 was	 also	 found	 to	 be	 an	 important	 factor	 explaining	 the	 spatial	

distribution	of	protists	and	bacteria	in	addition	to	soil	properties.	In	contrast,	we	found	

little	 explanatory	 power	 for	 insects	 and	 arthropods.	 Overall,	 this	 is	 in	 line	 with	 the	

higher	sensitivity	 to	spatial	 structure	reported	 in	 the	 literature	 for	 ‘raw	data’	analyses	

(Legendre	et	al.,	2005),	even	though	the	interpretation	of	this	spatial	structure	as	being	

indicative	 of	 neutral	 processes	 is	 not	 straightforward	 (Smith	 &	 Lundholm,	 2010).	

However,	 a	 potential	 problem	 in	 our	 study	 design	 is	 that	 the	 logarithmic	 geographic	

sampling	scheme	is	not	ideally	suited	to	the	description	by	PCNM	variables.	Because	of	

the	challenging	nature	of	extracting	DNA	onsite	 to	minimize	contaminations,	we	could	

not	multiply	 the	 number	 of	 sampling	 points,	 but	we	 hope	 to	 address	 the	 issue	 of	 the	

sampling	design	for	DNA-based	beta	diversity	analyses	in	a	forthcoming	contribution.		

The	 fit	 of	 the	 neutral	 prediction	 for	 the	 decay	 of	 similarity	 with	 distance	 was	

significant	 for	all	 taxonomic	groups	except	arthropods,	nematodes	and	flat	worms,	but	

was	poorer	than	the	fit	of	Sorensen	dissimilarity	to	log-distance.	A	possible	confounding	

factor	is	that	unlike	the	Sorensen	index,	the	𝐹! 	similarity	measure	is	sensible	to	noise	in	

OTU	abundances,	and	may	also	be	biased	by	uneven	sampling	effort	among	samples	in	

DNA-based	 data.	 Overall,	 a	 decay	 of	𝐹!	similarity	 with	 distance	 was	 detected	 in	 the	

groups	 for	which	 raw-data	 analyses	 showed	 an	 effect	 of	 spatial	 aggregation,	which	 is	

consistent	with	 the	 fact	 that	 both	 types	 of	 analysis	 rely	 on	 abundance	 information.	 In	

particular,	a	decay	of	𝐹! 	similarity	with	distance	was	found	in	annelids	while	none	was	

detected	 using	 Sorensen	 dissimilarity,	 which	 suggests	 that	 in	 this	 group,	 differences	

between	 samples	 lie	 in	 the	 abundance	 pattern	 of	 OTUs	 rather	 in	 their	 occurrence	

pattern.	
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Figure	 6:	 Variance	 partitioning	 between	 soil	 PCA	 axes	 and	 spatial	 structure	 (PCNM	
decomposition).	The	spatial	model	 is	 the	reunion	of	 two	 independent	PCNM	decompositions,	
one	 for	 the	 Nouragues	 sampling	 sites	 and	 one	 for	 the	 Paracou	 sampling	 sites,	 plus	 the	 UTM	
coordinates	in	both	groups	of	sites.	The	two	PCNM	decompositions	are	connected	by	a	dummy	
variable	that	takes	one	value	in	Nouragues	and	another	in	Paracou.	Forward	variable	selection	is	
performed	 on	 soil	 and	 spatial	 variables	 before	 variance	 partitioning.	 Hatching	 indicates	 non-
significant	pure	fractions.	

	

Our	 estimate	 of	 43	m	 for	 the	mean	 dispersal	 distance	 per	 generation	 in	 plants	

was	close	to	that	measured	empirically	for	neotropical	trees	(39	m;	Condit	et	al.,	2002),	

and	to	that	estimated	by	fitting	the	neutral	similarity	distance-decay	prediction	to	tree	

census	data	 (between	40	and	73	m;	Condit	et	al.,	2002).	Because	an	 important	part	of	

the	retrieved	plant	DNA	originates	 from	the	tree	root	system,	conflating	the	density	of	

plant	 individuals	 with	 that	 measured	 for	 trees	 may	 be	 a	 reasonable	 assumption,	

however	such	estimates	for	the	density	of	individuals	are	difficult	to	obtain	in	the	other	
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taxonomic	groups.	The	dispersal	to	diversification	ratio	𝜎! 𝜈	is	directly	measured	as	the	

ratio	between	 the	 intercept	𝑏	and	 the	slope	𝑎	of	 the	 linear	 regression	of	𝐹!	against	 log-

distance	(cf.	Appendix).	Lower	𝜎! 𝜈	in	 fungi	and	 insects	reflects	 the	 low	mean	 level	of	

similarity	between	samples	in	these	groups,	which	is,	under	a	neutral	model,	indicative	

of	faster	diversification	than	dispersal,	while	the	reverse	would	hold	true	in	higher-𝜎! 𝜈	

bacteria	and	protists	(Table	S6).	

The	 challenge	 of	 measuring	 beta	 diversity	 is	 critical	 in	 conservation	 biology	

(Koleff	 et	 al.,	 2003;	 Socolar	 et	 al.,	 2017),	 and	 today	 the	 vast	 majority	 of	 the	 lowland	

tropical	landscapes	are	partly	deforested	or	at	least	degraded	by	human	activities,	with	

direct	and	measurable	impact	on	biological	diversity	(Barlow	et	al.,	2016).	The	tropical	

forests	of	 French	Guiana	have	 experienced	 low	 rates	of	 forest	 clearance	over	 the	past	

decade	 (Hansen	 et	 al.,	 2013)	 and	 our	 sampling	 sites	 can	 therefore	 be	 considered	 as	

undisturbed,	 and	 a	 baseline	 for	 the	 many	 studies	 focused	 on	 disturbed	 landscapes.	

Hence,	 in	 our	 study,	 the	 processes	 shaping	 community	 assembly	 are	 unlikely	 to	 be	

ascribed	 to	 human	 factors.	 We	 acknowledge	 that	 humans	 may	 have	 had	 previously	

unnoticed	 impacts	on	biodiversity	especially	on	cultivated	plants	 (Heckenberger	et	al.,	

2008)	 or	 earthworms	 (Marichal	 et	 al.,	 2010),	 however	 the	 great	 majority	 of	 our	

undisturbed	sites	are	located	far	from	present	or	historical	locations	of	disturbances	and	

we	are	therefore	fairly	confident	that	the	patterns	we	have	uncovered	are	contingent	on	

natural	 processes.	 However,	 to	 better	 quantify	 the	 possible	 magnitude	 of	 human	

disturbances,	we	also	studied	how	beta	diversity	is	altered	by	intensive	logging	and	by	

clear-cutting,	at	sites	where	the	forest	has	had	at	least	18	years	to	recover.	Differences	in	

vegetation	are	easily	noticeable	on	the	field,	and	are	indeed	reflected	in	our	DNA-based	

study.	This	analysis,	although	limited	in	the	number	of	samples,	also	shows	an	effect	of	

past	logging	activities	on	annelids	and	to	a	lesser	extent	on	fungi;	however	little	impact	

on	the	other	components	of	soil	biodiversity	can	be	detected.		

The	 current	 study	 is	 predicated	 on	 our	 assumption	 that	 DNA-based	metrics	 of	

beta	diversity	do	capture	the	same	ecological	processes	as	classic	ones.	We	did	find	that	

our	 data	 capture	 most	 of	 the	 diversity	 present	 in	 our	 soil	 samples,	 as	 indicated	 by	

rarefaction	 analyses	 (Fig.	 S1).	We	 also	 tested	whether	 our	 results	were	dependent	 on	

the	 choice	 of	 the	 DNA	 barcode,	 by	 comparing	 the	 results	 obtained	 for	 the	 same	

taxonomic	 group	with	 two	distinct	DNA	barcodes	 (Tables	 S4,	 S5,	 Fig.	 S4,	 S5).	 In	most	
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cases,	 the	 results	 appear	 robust	 to	 the	 choice	 of	 the	 DNA	 barcode,	 even	 though	 we	

detected,	as	expected,	more	signal	in	the	specific	barcodes	for	plants,	 insects	and	fungi	

than	 in	 the	 generic	 18S	 barcode	 of	 lower	 taxonomic	 resolution.	 Overall,	 although	we	

emphasize	 that	 current	 DNA-based	 inventories	 do	 not	 always	 capture	 the	 same	

taxonomic	grain	 as	 classic	 surveys,	 this	 approach	has	 the	 advantage	of	being	 scalable,	

and	it	should	thus	be	appropriate	for	rapid	biodiversity	inventories,	especially	in	fragile,	

or	threatened	ecosystems.	
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Supplementary	Information	

	

	 #	OTUs	 #	Reads	

Plants	trnL	 776	 5,142,400	

							Plants	18S	 71	 366,646	

Bacteria	16S	 11,380	 3,863,620	

Protists	18S	 295	 240,223	

Fungi	ITS	 4,312	 2,151,746	

							Fungi	18S	 386	 832,153	

Arthropods	18S	 342	 463,057	

Insects	16S	 3,497	 1,331,880	

							Insects	18S	 70	 185,446	

Annelids	18S	 18	 145,044	

Nematodes	18S	 81	 10,672	

Platyhelminthes	18S	 32	 15,619	

	

Table	S1:	Number	of	OTUs	and	read	count	per	taxonomic	group.	
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	 pH	 Ctot	 Ntot	 P2O5	 Clay	 Silt	 Sand	 Al	 Fe	 Mg	 Mn	 K	 Ca	

Unit	 None	 (g/kg)	 (mg	
/kg)	 (%)	 (%)	 (%)	 (cmol+/kg)	

Inselberg	
summit	 4.9	 30.5	 1.8	 <	5.0	 27.5	 4.6	 67.9	 2.1	 0.081	 0.27	 0.011	 0.097	 0.08	

PP-F21	 4.9	 29.1	 1.9	 5.8	 33.6	 4.0	 62.6	 2.6	 0.068	 0.13	 0.011	 0.088	 0.09	

PP-H20	 4.3	 34.3	 2.1	 7.3	 48.1	 4.5	 47.4	 2.5	 0.144	 0.46	 0.018	 0.127	 0.26	

PP-H21	 4.8	 31.1	 2.2	 6.0	 51.0	 4.3	 44.7	 2.3	 0.063	 0.37	 0.017	 0.082	 0.25	

GP-L11	 5.0	 35.7	 3.0	 5.3	 73.3	 12.8	 13.9	 1.2	 0.006	 0.67	 0.125	 0.113	 1.48	

GP-L12	 4.6	 37.0	 3.1	 7.3	 71.8	 16.8	 11.4	 1.6	 0.006	 0.43	 0.215	 0.112	 0.75	

GP-O13	 4.3	 32.6	 2.1	 6.8	 71.7	 12.8	 15.6	 3.5	 0.030	 0.51	 0.070	 0.114	 0.75	

GP-Liana	 5.2	 27.6	 2.6	 7.8	 52.0	 30.4	 17.6	 0.4	 0.005	 1.65	 0.252	 0.143	 3.64	

Balanfois-1	 3.9	 41.8	 2.9	 <	5.0	 78.7	 7.6	 13.8	 3.5	 0.041	 0.22	 0.028	 0.084	 0.35	

Balanfois-2	 3.9	 40.7	 2.9	 <	5.0	 79.6	 6.0	 14.4	 3.3	 0.046	 0.31	 0.025	 0.087	 0.27	

Parare-5	 4.4	 35.9	 2.6	 10.3	 64.5	 12.3	 23.3	 2.8	 0.056	 0.59	 0.020	 0.114	 0.21	

Parare-6	 4.0	 38.1	 2.5	 11.3	 55.5	 19.2	 25.4	 4.0	 0.058	 0.24	 0.019	 0.116	 0.16	

Paracou-06.3	 5.0	 19.2	 1.2	 6.5	 13.4	 7.2	 79.4	 1.2	 0.043	 0.22	 <0.010	 0.078	 0.10	

Paracou-06.4	 4.9	 20.1	 1.3	 8.3	 12.2	 7.0	 80.9	 1.2	 0.035	 0.16	 <0.010	 0.058	 0.11	

Paracou-11.1	 5.0	 20.1	 1.2	 6.8	 16.3	 8.0	 75.7	 1.6	 0.053	 0.23	 <0.010	 0.080	 0.14	

Paracou-12.1	 4.6	 27.8	 1.7	 <	5.0	 27.0	 7.6	 65.5	 2.3	 0.124	 0.24	 <0.010	 0.080	 0.07	

Paracou-12.2	 4.6	 20.6	 1.2	 7.3	 16.5	 6.5	 77.1	 1.9	 0.113	 0.21	 <0.010	 0.079	 0.16	

Arbocel-7.3	 4.6	 30.7	 1.9	 7.0	 22.0	 10.0	 68.0	 1.6	 0.143	 0.32	 <0.010	 0.085	 0.13	

Arbocel-7.4	 4.6	 30.3	 1.9	 <	5.0	 24.6	 10.7	 64.7	 1.7	 0.147	 0.29	 <0.010	 0.076	 0.16	

	

Table	 S2:	Mean	 soil	 variables	 in	 all	 nineteen	 1-ha	 plots.	Each	value	 is	 the	average	of	 four	
separate	measurements,	 each	made	 on	 twenty	 pooled	 soil	 samples.	 Al,	 Fe,	Mg,	Mn,	 K,	 and	 Ca	
concentrations	are	expressed	in	cmol	of	positive	charges	per	kg.	Values	in	italics	correspond	to	
disturbed	plots.	
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	 pH	 Ctot	 Ntot	 P2O5	 Cly	 Silt	 Al	 Fe	 Mg	 Mn	 K	 Ca	

pH	 1	 -0.59	 -0.41	 -0.02	 -0.53	 0.09	 -0.82	 -0.17	 0.27	 0.19	 -0.01	 0.32	

Ctot	 	 1	 0.91	 -0.04	 0.74	 0.11	 0.60	 -0.03	 0.05	 0.08	 0.33	 -0.01	

Ntot	 	 	 1	 -0.01	 0.83	 0.36	 0.35	 -0.31	 0.33	 0.41	 0.47	 0.31	

P2O5	 	 	 	 1	 -0.01	 0.27	 0.08	 -0.13	 0.12	 0.14	 0.30	 0.07	

Clay	 	 	 	 	 1	 0.24	 0.48	 -0.45	 0.27	 0.41	 0.51	 0.29	

Silt	 	 	 	 	 	 1	 -0.22	 -0.39	 0.76	 0.67	 0.52	 0.76	

Al	 	 	 	 	 	 	 1	 0.15	 -0.38	 -0.38	 0.04	 -0.45	

Fe	 	 	 	 	 	 	 	 1	 -0.34	 -0.56	 -0.23	 -0.48	

Mg	 	 	 	 	 	 	 	 	 1	 0.70	 0.60	 0.91	

Mn	 	 	 	 	 	 	 	 	 	 1	 0.56	 0.81	

K	 	 	 	 	 	 	 	 	 	 	 1	 0.59	

Ca	 	 	 	 	 	 	 	 	 	 	 	 1	

VIF	 5.0																																																35.9	 44.8	 1.5	 12.5	 4.5														8.3												3.3	 7.2	 5.0	 3.2	 10.8	

	

Table	S3:	Correlation	coefficients	between	soil	variables	in	the	fifteen	undisturbed	plots.	
Bold	 font	 indicates	 correlation	 coefficients	 above	 0.70.	 Variance	 Inflation	 Factors	 (VIF)	 are	
computed	as	the	diagonal	elements	of	the	inverse	correlation	matrix.	
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	 	 Geographical	distance	 	 Soil	 	

	 Mean	
𝐷!"#$%&$%	

𝑟𝒅𝒊𝒔𝒕	 𝑟𝒅𝒊𝒔𝒕,𝒑𝒂𝒓𝒕	 slope𝒅𝒊𝒔𝒕	 𝑟!"#$ 	 𝑟𝒔𝒐𝒊𝒍,𝒑𝒂𝒓𝒕	 slope𝒔𝒐𝒊𝒍	

Plants	trnL	 0.42	 0.65***	 0.61***	 0.038	 0.29***	 0.06	 0.011	

						Plants	18S	 0.50	 0.22**	 0.15*	 0.022	 0.24***	 0.17*	 0.016	

Fungi	ITS	 0.87	 0.43***	 0.29***	 0.029	 0.54***	 0.45***	 0.025	

						Fungi	18S	 0.45	 0.31***	 0.20*	 0.022	 0.39***	 0.31***	 0.019	

Insects	16S	 0.89	 0.23***	 0.16**	 0.013	 0.25***	 0.18**	 0.010	

						Insects	18S	 0.57	 0.07	 0.05	 0.008	 0.06	 0.03	 0.005	

	

Table	S4:	Linear	regression	of	taxonomic	dissimilarity	(Sorensen	index)	against	soil	and	
geographical	distance:	comparison	between	barcodes	within	taxonomic	groups	(cf.	Table	
2).	 	𝑟!"#$ ,	𝑟!"#$ ,	𝑟!"#$,!"#$ ,	𝑟!"#$,!"#$	are	 the	 simple	 and	 partial	 Pearson’s	 correlation	 coefficients.	
Significance	was	assessed	using	Mantel	tests:	***	for	p	<	0.001;		**	for	0.001	<	p	<	0.01;	*	for	0.01	
<	p	<	0.05.		

	

	

	

	

	 Pure	soil	
fraction	 Mixed	fraction	 Pure	spatial	

fraction	
Total	explained	

variance	

Plants	trnL	 2.4***	 7.8	 11.0***	 21.1***	

				Plants	18S	 1.4	 6.8	 15.1***	 23.3***	

Fungi	ITS	 3.8***	 4.9	 5.9***	 14.5***	

				Fungi	18S	 4.1***	 15.2	 11.8***	 31.2***	

Insects	16S	 0.1	 1.3	 1.5**	 2.9***	

				Insects	18S	 NA	 NA	 NA	 NA	
	

Table	 S5:	 Fractions	of	 variance	 (adjusted	R2,	 in	%)	explained	by	Canonical	Redundancy	
Analysis	 for	 environment-only	 and	 spatial-only	models:	 comparison	 between	 barcodes	
within	taxonomic	groups	(cf.	Table	3).	Significance:	***	for	p	<	0.001;		**	for	p	<	0.01;	*	for	p	<	
0.05.	
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	 𝑅	 1 𝑎	
(×10!)	 𝑏/𝑎	 log!" 𝜎! 𝜈	

Plants	trnL	 0.26***	 0.55	 24	 -20	

				Plants	18S	 0.16**	 0.24	 33	 -28	

Bacteria	16S	 0.22***	 6.8	 48	 -42	

Protists	18S	 0.33***	 0.075	 46	 -40	

Fungi	ITS	 0.14***	 2.3	 13	 -11	

				Fungi	18S	 0.23***	 0.76	 31	 -26	

Arthropods	18S	 0.07	 0.71	 43	 -37	

Insects	16S	 0.08**	 1.1	 15	 -13	

				Insects	18S	 0.09	 0.11	 33	 -28	

Annelids	18S	 0.25***	 0.061	 30	 -26	

Nematodes	18S	 0.06	 1.0	 53	 -46	

Platyhelminthes	18S	 0.10	 0.13	 34	 -30	
	

Table	 S6:	 Fitting	 the	 neutral	 prediction	 for	 the	 decay	 of	 taxonomic	 similarity	 with	
distance	(Chave	&	Leigh,	2002).	𝐹! 𝐴,𝐵 = 𝑝!!𝑝!!!

!!! ,	where	𝑝!!	is	the	proportion	of	species	s	
in	 sample	 A	 and	𝑝!! 	that	 in	 sample	 B,	 is	 regressed	 against	 the	 log-transformed	 geographical	
distance	 r	 between	 samples	 (expressed	 in	 meters),	 as	𝐹! 𝑟 = 𝑎 ln 𝑟 + 𝑏:	𝑅	is	 the	 correlation	
coefficient;	***,**	and	*	denote	the	significance	assessed	by	Mantel	test	(𝑝 < 0.001,	𝑝 < 0.01	and	
𝑝 < 0.05,	respectively);	and	𝜎! 𝜈	(expressed	in	square meters)	is	the	ratio	between	the	variance	
𝜎!	of	the	dispersal	kernel	and	the	neutral	speciation	probability	𝜈.	
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	 Logging		
only	

Pure	logging	
fraction	

Mixed	
fraction	

Pure	soil	
fraction	

Total	
explained	
variance	

Plants	trnL	 12.9***	 4.0***	 9.0	 3.5**	 16.4***	
				Plants	18S	 10.9***	 3.1*	 7.8	 2.3	 13.1***	
Bacteria	16S	 11.9***	 1.9*	 10.0	 18.2***	 30.1***	

Protists	18S	 4.8**	 1.1	 3.6	 4.8**	 9.6**	
Fungi	ITS	 4.3***	 1.6***	 2.6	 5.2***	 9.4***	
				Fungi	18S	 7.6***	 4.7***	 2.9	 8.6***	 16***	
Arthropods	18S	 1.7	 NA	 NA	 NA	 NA	
Insects	16S	 1.6*	 NA	 NA	 NA	 NA	
				Insects	18S	 3.4	 NA	 NA	 NA	 NA	
Annelids	18S	 6.0*	 6.4*	 -0.3	 5.4*	 11.4**	
Nematodes	18S	 1.9*	 NA	 NA	 NA	 NA	
Platyhelminthes	18S	 0.6	 NA	 NA	 NA	 NA	

	

Table	S7:	Fractions	of	variance	(adjusted	R2,	in	%)	explained	by	Canonical	Redundancy	
Analysis	for	logging	intensity	and	for	soil	conditions.	Significance:	***	for	p	<	0.001;		**	for	p	
<	0.01;	*	for	p	<	0.05.	 	
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Taxonomic	group	 Selected	spatial	variables	

Bacteria	16S	 UTMN.Nouragues	 UTME.Nouragues	 Nouragues.MEM.1	 Nouragues.MEM.5	

Protists	18S	 UTMN.Nouragues	 UTME.Nouragues	 Nouragues.MEM.1	 Paracou.MEM.1	
Plants	trnL	 UTMN.Nouragues	 UTME.Nouragues	 Nouragues.MEM.1	 Nouragues.MEM.5	
	 Paracou.Nouragues	 UTME.Paracou	 	 	
							Plants	18S	 UTMN.Nouragues	 UTME.Nouragues	 Nouragues.MEM.1	 Nouragues.MEM.4	
	 Nouragues.MEM.5	 Nouragues.MEM.8	 Nouragues.MEM.12	 Nouragues.MEM.15	
	 Nouragues.MEM.16	 	 	 	
Fungi	ITS	 UTMN.Nouragues	 UTME.Nouragues	 Nouragues.MEM.1	 	
							Fungi	18S	 UTMN.Nouragues	 UTME.Nouragues	 Nouragues.MEM.1	 	
Arthropods	18S	 UTMN.Nouragues	 UTME.Nouragues	 	 	
Annelids	18S	 UTMN.Nouragues	 Nouragues.MEM.1	 Paracou.MEM.3	 	
Nematodes	18S	 UTMN.Nouragues	 	 	 	
Platyhelminthes	18S	 No	selected	model	 	 	 	
Insects	16S	 UTME.Nouragues	 Paracou.Nouragues	 Nouragues.MEM.2	 	
	 Nouragues.MEM.11	 Nouragues.MEM.15	 	 	
							Insects	18S	 No	selected	model	 	 	 	

	

Table	S8:	Selected	spatial	models	after	forward	variable	selection.	Selection	is	applied	on	
the	 following	 variables:	 UTM	 coordinates	 in	 Nouragues	 and	 Paracou	 (‘UTMN.Nouragues’,	
‘UTME.	 Nouragues’,	 ‘UTMN.Paracou’,	 ‘UTME.Paracou’),	 the	 dummy	 variable	 connecting	
Nouragues	 and	 Paracou	 sites	 (‘Paracou.Nouragues’),	 and	 PCNM	 variables	 in	 Nouragues	
(‘Nouragues.MEM.1’	 to	 ‘Nouragues.MEM.17’)	 and	 Paracou	 (‘Paracou.MEM.1’	 to	
‘Paracou.MEM.7’),	which	represent	different	possible	patterns	of	spatial	autocorrelation.			 	
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Figure	 S1:	 Rarefaction	 analyses.	 In	 each	 sample	 and	 for	 each	 barcode,	 we	 sampled	 with	
replacement	between	1	and	8,000	reads,	and	plotted	 the	corresponding	number	of	OTUs	(one	
curve	per	sample	and	per	barcode).		

	 	

Eukaryotes	18S	

Plants	trnL	 Fungi	ITS	

Bacteria	16S	 Insects	16S	
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Figure	 S2:	 Occurrence-based	 (Sorensen)	 dissimilarity	 as	 a	 function	 of	 log-distance;	
comparison	between	barcodes	within	taxonomic	groups	(cf.	Fig.	4).	The	red	line	figures	the	
linear	regression.	
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Figure	 S3:	 Occurrence-based	 (Sorensen)	 dissimilarity	 as	 a	 function	 of	 log-distance;	
comparison	between	barcodes	within	taxonomic	groups	(cf.	Fig.	5).	The	red	line	figures	the	
linear	regression.	
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Figure	 S4:	 Proportion	 of	 variance	 explained	 by	 RDA	 for	 each	 soil	 variable.	 Only	 soil	
variables	selected	by	forward	variable	selection	(out	of	the	six	initial	variables)	are	shown.	
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Figure	 S5:	 Testing	 the	 neutral	 prediction	 for	 the	 decay	 of	 taxonomic	 similarity	 with	
geographical	 distance:	 F2	 similarity	 as	 a	 function	 of	 log-distance.	Red	 line	denotes	 linear	
regression.	Note	that	y-scale	varies	across	taxonomic	groups.	
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Appendix:	 Fitting	 the	 neutral	 prediction	 for	 the	 distance-decay	 of	

similarity		

	

Chave	 &	 Leigh	 (2002)	 derived	 an	 analytical	 prediction	 for	 the	 decay	 of	 taxonomic	

similarity	with	 distance	 in	 a	 continuous	 spatially	 explicit	 version	 of	 Hubbell’s	 neutral	

model	 of	 biodiversity,	 where	 individuals	 have	 spatial	 density	𝜌	and	 where	 dispersal	

follows	 a	 radially	 symmetric	 Gaussian	 probability	 density	

𝑃 𝑟 = 1 2𝜋𝜎! exp − 𝑟! 2𝜎! 	as	 a	 function	 of	 distance	 r.	 They	 predict	 that	 the	

stationary	probability	𝐹! 𝑟 	that	 two	 randomly	 selected	 individuals	distant	of	 r	belong	

to	the	same	species	decreases	as:		

𝐹! 𝑟 ≃
2𝐾!

𝑟 2𝜈
2𝜎

ln 1𝜈 + 2𝜌𝜋𝜎
!
	

provided	 that	r	 is	 larger	 than	σ.	 In	our	dataset,	 the	minimal	value	 taken	by	r	 is	40	m,	

which	is	approximately	equal	to	the	mean	dispersal	distance	per	generation	for	tropical	

trees	(Condit	et	al.,	2002).	Because	the	mean	dispersal	distance	per	generation	is	 2𝜎	in	

the	model,	 and	 because	 trees	 are	 likely	 to	 be	 the	 organisms	with	 the	 largest	σ	 in	 our	

study,	the	assumption	that	r	is	larger	than	σ	can	be	regarded	here	as	reasonable.		

The	 parameter	𝜈 	it	 is	 the	 speciation	 probability	 in	 the	 underlying	 neutral	

dynamics,	i.e.	the	probability	for	a	newly	born	individual	to	belong	to	a	new	species.	This	

parameter	characterizes	 the	regional	species	diversity	 for	a	given	population	size.	The	

function	𝐾! 𝑟 	is	 the	modified	Bessel	 function	 of	 the	 second	kind	 and	of	 zeroth	 order,	

that	can	be	approximated	as	𝐾! 𝑟 ≃ − ln 𝑟 2 − 𝛾	if	𝑟 ≪ 1,	where	𝛾	is	Euler’s	constant.	

Because	𝜈 ≪ 1,	 this	 approximation	 can	 be	 regarded	 as	 valid	 in	 our	 case	 where	𝑟 =

𝑟 2𝜈 𝜎.	The	probability	𝐹! 𝑟 	then	becomes:	

𝐹! 𝑟 ≃ −
2 ln 𝑟 2𝜈

2𝜎 + 2𝛾

ln 1𝜈 + 𝜌𝜋𝜎
!
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In	empirical	data,	the	probability	𝐹! 𝐴,𝐵 	that	a	randomly	selected	individual	in	

site	 A	 belongs	 to	 the	 same	 species	 as	 a	 randomly	 selected	 individual	 in	 site	 B	 can	 be	

measured	as	𝐹! 𝐴,𝐵 = 𝑝!!𝑝!!!
!!! ,	where	𝑝!!	is	the	proportion	of	species	s	in	site	A	and	

𝑝!! 	that	in	site	B,	and	S	is	the	total	number	of	species	in	both	sites	(Chave	&	Leigh,	2002).	

We	 can	 thus	 compute	 the	 quantity	𝐹! 𝐴,𝐵 	for	 every	 pair	 of	 sampling	 points	 and	

performed	the	linear	regression		𝐹! =  −𝑎 ln 𝑟 +𝑏,	where	r	is	the	distance	between	two	

sampling	points	(in	meters).	By	identification	with	the	model’s	prediction,	we	obtain:	

𝑏
𝑎 = ln

2𝜈
2𝜎 + 𝛾

 
1
𝑎 = 𝜌𝜋𝜎! +

1
2 ln

1
𝜈

	

The	 first	 equation	 provides	 the	 value	 of	 𝜎 	as	 a	 function	 of	 𝜈 ,	 𝑎 	and	 𝑏 	as	

𝜎! 𝜈 = 1 2 exp − 𝑏 𝑎 + 𝛾 ,	while	the	sum	of	the	two	equations	provides	the	value	of	

𝜎 	as	 a	 function	 of	𝜌 ,	𝑎 	and	𝑏 	as	 the	 solution	 of:	𝜌𝜋𝜎! − ln 2𝜎 + 𝑏 + 1 𝑎 + 𝛾 +

ln 2 2.	
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Chapter	outline	

The	 distribution	 of	 species	 abundances	 has	 been	 one	 of	 the	most	 intensively	 studied	

patterns	in	ecology,	and	the	use	of	environmental	DNA	could	dramatically	increase	our	

ability	to	measure	empirical	species	abundance	distributions	over	a	wide	range	of	taxa.	

However,	 DNA-based	 abundance	 measurements	 are	 noisy	 and	 difficult	 to	 interpret	

compared	to	classical	censuses	of	individual	organisms.	This	chapter	discusses	to	which	

extent	 and	 under	 which	 conditions	 the	 whole	 species	 abundance	 distribution	 may	

nevertheless	 remain	 informative.	 The	 bias	 on	 the	 estimates	 of	 Hubbell’s	 neutral	

parameters	 is	 taken	as	a	measure	of	 this	 loss	of	 information.	 Indeed,	Hubbell’s	neutral	

theory	has	been	the	first	to	propose	a	realistic	quantitative	prediction	for	this	pattern	on	

mechanistic	 grounds.	 Even	 though	 the	 underlying	 assumptions	 have	 been	 much	

debated,	 this	 model	 remains	 fundamental	 as	 a	 null	 model	 against	 which	 non-neutral	

effects	 can	 be	 contrasted.	 It	 also	 provides	 a	 characterization	 of	 species	 abundance	

distributions	based	on	two	parameters,	one	measuring	intrinsic	diversity,	and	the	other	

measuring	the	connectivity	between	local	and	regional	communities	through	migration.	

The	 problem	 is	 addressed	 by	 simulating	 several	 plausible	 sources	 of	 bias,	 based	 on	

literature	and	on	assumptions	backed	by	a	benchmark	dataset.		
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Abstract	

The	DNA	present	in	the	environment	is	a	unique	and	increasingly	exploited	source	of	

information	 for	 conducting	 fast	 and	 standardized	 biodiversity	 assessments	 for	 any	

type	 of	 organisms.	 The	 datasets	 resulting	 from	 these	 surveys	 are	 however	 rarely	

compared	 to	 the	 quantitative	 predictions	 of	 biodiversity	 models.	 In	 this	 study,	 we	

simulate	 neutral	 taxa-abundance	 datasets,	 and	 add	 simulated	 noise	 typical	 of	 DNA-

based	 biodiversity	 surveys.	 The	 resulting	 noisy	 taxa	 abundances	 are	 used	 to	 assess	

whether	 the	 two	 parameters	 of	 Hubbell’s	 neutral	 theory	 of	 biodiversity	 can	 still	 be	

estimated.	We	 find	 that	parameters	 can	be	 inferred	provided	 that	PCR	noise	on	 taxa	

abundances	 does	 not	 exceed	 a	 certain	 threshold.	 However,	 inference	 is	 seriously	

biased	 by	 the	 presence	 of	 artifactual	 taxa.	 The	 uneven	 contribution	 of	 organisms	 to	

environmental	 DNA	 owing	 to	 size	 differences	 and	 barcode	 copy	 number	 variability	

does	not	 impede	neutral	parameter	 inference,	provided	that	 the	number	of	sequence	

reads	used	for	inference	is	smaller	than	the	number	of	effectively	sampled	individuals.	

Hence,	 estimating	 neutral	 parameters	 from	 DNA-based	 taxa	 abundance	 patterns	 is	

possible	 but	 requires	 some	 caution.	 In	 studies	 that	 include	 empirical	 noise	

assessments,	our	comprehensive	simulation	benchmark	provides	objective	criteria	to	

evaluate	the	robustness	of	neutral	parameter	inference.	
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Introduction	

	

The	observation	of	biodiversity	patterns	such	as	the	diversity,	relative	abundance	and	

spatial	distribution	of	organisms	underpins	much	of	ecological	 theory	 (Brown,	1995;	

Rosenzweig,	1995;	Hubbell,	2001).	Yet	empirical	measurements	of	these	patterns	are	

noisy.	 In	 all	 cases,	 some	 taxa	 are	 counted	more	 effectively	 than	 others,	 and	 error	 is	

generated	 by	misidentification.	 A	major	 question	 is	whether	 this	 noise	 is	 significant	

enough	 to	 undermine	 comparisons	 between	 empirical	 measurements	 and	 models	

(Hilborn	&	Mangel,	1997;	Legendre	&	Legendre,	2012).	This	 issue	has	recently	 taken	

on	 new	 significance	 following	 the	 advent	 of	 DNA-based	 biodiversity	 exploration	

methods,	 which	 are	 developing	 fast	 and	 hold	 the	 promise	 of	 rapid,	 repeatable	 and	

comprehensive	biodiversity	measurements	(Bik	et	al.,	2012;	Taberlet	et	al.,	2012).	Yet	

they	 are	 also	 less	 direct	 than	 classic	 biodiversity	 surveys	 and	 entail	 poorly	 assessed	

noise	sources.	In	this	study,	we	ask	how	the	parameter	estimates	of	Hubbell’s	neutral	

theory,	one	of	the	most	prominent	quantitative	biodiversity	models	of	the	last	decade	

(Hubbell,	2001;	Etienne	&	Alonso,	2007;	Rosindell	et	al.,	2012),	are	affected	by	noise	in	

taxa-abundance	 datasets.	 We	 focus	 on	 the	 type	 of	 noise	 generated	 in	 DNA-based	

surveys,	 and	 specifically	 in	 DNA	 metabarcoding	 surveys	 (see	 below;	 Taberlet	 et	 al.,	

2012),	 currently	 the	 most	 popular	 method	 for	 environmental	 DNA	 analysis.	

Nevertheless,	our	results	can	apply	more	generally.		

DNA	metabarcoding	is	a	multi-taxa	extension	of	the	DNA-based	identification	of	

single	specimen	from	tissue	samples	using	a	universal	DNA-barcode	sequence	(Hebert	

et	 al.,	 2003).	 It	 consists	 in	 amplifying	 a	 short	 DNA	 barcode	 by	 PCR	 from	 the	 DNA	

extracted	 from	an	environmental	 sample	 (e.g.	 soil,	water,	bulk	sample	of	organisms),	

and	 sequencing	 the	 product	 by	 high-throughput	 sequencing.	 This	 method	 is	 not	

restricted	 to	 the	 detection	 of	 known	 taxa	 and	 hence	 allows	 for	 comprehensive	

biodiversity	 measurement.	 DNA	 metabarcoding	 was	 initially	 developed	 to	 study	

bacterial	communities	(Giovannoni	et	al.,	1990;	Huber	et	al.,	2007;	Roesch	et	al.,	2007;	

Zinger	 et	 al.,	 2012),	 but	 has	 since	 been	 extended	 to	 many	 other	 groups	 including	

archaea	(Schleper	et	al.,	2005)	and	eukaryotic	clades	(e.g.	plants,	earthworms,	insects,	
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fungi;	Bienert	et	al.,	2012;	Yoccoz	et	al.,	2012;	Yu	et	al.,	2012;	Tedersoo	et	al.,	2014).	It	

is	hence	now	possible	to	study	patterns	of	diversity	across	all	domains	of	life	(Ramirez	

et	al.,	 2014;	Tedersoo	et	al.,	 2015).	However,	DNA	metabarcoding	observations	have	

seldom	 been	 compared	 to	 the	 predictions	 of	 biodiversity	 models	 (Hubbell,	 2001;	

Ricklefs,	2004).		

Over	 the	 past	 decade,	 the	 neutral	 theory	 of	 biodiversity	 has	 represented	 a	

significant	advance	in	interpreting	empirical	biodiversity	patterns	within	an	ecological	

guild	(Hubbell,	2001;	Etienne	&	Alonso,	2007;	Rosindell	et	al.,	2012).	Hubbell’s	neutral	

model	 is	 simple,	 easily	 generates	 biodiversity	 patterns,	 allows	 for	 exact	 maximum-

likelihood	 parameter	 inference	 from	 taxa-abundance	 distributions,	 and	 neutral	

predictions	 on	 taxa-abundance	 distributions	 compare	 well	 with	 empirical	 surveys	

(Etienne,	2005;	Etienne	&	Alonso,	2005;	Jabot	&	Chave,	2009).	In	Hubbell’s	model,	sites	

vacated	by	the	death	of	an	individual	are	replaced	by	the	offspring	of	local	individuals	

or	by	immigrants.	Birth,	death	and	immigration	all	occur	irrespective	of	the	taxon	the	

organism	belongs	to	(neutrality	hypothesis).	Immigrants	are	drawn	from	a	much	larger	

(regional)	pool	of	individuals,	and	the	addition	of	new	taxa	in	the	regional	pool	is	made	

possible	by	(rare)	speciation	events.	Hubbell’s	model	has	two	parameters:	θ	describes	

the	 taxon	 diversity	 of	 the	 regional	 pool,	 and	 m	 is	 the	 immigration	 rate	 from	 the	

regional	pool	into	the	sampled	community	(see	Supplementary	Note	1).			

The	predictions	of	Hubbell’s	neutral	model	have	so	far	been	primarily	compared	

to	integrative	patterns	obtained	for	macroorganisms	using	classic	census	data,	such	as	

the	abundance	distribution	of	tropical	forest	trees	(Hubbell,	2001).	Some	studies	have	

also	applied	neutral	models	to	environmental	DNA	data	to	interpret	the	composition	of	

microbial	 communities.	 Sloan	 et	 al.	 (2006,	 2007)	 and	 (Woodcock	 et	 al.,	 2007)	

Woodcock	 et	 al.	 (2007)	 developed	 a	 continuous	 approximation	 to	 Hubbell’s	 model	

adapted	 to	 large-sized	 bacterial	 populations.	 They	 focused	 on	 estimating	 the	 rate	 of	

immigration	 into	 the	 local	 community	 independently	of	 assumptions	on	 the	 regional	

pool	 of	 taxa,	 by	 comparing	 taxa	 occurrence	 in	 multiple	 samples	 (Sloan	 et	 al.,	 2006;	

Drakare	 &	 Liess,	 2010;	 Ostman	 et	 al.,	 2010;	 Ayarza	 &	 Erijman,	 2011;	 Roguet	 et	 al.,	

2015)	 or	 by	 measuring	 the	 turnover	 of	 taxa	 over	 time	 (Ofiteru	 et	 al.,	 2010).	 The	

composition	 of	 many	 microbial	 communities	 was	 found	 to	 be	 compatible	 with	
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stochastic	immigration	of	taxa	of	equivalent	fitness	from	a	regional	pool,	at	odds	with	

the	 classic	 assumption	 that	 deterministic	 niche	 sorting	 explains	 the	 assemblage	 of	

microbial	 communities	 (Baas	 Becking,	 1934;	 Fenchel	 &	 Finlay,	 2004).	 Another	

approach	 is	 to	simultaneously	estimate	 the	diversity	and	 immigration	parameters	by	

fitting	 the	 taxa-abundance	 distribution,	 as	 it	 has	 been	 commonly	 done	 for	 classic	

censuses	 of	macroorganisms.	 Dumbrell	 et	al.	(2010)	 and	 Lee	 et	al.	 (2013)	 did	 so	 on	

fungal	 and	bacterial	DNA	data	using	maximum-likelihood	parameter	 inference	based	

on	the	exact	Etienne	sampling	formulas	(Etienne,	2005,	2007,	2009),	while	Harris	et	al.	

(2015)	followed	a	Bayesian	approach	inspired	by	the	field	of	machine	learning.	

Most	 DNA-based	 studies	 comparing	 empirical	 abundance	 patterns	 to	 the	

predictions	of	neutral	models	have	been	limited	by	the	poor	detectability	of	rare	taxa	

owing	 to	 the	 methods	 used	 (Sanger	 sequencing,	 DGGE,	 t-RFLP,	 ARISA).	 High-

throughput	sequencing	now	allows	for	improved	sampling	and	provides	better	quality	

data.	Nevertheless,	metabarcoding	data	are	not	directly	comparable	with	classic	census	

data	owing	 to	both	experimental	 and	biological	 factors.	First,	both	PCR	amplification	

and	 sequencing	 produce	 artifacts.	 During	 the	 PCR	 amplification,	 DNA	 polymerase	

makes	mistakes	when	replicating	DNA	strands,	at	a	rate	that	depends	on	enzyme	types.	

DNA	 strands	 suffer	 further	 damage	 during	 the	 high-temperature	 denaturation	 step	

(Pienaar	 et	 al.,	 2006;	 Quince	 et	 al.,	 2011;	 Degnan	 &	 Ochman,	 2012).	 Furthermore,	

Illumina	sequencing	generates	between	10-3	and	10-2	errors	per	base	pair	(Ross	et	al.,	

2013).	 Clustering	 algorithms	 are	 used	 to	 cluster	 the	 reads	 displaying	 errors	 with	

respect	 to	 the	 original	 sequence	 into	 a	 single	Molecular	Operational	Taxonomic	Unit	

(MOTU;	 Sipos	 et	 al.,	 2010;	 Coissac	 et	 al.,	 2012;	 Mahe	 et	 al.,	 2014).	 While	 these	

approaches	 strongly	 reduce	 the	 number	 of	 artifacts	 in	 the	 data,	 they	 do	 not	 exclude	

artifactual	MOTUs	 that	 are	more	 difficult	 to	 detect	 (e.g.	 chimerical	 fragments,	 highly	

degraded	 sequences).	 Second,	 unbalanced	 PCR	 amplification	 and	 sequencing	 among	

taxa	distorts	the	relative	abundances	of	MOTUs	(Sipos	et	al.,	2007;	Amend	et	al.,	2010;	

Aird	et	al.,	2011;	Nguyen	et	al.,	2015).	Third,	relative	abundances	are	further	biased	by	

noise	sources	inherent	to	the	use	of	DNA	barcodes,	such	as	the	strong	variability	of	the	

barcode	 copy	 number	 among	 taxa	 (Kembel	 et	al.,	 2012;	Weber	&	 Pawlowski,	 2013).	

This	problem	is	even	more	serious	for	multicellular	organisms	because	the	read	count	

should	also	depend	on	cell	abundance.	Abundances	are	further	biased	by	the	variable	
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rate	 of	 DNA	 release	 into	 the	 environment	 through	 excreted,	 sloughed	 or	 decaying	

material	(Andersen	et	al.,	2012;	Maruyama	et	al.,	2014;	Klymus	et	al.,	2015).	

In	this	paper,	we	conduct	simulations	to	address	how	the	sources	of	uncertainty	

mentioned	above	may	distort	parameter	estimates	in	Hubbell’s	neutral	theory,	and	we	

discuss	 the	conceptual	differences	between	 individual-based	and	environmental	DNA	

approaches	 to	 the	measurement	 of	 biodiversity.	We	 ask	 the	 following	 questions:	 1)	

what	is	the	effect	of	artifactual	MOTUs	and	abundance	noise	on	estimating	the	neutral	

diversity	 parameter?	 2)	 Can	 we	 use	 the	 same	 approach	 for	 multicellular	 as	 for	

unicellular	organisms?	3)	What	are	the	effects	of	the	different	noise	sources	on	neutral	

parameter	inference	when	accounting	for	dispersal	limitation?	
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Methods	

	

 Sampling	from	Hubbell’s	neutral	model	1.

	

We	 generated	 samples	 of	 J	 individuals	 following	 the	 stationary	 taxa-abundance	

distribution	 of	 Hubbell’s	 neutral	 model.	 The	 immigration	 from	 the	 regional	 pool	 of	

diversity	parameter	θ	into	the	sampled	community	can	be	either	characterized	by	the	

immigration	rate	m	or	by	 the	normalized	 immigration	parameter	𝐼 = !
!!!

𝐽 − 1 	that	

does	not	depend	on	the	sample	size	J	and	is	thus	invariant	by	sampling.	If	𝑚 ≪ 1,	I	 is	

approximated	by	the	product	Jm,	noted	𝑁!𝑚	in	Sloan	et	al.	(2006,	2007).		

We	first	assumed	no	dispersal	limitation	(i.e.	𝑚 = 1).	We	generated	a	sample	by	

running	J	times	the	following	algorithm	parameterized	by	θ:	at	step	j,	draw	individual	

j+1	 from	 a	 new	 taxon	 with	 probability	𝜃/(𝑗 +	𝜃),	 or	 draw	 one	 of	 the	 j	 individuals	

already	 present	 and	 add	 an	 individual	 j+1	 of	 the	 same	 taxon.	 This	 algorithm,	 due	 to	

Hoppe	(1984),	partitions	J	individuals	into	a	random	number	T	of	taxa	according	to	the	

Ewens	distribution	of	parameter	θ	(Ewens,	1972).		

We	 then	generated	samples	 from	a	dispersal-limited	neutral	community	using	

the	two-step	procedure	provided	in	Etienne	(2005)	which	partitions	J	individuals	into	

a	random	number	T	of	taxa.	First,	we	run	J	times	Hoppe’s	algorithm	as	described	above	

but	with	parameter	I,	so	as	to	partition	the	J	individuals	into	A	immigrating	ancestors.	

Second,	 we	 run	 A	 times	 the	 algorithm	 with	 parameter	 θ,	 so	 as	 to	 partition	 the	 A	

immigrating	 ancestor	 into	 T	 taxa,	 thus	 taking	 into	 account	 the	 taxa-abundance	

distribution	in	the	regional	pool.	Finally,	we	assign	the	 J	 individuals	to	the	taxonomic	

identity	of	their	immigrating	ancestor.	

We	 generated	 samples	 of			J =10
5 	individuals.	We	 explored	 a	 realistic	 range	 of	

parameter	values:	θ	in	[1,	500]	and	m	in	[0.001,	1].	
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 Simulating	noise	in	DNA	sequence	reads:	experimental	noise	2.

	

We	simulated	the	DNA	metabarcoding	procedure	by	sampling	N	sequence	reads	from	

the	relative	taxa	abundances	of	the	neutral	model,	possibly	after	modifying	the	relative	

abundances	according	to	simulated	noise	sources	(see	below).	We	present	the	results	

obtained	 for	 the	 value			N =104 ,	 a	 typical	 number	 of	 Illumina	 sequence	 reads	 for	 one	
environmental	sample.		

In	 order	 to	 test	 the	 effect	 of	 misidentification	 bias	 on	 neutral	 parameter	

inference,	we	added	artifactual	MOTUs	to	the	data,	while	keeping	the	number	of	reads	

constant.	 We	 assumed	 that	 each	 true	 MOTU	 with	 a	 read	 abundance	 r	 generates	 a	

random	 number	 of	 artifactual	 MOTUs,	 drawn	 from	 a	 multinomial	 distribution	 with	

weight	 r.	 We	 added	 either	 singletons,	 or	 MOTUs	 with	 larger	 read	 abundances.	 We	

obtained	an	example	of	 artifactual	MOTUs	with	 realistic	 abundance	 structure	 from	a	

benchmark	 experiment	 (see	 below	 and	 Supplementary	Methods).	 Drawing	 on	 these	

empirical	 data,	we	 simulated	 read	 abundances	 in	 the	 following	way:	 each	 artifactual	

MOTU	was	 assumed	 to	 have	 an	 abundance	 of	 1	 read	 if			r <50 ,	 or	 an	 abundance	 x	 if	
		r ≥50 ,	where	x	lies	between	1	and			r /50 	with	a	probability	density			p(x)=

1
log(r/50)x .	

Molecular	 experimental	 procedures	 introduce	biases	 also	 in	 read	 abundances,	

because	the	efficiency	of	PCR	amplification	and	sequencing	is	variable	across	MOTUs.	

For	 instance,	 PCR	 amplification	 is	 less	 efficient	 if	 PCR	 priming	 sites	 differ	 from	 the	

primer	sequence	(Sipos	et	al.,	2007),	or	if	the	barcode	sequence	is	too	long	or	GC-rich	

(Aird	et	al.,	2011).	As	a	result,	the	read	abundance	distribution	of	MOTUs	is	noised	with	

respect	 to	 the	DNA	barcode	 abundance	distribution	 in	 the	 sample.	We	assumed	 that	

the	noise	 takes	 the	 form	of	a	 lognormally	distributed	multiplicative	noise	on	relative	

abundances,	with	mean	1	and	log	standard	deviation	𝜎!"#.	This	choice	is	parsimonious	

because	 this	 noise	 is	 predominantly	 due	 to	 PCR	 (Aird	 et	 al.,	 2011),	 and	 the	

multiplicative	amplification	of	DNA	strands	by	PCR	generates	a	multiplicative	noise	on	

abundances.	 This	 multiplicative	 noise	 can	 be	 further	 assumed	 to	 result	 from	 the	

product	 of	 random	 independent	 variables	 and	 thus	 to	 be	 lognormally	 distributed	by	

virtue	 of	 the	 central	 limit	 theorem.	 We	 tested	 the	 effect	 of	 noise	 intensity	𝜎!"#	on	
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neutral	parameter	inference.	For	completeness,	we	also	tested	the	effect	of	an	additive	

Gaussian	noise	of	standard	deviation	𝜎!"" 	on	MOTUs	relative	abundances,	for	different	

𝜎!"" 	values.	This	type	of	noise	can	be	regarded	as	simulating	the	noise	generated	in	the	

sequencing	step.	

To	 illustrate	 our	 modelling	 choices	 with	 empirical	 data,	 we	 produced	 a	

benchmark	 dataset	 obtained	 by	 mixing	 the	 DNA	 of	 16	 plant	 species	 in	 known	

quantities.	The	experiment	and	its	results	are	detailed	in	the	Supplementary	Methods.	

After	following	standard	data	curation	protocols,	we	found	that	the	dataset	contained	

33%	of	artifactual	MOTUs	and	displayed	a	lognormally	distributed	multiplicative	noise	

on	relative	abundances	of	log	standard	deviation	𝜎!"# = 1.2.	We	reported	these	values	

on	the	figures	as	examples	of	realistic	noise	intensities.	

	

 Simulating	noise	in	DNA	sequence	reads:	‘biological’	noise	3.

	

Irrespective	 of	 experimental	 noise,	 variability	 in	 the	 number	 of	 barcode	 copies	 per	

individual	may	cause	bias	in	the	interpretation	of	read	abundances.	For	bacteria	(16S	

rDNA)	or	protists	(18S	rDNA),	barcode	copy	number	variability	 in	nuclear	DNA	is	an	

important	contribution	to	abundance	noise	(Kembel	et	al.,	2012;	Weber	&	Pawlowski,	

2013):	Kembel	et	al.	(2012)	found	that	the	barcode	copy	number	of	the	16S	rDNA	gene	

follows	 a	 zero-truncated	 Poisson	 distribution	 of	 parameter	𝜆 = 4	across	 a	 range	 of	

bacterial	 clades.	 For	multicellular	 eukaryotes,	 organellic	 barcodes	 are	 typically	 used,	

and	they	similarly	display	variable	copy	numbers	per	cell	across	taxa	and	tissue	types.	

To	assess	this	issue,	we	tested	how	a	zero-truncated	Poisson-distributed	multiplicative	

noise	affects	neutral	parameter	 inference,	 for	various	values	of	 the	parameter	λ.	The	

intensity	 of	 this	 noise	 is	 measured	 by	 the	 coefficient	 of	 variation	 (i.e.,	 standard	

deviation	 over	 mean)	 of	 the	 zero-truncated	 Poisson	 distribution.	 Since	 it	 reaches	 a	

maximum	at		λ =1.8 ,	noise	intensity	is	maximal	for	this	value.	
For	multicellular	organisms,	the	variability	in	the	number	of	barcode	copies	per	

individual	 is	 further	 amplified	 because	 the	 number	 of	 cells	 may	 vary	 vastly	 across	

individuals,	 owing	 to	 body-size	 differences.	 We	 simulated	 size	 differences	 between	



	

	

	
Chapter	2	–	Neutral	Parameter	Inference	

	

	 	

124	

individuals	 following	a	simple	and	generic	approach.	As	 in	O’Dwyer	et	al.	 (2009),	we	

assumed	that	all	individuals,	irrespective	of	the	taxon	they	belong	to,	grow	in	size	over	

time	at	a	constant	rate	g	from	an	initial	number	of	cells	n0	at	birth,	and	die	at	a	constant	

rate	d.	 The	 stationary	 probability	 density			pind(n) 	of	 having	 a	 number	n	 of	 cells	 for	 a	
randomly	 chosen	 individual	 is	 given	 by	 the	 solution	 of	 the	 von	 Foerster	 equation	

(O’Dwyer	et	al.,	2009):	𝑝!"# 𝑛 = !
!
𝑒!

!
!(!!!!)	(see	Supplementary	Note	2).	We	used	this	

distribution	 to	draw	a	number	n	 of	 cells	between	n0	 and	 infinity	 for	 each	 individual,	

and	modified	the	MOTUs	relative	abundances	accordingly.	Note	that	we	simulated	size	

differences	between	individuals	and	not	between	taxa,	which	would	have	been	akin	to	

simulating	a	multiplicative	noise	on	taxa	abundances	as	above.	We	tested	the	effect	on	

neutral	parameter	inference	for	a	range	of	values	of	 !
!!!

+ 1,	the	ratio	of	the	mean	cell	

number	!
!
+ 𝑛!	divided	by	the	initial	cell	number	𝑛!.	Noise	intensity	is	measured	by	the	

coefficient	of	variation	1 (1+ !
!
𝑛!)	of	the	probability	density	𝑝!"# 𝑛 .	It	is	bounded	by	

1	 for	 !
!!!

≫ 1,	 which	 corresponds	 to	 the	 case	 of	 taxa	 spanning	 large	 ranges	 of	 body	

sizes,	such	as	trees	or	vertebrates.		

Organisms	may	be	entirely	 contained	 in	 the	environmental	 sample	 if	 they	are	

sufficiently	 small,	 or	when	DNA	 is	 extracted	 from	 a	mixture	 of	 directly	 sampled	 live	

organisms,	such	as	insects	from	a	light	trap	(bulk	samples;	Yu	et	al.,	2012).	However,	in	

most	 cases,	 only	 small	 fractions	 of	 these	 organisms	 are	 sampled	 (e.g.	 roots,	 pollen,	

seeds,	 spores,	 faeces,	 and	 different	 secretion	 types),	 or	 even	 only	 extracellular	 DNA	

resulting	 from	cell	death	and	subsequent	destruction	of	cell	structure	(Levy-Booth	et	

al.,	 2007;	 Taberlet	 et	 al.,	 2012).	 Thus,	 the	 abundance	 distribution	 of	 environmental	

DNA	also	depends	on	the	kinetics	of	DNA	release	and	degradation	in	the	environment.	

We	 assumed	 that	 this	 dynamics	 is	 fast	 with	 respect	 to	 changes	 in	 community	

composition,	so	that	the	 ‘stock’	of	environmental	DNA	is	 in	a	steady	state.	Under	this	

assumption,	 the	 rate	 of	 DNA	 release	 through	 the	 death	 of	 organisms	 is	 roughly	

proportional	to	the	total	number	of	cells	of	the	currently	living	individuals.	In	addition,	

the	rate	of	environmental	DNA	release	by	a	living	organism	reflects	its	metabolic	rate	

and	 we	 assumed	 it	 to	 scale	 as	 the	 power	 3/4	 of	 body	 mass	 (or	 cell	 number),	 as	

predicted	 by	 the	metabolic	 theory	 of	 ecology61.	 DNA	 degradation	 rate	was	 assumed	
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uniform	 across	 individuals.	 Even	 though	 we	 focus	 here	 on	 multicellular	 organisms,	

unicellular	organisms	do	excrete	DNA	material	and	differ	in	metabolic	rates	as	well.	

Based	 on	 the	 assumptions	 of	 the	 previous	 paragraph,	 we	 simulated	 the	

abundance	distribution	of	environmental	DNA	as	follows.	We	(1)	generated	a	neutral	

sample	of	individuals,	(2)	assigned	a	number	of	cells	n	between	n0	and	infinity	to	each	

individual	as	above,	(3)	counted	a	first	contribution		dn 	of	each	individual	to	the	stock	

of	 environmental	DNA,	with	d	 the	death	 rate,	 (4)	 and	counted	a	 second	contribution	

𝑟!𝑛
!
!	of	 each	 individual	 to	 the	 stock	 of	 environmental	 DNA,	 with	 r0	 the	 rate	 of	 DNA	

release	for	a	hypothetical	one-cell	individual.	Thus,	environmental	DNA	abundance	per	

individual	 is	 proportional	 to	𝑛 + !!
!
𝑛
!
!	rather	 than	 n.	 We	 tested	 the	 effect	 on	 neutral	

parameter	 inference	 by	 varying	 𝑟! 𝑑 ,	 the	 parameter	 controlling	 the	 relative	

contribution	of	living	and	dead	organisms	to	environmental	DNA.		

	

 Estimating	the	neutral	model	parameters	from	the	taxa-abundance	4.

distribution	

	

We	 estimated	 the	 parameters	 of	 Hubbell’s	 neutral	 model	 by	 maximum-likelihood	

inference	 from	 the	 simulated	 taxa-abundance	distribution	 for	a	number	of	 simulated	

noise	 sources.	 To	 test	 the	 influence	 of	 noise,	we	 compared	 the	 estimated	 parameter	

values		θ̂ 	and			Î 	with	 the	 values	 of	 θ	 and	 I	 used	 to	 generate	 the	 initial	 samples	 of	
individuals.	 For	 each	 set	 of	 parameters	 and	 noise	 intensity,	 we	 generated	 100	

simulated	samples.	We	reported	the	mean	and	standard	deviation	of	the	relative	biases	

(𝜃 − 𝜃) 𝜃	and	log!"(𝐼 𝐼)	over	the	100	realizations.	

In	 the	 absence	 of	 dispersal	 limitation,	 the	 Ewens	 distribution	 permits	 the	

inference	 of	 θ	 by	 likelihood	 maximization.	 The	 maximum-likelihood	 estimator	 of	 θ,	

hereafter	 referred	 to	 as	 the	Ewens	 estimator,	 is	 implicitly	 given	 by	𝑇 = !
!!!

!!!
!!! 	as	 a	

function	of	the	number	T	of	taxa	and	the	number	J	of	individuals	(Ewens,	1972).	In	the	

dispersal-limited	case,	the	Etienne	distribution	provides	an	exact	likelihood	expression	

for	 the	 simultaneous	 inference	 of	 θ	 and	 I	 (Etienne,	 2005),	 as	 implemented	 in	 the	
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software	 Tetame	 (Jabot	 et	 al.,	 2008).	 As	 noted	 previously	 in	 the	 literature,	 the	

likelihood	landscape	of	the	Etienne	formula	often	displays	two	local	maxima	(Etienne	

et	al.,	2006;	Jabot	&	Chave,	2009).	To	find	the	true	parameter	values,	we	first	estimated	

θ	 using	 the	 Ewens	 estimator,	 and	 selected	 the	 local	 maximum	 with	 the	 θ	 estimate	

closest	to	the	value	yielded	by	the	Ewens	estimator.	Prior	to	these	analyses,	we	tested	

the	 performances	 of	 both	 estimators	 on	 unbiased	 neutral	 data	 depending	 on	

parameter	values	and	sample	size	(see	Supplementary	Note	3).	

In	typical	environmental	DNA	data,	the	number	J	of	individuals	in	the	sample	is	

unknown.	As	already	done	in	previous	studies	(Lee	et	al.,	2013),	we	used	the	number	

of	 sequence	 reads	 as	 an	 effective	 number	 of	 individuals.	 This	 is	 possible	 owing	 to	 a	

mathematical	property	of	the	Ewens	and	Etienne	distributions:	both	distributions	are	

invariant	by	sampling	without	replacement	(Etienne	&	Alonso,	2005),	hence	maximum-

likelihood	 inference	 yields	 the	 same	 results	 on	 any	 random	 sample	 from	 the	

community,	and	on	any	random	subsample	from	an	initial	sample	(up	to	a	possible	bias	

in	 the	 estimator).	 As	 a	 consequence,	 read	 abundances	 can	 be	 used	 for	 neutral	

parameter	 inference,	 as	 long	 as	 the	 reads	 can	 be	 regarded	 as	 forming	 a	 subsample	

without	replacement	of	the	initial	individuals.	This	assumption	is	however	not	always	

verified	 in	 empirical	 data	 (see	 Discussion).	 The	 invariance	 property	 of	 Etienne	

distribution	only	holds	if	the	distribution	is	expressed	as	a	function	of	I,	therefore	we	

used	here	the	immigration	parameter	I	instead	of	m	for	the	purpose	of	inference.	In	the	

following,	m	always	refers	to	the	value	in	the	initial	sample	of	J	individuals.	

In	the	absence	of	dispersal	limitation,	θ	can	also	be	estimated	from	the	slope	of	

the	 ranked	 log-abundance	 curve,	 a	 method	 that	 has	 the	 advantage	 of	 being	

independent	of	J.	Indeed,	the	logarithm	of	𝔼[𝑃!],	the	expected	relative	abundance	of	the	

ith	 most	 abundant	 taxon,	 is	 given	 by:	log 𝔼[𝑃!] = − log𝜃 − 𝑖 log(1+ 1 𝜃)	(Ewens	 &	

Tavaré,	 1997).	 For	 simulated	 abundance	noise,	we	 estimated	θ	 using	 this	method	 in	

addition	to	Ewens	estimator.	We	restricted	the	linear	regression	to	the	linear	domain	

of	 the	 ranked	 log-abundance	 curve.	 We	 also	 compared	 the	 performance	 of	 both	

inference	methods	 in	the	absence	of	simulated	noise	 for	samples	of	102,	103,	104	and	

105	 sequence	 reads	 and	 for	 initial	 samples	 of	 individuals	 of	 different	 sizes	 (see	

Supplementary	Note	4).		
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Results	

	

We	 first	 included	 artifactual	 MOTUs	 in	 a	 simulated	 sample	 and	 tested	 the	 effect	 on	

estimating	the	diversity	parameter	θ	of	the	neutral	model	without	dispersal	limitation.	

The	 relative	 bias	(𝜃 − 𝜃) 𝜃	increased	with	 the	 proportion	 of	 artifactual	MOTUs,	 first	

linearly	and	then	faster	than	linearly	(Fig.	1a-b).	It	did	not	depend	on	the	initial	θ	value	

or	on	the	read	abundance	of	the	introduced	artifactual	MOTUs.	The	standard	deviation	

of	𝜃	was	not	modified	by	the	presence	of	artifactual	MOTUs.	

Next,	 we	 simulated	 PCR	 noise,	 modelled	 as	 a	 lognormally	 distributed	

multiplicative	noise	with	 log	 standard	deviation	𝜎!"#.	 This	noise	had	no	effect	on	 the	

inference	 of	 the	θ 	parameter	 below	 a	 threshold𝜎!"#,!! .	 For	𝜎!"# > 𝜎!"#,!! ,	 θ	 was	

underestimated.	The	value	of	𝜎!"#,!!	decreased	with	 increasing	θ	 but	 remained	of	 the	

order	of	1	for	θ	between	1	and	500	(𝜎!"#,!! ≈ 5	for	𝜃 = 1	and	𝜎!"#,!! ≈ 0.5	for	𝜃 = 500;	

see	Fig.	1c-d).	We	also	applied	an	additive	Gaussian	noise	of	standard	deviation	𝜎!"" 	to	

the	relative	abundances.	This	type	of	noise	introduced	a	bias	in	𝜃	for	values	of	𝜎!"" 	 at	

least	one	order	of	magnitude	larger	than	the	relative	abundance	of	the	least	abundant	

MOTUs	(Supplementary	Fig.	S1).	Neither	type	of	noise	affected	the	standard	deviation	

of	𝜃	(Fig.	 1,	 Supplementary	 Fig.	 S1).	 These	 results	 held	 both	 in	maximum-likelihood	

inference	and	when	using	linear	regression	on	the	ranked	log-abundance.	

We	 then	 simulated	 the	 variability	 in	 barcode	 copy	 number	 by	 applying	 a	

multiplicative	 noise	 distributed	 according	 to	 a	 zero-truncated	 Poisson	 distribution.	

This	type	of	noise	had	no	effect	on	θ	inference,	even	for	the	maximum	noise	intensity	at	

𝜆 = 1.8	(Fig.	 1e-f).	 We	 accounted	 for	 body	 size	 differences	 by	 assuming	 a	 steadily	

growing	cell	number	n	over	the	course	of	an	individual’s	life,	and	by	varying	the	ratio	

𝑔 𝑑𝑛! + 1	of	the	mean	number	of	cells	𝑔 𝑑 + 𝑛!	divided	by	the	initial	number	of	cells	

𝑛!.	We	 found	 that	 this	 ratio	 had	 no	 effect	 on	 the	mean	 and	 standard	 deviation	 of	θ,	

even	at	large	values	(Fig.	1g-h).	We	also	tested	the	effect	of	assigning	an	environmental	

DNA	 mass	 proportional	 to	𝑛 + !!
!
𝑛
!
!	to	 individuals	 (where	 n	 is	 the	 cell	 number)	 to	

reflect	the	joint	effect	of	mortality	(n	term)	and	cellular	turnover	(n
!
!	term,	proportional	
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to	metabolic	 rate).	We	did	not	 find	any	effect	on	θ	 inference	even	 for	 large	values	of	

𝑟! 𝑑	(Supplementary	Fig.	S1).		
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Figure	1:	Neutral	parameter	inference	without	dispersal	limitation.	Left	panels:	mean	MOTU	
rank	 abundance	distributions	over	100	 realizations	 for	θ = 20	in	 a	104-read	 sample,	without	
(dashed	blue	line)	and	with	(black	line)	simulated	noise:	(a)	30%	artifactual	MOTUs	added	(as	
measured	in	benchmark	dataset),	(c)	multiplicative	lognormal	noise	of	log	standard	deviation	
σ!"# = 1.2	(as	 measured	 in	 benchmark	 dataset),	 	 (e)	 multiplicative	 zero-truncated	 Poisson	
noise	simulating	barcode	copy	number	variability	(Poisson	parameter	λ = 4;	 cf.	Kembel	et	al.	
2012),	and	(g)	size	structure	among	individuals,	for	a	ratio	 !

!!!
= 1000	(mean	body	mass	over	

birth	mass).	Right	panels:	mean	and	standard	deviation	over	100	realizations	of	the	relative	
bias	 on	 the	 θ	 estimate	 in	 a	 104-read	 sample,	 for	θ = 1	(green),	θ = 20	(black)	 and	θ = 500	
(red),	as	a	function	of	(b)	the	proportion	of	artifactual	MOTUs	(dashed	blue	line	underlines	the	
linear	dependence),	(d)	the	lognormal	noise	intensity	σ!"#,	(f)	the	Poisson	parameter	λ,	and	(h)	
the	ratio	𝑔 (𝑑𝑛!)

!
!!!

.	

	

Finally,	 we	 replicated	 the	 analysis	 in	 the	 presence	 of	 dispersal	 limitation	 (i.e.	

assuming	 that	𝑚 < 1 ).	 We	 found	 that	 the	 dispersal-limited	 maximum-likelihood	

estimator	can	be	strongly	biased	even	in	the	absence	of	simulated	noise	when	dispersal	

limitation	 is	 too	strong	or	 too	weak,	especially	 for	 large	θ	values	 (see	Supplementary	

Note	 3).	 Therefore,	 we	 limited	 ourselves	 to	 parameter	 values	 that	 could	 be	 well	

estimated	 in	 the	 absence	 of	 simulated	 noise.	 Provided	 the	 immigration	 rate	 is	 large	

enough	 (𝑚 > 0.1 ),	 the	 relative	 bias	 (𝜃 − 𝜃) 𝜃 	depended	 on	 the	 proportion	 of	

artifactual	 MOTUs	 similarly	 to	 the	 		m=1 	m = 1case.	 For	 lower	 values	 of	 m,	 the	

dependence	 of	(𝜃 − 𝜃) 𝜃	on	 the	 proportion	 of	 artifactual	MOTUs	was	 even	 stronger	

(Fig.	 2a-b).	 The	 relative	 bias	log!"(𝐼 𝐼)	on	 the	 normalized	 immigration	 parameter	

increased	 linearly	 with	 the	 proportion	 of	 artifactual	 MOTUs.	 Applying	 a	 lognormal	

multiplicative	noise	of	 log	standard	deviation	𝜎!"#	on	MOTUs	relative	abundances	did	

not	 bias	 the	 estimation	 of	 (θ,	 I)	 below	 a	 noise	 threshold	𝜎!"#,!!	identical	 to	 the	 one	

found	without	 dispersal	 limitation.	 The	 threshold	𝜎!"#,!!	decreased	 only	 slightly	with	

decreasing	m	value.	Above	𝜎!"#,!! ,	θ	was	underestimated	and	I	overestimated	(Fig.	2c-

d).	 Applying	 an	 additive	 Gaussian	 noise	 of	 standard	 deviation	𝜎!"" 	to	 the	 relative	

abundances	introduced	a	bias	for	values	of	𝜎!"" 	larger	than	the	relative	abundance	of	

the	least	abundant	MOTUs	(Supplementary	Fig.	S2).	A	multiplicative	noise	distributed	

according	 to	 a	 zero-truncated	 Poisson	 had	 no	 influence	 on	 the	 parameter	 estimates	

(Fig.	2e-f),	and	likewise	an	exponentially	distributed	number	of	cells	still	had	no	effect	

on	parameter	inference	in	the	dispersal-limited	case	(Fig.	2g-h,	Supplementary	Fig.	S2).	
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Discussion	
	

Although	 they	 provide	 an	 unparalleled	 amount	 of	 information,	 biodiversity	 studies	

based	on	environmental	DNA	also	have	limitations.	One	of	them	is	that	the	abundance	

of	 sequence	 reads	 corresponding	 to	 a	 given	 molecular	 taxonomic	 unit	 does	 not	

necessarily	 reflect	 the	 true	 population	 abundance	 of	 the	 corresponding	 taxon.	 Our	

analysis	offers	a	quantitative	assessment	of	the	importance	of	this	issue	in	attempting	

to	relate	environmental	DNA	datasets	with	theoretical	model	predictions.			

Our	 goal	 was	 to	 assess	 when	 amplicon-based	 DNA	 read	 abundance	 data	 can	

offer	biological	 insights	 into	 the	predictions	of	Hubbell’s	 neutral	 theory.	We	 selected	

Hubbell’s	model	over	other	models	predicting	taxa-abundance	distributions	because	it	

incorporates	a	number	of	key	features	for	any	biodiversity	model	such	as	demographic	

stochasticity	and	dispersal	limitation	(Vellend,	2010).	Estimating	the	parameters	θ	and	

m	 of	 the	 neutral	 model	 is	 useful	 in	 interpreting	 biodiversity	 patterns	 even	 if	 the	

community	is	not	governed	by	purely	neutral	mechanisms	(Jabot	et	al.,	2008).	Indeed,	

θ	 is	 closely	 related	 to	 Fisher’s	 biodiversity	 index,	 and	 is	 an	 unbiased	 index	 of	

biodiversity,	while	m	quantifies	how	the	local	sample	is	connected	to	its	surroundings.	

We	simulated	taxa	abundance	datasets	from	a	neutral	model	and	added	noise	to	them	

using	a	range	of	plausible	noise	types	and	intensities.	We	showed	that	the	parameters	

θ	 and	 I	 could	 still	 be	 reliably	 estimated	 by	 maximum	 likelihood	 inference	 from	 the	

simulated	 sequence	 reads,	 provided	 that	 artifactual	 MOTUs	 are	 rare,	 and	 that	

lognormal	 noise	 on	 relative	 read	 abundances	 is	 below	 a	 log	 standard	 deviation	

threshold	that	depends	on	θ.	We	also	showed	that	under	our	modelling	assumptions,	

neutral	 inference	 is	 unbiased	 for	 assemblages	 of	 multicellular	 organisms	 and	 for	

variable	barcode	copy	numbers.	Finally,	we	 found	 that	 the	noise	 terms	had	a	 similar	

effect	 on	 parameter	 inference	 when	 fitting	 the	 one-parameter	 version	 of	 the	 model	

(without	dispersal	limitation)	and	when	fitting	Hubbell’s	dispersal-limited	model.	

	

One	of	 the	major	differences	between	environmental	DNA	surveys	and	classic	

biodiversity	surveys	is	that	the	number	of	sampled	individuals	is	usually	not	measured.	
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Yet,	most	biodiversity	measures	assume	the	knowledge	of	the	organisms’	sample	size.	

To	 solve	 this	 problem,	 we	 assumed	 in	 our	 simulations	 that	 the	 number	 of	 reads	 is	

several	 times	 smaller	 than	 the	 number	 of	 effectively	 sampled	 individuals:	𝑁 = 10!		

sequence	reads	 for	𝐽 = 10!	initial	 individuals.	Under	 this	assumption,	sequence	reads	

may	 be	 seen	 as	 a	 random	 subsample	 of	 the	 individuals,	 and	 because	 the	maximum-

likelihood	 approach	 of	 the	 neutral	 theory	 relies	 on	 sampling	 formulas	 that	 are	

invariant	 under	 subsampling,	 it	 follows	 that	 the	 inference	 on	 reads	 is	 unbiased	 (see	

Supplementary	Note	 4).	 Generating	 a	 larger	 number	 of	 individuals	 did	 not	 alter	 our	

results	but	was	computationally	prohibitive	with	our	algorithm.	

The	 assumption	 that	 the	 number	 of	 sampled	 individuals	 exceeds	 that	 of	

sequence	 reads	 is	 reasonable	 for	 prokaryotes	 (Whitman	 et	 al.,	 1998)	 and	

microorganisms	 in	 general,	 but	 is	 unrealistic	 for	 larger	 organisms.	 One	 empirical	

method	 to	 test	 whether	 the	 sequencing	 data	 meet	 the	 requirement	 for	 neutral	

maximum-likelihood	inference	is	to	take	a	smaller	subsample	of	reads	and	check	that	

the	parameter	estimates	are	unchanged.	If	not,	one	should	decrease	sample	size	until	

stability	 is	 achieved	 (see	 Supplementary	Note	 4).	 If	 environmental	 DNA	 data	 do	 not	

consist	of	a	discrete	number	of	reads,	as	is	the	case	in	t-RFLP	and	ARISA,	an	arbitrarily	

set	sample	size	may	be	used	(Lee	et	al.,	2013).	The	number	of	 individuals	can	also	be	

estimated	empirically,	 as	 in	Woodcock	et	al.	 (2007)	or	Dumbrell	et	al.	 (2010).	 In	 the	

neutral	model	without	dispersal	limitation,	a	more	straightforward	approach	is	to	infer	

θ	 from	 the	 slope	 of	 the	 ranked	 log-abundance	 distribution,	 but	 this	 requires	 an	

arbitrary	delimitation	 of	 the	 linear	 domain	 of	 the	 curve,	 and	 it	 is	 reliable	 only	 if	 the	

read	 sample	 is	 large	 enough	 and	 contains	 a	 large	 enough	 taxonomic	 diversity.	 A	

general	 rule	 is	 that	 the	 sampling	 scheme	 should	 be	 suited	 to	 the	 size	 and	 spatial	

density	 of	 the	 target	 organisms:	 for	 large	 organisms,	 multiple	 spatially	 distributed	

environmental	samples	should	be	pooled	so	as	to	sample	a	sufficiently	large	number	of	

individuals.	For	instance,	capturing	the	abundance	distribution	of	plant	taxa	from	soil	

DNA	samples	 requires	pooling	a	 sufficient	number	of	 soil	 samples	over	a	 sufficiently	

large	area.		
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Figure	2:	Neutral	parameter	inference	in	the	presence	of	dispersal	limitation.	We	simulated	a	
10!-read	 sample	 and	 computed	 the	 mean	 and	 standard	 deviation	 over	 100	 realizations	 of	
(𝜃 − 𝜃) 𝜃 	and	 log!"(𝐼 𝐼) .	 Results	 are	 plotted	 for	𝜃 = 20 	and	 for	m = 1 	(black),	m = 0.1	
(green),	m = 0.01	(blue)	 and	m = 0.001	(red).	 Panels	 a-b:	 variation	 with	 the	 proportion	 of	
artifactual	MOTUs	(dashed	blue	line	underlines	the	linear	dependence).	Panels	 c-d:	variation	
with	 the	 log	 standard	 deviation	 σ!"# 	of	 a	 multiplicative	 lognormal	 noise	 on	 relative	
abundances.	 Panels	 e-f:	 variation	 with	 the	 parameter	 λ	 of	 a	 multiplicative	 zero-truncated	
Poisson	noise.	Panels	g-h:	variation	with	the	body	size	ratio	𝑔 (𝑑𝑛!)

!
!!!

.	

	

When	 accounting	 for	 dispersal	 limitation,	 a	 single	 sample	 of	 sequence	 reads	

does	 not	 always	 provide	 enough	 information	 to	 reliably	 infer	 both	 θ  and	 I	 from	 the	

taxa-abundance	 distribution,	 even	 in	 the	 absence	 of	 additional	 noise	 source.	 The	

maximum-likelihood	estimator	may	be	strongly	biased	when	the	immigration	rate	into	

the	 local	 community	 is	 either	 too	 low	 or	 too	 high,	 and	 increasingly	 so	 for	 larger	

θ  values	 (see	 Supplementary	 Note	 3).	 Since	 these	 biases	 decrease	 with	 larger	 read	

sample	size,	the	number	of	sequence	reads	should	be	as	large	as	possible	as	long	as	it	

does	 not	 preclude	 using	 the	 sequence	 reads	 for	 parameter	 inference.	 Moreover,	 in	

order	to	avoid	bias	in	the	case	of	weak	dispersal	limitation,	the	Ewens	estimator	should	

be	 favoured	 whenever	 it	 yields	 a	 higher	 likelihood	 value	 than	 the	 dispersal-limited	

estimator.	

In	practice,	environmental	DNA	studies	often	sample	the	same	regional	species	

pool	 in	 different	 locations,	 which	 allows	 for	 more	 robust	 multi-sample	 maximum-

likelihood	 inference	 (Etienne,	 2007,	 2009).	 It	 should	 be	 noted	 however	 that	 exact	

maximum-likelihood	 inference	 can	 be	 computationally	 prohibitive	 in	 the	 dispersal-

limited	case	for	larger	numbers	of	reads	than	we	used	in	this	study	or	in	the	case	of	a	

multi-sample	 approach	 with	 large	 read	 samples	 (Lee	 et	 al.,	 2013).	 Continuous	

approximations	drawing	on	the	work	of	Sloan	et	al.	(2006,	2007)	and	Woodcock	et	al.	

(2007)	 might	 then	 be	 preferred,	 such	 as	 the	 Bayesian	 formulation	 of	 Harris	 et	 al.	

(2015).		

	

Our	 analysis	 reveals	 that	 the	 presence	 of	 artifactual	 MOTUs	 is	 the	 most	

detrimental	to	neutral	parameter	inference.	Bioinformatics	methods	aiming	at	limiting	

the	number	 of	 artifactual	MOTUs	 should	be	 carefully	 applied	 to	 the	 sequencing	data	
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before	any	attempt	at	estimating	biodiversity	indices	(Sipos	et	al.,	2010;	Coissac	et	al.,	

2012;	 Mahe	 et	 al.,	 2014).	 However,	 these	 methods	 do	 not	 guarantee	 a	 complete	

filtering	 of	 artifactual	 MOTUs	 from	 empirical	 datasets.	 In	 particular,	 chimeric	

sequences	 formed	 at	 the	 PCR	 stage	may	 be	misconstrued	 as	MOTUs.	 Because	 these	

sequences	 are	 generated	 by	 rare	 error-generating	 PCR	 events,	 they	 should	 be	

predominantly	 represented	by	 few	 reads.	Thus	one	 strategy	 for	 removing	artifactual	

MOTUs	consists	in	ignoring	all	MOTUs	below	an	empirically	set	abundance	threshold.	

However,	in	doing	so,	we	lose	the	information	on	the	relationship	between	the	number	

of	reads	and	the	number	of	MOTUs.	Hence	we	suggest	that	a	more	satisfactory	method	

to	mitigate	this	problem	is	to	take	a	sufficiently	small	subsample	of	the	sequence	reads	

so	as	to	trim	out	the	artifactual	MOTUs.	

The	presence	of	artifactual	MOTUs	in	our	simulated	taxa	assemblages	manifests	

itself	by	a	break	in	the	slope	of	the	ranked	log-abundance	curve	(Fig.	1a,	see	also	Fig.	S3	

in	 Supplementary	 Methods).	 Thus,	 the	 adequate	 subsample	 size	 for	 an	 empirical	

dataset	 may	 be	 chosen	 so	 as	 to	 trim	 out	 the	 MOTUs	 with	 abundances	 below	 an	

observed	break	in	the	ranked	log-abundance	curve.	Another	finding	of	our	study	is	that	

for	the	same	proportion	of	artifactual	MOTUs,	the	θ	estimate	has	a	similar	relative	bias	

across	θ	values	and	the	I	estimate	a	similar	relative	bias	across	I	values.	Therefore,	 if	

artifactual	 MOTUs	 cannot	 be	 entirely	 excluded	 in	 an	 environmental	 DNA	 dataset,	

conclusions	should	be	based	on	ratios	of	neutral	parameter	estimates	among	samples	

rather	than	on	absolute	values.	

We	 modelled	 PCR	 noise	 using	 a	 lognormally	 distributed	 multiplicative	 noise	

term.	 We	 found	 a	 threshold	 noise	 value	 beyond	 which	 the	 inference	 of	 the	 neutral	

parameters	becomes	biased.	This	threshold	was	found	to	be	lower	for	larger	θ	values.	

For	 instance,	 the	 empirical	 noise	 intensity	𝜎!"# = 1.2	measured	 on	 our	 benchmark	

dataset	was	near	or	below	the	threshold	𝜎!"#,!!	for	θ	values	up	to	ca.	𝜃 = 20,	while	for	

larger	 θ	 values,	 it	 was	 responsible	 for	 a	 moderate	 underestimation	 of	 θ	 (20%	 for	

𝜃 = 500)	and	 for	a	 serious	overestimation	of	 I.	Nevertheless,	our	benchmark	dataset	

was	 here	 used	 for	 illustrative	 purposes,	 and	 noise	 intensity	 may	 differ	 in	 other	

datasets.	 In	 metabarcoding	 studies,	 noise	 intensity	 likely	 depends	 on	 the	 barcode,	

taxonomic	group	and	wet	laboratory	protocol.	Therefore	we	strongly	advise	to	include	
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at	 least	 one	benchmark	dataset	 as	 part	 of	 any	 environmental	DNA	 study	 to	 quantify	

noise	 intensity.	Empirical	noise	assessments	can	then	be	compared	to	our	simulation	

results.	

We	also	simulated	a	Gaussian	additive	noise	on	abundance	data	and	found	that	

it	had	a	disproportionate	effect	on	the	least	abundant	MOTUs,	thus	distorting	the	taxa-

abundance	distribution:	 parameter	 inference	was	biased	 if	 the	 standard	deviation	of	

the	noise	was	larger	than	the	abundance	of	the	least	abundant	MOTUs.	Here	again,	it	is	

possible	 to	 correct	 for	 this	 type	 of	 noise	 in	 empirical	 datasets	 by	 subsampling	 the	

sequence	 reads.	 Additive	 noise	 can	 be	 considered	 to	 model	 the	 abundance	 noise	

generated	 by	 the	 sequencing	 step	 or	 by	 a	 single	 PCR	 cycle,	 while	 the	 succession	 of	

several	PCR	cycles	produces	a	multiplicative	abundance	noise.			

	 Another	 potential	 bias	 is	 due	 to	 the	 indirect	 relationship	 between	 the	

number	 of	 DNA	 barcode	 sequences	 in	 the	 sample	 and	 the	 number	 of	 sampled	

individuals.	 In	 particular,	 in	 the	 case	 of	multicellular	 individuals,	 some	 of	 them	may	

contribute	disproportionately	more	 than	others.	Given	 the	variability	and	complexity	

of	the	associated	noise	structure,	we	chose	to	follow	a	modelling	approach	retaining	as	

much	 generality	 as	 possible.	 We	 size-biased	 our	 samples	 by	 assuming	 that	 DNA	

availability	in	the	environment	is	proportional	to	body	mass,	or	to	the	turnover	of	body	

mass	 (i.e.	 the	 metabolic	 rate).	 We	 found	 that	 neutral	 parameter	 estimates	 are	 not	

modified	by	size	structure	 in	 the	community,	 irrespective	of	how	strongly	structured	

the	community	is,	which	is	an	interesting	and	general	result.	

Our	 approach	 to	 accounting	 for	 body	 size	 is	 directly	 inspired	 from	 the	 size-

structured	neutral	model	of	O’Dwyer	et	al.	(2009).	This	model	integrates	the	growth	of	

individuals	 into	a	neutral	population	dynamics	without	dispersal	 limitation,	and	may	

offer	analytical	predictions	for	the	neutral	“Species	Biomass	Distribution”	(SBD)	while	

accounting	 for	 the	 dependence	 of	 birth,	 death	 and	 growth	 rates	 on	 the	 size	 of	

individuals.	When	 individuals	 grow	 in	body	 size	 at	 a	 constant	 rate	 and	neither	birth	

nor	 death	 rates	 depend	 on	 size,	 this	 model	 predicts	 the	 same	 SBD	 as	 obtained	

analytically	under	our	assumption	of	independent	exponentially	distributed	sizes	(see	

Supplementary	Note	2).	Our	choice	of	a	rate	of	environmental	DNA	release	scaling	with	

the	3/4th	power	of	body	mass	is	motivated	by	a	prediction	of	the	metabolic	theory	of	
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ecology,	which	relates	 the	metabolic	 rate	 to	 the	body	mass	 in	one	of	 the	 few	general	

laws	of	ecology	(West	et	al.,	1997).	

Even	though	our	modelling	approach	derives	from	theoretical	considerations,	it	

is	also	supported	by	some	empirical	evidence:	it	has	been	shown	that	the	rate	of	DNA	

detection	in	the	environment	is	biased	by	the	size	of	organisms	(Andersen	et	al.,	2012;	

Maruyama	et	al.,	2014;	Klymus	et	al.,	2015),	and	the	fact	that	DNA	abundance	should	

scale	 non-linearly	 with	 body	 mass	 has	 been	 experimentally	 verified	 in	 fishes	

(Maruyama	 et	 al.,	 2014).	 Nevertheless,	 the	 noise	 introduced	 by	 size	 structure,	

fragments	 of	 organisms	 and	 extracellular	 DNA	 certainly	 has	 a	 far	more	 complicated	

structure	than	we	simulated.	For	instance,	rates	of	DNA	release	into	the	environment	

and	 of	 DNA	 degradation	 both	 depend	 on	 taxa	 and	 on	 local	 conditions,	 and	 fluctuate	

temporally	 (Levy-Booth	 et	 al.,	 2007;	 Barnes	 et	 al.,	 2014;	 Strickler	 et	 al.,	 2015).	

Moreover,	the	uneven	spatial	distribution	of	environmental	DNA	may	prevent	properly	

sampling	the	taxa-abundance	distribution	in	the	community,	especially	if	whole	pieces	

of	 living	 or	 decaying	 multicellular	 organisms	 are	 contained	 in	 the	 environmental	

sample.	 Pooling	multiple	 spatially	 distributed	 samples	 should	 help	 average	 out	 local	

heterogeneity.		

	

In	this	study,	we	considered	that	departure	of	the	number	of	DNA	barcode	reads	

from	the	real	taxon	abundance	is	a	source	of	bias.	However,	this	source	of	bias	may	be	

generally	seen	as	the	accumulation	of	mutations	during	replication.	In	ecology,	the	only	

type	 of	 replication	 taken	 into	 consideration	 is	 demography,	 but	DNA	metabarcoding	

data	 are	 also	 the	 result	 of	 cellular	 and	 PCR	 replication	 processes.	 Since	 the	

assumptions	of	the	neutral	theory	are	generic	and	apply	to	any	collection	of	replicating,	

mutating,	and	potentially	dispersing	entities,	we	could	replace	individual	organisms	by	

DNA	barcodes	as	our	basic	replicating	entities,	and	reinterpret	the	neutral	parameters	

accordingly.	As	a	 consequence,	we	expect	 the	 taxa-abundance	structure	predicted	by	

the	neutral	theory	to	be	robust	as	long	as	the	DNA	barcodes	do	not	differ	too	much	in	

their	replicating,	mutating	and	dispersing	abilities.	

This	 study	 demonstrates	 that	 inferring	 the	 parameters	 of	 Hubbell’s	 neutral	

model	 from	 the	 taxa-abundance	 distribution	 is	 possible	 even	 in	 noised	 biodiversity	
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datasets.	We	tested	this	hypothesis	for	a	range	of	biologically	plausible	noise	terms	on	

simulated	 metabarcoding	 data,	 and	 we	 provide	 guidance	 for	 neutral	 parameter	

inference	 from	 such	 data.	 Our	 results	 indicate	 that	 whether	 an	 environmental	 DNA	

dataset	 really	 reflects	 the	 sampled	 community	depends	on	noise	 intensity.	They	also	

suggest	 that	 this	 question	 can	 be	 answered	 by	 computing	 simple	 metrics	 on	 a	

benchmark	dataset	and	comparing	them	to	our	simulations.	The	only	way	to	quantify	

the	noise	level	is	to	conduct	careful	benchmarking	experiments,	which	will	depend	on	

the	exact	sampling	and	analysis	protocol.	
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Supplementary	Information	

	

	
	

Figure	 S1:	 Effect	 of	 additive	 noise	 and	metabolic	 rate	 on	 neutral	 parameter	 inference.	Left	
panels:	mean	MOTU	rank	abundance	distributions	over	100	realizations	 for	𝜃 = 20	in	a	10!-
read	 sample,	 without	 (dashed	 blue	 line)	 and	with	 (black	 line)	 simulated	 noise:	 (a)	 additive	
Gaussian	 noise	 of	 standard	 deviation	𝜎!"" = 5. 10!!	(5	 times	 the	 relative	 abundance	1 𝑁 =
10!!	of	 the	 least	 abundant	MOTUs),	 and	 (c)	 size	 structure	among	 individuals	 and	non-linear	
scaling	of	DNA	release	with	body	mass,	 for	a	body	size	ratio	 !

!!!
= 1,000	and	a	ratio	!!

!
= 100	

between	metabolic	rate	and	death	rate.	Right	panels:	mean	and	standard	deviation	over	100	
realizations	 of	 the	 relative	 bias	 on	 the	𝜃	estimate	 in	 a	10!-read	 sample,	 for	𝜃 = 1	(green),	
𝜃 = 20	(black)	and	𝜃 = 500	(red),	as	a	function	of	(b)	the	additive	noise	intensity	𝜎!"" ,	and	(d)	
the	ratio	!!

!
.	
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Figure	 S2:	Effect	of	additive	noise	and	metabolic	 rate	on	neutral	parameter	 inference	 in	 the	
presence	of	dispersal	limitation.	We	simulated	a	10!-read	sample	and	computed	the	mean	and	
standard	 deviation	 over	 100	 realizations	 of	(𝜃 − 𝜃) 𝜃	and	log!"(𝐼 𝐼).	 Results	 are	 plotted	 for	
𝜃 = 20	and	 for	𝑚 = 1	(black),	𝑚 = 0.1	(green),	𝑚 = 0.01	(blue)	 and	𝑚 = 0.001	(red).	 Panels	
a-b:	 variation	 with	 the	 noise	 intensity	𝜎!"" 	of	 an	 additive	 Gaussian	 noise	 on	 relative	
abundances	(1 𝑁 = 10!!	is	the	relative	abundance	of	the	least	abundant	MOTUs).	Panels	c-d:	
variation	with	the	ratio	!!

!
	between	metabolic	rate	and	death	rate.	 	

1e−05 1e−04 1e−03 1e−02 1e−01

−2
−1

0
1

2
a

1/N

m = 1
m = 0.1
m = 0.01
m = 0.001

σadd (log scale)

lo
g 1

0[
Î
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Î

I]

1e−02 1e+00 1e+02 1e+04

−0
.4

0.
0

0.
2

0.
4

0.
6

d

r0 d (log scale)

(θ̂
−
θ)

θ



	

	

	
Chapter	2	–	Neutral	Parameter	Inference	

	

	 	

146	

Supplementary	Methods:	Quantifying	noise	using	a	benchmark	

dataset	

	

To	build	our	benchmark	dataset,	we	mixed	the	genomic	DNA	extracted	from	16	Alpine	

plant	 species	 in	 known	 quantities	 (Table	 S1),	 and	 we	 amplified	 and	 sequenced	 the	

chloroplast	trnL	P6-loop	barcode	(primer	g-h;	Taberlet	et	al.,	2007).	Amplification	and	

sequencing	 were	 replicated	 eight	 times.	 The	 DNA	 concentrations	 of	 the	 different	

species	 in	 the	 mixture	 scaled	 logarithmically,	 with	 a	 doubling	 in	 genomic	 DNA	

concentration	 from	 one	 species	 to	 the	 next	 more	 abundant.	 The	 16	 species	 thus	

spanned	a	large	range	of	DNA	concentration	(1.10-5	ng/µL	to	1	ng/µL),	representative	

of	the	DNA	abundances	found	in	environmental	samples.	

The	 PCR	 mixtures	 comprised	 2	 ng	 DNA	 template,	 10	 µl	 of	 AmpliTaq	 Gold®	

Master	Mix	 (Life	Technologies,	Carlsbad,	CA,	USA),	0.25	µM	of	each	primer,	3.2	µg	of	

BSA	 (Roche	 Diagnostic,	 Basel,	 Switzerland)	 for	 a	 final	 reaction	 volume	 of	 20	 µl.	

Thermocycling	 conditions	 consisted	 of	 an	 initial	 denaturation	 step	 (95°C,	 10	 min)	

followed	by	35	cycles	of	denaturation	at	95°C	(30	s),	primer	annealing	at	50°C	(30	s)	

and	elongation	at	72°C	(1	min),	and	by	a	final	extension	step	(72°C,	7	min).	Amplicons	

were	then	purified	(MinEluteTM	PCR	purification	kit,	Qiagen),	pooled,	loaded	on	a	HiSeq	

Illumina	lane	and	sequenced	using	the	paired-end	technology.	The	read	coverage	was	

about	105	Illumina	sequence	reads	for	each	of	the	eight	replicates.	

The	sequencing	data	were	first	curated	following	classical	procedures	using	the	

OBITools	 package	(Boyer	 et	 al.,	 2016),	 consisting	 in	 paired-end	 read	 assembly,	 read	

assignation	to	their	respective	samples	and	dereplication.	Sequences	of	length	shorter	

than	 10	 nucleotides	 or	 containing	 ambiguous	 nucleotides	 were	 excluded.	 The	

sequences	were	then	processed	using	the	Infomap	clustering	algorithm	(Rosvall	et	al.,	

2009),	to	minimize	the	number	of	artifactual	MOTUs	by	clustering	sequences	together	

based	 on	 their	 similarity.	 The	 dataset	 is	 considered	 as	 a	 network	 of	 sequences	

connected	 by	 links	 weighted	 according	 to	 sequence	 similarity.	 We	 used	 weights	

decreasing	 exponentially	 with	 the	 number	 of	 nucleotide	 differences	 between	

sequences	 and	 we	 discarded	 the	 links	 for	 more	 than	 5	 nucleotide	 differences.	 All	

replicates	 were	 lumped	 for	 this	 clustering	 analysis.	 In	 parallel,	 all	 sequences	 were	
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assigned	to	a	taxon	using	the	barcodes	of	the	16	species	as	a	reference	database	(Table	

S1).	

The	 clustering	 algorithm	 yielded	 48	 clusters	 (i.e.	 MOTUs),	 24	 of	 which	 were	

found	only	in	some	of	the	replicates	(Fig.	S3a).	Each	input	species	was	represented	as	

the	most	 abundant	 sequence	of	 a	MOTU	 found	 in	 all	 8	 realizations.	 Taking	only	 into	

account	 the	MOTUs	 shared	 across	 replicates,	 the	 proportion	 of	 artifactual	MOTUs	 in	

the	curated	dataset	is	33%	(Fig.	S3b).	Using	the	taxonomic	assignation	of	all	sequences	

to	the	most	similar	of	the	16	species,	we	found	that	each	artifactual	MOTU	originates	

from	 a	 single	 species	 and	 is	 at	 least	 50	 times	 less	 abundant	 than	 the	 species	 that	

generated	 it	 (Fig.	 S3a).	 Therefore,	 artifactual	 MOTUs	 have	 little	 impact	 on	 the	

abundance	 of	 the	 true	 MOTUs	 in	 the	 dataset.	 Moreover,	 the	 number	 of	 artifactual	

MOTUs	 generated	 by	 a	 species	 is	 proportional	 to	 the	 latter’s	 read	 abundance	 r	 (Fig.	

S3c),	 and	 the	 log-abundance	 of	 these	 artifactual	 MOTUs	 is	 uniformly	 distributed	

between	0	and	log(𝑟 50).	Our	modeling	choice	for	simulating	artifactual	MOTUs	with	

realistic	abundances	built	on	these	empirical	observations.	

The	 amplification	 factor,	 i.e.	 the	 ratio	 between	 the	 read	 abundance	 and	 the	

initial	DNA	concentration,	was	 found	 to	be	approximately	constant	over	 the	range	of	

DNA	 concentrations	 spanned	 in	 the	 dataset	 (Fig.	 S3d).	 However,	 it	 varied	 across	

species	 and	 replicates.	 This	 results	 in	 a	 multiplicative	 noise	 on	 relative	 abundances	

that	 is	 approximately	 lognormally	 distributed,	 with	 logarithm	 standard	 deviation	

𝜎!"# = 1.2 	(Fig.	 S3e).	 Seventy-three	 percent	 of	 the	 variance	 of	 the	 logarithm	 is	

explained	 by	 differences	 among	 species	 (likely	 related	 to	 the	 variability	 in	 barcode	

copy	 number	 and	 in	 efficiency	 of	 PCR	 amplification)	 while	 the	 remaining	 variance	

corresponds	to	the	variability	among	realizations	(Fig.	S3d).	
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Species	 Dilution	
factor	

Sequence	 Sequence	
length	(nt)	

Sequence	
GC	content	

(%)	
Taxus	baccata	 1.000000	 atccgtattataggaacaataattttattttctagaaaagg	 41	 24.39	
Salvia	pratensis	 0.500000	 atcctgttttctcaaaacaaaggttcaaaaaacgaaaaaaaaaag	 45	 26.67	

Populus	tremula	 0.250000	
atcctatttttcgaaaacaaacaaaaaaacaaacaaaggttcataaagaca
gaataagaatacaaaag	 68	 25.00	

Rumex	acetosa	 0.125000	 ctcctcctttccaaaaggaagaataaaaaag	 31	 35.48	

Carpinus	betulus	 0.062500	
atcctgttttcccaaaacaaataaaacaaatttaagggttcataaagcgaga
ataaaaaag	 61	 27.87	

Fraxinus	excelsior	 0.031250	 atcctgttttcccaaaacaaaggttcagaaagaaaaaag	 39	 33.33	
Picea	abies	 0.015625	 atccggttcatggagacaatagtttcttcttttattctcctaagataggaaggg	 54	 38.89	

Lonicera	xylosteum	 0.007813	 atccagttttccgaaaacaagggtttagaaagcaaaaatcaaaaag	 46	 32.61	
Abies	alba	 0.003906	 atccggttcatagagaaaagggtttctctccttctcctaaggaaagg	 47	 44.68	

Acer	campestre	 0.001953	
atcctgttttacgagaataaaacaaagcaaacaagggttcagaaagcgag
aaaggg	 56	 39.29	

Briza	media	 0.000977	
atccgtgttttgagaaaacaagggggttctcgaactagaatacaaaggaaa
ag	 53	 39.62	

Rosa	canina	 0.000488	 atcccgttttatgaaaacaaacaaggtttcagaaagcgagaataaataaag	 51	 31.37	
Capsella	bursa-pastoris	 0.000244	 atcctggtttacgcgaacacaccggagtttacaaagcgagaaaaaagg	 48	 45.83	

Geranium	robertianum	 0.000122	
atccttttttacgaaaataaagaggggctcacaaagcgagaatagaaaaaa
ag	 53	 33.96	

Rhododendron	ferrugineum	 0.000061	 atccttttttcgcaaacaaacaaagattccgaaagctaaaaaaaag	 46	 30.43	

Lotus	corniculatus	 0.000031	
atcctgctttacgaaaacaagggaaagttcagttaagaaagcgacgagaa
aaatg	 55	 38.18	

	
Table	S1:	List	and	characteristics	of	the	16	plant	species	included	in	the	benchmark	dataset.	 	
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Figure	 S3:	 Empirical	 results	 for	 the	 benchmark	 dataset	 obtained	 by	 mixing	 the	 DNA	 of	 16	
plant	species,	then	amplifying	by	PCR	and	sequencing	on	an	Illumina	platform	the	chloroplast	
trnL	P6-loop	barcode,	with	eight	replicates.	Panel	a:	Read	abundance	of	the	16	species	(�)	and	
of	the	artifactual	MOTUs	(∘,	∘),	averaged	over	the	replicates,	as	a	function	of	the	species	initial	
abundance.	Some	artifactual	MOTUs	were	 found	 in	every	realization	(∘),	but	others	were	not	
(∘).	The	blue	dotted	lines	delineate	the	abundance	domain	chosen	to	model	the	abundances	of	
artifactual	 MOTUs.	 Panel	 b:	 Number	 of	 reads	 per	 MOTU	 as	 a	 function	 of	 the	 MOTU’s	
abundance	 rank,	 including	 and	 excluding	 artifactual	 MOTUs	 (black	 and	 dashed	 blue,	
respectively).	 Panel	 c:	Linear	relationship	between	the	number	of	artifactual	MOTUs	and	the	
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relative	abundance	of	the	species	that	generated	them	(the	most	abundant	species	is	excluded,	
as	 well	 as	 the	 MOTUs	 found	 in	 only	 some	 of	 the	 replicates).	 Panel	 d:	 Logarithm	 of	 the	
amplification	 factor,	 i.e.	 the	 ratio	 between	 the	 read	 abundance	 and	 the	 initial	 DNA	
concentration,	 as	 a	 function	 of	 the	 initial	 DNA	 concentration	 of	 the	 species	 (dotted	 lines:	
standard	deviation	𝜎!"# = 1.2	over	all	species	and	all	replicates).	Panel	 e:	Probability	density	
of	 the	 logarithm	 of	 the	 amplification	 factor	 over	 the	 16	 species	 and	 the	 8	 realizations,	
approximately	normally	distributed.		 	
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Supplementary	Note	1:	Hubbell’s	neutral	model	

	

Hubbell’s	 neutral	 model	 of	 biodiversity	 describes	 a	 large	 pool	 of	 JM	 individuals	

undergoing	 random	death,	 birth	 and	 speciation	 events	 in	 the	 following	way:	 at	 each	

time	step,	one	individual	at	random	dies,	and	is	replaced	by	a	new	individual.	This	new	

individual	belongs	to	a	taxon	not	previously	found	in	the	community	with	probability	

ν,	 or	 to	 one	of	 the	 already	 existing	 taxa	with	probability	1-ν.	 In	 the	 latter	 case,	 each	

taxon	 has	 a	 probability	 to	 be	 picked	 proportionally	 to	 its	 abundance	 in	 the	

community1.	 In	 the	 absence	 of	 dispersal	 limitation,	 the	 multivariate	 steady-state	

distribution	of	 taxa	abundances	 is	 called	 the	Ewens	distribution	and	 is	 characterized	

by	the	single	parameter	𝜃 = !
!!!

(𝐽! − 1)	(Ewens,	1972;	Etienne	&	Alonso,	2005).	Any	

sample	consisting	of	𝐽 < 𝐽! 	individuals	drawn	at	random	from	the	community	follows	

also	the	Ewens	distribution	of	parameter	θ.	

A	dispersal-limited	version	of	 this	model	 is	defined	as	 follows	(Hubbell,	2001;	

Etienne	 &	 Alonso,	 2005).	 New	 taxa	 disperse	 into	 a	 single	 local	 community	 by	

immigration	from	a	regional	pool,	which	follows	the	model	without	dispersal	limitation	

described	above.	When	an	individual	dies,	 it	 is	replaced	by	an	immigrating	individual	

with	probability	m,	and	by	the	offspring	of	a	local	individual	with	probability	1-m.	Two	

immigrants	may	belong	to	 the	same	taxon.	The	multivariate	steady-state	distribution	

of	 taxa	 abundances	 in	 the	 dispersal-limited	 local	 community	 depends	 on	 two	

parameters:	 the	 dispersal	 parameter	 𝐼 = !
!!!

(𝐽 − 1) ,	 where	 J	 is	 the	 number	 of	

individuals	in	the	local	community,	and	the	diversity	parameter	θ	of	the	regional	pool	

(Etienne,	2005).	Any	sample	drawn	at	random	from	the	local	community	also	follows	

the	Etienne	distribution	of	parameters	θ	and	I	(Etienne	&	Alonso,	2005).	

	

References:	

Etienne,	 R.S.	 &	 Alonso,	 D.	 (2005)	 A	 dispersal-limited	 sampling	 theory	 for	 species	 and	 alleles.	
Ecology	Letters,	8,	1147–1156.	

Etienne,	R.S.	 (2005)	A	new	 sampling	 formula	 for	neutral	 biodiversity.	Ecology	Letters,	8,	 253–
260.	

Ewens,	 W.J.	 (1972)	 The	 sampling	 theory	 of	 selectively	 neutral	 alleles.	 Theoretical	 population	
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Supplementary	Note	2:	Modeling	size	differences	

	

 Modeling	size	differences	using	the	von	Foerster	equation	1.

	

The	 von	 Foerster	 equation	 (von	 Foerster,	 1959;	 O’Dwyer	 et	 al.,	 2009)	 describes	 a	

population	where	individuals	grow	in	number	of	cells	(or	mass)	n	with	a	growth	rate	

g(n),	and	where	they	die	with	a	death	rate	𝑑 𝑛 .	The	evolution	of	the	number	𝑗 𝑛, 𝑡 d𝑛	

of	individuals	with	a	number	of	cells	between	n	and	n+dn	at	time	t	is	given	by:	

𝜕𝑗(𝑛, 𝑡)
𝜕𝑡 = −

𝜕 𝑔 𝑛 𝑗 𝑛, 𝑡
𝜕𝑛 − 𝑑 𝑛 𝑗 𝑛, 𝑡 	

When	 g(n)	 and	𝑑 𝑛 	are	 independent	 of	 n,	 the	 stationary	 (i.e.,	 time-independent)	

solution	of	the	von	Forster	equation	is:	

𝑗 𝑛 = 𝐽
𝑑
𝑔 𝑒

!!!(!!!!)	

where	J	is	the	constant	population	size,	given	by:	

𝐽 = 𝑗 𝑛
!

!!
𝑑𝑛	

Therefore,	a	randomly	chosen	individual	in	the	population	has	a	number	n	of	cells	with	

probability	density:	

𝑝!"# 𝑛 =
𝑗 𝑛
𝐽 =

𝑑
𝑔 𝑒

!!!(!!!!)	

We	used	this	probability	density	to	draw	a	number	of	cells	between	n0	and	infinity	for	

each	individual	of	the	neutral	sample.	The	mean	< 𝑛 >	and	the	coefficient	of	variation	

𝜎! < 𝑛 >	of	the	number	of	cells	of	a	randomly	chosen	individual	are	given	by:	

< 𝑛 >=
𝑔
𝑑 + 𝑛!	

𝜎!
< 𝑛 > =

1
𝑑
𝑔 𝑛! + 1
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 Comparison	with	O’Dwyer	et	al.	(2009)’s	size-structured	neutral	model	2.

	

O’Dwyer	 et	 al.	 (2009)	 transformed	 the	 deterministic	 von	 Foerster	 equation	 into	 a	

probabilistic	 equation,	 and	 integrated	 it	 into	 the	 master	 equation	 of	 Volkov	 et	 al.	

(2003),	 which	 describes	 a	 neutral	 dynamics	 without	 dispersal	 limitation	 in	 a	

probabilistic	way.	The	resulting	size-structured	neutral	model	predicts	that,	 in	steady	

state,	 if	 the	 growth	 rate	𝑔 𝑛 ,	 the	 birth	 rate	𝑏 𝑛 	and	 the	 death	 rate	𝑑 𝑛 	are	

independent	of	n,	 and	 if	 	!
!
≫ 𝑛!	(i.e.,	 individuals	 grow	much	 larger	 than	 their	 size	 at	

birth),	a	randomly	chosen	species	will	have	a	total	number	of	cells	(or	a	total	biomass)	

n	with	probability	density:	

𝑝!" 𝑛 =
𝜈
𝑏𝑛 (𝑒

!!!!! ! − 𝑒!
!
!!)	

where	𝜈	is	 the	 speciation	 rate	 of	 the	 neutral	model	 (𝜈 𝑏 ≪ 1).	 Adding	 size	 structure	

does	not	modify	the	probability	for	a	randomly	chosen	species	to	have	J	individuals:	

𝑃!! 𝐽 =
𝜈
𝑏𝐽

𝑏
𝑑

!

	

While	 the	model	 of	 O’Dwyer	 et	al.	 (2009)	 explicitly	 accounts	 for	 the	 coupling	

between	 the	 demographic	 dynamics	 and	 the	 growth	 of	 individuals,	 we	 generated	 a	

neutral	 sample	 of	 individuals	 and	 then	 assigned	 an	 independent	 number	 of	 cells	 to	

each	individual.	Therefore,	under	our	assumptions,	the	numbers	of	cells	of	the	different	

individuals	 are	 described	 by	 independent	 and	 identically	 distributed	 exponential	

random	 variables	𝑁! ,	 and	 for	
!
!
≫ 𝑛!,	 the	 total	 number	 of	 cells	 of	 a	 species	 with	 J	

individuals	follows	an	Erlang	distribution:	

𝑁!

!

!!!

∼ 𝐸𝑟𝑙𝑎𝑛𝑔(
𝑔
𝑑 , 𝐽)	

with	probability	density:	

𝑝!" 𝑛 𝐽 = 𝑝!"#$%&(!!,!)
𝑛 =

1
𝐽 − 1 !

𝑑
𝑔

!

𝑛!!!𝑒!
!
!!	
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The	probability	density	for	a	species	of	having	a	total	number	of	cells	n	 is	 then	given	

by:	

𝑝!" 𝑛 = 𝑃!" 𝐽 𝑝!" 𝑛 𝐽
!

!!!

	

Combining	 the	 expressions	 of	 𝑃!"(𝐽) 	and	 𝑝!" 𝑛 𝐽 	above,	 we	 obtain	 the	 same	

expression	 for	𝑝!" 𝑛 	as	 predicted	 by	 the	 size-structured	 model	 of	 O’Dwyer	 et	 al.	

(2009).	Therefore,	in	the	simple	case	where	g 𝑛 ,	𝑏 𝑛 	and	𝑑 𝑛 	are	independent	of	the	

number	 of	 cells	 n,	 explicitly	 accounting	 for	 the	 coupling	 between	 demographic	

dynamics	and	individual	growth	is	equivalent	to	assuming	as	we	did	that	all	individuals	

have	independent	and	identically	distributed	numbers	of	cells.	

The	 modelling	 approach	 of	 Volkov	 et	 al.	 (2003)	 and	 O’Dwyer	 et	 al.	 (2009)	

differs	 from	 that	 of	 Ewens	 (1972)	 and	 Etienne	 (2005).	 The	 former	 consists	 in	

describing	 the	 population	 dynamics	 of	 a	 single	 species	with	 a	 fluctuating	 number	 of	

individuals,	 independently	 of	 the	 remaining	 of	 the	 community,	 and	 then	 considering	

that	 the	 results	 hold	 for	 every	 species	 in	 the	 community	 (“mean-field”	 approach).	 In	

contrast,	the	Ewens	and	Etienne	distributions	are	obtained	by	explicitly	considering	a	

community	with	a	constant	number	of	individuals	and	a	fluctuating	number	of	species	

through	 time.	 However,	 the	 two	 approaches	 yield	 identical	 stationary	 distributions	

provided	that	the	number	of	species	is	large	enough	(Etienne	et	al.,	2007).	
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Etienne,	R.S.	 (2005)	A	new	 sampling	 formula	 for	neutral	 biodiversity.	Ecology	Letters,	8,	 253–
260.	

Etienne,	R.S.,	Alonso,	D.	&	McKane,	A.J.	(2007)	The	zero-sum	assumption	in	neutral	biodiversity	
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Ewens,	 W.J.	 (1972)	 The	 sampling	 theory	 of	 selectively	 neutral	 alleles.	 Theoretical	 population	
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von	Foerster,	H.	(1959)	Some	remarks	on	changing	populations.	Kinetics	of	Cellular	Proliferation,	
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O’Dwyer,	 J.P.,	Lake,	 J.K.,	Ostling,	A.,	Savage,	V.M.	&	Green,	 J.L.	 (2009)	An	 integrative	 framework	
for	stochastic,	size-structured	community	assembly.	Proceedings	of	the	National	Academy	
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Supplementary	Note	3:	Estimator	performance	without	simulated	

noise	

	

We	explored	how	the	maximum-likelihood	neutral	estimators	behave	in	the	absence	of	

simulated	 noise	 over	 the	 range	 of	 tested	 parameter	 values	 (𝜃	in	 [1,	 500]	 and	m	 in	

[0.001,	1]).	We	found	that	while	the	Ewens	estimator	is	very	little	biased	(Fig.	S4a-b),	

the	dispersal-limited	estimator	can	be	strongly	biased	depending	on	parameter	values	

and	 sample	 size	 (Fig.	 S4c-f).	 The	 dispersal-limited	 estimator	 underestimates	 θ  and	

overestimates	I	when	the	immigration	rate	into	the	local	community	is	too	small,	and	

overestimates	θ and	 underestimates	 I	when	 the	 immigration	 rate	 is	 too	 large.	 In	 the	

case	 of	 our	10!-read	 sample,	 values	 of	 I	 around	𝐼 = 10! 	(i.e.	𝑚 = 0.01	in	 the	10!-

individual	sample)	allow	for	the	 least	biased	estimation	of	(𝜃, 𝐼).	Biases	are	strongest	

for	𝜃 > 100.	

For	both	estimators	standard	deviation	and	bias	decrease	with	sample	size,	but	

a	much	 larger	 sample	 size	 is	 required	 to	 obtain	 accurate	 estimates	 in	 the	 dispersal-

limited	 case	 than	 in	 the	 absence	 of	 dispersal	 limitation.	 While	 sample	 sizes	 of	 ca.	

𝑁 = 100	are	 sufficient	 for	 the	 Ewens	 estimator,	 sample	 sizes	 of	𝑁 = 10!	are	 still	 not	

sufficient	for	some	parameter	values	in	the	dispersal-limited	case.	Larger	𝜃	values	and	

smaller	 I	 values	 require	 larger	 sample	 sizes.	 Estimating	 the	 neutral	 parameters	

simultaneously	from	several	read	samples	reduces	these	biases	(Etienne,	2007).	

	

Reference:	

Etienne,	 R.S.	 (2007)	 A	 neutral	 sampling	 formula	 for	 multiple	 samples	 and	 an	 “exact”	 test	 of	
neutrality.	Ecology	Letters,	10,	608–618.	
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Figure	 S4:	 Neutral	 parameter	 inference	 without	 simulated	 noise,	 for	 different	 parameter	
values. The	 mean	 and	 standard	 deviation	 of	 the	 relative	 biases	 on	 parameter	 estimates	 are	
plotted	 over	 500	 realizations.	 	 Panels	 a-b:	𝜃 	inference	 without	 dispersal	 limitation,	 as	 a	
function	 of	 (a)	 the	 input	𝜃	value	 and	 (b)	 the	 read	 number	𝑁,	 for	𝜃	equal	 to	 1,	 20,	 and	 500.	
Panels	c-d:	𝜃	and	log!"(𝐼)	inference	as	a	function	of	the	input	𝜃	value,	for	m	equal	to	0.1,	0.01,	
and	 0.001.	 Panels	 e-f: 𝜃 	and	log!"(𝐼) 	inference	 as	 a	 function	 of	 the	 read	 number	𝑁 ,	 for	
𝑚 = 0.01	and	for	𝜃	equal	to	1,	20,	and	500.	 	
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Supplementary	Note	4:	Neutral	parameter	inference	with	the	number	

of	individuals	unknown	

	

Because	 exact	 maximum-likelihood	 inference	 of	 the	 neutral	 parameters	 relies	 on	

sampling	 formulas	 that	 are	 invariant	 under	 subsampling,	 it	 is	 possible	 to	 use	 the	

sequence	 reads	 as	 effective	 individuals	 as	 long	 as	 we	 can	 consider	 the	 reads	 as	 a	

subsample	 from	 the	 initial	 individuals.	 Therefore,	 there	 should	 be	 less	 reads	 than	

individuals.	 A	 further	 complication	 is	 that	 the	 sequence	 reads	 are	 sampled	 with	

replacement	from	the	initial	individuals	in	our	simulations	(i.e.	they	are	a	multinomial	

sample	from	the	relative	abundances)	instead	of	without	replacement	as	required	for	

the	invariance	property	to	hold.	Hence	there	should	be	in	fact	several	times	less	reads	

than	individuals,	because	sampling	with	and	without	replacement	are	equivalent	only	

in	this	case.	

To	illustrate	this	assumption,	we	explored	how	the	Ewens	maximum-likelihood	

estimator	behaves	in	the	absence	of	simulated	noise	depending	on	the	initial	number	

of	 individuals	 J,	 for	𝑁 = 10!,𝑁 = 10!,𝑁 = 10! and 𝑁 = 10! ,	 and	 for	 𝜃 = 20 .	 As	

expected,	 the	 Ewens	 estimator	 yields	 an	 unbiased	𝜃	estimate	 as	 long	 as	 the	 initial	

number	of	 individuals	 is	ca.	one	order	of	magnitude	 larger	 than	the	number	of	reads	

(Fig.	 S5a-d).	We	 then	 simulated	 a	 number	 of	 reads	 larger	 than	 the	 initial	 number	 of	

individuals	 (𝑁 = 10! 	reads	 for	𝐽 = 10! 	individuals,	 and	𝑁 = 10! 	reads	 for	𝐽 = 10!	

individuals),	and	took	smaller	subsamples	of	reads	from	the	original	read	sample	until	

reaching	a	stable	𝜃	maximum-likelihood	estimate.	As	expected,	the	𝜃	estimate	becomes	

stable	under	subsampling	for	samples	at	least	one	order	of	magnitude	smaller	than	the	

initial	number	𝐽	of	individuals.	Using	this	method,	we	achieved	an	unbiased	estimation	

of	𝜃	in	 spite	 of	 the	 small	 initial	 number	 of	 individuals	 (Fig.	 S5e-f).	 In	 the	 dispersal-

limited	 case,	 we	 expect	 the	 maximum	 likelihood	 estimator	 based	 on	 the	 Etienne	

sampling	formula	to	behave	similarly.	

We	also	compared	estimating	θ	using	the	Ewens	estimator	and	estimating	θ	by	

linear	regression	on	the	ranked	log-abundance.	We	found	that	both	methods	perform	

similarly	when	 the	number	of	 reads	 is	one	order	of	magnitude	 larger	 than	 the	 initial	

number	of	 individuals,	and	that	when	this	condition	is	not	met,	 linear	regression	still	
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provides	 an	 unbiased	 θ	 estimate	 (Fig.	 S5a-d).	 However,	 unlike	 maximum	 likelihood	

inference,	 linear	 regression	on	 the	 ranked	 log-abundance	 is	 not	 reliable	when	either	

the	number	of	reads	or	the	initial	number	of	individuals	is	too	low	(lower	than	ca.	500	

for	𝜃 = 20;	 Fig.	 S5a-d),	 or	when	 there	 is	 too	 little	 taxonomic	diversity	 in	 the	 sample.	

Moreover,	the	𝜃	estimate	depends	on	the	arbitrary	delimitation	of	the	linear	domain	of	

the	curve.	
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Figure	 S5:	𝜃	inference	 without	 dispersal	 limitation	 and	 without	 simulated	 noise	 for 𝜃 = 20.	
The	mean	and	standard	deviation	of	 the	relative	bias	on	 the	θ	 estimate	are	plotted	over	100	
realizations.	Panels	 a-d:	θ	 inference	by	maximum	likelihood	(black)	and	by	linear	regression	
on	 the	 ranked	 log-abundance	 (blue),	 as	 a	 function	 of	 the	 initial	 number	 of	 individuals	 J,	 (a)	
for  𝑁 = 10! 	reads,	 (b)	𝑁 = 10! 	reads,	 (c)	𝑁 = 10! 	reads	 and	 (d)	𝑁 = 10! 	reads	 (linear	
regression	 too	 inaccurate	 to	 be	 plotted	 for 𝑁 = 10!).	 Panels	 e-f:	 Maximum-likelihood	 θ	
estimate	as	a	function	of	the	size	𝑁!"#!$%&'( 	of	the	read	subsample	used	for	estimation,	starting	
from	an	original	 sample	of	 (e)	𝑁 = 10!	reads	or	 (f)	𝑁 = 10!	reads.	An	unbiased	θ	estimate	 is	
obtained	when	𝑁!"#!$%&'( 	is	at	least	one	order	of	magnitude	smaller	than	the	initial	number	of	
individuals	(e)	𝐽 = 10!	or	(f)	𝐽 = 10!.	
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Chapter	outline	

The	second	chapter	explored	the	effect	of	noise	on	the	interpretability	of	environmental	

DNA	 data.	 In	 this	 third	 chapter,	 another	 challenge	 of	 environmental	 DNA	 data	 is	

addressed,	namely	the	fact	that	microbial	datasets	typically	yield	a	large	number	of	rare	

OTUs,	 and	 that	 sampling	 effort	 cannot	 be	 controlled	 across	 samples.	 As	 in	 the	 first	

chapter,	 the	 focus	 is	 here	 on	 datasets	 containing	many	 spatially	 distributed	 samples.	

However,	 while	 the	 first	 chapter	 aimed	 at	 comparing	 the	 taxonomic	 composition	 of	

samples	 with	 respect	 to	 their	 spatial	 layout	 and	 to	 environmental	 descriptors,	 this	

chapter	describes	a	method	to	explore	 the	structure	of	an	environmental	DNA	dataset	

independently	 of	 any	 additional	 information.	 The	 results	 can	 then	 be	 interpreted	 in	

regard	of	contextual	data.	This	method,	which	 is	closely	related	 to	methods	already	 in	

use	 in	microbiology,	 is	 suited	 to	 large	 and	 sparse	datasets,	 and	 accounts	 for	 sampling	

effects.	 It	 consists	 in	 decomposing	 the	 data	 into	 assemblages	 of	 OTUs	 based	 on	 their	

propensity	to	co-occur	across	samples.	In	this	chapter,	it	is	tested	using	simulations	and	

by	applying	it	to	a	large	soil	DNA	dataset	collected	over	a	forest	plot	following	a	regular	

sampling	 scheme.	 A	 measure	 of	 the	 stability	 of	 the	 decomposition	 is	 also	 proposed.	

Lastly,	the	application	of	this	approach	to	ecological	data	is	discussed	more	generally.	Of	

particular	 interest	 is	 that	 this	method	 is	model-based,	 and	 could	 thus	be	 extended	by	

modifying	 the	 underlying	 model,	 including	 by	 the	 addition	 of	 more	 mechanistic	

elements.	
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Abstract		

High-throughput	 sequencing	 of	 amplicons	 from	 environmental	 DNA	 samples	 has	

become	 a	 major	 method	 for	 rapid,	 standardized	 and	 comprehensive	 biodiversity	

assessments,	 allowing	 for	 the	 study	 of	 all	 life	 forms	within	 a	 single	 sample.	However,	

data	 interpretation	 is	 often	 difficult	 because	 a	 large	 number	 of	 rare	 taxa	 confound	

patterns.	 Hence,	 retrieving	 and	 describing	 the	 structure	 of	 such	 datasets	 requires	

efficient	methods	for	dimensionality	reduction.	Here,	we	describe	the	first	application	of	

Latent	 Dirichlet	 Allocation	 (LDA)	 to	 an	 environmental	 DNA	 dataset.	 LDA	 uses	 a	

probabilistic	model	 to	decompose	samples	 into	overlapping	assemblages	based	on	 the	

co-occurrence	of	taxa	and	the	covariance	of	their	abundances.	It	accounts	for	sampling	

effects	and	accommodates	large	and	sparse	datasets.	We	show	that	the	grouping	of	taxa	

into	 assemblages	 can	 be	 tested	 statistically,	 and	 to	 this	 end	 develop	 a	 measure	 of	

assemblage	stability.	We	then	apply	a	LDA	algorithm	to	a	 large	soil	survey	of	bacteria,	

protists	 and	 metazoans	 in	 a	 12-ha	 plot	 of	 primary	 tropical	 forest.	 The	 LDA	 analysis	

reveals	 that	 bacterial	 and	 protist	 assemblages	 display	 a	 strong	 spatial	 structure	while	

metazoans	 do	 not.	 Furthermore,	 bacteria	 and	 protists	 exhibit	 very	 similar	 spatial	

patterns,	which	match	the	topographical	features	of	the	plot.	We	conclude	that	LDA	is	a	

computationally	 efficient	 and	 robust	 method	 to	 detect	 and	 interpret	 the	 structure	 of	

large	 DNA-based	 biodiversity	 datasets.	We	 discuss	 the	 possible	 future	 applications	 of	

this	approach	in	biodiversity	science.		
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Introduction	

	

High-throughput	 sequencing	 is	 shedding	 a	 new	 light	 on	 the	 study	 of	 biodiversity	

patterns	across	domains	of	 life.	A	simple	and	efficient	method	 is	 ‘DNA	metabarcoding’	

(Taberlet	et	al.,	2012),	which	consists	 in	amplifying	and	sequencing	a	genomic	marker	

(‘DNA	barcode’)	 in	the	DNA	contained	in	environmental	samples	such	as	soil,	water	or	

feces	(Thomsen	&	Willerslev,	2015).	The	resulting	sequences	can	then	be	clustered	into	

molecular	 Operational	 Taxonomic	 Units	 (OTUs),	 which	 serve	 as	 proxies	 of	 species	 in	

biodiversity	 assessments,	 and	 which	 can	 possibly	 be	 assigned	 to	 known	 taxa	 after	

comparison	 to	 reference	 databases.	 Metabarcoding	 data	 typically	 consist	 of	 a	

‘community	matrix’	that	lists	the	OTUs	found	in	each	environmental	sample,	as	well	as	

their	read	counts.		

A	goal	of	community	ecology	is	to	understand	patterns	of	species	co-occurrence	

and	turnover	across	space.	Let	us	assume	that	many	samples	have	been	collected	across	

space,	 in	 a	 regular	 fashion.	 So	 far,	 the	 search	 for	 community	 structure	 has	 been	

performed	 using	 multivariate	 ordination,	 as	 well	 as	 distance-based	 or	 partitioning-

based	 clustering	 (Legendre	 &	 Legendre,	 2012).	 These	 methods	 have	 proven	 their	

efficiency,	 but	 they	 have	 limitations	when	 it	 comes	 to	 analysing	 datasets	with	 a	 very	

large	number	of	OTUs,	 and	many	 rare	OTUs,	 resulting	 in	 large	and	 sparse	 community	

matrices	 (Holmes	 et	 al.,	 2012).	 Their	 results	 are	 also	 biased	 by	 the	 uneven	 sampling	

effort	 across	 samples	 in	 metabarcoding	 data,	 since	 sampling	 effort	 depends	 on	 the	

amount	of	DNA	retrieved	and	on	PCR	yield	for	each	sample.		

Probabilistic	 approaches	 to	 detecting	 data	 structure	 offer	 an	 alternative	 to	

ordination	methods	by	explicitly	modelling	the	sampling	process	that	underlies	the	data	

(Holmes	 et	 al.,	 2012).	 This	 can	 be	 achieved	 using	 a	 so-called	 mixture	 model,	 which	

assumes	that	the	data	are	structured	into	a	mixture	of	several	(unobserved)	component	

units,	 each	with	 a	 distinctive	 taxonomic	 composition.	 Under	 this	model,	 the	 observed	

discrete	samples	of	sequence	reads,	which	may	be	of	different	sizes,	are	sampled	from	
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this	mixture.	The	component	units	can	then	be	inferred	from	the	data	using	maximum-

likelihood	or	Bayesian	inference,	which	provide	rigorous	means	of	assessing	goodness-

of-fit	 and	 of	 selecting	 the	 number	 of	 component	 units.	 Mixture	 models	 have	 been	

successfully	 used	 in	 microbiology	 (Knights	 et	 al.,	 2011;	 Holmes	 et	 al.,	 2012;	 Ding	 &	

Schloss,	2014;	Shafiei	et	al.,	2015)	and	in	community	ecology	(Valle	et	al.,	2014),	either	

in	an	unsupervised	way	(data	clustering)	or	in	a	supervised	way	(data	classification).	In	

particular,	 Valle	 et	 al.	 (2014)	 used	 Latent	 Dirichlet	 Allocation	 (LDA)	 to	 cluster	 tree	

abundance	 data	 across	 forest	 plots	 into	 component	 assemblages	 –	 or	 ‘component	

communities’.	They	showed	that	this	method	performed	better	than	hierarchical	and	k-

means	clustering	on	simulated	data.	Here,	we	explore	 the	potential	of	 this	method	 for	

the	analysis	of	large	metabarcoding	datasets.	

LDA	decomposes	samples	into	a	mixture	of	component	assemblages,	which	may	

themselves	overlap	in	their	taxonomic	composition.	The	component	assemblages	can	be	

interpreted	as	communities	of	co-occurring	taxa.	Because	each	sample	is	represented	by	

a	 mixture	 of	 component	 assemblages,	 the	 model	 captures	 the	 smooth	 turnover	 in	

species	composition	along	environmental	gradients	(Valle	et	al.,	2014).	This	model	was	

originally	 introduced	 by	 Blei	 et	al.	 (2003)	 to	 decompose	 large	 sets	 of	 text	 documents	

into	 topics	 (a	 problem	 known	 as	 ‘topic	 modelling’),	 based	 solely	 on	 their	 word	

frequency,	 and	 has	 been	 subsequently	 extended	 to	 the	 analysis	 of	 large	 and	 complex	

datasets	 in	 various	 fields	 (see	 Blei	 (2012)	 for	 a	 review).	 The	 same	 model	 has	 been	

independently	 introduced	 in	 population	 genetics	 to	model	 population	 structure	 using	

the	 distribution	 of	 alleles	 across	 individuals,	 and	 is	 now	 a	 cornerstone	 of	 population	

genetics	 analyses	 (model	 with	 admixture	 in	 the	 Structure	 software;	 Pritchard	 et	 al.,	

2000).		

One	issue	for	the	application	of	LDA	to	metabarcoding	is	that	the	interpretation	

that	can	be	made	of	abundance	 information,	 i.e.	 the	DNA	read	count	per	OTU,	remains	

debated	 (Nguyen	 et	 al.,	 2015;	 Sommeria-Klein	 et	 al.,	 2016).	 For	 bacteria,	 it	 seems	

possible	 to	 relate	 the	 read	 count	 to	 the	 number	 of	 cells	 in	 the	 sample	 (Kembel	 et	al.,	

2012),	while	 in	 the	 case	 of	macro-organisms,	 the	 read	 count	may	be	 indicative	 of	 the	

taxon’s	 biomass	 in	 the	 environment	 (Andersen	 et	 al.,	 2012;	 Klymus	 et	 al.,	 2015).	

Nevertheless,	metabarcoding	data	are	often	best	used	as	occurrence	data,	and	it	is	thus	

important	 to	 evaluate	 the	 applicability	 of	 LDA	 to	 occurrence-based	 datasets.	 Second,	
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depending	 on	 how	 strongly	 structured	 the	 data	 are,	 the	 LDA	 algorithm	 may	 fail	 to	

converge	 to	 an	 optimal	 solution.	 It	 is	 indeed	 acknowledged	 in	 the	 literature	 that	 the	

result	of	LDA	decomposition	may	vary	from	one	run	to	the	other	(Steyvers	&	Griffiths,	

2007;	Balagopalan,	2012;	Valle	et	al.,	2014).	Hence,	it	would	be	important	to	quantify	the	

robustness	 of	 the	 LDA	 decomposition,	 especially	 since	 environmental	 DNA	 data	 are	

noisy.	We	first	address	these	problems	on	simulated	data,	and	then	turn	to	the	analysis	

of	 an	 empirical	 metabarcoding	 dataset	 describing	 the	 soil	 biodiversity	 of	 bacteria,	

protists	and	metazoans	over	a	large	tropical	forest	plot	in	French	Guiana	(Zinger	et	al.,	

2017).	We	 thus	address	here	 the	 following	questions:	 (1)	 can	LDA	accurately	 retrieve	

assemblages	 from	 occurrence	 data,	 (2)	 can	 we	 define	 a	 stability	 metric	 for	 the	

decomposition	 of	 metabarcoding	 data	 into	 component	 assemblages,	 and	 (3)	 can	

component	assemblages	retrieved	from	empirical	data	be	related	to	variation	in	abiotic	

conditions?	 	 Finally,	 we	 discuss	 our	 results	 in	 light	 of	 those	 obtained	 by	multivariate	

methods	(Zinger	et	al.,	2017).	
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Methods	

	

 Latent	Dirichlet	Allocation	1.

	

LDA	 decomposition	 takes	 as	 an	 input	 a	 community	 matrix	 representing	 samples	 by	

columns	 and	 OTUs	 by	 lines,	 where	 the	 entries	 are	 the	 read	 counts	 per	 OTU	 in	 each	

sample.	Occurrence	data	can	also	be	provided	as	an	input,	since	they	are	a	special	case	of	

abundance	data	where	OTU	abundances	only	 take	values	0	or	1.	 Inference	 consists	 in	

fitting	 a	 generative	 model	 to	 the	 observed	 community	 matrix.	 The	 generative	 model	

describes	a	way	to	generate	the	data	based	on	two	assumptions:	the	data	are	structured	

into	K	assemblages,	where	K	is	a	fixed	parameter,	and	each	sample	is	a	mixture	of	the	K	

assemblages	 in	 Dirichlet-distributed	 proportions.	 The	 model	 involves	 unobserved	

(‘latent’)	 variables	 describing	 the	 underlying	 decomposition	 of	 the	 data	 into	 the	 K	

assemblages,	and	the	 fitting	process	consists	 in	estimating	the	most	 likely	value	of	 the	

latent	variables	and	of	the	model’s	parameters	given	the	observed	data	(Fig.	1).		

The	 generative	 model	 consists	 of	 the	 following	 steps.	 For	 sequence	 read	 n	 in	

sample	m,	assemblage	membership	zn	is	generated	by	a	categorical	draw	from	a	vector	

of	K	mixture	weights	 𝜃!! !∈ !,! 	(i.e.,	one	out	of	K	categories	is	chosen	at	random	with	

probability	 weights	 𝜃!! !∈ !,! ).	 Then,	 the	 OTU	 membership	 wn	 is	 generated	 by	 a	

categorical	draw	from	a	vector	of	V	mixture	weights	 𝜙!
!!

!∈ !,!
,	where	V	is	the	number	

of	 distinct	 OTUs	 in	 the	 whole	 dataset.	 The	 mixture	 weights	 𝜃!! 	represent	 the	

decomposition	of	each	sample	m	 into	the	K	assemblages,	while	the	mixture	weights	𝜙!! 	

represent	the	taxonomic	composition	of	each	assemblage	k.	The	model	further	assumes	

that	the	mixture	weights	𝜃!!	follow	for	each	sample	m	a	symmetric	Dirichlet	distribution	

of	mixing	parameter	α.	Therefore,	for	each	sample	m:	

𝜽𝒎 = 𝜃!! !∈ !,! ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼 	

And	then,	for	each	sequence	read	n	in	sample	m:		

𝑧! ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝜽𝒎 	
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𝑤! ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝝓𝒛𝒏 	

Thus,	 fitting	 the	 generative	model	 to	 the	 observed	 data	 consists	 in	 finding	 the	

most	 likely	 assemblage	 mixtures	 𝜽𝒎 	for	 the	 M	 samples,	 the	 most	 likely	 OTU	

compositions	𝝓𝒌 	for	 the	 K	 assemblages,	 and	 the	 most	 likely	 value	 for	 the	 mixing	

parameter	α	of	the	Dirichlet	distribution.	The	value	of	α	indicates	whether	the	samples	

tend	 to	 be	 decomposed	 into	 an	 even	mixture	 of	 component	 assemblages	with	 similar	

abundances	 (case	𝛼 > 1)	 or	 into	 an	 uneven	 mixture	 dominated	 by	 one	 or	 a	 few	

component	assemblages	(case	𝛼 < 1).	A	sharp	spatial	segregation	of	the	assemblages	is	

associated	with	a	α	value	markedly	lower	than	unity.	The	Dirichlet	distribution	is	used	

as	 a	 prior	 primarily	 because	 it	 is	 the	 conjugate	 prior	 of	 the	 categorical	 distribution,	

which	eases	analytical	calculations.	

	

	

Figure	 1.	 Illustration	 of	 Latent	 Dirichlet	 Allocation’s	 (LDA)	 principle.	 LDA	 decomposes	a	
community	matrix	with	 discrete	 abundance	 information	 (e.g.,	 read	 count)	 into	K	 assemblages	
based	on	the	co-occurrence	of	OTUs	and	the	covariance	of	their	abundances	across	samples.	K	is	
fixed	 beforehand	 and	 can	 be	 selected	 using	 likelihood-based	 model	 selection	 methods.	 The	
assemblage	 mixture	 𝜃!! !∈ !,! 	in	 each	 sample	 m,	 with	 𝜃!!!

!!! = 1 ,	 and	 the	 taxonomic	
composition	 𝜙!! !∈ !,! 	of	each	assemblage	k,	with	 𝜙!!!

!!! = 1,	are	inferred	from	the	data.	

	

 Inference	using	a	Variational	Expectation-Maximization	algorithm	2.

	

We	fitted	the	generative	model	to	the	observed	data	using	the	Variational	Expectation-

Maximization	 (VEM)	 algorithm	 proposed	 and	 implemented	 by	 Blei	 et	 al.	 (2003),	 and	
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wrapped	 into	 the	R	package	 ‘topicmodels’	by	Grün	&	Hornik	 (2011).	Compared	 to	 the	

often-followed	 Bayesian	 approach	 of	 Griffiths	 &	 Steyvers	 (2004),	 this	 approach	 is	

computationally	faster,	estimates	all	parameters	and	allows	for	a	better-justified	use	of	

AIC	for	selecting	the	number	of	assemblages.	The	algorithm	uses	approximate	likelihood	

maximization	to	estimate	the	parameters	α	and	𝝓 = 𝜙!! !∈ !,! !∈ !,!
,	as	well	as	 the	

posterior	 distribution	 of	 the	 latent	 variables	 𝒛 = 𝑧! !∈ !,!! !∈ !,!
	and	 𝜽 =

𝜃!! !∈ !,! !∈ !,!
	given	the	data	𝒘 = 𝑤! !∈ !,!! !∈ !,!

.		

First,	we	set	the	model	parameters	to	𝛼 = 0.1	and	to	randomly	chosen	values	for	

φ .	Then,	the	following	two	steps	are	repeated	until	the	likelihood	(or	more	precisely,	a	

lower	 bound	 for	 the	 likelihood)	 converges.	 The	 variational	 step	 approximates	 the	

posterior	distribution	𝑃 𝒛,𝜽|𝒘,𝛼,𝝓 	of	z	and	θ ,	given	the	data	w	and	given	the	current	

values	 of	 α	 and	𝝓.	 This	 is	 achieved	 by	 minimizing	 the	 Kullback-Leibler	 divergence	

between	 a	 variational	 approximation	 and	 the	 true	 posterior.	 The	 Expectation-

Maximization	(EM)	step	estimates	the	parameters	α	and	𝝓	by	maximizing	the	marginal	

log-likelihood	 𝐿 𝛼,𝝓 = ln 𝑃 𝒘|𝛼,𝝓 ,	 making	 use	 of	 the	 approximation	 to	 the	

posterior	distribution	𝑃 𝒛,𝜽|𝒘,𝛼,𝝓 	found	in	the	variational	step	(Blei	et	al.,	2003;	Grün	

&	 Hornik,	 2011).	 We	 used	 a	 convergence	 threshold	 of	 10-7	 for	 the	 EM	 step	 and	 a	

convergence	threshold	of	10-8	for	the	variational	step	in	all	our	analyses.	

This	algorithm	provides	an	estimate	of	the	marginal	log-likelihood	ln 𝑃 𝒘|𝛼,𝝓 	

of	 the	 final	 decomposition,	 that	 can	 be	 used	 to	 compare	 different	 realizations	 of	 the	

algorithm	or	to	compute	the	model’s	AIC.	It	is	a	deterministic	algorithm	in	the	sense	that	

it	 consists	 in	 a	 simple	 iterative	 optimization.	 However,	 the	 result	may	 depend	 on	 the	

initialization	for	the	taxonomic	composition	𝝓	of	assemblages.	

	

 Computing	the	optimal	number	of	assemblages	3.

	

We	selected	the	number	K	of	assemblages	based	on	AIC.	There	is	no	rigorous	expression	

of	AIC	for	a	model	such	as	LDA	(Burnham	&	Anderson,	2002),	but	we	chose	to	compute	

the	 AIC	 as	2(𝐿 𝛼,𝝓 + 𝐾(𝑉 − 1)+ 1),	 where	𝐿 𝛼,𝝓 = ln 𝑃 𝒘|𝛼,𝝓 	is	 the	 marginal	

log-likelihood	of	the	LDA	decomposition.	Indeed,	there	are	𝐾(𝑉 − 1)	free	parameters	to	
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be	estimated	 in	𝝓 = 𝜙!! !∈ !,! !∈ !,!
,	plus	the	mixing	parameter	𝛼.	This	 is	 the	same	

expression	as	the	one	used	elsewhere	(Than	&	Ho,	2012).	We	used	the	lower	bound	on	

the	marginal	log-likelihood	computed	as	part	of	the	VEM	algorithm	as	an	approximation	

for	𝐿 𝛼,𝝓 .	 We	 also	 tried	 to	 correct	 the	 AIC	 for	 small	 sample	 size	 as	2[𝐿 𝛼,𝝓 +

𝐾 𝑉 − 1 + 1 1+ !
!
],	 where	M	 is	 the	 number	 of	 samples	 (Burnham	 &	 Anderson,	

2002),	but	this	did	not	modify	our	results,	and	we	do	not	report	these	analyses	here.	

	

 Assessing	the	stability	of	the	decomposition	4.

	

The	LDA	decomposition	reflects	the	co-occurrence	structure	of	OTUs	among	samples,	as	

well	as	the	covariance	structure	of	their	abundances	in	the	case	of	abundance	data.	If	the	

data	are	not	strongly	structured,	they	may	exhibit	a	complex	likelihood	landscape,	which	

increases	the	chance	that	the	algorithm	reaches	a	local	likelihood	maximum.	To	address	

this	 issue,	 we	 ran	 the	 algorithm	 a	 hundred	 times	 starting	 from	 random	 initial	

assemblages	𝝓𝒌,	and	we	selected	only	the	realization	with	the	highest	 likelihood	value	

for	 interpretation.	 We	 also	 measured	 the	 stability	 of	 the	 decomposition	 across	 the	

hundred	 realizations,	with	 two	 goals	 in	mind:	measuring	 how	 strongly	 structured	 the	

data	 are,	 and	 assessing	 whether	 the	 realization	 with	 highest	 likelihood	 has	 indeed	

reached	 the	 optimal	 solution.	 We	 removed	 the	 occasional	 realizations	 with	 α	 values	

much	 larger	 than	 1	 from	 the	 analysis,	 because	 they	 correspond	 to	 non-informative	

solutions	where	all	samples	contain	all	assemblages	in	similar	proportions.	

To	measure	the	stability	of	the	decomposition	across	realizations,	we	first	needed	

to	define	a	measure	of	similarity	between	two	possible	decompositions	of	the	data.	We	

computed	it	as	the	mean	similarity	between	the	assemblages	of	the	two	decompositions.	

Therefore,	 it	boils	down	to	defining	a	measure	of	similarity	between	two	assemblages.	

We	used	the	symmetrised	Kullback-Leibler	(sKL)	divergence,	a	measure	of	dissimilarity	

between	 two	 distributions	 that	 stems	 from	 information	 theory	 and	 that	 is	 commonly	

used	 in	 statistics	 and	 machine	 learning	 (Burnham	 &	 Anderson,	 2002;	 Meila,	 2006;	

Steyvers	&	Griffiths,	 2007).	The	Kullback-Leibler	divergence	 (or	 relative	 entropy)	of	 a	

distribution	 𝒒 = 𝑞! !∈ !,! 	relative	 to	 a	 distribution	 𝒑 = 𝑝! !∈ !,! 	is	 defined	 as	
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𝐷 𝒑 𝒒 = 𝑝! ln 𝑝! 𝑞!!
!!! ,	 with	 𝑝!!

!!! = 1 	and	 𝑞!!
!!! = 1 	(Kullback,	 1959).	 It	

measures	the	amount	of	information	lost	when	approximating	the	distribution	p	by	the	

distribution	q.	 The	 symmetrised	Kullback-Leibler	divergence	between	p	 and	q	 is	 then	

defined	 as	𝐷! 𝒑,𝒒 = 𝐷 𝒑 𝒒 + 𝐷 𝒒 𝒑 2.	 Between	 two	 assemblages	𝑘!	and	𝑘!,	 the	

sKL	 divergence	 can	 be	 computed	 either	 based	 on	 their	 spatial	 distribution,	 i.e.	

𝐷! 𝜽𝒌𝟏 𝜃!!
!!

!!! ,𝜽𝒌𝟐 𝜃!!
!!

!!! ,	or	based	on	their	OTU	composition,	 i.e.	𝐷! 𝝓𝒌𝟏 ,𝝓𝒌𝟐 .	

Thus,	we	were	able	 to	measure	both	 the	spatial	and	the	 taxonomic	similarity	between	

two	assemblages.	Since	𝐷! 𝒑,𝒒 	is	infinite	as	soon	as	there	is	at	least	one	i	in	 1,𝑁 	that	

verifies	𝑝! = 0	or	𝑞! = 0,	 we	 avoided	 infinite	 sKL	 divergence	 values	 by	 setting	 a	 lower	

bound	in	every	entry	of	θ 	and	φ ,	equal	to	the	inverse	of	the	sum	of	all	elements	in	the	

community	matrix	(i.e.,	the	inverse	of	the	total	number	of	reads	in	the	case	of	abundance	

data,	or	the	inverse	of	the	total	number	of	occurrences	in	the	case	of	occurrence	data).	

Therefore,	every	point	where	both	distributions	take	values	below	this	threshold	has	a	

null	contribution	to	𝐷! 𝒑,𝒒 .	

We	 used	 the	 sKL	 divergence	 to	 define	 the	 similarity	 measure	

𝜎 𝑘!, 𝑘! = 𝐷! 𝑘!, 𝑘! !"# − 𝐷! 𝑘!, 𝑘! 𝐷! 𝑘!, 𝑘! !"# 	between	 two	 assemblages	𝑘!	

and	𝑘!,	where	 𝐷! 𝑘!, 𝑘! !"#	is	 the	 average	 sKL	divergence	over	1000	 randomizations	

of	 the	 assemblages.	When	 computing	 spatial	 similarity,	we	performed	 randomizations	

by	 randomly	 shifting	 the	 spatial	 distribution	 of	 one	 assemblage	 with	 respect	 to	 the	

other,	 so	 as	 to	 account	 for	 spatial	 autocorrelation	 (Fortin	 &	 Payette,	 2002).	 When	

computing	taxonomic	similarity,	we	performed	random	permutations	of	the	OTUs	in	one	

distribution	with	respect	to	the	other.	The	similarity	𝜎 𝑘!, 𝑘! 	is	equal	to	1	for	a	perfect	

match,	 and	 to	0	when	 the	assemblages	are	as	 similar	 as	 expected	by	 chance.	We	 then	

defined	 the	 similarity	 between	 two	 decompositions	𝑑!	and	𝑑!	as	 the	 mean	 similarity	

between	their	best-matching	assemblages,	i.e.	𝑆 𝑑!,𝑑! =	 𝜎 𝑘!, 𝑘!∗ 𝑘! 𝐾!
!!!! ,	where	

assemblage	 𝑘!∗ 𝑘! 	is	 the	 best	 match	 in	 decomposition	 𝑑! 	of	 assemblage	 𝑘! 	in	

decomposition	𝑑!,	 as	 deduced	 from	 the	 comparison	 of	𝜎	values.	When	more	 than	 one	

assemblage	 𝑘! 	in	 decomposition	 𝑑! 	had	 a	 best	 match	 with	 assemblage	 𝑘!∗ 	in	

decomposition	𝑑!,	we	forced	a	one-to-one	correspondence	between	the	assemblages	of	

both	 decompositions	 by	 giving	 priority	 to	 higher	𝜎	values.	 This	 situation	 should	 be	
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rarely	 encountered	 however,	 since	 assessing	 stability	 mostly	 involves	 comparing	

decompositions	that	closely	resemble	each	other.		

	

	
	

Figure	2.	Assessing	 the	stability	of	 the	LDA	decomposition	using	 the	metric	 I.	Each	panel	
represents	100	realizations	of	 the	LDA	algorithm	with	random	assemblage	 initializations	 for	a	
mock	dataset.	 In	both	cases,	the	realization	with	highest	 likelihood	(i.e.,	 the	best	realization)	 is	
compared	 to	 each	 of	 the	 99	 others	 by	 plotting	 their	 similarity	 S	 as	 a	 function	 of	 their	 log-
likelihood	difference.	 The	metric	 I	 is	 defined	 as	 the	 intercept	 of	 the	 linear	 regression	 (dashed	
blue	 line).	 Two	 cases	 are	 illustrated:	 (a)	 realizations	 grow	 increasingly	 similar	 to	 the	 best	
realization	 as	 their	 likelihood	 increases	 (𝐼 = 1),	 and	 (b)	 dissimilar	 realizations	 with	 similar	
likelihood	 coexist	 (𝐼 = 0.5).	 Values	 of	 I	 close	 to	 1	 indicate	 that	 the	 best	 realization	 is	 likely	 to	
have	reached	the	optimal	solution.	

	

We	measured	 the	 stability	 of	 the	 decomposition	 across	𝑛 = 100	realizations	 by	

computing	 two	 metrics.	 First,	 we	 computed	 the	 mean	 similarity	 across	 all	 pairs	 of	

realizations	 𝑆 ! = 𝑆 𝑑!,𝑑! 𝑛 𝑛 − 1 2!!,!! .	The	more	similar	the	realizations	are	

irrespective	of	 the	 initial	condition,	 the	more	strongly	structured	the	data	are	 likely	to	

be.	 Second,	 we	 compared	 the	 realization	 with	 highest	 likelihood	 (i.e.,	 the	 best	

realization)	 to	 each	 of	 the	𝑛 − 1	others.	 To	 assess	 whether	 the	 best	 realization	 had	

indeed	 reached	 the	 optimal	 solution,	 we	 plotted	 for	 each	 pair	 their	 similarity	𝑆	as	 a	

function	of	their	 log-likelihood	difference	(Fig.	2).	We	performed	a	 linear	regression	of	

the	similarity	against	the	log-likelihood	difference,	and	used	the	intercept	𝐼!	as	a	metric.	
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This	metric	𝐼!	assesses	whether	 the	 realizations	 tend	 to	 be	 increasingly	 similar	 to	 the	

best	 realization	 as	 their	 likelihood	 increases,	 i.e.	 to	 ‘converge’	 toward	 the	 best	

realization.	 Values	 of	𝐼! 	close	 to	 1	 mean	 that	 we	 can	 be	 confident	 that	 the	 best	

realization	 has	 reached	 the	 global	 likelihood	 maximum,	 provided	 that	 the	 space	 of	

possible	 initializations	 has	 been	 adequately	 sampled.	 We	 computed	 both	 metrics	 for	

spatial	 ( 𝑆!"#$. ! ,	 𝐼!"#$.,! )	 and	 taxonomic	 ( 𝑆!"#$. ! ,	 𝐼!"#$.,! )	 	 similarities	 between	

assemblages.		

	

 Simulated	data	5.

	

To	 test	 the	 performance	 of	 the	 LDA	 algorithm	 on	 occurrence-transformed	 data	 with	

respect	 to	 the	 original	 abundance	 data,	 we	 simulated	 a	 metabarcoding	 dataset.	 This	

simulated	 dataset	 comprised	 1,131	 samples	 containing	 a	 total	 of	 1,000	 OTUs	 and	

decomposed	into	5	assemblages.	We	first	defined	the	assemblages	by	drawing	their	OTU	

composition	from	a	Dirichlet	distribution	of	mixing	parameter	0.02.	We	then	assigned	to	

each	 sample	 a	 mixture	 of	 assemblages	 in	 proportions	 determined	 by	 a	 sinusoidal	

function	 of	 the	 sample’s	 index,	 so	 that	 the	 relative	 abundances	 of	 all	 5	 assemblages	

successively	 peak	 at	 100%	 (Fig.	 3).	 Combining	 the	 assemblage	 mixture	 and	 the	

taxonomic	composition	of	assemblages,	we	obtained	the	relative	abundances	of	OTUs	in	

each	sample.	We	generated	the	simulated	dataset	by	sampling	1,000	sequence	reads	per	

sample	 from	 these	 relative	abundances,	which	 resulted	 in	an	average	diversity	of	105	

OTUs	per	sample.		
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Figure	3:	LDA	decomposition	of	simulated	occurrence	and	abundance	data.	LDA	applied	to	

a	simulated	dataset	with	5	assemblages,	1,000	MOTUs,	1,131	samples,	and	1,000	sequence	reads	

per	sample,	(a)	for	the	original	abundance	data,	and	(b)	for	the	occurrence	data	derived	from	the	

same	dataset.	Each	plot	shows	the	assemblage	proportions	estimated	by	LDA	for	K	=	5	(coloured	

lines;	 only	 the	 realization	 with	 highest	 likelihood	 out	 of	 100	 is	 shown)	 and	 the	 simulated	

assemblage	proportions	(dashed	black	lines).	

	

 Tropical	forest	soil	metabarcoding	dataset	6.

	

We	 applied	 LDA	 to	 an	 empirical	metabarcoding	 dataset	 describing	 the	 biodiversity	 of	

bacteria,	 protists	 and	 metazoans	 over	 a	 300x400	 m	 tropical	 forest	 plot	 (called	 Petit	

Plateau;	Chave	et	al.,	2008)	at	the	Nouragues	Ecological	Research	Station,	 in	a	 lowland	

tropical	 forest	 of	 central	 French	 Guiana	 (Bongers	 et	 al.,	 2001).	 Site	 conditions,	 data	

collection,	laboratory	procedures,	and	sequencing	filtering	procedures	are	all	described	

in	detail	in	Zinger	et	al.	(2017)	and	are	only	briefly	summarized	here.	

The	sampling	campaign	was	conducted	towards	the	end	of	the	2012	dry	season.		

Soil	samples	were	collected	from	the	mineral	horizon	(~10	cm	deep)	using	a	soil	auger	

every	10	m	on	a	square	grid	covering	the	plot	and	excluding	the	edges,	which	resulted	in	

1,131	 soil	 samples	 (Fig.	 S1).	 Extracellular	 DNA	 was	 extracted	 in	 the	 field	 from	 each	

sample	 (Zinger	 et	 al.,	 2016).	 The	 present	 study	 uses	 data	 from	 two	 DNA	 barcodes	
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amplified	 by	 PCR	 and	 sequenced	 on	 high-throughput	 Illumina	 sequencers,	 targeting	

bacteria	(16S	rDNA),	and	all	eukaryotes	(18S	rDNA).	The	sequencing	data	were	curated	

using	 the	OBITools	 package	 (Boyer	 et	al.,	 2016).	 Sequences	were	 clustered	 into	OTUs	

based	 on	 their	 similarity	 using	 the	 Infomap	 algorithm	 (Rosvall	 et	 al.,	 2009)	 with	 a	

similarity	 cut-off	 of	 3	mismatches,	 so	 as	 to	 cluster	 spurious	 sequences	 resulting	 from	

PCR	and	sequencing	errors.	Each	OTU	was	given	a	taxonomic	assignation	by	comparing	

its	sequence	to	the	following	reference	databases:	GenBank	r197	for	the	eukaryotic	18S	

marker,	 and	SILVA	 for	 the	bacterial	16S	marker.	Sequence	matching	 to	databases	was	

conducted	using	the	ecotag	program	included	in	the	OBITools	package.	Based	on	these	

taxonomic	 assignations,	 we	 further	 split	 the	 eukaryotic	 18S	 dataset	 into	 protists,	

arthropods,	annelids,	nematodes,	and	flat	worms	(Platyhelminthes).		

Out	 of	 the	 1,131	 samples,	 a	 number	 of	 samples	 were	 excluded	 from	 the	

sequencing	results	for	each	barcode	due	to	insufficient	PCR	yields	(7.2%	of	samples	for	

bacteria	and	0.2%	for	eukaryotes).	We	interpolated	the	content	of	the	missing	samples	

by	 sampling	with	 replacement	 the	mean	number	of	 reads	per	 sample	 from	 the	 (up	 to	

eight)	non-empty	nearest	neighbouring	samples	on	the	grid.	We	then	applied	the	LDA	on	

either	 the	 read-abundance	 data,	 or	 on	 the	 occurrence-transformed	 data,	 defining	 the	

absence	of	an	OTU	in	a	sample	strictly	as	zero	read-abundance	in	the	sample.	We	did	not	

trim	the	data	for	rare	OTUs,	or	for	OTUs	represented	in	a	single	sample.	

A	 fine-grained	 description	 of	 the	 forest	 canopy	 structure	 and	 topography	 was	

obtained	using	a	small-footprint	LiDAR	survey	carried	out	over	the	sampling	site	in	the	

same	 year	 as	 the	 soil	 sampling	 (2012;	 Rejou-Mechain	 et	 al.,	 2015).	 This	 allowed	 the	

generation	 of	maps	 of	 topography,	 slope,	 and	 canopy	 height	 from	 the	 LiDAR	 cloud	 of	

points.	 The	 topography	 of	 the	 plot	 is	 relatively	 smooth,	 with	 a	maximal	 difference	 in	

elevation	of	30	m.	Maps	of	soil	wetness	(Beven	&	Kirkby,	1979)	and	light	at	ground	level	

were	 also	 derived	 from	 the	 LiDAR	measurements	 (Tymen	et	al.,	 2017).	We	 compared	

the	LiDAR-derived	data	with	the	metabarcoding	data	by	computing	the	mean	values	of	

the	 environmental	 variables	 over	 10-m-by-10-m	 cells	 centred	 on	 the	 soil	 sampling	

points.	 We	 sought	 a	 biological	 interpretation	 for	 the	 retrieved	 assemblages	 by	

comparing	 their	 spatial	 distribution	 to	 the	 distribution	 of	 LiDAR-obtained	

environmental	 variables.	 To	 do	 so,	 we	 computed	 Pearson’s	 correlation	 coefficient	

between	 the	 spatial	 distributions	 and	 assessed	 the	 significance	 of	 the	 correlation	 by	
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performing	 100,000	 spatial	 randomizations,	 i.e.	 shifting	 randomly	 one	 spatial	

distribution	with	respect	to	the	other,	so	as	to	account	for	spatial	autocorrelation.		

	

	

Table	 1:	 Stability	 of	 LDA	 decomposition	 for	 occurrence	 data.	 For	 each	 of	 the	 taxonomic	
groups	under	study:	total	number	of	MOTUs;	optimal	number	of	assemblages	𝐾!"#(!"#)	obtained	
from	AIC	minimization;	 spatial	 and	 taxonomic	 stability	 for	 three	 assemblages	 as	measured	by	
the	 𝑆 !""	and	𝐼!""	metrics;	estimated	value	of	the	mixing	parameter	α	in	the	best	realization	out	
of	100	for	three	assemblages.		

	 	

	
	 	 𝐾 = 3	

	 Richness	 𝐾!"#(!"#)	 𝑆!"#$. !""	 𝐼!"#$.,!""	 𝑆!"#$. !""	 𝐼!"#$.,!""	 𝛼!"#$ !"#$.	

Bacteria	16S	 20,162	 5	 0.85	 1.0	 0.95	 1.0	 0.16	

Protists	18S	 1,648	 2	 0.68	 1.0	 0.95	 1.0	 0.082	

Arthropods	18S	 1,881	 2	 0.62	 0.62	 0.91	 0.93	 0.11	

Nematodes	18S	 378	 2	 0.33	 0.49	 0.88	 0.94	 0.05	

Platyhelminthes	18S	 126	 2	 0.52	 0.50	 0.86	 0.88	 7.0	

Annelids	18S	 51	 2	 0.41	 0.57	 0.83	 0.90	 0.035	
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Results		

	

We	 first	 applied	Latent	Dirichlet	Allocation	decomposition	 to	a	 simulated	dataset,	 and	

compared	 the	 results	 for	 abundance	 and	 occurrence	 data.	 AIC	minimization	 correctly	

recovered	the	simulated	number	of	assemblages	(five)	in	both	cases	(Fig.	S2).	In	the	case	

of	occurrence	data,	LDA	yielded	more	even	assemblage	mixtures	than	simulated	(Fig.	3).	

The	algorithm	reached	the	optimal	solution	more	reliably	for	occurrence	data	than	for	

abundance	data	( S!"#$. !"" = 0.98	for	occurrence	data,	 𝑆!"#$. !"" = 0.89	for	abundance	

data,	𝐼!"#$.,!"" = 1.0	in	 both	 cases;	 cf.	 Fig.	 S2).	 Next,	 we	 applied	 the	 analysis	 to	 the	

tropical	 forest	 soil	 dataset.	 Using	 the	 read-abundance	 data,	 the	 optimal	 number	 of	

assemblages	 was	 always	 larger	 than	 50,	 while	 it	 ranged	 between	 2	 and	 5	 for	 the	

occurrence	data,	depending	on	the	taxonomic	group	(Table	1).	As	also	observed	on	the	

simulated	data,	the	LDA	algorithm	converged	more	reliably	toward	the	optimal	solution	

for	occurrence	data	than	for	abundance	data	(Table	S1).	Thus	we	conclude	that	LDA	can	

be	 effectively	 applied	 to	 occurrence-based	 biodiversity	 data.	 In	 the	 rest,	 we	 describe	

results	obtained	using	occurrence	data	and	assuming	𝐾 = 3	assemblages,	a	value	close	

to	that	minimizing	the	AIC	across	taxonomic	groups.	

We	found	clear	differences	when	comparing	bacteria	and	unicellular	eukaryotes	

(henceforth	 denoted	 as	 protists)	 to	metazoans	 (arthropods,	 annelids,	 flat	 worms	 and	

nematodes).	Bacteria	and	protists	displayed	a	stronger	spatial	structure	at	the	scale	of	

our	study	plot,	as	deduced	from	the	spatial	stability	of	the	decomposition:	the	similarity	

intercept	𝐼!"#$.,!""	was	 equal	 to	 1.0	 (Table	 1,	 Fig.	 S3),	 with	 a	 mean	 similarity	 across	

realizations	 S!"#$. !""	of	0.85	and	0.68,	 respectively	 (Table	 1).	 In	 contrast,	 metazoans	

displayed	 a	 lower	 similarity	 intercept	 (0.49 ≤ 𝐼!"#$.,!"" ≤ 0.62 ),	 and	 also	 a	 lower	

similarity	 across	 realizations	 (0.33 ≤ S!"#$. !"" ≤ 0.62).	 We	 also	 found	 that	 spatial	

structure	was	positively	 correlated	 to	 taxonomic	diversity,	measured	by	OTU	richness	

(correlation	 coefficient	𝜌 = 0.85	between	 S!"#$. !""	and	 the	 number	 of	 OTUs;	 Fig.	 4).	

The	 taxonomic	 stability	 of	 the	 assemblages	 was	 higher	 than	 their	 spatial	 stability,	

following	the	same	trends	as	the	spatial	stability,	but	with	less	pronounced	differences	

among	taxonomic	groups	(Table	1).	
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Figure	 4.	 Stability	 for	 occurrence	 data	 measured	 as	 the	 mean	 similarity	 across	
realizations	 𝑺 𝟏𝟎𝟎,	as	a	function	of	the	number	of	OTUs.	The	metric	 𝑆 !""	is	measured	based	
on	 the	 (a)	 spatial	 and	 (b)	 taxonomic	 similarity	 between	 assemblages.	 The	 blue	 line	 figures	 a	
linear	 regression,	 and	 the	 shaded	 area	 its	 standard	 error.	 Pearson’s	 correlation	 coefficient	 is	
𝜌 = 0.85	for	spatial	stability	and	𝜌 = 0.92	for	taxonomic	stability.	

	

For	 all	 taxonomic	 groups	 except	 flat	 worms,	 the	 estimates	 of	 the	 mixing	

parameter	α	were	much	smaller	than	1	(Table	1),	indicating	a	strong	spatial	segregation	

among	assemblages.	In	bacteria	and	protists,	the	decomposition	into	three	assemblages	

was	strongly	linked	to	topographical	features	(Fig.	4,	Table	S2).	The	blue	assemblage	of	

Fig.	 4	 was	 associated	 with	 terra	 firme	 areas,	 defined	 as	 areas	 of	 higher	 topography,	

gentler	 slope,	 and	 lower	 soil	 wetness.	 The	 green	 assemblage	 was	 associated	 with	

hydromorphic	 areas,	 defined	 as	 displaying	 the	 opposite	 environmental	 correlations	

(Table	S2).	Finally,	the	spatial	distribution	of	the	red	assemblage	matched	the	location	of	

exposed	 rock	 patches	 that	 are	 scattered	 across	 the	 forest	 plot,	 based	 on	 direct	

observations.	 In	 metazoans,	 we	 were	 unable	 to	 identify	 similar	 terra	 firme	 and	

hydromorphic	assemblages	(Fig.	S4,	Table	S2),	however	one	assemblage	in	arthropods	

and	nematodes	did	match	the	exposed	rock	spatial	pattern	(Table	S3).	This	exposed	rock	

assemblage	was	indeed	consistently	found	to	be	the	most	taxonomically	distinctive	in	all	

taxonomic	 groups.	Neither	 light	 at	 ground	 level	 nor	 canopy	 height	 explained	 the	 LDA	

decomposition	in	any	of	the	taxonomic	groups.	
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Discussion	

	

Large	 environmental	 DNA	 datasets	 offer	 a	 unique	 opportunity	 to	 unlock	 some	 of	 the	

major	 challenges	 in	 community	 ecology,	 yet	 as	 a	 result	 data	 accumulation	 is	

accelerating,	 thus	creating	the	need	 for	novel	methods	adapted	to	 these	data.	Here	we	

have	presented	the	potential	of	the	Latent	Dirichlet	Allocation	method	for	the	analysis	of	

metabarcoding	data.	This	model-based	method	is	adapted	to	large	and	sparse	datasets.	

It	assigns	a	probability	weight	for	each	sample	to	belong	to	an	assemblage	based	on	the	

OTUs	 in	 this	sample,	and	also	 infers	 the	composition	 in	OTUs	of	each	assemblage	(see	

Table	 S4).	 It	 thus	 goes	 beyond	 a	 categorical	 classification	 of	 samples	 and	 generates	

biologically	 interpretable	 assemblages.	 Here,	 we	 further	 elaborate	 on	 the	 advantages	

and	limitations	of	this	approach,	and	on	the	implications	to	the	analysis	of	the	forest	soil	

dataset.		

	

Discussing	the	assumptions	of	LDA.	Unlike	in	classical	multivariate	methods,	no	prior	

transformation	of	the	data	is	required:	input	data	consist	of	discrete	OTU	abundances,	or	

occurrences,	and	sample	sizes	may	vary	across	samples.	Input	data	are	not	required	to	

meet	a	normality	assumption,	the	definition	of	a	dissimilarity	metric	is	not	required,	and	

LDA	 thus	makes	 a	more	 parsimonious	 use	 of	 the	 data.	 The	 assumptions	made	 by	 the	

underlying	model	are	minimal:	the	Dirichlet	prior	is	the	natural	prior	for	the	parameters	

of	the	categorical	distribution,	and	it	is	sufficiently	flexible	to	fit	most	datasets	(O’Brien	

&	Record,	2016).	One	could	take	a	step	toward	more	mechanistic	modelling	by	adding	

more	assumptions	to	the	LDA	approach.	For	 instance,	one	could	assume	that	a	neutral	

dynamics	takes	place	within	assemblages,	so	that	their	taxonomic	composition	follows	

the	 taxa-abundance	 distribution	 predicted	 by	 Hubbell’s	 neutral	 theory	 of	 biodiversity	

(Hubbell,	 2001;	Harris	et	al.,	 2015).	Assuming	 a	Dirichlet	 prior	 also	 on	 the	 taxonomic	

composition	 of	 assemblages,	 as	 done	 in	 the	 Bayesian	 version	 of	 LDA	 (Griffiths	 &	

Steyvers,	 2004;	 Valle	 et	 al.,	 2014),	 is	 a	 first	 step	 in	 that	 direction,	 since	 the	 Dirichlet	

distribution	approximates	the	neutral	taxa-abundance	distribution	for	a	large	number	of	

taxa.	
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Assessing	 the	robustness	of	 the	LDA	decomposition	and	selecting	 the	number	of	

assemblages.	 In	 many	 applications	 of	 LDA,	 the	 question	 of	 the	 robustness	 of	 the	

decomposition	is	crucial.	However	the	robustness	of	the	algorithm,	as	measured	by	the	

similarity	 of	 the	 output	 across	 runs,	 has	 rarely	 been	 assessed,	 probably	 because	 it	

entails	 a	 serious	 computational	 burden.	 Here	 we	 have	 proposed	 a	 practical	 way	 to	

measure	 the	 similarity	 across	 runs	 based	 on	 the	 symmetrised	 Kullback-Leibler	

divergence,	and	have	used	it	to	quantify	how	stable	the	decomposition	is	with	respect	to	

initialization.	 We	 have	 computed	 two	 complementary	 stability	 metrics.	 First,	 𝑆 	

measures	the	mean	similarity	across	pairs	of	realizations.	This	stability	metric	is	general	

since	it	is	not	centred	on	the	best	realization,	and	measures	how	strongly	structured	the	

data	 are.	 Second,	 I	 is	 the	 similarity	 intercept	 obtained	 by	 comparing	 the	 highest-

likelihood	realization	to	all	others	through	a	linear	regression	of	their	similarity	against	

their	 log-likelihood	 difference.	 This	 second	 stability	 metric	 takes	 account	 of	 the	

likelihood	information,	is	less	computationally	intensive,	and	is	used	to	assess	whether	

the	realization	with	highest	likelihood	has	reached	the	optimal	solution.	

The	 symmetrised	 Kullback-Leibler	 (sKL)	 divergence	 is	 suited	 to	 assessing	

stability	because	it	is	sensitive	to	small	differences	between	distributions.	However,	it	is	

unbounded,	which	makes	it	difficult	to	interpret.	By	normalizing	the	sKL	divergence	by	

its	mean	value	over	randomizations,	we	defined	a	similarity	index	σ	equal	to	1	when	the	

distributions	 are	 identical	 and	 to	 0	when	 they	 are	 no	more	 similar	 than	 expected	 by	

chance.	This	 index	also	accounts	 for	 spatial	 autocorrelation	 in	 the	data	by	performing	

spatial	randomizations.		

To	 compute	 the	 similarity	 between	 two	 decompositions,	 we	 consider	 only	 the	

similarity	 between	 the	 best-matching	 assemblages	 of	 both	 decompositions,	 thus	

discarding	part	 of	 the	 information.	This	method	works	well	when	 the	decompositions	

are	similar,	however	similarity	is	undesirably	low	when	assemblages	are	merged	or	split	

between	 the	 two	 decompositions.	 This	 could	 be	 corrected	 by	 computing	 the	 sKL	

divergence	 between	 the	 full	 partitioning	 of	 the	 data	 in	 both	 decompositions,	 i.e.	 the	

assignment	 of	 every	 sequence	 read	 to	 an	 assemblage,	 instead	 of	 comparing	 pairs	 of	

assemblages.	While	this	is	the	approach	advocated	for	in	the	clustering	literature	(Meila,	
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2006;	Vinh	et	al.,	2010),	it	would	likely	be	very	computationally	intensive	in	the	case	of	

LDA.		

There	is	no	unique	method	to	select	the	number	of	LDA	component	units	(Airoldi	

et	al.,	2010).	Here	we	use	AIC	minimization	as	an	 indication	of	 the	optimal	number	of	

assemblages.	 Another	 commonly	 used	 method	 consists	 in	 splitting	 the	 data	 into	 a	

learning	set	and	a	test	set,	and	optimizing	the	predictive	power	of	the	model	on	the	test	

set,	 as	 measured	 by	 a	 perplexity	 function	 (Blei	 et	 al.,	 2003).	 A	 more	 sophisticated	

method	is	to	follow	the	non-parametric	modelling	approach	of	(Teh	et	al.,	2006),	where	

the	 number	 of	 assemblages	 is	modelled	 as	 a	 random	 latent	 variable	 that	 is	 estimated	

from	 the	 data.	 However,	 this	 method	 proved	 to	 have	 convergence	 issues	 on	 our	

empirical	 data.	 Stability	 of	 the	 algorithm’s	 output	 could	 also	 be	 used	 as	 a	 criterion	 to	

select	 the	 number	 of	 assemblages.	 When	 a	 large	 number	 of	 LDA	 component	 units	 is	

selected,	an	additional	step	of	analysis	using	simpler	statistical	methods	may	be	needed	

to	represent	and	interpret	the	result	of	the	LDA	decomposition	(Mauch	et	al.,	2015).	

	

Tropical	 forest	 soil	 biodiversity	 decomposition.	 By	 applying	 LDA	 to	 an	

environmental	DNA	dataset,	we	described	the	spatial	structure	of	bacterial,	protist	and	

metazoan	soil	communities	in	a	12-ha	tropical	forest	plot.	The	spatial	patterns	retrieved	

by	LDA	for	these	taxonomic	groups	allowed	us	to	shed	light	on	soil	community	structure	

(see	also	Zinger	et	al.,	2017).	

We	 applied	 the	 LDA	 algorithm	 to	 metabarcoding	 data	 with	 no	 further	

transformation	 than	 clustering	 the	 sequences	 to	 avoid	 defining	 spurious	 OTUs.	 We	

verified	 that	 the	 interpolation	 of	 missing	 samples	 played	 no	 role	 in	 generating	 the	

observed	 patterns.	 The	 AIC	 minimization	 yielded	 between	 2	 and	 5	 assemblages	 for	

occurrence	data	depending	on	the	taxonomic	group,	but	we	used	the	value	𝐾 = 3	across	

groups	to	facilitate	intercomparison	and	because	the	LDA	decomposition	is	robust	to	the	

number	 of	 assemblages	 close	 to	 the	 optimum	 (Fig.	 S7).	 For	 the	 20,162-OTU	 bacterial	

dataset,	 the	 largest	 dataset	 considered	 in	 this	 study,	 numerical	 inference	 of	 the	 LDA	

decomposition	for	three	assemblages	took	about	25	minutes	for	occurrence	data	and	35	

minutes	 for	 abundance	 data,	 which	 amounts	 to	 respectively	 48	 and	 60	 hours	 when	

running	100	realizations	of	the	algorithm	to	test	stability.		
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Figure	5:	Spatial	
distribution	of	
microorganism	
assemblages,	for	𝑲 = 𝟑	
assemblages.		

Spatial	distribution	of	the	
assemblages	obtained	from	
independent	LDA	
decompositions	of	bacteria	
and	protists,	for	(a-b)	
abundance	and	(c-d)	
occurrence	data.	Sampled	
locations	are	indicated	by	
dark	dots,	and	the	
assemblage	mixture	between	
samples	has	been	
interpolated	using	ordinary	
kriging.	Terra	firme	(in	blue),	
hydromorphic	(in	green)	and	
exposed	rock	(in	red)	
assemblages	can	be	
identified	in	each	taxonomic	
group,	based	on	correlations	
to	(e-f)	Lidar-derived	
topography,	Topographic	
Wetness	Index	and	slope,	as	
well	as	on	field	observations.	
The	spatial	patterns	
retrieved	for	abundance	data	
are	similar	to	those	obtained	
with	occurrence	data	but	less	
strongly	correlated	to	
topographic	variables.	
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The	stability	analysis	of	 the	algorithm	 indicates	 that	 communities	of	unicellular	

organisms	 (i.e.	 bacteria	 and	protists)	 are	markedly	 structured	 at	 the	 scale	 of	 the	plot,	

while	 metazoan	 communities	 are	 less	 so.	 The	 stability	 of	 the	 decomposition	 is	 also	

strongly	correlated	with	the	number	of	OTUs,	which	spans	several	orders	of	magnitude	

across	 taxonomic	 groups	 (Fig.	 4,	 Table	1).	 Thus,	 the	 lower	 statistical	 power	 in	 groups	

containing	 fewer	 OTUs	 could	 explain	 this	 pattern.	 However,	 it	 is	 more	 likely	 due	 to	

ecological	differences	between	groups.	Indeed,	this	pattern	is	confirmed	by	Zinger	et	al.	

using	 ordination-based	 variation	 partitioning	 between	 environmental	 and	 spatial	

components.	

Furthermore,	the	two	unicellular	organism	groups	can	each	be	decomposed	into	

three	spatially	segregated	assemblages	matching	plot	topography.	While	the	covariation	

of	microorganism	 composition	with	 topography	was	 already	 detected	 in	 Zinger	 et	 al.,	

spatial	patterns	can	here	be	directly	represented	under	the	form	of	assemblages	that	are	

characteristic	 of	 the	 different	 topographic	 conditions	 (Fig.	 5,	 Table	 S4).	 These	 spatial	

patterns	can	also	be	shown	to	be	similar	between	bacteria	and	protists,	which	is	both	a	

novel	 insight	 and	 a	 hint	 that	 the	 assemblages	 retrieved	 by	 LDA	do	 reflect	 community	

structure.	 One	 assemblage	 associated	 with	 patches	 of	 exposed	 rock	 was	 retrieved	 in	

bacteria	and	protists	but	also	in	arthropods	and	nematodes.	Its	taxonomic	composition	

is	 particularly	 distinctive	 (Fig.	 S7),	 which	 might	 be	 explained	 by	 the	 high	 amount	 of	

decaying	 organic	 matter	 retained	 between	 the	 boulders	 in	 these	 patches.	 A	 current	

limitation	of	LDA	is	that	its	ability	to	compare	taxonomic	composition	to	environmental	

data	 is	 limited	 to	 computing	 simple	 correlations	 between	 the	 spatial	 distribution	 of	

retrieved	 assemblages	 and	 environmental	 variables.	 This	 is	 in	 contrast	 to	 ordination-

based	methods	 such	 as	 Canonical	Redundancy	Analysis,	 and	 improving	 on	 this	 aspect	

would	be	a	useful	direction	of	research.	

	

Using	 occurrence	 versus	 abundance	 data.	 The	 use	 of	 occurrence	 data	 was	

computationally	faster,	and	led	to	more	stable	and	more	interpretable	patterns.	Because	

biodiversity	 data	 typically	 display	 a	 wide	 range	 of	 taxonomic	 abundances	 (Fig.	 S5),	

switching	 from	 abundance	 to	 occurrence	 data	 amounts	 to	 dramatically	 increasing	 the	

weight	 of	 rare	 taxa.	 In	 the	 empirical	 dataset,	 these	 OTUs	 constitute	 the	 bulk	 of	 the	
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diversity:	 OTUs	 tallying	 on	 average	 less	 than	 one	 sequence	 read	 per	 sample	make	 up	

over	 85%	 of	 the	 total	 number	 of	 OTUs	 in	 bacteria	 and	 protists	 (Fig.	 S5).	 They	 play	 a	

significant	 role	 in	 shaping	 the	 patterns,	 since	 removing	 them	 erases	 the	 retrieved	

occurrence-based	spatial	patterns	(Fig.	S6).	This	hints	at	the	importance	of	rare	taxa	in	

defining	 communities	 of	 microorganisms.	 A	 possible	 caveat	 however	 is	 that	 some	 of	

those	rare	OTUs	might	be	generated	by	remnant	PCR	errors	in	the	data.	If	PCR	errors	are	

repeatable	 for	 a	 given	 DNA	 sequence,	 this	 would	 produce	 groups	 of	 consistently	 co-

occurring	OTUs	and	thus	artificially	increase	the	stability	of	occurrence-based	patterns.		

	

Conclusion.	 LDA	 is	 an	 efficient	method	 to	 detect	 structure	 in	 the	 large	 and	 complex	

datasets	generated	by	environmental	DNA	sequencing	methods.	The	representation	of	

spatial	biodiversity	patterns	derived	 from	LDA	 is	easily	 interpretable,	 and	 the	method	

comes	with	a	measure	of	how	strongly	this	representation	is	supported	by	the	data.	LDA	

could	be	used	 to	explore	 the	biogeographic	patterns	arising	 in	 larger-scale	DNA-based	

biodiversity	surveys	such	as	the	Earth	Microbiome	Project	(Gilbert	et	al.,	2014)	and	the	

Tara	 Oceans	 Project	 (Sunagawa	 et	 al.,	 2015).	 It	 could	 also	 be	 applied	 in	 non-spatial	

sampling	designs,	such	as	time	series.	Lastly,	LDA	is	one	example	of	a	family	of	models,	

which	 could	 for	 instance	 find	 applications	 in	 the	 study	 of	 plant-microorganism	

interactions	 (Rosen-Zvi	 et	 al.,	 2004).	 We	 hope	 this	 study	 will	 stimulate	 research	 on	

model-based	methods	of	data	analysis	for	the	ecological	interpretation	of	environmental	

DNA	studies.	
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	 	 Topography	 Wetness	 Slope	

Terra	firme	

Bacteria	16S	 0.36**	 -0.27**	 -0.26**	
Protists	18S	 0.23**	 -0.15**	 -0.17**	
Arthropods	18S	 0.18**	 -0.16***	 -0.027	
Nematodes	18S	 0.15**	 -0.091**	 -0.081**	
Platyhelminthes	18S	 0.12**	 -0.11**	 -0.043	
Annelids	18S	 0.023	 0.042	 -0.091*	

Hydromorphic	

Bacteria	16S	 -0.43***	 0.40***	 0.31**	
Protists	18S	 -0.23**	 0.10*	 0.21***	
Arthropods	18S	 -0.097*	 0.10**	 -0.015	
Nematodes	18S	 -0.096***	 0.10**	 0.045	
Platyhelminthes	18S	 0.044	 -0.099**	 0.0087	
Annelids	18S	 -0.057	 0.058	 0.022	

Exposed	rock	

Bacteria	16S	 0.00024	 -0.078**	 0.0084	
Protists	18S	 -0.052	 0.084	 -0.025	
Arthropods	18S	 -0.12*	 0.083	 0.070	
Nematodes	18S	 -0.071	 -0.018	 0.049	
Platyhelminthes	18S	 -0.14**	 0.19**	 0.027	
Annelids	18S	 0.0098	 -0.072*	 0.075**	

	
	

Table	 S2:	 Correlation	 coefficients	 between	 the	 spatial	 distribution	 of	 assemblages	 and	
abiotic	 variables.	 p-values	 p	 were	 computed	 based	 on	 100,000	 spatial	 randomizations.	
Significant	correlation	coefficients	are	 indicated	by	*,**,***	 (𝑝 < 0.05, 𝑝 < 0.01, 𝑝 < 0.001),	and	
additionally	 by	 bold	 font	 when	 they	 are	 consistent	 with	 a	 hydromorphic	 or	 terra	 firme	
interpretation.	 Taxonomic	 groups	 in	 bold	 are	 those	 that	 can	 be	 assigned	 a	 ‘terra	 firme’	 or	
‘hydromorphic’	 label	 based	 on	 correlations	 to	 topography,	wetness	 and	 slope,	 or	 an	 ‘exposed	
rock’	label	based	on	correlation	to	the	‘exposed	rock’	bacterial	assemblage	(see	Table	S3).	
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Table	 S3:	 Correlation	 coefficients	𝝆𝒔𝒑𝒂𝒕. 	between	 the	 spatial	 distribution	 of	 bacterial	
assemblages	 and	 the	 assemblages	 in	 other	 taxonomic	 groups.	 p-values	p	were	 computed	
based	 on	 100,000	 spatial	 randomizations.	 Significant	 correlation	 coefficients	 are	 indicated	 by	
*,**,***	 ( 𝑝 < 0.05, 𝑝 < 0.01, 𝑝 < 0.001 ),	 and	 correlation	 coefficients	 larger	 than	 0.50	 are	
indicated	by	bold	font.	Labels	of	assemblages	are	the	same	as	in	Table	S2.	

	 	

	 			 	 Bacteria	16S	

	 			 	 Terra	firme	 Hydromorphic	 Exposed	rock	

1st	assemblage	

-	

Terra	firme	

			Protists	18S	 0.76***	 -0.40***	 -0.53***	

			Arthropods	18S	 0.23***	 0.12**	 -0.43***	

			Nematodes	18S	 0.24***	 -0.19***	 -0.098***	

			Platyhelminthes	18S	 0.32***	 -0.10**	 -0.29***	

			Annelids	18S	 0.23***	 0.0046	 -0.29***	

2nd	assemblage	

-	

Hydromorphic	

			Protists	18S	 -0.45***	 0.51***	 0.022	

			Arthropods	18S	 0.16***	 -0.21***	 0.022	

			Nematodes	18S	 0.10***	 0.16***	 -0.29***	

			Platyhelminthes	18S	 0.20***	 -0.13***	 -0.12**	

			Annelids	18S	 -0.064	 0.13*	 -0.059*	

3rd	assemblage	

-	

Exposed	rock	

			Protists	18S	 -0.56***	 -0.055	 0.76***	

			Arthropods	18S	 -0.65***	 0.12*	 0.69***	

			Nematodes	18S	 -0.48***	 0.045	 0.56***	

			Platyhelminthes	18S	 -0.48***	 0.20***	 0.38***	

			Annelids	18S	 -0.18***	 -0.076**	 0.31***	
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Table	 S4:	 Five	 most	 abundant	 OTUs	 per	 bacterial	 assemblage	 (out	 of	 20,162	 bacterial	
OTUs),	for	occurrence	and	abundance	data.	

	
	

	 			OTU	proportion	 Taxonomic	assignment	

Occurrence-based	
assemblages	

	

Terra	firme	

			 8.1.10-4	 Acidobacteria	
			 8.1.10-4	 Acidobacteriaceae	(Subgroup	1)	sp.	
			 8.1.10-4	 Acidobacteriaceae	(Subgroup	1)	sp.	
			 8.0.10-4	 Acetobacteraceae	sp.	
			 8.0.10-4	 uncultured	Holophaga	sp.	
			 	 …	

Hydromorphic	

			 6.2.10-4	 Acidothermaceae	sp.	
			 6.2.10-4	 uncultured	Holophaga	sp.	
			 6.1.10-4	 Nitrosomonadaceae	sp.	
			 5.9.10-4	 uncultured	Holophaga	sp.	
			 5.9.10-4	 Haliangiaceae	sp.	
			 	 …	

Exposed	rock	

			 6.1.10-4	 Rhizobiales	Incertae	Sedis	sp.	
			 5.8.10-4	 uncultured	Acetobacteraceae	bacterium	
			 5.8.10-4	 uncultured	Acidobacteriaceae	bacterium	
			 5.7.10-4	 Acidobacteriaceae	(Subgroup	1)	sp.	
			 5.7.10-4	 Bacteria	
			 	 …	

Abundance-based	
assemblages	

	

Terra	firme	

			 4.0.10-2	 Acidobacteria	
			 3.0.10-2	 uncultured	Nitrosococcus	sp.	
			 2.6.10-2	 uncultured	Bacillaceae	bacterium	
			 2.2.10-2	 Acidothermaceae	sp.	
			 1.9.10-2	 Alcaligenaceae	sp.	
			 	 …	

Hydromorphic	

			 1.7.10-2	 Alcaligenaceae	sp.	
			 1.6.10-2	 uncultured	Thermosporotrichaceae	bacterium	
			 1.6.10-2	 uncultured	Bacillaceae	bacterium	
			 1.4.10-2	 Acidobacteria	
			 1.3.10-2	 Acidothermaceae	sp.	
			 	 …	

Exposed	Rock	

			 3.8.10-2	 Acidothermaceae	sp.	
			 1.6.10-2	 Acidothermaceae	sp.	
			 1.5.10-2	 uncultured	Nitrosococcus	sp.	
			 1.0.10-2	 uncultured	Steroidobacter	sp.	
			 1.0.10-2	 Xanthobacteraceae	sp.	
				 …	
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Figure	 S1.	 Soil	 sampling	 over	 12	 ha	 of	 tropical	 forest.	 1,131	 soil	 samples	 (one	 every	 10	
meters)	 were	 taken	 from	 the	 mineral	 soil	 horizon	 on	 a	 permanent	 plot	 of	 relatively	
homogeneous	 primary	 plateau	 forest	 at	 the	 Nouragues	 Ecological	 Research	 Station,	 French	
Guiana.	
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Figure	S2.	LDA	applied	to	a	simulated	dataset	with	5	assemblages,	1,000	MOTUs,	1,131	samples,	
and	1,000	 sequence	 reads	per	 sample,	 (a,c)	 for	 the	 original	 abundance	data,	 and	 (b,d)	 for	 the	
occurrence	data	derived	from	the	same	dataset.	Panels	(a,b)	show	the	comparison	between	the	
realization	 with	 highest	 likelihood	 and	 the	 99	 others	 using	 the	 spatial	 similarity	𝑆!"#$. .	
𝑆!"#$. !"" = 0.98 	for	 occurrence	 data,	 𝑆!"#$. !"" = 0.89 	for	 abundance	 data,	𝐼!"#$.,!"" = 1.0 	in	
both	 cases;	 cf.	 Fig.	 2.	 Panels	 (c,d)	 show	 AIC	 comparison	 between	 different	 K	 values,	 with	 3	
realizations	per	K	value.	
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Figure	S3.	Stability	of	LDA	decomposition	(𝑲 = 𝟑)	for	the	different	taxonomic	groups.	The	
realization	with	highest	likelihood	out	of	100	is	compared	to	the	99	others	based	on	their	spatial	
similarity	(y-axis)	and	on	their	log-likelihood	difference	(x-axis),	for	occurrence	data	and	for	all	
the	 taxonomic	 groups	under	 study.	 The	 intercept	 I	 of	 the	 linear	 regression	 (dashed	blue	 line)	
shows	a	difference	between	unicellular	organisms	(𝐼 = 1.0)	and	metazoans	(𝐼 < 0.62).		
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Figure	 S4:	 Spatial	distribution	of	 eukaryotic	 assemblages,	 for	𝑲 = 𝟑	assemblages.	Spatial	
distribution	of	the	assemblages	obtained	from	independent	LDA	decompositions	of	arthropods,	
nematodes,	flat	worms	(Platyhelminthes)	and	annelids,	for	occurrence	(a-d)	and	abundance	(e-
h)	data.	As	in	figure	4,	sampled	locations	are	indicated	by	dark	dots,	and	the	assemblage	mixture	
between	samples	has	been	interpolated	using	ordinary	kriging.	For	occurrence	data,	an	‘exposed	
rock’	 assemblage	 (in	 red)	 can	 be	 identified	 in	 arthropods	 and	 nematodes	 based	 on	 spatial	
correlation	to	the	bacterial	‘exposed	rock’	assemblage	(Table	S3).	An	‘exposed	rock’	assemblage	
may	be	distinguished	in	flat	worms	and	annelids	as	well	but	is	less	conspicuous	there.	
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Figure	S5:	Ranked	log-abundance	distribution	for	bacteria	and	protists.	
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Figure	 S6:	Effect	of	data	pre-processing	on	LDA	decomposition.	Spatial	distribution	of	the	
assemblages	 obtained	 from	 independent	 LDA	 decompositions	 of	 bacteria	 and	 protists	 for	
occurrence	data,	 (a-b)	without	any	filtering	of	rare	OTUs,	(c-d)	after	removing	OTUs	occurring	
only	 in	a	 single	 sample,	 and	 (e-f)	 after	 removing	OTUs	with	 less	 than	one	 read	per	 sample	on	
average	 (low-abundance	 OTUs).	 Removing	 single-sample	 OTUs	 brought	 little	 change	 to	 the	
decomposition.	Removing	low-abundance	OTUs	on	the	other	hand	yielded	very	degraded	spatial	
patterns	 in	 bacteria	 and	 protists,	 hinting	 at	 the	 important	 role	 of	 rare	MOTUs	 in	 defining	 the	
retrieved	assemblages.		 	
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Figure	 S7:	 Spatial	 distribution	 of	 microorganism	 assemblages	 for	 occurrence	 data,	 for	
𝑲 = 𝟑 	and	 for	𝑲 = 𝑲𝐦𝐢𝐧[𝐀𝐈𝐂] 	assemblages	 (bacteria:	𝐾!"# !"# = 5 ;	 protists:	𝐾!"# !"# = 2 ).	
Decompositions	for	𝐾 = 𝐾!"#[!"#]	and	for	K	=	3	differ	primarily	through	splitting	or	merging	of	
assemblages,	without	major	disruption	of	the	spatial	patterns.	This	illustrates	the	robustness	of	
LDA	 decomposition	 to	 the	 number	 of	 assemblages	 close	 to	 the	 optimum.	 The	 exposed	 rock	
assemblage	(dark	red)	 is	 left	unchanged	for	K	between	2	and	5	 in	bacteria	and	protists,	which	
indicates	a	strong	taxonomic	distinctiveness.	
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I. Synthesis	

	

While	 data	 acquisition	 in	 ecology	 has	 long	 been	 dominated	 by	 low-technology	

approaches	relying	mostly	on	direct	human	observation,	the	field	has	recently	witnessed	

a	 trend	 toward	 automated	 data	 acquisition.	 In	 particular,	 automated	 biodiversity	

measurements	can	now	be	obtained	through	the	sequencing	of	environmental	DNA.	This	

method	 has	 originated	 in	 microbiology,	 where	 it	 is	 often	 the	 only	 means	 to	 obtain	

information	on	the	organisms	under	study,	but	can	now	be	applied	with	increasing	ease	

to	any	type	of	organism.	This	provides	ecologists	with	an	unprecedented	influx	of	data,	

which	also	creates	new	challenges.	

While	DNA-based	data	are	a	unique	means	to	obtain	exhaustive	and	standardized	

biodiversity	measurements,	it	remains	uncertain	to	what	extent	they	will	help	solve	the	

classical	 questions	 of	 community	 ecology.	 Indeed,	 these	 data	 are	 obtained	 through	

indirect	 observation	 of	 the	 targeted	 organisms,	 and	 lack	 in	 detail	 and	 accuracy	

compared	to	direct	observations:	in	a	sense,	quality	is	traded	for	quantity.	This	entails	a	

shift	from	studies	rich	in	biological	details	toward	the	study	of	structure	and	patterns	in	

large	datasets.	Moreover,	 the	sheer	amount	of	data	produced	 is	 in	 itself	an	obstacle	 to	

the	use	of	the	classical	statistical	approaches	of	ecology.	Conversely,	current	theoretical	

models	in	ecology	are	often	not	well	suited	for	comparison	with	data.	

	The	 characteristics	 of	 environmental	 DNA	 data	 make	 them	 well	 suited	 to	 the	

study	of	integrative	patterns	of	biodiversity,	for	which	the	quantity	and	exhaustiveness	

of	available	data	matter	more	than	detailed	 information	on	individual	taxa.	 Integrative	

patterns	 have	 long	 been	 a	 key	 source	 of	 information	 for	 addressing	 one	 of	 the	 core	

questions	of	 community	ecology:	what	are	 the	drivers	of	 community	assembly,	 and	 in	

particular,	 when	 do	 dispersal	 limitation	 and	 demographic	 drift	 supersede	 abiotic	

filtering	and	species	interactions	as	the	main	drivers?	The	first	and	third	chapters	of	this	

thesis	 explore	 the	 use	 of	 environmental	 DNA	 data	 for	 the	 study	 of	 spatially	 explicit	

biodiversity	patterns,	while	the	second	chapter	focuses	on	relative	species	abundances.	

These	patterns	are	studied	in	the	tropical	forest	of	French	Guiana,	a	‘hyperdiverse’	and	
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poorly	known	ecosystem;	two	characteristics	that	make	automated	data	collection	most	

needed.	

The	first	chapter	shows	how	environmental	DNA	data	can	be	used	to	investigate	

the	drivers	of	beta	diversity	in	a	spatially	explicit	context,	as	it	has	been	done	previously	

for	 classical	 data	 such	 as	 tree	 censuses	 in	 monitored	 forest	 plots.	 On	 a	 spatial	 scale	

ranging	from	40	m	to	140	km	between	sampling	points,	a	decay	of	taxonomic	similarity	

with	distance	is	observed	in	most	groups,	i.e.	plants,	fungi,	arthropods,	insects,	annelids,	

bacteria,	 and	 protists,	 but	 not	 in	 nematodes	 and	 flat	worms.	 Clear	 differences	 can	 be	

observed	 between	 domains	 of	 life	 regarding	 the	 relative	 influence	 of	 geographic	

distance	and	abiotic	conditions	on	beta	diversity:	the	data	hint	at	a	predominant	effect	of	

dispersal	 limitation	 in	 plants	 and	 annelids,	 a	 predominant	 effect	 of	 abiotic	 filtering	 in	

bacteria	and	protists,	and	a	mixture	of	both	 in	 fungi,	arthropods	and	 insects.	The	beta	

diversity	 of	 fungi	 and	 soil	 insects	 appears	 to	 be	 especially	 high.	 These	 findings	 are	 in	

agreement	with	expectations	and	previous	empirical	 results	 for	plants	 and	unicellular	

organisms	 (Condit	 et	 al.,	 2002;	 Soininen	 et	 al.,	 2007;	 Ramirez	 et	 al.,	 2014),	 but	 bring	

some	 novel	 insight	 for	 annelids,	 fungi	 and	 insects.	 In	 addition,	 the	 inclusion	 of	 a	 few	

forest	 plots	 subject	 to	 past	 logging	 activities	 indicates	 that	 even	 after	 two	 decades	 at	

least,	an	effect	can	be	detected	on	plant	and	annelid	composition,	as	well	as	on	fungi	to	a	

lesser	extent,	whereas	 it	 is	not	 the	case	 for	other	groups.	Thus,	 large-scale	patterns	of	

biodiversity	can	now	be	readily	measured	and	compared	across	a	tropical	forest’s	whole	

range	of	taxa	using	environmental	DNA.				

The	 second	 chapter	 focuses	 on	 relative	 species	 abundances,	 a	 pattern	 that	 has	

been	 extensively	 used	 to	 test	 the	 predictions	 of	 theoretical	 models	 of	 community	

assembly,	especially	since	Hubbell’s	work	on	the	neutral	theory	of	biodiversity	(Hubbell,	

2001).	 A	 major	 obstacle	 in	 exploiting	 species	 abundance	 patterns	 generated	 using	

environmental	DNA	is	that	abundance	information	is	unreliable,	because	it	is	noisy	and	

difficult	to	interpret.	However,	simulations	show	that	even	if	abundance	measurements	

are	unreliable	 for	 individual	 taxa,	 valuable	 information	 can	 still	 be	 retrieved	 from	 the	

species	 abundance	 distribution	 as	 a	 whole,	 as	 long	 as	 the	 noise	 is	 not	 too	 strong.	 In	

particular,	 the	 parameters	 that	 characterize	 diversity	 and	 connectivity	 in	 a	 neutral	

community	may	still	be	reliably	estimated.	Thank	to	the	sampling-invariance	property	of	

neutral	models,	sequencing	reads	may	be	used	as	discrete	abundance	units	 in	place	of	



	

	

	
Discussion	

	

	 	

206	

individuals	as	long	as	the	DNA	originates	from	a	number	of	individuals	larger	than	the	

number	of	reads.	While	it	is	usually	the	case	for	microorganisms,	this	condition	may	not	

be	verified	for	larger	organisms.	Lastly,	great	care	should	be	taken	in	clustering	spurious	

OTUs	generated	during	PCR	amplification	and	DNA	sequencing,	since	they	strongly	bias	

neutral	parameter	estimates.		

When	 the	 spatial	 distribution	 of	 species	 is	 shaped	 at	 least	 partly	 by	 niche	

processes	 or	 by	 limited	dispersal,	 the	 structure	 of	 spatially	 distributed	 environmental	

DNA	data	should	be	marked	by	these	processes.	However,	this	signal	may	be	faint	and	

complex.	 Moreover,	 it	 is	 usually	 obscured	 by	 a	 large	 number	 of	 rare	 species	 and	 an	

uneven	 sampling	 effort	 across	 samples.	 The	 third	 chapter	 shows	 how	 a	 categorical	

mixture	model	similar	to	some	of	the	models	used	in	microbiology,	population	genetics	

or	text	document	modelling,	Latent	Dirichlet	Allocation,	can	be	used	to	retrieve	spatial	

patterns	in	a	regularly-sampled	12-ha	forest	plot.	Unlike	the	classical	pattern-detection	

tools	 of	 community	 ecology,	 such	 as	 simple	 ordination	 and	 clustering	 algorithms,	 this	

model	 is	 designed	 to	 accommodate	 discrete	 abundance	 data	 in	 a	 large	 number	 of	

unevenly	 sized	 samples,	 and	 performs	well	 on	 large	 and	 sparse	 community	matrices.	

Even	 though	 the	 fitted	 model	 parameters	 may	 depend	 on	 the	 initialization	 of	 the	

inference	 algorithm,	 this	 uncertainty	 can	 be	 quantified	 by	 measuring	 the	 similarity	

between	 the	 outputs	 of	 different	 runs.	 The	 stability	 of	 the	 output	 across	 initial	

conditions	 may	 even	 be	 used	 as	 an	 empirical	 measure	 of	 how	 strong	 the	 spatial	

structure	is.	

In	 the	 12-ha	 forest	 plot,	 the	 strongest	 structure	 is	 detected	 for	 bacteria	 and	

protists.	Moreover,	the	spatial	patterns	of	these	two	groups	are	very	similar,	and	match	

the	 topography	 of	 the	 forest	 plot.	 This	 is	 in	 agreement	 with	 the	 findings	 of	 the	 first	

chapter,	since	abiotic	filtering	was	found	there	to	strongly	influence	the	beta	diversity	of	

these	 groups.	 In	 contrast,	 spatial	 structure	 in	 arthropods	 and	 annelids	 is	weak,	which	

indicates	that	the	spatial	scale	and	the	level	of	environmental	heterogeneity	in	a	12-ha	

plot	 are	 insufficient	 to	detect	 the	processes	 that	were	 found	 to	act	on	 these	groups	at	

larger	spatial	scales.	

Overall,	 we	 conclude	 that	 environmental	 DNA	 data	 can	 offer	 a	 uniquely	

comprehensive,	 if	 somewhat	 crude,	 perspective	 on	 community	 structure	 in	 a	 complex	
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and	 species-rich	 ecosystem.	 In	 addition	 to	 the	 classical	 tools	 of	 community	 ecology,	

model-based	statistical	methods	can	be	borrowed	from	fields	more	accustomed	to	large	

and	 complex	 datasets,	 and	 put	 to	 good	 use	 to	 take	 full	 advantage	 of	 these	 data.	 The	

development	 of	 ecology	 into	 a	 data-rich	 field	 should	 foster	 the	 development	 of	

theoretical	models	 that	can	be	compared	to	data	using	rigorous	statistical	approaches,	

following	 the	 example	 of	 Hubbell’s	 neutral	 model	 and	 its	 subsequent	 theoretical	

developments	 (Etienne,	 2005;	 Harris	 et	 al.,	 2015).	 Building	 on	 generative	 models	

stemming	 from	machine	 learning,	 such	 as	 Latent	 Dirichlet	 Allocation,	 is	 one	 possible	

avenue	for	the	development	of	such	models,	as	discussed	in	the	following.	
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II. Perspectives	

	

 Aquatic	communities	 	 	 	 	 	 	 	 	1.

	 	

This	thesis	aimed	at	exploring	general	approaches	for	the	analysis	and	interpretation	of	

large	 biodiversity	 datasets,	 with	 the	 underlying	 goal	 of	 understanding	 community	

assembly	 processes	 from	 biodiversity	 patterns.	 Nevertheless,	 it	 mostly	 focuses	 on	

community	assembly	in	land	ecosystems,	especially	as	studied	through	the	amplification	

and	sequencing	of	DNA	extracted	from	soil	samples.	One	may	follow	a	similar	approach	

for	studying	communities	of	aquatic	organisms	by	extracting	DNA	from	water	samples.	

Experimentally,	 the	method	consists	 in	 filtering	water	 through	a	mesh	so	as	 to	 collect	

small	living	organisms	as	well	as	fragments	or	sloughed	material	from	larger	organisms.	

In	 particular,	 this	 approach	 allows	 for	 the	 study	 of	 planktonic	 microorganisms	 (i.e.,	

suspended	 in	 the	water	 column	 and	 passively	 transported	 by	water	movements),	 the	

knowledge	 of	which	 is	 so	 far	 very	 fragmented,	 despite	 them	 forming	 the	 basis	 of	 the	

ocean’s	 food	web	and	being	 responsible	 for	 the	production	of	 half	 of	 the	 atmospheric	

dioxygen	(Field	et	al.,	1998).		

The	 Tara	 project	 is	 an	 unprecedented	 and	 on-going	 effort	 to	 sample	 marine	

planktonic	 communities	 in	 various	 locations	 spread	 across	 the	 world’s	 oceans	 (de	

Vargas	 et	al.,	 2015).	 Sampling	was	 conducted	 chiefly	 in	 the	 open	 ocean	 from	2009	 to	

2012,	 with	more	 recent	 campaigns	 focusing	 on	more	 specific	 habitats.	 Samples	 were	

collected	at	different	depths,	and	using	different	mesh	sizes	so	as	to	assign	the	sampled	

organisms	to	different	size	ranges.	The	Latent	Dirichlet	Allocation	approach	of	the	third	

chapter	is	currently	being	applied	to	this	dataset,	so	as	to	understand	the	biogeography	

and	community	structure	of	planktonic	eukaryotes	across	the	world’s	ocean.	
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Figure	1:	Biogeographic	patterns	in	oceanic	plankton	predicted	by	a	neutral	agent-based	
model.	Transport	by	oceanic	current	was	simulated	during	1,400	years	with	constant	mutation	
rate	 starting	 from	 a	 single	 genome.	 Biogeographic	 regions	 are	 distinguished	 based	 on	 their	
dominant	OTUs,	defining	OTUs	at	 either	 (top)	99.9%	similarity	or	 (bottom)	99.5%	similarity.	
Adapted	from	Hellweger	et	al.	(2014).	

	

However,	 it	 is	 unclear	 what	 a	 suitable	 neutral	 model	 would	 be	 for	 planktonic	

communities.	 Indeed,	 unlike	 land	 organisms,	 planktonic	 organisms	 do	 not	 actively	

disperse.	Instead,	the	local	community	is	transported	over	time	along	oceanic	currents,	

and	 slowly	mixes	with	 surrounding	 communities	 along	 the	way.	Hubbell’s	model	 of	 a	

local	community	under	constant	immigration	flow	could	be	regarded	as	a	suitable	model	

for	 a	 planktonic	 community	 followed	 through	 time	 along	 an	 oceanic	 current	

(‘Lagrangian’	 perspective).	 However,	 whether	 several	 simultaneously	 sampled	

communities	can	be	considered	as	 independent	and	undergoing	 immigration	 from	the	

same	 metacommunity	 depends	 on	 their	 positions	 relative	 to	 oceanic	 currents.	

We first consider the diversity in the model,
which is not a realistic estimate of the actual
diversity in the surface ocean microbe popula-
tion because we simulate super-individuals, but
it illustrates the behavior of model. When the
model starts with a diverse population (that is,
each cell has a different genome) and no muta-
tion, diversity decreases monotonically as OTUs
are lost by extinction andnot gained bymutation
(Fig. 1A). After ~100 years, the population con-
sists of ~10 OTUs, resident in relatively distinct
spatial regions, and the rate of OTU loss becomes
limited by dispersal between these provinces (28).
At that time, the model starts to predict higher
OTU richness than a neutral theory model that
does not consider dispersal limitation (31). The
rate of OTU loss becomes low, but the popu-
lations continue to mix (28) and the probability
of extinction remains greater than zero. At
100,000 years, the model includes two OTUs in
the Southern Ocean and everywhere else. The
model should eventually reduce to one OTU,
although this is not realized in the 100,000-year
simulation.
When the model is initialized with a diverse

population and includes mutation, it also ex-
hibits an initial rapid loss in diversity but then

levels off at an OTU richness slightly higher than
the simulation without mutation (Fig. 1B). For
these simulations, we determined the diversity
from a sample of the population (100 cells) by per-
forming pairwise whole-genome BLAST (Basic
Local Alignment Search Tool) alignment, iden-
tifying OTUs using 99.9% whole-genome iden-
tity cutoff and then up-scaling to the true richness
(in the model) using Chao1, a nonparametric spe-
cies estimator that extrapolates from the sample
data to “true” richness (see supplementary mate-
rials and methods). The OTU richness is variable
over time because of stochastic transport and
sampling (see fig. S4), but that is identical for
all simulations. Therefore, the difference in OTU
richness between the simulations with and with-
out mutation can be attributed solely to muta-
tion. The difference is relatively small but increases
with higher taxonomic resolution (99.95% cut-
off) or mutation rate (×3). For a simulation start-
ing with a uniform population (all cells have
the same genome) and including mutation, the
OTU richness starts at one and then increases
once sufficient mutations accumulate to exceed
the OTU threshold. After ~200 years, the simu-
lations starting diverse and uniform converge. At
that time, model has reached a dynamic steady

state where the rate of OTU loss by extinction is
balanced by the rate of OTU gain by mutation.
From a practical perspective, this shows that
specifying different initial conditions or running
the model any longer would not change the
diversity.
The model is then used to explore the role

of neutral evolution in producing biogeographic
patterns. As an example, we compared the ge-
nomes of cells fromHawaii and the Gulf of Alaska
(Fig. 2B). For the simulation starting diverse
without mutation, the difference (nucleotide di-
vergence) is 100% until ~700 years when it ab-
ruptly decreases to 0% (Fig. 2A). This is causedby
a takeover of the Central Pacific province by a cell
from the North Pacific province or a coalescence
of these two subpopulations (27) (see also movie
S1 around 700 years). The simulation starting di-
verse with mutation also starts at 100% and
decreases at the coalescence event, but then
increases again as the two subpopulations di-
verge. The simulation starting uniform initially
has 0% difference but immediately starts to
increase and then converges with the simulation
starting diverse and including mutation. Coales-
cence events are stochastic (see also fig. S4B),
and we observed two such events over the 1500-
year simulation period. There are also occasional
abrupt drops in nucleotide divergence, which are
due to vagrant cells that enter a province but do
not establish. The magnitude of nucleotide di-
vergence is a function of the growth and muta-
tion rates (figs. S5 and S6).
The time between coalescence events puts a

limit to how much two provinces can diverge,
and in this case, the model predicts up to 0.5%
difference (99.5% identity). These results can be
related to observations. If two cells are sampled
from these two locations and their genomes are
sequenced and compared, 0 to 0.5% of the ob-
served difference can be attributed to neutral pro-
cesses. This level of divergence is substantial but
considerably lower than what is commonly con-
sidered a species (>95% identity). We map out
the biogeographic pattern produced by neutral
evolution for Hawaii compared with all locations
across the globe (Fig. 2B). The model predicts
that nucleotide divergence generally increases
with distance from Hawaii. However, the diver-
gence is larger for the North Pacific than the
Indian Ocean, so distance and/or the presence
of landmasses are not necessarily good proxies
of dispersal barriers. We also compile this in-
formation for all locations into an atlas of neu-
tral biogeography (table S1).
We mapped out the biogeographic pattern

produced by neutral evolution using fragment
recruitment (7), which is akin to in silico DNA
hybridization. Specifically, we took the single-
cell genomes (SCGs) of the OTUs that were main-
tained in the simulation starting uniform at 1400
years (see Fig. 1B) and recruited fragments col-
lected on a 10°-by-10° grid. We assigned each grid
box to the highest-recruiting SCG (i.e., the dom-
inant OTU) and colored them accordingly, il-
lustrating the provinces produced by neutral
evolution andmaintained by dispersal limitation

1348 12 SEPTEMBER 2014 • VOL 345 ISSUE 6202 sciencemag.org SCIENCE

Fig. 3. Biogeographic patterns (OTU provinces) in global surface ocean microbes predicted by a
neutral agent-based model and quantified by metagenomics fragment recruitment. Alignment of
fragments collected on a 10°-by-10° grid (number of samples n = 10,000 at each box, fragment length l =
1000 base pairs) with SCGs from OTUs remaining at 1400 years (see Fig. 1B). (Top) 99.9% and
(bottom) 99.5% BLAST identity. “Start Uniform” simulation, where all initial cells have the same,
completely random genome, is shown. The colors demarcate areas with common dominant OTUs.
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Simulations	 of	 the	 transport	 of	 plankton	 by	 currents	 between	 stations	 could	 help	

measure	 their	 level	 of	 connectivity	 (see	Fig.	 1;	 Follows	et	al.,	 2007;	Ward	et	al.,	 2012;	

Hellweger	et	al.,	2014),	and	serve	as	the	basis	for	inference-oriented	modelling	efforts.		

	

 Topic	modelling	of	biodiversity	data	2.

	

As	discussed	in	the	section	III.5	of	the	Introduction,	Latent	Dirichlet	Allocation	is	a	very	

versatile	method,	that	has	been	employed	in	a	variety	of	contexts	far	beyond	its	original	

intended	use	as	a	 ‘natural	language	processing’	method.	It	could	become	a	routine	tool	

for	the	analysis	of	environmental	DNA	data,	as	the	very	similar	Structure	software	has	

become	 in	 population	 genetics.	 While	 the	 third	 chapter	 focuses	 on	 the	 analysis	 of	

spatially	 distributed	 samples,	 LDA	 could	 prove	 equally	 useful	 for	 the	 analysis	 of	 time	

series,	or	when	both	a	spatial	and	a	temporal	dimensions	are	present,	as	 in	Valle	et	al.	

(2014).	It	could	also	be	used	to	analyse	samples	that	are	neither	spatially	nor	temporally	

distributed.	 This	 is	 for	 instance	 often	 the	 case	 of	 human	microbiome	 data,	 which	 are	

currently	 collected	 in	 large	 quantities,	 and	 the	 interpretation	 of	 which	 is	 an	 active	

domain	 of	 research	 in	medical	 sciences	 (Huttenhower	 et	al.,	 2012).	 Another	 potential	

application	 is	 the	 analysis	 of	 the	 bacterial	 communities	 found	 in	 sewage	 plants,	 the	

understanding	 of	 which	 is	 of	 critical	 importance	 for	 the	 optimization	 of	 wastewater	

treatment	(Ofiteru	et	al.,	2010).		

The	use	of	generative	mixture	models	is	not	new	in	microbiology:	these	methods	

have	 been	 first	 introduced	 to	 the	 field	 with	 the	 works	 of	 Knights	 et	 al.	 (2011)	 and	

Holmes	 et	 al.	 (2012).	 However,	 probably	 because	 ecology	 and	 microbiology	 are	 still	

relatively	 separate	 scientific	 fields,	 and	because	 the	use	of	 environmental	DNA	data	 is	

more	 recent	 in	 ecology,	 generative	 mixture	 models	 have	 been	 little	 used	 so	 far	 in	

ecology,	 except	 for	 the	 effort	 of	 Valle	 et	 al.	 (2014)	 on	 classical	 tree	 census	 data.	

Furthermore,	 focus	 in	 microbiology	 appears	 to	 have	 been	mostly	 on	 models	 without	

admixture	 (i.e.,	where	 samples	belong	 to	 a	 single	 assemblage,	 cf.	 Introduction),	 unlike	

topic	 models.	 While	 LDA	 is	 one	 of	 the	 simplest	 topic	 models	 (along	 with	 the	 earlier	

Probabilistic	 Latent	 Semantic	 Analysis	 model,	 or	 PLSA;	 Hofmann,	 2001),	 many	

extensions	 have	 been	 developed	 for	 the	 analysis	 of	 text	 documents	 since	 its	 original	



	

	

	
Discussion	

	

	 	

211	

introduction.	 The	 adaptation	 of	 these	 methods	 to	 bioinformatics,	 e.g.	 for	 the	

classification	 of	 DNA	 sequences	 or	 the	 identification	 of	 protein	 function,	 has	 been	

extensively	explored	(Liu	et	al.,	2016).	Ecology,	and	microbiology,	would	benefit	from	a	

similar	effort	oriented	toward	biodiversity	data.	In	the	following,	I	review	a	few	possible	

examples.		

	

	

Figure	2:	Terrestrial	 biogeographic	units	 of	 the	world	 inferred	 from	 the	distribution	of	
21,037	species	of	amphibians,	birds	and	mammals.	 Inference	was	performed	using	UPGMA	
hierarchical	 clustering	 on	 phylogenetic	 dissimilarity.	 Thick	 lines	 denote	 main	 biogeographic	
boundaries	 (separating	 ‘realms’)	 and	 dotted	 lines	 denote	 minor	 ones	 (separating	 ‘regions’).	
Adapted	from	Holt	et	al.	(2013).	

	

First,	the	approach	presented	in	the	third	chapter	can	be	used	irrespective	of	the	

spatial	 scale	 at	 which	 the	 data	 are	 collected,	 and	may	 for	 instance	 be	 applied	 to	 the	

definition	of	biogeographic	units.	Aside	from	the	sequencing	of	environmental	DNA,	the	

development	 of	 DNA	 sequencing	 methods	 now	 allows	 for	 efficiently	 and	 accurately	

assigning	to	a	taxon	any	collected	biological	material,	once	a	suitable	reference	database	

has	been	established.	Thus,	a	better	use	can	be	made	of	the	large	number	of	specimens	

either	collected	in	the	field	or	stored	in	museum	collections,	and	the	resulting	data	may	

be	 used	 to	 study	 biogeographic	 patterns	 in	 a	 data-driven	 way.	 In	 recent	 years,	

alternatives	 to	 the	 classical	 hierarchical	 clustering	 approach	 (followed	 for	 instance	 in	

Holt	 et	 al.,	 2013;	 see	 Fig.	 2)	 have	 been	 sought	 to	 address	 this	 problem	 (Vilhena	 &	

Antonelli,	2015;	Bloomfield	et	al.,	2017).	The	Appendix	illustrates	the	potential	of	LDA	in	

(3). Using existing knowledge of his time (6),
mostly on the distributions and taxonomic rela-
tionships of broadly defined vertebrate families,
Wallace divided the world into six terrestrial
zoogeographic units largely delineated by what we
now know as the continental plates. Despite rely-
ing on limited information and lacking a statistical
basis, Wallace’s original map is still in use today.

Wallace’s original zoogeographic regional-
ization scheme considered ancestral relationships
among species, but subsequent schemes generally
used data only on the contemporary distribu-
tions of species without explicitly considering
phylogenetic relationships (7–9). Phylogenetic
trees contain essential information on the evolu-
tionary relationships of species and have be-
come increasingly available in recent decades,
permitting the delineation of biogeographic re-
gions as originally envisioned by Wallace. The

opportunity now exists to use phylogenetic in-
formation for grouping assemblages of species
into biogeographic units on a global scale. In ad-
dition to permitting a sound delimitation of bio-
geographic regions, phylogenetic information
allows quantifying phylogenetic affinities among
regions (e.g., 10). Newly developed statistical
frameworks facilitate the transparent character-
ization of large biogeographic data sets while min-
imizing the need for subjective decisions (11).

Here, we delineated the terrestrial zoogeo-
graphic realms and regions of the world (12) by
integrating data on the global distributions and
phylogenetic relationships of the world’s am-
phibians (6110 species), nonpelagic birds (10,074
species), and nonmarine mammals (4853 species),
a total of 21,037 vertebrates species [see (13) for
details]. Pairwise phylogenetic beta diversity (pb)
metrics were used to quantify change in phyloge-
netic composition among species assemblages
across the globe. Analyses of combined taxa pb
values identified a total of 20 zoogeographic re-
gions, nested within 11 larger realms, and quan-
tified phylogenetic relatedness among all pairs of
realms and regions (Fig. 1, figs. S1 and S2, and
tables S1 and S2). We also used pb to quantify
the uniqueness of regions, with the Australian
(mean pb = 0.68),Madagascan (mean pb = 0.63),
and South American (mean pb = 0.61) regions
being the most phylogenetically distinct assem-
blages of vertebrates (Fig. 2). These evolutiona-
rily unique regions harbor radiations of species
from several clades that are either restricted to a
given region or found in only a few regions.

Our combined taxa map (Fig. 1) contrasts
with some previously published global zoogeo-
graphic maps derived exclusively from data on
the distribution of vertebrate species (8, 9, 11).
The key discrepancy between our classification

of zoogeographic regions and these previous
classifications is the lack of support for previ-
ous Palearctic boundaries, which restricted this
biogeographic region to the higher latitudes of
the Eastern Hemisphere. The regions of central
and eastern Siberia are phylogenetically more
similar to the arctic parts of the Nearctic region,
as traditionally defined, than to other parts of
the Palearctic (fig. S2). As a result, our newly
defined Palearctic realm extends across the
arctic and into the northern part of the Western
Hemisphere (Fig. 1 and fig. S1). These results
bear similarities with the zoogeographic map of
(11) derived from data on the global distribution
of mammal families. In addition, our results sug-
gest that the Saharo-Arabian realm is interme-
diate between theAfrotropical and Sino-Japanese
realms [see the nonmetric multidimensional scaling
(NMDS) plot in fig. S2]. Finally, we newly define
the Panamanian, Sino-Japanese, and Oceanian
realms [but see the Oceanian realm of Udvardy
in (14) derived from data on plants].

Our classification of vertebrate assemblages
into zoogeographic units exhibits some interest-
ing similarities with Wallace’s original classi-
fication, as well as some important differences
(fig. S3). For example, Wallace classified islands
east of Borneo and Bali in his Australian region
(fig. S3), which is analogous to our Oceanian and
Australian realms combined (Fig. 1 and fig. S1).
In contrast, we find that at least some of these
islands (e.g., Sulawesi) belong to our Oriental
realm, which spans Sundaland, Indochina, and
India (Fig. 1 and fig. S1). Moreover, our Ocean-
ian realm is separate from theAustralian realm and
includes New Guinea together with the Pacific
Islands (14), whereas Wallace lumped these
two biogeographic units into the Australian re-
gion. Wallace further argued that the Makassar
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Fig. 1. Map of the terrestrial zoogeographic realms and regions of the world.
Zoogeographic realms and regions are the product of analytical clustering of
phylogenetic turnover of assemblages of species, including 21,037 species of
amphibians, nonpelagic birds, and nonmarine mammals worldwide. Dashed
lines delineate the 20 zoogeographic regions identified in this study. Thick

lines group these regions into 11 broad-scale realms, which are named. Color
differences depict the amount of phylogenetic turnover among realms. (For more
details on relationships among realms, see the dendrogram and NMDS plot in
fig. S1.) Dotted regions have no species records, and Antarctica is not included in
the analyses.
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this	 respect,	 by	 applying	 it	 to	 a	 large	 dataset	 of	 Amazonian	 frogs	 assembled	with	 the	

help	of	DNA	identification.	LDA	proved	in	this	case	an	efficient	way	to	infer	the	optimal	

number	 of	 biogeographic	 units,	 assess	 the	 strength	 of	 the	 underlying	 signal,	 and	

distinguish	between	sharp	and	diffuse	boundaries	between	biogeographic	units.	

Nevertheless,	 unlike	 distance-based	 clustering,	 LDA	 does	 not	 allow	 for	 taking	

phylogenetic	 information	 into	account,	and	 improving	on	 this	aspect	could	be	a	useful	

research	 avenue.	 This	 problem	 could	 be	 for	 instance	 approached	 through	 the	

Generalized	 Polya	 urn	 LDA	 model	 (Mimno	 et	 al.,	 2011).	 Furthermore,	 despite	 its	

shortcomings,	 distance-based	 hierarchical	 clustering	 is	 appreciated	 by	 ecologists	

because	 it	 provides	 additional	 hindsight	 on	 the	 relationship	 between	 the	 different	

samples,	and	because	it	offers	the	possibility	of	choosing	the	number	of	clusters	based	

on	 the	 hierarchical	 tree.	 The	 hierarchical	 LDA	model	 (or	 hLDA;	 Griffiths	 et	al.,	 2004),	

which	describes	a	hierarchy	of	nested	topics,	could	be	appealing	in	this	respect.	

Second,	 the	 study	 of	 interactions	 between	 taxa	 constitutes	 a	 central	 interest	 of	

community	ecology.	Large	environmental	DNA	datasets	provide	indirect	information	on	

potential	 interactions	 between	 taxa	 through	 the	 co-occurrence	 of	 OTUs	 and	 the	

covariance	of	 their	abundances	 (see	Fig.	3;	Faust	&	Raes,	2012).	LDA	assemblages	are	

inferred	 based	 on	 this	 information,	 and	 thus	 reflect	 the	 presence	 of	 potential	

interactions	 within	 each	 assemblage.	 Nevertheless,	 the	 application	 of	 LDA	

decomposition	 separately	 to	different	 taxonomic	 groups,	 as	done	 in	 the	 third	 chapter,	

does	 not	 provide	 any	 information	 on	 the	 possible	 interactions	 between	 these	 groups.	

Conversely,	 when	 LDA	 is	 applied	 to	 the	 whole	 dataset,	 it	 is	 not	 possible	 to	 explicitly	

distinguish	 between	 subgroups	 of	 preferentially	 interacting	 taxa,	 such	 as	 plants	 and	

fungi	 for	 instance.	 This	 shortcoming	 could	 be	 addressed	 by	 using	 the	 ‘author-topic	

model’,	an	extension	of	LDA	aiming	at	accounting	for	sample	‘metadata’,	such	as	authors	

in	a	text	document	(Rosen-Zvi	et	al.,	2004,	2010).	This	model	is	identical	to	LDA	except	

that	each	document	(or	sample)	is	not	directly	characterized	by	a	mixture	of	topics	(or	

assemblages),	 but	 by	 its	 authors,	 to	 each	 of	which	 is	 assigned	 a	mixture	 of	 topics.	 In	

practice,	 authors	may	be	any	discrete	 labels,	 and	could	 for	 instance	correspond	 to	 the	

one	or	 few	 tree	species	surrounding	each	soil	 sample	 if	one	 is	 interested	 in	 tree-fungi	

interactions.	The	method	would	thus	yield	a	mixture	of	fungi	assemblages	for	each	tree	

species,	 and	 indirectly	 a	 mixture	 of	 assemblages	 for	 each	 sample	 based	 on	 the	 tree	
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species	surrounding	it.	A	simpler	version	of	this	model	might	also	be	considered	where	a	

single	assemblage	characterizes	each	tree	species.	

	

	

Figure	3:	Occurrence-based	 inference	of	 interactions	between	prokaryotic	OTUs	 from	a	
global	data	set	(Chaffron	et	al.,	2010).	Each	node	represents	an	OTU,	and	edges	between	nodes	
represent	 significant	 associations	 based	 on	 co-occurrence.	 Edge	 thickness	 increases	 with	
significance.	Adapted	from	Faust	&	Raes	(2012).	

	

More	generally,	ecological	studies	often	do	not	limit	themselves	to	exploring	the	

structure	 of	 a	 single	 type	 of	 data,	 but	 attempt	 at	 uncovering	 statistical	 relationships	

between	different	 types	of	data,	such	as	 taxonomic	and	environmental	data.	While	 the	

author-topic	model	only	allows	for	adding	discrete	labels	to	each	sample,	other	models	

such	 as	 Dirichlet-multinomial	 Regression	 (Mimno	 &	 McCallum,	 2012)	 can	 also	

accommodate	 continuous	 attributes,	 and	 could	 be	 used	 to	 account	 for	 environmental	

measurements	 in	 the	model.	 The	 goodness-of-fit	 of	 the	model	without	 environmental	
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data	could	then	be	compared	to	that	of	the	model	accounting	for	these	data,	ideally	using	

AIC.	This	would	entail	 a	 slightly	different	use	of	 topic	modelling	 than	 that	of	 the	 third	

chapter:	 namely,	 shifting	 the	 focus	 from	 the	 exploration	 of	 data	 structure	 toward	

hypothesis	testing.	However,	both	approaches	have	their	own	merits.	

Finally,	the	application	of	topic	modelling	to	ecology	needs	not	be	limited	to	taxa	

abundance	and	occurrence	data.	 It	 could	 for	 instance	be	extended	 to	exon	sequencing	

data	 describing	 functional	 types,	 or	 to	 RNA	 sequencing	 data	 characterizing	 gene	

expression.	 Moreover,	 aside	 from	 the	 major	 technological	 revolution	 that	 is	 high-

throughput	DNA	sequencing,	other	promising	technologies	are	currently	being	adapted	

to	automated	data	collection	in	ecology,	notably	Lidar	and	hyperspectral	imaging.	Topic	

modelling	has	been	successfully	used	to	retrieve	patterns	from	images	(Luo	et	al.,	2015),	

and	 could	 possibly	 also	 find	 application	 in	 the	 analysis	 of	 remote-sensing	 ecological	

data.	

	

 Statistical	versus	mechanistic	modelling	3.

	

Topic	modelling	 is	 but	 one	 of	many	 competing	branches	 of	machine	 learning	 that	 are	

currently	actively	developed	to	exploit	the	ever-increasing	amount	of	data	produced	by	

current	technologies	(Bishop,	2006).	Over	the	recent	years,	some	branches	of	machine	

learning	have	become	particularly	prominent,	especially	multi-layered	neural	networks	

under	the	name	of	‘deep	learning’	(LeCun	et	al.,	2015).	Such	methods	are	indeed	efficient	

at	detecting	structure	in	large	datasets,	and	have	been	recently	applied	to	bioinformatics	

problems	 such	 as	 DNA	 sequence	 classification	 (Rizzo	 et	 al.,	 2016).	 However,	 these	

methods	 are	 not	 based	 on	 an	 easily	 interpretable	 model.	 As	 such,	 they	 can	 only	 be	

fruitfully	 applied	 to	 supervised	 learning	 tasks,	 i.e.	 to	 situations	 where	 correct	 and	

incorrect	results	can	be	told	apart	a	priori,	which	are	more	typical	of	engineering	than	

basic	science.	

In	 contrast,	 topic	 models	 have	 a	 mathematical	 structure	 that	 is	 similar	 to	 the	

multivariate	 formulation	of	neutral	models,	 as	discussed	 in	Harris	et	al.	 (2015)	and	 in	

the	third	part	of	the	Introduction.	This	parallel	could	be	exploited	to	build	mixed	models	
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combining	the	advantages	of	both	types	of	models.	For	instance,	a	local	community,	such	

as	 an	 island,	may	 receive	 immigrating	 individuals	 from	 different	 source	 communities	

that	have	distinct	(known)	taxonomic	compositions.	By	assuming	a	neutral	dynamics	in	

the	 local	 community,	 and	 modelling	 the	 origin	 of	 immigrating	 individuals	 by	 a	 topic	

model,	 one	 could	 possibly	 infer	 from	 the	 local	 taxonomic	 composition	 the	 relative	

contribution	 of	 the	 different	 source	 communities.	 Conversely,	 starting	 from	 a	 topic	

model	 as	 in	 the	 third	 chapter,	 one	 could	 assume	 that	 a	 neutral	 dynamics	 takes	 place	

within	each	assemblage.			

While	 topic	 and	 neutral	 models	 may	 seem	 to	 be	 of	 different	 nature,	 the	

distinction	 between	 statistical	 and	 mechanistic	 models	 is	 more	 tenuous	 than	 may	

appear	 at	 first	 glance.	 The	 first	 topic	 modelling	 papers	 mentioned	 mechanistic	

arguments	 to	 justify	 their	models,	 arguing	 than	 they	mirrored	 the	way	 humans	write	

text	 documents,	 and	 some	 subsequent	 developments	 try	 to	 better	 account	 for	 the	

structure	 of	 natural	 language	 (Wallach,	 2006).	 When	 applied	 to	 ecological	 data,	 the	

assumption	that	local	communities	are	a	mixture	of	several	assemblages	of	co-occurring	

taxa	 constitutes	 a	 genuine	 biological	 hypothesis.	 Conversely,	 the	 realism	 of	 the	

hypotheses	in	Hubbell’s	neutral	model	has	been	much	debated	(Rosindell	et	al.,	2012),	

and	 one	might	 argue	 that	 its	most	 valuable	 hindsight	 is	 on	 the	 nature	 of	 the	 species	

abundance	 distribution	 pattern	 itself:	 namely,	 that	most	 empirical	 species	 abundance	

distributions	 can	 be	 approximately	 decomposed	 into	 orthogonal	 diversity	 and	

connectivity	components,	irrespective	of	their	exact	mechanistic	interpretation	(Jabot	et	

al.,	2008).	

While	 a	 very	 flexible	model	 is	 undesirable	when	 one	 aims	 at	 testing	modelling	

hypotheses	 on	 data,	 it	 becomes	 an	 advantage	 when	 one	 aims	 at	 characterizing	 the	

system	at	hand	through	a	 limited	number	of	relevant	parameters.	This	 is	often	a	more	

realistic	 prospect	 when	 faced	 with	 large	 datasets	 resulting	 from	 automated	 data	

collection.	 However,	 as	 illustrated	 by	 the	 case	 of	 Hubbell’s	 neutral	 model,	 relevant	

parameters	 cannot	be	determined	without	 an	understanding	of	 the	basic	processes	 at	

play.	 Moreover,	 characterizing	 a	 system	 is	 of	 little	 use	 if	 this	 does	 not	 entail	 the	

possibility	 of	 predictions	 and	 generalization.	 A	 right	 balance	 is	 thus	 to	 find	 between	

flexibility	and	falsifiability	in	building	models	for	the	analysis	of	large	datasets,	and	the	
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shift	 toward	 inference-oriented	 models	 should	 not	 preclude	 building	 them	 on	 first	

principles	(Marquet	et	al.,	2014).	
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Introduction	

	

Amazonia	encompasses	about	40%	of	the	world’s	tropical	forests	(Sioli,	1984;	Hubbell	et	

al.,	2008;	Hoorn	&	Wesselingh,	2010),	and	many	taxonomic	groups	reach	their	highest	

species	richness	 in	 this	region	(Antonelli	&	Sanmartín,	2011;	 Jenkins	et	al.,	2013).	The	

processes	 that	 have	 given	 rise	 to	 this	 exceptionally	 high	diversity	have	 long	 intrigued	

biologists	(Wallace,	1852;	Bates,	1863).	Amazonia	gives	an	appearance	of	homogeneity,	

because	 it	 is	 a	 vast	 and	 seemingly	 uniform	 extent	 of	 forest	 that	 is	 faunistically	 very	

distinct	 from	 other	 Neotropical	 regions	 (Dinerstein	 et	 al.,	 1995;	 Olson	 et	 al.,	 2001;	

Antonelli	&	 Sanmartín,	 2011;	Vilhena	&	Antonelli,	 2015).	However,	 this	 is	misleading:	

temperatures	and	rainfall	vary	widely	across	Amazonia	(Mayle	&	Power,	2008),	and	so	

do	vegetation	 types	 (Anderson,	2012;	Hughes	et	al.,	2013).	Moreover,	Amazonia	had	a	

tumultuous	climatological	and	geological	past,	mainly	caused	by	the	Andean	uplift	and	

the	 setting-up	 of	 the	 Rio	 Amazonas	 watershed	 during	 the	 late	 Tertiary	 (Hoorn	 et	 al.,	

2010).	

The	distribution	of	species	within	Amazonia	is	known	to	relate	to	this	large-scale	

environmental	 heterogeneity.	 The	 observed	 congruence	 between	 the	 geographic	

distribution	 of	 birds	 and	 primates	 on	 the	 one	 hand	 and	 the	major	 interfluves	 on	 the	

other	 hand	 (Wallace,	 1852;	 Haffer,	 1974)	 led	 to	 the	 definition	 of	 biogeographic	

subregions	 (BSRs),	 coined	 as	 “Amazonian	 areas	 of	 endemism”	 (Wallace,	 1852;	Haffer,	

1974;	Cracraft,	1985).	However,	there	is	still	little	consensus	on	how	to	best	delimit	and	

name	BSRs,	with	many	terms	being	used	interchangeably	(Vilhena	&	Antonelli,	2015).	In	

fact,	 the	 very	 existence	 and	 boundaries	 of	 different	 BSRs	 across	 Amazonia	 and	 the	

relative	 degree	 of	 endemism	 within	 them	 have	 simply	 never	 been	 analysed	 using	

modern	 analytic	 tools	 (e.g.,	 clustering)	 and	 large	 species	 assemblages	 having	

unambiguous	distribution	data	(Nelson	et	al.,	1990;	Morrone,	2005;	Naka	et	al.,	2012).	

Moreover,	current	knowledge	on	the	delimitation	of	Amazonian	BSRs	is	mainly	based	on	

birds,	 the	 best-known	 taxonomic	 group,	 as	 well	 as	 primates	 and	 plants	 displaying	

limited	 distributions	 in	 Amazonia.	 The	 explanatory	 power	 of	 the	 Amazonian	 BSR	 as	

currently	 defined	 remains	 questionable	 until	 their	 boundaries	 are	 proven	 to	 match	
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across	multiple	 taxonomic	groups.	However,	 this	seems	unlikely	because	 these	groups	

have	 overall	 high	 dispersal	 abilities,	 and	 their	 distribution	 patterns	 may	 be	 poor	

predictors	for	less	vagile	taxa	(Claramunt	et	al.,	2011;	Pigot	&	Tobias,	2015;	Zizka	et	al.,	

2016).	

Because	 small	 terrestrial	 vertebrates	 such	 as	 anurans	 have	 more	 limited	

dispersal	abilities	and	possibly	a	greater	sensitivity	to	environmental	variation,	they	are	

better	suited	to	the	delineation	of	relevant	bioregions	(Zeisset	&	Beebee,	2008).	Anuran	

assemblages	may	 display	 different	 or	 finer	 geographic	 patterns	 than	 those	 previously	

described	 at	 the	 continental	 (Vilhena	 &	 Antonelli,	 2015)	 or	 the	 regional	 scale	

(Vasconcelos	 et	 al.,	 2014).	 For	 instance,	 one	 of	 the	 rare	 studies	 unambiguously	

delimiting	BSRs	in	Amazonia	found	well-delimited	bioregions	in	the	Guiana	Shield	based	

on	the	distribution	of	bird	species,	including	a	large	homogeneous	region	spanning	the	

eastern	part	of	the	Guiana	Shield	(Naka	et	al.,	2012).	Yet,	studies	on	anuran	amphibians	

suggest	 a	 finer	biogeographic	 structure	 in	 the	Eastern	Guiana	Shield,	where	divergent	

lineages	 of	 frogs	 exhibit	 concordant	 distribution	 limits	 (Fouquet	 et	 al.,	 2012d,	 2013,	

2016).	 In	 this	paper,	we	aim	at	delimiting	Amazonian	bioregions	 in	a	data-driven	way	

based	on	a	newly	collected	dataset	of	molecular	anuran	diversity,	with	a	particular	focus	

on	the	Eastern	Guiana	Shield.	

Revealing	the	basic	geographical	structure	of	species	diversity	in	Amazonia	is	not	

only	of	crucial	importance	for	conservation	(Da	Silva	et	al.,	2005),	it	is	also	an	important	

prerequisite	 for	 the	 study	 of	 the	 processes	 that	 gave	 rise	 to	 present-day	 diversity	

patterns.	Identifying	BSRs	in	Amazonia	may	help	identify	the	physical	barriers	relevant	

to	 speciation,	 define	 the	 contact	 zones	 between	 closely	 related	 parapatric	 taxa,	 and	

capture	 the	 effects	 of	 dispersal	 limitation	 in	 the	 structure	 of	 Amazonian	 communities	

(e.g.,	 Moura	 et	 al.,	 2016).	 Many	 hypotheses	 have	 been	 proposed	 to	 explain	

heterogeneities	 in	 species	 distribution	 across	 Amazonia,	 including	 landscape	 change	

induced	by	late	Tertiary	climate	fluctuations	(Haffer	1969),	the	uplift	of	the	Andes,	and	

continuous	dispersal	 across	 large	 rivers	 (Hayes	&	Sewlal,	 2004;	Antonelli	et	al.,	 2010;	

Hoorn	 et	 al.,	 2010),	 or	 past	 environmental	 gradients	 (Colinvaux	 et	 al.,	 2000).	 These	

different	hypotheses	have	been	verified	for	some	taxonomic	groups	at	different	spatial	

and	temporal	scales	(Hall	&	Harvey,	2002),	but	there	is	still	no	consensus	about	the	main	

drivers	of	diversification	within	Amazonia.	
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Two	major	challenges	to	our	understanding	of	the	basic	structure	of	Amazonian	

biodiversity	 are	 the	 scarcity	 of	 occurrence	 data	 and	 the	 imprecision	 of	 species	

delineation	(Wallacean	and	Linnean	shortfalls).	These	shortfalls	are	particularly	obvious	

in	small	terrestrial	vertebrates	such	as	anurans	(Ficetola	et	al.,	2014).	Almost	all	anuran	

taxa	 with	 large	 ranges	 in	 Amazonia	 exhibit	 deep	 divergences	 when	 analysed	 with	

genetic	 tools,	 suggesting	 that	 they	 comprise	 several	 species,	 each	 with	 a	 restricted	

distribution	(Fouquet	et	al.,	2007a;	Funk	et	al.,	2012;	Gehara	et	al.,	2014;	Fouquet	et	al.,	

2015b;	Ferrão	et	al.,	2016;	Fouquet	et	al.,	2016).	These	studies	typically	imply	that	the	

actual	 species	 richness	 in	 these	 groups	 is	 more	 than	 twice	 that	 estimated	 from	

morphology	 only.	 Therefore,	 ranges	 of	 Amazonian	 amphibians	 used	 in	 broad	

biodiversity	assessments	such	as	the	International	Union	for	the	Conservation	of	Nature	

(IUCN)	 Red	 list	 are	 likely	 to	 be	 largely	 inaccurate	 (Ficetola	 et	 al.,	 2014).	 Out	 of	 427	

amphibian	species	inhabiting	the	6	million	km2	of	Amazonia	according	to	IUCN,	at	least	

150	species	(35%)	are	distributed	over	more	than	1	million	km2	(Fouquet	et	al.,	2007a).	

Such	a	high	proportion	of	broadly-distributed	 species	 seems	unlikely	 (Wynn	&	Heyer,	

2001),	because	amphibians	usually	display	low	dispersal	capacities	and	often	have	small	

niches	 (Duellman	 &	 Trueb,	 1994;	Wells,	 2010).	 This	 gap	 in	 our	 understanding	 of	 the	

actual	diversity	and	distribution	of	species	could	seriously	invalidate	conclusions	drawn	

from	IUCN	data	(Foden	et	al.,	2013;	Jenkins	et	al.,	2013,	2015;	Pimm	et	al.,	2014;	Feeley	

&	Silman,	2016).		

The	overall	aims	of	this	study	were	(1)	to	obtain	a	new	georeferenced	dataset	of	

Amazonian	 anurans	 based	 on	molecular	 diversity,	with	 a	 focus	 on	 the	 eastern	Guiana	

Shield	 (EGS)	 (east	 of	 the	 Tepuis,	 and	 north	 of	 Rio	 Negro	 and	 Rio	 Amazonas),	 (2)	 to	

provide	 estimates	 of	 the	 number	 of	 species	 and	 of	 their	 distributions	 in	 this	 part	 of	

Amazonia,	 (3)	 to	 infer	 data-driven	 spatial	 boundaries	 between	BSRs,	 as	well	 as	 to	 re-

assess	their	rate	of	endemism.	Given	that	anuran	species	boundaries	and	distributions	

are	plagued	with	uncertainty	 in	Amazonia	and	that	 IUCN	data	are	often	out-dated	and	

imprecise,	 it	 is	 necessary	 to	 use	 occurrence	 records	 linked	 to	 taxonomic	 frameworks	

based	 on	 clear	 criteria.	 Therefore,	 we	 conducted	 extensive	 fieldwork	 to	 collect	

specimens	representative	of	present-day	diversity	at	the	scale	of	the	entire	region,	and	

obtained	 mitochondrial	 DNA	 sequences	 (16S	 rDNA)	 from	 these	 specimens.	 We	 also	

included	 in	our	analyses	publicly	available	sequences	 from	other	specimens.	Based	on	
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these	sequences,	we	generated	two	new	taxonomic	frameworks	for	Amazonian	anurans.	

Our	 dataset	 represents	 the	 largest	 molecular	 diversity	 dataset	 gathered	 so	 far	 in	

Amazonia	for	any	taxonomic	group.		
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Material	and	methods	
	
	

 Fieldwork	1.

	

We	undertook	 fieldwork	 in	 several	 localities	 throughout	 the	Guiana	 Shield,	 notably	 in	

southern	Suriname,	French	Guiana,	and	the	Brazilian	states	of	Amapá	and	Roraima.	We	

collected	specimens	of	as	many	anuran	species	as	possible	per	locality	by	nocturnal	and	

diurnal	 active	 searches	 (visual	 and	 acoustic).	 Each	 specimen	 was	 identified	 and	

photographed.	 They	 were	 subsequently	 euthanized	 using	 an	 injection	 of	 Xylocaine®	

(lidocaine	chlorhydrate).	Tissue	samples	(liver	or	muscle	tissue	from	thigh	or	toe-clip)	

were	removed	and	stored	in	95%	ethanol,	while	specimens	were	tagged	and	fixed	(using	

formalin	10%)	before	being	 transferred	 to	70%	ethanol	 for	permanent	 storage.	These	

field	 surveys	 allowed	 us	 to	 cover	 the	 anuran	 communities	 of	 the	 EGS	 at	 an	

unprecedented	 fine	 scale	 (Fig.	1A).	We	completed	 these	data	 for	 the	 rest	of	Amazonia	

with	loans	of	material	from	several	institutions,	notably	from	Universidad	de	Sao	Paulo	

for	 the	 upper	 Madeira,	 lower	 Xingu,	 Abacaxis	 and	 Purus	 Rivers.	 Ultimately,	 the	 total	

number	of	analysed	samples	reached	4,681.	

	

 Molecular	data	2.

	

We	 extracted	 DNA	 from	 the	 samples	 using	 the	 Wizard	 Genomic	 extraction	 protocol	

(Promega;	Madison,	WI,	USA).	We	targeted	a	c.a.	400bp	fragment	of	 the	mitochondrial	

16S	rDNA	using	MiSeq	and	Sanger	techniques	(Supplementary	Methods).	We	eventually	

generated	4,492	sequences.	

Additionally,	 we	 retrieved	 from	 GenBank	 (as	 of	 the	 1st	 August	 2015)	 all	

sequences	 of	 species	 congeneric	with	 those	 occurring	 in	 the	Guiana	 Shield,	 as	well	 as	

sequences	 of	 Adelphobates	 and	 Phyzelaphryne,	 two	 genera	 restricted	 to	 southern	

Amazonia.	We	removed	 low-quality	or	 too	short	sequences,	as	well	as	duplicates	 from	
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the	 same	 specimen.	 We	 obtained	 approximate	 geographical	 coordinates	 for	 most	 of	

these	records	searching	the	original	papers,	locality	information,	or	collection	databases.	

The	 final	dataset	contained	11,166	sequences,	10,254	of	which	were	geotagged.	

This	barcode	dataset	is	probably	the	most	extensive	gathered	so	far	in	Amazonia	for	any	

vertebrate	 group.	 8,181	 records	 are	 from	Amazonia	 proper,	 including	 4,634	 from	 the	

EGS,	 while	 the	 remaining	 are	 from	 adjacent	 regions.	 The	 obtained	 sequences	 were	

aligned	with	MAFFT	v.7	(Katoh	&	Standley,	2013).	We	used	the	resulting	alignment	 to	

generate	 a	 neighbour-joining	 tree	 using	 pairwise	 deletion	 and	 p-distance	model	 with	

MEGA	v.7.0.16	(Kumar	et	al.,	2016).	

	

 Taxonomic	frameworks	3.

	

While	there	is	valid	criticism	against	reliance	on	simplistic	single-sequence	approaches	

to	 species	 delineation	 (Goldstein	 &	 DeSalle,	 2011;	 Krishna	 Krishnamurthy	 &	 Francis,	

2012),	 such	 approaches	 can	 take	 us	 further	 toward	 the	 comparative	 quantification	 of	

biodiversity	over	different	spatial	scales	(Emerson	et	al.,	2011;	Yu	et	al.,	2012;	 Ji	et	al.,	

2013).	 In	 the	case	of	Amazonian	anurans,	 clear	and	exhaustive	delimitation	of	 species	

boundaries	based	on	morphology,	acoustics	and	molecular	data	remains	out	of	reach.	As	

a	consequence,	many	species	groups	have	a	very	confused	taxonomy	leading	to	frequent	

misidentification,	 lumping	of	 undescribed	 species	within	 a	 single	 taxon,	 and	 assigning	

species	to	polyphyletic	groups.	This	results	in	largely	inaccurate	IUCN	data.	In	order	to	

compare	 our	 sequence	 dataset	 to	 IUCN	 data,	 we	 built	 two	 different	 taxonomic	

frameworks.	 The	 TAXO1	 taxonomic	 framework	 is	 conservative,	 linking	 as	 much	 as	

possible	each	sequence	to	a	nominal	taxon	so	as	to	form	a	monophyletic	group,	while	the	

TAXO2	taxonomic	framework	results	from	a	purely	DNA-based	species	delineation	(see	

below).		

For	TAXO1,	our	goal	was	to	group	under	nominal	 taxa	the	sequences	 forming	a	

monophyletic	 group	 according	 to	 the	 neighbour-joining	 tree,	 so	 as	 to	 obtain	 the	

geographic	range	of	the	lineages	already	considered	by	the	IUCN.	Original	fieldwork	and	

GenBank	 assignments	 were	 often	 contradictory	 because	 of	 the	 above-mentioned	
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reasons	and	because	of	taxonomic	changes	subsequent	to	identification,	and	were	thus	

often	modified.	We	first	identified	the	sequences	that	could	be	unambiguously	linked	to	

a	 nominal	 taxon	 by	 considering	 the	 literature	 (e.g.	 sequences	 from	 type	 series),	 the	

known	range	of	the	taxon,	and	the	location	of	the	type	locality.	Then,	we	checked	wether	

this	identification	was	in	accordance	with	the	ID	of	the	most	closely	related	sequences.	If	

in	 accordance,	 this	 taxon	 ID	 was	 applied	 to	 the	 sequences	 until	 another	 taxon	 was	

applicable	 to	 more	 distant	 lineage.	 When	 a	 taxon	 was	 found	 to	 be	 paraphyletic,	 we	

checked	 for	 possible	 misidentification,	 and	 whether	 one	 of	 the	 lineages	 could	 be	

identified	 as	 another	 taxon.	 When	 paraphyly	 was	 ambiguous,	 we	 kept	 the	 original	

identification.	When	paraphyly	was	unambiguous,	one	of	the	lineages	was	identified	as	

the	 nominal	 taxon	while	 the	 other	 ones	were	 identified	 as	 “sp.”	 if	 they	 did	 not	 share	

affinities	with	another	taxon.	In	a	few	cases,	two	or	more	taxa	were	largely	intricate	with	

shallow	 genetic	 distances	 among	 sequences	 and	 remained	 ambiguous	 despite	 the	

allopatric	 distribution	 of	 the	 lineages.	We	 then	 considered	 them	 as	 single	 taxon	 (e.g.	

Atelopus	hoogmoedi,	A.	flavescens)	given	they	represent	single	lineage	and	single	patch	of	

distribution.	Ultimately,	we	 think	 that	TAXO1	provides	 a	 representative	update	 of	 the	

current	taxonomic	knowledge	for	Amazonian	anurans.	941	species	were	considered	in	

TAXO1,	including	365	occurring	in	Amazonia.	

For	 TAXO2	 we	 applied	 the	 Automatic	 Barcode	 Gap	 Discovery	 (ABGD)	 species	

delineation	 method	 (Puillandre	 et	 al.,	 2012)	 to	 our	 sequence	 dataset.	 We	 performed	

ABGD	analyses	from	the	source	code	with	default	settings	(JC69,	Pmin:	0.001,	Pmax:	0.1,	

steps:	10,	Nb	bins:	20)	on	each	genus,	and	attributed	a	number	to	each	candidate	species	

retrieved	in	the	analysis.	Computations	were	performed	on	the	EDB-Calc	Cluster	hosted	

by	the	laboratory	"Évolution	et	Diversité	Biologique"	(EDB),	using	a	software	developed	

by	 the	 Rocks(r)	 Cluster	 Group	 (San	 Diego	 Supercomputer	 Center,	 University	 of	

California,	 San	 Diego	 and	 its	 contributors.	 In	 24	 instances	 (17	 concerning	 Amazonian	

taxa),	different	nominal	taxa	in	TAXO1	were	lumped	into	a	unique	candidate	species	in	

TAXO2	because	of	a	shallow	mtDNA	divergence	between	them	(notably	in	Atelopus	spp.	

and	 Osteocephalus	 ssp.).	 As	 these	 correspond	 to	 clearly	 distinct	 species	 based	 on	

morphology	and	acoustic,	and	form	monophyletic	groups	in	previous	studies	(but	herein	

with	 shallow	 divergence	 or	 recovered	 ambiguously	 paraphyletic	 due	 to	 the	 low	

resolution	in	our	400	bp-long	16S	fragment),	we	considered	them	as	false	negative	and	
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we	 applied	 to	 them	 the	 same	 taxonomic	 assignment	 as	 in	 TAXO1.	 Ultimately,	 1,246	

species	were	considered	in	TAXO2,	including	746	occurring	in	Amazonia.	

Third,	 we	 compiled	 amphibian	 species	 range	 data	 from	 the	 IUCN	

(http://www.iucnredlist.org/technical-documents/spatial-data#amphibians),	 which	 is	

the	most	widely	 used	 amphibian	 distribution	 database.	 In	 order	 to	make	 this	 dataset	

comparable	with	TAXO1	and	TAXO2,	we	excluded	22	genera	(433	species)	that	are	only	

partly	overlapping	with	our	focal	area,	i.e.,	western	Amazonia,	northern	Andes,	Caatinga	

and	Cerrados.	One	genus	from	the	Tepuis	(Metaphryniscus)	was	also	omitted	given	that	

no	 sequences	 were	 available,	 as	 well	 as	 two	 introduced	 species	 (Eleutherodactylus	

johnstonei	and	Lithobates	catesbeianus).	Overall,	51	genera	were	used	in	our	analyses.	

	

 Study	area	and	species	distribution	data	4.

	

Our	analyses	focused	on	a	rectangular	area	that	includes	the	whole	central,	eastern	and	

northern	 parts	 of	 Amazonia	 (excluding	most	 of	 the	western	 and	 southern	 parts).	 The	

limits	of	our	study	area	were	W	72°	W	47°	and	S	11°	N	9°.	We	applied	a	grid	of	1°	Í	1°	

(500	cells)	to	this	area.	This	includes	the	Guiana	Shield	(Lujan	&	Armbruster,	2011),	the	

central	and	eastern	parts	of	 the	Rio	Amazonas	drainage,	and	the	northern	parts	of	 the	

Rio	Purus,	Rio	Madeira,	Rio	Tapajós,	Rio	Xingú,	and	Rio	Tocantins	drainages	(Fig.	1A)	as	

well	as	peripheral	non-Amazonian	areas.	

We	 then	 estimated	 the	 putative	 range	 of	 each	 species	 by	 creating	 convex	

polygons	out	of	our	occurrence	datasets	TAXO1	(358	species	total	within	the	focal	area)	

and	TAXO2	(596	species)	with	the	sp	package	implemented	in	R	(R	Development	Core	

Team,	2016).	The	numbers	of	Amazonian	species	included	in	TAXO1	and	TAXO2	differ	

from	 those	 occurring	 within	 the	 focal	 area	 because	 this	 area	 encompasses	 non-

Amazonian	 areas	 and	 excludes	 western	 and	 southern	 parts	 of	 Amazonia.	 We	 then	

interpolated	 the	 occurrence	 of	 species	 in	 each	 cell	 of	 our	 study	 area	 for	 the	 three	

datasets.	We	excluded	species	occurring	in	less	than	three	localities	and	cells	with	less	

than	 five	species	 in	 them,	 thus	 removing	poorly	 sampled	species,	 that	did	not	provide	

enough	information	for	range	reconstruction,	and	poorly	sampled	peripheral	cells.	118	



	

	

	
Appendix	–	Biogeography	of	Amazonian	Anurans			

	

	 	

231	

species	were	discarded	in	TAXO1	and	318	in	TAXO2.	Finally,	we	considered	240	species	

in	TAXO1,	278	in	TAXO2,	and	440	in	the	IUCN	dataset	within	the	focal	area	(Fig.	1D,	E,	

F).	

	

Figure	1.	(A)	All	occurrences	in	the	barcoding	dataset	and	inset	of	the	focal	area;	(B)	Amazonian	
Areas	of	Endemism	from	Smith	et	al.,	2014;	(C)	species	richness	mapped	from	occurrences	data	
from	 TAXO1	 and	 TAXO2,	 which	 provide	 identical	 results;	 (D)	 species	 richness	 mapped	 from	
TAXO1	after	polygon	transformation	and	exclusion	of	rare	species;	(E)	species	richness	mapped	
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from	 TAXO2	 after	 polygon	 transformation	 and	 exclusion	 of	 rare	 species;	 (F)	 species	 richness	
mapped	from	the	distribution	data	of	IUCN	considered	in	our	analyses.	

	

 Identification	of	Biogeographic	Subregions	5.

	

To	delimit	BSRs	based	on	species	occurrence,	we	decomposed	the	community	matrix	-	

i.e.,	 the	 matrix	 listing	 the	 species	 occurring	 in	 each	 grid	 cell	 -	 using	 Latent	 Dirichlet	

Allocation	 (Blei	 et	 al.,	 2003;	 Valle	 et	 al.,	 2014).	 LDA	 is	 an	 unsupervised	 clustering	

method	based	on	a	probabilistic	model,	which	assumes	that	several	species	assemblages	

coexist	over	the	study	area,	the	number	K	of	which	is	fixed	beforehand.	This	method	has	

major	 advantages	 compared	 to	 classic	 clustering	 (e.g.,	 hierarchical	 or	 k-means	

clustering).	 First,	 it	 is	 likelihood-based,	 thus	providing	 rigorous	 tools	 for	 selecting	 the	

number	 of	 assemblages	 and	 comparing	 decompositions.	 Second,	 assemblages	 may	

partially	 overlap	 in	 taxonomic	 composition,	 and	 a	 given	 grid	 cell	 may	 either	 be	

dominated	by	one	assemblage	or	contain	a	mixture	of	assemblages.	Thus,	 it	allows	 for	

modelling	gradual	changes	in	taxonomic	composition	over	space.	A	mixing	parameter	α	

is	estimated	as	part	of	the	inference	procedure,	and	indicates	whether	the	samples	tend	

to	be	decomposed	into	an	even	mixture	of	assemblages	(case	𝛼 > 1)	or	into	an	uneven	

mixture	dominated	by	one	assemblage	(case	𝛼 < 1).	

We	used	the	Variational	Expectation	Maximization	(EM)	algorithm	implemented	

by	Blei	et	al.	(2003)	and	wrapped	into	the	R	package	topicmodels	(Grün	&	Hornik,	2011)	

for	parameter	inference,	with	a	convergence	threshold	of	10!!	for	the	EM	step	and	10!!	

for	 the	 variational	 step.	We	 assessed	 the	 reliability	 of	 the	 solution	 by	 comparing	 the	

taxonomic	 composition	 of	 assemblages	 between	 100	 realizations	 of	 the	 algorithm	

starting	 from	 random	 initial	 conditions.	 We	 only	 interpreted	 the	 decomposition	

corresponding	to	the	realization	with	the	highest	likelihood	out	of	100.	We	selected	the	

number	K	of	assemblages	by	AIC	minimization.	We	represented	the	spatial	distribution	

of	 assemblages	 on	 a	 map	 after	 ordinary	 Kriging	 between	 cells	 (R	 package	 gstat	 ;	

Pebesma,	 2004).	 We	 also	 computed	 the	 Jaccard	 taxonomic	 dissimilarity	 between	

assemblages	 and	 displayed	 it	 as	 a	 dendrogram.	 Additionally,	 we	 decomposed	 the	
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datasets	 into	 K=3	 assemblages	 to	 assess	 the	 coarser	 biogeographic	 structure	 of	 the	

study	area.	See	Sommeria-Klein	et	al.	(in	prep.)	for	further	methodological	details.	
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Results	

	

Underestimation	 of	 species	 richness.	 Based	 on	 our	 analyses,	 among	 the	 363	

Amazonian	 species	 found	 in	 TAXO1,	 53	 genetic	 lineages	 could	 not	 be	 associated	with	

any	 nominal	 taxa.	 In	 the	 EGS,	 most	 of	 these	 undescribed	 lineages	 were	 already	

documented	 (e.g.,	 Adelophryne	 sp.,	 Scinax	 sp.	 2,	 or	 Pristimantis	 sp.	 1)	 (Fouquet	 et	 al.,	

2007b,	 2012b).	 In	 southern	 and	 western	 Amazonia	 however,	 several	 lineages	 are	

reported	here	for	the	first	time	(e.g.,	Allobates	sp.	“Divisor”,	Amazophrynella	sp.	“Acre”,	

Dendropsophus	sp.	“Xingú”),	This	suggests	that	species	diversity	has	been	well	sampled	

in	the	lowlands	of	the	Guiana	Shield,	but	not	in	the	rest	of	Amazonia.	Our	datasets	also	

provide	 evidence	 of	 range	 extension	 for	many	 taxa	 compared	 to	 previous	 knowledge.	

This	is	for	example	the	case	of	Scinax	nasicus,	which	extends	to	the	Sipaliwini	savannah	

(Suriname),	 Pristimantis	 koheleri,	 to	 the	 southern	 part	 of	 the	 Guiana	 Shield,	 or	

Synapturanus	mirandariberoi,	to	the	southern	part	of	the	Amazonas	drainage.	However,	

most	of	these	newly	documented	populations	are	highly	genetically	divergent	from	the	

populations	 lying	 within	 the	 known	 range	 of	 the	 species	 and	 are	 considered	 as	

independent	species	in	TAXO2.		

In	fact,	246	TAXO1	species	display	splits,	yielding	568	species	(Í	2.3)	in	TAXO2.	

TAXO2	 provides	 1,548	 pairwise	 comparisons	 among	 species	 that	 are	 lumped	 as	

conspecific	 in	 TAXO1.	 39%	 of	 these	 average	 pairwise	 distances	 (p-distance	 pairwise	

deletion)	were	above	6%,	a	threshold	believed	to	conservatively	delimit	species	(Vences	

et	 al.,	 2005;	 Fouquet	 et	 al.,	 2007a)	 and	 85%	 were	 above	 3%	 (Fig.	 2A).	 In	 terms	 of	

taxonomy,	 436	 TAXO2	 species	 cannot	 be	 assigned	 to	 any	 of	 the	 310	 nominal	 taxa	 of	

TAXO1.	 These	 observations	 suggest	 that	 the	 TAXO1	 framework	 remains	

overconservative	in	many	instances.		
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Figure	2.	A:	Histogram	of	the	average	pairwise	distances	among	TAXO2	species	considered	as	a	
single	 TAXO1	 species	 (white	 bars)	 and	 among	 TAXO2	 species	 considered	 as	 different	 TAXO1	
species	(red	bars;	this	 last	distribution	was	randomly	sampled	to	harbour	the	same	number	of	
comparisons	than	 in	 the	previous	one);	 (B-C)	Examples	of	genetic	and	geographic	patterns	 for	
two	Panamazonian	 single	TAXO1	species	 that	provide	drastically	different	patterns	 in	TAXO2;	
Leptodactylus	petersii	being	 split	 into	 16	 species	whereas	Hypsiboas	calcaratus	 is	 only	 split	 in	
two	 candidate	 species	 in	 TAXO2.	 The	 colours	 of	 the	 lineages	 on	 the	 tree	 correspond	 to	 the	
colours	of	the	occurrence	points	and	areas	on	the	map.	†	indicates	candidate	species	that	were	
discarded	from	the	analyses	in	TAXO2	(less	than	three	locality	records).		
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	A	number	of	distinct	patterns	of	distribution	emerge	from	the	occurrence	data	of	

TAXO1	 and	 TAXO2.	 We	 highlight	 three	 of	 them	 that	 segregate	 groups	 of	 species	

occurring	 in	 the	 EGS:	 Guiana	 Shield	 endemic	 groups;	 Panamazonian	 allopatric	 groups	

and	widespread	species.	The	first	pattern	concerns	five	groups	that	are	endemic	to	the	

Guiana	Shield	and	occur	in	both	the	highlands	and	the	lowlands:	Adelophryne	(4	species	

in	 TAXO1	 vs.	4	 in	 TAXO2),	Otophryne	 (3	 vs.	3	 species),	Synapturanus	 (3	 vs.	4	 species),	

Anomaloglossus	 (15	 vs.	29	 species),	Vitreorana	 ritae	 clade	 (3	 vs.	3	 species),	Hypsiboas	

benitezi	 clade	 (3	 vs.	 3	 species).	 Among	 them,	 only	 Anomaloglossus	 seems	 to	 have	

substantially	diversified	in	the	lowlands.	Secondly,	the	vast	majority	of	species	occurring	

in	 the	 EGS	 are	 nested	 in	widespread	 Amazonian	 or	 lowlands	 Neotropical	 clades	 (Fig.	

2B).	Most	 of	 these	 clades	display	deep	divergence	 among	populations	 (above	6%;	 e.g.	

Leptodactylus	petersii	–	16	candidate	 species	 in	TAXO2)	and	contain	 several	 candidate	

species	with	more	restricted	ranges.	Finally,	78	species	out	of	358	(22%)	in	TAXO1,	45	

out	 of	 596	 (8%)	 in	 TAXO2	 and	 142	 out	 of	 440	 (32%)	 in	 IUCN	 actually	 have	 broad	

distributions	(>1	millions	km2)	within	our	focal	study	area	(e.g.,	H.	calcaratus)	(Fig.	2C).	

	

Biogeographical	 subregions.	We	decomposed	 the	TAXO1,	TAXO2	 and	 IUCN	datasets	

using	Latent	Dirichlet	Allocation.	AIC	minimization	yielded	an	optimal	number	of	species	

assemblages	 close	 to	K	 =	 8	 for	 all	 three	 datasets	 (Fig.	 S2).	 The	 retrieved	 assemblages	

were	 found	 to	 be	 spatially	 segregated	 (mixing	 parameter	 α	 much	 smaller	 than	 1:	

𝛼!"#$ = 0.021,𝛼!"#$! = 0.019,𝛼!"#$! = 0.016 )	 and	 contiguous.	 We	 could	 thus	

interpret	them	as	BSRs.	The	LDA	decomposition	was	found	to	be	reliable	for	the	three	

datasets	based	on	its	stability	over	100	realizations	(Fig.	S2).	
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Figure	 3.	 Maps	 generated	 by	 interpolating	 the	 eight-assemblage	 Latent	 Dirichlet	 Allocation	
(LDA)	decomposition	of	the	species	occurrence	data	(A,	B,	C),	and	corresponding	dendrograms	
showing	the	relationships	between	the	eight	assemblages	recovered	in	the	LDA	decomposition	
using	 average	 Jaccard	 taxonomic	 dissimilarity	 (based	 on	 the	 presence/absence	 of	 species	 in	
assemblages).	 (A)	 TAXO1;	 (B)	 TAXO2;	 (C)	 IUCN	 data.	 The	 white	 dashed	 lines	 represent	 the	
approximate	boundaries	of	the	BSR	for	a	three-assemblage	LDA	decomposition	(in	panel	[B],	the	
north-western	and	south-eastern	regions	belong	to	the	same	assemblage).	The	numbers	on	the	
maps	 correspond	 to	 the	 numbers	 attributed	 to	 assemblages	 for	 each	 dataset.	 (D)	 TAXO1;	 (E)	
TAXO2;	(F)	IUCN	data.	

	

Even	though	not	identical,	the	spatial	boundaries	of	the	eight	BSRs	retrieved	for	

TAXO1	and	TAXO2	were	very	similar	(Fig.	3A-B).	The	lowlands	of	the	EGS	were	clearly	

separated	from	the	rest	of	the	study	area	by	the	Rio	Amazonas	and	the	Pantepui	region.	

Moreover,	the	EGS	was	also	found	to	exhibit	some	internal	structure,	since	this	area	was	

composed	of	three	independent	BSRs,	all	found	in	both	TAXO1	and	TAXO2	despite	large	

differences	in	the	distribution	of	the	species	considered	(e.g.,	Leptodactylus	petersii).	One	

of	 these	 three	 BSRs	 (BSR1	 on	 Fig.	 3A-B)	 comprised	 the	 southern	 part	 of	 Guyana,	

Roraima	 and	 the	 Northern	 parts	 of	 Pará	 and	 Amazonas	 states	 (Brazil).	 A	 second	 one	

(BSR2	 on	 Fig.	 3A-B)	 comprised	 the	 northern	 part	 of	 Guyana	 and	 adjacent	 Venezuela.	

Finally,	a	 third	one	(BSR3	on	Fig.	3A-B)	comprised	the	state	of	Amapá	(Brazil),	French	
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Guiana,	and	Suriname.	These	three	BSR	were	retrieved	as	a	single	cluster	in	the	coarser	

3-assemblage	 LDA	 decomposition.	 Taxonomic	 comparison	 between	 assemblages	

indicated	that	among	these	three	BSR,	BSR1	and	BSR3	were	more	similar	to	each	other,	

in	both	TAXO1	and	TAXO2	(Fig.	1D,	E).	The	only	notable	difference	between	TAXO1	and	

TAXO2	in	the	EGS	area	was	that	the	boundaries	of	BSR1	matched	well	the	Rio	Negro	and	

Rio	 Amazonas	 in	 TAXO2,	 while	 BSR1	 extended	 somewhat	 further	 west	 across	 the	

Rupununi	savannah	in	TAXO1.	The	boundaries	between	BSRs	in	this	specific	area	were	

also	 sharper	 in	 TAXO2	 than	 in	 TAXO1.	 Outside	 of	 the	 EGS	 area,	 there	 was	 a	 striking	

match	between	BSR	boundaries	and	Rio	Madeira	in	TAXO1	that	was	already	recovered	

in	 the	 3-assemblage	 decomposition.	 In	 contrast,	 the	 Purus	 and	 Tapajòs	 Rivers	 were	

found	to	be	each	at	the	center	of	a	BSR	in	both	TAXO1	and	TAXO2.		

The	distribution	of	BSRs	using	the	IUCN	database	provided	a	markedly	different	

pattern,	 notably	 not	 matching	 the	 EGS	 boundaries.	 The	 three	 Guianas	 (Guyana,	

Suriname,	and	French	Guiana)	were	grouped	together	in	one	BSR,	excluding	the	north-

western	part	of	Guyana	and	 including	adjacent	areas	of	Amapá	and	Pará	 (Brazil).	The	

southern	part	of	the	EGS	was	grouped	with	the	southern	part	of	the	Amazon	drainage,	

thus	encompassing	Rio	Amazonas	(Fig.	3C).		

	

Species	richness	and	endemism.	In	terms	of	species	richness	and	endemism,	the	three	

datasets	are	radically	different.	The	BSR1	of	IUCN	is	composed	of	119	species,	27.7	%	of	

which	are	endemic	(Table	1),	and	is	geographically	comparable	to	the	lumping	together	

of	BSR2	and	3	in	TAXO1	and	TAXO2.	Yet,	despite	encompassing	a	smaller	geographical	

area,	the	BSR3	of	TAXO1	alone	displays	similar	values	of	richness	and	endemism	as	the	

BSR1	 of	 IUCN.	 When	 considering	 the	 three	 Guiana	 Shield	 BSRs	 together	 in	 TAXO1,	

richness	(184	species)	and	endemism	(57	%)	are	much	higher	than	in	the	BSR1	of	IUCN.	

These	 metrics	 increase	 to	 250	 species	 and	 82.4	 %	 endemism	 in	 TAXO2	 for	 the	 EGS	

(Table	1).	BSR2	(Northern	Guyana)	contains	the	highest	number	of	endemic	species	in	

both	 taxonomic	 frameworks,	 reaching	 75	%	endemism	 in	TAXO2	 (Table	 1),	while	 the	

highest	species	richness	(130	in	TAXO2)	is	found	in	BSR3	(Suriname,	French	Guiana	and	

Amapá).	
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	 UICN TAXO1 TAXO2 

Partition BSR Species 

richness 

Endemic 

species 

Endemism 

rate (%) 

Species 

richness 

Endemic 

species 

Endemism 

rate (%) 

Species 

richness 

Endemic 

species 

Endemism 

rate (%) 

K = 8 

1 119 33 27.7 89 4 0.4 71 25 35.2 

2 – – – 85 46 54.1 90 68 75.5 

3 – – – 118 30 25.4 130 77 59.2 

K = 3 1 – – – 184 105 57 250 206 82.4 

	

Table	1:	Species	richness	and	endemism	in	each	of	the	BSRs	covering	the	EGS.	The	figures	
presented	in	this	table	include	singletons	(species	with	only	one	occurrence	point)	and	species	
that	occur	in	less	than	three	cells.	BSR	numbers	correspond	to	those	displayed	in	Fig.	3.	For	K=3,	
assemble	1	actually	corresponds	to	the	EGS.	
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Discussion	

	

Underestimation	 of	 species	 richness	 and	 regional	 endemism	 in	 Amazonia.	We	

analysed	our	molecular	diversity	data	using	 two	 alternative	 taxonomic	 frameworks:	 a	

conservative	framework	TAXO1	in	which	sequences	were	as	much	as	possible	clustered	

into	monophyletic	groups	around	previously	described	nominal	taxa,	and	a	framework	

TAXO2	 in	 which	 species	 were	 delineated	 solely	 based	 on	 the	 molecular	 distance	

between	sequences.	Our	species	delineation	analysis	corroborates	previous	suggestions	

that	 the	 actual	 number	 of	 anuran	 species	 occurring	 in	 Amazonia	 remains	 vastly	

underestimated	 (Fouquet	 et	 al.,	 2007a;	 Funk	 et	 al.,	 2012;	 Ferrão	 et	 al.,	 2016).	 The	

number	of	species	retrieved	in	TAXO2	(746)	and	the	level	of	divergence	among	them	are	

particularly	striking	in	many	groups.	

Our	TAXO1	dataset	comprises	363	Amazonian	species,	which	is	close	to	the	427	

species	recorded	by	the	IUCN.	However,	our	sampling	effort	 is	 low	outside	the	EGS,	as	

illustrated	by	the	fact	that	we	do	not	retrieve	several	nominal	taxa	included	in	the	IUCN	

database.	Therefore,	the	actual	number	of	species	is	likely	to	be	largely	underestimated	

in	 TAXO1	 outside	 the	 EGS.	 Moreover,	 TAXO1	 remains	 over-conservative	 in	 many	

instances,	 as	 the	 level	 of	 genetic	 divergence	within	 species	 is	 often	 very	 high.	 TAXO2	

suggests	 the	 existence	 of	 more	 than	 twice	 the	 number	 of	 species	 found	 in	 TAXO1.	

Considering	that	uneven	sampling	is	even	more	of	an	issue	in	TAXO2	than	in	TAXO1,	as	

many	of	our	 candidate	 species	 are	only	 retrieved	 in	one	or	 a	 few	 localities,	 the	actual	

species	 count	 for	 Amazonia	 is	 likely	 to	 be	 substantially	 more	 than	 twice	 the	 current	

count.	 Hence,	 comparisons	 between	 taxonomic	 frameworks	 should	 be	 limited	 to	 the	

EGS,	where	our	sampling	effort	is	highest.	When	considering	solely	the	EGS,	the	number	

of	candidate	species	retrieved	in	TAXO2	is	1.34	times	higher	than	for	TAXO1	(Table	2).	

A	 species	 delineation	 solely	 based	 on	 mtDNA	 divergence	 remains	 overly	

simplistic	 and	 cannot	 reliably	 delineate	 the	 species	 occurring	 in	 the	 region	 since	 it	

necessarily	overestimates	 the	actual	number	of	 species	 in	 some	cases	 (false	positives)	

and	 underestimates	 in	 others	 (false	 negatives)	 (Hickerson	 et	 al.,	 2006).	 The	 pitfalls	

inherent	 to	 the	 sole	 use	 of	 short	mtDNA	 sequences	 for	 species	 delineation	 have	 been	
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already	 extensively	 discussed	 (Hubert	&	Hanner,	 2015).	Nevertheless,	 in	most	 groups	

for	 which	 the	 boundaries	 among	 species	 have	 been	 investigated	 using	 integrative	

taxonomy,	mtDNA	divergence	of	similar	magnitude	as	used	in	this	study	to	differentiate	

between	 intra-	 and	 interspecific	 genetic	 divergence	 was	 generally	 associated	 with	

phenotypic	or	acoustic	differentiation	as	well	(Funk	et	al.,	2012;	Fouquet	et	al.,	2015b;	

Ortega-Andrade	et	al.,	2015;	Fouquet	et	al.,	2016).	Moreover,	TAXO2	subdivisions	have	

already	 been	 proven	 to	 be	 associated	 with	 morphological	 or	 acoustic	 differences	 in	

several	groups	(Jansen	et	al.,	2011;	Fouquet	et	al.,	2013;	Ferrão	et	al.,	2016).	Thus,	 the	

TAXO2	 taxonomic	 framework	 takes	 into	 account	 finer	 subdivisions	 that	 certainly	

correspond	 to	phenotypically	 distinct	 species	 in	many	 cases,	 and	 it	 is	 highly	probable	

that	the	prevalence	of	false	positives	remains	limited.	In	contrast,	some	false	negatives	

were	detected	since	several	nominal	 taxa	were	retrieved	as	a	single	candidate	species	

using	 ABGD	 (e.g.,	Atelopus	 flavescens	 and	 A.	 hoogmoedi,	O.	 oophagus	 and	O.	 taurinus).	

These	were	corrected	in	TAXO2	but	the	prevalence	of	false	negatives	remains	difficult	to	

evaluate	 in	 most	 groups	 where	 species	 boundaries	 have	 not	 been	 investigated	 using	

phenotypic	 traits.	 Overall,	 the	 present	 work	 provides	 an	 important	 update	 to	 the	

documentation	 of	 Amazonian	 anuran	 diversity,	 which	 will	 undoubtedly	 contribute	 to	

stimulate	the	process	of	species	delineation	and	description.	

If	our	work	provides	a	glimpse	of	how	 far	we	still	 are	 from	reaching	a	 realistic	

estimate	of	 the	number	of	 species	occurring	 throughout	Amazonia,	 it	also	provides	an	

even	more	striking	view	of	the	degree	of	regional	endemism.	Our	estimates	of	the	rate	of	

endemism	for	the	frogs	of	the	EGS	reach	57.0	%	based	on	TAXO1	and	82.4	%	based	on	

TAXO2.	These	figures	are	two	to	four	times	higher	than	the	estimate	of	the	IUCN	for	the	

same	area.	They	are	also	1.0	to	1.4	times	higher	than	the	rate	of	endemism	of	frogs	in	the	

whole	geologically	defined	Guiana	Shield,	which	also	encompasses	Venezuela	and	part	of	

Colombia	 (Señaris	&	MacCulloch,	 2005).	 In	 comparison,	 only	 7.7%	of	 bird	 species	 are	

endemic	 to	 the	 whole	 Guiana	 Shield,	 29	 %	 of	 reptile	 species,	 and	 11	 %	 of	 mammal	

species	 (Hollowell	&	Reynolds,	 2005).	These	 figures	 are	 still	 certainly	underestimated	

(Lim,	2012),	especially	for	reptiles	(Geurgas	&	Rodrigues,	2010;	de	Oliveira	et	al.,	2016),	

but	taxonomy	has	probably	reached	a	much	more	stable	level	for	birds	and	mammals	in	

the	Guiana	Shield	than	for	anurans.	In	comparison	with	other	tropical	American	regions,	
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51.3%	of	the	vertebrate	species	from	the	Atlantic	Forest	of	Brazil	are	endemic,	and	46.2	

%	of	the	vertebrates	from	the	tropical	Andes	are	endemic	(Myers	et	al.,	2000).	

A	 simple	and	rough	extrapolation	based	on	 the	 species	 richness	and	endemism	

we	obtained	for	the	EGS	(184–250	species	with	57–82	%	endemism)	applied	to	the	eight	

Amazonian	BSRs	retrieved	in	our	analysis	 leads	to	ca.	1,472–2,000	species	in	our	focal	

area,	which	 represent	 about	 three	 to	 five	 times	 the	 427	 species	 that	 are	 supposed	 to	

occur	 in	Amazonia	 according	 to	 the	 IUCN.	Enhancing	data	 coverage	 in	 order	 to	 refine	

these	estimations	would	require	extensive	fieldwork	in	remote	areas.	Nevertheless,	new	

predictive	approaches	based	on	the	detection	of	cryptic	diversity	(Espíndola	et	al.,	2016)	

may	permit	 to	 get	 a	more	precise	 estimate	 of	 species	 richness	 and	 endemism	 in	 each	

BSR,	and	therefore	would	help	targeting	areas	where	to	focus	sampling.	

	

Biogeographic	 division	 of	 the	 eastern	 Guiana	 Shield.	 The	 extent	 of	 the	 BSRs	

retrieved	 for	TAXO1	and	TAXO2	are	very	 similar	 in	 spite	of	 the	use	of	 two	drastically	

different	taxonomic	frameworks.	In	contrast,	the	BSRs	retrieved	from	the	IUCN	database	

are	very	different	and	do	not	correspond	to	any	landscape	feature.	No	barrier	effect	of	

the	 lower	Rio	Amazonas	 is	even	distinguishable.	This	 is	most	 likely	resulting	 from	the	

artificially	large	distribution	of	many	species	contained	in	this	database	on	both	sides	of	

this	river.	

The	 location	of	 the	Rio	Madeira	matches	well	 the	boundary	between	BSR5	and	

BSR6	 in	 TAXO1,	which	 is	 in	 accordance	with	what	 has	 already	 been	 shown	 for	 other	

groups	 of	 terrestrial	 vertebrates,	 such	 as	 birds	 (Fernandes	 et	 al.,	 2012;	 Ribas	 et	 al.,	

2012)	 and	 primates	 (Cortés-Ortiz	 et	 al.,	 2003).	 The	 sharpness	 of	 this	 pattern	 is	 not	

obvious	in	TAXO2,	but	this	is	probably	due	to	the	removal	of	many	singletons	from	the	

dataset	 after	 species	 delineation.	 Another	 interesting	 aspect	 is	 the	 lack	 of	 apparent	

suture	 effect	 between	 the	 Purus	 and	 the	 Solimões	 drainages,	 also	 in	 accordance	with	

what	has	previously	been	found	for	other	group	of	terrestrial	vertebrates	(Cortés-Ortiz	

et	al.,	2003;	Fernandes	et	al.,	2012;	Ribas	et	al.,	2012).	These	rivers	display	a	meandering	

behaviour	 associated	 with	 an	 unstable	 course	 over	 time,	 thus	 enabling	 gene	 flow	

through	connection	between	populations	located	on	both	sides	and	dispersal	of	species	

from	one	 interfluve	 to	 the	other	 (Aleixo,	2004,	2006;	Bates	et	al.,	 2004;	 Jackson	et	al.,	
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2013).	On	the	contrary,	wide	rivers	in	the	Brazilian	shield	such	as	Rio	Madeira	display	a	

putatively	more	stable	course	over	time	and	are	more	likely	to	act	as	long	lasting	suture	

zones	 that	 might	 have	 promoted	 diversification	 or	 at	 least	 been	 more	 efficient	 in	

preventing	dispersal	(Antonelli	et	al.,	2010;	Moraes	et	al.,	2016).	Such	characteristics	are	

also	found	in	rivers	of	the	EGS	(Fernandes	et	al.,	2012;	Fouquet	et	al.,	2012a,	2015a),	but	

except	for	the	Rio	Branco	and	Rio	Negro,	the	impact	of	the	Guiana	Shield	rivers	on	gene	

flow	through	dispersal	limitation	might	not	be	as	important	as	for	the	Amazonian	rivers	

of	 the	Brazilian	Shield,	 owing	 to	 the	 smaller	 extent	of	 the	 catchments	 and	 the	 smaller	

width	 of	 the	 rivers	 themselves.	 This	 is	 reflected	 in	 our	 results,	 as	 the	 suture	 zones	

between	the	three	BSRs	of	the	EGS	do	not	correspond	to	any	major	drainage.	In	fact,	it	is	

more	 likely	 that	 the	 delimitation	 of	 these	 assemblages	 resulted	 from	 the	 combined	

influence	 of	 past	 climatic	 and	 landscape	 changes	 (Fouquet	 et	al.,	 2012c).	 The	 current	

climatic	 characteristics	 of	 the	 EGS	 are	 heterogeneous,	 with	 a	 large	 dryer	 corridor	

observed	in	the	southern	part	(Mayle	&	Power,	2008),	where	patches	of	savannahs	are	

found	 today.	 This	 corridor	 also	matches	 the	 suture	 zone	 between	BSR1	 vs.	 BSR2	 and	

BSR3.	 The	 strong	 climatic	 fluctuations	 in	 the	 Neotropics	 during	 the	 Miocene	 and	

Pliocene	played	a	crucial	role	in	the	diversification	of	several	organisms	(Antonelli	et	al.,	

2010).	More	recent	climate	fluctuations	and	associated	landscape	modifications	during	

the	Pleistocene	certainly	helped	maintain	the	diversity	that	resulted	from	diversification	

events	during	the	Miocene	and	Pliocene	periods	(Carnaval	&	Bates,	2007).	

The	outer	limits	of	the	three	BSRs	match	well	the	delimitation	of	the	Guianan	area	

retrieved	 for	 birds	 (Naka,	 2011),	 confirming	 the	 relevance	 of	 qualifying	 the	 EGS	 as	 a	

biogeographic	 area.	 Nonetheless,	 using	 anuran	 assemblages	 as	 a	 model	 revealed	

biogeographic	 heterogeneity	 within	 this	 region	 that	 could	 not	 be	 detected	 with	 bird	

assemblages,	 likely	 because	 birds	 have	 much	 higher	 dispersal	 abilities	 than	 anurans	

(Pigot	&	Tobias,	2015).	The	distinctiveness	of	 the	BSRs	 compared	 to	 the	 remaining	of	

the	dataset	 is	also	reflected	in	the	structure	of	the	dendrogram	illustrating	the	 level	of	

taxonomic	 similarity	 between	 assemblages	 (Fig.	 3D,	 E).	 The	 southern	 limit	 of	 BSR1	

corresponds	 to	 Rio	 Amazonas	 for	 both	 TAXO1	 and	 TAXO2.	 This	 is	 congruent	 with	

previous	studies	on	terrestrial	vertebrates	indicating	that	this	river	is	a	strong	barrier	to	

gene	 flow	and	 that	 it	 structures	 species	assemblages	 (Cortés-Ortiz	et	al.,	 2003;	Haffer,	

2008;	 Ribas	 et	 al.,	 2012).	 The	 delineation	 of	 the	 western	 part	 of	 BSR1	 differs	 across	
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datasets.	 It	 coincides	 perfectly	 with	 the	 lower	 Rio	 Negro,	 and	 the	 Rio	 Branco	 and	

associated	savannahs	(Rupununi)	 in	TAXO2	but	extends	 further	west	 in	TAXO1.	These	

differences	are	inherent	to	the	scarcer	sampling	west	and	south-west	of	the	Rio	Negro	

and	Rio	Branco,	weakening	 the	 sharpness	of	 the	 analysis	 in	 that	 zone,	 a	phenomenon	

that	 becomes	 even	 more	 prevalent	 in	 TAXO2	 because	 of	 the	 further	 taxonomic	

subdivisions.	 Another	 reason	 could	 be	 the	 inclusion	 of	 both	 forest	 and	 open	 habitat	

species	in	our	analysis,	which	could	blur	the	pattern	in	areas	where	both	savannah	and	

forest	are	found.		

It	 is	 interesting	to	note	 that	 the	 limits	of	 the	BSRs	of	 the	EGS	are	rather	similar	

when	 considering	 either	 a	K=3	 or	 a	K=8	 decomposition,	 for	 both	 TAXO1	 and	 TAXO2.	

This	indicates	that	a	strong	co-occurrence	signal	underlies	the	delineation	of	these	BSRs,	

especially	 in	 the	 case	of	 the	 two	northernmost	ones	 (BSR2	and	BSR3)	whose	western	

and	 eastern	 boundaries	 coincide	 perfectly	 with	 the	 ones	 retrieved	 in	 the	 three-

assemblage	decomposition	(Fig.	3).		

	

Conclusion.	Despite	being	far	from	exhaustive,	our	barcoding	dataset	is	the	largest	ever	

gathered	 for	Amazonia,	and	we	argue	 that	 it	 is	close	 from	being	exhaustive	within	 the	

EGS.	 Of	 course,	 the	 patterns	 we	 obtained	 need	 to	 be	 confirmed	 in	 other	 taxonomical	

groups,	 and	 need	 even	 for	 the	 anurans	 to	 be	 much	 improved	 outside	 the	 EGS.	

Nevertheless,	 our	 results	 help	 us	 understand	 the	 spatial	 scale	 of	 the	 sampling	 efforts	

needed	 to	 capture	 the	 actual	 diversity	 of	 Amazonia.	 It	 implies	 notably	 that	 the	

magnitude	of	the	Linnean	and	Wallacean	shortfalls	in	Amazonia	is	so	large	that	we	could	

question	the	conclusions	of	large-scale	studies	based	on	currently	admitted	biodiversity	

data	 in	Amazonia	 (Feeley	&	 Silman,	 2011;	 Foden	 et	al.,	 2013).	 In	 fact,	 even	with	 very	

coarse	data	(IUCN),	they	estimated	that	Amazonian	amphibians	are	highly	threatened	by	

climate	change.	Considering	that	many	species	were	not	included	and	that	they	actually	

harbour	 much	 narrower	 distributions,	 we	 can	 hypothesise	 that	 the	 situation	 is	 even	

more	worrying.	If	a	degree	of	endemism	similar	to	the	one	we	estimated	within	the	EGS	

actually	 occurs	 across	 Amazonia,	 the	 impact	 of	 habitat	 loss	 could	 have	 been	

underestimated.	It	is	especially	the	case	along	the	Arc	of	deforestation	(Vedovato	et	al.,	

2016),	where	entire	 faunal	assemblages	 that	may	harbour	a	high	degree	of	endemism	
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are	at	risk	of	extinction	(Da	Silva	et	al.,	2005).	Moreover,	only	BSR3	encompasses	a	large	

proportion	 of	 protected	 areas	 in	 the	 EGS.	 In	 contrast,	 BSR2	 (northern	 Guyana)	 only	

harbours	two	protected	areas	and	the	BSR1	only	encompasses	three	biological	reserves	

(REBIO),	 four	 national	 forests	 (FLONA)	 and	 three	 national	 parks	 (PARNA)	 in	 its	

Brazilian	 part.	 Such	 results	 demonstrate	 the	 importance	 of	 deciphering	 the	 basic	

structure	of	the	Amazonian	diversity	in	order	to	conserve	it	efficiently.	
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Abstract:	 Integrative	 patterns	 of	 biodiversity,	 such	 as	 the	 distribution	 of	 taxa	
abundances	 and	 the	 spatial	 turnover	 of	 taxonomic	 composition,	 have	 been	 under	
scrutiny	 from	 ecologists	 for	 a	 long	 time,	 as	 they	 offer	 insight	 into	 the	 general	 rules	
governing	 the	 assembly	 of	 organisms	 into	 ecological	 communities.	 Thank	 to	 recent	
progress	in	high-throughput	DNA	sequencing,	these	patterns	can	now	be	measured	in	a	
fast	 and	 standardized	 fashion	 through	 the	 sequencing	 of	 DNA	 sampled	 from	 the	
environment	 (e.g.	 soil	 or	 water),	 instead	 of	 relying	 on	 tedious	 fieldwork	 and	 rare	
naturalist	expertise.	They	can	also	be	measured	for	the	whole	tree	of	life,	including	the	
vast	 and	 previously	 unexplored	 diversity	 of	microorganisms.	 Taking	 full	 advantage	 of	
this	new	type	of	data	is	challenging	however:	DNA-based	surveys	are	indirect,	and	suffer	
as	 such	 from	 many	 potential	 biases;	 they	 also	 produce	 large	 and	 complex	 datasets	
compared	 to	 classical	 censuses.	 The	 first	 goal	 of	 this	 thesis	 is	 to	 investigate	 how	
statistical	tools	and	models	classically	used	in	ecology	or	coming	from	other	fields	can	be	
adapted	 to	 DNA-based	 data	 so	 as	 to	 better	 understand	 the	 assembly	 of	 ecological	
communities.	The	 second	goal	 is	 to	apply	 these	approaches	 to	 soil	DNA	data	 from	 the	
Amazonian	forest,	the	Earth’s	most	diverse	land	ecosystem.	

Two	broad	types	of	mechanisms	are	classically	 invoked	to	explain	the	assembly	
of	ecological	communities:	‘neutral’	processes,	i.e.	the	random	birth,	death	and	dispersal	
of	 organisms,	 and	 ‘niche’	 processes,	 i.e.	 the	 interaction	 of	 the	 organisms	 with	 their	
environment	 and	 with	 each	 other	 according	 to	 their	 phenotype.	 Disentangling	 the	
relative	 importance	 of	 these	 two	 types	 of	 mechanisms	 in	 shaping	 taxonomic	
composition	is	a	key	ecological	question,	with	many	implications	from	estimating	global	
diversity	 to	 conservation	 issues.	 In	 the	 first	 chapter,	 this	question	 is	 addressed	across	
the	tree	of	life	by	applying	the	classical	analytic	tools	of	community	ecology	to	soil	DNA	
samples	collected	from	various	forest	plots	in	French	Guiana.	

The	 second	 chapter	 focuses	 on	 the	 neutral	 aspect	 of	 community	 assembly.	 A	
mathematical	model	incorporating	the	key	elements	of	neutral	community	assembly	has	
been	proposed	by	S.P.	Hubbell	in	2001,	making	it	possible	to	infer	quantitative	measures	
of	dispersal	and	of	regional	diversity	from	the	local	distribution	of	taxa	abundances.	In	
this	chapter,	the	biases	introduced	when	reconstructing	the	taxa	abundance	distribution	
from	environmental	DNA	data	are	discussed,	and	their	impact	on	the	estimation	of	the	
dispersal	and	regional	diversity	parameters	is	quantified.	

The	 third	 chapter	 focuses	 on	 how	 non-random	 differences	 in	 taxonomic	
composition	 across	 a	 group	 of	 samples,	 resulting	 from	 various	 community	 assembly	
processes,	can	be	efficiently	detected,	represented	and	interpreted.	A	method	originally	
designed	to	model	the	different	topics	emerging	from	a	set	of	text	documents	is	applied	
here	 to	 soil	DNA	data	 sampled	 along	 a	 grid	 over	 a	 large	 forest	 plot	 in	 French	Guiana.	
Spatial	patterns	of	soil	microorganism	diversity	are	successfully	captured,	and	related	to	
fine	variations	in	environmental	conditions	across	the	plot.	
Finally,	the	implications	of	the	thesis	findings	are	discussed.	In	particular,	the	potential	
of	topic	modelling	for	the	modelling	of	DNA-based	biodiversity	data	is	stressed.	
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Résumé:	La	distribution	de	l’abondance	des	espèces	en	un	site,	et	la	similarité	de	la	composition	
taxonomique	d’un	site	à	 l’autre,	sont	deux	mesures	de	la	biodiversité	ayant	servi	de	longue	date	
de	 base	 empirique	 aux	 écologues	 pour	 tenter	 d’établir	 les	 règles	 générales	 gouvernant	
l’assemblage	 des	 communautés	 d’organismes.	 Pour	 ce	 type	 de	 mesures	 intégratives,	 le	
séquençage	 haut-débit	 d'ADN	 prélevé	 dans	 l'environnement	 («	ADN	 environnemental	»)	
représente	une	alternative	récente	et	prometteuse	aux	observations	naturalistes	traditionnelles.	
Cette	 approche	 présente	 l’avantage	 d’être	 rapide	 et	 standardisée,	 et	 donne	 accès	 à	 un	 large	
éventail	de	taxons	microbiens	jusqu’alors	indétectables.	Toutefois,	ces	jeux	de	données	de	grande	
taille	à	 la	 structure	complexe	 sont	difficiles	à	analyser,	 et	 le	 caractère	 indirect	des	observations	
complique	 leur	 interprétation.	 Le	 premier	 objectif	 de	 cette	 thèse	 est	 d’identifier	 les	 modèles	
statistiques	 permettant	 d’exploiter	 ce	 nouveau	 type	 de	 données	 pour	 mieux	 comprendre	
l’assemblage	des	communautés.	Le	deuxième	objectif	est	de	tester	les	approches	retenues	sur	des	
données	de	biodiversité	du	sol	en	forêt	amazonienne,	collectées	en	Guyane	française.	

Deux	 grands	 types	 de	 processus	 sont	 invoqués	 pour	 expliquer	 l'assemblage	 des	
communautés	d’organismes	 :	 les	processus	 "neutres",	 indépendants	de	 l’espèce	 considérée,	que	
sont	 la	 naissance,	 la	 mort	 et	 la	 dispersion	 des	 organismes,	 et	 les	 processus	 liés	 à	 la	 niche	
écologique	occupée	par	les	organismes,	c'est-à-dire	les	interactions	avec	l’environnement	et	entre	
organismes.	Démêler	l'importance	relative	de	ces	deux	types	de	processus	dans	l’assemblage	des	
communautés	 est	 une	 question	 fondamentale	 en	 écologie	 ayant	 de	 nombreuses	 implications,	
notamment	 pour	 l'estimation	 de	 la	 biodiversité	 et	 la	 conservation.	 Le	 premier	 chapitre	 aborde	
cette	question	à	 travers	 la	 comparaison	d’échantillons	d'ADN	environnemental	prélevés	dans	 le	
sol	 de	 diverses	 parcelles	 forestières	 en	 Guyane	 française,	 via	 les	 outils	 classiques	 d’analyse	
statistique	en	écologie	des	communautés.	

Le	 deuxième	 chapitre	 se	 concentre	 sur	 les	 processus	 neutres	 d’assemblages	 des	
communautés.	 S.P.	 Hubbell	 a	 proposé	 en	 2001	 un	 modèle	 décrivant	 ces	 processus	 de	 façon	
probabiliste,	et	pouvant	être	utilisé	pour	quantifier	la	capacité	de	dispersion	des	organismes	ainsi	
que	 leur	 diversité	 à	 l’échelle	 régionale	 simplement	 à	 partir	 de	 la	 distribution	 d’abondance	 des	
espèces	 observée	 en	 un	 site.	 Dans	 ce	 chapitre,	 les	 biais	 liés	 à	 l’utilisation	 de	 l’ADN	
environnemental	pour	reconstituer	la	distribution	d’abondance	des	espèces	sont	discutés,	et	sont	
quantifiés	au	regard	de	l’estimation	des	paramètres	de	dispersion	et	de	diversité	régionale.	

Le	 troisième	chapitre	 se	concentre	sur	 la	manière	dont	 les	différences	non-aléatoires	de	
composition	taxonomique	entre	sites	échantillonnés,	résultant	des	divers	processus	d’assemblage	
des	 communautés,	 peuvent	 être	 détectées,	 représentées	 et	 interprétés.	 Un	 modèle	 statistique	
conçu	à	l'origine	pour	classifier	les	documents	à	partir	des	thèmes	qu’ils	abordent	est	ici	appliqué	
à	 des	 échantillons	 de	 sol	 prélevés	 selon	 une	 grille	 régulière	 au	 sein	 d’une	 grande	 parcelle	
forestière.	 La	 structure	 spatiale	 de	 la	 composition	 taxonomique	 des	 microorganismes	 est	
caractérisée	avec	succès	et	reliée	aux	variations	 fines	des	conditions	environnementales	au	sein	
de	la	parcelle.	

Les	 implications	 des	 résultats	 de	 la	 thèse	 sont	 enfin	 discutées.	 L'accent	 est	 mis	 en	
particulier	 sur	 le	potentiel	des	modèles	 thématique	 («	topic	models	»)	pour	 la	modélisation	des	
données	de	biodiversité	issues	de	l’ADN	environnemental.	
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