

Combinatorial Algorithms and
Optimization.

Thèse de doctorat de l'Université Paris-Saclay
préparée à l’Université Paris Sud.

École doctorale n°580 : sciences et technologies de l’information et de
la communication (STIC)

Spécialité de doctorat : informatique

Thèse présentée et soutenue à Orsay, le 15 novembre 2017, par

 George Manoussakis

Composition du Jury :

Christina Bazgan
Professeure, Université Paris Dauphine (LAMSADE) Présidente

Ralf Klasing
Directeur de Recherche, CNRS (LaBRI) Rapporteur

Dmitrii Pasechnik
Professeur, Pembrook College Oxford Rapporteur

Lionel Pournin
Professeur, Université Paris 13 (Lipn) Rapporteur

Michèle Sebag
Directrice de recherche, CNRS (LRI) Examinatrice

Ioan Todinca
Professeur, Université d’Orléans (LIFO) Examinateur

Johanne Cohen
Directrice de Recherche, CNRS (LRI) Co-Directrice de thèse

Antoine Deza
Directeur de Recherche, CNRS (LRI) Directeur de thèse

N
N

T
 :

 2
0

1
7

S
A

C
L
S

5
1
7

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Algorithmes combinatoires et Optimisation.

Mots clés : algorithmique, graphes, énumération, diamètre, polytope

Résumé : Nous nous intéressons à trois questions

principales dans ce document. Les deux premières

concernent des problèmes d'algorithmique de graphe.

Nous introduisons d'abord la classe des graphes k-

dégénérés qui est souvent utilisée pour modéliser des

grands graphes éparses issus du monde réel, tels que

les réseaux sociaux. Nous proposons de nouveaux

algorithmes d'énumération pour ces graphes. Le but

d'un algorithme d'énumération est de trouver tous les

sous-graphes isomorphes à un graphe donné en

entrée du problème. En particulier, nous construisons

un algorithme énumérant tous les cycles simples de

tailles fixés dans ces graphes, en temps optimal. La

détection de cycle peut donner des indices sur les

propriétés de connexité du graphe. Nous proposons

aussi un algorithme dont la complexité dépend de la

taille de la solution pour le problème d'énumération

des cliques maximales de ces graphes. Ce problème

modélise la question de la détection de

communautés. Une communauté est formée par un

ensemble d'individus qui

interagissent plus souvent entre eux qu'avec les

autres. Ils s'agit donc de groupes d'individus qui ont

tissés des liens plus forts ou qui ont des affinités

communes. L'intérêt de la détection de communautés

est multiple : identifier des profils types, effectuer

des actions ciblées, mieux ajuster les

recommandations, etc. La seconde question que nous

étudions est aussi une question d'algorithmique de

graphes, bien que le contexte soit différent. Nous

considérons les graphes en tant que systèmes

distribués. Chaque sommet a une capacité de calcul

et peut communiquer avec ses voisins, à travers des

canaux d'échanges modélisés par les arêtes du

graphe. Dans ce contexte, nous nous intéressons à

des questions liées à la notion de couplage. Un

couplage est un ensemble d'arêtes dans le graphe tel

que les arêtes de cet ensemble ne partagent pas de

sommets deux à deux. Un couplage peut être utilisé,

par exemple, dans les problèmes d'affectation des

tâches et ce pour avoir une efficacité maximale, par

exemple, chaque tâche est attribuée à une seule

machine ou vice versa.

La recherche d'un couplage maximum dans un graphe

biparti est d'ailleurs appelée le problème d'affectation.

Nos algorithmes fonctionnent sans avoir à faire de

supposition sur l'état initial du système, qui peut donc

être correct ou incorrect. Des algorithmes distribués

fonctionnant sous ces hypothèses sont appelés auto-

stabilisant puisqu'ils doivent converger, ou stabiliser,

vers un état correct après une initialisation

quelconque. Cette approche est utile pour résoudre

des problèmes qui peuvent apparaitre dans des

systèmes où une intervention humaine n'est pas

toujours possible, comme les satellites dans l'espace,

par exemple. Dans ce cadre nous proposons un

algorithme retournant une deux tiers approximation

du couplage maximum. Nous proposons aussi un

algorithme retournant un couplage maximal quand les

communications sont restreintes de telle manière à

simuler le paradigme du passage de message. Le

troisième objet d'étude n'est pas directement lié à

l'algorithmique de graphe, bien que quelques

techniques classiques de ce domaine soient utilisées

pour obtenir certains de nos résultats. Nous

introduisons et étudions certaines familles de

polytopes, appelées Zonotopes Primitifs, qui peuvent

être décrits comme la somme de Minkowski de

vecteurs primitifs. Ces vecteurs primitifs sont obtenus

en considérant, de façon gloutonne, tous les vecteurs

à norme bornée ayant des coordonnée première deux

à deux. Nous prouvons certaines propriétés

combinatoires de ces polytopes et illustrons la

connexion avec le plus grand diamètre possible de

l'enveloppe convexe de points à coordonnées entières

à valeurs dans $[k]$, en dimension d. Cette

question du diamètre est liée à l'étude de l'algorithme

du Simplexe, puisque borner ce paramètre donne

immédiatement une borne inférieure sur la complexité

pire cas de cette algorithme. Dans un second temps,

nous étudions des paramètres de petites instances de

Zonotopes Primitifs, tels que leur nombre de

sommets, entre autres.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Title: Combinatorial Algorithms and Optimization.

Keywords : algorithmics, graphs, enumeration, diameter, polytopes

Abstract: We start by studying the class of k-

degenerate graphs which are often used to model

sparse real-world graphs. We focus on

enumeration questions for these graphs. That is,

we try and provide algorithms which must

output, without duplication, all the occurrences

of some input subgraph. We investigate the

questions of finding all cycles of some given

size and all maximal cliques in the graph. Our

two contributions are a worst-case output size

optimal algorithm for fixed-size cycle

enumeration and an output sensitive algorithm

for maximal clique enumeration for this

restricted class of graphs. In a second part we

consider graphs in a distributed manner. We

investigate questions related to finding

matchings of the network, when no assumption

is made on the initial state of the system. These

algorithms are often referred to as self-

stabilizing. Our two main contributions are an

algorithm returning an approximation of the

maximum matching and a new algorithm for

maximal matching when communication

simulates message passing. Finally, we

introduce and investigate some special families

of polytopes, namely primitive zonotopes,

which can be described as the Minkowski sum

of short primitive vectors. We highlight

connections with the largest possible diameter of

the convex hull of a set of points in dimension d

whose coordinates are integers between 0 and k.

Our main contributions are new lower bounds

for this diameter question as well as descriptions

of small instances of these objects.

Contents

1 Introduction 4
1.1 Basic graph concepts . 5
1.2 Matchings . 7
1.3 Degeneracy of a graph . 9
1.4 Graph algorithms . 11

1.4.1 Enumeration algorithms . 11
1.4.2 Self-stabilizing Algorithms . 12

1.4.2.1 General properties of self-stabilizing algorithms . . . 13
1.4.2.2 Algorithms description 14
1.4.2.3 Daemons . 15
1.4.2.4 Complexity measures 15
1.4.2.5 Composition . 16

I Enumeration algorithms for k-degenerate graphs 17

2 Fixed-size cycles enumeration 18
2.1 Introduction . 18
2.2 De�nitions . 19
2.3 Basic Results . 21
2.4 Algorithm . 22
2.5 Conclusion . 26

3 Maximal cliques enumeration 28
3.1 Introduction . 28
3.2 De�nitions . 30
3.3 Basic results . 30
3.4 Algorithm for maximal clique enumeration 33
3.5 Conclusion . 34

II Self-stabilizing algorithms 35

4 A 2/3-approximation for maximum matching 36
4.1 Introduction . 36
4.2 Model . 38
4.3 Common strategy to build a 1-maximal matching 38

4.3.1 3-augmenting path . 38
4.3.2 The underlying maximal matching 38
4.3.3 Augmenting paths detection and exploitation 39
4.3.4 Graphical convention . 40

4.4 Description of the algorithm ExpoMatch 40

2

4.4.1 Augmenting paths detection and exploitation 40
4.4.2 Rules description . 41
4.4.3 An execution example of the ExpoMatch algorithm 41

4.5 Our algorithm PolyMatch . 44
4.5.1 Variables description . 44
4.5.2 Augmenting paths detection and exploitation 44
4.5.3 Rules description . 45
4.5.4 Execution examples . 46
4.5.5 Correctness Proof . 48
4.5.6 Convergence Proof . 52

5 Maximal Matching in the Link Register Model 66
5.1 Introduction . 66
5.2 Model . 68
5.3 Algorithm . 69

5.3.1 Variables description . 69
5.3.2 Algorithm description . 69
5.3.3 Algorithm . 70

5.3.3.1 Predicates and functions 70
5.3.3.2 Rules for each node u 70

5.3.4 About the rules . 70
5.3.5 Execution examples . 71
5.3.6 Lock mechanism analysis . 73
5.3.7 Local impact after a topological change 74

5.4 Proof of the Algorithm . 75
5.4.1 State of an edge . 75
5.4.2 Correctness Proof . 76
5.4.3 Overview of the Convergence Proof 77
5.4.4 The Complete Convergence Proof 78

5.4.4.1 Property of the state of an edge 78
5.4.4.2 Convergence Proof 80

5.4.5 Conclusion . 88

III Lattice polytopes 89

6 New bounds for the diameter of lattice polytopes 90
6.1 Introduction . 90
6.2 Basic notions . 91
6.3 Zonotopes as Minkowski sums . 93
6.4 Zonotopes and hyperplane arrangements 94
6.5 Primitive zonotopes . 95

6.5.1 De�nitions . 95
6.5.2 Combinatorial properties . 97

6.6 Large diameter . 100
6.6.1 H1(2, p) as a lattice polygon with large diameter 101
6.6.2 H1(d, 2) as a lattice polytope with large diameter 101

6.7 Small primitive zonotopes Hq(d, p) and H+
q (d, p) 104

6.7.1 Small positive primitive zonotopes H+
q (d, p) 108

6.7.2 Open problems . 110

7 Perspectives 112

3

Chapter 1

Introduction

We start this thesis by introducing some fundamental notions about graphs and
graph algorithms in this chapter. This choice is motivated by the fact that, even
though the three topics discussed in this thesis are quite di�erent from one another,
they all borrow tools and concepts from classical graph theory, to some extent.

After the introduction chapter, we will study graph algorithms in Part I of the
document. Chapters 2 and 3 are dedicated to the study of some enumeration prob-
lems on restricted classes of graphs. Many real world graphs are sparse, that is, have
few edges. Sparsity is often correlated to some other graphs parameter as degener-
acy for instance. It turns out that many real world graphs are sparse and have small
degeneracy, see [127] for example. Thus, it may be useful to design algorithms which
rely on the exploitation of this parameter when the input is some large real world
sparse graph. Enumeration questions are central in many domains such as computa-
tional biology and text mining [100, 151, 82] for instance and have been extensively
studied from a theoretical and computational point of view. We �rst describe in
Chapter 2 an algorithm listing all cycles of some given constant size in graphs with
small degeneracy. Enumeration of cycles plays an important role in many practical
problems. It is useful in the analysis of the World Wide Web and social networks,
as the number of cycles can be used to identify connectivity patterns in a network.
In fact, it has been shown that induced cycles e�ectively characterize connectivity
structures of networks as a whole [120]. Enumeration of cycles is also used to under-
stand ecological networks structures, such as food webs [129]. Another application
is the nature of structure-property relationships in some chemical compounds that
are related to the presence of chordless cycles [67].

In Chapter 3 we will study the problem of enumerating all the maximal cliques
of k-degenerate graphs. We provide the �rst algorithm which requires only some
polynomial function (of the degeneracy) time on average per clique. Clique �nding
has applications in many important problems. Finding cliques was �rst studied
in the framework of social network analysis, as a way of �nding closely-interacting
communities [73]. In bioinformatics, clique �nding procedures have been used to
�nd recurring patterns in protein structures [69, 97, 98]. It has also been used to
predict the structures of proteins from their molecular sequences [123], and to �nd
similarities in shapes that may indicate relationships between proteins [63]. Other
applications of clique �nding problems include information retrieval [10], computer
vision [80], computational topology [154], and electronic commerce [152].

Sometimes it may be also useful to see graphs as networks. In that context,
the vertices or nodes are entities which have some computing power. They can
communicate together and must solve a problem on the graph using only local
knowledge. We may also require that the network is not perfect and presents errors

4

or failures. Thus, we want to formally introduce robustness properties and design
algorithms which guarantee such properties. In the scope of this thesis, we study
distributed algorithms that, from any initial state of the system (correct or incorrect)
will converge to a correct state. These algorithms are called self-stabilizing since they
can stabilize from any state to a correct state. In Chapters 4 and 5 we describe new
self-stabilizing algorithms for matching related problems.

Finally, in Chapter 6 we study a special family of polytopes which have inter-
esting properties regarding the maximum diameter of polytopes with integer coor-
dinates. The notion of diameter is the one one expects, that is the diameter of the
underlying polytope graph. To prove these new diameter bounds, standard counting
techniques and classical combinatorial results concerning the number of disjoint per-
fect matchings are used. One central problem related to the diameter of polytopes
(not necessarily with integer vertices) is the Hirsch conjecture formulated in 1957
which bounds the diameter of any polyhedron by a function of some of its parame-
ters (number of facets and dimension). This question has drawn a lot of attention
and recently the conjecture has been disproved by Santos' counterexample [124].
After that, researchers have been trying to determine the new upper bound since
Santos' counterexample only violates Hirsch's conjecture by some small threshold.
In the context of this thesis we shift our attention to speci�c polytopes, that is
convex polytopes (and bounded) with integer coordinates. Our main contributions
are constructive new lower bounds for the diameter of these polytopes as well as
a broader description of the properties of the objects (called Primitive Zonotopes)
that we introduce.

This �rst chapter is organized as follows. We give basic de�nition and notations
regarding graphs in Section 1.1. Then we introduce matchings in Section 1.2 and
degeneracy in Section 1.3. In Section 1.4.1 we describe, brie�y, concepts about
enumeration algorithms. Finally, in Section 1.4.2 we discuss some simple notions
regarding self-stabilizing algorithms. The de�nitions and notions that we use in the
chapter concerning lattice polytopes can be found in Section 6.1.

1.1 Basic graph concepts

In this section, we introduce basic notions for graphs that we use throughout
the thesis. For further information about graphs, one can refer to [22, 148, 39]
and references therein. We introduce now some fundamentals notions about graphs.
Graphs are mathematical objects used to formally model real life concepts. Very
simply put, a graph is a set of vertices and a set of edges between pairs of these
vertices. For instance, social networks can be described as graphs: users are the
vertices, and an edge exists between two users if they are socially connected on the
network. Graphs were �rst introduced by Euler in his paper on the Seven Bridges
of Königsberg [55]. The city of Königsberg in former Prussia was set across the
Pregel River, and included two large islands. The mainland part of the city and
the two islands were connected to each other by seven bridges. The problem was to
�nd a walk through the city that would cross each of those bridges once and only
once. Euler's solution to the problem is considered to be the �rst theorem of graph
theory. Since then, graphs have found numerous applications in many domains such
as Physics, Chemistry, Biology and Telecommunications, among others.

A graph, denoted G = (V,E) is a set of vertices V and a (multi)-set of edges E.
Every edge connects a pair of vertices. If the vertices are the same then the edge is
often called a loop. See Figure 1.1 for an illustration. If an edge has an orientation
then the graph is said to be oriented or directed. Otherwise it is undirected. In this

5

Figure 1.1 � A small connected graph. It has �ve vertices and seven edges. Vertex
E has degree three since it is has three neighbors D, B and C.

thesis we will be using both de�nitions. For instance in Chapter 2 we will consider
directed graphs. Often the set of edges is noted E(G) and the set of vertices V (G).
If E is a set then the graph is simple, if it is a multiset the graph is a multigraph.
By convention |V (G)| = n and |E(G)| = m are the number of vertices and edges,
respectively. A graph with n vertices is said to be of order n.

An edge e ∈ E will be noted {u, v} where u and v are the vertices of the edge.
When two vertices u and v belong to an edge we say that u and v are adjacent. For
a certain vertex v ∈ V (G), the set adj(v) = {w ∈ V (G)|{u,w} ∈ E(G)} is called the
adjacency list of v. Equivalently, the open neighbourhood of v, noted N(v), is equal
to adj(v). The closed neighbourhood of v, noted N [v] is the set {N(v)∪{v}}. A graph
G is usually represented either by its adjacency lists or by an adjacency matrix. The
adjacency lists corresponds to the set {adj(v), v ∈ V (G)}. The adjacency matrix
is an n × n matrix M such that Mij is one when there is an edge from vertex i to
vertex j, and zero if there is no edge.

The degree of a vertex v ∈ V (G) is the number of edges that contain v as an
endpoint. The maximum degree of a graph, denoted ∆, corresponds to the maximum
degree among all the degrees of vertices in the graph. Recall that if the edges of
a graph have a direction the graph is directed (equivalently oriented). Thus for a
directed graph, when writing edge e = {u, v} it is assumed that e is directed from
u to v. It is an outgoing edge for vertex u and an incoming edge for vertex v. The
in-degree of a node v is the number of incoming edges for vertex v and equivalently
the out-degree is the number of its outgoing edges. If the out-degree of any vertex
of the graph is bounded by some integer d, then the graph will be said to have a
d-bounded orientation.

Figure 1.2 � We consider, in red, subgraphs of the graph on �ve vertices and seven
edges. On the left we have a subgraph (not induced) since edge A,C is omitted. On
the right, the subgraph on vertices A,B and C is induced.

6

A subgraph of a graph G = (V,E) is a graph H such that the set of vertices
V (H) ⊆ V (G) and that the set of edges E(H) ⊆ E(G). An induced subgraph is
such a subgraph that contains all possible edges of graph G between pairs of vertices
of V (H). Thus when describing an induced subgraph H of a graph G it is enough
to specify V (H). See Figure 1.2 for an illustration. A subgraph of a graph is strict
if it is not the graph itself.

A path is a graph whose vertices can be listed in order v1, v2, ..., vn such that the
edges are {vi, vi+1} for i ∈ {1, 2, ..., n−1}. A graph is connected if there exists a path
between any two of its vertices. Otherwise it is disconnected. A path v1, v2, ..., vn
such that {v1, vn} is an edge is called a cycle. The length p of a cycle is the number
of its vertices. See Figure 1.3 for an example. A cycle with p vertices is often noted
Cp. A path or cycle with no repeated vertices is said simple. A graph in which there
are no cycles is called a forest. A cycle is chordless or induced if is has no edge
connecting two of its vertices. See Figure 1.3.

Figure 1.3 � A cycle on four vertices is presented on the left. A chordless one in the
middle.

In an oriented graph, a directed cycle is a cycle in which all the edges are oriented
in the same direction. If there is no such subgraph we say that the orientation is
acyclic. For instance, in Chapter 2 we will consider graphs with an acyclic orientation
in which all vertices have outdegree bounded by some integer k, called degeneracy.
This notion is introduced in Section 1.3.

A clique K is a graph such that every two distinct vertices of V (K) are adjacent.
Given some graph G, a clique is maximal in G if it cannot be extended by including
one more adjacent vertex. See Figure 1.4 for an example. It is maximum if there
is no other clique of G with more vertices. Conversely, a graph in which no two
pairwise vertices are adjacent is called an independent set. Similarly to cliques,
an independent set can be maximal or maximum. In Chapter 3 we will study the
question of �nding all maximal cliques of some given graph.

A graph is said dense if its number of edges is close to the maximal number of
edges. For a n-order graph, observe that the maximal number of edges is n(n−1)/2.
On the opposite, a graph with few edges is said to be sparse. The distinction between
sparse and dense graphs often depends on the context. In Section 1.3, we introduce
degeneracy which is a graph parameter often used to measure the density of the
graph.

1.2 Matchings

Chapters 4 and 5 are dedicated to the design of algorithms for matching problems
in some speci�ed distributed setup. A matching M in a graph G is a subset of the

7

Figure 1.4 � We present di�erent notions for cliques. On the left, the subgraph in
red is not a clique since, for instance, vertices B and E are not adjacent. In the
middle we have clique. It is not maximal (thus not maximum either) since adding
vertex B would yield a larger clique. On the right we have a maximal clique which
is also maximum in the graph.

edges of G which do not have a common end vertex. A matching is maximal if no
proper superset of M is also a matching whereas a maximum matching is a maximal
matching with the highest cardinality among all possible maximal matchings. If all
the vertices of the graph belong to some edge in the matching, we say that it is
perfect. See Figure 1.6 for an illustration.

Given a real number k, we say that a matching is a k-approximation of the
maximum matching if it contains at least k×Max edges where Max is the number
of edges of the maximum matching. In this thesis we are interested in two problems
concerning matchings. In some distributed setup (introduced in Section 1.4.2) we
want to design an algorithm returning a 2/3-approximation of a maximum matching
of the input graph (Chapter 4) and also an algorithm returning a maximal matching
(Chapter 5). A 2/3-approximation of the maximum matching (also called a 1-
maximal matching) is expected to have more edges than a maximal matching, which
only guarantees a 1/2-approximation.

Our algorithm of Chapter 4 which returns a 2/3-approximation is essentially
based on the exploitation of augmenting paths of the input graph. When not con-
sidering a distributed setup, most linear time approximation algorithms for the
maximum matching problem are based on a simple greedy strategy exploiting aug-
menting paths. An augmenting path is a path, starting and ending in an unmatched
node, and where every other edge is either unmatched or matched; i.e. for each
consecutive pair of edges, exactly one of them must belong to the matching. Let us
consider the example in Figure 1.5. In this �gure, B and C are matched nodes and
A, D are unmatched nodes. The path (A,B,C,D) is an augmenting path of length
3 (written 3-augmenting path).

Figure 1.5 � A small example of an augmenting path. The edge in bold is the
matched edge, the other edges are unmatched.

It is well known [79] that given a graph G = (V,E) and a matching M ⊆ E, if
there is no augmenting path of length 2k−1 or less, thenM is a k

k+1
−approximation

of the maximum matching. See [50] for the weighted version of this theorem. The
greedy strategy in [50, 121] consists in �nding all augmenting paths of length ` or less
and by switching matched and unmatched edges of these paths in order to improve
the maximum matching approximation.

8

Figure 1.6 � We present the di�erent matching notions on the given graph. We put
the matched edges in red and the normal edges in black. On the left, we have a
matching. In the middle we have a maximal matching as adding any other edge
would yield two edges with some same endpoint. On the right we have a maximum
matching, which is also perfect, as all the vertices are some endpoints of its edges.

The algorithm presented in Chapter 5 returns a maximal matching in some
distributed setup (introduced in detail in the chapter and in Section 1.4.2). The
strategy which we follow in our approach is essentially the basic greedy strategy
which returns a maximal matching in classical graphs which we adapt for our dis-
tributed setup. It works as follows. Initially, the matching is just the empty set.
Then edges are considered one by one and added to the matching if they do not
have any vertex in common with the current matching. It is easy to see that this
procedure yields a maximal matching.

1.3 Degeneracy of a graph

In Chapters 2 and 3 we will study algorithmic problems where the input is not
any general graph but a restricted family of graphs, namely k-degenerate graphs.
The degeneracy of a graph is a common measure of its sparsity. Degenerate graphs
have been extensively studied as real life graphs are often sparse and have low
degeneracy, as well as other important classes of graphs. For instance, the World
Wide Web graph, citation networks, and collaboration graphs have low degeneracy
[68]. The Barabàsi-Albert model of preferential attachment [12], frequently used as a
model for social networks, produces graphs with bounded degeneracy. Furthermore,
planar graphs have degeneracy at most �ve [102]. A graph is planar if it can be
drawn on the plane in such a way that its edges intersect only at their endpoints.
In other words, it can be drawn in such a way that no two edges cross each other.
Degenerate graphs have been introduced by Lick et al. [102]:

De�nition 1.3.1 ([102]). The degeneracy of a graph G is the smallest integer k
such that every subgraph of G contains a vertex of degree at most k.

A graph with degeneracy 3 is presented in Figure 1.7. Degeneracy is also known
as the k-core number [14], width [58], and linkage [93] of a graph. A k-degenerate
graph has maximum clique size less than k + 1 as all the vertices of a clique of size
more than k + 1 have degree strictly more that k. A graph which has degeneracy k
has also a degeneracy ordering, or k-degenerate ordering, which is an ordering such
that each vertex has k or fewer neighbors that come later in the ordering. Figure 1.7
shows a possible degeneracy ordering for the example graph. This ordering can be
constructed by removing iteratively a vertex of G with degree k or less. Since, by
assumption, the graph is k-degenerate, observe that such a vertex always exists.
Conversely, if G has an ordering with this property, then it is k-degenerate, since for

9

Figure 1.7 � On the left, a small graph with degeneracy 3. On the right, we have a
3-degenerate ordering of the graph: A,C,D,G,B, I,H, F,E.

any subgraph H of G, the vertex of H that comes �rst in the degeneracy ordering
has k or less neighbors in H. This yields the following proposition, proved by Lick et
al. [102]:

Proposition 1.3.2 ([102]). A graph G is k-degenerate if and only if it has a k-
degenerate ordering.

Equivalently, a third de�nition is that degeneracy is the smallest integer k such
that the graph has an acyclic orientation with out-degree bounded by k [31]. Such
an orientation can be found by orienting each edge from its earlier endpoint to its
later endpoint in a degeneracy ordering. Conversely if such an orientation is given
then a degeneracy ordering may be found from that orientation.

Degeneracy is a robust measure of sparsity: it is within a constant factor of other
popular measures of sparsity such as arboricity and thickness. Degeneracy, along
with a degeneracy ordering, can be very easily computed by a simple greedy strategy
of iteratively removing a vertex with smallest degree (and incident edges) from the
graph until it is empty. The degeneracy is the maximum of the degrees of the vertices
at the time they are removed from the graph, and the degeneracy ordering is the
order in which vertices are removed from the graph [87]. Computing the degeneracy
and a degenerate ordering of a graph can be done in time O(n+m) [14].

It is possible to have a more e�cient adjacency representation (than adjacency
lists) of a graph using its degeneracy. We introduce this notion in the next de�nition
and then prove that it can be constructed relatively fast in Lemma 1.3.4.

De�nition 1.3.3 (folklore). Let G = (V,E) be a k-degenerate graph and assume it
is directed with a k-bounded orientation. Assume that G is given by the adjacency
list for each vertex. The degenerate adjacency list of a vertex x ∈ V is its adjacency
list in which every vertex that is pointing towards x has been deleted and its sorted
degenerate adjacency lists is its degenerate adjacency lists which has been sorted.

This adjacency structure will be used in both our new algorithms for sparse
graphs in Chapters 2 and 3. It is not too costly to build and adjacency queries can
be sped up.

Lemma 1.3.4. The sorted degenerate adjacency lists of a n-order k-degenerate
graph G can be computed in time O(nk log k) and adjacency queries can be done
in time O(log k) using these modi�ed lists.

Proof. Assume that we have the adjacency lists of G. Let x ∈ V and let dx be its
degree and d+x its out-degree. In time O(dx) remove all vertices from its adjacency list
that are pointing towards it. This takes total time O(m) and yields the degenerate
adjacency list. Then we can sort this new adjacency list in time O(d+x log d+x) =

10

O(k log k) since a k-degenerate graphs has an acyclic orientation with out-degree at
most k. Repeat the procedure for all the vertices of the graph. This is done in total
time O(nk log k + m) = O(nk log k). These new adjacency lists are of size at most
k and they are sorted. This yields the proof for the time complexity of adjacency
queries.

1.4 Graph algorithms

1.4.1 Enumeration algorithms

Both our contributions of Chapters 4 and 5 are enumeration algorithms. The
design of such algorithms listing all possible solutions of a given problem dates back
to the 1950s [65, 139]. Simply put, the goal of enumeration algorithms is to output
all the solutions of a given problem. They were �rst studied in the area of complexity
and optimization [90, 145], and then found applications in several other domains,
including bioinformatics, machine learning, network analytics, and social analysis
[2, 111, 126]. For instance, the enumeration of triangles has drawn a lot of attention
[21, 4, 85, 125, 16] as well as their generalizations such as cliques and other dense
subgraphs [23, 27, 30, 37, 53, 76, 104, 117, 137, 143].

The number of solutions of many enumeration problems is usually exponential
in the size of the instance, which implies that enumeration algorithms require often
at least exponential time. On the other hand, when the number of solutions is
polynomial, one should expect the algorithm to be polynomial as well.

In this context, algorithms which have time complexity depending on the number
of solutions (referred to as output size) have been developed. They are categorized
in the following way [90]:

De�nition 1.4.1. An enumeration algorithm is polynomial total time if the time
required to output all the solutions is bounded by a polynomial in the size of the input
and the number of solutions.

For example, the algorithm of Paull and Unger [119] enumerates all the indepen-
dent sets of a n-order graph in polynomial total time O(n2α) where α is the number
of independent sets of the graph.

De�nition 1.4.2. An enumeration algorithm is polynomial delay if it generates the
solutions, one after the other in some order, in such a way that the delay until the
�rst is output, and thereafter the delay between any two consecutive solutions, is
bounded by a polynomial in the input size.

Simply put, polynomial total time means that the delay between any output of
two consecutive solutions has to be polynomial on the average, while the polynomial
delay implies that the maximum delay has to be polynomial. Hence, De�nition 1.4.2
implies De�nition 1.4.1. One can refer to [146] for a catalogue of classi�ed enumera-
tion algorithms. Another paradigm for enumeration problems are worst-case output
size optimal solutions. Roughly put, these algorithms guarantee a complexity which
matches the maximum possible size of the output. For instance, in a general n-
order graph, the maximum possible number of maximal cliques is O(3n/3) [25, 112].
Tomita et al. [137] proved an algorithm enumerating all maximal cliques of a gen-
eral graph in time O(3n/3). Thus, it is worst-case output size optimal since there
exist graphs on which one cannot hope to do better, as even printing their maximal
cliques would require Ω(3n/3) time.

11

There exist many techniques for enumeration questions in graphs. One can
for instance consider the general backtracking approach to enumeration problems.
Simply put, a backtracking algorithm starts from an empty set and then elements
are added recursively to the solution by a sequence of candidate extension steps. The
possible candidates are represented as the nodes of a tree structure, the potential
search tree. Each candidate is the parent of the candidates that di�er from it by a
single extension step; the leaves of the tree are the partial candidates that cannot
be extended any further. The backtracking algorithm traverses this search tree
recursively in depth-�rst order. At each node c, the algorithm checks whether c can
be completed to a valid solution. If it cannot, the sub-tree rooted at c is pruned.
Otherwise, the algorithm checks whether c itself is a valid solution, and if so reports
it to the user; and then recursively enumerates all sub-trees of c. Therefore, the
actual search tree that is traversed by the algorithm is only a part of the potential
tree. The total cost of the algorithm is the number of nodes of the actual tree
times the cost of obtaining and processing each node. Other classical tools include
binary search which is a branch and bound like recursive partition algorithm and
reverse search which is, simply put, searching on a traversal tree de�ned by some
parent-child relation.

In the scope of this thesis we will present two enumeration algorithms. The �rst
one enumerates all maximal cliques of a k-degenerate graph in polynomial total time.
We conjecture that currently, it is not polynomial time delay. The second algorithm
lists all �xed-size simple cycles in k-degenerate graphs in worst-case output size
optimal time. They are presented in Chapters 3 and 2, respectively. These results
do not really use classical techniques. The algorithm on cycles is mostly relying on
decomposition of the cycles into smaller easily enumerable parts which is an idea
that has been used in other papers related to cycles �nding and listing such as [5] and
[99]. The other contribution relies mostly on ideas similar to kernelization techniques
used for the design of �xed-parameter tractable algorithms. Essentially, we do not
want to solve a large problem but rather try, through a preprocessing phase, to
reduce the question to some smaller instance. In our contribution of Chapter 5,
instead of solving a problem on our n-order graph input, we show that it is in fact
equivalent to solving n problems on smaller graphs.

In the next section we want to introduce notions related to some other graph
algorithmic problems where the input is a distributed environment in which vertices
play an important role in the solution.

1.4.2 Self-stabilizing Algorithms

A distributed system is a model in which components such as computers, pro-
cesses or other entities cooperate in order to achieve a common goal. They commu-
nicate together through exchange of messages or by sharing memory. This system
can be represented by a graph in which the nodes are the computing entities and in
which the edges represent the communication channels between them. The di�culty
of solving problems in this model arises from the fact that the nodes only have a
local vision of the system and that immediate communication is only possible with
the neighbors.

Distributed systems can either be synchronous or asynchronous. They are syn-
chronous if the existence of a global clock is assumed. The processors communicate
simultaneously at each tick of this clock. Implicitly, this yields a bound on the mes-
sage delay. On the other hand, a system is asynchronous if there is no global clock.
Thus, it does not rely on the strict arrival times of messages and coordination is

12

achieved through other means.
A distributed algorithm is a piece of code that is run on all the nodes of the

distributed system. Based on the knowledge the nodes gather through communica-
tion with their neighbors, they must cooperate in order to solve a global problem.
Communication is usually modeled in one of the three following ways, as described
by Dolev [47]:

� The shared memory model. In this model, nodes can read the registers of all
their neighbors in one atomic step. They can only write in their own registers.

� The read-write model. Nodes can execute a single read or write operation at
each atomic step. They can only write in their own registers.

� The message passing model. Nodes can either receive or send a message at
each atomic step (not both simultaneously).

In the shared memory and read-write models two neighbors share a common
memory whereas in the message passing model nodes exchange messages. In this
thesis, we will present two algorithms for matching problems where we use the �rst
two communication models. We also assume that the system is not anonymous.
All nodes can be distinguished through identi�ers, for instance. In an anonymous
system, processors or nodes are identical.

Faults can happen in a distributed system. For instance, a computer may shut-
down, or a communication link may break. Various external and internal events
may disturb the system and lead to unwanted behaviors. Three main types of faults
are distinguished [135].

� Transient faults. They occur once and then disappear.
� Permanent faults. They can occur at any time and they stay permanently.
� Intermittent faults. They can occur at any time in the execution.

Solutions have been proposed to deal with these possible faults and assure a
correct functioning of the system. These solutions can essentially be categorized
into two families [135]:

� Robust Algorithms. They typically need redundant components and informa-
tion. They assume that with a bounded number of faults, the system will
maintain a proper behavior. An exhaustive list of the expected faults is re-
quired.

� Self-stabilizing Algorithms. Starting from any state of the system, these algo-
rithms guarantee that the system will eventually reach a correct state (conver-
gence property). This behavior simulates the fact that memory and registers
may hold incorrect values after a fault. They are also resilient to topological
changes of the network since the system con�guration after a topology change
can be treated just like any other arbitrary starting con�guration.

In the next section, we introduce in detail the notion of Self-stabilization. These
explanations will be useful for the understanding of the algorithms and proofs given
later in the thesis, in Chapters 4 and 5.

1.4.2.1 General properties of self-stabilizing algorithms

The concept of self-stabilization was introduced by Dijkstra [46] and popular-
ized by Lamport [101]. For surveys about self-stabilizing algorithms, one can refer
to [47, 70, 62]. Self-stabilization has many applications in systems where human in-
tervention is not always possible after an error occurs. Such systems include sensor
networks, computer networks or satellites.

13

A system is self-stabilizing if it is allowed to start from any possible state (equiv-
alently con�guration) of its entities and converges to a correct state in �nite time,
without any external intervention. Intuitively, a state of the system is simply the
values of all the variables of the nodes. This behavior is refereed to as the conver-
gence property. Another desirable behavior is the closure property. After reaching a
correct state, the system is guaranteed to remain in a correct state. These two de�-
nitions are described precisely by Arora et al. [6]. We de�ne formally these notions
in the next section.

In most of the literature, self-stabilizing algorithms assume that the faults hap-
pening in the system are transient, or convergence may not be guaranteed if faults
happen intermittently during the convergence phase. A self-stabilizing algorithm
may be silent or not silent. It is silent if and only if the nodes keep their regis-
ters unmodi�ed once a correct state has been reached. This is often the case with
self-stabilizing algorithms for graph problems: for instance, once a maximum in-
dependent set has been computed in a system, the nodes do not need to perform
any other modi�cation of their variables. When considering silent algorithms, the
correctness property is often mentioned: the �nal con�gurations must verify the
speci�cation of the algorithm. For instance, if the goal of the algorithm is to com-
pute a maximal matching, then, in a correct state, the set of nodes of the system
must form a maximal matching. More formally, every �nal con�guration must be
legitimate with regard to the predicate P specifying the problem meaning that every
�nal con�guration must satisfy P .

In the scope of this thesis, we will consider self-stabilizing silent algorithms and
assume that the faults are of transient type.

1.4.2.2 Algorithms description

Formally, the considered system consists of a set of processes where two adja-
cent processes can communicate with each other. The communication relation is
represented by an undirected graph G = (V,E) where |V | = n and |E| = m. Each
process corresponds to a node in V and two processes u and v are adjacent if and
only if (u, v) ∈ E. The set of neighbors of a process u is denoted by N(u) and is
the set of all processes adjacent to u, and ∆ is the maximum degree of G. For basic
de�nitions and notations regarding graphs, the reader can refer to Section 1.1.

Each process maintains a set of variables that specify the local state of the
process. A con�guration (or state) C is the local states of all processes in the
system. Each process executes the same algorithm that consists of a set of rules.
Each rule is of the following form:

< name >:: if < guard > then < command >.

The name is the name of the rule. The guard is a predicate over the variables
of both the process and its neighbours. The command is a sequence of actions
assigning new values to the local variables of the process.

A rule is activable in a con�guration C if its guard in C is true. A process
is eligible for the rule R in a con�guration C if its rule R is activable in C and
we say the process is activable in C. An execution is an alternate sequence of
con�gurations and actions E = C0, A0, . . . , Ci, Ai, . . ., such that ∀i ∈ N∗, Ci+1 is
obtained by executing the command of at least one rule that is activable in Ci (a
process that executes such a rule makes a move). More precisely, Ai is the non
empty set of activable rules in Ci that has been executed to reach Ci+1 and such
that each process has at most one of its rules in Ai. We use the notation Ci 7→ Ci+1

14

to denote this transition in E . We also need an inclusion notion for executions.
Let E ′ = C ′0, A

′
0, · · · , C ′k be a �nite execution. We say E ′ is a sub-execution of E if

and only if ∃t ≥ 0 such that ∀j ∈ [0, · · · , k]:(C ′j = Cj+t ∧ A′j = Aj+t). Since an
execution is a sequence of con�gurations, if C and C ′ are two such con�gurations
in some execution E , then we write C ≤ C ′ if and only if C appears before C ′ in
E or if C = C ′. Moreover, we write E\C to denote all con�gurations of E except
con�guration C.

An atomic operation is such that no change can take place during its run, we
usually assume that an atomic operation is instantaneous.

1.4.2.3 Daemons

A daemon or scheduler is a predicate on the executions. Roughly, the daemon
has the role to select nodes which are eligible for some rule to execute their moves
(called enabled or activable nodes). This mechanism plays the role of both scheduler
and adversary against the stabilization of the algorithm. It tries to prevent the
convergence of the algorithm by scheduling the worst possible execution. The two
most common daemons are the following:

� The central daemon : An unique enabled node is selected for execution at each
transition.

� The distributed daemon: Any non-empty subset of the enabled nodes is se-
lected for execution at each transition.

A daemon is fair if every node which is eligible for some rule is eventually se-
lected. On the other hand, a daemon is unfair if the execution of an activable process
is delayed as long as there are other activable nodes. Notice that the distributed
unfair daemon is the most general one since an algorithm which works under this
daemon will also work correctly under all the other ones.

1.4.2.4 Complexity measures

An algorithm's e�ciency is measured through its complexity. It often corresponds
to the maximum (or worst-case) resource requirements (such as time, space, among
others) of the algorithm. It usually depends on the size of the input. In case
of distributed systems, the complexity is given as a function of the parameters of
the underlying network graph, such as the number of processors or the number of
communication links. For a survey on the complexity of distributed algorithm one
can refer to [9].

When restricted to self-stabilizing algorithm, an introduction to their complexity
analysis can be found in [47]. For these algorithms, a standard complexity measure
is the number of moves which are executed by the nodes before the system reaches
a correct state. A move is de�ned formally as follows.

De�nition 1.4.3. Node v does a move when it executes a rule for which it is ac-
tivable. It corresponds to a transition from the state C0 in which v was activable to
a new state C1 after it executed the enabled rule.

Other complexity measures have also been considered in the literature. For
instance, the step complexity corresponds to a time frame within which each node
can make at most one move and such that all nodes make their move simultaneously.
More formally :

15

De�nition 1.4.4. A step is a tuple (C0, C1), where C0 and C1 are con�gurations,
such that all nodes doing moves during this step are enabled in con�guration C0 and
such that C1 is the con�guration reached after these nodes have made their moves
simultaneously.

From this de�nition follows the de�nition of a round. It corresponds to the
minimum number of steps required such that every node makes at least a move. We
can now de�ne the time complexity of a self-stabilizing algorithm.

De�nition 1.4.5. The time complexity of a self-stabilizing algorithm is the maxi-
mum (worst case) number of moves, steps or rounds the algorithm executes before
reaching a correct state, independently of the starting con�guration.

In the scope of this thesis, we will design algorithms and prove complexity with
respect to their maximum possible number of moves.

1.4.2.5 Composition

When studying algorithmic problems, it is often desirable to be able to reuse
existing algorithms and build upon them to obtain new results. For instance, if one
wishes to construct a 2/3-approximation of a maximum matching, one could �rst
use an algorithm to compute a maximal matching in the system, and, in a second
phase, design another algorithm taking as input this maximal matching, modify
it, and obtain the wanted result. In that context, the notion of composition of
algorithms arises.

In classical distributed systems composition can be achieved by essentially exe-
cuting sequentially the algorithms. When the �rst algorithm is �nished, the second
one starts. In a self-stabilizing setup however, detecting termination of the �rst algo-
rithm is not possible [133]. Nevertheless, composition can still be achieved [77, 133].
Roughly put, two algorithms A1 and A2 can be composed if they do not share vari-
ables (they do not write and read in the same set of variables). Algorithm A2 can
read the variables of A1 while it is stabilizing. Since, by the convergence property,
these variables will be correct at some point, then algorithm A2 will be correct as
well at some point. Formally, the composition of two self-stabilizing algorithms is
de�ned as follows.

De�nition 1.4.6. Let A1 and A2 be two self-stabilizing algorithms that do not share
any variables. The composition of A1 and A2 is the algorithm which consists of all
variables and rules of both A1 and A2.

To prove that the composition of A1 and A2 is self-stabilizing, it must be shown,
intuitively, that they do not block each other. Formally put:

Theorem 1.4.7. [77, 133] Let A1 and A2 be two self-stabilizing algorithms with
speci�cations P1 and P2. The composition of A1 and A2 is self-stabilizing if:

� When algorithm A1 has stabilized, P1 holds forever

� If P1 holds, algorithm A2 stabilizes

� Once P1 holds, the variables of A1 read by A2 do not change

� The daemon is fair with respect to A1 and A2

Thus, the move complexity of the composition of two self-stabilizing algorithms
is the product of the complexities of each algorithm [47].

16

Part I

Enumeration algorithms for
k-degenerate graphs

17

Chapter 2

Fixed-size cycles enumeration

In this chapter we present our algorithm for enumerating all �xed length simple
cycles in k-degenerate graphs, that can be found in our published paper [108].

2.1 Introduction

The question of �nding �xed length simple induced and non induced cycles in
planar and k-degenerate graphs has been extensively studied. Among other contri-
butions, Papadimitriou et al. [118] presented an algorithm �nding C3's in planar
graphs. Chiba et al. [30] and Chrobak et al. [31] proposed simpler linear time algo-
rithms to �nd C3's and the �rst of these papers also presents an algorithm �nding
C4's. Both papers also apply their techniques to k-degenerate graphs. Richardson
[122] gave an O(n log n) algorithm �nding C5's and C6's in planar graphs.

For any �xed cycle length, Alon et al. [5], gave algorithms for both general and
k-degenerate graphs. Cai et al. [24] proposed algorithms �nding induced cycles of
any �xed size.

For the problem of �nding all occurrences of any p-length simple cycle in planar
graphs, assuming some constant bound on p, Eppstein [51] proposes an algorithm
running in time O(n + α) where α is the number of simple p-length cycles in the
graph. His algorithm works for any subgraph of �xed size p and solves in fact the
more general problem of subgraph isomorphism in planar graphs. His result has
been later improved by Dorn [49], who reduces the time dependence in p. For short
cycles of size six or less, Kowalik [99], proposes an algorithm listing all occurrences
of these cycles in time O(n+ α). His algorithm is faster in practice than the one of
Eppstein for planar graphs and also works for k-degenerate graphs, with complexity
O(k2m + α), for cycles of size up to �ve. He also proves that the maximal number
of simple p-length cycles in a planar graph is Θ(nbp/2c). More recently, Meeks [110]
proposed a randomized algorithm, given a general graph G, enumerating any p-sized
subgraph H in time O(αf) where f is the time needed to �nd one occurrence of H
in G. This result, together with the one of Alon et al. [5] for instance, yields an
O(αnO(1)kO(1)) time algorithm �nding all occurrences of a p-length simple cycle in
k-degenerate graphs, assuming p constant.

Other contributions have also been made for general graphs. For the problem of
�nding all cycles (any length), Tarjan [132] gives an O(nmα) time algorithm, where
α is the total number of cycles of the graph. This complexity has been improved
to O((n + m)α) by Johnson [89]. More recently, Birmelé et al. [19] proposed an
O(c) time algorithm where c is the number of edges of all the cycles of the graph.
Uno et al. [144] proposed an O((n+m)α) algorithm �nding all chordless cycles. We
are not sure whether these algorithms can be easily adapted to output exactly all

18

p-length simple cycles in k-degenerate or general graphs with similar complexities
but where α would be the number of p-length simple cycles (instead of the number
of all cycles). For the problem of counting all cycles of size less than some constant
p, Giscard et al. [66] propose an algorithm running in time O(∆|Sp|) where ∆ is the
maximum degree and |Sp| the number of induced subgraphs with p or less vertices in
the graph. Alon et al. [5] proposed an algorithm counting cycles of size less than 7
in time O(nω) where ω is the exponent of matrix multiplication (the smallest value
for which there is a known O(nω) matrix-multiplication algorithm). Williams et
al. [150] and Björklund et al. [20] also give algorithms which can be used to count
�xed-size cycles.

Our contribution is a simple algorithm listing all p-length simple cycles in a n-
order k-degenerate graph in time O(nbp/2ckdp/2e log k), assuming that the graph is
stored in an adjacency list data structure. If we have its adjacency matrix the time
complexity can be improved to O(nbp/2ckdp/2e). We then show that this complexity
is worst-case output size optimal by proving that the maximal number of p-length
simple cycles in an n-order k degenerate graph is Θ(nbp/2ckdp/2e). These results also
hold for induced cycles. To the best of our knowledge, this is the �rst such algo-
rithm. It di�ers from the one of Meeks described before since it is deterministic,
self-contained and can have better or worst time complexity depending on the num-
ber of simple p-length cycles of the input graph. Further improvements are discussed
in the conclusion.

Our complexities are given assuming a constant bound on p. The exact depen-
dence in p is described later but is exponential. Our approach for the main algorithm
of this section is the following. We �rst show that in a k-degenerate graph, any p-
length cycle can be decomposed into small special paths, namely t-paths, introduced
in De�nition 2.2.2. We then prove that these t-paths can be computed and combined
e�ciently to generate candidate cycles. With some more work, we can then output
exactly all p-length simple cycles of the graph.

The organization of rest of the section is as follows. In Section 2.2 we introduce
notations and de�nitions. In Section 2.3 we prove preliminary results for paths,
t-paths and cycles. Using these results, we describe and prove algorithms in Sec-
tion 2.4. The correctness and time complexity of the main algorithm is proved in
Theorem 2.4.3 and the bound for the number of cycles in Theorem 2.4.5.

2.2 De�nitions

We introduce and recall notations and de�nitions that we use throughout the
section. By k we will denote the degeneracy of the graph and by p the length of the
cycles we seek to list. When not speci�ed, G = (V,E) is a simple connected graph.
As mentioned in Section 1.3, given a k-degenerate graph G, one can compute in time
O(m) its degeneracy ordering [14]. This ordering also yields an acyclic orientation
of the edges such that every vertex has out-degree at most k. From now on we will
consider k-degenerate graphs as oriented acyclic graphs with out-degree bounded by
k. If (x, y) is an edge of some oriented graph G we will write x→ y and say that x
is oriented towards y if edge (x, y) is oriented towards y.

De�nition 2.2.1. An oriented path P : p1, p2, ..., px is increasing (resp. decreasing)
with respect to p1 if p1 → p2 → ...→ px (resp. p1 ← p2 ← ...← px).

In the next de�nition, we introduce t-paths, which is the main ingredient of our
algorithm for cycle enumeration.

19

Figure 2.1 � A strict t-path of size (2, 3).

De�nition 2.2.2. Let G be an oriented graph and i, j ∈ N. A t-path P of size (i, j)
is a path of i + 1 + j vertices, v1, v2, ..vi, r, u1, u2, ...uj such that Pl : r, vi, vi−1, ..., v1
and Pr : r, u1, u2, ..., uj are increasing paths with respect to r. Vertices v1 and uj are
called the end vertices of P, vertex r its center. If i, j ∈ N+, we say that P is a
strict t-path. See Figure 2.2.2.

In a k-degenerate graph, it is easy to count and enumerate all t-paths of some
given size. We prove that fact in the next lemma and its two corollaries.

Lemma 2.2.3. Let G = (V,E) be a k-degenerate graph. Assume that we have the
sorted degenerate adjacency lists of G. Given a vertex x ∈ V and i ∈ N, we can
compute all increasing paths of size i, starting with x in graph G in time O(ki).
There are at most O(ki) such paths.

Proof. Start with the sorted degenerate adjacency list of vertex x. By de�nition it
is of size at most k. For every vertex y in this list, construct a candidate path of size
one containing x and y. Note that there are at most k such candidate paths. For
each such path, generate all k candidates paths of size two where the third vertex is
a vertex of the degenerate adjacency list of the second vertex of the path. There are
k2 such candidates paths of size two in total. Go on in this fashion until all paths of
size i have been generated. This procedure takes time O(ki): at step h < i we must
consider at most k vertices from each of the previously computed kh−1 degenerate
adjacency lists.

Corollary 2.2.4. Let G = (V,E) be a k-degenerate graph. Assume that we have
the sorted degenerate adjacency lists of G. Given a vertex x ∈ V and i, j ∈ N, we
can compute all t-paths of size (i, j) with center x, in G, in time O(ki+j). There are
at most O(ki+j) such t-paths.

Corollary 2.2.5. Let G = (V,E) be a k-degenerate graph. Assume that we have the
sorted degenerate adjacency lists of G. Given i, j ∈ N, we can compute all t-paths
of size (i, j) in G, in time O(nki+j). There are at most O(nki+j) such t-paths.

We need a few more de�nitions to be able to describe formally how we decom-
pose cycles into t-paths. This decomposition is proposed in the next section in
Lemma 2.3.1.

De�nition 2.2.6. Let G be an oriented graph and P1, P2 two t-paths of G. They
are adjacent if they do not have any vertex in common but one or two of their end
vertices.

De�nition 2.2.7. Let G be an oriented graph and x = (i, j) ∈ N2. We say that we
can associate a t-path to x in G if there exists a t-path of i+ 1 + j vertices in G.

De�nition 2.2.8. Let x, y, z be three consecutive nodes in C, an oriented simple
cycle. Node y is a root of C if x← y → z.

Observation 2.2.9. An acyclic oriented simple cycle has a root.

20

2.3 Basic Results

We prove simple results concerning paths, t-paths and cycles. These lemmas
are used to prove the correctness and time complexity of Algorithm 2, presented
in Section 2.4. In the next lemma, we show that, essentially, any cycle can be
decomposed into t-paths.

Lemma 2.3.1. Let C be a simple cycle of size p. For any possible acyclic orientation
of C, we can compute a list L of strictly positive integer pairs (l1, l2), ..., (lr−1, lr) in
time O(p) with the following properties: (See Figure 2.2.)

(i) To each pair (li, li+1) we can associate a strict t-path such that C can be de-
composed into |L| strict adjacent t-paths: one for each pair of L.

(ii) If |L| > 2, two strict t-paths associated to pairs of L are adjacent if and only
if their associated pairs are consecutive in L (modulo |L|).

(iii) If |L| > 2, two t-paths t1 and t2 associated to two consecutive pairs (li, li+1)
and (li+2, li+3) (modulo |L|) have one common vertex: it is the end vertex of
the increasing path Pli+1

of t1 and the end vertex of the increasing path Pli+2

of t2.

Proof. We proceed as follows. The �rst step is to �nd in time O(p) a root r of C.
Let x and y be its two neighbours in C. Find the two longest increasing paths P1 and
P2 with respect to r in C going through x and y. Note that paths P1 and P2 are well
de�ned. This can be done in time O(|P1|+ |P2|). After that put the corresponding
pair in L. If the end vertices of P1 and P2 are the same, we are done: the cycle itself
is a t-path and L = (|P1|, |P2|). Observe that in that case property (i) is veri�ed.

Otherwise, if the end vertices of P1 and P2 are not the same, we proceed with
step two. Start from the end vertex v2 of P2 and �nd the longest decreasing path
P3 in C with respect to v2. Observe that P3 exists necessarily, by de�nition of P2.
Finding the vertices of P3 is done in O(|P3|). The end vertex v3 of P3 is a root, by
de�nition of P3. Observe also that v3 and v1 (the end vertex of P1) are distinct.
If that was not the case then P1 would not have been the longest increasing path
starting from r, which is a contradiction by construction of P1. Now �nd the longest
increasing path with respect to v3 going in the other direction than P3, call it P4.
It exists since v3 and v1 are distinct. If its end vertex v4 is equal to v1, then C can
be decomposed into two strict adjacent t-paths and L = ((|P1|, |P2|), (|P3|, |P4|)).
Observe that the three properties for L are veri�ed in that case.

Otherwise, if v4 and v1 are distinct, we proceed exactly as in step 2, but starting
this time with the end vertex v4 of P4. We proceed in this fashion until we reach
vertex v1.

In the next three lemmas we show bounds on the number of t-paths that can
decompose a cycle, their total size and their total number in a given graph. We �rst
prove that a cycle cannot be decomposed into too many t-paths.

Lemma 2.3.2. Let C be a simple cycle of size p with an acyclic orientation. Let
L : (l1, l2), ..., (lr−1, lr) be the list of integer pairs associated to C, as de�ned in
Lemma 2.3.1. List L is at most of size bp/2c.

Proof. Assume �rst that p is even. Assume by contradiction that list L is of size
s > p/2. By construction of L, each pair (lj, lj+1) of L can be associated to a
strict t-path of G. By De�nition 2.2.2 we have that lj, lj+1 ∈ N∗. Thus each t-path
associated to a pair in L has at least three vertices. This implies that the s many

21

Figure 2.2 � An example of t-path decomposition of a cycle. The associated list is
L = (1, 2), (2, 1), (1, 1) assuming that pair (1, 2) is associated to the red t-path.

t-paths have 3s vertices altogether. But two consecutive t-paths in L have also a
common vertex. Thus, in total, the s many t-paths have at least 3s − s = 2s > p
vertices which gives the contradiction in that case.

Assume now that p is odd. We �rst show that there exists at least one strict
t-path associated to some pair in L which has four or more vertices. By de�nition
a strict t-path can not have only one or two vertices. Thus assume by contradiction
that all s pairs in L are associated to strict t-paths of size three. As in the previous
case, the total number of vertices of these t-paths is 3s − s = 2s. By de�nition,
this number is equal to p the size of C which is odd in that case, thus we have a
contradiction. This implies that there exists at least one strict t-path associated to
some pair in L which has four or more vertices. Assume now by contradiction that
s > bp/2c=p−1

2
. Since at least one t-path of L has size four, then the s many t-paths

(to which we remove the common vertices) have in total at least 3(s− 1) + 4− s =
2s + 1 vertices. To conclude the proof observe that 2s + 1 > 2p−1

2
+ 1 = p, which

yields the contradiction.

Lemma 2.3.3. Let C be a simple cycle of size p with an acyclic orientation. Let
L : (l1, l2), ..., (lr−1, lr) be the list of integer pairs associated to C, as de�ned in

Lemma 2.3.1. We have that
r∑
j=1

lj = p

Proof. As de�ned in Lemma 2.3.1, C can be decomposed into |L| t-paths, one for
each pair of L such that two consecutive pairs (modulo |L|) correspond to adjacent
t-paths with one end vertex in common. By De�nition 2.2.7, a t-path associated to
a pair (li, li+1) is of size li + 1 + li+1. This implies that the t-paths of L have total

size (
r∑
j=1

lj) + r. Since cycle C can be decomposed into the t-paths associated to list

L, that two consecutive t-paths have one end vertex in common and that there are

r such t-paths, we get that (
r∑
j=1

lj) + r = p+ r, which completes the proof.

2.4 Algorithm

We prove Theorem 2.4.3 which is the main result the section. For the sake
of clarity, we �rst start by describing a simpler algorithm, namely Algorithm 2

22

and prove in Theorems 2.4.1 and 2.4.2 that it solves the problem of �nding all p-
length simple cycles in time O(nbp/2ckp). Then we show how to modify it to get
the claimed O(nbp/2ckdp/2e log k) and O(nbp/2ckdp/2e) complexities, in Theorem 2.4.3.
Roughly put, Algorithm 2 works as follows. First, it computes all possible t-path
decompositions of a p-length simple cycle. Then it �nds all the corresponding t-
paths in the graph and combines them to form candidate cycles. The length p of
the cycles is supposed of constant size in the section.

Algorithm 1:

Data: A graph G and p ∈ N.
Result: All simple p-length cycles of G.

1 Compute k the degeneracy of G and a degeneracy ordering σG. Construct an
acyclic orientation of G with bounded out-degree k.

2 Compute the sorted degenerate adjacency lists of G.
3 Initialize D : 1, 2, ..., p a simple cycle.
4 Compute all acyclic orientations of D.
5 for each such orientation do
6 Compute the ordered list L = p1, ..., pr of pairs associated to the strict

t-paths of D.
7 for j = 1 to r do
8 Compute all possible strict t-paths associated to pair pj in G, put

them in a set Sj.
9 end
10 Compute all possible lists C = c1, ..., cr with ci ∈ Si
11 for each such list C do
12 Check if it is a simple cycle:

� check if vertices are unique except for the end vertices of the t-paths

� check if two consecutive t-paths have a common end vertex

if yes then
Let s be the string obtained by sorting the vertices of C by
increasing identi�er.
Search string s in T .
if it does not exist in T then

Output s.
Insert it in T .

end

end

13 end

14 end

Theorem 2.4.1. At the end of Algorithm 2, all p-length simple cycles of the graph
G have been outputted exactly once.

Proof. Assume �rst by contradiction that there exists a p-length simple cycle C1 :
c1, c2, ..., cp of G which has not been outputted by Algorithm 2. Without loss of
generality assume that c2 has lowest ranking in the degeneracy ordering. As de�ned
and proved in Lemma 2.3.1, depending on the orientation of C1, we can compute a
list of integer pairs L1 : p1, p2, ..., pr−1, pr that corresponds to the sizes of adjacent
strict t-paths such that C1 can be decomposed into these t-paths. Up to renaming
the vertices, the orientation of C1 has been generated at Line 4 of Algorithm 2. This

23

implies that there exists a list L computed in Line 6 which is equal to L1. Since in
Line 8 all t-paths associated to the pairs of L are computed, this implies that there
exists some list C generated in Line 10 which contains all the t-paths of C1, in the
same order as they appear in C. This implies in fact that cycle C1 is outputted at
some point by Algorithm 2, which yields the contradiction.

The test done after 12 ensure that Algorithm 2 outputs simple cycles and that
they are unique.

Theorem 2.4.2. Algorithm 2 runs in time O(nbp/2ckp).

Proof. Computing the degeneracy and the degeneracy ordering of G can be done in
O(m) [14]. Computing the degenerate adjacency lists of G in Line 2 can be done
in time O(nk log k), by Lemma 1.3.4. Computing all acyclic permutations of D can
be done in total time O(2p). Using Lemma 2.3.1, Line 6 can be done in O(p) for
each orientation. Since there are O(2p) of them this takes total time O(p2p). By
Corollary 2.2.5, given a pair lj = (aj, bj), we can compute all t-paths of size (aj + bj)
in G in time O(nkaj+bj). Thus for each list L : (l1 = a1, b1), l2 = (a2, b2), ..., lr−1 =
(ar−1, br−1), lr = (ar, br), Line 8 can be done in time O(n

∑
(aj ,bj)∈L k

aj+bj) = O(nkp)

since
∑

(aj ,bj)∈L aj + bj = p as proved in Lemma 2.3.3. By Corollary 2.2.5, each
set Sj associated to a pair lj = (aj, bj) is of size O(nkaj+bj). If there are r such
sets, computing all possible lists C in Line 10 can be done in time O(nrkp) since∑

(aj ,bj)∈L aj + bj = p as proved in Lemma 2.3.3. Now by Lemma 2.3.2, r ≤ bp/2c,
thus Line 10 takes at most O(nbp/2ckp) time, per orientation. To conclude, in Line 12,
checking if a list C is a simple cycle can be done in time O(p). Since C is of size
at most O(p + bp/2c) = O(p) we can check the uniqueness of the vertices and the
condition on the end vertices in time O(p). Finally searching, sorting a string s of size
O(p) or inserting it in a radix tree can be done in time O(p log p), see [113]. In total,
Algorithm 2 runs in time O(|E| + nk log k + p2p + p2pnbp/2ckp log p) = O(nbp/2ckp),
assuming p constant.

Theorem 2.4.3. Algorithm 2 can be modi�ed to run in time O(nbp/2ckdp/2e log k)
if the graph is stored in adjacency lists or O(nbp/2ckdp/2e) time if it is stored in an
adjacency matrix.

Proof. We modify Algorithm 2 in the following two ways. Assume list
L : l1=(a1, b1), l2=(a2, b2), ..., lr=(ar, br) has been computed in Line 6.

� For each j ∈ [1, r], transform lj = (aj, bj) into (aj, bj − 1). This can be done
in O(p).

� When checking if a list C is a simple cycle after line 12 we check the uniqueness
of all the vertices and check if two consecutive t-paths have adjacent end
vertices (before, we had to check if they had common vertices). This can be
done in time O(p log k) using the degenerate adjacency lists computed in line 2
or O(1) if we have the adjacency matrix of the graph.

We show that Algorithm 2, modi�ed in this way, has the claimed complexity.
When we decrease the values of the pairs in L as described in the �rst modi�ca-
tion and assuming |L| = r, Line 8 can be computed in total time O(nkp−r) since∑

(aj ,bj)∈L aj + bj = p − r. All possible lists in Line 10 can be computed in time
O(nrkp−r) and there are O(nrkp−r) of them. Since r ≤ bp/2c as proved in Lemma
2.3.2 and since k ≤ n then O(nrkp−r) = O(nbp/2ckdp/2e). Thus the total time com-
plexity is O(nbp/2ckdp/2ep2p log p log k)=O(nbp/2ckdp/2e log k) with these modi�cations

24

Figure 2.3 � A k-degenerate graph with with the maximal number of p-length simple
cycles.

if adjacency queries can be done in O(log k) or O(nbp/2ckdp/2e) if they can be done
in O(1), which completes the complexity analysis.

We prove now the correctness of Algorithm 2 when modi�ed in this way. As
shown in Lemma 2.3.1, a simple cycle C1, given an orientation of its vertices, can
be decomposed into strict adjacent t-paths. Consider now all pairs of such adjacent
t-paths. If we remove the common vertex from one t-path from each pair, cycle C1
can still be decomposed into these new t-paths. The previous adjacent t-paths which
had a common end vertex now become new smaller t-paths that have adjacent end
vertices. The two modi�cations described above re�ect this property: by changing
the value of the pairs in the list L we generate t-paths with one less vertex but we
have now to check that, if they appear consecutively in list C at Line 10, they have
adjacent end vertices.

Corollary 2.4.4. With same complexities, we can output exactly all p-length induced
cycles.

Proof. Consider Algorithm 2 modi�ed as in Theorem 2.4.3. Before outputting a
cycle we can check if it is induced in time O(p2 log k) with the sorted degenerate
adjacency lists: for every pair of vertices of the cycle check if they are adjacent. If
we have the adjacency matrix this can be done in time O(p2).

We prove in the rest of the section that the algorithm is optimal. That is,
we construct, for any given degeneracy k and cycle length p, k-degenerate graphs
which have the maximum possible p-length simple cycles and show that this number
matches the algorithm's complexity.

Theorem 2.4.5. The maximal number of p-length simple cycles in a k-degenerate
graph is Θ(nbp/2ckdp/2e).

25

Proof. Algorithm 2 modi�ed as described in the proof of Theorem 2.4.3 generates
at most O(nbp/2ckdp/2e) candidate cycles, assuming a constant bound on p. Since
this algorithm outputs all cycles of the graph, this yields the upper bound.

We now prove the lower bound. We construct for any k, p and n ≥ kp a n-order
k-degenerate graph with Ω(nbp/2ckdp/2e) simple p-length cycles.

Assume �rst that p and k are even. Consider p/2 independent setsK1, K2, ..., Kp/2

of size k/2 and p/2 independent sets L1, L2, ...Lp/2 of size l ≥ k. Connect all the
vertices of set Ki to all the vertices of set Li for every i. Connect all the vertices
of set Li to all the vertices of set Ki+1 mod p. (See Figure 2.3). This graph is k-
degenerate. To see that, observe that every vertex has degree at least k, thus the
graph cannot be (k − 1)-degenerate. Every edge has one endpoint in a set Ki and
the other in a set Lj. Thus orienting every edge towards its vertex which is in
some K set yields an acyclic orientation with out-degree bounded by k. This graph
has n = p

2
k
2

+ p
2
l vertices which implies l = 2n

p
− k

2
. The total number of simple

p-length cycles is lp/2 k
2

p/2
= (2n

p
− k

2
)p/2 k

2

p/2. Observe that n ≥ kp implies that

(2n
p
− k

2
)p/2 k

2

p/2
= Ω(np/2kp/2)

Assume now that p is even and k odd. The construction is similar except that set
Ki has bk2c vertices if i is odd and dk

2
e otherwise. If p/2 is even the proof is exactly

the same as for the case in which p and k are even. If p/2 is odd we only prove
that the graph is k-degenerate, the proof for the number of simple p-length cycles
being the same. The graph is not (k− 1)-degenerate since the subgraph induced by
the vertices of sets K1, L1 and K2 has no vertex of degree less than k. Orienting
the edges as in the case in which p and k are even yields an acyclic orientation with
out-degree bounded by k.

Assume now that p is odd. The construction is similar. We consider dp/2e inde-
pendent sets K1, K2, ..., Kdp/2eand bp/2c independent sets L1, L2, ..., Lbp/2c. Connect
all the vertices of Ki to all the vertices of Li for every i < dp/2e. Connect all the
vertices of Li to all the vertices of Ki+1. Finally connect all vertices of Kdp/2e to all
the vertices of K1. The proof that this graph is k-degenerate is the same as before.
If k is even, take the sets Ki of size k/2, otherwise take set Ki of size bk/2c if i odd
or of size dk/2e if i even. Now every vertex has degree at least k so the graph cannot
be (k−1)-degenerate. Orient every edge between the sets Kdp/2e and K1 arbitrarily.
Every other edge has one vertex in some K set and the other in some L set. Thus
orienting every edge from its vertex which is in some L set towards its vertex which
is in some K set yields an acyclic orientation with out-degree bounded by k. The
proof for the number of cycles is exactly the same as for the previous cases.

Corollary 2.4.6. The maximal number of p-length induced cycles in a k-degenerate
graph is Θ(nbp/2ckdp/2e).

Proof. The upper bound is a consequence of Theorem 2.4.3 and Corollary 2.4.4.
Observe that the cycles constructed in Theorem 2.4.5 are induced, which completes
the proof.

2.5 Conclusion

Given a n-order k-degenerate graph, we presented an algorithm running in time
O(nbp/2ckdp/2e) enumerating all its p-length simple cycles. We then proved that
this algorithm is worst-case output size optimal by constructing for any k, p and

26

n ≥ kp a n-order k-degenerate graph with Θ(nbp/2ckdp/2e) simple p-length cycles.
The complexity of the algorithm is given assuming it is stored in an adjacency
matrix data structure. If instead it is stored in an adjacency list data structure, the
complexity becomes O(nbp/2ckdp/2e log k). Thus the �rst question we ask is whether
or not we can achieve the optimal complexity when the graph is given through
its adjacency lists. A second improvement would be to prove an output sensitive
algorithm, similar to the one Kowalik presented for cycles of size less than �ve,
see [99]. That is, we ask whether it is possible to achieve an O(nO(1)kO(1) + α)
complexity for this problem where α is the number of p-length simple cycles in the
graph, assuming p constant. Kowalik essentially shows that small cycles can be
broken into few small special paths with at most 3 or 4 vertices and proves bounds
on the number of these paths that can have common vertices. Can we extend his
approach using t-paths decompositions?

27

Chapter 3

Maximal cliques enumeration

We present in this chapter our second contribution concerning enumeration al-
gorithms for k-degenerate graphs. It has been presented at IPEC 2017 conference.

3.1 Introduction

For many applications, it is useful to report not one but all the maximal cliques
of the graph. General graphs can contain an exponential number of cliques [112],
thus any algorithm enumerating maximal cliques has exponential worst case time
complexity. In practice however, graphs with this worst-case behavior are not typ-
ical. Most of the encountered graphs are sparse [68]. Thus, handling correctly the
sparsity of the graph can be an e�cient approach. Indeed, it has long been known
that certain sparse graph families, such as planar graphs and graphs with low de-
generacy, contain only a linear number of cliques, and that all maximal cliques in
these graphs can be listed in linear time [30, 31]. Thus it seems pertinent to design
algorithms for maximal clique enumeration that take into account some sparsity
measure of the graph. In our case, this measure is degeneracy. We give now some
of the existing results.

There have been many contributions for the problem of listing all maximal cliques
in general and k-degenerate graphs. We can essentially distinguish between two
families of algorithms, which have been introduced in Section 1.4.1.

On one side, worst-case output size algorithms have been proposed. Tomita et
al. [137] prove an algorihtm enumerating all maximal cliques of a general n-order
graph in time O(3n/3). This is worst-case output size optimal in general graphs as
for instance the Moon-Moser graphs have Θ(3n/3) cliques [25, 112]. Similarly, for k-
degenerate graphs, Eppstein et al. [53] prove a O((n−k)3k/3) bound on the maximal
number of maximal cliques and then show an algorithm running in time O(k(n −
k)3k/3). The two algorithms described above rely on ideas of the Bron-Kerbosch
algorithm [23]. These results are summarized in the �rst three rows of Table 3.1.
The basic form of the Bron�Kerbosch algorithm is a recursive backtracking algorithm
that searches for all maximal cliques in a given graph G. Given three sets R, P ,
and X, it �nds the maximal cliques that include all of the vertices in R, some of the
vertices in P , and none of the vertices in X. In each call to the algorithm, P and X
are disjoint sets whose union consists of those vertices that form cliques when added
to R. In other words, P ∪X is the set of vertices which are joined to every element
of R. When P and X are both empty there are no further elements that can be
added to R, so R is a maximal clique and the algorithm outputs R. The recursion is
initiated by setting R and X to be the empty set and P to be the vertex set of the

28

Algorithm Setup Enumeration Space
Bron-Kerbosch [23] O(m) unbounded O(n+ q∆)

Tomita et al. [137] O(m) O(3n/3) O(n+ q∆)

Eppstein et al. [53] O(m) O(k(n− k)3k/3) O(n+ k∆)

Johnson et al. [90]+ O(mn) αO(mn) O(αn)
Tsukiyama et al. [140]+ O(n2) αO((n2 −m)n) O(n2)

Chiba et al. [30]+ O(m) αO(mk) O(m)
Makino et al. [104]+ O(mn) αO(∆4) O(m)
Chang et al. [27]+ O(m) αO(∆h3) O(m)
Makino et al. [104]+ O(n2) αO(n2.37) O(n2)
Comin et al. [37]+ O(n5.37) αO(n2.09) O(n4.27)

Conte et al. [38]+ O(m logO(1) (m+ n)) αO(qd(∆ + qd) logO(1)(m+ n)) O(q)

Conte et al. [38]+ O(m logO(1) (m+ n)) αO(min{mk, qk∆} logO(1) (m+ n)) O(k)

∆ = max degree k = degeneracy q = largest clique size
α = number of maximal cliques

h = smallest integer such that |{v ∈ V : |N(v)| ≥ h}|, where k ≤ h ≤ ∆.

Table 3.1 � Bounds for maximal clique enumeration where q − 1 ≤ k ≤ ∆ ≤
n− 1. + : these are polynomial time delay algorithms. Their delay is equal to their
enumeration time divided by the number of maximal cliques α. The space bounds
do not include the space needed to store the graph.

graph. Within each recursive call, the algorithm considers the vertices in P in turn;
if there are no such vertices, it either reports R as a maximal clique (if X is empty),
or backtracks. For each vertex v chosen from P , it makes a recursive call in which
v is added to R and in which P and X are restricted to the neighbor set N(v) of v,
which �nds and reports all clique extensions of R that contain v. Then, it moves v
from P to X to exclude it from consideration in future cliques and continues with
the next vertex in P .

Another family is the one of polynomial delay algorithms. Their time complex-
ities can be divided into a preprocessing phase followed by an enumeration phase.
During the enumeration phase, maximal cliques of the graph are outputted with
polynomial delay: the wait between the output of two maximal cliques is bounded
by some polynomial in the parameters of the graph. For example, the algorithm of
Johnson et al. [90] has time setup O(mn) and polynomial time delay O(mn). Thus
after the setup phase, this algorithm requires αO(mn) time, α being the number
of maximal cliques, to output all the maximal cliques of the graph. It is output
sensitive since the enumeration time depends on the number of maximal cliques
of the graph. All the algorithms that fall into this category are listed in the last
nine rows of Table 3.1. For these speci�c algorithms the time delay is equal to the
enumeration time divided by α, the number of maximal cliques.

Our contribution is, given a k-degenerate graph, a polynomial time algorithm
with setup time O(n(k2 + s(k + 1))) and enumeration time αO((k + 1)f(k + 1)),
where s(k + 1) (resp. f(k + 1)) is the preprocessing time (resp. enumeration time)
for maximal clique enumeration in a general (k + 1)-order graph. For example,
using the algorithm of Makino et al. [104] which has setup time O((k + 1)2) and
enumeration time O((k + 1)2.37) for a (k + 1)-order graph, our algorithm has setup
time O(n(k2 + (k+ 1)2)) and enumeration time αO((k+ 1)(k+ 1)2.37). Since in a k-
order graph all the graph parameters (number of edges and vertices, the maximum
degree, the clique size, etc.) are bounded by some function of k, our algorithm
will always have enumeration time depending only on the degeneracy of the graph,

29

whatever output sensitive algorithm of Table 3.1 we use. This is the �rst such
algorithm. Observe that, even graphs with constant degeneracy can have maximum
degree ∆ = Θ(n): this holds for the graph which has a vertex connected to an
independent set of size (n − 1). Its degeneracy is one but it has maximum degree
n− 1.

On the downside, we were not able to prove that our algorithm has polynomial
time delay. It also requires that the maximal cliques be stored. Thus, since the
maximal cliques of a k-degenerate graph are of size at most k + 1, our algorithm
needs O((k + 1)α) space, besides the space needed to store the graph (in our case,
the graph can be stored using adjacency lists). Further improvements are discussed
in the conclusion.

The organization of the section is as follows. In Section 3.2 we introduce some
notations and de�nitions. In Section 3.3 we prove basic results. These results are
used in Section 3.4 to prove the correctness and time complexity of Algorithm 2,
which is the main contribution of the section.

3.2 De�nitions

For basic notations and de�nitions, the reader can refer to Section 1.1. We
assume that the mentioned graphs are simple and connected. Given an ordering
v1, ..., vn of the vertices of a graph G, Vi is the set of vertices following vi including
itself in this ordering, that is, the set {vi, vi+1, ..., vn}. By Gi we denote the induced
subgraph G[N [vi] ∩ Vi]. Recall that a graph is k-degenerate if there is an ordering
v1, ..., vn of its vertices such that for all i, 1 ≤ i ≤ n, |N(vi)∩Vi| ≤ k. Given a graph
G, we denote by σG its degeneracy ordering and if x ∈ V (G) then σG(x) will be the
ranking of x in σG.

At some point in the algorithm we'll need to store maximal cliques and their
su�xes. One way to do that is to transform the cliques into words and store them
in some special data structure which is introduced in Section 3.4. To do so we
need to give some basic de�nitions regarding strings and their su�xes. Let Σ be
an alphabet, that is, a non-empty �nite set of symbols. Let a string s be any �nite
sequence of symbols from Σ; s will be a substring of a string t if there exists strings
u and v such that t = usv. If u or v is not empty then s is a proper substring of t.
It will be a su�x of t if there exists a string u such that t = us. If u is not empty,
s is called a proper su�x of t.

3.3 Basic results

When not speci�ed, we always assume that, given a k-degenerate graph G, we
have its degeneracy ordering, denoted by σG. When referring to an ordering of
the vertices, we always refer to σG. The family of subgraphs Gi, i ∈ [n] described in
Section 3.2 will always be constructed following the degeneracy ordering of G. Thus,
these graphs have at most k + 1 vertices, since in a degeneracy ordering v1, ..., vn of
the vertices of G, the inequality |N [vi] ∩ Vi| ≤ k + 1 holds.

We �rst prove that the family of induced subgraphs Gi, i ∈ [n] can be constructed
quite e�ciently.

Lemma 3.3.1. Given a k-degenerate graph G, there is an algorithm constructing
the induced subgraphs Gi, i ∈ [n] in time O(nk2) and O(m) space.

30

Proof. Compute the degenerate adjacency lists of G. This is done in time O(m) by
Lemma 1.3.4. Observe �rst that the vertex set of graph Gi, i ∈ [n] corresponds to
the i-th vertex of σG plus all the vertices of its degenerate adjacency list. Thus, it
only remains to show how to compute the adjacency lists of each of these graphs. We
proceed as follows. For every vertex x ∈ V (Gi), go through its degenerate adjacency
list and remove vertices which are not in the vertex set V (Gi). Observe that this
can be done in O(k) by coloring the vertices of V (Gi) blue and removing non blue
vertices from the degenerate adjacency list of x. This procedure takes time O(k2)
for each graph Gi, i ∈ [n], thus in total, we need time O(nk2 + m) = O(nk2), as
m = O(nk).

In the remainder of the section, we study the relationship between the family
of induced subgraphs constructed in Lemma 3.3.1 and the maximal cliques of the
graph. We show that the cliques which are maximal in these subgraphs but not in
the general graph have a very particular structure. We also show that every maximal
clique of the general graph appears exactly once in one of the subgraphs.

Lemma 3.3.2. Let G be a k-degenerate graph, σG its degeneracy ordering, and let
K be a maximal clique of an induced subgraph Gi, i ∈ [n]. Clique K is not a maximal
clique of G if and only if there exists a maximal clique C of G which is an induced
subgraph of a Gj with j < i and such that K is a strict induced subgraph of C.

Proof. Let σG be the degeneracy ordering of G. Assume that K is a maximal clique
of an induced graph Gi for i = 1, ..., n−k but is not a maximal clique of G. Observe
that vi ∈ V (K) since, by de�nition, vi is connected to all the vertices of V (Gi)\vi.
Since Ki is a clique which is not maximal, then there exists a set A of vertices such
that A∩V (K) = ∅ and the graph induced on V (K)∪A is a maximal clique of G. Let
vj be the vertex of A with lower ranking in σG. We have that σG(vj) < σG(vi) since
vj is connected to vi but does not appear in V (Gi). (It does not appear, otherwise
A∩V (K) 6= ∅). Let C be the maximal clique induced on V (K)∪A. Clique C is an
induced subgraph of Gj with j < i. Observe that K does not have vj in its vertex
set. Therefore K is a strict induced subgraph of C.

Conversely, assume that K is a maximal clique of Gi and C a maximal clique
of Gj, j < i such that K is an induced subgraph of C. Since K is a strict induced
subgraph of a maximal clique of G then K can not be a maximal clique of G.

Corollary 3.3.3. Let G be a k-degenerate graph and let K be a maximal clique
of an induced subgraph Gi, i ∈ [n] such that K is not maximal in G. Let C be a
maximal clique of G which is a subgraph of some graph Gj, j < i and such that K
is a subgraph of C. Let W (K) and W (C) be the words obtained from the vertices
of cliques K and C which have been ordered following σG. Then W (K) is a proper
su�x of W (C).

Proof. Observe �rst that by Lemma 3.3.2, clique C is well de�ned. Since K is a
strict subgraph of C then V (K) ⊂ V (C). Recall that by de�nition, graph Gi =
G[N [vi] ∩ Vi] where vi is the i-th vertex of the degeneracy ordering. Observe that
since vi is the vertex of V (K) with smallest ranking in σG then vi appears �rst in
W (K). We also have that vi ∈ V (C). Assume now by contradiction that W (K)
is not a proper su�x of W (C). This implies that there exists at least a vertex
x ∈ V (C)\V (K) that appears after vertex vi in W (C). If that was not the case
then W (K) would have been a proper su�x of W (C). This implies that vertex x

31

appears after vertex vi in σG. Observe now that x is connected to all the vertices of
K since x ∈ V (C) and V (K) ⊂ V (C). Thus G[V (K) ∪ {x}] is a maximal clique of
Gi, which is a contradiction by maximality of K.

Lemma 3.3.4. Let G be a k-degenerate graph. Every clique which is maximal in
some subgraph Gi, i ∈ [n] is not maximal in any subgraph Gj with j 6= i.

Proof. Let K be a maximal clique of some subgraph Gi, i ∈ [n]. Assume by con-
tradiction that there exists a j ∈ [n] with j 6= i such that K is maximal in Gj.
Assume �rst that i < j. Since vertex vi is connected to all the vertices of graph
Gi, necessarily vi ∈ V (K) or K is not maximal in Gi. Since we assumed i < j
then vi /∈ V (Gj). This implies that K cannot be a subgraph of Gj, which gives
a contradiction in that case. Thus assume now that j < i. The proof is similar.
Vertex vj which is connected to all the vertices of Gj does not belong to graph Gi.
Since K is maximal in Gi and since vj /∈ V (K) then K cannot be maximal in Gj.

Lemma 3.3.5. Let G be a k-degenerate graph, σG its degeneracy ordering. Every
maximal clique of G is a subgraph of exactly one graph Gi, i ∈ [n].

Proof. let K be some maximal clique of G. We �rst prove that K is a subgraph of at
least a subgraph Gi, i ∈ [n]. Let x ∈ V (K) be the vertex of K which has minimum
ranking in σG. Observe now that clique K is a subgraph of graph GσG(x). The fact
that clique K is a subgraph of at most one graph Gi, i ∈ [n] is a consequence of
Lemma 3.3.4.

We can now bound the number of cliques which are maximal in graphs Gi, i ∈ [n]
but not maximal in the graph itself. This is done using the characterization of their
structure in Lemmas 3.3.2, 3.3.4 and 3.3.5.

Lemma 3.3.6. Let G be a k-degenerate graph. Let Gi, i ∈ [n] be the family of
induced subgraphs as de�ned in Section 3.2 and constructed in Lemma 3.3.1. Let α
denote the number of maximal cliques of G and αi the number of maximal cliques

of graph Gi. We have that
n∑
j=1

αj ≤ α(k + 1).

Proof. Let maxi denotes the number of maximal cliques of Gi, i ∈ [n] which are
maximal in G and Nmaxi the number of maximal cliques of Gi, i ∈ [n] which are
not maximal in G. We have that αi = maxi + Nmaxi. By Lemma 3.3.5, every
maximal clique of G is a subgraph of exactly one graph Gi, i ∈ [n]. This implies
that

∑n
j=1maxj = α. Let X be the set of cliques which are maximal in some graph

Gi, i ∈ [n] but not maximal in G and let x ∈ X. By Corollary 3.3.3, the word
obtained from the vertices of x which have been ordered following σG is a proper
su�x of the word obtained from ordering the vertices, following σG, of some maximal
clique of G. This implies that X is of size at most kα since a maximum clique of
a k-degenerate graph has at most k vertices and since a word with k letters has at
most k proper su�xes. To conclude the proof, Lemma 3.3.4 implies that clique x is
maximal in a unique graph Gi, i ∈ [n] which implies that

∑n
j=1Nmaxj ≤ kα. Thus

in total
∑n

j=1 αj ≤ α + αk = α(k + 1).

We are now ready to describe the algorithm for maximal clique enumeration in
the next section. It is essentially based on Corollary 3.3.3 and Lemmas 3.3.5 and
3.3.6.

32

3.4 Algorithm for maximal clique enumeration

Before we describe the algorithm, we introduce su�x trees. We need a data
structure to store the proper su�xes of all maximal cliques. Given a word of size n,
we can construct a su�x tree containing all its su�xes in space and time O(n), see
[109, 142, 147]. For a set of words X = {x1, x2, ..., xn}, it is possible to construct
a generalized su�x tree containing all the su�xes of the words in X, in an online
fashion, in space and time O(

∑n
i=1 |xi|), see [72, chapter 6] and [142] for instance.

The outline of the algorithm is the following. We start by computing the induced
subgraphs Gi, i ∈ [n]. Then we consider each such subgraph, starting from from G1

up to Gn. We �nd all its maximal cliques and try to �nd them in a generalized
su�x tree. If there is a match, the clique is rejected, otherwise it is outputted and
its proper su�xes are inserted into the generalized su�x tree. The procedure is
described in Algorithm 2. Its correctness is proved in Theorem 3.4.1 and its time
complexity in Theorem 3.4.2.

Algorithm 2:

Data: A graph G.
Result: All the maximal cliques of G.

1 Compute the degeneracy k of G and σG.
2 Construct the graphs Gi, i ∈ [n].
3 Initialize T an empty generalized su�x tree.
4 for j = 1 to n do
5 Compute all maximal cliques of graph Gj.
6 for every maximal clique K of graph Gj do
7 Order the vertices of K following σG
8 Search for K in T .
9 if there is a match then
10 Reject it.
11 end
12 else
13 Insert the proper su�xes of K in T .
14 Output K.
15 end

16 end

17 end

Theorem 3.4.1. Given a graph G, Algorithm 2 outputs exactly all its maximal
cliques, without duplication.

Proof. By Lemma 3.3.5, every maximal clique of the graph is a subgraph of exactly
one graph Gi, i ∈ [n]. Thus every maximal clique K of the graph is considered
exactly once in Line 6 of the algorithm. If K is matched in the generalized su�x
tree at Line 7 then the vertices of K ordered following σG form a proper su�x of
some clique of the graph. This contradicts the fact that K is maximal in G. Thus
every maximal clique is outputted exactly once. Moreover all the proper su�xes of
all the maximal cliques are stored in the generalized tree. By Corollary 3.3.3 the
word obtained from a maximal clique in some graph Gi, i ∈ [n] which is not maximal
in G forms a proper su�x of the world obtained from some maximal clique of G.
Thus all such cliques will be rejected in Line 9 of Algorithm 2. In conclusion, we
proved that only the maximum cliques of G are outputted, without duplication.

33

Theorem 3.4.2. Given a graph G, Algorithm 2 has setup time O(n(k2 + s(k + 1))
and enumeration time αO((k+1)f(k+1)) where α is the number of maximal cliques
of G and s(k+1) (resp. f(k+1)) is the preprocessing time (resp. enumeration time)
of maximal clique enumeration in a general (k + 1)-order graph.

Proof. Computing the degeneracy of G in Line 1 is done in O(m) time. Constructing
the graphs Gi, i ∈ [n] in Line 2 is done in O(nk2), by Lemma 3.3.1. To compute
all the maximal cliques of every graph Gi, i ∈ [n], we can use any algorithm of
Table 3.1. The chosen algorithm has preprocessing time s(|V (Gi)|) = O(s(k + 1))
and enumeration time f(|V (Gi)|) = O(f(k + 1)) for each graph Gi, i ∈ [n] since
these graphs have at most (k+ 1) vertices. We �rst preprocess every such graph Gi

in total time O(n × s(k + 1)). Thus the preprocessing phase takes time O(nk2 +
m + n × s(k + 1)) = O(n(k2 + s(k + 1))). Then we enumerate all the maximal
cliques of the graphs Gi, i ∈ [n] in total time (

∑n
j=1 αj) × O(f(k + 1)) where αj is

the number of maximal cliques of graph Gj. By Lemma 3.3.6,
∑n

j=1 αj ≤ (k + 1)α.
Thus enumerating all the maximal cliques of the graphs Gi, i ∈ [n] takes total time
αO(f(k+ 1)(k+ 1)). Searching and inserting the generated cliques in the su�x tree
takes total time αO((k + 1)2). In conclusion, Algorithm 2 has preprocessing time
O(n(k2 + s(k + 1))) and enumeration time αO((k + 1)f(k + 1)), as claimed.

3.5 Conclusion

We presented the �rst output sensitive algorithm for maximal clique enumeration
whose enumeration time depends only on the degeneracy of the graph. We were not
able to prove that it has polynomial time delay. Our intuition is that in its current
state, our algorithm has time delay O(kα). Thus we �rst ask whether this is true
or not and if yes, if there is a way to modify our approach to get a polynomial time
delay. The second question that we ask is whether or not we can improve the space
complexity. In its current state, our algorithm requires that the maximal cliques be
stored. Can we modify our approach as to avoid that ?

34

Part II

Self-stabilizing algorithms

35

Chapter 4

A 2/3-approximation for maximum
matching

In this chapter we present the �rst or our two self-stabilizing algorithms. It
approximates, in polynomial number of moves, a maximum matching in an input
graph, with ratio 2/3. It has been presented at the OPODIS 2016 conference [33].

4.1 Introduction

Matching problems have received a lot of attention in di�erent areas. Dynamic
load balancing and job scheduling in parallel and distributed networks can be solved
by algorithms using a matching set of communication links [17, 64]. Moreover, the
matching problem has been recently studied in the algorithmic game theory. Indeed,
the seminal problem relative to matching introduced by Knuth is the stable marriage
problem [96]. This problem can be modeled as a game used in social networks [78]
and in wireless networks [138].

In this section, we present a self-stabilizing algorithm for �nding a 1-maximal
matching that uses a greedy strategy. Our algorithm stabilizes after O(m × n2)
moves under the adversarial distributed daemon.

For the maximum matching problem, self-stabilizing algorithms have been de-
signed for particular topologies. In anonymous tree networks, a self-stabilizing algo-
rithm converging in O(n4) moves under the sequential adversarial daemon is given
by Karaata and Saleh [92]. Recently, Datta et al. [42] improve this result, and
give a silent self-stabilizing protocol that converges in O(n2) moves. For anonymous
bipartite networks, a self-stabilizing algorithms converging in O(n2) rounds under
the sequential daemon is given by Chattopadhyay et al. [29]. So, this algorithm
converges in Ω(n3) moves (since one round corresponds to at least n moves).

In unweighted or weighted general graphs, self-stabilizing algorithms for com-
puting maximal matchings have been designed in various models (anonymous net-
work [8] or not [141], see [71] for a survey). For an unweighted graph, Hsu and
Huang [81] gave the �rst self-stabilizing algorithm and proved a bound of O(n3)
on the number of moves under a sequential adversarial daemon. Hedetniemi et al.
[75] completed the complexity analysis proving a O(m) move complexity. Manne
et al. [106] gave a self-stabilizing algorithm that converges in O(m) moves under a
distributed adversarial daemon. Cohen et al. [34] extend this result and propose
a randomized self-stabilizing algorithm for computing a maximal matching in an
anonymous network. The complexity is O(n2) moves with high probability, under
the adversarial distributed daemon.

36

Manne et al. [107] and Asada and Inoue [8] presented some self-stabilizing algo-
rithms for �nding a 1-maximal matching. Manne et al. gave an exponential upper
bound on the stabilization time of their algorithm (O(2n) moves under a distributed
adversarial daemon). However, they didn't show that this upper bound is tight.
Asada and Inoue [8] gave a polynomial algorithm but under the adversarial sequen-
tial daemon. Recently, Inoue et al. [84] gave a modi�ed version of [8] that stabilizes
after O(m) moves under the distributed adversarial daemon for networks without
cycle whose length is a multiple of three.

In a weighted graph, Manne and Mjelde [105] presented the �rst self-stabilizing
algorithm for computing a weighted matching of a graph with a 1

2
-approximation of

the optimal solution. They established that their algorithm stabilizes after at most
an exponential number of moves under any adversarial daemon (i.e., sequential
or distributed). Turau and Hauck [141] gave a modi�ed version of the previous
algorithm that stabilizes after O(nm) moves under any adversarial daemon.

Figure 4.1 compares features of the aforementioned algorithms and our result.
We are then interested in the following problem: how to e�ciently build a 1-

maximal matching in an identi�ed graph with a general topology, using an adver-
sarial distributed daemon and in a self-stabilizing way? In this section, we present
two algorithms solving this problem. The �rst one is the well-known algorithm from
Manne et al. [107] that was the only one until now that solved this problem. The
second algorithm is our contribution. It is known that the Manne et al. algorithm
reaches a sub-exponential complexity [32]. We prove that our algorithm is polyno-
mial (in O(m × n2)). This section is an extended version of the conference paper
[33], where we present our polynomial algorithm (but with a sketch of the proof
only) and the technical report [32]. In the conference paper [33], we obtained a
O(n3) convergence time assuming an already built maximal matching. In this sec-
tion, under the same assumption, we obtain a O(n2) convergence time. Thus, as we
will develop this scheme in Sections 4.3 and 5.4.3, using a classical composition [47]
of the self-stabilizing maximal matching algorithm given by Manne et al. [106] and
of our algorithm, we obtain a O(m× n2) move complexity.

Matching Topology Identi�ers Daemon
Complexity

Work
(moves)

Maximum
Tree Global

Adver. Sequential
O(n2) [92, 42]

Bipartite Anonymous Ω(n3) [29]

Maximal Arbitrary
Global

Adver. Sequential O(m) [81, 75]
Adver. Distributed O(m) [106]

Anonymous
Adver. Sequential O(n2) [81]
Adver. Distributed O(n2) whp [34]

1-Maximal

Arbitrary without cycle
Anonymous

Adver. Sequential O(m) [8]
with multiple of 3 length Adver. Distributed O(m) [84]

Arbitrary Global Adver. Distributed
Ω(2

√
n) [107]

O(m.n2) Here

Figure 4.1 � Best results in maximum matching approximation. In bold, our con-
tributions.

In the rest of the chapter, we present the model (Section 4.2), then we give the
strategy based on a 3-augmenting path deletion that is used to build a 1-maximal
matching (Section 4.3). This strategy is used by both algorithms presented next.
In Section 4.4, we precisely describe the Manne et al. algorithm [107]. Next, we
give our polynomial algorithm in Section 4.5, its correctness proof in Section 4.5.5
followed by its convergence proof in Section 4.5.6.

37

4.2 Model

For the communication, we consider the shared memory model. In this model, as
described in Section 1.4.2, each process maintains a set of local variables that makes
up the local state of the process. A process can read its local variables and the local
variables of its neighbors, but it can write only in its own local variables.

We consider the adversarial distributed daemon, which is the most general one.
It can select any non-empty subset of activable nodes for execution. The algorithm
presented here, is silent, meaning that once the algorithm has stabilized, no process
is activable. In other words, all executions of our algorithm are �nite and end in a
stable con�guration. A non silent self-stabilizing algorithm has at least one in�nite
execution with a su�x only containing legitimate con�gurations, but not stable ones.

4.3 Common strategy to build a 1-maximal match-

ing

In what follows, we present two algorithms. The �rst one, denoted by Expo-

Match, is the Manne et al. algorithm [107]. The second one, called PolyMatch, is
the main contribution of this section. These two algorithms share di�erent elements
and this section is devoted to give these main common points.

Both algorithms operate on an undirected graph, where every node has a unique
identi�er. They also assume an adversarial distributed daemon and that there exists
an already built maximal matching, noted M. Based on M, the two algorithms
build a 1-maximal matching. To perform that, nodes search and delete any 3-
augmenting paths they �nd in M.

4.3.1 3-augmenting path

We recall the de�nition of an augmenting path given in Section 1.2. An aug-
menting path is a path in the graph, starting and ending in an unmatched node,
and where every other edge is either unmatched or matched.

De�nition 4.3.1. Let G = (V,E) be a graph and M be a maximal matching of G.
(x, u, v, y) is a 3-augmenting path on (G,M) if:

1. (x, u, v, y) is a path in G (so all nodes are distincts);

2. {(x, u), (v, y)} ⊂ E \M ;

3. (u, v) ∈M

Once an augmenting path is detected, nodes rearrange the matching accordingly,
i.e., transform this path with one matched edge into a path with two matched edges
(see Figure 4.2). This transformation leads to the deletion of the augmenting path
and increases by one the cardinality of the matching. Both algorithms will stabilize
when there are no augmenting paths of length three left. Thus the hypothesis of
Karps's theorem [79] eventually holds, giving a 2

3
-approximation of the maximum

matching (and so a 1-maximal matching).

4.3.2 The underlying maximal matching

In the rest of the section, M is the underlying maximal matching. This under-
lying matching is locally expressed by variables mv for each node v. If (u, v) ∈ M

38

x u v y x u v y

(a) A 3-augmenting path

(one matched edge)

(b) The path after being exploited.

(two matched edges)

Figure 4.2 � An example of exploitation of an augmenting path. On the left we
have the initial matching and on the right the new matching after exploitation of
the augmenting path.

then u and v are matched nodes and we have: mu = v∧mv = u. If u is not incident
to any edge in M, then u is a single node and mu = null. For a set of nodes A,
we de�ne single(A) and matched(A) as the set of single and matched nodes in A,
accordingly to the underlying maximal matching M. Since we assume M to be
stable, a node membership in matched(V) or single(V) will not change throughout
an execution, and each node u can use the value of mu to determine which set it
belongs to.

Note that M can be built with any silent self-stabilizing maximal matching
algorithm that works for general graphs and with an adversarial distributed daemon.
We can then use, for instance, the self-stabilizing maximal matching algorithm from
[106] that stabilizes in O(m) moves. Observe that this algorithm is silent, meaning
that the maximal matching remains constant once the algorithm has stabilized.

4.3.3 Augmenting paths detection and exploitation

Both algorithms ExpoMatch and PolyMatch are based on two phases for
each edge (u, v) in M: (1) detecting augmenting paths and (2) exploiting the de-
tected augmenting paths. Node u keeps track of four variables. The pointer pu is
used to de�ne the �nal matching. The variables αv, βu are used to detect augment-
ing paths and contain single neighbors of u. Also, su is a boolean variable used
for the augmenting path exploitation. We will see in section 4.5 that algorithm
PolyMatch uses a �fth variable named endu.

In the rest of the section, we will call M+ the �nal 1-maximal matching built
by any of the two algorithms. M+ is de�ned as follows:

De�nition 4.3.2. The built set of edges is:

M+ = {(u, v) ∈M : pu = pv = null} ∪ {(a, b) ∈ E \M : pa = b ∧ pb = a}

The �rst set in the union is pairs of nodes that do not perform any rematch.
These pairs come from M. The second set in the union is pairs of nodes that
were not matched together in M, but after a 3-augmenting path detection and
exploitation, they matched together.

Augmenting path detection. First, every pair of matched nodes u, v (v=mu

and u=mv) tries to �nd single neighbors they can rematch with. These single
neighbors have to be available, in particular, they should not be married in a �nal
way with another matched node. We will see in the next sections, that the meaning
of being available is not the same in PolyMatch and ExpoMatch. We say that a
single node x is a candidate for a matched node u if x is an available single neighbor
of u. Note that u and v need to have a su�cient number of candidates to detect
a 3-augmenting path: each node should have at least one candidate and the sum

39

of the number of candidates for u and v should be at least 2. In both algorithms,
the BestRematch predicate is used to compute candidates of a matched node u,
writing in αu and βu. Then, the condition below is used in both algorithms � in
the AskFirst predicate � to ensure the number of candidates is su�ciently high to
detect if u belongs to a 3-augmenting path.

αu 6= null ∧ αmu 6= null ∧ 2 ≤ Unique({αu, βu, αmu , βmu}) ≤ 4

where Unique(A) returns the number of unique elements in the multi-set A.

Augmenting path exploitation. The exploitation is done in a sequential
way. First, two nodes matched together u and v agree on which one starts to build
a rematch and which one ends. This local consensus is done using AskFirst and
AskSecond predicates. Observe that these predicates are exactly the same in both
algorithms. These predicates use the local state of u and v to assign a role to
these two nodes. If AskFirst(u) is True then u starts to rematch and v ends. If
AskSecond(u) is True then v starts to rematch and u ends.

Observe that there are only three distinct possible values for the quadruplet
(AskFirst(u), AskSecond(u), AskF irst(v), AskSecond(v)) for any couple (u, v) ∈
M and whatever the α and β values are. These are: (null, null, null, null) or
(x, null, null, y) or (null, x, y, null), with x and y are two distincts single nodes.
The �rst case means that there is no 3-augmenting path that contains the couple
(u, v). The two other cases mean that (x, u, v, y) is a 3-augmenting path. The second
case occurs when x < y, otherwise we are in the third case. Node u is said to be
First if AskFirst(u) 6= null. In the same way, u is Second if AskSecond(u) 6= null.
So, if a 3-augmenting path is detected though (u, v), the roles of u and v depend on
the identi�ers of single nodes (candidates) in the augmenting path, i.e., u is First
i� its single neighbor in the augmenting path has a smaller identi�er that the single
neighbor of v in the augmenting path.

4.3.4 Graphical convention

We will follow the above conventions in all the �gures: matched nodes are rep-
resented with thick circles and single nodes with thin circles. Node identi�ers are
indicated inside the circles. Moreover, all edges that belong to the maximal match-
ing M are represented with a thick line, whereas the other edges are represented
with a simple line. In the same way, all matched nodes are represented with a thick
line, whereas single nodes are represented with a simple line. We illustrate the use
of the p-values by an arrow, and the absence of the arrow or symbol 'T' mean that
the p-value of the node equals to null. A prohibited value is �rst drawn in grey, then
scratched out in black. For instance, in Figure 4.4, node 10 is single, nodes 9 and 8
are matched and the edge (8, 9) ∈M.

4.4 Description of the algorithm ExpoMatch

In this section, we precisely describe the algorithm ExpoMatch [107]. The
algorithm itself is shown in Figure 4.3.

4.4.1 Augmenting paths detection and exploitation

Augmenting path detection. In this algorithm, a single node x is a candidate
for a matched node u if it is not involved in another augmenting path exploitation,

40

i.e., if px = null ∨ px = u.

Augmenting path exploitation. A 3-augmenting path is exploited in two
phases. These two phases are performed in a sequential way. Recall that node u is
said to be First if AskFirst(u) 6= null and node u is Second if AskSecond(u) 6= null.
Let us consider two nodes u and v such that (u, v) ∈M. Let us assume that u and
v detect an augmenting path.

1. The First node starts : Exactly one node among u and v attempts to rematch
with one of its candidates. This phase is complete when the �rst node, let say
u, is such that su = True and this indicates to the Second node (v) that the
�rst phase is over.

2. The Second node continues: only when the �rst node succeeds will the second
node attempt to rematch with one of its candidates.

(a) If this also succeeds, the exploitation is done and the augmenting path is
said to be fully exploited

(b) Otherwise the rematch built by the First node is deleted and candidates
α and β are computed again, allowing then the detection of some new
augmenting paths.

4.4.2 Rules description

There are four rules for matched nodes. The Update rule is the rule with the
highest priority. This rule allows a matched node to update its α and β variables,
using the BestRematch predicate. Then, predicates AskFirst and AskSecond are
used to de�ne the role the node will have in the 3-augmenting path exploitation. If
the node is First (resp. Second), then it will execute MatchFirst (resp. MatchSec-
ond) several times for this 3-augmenting path exploitation. The ResetMatch rule
is performed to reset bad initialization and also to reset an augmenting path ex-
ploitation that did not terminate. For instance, this case happens when the single
candidate of the Second node rematches with some other node in the middle of the
exploitation path process.

Let us consider (u, v) ∈M and assume that u and v detect an augmenting path
and u is First. The MatchFirst rule is used by u to build its rematch. The rule is
performed a �rst time by u to propose a rematch to its candidate x (u sets pu to
x). Then, if x accepts (px = u), u performs this rule a second time to communicate
to v that its rematch attempt is a succeed (u sets su to True). The MatchSecond
rule is used by the node v to build its rematch. This rule can only be performed
if su = True. Then, the rule is performed once by v to propose a rematch to its
candidate y (v sets pv to y). Then, if y accepts (py = v), the path is fully exploited
and will not change during the rest of the execution.

There is only one rule for single nodes, called SingleNode. Recall that all neigh-
bors of a single node are matched, since M is a maximal matching. A single node
should always point to its smallest neighbor that points to it. This rule allows to
point to such a neighbor but also to reset a bad p-value to null. Observe that a
single node x cannot perform this rule if ppx = x, which means that if x point to
some neighbor that points back to x, then x is locked.

4.4.3 An execution example of the ExpoMatch algorithm

Now, we give a possible execution of Algorithm ExpoMatch under a distributed
adversarial daemon. Figure 4.4.(a) shows the initial con�guration of the execution.

41

����� Rules for each node u in single(V)

SingleNode ::

if (pu = null ∧ Lowest{v ∈ N(u) | pv = u} 6= null) ∨ pu /∈ matched(N(u)) ∪ {null}∨
(pu 6= null ∧ ppu 6= u)

then pu := Lowest{v ∈ N(u) | pv = u}

������ Rules for each node u in matched(V)
Update ::

if (αu > βu) ∨ (αu, βu /∈ single(N(u)) ∪ {null}) ∨ (αu = βu ∧ αu 6= null) ∨ pu /∈ single(N(u)) ∪ {null} ∨
((αu, βu) 6= BestRematch(u)∧ (pu = null ∨ ppu /∈ {u, null}))

then (αu, βu) := BestRematch(u)
(pu, su) := (null, false)

MatchFirst ::

Let x = AskFirst(u)
if x 6= null ∧ (pu 6= x ∨ su 6= (ppu = u))
then pu := x

sv := (ppu = u)

MatchSecond ::

Let y = AskSecond(u)
if y 6= null ∧ smu = true ∧ pu 6= y
then pu := y

ResetMatch ::

if AskFirst(u) = AskSecond(u) = null ∧ (pu, su) 6= (null, false)
then (pu, su) := (null, false)

����� Predicates and functions

BestRematch(u) ≡
a := Lowest {v ∈ single(N(u)) ∧ (pv = null ∨ pv = u)}
b := Lowest {v ∈ single(N(u)) \ {a} ∧ (pv = null ∨ pv = u)}
return (a, b)

AskFirst(u) ≡
if αu 6= null ∧ αmu 6= null ∧ 2 ≤ Unique({αu, βu, αmu , βmu}) ≤ 4

then if αu < αmu ∨ (αu = αmu ∧ βu = null) ∨ (αu = αmu ∧ βmu 6= null ∧ u < mu)
then return αu

else return null

AskSecond(u) ≡
if AskFirst(mu) 6= null

then return Lowest({αu, βu} \ {αmu})
else return null

Unique(A) returns the number of unique elements in the multi-set A.
Lowest(A) returns the node in A with the lowest identi�er. If A = ∅, then Lowest(A) returns null.

Figure 4.3 � ExpoMatch algorithm

42

The topology is a path of seven vertices. The underlying maximal matching repre-
sented by bold edges contains two edges (24, 2) and (9, 8). Then nodes 24, 2, 9 and
8 are matched nodes (in matched(V)) and nodes 15, 10 and 7 are single nodes (in
single(V)). There are two 3-augmenting paths: (15, 24, 2, 10) and (10, 9, 8, 7).

71015 89224

(a) Initial con�guration.

71015 89224

(f) Node 8 executes a ResetMatch
move.

71015 89224

(b) The exploitation of (10, 9, 8, 7)
starts.

71015 89224

(g) Node 7 executes a SingleNode move.

71015 89224

(c) Node 2 executes aMatchFirst move.

71015 89224

(h) Node 2 executes a ResetMatch
move.

71015 89224

(d) Node 10 executes a SingleNode
move.

71015 89224

(i) Node 10 execute a SingleNode move.

71015 89224

(e) Node 9 executes an Update move.

71015 89224

(j) Node 15 executes a SingleNode
move.

Figure 4.4 � An execution of Algorithm ExpoMatch

The initial con�guration (Figure 4.4.(a)). In the initial con�guration, we
assume that α-values and β-values are de�ned as follows: (α8, β8) = (7, null),
(α9, β9) = (10, null) and (α24, β24) = (15, null) and (α2, β2) = (10, null). We also
assume all s-values are well de�ned: s8 = s9 = s2 = s24 = false. At this step, node
15 has its p-values such that: p15 6∈ {null, 24}.

Observe that in the initial con�guration, we only have two wrong values: p15 and
α24. We are going to show that these two faulty nodes can generate the destruction
of an augmenting path exploitation, even if this exploited path does not contain
any faulty node. This scenario is the fundamental reason why the ExpoMatch

algorithm is sub-exponential.

The 3-augmenting path exploitation of (10, 9, 8, 7) starts (Figure 4.4.(a-
b)). Nodes 8 and 9 can start to exploit their augmenting path: node 8 is First
because α8 < α9, so node 8 executes a MatchFirst move and sets p8 = 7. At this
point, node 8 waits for an answer of node 7. Node 7 accepts to take part of this path
exploitation setting p7 = 8 (by performing a SingleNode rule). Afterwards, node 8
can tell node 9 that it can start its exploitation too. Thus node 8 executes again
a MatchFirst move and sets s8 = True. Now, node 9 can start his exploitation.
Assume that it does by executing a MatchSecond move. Then node 9 waits for an
answer of node 10 and we are in con�guration drawn in Figure 4.4.(b).

The 3-augmenting path exploitation of (15, 24, 2, 10) starts (Figure 4.4.(b-
d)). Now, we focus on the other 3-augmenting path (15, 24, 2, 10). At this moment,
since 2 ≤ Unique({α24, β24, α2, β2}) ≤ 4, node 2 detects a 3-augmenting path and
starts to exploit it. Since node 2 is First (AskFirst(2) = 10), node 2 can execute a
MatchFirst move. Let us assume it does (see Figure 4.4.(c)).

Since both nodes 9 and 2 are pointing to node 10, node 10 can choose the node
to match with from these two nodes. Node 10 makes this choice by executing a

43

SingleNode move: since Lowest{u ∈ N(10) | pu = 10} = 2, node 10 chooses node 2
(see Figure 4.4.(d)).

The 3-augmenting path (10, 9, 8, 7) exploitation is destroyed (Figures
4.4.(d-g)). Node 9 considers that node 10 belongs to another 3-augmenting path
because p10 6∈ {null, 9}. Moreover, since (α9, β9) 6= BestRematch(9), node 9 can
execute an Update move. Let us assume it does. Figure 4.4.(e) shows the con�gu-
ration obtained after this move: (α9, β9) = (null, null) and (p9, s9) = (null, false).
This will cause AskFirst(8) = AskSecond(8) = null. Then node 8 executes a Re-
setMatch move (see con�guration after this move in Figure 4.4.(f)). This will cause
node 7 to execute a SingleNode move and sets p7 = null as seen in Figure 4.4.(g).

Focus on the 3-augmenting path (15, 24, 2, 10) (Figures 4.4.(g-j)). Let
us assume now that the faulty node 24 is activated. It executes an Update move
(because (α24, β24) 6= BestRematch(24)) and sets (α24, β24) = (null, null). After
this move, node 2 detects that it does not belong to any 3-augmenting path since
AskFirst(2) = AskSecond(2) = null. So, node 2 executes a ResetMatch move
and sets (p2, s2) = (null, false) (see Figure 4.4.(h)). Afterward, node 10 executes a
SingleNode move to set p10 to null (see Figure 4.4.(i)). Now, only node 15 is activable
and it executes a SingleNode move in order to set p15 to null (see Figure 4.4.(j)).
At this moment, the two exploitation processes for the two 3-augmenting paths can
start again.

4.5 Our algorithm PolyMatch

The algorithm presented in this section is called PolyMatch, and is based
on the algorithm presented by Manne et al. [107], called ExpoMatch. As in
ExpoMatch, PolyMatch assumes there exists an underlying maximal match-
ing, calledM.

4.5.1 Variables description

Our algorithm has the same set of local variables as in ExpoMatch plus one
additional boolean variable, called end. As in ExpoMatch, for a matched node
u, the pointer pu refers to a neighbor of u that u is trying to (re)match with,
and pointers αu and βu refer to two candidates for a possible rematching with u.
And again, su is a boolean variable that indicates if u has performed a successful
rematching with its candidate. Finally, the new variable endu is a boolean variable
that indicates if both u and mu have performed a successful rematching or not. For
a single node x, only one pointer px and one boolean variable endx are needed. px
has the same purpose as the p-variable of a matched node. The end-variable of a
single node allows the matched nodes to know whether it is available or not. A
single node x is available for a matched node u if it is possible for x to eventually
rematch with u, i.e., px = u ∨ endx =False (see BestRematch predicate).

4.5.2 Augmenting paths detection and exploitation

Augmenting path detection. In this algorithm, a single node x is a candidate
for a matched node u if it is not involved in another augmenting path that is fully
exploited, i.e., if endx = False ∨ px = u.

Augmenting path exploitation. A 3-augmenting path is exploited in three
phases. These phases are performed in a sequential way. Let us consider two nodes

44

u and v such that (u, v) ∈ M. Let us assume that u and v detect a 3-augmenting
path.

1. The First node starts (same as in ExpoMatch): The First node, let say u,
tries to rematch with its candidate. This phase is complete when su = True
and this indicate to the Second node (v) that the �rst phase is over.

2. The Second node continues: only when the �rst node succeeds will the second
node attempt to rematch with one of its candidates. This phase is complete
when endv = True and this indicates to v's neighbors that the second phase
is over.

3. All nodes in the path set their end variable to True : the end value of v is
propagated in the path. The goal of this phase is to write True in the end
variables of the two single nodes in the path in order to make them unavailable
for other married nodes. Indeed, the end variable is used to compute the
candidates of a matched node.

The scenario for an augmenting path exploitation when everything goes well is
given in the following. Node u starts trying to rematch with x performing a Match-
First move and pu := x. If x accepts the proposition, performing an UpdateP move
and px := u, then u will inform v of this �rst phase success, once again by per-
forming a MatchFirst move and su :=True. Observe that at this point, x cannot
change its p-value since ppx = x. Finally, node v tries to rematch with y, perform-
ing a MatchSecond move and pv := y. If y accepts the proposition, performing an
UpdateP move and py := v, then v will inform u of this �nal success, by performing
a MatchSecond move again and endv :=True. This completes the second phase.
From then, all nodes in this 3-augmenting path will set their end-variable to True :
u by performing a last MatchFirst move, and x and y by performing an UpdateEnd
move. From this point, none of these nodes x, u, v, or y will ever be eligible for any
move again. Moreover, once single nodes have their end-variables set to True, they
are not available anymore for any other matched nodes.

4.5.3 Rules description

There are four rules for matched nodes. As in ExpoMatch, the Update rule
allows a matched node to update its α and β variables, using the BestRematch
predicate. Then, predicates AskFirst and AskSecond are used to de�ne the role the
node will have in the 3-augmenting path exploitation. If the node is First (resp.
Second), then it will execute MatchFirst (resp. MatchSecond) for this 3-augmenting
path exploitation. The ResetMatch rule is performed to reset bad initialization and
also to reset an augmenting path exploitation that did not terminate.

The MatchFirst rule is used by the node when it is First. Let u be this node.
The rule is performed three times in a usual path exploitation:

1. The �rst time this rule is performed, u seduces its candidate setting (endu, su, pu)
to (False, False, AskF irst(u)).

2. Then this rule is performed a second time after u's candidate has accepted u's
proposition, i.e., when AskFirst(u) has set its p-variable to u. So the second
MatchFirst execution sets (endu, su, pu) to (False, True,AskF irst(u)). Now,
variable su is equal to True, allowing node mu that is Second to seduce its
own candidate.

3. Finally, the MatchFirst rule is performed a third time when mu completed is
own rematch, i.e., when endmu = True. Observe that when there is no bad
information due to some bad initializations, then endmu = True means pmu =

45

AskSecond(mu)∧ ppmu
= mu (see the third line of the MatchSecond rule). So

this thirdMatchFirst execution sets (endu, su, pu) to (True, True, AskF irst(u)),
meaning that the 3-augmenting path has been fully exploited.

In the MatchFirst rule, observe that we make the su a�ectation before the pu
a�ectation, because the su value must be computed accordingly to the value of
pu before activating u. Indeed, when u executes MatchFirst for the �rst time,
it allows to set pu from ⊥ to AskFirst(u) while su remains False. Then when
u executes MatchFirst for the second time, su is set from False to True while pu
remains equal to AskFirst(u). For the same argument, we make the endu a�ectation
before the su a�ectation. Thus, the "normal" values sequence for (pu, su, endu)
is: ((⊥, False, False), (AskFirst(u), False, False), (AskFirst(u), T rue, False),
(AskFirst(u), T rue, True)).

The MatchSecond rule is used by the node when it is Second. This rule is
performed only twice in a usual path exploitation. For the �rst execution, u has to
wait for mu to set its smu to True. Then u can perform MatchSecond and update
its p-variable to AskSecond(u). When u's candidate has accepted his proposition,
u can perform MatchSecond for the second time, setting su and endu to True. As
in the MatchFirst rule, we set the end and s a�ectations before the p a�ectation.

There are three rules for single nodes. The ResetEnd rule is used to reset bad
initializations. In the UpdateP rule, the node updates its p-value according to the
propositions done by neighboring matched nodes. If there is no proposition, the
node sets its p-value to null. Otherwise, p is set to the minimum identi�er among
all proposals. Afterward, the p-value can only change when the proposition is can-
celed. When a single node u has accepted a proposition, its end value should be
equal to the end value of pu. The UpdateEnd rule is used for this purpose.

4.5.4 Execution examples

We give two di�erent executions of algorithm PolyMatch under the adversarial
distributed daemon. The �rst execution points out the main di�erences between our
algorithm PolyMatch and algorithm ExpoMatch. In the second execution, we
focus on the end variable role for the exploited path process.

Main di�erence between PolyMatch and ExpoMatch algorithms.
We will consider the same example as in Section 4.4.3: we assume that we are in
the con�guration drawn in Figure 4.4.(d). We assume that all end-values equal
to False. We also assume that all α-values and β-values are de�ned as follows:
(α8, β8) = (7, null), (α9, β9) = (10, null) and (α24, β24) = (15, null) and (α2, β2) =
(10, null). At this moment, we assume that the two 3-augmenting paths are partially
exploited: p2 = p9 = 10, p10 = 2, p15 6= 24, p15 6= null, p8 = 7, and p7 = 8.

Let us focus on node 24. Node 24 considers that it does not belong to a 3-
augmenting path because end15 = True means that node 15 is not rematched.
Thus, it is eligible to execute a Update move.

In our algorithm, even after node 10 has chosen node 2, node 9 still waits for
an acceptation of node 10, and will do so while end10 remains False except for
node 15. However, at this point, in Manne et al. algorithm, node 9 can destroy the
augmenting path construction. This is the main di�erence that allows our algorithm
to prevent from exponential executions.

So, at this point there is a binary choice for node 9: destroy or not its augmenting
path construction. In the Manne et al. algorithm, the choice is to destroy, thus the
destruction of a partially exploited augmenting path can be done while no fully
exploited augmenting path has been built. In our algorithm, we do the other choice

46

which is: do not destroy while there is still hope to exploit the augmenting path.
So, if node 9 breaks a partially exploited augmenting path, then node 10 belongs to
a fully exploited augmenting path. Thus, this destruction implies one 3-augmenting
path has been fully exploited, and thus the matching size has been increased by 1.

This di�erence is implemented in the algorithm through the BestRematch pred-
icate. The condition px = null in Manne et al. algorithm has been replaced by the
condition endx =False in our algorithm. Then, in our algorithm, BestRematch(9)
remains constant when node 10 chooses node 2, while it does not in Manne et al.
algorithm, making node 9 eligible for Update.

How to handle the end-variable.

Second, we consider the �rst execution in order to illustrate the rule of local
end-variables. Figure 4.5(a) shows the initial state of the execution. The underlying
maximal matching contains one edge, (2, 3). Then nodes 2, 3 are matched nodes,
and nodes 1, 7, and 8 are single nodes. At the beginning, there are two 3-augmenting
paths: (1, 2, 3, 7) and (8, 2, 3, 7).

732

1

8

end1 = True

(a) Initial con�guration.

732

1

8

end1 = True

(b) 3 executes MatchFirst, then 7 executes
UpdateP and chooses 3.

732

1

8

(c) 1 executes ResetEnd, then 2 executes Up-
date and becomes First. Finally, 3 executes
ResetMatch.

732

1

8

(d) 2 executes MatchFirst, then 1 executes
UpdateP and accepts the proposition of 2. Fi-
nally, 2 executes MatchFirst (s2:=True).

732

1

8

(e) In parallel 7 and 3 execute UpdateP and
MatchSecond respectively.

732

1

8

(f) 7 executes UpdateP, then 3 executes
MatchSecond, then the True value of end3 is
propagated in the path (1, 2, 3, 7).

Figure 4.5 � An execution of Algorithm PolyMatch (Only the True value of the
end-variables are given)

The initial con�guration (Figure 4.5(a)):

In the initial con�guration, we assume that all α-values and β-values are de�ned
as follows: (α2, β2) = (8, null), and (α3, β3) = (7, null). We also assume all s-
values are well de�ned (all other s-values are False) whereas all end-values are False
but end1 is True. At this moment, node 2 considers that since end1 =True, node 1
already belongs to a fully exploited 3-augmenting path: BestRematch(2) = (8, null).

The 3-augmenting path is (7, 3, 2, 8). Node 2 considers that node 1 is not available
because end1 =True. Since 2 ≤ Unique({α2, β2, α3, β3}) ≤ 4, nodes 2 and 3 detect
a 3-augmenting path and start to exploit it. Since node 3 is First (AskFirst(3) = 7
and AskFirst(2) = null), node 3 may execute a MatchFirst move. Let us assume
it does.

47

The 3-augmenting path exploitation starts (Figure 4.5(b)):

Node 3 executes here a MatchFirst move and points to node 7. Since node 3 is
pointing to node 7, node 7 is the only activable node among all nodes except node
1. Node 7 points to node 3 by executing a UpdateP move.

Let us focus on node 1. Its end-value is not well de�ned since end1 =True
while node 1 does not belong to a fully exploited augmenting path. Thus, node
1 is eligible for the ResetEnd rule. Let us assume it makes this move. After this
move, we have end1 =False. This implies that BestRematch(2) = (1, 8) and thus
(α2, β2) = (8, null) 6= BestRematch(2). So, only node 2 is activable, and is eligible
for the Update rule. Thus, after this mode, node 2 is First. This implies that node
3 is Second, and it is eligible for ResetMatch because AskSecond(3) 6= null ∧ p3 6=
null ∧ s2 =False. Let us assume it does it.

A second 3-augmenting path exploitation starts (Figure 4.5(d)):

Let us consider node 2. It is First and it can execute a MatchFirst rule. After
this activation, it sets p2 = 1 and s2 = end2 =False. Now, node 1 accepts the node
2 proposition by executing a UpdateP move. After this activation, node 1 points to
node 2 (p1 = 2). Now, node 2 is eligible for executing a MatchFirst rule. It sets
p2 = 1 and s2 = True. This implies that node 3 becomes eligible for MatchSecond.

In the con�guration shown in Figure 4.5(e), node 3 can propose to node 7 with a
MatchSecond. Note that node 7 is also eligible for UpdateP since p3 6= 7. Let us as-
sume these two nodes do the move in parallel. Figure 4.5(e) shows the con�guration
obtained after theses moves: p3 = 7, p7 = null. Note that after these activations,
we have s3 = False since, before these activations, the p-values of nodes 3 and 7 are
not as follow: p3 = 7 and p7 = 3. This kind of transitions, where a matched node
proposition is performed in parallel with a single node abandonment, is the reason
why we make the s-a�ectation, then the p-a�ectation in the MatchFirst rule. This
trick allows to obtain after a MatchFirst rule: su = True implies ppu = u. Finally,
observe at this step that node 3 still waits for an answer of node 7.

The path (1, 2, 3, 7) becomes fully exploited (Figure 4.5(f)):

Now, node 7 can choose 3 by executing UpdateP. Assume that it does. Since
end3 6= (p3 = 7 ∧ p3 = AskSecond(3) ∧ p2 = AskFirst(2)), node 3 is eligible for a
MatchSecond rule to set end3 to True and then to make the other nodes aware that
the path is fully exploited. Assume node 3 executes a MatchSecond move. This will
cause node 7 (resp. 2) to execute an UpdateEnd move (resp. a MatchFirst move)
and sets end7 =True (resp. end2 =True). Now, it is the turn of node 1 to execute
an UpdateEnd move. As the end-value of nodes 1, 2, 3, and 7 are equal to True, the
3-augmenting path is fully exploited. The system has reached a stable con�guration
(see Figure 4.5(f)). Thus, the size of the matching is increasing by one and there is
no 3-augmenting path left.

Now, we present the proof of our algorithm.

4.5.5 Correctness Proof

A natural way to prove the correction of PolyMatch algorithm could have been
to follow the approach below. We consider a stable con�guration C in PolyMatch

and we prove that C is also stable in the Manne et al. algorithm. As we use the exact

48

same variables but the end-variable and because the matching is only de�ned on the
common variables, the correctness follows from the Manne et al. paper. Moreover,
we can easily show that if C is stable in PolyMatch, then no rule from the Manne
et al. algorithm but the Update rule can be performed in C. Unfortunately, it is
not straightforward to prove that the Update rule from the Manne et al. algorithm
cannot be executed in C. Indeed, our Update rule is more di�cult to execute than
the one of Manne et al. in the sense that some possible Update in Manne et al. are
not possible in our algorithm. By the way, this is why our algorithm has a better
time complexity since the number of partially exploited augmented path destruction
in our algorithm is smaller than in the Manne et al. algorithm. In particular, we
have to prove that in a stable con�guration, for any matched node, if pu 6= null, then
endpu = True. To prove that, we need Lemmas 4.5.1, 4.5.2, 4.5.3, 4.5.4 and a part
of the proof from Theorem 4.5.7. Observe that from these results, the correctness
is straightforward without using the Manne et al. proof.

We �rst introduce some notations. A matched node u is said to be First if
AskFirst(u) 6= null. In the same way, u is Second if AskSecond(u) 6= null. Let
Ask : V → V ∪{null} be a function where Ask(u) = AskFirst(u) if AskFirst(u) 6=
null, otherwise Ask(u) = AskSecond(u). We will say a node makes a match rule if
it performs a MatchFirst or MatchSecond rule.

Recall that the set of edges built by our algorithm PolyMatch is M+ =
{(u, v) ∈M : pu = pv = null} ∪ {(a, b) ∈ E \M : pa = b ∧ pb = a}.

For the correctness part of the proof, we prove that in a stable con�guration,
M+ is a 2/3-approximation of a maximum matching on graph G. To do that we
demonstrate that there is no 3-augmenting path on (G,M+). In particular we prove
that for any edge (u, v) ∈ M, we have either pu = pv = null, or u and v have two
distincts single neighbors they are rematched with, i.e., ∃x ∈ single(N(u)),∃y ∈
single(N(v)) with x 6= y such that (px = u) ∧ (pu = x) ∧ (py = v) ∧ (pv = y). In
order to prove that, we show that every other case for (u, v) is impossible. The main
studied cases are shown in Figure 4.6. Finally, we prove that if pu = pv = null then
(u, v) does not belong to a 3-augmenting-path on (G,M+).

uu vv

(a) By Lemma 4.5.2

x1x1 u1u1 v1v1 x2x2

(b) By Lemma 4.5.4

xx uu vv yy

xx uu vv yy

(c) By Lemma 4.5.8

xx uu vv yy

(d) By Lemma 4.5.6

xx uu vv yy

(e) By Lemma 4.5.5

Figure 4.6 � Impossible situations in a stable con�guration.

Lemma 4.5.1. In any stable con�guration, we have the following properties:

49

� ∀u ∈ matched(V) : pu = Ask(u);

� ∀x ∈ single(V) : if px = u with u 6= null, then u ∈ matched(N(x)) ∧ pu =
x ∧ endu = endx.

Proof. First, we will prove the �rst property. We consider the case where AskFirst(u) 6=
null. We have pu = AskFirst(u), otherwise node u can execute rule AskFirst. We
can apply the same result for the case where AskSecond(u) 6= null. Finally, we
consider the case where AskFirst(u) = AskSecond(u) = null. If pu 6= null, then
node u can execute rule ResetMatch which yields a contradiction. Thus, pu = null.

Second, we consider a stable con�guration C where px = u, with u 6= null.
u ∈ matched(N(x)), otherwise x is eligible for an UpdateP rule. Now there are two
cases: pu = x and pu 6= x. If pu 6= x, this means that ppx 6= x. Thus, x is eligible
for rule UpdateP , and this yields to a contradiction with the fact that C is stable.
Finally, we have endu = endx, otherwise x is eligible for rule UpdateEnd.

Lemma 4.5.2. Let (u, v) be an edge in M. Let C be a con�guration. If pu 6=
null ∧ pv = null holds in C (see Figure 4.6(a)), then C is not stable.

Proof. By contradiction. We assume C is stable. From Lemma 4.5.1, we have
pu = Ask(u) 6= null and pv = Ask(v). So, by de�nition of predicates AskFirst and
AskSecond, Ask(u) = x 6= null implies that Ask(v) 6= null. This contradicts the
fact that pv = Ask(v) = null.

Lemma 4.5.3. Let (x, u, v, y) be a 3-augmenting path on (G,M). Let C be a stable
con�guration. In C, if px = u, pu = x, pv = y and py = u, then endx = endu =
endv = endy = True.

Proof. From Lemma 4.5.1, pu = Ask(u) (resp. pv = Ask(v)) thus Ask(u) 6= null
and Ask(v) 6= null. Without loss of generality, we can assume that AskFirst(u) 6=
null. We have su = True, otherwise u can execute the MatchFirst rule. Now, as
su = True, we must have endv = True, otherwise v can execute the MatchSecond
rule. As su = endv = True, we must have endu = True, otherwise u can execute the
MatchFirst rule. From Lemma 4.5.1, we can deduce that endx = endu = endv =
endy = True and this concludes the proof.

Lemma 4.5.4. Let (x1, u1, v1, x2) be a 3-augmenting path on (G,M). Let C be a
con�guration. If px1 = u1 ∧ pu1 = x1 ∧ pv1 = x2 ∧ px2 6= v1 holds in C (see Figure
4.6(b)), then C is not stable.

Proof. By contradiction. We assume C is stable. From Lemma 4.5.1, Ask(u1) = x1
and Ask(v1) = x2.

First we assume that AskSecond(u1) = x1 and AskFirst(v1) = x2. The local
variable sv1 is False, otherwise v1 would be eligible for executing the MatchFirst
rule. Since AskSecond(u1) 6= null ∧ pu1 6= null ∧ sv1 = False, this implies that u1
is eligible for the ResetMatch rule which is a contradiction.

Second, we assume that AskFirst(u1) = x1 and AskSecond(v1) = x2. We
have su1 = True, otherwise u1 can execute the MatchFirst rule. This implies
that endv1 = False, otherwise v1 can execute the MatchSecond rule. As endv1 =
False, then endu1 = False, otherwise u1 can execute the MatchFirst rule. From
Lemma 4.5.1, endx1 = endu1 = endv1 = False. Since Ask(v1) = x2, we have
x2 ∈ {αv1 , βv1}. Let us assume endx2 = True. Then x2 6∈ BestRematch(v1) and
then v1 is eligible for an Update. Thus endx2 = False.

Therefore, C is a con�guration such that u1 is First and v1 is Second with
endx1 = endu1 = endv1 = endx2 = False. Now we are going to show that there exists

50

another augmenting path (x2, u2, v2, x3) with endx2 = endu2 = endv2 = endx3 =
False and pu2 = x2, px2 = u2, pv2 = x3 and px3 6= v2 such that u2 is First and v2 is
Second (see Figure 4.7).

x1x1 u1u1 v1v1 x2x2 u2u2 v2v2 x3x3

Figure 4.7 � A chain of 3-augmenting paths.

px2 6= null otherwise x2 is eligible for an UpdateP rule. Thus there exists a vertex
u2 6= v1 such that px2 = u2. From Lemma 4.5.1, u2 ∈ matched(N(x2)) and pu2 = x2.
Therefore, there exists a node v2 = mu2 . From Lemma 4.5.2, we can deduce that
pv2 6= null and there exists a node x3 such that pv2 = x3. x3 ∈ single(N(v2))
otherwise x2 is eligible for an Update rule. Finally, if px3 = v2, then Lemma 4.5.3
implies that endx2 = enda2 = endb2 = endx3 = True. This contradicts the fact
endx2 = False. So, we have px3 6= v2.

We can then conclude that (x2, u2, v2, x3) is a 3-augmenting path such that px2 =
u2 ∧ pu2 = x2 ∧ pv2 = x3 ∧ px3 6= v2. This augmenting path has the exact same
properties than the �rst considered augmenting path (x1, u1, v1, x2) and in particular
u1 is First.

Now we can continue the construction in the same way. Therefore, for C to be
stable, it must exist a chain of 3-augmenting paths (x1, u1, v1, x2, u2, v2, . . . , xi, ui, vi, xi+1, . . .)
where ∀i ≥ 1 : (xi, ui, vi, xi+1) is a 3-augmenting path with pxi = ui∧pui = xi∧pvi =
xi+1 ∧ pxi+1

= vi+1 and ui is First. Thus, x1 < x2 < . . . < xi < . . . since ui will al-
ways be First. Since the graph is �nite, some xk must be equal to some x` with ` 6= k
which contradicts the fact that the identi�er's sequence is strictly increasing.

Lemma 4.5.5. Let (x, u, v, y) be a 3-augmenting path on (G,M). Let C be a
con�guration. If pu = x ∧ px 6= u ∧ pv = y ∧ py 6= v holds in C (see Figure 4.6(e)),
then C is not stable.

Proof. By contradiction, assume that C is stable. From Lemma 4.5.1, Ask(u) = x.
Assume to begin with, that AskFirst(u) 6= null. Because ppu 6= u we have
su = False, otherwise u is eligible for MatchFirst. Since AskSecond(v) 6= null
and smv = su = False then v can apply the ResetMatch rule which yields a contra-
diction. Therefore assume that AskSecond(u) 6= null. The situation is symmetric
(because now AskFirst(v) 6= null) and therefore we get the same contradiction as
before.

Lemma 4.5.6. Let (x, u, v, y) be a 3-augmenting path on (G,M). Let C be a
con�guration. If py = pu = pv = py = null holds in C (see Figure 4.6(d)), then C
is not stable.

Proof. By contradiction, assume that C is stable. endx = False (resp. endy =
False), otherwise x (resp. y) is eligible for a ResetMatch. (αu, βu) = BestRematch(u)
(resp. (αv, βv) = BestRematch(v)), otherwise u (resp. v) is eligible for an Update.
Thus, there is at least an available single node for u and v and so Ask(u) 6= null
and Ask(v) 6= null. Then, this contradicts the fact that Ask(u) = null (see
Lemma 4.5.1).

Theorem 4.5.7. In a stable con�guration we have, ∀(u, v) ∈M:

� pu = pv = null or

51

� ∃x ∈ single(N(u)),∃y ∈ single(N(v)) with x 6= y such that px = u ∧ pu =
x ∧ py = v ∧ pv = y.

Proof. We will prove that all cases but these two are not possible in a stable con�g-
uration. First, Lemma 4.5.2 says the con�guration cannot be stable if exactly one
of pu or pv is not null.

Second, assume that pu 6= null ∧ pv 6= null. Let pu = x and pv = y. Observe
that x ∈ single(N(u)) (resp. y ∈ single(N(v))), otherwise u (resp. v) is eligible for
Update.

Case x 6= y: If px 6= u and py 6= v then Lemma 4.5.5 says the con�guration
cannot be stable. If px = u and py 6= v then Lemma 4.5.4 says the con�guration
cannot be stable. Thus, the only remaining possibility when pu 6= null and pv 6= null
is: px = pu and py = v.

Case x = y: Ask(u) 6= null (resp. Ask(v) 6= null), otherwise u (resp. v) is
eligible for a ResetMatch. Without loss of generality, let us assume that u is First.
x = AskFirst(u) (resp. x=AskSecond(v)), otherwise u (resp. v) is eligible for
MatchFirst (resp. MatchSecond). Thus AskFirst(u) = AskSecond(v) which is
impossible according to these two predicates.

Lemma 4.5.8. Let x be a single node. In a stable con�guration, if px = u, u 6= null
then there exists a 3-augmenting path (x, u, v, y) on (G,M) such that px = u∧ pu =
x ∧ pv = y ∧ py = v.

Proof. By lemma 4.5.1, if px = u with u 6= null then u ∈ matched(N(x)) and
pu = x. Since pu 6= null, by Theorem 4.5.7 the result holds.

Observe that according to this Lemma, cases from Figure 4.6(c) are impossible.

Thus, in a stable con�guration, for all edges (u, v) ∈ M, if pu = pv = null then
(u, v) does not belong to a 3-augmenting-path on (G,M+). In other words, we
obtain:

Corollary 4.5.9. In a stable con�guration, there is no 3-augmenting path on (G,M+)
left.

4.5.6 Convergence Proof

This section is devoted to the convergence proof. In the following, µ will denote
the number of matched nodes and σ the number of single nodes.

The �rst step consists in proving that the values of s and end represent the
di�erent phases of the path exploitation. Recall that su = True means ppu = u.
Moreover endu = True means that the path is fully exploited. We can easily prove
that after one activation of a matched node u, su = True implies ppu = u:

Lemma 4.5.11. Let u be a matched node. Consider an execution E starting after
u executed some rule. Let C be any con�guration in E. In C, if su =True then
∃x ∈ single(N(u)) : pu = x ∧ px = u.

However, a bad initialization of endmu to True can induce u to wrongly write
True in endu. But this can appear only once and thus, the second times u writes
True in endu means that a 3-augmenting path involving u has been fully exploited.

Theorem 4.5.18. In any execution, a matched node u can write endu :=True at
most twice.

52

We now count the number of destruction of partially exploited augmenting paths.
Recall that in the Manne et al. algorithm, for one fully exploited augmenting path,
it is possible to destroy a sub-exponential number of partially exploited ones.

In our algorithm, observe that for a path destruction, the set of single neighbors
that are candidates for a matched edge has to change and this change can only
occur when a single node changes its end-value. Such a change induces a path
destruction if a matched node takes into account this modi�cation by applying an
Update rule. So, we �rst count the number of times a single node can change its
end-value (Lemma 4.5.24) and then we deduce the number of times a matched node
can execute Update (Corollary 4.5.27). Finally, we conclude we destroy at most
O(n2)(= O(∆(σ + µ))) partially exploited augmenting path.

The rest of the proof consists in counting the number of moves that can be
performed between two Update, allowing us to conclude the proof (Theorem 4.5.35).

In the following, we detailed point by point the idea behind each result cited
above.

Since single nodes just follow orders from their neighboring matched nodes, we
can count the number of times single nodes can change the value of their end variable.
There are σ possible modi�cations due to bad initializations. A matched node u
can write True twice in endu, so endu can be True during 3 distinct sub-executions.
As a single node x copies the end-value of the matched node it points to (px = u),
then a single node can change its end-value at most 3 times as well. And we obtain
6µ modi�cations.

Lemma 4.5.24. In any execution, the number of transitions where a single node
changes the value of its end variables (from True to False or from False to True) is
at most σ + 6µ times.

We count the maximal number of Update rule that can be performed in any
execution. To do that, we observe that the �rst line of the Update guard can be
True at most once in an execution (Lemma 4.5.12). Then we prove for the second
line of the guard to be True, a single node has to change its end value. Thus, for
each single node modi�cation of the end-value, at most all matched neighbors of
this single node can perform an Update rule.

Corollary 4.5.27. Matched nodes can execute at most ∆(σ + 6µ) + µ times the
Update rule.

Third, we consider two particular matched nodes u and v and an execution with
no Update rule performed by these two nodes. Then we count the maximal number
of moves performed by these two nodes in this execution. The idea is that in such
an execution, the α and β values of u and v remain constant. Thus, in these small
executions, u and v detect at most one augmenting path and perform at most one
rematch attempt. We obtain that the maximal number of moves of u and v in these
small executions is 12. By the previous remark and Corollary 4.5.27, we obtain:

Theorem 4.5.35. In any execution, matched nodes can execute at most 12∆(σ +
6µ) + 18µ rules.

Finally, we count the maximal number of moves that single nodes can perform,
counting rule by rule. The ResetEnd is done at most once. The number of Upda-
teEnd is bounded by the number of times single nodes can change their end-value,
so it is at most σ+ 6µ. Finally, UpdateP is counted as follows: between two consec-
utive UpdateP executed by a single node x, a matched node has to make a move.
The total number of executed UpdateP is then at most 12∆(σ + 6µ) + 18µ+ 1.

53

Corollary 4.5.40. The algorithm PolyMatch converges in O(n2) moves under the
adversarial distributed daemon and in a general graph, provided that an underlying
maximal matching has been initially built.

The Manne et al. algorithm [106] builds a self-stabilizing maximal matching
under the adversarial distributed daemon in a general graph, in O(m) moves. This
leads to a O(m.n2) moves complexity to build a 1-maximal matching with our algo-
rithm without any assumption of an underlying maximal matching.

Now, the next section is devoted to the description of the technical proof.

A matched node can write True in its end-variable at most twice

The �rst three lemmas are technical lemmas.

Lemma 4.5.10. Let u be a matched node. Consider an execution E starting after
u executed some rule. Let C be any con�guration in E. If endu = True in C then
su = True as well.

Proof. Let C0 7→ C1 be the transition in E in which u executed a rule for the last
time before C. Observe that C may be equal to C1. The executed rule is necessarily
a match rule, otherwise endu could not be True in C1. If it is a MatchSecond the
lemma holds since in that case su is a copy of endu. Assume now it is a MatchFirst.
For endu to be True in C1, pu = AskFirst(u) ∧ ppu = u ∧ pmu = AskSecond(mu)
must hold in C0, according to the guard of MatchFirst. This implies that u writes
True in su in transition C0 7→ C1.

Lemma 4.5.11. Let u be a matched node. Consider an execution E starting after
u executed some rule. Let C be any con�guration in E. In C, if su = True then
∃x ∈ single(N(u)) : pu = x ∧ px = u.

Proof. Consider transition C0 7→ C1 in which u executed a rule for the last time
before C. The executed rule is necessarily a match rule, otherwise su could not be
True in C1. Observe now that whichever match rule is applied, Ask(u) 6= null � let
us assume Ask(u) = x � and pu = x and px = u must hold in C0 for su to be True
in C1. pu = x still holds in C1 and until C. Moreover, x must be in single(N(u)),
otherwise u would have executed an Update instead of a match rule in C0 7→ C1,
since Update has the highest priority among all rules. Finally, in transition C0 7→ C1,
x cannot execute UpdateP nor ResetEnd since px ∈ matched(N(x)) ∧ ppx = x
holds in C0. Thus in C1, pu = x and px = u holds. Using the same argument,
x cannot execute UpdateP nor ResetEnd between con�gurations C1 and C. Thus
pu = x ∧ px = u in C.

Lemma 4.5.12. Let u be a matched node and E be an execution containing a tran-
sition C0 7→ C1 where u makes a move. From C1, the predicate in the �rst line of
the guard of the Update rule will ever hold from C1.

Proof. Let C2 be any con�guration in E such that C2 ≥ C1. Let C10 7→ C11 be the
last transition before C2 in which u executes a move. Notice that by de�nition of E ,
this transition exists. Assume by contradiction that one of the following predicates
holds in C2.

(1) (αu > βu) ∨ (αu, βu /∈ (single(N(u)) ∪ {null})) ∨ (αu = βu ∧ αu 6= null)

(2) pu /∈ (single(N(u)) ∪ {null})

54

By de�nition between C11 and C2, u does not execute rules. To modify the
variables αu, βu and pu, u must execute a rule. Thus one of the two predicates also
holds in C11.

We �rst show that if predicate (1) holds in C11 then we get a contradiction.
If u executes an Update rule in transition C10 7→ C11, then by de�nition of the
BestRematch function, predicate (1) cannot hold in C11 (observe that the only way
for αu = βu is when αu = βu = null). Thus assume that u executes a match or
ResetMatch rule. Note that these rules do not modify the value of the αu and βu
variables. This implies that if u executes one of these rules in C10 7→ C11, predicate
(1) not only holds in C11 but also in C10. Observe that this implies, in that case that
u is eligible for Update in C10 7→ C11, which gives the contradiction since Update is
the rule with the highest priority among all rules.

Now assume predicate (2) holds in C11. In transition C10 7→ C11, u cannot
execute Update nor ResetMatch as this would imply that pu = null in C11. Assume
that in C10 7→ C11 u executes a match rule. Since in C11, pu /∈ (single(N(u)) ∪
{null}) this implies that in C10, Ask(u) /∈ (single(N(u)) ∪ {null}). This implies
that αu, βu /∈ (single(N(u)) ∪ {null}) in C10. Thus u is eligible for Update in
transition C10 7→ C11 and this yields the contradiction since Update is the rule with
the highest priority among all rules.

Since these two predicates cannot hold in C2, this concludes the proof.

Now, we focus on particular con�gurations for a matched edge (u, v) correspond-
ing to the fact that they have completely exploited a 3-augmenting path.

Lemma 4.5.13. Let (u, v) be a matched edge, E be an execution and C be a con�g-
uration of E. If, in C, we have:

1. pu ∈ single(N(u)) ∧ pu = AskFirst(u) ∧ ppu = u;

2. pv ∈ single(N(v)) ∧ pv = AskSecond(v) ∧ ppv = v;

3. su = endu = sv = endv = True;

then neither u nor v will ever be eligible for any rule from C.

Proof. Observe �rst that neither u nor v are eligible for any rule in C. Moreover, pu
(resp. pv) is not eligible for an UpdateP move since u (resp. v) does not make any
move. Thus ppu and ppv will remain constant since u and v do not make any move
and so neither u nor v will ever be eligible for any rule from C.

The con�guration C described in Lemma 4.5.13 is called a stopuv con�guration.
From such a con�guration neither u nor v will ever be eligible for any rule.

In Lemmas 4.5.16 and 4.5.17, we consider executions where a matched node u
writes True in endu twice, and we focus on the transition C0 7→ C1 where u performs
its second writing. Lemma 4.5.16 shows that, if u is First in C0, then C1 is a stopumu

con�guration. Lemma 4.5.17 shows that, if u is Second in C0, then either C1 is a
stopumu con�guration or there exists a con�guration C3 such that C3 > C1, u does
not make any move from C1 to C3 and C3 is a stopumu con�guration.

Lemma 4.5.14 and Corollary 4.5.15 are required to prove Lemmas 4.5.16 and 4.5.17.

Lemma 4.5.14. Let (u, v) be a matched edge. Let E be some execution in which v
does not execute any rule. If there exists a transition C0 7→ C1 in E where u writes
True in endu, then u is not eligible for any rule from C1.

Proof. To write True in endu in transition C0 7→ C1, u must have executed a
match rule. According to this rule, (pu = Ask(u) ∧ ppu = u) holds in C0 with pu ∈

55

single(N(u)), otherwise u would have executed an Update instead of a match rule.
Now, since in C0 7→ C1, pu cannot execute UpdateP, then it cannot change its p-
value and since v does not execute any move then it cannot change Ask(u). Thus,
(pu = Ask(u) ∧ ppu = u) holds in both C0 and C1.

Assume now by contradiction that u executes a rule after con�guration C1. Let
C2 7→ C3 be the next transition in which it executes a rule. Recall that between con-
�gurations C1 and C2 both u and v do not execute rules. Observe also that pu is not
eligible for UpdateP between these con�gurations. Thus (pu = Ask(u) ∧ ppu = u)
holds from C0 to C2. Moreover the following points hold as well between C0 and C2

since in C0 7→ C1, u executed a match rule and v does not apply rules in E :
� αu, αv, βu and βv do not change.

� The values of the variables of v do not change.

� Ask(u) and Ask(v) do not change.

� If u was First in C0 it is First in C2 and the same holds if it was Second.
Using these remarks, we start by proving that u is not eligible for ResetMatch

in C2. If it is First in C2, this holds since AskFirst(u) 6= null and AskSecond(u) =
null. If it is Second then to be eligible for ResetMatch, sv = False must hold in C2

since AskSecond(u) 6= null. Since u executed endu = True in C0 7→ C1 and since u
was Second in C0, then necessarily sv = True in C0 and thus in C2 (using remark
2 above). So u is not eligible for ResetMatch in C2.

We show now that u is not eligible for an Update in C2. The α and β variables
of u and v remain constant between C0 and C2. Thus if any of the three �rst
disjunctions in the Update rule holds in C2 then it also holds in C0 and in C0 7→ C1

u should have executed an Update since it has higher priority than the match rules.
Moreover since in C2 (pu = Ask(u) ∧ ppu = u) holds, the last two disjunctions of
Update are False and we can state u is not eligible for this rule.

We conclude the proof by showing that u is not eligible for a match rule in
C2. If u was First in C0 then it is First in C2. To write True in endu then
(pu = AskFirst(u) ∧ ppu = u ∧ su ∧ pmu = AskSecond(mu) ∧ endmu) must hold in
C0. Since in C0 7→ C1 v does not execute rules, it also holds in C1. The same remark
between con�gurations C1 and C2 implies that this predicate holds in C2. Thus in
C2, all the three conditions of the MatchFirst guard are False and u not eligible
for MatchFirst. A similar remark if u is Second implies that u will not be eligible
for MatchSecond in C2 if it was Second in C0.

Corollary 4.5.15. Let (u, v) be a matched edge. In any execution, if u writes True
in endu twice, then v executes a rule between these two writings.

Lemma 4.5.16. Let (u, v) be a matched edge and E be an execution where u writes
True in its variable endu at least twice. Let C0 7→ C1 be the transition where u
writes True in endu for the second time in E. If u is First in C0 then the following
holds:

1. in con�guration C0,

(a) sv = endv = True;

(b) pu = AskFirst(u) ∧ ppu = u ∧ su = True ∧ pv = AskSecond(v);

(c) pu ∈ single(N(u));

(d) pv ∈ single(N(v)) ∧ ppv = v;

2. v does not execute any move in C0 7→ C1;

3. in con�guration C1,

56

(a) su = endu = True;

(b) pu ∈ single(N(u)) ∧ pv ∈ single(N(v));

(c) sv = endv = True;

(d) pu = AskFirst(u) ∧ pv = AskSecond(v);

(e) ppu = u ∧ ppv = v.

Proof. We prove Point 1a. Observe that for u to write True in endu, endv must be
True in C0. By Lemma 4.5.10 this implies that sv is True as well. Now Point 1b
holds by de�nition of the MatchFirst rule. As in C0, u already executed an action,
then according to Lemma 4.5.12, Point 1c holds and will always hold. By Corollary
4.5.15, u cannot write True consecutively if v does not execute moves. Thus at some
point before C0, v applied some rule. This implies that in con�guration C0, since
sv = True, by Lemma 4.5.11, ∃x ∈ single(N(v)) : pv = x ∧ px = v. Thus Point 1d
holds.

We now show that v does not execute any move in C0 7→ C1 (Point 2). Recall
that v already executed an action before C0, so by Lemma 4.5.12, line 1 of the
Update guard does not hold in C0. Moreover, by Point 1d, line 2 does not hold
either. Thus, v is not eligible for Update in C0. We also have that su = True and
AskSecond(v) 6= null in C0, thus v is not eligible for ResetMatch. Observe now
that by Points 1a, 1b and 1d, v is not eligible for MatchSecond in C0. Finally v
cannot execute MatchFirst since AskFirst(v) = null. Thus v does not execute
any move in C0 7→ C1 and so Point 2 holds.

In C1, endu is True by hypothesis and according to Point 1b, u writes True in
su in transition C0 7→ C1. Thus Point 3a holds. Points 3b holds by Points 1c and
1d. Points 3c holds by Points 1a and 2. AskFirst(u) and AskSecond(v) remain
constant in C0 7→ C1 since neither u nor v executes an Update in this transition.
Moreover pv remains constant in C0 7→ C1 by Point 2 and pu remains constant also
since it writes AskFirst(u) in pu in this transition while pu = AskFirst(u) in C0.
Thus Points 3d holds. Observe that nor pu neither pv is eligible for an UpdateP in
C0, thus Point 3e holds.

Now, we consider the case where u is Second.

Lemma 4.5.17. Let (u, v) be a matched edge and E be an execution where u writes
True in its variable endu at least twice. Let C0 7→ C1 be the transition where u writes
True in endu for the second time in E. If u is Second in C0 then the following holds:

1. in con�guration C0,

(a) sv = True ∧ pv = AskFirst(v);

(b) pv ∈ single(N(v)) ∧ ppv = v;

2. in transition C0 7→ C1, v is not eligible for Update nor ResetMatch;

3. in con�guration C1,

(a) su = endu = True;

(b) pv ∈ single(N(v)) ∧ pv = AskFirst(v) ∧ ppv = v;

(c) pu ∈ single(N(u)) ∧ pu = AskSecond(u) ∧ ppu = u;

(d) sv = True;

4. u is not eligible for any move in C1;

5. If endu = False in C1 then the following holds:

(a) From C1, v executes a next move and this move is a MatchFirst;

57

(b) Let us assume this move (the �rst move of v from C1) is done in transition
C2 7→ C3. In con�guration C3, we have:

i. su = endu = True;

ii. pv ∈ single(N(v)) ∧ pv = AskFirst(v) ∧ ppv = v;

iii. pu ∈ single(N(u)) ∧ pu = AskSecond(u) ∧ ppu = u;

iv. sv = True;

v. u does not execute moves between C1 and C3;

vi. endv = True;

Proof. We show Point 1a. For u to write True in transition C0 7→ C1, u executes
a MatchSecond in this transition. Thus sv = True must hold in C0 and pv =
AskFirst(v) as well. By Corollary 4.5.15, u cannot write True consecutively if v
does not execute any move. Thus at some point before C0, v applied some rule.
Thus, and by Lemma 4.5.11, ∃x ∈ single(N(v)) : pv = x ∧ px = v in con�guration
C0, so Point 1b holds.

As AskFirst(v) 6= null in C0, v is not eligible for ResetMatch in C0. We prove
now that v is not eligible for Update. By Corollary 4.5.15 and Lemma 4.5.12, line 1
of the Update guard does not hold in C0. Finally, according to Point 2b, the second
line of the Update guard does not hold, which concludes Point 2.

We consider now Point 3a. In C1, su = endu = True holds because, executing
a MatchSecond, u writes True in endu and writes endu in su during transition
C0 7→ C1.

We now show Point 3b. AskFirst(v) and AskSecond(u) remain constant in
C0 7→ C1 since neither u nor v execute an Update in this transition. Moreover, the
only rule v can execute in C0 7→ C1 is a MatchFirst, according to Point 2. Thus
v does not change its p-value in C0 7→ C1 and so pv = AskFirst(v) in C1. Now, in
C0, v ∈ matched(N(pv))∧ ppv = v thus pv cannot execute UpdateP in C0 7→ C1 and
thus it cannot change its p-value. So, ppv = v in C1.

Point 3c holds since after u executed a MatchSecond in C0 7→ C1, observe that
necessarily pu = AskSecond(u) in C1. Moreover, su = True in C1 so, according to
Lemma 4.5.11, ∃y ∈ single(N(u)) : pu = y ∧ py = u in C1.

pv = AskFirst(v) and ppv = v hold in C0, according to Points 2a and 2b. More-
over, pu = AskSecond(u) holds in C0 since u writes True in endu while executing a
MatchSecond in C0 7→ C1. Finally, by Point 2, v can only execute MatchFirst in
C0 7→ C1, thus variable sv remains True in transition C0 7→ C1 and Point 3d holds.

We now prove Point 4. If endv = True in C1, then according to Lemma 4.5.13,
u is not eligible for any rule in C1. Now, let us consider the case endv = False in
C1. By Points 3c and 3d, u is not eligible for ResetMatch. By Point 3c and Lemma
4.5.12, u is not eligible for Update. By Points 3a, 3b and 3c, u is not eligible for
MatchSecond. Finally, since u is Second in C1, u is not eligible for MatchFirst
neither and Point 4 holds.

Now since between C1 and C2, v does not execute any rule (by Point 5b), and
since pu (resp. pv) is not eligible for UpdateP while u (resp. v) does not move
(because ppu = u (resp. ppv = v)), then Ask(u), Ask(v), ppu and ppv remain constant
while u does not make any move. And so, properties 3a, 3b, 3c and 3d hold for any
con�guration between C1 and C2, thus u is not eligible for any rule between C1 and
C2 and u will not execute any move from C1 to C3. Moreover, the endv-value is the
same from C1 to C2.

If endv = False in C2, then v is eligible for a MatchFirst and that it will write
True in its endv-variable while all properties of Point 3 will still hold in C3. Thus
Point 5 holds.

58

Theorem 4.5.18. In any execution, a matched node u can write endu := True at
most twice.

Proof. Let (u, v) be a matched edge and E be an execution where u writes True
in its variable endu at least twice. Let C0 7→ C1 be the transition where u writes
True in endu for the second time in E . If u is First (resp. Second) in C0 then
from Lemmas 4.5.13 and 4.5.16, (resp. 4.5.17), from C1, neither u nor v will ever be
eligible for any rule.

The number of times single nodes can change their end-variable

In the following, µ denotes the number of matched nodes and σ the number of
single nodes.

Lemma 4.5.19. Let x be a single node. If x writes True in some transition C0 7→ C1

then, in C0, ∃u ∈ matched(N(x)) : px = u∧ pu = x∧ endx = False∧ endu = True.

Proof. To write True in its end variable, a single node must apply UpdateEnd.
Observe now that to apply this rule, the conditions described in the Lemma must
hold.

Lemma 4.5.20. Let u be a matched node. Consider an execution E starting after
u executed some rule and in which endu is always True, except for the last con�g-
uration D of E in which it may be False. Let E\D be all con�gurations of E but
con�guration D. In E\D, the following holds:

� pu ∈ single(N(u));

� pu remains constant.

Proof. Since endu = True in E\D, the last rule executed before E is necessarily a
Match rule. So, at the beginning of E , pu ∈ single(N(u)), otherwise, u would not
have executed a Match rule, but an Update instead.

We prove now that in E\D, pu remains constant. Assume by contradiction that
there exists a transition in which pu is modi�ed. Let C0 7→ C1 be the �rst such
transition. First, observe that in E\D, u cannot execute ResetMatch nor Update
since that would set endu to False. Thus u must execute a Match rule in C0 7→ C1.
Since the value of pu changes in this transition, this implies that Ask(u) 6= pu in
C0. Thus, whatever the Match rule, observe now that in C1, endu must be False,
which gives a contradiction and concludes the proof.

De�nition 4.5.21. Let u be a matched node. We say that a transition C0 7→ C1

is of type "a single copies True from u" if there exists a single node x such that
(px = u ∧ pu = x ∧ endx = False) in C0 and endx = True in C1. Note that by
Lemma 4.5.19, endu = True in C0 and x ∈ single(N(u)).

If a transition C0 7→ C1 is of type "a single node copies True from u" and if x
is the single node with (px = u∧ pu = x∧ endx = False) in C0 and endx = True in
C1, then we will say x copies True from u.

Lemma 4.5.22. Let u be a matched node and E be an execution. In E, there are at
most three transitions of type "a single copies True from u".

Proof. Let E be an execution. We consider some sub-executions of E .
Let Einit be a sub-execution of E that starts in the initial con�guration of E and

that ends just after the �rst move of u. Let C0 7→ C1 be the last transition of Einit.
Observe that u does not execute any move until con�guration C0 and executes its

59

�rst move in transition C0 7→ C1. We will write Einit\C1 to denote all con�gurations
of Einit but the con�guration C1. We prove that there is at most one transition of
type "a single copies True from u" in Einit.

There are two possible cases regarding endu in all con�guration of Einit\C1: either
endu is always True or endu is always False. If endu = False then by De�nition
4.5.21, no single node can copy True from u in Einit, not even in transition C0 7→ C1,
since no single node is eligible for such a copy in C0. If endu = True, once again,
there are two cases: either (i) (pu = null ∨ pu /∈ single(N(u))) in all con�guration
of Einit \ C1, or (ii) (pu ∈ single(N(u))) in Einit \ C1. In case (i) then by De�nition
4.5.21 no single node can copy True from u in Einit, not even in C0 7→ C1. In case
(ii), observe that pu remains constant in all con�gurations of Einit \C1, thus at most
one single node can copy True from u in Einit.

Let Etrue be a sub-execution of E starting after u executed some rule and such
that: for all con�gurations in Etrue but the last one, endu = True. There is no
constraint on the value of endu in the last con�guration of Etrue. According to
Lemma 4.5.20, pu ∈ single(N(u)) and pu remains constant in all con�gurations of
Etrue but the last one. This implies that at most one single can copy True from u
in Etrue.

Let Efalse be an execution starting after u executed some rule and such that: for
all con�gurations in Efalse but the last one, endu = False. There is no constraint on
the value of endu in the last con�guration of Efalse. By De�nition 4.5.21, no single
node will be able to copy True from u in Efalse.

To conclude, by Corollary 4.5.18, u can write True in its end variable at most
twice. Thus, for all executions E , E contains exactly one sub-execution of type Einit,
and at most two sub-executions of type Etrue and the remaining sub-executions are
of type Efalse. This implies that in total, we have at most three transitions of type
"a single copies True from u" in E .

Lemma 4.5.23. In any execution, the number of transitions where a single node
writes True in its end variable is at most 3µ.

Proof. Let E be an execution and x be a single node. If x writes True in endx in some
transition of E , then x necessarily executes an UpdateEnd rule and by De�nition
4.5.21, this means x copies True from some matched node in this transition. Now
the lemma holds by Lemma 4.5.22.

Lemma 4.5.24. In any execution, the number of transitions where a single node
changes the value of its end variables (from True to False or from False to True)
is at most σ + 6µ times.

Proof. A single node can write True in its end variable at most 3µ times, by Corol-
lary 4.5.23. Each of these writings allows one writing from True to False, which
leads to 6µ possible modi�cations of the end variables. Now, let us consider a single
node x. If endx = False initially, then no more change are possible, however if
endx = True initially, then one more modi�cation from True to False is possible.
Each single node can do at most one modi�cation due to this initialization and thus
the Lemma holds.

How many Update in an execution?

De�nition 4.5.25. Let u be a matched node and C be a con�guration. We de�ne
Cand(u,C) = {x ∈ single(N(u)) : (px = u ∨ endx = False)} which is the set of
vertices considered by the function BestRematch(u) in con�guration C.

60

Lemma 4.5.26. Let u be a matched node that has already executed some rule. If
there exists a transition C0 7→ C1 such that u is eligible for Update in C1 and not
in C0, then there exists a single node x such that x ∈ Cand(u,C0)\Cand(u,C1) or
x ∈ Cand(u,C1)\Cand(u,C0). Moreover, in transition C0 7→ C1, x �ips the value
of its end variable.

Proof. Since u has already executed some rule, to become eligible for Update in
transition C0 7→ C1, necessarily the second disjonction in the Update rule must hold,
by Lemma 4.5.12. This implies that (αv, βv) 6= BestRematch(v) must become True
in C0 7→ C1. Now either Lowest(Cand(u,C0)) /∈ Cand(u,C1) or ∃x /∈ Cand(u,C0)
such that x = Lowest(Cand(u,C1)). This proves the �rst point.

For the second point we �rst consider the case x ∈ Cand(u,C1) and x /∈
Cand(u,C0). Necessarily endx = True ∧ px 6= u in C0 and endx = False ∨ px = u
in C1. If px = u in C1 then in transition C0 7→ C1, x has executed an UpdateP and
the second point holds. Assume now that px 6= u in C1. Necessarily endu = False
in C1 and the Lemma holds.

We consider the second case in which x /∈ Cand(u,C1) and x ∈ Cand(u,C0).
Necessarily in C1, px 6= v and endx = True. Thus if endx = False in C0 the lemma
holds. Assume by contradiction that endx = True in C0. This implies px = u in C0.
But since in C1 px 6= u then x executed either UpdateP or UpdateEnd in C0 7→ C1

which implies endx = False in C1, a contradiction. This completes the proof.

Corollary 4.5.27. Matched nodes can execute at most ∆(σ + 6µ) + µ times the
Update rule.

Proof. Initially each matched node can be eligible for an Update. Now, let us con-
sider only matched nodes that have already executed a move. For such a node to
become eligible for an Update rule, at least one single node must change the value
of its end variable by Lemma 4.5.26. Thus, each change of the end value of a sin-
gle node can generate at most ∆ matched nodes to be eligible for an Update. By
Lemma 4.5.24, the number of transitions where a single node changes the value of
its end variables is at most σ+6µ times. Thus we obtain at most ∆(σ+6µ) Update
generated by a change of the end value of a single node and the Lemma holds.

A bound on the total number of moves in any execution

De�nition 4.5.28. Let (u, v) be a matched edge. In the following, we call F a
�nite execution where neither u nor v execute the Update rule. Let DE be the �rst
con�guration of F and D′E be the last one.

Observe that in the execution F , all variables α and β of nodes u and v remain
constant and thus, predicates AskFirst and AskSecond for these two nodes remain
constant too.

Lemma 4.5.29. If Ask(u) = Ask(v) = null in F , then u and v can both execute
at most one ResetMatch.

Proof. Recall that in the execution F , by de�nition, u and v do not execute the
Update rule. Moreover, these two nodes are not eligible for Match rules since
Ask(u) = Ask(v) = null. Thus they are only eligible for ResetMatch. Observe
now it is not possible to execute this rule twice in a row, which completes the
proof.

Lemma 4.5.30. Assume that in F , u is First and v is Second. If su is False in
all con�gurations of F but the last one, then v can execute at most one rule in F .

61

Proof. Since su = False in all con�gurations of F but the last one, node v which is
Second can only be eligible for ResetMatch. Observe that if v executes ResetMatch,
it is not eligible for a rule anymore and the Lemma holds.

Lemma 4.5.31. Assume that in F , u is First and v is Second. If su is False
throughout F , then u can execute at most one rule in F .

Proof. Node u can only be eligible for MatchFirst. Assume u executesMatchFirst
for the �rst time in some transition C0 7→ C1, then in C1, necessarily, pu =
AskFirst(u), su = False (by hypothesis) and endu = False by Lemma 4.5.10.
Let F1 be the execution starting in C1 and �nishing in D′E . Since in F1, there is
no Update of nodes u and v, observe that pu = AskFirst(u) remains True in this
execution. Assume by contradiction that u executes another MatchFirst in F1.
Consider the �rst transition C2 7→ C3 after C1 when it executes this rule. Notice
that between C1 and C2 it does not execute rules. Thus, in C2, pu = AskFirst(u),
su = False and endu = False hold. Now, if u executes MatchFirst in C2 it is
necessarily to modify the value of su or endu. By de�nition, it cannot change the
value of su. Moreover it cannot modify the value of endu as this would imply by
Lemma 4.5.10 that su = True in C3. This completes the proof.

Lemma 4.5.32. Let (u, v) be a matched edge. Assume that in F , u is First, v
is Second and that u writes True in su in some transition of F . Let C0 7→ C1 be
the transition in F in which u writes True in su for the �rst time. Let F1 be the
execution starting in C1 and �nishing in D′E . In F1, u can apply at most 3 rules
and v at most 2.

Proof. We �rst prove that in F1, su remains True. Observe that u cannot execute
Update nor ResetMatch since it is First. So, u can only execute MatchFirst in
F1. For u to write False in su, it must exists a con�guration in F1 such that
pu 6= AskFirst(u) ∨ ppu 6= u ∨ pv 6∈ {AskSecond(v), null}. Let us prove that none
of these cases are possible.

Since u executed MatchFirst in transition C0 7→ C1 writing True in su then, by
de�nition of this rule, pu = AskFirst(u)∧ppu = u∧pv ∈ {AskSecond(v), null} holds
in C0. As there is no Update of u and v in F , then AskFirst(u) and AskSecond(v)
remain constant throughout F (and F1). So each time u executes a MatchFirst, it
writes the same value AskFirst(u) in its p-variable. Thus pu = AskFirst(u) holds
throughout F1. Moreover, each time v executes a rule, it writes either null or the
same value AskSecond(v) in its p-variable. Thus pv ∈ {AskSecond(v), null} holds
throughout F1. Now by Lemma 4.5.11, in C1 we have, ∃x ∈ single(N(u)) : pu =
x ∧ px = u, since su = True . This stays True in F1 as pu remains constant and
x will then not be eligible for UpdateP in F1. Thus ppu = u holds throughout F1.
Thus, pu = AskFirst(u) ∧ ppu = u ∧ pv ∈ {AskSecond(v), null} holds throughout
F1 and so su = True throughout F1.

This implies that in F1, v is only eligible for MatchSecond. Consider the �rst
time it executes this rule in some transition B0 7→ B1, with B1 ≥ C1. Then, in
B1, pv = AskSecond(v), sv = endv and this will hold between B1 and D′E . If
endv = True in B1 then this will stay True between B1 and D′E . Indeed, pv is not
eligible for UpdateP and we already showed that pu = AskFirst(u) holds in F1. In
that case, between B1 and D′E , v will not be eligible for any rule and so v will have
executed at most one rule in F1. In the other case, that is endv(= sv) = False in
B1, since pv = AskSecond(v) holds between B1 and D′E , necessarily, the next time
v executes a MatchSecond rule, it is to write True in endv. After that observe that
v is not eligible for any rule. Thus, v can execute at most 2 rules in F1.

62

To conclude the proof it remains to count the number of moves of u in F1.
Recall that we proved that su is always True in F1. Thus whenever u executes a
MatchFirst, it is to modify the value of its end variable. Observe that this value
depends, in fact, on the value of endv and on pv since we proved pu = AskFirst(u)∧
ppu = u ∧ su ∧ pv ∈ {AskSecond(v), null} holds throughout F1. Since we proved
that in F1, v can execute at most two rules, this implies that these variables can
have at most three di�erent values in F1. Thus u can execute at most 3 rules in
F1.

Lemma 4.5.33. Assume that in F , u is First and v is Second. If su is True
throughout F and if u does not execute any move in F , then v can execute at most
two rules in F .

Proof. By De�nition 4.5.28, v cannot execute Update in F1. Since we suppose that in
F1, su = True then v is not eligible for ResetMatch. Thus in F1, v can only execute
MatchSecond. After it executed this rule for the �rst time, pv = AskSecond(v)
and sv = endv will always hold, since v is only eligible for MatchSecond. Thus
the second time it executes this rule, it is necessarily to modify its endv and sv
variables. Observe that after that, since u does not execute rules, v is not eligible
for any rule.

Lemma 4.5.34. In F , u and v can globally execute at most 12 rules.

Proof. If Ask(u) = Ask(v) = null, the Lemma holds by Lemma 4.5.29. Assume
now that u is First and v Second. We consider two executions in F .

Let C0 7→ C1 be the �rst transition in F in which u executes a rule. Let F0 be
the execution starting in DE and �nishing in C0. There are two cases.

If su = False in F0 then v is only eligible for ResetMatch in this execution.
Observe that after it executes this rule for the �rst time in F0, it is not eligible for
any rule after that in F0.

If su = True in F0 then by Lemma 4.5.33, v can execute at most two rules in
this execution. In transition C0 7→ C1, u and v can execute one rule each.

Let F1 be the execution starting in C1 and �nishing in D′E . Whatever rule u
executes in transition C0 7→ C1 observe that u either writes True or False in su.
If u writes True in su in transition C0 7→ C1, then by Lemma 4.5.32, u and v can
execute at most �ve rules in total in F1.

Consider the other case in which u writes False in C1. Let C2 7→ C3 be the �rst
transition in F1 in which u writes True in su. Call F10 the execution between C1

and C3 and F11 the execution between C3 and D′E . By de�nition, su stays False in
F10\C3. Thus in F10\C3, u can execute at most one rule, by Lemma 4.5.31. Now in
F10, u can execute at most two rules. By Lemma 4.5.30, v can execute at most one
rule in F10. In total, u and v can execute at most three rules in F10. In F11, u and
v can execute at most �ve rules by Lemma 4.5.32. Thus in F1, u and v can apply
at most eight rules.

Theorem 4.5.35. In any execution, matched nodes can execute at most 12∆(σ +
6µ) + 18µ rules.

Proof. Let k be the number of edges in the underlying maximal matching, with
k = µ

2
. For i ∈ [1, .., k], let {(ui, vi) = ai} be the set of matched edges. By

Update(ai) we denote an Update rule executed by node ui or vi. By Lemma 4.5.34,
between two Update(ai) rules, nodes ui and vi can execute at most 12 rules. By
Corollary 4.5.27, there are at most ∆(σ + 6µ) + µ executed Update rules. Thus in

63

total, nodes can execute at most
k∑
i=1

12× (#Update(ai) + 1)

= 12
k∑
i=1

#Update(ai) + 12
k∑
i=1

1 ≤ 12(∆(σ + 6µ) + µ) + 12k = 12∆(σ + 6µ) + 18µ

rules.

Lemma 4.5.36. In any execution, single nodes can execute at most σ times the
ResetEnd rule.

Proof. We prove that a single node x can execute the ResetEnd rule at most once.
Assume by contradiction that it executes this rule twice. Let C0 7→ C1 be the
transition when it executes it the second time. In C0, endx = True, by de�nition
of the rule. Since x already executed a ResetEnd rule, it must have, at some point,
wrote True in endx. This is only possible through an execution of UpdateEnd.
Thus consider the last transition D0 7→ D1 in which it executed this rule. Observe
that D1 ≤ C0. Since between D1 and C0, endx remains True, observe that x does
not execute any rule between these two con�gurations. Now since in D1, px 6= null
and this holds in C0 then x is not eligible for ResetEnd in C0, which gives the
contradiction. This implies that single nodes can execute at most O(σ) times the
ResetEnd rule.

Lemma 4.5.37. In any execution, single nodes can execute at most σ + 6µ times
the UpdateEnd rule.

Proof. By Lemma 4.5.24, single nodes can change the value of their end variable at
most σ + 6µ times. Thus, they can apply UpdateEnd at most σ + 6µ times, since
in every application of this rule, the value of the end variable must change.

Lemma 4.5.38. In any execution, single nodes can execute at most 12∆(σ+ 6µ) +
18µ+ 1 times the UpdateP rule.

Proof. Let x be a single node. Let C0 7→ C1 be a transition in which x executes an
UpdateP rule and let C2 7→ C3 be the next transition after C1 in which x executes
an UpdateP rule. We prove that for x to execute the UpdateP rule in C2 7→ C3, a
matched node has to execute a move between C0 and C2.

In C1 there are two cases: either px = null or px 6= null. Assume to begin that
px = null. This implies that in C0 the set {w ∈ N(x)|pw = x} is empty. In C2,
px = null, since between C1 and C2, x can only apply UpdateEnd or ResetEnd.
Thus if it applies UpdateP in C2, necessarily {w ∈ N(x)|pw = x} 6= ∅. This implies
that a matched node must have executed a Match rule between C1 and C2 and the
lemma holds in that case.

Consider now the case in which px = u with u 6= null in C1. By de�nition of
the UpdateP rule, we also have u ∈ matched(N(x)) ∧ pu = x holds in C0. In C2

we still have that px = u since between C1 and C2, x can only execute UpdateEnd
or ResetEnd. Thus if x executes UpdateP in C2, necessarily ppx 6= x. This implies
that pu 6= x and so u executed a rule between C0 and C2.

Now, the lemma holds by Theorem 4.5.35.

Corollary 4.5.39. In any execution, nodes can execute at most O(n2) moves.

Proof. According to Lemmas 4.5.36, 4.5.37 and 4.5.38, single nodes can execute at
most O(n2) moves. Moreover, according to Theorem 4.5.35, matched nodes can
execute at most O(n2) moves.

64

Corollary 4.5.40. The algorithm PolyMatch converges in O(n2) moves under the
adversarial distributed daemon and in a general graph, provided that an underlying
maximal matching has been initially built.

Recall that the algorithm PolyMatch assumes an underlying maximal match-
ing. As we said in section 4.3, we can use the self-stabilizing maximal matching
algorithm of Manne et al. [106] that stabilizes in O(m) moves. Then, using a clas-
sical composition of these two algorithms [47], we obtain a total time complexity of
O(m× n2) moves under the adversarial distributed daemon.

65

Chapter 5

Maximal Matching in the Link
Register Model

In this chapter we present our second self-stabilizing algorithm. It �nds a maxi-
mal matching in the Link Register model. See [35] for a preliminary version of the
paper.

5.1 Introduction

The algorithm of the previous section, as well as the self-stabilizing algorithms
for matching problems which can be found in the literature, that we described in
Section 4.1, work in a state model, in which nodes can directly access the variables
of adjacent nodes. This model was introduced by Dijkstra in [46]. However, this
model fails to capture the aynchronous phenomena that happen in many real-life
distributed systems, which led [48] to introduce the link-register model (or read-
write model). In this model, communications are abstracted by registers in which
nodes can write and read values. Atomicity conditions de�ne the granularity of the
algorithm. A variety of atomicity conditions exist (see [86] for a survey and some
results on the strength of the di�erent atomicities).

Read/write atomic registers are registers associated to each (directed) link, in
which one of the nodes can write, and the other read; each read or write operation
on the register is atomic (meaning that it cannot be interrupted), but a read in
the register can happen arbitrarily long after the previous write, forcing the reading
process to act based on outdated values (as opposed to what happens in Dijkstra-
type state model). Read/write atomic registers can be implemented over message-
passing models (at a large cost however), as in [114] for instance. This kind of
atomicity is the strongest, meaning that algorithm written under this model also
solve the problem under the other classical models.

The possible occurrence of faults in the execution of the algorithm is taken into
account with the paradigm of self-stabilization, as de�ned in Section 1.4.2. A fault
(or a sequence of faults) can lead the system to an arbitrary con�guration of the
processes and registers, starting from which the execution (seen as a completely
new execution starting from this arbitrary con�guration) must eventually resume a
correct behavior in �nite time.

To the best of our knowledge, there exists only one algorithm dealing with the
self-stabilizing construction of a maximal matching under the link-register model
with read/write atomicity. Chattopadhyay et al. [28] present this solution in a
general anonymous network. Their algorithm assumes a fair distributed daemon
and reaches a linear round complexity. As described in Section 1.4.2, a round of

66

computation is the shortest partial computation in which each enabled processor
executes at least one full iteration of its algorithm. Processor performs as many as
∆ + 1 atomic operations (or steps) in one complete iteration, with ∆ the maximum
degree of the network. Thus a round costs at least ∆n atomic steps and so the
atomic step complexity is Ω(∆n2). However this is just a lower bound. Observe
that it is not possible to deduce an upper bound from this result since, according to
the de�nition, in a round, the number of activations of each process has to be �nite
but not bounded.

In this chapter we propose a new distributed self-stabilizing algorithm solving
the matching problem in a link-register model with read/write atomicity. This is the
�rst algorithm working under the adversarial distributed daemon. The algorithm is
presented under the form of guarded rules (usual for state model algorithms, but as
far as we are aware of, never used before for link-register algorithms). This allows to
underscore the granularity of the model, each con�guration being the result of the
application of an arbitrary subset of guarded rules to the previous con�guration.

Our solution assumes unique identi�ers in the system while the Chattopadhyay
et al. solution assumes an anonymous network. However, Chattopadhyay et al.
assume a fair distributed daemon and the knowledge on an upper bound on the size
of the system while we do not assume any fairness neither any size knowledge in
our solution. Finally, our solution gives an O(∆m) step complexity while there is
no upper bound for the Chattopadhyay et al. solution.

In the literature, some transformers from a communication model to another
exist. To the best of our knowledge, the Beauquier et al. [15] transformer is the only
transformer from the state model with the composite atomicity to the link-register
model with the read/write atomicity and that deals with the adversarial distributed
daemon.

We could have applied this transformer to the Manne et al. algorithm [106]
in order to obtain a self-stabilizing algorithm for a maximal matching construction
in the link-register model with read/write atomicity. However, no complexity is
given for the Beauquier et al. transformer, so our solution stabilizes more quickly
(O(∆m)) than this transformation would guaranty (only �nite).

Another transformer between two communication models is presented in the
Dolev book [47]. Dolev presents a transformer from the state model with composite
atomicity to the link-register model with read/write atomicity. The di�erence with
the Beauquier et al. transformer is the fair sequential daemon assumption. The
Dolev transformer is proved to have an exponential round complexity at worst. So,
once again, if we compare our solution with the composition of the Dolev transformer
and the Manne et al. algorithm, not only our solution assumes a stronger daemon
but it also stabilizes more quickly.

Another approach would be to use communication primitives giving some nice
properties on read and write atomic actions and leading to the simulation of the
state model with composite atomicity. A good start to make such a simulation is
the Johnen et al. communication primitives [88] that guarantees some properties
between two consecutive Write performed by a unique node. The strongest one
guarantees that between two Write, all neighbors read exactly once the latest written
value. The property is obtained by blocking the write of a node until all its neighbors
perform their read.

However, these primitives cannot be trivially used as a base for a transformer.
Indeed, under the state model, a node reads the state of all its neighbors and changes
its own state. Thus the model guarantees each read value corresponds to the last
written value. In particular, this prevents a node from performing a move based on

67

the last written value of one neighbor (let say a) and the last but one written value
of another neighbor (let say b). In other words, there is no incoming transition in
such a con�guration. Of course these a and b values can appear in a con�guration
(if the algorithms allows it), but if so these two values cannot correspond to the
last written value for a and a past value for b. Thus, if the algorithm does not
create such a couple of values (for instance in the case of the use of a common
technique of a local agreement where each process progresses accordingly to the
progression of one of its neighbor in a two-phase locking process for instance, as
we can �nd in the Manne et al. algorithm, in the Goddard one, and �nally in our
contribution), then such a con�guration is not reachable under the state model with
composite atomicity, while it is in the model used in this chapter. Thus, if we use
the Johnen et al. primitives with the Manne et al. algorithm, we obtain some new
executions compared to the ones one obtains without the primitive but assuming
the composite atomicity. In particular, an execution that in�nitely often reaches the
aforementioned kind of con�gurations.

The chapter is organized as follows. We �rst present the model under which the
algorithm is designed in the next Section. Section 5.3 is devoted to the algorithm,
the convergence and correctness of which are proven in the last section.

5.2 Model

For de�nitions and notations about models, the reader can refer to Section 1.4.2.
In this contribution, we consider the link register communication model. Considering
two adjacent processors u and v, there exists a register ruv in which u is the only
process allowed to write, and that v can read.

All nodes have the same variables; if var is a variable, varu denotes the instance
of this variable on process u. Each node u has a unique id idu; in the following, for
the sake of simplicity, we do not distinguish between u and idu.

Each node u maintains a variable pu ∈ N(u) ∪ {null} indicating the neighbor it
is married or attempting to marry.

A con�guration solves the maximal matching if it is such that ∀u, (pu 6= null⇒
ppu = u) ∧ (pu = null ⇒ ∀v ∈ N(u), pv 6= null). The �rst part of this speci�cation
means that if a node points to one of its neighbor, this neighbor points to it; the sec-
ond one implies maximality: if a node points to no other node, none of its neighbors
is in the same situation, since they could marry and create a larger matching.

The algorithm is presented under the form of a set of guarded rules. To respect
read/write atomicity, if a guard refers to the value of a neighbor's register (which
implies the reading of this register), the associated action cannot write in a register.
In particular, we decided to introduce the Write guarded rule, that writes the
adequate value in a register; other actions never write in any register. Thus, all
actions consist either in readings in neighbor's registers and taking local actions, or
in writing in its own register, which respects the read/write atomicity. A guarded
rule is activable in a con�guration if its guard is true.

Link-register algorithms are generally presented as an in�nite loop of readings,
local actions and writings for each node, and the chosen atomicity allows to decide
the points in the algorithm at which the execution of a node can be suspended to
let another node take over. We choose to show more explicitly the points at which
a node suspends action, and thus the result in terms of con�guration of each of its
atomic actions: the next con�guration in an execution is obtained by applying one
or several actions of guarded rules whose guards are true.

68

The moment when a process u writes in register ruv is the time starting from
which the written value ruv is available to v, thus, the writing is analogous to a
message reception by v in a message-passing model. A node u reads in its register
ruv in all guards. This allows it to check that the writing register of a node has
reached its correct value. This can be paralleled with an acknowledgement.

Recall, as introduced in Section 1.4.2.2 that by Ci 7→ Ci+1 we denote a transition
in some execution. We extend this notation with Ci 7→∗ Cj if i ≤ j, and Ci 7→+ Cj
if i < j; in this case, we say for any action (R, u) ∈ Ak with i ≤ k ≤ j that there
has been a transition (R, u) between Ci and Cj.

5.3 Algorithm

The presented algorithm is based on the algorithm by Manne et al [106] written
under the state model. A marriage is contracted in two phases: (1) the selection of
the edge to add to the matching and (2) the con�rmation or the lock of the edge in
the matching in three steps. For the selection phase, the lowest id node of a pair
proposes to its neighbor, that accepts (or not) the proposition. In the acceptation
case, the marriage is con�rmed in three steps. This scheme can be interrupted at
any point, either because of another marriage being concluded, or because of a faulty
initialization. Once the marriage is reached, the married nodes do not do any more
moves, and the algorithm is eventually silent. At worst, the algorithm has to take
O(m∆) moves before reaching a maximal matching.

5.3.1 Variables description

Each node u has two local variables. Variable pu is the identi�er of the node
u points to: nodes u and v are said to be married to each other if and only if u
and v are neighbors, pu points to v, and pu points to u. We also use a variable mu

indicating the progress of u's marriage: mu ∈ {0, 1, 2, 3}.
Each node u has a four bits register ruv for each of its neighbors v. The �rst two

bits ruv.p can take the value Idle if u points to null (ie pu = null), You if it points
to v, and Other if it points to a node 6= v. The last two bits ruv.m can be 0, 1, 2 or
3, indicating the progress of u's marriage.

5.3.2 Algorithm description

The Seduction and Marriage rules implement the selection of an edge for the
matching: they set the p variable of a node to a candidate for a marriage. First, the
node with the smallest id in a pair executes the Seduction rule, to which the node
with the highest id can respond by executing the Marriage rule. This asymmetrical
process avoids situations with nodes trying to seduce neighbors in a cycle, that could
be reproduced by an adversarial daemon.

Under read/write atomicity, an o�set is possible between the value of the local
variables of a node (p,m) and the value of its registers. In order to avoid in�nite
executions during which the distributed daemon lets a node u attempt to marry
a neighbor v just at the same time when v abandons its attempt to marry u, and
then conversely at the next step, it is necessary to design a mechanism locking
progressively a marriage. We achieve that with variable m, which takes values in
{0, 1, 2, 3}: except for faulty initialization, mu = 0 means that u did not start locking
any marriage, and mu ≥ 1 means that u has a neighbor v such that pu = v∧pv = u.

69

If mu = 1 or mu = 2, then the marriage lock is in progress and if mu = 3, then the
lock is done. m is incremented in the execution of rule Increase.

The Reset rule ensures that local variables p and m for a node u have consistent
values. It is executed when predicate PRabandonment(u) or PRreset(u) is true.
PRabandonment(u) means that u's marriage process should be restarted if u is
trying to marry a node v < u that is not seducing it, or if u is trying to seduce
a node that is already married (at least, when the registers of v indicate that).
This last case can happen when v is responding to several proposals at the same
time, while the �rst one is provoked by �bad� initializations. PRreset(u) indicates a
discrepancy between the steps taken in the locking mechanism by the two processes
involved in it. This is due to �bad� initializations.

5.3.3 Algorithm

5.3.3.1 Predicates and functions

Correct_register_value(u, a) ≡ if pu = null then return (Idle, 0)
else if pu = a then return (You,mu)
else return (Other,mu)

PRabandonment(u) ≡ [pu 6= null ∧ (rpuu.p 6= Y ou ∧ (u > pu ∨mu 6= 0))
∨(rpuu = (Other, 3) ∧ u < pu)]

PRreset(u) ≡ (pu 6= null) ∧ (rpuu.p = Y ou) ∧ (
(|mu = 0− rpuu.m| ≥ 2)

∨ (mu = 0 ∧ rpuu.m = 1 ∧ u > pu)
∨ (mu = 1 ∧ rpuu.m = 0 ∧ u < pu)
∨ (mu = 1 ∧ rpuu.m = 2 ∧ u < pu)
∨ (mu = 2 ∧ rpuu.m = 1 ∧ u > pu)
∨ (mu = 3 ∧ rpuu.m = 2 ∧ u > pu)
∨ (mu = 2 ∧ rpuu.m = 3 ∧ u < pu))

5.3.3.2 Rules for each node u

∀a ∈ N(u),

Write(a) :: rua 6= Correct_register_value(u, a)
→ rua := Correct_register_value(u, a)

Seduction(a) :: pu = null ∧ rua = Correct_register_value(u, a)
∧ rau = (Idle, 0) ∧ (u < a) → (pu,mu) := (a, 0)

Marriage(a) :: pu = null ∧ rua = Correct_register_value(u, a)
∧ rau = (You, 0) ∧ (u > a) → (pu,mu) := (a, 0)

Increase :: pu 6= null ∧ rupu = Correct_register_value(u, pu)
∧ (rpuu.p = Y ou) ∧ (

(mu = 0) ∧ [(u < pu ∧ rpuu.m = 1) ∨ (u > pu ∧ rpuu.m = 0)]
∨ (mu = 1) ∧ [(u < pu ∧ rpuu.m = 1) ∨ (u > pu ∧ rpuu.m = 2)]
∨ (mu = 2) ∧ [(u < pu ∧ rpuu.m = 2) ∨ (u > pu ∧ rpuu.m = 3)]

)→
mu := mu + 1

Reset :: pu 6= null ∧ rupu = Correct_register_value(u, pu)
∧ (PRabandonment(u) ∨ PRreset(u)) → (pu,mu) := (null, 0)

5.3.4 About the rules

Let deg(u) be the degree of node u. A node u has 3 deg(u) + 2 rules: one rule
Write, Seduction and Marriage for each neighbor, plus one rule Increase and one

70

Reset. Observe that rules Seduction and Marriage can be executed when the node
is pointing to null, so these rules can be executed over some "good " candidates.
However, rules Reset and Increase can only be executed over the one neighbor
the node is pointing to. Given a neighbor v of u, u can be activable only for rule
Marriage(v) or Seduction(v), because the �rst one needs that u > v and the second
that u < v.

De�nition 5.3.1 (v-Increase/v-Reset, v-rule and R(−) rule). Let u and v be two
nodes. We say that node u is activable in the con�guration C for a v-Increase (resp.
v-Reset) rule if, in C, u is activable for an Increase (resp. Reset) rule and pu = v.
We say that node u is eligible in the con�guration C for a v-rule if u is eligible for one
of the following rule: {Write(v), Seduction(v), Marriage(v), v-Increase, v-Reset}
in C. Finally, let R be any rule among Write, Marriage and Seduction. We say
that u is eligible for a R(−) rule, if there exists a neighbor of u, say a, such that u
is eligible for a R(a) rule.

Observation 5.3.2. Let u be a node and C be a con�guration. In C, we have:
1. if pu = null then:

� u is not eligible for Increase nor Reset;
� ∀v ∈ N(u) : u is eligible for at most one rule among the set of rules
{Write(v), Marriage(v), Seduction(v)};

2. if pu 6= null then:

� u is not eligible for Marriage(−) nor Seduction(−);
� u is eligible for at most one rule among the set of rules {Write(pu),

Increase, Reset}; moreover, if this rule is an Increase (resp. Reset),
this is necessarily a pu-Increase (resp. pu-Reset);

� and ∀x ∈ N(u) \ {pu} : among all the x-rules, u can only be eligible for
Write(x);

5.3.5 Execution examples

Below is an execution of the algorithm under the adversarial distributed daemon.
Figure 5.1a shows the initial state of the execution. Node identi�ers are indicated
inside the circles. In this execution, we take s < t. Black arrows show the content
of the local variable p and the absence of arrow means that p = null. s:Write(t)
means that node s executes the Write(t) rule.

Consider the initial con�guration (Figure 5.1a) in which variable and register
values are as follows: (ps,ms) = (pt,mt) = (null, 0), rst = (Y ou, 2) and rts =
(Idle, 0). Thus, initially, nodes s and t are not matched. Since the local variables
of s are not consistent with register rst, node s executes Write(t) in order to set
rst = (Idle, 0) (Figure 5.1b).

Now, since s and t are not matched they can start a selection process in order to
marry. The node with the smallest identi�er, s, starts the process and thus, since
rts = (Idle, 0), s executes a Seduction(t) rule in order to set ps to t. Then s is
eligible to execute a series of Write(v) rules to update its registers (Figure 5.1c).

Once register rst is updated, node t answers to the proposition of s by executing
aMarriage(s) rule, setting pt = s. It is then eligible to execute a series of Write(v)
rules to update its registers. As long as t does not update its rts register, the
process of locking the marriage cannot start since s needs rts.p = Y ou in order to
start increasing its m variable. So assume t updates its rts register with a Write(s)
(Figure 5.1d).

71

From this point, both nodes point towards each other. The locking process of
the marriage can start from this point. First, the node with the highest identi�er,
that is t, sets its m variable to 1 with a s-Increase and then updates its registers
(see Figure 5.1e). Then node s executes a t-Increase and sets ms = 1 followed
by a Write(t) rule to update its register (Figure 5.1f). After, it executes another
t-Increase rule to set ms = 2 (Figure 5.1g). This execution of two consecutive
t-Increase by s guarantees that t has correct register values. Now, it is the turn of
t to execute a s-Increase rule to set mt = 2 followed by a Write(s) in Figure 5.1h.
In Figure 5.1i, s executes t-Increase and a Write(t) in order to update its register.
Finally, t executes a last s-Increase rule to set mt = 3. At this point the matching
of s and t is locked.

One might wonder why the Increase rule is not alternately executed by s and
t. Indeed, s executes two consecutive t-Increase to set its m variable from 0 to
1 and then to 2, while t does not change its m value. Actually, the algorithm
does not converge if nodes would perform the Increase rule alternately. These two
consecutive Increase are a key point on the lock process of a marriage and this will
be discussed in Section 5.3.6.

s t
(You,2)

ms = 0

(Idle,0)

mt = 0

s t
(Idle,0)

ms = 0

(Idle,0)

mt = 0

s t
(You,0)

ms = 0

(Idle,0)

mt = 0

(a) Initial con�gura-
tion

(b) s : Write(t) (c) s : Seduction(t)
then

s : Write(v),∀v ∈
N(s)

s t
(You,0)

ms = 0

(You,0)

mt = 0

s t
(You,0)

ms = 0

(You,1)

mt = 1

s t
(You,1)

ms = 1

(You,1)

mt = 1

(d) t : Marriage(s)
then

(e) t : s-Increase then (f) s : t-Increase then

t : Write(s) t : Write(s) s : Write(t)

s t
(You,2)

ms = 2

(You,1)

mt = 1

s t
(You,2)

ms = 2

(You,2)

mt = 2

(g) s : t-Increase then (h) t : s-Increase then
s : Write(t) t : Write(s)

Figure 5.1 � A typical execution of the algorithm. The absence of arrow means that
the p-variable is equal to null.

Now, consider another execution, in which the algorithm deals with some in-
consistencies between registers and local variable. In the initial con�guration (Fig-
ure 5.2a), variables and registers have the following values: (ps,ms) = (t, 0), rst =
(Y ou, 0), (pt,mt) = (s, 0) and rts = (Other, 3). Thus, the register rst is badly initial-
ized. Then s can execute Reset to restart a process of a new marriage. In parallel,
t updates its registers by executing Write(s) (Figure 5.2b). From now on, t starts
the lock process by executing Increase and s updates its registers by executing
Write(t). Once again let us assume they both do so. Then t updates its register,
leading to the con�guration in Figure 5.2c. At this moment, node t has to give up
the process of the marriage lock since rst = (Idle, 0), so that t is activable for a

72

Reset. Once t has executed this Reset and updated its register, the con�guration
is the one in Figure 5.1b.

s t
(You,0)

ms = 0

(Other,2)

mt = 0

s t
(You,0)

ms = 0

(You,0)

mt = 0

s t
(Idle,0)

ms = 0

(You,1)

mt = 0

(a) Initial con�gura-
tion

(b) t:Write(s) // s:t-
Reset

(c) t:s-
Incr.//s:Write(s)

then t : Write(s).

Figure 5.2 � How to deal with incoherent values between registers and local variables?

5.3.6 Lock mechanism analysis

Figure 5.3 gives the ordered actions but the Write rule, executed by two neigh-
boring nodes s and t (with s < t) in order to completely get married after both
nodes have performed a Reset. The Increase rule is the kernel of the lock mecha-
nism allowing the two nodes to progress together.

s: Reset s: Sed(t) s: t-Incr s: t-Incr s: t-Incr
rst = (Y ou, 2) rst = (Y ou, 3)

rts = (Y ou, 1)

rst = (Y ou, 1)

rst = (Y ou, 3)rts = (Y ou, 2)
t: s-Incr t: s-Incr t: s-Incrt: Marr(s)

t: Reset

s

t

t

Figure 5.3 � Matching progress between s and t after both nodes reset. Actions
performed by s (resp. t) are drawn above (resp. below) the execution line. In this
execution, node t should execute a Reset before executing Marriage(s) (see the
second execution line).

Observe that our algorithm does not allow that s and t executes alternately the
Increase rules because this would avoid our algorithm to stabilize. Using the same
algorithm with only one modi�cation in the Increase rule where s makes the �rst
Increase while t does the second, we can exhibit a in�nite execution that does not
stabilize. This execution contains a loop on an incorrect con�guration. Figure 5.4
gives this loop.

As Figure 5.4 illustrates it, t should initiate the locking mechanism by executing
the �rst Increase. Thus, t executes two moves (Marriage and then Increase) in a
row without s performing any Increase, allowing then to avoid incorrect execution.
We use the same mechanism when it is the turn of s to perform its lock with the
Increase rule. Thus, s executes two Increase in a row without t performing any
Increase.

Observe that a node should be able to reset a proposition to a locked married
node and so it has to be able to detect this lock. The lock progress is given in the
m-value of a node, and the chosen value for a locked marriage should be the same for
both married nodes in order for their neighbor to be able to perform this detection.
We choose the value 3 instead of 2 to represent a locked marriage (called the locked
marriage value) for the following reason.

73

s t
(You,0)

ms = 0

(You,0)

mt = 0

s t
(You,0)

ms = 1

(You,0)

mt = 0

s t
(You,0)

ms = 1

(Idle,0)

mt = 0

(a) Initial con�gura-
tion

(b) s : t-Increase (c) t : Write(s)

s t
(You,0)

ms = 1

(Idle,0)

mt = 0

s t
(You,1)

ms = 1

(Idle,0)

mt = 0

s t
(You,1)

ms = 0

(Idle,0)

mt = 0

(d) t : Marriage(s) (e) s : Write(t) (f) s : Reset

s t
(Idle,0)

ms = 0

(Idle,0)

mt = 0

s t
(Idle,0)

ms = 0

(You,0)

mt = 0

s t
(You,0)

ms = 0

(You,0)

mt = 0

(g) s : Write(t) (h) s : Seduction(t)// (i) t : Reset//s :
Write(t)

t : Write(s) Initial con�gura-
tion

Figure 5.4 � Counter-example: why alternating actions creates loop in executions.
The absence of arrow means that the p-variable is equal to null.

A node can write m = 2 O(∆) times while it can only write m = 3 twice in
an execution. Observe that when a node writes the locked marriage value in its m-
variable, this can generate O(∆) Reset (because of the PRAbandonment predicate).
Thus, if the locked marriage value is 2, the complexity contains a ∆2 factor (see [35]
for the complexity computation) while if it is 3, the complexity only contains a ∆
factor.

5.3.7 Local impact after a topological change

In this section we give an analysis on the impact of a topological change on our
algorithm. In particular, we give which node will have to take part of the matching
reconstruction after a topological change. First observe that if a topological change
occurs in a stable con�guration, then a matched node can change its marriage if
only if its married neighbor has disappeared.

Now, let us assume that a single node x disappears. Since the con�guration is
stable just before the topological change then all neighbors of x are matched and so
the con�guration remains stable. If a new node x appears, then all single neighbors
of this new node will attempt a marriage with it. And all married neighbors of
this new node will just perform one Write in order to update their new register.
But there will be no impact on the nodes at distance 2 from x since single nodes
at distance 1 from x only have married nodes neighbors and all married nodes at
distance 1 from x prevent their single neighbors to get married.

Finally, if a node u disappears while u was married with node v. Observe that
married neighbors of u or v won't remain activable after this topological change.
We consider two sets: the set U , the single neighbor of u that are not neighbor of v
and the set V , the single neighbors of v. Nodes in U only have married neighbors
since there are single and u disappears. So, these nodes wont' remain activable after
this topological change. However, nodes in V had only married neighbors before the
topological change, but have now one single neighbor v, that just lost his spouse.
So all node in V will attempt a marriage with v. But there will be no impact on
the nodes at distance 2 from u or v for same reason than before.

In conclusion, the reconstruction generated by a topological change only concerns

74

nodes at distance at most two from the change. All the other nodes in the system
will not execute any move due to this change.

On the other hand, in the Chattopadhyay et al. solution, the system can be
globally a�ected with only one topological change. For instance, if a node with the
smallest id appears in the system, and since the matching is built based on some
local minimum id, then this new smallest id node can modify the local minimum id
nodes at distance in O(n) from the new node. And so, the matching reconstruction
can concern a number of nodes that depends on the size of the system.

5.4 Proof of the Algorithm

5.4.1 State of an edge

We �rst focus on an edge (s, t) of the matchingM = {(a, b) ∈ E : pa = b∧pb = a}
built by our algorithm when s < t. In particular, we focus on values of local variables
and registers of this edge in some chosen con�gurations.

De�nition 5.4.1. Let (s, t) be an edge with s < t. We say that in a con�guration
C, the edge (s, t) is in state (Y ou, α, β) if (ps = t ∧ pt = s) ∧ (ms = α ∧mt = β)

If an edge (s, t) is in state (Y ou, α, β), then this edge belongs to the matching.
Unfortunately, due to some �bad� initialization for instance, this edge can be removed
from the matching at some point of the execution. In the following, we characterize
an edge that belongs to the matching and that will forever remain in it.

A correct state corresponds to the situations appearing in the Figure 5.1 starting
from step (d). Starting from a con�guration where edge (s, t) is in a correct state,
the two nodes, one after the other, execute Increase and Write rules. A link is in
an updated correct state when all registers of the edge are updated (and so exactly
one node among s and t is eligible for an Increase), while it is toUpdate when the
register of one of the two nodes is not up to date (and so exactly one node among
s and t is eligible for a Write).

De�nition 5.4.2 (Updated correct state). Consider an edge (s, t) with s < t in
state (Y ou, α, β) in a con�guration C. This link is in an updated correct state if

(rst = (Y ou, α) ∧ rts = (Y ou, β)) ∧ (α, β) ∈ {(0, 0), (0, 1), (1, 1), (2, 1), (2, 2), (3, 2), (3, 3)}

De�nition 5.4.3 (toUpdate correct state). Let (s, t) be an edge with s < t in the
state (Y ou, α, β) in a con�guration C. This state is said to be a toUpdate correct
state if

[(α, β) ∈ {(0, 1), (2, 2), (3, 3)} ∧ (rst = (Y ou, α) ∧ rts = (Y ou, β − 1))]

∨ [(α, β) ∈ {(1, 1), (2, 1), (3, 2)} ∧ (rst = (Y ou, α− 1) ∧ rts = (Y ou, β))]

De�nition 5.4.4 (Correct state). Let (s, t) be an edge with s < t in the state
(Y ou, α, β) in a con�guration C. This state is said to be correct if the state is an
updated or a toUpdate correct state.

All four previous de�nitions deal with an edge in which the �rst node has a
smaller identi�er than the second node. In the following, we will write (s, t) to
denote such an edge. This constraint is due to the fact that nodes execute their
Increase rule one after the other in a speci�c order, and a link in state (Y ou, 0, 1)
can be correct while a link in state (Y ou, 1, 0) never is. When we do not make any
assumption on which node has the smallest identi�er in an edge, we use the notation
(u, v).

75

We now state that a node in an edge in a correct state is only activable for
Increase and Write and that an edge in a correct state will forever remain in a
correct state.

Lemma 5.4.5. Let (s, t) be an edge with s < t. Let C be a con�guration. If (s, t) is
in a correct state (Y ou, α, β) in C then neither s nor t is eligible for Seduction(−),
Marriage(−) or Reset in C;

Lemma 5.4.6. Let (s, t) be an edge with s < t. Let C be a con�guration. If (s, t)
is in the correct state (Y ou, α, β) in C then

� ∀C ′ such that C 7→ C ′ is a possible transition we have: (s, t) is in a correct
state in C ′;

� neither s nor t is eligible for any rule in C i� (s, t) is in the updated correct
state (Y ou, 3, 3) in C.

Corollary 5.4.7. Let (s, t) be an edge with s < t. Let C be a con�guration. If
(s, t) is in the correct state (Y ou, α, β) in C then neither s nor t is eligible for
Seduction(−), Marriage(−) or Reset from C.

5.4.2 Correctness Proof

De�nition 5.4.8. A con�guration is called stable if no node can execute a rule in
this con�guration.

In particular, a con�guration is stable i� all guards are false.
We now show that if our algorithm reaches a stable con�guration then p-values

de�ne a maximal matching. The matching built by the algorithm is M = {(u, v) ∈
E : pu = v ∧ pv = u}.

Lemma 5.4.9. Let u be a node. In any stable con�guration
∀v ∈ N(u) : ruv = Correct_register_value(u, v)

Lemma 5.4.10. Let u be a node. In any stable con�guration:
pu = null⇒ ∀v ∈ N(u) : pv 6∈ {null, u}

Proof. Let C be a stable con�guration where pu = null. Consider a neighbor v.
After Lemma 5.4.9, ruv = (Idle, 0).

If pv = null then we can assume without loss of generality that u < v. Then,
according to Lemma 5.4.9, rvu = (Idle, 0). Thus u is eligible for a Seduction(v) rule
and C is not stable.

If pv = u and u < v then PRabandonment(v) holds since ruv 6= Y ou and then v
is eligible for a Reset rule and C is not stable. Finally, if pv = u and v < u then,
according to Lemma 5.4.9, rvu = (Y ou,mv). Then either mv = 0 and so u is eligible
for a Marriage(v) rule, or mv 6= 0 and so PRabandonment(v) holds and then v is
eligible for a Reset rule. In both cases, C is not stable.

Lemma 5.4.11. Let (s, t) be an edge with s < t. In any stable con�guration, if
ps = t and pt = s then edge (s, t) is in the updated correct state (Y ou, 3, 3).

Proof. Consider the state (Y ou, α, β) of edge (s, t) in a stable con�guration C. Ob-
serve that if an edge (s, t) is in a correct state, then edge (s, t) is in the updated
correct state (Y ou, 3, 3) from Lemma 5.4.6, point 2.

We now prove by contradiction that this is the only possible case. Assume that
the edge (s, t) is not in a correct state. First observe that from Lemma 5.4.9, we

76

have rst = Correct_register_value(s, t), and node s (resp. t) is not eligible for a
Write(t) (resp. Write(s)) rule. This implies that if (s, t) is in the state (Y ou, α, β),
then rst = (Y ou, α) and rts = (Y ou, β). Thus, according to De�nition 5.4.2, the only
remaining possibilities for (α, β) are in set {(2, 0), (3, 0), (3, 1), (0, 2), (0, 3), (1, 3), (1, 0), (1, 2), (2, 3)}.
In all of these cases, s is activable for a Reset rule which contradicts the fact that
C is a stable con�guration.

Lemma 5.4.12. Let (u, v) be an edge. In any stable con�guration, pu = v if and
only if pv = u.

Proof. Assume, by contradiction, that pu = v and pv 6= u. By Lemma 5.4.10,
pv 6= null, thus ∃v1 ∈ N(v) : pv = v1 with v1 6= u.

If u > v, after Lemma 5.4.9, rvu.p = Other (i.e., 6= Y ou). So the predicate
PRabandonment(u) holds and node u is eligible for a Reset rule. Thus the con�g-
uration is not stable, which is impossible. If u < v and mv = 3 then Lemma 5.4.9
implies that rvu = (Other, 3). Then the predicate PRabandonment(u) holds and u
is eligible for a Reset rule. Thus the con�guration is not stable neither.

Thus (pu = v ∧ pv 6= u)⇒ (u < v ∧mv ∈ {0, 1, 2} ∧ ∃v1 ∈ N(v) \ {u} : pv = v1).
Suppose by contradiction pv1 = v. From Lemma 5.4.11, the edge (v1, v) is in

updated correct state (Y ou, 3, 3). This implies that mv = 3 which contradicts the
fact mv ∈ {0, 1, 2}. So, pv1 6= v. Using the same argument for edge (u, v), we can
deduce: v < v1∧mv1 ∈ {0, 1, 2}∧∃v2 ∈ N(v1)\{v} : pv1 = v2). Now we can continue
the construction in the same way. We construct a path (u, v, v1, v2, . . . , vr, . . .) where
∀i ≥ 1 : pvi = vi+1 ∧ vi < vi+1 ∧mvi ∈ {0, 1, 2}. Since the number of nodes is �nite,
there exists a node vy1 that appears at least twice in the path. Thus, this path
contains the cycle (vy1 , vy2 , vr, vy1) and by construction, we have vr < vy1 and
vy1 < vr. This gives the contradiction.

From these Lemmas, we deduce:

Theorem 5.4.13. In any stable con�guration, the set of edges M = {(u, v) ∈ E :
pu = v ∧ pv = u} is a maximal matching.

5.4.3 Overview of the Convergence Proof

In this section, we present a sketch of the convergence proof as it is slightly
long and technical. We present the most important lemmas and theorems which are
needed to bound the number of moves before convergence. The complete proof is
given in the next section.

The three following lemmas put in relation the number of moves of all rules
except the Write rule.

Lemma 5.4.14. Let (s, t) be an edge with s < t. Let E be an execution contain-
ing two transitions C0 7→ C1 and D0 7→ D1 with C1 7→∗ D0 where t executes a
Marriage(s) rule. Then s executes a Seduction(t) rule between C1 and D0.

Lemma 5.4.15. Let u be a node. Let E be an execution where u executes at
least two Reset moves. Let C0 7→ C1 and C2 7→ C3 be two transitions corre-
sponding to two consecutive Reset rule executed by u. Then u executes a rule in
{Seduction(−),Marriage(−)} once between C1 and C2.

Lemma 5.4.16. Let u be a node. Let E be an execution where u executes at least
four Increase moves. Let C0 7→ C1, C2 7→ C3, C4 7→ C5 and C6 7→ C7 be four
transitions corresponding to four consecutive Increase rules executed by u. Then u
executes a Reset rule once between C0 and C7.

77

These lemmas bound the number ofMarriage (Lemma 5.4.14), Reset (Lemma 5.4.15)
and Increase (Lemma 5.4.16) in function of the number of Seduction. Then an up-
per bound on the number of Write follows since one modi�cation of the local vari-
ables of u leads u to execute at most deg(u) Write. So, in the following, we present
the sketch of the proof leading to an upper bound on the number of Seduction.In the
Lemma below, we state that the number of Seduction(t) by s is strongly connected
to the number of times that t writes 3 in mt.

Lemma 5.4.17. Let (s, t) be an edge with s < t. Let E be an execution containing
three transitions D0 7→ D1, D2 7→ D3 and D4 7→ D5 with D1 7→∗ D2 and D3 7→∗ D4

and where s executes a Seduction(t) rule. Then there exists a transition D 7→ D′

between D2 and D4 where t executes a Write(s) rule and with in D: pt 6= null and
mt = 3.

From the previous Lemma, we know that t has to write 3 in its m-variable for
s to reset a previous Seduction(t). The next Theorem gives conditions where the
value 3 in a m-variable corresponds to a locked marriage and thus yields a situation
where s cannot seduce t anymore.

Theorem 5.4.18. Let (u, v) be an edge. Let E be an execution. If E contains one
transition A0 7→ A1 and a con�guration A3, with A1 7→∗ A3 such that :

� in A0 7→ A1, u executes a Reset rule;
� and in A3, (pu,mu) = (v, 3);

then the edge (min(u, v),max(u, v)) is in a correct state in A3.

Based on these two previous results, we can bound the number of Seduction
that can be applied by node s. We show that if s seduces t, then this seduction can
be reseted once because of a �bad� initialization, and then, after another Seduction,
this can be reseted a second time. But according to Lemma 5.4.17, this second
Reset means that pt 6= null and mt = 2. Then according to Theorem 5.4.18, at this
point, t belongs to an edge in a correct state. And so s cannot seduce t anymore.
Finally, we obtain that s cannot seduce a neighbor more than twice and the following
theorem holds.

Theorem 5.4.19. Let (s, t) be an edge with s < t. Node s can execute the Seduction(t)
rule at most 3 times in any execution.

As we said before, using Lemmas 5.4.14, 5.4.15, 5.4.16, we can conclude on the
time complexity of the algorithm.

Theorem 5.4.20. The algorithm stabilizes in O(m∆) moves where ∆ is the maxi-
mum degree of G.

5.4.4 The Complete Convergence Proof

5.4.4.1 Property of the state of an edge

Lemma 5.4.5. Let (s, t) be an edge with s < t. Let C be a con�guration. If (s, t) is
in the correct state (Y ou, α, β) in C then neither s nor t is eligible for Seduction(−),
Marriage(−) or Reset in C;

Proof. Neither s nor t are eligible for a Seduction(−) or a Marriage(−) rule in C,
since ps 6= null and pt 6= null in C. Since ps = t, then s is not eligible for a x-Reset if
x 6= t. We now study the case of a t-Reset. PRabandonment(s) is False since rts.p =

78

Y ou. In C, we have: (ms, rts.m) ∈ {(0, 0), (0, 1), (1, 1), (2, 1), (2, 2), (3, 2), (3, 3)} and
rts.p = Y ou and s < t. So, PRreset(s), does not hold in C. Thus, s is not eligible for
Reset in C. Since pt = s, then t is not eligible for a x-Reset if x 6= s. We now study
the case of a s-Reset. PRabandonment(t) is False since rst.p = Y ou. In C, we
have: (ms, rts.m) ∈ {(0, 0), (1, 0), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3)} and rst.p = Y ou
and s < t. So, PRreset(t), does not hold in C. Thus, t is not eligible for Reset in
C.

Lemma 5.4.6. Let (s, t) be an edge with s < t. Let C be a con�guration. If (s, t)
is in the correct state (Y ou, α, β) in C then

� ∀C ′ such that C 7→ C ′ is a possible transition we have: (s, t) is in a correct
state in C ′;

� neither s nor t is eligible for any rule in C i� (s, t) is in the updated correct
state (Y ou, 3, 3) in C.

Proof. First, observe that the correct state de�nition only depends on the value
of the following variables/registers (ps, pt,ms,mt, rst, rts). Only s and t can write
in these variables/registers. So, whatever a node x /∈ {s, t} executes in C 7→ C ′,
this move cannot change the state of (s, t) in C ′. From Lemma 5.4.5 s and t can
only execute Write or Increase, so the p-values will not change in C 7→ C ′ and
then the state of (s, t) in C ′ only depends on the value of the following quadruplet
(ms,mt, rst.m, rts.m) in C ′. Moreover, observe that if s executes an Increase, then
it is a t-Increase since ps = t in C. In the same way, if t executes an Increase,
then it is a s-Increase since pt = s in C. Finally, observe that if s or t executes a
Write(x) rule, with x /∈ {s, t}, then this move cannot change the state of (s, t) in
C ′.

Thus, we are now going to perform a case study: we check for all possible correct
states in C, which rules s (resp. t) is eligible for, among the rules t-Increase and
Write(t) (resp. s-Increase and Write(s)). We call these rules the relevant rules
since these are the only one that can change the state of (s, t). For all possible
transitions C 7→ C ′ that contains at least one of these rules, we prove that (s, t) is
in a correct state in C ′. The two following tables present this case study.

The α and β values in C are given in Column 1. Column 2 gives the values of
the quadruplet (ms,mt, rst.m, rts.m), according to the values of α and β. Columns
3 and 4 give rules s and t are eligible for.

Observe that at each line, there is at most one node among s and t that is eligible
for a relevant rule in C. If this node does not perform any rule in the transition
starting in C, then the state of edge (s, t) remains constant and the proof is done.
Otherwise, we obtain the considered con�guration in the tables, called D. Thus, in
Columns 5 and 6, we give the state that is reached after s or t performs its rule.
Observe that the last line of Table 1 does not contain any value in the last two
columns because there is no such a D con�guration since neither s nor t is eligible
for a relevant rule.

In the following table, we assume (s, t) is in an updated correct state in C:
(toUpdateCS means toUpdate correct state)

79

in C in D

(α, β) (ms,mt, rst, rts)
relevant rules eligibility

(ms,mt, rst, rts) state of (s, t)
for s for t

(0, 0) (0, 0, 0, 0) ∅ s-Increase (0, 1, 0, 0) toUpdateCS (Y ou, 0, 1)

(0, 1) (0, 1, 0, 1) t-Increase ∅ (1, 1, 0, 1) toUpdateCS (Y ou, 1, 1)

(1, 1) (1, 1, 1, 1) t-Increase ∅ (2, 1, 1, 1) toUpdateCS (Y ou, 2, 1)

(2, 1) (2, 1, 2, 1) ∅ s-Increase (2, 2, 2, 1) toUpdateCS (Y ou, 2, 2)

(2, 2) (2, 2, 2, 2) t-Increase ∅ (3, 2, 2, 2) toUpdateCS (Y ou, 3, 2)

(3, 2) (3, 2, 3, 2) ∅ s-Increase (3, 3, 3, 2) toUpdateCS (Y ou, 3, 3)

(3, 3) (3, 3, 3, 3) ∅ ∅ - -

In Table 2, we assume (s, t) is in a toUpdate correct state in C: (updatedCS
means updated correct state)

in C in D

(α, β) (ms,mt, rst, rts)
relevant rules eligibility

(ms,mt, rst, rts) state of (s, t)
for s for t

(0, 1) (0, 1, 0, 0) ∅ Write(s) (0, 1, 0, 1) updatedCS (Y ou, 0, 1)

(1, 1) (1, 1, 0, 1) Write(t) ∅ (1, 1, 1, 1) updatedCS (Y ou, 1, 1)

(2, 1) (2, 1, 1, 1) Write(t) ∅ (2, 1, 2, 1) updatedCS (Y ou, 2, 1)

(2, 2) (2, 2, 2, 1) ∅ Write(s) (2, 2, 2, 2) updatedCS (Y ou, 2, 2)

(3, 2) (3, 2, 2, 2) Write(t) ∅ (3, 2, 3, 2) updatedCS (Y ou, 3, 2)

(3, 3) (3, 3, 3, 2) ∅ Write(s) (3, 3, 3, 3) updatedCS (Y ou, 3, 3)

5.4.4.2 Convergence Proof

Lemma 5.4.21. Let u be a node. Let E be an execution containing two transitions
C0 7→ C1 and C2 7→ C3 with C1 7→∗ C2 where u executes a rule.

1. If u executes an Increase rule during these two transitions and if mu = 1 in
C3, then u executes a Reset rule between C1 and C2.

2. If u executes a Seduction(−) or a Mariage(−) rule during these two transi-
tions, then u executes a Reset rule between C1 and C2.

Proof. We start by proving the �rst point. According to the Increase rule, pu 6= null
in C0 and u writes 1, 2 or 3 in mu during the transition C0 7→ C1. So mu 6= 0 and
pu 6= null in C1. Since mu = 1 in C3, then mu = 0 in C2. Thus either u sets its
m variable to 0 executing a Reset rule between C1 and C2 and the proof is done,
or u executes a Marriage(−) or a Seduction(−) rule, let say in transition C 7→ C ′.
Then we have pu = null in C. Since pu 6= null in C1, then u must execute a Reset
rule between C1 and C.

We now prove the second point. According to both rules Seduction andMarriage,
pu 6= ⊥ in C1 and pu = ⊥ in C2. Thus u must execute a Reset rule between C1 and
C2 in order to set pu to ⊥.

Lemma 5.4.22. Let (s, t) be an edge with s < t. Let E be an execution contain-
ing two transitions C0 7→ C1 and D0 7→ D1 with C1 7→∗ D0 where s executes a
Seduction(t) rule. We have: both s and t execute Reset between C1 and D0.

Proof. From the Seduction(t) rule, we have rts = (Idle, 0) in C0 and D0. Moreover,
according to Lemma 5.4.21, s executes a Reset rule between C1 andD0. Let C4 7→ C5

be the transition where it does for the �rst time.
We now study two cases: in C4, rts is either equal or di�erent from (Idle, 0).

80

If it is di�erent then there exists two transitions C2 7→ C3 and C6 7→ C7, with
C0 7→∗ C2 7→+ C4 and C4 7→∗ C6 7→+ D0 such that: (i) in C2 7→ C3, t executes
Write(s) to set rts to a couple 6= (Idle, 0) and so pt 6= null in C2; and (ii) in
C6 7→ C7, t executes Write(s) to set rts to (Idle, 0) and so pt = null in C6. Thus,
there exists a transition between C3 and C6 where t executes a Reset move.

Now, if rts = (Idle, 0) in C4. Then, PRreset(s) is false and according to the
Reset rule and in particular to the PRabandonment(s) predicate, ms 6= 0 in C4.
Moreover, from the Seduction(t) rule, ms = 0 in C1. Thus there exists a transition
C2 7→ C3 between C1 and C4 where s executes an Increase rule. Since s executes
its �rst Reset from C1 in C4 7→ C5, then ps = t from C1 to C4, and so ps = t in C2.
According to the Increase rule, in C2 rts = (Y ou, 1). Since rts = (Idle, 0) in C0 and
C4, then there exists two transitions B0 7→ B1 and B2 7→ B3, with C0 7→∗ B0 7→+ C2

and C2 7→∗ B2 7→+ C4 such that: (i) in B0 7→ B1, t executes Write(s) to set rts to
(Y ou, 1) and so (pt,mt) 6= (s, 1) in B0; and (ii) in B2 7→ B3, t executes Write(s)
to set rts to (Idle, 0) and so (pt,mt) = (⊥, 0) in B2. Thus, there exists a transition
between B1 and B2 where t executes a Reset move.

Lemma 5.4.23. Let (s, t) be an edge with s < t. Let E be an execution. If E
contains two con�gurations L0 and L1 with L0 7→∗ L1 and such that:

� t executed at least one s-rule before L0;
� rts = (Idle, 0) in L0;
� (pt,mt) = (s, 1) in L1;

then, t executes a s-Increase to set ms = 1 between L0 and L1.

Proof. In L0 there are two cases concerning the value of pt: either pt = s or not.
We consider the �rst case where pt = s. Let D0 7→ D1 be the last transition before
E in which t executes a s-rule. Thus we have rts = (Idle, 0) and pt = s in D1.

According to the s-rule t executes in D0 7→ D1, we can deduce its mt value in
D1:
� Write(u): not possible since this would imply pt = s in D0 and then rts.p =

Y ou in D1. But rts = (Idle, 0) in D1.
� Reset(s): not possible since this would imply pt = ⊥ in D1.
� Increase(s): not possible since this would implies in D0: ¬PRwriting(s) and

ps = t and rts = (Idle, 0) (since only ms would be modi�ed). And these three
conditions are not compatible.

� Seduction(s): t cannot perform this rule since s < t.
� Marriage: (pt,mt) = (s, 0) in D1.
Thus (pt,mt) = (s, 0) and rts = Idle, 0 in D1. Since this is the last s-rule t

executes before L0 then observe that pt cannot be modi�ed. Thus between D1 and
L0 t cannot execute Seduction, Marriage or Reset rules. Since t is not eligible for
Write(s) then rts remains equal to (Idle, 0) until L0. Observe also that since pt = s
between D1 and L0, t cannot execute Increase(x) for any node x. Thus mt = 0
remains True between these con�gurations. This implies that mt = 0 in L0. We
obtain that mt = 0 in L0 and since (pt,mt) = (s, 1) in L1 then t must execute an
Increase(s) writing mt := 1 between L0 and L1.

We now study the second case where pt 6= s in L0. Since in L1, pt = s by
assumption, then t must execute a Marriage(s) rule in some transition C0 7→ C1

between L0 and L1 and so mt = 0 in C1. Since (pt,mt) = (s, 1) in L1, then t must
execute a s-Increase to set mt := 1 between C1 and L1. Finally, the proof is done
because L0 7→+ C1 7→+ L1.

81

Lemma 5.4.24. Let (u, v) be an edge. Let E be an execution containing two con-
secutive transitions A1 7→ A2 and A3 7→ A4 with A2 7→∗ A3 where u executes a
v-Increase rule. If node u does not execute any Reset rule between A1 and A4 and
(pu,mu) = (v, x) with x ∈ {0, 1} in A1, then there exists a transition D1 7→ D2 with
A1 7→∗ D1 and D2 7→∗ A4 such that

� ruv = (Y ou, x) between A1 and D1;

� ruv = (Y ou, x+ 1) between D2 and A2;

� (pu,mu) = (v, x+ 1) between D2 and A3;

Proof. Since u does not perform any Reset from A1 to A4 by assumption, then pu
remains constant from A1 to A4. Since u performs a v-Increase rule in A1 7→ A2,
pu = v between A2 and A3.

Since (pu,mu) = (v, x) in A1, we also have ruv = (Y ou, x) otherwise u would
have executed a Write(v) instead of an Increase in A1 7→ A2.

According to the v-Increase rules, ruv = (Y ou, x) in A1, and (pu,mu) = (v, x+1)
in A2. Observe that between A2 and A3, we have by assumption: u does not perform
any Reset, any v-Increase, Seduction nor Marriage (since pu = v). Thus, the only
rule u can perform between A2 and A3 are Write(−). Thus, (pu,mu) remains
constant between A2 and A3.

Since u executes a v-Increase rule in A3 7→ A4, ruv = (Y ou, x + 1) in A3, ac-
cording to the v-Increase rules. Thus u updates its registers by executing Write(v)
between A2 and A3.

Let D1 7→ D2 be the �rst transition with A2 7→∗ D1 and D2 7→∗ A3 in which u
executes a Write(v) rule. Thus, we have ruv = (Y ou, x+ 1) in D2.

By de�nition of transition D1 7→ D2, ruv remains constant between A1 and D1.
So, since ruv = (Y ou, x) in A1, ruv = (Y ou, x) between A1 and D1 .

Since u can only execute Write(−) rule between A2 7→∗ A3, this implies that
(pu,mu) remains constant between A2 and A3. Thus, (pu,mu) = (v, x+ 1) between
D2 and A3. Moreover, since ruv = (Y ou, x + 1) in D2, ruv = (Y ou, x + 1) between
D2 and A2.

Lemma 5.4.25. Let (s, t) be an edge with s < t. Let E be an execution. If E
contains two transitions A0 7→ A1, A2 7→ A3 and a con�guration A4, with A1 7→∗ A2

and A3 7→∗ A4 and such that :

� in A0 7→ A1, s executes a Reset rule;
� and in A3, (ps,ms) = (t, 3);

then the edge (s, t) is in a correct state in A3.

Proof. Let C0 7→ C1 be the last Reset executed by s between A0 and A3 (we can
have C0 = A2). In C1, ps = null and in A3, ps = t, with t > s. Thus s must execute
a Seduction(t) rule between C1 and A3 to set pt = s.

Let C2 7→ C3 be the last Seduction(−) rule executed by s between C1 and A3.
Since s does not perform any Reset from C3 to A3 by construction, then ps remains
constant from C3 to A3. pt = s in A3, thus ps = t in C3 and so s performs a
Seduction(t) rule in C2 7→ C3.

Since s performs a Seduction(t) rule in C2 7→ C3, we have rts = (Idle, 0) in C2.
Observe that between C3 and A3, we have by construction: s can perform be-

tween C3 and A3 are Write(−) and t-Increase (since pt = s). So the value of ms

can only change by a +1 incrementation between C3 and A3 . In C3, ms = 0 and
in A3, ms = 3. Thus, beside the Write rule, s executed exactly three t-Increase
between C3 and A3.

82

Let C4 7→ C5, C6 7→ C7 and C8 7→ C9 be these three t-Increase executed by s,
with C5 7→∗ C6 and C7 7→∗ C8.

In C4 7→ C5, s sets ms = 1. According to the Increase rule, we have: in C4,
rts = (Y ou, 1). Since rts = (Idle, 0) in C2, t performs a Write(s) rule between
C2 and C4 to set rst = (Y ou, 2). Let W0 7→ W1 be this transition. We thus have
(pt,mt) = (s, 2) in W0 with C2 7→+ W1 and W1 7→∗ C4.

In C6 7→ C7, s sets ms = 2, and in C8 7→ C9, s sets ms = 3. According to the
Increase rule, we have: in C6, rts = (Y ou, 1) and in C8, rts = (Y ou, 3). Thus, t
performs a Write(s) rule between C6 and C8 to set rts = (Y ou, 3).

Let W2 7→ W3 be this transition. We thus have (pt,mt) = (s, 3) in W2 with
C6 7→∗ W2 and W3 7→∗ C8. In order to increase its m-variable, t must execute a
s-Increase rule to set mt = 3.

Let D0 7→ D1 be the last transition where t executes a s-Increase rule to set
mt = 3. between W1 and W2. We will prove that the edge (s, t) is in the updated
correct state (Y ou, 2, 3) in D0. First, observe that since C2 7→+ W1 and D1 7→∗ W2,
we can deduce that C2 7→∗ D0 7→ D1 7→∗ W2.

Using (twice) Lemma 5.4.24, we can deduce that there exist two transitions
A0 7→ A1 and B0 7→ B1 such that

� rst = (Y ou, 0) between C4 and A1;

� rst = (Y ou, 1) between A2 and C6, and between C6 and B0;

� rst = (Y ou, 2) between B0 and C7;

Since rst = (Y ou, 2) in D0, t executes a s-Increase in D0 7→ D1 between B0 and
C7. Using Lemma 5.4.24, we have (ps,ms) = (t, 2) between B0 and C7;

We �nally obtain for D0: (ps,ms) = (s, 2), (pt,mt) = (s, 2), rst = (Y ou, 2) and
rts = (Y ou, 2). Thus the edge (s, t) is in the updated correct state (Y ou, 2, 2) in D0.
As D0 7→+ C8 7→+ A3 and according to Lemma 5.4.6, the edge (s, t) is in a correct
state in A3.

Lemma 5.4.26. Let (s, t) be an edge with s < t. Let E be an execution. If E
contains two transitions A0 7→ A1, A2 7→ A3 and a con�guration A4, with A1 7→∗ A2

and A3 7→∗ A4 and such that :

� in A0 7→ A1, t executes a s-rule;
� in A2 7→ A3, s executes a Reset rule;
� and in A4, (ps,ms) = (t, 1);

then the edge (s, t) is in a correct state in A4.

Proof. Let C0 7→ C1 be the last Reset executed by s between A2 and A4 (we can
have C0 = A2). In C1, ps = null and in A4, ps = t, with s < t. Thus s must execute
a Seduction(t) rule between C1 and A4 to set ps = t

Let C2 7→ C3 be the last Seduction(−) rule executed by s between C1 and A4.
Since s does not perform any Reset from C3 to A4 by construction, then ps remains
constant from C3 to A4. ps = t in A4, thus ps = t in C3 and so s performs a
Seduction(t) rule in C2 7→ C3.

Observe that between C3 and A4, we have by construction: s does not perform
any Reset nor Seduction and ps = t. Thus, s cannot perform any Marriage rule
neither. So, the only rule s can perform between C3 and A4 are Write(−) and t-
Increase (since ps = t). So the value of ms can only change by a +1 incrementation
between C3 and A4 . In C3, ms = 0 and in A4, ms = 1. Thus, beside the Write
rule, s executed exactly one t-Increase between C3 and A4.

Let C4 7→ C5 be this t-Increase executed by s. In C4 7→ C5, s sets ms = 1.
So, in C4, (ps,ms) = (t, 0) and then rts = (Y ou, 1). Moreover, according to the

83

Seduction(t) rule, in C2, rts = (Idle, 0). So there exists a transition D0 7→ D1

between C2 and C4 where t executes a Write(s) rule to set rts = (Y ou, 1). Thus, in
D0, (pt,mt) = (s, 1).

From Lemma 5.4.23 � by setting C2 = L0 and D0 = L1 and considering that t
executed a s-rule in A0 7→ A1 � there exists a transition F0 7→ F1 between C2 and
D0 where t executes a s-Increase rule to set mt = 1.

We are now going to prove that the edge (s, t) is in the updated correct state
(Y ou, 0, 0) in F0.

Since t executes a s-Increase in F0 7→ F1 with mt = 1 in F1, then in F0 we have:
(pt,mt) = (s, 0) and, according to the Increase rule, rst = (Y ou, 0). We also have
rts = (Y ou, 0) otherwise t would have perform a Write(s) instead of an s-Increase
in F0 7→ F1.

Recall, that C2 7→∗ F0 7→+ D0. We already know that rts = (Idle, 0) in C2, so
C3 7→∗ F0 7→+ D0.

Moreover, we know that between C3 and C4, s does not perform any rule but
some Write(−) rule. So (ps,ms) remains constant between C3 and C4. s executes a
Seduction(t) rule in C2 7→ C3, so (ps,ms) = (t, 0) in C3. Moreover, C3 7→∗ D0 7→+

C4, so (ps,ms) = (t, 0) in D0.
We �nally obtain for F0: (pt,mt) = (s, 0), (ps,ms) = (t, 0), rts = (Y ou, 0) and

rst = (Y ou, 0). Thus the edge (s, t) is in the updated correct state (Y ou, 0, 0) in F0.
As F0 7→+ C4 7→+ A4 and according to Lemma 5.4.6, the edge (s, t) is in a correct
state in A4.

Lemma 5.4.27. Let (s, t) be an edge with s < t. Let E be an execution. If E
contains two transitions A0 7→ A1, A2 7→ A3 and a con�guration A4, with A1 7→∗ A2

and A3 7→∗ A4 and such that :

� in A0 7→ A1, t executes a Reset rule;
� and in A3, (pt,mt) = (s, 3);

then the edge (s, t) is in a correct state in A3.

Proof. Let C0 7→ C1 be the last Reset executed by t between A0 and A3 (we can
have C0 = A2). In C1, pt = null and in A3, pt = s, with t > s. Thus t must execute
a Marriage(s) rule between C1 and A3 to set pt = s.

Let C2 7→ C3 be the last Marriage(−) rule executed by t between C1 and A3.
Since t does not perform any Reset from C3 to A3 by construction, then pt remains
constant from C3 to A3. pt = s in A3, thus pt = s in C3 and so t performs a
Marriage(s) rule in C2 7→ C3.

Observe that between C3 and A3, we have by construction: t does not perform
any Reset nor Marriage and pt = s. Thus, t cannot perform any Seduction rule
neither. So, the only rule t can perform between C3 and A3 are Write(−) and s-
Increase (since pt = s). So the value of mt can only change by a +1 incrementation
between C3 and A3 . In C3, mt = 0 and in A3, mt = 3. Thus, beside the Write
rule, t executed exactly three s-Increase between C3 and A3.

Let C4 7→ C5, C6 7→ C7 and C8 7→ C9 be these three s-Increase executed by t,
with C5 7→∗ C6 and C7 7→∗ C8.

In C4 7→ C5, t sets mt = 1 and in C6 7→ C7, t sets mt = 2. So in C4, mt = 0 and
in C6, mt = 1. According to the Increase rule, we have: in C4, rst = (Y ou, 0) and
in C6, rst = (Y ou, 2). Thus, s performs a Write(t) rule between C4 and C6 to set
rst = (Y ou, 2).

Let W0 7→ W1 be this transition. We thus have (ps,ms) = (t, 2) in W0 with
C4 7→∗ W0 and W1 7→∗ C6.

84

In C6 7→ C7, t sets mt = 2 and in C8 7→ C9, t sets mt = 3. According to the
Increase rule, we have: in C6, rst = (Y ou, 2) and in C8, rst = (Y ou, 3). Thus, s
performs a Write(t) rule between C6 and C8 to set rst = (Y ou, 3).

Let W2 7→ W3 be this transition. We thus have (ps,ms) = (t, 3) in D4 with
C6 7→∗ W2 and W3 7→∗ C8.

To sum, we have a relationship among these following con�gurations:

C4 7→∗ W0 7→ W1 7→∗ C6 7→∗ W2 7→ W3 7→∗ C8.

We focus which rules s executes between W1 and W2. In order to increase its
m-variable, s must execute a t-Increase rule to set ms = 3. Let D0 7→ D1 be a
transition where s executes a t-Increase rule between W1 and W2.

We will prove that the edge (s, t) is in the updated correct state (Y ou, 2, 2) in
D0.

Since s executes a t-Increase in D0 7→ D1 with ms = 3 in D1, then in D0 we
have: (ps,ms) = (t, 2) and, according to the Increase rule, rts = (Y ou, 2).

Since transition D0 7→ D1 is between W1 and W2, transition D0 7→ D1 is be-
tween C4 and C7. Using (twice) Lemma 5.4.24, we can deduce that there exist two
transitions A0 7→ A1 and B0 7→ B1 such that

� rts = (Y ou, 0) between C4 and A1;

� rts = (Y ou, 1) between A2 and C6, and between C6 and B0

� rts = (Y ou, 2) between B0 and C7;

Since rts = (Y ou, 2) in D0, s executes a t-Increase in D0 7→ D1 between B0 and
C7. Using Lemma 5.4.24, we have (pt,mt) = (s, 2) between B0 and C7;

We �nally obtain for D0: (ps,ms) = (s, 2), (pt,mt) = (s, 2), rst = (Y ou, 2) and
rts = (Y ou, 2). Thus the edge (s, t) is in the updated correct state (Y ou, 2, 2) in D0.
As D0 7→+ C8 7→+ A3 and according to Lemma 5.4.6, the edge (s, t) is in a correct
state in A3.

Theorem 5.4.18. Let (u, v) be an edge. Let E be an execution. If E contains one
transition A0 7→ A1 and a con�guration A3, with A1 7→∗ A3 such that :

� in A0 7→ A1, u executes a Reset rule;
� and in A3, (pu,mu) = (v, 3);

then the edge (min(u, v),max(u, v)) is in a correct state in A3.

Proof. If u < v, we conclude immediately using Lemma 5.4.25. Otherwise, we can
apply Lemma 5.4.27.

Lemma 5.4.17. Let (s, t) be an edge with s < t. Let E be an execution containing
three transitions D0 7→ D1, D2 7→ D3 and D4 7→ D5 with D1 7→∗ D2 and D3 7→∗ D4

and where s executes a Seduction(t) rule. Then there exists a transition D 7→ D′

between D2 and D4 where t executes a Write(s) rule and with in D: pt 6= null and
mt = 3.

Proof. According to Lemma 5.4.21.(2), s executes a Reset between D1 and D2. Let
C0 7→ C1 be the transition where s does so for the �rst time. So s executes a t-Reset
rule in C0 7→ C1. Moreover, according to Lemma 5.4.22, t executes a Reset between
D1 and D2.

Observe now that the execution starting in con�guration D2 reaches all the
assumptions made in Lemmas 5.4.26. Indeed, before D2, t executes a s-rule and
then s executes a Reset rule.

85

According to Lemma 5.4.22, s executes a Reset rule between D3 and D4. Let
C2 7→ C3 be the transition where s does so for the �rst time. So s executes a t-Reset
in C2 7→ C3. In C2, either ms > 0 or ms = 0.

If ms > 0 in C2 and since ms = 0 in D3 by the Seduction rule, then s performs
ms := 1 between D3 and C2, let say in transition B 7→ B′. In this transition, s
executes an Increase rule. Recall that ps = t in D3 since s executes a Seduction(t)
rule, and that s does not execute any Reset between D3 and C2. Thus ps = t in
B and so (ps,ms) = (t, 1) in B′. By Lemma 5.4.26, the edge (s, t) is in a correct
state in B′. Thus, by Corollary 5.4.7, from this con�guration, s cannot execute any
Reset, which contradict the fact that it does in C2 7→ C3. Then ms = 0 in C2.

Since (ps,ms) = (t, 0) in C2 with s < t then, according to the Reset rule,
rts.m = 3 in C2. Moreover, since rts.m = 0 in D2 by the Seduction(t) rule, then t
executes a Write(s) rule between D2 and C2. This is the transition D 7→ D′ and
we have mt = 3 and pt 6= null in D. This conclude the proof.

Theorem 5.4.19. Let (s, t) be an edge with s < t. Node s can execute the Seduction(t)
rule at most 3 times in any execution..

Proof. By contradiction. Let E be an execution where s executes a Seduction(t)
rule at least 4 times. We will prove that such an execution is not possible since after
the 3rd Seduction(t) execution, s cannot perform any other Seduction(t) rule.

For 1 ≤ i ≤ 4, let Ai 7→ Bi be the transition where s executes its ith Seduction(t)
rule in E .

According to Lemma 5.4.17, between each couple of con�gurations (Bj, Aj+1)
where 1 ≤ j ≤ 3, there exists a transition Cj 7→ Dj where t executes a Write(s)
rule and with pt 6= null and mt = 3 in Cj.

Since s executes two Seduction(t) rules in A2 7→ B2 and A3 7→ B3 and by
Lemma 5.4.22, t executes a Reset between B2 and A3. Recall that mt = 3 in C2

with B2 7→+ C2 7→∗ A3. Thus by Theorem 5.4.18, the edge (min(t, pt),max(t, pt))
is in a correct state in C2. From Corollary 5.4.7, from this con�guration t cannot
execute any Reset. However, since s executes two Seduction(t) rules in A3 7→ B3

and A4 7→ B4 and by Lemma 5.4.22, t executes a Reset between B3 and A4 which
leads the contradiction.

Lemma 5.4.14. Let (s, t) be an edge with s < t. Let E be an execution contain-
ing two transitions C0 7→ C1 and D0 7→ D1 with C1 7→∗ D0 where t executes a
Marriage(s) rule. Then s executes a Seduction(t) rule between C1 and D0.

Proof. From the Marriage(s) rule, we have rst = (Y ou, 0) in C0 and D0. Moreover,
according to Lemma 5.4.21, t executes a Reset rule between C1 andD0. Let C4 7→ C5

be the transition where it does for the �rst time. Then pt = s from C1 to C4.
In the �rst step of the proof, we will prove that there exists two con�gurations

γ and γ′ between C0 and D0 and with γ 7→+ γ′, such that (ps,ms) 6= (t, 0) in γ and
(ps,ms) = (t, 0) in γ′. Then, we will prove that s must execute a Seduction(t) rule
between γ and γ′. For the �rst step of the proof, we study two cases according to
the value of rst in C4.

First, assume that rst 6= (Y ou, 0) in C4. So, there exists two transitions C2 7→ C3

and C6 7→ C7, with C0 7→∗ C2 7→+ C4 and C4 7→∗ C6 7→+ D0 such that: (i) in
C2 7→ C3, s executesWrite(t) to set rst to a couple 6= (Y ou, 0) and so (ps,ms) 6= (t, 0)
in C2; and (ii) in C6 7→ C7, s executes Write(t) to set rst to (Y ou, 0) and so
(ps,ms) = (t, 0) in C6. We then have γ = C2 and γ′ = C6.

86

Second, if rst = (Y ou, 0) in C4, then PRabandonment(t) is false and according
to the Reset rule and in particular to the PRreset(t) predicate, mt ≥ 2 in C4 (it is
the only possible case as s < t and rst.m = 0). Since mt = 0 < 2 in C1, there exists
a transition C2 7→ C3 between C1 and C4 where t executes an Increase rule in order
to write 2 in its m-variable. Since pt = s from C1 to C4, then pt = s in C2 and then,
according to the Increase rule, in C2 rst = (Y ou, 2). Since rst = (Y ou, 0) in C0 and
C4, then there exists two transitions B0 7→ B1 and B2 7→ B3, with C0 7→∗ B0 7→+ C2

and C2 7→∗ B1 7→+ C4 such that: (i) in B0 7→ B1, s executes Write(t) to set rst to
(Y ou, 2) and so (ps,ms) = (t, 2) in B0; and (ii) in B2 7→ B3, s executes Write(t) to
set rst to (Y ou, 0) and so (ps,ms) = (t, 0) in B2. We then have γ = B0 and γ′ = B2.

We now prove the second step of the proof, that is s must execute a Seduction(t)
rule between γ and γ′. If ps 6= t in γ, and since s < t, then s must execute a
Seduction(t) rule between γ and γ′ in order to set t in its p-variable. Otherwise, we
have ps = t∧ms 6= 0 in γ. Let us assume that s does not perform any Seduction(t)
rule between γ and γ′. Thus, the only two rules to write 0 in its m-variable are
Marriage(−) and Reset. Since s < t, s cannot execute a Marriage(t) rule, thus
after writing 0 in its m variable, ps 6= t and we go back to the case 1, leading to
the conclusion that s must perform a Seduction(t) rule in order to write t in its
p-variable. Finally, in any cases, s must execute a Seduction(t) rule between γ and
γ′.

Lemma 5.4.15. Let u be a node. Let E be an execution where u executes at
least two Reset moves. Let C0 7→ C1 and C2 7→ C3 be two transitions corre-
sponding to two consecutive Reset rule executed by u. Then u executes a rule in
{Seduction(−),Mariage(−)} once between C1 and C2.

Proof. According to the Reset rule, pu = null in C1 and pu 6= null in C2. so, u has
to execute a rule between C1 and C2 to set a neighbor identi�er in its p-variable.
There are only two rules doing that: the Seduction and the Marriage rules. Thus,
u executes such a rule at least once between C1 and C2. Now, assume that node u
executes such a rule more than once between C1 and C2. Then, from Lemma 5.4.21,
u executes a Reset rule between C1 and C2. This contradicts the fact that node u
does not execute any Reset rule between C1 and C2. Thus, the lemma holds.

Lemma 5.4.16. Let u be a node. Let E be an execution where u executes at least
four Increase moves. Let C0 7→ C1, C2 7→ C3, C4 7→ C5 and C6 7→ C7 be four
transitions corresponding to four consecutive Increase rules executed by u. Then u
executes a Reset rule once between C0 and C7.

Proof. We now prove this lemma, by contradiction. Let us assume node u does not
executes a Reset rule a between C0 and C7.

According to the Increase rule, mu ∈ {1, 2, 3} in C1, C3 and C5. According to
Lemma 5.4.21, if mu = 1 in C3 (resp. C5) then u executes a Reset rule between C1

and C2 (resp. C3 and C4). This contradicts the fact that node u does not execute
any Reset rule between C0 and C7. Thus, mu = 2 or mu = 3 in C3 and C5.

Assume that mu = 3 in C3. Since mu = {1, 2, 3} in C5, this implies that mu < 3
in C4. There is only one way to decrease the value of an m variable between C3

and C4: to write 0. Thus u has to execute a Reset rule between C3 and C4 in order
to decrease the value mu. However this contradicts the fact that node u does not
execute any Reset rule between C0 and C5.

Assume that mu = 2 in C3. Since node u does not execute any Reset rule
between C3 and C4, mu remains constant between C3 and C4. So mu = 2 in C4

and mu = 3 in C5. Using the same argument as previously, this contradicts the fact

87

that node u does not execute any Reset rule between C5 and C7. So the proof is
completed.

Theorem 5.4.20. The algorithm stabilizes in O(m∆) moves where ∆ is the maxi-
mum degree of G.

Proof. Let deg(u) be the degree of node u. Let (s, t) be an edge with s < t. By The-
orem 5.4.19, node s can execute the Seduction(t) rule O(1) times. By Lemma 5.4.14,
between two executions of the Marriage(s) rule by node t, node s must execute a
Seduction(t) rule. This implies that t can execute O(1) Marriage(s) rules. In total,
a node u can O(1) Seduction(−) and Marriage(−) rules per neighbor, which gives
a O(deg(u)) total number of these rules, per node u.

Let now u be a node. By Lemma 5.4.15, between two executions of the Reset
rule by node u, it must execute a Marriage(−) or Seduction(−) rule. Since we
proved that it can do so O(deg(u)) times, then it can execute the Reset rule O(∆2)
times as well. Now by Lemma 5.4.16, between three executions of the Increase
rule, node u must execute the Reset rule. As a consequence, u can execute the
Increase rule O(deg(u)) times. Altogether, a node can execute at most O(deg(u))
times Seduction(−), Marriage(−), Increase and Reset rules. Let's call such rules
high level rules. So, all nodes can, in total, execute O(m) high level rules (since
the sum of the degrees of the vertices is twice the number of edges).

Each time it executes such a high level rule, a node u may execute a Write(−)
rule O(deg(u)) times to update all its registers. If it does not execute any high level
rule, a node can execute at most O(deg(u)) Write rules. Finally, nodes can execute
at most O(m) high level rules and O(m∆) Write rules.

5.4.5 Conclusion

The link-register model, by introducing a delay between the time an action is
taken and the time an adjacent node is informed of the resulting modi�cation,
allows to study the asynchronism induced by communications in distributed systems.
Read/write atomicity is the most restrictive model in this category, by allowing only
node-to-node communications. The adversarial distributed daemon tops it o� by
being able to postpone a communication arbitrarily long (precisely, until no other
move can be taken by the algorithm).

In this chapter, we propose the �rst algorithm to solve the matching problem
in this setting. This algorithm is self-stabilizing, and takes at worst O(m∆) moves
before converging from the worst possible initialization, with the worst possible
scheduling of communications. We prove this algorithm and compute its complexity
by bounding the number of times a marriage process can be interrupted, either due
to a bad initialization, or to another marriage of one of the two processes.

In this algorithm, we impose that a register ruv is up to date before allowing u
to take any action but Write regarding v. This restriction is similar to an acknowl-
edgement from v that it has received the new value and will use it from now on.
We are working to remove this condition that introduces some synchronism in the
model. The link-register model is a step toward message-passing models, and we are
aiming at studying the e�ects of these various hypotheses on the communications
between nodes on the implementation of the algorithm presented in this chapter.

88

Part III

Lattice polytopes

89

Chapter 6

New bounds for the diameter of
lattice polytopes

In this chapter we describe some of our contributions regarding the characteri-
zation of the diameter of lattice convex polytopes. These results have appeared in
a journal paper [44] and a in forthcoming book chapter.

6.1 Introduction

Polytopes have drawn interest from ancient ages. Stone models of polytopes
dated back to the neolithic have been found in Scotland, even though their function
remains unknown as of today [56]. The Etruscans were the �rst to use cubic and
dodecahedral dices for gambling purposes. It seems also that The Egyptians were
aware of the regular tetrahedron and octahedron. The Greeks were probably the �rst
to mathematically study polytopes and regular solids. Among others, Pythagoras
is considered the inventor of the regular dodecahedron, Euclid studied regular poly-
hedra and the Platonic Solids in his book XIII of The Elements [7] and Archimedes
gave the list of the 13 semi-regular polyhedra of the �rst kind. These objects have
also been considered in higher dimensions and Schlä�i is considered to be the �rst
mathematician to have studied such objects, around 1850. Many natural questions
arise regarding properties of these objects. For instance, crystallographers have been
studying their symmetries and have also been interested in tiling problems.

In this chapter, we want to study the behavior of one parameter, the diameter,
of some restricted class of polytopes, (convex polytopes with integer coordinates)
with respect to their dimension and grid embedding size. Finding a good bound on
the maximal edge-diameter of a polytope has recently received a lot of attention.
A lot of research has been dedicated to bounding the diameter of polytopes in
terms of their dimension and the number of their facets. It is not only a natural
question of discrete geometry, but also historically closely connected with the theory
of the simplex method. One central question related to the diameter of polytopes
is the Hirsch conjecture which states that the edge-graph of a n-facet d-dimensional
polytope has diameter no more than n− d. The conjecture was �rst put forth in a
letter by Hirsch to Dantzig in 1957 [40] and was motivated by the analysis of the
simplex method in linear programming, as the diameter of a polytope provides a
lower bound on the number of steps needed by the simplex method. The Hirsch
conjecture was proven for d < 4 and for various special cases. It is now known to be
false in general, as shown by Santos' counterexample [124]. Allamigeon, Benchimol,
Gaubert, and Joswig have also exhibited a counterexample to a continuous analogue
of the polynomial Hirsch conjecture [3]. Bounds have also been proved. Kalai and

90

Kleitman's upper bound for the diameter of polytopes [91] was strengthened by
Todd [136], and then by Sukegawa [131].

More closely related to the context of this thesis, bounds for the diameter have
also been studied in the case in which the considered polytopes are lattice. One of
the �rst such result is the upper bound of Kleinschmidt and Onn for the diameter of
lattice polytopes [94]. It was strengthened by Del Pia and Michini [43], and then by
Deza and Pournin [45]. Additionally, new exact values have been computationaly
found by Chadder And Deza [26]. These results are discussed in a more detailed
manner in Section 6.6.

In the next section, we introduce basic de�nitions. In Sections 6.3 and 6.4 we
highlights connections between zonotopes, Minkowski sums and hyperplane arrange-
ment. In Section 6.5 we introduce Primitive Zonotopes and some of their properties.
In Section 6.6 we derive lower bounds for the diameter of lattice polytopes. Finally
in Section 6.7 we describe some small instances of Primitive Zonotopes.

6.2 Basic notions

We introduce and de�ne notions about lattice convex polytopes, which are the
main objects of interest in this thesis chapter. A bounded d-dimensional convex
polytope is the convex hull of a �nite set of point in Rd. When restricted to points
in Zd, the polytope is said to be lattice. A set K is convex if, for each pair of
distinct points x, y in K, the closed segment with endpoints x and y is contained
within K. A polytope is full-dimensional if it is a full dimensional object in Rd.
A convex polytope can also be represented as the intersection of a �nite number
of halfspace. Assuming, that there are m halfspaces de�ning polytope P , a concise
way to describe P is Ax ≤ b where A is an m× d matrix, x is a m× 1 matrix and
b is an m× 1 matrix representing the inequalities of the m halfspaces.

A face of a convex polytope is any intersection of the polytope with a halfspace
such that none of the interior points of the polytope lie on the boundary of the
halfspaces. If a polytope is d-dimensional, its facets are its (d − 1)-dimensional
faces, its vertices are its 0-dimensional faces, its edges are its 1-dimensional faces.
The polytope is its d-dimensional face and the null polytope (the empty set) is
considered to be its (−1)-dimensional face. See Figure 6.1 for an illustration.

Figure 6.1 � A three dimensional polytope. In red, a vertex or 0-dimensional face is
represented on the left, an edge or 1-dimensional face is drawn in the middle picture
and a face or 2-dimensional face is drawn on the right.

A lattice is a partially ordered set in which every two elements have a join (least
upper bound) and a meet (greatest lower bound). The faces of a convex polytope

91

form a lattice called its face lattice, where the partial ordering is by set containment
of faces. See Figure 6.2 for a small example. The given de�nition of a face ensures
that every pair of faces has a join and a meet in this lattice. The whole polytope is the
unique maximum element of the lattice, and the empty set is the unique minimum
element of the lattice. Two polytopes are called combinatorially isomorphic if their
face lattices are isomorphic. The dual of a polytope is a polytope where the vertices
of one correspond to the faces of the other and the edges between pairs of vertices
of one correspond to the edges between pairs of faces of the other.

Figure 6.2 � The face lattice of a triangle. Each face is labeled by its vertex set in
the diagram. Each line represents a containment relation between faces: the face
which is up contains the face which is down.

The polytope graph (also graph of the polytope, 1-skeleton or edge-graph) is
the graph associated to the vertices and edges of the polytope, ignoring higher-
dimensional faces. See Figure 6.3 for an illustration. By a result of Whitney [149]
the face lattice of a three-dimensional polytope is determined uniquely by its graph.
Because these polytopes' face lattices are determined by their graphs, the problem
of deciding whether two three-dimensional are combinatorially isomorphic can be
formulated equivalently as a special case of the graph isomorphism problem.

The grid embedding size of a d-dimensional polytope P is the is the length of
an edge of the smallest d-dimensional cube which contains P . See Figure 6.4 for an
illustration.

The diameter of a polytope is the diameter of its associated graph (the longest
shortest path between any two vertices). See Figure 6.3 for an illustration. Finding
good bounds on the maximal diameter of a polytope in terms of its dimension and
the number of its facets is an important question closely connected with the theory
of the simplex method. The simplex method is a popular algorithm, introduced by
Dantzig [41], for linear programming. Simply put, the algorithm iterates over the
vertices of a convex polytope representing the feasible region of the input problem. It

Figure 6.3 � A three dimensional polytope, its edge graph and a path achieving its
diameter

92

Figure 6.4 � A two dimensional polytope with grid embedding size three.

starts from a vertex which is a feasible solution of the problem and at each iteration,
it tries to �nd a new vertex improving on the objective value. Thus a lower bound on
the worst case complexity of this method is the diameter of the intrinsic polytope.

6.3 Zonotopes as Minkowski sums

To introduce the notion of zonotope, we need to de�ne Minkowski sums. The
Minkowski sum of the polytopes P1, P2, ..., Pr ⊂ Rd is de�ned as

P1 + P2 + ...+ Pn = {x1 + x2 + ...+ xr : xj ∈ Pj}

For instance, the Minkowski sum of the unit cube whose left bottom corner is the
origin and the line segment [

(
0
0

)
,
(
2
1

)
] is the hexagon whose vertices are

(
0
0

)
,
(
0
1

)
,
(
1
0

)
,
(
3
1

)
,
(
3
2

)
and

(
2
2

)
, see Figure 6.5:

Figure 6.5 � The Minkowski sum of the unit cube and the line segment [
(
0
0

)
,
(
2
1

)
] is

the hexagon on the right.

If we consider now m line segments in Rd which have one endpoint at the origin
and the other located at some vector uj ∈ Rd for j ∈ [m] then their Minkowski sum
is called a zonotope and is by de�nition:

Ms(u1, u2, ..., um) = {λ1u1 + λ2u2 + ...+ λmum with λj ∈ [0, 1]}

which we also write as
∑

[0, 1]{uj, j ∈ [m]}. In fact a zonotope can be seen
equivalently as a projection of the unit cube [0, 1]m. To observe that, we rewrite the
above equation as follows:

Ms(u1, u2, ..., um) = {λ1u1 + λ2u2 + ...+ λmum with λj ∈ [0, 1]}

=

 (u1u2 · · ·um)

λ1
λ2
...
λ3

 : λj ∈ [0, 1]

93

= A[0, 1]m

with A being a (d×m) matrix whose i-th column is uj. A bit more generally, a
zonotope can be any translate A[0, 1]m + b,with b ∈ Rd. To summarize, a zonotope
can be seen either as a Minkowski sum of some m line segments or as the projection
of the unit cube [0, 1]m. In this thesis, some of the zonotopes are modi�ed so the
origin becomes their new center of mass. To do that, we dilate matrix A by a factor
two and translate the resulting image to the origin, as follows:

2A[0, 1]m − (u1 + u2 + · · ·+ un)

= {2u1λ1 + · · ·+ 2unλn − (u1 + · · ·+ un) : λj ∈ [0, 1]}

= {(2λ− 1)u1 + · · ·+ (2λ− 1)un : λj ∈ [0, 1]}

= {λ′1u1 + · · ·+ λ′1un : λ′j ∈ [−1, 1]}

= A[−1, 1]m

Which we also write as
∑

[−1, 1]{uj, j ∈ [m]}. Thus we get the image of a larger
cube centred at the origin. Observe that such a zonotope P is symmetric about the
origin. Assuming that P = A[−1, 1]m then if y ∈ P and y = Ax with x ∈ [−1, 1]m

then −y ∈ P since A(−x) ∈ P as well. Such a transformation will be useful in
the context of this thesis as it will allow us to derive simpler proofs regarding the
symmetries of the considered polytopes.

6.4 Zonotopes and hyperplane arrangements

We explain intuitively the duality between zonotopes and hyperplane arrange-
ments. This parallel is useful in explaining why the diameter of (primitive) zonotopes
can be easily derived from the vector set that de�nes them. An hyperplane is a sub-
space of one dimension less than its ambient space. A �nite set {Hi, i ∈ [m]} of
hyperplanes in Rd is called an arrangement of hyperplanes. Given an arrangement
of hyperplanes A, it is possible to delimit regions of the space relatively to its hyper-
planes, in the following way, assuming that the i-th hyperplane of A has equation
Aix = b:

� H−i = {x : Aix ≤ bi},
� H0

i = {x : Aix = bi} and
� H+

i = {x : Aix ≥ bi}
With this partition it is possible to associate to to each point in Rd a sign

vector describing its position relatively to the hyperplanes of A, as follows: (see also
Figure 6.6)

σ(x) ∈ {−, 0,+}m and σ(x) =

+ if x ∈ H+

i

− if x ∈ H−i
0 if x ∈ H0

i

The set of points with a given sign vector are called the faces of the arrangement.
The full dimensional faces are called the regions or cells of the arrangement. The
facial incidence can be described through a binary relation among sign vectors. Let
X, Y ∈ {−, 0,+}m be two sign vectors. They are incident if i ∈ [m] and Xi 6= 0
implies Xi = Yi. The poset {σ(x) : x ∈ Rd} ordered by the incidence relation is
called the face poset and is denoted F(A). If we assume that all the hyperplanes

94

Figure 6.6 � An arrangement of hyperplanes. Each hyperplane delimits the space in
two denoted by "+" and "−". The position of any point in the space can then be
given by a sign vector.

contain the origin then F(A) contains a unique minimum element which is the zero
vector, and is symmetric with respect to the origin since if a vector X is in F(A)
then −X is also in the face poset. Let M be the matrix representing the central
arrangement with Hi = {x : Mix = 0}, i ∈ [m]. Adding an arti�cial greatest
element 1 to F(A) yields in fact the face lattice of the following polytope [60]:

De�nition 6.4.1. PM = {x : yTMx ≤ 1,∀y ∈ {−1,+1}m}.

Now, the polar (PM)∗ = conv{yTM : y ∈ {−1, 1}} = {yTM : y ∈ [−1, 1]} is the
zonotope whose generators are the m line segments [−Mi,Mi]. Simply put, the polar
P∗ of a polytope P is a polytope whose facets are the vertices of P and vice-versa.

From this duality of zonotopes and hyperplane arrangements one can derive that
the diameter of a zonotope is exactly the number of its generators which are not
pairwise colinear. Two parallel generators correspond to the same hyperplanes (with
possibly opposite orientations). Because the vertices of the zonotopes corresponds
to the full dimensional cells in the hyperplane arrangement then the diameter of the
zonotope is the number of distinct hyperplanes. This holds since we need at least
this number of edges to reach the vertex which corresponds to all minus signs to the
vertex corresponding to all the plus signs.

6.5 Primitive zonotopes

6.5.1 De�nitions

We study lattice polytopes whose vertices are drawn from {0, 1, . . . , k}d to which
we refer as lattice (d, k)-polytopes. For simplicity, we only consider full dimensional
lattice (d, k)-polytopes. Searching for lattice polytopes with a large diameter for
a given k, natural candidates include zonotopes generated by short integer vectors
in order to keep the grid embedding size relatively small. In addition, we restrict
to integer vectors which are pairwise linearly independent in order to maximize the
diameter. Thus, for q = ∞ or a positive integer, and d, p positive integers, we
consider the following Minkowski sum:

Hq(d, p) =
∑

[0, 1]{v ∈ Zd : ‖v‖q ≤ p , gcd(v) = 1 , v � 0},

95

Figure 6.7 � Z1(3, 2) is congruent to the truncated cuboctahedron

where gcd(v) is the largest integer dividing all entries of v, and � the lexicographic
order on Rd, i.e. v � 0 if the �rst nonzero coordinate of v is positive. Similarly,
we consider the primitive zonotope Zq(d, p), which is, up to translation the image of
Hq(d, p) by a homothety of factor 2: (see section 6.3 for the construction)

Zq(d, p) =
∑

[−1, 1]{v ∈ Zd : ‖v‖q ≤ p , gcd(v) = 1 , v � 0}

We also consider the positive primitive zonotope Z+
q (d, p) de�ned as the zonotope

generated by the primitive integer vectors of q-norm at most p with nonnegative
coordinates:

Z+
q (d, p) =

∑
[−1, 1]{v ∈ Zd+ : ‖v‖q ≤ p , gcd(v) = 1}

where Z+ = {0, 1, . . .}. Similarly, we consider the Minkowski sum of the generators
of Z+

q (d, p):

H+
q (d, p) =

∑
[0, 1]{v ∈ Zd+ : ‖v‖q ≤ p , gcd(v) = 1}.

We illustrate the primitive zonotopes with a few examples:

(i) For �nite q, Zq(d, 1) is generated by the d unit vectors and forms the {−1, 1}d-
cube. Hq(d, 1) is the {0, 1}d-cube.

(ii) Z1(d, 2) is a known polytope, namely the permutahedron of type Bd [57,
83], and thus, H1(d, 2) is, up to translation, a lattice (d, 2d − 1)-polytope
with 2dd! vertices and diameter d2. For example, Z1(2, 2) is generated by
{(0, 1), (1, 0), (1, 1), (1,−1)} and forms the octagon whose vertices are
{(−3,−1), (−3, 1), (−1, 3), (1, 3), (3, 1), (3,−1), (1,−3), (−1,−3)}. H1(2, 2) is,
up to translation, a lattice (2, 3)-polygon. Z1(3, 2) is congruent to the trun-
cated cuboctahedron � which is also called great rhombicuboctahedron, see
�gure 6.7 for an illustration, and is the Minkowski sum of an octahedron and
a cuboctahedron, see for instance Eppstein [52]. H1(3, 2) is, up to translation,
a lattice (3, 5)-polytope with diameter 9 and 48 vertices.

(iii) H+
1 (d, 2) is the Minkowski sum of the permutahedron with the {0, 1}d-cube.

Thus, H+
1 (d, 2) is a lattice (d, d)-polytope with diameter

(
d+1
2

)
.

(iv) Z∞(3, 1) is congruent to the truncated small rhombicuboctahedron, see Fig-
ure 6.8 for an illustration, which is the Minkowski sum of a cube, a trun-
cated octahedron, and a rhombic dodecahedron, see for instance Eppstein [52].

96

Figure 6.8 � Z∞(3, 1) is congruent to the truncated small rhombicuboctahedron

Figure 6.9 � H+
∞(2, 2)

H∞(3, 1) is, up to translation, a lattice (3, 9)-polytope with diameter 13 and
96 vertices.

(v) Z+
∞(2, 2) is generated by {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)} and forms the decagon

whose vertices are {(−5,−5), (−5,−3), (−3,−5), (−3, 1), (−1, 3), (1,−3), (3,−1), (3, 5),
(5, 3), (5, 5)}. H+

∞(2, 2) is a lattice (2, 5)-polygon, see Figure 6.9.

6.5.2 Combinatorial properties

We provide properties concerning Zq(d, p) and Z+
q (d, p), and in particular their

symmetry group, diameter, and vertices. The properties listed in this section are
extensions to Zq(d, p) of known properties of Z1(d, 2).

Property 6.4.1.

(i) Zq(d, p) is invariant under the symmetries induced by coordinate permutations
and the re�ections induced by sign �ips.

(ii) The sum σq(d, p) of all the generators of Zq(d, p) is a vertex of both Zq(d, p)
and Hq(d, p). The origin is a vertex of Hq(d, p), and −σq(d, p) is a vertex of
Zq(d, p).

(iii) The coordinates of the vertices of Zq(d, p) are odd. Thus, the number of vertices
of Zq(d, p) is a multiple of 2d.

97

(iv) Hq(d, p) is, up to translation, a lattice (d, k)-polytope where k is the sum of the
�rst coordinates of all generators of Zq(d, p).

(v) The diameter of Zq(d, p), respectively Z
+
q (d, p), is equal to the number of its

generators.

Proof. We �rst prove point (i). Note that if the set G of generators of a zonotope
Z is invariant under coordinate permutation or sign �ip, then the same holds for Z.
Let π denote a permutation or a sign �ip, and consider a signed sum

∑
g∈G

εgg. Then,

π(
∑
g∈G

εgg) =
∑
g∈G

εgπ(g) is also a signed sum of generators since G is permutation

and sign �ip invariant. In other words, the set of all signed sums is invariant under
permutations and sign �ips, and thus the same holds for the convex hull Z of all
signed sums. Let Jq(d, p) be the set of all −g for g ∈ Gq(d, p). The zonotope Z̃q(d, p)
generated by Gq(d, p) ∪ Jq(d, p) is the image of Zq(d, p) by a homothety of factor 2,
and thus shares the same symmetry group. One can check that the set of generators
of Z̃q(d, p) is invariant under coordinate permutation or sign �ip, thus the same
holds for Z̃q(d, p), and consequently holds for Zq(d, p).

We now prove point (ii). Consider the minimization problem {min cTx : x ∈
Hq(d, p)} or, equivalently, min cTx over all integer valued points of Hq(d, p). Set
c = (d!x̄d, (d − 1)!x̄d−1, . . . , x̄) where x̄ = (2p + 1)d+1. Assuming that x is not
the origin, let xi0 denotes the �rst nonzero coordinate of x. Note that xi0 ≥ 1 by
de�nition of Gq(d, p), and |xi| ≤ x̄. Thus, we have the following:

cTx ≥ (d+ 1− i0)!x̄d+1−i0 − x̄
∑
i0<i≤d

(d+ 1− i)!x̄d+1−i > 0

. In other words, the origin is the unique minimizer of a linear optimization instance
over Hq(d, p); that is, the origin is a vertex of Hq(d, p). As Zq(d, p) = 2Hq(d, p) −
σq(d, p), the point −σq(d, p) is a vertex of Zq(d, p). By item (i) of Proposition 6.4.1,
the point σq(d, p) is a vertex of Zq(d, p), and thus (σq(d, p) + σq(d, p))/2 is a vertex
of Hq(d, p).

We now prove point (iii). We �rst show that the coordinates of the vertex σq(d, p)
are odd. As noted in the proof of item (iii) of Property 6.4.3, the i-th coordinate
of σq(d, p) is equal to the �rst coordinate of σq(d − i + 1, p). Thus, it is enough to
show that the �rst coordinate of σq(d, p) is odd. Except for the �rst unit vector
(1, 0, . . . , 0), any generator g of Zq(d, p) with nonzero �rst coordinate can be paired
with the generator ḡ where ḡ1 = g1 and ḡi = −gi for i 6= 1. Thus, the sum of the
�rst coordinates of the generators of Zq(d, p), excluding the �rst unit vector, is even.
Hence, the �rst coordinate of σq(d, p) is odd, and thus all the coordinates of σq(d, p)
are odd. Consider a vertex v =

∑
g∈Gq(d,p)

ε(g)g of Zq(d, p). Since �ipping the sign of

an ε(g) does not change the parity of a coordinate of v, the coordinates of v have
the same parity as the ones of σq(d, p); i.e. are odd. In particular, the coordinates
of a vertex of Zq(d, p) are nonzero and item (i) of Proposition 6.4.1 implies that the
number of vertices of Zq(d, p) is a multiple of 2d.

We now prove point (iv). Let Z be a zonotope generated by integer-valued
generators mj : j = 1, . . . ,m(Z). Then, Z is, up to translation, a lattice (d, k)-
polytope with k ≤ max

i=1,...,d

∑
1≤j≤m(Z)

|mj
i |. Item (i) of Property 6.4.1 implies that the

integer range of its coordinates is independent of the chosen coordinate. The same
holds for Hq(d, p), and, thus to determine the integer range of Hq(d, p), it is enough
to consider the �rst coordinates of its generators. Since the origin is a vertex of

98

Hq(d, p) and the �rst coordinate of its generator is nonnegative, the integer range
of Hq(d, p) is the sum of the �rst coordinates of its generators.

For item (v), recall that the diameter of a zonotope is at most the number of its
generators, and this inequality is satis�ed with equality if no pair of generators are
linearly dependent � which is the case for Zq(d, p) and Z+

q (d, p).

Property 6.4.2.

(i) Z+
q (d, p) is centrally symmetric and invariant under the symmetries induced

by coordinate permutations.

(ii) The sum σ+
q (d, p) of all the generators of Z+

q (d, p) is a vertex of both Z+
q (d, p)

and H+
q (d, p). The origin is a vertex of H+

q (d, p), and −σ+
q (d, p) is a vertex of

Z+
q (d, p).

Proof. Consider a generator g ∈ G+
q (d, p) and a coordinate permutation π. Since

π(g) ∈ G+
q (d, p), π(Z+

q (d, p)) = π(
∑

[−1, 1]G+
q (d, p)) =

∑
[−1, 1]π(G+

q (d, p)) =∑
[−1, 1]G+

q (d, p) = Z+
q (d, p). As in the proof of item (ii) of Property 6.4.1, one

can check that the origin is the unique minimizer of {min cTx : x ∈ Hq(d, p)}
with c = (1, 1, . . . , 1). Thus, the origin is a vertex of H+

q (d, p). As Z+
q (d, p) =

2H+
q (d, p) − σq(d, p), the point −σq(d, p) is a vertex of Z+

q (d, p). Since Z+
q (d, p) is

invariant under the symmetries induced by coordinate permutations, σq(d, p) is a
vertex of Z+

q (d, p), and thus (σq(d, p) + σq(d, p))/2 is a vertex of H+
q (d, p).

A vertex v of Zq(d, p) is called canonical if v1 ≥ · · · ≥ vd > 0. Property 6.4.1 item
(i) implies that the vertices of Zq(d, p) are all the coordinate permutations and sign
�ips of its canonical vertices.

Property 6.4.3.

(i) A canonical vertex v of Zq(d, p) is the unique maximizer of {max cTx : x ∈
Zq(d, p)} for some vector c satisfying c1 > c2 > · · · > cd > 0.

(ii) Z1(d, 2) has 2dd! vertices corresponding to all coordinate permutations and sign
�ips of the unique canonical vertex σ1(d, 2) = (2d− 1, 2d− 3, . . . , 1).

(iii) For q =∞ or p 6= 1, Zq(d, p) has at least 2dd! vertices including all coordinate
permutations and sign �ips of the canonical vertex σq(d, p).

(iv) Z+
∞(d, 1) has at least 2 + 2d! vertices including the 2d! permutations of ±σ(d)

where σ(d) is a vertex with pairwise distinct coordinates, and the 2 vertices
±σ+
∞(d, 1).

Proof. We prove items (i) and (ii). Given a canonical vertex v of Zq(d, p), let c be
a vector such that v is the unique maximizer of {max cTx : x ∈ Zq(d, p)}. Up to
in�nitesimal perturbations, we can assume that the coordinates of c are pairwise
distinct and nonzero. Note that each coordinate ci of c is positive as otherwise
�ipping the sign of vi > 0 would yield a point in Zq(d, p) with higher objective value
than v. Assume that ci < cj for some i < j. Then, vi = vj as otherwise permuting
vi and vj would yield a point in Zq(d, p) with higher objective value than v. Let
πij(c) be obtained by permuting ci and cj. Then, one can check that v is the unique
maximizer of {maxπij(c)

Tx : x ∈ Zq(d, p)}. Assume, by contradiction, that v′ ∈
Zq(d, p) satis�es πij(c)Tv′ ≥ πij(c)

Tv. Then, cTπij(v′) = πij(c)
Tv′ ≥ πij(c)

Tv = cTv
which implies πij(v′) = v, and hence v′ = v, since v is the unique maximizer of
{max cTx : x ∈ Zq(d, p)}. Thus, successive appropriate permutations yield a vector
π(c) with π(c)1 > · · · > π(c)d > 0 such that v is the unique maximizer of {max cTx :
x ∈ Zq(d, p)}. For item (ii), one can check that σ1(d, 2) = (2d−1, 2d−3, . . . , 1) is the

99

unique maximizer of {max cTx : x ∈ Z1(2, p)} for any c satisfying c1 > · · · > cd > 0.
Thus, by item (i) of Property 6.4.3, σ1(d, 2) is the unique canonical vertex of Z1(d, 2)
and the vertices of Z1(d, 2) are the 2dd! coordinate permutations and sign �ips of
σ1(d, 2).

We prove item (iii). We �rst note that the i-th coordinate of σq(d, p) is equal to
the �rst coordinate of σq(d− i + 1, p). The statement trivially holds for i = 1. For
i > 1, consider a generator g of Zq(d, p) with gi 6= 0 and gi0 > 0 for some i0 < i, then
g can be paired with the generator ḡ where gi = −ḡi and gi0 = ḡi0 . Thus, the sum
of all the i-th coordinates of the generators of Zq(d, p) is equal to the sum of the
generators of Zq(d, p) such that the �rst i− 1 coordinates are zero. In other words,
the i-th coordinate of σq(d, p) is equal to the �rst coordinate of σq(d− i+ 1, p). For
example, for �nite q, σq(d, 1) = (1, . . . , 1) and Zq(d, 1) is the {−1, 1}d-cube. Then,
note that for q =∞ or p 6= 1 the �rst coordinate of σq(d− i+1, p), which is the grid
embedding size of Hq(d− i+ 1, p), is strictly decreasing with i increasing. Thus, the
action of the symmetry group of Zq(d, p) on σq(d, p) generates 2dd! distinct vertices
of Zq(d, p). For instance, one can check the i-th coordinate of σ∞(d, 1) is 3d−i.

We prove item (iv). The statement trivially holds for d = 1. For d ≥ 2, we
show by induction that the vertices of Z+

∞(d, 1) include σ(d) satisfying 0 = σ1(d) <
· · · < σd(d) = 2d−1. The base case holds for d = 2 as σ(2) = (0, 2) is a vertex
of Z+

∞(2, 1). Assume such a vertex σ(d) exists, and thus σ(d) =
∑

g∈G+
∞(d,1)

ε(g)g

for some ε(g) and σ(d) is the unique maximizer of {max c(d)Tx : x ∈ Z+
∞(d, 1)}

for some c(d). The generators of Z+
∞(d + 1, 1) consist of the 2d − 1 vectors (g, 0)

obtained by appending 0 to a generator of Z+
∞(d, 1), the 2d − 1 vectors (g, 1) ob-

tained by appending 1, and the unit vector ed+1. Consider the point s(d+ 1) =
ed+1 +

∑
g∈G+

∞(d,1)

(g, 1) −
∑

g∈G+
∞(d,1)

ε(g)(g, 0) = (2d−1, . . . , 2d−1, 2d) − (σ(d), 0); that is,

s(d+ 1) = (2d−1−σ1(d), . . . , 2d−1−σd−1(d), 0, 2d). Thus, the coordinates of s(d+ 1)
are pairwise distinct and a suitable permutation of s(d+ 1) yields a point σ(d+ 1)
satisfying 0 = σ1(d + 1) < · · · < σd+1(d + 1) = 2d. To show that σ(d+ 1) is
a vertex of Z+

∞(d + 1, 1), one can check that σ(d+ 1) is the unique maximizer of
{max c(d + 1)Tx : x ∈ Z+

∞(d + 1, 1)} where c(d + 1) = (−c(d), cd+1) for su�ciently
large cd+1. Thus, for d ≥ 2, a point σ(d) satisfying 0 = σ1(d) < · · · < σd(d) = 2d−1

is a vertex of Z+
q (d, p). Zonotopes being centrally symmetric, −σ(d) is a vertex of

Z+
q (d, p) and the same holds for the distinct 2d! permutations of ±σ(d).

6.6 Large diameter

Let δ(d, k) be the maximum possible edge-diameter over all lattice (d, k)-polytopes.
Naddef [116] showed in 1989 that δ(d, 1) = d, Kleinschmidt and Onn [94] general-
ized this result in 1992 showing that δ(d, k) ≤ kd. In 2016, Del Pia and Michini [43]
strengthened the upper bound to δ(d, k) ≤ kd − dd/2e for k ≥ 2, and showed that
δ(d, 2) = b3d/2c. Pursuing Del Pia and Michini's approach, Deza and Pournin [45]
showed that δ(d, k) ≤ kd− d2d/3e − (k − 3) for k ≥ 3, and that δ(4, 3) = 8. Then,
Chadder and Deza [26], showed with a computer assisted proof that δ(3, 4) = 7 and
δ(3, 5) = 9. Del Pia and Michini conclude their paper noting that the current lower
bound for δ(d, k) is of order k2/3d and ask whether the gap between the lower and
upper bounds could be closed, or at least reduced. The order k2/3d lower bound for
δ(d, k) is a direct consequence of the determination of δ(2, k) which was investigated
independently in the early nineties by Thiele [134], Balog and Bárány [11], and Ack-

100

eta and �uni¢ [1]. In this section, we highlight that H1(2, p) is the unique polygon
achieving δ(2, k) for a proper k, and that a Minkowski sum of a proper subset of the
generators of H1(d, 2) achieves a diameter of b(k + 1)d/2c for all k ≤ 2d− 1.

6.6.1 H1(2, p) as a lattice polygon with large diameter

Finding lattice polygons with the largest diameter; that is, to determine δ(2, k),
was investigated independently in the early nineties by Thiele [134], Balog and
Bárány [11], and Acketa and �uni¢ [1]. This question can be found in Ziegler's
book [153] as Exercise 4.15. The answer is summarized in Proposition 6.4.1 where
φ(j) is the Euler totient function counting positive integers less than or equal to j
and relatively prime with j. Note that φ(1) is set to 1.

Proposition 6.4.1. H1(2, p) is, up to translation, a lattice (2, k)-polygon with k =∑p
j=1 jφ(j) where φ(j) denotes the Euler totient function. The diameter of H1(2, p)

is 2
∑p

j=1 φ(j) and satis�es δ(H1(2, p)) = δ(2, k). Thus, δ(2, k) = 6(k
2π

)2/3+O(k1/3 log k).

Note that lattice polygons can be associated to sets of integer-valued vectors adding
to zero and such that no pair of vectors are positive multiples of each other. Such sets
of vectors forms a (2, k)-polygon with 2k being the maximum between the sum of the
norms of the �rst coordinates of the vectors and the sum of the norms of the second
coordinates of the vectors. Then, for k =

∑p
j=1 jφ(j) for some p, one can show that

δ(2, k) is achieved uniquely by a translation of H1(2, p). For k 6=
∑p

j=1 jφ(j) for any
p, δ(2, k) is achieved by a translation of a Minkowski sum of a proper subset of the
generators of H1(2, p) including all generators of H1(2, p − 1) for a proper p. For
the order of

∑p
j=1 φ(j), respectively

∑p
j=1 jφ(j), being 3p2

π2 + O(p ln p), respectively
2p3

π2 +O(p2 ln p), we refer to [74]. The �rst values of δ(2, k) are given in Table 6.1.

p of H1(2, p) 1 2 3 4
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

δ(2, k) 2 3 4 4 5 6 6 7 8 8 8 9 10 10 10 11 12

Table 6.1 � Relation between H1(2, p) and δ(2, k)

6.6.2 H1(d, 2) as a lattice polytope with large diameter

We �rst show how to obtain a lower bound of kd/2 for δ(d, k) for some k < d by
considering some special graphs, namely :

De�nition 6.4.2. A n-order graph G is circulant if its vertices can be numbered
such that, if some two vertices x and (x+ r) mod n are adjacent then every vertices
numbered z and (z + r) mod n are adjacent as well.

For instance, every cycle graph is circulant, as every vertex x is adjacent to
x + 1 mod n and x − 1 mod n, see Figure 6.10 for an example. To a given graph
G, one can associate a graphical zonotope HG as follows. To each edge m = (u, v)
we associate a n dimensional vector which has zeros everywhere except for the co-
ordinates corresponding to u and v, see Figure 6.10 for an example. The Minkowski
sum of all these line segments yields what is called a graphical zonotope. Thus, as-
sume that for a given k there exists a n-order circulant graph such that each vertex
has degree k. The associated graphical zonotope has nk/2 (the number of edges)

101

Figure 6.10 � A small instance of a circulant graph on 5 vertices. The graph is
circulant since every vertex numbered x is adjacent to the vertices x+ 2 mod 5 and
x+ 3 mod 5. To each edge we associate a vector of size 5 as follows. For edge (1, 3)
it is the vector (1, 0, 1, 0, 0), for edge (1, 4) it is the vector (1, 0, 0, 1, 0) and so on.

non-colinear generators, since they corresponds to (0, 1) vectors with no duplicates.
They have grid-embedding size k as there are at most k vectors which have a one
for any given coordinate. Pursuing this approach, we show that a Minkowski sum
of a proper subset of the generators of H1(d, 2) yields δ(d, k) ≥ b(k + 1)d/2c for all
k ≤ 2d− 1.

Theorem 6.4.3. For k ≤ 2d − 1, there is a subset of the generators of H1(d, 2)
whose Minkowski sum is, up to translation, a lattice (d, k)-polytope with diameter
b(k+1)d/2c. So for k ≤ 2d−1 we have δ(d, k) ≥ b(k+1)d/2c. For instance, H+

1 (d, 2)
is a lattice (d, d)-polytope with diameter

(
d+1
2

)
, and H1(d, 2) is, up to translation, a

lattice (d, 2d− 1)-polytope with diameter d2.

Proof. We �rst note that the number of generators of H1(d, 2) is d2. The gen-
erators of H1(d, 2) are {−1, 0, 1}-valued d-tuples: d permutations of (1, 0, . . . , 0),(
d
2

)
permutations of (1, 1, 0, . . . , 0), and

(
d
2

)
permutations of (1,−1, 0, . . . , 0). Thus,

δ(H1(d, 2)) = d2 by Property 6.4.1 item (v). As the sum of the �rst coordinates
of the generators of H1(d, 2) is 2d − 1, H1(d, 2) is, up to translation, a lattice
(d, 2d − 1)-polytope by Property 6.4.1 item (iv). Consider �rst the case when d
is even. The �rst d − 1 subsets are obtained by removing from the current subset
of generators of H1(d, 2) a set of d/2 generators taken among the

(
d
2

)
permutations

of (1,−1, 0, . . . , 0). The removed d− 1 subsets correspond to d− 1 disjoint perfect
matchings of the complete graph Kd where the nonzero ith and jth coordinates of a
generator (. . . , 1, . . . ,−1, . . .) correspond to the edge [i, j] of Kd. The �rst perfect
matching is [1, 2], [3, d], [4, d− 1], . . . , [d/2 + 1, d/2 + 2]. The next perfect matching
is obtained by changing d to 2, and i to i + 1 for all other entries except 1 which
remains unchanged. See Figure 6.11 for an illustration. This procedure yields d− 1
disjoint perfect matchings as, placing the vertices 2 to d on a circle around 1 where
the edge [1, 2] is vertical and the edges [3, d], [4, d − 1], . . . , [d/2 + 1, d/2 + 2] are
horizontal, the procedure corresponds to the d − 1 rotations of the initial perfect
matching, see [18, Chapter 12]. As these d− 1 perfect matchings correspond to all
the generators of H1(d, 2) which are permutations of (1,−1, 0, . . . , 0), the procedure
ends with a subset of the generators of H1(d, 2) forming the

(
d+1
2

)
generators of

H+
1 (d, 2). We can then repeat the same procedure where the nonzero ith and jth

coordinates of a generator (. . . , 1, . . . , 1, . . .) correspond to the edge [i, j] of Kd, and
similarly obtain d − 1 disjoint perfect matchings. The procedure now ends with a

102

Figure 6.11 � Assuming that d is even, we place the d vertices of the clique Kd on a
circle. In bold lines we have the initial perfect matching. The other disjoint perfect
matchings are obtained by rotating this �rst matching. Such a new matching is
shown in light lines.

subset of the generators of H1(d, 2) forming H1(d, 1); that is the unit cube. One can
check that if the Minkowski sum H of the current subset of generators of H1(d, 2) is
a lattice (d, k)-polytope of diameter δ(H), removing the d/2 generators correspond-
ing to a perfect matching yields a lattice (d, k−1)-polytope of diameter δ(H)−d/2.
Thus, starting from H1(d, 2) which is a (d, 2d − 1)-polytope with diameter d2, we
obtain a (d, k)-polytope with diameter (k+ 1)d/2 for all k ≤ 2d− 1. The case when
d is odd is similar. The removed subsets are of alternating sizes dd/2e and bd/2c.
Adding a dummy vertex d + 1 to Kd, we consider the d disjoint perfect matching
of Kd+1 described for even d. The �rst subset consists of the dd/2e edges where
[3, d + 1] is replaced by [3, 5], the second subset consists of the bd/2c edges where
[5, d+ 1] is removed, the third subset consists of the dd/2e edges where [7, d+ 1] is
replaced by [7, 9], and so forth. As for even d, one can check that if the Minkowski
sum H of the current subset of generators of H1(d, 2) is a lattice (d, k)-polytope of
diameter δ(H), removing the described dd/2e, respectively bd/2c, generators yields
a lattice (d, k − 1)-polytope of diameter δ(H) − dd/2e, respectively δ(H) − bd/2c.
Thus, starting from H1(d, 2) which is a (d, 2d − 1)-polytope with diameter d2, we
obtain a (d, k)-polytope with diameter b(k + 1)d/2c for all k ≤ 2d− 1.

Conjecture 6.4.4. δ(d, k) ≤ b(k+1)d/2c, and δ(d, k) is achieved, up to translation,
by a Minkowski sum of lattice vectors.

Note that Conjecture 6.4.4 holds for all known values of δ(d, k) given in Table 6.2,
and hypothesizes, in particular, that δ(d, 3) = 2d. Note that δ(d, 3) = 2d for d ≤ 4,
2d ≤ δ(d, 3) ≤ b7d/3c − 1 when d 6≡ 2 mod 3, and δ(d, 3) ≤ b7d/3c when d ≡ 2
mod 3, see [45].
Soprunov and Soprunova [130] considered the Minkowski length of a lattice polytope
P ; that is, the largest number of lattice segments whose Minkowski sum is contained
in P . For example, the Minkowski length of the {0, k}d-cube is kd. We consider a
variant of the Minkowski length and the special case when P is the {0, k}d-cube. Let
L(d, k) denote the largest number of pairwise linearly independent lattice segments
whose Minkowski sum is contained in the {0, k}d-cube. One can check that the

103

k
δ(d, k) 1 2 3 4 5 6 7 8 9 10

d

1 1 1 1 1 1 1 1 1 1 1
2 2 3 4 4 5 6 6 7 8 8
3 3 4 6 7 9
4 4 6 8
...

...
...

d d b3d/2c

Table 6.2 � Largest diameter δ(d, k) over all lattice (d, k)-polytopes

generators of H1(d, 2) form the largest, and unique, set of primitive lattice vectors
which Minkowski sum �ts within the {0, k}d-cube for k = 2d−1; that is, for k being
the sum of the �rst coordinates of the d2 generators of H1(d, 2). Thus, L(d, 2d −
1) = δ(H1(d, 2)) = d2. Similarly, the constructions used in Proposition 6.4.1 and
Theorem 6.4.3 imply that L(2, k) = δ(2, k) for all k, and L(d, k) = b(k + 1)d/2c for
k ≤ 2d− 1.

6.7 Small primitive zonotopes Hq(d, p) and H+
q (d, p)

In this section we provide the number of vertices, the diameter; that is, the
number of generators, and the grid embedding size for Hq(d, p) and H+

q (d, p) for
small d and p, and q = 1, 2, and ∞. We recall that, up to translation, Zq(d, p),
respectively Z+

q (d, p), is the image of Hq(d, p), respectively H+
q (d, p), by a homothety

of factor 2. Thus Zq(d, p) and Hq(d, p), respectively Z+
q (d, p) and H+

q (d, p), have the
same number of vertices and the same diameter, while the grid embedding size of the
Zq(d, p), respectively Z+

q (d, p), is twice the one of Hq(d, p), respectively H+
q (d, p).

Since both Hq(d, 1) and H+
q (d, 1) are equal to the {0, 1}d-cube for �nite q, both are

omitted from the tables provided in this section. The Euler totient function counting
positive integers less than or equal to j and relatively prime with j is denoted by
φ(j). Note that φ(1) is set to 1.

These values have been computed using the C++ programming language on a
standard desktop computer. Simply put, the code work as follows. If we just
stick to the de�nition and try and compute the convex hull of all subset sums
of the generators, this yields an exponential algorithm which cannot be used in
practice. Instead, there is a simple polynomial algorithm. Assuming that we are
given m generators {z1, z2, ..., zm} which are d-dimensional, we proceed as follows.
We compute iteratively a sequence of zonotopes Z1, Z2, ..., Zm and their vertex sets
V1, V2, ..., Vk by considering the generators one by one. We start with Z1 which is the
interval [0, z1] with vertices V1 = {0, z1}. Now, supposing that we have computed
Zk and Vk we add the next generator zk+1. Let Uk := {v + zk+1 : v ∈ Vk}, that is,
we add zk+1 to each v in Vk. The next zonotope satis�es Zk+1 = conv(Vk ∪Uk), that
is, the convex hull of the union of Vk and Uk. We compute it using a convex hull
algorithm (namely we did it using both the Quickhull algorithm [13] and the cdd
algorithm [59]) and its set of vertices Vk+1. We keep going in this fashion until all
vertices have been considered.
Enumerative questions concerning Hq(d, p) and H+

q (d, p) have been studied in vari-
ous settings. We list a few instances, and the associated OEIS sequences, see [128]
for details and references therein. By f0 we denote the function giving the number

104

of vertices of the polytope while function δ will denote its diameter.

(i) f0(H
+
∞(d, 1)) corresponds to the OEIS sequence A034997 giving the num-

ber of generalized retarded functions in quantum �eld theory. The value of
f0(H

+
∞(d, 1)) was determined till d = 8.

(ii) f0(H∞(d, 1)), which is the number of regions of hyperplane arrangements with
{−1, 0.1}-valued normals in dimension d, corresponds to the OEIS sequence
A009997 giving f0(H∞(d, 1))/(2dd!). The value of f0(H∞(d, 1)) was deter-
mined till d = 7.

(iii) δ(H+
∞(d, p)) corresponds to the OEIS sequence A090030 with further cross-

referenced sequences for d ≤ 7 and p ≤ 8.

(iv) δ(H+
1 (3, p)), respectively δ(H+

2 (2, p)), δ(H∞(d, 2)), δ(H∞(2, p))/4, δ(H2(2, p))/2,
δ(H+

1 (d, 3)), and δ(H+
2 (d, 2)), corresponds to the OEIS sequence A048134, re-

spectively A049715, A005059, A002088, A175341, A008778, and A055795.

(v) the grid embedding size of H2(d, 2), respectively H∞(d, 2) and H+
1 (d, 3), cor-

responds to the OEIS sequence A161712, respectively A080961 and A052905.

Small primitive zonotopes Hq(d, p)

In Tables 6.3, 6.4, and 6.5, the number of vertices f0(Hq(d, p)) is divided by 2dd!
and followed by its diameter δ(Hq(d, p)) and grid embedding size. For instance,
the entry 26 (49, 53) for (q, d, p) = (1, 3, 4) in Table 6.3 indicates that H1(3, 4) has
26 × 233! = 1248 vertices, diameter 49, and is, up to translation, a lattice (3, 53)-
polytope.

Small primitive zonotopes H1(d, p)

Property 6.4.1.

(i) H1(d, 1) is the {0, 1}d-cube,
(ii) H1(d, 2) is, up to translation, a lattice (d, k)-polytope with k = 2d − 1, and

diameter d2, and 2dd! vertices,

(iii) H1(d, 3) is, up to translation, a lattice (d, k)-polytope with k = 2d2 + 2d − 3,
and diameter d(d+ 2)(2d− 1)/3,

(iv) H1(d, 4) is, up to translation, a lattice (d, k)-polytope with k =
(
d−1
0

)
+16

(
d−1
1

)
+

20
(
d−1
2

)
+ 8
(
d−1
3

)
, and diameter d(d3 + 2d2 + 2d− 2)/3,

(v) H1(2, p) is, up to translation, a lattice (2, k)-polygon with k =
∑

1≤j≤p
jφ(j), and

diameter 2
∑

1≤j≤p
φ(j).

p
H1(d, p) 2 3 4 5 6

d
2 1 (4,3) 2 (8,9) 3 (12,17) 5 (20,37) 6 (24,49)
3 1 (9,5) 7 (25,21) 26 (49,53) 102 (97,133) 227 (145,229)
4 1 (16,7) 40 (56,37) 531 (136,117) 6 741 (312,337) ? (560,709)
5 1 (25,9) 339 (105,57) ? (305,217) ? (801,713) ? (1 681,1 769)

Table 6.3 � Small primitive zonotopes H1(d, p)

105

Proof. One can check that the generators of H1(d, 2) consist of
(
d
1

)
unity vectors and

2
(
d
2

)
vectors {. . . , 1, . . . ,±1, . . .}. Thus, the diameter of H1(d, 2) is

(
d
1

)
+ 2
(
d
2

)
= d2.

Similarly, one can check that the sum of the �rst coordinates of the generators of
H1(d, 2) is 2d− 1. Note that H1(d, 2) is the permutahedron of type Bd. Then, one
can check that, in addition to the previously determined generators of H1(d, 2),
the generators of H1(d, 3) consist of 2

(
d
2

)
vectors {. . . , 1, . . . ,±2, . . .}, 2

(
d
2

)
vec-

tors {. . . , 2, . . . ,±1, . . .}, and 4
(
d
3

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . .}. Thus, the

diameter of H1(d, 3) is
(
d
1

)
+ 6
(
d
2

)
+ 4
(
d
3

)
= d(d + 2)(2d − 1)/3. Similarly, one

can check that the sum of the �rst coordinates of the generators of H1(d, 3) is(
d−1
0

)
+8
(
d−1
1

)
+4
(
d−1
2

)
= 2d2+2d−3. Furthermore, one can check that, in addition to

the previously determined generators of H1(d, 3), the generators of H1(d, 4) consist
of 2

(
d
2

)
vectors {. . . , 1, . . . ,±3, . . .}, 2

(
d
2

)
vectors {. . . , 3, . . . ,±1, . . .}, 4

(
d
3

)
vectors

{. . . , 1, . . . ,±1, . . . ,±2, . . .}, 4
(
d
3

)
vectors {. . . , 1, . . . ,±2, . . . ,±1, . . .}, 4

(
d
3

)
vectors

{. . . , 2, . . . ,±1, . . . ,±1, . . .}, and 8
(
d
4

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . . ,±1, . . .}.

Thus, the diameter of H1(d, 4) is
(
d
1

)
+ 10

(
d
2

)
+ 16

(
d
3

)
+ 8
(
d
4

)
= d(d3 + 2d2 + 2d−2)/3.

Similarly, one can check that the sum of the �rst coordinates of the generators of
H1(d, 4) is

(
d−1
0

)
+ 16

(
d−1
1

)
+ 20

(
d−1
2

)
+ 8
(
d−1
3

)
. Finally, item (v) corresponds to

Proposition 6.4.1.

Small primitive zonotopes H2(d, p)

Property 6.4.2.

(i) H2(d, 1) is the {0, 1}d-cube,
(ii) H2(d, 2) is, up to translation, a lattice (d, k)-polytope with k =

∑
0≤j≤3

2j
(
d−1
j

)
,

and diameter
∑

0≤j≤3
2j
(
d
j+1

)
.

p
H2(d, p) 2 3 4 5

d
2 1 (4,3) 2 (8,9) 4 (16,27) 6 (24,51)
3 2 (13,9) 26 (49,57) 126 (109,161) 443 (205,377)
4 14 (40,27) 1 427 (192,193) ? (592,795) ? (1 424,2 411)
5 273 (105,65) ? (641,577)

Table 6.4 � Small primitive zonotopes H2(d, p)

Proof. One can check that the generators of H2(d, 2) consist of
(
d
1

)
unity vec-

tors, 2
(
d
2

)
vectors {. . . , 1, . . . ,±1, . . .}, 4

(
d
3

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . .}, and

8
(
d
4

)
vectors {. . . , 1, . . . ,±1, . . . ,±1, . . . ,±1, . . .}. Thus, the diameter of H2(d, 2) is∑

0≤j≤3
2j
(
d
j+1

)
. Similarly, one can check that the sum of the �rst coordinates of the

generators of H2(d, 2) is
∑

0≤j≤3
2j
(
d−1
j

)
.

Small primitive zonotopes H∞(d, p)

Property 6.4.3.

(i) H∞(d, 1) is, up to translation, a lattice (d, k)-polytope with k = 3d−1, and
diameter (3d − 1)/2,

106

(ii) H∞(d, 2) is, up to translation, a lattice (d, k)-polytope with k = 3× 5d−1− 2×
3d−1, and diameter (5d − 3d)/2,

(iii) H∞(2, p) is, up to translation, a lattice (2, k)-polygon with diameter 4
∑

1≤j≤p
φ(j).

(iv) The number m(d, 1) of vertices of H∞(d, 1) satis�es

2dd! ≤ m(d, 1) ≤ 2
∑

0≤i≤d−1

(
(3d − 3)/2

i

)
− 2

(
(3d−1 − 3)/2

d− 1

)
.

p
H∞(d, p) 1 2 3 4

d

2 1 (4,3) 2 (8,9) 4 (16,27) 6 (24,51)
3 2 (13,9) 26 (49,57) 228 (145,249) 910 (289,633)
4 14 (40,27) 4 333 (272,321) ? (1 120,1 923) ? (2 928,6 459)
5 516 (121,81)
6 12 4187 (364,243)
7 214 580 603 (1 093,729)

Table 6.5 � Small primitive zonotopes H∞(d, p)

Proof. One can check that H∞(d, 1) has (3d − 1)/2 generators consisting of all
{−1, 0, 1}-valued vectors which �rst nonzero coordinate is positive. Out of the 5d

{−2,−1, 0, 1, 2}-valued vectors, 3d are {−2, 0, 2}-valued. Thus, keeping the ones
which �rst nonzero coordinate is positive, H∞(d, 2) has (5d−3d)/2 generators. Simi-
larly, one can check that the sum of the �rst coordinates of the generators of H∞(d, 2)
is 3 × 5d − 5 × 3d. The generators (i, j) of H∞(2, p) such that ||(i, j)||∞ ≤ 1 are
(1, 0), (0, 1), (1, 1) and (1,−1). For a given i > 1, there are 2φ(i) generators (i, j)
such that ||(i, j)||∞ > 1 and j < i. Thus, there are 4

∑
2≤j≤p

φ(j) generators (i, j) such

that ||(i, j)||∞ > 1. Thus, the diameter of H∞(2, p) is 4
∑

1≤j≤p
φ(j).

We prove now point iv. The �rst inequality restates item (iii) of Property 6.4.3
where (q, d, p) is set to (∞, d, 1). The second inequality is obtained by exploit-
ing the structure of the generators of H∞(d, 1). One can check that H∞(d, 1) has
(3d− 1)/2 generators and that removing the �rst zero of the generators of H∞(d, 1)
starting with zero yields exactly the (3d−1 − 1)/2 generators of H∞(d − 1, 1). We
recall that the number of vertices f0(Z) of a d-dimensional zonotope Z generated
by m generators is bounded by f̄(d,m) = 2

∑
0≤i≤d−1

(
m−1
i

)
[61]. By duality, the

number f0(Z) of vertices of a zonotope Z is equal to the number fd−1(A) of cells
of the associate hyperplane arrangement A where each generator mj of Z corre-
sponds to an hyperplane hj of A. The inequality f0(Z) ≤ f̄(d,m) is based on
the inequality fd−1(A) ≤ fd−1(A \ hj) + fd−1(A ∩ hj) for any hyperplane hj of
A where A \ hj denotes the arrangement obtained by removing hj from A, and
A ∩ hj denotes the arrangement obtained by intersecting A with hj. This last
inequality and the duality between zonotopes and hyperplane arrangements are de-
tailed, for example, in [61]. Recursively applying this inequality to the arrangement
A∞(d, 1) associated to H∞(d, 1) till the remaining (3d−1 − 1)/2 hyperplanes form a
(d−1)-dimensional arrangement equivalent to A∞(d−1, 1) yields: fd−1(A∞(d, 1)) ≤
f̄(d, (3d− 1)/2)−

(
f̄(d, (3d−1 − 1)/2)− f̄(d− 1, (3d−1 − 1)/2)

)
which completes the

107

proof since fd−1(A∞(d, 1)) = f0(H∞(d, 1)) and f̄(d,m) − f̄(d − 1,m) = 2
(
m−1
d

)
. In

other words, the inequality is based on the inductive build-up of H∞(d, 1) starting
with the (3d−1 − 3)/2 generators with zero as �rst coordinate, and noticing that
these (3d−1 − 3)/2 generators belong to a lower dimensional space.

6.7.1 Small positive primitive zonotopes H+
q (d, p)

In Tables 6.6, 6.7, and 6.8, the number of vertices f0(H+
q (d, p)) is followed by its

diameter δ(H+
q (d, p)) and grid embedding size. For instance, the entry 1082 (15, 5)

for (q, d, p) = (1, 5, 2) in Table 6.6 indicates that H+
1 (5, 1) has 1082 vertices, diameter

15, and is a lattice (5, 5)-polytope.

Small positive primitive zonotopes H+
1 (d, p)

Property 6.4.4.

(i) H+
1 (d, 1) is the {0, 1}d-cube,

(ii) H+
1 (d, 2) is a lattice (d, k)-polytope with k = d, and diameter

(
d+1
2

)
,

(iii) H+
1 (d, 3) is a lattice (d, k)-polytope with k = (d2 + 5d − 4)/2 and diameter

d(d2 + 6d− 1)/6.

(iv) H+
1 (2, p) is a lattice (2, k)-polygon with k = 1 +

∑
2≤j≤p

jφ(j)/2, and diameter

1 +
∑

1≤j≤p
φ(j).

p
H+

1 (d, p) 2 3 4 5 6

d

2 6 (3,2) 10 (5,5) 14 (7,9) 22 (11,19) 26 (13,25)
3 26 (6,3) 110 (13,10) 314 (22,22) 1 022 (40,52) 1 970 (55,82)
4 150 (10,4) 2 194 (26,16) 17534 (51,41) 145 198 (103,106) 593 402 (161,193)
5 1 082 (15,5) 71 582 (45,23) 2 062 682 (100,67) ? (221,188) ? (386,386)
6 9 366 (21,6) ? (71,31) ?(176,106)

Table 6.6 � Small positive primitive zonotopes H+
1 (d, p)

Proof. One can check that the generators of H+
1 (d, 2) consist of

(
d
1

)
unity vectors

and
(
d
2

)
vectors {. . . , 1, . . . , 1, . . .}. Thus, the diameter of H+

1 (d, 2) is
(
d
1

)
+
(
d
2

)
=(

d+1
2

)
. Similarly, one can check that the sum of the �rst coordinates of the gen-

erators of H+
1 (d, 2) is d. Note that H+

1 (2, p) is the Minkowski sum of the per-
mutahedron with the {0, 1}d-cube. One can check that, in addition to the pre-
viously determined generators of H+

1 (2, p), the generators of H+
1 (d, 3) consist of(

d
3

)
vectors {. . . , 1, . . . , 1, . . . , 1, . . . , },

(
d
2

)
vectors {. . . , 1, . . . , 2, . . .}, and

(
d
2

)
vec-

tors {. . . , 2, . . . , 1, . . .}. Thus H+
1 (d, 3) has

(
d
3

)
+ 3
(
d
2

)
+
(
d
1

)
generators. Similarly,

one can check that the sum of the �rst coordinates of the generators of H+
1 (d, 3)

is
(
d−1
2

)
+ 4
(
d−1
1

)
+
(
d
0

)
. Out of the generators of H1(2, p),

∑
2≤j≤p

φ(j) have a neg-

ative coordinate. Thus, the diameter of H+
1 (2, p) is 1 +

∑
1≤j≤p

φ(j). Similarly, one

can check that the sum of the �rst coordinates of the generators of H+
1 (2, p) is

1 +
∑

2≤j≤p
jφ(j)/2.

108

Small positive primitive zonotopes H+
2 (d, p)

Property 6.4.5.

(i) H+
2 (d, 1) is the {0, 1}d-cube,

(ii) H+
2 (d, 2) is a (d, k) polytope with k =

(
d
1

)
+
(
d
3

)
, and diameter

(
d+1
2

)
+
(
d+1
4

)
.

p
H+

2 (d, p) 2 3 4 5

d
2 6 (3,2) 10 (5,5) 18 (9,14) 26 (13,26)
3 32 (7,4) 212 (19,19) 1 010 (40,54) 3 074 (70,120)
4 370 (15,8) 19 438 (55,49) 362 962 (141,170) 3 497 862 (299,462)
5 10 922 (30,15) ? (136,108) ? (441,487)

Table 6.7 � Small positive primitive zonotopes H+
2 (d, p)

Proof. One can check that the generators of H+
2 (d, 2) consist of

(
d
i

)
vectors with

exactly i ones for i = 1, 2, 3, and 4. Thus, the diameter of H+
2 (d, 2) is

(
d+1
2

)
+
(
d+1
4

)
.

Similarly, one can check that the sum of the �rst coordinates of the generators of
H+

2 (d, 2) is
(
d
1

)
+
(
d
3

)
.

Small positive primitive zonotopes H+
∞(d, p)

Property 6.4.6.

(i) H+
∞(d, 1) is, a lattice (d, k)-polytope with k = 2d−1, and diameter 2d − 1,

(ii) H+
∞(d, 2) is a lattice (d, k)-polytope with k = 3d − 2d, and diameter 3d − 2d,

(iii) H+
∞(2, p) is a lattice (2, k)-polygon with diameter 1 + 2

∑
1≤j≤p

φ(j).

p
H+
∞(d, p) 1 2 3 4

d

2 6 (3,2) 10 (5,5) 18 (9,14) 26 (13,26)
3 32 (7,4) 212 (19,19) 1 418 (49,76) 4 916 (91,184)
4 370 (15,8) 27 778 (65,65) 1 275 842 (225,344) ? (529,1 064)
5 11 292 (31,16) ? (211,211) ? (961,1456) ? (2 851,5 716)
6 1 066 044 (63,32)
7 347 326 352 (127,64)
8 419 172 756 930 (255,128)

Table 6.8 � Small positive primitive zonotopes H+
∞(d, p)

Proof. One can check that H+
∞(d, 1) has 2d − 1 generators consisting of all {0, 1}-

valued vectors except the origin. Thus, the diameter of H+
∞(d, 1) is 2d−1. Similarly,

one can check that the sum of the �rst coordinates of the generators of H+
∞(d, 1) is

2d−1. Out of the 3d {0, 1, 2}-valued vectors, 2d are {0, 2}-valued. Thus, the diameter
of H+

∞(d, 2) is 3d− 2d. Similarly, one can check that the sum of the �rst coordinates
of the generators of H+

∞(d, 2) is 3d − 2d. The generators (i, j) of H+
∞(2, p) such that

||(i, j)||∞ ≤ 1 are (1, 0), (0, 1), and (1, 1). For a given i > 1, there are φ(i) generators
(i, j) such that ||(i, j)||∞ > 1 and j < i. Thus, there are 2

∑
2≤j≤p

φ(j) generators (i, j)

such that ||(i, j)||∞ > 1. Thus, the diameter of H+
∞(2, p) is 1 + 2

∑
1≤j≤p

φ(j).

109

6.7.2 Open problems

The zonotopes H+
∞(d, 1) can be related to hypergraphs. An hypergraph is simply

a graph in which edges can span more than two vertices. Formally, an hypergraph
H = (X,E) has vertex set X = {v1, v2, ..., vd} and edge set E ⊆ {0, 1}d, see Fig-
ure 6.12 for an illustration.

v1

v2
v3

v4

v5

v6

v7

e1
e2

e3e4

Figure 6.12 � An hypergraph with seven vertices and �ve edges, each corresponding
to a color. We give the edges as vectors as follows. e1 = {1, 1, 1, 0, 0, 0, 0} e2 =
{0, 1, 1, 0, 0, 0, 0} e3 = {0, 0, 1, 0, 1, 1, 0} e4 = {0, 0, 0, 1, 0, 0, 0}.

The open questions deal with a reformulation in term of degree sequence of hy-
pergraphs. The question is presented within the context of H+

q (d, p) but could be
adapted to Hq(d, p). Each subset E ⊆ {0, 1}d can be associated to the edge set
of a hypergraph with ground set [d]. The vector

∑
e∈E

e is called the degree sequence

of E (and of the associated hypergraph), and the convex hull of the degree se-
quences of all hypergraphs with ground set [d] is called the hypergraph polytope Dd;
and thus Dd = H+

∞(d, 1). Considering only k-uniform hypergraphs; that is, subsets
E ⊆ {0, 1}d where all vectors in E have k nonzero entries, one obtains the k-uniform
hypergraph polytope Dd(k) as the convex hull of the degree sequences of all k-uniform
hypergraphs. The k-uniform hypergraph polytope, in particular Dd(2) and Dd(3),
have been extensively studied, see [36, 54, 95, 115] and references therein. A natural
question raised in the literature asks for suitable necessary and su�cient conditions
to check whether a vector h ∈ Dd(k) ∩ Zd is the degree sequence of some k-uniform
hypergraph. For k = 2; that is for graphs, the celebrated Erdös-Gallai Theorem [54]
shows that the trivial necessary condition is also su�cient. For k = 3; that is for 3-
uniform hypergraphs, the question was raised by Klivans and Reiner [95]. Liu [103]
exhibited counterexamples by constructing holes for d ≥ 16; that is, vectors h in
Dd(3)∩Zd such that the sum of the coordinates of h is a multiple of 3, but h is not
the degree sequence of a 3-uniform hypergraph.

We call a vector in H+
q (d, p) ∩ Zd a hole if it cannot be written as the sum of a

subset of the generators of H+
q (d, p). It would be interesting to explicitly �nd such

holes and better understand them. A natural follow-up question, provided there are
holes, is �For given �xed positive integers p and q, what is the complexity of deciding
if a given vector h ∈ H+

q (d, p) ∩ Zd is a hole, and if not, of writing h as the sum of
a subset of generators of H+

q (d, p)?".

110

111

Chapter 7

Perspectives

Few questions have been answered, many have emerged, as noted in the conclu-
sion sections of the chapters. We will not recall these open problems here. We want
to discuss some future directions that are being currently investigated.

Our contribution of Chapter 3 shed light on an interesting phenomenon regarding
the relationship between the maximal cliques and induced properties of the graph.
A property is induced on G if there exists an ordering of the vertices v1, ..., vn of
the vertices of G such that property P holds on G[N(vi) ∩ Vi]. We recall that
Vi is the set of vertices following vi including itself in this ordering, that is, the set
{vi, vi+1, ..., vn}. Following that de�nition, a graph is k-degenerate if it has inductive
property Pk: "the vertex set is of size less or equal than k". What we essentially
proved is that if we can solve the maximal cliques enumeration problem on a graph
with property Pk then we can solve it on a graph with inductive property Pk. It
seems to us that, in fact, this holds for any property. Thus we are currently looking
into this question and try to extend this approach to other clique related problems.

Our contribution of Chapter 5 is one of the �rst self-stabilizing algorithms con-
sidering the communication model simulating the message passing paradigm (link
register). What we would like to do next is �nd a way to transform systematically
any given algorithm of the standard communication model used in self-stabilizing
algorithms (shared memory model) into the link register model. Such transformers
exist but very little is known about their complexity and some of them are restricted
(for instance at the daemon level). We recall that these transformers have been dis-
cussed in the introduction of Chapter 5. Thus we would like to design a general
transformer whose complexity we could analyze (and which would have polynomial
transformation cost, ideally). To do that, we �rst need to design a self-stabilizing al-
gorithm solving the maximal independent set problem in the link register paradigm.
This is the �rst step which is currently under investigation.

Finally, concerning the diameter of lattice polytopes, our goal is double. First,
we are trying to compute some missing values presented in the tables of Chapter 6.
To achieve that, the algorithm that we presented for computing small zonotopes is
not e�cient. New theoretical tools are needed in order to understand the structure
of the polytopes and derive from that faster algorithms computing them. The second
question under investigation is the one of holes. We are currently trying to extend
Liu's approach [103] to our framework, one problem being that the author gave little
to no intuition on how he actually found the holes. Is a computational or theoretical
approach necessary for this question?

112

Bibliography

[1] D. Acketa and J. �uni¢. On the maximal number of edges of convex digital
polygons included into an m ×m-grid. Journal of Combinatorial Theory A,
69:358�368, 1995.

[2] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Du�eld. E�cient graphlet
counting for large networks. In Data Mining (ICDM), 2015 IEEE Interna-
tional Conference on, pages 1�10. IEEE, 2015.

[3] X. Allamigeon, P. Benchimol, S. Gaubert, and M. Joswig. Long and winding
central paths. arXiv:1405.4161, 2014.

[4] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM (JACM),
42(4):844�856, 1995.

[5] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209�223, 1997.

[6] A. Arora and M. Gouda. Closure and convergence: A foundation of
fault-tolerant computing. IEEE Transactions on Software Engineering,
19(11):1015�1027, 1993.

[7] Benno Artmann. Euclid�the creation of mathematics. Springer Science &
Business Media, 2012.

[8] Y. Asada and M. Inoue. An e�cient silent self-stabilizing algorithm for 1-
maximal matching in anonymous networks. In WALCOM: Algorithms and
Computation - 9th International Workshop, pages 187�198. Springer Interna-
tional Publishing, 2015.

[9] H. Attiya and J. Welch. Distributed computing: fundamentals, simulations,
and advanced topics, volume 19. John Wiley & Sons, 2004.

[10] J. G. Augustson and Jack Minker. An analysis of some graph theoretical
cluster techniques. Journal of the ACM (JACM), 17(4):571�588, 1970.

[11] A. Balog and I. Bárány. On the convex hull of the integer points in a disc. In
Proceedings of the Seventh Annual Symposium on Computational Geometry ,
pages 162�165, 1991.

[12] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
science, 286(5439):509�512, 1999.

[13] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for
convex hulls. ACM Trans. Math. Softw., 22(4):469�483, December 1996.

[14] V. Batagelj and M. Zaversnik. An O(m) algorithm for cores decomposition of
networks. arXiv preprint cs/0310049, 2003.

[15] J. Beauquier, A. K. Datta, M. Gradinariu, and booktitle=DISC pages=223�
237 year=2000 organization=Springer Magniette, F. Self-stabilizing local mu-
tual exclusion and daemon re�nement.

113

[16] M. Bentert, T. Fluschnik, A. Nichterlein, and R. Niedermeier. Parameterized
Aspects of Triangle Enumeration, pages 96�110. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2017.

[17] P. Berenbrink, T. Friedetzky, and R. A. Martin. On the stability of dynamic
di�usion load balancing. Algorithmica, 50(3):329�350, 2008.

[18] C. Berge. Graphes. Gauthier-Villars, 1983.
[19] E. Birmelé, R. Ferreira, R. Grossi, Andrea Marino, Nadia Pisanti, Romeo

Rizzi, and Gustavo Sacomoto. Optimal Listing of Cycles and st-Paths in
Undirected Graphs, pages 1884�1896.

[20] A. Björklund, P. Kaski, and L. Kowalik. Counting thin subgraphs via packings
faster than meet-in-the-middle time. In Proceedings of the twenty-�fth annual
ACM-SIAM symposium on Discrete algorithms, pages 594�603. Society for
Industrial and Applied Mathematics, 2014.

[21] A. Björklund, R. Pagh, V. V. Williams, and U. Zwick. Listing Triangles, pages
223�234. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[22] J. A. Bondy and U. S. R. Murty. Graph theory with applications, volume 290.
Macmillan London, 1976.

[23] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected
graph. Commun. ACM, 16(9):575�577, September 1973.

[24] L. Cai, S. M. Chan, and S. O. Chan. Random Separation: A New Method for
Solving Fixed-Cardinality Optimization Problems, pages 239�250. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

[25] F. Cazals and C. Karande. A note on the problem of reporting maximal
cliques. Theoretical Computer Science, 407(1-3):564�568, 2008.

[26] N. Chadder and A. Deza. Computational determination of the largest lattice
polytope diameter. CoRR, abs/1704.01687, 2017.

[27] L. Chang, J. X. Yu, and L. Qin. Fast maximal cliques enumeration in sparse
graphs. Algorithmica, 66(1):173�186, 2013.

[28] S. Chattopadhyay, L. Higham, and K. Sey�arth. Dynamic and self-stabilizing
distributed matching. In Proceedings of the twenty-�rst annual symposium on
Principles of distributed computing, pages 290�297. ACM, 2002.

[29] Subhendu Chattopadhyay, Lisa Higham, and Karen Sey�arth. Dynamic and
self-stabilizing distributed matching. In Proceedings of the twenty-�rst annual
symposium on Principles of distributed computing, pages 290�297. ACM, 2002.

[30] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on Computing, 14(1):210�223, 1985.

[31] M. Chrobak and D. Eppstein. Planar orientations with low out-degree and
compaction of adjacency matrices. Theoretical Computer Science, 86(2):243 �
266, 1991.

[32] J. Cohen, J. Lefevre, K. Maamra, G. Manoussakis, and L. Pilard. Polynomial
self-stabilizing algorithm and proof for a 2/3-approximation of a maximum
matching. CoRR, abs/1611.06038, 2016.

[33] J. Cohen, K. Maâmra, G. Manoussakis, and L. Pilard. Polynomial self-
stabilizing maximum matching algorithm with approximation ratio 2/3. In In-
ternational Conference On Principles Of Distributed Systems, OPODIS , 2016.

[34] Johanne Cohen, Jonas Lefevre, Khaled Maâmra, Laurence Pilard, and De-
van Sohier. A self-stabilizing algorithm for maximal matching in anonymous
networks. Parallel Processing Letters, 26(04):1650016, 2016.

114

[35] Johanne Cohen, George Manoussakis, Laurence Pilard, and Devan Sohier.
A self-stabilizing algorithm for maximal matching in link-register model in
$o(n∆�3)$ moves. CoRR, abs/1709.04811, 2017.

[36] C. Colbourn, W. Kocay, and D. Stinson. Some NP-complete problems for hy-
pergraph degree sequences. Discrete Applied Mathematics, 14:239�254, 1986.

[37] C. Comin and R. Rizzi. An improved upper bound on maximal clique listing
via rectangular fast matrix multiplication. arXiv preprint arXiv:1506.01082,
2015.

[38] A. Conte, R. Grossi, A. Marino, and L. Versari. Sublinear-space bounded-delay
enumeration for massive network analytics: Maximal cliques. In 43rd Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2016) ,
volume 148, pages 1�148, 2016.

[39] T. H. Cormen. Introduction to algorithms. MIT press, 2009.

[40] G. Dantzig. Linear programming and extensions. Princeton university press,
2016.

[41] G. B. Dantzig. Origins of the simplex method. ACM, 1990.

[42] A. K. Datta, L. L. Larmore, and T. Masuzawa. Maximum matching for anony-
mous trees with constant space per process. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 46. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

[43] A. Del Pia and C. Michini. On the diameter of lattice polytopes. Discrete and
Computational Geometry, 55:681�687, 2016.

[44] A. Deza, G. Manoussakis, and S. Onn. Primitive zonotopes. Discrete &
Computational Geometry, Feb 2017.

[45] A. Deza and L. Pournin. Improved bounds on the diameter of lattice polytopes.
arXiv:1610.00341, 2016.

[46] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
mun. ACM, 17(11):643�644, 1974.

[47] S. Dolev. Self-Stabilization. MIT Press, 2000.

[48] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems
assuming only read/write atomicity. dc, 7:3�16, 1993.

[49] F. Dorn. Planar Subgraph Isomorphism Revisited. In 27th International
Symposium on Theoretical Aspects of Computer Science , volume 5 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 263�274, Dagstuhl,
Germany, 2010. Schloss Dagstuhl�Leibniz-Zentrum fuer Informatik.

[50] D. E. Drake and S. Hougardy. A simple approximation algorithm for the
weighted matching problem. Inf. Process. Lett., 85(4):211�213, 2003.

[51] D. Eppstein. Subgraph isomorphism in planar graphs and related problems.
In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA '95, pages 632�640, Philadelphia, PA, USA, 1995. Society for
Industrial and Applied Mathematics.

[52] D. Eppstein. Zonohedra and zonotopes. Mathematica in Education and Re-
search, 5:15�21, 1996.

[53] D. Eppstein, M. Lö�er, and D. Strash. Listing all maximal cliques in large
sparse real-world graphs. J. Exp. Algorithmics, 18:3.1:3.1�3.1:3.21, November
2013.

115

[54] P. Erdös and T. Gallai. Graphs with prescribed degrees of vertices (in Hun-
garian). Matematikai Lopak, 11:264�274, 1960.

[55] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
Academiae Scientiarum Imperialis Petropolitanae, 8:128�140, 1736.

[56] J. Evans. Ancient Stone Implements, Weapons, and Ornaments, of Great
Britain. Cambridge Library Collection - Archaeology. Cambridge University
Press, 2015.

[57] S. Fomin and N. Reading. Root systems and generalized associahedra. arXiv
preprint math/0505518, 2005.

[58] E. C. Freuder. A su�cient condition for backtrack-free search. Journal of the
ACM (JACM), 29(1):24�32, 1982.

[59] K. Fukuda. cdd homepage. https://www.inf.ethz.ch/personal/fukudak/
cdd_home.

[60] K. Fukuda. Lecture notes on oriented matroids and geometric computation.
Computational Complexity, 2:7.

[61] K. Fukuda. Lecture notes: Polyhedral computation. http://www-oldurls.

inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/ .

[62] F. C. Gaertner. A Survey of Self-Stabilizing Spanning-Tree Construction Al-
gorithms. Technical report, 2003.

[63] E. J. Gardiner, P. Willett, and P. J. Artymiuk. Graph-theoretic techniques
for macromolecular docking. Journal of Chemical Information and Computer
Sciences, 40(2):273�279, 2000.

[64] B. Ghosh and S. Muthukrishnan. Dynamic load balancing by random match-
ings. J. Comput. Syst. Sci., 53(3):357�370, 1996.

[65] E. N. Gilbert. Enumeration of labelled graphs. Canad. J. Math, 8(1):05�411,
1956.

[66] P.-L. Giscard, N. Kriege, and R. C. Wilson. A general purpose algorithm
for counting simple cycles and simple paths of any length. arXiv preprint
arXiv:1612.05531, 2016.

[67] P. M. Gleiss. Short cycles. 2001.

[68] G. Goel and J. Gustedt. Bounded arboricity to determine the local structure
of sparse graphs. In International Workshop on Graph-Theoretic Concepts in
Computer Science, pages 159�167. Springer, 2006.

[69] H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willett. Identi�cation of
tertiary structure resemblance in proteins using a maximal common subgraph
isomorphism algorithm. Journal of molecular biology, 229(3):707�721, 1993.

[70] N. Guellati and H. Kheddouci. A survey on self-stabilizing algorithms for inde-
pendence, domination, coloring, and matching in graphs. Journal of Parallel
and Distributed Computing, 70(4):406 � 415, 2010.

[71] N. Guellati and H. Kheddouci. A survey on self-stabilizing algorithms for inde-
pendence, domination, coloring, and matching in graphs. J. Parallel Distrib.
Comput., 70(4):406�415, 2010.

[72] D. Gus�eld. Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge University Press, 1997.

[73] F. Harary and I. C. Ross. A procedure for clique detection using the group
matrix. Sociometry, 20(3):205�215, 1957.

116

https://www.inf.ethz.ch/personal/fukudak/cdd_home
https://www.inf.ethz.ch/personal/fukudak/cdd_home
http://www-oldurls.inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/
http://www-oldurls.inf.ethz.ch/personal/fukudak/lect/pclect/notes2015/

[74] G. Hardy, E. Wright, D. Hearth-Brown, and J. Silverman. An introduction to
the theory of numbers. Clarendon Press Oxford, 1979.

[75] S. T. Hedetniemi, D. Pokrass Jacobs, and P. K. Srimani. Maximal matching
stabilizes in time o(m). Inf. Process. Lett., 80(5):221�223, 2001.

[76] C. J. Henry and S. Ramanna. Maximal clique enumeration in �nding near
neighbourhoods.

[77] T. R. Herman. A comprehensive bibliography on self-stabilization. 2002.

[78] M. Hoefer. Local matching dynamics in social networks. Inf. Comput., 222:20�
35, 2013.

[79] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing, 2(4):225�231, 1973.

[80] R. Horaud and T. Skordas. Stereo correspondence through feature grouping
and maximal cliques. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(11):1168�1180, 1989.

[81] S.-C. Hsu and S.-T. Huang. A self-stabilizing algorithm for maximal matching.
Inf. Process. Lett., 43(2):77�81, 1992.

[82] J. Huan, W. Wang, and J. Prins. E�cient mining of frequent subgraphs in
the presence of isomorphism. In Data Mining, 2003. ICDM 2003. Third IEEE
International Conference on, pages 549�552. IEEE, 2003.

[83] J. Humphreys. Re�ection groups and Coxeter groups. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 1990.

[84] M. Inoue, F. Ooshita, and S. Tixeuil. An e�cient silent self-stabilizing 1-
maximal matching algorithm under distributed daemon without global iden-
ti�ers. In International Symposium on Stabilization, Safety, and Security of
Distributed Systems, pages 195�212. Springer, 2016.

[85] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal
on Computing, 7(4):413�423, 1978.

[86] Colette J. and L. Higham. Fault-tolerant implementations of atomic regis-
ters by safe registers in networks. In Proceedings of the Twenty-Seventh An-
nual ACM Symposium on Principles of Distributed Computing, PODC 2008,
Toronto, Canada, August 18-21, 2008, page 449, 2008.

[87] T. R. Jensen and B. Toft. Graph coloring problems, volume 39. John Wiley
& Sons, 2011.

[88] C. Johnen, I. Lavallee, and C. Lavault. Reliable self-stabilizing communication
for quasi rendezvous. arXiv preprint arXiv:1005.5630, 2010.

[89] D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM
Journal on Computing, 4(1):77�84, 1975.

[90] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all
maximal independent sets. Information Processing Letters, 27(3):119 � 123,
1988.

[91] G. Kalai and D. Kleitman. A quasi-polynomial bound for the diameter of
graphs of polyhedra. Bulletin of the American Mathematical Society, 26:315�
316, 1992.

[92] M. H. Karaata and K. A. Saleh. Distributed self-stabilizing algorithm for
�nding maximum matching. Comput Syst Sci Eng, 15(3):175�180, 2000.

[93] L. M. Kirousis and D. M. Thilikos. The linkage of a graph. SIAM Journal on
Computing, 25(3):626�647, 1996.

117

[94] P. Kleinschmidt and S. Onn. On the diameter of convex polytopes. Discrete
Mathematics, 102:75�77, 1992.

[95] C. Klivans and V. Reiner. Shifted set families, degree sequences, and plethysm.
Electronic Journal of Combinatorics, 15 (1), 2008.

[96] D. Knuth. Marriages stables et leurs relations avec d'autres problèmes combi-
natoires. Les Presses de l'Université de Montréal, 1976.

[97] I. Koch. Enumerating all connected maximal common subgraphs in two
graphs. Theoretical Computer Science, 250(1-2):1�30, 2001.

[98] I. Koch, T. Lengauer, and E. Wanke. An algorithm for �nding maximal com-
mon subtopologies in a set of protein structures. Journal of computational
biology, 3(2):289�306, 1996.

[99] L. Kowalik. Short cycles in planar graphs. In International Workshop on
Graph-Theoretic Concepts in Computer Science, pages 284�296. Springer,
2003.

[100] M. Koyutürk, A. Grama, and W. Szpankowski. An e�cient algorithm
for detecting frequent subgraphs in biological networks. Bioinformatics,
20(suppl_1):i200�i207, 2004.

[101] L. Lamport. Solved problems, unsolved problems and nonproblems in concur-
rency. pages 1�11, August 1984.

[102] D. R. Lick and A. T. White. d-degenerate graphs. Canad. J. Math., 22:1082�
1096, 1970.

[103] R. Liu. Nonconvexity of the set of hypergraph degree sequences. Electronic
Journal of Combinatorics, 20 (1), 2013.

[104] K. Makino and T. Uno. New algorithms for enumerating all maximal cliques.
Springer.

[105] F. Manne and M. Mjelde. A self-stabilizing weighted matching algorithm. In
9th Int. Symposium Stabilization, Safety, and Security of Distributed Systems
(SSS), Lecture Notes in Computer Science, pages 383�393. Springer, 2007.

[106] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A new self-stabilizing maximal
matching algorithm. Theoretical Computer Science (TCS), 410(14):1336�1345,
2009.

[107] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A self-stabilizing 2/3-
approximation algorithm for the maximum matching problem. Theoretical
Computer Science (TCS), 412(40):5515�5526, 2011.

[108] G. Manoussakis. Listing all �xed-length simple cycles in sparse graphs in
optimal time. In Fundamentals of Computation Theory - 21st International
Symposium, FCT 2017, Bordeaux, France, September 11-13, 2017, Proceed-
ings, pages 355�366, 2017.

[109] E. M. McCreight. A space-economical su�x tree construction algorithm. J.
ACM, 23(2):262�272, April 1976.

[110] K. Meeks. Randomised enumeration of small witnesses using a decision oracle.
In 11th International Symposium on Parameterized and Exact Computation,
IPEC 2016, August 24-26, 2016, Aarhus, Denmark, pages 22:1�22:12, 2016.

[111] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: simple building blocks of complex networks. Science,
298(5594):824�827, 2002.

118

[112] J. W Moon and L. Moser. On cliques in graphs. Israel journal of Mathematics,
3(1):23�28, 1965.

[113] D. R. Morrison. Patricia-practical algorithm to retrieve information coded in
alphanumeric. J. ACM, 15(4):514�534, 1968.

[114] A. Mostéfaoui, M. Petrolia, M. Raynal, and C. Jard. Atomic read/write mem-
ory in signature-free byzantine asynchronous message-passing systems. Theory
Comput. Syst., 60(4):677�694, 2017.

[115] N.L. Bhanu Murthy and Murali K. Srinivasan. The polytope of degree se-
quences of hypergraphs. Linear Algebra and its Applications, 350:147�170,
2002.

[116] D. Naddef. The Hirsch conjecture is true for (0, 1)-polytopes. Mathematical
Programming, 45:109�110, 1989.

[117] L. Pan and E. E. Santos. An anytime-anywhere approach for maximal clique
enumeration in social network analysis. In Systems, Man and Cybernetics,
2008. SMC 2008. IEEE International Conference on , pages 3529�3535. IEEE,
2008.

[118] C. H. Papadimitriou and M. Yannakakis. The clique problem for planar graphs.
Information Processing Letters, 13(4):131 � 133, 1981.

[119] M. C. Paull and S. H. Unger. Minimizing the number of states in incompletely
speci�ed sequential switching functions. IRE Transactions on Electronic Com-
puters, (3):356�367, 1959.

[120] J. L. Pfaltz. Chordless cycles in networks. 2013 IEEE 29th International
Conference on Data Engineering Workshops (ICDEW) , pages 223�228, 2013.

[121] R. Preis. Linear time 1/2-approximation algorithm for maximum weighted
matching in general graphs. In 16th Annual Symposium on Theoretical Aspects
of Computer Science (STACS), Lecture Notes in Computer Science, pages
259�269. Springer, 1999.

[122] D. Richards. Finding short cycles in planar graphs using separators. Journal
of Algorithms, 7(3):382 � 394, 1986.

[123] R. Samudrala and J. Moult. A graph-theoretic algorithm for comparative
modeling of protein structure. Journal of molecular biology, 279(1):287�302,
1998.

[124] F. Santos. A counterexample to the Hirsch conjecture. Annals of Mathematics,
176:383�412, 2012.

[125] T. Schank and D. Wagner. Finding, counting and listing all triangles in large
graphs, an experimental study. Springer.

[126] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt.
E�cient graphlet kernels for large graph comparison. In Arti�cial Intelligence
and Statistics, pages 488�495, 2009.

[127] K. Shin, T. Eliassi-Rad, and C. Faloutsos. Patterns and anomalies in k-cores
of real-world graphs with applications. Knowledge and Information Systems,
pages 1�34, 2017.

[128] N. Sloane (editor). The on-line encyclopedia of integer sequences. https:

//oeis.org.

[129] N. Sokhn, R. Baltensperger, L.-F. Bersier, J. Hennebert, and U. Ultes-Nitsche.
Identi�cation of chordless cycles in ecological networks. Springer.

119

https://oeis.org
https://oeis.org

[130] I. Soprunov and J. Soprunova. Eventual quasi-linearity of the Minkowski
length. European Journal of Combinatorics, 58:110�117, 2016.

[131] N. Sukegawa. Improving bounds on the diameter of a polyhedron in high
dimensions. arXiv:1604.04338, 2016.

[132] R. Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM
Journal on Computing, 2(3):211�216, 1973.

[133] G. Tel. Introduction to distributed algorithms. Cambridge university press,
2000.

[134] T. Thiele. Extremalprobleme für Punktmengen. Diplomarbeit, Freie Univer-
sität Berlin, 1991.

[135] S. Tixeuil. Self-stabilizing Algorithms. In Algorithms and theory of computa-
tion handbook, pages 26.1�26.45. Chapman & Hall/CRC, 2009. 50 pages.

[136] M. Todd. An improved Kalai-Kleitman bound for the diameter of a polyhe-
dron. SIAM Journal on Discrete Mathematics, 28:1944�1947, 2014.

[137] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity
for generating all maximal cliques and computational experiments. Theor.
Comput. Sci., 363(1):28�42, October 2006.

[138] M. Touati, R. El-Azouzi, M. Coupechoux, E. Altman, and J. M. Kelif. Con-
trolled matching game for user association and resource allocation in multi-rate
wlans? In 2015 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 372�380, Sept 2015.

[139] H. M. Trent. A note on the enumeration and listing of all possible trees in
a connected linear graph. Proceedings of the National Academy of Sciences,
40(10):1004�1007, 1954.

[140] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for
generating all the maximal independent sets. SIAM Journal on Computing,
6(3):505�517, 1977.

[141] V. Turau and B. Hauck. A new analysis of a self-stabilizing maximum weight
matching algorithm with approximation ratio 2. Theoretical Computer Science
(TCS), 412(40):5527�5540, 2011.

[142] E. Ukkonen. On-line construction of su�x trees. Algorithmica, 14(3):249�260,
1995.

[143] T. Uno. An e�cient algorithm for solving pseudo clique enumeration problem.
Algorithmica, 56(1):3�16, 2010.

[144] T. Uno and H. Satoh. An e�cient algorithm for enumerating chordless cycles
and chordless paths. In International Conference on Discovery Science, pages
313�324. Springer, 2014.

[145] L. G. Valiant. The complexity of computing the permanent. Theoretical
computer science, 8(2):189�201, 1979.

[146] K. Wasa. Enumeration of enumeration algorithms. arXiv preprint
arXiv:1605.05102, 2016.

[147] P. Weiner. Linear pattern matching algorithms. In Switching and Automata
Theory, 1973. SWAT '08. IEEE Conference Record of 14th Annual Symposium
on, pages 1�11, Oct 1973.

[148] D. B. West et al. Introduction to graph theory, volume 2. Prentice hall Upper
Saddle River, 2001.

120

[149] H. Whitney. Congruent graphs and the connectivity of graphs. American
Journal of Mathematics, 54(1):150�168, 1932.

[150] V. V. Williams and R. Williams. Finding, minimizing, and counting weighted
subgraphs. SIAM Journal on Computing, 42(3):831�854, 2013.

[151] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Data
Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference
on, pages 721�724. IEEE, 2002.

[152] M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li, et al. New algorithms for
fast discovery of association rules.

[153] G. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer,
1995.

[154] A. Zomorodian. The tidy set: a minimal simplicial set for computing homology
of clique complexes. In Proceedings of the twenty-sixth annual symposium on
Computational geometry, pages 257�266. ACM, 2010.

121

	Introduction
	Basic graph concepts
	Matchings
	Degeneracy of a graph
	Graph algorithms
	Enumeration algorithms
	Self-stabilizing Algorithms
	General properties of self-stabilizing algorithms
	Algorithms description
	Daemons
	Complexity measures
	Composition

	I Enumeration algorithms for k-degenerate graphs
	Fixed-size cycles enumeration
	Introduction
	Definitions
	Basic Results
	Algorithm
	Conclusion

	Maximal cliques enumeration
	Introduction
	Definitions
	Basic results
	Algorithm for maximal clique enumeration
	Conclusion

	II Self-stabilizing algorithms
	A 2/3-approximation for maximum matching
	Introduction
	Model
	Common strategy to build a 1-maximal matching
	3-augmenting path
	The underlying maximal matching
	Augmenting paths detection and exploitation
	Graphical convention

	Description of the algorithm ExpoMatch
	Augmenting paths detection and exploitation
	Rules description
	An execution example of the ExpoMatch algorithm

	Our algorithm PolyMatch
	Variables description
	Augmenting paths detection and exploitation
	Rules description
	Execution examples
	Correctness Proof
	Convergence Proof

	 Maximal Matching in the Link Register Model
	Introduction
	Model
	Algorithm
	Variables description
	Algorithm description
	Algorithm
	Predicates and functions
	Rules for each node u

	About the rules
	Execution examples
	Lock mechanism analysis
	Local impact after a topological change

	Proof of the Algorithm
	State of an edge
	Correctness Proof
	Overview of the Convergence Proof
	The Complete Convergence Proof
	Property of the state of an edge
	Convergence Proof

	Conclusion

	III Lattice polytopes
	New bounds for the diameter of lattice polytopes
	Introduction
	Basic notions
	Zonotopes as Minkowski sums
	Zonotopes and hyperplane arrangements
	Primitive zonotopes
	Definitions
	Combinatorial properties

	Large diameter
	H1(2,p) as a lattice polygon with large diameter
	H1(d,2) as a lattice polytope with large diameter

	Small primitive zonotopes Hq(d,p) and H+q(d,p)
	Small positive primitive zonotopes H+q(d,p)
	Open problems

	Perspectives

