
HAL Id: tel-01832811
https://hal.science/tel-01832811

Submitted on 25 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint Programming for Data Mining and for
Natural Language Processing

Thi-Bich-Hanh Dao

To cite this version:
Thi-Bich-Hanh Dao. Constraint Programming for Data Mining and for Natural Language Processing.
Artificial Intelligence [cs.AI]. Université d’Orléans, 2018. �tel-01832811�

https://hal.science/tel-01832811
https://hal.archives-ouvertes.fr


UNIVERSITÉ D’ORLÉANS

Laboratoire d’Informatique Fondamentale d’Orléans

Discipline : Informatique

Habilitation à Diriger des Rercherches

présentée et soutenue publiquement le 14 mars 2018 par

Thi-Bich-Hanh DAO

Constraint Programming for Data Mining and for
Natural Language Processing

RAPPORTEURS:
Luc De Raedt Professeur, Katholieke Universiteit Leuven
Lakhdar Sais Professeur, Université d’Artois
Christine Solnon Professeur, INSA Lyon

JURY:
Bruno Crémilleux Professeur, Université Caen Basse-Normandie
Luc De Raedt Professeur, Katholieke Universiteit Leuven
François Fages Directeur de recherche, INRIA Saclay
Jin Kao Hao Professeur, Université d’Angers et Institut Universitaire de

France
Lakhdar Sais Professeur, Université d’Artois
Christine Solnon Professeur, INSA Lyon
Christel Vrain Professeur, Université d’Orléans





Résumé

Ce manuscrit d’Habilitation à Diriger des Recherches présente mes travaux sur l’application
de la programmation par contraintes au traitement automatique des langues et à la fouille
de données. En traitement automatique des langues, nous nous intéressons à l’analyse
syntaxique des grammaires de propriété, décrites par des propriétés que doivent satis-
faire les énoncés grammaticaux. Nous définissons une sémantique formelle en théorie des
modèles et formalisons l’analyse syntaxique comme un problème d’optimisation sous con-
traintes. Nous développons un modèle en programmation par contraintes, ce qui amène à
un analyseur entièrement à base de contraintes. En fouille de données, nous considérons
le clustering sous contraintes, qui vise à partitionner les objets en groupes homogènes,
étant donnés une mesure de dissimilarité entre objets et un ensemble de contraintes util-
isateur à satisfaire. Nous développons un cadre déclaratif qui intègre plusieurs critères
d’optimisation principaux de clustering et tous les types de contraintes utilisateur popu-
laires. Nous montrons que sa flexibilité permet de trouver la frontière de Pareto pour des
problèmes de clustering bi-objectif sous contraintes. Nous améliorons davantage l’efficacité
de l’approche en développant des contraintes globales dédiées aux critères d’optimisation
de clustering. Nous explorons plusieurs nouveaux problèmes de clustering avec des con-
traintes et montre que la programmation par contraintes constitue un cadre flexible et
efficace pour les résoudre.

Mots-clefs : problème d’optimisation sous contraintes, programmation par
contraintes, analyse syntaxique, clustering sous contraintes, contrainte globale
d’optimisation.

Abstract

This manuscript of Habilitation à Diriger des Recherches presents my work on the appli-
cation of constraint programming to natural language processing and to data mining. In
natural language processing, we are interested in syntactic analysis of property grammars,
defined by constraints that must be satisfied by the grammatical utterances. We introduce
model-theoretic semantics and formulate the syntactic analysis as a constraint optimiza-
tion problem. We develop a model using constraint programming, which leads to a fully
constraint-based parser. In data mining, we consider constrained clustering problems that
aim at partitioning the objects in homogeneous clusters, given a dissimilarity measure
between objects and a set of user-constraints to be satisfied. We develop a declarative
framework that integrates several principal clustering optimization criteria and all popu-
lar types of user-constraints. We show that the flexibility of the framework allows to find
the complete Pareto front of bi-objective constrained clustering problems. We enhance
further the approach by developing specific global optimization constraints for principal
clustering optimization criteria. We explore several new clustering problems with con-
straints and show that constraint programming offers a general and efficient framework to
solve them.

Keywords: constraint optimization problem, constraint programming, parsing,
constrained clustering, global optimization constraint.





Remerciements

Tout d’abord je tiens à remercier Luc De Raedt, Lakhdar Saïs et Christine Solnon, qui
m’ont fait l’honneur d’avoir accepté de rapporter mes travaux. Je tiens à remercier égale-
ment mes examinateurs Bruno Crémilleux, François Fages, Jin Kao Hao et Christel Vrain.
S’agissant de scientifiques de tout premier plan, je suis particulièrement touchée et émue
d’avoir ce jury « de rêve ».

J’exprime toute ma gratitude à Christel Vrain, avec qui j’ai exploré l’application de
la programmation par contraintes à la fouille de données. J’apprécie sa perspicacité,
sa persévérance et sa rigueur scientifique. Je garde toujours de bons souvenirs de nos
moments tant scientifiques que sportifs au travers du pilates et du yoga. Merci encore
pour l’ensemble de ses conseils qui m’a amenée à la soutenance de cette habilitation.

Depuis ma thèse de doctorat, j’ai eu grand plaisir à explorer de nouveaux domaines et à
collaborer avec de nombreux chercheurs. Chaque collaboration m’a permis de découvrir de
nouvelles thématiques ainsi que de nouvelles méthodes de travail. Pour tous ces moments
de partage et de collaboration, je tiens à remercier mes co-auteurs : Yohan Boichut, Alain
Colmerauer, Ian Davidson, Khalil Djelloul, Denis Duchier, Khanh-Chuong Duong, Abdel-
Ali Ed-Dbali, Thom W. Früwirth, Pierre Gançarski, Tias Guns, Chia-Tung Kuo, Arnaud
Lallouet, Thomas Lampert, Andreï Legtchenko, Willy Lesaint, Lionel Martin, Valérie
Murat, S. S. Ravi, Yannick Parmentier, Jean-Philippe Prost. Merci pour nos échanges
scientifiques et pour votre amitié. J’ai une pensée particulière pour ceux qui ne sont
plus parmi nous, et pour les autres j’espère que nous aurons encore d’autres occasions de
travailler ensemble.

Je remercie tous mes collègues au LIFO et au Pôle Informatique. J’apprécie votre
amitié, chacun à leur façon, qui rend le cadre de travail agréable et convivial.

Je dédie une pensée toute particulière à Alain Colmerauer, mon ex-directeur de thèse.
Alain et sa femme Colette m’ont toujours apporté leur soutient et amitié infaillible.

Merci à mes amis pour leur soutient et encouragement. Merci à ma petite famille et
ma grande famille. Vous êtes ma source d’amour, de joie et de bonheur, qui m’entoure et
m’encourage dans ma vie professionnelle.

Encore merci, merci à tous !





Contents

1 Introduction 1
1.1 Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of The Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Constraint Programming 7
2.1 Modeling Using Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Constraint Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Global Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Property Grammars Parsing Using Constraints 17
3.1 Problem and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Model-Theoretic Syntax and Property Grammars . . . . . . . . . . 18
3.1.2 Property Grammars Parsing . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Model-Theoretic Semantics for Property Grammars . . . . . . . . . . . . . 21
3.2.1 Domain of Interpretation . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Instances, Pertinence and Satisfaction . . . . . . . . . . . . . . . . 22
3.2.3 Strong and Loose Models . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Property Grammars Parsing Seen as a Constraint Optimization Problem . 24
3.3.1 Representing Tree Models Using a Grid . . . . . . . . . . . . . . . 25
3.3.2 Instances of Properties and Optimization Objective . . . . . . . . . 28
3.3.3 Extension to Property Grammars with Features . . . . . . . . . . . 30

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Declarative Approach for Constrained Clustering 33
4.1 Problem and Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Dissimilarity-Based Partition Clustering . . . . . . . . . . . . . . . 34
4.1.2 Clustering Under User Constraints . . . . . . . . . . . . . . . . . . 36
4.1.3 Different Approaches for Constrained Clustering . . . . . . . . . . 37

4.2 A Declarative Framework Using Constraint Programming . . . . . . . . . 41
4.2.1 A CP Model for Constrained Clustering . . . . . . . . . . . . . . . 41
4.2.2 An Improved CP Model . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Global Optimization Constraints for Clustering . . . . . . . . . . . . . . . 47
4.3.1 Maximal Diameter and Minimal Split . . . . . . . . . . . . . . . . 48
4.3.2 Within-Cluster Sum of Dissimilarities . . . . . . . . . . . . . . . . 50
4.3.3 Within-Cluster Sum of Squares . . . . . . . . . . . . . . . . . . . . 52

4.4 Bi-objective Constrained Clustering . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1 Bi-objective Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2 Bi-objective Optimization and Exact Pareto Front Computation . 58
4.4.3 Diameter-Split Bi-objective Constrained Clustering . . . . . . . . . 60

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



6 Contents

5 Beyond Constrained Clustering 63
5.1 Combining Dissimilarity-Based and Conceptual-Based Constraints . . . . 64

5.1.1 Conceptual Constrained Clustering . . . . . . . . . . . . . . . . . . 64
5.1.2 Models for Dissimilarity and Conceptual Constrained Clustering . 66

5.2 Actionable Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 Constraints Categorization . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 A CP Formulation for Actionable Clustering . . . . . . . . . . . . . 72
5.2.3 Analyzing the Use of Constraints . . . . . . . . . . . . . . . . . . . 74

5.3 Minimal Clustering Modification . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 A CP Model for Minimal Clustering Modification . . . . . . . . . . 83
5.3.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Repetitive Branch-and-Bound using CP for WCSS . . . . . . . . . . . . . 88
5.4.1 Repetitive Branch-and-Bound Algorithm . . . . . . . . . . . . . . . 89
5.4.2 Extension of RBBA to User-Constraints . . . . . . . . . . . . . . . 90
5.4.3 A Framework Using CP . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Constrained Clustering for Time-Series Data . . . . . . . . . . . . . . . . . 96
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Conclusion 103

A Other Research Topics 107
A.1 Solving Constraints in Tree Structures . . . . . . . . . . . . . . . . . . . . 107

A.1.1 Solving Constraints in The Tree Theory . . . . . . . . . . . . . . . 109
A.1.2 Solving Constraints in Extended Tree Theories . . . . . . . . . . . 110

A.2 Learning Finite Domain Constraint Solver . . . . . . . . . . . . . . . . . . 111
A.2.1 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.2.2 Learning Indexicals . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.2.3 Intermediate Consistency . . . . . . . . . . . . . . . . . . . . . . . 114

List of Publications 117

Bibliography 123



Chapter 1

Introduction

Contents
1.1 Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of The Dissertation . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Research Topics

My research topics ranged from constraints solving to application of constraint program-
ming in natural language processing or in data mining. They extend over seventeen years
since my PhD thesis defended in 2000 in Marseille and have continued in Orléans. They
were the result of several collaborations and explorations of new fields. The initial topic
that I developed during and after my PhD thesis was on solving first order logic constraints
on tree structures. I was recruited as an Associate Professor (Maître de Conférences) in
Orléans in 2001. I have integrated the Laboratoire d’Informatique Fondamentale d’Orléans
(LIFO) and the Constraints and Machine Learning team (Contraintes et Apprentissage,
CA). Working together with some members of CA team I have progressively reoriented my
research topics toward constraint programming, in particular finite domain constraints.

The research fields of CA team include constraint programming, machine learning,
data mining and natural language processing. Enjoying this diversity, my recent interests
have been on topics that link together constraint programming and data mining or natural
language processing. Overall, my principal research can be organized into four main topics
as follows:

• Solving constraints in tree structures: We developed methods to solve constraints
that are first order logic formulas with embedded quantifications and free variables.
The constraints are defined on several domains that are extensions of the domain of
trees.

• Learning constraint propagators for finite domain constraints solvers: Finite domain
constraint solvers are characterized by constraint propagation and search. We de-
veloped a framework using machine learning methods to construct propagators for
constraints.

• Constraint-based parsing for property grammars in natural language processing: We
introduced model-theoretic semantics for property grammars, which allow to repre-
sent the syntactic analysis as a constraint optimization problem. We developed a
formalization of a fully constraint-based parser for property grammars using con-
straint programming.



2 Chapter 1. Introduction

• Declarative approach using constraint programming for constrained clustering: We
developed frameworks using constraint programming, that enable a modeling and an
efficient solving of various problems in constrained clustering. Taking advantage of
the flexibility of constraint programming we explored further the use of constraints
in clustering.

After my Master 2 degree in Computer Science (DEA Informatique), I had the pleasure
of being welcomed at the Laboratoire d’Informatique de Marseille, for my PhD thesis under
the supervision of Alain Colmerauer. The studied objects were constraints in the theory
of finite or infinite trees. Trees are fundamental in computer science since they model
data structures, program schemes or program executions. The execution of programs in
Prolog II, III and IV was modeled in term of solving equations and disequations in the
algebra of finite and infinite trees [Colmerauer 1982, Colmerauer 1984, Colmerauer 1990].
The theory of finite, rational or infinite trees was proven to be complete and decidable
[Maher 1988], however there had been no effective algorithm that solves constraints in
the tree structure. Constraints to be solved are first order formulas with embedded and
alternate quantifications and free variables. My contributions in PhD thesis were: (1)
the design of a normal form of constraints where the solutions are explicit and the de-
sign of an algorithm for solving constraints by sub-formula rewrite rules that transforms
any first order formula to an equivalent formula, which is either false or in the normal
form [Dao 2000a]; (2) a study on the expressiveness of tree constraints, where we showed
that winning positions in a two-player game can be expressed by tree constraints with
embedded quantifications, and tree constraints have a quasi-universal expressive power
[Colmerauer & Dao 2000, Colmerauer & Dao 2003].

After my PhD thesis, I continued exploring general constraints in different extended
structures from the tree structure. I developed this work in collaboration with Alain
Colmerauer and Khalil Djelloul (University Aix-Marseille II). We characterized sufficient
properties of theories or combination of theories such that the algorithm for solving con-
straints in the theory of trees can be generalized to a decision algorithm. Several theories
satisfy these properties, as for instance the theory of linear dense order without limit,
the theory of the rational numbers with addition and subtraction, the theory of the lists,
etc. [Djelloul & Dao 2006c, Djelloul & Dao 2006b, Djelloul & Dao 2006a, Dao 2009]. We
considered the tree structure, where trees are labeled by symbols and rational numbers.
The trees are evaluated such that all the subtrees labeled only by numbers, addition
and subtraction symbols are evaluated and reduced to rational numbers. We developed
rewrite rules to solve constraints in the evaluated tree structure [Dao & Djelloul 2006]
and extended the Prolog model into a solver of first order constraints [Djelloul et al. 2007,
Djelloul et al. 2008].

During the same period, as soon as my arrival at LIFO in 2001, with Abdel-Ali Ed-
Dbali, Lionel Martin, Arnaud Lallouet and Andreï Legtchenko (PhD student), members
of CA team, we initiated work on automatic construction of solvers for finite domain con-
straints. Finite domain constraint solvers are characterized by constraint propagation and
search. The propagators are designed to enforce a constraint with a certain level of consis-
tency. The efficiency of the solver strongly depends on the efficiency of the propagators,
and the task of finding efficient propagators is considered as one of the smartest skills of the
solver designer. Pioneering works had investigated in automatic construction of solvers:



1.1. Research Topics 3

constructing rule-based propagators using systematic search [Apt & Monfroy 1999], con-
structing propagators by rewrite rules in Constraint Handling Rule frameworks using ma-
chine learning techniques [Abdennadher & Rigotti 2002]. In our approach, we developed
a framework using machine learning methods to construct propagators for finite domain
constraints. The principe of the framework is to consider the behavior of the operator en-
forcing the desired consistency as the set of examples, find an adequate representation of
this operator in a given language [Lallouet et al. 2003a, Ed-Dbali et al. 2003]. The frame-
work was instantiated to learn propagators in the form of indexicals, where each propagator
is of the form X in minX..maxX. The learned propagators enforce a consistency weaker
than bound-consistency but as close to it as possible [Dao et al. 2002]. Consistencies can
be partially ordered according to their pruning power. The method was extended to build
a range of intermediate consistencies for a given constraint, which are located between
bound-consistency and arc-consistency [Lallouet et al. 2003b].

In CA team, a new line of research, namely natural language processing had been
developed. In this context, in 2009, I started collaborating with Denys Duchier, Willy
Lesaint, Yannick Parmentier and Jean-Philippe Prost on a theme that connects con-
straint programming and natural language processing. This work involved my compe-
tences on first order logic and built the bridge for me to explore the strengths of con-
straint programming. In natural language processing, one important task is to ana-
lyze the syntax of utterances according to a grammar. An utterance of a natural lan-
guage can be well-formed according to the grammatical requirements or can be not com-
pletely well-formed, yet showing some form of syntactic structure and properties. The
former is referred as an expression, the latter is a quasi-expression. In our work, we
considered property grammars, where a grammar is given by a set of properties that
must be satisfied by each expression of the language. We aimed at developing a fully
constraint-based parser, in the same line with what was done for dependency grammars
[Duchier & Debusmann 2001, Duchier 2003, Debusmann et al. 2004]. An advantage of a
fully constraint-based parser is that informations on different aspects of the language could
be integrated within the same framework as soon as they can be expressed by constraints.
We introduced model-theoretic semantics of property grammars, which allow to formulate
the syntactic analysis as a combinatorial search problem [Duchier et al. 2009]. The models
are trees of syntactic categories and are designed for being expressed by constraints. We
developed a formalization presented as a constraint optimization problem, which natu-
rally leads to an implementation of a fully constraint-based parser for property grammars
using constraint programming [Duchier et al. 2010a]. This framework allows not only to
analyze grammatical utterances but also to find out one of the most appropriate syntactic
structures for ungrammatical utterances. We extended the framework in order to integrate
other types of properties, which allow to express relations between syntactic constituents
by constraints on feature structures [Duchier et al. 2011, Duchier et al. 2014].

A large research field of CA team is on machine learning and data mining, headed by
Christel Vrain. Recently the interest of declarative approaches for data mining has been
demonstrated [De Raedt et al. 2008, De Raedt et al. 2010]. In 2011, Christel Vrain and I
started our collaboration that brings together constraint programming and data mining.
We initiated work on a declarative approach for dissimilarity-based constrained clustering
using constraint programming. Given a set of objects, a clustering task aims at grouping
the objects into non-empty, disjoint and homogeneous clusters. The homogeneity is usually



4 Chapter 1. Introduction

characterized by an objective criterion and prior knowledge can be integrated to a cluster-
ing process by user-constraints. Numerous methods have been developed for constrained
clustering, however they are usually developed for a specific criterion and for some partic-
ular types of user-constraints. It is in this context that the PhD thesis of Khanh-Chuong
Duong, that I co-supervised with Christel Vrain, took place. We developed a general
and declarative framework that takes into account several objective criteria and various
types of user-constraints [Dao et al. 2013a]. We worked on improving the efficiency of the
framework, either by changing the model [Dao et al. 2014b, Dao et al. 2017] or by devel-
oping dedicated global constraints [Dao et al. 2013b, Dao et al. 2017, Dao et al. 2015a].
The flexibility of the framework enables us to find the exact Pareto front of a bi-objective
constrained clustering problem [Dao et al. 2017]. This is, to our knowledge, the first ap-
proach that considers bi-objective clustering under user-constraints.

We have studied and extended our approach using constraint programming in differ-
ent aspects. Our framework using constraint programming can be extended to clustering
tasks that combine constraints and objectives issued from either dissimilarity-based clus-
tering or conceptual clustering. In this context we explored the use of set constraints in
the model and we showed that a model using set variables has a better performance than
the one using binary variables [Dao et al. 2015b]. We explored new clustering problems
and showed that they can be solved by exploiting the flexibility and variety of constraint
programming: actionable clustering where experts provide complex constraints that make
clustering useful in the domain [Dao et al. 2016b], minimal clustering modification prob-
lem that allows providing guidance a posteriori after a clustering is found [Kuo et al. 2017].
Regarding the well-known minimum sum of squares constrained clustering problem, we
extended a repetitive branch-and-bound algorithm for unconstrained clustering to con-
strained clustering and showed that the combination of this algorithm with constraint
programming outperforms all existent exact approaches [Guns et al. 2016]. The use of
our framework in an application of constrained clustering on time-series images involved
improving further our framework as well as identifying challenges to consider. These
works have been performed within several collaborations that we have started since 2015,
with Ian Davidson (University of California Davis, USA), S. S. Ravi (University at Al-
bany, USA), Tias Guns (Katholieke Universiteit Leuven, Belgique) and Pierre Gançarski
(University of Strasbourg, France).

1.2 Outline of The Dissertation

My principal research can be organized into four main topics: (i) solving constraints in
tree structures, (ii) learning propagators for finite domain constraints, (iii) constraint pro-
gramming for property grammar constraint-based parsing in natural language processing
and (iv) constraint programming for constrained clustering in data mining. My recent in-
terests have been on the topics that link together constraint programming and data mining
or natural language processing. The chapters of this dissertation will develop these top-
ics. My work on solving constraints in tree structures and learning propagators for finite
domain constraints will be presented in the appendix. The remaining of the dissertation
is organized as follows.

Chapter 2 presents main principles of constraint programming. Work to develop con-



1.2. Outline of The Dissertation 5

straint programming essentially focuses on modeling using constraints, constraint propa-
gation, development of filtering algorithms for global constraints, development of search
strategies.

Chapter 3 presents our work on constraint programming for syntactic analysis of prop-
erty grammars in natural language processing. We present property grammars that de-
scribe a language by a set of properties, which must be satisfied by any expression of the
language. We introduce model-theoretic semantics for property grammars, where the in-
terpretations are trees labeled by syntactic categories. A mechanism is defined to identify
(strong) models for expressions of the language and is generalized to define loose mod-
els for quasi-expressions. We present a formulation of the model-theoretic semantics of
property grammars as a constraint optimization problem, which naturally leads to a fully
constraint-based parser for property grammars using constraint programming.

Chapter 4 presents our work on a declarative framework using constraint programming
for constrained clustering. We present dissimilarity-based constrained clustering and re-
view different approaches. We develop a declarative framework using constraint program-
ming, which is general and flexible for modeling various tasks in constrained clustering.
The power of constraint programming resides also in the power of constraint propagation.
We present global optimization constraints that are designed for optimization criteria in
clustering and show that they improve significantly the efficiency of the framework. We
consider bi-objective constrained clustering problems and show that the flexibility of the
framework enables us to find the exact Pareto front.

Chapter 5 develops different aspects of using constraint programming to explore prob-
lems beyond constrained clustering. On the modeling side, using constraint programming
enables the modeling of various and more general constraints for more general clustering
tasks. We model clustering problem that combines constraints and objectives on both
distance-based and conceptual-based properties, as well as actionable clustering that en-
ables the consideration of constraints that aim the clustering for some purposes. Another
clustering problem is explored: starting from a clustering given by a clustering algorithm,
which is in general good but which presents some undesired properties, minimal clustering
modification aims at finding a clustering which is as close as possible without having the
undesired properties. On the effectiveness side, we present an extension of the repetitive
branch-and-bound algorithm for the well-known minimum sum of squares unconstrained
clustering to constrained clustering. We show that this algorithm can be combined with
constraint programming and the result outperforms all existent exact approaches. On the
application side, we analyze the use of our framework in the context of an application
of constrained clustering on time-series images. This raises new questions and challenges
that need to be considered.

Chapter 6 concludes and discusses perspectives on future work. Appendix A reviews
my work on the two previous topics: solving first order logic constraints in tree structures
and learning constraint propagators in finite domain constraint solvers. My publications
are given in List of Publications.





Chapter 2

Constraint Programming

Contents
2.1 Modeling Using Constraints . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Constraint Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Global Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

The research topics that will be developed in this dissertation are based on constraint
programming. This chapter presents some basics of constraint programming. We highlight
the importance of modeling, of global constraints and search strategies.

2.1 Modeling Using Constraints

Constraint Programming (CP) is a powerful paradigm for solving combinatorial problems,
based on a wide range of methods from Artificial Intelligence, Computer Science or Oper-
ational Research. Using CP to solve a problem, the user needs to formalize the problem
in a Constraint Satisfaction Problem or a Constraint Optimization Problem. CP solvers
then search for a solution, or all the solutions, or the best one.

Definition 2.1 A Constraint Satisfaction Problem (CSP) is a triple 〈X,Dom,C〉 where:

• X = 〈x1, x2, . . . , xn〉 is a n-tuple of variables,

• Dom = 〈Dom(x1), Dom(x2), . . . , Dom(xn)〉 is a corresponding n-tuple of domains
such that xi ∈ Dom(xi),

• C = {C1, C2, ..., Ce} is a set of constraints where each constraint Ci expresses a
condition on a subset of X.

A solution of a CSP is a complete assignment of a value from Dom(xi) to each variable
xi such that all the constraints of C are satisfied. A Constraint Optimization Problem
(COP) is a CSP with an objective function F to be optimized. An optimal solution of a
COP is a solution of the CSP that gives the best value for the objective function.

Modeling using CP. Constraint programming eases problem modeling since a wide
range of variables and constraints are available. The variable domains can be discrete or
continuous, they can be expressed by a set of values or by ranges limited by an upper
and a lower bounds. The value of the variables can be integers, floating point values,



8 Chapter 2. Constraint Programming

sets or can be taken from structured domains such as graphs. Constraints can be ele-
mentary constraints including arithmetic relations (e.g. X 6= Y , X + 3Y ≥ Z), or global
constraints that represent more complex n-ary relations (e.g. atmost(X, 5, 10) states that
there must be at most 5 variables in the variable array X that have their value equals
to 10). Constraints can also be reified constraints that associate a 0/1 variable x with a
constraint c, so that x takes the value 1 if the constraint c is satisfied and 0 otherwise.
This kind of constraints enables the expression of logical combinations of constraints (e.g.
Y > Z → atmost(X, 5, 10)). For solving a practical problem using constraint program-
ming, the problem must be modeled as a CSP or a COP. This means the need of: (1)
defining the variables and their domains, (2) specifying the constraints to fully describe the
problem and (3) defining the objective function for optimization problems. A problem can
be viewed from different points of view and therefore can correspond to different choices
of variables and domains (viewpoints). For solving a practical problem using constraint
programming, deciding an appropriate viewpoint as well as expressing sufficient or useful
constraints can have a real impact on the effectiveness of the solvers. While sufficient
constraints give a complete expression of the problem, redundant but useful constraints
help to better prune the search space. Useful constraints can be implied constraints or
constraints to break symmetries among the solutions. A survey on different issues in
modeling can be found in [Smith 2006].

Soving CSP/COP. In general, solving a CSP is NP-Hard. Nevertheless, methods
developed in constraint programming enable to efficiently solve a large number of real
applications. They rely on constraint propagation and search. The solving process can
be summarized in Algorithm 1. In this algorithm, Happy() succeeds when one solution
or all the solutions are found. Constraint_Propagation() propagates the constraints to
ensure that each constraint reaches a required local consistency. It is done by reducing the
domains of variables for each constraint, until a stable state of all the constraints. If after
the propagation, a variable has its domain empty then the constraints cannot be satisfied;
the solver backtracks in this case. If all the variable domains become singleton, then a
solution is reached. Otherwise, Branching() creates sub-cases and the solving process is
applied on each sub-case.

Algorithm 1: Solve(P ): CSP Solving

1 while ¬ Happy() do
2 Constraint_Propagation()
3 if ∃x ∈ X s.t. Dom(x) = ∅ then
4 return Failure

5 else if Solution() then
6 return Solution

7 else
8 Branching()
9 foreach subcase Pi do

10 Solve(Pi)



2.2. Constraint Propagation 9

A constraint optimization problem is a CSP with an objective function F to be op-
timized. For solving a COP, a branch-and-bound mechanism is usually integrated. At
each time a solution s is reached, the value fs of the objective function on the solution is
computed. A new constraint that requires next solutions must be better than s is added,
for instance the constraint is F < fs if F is to be minimized. The solver backtracks to
other sub-cases with this added constraint, that implies the found solutions are improved
one after other, until no more solution can be found. The last solution found is the best
one.

2.2 Constraint Propagation

Constraint propagation is a central concept, perhaps the central concept, according to
[Rossi et al. 2006], in the theory and practice of constraint programming. An extensive
survey on constraint propagation can be found in [Bessiere 2006].

Let c be a constraints on the variables Xc ⊆ X. Constraint propagation of the con-
straint c reduces the domain of the variables of Xc, by removing some or all inconsistent
values, i.e., values that cannot be part of a solution of c. The reduction ensures local
consistency properties that define necessary condition on values or set of values to belong
to a solution. Constraint propagation is performed by two main approaches: the rule it-
eration approach and the algorithmic approach. In the rule iteration approach, reduction
rules specify conditions under which domain reductions can be performed for a constraint.
In the algorithmic approach, filtering algorithms are designed for constraints to reduce
domains.

The propagation of a constraint is performed until no more reduction can be done.
The constraint is then locally consistent. All the constraints are propagated until a sta-
ble state, the CSP is then locally consistent. Many types of local consistency have been
studies in constraint programming, including node consistency, (generalized) arc consis-
tency and path consistency. The simplest type is node consistency which requires that
each unary constraint defined on a variable x must be satisfied by all values in Dom(x).
Arc consistency was defined initially for binary constraint and has been generalized for
arbitrary constraint. Generalized arc consistency is currently the most important local
consistency in practice and has received attention of lots of work.

Definition 2.2 (Generalized arc consistency) Let c be a constraint on the variables x1, . . . , xk
with respective domains Dom(x1), . . . , Dom(xk). That is, c ⊆ ΠiDom(xi). Constraint c
is generalized arc consistent (arc consistent, for short) if for every 1 ≤ i ≤ k and for
every v ∈ Dom(xi), there exists a tuple (d1, . . . , dk) ∈ c such that di = v. A CSP is arc
consistent if each of its constraints is arc consistent.

The most well known algorithm for arc consistency is AC3 [Mackworth 1977]. It was pro-
posed for binary constraints and was extended to generalized arc consistency. Algorithm
2 describes AC3/GAC3. This algorithm achieves arc consistency in O(er3dr+1) time and
O(er) space, where e is the number of constraints, d is the size of the largest domain and r
is the greatest arity of the constraints. Several algorithms have been proposed to improve
the time complexity: AC4, AC6, AC2001, etc.



10 Chapter 2. Constraint Programming

Algorithm 2: AC3 / GAC3 [Bessiere 2006]

1 function Revise3 (x: variable, c: constraint): Boolean
2 CHANGE ← false
3 foreach v ∈ Dom(x) do
4 if 6 ∃t ∈ c ∩ΠXc(Dom) with t|x = v then
5 remove v from Dom(x)

6 CHANGE ← true

7 return CHANGE

8 function AC3 / GAC3 : Boolean
9 Q← {(x, c) | c ∈ C, x ∈ Xc}

10 while Q 6= ∅ do
11 select and remove (x, c) from Q

12 if Revise(x, c) then
13 if Dom(x) = ∅ then return false;
14 else Q← Q ∪ {(x′, c′) | c′ ∈ C ∧ c′ 6= c ∧ x, x′ ∈ Xc′ ∧ x 6= x′} ;

15 return true

For float value variable, the domain can be defined by intervals which are expressed
by a minimum value min(x) and a maximum value max(x). Bound consistency requires
that the minimum value and the maximum value must be part of a solution. A constraint
c is bound consistent iff for each variable x ∈ Xc:

• there exists a tuple t satisfying c such that t|x = min(x) and min(x′) ≤ t|x′ ≤
max(x′) for all the other x′ ∈ Xc,

• there exists a tuple t satisfying c such that t|x = max(x) and min(x′) ≤ t|x′ ≤
max(x′) for all the other x′ ∈ Xc.

2.3 Global Constraints

Different kinds of constraints are available in constraint programming; they can be elemen-
tary constraints expressing arithmetic or logic relations, or global constraints expressing
meaningful n-ary relations. A global constraint is a constraint that captures a relation
between a non-fixed number of variables. One of the best known global constraints is the
constraint alldifferent(x1, . . . , xn), which imposes the variables xi to be pairwise different.
The power of global constraints is two-fold. First, global constraints ease the task of
modeling using constraint programming. They usually represent patterns that occur in
applications. Second, global constraints benefit from efficient propagation, performed by
a dedicated filtering algorithm. A filtering algorithm for a constraint c is an algorithm
that filters the domains of variables with respect to c. The filtering algorithm for a global
constraint is usually designed in taking advantage of the semantics of the constraint and
is therefore much more efficient. A detailed survey on global constraints can be found in
[van Hoeve & Katriel 2006], which shows that designing constraint propagation algorithm



2.3. Global Constraints 11

for global constraints draws on a wide variety of disciplines including graph theory, linear
programming and finite automaton.

Examples of Global Constraints. The strength of constraint programming is based
on the power of global constraints and their filtering algorithm. A catalog of global con-
straints with more than 400 inventoried constraints is maintained in [Beldiceanu et al. 2014].
Various relations are expressed by global constraints, for instance the following ones:

• Element constraint: Let y be an integer variable, z a variable with finite domain,
and [x1, . . . , xn] an array of variables. The constraint element(y, z, x1, . . . , xn) states
that z is equal to the y-th variable in x, i.e. z = xy or z = x[y].

• Cardinality constraint: Let y, z be variables, [x1, . . . , xn] an array of variables, θ be
an arithmetic relation, e.g. ≥. Cardinality constraints state the relations:

#{i ∈ {1, .., n} | xi = y} θ z

These constraints include atmost (with θ being ≤) or atleast (with θ being ≥).

• Global cardinality constraint: Let [x1, . . . , xn] be an array of assignment variables
whose domains are contained in {v1, . . . , vm} and let {cv1 , . . . , cvm} be count variables
whose domains are sets of integers. The global cardinality constraint
gcc(x1, . . . , xn, cv1 , . . . , cvm) states that each value vi must be assigned to exactly cvi
assignment variables in x1, . . . , xn.

This constraint can be seen as a generalization of alldifferent(x1, . . . , xn), where the
domain of each count variable is {0, 1}.

• Global cardinality constraint with cost: This constraint combines a global cardinality
constraint gcc and a variant of the sum constraint. Let X = {x1, . . . , xn} be a set
of assignment variables and let cv1 , . . . , cvm be count variables. Let w be a function
that associates to each pair (x, d) ∈ X ×Dom(X) a “cost” w(x, d) ∈ Q. Let z be a
“cost” variable and let us assume that z is to be minimized. The global cardinality
constraint with costs is defined as:

cost_gcc(x1, . . . , xn, cv1 , . . . , cvm , z, w) = {(d1, . . . , dn, o1, . . . , om, d) |
∀i di ∈ Dom(xi), d ∈ Dom(z),

(d1, . . . , dn, o1, . . . , om) ∈ gcc(x1, . . . , xn, cv1 , . . . , cvm),∑n
i=1w(xi, di) ≤ d}

The cost variable z represents here an upper bound on the sum of w(xi, di) for all i.
This global constraint is therefore used in a constraint optimization problem, where
the cost variable z represents the objective function.

• Set constraints: An example of global constraint on set variables is the atmostOne
constraint. Let [x1, . . . , xn] be an array of set variables, each variable represents a
set of fixed cardinality c. The constraint atmostOne(x1, . . . , xn, c) is defined as:

∀1 ≤ i ≤ n, |xi| = c and ∀1 ≤ i < j ≤ n, |xi ∩ xj | ≤ 1



12 Chapter 2. Constraint Programming

Filtering Algorithms. From a logical point of view, a global constraint is equivalent
to a conjunction of elementary constraints, e.g. the constraint alldifferent(x1, x2, x3) is
equivalent to the conjunction of binary constraints x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3. The
interesting point is that a global constraint with its filtering algorithm has much more pow-
erful propagation than the conjunction of elementary constraints; the filtering algorithm
can detect inconsistency earlier than the set of propagators of the elementary constraints.
Moreover, filtering algorithms for global constraints take advantage from operational re-
search or graph theory to achieve generalized arc consistency or bound consistency with
a lower complexity. A filtering algorithm of a constraint c can remove all the inconsistent
values from the domain of every variables of c or only some of them. It it removes all the
inconsistent values, it achieves complete filtering, otherwise it performs partial filtering.
The filtering algorithm for the alldifferent constraint, based on matching theory, performs
a complete filtering to achieve arc consistency.

Example 1 [van Hoeve & Katriel 2006] Consider the following CSP:

x1 ∈ {a, b, c, d, e}, x2 ∈ {b, c}, x3 ∈ {a, b, c, d}, x4 ∈ {b, c}
alldifferent(x1, x2, x3, x4)

This CSP is equivalent to a CSP with 6 elementary constraints xi 6= xj , for 1 ≤ i <

j ≤ 4. The arc consistency for each individual constraint xi 6= xj cannot remove any
value from the domains Dom(xi) and Dom(xj), since each value is part of a solution.
The filtering algorithm for the constraint alldifferent [Régin 1994] maintains the bipartite
graph G = (V,E), with V = X ∪

⋃
iDom(xi) and E = {(xi, v) | v ∈ Dom(xi)}. This

bipartite graph, which is also called the value graph of X, is given in Figure 2.1 (left). A
matchingM ⊆ E is a set of disjoint edges, i.e. two edges inM cannot share a vertex. Two
important observations on the relationship between the constraint alldifferent(x1, . . . , xn)

and matching were introduced in [Régin 1994]:

• There is a matching of cardinality n (maximum-cardinality) if and only if the con-
straint alldifferent(x1, . . . , xn) is satisfiable.

• An edge (xi, v) belongs to a matching of cardinality n if and only if the value v is
consistent with the constraint.

It is proven in matching theory that given a graph G and a maximum-cardinality matching
M in G, an edge e belongs to some maximum-cardinality matching in G iff e ∈ M , or
e is on an even-length M -alternating path starting at an M -free vertex, or e is on an
even-length M alternating circuit. Using this result, the arc consistency algorithm for
alldifferent(x1, . . . , xn) was constructed as follows. First, a maximum-cardinality matching
M of the value graph G is constructed. This can be done in O(m

√
n) time, where m =∑n

i=1 |Dom(xi)|. Next, the even M -alternating paths starting at an M -free vertex and
the even M -alternating circuits are identified as below.

Define the directed bipartite graph GM = (V,A) with arc set A = {(x, d) | x ∈
X, {x, d} ∈M}∪{(d, x) | x ∈ X, {x, d} ∈ E\M}. In other words, edges in M are oriented
from X to Dom(X) and edges not in M are oriented in reverse direction. The strongly
connected components in GM are computed in O(n + m) time. Arcs between vertices in
the same strongly connected component belong to an even M -alternating circuit in G,



2.4. Search 13

a edcb

x1 x4x3x2

a edcb

x1 x4x3x2

Figure 2.1: Value graph for the alldifferent constraint, before (left) and after (right) fil-
tering. Bold edges represent a matching, corresponding to a solution of the alldifferent
constraint.

and are marked as “used”. Next, are searched the arcs that belong to a directed path in
GM , starting at an M -free vertex. This takes O(m) time, using breadth-first search. Arcs
belonging to such a path belong to an M -alternating path in G starting at an M -free
vertex, and are marked as “used”.

For all edges {x, d} whose corresponding arc is not marked “used” and that do not
belong toM , the value d is arc-inconsistent and therefore is removed from Dom(x). Figure
2.1 (right) shows the value graph after establishing arc consistency. All the remaining edges
are part of a maximum-cardinality matching. �

Optimization Constraints. In the context of constraint optimization problems, an
optimization constraint is a global constraint that is linked to the objective function.
Each solution induces a “cost” and the global constraint exploits this cost to filter not
only the variable which represents the objective function, but also other decision variables
inside the constraint. The first filtering algorithm for this kind of global constraints is
proposed in [Focacci et al. 1999]. A well-known example of extension of global constraints
to optimization constraints is the constraint cost_gcc [Régin 1999], which extends the
Global Cardinality Constraint with cost.

2.4 Search

In a CP solver, two steps, constraint propagation and branching, are repeated until a
solution is found. Constraints are propagated until a stable state, in which the domains
of the variables are reduced as much as possible. If the domains of all the variables
are reduced to singletons then a solution is found. If the domain of a variable becomes
empty, then there exists no solution with the current partial assignment and the solver
backtracks. In the other cases, the solver splits the state into sub-cases, thus leading to new
branches in the search tree. The search strategy can be determined by the programmer.
A backtracking search for a solution to a CSP can be seen as a depth-first traversal of the
search tree. The solver orders branches following the order given by the programmer and
explores in depth each branch, activating again constraint propagation [van Beek 2006].

The method of extending a node in the search tree is called a branching strategy. Some
popular branching strategies are the following. Let x be the unassigned variable which is
chosen to branch on.



14 Chapter 2. Constraint Programming

• Enumeration: a branch is generated for each value in the domain of x.

• Binary branching: a value v ∈ Dom(x) is chosen and two branches are generated,
which correspond to the addition of two constraints x = v and x 6= v.

• Domain splitting: Dom(x) is an ordered domain, a value v ∈ Dom(x) is chosen and
two branches are created, which correspond to the addition of two constraints x ≤ v
and x > v.

At each branching decisions must be made as to which variable to branch on and which
value to choose. These decisions are referred to as the variable and value ordering. The
choice of variables and of values at each branching is extremely important, since it may
drastically reduce the search space and therefore computation time. Finding the best
ordering is difficult, heuristics are therefore usually used. Various heuristics on variable
ordering or value ordering have been designed, they can be static or dynamic. In a
static ordering, the choice of variable/value is fixed prior to search, whereas in a dynamic
ordering, the choice is determined during the search.

Variable ordering heuristics can be based on the domain sizes or on the structure of
the CSP. A well-known heuristic based on the domain sizes is the fail-first principle: “to
succeed, try first where you are most likely to fail” [Haralick & Elliott 1980]. A variable
with the smallest number of values remaining in its domain is therefore chosen. Differ-
ent generalizations and improvements of this heuristic have been done. Let the degree
of an unassigned variable x be the number of constraints which involve x and at least
one other unassigned variable. An heuristic combines the domain size and the degree,
such as it chooses the variable with the smallest domain size and breaks any ties by
choosing the variable with the highest degree. Another generalization is to divide the
domain size of a variable by the degree of the variable and to choose the variable which
has the minimal value [Bessière & Régin 1996]. For value ordering, heuristics can be the
smallest/largest/median value or on estimating the probability of a solution.

For a constraint optimization problem, a branch-and-bound strategy can be integrated
to a depth-first search [Van Hentenryck 1989]: each time a solution, i.e. a complete
assignment of variables satisfying the constraints, is found, the value of the objective
function for this solution is computed and a new constraint is added, expressing that a new
solution must be better than this one. Assume that the objective function is represented
by a variable y, which is to be minimized. When a solution to the problem is found, its
corresponding objective value f is computed and the constraint y < f is added. This
process is repeated until the resulting CSP is unsatisfiable, in which case the last solution
found has been proven to be optimal. This is therefore important for the effectiveness
that constraint propagation operates on the objective variable.

2.5 Summary

This chapter presents some main principles of constraint programming. More detailed
on different aspects of constraint programming can be found in [Rossi et al. 2006]. Con-
straint programming systems provide wide services such as constraint propagation and
backtracking search. For many applications, the provided services are sufficient. However,
some problems require more dedicated services. Most constraint programming systems are



2.5. Summary 15

extensible, allowing the user to define new constraint propagators or new search strate-
gies. This flexibility strengthen the power of constraint programming to solve different
combinatorial problems.





Chapter 3

Property Grammars Parsing Using
Constraints

Contents
3.1 Problem and Context . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Model-Theoretic Syntax and Property Grammars . . . . . . . . . . . 18

3.1.2 Property Grammars Parsing . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Model-Theoretic Semantics for Property Grammars . . . . . . . 21

3.2.1 Domain of Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Instances, Pertinence and Satisfaction . . . . . . . . . . . . . . . . . 22

3.2.3 Strong and Loose Models . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Property Grammars Parsing Seen as a Constraint Optimization
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Representing Tree Models Using a Grid . . . . . . . . . . . . . . . . 25

3.3.2 Instances of Properties and Optimization Objective . . . . . . . . . 28

3.3.3 Extension to Property Grammars with Features . . . . . . . . . . . 30

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

In natural language processing, one important task is to analyze the syntax of utter-
ances. An utterance of a natural language can be well-formed according to the grammatical
requirements or can be not completely well-formed, yet showing some form of syntactic
structure and properties. The former is referred as an expression, the latter is a quasi-
expression. In our work, we have considered property grammars, where a grammar describ-
ing a language is given by a set of properties that must be satisfied by any expression of
the language. We have introduced model-theoretic semantics of property grammars, which
represents the syntactic analysis as an optimization problem [Duchier et al. 2009]. The
models are trees of syntactic categories and are designed for being expressed by constraints.
We have developed a formalization presented as a constraint optimization problem, which
naturally leads to an implementation of a fully constraint-based parser for property gram-
mars using constraint programming [Duchier et al. 2010a]. This framework allows not
only to analyze grammatical utterances but also to find out one of the most appropri-
ate syntactic structures for ungrammatical utterances. We have extended the framework
in order to integrate other types of properties, which express relations between syntactic
constituents by constraints on feature structures [Duchier et al. 2011, Duchier et al. 2014].
This work has been developed in collaboration with Denys Duchier, Willy Lesaint, Yannick
Parmentier and Jean-Phillipe Prost.



18 Chapter 3. Property Grammars Parsing Using Constraints

The organization of this chapter is as follows. We present property grammars (PG)
and PG parsing in Section 3.1. Our model-theoretic interpretation of PG based on trees
of syntactic categories and the description of models for expressions and loose models for
quasi-expressions are presented in Section 3.2. We present the formalization of PG parsing
as a constraint optimization problem using constraint programming in Section 3.3 and we
conclude in Section 3.4.

3.1 Problem and Context

3.1.1 Model-Theoretic Syntax and Property Grammars

In natural language processing, two categories of frameworks to describe grammars of
natural languages emerged during the 20th century. They are called, such as proposed
in [Pullum & Scholz 2001]: Generative-Enumerative Syntax (GES) and Model-Theoretic
Syntax (MTS). They are based on different sides of logic: GES is developed based on the
syntactic side whereas MTS is based on the semantic side.

GES expresses a language as a set of legal strings. A GES grammar provides a set of
production rules that enables to enumerate all the elements of the language, the vocabulary
being the finite set of terminals. Lots of frameworks are of the GES type, as for instance
all the types of phrase structure grammar in the Chomsky Hierarchy. MST frameworks
emerged some time later, from developments on the semantic rather than the syntactic
side of logic. MTS abstracts away from any specific procedure and focuses on describing
syntactic properties of language. In other words, MTS takes a descriptive point of view on
syntax, where a grammar is a finite set of axioms in a formal logic with a model-theoretic
interpretation. The axioms are referred as constraints. The models of the constraints are
the expressions that are described by the grammar. A well-formed expression must be a
model of the theory, i.e. it satisfies the set of all unordered grammatical constraints.

Pullum and Scholz emphasized that “expressions, not sets of expressions, are the
models for an MTS grammars: an individual expression either satisfies or does not sat-
isfy a grammar. An MTS grammar does not recursively define a set of expressions; it
merely states necessary conditions on the syntactic structure of individual expressions.”
[Pullum & Scholz 2001]. While the syntactic representation of a string is, in GES, the
mere trace of the generative procedure, in MTS it is a model for the grammar, which no
information as to how such a model might be obtained. The requirement to be a model
for the grammar is to satisfy the set of all the constraints expressing the grammar.

When MTS is compared with GES, the consequences in terms of coverage on linguistic
phenomena is significant. Pullum and Scholz have shown that a number of phenomena,
which are not accounted for by GES, are well covered in MTS frameworks. Most notice-
ably, quasi-expressions and graded grammaticality judgements are only covered by MTS.
In natural languages there are usually utterances that are not completely well-formed,
yet they are partially well-formed and almost like expressions. They are called quasi-
expressions. Among the quasi-expressions, some are closer to being grammatical than
others. Therefore, any framework for describing syntactic structure that can also describe
degrees of ungrammaticality for quasi-expressions is to be preferred to one that cannot.
MST grammars offer elegant ways to achieve it.

Property Grammars (PG) was initially defined in [Blache 2000]. They are of the MTS



3.1. Problem and Context 19

Property Form Meaning
Obligation A : 4B at least one node labeled with B
Uniqueness A : B! at most one node labeled with B
Linearity A : B ≺ C every node labeled with B

precedes every node labeled with C
Requirement A : B ⇒ C if ∃ a node labeled with B,

then ∃ one labeled with C
Exclusion A : B 6⇔ C there are no two daughter nodes

labeled resp. with B and C
Constituency A : S? all children have their labels ∈ S
Agreement A : B  C coreference constraints between

categories

Table 3.1: Usual types of properties in Property Grammars

category; a grammar is defined by a collection of statements about the language, which are
called properties. A property is a constraint that expresses a relationship among syntactic
categories. The properties come from linguistic observations, such as word order, co-
occurrence, number or gender agreement, etc. In a first approximation, they can be
seen as local constraints on categories labeling syntactic trees. A property is of the form
A : ψ, which specifies for each node labeled with category A, the constraint ψ to be
applied on the categories labeling the daughter nodes (these categories are written B,C
hereafter). The usual types of properties are given in Table 3.1 (here S is a set of labels).
Property grammars are appealing for modeling deviant utterances because they break
down the notion of grammaticality into many small constraints (properties) which can be
independently violated.

Property grammars are perhaps best understood as the transposition of phrase struc-
ture grammars from the GES perspective into the MTS perspective. Let us consider
a phrase structure grammar expressed as a collection of rules. As an example, let us
consider the context free rules NP → D N and NP → N describing the relation between
a noun and a determiner. They can be translated into the 7 following properties: (1)
noun phrases only contain nouns or determiners, (2) in a noun phrase, there is at most
one determiner, (3) in a noun phrase, there is at least one noun, (4) in a noun phrase,
there is at most one noun, (5) in a noun phrase, a determiner precedes a noun, (6)
and (7) determiners and nouns have no daughter nodes labeled with categories (i.e.,
non-terminal symbols) in a valid syntactic tree. In this manner, rules have become con-
straints and a phrase structure grammar can be given in model-theoretical semantics by
interpretation over syntax tree structures. However these constraints remain very coarse-
grained:

(1) NP : {D, N}? (2) NP : D! (3) NP : 4N (4) NP : N!

(5) NP : D ≺ N (6) D : {}? (7) N : {}?

In this context, if we only consider syntactic trees whose roots have category NP, there are
only two satisfying all the properties:



20 Chapter 3. Property Grammars Parsing Using Constraints

NP

D N

NP

N

We notice that these syntactic trees are not lexicalized. In case we want to describe
lexicalized trees, we can add some more lexical properties, such as cat(apple) = N which
defines the word apple as being a noun.

3.1.2 Property Grammars Parsing

Deep parsing with property grammars has been shown to be theoretically exponential in
the number of categories of the grammar and the size of the sentence to parse [van Rullen 2005].
Existing approaches usually rely on heuristics to reduce complexity in practice. Among the
different approaches, the seminal work is [Blache & Balfourier 2001]. This work was later
followed by several ones [Dahl & Blache 2004, Estratat & Henocque 2004, van Rullen 2005,
van Rullen et al. 2006, Blache & Rauzy 2006], and more recently [Prost 2008].

Most of these works do not rely on a model-theoretic formal semantics of prop-
erty grammars. They rather apply well-known efficient parsing techniques and heuris-
tics to property grammars. In [Blache & Balfourier 2001], a constraint selection pro-
cess is used to incrementally build the syntactic tree of a sentence. Hybrid approaches
mixing deep and shallow parsing are used in [van Rullen 2005, van Rullen et al. 2006].
In [Blache & Rauzy 2006], the authors propose to extend symbolic parsing with probabil-
ities on syntactic categories.

A first attempt to use a constraint satisfaction-based approach is [Dahl & Blache 2004].
In this work, the input property grammar is encoded into a set of rules for the Con-
straint Handling Rule system [Frühwirth 2009]. The encoding makes it possible to directly
interpret the grammar in terms of satisfied/relaxed constraints on syntactic categories.
On top of this interpretation, rewriting rules are used to propagate constraint satisfac-
tion/relaxation, and a syntactic tree is built as a side effect. The way a constraint is
selected for evaluation is therefore controled, thus the constraint satisfaction problem is
not distinguished from its resolution.

Another constraint-based approach is [Estratat & Henocque 2004]. In this work, a
grammar is translated into a model in the Object Constraint Language (OCL). This
model is interpreted as a configuration problem, which is fed to a configurator. The latter
solves the constraints lying in the input model. The result is a valid syntactic structure.
In this approach, the OCL-encoding does not allow for relaxed constraints. Hence, it only
computes syntactic structures that satisfy the whole set of constraints. In other terms, it
cannot make full advantage of the property grammars formalism, which describes natural
language in terms of local constraints that can be violated. This feature is particularly
useful when dealing with ungrammatical sentences such as those spoken languages often
contain.

In his PhD thesis, Jean-Philippe Prost has developed a framework based on first-order
logic with model-theoretic semantics for gradience and a parsing algorithm for possibly
deviant utterances [Prost 2008]. The parsing algorithm is chart-based algorithm, which
uses the dynamic programming approach: optimal sub-trees for parts of the utterance
are computed and stored in a structure called a chart, they are used to derive a complete
syntactic tree. The formalization is however not entirely satisfactory: among other things,



3.2. Model-Theoretic Semantics for Property Grammars 21

the models were not trees, but technical devices suggested by the algorithmic approach to
parsing.

In our approach, we aim at developing a system that is fully based on constraints. The
interest of such a system is that informations from different aspects of the language could
be integrated as soon as they can be expressed using constraints. This line of approaches
was developed and showed its interest for Dependency Grammar [Duchier & Debusmann 2001,
Duchier 2003] and Extensible Dependency Grammar [Debusmann et al. 2004].

In our work, we develop model-theoretic semantics that interpret property grammars
over syntactic tree structures. The formulation enables considering model construction as
a combinatorial search problem. Property grammar parsing can be therefore seen as the
search for solutions of a constraint optimization problem. We rely on classic constraint-
based techniques such as branch-and-bound and constraint propagation. That is, we
clearly distinguish the definition of the constraint based problem from its resolution.

3.2 Model-Theoretic Semantics for Property Grammars

In this section, we develop model-theoretic semantics for property grammars. The inter-
pretations are expressed by syntactic trees. We characterize a mechanism to determine
(strong) models and generalize it to define loose models for quasi-expressions. This work
was developed in collaboration with Denys Duchier et Jean-Philippe Prost and was pub-
lished in [Duchier et al. 2009].

3.2.1 Domain of Interpretation

Let L be a finite set of labels representing syntactic categories. We write P for the set of
all possible property literals over L formed in any of the following ways: ∀c0, c1, c2 ∈ L,

c0 : c1 ≺ c2, c0 : 4c1, c0 : c1!, c0 : c1 ⇒ c2, c0 : c1 6⇔ c2, c0 : s1?,

Let S be a set of elements called words. A lexicon is a subset of L × S.1 A property
grammar G is a pair (PG, LG) where PG is a set of properties (a subset of P) and LG is
a lexicon. The strong semantics of property grammars is given by interpretation over the
class of syntax tree structures defined below.

We write N1 for N \ {0}. A tree domain D is a finite subset of N∗1 which is closed for
prefixes and for left-siblings; in other words it satisfies:

∀π, π′ ∈ N∗1 ππ′ ∈ D ⇒ π ∈ D
∀π ∈ N∗1, ∀i, j ∈ N1 i < j ∧ πj ∈ D ⇒ πi ∈ D

A node in a tree domain D is therefore characterized by a path. For instance the root is
ε, its left-first daughter is 1, the first daughter of this daughter is 11, etc. A syntax tree
τ = (Dτ , Lτ , Rτ ) consists of a tree domain Dτ , a labeling function Lτ : Dτ → L assigning
a category to each node of the tree, and a function Rτ : Dτ → S∗ assigning to each node
its surface realization. For instance, the following syntax tree:

1We restricted ourselves to the simplest definition sufficient for this presentation.



22 Chapter 3. Property Grammars Parsing Using Constraints

S

NP VP

N V NP

D N

Peter eats the apple

corresponds to Dτ = {ε, 1, 2, 11, 21, 22, 221, 222}, Lτ (ε) = S, Lτ (1) = NP, Lτ (2) = VP,
Lτ (221) = D, Rτ (ε) = Peter eats the apple and Rτ (22) = the apple.

For convenience, we define the arity function Aτ : Dτ → N as follows: ∀π ∈ Dτ ,

Aτ (π) = max({0} ∪ {i ∈ N1 | πi ∈ Dτ})

In the previous example, we have Aτ (ε) = 2, Aτ (1) = 1 and Aτ (22) = 2.

3.2.2 Instances, Pertinence and Satisfaction

A property grammar G stipulates a set of properties. For example the property c0 : c1 ≺ c2

is intended to mean that, for a non-leaf node of category c0, and any two daughters of
this node labeled respectively with categories c1 and c2, the one labeled with c1 must
precede the one labeled with c2. Clearly, for each node of category c0, this property must
be checked for every pair of its daughters. Thus, we arrive at the notion of instances of a
property, where the property may need to be checked.

Instances. For a grammar G and a syntax tree τ , each property corresponds to a set of
instances defined on τ . An instance of a property is a pair composed by the property and
a tuple of nodes (paths) to which it is applied. We define the property instances of G on
a syntax tree τ as follows:

Iτ [[G]] = ∪{Iτ [[p]] | ∀p ∈ PG}

For a property p, by the set Iτ [[p]] we generate all the possible tuples of each node with
0, 1 or 2 of its daughters, depending on the definition of p, on which p may need to be
checked:

Iτ [[c0 : c1 ≺ c2]] = {(c0 : c1 ≺ c2)@〈π, πi, πj〉 | ∀π, πi, πj ∈ Dτ , i 6= j}
Iτ [[c0 : 4c1]] = {(c0 : 4c1)@〈π〉 | ∀π ∈ Dτ}
Iτ [[c0 : c1!]] = {(c0 : c1!)@〈π, πi, πj〉 | ∀π, πi, πj ∈ Dτ , i 6= j}

Iτ [[c0 : c1 ⇒ c2]] = {(c0 : c1 ⇒ c2)@〈π, πi〉 | ∀π, πi ∈ Dτ}
Iτ [[c0 : c1 6⇔ c2]] = {(c0 : c1 6⇔ c2)@〈π, πi, πj〉 | ∀π, πi, πj ∈ Dτ , i 6= j}
Iτ [[c0 : s1?]] = {(c0 : s1?)@〈π, πi〉 | ∀π, πi ∈ Dτ}



3.2. Model-Theoretic Semantics for Property Grammars 23

Pertinence. Since we created instances of all properties in PG for all nodes in τ , we
must distinguish the instances which are truly pertinent from those which are not. An
instance is pertinent when the property needs to be checked on the tuple of nodes. For
instance, the instance (c0 : 4c1)@〈π〉 is pertinent if the label of π is c0, since the property
c0 : 4c1 (at least one daughter node of label c1) on the node π needs to be checked. The
pertinence is defined by the predicate Pτ over instances as follows:

Pτ ((c0 : c1 ≺ c2)@〈π, πi, πj〉) ≡ Lτ (π) = c0 ∧ Lτ (πi) = c1 ∧ Lτ (πj) = c2

Pτ ((c0 : 4c1)@〈π〉) ≡ Lτ (π) = c0

Pτ ((c0 : c1!)@〈π, πi, πj〉) ≡ Lτ (π) = c0 ∧ Lτ (πi) = c1 ∧ Lτ (πj) = c1

Pτ ((c0 : c1 ⇒ c2)@〈π, πi〉) ≡ Lτ (π) = c0 ∧ Lτ (πi) = c1

Pτ ((c0 : c1 6⇔ c2)@〈π, πi, πj〉) ≡ Lτ (π) = c0 ∧ (Lτ (πi) = c1 ∨ Lτ (πj) = c2)

Pτ ((c0 : s1?)@〈π, πi〉) ≡ Lτ (π) = c0

Satisfaction. A property when checked on a tuple of nodes can be satisfied or not. A
pertinent instance can therefore be satisfied or not. For instance, the instance (c0 : 4c1)@〈π〉
is satisfied if one among the daughter nodes of π is labeled by c1. The satisfaction of in-
stances is defined by the predicate Sτ over instances as follows:

Sτ ((c0 : c1 ≺ c2)@〈π, πi, πj〉) ≡ i < j

Sτ ((c0 : 4c1)@〈π〉) ≡ ∨{Lτ (πi) = c1 | 1 ≤ i ≤ Aτ (π)}
Sτ ((c0 : c1!)@〈π, πi, πj〉) ≡ i = j

Sτ ((c0 : c1 ⇒ c2)@〈π, πi〉) ≡ ∨{Lτ (πj) = c2 | 1 ≤ j ≤ Aτ (π)}
Sτ ((c0 : c1 6⇔ c2)@〈π, πi, πj〉) ≡ Lτ (πi) 6= c1 ∨ Lτ (πj) 6= c2

Sτ ((c0 : s1?)@〈π, πi〉) ≡ Lτ (πi) ∈ s1

For a grammar G and a syntax tree τ , we denote by I0
G,τ for the set of pertinent instances

of G in τ , I+
G,τ for its subset that is satisfied, and I−G,τ for its subset that is violated:

I0
G,τ = {r ∈ Iτ [[G]] | Pτ (r)}
I+
G,τ = {r ∈ I0

G,τ | Sτ (r)}

I−G,τ = {r ∈ I0
G,τ | ¬Sτ (r)}

Therefore |I+
G,τ | is the number of property instances that are satisfied by τ and |I−G,τ | the

number of property instances violated by τ .

Admissibility. A syntax tree τ is admissible as a candidate model for grammar G iff it
satisfies the projection property, i.e. ∀π ∈ Dτ :

Aτ (π) = 0 ⇒ 〈Lτ (π), Rτ (π)〉 ∈ LG

Aτ (π) 6= 0 ⇒ Rτ (π) =

Aτ (π)∑
i=1

Rτ (πi)



24 Chapter 3. Property Grammars Parsing Using Constraints

where
∑

represents here the concatenation of sequences. In other words: leaf nodes must
conform to the lexicon, and interior nodes pass upward the ordered realizations of their
daughters. Note that the admissibility does not take into account properties of PG, any
syntax tree that respects the projection property is admissible. We write AG for the set
of admissible syntax trees for grammar G.

3.2.3 Strong and Loose Models

Strong models. A strong model must satisfy all the properties of the grammar. A
syntax tree τ = (Dτ , Lτ , Rτ ) is a strong model of a property grammar G if and only if it
is admissible and I−G,τ = ∅, i.e. no property instance is violated. We write τ : σ |= G iff τ
is a strong model of G with realization σ, i.e. such that Rτ (ε) = σ.

Loose models. Since property grammars are intended to also account for deviant utter-
ances, we must define alternate semantics that accommodate deviations from the strong
interpretation. The loose semantics will allow some property instances to be violated, but
will seek syntax trees which maximize the overall fitness for a specific utterance.

A syntax tree τ is loosely admissible for utterance σ iff it is admissible and its real-
ization is σ = Rτ (ε). We write AG,σ for the loosely admissible syntax trees for utterance
σ:

AG,σ = {τ ∈ AG | Rτ (ε) = σ}

Following [Prost 2008], we define fitness as the ratio of satisfied pertinent instances over
the total number of pertinent instances:

FG,τ = I+
G,τ/I

0
G,τ

The loose models for an utterance σ are all loosely admissible models for utterance σ that
maximize the fitness:

τ : σ |≈G iff τ ∈ argmax
τ ′∈AG,σ

(FG,τ ′)

Looses models can be used to formalize judgements of acceptability. Given an utterance
(expression or quasi-expression), the judgment of acceptability aims at estimating the
degree of grammatical acceptability for its model. For modeling natural judgements of
acceptability, we hypothesize that an estimate for acceptability of an utterance can be
predicted by quantitative factor derivable from the strong/loose model. In [Prost 2008],
Jean-Phillippe Prost has proposed scoring functions to quantitatively measure the judge-
ment of acceptability based on the satisfaction and violation of properties. These measures
have been shown to well agree with human judgements. We show in [Duchier et al. 2009]
that these measures can be formulated in terms of property instances.

3.3 Property Grammars Parsing Seen as a Constraint Opti-
mization Problem

In this section, we present a formulation of the model-theoretic semantics of property
grammars as a constraint optimization problem. First, we need to define a data structure
to represent candidate tree models. Since we do not know a priori the number of nodes



3.3. Property Grammars Parsing Seen as a Constraint Optimization
Problem 25

n
↑

→ m(1,1)N V D N

Petereats theapple

S

NP

VP

NP

Figure 3.1: Parse tree laid on a grid

in the solution models, we propose to use a grid as a substrate and to enumerate the trees
which can be laid out on this grid. We then show how to convert the pertinence and
satisfaction of property instances as well as model fitness defined earlier into constraints
to be applied on the labels of the nodes of grid-based trees. The model is extended to
handle feature-based properties. This work was developed in collaboration with Denys
Duchier, Willy Lesaint, Yannick Parmentier and was published in [Duchier et al. 2010a,
Duchier et al. 2010b, Duchier et al. 2011, Duchier et al. 2012, Duchier et al. 2014].

3.3.1 Representing Tree Models Using a Grid

Our approach needs to enumerate candidate tree models, and to retain only those of
maximal fitness. We use a grid as a substrate and define constraints to enforce that
each tree model is laid out on this grid in a unique way. Tree models can therefore be
enumerated using this grid.

For an utterance of m words, we know that each tree model has m leaves (property
grammars do not use ε nodes). Unfortunately, we do not know the maximum depth of
each tree model. Due to the intrinsic recursive nature of language, the possibility to find
an adequate depth value, i.e. not too big to prevent useless computations, and not too
small to avoid missing solutions, is an open question. We may use some heuristics to
automatically assign a value n to the tree depth, but we rather parametrize the associated
parsing problem with a maximum tree depth n. Fixing this parameter allows us to layout
a model over a subset of the nodes of an n×m grid.

To represent our tree model, we will use a matrixW such that wij (with 1 ≤ i ≤ n, and
1 ≤ j ≤ m) refers to the node located at position (i, j) on the grid (rows and columns are
numbered starting from 1, coordinate (1,1) being in the bottom-left corner). Figure 3.1
gives an illustration of such a layout. Let us now present the constraints used to build a
tree model on an n×m grid.

Active nodes. We first need to distinguish among all the nodes of the grid the useful
and the useless nodes, i.e. to distinguish between nodes that belong to the candidate tree
model τ and nodes that do not.

Let V be the set of all nodes. A node is active if it is used by the model and inactive
otherwise. We introduce two set variables V + and V −, which represent the set of active



26 Chapter 3. Property Grammars Parsing Using Constraints

nodes and the set of inactive nodes, respectively. Their domain is P(V). A node has to
either be active or inactive, thus we have the constraint:

V = V + ] V −

where ] represents “disjoint union”. Following the modeling technique of [Duchier 2003],
for each node w ∈ V, we define the set variables Cw (the set of its children), D+

w (the set
of its descendants), D∗w (the set of w and its descendants), Pw (the set of its parents), A+

w

(the set of its ancestors) and A+
w (the set of w and its ancestors). Their domain is also

P(V). Based on their definition, constraints relating these sets are:

D+
w = ] {D∗w′ | w′ ∈ Cw} D∗w = {w} ]D+

w

A+
w = ] {A∗w′ | w′ ∈ Pw} A∗w = {w} ]A+

w

Disjoint unions are justified by the fact that we are interested in tree models (i.e., we do not
allow for cycles). We additionally enforce the duality between ancestors and descendants:

w ∈ Pw′ ⇔ w′ ∈ Cw

and that each node has at most one parent:

|Pw| ≤ 1

Inactive nodes have neither parents nor children:

w ∈ V − ⇒ Cw = Pw = ∅

Since the root of the tree is still unknown, we introduce a set variable R for the set of root
nodes. A tree model must have a single root:

|R| = 1

The root node cannot be a child of any node, the children of two nodes are disjoint and
all the children with the root are the active nodes:

V + = R ] (] {Cw | w ∈ V })

Projection. We define additional constraints to ensure that there is no interleaving
branches in a candidate tree model.

We define the projection of a given node w as the set of columns occupied by the tree
rooted in w. For each variable w ∈ V, we introduce a set variable Prw to denote the
projection of w. As leaf nodes are located on the first row, their projection corresponds
to exactly their column:

Prw1j = {j} 1 ≤ j ≤ m

There are no interleaving projections (hence the disjoint union):

Prwij = ] {Prw | w ∈ Cwij} 1 < i ≤ n, 1 ≤ j ≤ m

There are no holes in the projection of any node (trees are projective):

convex(Prw) ∀w ∈ V



3.3. Property Grammars Parsing Seen as a Constraint Optimization
Problem 27

Breaking symmetries. There are many ways of laying out a given tree on a grid. For
instance, a four-node and three-leaf tree has among others the following layouts :

In order to have a unique way of laying out a tree, we add specific anti-symmetric
constraints (the models satisfying these constraints are called rectangular trees) :

1. all leaves are located on the first row of the grid (i.e., the bottom row),

2. the left-most daughter of any node is located on the same column as its mother node
(this implies the subtree of a given node n occupies columns on the right of n),

3. every node is above any of its descendant nodes (this implies the subtree of a given
node n occupies rows that are below that of n),

4. every internal node must have a daughter node in the row directly below (this implies
there are no empty rows below the root node).

As an illustration, among the following trees, only the first one is a rectangular tree (the
second tree violates condition 2, the third one condition 3 and the fourth one condition 4) :

How these 4 conditions are represented in our axiomatization ? First, let us write c(w)

for the column of node w and `(w) for its line:

c(wij) = j `(wij) = i

(1) The words are linked to the bottom row of the grid, which contains the leaves of the
tree. These must all be active:

{w1j | 1 ≤ j ≤ m} ⊆ V +

(2) Any active node must be placed in the column of the left-most leaf of its subtree:

wij ∈ V + ⇔ j = minPrwij

This stipulation and the fact (3) every node is above of its descendants are translated by
constraints on the domains of variables. As mentioned above, the descendants of a node
n are on the down-right part of the grid with respect to n. The dual holds, that is the
ancestors of a node n are on the upper-left part of the grid with respect to n:

D+
wij ⊆ {wlk | 1 ≤ l < i, j ≤ k ≤ m}

A+
wij ⊆ {wlk | i < l ≤ n, 1 ≤ k ≤ j}

(4) Any active non-bottom node has at least one child at the level just below:

wij ∈ V + ⇔ i− 1 ∈ {`(w) | w ∈ Cwij} 1 < i ≤ n



28 Chapter 3. Property Grammars Parsing Using Constraints

Categories. The constraints given above ensure the form of trees. In order to model
syntax trees, we also need to assign to each active node a syntactic category. For simplicity,
we will assign the category [f1:∅, . . . , fn:∅] to all and only the inactive nodes:

cat(w) = [f1:∅, . . . , fn:∅] ⇔ w ∈ V −

For active nodes, the category will be assigned via property-related constraints, which are
introduced in the next section. Finally, words are related to leaves via their category:

cat(w1j) = cat(wordj)

where wordj refers to the jth word of the sentence to parse.

3.3.2 Instances of Properties and Optimization Objective

Recall that each property has the form A : ψ, which means that for a node of category A,
the constraint ψ applies to its children. For example the property A : B ≺ C is intended
to mean that, for a non-leaf node of category A and any two daughters of this node labeled
respectively with categories B and C, then the one labelled with B must precede the one
labeled with C. Clearly, for each node of category A, this property must be checked for
every pair of its daughters. This corresponds to the notion of instances of a property
introduced earlier in Section 3.2.

An instance of a property is a pair of the property and a tuple of nodes to which it
is applied. An instance is pertinent if the node where it is instantiated is active (i.e.,
belongs to V +) and the parameter nodes of its tuple have the categories stipulated in
the property. An instance is satisfied if the property is satisfied. For each instance I we
define two boolean variables P (I) and S(I) denoting respectively its pertinence and its
pertinence and satisfaction.

In the following paragraphs, we describe the translation of properties of PG into a set
of constraints for our constraint optimization problem. Properties are categorized into
3 types: (1) properties whose instance depends on a single node, (2) properties whose
instance depends on a couple of nodes and (3) whose instance depends on a triple of
nodes. The only property of type 1 is obligation A : 4B. The properties of type 2 are
requirement A : B ⇒ C and constituency A : S?. The properties of type 3 are linearity
A : B ≺ C, uniqueness A : B! and exclusion A : B 6⇔ C. For each type, we present the
translation of one property, for the other the reader could see [Duchier et al. 2010a].

Properties of type 1. The property obligation A : 4B yields instances I of the form:

(A : 4B)@〈wi0j0〉

It is pertinent if wi0j0 is an active node labelled with A:

P (I) ⇔ (wi0j0 ∈ V + ∧ cat(wi0j0) = A )

It is satisfied if at least one of its children is labelled with B:

S(I) ⇔ (P (I) ∧
∨

wij∈Cwi0j0

cat(wij) = B )



3.3. Property Grammars Parsing Seen as a Constraint Optimization
Problem 29

Properties of type 2. Let us describe the translation of the property requirement. The
property A : B ⇒ C yields instances I of the form:

(A : B ⇒ C)@〈wi0j0 , wi1j1〉

It is pertinent only if wi0j0 is active and wi1j1 is one of its children and their categories
correspond:

P (I)⇔

(
wi0j0 ∈ V + ∧ wi1j1 ∈ Cwi0j0∧

cat(wi0j0) = A ∧ cat(wi1j1) = B

)
It is satisfied if one of wi0j0 ’s children is labelled with C:

S(I) ⇔ (P (I) ∧
∨

wij∈Cwi0j0

cat(wij) = C )

Properties of type 3. Properties of this type are linearity, uniqueness and exclusion.
Let us describe linearity. The property linearity A : B ≺ C yields instances I of the form:

(A : B ≺ C)@〈wi0j0 , wi1j1 , wi2j2〉

I is pertinent if wi0j0 is active, wi1j1 and wi2j2 are its children, and each node is labelled
with the corresponding category:

P (I)⇔

(
wi0j0 ∈ V + ∧ wi1j1 ∈ Cwi0j0 ∧ wi2j2 ∈ Cwi0j0∧

cat(wi0j0) = A ∧ cat(wi1j1) = B ∧ cat(wi2j2) = C

)

Its satisfaction depends on whether the node wi1j1 precedes wi2j2 or not. It is thus defined
as:

S(I) ⇔ (P (I) ∧ j1 < j2 )

Optimization Objective. As was mentioned in section 3.2, in the loose semantics of
property grammars, we want to compute models with the best fitness. We define therefore
the fitness as objective function. To account for the loose semantics of property grammars,
a property instance counts if it is pertinent, it counts positively if satisfied, negatively
otherwise. Let I be the set of all property instances, I0 the subset of pertinent instances
and I+ the subset of positive instances. We want to find models which maximize the ratio
|I+|/|I0|.

Since for each instance I, the variables P (I) and S(I) are boolean, their reified value
is either 0 or 1. We can calculate the cardinality of these sets the following way:

|I0| =
∑
I∈I

P (I) |I+| =
∑
I∈I

S(I)

Implementation. The approach described so far has been implemented using the Gecode
constraint programming library2. This library offers a large catalogue of constraints on
integer or float variables as well as set variables.

2http://www.gecode.org/

http://www.gecode.org/


30 Chapter 3. Property Grammars Parsing Using Constraints

Figure 3.2: Optimal syntactic tree for “Peter eats the apple”

As described in Section 3.3.1, we use a n × m grid as a support. Each node wij of
the grid is identified with an integer k = (i − 1) ×m + j. The set of nodes V is defined
as V = {1, . . . , n × m}. V + and V − are two set variables such that V +, V − ⊆ V. All
the constraints related to these sets are implemented using Gecode’s API. The relations
on Cw, D+

w , D
∗
w and Pw, A+

w , A
∗
w are encoded using arrays of set variables, whose indexes

are nodes of the grid. We also use arrays of set variables to encode property-related
constraints. As there are many types of constraints and many instances to consider, the
computation of the indexes is slightly more complex than the ones used for tree-shapedness
constraints. Definitions of P (I) and S(I) are realized using reified constraints. The search
for an optimal parse is achieved using the branch-and-bound search strategy to maximize
the ratio |I+|/|I0|.

Our property grammars parsing system completely explores all the tree candidates and
finds one that globally optimizes the fitness. As an example, for the grammatical utterance
“Peter eats the apple” and grammar having 19 properties handling 6 categories, the search
tree has about 450, 000 nodes and 6 intermediary solutions. The optimal syntactic tree is
represented in Figure 3.2.

As mentioned above, there are many instances of property to handle, that is to say,
many constraints to evaluate. In practice, our parser can relatively quickly find a syntactic
tree (in less than a second for the example above), but the proof of optimality can take
about a minute on a 2.6 GHz processor with 4 Gb of RAM.

3.3.3 Extension to Property Grammars with Features

In the previous sections, to describe lexicalized trees, we add some lexical properties,
such as cat(apple) = N which defines the word apple as being a noun. If we consider
the full class of property grammars properties, they are not restricted to atomic syntactic
categories, but actually handle feature structures. The properties do not only constrain
atomic categories labeling syntactic nodes, but also feature-based labels.

The features are taken from a finite set of features F = {f1, . . . , fn}, each feature fi
takes its value in a finite upper semi-lattice Di. We write >i for the greatest element of Di

(>i is typically used when feature fi is unconstrained in a property). Since the syntactic
category is mandatory, we suppose that cat ∈ F . Attribute-value matrices (AVM) of type
M = [f1:D1, . . . , fn:Dn] also form a finite upper semi-lattice, equipped with the usual



3.3. Property Grammars Parsing Seen as a Constraint Optimization
Problem 31

“product order” (written v).
The properties are of the following forms, where Si are AVM expressions:

S0 : 4S1 S0 : S1! S0 : S1 ≺ S2

S0 : S1 ⇒ S2 S0 : S1 6⇔ S2 S0 : s1?
S0 : S1  S2

The last property is agreement, that states coreference constraints between categories.
Let W be a set of elements called words. A lexicon is a subset of W ×M (that is, a

lexicon maps words with AVM types). A property grammar G is a pair (PG, LG) where PG
is a set of properties and LG a lexicon. When describing natural language, the properties
of PG are encapsulated within linguistic constructions, which typically describe syntactic
constituents. As an illustration, consider Figure 3.3 containing an extract of the property
grammars for French of [Prost 2008].

NP (Noun Phrase)
obligation : 4(N t Pro)
uniqueness : D!

: N!
: PP!
: Pro!

linearity : D ≺ N
: D ≺ Pro
: D ≺ AP
: N ≺ PP

requirement : N⇒ D
: AP⇒ N

exclusion : N 6⇔ Pro
agreement : N[

gend 1

num 2

] D[
gend 1

num 2

]

VP (Verb Phrase)
obligation : 4V
uniqueness : V[mode:past-part]!

: NP!
: PP!

linearity : V ≺ NP
: V ≺ Adv
: V ≺ PP

requirement : V[mode:past-part] ⇒ V[aux:+]

exclusion : Pro[case:acc] 6⇔ NP

Figure 3.3: Extract of a Property Grammar for French

In this figure, the NP construction describes noun phrases. It can be read as follows.
In a noun phrase, there must be either a noun or a pronoun. If there is a determiner, a
noun, a prepositional phrase or a pronoun, it must be unique. The determiner (if any)
precedes the noun, pronoun, prepositional and adjective phrase (if any). A noun must
come with a determiner, so does an adjective phrase with a noun. There cannot be both
a noun and a pronoun. There must be gender and number agreements between the noun
and the determiner.3

In [Duchier et al. 2011, Duchier et al. 2012, Duchier et al. 2014], we described how the
model-theoretic semantics in Section 3.2 and the model using constraints can be extended
to handle feature-based properties. Features are taken into account in the definitions of
property instances, of instance pertinence and of instance satisfaction. This account can
be directly integrated into our model using constraints. For more details we refer the
readers to [Duchier et al. 2014].

3The i notation is the conventional graphical representation for coreferences, i.e., references to the
same (constrained) term.



32 Chapter 3. Property Grammars Parsing Using Constraints

3.4 Summary

Property grammars describe a language by sets of constraints that must be satisfied by the
elements of the language. This category enables the analysis of quasi-expressions, which
are utterances not completely grammatical yet represent some grammatical structures.
The satisfaction of grammatical constraints makes constraint programming a candidate to
achieve fully constraint based parsing. In our work, we proposed model-theoretic semantics
of property grammars, that formulate syntactic analysis as a combinatorial search problem
on syntactic trees. We formalized property grammars parsing by the search for solution
of a constraint optimization problem. We showed that this formalization can be extended
to property grammars taking into account features structures.

The implementation is still however a prototype and we do not have any benchmark.
In this work we have been mainly interested in exploring the logical consequences of
representation choices made in property grammars, i.e. without using any heuristic to
reduce complexity. In order to deal with the challenging exponential of property grammars
parsing, we could consider a decomposition of the constraint optimization problem that
models the constraint-based parsing task into several sub-problems. We need therefore
to determine how to divide in partial parses and to aggregate the results. We could
also consider the parallelization of the search space exploration. Another point is by the
branch-and-bound mechanism, our system finds only the first solution that maximizes the
fitness. However, there may exist several loose models that have the same value of fitness.
An extension to be considered is an enumeration of all loose models having the best fitness.



Chapter 4

Declarative Approach for
Constrained Clustering

Contents
4.1 Problem and Context . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Dissimilarity-Based Partition Clustering . . . . . . . . . . . . . . . . 34

4.1.2 Clustering Under User Constraints . . . . . . . . . . . . . . . . . . . 36

4.1.3 Different Approaches for Constrained Clustering . . . . . . . . . . . 37

4.2 A Declarative Framework Using Constraint Programming . . . . 41

4.2.1 A CP Model for Constrained Clustering . . . . . . . . . . . . . . . . 41

4.2.2 An Improved CP Model . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Global Optimization Constraints for Clustering . . . . . . . . . . 47

4.3.1 Maximal Diameter and Minimal Split . . . . . . . . . . . . . . . . . 48

4.3.2 Within-Cluster Sum of Dissimilarities . . . . . . . . . . . . . . . . . 50

4.3.3 Within-Cluster Sum of Squares . . . . . . . . . . . . . . . . . . . . . 52

4.4 Bi-objective Constrained Clustering . . . . . . . . . . . . . . . . . 56

4.4.1 Bi-objective Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Bi-objective Optimization and Exact Pareto Front Computation . . 58

4.4.3 Diameter-Split Bi-objective Constrained Clustering . . . . . . . . . . 60

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Clustering is an important task in Data Mining and many algorithms have been de-
signed for it. It has been extended to constrained clustering, so as to integrate previous
knowledge to make the clustering task either easier or more accurate. User knowledge
is expressed by user-constraints, which can be instance-level or cluster-level constraints.
Classic clustering algorithms are usually designed for a specific criterion and need to be
adapted to integrate each kind of constraints. In our approach, we have developed a
declarative and general framework for constrained clustering using constraint program-
ming. The framework allows the user to specify several clustering tasks by integrating
different types of user-constraints and by choosing an optimization criterion among several
ones [Dao et al. 2013a]. The CP model has been improved so that the number of clusters
does not need to be set beforehand, but only a lower bound and an upper bound are
needed [Dao et al. 2014b, Dao et al. 2017]. To further exploit the strength of constraint
programming, global optimization constraints have been developed for several popular op-
timization criteria in clustering [Dao et al. 2013b, Dao et al. 2015a, Dao et al. 2017]. We
showed that the flexibility of the framework enables multi-objective constrained clustering



34 Chapter 4. Declarative Approach for Constrained Clustering

[Dao et al. 2017]. This work has been developed during the PhD thesis of Khanh-Chuong
Duong [Duong 2014] that I co-supervised with Christel Vrain.

The chapter is organized as follows. In Section 4.1 we present clustering under user-
constraints. In Section 4.2 we present the framework using CP that enable the modeling
of different clustering objectives. To enhance the power of constraint programming global
optimization constraints were developed for several well-known clustering objectives, they
are presented in Section 4.3. The flexibility of the framework enables multi-objective
constrained clustering, which is presented in Section 4.4.

4.1 Problem and Context

4.1.1 Dissimilarity-Based Partition Clustering

Given a set of objects, a clustering task aims at grouping the objects together into homo-
geneous groups, such that the objects in the same group are similar and the objects in
different groups are different. The groups are called clusters and the set of groups is a clus-
tering. The homogeneity of the clusters is usually formalized by an optimization criterion
and the clustering task usually corresponds to a search of a partition that optimizes the
given criterion. Different types of clustering exist: clustering by partitioning, hierarchical
clustering, overlapping clustering, etc. [Aggarwal & Reddy 2013]. We are interested here
in clustering by partitioning, based on a dissimilarity measure.

Let us consider a set O of N objects {o1, . . . , oN} and let us assume that there exists
a dissimilarity measure d(oi, oj) between each couple of objects oi, oj ∈ O. Dissimilarity
based partition clustering aims at finding a partition ∆ of the objects in O into K clusters
C1, . . . , CK such that: (1) for all k ∈ [1,K]1, Ck 6= ∅, (2) ∪kCk = O, (3) for all k 6= k′,
Ck ∩ Ck′ = ∅, and (4) a criterion is optimized. Different optimization criteria exist, the
most popular are below [Hansen & Jaumard 1997].

• Minimizing the maximal diameter of the clusters. The diameter of a cluster is the
maximal dissimilarity between two objects in the cluster. The maximal diameter D
of a partition ∆ is the maximal one among the cluster diameters:

D(∆) = max
k∈[1,K]

max
oi,oj∈Ck

d(oi, oj)

• Maximizing the minimal split between clusters. Theminimal split S between clusters
of a partition ∆ is the smallest dissimilarity between two objects in different clusters:

S(∆) = min
k<k′∈[1,K]

min
oi∈Ck,oj∈Ck′

d(oi, oj)

• Minimizing the within-cluster sum of dissimilarities WCSD:

WCSD(∆) =
∑

k∈[1,K]

1

2

∑
oi,oj∈Ck

d(oi, oj)

For this criterion, the dissimilarity d(oi, oj) is usually the squared Euclidean distance
between oi and oj .

1For discrete values, [1,K] denotes the set of integers from 1 to K.



4.1. Problem and Context 35

• Minimizing the within-cluster sum of squares WCSS. In an Euclidean space WCSS
is the sum of squared Euclidean distances between each object oi and the centroid
mk of the cluster that contains oi:

WCSS(∆) =
∑

k∈[1,K]

∑
oi∈Ck

||oi −mk||2,

Note that when the dissimilarity d(oi, oj) is the squared Euclidean distance, d(oi, oj) =

||oi−oj ||2, the sum of squares for each cluster Ck is equal to the sum of dissimilarities
within the cluster Ck divided by the size of Ck. For a partition ∆, this gives:

WCSS(∆) =
∑

k∈[1,K]

1

2|Ck|
∑

oi,oj∈Ck

d(oi, oj).

The clustering task that minimizes the maximal diameter is also called complete-link non-
hierarchical clustering. The task that maximizes the minimal split is also called single-
link non-hierarchical clustering. All of these criteria except the minimal split are NP-
Hard. Finding a partition maximizing the minimal split between clusters is Polynomial
[Delattre & Hansen 1980]. This problem however becomes NP-Hard with the presence
of user constraints [Davidson & Ravi 2007]. As for the maximal diameter criterion, the
problem is Polynomial if we aim at finding a best clustering with 2 clusters (K = 2), but as
soon as we need clusterings with at least 3 clusters (K ≥ 3) the problem becomes NP-Hard
[Hansen & Delattre 1978]. The NP-Hardness of the WCSS criterion in general dimension
even with K = 2 is shown in [Aloise et al. 2009]. Because of the problem hardness, classic
algorithms always search for a local optimum. For instance, the K-means algorithm finds a
local optimum for the WCSS criterion, the K-median algorithm finds a local optimum for
the sum of stars criterion and the FPF algorithm (Furthest Point First) [Gonzalez 1985]
for the diameter criterion.

Let us notice another type of partitional clustering which is based on similarity given
by weighted graphs. The similarity between the objects is defined by an undirected graph
where the vertices are the objects and the edges have non-negative weights. Spectral
clustering aims to find a partition of the vertices of the graph such that the edges between
different groups have a low weights and the edges within a group have high weight. Given
a cluster Ci, a cut measure cut(Ci) is defined by the sum of the weights of the edges that
link an object in Ci and an object not in Ci. The two most common optimization criteria
are [Luxburg 2007]:

• Minimizing the ratio cut, which is defined by the sum of cutCi|Ci| .

• Minimizing the normalized cut, which is defined by the sum of cutCi
vol(Ci) , where vol(Ci)

measures the weight of the edges within Ci.

These criteria are also NP-Hard. Spectral clustering algorithms solve relax versions of
these problems: relaxing the normalized cut leads to normalized spectral clustering and
relaxing the ratio cut leads to unnormalized spectral clustering. Also based on a simi-
larity graph between objects, correlation clustering [Bansal et al. 2004] aims at finding a
partition that agree the most possible with the similarities. This criterion is also NP-Hard
[Bansal et al. 2004, Giotis & Guruswami 2006]. Another type of problems that considers



36 Chapter 4. Declarative Approach for Constrained Clustering

a graph of objects is community detection, which aims at grouping the nodes into groups
with dense connections internally and sparser connection between groups. Several criteria
are defined for characterizing the maximization (minimization) of internal (external) con-
nections. Spectral clustering is therefore applied when the criterion is defined by the ratio
or the normalized cut. In what follows, we will consider dissimilarity based partitional
clustering.

4.1.2 Clustering Under User Constraints

In practice, the user can have some requirements for, or some prior knowledge about, the
final solution. In many applications it is therefore desirable to have the clustering process
take user constraints into consideration. For instance, the user can have some information
on the label of a subset of objects [Wagstaff & Cardie 2000]. Another example is in a
problem of determining the location for K package delivery service stations in a city,
each station should serve at least 5000 ordinary customers and at least 100 high-value
customers [Han et al. 2006]. Because of the inherent hardness of the optimization criteria,
classic algorithms always find a local optimum. Several optima may exist, some of them
may be closer to the user requirement. It is therefore important to integrate user prior
knowledge into the clustering process. Prior knowledge is expressed by user constraints
to be satisfied by the clustering solution. User constraints can be stated on instances or
on clusters [Basu et al. 2008].

Instance-level constraints are the most widely used type of the constraints and were
first introduced in [Wagstaff & Cardie 2000]. Two kinds of instance-level constraints exist:
must-link and cannot-link constraints:

• A must-link (ML) constraint between two objects oi and oj states that they must
be in the same cluster: ∀k ∈ [1,K], oi ∈ Ck ⇔ oj ∈ Ck.

• A cannot-link (CL) constraint on two objects oi and oj states that they cannot be
in the same cluster: ∀k ∈ [1,K], ¬(oi ∈ Ck ∧ oj ∈ Ck).

In semi-supervised clustering, a small amount of labeled data is available to aid the cluster-
ing process. Instance-level constraints can be inferred from class labels: if two objects have
the same label then they are linked by a must-link constraint, otherwise by a cannot-link
constraint. Supervision by instance-level constraints is however more general and more
realistic than class labels. Using knowledge, even class labels may be unknown, a user
can specify whether pairs of points belong to the same cluster or not, as for instance in
clustering GPS data for lane finding [Wagstaff et al. 2001].

Cluster-level constraints state requirements on the clusters. Requirements can be on
the size, on the breadth, on the density, etc. of the clusters. We can find the following
ones:

• A capacity (size) constraint expresses a maximal or a minimal limit on the number
of objects in each cluster. A minimal capacity constraint states that each cluster
must have at least α objects: ∀k ∈ [1,K], |Ck| ≥ α. A maximal capacity contraints
requires that each cluster must have at most β objects: ∀k ∈ [1,K], |Ck| ≤ β.

• Considering the diameter of the clusters, amaximum diameter constraint gives an up-
per bound γ on the diameter of each cluster: ∀k ∈ [1,K],∀oi, oj ∈ Ck, d(oi, oj) ≤ γ.



4.1. Problem and Context 37

As for the split between clusters, a minimum split constraint states that the clusters
must be separated by at least δ: ∀k, k′ ∈ [1, k], k′ 6= k, ∀oi ∈ Ck,∀oj ∈ Ck′ , d(oi, oj) ≥
δ. Note that although the diameter or split constraints state requirements on the
clusters, they can be expressed by a conjunction of cannot-link constraints or must-
link constraints, respectively [Davidson & Ravi 2005].

• An ε-constraint, introduced in [Davidson & Ravi 2005], demandes that each object
oi have in its neighborhood of radius ε at least one other object in the same cluster:
∀k ∈ [1,K],∀oi ∈ Ck,∃oj ∈ Ck, oj 6= oi, d(oi, oj) ≤ ε. This constraint tries to capture
the density notion, used in density based clustering DBSCAN [Ester et al. 1996].
We can generalize this constraint to the requirement that each object oi has in its
neighborhood of radius ε at least m objects in the same cluster with oi.

4.1.3 Different Approaches for Constrained Clustering

Clustering under user constraints has been introduced in [Wagstaff & Cardie 2000] and
constraint-based clustering has been termed in [Tung et al. 2001]. Several works have
been done since to extend classic clustering algorithms to handle user constraints. Most
of them consider instance-level constraints. The extension is done by enforcing pairwise
constraints, using them to guide the search process or by learning a distance metric from
pairwise constraints before and/or during searching. A survey on partitional and hierarchi-
cal clustering with instance level constraints can be found in [Davidson & Basu 2007]. We
review below different approaches for constrained clustering. They are either approxima-
tive or exact approaches; they are designed as algorithmic methods or declarative frame-
works; they can integrate instance-level constraints or both instance-level and cluster-level
constraints.

K-means based methods. In this type of approach, the clustering algorithm or the
objective function is modified so that user constraints are used to guide the algorithm
toward a more appropriate data partitioning. The extension is done either by enforcing
pairwise constraints or by using pairwise constraints to define penalties in the objective
function. The first work proposed a modified version of COBWEB [Fisher 1987] that
tends to satisfy all the pairwise constraints [Wagstaff & Cardie 2000]. Subsequent work
extended the K-means algorithm to instance level constraints. The K-means algorithm
starts with initial assignment seeds and assigns objects to clusters in several iterations. At
each iteration, the centroids of the clusters are computed and the objects are reassigned
to the closest centroids. The algorithm converges to a solution which is a local optimum
of the within-cluster sum of squares (WCSS or distortion). To integrate ML and CL
constraints, the COP-KMeans algorithm reassigns the objects in each iteration in such a
way that no constraint is violated [Wagstaff et al. 2001]. However, this greedy behavior
without backtracking means that the algorithm may fail to find a solution that satisfies
all the constraints even when such a solution exists. Two variants of K-means, the Seed-
KMeans and Constrained-KMeans algorithms, allow the use of labeled objects as seeds
[Basu et al. 2002]; the difference between the two being the possibility of changing the
class centers or not. In both methods, it is assumed that there is at least one seed per
cluster and that the number of cluster is known. The seeds are used to overcome the
sensitivity of the K-means algorithm for the initial parameterization.



38 Chapter 4. Declarative Approach for Constrained Clustering

Penalty based methods. Other methods uses penalties as a trade-off between finding
a best clustering and satisfying as many constraints as possible. Considering a subset of
instances whose label is known, the clustering objective function is modified to incorpo-
rate a dispersion measure and an impurity measure [Demiriz et al. 1999]. The impurity
measure is based on Gini Index to measure misplaced known labels. The CVQE (con-
strained vector quantization error) method [Davidson & Ravi 2005] penalizes constraint
violations using distance. If a must-link constraint is violated then the penalty is the dis-
tance between the two centroids of the clusters containing the two instances that should
be together. If a cannot-link constraint is violated then the penalty is the distance be-
tween the cluster centroid the two instances are assigned to and the distance to the nearest
cluster centroid. These two penalty types together with the distortion measure define a
new differentiable objective function. An improved version, LCVQE (linear-time CVQE)
[Pelleg & Baras 2007], avoids checking all possible assignments for cannot-link constraints
and its penalty calculations takes into account coordinates of the involved instances in the
violated constraint. The method PCK-Means [Basu et al. 2004a] formulated the goal of
pairwise constrained clustering as minimizing a combined objective function, defined as the
sum of the total squared distances between the points and their cluster centroids WCSS,
and the cost incurred by violating any pairwise constraints. The cost can be uniform
but can also take into account the metric of the clusters, as in the MPCK-Means version
that integrates both constraints and metric learning. Lagrangian constrained clustering
[Ganji et al. 2016] also formulates the objective function as a sum of distortion and the
penalty of violating cannot-link constraints (must-link constraints are used to aggregate
instances into super-instances so they are all satisfied). This method uses a Lagrangian
relaxation strategy of increasing penalties for constraints which remain unsatisfied in sub-
sequent clustering iterations. A local search approach using Tabu search was developed
to optimize the objective function, which is the sum of the distortion and the weighted
cost incurred by violating pairwise constraints [Hiep et al. 2016].

Metric based and hybrid approaches. Metric-based approaches investigate how a
better distance metric can be learned from the constraints: learning from must-link con-
straints [Bar-Hillel et al. 2005] or both must-link and cannot-link constraints[Klein et al. 2002,
Xing et al. 2003]. Hybrid approaches integrated both constraints enforcing and met-
ric learning in a single framework: MPCK-Means [Bilenko et al. 2004], HMRF-KMeans
[Basu et al. 2004b], semi-supervised kernel K-means [Kulis et al. 2005]. An uniform frame-
work that integrates both constraint-based and metric-based methods was defined in
[Bilenko et al. 2004]. This framework represents PCK-Means when considering a constraint-
based factor and MPCK-Means when considering both constraint-based and metric-based
factors. Semi-supervised HMRF K-means [Basu et al. 2004b] is a probabilistic framework
based on Hidden Markov Random Fields, where the semi-supervised clustering objective
minimizes both the overall distortion measure of the clusters and the number of violated
must-link and cannot-link constraints. A K-means like iterative algorithm is used for
optimizing the objective, where at each step the distortion measure is re-estimated to
respect user-constraints. Semi-supervised kernel K-means [Kulis et al. 2005] is a weighted
kernel-based approach, that generalizes HMRF K-means. The method can perform semi-
supervised clustering on data given either as vectors or as a graph. It can be used on a
wide class of graph clustering objectives such as minimizing the normalized cut or ratio



4.1. Problem and Context 39

cut. The framework can be therefore applied on semi-supervised spectral clustering.

Algorithmic methods beyond pairwise constraints. Suitable constraints are added
into the mathematical program formulation of the k-Means algorithm to extend the algo-
rithm to the problem of partitioning objects into clusters where the number of elements in
each cluster is fixed [Ng 2000]. In order to avoid local solution with empty clusters or clus-
ters having very few points, k minimal capacity constraints are added to the formulation
of the clustering optimization problem [Bradley et al. 2000]. This work considers the K-
means algorithm and the constraints are enforced during the assignment step at each iter-
ation. Considering cluster size constraints, a scalable algorithm starts by finding an initial
solution that satisfies user-constraints and then refines the solution by performing confined
object movement under constraints [Tung et al. 2001]. A framework to generate balanced
clusters, i.e. clusters of comparable sizes was proposed in [Banerjee & Ghosh 2006], and a
minimal size constraint was integrated to K-means algorithm [Demiriz et al. 2008]. Con-
sidering two types of constraints, the minimum number of objects in a cluster and mini-
mum variance of a cluster, [Ge et al. 2007] proposed an algorithm that generates clusters
satisfying them both. This algorithm is based on a CD-Tree data structure, which or-
ganizes data points in leaf nodes such that each leaf node approximately satisfies the
significance and variance constraint and minimizes the sum of squared distances.

Exact methods for unconstrained clustering. Exact methods have also been inves-
tigated for clustering without user constraints. They are based on graph theory, branch-
and-bound search or dynamic programming. For the diameter criterion, exact algorithms
were developed using graph coloring problem [Hansen & Delattre 1978] or branch-and-
bound search [Brusco & Stahl 2005]. A repetitive branch-and-bound algorithm was pro-
posed in [Brusco 2006], which can be used for the diameter, the sum of dissimilarities
WCSD and the sum of squares WCSS criteria. For the WCSS criterion, several meth-
ods were developed, based on branch-and-bound search [Koontz et al. 1975, Brusco 2003,
Brusco 2006], dynamic programming [Jensen 1969, B.J. van Os 2004], integer linear pro-
gramming using column generation [du Merle et al. 1999, Aloise et al. 2012], cutting plane
algorithm [Xia & Peng 2005] or semidefinite optimization [Aloise & Hansen 2009].

Declarative approaches. Recently, approaches using generic optimization frameworks
for Data Mining problems have shown their interest in the capacity of modeling and solv-
ing [De Raedt et al. 2008, De Raedt et al. 2010, Cambazard et al. 2010, Guns et al. 2011,
Jabbour et al. 2013, Rojas et al. 2014, Bessiere et al. 2009]. For constrained clustering,
several works have been developed using integer linear programming (ILP), SAT, con-
straint programming (CP) or mathematical programming. These approaches enable the
modeling of different types of user constraints and the search of an exact solution that
is a global optimum and that satisfies all the user constraints. For dissimilarity-based
constrained clustering setting with two clusters (K = 2), a SAT framework has been pro-
posed [Davidson et al. 2010]. This framework integrates different constraints (must-link,
cannot-link, maximum diameter, minimum split) and the optimization criteria of diameter
and split. Using ILP, [Mueller & Kramer 2010] has proposed an approach that takes a set
of cluster candidates as input and constructs a clustering by selecting a subset of the can-
didates. This approach allows different constraints on the clusters as well as constraints



40 Chapter 4. Declarative Approach for Constrained Clustering

on set of clusters. Instance-level constraints can be enforced while selecting the cluster
candidates. However, since the set of cluster candidates must be given, the application of
this approach to general clustering setting is limited. Indeed, having a good set of clus-
ters candidates is difficult, since the number of cluster candidates is exponential on the
number of objects. This approach is experimented in conceptual clustering setting, where
the candidates correspond to frequent patterns. Another approach using ILP and column
generation has been developed for the sum of squares WCSS criterion [Babaki et al. 2014].
This approach integrates instance-level constraints and anti-monotonic cluster-level con-
straints, but is limited only to the WCSS criterion.

Generic optimization frameworks have also been investigated in several works for other
clustering settings. Conceptual clustering considers objects described by categorical at-
tributes and aims at associating to each cluster a definition expressed by a pattern. A
CP framework has been developed for the K-pattern set mining problem that can be
used for conceptual clustering [Guns et al. 2013]. This framework integrates constraints
on patterns or groups of patterns as well as different optimization criteria. Recently an-
other CP framework has been developed that exploit further the use of set constraints
[Chabert & Solnon 2017]. A SAT based framework has also been proposed, which pro-
vides a query language to formalize conceptual clustering tasks [Métivier et al. 2012a].
The elements of the language are translated into SAT clauses and solved by a SAT solver.
In the same manner as [Mueller & Kramer 2010], an approach using ILP based on the
choice of clusters to compose a clustering has been developed in [Ouali et al. 2016]. This
approach uses closed frequent pattern instead of frequent pattern as clusters candidates,
and presents a formulation of several tasks of clustering, as for instance conceptual clus-
tering, co-clustering or soft-co-clustering.

Regarding clustering problems on graph, a framework using mathematical program-
ming for spectral clustering has been developed in [Wang & Davidson 2010, Wang et al. 2014].
This framework allows to consider different types of constraints and also to specify a
lower bound on the satisfaction of the constraints. It is extended to integrate logical
combinations of constraints [Zhi et al. 2013], which are translated into linear equations
or linear inequations. Also based on a similarity graph between objects, correlation
clustering aims at finding a partition that agree the most possible with the similari-
ties. A MaxSAT framework has been developed for constrained correlation clustering
[Berg & Jarvisalo 2013, Berg & Järvisalo 2017]. In this model, hard-clauses guarantee a
well defined partition and soft-clauses are used to encode the cost function. For the prob-
lem of community detection, recently a model using constraint programming has been
proposed [Ganji et al. 2017]. A SAT-based approach has been developed for overlapping
community detection [Jabbour et al. 2017].

Different from partition clustering, hierarchical clustering constructs a hierarchy of
partitions, represented by a dendrogram. A framework developed in [Gilpin et al. 2013]
allows to model hierarchical clustering using ILP. Another SAT framework allows to inte-
grate different types of user constraints [Gilpin & Davidson 2011].

In our work, we develop a declarative approach using constraint programming for
constrained clustering problems. We study not only the modeling using constraint pro-
gramming, but also enhancing the efficiency of the approach.



4.2. A Declarative Framework Using Constraint Programming 41

4.2 A Declarative Framework Using Constraint Program-
ming

We have developed a general and declarative framework based on constraint programming
for constrained clustering. The framework allows to model different problems of con-
strained clustering, by integrating several optimization criteria (diameter, split, WCSD,
WCSS) and various types of user constraints. Let the dataset be a set of N objects that
are also called points. Without loss of generality let us assume that the points are indexed
and are named by their index, which ranges from 1 to N . Let d(i, j) be a dissimilarity for
each pair of points i, j.

4.2.1 A CP Model for Constrained Clustering

This subsection describes the first model [Dao et al. 2013a, Dao et al. 2013d, Dao et al. 2013c].

Variables and constraints. A CP model is characterized by the set of variables and
their domains and the set of constraints. In this model, a partition is represented by two
levels: the representative points that represent the clusters and the assignment of each
point to a cluster representative. The variables are therefore defined as follows:

• For each cluster k ∈ [1,K], among all the points of the cluster, the one with the
smallest index is considered as the representative point 2. An integer variable I[k]3

with Dom(I[k]) = [1, N ] is introduced, where I[k] is the index of the representative
point of the cluster k.

• For each i ∈ [1, N ], let G[i] be a variable with Dom(G[i]) = [1, N ], where G[i] is the
representative point of the cluster that contains point i.

The constraints can be organized into three categories: (1) constraints to guarantee a
partition, (2) constraints to express user-constraints and (3) constraints to express the
optimization criterion. When no optimization criterion is specified, the model corresponds
to finding all the partitions that satisfy the user-constraints. To define a partition, the
following constraints are used:

• Each representative belongs to its cluster: ∀k ∈ [1,K], the constraint G[I[k]] = I[k]

is put. This constraint is expressed by an element CP constraint.

• Each point is assigned to a representative: ∀i ∈ [1, N ],
∨
k∈[1,K](G[i] = I[k]). This

relation can be expressed by N cardinality constraints in CP: ∀i ∈ [1, N ], #{k |
I[k]=G[i]} = 1.

• The representative of a cluster is the point in this cluster with the minimal index; in
other words, the index i of a point is greater or equal to the index of its representative
given by G[i]: ∀i ∈ [1, n], G[i] ≤ i.

2It allows to have a single representation of a cluster. It must not be confused with the notion of
representative in the medoid approach.

3To denote the k-th element of an array I, we will use two notations I[k] and Ik.



42 Chapter 4. Declarative Approach for Constrained Clustering

• In order to break symmetries among the clusters, the following conditions are ex-
pressed. The representative of the first cluster is the first point: I[1] = 1. The
representatives are sorted in increasing order: ∀k ∈ [1,K − 1], I[k] < I[k + 1].

To represent user-constraints in clustering, CP constraints are used. A must-link constraint
on points i, j is expressed by Gi = Gj and a cannot-link constraint by Gi 6= Gj . Cluster
level constraints are naturally expressed by CP constraints, for instance a minimal cluster
size constraint is expressed by K cardinality CP constraints: ∀k ∈ [1,K],#{i | G[i] =

I[k]} ≥ α. For each k ∈ [1,K], this constraint states that the value of I[k] must appears
at least α times in the array G. A density constraint states that each point must have
in its neighborhood of radius ε at least MinPts points belonging to the same cluster as
itself. So, for each i ∈ [1, N ], the set of points in its ε-neighborhood is computed and a
constraint is put on its cardinality:

#{j | d(i, j) ≤ ε,G[j]=G[i]} ≥MinPts

Optimization criteria. To represent the optimization criterion, a float value variable
is introduced for each potential criterion: D (diameter), S (split) and W (WCSD). Con-
straints are used to enforce the relation behind each criterion. For instance, for the diam-
eter criterion, since D represents the maximal diameter of the clusters, any two points i, j
that have d(i, j) > D must be in different clusters. Since the value of D is still unknown,
this relation can be expressed using O(N2) reified constraints:

∀i < j ∈ [1, N ], (d(i, j) > D)→ (G[i] 6= G[j])

The relation that defines the sumWCSD is defined byW =
∑

i,j∈[1,N ](G[i] == G[j])d(i, j)2,
where Gi == Gj is 1 if the variables Gi, Gj have the same value and 0 otherwise.

Model improvements. The variables I[k] is the smallest index of the points in cluster
k. The way points are indexed is therefore really important. Points are then ordered
and indexed, so that points that are probably representatives have small index. In order
to achieve this, we rely on FPF (Furthest Point First) algorithm [Gonzalez 1985]. This
algorithm starts by choosing a point furthest from the others, marks it as the first head,
links all the points to it and iterates until all the points are marked. At each iteration, it
chooses the point i that is furthest to its head, marks it as a new head and links to it all
the unmarked points that are closer to i than to their head. The order where the points
are marked gives the new order of the points.

Search strategy. The variables I[k] for k ∈ [1,K] are instantiated before the variables
G[i] for i ∈ [1, N ]. This means that cluster representations are first determined, allowing
constraint propagation to assign some points to clusters. When all the variables I[k]

are instantiated, the variables G[i] whose domains are not singletons are instantiated.
Variables I[k] are chosen from I[1] to I[K]. Since the representative is the one with the
minimal index in the cluster, values for instantiating each I[k] are chosen in an increasing
order. Variables G[i] are chosen so that the ones with the smallest remaining domain are
chosen first. All values in Dom(G[i]) are examined and the value j which corresponds to
the smallest d(i, j) is chosen and two alternatives are created G[i] = j and G[i] 6= j.



4.2. A Declarative Framework Using Constraint Programming 43

4.2.2 An Improved CP Model

The first model is based on the representative points to represent the clusters. This implies
that the number of clusters K must be set beforehand, because the number of variables
Ik depends on K. A second model has been developed, which is different from the first
one on the choice of variables. In this model, the number of clusters K is not fixed,
only bounds are needed Kmin ≤ K ≤ Kmax. Moreover, dedicated global optimization
constraints are developed for each optimization criterion (these constraints are described
in Section 4.3). This model was developed in [Dao et al. 2014b] and was improved in
[Dao et al. 2014a, Dao et al. 2017].

Two constants Kmin and Kmax must be given, which define the minimal and the
maximal number of clusters. The objectif is to find a partition of K clusters, where
Kmin ≤ K ≤ Kmax, such that a given criterion is optimized. The optimization criterion
can be:

• minimizing the maximal diameter of the clusters,

• maximizing the minimal split between clusters,

• minimizing the within-cluster sum of dissimilarities WCSD,

• minimizing the within-cluster sum of squares WCSS.

Variables. In this model, the clusters are identified by their index. For a clustering
of K clusters, the indices are from 1 to K. To define the assignment of points to clus-
ters, we introduce integer variables G1, . . . , GN , each one having the domain the set of
integers {1, ..,Kmax}. An assignment Gi = k means point i is grouped into the clus-
ter k. To represent the optimization criterion, a float value variable is introduced for
each criterion: D for the diameter, S for the split, W for the WCSD and V for the
WCSS. Their domain is defined by: Dom(D) = Dom(S) = [mini,j(d(i, j)),maxi,j(d(i, j))],
Dom(W ) = Dom(V ) = [0,∞].

Constraints. A complete assignment of G1, . . . , GN defines naturally a partition. How-
ever, a partition can correspond to several different assignments, by permutation of cluster
indices or by changing a cluster index to an unused value. In order to break this kind of
symmetries, the clusters are created and indexed such as the first created cluster has the
index 1 and a number c is used to index a new cluster only if the number c−1 has already
been used. A direct method to express this condition is by using the constraints G1 = 1

and Gi ≤ maxj∈[1,i−1](Gj) + 1, for i ∈ [2, N ]. However, using a global constraint that
enforces this relations will yield more interaction and propagation. The global constraint
precede [Law & Lee 2004] eventually achieves this: precede([G1, . . . , GN ], [1, . . . ,Kmax]).
This constraint ensures G1 = 1 and moreover, for i ∈ [2, N ], if Gi = c where 1 < c ≤ Kmax,
then there must exist j < i such that Gj = c− 1.

To enforce that there must be at least Kmin clusters, each number from 1 to Kmin

must be used at least once in the assignment of G1, . . . , GN . In presence of the con-
straint precede, one needs only to impose that the value Kmin is used at least once.
This means #{i | Gi = Kmin} ≥ 1, which can be expressed by a CP atleast constraint:
atleast(1, [G1, . . . , GN ],Kmin).



44 Chapter 4. Declarative Approach for Constrained Clustering

The domain of each variable Gi is the set of integers [1,Kmax], therefore there will
be at most Kmax clusters. If one needs exactly K clusters, it is sufficient to set Kmin =

Kmax = K.
Clustering user-constraints are expressed in the same way as in the first model. The

only difference is on the minimal size constraint, where the variables Ik do no more exist.
To express this constraint, we impose that for each i ∈ [1, N ], the value taken by Gi must
appear at least α times in the array G, i.e. #{j | Gj = Gi} ≥ α. The minimal size helps
also to upper bound the number of clusters: Gi ≤ bn/αc, for i ∈ [1, N ].

Optimization criteria. In the first model [Dao et al. 2013a], a large number of reified
constraints are used to express the relation defined by the optimization criterion. For
instance, to define that D is the maximal diameter, O(N2) reified constraints are used.
The number of constraints in the model is therefore important but the link between the
constraints is not well exploited. In the second model, we have developed a global opti-
mization constraint for each criterion that summarizes the corresponding relation. These
constraints as well as their filtering algorithm are presented in Section 4.3. These con-
straints are:

• diameter([G1, . . . , GN ], D, d): D is the maximal diameter of the clusters formed by
an assignment of G1, . . . , GN , using the dissimilarity measure d;

• split([G1, . . . , GN ], S, d) : S is the minimal split between clusters;

• wcsd([G1, . . . , GN ],W, d) : W is the within-cluster sum of dissimilarities;

• wcss([G1, . . . , GN ], V, d) : V is the within-cluster sum of squares.

When the optimization criterion is specified, the corresponding value is optimized in the
objective function. For instance, if the sum of squares is minimized, the objective function
will be minimize V .

Search strategies. Several search strategies are defined and depending on the objective
function a strategy is chosen. For the diameter and split criteria, at each branching point,
a variable Gi with the smallest domain is chosen. All values in Dom(Gi) are examined
and the number of the closest cluster to i is chosen. The distance between a point i and
a cluster k is defined as the maximum distance d(i, j) where Gi is already instantiated to
k. If the cluster k is empty (no point Gj such that Gj = k), the distance between i and
cluster k is zero. This means the creation of a new cluster is favored if there are unused
cluster numbers. Moreover, the smallest remaining number is chosen. The closest cluster
k to the point i is chosen and two alternatives are created Gi = k and Gi 6= k.

For the WCSD and WCSS criteria, a mixed strategy is used. In order to have a good
upper bound for the objective variable, a greedy search is used. This means at each
branching point, the variable Gi and the value k that increase the objective function as
little as possible are chosen. After finding the first solution, the strategy changes to a
“first-fail”, which tends to detect failures quickly. In this strategy, a value sik for each
point i and each cluster k is defined as the added amount if i is assigned to k. For each
unassigned variable Gi, let si = mink∈Dom(Gi)(sik), that is the minimal added amount
when i is assigned to a cluster. The unassigned variable Gi having the greatest value si



4.2. A Declarative Framework Using Constraint Programming 45

Dataset # Objects # Attributes # Classes

Iris 150 4 3

Wine 178 13 3

Glass 214 9 7

Ionosphere 351 34 2

User Knowledge 403 5 4

Breast Cancer 569 30 2

Synthetic Control 600 60 6

Vehicle 846 18 4

Yeast 1484 8 10

Multiple Features 2000 6 10

Image Segmentation 2000 19 7

Waveform 5000 40 3

Table 4.1: Properties of datasets

is chosen, and for this variable, the value k with the smallest value sik is chosen. Two
alternatives are created, corresponding to Gi = k and Gi 6= k.

Experiment results The experiments in [Dao et al. 2017] were conducted considering
different aspects: comparison to existent approaches with different criteria, analysis of
bounds on the number of clusters, analysis of search strategies. We give here some details
on the results. The two models are implemented using Gecode solver version 4.2.1. The
experiments are performed on a 3.4 GHz Intel Core i5 processor with 8 GB RAM running
Ubuntu. Experiments have been done on twelve datasets taken from the UCI repository
[Bache & Lichman 2014]. Table 4.1 summarizes information of these datasets.

In case of minimizing the maximal diameter without user-constraints, the model was
compared to the repetitive branch-and-bound approach (RBBA) [Brusco & Stahl 2005]
and the algorithm based on graph coloring (GC) [Delattre & Hansen 1980]. The RBBA
program has been obtained from the author’s website4. To our knowledge, this was the
best exact algorithm for the maximal diameter and WCSD criteria without constraints.
No implementation of GC was available so we coded it ourselves in C++ using a well-
known available graph coloring program [Mehrotra & Trick 1995]. The timeout was set to
1 hour and the Euclidean distance was used to compute the dissimilarity between objects.
The value K was set to the ground truth number of clusters.

Table 4.2 shows the results of the experiments. The symbol - is used when the search
is not completed after the timeout and the symbol * is used to mark memory run out.
All the algorithms are exact and they find the same value for the optimum diameter. It is
clear that our CP models outperform the existent approaches. The second model (CP2)
is the most efficient in all cases.

Considering the WCSD criterion, the second model is compared to RBBA, which to
our knowledge, is the best exact algorithm for this criterion without user constraints.
Both approaches can only find the optimal solution for the Iris dataset (RBBA 3249 sec,
CP2 4125 s). Our model can handle different kinds of user constraints. A set of 120

4http://mailer.fsu.edu/~mbrusco/

http://mailer.fsu.edu/~mbrusco/


46 Chapter 4. Declarative Approach for Constrained Clustering

Datasets Dopt RBBA GC CP1 CP2

Iris 2.58 1.4 1.8 < 0.1 < 0.1

Wine 458.13 2 2.3 0.3 < 0.1

Glass 4.97 8.1 42 0.9 0.2

IonoSphere 8.60 − 0.6 0.4 0.3

User Knowledge 1.17 − 3.7 75 0.2

Breast Cancer 2377.96 − 1.8 0.7 0.5

Synthetic Control 109.36 − − 56.1 1.6

Vehicle 264.83 − − 14.3 0.9

Yeast 0.67 − − 2389.9 5.2

Multi Features 1594.96 − − ∗ 10.4

Image Segmentation 436.40 − − 589.2 5.7

Waveform 15.60 − − ∗ 50.1

Table 4.2: Runtime in seconds with the minimization of the maximal diameter and
without user-constraints

instance-level constraints has been generated from the dataset Iris. The constraints were
generated following the method described in [Wagstaff & Cardie 2000]: two points are
chosen randomly from the dataset, if they belong to the same cluster in the real partition,
a must-link constraint is generated, otherwise a cannot-link constraint is generated. The
first test is without user-constraints, the second one considers the first 30 constraints,
the third one takes into account the first 60 constraints and so on. Figure 4.1 (left)
reports the total time needed to solve the dataset with these user-constraints. When
there are 30 constraints, the solver takes more computation time. The reason is that,
with user-constraints, the optimal value of WCSD is higher and the propagation of the
WCSD constraint is weaker. However, when more user-constraints are integrated, the
propagation of must-link and cannot-link constraints is stronger and enables to quickly
instantiate variables. As a result, the solver takes only 94s for solving the problem with
60 constraints, and less than 10s when there are 90 or more constraints.

We have also evaluated the quality of the partitions found. For measuring the quality
of a partition, we consider the Adjusted Rand Index (ARI). It measures the similarity
between two partitions, in this case, the real partition P of the dataset and the partition
P ′ found by our model. It is defined by:

ARI =
2(ab− cd)

(a+ d)(d+ b) + (a+ c)(c+ b)

where a is the number of pairs of points that are in the same cluster in P and in P ′, b is
the number of pairs of points that are in different clusters in P and in P ′, c is the number
of pairs of points that are in the same cluster in P , but in different clusters in P ′ and d is
the number of pairs of points that are in different clusters in P , but in the same cluster
in P ′. The results of this experiment are reported in Figure 4.1 (right). The figure shows
that the ARI value of the optimal partition improves when more are more constraints are
considered.



4.3. Global Optimization Constraints for Clustering 47

Figure 4.1: WCSD with user-constraints on Iris: computation time (left), Adjusted Rand
Index (right)

4.3 Global Optimization Constraints for Clustering

CP solvers offer a rich catalogue of elementary and global constraints. The relation of the
optimization criterion can be expressed using existent CP constraints. For instance, in the
first model, reified constraints are used to express the relations of maximal diameter and
minimal split. The WCSD and WCSS criteria can also be expressed by composing different
existent constraints. However, a decomposition into several constraints does not allow
to fully exploit the interaction between the variables, i.e. changes on decision variables
may not have impact on the criterion since the constraints are considered separately.
Moreover, a large number of constraints is usually required, e.g. O(N2) reified constraints
for the diameter or WCSD. One of the strength of CP is the modularity, where each global
constraint represents a relation, and we have the possibility of adding new global constraint
to define new relation. A filtering algorithm is associated to each global constraint, which
enforces the relation expressed by the constraint. The filtering algorithm exploits the
relation to remove inconsistent values from the domain of the variables.

We have developed for each optimization criterion a dedicated global constraint and its
filtering algorithm. Each constraint links the variable representing the criterion and the
decision variables G1, . . . , GN representing the partition. Since the variable representing
the criterion is the objective function, this kind of global constraints is also called global
optimization constraint. During the branch-and-bound search, when a new solution is
reached, the value of the objective function at this solution is computed and is used to
narrow the domain of the objective variable. Considering directly and globally the variable
of the objective function and the decision variables, we can capture more interactions
between them in order to have better propagation. Note that these global constraints can
also be used without optimization. For instance, diameter([G1, . . . , GN ], D, d) and D ≤ γ
allow to express a constraint on the maximal diameter of the clusters.

The next subsections will present the global constraints for the maximal diameter
of the clusters and the minimal split between clusters [Dao et al. 2017], for the within-
cluster sum of dissimilarities WCSD [Dao et al. 2013b] and for the within-cluster sum
of squares WCSS [Dao et al. 2015a]. The constraints for diameter or split achieve the
same level of propagation with respect to the reified constraints, but with much less
time. The constraints for WCSD and WCSS, on the other hand, have dramatically better
performance either on propagation level or on the execution time.



48 Chapter 4. Declarative Approach for Constrained Clustering

4.3.1 Maximal Diameter and Minimal Split

The relation that D is the maximal diameter of the clusters formed by the decision vari-
ables G1, . . . , GN , considering a dissimilarity measure d, is expressed by:

∀i < j ∈ [1, N ], (D < d(i, j) → Gi 6= Gj) ∧ (Gi = Gj → D ≥ d(i, j)). (4.1)

Using existent CP constraints, this relation can be expressed using O(N2) reified con-
straints. We have developed a global constraint diameter([G1, . . . , GN ], D, d) enforcing
this relation. The filtering algorithm is presented in Algorithm 3. In this algorithm,
Dom(D) is represented by [D.lb,D.ub), where D.lb is the lower bound, which initially can
be the minimum dissimilarity between two points, and D.ub is the upper bound, which
can be the maximum dissimilarity between two points or the D value of the last found
solution. The bound D.ub is strict since by branch-and-bound, the next solution must be
strictly better than the previous one. The filtering algorithm is active when the domain
of some variables is changed. The relation (4.1) is used to narrow the variable domains in
the following situations:

• The upper bound D.ub has been reduced (e.g. a solution has been found). In this
case, for each couple i < j, if D.ub ≤ d(i, j), we can conclude that D < d(i, j) and
by (4.1) conclude that Gi 6= Gj . The relation Gi 6= Gj is however useful to domain
reduction only when one of the variables has already been instantiated. Therefore,
Algorithm 3 memorizes the instantiated variables (lines 2–4) and uses them to filter
(line 10). The lower bound D.lb can also be revised (line 11).

• Some variables Gi have been instantiated. In this case, for each couple i < j such
that Gi and Gj are instantiated by the same value, we deduce D ≥ d(i, j) and revise
D.lb (line 11).

Notice that as soon as the domain of a variable becomes empty, a failure is invoked by
the solver. The worst case complexity is O(N2). The algorithm is active when the upper
bound of D has been reduced or a variable Gi has been instantiated. However, because
of its complexity, the filtering is executed after the other constraints whose filtering has a
lower cost.

The constraint split(G, S, d) enforces that S is the minimal split between the clusters
formed by G1, . . . , GN . It represents the relation:

∀i < j ∈ [1, N ], (S > d(i, j) → Gi = Gj) ∧ (Gi 6= Gj → S ≤ d(i, j)). (4.2)

The filtering algorithm is presented in Algorithm 4, where Dom(S) = (S.lb, S.ub]. The
lower bound S.lb is either the minimum dissimilarity between two points or the S value
of the last found solution. This algorithm is active when the lower bound S.lb has been
increased or some variables Gi have been instantiated. If S.lb is changed, for each couple
i < j, if S.lb ≥ d(i, j), then by (4.2) we have Gi = Gj . This relation is propagated by
enforcing Dom(Gi) = Dom(Gj). If some decision variables have been instantiated and
Gi 6= Gj , by (4.2) we have S ≤ d(i, j) that changes the upper bound of S. The complexity
is also O(N2).



4.3. Global Optimization Constraints for Clustering 49

Algorithm 3: Filtering for constraint diameter(G, D, d)

1 stack ← ∅;
2 if D.ub has been changed then
3 for i← 1 to n where Gi is instantiated do
4 stack ← stack ∪ {i};

5 else
6 foreach i that Gi has just been instantiated do
7 stack ← stack ∪ {i};

8 foreach i ∈ stack do
9 for j ← 1 to n do

10 if d(i, j) ≥ D.ub then delete Gi from Dom(Gj) ;
11 if Gj is instantiated ∧ Gi = Gj then D.lb← max(D.lb, d(i, j)) ;

Algorithm 4: Filtering for constraint split(G, S, d)

1 stack ← ∅;
2 if S.lb has been changed then stack ← {1, . . . , n} ;
3 else
4 foreach i that Dom(Gi) has just been changed do
5 stack ← stack ∪ {i};

6 foreach i ∈ stack do
7 for j ← 1 to n do
8 if d(i, j) ≤ S.lb then
9 Dom(Gi)← Dom(Gi) ∩Dom(Gj);

10 Dom(Gj)← Dom(Gi);

11 if Gi and Gj are instantiated ∧ Gi 6= Gj then S.ub← min(S.ub, d(i, j)) ;



50 Chapter 4. Declarative Approach for Constrained Clustering

reified constraints dedicated global constraint

Iris < 0.1 < 0.1

Wine < 0.1 < 0.1

Glass 0.4 0.2

IonoSphere 0.3 0.3

User Knowledge 15.4 0.2

Breast Cancer 0.7 0.5

Synthetic Control 23.6 1.6

Vehicle 11.9 0.9

Yeast 574.2 5.2

Multi Features * 10.4

Image Segmentation 226.7 5.7

Waveform * 50.1

Table 4.3: Performance (measured in seconds) for different modelings of diameter criterion

Analysis of the dedicated filtering algorithm. Using existent CP constraints, mod-
eling the maximal diameter requires O(N2) reified constraints. The dedicated global
constraint ensures the same level of consistency compared to reified constraints. However,
although our dedicated global constraint has a complexity in the worst case of O(N2),
it considers only necessary variables. In order to compare the efficiency of the filtering
algorithm, we use the new model (CP2) for both cases: using reified constraints and us-
ing the dedicated global constraint to express the diameter criterion. The performance is
presented in Table 4.3. We can see that when using reified constraints, the solver cannot
find optimal solution with the datasets Wave Form and Multi Features. The reason is
that there are too many reified constraints and the computer runs out of memory. Table
4.3 shows that the filtering algorithm boosts the performance and this becomes more and
more significant with larger datasets.

4.3.2 Within-Cluster Sum of Dissimilarities

The relation that W is the within-cluster sum of dissimilarities of the clusters formed by
G1, . . . , GN , using the dissimilarity measure d, is:

W =
∑

1≤i<j≤N
[Gi=Gj ]d(i, j) (4.3)

where [Gi = Gj ] is 1 if Gi and Gj have the same value and 0 otherwise. Optimizing
this criterion is NP-Hard since the weighted max-cut problem, which is NP-Complete,
is a particular instance of this problem with two clusters. We have developed a global
constraint wcsd([G1, . . . , GN ],W, d) enforcing this relation [Dao et al. 2013b].

Let Dom(W ) = [W.lb,W.ub). Given a partial assignment of the variables G1, . . . , GN ,
two steps are achieved in the filtering algorithm:

1. Compute a new lower bound W.lb, using the partial configuration of the clusters. If
W.lb ≥W.ub then a failure is invoked.



4.3. Global Optimization Constraints for Clustering 51

2. Filter the domain of the unassigned decision variables Gi using the lower bound
W.lb.

The essential of the algorithm is described below. For the details the reader could see
[Dao et al. 2013b].

Lower bound for WCSD. Given a partial assignment of the variables G1, . . . , GN , let
A = {i ∈ [1, N ] | Gi is assigned} and U = {i ∈ [1, N ] | Gi is unassigned}. According
to [Klein & Aronson 1991], (4.3) can be separated into three parts W = W1 + W2 + W3,
where:

• W1 is the sum of within-cluster dissimilarities between the assigned points:

W1 =
∑

i,j∈A,i<j
[Gi=Gj ]d(i, j)

• W2 is the sum of within-cluster dissimilarities between an unassigned and an assigned
point:

W2 =
∑

i∈U,j∈A
[Gi=Gj ]d(i, j)

• W3 is the sum of within-cluster dissimilarities between the unassigned points:

W3 =
∑

i,j∈U,i<j
[Gi=Gj ]d(i, j)

The exact value of W1 is known but not for W2 and W3 because of the unassigned points.
However we can compute a lower bound for W2 and W3. A lower bound for W2, denoted
byW2.lb is computed as follows. For each point i ∈ U , each value k ∈ Dom(Gi) represents
the number of a cluster where point i can be assigned to. If i is assigned to cluster k, it
will add to W2 the amount

∑
j∈A[Gj = k]d(i, j). A lower bound W2.lb is then the sum of

the minimal amount added by each unassigned point:

W2.lb =
∑
i∈U

min
k∈Dom(Gi)

(
∑
j∈A

[Gj = k]d(i, j))

A lower bound for W3, denoted by W3.lb, is computed as follows. Let p = |U | and
k = | ∪i∈U Dom(Gi)|. Let us observe that in the sum W3, the minimal number of terms
d(i, j) is the minimal number of within-cluster connections, considering all the possibilities
of grouping p points into k clusters. Let m be the quotient and let m′ be the remainder
of the division of p by k. Let f(p, k) = (km2 + 2mm′ − km)/2. We have proved in
[Dao et al. 2013b] that whatever be the partition of p points into k clusters, the number
of within-cluster connections is at least f(p, k). This value is reached when m′ clusters
have each one m+1 points and k−m′ clusters have each one m points. Therefore, a lower
bound W3.lb is the sum of the f(p, k) smallest dissimilarities d(i, j), for i < j ∈ U .

The lower bound of W is therefore revised by W.lb = max(W.lb, W1 +W2.lb+W3.lb).
If W.lb ≥W.ub, a failure will be invoked by the solver.



52 Chapter 4. Declarative Approach for Constrained Clustering

n without filtering with filtering
#nodes time #nodes time

20 667 0.004 375 0.002
25 2887 0.03 599 0.004
30 17183 0.2 867 0.01
35 47901 0.8 1207 0.02
40 1362113 29.7 1663 0.04
45 5687055 145.8 2071 0.06

Table 4.4: Performance of filtering algorithm

Filter decision variable domains. For each unassigned variable Gi, for each value
c ∈ Dom(Gi), with the assumption that point i is assigned to cluster c, the lower bound
of W is revised to W.lb′ = W ′1 + W2.lb

′ + W3.lb
′. The revision of W ′1 and W ′2 can be

done in a constant time. In order to revise W ′3 in a constant time, we use a weaker lower
bound W4, which is the sum of f(p− 1, k) smallest dissimilarities d(u, v), for u < v ∈ U .
The used dissimilarities may be linked with i, thus W ′3.lb ≥ W4. The interest of using
W4 is that W4 can be computed once for all unassigned variables Gi, so the revision of
W ′3 is done in a constant time. The revised lower bound is W.lb′ = W ′1 +W2.lb

′ +W4. If
W.lb′ ≥W.ub then point i cannot be assigned to cluster c. In this case value c is removed
from Dom(Gi).

The complexity of the filtering algorithm is O(N2 + NK) = O(N2 + NKmax), since
|Dom(Gi)| ≤ Kmax. As Kmax ≤ N , the complexity is O(N2).

Experiment results We give here some results of the experiments, more details can be
found in [Dao et al. 2013b]. The constraint was used in the first model [Dao et al. 2013a]
and was implemented using Gecode 4.0.0. Expressing directly the relationW =

∑
1≤i<j≤n(G[i] ==

G[j])d(i, j) using reified constraints and a linear constraint, the propagation is weak. The
model without filtering hardly solves dataset with more than 50 samples. Our filtering
algorithm takes benefit from both assigned an unassigned points to have a better lower
bound and a better filtering. Table 4.4 shows the comparison of performance of our model
in two cases: with and without the filtering. In each case, the first column gives the
number of nodes in the search tree and the second column reports the total runtime in
seconds. The number of samples varies from n = 20 to n = 45 and the number of clusters
K is set to 3.

Our model can find exact solution with different user-constraints as given in Table 4.5.
For the dataset Letter Recognition from UCI, only 600 objects of 3 classes are considered
from the 20.000 objects in the original dataset, they are composed of the first 200 objects
of each class.

4.3.3 Within-Cluster Sum of Squares

In an Euclidean space WCSS is the sum of squared Euclidean distances between each
object oi and the centroid mk of the cluster that contains oi. Let d(i, j) be the squared
Euclidean distance between points i, j, i.e. d(i, j) = ||oi − oj ||2. For a partition ∆, WCSS



4.3. Global Optimization Constraints for Clustering 53

Dataset User-constraints Total time
Wine separation: δ = 1.5% maxD 11.2s

minimal capacity: α = 30
Letter Recognition # ML constraints = 0.1% total pairs 11.5s

# CL constraints = 0.1% total pairs
separation: δ = 10% maxD

Vehicle separation: δ = 3% maxD 1.6s
diameter: γ = 40% maxD

Table 4.5: Example of combinations of user-constraints

is also defined by:

WCSS(∆) =
∑

k∈[1,K]

1

2|Ck|
∑

oi,oj∈Ck

d(i, j).

This criterion is popular since the well-known algorithm k-means locally optimizes it.
Minimizing the WCSS is however NP-Hard even for K = 2 [Aloise et al. 2009]. A direct
modeling using existent CP constraints is not efficient since the propagation is really weak.
A direct modeling can hardly solve a sample of Iris of 14 points with K = 3 within 30
minutes.

In [Dao et al. 2015a], we have developed a global constraint wcss([G1, . . . , GN ], V, d)
that enforces the relation where V is the WCSS of the clusters formed by the decision
variables G1, . . . , GN , using the distance measure d. Let Dom(V ) = [V.lb, V.ub). The fil-
tering algorithm follows the same principle: (1) taking into account the partial assignment
of G1, . . . , GN , a lower bound V.lb is computed, if V.lb ≥ V.ub then a failure is invoked
and (2) V.lb is used to filter the domain of unassigned decision variables. The essential of
the filtering algorithm is described below.

Lower bound for WCSS. Let K = max{c | c ∈
⋃
iDom(Gi)}. The value K is the

maximum number of clusters in the partition. Let C1, . . . , CK be the clusters. Let U be
the set of the unassigned points and let q = |U |. We need to compute a lower bound for V ,
considering all the possibilities of assigning all the points of U to the clusters C1, . . . , CK .
The lower bound computation is achieved in two steps:

1. For each m ∈ [0, q] and k ∈ [1,K], a lower bound V (Ck,m) for the WCSS of the
cluster Ck is computed, regarding all the possibilities of assigning any m points of
U to Ck. This bound is computed taking into account either the distances between
unassigned and assigned points or the distances between unassigned points. For the
bound on distances between unassigned points, an estimation based on the smallest
distances is used.

2. For each m ∈ [0, q] and k ∈ [2,K], a lower bound V (C1 . . . Ck,m) for the WCSS of
the clusters C1, . . . , Ck is computed, regarding all the possibilities of assigning any
m points of U to k clusters C1, . . . , Ck.

An assignment of m points to k clusters corresponds to an assignment of i points to



54 Chapter 4. Declarative Approach for Constrained Clustering

k − 1 first clusters and m− i points to the last one. Therefore:

WCSS(C1..Ck,m) ≥ min
i∈[0,m]

(WCSS(C1..Ck−1, i) +WCSS(Ck,m− i))

A lower bound V (C1..Ck,m) can be defined by:

V (C1..Ck,m) = min
i∈[0,m]

(V (C1..Ck−1, i) + V (Ck,m− i)) (4.4)

This bound is computed using a dynamic program for each k ∈ [2,K] and m ∈ [0, q].

A lower bound for V this therefore max(V.lb, V (C1 . . . CK , q)). The complexity of the first
step is O(Kq2 log q+ qN) and for the second step is O(Kq2). The complexity of the lower
bound computation is therefore O(Kq2 log q + qN).

Filtering decision variable domains. For each value k ∈ [1,K], for each unassigned
variable Gi, if k ∈ Dom(Gi), under the assumption that point i is assigned to cluster Ck,
a new lower bound V.lb′ is computed.

Let C ′k be the cluster Ck ∪ {i} and let C′ = {Cc | c 6= k} ∪ {C ′k}. A new lower bound
V.lb′ is the value V (C′, q − 1), since there remains q − 1 points of U\{i} to be assigned.
According to (4.4):

V (C′, q − 1) = min
m∈[0,q−1]

(V (C′\{C ′k},m) + V (C ′k, q − 1−m))

For all m ∈ [0, q− 1], the bounds V (C′\{C ′k},m) and V (C ′k,m) are revised in making use
of the informations computed in the first step (the computation of the lower bound V.lb).
If V (C′, q−1) ≥ V.ub, point i cannot be assigned to cluster k. The value k is then removed
from Dom(Gi).

The complexity of filtering decision variable domains is O(Kq2). The total complexity
of the filtering algorithm is therefore O(Kq2 log q + qN).

Experiment results. The constraint was used in the second model [Dao et al. 2017]
and the system was implemented using Gecode 4.2.7. The model was compared to the ap-
proach based on Integer Linear Programming and column generation [Babaki et al. 2014],
which was the state-of-the-art method for WCSS with user-constraints. To generate user
constraints, pairs of objects are randomly drawn and either a must-link or a cannot-link
constraint is created depending on whether the objects belong to the same class or not. The
process is repeated until the desired number for each kind of constraints is reached. For
each number of constraints, five different constraint sets are generated for the tests. Table
4.6 presents results when the same number #c of must-link and cannot-link constraints
are added and Table 4.7 for the case when cannot-link constraints are used. Informations
given are on the mean execution time µ in seconds, the coefficient of variation σ/µ for the
five tests and the percentage of tests for which each system completes the search within
the timeout of 30 minutes. We can see that our approach outperforms ILP in all the cases
and makes better uses of the user-constraints.

Our approach was compared to the COP-kmeans algorithm [Wagstaff et al. 2001],
which extends k-means algorithm to must-link and cannot-link constraints. This algo-
rithm is based on a greedy strategy to find a solution that satisfies all the constraints.



4.3. Global Optimization Constraints for Clustering 55

#c CP ILP
µ σ/µ µ σ/µ

25 969.33 51.98 % - -
50 43.85 46.67 % - -
100 0.41 49.80 % 107 72.35 %
150 0.06 22.60 % 0.8 50.00 %

#c CP ILP
µ solved µ solved

100 10.32 100 % - 0 %
125 0.35 100 % 497.60 100 %
150 0.12 100 % 13.98 100 %

Table 4.6: Time in seconds for Iris dataset (left) and Wine dataset (right) with #c must-
link and #c cannot-link constraints.

#c CP ILP
µ solved µ solved

50 1146.86 20 % - 0 %
100 719.53 80 % - 0 %
200 1130.33 40 % - 0 %
300 743.64 60 % - 0 %

Table 4.7: Iris dataset with #c cannot-link constraints.

When there are only must-link constraints, COP-kmeans always finds a partition satisfy-
ing all the constraints, which is a local optimum of WCSS. Nevertheless, when considering
also cannot-link constraints, the algorithm may fail to find a solution satisfying all the
constraints, even when such a solution exists.

We perform the same tests, but for each set of constraints, COP-kmeans is run 1000
times and we report the number of times COP-kmeans has been able to find a partition.
Figure 4.2 shows the percentage of successes when cannot-link constraints are added (left)
and when #c must-link and #c cannot-link constraints are added (right). We can see
that when the number of constraints increases, COP-kmeans fails more frequently to solve
the problem. Our CP model always find a solution satisfying all the constraints. With
cannot-link constraints, our model succeeds in proving the optimality for roughly 60 %
cases for Iris (Table 4.7). With must-link and cannot-link constraints, it succeeds in all
the cases for Iris dataset and in all the cases where #c ≥ 100 for Wine dataset, as shown
in Table 4.6.

Figure 4.2: COP-kmeans with cannot-link (left), with #c must-link and #c cannot-link
constraints (right)



56 Chapter 4. Declarative Approach for Constrained Clustering

Figure 4.3: Effect with different criteria. A: intuitive groups; B: complete link; C: single
link; D: WCSS

4.4 Bi-objective Constrained Clustering

We consider bi-objective clustering problem that simultaneously minimizes the maximal
diameter of the clusters and maximizes the minimal split between clusters, under a set of
user-constraints. Exploiting the flexibility of handling different kinds of user-constraints
of our framework based on CP, we have developed an algorithm to find the exact Pareto
front. In our knowledge, it is the first method for bi-objective constrained clustering. This
work was published in [Dao et al. 2014a, Dao et al. 2017].

4.4.1 Bi-objective Clustering

Clustering with the criterion of minimizing the maximal diameter aims at finding homo-
geneous clusters, but it often suffers from the dissection effect [Cormack 1971], i.e. quite
similar objects may be classified in different clusters, in order to keep the diameters small.
On the other hand, clustering with the criterion of maximizing the minimal split, which
aims at finding well separated clusters, often suffers from the chain effect [Johnson 1967],
i.e. a chain of close objects may lead to group very different objects in the same cluster.
The popular WCSS criterion, which minimizes the sum of the squared distances between
points and the center of their cluster also suffers from undesirable effects. Considering
this criterion, objects that should be in a large group may be classified in different clusters
in order to keep this sum small. Figure 4.3 gives an illustration of these effects. Image
A shows three groups that can be easily identified. Image B shows the obtained solution
with the diameter criterion when the number of clusters is set to 3. In this partition,
some points are very close but they are classified in two different groups. The partition
obtained when considering the split criterion is shown in Image C. Because of the chain
effect, the largest group contains points that are very far each from other. The optimal
solution with the WCSS criterion is shown in Image D. In this partition, some points that
are very close are grouped in different clusters.

A good partition with homogeneous and well-separated clusters should have a minimal
diameter and a maximal split. Unfortunately, such a partition in general does not exist,
since the two criteria are often conflicting. This problem can be modeled by considering



4.4. Bi-objective Constrained Clustering 57

Figure 4.4: Pareto optimal solutions

the bi-criterion of maximizing the minimal split between clusters and minimizing the
maximal diameter, as introduced in [Delattre & Hansen 1980]. Considering these two
criteria together is natural and allows to capture both the homogeneity and the separation
requirements for a good clustering. A general approach for handling two optimization
criteria is to find the Pareto optimal solutions. A Pareto optimal solution is a solution
such that it is not possible to improve the value of one criterion without degrading the
value of the other one. If the user specifies a function on the criteria to optimize, for
example max(S/D) or min[αD − (1 − α)S] with 0 ≤ α ≤ 1, the optimal solution will be
among the Pareto optima.

Let us consider, for instance, the example given in Figure 4.3. When the number of
classes is set to 3, a complete and minimal set of Pareto solutions is given in Figure 4.4.
If the ratio S/D is minimized, the optimal solution is solution 5, which is the one that fits
the best the intuitive groups. The user can specify conditions on the desired solutions.
If for instance it is specified that points 5 and 14 must be in the same cluster, then only
solutions 5 and 6 are found. If another condition is added, requiring the size of each group
to be at least 2, only solution 5 is found.

A bi-criterion clustering algorithm finding a complete and minimal set of Pareto solu-
tions for different values of the number k of clusters is proposed in [Delattre & Hansen 1980].
When k = 2, an exact polynomial algorithm is proposed in [Wang et al. 1996, Wang & Chen 2012].
However, to the best of our knowledge, there is no algorithm dealing with this bi-criterion,
while supporting various kinds of user constraints.

For the split-diameter bi-criterion optimization without user-constraints, an algorithm
finding a complete and minimal set of Pareto optimal solutions, which are partitions with
at most kmax clusters, is proposed in [Delattre & Hansen 1980]. It is proved that for n
points, regardless of the number of classes k, regardless of the partition, the split value



58 Chapter 4. Declarative Approach for Constrained Clustering

can be found among the edges of the minimum weight spanning tree which is constructed
from the matrix of dissimilarities between objects. These values are ordered decreasingly
and the split s will take value in this order. On the other hand, the diameter value is one
of the dissimilarities between two objects. All the dissimilarities are ordered decreasingly
and the diameter d will take value in this order. Each couple (s, d) is considered and in
case without conflict will induce a graph. Graph coloring on the induced graph helps to
find a partition with minimum number of clusters (this number is the chromatic number
of the induced graph). The algorithm finds a complete and minimal set of Pareto optimal
solutions. Each solution is a partition with at most kmax classes.

In the case of bi-partition (k = 2), an exact polynomial algorithm to find Pareto
optimal solutions is proposed in [Wang et al. 1996, Wang & Chen 2012]. For k > 2,
[Wang & Chen 2012] also offers a 2-approximation algorithm. These two algorithms are
both based on the principle of [Delattre & Hansen 1980]: a spanning tree is built to find
the possible values for split and graph coloring tests are used to verify if a dissimilarity can
be the maximal diameter. However none of these bi-criterion cluster analysis approaches
does support any kind of user-constraints.

Multi-view spectral clustering is an extension of spectral clustering to multi-view
datasets. Instead of combining different views into a single objective function, David-
son et al. propose in [Davidson et al. 2013] a natural formulation that treats the problem
as a multi-objective problem and solve it using Pareto optimization.

4.4.2 Bi-objective Optimization and Exact Pareto Front Computation

In a decision problem, several criteria usually need to be optimized together. Although the
criteria could be combined together in a single criterion to be used in a mono-objective
problem, the simplification in general may not present faithfully the different aspects
of the initial problem. Multi-objective optimization problems consider the simultaneous
optimization of two or more objectives. A multi-objective optimization problem is defined
by [Miettinen 1998]:

minimize {f1(x), . . . , fm(x)}
such that x ∈ S

where m ≥ 2 objective functions fi : Rn → R are optimized. The vector x ∈ Rn is
composed by n decision variables. S is a non empty set of feasible solutions, which is
a subset of the decision space Rn. The vector of the objective functions or the criteria
f(x), also named by z, denote (f1(x), . . . , fm(x))T . The criterion space Z is defined by
{f(x) | x ∈ S}.

The objective functions are simultaneously optimized. If they are compatible, one
optimal solution will be found where all the objectives reach their optimality. However in
general the objective functions are contradictory and there does not exist a solution that
optimizes all the functions at the same time. In the multi-objective context, one is usually
interested in the criteria space and in comparing the vectors in this space. A relation
which is usually used for the comparison is the Pareto dominance.

Definition 4.1 (Dominance relation) Let f(x1) and f(x2) be two vectors of Z. We say
f(x1) dominatesf(x2) and denoted by f(x1) ≺ f(x2), or x1 dominates x2, denoted by
x1 ≺ x2, if and only if fi(x1) ≤ fi(x2) for all i ∈ [1,m] and at least one inequality is
strict.



4.4. Bi-objective Constrained Clustering 59

The solutions that dominate the others but do not dominate themselves are called Pareto
optimal solution. These solutions are such that we cannot improve an element of the
vector without deteriorate at least another element.

Definition 4.2 (Pareto optimality) A vector x is Pareto optimal if there does not exist
x′ such that x′ dominates x. The est of Pareto optima is denoted by P.

Definition 4.3 (Pareto front) The Pareto front F is the set {f(x) | x is a Pareto optimal}.

Different methods were developed to solve multi-objective optimization problems
[Miettinen 1998, Collette & Siarry 2002]. One of them is the method ε-constraint, intro-
duced in [Haimes et al. 1971]. In this method, one of the objective functions is chosen to
optimize, a vector of constraints is given which allows to transform the other objective
functions into inequality constraints. The problem becomes:

minimize fl(x)

such that fj(x) ≤ εj , for all j ∈ [1,m], j 6= l

x ∈ S

It is proven in [Miettinen 1998] that the ε-constraint method allows to compute the exact
Pareto front, as soon as we have the appropriate value for each εj . The choice of the value
for εj becomes however very hard for general problems.

We focus now on bi-objective optimization problems, f(x) = (f1(x), f2(x))T . Without
loss of generality, let us assume that f1(x) is to minimize and f2(x) to maximize. Let us
assume that S is finite and 0 ≤ f1(x) < ∞ and 0 ≤ f2(x) < ∞ for all x ∈ S. We define
two sub-problems

P1(f2 > ε2):

minimize f1(x)

such that f2(x) > ε2
x ∈ S

P2(f1 ≤ ε1):

maximize f2(x)

such that f1(x) ≤ ε1
x ∈ S

By choosing for ε the value of the objective function on a solution found, the ε-
constraint method can be achieved by Algorithm 5. This algorithm is similar with the one
in [Bérubé et al. 2009]. One observation is that several steps may improve the value of

Algorithm 5: Computing exact Pareto front
1 P ← ∅
2 ε2 ← 0

3 repeat
4 x∗ ← solve P1(f2 > ε2)

5 ε2 ← f2(x∗)

6 if x∗ is not dominated in P then
7 P ← P ∪ {x∗}

8 until x∗ = NULL;
9 Return P

f2, but the value of f1 remains unchanged. This implies that the solution x∗ fount at step



60 Chapter 4. Declarative Approach for Constrained Clustering

i dominates the solution x∗i−1 found at step i− 1, but is itself dominated by the solution
x∗i+1 found at step i + 1. Therefore we developed Algorithm 6 that optimizes iteratively
both objective functions. At each step, one objective function is optimized, the value of
the other objective function is used as a new constraint. We showed that this algorithm
computes the exact Pareto front.

Algorithm 6: Computing exact Pareto front by successive optimizations
1 P ← ∅;
2 i← 1;
3 y∗i ← solve P1(f2 > −1);
4 while y∗i 6= NULL do
5 x∗i ← solve P2(f1 ≤ f1(y∗i )) ;
6 P ← P ∪ {x∗i };
7 i← i+ 1;
8 y∗i ← solve P1(f2 > f2(x∗i−1));

9 Return P

4.4.3 Diameter-Split Bi-objective Constrained Clustering

We consider a constrained clustering task under a set C of user constraints that aims at
simultaneously minimizing the maximal diameter of the clusters and maximizing the split
between clusters. Since our framework using CP allows to choose one among different
optimization criteria and to add user constraints, it can be directly used in Algorithm 6 to
solve this problem. The integration to solve diameter-split constrained clustering is shown
in Algorithm 7. The function Maximize_Split(C) or Minimize_Diameter(C) means the
use of our CP model with the optimization criterion of maximizing the split or minimizing
the diameter, respectively, and with the set of constraints C. It returns an optimal solution
which satisfies all the constraints in C, if there exists one, or NULL otherwise.

Algorithm 7: Algorithm computing a complete and minimal set P = {∆S
1 , . . . ,∆

S
m}

of Pareto optimal solutions
1 Input: C, a set of user constraints
2 P ← ∅;
3 i← 1;
4 ∆D

i ← Minimize_Diameter(C);
5 while ∆D

i 6= NULL do
6 ∆S

i ← Maximize_Split(C ∪ {D ≤ D(∆D
i )}) ;

7 P ← P ∪ {∆S
i };

8 i← i+ 1;
9 ∆D

i ← Minimize_Diameter(C ∪ {S > S(∆S
i−1)}) ;

10 Return P

Minimize_Diameter (resp. Maximize_Split) searches for a partition minimizing the
diameter (resp. maximizing the split) among the partitions satisfying the set of constraints



4.4. Bi-objective Constrained Clustering 61

Dataset #Sol bGC CP2

Iris 8 4.2 < 0.1

Wine 8 0.9 < 0.1

Glass 9 21.5 0.4

Ionosphere 6 1.8 2.6

User Knowledge 16 23.6 12.8

Breast Cancer 7 167.5 1.1

Synthetic Control 6 − 6.7

Vehicle 13 − 5.5

Yeast − − −
Multi Features 15 − 229.1

Image Segmentation 8 − 41.3

Waveform − − −

Table 4.8: Runtime in seconds with bi-criterion Split-Diameter

given as argument. Let us recall that there may exist several partitions optimizing a
criterion but our model returns the first one found. Nevertheless it is later possible to
apply our model with no optimization criterion but with the constraint that the diameter
of the partitions must be this optimum and the algorithm will enumerate all the partitions
satisfying this constraint. In this way, given an element (Di, Si) in the Pareto front, our
model without optimization criteria, but with the constraints C ∪ {D = Di, S = Si}, will
enumerate all the partitions ∆ that satisfy C and such that D(∆) = Di and S(∆) = Si.

Experiment results. In the case without user-constraints, we compare our method with
the bi-criterion clustering algorithm based on graph coloring [Delattre & Hansen 1980]
(denoted bGC). Since no implementation of the program was available, we have coded it
in C++. To our knowledge, this is the only exact algorithm for K ∈ [Kmin,Kmax]. In
the experiments, the datasets in Table 4.1 are used and the timeout is set to 1 hour. The
number of classes K varies between 2 and the real number of classes. Table 4.8 gives the
results of the experiments. The second column (#Sol) gives the number of Pareto optimal
solutions found, or equivalently, the number of elements in the complete Pareto front. The
following columns give the runtime of each approach in seconds. The two programs are
exact and they find the same Pareto front. It is clear that our model is the most efficient
in most cases. It takes advantage of the efficient constraint propagation mechanism to
reduce the search space. As in the case of GC, the algorithm bGC is limited to datasets
with less than 500 points.

For the experiments with user-constraints, we have generated randomly 80 user con-
straints for dataset Iris. Figure 4.5 presents the Pareto front, for five cases of 0 to 80
user-constraints. The first test is without user-constraints, the second one is with the
first 20 user-constraints, the third one with the first 40 constraints and so on. As more
and more user-constraints are added, the number of feasible solutions decreases and as a
result, the criterion space changes significantly. Since we have generated user-constraints
from the real partition, it is obvious that the point (Dr, Sr) corresponding to the real
partition must be in the region delimited by each Pareto front. Therefore it must be in



62 Chapter 4. Declarative Approach for Constrained Clustering

Figure 4.5: Bi-criterion constrained clustering with dataset Iris

the region delimited by the Pareto front with 80 constraints. We can see that without
user-constraints, there are many points in the Pareto front but all of them are very far
from (Dr, Sr). For that reason, it is useful to enable user-constraints for the task of bi-
criterion clustering. Moreover, given an element (Di, Si) in the Pareto front, our model
can be used to enumerate all Pareto optimal solutions that have the maximum diameter
Di and the minimum split Si. For example, considering the Pareto front in the case of 80
instance-level constraints, it is composed of two points, which correspond respectively to
8704 and 4352 partitions.

4.5 Summary

We have developed a declarative framework for constrained clustering, using constraint
programming. This approach has the advantage of allowing several optimization crite-
ria and various types of user-constraints. Two main principes that make the power of
constraint programming are constraint propagation and search. We have exploited these
principes by developing dedicated global optimization contraints and filtering algorithms,
as well as search strategies. We show that our approach has the best performance com-
pared to existant exact constrained clustering approaches. We show that the flexibility of
our framework enables a method for bi-objective constrained clustering problem.



Chapter 5

Beyond Constrained Clustering

Contents
5.1 Combining Dissimilarity-Based and Conceptual-Based Constraints 64

5.1.1 Conceptual Constrained Clustering . . . . . . . . . . . . . . . . . . . 64
5.1.2 Models for Dissimilarity and Conceptual Constrained Clustering . . 66

5.2 Actionable Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 Constraints Categorization . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 A CP Formulation for Actionable Clustering . . . . . . . . . . . . . 72
5.2.3 Analyzing the Use of Constraints . . . . . . . . . . . . . . . . . . . . 74

5.3 Minimal Clustering Modification . . . . . . . . . . . . . . . . . . . 80
5.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 A CP Model for Minimal Clustering Modification . . . . . . . . . . . 83
5.3.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Repetitive Branch-and-Bound using CP for WCSS . . . . . . . . 88
5.4.1 Repetitive Branch-and-Bound Algorithm . . . . . . . . . . . . . . . 89
5.4.2 Extension of RBBA to User-Constraints . . . . . . . . . . . . . . . . 90
5.4.3 A Framework Using CP . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Constrained Clustering for Time-Series Data . . . . . . . . . . . . 96
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Declarative approach using constraint programming enables the modeling of different
clustering tasks as well as the integration of different types of constraints. A CP model
for clustering can also be seen as a task inside a more general process. Exploiting these
advantages we have explored further the use of constraints in more general clustering prob-
lems. This chapter presents different aspects of generalizing the approach using CP beyond
constrained clustering. This work enjoys various collaborations: Tias Guns (Katholieke
Universiteit Leuven), Ian Davidson, Chia-Tung Kuo (University of California, Davis), S.
S. Ravi (University at Albany), Pierre Gançarski, Thomas Lampert (University of Stras-
bourg), Khanh-Chuong Duong, Willy Lesaint, Nicolas Serrette, Christel Vrain (University
of Orléans).

The chapter is organized as follows. On the modeling side, we explore the use of con-
straint programming in more general clustering tasks. In Section 5.1, a CP framework is
presented for clustering problems that combine both dissimilarity-based and conceptual-
based constraints or criteria. Sections 5.2 and 5.3 present two other new clustering prob-
lems and our approach using CP for them. In Section 5.2, actionable clustering problem
is developed where constraints can be given on properties to make clustering useful. Sec-
tion 5.3 presents minimal clustering modification problem, which takes in input a clustering



64 Chapter 5. Beyond Constrained Clustering

and aims at finding a clustering with minimal changes while removing undesirable prop-
erties. On the effectiveness side, Section 5.4 addresses the constrained clustering problem
with the well-known within cluster sum of squares criterion. We present an extension
of RBBA, an unconstrained clustering algorithm, to user-constraints and show that the
combination of this algorithm with constraint programming outperforms all existent ap-
proaches. On the application side, Section 5.5 analyzes the use of our work in the context
of constrained clustering on time-series data.

5.1 Combining Dissimilarity-Based and Conceptual-Based Con-
straints

Dissimilarity based clustering defines the homogeneity of the clusters based on a dissim-
ilarity measure between each pair of objects. In general, the Euclidean distance is used
when all the attributes are numerical. The interpretability of the clusters is however often
difficult, since the influence of the attributes is aggregated in the dissimilarity measure.
Another clustering setting is conceptual clustering, when the objects are described by
qualitative attributes, usually boolean descriptors. The aims is to group all the objects
into clusters, such that each cluster can be identified by a set of descriptors that defines all
the objects of the cluster. The interpretation of the clusters is therefore straightforward,
but numerical attributes must be discretized to be qualitative attributes. The way at-
tributes are discretized has a very strong influence on the result. We aim at exploiting the
advantages of both approaches, when data is described by qualitative and/or quantitative
attributes. We have generalized the framework using CP to integrate optimization crite-
ria and constraints, which can be either concept based or dissimilarity based. Existent
models using CP for conceptual clustering used binary variables. Our model distinguishes
itself by taking advantage of set variables and set constraints to express conceptual con-
straints. This work was developed in collaboration with Willy Lesaint and Christel Vrain
[Dao et al. 2015b].

5.1.1 Conceptual Constrained Clustering

Let O be a set of N objects. We aim at partitioning O into homogeneous clusters. The
homogeneity is defined by an optimization criterion and the clustering task searches for a
partition C that optimizes it. For each cluster c ∈ C, Oc denotes the set of the objects in
the cluster.

In conceptual clustering setting, the objects are described by a set of binary attributes
A = {a1, ..., am}. In the transactional database terminology, objects are called transac-
tions and attributes are called items. Each object o ∈ O is represented by a set to ⊆ A of
attributes that the object satisfies (set of items that the transaction contains). The data
can be expressed by a n×m binary matrix such that ∀o ∈ O,∀a ∈ A, toa = 1 if and only
if object o satisfies attribute a.

Two notions extension and intention are defined. The extension of a set of attributes
A ⊆ A is the set of the objects having all the attributes in A: ext(A) = {o ∈ O | A ⊆ to}.
The intention of a set of objects O ⊆ O is the set of the attributes satisfied by all the
objects in O: int(O) = {a ∈ A | ∀o ∈ O, a ∈ to}. A cluster c is represented by a couple



5.1. Combining Dissimilarity-Based and Conceptual-Based Constraints 65

(Oc, Ac), where Oc ⊆ O and Ac ⊆ A. Here Oc is the set of objects in the cluster and Ac
the set of attributes that characterizes the cluster. A cluster c is a concept in sense of
Formal Concept Analysis if and only if Oc = ext(Ac) and Ac = int(Oc). This condition
defines a closure property A = int(ext(A)).

Let us consider for instance a dataset O of five objects described on the attributes
A = {a1, . . . , a4} as follows.

a1 a2 a3 a4

o1 1 1 1 0

o2 1 1 0 0

o3 1 1 0 1

o4 1 0 1 1

o5 0 1 1 1

The cluster ({o1, o2}, {a1, a2}) is not closed, since o3 satisfies also a1 and a2. On the
other hand, the clusters ({o1, o2, o3}, {a1, a2}) and ({o4, o5}, {a3, a4}) are closed and are
therefore concepts. The requirements of conceptual clustering tasks are expressed by
constraints and optimization criteria [Guns et al. 2013, Guns et al. 2011] as follows.

Concept based constraints.

• The extension constraint states that for all c ∈ C, we must have Oc = ext(Ac). Let
us notice that Oc ⊆ ext(Ac) means that each object in Oc has all the attributes of
Ac and ext(Ac) ⊆ Oc means that no other object of O\Oc has all these properties.
Since C is a partition, with the extension constraint, there do not exist two clusters
c and c′ such that Ac′ ⊆ Ac. Indeed, if there exist c 6= c′ such that Ac′ ⊆ Ac, so
ext(Ac) ⊆ ext(Ac′), we then have Oc = ext(Ac) ⊆ ext(Ac′) = Oc′ , which contradicts
that Oc ∩Oc′ = ∅.

• The intention constraint states that for all c ∈ C, we must have Ac = int(Oc).

• The closed constraint requires that each cluster is a concept, in sense of Formal
Concept Analysis: ∀c ∈ C, Oc = ext(Ac) ∧ Ac = int(Oc).

• A cluster size constraint, also called frequent constraint requires that each cluster
must have at least/at most a number of objects: ∀c ∈ C, |Oc| ≶ b.

• A concept size constraint requires that each cluster must be characterized by at
least/at most a number of attributes: ∀c ∈ C, |Ac| ≶ b.

Concept based optimization criteria. In order to search for a more balanced set of
clusters, the following optimization criteria are proposed:

• maximizing the size of the smallest cluster, in order to balance the size of the clusters:
maximize(min{|Oc| | c ∈ C}).

• maximizing the size of the smallest concept, in order to balance the size of the
concepts: maximize(min{|Ac| | c ∈ C}).



66 Chapter 5. Beyond Constrained Clustering

The seminal work that developed a declarative framework for itemset (pattern) min-
ing using CP was [De Raedt et al. 2008]. Other frameworks for itemset mining have been
developed based on SAT [Métivier et al. 2012b, Jabbour et al. 2013] or Answer Set Pro-
gramming [Järvisalo 2011]. Itemset mining has been then generalized to k-pattern set
mining, formalizing in this way conceptual clustering. In [Guns et al. 2013], k-pattern
set mining tasks are modeled in Constraint Programming, as well as most of classical
tasks in Data Mining. Conceptual clustering is represented by a k-pattern set mining task
with specific constraints. In the same line, a constraint-based language is proposed in
[Métivier et al. 2012a]. Conceptual clustering tasks can be formulated by queries in this
language, which are translated into SAT clauses and solved by a SAT solver. In our knowl-
edge, until our work, no work however had integrated both conceptual and dissimilarity
based settings. Recent work has developed efficient formulations for conceptual clustering
using integer linear programming [Ouali et al. 2016]. Exploiting further the use of set con-
straints as in our model, a formulation using constraint programming has recently been
developed in [Chabert & Solnon 2017] for conceptual clustering and bi-objective concep-
tual clustering.

5.1.2 Models for Dissimilarity and Conceptual Constrained Clustering

We have developed a framework that enables the consideration of heterogenous data, which
can be characterized by both numerical (quantitative) attributes and symbolic (qualita-
tive) attributes. The user can specify among the attributes the ones used to define concepts
and the ones used to compute the dissimilarity measure. The framework therefore offers
a variety of modeling tasks that are purely conceptual or dissimilarity-based constrained
clustering or that raise from conceptual (or relational) clustering in which relational (or
conceptual, resp.) constraints are integrated.

The framework is generalized from our CP model for relational constrained clus-
tering to integrate conceptual constraints. We present two models for conceptual con-
straints: a model using binary variables which is a direct extension of the work by
[De Raedt et al. 2008, Guns et al. 2011] and a new model using set variables and set con-
straints.

5.1.2.1 Model Using Binary Variables

The model is an extension of the model presented in Subsection 4.2.2. The composition
of the clusters is defined by an integer variable Go for each object o ∈ O, where Go = c

means object o is assigned to cluster c. To represent the attributes associated to each
cluster, in the same way as [Guns et al. 2013], we use binary variables A : C ×A → {0, 1}.
Here Aca = 1 means attribute a is in Ac, the set of attributes that characterizes cluster
c. Therefore k ×m binary variables are needed, where k is the number of clusters and m
the number of attributes.

Conceptual constraints are expressed as follows.

• Constraint on concept size:

∀c ∈ C,
∑
a∈A

Aca ≶ b (5.1)



5.1. Combining Dissimilarity-Based and Conceptual-Based Constraints 67

where b is the bound on the size. This constraint is expressed using k linear con-
straints.

• Extension constraint:

∀o ∈ O,∀c ∈ C, Go = c⇔
∑

1≤a≤m
Aca(1− toa) = 0 (5.2)

This is expressed using n × k reified constraints, each one is linked with a linear
constraint on A.

• Intention constraint:

∀c ∈ C,∀a ∈ A, Aca ⇔
∑

1≤o≤n
(Go = c)(1− toa) = 0 (5.3)

This constraint is expressed using m× k reified constraints.

• Closed constraint: By definition, this constraint on C is expressed by the constraints
(5.2) and (5.3), which represent respectively the extension and intention constraints
on the clusters of C.

For the optimization criterion that maximizes the minimal concept size, an integer variable
T is introduced with the domain [1,m]. The value of T is maximized, and the following
constraints express that T is the minimal size of the concepts:

∀c ∈ C, T ≤
∑
a∈A

Aca

5.1.2.2 Model Using Set Variables

In this model, set variables are used to define the set of attributes associated to each
cluster E : C → P(A). For each cluster c ∈ C, a set variable Ec is defined. Its value is
Ec ⊆ A and its domain is P(A).

The data is represented using the initial set representation: each object o ∈ O is
characterized by the set to of the attributes it satisfies. The constraints are expressed as
follows.

• Concept size constraint: bound on concept size is expressed naturally by a cardinality
constraint

∀c ∈ C, |Ec| ≶ b

• Extension constraint:

∀c ∈ C, ∀o ∈ O, Go = c⇔ Ec ⊆ to

This is expressed by n × k reified constraint, each one is linked with an inclusion
constraint.



68 Chapter 5. Beyond Constrained Clustering

• Intention constraint:
∀c ∈ C, Ec = ∩Go=cto

Each constraint Ec = ∩Go=cto is expressed by n reified domain constraints dom to
construct the set Ic = {o ∈ O | Go = c} and a set version element constraint to state
the relation Ec = ∩(〈t1, ..., tn〉[Ic]). The last relation means the intersection is done
with the set ti such that i ∈ Ic.

For the optimization criterion that maximizes the minimal concept size, a variable T of
domain [1,m] is introduced. Its value is maximized and the following constraints link it
to the size of the concepts:

∀c ∈ C, T ≤ |Ec|

5.1.2.3 Experiment Results

The models was implemented using Gecode version 4.2.1. The dataset Automobile avail-
able on the UCI repository1 was used. After removing incomplete instances, this dataset
contains 193 objects (automobile models) and 23 attributes. Among the attributes, 22
attributes (9 symbolic et 13 numerical) represent technical features of the vehicles. For
instance, a vehicle is characterized by its type of engine (gas oil or gas), the drive wheels
(4 wheels, 2 front or 2 rear), the horse-power (from 48 to 288), etc. The last attribute
is the price (from 5118 to 45400). This attribute is chosen to define the dissimilarity
measure. The technical features are discretized into 64 binary attributes (for each numer-
ical attribute, two attributes are created to divide the vehicles according to their position
relative to the median).

Comparison between binary and set models. The models were compared with
three cases of constraints: intention, extension and closed. The optimization criterion was
minimizing the maximal diameter. The performances are reported in Table 5.1 (timeout
was set to 3 hours, the character _ means the search was not completed after timeout).
The results highlight the efficiency of the set model. In the binary model, the use of reified
constraints linked with linear constraints does not give sufficient propagation. The use of
inclusion constraint in set model offers much better propagation, the number of explored
nodes is much less important.

Benefits of the unified framework. Experiments was done on this dataset with con-
ceptual clustering, relational clustering and combinations of both. The aim is to interpret
the obtained concepts for 2 or 3 clusters according to the price. Test (e) and (f) are in con-
ceptual setting, with the closed constraint and maximizing the minimal cluster size (e) or
maximizing the minimal concept size (f). Test (g) is in relational setting, with minimizing
the maximal cluster diameter. Test (h) combines the closed constraint and minimizing the
maximal diameter. Results are given in Table 5.2. We can observe that tests (e) and (f)
in conceptual setting give cluster of balanced size, but while one would hope that prices
are correlated with technical features, the clusters have large distribution on price. Test
(g) in relational clustering gives clusters with small diameter but of unbalanced sizes and
unbalanced concept sizes. The difference between cluster size can be explained by very

1http://archive.ics.uci.edu/ml



5.1. Combining Dissimilarity-Based and Conceptual-Based Constraints 69

Constraint k
Binary model Set model

time(s) #nodes time(s) #nodes

intention
2 0.10 2338 0.14 2877
3 0.63 15109 0.55 13986

extension

2 0.03 79 0.03 52
3 8.40 145098 0.08 979
4 6960 >1M 0.55 8636
5 _ _ 2.49 36264

closed

2 0.03 24 0.03 47
3 13.50 72494 0.15 963
4 9900 >1M 1.29 8585
5 _ _ 5.47 36057

Table 5.1: Performance of binary and set models

Test method clust. size concept size diam.
(e) conceptual 63 66 64 3 3 3 38615
(f) conceptual 68 61 64 3 3 3 38615
(g) relational 161 20 12 1 5 10 13226
(h) combination 72 108 13 4 2 5 33550

Table 5.2: Results with k = 3

important differences between the prices in top-of-the-range cars. Note that using all the
attributes for computing the dissimilarities does not provide more balanced cluster size.
Test (h) provides more balanced clusters. They are more representative of the different
ranges of the vehicles than the conceptual tests.

Tests (i) and (j) in Figure 5.1 highlight the interest of the unified framework thanks
to user constraints and a better use of dissimilarities. Test (i) added to (h) two user
constraints: a cluster size of at least 40 and a concept size of at least 2. Compared to
test (h), it obtains more balanced cluster sizes. In Test (j), we consider that a top-of-
the-range vehicle is both expensive and powerful. The dissimilarity is computed on price
and horse-power. Using the same constraint as test (i), the obtained results show a better
distribution of the objects and well defined concepts.

Test clust. sizes concept sizes diam.
(i) 57 95 41 2 2 4 36479
(j) 42 56 95 7 3 2 38411

Figure 5.1: Cluster size and distribution of objects/cluster for (i) and (j)



70 Chapter 5. Beyond Constrained Clustering

5.2 Actionable Clustering

Constrained clustering has been developed to integrate user-constraints into clustering
tasks. User-constraints can be instance-level or cluster-level constraints. Instance-level
must-link and cannot-link constraints are usually generated from the labels of a few
known instances, while cluster-level constraints are usually on the size or on the diame-
ter/separation of the clusters. However, in many domains experts can provide complex
constraints that are not generated from a ground truth, rather they capture what makes
the clustering useful in the domain. We have characterized new types of user-constraints
for this focus and we term clustering with these constraints actionable clustering. We show
that constraint programming offers a natural formulation for these kinds of constraints.
This work was presented in [Dao et al. 2016b] and was developed in collaboration with
Ian Davidson, Khanh-Chuong Duong and Christel Vrain.

5.2.1 Constraints Categorization

Previous work on constrained clustering is most suitable for the semi-supervised setting
where a few instances are labeled and the instance-level must-link and cannot-link con-
straints can be generated from them [Basu et al. 2008]. The data is then clustered under
small numbers of these constraints with the number of clusters equaling the number of
different labels. Performance is typically measured in terms of prediction: how well the
clustering found matches the ground truth clustering induced by the labels. However,
in many domains experts can provide complex constraints that are not generated from a
ground truth, rather they capture what makes the clustering useful in the domain.

Consider if you wish to cluster your ego network so as to find several useful groups
each of which you can invite to a different diner party. You may require that each cluster
must contain equal number of males and females, and the difference in term of age of a
cluster is at most 10 and that each person in a cluster should have at least 3 other people
sharing the same hobby. A clustering algorithm may find a useful grouping that results
in a successful party but is unlikely to unless we somehow encode what is required.

Existing instance-level constraints cannot be used to specify this type of guidance.
Consider the constraint that the number of males and females in each cluster should be
approximately equal. Since instance-level constraints are specified before the algorithm
execution they typically cannot constraint any property that dynamically changes dur-
ing the algorithm execution such as the cluster composition. Constraining cluster level
properties has probably not been well studied as it is challenging to do so in procedural
languages but can be elegantly performed in constraint programming, which we use in our
approach.

Up to this point we have discussed finding clusters which are actionable since they
meet a particular set of requirements. However, it is also likely that a clustering is ac-
tionable because it does not contain a set of properties. This idea of using negative
feedback was first explored in the alternative clustering literature [Qi & Davidson 2009,
Dang & Bailey 2010]. There the problem was given a good (according to the objective
function value) clustering Π which is not actionable (perhaps because it is trivial or in-
appropriate), find an alternative clustering Π′ such that Π′ has a good objective function
value but Π and Π′ are different using some sort of measure such as the Rand index.



5.2. Actionable Clustering 71

However, that work is limited in that how Π′ is different to Π is not controlled. Instead
with actionable clustering, if the existing clustering has undesirable properties such all
females in one cluster, we can explicitly require that females be equally distributed (i.e.
∀i, j CountFemale(πi) ≈ CountFemale(πj) where πi is the ith cluster).

The Actionable Clustering Problem. Consider the classic clustering problem. We
are given a dataset X where each instance x ∈ X is described by a vector of features f .
Typical objective functions include minimizing the vector quantization error (k-means),
minimizing graph cuts (spectral methods) if the data is represented as a graph and a simi-
larity measure is used, and optimizing cluster properties such as minimizing the maximum
cluster diameter. In our work we present the novel extension that each instance is further
described by a set of properties from which the definitions of what is actionable/interesting
is given. In our formulation to separate the features and properties we use the notation:
xfi and xpi to represent the features and properties of the ith instance respectfully. The
feature vectors X f are used to calculate the clustering objective function value and the
constraints are enforced on the property vectors X p. However, there is nothing stopping
the same attribute of an instance being in both vectors and used as both a feature and
property.

Formally the actionable clustering problem is formulated as finding a partition that
optimizes an objective function on X f and that satisfies all the constraints on X p. The
type of constraints we explore can be divided into four categories: i) cardinality, ii) density,
iii) geometric and iv) complex logical combination of these constraints. They are not the
only relevant ones but the most pragmatic in clustering: cardinality constraints are useful
for categorical attributes, density constraints for relational information and geometric
constraints for real value attributes. It is important to note that these constraints can be
applied simultaneously for multiple different properties on multiple clusters.

i) Cardinality constraints place a requirement on a count of the elements in a cluster
having a property. They may be as simple as each cluster should contain at least one
female to more complex variations such as the number of males must be no greater than
two times the number of females.

ii) Density constraints relate to a cardinality constraint in that it provides requirements
on a count of a property except not for an entire cluster but rather a subset of instances
in the cluster. For example, we may require each person have at least 10 people in his/her
cluster sharing the same hobby.

iii) Geometric constraints place an upper or lower bound on some geometric property
of a cluster or cluster combination. Examples include that the maximum diameter of a
cluster with respect to the age property is 10 years. This would prevent clusters containing
individuals with a wide range of ages.

iv) Complex logic constraints express logic combinations of constraints, which can be
instance-level or cluster-level constraints. For instance, we may require that any cluster
having more than 2 professors should have more than 10 PhD students.



72 Chapter 5. Beyond Constrained Clustering

5.2.2 A CP Formulation for Actionable Clustering

Our framework using CP for constrained clustering (cf. Section 4.2) can be extended
to integrate these categories of constraints. We present below schemes to express these
constraints using CP constraints.

Cardinality constraints. Cardinality constraints allow to express requirements on the
number of instances that satisfy some conditions in each cluster. The condition can be
for instance being more than 20 years old and the cardinality constraint can state that
each cluster must have more than 30 persons being more than 20 years old. The minimal
capacity constraint is then a special case of a cardinality constraint.

Given a condition, the set C of the instances that satisfy it can be computed and the
number of instances of C that are in a cluster k can be captured using the CP cardinality
constraint and a variable Yk:

#{i ∈ C | Gi = k} = Yk (5.4)

The constraint
∑K

k=1 Yk = |C| enforces the link between the variables Yk. Cardinality
constraints are then expressed by arithmetic constraints on Yk. Let us illustrate this by
an example.

• In each cluster, the number of teachers must be no less than half the number of
students. Let Ct and Cs be the sets of instances that are teachers and students,
respectively. For k ∈ [1,K], constraints similar to Equation (5.4) are put with the
variables Tk and Sk to capture the number of teachers or students in the cluster k.
These variables are linked by the constraint 2Tk ≥ Sk. The number of new variables
is 2K and the number of constraints is 3K + 1.

Density constraints. Density constraints provide bounds on the occurrence of some
properties on a subset of instances in each cluster. For instance, each person being more
than 20 years old should have in his/her cluster more than 5 persons sharing the same
hobby. Density constraints allow a more general form than the basic ε-ball count constraint
[Davidson & Ravi 2007]. To express this constraint, for each instance i ∈ [1, N ] which is
eligible (eg. more than 20 years old), the set of neighborhood instances NI(i) (eg. persons
having the same hobby) is determined. The number of instances of NI(i) in the same
cluster as i can be captured using the variable Zi and:

#{j ∈ NI(i) | Gj = Gi} = Zi (5.5)

Arithmetic conditions are then stated on Zi to express density constraints. Let us take
the following example.

• In the same cluster, each person should have at least 5 persons having the same hobby.
For each instance i, we compute the set NI(i) = {j ∈ [1, n] | hobby(i) = hobby(j)}.
The fact that there must be at least 5 other persons of NI(i) in the same cluster as
i means the value of Gi must be taken at least 6 times by the elements in NI(i).
Therefore the constraint of Equation (5.5) is put as well as the constraint Zi ≥ 6.

In these cases, the number of new introduced variables is N and the number of CP
constraints is 2N . Let us notice that the computation of the neighborhoods is done
only once before putting CP constraints.



5.2. Actionable Clustering 73

Geometric constraints. Geometric constraints allow to set bounds on some geometric
properties inside each cluster, or between the clusters. For instance, each cluster must
have a difference in age of at most 20. These properties therefore can be used to define a
dissimilarity measure and the diameter or split can be used to express these constraints.

A geometric constraint can also place a bound on the sum of all the values on some
properties inside each cluster, or a condition on the ranges of some properties of the
clusters. For instance, age ranges of the clusters should or should not overlap, or the total
sum of age in each cluster must not exceed some value.

• The average age in each cluster must not exceed 50. To express this constraint,
for each instance i and each cluster k, we introduce a boolean variable Bik ∈ {0, 1}
(0:false and 1:true). A reified constraint 2 Bik ↔ (Gi = k) is put, ie. Bik represents
whether or not instance i is in the cluster k. For each k ∈ [1,K], the sum of age Sk
and the cardinality Ck are linked by:∑

i∈[1,N ]

age(i)Bik = Sk and #{i ∈ [1, N ] | Gi = k} = Ck

The bound is therefore expressed by: Sk ≤ 50Ck. In this case, N × K boolean
variables (Bik), K float point value variables (Sk) and K integer value variable (Ck)
are introduced. This case is expressed by 3K CP constraints.

• Constraints on the property ranges of the clusters. We consider constraints that
state conditions on the ranges of the clusters on a property p. To capture the range
of a cluster, for each cluster k, we introduce the variables Mink and Maxk that
represent the minimal and the maximal values on the property p of the elements in
the cluster k. Let mp be the maximal value of the property p for all the instances.
The minimal and maximal values are linked by the following constraints:

Mink = mini∈[1,n](p(i)Bik +mp(1−Bik))
Maxk = maxi∈[1,n](p(i)Bik)

The constraint that the ranges on p of the clusters should not overlap can be ex-
pressed by putting, for any two clusters k, k′,

(Mink > Maxk′) ∨ (Mink′ > Maxk)

A constraint stating that the range of a cluster k must be included in the range of
another cluster k′ can be expressed by:

Mink ≥Mink′ and Maxk ≤Maxk′

This requires N × K boolean variables and 2K float point value variables. The
number of constraints is linear on K.

2A reified constraint on a constraint c, stated by B ↔ c, links the truth value of a constraint c to a
boolean variable B: B is 1 if the constraint c is satisfied, 0 if c cannot be satisfied, or B ∈ {0, 1} if the
satisfaction of c has not yet been determined.



74 Chapter 5. Beyond Constrained Clustering

Complex logic constraints. Complex logic constraints can be used to enhance the
expressivity power of formulating knowledge. This can be done in CP using reified and
Boolean constraints as shown by the following examples.

• Two instances 3, 9 are in the same cluster if the instances 11, 15 are in different
clusters. Two Boolean variables B1, B2 are introduced with the constraints: B1 ↔
(G11 6= G15), B2 ↔ (G3 = G9) and B1 ≤ B2.

• Any cluster having more than 5 professors must have at least 10 PhD students. For
each k ∈ [1,K], let Pk and Sk be the variables that capture the number of professors
and students in the cluster k, using cardinality constraints such as in Equation (5.4).
Two Boolean variables BPk and BSk are introduced and linked by BPk ↔ (Pk ≥ 5),
BSk ↔ (Sk ≥ 10), and BPk ≤ BSk.

5.2.3 Analyzing the Use of Constraints

The framework was implemented using the CP solver library Gecode 4.3.3. The objective
function in the experiments was to minimize the maximal diameter of the clusters. All
experiments were performed on a 3.4GHz Intel Core i5 processor with 8Gb of RAM un-
der Ubuntu 14.04. We give here some elements to analyze the interest of constraints in
clustering.

Improving Semi-Supervised Clustering Results. In the semi-supervised learning
setting typically labels on a subset of instances are used to generate instance-level con-
straints such as must-link or cannot-link constraints. Here we explore if the labels can
be better exploited by inferring more complex constraints on the clusters. We illustrate
this point on seven UCI datasets (their properties are given in Table 4.1, Section 4.2).
Rather than using the labelled data to only generate must-link or cannot-link constraints,
we use the labels to provide upper and lower bound estimates on the cluster sizes. In these
experiments all the objects of the datasets are considered and the number K of clusters is
set to the true number of classes for each dataset. Performance is typically measured in
terms of prediction: how well the found clustering matches the ground truth clustering.
To measure the accuracy of a clustering P compared to the ground truth clustering P ∗,
we use the Rand Index [Rand 1971] which is defined by RI = (a + b)/(a + b + c + d),
where a and b are the numbers of pairs of instances for which P and P ∗ are in agreement
(a, or b, is the numbers of pairs of instances that are in the same class, or respectively
in different classes, in both P and P ∗), c and d are the numbers of pairs of instances for
which P and P ∗ disagree (same class in P but different classes in P ∗ and vice versa). This
index varies from 0 to 1 and the better the partitions are in agreement, the closer RI to 1.

Instance-level constraints can decrease the quality of the found clustering compared
to the ground truth clustering, as was reported in an earlier work [Davidson et al. 2006].
We consider the datasets Iris, Wine, Breast Cancer. All the attributes are considered as
features (X f ) in order to compute pairwise Euclidean distance and they are also considered
as properties (X p). We generate a number of randomly created (from labels) instance-level
constraints as is standard [Basu et al. 2008]: two instances are randomly taken, whether
their labels are the same or not a must-link or a cannot-link constraint is stated, and this is
repeated until required the number of instance-level constraints is reached. On those same



5.2. Actionable Clustering 75

< −0.05 [−0.05,0] [0,0.01] > 0.01

200

250

300

350

< −0.05 [−0.05,0] [0,0.02] > 0.02

0

100

200

300

< −0.05 [−0.05,0] [0,0.05] > 0.05

0

500

Inst-lev. constraints Inst-lev. and min. size constraint

Figure 5.2: The frequency distribution (y-axis) over the 1000 experiments by the amount of
increase or decrease in accuracy over not using any constraints (x-axis). Ordering of figures are
for Iris, Wine and Breast Cancer each one with 30 instance-level constraints. As we can see
instance-level + cardinality constraints (red-bar) produces more increases and less decreases in
accuracy.

taken instances we generate a minimum cardinality constraint for all clusters as follows:
let the whole dataset be of N instances, the labeled sample be of e instances, and the
smallest cluster size observed on the labeled sample be m, then for the whole dataset, the
smallest cluster size is set to 0.9me N . This simulates a user guess at how big the smallest
cluster should be based on the less frequent occurring label.

We compare two cases: first, clustering with a set of randomly generated instance-
level constraints and second, clustering with the very same instance-level constraints and
a minimum cardinality constraint as described above. We perform 1000 experiments and
analyze the distribution over all experiments of the accuracy decrease or increase over not
using any constraints. Figure 5.2 shows that adding instance-level constraints decreases
the quality in a large number of cases which agrees with [Davidson et al. 2006]. On the
other hand, the improvement is more stable when using a minimum cardinality constraint
along with instance-level constraints. This is most like because enforcing a cardinality
constraint prevents skewed cluster sizes which can yield poor performance.

To analyze the use of cardinality constraints, four cases are considered for the datasets
Breast cancer, Synthetic control, Multiple feature and Image segmentation. In the first
case, there is no user constraint. In the second case, 20 instance-level constraints are



76 Chapter 5. Beyond Constrained Clustering

Brst. Canc. Synth. Cont. Mult. Feat. Image Seg.
0

0.2

0.4

0.6

0.8

R
an

d
In
de

x

Unconstrained 20 ML/CL constraints α ≤ size ≤ β α ≤ size ≤ β and 20 ML/CL

Figure 5.3: Rand Index in different cases: unconstrained, with instance-level constraints and/or
minimal and maximal size constraints

randomly generated and added. In the third case, the constraints requiring that the
cluster size must be between α and β are added, where α and β are respectively 150 and
400 for Breast cancer, 50 and 150 for Synthetic control, 50 and 350 for Multiple feature
and 200 and 400 for Image segmentation. In the fourth case both cluster size constraints
and 20 instance-level constraints are added. For the second and the fourth cases, we make
100 runs and report the average Rand Index of all the runs. We can observe different
behaviors with cluster size constraints here. While for Synthetic control, the constraints
slightly decrease the Rand Index, for Multiple Feature, they bring slight improvement.
The most significant improvement is observed for Image Segmentation. This dataset is
composed by 2100 objects of 7 classes with 300 objects per class. In the unconstrained
case, the clustering found has the Rand Index 0.226314 and is very unbalanced, with two
clusters of 1 object and with a large cluster of 1972 objects. The situation is not improved
with 20 random must-link or cannot-link constraints, the clusterings found are always
unbalanced. Adding cluster size constraints such that the clusters must have their size
between 200 and 400, the clustering found has the Rand Index grow to nearly 0.80. On
Breast cancer we can see that with only size constraints, the Rand Index is over 0.80, while
the same constraint together with 20 instance-level constraints gives the Rand Index only
about 0.66.

Guided Alternative Clustering. In the area of alternative clustering one tries to find
an equally good alternative to a given clustering [Qi & Davidson 2009, Dang & Bailey 2010,
Truong & Battiti 2015]. However, it is somewhat unrefined in that no guidance can be
given to specify how the clustering is to differ from the given clustering. To address this
issue we consider the UCI Pen Digit dataset where each instance corresponds to a single
digit and has 16 attributes, which represent the 8 x, y positions of the pen as the digit is
being written. All the 16 attributes are considered as features (X f ) in order to compute
pairwise Euclidean distances and are also considered as properties (X p). We use 1000
random instances of the dataset. We aim to find alternative ways that people write digits
and we consider the simplest case where the number of clusters k = 2. This effectively
forms a dichotomy of the two ways people in the data set write their digits.

For each cluster, the centroid is computed, which is considered as the representative
of the cluster and can be easily visualized to show the underlying digit prototype the
cluster represents. In the case of minimizing the maximal cluster diameter and without



5.2. Actionable Clustering 77

Figure 5.4: The centroids of the clustering found without any constraints. Time=1.16s, maximal
cluster diameter=263.58. Arrows indicate pen movement.

Figure 5.5: The centroids of the clustering found with a diameter constraint on the horizontal
value of the third time step. Time=0.02s, maximal cluster diameter=291.50. Arrows indicate pen
movement.

Figure 5.6: The centroids of the clustering found with a diameter constraint on the horizontal
value of the fifth time step. Time=0.02s, maximal cluster diameter=269.68. Arrows indicate pen
movement.



78 Chapter 5. Beyond Constrained Clustering

any constraints, the centroids of the found clusters, which represent two types of writing,
are represented in Figure 5.4. The clustering found is the global optimum of the clustering
algorithm objective function. However the centroids are not really meaningful unless of
saying that in one way people write from up to down then up again, and in the other
way only from up to down. Instead we wish to find an actionable alternative by adding
a diameter constraint on the horizontal position of the pen at the 3rd time step. This
effectively means that all digits in the same cluster must have a similar horizontal pen
location at the third time step. We obtain a different clustering whose centroids are shown
in Figure 5.5 but whose quality, in term of the objective function, is comparable to the first
clustering found in Figure 5.4. These centroids have the 3rd positions respectively on the
right and on the left. The centroids can give an interpretation such that in one way people
write from left to right and in the other way like a spiral from right to left and in both ways
from up to down. By adding a diameter constraint on the horizontal position of the pen at
the 5th time step, we obtain another very different clustering whose centroids are shown in
Figure 5.6. Again the centroids have the 5th position either on the right or on the left, and
the quality of this clustering is comparable to the initial clustering in Figure 5.4. This is an
example of guided alternative clustering, which unlike earlier work [Davidson & Qi 2008,
Dang & Bailey 2015] did not find an arbitrary alternative clustering, rather we find one
with specific properties. Adding constraints can deteriorate the quality in term of the
objective function, however the flexibility of our framework allows to control the gap
between the constrained case and the unconstrained case by means of constraints. For
instance let the maximal diameter of the clusters in the unconstrained case be Dopt, one
can require an actionable alternative clustering with both a diameter constraint on the
horizontal position of the pen at the 3rd time step and another constraint stating that the
maximal diameter of the clusters does not exceed 1.2Dopt.

Computational Effect of Constraints. To address the computational effect of con-
straints, we report times taken by different cases considered previously. The total runtimes
(stating constraints and search) are presented in Table 5.3, where +1800 means the solver
did not complete the search after 30 minutes. Cluster size constraints can give large vari-
ations in runtime. One explanation is that the efficiency of a CP framework depends
on the power of constraint propagation. For extended cardinality constraint filtering the
domains of all variables to arc-consistency [Quimper et al. 2004] is NP-hard. However,
when setting an upper bound and a lower bound on the count variables, efficient filtering
algorithms have been developed [Régin 1996], which help pruning the search space.

For other kinds of constraints we consider the census dataset available at UCI3. This
dataset has 48,842 instances, each one is described by 14 attributes with 6 continuous and
8 symbolic. We choose 5 continuous attributes (age, capital-gain, capital-loss, hours-per-
week and fnlwgt) as features (X f ) to compute distances on. All of the 14 attributes are
used as properties. We generate 5 samples each one of 1000 instances and for each sample
we conduct experiments with 5 use-cases described in Table 5.4. In each use-case, the
number of clusters is set to 2 and to 3. Tables 5.5 and 5.6 give average runtime across five
samples for the use cases with K = 2 and K = 3 respectively.

We can see from Table 5.5 that the run-time to find the best solution in the uncon-

3https://archive.ics.uci.edu/ml/datasets/Adult



5.2. Actionable Clustering 79

Dataset N K case time (s)
Breast cancer 569 2 unconstrained 0.30

150 ≤ size ≤ 400 0.70
Yeast 1484 10 unconstrained 3.15

10 ≤ size ≤ 500 11.56
Synthetic Control 600 6 unconstrained 0.49

50 ≤ size +1800
size ≤ 150 2.58
50 ≤ size ≤ 150 3.02

Multiple Feature 2000 10 unconstrained 10.30
50 ≤ size 76.80
size ≤ 350 +1800

50 ≤ size ≤ 350 71.04
Image Segmentation 2100 7 unconstrained 3.29

200 ≤ size 86.85
size ≤ 400 +1800

200 ≤ size ≤ 400 92.00

Table 5.3: Total runtime in seconds for (un)constrained cases with cardinality requirements.

1 No constraints.
2 Cardinality constraint. A cardinality constraint is added, which requires that

in each cluster, the ratio of #femalec/#malec for the cluster c is between
a half and twice the ratio of females and males in the sample.

3 Density constraint. A constraint is added, stating each person of age between
20 and 50 must have at least 10% of people with the same work occupation
in the same cluster.

4 Diameter Geometric constraint. A constraint is added, which states that the
difference in age in each cluster must not exceed 2(max(age)−min(age))/3.

5 Complex logic constraint. A constraint is added, which states that a cluster
having more than 20 persons younger than 20 should have more than 30
persons older than 45, and each cluster has at least 100 persons.

Table 5.4: The five use cases for testing the computation time effect of constraints.

Sample UC1 UC2 UC3 UC4 UC5
1 0.42 0.41 2.51 0.42 0.49
2 0.32 0.69 1.71 0.32 0.35
3 0.44 0.54 2.94 0.41 0.34
4 0.44 0.31 0.71 0.32 0.34
5 0.36 0.48 2.16 0.32 0.32

Table 5.5: The runtime (seconds) for use cases (see Table 5.4) across five samples, for K = 2.



80 Chapter 5. Beyond Constrained Clustering

Sample UC1 UC2 UC3 UC4 UC5 UC3+4
1 0.32 1.93 +1800 0.40 0.36 4.14
2 0.44 2.79 6.82 0.44 0.45 2.72
3 0.50 2.23 +1800 0.48 0.40 +1800
4 0.44 0.33 +1800 0.86 0.34 1.19
5 0.33 2.30 +1800 0.36 0.32 2.91

Table 5.6: The runtime (seconds) for use cases (see Table 5.4) across five samples, for K = 3.
Note how using UC3 and UC4 together mitigates the increases of just using UC3.

strained setting is under 0.5 second (use case 1) for all the 5 samples. Use cases 2, 4
and 5 take comparable run-time. Use case 3, which is expressed by a large number of
CP cardinality constraints, is the most difficult among all the use cases. This trend is
confirmed with K = 3 (Table 5.6), for the solver does not complete the search after the
timeout of 30 min for 4 of the 5 samples.

One explanation for this variety of run times is that some constraints when added help
the solver to prune the search tree at the top levels which has a large effect. Some other
constraints, for instance, the cardinality constraint, however are useful in pruning the
search tree only in more deeper levels towards the leaf nodes reducing down the benefits
of pruning. On the other hand, constraints such as the diameter geometric constraint are
useful in general. We have combined the diameter geometric constraint of use case 4 with
the constraint of use case 3. The run-times of the combination reported in the last column
of Table 5.6 have almost dropped for most of the samples.

5.3 Minimal Clustering Modification

The clustering problems presented so far take in input a dataset and find a clustering
according to some criteria and to some constraints. Consider now the situation where you
have already a clustering of a dataset. This clustering can be obtained by your favorite
clustering algorithm applied to the dataset and it is a good clustering but there are a few
undesirable properties. You would like to remove the undesirable properties meanwhile
do not change much the clustering. One adhoc way to fix this is to re-run the clustering
algorithm and hope to find a better variation. Instead, we propose to not run the algorithm
again but minimally modify the existing clustering to remove the undesirable properties.
This section presents the minimal clustering modification problem where we are given
an initial clustering produced from any algorithm. This work has been developed by
Chia-Tung Kuo (PhD student, University of California, Davis), in a joint work with Ian
Davidson (University of California, Davis), S. S. Ravi (University at Albany), Christel
Vrain and myself. The result was presented in [Kuo et al. 2017].

5.3.1 Problem Formulation

Let us take an example of situation where you wish to cluster your ego-network (those
people you have a direct friendship link to) into k groups and invite each group to a
separate dinner party. For each person you know their interests, location, gender and
age. After applying your favorite clustering algorithm you have k very cohesive clusters



5.3. Minimal Clustering Modification 81

Favorite
Clustering
Algorithm

Clustering π Summary S

Modified 
Summary S'

Clustering
Modification
Approach

Modified 
Clustering π'

User
Feedback

Figure 5.7: A schematic workflow for our clustering modification setting. The initial
clustering Π can be produced in any manner.

except perhaps the range of ages for some cluster is too large or one cluster has too
many females compared to males. Heuristically trying to move points from one cluster
to another until a satisfactory result is found is not a viable approach as we show the
intractability of re-clustering data to reduce cluster diameter (see Theorems 5.1 and 5.2).
Simply removing data points to get desirable clusters undermines the intended use of
clustering in the first place. For example we cannot just leave out some friends from the
dinner parties. A more principled approach is to add constraints and apply a constrained
clustering algorithm with the hope that the resultant clustering is similar to the previous
yet free of the undesirable properties. However, with this approach there is no guarantee
that the resultant clustering found will be similar to the original.

An alternative we explore is to start with the initial clustering and minimally modify
it while removing the undesirable properties. Our proposed approach is based on the
assumption that the given initial clustering is already of fairly good quality and suitability
but the user is interested in finding a variation that is similar yet satisfies some additional
properties. Though in this work the initial clustering is given by an algorithm, in practice
it may be generated from an existing solution to a clustering problem or a set partition
induced in any manner.

We can view this proposed work as being related to but quite different to constrained
clustering. Constrained clustering allows domain experts to inject human guidance into
clustering a priori before the clustering algorithm begins. This work instead allows provid-
ing guidance a posteriori after the clustering is found. This has the advantage of allowing
feedback to be injected for any clustering algorithm. In short, we provide a principled
way to generate a new minimally modified clustering while retaining most of the original
solution. Alternative Clustering [Qi & Davidson 2009, Dang & Bailey 2010] addresses the
problem of finding a clustering that is different from the given one yet whose quality is
comparable to the original one. Our setting is different in that the user finds the given
clustering acceptable yet only wants it to be minimally modified to satisfy some additional
criteria as opposed to targeting a completely distinctive one.

Our approach is as follows and shown in Figure 5.7. We start with an initial clustering,
Π, the output of any clustering algorithm or any other process that produces a set parti-
tion; this initial clustering has a corresponding clustering summary of properties S. Note
this summary need not be with respect to the features used in the clustering algorithm.
For example, Facebook data can be clustered based only on the friend-network topology
and can be summarized based on user profile information. The user then modifies S,



82 Chapter 5. Beyond Constrained Clustering

leading to a desired modified summary S′. Our approach then looks for a Π′ that satisfies
the modified summary S′ but is also a minimal modification of Π. The general problem
is:

Problem 1 Minimal Clustering Modification (MCM).
Input: Initial clustering Π of k blocks and its k-part summary S. The user modifies parts
of S to obtain a user-desired summary S′.
Output: A modified clustering Π′ of k blocks similar to Π but also satisfying summary S′,
formally:

minimize
Π′

d(Π,Π′)

subject to Π′ satisfies S′
(5.6)

where d(Π,Π′) is a distance measure between 2 clusterings.

User feedback can be intra-cluster or inter-cluster as follows.

• Intra-Cluster Level Summaries for Feedback:

– Shrink diameter: e.g. reduce the diameter of cluster i with respect to feature
age to 10 years.

– Balance categorical feature values: e.g. make the number of females and males
equal in cluster i.

– Upper/lower bounds on feature values per cluster: e.g. every cluster should
contain at least 10% female and no more than 90% males.

• Inter-Cluster Level Summaries for Feedback:

– Widen/shrink the distance between two clusters based on a feature: e.g. the
distance between any two instances in cluster i and cluster j should be at least
5 years with respect to age.

– Keep a cluster, merge two clusters, split a cluster, etc.

We have established intractability results on the general re-clustering problem under
one particular modification: namely, cluster diameters. Such results support our choice of
using CP as one cannot expect to find a solution efficiently with any particular algorithm.

A general statement of the diameter-based reclustering problem is as follows.

Given: A set P = {p1, p2, . . . , pn} of n objects, an integer k (1 ≤ k ≤ n), a k-clustering
C = {C1, C2, . . . , Ck} of P , a list of ` ≥ 1 attributes, with respect to which the diameter
of each cluster is computed, and numbers δi, 1 ≤ i ≤ `.
Requirement: Is there another clustering C1 of P , also with k clusters, such that the
maximum diameter of any cluster in C1 along attribute i is at most δi, 1 ≤ i ≤ `? If so,
find one such clustering.

We present complexity results for two versions of this reclustering problem. The first
version shows the problem is NP-complete even if the diameter needs to be reduced along
just two dimensions. The second version shows when the number of dimensions along
which the diameter needs to be reduced is not a constant, the problem is NP-complete
even for just three clusters.



5.3. Minimal Clustering Modification 83

Diameter reduction along two dimensions. Suppose the goal of reclustering is to
reduce the diameters along ` = 2 dimensions; that is, along the two chosen dimensions, the
maximum diameter of any cluster must be at most δ1 and δ2 respectively. The following
theorem shows that the reclustering problem is computationally intractable.

Theorem 5.1 The reclustering problem where the maximum diameter must be reduced
along two dimensions is NP-complete.

Diameter reduction along many dimensions. When the number of dimensions `
along which the diameter must be reduced is large, we can show that the reclustering
problem is NP-complete even when the number of clusters is just three. This result is
shown below.

Theorem 5.2 Suppose the number of dimensions along which the maximum diameter
must be reduced is `. Let δi denote the bound on the diameter along dimension i, 1 ≤ i ≤ `.
The reclustering problem is NP-complete for any k ≥ 3.

5.3.2 A CP Model for Minimal Clustering Modification

5.3.2.1 Variables and Constants

A clustering of k clusters on n data points is represented by a list of n cluster indices
in {1, . . . , k}, one for each data point. The difference between two clusterings Π and Π′,
d(Π,Π′), is measured by the number of positions in which the two lists differ; formally
d(Π,Π′) =

∑n
i=1 I[Π[i] 6= Π′[i]] where Π[i] is the i-th entry in Π and I[·] is the indicator

function. Such a choice eliminates the ambiguity of permutations of the cluster indices. It
is important to note that since the given clustering Π is desirable, we wish to minimally
change its composition. Having an objective focused on some measure of clustering quality
difference can result in a fundamentally different clustering.

Let Π be the given clustering. The feature-wise diameters for the clusters are repre-
sented as a k × f matrix D where D[i, j] records the diameter for the i-th cluster with
respect to the j-th feature. Analogously D′ is defined as the diameters the user desires on
the modified clustering Π′. For convenience all pairwise distances are pre-computed with
respect to each feature and are denoted by a 3-dimensional array D where D[t, i, j] is the
distance between the i-th instance and the j-th instance with respect to the t-th feature.
Finally let X denote the n× f data feature matrix.

The model aims at finding a modified clustering Π′ that is minimally different from Π

and that satisfies the requirements of the user. The modified clustering Π′ is represented
by n variables of domain {1, . . . , k}.

5.3.2.2 Encoding Objective and Summary

The model was designed and developed using CP platform Numberjack [Hebrard et al. 2010]
due to its simple interface and its use of state-of-the-art integer linear programming (ILP)
solvers. ILP solvers such as Gurobi4, which is used in our experiments, can easily exploit
multi-core architectures.

4http://www.gurobi.com

http://www.gurobi.com


84 Chapter 5. Beyond Constrained Clustering

Objective. The number of instances moved from the initial clustering can be encoded
straightforwardly with auxiliary variables, z, recording where Π and Π′ disagree.

∀i ∈ {1, . . . , n}, z[i] = I[Π′[i] 6= Π[i]]

The objective is therefore:

minimize
n∑
i=1

z[i]

Diameter Summary. In order to succinctly measure the modified clustering’s (Π′)
diameters, we define a cluster membership matrix as a k × n binary matrix C, where
each row indicates the membership of the corresponding cluster. This is enforced by the
following constraints.

∀c ∈ {1, . . . , k}, ∀i ∈ {1, . . . , n}, C[c, i] = I[Π′[i] = c]

Now we describe how we encode constraints to enforce the desired diameters. A
straightforward encoding follows the definition of diameter: we require each pair of in-
stances in the same cluster to have feature-wise distance smaller than or equal to the
specified diameter, shown as follows.

∀c ∈ {1, . . . , k}, ∀t ∈ {1, . . . , f}, max
i,j=1,...,n

{C[c, i]C[c, j]D[t, i, j]} ≤ D′[c, t]

Note C[c, i] = 1 if the i-th instance is in cluster c. Thus C[c, i]C[c, j] = 1 if and only if
the i-th instance and the j-th instance are both in cluster c. One significant drawback of
this encoding, however, is that max is taken over n2 variables. This makes the encoding
and solving very inefficient (both memory and CPU) when n is large.

A more efficient encoding was developed where each constraint involves at most n vari-
ables. The crucial observation is that these diameters are defined feature-wise, as opposed
to the classical notion where a single diameter encompasses all dimensions. Accordingly,
instead of requiring each pair in the same cluster to obey this cluster’s diameter, we re-
quire just the difference between the maximum and the minimum value of the feature in
a cluster to obey such diameter. Specifically we pre-compute the feature-wise minimums
Ml[t] and maximums Mu[t] of the data for each feature t as follows.

∀t ∈ {1, . . . , f}, Ml[t]← min
i=1,...,n

{X[i, t]}

∀t ∈ {1, . . . , f}, Mu[t]← max
i=1,...,n

{X[i, t]}

For each cluster c and for each feature t, we define two variables L[c, t] and H[c, t] that
correspond to the lowest value and the highest value of feature t in cluster c respectively.
This relation is defined by the following constraints:

L[c, t] = min
i=1,...,n

{C[c, i](Xu[i, t]−Mu[t])}+Mu[t]

H[c, t] = max
i=1,...,n

{C[c, i](Xu[i, t]−Ml[t])}+Ml[t]



5.3. Minimal Clustering Modification 85

The model for the case where the user provides a set of desired feature-wise diameters
D′ as feedback is therefore:

minimize
z,C,L,H

n∑
i=1

z[i]

subject to

∀c ∈ {1, . . . , k}, ∀i ∈ {1, . . . , n}, C[c, i] = I[Π′[i] = c]

∀i ∈ {1, . . . , n}, z[i] = I[Π′[i] 6= Π[i]]

∀c ∈ {1, . . . , k}, ∀t ∈ {1, . . . , f},
L[c, t] = min

i=1,...,n
{C[c, i](X[i, t]−Mu[t])}+Mu[t]

H[c, t] = max
i=1,...,n

{C[c, i](X[i, t]−Ml[t])}+Ml[t]

H[c, t]− L[c, t] ≤ D′[c, t]

(5.7)

In this model, the numbers of variables and constraints are linear in the number of
instances n, the number of clusters k and the number of features f . In addition the
variables also have rather small domains. Figure 5.8 provides a tabulation of the numbers
of variables, their domain sizes and the associated constraints used to encode the model
(5.7). Note the domain size r for variables L and H arises from the discretization of
continuous values and the choice of r typically involves a tradeoff between precision and
model complexity as is the case in all other discretization problems.

Vars. Number Domain size
Π′ n k

z n 2
C nk 2
L nk r

H nk r
(a) Numbers and domain sizes of vari-
ables used in our model.

Constraints Number #. Vars. involved
Bind z n 2
Bind C nk 2
Bind L kf n+ 1

Bind H kf n+ 1

H − L ≤ D′ kf 2
(b) Number of constraints and the numbers of vari-
ables involved in each constraint.

Figure 5.8: Complexity of encoding (5.7) model.

Encoding other feedback/summary. As mentioned earlier CP is flexible in encoding
other types of feedback as constraints. A list of common constraints conforming to feed-
back introduced earlier and their encodings are presented in Table 5.7. It is also worth
mentioning that these constraints need not apply to all features or clusters. The ranges of
the indices for the constraints in Table 5.7 (i.e. c, t, etc) could be determined at the user’s
discretion.



86 Chapter 5. Beyond Constrained Clustering

Constraints Encoding
Diameters ∀c = 1, . . . , k, ∀t = 1, . . . , f, H[c, t]− L[c, t] ≤ D′[c, t]

Splits ∀c1, c2 = 1, . . . , k where c1 6= c2,∀t = 1, . . . , f,

min
i,j=1,...,n

{C[c1, i]C[c2, j]D[t, i, j]} ≥ S ′[c1, c2, t]

Bound cluster size lc ≤
∑n

i=1 C[c, i] ≤ uc
Keep a cluster

∑
i C[c, i] ≥ 1 for cluster c to be kept

Remove a cluster
∑

i C[c, i] = 0 for cluster c to be merged (i.e. effectively empty a cluster)
Upper bound moves

∑n
i=1 z[i] ≤ uz

Balance binary features ∀c = 1, . . . , k, ∀t = 1, . . . , f,

pl
∑n

i=1 C[c, i] ≤
∑n

i=1 C[c, i]X[i, t] ≤ pu
∑n

i=1 C[c, i]

Table 5.7: Common feedbacks and their encodings. Note we assume H and L are properly
encoded auxiliary variables as in (5.7). S ′ is a user-desired k × k × f matrix of the desired splits
between clusters; pl and pu are the user-desired lower and upper bounds on the counts of 1’s
(True) in binary features for each cluster.

5.3.3 Empirical Evaluation

The model was developed using CP platform Numberjack and the chosen backend solver
was Gurobi. Experiments were developed on two real world data sets (social network and
medical imaging) to explore the benefits of using modification and also on UCI data sets
to explore scalability issues [Kuo et al. 2017]. We present below some experiments on real
world data sets.

Social Network Modification. We apply our proposed approach to a network data
set: Facebook-egonets from Stanford SNAP Data sets [Leskovec & Krevl 2014]. This data
set consists of 4039 Facebook users where the friendships among them are known and for
each person a list of binarized categorical features such as gender5. We run (normalized)
spectral clustering algorithm [Luxburg 2007] on this graph to find an initial 4-way cluster-
ing; a hard clustering is then obtained from the best of 10 runs of k-means on the spectral
embedding. Note that spectral clustering only utilizes the friendship graph topology, but
not the node features. The clustering found is of very low cut cost but a summary of the
initial clustering shown in Figure 5.9(a) shows a widely differing composition compared
to the population averages.

Our aim now is to minimally modify the original clustering to correct for gender and
language imbalance by constraining them to be close to the population averages. We
choose the upper and lower bounds according to the averages in the initial summary and
set bounds [0.36, 0.4] for gender and [0.13, 0.15] for language so that these two features
are “balanced” across clusters. We find a minimum of 69 nodes need to be moved between
clusters and the summary for the resulting modified clustering is presented in Figure
5.9(b).

An important comparison is against another clustering satisfying the same summary
of “balanced” features but without enforcing the objective of “minimal modification”. This
simulates re-running the clustering algorithm from the beginning and enforcing the bal-
ancing constraints. One often found clustering simply puts most instances in one cluster,

5The feature values are anonymized so, for example, it is un- known if 1 is male or female.



5.3. Minimal Clustering Modification 87

resulting in 4015 instances in cluster 1 and 8 instances in each of clusters 2, 3 and 4, lead-
ing to a total of 1074 swaps across clusters from the initial clustering. We also report the
normalized cut costs (the objective of normalized spectral clustering) on the three clus-
terings: initial, satisfying summary+minimally modified, only satisfying summary. Their
cut costs are, respectively, 0.97, 1.34 and 3.04. Note a constraint on the cut cost could be
additionally included if it was desired to keep it below a bound.

Initial clustering
C1 C2 C3 C4 Population

Gender 1096 (0.37) 37 (0.54) 169 (0.49) 230 (0.36) 1532 (0.38)
Language 402 (0.13) 5 (0.07) 64 (0.19) 78 (0.12) 549 (0.14)

Size 2988 69 345 637 4039
(a) Initial clustering summary

Modified clustering
C1 C2 C3 C4 Population

Gender 1124 (0.37) 22 (0.39) 117 (0.40) 269 (0.40) 1532 (0.38)
Language 408 (0.14) 7 (0.13) 43 (0.15) 91 (0.13) 549 (0.14)

Size 3014 56 293 676 4039
(b) Modified clustering summary

Figure 5.9: Summaries for the initial and modified clusterings. “Gender” and “Language” record
the numbers of instances that have this feature being 1; the numbers in the brackets give the
ratios. Size is the number of instances in the cluster.

Spatial Region Modification In this experiment, we apply our approach to a fMRI
brain imaging data which allows exploring modification based on spatial information. The
fMRI scans used here were collected and pre-processed at UC Davis Alzheimer’s Disease
Center and they were recorded while the subjects were at resting state. We work on one
particular slice in the mid-brain so that each scan consists of 2D snapshots over time and
each slice has a total of 1730 voxels/nodes whose blood oxidation levels are measured at
an interval of 3ms over 200+ time steps.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60
1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

(a) Initial

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60
1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

(b) Modified

Figure 5.10: Initial and modified clusterings on the fMRI scan. The modification asks for the
yellow cluster’s x-diameter and the cyan cluster’s y-diameter to be shrunk. The color-coded cluster
numbers match the numbering in Figure 5.11.

We start off by constructing a 1730 node completely connected graph where the edge



88 Chapter 5. Beyond Constrained Clustering

weights are the absolute value of Pearson correlations between the voxels measured over
time. Such correlation measure has been widely used in the neuroscience community
[Friston 2011]. As before we create an initial clustering by running normalized spectral
clustering on this graph and then selecting the best result from 10 runs of k-means on the
spectral embedding. The initial clustering is shown in Figure 5.10(a).

Often in practice we like clusters to represent compact regions in the brain; however
this initial clustering is generated based on correlations and does not take into account
any spatial coordinates in the brain. Accordingly we look for a modified clustering with
tighter diameters in x-y spatial coordinates, specifically, x-diameter ≤ 15 for cluster 3 and
y-diameter ≤ 30 for cluster 2 (yellow and cyan in Figure 5.10) while keeping the diameters
for the other clusters. Our CP model returns a new clustering that moves a total of 109
voxels where 36 voxels were moved from cluster 2 to cluster 4 and 63 voxels were moved
from cluster 3 to cluster 4. We present the summaries of the initial and the modified
clusterings in Figure 5.11. Note this is a global optimal solution.

Cluster index C1 (Blue) C2 (Cyan) C3 (Yellow) C4 (Red)
x-diameter 46 49 48 52
y-diameter 37 41 45 44

size 390 369 152 819
(a) Initial summary

Cluster index C1 (Blue) C2 (Cyan) C3 (Yellow) C4 (Red)
x-diameter 46 49 15 52
y-diameter 37 26 45 44

size 390 323 89 928
(b) Modified summary

Figure 5.11: Summaries for the initial and modified clusterings for the fMRI scan experiment.
Size is the number of voxels in the cluster.

5.4 Repetitive Branch-and-Bound using CP for WCSS

One of the most used criterion is minimizing the Within-Cluster Sum of Squares (WCSS),
which is defined by the sum of the squared Euclidean distances from each object to the cen-
troid of the cluster to which it belongs. Minimum sum-of-squares clustering (MSSC) has
been proven to be NP-Hard [Aloise et al. 2009] and has been studied in numerous work.
The well-known k-means algorithm as well as other dedicated heuristic algorithms find a
local optimal for this criteria [Steinley 2006]. They have been also extended to integrate
must-link and cannot-link constraints: COP-kmeans [Wagstaff et al. 2001], PCK-Means
[Basu et al. 2004a], CVQE [Davidson & Ravi 2005], LCVQE [Pelleg & Baras 2007], etc.
However they can either fail to find a solution that satisfies all the constraints even
when such a solution exists or do not guarantee the satisfaction of all the constraints.
On the other hand, general and declarative frameworks using generic optimization tools
have been proposed, based either on Integer Linear Programming with column generation
[Babaki et al. 2014] or our work using constraint programming (cf. Section 4.3.3).

For unconstrained MSSC, Brusco [Brusco 2006] proposed a simple yet effective method:
the Repetitive Branch-and-Bound Algorithm (RBBA). In what follows, we show how the



5.4. Repetitive Branch-and-Bound using CP for WCSS 89

idea of clustering with RBBA can be extended to user-constraints and can be combined
with the ideas of clustering with constraint programming. We show that the method-
ology can be combined with a CP framework to obtain an efficient method that can
easily incorporate user constraints to obtain a constraint-based method that is generic
yet more efficient then other exact constrained methods. This work was published in
[Dao et al. 2016a, Guns et al. 2016] and was developed in collaboration with Tias Guns,
Khanh-Chuong Duong and Christel Vrain.

5.4.1 Repetitive Branch-and-Bound Algorithm

Let O be a set of N points. Let ∆ be a partition of O into at most K clusters. For any
subset S of O, let ∆S denote the projection of ∆ onto the objects in S and WCSS(∆S)

the WCSS value of ∆S . Let WCSS∗(S) = min∆(WCSS(∆S)). Let us note that in ∆S

some clusters of ∆ may become empty.

Lower Bound Inequalities Without User-Constraints. The bounds used in RBBA
rely on the following result [Koontz et al. 1975]. Let S be a subset of O, and let S1 and
S2 be such that S = S1 ∪ S2 and S1 ∩ S2 = ∅ (non-overlapping). We have:

WCSS(∆S) ≥WCSS(∆S1) +WCSS(∆S2) (5.8)

SinceWCSS∗(S2) = min∆(WCSS(∆S2)), soWCSS∗(S2) is the smallest WCSS value
for all partitions of S2 into at most K clusters. Hence we have:

WCSS(∆S2) ≥WCSS∗(S2) (5.9)

and hence [Brusco 2006]:

WCSS(∆S) ≥WCSS(∆S1) +WCSS∗(S2) (5.10)

Equation (5.10) can be used during a branch-and-bound search for an optimal partition
of S as follows. Let us suppose that we have previously built a partition of S, thus giving
an upper bound for WCSS∗(S), that we have currently built a partial solution ∆S1 and
that we know an optimal solution of WCSS∗(S2). If WCSS(∆S1) + WCSS∗(S2) is
greater than the actual upper bound, then the partial solution ∆S1 can never lead to
a better solution than the current upper bound. This process is used in the Repetitive
Branch-and-Bound Algorithm presented below, where the value WCSS∗(S2) is computed
for each increasing set S2 using branch-and-bound.

Repetitive Branch-and-Bound Algorithm. The Repetitive Branch-and-Bound Al-
gorithm (RBBA) [Brusco 2006] is presented in Algorithm 8.

Points in O are first ordered following an heuristic by OrderPoints(O). Different
heuristics can be used for ordering points.We assume that according to the ordering,
points are named by their index i ∈ [1, N ]. On is composed of the last n points according
to this order.

In this algorithm, ∆n indicates any partition of On into at most K clusters and ∆∗n
denotes the optimal partition of On into at most K clusters. This algorithm starts with
the set OK of the last K points and Init(OK) creates ∆∗K by putting each point alone in a



90 Chapter 5. Beyond Constrained Clustering

Algorithm 8: RBBA input: objects O, number clusters K
1 OrderPoints(O)
2 OK ← {oN−K+1, . . . , oN}
3 ∆∗K ← Init(OK)

4 Wn ← 0, ∀n ∈ {1, . . . ,K}
5 for n = K + 1 to N do
6 On ← On−1 ∪ {oN−n+1}
7 ∆n ← Greedy_Extension(On,∆∗n−1)
8 Un ←WCSS(∆n)

9 ∆∗n ← BaB_Search(On, Un,W )
10 Wn ←WCSS(∆∗n)

cluster. The optimal value WCSS(∆∗n) is stored in Wn for each n, and the first K values
W1, . . . ,WK are 0 (each point in its own cluster).

The algorithm next iterates by adding to the setOn one point each time, from the point
N−K down to the first point. Here On represents this set of last n points oN−n+1, . . . , oN .
Function Greedy_Extension(On,∆∗n−1) greedily finds a partition ∆n for On, by adding
the new point to the previous best partition ∆∗n−1 so that the value WCSS is mini-
mally increased. The value WCSS(∆n) constitutes an upper bound Un for WCSS(∆∗n).
BaB_Search(On, Un,W ) is a branch-and-bound algorithm which searches for a global op-
timal partition ∆∗n on the set of points On, using Un as an upper bound and exploiting
Equation (5.10) with the Wi values (i < n) as lower bounds. Let om = oN−n+1 be the
new point added at this step. The branch-and-bound search considers the points in On
in the order om, om+1, . . . , oN and tries to assign them to clusters.

Let us consider an arbitrary step when a point number p (m ≤ p < N) is assigned to
a cluster. Let S1 be the set of points {om, ..., op} and S2 be {op+1, ..., oN}. All the points
in S1 have already been assigned and hence WCSS(∆S1) is known. All the points in S2

are currently unassigned, however, WCSS∗(S2) has been computed in a previous step of
RBBA and stored in W|S2|; Un is the current upper bound. Equation (5.10) is used and
if WCSS(∆S1) + WCSS∗(S2) ≥ Un, we cannot extend ∆S1 to a solution having WCSS
better than Un. Therefore BaB_Search will not continue to extend ∆S1 and the branch is
pruned. When p = N , the partition ∆ is complete and Un is set to WCSS(∆). When the
entire search space is explored, the last complete partition found is the optimal solution.

This algorithm takes advantage of the optimal solutions previously computed to pro-
vide lower bounds in the branch-and-bound search. Also important are the upper bounds
found by the greedy extension, they are often tight (meaning that the greedy exten-
sion is the optimal partitioning). Because of these tight bounds, even though the al-
gorithm runs the branch-and-bound search N times, it is nevertheless one of the best
exact algorithms for minimum sum-of-squares clustering. A similar search method was
proposed for valued (soft) CSPs with an additive objective function, called Russian Doll
Search [Verfaillie et al. 1996].

5.4.2 Extension of RBBA to User-Constraints



5.4. Repetitive Branch-and-Bound using CP for WCSS 91

Lower Bound Inequalities With User-Constraints. We have studied the conditions
under which Equation (5.10) is still valid in the presence of a set of user constraints C on O.
Given a set of points S ⊆ O and a set of constraints C on S, S(S,C) denotes the set of all
partitions ∆S of S satisfying C. We denote byWCSS∗(S, C) the optimal WCSS of S ⊆ O
under constraint set C, that is, WCSS∗(S, C) = min({WCSS(∆S)|∆S ∈ S(S, C)}). We
denote by WCSS(∆S , C) the WCSS value of a partition ∆S under the condition that it
satisfies the constraint set C.

One can see from this that Equation (5.9) still holds when considering a set of con-
straints C: WCSS(∆S , C) ≥ WCSS∗(S, C). Indeed, any ∆S ∈ S(S, C) will have a score
equal or worse than the optimal one satisfying C.

The main question is then under what conditions Equation (5.8), and hence (5.10),
holds in the presence of constraints. Given a set of constraints C on S which ∆S satisfies,
the set of constraints CSi that can be put on S1 and S2 such that Equation (5.10) is still
valid must be carefully defined. For instance, a cannot-link constraint on one point in
S1 and one point in S2 is undefined on both S1 and on S2, or a minimal size constraint
satisfied on ∆S can be no longer satisfied neither on S1, nor on S2.

In general, given a set of C of constraints put on objects of S, we can restrict the set
CSi with Si ⊆ S to those constraints for which all objects in the constraint are in the set
Si. If a partition ∆S satisfies a set of constraints C, then its projection onto Si (∆Si) will
satisfy the subset of constraints CSi . Therefore:

WCSS(∆, C) ≥WCSS(∆S1 , CS1) +WCSS∗(S2, CS2) (5.11)

Many cluster-level constraints involve all variables and hence with this approach cannot
be considered until the very end. However, for two constraint sets C1 and C2 such that
C1 ⊆ C2, then S(S,C2) ⊆ S(S,C1) and therefore WCSS∗(S,C1) ≤ WCSS∗(S,C2).
Hence, including more constraints can lead to tighter lower bounds.

In order to incorporate some cluster-level constraints, we distinguish those that are
anti-monotonic from those that are not. A constraint c is said to be anti-monotonic if
when satisfied by a partition ∆S , it is satisfied by all the projections ∆Si , with Si ⊆ S. As
an example, a maximal size constraint is anti-monotonic whereas a minimal size constraint
is not.

Let Ca be the anti-monotonic constraints in C. Then, since ∆S2 satisfies the constraints
on CS2 and the anti-monotonic constraints of C, and similarly for S1, we have:

WCSS(∆, C) ≥WCSS(∆S1 , CS1 ∪ Ca) +WCSS∗(S2, CS2 ∪ Ca) (5.12)

RBBA with User Constraints. Let C be the set of all constraints on O. We assume
that the set C is satisfiable on O, ie. there exists a partition ∆ of O that satisfies C. The
extension of RBBA to incorporate user constraints is presented in Algorithm 9.

After ordering points, Algorithm 9 constructs an initial partition ∆K of at most K
clusters taking constraints CK = COk into account. It does so by putting each point that
can be in its own cluster in a separate cluster (if there is a must-link, the two points must
be put in the same cluster). Among all such partitions, the one with smallestWCSS(∆K)

is chosen. Since C is satisfiable on O, the partition ∆∗K must exist.
At each step n, for the set On of the last n points, Algorithm 9 searches in the solution

space S(On, Cn). There are different options for the constraint set Cn. As discussed in the



92 Chapter 5. Beyond Constrained Clustering

previous section, Cn can be COn or COn ∪ Ca. We note that the more constraints that are
considered at one step, the tighter the lower bound for the next step would be. At the
last step, when ON = O, the full set of user constraints C, anti-monotonic or not, will be
considered.

Feasible_Extension tries to extend the best partition of the previous step ∆∗n−1 to a
partition ∆n of On that satisfies Cn. Constrained_BaB(On, Cn, Un,W ) performs a branch-
and-bound search to find an optimal partition among all the partitions that satisfy the
set of constraints Cn. It uses Un as the initial upper bound and W for the lower bounds,
in the same way as BAB_Search in Algorithm 8.

Algorithm 9: Extended RBBA
input: objects O, number clusters K, constraint set C
1 OrderPoints(O)
2 OK ← {oN−K+1, . . . , oN}
3 ∆∗K ← Init(OK , CK)

4 WK ←WCSS(∆∗K)

5 for n = K + 1 to N do
6 On ← On−1 ∪ {oN−n+1}
7 ∆n ← Feasible_Extension(On, Cn,∆∗n−1)
8 if ∆n exists then
9 Un ←WCSS(∆n)

10 else
11 Un ←∞
12 ∆∗n ← Constrained_BaB(On, Cn, Un,W )
13 Wn ←WCSS(∆∗n)

Ordering of Points. Algorithms 8 and 9 start by ordering points and they do branch-
and-bound for an increasing set of points following this order. Different orders can be used.
In RBBA [Brusco 2006], the nearest-neighbor separation heuristic is used: at each step of
the ordering, the two points that have the smallest distance among all pairs of points are
withdrawn from the set of points and are placed at opposite ends in the ordering. Another
ordering we use is based on the furthest-point-first (FPF) algorithm [Gonzalez 1985], which
is used in our models (cf. Section 4.2).

5.4.3 A Framework Using CP

Our CP model that defines a partition and user-constraints, such as in Subsection 4.2.2, is
used to achieved the constrained branch-and-bound search at each step. To make further
use of the computed bounds in the previous steps, we have developed a global constraint
that expresses the relation V = sumSquares(G, d,W ), where G is the array of variables
defining a partition, d is the distance between each pair of points and W contains the
previous WCSS∗ values (as per Algorithm 9).



5.4. Repetitive Branch-and-Bound using CP for WCSS 93

A Novel Sum-of-Squares Constraint. The filtering algorithm for the sum-of-squares
constraint V = sumSquares(G, d,W ) is given in Algorithm 10. Because of the variable
order, at any time the propagator is called, there is an index p (1 ≤ p < n) such that
G1, .., Gp are instantiated and Gp+1, ..., Gn are not.

Algorithm 10 enforces bound consistency for V by first computing a lower bound for
V , using the lower bound given by Equation (5.12). This algorithm exploits also W to do
a look ahead to filter the domain of Gp+1. For each k ∈ Dom(Gp+1), that is, all clusters
k not forbidden for this point because of another constraint, if point p + 1 is assigned to
the cluster k, the lower bound for V is revised, using the same Equation (5.12) with the
minimal WCSS value for the last n− p− 1 points.

Algorithm 10: Filtering of: “V = sumSquares(G, d,W )”
input: V,G, d,W with G1, ..., Gp assigned, Gp+1 unassigned

1 // computation of lower bound for V

2 for k = 1 to K do
3 sum[k]← 0; size[k]← 0; s[k]← 0

4 for i = 1 to p do
5 k ← Gi.val()

6 size[k]← size[k] + 1

7 for j = i+ 1 to p do
8 if Gj .val() == k then
9 sum[k]← sum[k] + d(i, j)2

10 V1 ← 0

11 for k = 1 to K do
12 V1 ← V1 + sum[k]/size[k]

13 if V1 +Wn−p ≥ V.ub then
14 return Failure

15 else
16 V.lb← max(V.lb, V1 +Wn−p)

17 // look ahead to filter Dom(Gp+1)

18 for i = 1 to p do
19 s[Gi.val()]← s[Gi.val()] + d(i, p+ 1)2

20 foreach k in Dom(Gp+1) do
21 V ′1 ← V1 − sum[k]/size[k] + (sum[k] + s[k])/(size[k] + 1)

22 if V ′1 +Wn−p−1 ≥ V.ub then
23 remove k from Dom(Gp+1)

The complexity of this algorithm is O(p2), due to the computation of sum and size.
It can be reduced to O(p) when the arrays sum and size are stored and computed incre-
mentally over different propagation runs.



94 Chapter 5. Beyond Constrained Clustering

Improvements. Several improvements have been proposed, such as agglomerating all
the points related by must-link constraints to the same super-points, or using the same
model with a greedy strategy to find a good feasible clustering quickly [Guns et al. 2016].
We emphasize here the interest of constraint propagation in CP. A constraint solver can
additionally reason over partial solutions, namely over the domain of a set of variables.
A constraint solver is guaranteed not to reject a partial solution that can be extended
to a full solution, while it can reject partial solutions that provably can not satisfy a
constraint (such as an anti-monotonic constraint and more). Exploiting this property we
have proposed two different ways to define of constraint set Cn: local and full.

Let C be the set of all user constraints on the whole set of points {o1, . . . , oN}. There
may be instance-level constraints (must-link or cannot-link constraints) or cluster-level
constraints (cardinality, density constraints etc.). At each step n, Constrained_BaB finds
a clustering that minimizes the WCSS value and that satisfies the set of constraints Cn. Let
On be the set of points to cluster at step n. The local model is defined on On, with the set
Cn = COn , the set of user constraints on a (sub)set of the elements of On. One can see that
for n = N , ON = O and hence we will consider the set CO = C of all constraints. The full
model considers all constraints at every steps. At each iteration n ≤ N , Constrained_BaB
operates on the full set of N variables and all the user constraints in C are considered in the
model. However, since we are interested in finding a best clustering on the last n points of
G only, the constraint sumSquares is defined only on the last n variables GN−n+1, . . . , GN .
The branching is also on these n variables only. The interest of such a full model is that
it can allow to prune earlier cases that cannot be extended to a full solution.

Experiment results. CPRBBA has been compared to other state-of-the-art exact clus-
tering approaches: original RBBA6 [Brusco 2006], our CP model with one phase branch-
and-bound search [Dao et al. 2015a] and CCCG-0.5.17 [Babaki et al. 2014] using Integer
Linear Programming and column generation. Both unconstrained and constrained settings
are considered. We report here some results from [Guns et al. 2016].

Table 5.8 reports results in cases without user-constraints. We can see that both
RBBA and CPRBBA are better than the recent CPClustering and CCCG methods in
case no constraints are added. Considering user-constraints, Table 5.9 reports results on
5 random samples of #c must-link and #c cannot-link constraints. We can observe here
that CPRBBA outperforms existant methods in all the cases (CPClus is faster on average
in one case – wine, 100 ML and 100 CL constraints – caused by CPRBBA not finding
the optimal solution within the timeout on for one constraint set, two for -local). The
observation is the same with a cluster minimal size constraint, as shown in Table 5.10.

Multi-Objective WCSS-Split Constrained Clustering. We have used this ap-
proach to experiment multi-objective constrained clustering, where the homogeneity is
expressed by the WCSS and the separatedness is expressed by the split between clusters.
Algorithm 5 is used to find the Pareto front for this bi-objective problem under a set of
user-constraints C. In this algorithm, constrained single objective optimization (WCSS)
is iterated, each time with a condition on the best value of the other objective (minimal

6http://www.psiheart.net/QuantPsych/monograph.html
7https://dtai.cs.kuleuven.be/CP4IM/cccg/

http://www.psiheart.net/QuantPsych/monograph.html
https://dtai.cs.kuleuven.be/CP4IM/cccg/


5.4. Repetitive Branch-and-Bound using CP for WCSS 95

N K CCCG CPClustering RBBA CPRBBA
ruspini 75 4 1800+ 0.41 0.01 0.01
soybean 47 4 1800+ 1.21 0.38 1.28
hatco 100 2 1800+ 1.74 0.03 0.05
hatco 100 3 1800+ 186.18 0.29 0.20
hatco 100 4 1800+ 1800+ 53.95 7.52
hatco 100 5 1800+ 1800+ 1800+ 1636.41
iris 150 3 1800+ 583.19 1.14 1.33
wine 178 3 1800+ 1800+ 7.86 53.57
seeds 210 3 1800+ 1800+ 542.74 170.67
breast 569 2 1800+ 1800+ 1800+ 1800+

Table 5.8: Runtimes in seconds of different exact methods

#c cccg cpclus cprbba-local cprbba-full
iris 10 1800+ (5) 468.48 (0) 1.13 (0) 1.22 (0)
iris 25 1800+ (5) 204.89 (0) 1.41 (0) 1.56 (0)
iris 50 1800+ (5) 205.98 (0) 0.27 (0) 0.34 (0)
iris 100 279.80 (0) 0.09 (0) 0.01 (0) 0.01 (0)
iris 150 0.20 (0) 0.02 (0) 0.02 (0) 0.01 (0)
wine 10 1800+ (5) 1800+ (5) 1029.67 (2) 1033.67 (2)
wine 25 1800+ (5) 1800+ (5) 724.33 (2) 724.68 (2)
wine 50 1800+ (5) 1800+ (5) 749.87 (2) 749.46 (2)
wine 100 1800+ (5) 21.58 (0) 1132.24 (2) 361.90 (1)
wine 150 172.80 (0) 0.08 (0) 3.83 (0) 0.04 (0)
wine 250 0.20 (0) 0.02 (0) 0.01 (0) 0.01 (0)

Table 5.9: Runtimes averaged over 5 random samples of #c must-link and #c cannot-link con-
straints; between brackets number of runs that timed-out (counted as 1800 seconds in average).

K min size cpclus. cprbba-local cprbba-full
ruspini 4 17 1.08 0.02 1.17
ruspini 4 18 270.00 9.00 24.06
soybean 4 10 1.28 1.39 1.78
soybean 4 11 1800+ 1563.12 1652.13
iris 3 38 564.86 1.32 1.67
iris 3 42 693.38 9.23 2.45
iris 3 46 933.23 341.23 18.46
iris 3 50 1508.77 1800+ 294.75

Table 5.10: Runtime in seconds for clustering with minimum (top) and maximum (bottom) size
constraint



96 Chapter 5. Beyond Constrained Clustering

Use case time (s) #sols #c/s
unconstrained 1.11 10 1
20 ML/CL 13.68 7 1
40 ML/CL 9.66 8 1
size minimal 38 1.6 7 1
size minimal 40 1.8 4 1
20 ML/CL, size min 40 13.80 7 1
40 ML/CL, size min 40 9.75 8 1

80 90 100 110 120 130 140

0.2

0.4

0.6

0.8

WCSS

Sp
lit

Unconstrained
20 ML/CL with/without smin 40

Size minimal 40

Figure 5.12: Results and Pareto fronts for bi-objective WCSS-Split on Iris dataset

split) found so far. This minimal-split constraint can in turn be translated into must-link
constraints.

Figure 5.12 shows the results for different use cases on the Iris dataset and the exact
Pareto fronts for four of these cases (the two cases for 20 ML/CL constraints with and
without the minimal size constraint have the same Pareto front). We can see here the
interest of being able to handle user-constraints during the optimization process. Indeed,
in this dataset, each ground truth cluster is of size 50, whereas in the unconstrained use
case, the Pareto solutions can give clusterings with unbalanced clusters. For instance,
the last point in the Pareto front corresponds to a clustering with clusters of size 2, 50
and 98. The constrained cases have the last Pareto solution with WCSS=86.5396 and
Split=0.412311. This solution is common to all the 4 cases, and the only corresponding
clustering has clusters of size 49, 50, 51.

5.5 Constrained Clustering for Time-Series Data

Constrained clustering enables the exploitation of expert knowledge. Nevertheless, the
application of constrained clustering on time-series analysis is relatively unknown. This
is partly due to the unsuitability of the Euclidean distance metric, which is typically
used in data mining, to time-series data. In January 2017, I have started a collaboration
with Pierre Gançarski (ICube, University of Strasbourg) on constrained clustering for
time-series images. This collaboration involves Thomas Lampert, Baptiste Lafabregue
(ICube), Chirstel Vrain and Nicolas Serrette, Master student whose internship was in the
context of the collaboration and was under our supervision. We explore the application
on time-series data of different approaches on dissimilarity-based constrained clustering,
including our constraint programming based approach. A survey on the approaches and
on experimental study of the available approaches has been submitted to Journal of Data
Mining and Knowledge Discovery [44].

Time-series data clustering. Data in many applications is being stored in the form
of time-series data. Time-series data is a type of temporal data, where each time-series is
consisting of a large number of data points. Most of times-series clustering are classified
into two categories [Keogh & Lin 2005]:

• Whole time-series clustering: clustering of a set of individual time-series with respect
to their similarity. Here objects are time-series.



5.5. Constrained Clustering for Time-Series Data 97

• Subsequence clustering: given a single time-series, individual time-series are ex-
tracted via a sliding window. Clustering is then performed on the extracted subse-
quences.

[Keogh & Lin 2005] represented that subsequence clustering is “meaningless”. A typical
goal in time-series analysis is to cluster the data using the full time-series therefore we
focus on whole time-series clustering.

Time-series clustering relies on distance measure to a high extent. While distance
between static objects is exactly match based, for time-series objects, distance is calculated
approximately. Different measures can be applied to compute distance among time-series,
the most common methods in time-series clustering are Euclidean distance and DTW
[Aghabozorgi et al. 2015]. Euclidean distance relies on a fixed mapping between points
in two times-series and is proper to finding similar time-series in time. According to
[Aghabozorgi et al. 2015], clustering of time-series that are correlated (e.g. to cluster time-
series of share price related to many companies to find which shares changes together and
how they are correlated) is categorized as clustering based on similarity in time. Dynamic
Time Warping (DTW) [Sakoe & Chiba 1971, Sakoe & Chiba 1978], on the other hand is
a elastic dissimilarity measure that finds an optimal alignment between two time-series
by non-linearly warping them. It is appropriated for finding similar time-series in shape,
which is a more general case of similarity in time. Various work has been developed for
time-series clustering, for a survey we refer to the work by [Aghabozorgi et al. 2015].

A review on distance-based constrained clustering. In many time-series applica-
tions, there are expert knowledge that need to be considered during the clustering process.
An example of applications is to provide a topology of changes, which are extractable from
time-series of images. This application is the objective of the project A2CNES, that in-
volves the laboratories ICube (Laboratoire des sciences de l’ingénieur, de l’informatique et
de l’imagerie, University of Strasbourg), Live (Laboratoire Image, Ville, Environnement,
University of Strasbourg) and the CNES (Centre nationale d’études spatiales). In this
application, expert knowledge is represented by thematic constraints. These constraints
once transformed to user-constraints need to be considered by the clustering process. We
have therefore explored the use of different constrained clustering methods for time-series.
This work has been performed by the following tasks:

• A review of constrained clustering methods: a wide range of partitioning methods
using distance/similarity were considered. The methods range from algorithmic
approaches to declarative approaches, from using the constraints to guide the search
process to using them to learn a metric before and/or during searching, and from
constructing a clustering directly from the dataset to constructing a clustering from
a set of given clusterings.

• An adaptation of methods (if necessary) to using DTW in time-series: the methods
are selected from implementations that are publicly available. While some algorithms
can be directly applied to use DTW, others require modification the algorithm itself
to integrate the measure.

• An evaluation of the methods on publicly available time-series data. Nine datasets
are taken from the UCR time-series classification archive [Chen et al. 2015]. Clus-



98 Chapter 5. Beyond Constrained Clustering

tering tasks with instance-level must-link and cannot-link constraints were experi-
mented.

For a review of constrained clustering methods, a wide range of partitioning clustering
methods that use distance/similarity were considered. They can be categorized as follows.

• K-means based methods. In this type of approach, a classic clustering algorithm
or the objective function is modified so that user-constraints are used to guide the
algorithm towards a more appropriate clustering. Most of the work consider instance
level must-link and cannot-link constraints. The extension is done either by enforcing
pairwise constraints or by using them to define penalties in the objective function.

• Metric learning methods. User-constraints are used to learn a metric between the
objects. The metric is then given to a clustering algorithm.

• Hybrid methods, which integrate both constraint enforcing and metric learning into
a single framework.

• Spectral constrained clustering. Spectral clustering considers weighted graph that
represents similarity between the objects and aims to find a partition of the graph
such that the edges between different groups have a very low weight and the edges
within a group have high weight. User-constraints can be taken into account either
as “hard” or “soft” constraints.

• Declarative approaches, developed using general optimization tools such as SAT,
constraint programming or integer linear programming. These approaches allow a
large range of user-constraints and objective functions.

• Ensemble and collaborative clustering. These approaches take in input several given
clusterings (or clustering algorithms) and construct a consensus clustering. In en-
semble clustering, the result clustering is constructed by using a consensus function.
In collaborative clustering, the input clustering algorithms collaborate together by
communicating and changing their parameters until a consensus. Constraints can
be integrated in the consensus function or to guide the collaborative process.

Among all the methods, 14 methods whose implementation is available were studied for
the application with time-series data. Some of them can be directly applied to time-series
using DTW (spectral clustering, declarative approach using constraint programming), the
others need modifications inside the algorithm to integrate the measure (K-means based
methods). Ten of these methods were not appropriate because of the restriction on the
number of clusters, the cost inferred by an intensive use of DTW computation, or the used
heuristic that can not be directly extended to DTW. Four methods were finally chosen for
analysis: spectral clustering [Kamvar et al. 2003], spectral clustering with kernel matrix
learning [Li & Liu 2009], collaborative clustering [Forestier et al. 2010] and our approach
using constraint programming. All of these methods can handle instance level must-link
and cannot-link constraints, our method can integrate cluster-level constraints.



5.5. Constrained Clustering for Time-Series Data 99

Dataset # classes # data points # time points

UCR dataset
ECG5000 5 4500 140

ElectricDevices 7 7711 96

FacesUCR 14 2050 131

InsectWingbeatSound 11 1980 256

MALLAT 8 2345 1024

StarLightCurves 3 8236 1024

TwoPatterns 4 4000 128

UWaveGestureLibraryAll 8 3582 945

UWaveGestureLibraryX 8 3582 315

Real dataset
Sud 12 9869 11

Table 5.11: Time-series datasets used in the experimentations.

Application to time-series data. Nine datasets of the UCR repository [Chen et al. 2015]
were chosen, so that they represent typical time-series clustering problems. One real data
was used that represents series of 11 images of size 1000× 1000 of an agricultural zone in
the South-Est of France. The images were taken by the satellite SPOT4 and provided by
CESBIO (Centre d’Études Spatiales de la Biosphère). For this time-series data, we have
a partial ground truth, which consists of 11843 labeled pixels. The dataset was sampled
into a dataset having 9869 labeled instances. The properties of the datasets are described
in Table 5.11.

The chosen methods were experimented with must-link and cannot-link constraints.
To generate a constraint, a pair of instances was randomly drawn from the instances, and
depending on their labels a must-link or a cannot-link constraint was generated. Different
sizes of constraint sets were defined, they correspond to 5%, 10%, 15% and 50% of the
number of instances. For each size, 10 constraint sets were randomly generated. The qual-
ity of the solution was measured using the Adjusted Rand Index [Hubert & Arabie 1985]
and the Normalized Mutual Information [Fred & Jain 2003].

Our framework was used with the criterion of minimizing the maximal diameter of
the clusters. The application was accomplished by Nicolas Serrette during his Master
internship (April - September 2017). In order to handle these datasets with large number
of instances, several restrictions and improvements have been made. We observed that
when minimizing the maximal diameter of the clusters, the search can be stopped before
all the instances are assigned without changing the optimal value. Indeed, the diameter
of a cluster is the maximal dissimilarity between two instances within the cluster. Let
d be the dissimilarity measure, D.lb be the lower bound of the diameter and x be an
instance that has not been assigned to a cluster. If max{d(x, i)} ≤ D.lb then x can be
assigned to any cluster without changing the value of the diameter D, that is x can be
ignored. That means if we detect that all the unassigned instances can be ignored, the
search for the optimal value of diameter can be stopped. This is of course valid if each
ignored instance is not concerned by any must-link or cannot-link constraint. After the



100 Chapter 5. Beyond Constrained Clustering

search, the unassigned instances are assigned into a cluster by a post-process. Different
choices were experimented to assign the remaining instances:

• Closest cluster: The distance from an instance x to a cluster c is defined as the
largest distance from x to each instance in the cluster. Instance x is then assigned
to the cluster having the smallest distance.

• K-nearest neighbors: For each remaining instance x, the K nearest assigned neigh-
bors are considered, and x is assigned to the cluster that is the most representative
among these neighbors.

• Nearest medoid: Using the assigned instances, the medoid of each cluster is identi-
fied. The medoid of a cluster is the instance having the minimal sum of distances to
the other instances of the cluster. Each remaining instance is assigned to the cluster
corresponding to the nearest medoid.

• K-medoid: A K-means like algorithm is used to assign the remaining instance, but
instead of computing the centroid, a medoid is used for each cluster. This algorithm
does not change however the instances already assigned by the search.

The experiments show that depending on the dataset, the number of ignored instances
varies a lot. It can be about ten instances for dataset MALLAT or InsectWingsBeat, or up
to more than 5000 instances for ElectricDevices (which represents 67% of the instances).
Comparing the different choices of post-process assignment, we observe that on average
the closest cluster choice gives less good results and the K-medoid choice gives better
result. It requires however the most in complexity to be achieved.

The numbers of instances and of clusters in the datasets are usually large. In order
to handle the large number of tests, a timeout was also set to 30 minutes. The solution
found so far was return at timeout. Therefore for our approach will not guarantee the
optimal solution, but it always guarantee that all constraints are satisfied. In analyzing
the results, some observations were made concerning our approach as follows:

• The ARI and NMI indexes, excepting two datasets MALLAT and StarLightCurves,
are low – under 50%. This may come from three factors: (a) the criterion of minimiz-
ing the diameter may not be appropriate, (2) the DTW metric for the dissimilarity
may not correspond the best for the data and (3) the ground truth used to gener-
ate constraints may contain errors. The last point was clearly observed for the real
dataset Sud, where for the sake of simplification, some areas with agricultural roads
or small plots have been declared as a single area of a single crop type.

• Must-link and cannot-link constraints, when added, do not always improve the qual-
ity of the result measured by ARI or NMI. It is evident that when the constraints
are enough to describe exactly the ground truth partition then the result will be
the ground truth partition. However this case is unrealistic since the number of
pairwise constraint is about 1

2N(N −1) for N instances, which can be huge for some
thousands of instances. The experiments was conducted with up to 1

2N pairwise
constraints, which represents a very small part compared to all the possible pair-
wise constraints. The deterioration can be observed for all the approaches, but is
mostly significant for CPClustering, which among the four selected methods, always



5.6. Summary 101

satisfies all the constraints. This observation agrees with that also made before on
pairwise constraints with the minimization of WCSS in [Davidson et al. 2006], and
in our work with the minimization of the maximal cluster diameter (cf. Subsection
5.2.3).

From this analysis some questions and challenges have been identified:

1. Pairwise constraints when added to the clustering process can deteriorate the quality
of the solution. Measuring the usefulness of constraints is therefore beneficial. To
measure the usefulness of a constraint set, two scores informativeness and coherence
have been proposed in [Davidson et al. 2006]. When used together, these scores can
give significant insight on the usefulness of a constraint set to improve the quality of
the solution. However the coherence is defined for Euclidean distance and it is not
obvious how this can be extended to DTW.

2. A large number of constraints may have an impact that is not always positive on
the efficiency of the used method as well as the quality of the solution. It would be
therefore useful to sample the constraint set into a smaller one without loss of quality.
This could be done using a measure on the usefulness of constraints. Sampling the
set of instances into a smaller but relevant one is also a challenge to be considered.

3. The experiments were restricted with must-link and cannot-link constraints. In
practice, thematic constraints can be extremely broad and have to be translated
into actionable constraints. Several kinds of actionable constraints are available.
Nevertheless, generating actionable constraints from thematic constraints is not al-
ways straightforward. A thematic constraints on a set of data points can rapidly
lead to a significant increase in both the number and the scope of the constraints.
An example is a constraint that states two sets of points are “of different natures”.
Depending on the context this constraint can correspond to a disjunction of several
sets of constraints.

4. The expert can provide constraints that are not always exact. A consequent is that
the constraints can lead to over constrained problem or unsatisfied problem. It
would be useful to enable the user to add or to remove constraints, or to rank the
constraints.

5. The expert can provide constraints that are only partial or that can change depend-
ing on the context. An iterative process that takes into account expert feedback to
improve the result will be useful.

5.6 Summary

We have explored the use of constraints in different clustering tasks and approach using
constraint programming. On the modeling side, using constraint programming enables
the modeling of more general clustering tasks. We have generalized constrained clustering
problem to combinations of dissimilarity based and conceptual based clusterings. User
constraints have been also categorized so that they can be stated on properties in order
to make clustering actionable. Guidance by constraints up to now is provided a priori



102 Chapter 5. Beyond Constrained Clustering

before the clustering process. We have defined and developed a framework for a new
problem, minimal clustering modification, which allows providing guidance a posteriori.
This has the advantage of allowing feedback to be injected for the result of any clustering
algorithm. On the effectiveness side, we have improved the efficiency of our constraint
programming approach for constrained clustering with the WCSS criterion (within cluster
sum of squares). This makes our approach so far the best in performance compared to
existent methods on exact constrained clustering for WCSS. On the application side, the
use of our framework in an application of constrained clustering on time-series images
involved improving further our framework as well as identifying challenges to consider.



Chapter 6

Conclusion

The declarative approach of constraint programming enables its application to a wide
range of problems. Using constraint programming, the problem must be formulated as
a constraint satisfaction or a constraint optimization problem. In this way, solving the
problem becomes exploring the search space to find one or all the solutions. We have
developed approaches using constraint programming for problems issued from natural
language processing and from data mining.

In natural language processing, one important task is to analyze the syntax of utter-
ances according to a grammar. We have considered property grammars, where a grammar
is given as a set of properties that must be satisfied by the grammatical utterances. We
introduced model-theoretic semantics of property grammars, which allow to formulate the
syntactic analysis as a combinatorial search problem. We developed a formalization as
a constraint optimization problem and modeled it using constraint programming, which
leads to an implementation of a fully constraint-based parser for property grammars. One
main consequence is that the modeling of the problem is decoupled from its solving. This
approach will enable the consideration of constraints coming from different aspects of a
language, such as dependency between constituents.

In data mining, a large range of problems are represented as combinatorial problems.
We have considered constrained clustering problems, where the objective is to find a
partition of the objects that optimizes a criterion and that satisfies user-constraints. We
have developed a declarative framework that integrates several principal optimization
criteria and all popular types of user-constraints. We showed that the flexibility of the
framework allows using it to find the complete Pareto front of bi-objective constrained
clustering problems, which in our knowledge, is the first method in bi-objective clustering
that integrates user-constraints. We explored new clustering problems and showed that
the flexibility and variety of constraint programming can be exploited to solve them. These
problems extend constrained clustering by allowing experts to provide complex constraints
that make a clustering useful in the domain. They allow providing feedback a posteriori
after a clustering is found.

The efficiency of our approach using constraint programming is one issue we studied
in order to make it valuable among the existent approaches. We have improved the model
by a better choice of variables and constraints. One key power of constraint program-
ming resides in global constraints with their filtering algorithm. Exploiting further this
power, we have developed specific global optimization constraints for principal cluster-
ing optimization criteria. This work makes our approach outperform the existent ones.
Regarding the most popular minimum sum-of-squares constrained clustering, we showed
that the constraint programming model can be combined within a more general process
to reach even better performance.

My research perspectives are extension of my work on declarative approaches for data



104 Chapter 6. Conclusion

mining. The objective is to develop efficient declarative methods for data mining prob-
lems. This is represented by: (a) the scope and the use of user-constraints and objective
functions, (b) the scalability of the declarative approach and (c) the integration of human
in the data mining process.

Scope and use of constraints and objective functions. Our approaches searches
for solutions that optimizes a criterion and that satisfies all the user-constraints. We have
observed that when user-constraints are instance-level must-link or cannot-link constraints,
increasing the number of constraints does not always improve the quality of the solution.
The constraints can also be incorrect or conflicting since the information can be incomplete
or inexact, or the data can contain noises. Moreover, a large number of constraints usually
yields a more difficult problem. One solution would be sampling the large set of constraints
to a smaller but relevant one. One idea is using the measures for the usefulness of each
constraint proposed in [Davidson et al. 2006] to construct a relevant constraint set, when
the Euclidean distance is used. When the dissimilarity measure is not a distance, as for
instance DTW, a new measure of usefulness should be developed.

Extension of the scope of constraints or objective functions is also important to bet-
ter exploit user knowledge. Firstly, user knowledge or thematic constraints need to be
expressed by actionable constraints or objective function. Thematic constraints can be
on instances, on clusters, but also can be on subsets of instances that yield the need of
complex constraints. Secondly, user knowledge can be defined on complex data. The
attributes that describe data are usually used to compute distances as in usual distance
based clustering or are discretized to binary for instance to define concept as in conceptual
clustering. In order to fully exploit complex data, we should be able to consider numer-
ical or symbolic information, with properties of instances or with relational information
between the instances. And thirdly, expressing user feedback on clusterings will need the
development of new types of relations and constraints on a meta level. This will extend the
scope of the constraints to involve complex but meaningful constraints as well as objective
functions. We continue exploring clustering problems that exploit complex data.

Scalability. The flexibility and the expressiveness are strong points of a declarative
approach, but its limit is the scalability, since an exhaustive exploration of the search
space is achieved in order to prove the optimality. One important direction is therefore
the scalability.

We have shown in our work that changing the model can give significant improve-
ment and have shown the interest of set constraints when combining distance-based
and conceptual-based constraints and objectives. In conceptual clustering, recent work
[Chabert & Solnon 2017] has investigated further on set constraints in both modeling
types to construct a clustering : one model is finding an assignment of instances such
as in our model and the other is an orthogonal model using a set covering formulation,
that composes a clustering by choosing the clusters among the cluster candidates, such as
in [Mueller & Kramer 2010, Ouali et al. 2016]. In the dissimilarity-based clustering set-
ting the approach using set covering formulation may generate an exponential number
of clusters candidates, but in a more special case, for instance in an interactive process
with user feedback on the composition of the clustering, this approach can be considered.



105

Moreover, we may exploit the strength of channeling constraint to combine this two points
of view in modeling.

Constraint programming offers a large range of constraints to model new clustering
or meta-clustering constraints or objective functions. To better exploit relations that are
complex or that are not fully expressed using existing tools, the design of global (opti-
mization) constraints will always be considered. Appropriate search strategies can also
improve significantly the performance. We have extended the repetitive branch-and-bound
algorithm to user-constraints and show that combining with constraint programming the
obtained system has significant improvement. The order is however static and needs
to be computed before the search. We plan to study dynamic order that would better
improve the bounds. Another direction is to consider stopping the search before a com-
plete variables assignment. For instance when minimizing the maximal diameter we have
observed that without user constraints some instances can be ignored in order to stop
the search before all instances are assigned. This observation has been extended with
instance-level constraints, such that there must be no constraints related to an ignored
instance. When consider cluster level constraints, the problem of deciding whether the
search can be stopped could be considered as a constraint satisfaction sub problem. If
the subproblem has a solution then the search can be stopped before assigning all the
variables. Depending on the constraints, the cost of deciding a constraint satisfaction
problem can be much less than the cost of continuing the assignment with backtracking in
the optimization problem. For instance, an assignment clustering problem with minimum
cluster size constraints is polynomial, since it can be transformed to a minimum cost flow
problem [Bradley et al. 2000].

The development of global optimization constraints is on the line of integrating con-
straint programming and operations research concepts. The integrations of constraint pro-
gramming, artificial intelligence and operations research techniques have shown the interest
of combining the strength of each paradigm in various applications [Milano & Hentenryck 2011].
Depending on the choice of variables for modeling, clustering problems have been mod-
eled either entirely as an integer linear program or entirely as a constraint programming
problem. To better exploit the strength of constraint programming on global constraints
and search, the strength of mixed integer linear programming on relaxation methods and
cutting planes, integrated modeling needs to be studied. This kind of models would allow
to express and to exploit parts that are represented by global constraints or by linear con-
straints. Another direction that needs also to be studied is the use of large neighborhood
search in order to find a good solution.

Integration of human in the process. Constraint-based clustering finds clusters that
satisfy user-specified preferences or constraints. To enable domain experts who are usually
non-data mining experts, to use a knowledge discovery system, it is important to have them
involved in the process. Han wrote in [Han et al. 2006]:

User input regarding important dimensions or the desired results will serve as
crucial hints or meaningful constraints for effective clustering. In general, we
contend that knowledge discovery would be most effective if one could develop
an environment for human-centered, exploratory mining of data, that is, where
the human user is allowed to play a key role in the process. Foremost, a user



106 Chapter 6. Conclusion

should be allowed to specify a focus – directing the mining algorithm toward
the kind of “knowledge” that the user is interested in finding. Clearly, user-
guided mining will lead to more desirable results and capture the application
semantics.

This motivates the idea of an interactivity which is based on an iterative process such as
the Mine (a solution), Interact (with the user), Learn (her preference), Repeat (the pro-
cess with updated constraints) framework [van Leeuwen 2014]. The idea of facilitating the
integration of user in the loop has also been addressed by the development of a declarative
language for constraint-based mining [Guns et al. 2017], or of query based approaches
for constrained clustering using SAT [Métivier et al. 2012b] or SQL [Adam et al. 2013].
An interactive process in clustering will require efficiently integrating user feedback as
well as exploiting or learning user feedback expression. An interactive clustering algo-
rithm has been designed in [Awasthi et al. 2017], which enables local change feedback
such as splitting/merging clusters or must-link/cannot-link constraints. Interactivity by
visual exploration approaches have been developed to easy the user for giving feedback
[Boudjeloud-Assala et al. 2016, Puolamäki et al. 2016].

Given a clustering task specified by an optimization criterion and user-constraints,
a clustering algorithm usually returns a single solution (exact or approximative). The
result can give a model or a view on the data, however it may not entirely fit the user.
User feedback is therefore taken into account to improve the result. User feedback can be
considered with several scenarios:

• the given clustering may in general satisfy the requirements but the user may wish
to explore some “similar” clusterings,

• the user may be interested in a clustering of similar quality but very different in term
of partition, which is called alternative clustering [Bae & Bailey 2006, Davidson & Qi 2008,
Kontonasios & Bie 2015]

• the user may be interested only in some clusters and require them in a new clustering,
or may want to modify some clusters by merging or splitting them [Awasthi et al. 2017],

• the user may wish to keep the composition of a subset of instances.

This will require constraints on instances, on clusters but also on clusterings. This can be
seen as an extension of meta-clustering problems [Caruana et al. 2006] with consideration
of user constraints on different levels. Furthermore, in order to develop a scalable method,
we may need to consider the case where the data is divided in several parts. Each part
is clustered and the assembly is achieved in an interactive way, where constraints are not
only on clusters but can be also on clustering. Considering clusterings, we will need to
determine a measure that enables the comparison of clusterings, an objective that formu-
lates the search of a clustering. The objective can be defined based on a measure or can
also represent a semantically meaningful function. Exploiting the flexibility of constraint
programming and enhancing its effectiveness to enable an efficient consideration of var-
ious constraints as well as objective functions, will make the approach using constraint
programming a good candidate to integrate human in the process.



Appendix A

Other Research Topics

Contents
A.1 Solving Constraints in Tree Structures . . . . . . . . . . . . . . . 107

A.1.1 Solving Constraints in The Tree Theory . . . . . . . . . . . . . . . . 109

A.1.2 Solving Constraints in Extended Tree Theories . . . . . . . . . . . . 110

A.2 Learning Finite Domain Constraint Solver . . . . . . . . . . . . . 111

A.2.1 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.2.2 Learning Indexicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2.3 Intermediate Consistency . . . . . . . . . . . . . . . . . . . . . . . . 114

This chapter presents the other research topics that I worked on. Section A.1 presents
work on solving first order logic constraints in tree structures. I developed this work during
and after my PhD thesis, in collaboration with Alain Colmerauer and Khalil Djelloul
(University Aix-Marseille II). Upon my arrival at CA team (Contraintes et Apprentissage),
I started a joint work with Abdel-Ali Ed-Dbali, Lionel Martin, Arnaud Lallouet and Andreï
Legtchenko (University of Orléans). We initialized a topic on learning solver for finite
domain constraints. Section A.2 presents our work on this topic.

A.1 Solving Constraints in Tree Structures

The tree algebra plays a fundamental role in Computer Science: it models data struc-
tures, program schemes or program executions. Term unification, developed in 1965 by
A. Robinson [Robinson 1965], corresponds to solving a conjunction of equations in the
algebra of finite trees. B. Courcelle studied the properties of infinite trees in the con-
text of recursive programs [Courcelle 1983]. A. Colmerauer described the execution of
programs in Prolog II, III and IV in term of solving equations and disequations in the
algebra of finite and infinite trees [Colmerauer 1982, Colmerauer 1984, Colmerauer 1990].
Solving conjunctions of equations in finite trees theory was also the subject of various
work [Huet 1976, Jaffar 1984, Ramachandran & Van Hentenryck 1993].

The properties of the algebra of finite, rational or infinite trees have been axiomatized
in a complete first order theory [Maher 1988]. This theory is defined on an infinite set of
function symbols F and an unique relation symbol, which is the equality =. Each function
symbol f ∈ F has an arity which is positive or nul. A function symbol having arity nul
is called a constant. Let V be an infinite set of variables. A term is an expression which
is either x, with x ∈ V , either f(t1, . . . , tn), where f ∈ F is of arity n and t1, . . . , tn are
terms.



108 Appendix A. Other Research Topics

Definition A.1 The theory of finite, rational and infinite trees is the infinite set of propo-
sitions in one of the three following forms [Maher 1988]:

∀x1 . . . ∀xn∀y1 . . . ∀ym ¬(f(x1, . . . , xn) = g(y1, . . . , ym)

∀x1 . . . ∀xn∀y1 . . . ∀yn f(x1, . . . , xn) = f(y1, . . . , yn) →
∧
i xi = yi

∀x1 . . . ∀xn∃!y1 . . . ∃!ym
∧
i yi = ti[x1, . . . , xn, y1, . . . , ym]

where f, g ∈ F and f 6= g and ti[x1, . . . , xn, y1, . . . , ym] is a term formed by an element in
F and variables taken from {x1, . . . , xn, y1, . . . , ym}.

These forms are also called the axiom schemes of the theory. M. Maher proved that this
theory T is complete, i.e. for all proposition p, either T |= p, either T |= ¬p. This theory
is called tree theory since the algebra of finite, rational and infinite trees is a model of this
theory, as explained below.

The interpretation domain is the set of trees, whose nodes are labeled by elements of F .
To each element f ∈ F of arity n is associated an operation called construction operation
(a1, . . . , an) 7→ b, where a1, . . . , an are trees and b is the tree whose root is labeled by f
and possesses as direct subtrees the trees a1, . . . , an. A constant f is interpreted by a tree
having only one node labeled by f . A term f(t1, . . . , tn) is interpreted by a tree whose
root is labeled by f and the direct subtrees are trees that interpret t1, . . . , tn. A finite tree
is a tree having a finite set of nodes. An infinite tree has an infinite number of nodes. For
instance, let a, b be constants, f be of arity 2 and s of arity 1. Among the three following
trees, the first one is finite and the two other are infinite:

A rational tree is a tree having a finite number of subtrees. For instance, the two first one
are rational and the last one is infinite non rational. Indeed, their subtrees are identified
with the following schemes:

The first tree can be expressed by:

x = f(y, z) ∧ y = f(u, v) ∧ z = s(u) ∧ u = a ∧ v = b



A.1. Solving Constraints in Tree Structures 109

the second by:
x = f(u, y) ∧ y = f(v, x) ∧ u = a ∧ v = b

The third one cannot however be presented by a finite conjunction of equations.

A.1.1 Solving Constraints in The Tree Theory

This subsection presents work during my PhD thesis [Dao 2000b], supervised by Alain
Colmerauer (University Aix-Marseille II). The objective was to construct an algorithm to
solve first order constraints in the tree theory, i.e. in all the models of the theory. First
order constraints are of one of the following forms:

s = t, true, false, ¬(ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ), ∃xϕ, ∀xϕ

where x is a variable, s, t are terms and ϕ and ψ are constraints. These constraints
therefore can be stated with any logical connection and can have nested and alternated
quantifiers. One example of quantified constraints is in two player games, where we want
to find the positions where the first player can win after at most k moves.

Example 2 Letmove(x, y) be a predicate that defines the possibles moves from a position
x to a position y. Let winningk(x) and losingk(x) be the predicates stating that the player
who plays at the position x can win, no matter the way the other plays (or always lose,
respectively) after at most k moves. These predicates can be defined as follow:

winning0(x) ↔ false

winningk+1(x) ↔ ∃y (move(x, y) ∧ losingk(y))

losingk(x) ↔ ∀y (move(x, y)→ winningk(y))

Trees can be used to represent the positions in a game and constraints in the tree structure
can be used to represent the relation move(x, y). Let us consider a two player game
where we start with a non negative integer n and in turn each player subtracts 1 or 2
without making n negative. The first player who cannot play loses. The integers here are
interpreted by trees such that 0 is represented by 0 and i > 0 by si(0). The predicate
move(x, y) can be defined as follow:

move(x, y)
def
= x = s(y) ∨ x = s(s(y)) ∨ (¬(x = 0) ∧ ¬∃u (x = s(u)) ∧ x = y)

The constraint winningk(x), once developed, is represented by a first order constraint
with nested and alternated quantifiers and with the free variable x. The solutions for
winning1(x) are:

x = s(0) ∨ x = s(s(0))

and the solutions for winning2(x) are:

x = s(0) ∨ x = s(s(0)) ∨ x = s(s(s(s(0)))) ∨ x = s(s(s(s(s(0)))))

�



110 Appendix A. Other Research Topics

Solving constraints by rewriting. I developed a method for eliminating quantifiers
and defined a normal form for the constraints, where the solutions can be deduced explic-
itly. Using this quantifier elimination method, solving a constraint becomes transforming
it to an equivalent formula, which is either false (there is no solution for the constraint)
or a formula in the normal form (the solution are deduced directly). The transformation
is achieved by sub-formula rewriting. I proposed a set of eleven sub-formula rewrite rules.
Each rewrite rule transforms a sub-formula to an equivalent formula. To transform a
constraint, the rewrite rules are applied as many times as possible on sub-formulas of the
constraint and they can be applied independently. I proved that their application always
terminates and the final formula, which is equivalent to the initial one, is either false or
in the normal form [Dao 2000a]. I implemented in C++ a tree constraints solver using
these rewrite rules. The solve is capable to solve complex constrains, for instance winning
position constraints having up to 160 nested and alternated quantifiers.

Expressiveness of tree constraints. We showed that constraints in tree structure have
a quasi-universal expressive power [Colmerauer & Dao 2000, Colmerauer & Dao 2003].
Let α(k) be a function defined for each integer k ≥ 0 such that α(0) = 1 and α(k + 1) =

2α(k). This function increases in a stunning way, since α(0) = 1, α(1) = 2, α(2) = 4,
α(3) = 16, α(4) = 65536 and α(5) = 265536. We constructed a family of strongly expres-
sive tree constraints: by a tree constraint of size proportional to k, we define a tree having
exactly α(k) nodes. Using this family we can express for instance the multiplication table
computed by a Prolog machine executing up to α(k) instructions. By replacing the Pro-
log machine with a Turing machine, we showed the quasi-universality of tree constraints,
i.e. the ability to concisely describe trees which the most powerful machine will never
have time to compute. As such we also rediscover the following result by S. Vorobyov
[Vorobyov 1996]: the complexity of an algoirthm, deciding whether a tree constraint with-
out free variables is true, cannot be bounded above by a function obtained from finite
composition of simple function including exponentiation.

Extension with finite trees. Let finite(x) a predicate expressing x is a finite tree.
We proposed an extension T ∪ FINITE of the tree theory T , having as model the tree
algebra. We proposed a set of 16 rewrite rules to solve constraints in this theory. The
rewrite rules transform the constraint to solve in an equivalent formula, which is either
false or a formula in the normal form. Therefore if the initial constraint does not have
free variables, the final formula will be either false or true. In the same way such that
the 11 rewrite rules confirm the completeness of the tree theory T , the 16 rewrite rules
show that the theory T ∪FINITE is complete. For the theory of finite trees, we proposed
12 rewrite rules to solve first order constraints.

A.1.2 Solving Constraints in Extended Tree Theories

This subsection describes work after my PhD thesis. This work was developed in collab-
oration with Khalil Djelloul (University Aix-Marseille II).

Solving constraints in decomposable theories. In generalizing the quantifier elimi-
nation method that I had developed, we identified sufficient properties for a theory so that



A.2. Learning Finite Domain Constraint Solver 111

the quantifier elimination can be applied. This category of theories is called decomposable
theories. We showed that several fundamental theories are decomposable, for instance the
theory of dense linear order without limit, the theory of rational numbers with addition
and subtraction, the theory of queues or the theory of lists. We generalized the algorithm
for solving constraints in the tree theory to solve constraints in a decomposable theory
[Djelloul & Dao 2006c].

Solving constraints in evaluated trees structure. Let Q be the set of rational
numbers. We studied the tree structure, whose trees have nodes labeled by elements of
Q ∪ F ∪ {+,−}. The trees are evaluated such that the subtrees labeled only by elements
of Q ∪ {+,−} are evaluated and reduced to an element of Q. This structure reflects
the essential of Prolog III and IV, which are modeled by a combination of trees and
rational numbers, booleans and intervals [Colmerauer 1984, Colmerauer 1990]. We defined
a normal form for constraints where the solutions are explicit. For solving constraints in
this structure, we developed a set of rewrite rules, which transforms the initial constraint
to either false or a formula in the normal form [Dao & Djelloul 2006].

Combination of theories with the tree theory. Let T be a decidable theory. We
studied the combination of the theory T with the tree theory, denoted by T ∗, in the
case where the signatures of these theories can overlap. We identified the properties
that need to be satisfied by the theory T , in order to make T ∗ complete. We proposed
a decision procedure for T ∗, which is presented by a set of 6 sub-formula rewrite rules
[Djelloul & Dao 2006b]. Considering T the theory of queues, we developed an algorithm
for solving constraints in the theory combining trees with queues [Dao 2009].

Extension into first order of Prolog model. The execution of Prolog programs
corresponds to the resolution of conjunctions of equations and disequations in the finite
and infinite trees structure. In order to extend the Prolog model into a solver of general
first order constraints in this structure, we extended the tree theory with the relation
finite(t), stating that t must be a finite tree. We developed an algorithm for solving
constraints in this theory and implemented it using C++ and the formalism of CHR
[Djelloul et al. 2007, Djelloul et al. 2008].

A.2 Learning Finite Domain Constraint Solver

Constraint programming solvers are based on constraint propagation and search. Con-
straint propagation is achieved for each constraint of the problem. Propagating a con-
straint c consists in removing some inconsistant values from the domain of the vari-
ables of c. The propagation of a constraint c is accomplished by the propagators as-
sociated to c. This means in CP solvers, each constraint scheme is associated with a
set of propagators or with a filtering algorithm. The propagators or the filtering algo-
rithm are designed to enforce the constraint with a certain level of consistency. Different
types of consistency exist and the propagators can have difference effects on the vari-
able domain. For instance, propagators enforcing arc-consistency remove arc-consistent



112 Appendix A. Other Research Topics

values and therefore need to consider each value, while propagators enforcing bound-
consistency move only upper and lower bounds of the domain. The capacity of re-
moving inconsistent values reduces the search space. However since the solver inter-
leaves constraint propagation with search, the propagators need also be fast enough.
The efficiency of the solver therefore depend strongly in the efficiency of the propa-
gators. The task of finding efficient propagators which actually define a local consis-
tency is considered as one of the smartest skills of the solver designer. Pioneering work
had investigated on automatic construction of solvers: constructing rule-based propaga-
tors using systematic search [Apt & Monfroy 1999], constructing propagators by rewrite
rules in CHR frameworks using machine learning techniques[Abdennadher & Rigotti 2002,
Abdennadher & Rigotti 2004].

An efficient technique for computing consistencies is to use a data representation for
the CSP and a set of operators whose common fixed point models the expected con-
sistency. The operators are then applied via chaotic iteration until reaching their com-
mon fixed point [Apt 1999]. In our approach we developed a framework using Machine
Learning techniques for learning a finite domain constraint solver. Given a CSP, solver
learning consists in an automatic generation of propagators for each constraint to en-
force a desired local consistency. The principe of the learning framework is consider-
ing the behavior of the operator enforcing the desired consistency as a set of examples,
in order to find an adequate representation of this operator in a given language. The
contributions presented below were published in [Dao et al. 2002, Lallouet et al. 2003a,
Lallouet et al. 2003b, Ed-Dbali et al. 2003] and enjoyed a collaboration with Abdel-Ali
Ed-Dbali, Lionel Martin, Arnaud Lallouet et Andreï Legtchenko.

A.2.1 Theoretical Framework

Let V be a set of variables and D = (DX)X∈V their finite domains. A constraint c is a
pair (W,T ) where W ⊆ V is the arity of the constraints and T ⊆

∏
X∈W DX is the set

of solutions of c. A CSP is a set of constraints. For W ⊆ V , a search state s is a tuple
(sX)X∈W where ∀X ∈ W , sX ⊆ DX . A singletonic search state ({vX})X∈W represents a
single tuple. The search space is SW =

∏
X∈W P(DX). The set SW ordered by point-wise

inclusion ⊆ forms a complete lattice.
A consistency for a constraint c = (W,T ) is an operator f : SW → SW such that:

• f is monotonic, i.e s ⊆ s′ ⇒ f(s) ⊆ f(s′), in order to ensure the confluence of the
reduction mechanism,

• f is contracting, i.e ∀s ∈ SW , f(s) ⊆ s, in order to reduce variable’s domains,

• f is correct w.r.t c, i.e ∀s ∈ SW , every solutions of c which are present in s remain
in f(s),

• f represents c, i.e for every singletonic search state s which does not represent a
solution of c, f(s) is an empty state (at least one element of the tuple f(s) is the
empty set).

Operators which satisfy the first three conditions are called pre-consistencies for c. As an
example of consistency, if we suppose that each variable domain DX is ordered by a total



A.2. Learning Finite Domain Constraint Solver 113

ordering ≤ and for A ⊆ DX , we denote by [A] the set {a ∈ DX | min(A) ≤ a ≤ max(A)},
then the bound-consistency bcc is defined by ∀s ∈ SW , ∀X ∈ W , bcc(s)X = sX ∩ [TX ],
with TX the projection of T on X.

Let csc be the consistency to be learned. Our aim is to build a consistency f which
behaves like csc as much as possible. Thus f must be contracting, monotonic, correct
w.r.t csc (∀s ∈ SW , csc(s) ⊆ f(s)) and singleton complete w.r.t csc (f(s) ⊆ csc(s) for any
singletonic search state s). However, singleton completeness is difficult to get and even
not always possible to express in a given language. In order to transform a pre-consistency
into a consistency, let us define a consistency idc such that ∀s ∈ SW , idc(s) is an empty
state if s is a non-solution singletonic state, and idc(s) = s otherwise. Thus f ◦ idc and
idc ◦ f are consistencies for c if f is a pre-consistency for c. Therefore by adding idc in
the set of operators, processed by a chaotic iteration mechanism [Apt 1999], we only need
to build pre-consistencies for c. On the other hand, the correctness condition must be
ensured for every s ∈ SW which is generally huge. We showed that: If f is a monotonic
and contracting operator such that f(s) = s for every singletonic state s which represents
a solution of c, then f is a pre-consistency for c. Therefore, by considering monotonic
operators, we can reduce the search space to a sample set E which is a subset of SW and
which contains all singletonic search states. Let L be the language in which operators
are expressed and l be an operator in this language. In order to find the best possible
expression, we need to compare two consistencies. This is usually done with a distance.
Let d be such a distance between two consistencies. The learning problem is formulated
as follows:

minimize d(css, l),
subject to ∀s ∈ E, csc(s) ⊆ l(s) ⊆ s,

where E ⊆ SW , E contains all singletonic search states of SW and l is a monotonic
operator. Following the machine learning vocabulary, csc represents the example space
and L the hypothesis space.

A.2.2 Learning Indexicals

To instantiate our theoretical framework, we have to define strong language biases in order
to limit the combinatorial explosion.

The first question is the language in which operators are expressed. The language of
indexicals [van Hentenryck et al. 1991] is chosen, motivated by the ease of integration of
the user-defined indexicals in Gnu-Prolog [Diaz & Codognet 2001]. In this language, an
operator is written X in r, where X represents the domain of the variable X and r is an
expression representing a subset of DX . If we denote x the unary constraint representing
X’s domain, then the indexical represents the operator x 7→ x ∩ r.

Then comes the choice of consistency. We learn the bound-consistency, since it allows
to limit the example space to intervals instead of arbitrary subsets.

For each variable we learn a reduction indexical and define an indexical for idc. The
reduction indexical for X is of the form X in minX .. maxX where minX, maxX are in some
predefined forms. In order to be monotonic, the bound minX must be anti-monotonic and
maxX monotonic. This can be ensured by syntactic conditions on the sign of the coefficients
for each expression. Let L = {minY, maxY | Y 6= X}. In practice, the predefined form for



114 Appendix A. Other Research Topics

the expression can be linear:
α0 +

∑
t∈L

αtt

quadratic:
α0 +

∑
t,t′∈L

αtt′tt
′

or rational form:
α0 +

∑
t∈L

αt
t+ 1

The coefficients αi are therefore to be learned. The indexicals for idc could be implemented
in two ways: by using Gnu-Prolog indexicals for predefined constraints in which each
instance of min and max is simply replaced by val, or by a direct code using val and C
operators.

As distance between two consistencies, we use the global error on the example space
E. By considering that f must be correct w.r.t csc, this distance is:∑

s∈E
|f(s)\csc(s)|

A.2.3 Intermediate Consistency

Consistencies can be partially ordered according to their pruning power. This pruning
power, however, should be put into balance with the complexity of enforcing them. For
instance, the pruning power of path-consistency is great, but the price to pay is so high
that the consistency is not used. Similarly, for many CSPs, bound-consistency is preferred
to arc-consistency even if it does not remove values from the middle of variable domains. In
Subsection A.2.2, a consistency weaker than bound-consistency but as close to it as possible
was constructed. This subsection extends the method to build a range of consistencies
for a given constraint. These intermediate consistencies are located between bound- and
arc-consistencies.

This set of consistencies is provided by a new solver learning method based on a
clustering of the constraint’s tuples, a sampling of the search space and a repair technique
which is able to fix a too weak operator. This consistency is called multibound-consistency.
The idea is to isolate disjunctive chunks of the constraint and to apply bound consistency
to each chunk. A constraint, given by the set of its solution tuples, is partitioned into
clusters using a clustering algorithm. A clustering of a constraint c = (W,T ) is a set
of constraints CL = {c1 = (W,T1), . . . , cn = (W,Tn)} such that {T1, . . . , Tn} forms a
partition of T . The agglomerative complete-link clustering algorithm is used.

The consistency obtained consists in applying the bound-consistency on each separate
cluster as follows. Let bcci be the bound consistency for a constraint ci ∈ CL. The
multibound-consistency is defined by the operator:

∀s ∈ SW , mbc(s) = s ∩
⋃

ci∈CL
bcci(s)

Note that when each cluster only holds one tuple, we get arc-consistency, and when all
tuples are in a single cluster, we get bound-consistency. Since the clustering wraps some



A.2. Learning Finite Domain Constraint Solver 115

holes, it is necessary to compose the learned operator with idc in order to get a consistency.
The multibound-consistency operator is obviously monotonic. The pruning power and the
computational cost of this consistency is directly related to the number of allowed clusters.
The ratio between filtering and search can be finely tuned by choosing a level of consistency
in this set, instead of just bound- and arc-consistencies.





List of Publications

International Journal Articles

[1] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain, Constrained Clustering by
Constraint Programming, Artificial Intelligence, Vol 244, pages 70–94, 2017.

[2] Denys Duchier, Thi-Bich-Hanh Dao, Yannick Parmentier, Model-Theory and Imple-
mentation of Property Grammars with Features, Journal of Logic and Computation,
Vol 24, No 2, pages 491-509, 2014.

[3] Khalil Djelloul, Thi-Bich-Hanh Dao, Thom Fruehwirth, Theory of Finite or Infinite
Trees Revisited, Journal of Theory and Practice of Logic Programming, Vol 8, No 4,
Pages 431-489, 2008.

[4] Alain Colmerauer, Thi-Bich-Hanh Dao, Expressiveness of Full First-Order Constraints
in the Algebra of Finite or Infinite Trees, Journal of Constraints, Kluwer Academic
Publishers, Vol 8, No 3, pages 283-302, 2003.

National Journal Articles

[5] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain, Un nouveau modèle pour
la classification non supervisée sous contraintes, Revue d’Intelligence Artificielle, Vol.
28, No. 5, pages 523-545, 2014.

[6] Ali Ed-Dbali, Thi-Bich-Hanh Dao, Arnaud Lallouet, Andreï Legtchenko, Apprentis-
sage de solveurs de contraintes sur les domaines finis, Technique et Science Informa-
tique, Vol. 22, No. 1, pages 125-138, 2003.

International Conference Papers

[7] Chia-Tung Kuo, S. S. Ravi, Thi-Bich-Hanh Dao, Christel Vrain, Ian Davidson, A
Framework for Minimal Clustering Modification via Constraint Programming. In the
31st AAAI Conference on Artificial Intelligence AAAI-17, 2017.

[8] Thi-Bich-Hanh Dao, Christel Vrain, Khanh-Chuong Duong, Ian Davidson, A Frame-
work for Actionable Clustering Using Constraint Programming. In the 22nd European
Conference on Artificial Intelligence ECAI, pages 453-461, 2016.

[9] Tias Guns, Thi-Bich-Hanh Dao, Christel Vrain, Khanh-Chuong Duong, Repetitive
Branch-and-Bound Using Constraint Programming for Constrained Minimum Sum-of-
Squares Clustering. In the 22nd European Conference on Artificial Intelligence ECAI,
pages 462-470, 2016.

[10] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain, Constrained Minimum
Sum of Squares Clustering by Constraint Programming, In 21st International Conference



118 List of Publications

on Principles and Practice of Constraint Programming CP, Cork, Ireland, August 31
- September 4, 2015, Proceedings. Lecture Notes in Computer Science 9255, Springer,
pages 557-573, 2015.

[11] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain, A Declarative Framework
for Constrained Clustering, In European Conference on Machine Learning and Princi-
ples and Practice of Knowledge Discovery in Databases ECMLPKDD, Prague, Czech
Republic, September 23-27, Proceedings, Part III, Lecture Notes in Computer Science
8190, Springer, pages 419-434, 2013.

[12] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain, A Filtering Algorithm for
Constrained Clustering with Within-Cluster Sum of Dissimilarities Criterion. In IEEE
25th International Conference on Tools with Artificial Intelligence ICTAI, Herndon, VA,
USA, November 4-6, 2013, pages 1060-1067, 2013.

[13] Denys Duchier, Thi-Bich-Hanh Dao, Yannick Parmentier, Model-Theory of Property
Grammars with Features, Proceedings of the 12th International Conference on Parsing
Technologies, IWPT 2011, October 5-7, Dublin City University, Dubin, Ireland, pages
75-79, 2011.

[14] Denys Duchier, Thi-Bich-Hanh Dao, Yannick Parmentier, Willy Lesaint, Property
Grammar Parsing Seen as a Constraint Optimization Problem, in Formal Grammar -
15th International Conference, FG 2010, Copenhagen, Denmark, August 2010. Revised
Selected Papers. Lecture Notes in Computer Science 7395, Springer, pages 82-96, 2012.

[15] Denys Duchier, Jean-Philippe Prost, and Thi-Bich-Hanh Dao, A model-theoretic
framework for grammaticality judgements. Formal Grammar - 14th International Con-
ference, FG 2009, Bordeaux, France, July 25-26, 2009, Revised Selected Papers. Lecture
Notes in Computer Science 5591, Springer, pages 17-30, 2011.

[16] Khalil Djelloul, Thi-Bich-Hanh Dao, and Thom Fruehwirth, Toward a first-order ex-
tension of Prolog’s unification using CHR. In Proceedings of the 2007 ACM Symposium
on Applied Computing (SAC), Seoul, Korea, March 11-15, pages 58-64, 2007.

[17] Thi-Bich-Hanh Dao, Khalil Djelloul. Solving First-Order Constraints in the Theory
of the Evaluated Trees. In 22nd International Conference on Logic Programming, ICLP
2006, Proceedings. Lecture Notes in Computer Science 4079 Springer, pages 423–424,
2006.

[18] Khalil Djelloul, Thi-Bich-Hanh Dao, Solving first-order constraints in the theory of
finite or infinite trees: introduction to the decomposable theories. In Proceedings of the
2006 ACM Symposium on Applied Computing (SAC), pages 7-14, 2006.

[19] Khalil Djelloul, Thi-Bich-Hanh Dao, Extension into trees of first order theories. In
Artificial Intelligence and Symbolic Computation, 8th International Conference, AISC
2006, Beijing, China, September 20-22, 2006, Proceedings. Lecture Notes in Computer
Science 4120, Springer, pages 53-67, 2006.

[20] Arnaud Lallouet, Andrei Legtchenko, Thi-Bich-Hanh Dao, Ali Ed-Dbali, Intermedi-
ated (Learned) Consistencies, Principles and Practice of Constraint Programming - CP



List of Publications 119

2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 - October
3, 2003, Proceedings. Lecture Notes in Computer Science 2833, Springer, pages 889-893,
2003.

[21] Arnaud Lallouet, Thi-Bich-Hanh Dao, Ali Ed-Dbali, Language, Definition and Opti-
mal Computation of CSP Approximations, Proceedings of the Sixteenth International
Florida Artificial Intelligence Research Society Conference, May 12-14, 2003, St. Au-
gustine, Florida, USA. AAAI Press, pages 182-186, 2003.

[22] Arnaud Lallouet, Andrei Legtchenko, Thi-Bich-Hanh Dao, Ali Ed-Dbali, Finite Do-
main Constraint Solver Learning, IJCAI-03, Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003. Mor-
gan Kaufmann, pages 1379-1380, 2003.

[23] Thi-Bich-Hanh Dao, Arnaud Lallouet, Andrei Legtchenko, Lionel Martin, Indexical-
Based Solver Learning, Principles and Practice of Constraint Programming - CP 2002,
8th International Conference, CP 2002, Ithaca, NY, USA, September 9-13, 2002, Pro-
ceedings. Lecture Notes in Computer Science 2470, Springer, pages 541-555, 2002.

[24] Alain Colmerauer, Thi-Bich-Hanh Dao, Expressiveness of Full First Order Con-
straints in the Algebra of Finite or Infinite Trees, Principles and Practice of Constraint
Programming - CP 2000, 6th International Conference, Singapore, September 18-21,
2000, Proceedings. Lecture Notes in Computer Science 1894, Springer, pages 172-186,
2000.

Workshop Papers

[25] Yohan Boichut, Thi-Bich-Hanh Dao, Valérie Murat, Characterizing Conclusive Ap-
proximations by Logical Formulae, In Proceedings of 5th International Workshop on
Reachability Problems, RV 2011, Lecture Notes in Computer Science 6945, pages 72-
84, 2011.

[26] Thi-Bich-Hanh Dao, Khalil Djelloul, Solving First-Order Constraints in the Theory of
the Evaluated Trees. Recent Advances in Constraints, 11th Annual ERCIM International
Workshop on Constraint Solving and Contraint Logic Programming, CSCLP 2006, Ca-
parica, Portugal, June 26-28, 2006, Revised Selected and Invited Papers. Lecture Notes
in Computer Science 4651, Springer, pages 108-123, 2006.

[27] Khalil Djelloul and Thi-Bich-Hanh Dao. Complete First-Order Axiomatization of Fi-
nite or Infinite M-extended Trees. In 20th Workshop on Logic Programming, Vienna,
Austria, February 22–24, 2006. INFSYS Research Report 1843-06-02 Technische Uni-
versität Wien, Austria 2006

[28] Arnaud Lallouet, Andrei Legtchenko, Thi-Bich-Hanh Dao, Ali Ed-Dbali,
Learning Approximate Consistencies , Recent Advances in Constraints, Joint
ERCIM/CoLogNET International Workshop on Constraint Solving and Constraint
Logic Programming, CSCLP 2003, Budapest, Hungary, June 30 - July 2, 2003, Se-
lected Papers. Lecture Notes in Computer Science 3010, Springer, pages 87-106, 2003.



120 List of Publications

National Conference Papers

[29] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Tias Guns, Christel Vrain, Branch-and-
bound répétitif et programmation par contraintes pour le clustering sous contraintes. In
Douzième Journées Francophones de Programmation par Contraintes JFPC 2016.

[30] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain, Clustering avec la min-
imisation de la somme des carrés par la programmation par contraintes. In Onzième
Journées Francophones de Programmation par Contraintes JFPC 2015.

[31] Thi-Bich-Hanh Dao, Willy Lesaint, Christel Vrain, Clustering conceptuel et relation-
nel en programmation par contraintes. In Onzième Journées Francophones de Program-
mation par Contraintes JFPC 2015.

[32] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain, Classification non super-
visée mono et bi-objectif par la programmation par contraintes. In Dixièmes Journées
Francophones de Programmation par Contraintes JFPC 2014.

[33] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain, Un modèle général pour
la classification non supervisée sous contraintes d’utilisateurs. In Neuvièmes Journées
Francophones de Programmation par Contraintes JFPC 2013.

[34] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain, Une approche en pro-
grammation par contraintes pour la classification non supervisée, Extraction et gestion
des connaissances EGC, Actes, 29 janvier - 01 février 2013, Toulouse, France. Revue
des Nouvelles Technologies de l’Information RNTI-E-24, Hermann-Éditions, pages 55-
66, 2013.

[35] Denys Duchier, Thi-Bich-Hanh Dao, and Yannick Parmentier, Analyse syntaxique
par contraintes pour les grammaires de propriétés à traits. In Huitième Journées Fran-
cophones de Programmation par Contraintes JFPC 2012.

[36] Denys Duchier, Thi-Bich-Hanh Dao, Yannick Parmentier, and Willy Lesaint. Une
modélisation en CSP des grammaires de propriétés. In Sixièmes Journées Francophones
de Programmation par Contraintes JFPC 2010.

[37] Thi-Bich-Hanh Dao. Un algorithme de décision dans l’algèbre des arbres finis ou in-
finis et des queues. In Actes des Cinquièmes Journées Francophones de Programmation
par Contraintes JFPC 2009.

[38] Khalil Djelloul, Thi-Bich-Hanh Dao, and Thom Fruehwirth. Extension au premier
ordre de l’unification des termes par CHR. In Troisièmes Journées Francophones de
Programmation par Contraintes JFPC 2007.

[39] Khalil Djelloul and Thi-Bich-Hanh Dao. Résolution de contraintes du premier ordre
dans la théorie des arbres évalués. In Journées Francophones de Programmation par
Contraintes JFPC 2006.

[40] Thi-Bich-Hanh Dao and Khalil Djelloul. Complétude des extensions en arbres de
théories. In Journées Francophones de Programmation par Contraintes JFPC 2006.



List of Publications 121

[41] Arnaud Lallouet, Andrei Legtchenko, Thi-Bich-Hanh Dao, Ali Ed-Dbali, Apprentis-
sage de solveur de contraintes sur les domaines finis, Journées Francophones de Pro-
grammation en Logique avec Contraintes (JFPLC 2003), Amiens, France, du 17 au 19
Juin 2003. Hermes/LavoisierJFPLC, pages 125-138, 2003.

[42] Thi-Bich-Hanh Dao, Résolution de contraintes du premier ordre dans la théorie des
arbres finis ou infinis, Programmation en logique avec contraintes, JFPLC 2000, 28-30
Juin 2000, Marseille, France. Hermes, pages 225-240, Prix du meilleur article, 2000.

PhD Thesis

[43] Thi-Bich-Hanh Dao, Résolution de contraintes du premier ordre dans la théorie des
arbres finis ou infinis, Université Aix-Marseille 2, 2000.

Submissions

[44] Thomas Lampert, Thi-Bich-Hanh Dao, Baptiste Lafabregue, Nicolas Serrette, Ger-
main Forestier, Bruno Crémilleux, Christel Vrain, Pierre Gançarski, Constrained Dis-
tance Based Clustering for Time-Series: A Comparative and Experimental Study, sub-
mitted to Data Mining and Knowledge Discovery.





Bibliography

[Abdennadher & Rigotti 2002] Slim Abdennadher and Christophe Rigotti. Automatic
generation of rule-based solvers for intensionally defined constraints. International
Journal on Artificial Intelligence Tools, vol. 2, no. 11, pages 283–302, 2002.

[Abdennadher & Rigotti 2004] Slim Abdennadher and Christophe Rigotti. Automatic
generation of rule-based constraint solvers over finite domains. Transaction on
Computational Logic, vol. 2, no. 5, 2004.

[Adam et al. 2013] Antoine Adam, Hendrik Blockeel, Sander Govers and Abram Aertsen.
SCCQL : A Constraint-Based Clustering System. In Machine Learning and Knowl-
edge Discovery in Databases - European Conference, ECML PKDD 2013, Prague,
Czech Republic, September 23-27, 2013, Proceedings, Part III, pages 681–684,
2013.

[Aggarwal & Reddy 2013] Charu C. Aggarwal and Chandan K. Reddy. Data clustering:
Algorithms and applications. Chapman & Hall/CRC, 2013.

[Aghabozorgi et al. 2015] S. Aghabozorgi, A. Shirkhorshidi and T. Wah. Time-series clus-
tering – A decade review. Information Systems, vol. 53, pages 16–38, 2015.

[Aloise & Hansen 2009] Daniel Aloise and Pierre Hansen. An branch-and-cut SDP-based
algorithm for minimum sum-of-squares clustering. Pesquisa Operacional, vol. 29,
no. 3, pages 503–516, 2009.

[Aloise et al. 2009] Daniel Aloise, Amit Deshpande, Pierre Hansen and Preyas Popat. NP-
hardness of Euclidean Sum-of-squares Clustering. Mach. Learn., vol. 75, no. 2,
pages 245–248, May 2009.

[Aloise et al. 2012] Daniel Aloise, Pierre Hansen and Leo Liberti. An improved column
generation algorithm for minimum sum-of-squares clustering. Mathematical Pro-
gramming, vol. 131, no. 1-2, pages 195–220, 2012.

[Apt & Monfroy 1999] K. R. Apt and E. Monfroy. Automatic generation of constraint
propagation algo- rithms for small finite domains. In International Conference on
Principles and Practice of Constraint Programming, pages 58–72, 1999.

[Apt 1999] Krzysztof R. Apt. The Essence of Constraint Propagation. Theoretical Com-
puter Science, vol. 221, no. 1-2, pages 179–210, 1999.

[Awasthi et al. 2017] Pranjal Awasthi, Maria-Florina Balcan and Konstantin Voevodski.
Local algorithms for interactive clustering. Journal of Machine Learning Research,
vol. 18, pages 3:1–3:35, 2017.

[Babaki et al. 2014] Behrouz Babaki, Tias Guns and Siegfried Nijssen. Constrained Clus-
tering using Column Generation. In Proceedings of the 11th International Con-
ference on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 438–454, 2014.



124 Bibliography

[Bache & Lichman 2014] K. Bache and M. Lichman. UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml, 2014.

[Bae & Bailey 2006] Eric Bae and James Bailey. COALA: A Novel Approach for the
Extraction of an Alternate Clustering of High Quality and High Dissimilarity. In
Proceedings of the 6th IEEE International Conference on Data Mining (ICDM
2006), 18-22 December 2006, Hong Kong, China, pages 53–62, 2006.

[Banerjee & Ghosh 2006] Arindam Banerjee and Joydeep Ghosh. Scalable Clustering Al-
gorithms with Balancing Constraints. Data Mining and Knowledge Discovery,
vol. 13, no. 3, pages 365–395, 2006.

[Bansal et al. 2004] Nikhil Bansal, Avrim Blum and Shuchi Chawla. Correlation Cluster-
ing. Mach. Learn., vol. 56, no. 1-3, pages 89–113, June 2004.

[Bar-Hillel et al. 2005] Aharon Bar-Hillel, Tomer Hertz, Noam Shental and Daphna Wein-
shall. Learning a Mahalanobis Metric from Equivalence Constraints. Journal of
Machine Learning Research, vol. 6, pages 937–965, 2005.

[Basu et al. 2002] S. Basu, A. Banerjee and R. Mooney. Semi-supervised clustering by
seeding. In Proceedings of the International Conference on Machine Learning,
pages 19–26, 2002.

[Basu et al. 2004a] Sugato Basu, A. Banjeree, ER. Mooney, Arindam Banerjee and Ray-
mond J. Mooney. Active Semi-Supervision for Pairwise Constrained Clustering.
In In Proceedings of the 2004 SIAM International Conference on Data Mining
(SDM-04), pages 333–344, 2004.

[Basu et al. 2004b] Sugato Basu, Mikhail Bilenko and Raymond J. Mooney. A Proba-
bilistic Framework for Semi-Supervised Clustering. In In Proceedings of the 10th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD-04), pages 59–68, 2004.

[Basu et al. 2008] Sugato Basu, Ian Davidson and Kiri Wagstaff. Constrained clustering:
Advances in algorithms, theory, and applications. Chapman & Hall/CRC, 1 édition,
2008.

[Beldiceanu et al. 2014] Nicolas Beldiceanu, Mats Carlsson and Jean-Xavier Rampon.
Global Constraint Catalog. SICS and EMN Technical Report, http://sofdem.
github.io/gccat/, 2014.

[Berg & Jarvisalo 2013] J. Berg and M. Jarvisalo. Optimal Correlation Clustering via
MaxSAT. In Proceedings of the 13th IEEE International Conference on Data
Mining Workshops, pages 750–757, 2013.

[Berg & Järvisalo 2017] Jeremias Berg and Matti Järvisalo. Cost-optimal constrained
correlation clustering via weighted partial Maximum Satisfiability. Artif. Intell.,
vol. 244, pages 110–142, 2017.

http://archive.ics.uci.edu/ml
http://sofdem.github.io/gccat/
http://sofdem.github.io/gccat/


Bibliography 125

[Bérubé et al. 2009] Jean-François Bérubé, Michel Gendreau and Jean-Yves Potvin. An
exact epsilon-constraint method for bi-objective combinatorial optimization prob-
lems: Application to the Traveling Salesman Problem with Profits. European Jour-
nal of Operational Research, vol. 194, no. 1, pages 39–50, 2009.

[Bessière & Régin 1996] Christian Bessière and Jean-Charles Régin. MAC and Combined
Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems. In Pro-
ceedings of the Second International Conference on Principles and Practice of Con-
straint Programming, Cambridge, Massachusetts, USA, August 19-22, 1996, pages
61–75, 1996.

[Bessiere et al. 2009] Christian Bessiere, Emmanuel Hebrard and Barry O’Sullivan. Min-
imising Decision Tree Size as Combinatorial Optimisation. In Proceedings of the
15th International Conference on Principles and Practice of Constraint Program-
ming, pages 173–187, 2009.

[Bessiere 2006] Christian Bessiere. Constraint Propagation. In Handbook of Constraint
Programming, pages 29–83. 2006.

[Bilenko et al. 2004] M. Bilenko, S. Basu and R. J. Mooney. Integrating constraints and
metric learning in semi-supervised clustering. In Proceedings of the 21st Interna-
tional Conference on Machine Learning, pages 11–18, 2004.

[B.J. van Os 2004] J.J. Meulman B.J. van Os. Improving Dynamic Programming Strate-
gies for Partitioning. Journal of Classification, 2004.

[Blache & Balfourier 2001] Philippe Blache and Jean-Marie Balfourier. Property Gram-
mars: a Flexible Constraint-Based Approach to Parsing. In International Workshop
on Parsing Techniques, Beijing, China, 2001.

[Blache & Rauzy 2006] Philippe Blache and Stéphane Rauzy. Mécanismes de contrôle
pour l’analyse en Grammaires de Propriétés. In Actes, Traitement Automatique
des Langues Naturelles (TALN), pages 415–424. P. Mertens, C. Fairon, A. Dister
et P. Watrin eds., 2006.

[Blache 2000] Philippe Blache. Constraints, Linguistic Theories and Natural Language
Processing. In Lecture Notes in Artificial Intelligence, Vol. 1835. Springer-Verlag,
2000.

[Boudjeloud-Assala et al. 2016] Lydia Boudjeloud-Assala, Philippe Pinheiro, Alexandre
Blansché, Thomas Tamisier and Benoît Otjacques. Interactive and iterative visual
clustering. Information Visualization, vol. 15, no. 3, pages 181–197, 2016.

[Bradley et al. 2000] P. Bradley, K. Bennett and A. Demiriz. Constrained K-Means Clus-
tering. Rapport technique MSR-TR-2000-65, Microsoft Research, 2000.

[Brusco & Stahl 2005] Michael Brusco and Stephanie Stahl. Branch-and-Bound Appli-
cations in Combinatorial Data Analysis (Statistics and Computing). Springer, 1
édition, July 2005.



126 Bibliography

[Brusco 2003] M.J. Brusco. An enhanced branch-and-bound algorithm for a partitioning
problem. British Journal of Mathematical and Statistical Psychology, pages 83–92,
2003.

[Brusco 2006] M.J. Brusco. A repetitive branch-and-bound procedure for minimum within-
cluster sum of squares partitioning. Psychometrika, pages 347–363, 2006.

[Cambazard et al. 2010] Hadrien Cambazard, Tarik Hadzic and Barry O’Sullivan. Knowl-
edge Compilation for Itemset Mining. In Proceedings of the 19th European Con-
ference on Artificial Intelligence, pages 1109–1110, 2010.

[Caruana et al. 2006] Rich Caruana, Mohamed Farid Elhawary, Nam Nguyen and Casey
Smith. Meta Clustering. In Proceedings of the 6th IEEE International Conference
on Data Mining (ICDM 2006), 18-22 December 2006, Hong Kong, China, pages
107–118, 2006.

[Chabert & Solnon 2017] Maxime Chabert and Christine Solnon. Constraint Program-
ming for Multi-criteria Conceptual Clustering. In Principles and Practice of Con-
straint Programming - 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28 - September 1, 2017, Proceedings, pages 460–476, 2017.

[Chen et al. 2015] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen and G.
Batista. The UCR Time Series Classification Archive, July 2015. www.cs.ucr.
edu/~eamonn/time_series_data/.

[Collette & Siarry 2002] Yann Collette and Patrick Siarry. Optimisation multiobjectif.
Eyrollles, 2002.

[Colmerauer & Dao 2000] Alain Colmerauer and Thi-Bich-Hanh Dao. Expressiveness of
Full First Order Constraints in the Algebra of Finite or Infinite Trees. In Principles
and Practice of Constraint Programming - CP 2000, 6th International Conference,
Singapore, September 18-21, 2000, Proceedings, pages 172–186, 2000.

[Colmerauer & Dao 2003] Alain Colmerauer and Thi-Bich-Hanh Dao. Expressiveness of
Full First-Order Constraints in the Algebra of Finite or Infinite Trees. Constraints,
vol. 8, no. 3, pages 283–302, 2003.

[Colmerauer 1982] Alain Colmerauer. Prolog and infinite trees. Logic Programming, pages
231–251, 1982.

[Colmerauer 1984] Alain Colmerauer. Equation and disequations on finite and infinite
trees. In Proceedings of the International Conference on the Fifth Generation of
Computer Systems, pages 85–99, 1984.

[Colmerauer 1990] Alain Colmerauer. An introduction to Prolog III. Communication of
the ACM, vol. 33, no. 7, pages 68–90, 1990.

[Cormack 1971] R. Cormack. A review of classification. Journal of the Royal Statistical
Society. Series A (General), vol. 134, no. 3, pages 321–367, 1971.

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/


Bibliography 127

[Courcelle 1983] B. Courcelle. Fundamental Properties of Infinite Trees. Theoretical Com-
puter Science, vol. 25, no. 2, pages 95–169, 1983.

[Dahl & Blache 2004] Veronica Dahl and Philippe Blache. Directly Executable Constraint
Based Grammars. In Actes des Journées Francophones de Programmation Logique
et par Contraintes 2004 (JFPLC-04), Angers, France, 2004.

[Dang & Bailey 2010] Xuan Hong Dang and James Bailey. Generation of Alternative
Clusterings Using the CAMI Approach. In SDM, volume 10, pages 118–129. SIAM,
2010.

[Dang & Bailey 2015] Xuan Hong Dang and James Bailey. A framework to uncover mul-
tiple alternative clusterings. Machine Learning, vol. 98, no. 1-2, pages 7–30, 2015.

[Dao & Djelloul 2006] Thi-Bich-Hanh Dao and Khalil Djelloul. Solving First-Order Con-
straints in the Theory of the Evaluated Trees. In Logic Programming, 22nd Interna-
tional Conference, ICLP 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings,
pages 423–424, 2006.

[Dao et al. 2002] Thi-Bich-Hanh Dao, Arnaud Lallouet, Andrei Legtchenko and Lionel
Martin. Indexical-Based Solver Learning. In Principles and Practice of Constraint
Programming - CP 2002, 8th International Conference, CP 2002, Ithaca, NY, USA,
September 9-13, 2002, Proceedings, pages 541–555, 2002.

[Dao et al. 2013a] Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. A
Declarative Framework for Constrained Clustering. In Proceedings of the Euro-
pean Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, pages 419–434, 2013.

[Dao et al. 2013b] Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. A Fil-
tering Algorithm for Constrained Clustering with Within-Cluster Sum of Dissim-
ilarities Criterion. In Proceedings of the 25th International Conference on Tools
with Artificial Intelligence, pages 1060–1067, 2013.

[Dao et al. 2013c] Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. Un
modèle général pour la classification non supervisée sous contraintes utilisateur. In
Neuvième Journées Francophones de Programmation par Contraintes, 2013.

[Dao et al. 2013d] Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. Une
approche en programmation par contraintes pour la classification non supervisée. In
Extraction et gestion des connaissances (EGC’2013), Actes, 29 janvier - 01 février
2013, Toulouse, France, pages 55–66, 2013.

[Dao et al. 2014a] Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. Clas-
sification non supervisée mono et bi-objectif sous contraintes utilisateur par la pro-
grammation par contraintes. In Dixième Journées Francophones de Programmation
par Contraintes, 2014.

[Dao et al. 2014b] Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. Un
nouveau modèle pour la classification non supervisée sous contraintes. Revue
d’Intelligence Artificielle, vol. 28, no. 5, pages 523–545, 2014.



128 Bibliography

[Dao et al. 2015a] Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. Con-
strained Minimum Sum of Squares Clustering by Constraint Programming. In Prin-
ciples and Practice of Constraint Programming - 21st International Conference, CP
2015, Cork, Ireland, August 31 - September 4, 2015, Proceedings, pages 557–573,
2015.

[Dao et al. 2015b] Thi-Bich-Hanh Dao, Willy Lesaint and Christel Vrain. Clustering con-
ceptuel et relationnel en programmation par contraintes. In Onzième Journées
Francophones de Programmation par Contraintes, 2015.

[Dao et al. 2016a] Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Tias Guns and Christel
Vrain. Branch-and-bound répétitif et programmation par contraintes pour le clus-
tering sous contraintes. In Douzième Journées Francophones de Programmation
par Contraintes, 2016.

[Dao et al. 2016b] Thi-Bich-Hanh Dao, Christel Vrain, Khanh-Chuong Duong and Ian
Davidson. A Framework for Actionable Clustering using Constraint Programming.
In Proceedings of the 22nd European Conference on Artificial Intelligence, pages
453–461, 2016.

[Dao et al. 2017] Thi-Bich-Hanh Dao, Khanh-Chuong Duong and Christel Vrain. Con-
strained Clustering by Constraint Programming. Artificial Intelligence, vol. 244,
pages 70–94, 2017.

[Dao 2000a] Thi-Bich-Hanh Dao. Résolution de contraintes du premier ordre dans la
théorie des arbres finis ou infinis. In Actes des Journées Francophones de Pro-
grammation Logique et par Contraintes 2000 (JFPLC-00), Hermes, pages 225–240,
Marseille, France, 2000.

[Dao 2000b] Thi-Bich-Hanh Dao. Résolution de contraintes du premier ordre dans la
théorie des arbres finis ou infinis. Ph.D. Thesis, Université Aix-Marseille II, 2000.

[Dao 2009] Thi-Bich-Hanh Dao. Un algorithme de décision dans l’algèbre des arbres finis
ou infinis et des queues. In Cinquième Journées Francophones de Programmation
par Contraintes, 2009.

[Davidson & Basu 2007] Ian Davidson and Sugato Basu. A survey of clustering with in-
stance level constraints. ACM Transactions on Knowledge Discovery from Data,
vol. 77, no. 1, pages 1–41, 2007.

[Davidson & Qi 2008] Ian Davidson and Zijie Qi. Finding alternative clusterings using
constraints. In Data Mining, 2008. ICDM’08. Eighth IEEE International Confer-
ence on, pages 773–778. IEEE, 2008.

[Davidson & Ravi 2005] Ian Davidson and S. S. Ravi. Clustering with Constraints: Fea-
sibility Issues and the k-Means Algorithm. In Proceedings of the 5th SIAM Inter-
national Conference on Data Mining, pages 138–149, 2005.

[Davidson & Ravi 2007] Ian Davidson and S. S. Ravi. The Complexity of Non-hierarchical
Clustering with Instance and Cluster Level Constraints. Data Mining Knowledge
Discovery, vol. 14, no. 1, pages 25–61, 2007.



Bibliography 129

[Davidson et al. 2006] Ian Davidson, Kiri L. Wagstaff and Sugato Basu. Measuring
Constraint-Set Utility for Partitional Clustering Algoirthms. In PKDD, pages 115–
126, 2006.

[Davidson et al. 2010] Ian Davidson, S. S. Ravi and Leonid Shamis. A SAT-based Frame-
work for Efficient Constrained Clustering. In Proceedings of the 10th SIAM Inter-
national Conference on Data Mining, pages 94–105, 2010.

[Davidson et al. 2013] Ian Davidson, Buyue Qian, Xiang Wang and Jieping Ye. Multi-
objective Multi-view Spectral Clustering via Pareto Optimization. In Proceedings
of the 13th SIAM International Conference on Data Mining, pages 234–242, 2013.

[De Raedt et al. 2008] Luc De Raedt, Tias Guns and Siegfried Nijssen. Constraint pro-
gramming for itemset mining. In Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 204–212,
2008.

[De Raedt et al. 2010] L. De Raedt, T. Guns and S. Nijssen. Constraint Programming for
Data Mining and Machine Learning. In Proc. of the 24th AAAI Conference on
Artificial Intelligence, 2010.

[Debusmann et al. 2004] Ralph Debusmann, Denys Duchier, Alexander Koller, Marco
Kuhlmann, Gert Smolka and Stefan Thater. A Relational Syntax-Semantics In-
terface Based on Dependency Grammar. In COLING 2004, 20th International
Conference on Computational Linguistics, Proceedings of the Conference, 23-27
August 2004, Geneva, Switzerland, 2004.

[Delattre & Hansen 1980] Michel Delattre and Pierre Hansen. Bicriterion Cluster Analy-
sis. IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 4, pages
277–291, 1980.

[Demiriz et al. 1999] A. Demiriz, K. Bennett and M. Embrechts. Semi-supervised cluster-
ing using genetic algorithms. In Proceedings of the Conference on Artificial Neural
Networks in Engineering, pages 809–814, 1999.

[Demiriz et al. 2008] Ayhan Demiriz, Kristin P Bennett and Paul S Bradley. Using as-
signment constraints to avoid empty clusters in k-means clustering. Constrained
Clustering: Advances in Algorithms, Theory, and Applications, 2008.

[Diaz & Codognet 2001] Daniel Diaz and Philippe Codognet. Design and Implementation
of the Gnu-Prolog System. Journal of Functional and Logic Programming, vol. 2001,
no. 6, 2001.

[Djelloul & Dao 2006a] Khalil Djelloul and Thi-Bich-Hanh Dao. Complete First-Order
Axiomatization of Finite or Infinite M-extended Trees. In 20th Workshop on Logic
Programming, Vienna, Austria, February 22–24, 2006, pages 111–119, 2006.

[Djelloul & Dao 2006b] Khalil Djelloul and Thi-Bich-Hanh Dao. Extension of First-Order
Theories into Trees. In Artificial Intelligence and Symbolic Computation, 8th In-
ternational Conference, AISC 2006, Beijing, China, September 20-22, 2006, Pro-
ceedings, pages 53–67, 2006.



130 Bibliography

[Djelloul & Dao 2006c] Khalil Djelloul and Thi-Bich-Hanh Dao. Solving first-order con-
straints in the theory of finite or infinite trees: introduction to the decomposable
theories. In Proceedings of the 2006 ACM Symposium on Applied Computing
(SAC), Dijon, France, April 23-27, 2006, pages 7–14, 2006.

[Djelloul et al. 2007] Khalil Djelloul, Thi-Bich-Hanh Dao and Thom W. Frühwirth. To-
ward a first-order extension of Prolog’s unification using CHR: a CHR first-order
constraint solver over finite or infinite trees. In Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC), Seoul, Korea, March 11-15, 2007, pages
58–64, 2007.

[Djelloul et al. 2008] Khalil Djelloul, Thi-Bich-Hanh Dao and Thom W. Frühwirth. The-
ory of finite or infinite trees revisited. TPLP, vol. 8, no. 4, pages 431–489, 2008.

[du Merle et al. 1999] O. du Merle, P. Hansen, B. Jaumard and N. Mladenovic. An Inte-
rior Point Algorithm for Minimum Sum-of-Squares Clustering. SIAM Journal on
Scientific Computing, vol. 21, no. 4, pages 1485–1505, 1999.

[Duchier & Debusmann 2001] Denys Duchier and Ralph Debusmann. Topological Depen-
dency Trees: A Constraint-Based Account of Linear Precedence. In Association for
Computational Linguistic, 39th Annual Meeting and 10th Conference of the Euro-
pean Chapter, Proceedings of the Conference, July 9-11, 2001, Toulouse, France.,
pages 180–187, 2001.

[Duchier et al. 2009] Denys Duchier, Jean-Philippe Prost and Thi-Bich-Hanh Dao. A
Model-Theoretic Framework for Grammaticality Judgements. In Formal Grammar
- 14th International Conference, FG 2009, Bordeaux, France, July 25-26, 2009,
Revised Selected Papers, pages 17–30, 2009.

[Duchier et al. 2010a] Denys Duchier, Thi-Bich-Hanh Dao, Yannick Parmentier and Willy
Lesaint. Property Grammar Parsing Seen as a Constraint Optimization Problem.
In Formal Grammar - 15th and 16th International Conferences, FG 2010, Copen-
hagen, Denmark, August 2010, FG 2011, Ljubljana, Slovenia, August 2011, Revised
Selected Papers, pages 82–96, 2010.

[Duchier et al. 2010b] Denys Duchier, Thi-Bich-Hanh Dao, Yannick Parmentier and Willy
Lesaint. Une modélisation en CSP des grammaires de propriétés. In Sixième
Journées Francophones de Programmation par Contraintes, 2010.

[Duchier et al. 2011] Denys Duchier, Thi-Bich-Hanh Dao and Yannick Parmentier. Model-
Theory of Property Grammars with Features. In Proceedings of the 12th Interna-
tional Conference on Parsing Technologies, IWPT 2011, October 5-7, 2011, Dublin
City University, Dubin, Ireland, pages 75–79, 2011.

[Duchier et al. 2012] Denys Duchier, Thi-Bich-Hanh Dao and Yannick Parmentier. Anal-
yse syntaxique par contraintes pour les grammaires de propriétés. In Huitième
Journées Francophones de Programmation par Contraintes, 2012.

[Duchier et al. 2014] Denys Duchier, Thi-Bich-Hanh Dao and Yannick Parmentier. Model-
theory and implementation of property grammars with features. Journal of Logic
and Computation, vol. 24, no. 2, pages 491–509, 2014.



Bibliography 131

[Duchier 2003] Denys Duchier. Configuration of labeled trees under lexicalized constraints
and principles. Journal of Research on Language and Computation, vol. 1, no. 3/4,
pages 307–336, 2003.

[Duong 2014] Khanh-Chuong Duong. Constrained Clustering by Constraint Programming.
Ph.D. Thesis, Université d’Orléans, 2014.

[Ed-Dbali et al. 2003] AbdelAli Ed-Dbali, Thi-Bich-Hanh Dao, Arnaud Lallouet and An-
drei Legtchenko. Apprentissage de solveurs de contraintes sur les domaines finis.
Technique et Science Informatiques, vol. 22, no. 1, pages 125–138, 2003.

[Ester et al. 1996] Martin Ester, Hans P. Kriegel, Jorg Sander and Xiaowei Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the 2nd International Conference on Knowledge Discovery and
Data Mining, pages 226–231, 1996.

[Estratat & Henocque 2004] Mathieu Estratat and Laurent Henocque. Parsing languages
with a configurator. In Proceedings of the European Conference for Artificial In-
telligence ECAI’2004, pages 591–595, Valencia, Spain, August 2004.

[Fisher 1987] DouglasH. Fisher. Knowledge Acquisition Via Incremental Conceptual Clus-
tering. Machine Learning, vol. 2, no. 2, pages 139–172, 1987.

[Focacci et al. 1999] F. Focacci, A. Lodi and M. Milano. Cost-Based Domain Filtering.
In Proceedings of the 5th International Conference on Principles and Practice of
Constraint Programming, pages 189–203, 1999.

[Forestier et al. 2010] G. Forestier, P. Gançarski and C. Wemmert. Collaborative cluster-
ing with background knowledge. Data & Knowledge Engineering, vol. 69, no. 2,
pages 211–228, 2010.

[Fred & Jain 2003] Ana L. N. Fred and Anil K. Jain. Robust Data Clustering. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2003.
Proceedings, 2003.

[Friston 2011] Karl J Friston. Functional and effective connectivity: a review. Brain
connectivity, vol. 1, no. 1, pages 13–36, 2011.

[Frühwirth 2009] Thom Frühwirth. Constraint Handling Rules. Cambridge University
Press, 2009. ISBN 9780521877763.

[Ganji et al. 2016] M. Ganji, J. Bailey and P. Stuckey. Lagrangian Constrained Clustering.
In Proceedings of the SIAM International Conference on Data Mining, pages 288–
296, 2016.

[Ganji et al. 2017] Mohadeseh Ganji, James Bailey and Peter J. Stuckey. A Declarative
Approach to Constrained Community Detection. In Principles and Practice of Con-
straint Programming - 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28 - September 1, 2017, Proceedings, pages 477–494, 2017.



132 Bibliography

[Ge et al. 2007] R. Ge, M. Ester, W. Jin and I. Davidson. Constraint-driven clustering.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 320–329, 2007.

[Gilpin & Davidson 2011] Sean Gilpin and Ian N. Davidson. Incorporating SAT solvers
into hierarchical clustering algorithms: an efficient and flexible approach. In Pro-
ceedings of the 17th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 1136–1144, 2011.

[Gilpin et al. 2013] Sean Gilpin, Siegfried Nijssen and Ian N. Davidson. Formalizing Hi-
erarchical Clustering as Integer Linear Programming. In Proceedings of the 27th
AAAI Conference on Artificial Intelligence, pages 372–378, 2013.

[Giotis & Guruswami 2006] Ioannis Giotis and Venkatesan Guruswami. Correlation Clus-
tering with a Fixed Number of Clusters. Theory of Computing, vol. 2, no. 1, pages
249–266, 2006.

[Gonzalez 1985] T. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, vol. 38, pages 293–306, 1985.

[Guns et al. 2011] Tias Guns, Siegfried Nijssen and Luc De Raedt. Itemset mining: A
constraint programming perspective. Artificial Intelligence, vol. 175, pages 1951–
1983, 2011.

[Guns et al. 2013] Tias Guns, Siegfried Nijssen and Luc De Raedt. k-Pattern set mining
under constraints. IEEE Transactions on Knowledge and Data Engineering, vol. 25,
no. 2, pages 402–418, 2013.

[Guns et al. 2016] Tias Guns, Thi-Bich-Hanh Dao, Christel Vrain and Khanh-Chuong
Duong. Repetitive Branch-and-Bound using Constraint Programming for Con-
strained Minimum Sum-of-Squares Clustering. In Proceedings of the 22nd Eu-
ropean Conference on Artificial Intelligence, pages 462–470, 2016.

[Guns et al. 2017] Tias Guns, Anton Dries, Siegfried Nijssen, Guido Tack and Luc De
Raedt. MiningZinc: A declarative framework for constraint-based mining. Artif.
Intell., vol. 244, pages 6–29, 2017.

[Haimes et al. 1971] Yacov Y. Haimes, Leon S. Lasdon and David A. Wismer. On a
Bicriterion Formulation of the Problems of Integrated System Identification and
System Optimization. IEEE Transactions on Systems, Man, and Cybernetics, no. 1,
pages 296–297, 1971.

[Han et al. 2006] Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and
Techniques, Second Edition (The Morgan Kaufmann Series in Data Management
Systems). Morgan Kaufmann, 2 édition, January 2006.

[Hansen & Delattre 1978] Pierre Hansen and Michel Delattre. Complete-Link Cluster
Analysis by Graph Coloring. Journal of the American Statistical Association,
vol. 73, no. 362, pages 397–403, 1978.



Bibliography 133

[Hansen & Jaumard 1997] Pierre Hansen and Brigitte Jaumard. Cluster Analysis and
Mathematical Programming. Mathematical Programming, vol. 79, no. 1-3, pages
191–215, 1997.

[Haralick & Elliott 1980] Robert M. Haralick and Gordon L. Elliott. Increasing Tree
Search Efficiency for Constraint Satisfaction Problems. Artif. Intell., vol. 14, no. 3,
pages 263–313, 1980.

[Hebrard et al. 2010] Emmanuel Hebrard, Eoin O’Mahony and Barry O’Sullivan. Con-
straint Programming and Combinatorial Optimisation in Numberjack. In Integra-
tion of AI and OR Techniques in Constraint Programming for Combinatorial Op-
timization Problems, 7th International Conference, CPAIOR 2010, pages 181–185,
2010.

[Hiep et al. 2016] T. Hiep, N. Duc and B. Trung. Local Search Approach For The Pairwise
Constrained Clustering Problem. In Proceedings of the Symposium on Information
and Communication Technology, pages 115–122, 2016.

[Hubert & Arabie 1985] L. Hubert and P. Arabie. Comparing partitions. Journal of clas-
sification, vol. 2, no. 1, pages 193–218, 1985.

[Huet 1976] Gérard Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω.
Thèse d’Etat, Université Paris 7, 1976.

[Jabbour et al. 2013] Saïd Jabbour, Lakhdar Sais and Yakoub Salhi. The Top-k Frequent
Closed Itemset Mining Using Top-k SAT Problem. In Proceedings of the European
Conference on Machine Learning and Knowledge Discovery in Databases, pages
403–418, 2013.

[Jabbour et al. 2017] Saïd Jabbour, Nizar Mhadhbi, Badran Raddaoui and Lakhdar Sais.
A SAT-Based Framework for Overlapping Community Detection in Networks. In
Advances in Knowledge Discovery and Data Mining - 21st Pacific-Asia Conference,
PAKDD 2017, Jeju, South Korea, May 23-26, 2017, Proceedings, Part II, pages
786–798, 2017.

[Jaffar 1984] J. Jaffar. Efficient unification over infinite terms. New Generation Comput-
ing, vol. 2, no. 3, pages 207–219, 1984.

[Järvisalo 2011] Matti Järvisalo. Itemset Mining as a Challenge Application for Answer
Set Enumeration. In Logic Programming and Nonmonotonic Reasoning - 11th
International Conference, LPNMR 2011, Vancouver, Canada, May 16-19, 2011.
Proceedings, pages 304–310, 2011.

[Jensen 1969] Robert E. Jensen. A dynamic programming algorithm for cluster analysis.
Journal of the Operations Research Society of America, vol. 7, pages 1034–1057,
1969.

[Johnson 1967] StephenC. Johnson. Hierarchical clustering schemes. Psychometrika,
vol. 32, no. 3, pages 241–254, 1967.



134 Bibliography

[Kamvar et al. 2003] S. Kamvar, D. Klein and C. Manning. Spectral Learning. In Proceed-
ings of the International Joint Conference on Artificial Intelligence, pages 561–566,
2003.

[Keogh & Lin 2005] E. Keogh and J. Lin. Clustering of time-series subsequences is mean-
ingless: implications for previous and future research. Knowledge and Information
Systems, vol. 8, no. 2, pages 154–177, 2005.

[Klein & Aronson 1991] Gary Klein and Jay E. Aronson. Optimal clustering: A model
and method. Naval Research Logistics, vol. 38, no. 3, pages 447–461, 1991.

[Klein et al. 2002] Dan Klein, Sepandar D. Kamvar and Christopher D. Manning. From
Instance-level Constraints to Space-Level Constraints: Making the Most of Prior
Knowledge in Data Clustering. In Proceedings of the 19th International Conference
on Machine Learning, pages 307–314, 2002.

[Kontonasios & Bie 2015] Kleanthis-Nikolaos Kontonasios and Tijl De Bie. Subjectively
interesting alternative clusterings. Machine Learning, vol. 98, no. 1-2, pages 31–56,
2015.

[Koontz et al. 1975] W. L. G. Koontz, P. M. Narendra and K. Fukunaga. A Branch and
Bound Clustering Algorithm. IEEE Trans. Comput., vol. 24, no. 9, pages 908–915,
1975.

[Kulis et al. 2005] Brian Kulis, Sugato Basu, Inderjit Dhillon and Raymond Mooney.
Semi-supervised graph clustering: a kernel approach. In ICML ’05: Proceedings
of the 22nd international conference on Machine learning, pages 457–464, New
York, NY, USA, 2005. ACM.

[Kuo et al. 2017] Chia-Tung Kuo, S. S. Ravi, Thi-Bich-Hanh Dao, Christel Vrain and
Ian Davidson. A Framework for Minimal Clustering Modification via Constraint
Programming. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA., pages 1389–1395,
2017.

[Lallouet et al. 2003a] Arnaud Lallouet, Thi-Bich-Hanh Dao, Andrei Legtchenko and Ab-
delAli Ed-Dbali. Finite Domain Constraint Solver Learning. In IJCAI-03, Pro-
ceedings of the Eighteenth International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, August 9-15, 2003, pages 1379–1380, 2003.

[Lallouet et al. 2003b] Arnaud Lallouet, Andrei Legtchenko, Thi-Bich-Hanh Dao and Ab-
delAli Ed-Dbali. Intermediate (Learned) Consistencies. In Principles and Practice
of Constraint Programming - CP 2003, 9th International Conference, CP 2003,
Kinsale, Ireland, September 29 - October 3, 2003, Proceedings, pages 889–893,
2003.

[Law & Lee 2004] Yat Chiu Law and Jimmy Ho-Man Lee. Global Constraints for Integer
and Set Value Precedence. In Mark Wallace, editeur, Proceedings of the 10th
International Conference on Principles and Practice of Constraint Programming,
pages 362–376, 2004.



Bibliography 135

[Leskovec & Krevl 2014] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford
Large Network Dataset Collection. http://snap.stanford.edu/data, June 2014.

[Li & Liu 2009] Z. Li and J. Liu. Constrained Clustering by Spectral Kernel Learning. In
IEEE International Conference on Computer Vision, pages 421–427, 2009.

[Luxburg 2007] Ulrike Luxburg. A Tutorial on Spectral Clustering. Statistics and Com-
puting, vol. 17, no. 4, pages 395–416, 2007.

[Mackworth 1977] Alan K. Mackworth. Consistency in Networks of Relations. Artif.
Intell., vol. 8, no. 1, pages 99–118, 1977.

[Maher 1988] Michael Maher. Complete axiomatization of the algebra of finite, rational
and infinite trees. Rapport technique, IBM T. J. Watson Research Center, 1988.

[Mehrotra & Trick 1995] Anuj Mehrotra and Michael A. Trick. A Column Generation
Approach For Graph Coloring. INFORMS Journal on Computing, vol. 8, pages
344–354, 1995.

[Métivier et al. 2012a] Jean-Philippe Métivier, Patrice Boizumault, Bruno Crémilleux,
Mehdi Khiari and Samir Loudni. Constrained Clustering Using SAT. In Pro-
ceedings of the 11th International Symposium on Advances in Intelligent Data
Analysis, pages 207–218, 2012.

[Métivier et al. 2012b] Jean-Philippe Métivier, Patrice Boizumault, Bruno Crémilleux,
Mehdi Khiari and Samir Loudni. Constrained Clustering Using SAT. In Ad-
vances in Intelligent Data Analysis XI - 11th International Symposium, IDA 2012,
Helsinki, Finland, October 25-27, 2012. Proceedings, pages 207–218, 2012.

[Miettinen 1998] Kaisa Miettinen. Nonlinear Multiobjective Optimization. Kluwer Aca-
demic Publishers, 1998.

[Milano & Hentenryck 2011] Michela Milano and Pascal Van Hentenryck. Hybrid opti-
mization - the ten years of cpaior, volume 45 of Springer Optimization and its
Applications. Springer, 2011.

[Mueller & Kramer 2010] Marianne Mueller and Stefan Kramer. Integer Linear Program-
ming Models for Constrained Clustering. In Proceedings of the 13th International
Conference on Discovery Science, pages 159–173, 2010.

[Ng 2000] M. Ng. A Note on Constrained K-Means Algorithms. Pattern Recognition,
vol. 33, no. 3, pages 515–519, 2000.

[Ouali et al. 2016] A. Ouali, S. Loudni, Y. Lebbah, P. Boizumault, A. Zimmermann and
L. Loukil. Efficiently finding conceptual clustering models with integer linear pro-
gramming. In Proceedings of the International Joint Conference on Artificial In-
telligence, pages 647–654, 2016.

[Pelleg & Baras 2007] Dan Pelleg and Dorit Baras. K-Means with Large and Noisy Con-
straint Sets. In Machine Learning: ECML 2007, volume 4701 of Lecture Notes in
Computer Science, pages 674–682. Springer Berlin Heidelberg, 2007.

http://snap.stanford.edu/data


136 Bibliography

[Prost 2008] Jean-Philippe Prost. Modelling Syntactic Gradience with Loose Constraint-
based Parsing. Cotutelle Ph.D. Thesis, Macquarie University, Sydney, Australia,
and Université de Provence, Aix-en-Provence, France, 2008.

[Pullum & Scholz 2001] G. Pullum and B. Scholz. On the distinction between model-
theoretic and generative-enumerative syntactic frameworks. In 4th International
Conference on Logical Aspects of Computational Linguistics, pages 17–43. Springer
Verlag, 2001.

[Puolamäki et al. 2016] Kai Puolamäki, Bo Kang, Jefrey Lijffijt and Tijl De Bie. Interac-
tive Visual Data Exploration with Subjective Feedback. In Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD 2016,
Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II, pages 214–229,
2016.

[Qi & Davidson 2009] ZiJie Qi and Ian Davidson. A principled and flexible framework
for finding alternative clusterings. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 717–726.
ACM, 2009.

[Quimper et al. 2004] Claude-Guy Quimper, Alejandro López-Ortiz, Peter van Beek and
Alexander Golynski. Improved Algorithms for the Global Cardinality Constraint. In
Principles and Practice of Constraint Programming - CP 2004, 10th International
Conference, Proceedings, pages 542–556, 2004.

[Ramachandran & Van Hentenryck 1993] V. Ramachandran and P. Van Hentenryck. In-
cremental algorithm for constraint solving and entailment over rational trees. In
Proceedings of the 13rd Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 205–217, 1993.

[Rand 1971] William M. Rand. Objective Criteria for the Evaluation of Clustering Meth-
ods. Journal of the American Statistical Association, vol. 66, no. 336, pages 846–
850, 1971.

[Régin 1994] Jean-Charles Régin. A Filtering Algorithm for Constraints of Difference in
CSPs. In Proceedings of the 12th National Conference on Artificial Intelligence
(Vol. 1), pages 362–367, 1994.

[Régin 1996] Jean-Charles Régin. Generalized Arc Consistency for Global Cardinality
Constraint. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence - Volume 1, AAAI’96, pages 209–215, 1996.

[Régin 1999] Jean-Charles Régin. Arc Consistency for Global Cardinality Constraints with
Costs. In Proceedings of the 5th International Conference on Principles and Prac-
tice of Constraint Programming, pages 390–404, 1999.

[Robinson 1965] J.A. Robinson. A machine-oriented logic based on the resolution princi-
ple. JACM, vol. 12, no. 1, pages 23–41, 1965.



Bibliography 137

[Rojas et al. 2014] Willy Ugarte Rojas, Patrice Boizumault, Samir Loudni, Bruno
Crémilleux and Alban Lepailleur. Mining (Soft-) Skypatterns Using Dynamic CSP.
In Proceedings of the 11th International Conference on Integration of AI and OR
Techniques in Constraint Programming, pages 71–87, 2014.

[Rossi et al. 2006] Francesca Rossi, Peter van Beek and Toby Walsh, editeurs. Handbook
of Constraint Programming. Foundations of Artificial Intelligence. Elsevier B.V.,
Amsterdam, Netherlands, August 2006.

[Sakoe & Chiba 1971] H. Sakoe and S. Chiba. A dynamic programming approach to con-
tinuous speech recognition. In Proceedings of the International Congress on Acous-
tics, volume 3, pages 65–69, 1971.

[Sakoe & Chiba 1978] H. Sakoe and S. Chiba. Dynamic programming algorithm optimiza-
tion for spoken word recognition. IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 26, no. 1, pages 43–49, 1978.

[Smith 2006] Barbara M. Smith. Modelling. In Handbook of Constraint Programming,
pages 377–406. 2006.

[Steinley 2006] Douglas Steinley. k-means clustering: A half-century synthesis. British
Journal of Mathematical and Statistical Psychology, vol. 59, no. 1, pages 1–34,
2006.

[Truong & Battiti 2015] Duy Tin Truong and Roberto Battiti. A flexible cluster-oriented
alternative clustering algorithm for choosing from the Pareto front of solutions.
Machine Learning, vol. 98, no. 1-2, pages 57–91, 2015.

[Tung et al. 2001] Anthony K. H. Tung, Jiawei Han, Laks V.S. Lakshmanan and Ray-
mond T. Ng. Constraint-based clustering in large databases, pages 405–419.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[van Beek 2006] Peter van Beek. Backtracking Search Algorithms. In Handbook of Con-
straint Programming, pages 85–134. 2006.

[van Hentenryck et al. 1991] P. van Hentenryck, V. Saraswat and Y. Deville. Constraint
processing in cc(FD). draft, 1991.

[Van Hentenryck 1989] Pascal Van Hentenryck. Constraint satisfaction in logic program-
ming. The MIT Press, 1989.

[van Hoeve & Katriel 2006] Willem-Jan van Hoeve and Irit Katriel. Global Constraints.
In Handbook of Constraint Programming, pages 169–208. 2006.

[van Leeuwen 2014] Matthijs van Leeuwen. Interactive Data Exploration Using Pattern
Mining. In Interactive Knowledge Discovery and Data Mining in Biomedical In-
formatics - State-of-the-Art and Future Challenges, pages 169–182. 2014.

[van Rullen et al. 2006] Tristan van Rullen, Philippe Blache and Jean-Marie Balfourier.
Constraint-Based Parsing as an Efficient Solution: Results from the Parsing Eval-
uation Campaign EASy. In Proceedings of the Language and Resources Evaluation
Conference, Genoa, Italy, 2006.



138 Bibliography

[van Rullen 2005] Tristan van Rullen. Vers une analyse syntaxique à granularité variable.
PhD thesis, Université de Provence, Aix-Marseille 1, France, 2005.

[Verfaillie et al. 1996] Gérard Verfaillie, Michel Lemaître and Thomas Schiex. Russian
Doll Search for Solving Constraint Optimization Problems. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence and Eighth Innovative
Applications of Artificial Intelligence Conference, AAAI 96, pages 181–187, 1996.

[Vorobyov 1996] Sergei Vorobyov. An Improved Lower Bound for the Elementary The-
ory of Trees. In Proceedings of the 13th International Conference on Automated
Deduction CADE 96, pages 275–287, 1996.

[Wagstaff & Cardie 2000] K. Wagstaff and C. Cardie. Clustering with instance-level con-
straints. In Proceedings of the 17th International Conference on Machine Learning,
pages 1103–1110, 2000.

[Wagstaff et al. 2001] Kiri Wagstaff, Claire Cardie, Seth Rogers and Stefan Schrödl. Con-
strained K-means Clustering with Background Knowledge. In Proceedings of the
18th International Conference on Machine Learning, pages 577–584, 2001.

[Wang & Chen 2012] Jiabing Wang and Jiaye Chen. Clustering to Maximize the Ratio of
Split to Diameter. In Proceedings of the 29th International Conference on Machine
Learning, 2012.

[Wang & Davidson 2010] Xiang Wang and Ian Davidson. Flexible constrained spectral
clustering. In Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 563–572, 2010.

[Wang et al. 1996] Y. Wang, H. Yan and C. Sriskandarajah. The weighted sum of split
and diameter clustering. Journal of Classification, vol. 13, no. 2, pages 231–248,
1996.

[Wang et al. 2014] Xiang Wang, Buyue Qian and Ian Davidson. On constrained spectral
clustering and its applications. Data Mining and Knowledge Discovery, vol. 28,
no. 1, pages 1–30, 2014.

[Xia & Peng 2005] Y. Xia and J. Peng. A cutting algorithm for the minimum sum-of-
squared error clustering. In SDM, 2005.

[Xing et al. 2003] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan and Stuart Russell. Dis-
tance Metric Learning, With Application To Clustering With Side-Information. In
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15, pages
505–512. MIT Press, 2003.

[Zhi et al. 2013] Weifeng Zhi, Xiang Wang, Buyue Qian, Patrick Butler, Naren Ramakr-
ishnan and Ian Davidson. Clustering with Complex Constraints - Algorithms and
Applications. In Proceedings of the 27th AAAI Conference on Artificial Intelli-
gence, 2013.



Résumé

Ce manuscrit d’Habilitation à Diriger des Recherches présente mes travaux sur l’application
de la programmation par contraintes au traitement automatique des langues et à la fouille
de données. En traitement automatique des langues, nous nous intéressons à l’analyse
syntaxique des grammaires de propriété, décrites par des propriétés que doivent satis-
faire les énoncés grammaticaux. Nous définissons une sémantique formelle en théorie des
modèles et formalisons l’analyse syntaxique comme un problème d’optimisation sous con-
traintes. Nous développons un modèle en programmation par contraintes, ce qui amène à
un analyseur entièrement à base de contraintes. En fouille de données, nous considérons
le clustering sous contraintes, qui vise à partitionner les objets en groupes homogènes,
étant donnés une mesure de dissimilarité entre objets et un ensemble de contraintes util-
isateur à satisfaire. Nous développons un cadre déclaratif qui intègre plusieurs critères
d’optimisation principaux de clustering et tous les types de contraintes utilisateur popu-
laires. Nous montrons que sa flexibilité permet de trouver la frontière de Pareto pour des
problèmes de clustering bi-objectif sous contraintes. Nous améliorons davantage l’efficacité
de l’approche en développant des contraintes globales dédiées aux critères d’optimisation
de clustering. Nous explorons plusieurs nouveaux problèmes de clustering avec des con-
traintes et montre que la programmation par contraintes constitue un cadre flexible et
efficace pour les résoudre.

Mots-clefs : problème d’optimisation sous contraintes, programmation par
contraintes, analyse syntaxique, clustering sous contraintes, contrainte globale
d’optimisation.

Abstract

This manuscript of Habilitation à Diriger des Recherches presents my work on the appli-
cation of constraint programming to natural language processing and to data mining. In
natural language processing, we are interested in syntactic analysis of property grammars,
defined by constraints that must be satisfied by the grammatical utterances. We introduce
model-theoretic semantics and formulate the syntactic analysis as a constraint optimiza-
tion problem. We develop a model using constraint programming, which leads to a fully
constraint-based parser. In data mining, we consider constrained clustering problems that
aim at partitioning the objects in homogeneous clusters, given a dissimilarity measure
between objects and a set of user-constraints to be satisfied. We develop a declarative
framework that integrates several principal clustering optimization criteria and all popu-
lar types of user-constraints. We show that the flexibility of the framework allows to find
the complete Pareto front of bi-objective constrained clustering problems. We enhance
further the approach by developing specific global optimization constraints for principal
clustering optimization criteria. We explore several new clustering problems with con-
straints and show that constraint programming offers a general and efficient framework to
solve them.

Keywords: constraint optimization problem, constraint programming, parsing,
constrained clustering, global optimization constraint.


	Introduction
	Research Topics
	Outline of The Dissertation

	Constraint Programming
	Modeling Using Constraints
	Constraint Propagation
	Global Constraints
	Search
	Summary

	Property Grammars Parsing Using Constraints
	Problem and Context
	Model-Theoretic Syntax and Property Grammars
	Property Grammars Parsing

	Model-Theoretic Semantics for Property Grammars
	Domain of Interpretation
	Instances, Pertinence and Satisfaction
	Strong and Loose Models

	Property Grammars Parsing Seen as a Constraint Optimization Problem
	Representing Tree Models Using a Grid
	Instances of Properties and Optimization Objective
	Extension to Property Grammars with Features

	Summary

	Declarative Approach for Constrained Clustering
	Problem and Context
	Dissimilarity-Based Partition Clustering
	Clustering Under User Constraints
	Different Approaches for Constrained Clustering

	A Declarative Framework Using Constraint Programming
	A CP Model for Constrained Clustering
	An Improved CP Model

	Global Optimization Constraints for Clustering
	Maximal Diameter and Minimal Split
	Within-Cluster Sum of Dissimilarities
	Within-Cluster Sum of Squares

	Bi-objective Constrained Clustering
	Bi-objective Clustering
	Bi-objective Optimization and Exact Pareto Front Computation
	Diameter-Split Bi-objective Constrained Clustering

	Summary

	Beyond Constrained Clustering
	Combining Dissimilarity-Based and Conceptual-Based Constraints
	Conceptual Constrained Clustering
	Models for Dissimilarity and Conceptual Constrained Clustering

	Actionable Clustering
	Constraints Categorization
	A CP Formulation for Actionable Clustering
	Analyzing the Use of Constraints

	Minimal Clustering Modification
	Problem Formulation
	A CP Model for Minimal Clustering Modification
	Empirical Evaluation

	Repetitive Branch-and-Bound using CP for WCSS
	Repetitive Branch-and-Bound Algorithm
	Extension of RBBA to User-Constraints
	A Framework Using CP

	Constrained Clustering for Time-Series Data
	Summary

	Conclusion
	Other Research Topics
	Solving Constraints in Tree Structures
	Solving Constraints in The Tree Theory
	Solving Constraints in Extended Tree Theories

	Learning Finite Domain Constraint Solver
	Theoretical Framework
	Learning Indexicals
	Intermediate Consistency


	List of Publications
	Bibliography

