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Notations 
 

 

In this section we will present the main notations introduced for each chapter of the thesis, for 

a clear understanding of the interested reader. 

In chapter 2 of the thesis we have denoted with  , the unknown parameters ( ) 

from the parameter space ( ), that are generally searched by system identification 

techniques. We can have unknown parameters corresponding to the system matrices CBA ,,  

(
HCHBHA

 ,,  ) or Port Hamiltonian system matrices BQR ,,  (
B

θ,
Q

θ,
R

θ ). 

For the power energy approach proposed in section 2.5, the unknown parameters 

corresponding to the storage, control or dissipation ports are defined by 
PRPCPS

 ,, , 

while for the port-identifiability concept proposed, the unknown parameters are defined by  

T
  where T represents one of the system ports. For the local identifiability analysis, the 

unknown parameters in a specific point of interest are defined by 
 , which become 

*
,,

PRPCPS


  for the power energy approach or *
T

  for the port-identifiability case. For 

the observable canonical form representation of Port Hamiltonian systems, we will introduce 

the obs index for the necessary terms in the state-space representation. By nxn
RT   we have 

denoted a non-singular transformation matrix corresponding to the Port-Hamiltonian 

representation. For the power series expansion identifiability analysis, we have denoted with 

   
0

,
0

)(
t

k
yt

k
u










the th
k order derivate of the system inputs ( u ) or outputs ( y ) at a specific 

point of interest  
0

t .  

With 
loss

A  respectively resA we have denoted the lossless and respectively the 

dissipative parts of the matrix resA
loss

AA   defined for lossy Port Hamiltonian systems. 

ID
R was introduced as notation for the identifiability matrix, necessary for the 

observability/controllability test analysis. 

In chapter 3 of the thesis, obs  index represents the observable canonical form terms 

corresponding to Port Hamiltonian systems in the lossless or lossy case. For an equivalent 

observable canonical form state-space representation of Port-Hamiltonian systems, we have 

used the notation obsT  for the terms. With nxn
R

obs
TTT ,

2
,

1
 we have denoted non-

singular transformation matrices applied to the state-space system. By 
kk 2

,
1

  were defined 

the terms corresponding to the equivalent observable canonical form representation of the 

input ( B  ) and perturbation ( K ) matrices.  

1
TF  and 

2
TF  represent transfers functions from the input to the output and from the 

perturbation to the output. By 
ID

R it was defined the identifiability matrix used for the 

analysis of the observability and controllability of Port Hamiltonian systems in the lossless or 

lossy case. 
k

C ( nk ..1 ) represents the terms which compose the identifiability matrix 
ID

R in 

an equivalent observable canonical form.  
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With 
loss

A and resA we have defined the lossless respectively lossy parts of the 

matrix resA
loss

AA   defined in the lossy case of Port Hamiltonian systems similar to 

chapter 2. 

In chapter 4 of the thesis, we have  introduced 
di

E
di

F , as notations for the flow and 

efforts discretization rules at discrete-time step i . For all the discrete-time Port-Hamiltonian 

systems terms, we have used the hat notation (^) to differentiate from the continuous-time 

ones. 
S

f
S

e ˆ,ˆ , 
C

f
C

e ˆ,ˆ  and 
R

f
R

e ˆ,ˆ  defines the discrete-time efforts and flows corresponding 

to the storage (S), control (C) or dissipation (R) ports. 
di

E
di

F   represents the composed 

time-discretization of the flows and efforts rules applied to a continuous-time term, which in 

our case is the effort  x
x

H




. The differentiation term of the flow (

dt

dx
) becomes 

t

x




, the 

energy balance (
dt

dH
) translates to 

t

H




 and the effort 

x

H




 becomes 

x

H




for discrete-time 

Port-Hamiltonian systems. Beside this notations, were introduced the terms 
k

x or 
k

x to define 

the medium value of two succesive discrete-time terms (
1

,
k

x
k

x  or 
1

,
k

x
k

x ) for the states  

(
k

x )  or inputs (
k

u ).  

For the difference between two Port-Hamiltonian systems defined in section 4.4, we 

have used the index A  or B  for the terms corresponding to one or another systems. For the 

terms representing the Port-Hamiltonian system corresponding to the difference between 

systems A and B , we have used the notation 
BA

W


, where W represents one of the Port-

Hamiltonian system elements. For the discrete-time simulation analysis, we have denoted 

with N the number of discrete-time steps, t  sampling-time of discretization, 
S

t  the time-

interval and 









k
tO  the th

k  order of convergence of the discretization method. 

In chapter 5 of the thesis, a series of notations have been realized for the subspace 

identification analysis performed on Port-Hamiltonian systems, using the classic or new 

power energy approach.  

12/0
,

12/0  i
Y

i
U  were used to define the input and output block Hankel matrices, 

which can be expressed using past (
P

Y
P

U , ) or future (
f

Y
f

U , ) informations. When 

augmenting or decreasing one row from the past or future inputs or outputs, the notations use 

a  ( 
P

Y
P

U , ) or  ( 
f

Y
f

U , ). The state sequences are defined by 
nxj

R
d

i
X  where d

P
X

stands for the past states ( d
X

0
) and d

f
X  stands for the future states. 

L
  is used to define the 

projector operator which projects the row space of a matrix onto the row space of the matrix 

qxj
RL  . 

M defines the Moore-Penrose pseudo-inverse of a matrix nxm
RM  . We define 

the orthogonal projection by L/G , which represents the projection of the row space of the 

matrix 
pxj

RG  on the row space of the matrix L . An important concept for the subspace 
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identification algorithms is the oblique projection, by which a matrix 
pxj

RG   can be 

decomposed as linear combinations of two non-orthogonal matrices (
qxj

RL   and 
qxj

RF  ) 

and the orthogonal complement of L  and F . For the subspace identification approach 

presented in this chapter the oblique projection will be denoted by 
i

O  and will be calculated 

using the  future inputs and outputs (
f

U
f

Y , )  and the Willems matrix (
P

W ) of the past 

inputs/outputs (
P

Y
P

U , ). For the power energy approach, the oblique projections 

corresponding to the ports will be denoted by 
iS

O  (storage), 
iC

O  (control) or  
iR

O

(dissipation). lixli
RW 

1
and 

jxj
RW 

2
 define two weighting matrices, which are multiplied 

to the oblique projection and influence the result of the SVD decomposition. 

The SVD notation represents the Singular Value Decomposition of a matrix 
nxm

RM  . For the power energy approach, the matrix elements corresponding to the SVD 

decomposition will have indexes representing the ports (
S

V
S

S
S

U ,, - storage, 
C

V
C

S
C

U ,, - 

control, 
R

V
R

S
R

U ,, - dissipation). CBA ,,  have been used to define the discrete-time system 

matrices corresponding to the continuous-time Port Hamiltonian model ( CBA ,, ).  nxn
RT   

represents a non-singular similarity transformation, which become 
R

T
C

T
S

T ,,  for the storage 

control or dissipation ports in the power energy approach.  

In the power energy approach, indexes corresponding to the ports (S – storage, C- 

control, R- dissipation) have been introduced to designate the system states ( d

f
X ), system 

outputs (
f

Y ), extended observability matrix (
i

 ), Henkel matrix (
P

W ) or system degree  

( n ). With 














n

k

B
C  have been denoted the binomial coefficients or combinatorial numbers, 

which is the coefficient of k
x  in the polynomial expansion  

n
x1 . 

iH
C

iH
,  have been 

used as notations for the observability and controlability matrices of an equivalent 

continuous-time PCH system.  

C
W

O
W , represent the observability and controlability grammians of a Port 

Hamiltonian system. 
R

H
C

H
S

H ,,  and 
R

Y
C

Y
S

Y ,,  were used to define the transfer functions 

and system outputs corresponding to the system ports (S – storage, C – control, R – 

dissipation).  

indexv _  is a notation used for the validation index between the estimated data and 

real data, which is used in system identification to see the accuracy of the estimated model.  

In Appendix F, several notations have been adopted to distinguish between the current 

time-discretization scheme parameters and the approach proposed in chapter 5, but also for a 

more compact writing of the equations.  
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Introduction 

 
The first chapter of the thesis makes a general presentation of the system identification 

domain, introducing notions like modelling, types of models, modelling and identification 

procedure. A second part of the chapter makes a general presentation of Port-Hamiltonian 

systems with their special properties of power energy conservation and Dirac interconnection 

structure, that permits the interconnection of multiple sub-systems from different domains of 

physics or chemistry. Three classic examples of Port-Controlled-Hamiltonian systems 

represented by an LC circuit, capacitor microphone circuit or DC motor are introduced for 

the lossless and lossy cases, to be used in the next chapters. 

The last two sections of this chapter, introduce the main objectives of the thesis together with 

a summary of the chapters. 

 

1.1 Systems and system identification 

 

This subsection of the introduction presents some basic definitions necessary in system 

identification and makes connections with a dynamic system represented in input/output form 

and also introduces disturbances.  

The physical models  represented by hypotheses, laws of nature, may be of more or less 

formal in character, but they have a basic property, that they connect the system observations 

together into a general  pattern. System identification represents a control engineering branch, 

which deals with building mathematical models for dynamical systems, using observed data.  

A dynamic system can be associated with a global object, where variables of different kinds 

interact and produce observable signals.  A dynamic system corresponds to two types of 

signals: observable signals called outputs and  controllable signals called inputs. Beside these 

two signals, in real applications disturbances are encountered between the system and 

external world. These are classified as: directly measurable disturbances and disturbances 

observed on the outputs. The notion of a system is central in modern science and many 

problems are solved in a system-oriented framework. These systems can be dynamic, which 

means that the current output value depends not only on the current external stimuli, but also 

on their earlier values. The outputs of dynamic systems whose external stimuli are not 

observed, are called time series [1,2]. 

 

1.1.1 Models  

 

When interacting with a system, it is necessary to have a mathematical description that 

connects its variables. A model can be generally defined using the relationship between the 

observed signals. These models may come in different forms, with different degrees of 

mathematical formalism. Depending on the control necessities, a complexity  of the model 

will be chosen [1,2].  

The use of mathematical models, is necessary in a large class of domains of engineering and 

physics. Mathematical models of dynamical systems are useful in most areas of scientific 
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enquiry and can take various forms, such as: differential equations, difference equations, 

state-space equations or transfer functions. A possible approach for mathematical modelling, 

is based on the use of mathematical equations which describe the physical laws that govern 

the process. This approach may have drawbacks such as the high complexity of the obtained 

model or the difficulty of estimation due to over parameterization. These drawbacks extend 

also to process control solutions [8]. To overcome this modelling issues, identification 

techniques were introduced [1-8], to make a simpler physical description of the systems, using 

reduced complexity models. The dynamic systems encountered in real world, are generally 

described in continuous time, using differential equations.  Most part of the system 

identification techniques, make use of discrete time models, also known as sampled data 

models. Some approaches using continuous time techniques, were realized in [9,10,11]. 

A linear time-invariant continuous-time system with input u  and output y , can be described 

as:  

)()()()( tvtupHty        (1) 

where  H is the transfer function, p  the time-domain differential operator and the additive 

term )( tv  represents errors or disturbances of all natures. The main sources for )( tv can be 

measurement errors, unmeasured process disturbances, model inadequacy or a combination of 

all of these. It is assumed that the input signal  }
1

),(
M

ttttu   is applied to the system, with 

)(),( tytu both sampled at discrete times 
M

tt ,...
1

. The sampled signals are denoted with

 )}();(
k

ty
k

tu . Mathematical models are useful  in a broad class of applications for simulation 

or forecasting, but also in non-technical fields like: economy, ecology or biology [1,2]. 

 

1.1.2 Model classification  

In system identification, are encountered a broad class of models, used for different 

control applications. These models can be classified as [3]: analytical models and experimental 

models; linear and nonlinear models; parametrical and non-parametrical models; SISO, SIMO, 

MISO, MIMO models; variable and invariable models with time; continuous-time and 

discrete-time models; models with lumped and distributed parameters; time-domain and 

frequency-domain models. 

 

1.1.3 Procedure for building mathematical models  

A physical model, can be determined on the basis of real observed data from the 

system’s response, by interaction with external stimuli. Mathematical models can be 

determined in two different ways. A first way is known as modelling, which splits up the 

global system into small subsystems, whose properties are well known from previous 

knowledge. These small subsystems are connected through mathematical relations, to 

construct the global system. This modelling technique doesn’t necessitate any experiments 

with the system. The second approach for mathematical modeling is called system 

identification and is represented by practical experimentation with the system, using 
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input/output signals for data analysis and model construction [1,2]. Important topics in system 

identification are: the identification of the model structure; the identification of the pure time-

delay; the identification of continuous-time noise models; identification of multivariable 

systems; identification in closed-loop; identification in frequency-domain; software for model 

identification [8].  

 

1.1.4 The true dynamic system  

 

The so-called true system is an entity distinct from the mathematical models obtained by 

physical modeling, using equations. Between these two descriptions of a dynamic system,  

certain relations can be realized but never an exact connection.  The mathematical models that 

describe a physical system need to be connected with their practical usefulness, not with the 

true system model. Even so, the necessity of a true system, it is necessary to define an ideal 

context, for identification techniques and their properties [1,2].  

 

1.2 System identification procedure 

 The identification problem: Determine a continuous-time model for the original 

continuous-time system, from M  sampled measurements of the input and output, 

    M
kk

ty
k

tu
M

Z
1

,


 (as for example the model in equation (1)) [8]. The basic entities of a 

system identification procedure are: the data set; the set of canditate models; a methodology  

used for the model evaluation, using a  data set. The first step of the identification procedure, 

is represented by a specific identification methodology, realized using input/output data from 

the real system, where the user may choose the inputs, measured signals or time steps. The 

objective of this identification step, is to give enough informations on the behaviour of the 

real system, subject to some constraints.  At the second step, a set of possible models might be 

identified, from which the most representative model  can be selected for the real system. This 

is considered the most important and difficult step of the identification procedure, where 

apriori knowledge of the system behaviour and engineering experience, need to be combined 

together with specific properties of the models [1-7]. The third step of the identification 

procedure, is represented by the application of an identification algorithm, where the models 

are evaluated in rapport with the real measurements. At the end of these steps, a model that 

best suits the input/output data is obtained, using a certain proposed criterion. The last step of 

the identification procedure, is represented by the model validation, which shows that the 

model is representative enough for the selected dynamic system. At this step, certain 

procedures can be performed to see if the model is confident for further use, or it has to be 

rejected and replaced with a new one. The final model that is validated after the identification 

procedure, is only useful for a particular application  and not a last and real description of the 

system [1-7]. The model obtained by identification, can be unefficient for a variety of reasons: 

the numerical procedure failed to find the best estimated model according to the selected 

criterion; the estimation criterion is not appropriate to the application; the selected model set 

did not contain a good description for the current system; the data set was not informative 

enough in order to select appropriate models. A general diagram which may be used for the 

identification procedure is presented on Figure 1.1 hereafter [1-7]. 
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Figure 1.1. System identification loop. 

 

1.3 Port-Controlled-Hamiltonian systems 

Port-Controlled-Hamiltonian systems, represent a new generation of nonlinear systems 

for network modelling of complex physical systems, from different energy domains [12-19]. 

This new modelling formulation, can be seen as a re-thinking of standard control techniques, 

opening a broader way for the formulation of control problems [19]. From a modelling 

perpective, this theory starts from the port-based modelling theory developed by Henry 

Paynter [20,23] and Breedveld [21,22,23]. This modelling approach creates a unified 

framework for modelling of systems from different physical branches (mechanical, electrical, 

hydraulic, thermal and others). Central in port-based modeling is the energy, which makes the 

connection between the physical branches and the identification of the system’s components 
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which capture the main physical characteristics, given by the energy-storage, energy-

dissipation and energy-routing. Port-based modelling includes also a set of graphical 

notations, to represent the structure of the physical system, as a set of ideal elements 

connected by edges, that capture the energy flows between them. The name introduced for 

these edges is bonds and the global graph of the physical system is called a bond graph. Using 

connections with electrical circuit theory, the energy flow along the bonds is represented by 

pairs of variables, whose product always equals power. Some examples of such pairs are 

voltages and currents in the electrical domain, velocities and forces in translational 

mechanics, flows and pressures in hydraulics, etc. A Port-Hamiltonian formulation of bond 

graph theory can be found in [24]. Port-based modelling is also regarded as an abstraction of 

the theory of across and through variables [25]. Another origin of Port-Hamiltonian systems 

theory is geometric mechanics [26-30]. The basic idea of geometric mechanics is to represent 

the Hamiltonian dynamics in a coordinate-free manner, using a state-space representation (the 

phase space of the system) given by a symplectic or Poisson structure, together with a 

Hamiltonian function for the energy. This approach created a path for the analysis of 

Hamiltonian systems behaviour, showing their basic features like symmetries or conserved 

quantities. This geometric approach was also succesfully extended to infinite-dimensional 

Port-Hamiltonian systems [31]. Another inspiring domain in the construction of Port-

Hamiltonian systems theory is control, where the dynamical systems are regarded as being 

opened for interaction with the environment and also for control interaction. The control 

systems developments are connected with electrical network synthesis theory. The geometric 

formulation of this theory starts with [12, 29, 30, 32-38], mainly for the analysis and control 

of nonlinear mechanical systems. One important difference, between Port-Hamiltonian 

systems and Hamiltonian mechanics, is that for Port-Hamiltonian systems, the interconnection 

is not symplectic in the phase space, but in the augmented Bond space which includes both 

port variables for the system components and “external” interaction ports. In this way, the 

theory of Port-Hamiltonian systems, is a connection between geometry and network theory. 

The geometric element that makes a generalization for symplectic and Poisson structures, is 

called a Dirac structure [39-41]. Dirac structures were introduced in [16, 42,43] and used for 

mechanical systems with constraints resulting in Hamiltonian differential-algebraic 

equations. The theory could also be extended to distributed-parameter case [44]. A central 

property of Dirac structures, is that the composition of two or more Dirac structures, is again a 

Dirac structure. This property shows that the power is conserved by the interconnection of 

Port-Hamiltonian systems, by means of external ports. A new extension of Port-Hamiltonian 

systems theory in rapport with the geometric mechanics, is the inclusion of energy-dissipating 

elements. Together the port-based modelling and Port-Hamiltonian systems, can be seen as a 

general theory for the modelling of complex physical systems from different areas of 

engineering. Because this theory is based on two major concepts of energy and power, it is 

ideal for mathematical modelling of multi-physics systems. Another important aspect of this 

theory, is that is offers a clear view also for control solutions, mostly for the nonlinear case, 

by means of appropriate theoretical concepts and tools. For instance, there exists many 

methods for energy/power shaping or passivity-based control designs, of the storage and 

dissipation ports, or techniques which rely on the representation of the controller system as 
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port-Hamiltonian system itself. Port-Hamiltonian representation of dynamical multi-physics 

systems are also useful for numerical computations, for instance using different software suits 

the 20-sim (based on bond graphs) or Modelica/Dymola environments.  

In port-based modelling, a physical system is regarded as the interconnection of three types of 

ideal components: energy-storing elements; energy-dissipating (resistive) elements and 

energy-routing elements. Some classical examples of such Port-Hamiltonian system 

components are: 

- springs, inductors, capacitors, ideal inductors for the energy-storing components; 

- dampers or resistors for the energy-dissipating components;  

- transformers, gyrators and ideal constraints for the energy-routing elements.  

For simplicity of notation, each port of the Hamiltonian system will be assigned a letter as 

follows: S for the storage port, R for the energy-dissipating components. The central 

component of a Port-Hamiltonian system, the Dirac structure is assigned the letter D. A 

graphical representation of Port-Hamiltonian systems, using the above notations, is given in 

Figure 1.2. 

 

 
Figure 1.2. Port-Hamiltonian system. 

The interconnections within the Port-Hamiltonian system are realized using pairs  of flow and 

effort variables, usually denoted  ef , .  One such pair of vectors of flow and effort variables 

forms an abstract entity called port, while the complete set of flow and effort variables, forms 

the port variables. As the notations show in Figure 1.2, the flow and effort pairs, are 

associated to the ports as follows:  
S

e,
S

f  for the storage power-port;  
R

e,
R

f  for the 

dissipation power-port and  
I

e,
I

f  for the external power-port. Associated to each port, there 

were defined scalar entities, called energies (powers) (
S

f
T
S

e , 
R

f
T
R

e  and 
I

f
T
I

e ) that are 

transmitted through the connections [19,23]. As was already presented in Figure 1.2, the 

central component of a Port-Hamiltonian system, the Dirac structure has an important 

property of power conservation: the Dirac structure connects the various port elements (flows 

and efforts), in order to conserve the total power associated to the system [19,23]. The power 

port elements are defined as follows: the flows are defined on a finite-dimensional linear 

space of flows F , while the efforts are defined on the dual linear space *
: FE  . The total 

space of flow and effort variables is EF x  and represents the space of port variables or Bond 

space. As a consequence, the total power entering (or going out, according to the sign 

convention)  is expressed as [19,23]: 

    feP  , EF xef ,      (1.1) 
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where fe  corresponds to the duality product for Ee acting on Ff . In vector 

representation, (1.1) becomes: 

     f
T

efe        (1.2) 

where k
Rf  and 

*











k
Re . In the following lines, will be introduced  a definition for a 

Dirac structure [19,23]. 

 

Definition 1.1 (Dirac structure) [23] 

Consider a finite-dimensional linear space F , with *
FE  . A subspace EF xD  is a Dirac 

structure if: 

1. 0fe , for all   Def ,  

2. FD dimdim   

In the above definition, property 1 corresponds to power-conservation and expresses the fact 

that the total power entering or (leaving) a Dirac structure is zero. This definition can be 

generalized to the infinite-dimensional linear space F , defining in this way a infinite-

dimensional Dirac structure. This definition is essential for the class of Port-Hamiltonian 

systems called distributed-parameter systems. In connection to the power of Port-Hamiltonian 

systems, it was defined a bilinear form  ,  on the space EF x , as: 

       






 a
f

b
e

b
f

a
e

b
e

b
f

a
e

a
f :,,,   (1.3) 

with   EF x
b

e
b

f
a

e
a

f 







,,, . This form is positive semi definite. It is also non-degenerate, 

meaning that   0,,,  






 b
e

b
f

a
e

a
f  for all 







 b
e

b
f ,  implies that   0, 

a
e

a
f [19,23]. 

Therefore it is symmetric positive-definite and may be used as an inner product. This inner 

product in turn may be used to give a geometric characterization of Dirac structures, as in the  

proposition below. 

 

Proposition 1.1 ( geometric characterization of Dirac structures [40,41]) 

A Dirac structure on EF x  is a subspace EF xD  , such that: 

     
 DD       (1.4) 

where   denotes the orthogonal companion with respect to the bilinear form  , . 

Some simple examples of Dirac structures EF xD  are given below: 

a) Let FEJ : be a skew-symmetric linear mapping, that is 
 JJ , where 

FEEJ 
*

:
*  is the adjoint mapping. Then:  

  JefxefJ  EF,:graph     (1.5) 

           is a Dirac structure. 

b) Let EF :  be a skew-symmetric linear mapping. Then: 
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  fexefgraph   EF,:      (1.6) 

 is a Dirac structure. 

c) Let FK  be any subspace. Define: 

 KfallforfeEeK 


,0     (1.7) 

           then FxEKxK 
  is a Dirac structure [19,23]. 

 

An important property of Port-Hamiltonian systems, is their stability under interconnection. 

The interconnection of Port-Hamiltonian systems results in a new Port-Hamiltonian system 

with power continuity, which means that the resulting Hamiltonian will be the sum of the sub-

systems Hamiltonians and, similarly, the total dissipation will be the sum of the sub-systems 

dissipations. As an example, we consider the interconnection of two Dirac structures, 
A

D  and 

B
D as in the following figure. 

 

 
Figure 1.3. The interconnection of two Dirac structures. 

 

In Figure 1.3, two Dirac structures were considered 
2121

xExExFF
A

D  with *
i

F
i

E   

( 2,1i ) and 
3232

xExExFF
B

D  with *
33

FE  . In this representation, 
2

F  is the space of 

shared flow variables and *
22

FE  the space of shared effort variables. The interconnection 

of the two Dirac structures is defined with the following constraints: 

     
2

F
B

f
A

f  , 
2

E
B

e
A

e               (1.8) 

Thus the composition of two Dirac structures, results in: 

  
   

    




















B
Defefand

A
Defef

tsxEFefxExFxEFefef

B
D

A
D

3
,

3
,

2
,

22
,

2
,

1
,

1

..
222

,
233113

,
3

,
1

,
1:             (1.9) 

For the composition of two Dirac structures, the following theorem was proposed. 

[16,23,45,46] 

 

Theorem 1.1 

Let 
2211

xExFxEF
A

D  and 
3322

xExFxEF
B

D   be Dirac structures.  

Then 
3311

xExFxEF
B

D
A

D   is a Dirac structure. 
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Below we will introduce some examples of Dirac structures. 

 

1.3.1 Dirac structures examples 

One example of Dirac structure, is a transformer [20,21,23], which links two scalar bonds 

with flow and effort variables   2
1

,
1

Ref  and   2
2

,
2

Ref  using the following relation: 

     

21

12

ee

ff








                (1.10) 

where  is a constant, called transformer ratio. The generalized vectorial form for (1.10) is: 

b
e

T
A

a
e

a
Af

b
f




                 (1.11) 

with  a
e

a
f ,  and 







 b
e

b
f ,  pairs of column vectors for the flow and effort variables and A  

an invertible matrix of appropriate dimension. Another example of Dirac structure is a 

gyrator, which  can be defined using the following relations: 

     

21

21

fe

ef








                (1.12) 

For 1 , the structure from (1.12) is called a symplectic gyrator. The multi-dimensional case 

for (1.12), is given below: 

     
b

f
a

e
T

G

b
Ge

a
f




                (1.13) 

where G  is an invertible matrix of appropriate dimensions. Other examples of Dirac 

structures are ideal k -dimensional interconnection structures such as the 0 junction (common 

effort or parallel connection in electricity) or the 1 junction (common flow or serial 

connection in electricity) [20,21,23]. Port-Hamiltonian systems are made of the connection of 

Dirac structures with energy storing and energy dissipating elements. Those are described in 

the next to sub-sections. 

 

1.3.2 Energy storing elements 

The energy-storing multi-port element ( S ), is introduced as the union of all energy-storing 

elements within the system. The port variables for this case are represented by  
S

e
S

f , , 

where 
S

f and 
S

e  are vectors of equal dimension, where 
S

f
T
S

e  denotes the total power 

within the Dirac structure for the energy storing elements. The complete storage energy is 

defined using a state space X , together with a Hamiltonian function RXH :  representing 

the energy [23]. The rate x  represents the vector of flow variables for the energy storing 

multi-port element. For any state Xx  , the flow vector x  is assumed to be an element of the 
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linear space X
X

T , corresponding to the tangent space of X at Xx  . Using local 

coordinates for the states  Tnxxx ...,,
1

 , the flow variables become  Tnxxx  ...,,
1

 . 

The vector of effort variables is given by the gradient vector   XxTxxH
*

/  , the dual space 

of the tangent space X
X

T . Using the states coordinates  Tnxxx ...,
1

 of X , the effort 

variables can be vectorialy represented using the vector  xxH  /  of partial derivatives of the 

energy H  with respect to the states. This gives rise to the following power-balance equation 

for the energy-storing multi-port element: 

        xx
x

H
T

xx
x

H
H

dt

d










                  (1.14) 

The interconnection of the energy-storing elements with the storage port  
S

e
S

f ,  of the Dirac 

structure, is realized through the notations: 

      x
S

f  ,  x
x

H

S
e




              (1.15) 

Thus, the power balance for the storage port is: 

       
S

f
T
S

exx
x

H
T

H
dt

d





               (1.16) 

The minus sign convention, was introduced due to the fact that  xx
x

H
T





 is the power 

flowing into the energy-storing elements and 
S

f
T
S

e the power flowing into the Dirac 

structure. 

 

1.3.3 Energy dissipating elements 

 

As was already introduced above, the second multi-port element R , is related to internal 

energy dissipation caused by friction, resistance or others. For this port, the following port 

variables  
R

e
R

f ,  are introduced together with a static relation R . This relation (or its graph) 

satisfies: 

     
R

xE
R

FR                  (1.17) 

and: 

     0
R

f
T
R

e
R

f
R

e                (1.18) 

for all   R
R

e
R

f , . The static relation R  is called an energy-dissipating relation or resistive 

structure. Without any power supplied to the external port, the power balance relation for the 

whole system becomes: 

     0
R

f
T
R

e
S

f
T
S

e                (1.19) 

Using (1.16) and (1.19), we can write: 

     0
R

f
T
R

e
S

f
T
S

eH
dt

d
              (1.20) 
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A special case for the energy-dissipating relations, appears when the resistive relation can be 

expressed using an input-output mapping: 

      
R

eF
R

f                  (1.21) 

where mr
R

m
RF : satisfies   0

R
eF

T
R

e  for all m
R

R
e   ( m  the number of energy 

dissipating elements). In case of linear resistive elements, (1.21) can be expressed as: 

     
RR

f Re                 (1.22) 

with a positive semi-definite symmetric matrix 0
T

RR . 

 

1.3.4 External ports 

 

An external port  
I

e
I

f ,  can be introduced within a Dirac structure interconnection, for the 

interaction of the system with the environment. This interaction of the system with its 

environment can be realized through a controller or an interaction port. A possible example 

of an interaction port, is given by a controlled robotic system interacting with its environment. 

Another example of external ports is represented by sources, in electrical circuits where the 

input can be the voltage while the current through the source is then the output variable. 

 

    0
I

f
T
I

e
R

f
T
R

e
S

f
T
S

e                   (1.23) 

Then (1.20) becomes: 

    
I

f
T
I

e
I

f
T
I

e
R

f
T
R

eH
dt

d
               (1.24) 

due to 0
R

f
T
R

e . This relation can be translated into the fact that the increase of the internal 

energy or the Hamiltonian, has as an upper bound which is the externally supplied power. 

 

1.3.5 Port-Hamiltonian dynamics 

The dynamic behaviour of a Port-Hamiltonian system, can be introduced using  the following 

definition. 

Definition 1.3 (implicit definition of Port-Hamiltonian systems) 

Consider a state space X and a Hamiltonian: 

     RXH :                 (1.25) 

defining the energy-storage. A Port-Hamiltonian system on X is defined by a Dirac structure: 

    
I

xE
I

xF
R

xE
R

xF
X

XxT
X

TD
*

  

having energy-storing port   *
,

X
XxT

X
T

S
e

S
f   and a resitive structure: 

      
R

xE
R

FR   

corresponding to an enegy-dissipating port  
RRRR

xEFef , . Its dynamics is specified by: 
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










,,

,
,              (1.26) 

 

1.3.6 Input-state-output Port-Hamiltonian systems  

 

A particular class of Port-Hamiltonian systems, is the one of the input-state-output port-

Hamiltonian systems, for which the dynamics is explicitely described by explicit state-space 

equations and where the flow and effort variables describing the resistive, control or 

interaction ports are splitted into conjugated input-output pairs. This class of dynamic 

systems, can be defined using the following system of equations: 

    

          

   

   

Xx

x
x

H
x

T
kz

x
x

H
x

T
gy

dxkuxgx
x

H
xRxJx







































,:



            (1.27) 

where  yu ,  are the input-output pairs related to the control port C , while  zd ,  corresponds 

to the input-output pairs of the interaction port I . In (1.27) u
T

y and d
T

z correspond to the 

power energies of respectively the control and interaction ports. Here the matrix  xJ  

(interconnection matrix), is skew-symmetric and the dissipation matrix     0
T

xRxR  

positive semi-definite. For a linear resistive relation 
RR

f eR
~

  with 0
~~


T

RR  and 
R

g  

an input matrix associated to the dissipation port, a Dirac interconnection structure associated 

to the explicit input-state-ouput form  may be defined as: 

    

       

 

 

  





























 

000

000

000

x
T

k

x
T

g

x
T
R

g

xkxgx
R

gxJ

              (1.28) 

This structure represents a modulated Dirac structure where the matrices g
R

gJ ,, and k

depend on the energy variables x . 

 

1.3.7 Port-Hamiltonian systems examples   

 

This section introduces some examples of Port-Hamiltonian systems, for the lossless or lossy 

cases, which will also serve as running examples in the thesis. 

 

1.3.7.1 Lossless Port-Hamiltonian systems 

 

A first example of a Port-Hamiltonian system, is represented by an LC circuit, as depicted in 

Figure 1.4. 
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Figure 1.4. Controlled LC circuit. 

 

This example considers an LC-circuit with two inductors of magnetic energies  
11

H  and

 
22

H  (
1

  and 
2

  being the magnetic flux linkages) and a capacitor with electric energy 

 QH
3

 ( Q  being the charge). In the linear case, the following relations are used: 

     2
1

1
2

1

11


L
H  ,   2

2
2

2

1

22


L
H  ,   2

2

1

3
Q

C
QH              (1.29) 

Considering a voltage source uV   and applying the Kirchoff’s laws, the following input-

state-output port-Hamintonian representation for the considered system results: 
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1






H
y  (current through the first inductor) 

The total energy of the system is: 

          QHHHQH
322112

,
1

,                            (1.31) 
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1.3.7.2 Lossy Port-Hamiltonian systems 

For the lossy case, a capacitor microphone circuit is considered as in Figure 1.5. 

 

Figure 1.5. Capacitor microphone. 

In this case, the capacitance  qC  has a nonlinear model as it is dependent on the 

displacement q of the right plate (mass m ). Attached to the right plate is a spring (with spring 

constant k ) and a damper (with constant 0c ) and also a mechanical force F  is considered 

for the air pressure due to the sound. The dynamical equations for the displacement of this 

system are: 
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    q
p
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
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



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In (1.32), p  denotes the momentum, R  the resistance of the resistor and I  the current 

through the voltage source. The total energy of the system, representing the Hamiltonian is 

given by the following relation: 

       
 

2

2

12

2

12

2

1
,, Q

qC
qqkp

m
QpqH                        (1.33) 

where q  is associated to the equilibrium position of the spring. Here it should be remarked 

that qF   is the mechanical power, while EI  the electrical power of the system. For the 

measurement of the mechanical force F , the voltage over the resistor will be used.  

Another example of lossy PCH system  is represented by a DC motor, as depicted in Figure 

1.6, where six interconnected sub-systems may be distinguished: two energy-storing 

elements: an ideal inductor L  with state energy variable   (flux-linkage) and a rotational 

inertia 
E

J  with state energy variable p  (angular momentum); two energy-dissipating 



27 

 

elements: the electrical resistor R  and the viscous mechanical friction b ; a gyrator K ; an 

ideal voltage source V .  

 
Figure 1.6. DC motor. 

 

The Port-Hamiltonian model for the interconnection of these six sub-systems is: 
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and the corresponding total Hamiltonian function  is: 

   2

2

12

2

1
, p

E
JL

pH                                             (1.35) 

1.4 Motivations and necessity for a Port-Controlled-Hamiltonian systems 

identification theory 

This subsection, puts in discussion the usefulness and necessity of a system 

identification theory for Port-Controlled-Hamiltonian systems, starting from the theoretical 

concepts introduced in this chapter. The motivations for a specific identification theory of 

Port-Controlled-Hamiltonian systems comes from their remarkable property of power energy 

conserving for the complete system, which connects the storage, control or interaction ports, 

through a Dirac structure. Compared with the classic input/output formulation for the 

structural identifiability analysis, the identifiability of Port-Controlled-Hamiltonian systems 

can be analysed (as will be proved in chapter 2), also in terms of storage, dissipation or 

control power energies, possibly associated to sub-systems from different domains of 

engineering (mechanical, electrical, thermal, etc.). Thus it is possible, by having real-time 

informations on the power energies, to determine the dynamic system parameters, given in 

state-space form. Using this power energy approach, a new class of identification algorithms 

can be proposed in the future, besides the classic known state-space identification techniques.  

Another important issue of an identification theory for PCH systems, is their utility 

and advantages for model-based control. In this application, the control model needs to be 
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representative and suitable enough for the considered dynamical systems. This is the case of 

PCH models in many real applications, where these models include enough “physical” 

information for the control design, but still are of tractable complexity. As it will shown in the 

thesis, PCH systems can be easily adapted, to be used for structural or practical identifiability 

analysis, using a broad class of techniques, some being adapted for real-time applications. A 

perturbation model can be proposed for these systems (see chapter 3), by introducing an 

interaction port of the system with the environment, preserving in this way the general model 

structure. It might also be possible to propose in the future, efficient open-loop or closed-loop 

identification algorithms specifically dedicated to PCH systems. 

Symplecticity (i.e. conservation of the power-pairing form) of PCH systems allows to 

identify their parameters using identification techniques in discrete-time form, provided  

symplectic discretization schemes are used. For instance, no numerical dissipation (due to the 

sampling/discretization) will affect the value of the identified parameters for the dissipation 

relation. It will be shown in  chapter 4 how continuous-time PCH systems may be converted 

to discrete-time form, using a broad class of discretization schemes for the flows and efforts 

spaces. A discretization error Hamiltonian can be introduced between the continuous and 

discrete-time systems, preserving the properties and structure of the system, which may be 

used to get structured information on the power error energies. Due to their remarkable 

structure, identification procedures and algorithms can be developed for PCH systems, to 

identify only the parameters with a physical meaning. 

 

1.5 Thesis objectives 

The main goal of this thesis is to check the possibility to develop a specific  identification 

theory for PCH systems. Thus the main objectives proposed for the thesis are: the structural 

and practical identifiability analysis of PCH systems using classic or new (specific) proposed 

techniques; the selection of proper symplectic time-discretization techniques which combine 

the flow and effort discretization and conserve the main characteristic properties of PCH 

systems; the introduction of a discretization error Hamiltonian between the continuous and 

discrete-time PCH systems for the error analysis; the description of discrete-time PCH 

systems using matrix I/O equations, orthogonal or oblique projections for the selected 

symplectic discretization schemes, suitable for state-space identification algorithms; the 

selection, analysis and development of  state-space identification algorithms for PCH systems 

in the deterministic or stochastic cases. 

1.6 Summary of the thesis 

The introduction was dedicated to  a general presentation of system identification and  Port-

Controlled-Hamiltonian systems theories, as well as for the motivations to develop an 

identification theory for PCH systems. It ends with the main objectives of the thesis and a 

summary on chapters. 

In chapter 2, a structural identifiability analysis of PCH systems is proposed using 

several classical or new (specific) techniques. As classic techniques were selected: the 

observability/controllability analysis, the direct test or the power series expansion. A new 
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proposed identifiability analysis is realized using the power energies corresponding to PCH 

systems ports and thus, new specific definitions and propositions are proposed for the global 

and local identifiability. Also a new concept of port identifiability  is introduced, specific to 

the unknown parameters associated to one port of a PCH system. For each identifiability 

analysis technique, examples are proposed for the lossless and lossy cases using the LC 

circuit, the capacitor microphone circuit or the DC motor models. A complete set of proofs for 

the results of chapter 2 may be found in Appendix A to C.  

In chapter 3, a practical identifiability analysis of PCH systems is proposed using the 

observability/controllability concepts, in the presence of a proposed perturbation model. As 

the system perturbation is caused by the interaction of the PCH system with the environment, 

it is introduced a perturbed model, by an input/output pair corresponding to the interaction 

port. Thus the states and the system outputs have a perturbed model, as for classic state-space 

systems. In this case,  it is proved the conservation of basic PCH systems laws, when 

converting to the observable canonical form for identifiability analysis in the presence of a 

perturbation model. Again, the LC circuit, capacitor microphone circuit and DC motor 

examples are used as examples to illustrate the practical identifiability analysis.  

Chapter 4 introduces a symplectic time-discretization framework for PCH systems, 

using different discretization rules for the flows and efforts. As discretization rules for the 

flows and efforts of PCH systems were selected the implicit/explicit Euler rule, the implicit 

mid-point rule or the implicit trapezoidal rule. The second part of the chapter introduces the 

difference between two PCH systems and its application to the definition of a discretization 

error Hamiltonian system between the continuous and discrete-time systems. The LC circuit 

and the capacitor microphone circuit are considered for the lossless or lossy case as examples. 

In appendix E can be found a complete set of symplectic discretization schemes using the 

selected discretization rules for the flows and effots, which are proved to conserve (or not) the 

basic PCH systems properties in discrete-time. 

Chapter 5,  makes an analysis of the subspace identification algorithms for PCH 

systems using the time-discretization schemes of chapter 4. Thus matrix I/O representations, 

orthogonal or oblique projections are proved and defined for the selected schemes. For the 

analysis using the identification algorithms, it is selected a simple scheme that uses Euler 

rules for the flows and efforts and gives a similar state-space structure as the classic one. First 

the analysis is realized using classic state-space algorithms and then a new context is 

proposed for a power energy approach, that makes use of the inputs/power energies 

knowledge. The system identification analysis is performed using a DC motor model, to 

illustrate the results. Thus it is proved that performing the estimation algorithms, equivalent 

PCH systems can be found, which preserve the PCH systems structure. 

Chapter 6 draws the main conclusions that result at the end of the thesis on each 

subject proposed for study throughout the thesis. Also are introduced the personal 

contributions and perspectives for further work on identification of Port-Controlled-

Hamiltonian systems. 
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2. Structural Identifiability of Port-Controlled-Hamiltonian 

Systems 

This chapter presents a theoretical and practical analysis of Port-Controlled-Hamiltonian 

systems structural identifiability, using general concepts from classic identification theory 

and also introducing a new approach making use of the power-port energies. Classical 

observability/controllability or direct tests for structural identifiability are investigated. For 

each of these tests, a general rule is found to be used for Port-Controlled-Hamiltonian 

systems. Using the power energies associated to the ports, new definitions are introduced for 

the global/local identifiability of Port-Controlled-Hamiltonian systems and also a new 

concept of port-identifiability is proposed. Three examples are considered: a LC circuit for 

the lossless case and a capacitor microphone circuit and DC motor for the lossy case. 
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2.1. Introduction 

 

The system identification field uses statistical methods to build mathematical models 

for dynamic systems on the basis of measured datas. Among the main issues in system 

identification are the optimal design of experiments, necessary to generate efficient 

informative datas for fitting such models as well as model reduction [1,4,44]. 

Related to the field of system identification, the following notions have been introduced in the 

literature: theoretical or structural identifiability, practical identifiability (being used when 

experimental datas are perturbed with noise) or sensitivity analysis, which is used in 

mathematical modelling, to evaluate the sensitivity of the output variables, to parameter 

values and input variables [45]. This chapter makes a theoretical and practical analysis of 

Port-Controlled-Hamiltonian systems structural identifiability, which form a class of 

nonlinear systems very useful for multiphysics systems modelling and control problems [23]. 

The concept of structural identifiability was first proposed by Bellman and Astrom [46],  

where identifiability analysis is performed by exploring the model structure and verifying 

whether the system parameters have a unique solution, globally or locally, using the 

knowledge of the input-output signals (see [46,47,48, 49] for application-oriented papers or 

[50,51,52,53,54] for theoretical contributions on structural identifiability). Some of the main 

structural identifiability techniques for linear systems are: the Laplace transform [45, 46, 55, 

56], the power series expansion proposed by Pohjapalo [45,46,55, 56,57] or the similarity 

transformation, proposed by Walter and Lecourtier [45, 55, 56, 58]. Another useful approach 

for structural identifiability is the direct test. This test, represents a direct analysis of the 

parameters identifiability, using either the global or local identifiability definitions, 

analytically [45,59] or numerically [45, 60]. Although PCH systems are basically knowledge 

based models which may be described using only a limited number of physical parameters, 

quite surprisingly enough very few studies investigate issues related to their identifiability, 

even the structural identifiability analysis. It should be mentioned the exception of [61] where 

the very particular application case of a heat exchanger is studied. The aim of this chapter, is 

therefore to explore the structural identifiability of linear PCH systems. In section 2.2, the 

identifiability definitions which will be used for the structural identifiability analysis are 

reiterated. Section 2.3 proposes a transformation of linear PCH systems to the observable 

canonical form. In section 2.4 the structural identifiability of PCH systems is analyzed, using 

either the observability/controllability concepts or the direct test. Section 2.5 proposes a new 

approach for the structural identifiability analysis of PCH systems, by introducing a new set 

of definitions for the global/local identifiability, using the powers associated to each port, 

together with a new concept of ‘port-identifiability’. Section 2.6  is dedicated to examples for 

the indentifiability characterizations developed in sections 2.3, 2.4 and 2.5 using an LC circuit 

for the lossless case or a a capacitor microphone circuit or a DC motor, for the lossy case. 
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2.2 Definitions 

 

Let us consider the dynamical system: 

          ,,, tutxtgtx                                                    (2.1) 

                                        ,, tutxhty                                                         (2.2) 

where   m
Rtx   is a vector of state-variables,   d

Rty  represents the measurement or output 

vector,  
p

Rtu  the known system input vector and q
R the parameter vector [1,4, 45]. 

Definition 2.1: Controllability [45,62] 

For the dynamical system(2.1) - (2.2), a (nonzero) state Xx is controllable to the zero state, 

if there exists an input function  tu  and a time T , such that   0,,  Txu  (where 

 Txu ,,  is the trajectory with initial condition xx )0(  and input  Tttu ,0),(  ). 

Definition 2.2: Observability [45,62] 

A state Xx is unobservable if     0,,0  txty C  for all 0t , i.e., if x  is 

undistinguishable from the zero state for all 0t . The unobservable subspace unobs
X of X , 

is the set of all unobservable states of the dynamical system (2.1) - (2.2). The system (2.1) - 

(2.2) is completely observable if  0
unobs

X . 

The controllability and observability definitions, represent two basic concepts in system 

identification, due to the connections realized between the inputs, states and outputs of a 

dynamic system represented in state-space form [1,4,45,62] and also, may indicate when the 

system is identifiable. For example, the observable canonical (minimal) form of a system, is 

identifiable when it satisfies also the controllability condition. This however doesn’t give any 

information on the identifiability of the parameters from the original CBA ,,  realization 

(which may be non-minimal, for instance). The observability/controllability will be 

considered as necessary conditions for (global or local) structural identifiability as defined 

hereafter. In 2.4 the observability and controllability will be used for the identifiability 

analysis of PCH systems written in a minimal (observable canonical) form. Next are defined 

two central concepts of global and local identifiability introduced by Glad and Ljung 

[1,4,45,62].  

 

Definition 2.3: Global Identifiability 

The dynamical system (2.1) - (2.2) is said to be globally identifiable, if for any admissible 

input  tu  and any two sets of parameter vectors 
1

θ  and 
2

θ , from the parameter space  , 

the following equality    
2

θ
1
θ u,yu,y   holds if and only if 

2
θ

1
θ  .  
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Definition 2.4: Local identifiability  

A dynamic system defined by (2.1) - (2.2) is said to be locally identifiable, if for any θ within 

an open neighborhood of some point 
θ  in the parameter space  , the following relation 

   
2

θ
1
θ u,yu,y   holds if and only if 

2
θ

1
θ  . 

 

The above two definitions are useful in section 2.4, 2.5 and 2.6 for the direct test 

identifiability analysis of PCH systems parameters and for the introduction of new definitions 

using the power port energies and also for identifiability examples. Another concept in 

identification is given assuming an initial known state, or local strong identifiability, also 

termed as 
0

x  identifiability [45,70,71]. 

Definition 2.5: Local strong identifiability (
0

x  identifiability) 

For an admissible input  tu  in the time range of interest  
1

,
0

tt  and for a given initial state 

 
00

txx  , which is independent of   and not an equilibrium point, if there exist an open set 

0
  within the parameter space   such that, for any two different parameter vectors 

0
2

,
1

 , the solutions  utx ,,  exist on  ett 
0

,
0

 (
010

ttet  ) for both 
1

  and 
2

 , 

and      tuxtytuxty ,
0

,
2

,,
0

,
1

,    on  ett 
0

,
0

, the system structure is said to be locally 

strong identifiable (or 
0

x  identifiable). 

This definition is introduced, as it is related to the power series expansion identifiability test 

of PCH systems presented in section 2.4.3. In some sense it is a local identifiability analysis, 

which is local both for the states space and time, being in that sense very similar to the related 

concept of local observability for non-linear systems. Other definitions for identifiability have 

been introduced for practical or theoretical reasons. Some of them may be found in [46, 64, 

65, 66]. 

2.3. Observable canonical form representation of PCH systems 

This section, presents a proof for the conversion of PCH systems to observable canonical 

forms, conserving the basic properties of PCH systems, by which they are defined. This result 

will be used in section 2.4 to prove structural identifiability result for PCH systems.  

Remark: The observable canonical form representation can be applied only for SISO PCH 

systems.  

In the linear time-invariant lossless case, a PCH system reduces to: 

         
   

   










tQx
T

Bty

tButJQxtx )(
                                              ( 2.3) 
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where ),( yu  is the input-output pair corresponding to the control port, J  is a skew-symmetric 

interconnection matrix and the Hamiltonian(energy), is 2Qx/
T

xH   where Q  is assumed to 

be symmetric positive definite. The system (2.3) may be written in the usual state-space form:  

       











Cxy

BuAxx
                                                (2.4) 

with nxn
RJQA  , nxm

RB   and pxn
RQ

T
BC  . In order to express this system 

in the observable canonical form, a transformation matrix is applied: 

      x
obs

T
obs

x                                                  (2.5) 

where:  







 


Tn
CA

T
CA

T
C

T
obs

T )
1

()(    

is the usual observability matrix. The obtained observable canonical form reads then: 

















obs
x

obs
CTy

Bu
obs

T
obs

x
obs

JQT
obs

T
obs

x

1

1

                                   (2.6) 

with: 

 00001
1

,

...

3

2

1

,

1
...

21

1...000

...............

0...100

0...010

1

































































































obs
CT

nb

b

b

b

B
obs

T

a
n

a
n

ana

obs
JQT

obs
T

                     (2.7) 

To prove that (2.6) still has the PCH form, it is sufficient to introduce an equivalent form: 

    











obs
x

obs
Cy

u
obs

B
obs

x
obs

Q
obs

J
obs

x

                                      (2.8) 

with: 

























obs
BB

obs
T

obs
C

obs
CT

obs
Q

obs
J

obs
JQT

obs
T

1

1

                                                  (2.9) 

Using standard matrix computations and properties of the the matrices applied to the original 

system (2.3), one then obtains the following results: (see appendix A.1 for details)  

    
























1

1

obs
QT

T
B

obs
Q

T
obs

B
obs

C

obs
QT

T
obs

T
T
obs

Q
obs

Q

T
obs

JT
obs

T
T
obs

J
obs

J

                                       (2.10) 

which prove that (2.8), still has the usual explicit PCH form. Applying the same ideas for the 

lossy case: 
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










Qx
T

By

BuQxRJx )(
                                    (2.11) 

where R  is some positive semi-definite ( 0
T

RR ) dissipation matrix, results in the 

observable canonical form: 

 

















obs
x

obs
CTy

Bu
obs

T
obs

x
obs

QTRJ
obs

T
obs

x

1

1

                        (2.12) 

Equivalently this may be written: 

 












obs
x

obs
Cy

u
obs

B
obs

x
obs

Q
obs

R
obs

J
obs

x

                        (2.13) 

with: 

                                         

   



























B
obs

T
obs

B

obs
C

obs
CT

obs
Q

obs
R

obs
J

obs
QTRJ

obs
T

1

1

                                 (2.14) 

Using standard matrix computations together with the properties of the J , R  and Q  matrices, 

one gets: 

    

























0

0
1

T
obs

RT
obs

T
T
obs

R
obs

R

T
obs

JT
obs

T
T
obs

J
obs

J

obs
QT

T
obs

T
T
obs

Q
obs

Q

                                    (2.15) 

This allows to conclude that (2.13) has the usual explicit PCH form (see Appendix A.2 for 

detailed computations). 

2.4 Structural identifiability of PCH systems  

This section presents an analysis of PCH systems structural identifiability, using either the 

controllability/observability definitions, direct test or the power series expansion. For each 

proposed identifiability test, both the lossless and the lossy cases are considered. As was also 

presented in section 2.2, two basic conditions which must be satisfied for a state-space system 

to be identifiable (using a minimal realization) are the observability and controllability of the 

system. As a consequence the direct test or power series expansion will be applied to prove 

respectively the identifiability, assuming first that the system is observable and controllable. 

Omitting this necessary conditions for the identifiability tests, situations may be encountered 

when the parameters are identifiable according to the selected test, but the system being 

unobservable or uncontrollable, the transfer function degree reduces by simplifications and 

some parameters of the original ( A , B , C ) state-space realization might not be analyzed 

[1,67]. All identifiability tests analyzed in this work may be considered as roughly equivalent, 

since they all search for a unique solution of the unknown parameters. However the 

observability/controllability identifiability test, the direct test or the power port test are related 
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with the global and local identifiability definitions, while the power series expansion test is 

related to the local strong identifiability (see section 2.2). 

2.4.1 Observability and controllability analysis 

This part of section 2.4 proves the structural identifiability of PCH systems in the lossless and 

lossy cases, using the observability/controllability concepts introduced in section 2.2, for a 

minimal realization representation of the dynamic system. For the observable canonical form 

representation of PCH systems (see section 2.3), it is only necessary to prove that:  

                                  






 


obs
B

n

obs
A

obs
B

n

obs
A

obs
B

obs
A

obs
B

ID
R

12
......       (2.16) 

is full rank, which means that the pair ),(
obs

B
obs

A  is controllable. Using basic properties of 

matrix multiplication, transposition, inverse, together with PCH systems properties, it may be 

found that (see appendix B.1.1, formulas (B.1)-(B.21), for details): 

 























 
 B

n
AABBB

n
A

n
ABBQ

ID
R

1
...

11
1...                 (2.17) 

Then, the following proposition from [69] may be used: 

Proposition 2.1: 

Consider the linear lossless Port-Controlled-Hamiltonian system from (2.3) 

a) If (2.3) is observable, then 0det Q  and (2.3) is controllable. 

b) Assume 0det Q , then (2.3) is observable if (2.3) is controllable. 

 

Therefore a minimal condition, for the identifiability of linear lossless PCH systems, is that 

the dynamic system (2.3) is observable. In the lossy case, the structural identifiability matrix 

has the form: 

     









 





 B
obs

T

n

obs
QTRJ

obs
TB

obs
T

obs
QTRJ

obs
TB

obs
T

ID
R

1
1

...
1             (2.18) 

where 
obs

T  is the usual observability matrix, given in the case of lossy PCH systems as (see 

appendix B.1.2, equations B.22-42, for details): 

         








 



 B

n
A

n
BABQ

obs
T

11
1...

1
1

0
1                    (2.19) 

with: 

 QRJ

def

A                                                          (2.20) 

The following generalization of proposition 2.1 may be proved (see appendix B.1.2) also in 

the lossy case. 
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Proposition 2.2 [193]: 

Consider the linear lossy PCH system (2.11), defining  QRJA  : 

a) If (2.11) is observable, then 0det Q  and the pair  BA ,  is  controllable; 

b) Assume 0det Q , then (2.11) is observable if  BA ,  is controllable. 

 

Using the result from (2.18) and (2.19), the identifiability matrix, can be also expressed as 

follows (see (B.43-49) in Apendix B.1.2): 

       























 


 B
n

AABBB
n

A
n

BABQ
ID

R
1

...
11

1...
1

1
0

1               (2.21) 

Therefore, it may be concluded, for instance, that a lossy PCH system is identifiable if it is 

observable (then according to proposition 2.2, 0det Q  and the pair  BA ,  is controllable) 

and controllable (i.e. the pair    BQRJBA ,)(,   is controllable).  

2.4.2 Direct identifiability 

The direct structural identifiability test, relies on the global or local identifiability definitions 

(see section 2.2) which states that the output equality: 

        
2

,
1

,  uyuy                                                        (2.22) 

holds if and only if 
21

   (where 
2

,
1

  are parameter vectors from  ). A linear lossless 

PCH  system may be represented either using the unstructured (usual) state-space realization: 

      
   

 










x
HC

Cy

u
HB

Bx
HA

Ax




                             (2.23) 

where 
HCHBHA

 ,,  represent the unknown parameters, included in the CBA ,,  

matrices, or using the structured realization: 

      

    

 



















x
HC

Q
T

By

u
HB

Bx
HA

JQx





                      (2.24) 

where T
JJ   is a skew-symmetric matrix and 0

T
QQ  is a positive definite matrix. In 

the case of the structured realization for PCH systems, the interconnection matrix T
JJ   is 

generally known. It reflects the interconnection relations (such as Kirchoff’s laws in electrical 

circuits or balance equations in the general case). It is very often built only with elements in 

 1,0,1   (or any other non-parametric finite set of numbers), even in the hybrid (switching) 

case where )(t
T

JJ  . Therefore, the 
HCHBHA

 ,,  parameters in the state-space 

form (2.23) are usually the elements from the Q  (and possibly B ) matrix. Parameters in the 

Q  matrix typically characterize the constitutive energy storing equations. Using the direct 

identifiability test applied for the PCH systems (2.23), we can write the following relation: 

        
2

,,
1

,,  uxfuxf                                               (2.25) 

where:  
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














y

x
def

f


 

and 
2

,
1
  represent two set of unknown parameters corresponding to two distincts sets 

of CBA ,,  matrices which characterize the PCH system. It is easily seen that the relations:  

     




















21

21

21

HCHC

HBHB

HAHA







                                                      (2.26) 

need to be satisfied to obtain structurally identifiable parameters 
HCHBHA

 ,,  (see 

Appendix B.2.1, for detailed computations). In (2.26) 
1

,
1

,
1 HCHBHA

  and 


2

,
2

,
2 HCHBHA

  represent two sets of unknown parameters included in the state-

space matrices CBA ,,  of a lossless PCH system. With the assumptions that T
JJ   is 

skew-symmetric and 0
T

QQ , the lossless system (2.24) is thus necessarily structurally 

identifiable for this test. In the lossy case, a supplementary dissipation matrix 0
T

RR  

arises from the dissipative constitutive equations. In this case (2.23) becomes:  

    

     

 



















HC
Q

T
By

u
HB

Bx
HA

QRJx





                          (2.27) 

and similar computations (see Appendix B.2.2), allow to conclude that the following relations 

need to be satisfied: 

    



















21

21

21

HCHC

HBHB

HAHA







                           (2.28) 

to prove the structural identifiability of the lossy PCH system (2.27) parameters


HCHBHA

 ,, . In (2.28) 
1

,
1

,
1 HCHBHA

  and 
2

,
2

,
2 HCHBHA

  

represent two sets of unknown parameters included in the state-space matrices CBA ,, , which 

define a lossy PCH system, for which the direct identifiability test is applied. In case we don’t 

obtain direct relations between the parameters, as in (2.26) and (2.28), we can get equality of 

repports between the unknown parameters and thus obtain unidentifiable parameters. 

2.4.3 Power series expansion identifiability 

In this paragraph we will test linear PCH systems for local strong identifiability (
0

x

identifiability). A general mathematical formulation will be found and demonstrated for the 

lossless and lossy cases, using the power series expansion approach to test the structural 

identifiability. Starting from the explicit state-space form of a PCH system (2.23), the 

following general relations: 

  )
0

(
)(

0
t

k
yt

k
a                 (2.29) 
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may be computed. Step by step computations (see appendix B.3.1, formulas (B.58-85)), in the 

lossless case, lead to: 
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for at least: nm
nn

k 



2

2

relations, corresponding to the unknown parameters. These 

relations have to be solved for the unknown parameters included in the matrices Q  (with 

2/
2









 nn  parameters) and B  (with nm  parameters). In the lossy case, the general state-

space representation of linear PCH systems is: 
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The th
k order term of the power series expansion (2.29), has then the following form: 
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Using PCH systems properties and step by step computions, similar to the ones for the 

lossless case (see appendix B.3.2, (B.86-B.101)), one obtains: 
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for at least:  

nmnnk 
2  

relations, with:  

   )(:)( JRQ
T

QRJ

def
T

resA
loss

A   

It may be noticed that, for the lossy case, the minimal number of equations to be solved using 

the power series expansion test is given by the number unknown parameters included in the 

matrices Q  (with 2/
2









 nn  parameters), R  (with 2/

2








 nn  parameters) and  B (with 

nm  parameters). If the solution of (2.30) (lossless case) or (2.33) (lossy case), for the 

unknown parameters is unique, then the PCH structure is considered to be locally strong 

identifiable or 
0

x  identifiable. Using the general results from (2.30) or (2.33), the following 

proposition can be formulated for local strong identifiability of PCH systems. 
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Proposition 2.3 

A linear Port-Controlled-Hamiltonian system is local strong identifiable or 
0

x identifiable, 

when the system (2.30) or (2.33) of equations, representing the lossless and lossy cases, has a 

unique solution of the parameters. 

This proposition represents a generalization of the results for the lossless or lossy PCH 

systems, when applying identifiability tests in a local point of interest on the system’s 

trajectory. 

2.5. Energy based identifiability 

This section investigates local and global structural identifiability of linear PCH systems from 

known informations on powers through the ports, associated to the unknown parameters to be 

identified, introducing a new concept of port-identifiability. From (2.11), the unknown 

parameters considered for PCH systems in the general lossy case, are represented by the 

positive semi-definite symmetric matrices nxn
RQ   and nxn

RR   and by the input matrix 
nxm

RB  , while the skew-symmetric interconnection matrix nxn
RJ   is generally known. 

The energy based identifiability analysis, is realized starting from the observation that the 

power energies associated to each port are related with the considered unknown parameters. 

Moreover, the relations between powers in the ports and unknown parameters have a 

triangular (partially decoupled) structure and the identifiability analysis may be realized 

separately for each port of the PCH system, as it will be shown later. The energy based 

approach proposed in this section for the identifiability analysis of port-Hamiltonian systems 

can be applied also in the nonlinear case, where the model is more complex but the 

interconnection structure is still a Dirac structure. Obviously, in the nonlinear case,  

unidentifiable parameters may also result from the non-injectivity of the interconnected 

subsystems constitutive equations. Similarly to previous sections, we assume that the PCH 

system is observable and controllable before performing this identifiability analysis. Using the 

usual input/output pairs of conjugate variables (efforts and flows), the power associated to 

each port of a PCH system may be explicitly computed. These power variables are quite often 

the variables which can be effectively measured. This justifies identifiability definitions 

specific for PCH systems. Let us consider the general lossy case: 

 
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
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Qx
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BuQxRJx
                           (2.34) 

Introducing in (2.34), the storage ( S ) and control ( C ) port variables x
S

f  , Qx
S

e  , and 

y
C

e  , one gets:  
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C
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C
Bf

S
eRJ

S
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              (2.35) 

From (2.35), we observe that 
S

e
S

f ,  and 
C

e  may be computed from the unknown 

parameters 
Q

  (storage), 
B

  (control) and 
R

  (dissipation) parameters, solving a triangular 

system of the form: 
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As previously, the interconnection matrix J  is assumed with constant known parameters 

(very often the J  interconnection matrix is considered as symplectic and built only from 1  

or 1  values). In (2.31), 
R

  includes (at most) 2)
2

( nn   unknown real parameters from the 

semi-positive definite dissipation matrix
 

R , 
Q

  the 2)
2

( nn   (at most) unknown real 

parameters from the positive definite Q  matrix and 
B

  (at most) the  nm  unknown real 

parameters included in the input matrix B . Using the definition of port conjugate variables 

(from the power pairing (1.1)), the power associated to the storage port may be written as: 
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The powers corresponding to the control and dissipative ports are: 
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      
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e
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e
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P                           (2.39) 

We will now adopt the direct identifiability test approach from section 2.4.2 and consider two 

independent sets of parameters for the PCH system in (2.34). The storage port powers can be 

written then: 

    uBxQRJ
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P
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                         (2.40) 

         uBxQRJ
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xQ
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P
22222

                         (2.41) 

Since the powers 
1S

P  and 
2S

P  represent known variables, using the direct identifiability test, 

we may assume 21 S
P

S
P  , that is: 
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The above relation can be further developed: 
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Moving the right elements to the left in (2.43), the following relation results: 
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            (2.44) 

Due to the skew-symmetry property of the interconnection matrix J , the 1
st 

term of (2.44) is 

zero and we can write then: 

       0
2211222111

 uBQBQ
T

xxQRQQRQ
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x                              (2.45) 
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Then we can write the following relations: 
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                                     (2.46) 

in order for (2.45) to hold. In order to solve (2.46), we will consider further two sets of 

unknown parameters, associated to the dissipative port: 
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Using the direct identifiability test applied for the power of the dissipative port, the following 

relation results: 
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or: 
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From (2.50), we can deduce: 

                                                  
21

RR                                                                         (2.51) 

which means that unknown parameters matrices 
2

,
1

RR  associated to the power energies of 

the dissipative port, for two independent sets of parameters are equal. In this case, it must be 

underlined, that the direct identifiability test, using the power energy associated to the 

dissipative port, takes in consideration only a subset of parameters, given by the resistive 

matrix R  and also that the test, can  be applied independently of the direct identifiability 

result obtained for the storage port or control port. Replacing the result from (2.51) in (2.46), 

we can write the following relation: 
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Multiplying further the first relation in (2.52), with the inverse 1
1


Q to the left and right, it 

results: 

      1
1212

1
11


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where 
1

Q is assumed non-singular. This relation is satisfied if and only if: 
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that is: 
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QQ                 (2.55) 

Replacing the result from (2.55) in (2.52), it results: 

      











2111

111111

BQBQ

QRQQRQ

                         (2.56) 

Multiplying the 2
nd

 equation in (2.56) with 1
1


Q  to the left it results: 
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21

BB                (2.57) 

From (2.51),(2.55) and (2.57) it results that the unknown parameters 
1

,
1

,
1

RBQ  and 

2
,

2
,

2
QRQ , corresponding to the storage port power energies from (2.40) and (2.41) are 

equal to: 
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when applying the direct identifiability test. From these results, we may conclude that 

knowing the powers associated to the storage and dissipation ports are  sufficient to analyse 

the identifiability of all the parameters included in the BRQ ,,  matrices, which define the 

general structured representation of a lossy PCH system as in (2.34). It should be remarked 

that for the lossless case, the first relation in (2.46) dissapears and it might be possible not to 

characterize all the parameters for identifiability. When measurements are available from the 

control port, the following relation between the control power and system’s parameters will 

be used (see (2.35) and (2.36)): 
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For two sets of unknown parameters, the powers associated to the control port have the 

following form: 
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Applying the direct identifiability test and assuming 
21 C

P
C

P  , we have: 
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Moving to the left the right elements, the relation becomes: 

       0
2211

 uBQBQ
T
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From (2.63), the following relation can be written, between the unknown parameters included 

in the power energies associated to the control port: 

      
2211

BQBQ                                                  (2.64) 

In this case, the direct identifiability test, using the power associated to the control port, 

applies only for a subset of parameters given by the Q,B matrices. This test might give 

unidentifiable parameters when it is applied independently from the results obtained using the 

power energy associated to the storage port and dissipation port. However, when all the power 

energies  are known, since the unknown parameters Q1,B1 and Q2,B2 are also parameters used 

in (2.58), then we may conclude from (2.64) that: 
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When the B  matrix comes from structural relations (or is perfectly known), the control port 

power may be tested independently from the storage and dissipation ports and (2.64) allows to 

analyse for identifiability only a subspace of  the storage parameters (parameters from the Q  

matrix). Another observation is that the control and dissipative power energies allow the 

identifiability analysis of  only a subset of the parameters given in the Q , B  and R  matrices, 

while the storage port power allows the analysis of all system’s parameters. In any case, it may be 

noticed from the previous developments that a PCH system can be analyzed for structural 

identifiability using only the powers associated to the ports (a single variable for each port), 

and not necessarily using the usual input/output pairs (used in the general identifiability 

definitions of section 2) which are required for classical systems. The resulting structural 

identifiability analysis may be splitted into sub-problems using the triangular form of system 

(2.36), each sub-problem corresponding to power energies for the storage, control and 

dissipation ports of the PCH system. Using these observations and the results from (2.58) and 

(2.65), we will now reformulate the definitions for global and local identifiability, specifically 

for PCH systems. Then we will define a notion of port-identifiability associated to each 

independent port.  

Proposition 2.4: Global Identifiability  

A lossy Port-Controlled-Hamiltonian system represented in state-space form (2.34), is 

said to be globally identifiable if, for any energy variables  tx  in the finite-dimensional 

state-space manifold X , any input  tu , any dissipative port effort variable  t
R

e  in the 

total Dirac structure D  and any two sets of parameter vectors 

2
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1
,

2
,

1
,

2
,

1 PRPRPCPCPSPS
  in the parameter space  , corresponding 
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hold between the power energies, if and only if 
21

,
21

,
21 PRPRPCPCPSPS

  . 

Proposition 2.5: Local Identifiability   

 

A  lossy Port-Controlled-Hamiltonian system represented in state-space form (2.34) is 

said to be locally identifiable if for any: energy variables  tx  in the finite-dimensional 

state-space manifold X , any input  tu  any dissipative port effort variable eR(t) in the 

total Dirac structure D  and any two sets of parameter vectors 

2
,

1
,

2
,

1
,

2
,

1 PRPRPCPCPSPS
  within an open neighborhood of some points 


PS

 , 
PC

 , 
PR

  in the parameter space  , corresponding respectively to the storage, 

control and dissipative ports, the following relations: 
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hold between the power energies, if and only if
 21

,
21

,
21 PRPRPCPCPSPS

  . 

 

In the above two definitions, 
2

,
1

,
2

,
1 PCPCPSPS

   and 
2

,
1 PRPR
  represent two sets 

of unknown parameter vectors, from the parameter space  , corresponding to the storage 

power port S
P , control-port power port 

C
P  and dissipative-port power port R

P , respectively 

given in (2.37), (2.38) and (2.39). Starting from the above definitions,  more appropriate 

definitions can be formulated only for a particular port, corresponding to a Port-Hamiltonian 

system, using the power energy formulation, introducing in this way, a new concept of port-

identifiability.  

Definition 2.1: Global port-identifiability 

 

Let consider the port T of a lossy Port-Controlled-Hamiltonian system represented in state-

space form (2.34). Let define ),(:
~

ux
T

x   when T  is a storage or control port or 
R

e
T

x :
~  

when T is a dissipation port. Then, the port T is said to be globally identifiable, if for any 
T

x
~  

any two sets of parameter vectors 
2

,
1 TT
 in the parameter space   associated to port T , 

the following relation    
2

,
~

1
,

~

TT
x

T
P

TT
x

T
P    holds between the power energies if and 

only if 21 TT
  .  

Definition 2.2: Local port-identifiability 

 

The port T  of a lossy Port-Controlled-Hamiltonian system represented in state-space form in (2.34), 

is said to be locally identifiable, if for any 
T

x
~

 (as in definition 2.1) and any 
2

,
1 TT
  within an open 

neighborhood of some point 
T

  in the parameter space   associated to port T , 
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TT
x

T
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TT
x

T
P    holds between the power energies, if and only if 

21 TT
  . 

 

In the above two definitions, depending on the selected port for identifiability analysis, 
T

x
~  

represents the pair  ux ,  corresponding to the parameters included in the power of the storage 

port PS (defined in (2.37)), control port PC (defined in (2.38)) or alternatively 
R

e
T

x 
~  stands 

for the effort associated to the dissipative port, PR (defined in (2.39)). In any case, 
2

,
1 TT
  

represents two sets of unknown parameter vectors from the parameter space  , which 

describe the chosen PCH system port’s power 
T

P . When compared to the previously selected 

structural identifiability tests for PCH systems, the power based energy formulation has the 

advantage of splitting the whole structural identifiability analysis into sub-parts, 
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corresponding to the system’s ports, using the power of these ports as known variables. In this 

way, it is possible to observe that a sub-set of parameters, corresponding to one of the 

system’s port are identifiable, without performing the whole identifiability analysis. 

 

2.6 Structural identifiability examples 

This section presents some structural identifiability analysis examples, where the results from 

sections 2.3, 2.4 and 2.5 are applied to PCH systems, using the observability/controllability 

definitions, direct test, power series expansion or the new propositions and definitions based 

on power energies, presented in section 2.5. The systems considered as examples are a 

lossless LC circuit, a lossy capacitor microphone circuit or a DC motor (see section 1.3.7). 

2.6.1 Observability and Controllability analysis  

In the case of the lossless PCH systems represented by an LC circuit, it can be proved that the 

determinant of the identifiability matrix 
ID

R from (2.17), has the following form (see detailed 

computations in Appendix C.1.1): 

     

2
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R                                                (2.66)  

The above determinant is different from zero ( 0det 
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R ), when: 
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When (2.66) is satisfied, the identifiability matrix ID
R is full rank and the LC circuit model is 

observable and controllable, from which the LC circuit system is structurally identifiable in 

any minimal realization form. In the case of the lossy capacitor microphone circuit, it can be 

proved that the system is not observable (see Appendix C.1.2 formulas (C.6-8)), because the 

observable transformation matrices 
2

,
1 obs

T
obs

T corresponding to the inputs 
2

,
1

BB  are rank 

defficient. Due to the fact that the capacitor microphone circuit is not observable, it is not 

structurally identifiable in a minimal realization form. In this particular case, before applying 

some estimation methods for the parameters, it is necessary to have a closer view on the 

model structure to obtain an observable/controllable dynamic system or to propose or apply 

other identifiability analysis techniques. Therefore the DC motor example will be considered 

as an illustration for the lossy case. Indeed it satisfies the observability/controllability 

conditions assumed initially for the structural identifiability analysis. For simplicity of the 

computations we will assume that the interconnection matrix J  contains only +1/-1 values, 

which means that the gyrator transformation coefficient is considered to be 1K  for the DC 

motor. In this case, it can be proved that the determinant of the identifiability matrix from 

(2.21), has the following value: 

E
JR

ID
R

3

1
det                                                   (2.68) 
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The necessary conditions for this determinant to be different from zero are: 
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                                                            (2.69) 

A complete proof of the result (2.68) can be found in Appendix C.1.2, formulas (C.9-13). 

2.6.2 Direct identifiability 

As was explained in section 2.4, this identifiability analysis assumes that the necessary 

conditions of observability/controllability are satisfied. The direct test examples presented 

below are performed using the global identifiability definition presented in section 2.2.  

Using the direct identifiability analysis in the case of  a lossless PCH system, represented by 

an LC circuit (see section 1.3.7), the following relations can be written: 
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considering two sets of unknown parameters 
11

,
21

,
11

CLL  and 
12

,
22

,
12

CLL , that 

describe the dynamic system.  From simple computations, the following result is obtained: 
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                                          (2.71) 

from which, it can be concluded that the LC circuit  is global identifiable,  and the parameters 


2

,
1

, LLC  identifiable for this identifiability test. A complete proof of the results (2.71) is 

given in Appendix C.2.1 (formulas (C.14-16)). Due to the fact that the capacitor microphone 

circuit is an unobservable system and the proposed initial conditions 

(observability/controllability) for the identifiability analysis using this test are not satisfied, 

the analysis is not performed further for this example. For the lossy case, we shall rather 

consider the DC motor example, which satisfies the observability/controllability conditions. 

For this example, we can write the following relations: 
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                                                                                                                     (2.72) 

where: 


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Using standard algebraic computations, we  conclude that: 
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The DC motor model is therefore globally identifiable for the parameters b
E

JLR ,,, . A 

complete proof of this results, can be found in Appendix C.2 between (C.17) and (C.21). The 

above examples, can be also realized using the local identifiability definition from section 2.2 

for the identifiability analysis. 

2.6.3 Power series expansion identifiability 

As was already stated in the previous sections, a necessary condition for the identifiability 

analysis using this test, is the observability/controllability condition. In order to test the local 

strong identifiability of a lossless PCH system represented by a LC circuit,  using the power 

series expansion, a simple example is considered, with the input  tu and output data  ty , 

given as follows: 

      
 

 


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                                                (2.74) 

A time 1
0
t , a state-space vector    Tttttx  , with the value    Ttx 111

0
  are 

considered for testing. Using (2.30), the power series expansion elements, are computed for 

the first eight elements, deducing the following relation: 

          0
0

)(

0
 t

k
yt

k
a                                     (2.75) 

between the k
th

 order derivate of the output  
0

ty  and the k
th

 order element of the power series 

expansion  
0

t
k

a , when 1k . This result is due to the fact that the product between Q
T

B

and the sum of the elements from the paranthesis, of the form    
0

1
0

tBu
k

Atx
k

A


 , for the 

k
th

 order element  
0

t
k

a , is always zero for the LC circuit, when 1k . The complete proof of 

the result from (2.75) is given in Appendix C.3 between (C.22) and (C.34) formulas. From the 

above results, it can be concluded that the solution of the unknown parameters for the LC 

circuit: 
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is unique and the system is said to be local strong identifiable or 
0

x identifiable. For the case 

of the capacitor microphone circuit, due to the fact that the initial conditions of 

observability/controllability are not satisfied, the local strong identifiability test is not further 

performed.  

2.6.4 Energy based identifiability 

 

As for the previous tests, the necessary conditions to be satisfied before the energy based 

identifiability analysis is performed, are the observability/controllability conditions. The 

examples considered below for the power based identifiability analysis have been investigated 

considering both the global identifiability of the PCH system or global port-identifiability, 

using the power energy at some specific port. In the case of the lossless LC circuit, the 

following relations can be written: 
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using relation (2.46) for the power energy associated to the storage port, where

 TBB 010
21
 . In the above relations, 

21
,

11
,

11
LLC  and 

22
,

12
,

12
LLC  

represent two sets of unknown of parameters, which describe the LC circuit. Using (2.77), it 

results: 
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LL                                        (2.78) 

In this case, we cannot give any information on the identifiability of the parameters 
2

, LC  and 

thus the LC circuit cannot be said to be global port identifiable for the storage port, with 

2
,,

1
LCL  as unknown parameters.  In the case of the control port, the following relation: 
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may be written relating two sets of unknown parameters 
21

,
11

,
11

LLC  and 


22

,
12

,
12

LLC , by assuming 
21 C

P
C

P   (see relation (2.64)). Assuming BBB 
21

, 

since B  doesn’t include any unknown parameters in this example, it results: 
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and 
1211

LL  . It results that the LC circuit cannot be said to be global  port identifiable for 

the control port, as only the 
1

L  unknown parameter can be analysed. In this case, we 

observe that the parameters 
2

, LC  from (2.79) cannot be tested for identifiability using 

the control port power energy, as the constant B  matrix includes null elements. Since the B  

matrix is structural in this example (i.e. does not include any numerical parameters), the 

identifiability analysis for the control port may be performed  independently from the results 

obtained for the storage port, with 
1

L  as unknown parameter. From (2.78) and (2.80),  it 

results that the LC circuit, is not global identifiable, using the identifiability proposition 

formulated in section 2.5,  as only the 
1

L parameter is found to be identifiable and   
2

, LC

parameters are not. In the case of the capacitor microphone circuit, due to the fact that the 

system doesn’t satisfy the observability/controllability conditions, the identifiability  analysis 

is not further performed. For the lossy DC motor example, using the power energy 

identifiability formulation from section 2.5, the following relations can be written: 
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for the storage port (using relation (2.46)), by applying the direct identifiability test for two 

sets 
11

,
11

,
11

,
11

bR
E

JL  and 
12

,
12

,
12

,
12

bR
E

JL  of unknown parameters. From 

(2.81) it results the following relation: 
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between the unknown parameters 
12

,
11

LL and 
12

,
11

RR . At the next state, we apply the 

identifiability analysis of the dissipative port power energy and we can write: 
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using (2.51), for two sets 
11

,
11

bR  and 
12

,
12

bR  of unknown parameters. From 

(2.83) it results: 
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The identifiability analysis using the dissipative port power energy can be applied 

independently from the analysis performed for the storage port or control port, as was also 

explained in section 2.5. From (2.84) it results that the DC motor model, is global port 

identifiable for the dissipative port power energy associated to the unknown parameters  

bR , .Using (2.82),(2.84) in (2.81), it results: 
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when the storage port power energies satisfy: 
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for two sets 
11

,
11

,
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,
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bR
E

JL  and 
12

,
12

,
12

,
12

bR
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JL  of unknown parameters. It 

results then, that the DC motor PCH model is global port identifiable for the storage port. For 

the control port power energy, we can write the following relations (using (2.64)): 
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for two sets of unknown parameters 
11

,
11 E

JL  and 
12

,
12 E

JL  associated to the 

control port power energy. Equation (2.87) is equivalent to: 
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or 
1211

LL  . Due to the fact that B  is non-parametric and with structurally zero elements, 

the parameter 
E

J  cannot be analysed for identifiability using only the control port power 

energy. Again, because the B  matrix is non-parametric, the identifiability analysis of the 

L  parameter may be performed independently from the storage port and dissipative port 

identifiability analysis results. From (2.88) it results that the DC motor PCH model is not 

global port identifiable for the control port power energy, as only the parameter L results 

as identifiable using this approach. From (2.84), (2.85) and (2.88), it results that the DC motor 

PCH system is global identifiable using the power energy identifiability formulation from 

section 2.5. In consequence the parameters bR
E

JL ,,,  are identifiable using the power 

based propositions and definitions from section 2.5. The previous examples can be also 

performed for the local identifiability of the PCH system or a specified selected port. 
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Conclusions 

This chapter proposed an analysis of the structural identifiability of linear PCH systems in 

connection with the known classical theory. The appropriate structural identifiability tests, 

selected for the study of PCH systems, were the following ones: the 

observability/controlability based test (which give necessary conditions for a system to be 

identifiable in a minimal realization form), the direct test and the power series expansion test. 

Each of these tests were applied to linear PCH systems (in the lossless and lossy cases) and 

corresponding general characterizations for the structural identifiability were found. Section 

2.5 of the chapter, introduced new propositions for the global and local identifiability of PCH 

systems, using the power energies associated to the ports, as each power port energy 

corresponds to a set of unknown parameters. A new concept, of port-identifiability was 

proposed, which is more appropriate to PCH systems power energy form, making an explicit 

use of their power-conserving Dirac interconnection structure. This new port-identifiability 

concept, gives the opportunity to make identifiability analysis of PCH systems only for a 

subset of the parameters. The identifiability analysis tests and definitions, were applied to 

some illustrative examples: a linear lossless PCH system (a LC circuit) and both a capacitor 

microphone circuit and a DC motor for the lossy case. The introduction of new propositions 

and definitions for the identifiability analysis of PCH systems, using the power port energies, 

permits also future work on estimation algorithms using this concepts. An important 

advantage of the power port energy approach, it was proved to be the possibility to split the 

identifiability analysis on different ports, representing a subset of the parameters by 

introducing the port-identifiability concept. Taken together the power energies corresponding 

to the ports can give informations on the global/local identifiability of all system’s parameters 

contained in the BQ , or R matrices, where the analysis can be performed in a triangular 

fashion (as explained in 2.36). Also it was proved that using this approach, some parameters 

cannot be analysed for identifiability (see the LC circuit example) since the input matrix ( B ) 

is structural with null elements. An open topic of research starting from the results of this 

chapter, is the selection, development and verification of practical identifiability methods, 

which are more suitable to be used for PCH systems, in the presence of a perturbation model. 
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3. Practical Identifiability of Port-Controlled-Hamiltonian systems 

 

This chapter aims to propose a practical identifiability methodology for Port-Controlled- 

Hamiltonian systems starting from the classical state-space theory, which makes use of the 

observability and controllability concepts. It is proved the conservation of the basic 

properties for Port-Controlled-Hamiltonian systems, when  converted to the observable 

canonical form, in the presence of an external perturbation model, in the lossless and lossy 

cases. The perturbation model for Port-Controlled-Hamiltonian systems is defined by 

introducing a new input/output pair for the interaction port. It is proposed and demonstrated 

a methodology for converting  the Port-Controlled-Hamiltonian systems into an equivalent 

observable canonical form, by applying a similarity transformation matrix to the system. The 

last two sub-sections, are dedicated to the formulation of a general context for the practical 

identifiability analysis of Port-Controlled-Hamiltonian systems, using the observability and 

controllability concepts, a definition useful for observability and controllability and three 

examples with the proposed methodology.  As examples are considered a lossless Port-

Controlled-Hamiltonian system, represented by an LC circuit and  two lossy Port-Controlled-

Hamiltonian systems, represented by a capacitor microphone circuit and a DC motor. 

3.1 Introduction 

 

While structural identifiability makes a theoretical analysis of a system, in order to obtain 

unique values of the parameters after the model structure parameters have been selected, the 

practical identifiability takes in consideration also the experimental conditions, with the 

quality and quantity of measurements [119-145].  

Practical identifiability is performed after  the structural identifiability analysis  gives a 

theoretically identifiable model [45]. In the scientific literature [119-162], several practical 

identifiability analysis methods have been proposed and studied, from which some of the 

most relevant are: methods for the analysis of the sensitivity functions, Monte Carlo 

simulation method, correlation matrix method, Weijers and Vanrolleghem method, control 

based methodologies or others. Practical identifiability analysis techniques, have been applied 

for diverse kinds of linear or nonlinear models of interest, from which some are [119-145]: 

HIV dynamic models, bilogical reaction networks models, metabolic network models, acid 

acetic fermentation models, biochemical models of the river, photodynamic therapy models, 

ice-cream cristalization models or others. In this chapter the practical identifiability of Port-

Hamiltonian systems is adressed, using the observability and controllability concepts known 

in classical system theory [2,4].  A perturbation model specific for this systems is proposed 

using the interaction port of Port-Hamiltonian systems, which is used later to find a general 

formulation of the practical identifiability methodology. Section 3.2 demonstrates the 

conservation of the Port-Controlled-Hamiltonian system properties, when converted to the 

observable canonical form in the presence of a perturbation model, for the lossless and lossy 

cases and defines the perturbation model by means of the interaction port. 

Section 3.3 presents a generalization for the conversion of the observable canonical form of 

Port-Hamiltonian systems into an equivalent form, used for the practical identifiability 
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analysis. Section 3.4 demonstrates and formulates some general results for the proposed 

methodology for Port-Hamiltonian systems, using the classical theoretical notions of 

observability and controllability, for the lossless and lossy cases. Section 3.5 presents some 

examples for the practical identifiability analysis of Port-Hamiltonian systems, using the 

general results presented in the previous sections, for a lossless Port--Hamiltonian system 

represented by an LC circuit and two lossy Port-Hamiltonian systems given by a capacitor 

microphone circuit and DC motor. 

 

3.2 Observable canonical form of Port-Hamiltonian systems 

In this section, it is generally proved the conservation of the basic properties of Port-

Hamiltonian systems, when converted to the observable canonical form, in the presence of a 

perturbation model, in the lossless and lossy case. The perturbation model is defined with the 

help of the interaction port of the system with the environment. 

3.2.1 Lossless PCH systems 

A lossless Port-Hamiltonian system represented in the explicit form, in the presence of a 

perturbation model, can be written as follows: 

     




















Qx
T

Kz

Qx
T

KQx
T

By

KeBuJQxx

                                 (3.1) 

In this  representation of lossless Port-Hamiltonian systems, ),( yu  represents the input-output 

pair, corresponding to the control port C , while ),( ze  represents the  input-output pair, 

corresponding to the interaction port I , necessary for the perturbation model. The 

perturbation model  tKe  proposed in (3.1), for the system states represents the fact that the 

states are perturbed by interaction with the environment. The output z of the interaction port 

I , is added over the system outputs ( y ) and is associated to the same perturbation at the 

interaction port. In (3.1), nxm
RK   represents the perturbation model matrix and  te  

represents a white noise sequence, acting over the system states. The state-space 

representation from (3.1), can be equivalently written: 

 














Exz

xECy

KeBuJQxx

                            (3.2) 

where, nxm
RB  , pxn

RQ
T

BC  and mxn
RQ

T
KE  . In order to convert the state-

space representation from (3.2), to the observable canonical form, the observable 

transformation matrix 
obs

T  must be applied to the state-space system as follows: 

     x
obs

T
obs

x         (3.3) 

where 
obs

T  has  the following structure: 
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 

  




































1

...

n
AEC

AEC

EC

obs
T       (3.4) 

Remark: The observable canonical form applies only to SISO PCH systems. 

Using (3.3), (3.2) can be expressed as follows: 

    



















 











obs
x

obs
ET

obs
CTy

KeBu
obs

x
obs

JQT
obs

x
obs

T

11

11 

                           (3.5) 

Multiplying with 
obs

T  to the left in (3.5), it results: 

    



















 










obs
x

obs
ET

obs
CTy

Ke
obs

TBu
obs

T
obs

x
obs

JQT
obs

T
obs

x

11

1

                    (3.6) 

In order to prove that the state-space representation (3.6) still has an explicit Port- 

Hamiltonian form, we write it equivalently as: 

    
 










obs
x

obs
E

obs
Cy

e
obs

Ku
obs

B
obs

x
obs

Q
obs

J
obs

x

                          (3.7) 

Further we introduce a proposition for the observable canonical representation of lossless 

PCH systems, which is proved to be generally valable. 

 

Proposition 3.1 

 

A lossless Port-Controlled-Hamiltonian system (3.1), can be equivalently transformed to the 

observable canonical form (3.7), when the following relations hold: 

     



































1

1

0
1

obs
QT

T
K

obs
Q

T
obs

K
obs

E

obs
QT

T
B

obs
Q

T
obs

B
obs

C

obs
QT

T
obs

T
T
obs

Q
obs

Q

T
obs

JT
obs

T
T
obs

J
obs

J

 

In the following lines we will give a complete proof of Proposition 3.1. 

 

Proof: 

Using (3.1), we can write the following relations: 

     


























obs
E

obs
Q

T
obs

K
obs

QT
T

K

obs
C

obs
Q

T
obs

B
obs

QT
T

B

obs
Q

obs
J

obs
JQT

obs
T

1

1

1

                     (3.8) 

Replacing B
obs

T
obs

B   and K
obs

T
obs

E    from (3.6) in (3.8), the following relations 

result: 
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      

 

























obs
Q

T
K

obs
T

obs
QT

T
K

obs
Q

T
B

obs
T

obs
QT

T
B

obs
Q

obs
J

obs
JQT

obs
T

1

1

1

               (3.9) 

Using the matrix transpose properties, the 2
nd

 and 3
rd

 relations from (3.9) can be expressed as: 

     














obs
Q

T
obs

T
T

K
obs

QT
T

K

obs
Q

T
obs

T
T

B
obs

QT
T

B

1

1

              (3.10) 

Multiplying (3.10), to the left with the matrix pseudo-inverses T
B

T
  and T

K
T
 of B and K , 

the following relations result: 

     














obs
Q

T
obs

T
obs

QT

obs
Q

T
obs

T
obs

QT

1

1

               (3.11) 

In (3.11) it can be observed, that both relations can be multiplied with T
obs

T
  to the left, in 

which case the following relation result: 

1


obs
QT

T
obs

T
obs

Q                                      (3.12) 

Replacing the value of 
obs

Q  from (3.12) in (3.9), the following relation results: 

11 



obs

QT
T

obs
T

obs
J

obs
JQT

obs
T              (3.13) 

(3.13) can be multiplied to the right with 
obs

T , 1
Q  and T

obs
T , in which case the following 

relation results for 
obs

J : 

     T
obs

JT
obs

T
obs

J                            (3.14) 

For the next step T
obs

Q  is computed  using (3.12), in order to prove that 0
T
obs

Q
obs

Q , 

and the following relations: 

   11 






 

















obs
T

T
Q

T
obs

T

T

Q
T

obs
T

T
obs

T

T

obs
QT

T
obs

T
T
obs

Q             (3.15) 

can be written for T
obs

Q using the matrix transpose properties. Using the property T
QQ   of a 

PCH system, (3.15) becomes: 

     1


obs
QT

T
obs

T
T
obs

Q                (3.16) 

From (3.12) and (3.16), it results: 

 1


obs
QT

T
obs

T
T
obs

Q
obs

Q                               (3.17) 

The matrix Q  is semi-positive definite ( 0
T

QQ ), in which case the following relation: 

      0Qz
T

z                                (3.18) 

is always satisfied for any real vector n
Rz  . Using (3.17) and (3.18),  it can be observed that 

obs
Q , is composed by positive semi-definite elements,  given by the matrix 1

obs
T , in which 

case we can write: 
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      0
T
obs

Q
obs

Q                               (3.19) 

Computing T
obs

J  using (3.14), in order to prove that T
obs

J
obs

J  , the following relation 

can be written: 

      TJ
obs

T
obs

T

T
T
obs

JT
obs

T
T
obs

J  






             (3.20) 

using the matrix transpose properties. (3.20) can be further expressed as: 

     T
obs

T
T

J
obs

T
T
obs

J                 (3.21) 

Using the skew-symmetry property ( T
JJ  ) of a Port-Hamiltonian system, (3.21) becomes: 

      T
obs

JT
obs

T
T
obs

J                           (3.22) 

From (3.14) and (3.22), it results that: 

 T
obs

JT
obs

T
T
obs

J
obs

J                (3.23) 

Using (3.6), (3.7) and (3.17), the following relation: 

     
obs

Q
T
obs

B
obs

C                 (3.24) 

can be equivalently written: 

       1


obs
QT

T
obs

T
T

B
obs

T
obs

C                              (3.25) 

Using matrix transpose properties, (3.25) can be expressed as follows: 

     1


obs
QT

T
obs

T
T
obs

T
T

B
obs

C               (3.26) 

Performing the simplifications, (3.26) becomes: 

1


obs
QT

T
B

obs
C                (3.27) 

Using (3.6), (3.7) and (3.27), it results: 

     
obs

Q
T
obs

B
obs

CT
obs

C 



1               (3.28) 

Using (3.6),(3.7) and (3.17),  the following relation: 

     
obs

Q
T
obs

K
obs

E                            (3.29) 

can be expressed as follows: 

      1


obs
QT

T
obs

T
T

K
obs

T
obs

E               (3.30) 

Using the matrix transpose proprieties, (3.30) becomes: 

    1


obs
QT

T
obs

T
T
obs

T
T

K
obs

E                           (3.31) 

Performing the simplifications, (3.31) becomes:   

     1


obs
QT

T
K

obs
E                (3.32) 

From (3.6),(3.7) and (3.32), it results: 

    1


obs
QT

T
K

obs
Q

T
obs

K
obs

E               (3.33) 

From (3.12),(3.15),(3.14),(3.19), (3.23), (3.28) and (3.33),  it results that the observable 

canonical form state-space representation from (3.6) of lossless PCH systems, conserves the 

basic properties and thus the proof of Proposition 3.1 is complete. More generally, the 

observable canonical form of lossless PCH system in the presence of a perturbation model is: 
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 










obs
x

obs
E

obs
Cy

e
obs

Ku
obs

B
obs

x
obs

Q
obs

J
obs

x

             (3.34) 

where the relations from Proposition 3.1 were proved to hold. Using  Proposition 3.1 we can 

write:   







































1

1

1

obs
QT

T
K

obs
E

obs
QT

T
B

obs
C

K
obs

T
obs

K

B
obs

T
obs

B

obs
JQT

obs
T

obs
Q

obs
J

obs
A

                        (3.35) 

where lxn
R

obs
E

nxm
R

obs
K

lxn
R

obs
C

nxm
R

obs
B

nxn
R

obs
A  ,,,,  represent the 

system matrices in the observable canonical form of PCH systems. 

 

3.2.2 Lossy PCH systems 

A general lossy PCH system, in state-space form representation, can be written as follows: 




















Qx
T

Kz

Qx
T

KQx
T

By

KeBuQxRJx )(

                         (3.36) 

Similarly with the lossless case,  ze ,  represents an input-output pair corresponding to the 

interaction port I , which is used for the perturbation model over the states and outputs.  

 

Remark: The perturbation model is introduced by means of the interaction port I , due to the 

reason that the PCH system is perturbed when interacting with the external environment. 

Applying the perturbation model (as it is usually done in the classic case) might not preserve 

the power balance of the system, hence its Port Hamiltonian structure. 

The following definition for the perturbation model is proposed both for the lossless and lossy 

cases. 

 

Definition 3.1 

 

The perturbation model of a lossy Port-Controlled-Hamiltonian system (3.36), is defined by  

an input-output pair  ze , , corresponding to the interaction port I , where:  

i) the input  te , represents a white-noise sequence of perturbation, corresponding to the 

system states perturbation model nxm
RK  ;  

ii) the output  tz , represents the output perturbation, acting over the system output  ty . 
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Similarly with the lossless case, applying the state-space transformation from (3.3) to a lossy 

PCH system from (3.36), in order to convert it to the observable canonical form, the following 

relations result: 

 
































obs
x

obs
ETz

obs
x

obs
ET

obs
x

obs
CTy

KeBu
obs

x
obs

QTRJ
obs

x
obs

T

1

11

11 

              (3.37) 

with 
obs

T  the observable canonical form transformation matrix. An equivalent representation 

of (3.37), can be obtained by multiplying the 1
st
 relation with 

obs
T  to the left, in which case it 

results: 

 



















 










obs
x

obs
ET

obs
CTy

Ke
obs

TBu
obs

T
obs

x
obs

QTRJ
obs

T
obs

x

11

1

         (3.38) 

In order to prove that the state-space representation (3.38) has the usual Port Hamiltonian 

form, we write it equivalently as: 

 

 










obs
x

obs
E

obs
Cy

e
obs

Ku
obs

B
obs

x
obs

Q
obs

R
obs

J
obs

x

             (3.39) 

and we introduce a proposition as for the lossless case, which is proved later. 

 

Proposition 3.2 

 

A lossy Port-Controlled-Hamiltonian system (3.36), can be equivalently transformed to the 

observable canonical form (3.39), when the following relations hold: 

     









































1

1

0
1

obs
QT

T
K

obs
Q

T
obs

K
obs

E

obs
QT

T
B

obs
Q

T
obs

B
obs

C

T
obs

RT
obs

T
T
obs

R
obs

R

obs
QT

T
obs

T
T
obs

Q
obs

Q

T
obs

JT
obs

T
T
obs

J
obs

J

 

 

Proof: 

 

Using (3.38) and (3.39), the following two relations: 

 

 













obs
Q

T
K

obs
T

obs
QT

T
K

obs
Q

T
B

obs
T

obs
QT

T
B

1

1

              (3.40) 

result. By means of matrix transpose properties, (3.40) can be further written as: 
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













obs
Q

T
obs

T
T

K
obs

QT
T

K

obs
Q

T
obs

T
T

B
obs

QT
T

B

1

1

              (3.41) 

Putting in corespondence the pseudo-inverse matrix of B as mxn
R

B
T  and of K as 

mxn
R

K
T  , we can write further: 

    














obs
Q

T
obs

T
obs

QT

obs
Q

T
obs

T
obs

QT

1

1

                (3.42) 

Applying also the inverse of 
obs

T , results in: 

     
obs

Q
obs

QT
T

obs
T 

 1                (3.43) 

For the next step, we prove the basic PCH systems property 0
T
obs

Q
obs

Q . Using (3.43), 

T
obs

Q can be written as: 

     
T

obs
QT

T
obs

T
T
obs

Q 






 


1               (3.44) 

Equivalently we can write (3.44) as follows: 

     1



 









obs
T

T
Q

T
obs

T

T

Q
T

obs
T

T
obs

T
T
obs

Q             (3.45)  

Using the PCH systems property T
QQ  , (3.45) can be further expressed as: 

     1


obs
QT

T
obs

T
T
obs

Q                (3.46) 

From (3.43) and (3.46), the following relation is obvious: 

      1


obs
QT

T
obs

T
T
obs

Q
obs

Q              (3.47) 

As  the matrix Q  is semi-positive definite, the following relation hold: 

      0 zQ
T

z                           (3.48) 

for every real vector n
Rz  . From (3.47), 

obs
Q  is formed by positive semi-definite elements, 

from the columns of 1
obs

T  , in which case 
obs

Q  is then positive semi-definite and the 

following relation: 

     0
T
obs

Q
obs

Q                (3.49) 

holds. For the next step, the properties T
obs

J
obs

J   and 0
T
obs

R
obs

R , which define a 

PCH system are proved. Using (3.38), (3.39) and (3.47), the following relation can be written: 

        11 





obs
QT

T
obs

T
obs

R
obs

J
obs

QTRJ
obs

T             (3.50) 

to determine 
obs

J and 
obs

R .Multiplying to the right with 
obs

T , 1
Q  and T

obs
T , (3.50) 

becomes: 

       
obs

R
obs

J
T
obs

TRJ
obs

T                           (3.51) 

Developing further the left part of (3.51), it results: 
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obs

R
obs

J
T
obs

RT
obs

T
T
obs

JT
obs

T               (3.52) 

From (3.52), it can be observed that the equality holds when: 
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Using the 1
st
  relation from (3.53), T

obs
J  can be computed as follows: 
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T
obs

JT
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Using the matrix transpose properties, (3.54) can be also expressed as: 
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J
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T
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Using the skew-symmetry property T
JJ   of a PCH system, (3.55) can be also written as: 
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T
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From (3.53) and (3.56), the following relation results:  

T
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T
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J
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Using (3.53), T
obs

R  can be calculated as follows: 
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T
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and becomes further: 
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R
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T
T
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using the matrix transpose properties. Using the property ( T
RR  ) of a PCH system, (3.59) 

can be expressed as: 
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T
T
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From (3.53) and (3.60), it results that: 
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T
T
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R
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The matrix R  is semi-positive definite ( 0R ), in which case the following relation can be 

written: 

     0Rz
T

z                 (3.62) 

for any real vector n
Rz  . Using (3.61) and (3.62), 

obs
R  is formed by positive semi-definite 

elements, given by the columns of  T
obs

T . In this case, it can be concluded that 
obs

R is also 

positive semi-definite and the following relation: 
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T
obs

R
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is satisfied. For the next step it is necessary to prove that 
obs

Q
T
obs

B
obs

C  , for the state-

space system from (3.38). Replacing 
obs

B  from (3.38) and 
obs

Q  from (3.47), the following 

relation results: 
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

obs
QT

T
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B
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T
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Using the matrix transpose properties, (3.64) can be written as: 
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B
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Performing the possible simplifications, (3.65) becomes: 

     1


obs
QT

T
B

obs
C                           (3.66) 

Using (3.38), (3.39) and (3.66), the following relation results: 
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In order to prove that 
obs

Q
T
obs

K
obs

E  ,
obs

K  is replaced from (3.38) and 
obs

Q  from 

(3.47), in which case the  following relation for 
obs

E : 
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is written. Using  the matrix transpose properties, (3.68) can be expressed as: 
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Performing the simplifications, (3.69) becomes: 
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Using (3.38),(3.39) and (3.70), the following relation: 
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holds. From (3.38), (3.39), (3.47), (3.49), (3.53), (3.57), (3.61), (3.63),(3.67) and (3.71) it 

results that the observable canonical form representation of the lossy PCH system from (3.38), 

conserves the basic properties and thus the proof of Proposition 3.2 is completed. We can 

write the following general form: 
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for which the following relations hold: 
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3.3 Equivalent representation of the observable canonical form 

This section presents a technique of conversion into an equivalent observable canonical form 

of lossless and lossy PCH systems. This  canonical form representation is necessary for 

introducing a general rule for the practical identifiability analysis of Port-Hamiltonian systems 

in section 3.4. This way we introduce the following proposition: 

 

Proposition 3.3 

 

A Port-Controlled-Hamiltonian system in the observable canonical form for the lossless 

(3.34) or lossy (3.72) cases, can be equivalently transformed to: 
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Proof:      

 

The proof of this proposition is presented further step by step. The Port-Hamiltonian systems 

represented in state-space form (3.34), for the lossless case, or (3.39), for the lossy case, can 

be also written as follows: 
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That is the usual (
obs

K
obs

C
obs

B
obs

A ,,, ) observable canonical state space form with: 
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     Tnbbb
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  
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From (3.75), the following relations result: 
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Replacing 
1

x  with y  in (3.76), we can write: 
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Using the last two relations from (3.77), it results: 
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The transfer function from (3.78), can be splitted in two separate transfer functions 

corresponding to the plant and perturbation model, as follows: )(
1

sTF  represents the transfer 

function acting between the input  sU  and output )( sY of the system, while )(
2

sTF  the 

transfer function acting between the perturbation and the output )( sY of the system. 

Converting (3.78) to the continuous form, using the Laplace transform, we can write: 
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Equivalently  (3.79) can be written as: 
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Using (3.80), the plant transfer function  sTF
1

, has the form: 
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An equivalent expression for (3.81) is: 
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In (3.82) 
k1

  is defined as follows: 
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In (3.83) if 0j ,  1
0
a . The transfer function from (3.82), can be also written as: 
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Taking the common factor at the numerator and denominator n
s  in (3.84), the transfer 

function becomes: 
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In a similar way with the transfer function of the plant model from (3.85), the transfer 

function of the perturbation model is: 
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where the term
k2

 is defined similarly with 
k1

  as: 
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Using (3.85) and (3.86), (3.80) becomes: 

  


























































n

k

k
s

k
sE

n

k

k
s

k
sU

n

k
kn

a
nk

ssY

1
2

)(

1
1

)(

0

)(              (3.88) 

(3.88) can be equivalently written as follows: 
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
























































n

k

k
s

k
sE

n

k

k
s

k
sUsa

n
a

n
sna

n
ssY

1
2

)(

1
1

)(1
1

1
...

1
1

)(          (3.89) 

From (3.89), the value of  the output )( sY  becomes: 

     







n

k

sY
k

asE
k

sU
k

k
ssY

1

)()(
2

)(
1

)(              (3.90) 

Making the following notations [163,164]: 

    

   

 























































sX

def

sY

sYnasE
n

sU
n

def

nsx

s
n

XsY
n

asU
n

def

n
sx

sXsYasEsU

def

sx

sXsYasEsU

def

sx

1
)(

)()(
,2

)(
,1

)(
1

)(
1

)(
1,11

...

)(
3222

)(
2,12

)(
2

)(
1

)(
21

)(
1,11









            (3.91) 

an equivalent state-space representation of (3.74) is: 

    







































e
n

u
n

xnanx

e
n

u
nnxx

n
a

n
x

euxxax

euxxax

,2,11

1,21,1111

...

22123122

21112111

















                        (3.92) 

(3.92) can be equivalently written as: 

   

 

e

xy

n

n

u

n

n

nx

n
x

x

x

na

n
a

a

a

x





































































































































































































1
0...001

2

12

...

22

21

,1

11

...

12

11

1

...

2

1

0...00

1...00
1

...............

0...10
2

0...01
1

















            (3.93) 

We introduce the following notations for the equivalent state-space representation of the 

observable canonical form: 

 

 0......01

2

1,2

...

22

21

,

1

11

...

12

11

,

0...00

1...00
1

...............

0...10
2

0...01
1
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C

n

n

def

obsT
K

n

n
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B
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n
a

a

a
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obsT
A


























































































































































      (3.94) 
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obsT
B  from (3.94) can be also expressed as: 


















































































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






































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














































































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

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


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
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0

0

0
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11
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1
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12213
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1

1
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b
n

a
n
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n
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n
b

b
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b
n

a
n

banb

babab
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b

n

n

obsT
B









          (3.95) 

In the following lines we will find an equivalent representation of 
obsT

B . Using (3.95) we can 

write: 

  





























































































































































 nb

n
b

b

b

a

a

a

a

a

n
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1
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2

1

0...000
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0...010

0...001

0...000

1
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1

.........
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1
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000
1

0

0000
1
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0

            (3.96) 

  




































































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




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
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
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






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
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
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

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

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






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n
b

b

b

a

a

a

a

a

n
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1
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2

1
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2
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2
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2
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2

0
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2
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0

...            (3.97) 

  
















































































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












































































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n
b
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n
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n
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n
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n
a

b
n

a
1
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2

1
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0...000

1
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1
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0
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1
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0

0

0

    (3.98) 

   


























































































































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n
b

b

b
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n
b

b

b

1
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2

1

1...000

0............

0...100
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0...001

1

...

2

1

               (3.99) 

Using (3.96)-(3.99), 
obsT

B  can be further expressed as: 




























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


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








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
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
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
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




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
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
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


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
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
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
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
















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n
b

b

b

n
a

a

a
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0
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                               (3.100) 
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from which it results: 

   


















































































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n
b

b

b

n
a

n
a

n
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a

obsT
B

1

...

2

1

1...
321

...............

0...1
12

0...01
1

0...001

           (3.101) 

More compact we can express 
obsT

B  as follows: 

    
obs

B
obs

AT
obsT

B
2

              (3.102) 

where 
obs

AT
2

 is defined as follows: 

    












































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321

...............

0...1
12

0...01
1

0...001

2

n
a

n
a

n
a

aa

a
def

obs
AT                           (3.103) 

and nxnRT 2  represents a non-singular matrix. Replacing 
obs

B  and 
obs

A from (3.35) or 

(3.73) for the lossless or lossy case of Port-Hamiltonian systems in (3.102), it results: 

      B
obs

T
obs

AT
obs

TT
obsT

B
1

2


           (3.104) 

Performing the possible simplifications in (3.104), it results: 

      AB
obs

TT
obsT

B
2

             (3.105) 

Similarly with 
obsT

B , we can proceed for 
obsT

K and the following relation can be written: 

   
















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






























































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n
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k

k

n
a

n
a

n
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a

obsT
K

1
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2

1

1...
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...............
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12

0...01
1

0...001

           (3.106) 

obsT
K  from (3.106), can be then expressed as: 

     
obs

K
obs

AT
obsT

K
2

              (3.107) 

where 
obs

AT
2

 has the form from (3.103). Replacing 
obs

K  and 
obs

A  from (3.35) or (3.73) 

for the lossless or lossy PCH systems in (3.107), it results: 

    K
obs

T
obs

AT
obs

TT
obsT

K
1

2


             (3.108) 

This can be further expressed as follows: 

    AK
obs

TT
obsT

K
2

               (3.109) 

after simplifications. 
obsT

A  can be equivalently written as: 

     
obs

AT
obsT

A
1

              (3.110) 
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where nxn
RT 

1
 is a non-singular square matrix. Using (3.38) or (3.78),(3.115) can be also 

expressed as: 

     1
1




obs
AT

obs
TT

obsT
A             (3.111) 

 

3.4. Practical identifiability analysis 

 

This section presents a general formulation of the proposed practical identifiability 

methodology, using the observability and controlability concepts, for PCH systems in the 

lossless or lossy cases. 

3.4.1 Lossless PCH systems 

Using the general results obtained  in section 3.3, the extended identifiability matrix used for 

the practical identifiability analysis, for the lossless case of Port-Hamiltonian systems, has the 

following form: 

     






 


obsT
K

obsT
B

n
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A

obsT
K

obsT
B

obsT
A

obsT
K

obsT
B

ID
R

1
...       

         (3.112) 

Replacing 
obsT

A , 
obsT

B  and 
obsT

K from (3.111),  (3.105) and (3.109), (3.112) becomes: 

   









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
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1
1

1
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                                          (3.113) 

Further we can write (3.113) as: 

 
















 
 AK

obs
TT

obs
AT

obs
TTAB

obs
TT

obs
AT

obs
TTAK

obs
TTAB

obs
TT

ID
R

2
1

12
1

122

  ...






































AK

obs
TT

n

obs
AT

obs
TTAB

obs
TT

n

obs
AT

obs
TT

2

1
1

12

1
1

1
 

               

                                                                                                                                           (3.114) 

More compactly we can write: 

 

 

 

T

KB

KB

KB

A
obs

TT

n

obs
AT

obs
TT

A
obs

TT
obs

AT
obs

TT

A
obs

TT

ID
R













































































































































...

...

2

1
1

1
...000

0...000

0......00

0...0
2

1
1

0

0...00
2

                        (3.115) 

Using (3.110), 
obs

A  can be determined by multiplying 
obsT

A  to the left with 1
1


T , from 

which results the following relation: 

      
obs

A
obsT

AT 
1

1
            (3.116) 
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When the system is observable, it results that 
obs

A is of full rank, with   n
obs

A det .Using 

the following property of a determinant: 

           
1

det
1

det
11

det BABA             (3.117) 

it results that:   

   
obsT

AT
obs

A det
1

1
detdet 







 
           (3.118) 

Using the property: 

       
 

1

1

1

det

1
det

T
T 

             (3.119) 

(3.118) can be also expressed as: 

        
obsT

A
Tobs

A det
)

1
det(

1
det             (3.120) 

As 
obs

A  is of full rank for a lossless Port-Hamiltonian system in the observable canonical 

form, it results that 0)det( 
obs

A  when   0
1

det T  and   0det 
obsT

A . Hence 
1

T  and 

obsT
A  are full rank. Using (3.102), the following relation can be written: 

     B
obs

T
obs

AT
obsT

B
2

             (3.121) 

Multiplying to the left with 1
2


T  in (3.121), the following relation results: 

     B
obs

T
obs

A
obsT

BT 
1
2

            (3.122) 

For the B  matrix, a pseudo-inverse matrix mxn
R

B
T   exists, which satisfies: 

     I
B

BT                (3.123) 

where nxnRI  is the identity matrix. Multiplying (3.122) to the right with 
B

T , the following 

relation is obtained: 

     
obs

T
obs

A
B

T
obsT

BT 
1
2

            (3.124) 

Multiplying further (3.124) to the right with 1
obs

T , the following relation results: 

     
obs

A
obs

T
B

T
obsT

BT 
 11

2
            (3.125) 

Due to the fact that   0det 
obs

A  when the system is observable, it results that 








  11
2

det
obs

T
B

T
obsT

BT  must be also different from 0. Using the properties of the 

determinant (3.117) and (3.119), )det(
obs

A can be also expressed as follows: 

    
)det(

1
det

)
2

det(

1
)det(

obs
TB

T
obsT

B
Tobs

A 






           (3.126) 

Because   0det 
obs

A  when the system is observable, it results that  
2

det T  and 

)det(
B

T
obsT

B must be also different from zero and thus the matrices 
2

T , 
B

T
obsT

B  and 
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obs
T  are full rank with      n

obs
Trank

B
T

obsT
BrankTrank  









2
. The following 

mathematical notations: 










































A
obs

TT

n

obs
AT

obs
TT

def

nC

A
obs

TT
obs

AT
obs

TT

def

C

A
obs

TT

def

C

2

1
1

1

...

2
1

12

21

                                  (3.127) 

can be introduced, to get a compact expression for (3.115). Using the properties of the 

determinant from (3.117) and (3.119), and the results from (3.120) and (3.126) for the rank of 

obsT
A

obs
TTT ,,

2
,

1
 and 

B
T

obsT
B , it can be deduced that: 

       nk
k

C ..1,0det               (3.128) 

from which it results that the matrices from (3.127), are also full rank: 

       n
k

Crank                (3.129) 

In order to prove that  the identifiability matrix IDR from (3.115) is full rank, a minor of 
ID

R  

of the form: 

     nRRRRR ...
321

                         (3.130) 

is selected, where 
k

R represents column elements from B
k

C  or K
k

C and 
1

R , 
2

R …, nR  

form an nxn  dimension matrix. A first condition for R   to be of maximal rank, is that 

 
k

Rrank  is maximal. In order to prove that  
k

Rrank  is maximal, 
k

R can be expressed as a 

product of the form: 

     '
'
BA

k
R                (3.131) 

where A   represents a matrix 
k

C  from (3.127) and B  represents a column from B or K . 

Using the following relation for matrix ranks: 

    )),(min()( BrankArankABranknrankBrankA            (3.132) 

we can write: 

    BrankArankBAranknBrankArank  ,min)(              (3.133) 

Using (3.129), (3.133) becomes: 

       Brankn
k

RranknBrankn  ,min                        (3.134) 

It is known that   nBrank  , as 1nx
RB   and (3.134) becomes: 

       Brank
k

RrankBrank                          (3.135) 

From (3.135), it results that   Brank
k

Rrank   and is thus maximal, when   1Brank . The 

following relation can be written in this case: 

1)()(  Brank
k

Rrank              (3.136) 

An equivalent condition for R   to have full rank as in (3.136),  is that   )(ker RnullityR   

with R  defined in (3.130) (the columns of R   linearly independent). This statement, can be 
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also expressed as follows: for a vector n
Rx  , the unique solution to the equation 0xR  is 

the null vector
1,

0
n

x  . We can write also the relation: 

        nRnullityRrank                       (3.137) 

3.4.2 Lossy PCH systems 

 

The practical identifiability matrix in this case, has the following form: 

       








 


obsT
K

obsT
B

n

obsT
A

obsT
K

obsT
B

obsT
A

obsT
K

obsT
B

ID
R

1
...

                            (3.138) 

Equivalently this relation can be written as: 

 

 

 

 

 

 

T

KB

KB

KB

A
obs

TT
n

obs
AT

A
obs

TT
obs

AT

A
obs

TT
obs

AT

ID
R










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






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






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































































































...

...

2

1

1
...000

0...000

0......00

0...0
2

1

1
0

0...00
2

0

1

          

                                                                                                                               (3.139) 

replacing the matrix elements 
obsT

A
obsT

K
obsT

B ,,  from (3.105), (3.109) and (3.110). In 

the following lines we will formulate and prove a proposition  for the observability of lossy 

PCH systems, considering also the presence of the perturbation model. 

Proposition 3.4:  

Consider the linear lossy PCH system (3.36), defining 
 QRJA  : 

a) If (3.36) is observable, then 0det Q  and the pair  KBA  ,  is  controllable; 

b) Assume 0det Q , then (3.36) is observable if  KBA  ,  is controllable. 

Proof:  

For the next step we search for a simplified form of the similarity transformation 
obs

T defined 

in (3.4), for the lossy case of Port-Hamiltonian systems.  

In this case: 

     
T

KBQ
T

Q
T

K
T

BQ
T

K
T

BEC  














           (3.140) 

      































 Q

T
R

T
J

T
Q

T
K

T
BQRJQ

T
K

T
BAEC              (3.141) 

can be written using the PCH systems properties T
QQ  and TJJ  . For a more compact 

expression in (3.141), we introduce the notations: 
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
















RQ

def

resA

JQ

def

loss
A

                                  (3.142) 

representing the lossless and the dissipative part of A  matrix. Using (3.142), (3.141) 

becomes: 

     Q
T
resA

T
loss

A
T

K
T

BAEC 















             (3.143) 

Equivalently we can write: 

       Q
T

resA
loss

A
T

K
T

BAEC  







            (3.144) 

Using the property T
QQ   of  PCH systems, (3.144) becomes: 

           Q
T

resA
loss

A
T

K
T

B
T

resA
loss

AQ
T

K
T

BAEC  














 1
1

1
1      (3.145) 

Equivalently we can write: 

          TKBresA
loss

AQAEC 
1

1             (3.146) 

Using (3.145), we compute the term   2
AEC   as follows: 

           QRJQ
T

resA
loss

A
T

K
T

BAEC  






1
1

2           (3.147) 

Using the properties of PCH  systems, (3.147) becomes: 

        























 Q

T
R

T
JQ

T
resA

loss
A

T
K

T
BAEC

1
1

2             (3.148)  

Using (3.142) we can write equivalently: 

          Q
T

resA
loss

A
T

resA
loss

A
T

K
T

BAEC  






2
1

2           (3.149) 

(3.149) can be equivalently written as: 

         Q
T

resA
loss

A
T

K
T

BAEC

2
2

1
2

















            (3.150) 

The next element   3
AEC   of the transformation matrix 

obs
T  is: 

         QRJQ
T

resA
loss

A
T

K
T

BAEC  















2

3
1

3           (3.151) 

From PCH systems properties, (3.151) can be expressed further as: 

       Q
T

R
T

J
T

Q
T

resA
loss

A
T

K
T

BAEC 

























2
3

1
3           (3.152) 

Using (3.142), we  can write: 

          Q
T

resA
loss

A
T

K
T

BAEC

3
3

1
3

















           (3.153) 

From (3.145), (3.150) and (3.153), we can deduce the following general relation: 

         Q

k
T

resA
loss

A
T

K
T

B
kk

AEC 















 1           (3.154) 

for the terms of 
obs

T in (3.4). For the next step we prove the equivalence between 

 
k

T
resA

loss
A 








  and  

T
k

resA
loss

A 







 .  
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We can write then: 

        TresA
loss

A
T

resA
loss

A

k
T

resA
loss

A  







...           (3.155) 

using matrix properties. For the term  
T

k
resA

loss
A 








 , we can write: 

         TresA
loss

AresA
loss

AresA
loss

A

T
k

resA
loss

A  







....           (3.156) 

Using matrix transpose properties, (3.156) can be further expressed as: 

         TresA
loss

AresA
loss

A
T

resA
loss

A

T
k

resA
loss

A  







...           (3.157) 

Applying 2k  times the matrix transpose properties, (5.157) results as: 

        TresA
loss

A
T

resA
loss

A
T

resA
loss

A

T
k

resA
loss

A  







...           (3.158) 

From (3.155) and (3.158), we conclude that: 

       
T

k
resA

loss
A

k
T

resA
loss

A 















            (3.159) 

Using (3.159), (3.154) becomes: 

          Q

T
k

resA
loss

A
T

K
T

B
kk

AEC 















 1           

(3.160) 

Using (3.160), the similarity matrix
obs

T ,  has the form: 

  

   

   

   
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
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
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

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


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

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





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





Q

T
n
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A
nT

K
T

B

Q

T
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A
T

K
T

B

Q
T

resA
loss

A
T

K
T

B

Q
T

K
T

B

obs
T

11
1

...
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1

1
1

           (3.161) 

Equivalently we can write: 

   
   

   























































































T
Q

T
n

resA
loss

A
nT

K
T

B

T
Q

T
resA

loss
A

T
K

T
B

T
Q

T
K

T
B

obs
T

11
1

...

1
1

          (3.162) 

More compactly we can write: 

   

  

    

    









































































T
n

resA
loss

AQ
T

K
T

B
n

T
resA

loss
AQ

T
K

T
B

T
KBQ

obs
T

11
1

...

1
1

          (3.163) 
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or: 

    

    

     

      

























































T

KB
n

resA
loss

AQ
n

T
KBresA

loss
AQ

T
KBQ

obs
T

11
1

...

1
1

0
1

          (3.164) 

We can write also as: 

    

    

     

     

T

KB
n

resA
loss

AQ
n

KBresA
loss

AQ

KBQ

obs
T



























































11
1

...

1
1

0
1

                  (3.165) 

 

From (3.165), the transformation matrix 
obs

T  can be equivalently written as: 

                 






















 KB

n
resA

loss
AQ

n
KBresA

loss
AQKBQ

obs
T

11
1...

1
1

0
1

                                                                                                                                (3.166) 

Also we can write: 

              















 KB

n
resA

loss
A

n
KBresA

loss
AKBQ

obs
T

11
1...

1
1

0
1

                                                                                                                                (3.167) 

Using the matrix notation: 

     resA
loss

A

def

A                (3.168) 

we can write equivalently: 

                















 KB

n
A

n
KBAKBQ

obs
T

11
1...

1
1

0
1              

                                                                                                                                           (3.169) 

Thus a lossy Port-Hamiltonian system in the presence of a known perturbation model is 

observable, when 0det Q and the pair   KBA  ,  is controllable.  

 

3.5 Practical identifiability examples  

 

This section presents three representative examples of practical identifiability analysis using 

the observability and controllability concepts, and the general results from sections 3.2 to 3.4.  

 

3.5.1 Lossless PCH systems 

 

For the practical identifiability analysis of the LC circuit, it was considered a Gaussian White 

noise perturbation model, generated by software of the following form: 
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





















04.0

36.7

77.8

K               (3.170) 

In order to analyse the practical identifiability property of the LC circuit, the following values 

have been considered for the parameters of the real system: 

     












2

1

1
21

C

LL

              (3.171) 

Thus the semi-positive definite matrix Q becomes: 

     



































































100

010

002

2

1
00

0

1

1
0

00
1

L

L

C

Q            (3.172) 

A necessary condition to apply the practical identifiability analysis, is first to test the 

observability of the system without the presence of the perturbation model (or structural 

identifiability analysis). The observable transformation matrix in this case is: 

  















































CLLCL

CL

L

obs
T

21

1

2

1

1
0

00

1

1

0

1

1
0

                                  (3.173)   

Using (3.173) it can be easily proved that the system is observable and the practical 

identifiability analysis can be further realized. Using (3.170) and (3.172), the matrix E

corresponding to the perturation model, has the following form: 

     04.036.754.17 Q
T

KE             (3.174) 

while the matrix C has the following form: 

      010 Q
T

BC              (3.175) 

Computing the transformation matrix 
obs

T  from (3.4) for the observable canonical form of 

the system, the following result is obtained: 

    

  



























































64.1664.1616.70

54.1754.1764.16

04.036.854.17

2
AEC

AEC

EC

obs
T            (3.176) 

Computing the A , B , C  and K matrices in the observable canonical form, the following 

results are obtained using (3.35): 
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





































































040

100

010

7
108.499.30

1
7

108.40

7
1019.110

1
obs

AT
obs

T
obs

A           (3.177) 

    





























64.16

54.17

36.8

B
obs

T
obs

B              (3.178) 

     001
6

105.3
7

102.199.0
1



















obs
TEC

obs
C          

(3.179) 

    





























108.737

54.17

357.215

K
obs

T
obs

K             (3.180) 

In (3.179), C  represents the matrix EC  corresponding to the output perturbation applied 

over the system output as in (3.2). Using (3.94), (3.95) and (3.106), the equivalent observable 

canonical form of the LC circuit is: 

   








































000

1
7

108.499.3

7
1019.11

7
108.4

obsT
A            (3.181) 

    



























71.16

53.17

36.8

obsT
B               (3.182) 

     001
obsT

C               (3.183) 

    






















03.35

35.7

77.8

obsT
K               (3.184) 

Using (3.112),(3.181), (3.182), (3.183) and (3.184), the practical identifiability matrix, is: 

  































000003.3571.16

36.2998.6903.064.1635.753.17

30.080.1635.753.1777.836.8

ID
R            (3.185) 

In order to determine the controllability property of the system in the presence of a 

perturbation model, the matrix rank of 
ID

R  is determined by selecting for instance the 2
nd

, 4
th

 

and 6
th

 columns in (3.185), for which the determinant has the following value: 

   89.7570

0003.35

36.2903.035.7

30.035.777.8

detdet 





























ID
R

 

          (3.186) 

Thus it can be concluded that the identifiability matrix 
ID

R  is of full rank and the LC circuit 

is said to be practically identifiable in the presence of the selected perturbation model. In case 
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the transformation matrix 
obs

T  in (3.176) is rank defficient, the LC circuit is not practically 

identifiable for the corresponding perturbation model. 

 

3.5.2 Lossy PCH systems  

 

For the case of the capacitor microphone circuit, the observable transformation matrix has the 

following general form: 

     
21 obs

T
obs

T
obs

T                                                       (3.187) 

where: 

    

















































0
3

2

22

0
2

0
1

0

1

m

c

m

k

m

ck

m

c

m

k

m

obs
T                                         (3.188) 

represesents the transformation matrix corresponding to the first input  TB 010
1


 and: 

     
 

  













































3

1
00

2

1
00

1
00

2

Rc

Rc

Rc

obs
T                                       (3.189) 

From (3.188) and (3.189), it can be observed, that the observable transformation matrices 

2
,

1 obs
T

obs
T  corresponding to the inputs 

2
,

1
BB  are rank defficient and in conclusion, the 

system is not observable to perform identifiability analysis in the presence of the perturbation 

model. For the lossy case a second example is therefore considered, represented by a DC 

motor, which will be proved to be observable. The observable transformation matrix 
obs

T  

from (3.4) when no perturbation is applied over the system, has the following form: 

    





























E
LJ

L

R
L

obs
T 1

2

0
1

                                                   (3.190) 

for a gyrator term 1
DC

K . Considering a particular case for the real parameters with 

1 RL and 2/1 b
E

J , it is easy to see that the determinant of 
obs

T is different from 0 

and the system is then observable. In this case, we consider a Gaussian White noise 

perturbation model of the form: 

     












47.1

7545.1
K                                                          (3.191) 
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for the matrix K , corresponding to the perturbation model. The matrix Q
T

KE 

corresponding to the perturbation model, has the following form: 

      94.2755.1E                                                    (3.192) 

while the matrix Q
T

BC  has the form: 

      01C                                                                (3.193) 

The observable transformation matrix from (3.4) becomes: 

     
  



































45.8185.0

94.2755.2

AEC

EC

obs
T                      (3.194) 

Computing the A , B , C  and K  matrices for the observable canonical form using (3.73), we 

get: 

    











































23

10

999.1001.3

003.1002.01
obs

AT
obs

T
obs

A       (3.195) 

     B
obs

T
obs

B                                                          (3.196) 

        01002.0002.1
1'





obs

TEC
obs

C                               (3.197) 

    














097.12

155.9
K

obs
T

obs
K                                               (3.198) 

As for the lossless case, C  represents the matrix EC   corresponding to the perturbation 

applied over the system output as in (3.36). Using (3.94), (3.95) and (3.106), we can write the 

equivalent observable canonical form as follows: 

     





















002.0001.3

003.1999.1

obsT
A             (3.199) 

      












695.5

755.2

obsT
B                        (3.200) 

       01
obsT

C             (3.201) 

      












213.6

155.9

obsT
K                        (3.202) 

Using (3.138), (3.199),(3.200),(3.201) and (3.202) the practical identifiability matrix for the 

equivalent observable canonical form is: 

    





















487.27279.8213.6695.5

069.12203.0155.9755.2

ID
R            (3.203) 

In order to determine the controllability of the system, it is necessary to prove that the matrix 

ID
R  is not rank deficient. We select then a minor formed with the 1

st
 two columns for which 

we check the determinant: 

    021.35
213.6695.5

155.9755.2
detdet 

















ID
R            (3.204) 

Using the result from (3.204), it results that the DC motor is practically identifiable for the 

selected perturbation model and parameters. As for the lossless case example, the DC motor is 

not practically identifiable when the transformation matrix 
obs

T  in (3.194) is rank deficient. 
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Conclusions 

The present chapter proposed a practical identifiability methodology for Port-Hamiltonian 

systems, starting from classic theoretical aspects of state-space systems, which combine the 

basic known observability and controllability concepts. Section 2 proved that Port-

Hamiltonian systems can be converted to the observable canonical form, in the presence of a 

perturbation model, conserving the basic properties of PCH systems. Also it was introduced a 

definition for the perturbation model of Port-Hamiltonian systems, using the interaction port 

of the system with the environment. Section 3 was dedicated to the conversion of Port- 

Hamiltonian systems into an equivalent observable canonical form, which is used for the 

practical identifiability analysis in section 4 and 5. The last two sections proposed some 

general formulations for the proposed practical identifiability methodology in the lossless or 

lossy cases in the presence of a perturbation model and presented some examples of a LC 

circuit, a capacitor microphone circuit and a DC motor. The results of this chapter show that 

the LC circuit and DC motor are identifiable in the presence of a perturbation model, while 

the capacitor microphone circuit is not observable and thus not practical identifiable.  
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4.Symplectic time integration and discretization error Hamiltonian 

 

A general framework of time-discretization is proposed in this chapter for PCH systems, in 

the nonlinear and linear case, by combining different time-discretization rules for the flows 

and efforts, preserving thus the structure. A set of symplectic time-discretization schemes is 

proposed using classic first or second order rules for the flows and efforts. For each time-

discretization scheme, the symplecticity with respect to the natural power pairing (bilinear 

form) is proved and the resulting conservation of the total energy is checked both for the 

lossless or lossy cases. The differentiation of two PCH systems, is then introduced and 

applied in order to define a discretization error Hamiltonian, for which the power energies 

of the ports, are given as the difference between the continuous and discrete-time systems.  

 

 

4.1 Introduction 

 

Computer aided process control, is realized in discrete-time by sampling the continuous-time 

signal. Therefore, many discretization techniques have been designed to approximate 

accurately, the process and controller models [71-80].  Among these, when considering low 

order integration models, one could mention among the most important ones: Step Invariant 

or Zero Order Hold (ZOH) rule, Matched Pole-Zero rule, forward and backward Euler rules, 

Tustin rule, Generalized Bilinear Transformation rule, mid-point rule or Runge-Kutta rule. 

For higher integration techniques of the process or controller, discretization methods like 

Boxer-Thaler and Madwed [81-91], have been introduced, with higher accuracy for the 

approximated model, but with complex practical implementation and low possibility for 

stability analysis. PCH systems have some remarkable properties, among others power-energy 

conservation and stability under power preserving interconnection (e.g. parallel, series or 

feedback interconnections) [91]. Structure preserving time-integration (also termed as 

geometric integration) of Hamiltonian or PCH systems is thus a natural question and indeed a 

current research concern [9-106]. The aim of this chapter, is to develop discrete-time (control 

or simulation) models which inherits the structural properties of the continuous-time model 

(e.g. conservativeness, dissipativity or passivity, stability, controllability, etc.). In this chapter, 

we propose a methodology to generate symplectic time-discretization schemes for PCH 

systems, combining distinct discretization rules for the flow and effort variables. Some 

combinations of classical rules (explicit and implicit Euler, trapezoidal or mid-point rules) are 

investigated as an illustration of the methodology. For each of these combinations, the 

symplecticity is proved and the power conservation law checked. Then we introduce a similar 

approach  to the backward error analysis, which has been previously developed for closed 

Hamiltonian systems in [96]. This generalization is based on a differentiation technique 

between two PCH systems, which defines a new PCH system with respect to the power-

energy difference between ports of the two original PCH systems. A  discretization error 

Hamiltonian system is then built using this difference between the continuous-time (original 

model) and the discrete-time model, obtained by the previously defined symplectic integration 

schemes. The chapter is organized as follows: 
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Section 4.2 presents a general framework for symplectic time-discretization in the nonlinear 

and linear case, discussing the necessary conditions to preserve the power conservation law 

and also introduces the power pairing bilinear form, as well as explicit and implicit forms for 

discrete-time PCH systems.  

Starting from this general framework of symplectic time-discretization, section 4.3 presents a 

set of  three symplectic time-discretization schemes, using four first or second order rules for 

the flows and efforts, by writing the associated power conservation law, bilinear form and the 

explicit and implicit discrete-time PCH systems. 

Section 4.4 introduces a new concept  to differentiate two PCH systems with respect to the 

power energies associated to the ports, as a new Port-Hamiltonian system. This formulation is 

then used to define a discretization error Hamiltonian system between the continuous-time 

and discrete-time PCH systems. 

Section 4.5 presents a set of simulations for the selected symplectic time-discretization 

schemes to prove the theoretical results, by drawing specific curves like output responses,  

power energies, error logarithm for the continuous-time, discrete-time systems or 

discretization error Hamiltonian. 

 

4.2 Structural preserving discretization of PCH systems 

 

This section presents a symplectic time-discretization methodology for PCH systems, 

assuming that two different discretization rules are used for the flows and efforts, in order to 

obtain a discrete-time PCH system. The first part of this section presents a general framework 

for time-discretization in the nonlinear and linear case, with necessary conditions which must 

be satisfied to preserve the PCH systems basic properties. The second part presents a set of 

three symplectic time-discretization schemes, using four first or second order time-

discretization rules (explicit and implicit Euler, implicit mid-point rule and implicit 

trapezoidal rule) for  the flows and efforts. 

 

4.2.1 General framework of symplectic discretization 

 

This section introduces a general framework for symplectic time-discretization in the 

nonlinear and linear cases, which considers two different discretization rules for the flows and 

efforts. The power conservation law is derived for the discretized system together with all 

other characteristic properties of PCH systems. The linear case of the proposed methodology 

is easily derived from the nonlinear one in section 4.2.1.1, 4.2.1.2 and used further for time-

discretization of three symplectic schemes in section 4.3. By time-discretization it is proved 

that a discrete-time PCH system results, for which the flows and efforts of the continuous-

time system ports, are approximated with discrete-time flows and efforts, while the 

interconnection structure ( D ) is conserved. In the sequel, we will consider general 

approximations denoted:   
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respectively for the discrete-time flows and efforts associated to the storage (
S

f
S

e ˆ,ˆ ),control  

(
C

f
C

e ˆ,ˆ ) and dissipation (
R

f
R

e ˆ,ˆ )  ports.  

Remark: The discrete-time flow  i
R

f̂  of the dissipation port, is not  considered for 

discretization  similarly to the storage port flow(
S

f̂ ), as the continuous-time flow(
R

f ) can 

be generally expressed in relation to the effort (
R

e ) using an input-output mapping 

 
R

eF
R

f  [23] . 

We introduce the discrete-time power conservation law as: 
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which must be satisfied also in discrete-time. For the discrete-time flows and efforts 

introduced in (4.1), we define  the discrete-time finite-dimensional spaces F̂ and its dual 

*ˆ:ˆ FE  .Using (4.1) and (4.2) we can derive the following relation: 
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which we observe to be satisfied for: 
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Remark: The composition between the flow (
i

Fd ) and effort (
i

Ed ) time-discretization rules, 

is defined by 
i

Ed
i

Fd * , where the effort and flow discretization rules, are applied succesively 

on the continuous-time effort model. When performing the time-discretization of the storage 

port flow 
S

f  in the nonlinear case, it is necessary to discretize the interconnection matrix  

(  xJ ) and dissipation matrix (  xR ) separately, before performing the product with the 

discrete-time effort  

















x

x

H

i
Ed , as it is not possible to multiply a continuous-time value with 

a discrete-time one. Separate time-discretization is considered thus, for all the continuous-

time parameters. 

The necessary conditions for (4.4) to hold are then: 
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Remark: The dissipation flow 
R

f can be discretized also as 

    

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






 x

x

H
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Ed

i
FdxR

i
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R
f̂ , in which case the first two relations in (4.5) are always 

satisfied and thus, the necessary conditions are reduced, making possible to generate a 

broader class of discretization schemes. In order to generate also non-symplectic time-

discretization schemes as counter examples, we will consider further the case of (4.1) to 

discretize the dissipation flow 
R

f . It can easily be  observed in (4.5), that using the same 

Euler time-discretization rule (explicit or implicit) for the flows and efforts with a nonlinear 

model, will always satisfy all three relations. Also it can be proved, that using the same 

second order time-discretization rules (implicit mid-point or implicit trapezoidal rule) for the 

flows and efforts, will satisfy the second and third relations of (4.5), but never the first one for 

a nonlinear model. 
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For the linear case which is considered in the next sections, the necessary conditions for (4.4) 

to be satisfied become: 
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In this case, the last relation from (4.4) dissapears, as the input matrix B doesn’t have a 

nonlinear model. Using the necessary conditions proposed in (4.4) for the preservation of the 

conservation law (4.2) in discrete-time, we propose the following proposition for the 

preservation of the power conservation law: 

 

Proposition 1[194] 

The PCH system (1.27), preserves the power conservation law (4.2) by symplectic time-

discretization using the discretization rules (4.1) for the  power port flows and efforts, when 

(4.5) holds. 

Remark: This proposition can be also used for the linear case analysis of PCH systems, when 

(4.6) holds. As will be seen in the next sections, situations may occur in which one of the 

conditions in (4.5) or (4.6) is satisfied but not the others and thus, the preservation of PCH 

systems structural properties in discrete-time is not satisfied.  

We introduce further the discrete-time equivalent for the energy balance (Hamiltonian) using  

(1.24) and (4.1), by: 
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which is equivalent to: 
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by straightforward computation when (4.5) or (4.6) holds and thus, (1.24) is also preserved in 

discrete-time. An equivalent description of a Dirac structure can be realized by introducing 

the discrete-time bilinear form [23]: 
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on the discrete-time space of flows and efforts ( *ˆˆ FxF )  with *ˆˆˆ,ˆ,ˆ,ˆ FxF
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e
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Replacing the discrete-time flows and efforts from (4.1) in (4.9), we can write equivalently 

[117]: 
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The discrete-time bilinear form from (4.10) is related to the definition of discrete-time power 

conservation law defined in (4.2), for which (4.5) must be satisfied. We also introduce the 

implicit discrete-time dynamics form for the PCH system using (1.26), as: 
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Remark: The Dirac interconnection ( D ) structure and rules are preserved by time-

discretization, as they serve only for power port interconnection. This structural preserving 

time-discretization methodology, can be adapted to more general classes of time-

discretization rules (see Runge-Kutta methods, collocation methods, etc.) [96, 114]. 

4.2.1.1 Lossless PCH systems 

 

The general continuous-time explicit form of the linear lossless PCH systems, for which we 

apply  symplectic discretization is: 
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A general form of the symplectic time-discretization schemes for the lossless case, when 

using different discretization rules for the flows and efforts as defined in (4.1), can be written 

as follows: 
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Remark: In the above relation, 
di

F  and 
di

E , represent the time-discretization rules (explicit 

or implicit form) applied for the continuous-time flows  and efforts at step i  of discretization 

as defined in (4.1).  

More compactly, we can write (4.13) as: 
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where i  corresponds to the current discretization time-step for the selected rules. In the 

lossless case, the discrete-time power conservation law (4.2) becomes: 
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Using the general time-discretization form from (4.3) in the linear case, the right side part of 

(4.14) becomes: 
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Performing the possible simplifications in (4.16), it results that the total discrete-time power-

conservation law is: 
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From (4.17) it results that the power conservation law is satisfied in discrete-time, when the 

right part of the equality is zero.  

Remark: For the linear lossless case presented in this section, the only relation that needs to 

be satisfied in (4.6) is the first one, in order to preserve the discrete-time power conservation 

law (4.1). This happens when the discret-time terms 
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have 

common matrix factors to the left and right of the skew-symmetric matrix J .  

In this case, the right part of the product in (4.17) is zero and the power conservation law 

holds in discrete-time. Using (4.7) we define the discrete-time energy (Hamiltonian) as: 
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when (4.15) holds. Then it is obvious from (4.8), that the discretized (approximated) 

Hamiltonian energy function  xĤ  is also conserved in discrete-time form. Using (4.9) and 

(4.10), the expression of the discrete-time bilinear form, for lossless PCH systems can be 

written as follows: 
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where i corresponds to the current time-discretization step for the selected symplectic scheme. 

Using (4.11), we introduce the discrete-time implicit form in the lossless linear case as: 
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or more generally: 
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Remark: The interconnection rules for the Dirac structure ( D ) remain in the discretized 

Bond Space, which is basically the same (the efforts and flows at discrete times have values in 

the same vector spaces as for the continuous case). 

 

4.2.1.2 Lossy PCH systems 

 

The general explicit form of  a linear lossy PCH system, for which we apply the symplectic 

time-discretization, is: 
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A general expression of the symplectic time-discretization schemes for lossy PCH systems, 

when applying two different discretization rules for the flows and efforts, is the following: 
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Remark: 
di

F
 
and 

di
E

 
represent two different discretization rules applied for the flows and 

efforts at step i  (in explicit or implicit form) of  time-discretization.  

More compactly, we can write (4.23) as: 
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Remark: This symplectic time-discretization methodology, can be adapted and applied for 

any two time-discretization rules (even the same), applied to the flows and efforts. 

Using the continuous-time power conservation law introduced in (1.23), we can write the 

discrete-time equivalent as: 
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Using the discrete-time flows and efforts defined in (4.1), we can write further: 

 

     
























































































































































x

H

i
EdR

T

x

H

i
Ed

u
i

FdB

T

x

H

i
Edu

i
FdB

x

H

i
Ed

i
FdRJ

T

x

H

i
Ed

    (4.26) 



90 

 

for the discrete-time power conservation law. Performing the possible simplifications in 

(4.26), the power conservation law becomes: 
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As for the nonlinear case, the necessary condition to be satisfied in discrete-time for power 

conservation law becomes then: 

 

0




























































































































































x

H
EdiR

T

x

H

i
Ed

x

H

i
Ed

di
FR

T

x

H

i
Ed

x

H

i
Ed

i
FdJ

T

x

H

i
Ed

                    (4.28) 

We observe that this relation holds for: 
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Then we can  derive a condition for (4.29) to be satisfied as: 
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Using the continuous-time relation (1.24) for the energy balance (Hamiltonian), we define the 

discrete-time equivalent as for the nonlinear case in (4.7): 
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The right part of (4.31) results by straightforward computation replacing the discrete-time 

flows and efforts as defined in  (4.1), when (4.30) is satisfied. The expression of the linear 

discrete-time bilinear form as defined in (4.10) for the nonlinear case becomes: 
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The implicit form of the discrete-time linear lossy PCH system is then: 
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or more compactly: 



91 
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where the Dirac structure D  conserves its structure by time-discretization as was already 

exaplained.  

     

4.3 Symplectic discretization schemes 

 

A set of three symplectic time-discretization schemes for the lossless and lossy PCH systems 

are considered here as examples in the linear case, using different (first or second order) 

discretization rules for the flows and efforts. As discretization rules are proposed: explicit and 

implicit Euler rule, implicit mid-point rule and implicit trapezoidal rule. For each combined 

time-discretization scheme, it is checked and proved the power conservation law of the 

system, the bilinear form is expressed together  with the explicit and implicit forms for the 

discrete-time PCH system, using the general framework of  4.2.1. 

 

4.3.1 Lossless PCH systems 

 

In the case of lossless PCH systems, the following three symplectic discretization schemes 

were proposed to check the general framework introduced in section 4.2.1: explicit Euler rule 

for the flows and implicit Euler rule for the efforts; implicit Euler rule for the flows and 

implicit trapezoidal rule for the efforts; implicit trapezoidal rule for the flows and implicit 

mid-point rule for the efforts. We have selected these simple symplectic time-discretization 

schemes as examples for the general framework of 4.2.1, to see if the PCH systems properties 

are satisfied in discrete-time and also to point out their performances.  

Remark: Non-symplectic time-discretization schemes for lossless PCH systems can be 

obtained when the first relation of (4.6) doesn’t hold. 

 

4.3.1.1 Symplectic discretization scheme I 

 

For the first symplectic time-discretization scheme, it was selected the explicit Euler rule for 

the flows and implicit Euler rule, for the efforts. Combining the explicit Euler rule for the 

flows and implicit Euler rule for the efforts using (4.3), the following relations result for the 

explicit form of the discrete-time PCH system: 
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Remark: The composed time discretization 








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




x
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i
Fd  of the effort becomes 

k
Qx , by 

applying the flow discretization over 
x

H




. 

The second relation in (4.35) for the discrete-time flow results from the fact that the total 

energy (Hamiltonian) of the system, can be generally written as: 
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       Qx
T

xxH
2

1
                           (4.36) 

Remark: In all time-discretization schemes that follow, we have adoppted the notation ""  , 

to designate the discrete-time differentiator of the flows and efforts, while the current 

discretization time-step of the flow and efforts, is represented by k  or 1k , corresponding 

also to the explicit or implicit forms of the discretization rules. The discrete-time forms of 

PCH systems from the general framework, will borrow the explicit or implicit form as the 

flow discretization rules selected. 

Using (4.35) the discrete-time power energy associated to the storage port at step k of time-

discretization, can be defined as: 
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where  k
S

ê
 
and  k

S
f̂  represent the discrete-time forms of the effort and flow defined in 

(4.1). From straight-forward computations, we obtain the following general relation: 

          k
C

fBk
T
S

e
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using discrete-time flows and efforts. Similarly for the control port power energy, we can 

write: 
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From simple computations, we can write (4.39) as: 
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using the discrete-time flows and efforts of the control and storage ports. Using (4.38) and 

(4.40), the total power energy at step k of discretization is conserved, since we can write: 
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Using (4.18), we define the discrete-time energy (Hamiltonian) as: 
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Using (4.38) and (4.40), it becomes further: 

         k
C

fBk
T
S

e

def

k
t

H ˆˆ



                          (4.43) 

The discrete-time bilinear defined in (4.19) becomes in this case: 
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which becomes further for this scheme: 
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by replacing the discrete-time efforts and flows of each port as defined in (4.1). Using (4.20), 

the implicit form of the discrete-time linear lossless PCH system at step k of discretization, is 

then: 
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 ˆ,ˆ,ˆ,ˆ                              (4.46) 

where the Dirac structure ( D ) is described by the same linear equations as the original 

continuous-time one.  

 

4.3.1.2 Symplectic discretization scheme II 

 

For the second symplectic time-discretization scheme, the implicit Euler rule and the implicit 

trapezoidal rule, were selected for the flows and efforts as defined in (4.1). Applying the 

selected discretization rules, to the continuous-time form of the lossless PCH system from 

(4.12) using (4.4), it results the following explicit form of the linear lossless discrete-time 

PCH system: 
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where the following notation was adopted for simplicity: 
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Remark: The composed time- discretization 
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at step 1k . 

At the next step, the power conservation law (4.15) is checked by time-discretization. The 

power energy associated to the storage port at step 1k  of time-discretization, can be defined 

as follows using (4.47): 
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From simple computations, (4.49) can be written more compact as: 
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The discrete-time power energy of the control port, can be defined using the following 

formula by replacing the discrete-time flows and efforts: 
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Equivalently, we can write this relation as: 
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Using (4.50) and (4.52), it results that the discrete-time power conservation law (4.15) is 

conserved: 
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From (4.18), we define the energy (Hamiltonian) as: 
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which becomes further: 
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Using (4.19), the discrete-time bilinear form is defined as: 
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which becomes further by replacing the discrete-time flows and efforts defined in (4.1): 
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for the selected symplectic time-discretization scheme. Using (4.21), the implicit form of the 

discrete-time lossless PCH system, has the following form: 
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where the the Dirac structure ( D ) is conserved by time-discretization. 

 

4.3.1.3 Symplectic discretization scheme III 

 

For the last symplectic time-discretization scheme in the linear lossless case, it was selected 

the implicit trapezoidal rule for the flows and implicit mid-point rule for the efforts, which are 

two second order discretization rules. Applying these time-discretization rules using (4.1), for 

the continuous-time lossless PCH system from (4.12), it results the following explicit form for 

the discrete-time system: 
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where the following notations: 
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were adoppted for simplicity. 

Remark: The composed time-discretization 
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at step 1k . 

Next we determine if the power conservation law (4.15) is conserved by time-discretization 

for the selected discretization rules. The discrete-time power energy, associated to the storage 

port, can be defined as follows: 
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by replacing the discrete-time flows and efforts as defined in (4.1). 

Then it is  straightforward that: 
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The discrete-time control port power energy, is defined as follows: 
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and it can be also expressed as: 
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It is obvious then that the total power energy is conserved in discrete-time: 
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Using (4.18), the energy (Hamiltonian) of this scheme is defined as: 
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Using (4.62) and (4.64) it results further: 

          1ˆ1ˆ1 



k

C
fBk

T
S

e

def

k
t

H
                             (4.67) 

Hence, the discrete-time bilinear form (4.19) for this symplectic time-discretization scheme is 

defined as: 
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which becomes: 
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              (4.69) 

when replacing the discrete-time flows and efforts using (4.1) and (4.59). 

Using (4.21), the implicit form of the discrete Dirac structure, that results for the lossless PCH 

system of the selected symplectic time-discretization scheme, is the following: 
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Remark: The implicit form of the discrete-time PCH systems remains basically the same  and 

thus, in the proposed time-discretization structural preserving framework, we have  used the 

explicit PCH form, power conservation law and bilinear form to describe a meaningful 

discrete-time system. For the selected time-discretization rules (explicit/implicit Euler, 

implicit mid-point and implicit trapezoidal) it can be easily proved that the linear lossless 

PCH systems always conserve the structural properties defined in the general framework of 

(4.2.1.1) for any combination of time-discretization rules of the flows and efforts. 

 

4.3.2. Lossy PCH systems 

 

As for the lossless case, in the linear lossy case are selected the same three symplectic time-

discretization schemes, for which it is also proved using the general framework from (4.2), the 

preservation of PCH systems basic properties in discrete-time.  

Remark: Non-symplectic time-discretization rules for lossy PCH systems, can be obtained 

when (4.30) doesn’t hold. 

 

4.3.2.1 Symplectic discretization scheme I 

 

The first symplectic time-discretization scheme selected for linear lossy PCH systems, is 

represented by an explicit Euler rule for the flows and implicit Euler rule for the efforts. 

Applying the general symplectic time-discretization framework from (4.13) for the selected 

discretization rules, it results: 
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                         (4.71) 

Remark: It is possible to select the same time-discretization rules for the flows and effort in 

the general framework of 4.2 on lossless or lossy cases, maintaining the same conditions for 

the preservation of PCH systems power conservation law. The composed time-discretization 
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. 

For the next step, the preservation of the discrete-time power conservation law is checked. 

Using (4.1) and (4.71), the power energy associated to the storage port at step k of 

discretization, can be defined as: 
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Using simple relations, it is straightforward that: 
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The discrete-time control port power energy, can be defined as: 
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Equivalently this relation can be written as: 

         kCfBkT
S

e

def

kCP ˆˆˆ                            (4.75) 

using simple mathematical relations. For the dissipation port, it results: 
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for the power energy. Using simple relations, (4.76) can be equivalently written as: 
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Using (4.73), (4.75) and (4.77), the total power energy in discrete-time form is: 
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           (4.78) 

which satisfies the power conservation law (4.25) and thus the necessary conditions from 

(4.30). Using (4.31), the discrete-time energy (Hamiltonian) can be defined as:  
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which is equivalent to: 
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using (4.73), (4.75) and (4.77). 

The discrete-time bilinear form, can be defined using (4.32) as: 
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                      (4.81) 

Using (4.1) and (4.71), we can write then: 
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Using (4.34), the implicit form of the discrete-time Dirac structure at step k  of discretization, 

is then: 
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where the Dirac structure D , is conserved by  time-discretization. 

 

4.3.2.2 Symplectic discretization scheme II 

 

For the second symplectic time-discretization scheme of the linear lossy PCH systems, it was 

proposed the implicit Euler rule for the flows and implicit trapezoidal rule for the efforts.  

Applying this symplectic time-discretization scheme using (4.1) and (4.24) to the linear lossy 

PCH system from (4.22), it results: 
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where we have adopted the notation: 
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Remark: The composed time discretization 
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for a compact representation. For the next step, the power conservation law, is checked in 

discrete-time using (4.25), (4.27),(4.30) and (4.84). The storage port power energy can be 

defined as:     
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Using simple relations, we can write then: 
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For the control port power energy, the discrete-time form is defined as:                               
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Equivalently, this relation can be written as: 
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The discrete-time dissipation port power energy, can be expressed as: 
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Using simple relations, which describe PCH systems, we can write equivalently: 
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Using (4.87), (4.89) and (4.91), the discrete-time power conservation law is: 
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            (4.92) 

Thus the discrete-time power conservation law defined in (4.25) is satisfied for the selected 

scheme as (4.30) holds. Using (4.31), the discrete-time energy(Hamiltonian) is defined as: 
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Which using (4.87), (4.89) and (4.91) is equivalent to: 
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The discrete-time bilinear form, can be defined as: 
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Replacing the discrete-time flows and efforts as defined in (4.1) for the selected symplectic 

time-discretization scheme, it results: 
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Using (4.34), the implicit form of the discrete-time linear lossy PCH system for this scheme, 

is the following: 
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where the Dirac structure conserves its structure by time-discretization. 

  

4.3.2.3 Symplectic discretization scheme III 

 

For the third symplectic time-discretization scheme of the linear lossy PCH systems, it was 

selected the implicit trapezoidal rule for the flows and implicit mid-point rule for the efforts, 
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which are two second order time-discretization rules. Applying this time-discretization 

scheme using the general framework defined using (4.1) and (4.24), to the linear lossy PCH 

system from (4.22), the following explicit form is derived for the discrete-time system: 
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where we have used the notations: 
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for simplicity.  

Remark: The composed time discretization 
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At the next step, the power conservation law of the PCH system is checked in discrete-time. 

The discrete-time power energy associated to the storage port at time-step 1k , can be 

defined as follows for the selected time-discretization rules: 
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From simple mathematical computations, the following relation results: 

           1ˆ1ˆ1êR1ˆ1ˆ  k
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In (4.101), the following notation has been introduced: 
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The discrete-time control port power energy, can be defined as follows: 
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Equivalently this relation can be written as: 
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The discrete-time dissipation port power energy, is defined as: 
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From simple mathematical relations, we can write (4.105) equivalently: 

         1êR1ˆ1ˆ  k
S

k
T
S

ek
R

P                                   (4.106) 
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Using (4.101), (4.104) and (4.106), we can write the power conservation law in discrete-time 

form: 
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             (4.107) 

Making the possible simplifications in (4.107), it results that: 

             1ˆ11ˆ1ˆ1ˆ1ˆ  k
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eRk
T
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R

Pk
C

Pk
S

P                         (4.108) 

which shows that the general condition of (4.30) is not satisfied. Then we conclude that this 

symplectic discretization scheme, is not appropriate for lossy PCH systems time-

discretization.  

Remark: For the selected time-discretization rules (explicit/implicit Euler, implicit 

trapezoidal and implicit mid-point) and general framework from 4.2 in the linear lossy case, 

it can be easily proved that symplectic time-discretization schemes (4.30 satisfied) can be 

obtained when using a first order rule (explicit/implicit Euler) for the flows and any other 

rules for the efforts. 

 

4.4 Difference between two PCH systems 

This section, introduces and defines a new concept to differentiate two PCH systems A  and 

B , in the lossless or lossy case, on the basis of the difference between the power energies 

associated to the ports. Particularly this concept is useful also to make a differentiation 

between the continuous-time PCH system (system A ) and a discrete-time PCH  system 

(system B ), by introducing a time-discretization error Hamiltonian system, that has as 

power energy corresponding to the ports, the difference between the power energies of the 

continuous-time and discrete-time systems. A schematic overview of the proposed idea, is 

given in figure 4.1 below, for the general case which includes also dissipation terms. 

 

Figure 4.1. The difference of two lossy Port-Controlled-Hamiltonian systems  A and B , defined with respect to 

power energies of the ports. 

In Figure 4.1, the power energies corresponding to the storage (
S

P ), control (
C

P ) and 

dissipation ports (
R

P ), for the new proposed difference PCH system are equal to the 

difference between the power energies corresponding to the ports. It will be proved in the next 
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two subsections (in the continuous-time case) that this difference system is indeed a PCH 

system. For the discretization error Hamiltonian, that represents the difference between the 

continuous-time (system A ) and discretized (system B ) systems, we will assume that the 

discrete-time PCH system is defined as a perturbed continuous-time PCH system (system B ) 

at discretization times for the continuous-time one ( A ).  

 

4.4.1 Lossless PCH systems 

 

In this section a new PCH system is defined, for the difference between two lossless PCH 

systems ( A and B ), with respect to the power energies of the ports. We consider two lossless 

PCH systems ( A and B ), represented generally as follows in the explicit form: 
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                             (4.109) 

The storage port power energies, corresponding to systems A  and B , can be written as: 
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Remark: The terms      
A
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(4.110) are zero, due to the skew-symmetry of  
A

x
A

J and  
B

x
B

J . 

The power energies corresponding to the control port for this two systems, are the following: 
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Summing up the power energies corresponding to the storage and control ports for  systems 

A  and B , the total power is conserved, as follows: 

     











0

0

CB
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P

SA
P

                                      (4.112) 
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For the next step,  we wish to derive a lossless PCH system, which has as power energies 

associated to the ports, the difference between the power energies of systems A  and B .The 

power energy difference,  corresponding to the storage and control ports of systems A and B , 

can be defined as follows: 
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                                                                                                                                (4.113) 

introducing the notations: 
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Summing both relations in (4.113), we observe that the power conservation law is satisfied 

and we can write the relation: 

     0
~~
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C

P
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P                            (4.115) 

We propose then the following explicit form for the difference PCH system:
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For this difference PCH system  it can be easily proved, that the following relations hold: 
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between the difference of the power energies ( 
S

P
~

and 
C

P
~

) for the storage and control ports 

from (4.113), with the power energies of the proposed difference PCH system from (4.116).  

Remark: The energy (Hamiltonian) for the proposed difference PCH system can be easily 

derived in the lossless or lossy case from the results, based on the power conservation law. 
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A complete proof of the basic properties that describes a PCH system, for the difference PCH 

system proposed in (4.116), can be found in Appendix D.1. For the lossless difference 

Hamiltonian proposed in (4.116), we introduce the following definition. 
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where: 
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Remark: This definition may be used for the time-discretization process, to define a 

discretization error Hamiltonian system (in the lossless or lossy case) as the difference 

between two PCH systems, the original continuous-time one and a continuous-time perturbed 

PCH system, whose values at discrete-times are the ones of the discrete-time PCH system 

(approximation). This is possible only when symplectic time-discretization schemes are used 

to get a discrete-time PCH approximation for the original system as presented in the previous 

sections.  

When the error between the continuous-time and discrete-time system PCH systems ( A  and 

B ) is identically zero, the following relations hold: 
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between both systems . 

 

4.4.2 Lossy PCH systems 

 

As for the lossless case, a difference PCH system is defined in this section between two lossy 

PCH systems ( A  and B ), with respect to the power energies corresponding to the ports. The 

explicit form of the two lossy PCH systems A  and B , can be written as: 
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                        (4.121) 

The power energies corresponding to the storage port for this two systems, can be computed 

using (4.121) as follows: 
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(4.122) are zero due to the skew-symmetry of  
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For the control port power energy, we can write : 
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For the dissipation port power energy, it results ; 
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Summing up, the power energies of systems A  and B , from (4.122), (4.123) and (4.124), the 

total energy is conserved as follows: 
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                                      (4.125) 

where 
RA

P
CA

P
SA

P ,,  and 
BR

P
CB

P
BS

P ,,  are the power energies corresponding to the 

storage, control and dissipation ports of systems A and B . For the next step, we propose a 

lossy PCH  system, which has as power energies corresponding to the ports, the difference of 
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the power energies for systems A  and B . The difference of the power energies, 

corresponding to the storage port for systems A  and B  can be expressed as follows using  

(4.122): 
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where the notations: 
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have been adopted. The difference between the power energies corresponding to the control 

port, for  systems A  and B ,  using (4.123) is: 
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where the following notations: 
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were used. The difference between the power energies corresponding to the dissipation port, 

for systems A  and B , can be calculated using (4.124) as follows: 
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where the following notations were introduced: 
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Summing up the difference between the power energies of the storage, control and dissipation 

ports, from (4.126), (4.128) and (4.130) of systems A  and B , it results: 
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or: 

    0
~~~
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P                (4.133) 

From (4.132) or (4.133), it results that the total power energy for the difference PCH system 

of systems A  and B , is also conserved. An explicit form of the difference PCH system of 

systems A  and B , can be defined as:
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For the above difference lossy PCH system, it can be easily proved (see Apendix D.2), that 

the following relations hold: 
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between the difference of the power energies of two lossy PCH systems ( A and B ) and the 

power energies of the difference PCH system proposed  in (4.124).  

Remark: A complete proof of the basic properties which describe a PCH system, for the 

proposed difference PCH system from (4.134), can be found in Appendix D.2.  

Using the results presented above, we can formulate the following general definition, for the 

difference lossy PCH system, of two systems ( A  and B ), in rapport with the power energies 

of the ports. 

 

Definition 4.2 
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defined in (4.121), with respect to the power energies 
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corresponding to the ports, is another lossy Port-Controlled-Hamiltonian system 
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where: 
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 When the error between the continuous-time and discretized trajectory of the PCH systems  

( A  and B ) is identically zero, then the following relations hold, between the parameters: 
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between the parameters that describe both systems.  

 

4.5 Simulation examples 

 

This section presents a set of simulations to test the symplectic time-discretization schemes 

proposed in section 4.3 and also to analyze the discretization error Hamiltonian concept 

proposed in section 4.4. As PCH systems examples, were considered two linear systems, 

given by an LC circuit and a capacitor microphone circuit, respectively for the lossless and 

lossy cases.  

 

4.5.1 Lossless PCH systems 

 

For the first symplectic time-discretization scheme proposed in section 4.3.1, that uses the 

explicit Euler rule for the flows and the implicit Euler rule for the efforts, it was selected a 

sampling time 005.0 t , a horizon length 40N  and a sinusoidal type of the input. The 

output response of the continuous-time/discrete-time LC circuit, can be seen in the following 

figure, together with the time-discretization error. 
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Figure 4.2. a) Output response of the continuous-time (green) /discrete-time (red) LC circuit 

b) Time-discretization error (gray) 

 

From Figure 4.2.b, it can be observed that the time-discretization error between the 

continuous-time and discrete-time system outputs, has an amplitude of evolution smaller than 

0001.0 . In the next figure, the power energies of the storage and control ports will be 

represented for the continuous-time/discrete-time systems and also for the discretization error 

Hamiltonian system. 

   

Figure 4.3. a) Power energies representation for the continuous-time (storage (green) and control (magenta) 

ports) and discrete-time (storage (red) and control (blue) ports) systems. b) Power energies representation for the 

storage (red) and control (blue) ports of the discretization error Hamiltonian system. 

 

From Figure 4.3.a, and Figure 4.3.b, it can be observed that the power conservation law of 

PCH systems is satisfied for the continuous-time/discrete-time systems (green line) and also 

for the discretization error Hamiltonian system, as the storage and control ports have 

opposite power energies values at each time-step in rapport with zero.  

Remark: The discretization error Hamiltonian for the selected time-discretization scheme, 

has power port energies with maximum magnitute of order 8
105


 , which is very small as 

compared to the continuous-time/discrete-time power port energies. 

For the second symplectic time-discretization scheme, the system output representation of the 

continuous-time/discrete-time systems and time-discretization error, is given in Figure 4.4. 
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Figure 4.4. a) Output response of the continuous-time/discrete-time LC circuit  

(green/red) b) Discretization error (gray). 

 

From Figure 4.4.b) we observe that the time-discretization error amplitute is smaller than 

0001.0 and has a similar form to the first symplectic time-discretization scheme. The following 

figure represents the power energies for the continuous-time/discrete-time systems and 

discretization error Hamiltonian. 

 

Figure 4.5 a) Power energies representation for the continuous-time (storage (green) and control (magenta) ports) 

and discrete-time (storage (red) and control (blue) ports) systems. b) Power energies representation for the 

storage (red) and control (blue) ports of the discretization error Hamiltonian system. 

 

Similarly to the previous symplectic time-discretization scheme, the discrete-time 

Hamiltonian system and discretization error Hamiltonian satisfy the power conservation law 

of PCH systems. For the third symplectic time-discretization scheme, the system outputs and 

time-discretization error representation is given in Figure 4.6. 

 

Figure 4.6. a) Output response of the continuous-time/discrete-time LC circuit  

(green/red). b) Discretization error (gray). 

 

From Figure 4.6.b the time-discretization error maximum amplitude of the system output is 

00019.0 , which is bigger as compared to the previous time-discretization schemes.  
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Remark: The big time-discretization error amplitudes obtained with this scheme, are due to 

the high errors in the first steps, as the outputs are expressed by means of the states, which 

propagate the errors over time, using recursive relations. 

The power energy representation of the continuous-time/discrete-time systems and 

discretization error Hamiltonian are given in Figure 4.7. 

 

Figure 4.7 a) Power energies representation for the continuous-time (storage (green) and control (magenta) ports) 

and  discrete-time (storage (red) and control (blue)) systems b) Power energies representation for the storage 

(red) and control (blue) ports of the discretization error Hamiltonian system. 

As for the previous cases, the discrete-time Hamiltonian system and discretization error 

Hamiltonian satisfy the power conservation law, which defines PCH systems.  

Remark: In order to perform a good time-discretization of a PCH system, the input selection 

is important. When selecting a non-constant input over a sampling-time interval, the 

discretized power energies and discretization error Hamiltonian might not give correct 

results (mainly for the storage and control ports), as the power energies are mathematically 

expressed as products between discrete-time flows and efforts, while for the output response 

the results might still be appropriate, with convergence satisfaction. 

In order to make a good distinction between the time-discretization schemes, the logarithm 

representation is performed in Figure 4.8, between the discretization error  and number of 

steps ( N ) for a time-step 0005.0 t and a time-interval s
S

t 5 . 

 

Figure 4.8. Logarithm of the maximum error and number of steps ( N ) for the system output: 

:green – symplectic scheme I, red- symplectic scheme II, 

black- symplectic scheme III. 
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From Figure 4.8, it is obvious that the least performant symplectic time-discretization scheme 

for an increasing number of steps ( N ), is the first one (green), which is a first order scheme 

(  t ) with a logarithm of the error between 2  and 6.2 . For the second and third time-

discretization schemes, which are in fact of second order type ( 









2
tO ), we observe 

improved results with an increasing number of steps ( N ), with a logarithm of the error that 

tends to 5  for the second scheme. For a small number of steps ( 10N ), the second time-

discretization method still performs better as compared to the other two, the third one being 

the least performant.  

Remark: From Figure 4.6 and 4.8, we observe that the third time-discretization scheme is 

not recommended to be used for a small number of steps ( N ), due to big discretization 

errors. 

In the next Figure, we also represent the logarithm of the error in rapport with the number of 

steps ( N ) for the power energies. 

 
Figure 4.9. Logarithm of the maximum error and number of steps ( N ) for the 

power energies: red – symplectic scheme I, magenta – symplectic scheme II, 

blue –symplectic scheme III. 

 

Similarly to the output response case, the second order scheme obtains improved 

performances as compared to the other two, while the first one which is a first order type  

(  tO  ), is less performant. In Figure 4.10 the second scheme is represented separately, to 

have a better view of the result. 

 
Figure 4.10. Logarithm of the maximum error and number of steps ( N )  

for the power energies of symplectic scheme II. 
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Remark: From the selected time-discretization schemes, the second one which is of order two 

type ( 









2
t ) is recommended to be used for time-discretization as compared to the other 

two, due to its good performances on the output and power energies time-discretization  

(see Figure 4.8 and 4.9). 

 

4.5.2 Lossy PCH systems 

 

For the lossy case, the time-discretization of the capacitor microphone circuit is performed 

using 3000N steps, a sampling time 005.0 t and a sinusoidal type of the input signal. For 

the first symplectic time-discretization scheme, the system outputs response in continuous-

time/discrete-time and time-discretization error, are represented in Figure 4.11. 

 

    
 
Figure 4.11. a) Output responses of the continuous-time/discrete-time capacitor microphone circuit, represented 

with green/red (
1

y ) and magenta/blue (
2

y ). b) Discretization error represented with black (
1

y )  

and gray (
2

y ). 

 

Figure 4.11.b shows that the time-discretization error evolution of the first system output is in 

the range 0036.0 and 0006.0 , having a similar sinusoidal behavior as the first output does. 

In the following Figure, the power energies of the continuous-time/discrete-time systems and 

discretization error Hamiltonian are represented. 

 
Figure 4.12. a) Power energy representation for the storage/control/dissipation ports of the continuous-time 

(black – storage port power energy, magenta- control port power energy, cyan – dissipation port power energy, 

gray-sum of power energies)/discrete-time systems (red-storage port power energy, blue – control port power 

energy, green – dissipation port power energy) b) Power energy representation of the discretization error 

Hamiltonian (green- storage port, blue – control port, magenta – dissipation port, gray – sum of  power 

energies). 

As this figure reflects, the power conservation law is satisfied for the continuous-

time/discrete-time Hamiltonian systems and discretization error Hamiltonian for the selected 
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discretization scheme. As Figure 4.12.b shows, we observe that the discretization error 

Hamiltonian has the same form for the power energies as the continuous-time system, with 

bounded errors in the range 021.0,02.0 . For the second symplectic time-discretization 

scheme, the system outputs representation of the continuous-time/discrete-time systems, can 

be seen in the next figure. 

    

Figure 4.13. a) Output responses of the continuous-time/discrete-time capacitor microphone circuit, represented 

with green/red (
1

y ) and magenta/blue (
2

y ). b) Discretization error represented with black (
1

y )  

and gray (
2

y ). 

From Figure 4.13.b, we observe that the time-discretization error between the continuous-

time/discrete-time systems of 
1

y , is smaller in modulus as compared to the first symplectic 

scheme, having a domain of variation between 0017.0 and 00255.0 . The power energy 

representation of the continuous-time/discrete-time systems and discretization error 

Hamiltonian can be seen in Figure 4.14. 

 

Figure 4.14. a) Power energy representation for the storage/control/dissipation ports of the continuous-time 

(black – storage port power energy, magenta- control port power energy, cyan – dissipation port power energy, 

gray-sum of power energies)/discrete-time systems (red-storage port power energy, blue – control port power 

energy, green – dissipation port power energy) b) Power energy representation of the discretization error 

Hamiltonian (green- storage port, blue – control port, magenta – dissipation port, gray – sum of power energies). 

 

Similarly to the previous symplectic discretization scheme, the power conservation law is 

satisfied for both the continuous-time/discrete-time Hamiltonian systems and discretization 

error Hamiltonian.  

Remark: As compared to the first symplectic time-discretization scheme, the discretization 

error Hamiltonian of this scheme, has much smaller power energies bounded between 
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008.0,008.0  due to the second order rule type ( 









2
t ) method  selected for time-

discretization. 

For the third symplectic time-discretization scheme, the outputs response for the continuous-

time/discrete-time systems and time-discretization error are given in Figure 4.15. 

   

Figure 4.15. a) Output responses of the continuous-time/discrete-time capacitor microphone circuit, represented 

with green/red (
1

y ) and magenta/blue (
2

y ) b) Discretization error represented with black (
1

y )  

and gray (
2

y ). 

 

From Figure 4.15.b, we observe that the domain of variation for the time-discretization error 

is between  004.0 and 004.0 , which makes it less performant as compared to the other two 

schemes, for the selected parameters. The following figure represents the power energies of 

the continuous-time and discrete-time systems.  

 

Figure 4.16. a) Power energy representation for the storage/control/dissipation ports of the continuous-time 

(black – storage port power energy, magenta- control port power energy, cyan – dissipation port power 

energy)/discrete-time system(red-storage port power energy, blue – control port power energy, green – 

dissipation port power energy) b) Power conservation law of the discrete-time system. 

 

In Figure 4.16.b we can observe that in this case, the power conservation law is not satisfied, 

but also on Figure 4.16.a, given by the dark regions on the power conservation law (gray), 

which are non-zero  for the discrete-time system. 

Remark: The power conservation law is not satisfied with this time-discretization scheme as 

(4.30) from the general framework, doesn’t hold for this scheme. Thus the selection of this 

time-discretization scheme is not recommended for lossy PCH systems time-discretization. 
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In order to make a comparison on the accuracy of the three symplectic time-discretization 

schemes for the capacitor microphone circuit, in the following figure is represented the 

logarithm between the error and number of steps ( N ), for the system output (
1

y ) for a time-

step 0005.0 t  and time-interval s
S

t 5 . 

 

Figure 4.17. Logarithm of the maximum error and number of steps ( N )  

                                 for the system output (
1

y ): green – symplectic scheme I,  

red- symplectic scheme II, black- symplectic scheme III. 

 

As for the lossless case, we observe that the first symplectic time-discretization scheme is less 

performant as compared to the other two, as it is of first order (  t ) and the others of 

second order (  2t ), shown in the graphic by the slopes. Also for a small number of steps  

( 10N ), the second symplectic time-discretization scheme performs better when compared 

to the other two. In the following figure, is checked the accuracy of the symplectic time-

discretization methods for the power energies, by logarithm representation of the error versus 

number of steps ( N ) for a time-step ( 0005.0 t ) and time interval s
S

t 5 . 

 

   Figure 4.18. Logarithm  of the maximum error and number of steps (N) for  

 the storage, control and dissipation port power energies: scheme I - green, 

       red,black;scheme II – blue, magenta,cyan; scheme III –dark magenta, gray,  

                                dark yellow. 
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As Figure 4.18 shows, it is obvious that the second time-discretization scheme performs better 

as compared to the other two, with bigger accuracy (slopes) for the storage, control or 

dissipation ports. Also for a small number of steps ( 10N ) the second time-discretization 

scheme is still better compared to the other two on each port.  

Remark: For each symplectic time-discretization scheme, the storage and dissipation port 

power energies slopes almost coincide, as for each time-discretization scheme, the control 

port power energy has a small (neglijable) influence on the result (see the general relations 

from section 4.3.2). For the selected symplectic time-discretization schemes examples, the 

second one is recommended to be used with linear PCH systems in the lossless or lossy case, 

due to its high accuracy.  

 

 

Conclusions 

 

This chapter treated an actual and necessary issue in control engineering, that of PCH  

systems structural preserving  time-discretization. A general time-discretization framework 

was first proposed for the nonlinear PCH systems using a combined time-discretization 

concept for the flows and efforts. General conditions were derivated to satisfy the power 

conservation law in discrete-time and for the rest of PCH systems structure (energy, bilinear 

form, implicit form). The necessary conditions proposed in the nonlinear case, were derivated 

also in the linear one, to be used later for symplectic time-discretization examples. A set of 

symplectic time-discretization schemes were proposed, using distinct time-discretization rules 

for the flows and efforts. For the combined symplectic time-discretization concept proposed 

in this chapter, four representative time-discretization rules were selected to be used as 

examples: explicit Euler rule, implicit Euler rule, implicit mid-point rule and implicit 

trapezoidal rule. For each symplectic time-discretization scheme, the basic properties of PCH 

systems were checked and proved, writing the power conservation law, the bilinear power 

form together with the implicit and explicit realizations of the discrete-time PCH system. 

Performing all of these steps, it was proved that for the linear lossless case, all the selected 

schemes are symplectic (i.e. structure preserving), as  the only relation to be satisfied always 

holds. For the linear lossy case, the power conservation law necessary conditions does not 

always hold and thus, the PCH structure might loss it’s symplecticity by time-discretization. 

Section 4.4 introduced a new concept to differentiate two PCH systems, with respect to the 

power energies corresponding to the ports. Particularly we can associate this formulation, 

with the difference between the continuous-time and discrete-time PCH systems. Thus a 

discretization error Hamiltonian system was introduced as the difference between the 

continuous-time and discrete-time PCH systems. Some simulation examples are presented for 

the lossless and lossy cases, using two linear PCH systems given by an LC circuit and a 

capacitor microphone circuit in section 4.5, to underline the performances of the symplectic 

time-discretization schemes or discretization error Hamiltonian system. The symplectic 

discretization techniques proposed in this chapter, can be further extended for several control 

strategies of PCH systems, were high performances are necessary. 
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5. State-space identification of PCH systems 

 

In this chapter an analysis of Port Controlled Hamiltonian systems identification is proposed 

using classic state-space techniques known in the literature in the deterministic case. The 

analysis is performed using the most simple symplectic time-discretization scheme which 

makes use of the Euler explicit and implicit rules for the flows and efforts and results in a 

discrete state space realization, similar to the “classic” one.  

For the deterministic case, a power energy approach is proposed, which makes use of the 

power conservation law. Using ortogonal/oblique projections gives the possibility to 

determine three different but equivalent realizations (corresponding to the control, storage 

and dissipation ports) for the system. As an example for this analysis a DC motor model is 

selected, to perform the identification simulations. 

 

5.1 Introduction 

 

Subspace identification algorithms are based on concepts from system theory, linear algebra 

or statistics [107]. The main  conceptual novelties in subspace identification algorithms are: 

the state of the system is central when speaking of system identification as compared to the 

classical approaches, which uses an input/output context; the subspace system identification 

approach is based on concepts and algorithms from numerical linear algebra (QR 

decomposition, SVD decomposition and its generalizations, together with angles between 

subspaces); the subspace identification approach offers a geometric framework, where 

different models are treated in a unified manner; the theoretical concepts translates into user-

friendly software implementations (there is no explicit need for parameterizations and thus no 

highly technical and theoretical issues for the user, like canonical parameterizations). As 

compared to the classical approaches, some of the main points introduced by subspace 

identification algorithms are:  

- Parametrizations: The subspace identification approach makes use only of the  system 

order. With classical approaches, a part of the research was concentrated on canonical 

models (Ex: uncontrollable or observable canonical forms with minimal number of 

parameters) [107,164-170]. The main drawbacks of this approach are: they can lead to 

numerically ill-conditioned problems, with results sensitive to small perturbations; 

there is a need to overlap the parametrizations, since none of the existing ones will 

cover all dynamic systems; in practice minimal state-space models are desirable. In 

case of uncontrollable but observable modes, special parametrizations are necessary. 

All of these problems are eliminated in case of the subspace identification approach. 

- Convergence: Subspace identification algorithms are faster than the classical 

approach, as they are not iterative and no convergence issues exist. Thus the lack of 

convergence, slow convergence or numerical instability are eliminated. 

- Model reduction: In subspace identification, the reduced model of the dynamic 

system results directly from input/output data, without having to compute in advance 

the high-order model. 

Subspace identification algorithms represent the input-state-output generalizations of the 

classical theory of the seventies, which used impulse responses for state-space 
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identification [107,171-179]. Some research results of influence can be found in [107,180-

185] and for the combined deterministic-stochastic problem in [107,118,186,187,188]. 

 

5.2 Deterministic identification  

 
In this section we recall some theoretical notions useful in the deterministic state-space 

identification analysis of PCH systems, using time-discretization schemes developed in 

chapter 4. The subspace identification of purely deterministic systems, with no measurement 

nor process noise ( 0
k

w
k

v ) represents the ideal state-space identification case with no 

perturbations. This form of identification was introduced only as an academic issue, to be 

used for the identification of the system parameters [107]. Deterministic subspace 

identification algorithms, represent a class of algorithms used to compute the state-space 

models on the basis of input/output data. Further we will formulate the deterministic 

identification problem, which will be used also for PCH systems identification. 

 

Deterministic identification problem [107]: 

 

Given: s measurements of the input m
R

k
u   and output l

R
k

y  generated by the unknown 

deterministic system of order n : 

     

k
Du

d

k
Cx

k
y

k
Bu

d

k
Ax

d

k
x




1       (5.1) 

Determine:  

- The order n of the unknown system; 

- The system matrices nxn
RA  , nxm

RB  , lxn
RC   (up to within a similarity 

transformation); 

Remark: The above classic state-space system identification problem will be adapted and 

used for PCH system formulation using a proper time-discretization scheme from chapter 4. 

 

In the literature [107-118], a series of techniques regarding deterministic state-space 

identification have been developed. In the following lines, some useful notations will be 

introduced for subspace identification algorithms of classic state-space systems. A central 

element in subspace identification algorithms are the Hankel matrices, constructed from 

input/output data. The input Hankel matrix has the following form: 
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where pU
 
stands for the past inputs and 

f
U for the future inputs. The number of block rows 

i , is a user-defined index, which should be at least as large as the system order, we want to 

identify. As the number of inputs is m , this matrix consists of mi2  rows, while the number of 

columns j represents the number of data samples used, equal to 12  is  [107].  Shifting one 

row the past inputs pU , we can define the matrices 
pU  and 

f
U , for the past and future 

inputs [107]. For instance we can write the input block Hankel matrix as: 
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which is useful in the computation of the oblique projections 
1i

O , future states d

i
X

1
, etc. 

Similarly with the inputs, are defined the output block Hankel matrices 


 f
YpY

f
YpY

i
Y ,,,,

12/0
. Using the Willems notation, it was introduced the Hankel matrix 

consisting of inputs and outputs as 
1/0 i

W : 
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When augmenting one row to the past inputs/outputs, we can define: 
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       (5.5)

 

Remark: The matrices presented above can be determined in different forms for each 

symplectic discretization scheme developed in chapter 4. The explicit/implicit Euler rules 

were selected for time-discretization of the flows and efforts throughout the chapter, for 

simplicity in computation and similarity with the classic approach [107]. 

The state sequences for subspace identification algorithms are defined as follows: 
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1              (5.6)
 

with i  representing the subscript of the first element of the state sequence. We also define the 

past states sequence by d
pX

 
and future states sequence by d

f
X . As the subspace 

identification algorithms make use of  observability and controllability concepts, we introduce 

the extended ( ni  ) observability matrix 
i

 defined as follows in the literature [107]: 

    lixn
R

i
CACAC

def

i



 







 1
...     (5.7) 
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where the pair  CA ,  is assumed observable. The reversed extended controllability matrix 

denoted as d

i
  is defined by: 

     
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



 
 BB

i
AB

i
A

def
d

i
...

21    (5.8) 

where the pair  BA ,  is assumed controllable. We also introduce the lower block triangular 

matrix d

i
H  as [107]: 
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In the following lines we will introduce the matrix input-output equations for classic state-

space systems, which is useful also for Port Controlled Hamiltonian systems identification. 

 

Matrix Input-Output equations 

pU
d
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              (5.10) 

Remark: The proof of this theorem can be easily determined from matrix relations using 

recursive relations. For the symplectic discretization schemes developed in chapter 4, this 

theorem can be adapted and proved for further analysis with state-space identification 

algorithms. 

Further we introduce a definition for the persistency of excitation of the input signal applied 

for state-space identification [107]. This notion is strongly connected with the identifiability 

analysis presented in the previous chapters, as good excitation signals give proper identified 

models. 

 

Definition (Persistency of excitation) 

 

The input sequence m
R

k
u   is persistently exciting of order i2 , if the input covariance 

matrix  

     
12/0

,
12/0 
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i

U
i

U

def
uu

R
              (5.11)

 

has full rank, which is mi2 . 

Remark: In the statistical theory, the covariance matrix  LG ,  of two matrices 
pxj

RG 

and 
qxj

RL  is defined as: 

      









T
LG

def

LG
j

E,               (5.12) 

where E represents the expectation operator and j  the length of the data series available. 

Further we introduce the projector operator 
L

 by [107]: 
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     L
T
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T

L

def

L




 






               (5.13) 

which projects the row space of  a matrix onto the row space of the matrix 
qxj

RL  , where 


 represents the Moore-Penrose pseudo-inverse of the matrix  . The orthogonal projection 

is defined in the literature [107] by: 
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and represents the projection of the row space of the matrix 
pxj

RG  on the row space of the 

matrix L . The matrix L  is bolded, as the result of the orthogonal projection lies in the row 

space of L  . We also introduce the operator: 

     





L
L G
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G /                (5.15) 

where 



L

is the geometric operator that projects the row space of a matrix onto the 

orthogonal complement of the row space of the matrix L . 



L

is defined by [107]: 
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Further we introduce the concept of oblique projection, by which the matrix G  can be 

decomposed as linear combinations of two non-orthogonal matrices ( L  and F ) and the 

orthogonal complement of L and F . We can think of the oblique projection as follows [110]: 

project the row space of G orthogonally on the joint row space of L and F ; decompose the 

result along the row space of F .  

The oblique projection is further introduced by the following corollary [107]: 

 

Corollary 1 Oblique projections 

 

The oblique projection of the row space of 
pxj

RG  along the row space of 
qxj

RL  on the  

row space of 
rxj

RF  can also be defined as: 
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The proof of this corollary follows by straight computations using the matrix inversion 

lemma: 
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starting from the definition of oblique projections: 

 

Definition 1 Oblique projections 

 

The oblique projection of the row space of 
pxj

RG  along the row space of 
qxj

RL  on the 

row space of 
rxj

RF   is defined as: 
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  F
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            (5.19) 

The concepts of orthogonal and oblique projections presented above, are necessary in the 

development of subspace identification algorithms and estimation of system parameters. 

Further we introduce the deterministic identification theorem for the classic state-space 

approach, useful for the state-space identification of PCH systems. Two important advantages 

of the deterministic identification theorem are: the state-sequence d

f
X  can be calculated using 

input-output data, without knowing the system matrices DCBA ,,, ; the extended 

observability matrix (
i

 ) can be determined directly from the input-output data. 

 

Theorem: Deterministic identification  

 

Under the assumtions that: 

1. The input 
k

u is persistently exciting of order i2   

2. The intersection of the row space of  fU
 
(future inputs) and the row space of d

pX

(past states) is empty. 

3.The user-defined weighting matrices lixli
RW 

1
 and 

jxj
RW 

2
are such that 

1
W  is of 

full rank and 
2

W  obeys:    
2

WpWrankpWrank  , where  pW
 
is the block Hankel 

matrix containing the past inputs and outputs and with 
i

O  defined as the oblique 

projection: 

     pf
U

f
Y

def

i
O W/      (1) 

       and the SVD decomposition: 

    



































T

V

T
VS

UUW
i

OW

2

1

00

0
1

2121
     (2) 

       we have: 

1. The matrix 
i

O
 
is equal to the product of the extended observability matrix and the 

states: 
d

f
X

ii
O        (3) 

2. The order of the system is equal to the number of singular values in (2) different from 

zero. 

3. The extended observability matrix 
i

 is equal to: 

TSUW
i

2/1

11
1

1


      (4) 

4. The part of the state sequence d

f
X

 
that lies in the column space of 

2
W  can be     

       recovered from: 

T
VSTW

d

f
X

1
2/1

1

1
12


     (5) 

5. The state sequence d

f
X  is equal to: 
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i
O

i
d

f
X 


       (6) 

Specific choices of the weighting matrices (
1

W  and 
2

W ) lead to different identification 

algorithms [107] and the choice of this weights determines the state-space basis in which the 

final model is obtained. The similarity transformation (T ) is introduced to make the 

recovered observability matrix (
i

 ) and state sequence ( d

f
X ) exactly equal to the original 

ones. Using different weighting matrices result in different observability and state space 

sequences matrices. Each set of results will lead to a set of system parameters ( CBA ,, ), 

equivalent up to a similarity transformation to the original (real) system. In (3) 
i

O  represents 

the oblique projection of the row space of the future outputs (
f

Y ) along the row space of the 

future inputs ( f
U ) on the row space of  pW  (past inputs pU  and outputs pY ) and can be 

determined to be equal to the product between the observability matrix (
i

 ) and the state-

sequence ( d

f
X ). Using the SVD decomposition it is computed the system order from the non-

zero singular values. Further are determined the state-sequences ( d

f
X ) and the extended 

observability matrix (
i

 ) as in (3), (4) and (5). A summary of this theorem, can be given by 

the following relations: 

    

 































































i
ecolumnspacpf

U
f

Yecolumnspac

d

f
Xrowspacepf

U
f

Yrowspace

npf
U

f
Yrank

W

W

W

/

/

/

            (5.20) 

From this summary, the resulting algorithms are called subspace algorithms, as they compute 

the system parameters ( CBA ,, ) as subspaces of projected data matrices. 

Remark: The proof of this theorem is straightforward from simple computations and can be 

found in extended form in [107]. The deterministic identification theorem formulated above 

can be developed also for the symplectic discretization schemes of chapter 4 (see Appendix 

F). In the deterministic identification algorithms, we will make use only of the most simple 

time-discretization scheme, which combines two first-order Euler rules for the flows and 

efforts. 

 

5.2.1 Deterministic identification algorithms 

 

In this section we will briefly present two deterministic identification algorithms known from 

the literature and applied for classic state-space identification systems [107]. We have 

considered this two algorithms from the following reasons: they have the same state-space 

structure with PCH systems; they both make use of the deterministic identification theorem 

presented previously; they are simple to understand and implement for the user. A first class 

of algorithms are the intersection algorithms [107, 109-116, 192], where the row space of the 
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state sequence d

f
X  is computed as the intersection between the row space of the past inputs 

and outputs and the row space of the future inputs and outputs: 

    

























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







f
Y

f
U

rowspace

pY

pU
rowspace

d

f
rowspaceX             (5.21) 

Different ways to compute the intersection have been developed, from which a first way 

makes use of a SVD decomposition [114,115, 116] of the Hankel matrix 
T

i
Y

i
U 









 12,0
,

12,0

, while a second way [109, 112] is by using as basis of the intersection, the principal 

directions between the row space of the past inputs-outputs and the row space of the future 

inputs-outputs. In the literature [108,109, 117, 118,189] projection algorithms have also been 

developed, for which, we remark that the system order and extended observability matrix can 

be determined from a SVD decomposition. Further we introduce two deterministic 

identification algorithms, which will be applied and tested for PCH system state-space 

identification, using a  simple time-discretization scheme. 

 

Deterministic algorithm I [107] 

 

1. Calculate the oblique projections: 

pW
f

U
f

Y
i

O /                (5.22) 




 pW
f

U
f

Y
i

O /
1

               (5.23) 

2. Calculate the SVD of the weighted oblique projection: 

T
USVW

i
OW 

21
               (5.24) 

3. Determine the order by inspecting the singular values in S and partition the SVD 

accordingly to obtain 
1

U and 
1

S . 

4. Determine 
i

  and 
1


i

 as: 

1
1

1
UW

i


 , 
ii





1

               (5.25) 

5. Determine d

i
X and d

i
X

1
as: 

i
O

i
d

i
X


 , 

111 




 i

O
i

d

i
X               (5.26) 

6. Solve the set of linear equations for CBA ,, and D : 
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1               (5.27) 

The current algorithm makes use of the following steps from the deterministic identification 

theorem: the order of the system from inspection of the singular values; the extended 

observability matrix 
i

 ; the state sequence d

f
X

d
i

X  . This algorithm determines the system 
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parameters ( DCBA ,,, ) by using the oblique projections 
i

O
i

O ,
1

 and determining the 

extended observability matrices 
ii




 ,
1

 and system-states d

i
X

d

i
X

1
,


.  

 

Deterministic algorithm II [107] 

 

1. Calculate the oblique projection: 

P
W

f
U

f
Y

i
O /               (5.28) 

2. Calculate the SVD of the weighted projection: 

TUSVWiOW 21               (5.29) 

3. Determine the order by inspecting the singular values in S and partition the SVD 

accordingly to obtain 
2

,
1

UU and 
1

S . 

4. Determine 
i

 and 


i
as: 

2/1
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i
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12
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U

i
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
               (5.30) 

5. Determine A  from 
i

  as 
ii

A 


 . 

6.  Determine C as the first l  rows of 
i

 . 

with: 
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             (5.31) 

7. Solve B and D  from: 
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            (5.32) 

The current algorithm makes use of the deterministic identification theorem to determine: the 

system order from singular value inspection; the extended observability matrix 
i

 . As 

compared to the first algorithm, the second one determines separately the matrices CA , from 

the matrices DB , .  

 

5.2.2 Matrix I/O representation of symplectic discretization schemes  

 

This section will prove, that discrete-time PCH systems can be written by means of a matrix 

input/output representation [107], for a simple time-discretization scheme, that makes use of 

Euler discretization rules for the flows and efforts.  

Remark: A complete analysis for the proposed time-discretization schemes of chapter 4, can 

be found in Appendix F using matrix I/O representations, orthogonal or oblique projections. 
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Further we consider a simple time-discretization scheme that assumes an explicit Euler rule 

for the flows and an implicit Euler rule for the efforts. Applying this time-discretization 

scheme, starting from the general relations formulated in chapter 4, we can express the 

discrete-time form of  the state-space system as follows: 














k
Cx

k
y

k
uB

k
xA

k
x

1                            (5.33) 

where the following notations have been adopted: 
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Q
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B
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C

BT

def

B

ATI

def

A

                (5.34) 

Remark: Even if the state-space structure from (5.33) is the same with the classic state-space 

approach [107], the performed results are different. These differences come from the 

discretization methodology used, which gives different state-space matrices (see 5.34). 

In the above relation lxn
RC

nxm
RB

nxn
RA  ,,  represent the matrices of the initial 

continuous-time PCH system. Computing the states and outputs for 1k , we obtain: 
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For 2k , it results: 
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For 3k , it results: 
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              (5.37) 

Adopting the notations: 
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we can deduce the following general form for the future states, using also (5.35), (5.36), 

(5.37) and (5.38): 

     pU
d
i

d
pX

i
A

d
i

X
d

f
X                (5.39) 

where 
0

X
d
pX 

 
represents the initial state (past state). Adopting the notations: 
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where 
i


 
is the extended observability matrix and d

i
H  the lower block triangular Toeplitz 

matrix, we can write the following general relations: 
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for the past and  future output vectors. The vector of the past and future inputs and outputs are 

denoted as follows: 
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Using  (5.39) and (5.41) we can write the following matrix input-output equations: 
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                (5.43) 

which has the same structure as for the classic state-space systems [107]. 

 
Remark:  

The matrix input-output equations (5.43), of this symplectic time-discretization scheme, are 

similar as form to the classic state-space systems used with subspace identification algorithms 

(see [107]). Following the same steps of the deterministic identification theorem formulated 

for classic state-space systems, we can also prove the results for the current symplectic time-

discretization scheme. 
 

5.2.3 Simulations and discussion  

 
In this section, we will perform a set of simulations using the deterministic identification 

algorithms described in section 5.2.1 using the time-discretization scheme presented in 5.2.2, 

which has a similar form to the classic one [107]. The simulations are performed on a lossy 

PCH system represented by a DC motor, presented in chapter 1 (see section 1.3.7.2). For the 
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first example we will consider the DC motor with a white noise sequence as input signal, 

generated by software, a horizon length ( 50j ) and a time interval st
S

10 . In the first figure 

is represented the output response of the real and estimated systems for the selected 

parameters. 

 

 
Figure 5.1. Output response of the real (green), estimated (red) and error (blue) 

for the deterministic algorithm I. 

 

In Figure 5.1 the output responses of the real and estimated systems are ilustrated, and as was 

expected for the case with no perturbations, the estimation errors are almost null, excepting 

the first identification steps. In the following figures, we will make a representation also for 

the power port energies to prove the symplecticity of the PCH system by identification.  

Remark: The power port energies representation for the identification algorithms of this 

chapter, is introduced as a consequence of the structural identifiability concepts proposed in  

chapter 2, but also to prove the power conservation law, when performing the system 

identification. Thus by system identification are obtained equivalent state-space models given 

by ( eCeBeA ,, ), which approximate the real state-space system given by  CBA ,, . 

For the control port, the power energy representation of the real and estimated systems, is 

given in the following figure. 

 
Figure 5.2. Control port power energy representation of the real (green),  

estimated (red) and error (blue) for the deterministic algorithm I. 

 

From this figure we observe that the estimation of the control port power energy is almost 

perfect for this deterministic algorithm, with an error almost zero on the time-interval. 

For the dissipation port, the power energy representation of the real and estimated systems is 

drawn in Figure 5.3. 
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Figure 5.3. Dissipation port power energy representation of the real (green),  

estimated (red) and error (blue) for the deterministic algorithm I. 

 

As Figure 5.3 shows, the estimated error on the time-interval is almost zero, excepting the 

first steps of estimation. For the storage port power energy, the real and estimated responses, 

can be seen in Figure 5.4. 

 

 
Figure 5.4. Storage port power energy representation of the real (green),  

estimated (red) and error (blue) for the deterministic algorithm I. 

As expected, the power energy responses of the real and estimated systems, have a very good 

fit on the time-interval, excepting the initial estimation steps. In the following figure, is 

analysed the preservation of the power conservation law for the estimated system. 

 
Figure 5.5. Estimated system port energies (green – storage port, red –control port,  

blue-dissipation port) and power conservation law (black) for deterministic algorithm I. 
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From Figure 5.5, the power  conservation law of the estimated system is thus satisfied, which 

makes it an equivalent PCH system of the real system, that satisfies the basic properties. 

Remark: The estimated system represents an equivalent PCH system, obtained by applying a 

non-singular transformation matrix ( nxn
RT  ) to the real one and was proved in chapter 2 

to preserve Hamiltonian properties. 

For the second deterministic algorithm, we will consider the same scenario as for the first 

deterministic algorithm. Thus we consider a scenario with a horizon length ( 50j ) and a 

time-interval s
S

t 10 . In the following figure, we represent the fitness between the output 

response of the real and estimated systems. 

 
Figure 5.6. Output response of the real (green), estimated (red) and error (blue) 

for the deterministic algorithm II. 

 

As expected, the fitness between the real and estimated output responses of the DC motor is 

almost perfect in the deterministic case, with errors close to zero as the blue line shows. For 

the control port, the fitness analysis of the real and estimated systems, is performed in the 

following figure. 

 
Figure 5.7. Control port power energy representation of the real (green),  

estimated (red) and error (blue) for the deterministic algorithm II. 

 

From Figure 5.7 we observe a very good estimation of the real system control port power 

energy, with errors that are close to zero on the time-interval. For the dissipation port, the 

fitness analysis performed for this algorithm, can be found in the following figure. 
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Figure 5.8. Dissipation port power energy representation of the real (green),  

estimated (red) and error (blue) for the deterministic algorithm II. 

 

Acording to Figure 5.8, the estimated error between the real and estimated dissipation port 

power energy is almost zero, with higher errors on the first steps of the algorithm. For the 

storage port power energy, the fitness test analysis is ilustrated in the following figure. 

 

 
Figure 5.9. Storage port power energy representation of the real (green),  

estimated (red) and error (blue) for the deterministic algorithm II. 

 

As this graphic shows, the fitness of the real and estimated storage port power energy is 

almost perfect, with the exception of the first estimation steps. In the next figure, the 

preservation of the power conservation law is performed for the estimated model.  
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Figure 5.10. Estimated system power port energies (green – storage port, red –control port,  

blue-dissipation port) and power conservation law (black) for deterministic algorithm II. 

 

As Figure 5.10 shows, the power conservation law is satisfied, preserving thus the basic 

properties of PCH systems for the selected scenario. 

Remark: The results obtained with the deterministic identification algorithms for the DC 

motor model are similar as expected, with an almost perfect fit between the real and 

estimated parameters due to the absence of the perturbations. 

 

5.3 Power energy approach 

 

In this section it is proposed a power energy context for the deterministic identification of 

PCH systems in the general lossy case. The lossless case can be determined easily from the 

results. This section is in direct relation with the results on structural identifiability proposed 

in chapter 2 section 2.5, were we have defined the global/local identifiability or global/local 

port identifiability by means of the port energies. The current context makes use of the 

subspace identification approach to estimate  the real system parameters from known inputs 

and power port energies. Thus we will formulate and prove a specific power energy 

deterministic identification theorem and propose an algorithm to demonstrate by simulation 

the results. 

 

5.3.1 Deterministic identification  

 

This section formulates the power energy deterministic identification context, together with a 

specific theorem completely proved. 

Given: s  measurements of the input m
R

k
u   and power port energies      k

R
Pk

S
Pk

C
P ,,

generated by the unknown deterministic system of order : 

     
d

k
xC

k
y

k
uB

d

k
xA

d

k
x




1

               (5.44) 

Determine:  

- The order n  of the unknown system; 

n
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- The system matrices lxn
RC

nxm
RB

nxn
RA  ,, , up to within a similarity 

transformation ( nxn
RT  ); 

 

 

Remark: At least two power port energies must be known, in order to perform this 

deterministic identification approach in the lossy case, as we make use of the power 

conservation law.  

On this deterministic identification approach, we make use of the power conservation law, in 

which case we can consider the control port states as the sum between the storage and 

dissipation port states, as follows: 

     
PR

W
P

L
PS

W
P

L
d

fC
X                (5.45) 

where we define the storage and dissipation states by: 

     



















PR
W

P
L

def
d

fR
X

PS
W

P
L

def
d

fS
X

               (5.46) 

Remark: The states d

f
X in the classic approach can be written as 

P
W

P
L

d

f
X  , where 










 





i
i

A
d
i

H
i

i
A

d
iP

L  (see 107]). 

and thus, we can also define: 

     d

fR
X

d

fS
X

def
d

fC
X                (5.47) 

Further we write the future outputs on the control port as: 

     
f

U
d

i
H

PR
W

PS
W

P
L

ifC
Y                (5.48) 

Making use of the control port power energy relation ( u
T

y
C

P  ), we can write: 

      
T

f
U

Cf
P

fC
Y 







 
                          (5.49) 

Remark: 
f

U  is the Moore-Penrose pseudo-inverse of the future inputs matrix applied to the 

dynamic system. 

(5.49) is also equivalent to: 

     
T

f
U

RF
P

SF
P

fC
Y 







 
                (5.50) 

using the power conservation law.We define further the future outputs corresponding to the 

storage and dissipation ports, as: 

    







































T

f
U

RF
P

def

fR
Y

T

f
U

SF
P

def

fS
Y

               (5.51) 
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Remark: Similarly to the classic case, we can define the past/future power energies or system 

outputs corresponding to each port. 

Multiplying in (5.48) with the orthogonal projection (




f
U

)of the future inputs, we get: 

     






f

U
PR

W
PS

W
P

L
if

U
fR

Y
f

U
fS

Y ///              (5.52) 

Multiplying to the right with the pseudo-inverse matrix  



 









f
U

PR
W

PS
W / , we get: 

   
P

L
if

U
PR

W
PS

W
f

U
fR

Y
f

U
PR

W
PS

W
f

U
fS

Y 















































////             (5.53) 

Again we can multiply to the right with 
PR

W
PS

W  : 

   

     
PR

W
PS

W
P

L
iPR

W
PS

W
f

U
PR

W
PS

W
f

U
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Y
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W
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W

f
U
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W
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W

f
U

fS
Y





















































//

//

            (5.54) 

We observe that to the left part we can split in two oblique projections corresponding to the 

storage and dissipation ports, defined as: 

    
 

 

















PRPSf
U

fR
Y

def

iR
O

PRPSf
U

fS
Y

def

iS
O

WW

WW

/

/

              (5.55) 

Then it results: 

     
PR

W
PS

W
P

L
iiR

O
iS

O                (5.56) 

(5.55) can be also written as: 

   

 

 


















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

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
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f
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f
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T

f
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Sf
P

iS
O

/

/

              (5.57) 

using the future inputs and power energies. Further we can define the oblique projections 

corresponding to the storage and dissipation ports as: 

    


















PR
W

P
L

iC

def

iR
O

PS
W

P
L

iC

def

iS
O

                (5.58) 

Using (5.46), we can write further: 

     


















d

fR
X

iCiR
O

d

fS
X

iCiS
O

               (5.59) 

Remark: The oblique projection corresponding to the sum 
iR

O
iS

O  , is defined as the 

oblique projection corresponding to the control port: 
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iR

O
iS

O

def

iC
O                (5.60) 

Performing the SVD decomposition of 
iC

O  as in the classic case, we can write: 

      
2121

W
iR

O
iS

OWW
iC

OW               (5.61) 

This can be split as: 

    
212121

W
iR

OWW
iS

OWW
iC

OW               (5.62) 

Then it results: 

    T
C

V
C

S
C

U
T
R

V
R

S
R

U
T
S

V
S

S
S

UW
iC

OW 
21

            (5.63) 

by SVD decomposition on each port oblique projection. 
2

,
1

WW are weighting matrices such 

that 
1

W is of full rank and    
2

WpWrankpWrank   [107]. 

Remark: We have denoted 
S

V
S

S
S

U ,, , 
R

V
R

S
R

U ,,  and 
C

V
C

S
C

U ,,  as the matrix 

elements corresponding to the SVD decomposition of the storage, dissipation and control 

ports oblique projections (
iC

O
iR

O
iS

O ,, ).  We can thus inspect the singular values 

contribution for the storage, control or dissipation ports, to determine the dynamic system 

degree and recover the system parameters. 

For the control port we can write the SVD decomposition as: 

   T
C

V
C

S
C

UW
d

fR
X

d

fS
X

iC
W  











21
               (5.64) 

We can split this relation as follows: 

    



















T
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V
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S
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TW
d

fC
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C
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C
S

C
U

iC
W

2/11
2

2/1
1

               (5.65) 

Remark: We have denoted the extended observability matrix 
i

  as 
iC

  corresponding to the 

control port power energy. Similarly we define the storage and dissipation port observability 

matrices as 
iRiS

 , . 

For the storage port oblique projection 
iS

O , we can write: 

     T
S

V
S

S
S

UW
d

fS
X

iS
W 

21
             (5.66) 

which can be also split in: 

     



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
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


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T
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V
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S
S
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d
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S
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S
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S
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W

2/11
2

2/1
1

              (5.67) 

Similarly we can write for the dissipation port oblique projection, the SVD decomposition: 

      T
R

V
T
R

S
R

UW
d

fR
X

iR
W 

21
             (5.68) 

This can be split in: 
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












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W
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1

              (5.69) 

Remark: The similarity transformation matrices corresponding to the control, storage or 

dissipation ports are denoted by 
R

T
S

T
C

T ,, , as they can be in different space dimension, as 

will be shown also by simulation. 

Further we define the state vectors on each port, corresponding to the control port SVD 

decomposition as: 

     

























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
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
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d
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X

               (5.70) 

For the storage port power energy, the state vector sequences can be defined as: 

      












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


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fSS
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d
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              (5.71) 

For the dissipation port power energy, the state vector sequences are defined as: 

      






















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
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O
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def
d
fRC

X

              (5.72) 

We have denoted the state vector sequences corresponding to each port differently for each 

SVD decomposition. Further we define a specific deterministic identification theorem for the 

power energy approach. 

 

Theorem: Deterministic identification (power energy approach) 

 

We consider the initial assumptions: 

1. The input is persistently exciting of order i2  

2. The intersection of the row space of 
f

U (future inputs) and the row space of d
pX (past 

states) is empty. 
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3. The user defined weighting matrices lixli
RW 

1
and 

jxj
RW 

2
are such that 

1
W is of 

full rank and 
2

W obeys: 

   
2

W
P

Wrank
P

Wrank                           (5.73) 

          where 
P

W  represents the Hankel matrices containing the past inputs and outputs       

         corresponding to the ports. 

        We define the oblique projections corresponding to the storage, dissipation and control   

        ports, as: 
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P
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/

/

                              (5.74) 

Remark: The control port oblique projection 
iC

O can be expressed as a sum between the 

storage port (
iS

O ) and dissipation port oblique projections ( iRO ), by means of the power 

conservation law (see 5.60). 

We consider the singular value decomposition (SVD) corresponding to the power ports: 

   
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             (5.75) 

1.The oblique projections corresponding to the storage, dissipation and control ports, equal    

   to: 

  

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
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
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

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d

fRC
X

iR
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O

d

fRR
X

iR
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O

d

fRS
X

iR

def

iS
O ;;             (5.78) 

    by SVD decomposition. 

2. The order of the dynamic system corresponds to the number of singular values of the    

    storage, dissipation and control port oblique projections in (5.75). 

 3. The extended observability matrix 
i

  can be determined for either port as: 
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               (5.79) 

Remark: T represents a non-singular transformation matrix applied for each port. 

4. The part of the state sequences d

fC
X

d

fR
X

d

fS
X ,,  corresponding to the storage, dissipation  

    or  control ports, that lies in the column space of 
2

W , can be recovered from: 
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                     (5.80) 

5. The state sequences d

fC
X

d

fR
X

d

fS
X ,, corresponding to the storage, dissipation and control  

    ports equal to: 
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Proof: 

 

We will start the proof with the control port oblique projection, for which we prove that 
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Further we can write: 
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According to the first two assumtions of the theorem, the following holds: 
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which proves that   




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 
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Wrank / . Further we denote the SVD decomposition of 
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            (5.87) 

Since 
f

U
P

W /  is a linear combination of the columns of 
P

W  and since the rank of 
P

W  and 


f

U
P

W /  are equal, we find that the column spaces of 
P

W  and 
f

U
P

W /  are also equal. This 

implies that 
P

W  can be written as: 

      R
C

U
P

W
1

                (5.88) 

Then using (5.87), we can write: 

  R
C

U
T
C

U
C

S
C

V
T
C

V
C

S
C

U
P

W
f

U
P

W
f

U
P

W
11

1
11111

// 






























 



             (5.89) 

which proves that the following holds: 

    
P

W
P

W
f

U
P

W
f

U
P

W 




















//               (5.90) 

Thus it results the oblique projection of the control port as: 

     d

fCC
X

iCiC
O                  (5.91) 

Using (5.59) and (5.74), we can determine the oblique projections corresponding to the 

storage and dissipation ports as: 

    


















d

fCR
X

iCiR
O

d

fCS
X

iCiS
O

                (5.92) 

and thus (5.76) is proved. For the storage port oblique projection, it is necessary to prove that: 

    
PS

W
PS

W
f

U
P

W
f

U
P

W 




















//              (5.93) 

In this case, the property 


f
U

P
rankW

PS
rankW /  generally might not hold and thus the 

column spaces of 
PS

W and 
f

U
P

W / are not always equal. In this case, we can write 
PS

W as: 

     RU
PS

W
2

                 (5.94) 

Using (5.87), we can write then: 

  RU
T
C

U
C

S
C

V
T
C

V
C

S
C

U
PS

W
f

U
P

W
f

U
P

W
21

1
11111

// 






























 



             (5.95) 

Performing the possible simplifications, it results: 

    RU
PS

W
f

U
P

W
f

U
P

W
2

// 



















              (5.96) 
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Thus the SVD decomposition of the storage port oblique projection (
iS

O ) can be in a 

different space dimension from the control port oblique projection (
iC

O ) as will be seen by 

simulation examples. Then the oblique projections corresponding to the storage port results as 

in (5.77). For the dissipation port oblique projections it is necessary to prove that: 

    
PR

W
PR

W
f

U
P

W
f

U
P

W 




















//              (5.97) 

Similarly to the storage port 


f
U

P
rankW

PR
rankW /  doesn’t hold generally and the 

column spaces of 
PR

W and 
f

U
P

W /  might be different. In this case, we can write: 

  RU
T
C

U
C

S
C

V
T
C

V
C

S
C

U
PR

W
f

U
P

W
f

U
P

W
31

1
11111

// 






























 



             (5.98) 

where: 

      RU
PR

W
3

                (5.99) 

Performing all simplifications in (5.98), it results: 

    RU
PR

W
f

U
P

W
f

U
P

W
3

// 



















            (5.100) 

As for the storage port, the oblique projection corresponding to the dissipation port 
iR

O , may 

be in a different space dimension, but still representing an equivalent system to the real one. 

Thus the oblique projections corresponding to the dissipation port can be determined as in 

(5.78). The second claim of the theorem follows from the fact that 
21

W
iC

OW is equal to the 

product of two matrices 
iC

W 
1

(
C

n columns) and 
2

W
d

fCC
X (

C
n  rows). Since both matrices 

have rank 
C

n due to assumption 3 of the theorem, their product is also rank 
C

n . Thus the 

second claim is proved for the control port. For the storage port oblique projection we can 

write that 
21

WOW
iS

is equal to the product of 
iS

W 
1

(
S

n columns) and 2Wd
fSC

X ( Sn rows). 

Using assumption 3 of the theorem, their product is also rank 
S

n  and thus statement 2 is 

proved for the storage port. Similarly for the dissipation port oblique projection, we can write 

that 
21

W
iR

OW is equal to the product between 
iR

W 
1

(
R

n columns) and 
2

W
fRC

X (
R

n

rows). Using assumption 3 of the theorem, their product is rank 
R

n  and thus statement 2 is 

proved for the dissipation port. 

Remark: We have denoted with 
R

n
S

n
C

n ,, the system degrees obtained for the control, 

storage or dissipation ports by SVD decomposition. Thus it is possible to obtain three 

different and equivalent systems for the real PCH model. 

Statement 3 and 4 of the theorem can be easily obtained by spliting the SVD decomposition 

on each port as in (5.65), (5.67) and (5.69). The last statement of the theorem can be easily 

obtained from the first one. 

Remark: Similarly to the classic case it is easy to prove that d

f
X

ii
O

111 



 holds for 

each port. 
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Further we propose a specific deterministic identification algorithm for the power energy 

approach, which is in fact an extension of Deterministic algorithm I from section 5.2.1 to the 

power energy approach. 

 

Remark: We observe that this theorem proves also the definitions and propositions proposed 

for the power based structural identifiability of chapter 2, as each power energy can be 

corresponds to a transfer function from the input to the port output and also is a function of 

the unknown parameters. Thus, three equivalent systems can be determined for the dynamic 

system by system identification as will be shown later. 

 

5.3.2 Deterministic identification algorithm 

 

1.Calculate the oblique projections corresponding to the storage, dissipation and control  

   ports as: 

(S)

 

 















































 Pf
U

fS
Y

def

Si
O

Pf
U

fS
Y

def

iS
O

W

W

/
1

/

 

(R)

 

 






































Pf
U

fR
Y

def

Ri
O

Pf
U

fR
Y

def

iR
O

W

W

/
)1(

/

 

(C)








































 Ri
O

Si
O

def

Ci
O

iR
O

iS
O

def

iC
O

)1(11

 

Remark: We have denoted with 
fR

Y
fS

Y ,  the future outputs corresponding to the storage 

and dissipation ports (see 5.51). 

2. Calculate the SVD decomposition of the weighted oblique projections corresponding to the  

    ports: 

     






















T
C

V
C

S
C

UW
iC

OW

T
R

V
R

S
R

UW
iR

OW

T
S

V
S

S
S

UW
iS

OW

21

21

21

 

3. Determine the system order, by inspecting the  singular values of either the storage,  

    dissipation or control ports and partition the SVD accordingly. 

4. Determine 
i

 and 







 


1i
 on each port as: 
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







































































iCCiC
T

C
S

C
UW
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iRRiR
T

R
S

R
UW

iR

iSSiS
T

S
S

S
UW

iS

1
;

2/11
1

1
;

2/11
1

1
;

2/11
1

 

Remark: The extended observability matrix of the system 
i

 , can be determined using one of 

the power energies corresponding to the ports. 

5. Determine the states d

i
X and d

i
X

1
 corresponding to each port: 

(S) 
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
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
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6. Solve the linear set of equations for DCBA ,,, , using either the storage, dissipation or   

    control ports as: 

    

  





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
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/
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      





























































 








iiU

d
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R
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R
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R
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T
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C
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/
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C
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C
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C
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T
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C
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/
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Remark: This algorithm finds three equivalent models to the real one given by 

S
D

S
C

S
B

S
A ,,, ,

R
D

R
C

R
B

R
A ,,,  and 

C
D

C
C

C
B

C
A ,,,  corresponding to the system ports.  

Further we will define and prove a proposition useful to determine the observability matrix  

(
iH

 ) of an equivalent PCH system for the selected time-discretization scheme, starting from 

the observability matrix 
i

  of (5.33).  
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Proposition 5.1 The extended observability matrix 
iH

  of  a discrete-time PCH system 

(5.33) in its equivalent form, when using a symplectic discretization scheme with an explicit 

Euler rule for the flows and implicit Euler rule for the efforts, can be determined recursively  

using the following formula: 

      
HiiH

                                   (5.101) 

where 
H

   is defined as: 

 

 

  






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
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




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
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
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
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
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
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






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

















 

xnpl

xnl

Hpi

ljxn

lxn

pi

p
pi

j

pi

ji

j

Hji

ljxn

xnl

i

jdef

H

1
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...

1
0

3

0

...

0

3

0
21

1

1

0

...

1
0

1 B
C

B
C

B
C        

         (5.102) 

Remark: We have adopted the notation 














n

k

B
C  for the binomial coefficients or 

combinatorial numbers in (5.101). 

Further we will present a proof of the proposition which makes use of the binomial theorem. 

Proof: 

Using (5.33) and (5.34), the observability matrix of an equivalent state-space system can be 

described by the following formula: 

    11
...


 








T

T
i

ACACC
i

            (5.103) 

where T  represents a non-singular simularity transformation of the dynamic system. 

Remark: For simplicity in all computations we will consider the time-step 1 t  for the 

selected time-discretization scheme.  

Using (5.34), we can also write the observability matrix as: 

        11
...


 








T

T
i

IACIACC
i

                      (5.104) 

We will consider first the case with 2i : 

     
 

1


















T

IAC

C

i
                        (5.105) 

which can be split in: 

     



























 




Hi

lxn

iHi
1

0

            (5.106) 

In (5.106), we have introduced the notation: 

     11
...


 








T

T
i

CACAC

def

iH
          (5.107) 
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for the observability matrix of an equivalent PCH system. 

Remark: 
iH

  represents the observability matrix of an equivalent PCH system for the 

continuous-time model, as defined in the previous chapters. 

From (5.106) we can determine recursively 
iH

  for 2i as: 

     



























 




Hi

lxn

iiH
1

0

            (5.108) 

For 3i  we can write: 

      

 

1

2































T

IAC

IAC

C

i
             (5.109) 

This relation can be further split as: 
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0

0

1

2

0

1

2



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



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
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
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





















T

C

T

CA
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C

i
           (5.110) 

Using (5.107) we can write equivalently: 

   














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




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
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
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
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
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
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
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
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
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






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2

1
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2

2
0

1
0

1
2

1
0

                         (5.111) 

For 4i  we can write the observability matrix as: 

     
 

 

 

1

3

2









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





T
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C

i
             (5.112) 

Using (5.107) we can write this relation as: 

 










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
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

















Hi

T
C

Hi

T
CA

C

Hi
iHi

3

0

0

0

1
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2

0

0

2
3
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1
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2

0

1
3
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          (5.113) 

This relation can be equivalently written as: 
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




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                       (5.114) 

Further we will use the binomial theorem (binomial expansion) and write 
i

  as: 
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
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B
C

B
C

B
C

B
C

B
C

B
C

B
C

B
C

B
C

B
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We observe that we can split this relation as: 
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
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         (5.116) 

Remark: In order to write the above relation in a simplified form, we have added and 

subtracted  














 1i

j

B
C  ( 2,...,1  ij ) on each line as in (5.116). 
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Further we can develop as follows: 
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From (5.117) we can determine 
iH

 as: 
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The last term of (5.118) can be written recursively as: 
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         (5.119) 

Performing the simplifications in the last term of (5.119) we obtain: 
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         (5.120) 

Repeating the development of the 2
nd

 term in (5.120), we arrive by recursive computation at 

(5.102) and the proof ends. Similarly to Proposition 5.1 we can introduce the following 

proposition for the computation of an extended controllability matrix of a PCH system. 

 

Proposition 5.2 The extended controllability matrix 
iH

C  of a discrete-time PCH system 

(5.33) in its equivalent form, when using a symplectic discretization scheme with an explicit 
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Euler rule for the flows and implicit Euler rule for the efforts, can be determined recursively  

using the following formula: 

      
H

C
i

C
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C                          (5.121) 

where 
H

C   is defined as: 
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Proof:  

The proof follows the same steps as Proposition 5.1 to determine the recursive formula 

5.121. 

Remark: The controllability matrix of a classic state space system is defined by 

T

B
i

AABB
i

C






 


1
... , and it can also be determined for PCH systems as for the 

observability matrix (see chapter 2).The previous two propositions are useful in determining 

the equivalent state-space system matrices  
H

C
H

B
H

A ,,  of a PCH system given by: 
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using 
i

  and 
i

C  of (5.33). Using (5.123) we can determine also the obsevability and 

controllability Grammians as: 
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where: 
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Further we will prove and determine that between the inputs and power port energies, we can 

determine separate transfer functions, which are in fact associated to the oblique projections 
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defined in the power energy deterministic identification approach. The power energies 

associated to the ports in continuous-time form, can be determined as: 
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Changing to Laplace transform representation, we can write equivalently: 
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where      sBUAsIsX
1

  is determined from the continuous-time state-space 

representation. But the control port power energy can be also written as: 
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Equivalently we can write then: 
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Expressed using the transfer function, we can write: 
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Then (5.127) can be equivalently written as: 
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where      s
R

Hs
S

Hs
C

H ,,  can be deduced from straight computations: 
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Thus we can write the following relation between the power port transfer functions: 
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Equivalently we can write: 
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where: 
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Remark: This results show that between the input and power port energies, we can define 

separate transfer functions, which satisfy also the conservation law (5.133) and are in 

correspondence with the oblique projections defined in the deterministic identification 

context. 

 

5.3.3 Simulations and discussion 

 

This section is reserved for a set of simulations using the algorithm presented above and the 

deterministic identification context, formulated for the power energy approach, using a DC 

motor model. For simulations, we consider a case scenario with a horizon length ( 100j ) 

over a time interval s
S

t 10 . For the control port, we obtain an equivalent 2
nd

 order system 

represented with red in the following figure. 

 

 
      Figure 5.11. Output response of the real (green), estimated (red) and error  

(blue) for the control port. 

As the graphic shows, the fitness between the real (green) and estimated (red) systems is 

almost perfect (error almost zero), excepting the beginning of the time interval. For the 

storage port power energy, we obtain an equivalent 3
rd

 order model, with the following 

graphic representation. 

 



152 

 

 
            Figure 5.12. Output response of the real (green), estimated (blue) and error  

(magenta) for the storage port. 

 

From this graphic, the estimated 3
rd

 order model cannot approximate perfectly the real system 

response, which is a 2
nd

 order system and thus, the errors (magenta) have increased 

amplitudes over time. It should be remarked that for the first part of the time-interval, the 

errors have higher amplitudes and they decrease with increasing time. Similarly to the control 

and storage ports, we represent the output response obtained for the equivalent system on the 

dissipation port, which is also a 3
rd

 order model.  

 

 
         Figure 5.13. Output response of the real (green), estimated (black) and error  

(cyan) for the dissipation port. 

 

As expected the 3
rd

 order model estimation obtained for the dissipation port, doesn’t provide a 

perfect approximation of the real dynamic system (2
nd

 order model), with errors (cyan) of 

higher amplitudes. As for the storage port, the estimation errors have higher amplitudes in the 

beginning of the time-interval as the model approximation is weaker compared to the control 

port model. In the following figure, we represent the system responses for the real and 

estimated models for all three ports. 
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                         Figure 5.14. Output response of the real (green), control port (red),  

storage port (blue), dissipation port (black) estimated models. 

 

As this figure shows, we can observe a good estimation of the DC motor model on each port, 

excepting the first part of the time-interval, where big estimation errors can be found mainly 

for the storage and dissipation port models. In the following figure, we also represent the 

output errors obtained for each port model. 

 

 
                  Figure 5.15. Output errors for the control port (blue), storage port (magenta) and  

dissipation port (cyan) estimated models. 

 

Further we will perform a set of simulations for the perturbed PCH model proposed in chapter 

3, using the power energy identification algorithm proposed in this section. 

Remark: The perturbed PCH system model proposed in chapter 3, is more a deterministic 

one, as the outputs are perturbed using a fixed model that preserve the PCH system structure, 

while the states are perturbed using a white noise sequence. 

In order to choose a model that better approximates the real one, we will introduce for this 

analysis, the following validation index known in the literature [195]: 
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where 
i

y  represents the real values of the system outputs, y  represents the medium value of 

the system outputs and 
i

ŷ  the estimated values of the system outputs. We will consider three 

models for the output perturbation model of the K  matrix (see eq. (3.36)), to ilustrate the 

results by simulation. As a first model of the perturbation matrix K , we will consider the 

following model  TK 24.013.0  on a horizon length 200j . In the following figure, we 

represent with different colours the real and estimated models for each port. 

 

 
                 Figure 5.16. Output response of the real (green), control port (red), storage port (blue),  

dissipation port (black) estimated models. 

 

For the first simulation, with the control port system outputs we have obtained the following 

validation index 9946.0_ indexv , with a third order model, being also the best 

approximation for the real model of the system. For the storage port model, it was determined 

a validation index 9394.0_ indexv  for a third order model, being also the model with less 

performances as compared to the other two port models. For the dissipation port model, the 

validation index has the following value 9404.0_ indexv , which makes it a good 

approximation of the real model. In the second case, we have considered the following model 

 TK 6.05.0  for the output perturbation matrix. Applying the power energy deterministic 

identification algorithm of this section, we obtain the following responses of the system 

outputs.  

 
                Figure 5.17. Output response of the real (green), control port (red), storage port (blue),  

dissipation port (black) estimated models. 
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As for the first case, the best approximation of the real model is obtained for the control port 

estimation with a third order model and validation index 9997.0_ indexv . The less 

performant estimation is realized for the storage port, with a 3
rd

 order model and validation 

8939.0_ indexv , which makes it the worse approximation of the real model. For the 

dissipation port model, the estimation gets a 3
rd

 order model with a validation index 

9170.0_ indexv  which makes it a better approximation compared to the storage port case. 

For the 3
rd

 case we will consider the following perturbation matrix  TK 8.075.0  to 

check the models performance on each port. We thus obtain the following responses of the 

system outputs for the real and estimated models. 

 

 
                  Figure 5.18. Output response of the real (green), control port (red), storage port (blue),  

dissipation port (black) estimated models. 

 

As for the previous two cases, the control port obtains the best approximation of the real 

model, with a 3
rd

 order model and a validation index 9998.0_ indexv , which is very close 

to one. As expected, for the storage port we obtain the less performant model of the real one, 

with a 3
rd

 order model and a validation index 8340.0_ indexv , showing higher errors of 

estimation. Also for the dissipation port model, we obtain poor results with a 3
rd

 order model 

and a validation index of 8492.0_ indexv . 

Remark: When determining a higher order  (equivalent) state-space system from system 

identification, we can write it equivalently as follows: 
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where  CBA ,,  represents the internal dominant system as defined in the literature [176], 

given generally by the analytical model. Thus we can determine an equivalent PCH system 








  1
1

,
1

,
1

11
CTBTATT  for the dynamic system, expressed in analytic form. From (5.134) we 

can derive the case of an equivalent PCH system of the same order as the analytic model, for 
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0
2

,0
2

,0
22

,0
21

,0
12

 CBAAA . By system identification, it is never possible to 

determine the exact system matrices ( CBA ,, ) of the real system, only an equivalent form     

 






  1
1

,
1

,
1

11
CTBTATT . From (5.137), it is not really necessary to determine an equivalent 

high order PCH system to the initial one. 

 

Conclusions 

 

This chapter proposed an analysis of subspace identification algorithms known from the 

literature for PCH systems, using a simple symplectic time-discretization scheme of chapter 4, 

that gives a similar (PCH state-space structure) to the classic one. It can be proved, that for the 

selected time-discretization scheme, a matrix I/O representation, orthogonal or oblique 

projections can be determined, which are used with the subspace identification algorithms. 

We should remark that the subspace identification analysis of this chapter, can be extended 

also for other symplectic time-discretization schemes presented in chapter 4, increasing the 

complexity of computations and time duration. Using two classic deterministic identification 

algorithms, several simulations were realized, that prove to give equivalent PCH system 

models for the real system (DC motor) considered. Further it was proposed a new (power 

energy approach) in the lossy case, starting from the classic one, using the identifiability 

concepts introduced in chapter 2, that makes use of the inputs and power port energies 

knowledge to determine the system parameters. Thus the new identification framework, can 

estimate equivalent PCH models corresponding to each port. Several simulations were 

performed to ilustrate the deterministic power energy approach for the DC motor model. The 

perturbation model proposed in chapter 3, which preserve the PCH structure was also 

analysed. This model structure was tested on the power energy deterministic identification 

context, for several perturbation models using a validation index to check the performances of 

the estimated models when compared to the real one.  
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6. Conclusions, personal contributions and perspectives 

 

The final chapter presents the main conclusions, personal contributions and perspectives, that 

result at the end of the proposed thesis on the identification of Port-Controlled-Hamiltonian 

systems. The main objectives proposed for the thesis, were: the selection of the main reasons 

and advantages to develop a system identification theory for Port-Controlled-Hamiltonian 

systems, as presented in chapter 1; the structural identifiability analysis of Port-Controlled-

Hamiltonian systems using different techniques: observability/controllability concepts, direct 

test, power series expansion or a new (specific) power energy approach; the practical 

identifiability analysis of Port-Controlled-Hamiltonian systems using the 

observability/controllability concepts; the introduction of a perturbed PCH model by means 

of the interaction port, which is also proved to conserve PCH systems properties; the selection 

of  a set of symplectic discretization schemes, which combine different first or second order 

discretization rules for the flows and efforts, conserving the basic PCH systems structure; the 

introduction of a discretization error Hamiltonian as a difference between the continuous and 

discrete-time PCH systems, which is proved to conserve the main properties; the analysis of 

known state-space identification algorithms from the literature to be used for PCH systems; 

the introduction of matrix I/O representation, orthogonal or oblique projections for the 

selected time-discretization schemes in view of a subspace identification approach; the 

selection of the most simple and reliable symplectic discretization scheme to be used with the 

identification algorithms for analysis; the introduction of a new context for subspace 

identification of PCH systems using the knowledge of the inputs/power energies to determine 

equivalent PCH systems on each port; the analysis of the proposed subspace identification 

algorithms or new (power based) for a proposed PCH system model; the introduction of a 

criterion for performance validation of the estimated models for a selected perturbation 

model. 

Chapter 1, made a general presentation of the system identification control theory, from the 

modelling of dynamic systems, types of models, modeling procedures with a general schema 

known in practice or theory. Further in section 1.3, the PCH modeling and control approach 

was introduced, as a new approach, with their explicit/implicit/bilinear forms, Dirac 

interconnection structure or dynamics. For the identifiability analysis throughout the thesis, 

three representative examples were proposed for the lossless or lossy case, as follows: LC 

circuit, capacitor microphone circuit or DC motor. Section 1.4, introduced the main reasons 

for the development of an identification theory of PCH systems starting from their remarkable 

properties. The last two sections of chapter 1, 1.5 and 1.6, introduced the main objectives of 

the thesis and a summary on chapters. 

Chapter 2, proposed an analysis of the structural identifiability of PCH systems using 

different known or proposed techniques. As classic structural identifiability techniques, the 

following ones were selected: the observability/controllability based test; the direct test or the 

power series expansion test. For each approach, general expressions have been proved and 

found and proper definitions have been formulated specific for PCH systems. Beside this 

classic identifiability techniques, a new (power based approach), was proposed using the 

power energies corresponding to each port. Thus, new propositions and definitions were 



158 

 

introduced for the global and local identifiability of a PCH system and also, a new concept of 

port-identifiability, was proposed specific to one of the systems ports. For each structural 

identifiability technique, examples have been considered for the lossless or lossy case, using 

an LC circuit, capacitor microphone or a DC motor. 

Chapter 3, made a practical identifiability analysis of PCH systems using the 

observability/controllability concepts known from classic state-space identification theory. 

A perturbation model of PCH systems was proposed in this chapter, by means of an 

input/output pair corresponding to the interaction port, such as the preservation of the main 

properties holds. An equivalent observable canonical form known from the literature was 

proposed for PCH systems, on the proposed model. For a known perturbation model, 

examples were considered for the analysis of the practical identifiability using the 

observability/controllability concepts in the lossless or lossy case, using the model of an LC 

circuit, capacitor microphone or a DC motor. 

Chapter 4, proposed a new framework for symplectic time-discretization of PCH systems, 

using different discretization rules for the flows and efforts. As discretization rules, were 

selected: implicit/explicit Euler rule, implicit mid-point rule or implicit trapezoidal rule. For 

the combined symplectic discretization framework, general expressions were defined for the 

explicit/implicit forms, power conservation law or bilinear form of discrete-time PCH systems 

in the lossless or lossy case. For the selected first or second order discretization rules, it was 

checked the conservation of the main properties in discrete-time in the lossless or lossy case. 

It was proved that some symplectic time-discretization schemes, doesn’t preserve the power 

conservation law in discrete-time, when introducing dissipation elements in the system. 

Section 4.4, introduced a methodology to differentiate  two different PCH systems in the 

lossless or lossy case, by creating a new PCH system, which conserves the main characteristic 

properties. The new system, can be particularly used for the discretization analysis, by 

introducing a discretization error Hamiltonian, as the difference between the continuous and 

discrete-time models. The last part of the chapter, made several simulations for the lossless or 

lossy case, using a capacitor microphone circuit, to test the performances of the selected 

symplectic discretization schemes and discretization error Hamiltonian. A complete set of 

symplectic discretization schemes can be found in Appendix E for the lossless or lossy case, 

for which the main properties of PCH systems are checked using the general relations 

introduced in section 4.2.  

Chapter 5, proposed an analysis of classic subspace  identification algorithms for PCH 

systems using one time-discretization scheme developed in chapter 4. Thus it was determined 

a matrix I/O representation, together with ortogonal and oblique projections for the selected 

time-discretization schemes. As time-discretization scheme for the analysis using the 

identification algorithms a simple scheme was selected, which uses Euler time-discretization 

rules for the flows and efforts and has a similar state-space structure to the classic one. A new 

(power energy) context was also proposed, to determine the system parameters using the 

inputs and power port energies knowledge, which is proved to determine  equivalent PCH 

systems corresponding to each port. Simulations using the proposed or new (energy based) 

deterministic identification algorithms are performed for a DC motor model. 
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Personal contributions  

 

 The analysis of the usefulness, necessity and possibilities of development of a system 

identification theory for PCH systems, in view of an improved real-time modelling 

and control;  

 The analysis of the PCH systems model structure, which is necessary in process 

identification;  

 The selection of appropriate structural identifiability techniques for PCH systems from 

the classic identification theory; 

 The analysis and proof  of the selected structural identifiability techniques, that can be 

used for PCH systems in the lossless or lossy case; 

 The introduction of a new (specific) structural identifiability approach for PCH 

systems, by means of the power energies corresponding to the ports, by proposing 

specific propositions for the global or local identifiability; 

 The introduction of a new concept of  port identifiability, with specific definitions for 

the global or local identifiability for a closer analysis; 

 The introduction of a perturbed PCH model by means of an input/output pair 

corresponding to the interaction port of the system with the environment; 

 The analysis and proof that PCH systems conserve their main characteristic properties, 

when converted to the observable canonical form in the presence of a perturbation 

model; 

 The selection of symplectic time-discretization schemes to be used for PCH systems; 

 The introduction of general expressions for the explicit/implicit/bilinear forms or 

power conservation law of discrete-time PCH systems in the lossless or lossy case, for 

the combined time-discretization framework; 

 The analysis and proof of the main characteristic properties of PCH systems in the 

lossless or lossy case, for the selected symplectic discretization schemes; 

 The introduction of a difference PCH model between two PCH systems, which is 

proved to conserve the main properties; 

 The adoption of a discretization error Hamiltonian model, as a difference between the 

continuous-time and discrete-time PCH systems, for a description using the power 

energies corresponding to the ports; 

 The development of a simulation software (Labwindows environment) for the analysis 

and simulation of the selected symplectic time-discretization schemes; 

 The general formulation of matrix I/O equations for the selected symplectic time-

discretization schemes; 

 The introduction of orthogonal or oblique projections for the selected symplectic 

time-discretization schemes; 

 The selection of appropriate classic or new subspace identification algorithms, for 

PCH systems; 

 The simulation of the selected identification algorithms, using one symplectic time-

discretization scheme, which is similar to the classic approach. 
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Main perspectives 

 

 The development of improved real-time identification and control applications using 

the new PCH modelling and control approach for complex dynamic systems; 

 The development of new (specific) system identification theory and algorithms using 

the power energy approach, introduced in chapter 2; 

 The development of real-time test platforms in the laboratory, to test the proposed 

identification and control theory and algorithms; 

 The possibility to analyse for identification and control purpose, the PCH systems not 

only in continuous-time but also in discrete-time, using the proposed symplectic time-

discretization schemes; 

 The development of other appropriate symplectic time-discretization schemes for PCH 

systems using more general and complex discretization rules, like Runge-Kutta or 

collocation methods; 

 The possibility to develop specific identification algorithms, corresponding to each 

symplectic time-discretization scheme proposed in the thesis; 

 The development of  high-quality software modules for  time-discretization of PCH 

systems, using symplectic discretization schemes; 

 The development of performant software modules for the real-time identification and 

control of PCH systems using the proposed algorithms; 

 The introduction and use of the proposed identification and control techniques or 

algorithms in an industrial environment. 
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Appendix A: OBSERVABLE CANONICAL FORM REPRESENTATION OF 

PCH SYSTEMS 

A.1. LOSSLESS PCH  SYSTEMS 

For the lossless PCH systems from (2.3), it is known, that Q
T

BC   and in this case, (2.9) 

becomes: 

























obs
Q

T
obs

B
obs

C

obs
C

obs
QT

T
B

obs
Q

obs
J

obs
JQT

obs
T

1

1

                                     (A.1) 

Replacing B
obs

T
obs

B   from (2.7) in (A.1), we get: 

      

 
























obs
Q

T
B

obs
T

obs
C

obs
Q

T
B

obs
T

obs
QT

T
B

obs
Q

obs
J

obs
JQT

obs
T

1

1

                               (A.2) 

Developing further the 2
nd

 relation in (A.2), we get: 

obs
Q

T
obs

T
T

B
obs

QT
T

B 
1                                                  (A.3) 

Multiplying with the right pseudo-inverse T
B

T
T
B

T  of B  in (A.3), the following relation is 

obtained: 

obs
Q

T
obs

T
obs

QT 
1                                                               (A.4) 

In the above relation, 
B

T  is a psedo-inverse matrix mxn
R

B
T  , which satisfies: 

I
B

BT                                                                     (A.5) 

Multiplying to the left with the pseudo-inverse T
obs

T
 of T

obs
T ,  in (A.4), the following form is 

obtained for the 
obs

Q  matrix: 

1


obs
QT

T
obs

T
obs

Q                                                  (A.6) 

Replacing the value of 
obs

Q  from (A.6) in the 1
st
 relation of (A.2), it results: 

11 



obs

QT
T

obs
T

obs
J

obs
JQT

obs
T                                      (A.7) 

It can be observed, that we can multiply to the right with 
obs

T , 1
Q

1
Q  and T

obs
T , and 

obs
J becomes then: 

T
obs

JT
obs

T
obs

J                                                   (A.8) 

Using matrix transpose properties, we compute T
obs

Q  as follows: 

                                            1


obs
T

T
Q

T
obs

T
T
obs

Q                                                     (A.9) 
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Using the property  T
QQ  of a PCH system, (A.9) becomes: 

     1


obs
QT

T
obs

T
T
obs

Q                                                  (A.10) 

From (A.6) and (A.10), it can be observed that T
obs

Q
obs

Q  . Because Q  is positive semi-

definite 0
T

QQ  for a PCH system, it results that for all real vectors n
Rx  , the following 

relation 0Qx
T

x  is also satisfied. From (A.10), we observe that the matrix
 obs

Q is also a 

positive semi-definite matrix, as it is composed of positive semi-definite elements, given by 

the column elements of  
1

o b s
T . We conclude, that for the 

obs
Q matrix from (A.6), the 

following relation holds: 

0
T
obs

Q
obs

Q                                                           (A.11) 

Using (A.8) together with matrix transpose properties, the matrix transpose of 
obs

J
 
is: 

 TJ
obs

T

T
T
obs

T

T
T
obs

JT
obs

T
T
obs

J 















                       (A.12) 

The above relation, can be equivalently written as: 

T
obs

T
T

J
obs

T
T
obs

J                                                 (A.13) 

Using the property T
JJ  of a PCH system, (A.13) becomes: 

T
obs

JT
obs

T
T
obs

J                                                 (A.14) 

From (A.8) and (A.14), it results that T
obs

J
obs

J  . Using (A.1) and (A.6), we prove the 

following relation: 
1


obs

CT
obs

Q
T
obs

B
obs

C                                                (A.15) 

Using (2.6) and (A.6), the above relation can be also expressed as: 

  1


obs
QT

T
obs

T
T

B
obs

T
obs

C                                              (A.16) 

(A.16) can be written further as: 
1


obs

QT
T

obs
T

T
obs

T
T

B
obs

C                                                 (A.17) 

After possible simplifications, the final  result of 
obs

C is: 

 1


obs
QT

T
B

obs
C                                                       (A.18) 

From (A.18) and (A.1), it results: 

obs
Q

T
obs

B
obs

CT
obs

C 



1                                    (A.19) 

Using (A.6), (A.8), (A.11), (A.14) and (A.19), the observable canonical-form from (2.8): 












obs
x

obs
Cy

u
obs

B
obs

x
obs

Q
obs

J
obs

x

                                       (A.20) 

is also a PCH system, where the PCH systems parameters satisfy: 
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
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1
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T
T
obs
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T
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JT
obs

T
T
obs

J
obs

J

                       (A.21) 

This end the proof of (2.10). 

A.2 LOSSY PCH SYSTEMS 

For the lossy case, replacing B
obs

T
obs

B  from (2.12) in the 2
nd

  relation from (2.14), the 

following relation can be written: 

      
obs

Q
T

B
obs

T
obs

QT
T

B 
1                                    (A.22) 

(A.22) can be further expressed as: 

obs
Q

T
obs

T
T

B
obs

QT
T

B 
1                                    (A.23) 

In order to find the pseudo-inverse of B , a matrix mxn
R

B
T   exists, for which the following  

relation holds: 

      I
B

BT                                                       (A.24) 

where nxn
RI   represents the identity matrix. Multiplying to the left  with  

T
B

T in (A.23), we 

get: 

      
obs

Q
T
obs

T
obs

QT 
1                                     (A.25) 

Multypling further to the left with the inverse T
obs

T
  of 

obs
T in (A.25), we obtain the 

following relation: 

      
obs

Q
obs

QT
T

obs
T 

 1                                     (A.26) 

In order to prove that 0
T
obs

Q
obs

Q , T
obs

Q  is calculated as follows: 

      
T

obs
QT

T
obs

T
T
obs

Q 






 


1                                

(A.27) 

Using the matrix transpose properties, (A.27) can be expressed also as: 

      
T

Q
T

obs
T

T
obs

T
T
obs

Q 






 
                                

(A.28) 

(A.28) becomes further: 

      1


obs
T

T
Q

T
obs

T
T
obs

Q                                   (A.29) 

Using the property T
QQ   of a PCH system, (A.29) can be expressed as follows: 

      1


obs
QT

T
obs

T
T
obs

Q                                      (A.30) 

From (A.26) and (A.30), it can be observed that: 

      1


obs
QT

T
obs

T
T
obs

Q
obs

Q
 
                       (A.31) 
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It is known, that Q  is a positive semi-definite matrix, which means also, that for every vector 
n

Rx  , the following relation holds: 

      0Qx
T

x                                                     (A.32) 

Using (A.32), it can be observed that 
obs

Q  in (A.31) is also formed by positive semi-definite 

elements, generated with the column elements of 1
obs

T , together with the Q  matrix. The 

following relation results then: 

      0
T
obs

Q
obs

Q                                          (A.33) 

The matrices 
obs

J
 
and 

obs
R

 
can be calculated, using the 1

st
 relation from (2.14), where 

obs
Q  is replaced from (A.31), as follows: 

       11 





obs
QT

T
obs

T
obs

R
obs

J
obs

QTRJ
obs

T                              (A.34) 

In (A.34), it can be seen that a multiplication can be realized to the right with 
obs

T , 1
Q  and 

T
obs

T
 
and the relation becomes: 

       
obs

R
obs

J
T
obs

TRJ
obs

T                                          (A.35) 

(A.35) can be also expressed as follows, on the left part: 

    
obs

R
obs

J
T
obs

RT
obs

T
T
obs

JT
obs

T                             (A.36) 

From (A.36), it can be seen that the relation holds for: 

     












T
obs

RT
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T
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R
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J

T
obs

JT
obs

T

                                              (A.37) 

Using (A.37), T
obs

J  is computed as follows: 

     
T

T
obs

JT
obs

T
T
obs

J 







                                            (A.38) 

From matrix transpose properties, (A.38) becomes: 

      TJ
obs

T
obs

T
T

obs
J                                              (A.39) 

(A.39) can be equivalently written as: 

     T
obs

T
T

J
obs

T
T
obs

J                                                (A.40) 

Using the property T
JJ   of a PCH system from (2.11), (A.40) can be expressed as: 

       T
obs

TJ
obs

T
T
obs

J                                              (A.41) 

From (A.37) and (A.41), it results that: 

     T
obs

JT
obs

T
T
obs

J
obs

J                                    (A.42) 

Using (A.37), the value of
 

T
obs

R , becomes: 

     
T

T
obs

RT
obs

T
T
obs

R 







                                            (A.43) 

From matrix transpose properties, the following relation is obtained from (A.43): 
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       TR
obs

T
obs

T
T
obs

R                                              (A.44) 

which can be expressed also as follows: 

     T
obs

T
T

R
obs

T
T
obs

R                                                (A.45) 

Using the property T
RR   of a PCH system, (A.45) becomes: 

     T
obs

RT
obs

T
T
obs

R                                                   (A.46) 

From (A.37) and (A.46), we observe that: 

     T
obs

RT
obs

T
T
obs

R
obs

R                                      (A.47) 

It is known that R  is positive semi-definite, which means that for every vector n
Rx  , the 

following relation is satisfied: 

     0Rx
T

x                                                                 (A.48) 

In (A.47) it can be observed, that 
obs

R
 
is formed by semi-positive elements, given by the 

columns of
 

T
obs

T . Using (A.47) and (A.48), the matrix 
obs

R is also positive semi-definite and 

it can be concluded that: 

     0
T
obs

R
obs

R                                                     (A.49) 

In order to prove that 1


obs
CT

obs
Q

T
obs

B
obs

C  for the observable canonical form of the 

PCH system from (2.11), we replace B
obs

T
obs

B   from (2.12) and 1


obs
QT

T
obs

T
obs

Q  

from (A.31) in 
obs

C  and it  results: 

       1

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QT

T
obs

T
T

B
obs

T
obs

C                                  (A.50) 

(A.50) becomes further: 

     1


obs
QT

T
obs

T
T
obs

T
T

B
obs

C                                    (A.51) 

After performing all the simplifications in (A.51), the relation becomes: 

     1


obs
QT

T
B

obs
C                                                    (A.52) 

Using (2.12), (2.14) and (A.52), it can be observed that: 

    
obs

Q
T
obs

B
obs

QT
T

B
obs

CT
obs

C 






11

  
                         (A.53) 

From (2.12), (2.13), (2.14), (A.31), (A.33), (A.37), (A.42), (A.49) and (A.53), is results that 

the observable canonical form representation from (2.12) of the initial PCH system from 

(2.10), is also a PCH system which conserves the basic properties. The general form of this 

state-space system is: 

    
 


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





obs
x

obs
Cy

u
obs

B
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x
obs

Q
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R
obs

J
obs

x

                       (A.54) 

For the lossy PCH system from (A.54), the following relations hold then: 
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                                       (A.55) 

which represent also the result from (2.15). 

 

Appendix B: STRUCTURAL IDENTIFIABILITY OF PCH SYSTEMS 

B1.OBSERVABILITY/ CONTROLABILITY ANALYSIS 

B.1.1 LOSSLESS PCH SYSTEMS 

For the observability/controllability based structural identifiability test, replacing 

B
obs

T
obs

B  , and 1


obs
AT

obs
T

obs
A  from (2.7), in the lossless case, (2.16) becomes: 























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 B
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T

n

obs
AT

obs
TB
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T
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obs
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T

ID
R

1
...

1               (B.1) 

In the following lines, a general form will be found for the term k

obs
A

 
from (B.1). For the 

term 2
obs

A , the following relation can be written: 

     112 


obs
AT

obs
T

obs
AT

obs
T

obs
A                                 (B.2) 

which becomes after simplification: 

     122 


obs
TA

obs
T

obs
A                                                  (B.3) 

For the term 3

obs
A , we obtain the following form using (B.3): 

     1123 


obs
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T

obs
TA

obs
T

obs
A

    
                             (B.4) 

which becomes after simplification: 

     133 


obs
TA

obs
T

obs
A                                                  (B.5) 

From (B.1), (B.3) and (B.5), the following general relation: 

     1


obs
T

k
A

obs
T

k

obs
A                                            (B.6) 

can be deduced for a k  power of 
obs

A . Replacing the result from (B.6) in (B.1), the 

identifiability matrix 
ID

R  becomes: 


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 
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n
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1                (B.7) 

Equivalently, (B.7) becomes:  







 
 B

n
A

obs
TAB

obs
TB

obs
T

ID
R

1
...                                              (B.8) 

The above relation, can be also expressed as: 
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The transformation matrix 
obs

T  from (2.5), can be also expressed as follows: 
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The first 4 elements of the transformation matrix
 obs
T , can be also expressed as follows: 
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using the PCH systems and matrix transpose properties. 

From (B.11), the following relation can be deduced: 
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 11
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for the elements of the transformation matrix 
 obs

T with 1k . Using (B.12), the expression 

of the identifiability matrix from (B.9) becomes: 
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Using the property  
T

QQ   of  PCH systems, (B.13) can be written as follows: 

   
 

 































































 B
n

AABB

T
Q

T

B
n

A
n

T
Q

T
AB

T
Q

T
B

ID
R

1
...

11
1

...
                 (B.14) 
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The above relation becomes: 

   

 

 

 

































































 B
n

AABB

T

B
n

QA
n

T
QAB

T
QB

ID
R

1
...

11
1

...
                     (B.15) 

which represent also the relation (2.17). Using Proposition 2.1, if the lossless PCH system 

from (2.3) is observable, the following two relations: 

      nB
n

A
n

ABBrank 











 11
1...                             (B.16) 

    






 
B

n
AABBrank

1
...                                                 (B.17) 

hold for the elements of the identifiability matrix in (2.17). Using the properties of the matrix 

determinant, the following relation: 

     
21

detdet RQR
ID

R                                                          (B.18) 

can be written, for the determinant of the identifiability matrix 
ID

R  from (B.15), where the 

following notations: 

     








 
 B

n
A

n
ABBR

11
1...

1
                                 (B.19) 

    






 
 B

n
AABBR

1
...

2
                                               (B.20) 

were introduced. Using the following property of the determinant   BAAB detdetdet  , 

(B.18) is equivalent to: 

    
2

det
1

detdetdet RRQ
ID

R                                               (B.21) 

The above determinant is different from 0, which means the identifiability matrix 
ID

R is full 

rank and the system controllable, for 0det Q , 0
1

det R  and 0
2

det R .  

B.1.2 LOSSY PCH-SYSTEMS 

For the lossy case of PCH systems, an equivalent form of (2.18), can be obtained  by 

searching for a general form of the term k

obs
A . Computing  the term 2

obs
A  using (2.14), the 

following relation is obtained: 

        112 





obs
QTRJ

obs
T

obs
QTRJ

obs
T

obs
A                     (B.22) 

After the possible simplifications in (B.22), the relation becomes: 

       122 


obs
TQRJ

obs
T

obs
A                                               (B.23) 

The next term 3

obs
A  can be written as: 

         1213 





obs
TQRJ

obs
T

obs
QTRJ

obs
T

obs
A                     (B.24) 

After the possible simplifications in (B.24), it results: 
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       133 


obs
TQRJ

obs
T

obs
A                                              (B.25) 

Using (B.23) and (B.25), the following general relation: 

       1


obs
T

k
QRJ

obs
T

k

obs
A                                               (B.26) 

can be deduced for the term k

obs
A  with 1k . Replacing the result of k

obs
A  from (B.26) in 

(2.18), we get: 

   






 
 B

n
AABB

obs
T

ID
R

1
...

             
                                    (B.27) 

where  QRJA   from (2.11). In the next lines an equivalent form will be found, for the 

observable transformation matrix 
obs

T  from (2.5) in the lossy case. The 1
st
 two elements of  

the transformation matrix
 obs
T , can be written as follows: 

      
T

QBQ
T

BC                                                                 (B.28) 

    















 Q

T
R

T
J

T
Q

T
BCAC                                       (B.29) 

using the PCH systems properties. Introducing the notations JQ
loss

A 
 
and RQresA 

 
with 

the matrix transpose properties, (B.29) becomes: 

      Q
T

resA
loss

A
T

BCA                                              (B.30) 

Using the property T
QQ  of a PCH system together with matrix transpose properties, (B.30) 

can be also expressed as follows: 

        TBresA
loss

AQCA 
1

1                                            (B.31) 

The next term 
2

CA from the transformation matrix
 obs
T , has the following form: 

         QRJQ
T

resA
loss

A
T

BCA 
1

1
2                          (B.32) 

which becomes further: 

        Q
T

resA
loss

A
T

BCA

2
2

1
2









                                 (B.33) 

using the properties of PCH systems and matrix transpose. Using (B.33),  
3

CA becomes 

further: 

         QRJQ
T

resA
loss

A
T

BCA  







2

2
1

3                 (B.34) 

From PCH systems and matrix transpose properties, the above relation can be equivalently in 

the following form: 

        Q
T

resA
loss

A
T

BCA

3
3

1
3









                           (B.35) 

From (B.30), (B.33) and (B.35), the following general form can be deduced for the term 
k

CA

, with 1k : 

        Q

k
T

resA
loss

A
T

B
kk

CA 







 1                                (B.36) 

Using matrix transpose properties, the following relation can be easily deduced: 
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       
T

k
resA

loss
A

k
T

resA
loss

A 















                           (B.37) 

In this case, (B.36) becomes: 

       
T

k
resA

loss
A

T
B

kk
CA 








 1

       
                            (B.38) 

The corresponding transformation matrix 
obs

T , can be written then: 

    
   

   

























































Q

T
k

resA
loss

A
nT

B

Q
T

resA
loss

A
T

B

Q
T

B

obs
T

1
1

...

1
1

                              (B.39) 

Using PCH systems properties, (B.39) can be also expressed as follows: 

    
   

   

























































T
Q

T
k

resA
loss

A
nT

B

T
Q

T
resA

loss
A

T
B

T
Q

T
B

obs
T

1
1

...

1
1

                          (B.40) 

Another expression for  (B.40) is:     

   

   

    

   



























































T
Q

T
k

resA
loss

A
nT

B

T
BAQ

T
QB

obs
T

1
1

...

1
1

0
1

                                 (B.41) 

This represents the result from (2.19), where the following notations were introduced: 

    

 


















resA
loss

AA

RQresA

JQ
loss

A

                                                           (B.42) 

For the identifiability matrix in (2.21) to be full rank and the pair  
obs

B
obs

A ,  controllable 

for lossy PCH systems, the following matrix notations are introduced: 

     QR 
1

                                                                     (B.43) 

          
















 


 B
n

A
n

BABR
11

1...
1

1
0

1
2

                       (B.44) 

                                






 
 B

n
AABBR

1
...

3
                                                (B.45) 

The identifiability matrix 
ID

R from (2.21), becomes then: 

    
321

RRR
ID

R                                                                     (B.46) 

Using the determinant properties,  we can write the following relation: 

          
3

det
2

det
1

detdet RRR
ID

R 
              

                                     (B.47) 
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Then the identifiability matrix 
ID

R is full rank and the system controllable, when
 

0
1

det R , 

0
2

det R and
 

0
3

det R .Using the expression of A , 
loss

A  and A  matrices from (2.11) and 

(B.42), the following relation can be written: 

    A
loss

AA  2                                                                   (B.48) 

The identifiability matrix
 ID

R from (2.21), becomes also: 

 









 BQ

ID
R

0
1

 

       

   




































B
n

A
loss

ABA
loss

AB

B
n

A
n

BABQ
ID

R

1
2...2

11
1...

1
1

0
1

              (B.49) 

 

B.2 DIRECT IDENTIFIABILITY 

B.2.1 LOSSLESS PCH SYSTEMS 

For the direct structural identifiability test applied to a lossless PCH system, the following 

relations can be written using (2.24) and (2.25): 

         

   



























x
HC

Q
T

Bx
HC

Q
T

B

u
HB

Bx
HA

JQu
HB

Bx
HA

JQ

21

2211





                                (B.50) 

(B.50) can be further expressed as: 

           

   



































0
21

1221

x
HC

Q
T

B
HC

Q
T

B

u
HB

B
HB

Bx
HA

JQ
HA

JQ





       

               (B.51) 

From (B.51), we observe that the relations hold (for every admissible input u  and generated 

states x ), only if: 

    

     

   

   







































21

21

21

HC
Q

T
B

HC
Q

T
B

HB
B

HB
B

HA
JQ

HA
JQ







                                   (B.52) 

Solving the above system of equations, the following relations: 

    




















21

21

21

HCHC

HBHB

HAHA







                                                                 (B.53) 

need to be satisfied between the unknown parameters 
1

,
1

,
1 HCHBHA


 

and 

2
,

2
,

2 HCHBHA
 , in order to have identifiable parameters 

HCHBHA
 ,, . This  

represents also the result from (2.26). 
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B.2.2 LOSSY PCH SYSTEMS 

For the lossy Port-Controlled-Hamiltonian systems, the following relations can be written 

using the direct identifiability test: 

           

   



























x
HC

Q
T

Bx
HC

Q
T

B

u
HB

Bx
HA

QRJu
HB

Bx
HA

QRJ

21

2211





                (B.54) 

The above relation, can be also written as: 

             

   



































0
21

0
2121

x
HC

Q
T

B
HC

Q
T

B

u
HB

B
HB

Bx
HA

QRJ
HA

QRJ





                                    (B.55) 

by moving the right elements to the left. From (B.55), it can be seen that the relations hold 

for:  

    

       

   

   







































21

21

21

HC
Q

T
B

HC
Q

T
B

HB
B

HB
B

HA
QRJ

HA
QRJ







                                   (B.56) 

Solving the system of equations from (B.56), the following relations: 

     




















21

21

21

HCHC

HBHB

HAHA







                                                     (B.57) 

need to be satisfied,  between the unknown parameters  
1

,
1

,
1 HCHBHA

  and 

2
,

2
,

2 HCHBHA
  in order to have identifiable parameters 

HCHBHA
 ,, . This 

represents  the result from (2.28). 

B3.POWER SERIES EXPANSION IDENTIFIABILITY 

B.3.1 LOSSLESS PCH SYSTEMS 

For the power series expansion identifiability test, the first term in (2.29) is: 

         
000

tx
HC

Cta                                                            (B.58) 

The 2
nd

 term in (2.29) is: 

         
001

tx
HC

Cta 
   

                                                                     (B.59) 

Replacing        u
HB

Btx
HA

Atx  
00

  from (2.23) in (B.59), we get: 

             u
HB

Btx
HA

A
HC

Cta  
001     

                                    (B.60) 

Replacing   Q
T

B
HC

C 
 
in (B.60) using the PCH systems properties, it results: 

           u
HB

Bx
HA

A
HC

Q
T

Bta   








01
                              (B.61) 
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Using (B.61), the 3
rd

 element of the power series from (2.23),   
02

ta is: 

            u
HB

Bx
HA

A
HC

Ctata   
0102

                                           (B.62) 

Developing further (B.62), the relation becomes: 

                        
             u

HB
Bu

HB
Bx

HA
A

HA
A

HC
Cta  

02         
                      (B.63) 

The 4
th

 element of the power series,   
03

ta from (2.29), has the following form: 

          














 









0

3

03
tx

HC
Cta                                                 (B.64) 

Using (B.63),(B.64) becomes: 

              u
HB

Bu
HB

Bx
HA

A
HA

A
HC

Q
T

Bta  


 








03
                  (B.65) 

Computing further the 4
th

 element of the power-series expansion from (B.65), it becomes: 

            















 u
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Bu
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B

HA
Ax

HA
A

HC
Q

T
Bta  

2
03

             (B.66) 

Using (2.23) in (B.66), it results: 
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The 5
th

 element of the power-series expansion, has the following form: 
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Developing (B.68) using (B.67), it results: 
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Replacing  the 1
st
 derivate of the states,  x  from (2.23), (B.69) becomes: 
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                                                                                                                                           (B.70) 
Using (B.58),(B.61),(B.63), (B.67) and (B.70), a general form of the power series from (2.29) 

can be deduced, in the lossless case of PCH systems: 
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Developing further the right part of  (B.71), the following relation results: 
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In the above equation, the term 







  ik
u

1

 represents the the  thik  1  order derivate of the 

input signal u . When   01  ik , the term 







  ik
u

1
from (B.72) is u . Replacing  the matrix

 
HA

A  with JQ  in the  lossless case, it results: 
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which is equivalent to (2.30). In order to express in a different way (B.73), the term 
k

QA , 

will be written in a general form for 1k . For 1k , the following relation can be written for 

a lossless PCH system: 

      Q
T
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using the PCH systems properties. For 2k , the following relation results:  
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(B.75) can be equivalently written as follows: 

                                    Q
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Replacing JQA  , in the lossless case, it results: 
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For 3k , the term 
k

QA  can be written in the following form: 
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(B.78) can be also expressed as follows: 
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Using PCH systems properties, (B.79) becomes: 
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which is equivalent to: 
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Using the results from (B.74), (B.77) and (B.81), a general form can  

be deduced for 
k

QA : 
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Using (B.82), (B.72) becomes: 
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The unknown parameters of a lossless PCH system, are contained in the matrices Q and B , 

and  the dimensions of the unknown parameter space 
H

 , for Q and B matrices, are the 

following: 
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                               (B.84) 

From (B.84), the total number of unknown parameters of a lossless PCH system results 

directly: 
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B.3.2 LOSSY PCH SYSTEMS 

In the lossy case of PCH systems, the expression from (2.32), can be further rewritten in an 

equivalent form, by computing the terms k
QA  in a general form. For 1k , k

QA  becomes as 

follows: 
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using the PCH systems properties. (B.86) can be also written as: 
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For an easier representation of  (B.87), the following notations can be used: 
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where nxn
R

loss
A   and nxn

RresA  correspond to the lossless respectively resistive 

matrices, that compose the matrix nxn
RA  , which defines a lossy PCH system. Using the 

notations from (B.88), (B.87) becomes: 
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(B.89) can be further written as: 
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The next term of k
QA  for 2k , has the form: 
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Using the PCH systems properties, (B.91) can be expressed as follows: 
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Using (B.88), (B.92) can be written as: 
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For 3k , the term 
k

QA  has the following form: 
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(B.94) can be expressed as: 
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using the PCH systems properties. Using (B.88), (B.95) becomes: 
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Using (B.90), (B.93), (B.96), we can deduce the general term for  k
QA : 
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for the lossy case of PCH systems. Using (B.97), (2.32) becomes:    
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In this case, the unknown parameters, are included in the matrices nxn
RR  , nxn

RQ   and 
nxm

RB  . The dimensions of the unknown parameters  
H

 , for R , Q  and  B  matrices are 

the following: 
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From (B.99), the total number of unknown parameters of a lossy PCH system is: 
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For the lossy case of the linear PCH systems, the necessary system of equations that need to 

be solved, for the power-series expansion identifiability test, is the following: 
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which represents also (2.33). 
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Appendix C: STRUCTURAL IDENTIFIABILITY EXAMPLES 

C.1 OBSERVABILITY AND CONTROLABILITY ANALYSIS 

C.1.1 LOSSLESS PCH SYSTEMS 

In the case of the lossless PCH systems, represented by an LC circuit, the matrix terms of the 

state-space system, represented in the observable canonical form from (2.6), are the 

following: 
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where 
obs

B
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A ,
 
and

 obs
C , were computed using (2.10). The transformation matrix 
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T  

from (2.5) has the following form, for the LC circuit: 
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The structural identifiability matrix from (2.16), computed for the LC circuit, becomes: 
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The determinant of  this identifiability matrix is: 
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This determinant is different from 0 , when the following relations are satisfied: 
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which represents also (2.67). 
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C.1.2 LOSSY PCH SYSTEMS 

In the  lossy case of PCH systems, represented by the capacitor microphone circuit described 

in section 1.3.7, the observable transformation matrix 
obs

T  has the following form: 

      
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where: 
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represesents the transformation matrix corresponding to the first input  TB 010
1
 and: 
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represents the transformation matrix corresponding to the 2
nd

 input 
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From (C.7) and (C.8), it can be observed that the observable transformation matrices 
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1 obs
T

obs
T corresponding to the inputs 
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are rank defficient and in conclusion, the 

system is not observable. In the case of lossy PCH systems, represented by the DC motor, the 

matrix elements of the observable canonical form from (2.13) are: 
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The observable canonical form transformation matrix is: 
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The structural identifiability matrix from (2.21), applied to the DC motor is: 
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The determinant of the above identifiability matrix, is the following: 
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This determinant is different from 0 , when the following relations are satisfied: 
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                                                          (C.13) 

which represents also the result from (2.69). 

C.2 DIRECT IDENTIFIABILITY 

C.2.1 LOSSLESS PCH SYSTEMS 

For the direct identifiability test applied to the LC circuit, (2.70) becomes further: 
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by moving the right elements, to the left. From (C.14), we observe that the relations hold 

when: 
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Using (C.15), it results: 
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which represents the result from (2.71).  
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C.2.2 LOSSY PCH SYSTEMS 

For the lossy case represented by a DC motor, from section 1.3.7, the application of the direct 

identifiability test, results in the following relations: 
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by moving the right elements to the left in (2.72). We can write then:  
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From the 2
nd

 and 3
rd

 relation of (C.18), it results that: 
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Using (C.19) in (C.18), we can write then: 
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From (C.19) and (C.20), the following relations result: 
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which represents also (2.73). This result concludes that the unknown parameters of the DC 

motor bRL
E

J ,,, , are structuraly identifiable for this test. 

C.3 POWER SERIES EXPANSION IDENTIFIABILITY 

C.3.1 LOSSLESS PCH SYSTEMS 

In the lossless case of PCH systems, represented by the LC circuit, the 1
st
 element of the 

power series expansion identifiability test, is computed using (2.29) as follows: 

      
1

1

00 L
ta                                                               (C.22) 

and using (2.74), we conclude that 1
1
L .Using (2.29), the 2

nd
 element of the power series 

expansion, can be written as follows: 
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T
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                           (C.23) 

Replacing all the known elements  in (C.23), the following relation can be written: 
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for the 2
nd

 element of the power series expansion. Using (2.29), the 1
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 derivate of   ty  at 

1
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is   1

0
ty and using also (C.24) and (2.30), the value of the capacity results: 
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Using (2.30), the 3
rd

 element of the power series expansion results as: 
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Replacing  all the known elements in (C.26), the relation becomes after computations: 
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Using (2.29), the 2
nd

  derivate of   ty  is 0, and from (2.30) and (C.27), the following result:

       1
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is obtained for
 2

L . Using (2.30), the 4
th

 element of the power-series expansion has the 

following form:    
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Replacing all the known elements in (C.29), the following relation is obtained: 

      0
03

ta                                                                            (C.30) 

Using (2.29), (2.74) and (C.30), the following result: 
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can be calculated. Using (2.30), the 5
th

 element of the power series expansion, has the 

following form: 
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Replacing all the known elements in (C.32), the following relation results: 
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Using (2.29), (2.74) and (C.33),  the following relation: 
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can be written. From (C.27), (C.31), (C.34), the relation (2.76) is deduced for the power series 

expansion identifiability test, applied to the LC circuit. 
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Appendix D: Difference between two PCH systems 

Appendix D.1 Lossless PCH systems 

 

This appendix proves in detail the basic properties of the difference lossless PCH system 

defined between two nonlinear systems ( A  and B ) in rapport with the power energies.  The 

total energy for two lossless PCH systems A and B  is conserved and thus, we can write the 

following relations: 
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where 
CA

P
SA

P ,  and 
CB

P
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P ,  represent the power energies corresponding to the storage 

and control ports. Using  (1.24), we can write: 
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for two lossless PCH systems ( A and B ). The power energies corresponding to the storage 

and control ports, for systems A and B , can be written as: 
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using flows and efforts. Subtracting  both relations in (D.2),  it results: 
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(D.2) can be also written as: 
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using the chain rule differentiation. The explicit form of the two nonlinear lossless PCH 

systems ( A and B ), can be written as: 
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The energy difference for the storage and control ports of  systems A  and B , can be written 

as follows: 
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The flows 
SB

f
SA

f ,  of systems  A and B , can be expressed also as: 
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The power energies corresponding to systems A and B , can be written as follows using (D.6) 

and (D.8) for the storage port: 
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Equivalently we can write: 
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The 1
st
 terms in both relations of (D.10) are reduced by skew-symmetry of    

B
x

B
J

A
x

A
J , . 

Then it is straightforward: 
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For the control port power energies of systems  A and B , we can write : 
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Summing up the power energies from (D.11) and (D.12), the power conservation law is 

satisfied. At the next step, a lossless PCH system is defined, which has as energy 

corresponding to the ports, the difference between the energies of systems A  and B . Then the 

following relations results for the power energies of the new defined lossless difference PCH 

system using (D.7), (D.11) and (D.12): 
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with the following notations: 
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Summing both relations in (D.13),  the total power conservation law  for the new defined 

difference PCH system, is conserved: 
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For the next step, an explicit form is proposed for the difference lossless PCH system, as 

follows: 
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for which, (D.13)  must be satisfied. Using (D.16), the power energies corresponding to the 

storage and control ports, can be defined as: 
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Using (D.16), (D.17) becomes: 
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Making the possible simplifications in (D.18) due to the skew-symmetry of the    
BBAA

xJxJ ,  

matrices, it results: 
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Comparing (D.19) with (D.13), we get the equalities: 
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between the difference of the power energies of the ports, for systems A and B and the power 

energies for the new defined difference lossless PCH system  from (D.16). Using (D.20), we 

can also write the power balance relation of the proposed difference PCH system, as follows: 

     0
C
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e
S

f
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e                          (D.21) 

or: 

     0
C

P
S

P                           (D.22) 

For the next step,  we wish to prove the following definition of a Dirac structure, for the 

proposed difference lossless PCH system from (D.16). 
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Definition D.1 

 

A Dirac structure on 
FxF  is a subspace 




FxF
BA

D , such that:  

i) 0fe  

ii) F
BA

D dimdim 


 

The first property, is satisfied due to the power-conservation law of the energies given in 

(D.21) or (D.22). This property can  be also written as follows: 
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                         (D.23) 

where the following notations: 
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     
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f ,                           (D.25) 

are introduced for the lossless case. For the second statement of the above definition, an 

equivalent characterization of a Dirac structure is given from the total space of flows and 

efforts variables 
FxF , by introducing a bilinear form  ,  on the space *

FxF , as: 
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with   









FxF

b
e

b
f

a
e

a
f ,,, . The space of  flows is defined by 

C
Fx

S
FF  , while the 

space of efforts 
F is defined by 

C
Ex

S
E .  For the next step, we wish to prove the following 

proposition for the proposed difference lossless PCH system from (D.16). 
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A constant Dirac structure on  *
FxF is a subspace *

FxF
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

such that: 
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where   denotes the orthogonal complement with respect to the bilinear form: 

 ,  . 

 

Proof: 
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 satisfy (D.27). Then for every  
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, , 

       fefeefef  ,,,                                                (D.28) 

In the above relation, the flow f and  effort e are defined for the proposed difference lossless 

PCH system in (D.24) and (D.25). Using (D.28), we can write further: 
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expressing the flows and efforts of each port. By the non-degeneracy of the bilinear form 

 , :   
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Using (D.27), it results that F
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

. We also assume that 
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Due to the property i) of the Definition D.1: 
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Using (D.24) and (D.25), (D.32) can be written as:  
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This implies also that BAD
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D 
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. Using the 2
nd

 property of Definition D.1 and 
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yielding that BAD
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D 





. For the difference lossless PCH system  proposed in (D.16), 

between two systems ( A and B ) in rapport with the power energies, the following notation is 

introduced for the skew-symmetric matrix of the new defined system: 
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Next we check the skew-symmetry property of   
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

 matrix and we can write: 
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Using the skew-symmetry of the  
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x
A

J and  
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J  matrices, (D.36) becomes: 
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From (D.35) and (D.37), it results also the skew-symmetry of   
BA

x
BA

J


 : 
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Further we introduce the notation: 
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for which we compute the matrix transpose and we obtain: 
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From the positive definiteness of the    
B
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Q ,  matrices, we can write also: 
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In the above relations, the following notation has been adopted for the states:  
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matrix inputs: 
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and outputs: 
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for the difference lossless PCH  system,  from (D.16). The difference lossless PCH system of 

systems  A and B , can be defined in explicit form as follows: 
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The implicit form of the proposed difference lossless PCH system, is defined as: 
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Equivalently (D.47) can be written as:  
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As the basic properties of lossless PCH systems, are validated also for the proposed lossless 

difference PCH system, of system A  and B , the proof of  Definition 4.1 ends. 



201 

 

Appendix D.2 Lossy PCH systems 

Similar to the lossless case, this appendix is reserved to the proof of the basic properties 

which describe a lossy PCH system for the proposed difference PCH system  of two systems  

( A and B ). Due to the power energy conservation law of systems  A and B , we can write: 
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where 
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P
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P
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P ,,  and 
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P
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P ,,  represent the power energies corresponding to 

the storage, control and dissipation ports of systems  A and B . Using (1.24) for systems  A

and B , we can write for the energy (Hamiltonian): 
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Using flows and efforts, the power port energies from (D.49), can be defined as follows: 
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Subtracting both relations from (D.50), we can write: 
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(D.50), can also be written as: 
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using the chain rule differentiation. The explicit form of the two lossy PCH systems  

( A and B ), can be written as follows: 
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The difference between the power energies of the storage, control and dissipation ports, can 

be expressed using the relations: 
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The flows 
SB

f
SA

f , , corresponding to the systems  A and B , can be written as: 
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Using (D.54) and (D.56), the power energies corresponding to the storage port of systems  A

and B , result as: 
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(D.57) can be written further as: 
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Remark:  From the skew-symmetry of the  
A

x
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J  and  
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(D.58) becomes then: 
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The difference between the storage port power energies of systems A  and B , is given as 

follows: 

     

         

   
B

u
B

x
B

B

T

B
x

B
x

B
H

A
u

A
x

A
B

T

A
x

A
x

A
H

B
x

B
x

B
H

B
x

B
R

T

B
x

B
x

B
H

A
x

A
x

A
H

A
x

A
R

T

A
x

A
x

A
H

SB
f

T
SB

e
SA

f
T
SA

e
S

f
T
S

e































































































































~~

                                   (D.60) 

In the above relation, the notations: 
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have been adoped for the effort and flow  of the storage port difference of systems A  and B . 

For the control port, the power energies of  systems  A and B , can be written as: 
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Using  matrix transpose properties, (D.63) becomes further: 
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The difference between the power energies of the control port, of systems A  and B  from 

(D.64), can be written as: 
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with the following notations adopted: 
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For the dissipation port, the power energies corresponding to systems A and B are: 
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The difference between the dissipation port power energies of systems A  and B , is then: 
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with the notations: 

      T
RB

e
RA

e

def
T
R

e 
~                          (D.70) 

     



















RB
f

RA
fdef

R
f
~

               (D.71) 

for the efforts and flows. Summing up the power energies for the ports, of systems  A and B

in  (D.59), (D.64) and (D.68), it results: 
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or: 
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For the next step, a difference lossy PCH  system is defined, which has as power energies of 

the ports, the difference between the power energies of systems  A and B . Summing up the 

power energies associated to the difference lossy PCH system from (D.60), (D.65) and (D.69), 

it results: 
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It results that the difference between the power energies of the ports of systems  A and B , 

also  satisfies the  power conservation law. An explicit form of the difference lossy PCH 

system, is defined as: 
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Further  we check if the relations from (D.60), (D.65), (D.69) and (D.74), are also satisfied for 

the new defined difference lossy PCH system from (D.75). Computing the storage port power 

energy for the new defined system, we can write: 
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(D.76) becomes further: 
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Remark: Due to the skew-symmetry property of  
A

x
A

J  and  
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J  matrices, the terms 
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(D.77) becomes then: 
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 which is equivalent to: 
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Comparing the result from (D.60) and (D.79), we can write: 
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which proves the power energy equality, between the difference of the storage port power 

energies of systems A  and  B and the storage port power energy of the new defined 

difference lossy PCH system from (D.75). Next we determine if the control port power energy 

of the proposed difference PCH system from (D.75), is equal to the difference between the 

control port power energies of systems  A  and B . Using (D.75), the control port power 

energy, can be defined as: 
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Equivalently we can write: 
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Expressed further  (D.82) results as: 
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Using (D.65) and (D.83), the following equality results: 
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and thus the difference of the control port power energies, of systems  A and  B  is equal to  

the control port power energy of the new defined difference lossy PCH  system from (D.75).  
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For the next step, we determine, if the the difference between the dissipation port power 

energies of two systems ( A and B ) from (D.69), is equal to the dissipation port power energy 

of the lossy PCH system defined in (D.75). The dissipation port power energy of the 

difference lossy PCH system proposed in (D.75), can be computed using the relation: 
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where we have used the linear relation between the flows  and efforts: 

      
R

e
BA

xR
R

f


                                                (D.86) 

for the flows and efforts. The dissipation matrix R in (D.86), is defined as: 
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For the dissipation port effort variable, we can adopt the notation:  
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Using (D.87) and (D.88), (D.85) becomes : 
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After basic computations, (D.89) becomes: 
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Comparing the results from (D.69) and (D.90), it results: 
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which proves the equality, between the difference of the dissipation port power energies of 

systems A and B  and the dissipation port power energy, of the new defined difference lossy 

PCH system in (D.75).  Using (D.80), (D.84) and (D.91), the power conservation law is 

satisfied for the new defined difference PCH system in (D.75): 
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In (D.93), 
R

P
C

P
S

P ,,  represent the power energies associated to the storage, control and 

dissipation ports for the new defined difference lossy PCH systems of systems  A  and B . For 

the next step, it is introduced and proved  a definition of a Dirac structure, corresponding to 

the difference lossy PCH  system defined in (D.75). 
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Definition D.2 

 

A Dirac structure on *
FxF , is a subspace 


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The first property of the Definition D.2 corresponds to the power-conservation law, which is 

equivalent to (D.92) for the difference PCH system, that expresses the fact that the total power 

entering (or leaving) a Dirac structure is always zero. For the second statement of  Definition 

D.2, an equivalent characterization of a Dirac structure is introduced related to the geometric 

structure of the total space of flows and efforts variables 
FxF , by defining a bilinear-form. 

The bilinear form corresponding to the difference lossy PCH system, can be defined as 

follows: 
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represent the total space of the flows and efforts corresponding to the new defined difference 

lossy PCH system for systems  A and B , in (D.75). Developing further (D.94), we can write: 
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where: 
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as  it has been proven from (D.92). For the next step, we introduce and prove the following 

proposition for the new defined difference lossy PCH system from (D.75).  
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where   denotes the orthogonal complement with respect to the bilinear form  , . 

In the above definition 
BA

D


represents the Dirac structure corresponding to the proposed 

difference lossy PCH  system, of systems A  and B . 

 

Proof:   
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Decomposing the flows and efforts from (D.98) on each port, it results: 
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By the non-degeneracy of the bilinear form  , : 
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Due to the property i) of  Definition D.2: 
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Expressing the flows and efforts in (D.102)  for each port,  it results: 
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This implies that BAD
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  point of Definition D.2 and 
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yielding that 



 BA

D
BA

D , which ends the proof. For the difference lossy PCH  system 

defined in (D.75), we adopt the following notation: 
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for the skew-symmetric matrix. Computing  
BA

x
T

BA
J


, we get: 
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Due to the skew-symmetry of  
A

x
A

J  and  
B

x
B

J  matrices, the above relation can be also 

written as: 
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From (D.105) and (D.107), it results that we can write the following relation: 

    
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(D.108) 

which proves that the matrix  
BA

x
BA

J


, corresponding to the new defined difference 

lossy PCH system from (D.75), preserves the skew-symmetry property. For the dissipation 

matrix corresponding to the difference lossy PCH, we adopt the notation: 

      
 

 


















B

x
B

R

A
x

A
Rdef

BA
x

BA
R

0

0
              (D.109) 

Computing the matrix transpose of    
BA

x
BA

R


, we can write: 
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Due to the positive definiteness of  
A

x
A

R  and  
B

x
B

R  matrices, it results that: 
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and then we can write: 
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Remark: The presence of the negative term (  
B

x
B

R ) in (D.112) for the difference PCH 

system (D.75) dissipation matrix,  is due to the power port energy difference concept 

proposed for systems A  and B .Thus, the difference PCH system (D.75) will augment 

internally to the dissipation port, the energy corresponding to system B  and not dissipate it. 

For the input matrix corresponding  to the difference lossy PCH system proposed in (D.75), 

the following notation is adopted: 
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Using the notations introduced  in (D.105), (D.109) and (D.113), we can equivalently write 

the explicit form of the difference lossy PCH system from (D.75), as: 
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(D.114) can be equivalently written as: 
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using the notations: 
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
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A
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This represents the explicit form of the new defined difference lossy PCH  system  for 

systems A  and B . The implicit form of the difference lossy  PCH system proposed for 

systems A and B , can be defined as: 
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Using the explicit form from (D.115), (D.119)  becomes:  

       














































BA
x

BA
x

BA
H

BA
x

BA
x

BA
H

BA
x

BA
R

BA
y

BA
u

BA
x

BA
x

BA
H

BA
x ,,,,,

                    (D.120) 

 

Due to the satisfaction of the general propositions and definitions which define a PCH system, 

the difference lossy PCH system proposed in section 4.4.2 by the Definition 4.2 is also a PCH 

system. 
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Appendix E Symplectic discretization schemes 

E.1 Lossless PCH systems 

This part of the appendix presents a set of symplectic discretization schemes for the lossless 

and lossy case, which make use of the explicit/implicit Euler, implicit mid-point and implicit 

trapezoidal rules for the flows and efforts.  

 

E.1.1 Symplectic discretization scheme I 

This symplectic discretization scheme assumes an implicit Euler rule for the flows and an 

explicit Euler rule for the efforts.  The initial continuous-time form of the explicit lossless 

PCH system is: 
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                 (E.1) 

Applying the general discretization framework from (4.1) and (4.14), we can write in discrete-

time as follows: 
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Remark: The composed time-discretization  




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
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


x
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di
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F  of the effort becomes 

1k
Qx  , 

by applying the effort time-discretization 
x

H




at step 1k  . 

Equivalently (E.2) can be written as follows: 
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Remark: The step 1k in the parenthesis of flows, efforts and power energies, is due to the 

implicit form of the scheme, given by the flow time-discretization rule. 

The discrete-time power energy associated to the storage port  1ˆ k
S

P , can be defined as: 
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using (E.3). From simple mathematical relations, it is straightforward that we can write: 

         1ˆ1ˆ1ˆ  k
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k
S

P                 (E.5) 
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For the control port, the following relation can be defined as: 

         1ˆ1ˆ1ˆ  k
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k
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P                 (E.6) 

Using (E.3) and simple mathematical relations, (E.6) can be equivalently written: 
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From (E.5) and (E.7), the power conservation law for the discrete-time PCH system is 

satisfied, as follows: 
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Using (4.18), we can define the discrete-time energy (Hamiltonian) as: 
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which is equivalent to: 
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when using (E.5) and (E.7). Using the general relation from (4.19) for the discrete-time 

bilinear form, we can define it as follows: 
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(E.11) 

Using (4.21), the implicit form of the discrete-time lossless PCH system, for the selected 

symplectic discretization scheme is defined as: 
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Replacing the known values of the flow and energy from (E.3), we can write further: 
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Remark: The Dirac interconnection structure ( D ) and rules, are conserved  by time-

discretization as they only serve for power port interconnection. 

 

E.1.2.Symplectic discretization scheme II 

 

This symplectic time-discretization scheme assumes an explicit Euler rule for the flows and 

an implicit mid-point rule for the efforts. The initial continuous-time explicit form of the 

lossless PCH system, for which we apply this time-discretization scheme, has the following 

form: 
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Considering the explicit Euler rule time-discretization for the flows and the implicit mid-point 

rule for the efforts, using the general framework from (4.1) and (4.14), it results: 
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Remark: The composed time-discretization  
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Equivalently we can write (E.15) as: 
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Remark: The step k in the parenthesis of the flows, efforts and power energies is due to the 

explicit form of the scheme, given by the flow time-discretization rule.  

The discrete-time power energy of the storage port, can be defined as: 
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Using simple computations, we can derive further the following relation: 
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For the control port, we define the following discrete-time power energy: 
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which is equivalent to: 

          k
C

fBk
T
S

e

def

k
C

P ˆˆˆ                          (E.20) 

using simple mathematical relations. By making the sum between the storage power energy 

and control power energy from (E.18) and (E.20), we get: 
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from which it results that the discrete-time power conservation law holds for this scheme. 

Using (4.18), we can define the discrete-time energy (Hamiltonian) as: 
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Using (E.18) and (E.20), E(22) is equivalent to: 
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Using (4.19), the bilinear form of the lossless PCH system, can be defined as: 
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where we have adopted the notation: 
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The implicit form of the discrete PCH system is defined using (4.21) as:  
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which is equivalent to: 
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E.1.3.Symplectic discretization scheme III 

This symplectic time-discretization scheme, makes use of the implicit mid-point rule for the 

flows and explicit Euler rule for the efforts.The initial continuous-time lossless PCH system, 

for which we apply the time-discretization scheme, has the following form: 
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Using (4.1) and (4.14), for the selected time-discretization rules, it results: 
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Equivalently we can write (E.29) as: 
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Remark: The composed time-discretization
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Equivalently we can write: 
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Remark: The step 1k , in the parenthesis of the discrete-time flows, efforts and power 

energies, is due to the implicit discretization rule selected for the flows and thus for the 

scheme. 

The discrete power energy associated to the storage port, can be defined as:  
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From simple relations, we can write equivalently: 
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For the control port, we can define the power energy as: 
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From (E.34) we can further derive the relation: 
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From (E.33) and (E.35) it results the power conservation law of the discrete-time PCH system 

at step 1k : 
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Thus the power conservation law is satisfied in discrete-time. Using (4.18), we define the 

discrete-time energy (Hamiltonian) as: 
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which is equivalent to: 
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when using (E.33) and (E.35). Using (4.19), the discrete-time  bilinear form for the selected 

symplectic discretization scheme is defined as: 



217 

 

   

 
a

k
uk

t

x
b

k
Qx

T
B

k
Qx

b

k
uk

t

x
a

k
Qx

T
B

k
Qx

def

k
F

B




































































1
,1,

1
,

1

1
,1,

1
,

1
1ˆ

                    (E.39) 

The implicit form of the discrete-time lossless PCH system is defined as: 
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where the interconnection Dirac structure conserves it’s structure by time-discretization.  

Replacing the discrete-time flows and efforts in (E.40), it results: 
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E.1.4 Symplectic discretization scheme IV 

This symplectic time-discretization scheme assumes an implicit Euler rule for the flows and 

an implicit mid-point rule for the efforts. The initial continuous-time lossless PCH system for 

which we apply the time-discretization scheme, has the following form: 
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Applying the selected time-discretization rules for the flows and efforts using (4.1) and (4.14), 

it results:      
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Remark: The composed time-discretization of the effort  
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Equivalently we can write: 
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Remark: The step 1k , in the parenthesis of the discrete-time flows, efforts and power 

energies is due to the implicit discretization rule selected for the flows and thus for the 

scheme. 

The discrete-time power energy associated to the storage port is defined as: 
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Using simple computations, we can write: 
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For the control port, we define the discrete-time power energy as: 
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which results in: 
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from simple computations. Using (E.46) and (E.48), the power energy conservation law in 

discrete-time is satisfied: 
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Using (4.18), the discrete-time energy (Hamiltonian) is defined as: 
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(E.50) can be equivalently written as: 
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using (E.46) and (E.48). 

Using (4.19), the discrete-time bilinear form is defined as: 
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where 
1k

x  is defined as: 
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The implicit form of  the discrete-time PCH system for the selected symplectic discretization 

scheme is defined as: 
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Replacing the discrete-time flows and efforts using (E.44), we can write equivalently: 
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E.1.5 Symplectic discretization scheme V 

 

For this symplectic time-discretization scheme it is assumed an implicit mid-point rule for the 

flows and an implicit Euler rule for the efforts.The initial continuous-time lossless PCH 

system for which we consider the selected symplectic discretization scheme, is: 
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Applying this symplectic time-discretization scheme using (4.1) and (4.14), it results: 
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Using the first two relations, we can write:       
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Remark: In this case the combined operator  
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effort discretization. The step 1k  in the parenthesis of the flows, efforts or power energies, 

corresponds to the implicit form of the discretization scheme, given by the flows time-

discretization rule. 

The discrete-time power energy associated to the storage port, can be defined as: 
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Equivalently we can write: 
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For the control port, the discrete-time power energy is defined as: 
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We can write equivalently (E.61) as: 
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Using (E.60) and (E.62), the total power energy of the system is: 
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and thus the discrete-time power conservation law of the PCH system is satisfied.  

Using (4.18), we define the discrete-time energy (Hamiltonian) as: 
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Using (E.60) and (E.62), it results further: 
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Using (4.19), we define the discrete-time bilinear form as: 
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The implicit form of the discrete-time PCH system is defined as: 
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which results as: 
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by replacing the discrete-time flows and efforts. As for the previous cases, the Dirac 

interconnection structure ( D ) conserves its properties by time-discretization. 

 

E.1.6 Symplectic discretization scheme VI 

 

For the current symplectic discretization scheme, it is assumed an implicit trapezoidal rule for 

the flows and an explicit Euler for the efforts. The initial continuous-time lossless PCH 

system for which we apply this time-discretization scheme is: 
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Applying the general framework from (4.14) for the selected symplectic time-discretization 

scheme, we can write: 
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or equivalently: 
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Remark: By applying the composed time-discretization rule  
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 in the flow time-discretization rule, after 

applying the Euler rule discretization. The step 1k in the parenthesis of the discrete-time 

flows, efforts or power energies corresponds to the implicit form of the discretization scheme, 

given by the flows time-discretization rule. 

Next we define the power energy associated to the storage port at step 1k , as follows: 
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Using simple mathematical relations, (E.72) can be written equivalently as: 
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where we have adopted the notation: 
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The control port power energy, can be defined as: 
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which can be equivalently written as: 
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from straightforward computations. From (E.73) and (E.76), the total power energy of the 

discrete-time system is: 
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and thus, the power conservation law is satisfied in discrete-time.  

Using (4.18), the discrete-time energy (Hamiltonian) is defined as: 
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Using (E.73) and (E.76), it results as: 

          1
ˆ

1ˆ1 



k

C
fBk

T
S

e

def

k
t

H
                             (E.79) 

Using (4.19), the discrete bilinear form of this symplectic discretization scheme is defined as: 
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The implicit form of the discrete-time PCH system is defined as: 
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Replacing the discrete-time flows and efforts in (E.81), it results: 
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E.1.7. Symplectic discretization scheme VII 

 

This symplectic discretization scheme assumes an explicit Euler rule for the flows an implicit 

trapezoidal rule for the efforts. The continuous-time form of the lossless PCH system, for 

which we apply the time-discretization scheme is: 
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Applying the general discretization rules from (4.1) and (4.14), for the current symplectic 

time-discretization scheme it results: 
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Remark: The composed time-discretization 
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Equivalently we can write (E.84) as: 
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Remark: The step  k  in the parenthesis of the flows, efforts or power energies is due to the 

explicit time-discretization rule selected for the flows, which applies for the whole 

discretization scheme. 

 

The discrete-time power energy associated to the storage port can be defined as:  
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which results in: 
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from straightforward computations. For the control port, we define the following discrete-time 

power energy: 
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which can be equivalently written as: 
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using straightforward relations. From (E.87) and (E.89) the power conservation law of PCH 

systems is satisfied in discrete-time: 
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Using (4.18), the discrete-time energy (Hamiltonian) can be defined as: 
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which is equivalent to: 
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using (E.87) and (E.89). Using (4.19), the discrete-time bilinear form is defined as: 
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where the notation: 
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has been adopted. The implicit form of the discrete-time PCH system is defined as: 
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Replacing the discrete-time flows and efforts in (E.95) it results: 
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E.1.8 Symplectic discretization scheme VIII 

 

This symplectic time-discretization scheme assumes an implicit trapezoidal rule for the flows 

and an implicit Euler rule for the efforts. The initial continuous-time lossless PCH system for 

which we apply this symplectic time-discretization scheme, is: 

     

























x

HT
By

Bu
x

H
Jx

                         (E.97) 

Applying the general framework from (4.1) and (4.14) for the selected scheme,  results in:
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Adopting the following notations: 
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it results: 
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Remark: The composed time-discretization of the effort 
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parenthesis of the flows, efforts or power energies, are due to the implicit discretization rule 

selected for the flows, which apply for the whole scheme. 

 

For the storage port, the discrete-time power energy can be defined as: 
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Equivalently we can write (E.101) as: 
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The discrete-time power energy associated to the control port, can be defined as: 
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From straightforward computations, this relation is equivalent to: 
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From (E.102) and (E.104), the discrete-time power conservation law is satisfied: 
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Using (4.18), we can define the discrete-time energy (Hamiltonian) as: 
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which can be equivalently written as: 
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using (E.102) and (E.104). Using (4.19), the discrete-time bilinear form can be defined as: 
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The implicit form of the discrete-time PCH system is defined as: 
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where the Dirac interconnection  structure ( D ) is conserved by time-discretization. 

Replacing the discrete-time flows and efforts, we can write equivalently: 
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E.1.9 Symplectic discretization scheme IX 

 

This symplectic time-discretization scheme makes use of an implicit mid-point rule for the 

flows and an implicit trapezoidal rule for the efforts. The continuous-time lossless PCH 

system, for which we apply this symplectic time-discretization scheme is: 
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Using (4.1) and (4.14) for the selected symplectic time-discretization rule, it results: 
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Remark: The composed time-discretization of the effort 
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(E.111) becomes: 
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Remark: The step 1k , in the parenthesis of the flows, efforts or power port energies 

corresponds to the implicit form of the discrete-time scheme, given by the flow discretization 

rule. 

The discrete-time power energy corresponding to the storage port, can be defined as: 
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which is equivalent to: 

          1ˆ1ˆ1ˆ  k
C

fBk
T
S

e

def

k
S

P                      (E.115) 

For the control port power energy, we define the discrete-time energy as:   
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which can be also equivalently written as: 
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From (E.115) and (E.117), the the discrete-time power conservation law is satisfied: 
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Using (4.18), the discrete-time energy (Hamiltonian) is: 
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which is equivalent to: 
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using (E.115) and (E.117). Using (4.19), the discrete-time bilinear form for the selected 

discretization scheme is defined as: 
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The implicit discrete-time form of the PCH system is: 
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which is equivalent to: 
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when replacing the discrete-time flows and efforts. 

 

 

E.2 Symplectic discretization schemes for lossy PCH systems 

   

E.2.1 Symplectic discretization scheme I 

This symplectic discretization rule assumes an implicit Euler rule for the flows and an explicit 

Euler rule for the efforts. The initial continuous-time lossy PCH system, for which we apply 

the current symplectic time-discretization scheme is: 
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By applying the implicit Euler for the flows and explicit Euler for the efforts, we get the 

following relations: 
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Remark: The composed time-discretization of the effort 
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Equivalently we can write: 
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Remark: The step 1k , in the parenthesis of the flows, effort or power energies, correspond 

to the implicit form of the scheme, given by the implicit time-discretization rule selected for 

the flows. 

The discrete-time storage port power energy is defined as: 
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which is equivalent to: 

           1ˆ1ˆ1êR1ˆ1ˆ  k
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For the control port, we can define the following discrete-time power energy: 
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which is equivalent to: 
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For the dissipation port, we define the power energy as: 
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Using the general relation: 
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we can write further the discrete-time power energy as: 
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The discrete-time dissipation port effort variable, can be written as:   
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Then the discrete-time power energy of (E.133) becomes: 
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which is equivalent to: 
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Using (E.128), (E.130) and (E.136), the power conservation law is satisfied in discrete-time: 
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Using (4.31), the discrete-time energy (Hamiltonian) can be defined as: 
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which can be writen as: 
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Using (E.128), (E.130) and (E.136). Further we define the discrete-time bilinear form as: 
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The implicit form of the discrete-time PCH system is defined as: 
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which is equivalent to: 
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when replacing the discrete-time flows and efforts. 

 

E.2.2. Symplectic discretization scheme II 

 

For this scheme it is assumed an explicit Euler rule for the flows and an implicit mid-point 

rule for the efforts. The initial continuous-time lossy PCH system, for which we apply the 

current time-discretization scheme is: 
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Using (4.1) and (4.24) for the current symplectic time-discretization scheme, it results: 
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Remark: By applying the composed time-discretization for the effort 
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We can write equivalently: 
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when adopting the notation: 
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Remark: The step  k  in the parenthesis of the flows, efforts or power energies, correspond to 

the explicit form of the discrete-time scheme, given by the flow discretization rule. 

For the discrete-time storage port power energy, we can write: 
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More compact we can express this relation as: 
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For the control port, the power energy can be defined as: 
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which becomes: 
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from straightforward computations.  

For the dissipation port, the discrete-time power energy can be defined as: 
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which is equivalent to: 
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by using the general relation: 
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But the discrete-time effort variable can be defined as: 
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and (E.151) becomes: 

          k
S

k
T
S

e

def

k
R
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Using (E.147), (E.149) and (E.154),  the discrete-time power conservation law holds: 
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Using (4.31), the discrete-time energy (Hamiltonian) can be defined as: 



231 

 

         
R

f
T
R

e
k

u
T
k

yk
S

fk
T
S

e

def

k
t

H ˆˆˆˆ 



                         (E.156) 

Using (E.147), (E.149) and (E.154), it results: 
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Using (4.32), the discrete-time bilinear form is defined as:     
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The implicit form of the discrete-time PCH system is defined as:    
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using (4.33) and (4.34). Replacing the discrete-time flows and efforts we can write: 
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 E.2.3 Symplectic discretization scheme III 

 

For this symplectic discretization scheme, we assume an implicit mid-point rule for the flows 

and an explicit Euler rule for the efforts. The initial continuous-time lossy PCH system, for 

which we apply this time-discretization scheme, is: 
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Applying the current symplectic time-discretization scheme using (4.1) and (4.24), it results: 
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Remark: The composed time-discretization of the effort 



















x

H

di
E

di
F , results in 




















2

1k
x

k
x

Q , by applying the implicit mid-point rule for 
x

H




. 

Adopting the following notation: 
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It results: 
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Remark: The step 1k in the parenthesis of the discrete-time flows, efforts or power 

energies, correspond to the implicit form of the discretization scheme, given by the flow time-

discretization rule. 

The discrete-time power energy associated to the storage port can be defined as:   
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Using simple mathematical relations, we can write further: 
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where: 
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The discrete-time power energy associated to the control port can be defined as:  
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Equivalently we can write: 
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For the dissipation port, the discrete-time power energy is defined as: 
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Using the general relation: 
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between flows and efforts, we can write (E.170) as: 
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Using the discrete-time effort relation: 
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the discrete-time power energy becomes: 
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Using (E.166),(E.169) and (E.174), the discrete-time power conservation law is not satisfied: 
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Equivalently, we can write (E.175) as: 
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and thus the power conservation law doesn’t hold for this discretization scheme, as (4.30) is 

not satisfied. 

Remark: As the discrete-time power conservation law doesn’t hold for this scheme, the rest 

of discrete-time PCH systems properties will not be defined. 

 

E.2.4 Symplectic discretization scheme IV 

In this case, an implicit Euler rule for the flows and an implicit mid-point rule for the efforts 

are selected for time-discretization. The continuous-time PCH system for which we apply the 

symplectic discretization scheme is: 
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Using the general framework  relations from (4.1) and (4.24), for the current symplectic time-

discretization scheme, it results: 

  

 

 






















































































1
1

2

1
1

12

1
,1

1

k
x

HT
B

k
y

k
x

k
x

Qx
k

H
k

H

k
But

k
x

k
x

k
x

H
RJt

k
x

k
x

                     (E.178) 

Remark: The composed time discretization of the effort  
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Adopting the following notation: 
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(E.178)  becomes: 
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Remark: The step 1k in the parenthesis of the discrete-time flows, efforts or power energies 

correspond to the implicit form of the discretization scheme, given by the flows time-

discretization rule. 

 

The discrete-time power energy associated to the storage port, can be defined as: 
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which is equivalent to: 
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from simple calculus. For the control port, the discrete-time power energy can be defined as: 
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which is equivalent to: 
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For the dissipation port, the discrete-time power energy is defined as: 
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which transforms to: 
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using the general relation: 
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Using the discrete-time effort variable: 
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(E.186) becomes: 
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From (E.182),(E.184) and (E.186), the discrete-time power conservation law is satisfied: 
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Using (4.31), the discrete-time energy (Hamiltonian) is defined as: 
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Using (E.182), (E.184) and (E.189), we can write equivalently: 
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Using (4.32), the discrete-time bilinear form can be defined as: 
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The implicit discrete-time form is defined as:     
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Replacing the discrete-time flows and efforts we can write equivalently: 
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E.2.5 Symplectic discretization scheme V 

 

On this scheme, we assume an implicit mid-point rule for the flows and an implicit Euler for 

the efforts. The initial continuous-time lossy PCH system, for which we perform the time-

discretization is: 
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Applying the time-discretization rules for the flows and efforts using  the general framework 

of (4.1) and (4.24), it results:         
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Remark: The composed time-discretization of the effort 
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we can write equivalently: 
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Remark: The step 1k  in the parenthesis of the discrete-time flows, efforts or power 

energies correspond to the implicit form of the discretization scheme, given by the flows time-

discretization rule. 

For the storage port, the discrete-time power energy can be defined as: 
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Equivalently we can develop as: 
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For the control port power energy, we define the discrete-time power energy as: 
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which is equivalent to: 
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For the dissipation port, the discrete-time power energy is defined as: 

         1ˆ1ˆ1ˆ  k
R

fk
T
R

e

def

k
R

P             (E.204) 

which is equivalent to: 
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when using the general relation: 
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The discrete-time effort variable is defined as: 
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Then the discrete-time power energy becomes: 
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Using (E.201), (E.203) and (E.208), the power conservation law doesn’t hold in this case: 
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More compact, we can write this relation as: 
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or replacing the discrete-time flows and efforts: 
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Remark: The current time-discretization scheme is not a symplectic one, as (4.30) doesn’t 

hold and thus, the rest of PCH systems properties are not defined. 

 

E.2.6 Symplectic discretization scheme VI 

 

In this case, an implicit trapezoidal rule for the flows and an explicit Euler rule are selected 

for time-discretization. The initial continuous-time lossy PCH system, for which we apply the 

discretization scheme is: 
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Applying this symplectic time-discretization scheme using the general framework of (4.1) and 

(4.24), it results:          
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Remark: The composed time-discretization of the effort 
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Equivalently (E.213) can be written as: 
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Introducing the following notations: 
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 we can write equivalently: 
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Remark: The step 1k  in the parenthesis of the discrete-time flows, efforts or power 

energies correspond to the implicit form of the discrete-time scheme, given by the flows 

discretization rule. 

The discrete-time power energy associated to the storage port can be defined as: 
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which is equivalent to: 
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where: 
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For the control port, the discrete-time energy is defined as: 
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which is equivalent to: 
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For the dissipation port, the discrete-time power energy can be defined as: 
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which is equivalent to: 

         1êR1ˆ1ˆ  k
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when using the following general relation: 
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The dissipation port effort variable can be defined as: 
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From (E.219),(E.222) and (E.224), the discrete-time power conservation law results as: 
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which is equivalent to: 
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and thus, the discrete-time power conservation law doesn’t hold.  

Remark: The power conservation law doesn’t hold for this scheme as (4.30) is not satisfied. 

 

E.2.7 Symplectic discretization scheme VII 

 

This symplectic time-discretization scheme assumes an explicit Euler rule for the flows and 

an implicit trapezoidal rule for the efforts. The initial continuous-time lossy PCH system for 

which we perform the symplectic discretization is: 
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Using the general time-discretization framework from (4.1) and (4.24) for the selected 

discretization scheme, it results: 
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Remark: The composed time-discretization of the effort 
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it results: 
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Remark: The step k in the parenthesis of the flows, efforts or power energies correspond to 

the explicit form of the discrete-time scheme, given by the flows discretization rule. 

The discrete-time power energy associated to the storage port can be defined as: 
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Equivalently we can write: 
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from strainghtforward computations. The discrete-time control port power energy, can be 

defined as: 
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which is equivalent to: 
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The dissipation port power energy, can be defined as: 
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which is equivalent to: 
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When using the following general relation: 
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The discrete-time effort variable is defined as: 
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Using (E.234), (E.236) and (E.238), the discrete-time power conservation law is satisfied: 
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Using (4.31), the discrete-time energy (Hamiltonian) is defined as: 
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Using (2.234), (2.236) and (2.238), (2.242) results as: 
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 Using (4.32), the discrete-time bilinear form can be defined as: 
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The implicit form of the discrete-time PCH system can be defined as: 
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Replacing the discrete-time flows and efforts of each port, it results: 
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E.2.8 Symplectic discretization scheme VIII 

 

In this case, an implicit trapezoidal rule for the flows and an implicit Euler rule for the efforts 

were selected for time-discretization. The initial continuous-time lossy PCH system, for 

which we apply this symplectic discretization scheme is: 
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Applying this time-discretization rules for the flows and efforts, it results: 
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Remark: The composed time-discretization of the effort 
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Adopting the notations: 
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(E.248) becomes: 
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Remark: The step 1k  in the parenthesis of the discrete-time flows, efforts or power 

energies correspond to the implicit form of the discretization scheme, given by the flows  

time-discretization rule. 

The discrete-time power energy corresponding to the storage port can be defined as: 
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which is equivalent to: 
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from straight computations. The discrete-time power energy associated to the control port can 

be defined as: 
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which is equivalent to: 
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from straightforward computations. For the dissipation port, the discrete-time power energy 

can be defined as: 
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which results in: 
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Using the general relation: 
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the discrete-time effort variable is defined as: 
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From (E.253), (E.255) and (E.257), the discrete-time power conservation law is: 
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 (E.260) is equivalent to: 
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and thus the discrete-time power conservation law is not satisfied. 

Remark: This time-discretization scheme is not symplectic as (4.30) doesn’t hold. 

 

E.2.9 Symplectic discretization scheme IX 

 

For this time-discretization scheme, it was selected an implicit mid-point rule for the flows 

and an implicit trapezoidal rule for the efforts. The initial continuous-time lossy PCH system 

for which we perform the time-discretization is: 
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Applying this time-discretization scheme, using (4.1) and (4.24) it results: 
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Remark: The composed time-discretization of the effort 
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Adopting the notations: 
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and: 
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(E.264) becomes: 
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Remark: The step 1k , in the parenthesis of the flows, efforts or power energies correspond 

to the implicit form of the time-discretization scheme, given by the time-discretization rule 

selected for the flows. 

The discrete-time power energy corresponding to the storage port, can be defined as: 
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Equivalently we can write: 
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from straightforward computations. In (E.269),  1ˆ k
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The discrete-time power energy corresponding to the control port can be defined as: 
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which is equivalent to: 
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The dissipation port power  energy, can be defined as: 
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which results in: 
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Using the general relation: 
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the discrete-time effort variable is defined as: 
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Using (E.269), (E.272) and (E.274), the discrete-time power conservation law is: 
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Equivalently we can write: 
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or: 
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Thus the discrete-time power conservation law is not satisfied with this discretization scheme. 

Remark: This time-discretization scheme is not symplectic, as (4.30) from the general 

framework  is not satisfied. 
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Appendix F Matrix I/O representation of symplectic time-discretization schemes and 

deterministic identification  

 

General remark: This Appendix comes to prove that the symplectic time-discretization 

schemes proposed in chapter 4, can be used for deterministic identification of PCH systems 

using ortogonal or oblique projections. The main differences between the discretization 

schemes are given by different structures of the past/future states and output vectors, 

maintaining in the same time the classic approach of state-space form. Thus all symplectic 

time-discretization schemes can be used as well for determining the system parameters.  

 

F.1 Symplectic discretization scheme II 
 

For the 2
nd

 symplectic discretization scheme of chapter 5, it is proposed an implicit Euler rule 

for the flows and an explicit Euler rule for the efforts. Applying the general discretization 

schemes introduced in chapter 4, we can write the following state-space form: 
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where the CBA ,, matrices represent the state-space matrices of the discrete-time PCH 

system. For  0k , the above equation is: 
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For  1k , (F.1) becomes: 
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For  2k , we can write: 
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Using (F.2), (F.3) and (F.4), the following relations can be deduced: 
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In the above relation, 
P

U  represents the vector: 
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
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from which the 1
st
 input  

0
u is missing, while 

i
u  is augmented. 
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Remark: 

 

The matrix input-output equations of this symplectic discretization scheme are similar with 

the classic state-space form, with the 1
st
 output always zero. In this case, as for the previous 

symplectic discretization scheme, the proof of the deterministic identification theorem follows 

the same steps as for the classic case and it won’t be performed further. 

 

F.2 Symplectic discretization scheme III 
 

This symplectic discretization scheme, assumes an explicit Euler rule for the flows and an 

implicit mid-point rule for the efforts. Applying the general discretization rules introduced in 

chapter 4, we can write the following state-space representation: 
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The implicit form of this time-discretization scheme is: 
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Remark: Using the same rules as for the 1
st
 two symplectic discretization schemes, the results 

are laborious and no general (recursive) formulas can be found for a vectorial representation 

of the states and outputs. By combining this symplectic time-discretization scheme with the 1
st
 

one, a vectorial representation of the states and outputs may be obtained. 

 

Using (5.24) and (F.7), it can be observed that the following relations can be written:
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More compact this relation can be written as: 
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Next we adopt the notations for simplicity: 
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Remark: The minus sign was introduced for the reversed extended controllability matrix in 

(F.11) as  the last term is missing.  

Using (F.11), (F.10) becomes: 



247 

 

2

2
2/012/01/01/01

0
1

1

k
uB

k
U

d

kk
U

d

kk
U

d

kk
U

d

k
x

k
A

k
x

























   (F.12) 

Further we can write: 
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More compact the above relation can be written as: 
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Adopting the notations: 
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(F.14) becomes: 
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Remark: The state-space form of (F.16) is similar as form to the classic state-space 

representation. 

Then we define the future states, as follows: 
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For the system outputs, using the 2
nd

 relation in (F.7), we can write: 
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This relation can be further written as: 
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Then we can represent the past and future outputs vectorialy as: 
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where: 
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Then the final form of the matrix input-output equations is: 
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Thus we introduce the following theorem for the matrix I/O representation of this 

discretization scheme. 

 

Theorem F.1 

The matrix I/O  equations of a discrete-time PCH system represented in explicit form in (F.7) 

and in implicit form in (F.8), for a symplectic time-discretization scheme with an explicit 

Euler rule for the flows and implicit mid-point rule for the efforts are: 
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At the next step, we search for an equivalent state-space representation using (5.33) and (F.7). 

Replacing 
k

x from (5.33) in (F.7), it results: 
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Equivalently we can write: 
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Performing the possible simplifications, this relation becomes: 
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Using the 2
nd

 relation from (F.7), we can write for the outputs: 

    


























2

111 k
uB

k
xA

k
x

C
k

y               (F.29) 



249 

 

(F.29) can be further written as: 
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Using (F.28) and (F.30), we can write the following two relations: 
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A simpler representation of the above system is: 
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where the following notations have been adopted: 
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Remark: Similar to the classic state-space approach, it is possible to recover the initial state-

space matrices ( CBA ,, ) by solving (F.32) when having knowledge of the input/output 

vectors. 

In the following lines, we will prove the deterministic identification theorem for this 

symplectic time-discretization scheme. We propose thus a deterministic identification 

theorem as in the classic state-space case for the selected symplectic discretization scheme, 

which is proved further. 

 

Theorem F.2 

 

Under the assumtions that: 
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            and with 
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                 we have: 
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1. The matrix 
i

O  is equal to the product of the extended observability matrix and the 

states: 
d

f
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O

*
       (3) 

2. The order of the dynamic system is equal to the number of singular values in (2) 

different from 0. 

3. The extended observability matrix *
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*      (6) 

Remark: The proof follows the same steps as for the classic state-space approach [107] in 

the deterministic identification. 

 

Proof: 

 

Using (F.24), we can write the average value of the future states as: 
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More compact we can write this relation as: 
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Adopting the notations: 
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(F.35) becomes: 
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Using (F.24), we can write (F.37) equivalently: 
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More compact, we can write: 

   

























 





P
Y

P
U

i
i

M
A

d

i
H

i
i

M
A

M
d

f
X

**
******                          (F.40) 

or equivalently: 
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by adopting the notations: 
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Using (F.24), we can write for the future states as: 
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As for the classic case, we multiply this relation with the orthogonal projection of **
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(future inputs) and we get: 
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We remark that the term 
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U is zero and thus, it results: 
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Using the definition of the orthogonal projection, (F.45) becomes: 
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Multiplying to the right with the pseudo-inverse  
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Similarly to the definition of classic state-space systems, we can define an oblique projection 

in this case: 
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Using (F.41), (F.48) becomes: 

    d

f
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where: 
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holds. 

*

p
W
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Further the weighting matrices lixli
RW 

1
and 

jxj
RW 

2
are introduced, such that 

1
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full rank and 
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Using (F.22) and (F.24), we can write *
P

W  as: 
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where: 
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Multiplying to the right with the orthogonal complement of  **
f

U , we can write: 
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which becomes further: 
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Using also the initial conditions assumed for Theorem F.2, it results: 
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which proves then (F.52). 

 

Remark:  

The initial conditions are maintained as for the classic case, the only difference is that *
P

W  is 

changing his structure according to the symplectic time-discretization scheme. 

As for the classic case, we can develop the (SVD) decomposition of **
/

*
f

U
P

W as: 

      T
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T
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           (F.58) 

Remark: Since **
/

*
f

U
P

W is a linear combination of the columns of *
P

W  and since the rank 

of *
P

W  and **
/

*
f

U
P

W are equal, the column spaces of *
P

W  and **
/

*
f

U
P

W  must be also 

equal. 

We can write then *
P

W  as: 
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     RU
P

W
1

*
                 (F.59) 

Using the SVD decomposition (F.58), we can write: 
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Using the properties: 

    IV
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1111

                (F.61) 

assumed for the SVD decomposition, it results: 
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Using (F.59) and (F.62) it is obvious that: 
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which proves also (F.51). For the 2
nd

 claim of the theorem, we can write: 
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where *
i

  has n columns and d

f
X  n  rows. The rank of this product is also n , which proves 

the statement of the theorem. Introducing a non-singular similarity transformation ( nxn
RT 

), we can write *
1 i

W  and 
2

W
d

f
X as follows: 
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    T
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Multiplying to the left with 1
1


W in (F.65), we get: 

    TSUW
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1

1
* 
                 (F.67) 

which proves statement 4 of the theorem. From (F.66) also the 4
th

 statement of the theorem 

results. Using (F.50), the future states can be written as: 

     
i

O
i

d

f
X




*                 (F.68) 

which proves the last statement of the theorem. From (F.50), (F.64),(F.66), (F.67) and (F.68), 

it results that the deterministic identification theorem proposed for the current discretization 

scheme is proved. 

 

 

F.3 Symplectic discretization scheme IV 

 

In this case, it is assumed an implicit mid-point rule for the flows and an explicit Euler rule 

for the efforts. The discrete-time state-space representation of this symplectic time-

discretization scheme, starting from the general relations of chapter 4, is the following: 
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The general implicit form of the PCH system for this symplectic discretization scheme, is the 

following: 

              Dk
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f  1,1,1,1,1,1             (F.70) 

Using the 1
st
 relation from (5.24) in (F.69), we can write the following equivalent relation: 

11/002/010
1

21/001 














 
























k
uB

k
U

d

k
x

k
A

k
U

d

k
x

k
A

IA

k
U

d

k
x

k
A

k
x

                      (F.71) 

Equivalently we can write: 
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Adopting further the notations: 
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(F.72) becomes: 
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Further we adopt the notations: 
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and (F.74) is equivalent to: 
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Then we can write then the following relation for the future states as for the classic case: 
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where: 
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For the system outputs we can write: 
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Vectorialy we can write then the past outputs  of the state-space system, as follows:  
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i
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Y
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with the following notations: 
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The first zero appears in (F.81), because the initial output is zero. Similarly with (F.80), we 

can write for the future outputs the following relation: 
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The future states term d

f
X

1
 stands for the future states d

i
X  vector, with one step behind. 

The future inputs *
f

U  and d

i
H

* are defined by: 
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From (F.77), (F.80) and (F.82), we can write the matrix input-output equations for this 

symplectic time-discretization scheme: 
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As for the classic state-space approach, we formulate the following theorem: 

 

Theorem F.3 

 

The matrix input-output equations of a discrete-time PCH system, represented in explicit form 

in (F.69) and in implicit form in (F.70), for a symplectic time-discretization scheme with an 

implicit mid-point rule for the flows and explicit Euler for the efforts are: 
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Next an equivalent state-space representation will be written using (F.69) and (5.24).  

Replacing the states from (5.33) in (F.69), we can write: 
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Equivalently we can write: 
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More compact this relation can be written as: 
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The system outputs can be computed as follows: 
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Equivalently we can write: 
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Using (F.88) and (F.90), the following relation results: 
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Adopting the following notations for a compact represention: 
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            (F.92)                         

we can simplify then (F.91) as follows: 
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Further a deterministic identification theorem, will be proved for the selected symplectic time-

discretization scheme. 

Remark: Similar to the classic state-space case, it is possible to recover the state-space 

matrices ( CBA ,, ) by solving (F.93), knowing the input/output vectors. 

 

 

Thus we propose the following theorem: 

 

Theorem F.4 

 

Under the assumtions that:  

I. The input is persistently exciting of order i2  

II. The intersection of the row space of  *
f

U (the future inputs) and the row space of  d

P
X (the 

past states) is empty. 

k
u
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III. The user-defined weighting matrices lixli
RW 

1
and 


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

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

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
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1
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2
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












 2
*

1
*

1
W

p
Wrank

p
Wrank , where *

P
W  is the block 

Hankel matrix containing the past inputs and outputs and with 
i

O defined as the oblique 

projection: 

     *
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*
1

/
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 




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

p
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f
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f
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i
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      and the singular value decomposition: 
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VSU

T
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T
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111

2

1

00

0
1

2121


























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   (2) 

      we have: 

      1.The matrix 
i

O is equal to the product of the extended observability matrix and the     

          states: 
d

f
X

ii
O

1

*


      

 (3) 

2. The order of the system is equal to the number of singular values in (2) different from 

0. 

3. The extended observability matrix *
i

  is equal to: 

TSUW
i

2/1

11
1

1
* 
      (4) 

4. The part of the state sequence d

f
X

1
 that lies in the column space of 

2
W can be 

recovered from: 
T

VSTW
d

f
X

1
2/1

1

1
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
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
    (5) 

5. The state sequence d

f
X
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is equal to: 

i
O

i
d

f
X






*

1
     (6) 

Proof: 

 

Using (F.85), we can write: 
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U
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i
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i
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A
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where: 

     
T

ii 











*
1

0
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
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     











*
2

...
*
0

00
**

i
uu

P
U            (F.97) 

Remark: The first zero terms in (F.95),(F.96) and (F.97) corresponds to the first output  of 

the system response, which is zero. 
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(F.94) can be also written as: 
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i
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Adopting the following notations: 
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                      (F.99) 

we can write (F.98) as: 

    **
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L
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f
X                            (F.100) 

Using (F.85) and (F.100), we can write: 

    ***
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*
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*
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U
d

i
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P
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
             (F.101) 

Multiplying to the right with the orthogonal projection of , it results: 
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Remark: The terms *
1P

L  and *
1P

W  come from the fact that the future outputs, are 

expressed in rapport with the future states, with one step behind d

f
X

1
. 

We can write then: 
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using the orthogonal projection operator and the property: 
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
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U                          (F.104) 
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We introduce then the oblique projection for the left term: 
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Using (F.100) and (F.105), we can write: 

    d
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In (F.105), the following relation has been used: 
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For the next step it is necessary to prove that: 

    






 





*
/

*
1

*
1 f

U
P

Wrank
P

rankW                        (F.109) 

We can then write the following relation: 

*

f
U
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where: 

     ***
P

W
P

L
P

W                 (F.111) 

Further we multiply to the right with the orthogonal projector of  *
f

U , which satisfies: 
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and we can write: 
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Equivalently we can write: 
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or: 
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Using the initial conditions assumed on this theorem, it results: 
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which proves (F.109). 

 

Remark: It is necessary  to use the same initial conditions, as for the classic state-space case, 

in order to prove (F.109), the only difference is given by the structure of  *
P

W , which is 

changing according  with the symplectic time-discretization scheme. 
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We then introduce the SVD decomposition: 
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where 


*
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*
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W  is a linear combination of the columns of *
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W  and using (F.109), the 

column spaces of *
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*
/

*
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W  are also equal. We can write then the following 

relation: 
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Using the decomposition from (F.117), we can write: 
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Grouping the terms in (F.119), it results: 
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Using the properties: 
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related to SVD decomposition, it results: 
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which is also equal to (F.118). We then compute: 
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The rank of *
1 i

W  and 
21

W
d

f
X


is n  and also is their product. Thus statement 2 of the 

theorem is proved. Introducing a non-singular transformation matrix ( nxn
RT  ), we can 

write: 
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from which the observability matrix *
i

  is: 
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This proves statement 4 of the theorem. Statement 5 of the theorem is given by the 2
nd

 relation 

of (F.125). From (F.107), we can recover the states  d
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which proves the last statement of the theorem. 

 

F.4 Symplectic discretization scheme V 

 

This symplectic time-discretization scheme assumes an implicit Euler rule for the flows and 

an implicit mid-point rule for the efforts. The general form of this symplectic discretization 

scheme is: 
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The implicit form of the PCH system for this symplectic discretization scheme is: 
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Using (5.33) and (F.128), we can write equivalently: 
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This relation can be further written as: 
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This relation can be further written as: 
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Adopting the notations: 
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(F.132) becomes: 
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More  compact we can write (F.134) as: 
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Adopting further the notations: 
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we can express the states as: 
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The future states become then: 
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where: 
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stands for the past outputs. We compute then the system outputs, as follows: 
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At state k , the output can be written as: 
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A vectorial representation of the past outputs is: 
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Using the notations: 
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similar to the classic case. For the vector of future outputs, we can write: 
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where: 
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Using (F.138), (F.143), (F.144) and (F.145), the matrix input-output equations result as: 
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Theorem F.5 

 

The matrix input-output equations of a discrete PCH system, represented in explicit form in 

(F.128) and in implicit form in (F.129), for a symplectic discretization scheme with an 

implicit Euler rule for the flows and implicit mid-point rule for the efforts are: 
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Next we write a more compact form of (F.128), using (5.24) as: 
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Developing this relation, we can write: 
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Equivalently we can write: 
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For the system outputs, we can write: 
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Equivalently we can write: 
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Using (F.151) and (F.153) it results: 
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Further we can adopt the notations: 
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and (F.154) becomes: 
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Remark: As for the classic state-space case, it is possible to recover the state-space matrices 

( CBA ,, ) by solving (F.156), when knowing the input/output vectors. 

 

Next we propose a deterministic identification theorem corresponding to this symplectic time-

discretization scheme and perform the proof as in the classic state-space case. 

 

 

Theorem F.6 

 

Under the assumtions that: 

I.The input is persistently exciting of order i2  

I. The intersection of the row space of **
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P
X (the 

past states) is empty. 
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     we have: 

1.The matrix 
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O is equal to the product of the extended observability matrix and the  
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2.The order of the system is equal to the number of singular values in (2) different  
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Proof: 

 

Using the first three relations of (F.147) we can write: 
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where we define: 

     























































d

i

d

i

def

M

i
A

i
A

def
i

M
A

**

12

1

2

1

            (F.158) 

Equivalently we can write: 
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Adopting the notations: 
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(F.159) becomes: 
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Using (F.161), the future outputs from (F.147) become: 
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Next we apply the orthogonal operator , to the right:  **
Uf
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Using the orthogonal projection operator, we can write equivalently: 
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Using (F.161) and the oblique projection operator, we can write: 
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For the next step, it is necessary to prove that:       
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Using the expression of  *
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W from (F.160), we can write equivalently: 

     






















































d

P
X

P
U

i
d

i
H

mi
I

P
W

**

****

0
24*                       (F.168) 

where **
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U  has the following form: 
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We then multiply in (F.168) with the orthogonal complement of **
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U and we get: 
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Using the two initial conditions assumed for the theorem, it results that: 
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Then we get: 
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Remark: The initial conditions assumed on the deterministic identification theorem for this 

symplectic discretization scheme are similar to the classic case, the difference being given by 

the block Hankel matrice *
P

W  which changes the structure. 

We denote then the SVD decomposition of **
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As **
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Using the SVD decomposition from (F.173), we can write: 
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Using the properties: 
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T
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T

V 
1111

             (F.176) 

associated to the VU , matrices from the SVD decomposition, it results: 
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Using (F.174) and (F.177), we can write the following relation: 

    ****
/
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/

*
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W
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W
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
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



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
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
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Using (F.166), we can write the product: 

     
2

*
121

W
d

f
X

i
WW

i
OW              (F.179) 

We observe that the products *
1 i

W  and 
2

W
d

f
X contain n  columns and respectively n rows, 

from which the product rank is also n . This proves statement 2 of the theorem.  

Introducing a non-singular simularity transformation ( nxn
RT  ) in (F.179), we can split 

(F.179) in two pieces, as follows: 

    TSU
i

W
2/1

11
*

1
               (F.180) 

    T
VSTW

d

f
X

1
2/1

1

1
2


              (F.181) 

Multiplying (F.180) to the left with 1
1


W , we can write further: 

    TSUW
i

2/1

11
1

1
* 
               (F.182) 

From (F.181) and (F.182), statements 4 and 5 of the theorem are proved. Using (F.166) it 

results also that the future states sequence is equal to: 

     
i

O
i

d

f
X




*               (F.183) 

which proves the last statement of the theorem. 

 

F.5 Symplectic discretization scheme VI 

 

For this symplectic time-discretization scheme, it is assumed an implicit mid-point rule for the 

flows and implicit Euler rule for the efforts. The general explicit form of this symplectic 

discretization scheme is: 
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
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The implicit form of the PCH system for this symplectic discretization scheme is: 

               Dk
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C
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S

ek
S

f  1,1,1,1,1,1           (F.185) 

Combining (5.33) with (F.184), it results: 
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
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         (F.186) 

This relation can be further written as: 
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 
















































k

Bu

k
U

d

k

IA

k
U

d

k

IA
x

k
A

k
A

k
x           (F.187) 

Adopting the notation: 
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we can write further: 
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As for the previous cases, we adopt the notation: 
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and (F.189) becomes: 
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Further we can write more compact as: 

 



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Adopting the notations: 
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we can write the states as: 
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For the future states we can write then: 
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    **
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where: 
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represents the vector of  past outputs.  We can write the output vector as: 
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We can write then the following relations for the past outputs: 
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where: 
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Similarly we can write the vector of the future outputs as follows: 

    ***
f

U
d

i
H

d

f
X

if
Y               (F.200) 

From (F.195), (F.198) and (F.200), we can write the following relations for the matrix input-

output equations: 
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Theorem F.7 

 

The matrix input-output equations of a discrete-time PCH system, represented in explicit form 

in (F.184) and in implicit form in (F.185), for a symplectic discretization scheme with an 

implicit mid-point rule for the flows and implicit Euler for the efforts are: 
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Next we write an equivalent representation of (F.184) using (5.33) as for the classic case. 

Thus we can write: 
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Further this relation becomes: 
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After making possible simplifications, we can write: 
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An equivalent representation of (F.204) is: 
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For the system outputs, we can write: 
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Equivalently we can write: 
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Using (F.205) and (F.207), it results: 
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Adopting the notations: 
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it results: 
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Remark:  

As for the classic state-space case, the state-space matrices ( CBA ,, ) can be recovered by 

solving (F.210) when knowing the input/output vectors. 

 

Further we will propose and prove a deterministic identification theorem associated to the 

current symplectic discretization scheme. 

 

 

Theorem F.8 

 

Under the assumtions that: 

I. The input is persistently exciting of order i2  

II. The intersection of the row space of *
f

U (the future inputs) and the row space of d

P
X

(the past states) is empty. 

k
u
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III. The user-defined weighting matrices lixli
RW 

1
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       and the singular value decomposition: 
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       we have: 

1. The matrix 
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Proof: 

 

Using (F.201), the state vector can be written equivalently: 

   ******
P

U
d

iP
U

d

i
H

iP
Y

i
i

A
d

i
X

d

f
X 





 







            (F.211) 

Equivalently this relation can be written as: 
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Adopting the notations: 
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(F.212) becomes: 
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Using (F.214), the future outputs have the following form: 
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Multiplying to the right with the orthogonal projector of *
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U , we get: 
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On the left and right hand, we can apply the orthogonal projection operator and it results: 
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Multiplying to the right with the pseudo-inverse *
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We observe that the left term is the expression of an oblique projection and then we can write: 
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or equivalently: 
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At the next step, it is necessary to prove: 
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W  can be equivalently written as: 
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where: 
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Multiplying to the right with the orthogonal complement of  
*f

U it results: 
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Using the orthogonal projection operator, we can write further: 
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Using the initial conditions on the theorem, it results: 



273 

 

    





















































*
/

*
/

*
*

f
U

d

P
X

f
U

P
U

rank
d

P
X

P
U

rank             (F.226) 

which proves F.221. 

Remark: As for the classic case, the initial conditions assumed on this symplectic 

discretization scheme maintain the same form, changing in accordance only the block Hankel 

matrice ( *
P

W ) structure and inputs ( *
,

*
f

U
P

U ). 

Then we write the SVD decomposition of 
*

/
*

f
U

P
W  as: 
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
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where 
*

/
*

f
U

P
W is known to be a linear combination of the columns of *

P
W  and since the 

rank of *
P

W  and 
*

/
*

f
U

P
W are equal, then the column spaces of *

P
W  and 

*
/

*

f
U

P
W are 

also equal. We can introduce then the relation: 

     RU
P

W 1
*                (F.228) 

from which we can write: 
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Using the properties: 

     IU
T

UV
T

V 
1111

             (F.230) 

associated to the SVD decomposition, it results: 

    **
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Using (F.228) it results: 
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For the 2
nd

 claim of the theorem, we observe that: 

    
2121

W
d

f
X

i
WW

i
OW              (F.233) 

We know that the product *
1 i

W   has n  columns and 
2

W
d

f
X  n  rows, from which we 

conclude that: 

      nW
i

OWrank 
21

              (F.234) 

This proves statement 2 of the theorem.  

Introducing  a non-singular transformation matrix ( nxn
RT  ), we can write: 
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Multiplying to the left with 1
1


W in the 1
st
 relation, it results: 

    TSUW
i

2/1

11
1

1
* 
               (F.236) 

Thus statement 3 of the theorem is proved. The 2
nd

 relation from (F.235) proves statement 4 

of the theorem. Using (F.220) we can compute the state sequence d

f
X  as follows: 

    
i

O
i

d

f
X




*                (F.237) 

This proves statement 5 of the theorem. 

 

F.6 Symplectic discretization scheme VII 

 

For this symplectic discretization scheme, it is assumed an implicit trapezoidal rule for the 

flows and an explicit Euler rule for the efforts. The general explicit form of the PCH system 

for this symplectic discretization scheme, is the following: 
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while the implicit form of  the PCH system for this symplectic discretization scheme is: 
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Using (5.24) and (F.238), we can write  equivalently: 
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                   (F.240) 

Equivalently we can write: 
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Further we adopt the notation: 
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Then we can write: 
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                                                                                                                                      (F.243) 

We can write this relation further: 
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Then we adopt the notations: 
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and (F.244) becomes: 
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We can write the future states as: 
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where: 
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is defined in (F.245). Similarly we compute the system outputs using the formula: 
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We can generalize then a vectorial representation for the past outputs: 
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where: 
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Remark: In (F.251), we have zero terms for **
i

 , **
P

U  and d

i
H

** , due to the fact that the 1
st
 

output is  zero, on this symplectic scheme.  

For the future outputs we can write: 
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where *
,

*
f

U
d

i
H are defined as follows: 



276 

 

    



















































































T

i
u

i
u

i
u

def

f
U

d

i

d

d

C

def
d

i
H

*
22

...
**

1
*

0...0
*

1

............

0...0
*

1

0...0
*

0

*

 

Using (F.247), (F.250) and (F.252), the matrix input-output equations of this scheme, can be 

written as: 
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Then we can introduce the following theorem: 

 

Theorem F.9 

 

The matrix input-output equations of a discrete PCH system, represented in explicit form in 

(F.238) and in implicit form in (F.239), for a symplectic discretization scheme with an 

implicit trapezoidal rule for the flows and explicit Euler for the efforts are: 
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An equivalent state-space representation of (F.238) can be obtained by combining it with 

(5.24). Then we can write: 
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This relation becomes further: 
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A simplified form of the above relation is: 
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(F.257) 

Equivalently, we can write: 
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For the system outputs, we can write the following relation: 
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This relation can be also written as: 

    





































1

1

00
11

k
u

k
u

k
u

BC
k

xAC
k

y                        (F.260) 

Using (F.258) and (F.260), we can write the following state-space representation: 
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           (F.261) 

Adopting the following notations, we can write: 
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and it results: 

   

























































1

~
1

~~

~~

1

1

k
u

k
x

DC

BA

k
y

k
x

              (F.263) 

Remark:  

 

As for the classic case, the original state-space matrices ( CBA ,, ) can be recovered by 

solving (F.263) when knowing the input/output vectors. 

 

Next we will introduce and prove a deterministic identification theorem for the selected 

symplectic time-discretization scheme. 

 

Theorem F.10  

 

Under the assumtions that: 

1. The input is persistently exciting of order i2  

2. The intersection of the row space of  *
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P
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k
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Hankel matrix containing the past inputs and outputs and with 
i

O  defined as the oblique 

projection: 

     *
1

*
/


 









P
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f
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f
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i
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     and the singular value decomposition: 

     T
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T
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T
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111

2

1

00

0
1

2121




































   (2) 

     we have: 

1. The matrix 
i

O  is equal to the product of the extended observability matrix and the 

states: 
d

f
X

ii
O

1

*


      (3) 

2. The order of the system is equal to the number of singular values in (2) different 

from 0. 

3. The extended observability matrix *
i

  is equal to: 

TSUW
i

2/1

11
1

1
* 
      (4) 

4. The part of the state sequence d

f
X  that lies in the column space of 

2
W  can be 

recovered from: 
T

VSTW
d

f
X

1
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1

1
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



    (5) 

5. The state sequence d

f
X

1
is equal to: 

i
O

i
d

f
X






*

1
     (6) 

 

 

Proof: 

 

Using (F.254), the future outputs can be expressed as: 
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P

U
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U
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i
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i
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A
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f
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
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

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           (F.264) 

We can write this relation as: 
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Y
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i
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P
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i
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A
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Adopting the notations: 
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           (F.266) 

Then (F.265) simplifies to: 

    **
P

W
P

L
d

f
X                 (F.267) 

Using (F.254) we can write for the future outputs: 
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*
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i
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P
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                                          (F.268) 

By multiplying to the right with the orthogonal projector of *
f

U we get: 
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which is equivalent to: 
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Next we multiply to the right with  *
1*

/
*

1 



 








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f
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P
W  and it results: 
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We observe that to the left we have an oblique projection ( *
1*

/



P

W
f

U
f

Y
i

O ) and using 

(F.267) it results: 

     d

f
X
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1

*


                         (F.272) 

which proves the first statement of the theorem. In (F.271) we have used the relation: 
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We next prove the relation: 

    


























 *
/

*
1

*
1 f

U
P

Wrank
P

Wrank                       (F.274) 

We write next *
1P

W equivalently: 
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Next we can multiply to the right with the ortogonal projector of 
*f

U and it results: 
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Using the orthogonal projection operator, we can write equivalently: 
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Assuming the initial conditions on the theorem, we can write: 
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and thus (F.274) is proved.  

Remark: The initial conditions assumed for this symplectic time-discretization scheme, 

follow the same form with the classic state-space one, where the block Hankel matrice *
P

W  

and past/future inputs ( *
,

*
f

U
P

U ) change their structure. 

Then we introduce the SVD decomposition of as: 

     
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Since 
 *

/
*

1 f
U

P
W is a linear combination of the columns of *

1P
W and since the rank of 

*
1P

W and 
 *

/
*

1 f
U

P
W  are equal, the column spaces of *

1P
W  and 

 *
/

*
1 f

U
P

W are the 

same.  

We can write the relation: 

     RU
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Also we can write: 
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Using the SVD decomposition properties: 

     IU
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T
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             (F.282) 

corresponding to the SVD decomposition from (F.279). Grouping the terms in (F.281), we 

can write: 
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Performing the simplifications, it results: 
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Using (F.280) and (F.284), it results that: 
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*
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For the 2
nd

 claim of the theorem, we observe that: 

    
21

*
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W
d

f
X

i
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i
OW


              (F.286) 

where *
1 i

W  has n columns and 
21

W
d

f
X


 n  rows. It results that the product 

21
W

i
OW  has 

rank n . This proves statement 2 of the theorem. Next we introduce a non-singular similarity 

transformation matrix ( nxn
RT  ) and we can write the next two relations: 
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From the 1
st
 relation of (F.287) we can recover *

i
  by multiplying to the left with 1

1


W  as 

follows: 

    TSUW
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1
* 
               (F.288) 

(F.287) and (F.288) proves statements 3 and 4 of the theorem. Using (F.272) we compute the 

future states as follows: 

     
i

O
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d

f
X


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
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1
             (F.289) 

This proves statement 5 of the theorem for this particular symplectic time-discretization 

scheme and ends the proof. 

 

 

F.7 Symplectic discretization scheme VIII 

 

For this symplectic time-discretization it was assumed an explicit Euler rule for the flows and 

an implicit trapezoidal rule for the efforts. The general explicit state-space form of this 

symplectic discretization scheme, is the following: 
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           (F.290) 

using the notations from (5.25).The implicit form of the PCH system for this symplectic 

discretization scheme is: 
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Combining (5.33) with (F.290), it results: 
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Equivalently we can write this relation as: 
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More compact we can write: 
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Adopting the notations: 
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 (F.294) becomes: 
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This relation can be written as follows: 
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We introduce the notations: 
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Then (F.297) becomes: 
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Next we can write the future states as follows: 
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represent the past inputs associated to the states.  Using (5.33) and (F.290) the system outputs 

become: 
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This relation can be also written as: 
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For the vector of past outputs we can write: 
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P

U
d

i
H

d

P
X

iP
Y               (F.304) 

where the following notations have been adopted: 
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
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


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
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
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                            (F.305) 

Next we introduce the future outputs vector as: 

     *****
f

Ud
i

Hd
f

X
i
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where d

f
X  is defined as: 
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d

f
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d

f
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d

f
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


             (F.307) 

and **
f

U represents the matrix of future outputs, similar to the past system outputs ( **
P

U ). 

From (F.300), (F.304), (F.306) and (F.307) the following matrix input-output equations 

result: 

   






















*****
;

******

2

1
;

**

f
U

d

i
H

d

f
X

if
Y

P
U

d

i
H

d

P
X
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Theorem F.11 

 

The matrix input-output equations of a discrete-time PCH system, represented in explicit form 

in (F.290) and in implicit form in (F.291), for a symplectic discretization scheme with an 

explicit Euler rule for the flows and implicit trapezoidal rule for the efforts are: 
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X
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i
A

d

f
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           (F.309) 

Further we will find an equivalent representation of (F.290), when combined with (5.33). 

Replacing the state-space values from (5.33) in (F.290) and using the notations from (5.34), it 

results: 
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This relation can be further written as: 
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                                                                                                                                           (F.311) 

Equivalently we can write: 
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Similarly we can write for the outputs: 

   

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Further this relation can be written as: 
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Using (F.312) and (F.314), we can write the following relations for the state-space system of 

(F.290): 
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Adopting the notations: 
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(F.314) becomes: 

     























































1

~
1

~~

~~
1

k
u

k
x

DC

BA

k
y

k
x

             (F.317) 

 

Remark:  

The state-space matrices ( CBA ,, ) can be recovered by solving (F.317) when having 

knowledge on the input/output vectors. 

 

As for the classic state-space case, we propose and prove further a theorem associated to the 

current symplectic time-discretization scheme. 

 

Theorem F.12 

 

Under the assumtions that: 

I. The input is persistently exciting of order i2  
k

u
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II. The intersection of the row space of  **
f

U (the future inputs) and the row space of  d

P
X

(the past states) is empty. 

III. The user-defined weighting matrices  lixli
RW 

1
and 

jxj
RW 

2
are such that 

1
W is of 

full rank and 
2

W obeys: 

















2
**

W
P

Wrank
P

Wrank , where *
P

W  is the block Hankel 

matrix containing the past inputs and outputs  and with 
i

O  defined as the oblique 

projection: 

     ***
/

P
W

f
U

f
Y

i
O  







      (1) 

           and the singular value decomposition: 
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T
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












   (2) 

we have: 

1.The matrix 
i

O is equal to the product of the extended observability matrix and the states: 

d

f
X

ii
O

*
       (3) 

2.The order of the system is equal to the number of singular values in (2) different from 0. 

3. The extended observability matrix *
i

 is equal to: 

TSUW
i

2/1

11
1

1
* 
      (4) 

4.The part of the state sequence d

f
X that lies in the column space of  

2
W can be recovered     

    from: 
T

VSTW
d

f
X

1
2/1

1

1
2


      (5) 

5. The state sequence d

f
X is equal to: 

i
O

i
d

f
X




*        (6) 

Proof: 

 

Using (F.309) we can write the average value of the future states, as follows: 
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where the notations have been adopted: 
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Equivalently we can write this relation as: 

   

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Adopting the notations: 

    


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Then (F.320) becomes: 
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W
P

L
d

f
X                 (F.322) 

For the future outputs, we can write then: 
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U
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P
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Y               (F.323) 

Multiplying to the right with the ortogonal projector of 
**f

U  it results: 
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Using the orthogonal projection, we can write equivalently: 
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Multiplying to the right with *
**

/
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P
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f
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P
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
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On the left in (F.326), we have an oblique projection: 
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Then we can write: 
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L
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O                          (F.328) 

Using (F.322), it results: 
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In (F.326), the following relation was used: 
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At the next step it is necessary to prove that: 
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First we observe that we can write *
P

W  as follows: 

    






















































d

P
X

P
U

i
d

i
H

mi
I

P
W

**

****

0
64*                        (F.332) 

Multiplying to the right with the ortogonal projector of 
**f

U , we get: 
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Using the initial conditions assumed on the theorem, it results: 
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and (F.331) holds. 

 

Remark: The same initial conditions, as for the classic case are used in order for (F.334) to 

hold, the only difference is that *
P

W  is changing form according to the symplectic time-

discretization scheme. 

 

We introduce the SVD decomposition of 
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/
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f
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P
W as: 
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As  
**

/
*

f
U

P
W is a linear combination of the columns of *

P
W  and because the rank of *

P
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and 
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/
*

f
U

P
W are equal, it results also that the column spaces of *

P
W  and 
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f
U

P
W are 

equal. We can write then *
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W  as: 
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Using the SVD decomposition in (F.335), we can write then: 

  RU
T

USV
T

VSU
P

W
f

U
P

W
f

U
P

W
11

1
11111

*
**

/
*

**
/

*











































 





              (F.337) 

where: 
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             (F.338) 

Performing the simplifications in (F.337), we get: 
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From (F.336) and (F.339), it results that: 
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For the 2
nd

 claim of the theorem, we can write: 

     
2

*
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W
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i
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i
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In (F.340) we observe that *
1 i

W   has n  columns and 
2

W
d

f
X  n rows. From this it results that 

their product is of rank n . Thus the 2
nd

 claim of the theorem is proved. For the 3
rd

 statement 

of the theorem, we introduce a non-singular similarity transformation ( nxn
RT  ), 

for which we can write: 
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Multiplying to the left in the 1
st
 equation with 1

1


W , we get: 

    TSUW
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1
* 
               (F.343) 

which represents statement 3 of the theorem. From (F.342) and (F.343) it results that 

statements 3 and 4 are satisfied for the deterministic theorem. Using (F.329), we can 

determine the average value of the states as: 

     
i

O
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X




*               (F.344) 

This proves the last statement  of the theorem. 

 

 

F.8 Symplectic discretization scheme IX 

 

For this case, the symplectic discretization scheme assumed an implicit Euler method for the 

flows and implicit trapezoidal rule for the efforts.The explicit form of the discrete-time PCH 

system with  this symplectic discretization scheme is: 
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
































2

1
1

1121

k
x

k
x

C
k

y

k
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k
x

k
x

IA

k
x

k
x

           (F.345) 

while the implicit form is: 

               Dk
R

ek
R

fk
C

ek
C

fk
S

ek
S

f  1,1,1,1,1,1                 (F.346) 

Combining (5.33) with (F.345), we can write the following relation: 





























































 2

1
2

/010
1

1/0021/001
k

uB

k
U

d

k
x

k
A

k
U

d

k
x

k
A

IA

k
U

d

k
x

k
A

k
x

                    (F.347) 

Equivalently we can write this relation as: 

2

1
2

/010
1

1/0

2

0/010
2

1/00
1

2

1/0
2

0
2

1





































k
uB

k
U

d

k
x

k
A

k
U

d

k

x
k

A
k

U
d

k
Ax

k
A

k
U

d

k
Ax

k
A

k
U

d

k
x

k
A

k
x

        

         (F.348) 

More compact this relation can be written as: 
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2

1
2

/0121/0202

2

1




















 
















































k

uB

k
U

d

k

IA

k
U

d

k

IA
x

k
A

k
A

k
x           (F.349) 

Adopting the notation: 

   






 





 BAB

k
AB

k
A

d

k
A

def
d

k
...

1

1
           (F.350) 

We can write: 

2

1

2

/011/02

2

1/01/01
02

2

1


























































































k
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k

U
d
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U

d
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U

d
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U

d

k
x

k
A

k
A

k
x

                                                                                                                                           (F.351) 

or: 











































































1/0

1/0

1212

1
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2

1
k

U

k
U

B
d

k

d

k

d

k

d

k
x

k
A

k
A

k
x           (F.352) 

Then we can adopt the notations: 

   

 























































































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*

/0
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1

0
,

2

2
1

k
U

k
U

def

k
U

B
d

k

d

k

d

k

d

k

def
d

k

x
d

P
X

k
A

k
A

def
k

A

           (F.353) 

and it results: 

    *
/0

*

1

1
1 k

U
d

k

d

P
X

k
A

k
x








            (F.354) 

As for the classic case, we can express the future states as:     

    **
P

U
d

i
d

P
X

i
A

d
i

X
d

f
X              (F.355) 

where *
P

U represent the past states, given as: 

     
i

U
i

U

def

P
U

/02/0
*


              (F.356) 

Using (F.355) we can compute also the system outputs: 























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
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



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


*
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1
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U
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P
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k
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k
U

d

k

d

P
X

k
A
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x

k
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C
k

y           (F.357) 

Equivalently we can write: 

   







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
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

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2
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k
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k
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k
A

C

k
y           (F.358) 

We can define the vector of past outputs as: 

    ******
P

U
d

i
H

d

P
X

iP
Y               (F.359) 

when adopting the notations: 
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

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i
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d

i
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T
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          (F.360) 

For the future outputs, we can write: 

     *****
f

U
d

i
H

d

f
X
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Y              (F.361) 

where: 

     
2

1

d

f
X

d

f
X

d

f
X




              (F.362) 

Thus we can formulate, the matrix input-output equations using (F.355),(F.359),(F.361) and 

(F.362), as folllows: 
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d

i

d

P
X

i
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f
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                      (F.363) 

Thus we propose the following theorem as in the classic state-space case: 

 

Theorem F.13 

 

The matrix input-output equations of a discrete-time PCH system, represented in explicit form 

in (F.345) and in implicit form in (F.346), for a symplectic discretization scheme with an 

implicit Euler rule for the flows and implicit trapezoidal rule for the efforts are: 
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P
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i
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f
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           (F.364) 

Using (5.33) and (F.345), we can write: 

  
2

1
2

2
2

1

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
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x
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k
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Performing the possible simplifications in (F.365), it results: 

    
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
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For the system outputs in (F.345), we can write then: 

    






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






 

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k
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x
C

k
y              (F.367) 

More compact (F.367) becomes: 
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             (F.368) 

Using (F.365) and (F.367), we can write then: 
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Further we adopt the notations: 
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   
























T

k
u

k
u

def

k
uBC

def

D
ACC

def

C

BBBA

def

B
IA

def

A

1

~
;0

~
;

2

~

2
2

1~
;

2

2~

                      (F.370) 

and it results: 

    





















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
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
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
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k
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1

1              (F.371) 

Remark: As for the classic case, the state-space matrices CBA ,, can be recovered when 

solving (F.371) for known input/output vectors. 

 

We propose and prove further a theorem suited for this symplectic discretization scheme. 

 

Theorem F.14 

 

Under the assumtions that: 

I. The input is persistently exciting of order i2  

II. The intersection of the row space of **
f

U (the future inputs) and the row space of  d

P
X (the 

past states) is empty. 

III. The user-defined weighting matrices lixli
RW 

1
and 

jxj
RW 

2
are such that 

1
W  is of 

full rank and 
2

W  obeys: 

















2
**

W
P

Wrank
P

Wrank  ,where *
P

W  is the block Hankel 

matrix containing the past inputs and outputs and with 
i

O  defined as the oblique 

projection: 

     ***
/

P
W

f
U

f
Y

i
O 








      (1) 

      and the singular value decomposition: 
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T
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T
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0
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





















   (2) 

         we have: 

1. The matrix 
i

O is equal to the product of the extended observability matrix and the 

states: 
d

f
X

ii
O

*
       (3) 

k
u
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2. The order of the system is equal to the number of singular values in (2) different 

from 0. 

3. The extended observability matrix *
i

  is equal to: 

TSUW
i

2/1

11
1

1
* 
      (4) 

4. The part of the state sequence d

f
X  that lies in the column space of 

2
W  can be 

recovered from: 
T

VSTW
d

f
X

1
2/1

1

1
2


      (5) 

5. The state sequence d

f
X is equal to: 

i
O

i
d

f
X




*       (6) 

 

Proof : 

 

Using (F.364), we can write the relation: 

   **********
P

U
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U
d

i
H
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Y

i
i

M
A

d

f
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
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            (F.372) 

for the future states, where: 
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




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
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i
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             (F.373) 

Equivalently we can write: 

   






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Adopting the notations: 

    


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i
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i
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M
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          (F.375) 

it results: 

    **
P

W
P

L
d

f
X                 (F.376) 

Using (F.364), we can compute the future outputs as follows: 

    *******
f

U
d

i
H

P
W

P
L

if
Y               (F.377) 

Multiplying to the right with the orthogonal projector of 
**f

U , it results: 

   

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
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


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U
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i
H
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P
L
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Y           (F.378) 

As the 2
nd

 term to the right in (F.378) is null, it results: 
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


 **

/
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/

f
U

P
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P
L

if
U

f
Y             (F.379) 

Multiplying to the right with the pseudo-inverse 



 








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
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/

*

f
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P
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W , it results: 
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          (F.380) 

Then we observe that in the left part, we  have an oblique projector as follows: 
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
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
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Then it results: 

    ***
P

W
P

L
ii

O                           (F.382) 

Using (F.376) it results: 

    d

f
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*
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In (F.381) we have used the relation: 
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Then we have to prove the following relation: 
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In this case *
P

W can be written as follows: 
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Assuming the initial conditions of the theorem, it results: 
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which proves (F.385). 

 

Remark: As in the classic state-space case, the initial conditions assumed on the theorem 

follow the same lines, the only difference being given by the block Hankel matrice *
P

W  or 

past/future inputs ( **
,

**
f

U
P

U ), which change the structure according to the symplectic 

discretization scheme. 

For 
**

/
*

f
U

P
W we can perform the SVD decomposition: 
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Since 
**

/
*

f
U

P
W is a linear combination of the columns of *

P
W  and 
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P
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P
Wrank , the column spaces of *

P
W  and 

**
/

*

f
U

P
W  result also as 

equal.  

We can write in this case: 

      RU
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W
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*
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Using (F.388) and (F.389), it results:  
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Using the properties: 

     IU
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associated to the SVD decomposition, we get: 
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Using (F.389) it results: 
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In order to prove statement 2, we can write the following relation: 

    
2

*
121

W
d

f
X

i
WW

i
OW               (F.394) 

We observe in (F.393) that *
1 i

W  has n  columns and 
2

W
d

f
X  has n  rows and it results that 

their product is also of rank n . This proves statement 2 of the theorem. For the statement 3 of 

the theorem, we consider a non-singular similarity transformation ( nxn
RT  ), in which case 

we can write: 
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We can deduce then that: 

    TSUW
i

2/1

11
1

1
* 
               (F.396) 

which represents also the statement 3 of the theorem. From (F.395) and (F.396) statements 3 

and 4 are proved. Using (F.383) we can deduce the average value of the states d

f
X as: 

     
i

O
i

d

f
X




*               (F.397) 

This proves the last statement of the theorem. 

 

F.9 Symplectic discretization scheme X 

 

For this symplectic discretization scheme it is assumed an implicit trapezoidal rule for the 

flows and an implicit Euler rule for the efforts. The general explicit form of this PCH system 

is: 
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and the implicit form is: 
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Similar with the previous schemes, we combine this scheme with the 1
st
 time-discretization 

scheme and using (5.33) we can write: 
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Equivalently this relation becomes: 
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Grouping the terms in (F.401): 
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and adopting the notation: 
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it results: 

 
12

1

2

/01/021/01/01
02

2

1 























 















k
u

k
uB

k
U

d

kk
U

d

kk
U

d

kk
U

d

k
x

k
A

AI

k
x

                    (F.404) 

Introducing also the past states: 

     
0
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results in: 
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Performing the simplifications it results: 
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Equivalently we can write: 



296 

 

   































d

k

d

k

d

P
X

k
A

AI

k
x

22

1

2

2

1
            (F.408) 

Using the notations: 
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we can express then the states as: 
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As in the classic state-space case, the future states can be written as: 
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where *
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U  denotes the past outputs defined as: 
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As for the states,  we can write the outputs as follows: 
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or equivalently: 
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Adopting the notations: 
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we can write then the past outputs vector as: 
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Y               (F.416) 

Similarily we can write the relation for the future outputs: 

    ***
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f
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Using (F.411),(F.416) and (F.417), it results the matrix input-output equations: 
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We propose thus the following theorem for the matrix input-output equations: 

 

 

Theorem F.15 

 

The matrix input-output equations of a discrete-time PCH system, represented in explicit form 

in (F.398) and in implicit form in (F.399), for a symplectic discretization scheme with an 

implicit trapezoidal rule for the flows and implicit Euler rule for the efforts are: 
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In order to get an equivalent representation of (F.398), we combine it with (5.33) and it 

results: 
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Equivalently we can write: 

 


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A more compact form of the above relation is: 
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This relation can be also written as: 
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Introducing the notations: 
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it results: 
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                 (F.425) 

 

Remark: 

The initial state-space matrices CBA ,, can be recovered by solving (F.425), when having 

knowledge on the input/output vectors. 

 

Similar to the classic state-space case, we propose further a theorem for the deterministic 

identification corresponding to this symplectic discretization scheme. 

 

 

 

 

Theorem F.16 

 

Under the assumtions that: 

I. The input 
k

u is persistently exciting of order i2  

II. The intersection of the row space of *
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U (the future inputs) and the row space of  d
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III. The user-defined weighting matrices lixli
RW 

1
 and 

jxj
RW 

2
are such that 

1
W  is of 

full rank and 
2

W  obeys: 

















2
**

W
P

Wrank
P

Wrank , where *
P

W  is the block Hankel 

matrix containing the past inputs **
P

U  and outputs 
P

Y  and with 
i

O  defined as the 

oblique projection: 

     **
/

P
W

f
U

f
Y

i
O 








      (1) 
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we have: 

1. The matrix 
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O  is equal to the product of the extended observability matrix and the 
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1
* 
      (4) 

4. The part of the state sequence d

f
X  that lies in the column space of 

2
W  can be 

recovered from: 
















































k

k

k

k

u

x
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y

x

~~~

~~

1

1

*

i

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T
VSTW

d

f
X

1
2/1

1

1
2


      (5) 

5. The state sequence d

f
X is equal to: 

i
O

i
d

f
X




*      (6) 

 

Proof: 

 

Using (F.419), we can write the future states as: 

    ******
P

U
d

iP
U

d

i
H

iP
Y

i
i

A
d

f
X 





 







           (F.426) 

Or equivalently: 

    
P

Y
i

i
A

P
U

d

i
H

i
i

A
d

i

d

f
X





 







 *****            (F.427) 

More compact we can write: 

     **
P

W
P

L
d

f
X                (F.428) 

Adopting the notations: 

    









































T

P
Y

P
U

def

P
W

i
i

A
d

i
H

i
i

A
d

i

def

P
L

**

*****

           (F.429) 

Using (F.419) and (F.429), the future outputs are: 

    *****
f

U
d

i
H

P
W

P
L

if
Y               (F.430) 

Multiplying to the right with the orthogonal projector of , it results: 

   









*

*
*

***
* Uff

U
d

i
H

UfP
W

P
L

iUff
Y            (F.431) 

The 2
nd

 term to the right is null and then it results: 

    



 *

/
***

*
/

f
U

P
W

P
L

if
U

f
Y                        (F.432) 

Multiplying to the right with the pseudo-inverse 



 













*
/

*

f
U

P
W  and *

P
W , it results: 

    ****
*

/
*

*
/

P
W

P
L

iP
W

f
U

P
W

f
U

f
Y 



 


























          (F.433) 

It can easily be observed to the left in (F.433) an oblique projection and we can write then:

     ****
*

/
P

W
P

L
iP

W
f

UY
i

O 














            (F.434) 

Using (F.428) it results: 

      d

f
X

ii
O

*
              (F.435) 

In (F.433) we have used the relation: 

*
f

U



300 

 

     **
*

/
*

*
/

*
P

W
P

W
f

U
P

W
f

U
P

W 



 


























          (F.436) 

For the next step we will prove that: 

     


























*
/

**

f
U

P
Wrank

P
Wrank            (F.437) 

For this symplectic scheme, we can write  as: 

     









































d

P
X

P
U

i
d

i
H

mi
I

P
W

*

**

0
2*             (F.438) 

where: 

     T
i

U
i

U
i

U
P

U
/02/0

*
1/0

*





             (F.439) 

Multiplying to the right with 



*Uf

, we get: 

    

























































*

*
*

**

0
2

*
*

Uf

d

P
X

UfP
U

i
d

i
H

mi
I

UfP
W            (F.440) 

Using the orthogonal projection operator, (F.440) becomes: 

   






















































*
/

*
/

*

**

0
2

*
/

*

f
U

d

P
X

f
U

P
U

i
d

i
H

mi
I

f
U

P
W                        (F.441) 

Assuming the initial conditions of the theorem, it results: 

    





















































*
/

*
/

*
*

f
U

d

P
X

f
U

P
U

rank
d

P
X

P
U

rank             (F.442) 

Remark: The initial conditions assumed for the current symplectic discretization scheme, are 

the same with the classic state-space case approach, the only difference comes in the 

structure of the block Hankel matrice *
P

W  and past/future inputs ( *
,

*
f

U
P

U ). 

which proves (F.437). Introducing the SVD decomposition of  it results: 

     



































 T

V

T
VS

UU
f

U
P

W

2

1

00

0
1

21*
/

*            (F.443) 

Since 
*

/
*

f
U

P
W  is a linear combination of the columns of *

P
W  and since the rank of *

P
W  

and 
*

/
*

f
U

P
W are equal, then also the column spaces of *

P
W  and 

*
/

*

f
U

P
W are also equal. 

Thus we can write *
P

W , as: 

      RU
P

W
1

*
              (F.444) 

Using the SVD decomposition of (F.443), we can write: 

*

p
W

*/
*

fp
UW
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   RU
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USV
T

VSU
P

W
f

U
P

W
f

U
P

W
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1
11111

*
*

/
*

*
/

*











































 





          (F.445) 

Together with the properties of the SVD decomposition: 

     IU
T

UV
T

V 
1111

             (F.446) 

it results: 

    RU
P

W
f

U
P

W
f

U
P

W
1

*
*

/
*

*
/

*




 


























           (F.447) 

From (F.444) and (F.447), it results: 

     **
*

/
*

*
/

*
P

W
P

W
f

U
P

W
f

U
P

W 



 


























               (F.448) 

The 2
nd

 claim of the theorem can be proved by writing: 

                 (F.449) 

We observe that the product *
1 i

W   has n  columns and 
2

W
d

f
X  n  rows, from which the rank 

of 
21

W
i

OW  results to be also n . According to the SVD decomposition, we can write: 

    

















T
VSTW

d

f
X

TSU
i

W

1
2/1

1

1
2

2/1

11
*

1
             (F.450) 

Using the first equation of (F.450), it results the extended observability matrix: 

    TSUW
i

2/1

11
1

1
* 
               (F.451) 

From (F.450) and (F.451), statements 3 and 4 are proved. Multiplying to the left with the 

pseudo-inverse  


*
i

in (F.435), it results the states value: 

     
i

O
i

d

f
X




*               (F.452) 

This proves statement 5 of the theorem. 

 

 

Appendix G: Controllability and observability grammians 

 

In this section, we determine a general relation between the controllability and observability 

gramians in the lossy case. In order to do that, we write first the observability grammian as 

follows: 

    





0

2
dt

At
Ce

T
C

tTA
e

O
W              (F.453) 

Replacing Q
T

BC  , we can write equivalently: 

    





0

2
dt

At
Qe

T
QBB

tTA
e

O
W              (F.454) 

Further we will develop an equivalent form for Q
tTA

e  and At
Qe  using the general relation 

of the exponential x
e . Thus for Qe

tA
T

we can write:  

2

*

121
WXWWOW

d

fii

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    Qt
T

At
T

AIQ
tTA

e
































 ...

2

!2

1

!1

1
           (F.455) 

Further we will determine an equivalent relation for Q

k
T

A 






  using the PCH systems 

properties. For 1k we can write: 

          QRJQQ
T

RJ
T

QQ
T

QRJQ
T

A          (F.456) 

Introducing the notations: 

    


















RQ

def

resA

JQ

def

loss
A

              (F.457) 

It results: 

        resA
loss

AQQ
T

A 
1

1             (F.458) 

For 2k , we can write as follows: 

          Q
T

QRJ
T

QRJQ
T

A 







2

            (F.459) 

Using the matrix transpose properties, we get: 

        Q
T

RJ
T

Q
T

RJ
T

QQ
T

A 







2

           (F.460) 

Using the PCH systems properties this is equivalent to: 

       22
1

2

resA
loss

AQQ
T

A 






             (F.461) 

Thus it is straightforward that: 

       kresA
loss

AQ
k

Q

k
T

A 







1             (F.462) 

It results then that: 

    tA
QeQ

tTA
e


               (F.463) 

where: 

    resA
loss

A

def

A                (F.464) 

Further we determine an equivalent form for At
Qe  using the matrix exponential form. Thus 

we will find a general relation for k
QA  using the PCH systems properties. For 1k , we can 

write: 

      Q
T

R
T

J
T

QQRJQQA 







             (F.465) 

Using (F.457) we can write equivalently: 

      Q
T

AQ
T

resA
loss

AQA 
1

1
1

1            (F.466) 

For 2k  we can write: 
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      Q
T

R
T

J
T

Q
T

R
T

J
T

QQRJQRJQQA 

















2           (F.467) 

Using the PCH systems properties and (F.457), we can develop (F.467) as: 

        Q
T

resA
loss

AQA

2
2

1
2









             (F.468) 

From (F.466) and (F.468) we can deduce that: 

        Q

k
T

resA
loss

A
kk

QA 







 1             (F.469) 

It results then that: 

    Q
tTA

e
At

Qe


               (F.470) 

Using (F.463) and (F.470), we can write the observability grammian as: 

    






0

2
Qdt

tTA
e

T
BB

tA
Qe

O
W             (F.471) 

which is equivalent to: 

    






0

2
dtQ

tTA
e

T
BB

tA
eQ

O
W             (F.472) 

We observe that in the middle of (F.472) we have the controllability Grammian: 

    






0

2
dt

tTA
e

T
BB

tA
e

C
W                        (F.473) 

and thus it results: 

      Q
C

WQ
O

W
22              (F.474) 

from which we obtain the following general relation: 

      '
C

QW
O

W               (F.475) 

Remark: The lossless case of (F.475) can be easily deduced when 0resA , by 

straightforward computations, following the same pattern of the proof. 

 Further we will determine the necessary conditions for the internal balancing of (5.134) as in 

[176] for 
2

,
1

xx states. For the 
1

x states we can write: 

    BT
tTAT

eX 



1

1
              (F.476) 

where  0
1

TT   and 


















2221

1211

AA

AA
A . By straightforward computation it results: 

    B
At

eTX 
1

                        (F.477) 

Then the controllability Grammian results as: 

     




0

2
1

dt
T

T
tTA

e
T

BB
At

eT
C

W            (F.478) 

which is equivalent to: 

      T
T

C
WT

C
W 

22
1

            (F.479) 
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Then we determine 
1

Y  as: 

      tTAT
eTCY

11
1

             (F.480) 

By straightforward computation we can write: 

      1
1

 T
At

CeY             (F.481) 

Then the observability Grammian of 
1

x  states, results as: 

    








0

1

0
11

2
1

dtT
At

Ce
T

C
tTA

e
T

TdtY
T

Y
O

W           (F.482) 

Using (F.474) it results: 

    12122
1


 TQ

C
WQ

T
TT

O
W

T
T

O
W            (F.483) 

Then we write the internal balancing relation [179]: 

      2
1

2
1

2
1


O

W
C

W             (F.484) 

where 
1

  represent the singular values from grammian decomposition.Using (F.479) we can 

easily deduce that: 

    













1
1

1

T
C

W

T
O

W

              (F.485) 

Using (F.479), (F.483) and (F.484) we will determine further a relation between the 

Grammians 
C

W   and 
C

W  by straightforward computation: 

    T
TTQ

C
WQ

T
TT

C
W


1212             (F.486) 

This relation can be equivalently written as: 

    
T

C
WQ

T
TT

C
WQ

T
TT

T
C

W
C

W 






 
11           (F.487) 

Then it results directly: 

     
C

WQ
T

TT
C

W 
1             (F.488) 

Using (F.483) and (F.484) we can write the following relation: 

    T
QT

TT
T

T
Q

T
C

W
C

W



11

            (F.489) 

from which it results: 

    
1

1


 T
TQ

C
W               (F.490) 

Remark: The results obtained for the 
2

x states for internal balancing [176] can be easily 

derived from the previous relations by straight computation. 
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Résumé 

 

L’Objectif de cette thèse est de développeré  une théorie de l’identification spécifique 

pour les systèmes Hamiltonien à ports. Les raisons principales pour motiver cette théorie 

résident dans les propriétés remarquables de ces systèmes, notamment leur structure de Dirac 

et sa stabilité par interconnexion conservative de puissance (e.g. parallèle, séries ou 

feedback). Dans la première partie, les systèmes Hamiltoniens sont analysés en ce qui 

concerne leur identifiabilité structurelle, par analyse de leur observabilité/commandabilité, par 

tests directs, par l’analyse en série de puissance de leur fonction de transfert ou par une 

nouvelle approche énergétique d’analyse d’une identifiabilité spécifique associée à un port. 

Dans la partie suivante, des modèles de perturbation par port d’interaction sont introduits et 

permettent l’analyse de l’identifiabilité ‘pratique’ des systèmes hamiltoniens à ports. Le 

quatrième chapitre présente des schémas de discrétisation en temps qui préserve les bilans de 

puissance et d’énergie et leur application sur des exemples de système hamiltoniens à ports 

linéaires et non linéaires. L’erreur de discrétisation est analysée en introduisant la notion de 

représentation hamiltonienne de l’erreur de discrétisation. Dans la dernière partie de cette 

thèse, une approche d’identification dans l’espace d’état est développée pour les systèmes 

obtenus par discrétisation symplectique des systèmes hamiltoniens à ports. Les cas 

déterministe est analysé et une approche énergétique basée sur les résultats d’identifiabilité 

structurelle développé dans la première partie est proposée. Enfin, dans la dernière partie, les 

contributions du travail sont rappelées et quelques perspectives pour des travaux futurs sont 

présentées.  

 

Mots clès: identification des systemès, systemès Hamiltonian à ports, identifiabilitè 

structurelle, observabilité,commandabilité, identifiabilité énergétique, identifiabilitè pratique, 

erreur de discretization, discrétization symplectique, identification déterministe. 
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Abstract 
 

The present thesis ‘Identification des systèmes hamiltoniens à ports’, proposed the 

development of a specific theory for Port Controlled Hamiltonian (PCH) systems 

identification, due to their remarkable properties of energy preserving, interconnection of 

systems from multiple domains of physics, etc. An analysis of structural identifiability is first 

performed using classic or new (power energy) techniques to check the model structure 

identifiability. A new context of identifiability is proposed here, which makes use of the 

inputs and power port energies knowledge and also a ‘port identifiability’ concept is proposed 

for the analysis of PCH systems. Then a practical identifiability analysis is performed using a 

classic test, by adopting a perturbation model introduced on the interaction port of the PCH 

system. Further a discrete-time framework is proposed, with different classic discretization 

rules for the flows and efforts, that prove to preserve the continuous-time structure. The last 

part of the thesis proposes the analysis of  classic subspace identification algorithms for PCH 

systems using the previous time-discretization schemes. Beside this it is proposed a new 

(power energy), which makes use of the known inputs and power energies to determine the 

unknown system parameters. On this new context it is proved by algorithms and simulation, 

that equivalent PCH systems for the real model, can be identified on each port. Thus it is 

proved that the system parameters can be determined in a classic or new (power energy) 

manner. 

 

Keywords: system identification, Port Hamiltonian systems, structural identifiability, 

observability, controlability, energy based identifiability, practical identifiability, 

discretization error, symplectic  discretization, deterministic identification. 

 

 

 


