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Résumé

Cette thèse s’intéresse aux combinaisons d’observables cosmologiques provenant des
mesures du fond diffus cosmologique et des relevés de galaxies, et est basée sur
l’exploitation des données du satellite Planck et du Baryon Oscillation Spectroscopic
Survey (BOSS) du Sloan Digital Sky Survey. On explore l’utilisation de corrélations
croisées entre les jeux de données afin de mettre en évidence de nouveaux effets et
d’améliorer les contraintes statistiques sur les paramètres cosmologiques. Dans un
premier temps, on mesure pour la première fois une corrélation entre le lentillage
gravitationnel du fond diffus cosmologique et le spectre de puissance des fluctuations
de la forêt Lyman-α des quasars. Cet effet, d’origine purement non-linéaire, est
interprété comme la réponse du spectre de puissance à des grandes échelles. Il
montre comment les fluctuations dans la densité en hydrogène neutre dans le milieu
intergalactique sont influencées par des fluctuations à grande échelle dans la densité
de matière noire. Le signal mesuré est compatible avec l’approche théorique et des
simulations menées par d’autres groupes. Dans un deuxième temps, on développe un
formalisme permettant une analyse conjointe de la densité de galaxies et de quasars de
BOSS avec le lentillage gravitationnel du fond diffus cosmologique. La prise en compte
des corrélations croisées entre ces sondes permet de diminuer les barres d’erreurs de
certains paramètres cosmologiques de 20%, ce qui équivaut à augmenter la surface
couverte par les relevés de presque 50%. Cette analyse est complétée par la mesure
des anisotropies de température du fond diffus cosmologique afin de contraindre tous
les paramètres du modèle standard ΛCDM, ainsi que les biais des galaxies. Puis on
étend le modèle afin d’explorer les contraintes sur l’équation d’état de l’énergie noire
et la somme des masses des neutrinos.

Mots-clés — Cosmologie - Fond diffus cosmologique - Relevés de galaxies -
Lentillage gravitationnel - Forêt Lyman-α- Energie noire - Matière sombre
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Abstract

This thesis addresses the combinations of cosmological probes from the measurements
of the cosmic microwave background (CMB) and galaxy redshift surveys, and exploits
data from the Planck satellite and the Baryon Oscillation Spectroscopic Survey
(BOSS) of the Sloan Digital Sky Survey. It explores how cross-correlations between
different data sets can be used to detect new signals and improve contraints on
cosmological parameters. First, we measure, for the first time, the cross-correlation
between gravitational lensing of the CMB and the power spectrum of the Lyman-α
forest in the spectra of quasars. This effect, which emerges from purely non-linear
evolution, is interpreted as the response of the power spectrum to large-scale modes. It
shows how fluctuations in the density of neutral hydrogen in the intergalactic medium
are affected by large-scale fluctuations in the density of dark matter. The measured
signal is compatible with the theoretical approach and simulations run by another
group. In a second time, we develop a formalism enabling the joint analysis of the
galaxy/quasar density contrast and CMB lensing. Taking cross-correlations between
these probes into account reduces error bars on some cosmological parameters by up
to 20%, equivalent to an increase in the size of the survey of about 50%. This analysis
is completed by CMB temperature anisotropies information in order to constrain all
the parameters of the ΛCDM standard model and galaxy biases at once. Finally, it
is extended to obtain contraints on the dark energy equation of state as well as the
sum of the masses of neutrinos.

Keywords — Cosmology - Cosmic microwave background - Galaxy redshift
survey - Gravitational lensing - Lyman-α forest - Dark energy - Dark matter
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Foreword

In the popular science book Endless Universe: beyond the Big Bang , Paul Steinhardt
and Neil Turok wrote

The history of the Universe can be compared to a play in which the actors
– matter and radiation, stars and galaxies – dance across the cosmic stage
according to a script set by the laws of physics. The challenge for the
cosmologist is to figure the story line after arriving at the show 14 billions
years too late, long past the crucial opening scenes.

A century spent gazing at the night sky for the far, ancient Universe taught us one
or two things about that play.

First, we know part of the cast. Some of the characters, such as baryons – that
is, the Sun, forks, cats and us, i.e. ordinary matter – and radiation – a fancy name
for light –, are even very familiar to us: we have beautiful theories to describe their
behaviours to the smallest scales, that we were able to extensively test in laboratories.
Some characters are more of a puzzle. We know they’re here, but we still miss some
information: this is the case of neutrinos, that have unknown masses, amongst other
peculiarities. And finally, some characters are just hypothetical. That is, we haven’t
seen them directly, but some observations betray their presence: they are called dark
matter, responsible for no less than the large-scale structure of the Universe and the
cohesion of galaxies, and dark energy, that fuels the accelerated expansion of the
Universe. Unless we’re missing something...

Then, we also know a couple of things about the physics of the cosmos, the rules
behind the script, dictating characters how to move and interact. We know how
particles do so up to some energy level: that’s particle physics – or special effects
executive. And we know how they behave when lots of them are put together, thanks
to thermodynamics. We also have a nice theory about gravity, and how space-time
bends, stretches, twists and grows along with its content: this is Einstein’s theory of
general relativity.

General relativity tells us how the evolution of the stage – dubbed space-time –
depends on the characters, their momentum and pressure. Assuming that we occupy
no special position in the theater (Copernican principle) and that it is isotropic
– try and visualize it now! –, Einstein’s equations have a simple solution discovered
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FOREWORD

Figure 1 – The Flammarion engraving from Camille Flammarion’s 1888 book
L’atmosphère: météorologie populaire.

by Alexander Friedmann in 1922 and Georges Lemaître in 1927, that describe an
expanding Universe and were confirmed by Hubble’s 1929 milestone observation that
the more distant extragalactic nebulæ were, the faster they seemed to flee. Switching
gears, this means that long enough ago, everything was closer together, and thus,
hotter.

Now, we can start filling the story line. We have some ideas about a couple of
events that occurred not long after the beginning of the play, elegantly named the
Big Bang. At early times, the Universe was dense and hot. Particles formed a soup in
which they interacted via the four interactions we know: the strong interaction, the
weak interaction, electromagnetism and gravity. Soup, as it should, cools down while
the Universe expands, allowing particles to form bigger and bigger conglomerates:
first, quarks combined to form baryons, including protons and neutrons, which later
on combined into nuclei and subsequently captured electrons to form the first atoms.
At this point, the Universe becomes neutral, and photons stop interacting with matter,
raising the anchor for a long, quiet flight through the Universe: they form the cosmic
microwave background, the Universe’s birth day picture.

Soup has lumps, too. Cosmologists believe that the structures we see today
– galaxies, clouds, clusters and filaments – arose from these seeds after they collapsed
under gravity. The origin of those lumps remains mysterious, although the predomi-
nant inflationary scenario predicts they were quantum fluctuations swelled to cosmic
scales by an extraordinary phase of expansion during fractions of a second, right after
the Big Bang.

This draws a cartoon picture of our current knowledge of what is, without a doubt,
the greatest play of all times. Of course, many aspects remain yet unknown. A wise
man once jokingly said to me :

How come cosmologists pretend to know the whole story down to fractions
of the first second ever, and they can’t tell which day of the week it was?

xiv



In spite of this shrewd observation, we have a fairly good idea of what happened after
that first second, but very early times tackle our theories. And so does 95% of the
energy content of the Universe today. We also don’t know the end of the play yet,
or whether it had one, or, possibly, many prequels. At last, we don’t even know the
name of the director!
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Fiducial cosmological model

The fiducial cosmological model assumed throughout this thesis is the flat ΛCDM
model with parameters derived from the Planck analysis with external data sets
(denoted “TT,TE,EE+lowP+lensing+ext” in Planck Collaboration et al. 2016e,
Table 4). Details about the implementation are given in section 6.5.1.

Table 1 – Fiducial cosmological parameters.

Parameter Description [unit] Value

H0 Hubble parameter today [km s−1Mpc−1] 67.74
ωb Baryon physical density todaya 0.02230
ωc Cold dark matter physical density todaya 0.1188
ln 1010As Amplitude of the primordial power spectrum 3.064
ns Tilt of the primordial power spectrum 0.9667
zre Mean redshift of reionization 8.8
mν Sum of the masses of neutrinos [eV] 0.06
w Dark energy equation of state -1
a It is called physical because ωb ≡ Ωbh

2 ∝ ρbH
2
0

/
ρc ∝ ρb where

H0 = 100 h km s
−1

Mpc
−1.
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Index of experiments

Table 2 – List of experiments, collaborations and cosmological surveys mentioned in
this thesis.

Abbreviation Full name Reference

ACT Atacama Cosmology Telescope Swetz et al. 2011
BICEP Background Imaging of Cosmic Ex-

tragalactic Polarization
Ogburn et al. 2010

BOSS Baryon Acoustic Oscillation Survey Dawson et al. 2013
CFHT Canada-France-Hawaii Telescope

with the MegaCam imaging camera
Boulade et al. 2002

DES(-SV) Dark Energy Survey (Science Verifi-
cation data)

Dark Energy Survey

Collaboration et al.
2016

DESI Dark Energy Spectroscopic Instru-
ment

Levi et al. 2013

Euclid ESA’s Euclid satellite Laureijs et al. 2011
Fermi-LAT Fermi Large Area Telescope Abdo et al. 2010
FIRST Faint Images of the Radio Sky at

Twenty Centimeters
Becker et al. 1995

Herschel ESA’s Herschel satellite Pilbratt et al. 2010
H-ATLAS Herschel Astrophysical Terahertz

Large Area Survey
Eales et al. 2010

H-SPIRE Herschel Spectral and Photometric
Imaging REceiver

Griffin et al. 2010

KiDS Kilo-Degree Survey Jong et al. 2013
LSST Large Synoptic Survey Telescope LSST Science Col-

laborations and

LSST Project et al.
2009

Continued on next page
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Table 2 – Continued from previous page

Abbreviation Full name Reference

NVSS NRAO VLA Sky Survey Condon et al. 1998
Planck ESA’s Planck satellite Planck Collabora-

tion et al. 2011
PolarBear PolarBear CMB experiment Kermish et al. 2012
SDSS Sloan Digital Sky Survey Eisenstein et al. 2011
Spitzer Spitzer Deep, Wide-Field Survey Ashby et al. 2009
SPT South Pole Telescope Carlstrom et al. 2011
WISE Wide-field Infrared Survey Explorer Wright et al. 2010
WFIRST Wide Field Infrared Survey Tele-

scope
Spergel et al. 2013

WMAP Wilkinson Microwave Anisotropy
Probe

Bennett et al. 2003
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Introduction

Where does cosmology stand in the mid 2010s?

I started my PhD in September 2014, that is, about a year and a half after the
publications of the Planck 2013 results and its cosmological parameters’ contraints,
and a few months after the “false alarm” from BICEP 2. By that time, the BOSS
survey of the Sloan Digital Sky Survey has been completed and is about to deliver
its twelfth data release. It has measured the scale of the imprint of the baryon
acoustic oscillations to percent-level precision at high redshift, severely constraining
the geometry of the Universe. The last generation of imaging surveys (CFHT, KiDS,
HSC and DES) is taking data and preliminary analyses are ongoing.

Cosmology stands on a solid basis. In the previous decade, the cosmic microwave
background (CMB) has been measured on the full sky to a ground-breaking precision
by WMAP. Combined with other independent probes such as distance measurements
from supernovæ, it enabled cosmologists to estimate at the percent-level the amounts
of baryon, dark matter and dark energy, entering cosmology in what is sometimes
called a “precision era”. We have measured the amplitude of fluctuations in the
matter density and the tilt of the primordial power spectrum. We have a fairly good
measurement of the rate of the expansion and we know that our Universe is extremely
close to being spatially flat. All observations are more or less consistent with the
standard, flat ΛCDM model. Six parameters to rule them all!

However, parts of the picture are more of a puzzle (yay!). The origin of the
structures seen in the Universe remains unknown. Inflation is the most commonly
accepted paradigm, though no conclusive evidence exists, yet. To this end, cosmol-
ogists are awaiting the measurement of primordial B-modes in the polarization of
the CMB at large scale, an observation that will turn more arduous than foreseen
because of polarized galactic foregrounds. Moreover, we ignore everything about the
fundamental nature of dark energy and dark matter, two pillars of the ΛCDM model.

Therefore, cosmology seems to stand at a pivotal point, too. We have a simple,
attractive mathematical model, but it involves unobserved components and processes.
This is why we need more observations, with a higher statistical power, to rule out
models and theories for these baffling, but fascinating, components.
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INTRODUCTION

What is the subject of this thesis and how did I contribute?

A promising avenue to do so lies in the measurement and exploitation of cross-
correlations. Broadly speaking, the idea is that various observations of the Universe
contain mutual information, because they are looking at the same Universe. This
information can be extracted from the data to reinforce statistical constraints, though
methods to do so are still under development and optimization.

The combination of independent measurements has enabled the ΛCDM model
to emerge – CMB measured the matter content, BAOs give a standard geometric
ruler and supernovæ measured the expansion – but correlated probes of the matter
density field have not yet been systematically analyzed together. This is precisely the
primary goal of this thesis. I developed a method to measure these correlations and
integrate them in a statistical pipeline, and then applied it to Planck and BOSS data.
In particular, the cross-correlation between the gravitational lensing of the CMB
and tracers of the large-scale structure has been measured for multiple combinations
of experiments, but, as of the beginning of my thesis, it had not yet been used in
statistical analyses to extract cosmological information. During the first months of
my thesis, I produced maps of the projected density of galaxies and quasars seen by
the BOSS survey, and then measured the cross-correlation with the Planck lensing
map. Then, I built a module in the NumCosmo library to compute the theoretical
auto- and cross-power spectra. This module was then optimized (a factor of about
1000 in speed) to be integrated to a statistical analysis pipeline. I was then able to
run MCMCs to demonstrate how cross-correlations improved cosmological constraints.
Then, I complemented this analysis by CMB temperature data in order to constrain
all the parameters of the ΛCDM model as well as galaxy biases, at once. Given the
statistical power of the joint analysis, I extended the model to measure the dark
energy equation of state and the sum of the masses of neutrinos.

But cross-correlations can do much more. We cannot observe all of matter at
once, and various probes are sensitive to different types of matter —dark matter,
hot gaz, neutral hydrogen, star-forming clouds, etc— at different distance scales and
different periods of time. Therefore, combining correlated probes can shed light on
the interweaving and motions of those different matter components. A second project
of my thesis, which was finished earlier, was to measure the correlation between
the Lyman-α forest observed in the spectra of quasars and lensing of the CMB. I
correlated the amplitude of fluctuations in the density of hydrogen probed by the
Ly-a forest with the large-scale density of dark matter weighed by CMB lensing. This
bispectrum signal, detected for the first time, is meant to be used to investigate the
relationship between neutral hydrogen in the intergalactic medium (IGM) and dark
matter. In particular, it provides an independent test against which hydrodynamical
simulations of the IGM can be calibrated.

Finally, cross-correlations offer novel possibilities for tests and cross-calibrations.
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They are less prone to systematics than auto-correlations and as such, they provide
new unbiased statistics that can be used to verify consistency and to calibrate
estimators (for example, shear measurement from galaxy shapes). I have performed
very preliminary work on weak lensing estimation and on the related deblending issue,
which we only mention here.

How is this manuscript organized?

Chapter 1 shall paint a picture of modern cosmology. We will review the key
theoretical ingredients at the core of what has become known as the standard model
of cosmology. It is based on Einstein’s theory of gravity, general relativity, to describe
the evolution of the Universe as a whole and uses our knowledge of thermodynamics
and subatomic physics to explain what happened during the hot Big Bang scenario,
that is, the primordial hot and dense state of the Universe. Then, perturbation theory,
which explains how the large-scale structure of the Universe formed and evolved, will
be presented.

In chapter 2, we will review some of the most important physical, observable
phenomena that are used to probe the content and geometry of the Universe. In
particular, we will discuss the cosmic microwave background, tracers of the large-scale
structure and weak gravitational lensing, and compare how they help us scrutinize
the Universe.

In chapter 3, we will present two experiments, the Planck satellite and SDSS-
III/BOSS, that were used during my PhD work.

In chapter 4, we shall go into more detail about the combination of probes.
We will detail various mathematical approaches to measuring correlations amongst
observables, focusing in particular on the angular power spectrum formalism. Then,
we will do a review of the cross-correlations studies in the literature up to mid 2017
and highlight how they use the aforementioned mutual information hidden in different
data sets. This will lead us to presenting the principles of joint analyses and existing
studies.

In chapter 5, we will present the cross-correlation of the Ly-a forest from SDSS-
III/BOSS data with the CMB lensing map from Planck. We will present the theoretical
approach based on the position-dependent power spectrum, the analysis and the
results.

In chapter 6, we will elaborate on the joint analysis of Planck and BOSS data.
After laying the theoretical background and presenting statistical and numerical tools
used in the analysis, we shall present the cosmological contraints that were obtained.
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CHAPTER 1

The standard model of cosmology

Contents
1.1 Gravity and cosmology . . . . . . . . . . . . . . . . . . . 8

1.1.1 General relativity . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 The expanding Universe . . . . . . . . . . . . . . . . . . . . 9

1.2 An overview of particle physics . . . . . . . . . . . . . . 12

1.3 Thermal history . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Thermodynamics in an expanding Universe . . . . . . . . . 14

1.3.2 A brief history of the Universe . . . . . . . . . . . . . . . . 16

1.4 Cosmological perturbation theory . . . . . . . . . . . . . 20

1.4.1 Newtonian perturbation theory . . . . . . . . . . . . . . . . 20

1.4.2 Relativistic perturbation theory . . . . . . . . . . . . . . . . 22

1.4.3 The matter power spectrum . . . . . . . . . . . . . . . . . . 27

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.A Notions of quantum field theory . . . . . . . . . . . . . 33

1.A.1 Fundamental principles . . . . . . . . . . . . . . . . . . . . 33

1.A.2 Types of fields . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.A.3 The machinery: Feynman diagrams and renormalization . . 35

Let us start with a lightning history of modern cosmology.
Cosmology – that is, physical cosmology – is a rather young science that was

born about a century ago. In 1929, Edwin Hubble, working at Mount Wilson
Observatory in California (see figure 1.1), found an approximately linear relationship
between the recession velocities of galaxies, measured from their spectral redshifts,
and their distances inferred from the observations of Cepheids. The further galaxies
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CHAPTER 1. THE STANDARD MODEL OF COSMOLOGY

Figure 1.1 – Edwin Hubble (1889-1953) and the Hooker 2.5 m telescope at Mount
Wilson Observatory (I took this picture during an intership there in 2012).

are from us, the faster they move away. This phenomenon, known as Hubble’s law,
was consistent with a cosmological solution of Einstein’s general relativity equation
found by Lemaître that described an expanding Universe. Though the idea was not
immediately accepted, its most striking consequence was that long enough ago, the
Universe must have been in a much denser and hotter state, a theory sarcastically
named the Big Bang1. Two key observations ultimately gave support to this theory.
The first was the abundance of chemical elements in the Universe, predicted from a
primordial nucleosynthesis in the famous αβγ paper in 1948 (Alpher et al. 1948),
and the second was the discovery by Penzias and Wilson of the cosmic microwave
background (hereafter CMB, Penzias and Wilson 1965), interpreted, in the same
issue of the Astrophysical Journal, by Dicke, Peebles, Roll and Wilkinson as a relic
radiation from the Big Bang with a black-body spectrum (Dicke et al. 1965). In the
following decades, upper limits on the anisotropies of the CMB and measurements of
the rotation curves of galaxies by Vera Rubin (Rubin et al. 1978) confirmed earlier
evidence that the amount of matter inferred from the observed light was off. This
could be solved by speculating the existence of a cold, dark form of matter – dark in
the sense that it does not interact with light – but this led to inconsistencies with
clustering observations and measurements of the Hubble constant, unless a new kind
of energy with negative pressure, mathematically similar to a cosmological constant Λ,
was hypothesized too. Finally, by the end of the 1990s, two groups led by Perlmutter
and Riess gave a decisive indication in favor of the ΛCDM model. Using supernovæ
of type IA as standard candles, they established that the expansion of the Universe
is accelerated (Perlmutter et al. 1999; Riess et al. 1998).

Since then, successive space-borne CMB experiments – WMAP and then Planck –
and galaxy and supernovæ surveys have set strong constraints on the cosmological

1The term was coined by Fred Hoyle on BBC radio’s Third Programme broadcast on 28 March
1949.
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parameters of the ΛCDM model (Hinshaw et al. 2003; Planck Collaboration

et al. 2014a). However, the fundamental nature of dark matter and dark energy2

eludes us. In fact, while several types of hypothetical particles, such as weakly
interacting massive particles, axions or sterile neutrinos, have been proposed as
constituents of dark matter, modifications of the laws of gravity – for instance, f(R)

gravity, scalar-tensor theories, massive gravity or brane cosmology – could mimic
observations as well. But dark energy is even more astounding. Its stress-energy tensor
is mathematically similar to the mean stress-energy tensor of vacuum fluctuations〈

0
∣∣∣T̂µν∣∣∣0〉 in quantum field theory, though with an energy density about 120 orders

of magnitude too small (Weinberg 1989).
In this introduction, we will first review what has become known as the standard

model of cosmology. We will present its theoretical foundations, its content and the
successive stages of this scenario.

∗ ∗ ∗

There are four fundamental interactions, to wit, the strong and weak interactions,
electromagnetism, and gravity. Except at very early times – that is during primordial
baryogenesis and nucleosynthesis –, the first two do not play a significant role in
the evolution of the Universe. The reason is that they act on very small ranges.
Confinement, although not analytically proven yet, prevents colored particles such as
quarks from being isolated, and the high masses of the W and Z bosons carrying the
weak force make it short-range after the electroweak phase transition. Electromagnetic
interactions between light and matter are important up to recombination, when the
Universe becomes neutral. Consequently, gravity is the fundamental force that drives
the large-scale evolution of the Universe after recombination.

In the next sections, we briefly review some of the materials at the core of modern
cosmology. We will start by notions of general relativity and its application to
cosmology. Then, because primordial cosmology shapes the future of the Universe
and determines its content, we will review some rudiments of particle physics before
summarizing the thermal history of the Universe. Finally, we will review linear
perturbation theory, a fundamental tool to understand the large-scale structure of
the Universe.

Well-written, extensive, modern introductions can be found in the literature that
do justice to the wonderful history of cosmology. Here, we will rather focus on the
scientific material, supposing basic knowledge of general relativity, thermodynamics,
particle physics and notions of cosmology. I will try to make this a useful introduction
for a master’s degree student while insisting on concepts and tools that were useful
for my thesis work, and deliberately skipping notions that I did not directly study
(for instance, inflation).

2As a disclaimer, let’s note that the terms dark matter and dark energy will refer to their
contributions in Friedmann’s equations, motivated by multiple observations and mathematically
consistent with new forms of matter and energy.
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I extensively used a couple of valuable books and lecture notes, in particular:

• P. Peter and J.-P. Uzan (2013). Primordial Cosmology. Oxford University
Press

• D. Baumann (2015). Cosmology. Part III Mathematical Tripos

• E. Gourgoulhon (2013). Relativité générale. luth.obspm.fr

• G. F. R. Ellis, R. Maartens and M. A. H. MacCallum (2012). Relativistic
Cosmology. Cambridge University Press

• J.-B. Zuber (2013). Invariances en physique et théorie des groupes. lpthe.jussieu.fr

• S. Dodelson (2003). Modern Cosmology. Academic Press

• S. Weinberg (2005). The Quantum Theory of Fields: Volume 1, Foundations.
Cambridge University Press

1.1 Gravity and cosmology

1.1.1 General relativity

Newton’s theory of gravity fails at describing the evolution of the Universe, and thus,
modern cosmology relies on Einstein’s theory of general relativity. In this geometric
theory of gravitation, formulated in 1915 (Einstein 1916), space-time is a flexible,
curved continuum, mathematically represented by a pseudo-Riemannian manifold. It
is equipped with a metric gµν , that measures space-time intervals as

ds2 = gµν dxµ dxν , (1.1)

and with the Levi-Civita connection. The equivalence principle of classical mechanics
is translated into the axiom that test particles that are only subject to gravity (no
other external forces) move along geodesics, according to the equation3

d2Xα

dτ2 + Γαµν
dXµ

dτ

dXν

dτ
= 0, (1.2)

where Xµ(τ) is the trajectory and Γαµν are the Christoffel symbols of the connection.
Einstein’s field equation relates the geometry of space-time, described by a tensor

3An interesting way of deriving the geodesic equation is to write the Euler-Lagrange equation
that minimizes the total space-time interval given by

S =

∫
ds =

∫
dτ

√
gµν

dX
µ

dτ

dX
ν

dτ
.
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1.1. GRAVITY AND COSMOLOGY

Figure 1.2 – Albert Einstein at Horseshoe Cove in Nassau Point in 1939.

Gµν
[
gµν
]
involving up-to-second-order derivatives of the metric, to its content,

described by the stress-energy tensor Tµν , as

Gµν
[
gµν
]

= κTµν . (1.3)

Einstein’s tensor is divergenceless, that is ∇µG
µν = 0. This implies that ∇µT

µν = 0,
which is the relativistic version of the conservation equation. Written in terms of the
Ricci tensor, and adjusting the constant κ to match Newton’s theory in the weak-field
limit, it reads

Rµν −
1

2
gµν R+ gµνΛ =

8πG

c4 Tµν , (1.4)

where we have now included the cosmological constant term Λ.

1.1.2 The expanding Universe

The cosmological principle states that, on large scales, the Universe is spatially
homogeneous and spatially isotropic. Translated into mathematical terms, this
implies that space-time can be foliated into spatial sections that are maximally
symmetric. The metric can thus be written

ds2 = −c2 dt2 + a2(t)
[
dχ2 + f2

K(χ) dΩ2
]

(1.5)

where

fK(χ) =


sin
(√

Kχ
)
/
√
K K > 0

χ K = 0

sinh
(√
−Kχ

)
/
√
−K K < 0

. (1.6)
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ASTRONOMY: E. HUBBLE

corrected for solar motion. The result, 745 km./sec. for a distance of
1.4 X 106 parsecs, falls between the two previous solutions and indicates
a value for K of 530 as against the proposed value, 500 km./sec.

Secondly, the scatter of the individual nebulae can be examined by
assuming the relation between distances and velocities as previously
determined. Distances can then be calculated from the velocities cor-
rected for solar motion, and absolute magnitudes can be derived from the
apparent magnitudes. The results are given in table 2 and may be
compared with the distribution of absolute magnitudes among the nebulae
in table 1, whose distances are derived from other criteria. N. G. C. 404

o~~~~~~~~~~~~~~~~

0.

S0OKM

0

DISTANCE
0 IDPARSEC S 2 ,10 PARSECS

FIGURE 1
Velocity-Distance Relation among Extra-Galactic Nebulae.

Radial velocities, corrected for solar motion, are plotted against
distances estimated from involved stars and mean luminosities of
nebulae in a cluster. The black discs and full line represent the
solution for solar motion using the nebulae individually; the circles
and broken line represent the solution combining the nebulae into
groups; the cross represents the mean velocity corresponding to
the mean distance of 22 nebulae whose distances could not be esti-
mated individually.

can be excluded, since the observed velocity is so small that the peculiar
motion must be large in comparison with the distance effect. The object
is not necessarily an exception, however, since a distance can be assigned
for which the peculiar motion and the absolute magnitude are both within
the range previously determined. The two mean magnitudes, - 15.3
and - 15.5, the ranges, 4.9 and 5.0 mag., and the frequency distributions
are closely similar for these two entirely independent sets of data; and
even the slight difference in mean magnitudes can be attributed to the
selected, very bright, nebulae in the Virgo Cluster. This entirely unforced
agreement supports the validity of the velocity-distance relation in a very
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Figure 1.3 – Left: Hubble’s original plot of recessional velocity vs. distance, taken
from his landmark 1929 paper (Hubble 1929). Right: Hubble diagram (distance vs
redshift) from (Conley et al. 2011) using data from the Sloan Digital Sky Survey,
the Supernovæ Legacy Survey and the Hubble Space Telescope.

t represents cosmic time (the foliation index) and the terms in brackets describe
spatial comoving distances. K is the spatial curvature, related to the spatial Ricci
tensor by (3)R = 6K. It is respectively positive, zero and negative for close, flat and
open spatial sections.

a(t) is the scale factor, unknown a priori. It describes how spatial sections are
expanding (respectively contracting) and distances growing (shrinking) over time,
even for static observers – that is, those with constant comoving coordinates. The
physical distance between two objects, say two galaxies, is r(t) = a(t)χ where χ is
the comoving distance that separates them. Differentiating both sides yields

v ≡ ṙ(t) = H(t)r(t) + a(t)χ̇ ≡ vrec + vp, (1.7)

where H(t) ≡ ȧ(t)/a(t) is the Hubble expansion rate. The relative velocity has two
components: the recession velocity from the Hubble flow, proportional to the distance
(see Hubble’s original plot on figure 1.3), and peculiar velocities with respect to the
cosmological frame.

Now, let’s fill the Universe with a perfect, homogeneous and static fluid: the
stress-energy tensor becomes diagonal, with T00 = ρc2 and Tii = p, where ρ and p
are the energy density and pressure of the fluid. A small bit of algebra, and working
in units where c = 1, leads to Friedmann’s equations,

H2 =

(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− K

a2 (1.8)

and
ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (1.9)

Another equation, not independent, but useful, comes from the matter conservation
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1.1. GRAVITY AND COSMOLOGY

equation, ∇µT
µν = 0, that reads

ρ̇+ 3H(ρ+ p) = 0. (1.10)

For fluids with an equation of state of the form p = wρ, where w is constant, the
solution is

ρ(t) ∝ a(t)−3(1+w), (1.11)

describing the dilution of energy as the Universe expands. A Universe filled with only
such a fluid would have a scale factor evolving as

a(t) ∝

{
t

2
3(1+w) w 6= −1

eH0t w = −1
. (1.12)

In our Universe, three distinct phases are particularly important:

Radiation-dominated era. Radiation has w = 1
3 and therefore the scale factor ap-

proximately goes as a(t) ∝
√
t when radiation dominates the energy budget.

Its energy density decreases as ρ(a) ∝ a−4 because photons are diluted with
the expansion and wavelengths are expanded as well.

Matter-dominated era. Cold matter, sometimes referred to as dust, has w = 0.
Therefore, its energy density undergoes a simple volume expansion, ρ(a) ∝ a−3,
and starts dominating about 60 kyr after the Big Bang. During this era, the
scale factor increases faster as a(t) ∝ t2/3 .

Dark energy-dominated era. The cosmological constant Λ in the Friedmann equa-
tions (1.8) and (1.9) is equivalent to a fluid with equation of state w = −1 and
constant physical energy density. Therefore, it starts dominating about 9 Gyr
after the Big Bang. The Hubble parameter approaches H0 ∼ Λ/3 and the
expansion becomes exponential with a(t) ∝ eH0t.

Defining the critical density ρc = 3H2
/

8πG , we can introduce the density

parameters4 for each component X of the fluid (X = r, c,b, ν,m for radiation, cold
dark matter, baryons, neutrinos and all matter), defined as ΩX = ρX/ρc . We
additionally define ΩΛ = Λ

/
3H2 and Ωk = −K

/
a2H2 , and finally rewrite the first

Friedman equation (1.8) in its reduced form∑
X

ΩX + ΩΛ + Ωk = 1. (1.13)

Changing variables and introducing the cosmological redshift z defined as a = 1/( 1 + z),

4Here, we decided to use this definition, while in the literature, density parameters may be defined
as energy fractions, that is ΩX0

= ρX0
/
∑
X ρX . They coincide in the case of flat spatial sections,

which will be assumed throughout this manuscript.
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Figure 1.4 – Evolution of the energy densities and energy fractions of the different
components of the flat ΛCDM model: dark energy (Λ), cold dark matter (CDM),
baryons, massive and massless neutrinos (mν) and photons. The dashed and dot-
ted grey vertical lines correspond to the radiation-matter and matter-dark energy
equalities.

the Hubble parameter becomes(
H(z)

H0

)2

= Ω0
m(1 + z)3 + Ω0

r (1 + z)4 + Ω0
k(1 + z)2 + Ω0

Λ (1.14)

where the superscript 0 indicates that we take the values of the density parameters
today. The evolution of the energy densities of the components of the ΛCDM is
shown in figure 1.4, together with the associated density parameters.

This simple description is however insufficient for several reasons. First, it does not
explain why the content of the Universe is what it is. In the primordial, hot Universe,
reactions occurred between particles that modified their relative abundances. Second,
it does not take into account a key parameter in the evolution of the Universe’s
content, to wit, temperature. As we shall see, it is the decrease of temperature
that freezes the aforementioned reactions, decoupling particles from each other. It
also does not fully explain why various species (in a broad sense) behave differently,
depending on their being relativistic or not (an important parameter for neutrinos,
as we shall see). We thus need a thermodynamic description that incorporates our
knowledge of subatomic physics.

1.2 An overview of particle physics

Let us now review some of the fundamental principles of particle physics. It is based
on quantum field theory (QFT, see section 1.A for basic notions), a mathematical
framework that unifies quantum mechanics and special relativity. However, QFT does
not provide the content of the theory, that is, the list of particles and their interactions.
The standard model of particle physics is based on a special type of quantum field
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1.2. AN OVERVIEW OF PARTICLE PHYSICS

theories called gauge theories. In such theories, the Lagrangian is invariant under
local transformations of the internal state of particles – spin, isospin, color – generated
by the elements of a Lie group. Each generator of the corresponding Lie algebra
is associated to a so-called gauge field (a gauge boson), which lives in the adjoint
representation of the group, while fermions are placed in smaller representations. The
structure of these representations classifies particles by their associated conserved
charges. Derivatives in the kinetic terms of the Lagrangian are then replaced by
covariant derivatives

∂µ → Dµ ≡ ∂µ − igAµ, (1.15)

where g is the coupling, to make it gauge invariant. In the case of non-abelian gauge
theories, the quantization is a bit tricky and may require the introduction of ghost
fields and counter terms to cancel anomalies, but they are renormalizable.

The standard model is based on the group SU(3)c × SU(2)L ×U(1)Y . It can be
decomposed in two sectors:

Quantum chromodynamics. QCD, which describes the strong interaction, is based
on SU(3)c, and has therefore eight gauge fields – the gluons. Only quarks are
coupled to the gluons, and they are placed in the 3-dimensional representation5,
denoted by three color indices. Quarks are confined by gluons, which means that
they cannot be found isolated, and always assemble into colorless composite
particles: hadrons contain a quark of each color and mesons a quark and
its color-complementary anti-quark.6 Unlike the electroweak interaction, it
is asymptotically free, i.e. its coupling decreases with energy (Gross and
Wilczek 1973; Politzer 1973).

Electroweak interaction. The weak interaction and electromagnetism are jointly
described by a gauge theory based on the group SU(2)L × U(1)Y . Three
massless vector bosons are associated to SU(2)L and one to U(1)Y , all of which
combine thanks to the Higgs mechanism into the massive W±, Z0 bosons and
the photon. The conserved charges are the weak isospin T3 and the weak
hypercharge Y , related to the electromagnetic Q charge by Q = Y/2 + T3.
Electroweak interactions act only on the left-handed fermions (hence the L
subscript), combined in weak isospin-1

2 doublets of SU(2)L, such as left-handed
electrons and electronic neutrinos, while right-handed fermions are in the trivial
representation.

Altogether, and written in a form that hides a bit of dust under the carpet, the
Lagrangian of the standard model reads7

5Other fermions, i.e. the leptons, live in the trivial 1-dimensional representation.
6Recently, a resonance a five quarks, the pentaquark has been observed at LHC.
7This extremely shortened expression comes from a coffee mug sold at CERN, and is described in

Woithe et al. 2017. It is somewhat qualitative, in the sense that it hides many implicit summations
over particles, but it suits our purpose well. Note that the first “h.c” is not technically necessary and
is interpreted at CERN as “hot coffee”!
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CHAPTER 1. THE STANDARD MODEL OF COSMOLOGY

The first line is the kinetic term of all gauge fields; the second line contains the kinetic
term of all fermions, the covariant derivative /D hiding the coupling to the gauge
fields; the third line is the coupling to the Higgs boson of fermions, with the mixing
matrices between mass and interaction eigenstates, responsible for the electroweak
symmetry breaking that gives their masses to all fermions; the fourth line has the
kinetic term of the Higgs boson (again, with the coupling to gauge fields) and the
Higgs mexican-hat potential, accounting for the spontaneous symmetry breaking and
the Higgs mechanism.

If questions remain unsolved – the Majorana or Dirac nature of neutrinos or the
matter-antimatter assymmetry –, the standard model provides a consistent picture of
subatomic physics, which was successfully applied to describe primordial cosmology.

1.3 Thermal history

We’ve arrived to the section on special effects of the play, where fireworks and all
kinds of flashy phenomena take place: the theory of the hot Big Bang. We will first
briefly introduce the key theoretical concepts and equations, and then we will review
the major adventures of the tale of the Universe.

1.3.1 Thermodynamics in an expanding Universe

1.3.1.1 Thermodynamics at equilibrium

The key to understanding the thermal history of the Universe is to compare the
rate of reactions, generically denoted as Γ, to the rate of expansion H. When
Γ� H, reactions are fast enough to maintain thermodynamic equilibrium8 and the
phase-space distribution of particles is given by

f(p, T ) =
g

(2π)3

1

e (E(p)−µ)/T ± 1
(1.16)

8A distinction can be made here: chemical reactions ensure chemical equilibrium while elastic
interactions ensure thermal equilibrium. Both must occur at a sufficient rate to ensure thermodynamic
equilibrium.
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1.3. THERMAL HISTORY

with the − sign for Bose-Einstein and + sign for Fermi-Dirac distributions. g

is the degeneracy of the species, i.e. the number of internal degrees of freedom,

E(p) =

√
p2 +m2 is the energy of a particle of momentum p, which depends only on

its norm p = ‖p‖, µ is the chemical potential and T is the equilibrium temperature.
The number density n, energy density ρ and pressure P are defined as

n(T ) =

∫
d3p f(p, T ) (1.17)

ρ(T ) =

∫
d3p f(p, T )E(p) (1.18)

P (T ) =

∫
d3p f(p, T )

p2

3E(p)
. (1.19)

To a good approximation, chemical potential can be neglected at all times, and thus
we can set µ = 0. Several limit cases are interesting.

• T � m: the mass of the particle is negligible with respect to its kinetic energy
– or zero for massless particles – and it said to be relativistic and acts as radiation.
We obtain, for bosons,

n =
ζ(3)

π2 gT 3, ρ =
π2

30
gT 4 and P =

ρ

3
, (1.20)

and thus w = 1
3 .
9 The number and energy densities of fermions get multiplicative

terms, respectievely 3
4 and 7

8 .

• T � m: it this limit, the density of particles, as long as they are in thermal
equilibrium, decreases exponentially as

n = g

(
mT

2π

) 3
2

e−m/T (1.21)

and pressure is negligible with respect to the energy density, so that w ≈ 0.

In the case of neutrinos, they are still relativistic when they decouple, due to their
very low masses. However, they do become non-relativistic between recombination
and now: their equation of state goes from 1/3 to 0, explaining the behaviour of
their energy density in figure 1.4.

The temperature of the Universe T is defined as that of the bath of particles that
are in thermal equilibrium, and therefore corresponds to that of the photons. For an
adiabatic evolution, it can be shown that the quantity sa3, where s is the entropy
density and a the scale factor, is constant over time. Therefore, the temperature
decreases as T ∝ a−1, as long as the number of relativistic particles in thermal
equilibrium remains the same. When a species becomes non-relativistic, its entropy
is transferred to the thermal bath, resulting in a small sudden temperature jump.

9The dependence of the energy density ρ ∝ T 4 is also known as the Stephan-Boltzmann law.

15



CHAPTER 1. THE STANDARD MODEL OF COSMOLOGY

1.3.1.2 Beyond equilibrium

The rate Γ of various reactions depends somehow on temperature. Therefore, as the
Universe expands, temperature decreases, and, when Γ ∼ H, the reaction freezes.
Thermodynamic equilibrium is not ensured anymore, and the evolution of the phase-
space distribution f of various species is given by the Boltzmann equation

L [f ] = C [f ] (1.22)

where the Liouville operator L is a total derivative with respect to time and C is
the collision term that describes interactions between particles (which involves the
M -matrix of each possible interaction). If the distribution function depends only on
energy, f(E, t), then the Liouville operators reads

L [f ] = E
∂f

∂t
−Hp2 ∂f

∂E
(1.23)

where p2 = ‖p‖2 (not to be confused with pressure). For species i, we obtain, by
integration over momentum p, the equation describing the evolution of the number
density,

1

a3

d(nia
3)

dt
= Ci

[{
nj
}]
. (1.24)

For the reaction 1 + 2
 3 + 4, it becomes

1

a3

d(nia
3)

dt
= −〈σv〉

[
n1n2 −

(
n1n2

n3n4

)
eq

n3n4

]
(1.25)

where the terms in parenthesis are the equilibrium values and 〈σv〉 is the thermally
averaged cross-section. This is known as the master equation. Defining the number
of particles per unit comoving volume Ni ≡ ni/s, we obtain

d lnN1

d ln a
= − Γ

H

[
1−

(
N1N2

N3N4

)
eq

N3N4

N1N2

]
, (1.26)

Noticeably, we find the ratio of the reaction and expansion rates. An important
consequence of this equation is that when this ratio becomes small, the number
density of particle per unit comoving volume becomes constant: this can result in
decoupling or freeze-out. As we shall see very soon, this explain why there is matter
rather nothing!

1.3.2 A brief history of the Universe

In the previous section, we have laid the theoretical tools necessary to understand the
thermal history of the Universe. When thermal equilibrium is ensured, we know the
distributions of particles. When departing from equilibrium, the Boltzmann equation
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1.3. THERMAL HISTORY

tells us how these distributions evolve.

Baryogenesis [t ∼ ?, z ∼ ?, T ∼ ?] Baryogenesis is the hypothetical phase where
the baryonic symmetry is broken, so that annihilation reactions produce more
matter than antimatter, while creating much more photons.

Electroweak phase transition [t ∼ 20 ps, z ∼ 1015, T ∼ 125 GeV] When tempera-
ture goes below the Higgs mass, it acquires a non-zero vacuum expectation
value, thus breaking electroweak symmetry and giving their masses to all other
particles. The scale of the weak interaction is considerably reduced from this
point.

QCD phase transition [t ∼ 20 µs, z ∼ 1012, T ∼ 150 MeV] Quarks, that are asymp-
totically free, now become confined by gluons, and form hadrons and mesons.

Neutrino decoupling [t ∼ 1 s, z ∼ 6× 109, T ∼ 1 MeV] Weak interactions that were
coupling neutrinos to the other fermions, such as

e− + νe 
 e− + νe,

stop. Decoupled neutrinos form another cosmic background that has not been
detected yet.

Electron-positron annihilation [t ∼ 6 s, z ∼ 2× 109, T ∼ 0.5 MeV] When tempera-
ture goes below the mass of the electron, the annihilation process

e+ + e− 
 γ + γ

stops. The entropy of electrons and positrons is transferred to photons, but not
to neutrinos, which are decoupled. Therefore the ratio of their temperature is

Tν
Tγ

=

(
4

11

)1/3

. (1.27)

The energy density of relativistic neutrinos is related to that of photons by

ρν = Neff
7

8

(
4

11

)4/3

ργ (1.28)

where Neff would be 3 – the number of neutrino flavours – in the case of
instantaneous decoupling. However, neutrinos were not completely decoupled
when electrons and positrons annihilated and gained some energy, thus raising
Neff to a value of 3.046.10

10This theoretical value also includes spectral distortions from a Fermi-Dirac distribution arising
from the energy dependence of weak interactions (high-energy neutrinos are more strongly coupled).
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Figure 1.5 – Big Bang nucleosynthesis. The mass fractions of the nucleons and light
elements nuclei are plotted against decreasing temperature (therefore increasing time).
These curves were obtained by numerical integration using the PArthENoPE code
(Pisanti et al. 2008). The diagram on the right shows the simplified network of
nuclear reactions for these light elements.

Big Bang nucleosynthesis [t ∼ 3 min, z ∼ 4× 108, T ∼ 100 keV] Three minutes
after the Big Bang, the first atomic nuclei start forming. Above 1 MeV, protons
and neutrons are at equilibrium, coupled by weak interactions via processes
such as

n + νe 
 p + e−.

Because neutrons are slightly more massive (mn − mp = 1.3 MeV), equa-
tion (1.21) tells us that they must be less numerous, as can be seen on figure 1.5.
But equilibrium is broken and neutrons first freeze out, and then start decaying
for temperatures below 0.2 MeV. The production of heavier nuclei by strong
interactions then goes through multiple steps, producing sequentially deuterium,
tritium, helium, etc. These reactions are governed by a set of coupled Boltzmann
equations that can be numerically solved, predicting the relative abundance of
light elements, in agreement with observations.

Matter-radiation equality [t ∼ 60 kyr, z ∼ 3 400, T ∼ 0.75 eV] As mentioned earlier,
this is the point where the radiation energy density becomes smaller than that
of matter and the expansion rate thus increases.

Recombination [t ∼ 260 − 380 kyr, z ∼ 1 400 − 1 100, T ∼ 0.3 eV = 3 600 K] Until
recombination starts, the Universe is ionized because photons are energetic
enough to break atoms as they form, and the reaction

e− + p 
 H + γ

is at equilibrium. However, when the temperature reaches T ∼ 0.3 eV, it
becomes energetically favourable for nuclei to capture free electrons, forming
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Figure 1.6 – Recombination of hydrogen and helium atoms as described in Seager
et al. 1999. The fractions of the number density of these elements with respect to the
density of hydrogen nuclei is plotted versus redshift. The fraction of free electrons
is also shown in blue. The dashed lines are the equilibrium predictions while the
solid lines were obtained by numerically solving the Boltzmann equation with the
NumCosmo library (see appendix C).

hydrogen and helium atoms (see figure 1.6). Importantly, the threshold temper-
ature is much smaller than 13.6 eV – the binding energy of the hydrogen atom –
because their are about η ∼ 109 photons per proton/electron.

Photon decoupling [t ∼ 380 kyr, z ∼ 1 090, T ∼ 0.25 eV] Photons were tightly
coupled to electron via Thomson scattering,

e− + γ 
 e− + γ,

whose reaction rate is proportional to the density of electrons. Applying the
master equation (1.25) to this reaction, one obtains the evolution of the fraction
of free electron, Xe,

dXe

dx
= − λ

x2

[
X2
e − (Xeq

e )2
]
, (1.29)

where x = BH/T , with BH = 13.6 eV denoting the binding energy of hydrogen,
and λ ≡ [nb 〈σv〉/H ]T=BH

. Shortly after recombination starts, the density
of free electrons drops and photons decouple: their mean free path grows
to cosmological scales and they start propagating freely, forming the cosmic
microwave background.

Reionization [t ∼ 100− 400 Myr, z ∼ 10− 30, T ∼ 2− 8 meV] After a few hundred
of millions of years, the first stars turn on. Their combined ultraviolet radiation
progressively re-ionizes all neutral hydrogen in the intergalactic medium, as
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CHAPTER 1. THE STANDARD MODEL OF COSMOLOGY

can be observed in the Lyman-α forest of quasars. This process is thus of
astrophysical origin rather than cosmological.

Dark energy-matter equality [t ∼ 9 Gyr, z ∼ 0.4, T ∼ 0.33 meV] At this point,
the energy density of the Universe becomes dominated by dark energy. The
expansion starts accelerating anew.

Extinction of dinosaurs [t ∼ 13.8 Gyr, z ∼ 0.004, T ∼ 0.24 meV]

Birth of Isaac Newton [t ∼ 13.8 Gyr, z ∼ 3× 10−8, T ∼ 0.24 meV]

Today [t ∼ 13.8 Gyr, z = 0, T ∼ 0.24 meV = 2.725 5 K]

1.4 Cosmological perturbation theory

So far, we have described a homogeneous Universe. But it is full of inhomogeneities:
there are stars, galaxies, black holes, all over the place! Luckily, on the largest scales,
i.e. above a few megaparsecs, these inhomogeneities are small. Indeed, anticipating
a bit, fluctuations of the temperature of the CMB are of order ∆T/T ∼ 10−5.
Overdensities may grow under gravitational attraction, but as long as they remain
small, we can treat them using a perturbative approach.

1.4.1 Newtonian perturbation theory

Let us start with a brief reminder of classical perturbation theory. In this context,
matter density and pressure are supposed to be slightly different from a mean value.
They can thus be written

ρ = ρ̄+ δρ (1.30)

P = P̄ + δP (1.31)

with δρ, δP � ρ̄P̄ . Combining the classical hydrodynamics equations in the Euclidian
space-time,

∂tρ+∇ · ρv = 0 (Continuity equation) (1.32)

∂tv + (v · ∇)v = −1

ρ
∇P −∇Φ (Euler equation) (1.33)

∇2Φ = 4πGδρ (Poisson equation), (1.34)

where Φ is the gravitational potential, leads to the equation evolution for δρ(x, t)(
∂2
t − c

2
s∇

2
)
δρ = 4πGρ̄ δρ, (1.35)
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where c2
s = (δP/δρ)S is the (squared) speed of sound in the fluid. The Jeans length

λJ ≡ cs

√
π

Gρ̄
(1.36)

is the length above which any perturbation starts growing exponentially.

In an expanding space-time, length are rescaled by the scale factor a(t). This has
two consequences for us: it modifies the derivatives in the previous equations, and
now the mean density and pressure may evolve with time. Switching variables and
defining the density contrast δ as

ρ(x, t) = ρ̄(t) (1 + δ(x, t)) , (1.37)

we obtain at first order in δ � 1

δ̈ + 2Hδ̇ =
c2

s

a2∇
2δ + 4πGρ̄δ. (1.38)

The speed of sound is now rescaled by a factor a and the Jeans length depends on
time through ρ̄. Interestingly, a friction term involving the Hubble parameter has
appeared on the left-hand side of the equation, accounting for the suppression of
structures due to the expansion.

If we neglect pressure, the Laplacian term disappears and equation (1.38) involves
only time derivatives. The density contrast’s time and space-dependence may be split
as

δ(x, t) = D+(t)ε+(x) +D−(t)ε−(x), (1.39)

with a growing mode (subscript +) and a decaying mode (subscript −). The growth
parameter D obeys the equation

D̈ + 2H(t)Ḋ − 3

2
H2(t)Ωm(t)D = 0, (1.40)

which has two solutions,

D− = H and D+(a) =
5

2
E(a)Ω0

m

∫ a

0

da′[
a′E(a′)

]3 , (1.41)

where E(a) ≡ H(a)/H0. Noticeably, if the Universe is dominated by matter, then
D+ ∝ a, but when dark energy becomes dominant, the expansion accelerates and
slows the growth of structures down. The dependence of the growth function on
background dynamics through E(a) makes it an important quantity to test the ΛCDM
model.
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Figure 1.7 – Perturbation growth function versus redshift. The dashed lines marks the
transition from the matter-dominated era to the dark energy-dominated era during
which the expansion slows the growth of structures.

1.4.2 Relativistic perturbation theory

Let us now turn to the relativistic theory. We will not detail any calculation, but we
will underline the main differences with the classical theory.

1.4.2.1 Perturbed Einstein equations

Inhomogeneities may now perturb the geometry of space-time itself. Therefore, the
metric will be written as

gµν = ḡµν + δgµν (1.42)

where ḡµν is the background metric – here, the FLRW metric – and δgµν � 1 is the
small perturbation. The same decomposition can be made for the Einstein tensor Gµν
and the stress-energy tensor Tµν . Einstein’s equation will be expanded order-by-order,
such that

Gµν = 8πGTµν and δGµν = 8πGδTµν . (1.43)

A technical difficulty occurs: we are trying to compare two different manifolds
(background and perturbed), but there isn’t such a thing as a distance between two
different spaces. Therefore, mapping coordinates between them (that is, choosing a
gauge) is somewhat arbitrary and introduces non-physical degrees of freedom. This
can be dealt with by defining gauge-invariant quantities that do not vary under a
change of coordinates, or, equivalently, by fixing the gauge to remove these additional
degrees of freedom. In the Newtonian gauge, the perturbed metric can be written
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1.4. COSMOLOGICAL PERTURBATION THEORY

as11

ds2 = a2(η)
[
−(1 + 2Φ) dη2 + ((1− 2Ψ)δij + 2Eij) dxi dxj

]
. (1.44)

Here, we use conformal time η defined by a(η) dη = dt. This metric has two scalar
degrees of freedom, Φ and Ψ. Ψ is the curvature perturbation of constant time
hypersurfaces and will appear in the Poisson equation (and thus corresponds to
the Newtonian potential at small scales). Vector modes are chosen to be zero in
this gauge. Finally, Eij , which is traceless and divergenceless, accounts for tensor
perturbations, i.e. gravitational waves.

Similarly, the stress-energy tensor can be written, in the Newtonian gauge,

δT00 = a2ρ (δ + 2Φ) (1.45)

δT0i = −a2(ρ+ P )vi (1.46)

δTij = a2P

[
2Eij +

(
δP

P
− 2Ψ

)
δij + πij

]
. (1.47)

Here, δ is the density contrast defined in equation (1.37). av is the perturbed velocity
of a comoving observer, decomposed into a scalar and divergenceless vector part as
vi = Div + v̄i. Finally πµν is the anisotropic stress tensor which will be neglected
from now on, which ensures that Ψ = Φ.

Plugging these expressions into Einstein equations and using the conservation
of the stress-energy tensor yields the relativistic forms of the equations from the
previous section. The continuity equation (1.38) can be rewritten in its relativistic
form, and for an adiabatic evolution12, as

δ′ +

(
1 +

P̄

ρ̄

)(
∇2v − 3Φ′

)
+ 3H

(
c2

s −
P̄

ρ̄

)
δ = 0, (1.48)

where δ′ is the derivative of δ with respect to conformal time η and H ≡ a′
/
a . Euler

and Poisson equations become

v′ +H
(

1− 3c2
s

)
v = −∇Φ− ∇δP

ρ̄+ P̄
(1.49)

and
∇2Ψ = 4πGa2ρ̄∆, (1.50)

where ρ̄∆ = ρ̄δ − 3H
(
ρ̄+ P̄

)
v is a gauge invariant quantity. Finally, the evolution

of the scalar mode is given by

Ψ′′ + 3H
(

1 + c2
s

)
Ψ′ +

[
2H′ +H2

(
1 + 3c2

s

)
− c2

s∇
2
]

Ψ = 0. (1.51)

The term between the brackets has very important consequences. If we decompose

11For simplicity, we assume that spatial sections are flat.
12This means that we suppose that δP/δρ = cs.
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the gravitational potential into Fourier modes of comoving vector number k, the
laplacian ∇2 is replaced by −k2, which must be compared to the H2 term. For
adiabatic perturbations, we have c2

s ≈ w and using Friedmann equations, we can
rewrite it in a more concise way

Ψ′′ + 3H (1 + w) Ψ′ + wk2Ψ = 0. (1.52)

Therefore, we can get an idea of the behaviour of the gravitational potential for
different regimes.

• If k � H, that is when the mode’s scale is larger than the characteristic
expansion length 1/H , then Ψ is approximately constant.

• If k � H, it depends on the value of w of the dominant component:

− During the radiation era, w = 1/3 and the gravitational potential oscil-
lates.

− During the matter era, w = 0 and the gravitational potential is constant.

This behaviour can be seen on figure 1.8. In particular, the gauge invariant quantity

ζ ≡ Φ +
2

3H
Φ′ +HΦ

1 + P̄
/
ρ̄
, (1.53)

written here in the Newtonian gauge and known as the comoving curvature pertur-
bation, does not evolve for super-Hubble scales k � H. For these modes, it can be
rewritten

ζ = − 5 + 3w

3(1 + w)
Φ, (1.54)

where w is the equation of state of the fluid. ζ is constant during the radiation-to-
matter transition while w goes from 1/3 to 0. Therefore, the large-scale gravitational
potential must decrease by a factor 9/10 .

1.4.2.2 Multiple fluids

So far, we have considered a single fluid. To go beyond this simplification, the total
density, pressure and velocity must be written as the sum of several components with
their own densities, pressures and velocities.

In the case of adiabatic fluctuations, it is assumed that all physical quantities in
the perturbed space-time can be related to those of the background Universe by a
small but common time shift. Therefore, the ratio δρ

/
ρ̄′ ∝ δ/1 + w is common to

all species, so that matter and radiation perturbations are related by

δr =
4

3
δm. (1.55)
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We can now write the equations for the various components in the fluid approxi-
mation.

CDM Cold dark matter has no pressure, therefore P = 0 and cs = 0, such that

δ′c = k2vc + 3Ψ′, (1.56)

v′c = −Hvc − Φ. (1.57)

Baryons Electrons and nuclei are tightly coupled by electromagnetic forces, such
that they have the same density contrast δb. Baryons are coupled to photons
via Thomson scattering, which adds a force in the Euler equation

δ′b = k2vb + 3Ψ′, (1.58)

v′b = −Hvb − Φ− c2
sδb +

4ργ
3ρb

τ ′(Tγ − Tb), (1.59)

where τ ′ = aneσT is the differential opacity13, σT denoting the Thomson
cross-section, and Tγ/b are the temperature of photons and baryons.

Photons Photons obey

δ′γ =
4

3
k2vγ + 4Ψ′ (1.60)

v′γ = −1

4
δγ − Φ− 16

45

k2

τ ′
vγ + τ ′(Tγ − Tb), (1.61)

where the velocity term in the second equation comes from the anisotropic
pressure.

The numerical integration of these equations is shown in figure 1.8. Several phases
must be distinguished.

Before a mode becomes sub-Hubble, it is frozen. Then, after BBN and before
recombination, baryons and photons are tightly coupled, such that, to first order in
k
/
τ ′ , their velocities are equal. Combining the previous equations yields

δ′′γ +
R′

1 +R
δ′γ + k2c2

sδγ = 4

[
Ψ′′ +

R′

1 +R
Ψ′ − 1

3
k2Φ

]
(1.62)

with
R =

3ρb

4ργ
and c2

s =
1

3

1

1 +R
. (1.63)

This describes a forced damped oscillator. These density oscillations are due to
the opposing effects of the radiation pressure vs gravity and are called baryon
acoustic oscillations. They started when the mode becomes sub-Hubble and froze

13It is related to the optical depth τ by dτ/dη = −τ ′.
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Figure 1.8 – Evolution of the photon, baryon and CDM density contrasts and of the
gravitational potential for modes k = 1× 10−5 Mpc−1 (purple) to 1× 10−1 Mpc−1

(orange). The vertical grey dashed and dotted lines respectively correspond to
the radiation-matter and matter-dark energy equalities. In the top right plot, the
evolution of CDM density modes is shown as dashed lines, for comparison with the
evolution of baryon density modes.

at recombination, leaving an imprint in the distribution of matter, which has been
detected in the anisotropies of the cosmic microwave background and the clustering of
galaxies. During that time though, dark matter is not coupled and its perturbations
grow logarithmically. After decoupling, baryons only interact gravitationally with
dark matter and perturbations grow rapidly to match those of dark matter (shown
as dashed lines in the top right panel of figure 1.8).

1.4.2.3 Kinetic approach

The fluid approximation presented so far captures the evolution of perturbations and
its key features: the difference between sub- and super- Hubble modes, the baryon
acoustic oscillations and the growth of structures. However, it has several caveats and
a kinetic approach based on the Boltzmann equation is required, first, to derive the
coupling – and decoupling – between photons and baryons and then, to describe the
propagation of relativistic fluids – photons and neutrinos – that have a large mean free
path. Their perturbed distribution in energy evolves over time, the densities being
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1.4. COSMOLOGICAL PERTURBATION THEORY

only one moment of this distribution. Moreover, the presence of massive neutrinos,
that behave first as radiation and later as free-streaming matter, breaks some of the
assumptions made so far. Finally, the anisotropic stress of photons and neutrinos
shall be taken into account, thus making the two gravitational potential slightly
different.

In the case of photons, the distribution is Bose-Einstein and depends only on the
temperature, written

T (x, t) = T0(t) (1 + Θ(x, t)) . (1.64)

The Boltzmann equation in the perturbed metric, for the temperature contrast k-mode
at conformal time η propagating in the direction n̂, Θ(k, η, n̂), can be written

Θ′ + ikµ(Θ + Φ) = Ψ′ + τ ′
[
Θ0 −Θ + ikµvb +

1

16
ninjΠ

ij

]
(1.65)

where µ = k · n/k , τ ′ = aσTne, like in the previous section, and Πij is the anisotropic
stress-tensor, related to the quadrupole Θ2. The right-hand side contains the coupling
to baryons via Thomson scattering. Expanding Θ in Legendre multipoles Θ`, one can
write a set of differential equations with a recurrence relation, called the Boltzmann
hierarchy.

The case of neutrinos is slightly more complicated because of the non-zero mass
dependence. Their distribution is assumed to slightly deviate from a homogeneous
Fermi-Dirac distribution14 and must be parametrized differently because of the
momentum dependence (see details in Ma and Bertschinger 1995).

These equations are solved by numerical integration in codes such as CAMB (Lewis

et al. 2000) or CLASS (Lesgourgues and Tram 2011).

1.4.3 The matter power spectrum

We have written the equations governing the evolution of density perturbations and
of the gravitational potential. In order to obtain a well-defined Cauchy problem, we
need to know the initial conditions. However, these are unknown. All we can do
is to take snapshot of the densities in our past light-cone, which is insufficient to
determine all k-modes. Moreover, if structures that we observe today emerged from
primordial quantum fluctuations, then it becomes impossible to know these conditions.
Therefore, a statistical description – based on the hypothesis of ergodicity15 – is
required.

14This assumption is an approximation because no Fermi-Dirac distribution can satisfy the
Boltzmann equation in the FLRW background metric.

15This hypothesis means that, for a single realization of the Universe, different regions explore
the whole configuration space, such that, on scales much smaller than the size of the observable
Universe, averages over realizations can be approached by averages over statistically independent
space patches.
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1.4.3.1 The linear matter power spectrum

The density fields δ(x, t) at early times are assumed to be Gaussian random fields,
which means that their statistics is fully captured by their two-point correlation
function ξδ, defined as 〈

δ(x, t)δ(x′, t)
〉

= ξδ
(
x,x′

)
. (1.66)

All odd-order correlation functions vanish. The cosmological principle implies that it
is only a function of the distance between the two points r =

∥∥x′ − x∥∥. Switching to
Fourier space, this defines the power spectrum, as16

〈
δ(k, t)δ∗(k′, t)

〉
= δ(3) (k − k′)P (k, t) . (1.67)

The correlation function and the power spectrum are related by a Hankel transform

ξ(r, t) =

∫ ∞
0

dk

2π2k
2Pδ(k, t)

sin kr

kr
. (1.68)

Inflation, among other theories, predicts the power spectrum of the fluctuations of
the inflaton scalar field, which are transferred to the comoving curvature perturbation
ζ. Its dimensionless power spectrum Pζ , defined as

Pζ(k) =
k3

2π2Pζ(k), (1.69)

is close to scale invariant, which means that it can be written

Pζ(k) = As

(
k

k0

)ns−1

, (1.70)

where the spectral index ns is close to 1. The pivot scale k0 is generally chosen to
be 0.05 Mpc−1. The gravitational potential in the radiation-dominated era, ΦRD, is
related to ζ via equation (1.54), by

ζ = −3

2
ΦRD (1.71)

and thus
PΦRD

(k) =
4

9
Pζ(k). (1.72)

As seen in figure 1.8, modes that re-enter the Hubble horizon17 before the radiation-
matter equality are suppressed and oscillates before being quasi-frozen in the matter-
dominated era. This transition can be encoded by the so-called transfer function
TΦ(k) defined as

ΦMD(k) =
9

10
TΦ(k)ΦRD(k) (1.73)

16Since δ is real-valued, δ∗(k) = δ(−k) and therefore
〈
δ(k, t)δ(k

′
, t)
〉

= δ
(3) (

k + k
′)
P (k, t).

17This is a confusing abuse of language, though shared in the literature.
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where the 9/10 factor is the global decrease mentioned at the end of section 1.4.2.1,
used here such that the transfer function behaves as

TΦ(k) ∼

{
1 k � keq(
keq

/
k
)2

ln k
/
keq k � keq

. (1.74)

The relativistic Poisson equation can be written k2ΦMD(k, a) = 4πGa2ρ̄∆(k, a) where
∆ ≡ δ − 3aHv is the gauge-invariant comoving matter density perturbation, or, using
the definition of the cosmological parameters

∆(k, a) =
2ak2ΦMD(k, a)

3ΩmH
2
0

. (1.75)

We split the time and space dependencies of ∆ and introduce the matter growth
function during the matter-dominated era D+ as in section 1.4.1, defined as

∆(k, a1)

∆(k, a2)
=
D+(a1)

D+(a2)
, (1.76)

which implies
Φ(k, a1)

Φ(k, a2)
=
a2

a1

D+(a1)

D+(a2)
. (1.77)

Choosing the normalization of D+ such that it is 1 deep in the matter-dominated
era, we can relate the late-time matter power spectrum to the primordial curvature
power spectrum by

Pm(k, z) =
4

25

(
k2

ΩmH
2
0

)2

T 2
Φ(k)D2

+(z)Pζ(k). (1.78)

This approach, though useful, is only an approximation because we have separated
the time and space dependencies of the perturbed fields even though they are coupled
in the equations18. In particular, the presence of neutrinos induces a non vanishing
anisotropic stress tensor (so that the gravitational potentials are no longer equal)
and a scale dependence of the growth factor. Therefore, the equations derived in
the previous section shall be used to compute the evolution of the power spectrum:
since they are linear, we can initialize the perturbed quantities at their standard
deviation (given by the square root of the primordial power spectrum), integrate
them over time and take their squared values to obtain the power spectrum at any
time (see figure 1.9). All perturbation quantities can be related to the gravitational
potential at early times in the radiation-dominated era when all useful modes are
super-Hubble. Therefore, specifying the primordial power spectrum of ζ is sufficient
to find the initial conditions of all Boltzmann equations.

18Otherwise, there wouldn’t be acoustic waves!
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Figure 1.9 – Matter power spectrum (left) and r.m.s. of matter density linear
perturbations (right) for redshifts 0, 1, 3, 10, 30, 100, 300 and 1 000 (from dark red
to yellow). On the left panel, dashed lines correspond to the linear power spectrum
while solid lines represent the non-linear power spectrum. On the right panel, dashed
lines correspond to a gaussian window function and solid lines correspond to a top-hat
window function. The gray vertical line is R = 8 h−1 Mpc. The power spectrum was
computed with NumCosmo using CLASS as the backend and a halofit prescription.

1.4.3.2 Towards the non-linear regime

As perturbations grow, the density contrast of small-scale modes might come to be of
order unity or even more19, indicating that the linear perturbation theory described
above is breaking. In this regard, let’s define the variance of the density contrast
with a window function of scale R and at redshift z as

σ2(R, z) ≡

〈(∫
d3x δ(x, z)WR(x)

)2
〉
. (1.79)

It can be related to the power spectrum as

σ2(R, z) =

∫
k2 dk

2π2 P (k, z)
∣∣∣W̃ (k,R)

∣∣∣2 (1.80)

where W̃ (k,R) is the Fourier transform of the window function. In particular, we
define σ2

8 as the variance of fluctuations at z = 0 with a top-hat window func-
tion of radius R = 8 h−1 Mpc, extrapolated from the linear theory. In that case,
W̃ (k,R) = 3 j1(kR)/kR where j1 is the spherical Bessel function. As it turns out, σ8

is of order unity, which means that scales below ∼ 10 Mpc have reached the non-linear
regime (see figure 1.9).

Several approaches exist for exploring the non-linear regime:

N -body simulations Large cosmological simulations involving many particles (possi-
bly, several species) interacting gravitationally can probe the non-linear regime.

19Note that separate k-modes may have a large value, but that doesn’t matter: only the real space
density is relevant here.
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Figure 1.10 – Snapshot of the Illustrisfootnote 20 simulation around a cluster. The
dark matter density is in purple and the gas velocity field is overlaid in orange.

They might then be used to calibrate fitting formulae for the non-linear power
spectrum as was done for the halofit prescription (Bird et al. 2012; Smith

et al. 2003; Takahashi et al. 2012) or to create emulators (spline-based interpo-
lators, see e.g. Lawrence et al. 2017). They can also include non-gravitational
astrophysical processes, such as feedback processes from active galaxy nuclei
(AGN), supernovæ explosions shockwaves, ionizing radiation from stars, stellar
evolution, etc. One of the largest simulations to date is the Illustris Project20

(see figure 1.10 and Vogelsberger et al. 2014).

Halo model In the halo model (see Cooray and Sheth 2002, for a review), galax-
ies are clustered inside large haloes, following a halo occupancy distribution
depending on the halo mass. The computation of the power spectrum is then
split between an intra- and an inter-halo contribution.

Higher order perturbation theory Another approach is to extend the perturbation
theory to second order (or even more). One can derive rules to compute
Feynman-like diagrams to go beyond tree-level equations (Bernardeau et al.
2002) and even perform renormalization (Crocce and Scoccimarro 2006).

An important consequence of non-linearities is that different k-modes, that were
independent in the linear theory, are coupled in the non-linear regime. Therefore,
higher-order correlation functions or power spectra – called bispectra and trispectra
for 3- and 4-points functions – become non-zero. The squeezed limit is a special
configuration of the bispectrum B(k1,k2,k3) where one of the modes is close to zero,
for instance k3 ≈ 0, implying that k1 ≈ −k2. That case describes the response of

20http://www.illustris-project.org/
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CHAPTER 1. THE STANDARD MODEL OF COSMOLOGY

the power spectrum at scale k1 to the large-scale density, i.e. the local mean density.
This is the approach we will use in chapter 5.
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Appendices

1.A Notions of quantum field theory

Modern particle physics relies on the formalism of quantum field theory (QFT),
a general framework – in the sense that it provides mathematical tools but not
the physics itself – that combines hypotheses from quantum mechanics and special
relativity. We will here sketch some of the principles of this theory, based on Peter

and Uzan 2013; Weinberg 2005; Zuber 2013 and personal class notes.

1.A.1 Fundamental principles

The fundamental assumptions of quantum field theory are:

• Algebra of operators: the physical state of a system at time t is represented by
a vector |ψ(t)〉 in a Hermitian space H. Physical observables are represented
by linear operator acting on these states, such that their expectation values are
〈A〉 = 〈ψ(t)|A|ψ(t)〉.

• Unitarity: the evolution of |ψ(t)〉 is given by a linear, unitary operator U(T )

that can be set in a non-projective representation of the group of time transfor-
mations.

• Lorentz group: so as to be a relativistic theory, states and operators live in
representations of the proper, orthochronous Lorentz (or Poincaré) group L↑+
whose universal cover is SL(2,C) and Lie algebra su(2) ⊕ su(2). They are
indexed by two half-integers that determine the spin of the particle. P and T
symmetries allow the definition of a basis of one-particle states labelled by their
4-momenta pµ and internal states, and obtained from a hypothesized vacuum
thanks to creation operators

∣∣ψp,σ〉 = a†(p, σ) |0〉.

• Pauli exclusion principle: the bosonic or fermionic nature of particles defines
commutation and anticommutation relationships for n-particles states, the
ensuing spin-statistics theorem constraining bosons (fermions) to have integer
(half-integer) spins.

• In/out states: the Hamiltonian can be decomposed into a free part and an
interaction part (the potential) as H = H0 + V . Initial and final states |φ〉 of
an interaction are eigenstates of the free Hamiltonian H0 and can be obtained
from the Lippmann–Schwinger equation,

∣∣∣ψ±〉 = |φ〉+(E −H0 ± iε)
−1 V

∣∣∣ψ±〉.
They define the Lorentz-invariant S-matrix as

Sαβ =
〈
ψ−β

∣∣∣ψ+
α

〉
=
〈
φβ
∣∣S∣∣φα〉 , (1.81)

which is interpreted as the transition probability from state α to state β.

33



CHAPTER 1. THE STANDARD MODEL OF COSMOLOGY

• Evolution equation: Schrödinger’s equation, i~∂t |ψ〉 = Ĥ |ψ〉, is applied to the
time evolution operator U in the interaction representation, i.e.

i∂tU(t) = Vint(t)U(t) (1.82)

where
Vint(t) = e+iH0tV e−iH0t =

∫
d3~x Hint(~x, t), (1.83)

and thus the S-matrix reads

S = T

[
exp−i

∫
d4x Hint(x)

]
(1.84)

where the expansion of the exponential is time ordered. It can be rewritten
Sαβ = δαβ−2πiδ(4)(

∑
β p

µ
out−

∑
α p

µ
in)Mαβ , introducing theM -matrix, a central

quantity for computing cross-sections.

1.A.2 Types of fields

Particles are represented by operator-valued fields, that transform according to a
representation of the Lorentz group. Three of them are of particular interest:

• Scalar fields carry a (0, 0) representation of the Lorentz group, are therefore
spinless, and can be written (because of micro-causality)

φ(x) =

∫
d3~p(

(2π)3p0
)1/2

[
e+ipµx

µ

a(~p) + e−ipµx
µ

a†(~p).
]

(1.85)

Therefore they obey the Klein-Gordon equation21(
∂µ∂

µ −m2
)
φ = 0. (1.86)

The Higgs boson and the hypothetical inflaton are scalars.

• Vector fields belong to the (1, 0)⊕ (0, 1) representation. Massive vector fields,
such as the W and Z bosons, can be decomposed in a spin 0 scalar field and a spin
1 field, while massless vector fields, like photons, have two spin 1 contributions
(two directions of polarization).

• Dirac spinors represent all known fermions: electrons, positrons, muons, neutri-
nos, quarks, etc. They transform under the (1

2 , 0)⊕ (0, 1
2) representation and

contain two spin 1
2 fields: the right- and left-handed particles. They obey the

Dirac equation (
/∂ +m

)
ψ = 0. (1.87)

21We use the (−+ ++) signature of the metric.
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Figure 1.11 – Example of Feynman diagrams: on the left, the tree-level interaction
between an electron and a neutrino; on the right, the emission of a photon by an
electron, at 1-loop order.

1.A.3 The machinery: Feynman diagrams and renormalization

The Hamiltonian is written as a function of these fields which are themselves integrals
of creation and annihilation operators. (Anti)commutators of these operators,[

a(p, σ, n), a†(p′, σ′, n′)
]
±

= δ3(p− p′)δσσ′δnn′ (1.88)

then provide rules to compute the perturbative expansion of the exponential in
equation (1.84). The terms of this expansion are represented by Feynman’s diagrams,
that also give a pictorial representation of interactions.

Several issues then arise.

First, the above rules are defined for the Hamiltonian, which is a function of
the fields φ and their momenta Πφ. However, writing the Lagrangian L – which
is a function of φ and φ̇ – of a theory is advantageous because its symmetries
are more explicit, which allows to derive conserved currents and charges thanks
to Noether’s theorem. However, switching from a description to the other is not
always straightforward, in particular because the momenta Πφ = δL

/
δφ̇ may be

ill-defined (e.g. if the Lagrangian does not imply φ̇). Such issues usually occur when
the description is redundant and gauge invariances imply constraints, which can be
dealt with thanks to Dirac’s method.

Then, graphs including loops (see figure 1.11) may contain divergent integrals that
can be tamed with mathematical tricks such as dimensional regularization. However,
this requires an ultraviolet cut-off, which will have to be dealt with.

Feynman rules can be extended for the computation of Green functions defined
as the vacuum expectation value of the product of n field operators,

〈0|φ(x1) . . . φ(xn)|0〉 = x4

x3

x2

x1

xn

. . . x5

, (1.89)

which can be rewritten as path integrals, as proposed by Feynman in his thesis
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(Feynman 1942). These are helpful as they can be related to the propagator and
vertices.

Now, another difficulty arises when we start coupling fields, abandoning their
respective free theories. Consider the propagator of a Dirac spinor: in the complete
theory, it should have contributions from internal loops and can be written as a
series,

+ + . . . , (1.90)

which can be linked to the propagator of a free theory with different masses and
coupling constants. That’s where renormalization kicks in. There is no reason why
the fields normalizations and constants – couplings and masses – written in the
Lagrangian should be the observable ones. By requiring the proper behaviour of
Green functions in the full theory, that is asking that they are finite, one determines
how to rescale – or, renormalize – the bare constants and fields as a function of energy,
thus absorbing all the ultraviolet divergences. A theory is renormalizable if only a
finite number of Green functions are divergent, such that a finite number of rescaling
operations are needed. While this seems constraining at first sight, non-renormalizable
theories are actually physically irrelevant because they make no predictions.
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Now that we have the most important theoretical ingredients, let us turn to
the observations and describe the various probes of the Universe. Note that we
will not describe direct geometric probes such as supernovæ or strong lenses, which
provides distance measurements, as they were not the topic of this thesis work. We
will, however, describe probes of the large-scale structure. First, we will explore
the physics of the anisotropies in the cosmic microwave background. Then, we will
describe tracers of the large-structure at later times, focusing on galaxies and the
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Figure 2.1 – Electromagnetic spectrum of the monopole of the CMB measured
by FIRAS (in blue) and the best fit black-body spectrum with a temperature of
2.725 K (in red). The precision is such that error bars have been multiplied by a
factor 200 to be visible. Importantly, the bottom plot shows the deviation from the
black-body spectrum, constraining possible non-thermal processes such as energy
gain from hot electrons. The data is from Fixsen et al. 1996, available at https:
//lambda.gsfc.nasa.gov/product/cobe/firas_prod_table.cfm.

Lyman-α forest of quasars. Finally, we will present gravitational lensing by the
large-scale structure in the weak regime.

2.1 The cosmic microwave background

The CMB is the thermal photon bath left over after recombination ended. Its
spectrum is extremely close to the black-body spectrum found by Max Planck in
1900,

Bν(T ) =
2hν3

c2

1

e
hν
kBT − 1

, (2.1)

as confirmed by the FIRAS instrument on board of the COBE satellite (see figure 2.1).
Therefore, photons were very close to thermodynamic equilibrium when they were
emitted. Their initial temperature of about 3 000 K has cooled down to T0 = 2.725 K

due to the expansion, indicating that the redshift of the last scattering surface is
z∗ ∼ 1 090.

These photons are a rich source of information for cosmology. They were released
only 380 000 years after the Big Bang and act as a portrait of the primordial Universe,
and in particular of its inhomogeneities. They navigated through matter structures
under formation since then and have witnessed several cosmological and astrophysical
effects, distorting – spatially or spectroscopically – primary anisotropies or introducing
new ones, which will be referred to as secondary anisotropies.
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2.1. THE COSMIC MICROWAVE BACKGROUND

Figure 2.2 – Map of the anisotropies of the CMB measured by Planck (Planck
Collaboration et al. 2016b).

2.1.1 Anisotropies in the cosmic microwave background

Inhomogeneities in the energy density of photons imply inhomogeneities in the local
temperature of photons, related by δγ = 4 δT/T , by virtue of the Stefan-Boltzmann
law. However, the temperature contrast of the photons collected by instruments
today, Θ ≡ δT/T , is not simply δγ

/
4 because photons can be spectroscopically

shifted by the gravitational potential and the Doppler effect. Indeed, a photon loses
energy when escaping a gravitational potential well. The complete formula in the
linear regime, derived by Sachs and Wolfe (Sachs and Wolfe 1967), reads

Θ(n̂) =

[
1

4
δγ + Φ

]
LSS︸ ︷︷ ︸

Sachs-Wolfe

− n̂ · ∇vb

∣∣∣∣
LSS︸ ︷︷ ︸

Doppler

+

∫ now

LSS
dη
[
Φ′ + Ψ′ − ninjE′ij

]
(x(η), η)︸ ︷︷ ︸

ISW
(2.2)

where n̂ is the direction of observation. The Sachs-Wolfe term contains the intrinsic
density contrast and the gravitational potential, both evaluated at the last scattering
surface (LSS) when the photons were released. The Doppler boost is due to the
velocity of baryons in the plasma, vb. Finally, the Integrated Sachs-Wolfe (ISW) term
is due to net energy gain (or loss) of photons crossing successive gravitational wells
that are evolving: if a potential well is smoothed between entry and exit of a photon,
then it gains energy. Importantly, this term vanishes in a matter-dominated Universe.
Therefore, the late-time ISW effect betrays the existence of a dominating dark energy
component.

The first interesting figure is the absolute level of the anisotropies, of order
∆T/T ∼ 10−5. This means that the Universe was very smooth, as a result of the
small level of primordial fluctuations and the strong coupling in the baryons-photons
plasma. Nonetheless, small fluctuations have been measured to a resolution of about 5′

(see the map on figure 2.2). Again, they are random, so their statistics are interesting.
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Figure 2.3 – Power spectrum DTT` = `(`+ 1)CTT`

/
2π of the CMB temperature

anisotropies measured by Planck (Planck Collaboration et al. 2016e).

2.1.2 Features of the angular power spectrum

Under the assumption of isotropy, the correlation function
〈
Θ(n̂)Θ(n̂′)

〉
depends

only on n̂ · n̂′ and can be expanded in Legendre polynomials P` as

〈
Θ(n̂)Θ(n̂′)

〉
=

∞∑
`=0

2`+ 1

4π
P`(n̂ · n̂

′)CTT` , (2.3)

where CTT` is the temperature angular power spectrum1, shown in figure 2.3. Let us
outline some of its important features.

Large angular scales For super-Hubble modes, the Sachs-Wolfe term dominates.
The gravitational potential can be related to overdensities, such that

ΘSW =
1

3
Φ = −1

6
δγ , (2.4)

and as a consequence, cold spots correspond to over-dense regions. At these
scales, we have `(`+ 1)CTT` ∝ `ns−1 such that the power spectrum is almost
flat, a feature known as the Sachs-Wolfe plateau.

Intermediate scales The acoustic waves in the baryon-photon plasma described
1We will develop the formalism of angular power spectra in more detail in chapter 6.
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by equation (1.62) freeze at recombination. Density modes at their maxima
(compression) or minima (dilation) at this point create peaks in the power
spectrum. The first peak is related to the largest distance travelled by these
waves, called the sound horizon and given by

rs =

∫ η?

0
dη cs =

∫ η?

0

dη√
3(1 +R)

≈ 145 Mpc (2.5)

where R = 3ρb

/
4ργ . This is equivalent to an angular size

θ∗ = rs/DA(z∗) = 0.6° (2.6)

where DA(z∗) is the comoving angular diameter distance at redshift z∗. The
next peaks correspond to damped harmonic modes. Note that compression
peaks are bigger because the gravitational potential shifts the oscillations to
higher densities.

Small scales At small scales, the diffusion of photons from hot to cold regions tends
to smooth fluctuations, a phenomenon known as Silk damping. In the fluid
approximation, we can use equations from section 1.4.2.2. Small-scale modes of
the gravitational potential have been been greatly reduced before recombination
(see figure 1.8) so that we neglect it at small scale. Moreover, the time scale of
the oscillations is much smaller than the expansion time scale, such that R can
be considered constant here. Expanding the difference of the velocity fields of
baryons and photons, vb − vγ , to first order in 1

/
τ ′ , we can write the evolution

equation of the photon density contrast, similar to equation (1.62), as

δ′′γ +
k2c2

s

τ ′

(
16

15
+

R2

1 +R

)
δ′γ + k2c2

sδγ = 0. (2.7)

We can define a damping scale kD such that

k−2
D =

1

6

∫ η?

0

dη

τ ′

[
1

1 +R

(
16

15
+

R2

1 +R

)]
(2.8)

of order kD ≈ 0.14 Mpc−1.

Another equally important smoothing effect is due to the width of the last
scattering surface. The probability that a photon is scattered for the last time
at η, called the visibility function, is

g(η) = τ ′e−τ (2.9)

where τ is the optical depth, such that dτ/dη = −τ ′. The temperature contrast
which is observed is therefore an average of the contrast along the line of sight
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Figure 2.4 – Free electron fraction X
e
− and optical depth τ as a function of scale

factor a during recombination and reionization. The optical depth and the visibility
function, defined here by g(a) = dτ/da e−τ , correspond to the right vertical axis.
The solid, dashed and dotted gray lines mark recombination, reionization of hydrogen
and reionization of helium, respectively.

weighted by the visibility function. This results in an exponential cut of power
at small scales, since in Fourier space, ĝ(k) ∝ exp

(
−1

2k
2σ2

LSS

)
where σLSS is

the width of the last-scattering surface.

2.1.3 Secondary anisotropies

In the previous section, we have described the primary anisotropies, that is, those
originating at the time where CMB photons are emitted. However, during their course
from the last scattering surface to our telescope, they have had various interactions
with matter and the structures they crossed.

Reionization – When the first stars are turned on, they emit ultraviolet radiation
that can re-ionize hydrogen and helium atoms. The fraction of free electrons
rises again (see figure 2.4) until all of the intergalactic medium is ionized. CMB
photons are scattered by these electrons via Thomson scattering, causing a
blurring of the anisotropies on all scales smaller than the horizon at the epoch
of reionization. As a consequence, the power spectrum of CMB anisotropies
is decreased by e−2τreion on small scales (for ` & 20), where τreion is the optical
depth through the reionization era (visible as a plateau in figure 2.4). Its
value is dependent on the reionization history, that is, the exact time and
space2 dependence of the free electron fraction, and, in particular, to the typical
redshift zre when reionization occurs.

2Reionization occurs sooner close to ionizing radiation emitters, a phenomenon known as patchy
reionization (Becker et al. 2015; Smith and Ferraro 2017).
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Figure 2.5 – Spectrum of the CMB at temperature TCMB = 2.725 K and spectrum
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distortion of the SZ effect is visible: small frequency photons are shifted towards higher
frequencies while their number is constant, implying a stable point at ν = 217 GHz.

The Sunyaev-Zel’dovich effect – The intra-cluster medium (ICM) contains hot free
electrons, visible thanks to their bremsstrahlung emission in the X-ray domain.
When cold CMB photons go through clusters, they get a kick in energy via
inverse Compton scattering from the bath of hot electrons, inducing a frequency
dependent distortion of the spectrum: this is the thermal SZ effect (tSZ). This
shift can be parametrized by an equivalent frequency-dependent temperature
shift3, which, in the non-relativistic Kompaneets approximation, is given by
(Birkinshaw 1999; Hill and Spergel 2014; Sunyaev and Zeldovich 1970)

∆T

TCMB
= gν(x)y = gν(x)

σT

mec
2

∫
dl Pe(l), (2.10)

where Pe is the ICM electron pressure integrated over the line of sight, gν is the
thermal Sunyaev-Zel’dovich spectral function, given by gν(x) = x coth(x/2)− 4

where x = hν/kBTCMB is the dimensionless frequency. y is called the Compton

parameter and has a typical value of
√〈

y2
〉
∼ 10−5 (estimated from the spread

for clusters seen by Planck). The tSZ spectral function is zero for x ≈ 3.83, that
is ν ≈ 217 GHz and thus, below (respectively above) this frequency, clusters
imprint cold (respectively hot) points in the CMB map.

If a cluster is in motion with respect to the CMB frame, an additional tem-
perature shift ∆T/TCMB ≈ −τ v‖

/
c , where v‖ is the velocity along the line of

3The distorted spectrum can be computed as Iν = Bν(TCMB + ∆T (ν)) where Bν(T ) is the
black-body spectrum at temperature T .
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sight, is created by Doppler effect: this is the kinetic SZ effect.

The integrated Sachs-Wolfe effect – As mentioned earlier, if a gravitational poten-
tial is changing over time because of the expansion, photons gain more energy
when entering it than when escaping it. However, it is a small effect, of order
∆T/T ∼ 10−6, at large scales.

Gravitational lensing by large-scale structure – Photon trajectories are bent by
matter over-densities, causing a distortion of the observed CMB map by large-
scale structures of order 2′, coherent on 2° patches. This decreases the amplitude
of the power spectrum at percent level and broadens the peaks. It will be
discussed in more details in section 2.3.

Point sources Though technically not secondary anisotropies, intra- and extragalac-
tic point sources may contribute to the microwave signal observed by CMB
experiments. See, for instance, Afshordi et al. 2004.

2.1.4 The polarization of the cosmic microwave background

CMB photons are slightly polarized – at the 10−6 level – because of Thomson
scattering interactions with electrons in the primordial plasma. Indeed, if the incident
flux of electrons around some point in the plasma has a quadrupolar distribution, the
net polarization will be non-zero in the direction perpendicular to the quadrupole
plane. This can come from:

Scalar perturbations : electrons falling towards a potential well accelerate when
they get closer to the overdensity. There are fewer electrons coming from the
radial direction than from the tangential one, forming a quadrupole.

Vector perturbations : they can in principle create vortices in the electron velocity
field, but they are usually considered negligible.

Tensor perturbations : gravitational waves distort circular potential wells into ellip-
tical ones, thus forming quadrupolar distributions.

Patterns of polarization are generally decomposed into a divergence mode (E) and a
curl mode (B). Scalar perturbations produce only E-modes while tensor perturbations
produce both E- and B-modes. Secondary E-modes are also produced by Thomson
scattering of CMB photons by free electrons after reionization, creating a large-scale
bump in the E-mode power spectrum, which is proportional to the reionization optical
depth squared τ2

reion. Finally, distortions caused by gravitational lensing can cause
E-modes to leak into B-modes at scales ` & 100. Measurements of the polarization of
CMB anisotropies are shown in figure 2.6.
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Figure 2.6 – EE and BB power spectra measurements from several ground- and
space-based CMB experiments. Figure from https://lambda.gsfc.nasa.gov/.

2.1.5 Dependence on cosmological parameters

Primordial anisotropies of the CMB probes the Universe 380 000 years after the Big
Bang and their power spectrum is sensitive to the parameters of the cosmological
model that we have mentioned so far (and listed in table 1). In figure 2.7, the
theoretical CMB power spectrum is plotted for varying parameters.

Let us comment on the impact of these parameters.

Amplitude The amplitude of the CMB power spectrum is broadly proportional to
Ase

−2τ , except for very large scales, l . 20. The later reionization occurs, the
smaller the optical depth τ , thus increasing As or zre have opposite effects.

Geometry The Hubble parameter, H0, and the dark energy equation of state, w,
determine the late expansion of the Universe and therefore modify angular
scales (as non-zero curvature Ωk would), thus inducing a horizontal shift of the
power spectrum.

Matter On the one hand, the higher the density of baryons, the larger BAO waves
are. Therefore, an increase in ωb results in higher compression peaks. On the
other hand, CDM is decoupled from the plasma, thus increasing the fraction of
CDM tends to tame the amplitude of the waves.

Primordial spectrum Varying ns, which depends on the outcome of the inflationary
phase, tilts the CMB power spectrum, making it bluer for higher values of ns.

Neutrinos The mass of neutrinos has a small effect on the CMB, which is somewhat
degenerate with the Hubble parameter. This is due to the fact that they still
act as radiation (they are relativistic) at recombination.
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Figure 2.7 – Effects of varying the cosmological parameters on the CMB power
spectrum. Here we use a flat ΛCDM model as a reference (ΩΛ = 1−Ωm−Ωr), varying
one parameter at a time. The fiducial values are those from Planck Collaboration
et al. 2016e using CMB temperature and polarization and CMB lensing data as well as
external BAO and H0 measurements (referred to as “TT,TE,EE+lowP+lensing+ext”).
Note that, for illustrative purposes, the ranges in which parameters are varied are
much greater than current constraints.
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2.1.6 Computation of the power spectrum

The temperature constrast of photons at position x, propagating in the direction n̂
and at conformal time η, Θ(x, n̂, η), can be decomposed as a sum of contributions
from scalar, vector and tensor modes. Each of these can further be expanded in
Fourier space as

Θ(x, n̂, η) =

∫
d3k

(2π)3/2

∑
`m

Θ
(m)
` (k, η)G`m(x, n̂), (2.11)

where

G`m(x, n̂) = (−i)`
√

4π

2`+ 1
eik·xY`m(n̂) (2.12)

is a decomposition over plane waves and spherical harmonics Y`m. The index m is
directly related to the scalar-vector-tensor decomposition: m = 0 indicates scalar
modes, m = ±1 denotes the two polarizations of vector modes and m = ±2 those of
tensor modes (+ and ×).

As seen in chapter 1, the evolution of the temperature contrast obeys a Boltzmann
equation, that gives the evolution of the Fourrier coefficients Θ

(m)
` (k, η) at all times.

The collision term of the Boltzmann equation encodes all the interactions that can
modify the photon temperature:

• Thomson scattering with charged particles up to photon decoupling and during
reionization;

• Doppler boost due to baryon velocity;

• gravitational Doppler effect;

• interaction with gravitational waves.

These equations are evolved together with the Boltzmann equations of the other
components (dark matter, baryons and neutrinos) from the end of inflation up to
now. It can be shown (see chapter 6) that the power spectrum is given by

(2`+ 1)2CTT` =
2

π

∫
k2 dk

m=+2∑
m=−2

∣∣∣Θ(m)
` (k, ηnow)

∣∣∣2. (2.13)

In practice, codes such as CLASS use some relevant approximations (Blas et al.
2011), such as the photon-baryon tight coupling approximation, as well as optimiza-
tions, such as the integration of radial modes, to make the computation fast enough
for analysis purposes.
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2.2 Tracers of the large-scale structure

The matter density field is not directly observable: all we see is light and all we can
measure are fluxes, spectra – used to estimate redshifts – and positions on the sky.
Therefore, one has to rely on tracers that can only be used to infer the underlying field.
Indeed, their distribution is usually different than that of all matter, the relationship
between these distributions being strongly dependent on the type of tracer and often
encoded by a bias that is time and scale dependent. For instance, galaxies are found
only where the density is high enough to form stars while neutral hydrogen is found
far enough from ionizing sources.

2.2.1 Galaxy clustering

One illustrative way to think about galaxy clustering is to compare it to glitter play
dough: galaxies are like sparkling specks, spread across an invisible dark matter
matrix, according to some complex rules set by gravity and astrophysics, that one
seeks to weigh.

2.2.1.1 Power spectrum and correlation function

The overdensity of galaxies can be related to that of matter by a generic expression
of the form (Gil-Marìn et al. 2015a)

δg(x, z) = B [δ(x, z)] (2.14)

where B is a bias functional of the density field4. A possible, simple parametrization
is to write it as a Taylor expansion

B [δ(x, z)] =

∞∑
k=1

bk(z)

k!
δk(x, z), (2.15)

but it may also be written as a scale-dependent bias in Fourier space as

δg(k, z) = b(k, z)δ(k, z), (2.16)

or explicitly involve the matter velocity field. In the simplest model, valid at large
scales and for a homogeneous sample of galaxies, the densities are simply proportional
and related by a redshift-dependent bias as δg(x, z) = bg(z)δ(x, z). Therefore, the
matter power spectrum is related to that of galaxies by Pg(k, z) = b2g(z)P (k, z), and
similarly for the correlation function. The galaxy correlation function and the power
spectrum have been measured at redshifts z ∼ 0− 1, providing constraints in the
scale range k ∼ 0.01− 0.2 h Mpc−1 (see figure 2.8).

4See Desjacques et al. 2016 for a review on bias.
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Figure 2.8 – Measured anisotropic galaxy correlation function (left) and power
spectrum (middle). The rightmost plot shows the difference between the measured
power spectrum and a smooth power spectrum without BAO-related wiggles. The
BAO “ring” is clearly visible in the correlation function. Figures from (Alam et al.
2017).

The bispectrum of galaxies, defined in section 1.4.3.2, probes the non-gaussianity
of the density field. It originates from non-linear gravitational evolution at small
scales, or from possible primordial non-gaussianities that affect large-scale clustering.

Note, however, that several complications come from the way we observe these
galaxies, which we shall see in section 2.2.1.3.

2.2.1.2 Baryon acoustic oscillations

Before recombination, density waves propagate in the baryon-photon plasma, under
the opposite effects of gravity and radiation pressure. Each primordial over-density is
thus surrounded by an over-dense growing shell of baryons and photons. After the
BAOs froze at recombination, this shell stops at a radius given by the sound horizon
rs, forming a bump in the correlation function of baryons (see figure 2.9). Photons
keep streaming, while baryons and dark matter interact through gravity and fall into
each other’s overdensities. The large-scale distribution of baryons and dark matter
then slowly evolves under the action of gravity until they completely match at low
redshift. Finally, massive neutrinos become non-relativistic, they start feeling the
gravitational pull from large-scale structures.

Tracers of the large-scale structure must also exhibit the BAO peak in their
correlation functions. Moreover, it has been shown that this scale is robust to
cosmological evolution (Eisenstein et al. 2007; Seo and Eisenstein 2007), making
it a standard ruler, i.e. a well-calibrated distance that can be compared to theoretical
predictions for rs, thus constraining the geometry of the Universe.

So as to observe this characteristic feature, one needs to precisely measure the
positions of a large number of galaxies, spanning a large volume. This requires
spectroscopic observations, in order to derive precise redshift estimates (as opposed to
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Figure 2.9 – Correlation functions of the different components in the Universe – dark
matter, baryons, photons and neutrinos – and of all matter, as a function of redshift,
from linear perturbation theory.
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photometric redshifts, estimated from band fluxes). Nonetheless, it has been observed
and measured up to redshift z ∼ 0.6 (Anderson et al. 2012, 2014; Aubourg et al.
2015; Cuesta et al. 2016).

Since the BAO pattern is imprinted in the three-dimensional distribution of
galaxies, it can be measured along the line of sight or perpendicular to it, yielding
two comoving scales, s‖ and s⊥. These distances can be related to, respectively, the
angular diameter distance, DA(z) = fK(χ(z))/(1 + z) , and the Hubble parameter
H(z), or the Hubble distance DH(z), by (Bassett and Hlozek 2009)

DA(z) =
s⊥

∆θ(1 + z)
and DH(z) ≡ c

H(z)
=

s‖

∆z
. (2.17)

In principle, the radial and angular measurements should both match the predicted
BAO scale rs, offering a consistency check of the cosmological model (the so-called
Alcock-Paczynski test, Alcock and Paczynski 1979). If the measurement is
averaged over all directions, then it contrains the quantity (Percival 2013)

DV (z) ≡
(

(1 + z)2D2
A(z)

cz

H(z)

)1/3

, (2.18)

that combines the angular diameter distance and the Hubble parameter.

2.2.1.3 Relativistic effects

Galaxy surveys can only measure the apparent positions of galaxies and their red-
shifts. Therefore, the relationship between the galaxy number density fluctuations
measured in redshift-space and the total matter density fluctuations is impacted by
relativistic effects (Bonvin and Durrer 2011; Challinor and Lewis 2011). The
most important are the so-called redshift-space distortions and the effect of cosmic
magnification.

2.2.1.3.1 Redshift-space distortions

We cannot measure the distance to a given galaxy with a ruler but rather have to
infer it from its estimated redshift. However, the observed redshift is the sum of the
cosmological redshift and a contribution due to the peculiar velocity of the galaxy by
Doppler effect. This makes the mapping from redshift-space to real-space positions
non-trivial since it implies knowing the velocity field as well. This effect is called
redshift-space distortions and manifests itself differently at large and small scales.

• At large scales, galaxies have coherent infall motions towards the centers of large
potential wells such as growing galaxy clusters. Therefore, their distribution
seems flattened in the direction of the line of sight. This so-called Kaiser effect
can be corrected for by modifying the relationship between the power spectra
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to (Kaiser 1987)

Pg(k, z) = b2g

(
1 + βµ2

)2
P (k, z) (2.19)

where µ = k‖
/
k , with k = ‖k‖, and

β ≡ 1

bg(a)

d lnD+

d ln a
. (2.20)

Therefore, measuring the power spectrum at different angles µ is a powerful
method to study structure formation parametrized in f ≡ d lnD+/d ln a . An-
other workaround consists in reconstructing the true positions of galaxies before
measuring their clustering properties (White 2015). This requires to infer
the velocity field from the density field via the continuity equation, which can
easily be inverted in the linear regime, and then applying small displacements
to galaxies.

• On small scales, galaxies have random motions within virialized, bound objects
such as clusters. Clustering is smeared out by the large velocity dispersion,
sometimes modelled as an exponential cut, exp

(
−k2ΣNL

)
, and the redshift-

space distribution of galaxies is instead elongated along the line of sight, forming
what is called the Finger of God.

Redshift-space distortions have been measured in the galaxies of the SDSS-
III/BOSS survey (Gil-Marìn et al. 2016, 2017; Reid et al. 2012), constraining the
growth of structure at redshift z ∼ 0.3− 0.6.

2.2.1.3.2 Magnification

Photons emitted by galaxies are deflected by the large-scale structure through
gravitational lensing (addressed in the next section). For a galaxy survey with a
magnitude cut, this has two opposite effects. First, lensed galaxies may be magnified,
appear brighter than they actually are and pass the threshold luminosity, even though
their intrinsic luminosity is too low (and vice-versa). Then, lensing modifies the
apparent volume, thus diluting the galaxy density in the case of positive convergence.
These effects can be parametrized by including a lensing term in the relationship
between the galaxy and the matter densities, such that

δg(x, z) = bg(z)δ(x, z)− (5s− 2)κ(x, z), (2.21)

where κ is the convergence at the position of the galaxy and s is the slope of the
galaxy number count at the high magnitude limit,

s =
d logN(< m)

dm

∣∣∣∣
m=mmax

. (2.22)
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Figure 2.10 – Sketch of the Lyman-α forest in the spectrum of a quasar. Credit: Joe
Liske/ESO.

This effect is important at large redshift (Ziour and Hui 2008), where the convergence
κ becomes non-negligible, and has been measured in quasar samples (Scranton

et al. 2005).

2.2.2 The Lyman-α forest

For a historical review, see Rauch 2001 and Rauch 1998.
The Lyman-α forest is an absorption phenomenon observed in the spectra of high

redshift quasars (quasi-stellar objects or QSOs, see Osmer 2001, for an overview)
blueward of their Lyman-α ultraviolet emission line5. It reveals the presence of
intervening neutral hydrogen between the observer and the quasar, that carves the
redshifted spectrum with many absorption lines.

2.2.2.1 Quasars and the intergalactic medium

Quasars are bright sources in the radio, visible and ultraviolet parts of the electro-
magnetic spectrum. Originally thought to be variable stars, they are now considered
as the most energetic objects in the class of active galactic nuclei. Their luminosity
is believed to be powered by accretion of large amounts of matter on the central
massive black hole of distant galaxies, emitting a continuous, non-thermal spectrum.

5The Lyman series are the transition of neutral hydrogen from an excited state to the electron
ground state. The transition from n = 2 to n = 1 is the Lyman-α transition, at rest-frame wavelength
λα = 1 216Å.
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The intergalactic medium (IGM, see McQuinn 2016, for a review) is composed of
diffuse matter surrounding galaxies and clusters, and could harbour as much as 90% of
baryons in the Universe. Its physical properties – composition, temperature, density –
are intimately related to the formation and radiative activity of galaxies. When the
light of a quasar crosses the IGM, the neutral hydrogen (Hi) it contains absorbs
photons at wavelengths corresponding to its rest-frame energy transitions, most
notably in the Lyman series. Successive such crossings leave a collection of absorption
lines that are continually redshifted along with the whole spectrum. The measured
wavelength of these lines can be directly translated into cosmological distances, thus
making the whole process similar to a geological core sample of neutral hydrogen (see
figure 2.10).

The depth and width of the absorption lines depend on the number density of
neutral hydrogen in the IGM. If XHi(z) denotes the number fraction of hydrogen
atoms that are neutral at redshift z and Y the mass fraction of helium, then the
mean density at redshift z is

nHi(z) = XHi(z)(1− Y )
ρb(z)

mpc
2 = 1.9× 10−7 cm−3 ×XHi(z)(1 + z)3. (2.23)

At thermal equilibrium, the absorption cross-section integrated over the resonance of
the Lyman-α transition is given by (see section 23 of Peebles 1993)

σ(ν) =
3

8π
Λ2p→1sλ

2
αφα(ν) (2.24)

where φα(ν) is the absorption line profile and

Λ2p→1s =
ω3
αe

2

3πε0~c
3

∑
m

∣∣ 〈ψ2p

∣∣x∣∣ψ1s

〉∣∣2 = 6.25× 108 s−1 (2.25)

is the spontaneous radiative decay rate from the 2p to the 1s state of hydrogen (the
lifetime of the 2p state is thus τ2p = 1

/
Λ2p→1s = 1.6 ns). The line profile φα(ν) is

the convolution of two line broadening effects. First, due to Heisenberg’s incertitude
principle, the transition has a Lorentzian profile with a natural width of order
∆E/E ∼ λα

/
cτ2p ∼ 10−8. Then, thermal broadening due to the Doppler effect

induced by peculiar velocities of atoms in the gaz is modelled by a Maxwell-Boltzmann
distribution law. Now, the fraction of absorbed flux at observed frequency ν is given
by e−τ(ν) where

τ(ν) =

∫ zQSO

0
nHi(z)σ(ν(1 + z))

cdz

(1 + z)H(z)
(2.26)

is the optical depth. Here, the cross-section is evaluated at the frequency of the
photon at redshift z and the fraction term is simply the infinitesimal proper distance
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dl. For a Dirac profile at ν = να, we obtain

τ(ν) =
3nHi(zα)Λ2p→1sλ

3
α

8π(1 + zα)H(zα)
(2.27)

where zα = να/ν − 1. Plugging in the values for the ΛCDM model, the optical depth
is

τ(ν) ∼ 104 ×XHi(zα)

(
100 km s−1 Mpc−1

H(zα)

)
(1 + zα)2 (2.28)

Therefore, a very small fraction of neutral hydrogen (XHi ∼ 10−5) is sufficient to
absorb a significant flux (τ ∼ 1). At redshift z ∼ 6, reionization is well over (Becker

et al. 2007), but the small remaining fraction of neutral hydrogen is sufficient to
absorb the almost entire flux of quasars, leaving a discontinuity in the spectra of
quasars known as the Gunn-Peterson trough (Gunn and Peterson 1965). At lower
redshift, hydrogen is in photoionization equilibrium, i.e. the rate of recombination
equals that of ionization by absorption of UV photons with energy higher than the
Lyman limit of 912Å. This equilibrium is determined by the physical parameters
of the IGM and the ionizing UV flux, and it directly impacts the distribution of Hi

versus that of UV emitters (mostly stars) and, therefore, that of dark matter6.

Now, consider a Hi “cloud” of small extent7 and its column density NHi =
∫
nHi dl

expressed in cm−2. The observed equivalent width of a line at redshift z0 and
frequency ν0 is given by

W =
1 + z0

F (ν0)

∫
F (ν)

(
1− e−τ(ν)

)
dν (2.29)

where F (ν) is the observed emission spectrum of the quasar. At low density, τ is
small and the width can be approximated by

W ∼
∫
τ(ν) dν = NHi

∫
σ(ν) dν ∼ 0.5(1 + z)

(
NHi

1014cm−2

)
Å, (2.30)

while for high densities, we obtain, using a Lorentzian profile of width Λ2p→1s,

W ∼ 7

(
NHi

1020cm−2

)1/2

Å. (2.31)

Therefore, Hi systems are classified as a function of their column density:

6The rate of recombination is given by α(T )npne and that of ionization by ΓHinHi. Since
nHi � ne = np, we have, at equilibrium, nHi = (α(T )/ΓHi )n

2
p. Neutral hydrogen is thus more

clustered than baryons.
7The term of “cloud” is a bit of a historic misnomer because simulations in the 1990s (Miralda-

Escudé et al. 1996) and subsequent observations revealed that the IGM density is largely determined
by the distribution of dark matter, and is thus more accurately described as a diffuse web structure.
Hi clouds would require an important external force to sustain the gaz pressure and are therefore
rare. In the following, we will rather use the generic term of “Hi systems”.
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NHi ∼ 1013 − 1016cm−2 These systems are the most abundant at z ∼ 3 and pro-
duce narrow lines that can be distinguished from one another, thus tracing
baryons in the IGM on a wide range of scales (0.1− 100 Mpc).

NHi ∼ 1017cm−2 Lyman-limit systems are dense enough for their core to be pro-
tected from ionizing UV radiation and to contain enough neutral hydrogen to
fully absorb radiation at the Lyman-α resonance.

NHi & 1020cm−2 Damped Lyman-α systems (DLAs, Noterdaeme et al. 2012)
produce wide absorption lines where the damping tails of the Lorentzian profile
are perceptible.

2.2.2.2 Clustering in the Lyman-α forest

The ratio between the observed spectrum f(λ) and the emission spectrum of the
quasar C(λ) – also called the continuum – at observed wavelength λ,

F (λ) ≡ f(λ)

C(λ)
= e−τ(λ), (2.32)

is also referred to as the transmission. Its mean value F̄ (z) depends on cosmology and
the mean density of neutral hydrogen, as stated in the previous section. Fluctuations
in the density of Hi result in transmission fluctuations, defined as

δF (z) =
F (z)

F̄ (z)
− 1. (2.33)

These fluctuations are, in turn, related to the matter density field δ, though in a
non-linear way. A more detailed discussion of this aspect will be provided in chapter 5.

Be that as it may, clustering measurements from the Lyman-α forest probe the
matter power spectrum on a wide range of scales.

Line-of-sight power spectrum The one-dimensional power spectrum probes matter
on the smallest scales (Croft et al. 1998; McDonald et al. 2000, 2006;
Zaldarriaga et al. 2001), thus constraining the mass of neutrinos (the more
massive they are, the more they suppress small-scale fluctations, see Palanque-

Delabrouille et al. 2013, 2015b), but also exotic models of dark matter, such
as warm dark matter (Viel et al. 2013), sterile neutrinos dark matter (Seljak

et al. 2006) and primordial black hole dark matter (Afshordi et al. 2003).

3D power spectrum Combining different lines of sight enables to probe the matter
power spectrum on larger scales (McQuinn and White 2011; Slosar et al.
2011).

BAO On the largest scales, the three-dimensional correlation function of the Lyman-α
forest exhibits a bump at the scale of baryon acoustic oscillations. It has been
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Figure 2.11 – Article headlines on covers of the New York Times from Nov. 10, 1919,
left; Nov. 16, 1919, center; and Dec. 3, 1919 (from a review in Roston 2015).

measured by the SDSS-III/BOSS survey (Bautista et al. 2017; Busca et al.
2013; Delubac et al. 2015; Slosar et al. 2013), providing an accurate distance
measurement at large redshift, thus constraining the geometry of the Universe.

QSO-Lyman-α cross-correlation Correlating the transmission in the Lyman-α forest
with the position of quasars enables another strong measurement of the BAO
scale, imprinted as a through in the cross-correlation function (Font-Ribera

et al. 2013, 2014).

Tomographic mapping With a high density of forests, it becomes possible to make a
three-dimensional map of neutral hydrogen in the IGM (Bautista et al. 2017;
Lee et al. 2014a,b, 2016).

2.3 Gravitational lensing

Observation by Arthur Eddington of the deflection of light from nearby stars by the
Sun during the 1919 solar eclipse brought Einstein’s theory to fame by offering one
of its first observational confirmation (see covers of the NY Times on figure 2.11).
General relativity predicts that matter bends space-time, thus warping geodesics
followed by photons. In other words, sufficiently large clumps of matter can focus
diverging rays of light just like an optical lens.

Gravitational lensing has become a major tool in astronomy and cosmology.
A mass passing in front of another background source temporarily increases its
luminosity. This effect, called microlensing, can be used to trace small objects in our
galaxy, like exoplanets, or dark matter subhalo structures (for statistical microlensing,
see, for instance, Cyr-Racine et al. 2016). But it can also be used on much greater
scales: clusters of galaxies strongly distort the images of more distant galaxies forming
arcs and multiple images, that can be used to reconstruct the distribution of matter
and eventually the mass of the cluster (see figure 2.12). When a variable source such
as a quasar aligns with a galaxy or a cluster or galaxies, the light curves of multiple
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Figure 2.12 – Abell S1063, a galaxy cluster at redshift z = 0.348, distorts the images
of background galaxies into arcs and enhances them by acting like a magnifying glass.
Credit: NASA, ESA, and J. Lotz (STScI)

images will be delayed due to the extra distance to be covered. This effect can be
used to constrain the geometry of the Universe and measure the Hubble constant H0

(for a recent study, see, for instance, Bonvin et al. 2017). On the largest scales, the
whole distribution of matter acts a distorting lens, twisting and enhancing background
galaxies and distorting the trajectories of CMB photons.

2.3.1 Physical principle

This section is based on Bartelmann and Schneider 2001; Hoekstra and Jain

2008; Schneider et al. 2006.

2.3.1.1 Single lens

A point-like object of mass M deflects a light-ray by an angle given by

α =
4GM

bc2 (2.34)
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Figure 2.13 – Deflection of a light-ray emitted by a source (S) at angle θS by a
point-like mass (the lens L) towards the observer (O). The source appears to be at
angle θ.

where b is the impact factor8. In the limit of small angles, the source, at real angular
position θS with respect to an arbitrary pole, appears at angle θ given by the lens
equation,

θ = θS +
DLS

DOS
α(θ), (2.35)

where DLS and DOS are the distances between the source S and, respectively, the
lens L and the observer O (see figure 2.13).

For a lens that is extended in the plane perpendicular to the line of sight but thin
along the line of sight, the deflection angle reads

α(θ) =
4G

c2

∫
d2θ′Σ(θ′)

θ − θ′∣∣θ − θ′∣∣2 , (2.36)

where Σ(θ) is the surface mass density, that is, the density of the lens projected
along the line of sight, which reads

Σ(θ) =

∫
dχρ(χθ). (2.37)

Finally, the apparent image of the background source, I, is given by a remapping of
its intrinsic surface brightness, IS, according to

I(θ) = IS(θS[θ]). (2.38)

2.3.1.2 Lensing by the large-scale structure

This section follows the derivation from Schneider et al. 1992 and Schneider et al.
2006.

8This can be shown by solving the geodesic equation in the Schwarzschild metric induced by the
point-like mass.
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sourceκ>0, ɣ=0 κ=0, ɣ≠0

Figure 2.14 – Effects of lensing convergence and shear.

We consider two light rays separated by an angle θ̂ at the observer and their co-
moving separation vector x(θ̂, χ) at comoving distance χ. The geodesic equation (1.2)
implies that

d2x

dχ2 +Kx = − 2

c2∇⊥Φ
(
x(θ̂, χ), χ

)
(2.39)

where the gravitational potential is evaluated at position x(θ̂, χ) and the corresponding
lookback time. ∇⊥ denotes the two-dimensional gradient perpendicular to the line of
sight. Denoting the angular separation at comoving distance χ

β̂(χ) ≡ x(θ̂, χ)

fK(χ)
(2.40)

and the distortion matrix (i.e. the jacobian matrix)

A(θ̂, χ) ≡∇θ̂β̂, (2.41)

then

A(θ̂, χ) = 1− 2

c2

∫ χ

0
dχ′

fK(χ− χ′)fK(χ′)

fK(χ)
∇2
⊥Φ
(
x(θ̂, χ′), χ′

)
A(θ̂, χ′), (2.42)

where the right-hand side involves the two-dimensional hessian matrix of the gravita-
tional potential. In the regime of weak lensing, we can evaluate the derivatives of the
gravitational potential along the unperturbed ray for which x(θ̂, χ) = fK(χ)θ̂. This
is known as the Born approximation. The distortion matrix becomes

A(θ̂, χ) = 1−∇θ̂φ (2.43)

where we have introduced the lensing potential given by

φ(θ̂, χ) =
2

c2

∫ χ

0
dχ′

fK(χ− χ′)
fK(χ′)fK(χ)

Φ
(
fK(χ′)θ̂, χ′

)
. (2.44)

We further decompose this matrix into

A(θ̂, χ) =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (2.45)
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Figure 2.15 – Map of the CMB lensing potential measured by Planck in galactic
coordinates (Planck Collaboration et al. 2014b).

defining the lensing convergence κ, a scalar field, and the complex shear γ = γ1 + iγ2,
a spin-2 field (see figure 2.14). Making use of the Poisson equation, the convergence
can be written as a projection of the matter (over)density field as

κ(θ̂, χ) =
∇2φ

2
=

3

2

(
H0

c

)2

Ω0
m

∫ χ

0
dχ′

fK(χ− χ′)fK(χ′)

fK(χ)

δ(fK(χ′)θ̂, χ′)

a(χ′)
. (2.46)

Finally, the apparent surface brightness of a source is related to the intrinsic one by

I = µIS with µ =
1

|A|
=

1

(1− κ)2 − |γ|2
≈ 1− 2κ (2.47)

where the approximation is that of the weak lensing regime.

2.3.2 Lensing of the cosmic microwave background

Photons of the cosmic microwave background are deflected by large-scale structures on
their way to our telescopes. As a consequence, the anisotropies of CMB temperature
are blurred, as if seen through a glass brick of inhomogeneous width. While a
small source of complications for CMB temperature studies, this deflection can be
mathematically recovered. The output is a measure of the projected mass of all
matter that stands between the last scattering surface and us.

2.3.2.1 Effects of CMB lensing

Typical structures at large redshift induce a deflection of CMB photons of order
β = 4GM

/
bc2 ≈ 0.3′. They undergo of order 50 such deflections, resulting in an

r.m.s. deflection of order
√

50× β ≈ 2′. The observed temperature is thus remapped
according to

Tobs(n̂) = T (n̂+∇φ(n̂)), (2.48)
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inducing coherent displacement on patches of scale ∼ 2°.
On the one hand, this induces a smearing of the peaks of the temperature power

spectrum and a correlation of spherical harmonics coefficients that are otherwise
uncorrelated. On the other hand, this correlation is used to reconstruct the lensing
potential (see Okamoto and Hu 2003 and section 2.3.2.2), which is an extraordinary
probe of all matter between the last scattering surface and us. The lensing potential,
shown in figure 2.15, has been measured on the full sky (except in the galactic plane)
by the Planck collaboration (Planck Collaboration et al. 2014b) and on smaller
patches, but with higher resolution, by ground-based experiments.

Both temperature and polarization are affected by lensing. In polarization,
lensing of E-modes produce B-mode patterns that dominate the signal over potential
primordial B-modes at multipoles higher than ` & 100 (see the right plot in figure 2.6).
While we shall see how the lensing signal is estimated with temperature anisotropies,
the formalism is quite similar for polarization.

2.3.2.2 Estimation of the lensing potential

Gravitational lensing of the CMB induces a departure of temperature from a purely
gaussian statistics, such that temperature contrast multipole coefficients a`m become
correlated. Decomposing the temperature in spherical harmonics,

T (n̂) =
∞∑
`=0

∑̀
m=−`

T`mY`m(n̂), (2.49)

the covariance of temperature spherical harmonic coefficient, where the average is
over CMB realizations for a fixed lensing field, is (Hanson et al. 2011; Okamoto

and Hu 2003; Planck Collaboration et al. 2014b)

〈
T`mT`′m′

〉
= CTT` δ``′δmm′︸ ︷︷ ︸

Gaussian part

+
∑
LM

(−1)M
(
` `′ L

m m′ M

)
W φ

``
′
L
φLM︸ ︷︷ ︸

lensing distortion

, (2.50)

where the term in parenthesis is the Wigner-3j symbol and W φ

``
′
L
is a weight function

that involves linear combinations of the lensed CMB temperature power spectrum
multipoles. Here, we assume that the lensing field is gaussian distributed as well,
such that lensed temperature spherical harmonics coefficients are gaussian too. An
estimator of the lensing potential spherical harmonic coefficients is given by

φ̂LM = AL
∑
`1m1

∑
`2m2

(−1)M
(
`1 `2 L

m1 m2 −M

)
g`1`2(L)T`1m1

T`2m2
, (2.51)

where AL is a normalization and g`1`2(L) are weights. They are determined by

imposing that the estimator is unbiased, i.e.
〈
φ̂LM

〉
= φLM and by minimizing the

62



2.3. GRAVITATIONAL LENSING

0 2 4 6 8 10

Redshift z

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

W
κ

C
M

B
(z

)

CMB lensing kernel

Figure 2.16 – Kernel function of CMB lensing.

variance of the estimator with respect to the weights g`1`2(L) (see Okamoto and
Hu 2003, for the detailed calculations).

2.3.2.3 CMB lensing power spectrum

CMB photons are deflected by all matter between the last-scattering surface and the
observer. Therefore, the convergence of CMB photons is simply

κCMB(θ̂) = κ(θ̂, χ∗) (2.52)

where χ∗ = χ(z∗ ≈ 1 090) is the comoving distance to the last scattering surface. For
flat spatial sections, we can write

κCMB(θ̂) =

∫ z∗

0
W κCMB(z)δ(χ(z)θ̂, z) (2.53)

where

W κCMB(z) =
3

2

Ω0
mH

2
0

c

(1 + z)

H(z)
χ(z)

(
1− χ(z)

χ(z∗)

)
. (2.54)

This broad kernel peaks at z ∼ 2 (see figure 2.16).

The power spectrum of its anisotropies, shown in figure 2.17, has rapidly gained
interest as a complementary source of information for cosmological constraints, since
it is very sensitive to the matter density parameter Ωm and the amplitude of the
matter power spectrum As or σ8. At very large multipoles, the Born approximation
fails and the lensing power spectrum is affected by the non-linearities of the matter
density field (Calabrese et al. 2015; Fabbian et al. 2017). Ray tracing through
N -body simulations can be used to improve predictions at small scale or for strong
lenses (Hilbert et al. 2009).
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Figure 2.17 – Power spectrum of the CMB lensing potential measured by contemporary
experiments, from temperature (T) and/or polarization (P). Figure from https:
//lambda.gsfc.nasa.gov/.

sourceκ>0, ɣ=0 κ=0, ɣ≠0

E<0, B=0 E=0, B>0E=0, B<0E>0, B=0

Figure 2.18 – Decomposition of polarization or cosmic shear into E- and B-modes.

2.3.3 Cosmic shear

In this section, we shall briefly review weak gravitational lensing of galaxy images.
Though not used in the work presented in this thesis, this probe is gaining momentum
as a way to map mass in the Universe and studying dark energy. Ongoing lensing
surveys, such as DES (Dark Energy Survey, Dark Energy Survey Collaboration

et al. 2016), KiDS (Kilo-Degree Survey, Jong et al. 2013) and CFHT (Canada-France-
Hawaii Telescope, Boulade et al. 2002), are delivering very encouraging results
for the next generation of very large surveys such as LSST(Large Synoptic Survey
Telescope, LSST Science Collaborations and LSST Project et al. 2009),
Euclid (Refregier et al. 2010) and WFIRST (Wide Field Infrared Survey, Spergel

et al. 2013). In particular, galaxy weak lensing is successfully being used in ongoing
joint analyses, as we shall see in chapter 4.

Imagine the circle in figure 2.14 is the contour of a galaxy9. Lensing by foreground
matter, i.e. between the galaxy and us, implies a distorsion and a magnification of its

9Note that this very notion is absolutely non-trivial: a galaxy is an extended object with a
profile, the limits of which cannot be unambiguously and universally defined, i.e. an arbitrary (but
motivated) choice has to be made.
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Figure 2.19 – The sheared image of a resolved galaxy is first blurred by the atmosphere
and then pixelized by the detector. Faint galaxies may be difficult to separate from
the detector noise, which includes photon noise, but also other, more complicated,
sources of noise. Figure from Bridle et al. 2009.

apparent shape and size, due to, respectively, shear and convergence of the integrated
(foreground) matter density field. Galaxies are not perfect spheres, but are more or
less elliptical, making it possible to define an orientation for each galaxy (that of the
major axis, for instance). On average, is a given patch of the sky, there should be no
preferred direction; however, coherent lensing by foreground matter can result in a
locally favoured orientation, producing patterns similar to that of CMB polarization
(since shear is a spin-2 field, see figure 2.18). In particular, positive (respectively
negative) E-modes surround overdensities (respectively underdensities), while B-
modes are not produced by gravitational lensing and may therefore be measured to
test for systematics.

Once the sky has been imaged in multiple bands, the process schematically goes
as follows (Hoekstra and Jain 2008):

1. A catalog of sufficiently bright galaxies and stars is built. The fluxes of galaxies
in different bands is used to infer photometric redshifts, potentially using a
machine learning-based algorithm calibrated on external spectroscopic data.

2. Stars are used to measure the anisotropic, time- and color-dependent point
spread function (PSF) of the telescope and the atmosphere.

3. Shapes or ellipticities of galaxies are measured and somehow deconvolved from
the PSF (see figure 2.19).

65



CHAPTER 2. COSMOLOGICAL PROBES

4. Local averages are used to produce tomographic shear maps. Their power
spectrum can be measured and compared to theoretical expectations.

While apparently simple, each of these steps requires dealing with various kinds of
systematic effects that can propagate in subsequent steps, down to the estimation of
cosmological parameter.

2.4 Comparison of cosmological probes

The leitmotiv of this thesis is that advances in cosmology can be made with combina-
tions of various cosmological probes, taking advantage of their different dependences
on the matter density field. Therefore, it seems useful, at this point, to sketch a com-
parison of the probes mentioned in this chapter, in terms of redshift and scale ranges,
nature and location of what is observed, and constraining power on cosmological
models.

Let us briefly mention two other probes of anisotropies in the Universe, as they
are of interest for cross-correlation studies.

The cosmic infrared background The CIB is a relic radiation composed of the
combined thermal emission of dust within early, star-forming galaxies at redshift
z ∼ 1−2 (Planck Collaboration et al. 2014f). It is visible at frequencies of
order 1 THz (see the bump in figure 4.6), superimposed over the high frequency
tail of the CMB, but separating it from other components is a challenging
task. The redshift dependence of the CIB contain valuable information about
the history of star formation, while its anisotropies can inform us on galaxy
formation.

21 cm intensity mapping In the near future, arrays of radio telescopes will map the
intensity of the redshifted 21 cm emission line of neutral atomic hydrogen (Hi)
over a large volume. Hi clouds harboured by galaxies are the progenitors for
star forming regions. Only the brightest galaxies will be individually detected,
however, the total emission of hundreds of clouds can be mapped over the
sky within thin redshift bins, a technique called intensity mapping. This
technique can be applied up to very high redshifts (up to z ∼ 200, according to
Furlanetto et al. 2006) and is therefore expected to provide new insight on
epoch of reionization.

In table 2.1, we enumerate some key comparable characteristics for each of the
aforementioned cosmological probes. Of course, such an exercise requires some
approximations, but the goal is to try and demonstrate that these observables offer
of variety of filters to look at the Universe, and to capture their main differences and
complementarities.
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CHAPTER 3

Experiments: Planck and
SDSS-III/BOSS
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3.1 The Planck satellite

3.1.1 Science goals

The Planck mission’s1 objectives include (Planck Collaboration 2006):
1This section is based on publications of the Planck Collaboration, as well as the official ESA

website at http://sci.esa.int/planck/ and web-based explanatory supplements at https://wiki.
cosmos.esa.int/planckpla2015. All images shown here come from one of these websites, unless
stated otherwise.
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1. Mapping anisotropies in the CMB temperature down to the cosmic variance
limit for scales greater than 10 arcminutes.

2. Testing inflation models via a precise measurement of the spectral index, ns, of
the primordial power spectrum and potential primordial B-modes in anisotropies
of the CMB polarization.

3. Looking for evidence of an early phase transition, that could produce topological
defects such as cosmic strings.

4. Measuring the TT , TE and EE power spectra to greatly improved precision
to derive constraints on cosmological, astrophysical and physical parameters.
In particular, σ8 and Ωm constraints shall be compared to those derived from
galaxy photometric and spectroscopic surveys.

5. Cataloguing thousands of clusters detected by their tSZ effect and comparing
the signals to X-ray and weak lensing cluster observations.

3.1.2 Satellite and instruments

3.1.2.1 Spacecraft

The spacecraft is 4.2m high and 4.2m large and weighs about 2 000 kg. It is made
up of two major modules (Tauber et al. 2010b):

The service module comprises the power generator (solar panels), orbit and position
controls, the on-board computer (to store and manage raw data, receive and
execute commands) and the radio antenna for communications with the ground
station.

The payload module comprises the telescope, the focal plane with the two instru-
ments (detailed below) and the cooling and cryogenic systems.

3.1.2.2 Instruments

3.1.2.2.1 The telescope

The telescope (Tauber et al. 2010a) is an offset Gregorian combination with
a parabolic, 1.5m primary and an ellipsoidal, 1m secondary reflector. The central
line-of-sight makes an angle of 85° with the spacecraft’s rotational axis. A baffle
around the mirrors protects the optical system from ghost lights.

3.1.2.2.2 The cooling unit

The cryogenic architecture of Planck is defined by the different temperature
needs of the different parts of the spacecraft. The service module contains the warm
electronics, that work at 300K, and is heated by the Sun. However, the elements
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Primary

Baffle

Focal plane

Service 
module

Solar panels

V-grooves

Sorption 
cooler

Filters Cooling systemHorns

Figure 3.1 – 3D rendering of the Planck satellite (left), focal plane (top right) and
HFI instrument (bottom right).

of the payload module, and in particular the detectors, require lower temperatures.
Three conical “V-grooves”, highly coupled to the cold external environment, are placed
between the two modules and isolate them thermally and radiatively, bringing the
payload module down to a temperature of about 40K.

But the coldest part of the Planck satellite are the sensors which are located
at the focal plane and operate at about 100mK for HFI and 20K for LFI (the two
instruments, presented in the next section). This is necessary to look for 10−6-level
anisotropies in a 2.72K background with a detector noise (detailed in section 3.1.3.2)
comparable to the photon shot noise. To reach this temperature, several active cooling
units are needed: (i) six compressors (the “sorption cooler”) perform Joule-Thomson
expansion of liquid hydrogen at 20K, (ii) a mechanical pump performs Joule-Thomson
expansion of liquid helium at 4K, and (iii) an open 3He/4He dilution refrigerator
decreases temperature of HFI’s bolometers down to 100mK.

3.1.2.2.3 Detectors

Reflectors guide and focus light towards the focal plane where the detectors are
placed. Both instruments (LFI and HFI, see below) consist in a set of detectors
composed of aluminium, gold-plated and corrugated horns that shape and focus light
towards the sensors per se. HFI detectors are made of three back-to-back such horns
while LFI has only one horn per detector. Filters that select spectral bandwidths
are placed after the first horn and the diameters of the horns are adjusted to the
wavelengths of the filters so as to physically select electromagnetic modes. The exact
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Figure 3.2 – Spider Web Bolometer (left) at 143GHz and Polarisation Sensitive
Bolometer (right) at 217GHz. The semi-conducting thermometers are visible at the
center of SWBs and at the top of the PSBs.

shape of the horns is optimized numerically by electromagnetic simulations.

LFI The Low Frequency Instrument (Bersanelli et al. 2010) is made of 22 ra-
diometers that observe the CMB temperature and polarization at 30, 44 and
70GHz.

HFI The High Frequency Instrument (Lamarre et al. 2010) is made of 32 Polarisation
Sensitive Bolometers (PSBs) and 20 Spider Web Bolometers (SWBs) that
observe the CMB at 100, 143, 217, 353, 545 and 857GHz (pictures of the
bolometers are shown in figure 3.2).

HFI horns and bolometers are placed at the center of the focal plane, surrounded by
LFI detectors, as can be see on figures 3.1 and 3.3.

Bolometers are sensors that measure the power P of incident electromagnetic radi-
ation. They consist of an absorber of heat capacity C, connected to a thermal reservoir
with a thermal conductance G, and thermally coupled to a resistive thermometer.
The temperature of the absorber and the thermometer vary as ∆T = P/G when
radiation is absorbed. This shifts the resistivity of the thermometer, measured by the
modification of the electric current that goes through it. The time constant τ ≡ C/G

gives the sensitivity of the detector. In Planck, the absorber is a thin metallic grid (to
decrease absorption of cosmic rays) that is designed to match the vacuum impedance
and maximize absorption. The PSBs of HFI consist of two perpendicular metallic
grids that absorb orthogonal components of the electromagnetic radiation while SWB
have a spider-web grid that absorbs all directions of polarization.

Planck bolometers receive incoming radiation that correspond to spectral windows
of the CMB black-body radiation. Its average spectral radiance, i.e. the power per
unit solid angle and per unit of area normal to the propagation, denoted Bν(T ),
is given by equation (2.1). The incident power on the bolometers is obtained by
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44 GHz
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Figure 3.3 – Arrangement of LFI and HFI detectors on the focal plane. Black crosses
indicate the orientation of polarization-sensitive detectors. The arrow indicates the
direction of scanning as seen from behind the detectors.

successively integrating this spectral radiance over the lobe of the detector (solid
angle), area of the primary mirror and spectral bandwidth of the filters. Local thermal
fluctuations induce a shift in the spectral radiance, given, to first order, by

∆Bν ≈
∂Bν(T )

∂T
∆T. (3.1)

A shift in temperature thus results in a variation of the incident power absorbed by
the bolometers, which can be measured. Converting this power (in watts) into an
absolute temperature (in kelvins) requires proper calibration (see section 3.1.3.3).

3.1.2.3 Launch and orbit

Planck was launched on an Ariane 5 rocket, together with the Herschel satellite
(Pilbratt et al. 2010), on 14 May 2009, at 13:12:02 UTC. It was placed at the
Lagrange point (L2) of the Sun-Earth system, about 1.5 million kilometers from
Earth. The Planck satellite revolved around its axis, which is always directed towards
the Sun (with a small cycloid precession), once per minute (this stabilizes its motion
by gyroscopic effect), scanning the sky in rings that cross at the ecliptic poles. Within
two-and-a-half years of operation, it performed five full-sky scans.

3.1.3 Data processing

3.1.3.1 TOI processing

The signal coming out of the detectors is first highly amplified by a factor 103, before
being sampled at high frequency (7 200Hz) and digitized. This produces time-ordered
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Figure 3.4 – Planck spun around its Sun-pointing axis, such that it observes rings that
slowly shift. Within six months, the full sky is covered. Also, an artistic rendering of
an Ariane 5 rocket.

information (TOI) data that is transferred along with position data (from the star
tracker) to a ground station where data processing begins. We summarize the different
steps here:

1. Demodulation of the bolometer power supply frequency;
2. Removal of glitches produced by cosmic rays and flagging of polluted data

segments;
3. Correction of the non-linear gain of detectors;
4. Decorrelation of slow thermal variations of the focal plane;
5. Removal of spectral lines created by the 4K cooler;
6. Deconvolution of the temporal response of bolometers;
7. Bad sample flagging (unstable pointing, cosmic ray glitches, Solar system

objects).

3.1.3.2 Noise

Experimental noise has several origins:
• Photon shot noise, due to the intrinsic randomness in the number of photons

captured by the detector (modelled by a Poisson law);
• Phonon noise, due to the thermal agitation of the detectors’ components;
• Johnson noise, due to the thermal agitation of charge carriers in the electronics;
• Electronic noise, due to fluctuations in the voltage applied to the thermometers;
• Residuals of the 4K cooler lines;
• Residuals of cosmic ray deglitching;
• Residuals of slow temperature variations of the 100mK bath.

While photon and phonon noises are white, the last one has a frequency dependence
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that goes as 1/f . For this reason, the current applied to bolometers is alternative, in
order to shift the signal to higher frequencies. 1/f noise can then be filtered out by a
low-pass filter.

3.1.3.3 Optical beam and calibration

The part of the sky observed by a single detector at a given time is characterized by
a window function, or beam, that depends on the optical system (reflectors) and the
transfer function of the detector. Its shape is estimated by observing bright, known
sources such as planets: observations of Mars are used to estimate single beams,
and observations of Jupiter are used to reconstruct the focal plane. Non-optical
contributions are evaluated and deconvolved iteratively from the TOI. Single beams
are known to be asymmetric and display non-gaussian tails (side lobes).

Absolute calibration of the TOI is performed by adjusting the data to the known
dipole due to the motion of the Sun with respect to the rest frame of the CMB and
the time-dependent dipole due to the peculiar motion of the satellite around the Sun.
The comparison of the two enables correction of slow variations of the detectors’ gains.
The two highest frequencies, where CMB is subdominant, use flux measurements of
Uranus and Neptune with models of their atmospheres.

3.1.3.4 Map making and component separation

TOI data is then projected to build frequency maps. First, pixel rings are constructed
from TOI and pointing information. Then, these rings are combined, which requires
adjusting an offset between adjacent rings to correct for the slow temperature drift
due to 1/f noise, a process called destriping. Nine frequency maps in temperature
and polarization, shown in figure 3.5, are built independently.

The next step of the analysis is a crucial one. The CMB radiation must be
separated from Galactic and extragalactic, astrophysical foreground emissions. These
include, for Galactic components, thermal and spinning dust emissions, synchrotron
emission, free-free emission and carbon monoxide line emission (which pollutes the
100GHz map). First, noise is estimated in frequency maps by a series of jackknives,
separating data in half-rings (for a fixed pointing, each ring is observed twice), in
surveys (6 months full-sky observation) and finally between detectors. Then, masks
are built to exclude bright point sources and the Galactic disk.

Then, two routes are possible. They consist of (i) producing cleaned maps of the
CMB and measuring their power spectra, or (ii) performing the separation at the
power-spectrum level.

Several algorithms were developed for the first approach, all of which exploit the
fact that different components have different electromagnetic spectra (see figure 3.7).

NILC The Needlet Internal Linear Combination algorithm performs a minimum-
variance linear combination of frequency maps in needlet space (highly localized
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Figure 3.5 – Frequency maps from Planck 2015 data in Galactic coordinates (Planck
Collaboration et al. 2016b) with temperature on the left and polarization (Stokes
parameter I) on the right. Galactic dust emission dominates the signal in the two
highest frequencies maps.

Figure 3.6 – Zoom on the dust emission near the Galactic plane. Several structures
are visible: (i) the Galactic plane contains numerous stars, (ii) the warm, filamentary,
rho-Ophiuchi complex, a star-forming region, (iii) the Aquila Rift and (iv) a dense
and cold molecular cloud. These complex structures must be properly removed from
the CMB prior to any cosmological interpretation of the observations.
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Figure 3.7 – Spectral dependence of anisotropies in the CMB compared to that of the
main astrophysical foregrounds. Figure from Planck Collaboration et al. 2016c.

radial polynomials on the sphere) to project out the CMB component, knowing
its spectral dependence.

SEVEM The Spectral Estimation Via Expectation Maximization algorithm performs
differences of neighbor frequency maps and removes a linear combination of
those to individual frequency maps. In practice, the output CMB map uses
only the 143 and 217GHz frequencies.

SMICA The Spectral Matching Independent Component Analysis algorithm performs
a linear combination of frequency maps in harmonics space, using multipole-
dependent weights to separate all components (supposing they are uncorrelated).

Commander-Ruler Commander is a Bayesian algorithm that operates in pixel space
at low resolution (Nside = 256) and performs Gibbs sampling of a parametric
foreground models to evaluate the CMB power spectrum and component maps.
Then Ruler can be used to evaluate the amplitude of the CMB component
with least-squares methods.

The second approach, used to build likelihoods and derive cosmological constraints,
removes contributions to the power spectrum from astrophysical foregrounds in order
to fully exploit the small-scale signal and control the propagation of errors (Planck

Collaboration et al. 2016d).

Low ` The low-` (` < 30) approach is based on cleaned CMB maps from Commander

described in Planck Collaboration et al. 2016c. It assumes that the pixel-
space signal is Gaussian distributed, with a correlation function determined
from the CMB power spectrum CTT,TE,EE` as in equation (2.3), to which
astrophysical foregrounds and instrumental noise has been added.
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Figure 3.8 – Foreground component maps. The left column shows Galactic and
extragalactic point sources, the central column shows the Galactic magnetic field
(which polarizes the dust emission) and lensing map, the right column shows diffuse
Galactic emissions.

High ` The high-` likelihood code Plik proceeds uses minimum-variance combina-
tions of the 100, 143 and 217GHz maps (auto- and cross-spectra) to estimate the
TT , TE, EE power spectra, including all non-CMB contributions. The mixing
induced by the mask is taken into account in mixing matrices (as in chapter 6)
and the effective beam window functions are measured beforehand. Contribu-
tions from astrophysical foregrounds are included following a forward-modelling
approach, assuming their non-gaussianity (see the structures in figure 3.6) isn’t
an issue at large multipoles and away from the Galactic plane. Templates
for Galactic dust, CIB, tSZ and kSZ contributions are measured from the full
range of frequency maps. In particular, the dust template is measured from
the 545 and 353GHz dust-dominated maps (for temperature and polarization
respectively). These C` templates are multiplied by amplitudes, one for each
combination of the frequency maps, to be marginalized over. Instrumental
uncertainties are also considered. Overall photometric calibration errors are
mitigated by an overall amplitude (found to be extremely close to 1); beam
uncertainties are taken into account in the mixing and covariance matrices;
instrumental noise is estimated from the pixel-space empirical covariance, modu-
lated by small debiasing corrections (related to pixelization and masks). Finally,
the covariance matrix of the data vector is obtained from analytical approxima-
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tions, quite similar to that used in chapter 6 and detailed in appendix B.1.2,
though fully analytical. A battery of (null) tests were performed to ensure the
robustness of the derived cosmological constraints.

3.1.4 Main science results

Planck has produced a wealth of scientific results, ranging from Galactic dust and
magnetic field to constraints on the physics of the early Universe. Here, we shall
focus on some of the most remarkable cosmology-related results.

CMB power spectrum The Planck collaboration measured the power spectra (TT ,
shown in figure 2.3, but also TE and EE) of the anisotropies of the CMB up
to ` ≤ 2 500, down to the cosmic variance limit for ` . 1 600.

Cosmological parameters Cosmological constraints on the parameters of the ΛCDM
model are obtained by means of MCMC methods (Planck Collaboration

et al. 2016e), marginalizing over nuisance parameters related to detectors and
foregrounds. When complemented by BAO data, supernovæ data, CMB lensing
data and very high ` CMB data from ground-based experiments (ACT and
SPT), they yield the best constraints to date. Aside from constraints on the
base ΛCDM model, constraints where obtained on extensions that include
massive neutrinos (and other neutrino-related extensions), spatial curvature,
running primordial spectral index, quintessence2 and other dark energy models,
non-standard primordial nucleosynthesis and dark matter annihilation models.

Inflation Planck constrained models of inflation by tightening constraints on As and
ns, and putting an upper bound on the tensor-to-scalar ratio r.

CMB lensing Planck reconstructed the CMB lensing potential on the whole sky
(shown in figure 2.15), measured its amplitude and angular power spectrum,
and used it as a complementary source of information to derive cosmological
constraints.

SZ clusters Planck made a catalog of clusters detected by their thermal Sunyaev-
Zel’dovich effect, a full-sky map of the Compton-y parameter (and measured
its power spectrum) and showed evidence of the kinetic SZ effect.

Dust B-modes Thermal emission from dust within the Galaxy is polarized because
asymmetric dust grains align with the Galactic magnetic field. This astrophysical
foreground is larger than CMB B-modes at large scales where the primordial
signal from tensor modes is expected.

2Quitessence is a model of dark energy with a special parametrization of a varying equation of
state.
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Figure 3.9 – Constraints on ΩΛ and Ωm for the curved ΛCDM model. It compares
the constraints derived from Planck CMB temperature alone with those derived
when adding CMB polarization, CMB lensing and BAO data. Figure from Planck
Collaboration et al. 2016e.

3.2 SDSS-III/BOSS

3.2.1 The Sloan Digital Sky Survey

The Sloan Digitial Sky Survey3 (SDSS, Gunn and Knapp 1993) is a major astro-
nomical survey operating a dedicated telescope at the Apache Point Observatory in
New Mexico, United States, since 1998. It consists of both an imaging survey, that
ended in 2009 and mapped over 14 000 deg2, and several spectroscopic surveys, that
targeted different types of celestial objects, from Milky Way stars to the furthest
quasars, with different science goals.

From 2000 to 2008, SDSS-I/II carried out the multi-band imaging of half the
northern hemisphere, mapping over a million galaxies. It was completed by a
spectroscopic survey of luminous red galaxies (hereafter, LRGs) that enabled the
first measurement of the BAO scale (Eisenstein et al. 2005), a supernova survey
in the so-called Stripe 82 and the Sloan Extension for Galactic Understanding and
Exploration (SEGUE), which obtained the spectra of more than a quarter million
Milky Way stars to map their motion and composition (including their metallicity).

Work presented in this thesis used data from the third generation (SDSS-III
hereafter, Eisenstein et al. 2011), comprising the surveys presented below.

APOGEE The Apache Point Observatory Galactic Evolution Experiment obtained
high-resolution (R ≡ λ/∆λ ∼ 22 500), high signal-to-noise ratio (S/N > 100)
infrared spectra of more than 100 000 red giant stars in all parts of the Milky

3http://www.sdss.org/
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Figure 3.10 – Map in orthographic view of dust contamination in the BB power
spectrum from Planck Collaboration et al. 2016k. More precisely, in each patch,
the dust BB power spectrum at ` = 80 is shown, expressed in units of tensor-to-scalar
ratio that would produce the same power. Planck gave an improved estimation of this
contamination, demonstrating that dust foregrounds contaminate even high Galactic
latitude regions.

Way (bulge, bar, disk and halo), measuring chemical abundances and velocities
throughout our galaxy.

BOSS The Baryon Oscillation Spectroscopic Survey (Dawson et al. 2013) used a
1 000-fiber spectrograph to precisely measure the redshifts of about 1.5 mil-
lion luminous red galaxies up to z < 0.7, and 200 000 quasars in the range
2.2 < z < 4, obtaining, in addition, the Lyman-α forest in the spectra of quasars.
Its main science goal is a percent-level estimation of the BAO scale (via DA(z)

and H(z)) within the redshift ranges covered by galaxies and Lyman-α forests.

MARVELS The Multi-Object APO Radial Velocity Exoplanet Large-area Survey
monitored the radial velocities of 11 000 nearby stars with a 60-fiber, interfero-
metric spectrograph, over a period of 18 months, in the search for Jupiter-like
exoplanets.

SEGUE-2 In the continuity of the SEGUE survey of SDSS-I/II, SEGUE-2 measured
the optical spectra of about 118 000 stars in order to study the kinematic and
chemical structure of the Galactic halo and disk.

The fourth generation (SDSS-IV, Blanton et al. 2017), which we shall not
describe here, is currently taking data.

In the next sections, we will describe the instruments, operations and science
results related to the BOSS survey.
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Figure 3.11 – The SDSS telescope at Apache Point Observatory, New Mexico,
United States. Photo by Reidar Hahn, Fermilab, taken from Blaustein 0015
on symmetrymagazine.org.

3.2.2 The instruments

3.2.2.1 The telescope

The SDSS telescope (Gunn et al. 2006) has a Ritchey-Chrétien design4 with aperture
f/5, comprising a 2.5 m primary mirror, a 1.08 m secondary mirror, a Gascoigne
astigmatism corrector and two interchangeable aspherical color correctors (one for
imaging, the other for spectroscopy). The focal plane has a 3° diameter with small
geometric and color distorsions, where either the imaging CCD camera (during
SDSS-I/II) or a fiber-fed spectrographs can be placed.

3.2.2.2 The camera

The imaging camera (Gunn et al. 1998) consists of 30 CCDs of 2 048× 2 048 pixels
each, arranged in five rows of six, one for each photometric band covering the optical
spectrum (and ordered as r, i, u, z, and g). The camera operates in drift mode: the
telescope moves along great circles and the CCDs are slowly read, such that images
of celestial objects move along columns of the CCD sensors at the same pace these
are read (as illustrated in figure 3.12). 24 smaller CCDs are placed around the main
CCDs for astrometry.

3.2.2.3 The spectrographs

The spectrograph used during SDSS-I/II underwent a major update for the BOSS
survey. Optical fibers of diameter 2′′ are mounted on interchangeable aluminium
plates, pointing towards stars, galaxies, quasars or empty spots (to measure the sky

4A modified version of the Cassegrain telescope, with hyperbolic primary and secondary mirrors
to remove off-axis optical (coma) aberration, important for an imaging survey.
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Figure 3.12 – SDSS focal plane array, from Taylor et al. 2013.

background) selected after imaging observations. The two identical BOSS spectro-
graphs (Smee et al. 2013) placed under the telescope can collect, diffract and analyze
light from 1 000 fibers simultaneously. To do so, fibers are stacked and a dichroic
splits light at about 6 000Å, which is then guided towards optimized CCD sensors
for the blue and red ends of the spectrum. One axis of the images on the CCDs
corresponds to different wavelengths and the other axis corresponds to spectra from
different sources. The spectroscopic resolution varies within the range 1560-2270 in
the blue channel, 1850-2650 in the red channel.

3.2.3 Target selection

A photometric survey is necessary, prior to the spectroscopic survey, to image the sky
in the five photometric bands and determine targets. A catalog of objects detected by
the imaging survey, that contains their angular positions and basic properties derived
from their band fluxes, is used to select subsamples that correspond to various kinds
of objects (red galaxies, quasars or stars).

3.2.3.1 Imaging

The imaging survey covered about 11 600 deg2 in the northern Galactic hemisphere and
3 100 deg2 in the southern hemisphere. The final image covers a total of 14 055 deg2

of the sky (about a third) in the five photometric bands (ugriz). Half a billion
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Figure 3.13 – Density plots of LOWZ (left) and CMASS (right) galaxies in the
(g − r, r − i) color plane (density increases linearly from blue to red). Cuts in c⊥ and
d⊥ are indicated by the red lines. The passive evolution model, on which the cuts
are based, is represented by the solid black line. The knee is due to the transition of
the 4 000Å from g- to r-band. Figures from Reid et al. 2016.

unique objects were detected and classified from their estimated fluxes with Galactic
extinction-corrected magnitude up to r = 22.5. Note that there isn’t such a thing as
an unambiguous, universal flux measurement for all objects. Several estimates are
thus computed: the total PSF flux, adapted to point-like objects, the total fiber flux,
and model-fitted fluxes (with de Vaucouleurs, exponential or composite models).

3.2.3.2 Galaxy target selection

Galaxy target selection (explained in detail in Reid et al. 2016) is based on the color
combinations

c‖ = 0.7(g − r) + 1.2(r − i− 0.18), (3.2)

c⊥ = (r − i)− (g − r)/4− 0.18, (3.3)

d⊥ = (r − i)− (g − r)/8. (3.4)

These combinations are designed to lie parallel or perpendicular to the color locus
of a passively evolving population of galaxies. The 4 000Å break in the spectra of
galaxies transitions from the g-band to the r-band at redshift z ∼ 0.4. Two catalogs
are thus defined: LOWZ, at redshift z . 0.4, based on cuts in c‖ and c⊥, and CMASS,
at redshift z & 0.4, based on cuts in c‖ and d⊥.

LOWZ LOWZ extends the SDSS-I/II catalog of so-called luminous red galaxies
(hereafter LRGs). It selects low-redshift galaxies around the color locus by
imposing that

|c⊥| < 0.2, (3.5)

and keeps the reddest and brightest galaxies by imposing a redshift-dependent
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magnitude cut given by
r < 13.5 + c‖/0.3. (3.6)

This last cut aims at producing a constant number density over the redshift
range [0.2, 0.4], making it a volume-limited sample. Additionally, a luminosity
cut (to avoid blue galaxies passing the threshold) and a star-separation cut are
applied

16 < r < 19.6, (3.7)

rpsf − r > 0.3, (3.8)

where rpsf is the total PSF flux, while other magnitudes mentioned here are from
the composite model. Intuitively, this difference in r-magnitudes measures the
extendedness of objects, distinguishing stars from galaxies. It was shown that
these galaxies lie in massive haloes with mean halo mass 5.2× 1013 h−1M�.

CMASS The CMASS sample targets galaxies of constant stellar mass over the redshift
range [0.4, 0.7], making it a mass-limited sample. The main color cuts are

d⊥ > 0.55 (3.9)

i < 19.86 + 1.6(d⊥ − 0.8). (3.10)

The first one effectively discards low-redshift galaxies while the second one is
a redshift-dependent cut that imposes an approximate constant stellar mass.
Further cuts,

17.5 < i < 19.9, (3.11)

ifiber < 21.5, (3.12)

are imposed to insure a high redshift success rate even in the faint end, and
star-seperation cuts similar to that imposed on LOWZ are applied on the i- and
z-bands. CMASS galaxies are massive, with masses over 1011M�, but occupy
haloes slightly less massive than LOWZ galaxies as a consequence of their higher
redshifts. Maraston et al. 2013 used spectral energy distribution templates
to estimate stellar masses of CMASS galaxies and show that the distribution of
stellar masses is narrow and centered around log M/M� ∼ 11.3.

3.2.3.3 Quasar target selection

Target selection of quasars (Ross et al. 2012) is complicated by several reasons.
The first is their similarity to stars in color space (they are said to have close loci).
The second is that quasars targets were derived from external surveys. The XDQSO

algorithm (Bovy et al. 2011), that was preferred in the data release of SDSS-III, is a
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Figure 3.14 – Completeness of LOWZ and CMASS galaxies in the twelfth data release
of SDSS-III/BOSS. The projection of observation plates over the sky defines non-
overlapping sectors in which in the completeness is computed. Top plots represent
the northern Galactic hemisphere, bottom plots the southern hemisphere. Figure
from Reid et al. 2016.

probabilistic approach that estimate the distributions of quasars and stars in color
space (with kernel density estimation technique), properly incorporating photometric
errors, to attribute to each SDSS point object the probability of it being a quasar.
Objects with a probability greater than 0.424 are flagged as quasars.

Another quasar-specific feature is that the selection need not be uniform for
Lyman-α studies. In particular, the key science goal that drives science requirements
is the measurement of the BAO scale in the Lyman-α forest. Its signal-to-noise ratio
scales linearly with the number of quasars, which requires a mean angular density
of quasars of about 15 deg−2, but not necessarily a uniform selection function. The
CORE subsample is defined by using single-epoch photometry from SDSS imaging
survey with a controlled, uniform selection function, and some magnitude cuts. This
sample can be used for quasar clustering measurements.

The quasar catalog of the twelfth data release is described in Pâris et al. 2017
and contains about 100 000 quasars in the CORE sample. After classification, about
half of targets are confirmed quasars. Their clustering properties and completeness
were explored in Eftekharzadeh et al. 2015.

3.2.4 Observing strategy

Once targets have been selected, one must decide of an optimized way to assign
to each of them an observation plate and fiber, a problem known as the tiling
strategy (Blanton et al. 2003). The goal is to observe as many targets as possible
(completeness) and to do so in a way that is as uniform as possible, in order not
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to bias clustering measurements, while also minimizing the number of required
plates (efficiency) and leaving the smallest possible unobserved area within the BOSS
footprint. The constraints are that (i) fibers cannot be closer than 62′′, and (ii) they
cannot be within 92′′ of the plate center (for mechanical reasons). A perfectly uniform
distribution of plates over the sky (i.e. a honeycomb mesh) is suboptimal, as was
shown in (Blanton et al. 2003). Completeness and efficiency were greatly improved
by small departures from uniformity and small overlaps between plates, as explained
in Blanton et al. 2003.

The positions on the focal plane of the targets at a given observation date are
computed, taking into account atmospheric differential refraction. Holes are drilled in
aluminium plates and fibers are positioned at a height that maximizes the throughput
at 5 400Å for galaxies and 4 000Å for quasars. On a given plate, about two hundreds
fibers target quasars, six hundreds galaxies, up to one hundred are used for ancillary
targets and the remainder, of order one hundred, for calibration and photometric
purposes (estimation of atmospheric extinction, seeing, airmass, etc).

After a flat-field calibration, the telescope is positioned and tracks the motion
of targets during 15 minutes exposures. A simplified version of the data processing
pipeline is run to assess whether science requirements were met; otherwise, a rerun is
scheduled.

3.2.5 Data reduction

Raw data is transferred to the Lawrence Berkeley National Laboratory, California,
United States. There, the automated pipeline, described in Bolton et al. 2012,
extracts single spectra from the spectrographs’ CCD images, performs noise estimation
and removal, classification (for remaining stars) and redshift estimation, and flags
problematic spectra (usually faint galaxies).

3.2.6 Main science results

There are over 200 publications from the SDSS-III Collaborations, 76 of which
are related to BOSS, and over 5 000 publications that used publicly released SDSS
data overall, making it a difficult exercise to exhaustively summarize science results.
However, important results in cosmology from BOSS alone include (some have already
been cited in section 2.2):

BAO Measurements of the BAO scale in the samples of galaxies and in the Lyman-α
forest (see figure 3.15), in real and in Fourier space, providing contraints of
order 2% or less on DA(z) and H(z) at z = 0.32, 0.57 and 2.34 for, respectively,
LOWZ, CMASS and the Lyman-α forest (see Alam et al. 2017, and references
therein).
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Figure 3.15 – Distance measurements from the BAO scale in galaxy and Lyman-α
forest clustering from SDSS-III/BOSS and earlier surveys. Figure from Alam et al.
2017.

RSD Measurements of the growth of structures from anisotropic redshift-space
clustering, constraining the product fσ8 (see figure 3.16).

Power spectrum Measurements of the full-shape galaxy power spectrum and corre-
lation function (see figure 3.17).

Higher-order statistics Measurements of the position-dependent power-spectrum
and of the bispectrum of galaxies in various configurations (Beutler et al.
2017; Gil-Marìn et al. 2015a,b).
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CHAPTER 4

Combination of cosmic probes:
cross-correlations and joint analyses
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In Metaphysics, Book viii, Aristotle wrote

πάντων γὰρ ὅσα πλείω μέρη ἔχει καὶ μὴ ἔστιν οἷον σωρὸς τὸ πᾶν.

which loosely translated is,
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The whole is greater than the sum of its parts.

Now that the reader is undoubtedly convinced, let us see how this applies to cosmology.
This chapter aims at introducing and motivating the idea of combining cosmological
probes, by which we mean the effort to extract information from the analysis of
statistical correlations between two or more cosmological observations. After a
statement of the incentives for this effort, we shall present the principal mathematical
tools to measure such correlations. Finally, we will do a review of the literature and
explore some of the many avenues leading to new science offered by the combination
of cosmological probes.

4.1 Motivations

4.1.1 A toy model

Let us begin with a toy model. Consider a gaussian-distributed, two-dimensional
vector, X = ( xy ) ∼ N (µ,Σ), with mean µ and covariance Σ, where the mean
depends on two parameters a and b, for instance as

µ =

(
µx

µy

)
=

(
a− b
a× b

)
. (4.1)

Then, let us denote the variance of the two components σ2
x and σ

2
y and their correlation

coefficient ρ, such that their covariance matrix is

Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
, (4.2)

with determinant |Σ| = σ2
xσ

2
y

(
1− ρ2

)
. Finally, consider a sample of n independent

realizations of X, denoted Xi = ( xiyi ). We can compute, thanks to Bayes’ theorem,
the likelihood of parameters a and b, given these observations and flat priors, as

L (a, b | Xi) ∝
n∏
i=1

1

2π
√
|Σ|

exp

(
−1

2
χ2
i

)
where χ2

i = (Xi − µ)ᵀΣ−1 (Xi − µ) .

(4.3)
Now, let us compare four cases:

1. We observe only the first component.

2. We observe only the second component.

3. We observe both components but consider them as independent.

4. We observe both components and consider their correlation.
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Figure 4.1 – Likelihood of parameters a and b of our toy model in the four cases
mentioned in the text, for a = 2.5, b = 2, σx = 6, σy = 5, ρ = 0.5 and n = 100. The 1,
2 and 3σ contours are overlaid. The joint analysis uses all of the information available,
including the correlation between observables. It yields the correct contraints, which
are not necessarily tighter. This depends on the exact dependence of the observables
on the parameters.

Single components are gaussian distributed as x ∼ N
(
µx, σ

2
x

)
(similarly for y).

In the third case, we chose ignore the fact that components are correlated, which
amounts to considering that ρ = 0 and simply multiplying the likelihoods of the single
components. The fourth case, closer to reality, uses the joint distribution of the two
components. As seen on figures 4.1 and 4.2, the joint likelihood yields significantly
tighter constraints on b in that case (see appendix A.1 of appendix A for a definition
n-σ contours).

Let us highlight two facts.
First, the joint likelihood uses more information because it takes correlations

between components into account. This can be given a mathematical meaning, using
the Shannon entropy of a probability distribution with density p, defined as

S = 〈− ln p〉 = −
∫
p(x) ln p(x) dx . (4.4)

The entropy of a multivariate gaussian is ln
√

2πe|Σ|, such that the difference of
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Figure 4.2 – Marginal likelihood of the parameters of our toy model for the same
parameters as in figure 4.1. The blue curve shows the joint likelihood while the
red curve corresponds to the hypothesis that components are independent. The
blue-shaded area gives the 1σ bounds for the joint likelihood, and the maximum
likelihood estimator is highlighted by the vertical line.
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Figure 4.3 – 1σ contraints on the parameters a and b, from the joint likelihood (in
blue) and the product likelihood (in red), as a function of the correlation coefficient ρ.
These contraints are averaged over 100 realizations containing n = 100 data points
each.

entropy between the correlated and independent distributions is

∆S = Sρ − Sρ=0 = ln

√
1− ρ2 ≤ 0. (4.5)

Therefore, the joint likelihood always has a smaller entropy than the product of
independent likelihoods (in the gaussian case).

Then, the joint analysis always yield the true contraints because they are based
on the correct likelihood, even though they may not be tighter. To see this, we repeat
draw samples from our toy model, but this time varying ρ, and measure the error bars
on a and b given by the joint likelihood and the product of independent likelihoods.
As can be seen on figure 4.3, ignoring the correlation coefficient is generally too
conservative. However, it may also be highly optimistic and lead to catastrophic
underestimation: here, when |ρ| → 1, the parameters are completely degenerate and
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Figure 4.4 – Fisher information for the parameters a and b as a function of the
correlation coefficient ρ.

the true error bars explode while those from the combined independent analyses
hardly vary. The reason is that in the later case, we are using the same information
twice, which is of course wrong.

The Fisher information(Zegers 2015) gives a bound on how well a parameter
can be determined1, but there is no universal rule regarding how it varies with ρ. It
depends on the exact relationship between the observables (or a summary statistics)
and the parameters. For our gaussian toy model, the Fisher information is given by

I =
dµ

dθ

ᵀ

Σ−1 dµ

dθ
, (4.6)

=
1

σ2
xσ

2
y

(
1− ρ2

)( b2σ2
x + σ2

y − 2bρσxσy abσ2
x − σ

2
y + (b− a)ρσxσy

abσ2
x − σ

2
y + (b− a)ρσxσy a2σ2

x + σ2
y + 2aρσxσy

)
(4.7)

where θ = ( ab ). I(a) reaches extrema when ρ = σy
/
bσx and ρ = bσx

/
σy . Therefore,

there always exist an extremum in the interval [−1, 1], as can be seen on figure 4.4.

4.1.2 Why and how to combine cosmological probes?

In the field of cosmology, various observables probe the components of the matter
density field – stellar light, diffuse hydrogen, dark matter haloes – at different time
periods and scales (see figure 4.5). Instead of only measuring the auto-correlation
function of each probe independently, one might also measure the cross-correlation

1The Cramér-Rao bound states that for any estimator θ̂ of a parameter θ,

Var
(
θ̂
)
≥ 1

I(θ)

where the Fisher information is defined as

I(θ) =

〈
∂

∂θ
ln p (x | θ)

〉
.

In other words, it provides a lower bound on the statistical error that can be achieved on a given
parameter. However, finding an estimator that saturates this bound may be difficult.
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Figure 4.5 – Various cosmological observations probe the matter power spectrum at
different scales and must be combined to reach the best constraints on cosmological
models (from Tegmark and Zaldarriaga 2002).

functions, which contain complementary information. They can be particularly
interesting for several reasons.

1. The cross-correlation of two probes can spot yet unobserved physical phenomena
or highlight the spatial connection between components (see chapter 5).

2. Cross-correlation measurements can be included in a joint analysis of several
probes to obtain better2 constraints on cosmological parameters (see chapter 6).

3. Since different experiments are less prone to have the same systematic errors,
they offer new avenues of cross-calibration and null tests (Jain et al. 2015).

The first point will be explored at length in section 4.3 where we will do a
review of cross-correlation studies. In chapter 5, we report the detection of a cross-
correlations between the Lyman-α forest of quasars and CMB lensing (see chapter 2
for an introduction to those probes), together with an original approach based on the
position-dependent power spectrum.

The second point was illustrated by the toy model in the previous section and will
be the subject of section 4.4, where we review the brief literature of this emerging
topic in cosmology. In chapter 6, we develop a methodology and numerical tools

2If confidence regions on parameters are not smaller, they are, at least, more correct.
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Figure 4.6 – Electromagnetic spectrum of the diffuse extragalactic background radia-
tion over more than 18 orders of magnitude in frequency. Figure inspired from one by
Andrew Jaffe at http://www.andrewjaffe.net/blog/2011/09/passion-for-lig.
html.

to perform the joint analysis of Planck CMB data and spectroscopic tracers of the
large-scale structure observed by SDSS-III/BOSS.

Now, let us comment on the last point. Imagine that an experiment measures a
signal S with a multiplicative bias b and has a noise N , such that the data vector
can be written D = bS +N . Let us consider two such experiments, denoted X and
Y . The noise of each experiment is supposed to have a null expectation value but
non-zero variance, and the noises are assumed to be uncorrelated amongst data sets.
Therefore,

〈DXDY 〉 = bXbY 〈SXSY 〉+ bX�����〈SXNY 〉 + bY�����〈SYNX〉 + �����〈NXNY 〉 . (4.8)

The three last terms are crossed out because noise terms vanish on average. Therefore
the cross-correlation of X and Y does not suffer from an additive bias. However, it
might have a multiplicative bias if the two observables are not correctly calibrated: the
cross-correlation signal can thus be used to detect such biases and improve calibration,
a technique that was suggested, in particular, to pin down multiplicative biases in
galaxy weak lensing (see Vallinotto 2012, and section 4.3).

Various experiments scan the Universe at different wavelengths (see figure 4.6),
spatial resolutions and luminosity depths, providing disparate but complementary
data sets. Therefore, data from multiple telescopes can be combined in many different
ways to enhance systematics control, and, as a consequence, to improve constraints
on cosmological parameters (Jain et al. 2015; Rhodes et al. 2015).
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CHAPTER 4. COMBINATION OF COSMIC PROBES

4.2 Measuring correlations

In order to measure the cross-correlations of various probes, it is useful to develop
a common mathematical language. For instance, say we are to measure the cross-
correlation between a galaxy sample and CMB lensing. The galaxy sample usually
comes as a catalog. Therefore, it is first necessary to build a projected overdensity
map of the galaxies which can be compared to the map of CMB lensing convergence by
measuring the cross-power spectrum. However, this is not the only way of measuring
correlations. Other techniques exist that we shall review afterwards.

4.2.1 Cross-power spectra

Consider two observables on the sphere A(n̂) and B(n̂), where n̂ is the unit vector
giving the angular position. Under the assumption of statistical isotropy, the cross-
correlation function

〈
A(n̂)B∗(n̂′)

〉
depends only on n̂ · n̂′ which lives in the interval

[−1,+1]. Legendre polynomials form an orthogonal basis with respect to the L2 norm
on [−1,+1]. Therefore, the correlation function can be decomposed on this basis as

〈
A(n̂)B∗(n̂′)

〉
=
∞∑
`=0

(2`+ 1)

4π
P`(n̂ · n̂

′)CAB` , (4.9)

where P` is the Legendre polynomial of rank `. This defines the angular cross-power
spectrum CAB` as a function of multipole `, corresponding to scale θ ∼ π/` .

The two observables can be expanded in spherical harmonics (represented in
figure 4.7),

A(n̂) =
∞∑
`=0

+∑̀
m=−`

a`mY`m(n̂), (4.10)

which can be inverted as

a`m =

∫
A(n̂)Y ∗`m(n̂) d2n̂ . (4.11)

Using the orthogonality relation∫
d2n̂Y ∗

`m
(n̂)Y`′m′(n̂) = δ``′δmm′ (4.12)

and the addition property

+∑̀
m=−`

Y`m(n̂)Y ∗`m(n̂′) =
(2`+ 1)

4π
P`(n̂ · n̂

′), (4.13)

we thus obtain that 〈
a`mb

∗
`
′
m
′
〉

= CAB` δ``′δmm′ . (4.14)
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Figure 4.7 – Representation of the few first spherical harmonics. The real part is
shown here, blue meaning negative and red positive.

This provides an unbiased estimator for the cross-power spectrum

ĈAB` =
1

2`+ 1

∑̀
m=−`

a`mb
∗
`m. (4.15)

We show in appendix B.1 that the variance of this estimator is

Var
(
ĈAB`

)
=

(
CAB`

)2
+ CAA` CBB`

2`+ 1
, (4.16)

implying that CAB`
/
σ
C
AB
`
∝
√
`+ 1/2 increases at large scale (or small `). This

is known as cosmic variance and is due to the limited number of observable modes.
The full probability density function is developped in appendix B.2.

99



CHAPTER 4. COMBINATION OF COSMIC PROBES

z

Figure 4.8 – Schematic of projected observables: snapshots of radial slices of the
density field at corresponding lookback time are projected on the sky (represented by
the outer sphere) with a redshift-dependent weight.

4.2.2 Projected observables

It is common in cosmology to observe quantities that are projections on the sky of
the three-dimensional matter density field with some distance-dependent weight: this
is the case for CMB lensing, cosmic shear or galaxy number counts. They can be
generically written

A(n̂) =

∫
dzWA(z)δ (χ(z)n̂, z) (4.17)

where δ (χ(z)n̂, z) is the matter overdensity at comoving distance χ(z) in the direction
n̂ and at redshift z. The weight WA(z) is called the kernel function of the observable
A and is characteristic of it.

Let us recall some of these kernels.

Galaxy density For the projected density of galaxies, if we do not take into account
relativistic effects (to be discussed in chapter 6), we have

W g(z) = b(z)
dn

dz
(4.18)

where b(z) is the galaxy bias and dn/dz is the normalized redshift distribution.

CMB lensing The lensing efficiency at redshift z, for a source at redshift zS, is

Wκ(z, zS) =
3

2

(
H0

c

)2

Ω0
m

(1 + z)

H(z)
χ(z)

(
1− χ(z)

χ(zS)

)
(4.19)

100



4.2. MEASURING CORRELATIONS

where χ(z) is the comoving distance at redshift z. Therefore, the kernel for
CMB lensing is given by

WκCMB
= Wκ(z, z∗) (4.20)

where z∗ ≈ 1 090 is the redshift of the last scattering surface.

Galaxy lensing The lensing efficiency must be integrated over the redshift distribution
of source galaxies, such that

W κgal(z) =

∫
dzS

dn

dzS
Wκ(z, zS). (4.21)

4.2.2.1 Two-points statistics of projected observables

In order to obtain an expression of the cross-power spectrum, we replace δ (χ(z)n̂, z)

by its inverse Fourier transform,

δ (χ(z)n̂, z) =

∫
d3k

(2π)3/2
δ(k, z)eik·χ(z)n̂, (4.22)

in the previous equation and then plug this expression into equation (4.11). Plane
waves can then be decomposed into spherical harmonics,

eik·χ(z)n̂ = 4π
∞∑
`=0

+∑̀
m=−`

i`j`(kχ(z))Y ∗`m(k̂)Y`m(n̂) (4.23)

where j` is the Bessel spherical function of rank `, k = ‖k‖ and k̂ = k/k . Using,
again, the orthogonality of spherical harmonics, yields

a`m = 4πi`
∫

dzWA(z)

∫
d3k

(2π)3/2
δ(k, z)j`(kχ(z))Y ∗`m(k̂). (4.24)

Finally, inserting this expression into equation (4.14) and using the definition of
the matter power spectrum3, the assumption of isotropy, and, one last time, the
orthogonality of spherical harmonics, we obtain

CAB` =
2

π

∫
dzWA(z)

∫
dz′WB(z′)

∫
k2 dk P (k, z, z′)j`(kχ(z))j`(kχ(z′)). (4.25)

3Here, we extend the definition in equation (1.67) to the power spectrum of fluctuations considered
at different times, defined as〈

δ(k, z)δ
∗
(k
′
, z
′
)
〉

= δ
(3) (

k − k′)
P (k, z, z

′
).

It is sometimes expressed in the literature as P (k, z, z
′
) =

√
P (k, z)P (k, z

′
), an approximation

discussed in Kitching and Heavens 2017.
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Equivalently, we have, in real-space, the angular correlation function, ω(θ), is related
to the three-dimensional correlation function, ξ(R, z, z′), by

ω(θ) =
〈
A(n̂)B∗(n̂′)

〉
=

∫
dzWA(z)

∫
dz′WB(z′)ξ(R, z, z′) (4.26)

where R =
∥∥χ(z′)n̂′ − χ(z)n̂

∥∥ denotes the separation and n̂ · n̂′ = cos θ.

4.2.2.2 On the Limber approximation

The approximation introduced by Limber (Limber 1953, 1954) simplifies equa-
tions (4.25) and (4.26), which are computationally expensive. If the kernel functions
have a width ∆z and peak at some redshift z, then it is assumes that:

• the kernel functions vary smoothly over the coherence scale of density fluctua-
tions;

• we consider scales smaller than the fractional width of the kernel functions,
θ � ∆z/z .

Importantly, in projected observables, the matter density field is integrated over
redshift slices that are both radial distance slices (δ is evaluated at position χ(z)n̂)
and time slices (δ is evaluated at lookback time tL(z)). Therefore, the kernel functions
might equally be considered as functions over redshift, distance or time. Bearing that
in mind, the first assumption means that we assume that the correlation between
fluctuations separated by a sufficiently large distance/time is negligible (consistent
with the fact that the power spectrum goes to 0 at large scale), and that this distance
scale is itself much smaller that the characteristic scale over which the kernel function
varies.

In its original form, the approximation was applied to real-space functions (see
Simon 2007, for details). Within the separation scale on which the correlation
function ξ(R,χ, χ′) is non-vanishing, the kernels can be evaluated at a middle distance
χ =

(
χ+ χ′

)/
2 and the correlation function can be evaluated at the corresponding

redshift z, yielding Limber’s equation4

ω(θ) =

∫
dχWA(χ)WB(χ)

∫
d∆χ ξ(R, z) (4.27)

where R =

√
χ2θ2 + ∆χ2.

Kaiser derived the Fourier analogue of Limber’s equation (Kaiser 1992, Ap-
pendix A), which, as we will see, is even more useful because the result is simpler.

4The kernel functions expressed as a function of redshift and comoving distance are related by

W (z) dz = W (χ) dχ .
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The two assumptions made above can be translated into the condition that there
exists a distance scale δχ such that:

1. we can slice space into spherical shells of width δχ, over which kernel functions
can be considered constant;

2. these shells are statistically uncorrelated;

3. the small-scale assumption is that θ � δχ/χ , such that we can work under the
flat-sky approximation.

The power from different shells can simply be summed to obtain the total power spec-
trum. Bartelmann and Schneider 2001 (see section 2.4.2) provide an equivalent
derivation, which we outline here. The angular correlation function can be expressed,
as in equation (4.27), as

ω(θ) =

∫
dχWA(χ)

∫
dχ′WB(χ′)

〈
δ(χn̂, z)δ(χ′n̂′), z′

〉
. (4.28)

Expanding δ by its Fourier transform, and applying the same approximation for the
kernels and the correlation function, we obtain

ω(n̂ · n̂′) =

∫
dχWA(χ)WB(χ)

×
∫

d3k

(2π)3/2

∫
d3k′

(2π)3/2

〈
δ(k, z)δ(k′, z)

〉︸ ︷︷ ︸
δ
(3)

(k−k′)P (k,z)

∫
dχ′ ei(k·χn̂−k

′·χ′n̂′).
(4.29)

The power spectrum is non-vanishing only if k-modes are equal, such that the integral
over k′ is removed. In the flat-sky limit, the unit vectors n̂ and n̂′ can be replaced by
two-dimensional vectors θ and θ′ living on the plane perpendicular to the line of sight
and the Fourier modes can be decomposed as a radial mode k‖ and a two-dimensional
perpendicular mode k⊥. Therefore, the oscillating exponential can be replaced by

eik‖(χ−χ
′
)eik⊥·χ(θ−θ′). (4.30)

The integral over χ′ yields a Dirac distribution for k‖, which means that only modes
perpendicular to the line of sight contribute to the power spectrum. One can then
perform the trivial integration over k‖ and we obtain5

ω(θ) =

∫
dχWA(χ)WB(χ)

∫
d2k⊥

(2π)2P (‖k⊥‖, z) e
ik⊥·χθ. (4.31)

The last step consists of writing the power spectrum in the flat-sky approximation,

5We have replaced θ − θ′ by simply θ because in the flat-sky approximation, we can set n̂′ to be
the direction of the line of sight, such that θ′ = 0.
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which is related to the correlation function by

CAB(l) =

∫
d2θ ω(θ)eil·θ. (4.32)

The integral over θ yields a Dirac, imposing that l = χk⊥, and we get

CAB(l) =

∫
dχ

χ2W
A(χ)WB(χ)P

(
k =

l

χ
, z

)
. (4.33)

Finally, changing the integration variable to redshift, and going back the spherical
harmonics spectrum, we get6

CAB` =

∫
dz

H(z)

cχ(z)2W
A(z)WB(z)P

(
k =

`+ 1/2

χ(z)
, z

)
+O

(
1

`2

)
(4.34)

where we have used that k = (`+ 1/2)/χ(z) as shown in LoVerde and Afshordi

20087.
A few remarks are in order:
First, regarding the derivation of the Limber equation, it can be noted that the

final result can be formally obtained using mathematical “tricks”, the validity of which
is harder to justify a priori. The spherical Bessel functions may be approximated by
Dirac distribution around their maxima

j`(x) ≈
√

π

2`+ 1
δ (x− (`+ 1/2)) , (4.35)

as noted in Campagne et al. 2017. One can also use the normalization of Bessel
functions, given by ∫ ∞

0
k2 dk j`(kr)j`(kr

′) =
π

2r2 δ(r − r
′) (4.36)

to approximate the integral over k in equation (4.25): if the power spectrum varies
slowly in comparison to the Bessel functions, it can be taken out of the integral,
evaluated at the peak of the integrand (`+ 1/2)/χ(z) , and the integral yields a Dirac
imposing the equality of z and z′ (Jeong 2010, Appendix M).

Then, it is important to note that the validity of the approximation is a posteriori
justified by numerical comparison, which is done within the references cited above
and on figure 4.9. The conclusion that all these studies have reached, in various cases,
is that the Limber approximation is valid at small scale if the kernel functions are
wide enough. It breaks down for small multipoles, generally for ` smaller than a few

6Though we have implicitly assumed flat spatial sections, it is worth noting that the Limber
approximation can be also applied for curved space universe, as in Lesgourgues and Tram 2014,
for instance.

7In this paper, the Limber approximation is extended to get an error of order 1
/
`
4 at the price

of computing derivatives of the power spectrum and of the kernels.
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Figure 4.9 – Auto- and cross-spectra for two kernels centered on z1 = 0.5 and z2 = 0.7
with a half-width of 0.1, with a gaussian (left) and top-hat (right) shape. Solid lines
show the spectra computed with the full formula (4.25) and dashed lines show the
spectra computed with the Limber equation (4.34). All spectra were computed with
the software CLASSgal (Di Dio et al. 2013).

tens, or for very narrow kernels, such as can be the case for thin redshift bins in the
context of galaxy clustering8 or galaxy lensing. When cross-correlating different or
even non-overlapping redshift bins, anti-correlations may appear, due to interferences
of the Bessel functions that cannot be captured by the Limber formula, since we
sum only positive terms (see the cross-spectrum on the right panel of figure 4.9).
Finally, the accuracy of the Limber approximation to evaluate the weak lensing power
spectrum is still a matter of concern for future surveys such as LSST and Euclid
(Kitching et al. 2017; Lemos et al. 2017).

4.2.2.3 Another expression

Some observables may not be written as projections of the matter density field like
in equation (4.17). For instance, the temperature anisotropies imprinted by the
integrated Sachs-Wolfe effect are given by (see, e.g. Takeuchi et al. 2012)

ΘISW(n̂) = − 2

TCMB

∫ χ∗

0
Φ̇(χn̂, χ) dχ , (4.37)

where Φ̇ is the time derivative of the gravitational potential. As seen at the end
of chapter 1, the initial conditions of all cosmological fields are specified by the
primordial gravitational potential Φ(k), therefore, they can always be written, in
Fourier space, as this primordial gravitational potential times a transfer function.
Thus, all projected variables may be written

A(n̂) =

∫
dz

∫
d3k

(2π)3/2
TA(k, z)Φ(k)eik·χn̂, (4.38)

8Noticeably, in the case of very narrow redshift bins, redshift-space distortions can have non-
negligible effects at both large and small angular scales, as shown in Saito 2016.
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where TA(k, z) is a transfer function, specific to observable A. Then, the same
computation as in section 4.2.2.1 leads to

CAB` =
2

π

∫
k2 dk∆A(k)∆B(k)PΦ(k) , (4.39)

where PΦ(k) is the power spectrum of the primordial gravitational potential and

∆A(k) =

∫
dz TA(k, z)j`(kχ(z)). (4.40)

This can be related to the kernels in the previous section by

TA(k, z) = WA(z)Tm(k)D(z), (4.41)

where Tm(k) is the matter density fluctuations transfer function9 and D(z) is the
growth factor, such that δ(k, z) = Tm(k)D(z)Φ(k). This expression, though exact, is
computationally expensive because of the Bessel integrals.

4.2.3 Other techniques

4.2.3.1 Stacking

Stacking techniques consists in summing “stamp” samples of a map, cut around specific
positions and potentially rotated (possibly randomly). This technique can be used
for cross-correlation studies as visual confirmation, if one observable is suspected to
have a specific pattern or signature around locations determined by another variable.

It has been used, for instance, by the Planck Collaboration in the cross-correlation
of the gravitational lensing map with the cosmic infrared background (CIB) in
Planck Collaboration et al. 2014c. The CIB is composed of the redshifted
thermal radiation of stellar dust heated by the ultraviolet radiation of young stars.
It has thus been emitted by dusty, star-forming galaxies that are found at redshift
z ∼ 1 − 2. Therefore, the kernels of lensing and CIB have a large overlap, which
means that the galaxies sourcing the CIB have an significant contribution to the
lensing of the CMB, explaining the intensity of the signal (see the stacked images on
figure 4.10).

It has also been used by the Planck Collaboration in Planck Collaboration

et al. 2016i to highlight the cross-correlation of the CIB with the Sunyaev-Zel’dovich
effect, by stacking CIB maps at different frequencies at the position of clusters
detected by their SZ signal (see figure 4.11).

9Not to be confused with the transfer function TΦ(k) of the gravitational potential defined in
equation (1.73), though they play a similar role.
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Figure 4.10 – Planck temperature maps at 545 and 857 GHz stacked at peaks (left),
troughs (middle) and random locations (right) of the CIB, surperimposed with the
lensing deflection angle represented by arrows (from Planck Collaboration et al.
2014c).

4.2.3.2 Non-monotonic correlation

Consider a random variable X, uniformly distributed over the interval ]−π, π] and the
random variable Y = cosX. Y is deterministically determined by X, however, their
covariance is 〈XY 〉 = 0 (both have null expectation value). Therefore, the covariance
only captures the linear correlation between variables. Other similar examples are
shown in the third row of figure 4.12.

In order to quantify the correlation between variables, one can measure the
reduction of uncertainty in Y after observing X. Probability distributions can be
compared by a distance called the Kullback-Leibler divergence (Kullback and
Leibler 1951). For two probability distributions, i.e. two finite measures on a
probability space Ω, P and Q, the Kullback-Leibler divergence from Q to P is
formally defined as

DKL(P ‖ Q) =

〈
ln

dP

dQ

〉
P

=

∫
Ω

ln
dP

dQ
dP , (4.42)

where dP
dQ is the Radon-Nikodym derivative of P with respect to Q (Le Gall 2006).

For continuous distributions over Rk (i.e. if P and Q are absolutely continuous with
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Figure 4.11 – Planck CIB maps stacked at the position of SZ-detected clusters (from
Planck Collaboration et al. 2016i).

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1

0 0 0 0 0 0 0

Figure 4.12 – Examples of scatter plots of two random variables with their linear
correlation coefficients. In the third row, variables are clearly correlated, in the
sense that knowing the value of one gives information on the other, but their lin-
ear correlation coefficient is zero. Figure from https://en.wikipedia.org/wiki/
Correlation_and_dependence published under licence CC0 1.0.
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Figure 4.13 – Number of papers in the arXiv astro-ph.CO stream with a title
containing “cross-correlation” or “joint analysis” since 2004.

respect to the Lebesgue measure), it is given by

DKL(P ‖ Q) =

∫
Rk
p(x) ln

p(x)

q(x)
dkx . (4.43)

For instance, for two multivariate gaussian distributions, P,Q ∼ N
(
µP,Q,ΣP,Q

)
, we

have

DKL(P ‖ Q) =
1

2

[
Tr
(

Σ−1
Q ΣP − 1

)
+
(
µQ − µP

)ᵀ
Σ−1
Q

(
µQ − µP

)
+ ln

(∣∣ΣQ

∣∣
|ΣP |

)]
.

(4.44)
Then, one defines the mutual information of two random variables X and Y as the
Kullback-Leibler divergence from the product of marginal distributions to the joint
probability distribution

I(X;Y ) ≡ DKL(P (X,Y ) ‖ P (X)P (Y )), (4.45)

which is exactly the difference of entropies that we computed in equation (4.5). Finally,
it can be related to the cross-entropy, widely used in statistical learning (Hastie

et al. 2013), as
S(P ;Q) = 〈− lnQ〉P = S(P ) +DKL(P ‖ Q). (4.46)

4.3 Cross-correlations

The first cross-correlation studies in cosmology emerged in the early 2000s, and, with
increasing amounts of cosmological data, their number kept growing (see figure 4.13).
The goal of this section is to review the literature while demonstrating the numerous
possibilities to not only detect predicted signal, but also advance our understanding
of the Universe and its content.
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Figure 4.14 – WMAP and NVSS maps at low resolution cross-correlated in Vielva
et al. 2006.

4.3.1 The first studies: CMB × LSS

The first studies that tried to measure cross-correlations between the CMB and
tracers of the large-scale structure were published in the early 2000’s. They were
cross-correlating temperature fluctuations in the CMB with various tracers with two
main purposes (Peiris and Spergel 2000; Wang et al. 1999):

• to detect the integrated Sachs-Wolfe effect (also referred to as the Rees-Sciama
effect in the non-linear regime, see Crittenden and Turok 1996), which is
visible at large scale in the CMB (` . 10) and is a direct measurement of the
decay of gravitational potential wells due to the cosmic expansion fueled by
dark energy;

• to detect the Sunyaev-Zel’dovich effect, which is the spectral imprint left by
CMB photons scattered by free electrons, tracing hot gas in galaxy clusters
visible in the X-ray domain.

Indeed, these secondary anisotropies are small effects, difficult to disentangle from
primary anisotropies or systematics in the map of the CMB alone. However, they are
produced by interactions – gravitational or electromagnetic – of CMB photons with
the large-scale structure of the Universe. Hence, they have a small, but non-zero,
correlation with any tracer of the large-scale structure. Comparing maps thus helps
localize these effects on the CMB map.

To this end, the map of CMB temperature anisotropies measured by the COBE
(Smoot et al. 1990) and WMAP (Bennett et al. 2003) satellites were successively
correlated with the overdensity maps of radio sources from the NRAO VLA Sky
Survey (NVSS, Condon et al. 1998) in Boughn and Crittenden 2001, with
near-infrared 2MASS galaxies (Jarrett et al. 2000) in Afshordi et al. 2004, with
visible luminous red galaxies and Lyman-α forest in quasars’ spectra from the Sloan
Digital Sky Survey (SDSS York et al. 2000) in Cabré et al. 2006; Fosalba et al.
2003 and Croft et al. 2006 and with X-ray sources from ROSAT (Snowden et al.
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1997) in Diego et al. 2003. These papers, among others, detected the SZ or the ISW
effects at different statistical significance levels and placed, at least, upper bounds on
dark energy or the density of hot gas in the Universe.

4.3.2 Gravitational lensing comes into play

4.3.2.1 CMB lensing

Gravitational lensing of the CMB (see section 2.3.2) is an extremely powerful probe of
the large-scale structure that weighs all matter – dark matter and baryons – between
us and the last scattering surface. Detecting CMB lensing only with a CMB map
requires the measurement of a 4-point correlation function of temperature. Therefore,
it is not surprising that CMB lensing was first detected using cross-correlation of a
reconstructed CMB lensing map (2-point function only) with tracers. After a missed
attempt by Hirata et al. 2004 using SDSS galaxies (the signal-to-noise ratio was too
low at the time), it was detected for the first time using the NVSS sample and the
WMAP CMB data by Smith et al. 2007. See section 4.A for a comparison of the
signal-to-noise ratio of auto- and cross-power spectra.

The galaxy density-CMB lensing cross-correlation compares the distributions
of dark matter and that of galaxies. The amplitude of its cross-power spectrum is
an unbiased estimate of the clustering bias of galaxies at large scale, that can be
compared to other measurements as a consistency check. It has been measured for
many combinations of CMB data and galaxy samples (see table 4.1) and has become
a widely used probe.

The South Pole Telescope (Carlstrom et al. 2011) and the PolarBear (Ker-

mish et al. 2012) collaborations detected, the same way as Smith et al. 2007, the
lensing of CMB’s polarization by cross-correlating their lensing map, reconstructed
from polarization maps, with the CIB map of the Herschel satellite (Pilbratt et al.
2010) in Hanson et al. 2013 and Ade et al. 2014.

4.3.2.2 Galaxy lensing

Galaxy lensing has recently been used in cross-correlation analyses in various ways.
The shear measured in a source redshift bin can be correlated with itself, a mea-
surement called cosmic shear, but it can also be correlated with the density of
galaxies in foreground redshift bins causing the lensing of sources, often referred to
as galaxy-galaxy lensing, and with CMB lensing.

The first detections of the cross-correlation between galaxy lensing and CMB
lensing used CFHT10 data with ACT lensing map in Hand et al. 2015, and then
with Planck lensing map in Liu and Hill 2015. The DES Collaboration reported a
measurement of the cross-correlation between their lensing map and the CMB lensing

10Canada-France-Hawaii Telescope with the MegaCam imaging camera, Boulade et al. 2002.
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Table 4.1 – List of references measuring the cross-correlation between CMB lensing and
various galaxy samples observed in different parts of the electromagnetic spectrum.

CMB experiment Galaxy sample Wavelength Reference

WMAPa NVSSb Micro-waves Smith et al. 2007
SPTc WISEd & Spitzer/IRACe Near-IR Bleem et al. 2012
ACTf SDSSg XDQSO quasarsh Visible Sherwin et al. 2012
SPTc WISEd Near-IR Geach et al. 2013
SPTc Herscheli/SPIREj sub-mm Holder et al. 2013
Planckk Planck CIB map Far-IR Planck Collaboration et al. 2014c
Planckk SDSSg & WISEd Visible & near-IR DiPompeo et al. 2015
Planckk Herscheli ATLASl Far-IR & sub-mm Bianchini et al. 2015, 2016
Planckk Fermi-LATm Gamma-ray Fornengo et al. 2015
ACTf FIRSTn Radio Allison et al. 2015
SPTc & Planckk DES-SVo Visible Giannantonio et al. 2016
a Wilkinson Microwave Anisotropy Probe, Bennett et al. 2003.
b NRAO VLA Sky Survey, Condon et al. 1998.
c South Pole Telescope, Carlstrom et al. 2011.
d Wide-field Infrared Survey Explorer, Wright et al. 2010.
e Spitzer Deep, Wide-Field Survey, Ashby et al. 2009.
f Atacama Cosmology Telescope, Swetz et al. 2011.
g Sloan Digital Sky Survey, Eisenstein et al. 2011.
h See Bovy et al. 2011.
i ESA’s Herschel satellite, Pilbratt et al. 2010.
j Spectral and Photometric Imaging REceiver, Griffin et al. 2010.
k ESA’s Planck satellite, Planck Collaboration et al. 2011.
l Herschel Astrophysical Terahertz Large Area Survey, Eales et al. 2010.
m Fermi Large Area Telescope, Abdo et al. 2010.
n Faint Images of the Radio Sky at Twenty Centimeters, Becker et al. 1995.
o Dark Energy Survey Science Verification data, Dark Energy Survey Collaboration et al. 2016.

maps from Planck and SPT (Kirk et al. 2016). Another study, Harnois-Déraps

et al. 2016, reported detection of the galaxy lensing-CMB lensing cross-correlation
using CFHT data (both the CFHT Lensing Survey and the RCS11 Survey) with
Planck’s lensing map, both in real-space and in configuration space. This specific
cross-correlation is still in its infancy, but is believed to become a powerful tool for
shear calibration. The reason is that galaxy lensing requires the measurement of
galaxy shapes and orientations from noisy images that are blurred by an varying point-
spread function (the image of a point source produced by the telescope). Estimators
of the shear γ might thus be affected by a multiplicative bias m such that

〈γ̂〉 = (1 +m)γtrue, (4.47)

which is difficult to detect with shear measurements alone. However, it appears in the
galaxy lensing-CMB lensing cross-correlation as a simple multiplicative factor and can
then be easily calibrated (Liu et al. 2016b; Schaan et al. 2017; Vallinotto 2012).
The question whether this will be enough to meet weak lensing science requirements
of future surveys, of order |m| . 10−3, is still open.

Galaxy-galaxy lensing measurements were reported by the DES Collaboration

11Red Cluster Sequence, Gilbank et al. 2011.
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(Chang et al. 2016) and used to measure the bias of the lens galaxies. Importantly,
though cross-correlation are generally less prone to experimental systematics, they
can be contaminated by physical effects. In the case of galaxy-galaxy lensing, the
intrinsic alignments of galaxies produced by tidal torquing and filaments correlates
with the density of galaxies, thus contaminating the cross-correlation measurement
(Hall and Taylor 2014; Joachimi and Bridle 2010; Larsen and Challinor

2016; Troxel and Ishak 2014). However, it also contains cosmological information
about the formation of structures that might be exploited (Chisari and Dvorkin

2013).

Interestingly, the comparison of the cross-correlations of galaxy positions with
CMB lensing and with galaxy lensing, Cκgalg

`

/
C
κCMBg
` yields a ratio of distances that

is independent of galaxy bias or lensing bias, provided that the redshift bin is thin
enough Miyatake et al. 2017; Singh et al. 2017. This offers a new cosmographic
measurement at intermediate redshifts and a new consistency test.

Finally, Demetroullas and Brown 2016 reported a detection of cosmic shear
by cross-correlating lensing maps from SDSS and FIRST, even though both surveys’
auto-correlation measurements are independently systematics-dominated. This opens
a new route that may be useful for future surveys with very different systematics
(especially when combining ground- and space-based experiments, see section 4.4.2).

4.3.2.3 Clusters and the Sunyaev-Zel’dovich effect

The thermal Sunyaev-Zel’dovich (tSZ) effect has been measured by the Planck
Collaboration, which produced an all-sky map of the Compton-y parameter (Planck

Collaboration et al. 2014e) and extracted cosmological information from SZ-
detected clusters (Planck Collaboration et al. 2014d). It has been correlated
with the map of CMB lensing by Hill and Spergel 2014, demonstrating that
baryons trace dark matter down to scales of order 1 Mpc.

The kinetic Sunyaev-Zel’dovich (kSZ) effect is produced by the bulk velocity of
free electrons in hot gas and is an order of magnitude smaller than the tSZ effect.
Moreover, its electromagnetic spectrum does not differ from that of the CMB, unlike
the tSZ effect (see section 2.1.3), making it impossible to detect without external
information. It was first detected by Hand et al. 2012 with the pair-wise velocity
technique (relying on the fact that, on average, two nearby galaxies are likely falling
towards each other) and then with the full reconstructed velocity field by Planck

Collaboration et al. 2016l and Schaan et al. 2016. These studies have shown
clear evidence that a non-negligible fraction of baryons is located in diffuse, warm-hot
plasmas around haloes, resulting a electron pressure profile larger than the halo size.
This cross-correlation signal can be used to constrain feedback mechanisms from, e.g.,
active galactic nuclei. While these studies relied on spectroscopic observations to
infer the velocity of the clusters, a novel method has recently been suggested (and
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successfully applied) to measure the kSZ effect with projected density fields, hence
opening the possibility of using any kind of tracer (Ferraro et al. 2016; Hill et al.
2016).

Finally, the tSZ effect can be used to obtain a proxy of the mass of individual
clusters, which can be compared to the mass inferred from the X-ray luminosity.
However, it has been shown that it is also possible to infer an unbiased estimate of
the mass of a cluster from its contribution to CMB lensing and use it to calibrate
the mass-luminosity relationship (Melin and Bartlett 2015; Penna-Lima et al.
2017).

4.3.3 Combining tracers of the large-scale structure

4.3.3.1 Combining photometric and spectroscopic surveys

Several avenues exist to take advantage of overlapping photometric and spectroscopic
surveys. Cai and Bernstein 2012 and Gaztañaga et al. 2012 advocate that
galaxy-galaxy lensing cross-correlations – where the density is that mapped by the
spectroscopic survey – can constrain galaxy clustering biases and hence break the
degeneracy with the redshift-space distortion parameter f , thus enabling better
constraints on structure formation. Moreover, matching galaxies seen in both surveys
makes it possible to use many narrow redshift bins for weak lensing measurements, and
thus to follow the onset of dark energy at a much better resolution. The development
of estimators that can extract the radial information from multi-resolution surveys,
e.g. based on spherical Fourier-Bessel decomposition, is ongoing (Passaglia et al.
2017).

Methods to optimally combine multiple tracers are being developed (Abramo

et al. 2016) that extend the FKP optimal power spectrum estimator for a single type
of tracer (Feldman et al. 1994). The so-called ultra-large scales are of particular
interest for measuring deviations from general relativity and from gaussianity, and
they will greatly benefit from the combination of multiple tracers with very different
biases (Alonso and Ferreira 2015; Seljak 2009).

4.3.3.2 Studying the epoch of reionization with 21 cm intensity mapping

Combining 21 cm intensity mapping with other spectroscopic and photometric tracers
can potentially greatly improve the mapping of the large-scale structure (Jelic et al.
2015) and the measurement of the BAO scale (Cohn et al. 2016). Moreover, it
provides new powerful a tool to compare the distribution of neutral hydrogen with
that of galaxies during the epoch of reionization (EoR). In particular, it may be used
to study the morphology of reionization (for instance by combining 21 cm intensity
mapping and Lyman-α emitters, see Sobacchi et al. 2016; Vrbanec et al. 2016).

Finally, 21 cm intensity mapping should put stringent constraints on the Universe’s
reionization history, thus providing a strong handle on the optical depth τ (Liu et al.
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2016a). This information might then be used as a prior – or better, in a joint analysis
with CMB data – to break degeneracies amongst parameters (in particular with the
primordial spectrum amplitude As).

4.3.3.3 The extragalactic γ-ray background and dark matter

The extragalactic γ-ray background (EGB) is the combined emission of unresolved
objects (Ajello et al. 2015) such as blazars (quasars with jets in the direction
of observation), star-forming galaxies and radio galaxies. Their distance is poorly
constrained by γ-ray observations alone. However, by cross-correlating the EGB with
spectroscopic tracers in a tomographic fashion, it is possible to constrain the redshift
distribution of γ-ray emitters (Cuoco et al. 2015; Xia et al. 2015). The EGB might
also contain a truly diffuse component. Indeed, various models of dark matter predict
that the desintegration of WIMPs produces γ-rays. Comparing fluctuations in the
EGB with the CMB lensing map (which essentially traces dark matter) can constrain
the annihilation rate and mass of dark matter particles (Tröster et al. 2017).

4.3.3.4 Testing general relativity

Modified theories of general relativity can be parametrized by two scale- and redshift-
dependent arbitrary functions µ(k, z) and γ(k, z) modifying the Poisson equation (1.50)
and the relationship between gravitational potentials as

k2Ψ = 4πGa2ρ̄µ(k, z)δ(k, z) (4.48)

Φ = γ(k, z)Ψ. (4.49)

Lensing is sensitive to ∇2(Ψ + Φ) while the velocity field is sensitive to Φ only
equation (1.49) . Bearing that in mind, one defines a statistic

EG(k, z) = − k2(Ψ + Φ)

3H2
0 (1 + z)θ(k, z)

, (4.50)

where θ(k, z) ≡ ∇ · (av)/aH is the divergence of the peculiar velocity field (defined
in section 1.4.2.1), which, in the linear regime, is θ(k, z) = f(z)δ(k)12. Thus, we have

EG(k, z) =
Ω0

mµ(k, z)[γ(k, z) + 1]

2f(z)
, (4.51)

which simplifies to EG(k, z) = Ω0
m

/
f(z) within general relativity. In practice, it

can be measured by comparing the CMB lensing-galaxy cross-correlation to the

12To prove this, we use the the continuity equation, which implies that θ = −δ̇/H. Since
δ(t) ∝ D(t) where D is the growth factor defined in section 1.4.1, we have δ̇ = H(z)f(z)δ, where
f(z) ≡ d lnD/d ln a , which leads to the result.
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Figure 4.15 – The combination of independent probes – here, CMB, distances from
type IA supernovæ and the BAO in galaxies – was used to contrain the parameters
of the ΛCDM model by multiplying the likelihoods of each individual probe (figure
from Kowalski et al. 2008).

auto-correlation of galaxies as (Blake et al. 2016; Pullen et al. 2016)

EG(`, z) = Γ
Cκg`
βCgg`

(4.52)

where β(z) = f(z)/b(z) , such that the galaxy bias should cancel if the redshift bins
are narrow enough (small lensing correction are derived in Moradinezhad Dizgah

and Durrer 2016). Pullen et al. 2016 found a small tension with the prediction
from general relativity, using the CMASS sample from SDSS-III/BOSS at scales
greater than 80 h−1 Mpc.
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4.4 Joint analyses

4.4.1 Current status

The combination of constraints obtained from independent probes led to the current
picture of the ΛCDM model (see figure 4.15). However, galaxy surveys – photometric
and spectroscopic – and CMB mapping experiments are probing the same underlying
matter density field via different related physical fields. Early “combined” analyses
of CMB and large-scale structure did not include cross-correlations: they treated
various probes as independent and multiplied the likelihood to obtain constraints
on cosmological parameters (Tegmark and Zaldarriaga 2002; Tegmark et al.
2001). As shown in the previous section, these probes are correlated, which means
that there is additional, complementary information in their combination that should
be treated in statistical pipelines.

Joint analyses are still at an early stage, the main reason being that cross-
correlation signals needed to be detected at a significant signal-to-noise ratio before
they can be used in a statistical analysis. Now, cross-correlations are becoming
standard statistical tools in the field of cosmology and joint analyses are blooming.

Joachimi and Bridle 2010 forecasted that the joint analysis of galaxy weak
lensing and galaxy density, including cosmic shear, galaxy clustering and the galaxy-
galaxy lensing cross-correlation, could, at once, self-calibrate intrinsic alignments and
constrain parameters of the cosmological model (see Krause et al. 2016 as well).
Several analyses were recently published that make use of the correlation between
galaxy lensing and either galaxy density or CMB lensing: Baxter et al. 2016 used
SPT and DES-SV lensing data together with tracers of the large-scale structure and
took advantage of the low systematic level of these correlations to infer cosmological
constraints, Kwan et al. 2017 used the galaxy clustering and galaxy-galaxy lensing
signals of the DES-SV data with similar goals and Singh et al. 2017 combined the
lensing and clustering of SDSS galaxies with CMB lensing from Planck. Very recent
studies combined these three correlation function in a single analysis: Uitert et al.
2017 with KiDS13 and GAMA14 galaxies, Joudaki et al. 2017 with KiDS and BOSS
galaxies (using the quadrupole of the power spectrum as well), DES Collaboration

et al. 2017 with the first year of DES data (forecasts were obtained in Park et al.
2016 and the pipeline was tested on simulated images in Krause et al. 2017), and
Miyatake et al. 2015; More et al. 2015 used the overlapping area between CFHT
and BOSS galaxies.

Takada and Spergel 2014 showed that if cluster counts are analyzed together
with weak lensing, the first could be used to infer the super-sample variance15 term

13The Kilo-Degree Survey, Jong et al. 2013.
14Galaxies And Mass Assembly (Driver et al. 2009), a database of low-redshift surveys spanning

the electromagnetic spectrum from radio waves to the ultraviolet domain.
15The super-sample variance is related to density modes larger than the size of the survey that
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Upcoming galaxy surveys and CMB lensing
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• Simons Array and CMB-S4 will push CMB 
lensing in the high-precision era

• DES, LSST, Euclid will measure accurately the 
matter distribution on the same timescale

• Cross-correlation sensitivity will improve 
tremendously

2

4 Conclusions 21

2000 2005 2010 2015 2020

10
−4

10
−3

10
−2

10
−1

W
M

AP

Planck

CM
B−S4

Year

A
p
p
ro

xi
m

a
te

 r
a
w

 e
xp

e
ri
m

e
n
ta

l s
e
n
si

tiv
ity

 (
µ

K
)

 

 

Space based experiments

Stage−I − ≈ 100 detectors

Stage−II − ≈ 1,000 detectors

Stage−III − ≈ 10,000 detectors

Stage−IV − ≈ 100,000 detectors

Figure 6. Plot illustrating the evolution of the raw sensitivity of CMB experiments, which scales as
the total number of bolometers. Ground-based CMB experiments are classified into Stages with Stage II
experiments having O(1000) detectors, Stage III experiments having O(10,000) detectors, and a Stage IV
experiment (such as CMB-S4) having O(100,000) detectors.

consequence, the fundamental production unit for TES devices are arrays of detectors (see Fig. 8), an
important attribute when considering the production of the 500,000 detectors required by CMB-S4. Second
TES devices are low-impedance (�1 �) and can be multiplexed with modern-day Superconducting QUantum
Interference Device (SQUID) multiplexers [96, 97, 98]. Multiplexed readouts are important for operating
large detector arrays at sub-Kelvin temperatures and are essential for CMB-S4. Lastly, TES detectors have
been successfully deployed as focal planes at the forefront of CMB measurements.

The TES was invented by HEP for detecting Dark Matter and neutrinos. Its subsequent integration into
CMB focal planes has enabled kilo-pixel arrays realizing the Stage II CMB program and ushering in an
era of unprecedented sensitivity. TES-based CMB detectors are the favored technology among Stage II
and proposed Stage III experiments, and have a clear path to the sensitivities required by CMB-S4. The
ubiquity of TES detectors for CMB illustrates the direct connection between HEP-invented technology and
CMB science.

The CMB-S4 Experimental Program

Delivering a half-million background-limited bolometers necessitates a change in the execution of the US
ground-based CMB program. The current US program consists of a number of independent (primarily
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ing the three known neutrino flavors, is < 250
meV (95% C.L.) [23].

Neutrino oscillation measurements tell us
that the sum of masses has to be > 58 meV
in the “normal” hierarchy and > 100 meV in
the “inverted” hierarchy. As shown in Fig. 3,
the Simons Array will have a 1⇥ error bar of 53
meV when combined with Planck data. When
combined with Baryon Acoustic Oscillation mea-
surements, a degeneracy is broken and the con-
straint becomes 18 meV1, providing a 3⇥ detec-
tion of the sum of masses. If the masses are be-
low 100 meV, the neutrino mass hierarchy will
be known. Measurement of the sum of neutrino
masses would have a profound implication for
fundamental physics, perhaps providing insight
to the origin of mass itself.

In reference to neutrino measurements, the
Decadal committee writes “Another potential
contribution to fundamental physics will come
from microwave background observations using
future CMB telescopes combined with probes of
structure formation, which can provide an upper
limit to the sum of the masses of the three fla-
vors of neutrino with higher sensitivity than can
be done with ongoing laboratory experiments.
More detailed information may also emerge on
the individual particle masses.”

The evolution of the dark energy equation of
state w can be constrained by comparing high-
redshift CMB lensing measurements and lower
redshift probes of large-scale structure. This sen-
sitivity comes from the fact that dark energy in-
hibits the growth of structure. Measurements
of B-mode lensing have a similar power to con-
strain w at z > 2 as, for example, current su-
pernovae measurements have to constrain w at
z � 1. The combination of measurements from
these two redshift regimes will provide new con-
straints on the evolution of dark energy.

1.3 Cross-correlation with other surveys

Cross-correlation of the Simons Array data with
data from other surveys will be a key science
focus of our work. The Simons Array’s survey
overlaps with the premier future optical surveys
including dark energy Survey (DES) [29], Hyper-
Suprime CAM (HSC) Survey [21], Dark Energy
Spectroscopic Instrument (DESI) [20], and the
Large-Synoptic Survey Telescope (LSST) Survey
[15].

1This value was calculated using assumed DESI BAO
specifications with fixed w and �k. Allowing these pa-
rameters to vary gives a 21 meV error.

Figure 4: Ecliptic-coordinate map showing the
overlap of the Simons Array broad survey with op-
tical surveys DESI (here taken as BIGBOSS), HSC,
DES, and LSST. The 80% broad survey covers decli-
nations from -83� to 37� as indicted by the vertical
line to the left. Simons Array has 100% overlap with
DES and LSST and substantial overlap with HSC
and BIGBOSS

Cross-correlation data from the Simons Array
with these data sets will help us understand both
data sets and, therefore, obtain better cosmolog-
ical constraints [6]. For example, in galaxy sur-
veys the mass-to-light ratio (bias) can be mea-
sured by cross-correlation with CMB lensing,
greatly enhancing the power of the galaxy survey
data [25]. In another example, Vallinotto [32]
has suggested that cross-correlation of Lyman-�
data with CMB lensing would measure the flux-
matter bias relation which connects fluctuations
in the Lyman-� flux with those in the dark mat-
ter density, thereby enabling better cosmological
constraints from the Lyman-� data.

1.4 E-mode CMB Power Spectrum

A deep map of the CMB temperature and polar-
ization with 3.5� resolution over 80% of the sky
provides an important complement towmap and
Planck. In particular, the E-mode spectrum of
Planck will be cosmic-variance-limited only to
⇤ � 700. The Simons Array can extend this
range to ⇤ � 2000. The Simons Array’s high-⇤
E-mode spectrum measurement will improve the
measurement of the scalar index ns, the running
of the scalar index � = dns/d ln k, the cosmolog-
ical helium abundance YHe, the e�ective number
of relativistic species Neff , and searches for pri-
mordial non-gaussianity [12].

1.5 Cosmic Polarization Rotation

CMB polarization measurements have the po-
tential for a fundamental physics discovery by
measuring the rotation of the plane of polariza-
tion due to any birefringence that occurs along
the travel path of the CMB photons. Cosmolog-
ical birefringence violates a number of symme-
tries, in particular, the interchanging of handed-

3

Arnold et al. 2014

Snowmass 2013

Figure 4.16 – Sky areas mapped by ongoing and future surveys (from Arnold et al.
2014)

.

in the weak lensing power spectrum and thus improve the cosmological constraints
as if multiplying the survey size by a factor ∼ 2− 4 (another similar study can be
found in Yoo and Seljak 2012). Soergel et al. 2015 and Giannantonio and
Percival 2014 used CMB temperature data and the temperature-galaxy density
and CMB lensing-galaxy density cross-correlations to place limits on, respectively,
perturbations of the dark sector (i.e. assuming that dark energy is a fluctuating field)
and primordial non-gaussianity.

Finally, a further step was taken by Nicola et al. 2016, 2017 which uses CMB
temperature, CMB lensing, galaxy positions, galaxy lensing and distances (from
supernovæ and direct H0 measurements) in a fully joint analysis.

4.4.2 Forecasts

Upcoming large photometric and spectroscopic galaxy surveys – the Large Synoptic
Survey Telescope (LSST, LSST Science Collaborations and LSST Project

et al. 2009), Euclid (Laureijs et al. 2011), the Wide Field Infrared Survey Telescope
(WFIRST, Spergel et al. 2013) and the Dark Energy Spectroscopic Instrument
(DESI, Levi et al. 2013; Schlegel et al. 2009) – and CMB experiments – the
Simons Observatory (Suzuki et al. 2016) and a Stage-IV CMB experiment (CMB-
S4, Abazajian et al. 2016) – will map overlapping, wide areas to unprecedented
sensitivity (see figure 4.16).

Forecasts and science requirement studies estimate the improvement on cosmolog-
ical parameters constraints from each individual experiment. However, several works
have shown that the combination of these experiments should yield, by far, the most
substantial gain for shear calibration (Schaan et al. 2017), intrinsic alignements
mitigation (Krause et al. 2016), the mass of neutrinos (Pearson and Zahn 2014),
primordial non-gaussianity (Takeuchi et al. 2012), modified gravity (Casas et al.

contribute to the observed power. See chapter 6 and Schaan et al. 2014 for more detail.
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FIG. 9: Projected 1σ(68%) confidence constraints in some
parameter spaces for fν ̸= 0 model with the photometric red-
shift scatter. The contours are for DES (red dashed), HSC
(blue dot-dashed) or LSST (green), with Planck and ACTPol
combined. The results include all the information from auto
and cross correlations.

constraint greatly. On the other hand, galaxy-CMB lens-
ing (gψ) cross correlation can also improve the constraint
if the ACTPol experiment is included.
Although galaxy-galaxy lensing (gγ) cross correlation

has a great contribution for improving the constraint
on fNL, we have to pay attention to the systematics of
galaxy lensing observation. The photo-z error diffuses
the observed galaxy distribution of each redshift bin, and
changes the overall amplitude of the power spectrum.
This behavior is similar to the change of the param-
eter logMobs. On the other hand, positive (negative)
fNL enhances (decreases) the amplitude only on large-
scales. Therefore comparing these two parameters, the
constraint on logMobs is more affected by photo-z error
than that of fNL.
Here, we accounted only for the photo-z error for sys-

tematics, but it is known that there are other system-
atics for the galaxy lensing observables. One of them is
a complication in the measurement of the shear due to
the incomplete removal of the effects of the point spread
function (PSF) [65]. So the contribution of galaxy-galaxy
lensing (gγ) cross correlation to the constraint on fNL

may be diminished if we consider a more realistic con-
dition including other systematics for galaxy lensing ob-
servables. In such a case, the impact of galaxy-CMB
lensing (gψ) cross correlation probably shines out more.
In general, the choice of the fiducial cosmological model

affects the parameter forecasts. In this paper, we consid-
ered the differences of the fiducial model in the neutrino
mass and the photometric redshift scatter. As far as the
constraint on fNL is concerned, we found that the selec-
tion of the fiducial model makes an impact on the result.
It should be emphasized that combining the satellite

CMB experiment (Planck) with the ground based one
(ACTPol) can greatly improve the constraints on the cos-
mological parameters. This is because the information of
CMB lensing can be extracted more efficiently by com-
bining Planck with ACTPol than by Planck only. For
the constraint on fNL, the marginalized error can be im-
proved from ∆fNL ∼ 5.1 to 4.8 by combining ACTPol
with Planck, because in this case galaxy-CMB lensing
cross correlation (gψ) starts to play an important role in
the improvement of the statistical error of fNL.
As for the strategy of the survey, we found that HSC is

preferable to DES for the constraint on fNL because the
former can probe higher redshift. We expect ∆fNL ∼ 5.5
with the DES survey while ∆fNL ∼ 4.8 with HSC. How-
ever, we never forget the importance of wide field surveys
to see the signature of the primordial non-Gaussianity
appearing on large-scale.
As for the benefits from the cross correlations, we

found that the cross correlation between CMB lensing
and galaxy distribution improves the constraints on fNL

from 5.4 to 4.8 (∆11.1%), and from 1.1 to 1.0 (∆8.3%) in
the case with LSST. The relative improvement of fNL by
including cross correlations is less distinct in LSST, but
the cross correlation will be still significant in the future
surveys.
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Figure 4.17 – Forecast cosmological constraints on non-gaussianity parameters (left,
from Takeuchi et al. 2012) and large-scale structure (right, from Jain et al. 2015).
In both cases, the combination of surveys with complementary observations or
instrumental design dramatically improves the constraints.

2017) and cosmology in general (see Rhodes et al. 2015, for a review).
In an effort to improve the joint scientific impact of LSST, Euclid and WFIRST,

Jain et al. 2015 pointed out strategies to take advantage of complementary instru-
mental characteristics. These include:

Photometric redshifts Errors on photometric redshifts from LSST could be greatly
reduced by integrating infrared band observations from Euclid and WFIRST.
Moreover, galaxies observed by the spectroscopic instruments of Euclid and
WFIRST can be used to calibrate algorithms (for instance as a training set for
machine learning algorithms).

Weak lensing Euclid will have much better resolution than LSST as it is not affected
by the atmosphere, thus providing a useful input for deblending16 algorithms.
However, its wide infrared band makes it sensitive to all kinds of chromatic effects
due to the diffraction-limited, wavelength-dependent PSF. In particular, Euclid
should be more sensitive to the bulge of galaxies; LSST, with its greater depth,
will see their outskirts; WFIRST will be somewhere in between. Comparing
shear estimates from ground- and space-based experiments can improve shear
calibration and the cross-correlations of independently estimated shear maps
should remove systematics and/or reveal unforeseen ones.

Large-scale structure Spectroscopic observations by Euclid and WFIRST will be
used to measure the scale of the baryon acoustic oscillations and the growth
of structure. Photometric observations by LSST will probe clustering through

16It is expected that of order half of images of galaxies observed by LSST will overlap. Separating
these images is called deblending.
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CHAPTER 4. COMBINATION OF COSMIC PROBES

projected galaxy number density maps and the measurement of tomographic
angular power spectra. The combination of these different approaches should
provide much tighter constraints on, e.g., σ8 and the sum of neutrino masses,
as shown on figure 4.17.

Carrying a joint analysis is a technical challenge with needs of joint simulations and
common pipelines and data access facilities, but the benefits will be great for science.
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4.A. SIGNAL-TO-NOISE RATIO: AUTO- VS CROSS-CORRELATION

Appendices

4.A Signal-to-noise ratio: auto- vs cross-correlation

As shown in appendix B.1.2, the variance of the angular power spectrum is given by

(
∆CAB`

)2
=
DAA
` DBB

` +DAB
`

2

2`+ 1
(4.53)

where

DAB
` =

{
CAA` +NA

` if A = B

CAB` otherwise,
(4.54)

where NA
` is the noise power spectrum. As stated earlier, the noises from two

different observables do not correlate, and, in principle, cross terms involving noise
not contribute to the variance. Therefore, the ratio of signal-to-noise ratios for the
cross-power spectrum of A and B and the auto-power spectrum of A is

(
CAB`

/
∆CAB`

)2

(
CAA`

/
∆CAA`

)2 =

2

(
1 + 1

(S/N)
A
`

)2

1

λ
2

(
1 + 1

(S/N)
A
`

)(
1 + 1

(S/N)
B
`

)
+ 1

, (4.55)

where

(S/N)A` ≡
CAA`

NA
`

(4.56)

is the signal-to-noise ratio of the auto-correlation of observable A and

λ2 ≡ CAB`
2

(CAA` CBB` )
(4.57)

is the correlation coefficient squared (λ2 ≤ 1 by virtue of the Cauchy–Schwarz
inequality). This ratio is monotonically decreasing with (S/N)A` but increasing with
(S/N)B` and λ. Therefore, if observable A, say CMB lensing, is noise-dominated, but
its correlation with another signal-dominated is high enough, then the cross-power
spectrum has a higher signal-to-noise ratio.
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Figure 4.18 – Colored lines correspond to equal signal-to-noise ratio for the cross-power
spectrum CAB` and the auto-power spectrum CAA` as a function of the signal-to-noise
ratios for observables A and B and the correlation coefficient λ. Above the line, the
cross-correlation is easier to detect.
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CHAPTER 5

Detection of the CMB lensing and
Lyman-α forest bispectrum
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In this chapter, I present work that was performed during the first two years of
my thesis, in parallel to the larger project presented in the next chapter. This lead
to the first detection of the cross-correlation between lensing of the cosmic microwave
background and the Lyman-α forest, and a publication in Physical Review D (Doux

et al. 2016) accompanied by a synopsis in APS’s Physics entitled “Seeing Dark Matter
Through the Clouds” (Rini 2016).
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CHAPTER 5. LY-α FOREST AND CMB LENSING BISPECTRUM

5.1 Introduction

The Lyman-α forest as a tracer of matter

As seen in chapter 2, the Lyman-α forest is a powerful tracer of neutral hydrogen
on a wide range of scales. On the largest scales, the imprint of the baryon acoustic
oscillations in the Lyman-α forest furnishes a precise distance measurement at high
redshift, thus constraining the geometry of the Universe, while the smallest scales are
used to constrain the mass of neutrinos and properties of dark matter.

The interpretation of these results rely on the Lyman-α transmission tracing the
underlying matter density field. If the hydrogen is in photoionization equilibrium
with a uniform UV background, and there is no other source of entropy, then the
relationship is described analytically through variations of the fluctuating Gunn-
Peterson approximation (Croft et al. 1998) and is evaluated numerically using
hydrodynamical simulations (Borde et al. 2014; Rossi et al. 2014). However, the
connection between Lyman-α transmission and the underlying matter density is
complex (Pontzen 2014) and non-linear. It is affected by the proximity effect on
the largest scales (Pontzen 2014), by thermal broadening, Jeans smoothing and
non-linear gravitational evolution on the smallest scales (Arinyo-i-Prats et al.
2015) and by the gas equation of state throughout. For these reasons, and in light
of the tension between BAO measurements from the Lyman-α forest and galaxies
(see Aubourg et al. 2015, and figure 3.15), consistency checks for the link between
Lyman-α transmission and matter density are valuable.

Correlation of CMB lensing and the Lyman-α forest

Since most hydrogen is ionized, the Lyman-α forest also traces much greater
amounts of ionized hydrogen, and thus, of free electrons. Croft et al. 2006 suggested
cross-correlating CMB temperature anisotropies with the Lyman-α forest in order to
observe the Sunyaev-Zel’dovich effect sourced by the aforementioned free electrons.
However, this paper also predicted that this signal would be small and difficult to
detect with available data.

In order to test the relationship between neutral hydrogen and dark matter,
(Vallinotto et al. 2009, 2011) proposed cross-correlating CMB lensing – instead
of temperature – with moments of the Lyman-α forest transmission. Indeed, since
both the CMB lensing convergence and the Lyman-α transmission probe the density
on a given line of sight, it is natural to compute their cross-spectrum. However, the
mean Lyman-α transmission is strongly affected by continuum fitting in the quasar
spectrum, making this a challenging observable.

Conversely, the small-scale line-of-sight Lyman-α power spectrum is less affected
by errors in continuum fitting and is correlated to the local mean matter density
because on non-linear evolution, as we shall see in the next section. The convergence
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Figure 5.1 – Schematic of the situation. We consider two line of sights towards two
quasars, crossing, respectively, an overdense and an underdense region. The line
of sight crossing the overdense region has positive CMB lensing convergence (the
geodesics followed by CMB photons, in blue, converge) and the Lyman-α forest of a
quasar will have large fluctuations because of enhanced small-scale structures. On the
contrary, a line of sight crossing an underdense region will have negative convergence
(CMB photons move apart) and fluctuations in the Lyman-α forest will be small.

of CMB lensing on the same line of sight can be used as a proxy to evaluate the mean
matter density. Thus, we expect a correlation of the one-dimensional power spectrum
with the value of CMB lensing convergence along the same line of sight. This signal
corresponds to a position-dependent power spectrum (Chiang et al. 2014; Schaan

et al. 2014), or a squeezed bispectrum of the matter density. Simply put, a positive
CMB convergence corresponds to an overdense line of sight; on this line of sight, the
matter power spectrum is enhanced on all scales, due to non-linear evolution under
gravity (Chiang et al. 2014; Li et al. 2014; Schaan et al. 2014) (see figure 5.1 for a
schematic of this idea). This bispectrum would therefore vanish at linear order in the
perturbation theory of the density field, where short and long modes are independent.
Instead, for a non-linear density field, this signal probes the response of the Lyman-α
power spectrum to a mean overdensity, as in Zaldarriaga et al. 2001.

5.2 Theoretical approach

In this section, we expose the theoretical approach to the Lyman-α- CMB lensing
bispectrum. First, we focus on the power spectrum of the Lyman-α forest; then, we
present the so-called position-dependent power spectrum formalism; finally, we apply
it to the cross-correlation.
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5.2.1 Power spectrum of the Lyman-α forest transmission

Fluctuations in the transmission δF can be used to trace fluctuations in the matter
density field. For small perturbations, the fluctuating Gunn-Peterson approximation
(Croft et al. 1998) relates the optical depth to the density field as

τ ∝ (1 + δ)α (5.1)

where α ≈ 2− 0.7(γ− 1) and γ ≈ 1.6 is the polytropic exponent of the gas (assuming
adiabatic expansion), such that P = ργ or T = ργ−1 (Pontzen 2014). Therefore,
the relationship between δF and δ is non-linear, though the linear term is the leading
term of a Taylor expansion and defines the large scale bias of transmission (Cieplak

and Slosar 2016) as

bδ =
d lnF

dδ
. (5.2)

Moreover, transmission is measured in redshift space and is thus affected by coherent
gas motions. At first order, this is parametrized by a velocity bias,

bη =
d lnF

dη
, (5.3)

where η = −H−1 dv‖
dr‖

is the velocity field gradient along the line of sight. Unlike the
velocity bias of baryons, it is significantly different from unity for the Lyman-α trans-
mission (Arinyo-i-Prats et al. 2015 and Blomqvist et al. 2015 found bη ∼ −0.2

on, respectively, simulations and SDSS-III/BOSS data). Note that both biases are
negative, because transmission decreases when density increases, and that they differ
from the Hi biases.

Overall, the three-dimensional power spectrum of transmission can be written, as
in Arinyo-i-Prats et al. 2015,

PF (k, µ) = bδ(z)
2

1

(
1 + βµ2

)2

2

Plin(k)

3

D(k, µ)

4

, (5.4)

where k = ‖k‖ and µ = ‖k⊥‖/k . Let us dissect the four terms in this formula.

1 is the redshift-dependent linear bias.

2 accounts for linear redshift-space distortions as described in chapter 2. Here,
β(z) = f(z) bη(z)

/
bδ(z) , which takes the transmission velocity bias into ac-

count.

3 is the linear (isotropic) matter power spectrum.

4 encapsulates gravitational non-linearities and IGM physics.
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Figure 5.2 – Snapshots from the Illustris simulation showing stellar light (top left),
gas density (top right), gas temperature (bottom left) and gas metallicity (bottom
right) of a 10 Mpc-wide box at redshift z = 2.25 (top panel) and z = 0.5 (bottom
panel). Astrophysical processes heat the gas and increase its metallicity.
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The last term, D(k, µ), encodes the Lyman-α-specific physics. In principle, it
involves many cosmological and astrophysical processes (see McQuinn 2016 for a
thorough review, and an illustration in figure 5.2). These include:

Galactic feedback Supernovæ explosions and AGN activity heat the surrounding
IGM, increase its metallicity (the fraction of heavy elements) and produce
galactic winds and shockwaves known to blow baryons out of galaxies. However,
there are indications that these processes may be limited to small volumes
around galaxies, such that they do not affect low density regions probed by the
Lyman-α forest.

Photoionization The ionizing UV background, emitted by stars and quasars, and
the ionization rate, related to the IGM temperature (itself affected by the
aforementioned effects), are a priori non-uniform. However, the mean free
path of UV photons greatly exceeds the mean distance between emitters, such
that their distribution should homogenize rapidly. Most simulations to date
thus make the approximation that photoionization is insured by a uniform UV
background.

IGM equation of state The equation of state of the IGM, often parametrized as
T ∝ ργ−1, can be modified by inhomogeneous (“patchy”) reionization processes.
However, cosmic expansion and cooling via Compton scattering off CMB photons
tighten the distribution around a power law. Temperature is an important
parameter since it controls line broadening and the gaz pressure, and thus,
smoothing of small scale fluctuations.

Here, we employ the fitting formula of Arinyo-i-Prats et al. 2015, given by

D(k, µ) = exp

([
q1∆2(k) + q2∆4(k)

]
A

[
1−

(
k

kv

)av
µbv
]

B

−
(
k

kp

)2

C

)
. (5.5)

Various terms account for:

A non-linear gravitational enhancement, parametrized by the dimensionless matter

power spectrum ∆2(k) = k3Pm(k)
/

2π2 ;

B absorption line broadening due to non-linear and thermal velocities, causing a
smoothing along the line of sight (justifying the µ-dependence);

C smoothing of smale scale fluctuations below the Jeans scale, kp ≈ 10 h Mpc−1,
due to the gaz pressure.

D(k, µ) goes to 1 at large scales and is exponentially cut off at small scales with an
angle-dependent enhancement at intermediate scales (see figure 5.3). All parameters
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(a) Non-linear term D(k, µ) of the Lyman-α transmission power spectrum from
Arinyo-i-Prats et al. 2015.
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(b) Three-dimensional power spectrum of the Lyman-α transmission PF (k, µ) with
(solid lines) and without (dashed lines) the non-linear term D(k, µ).

Figure 5.3 – Non-linear term D(k, µ) and three-dimensional power spectrum of the
Lyman-α transmission PF (k, µ) as functions of scale and angle with respect to the
line of sight (green for modes along the l.o.s. and blue for modes perpendicular to
the l.o.s.). Both are shown for redshift z = 2.4.

are redshift-dependent, were fitted on hydrodynamical simulations in five redshift
bins between z = 2 and z = 3 and are interpolated using a spline adjusted to match
the best fits.

Finally, the one-dimensional power spectrum of transmission along the line of
sight is obtained by integrating over perpendicular modes

P 1D
F (k‖) =

∫
d2k⊥

(2π)2PF (k, µ = k‖
/
k ). (5.6)
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5.2.2 Position-dependent power spectrum

Non-linear gravitational evolution induces a correlation between k-modes probed by
the matter density bispectrum B. It is defined by

〈δ(k1)δ(k2)δ(k3)〉 = (2π)3B(k1,k2,k3)δ(3)(k1 + k2 + k3) (5.7)

and is non-vanishing if and only if k1 + k2 + k3 = 0 (the modes form a triangle).
Standard perturbation theory can be used to show that (Chiang et al. 2014)

B(k1,k2,k3) = 2 [Plin(k1)Plin(k2)F2(k1,k2) + 2 permutations] (5.8)

where

F2(k1,k2) =
5

7
+

1

2

k1 · k2

k1k2
+

2

7

(
k1 · k2

k1k2

)2

. (5.9)

Now, imagine measuring the matter density field within a given volume, centered
at position r0 and specified by a normalized window function Wr0

(r). We define, as
in Chiang et al. 2014, the local Fourier transform as

δ(k, r0) ≡
∫

d3r δ(r)Wr0
(r)eik·r, (5.10)

the local mean density as

δ̄(r0) ≡
∫

d3r δ(r)Wr0
(r) = δ(k = 0, r0), (5.11)

and the position-dependent power spectrum as

P (k, r0) = |δ(k, r0)|2. (5.12)

Expanding around the mean density of the Universe, we have

P (k, r0) = P (k)

∣∣∣∣
δ̄=0

+
dP (k)

dδ̄

∣∣∣∣
δ̄=0

δ̄(r0) +O
(
δ̄2
)
. (5.13)

Here, dP (k)
/

dδ̄ is related to the bispectrum, integrated over the volume considered
and in a special configuration – called “squeezed” – where one of the modes vanishes,
such that the two others are opposite. Chiang et al. 2014 shows that

d lnPlin(k)

dδ̄
=

68

21
− 1

3

d ln k3Plin(k)

d ln k
, (5.14)
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Figure 5.4 – Dependence of the linear matter power spectrum on the local mean
density (see equation (5.14)).

and therefore1 〈
P (k, r0)δ̄(r0)

〉
= σ2

δ̄

dP (k)

dδ̄

∣∣∣∣
δ̄=0

P (k), (5.15)

where σ2
δ̄ is the variance of the mean density, given by

σ2
δ̄ ≡

∫
d3k

(2π)3

∣∣∣W̃r0
(k)
∣∣∣2P (k). (5.16)

The position-dependent correlation function (similarly defined) of SDSS-III/BOSS
galaxies was measured in Chiang et al. 2015 at the 7.4σ level.

5.2.3 Application to the correlation of CMB lensing and the Lyman-α
forest

We aim at evaluating the covariance between the one-dimensional power spectrum
PF (k‖) of the Lyman-α forest transmission on one line of sight and the CMB conver-
gence κ on the same line of sight.

The estimate κ̂ of the convergence from CMB lensing reconstruction Hu and
Okamoto 2002; Okamoto and Hu 2003 is first Wiener-filtered. It is obtained by
applying a linear transformation in Fourier space (equivalent to a convolution in real

1This is just an application of the formula

〈f(X)g(X)〉 = f(〈X〉)g(〈X〉) + f
′
(〈X〉)g′(〈X〉)

〈
(X − 〈X〉)2

〉
+O

(〈
(X − 〈X〉)3

〉)
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Figure 5.5 – Wiener filter for the Planck lensing map (Planck Collaboration et al.
2016f) compared to a gaussian beam of full-width-at-half-maximum θFWHM = 0.5°,
in multipole space (left panel) and real space (right panel). In multipole space, the
Wiener-filter is given by equation (5.17) and the gaussian beam has a spectrum
given by B` = exp

(
− `(`+ 1)σ2

/
2
)
where σ = θFWHM

/√
8 ln 2 . In real space, the

Wiener filter is Λκ(θ) =
∑

`
2`+1
4π Λκ,`P`(cos θ) and has a equivalent width ∆θ = 0.86°.

Both filters are normalized in the real-space plot.

space) to the reconstructed convergence multipoles κ̂`m, such that

κ̂WF
`m =

Cκκ`
Cκκ` +Nκ

`︸ ︷︷ ︸
Λκ,`

κ̂`m (5.17)

where Cκκ` and Nκ
` are the convergence signal and noise power spectra. The Wiener-

filter Λκ maximizes the signal-to-noise ratio of the convergence in real space and
defines a “cone”, whose line of sight dimension is determined by the lensing kernel Wκ,
and whose angular size is determined by the Wiener filter. More formally, we define
a window function for perpendicular modes k⊥, such that at comoving distance χ(z),

Λκ(k⊥) =
Cκκ`

Cκκ` +Nκ
`

∣∣∣∣
`=χ(z)k⊥

. (5.18)

We split this cone into thin slices of thickness dχ and width given by the Wiener
filter. This defines a small volume in which we can evaluate the mean density, as in
the previous section. The variance of the density field δ̄(χ) averaged over this thin
slice is given by (see Schaan et al. 2014)

Var
(
δ̄(χ)

)
= σ2

δ̄ (χ)/dχ (5.19)

with

σ2
δ̄ (χ) =

∫
d2k⊥

(2π)2 |Λκ(` = χk⊥)|2 Plin(k⊥, χ) (5.20)

where Plin(k⊥, χ) is the linear matter power spectrum at comoving distance χ. The
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Figure 5.6 – Variance of the local mean density per unit of comoving distance for the
Wiener filter. The CMB lensing kernel is shown for comparison (on a different scale).

covariance of δ̄(χ) with the 1D power spectrum measured on the same slice is (Schaan

et al. 2014)

Cov
[
δ̄(χ), P 1D

F (k‖, χ)
]

= Var
(
δ̄(χ)

)∂P 1D
F

∂δ̄
(k‖, χ) +O

(
σ4
δ̄

)
. (5.21)

In other words, the response of the Lyman-α power spectrum to the mean matter
overdensity produces a non-zero covariance. For a given Lyman-α forest, measured
between χmin and χmax, we define an average power spectrum

P 1D
F (k‖) =

1

∆χ

∫ χmax

χmin

dχP 1D
F (k‖, χ), (5.22)

where ∆χ = χmax − χmin. Since the CMB convergence is a weighted average of the
matter density field, we perform the same average on equation (5.21) to get an
integrated bispectrum between the CMB lensing convergence and fluctuations in the
Lyman-α forest

Bκ,Lyα(k‖) ≡ Cov
[
κ, P 1D

F (k‖)
]

=
1

∆χ

∫ χmax

χmin

dχWκ(χ)
∂P 1D

F

∂δ̄
(k‖, χ)σ2

δ̄ (χ). (5.23)

We have assumed that various redshift/distance slices are uncorrelated, as in the
Limber approximation (see section 4.2.2.2 of chapter 4), because the lensing window
function Wκ(χ) varies slowly over the integral width. This width, in turn, is much
larger than the scales where the correlation is expected, of order 0.1− 1 h Mpc−1.

To go further, we need to evaluate the response of the Lyman-α power spectrum
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to the mean overdensity ∂P 1D
F

/
∂δ̄ . In the previous section, we have seen how the

linear matter power spectrum responds to the local mean density. The linear bias
term bδ, the Kaiser term β and the baryonic non-linearities encapsulated in D(k, µ)

may also respond to a mean overdensity. We characterize the response of these terms
by an effective non-linear bias

beff
2 (k, µ) =

∂

∂δ̄

[
ln

(
b2δ

(
1 + βµ2

)2
D(k, µ)

)]
. (5.24)

This quantity combines non-linear bias2 and the response of redshift-space distortions
and non-linear clustering of gas. It will be measured from the bispectrum, and can, in
principle, be measured from simulations. The response of the Lyman-α forest power
spectrum is thus

∂P 1D
F

∂δ̄
(k‖, χ) =

∫
d2k⊥

(2π)2PF (k)

(
∂ lnPlin

∂δ̄
+ beff

2 (k, µ)

)
. (5.25)

Combining section 5.2.3 and equation (5.25), the CMB lensing - Lyman-α bispectrum
becomes the sum of two terms: one representing the response of the linear matter
power spectrum, and one for the non-linear and baryonic terms.

5.3 Analysis

5.3.1 Lyman-α forest power spectrum

5.3.1.1 Data

We use quasar spectra from the twelfth data release of SDSS-III/BOSS (Dawson

et al. 2013; Lee et al. 2012; Pâris et al. 2017). The continuum fitting is performed
using a mean-flux-regulated principal component analysis3 method described in Lee

et al. 2012 that was applied to the DR9 in Lee et al. 2013. The domain of the
Lyman-α forest of a given quasar spectrum is defined by limits on the rest frame
wavelength

1 041Å ≤ λrf ≤ 1 185Å, (5.26)

where λrf = λ
/

(1 + zQSO) for a quasar at redshift zQSO.
Spectra displaying damped Lyman-α absorption systems (DLAs, identified using

the technique described in Noterdaeme et al. 2012) or broad absorption lines
2Note that the first-order non-linear bias b2 is generally defined through the response of the

linear bias to an overdensity via ∂b1
/
∂δ̄ = b2 − b

2
1, e.g. in Baldauf et al. 2016a; Chiang et al.

2014. Therefore, if we neglect the Kaiser term and the baryonic term, the quantity beff
2 defined here

is related to the non-linear bias b2 as beff
2 = 2(b2 − b

2
1)/b1.

3The idea of MF-PCA is to use quasar spectrum templates derived from PCA of high resolution
spectra with an overall power law dependence to account for the diversity of SDSS quasars, and
to make a global adjustment of fitted continua to correctly reproduce the pre-measured mean
transmission fraction.
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Figure 5.7 – Two dimensional histogram of maximum vs minimum redshifts of
the sample of Lyman-α forests used for the analysis. One-dimensional, projected
histograms are shown with the same scale. There is an accumulation of forests that
were cut at the minimum redshift of 2.1.

(BALs, identified by visual inspection in Pâris et al. 2017) were discarded. We select
quasars with a signal-to-noise ratio in the Lyman-α forest, measured by the BOSS
pipeline, greater than 1 and a redshift between 2.15 and 4.0. The noise estimation
gives poor results close to the spectrograph blue-end, so we additionally cut parts of
the forests below z = 2.1 as in Palanque-Delabrouille et al. 2013. Finally, we
discard quasars lying outside of the Planck lensing mask. These cuts select 87 085
quasars out of the 155 002 in the DR12 catalog. The distribution of forest minimum
and maximum redshifts is shown in figure 5.7

The flux transmission fraction in the Lyman-α forest at redshift z = λ/λLyα is

F (z) =
f(z)

C(z)
, (5.27)

where f(z) is the measured flux and C(z) is the estimated continuum. We then

135



CHAPTER 5. LY-α FOREST AND CMB LENSING BISPECTRUM

estimate the normalized transmitted flux fraction as a function of redshift as

δi(z) =
Fi(z)

〈F (z)〉
− 1 (5.28)

where 〈F (z)〉 is the mean flux transmission fraction obtained by averaging over
quasars and i stands for the forest index (see figure 5.8a). The mean and r.m.s
of the transmission fluctuations per redshift pixel are shown in figure 5.8b. The
variance σtotal(z) is the sum of two contributions, to wit, intrinsic scatter of large-scale
structures σLSS(z) and instrumental noise σnoise(z). The latter is evaluated for each
line by measuring the spread for different observations, and then averaged over lines.
The total variance is given by the spread of the transmission fluctuations in each
redshift pixel. Finally, the cosmological variance is obtained by subtraction

σ2
LSS(z) = σ2

total(z)− σ
2
noise(z). (5.29)

The normalized flux fraction is converted from a function of redshift to a function
of radial comoving distance χ(z), which is evaluated using cosmological parameters
from Planck 2015 (TT,TE,EE+lowP+lensing+ext, Planck Collaboration et al.
2016e). Because the spacing between pixels of the BOSS spectrograph is logarithmic
in wavelength, with ∆(log10 λ) = 10−4, and because sky emission lines are masked
(on average 1.2% of pixels), the spacing in distance space is slightly irregular, albeit
monotonically growing. Therefore the Fourier transform δ̃(k) of the normalized
transmitted flux fraction δ(χ) is computed using the Non-equispaced Fast Fourier
Transform library4 (NFFT, Keiner et al. 2009). We checked that it gave correct and
precise results for functions with known Fourier transforms but sampled in a similar
fashion to Lyman-α forests.

For a forest of length ∆χ and mean pixel spacing δχ, the smallest mode is
kmin = 2π/∆χ while the largest mode is kmax = 2π

/
δχ . Forests have a length of

280−420 h−1 Mpc with a spacing of order 0.58−0.68 h−1 Mpc for forests in the redshift
range 2.1 − 3.6, giving kmax ≈ 6 h Mpc−1. These scales are highly affected by non-
linear clustering and baryonic effects. Moreover, the power spectrum becomes noisier
because of the resolution of the spectrograph (see the spectrograph window function
in equation (5.32)), so we restrict our analysis to kmax = 1.5 h Mpc−1, corresponding
to scales of order 4 h−1Mpc, consistent with Palanque-Delabrouille et al. 2013.
We note that the large-scale modes over 60 h−1Mpc, i.e. k . 0.1 h Mpc−1 may be
slightly affected by continuum fitting, though in a way uncorrelated with CMB lensing
(this will be discussed in section 5.5).

4http://www-user.tu-chemnitz.de/~potts/nfft/
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Figure 5.8 – Mean transmission fraction and transmission fluctuations statistics for
the sample used in the analysis. The vertical dashed lines indicate the redshift interval
considered z ∈ [2.1, 4.0].
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5.3.1.2 Estimator

The raw power spectrum is obtained by

P̂ raw
i (k) =

∣∣∣δ̃i(k)
∣∣∣2

∆χi
, (5.30)

where ∆χi is the comoving length of the i-th. forest.

Multiple observations of the same quasars allow for an estimation of the noise level
σ2

noise(χ) for each pixel in the forest. We assume the noise to have a white spectrum,
which agrees well with McQuinn and White 2011; Palanque-Delabrouille et al.
2013, and estimate its power spectrum by averaging over pixels, such that

P noise
i = σ2

noise,i
π

∆k
, (5.31)

where ∆k = kmax − kmin.

The resolution of the spectrograph is of order 1 h−1 Mpc and varies slowly with
wavelength (by about 10% over one forest). Therefore the spectrograph window
function is

Wspectro(k,Ri) = exp

(
−k

2R2
i

2

)
× sinc

(
kδχi

2

)
, (5.32)

where Ri is the resolution of the spectrograph averaged over the i-th forest,

Ri =
c(1 + z)

H(z)
δdisp∆ log λ, (5.33)

with δdisp being the measured dispersion in units of ∆ log10 λ. The second term in
equation (5.32), in which sinc(x) = sin(x)/x , accounts for the pixelization. Finally,
the estimator of the one-dimensional power spectrum of the Lyman-α forest is given
by

P̂ 1D
F (k, z) =

〈
P̂ raw
i (k)− P noise

i

W 2
spectro(k,Ri)

〉
i∈z

, (5.34)

where the average is over forests falling in the redshift range.

This straightforward measurement of the one-dimensional power spectrum does
not correct for subtle instrumental systematics or contamination of the forest by metal
lines (such as SiIII) dealt with in Palanque-Delabrouille et al. 2013. However,
these effects are less important in a cross-correlation measurement, and a precise
estimation of the power spectrum is beyond the scope of this work.

5.3.1.3 Measured power spectrum

The first step is to measure the one-dimensional power spectrum in order to obtain
the linear bias bδ(z) as a function of redshift. The theoretical curves are computed
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Figure 5.9 – One-dimensional power spectrum of the Lyman-α forest P 1D
F in ten

redshift bins. The redshifts indicate the mean value of the middle redshifts of the
forests. Error bars are computed from the weighted empirical covariance of the power
spectra of different forests. Colored boxes represent the measured spectra averaged
over these redshifts bins with their uncertainties and k-bins width. Dashed lines are
theoretical curves with fitted bias bδ(z).

using parameters, except for the linear bias that we aim at fitting, measured from
simulations in Arinyo-i-Prats et al. 2015. We divide our forest sample into 10
linearly-spaced redshift bins using the central redshift of each forest. Each power
spectrum is given a scale-dependent minimum-variance weight

wi(k)∝npix
i

(
P 1D
F,fid(k, zi) +

P noise
i

W 2
spectro(k,Ri)

)−2

, (5.35)

where npix
i is the number of pixels of the i-th forest. The fiducial power spectrum

P 1D
F (k, z) is computed using the linear bias measured from simulations in Arinyo-i-

Prats et al. 2015, which will only be used in the weights.

In order to take into account possible wavelength-dependent bias in the noise
estimation, we allow for a common rescaling of the estimated noise power spectrum
in each redshift bin. Precisely, we introduce a coefficient αz in front of P noise

i in
equation (5.34), common to all spectra in each redshift bin and fit this parameter
jointly with the linear bias bδ(z) in each redshift bin. The estimated one-dimensional
power spectrum is shown in figure 5.9 together with theoretical curves with best fit
biases. The best fit of the linear bias bδ(z) is shown in figure 5.10 with error bars
including the marginalization over αz. We fit this result with a power law in (1 + z)

of the form bδ(z) = a(1 + z)b and find a = −0.00507 and b = 2.79. It is represented
by the solid blue curve in figure 5.10 and is in fairly good agreement with the bias
measured in hydrodynamic simulations in Arinyo-i-Prats et al. 2015 (which we
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Figure 5.10 – Lyman-α flux transmission linear bias bδ(z) as a function of redshift.
The data points are depicted with error bars and the power law in (1 + z) (see text)
is represented by the blue solid curve. The dashed orange curve represents the linear
bias measured from hydrodynamical simulations in Arinyo-i-Prats et al. 2015.
Remark that the transmission is anti-correlated with the amount of hydrogen, hence
the negative sign.

only used in the weights).

5.3.2 Results

5.3.2.1 Measurement of the bispectrum

The next step is to compute the weighted, unbiased covariance of the lensing con-
vergence and the one-dimensional power spectrum. Quasars have a significant con-
tribution to the lensing of the CMB because the lensing efficiency Wκ peaks at
z ∼ 2. Therefore, we expect the mean convergence in the directions of quasars to be
positive, and indeed find 104 × 〈κWF

i 〉 = 1.35± 0.52. This value is consistent with the
expected amplitude κ = (Λκ ∗ Σ)/ρ̄ ∼ 1.5× 10−4, where Σ is the projected density
of the haloes hosting the quasars (computed for a NFW profile (Navarro et al.
1996) with a halo mass Mh ∼ 2× 1012M�/h and redshift 2.5 (White et al. 2012))
convolved with the Wiener filter and ρ̄ is the mean matter density. With the aim
of measuring the correlation between our two probes, we subtract the mean value〈
κWF
i

〉
in the computation of the covariance. So as to decrease the effects of noise in

this measurement, we also subtract the mean value of the power spectrum in each
k-bin (which does not impact the expectation value of the estimator). The estimator
for the correlation of CMB lensing and fluctuations in the Lyman-α forest, i.e. the
CMB lensing − Lyα integrated bispectrum, is defined as

B̂κ,Lyα(k‖) ≡ Covw(k‖)

[
κWF, P 1D

F (k‖)
]
, (5.36)
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Figure 5.11 – Integrated bispectrum of CMB lensing and fluctuations in the Lyman-α
forest. The Wiener-filtered CMB lensing is measured in the direction of quasars
for which we measure the Lyman-α forest one-dimensional power spectrum in the
range k‖ ∼ 0.1− 1.5 h Mpc−1. Data points (in purple) show a signal measured at
5σ. The theoretical curve (solid orange) is the sum of two terms: the response
of the linear matter power spectrum (dashed), and the response of the non-linear
terms in the Lyman-α power spectrum (non-linear bias b2, Kaiser term and baryonic
non-linear term D) (dotted). While the first involves no free parameters, the latter
has an amplitude characterized by the effective non-linear bias beff

2 = 1.16 ± 0.53,
see equation (5.24). The orange area represents the 1σ uncertainty on this non-
linearity amplitude. We test that our estimator is coherent with zero in the case of no
correlation by a shuffling method (thin red boxes, expanded 10 times for visibility).

where
Covw [x, y] = N ×

∑
i

wi (xi − 〈x〉) (yi − 〈y〉) (5.37)

with the normalization N =
∑

iwi/
(

(
∑

iwi)
2 −

∑
iw

2
i

)
. The mean values

〈
κWF

〉
and

〈
P 1D
F (k‖)

〉
are computed using the same weights as well. The measured values

in each k-bin are shown in purple in figure 5.11.
We use two methods to compute the covariance matrix for the various k-bins. For

the first method, we proceed by computing the signal repeatedly with shuffled indices
in κWF

i . More precisely, for a given random permutation σ of the quasar indices, we
compute Cov

[
κWF
σ(i), P

1D
F,i (k‖)

]
and repeat N = 10, 000 times. We then estimate the

mean value (thin red boxes on figure 5.11) and the empirical covariance. For the
second method, we use 100 simulations of CMB lensing convergence reconstruction
made publicly available by the Planck collaboration on the Planck Legacy Archive5.
The corresponding matrices of correlation coefficients are shown in figure 5.12. Both
methods yields similar results in terms of detection, but the limited number of

5http://www.cosmos.esa.int/web/planck/pla
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Figure 5.12 – Correlation matrix of the data-points between k-bins computed by (left)
shuffling the indices of one of the variables or (right) using simulated reconstructions
of CMB lensing. It shows significant correlation ranging from 20% up to almost 65%
for the large k modes.

simulations makes the covariance matrix estimated with the second method noisier.

5.3.2.2 Comparison with theory

Finally, we aim at comparing our theoretical model and fitting a value of the effective
non-linear bias beff

2 defined in equation (5.24). We measure a single number, i.e.
a scale and redshift averaged non-linear bias integrated over µ, characterizing the
non-linear response in our sample. This parametrization is incomplete, but sufficient
given the signal-to-noise ratio. For each line of sight, we evaluate the expected signal
using section 5.2.3 given the redshift range [zmin, zmax] of the forest, and the linear
bias bδ(z) from the power law best fit. We then weight the theoretical expected
value by the weights in equation (5.35). The best fit value is beff

2 = 1.16± 0.53. The
theoretical curve (in orange in figure 5.11) is the sum of two contributions, one from
the linear power spectrum (dashed line) and the other from the non-linear terms
(dotted line).

Using the covariance matrix obtained by our shuffling method and the measured
data points, we find a χ2 value for the null hypothesis χ2

null = 30.1 for 12 data points.
The probability to exceed is 0.27% and the null hypothesis is therefore rejected at a
significance of 3.0σ. For the best fit in b2, we find χ2

best−fit = 5.37, a small value that
could be explained by over-estimated error bars, which would lead to a better detection.

The signal-to-noise ratio for the detection is SNR =
√
χ2

null − χ
2
best−fit = 4.97 (of

order 4.5 for the second method of covariance estimation), hence this constitutes a
5σ detection of the non-linear response of the Lyman-α power spectrum.
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5.3.3 Null tests

In order to assess the cosmological nature of this signal, we proceed to a number of
null tests.

First, we make sure that the correlation estimator is consistent with zero in the
case of no correlation. To do so, we compute the mean of the values of the signal
measured with shuffled indices in κWF

i as we expect different lines to be uncorrelated.
The result is consistent with zero, as shown on figure 5.11 by the thin red boxes. Using
the simulated lensing maps results in the same conclusion. Moreover, the shuffling
method has a caveat: if there are many quasars in a given patch on the sky where
lensing is coherent, then shuffling their associated convergence value could result in
too low error bars (as they still have the same convergence value). However, the
lensing signal is noise-dominated, such that the variance of our estimator is dominated
by noise as well, and we find very similar results with the method using simulations,
thus eliminating the possibility of catastrophic underestimation of the error bars.

Second, we want to verify that the signal we measure does not originate in a
possible correlation of the lensing convergence in the directions of quasars with their
intrinsic properties. We split our sample in two equal parts according to the median
values of various quasar parameters. For each of these parameters, we measure
the signal in the two sub-samples using equation (5.36) and compute the difference
(divided by two such that error bars are the same as that of the signal). The results are
shown in figure 5.13 and the meaning of the tested parameters’ names are detailed in
table 5.1. We test for galactic latitude of the quasars and galactic Hi column density in
their directions to verify that the signal is not related to galactic foregrounds. We test
for quasar redshift and find no statistically significant variation of the signal. We also
test for various intrinsic properties of the quasars linked to their masses: colors (PSF
magnitudes in the g and i bands), near and far UV fluxes (from GALEX, Robotham

and Driver 2011)) and quasar spectral index. We also test for contamination by
carbon lines using the rest equivalent width of the emissions of Ciii and Civ. We find
that all tests are consistent with zero at the 0.2− 1.6 σ level. Lack of data prevents
us from testing the contamination from the Siiv line; however, it is at most a 5%
effect according to Palanque-Delabrouille et al. 2013.

5.4 Discussion

We have presented the first detection of a cross-correlation between the Lyman-α
forest of quasars and the gravitational lensing of the CMB. Our understanding of this
correlation is based on the response of small-scale fluctuations in the matter density,
measured by the one-dimensional power spectrum of the transmission in the Lyman-α
forest, to large-scale overdensities probed by the convergence of CMB lensing. This
signal corresponds to a bispectrum in the squeezed limit configuration where the two
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Figure 5.13 – Null tests for various quasar properties. For each parameter, the
sample is split in two parts according to the median value. We then compute
the CMB lensing − Lyα integrated bispectrum for these two sub-samples, using
equation (5.36) and compute the difference (divided by 2 in order to have the same
error bars as the signal itself). The greyed area is delimited by the absolute level of
the measured bispectrum for the full sample (as in figure 5.11).

small-scale modes are of order k ∼ 0.1− 1 h Mpc−1. This is the first measurement of
the CMB lensing–Lyman-α integrated bispectrum, and it measures the non-linearity
in the Lyman-α forest. Finally, this new observable tests our understanding of the
relation between neutral hydrogen and dark matter.

We measured the one-dimensional power spectrum and the linear bias of the
Lyman-α forest, finding values consistent with hydrodynamical simulations. Even
though the power spectrum is sensitive to a number of systematic effects, these are
much less important in a cross-correlation measurement like the integrated bispectrum
that we computed. The theoretical bispectrum is the sum of two contributions: the
response of the linear matter power spectrum, theoretically well-understood and
involving no free parameters, and the response of the bias and non-linear terms,
computed up to an effective non-linear bias beff

2 which we have fitted. We believe this
model provides a reasonable explanation of the observed signal.

However, we note that our interpretation of the measured bispectrum is limited
by theoretical uncertainties, mainly related to baryonic physics. That is, the term
D(k, µ), taken from Arinyo-i-Prats et al. 2015, encodes a number of effects that are
significant at very small scales (of order k ∼ 60 h Mpc−1, see Cieplak and Slosar

2016), but the integral of the three-dimensional power spectrum gets contributions
from k-modes greater than 10 hMpc−1, and we cannot neglect these effects. Moreover,
this term and the redshift-space distortion term β may also respond to large-scale
overdensities. Therefore, the effective non-linear bias term beff

2 encompasses several
uncertain contributions: comparing it with simulations could provide both a valuable
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Table 5.1 – Results of the null tests seeking for correlation between the lensing signal
and intrinsic quasars properties.

Label Description Null test

GAL_LAT Galactic latitude (absolute value) 1.6σ
HI_GAL log of galactic Hi column density 1.1σ

Z_VI Quasar redshift from visual inspection 0.2σ

PSFMAG_g PSF magnitude (flux in g band) 1.0σ
PSFMAG_i PSF magnitude (flux in i band) 1.4σ
NUV Near UV flux (from GALEX) 0.7σ
FUV Far UV flux (from GALEX) 0.5σ
ALPHA_NU Quasar spectral index 0.5σ

REWE_CIII Rest equivalent width of Ciii emission 1.1σ
REWE_CIV Rest equivalent width of Civ emission 0.3σ

check for the simulation assumptions while shedding light on the relation between
Lyman-α and dark matter.

Another uncertainty arises from the fact that the ionizing UV flux of the quasars
reduces the amount of neutral hydrogen around them, a phenomenon known as the
proximity effect (Pontzen 2014). Because overdense regions radiate more, the bias
of neutral hydrogen bHi(k) becomes negative at scales larger than k ∼ 0.01 h Mpc−1

(see figure 5.14). This impacts the Hi power spectrum for scales k . 0.1 h Mpc−1 and
may also affect our measurement in the lowest k-bin (which is off by about 1σ).

5.5 Perspectives

Since the publication of the article, two articles (Chiang and Slosar n.d.; Chiang

et al. 2017) presented predictions for the position-dependent power spectrum of
the Lyman-α forest transmission based on simulations using the separate Universe
approach. This technique enables predictions for the position-dependent power
spectrum by mapping differences in the local mean density to simulations with
different cosmological parameters. For instance, it is possible to map an overdense
region of a given universe to an average region of another universe with a higher
initial power spectrum (or σ8). Their predictions are globally consistent with the
results presented here.

However, Chiang and Slosar n.d. pointed out that a large-scale absorption
mode in the forest cannot be distinguished from a lower quasar flux, which in turn
is correlated to the environment of the quasar. Bright quasars are found in more
massive haloes, which contribute more to CMB lensing. Therefore, this degeneracy
impacts continuum fitting in a way that is correlated to the observed convergence of
CMB lensing (though not directly). The signal that we measure could therefore imply
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shape of the power spectrum is affected at large scale. Figure from Pontzen 2014.

a contribution from this effect that does not originate from non-linear gravitational or
baryonic effects, but rather from systematic error in continuum effect. This, in turn,
could explain that we find a positive beff

2 while simulations predict a higher response
of the matter power spectrum than that of the transmission power spectrum at all
scales. This paper found that the effect has only a moderate impact for the redshift
distribution of the sample of Lyman-α forests that we used, artificially increasing the
signal by about 1σ, but that it could dominate the signal at large redshift. Overall,
no statistically significant disagreement has been found yet.

Future data from upcoming spectroscopic surveys (in particular DESI) and
CMB mapping experiments will definitely allow more precise measurements and
better calibration of IGM simulations. Several extensions of this work could also
be performed. In particular, the anisotropic linear bias of the Lyman-α forest, i.e.
its dependence on angle µ, could be explored. Other avenues of exploration are to
study the dependence of the signal on redshift and perpendicular separation r⊥ (a
first step in this direction was taken in Chiang and Slosar n.d.). Because this
bispectrum is sensitive to small scales observed in the Lyman-α forest, it could
also provide additional constraints on the total mass of neutrinos and be used as
a tool to study alternative models of dark matter predicting small-scale cut-offs.
Finally, it would be interesting to explore measurements of the non-linear correlation
between CMB lensing and the Lyman-α power spectrum, with techniques mentioned
in section 4.2.3.2. This seems particularly fit as the power spectrum is constrained to
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be positive.
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In this chapter, we present a joint analysis of Planck CMB temperature and
lensing data with the spectroscopic tracers of SDSS-III/BOSS. The goal is to develop
the methods to perform such an analysis, from the individual map or catalog level up
to constraints on cosmological models, and to point out difficulties in doing so, in
particular from the point of view of future experiments. This work led to a paper
which is currently under review (Doux et al. 2017).

6.1 Introduction

Over the last few years, there has been a growing activity around this kind of
analysis (see section 4.4.1) with multiple purposes: analysing available data sets,
making forecasts for the next generation of surveys, or developing numerical tools.
In particular, the corresponding working groups of LSST and Euclid are surveying
and developing tools to perform joint analysis of multiple probes, and in combination
with external data sets (including CMB data). The ultimate goal is to exhaust the
cosmological information contained in multiple, disparate and complementary data
sets, so as to be able, perhaps, to distinguish between various models of dark energy
and dark matter.

To this end, we thus first construct the maps of projected galaxy density of the
three spectroscopic samples of SDSS-III/BOSS, that is, LOWZ, CMASS and the
uniform quasar sample (which we will simply call QSO). We then measure their
auto-power spectra and cross-power spectra with the CMB lensing convergence map
from Planck. Next, we build a joint likelihood for the pseudo-spectra and run
Markov Chain Monte Carlo (MCMC) analyses, testing various configurations and
demonstrating the constraining power of a joint analysis. Finally, we perform a joint
analysis with CMB temperature to constrain the parameters of the ΛCDM model
(H0, ωb, ωc, As, ns and zre) and the galaxy/quasar biases. Finally, we extend the
model and additionally constrain the sum of the masses of neutrinos, mν , and the
dark energy equation of state, w = p/ρ.

The whole analysis was performed within the general-purpose framework of the
NumCosmo library. I created, with the help of Sandro Vitenti and Mariana Penna-
Lima, a module called xcor to compute and analyse the power spectra of an arbitrary
number of probes. Details can be found appendix C.

The chapter is organised as follows. In section 6.2, we recall the theoretical
formalism, considering the Limber formula, to compute the angular power spectra of
CMB lensing and galaxy overdensities. In section 6.3, we describe the data used in
this work and build the galaxy and quasar density maps. In section 6.4, we develop
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the pseudo power spectrum estimators and construct the likelihood used in this work,
and then we perform the validation and null tests. In section 6.5, we detail the results
of the statistical analyses and present constraints on cosmological parameters (see
figure 6.1 for a full pipeline diagram). Finally, we draw conclusions in section 6.6.

6.2 Theoretical background [reloaded]

In this section, we recall some of the theoretical tools already mentioned in chapters 2
and 4. The power spectrum of two projected variables is given, within the Limber
approximation, by

CAB` =

∫
dz

H(z)

cχ(z)2W
A(z)WB(z)P

(
k =

`+ 1/2

χ(z)
, z

)
+O

(
1

`2

)
. (6.1)

The kernels used here are:

CMB convergence The kernel for the convergence of CMB is given by the lensing
efficiency, where the source redshift is that of the last scattering surface (denoted
by an asterisk), such that

WκCMB
=

3

2

(
H0

c

)2

Ω0
m

(1 + z)

H(z)
χ(z)

(
1− χ(z)

χ∗

)
. (6.2)

Galaxy overdensity Including lensing effects (Bonvin and Durrer 2011; Peiris

and Spergel 2000), the kernel W g(z) is given by

W g(z) = b(z)
dn

dz
+

3

2

(
H0

c

)2

Ω0
m

(1 + z)

H(z)
χ(z)(5s− 2)g(z), (6.3)

where
g(z) =

∫ z∗

z
dz′
(

1− χ(z)

χ(z′)

)
dn

dz′
. (6.4)

The function b(z) is the linear bias relating the galaxy overdensity to the
matter overdensity at large scales as δg(χn̂, z) = b(z)δ(χn̂, z), and dn/dz is
the normalised redshift distribution of the tracers, which also contains the
survey selection function. The second term in equation (6.3) is due to the effects
of gravitational lensing, with two opposing contributions (see the (5s−2) term):
the dilation of the apparent surveyed volume and the magnification bias effect
for flux-limited samples1, where

s =
d logN(< m)

dm

∣∣∣∣
m=mmax

. (6.5)

N(< m) denotes the cumulative count of objects with a magnitude smaller
1Lensed galaxies may appear brighter than they are and pass the luminosity threshold.
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Figure 6.1 – Pipeline diagram. Sections 6.3 to 6.5 are color-coded.
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Figure 6.2 – Kernel functions WA(z) of the observables used for cross-correlation
as defined in equations (6.2) and (6.3). For the LOWZ, CMASS and QSO samples,
W g(z) reflects the redshift distribution (multiplied by the bias). The background
colours correspond to the extent of the redshift distributions of the three samples.
The CMB lensing kernel (multiplied by 10 on this plot for visibility) is very broad
and peaks around z ≈ 2.

than m and the derivative is estimated at the faint end of the catalog (Hui

et al. 2007; Scranton et al. 2005). This term can be neglected when for the
low-redshfit LOWZ and CMASS samples, but it is relevant (at the few percent
level) for quasars (Chisari and Dvorkin 2013). Following Scranton et al.
2005, we use sQSO = 0.2 throughout this analysis.

Kernels of the observables used in this work are shown in figure 6.2.

As seen in section 4.2.2.2, the Limber approximation is valid when the kernel
functions vary slowly on the scales that are being probed. In particular, the CMB
lensing spectra are accurate for ` > 10 (Lesgourgues and Tram 2014). Moreover,
the selection functions of galaxies and quasars are wider than the largest scales
probed for the spectroscopic tracers used here. Indeed, for a given sample, the largest
scale probed is χmax ∼ π/kmin with kmin = (`min + 1/2)/χ(zeff) , where χ(zeff) is the
comoving distance at the mean redshift of the sample and `min = 20 (see section 6.3).
For LOWZ, CMASS and QSO, these scales are of order 110, 220 and 630 h−1Mpc, while
the selection functions have widths of order 1 080, 860 and 970 h−1Mpc. Therefore,
we can safely make use of this approximation to compute theoretical power spectra,
which are integrals of the matter power spectrum weighted by the kernel functions
corresponding to each observable.
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CMB lensing convergence κCMB

-0.05 0.05

Figure 6.3 – Planck CMB lensing convergence map in galactic coordinates. Grey
areas correspond to the masked areas near the galactic plane. The lensing map has
been Wiener-filtered for visualisation purposes only.

6.3 Data

This section presents in grater detail the input data used in this work, the construction
of the density maps and the pseudo-power spectra used in the cosmological analysis.

6.3.1 Planck data

In this work, we use Planck data for both the primordial CMB temperature anisotropies
(Planck Collaboration et al. 2016a) and the CMB lensing (Planck Collabo-

ration et al. 2016f). For temperature anisotropies, we use the two Planck likelihood
codes: Plik for the high multipoles, ` ≥ 30, and Commander for low multipoles,
` < 30 (see Planck Collaboration et al. 2016d, for detail and a summary in
section 3.1.3.4).

We also use the CMB lensing convergence map from the Planck 2015 data release
(Planck Collaboration et al. 2016f). The Planck Collaboration provides the
convergence map2 in the Healpix3 (Górski et al. 2005) format, with resolution
parameter Nside = 2048, and the corresponding binary mask, with a sky fraction
fsky = 0.67. Lensing potential maps were reconstructed from foreground-cleaned
temperature and polarisation maps, obtained from the SMICA code (also briefly
described in section 3.1.3.4). These were used to form five quadratic estimators
φ̂TT , φ̂TE , φ̂EE , φ̂EB and φ̂TB, combined into a minimum-variance estimator (see
section 2.3.2.2 for the general method and Planck Collaboration et al. 2016f,
for specificities about the Planck reconstruction). The Wiener-filtered convergence

2The convergence map and mask files are publicly available at http://pla.esac.esa.int/pla/.
3http://healpix.jpl.nasa.gov/
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map is shown in figure 6.3 with its mask. Throughout this analysis, we will assume
that the dependence of the reconstructed lensing map on the fiducial cosmological
model (see Planck Collaboration et al. 2016f, Appendix C) does not impact
cosmological constraints and reserve this question for future work.

6.3.2 SDSS-III/BOSS data

The spectroscopic samples Baryon Oscillations Spectroscopic Survey (BOSS, Dawson

et al. 2013) consists of two galaxy catalogs named LOWZ and CMASS and one quasar
catalog, a subset of which has a uniform selection function. They are described in
section 3.2.2.3 and we only recall relevant information in this section.

6.3.2.1 Luminous Red Galaxies: LOWZ & CMASS

LOWZ contains Luminous Red Galaxies (LRG) at low redshift (z . 0.4), and it aims
at a constant number density of about n̄ ∼ 3× 10−4 h3 Mpc−3 over the redshift range
[0.1, 0.4]. This is done using a redshift dependent magnitude cut. In this work, we
use the twelfth data release (DR12) and select galaxies in the range [0.1, 0.4], which
contains 383876 galaxies. The CMASS sample contains galaxies at higher redshifts
0.4 . z . 0.8 with a constant stellar mass in this redshift range. The twelfth data
release contains 849637 galaxies in the redshift range [0.4, 0.8] used in this work.
The normalised redshift distributions of the two samples are shown on figure 6.2
(multiplied by their respective biases).

BOSS’s spectroscopic fibres are plugged into tiles of diameter 3° to observe
predetermined targets. The combined footprints of all tiles can be decomposed into
non-overlapping sky sectors. Because of the finite size of fibres, galaxies closer than
62′′ may not be observed even after multiple observations of the same field. The
pipeline may also fail in determining the redshift of some galaxies (especially the
faintest ones). Therefore, for each sector i, the completeness is defined as the ratio
of observed galaxies with a measured redshift to the number of targets lying in that
same sector

Ci =
Nobs,i

Ntarg,i
. (6.6)

The completeness maps are defined in the Mangle software4 format and are converted
to Healpix maps with resolution parameter Nside = 2048. The mask functions of the
galaxy samples are obtained by assigning 1 to pixels where the completeness is above
75% and then removing small areas that were vetoed for bad photometry, bright
objects and stars and instrumental constraints, such as fibre centerposts and fibre
collisions.

4See http://space.mit.edu/~molly/mangle/.
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In order to correct for completeness, each galaxy is thus assigned a weight

wtot = wstarwseeing(wcp + wnoz − 1), (6.7)

where wstar and wseeing correct for non-cosmological fluctuation in the target selection
due to stellar density (only for the CMASS sample) and atmospheric seeing, wcp

corrects for fibre collisions and wnoz corrects for redshift failures (in these cases, the
closest successfully observed galaxy is up-weighted by 1).

6.3.2.2 Quasars

The selection function (over the sky) of the full quasar sample of BOSS is not uniform
due to the observing strategy, hence we shall use the so-called CORE sample which
contains QSOs with redshift z ≥ 2.15 that were uniformly selected by the XDQSO

algorithm (Bovy et al. 2011). There are 94971 quasars in the CORE sample of DR12
within this redshift range. The completeness is computed using the BOSSQSSOMASK

software5 from Eftekharzadeh et al. 2015 and is then combined with the veto
mask to build the mask of the quasar density map.

6.3.2.3 Building the maps

We build Healpix maps with resolution parameter Nside = 2048 for the projected
overdensity of the three spectroscopic samples. For the LOWZ and CMASS samples,
we proceed as follow. For each pixel p,

δp =
Np

N
− 1, (6.8)

where Np =
∑

i∈pwi is the number of galaxies in pixel p counted with their weights

and N = 1
Npix

∑Npix

p=1 Np is the mean pixel count (where the sum runs only on pixels
in the observed area, i.e. where the mask function is equal to 1).

For the quasars, there is no weight provided in the BOSS DR12 catalog and the
density map is computed as

δp =
Np

N
− 1, (6.9)

where this time Np =
∑

i∈p 1
/
Cs(p) denotes the number of QSOs lying in pixel p,

up-weighted by the completeness Cs(p) of the sector s(p) where the pixel p lies, and
N denotes the mean weighted pixel count in the observed area.

5See http://faraday.uwyo.edu/~admyers/bossqsomask/.
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Figure 6.4 – BOSS galaxy and quasar overdensity maps in galactic coordinates. Grey
areas correspond to the masked areas near the galactic plane. The overdensity maps
have been smoothed on one degree scale for visualisation purposes only.
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The angular densities of the samples are

n̄LOWZ = 150× 103 sr−1, (6.10)

n̄CMASS = 300× 103 sr−1, (6.11)

n̄QSO = 36× 103 sr−1. (6.12)

The maps of the estimated overdensity for the three samples are shown in figure 6.4.

6.3.3 CMB lensing–large-scale structure correlations data

In this work, we will use, in addition to CMB temperature data, auto and cross
spectra of CMB lensing from Planck and spectroscopic tracers from BOSS. More
precisely, we will use the auto-pseudo spectra of the CMB lensing map κCMB and
of the density contrast maps of the LOWZ and CMASS samples. We also use the
pseudo-cross-spectra of the CMB lensing map with the three LSS tracers. The
collection of these six spectra (shown in figure 6.5) will henceforth be referred to as
“CMB lensing-LSS correlations”, and denoted CMB lensing ⊗ LSS in the figures.

We do not use the auto spectrum of the QSO map because it is completely
shot-noise-dominated in multipole space. We do not use the galaxy cross spectra
because their redshift ranges do not overlap and the cross spectra should therefore be
zero in the Limber approximation (which we check in the next section).

We use multipoles in the range J20, 500J for all auto- and cross-pseudo spectra.
The small-scale limit `max = 500 is determined by:

• the CMB lensing resolution: 90% of the lensing signal lies in the conservative
multipole range J40, 400K used by the Planck collaboration;

• the shot-noise of the galaxy/quasar auto spectra: C̃gg` becomes noise dominated
for all samples at ` ≥ `max (CMASS being the limiting one);

• validity of the galaxy clustering model: we will use the linear bias model
and the halofit model for the non-linear power spectrum. The linear bias
approximation is assumed to be valid for scales larger than 10 h−1Mpc, while the
smallest scales probed are χmin ∼ 2π/kmax where kmax = (`max + 1/2)/χ(zeff) ,
which correspond to scales of order 15.2, 26.8 and 71.4 h−1Mpc. We also
assume that the halofit model is a correct description up to these scales.
These assumptions are discussed in more detail in section 6.5.3, in the light of
the results.

The large-scale limit is fixed at `min = 20 for of the following reasons:

• validity of the Limber approximation, which is known to fail at very low `;

• partial sky coverage limits the number of large-scale modes accessible;
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• CMB lensing is measured from `min = 8, as reconstruction is not stable below;

• field-dependent observing conditions during the SDSS photometric and spec-
troscopic surveys could contaminate the measurement of the overdensity fields
on large-scales6 (we check for such contamination in section 6.4.4 and find no
evidence of it).

The six observed pseudo spectra are shown in figure 6.5 together with theoretical
curves for our best-fit biases (bLOWZ = 1.871 ± 0.025, bCMASS = 2.095 ± 0.022 and
bQSO = 2.21± 0.44) and with fixed cosmology7. We report detections for the CMB
lensing-galaxy density cross-correlations of 4.7σ, 13.9σ and 10.6σ for LOWZ, CMASS
and QSO, respectively.

6.4 Methodology

This section describes the method to analyse the data. We choose to use the
pseudo-power spectrum formalism, which takes into account partial sky coverage
by appropriately scaling the theoretical full-sky power spectra and comparing them
to the observed pseudo-spectra. This forward-modelling method has the advantage
that it is simple to obtain an unbiased prediction, without the need to reverse the
effects of the mask on the observation, an operation that can be difficult and unstable
given the complexity of the masks. The drawback is that the covariance matrix is
impossible to compute analytically: instead, we must either estimate it with Monte-
Carlo simulations, or, as we do here, use a semi-analytical approximation. We perform
several tests to validate this method and the statistical pipeline used in the next
section. Finally, we also perform null tests searching for possible contamination of
the power spectra by effects due to the masks or the SDSS photometry.

6.4.1 Pseudo spectra

6.4.1.1 Definition

Many galaxy and CMB surveys cover only a fraction of the sky due to, for example,
the limited field of view or galactic contamination, among others. In order to properly
account for the partial sky coverage in the calculation of the angular power spectra,
we define the mask function WA(n̂) associated with the field A(n̂). It has value 1 if
the direction n̂ lies in the observed region, and 0 otherwise.

The cross-pseudo spectrum of observables A and B is thus defined as the cross
spectrum of the cut-sky fields Ã(n̂) =WA(n̂)A(n̂) and B̃(n̂) =WB(n̂)B(n̂), and

6The size of the BOSS plates (3°) correspond to a multipole of ` ∼ π/θ ≈ 60.
7Parameters’ values are fixed at the best-fit cosmology for Planck “TT,TE,EE+lowP+lensing+ext”

(Planck Collaboration et al. 2016e) for the flat ΛCDM model with a mass of neutrinos
mν = 0.06 eV.

160



6.4. METHODOLOGY

0 100 200 300 400 500 600
`

0

100

200

300

400

500

600

`′

κCMB × κCMB

0 100 200 300 400 500 600
`

0

100

200

300

400

500

600

`′

LOWZ× LOWZ

0 100 200 300 400 500 600
`

0

100

200

300

400

500

600

`′

CMASS× CMASS

0 100 200 300 400 500 600
`

0

100

200

300

400

500

600

`′

κCMB × LOWZ

0 100 200 300 400 500 600
`

0

100

200

300

400

500

600

`′

κCMB × CMASS

0 100 200 300 400 500 600
`

0

100

200

300

400

500

600

`′

κCMB × QSO

−100
−10−1
−10−2
−10−3
−10−4
−10−5
−10−6
−10−7
−10−8000000000
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

−100
−10−1
−10−2
−10−3
−10−4
−10−5
−10−6
−10−7
−10−8000000000
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

Figure 6.6 – Mixing matrices of the six power spectrum used in the analysis (see the
masks in figures 6.3 and 6.4), relating the full-sky power spectrum C` to the pseudo
spectrum C̃` as in equation (6.13). The matrices’ elements are strongly dominated by
the diagonal terms and the coupling between modes is given by off-diagonal elements.

its expected value can be related to the (true) full-sky cross power spectrum by
(Brown et al. 2005)

〈C̃AB` 〉 =
∑
`
′

MAB
``
′ CAB

`
′ , (6.13)

where MAB
``
′ is the mixing matrix, which is given in terms of the Wigner-3j symbols

MAB
``
′ =

2`+ 1

4π

∑
`
′′

(2`′′ + 1)W AB
`
′′

(
` `′ `′′

0 0 0

)2

. (6.14)

The cross spectra of the masks are

W AB
` =

1

2`+ 1

∑
m

wA`m(wB`m)∗, (6.15)

where
wA`m =

∫
dn̂WA(n̂)Y ∗`m(n̂). (6.16)

The mixing matrix introduces a scaling factor equal to
(
fAskyf

B
sky

)1/2
, i.e., the

geometric mean of the observed sky fractions for the observables A and B (Hivon et
al. 2002). It also couples the multipoles ` and `′, that would be otherwise uncorrelated,
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especially at large scales. Mixing matrices are computed analytically8 for each pair
of observables and are shown on figure 6.6.

6.4.1.2 Pseudo spectra estimator

Pseudo spherical harmonic coefficients of the four maps are estimated with the
map2alm function of Healpix and summed to give an estimator of the pseudo spectra
as

ˆ̃CAB` =
1

2`+ 1

m=+`∑
m=−`

Ã`mB̃
∗
`m, (6.17)

for A,B ∈ {LOWZ,CMASS,QSO, κCMB}. These pseudo spectra have a noise contri-
bution and an expectation value given by

〈 ˆ̃CAB` 〉 =
∑
`
′

MAB
``
′ CAB

`
′ + δABÑ

A
` , (6.18)

where ÑA
` is the noise pseudo-spectrum of the measured field A(n̂), which needs to

be subtracted. It is assumed here that different observables have uncorrelated noise,
i.e. that noise cross spectra are null (for both full-sky and pseudo).

In principle, noise pseudo spectra can be computed using the mixing matrix and
equation (6.13),

ÑA
` =

∑
`
′

MAA
``
′ NA

`
′ . (6.19)

However, the sum over `′ runs from 0 to infinity, so, in practice, it has to be cut
at some maximum multipole `max. But convergence is not guaranteed, since noise
spectra are increasing functions of ` (they are quasi-constant for galaxies and grow
like ∼ `2 for CMB lensing). Therefore, we used instead simulated noise maps for
both CMB lensing and galaxies.

For CMB lensing, we used the 100 simulated lensing reconstruction maps provided
by the Planck Legacy Archive.9 Given a known, full-sky, input convergence map
(to be masked) and a masked, reconstructed convergence map, one can compute the
difference of the pseudo spectra in order to obtain an estimate of the noise pseudo
power spectrum Ñκ

` , which is then averaged over realisations of the simulation.
For the galaxy catalogs, the full-sky shot noise spectrum is N` = 1/n̄, where n̄

is the angular density of objects (weighted and expressed in steradian-1). In order
to estimate the pseudo spectra, random maps with a pure Poisson distribution of
appropriate density are generated and then masked. The pseudo spectra of 100 maps
are averaged to get an estimate of the pseudo noise spectra Ñg

` . However, weights
slightly increase the noise level, which is henceforth assumed to be of the form Ñg

` +ag

8The Wigner-3j symbols are computed using a Fortran routine provided by Jean-Christophe
Hamilton.

9See http://pla.esac.esa.int/pla/.
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Figure 6.7 – Full covariance matrix (normalised to unit diagonal) of the CMB lensing-
LSS correlations computed from equation (6.21) in symmetric logarithmic scale. It is
divided in blocks corresponding to the six angular spectra: κ, L, C and Q correspond
to respectively κCMB, LOWZ, CMASS and QSO. Note the (small) numerical noise in
the variance blocks of the cross power spectra from the X/Y matrices. Only the upper
part is displayed. The white blocks in the upper parts correspond to non-correlated
spectra.

(like in Ho et al. 2012), where ag is a small nuisance parameter to be marginalised
over during the analysis, and that we found to be one order of magnitude smaller
than Ñg

` . As noted in Putter et al. 2012, this term may also absorb contributions
of non-linear biasing, a possibility that we discuss in section 5.4.

Our estimator thus reads

ˆ̃CAB` =
1

2`+ 1

m=+`∑
m=−`

Ã`mB̃
∗
`m − δAB

1

Nsim

Nsim∑
i=1

ˆ̃NA,i
` , (6.20)

where ˆ̃NA,i
` is the estimated pseudo-noise spectrum of simulation number i. The

pseudo spectra used in this work are shown in figure 6.5.

6.4.2 Covariance matrix and likelihood

The covariance matrix of the pseudo spectra is computed using an extension of
Efstathiou’s symmetrisation approximation (Efstathiou 2004) following Brown
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et al. 2005 (the full computation is performed in appendix B.1.2) and is given by

Cov
(
C̃AB` , C̃CD

`
′

)
=

√
DAD
` DAD

`
′ DBC

` DBC
`
′ XABCD

``
′

+

√
DAC
` DAC

`
′ DBD

` DBD
`
′ YABCD

``
′ (6.21)

with

DAB
` =

{
CAB` if A 6= B

CAA` +NA
` if A = B

, (6.22)

where CAB` and NA
` are the full-sky theoretical signal and noise spectra. Xabcd

``
′

and Yabcd
``
′ are two matrices depending only on the masks of observables A,B,C,D,

determined to arbitrary precision by a Monte-Carlo (MC) simulation (see section 6.A
for more detail). The covariance matrix (estimated for a fiducial cosmology) is shown
in figure 6.7.

A Gaussian likelihood is used for the stacked pseudo spectra vector

L
(
C̃obs
` |bg,Θcosmo

)
=

1

(2π)n/2|Cov|1/2
e−χ

2
/2, (6.23)

where
χ2 =

(
C̃obs − C̃th

)T
[Cov]−1

(
C̃obs − C̃th

)
, (6.24)

C̃obs is the stacked vector of observed pseudo spectra (see figure 6.5) and C̃th is the
stacked vector of theoretical pseudo spectra computed from the Limber approximation
(see equation (6.1)) and multiplied by the mixing matrices. The covariance matrix
Cov is that of the stacked vector as defined in equation (6.21) and is shown in
figure 6.7.

6.4.3 Validation

In this section, we perform validation tests for the pseudo spectrum estimator, the
covariance matrix and the statistical pipeline.

6.4.3.1 Validation of the pseudo spectrum estimator

In order to validate the pseudo spectrum estimator and the semi-analytical ex-
pression of the covariance matrix given in equation (6.21), we generate 1000 sets
of four correlated, full-sky maps with appropriate auto and cross spectra (for
LOWZ,CMASS,QSO, κCMB) computed using equation (6.1). These maps are then
added realistic noise and are masked as follows: for each lensing convergence map,
we add an uncorrelated Gaussian noise with spectrum Nκ

` given by the approximate
spectrum delivered by the Planck Legacy Archive, which is precise enough for the
covariance validation. For each galaxy density map, we also need to simulate Poisson
sampling. To do so, we generate a map where the value in pixel p is a Poisson random
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Figure 6.8 – Validation of the pseudo spectrum estimator: the upper plot shows
in solid line the theoretical pseudo spectra, computed using full-sky spectra and
mixing matrices as in equation (6.13). Boxes show the mean of the simulated pseudo
spectra and its spread for 1000 realisations, binned for visualisation. The lower plots
shows the relative error on the mean. All spectra are consistent with the theoretical
expectations in the multipole range used for this work.

variable of mean λp, i.e.,

np ∼ Poisson
(
λp
)

with λp = N
(
1 + δp

)
, (6.25)

where δp is the simulated overdensity at pixel p and N is the mean number of galaxies
per pixel (different for the three samples). A reconstructed density map is then built
using equation (6.8), which now incorporates Poisson shot-noise. These full-sky maps
are then masked and their pseudo spectra are evaluated. The mean of the estimated
pseudo spectra is compared with that of the theoretical pseudo spectra computed
using the mixing matrices on figure 6.8, proving strong agreement and validating the
estimator.
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Figure 6.9 – Validation of the covariance matrix. On the left panel, the covariance
matrix used in the analysis from equation (6.21), denoted CovX/Y ; on the middle
panel, the empirical covariance matrix of 1000 simulated stacked pseudo spectra,
denoted CovMC. Both have been normalised by the diagonal elements of CovX/Y ,
therefore the diagonal is 1 by construction on the left panel, and the fact that
it is very close to 1 on the middle panel proves the agreement between the two
estimates. Off-diagonal elements are polluted on CovMC by numerical noise (which
is one order of magnitude smaller than the diagonal elements and would reduce
with more simulations). On the right panel, the absolute difference between the two
estimates of the covariance matrix (non-normalised) is shown, element-wise divided
by the standard deviation of CovMC (obtained from bootstrapping the simulated
pseudo spectra). Note the different colour scale of the right panel: the deviation is at
most of order 1 σ, showing good agreement between our two estimates and validating
equation (6.21).
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Figure 6.10 – Statistical pipeline validation with Monte-Carlo simulation: realisations
of the pseudo spectra are drawn from the likelihood L and best-fit parameters
θ = (ωc, ln 1010As, bCMASS) are computed. The relative error on the mean values of
best-fit parameters θn as a function of the number of realisations n is shown here. The
dotted lines show the 0.1% requirement for this test, reached after 4146 realisations.
The variance (displayed by the coloured bands) decreases as 1/

√
n while the mean

values converge towards their input values, demonstrating the internal consistency of
the statistical pipeline. Note however the very small deviation on ωc, within the error
requirement, but in consistent with the fact that the maximum likelihood estimator
is only asymptotically unbiased.

6.4.3.2 Validation of the covariance matrix

The empirical covariance of the sets of pseudo spectra is finally computed and
compared to the semi-analytical covariance we use throughout this analysis. The
result in figure 6.9 shows good agreement and validates the estimator and the
simulation of the matrices X and Y (that were computed using generic spectra, see
section 6.A).

6.4.3.3 Consistency of the statistical pipeline

The statistical pipeline is validated by performing a Monte Carlo analysis similar
to the one performed in Penna-Lima et al. 2014. Specifically, we want to check
if the estimated parameters are unbiased. For that purpose, given the adopted
fiducial model, we use the likelihood as the probability distribution of the pseudo
spectra C̃AB` to generate random samples (i.e. sets of stacked vectors C̃obs). For
each sample, we fit all parameters to be tested, thus building a collection {θi} of
best-fit values for these parameters. At step n, the means θn =

∑n
i=1 θi/n and

standard deviations of the collection of best-fit values are computed. The largest
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Figure 6.11 – Same test as figure 6.10, now showing the distribution of best-fit
parameters for 4146 realisations. The ellipses show the 0.5, 1, 1.5 and 2σ contours
and the blue lines show the input values of the parameters.

relative error (LRE) over parameter means is computed and we repeat the process,
adding more samples, until the LRE has reached a level of 0.1% and check that the
fiducial values are within the error bars. For this test, we only use one sample of
galaxies with the redshift distribution of the CMASS sample and generate samples
of C̃κCMB×κCMB

` , C̃κCMB×δCMASS
` and C̃δCMASS×δCMASS

` . Results of this test are plotted
in figures 6.10 and 6.11, showing respectively the evolution of the mean values of
the best fit parameters θn as a function of the number of realisations n and the
distribution of the best-fit parameters for those same realisations. They confirm that
the parameters’ estimators are unbiased at least at the 0.1% level.

6.4.4 Null tests

We present in this section null tests that were performed to exclude potential system-
atic errors related to the masks and selection of the spectroscopic tracers.

6.4.4.1 Mask-related contamination

In order to assess potential leakage of power in the cross spectra due to the masking,
we cross-correlate the 100 simulated reconstructed lensing maps of the Planck Legacy
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Figure 6.12 – Null test for residual correlation. The top panel shows the mean
cross-pseudo spectrum between simulated lensing maps and the real galaxy/quasar
density maps, the middle panel shows the mean cross-pseudo spectrum between the
real lensing map and simulated galaxy/quasar density maps, and the bottom panel
shows the cross-pseudo spectra between the tracers. The cross-correlations with
simulated maps are consistent with zero, showing no leakage of power from the masks,
while the cross-correlation of the tracers density show marginal correlation, at worst
one order of magnitude lower than the autocorrelation signals.
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Figure 6.13 – Null test of photometric systematics contamination: normalised large-
scale cross spectra of the seeing (solid lines), sky flux (dashed lines) and air mass
(dotted line) during photometric observations with the density of LOWZ galaxies.
They are consistent with zero, with no discernable trend across multipoles. The
seeing and sky flux are shown in the three main colour bands (g, r and i) which are
displayed in red, green and blue. The maps of these observables are shown on the
right in equatorial coordinates where the north and south galactic caps of the SDSS
survey can be seen. The χ2 statistics for these cross spectra are respectively 32, 33,
33, 30, 32, 32 and 33 for the seven observables listed on the right, for 101 degrees of
freedom, excluding a large contamination.

Archive with the observed density maps of the three galaxy samples, and then
correlate the observed lensing map with 100 simulated galaxy maps. This procedure
removes cosmological angular correlation, and what correlation remains will be linked
to the masks themselves. We find that all results are consistent with no correlation,
excluding strong contamination from masking. We also measure the cross spectra
between the galaxy and quasars sample and find marginal correlations, well below
the auto-correlation signals.

6.4.4.2 Photometry-related contamination

Variable observational conditions during the SDSS photometric survey could poten-
tially result in non-uniform selection functions of the galaxy and quasar samples, and
introduce artificial power in the auto spectra at large scales. In order to exclude
dramatic power leakage, we constructed maps of resolution Nside = 64 of the seeing,
sky flux (for the g, r and i bands) and air mass of the photometric observations
that were used to select galaxies and quasars in the spectroscopic catalogs,10 and we

10To do so, we made use of the CasJob service of the SDSS SkyServer, at http://skyserver.
sdss.org/casjobs/.
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Figure 6.14 – Same as figure 6.13 for the CMASS galaxies. The χ2 statistics are
respectively 27, 27, 27, 28, 30, 28 and 31.

verify that the cross power spectra with the density maps (built in section 6.3.2.3)
are consistent with a null value. To do so, we approximate the error bars on the cross
spectra by

∆2
(
C̃

syst×δg
`

)
≈

ˆ̃Csyst
`

ˆ̃C
δg
`

fsky(2`+ 1)
, (6.26)

where ˆ̃Csyst
` and ˆ̃C

δg
` are the measured pseudo auto spectra of the systematics and

density maps, respectively. Figures 6.13 to 6.15 show the measured cross power
spectra C̃syst×δg

` for multipoles 0 ≤ ` ≤ 100: they are consistent with no correlation,
with no discernable trend across multipoles. Assuming that our approximation of the
error is correct, we construct a χ2 statistics as the sum of squared errors,

χ2 =
100∑
`=0

(
C

syst×δg
`

∆C
syst×δg
`

)2

, (6.27)

and find generally acceptable agreement with a null correlation (with a rejection
significance at worst 2.4 σ for LOWZ with the seeing or airmass). However, this
test can be misleading if we over- or underestimate the error. We partially relax
the hypothesis on the error and suppose there is an unknown scale factor with
respect to the true one. Considering the normalised spectra x` = C

syst×δg
` /∆C

syst×δg
`

as independent, identically distributed random variables with the same mean and
unknowns variance, we perform one-sample t-tests that reveal no significant departure
from a null mean over the multipole range, with p-values always greater than 0.5.
From these tests, we conclude that photometric systematics do not strongly correlate

171



CHAPTER 6. JOINT ANALYSIS OF PLANCK AND SDSS-III/BOSS DATA

0 20 40 60 80 100

`

−3

−2

−1

0

1

2

3

C
sy

st
×
δ

Q
S

O
`

∆
C

sy
st
×
δ

Q
S

O
`

seeing[g ]

seeing[r ]

seeing[i ]

sky flux[g ]

sky flux[r ]

sky flux[i ]

air mass

seeing

sky flux

air mass

Figure 6.15 – Same as figure 6.13 for the quasar sample. The χ2 statistics are
respectively 20, 20, 20, 19, 21, 23 and 21.

with our overdensity maps.

6.5 Analyses and results

This section describes the statistical, joint analysis of the Planck and BOSS data.
We first detail the cosmological model that is adopted throughout this work in
section 6.5.1, and then describe the different analyses and their results in terms of
cosmological contraints.

6.5.1 Cosmological model

Our base model is the standard ΛCDM model with flat spatial sections (hence Ωk = 0)
and a dark energy component with equation of state w = −1. The base parameters are
the present-day baryon and CDM densities, ωb ≡ Ωbh

2 and ωc ≡ Ωch
2, respectively

– where Ωi = ρi/ρc is the ratio of the component’s energy density to the critical energy
density ρc –, the Hubble constant today H0 = 100 h km s−1 Mpc−1, the redshift of
reionization zre, the logarithm of the primordial curvature ζ dimensionless power
spectrum ln 1010As and its tilt ns such that

Pζ(k) = As

(
k

k0

)ns−1

, (6.28)

with the pivot scale k0 = 0.05 Mpc−1. We include massive neutrinos, parametrised
by the effective number of neutrinos in the relativistic limit Neff = 3.046 (taking into
account non-instantaneous decoupling), an effective temperature Tν/Tγ = 0.71611,
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where Tγ is the photon temperature (slightly departing from (4/11)1/3 to take into
account neutrino heating from electron/positron annihilation, see Lesgourgues

et al. 2009), and using one massive neutrino of mass mν = 0.06 eV and two massless
neutrinos, consistent with the Planck base ΛCDM model. The linear matter power
spectrum Pm(k, z) and the CMB temperature power spectrum CTT` are computed
using the Cosmic Linear Anisotropy Solving System (CLASS) as a backend to NumCosmo.
The non-linear matter power spectrum is computed using a Halofit prescription (Smith

et al. 2003) implemented in NumCosmo, with parameters from Takahashi et al. 2012,
modified to take into account neutrinos as in CLASS. Reionization is modelled in a
CAMB-like fashion (Lewis et al. 2000) and parametrised by the mid-point zre, fixed
width ∆zre = 0.5, and includes Helium reionization at a fixed redshift zHe

re = 3.5.
Recombination is computed within CLASS and Big Bang nucleosynthesis is computed
with PArthENoPE11(Pisanti et al. 2008).

From the constraints that we will obtain in our analyses, we will also estimate
the total matter density parameter12 Ωm = Ωb + Ωc + Ων , the optical depth to the
last scattering surface τ and the variance of the linear matter density fluctuations σ2

8

in spheres of radius R = 8 h−1 Mpc extrapolated to z = 0,

σ2
8 =

∫
dk

k2

2π2Pm(k, z = 0) |W (k,R)|2 , (6.29)

where the top-hat window function is W (k,R) = 3j1(kR)/kR and the matter power
spectrum is computed from linear theory.

6.5.2 Statistical analysis

In this section, we describe our Bayesian statistical analysis and present constraints
on cosmological parameters of the ΛCDM model and the galaxy/quasar biases.

We first apply the Markov Chain Monte Carlo (MCMC) approach using only
CMB lensing-LSS correlations data – the set of the six auto and cross spectra of
CMB lensing and BOSS galaxy and quasar overdensities, as shown in figure 6.5 – and
varying only a subset of cosmological parameters in order to assess the constraining
power of these. In particular, we also consider different combinations of the auto
and cross spectra to measure the effects on the parameter constraints provided by
these probes. Then, we add CMB temperature information and obtain constraints
on the ΛCDM model and extensions including the mass of neutrinos – that impacts
small-scale structure formation – and the dark energy equation of state w – that
impacts the expansion in the low redshift Universe.

We run the MCMC algorithm using an ensemble sampler13 with many walkers,

11http://parthenope.na.infn.it/
12The dark energy density parameter today is ΩΛ ≈ 1 − Ωm since we consider only flat space

sections (neglecting radiation).
13Some authors refers to ensemble samplers as population Monte Carlo.
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moving their positions in the parameter space as an ensemble via a stretch move
scheme (Goodman and Weare 2010) implemented in NumCosmo. In particular,
we found that an efficient protocole is to start the MCMC with a reasonably small
number of walkers (we used 32) until approximate convergence is attained, and then
to restart another chain with many walkers (we used 1000) which initial positions are
distributed according to the converged part of the first chain. This protocole enables
fast convergence as well as low correlation length in the second run.

We monitored the convergence of the chains using three numerical tools, namely
the Multivariate Potential Scale Reduction Factor (MPSRF, Brooks and Gelman

2012; Gelman and Rubin 1992), the Heidelberger-Welch test (Heidelberger and
Welch 1981, 1983) and the Effective Sample Size (ESS); see section 6.B for more
details.

These diagnostics can fail in different situations. For this reason, we also performed
three different visual inspections for each parameter:

1. the parameter trace plot, i.e. the value of the parameter for a given walker vs
iteration time.

2. the ensemble distribution trace plot, that is, the empirical ensemble distribution
given by the walkers’ positions vs iteration time. This allows us to monitor the
evolution of the ensemble mean and variance.

3. the total mean vs the cumulative sum of the ensemble means: if the chain
has reached convergence, the difference (scaled by the spectral density at null
frequency) is distributed as a brownian bridge, the L2 norm of which is used in
the Schruben test.

For all MCMCs, we ran them until all the relative errors of the means were smaller
than 10−2; at this point, we applied all the tests above, and if the chains failed some
of them, we continued the run until all tests were satisfied.

6.5.2.1 Constraints from CMB lensing–LSS correlations

Data from CMB lensing and spectroscopic tracers of matter alone cannot efficiently
constrain all cosmological parameters. However, we want to highlight the cosmological
information carried by these probes. To do so, we perform several MCMC analyses
considering a subset of free cosmological parameters. These are only illustrative in
the sense that the posterior distribution of cosmological parameters will be shrunk
from fixing some others.

The theoretical spectra have different dependences on the cosmological parameters
and galaxy/quasar biases. The most explicit dependencies of the angular spectra C̃`
are on the power spectrum amplitude (As or σ8), the matter density parameter Ωm
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Figure 6.16 – One and two-dimensional projections of the posterior distribution
sampled by the MCMC algorithm for the CMB lensing-LSS correlations. Biases,
ωc and As are sampled, the other cosmological parameters being fixed at Planck
2015 “TT,TE,EE+lowP+lensing+ext” best fit values. The contours show the 1-
and 2-σ confidence regions for subsets of our data. The values of the parameters
above the histograms are the medians with asymmetrical errors (the 16th and 84th

percentiles corresponding to ±σ for a Gaussian distribution). The (ln 1010As,ωc)
plane illustrates the degeneracy breaking and the confidence region shrinkage due to
the addition of the cross spectra (compare the dark purple and burgundy contours).
The integral of the histograms are normalised to unity, therefore in the approximation
of Gaussian distributions, the maxima of the histograms are inversely proportional to
the standard deviation of the parameters, allowing to directly read the improvement
of the constraints. Note that the quasar bias is not fitted for the subset including
only auto spectra (“κκ+ δgδg”).
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and the galaxy/quasar biases (see the kernels in section 6.2):

Cκκ` ∝ Ωm
2As, (6.30)

C
κδg
` ∝ ΩmbgAs, (6.31)

C
δgδg
` ∝ b2gAs. (6.32)

This system is closed, i.e. in principle, comparing the various auto and cross spectra
should allow for an non-degenerate estimation of the parameters.

Therefore, we run MCMCs freeing ωc, ln 1010As and the galaxy/quasar biases,
and fixing all other cosmological parameters. Their fiducial values are from Planck
2015 “TT,TE,EE+lowP+lensing+ext” best fits (Planck Collaboration et al.
2016e). We assume flat prior distributions over wide ranges (larger than the sampled
ranges, see table 6.1). In order to distinguish and quantify the information contained
in the various measured auto and cross spectra, we try different combinations. That
is, we run an MCMC with the full dataset (“κκ+κδg+δgδg”), and then repeat without
the cross spectra (“κκ+δgδg”), without the CMB lensing auto spectrum (“κδg+δgδg”)
and without the galaxy auto spectra (“κκ+κδg”). We run these chains with 100
walkers to ensure a good mixing. Their MPSRFs are below 1.02 and the correlation
lengths are of order 20-40, varying amongst parameters.

The sampled posterior distributions of these parameters are shown in figure 6.16
for the full dataset and the three subsets aforementioned. We note that the “κδg+δgδg”
and “κκ+κδg” subsets, dominated by respectively galaxy clustering and CMB lensing
information, provide complementary information, since the correlations between the
parameters, except those in the (bLOWZ, bCMASS) plane, present different alignments
(see the orange and yellow confidence regions in figure 6.16). Therefore, the constraints
on the parameters are greatly improved when combining both auto spectra, “κκ+δgδg”.
Apart from the constraints on bLOWZ, bCMASS, which are already strongly determined
by galaxy density auto spectra, the additional information contained in the cross
spectra narrows the distribution, as can be observed in the (ln 1010As,ωc) plane by
comparing the confidence regions for “κκ+δgδg” (in burgundy) with “κκ+κδg+δgδg”
(in dark purple). The addition of the cross spectra decreases the statistical error by
10% for ln 1010As and 20% for ωc, and slightly shifts the best fits (by less than 1 σ).
This plane is translated into the (σ8, Ωm) plane in figure 6.17 where the degeneracy
breaking expected from the joint analysis is highlighted.

6.5.2.2 Constraints from CMB temperature and CMB lensing–LSS correlations

In this section, we carry out the analysis combining CMB temperature and the corre-
lations of CMB lensing and galaxy/quasar densities used in the previous section (that
is all six power spectra of figure 6.5) to obtain constraints on the cosmological param-
eters of the ΛCDM model (ωb, ωc, H0, zre, ln 1010As and ns) in paragraph 6.5.2.2.1.
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Figure 6.17 – Confidence regions for σ8 and Ωm corresponding to the distributions
sampled by the ensemble sampler MCMC algorithm for the CMB lensing-LSS cor-
relations dataset only, with the other cosmological parameters fixed at Planck 2015
“TT,TE,EE+lowP+lensing+ext”, and various subsets of the dataset. 1σ contours
(respectively 2σ contours) are represented by solid (dashed) lines. CMB lensing and
galaxy densities show different degeneracies, that are partially broken by combining
the observations. Coloured points are samples from the full dataset chains, that show
how σ8, Ωm and galaxy biases are degenerated.

We then extend the model, constraining the sum of the mass of neutrinos, mν , and
the dark energy equation of state, w, first separately in paragraph 6.5.2.2.2 and then
together in paragraph 6.5.2.2.3. The results of this analysis will be denoted “CMB
TT + CMB lensing ⊗ LSS” in the figures. In addition, we run, for comparison,
the MCMC algorithm using only CMB temperature data (“CMB TT ”), and CMB
temperature and lensing (“CMB TT + CMB lensing”). The configurations of these
analyses are summed up in table 6.1.

We neglect the correlation between CMB temperature and the matter density at
later times (either baryonic matter in galaxies and quasars or dark matter weighted
by CMB lensing), i.e., we neglect the late ISW effect, as it is not yet detected with
a strong significance (Nicola et al. 2016; Planck Collaboration et al. 2016g),
and we discuss possible consequences in section 6.5.3. In practice, this means that we
approximate the total likelihood by the product of the CMB temperature and CMB
lensing-LSS correlations likelihood functions.

We use the Planck likelihood codes Plik and Commander (Planck Collabora-

tion et al. 2016d) respectively for high and low multipoles of the temperature-only
power spectrum CTT` . The likelihood code introduces 15 additional nuisance parame-
ters related to foreground and instrument models (ACIB

217 , ξ
tSZ×CIB, AtSZ, APS

100, A
PS
143,

APS
143×217, A

PS
217, A

kSZ, AdustTT
100 , AdustTT

143 , AdustTT
143×217, A

dustTT
217 , c100, c217 and ycal; see
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Table 6.1 – Cosmological constraints obtained from “CMB TT + CMB lensing ⊗
LSS” for the ΛCDM model. Constraints on clustering biases and noise biases are
also given in the second part of the table. A dash means that the parameter is not
fitted. All MCMC include a subfitting procedure, as described in the text, of CMB
TT nuisance parameters. Finally, the rightmost column indicates the interval of the
flat priors used for all MCMC analyses.

Parameters [units] ΛCDM ΛCDM +mν wCDM wCDM +mν Priors (flat)

H0 [km s−1Mpc−1] 68.73 +0.87
−0.83 67.76 +1.20

−1.51 68.03 +5.10
−4.44 65.78 +5.43

−4.35 [0, 50]

ωc 0.1168 +0.0018
−0.0019 0.1170 +0.0018

−0.0019 0.1171 +0.0015
−0.0015 0.1168 +0.0018

−0.0019 [0.05, 0.2]

ωb 0.02250 +0.00019
−0.00018 0.02246 +0.00018

−0.00018 0.02248 +0.00017
−0.00017 0.02248 +0.00018

−0.00019 [0.01, 0.03]

ln 1010As 3.092 +0.035
−0.034 3.108 +0.038

−0.036 3.088 +0.027
−0.027 3.121 +0.043

−0.044 [2.5, 3.5]

ns 0.9760 +0.0050
−0.0049 0.9755 +0.0050

−0.0050 0.9753 +0.0041
−0.0041 0.9758 +0.0052

−0.0050 [0.8, 1.1]

zre 10.20 +1.58
−1.70 10.96 +1.68

−1.75 10.03 +1.27
−1.37 11.56 +1.85

−2.06 [0, 30]

w – – −0.98 +0.14
−0.16 −0.94 +0.15

−0.18 [−2, 0]

mν [eV] – 0.159 +0.121
−0.099 – 0.168 +0.125

−0.097 [0, 1]

bLOWZ 1.855 +0.037
−0.035 1.893 +0.060

−0.047 1.867 +0.074
−0.073 1.923 +0.089

−0.084 [0, 10]

107aLOWZ 4.74 +1.59
−1.59 5.59 +1.80

−1.80 4.97 +1.65
−1.65 5.87 +1.87

−1.87 ]−∞,+∞[

bCMASS 2.077 +0.036
−0.035 2.114 +0.056

−0.048 2.086 +0.055
−0.051 2.134 +0.070

−0.061 [0, 10]

107aCMASS 6.68 +0.89
−0.89 7.04 +0.99

−0.99 6.62 +0.86
−0.86 7.08 +1.05

−1.05 ]−∞,+∞[

bQSO 2.19 +0.44
−0.43 2.25 +0.44

−0.44 2.20 +0.46
−0.45 2.22 +0.46

−0.44 [0, 10]

Planck Collaboration et al. 2016d). We use the profile likelihood to speed up
our MCMC analyses, subfitting the nuisance parameters for each set of cosmological
parameters. We describe this methodology in section 6.C, and also show that it does
not affect the results on cosmological parameters.

6.5.2.2.1 Constraints on ΛCDM

figure 6.18 shows the constraints on the base ΛCDM model’s parameters for
the three aforementioned data combinations. When using CMB TT only, we find
parameter constraints that are in perfect agreement with the Planck analysis.14

The strong degeneracy observed between the power spectrum amplitude As and the
reionization redshift zre corresponds to the amplitude of the power spectrum of CMB
temperature anisotropies, which is proportional to Ase

−2τ where τ is the optical depth
to the last scattering surface, strongly dependent on reionization history. Adding
CMB lensing drives As and zre towards lower values with a shift of about 1σ for each
parameter as evinced by the one- and two-dimensional projection of the posterior
distributions. Finally, adding information of LSS tracers (both the auto-correlations
and cross-correlations with CMB lensing) provides slightly smaller contours and,
therefore, they do not significantly help in breaking this degeneracy. We find no
significant improvement for τ or σ8, although it is consistent with the constraints

14

The detailed results of the Planck MCMC analyses are available here: https://wiki.cosmos.esa.
int/planckpla2015/images/f/f7/Baseline_params_table_2015_limit68.pdf
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Figure 6.18 – Constraints on the parameters of the base 6-parameters ΛCDM model
and galaxy biases. Confidence regions are shown respectively in blue, green and red
for CMB temperature only, CMB temperature combined with CMB lensing, and the
joint analysis of CMB temperature and the correlations of CMB lensing and LSS
tracers. The constraints above the marginal posteriors are for this last data set.
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Figure 6.19 – Constraints on σ8 and Ωm for the 6-parameter base ΛCDM model
from the combination of CMB temperature and the correlations of CMB lensing and
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and dashed lines. The coloured points show the degeneracy withH0 (in km s−1Mpc−1)
and are samples from the “CMB TT + CMB lensing ⊗ LSS” chain.

from CMB lensing. In the (σ8, Ωm) plane (see figure 6.19), we observe that early
Universe data favors bigger values of σ8 than the late one, as reported repeatedly
(Hildebrandt et al. 2017; Planck Collaboration et al. 2016j). Whether this is
indication of new physics or a systematics artefact is beyond the scope of this work,
but it might be an important issue in the future.

Nonetheless, there is an improvement of order 20% on the measurements of H0 and
ωc. We find H0 = (68.7± 0.9) km s−1 Mpc−1, slightly higher than CMB temperature
alone – albeit still lower than distance measurements from supernovæ (Riess et al.
2016) or time delays in strong lensing (Bonvin et al. 2017) – and ωc = 0.117± 0.002

as the degeneracy between As and ωc is broken by the lensing–LSS correlations
(see figure 6.16). This results in a constraint on the matter density parameter
Ωm = 0.296± 0.011. Additionally, we obtain strong constraints on the biases of the
galaxy samples, respectively

bLOWZ = 1.855± 0.037

bCMASS = 2.077± 0.036.
(6.33)

These 4% constraints are in general agreement with previous measurements (Ho et al.
2012). Our analysis has the advantage that our data is model-independent in the sense
that estimating pseudo spectra C̃` does not require any assumption on cosmology
since we don’t measure distances. Moreover, all the cosmological parameters of
the ΛCDM model are fitted jointly. Note, however, that our modelling assumes a
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constant bias, that can be interpreted as a redshift- and scale-averaged bias, when
other analyses used a scale-dependent bias (in the form of a Taylor expansion, e.g.
in Gil-Marìn et al. 2016) or simply more redshift bins. Interestingly, the analysis
also shows significant correlations between the biases and cosmological parameters,
in particular with ωc, H0 and As. If one considers biases as effective parameters
encoding structure formation and clustering of galaxies, these correlations can shed
light on the astrophysical and cosmological processes governing the formation of such
structures. Finally, we also obtain a broad constraint on the bias of the uniform
sample of quasars from the cross-correlation with CMB lensing

bQSO = 2.19± 0.44. (6.34)

This value is in tension with other measurements (DiPompeo et al. 2015; Laurent

et al. 2016, 2017; White et al. 2012) that found a bias of order 3 to 4 (although they
did assume a cosmology). We found no difference when fitting for this bias when
using data from only the northern or southern galactic caps, excluding a possible
strong asymmetry and contamination of higher multipoles. We note a surprising
trough in the C̃κCMB×QSO

` cross spectrum (see figure 6.5) around ` ∼ 400 that we
could not explain. However, this bias directly depends on the amplitude of lensing
that may be underestimated (Planck Collaboration et al. 2014b).

6.5.2.2.2 Independent constraints on the mass of neutrinos mν and the dark
energy equation of state w

In the next set of MCMCs, we additionally sample the mass of neutrinos mν

(with one massive and two massless neutrinos) or the dark energy equation of state
w (where w is constant over time) separately and compare the performance of the
joint analysis in these extended models.

In the first case, we find that the joint analysis yields a constraint on the neutrino
mass ofmν < 0.29 eV [68%], dividing the higher bound by a factor of two with respect
to the constraint from CMB TT alone (see figure 6.20). We do not detect a statistically
significant neutrino mass, but the best fit we obtain around mν ∼ 0.12 eV is in
agreement with lower bounds around 0.05 eV derived from neutrino oscillations (Olive

2014), and in agreement with cosmological upper bounds around 0.12 eV, e.g. that
derived from the combination of CMB, either with the Lyman-α forest power spectrum
(Palanque-Delabrouille et al. 2015a) or with BAO measurement (Vagnozzi

et al. 2017). As shown in figure 6.21, the galaxy auto power spectra are sensitive to
the mass of neutrinos as they can probe small scales at low redshift, where massive
neutrinos tend to smooth out density fluctuations. This means that the mass of
neutrinos should be positively correlated with galaxy biases, which is indeed observed
in the lower panels of figure 6.20. We also observe that adding LSS information
significantly improves the constraints on the other cosmological parameters in this
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extended model. Because of the anti-correlation betweenH0 and the mass of neutrinos,
the joint analysis favours a higher expansion rate H0 = (67.76+1.20

−1.51)km s−1 Mpc−1

than CMB data alone. It also noticeably shifts the posterior distributions for zre and
As towards lower values, resulting in a lower value of the reionization optical depth
τ = 0.090± 0.020.

In the second case, we release w, the mass of neutrinos being fixed tomν = 0.06 eV.
CMB temperature anisotropies are only very weakly sensitive to dark energy and
CMB lensing probes the Universe at redshift z ∼ 2, where matter is still dominating;
therefore these probes do not contain much information on w. Adding the correlations
with LSS information becomes necessary and rewarding as it breaks the degeneracies
of the constraints on H0, ln 1010As, zre and w. We observe a strong anti-correlation
between w and the Hubble parameter H0, meaning that observations can be matched
by a more slowly expanding Universe with a more negative dark energy pressure.
Constraints from the joint analysis (w = −0.98+0.14

−0.16) are consistent with a cosmological
constant (w = −1), while constraints from CMB favour a lower value of w. We also
note a strong correlation between the biases and w of 81% and 89% for CMASS and
LOWZ respectively.

In summary, in both cases, constraints from the joint analysis are substantially
better for almost all parameters because of its ability to break degeneracies related
to the chosen new parameters. This result constitutes a forceful encouragement to
perform this type of analysis when data from the next generation of surveys becomes
available.

6.5.2.2.3 Constraints on wCDM +mν

Finally, in the last set of MCMC analyses, we release both the mass of neutrinos
mν and the dark energy equation of state w and demonstrate that a joint analysis
of currently available data can set constraints on a 8-parameter cosmological model
(wCDM +mν). Similarly to the previous cases, the results are presented on figure 6.24
for the full joint analysis and for CMB data, allowing for comparison. We find
constraints that are in agreement with the current picture of the ΛCDM model
as well as those obtained in the previous sections, with a value of w = −0.93+0.14

−0.18

consistent with a cosmological constant. We obtain a higher bound on the mass
of the neutrinos of mν < 0.29 eV [68%] and a low value of the Hubble constant of
H0 = (65.78+5.43

−4.35)km s−1 Mpc−1, albeit with larger error bars. As opposed to the
6-parameter ΛCDM case, the joint analysis does not really outperform constraints
from CMB TT data alone regarding the base parameters, except for H0 which
strongly correlates with w. In particular, the constraints on ωc or ns are not as strong.
However, the additional information extracted by the joint analysis (partially) breaks
the w − H0 degeneracy, enabling for control of all eight cosmological parameters,
plus the biases, i.e. eleven parameters in total. The correlation coefficient matrix
reveals a strong correlation of galaxy biases with H0, w and mν (see figure 6.22)
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Table 6.2 – Constraints on σ8, τ and Ωm from the joint analysis of CMB temperature
and CMB lensing–large-scale structure correlations.

Model σ8 τ Ωm

ΛCDM 0.823+0.010
−0.010 0.082+0.019

−0.019 0.296+0.011
−0.011

ΛCDM +mν 0.806+0.018
−0.023 0.090+0.021

−0.020 0.307+0.019
−0.015

wCDM 0.816+0.044
−0.039 0.080+0.015

−0.015 0.303+0.044
−0.041

wCDM +mν 0.786+0.045
−0.038 0.097+0.024

−0.023 0.328+0.046
−0.046

indicating that upcoming surveys will require exquisite control of these biases to get
tight constraints on w and its possible time evolution.

Because of the degeneracy between H0, w and mν , precision is lost on Ωm, even
though the physical density ωm ≡ Ωmh

2 is well constrained by CMB TT and CMB
lensing even in this model (we find ωm = 0.1413±0.0024). In the (σ8, Ωm) plane (see
figure 6.23), we obtain constraints that are consistent from the joint analysis over the
models tested here, with increasing degeneracy. We measure σ8Ωm

2.7 = 0.170± 0.007

from the joint analysis on the 8-parameter wCDM + mν model.

6.5.3 Limits and perspectives

Forecasts predict strong improvements of the constraints on cosmological parameters
from the combination of the next generation galaxy surveys and CMB experiments
(Pearson and Zahn 2014; Schaan et al. 2017). One of the goals of this work was to
identify the difficulties in running joint analyses on real data, while acting as a proof
of concept. We discuss in this section assumptions that were made and technical
difficulties that we were able to pinpoint.

ISW effect We neglected the correlation, generated by the ISW effect, between the
CMB temperature map and the large-scale structure as traced by CMB lensing
or spectroscopic tracers. This correlation originates in the net energy gain
(loss) of photons crossing gravitational potentials wells (hills) evolving thanks
to dark energy. In principle, this would lead to underestimation of error bars
on cosmological parameters. However, this correlation is weak and affects only
very large scales ` . 40, and it has not been detected with a strong statistical
significance on SDSS galaxies: the signal-to-noise ratios for the correlation
with the LOWZ and CMASS samples reported by the Planck collaboration is
of order 2.4, and that with the lensing map (corresponding to a temperature
bispectrum) is of order 3.2 (Planck Collaboration et al. 2016g). Therefore,
taking this cross-correlation term into account would not dramatically change
our constraints.

SZ effect One possible source of systematics in the galaxy-lensing cross-correlations
comes from the tSZ component separation that is required to produce the lensing
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spectrum), it does not dramatically affect the constraints on cosmological parameters.

map (Planck Collaboration et al. 2016a,c,h). Free electrons in hot galaxy
clusters imprint a specific local spectral distortion on the CMB temperature map.
These clusters must be identified and removed before measuring the spatial
distortion due to gravitational lensing. If these clusters hold some of the galaxies
in the samples we use, this might lead to a systematic underestimation of the
lensing signal in the direction of these galaxies. However, the SZ decrement
from SDSS LRGs is small, as can be seen in Table 2 of Hand et al. 2011.
Moreover, the residual SZ signal primarily increases the noise in the lensing
map and is unlikely to produce appreciable bias (see the systematics checks in
Madhavacheril et al. 2015).

We know discuss theoretical uncertainties.

Limber approximation and RSD The first uncertainty comes from the Limber ap-
proximation (LoVerde and Afshordi 2008): it fails at very large scales, the
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transition scale depending on the width of the redshift bin considered (Cam-

pagne et al. 2017). In this work, we used very broad redshift bins and discarded
low multipoles ` < 20, so as to be in the safe regime of the approximation. We
also did not consider redshift space distortion (RSD) for the same reasons: RSD
impact only large scales in the case of narrow redshift bins (since they can alter
the redshift distribution, see Alonso et al. 2015; Padmanabhan et al. 2007;
Saito 2016). To test that RSD or other large-scale effects were not driving
parameter constraints inconsistently, we performed an MCMC analysis of CMB
lensing-galaxy correlations on a smaller multipole range (100 ≤ ` < 400, see
figure 6.25) and found no significant deviation, except for the bias of LOWZ,
which is shifted by about 1σ. Future surveys, aiming at measuring extremely
large-scales (Alonso and Ferreira 2015; Alonso et al. 2015), will require
better modelling, especially for tomographic studies.

Non-gaussianity of the density field In this work, we used a Gaussian likelihood
and a Gaussian covariance, i.e. we did not incorporate higher order statistics
of the matter density field nor the so-called super-sample variance, which is
due to the finite size of the surveyed volume and inaccessible modes therein
(Krause and Eifler 2017; Schaan et al. 2014, 2017). At the current level
of signal-to-noise ratio, these simplifications are probably safe but they should
be lifted in future data analysis. One limitation of our method regarding the
covariance matrix is that the computation of the X and Y matrices used in
the covariance matrix is numerically expensive – they grow linearly with the
multipole range but as n4/4 with the number n of different masks – and remains
noisy. However, this method has the advantage of naturally taking care of
partial sky coverage, without the need of inverting the mixing matrix to recover
full-sky spectra, necessarily introducing numerical noise in the data. Devising a
method that takes care of partial sky coverage whilst incorporating all relevant
non-Gaussian terms will be an important task for future surveys (Lacasa et al.
2016).

Non-linearities The non-linear power spectrum of the matter density field suffers from
theoretical uncertainties (Baldauf et al. 2016b). Throughout this analysis, we
used the halofit model, assuming it properly describes non-linear clustering.
With our choice of multipole ranges, we explore scales smaller than the non-
linear transition scale, around knl ∼ 0.1 h Mpc−1. In particular, for LOWZ, we
have kmax ∼ `max/χ(zeff) ∼ 0.4 Mpc−1, which can explain the shift observed
in the bias when removing high multipoles, or the consistently non-zero noise
bias observed for both LOWZ and CMASS. Therefore, our constraints depend
on the reliability of the model. Moreover, we assumed that the bias is scale-
independent within our choice of scales. The impact of a more elaborate model,
potentially marginalizing over a non-linear bias, remains to be studied. It could
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be implemented by including higher-order term in the power spectrum from
standard perturbation theory, as was recently done in Kwan et al. 2017. The
scientific gain from near future surveys in terms of cosmological constraints
will depend on our ability to model these non-linearities. In particular, the
suppression of power due to massive neutrinos (Lesgourgues and Pastor

2006) and the contribution of baryonic and feedback processes (Leauthaud

et al. 2017) at these scales will certainly be an important theoretical issue.

6.6 Conclusion

Cosmological experiments carried out in the last few decades have enabled the
construction of the ΛCDM model. In this picture, CDM drives the formation of the
large-scale structure of the Universe and dark energy fuels the recent accelerated
expansion. The combination of independent observations, such as the map of the
anisotropies of the cosmic microwave background, distances of type IA supernovæ
and the measurement of the scale of the baryon acoustic oscillations, have set
constraints on the content of the Universe. However, the analysis of currently
available data cannot distinguish between various models of dark matter and dark
energy. Going further and deciphering the nature of these components requires
better constraints, and thus, more information. To this end, deep galaxy surveys
– such as LSST, Euclid and WFIRST – and CMB imagers – such as CMB-S4 and
the Simons Observatory – with wide sky coverage and high resolution are currently
under development. In the coming decade, they will probe the matter density field
with ground-breaking precision and significantly increase the amount of cosmological
information. Independent cosmological analyses have a strong potential to reveal new
science, but model comparison will rely on exhausting the cosmological information
held in the measurements of different cosmic probes and all their cross-correlations.
In other words, a joint analysis of these probes is required.

In this work, we have presented a detailed joint analysis of currently available
data combining CMB measurements from the Planck satellite and LSS observations
from the SDSS-III/BOSS spectroscopic survey. To this end, we developed a general
framework in NumCosmo to compute and analyse the auto and cross correlations
between an arbitrary number of cosmological probes. In particular, we applied our
framework to analyse CMB lensing and galaxy clustering at once by measuring auto
and cross angular power spectra. In section 6.5.2.1, we showed how including cross-
correlation information – already present in the data sets – improves constraints on
cosmological parameters and decreases the statistical errors, for example, by 10% for
ln 1010As and 20% for ωc (when other parameters are fixed). This highlights the fact
that ignoring part of the cosmological information (in this case, the cross-correlations)
could lead to inaccurate posterior distributions of the parameters.

Next, we included CMB temperature and carried out three different MCMC
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analyses, the first using only CMB temperature anisotropies (“CMB TT ”), then
adding CMB lensing (“CMB TT + CMB lensing”) and finally the joint analysis per se
(“CMB TT + CMB lensing ⊗ LSS”). We compared the performance of these analyses
for the base, 6-parameter, flat ΛCDM model, and then explored constraints on the
mass of neutrinos and the dark energy equation of state, constraining four statistical
models (see figures 6.18, 6.20 and 6.24). As expected, constraints from the joint
analysis are stronger than those obtained from CMB data only, in all cases. Because
of the sensitivity of galaxy clustering and the CMB lensing-galaxy cross-correlations
to mν and w, we were able to study extended models and constrain up to eight
cosmological parameters at once (that is, H0, ωb, ωc, As, ns, zre, mν and w).

The joint analysis proves effective in doing so and yields the best constraints.
This can be understood as the result of the strong correlations observed between
galaxy clustering biases and some cosmological parameters, in particular H0 and
w. As a result, we observe the breaking of several degeneracies and significantly
better constraints for various parameters, although this depends upon exactly which
parameters are constrained and which are assumed to be fixed. A downside is that
future surveys will have to measure these biases with great precision in order to be
able to pin down the values of these parameters and to constrain a possible time
dependence of dark energy. Interestingly, if we used a value of H0 = 72 km s−1 Mpc−1

consistent with distance measurements from type Ia supernovæ, then our constraints
would favour a value of the dark energy equation of state of w ∼ −1.1, i.e. a phantom
dark energy, which is disfavoured by theoretical considerations. Finally, we also
obtained upper limits on the total mass of neutrinos of 0.29 eV [68%] as a result of
its impact on galaxy clustering at small scale. This is similar to limits obtained with
other analyses.

In this work, we have used spectroscopic observations of galaxies and quasars,
insulating us from uncertainties inherent to photometric redshifts. Similar work was
done by Nicola et al. 2016, 2017 with photometric data from the SDSS and the Dark
Energy Survey, combined with geometric probes, though using different methods
and constraining fewer parameters. However, the trade-off between the precision of
redshifts and the much larger number of galaxies observed by future deep surveys
like LSST could potentially lead to even better results. Moreover, imaging surveys
can detect cosmic shear, a powerful probe of dark energy, by measuring distortions in
the shapes of galaxies. Combining CMB lensing, galaxy lensing and galaxy clustering
in a joint analysis is a promising avenue for cosmological parameters estimation.

Finally, in this near-future scenario of large amounts of data and joint analyses
(including cross-correlations), we will be able to study different cosmological models
emerging from different theories of gravity, such as effective field theories of dark
energy (Gleyzes et al. 2016) or non-local gravity (Dirian et al. 2016), and hopefully
start to distinguish and rule out some models with strong statistical significance.
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Appendices

6.A X/Y matrices in the covariance

The X and Y matrices appearing in equation (6.21) have the following analytical
expressions (Brown et al. 2005),

XABCD`1`2
=

1

(2`1 + 1)(2`2 + 1)
×∑

m1m2

∑
`3m3

∑
`4m4

W A
`1`3m1m3

W
B
`2`3m2m3

W C
`2`4m2m4

W
D
`1`4m1m4

(6.35)

and

YABCD
`1`2

=
1
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×∑
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∑
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∑
`4m4

W A
`1`3m1m3

W
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`2`3m2m3
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`2`4m2m4

W
D
`1`4m1m4

, (6.36)

where the W A
``
′
mm

′ describe the convolution of the mask (W A
``
′
mm

′ is its complex
conjugate), i.e. if the field A(n̂) has full-sky spherical harmonics coefficients A`m
and pseudo-coefficients Ã`m then

Ã`m =
∑
`
′
m
′

W A
``
′
mm

′A`m. (6.37)

These cannot be analytically computed and MC simulations are therefore required.
We take advantage of the fact that equation (6.21) is exact if initial full-sky spectra
do not depend on ` and that they need not have physically relevant values. The
algorithm then proceeds as follows. First, we generate sets of four correlated maps
with generic constant input auto and cross spectra, which we mask by the four masks
used in our analysis. We then compute the spectra of the masked maps, thus building
a collection of estimated pseudo spectra {C̃AB,i` }i where i represents the simulation
index. The empirical covariance of the set of pseudo spectra is finally computed.
Knowing the input spectra, an estimate of XABCD

``
′ and YABCD

``
′ can be obtained using

equation (6.21). In the case where A = B or C = D and only in this case, the terms
in the square roots in equation (6.21) are equal and XABCD

``
′ and YABCD

``
′ cannot

be distinguished, but for all the other cases, it requires two sets of simulations to
disentangle them.

We estimate the error on the empirical covariance matrices by bootstrapping the
pseudo spectra {C̃AB,i` }i and require that the ratio of the norms15 of the error matrix

15Note that this choice is somewhat arbitrary and insures convergence of the diagonal elements,
with degrading precision away from the diagonal. Uniform convergence, which could be measured
by the norm of the matrix SC−1, where S is the error and C the covariance, would require much
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Figure 6.26 – Comparison between the analytically-estimated (left panel) and
simulation-estimated (middle panel) Xκκκκ

``
′ matrices in logarithmic scale. The abso-

lute difference is shown on the right panel. The important features are well captured:
the precision is better than 2% on the diagonal and degrades when getting further
away from the diagonal. The middle panel shows that the far off-diagonal terms
are dominated by numerical noise from our MC simulations, but are four orders of
magnitudes smaller than the diagonal terms which are the most important, making
it safe to use in the covariance matrix. The right panel shows the absolute difference.

to that of the empirical covariance matrix is smaller than 1%, which in our analysis
necessitated more than 200 000 simulations.

In the case where A = B = C = D, these matrices reduce to symmetrized mixing
matrices

XAAAA
``
′ = YAAAA

``
′ =

1

2`′ + 1
MAA
``
′ , (6.38)

which allows for comparison and validation of the MC simulations (see figure 6.26).
We find percent-level agreement on the diagonal, with a decreasing precision when
moving further away from the diagonal as numerical noise (at least four orders of
magnitude smaller than the diagonal elements) starts dominating.

6.B MCMC convergence tests

In this work, we checked the convergence of the MCMC chains using visual inspection
methods and three different diagnostics, which Sandro Vitenti implemented closely
following the R package CODA (Plummer et al. 2006).

6.B.1 Visual inspection

figure 6.27 shows an example of a trace plot. When the chain is converged, each
walker should oscillate around a common, mean value. The ensemble mean – that is,
average over walkers – should also oscillate around that same mean. Additionally, we
can define forward and backward means as the means of the sample, respectively up to

more simulations (and the inversion of the noisy matrix C). However, the covariance is strongly
dominated by terms close to the diagonal, which makes our choice reasonable.
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Figure 6.27 – Example of trace plot for H0: at each step, the empirical distribution of
walkers is shown in color (bright color indicating high probability). The solid white
line indicates the mean over walkers at each step, while the dashed (respectively
dotted) white line indicates the mean over all points up to that step (respectively,
from that step up to the end). The mean values progressively stabilize around a
common value.

some step, or from that step to the end of the chain. Deviations from that behaviour
indicate that the chain is not converged yet, and allow for a visual estimation of the
burning phase, which is confirmed by the following quantitative tests.

6.B.2 Shrink factor

The first diagnostic is the Multivariate Potential Scale Reduction Factor (MPSRF,
also called the shrink factor, Brooks and Gelman 2012; Gelman and Rubin 1992).
This method requires multiple chains, whose initial values must be over-dispersed in
comparison with the posterior, and quantifies the mixing of the walkers by comparing
the ensemble variance to the per-walker variance. In order to be more quantitative,
let us consider samples of a p-dimensional parameter vectors, θit, where 1 ≤ t ≤ n
indicates the time step and 1 ≤ i ≤ m refers to the walker index. The per-walker
variance is a p×p matrix given by

W i =
1

n− 1

n∑
t=1

(
θit − θ

i
)(
θit − θ

i
)ᵀ
, (6.39)

where θi =
∑n

t=1 θ
i
t

/
n is the per-walker mean. We then take the average over

walkers

W =
1

m

m∑
i=1

W i. (6.40)
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The variance of the per-walker means16 is

B =
n

m− 1

m∑
i=1

(
θ
i − θ

)(
θ
i − θ

)ᵀ
(6.41)

where θ =
∑m

i=1

∑n
t=1 θ

i
t

/
nm is the overall mean. If λ1 denotes the largest eigenvalue

of the symmetric, positive-definite matrix W−1B
/
n , then

r =
n− 1

n
+
m+ 1

m
λ1 −−−→

n→∞
1. (6.42)

Note that this factor can also be computed for each parameter individually, usually
(note the square root here) as

r =

√
n− 1

n
+

1

n

B

W
, (6.43)

whereW and B are per- and between-walker variances (given by the diagonal elements
of W and B). Nevertheless, we do not know a priori the posterior and, for this
reason, we may only guess what an initial, over-dispersed distribution would be.

6.B.3 Heidelberger-Welch test

The second method is the Heidelberger-Welch diagnostic (Heidelberger and Welch

1981, 1983), which is based on the Schruben stationarity test (Schruben 1982).
Consider a Markov chain Xi, and its cumulative sum and mean given by

Yn =

n∑
i=1

Xi, X =
Yn
n
. (6.44)

If the chain is stationary, the forward mean should oscillate around the full-sample
mean. The Schruben test thus defines the continuous process

Bn(t) =
Ybntc − bntcX√

nS(0)
, (6.45)

where S(0) is the spectral density of the chain evaluated at frequency 0 (see the next
diagnostic). Under the assumption of stationarity, Bn(t) approximates a standard
Brownian bridge. Its L2 norm, T =

∫ 1
0 dt |Bn(t)|2, called the Cramér-von Mises

statistic, has a tabulated distribution (Tolmatz 2002) which can be used to test this
hypothesis.

The Heidelberger-Welch diagnostic applies this test to subsets of a chain to obtain
one that satisfies the test for a given p-value. In practice, we cut the chains in

16Note the rescaling factor n, due to the fact that Var
(
θ
i
)

= Var
(
θ
i
t

)/
n .
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100 blocks, then compute the test for the sub-chain made of the n last blocks, for
1 ≤ n ≤ 100. This test is performed for each parameter17 and provides an estimation
of the length of the burning phase. Since we are using an ensemble sampler, we can
apply this test to each individual chain, or, more efficiently, to the ensemble mean of
each parameter. We applied the individual approach only when the Markov chain
presents convergence problems.

6.B.4 Effective sample size

In the third approach, we calculated the autocorrelation time as proposed by Good-

man and Weare 2010. However, in NumCosmo, instead of estimating the autocorrela-
tion time directly from the autocorrelations, we fit an Auto Regressive (AR) model of
order p as in CODA, i.e. we fit for parameters φi, 0 ≤ i ≤ p, such that the chain can
be written

Xt = φ0 +

p∑
i=1

φiXt−i + εt, (6.46)

where εt is white noise. The spectral density is then given by

S(f) =
Var(X)∣∣∣1−∑p
k=1 φke

−2πifk
∣∣∣2 , (6.47)

and the autocorrelation function by

ρ(τ) ≡
〈(Xt − 〈X〉)(Xt+τ − 〈X〉)〉

Var(X)
=

p∑
k=1

ak|yk|
−τ , (6.48)

where yk are the roots of the polynomial 1−
∑p

k=1 φkX
k. The autocorrelation time

is then given by τ0 = 1 + 2
∑p

k=1 φk. In the AR model fitting, we use the bias-
corrected Akaike Information Criterion18 (HURVICH and TSAI 1989) to choose
the best AR order to use for a given parameter in a chosen chain. This provides a
less noisy estimate of the autocorrelation time than the direct inference from the
autocorrelations (see Goodman and Weare 2010). The Effective Sample Size (ESS)
is computed using that estimated autocorrelation time as

ESS =
nsamples

τ0
, (6.49)

and provides an equivalent measure of the effective number of independent points in
each chain. Finally, the variance of the sample mean of the parameters is given by

17We additionally correct for the so-called “look elsewhere effect”, i.e. the fact that if one performs
many tests, some are likely to fail. Therefore, our p-value is the probability that one of the
Cramér-von Mises statistics is larger than a given value.

18We select the model which yields the highest value of 2k − ln L̂ where k is the number of
parameters in the model and hatL is the maximum likelihood of the model. This approximates the
Kullback-Liebler divergence between the model and the “truth”.
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the empirical variance of the sampled values divided by the ESS.

6.C Profile likelihood

In order to accelerate our MCMC analyses, we choose to use the profile likelihood
instead of the marginal likelihood for the nuisance parameters. The reason is that
this procedure decreases the dimension of the parameter space and requires less calls
to the Boltzmann code, resulting in an overall faster convergence of the posterior
distribution of the cosmological parameters. In practice, it amounts to compute the
maximum likelihood estimator value of the nuisance parameters Â(θ) for each set of
cosmological parameters θ given the data (which is fast), and use this value in the
likelihood. The posterior distribution is then given by

Lprofile

(
θ
∣∣∣CTT` )

∝ L
(
CTT`

∣∣∣θ, Â(θ)
)

(6.50)

while the marginal likelihood is

Lmarginal

(
θ
∣∣∣CTT` )

∝
∫
L
(
CTT`

∣∣∣θ,A) dA . (6.51)

We demonstrate that it doesn’t affect the results on the cosmological parameters by
running two MCMC using only the CMB temperature power spectrum CTT` , one
performing the nuisance parameters subfitting procedure and the other using the
standard marginalisation procedure. figure 6.28 shows the posterior distribution in
these two cases. The mean value of each parameter in both runs is shown in the
one-dimensional plots on the diagonal. In all cases, the variation of the mean is
much smaller than the statistical variance, and the standard deviation is at worst
decreased by 15% in the profile likelihood (for ns and ωb, two parameters which are
poorly constrained by the other observations), with almost no difference for the other
parameters. This indicates that we can use either likelihoods indifferently. Since the
profile likelihood method is faster overall, and that we don’t have other nuisance
parameters, we used it for all simulations in section 6.5.2.2.
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Figure 6.28 – Comparison between the marginal likelihood (dark blue) and the profile
likelihood (yellow). On the diagonal, the one-dimensional projections of the posterior
distribution for each parameter is shown, the vertical lines corresponding to the
mean value. For all the parameters, the difference between the means of the two
distribution is much smaller than the statistical error. The standard deviations are
also very close, with at worst a 10% decrease for for ns and ωb.
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Conclusion

Summary

This manuscript reports work that I carried out between September 2014 and
September 2017. After introducing the standard cosmological model, we reviewed a
selection of cosmological observables – the cosmic microwave background, tracers of
large-scale structure and gravitational lensing – that probe the matter density field
over different periods of time and scales. Then, we presented two experiments, Planck
and SDSS-III/BOSS, that were combined in two different ways in chapters 5 and 6.

First, in chapter 5, we proposed a novel approach to the cross-correlation of
the convergence of CMB lensing with the one-dimensional power spectrum of the
Lyman-α forest. We successfully applied this method to Planck and SDSS-III/BOSS
data, demonstrating a correlation between the data sets that originates in non-linear
gravitational and baryonic processes. This is the first detection of this new signal,
and its amplitude is in agreement with expectations from our theoretical approach –
modulo an effective non-linear bias that we fit – and from hydrodynamical simulations,
as reported by recent papers.

Then, in chapter 6, we presented a methodology to perform a joint cosmological
analysis of CMB lensing and the projected density contrast of galaxies and quasars,
using a pseudo-power spectrum approach that includes both auto- and cross-power
spectra. After validating the method with various tests, we applied it to Planck and
BOSS data, then complemented the analysis with CMB temperature data and finally
obtained cosmological constraints on the ΛCDM model. The additional information
included in the joint analysis enabled us to explore constraints on dark energy and
neutrinos.

The near future

Happily, there is plenty of avenues for extending and improving work presented
here in the near future.

Let us first consider the Lyman-α forest-CMB lensing cross-correlation. As
mentioned in chapter 5, this signal is interesting because it provides a test for
expectations of the position-dependent Lyman-α power spectrum, which involves
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non-linear gravitational evolution, but also baryonic processes in the IGM that are
difficult to model. As a cross-correlation signal, it provides an independent test
against which simulations can be calibrated. Further extensions include measuring
the radial dependence, not so much to get more information (it would simply probe
the matter correlation function) but rather to disentangle a possible contribution
from unresolved DLAs that have small transverse extensions (this was pointed out to
me by Anže Slosar, BNL). It is likely that one will have to wait for data from the
upcoming DESI survey to extract cosmological information from this signal, but in
principle, it could constrain small-scale cosmology and therefore the neutrino masses.

I performed a similar cross-correlation analysis replacing the CMB lensing signal
by the CIB observed in the direction of each quasar (traced by the 545 GHz map from
Planck) and found similar results19. At the moment, this very preliminary work lacks
a theoretical interpretation, although, intuitively, this measurement could shed light
on the interplay between star-forming galaxies and neutral hydrogen in the IGM.

Then, the joint analysis presented here will be improved in several ways. In the
near future, the model of the galaxy non-linear power spectrum could be replaced
by one that is more elaborate on small scales. More generally, a meticulous study
of the impact and validity of using small scales to derive cosmological constraints
is still needed (it motivates ongoing, active research for future surveys). Another
improvement could be to cut the samples in thinner redshift bins, thus imposing a
less stringent model for galaxy biases, though RSDs would become more important.
Finally, pseudo-C` estimators could be improved with mode projection techniques
to correct for any possible bias due to astrophysical foregrounds and observational
systematics (Elsner et al. 2017).

Perspectives

We hope, at this point, that it appears clearly that cross-correlations and joint
analyses are useful and necessary, and we also hope that work presented here will
be helpful. This kind of analyses, now blooming, needs further development in the
perspective of future surveys, that we discuss here.

Indeed, summary statistics used to date —mostly angular correlation functions or
power spectra— might not capture cosmological information held in the data set in an
optimal way, and modelling the covariance matrix for partial sky observations is still
challenging. Moreover, the precision of theoretical predictions, e.g. for the non-linear
power spectrum, will have to meet the high requirements set by the steadily growing
stream of data from future surveys.

Angular two-point statistics are a well-established way of quantifying clustering
information because we know how to compute them efficiently, both theoretically and
from observations. However, they cannot capture non-gaussian nor radial information.

19This is not very surprising since Planck found a strong correlation between CMB lensing and
the CIB, both sourced at redshift z 2. In a way, that measurement is only closing the loop.
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Data compression methods such as spherical Fourier-Bessel transforms could capture
the redshift evolution more efficiently, but obtaining reliable and computationally
competitive theoretical expectations is a challenging task. Moreover, codes that
include relativistic corrections (mostly RSD and lensing), such as CLASSgal (Di Dio

et al. 2013) and AngPow (Campagne et al. 2017) are still under active development.
Whichever means of data compression is used also requires the corresponding

covariance matrices. Angular-power-spectra covariance receives non-gaussian con-
tributions that shouldn’t be neglected for the next generation of surveys. At small
scales, extra covariance comes from non-linear gravitational evolution and involves
integrals over the trispectrum (which can be estimated, for instance, with the halo-
model). At large scales, the super-sample covariance characterizes the response of the
measured observable to modes larger than the survey’s extent (and thus unobserved)
and involves integrals over the response of the power spectrum. The cosmolike

code (Krause and Eifler 2017) computes these integrals from their analytical
expressions, but not quickly enough to vary the covariance matrix when running
MCMCs. Although it has been argued that this could actually either be preferable
for gaussian likelihoods20 or solved by some means of marginalization (Sellentin

and Heavens 2016), the problem needs clarification. Additionally, covariance must
take the finite size and non-trivial geometry of surveys into account. While efficient
methods have been developed for CMB studies, more theoretical work is needed to
include the intrinsic non-gaussian covariance mentioned above.

Finally, let us mention another important use of cross-correlation: systematics
control. Inconsistencies between auto- and cross-spectra can judiciously be used
as a warning sign, indicating that something somewhere is off. If forecasts show
that combining data for next-generation surveys at the power-spectrum level will
boost the outcome of joint statistical analyses, one can do even better by performing
a fully joint analysis, starting from raw data. In particular, future weak lensing
surveys (Euclid, LSST and WFIRST), because of their different instrumental designs,
can greatly benefit from each other. Galaxies seen by two or more surveys can be
more accurately de-blended and analyzed. Developing common analysis frameworks
presents financial, organizational and technical challenges, but the opportunities for
science become countless.

We have only just scratched the surface of cross-correlation techniques. They
won’t solve every issue in cosmology, but in the near future, they will offer many novel
ways of combining experiments, probes and wavelengths and deliver great science.

20Carron 2013 showed that varying the covariance matrix within an approximate gaussian
likelihood could pick up spurious, artificial information from the estimators, for the very reason that
their true distributions are not gaussian (see also appendix B.2).
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APPENDIX A

Statistical tools

A.1 Confidence regions: n-σ contours

Consider a multivariate gaussian distribution of mean µ ∈ Rk and covariance matrix
Σ ∈ Rk×k, denoted N (µ,Σ). Its density reads

p(x) =
1√

(2π)k|Σ|
exp

(
−1

2
χ2

)
where χ2 = (x− µ)ᵀ (Σ)−1 (x− µ) . (A.1)

and its marginal distributions are also gaussian.

For a one-dimensional marginal distribution N (µ, σ), the n-σ contours correspond
to the intervals defined as |x− µ| ≤ nσ, which has a measure∫

|x−µ|≤nσ

p(x) dx = erf

(
n√
2

)
. (A.2)

For n = 1, 2 and 3, this corresponds to 68%, 95% and 99% probabilities. For a
marginal distribution that is not gaussian, the n-σ contours is thus defined as limits
of the region R = {x ∈ R | p(x) ≥ s} where s is such that∫

x∈R

p(x) dx = erf

(
n√
2

)
. (A.3)

This interval may not be symmetric around µ and its limits give the upper and lower
n-σ bounds.

Let us now turn to the two dimensional case, an interesting case for MCMC corner
plots. In the gaussian case, the n-σ contours correspond to the elliptical region where
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χ2 ≤ n2, which has a measure∫
χ

2≤n2

p(x) d2x =

∫ n

0
re
− r2

/
2

dr = 1− e−n
2
/

2
. (A.4)

For n = 1, 2 and 3, this corresponds to 39%, 86% and 99% probabilities. The n-σ
contours of other distribution is defined the same way as in the one-dimensional case:

it is the inner region of an iso-density curve with a measure given by 1− e−n
2
/

2 .

A.2 Bayesian inference

This section is based on personal lecture notes from the courses at ENS of Zhan Shi
and Josselin Garnier on integration, probability and random processes and Stéphane
Boucheron on statistics.

A.2.1 Bayes theorem

Consider a random variable X in a probability space1 X , with a probability distribu-
tion Pθ that depends on parameters θ ∈ Θ. Now, assume that Θ can be given the
structure of a probability space, such that θ is a random variable too. Its probability
measure P (θ) dθ is called the prior. If the probability spaces X and Θ have the
correct properties, then one can define the conditional probability of θ given X, called
the posterior. In the case of continuous spaces (for instance if X and θ are open sets
in Rd), Bayes theorem then states that the probability densities are related by

P (θ |X) =
L(X |θ)P (θ)

P (X)
, (A.5)

where L(X |θ) is the likelihood, i.e. the probability density distribution associated
with the law Pθ, and

P (X) =

∫
Θ
L(X |θ′) dθ′ , (A.6)

which is the bayesian evidence (and may be difficult to compute). However, one can
forget about this term, and simply use

P (θ |X) ∝ L(X |θ)P (θ). (A.7)

Bayesian inference interprets the prior distribution as information on θ that is
available before new data or evidence X is used to update our knowledge of θ, as

1Technically, a probability space consists in a sample space Ω, a set F of subsets of Ω stable
under coutable union and intersection (a σ-algebra) and a probability measure P that gives a weight
to each event F ∈ F . Here, we consider a set of such probability measures, indexed by a parameter
vector θ.
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represented by the posterior distribution. One can then estimate confidence regions
on θ, as in the previous section, using the posterior distribution.

A.2.2 Markov chain Monte Carlo methods

In principle, if one can compute the likelihood L(X | θ), then it is possible to obtain
the marginal distributions of θ, i.e. the distribution of each of its components, by
integrating out the other components. However, if the number of dimensions of θ is
higher than a few, it becomes computationally expensive to compute these integrals,
and much CPU time is lost in low probability regions of the parameter space Θ.

Markov chain Monte Carlo (MCMC) methods solve this problem by sampling
the likelihood where it is non-negligible. More precisely, they consist in drawing a
sample of parameter values, θn, by creating a random walk (a Markov chain2) in the
parameter space. Given that ergodicity is ensured, the empirical distribution of the
sample θn can then be used to approximate marginal distributions. In other words,
integrals are replaced by simple histograms.

A.2.2.1 The Metropolis-Hastings algorithm

Once a random initial point has been chosen, the Metropolis-Hastings algorithm
(see, for instance, Lebeau 2009), when applied to the case of sampling the posterior
distribution, proceeds, at time n, as follows:

1. Pick a random point θ from a proposal distribution g(· |θn) that depends on
θn only;

2. Compute the acceptance ratio

P (X |θ)

P (X |θn)

g(θn |θ)

g(θ |θn)
; (A.8)

• if it is larger than 1, then the transition is accepted and θn+1 = θ;

• otherwise, θ is accepted with probability given by this ratio; if rejected,
then θn+1 = θn.

Convergence of the empirical distribution of the sample towards the posterior distribu-
tion is ensured in the case of detailed balance, i.e. the probability of the transition from
θ to θ′ is equal to that from θ′ to θ. However, the choice of the proposal distribution,
and particularly the scale of the “jumps”, is not dictated by the algorithm, and must
be adjusted by hand.
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θni

θnj

θ

Figure A.1 – MCMC ensemble sampler stretch move implemented in NumCosmo as
suggested in Goodman and Weare 2010.

A.2.2.2 Ensemble sampler

For the work presented in Chapter 6, we used an ensemble sampler MCMC, with a
specific transition scheme called a stretch move as in Goodman and Weare 2010. It
collectively moves an ensemble of walkers in the parameter space, creating a sample
θin, indexed by time n and walker index i. It proceeds, at step n and for walker i, as
follows:

1. Pick another walker, j, at random;

2. Draw a line between θin and θjn, and pick a point on this line

θ = θin + Z(θin − θ
j
n), (A.9)

where Z has a probability density function given by

p(Z) ∝

{
1√
z

if z ∈
[

1
α , α

]
0 otherwise

, (A.10)

where the scale α is a hyperparameter to be adjusted (this will impact the
average fraction of steps that are accepted).

3. Compute the acceptance ratio

Zd−1 P (X |θ)

P (X |θin)
, (A.11)

2A Markov chain is a discrete random process Xn, where n ∈ N, such that Xn+1 is independent
of Xk for k < n.
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where d is the dimension of θ and decide whether or not to move the walker, as
in the Metropolis-Hastings algorithm.

In order to maintain the detailed balance, it is actually necessary to split the sample
of walkers in half, updating the first half by choosing walkers from the second half,
and then the opposite.

This type of MCMC sampler has several advantages. First, as an ensemble
sampler, it provides a better mixing than a single walker. Then, the stretch move
means that the speed of sampling is independent of the scale and absolute value of
the parameters, a property called affine invariance. Moreover, intuitively, it means
that when a walker reaches a high probability region, it will “attract” other walkers.
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APPENDIX B

On angular power spectra

B.1 Pseudo power spectra

B.1.1 Expectation value

The mask or window function WA(n̂) relates the full-sky multipoles a`m to the
pseudo-multipoles via the relationship

ã`m =
∑
`
′
m
′

A
mm

′

` `
′ a`′m′ (B.1)

where
A
mm

′

` `
′ =

∫
dn̂Y ∗

`m
(n̂)Y`′m′(n̂)WA(n̂). (B.2)

Therefore, the pseudo-power spectrum estimator reads

C̃AB` =
1

2`+ 1

∑
m

ã`mb̃
∗
`m (B.3)

=
1

2`+ 1

∑
m

∑
`
′
m
′

∑
`
′′
m
′′

A
mm

′

` `
′ B
∗mm′′

` `
′′ a`′m′ .b

∗
`
′′
m
′′ (B.4)

The expectation value of the estimator is〈
C̃AB`

〉
=

1

2`+ 1

∑
m

∑
`
′
m
′

A
mm

′

` `
′ B
∗mm′

` `
′ C

AB
`
′ (B.5)

=
∑
`
′

M``
′CAB
`
′ . (B.6)
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where the mixing matrix is given by

M``
′ =

1

2`+ 1

∑
mm

′

A
mm

′

` `
′ B
∗mm′

` `
′ . (B.7)

B.1.2 Covariance of pseudo spectra

In order to obtain the covariance of these estimators, let us first compute the
expectation value of the product for four observables (A, B, C and D) and two
multipoles (`1 and `2). It is〈

C̃AB`1 C̃CD`2

〉
=

1

2`1 + 1

1

2`2 + 1

∑
m1

∑
`
′
1m
′
1

∑
`
′′
1m
′′
1

∑
m2

∑
`
′
2m
′
2

∑
`
′′
2m
′′
2

A
m1m1

′

`1 `1
′ B
∗m1m1

′′

`1 `1
′′ C

m2m2
′

`2 `2
′ D

∗m2m2
′′

`2 `2
′′

〈
a`′1m

′
1
b∗
`
′′
1m
′′
1
c`′2m

′
2
d∗
`
′′
2m
′′
2

〉
︸ ︷︷ ︸

〈〉

(B.8)

where the expectation value of the product of four multipoles is decomposed, thanks
to Wick’s theorem, as

〈〉 =
〈
a`′1m

′
1
b∗
`
′′
1m
′′
1

〉〈
c`′2m

′
2
d∗
`
′′
2m
′′
2

〉
︸ ︷︷ ︸

1

+
〈
a`′1m

′
1
c`′2m

′
2

〉〈
b∗
`
′′
1m
′′
1
d∗
`
′′
2m
′′
2

〉
︸ ︷︷ ︸

2

+
〈
a`′1m

′
1
d∗
`
′′
2m
′′
2

〉〈
b∗
`
′′
1m
′′
1
c`′2m

′
2

〉
︸ ︷︷ ︸

3

. (B.9)

The first term, when the sums in Equation (B.8), becomes

1 →
〈
C̃AB`1

〉〈
C̃CD`2

〉
(B.10)

and will cancel when computing the covariance of C̃AB`1 and C̃CD`2 .

Using the reality condition,

a∗`m = (−1)ma`,−m, (B.11)

the third term, when summed, becomes

3 → 1

2`1 + 1

1

2`2 + 1

∑
m1

∑
`
′
1m
′
1

∑
m2

∑
`
′
2m
′
2

A
m1m1

′

`1 `1
′ B
∗m1m2

′

`1 `2
′ C

m2m2
′

`2 `2
′ D

∗m2m1
′

`2 `1
′ C

AD
`
′
1
CBC
`
′
2
.

(B.12)

Using, again, the reality condition, the expectation value of the second term is

2 = (−1)m
′
1+m

′′
1 δ`′1,`

′
2
δm′1,−m

′
2
δ`′′1 ,`

′′
2
δm′′1 ,−m

′′
2
CAC
`
′
1
CBD
`
′′
1
. (B.13)
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Using properties of the spherical harmonics, we also have that

A
mm

′

` `
′ = (−1)m+m

′
A∗
−m−m′

` `
′ (B.14)

such that, when the sums are perform and indices renamed, the second term becomes

2
m
′′
1→m

′
2,`
′′
1→`

′
2−−−−−−−−−−→

m2→−m2

1

2`1 + 1

1

2`2 + 1

∑
m1

∑
`
′
1m
′
1

∑
m2

∑
`
′
2m
′
2

A
m1m1

′

`1 `1
′ B
∗m1m2

′

`1 `2
′ C
∗m2m1

′

`2 `1
′ D

m2m2
′

`2 `2
′ C

AC
`
′
1
CBD
`
′
2
. (B.15)

Finally, using Eisenstein symmetrization (valid if the spectra vary smoothly and
that the mixing does not strongly couple very different multipole indices),

CAD
`
′
1
CBC
`
′
2
→
√
CAD`1 CAD`2 CBC`1 CBC`2 , (B.16)

as in Brown et al. 2005, the final result is

Cov
(
C̃AB`1 , C̃CD`2

)
≈
√
DAD
`1

DAD
`2

DBC
`1
DBC
`2

XABCD`1`2

+

√
DAC
`1
DAC
`2
DBD
`1

DBD
`2

YABCD
`1`2

(B.17)

with

DAB
` =

{
CAB` if A 6= B

CAA` +NA
` if A = B

, (B.18)

where CAB` and NA
` are the full-sky theoretical and noise spectra. The two matrices

involved are

XABCD`1`2
=

1

2`1 + 1

1

2`2 + 1

∑
m1

∑
`
′
1m
′
1

∑
m2

∑
`
′
2m
′
2

A
m1m1

′

`1 `1
′ B
∗m1m2

′

`1 `2
′ C

m2m2
′

`2 `2
′ D

∗m2m1
′

`2 `1
′ (B.19)

and

YABCD
`1`2

=
1

2`1 + 1

1

2`2 + 1

∑
m1

∑
`
′
1m
′
1

∑
m2

∑
`
′
2m
′
2

A
m1m1

′

`1 `1
′ B
∗m1m2

′

`1 `2
′ C
∗m2m1

′

`2 `1
′ D

m2m2
′

`2 `2
′ . (B.20)

In the case where A = B = C = D (by which we mean that the four observables
have the same mask), and only in that case, they reduce to symmetrized versions of
the mixing matrix,

XAAAA
``
′ = YAAAA

``
′ =

1

2`′ + 1
MAA
``
′ . (B.21)
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As a by-product, we also obtain the variance of the full-sky spectrum, given by

Var
(
ĈAB`

)
=

(
CAB`

)2
+ CAA` CBB`

2`+ 1
. (B.22)

B.2 On the distribution of the cross-power spectrum es-
timator

Let us consider the cross-power spectrum estimator

ĈAB` =
1

2`+ 1

∑̀
m=−`

a`mb
∗
`m (B.23)

where the multipoles are assumed to be normally distributed with zero mean and
covariances

〈
a`ma

∗
`
′
m
′
〉

= δ``′δmm′C
AA
` , (B.24)〈

a`mb
∗
`
′
m
′
〉

= δ``′δmm′C
AB
` , (B.25)〈

b`mb
∗
`
′
m
′
〉

= δ``′δmm′C
BB
` . (B.26)

These are complex numbers (except for m = 0), so this means that their real
and imaginary parts are independent and gaussian distributed with zero mean and
variances divided by 2, such that, for m 6= 0,

〈
Re(a`m)2

〉
=
〈

Im(a`m)2
〉

=
CAA`

2
(B.27)〈

Re(b`m)2
〉

=
〈

Im(b`m)2
〉

=
CBB`

2
(B.28)

and 〈
Re(a`m) Re(b`m)

〉
=
〈

Im(a`m) Im(b`m)
〉

=
CAB`

2
(B.29)〈

Re(a`m) Im(a`m)
〉

=
〈

Re(b`m) Im(b`m)
〉

= 0 (B.30)〈
Re(a`m) Im(b`m)

〉
=
〈

Re(b`m) Im(a`m)
〉

= 0. (B.31)

Therefore, the auto-power spectrum reads

ĈAA` =
1

2`+ 1

[
a2
`0 +

∑̀
m=1

(
x2
`m + y2

`m

)]
, (B.32)

where x`m =
√

2 Re(a`m) and y`m =
√

2 Im(a`m), which is the sum of 2`+ 1 indepen-
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dent normal variables with mean 0 and variance CAA` . Therefore,

V` ≡ (2`+ 1)
ĈAA`

CAA`
(B.33)

follows a χ2 distribution with 2`+ 1 degrees of freedom, such that

p
(
ĈAA`

)
=

V
`−1/2
` e−V`/2

2`+1/2Γ
(
`+ 1

2

) . (B.34)

Now, the situation is slightly different for cross-spectra (which may be negative).
The estimator may be rewritten as

ĈAB` =
1

2`+ 1

[
a`0b`0 + 2

∑̀
m=1

(
Re(a`m) Re(b`m) + Im(a`m) Im(b`m)

)]
(B.35)

=

√
CAA` CBB`

2`+ 1

∑̀
m=−`

XmYm (B.36)

where

Xm =
1√
CAA`


a`0 m = 0,√

2 Re{a`m} m > 0,√
2 Im{a`−m} m < 0,

(B.37)

and similarly for Ym with b’s instead. This is the sum of the products of correlated,
gaussian random variables with zero means and correlation coefficient

ρ ≡ CAB`

/√
CAA` CBB` , (B.38)

but independent for different values of m. The product Zm ≡ XmYm has a probability
density distribution given by (Nadarajah and Pogány 2016)

p(z) =
1

π

√
1− ρ2

exp

[
ρz

1− ρ2

]
K0

(
|z|

1− ρ2

)
(B.39)

where K0(·) denotes the modified Bessel function of second kind of order zero1. The
distribution of the sum can be obtained by convolving this distribution 2`+ 1 times
with itself2, and we conclude that the probability density function of the estimator
ĈAB` is given by (see Nadarajah and Pogány 2016, as well)

p
(
ĈAB`

)
=

ρ

CAB`

(2`+ 1)`+1 ( |z|/2)`√
π
(

1− ρ2
)

Γ
(
`+ 1

2

) exp

[
β − γ

2
z

]
K−`

(
β + γ

2
|z|
)

(B.40)

1The proof uses the characteristic function, i.e. the Fourier transform of the density
〈
e
itZm

〉
.

2Which, in Fourier space, is equivalent to taking the characteristic function to the power 2`+ 1.
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A
B

`

)
` = 50, ρ = 0.5

Gaussian approx.

` = 100, ρ = 0.5

` = 50, ρ = 0.25

` = 50, ρ = −0.5

Figure B.1 – Probability density function of the cross-power spectrum estimator ĈAB`
for a few values of ρ and `. The Gaussian approximates the distribution for ρ = 0.5
and ` = 50.

where β = (2`+ 1)/(1− ρ) , γ = (2`+ 1)/(1 + ρ) and z = ρ ĈAB`

/
CAB` . It is

plotted in figure B.1, has mean CAB` and variance given by Equation (B.22).
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The NumCosmo library

NumCosmo1 contains a comprehensive set of tools to compute cosmological observables
and to perform statistical analyses. The library is written in C, but since it uses
the GObject framework2, it is developed in a object-oriented fashion. Additionally,
it has automatic bindings with every language that supports GObject introspection
(e.g. Python, Ruby or Perl). Unless stated otherwise, all the plots in this manuscript
were computed with NumCosmo in Python, using CLASS as a backend for perturbed
quantities, when needed.

After a brief description of the library, I will detail the main modules and
improvements that I coded during my PhD work, with help from Sandro Vitenti and
Mariana Penna-Lima, the main developpers of NumCosmo. Additionally, I took part
in many minor improvements, such as the creation of a Docker3 image of NumCosmo
to enable easy deployment in cloud computing infrastructures, which was used to run
MCMCs at CC-IN2P3.

Philosophy The different modules of the library heavily rely on fast algorithms
with controlled precision, implemented in well-tested libraries such as GSL4,
NLOpt5, Sundials6, FFTW7, BLAS8 and Lapack9. With the flexibility of object-
oriented programming, the library allows the user to perform computations
with end-to-end controlled precision.

1https://numcosmo.github.io/
2https://developer.gnome.org/gobject/stable/
3https://www.docker.com/
4https://www.gnu.org/software/gsl/
5http://ab-initio.mit.edu/nlopt
6https://computation.llnl.gov/projects/sundials
7http://www.fftw.org/
8Any implementation works, e.g. ATLAS (http://math-atlas.sourceforge.net/) or Open-

BLAS (http://www.openblas.net/).
9http://www.netlib.org/lapack/
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Structure The library contains two namespaces, Ncm and Nc, for, respectively, general-
purpose mathematical functions and cosmology-specific objects. Physical models
are implemented via the abstract class NcmModel. In particular, the ΛCDM
and wCDM models, and all respective relevant functions are implemented
in NcHICosmoDE and child classes (such as NcHICosmoDEXcdm), the primor-
dial power spectrum is implemented in NcHIPrim, the reionization model in
NcHIReion. Data objects deriving from the abstract class NcmData encapsulate
observations and implement likelihood functions. A general object for statistical
analysis NcmFit is then built from the data and the model.

Cosmological observables The library implements several cosmological probes. For
each of those, it implements the computations of the cosmological quantities
and a likelihood in separate objects. At the moment, it can be used to analyze
distance observations from BAO and supernovæ and direct H0 measurements.
It also implements cluster-related observables (mass and redshift distributions),
CMB temperature and polarization observations (via an interface with Planck
likelihood codes, Plik and Commander), and, for the purpose of the work
presented here, auto- and cross-correlations of projected observables, such as
CMB lensing, galaxy density and galaxy lensing.

Statistical tools Besides standard mathematical tools, the library implement a num-
ber of statistical analysis facilities, which includes best-fit finders, Fisher matrix
estimation (with adaptive numerical differentiation), Monte-Carlo analysis
(which we used in section 6.4.3.3), Monte-Carlo bootstrap analysis, (ensemble)
Markov chain Monte-Carlo analysis (described in appendix A.2.2.2), profile
likelihood in 1 and 2D, and approximate bayesian computation.

The next sections describe two modules that I coded for the work presented in
this thesis.

C.1 The xcor module

The xcormodule addresses the computation of the theoretical angular power spectrum,
CAB` . At the moment, it implements the Limber approximation for any set of two
probes, which is given by

CAB` =

∫
dz

H(z)

cχ(z)2W
A(z)WB(z)P

(
k =

`+ 1/2

χ(z)
, z

)
+O

(
1

`2

)
. (C.1)

It is divided in several objects:

1. NcXCor: abstract class that comprises the methods to compute the auto and
cross power spectra. It takes as input a distance object NcDistance, a power
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spectrum object of the class NcmPowSpec and a cosmological model of the class
NcHICosmo, all of which are easily interchangeable.

2. NcXCorLimberKernel: abstract class of the type NcmModel10 which implements
the kernel functions of the following probes:

• NcXCorLimberKernelCMBLensing implements the CMB lensing kernel
W κCMB(z) from Equation (6.2);

• NcXCorLimberKernelGal implements the galaxy density kernel, W g(z)

from Equation (6.2), with a bias that can be constant or redshift dependent
(modelled by a spline);

• NcXCorLimberKernelWeakLensing implements the galaxy weak lensing
kernel, W κgal(z) from Equation (4.21).

These objects also store the noise power spectrum of each probe.

3. NcDataXCor: this object builds the likelihood given by Equation (6.23) for
an arbitrary number of probes, with arbitrary multipole ranges. It derives
from NcmDataGaussCov, i.e., the object that describes Gaussian-distributed
data with non-diagonal covariance matrix. It performs the multiplications of
the power spectra by the mixing matrices and takes care of the combinatorics
amongst probes to form the covariance matrix.

All these objects are written so that they can be serialized (saved to hard disk), which
enables easy and fast transfer of input data for MCMC runs.

There are two implemented methods to compute the angular power spectra with
the Limber approximation. The first uses independent numerical integration for
each multipole `, which is performed by adaptative quadrature integration using the
GSL function gsl_integration_qag with 61 Gauss-Kronrod rule11. However, this
requires many calls to the functions evaluating the power spectrum and the kernels.
The second methods makes use of the ordinary differential equation (ODE) solver
CVode of the Sundials library. Since it can numerically integrate vector-valued ODE,
we can integrate all the multipoles of the spectrum at once by defining the vector of

10Being a NcmModel, each implementation of NcXCorLimberKernel can define a respective set of
parameters. For instance, the linear bias, b(z), in Equation (6.3).

11Gaussian quadrature approximates integrals by a sum as∫ b

a

w(x)f(x) dx ≈
n∑
i=1

wif(xi),

where xi are the roots of a polynomial of rank n, belonging to a class of polynomials that are
orthogonal with respect to the inner product defined by the weight function w(x), and wi are the
associated weights. This expression is exact if the function f is a polynomial of rank less than 2n− 1.
The Gauss-Kronrod quadrature adds evaluation points, such that the scheme of evaluation points is
self-nested (i.e. higher order quadratures use all evaluation points of lower order quadratures).
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stacked spectra,

y =


CAB`min

...
CAB`max

, (C.2)

and integrating the system given by

y′(z) =


dCAB`min

dz
...

dCAB`max

dz

 =
H(z)

cχ(z)2W
A(z)WB(z)


P

(
k =

`min + 1/2

χ(z)
, z

)
...

P

(
k =

`max + 1/2

χ(z)
, z

)
. (C.3)

This considerably reduces the number of evaluations of the halofit power spectrum
at different redshifts (which is the slowest step). Profiling tests revealed that this
increased speed of the integration by a factor of 10 (and up to 100 more after
optimization of the evaluation of the power spectrum).

C.2 The halofit power spectrum

The halofit model was initially proposed by Smith et al. 2003, later corrected to
include massive neutrinos (Bird et al. 2012) and updated on high-resolution N -body
simulations (Takahashi et al. 2012). I implemented it in NumCosmo as an implemen-
tation of the abstract class of non-linear matter power spectrum NcPowSpecMNL.

The dimensionless power spectrum is given by the sum of a one-halo and a
two-halo terms:

∆2(k, z) ≡ k3P (k, z)

2π2 = ∆2
Q(k, z) + ∆2

H(k, z). (C.4)

Here, we will drop the redshift dependence is the notation for readability, but all
coefficients are redshift-dependent. The first step consists in computing the non-
linear distance scale Rσ such that the variance of density fluctuations, σ2(R) (see
section 1.4.3.2), is unity. The window function is gaussian, such that

σ2(R) =

∫
k2 dk

2π2 P (k)e−k
2
R

2

. (C.5)

We define the non-linear scale by k−1
σ = Rσ. Additionally, we define the effective

spectral index neff and the curvature C by

neff = −3− d lnσ2(R)

d lnR

∣∣∣∣∣
R=Rσ

and C = − d2 lnσ2(R)

d lnR2

∣∣∣∣∣
R=Rσ

. (C.6)

The variance σ2(R) and its derivatives can be computed by direct numerical integra-
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tion, or more efficiently using FFTLog (Hamilton 2000), which is implemented in
NcmFFTLog. The non-linear scale is the root of the function f(lnR) = σ2(R)− 1 and
is determined by a root-finding algorithm using GSL’s gsl_root_fdfsolver, which
takes advantage of the easily computed derivatives of σ2(R) with respect to lnR

to accelerate convergence towards the root. This method is more precise than the
current implementations of halofit in CLASS or CAMB.

Instead of computing Rσ at each call of the evaluation function, a spline Rσ(z)

is prepared. NumCosmo implements an algorithm to automatically fill a spline given
a required precision, which we use to automatically compute Rσ(z) between z = 0

and some maximum redshift, usually z = 10, beyond which non-linear corrections are
negligible.

The two-halo term is given by

∆2
Q(k) = ∆2

lin(k)


(

1 + ∆2
lin,ν(k)

)β
1 + α∆2

lin,ν(k)

 e−f(y), (C.7)

where ∆2
lin(k) is the dimensionless linear matter power spectrum, y = k/kσ and

f(y) = y/4 + y2
/

8 . The linear matter power spectrum within the bracket term
includes a correction related to massive neutrinos, written as

∆2
lin,ν(k) = ∆2

lin(k)

(
1 + 47.48fmν

k2
h

1 + 1.5k2
h

)
, (C.8)

where k2
h is k2 expressed in

(
h Mpc−1

)2
and

fmν =
Ωmν

(z)

Ωm(z)
(C.9)

is the neutrino mass fraction.

The one-halo term is given by12

∆2
H(k) =

∆′2H(k)

1 + νy−2

(
1 + fmν

(
0.977− 18.015(Ω0

m − 0.3)
))
, (C.10)

with

∆′2H(k) =
ay3f1

1 + byf2 + (cf3y)3−γ (C.11)

12Note that we use the same parameters as in CLASS, which were updated by Simeon Bird,
combining corrections for massive neutrinos and high-resolution simulations.
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The parameters are given by

log10 a = 1.5222 + 2.8553neff + 2.3706n2
eff + 0.9903n3

eff + 0.2250n4
eff

− 0.6038C + 0.1749ΩΛ(1 + w)
(C.12)

log10 b = − 0.5642 + 0.5864neff + 0.5716n2
eff − 1.5474C + 0.2279ΩΛ(1 + w) (C.13)

log10 c = 0.3698 + 2.0404neff + 0.8161n2
eff + 0.5869C (C.14)

γ = 0.1971− 0.0843neff + 0.8460C (C.15)

α =
∣∣∣6.0835 + 1.3373neff − 0.1959n2

eff − 5.5274C
∣∣∣ (C.16)

β = 2.0379− 0.7354neff + 0.3157n2
eff + 1.2490n3

eff + 0.3980n4
eff

− 0.1682C + fmν (1.081 + 0.395n2
eff)

(C.17)

log10 ν = 5.2105 + 3.6902neff (C.18)

(C.19)

and

f1 = fΛΩm
−0.0307 + (1− fΛ)Ωm

−0.0732 (C.20)

f2 = fΛΩm
−0.0585 + (1− fΛ)Ωm

−0.1423 (C.21)

f3 = fΛΩm
0.0743 + (1− fΛ)Ωm

0.0725. (C.22)

where
fΛ =

ΩΛ(z)

1− Ωm(z)
(C.23)

is the fraction of the non-matter energy content which is dark energy.
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APPENDIX D

Other numerical tools

This appendix describes two libraries heavily used for the work presented in this
thesis. The HEALPix library offers facilities to visualize and analyze full-sky maps (all
the maps shown in this manuscript use HEALPix) and the CLASS library implements a
Boltzmann equations solver and provides estimations of CMB power spectrum CTT`

and the linear matter power spectrum.

D.1 HEALPix: spherical pixelization

HEALPix1 is a C library that performs equal-area pixelization on the sphere, thus
enabling the projection and visualization of digitized sky maps (Górski et al. 2005).
The pixelization scheme has the following properties:

• pixels are curvilinear quadrilaterals with equal areas;

• the center of pixels are distributed along isolatitude rings;

• the pixelization is hierarchical, i.e. each pixel is divided into four smaller pixels
when increasing the resolution parameter Nside.

Additionally, HEALPix, and its python wrapper healpy2, implement fast spherical
harmonics transform (FSHT), similar to the fast Fourier transform (FFT) in euclidian
space, based on Muciaccia et al. 1997. The FFT accelerates the computation of
the complex sum

Xk =

N1∑
n=0

xne
− 2πikn

N (D.1)

by using the decomposition in prime integers of N to decrease the number of evalu-
ations of powers of e−

2πi
N . Similarly, FSHT is based on writing the function to be

1http://healpix.sourceforge.net/
2https://healpy.readthedocs.io
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Figure D.1 – Pixelization of the sphere within HEALPix for resolution parameter
Nside = 1, 2, 4 and 8, corresponding to Npix = 12, 48, 192 and 768 pixels (in clockwise
order, starting from top left). Figure from Górski et al. 2005.

evaluated as

A(θ, φ) =

`max∑
`=0

+∑̀
m=−`

a`mY`m(θ, φ) =

+`max∑
m=−`max

bm(θ)eimφ, (D.2)

where

bm(θ) =

`max∑
`=|m|

a`mλ
m
` (D.3)

is a function of latitude only. Therefore, at fixed latitude, the computation of the last
sum in Equation (D.2) can be performed by means of an FFT. The λm` coefficients
are given by

λm` =

√
2`+ 1

4π

(l −m)!

(l +m)!
Pm` (cos θ), (D.4)

where Pm` are the associated Legendre polynomials, and can be evaluated analyti-
cally through a recurrence relation. The inverse transform, to obtain the multipole
coefficients a`m from the map, is performed by noting that

bm(θ) =

∫ 2π

0
A(θ, φ)e−imφ dφ , (D.5)

which is the inverse Fourier transform of Equation (D.3), and then

a`m =

∫
λm` (θ)bm(θ) sin θ dθ , (D.6)

which, again, is computed by a recurrence relation.
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These facilities can be used to evaluate multipole coefficients a`m and power
spectra C`, to apply spatial filtering and to simulate full-sky maps (as done in
section 6.4.3).

D.2 CLASS

The Cosmic Linear Anisotropy Solving System3 (Blas et al. 2011) is a Boltzmann
equations solver written in C. Perturbations of the densities and velocities of cos-
mic fluids (baryons, dark matter, neutrinos and photons) and perturbations of the
space-time metric (parametrized by gravitational potentials) obey a set of linear,
coupled equations, overviewed in Sections 1.4.2.3 and 2.1.6, and derived in Ma and
Bertschinger 1995. CLASS derives from CAMB (Lewis et al. 2000), itself inspired
from CMBFast (Seljak and Zaldarriaga 1996). All of these codes evolve the
Boltzmann equations for an appropriate sample of Fourier modes k and compute the
CMB power spectrum by line-of-sight integration of the temperature modes Θ

(m)
` (k, η)

(see Equation (2.11)). These modes can be generically written as

Θ
(m)
` (k, ηnow) =

∫ ηnow

0
S(m)(k, η) j`(k(ηnow − η)) dη , (D.7)

where S(m)(k, η) is a source term depending on perturbed quantities and j`(x) are the
spherical Bessel function. The source term is a slowly varying function of k depending
on the cosmological model, while the Bessel function are independent of cosmology.
Thus, numerical techniques can be applied to quickly compute this integral.

3http://class-code.net/
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