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Abstract

The shallow water equations are of quite an importance for modelling oceanic flows as a simple
approximation of the water wave equations, which describe the gravity-driven free surface flows,
when the fluid is incompressible, homogeneous, inviscid, and the pressure is only hydrostatic,
owing to the shallowness assumption, that is the horizontal length scale is much larger than the
vertical one. For the shallow water equations, the Froude number characterises the dominance
of advective modes compared to gravity (acoustic) modes as the ratio of the bulk velocity to the
speed of gravity waves. For the large-scale oceanic phenomena, the Froude number is often small;
so, the gravity waves are too fast to contribute to the bulk motion, i.e., they do not affect the
solution of the large-scale macroscopic model. For a time-explicit numerical treatment, though,
one should devise a method to tackle these fast waves to avoid high computational costs as they
restrict the time step through the Courant–Friedrichs–Lewy (CFL) condition. The approach
considered throughout this manuscript is to decompose the system into slow and fast parts and
to employ an implicit-explicit (IMEX) strategy, i.e., to treat the fast part implicitly and the slow
part explicitly.

In addition to the efficiency problem attached to this singularly-perturbed system, one should
be careful about the limiting scheme, i.e., if the scheme provides a consistent and stable approx-
imation of the zero-Froude system (lake equations). Even if the convergence to the limit can
be shown for the continuous model, preserving such a convergence for the discrete (numerical)
model, along with stability and consistency, is by no means trivial and should be carefully anal-
ysed. This motivates adopting the framework of asymptotic preserving (AP) schemes introduced
by [Jin, SIAM J. Sci. Comp. 21(2) (1999), pp. 441–454], with the Froude number as the scaling
singular parameter. AP schemes are defined as schemes mimicking such a convergence to the
limit for the discrete model, e.g., in virtue of uniform consistency and stability.

In this manuscript, we consider two IMEX flux-splitting finite volume schemes for the shallow
water equations with uniform consistency and stability w.r.t. the Froude number: the Lagrange-
projection IMEX scheme and the reference solution IMEX scheme. The LP-IMEX scheme is a
Godunov-type scheme, which decomposes the system into the acoustic and the transport systems,
and employs a Lagrangian formulation for the former. Unfortunately, it is involved in some
inherent accuracy issues especially in multiple dimensions, which need to be taken care of; so,
we investigate it only for the one-dimensional system. The primary focus would be on the RS-
IMEX scheme, which decomposes the solution into the (asymptotic) reference solution and a
perturbation around it in order to split the system. We study the RS-IMEX scheme in one and
two space dimensions with the bottom topography, and finally, with the additional Coriolis force.
For both of these schemes, we present a (rigorous) asymptotic analysis to justify the uniform
consistency and stability of the scheme w.r.t. the Froude number, and to corroborate the AP
property. We also test the quality of the solutions computed by the RS-IMEX scheme in several
numerical examples, particularly for the low-Froude regime.
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Chapter 1

Introduction

“With my two algorithms one can solve all problems—without error, if God will.”

– Khwarizmi, Algebra (circa 800 AD)

Throughout this chapter, we present the basics we need for the rest of this manuscript. Firstly,
we briefly review hyperbolic balance laws and introduce asymptotic preserving schemes as well as
the shallow water equations. Then, we discuss state of the art in designing asymptotic preserving
schemes for the shallow water equations, which is followed by the overview of the remaining
chapters, describing the contributions of this manuscript.

Contents
1.1 A short introduction to hyperbolic systems . . . . . . . . . . . . . . 1

1.2 Asymptotic preserving schemes . . . . . . . . . . . . . . . . . . . . . 4

1.3 Shallow water equations . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Overview of the manuscript . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 A short introduction to hyperbolic systems

A system of conservation laws considers conservation of a quantity in a specific d-dimensional
domain, Ω ⊂ Rd, and writes {

∂tU(t,x) + divxF (U) = 0,

U(0,x) = U0(x),
(1.1)

where (t,x) ∈ [0,∞)×Ω, U(t,x) ∈ Rq is the vector of q conservative variables, F = [f1, . . . ,fd] ∈
Rq×d is a smooth flux function, and U0(x) is the initial condition of the system. We set the
domain Ω to be a d-dimensional torus Td to avoid any issue which may arise from the boundaries.
We assume, hereinafter, that the system is hyperbolic, i.e., for all directions n = (n1, . . . , nd)

T

1



2

in Rd, the flux Jacobian matrix An :=
∑d
i=1 ∂Ufini has q real eigenvalues λ1 ≥ · · · ≥ λq

with linearly-independent eigenvectors {rk}qk=1. It means that An (denoted more simply as
A := ∂UF ) is diagonalisable, i.e., it can be transformed into a diagonal matrix as A = RΛR−1,
where Λ is a diagonal matrix—which consists of eigenvalues of A— and R is the matrix of right
eigenvectors. We define the wave family (λk, rk) to be genuinely non-linear if λ′k(U) · rk(U) 6= 0
for all U , and to be linearly degenerate if λ′k(U) · rk(U) = 0 for all U . For one-dimensional
(1d) systems, the notion of Riemann invariants can be very useful in decoupling the system, cf.
Chapter 2. It is defined as the variable wj whose gradient is normal to the right eigenvector rj ,
i.e., ∂Uwj · rj = 0. This implies that wj is constant along rj ; so, the system can be transformed
into a diagonal form, as a system of advection of the Riemann invariants ∂twj + λj∂xwj = 0.

The existence, uniqueness, and regularity of the solution of (1.1) is a long-standing question,
and only some partial answers are available for some specific systems. It is well-known that, in
general, and even with smooth initial data, the system does not possess a continuous solution
after a finite time, as the so-called shock waves appear and the solution gets discontinuous. So, it
is a common practice to weaken the notion of the solution to the weak or distributional solutions,
as defined below.

Definition 1.1.1. [Weak (distributional) solution] A function U ∈ [L∞loc([0,+∞)× Ω)]
q

is a
weak solution of (1.1) with the initial data U0 ∈ [L∞loc(Ω)]

q
if∫ ∞

0

∫
Ω

(U · ∂tϕ+ F · ∇xϕ) dx dt+

∫
Ω

U0 ·ϕ(0,x)dx = 0, ∀ϕ ∈ [C∞0 ([0,+∞)× Ω)]
q
.

It can be shown that (piece-wise smooth) weak solutions satisfy the so-called Rankine–Hugoniot
jump condition, which governs the evolution of a discontinuity, like shocks. However, the R–K
condition is not enough to determine the weak solution uniquely and one can find infinitely many
weak solutions satisfying the jump condition. To recover the uniqueness, the notion of entropy
solutions is employed [Daf10], which are solutions satisfying a relevant entropy inequality

∂tη(U) + divxQ(U) ≤ 0, Q := [q1, . . . , qd], (1.2)

in the sense of distributions, and for all entropy pairs (η,Q), i.e., all pairs of functions (η,Q)

such that η is a scalar and (strictly) convex, and (∂Uη)
T
A = (∂UQ)

T
. Although the entropy

criterium works well for d = 1, it has been shown recently that entropy solutions are not unique
for d > 1; see [CK16] and the references therein like [DLS10, Ell06].

One can also weaken the solution to the so-called measure-valued solution which is in fact a
Young measure, rather than an integrable function; see [DiP85, DM87, NMRR96]. For further
details about this, in particular, and about the theory of hyperbolic conservation laws, in general,
we refer the reader to the monograph [Daf10].

Example 1.1.2 (Isentropic Euler equations). As a well-known example of hyperbolic conserva-
tion laws (1.1), one can name the 2d isentropic Euler equations, which write

∂t%+ divx(%u) = 0,

∂t(%u) + divx (%u⊗ u+ p(%)I2) = 0,
(1.3)

where % > 0 is the density of the fluid, u is the two-dimensional velocity vector, ⊗ denotes the
Kronecker product, p(%) := κ%γ (with κ > 0 and γ > 1) is the isentropic pressure law, and I2
is the 2 × 2 identity matrix. It is easy to confirm that the system is hyperbolic, i.e., it has real
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eigenvalues u · n and u · n±
√
p′(%), and a complete set of eigenvectors. The entropy function

can be chosen as the total energy of the solution %E, where the total energy density is written as

E = E + u2

2 , and E(%) := κ
γ−1%

γ−1 is the internal energy density, cf. [LW07]). One can show

that %E is strictly convex w.r.t. the conservative variables U = (%, %u)T . The entropy flux can
be shown to be Q = (%E + p)u; so, the entropy inequality (1.2) for this system writes

∂t(%E) + divx ((%E + p)u) ≤ 0. (1.4)

Having all these issues, even in defining a suitable notion of the solution for the system (1.1), it
should not be surprising that finding analytical solutions for (1.1) is out of reach for general non-
linear systems. This motivates the use of numerical methods to approximate the solution of (1.1).
In order to ensure the quality of the computed solution, schemes should preserve some important
properties from the continuous system like the entropy stability; see, e.g., [Tad87, Tad03, ZF16].
Despite the negative uniqueness result of [CK16], on the one hand, the entropy stability can
still be used to prove the non-linear stability of solutions. On the other hand, it has been
shown recently in [Svä15] that entropy solutions are relevant, at least, for numerically computed
solutions, by proving the convergence of the Lax–Friedrichs scheme to the entropy solution of
the full Euler equations for d = 3; see also [Svä16].

There is indeed considerable literature dedicated to the numerical approximation of conserva-
tion laws for which we refer to [CSJT98]. Here, we only focus on the finite volume (FV) method
because of its simplicity, its ability to deal with complex geometries and the inherent conservation
properties; see [LeV02, EGH00].

1.1.1 Hyperbolic balance laws

Hyperbolic balance laws are conservation laws with source terms (see [Bou04]), i.e.,

∂tU(t,x) + divxF (U , t,x) = S(U , t,x), (1.5)

where S ∈ Rq is a smooth function. The notion of weak solutions can be defined similarly as for
conservation laws (1.1); see [Gos13, Bou04].

An important feature of (1.5) lies in the competition between the flux and the source term
during the time evolution, leading to the so-called steady states, which are often obtained after
a long time and solve divxF = S. It is important to note that obtaining these steady-state
solutions, numerically, is far from being trivial. It was first noticed in [BV94, GL96] that a
näıve treatment of the source term pollutes the numerical solution by some increasing-in-time
oscillations, which require using very fine grids to be suppressed. The reason lied in a small
unbalance (of the order of grid size) between the discretisations of the flux and the source
term, which increased in time and deteriorated the solution. Although there is vast literature
dedicated to the so-called well-balanced (WB) schemes as a remedy [Bou04, Gos13], a panacea for
general systems is out of reach, and WB schemes should be designed almost individually for each
case. Moreover, preserving non-stationary equilibrium states is very demanding and only some
(partial) results are available like [NXS07, MDBCF16] for the moving equilibrium, [LMNK07,
CDKLM14, CLP08, BLSZ04, AKNV11, ADDMHP15] for the quasi-geostrophic equilibrium, and
[BLMY16, BKLL04, TKK16, KM14] for the hydrostatic equilibrium.
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1.2 Asymptotic preserving schemes

Singular limits of balance laws (or more generally PDEs), characterised by the singular scaling
parameter ε ∈ (0, 1] approaching zero, may present severe difficulties to be treated either in
analysis or numerics. The main issue is that the type of the equations changes in the limit
[Mas07]. As an example, consider the isentropic Euler system (1.3). It is prevalent in the
literature to make the system non-dimensionalised, to see the effects of different physics; cf.
[MYO90, Lan13]. Here, we apply the standard non-dimensionalisation and (analogous to [DT11])
and define dimensionless variables as t̂ := t/t◦, x̂ := x/L◦, %̂ := %/%◦, û := u/u◦, p̂ := p/p◦,
where the subscript ◦ stands for characteristic values, t◦ := L◦/u◦, and p◦ := %◦c

2
◦/γ with

c◦ :=
√
γp◦/%◦ as the characteristic sound speed. With these definitions and after dropping

hats, the dimensionless isentropic Euler equations write

∂t%ε + divx(%εuε) = 0,

∂t(%εuε) + divx

(
%εuε ⊗ uε +

1

ε2
p(%ε)Id

)
= 0,

(1.6)

where ε :=
√
γMa and the Mach number Ma is defined as the ratio of the characteristic bulk

velocity to the characteristic sound speed, i.e., Ma := u◦/c◦. For the dimensionless system (1.6),
Ma plays the role of a singular scaling parameter since as Ma → 0, the sound speed

√
p′(%)/ε

goes to the infinity and the PDE changes to be hyperbolic-elliptic, in the so-called incompressible
limit :

% = const., divxu = 0,

∂tu+ u · ∇xu+
1

%
∇xπ = 0,

(1.7)

where π is an auxiliary pressure satisfying the divergence constraint as a Lagrange multiplier.
Proving the convergence of the solution of the compressible Euler equations (1.6) to the incom-
pressible system (1.7) is very demanding; we refer the reader to consult [KM81, KM82, Dan05,
Mas07, Sch05] to review the existing results.

Tackling such singular problems numerically is also complicated as they introduce a “stiff ”
system for which finding an efficient and stable numerical approximation is a longstanding chal-
lenge in numerical analysis. In the context of conservation laws, stiffness may be defined as the
simultaneous occurrence of eigenvalues (of the flux Jacobian) of different orders of magnitude.
The key example is the weakly compressible Euler system (1.6) (with Ma ∼ ε � 1), which is
stiff due to very fast acoustic waves. This stiffness makes the Courant–Friedrichs–Lewy (CFL)
condition to restricts the time step non-uniformly with ε such that it should tend to zero, i.e.,
∆t . ε∆x. Such a restriction leads to very small time steps, thus a substantial computational
cost. Generally speaking, numerical schemes also lose their accuracy in the limit for under-
resolved grids, due to the spurious numerical diffusion they generate; for in-depth discussions
and remedies see [Del10, DOR10, GV99, GM04, OSB+16, Rie11, RB09b, Rie10]. Similar prob-
lems can also happen for other equations like the kinetic equations, where the Knudsen number
(the non-dimensionalised mean free path) approaches zero either in the fluid or diffusive limit,
as the source terms is stiff and restricts the time step for an explicit treatment [DP14].

Note that there are several established methods for the limit models per se, e.g., there are
several working schemes for the incompressible Euler and Navier–Stokes equations; see [DR06]
for instance. The crucial question here is that if it is possible to find a scheme working well
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Figure 1.1: Illustration of asymptotic preserving schemes.

regardless of the (scaling) singular parameter ε. One classical way of handling this issue is the
domain decomposition, which considers the limit system for the regions where ε is small enough,
while for other regions a standard solver would be employed. The bottleneck for this strategy is
the coupling condition between these two regions which is by no means trivial, is ad hoc and for
which the implementation details are of fundamental importance; see [DP14]. One should also
consider that the error incorporated into the final solution due to these issues may deteriorate
the accuracy of the scheme itself.

A more recent and unified approach was initiated by [LMM87, LM89] for steady neutron
transport in the diffusive regime, followed up by [JL91, JL93, JL96, Kla98, JPT98] for systems
with a stiff relaxation or in diffusive limits, and finally resulted in the so-called asymptotic
preserving (AP) schemes [Jin95, Jin99].1 The main motivation for AP schemes is to use a
uniform grid for all ε > 0, and at the same time to capture the macroscopic behaviour of
the system in the limit without any need to resolve microscopic effects, which requires using
extremely fine grids in time and space. It, in fact, provides an automatic seamless transition
between different scales [Jin10]. For this approach, we assume that the (suitable notion of)
solution of the PDE with the singular parameter ε converges to the solution of the limit PDE
as ε → 0, and aim to show that the counterpart of such a convergence exists at the discrete
level. Figure 1.1 illustrates this definition; Mε stands for a continuous physical model with the
(singular) parameter ε ∈ (0, 1], and Mε

∆ is a discrete-level model, which provides a consistent
discretisation ofMε. IfMε

∆ is a suitable and efficient scheme forMε uniformly in ε, the scheme
is called to be AP; see [Jin10, FR13]. We can define an AP scheme more precisely as follows.

Definition 1.2.1. [AP schemes] A scheme is called to be AP, provided that it

(i) gives a consistent discretisation of Mε for all ε ∈ (0, 1], in particular for the limit problem
M0.

(ii) is efficient uniformly in ε, e.g., the CFL condition is ε-uniform and the implicit step can
be solved efficiently for all ε.

(iii) it is stable in some suitable sense, uniformly in ε.

For brevity, we call these properties, respectively, Asymptotic Consistency (AC), Asymptotic
Efficiency (AEf), and Asymptotic Stability (AS).

Remark 1.2.2. (i) It is also prevalent in the literature to define the asymptotic stability as the
stability of the limit scheme M0

∆, cf. [Jin10, Gie15]. Also, sometimes, the uniformity of
the CFL condition is classified as the asymptotic stability rather than asymptotic efficiency.

1 As mentioned by [Gos13], AP schemes have also roots in Soviet Union with the name Asymptotic Integration
Method ; see [Vas94, LE88, Il’69].
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(ii) In the sequel and in order to eliminate spurious initial layers (see [Mas07]), we almost
always consider well-prepared initial data, which are consistent with the limit ε → 0, cf.
[Mas07, MS01, KLN91, Gre97]. However, ill-prepared initial data have been used in some of
the numerical examples. We also refer to Appendix 4.B for the only analysis for ill-prepared
initial conditions, in this manuscript.

(iii) As mentioned in [Jin10], the asymptotic consistency suggests that the solution belongs to a
manifold, which is driven to the limit manifold as ε→ 0, up to some discretisation error.

(iv) AEf implies the ε-uniform well-posedness of the scheme and in particular the implicit step,
which can be translated as having a good condition number if the implicit step is linear,
i.e., when it requires solving a linear system of equations. Such an issue can be handled
using the classical pre-conditioning techniques as in [Bis15]. Moreover and very recently,
the authors in [FN16] have addressed this point more fundamentally for some toy models
related to Vlasov–Maxwell equations.

(v) It is important to distinguish between AP schemes and multi-scale schemes. AP schemes
deal, in principle, with one and the same model Mε and numerical scheme Mε

∆ for the
whole region between microscopic and macroscopic models. However, generally speaking,
a multi-scale scheme such as the heterogeneous multi-scale method (HMM) [WEL+07] can
employ different physical models and numerical methods at different scales.

(vi) Interestingly enough, one may translate AP property (for systems with stiff source terms)
as “well-balancing with stiffness” since the steady solution can be understood as the long-
time limit, by the rescaling t 7→ εt for ε → 0 [Jin10]; such a point has been elaborated in
[Gos13, GT04, GT02, GT03, Gos11, CCG+10].

Achieving asymptotic efficiency regarding the time step restriction, AP schemes often take
advantage of the implicit-explicit (IMEX) strategy2, i.e., to split the flux Jacobian and the
source term into stiff and non-stiff parts, and to treat the stiff part implicitly in time and the
non-stiff one explicitly in time. IMEX schemes are L2-stable as long as each step is so, as shown
in [HJL12]. Employing an implicit strategy is definitely necessary for stiff terms to find schemes
with an ε-uniform time step restriction, but not sufficient at all for the asymptotic stability;
see for example [ADG89], where it is shown that even if both split parts are stable in terms of
the CFL condition, the resulting scheme can be unconditionally unstable in the L2-norm. In
addition to these IMEX or semi-implicit schemes, there are several works, like [BT16, CDV17],
which are devoted to explicit schemes; they define the AP property without considering the
uniformity of the time step w.r.t. ε. Of course, such a scheme requires using restrictive time
steps; nonetheless, this cost can be justified in the sense that although IMEX schemes allow for
larger time steps, they usually should handle a non-linear system of equations, namely by the
Newton–Raphson method, with a huge computational cost. Also, the excessive diffusion of the
implicit part deteriorates the accuracy and quality of the numerical approximation unless the
grid is fine enough or high-order schemes have been employed.

One can also think of fully-implicit schemes like finite volume schemes [GHMN17], mixed
finite element-finite volume schemes [FLMN+16], and space-time dG schemes [HM14] (see also
[ZM16] for its modified variant without the streamline diffusion). Fully-implicit schemes have

2 IMEX methods are very well-known for ODEs; see for instance the classic textbook [HW96]). The reader
can also consult [ARS97, BR09, CJR97, PR05] for more details about the use of IMEX methods in constructing
AP schemes for stiff systems.
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the advantage of being unconditionally stable, though, they are diffusive and should deal with
a non-linear system of equations, which could be truly expensive in terms of the computational
cost.

The AP property has been studied extensively for the kinetic equations (see [Jin10, HJL16] for
a review), hyperbolic conservation/balance laws [BLMY16, Bis15, BALMN14, NBA+14, DLV17,
CDK12, DT11, HJL12, DMTB15], plasma equations [DDN+10, CDV16, FR16, DD16] as well
as several other systems. Note that asymptotic consistency proofs in the literature are often
formal, based on the asymptotic (Poincaré) expansion. There are few works though, which
concern rigorous proofs like [EDMS17b, EDMS17a, JLQX14, FR13, FR16, Bis15, BLMY17].
Furthermore, there have been recently some interests in employing the relative entropy/energy
method (see [CMS13, GHMN16]) as a tool to measure the difference between the (discrete)
solutions of Mε

∆ and M0 like [FLMN+16, GHMN17, Fis15] for the compressible Navier–Stokes
equations and [BBCM16] for the p-system with damping. Also, there are only a few results
regarding the asymptotic stability, either for conservation laws or kinetic equations, like [GJL99,
JLQX14, LM08, DLV17, KFJ16, Gie15, Zak17a, BLMY17] using the von Neumann stability
analysis, energy methods or entropy stability.

It is worth mentioning that before the acronym AP to appear in the literature, there have been
an abundance of studies dedicated to weakly compressible flows. One approach is to improve
the low-Mach behaviour of compressible methods, e.g., using the pre-conditioning methodolo-
gies proposed by [Cho67, Tur87, TFVL93]. They deal with pre-conditioning the system and its
numerical dissipation to obtain convergence and accuracy of schemes for the low-Mach regime
[DR06, Sect. 9.3]; see also more recent works such as [BEK+16, Del10, DOR10]. Nonetheless,
pre-conditioning methods are not appropriate for temporal accuracy of the method [WSW02]
or if regions of low and high Mach numbers co-exist. They may also suffer from very re-
strictive time step restrictions, i.e., ∆t . ε2 ∆x; see [BM05b, BM05a, Del10]. Furthermore,
[Kle95] initiated the multiple pressure variables (MPV) approach, treating different orders in
the asymptotic expansion of the pressure function in a clever way (cf. Remark 3.5.4); see
[HP94, KM95] and [MRKG03, PM05, MDR07, Vat13] for further discussions and some ex-
tensions. On the other hand, one may extend the incompressible methods, like the pressure-
correction scheme, for compressible flows; one can name [DLP93, KP96, MD01] for collocated
grids, and [BW98, CG84, WSW02, vdHVW03] for staggered grids. An important example is the
extension of the celebrated marker-and-cell (MAC) scheme [HW65] to compressible regimes as
done in [HA68, HA71], which led to several recent contributions [GGHL08, GHMN17, GHK+11,
GHKL15, HKL12, HLN13c, HKL13, HLN13d, HLN13a, HLN13b, HKL14, HLS17]. This second
class of schemes may suffer from a non-conservative formulation, which hampers the accurate
computation of shock speeds [vdHVW03]. We refer to [PTA12, DR06, KBS+01] for a review of
these classical approaches.

Throughout this manuscript, we are aiming to present the AP methodology for the shallow
water equations—which we plan to detail now—when some singular parameters are present in
the system.
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1.3 Shallow water equations

The shallow water equations (SWE) or the Saint-Venant system [BdSV71] (as it is known to the
French scientific community) is a reduced 2d model obtained from the 3d incompressible Euler
equations for a homogeneous fluid under a gravitational force, used commonly for modelling
free surface flows like in ducts, rivers, and oceans. The shallow water model cannot consider
thermodynamic effects and stratification (variations in density) stemming from the temperature
gradients or salinity of the water. The fluid is bounded by a solid wall from below (the so-called
topography ; see Figure 1.2), which implies that the normal component of the velocity should be
zero at the bottom. As the surface is free, one applies the kinematic boundary condition on the
top of the fluid region; see [Ped13, Chap. 3].

With these assumptions, the model can be derived by averaging the system in the vertical axis,
the direction in which a constant gravitational force is applied. The basic ingredient required
for the averaging process is the shallowness assumption, i.e., the vertical characteristic length
Lv in much smaller than the horizontal one Lh (see Figure 1.2). This assumption is practical,
namely for oceanic flows, where Lh ∼ 102−103 km, Lv ∼ 1−5 km, and δ := Lh/Lv ∼ 0.001-
0.01. With the shallowness assumption and the incompressibility, one can formally derive the
so-called hydrostatic approximation which means that the pressure (to leading order) is only
hydrostatic, which is the pressure exerted only because of the weight of the water column. One
can consult [Ped13, Chap. 3] and [Lio96, Sect. 4.6]) for some formal results and [Lan13] for
rigorous justifications of this derivation.

Figure 1.2: Horizontal versus vertical length scales.

Note that the SWE are of quite an importance for modelling oceanic flows as a simplified
model for depth-averaged incompressible free surface flows, which give the so-called water wave
equations; see the monograph [Lan13] for more detailed discussions. This simplicity is advan-
tageous in terms of computational cost; but, restricts the validity of the model, particularly
for near-shore wave shoaling. Since the SWE are derived by ignoring the higher order terms,
o(δ), in the water wave equations, one may guess that keeping more terms may amend such
issues. This, in fact, leads to more involved models such as the Green–Naghdi model (cf.
[Lan13]), which results in some issues like being dispersive, so, troublesome for wave-breaking ;
see [PDZ+14, ZKD+14, DM15, DM16, LM15] for some remedies.

In the utmost generality, and for the domain Ω ⊂ R2 lying in the (x, y) plane, the SWE can
be written as

∂th+ divx(hu) = 0,

∂t(hu) + divx

(
hu⊗ u+

gh2

2
I2
)

= S,
(1.8)
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where h is the height of the water column (above the bottom), u = (u1, u2) is the 2d velocity
vector, g is the gravity acceleration, and S is a general source term.

Remark 1.3.1. Physically speaking, the shallow water system is quite different from the isen-
tropic Euler equations (1.3), as it is incompressible and depth-averaged with the hydrostatic
pressure. However, these systems look like each other, mathematically; the difference is only due
to the pressure term.

The source term can stem from the bottom (or air) friction, acceleration or deceleration of the
flow due to bottom topography or Coriolis forces. For the purpose of this manuscript, we ignore
friction terms (and refer to [MD16, DMTB15] and the references therein) and only consider
bottom topography and the Coriolis force. This brings us to the 2d rotating shallow water
equations (RSWE):

∂th+ divx(hu) = 0,

∂t(hu) + divx

(
hu⊗ u+

gh2

2
I2
)

= −gh∇xη
b − fhu⊥,

(1.9)

where ηb is the bottom function, u⊥ = (−u2, u1) is the perpendicular velocity and f is the Coriolis
parameter. We assume that the f = f0 is constant (zero-plane approximation); however, the beta-
plane approximation f = f0 + βy (y is northward) is also common. Here, the earth’s rotation
is realised only through the Coriolis force. Let us pronounce that we have neglected the effects
of spherical (ellipsoidal) shape of the earth globe as well as the centrifugal forces. We refer to
[Ped13, Chap. 3] and [Lio96, Sect. 4.6] for a justification of this system.

Historically speaking, one should mention that the fictitious force introduced in 1835 by Cori-
olis [Cor35] was to add a missing component to the known centrifugal force in rotating frames,
and had nothing to do, in particular, with the meteorology. In fact, before the Coriolis’ era, it
was known by Hadley in 1735 that the earth’s rotation deflects the air currents, and the notion
of the Coriolis force came into the field later [Per98]. We refer to [Fos13, Per98] for more details
about these historical backgrounds, and to [GSR07, CDGG06, Ped13] for detailed mathematical
and physical discussions about the RSWE. Note that for the most of this manuscript, but in
Chapter 6, we ignore the Coriolis force, i.e., we set f = 0.

For the zero-Coriolis case, and similar to the isentropic Euler system, one can non-dimensionalise
the SWE as:

∂th+ divx(hu) = 0,

∂t(hu) + divx

(
hu⊗ u+

h2

2Fr2
I2
)

= − h

Fr2
∇xη

b,
(1.10)

where Fr := u◦/
√
gH◦ is the Froude number defined as the ratio of the characteristic bulk

velocity to the characteristic speed of gravity waves, which are analogous to acoustic waves for
the isentropic Euler system. Comparing (1.10) with (1.6) indicates that for the low-Froude
regime Fr � 1, the similar stiffness problems would arise.
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1.4 Overview of the manuscript

As an interesting example, we investigate AP schemes for the SWE throughout this manuscript.
Apart from studies on the isentropic Euler equations, the literature of AP schemes devoted solely
to the SWE (with a source term) is not mature enough. One can find, generally, two types of
results, for a system with large friction (with a hyperbolic to parabolic degeneracy) or for the
zero-Froude limit (with a hyperbolic to hyperbolic-elliptic degeneracy), when both cases share a
similar difficulty of restrictive time steps. For the former, it is essential to design the numerical
diffusion appropriately, which is not trivial for unstructured grids; see for instance [Fra12, Bla16]
and the references therein. We are not going to handle this case here; instead, the focus is on
the latter case, the low-velocity or low-Froude regime, and to study how one should treat the
stiffness it arises. For this case, there are some existing IMEX schemes in the literature such as
[HJL12, DT11] which are shown to be AP (formally) and perform well in practice. Nonetheless,
they are difficult to be analysed rigorously as the implicit step is non-linear.

On the other hand, there are IMEX schemes with a linear implicit step, e.g., [CNPT10,
CGK13, CGK16] which employ Riemann invariants of the Euler equations (based on a relaxation
approximation) to obtain this linearity. Moreover, a series of papers [BALMN14, BLMY16, Bis15]
uses a linearly-implicit approach (see Chapter 4) with a linearisation around the equilibrium
state to split the shallow water system such that the implicit step is linear. We put the primary
emphasis of the manuscript on generalising these two approaches. In this sense, the results of
this manuscript can be compared to aforementioned references.

The remainder of this manuscript is organised as follows. In Chapter 2 and motivated by
[CNPT10, CGK13, CGK16], we analyse the Lagrange–projection scheme and prove its asymp-
totic preserving, for the low-Mach isentropic Euler equations as well as the low-Froude SWE.
The extension of this approach to two-dimensional systems is an active field of research, and it
is open for now if one can preserve the AP property. One can consider this chapter almost inde-
pendently from the others, as in Chapter 3, we initiate another scheme, the so-called reference
solution implicit-explicit (RS-IMEX) schemes, by analysing the modified equation of a rather
general IMEX scheme. The study of the modified equation, albeit is very formal and limited,
motivates the RS-IMEX scheme. This scheme is the generalisation of the method introduced in
[BALMN14, Bis15]. In the next chapters, Chapters 4 and 5, we use the RS-IMEX machinery for
the SWE in one- and two-dimensional cases, respectively, and prove the AP property, both in
analysis and numerics. Then, in Chapter 6, we add the Coriolis force and again investigate the
asymptotic preserving of the RS-IMEX scheme. We conclude the manuscript with some remarks
and perspectives.



Chapter 2

The Lagrange-projection scheme
for the low-Froude shallow water
equations

“It is a capital mistake to theorise before one has data. Insensibly one begins to twist
facts to suit theories, instead of theories to suit facts.”

– Sherlock Holmes, A Scandal in Bohemia (1891)

In this chapter, we show that the Lagrange-projection implicit-explicit scheme applied to the
one-dimensional isentropic Euler equations, as in [CNPT10], is asymptotic preserving regard-
ing the Mach number. This consistency analysis has been carried out formally and rigorously.
Moreover, we prove the positivity preserving and entropy admissibility of the scheme, under some
Mach-uniform restrictions. The analysis is similar to what has been presented in the original
paper, but with the emphasis on the uniformity regarding the Mach number, which is crucial for
a scheme to be useful in the low-Mach regime. We, then, perform a similar analysis for the one-
dimensional shallow water equations with topography and obtain similar stability and consistency
results. The contents of this chapter are based on [Zak17a].

Contents
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2.3 LP-IMEX scheme for the isentropic Euler equations . . . . . . . . 16
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2.B Entropy (energy) stability in the zero-Mach limit . . . . . . . . . . 33
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2.1 Introduction

The arbitrary Lagrangian-Eulerian (ALE) approach is a classic one in mechanics, trying to
benefit from the Eulerian and Lagrangian formulations, simultaneously; see [DHPRF04] for a
nice introduction. Recently, Coquel et al. in [CNPT10] utilised this approach to split the waves
of Euler-like systems, in a very natural way, to fast acoustic waves and slow advection waves.
Inspired by this approach, there have been several works like [CGK13, CGK16, CMV15] which
investigate the so-called Lagrange-projection scheme for the Euler-like system with a large friction
[CGK13], or when the Stokes [CMV15] or the Mach number [CGK16] is small. Such studies have
been successful in finding some rigorous stability results, e.g., positivity of the density and the
discrete energy inequality. Moreover, in [CGK16], the Lagrange-projection scheme has been
analysed for the two-dimensional Euler equations to construct an all-Mach scheme (the scheme
with the Mach-uniform order of consistency), where the focus was on the accuracy problems
in the low-Mach regime for Godunov-type schemes (of which the Lagrange-projection scheme
is a member), and to cure them by a careful look at the truncation error. In fact, it has been
shown in [CGK16] that the truncation error of the two-dimensional Lagrange-projection scheme
blows up in the low-Mach regime, i.e., it behaves as O( ∆x

Ma ), where Ma stands for the Mach
number. The authors of [CGK16] could show that the truncation error can be made uniform
regarding the Mach number for a particular modification of the scheme, namely by multiplying
the dissipation involved in the discretisation of the pressure terms by an O(Ma) term. Although
this is a promising step, it is not clear if this uniform accuracy in terms of the truncation
error is equivalent to the asymptotic consistency, due to the lack of convergence analysis of the
scheme. So, a crucial point is to analyse the Lagrange-projection scheme for the asymptotic
(incompressible) limit of the isentropic Euler equations, e.g., to confirm uniformity of the results
of [CNPT10] w.r.t. the Mach number, and to confirm the asymptotic consistency and stability
of the scheme. We wish to mention that it is well-known that Godunov-type schemes show no
accuracy problem for low-Mach one-dimensional problems as long as the initial condition is well-
prepared, as in Definition 2.3.2; see [Del10, Rie11, DOR10, RB09b, CGK16] for more details.
This accuracy of Godunov-type schemes motivates the present chapter as we focus only on the
one-dimensional case with a well-prepared initial datum. The extension to multi-dimensional
cases is not trivial, cf. [CGK16, DJOR16].

In this chapter, we study the issue of consistency and stability of the IMEX Lagrange-projection
scheme, or the so-called LP-IMEX scheme as has been proposed in [CGK13], in the incompressible
limit of the isentropic Euler equations. In particular, we show that the stability conditions in
[CNPT10] are uniform in the Mach number provided that the initial condition is well-prepared.
So, all the stability properties in [CNPT10] hold without any restriction regarding the Mach
number. Also, we show that the solution is asymptotically consistent for well-prepared initial
data (see Theorem 2.3.3). The study has also been extended to the one-dimensional shallow
water equations with topography, where the source term presents an additional difficulty in
proving asymptotic consistency and well-balancing. For this system and very recently, Chalons
et al. in [CKKS16] investigated the Lagrange-projection framework with particular attention to
the well-balancing and the validity of the entropy inequality. Also, note that we prove Mach-
uniform bounds for the (implicit) solution in Sections 2.3.2 and 2.4.2, which justify the asymptotic
expansions used throughout the chapter. Indeed, these estimates imply convergence of a sub-
sequence of the discrete computed solution to the incompressible limit, for fixed grids, as the
Mach number tends to zero, and in virtue of the Bolzano–Weierstrass theorem and a norm
equivalence argument (see Appendix 2.B).
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The chapter is organised as follows. In Section 2.2 we introduce the splitting along with
a brief introduction to the ALE formalism and relaxation schemes. Then, in Section 2.3, we
introduce the IMEX Lagrange-projection scheme with a specific relaxation approximation and
discuss the numerical analysis of the scheme. We prove the formal asymptotic consistency,
positivity preserving, stability and entropy stability, all under a non-restrictive CFL condition.
Then we show that the formal asymptotic consistency is, in fact, rigorous. In Section 2.4 we show
similar results for the shallow water equations with a non-flat bottom topography. Appendix 2.B
provides some results about the implications of entropy stability for the stability of the solution
in the incompressible limit.

2.2 Lagrange-projection idea in the continuous level

For the isentropic Euler equations, one natural way to split the system (waves) is the splitting
into acoustic and transport systems (waves). Then, the Lagrange-projection scheme [GR96]
consists of solving Riemann problems for the acoustic system in the Lagrangian formulation
and then projecting the computed solution onto the fixed Eulerian grid (which is equivalent to
the transport system). In this way, the scheme handles Riemann problems in the Lagrangian
coordinates, which is easier than in the Eulerian ones, and takes advantage of using a fixed grid;
see [GR96, Chapter III, Section 2.5]. It is in this regard that the Lagrange-projection scheme can
be understood in the framework of the ALE approach (see [CNPT10]), in which the equations
are rewritten in the referential coordinates χ which are necessarily neither spatial (Eulerian) x
nor material (Lagrangian) X. The referential frame has a relative velocity seen from the spatial
frame, which is chosen arbitrarily. Note that the Lagrange-projection scheme is a special case of
ALE, in which the relative velocity is chosen such that after each step, the domain remains as
the fixed Eulerian one; see [CNPT10, Section 3.3] for more details.

Now, consider the system of the isentropic Euler equations in [0,+∞)× Ω, where Ω = T is a
one-dimensional torus (cf. (1.3)):

∂t%+ ∂x(%u) = 0,

∂t(%u) + ∂x
(
%u2 + p(%)

)
= 0,

(2.1)

with given %0(x) := %(0, x) and u0(x) := u(0, x), respectively as the initial density and velocity.
p(%) := κ%γ , with κ > 0 and γ > 1, is the isentropic pressure law. As an entropy function, we
choose the total energy of the solution %E, which can be shown to be strictly convex w.r.t. the

conservative variables. The total energy density is written as E = E+ u2

2 , where E(%) := κ
γ−1%

γ−1

is the internal energy density (see [LW07]). For later use and by denoting τ as the specific volume
(the reciprocal of %), we should mention that the internal energy function E fulfils the Weyl’s
assumptions [CNPT10, Wey49]:

E > 0, ∂τE = −p < 0, ∂ττE > 0, ∂τττE < 0. (2.2)

Remark 2.2.1. We stick to this general isentropic pressure function p(%) = κ%γ except in
Section 2.4, where we pick κ = 1

2 and γ = 2 to investigate the shallow water equations. We
also only consider periodic boundary conditions for the sake of simplicity of the presentation.
However, we expect that with a bit of effort and by changing some of the arguments particularly
for the asymptotic consistency analysis (see Section 2.3.1 and Section 2.4.1), one can generalise
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the present study to other types of boundary conditions such as open boundary condition; see also
[CNPT10] for some interesting results for the case of coupling boundary conditions.

Now, we decompose the original system (2.1) into acoustic and transport sub-systems:{
∂t%+ %∂xu = 0,

∂t(%u) + %u∂xu+ ∂xp = 0
(2.3a){

∂t%+ u∂x% = 0

∂t(%u) + u∂x(%u) = 0
(2.3b)

and solve them successively. Simply by using the Taylor expansion, it can be seen that this
splitting is, in general, (globally) first-order accurate in time. We refer the reader to [HKLR10]
for more details about the operator splitting methods. Note that the transport part is merely a
transport of conservative variables (%, %u) with the velocity field u.

2.2.1 Lagrange step

In the Lagrangian coordinates, the frame moves with the velocity field. So, what an observer
sees is the acoustic part (2.3a). It is not difficult to show that it can also be written as

∂tτ − ∂mu = 0,

∂tu+ ∂mp = 0,
(2.4)

where dm := %dX is the mass coordinate, attached to the Lagrangian coordinate X, cf. [GR96,
Chapter III, Section 2.5]. This is exactly the classical form of the isentropic Euler equations in
the Lagrangian framework. To obtain the non-dimensionalised equations, we set

t̂ :=
t

t◦
, x̂ :=

x

L◦
, τ̂ := τ%◦, û :=

u

u◦
, p̂ :=

p

p◦
, t◦ :=

L◦
u◦
, p◦ := %◦c

2
◦/γ,

where c◦ is the characteristic sound speed, defined as c◦ :=
√
γp◦/%◦, and t◦, L◦, %◦, p◦ and u◦

are characteristic time, length, density, pressure and velocity. Also, we denote the Mach number
as the ratio of the characteristic speed to the characteristic sound speed, i.e., Ma := u◦/c◦. Thus,
after suppressing hats, the equations become

∂tτ − ∂mu = 0,

∂tu+
1

ε2
∂mp = 0,

(2.5)

where ε :=
√
γMa. From now on and for simplicity, we call ε the Mach number, though it is

different from Ma by the factor
√
γ, cf. [KM82]. Note that the system has two acoustic waves

with speeds ±
√
−pτ/ε.

To solve this system with the aforementioned initial data, we relax the system so that all
characteristic fields get linearly degenerate, which is easy to solve the Riemann problem for. We
actually substitute the source of genuine non-linearity p(%) with the variable π, called relaxation
pressure and add another equation for π. This is the heart of so-called relaxation schemes; we
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refer the reader to [Bou04, Liu87, CLL94, JX95] for more details. Like [CNPT10], we employ
the Suliciu relaxation system [Bou04, CGS07], which yields the following dimensionless system:

∂tτ − ∂mu = 0, (2.6a)

∂tu+ ∂mπε = 0, (2.6b)

∂tπε + α2
ε∂mu = λε(p− π), (2.6c)

with the definitions πε := π
ε2 , αε := a

ε , and λε := λ
ε2 , where a is a constant to be specified and λ

is the relaxation parameter.

At least formally, one can observe that in the asymptotic regime λ→∞, π tends to p and the
original system will be recovered. Also, one can readily check that the relaxation system only
has linearly-degenerate characteristic fields. To use the feature of linear degeneracy, at first, we
solve the problem out of equilibrium by setting λ = 0, and then we project the out-of-equilibrium
solution to the equilibrium manifold, cf. [CNPT10].

In order to prevent the instabilities to happen for this relaxation system, i.e., to enforce
the dissipativity of Chapman–Enskog expansion (see [CLL94, Liu87]), the parameter a must
be chosen sufficiently large, according to the so-called sub-characteristic or Whitham stability
condition (see [CC08] for the proof):

α2
ε >

maxΩ |pτ |
ε2

. (2.7)

Since the relaxation system with λ = 0 is strictly hyperbolic with eigenvalues ±αε and zero, the
sub-characteristic condition means that information propagates faster in the relaxation model.
Also, linear degeneracy of the fields allows us to analytically solve the Riemann problem when
λ = 0 as one can simply put the relaxation system (2.6a)–(2.6c) into an equivalent diagonal form
[CGK13, eq. (12)]:

∂tτ − ∂mu = 0, (2.8a)

∂t
−→w + αε∂m

−→w = 0, −→w := πε + αεu =
π

ε2
+
a

ε
u, (2.8b)

∂t
←−w − αε∂m←−w = 0, ←−w := πε − αεu =

π

ε2
− a

ε
u. (2.8c)

This property justifies by itself the introduction of the proposed relaxation model [CGK16].
Note that −→w and ←−w are two of Riemann invariants of the relaxation system; the third one is
I := πε + α2

ετ . So, instead of (2.8a) one can use ∂tI = 0.

Remark 2.2.2. Naturally-split systems (2.3a) and (2.3b) are not conservative if they are written
in the Eulerian coordinates. As shown in [CNPT10], changing the coordinates to the Lagrangian
ones not only helps solving Riemann problems, but also provides a conservative formulation to
circumvent the complications stemming from non-conservative products, cf. [DMLM95].

2.2.2 Projection step

This step is in fact equivalent to remapping the updated solution onto the Eulerian grid so that
the referential and spatial (Eulerian) coordinates coincide at the end of each step. Following the
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notation in [CNPT10] and with φ ∈ {%, %u} as a conservative variable, the projection step can
be summarised as

∂tφ+ u∂xφ = 0. (2.9)

Like the acoustic part, the transport part (2.3b) or (2.9) can be written in the Lagrangian
coordinates, which provides a conservative form; for further details consult [CNPT10]

2.3 LP-IMEX scheme for the isentropic Euler equations

As already mentioned, it is straightforward to solve the Riemann problem for linearly-degenerate
systems. In fact, one of the Riemann invariants remains constant along each characteristic line,
implying that there is only one set of symmetric scalar linear advection equations to be solved
for −→w and ←−w , while I does not change at all.

At the beginning of the Lagrange (acoustic) step, from temporal step n to some intermediate
step n+ 1/2, the Eulerian and Lagrangian coordinates coincide with each other. Furthermore,
the solution of the relaxation system is at equilibrium such that πn = pn. The implicit Lagrange
step reads

τ
n+1/2
j = τnj +

∆t

∆mnj

(
ũ
n+1/2
j+1/2 − ũ

n+1/2
j−1/2

)
, (2.10a)

−→w n+1/2
j = −→w n

j −
a∆t

ε∆mnj

(−→w n+1/2
j −−→w n+1/2

j−1

)
, (2.10b)

←−w n+1/2
j =←−w n

j +
a∆t

ε∆mnj

(←−w n+1/2
j+1 −←−w n+1/2

j

)
, (2.10c)

where ∆mnj := %nj ∆x, ∆x and ∆t are spatial and time steps, and j ∈ {1, 2, . . . , N} denotes cell

indices in the computational domain ΩN . The interface velocity ũ
n+1/2
j+1/2 comes from solving a

simple Riemann problem for the relaxation system (2.6a)–(2.6c) with λ = 0 (see [CNPT10]), and
writes

ũ
n+1/2
j+1/2 :=

1

2

(
u
n+1/2
j + u

n+1/2
j+1

)
− 1

2aε

(
π
n+1/2
j+1 − πn+1/2

j

)
. (2.11)

Note that there are several (equivalent) variants of the scheme (2.10a)–(2.10c), in different
coordinates or with/without using the Riemann invariants; see [CNPT10] for further details.

In the next step, the explicit projection step from the intermediate step n+ 1/2 to the new
temporal step n+ 1, we map updated values onto the fixed Eulerian grid. There are four cases
based on the upwind direction [CGK13, eq. (34)], which can be summarised as

φn+1
j = φ

n+1/2
j +

∆t

∆x

[
(ũ
n+1/2
j−1/2 )+φ

n+1/2
j−1 +

(
(ũ
n+1/2
j+1/2 )− − (ũ

n+1/2
j−1/2 )+

)
φ
n+1/2
j − (ũ

n+1/2
j+1/2 )−φ

n+1/2
j+1

]
,

(2.12)

with the definitions of the positive part ·+ := ·+|·|
2 and the negative part ·− := ·−|·|

2 . Figure 2.1
indicates that how the projection of the solution on the fixed Eulerian grid can be interpreted as
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upwinding. X
n+1/2
j+1/2 is the new location of the interface Xn

j+1/2 after the Lagrange step and can

be computed by knowing ũ
n+1/2
j+1/2 . So, the mean value of some quantity φ on the fixed grid can be

computed based on the direction (sign) of this velocity by finding the contributions of the cell
itself as well as its neighbours. For instance in Figure 2.1, there are contributions from the left
neighbour and from the cell itself. Adding this projection step to the Lagrange step is what we
call the LP-IMEX scheme.

Xn
j−1/2

X
n+1/2

j−1/2

Xn
j−1/2

X
n+1/2

j+1/2

1

Figure 2.1: The Lagrange update of the grid and the interpretation of the projection step.

2.3.1 Numerical analysis of the LP-IMEX scheme

Considering the LP-IMEX scheme introduced in the previous section, one can obtain some sta-
bility results, gathered in Theorem 2.3.3 below. But, firstly and for future reference, let us define
the formal incompressible limit of the isentropic Euler equations and the so-called well-prepared
initial datum, with the following asymptotic (or Poincaré) expansion for density and velocity

%(x, t) = %(0) + ε%(1) + ε2%(2),

u(x, t) = u(0) + εu(1) + ε2u(2).
(2.13)

Definition 2.3.1. The formal incompressible limit of the isentropic Euler equations (2.1) gives
the incompressible isentropic Euler equations, and reads (see Appendix 2.A for the formal and
[KM82] for the rigorous justification)

%(0), %(1) = const.,

∂xu(0) = 0,

∂tu(0) + ∂x

(
u2

(0) + p(2)

)
= 0.

Definition 2.3.2. For the isentropic Euler equations (2.1), we call the initial data (%0,ε, u0,ε)
well-prepared if it holds that (see [KM82, Mei99])

%(0, ·) = %0,ε := %0
(0) + ε2%0

(2),ε,

u(0, ·) = u0,ε := u0
(0) + εu0

(1),ε,
(2.14)

where %(0) and u(0) are constant.

Theorem 2.3.3. The Lagrange-projection scheme (2.10a)–(2.10c) and (2.12) with a well-prepared
initial datum, satisfies the following properties:

(i) It can be expressed in the locally conservative form.
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(ii) The scheme is AC, i.e., it gives a consistent discretisation of the incompressible Euler
equations, as ε→ 0, in terms of Definition 2.3.1.

(iii) Under the ε-uniform CFL constraint (2.23), the scheme is positivity preserving, i.e., %nj > 0

provided that %0
j > 0 for all j ∈ ΩN . Moreover, the density is bounded away from zero, i.e.,

there exists some %nLB > 0 such that %nj ≥ %nLB for all j ∈ ΩN .

(iv) Under the CFL constraint (2.23) and the sub-characteristic condition (2.33), the solution
fulfils the local (cell) entropy (energy) inequality, i.e.,

(%E)
n+1
j − (%E)

n
j +

∆t

∆x

[(
%Eũ+

π̃ũ

ε2

)n+1/2

j+1/2

−
(
%Eũ+

π̃ũ

ε2

)n+1/2

j−1/2

]
≤ 0, (2.15)

which is consistent with the energy inequality accompanied by the isentropic Euler equations
(2.1) ∂t(%E) + ∂x((%E + p

ε2 )u) ≤ 0.

(v) Under the CFL constraint (2.23) and the sub-characteristic condition (2.33), the computed
density, momentum and velocity are stable, i.e., bounded in the `∞-norm, uniformly in ε.

We analyse the properties of this scheme in the subsequent subsections. Note that the locally
conservative form of the scheme is proved in [CNPT10] and skipped here.

Remark 2.3.4. Throughout this section and subsequent ones, it is very natural to ask about the
order of magnitudes of quantities (in terms of ε). For now, we only do the analysis formally,
that is to say, we only take the explicit ε into account and assume that all other quantities are
O(1). In Section 2.3.2, we will justify this assumption.

2.3.1.1 Asymptotic consistency

At first, we show that the solution is consistent with the incompressible limit in the sense of
Definition 2.3.1, i.e., the computed density is constant up to O(ε2), and the calculated velocity
is divergence-free (solenoidal) to the leading order. Then, using these results, we prove that
the scheme provides a consistent discretisation of the incompressible Euler equation in the limit
ε→ 0. Thus, the asymptotic consistency in the sense of Definition 1.2.1 holds.

Considering Definitions 2.3.1 and 2.3.2, we consider a well-prepared solution at step n, i.e.,

%nj = %n(0) + ε2%n(2)j ,

unj = un(0) + εun(1)j ,

where %n(0) and un(0) are constant values. Also, the pressure is at equilibrium, πnj ≡ pnj . We aim

to show that the scheme (2.10a)–(2.10c) preserves the well-preparedness of the solution at the
step n to the intermediate step n+ 1/2 and then to the next step n+ 1.

For the Lagrange step, we substitute the asymptotic expansion (2.13) (for τ , u and π) into the
scheme and balance terms w.r.t. ε. The O(1/ε) terms in the τ -update (2.10a) yield

π
n+1/2
(0)j+1 − 2π

n+1/2
(0)j + π

n+1/2
(0)j−1 = 0.



19

So, {πn+1/2
(0)j }j∈ΩN is a linear sequence, thus constant in space due to the periodicity of the domain,

i.e., π
n+1/2
(0)∆ = π

n+1/2
(0)∆ , where ∆ stands for a discretised vector, i.e., for all j ∈ ΩN .

Since the pressure is not at equilibrium anymore (for step n+1/2), π and % are two independent
variables and we cannot conclude immediately that the same result holds for the density. But
one can establish their relation by combining (2.10a)–(2.10c) to find the update for the relaxation
pressure as

%nj

(
π
n+1/2
j − πnj

)
+
a2∆t

∆x

(
ũ
n+1/2
j+1/2 − ũ

n+1/2
j−1/2

)
= 0. (2.16)

Then, using the τ -update (2.10a), it yields

a2
(
τ
n+1/2
j − τnj

)
+
(
π
n+1/2
j − πnj

)
= 0. (2.17)

It is clear from (2.17) that

a2
(
%
n+1/2
j − %nj

)
= %nj %

n+1/2
j

(
π
n+1/2
j − πnj

)
,

which gives that %
n+1/2
(0)j (a2−%n(0)(π

n+1/2
(0) −πn(0))) = a2%n(0). So, %

n+1/2
(0)∆ = %

n+1/2
(0)∆ , constant in space.

Then, due to periodicity and by a spatial summation on (2.10a), it can be obtained that %
n+1/2
(0)∆ is

constant in time as well, i.e., %
n+1/2
(0)∆ = %n(0)∆. Also, from the update for the relaxation pressure,

(2.16), and again due to periodicity, the numerical fluxes cancel each other out and it turns out

that π
n+1/2
(0)∆ = πn(0)∆, constant in both time and space.

We then continue with the −→w -update (2.10b):

%nj
( 1

ε2
π
n+1/2
j +

a

ε
u
n+1/2
j

)
= %nj

(πnj
ε2

+
a

ε
unj
)
− a∆t

ε2∆x

(
(π
n+1/2
j − πn+1/2

j−1 )/ε+ a
(
u
n+1/2
j − un+1/2

j−1

))
.

So, balancing O(1/ε2) terms yields

%n(0)π
n+1/2
(0)j = %n(0)π

n
(0) −

a∆t

∆x

(
π
n+1/2
(1)j − π

n+1/2
(1)j−1 + a

(
u
n+1/2
(0)j − u

n+1/2
(0)j−1

))
,

which gives

π
n+1/2
(1)j − π

n+1/2
(1)j−1 + a

(
u
n+1/2
(0)j − u

n+1/2
(0)j−1

)
= 0. (2.18)

So, there is the possibility that both π
n+1/2
(1)∆ and u

n+1/2
(0)∆ are constant in space. Showing this, let

us balance O(1) terms in (2.10a):

%n(0)j = %
n+1/2
(0)j

(
1 +

∆t

2a∆x

(
a
(
u
n+1/2
(0)j+1 − u

n+1/2
(0)j−1

)
−
(
π
n+1/2
(1)j−1 − 2π

n+1/2
(1)j + π

n+1/2
(1)j+1

)))
− ∆t

2a∆x
%
n+1/2
(1)j

(
π
n+1/2
(0)j−1 − 2π

n+1/2
(0)j + π

n+1/2
(0)j+1

)
.

So,

a
(
u
n+1/2
(0)j+1 − u

n+1/2
(0)j−1

)
−
(
π
n+1/2
(1)j−1 − 2π

n+1/2
(1)j + π

n+1/2
(1)j+1

)
= 0. (2.19)
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Combining (2.19) and (2.18) yields that π
n+1/2
(1)j = π

n+1/2
(1)j+1 and u

n+1/2
(0)j = u

n+1/2
(0)j+1. Similar to the

analysis of the leading order terms, one can show that π
n+1/2
(1)∆ and %

n+1/2
(1)∆ are constant in time as

well as in space. Hence, the solution of the Lagrange step is consistent with the incompressible
limit.

For the projection step (2.12), we only show the asymptotic consistency for the case with

ũ
n+1/2
j−1/2 < 0 and ũ

n+1/2
j+1/2 < 0; other cases can be analysed similarly. For the density, it can be seen

that

%n+1
j = %

n+1/2
j − ∆t

2a∆x

(
%
n+1/2
j+1 − %n+1/2

j

)(
− (π

n+1/2
j+1 − πn+1/2

j )/ε+ a
(
u
n+1/2
j+1 + u

n+1/2
j

))
.

So, the leading order terms give

%n+1
(0)j = %

n+1/2
(0)j −

∆t

2a∆x

[
−
(
%
n+1/2
(0)j+1 − %

n+1/2
(0)j

)(
π
n+1/2
(1)j+1 − π

n+1/2
(1)j

)
−
(
%
n+1/2
(1)j+1 − %

n+1/2
(1)j

)(
π
n+1/2
(0)j+1 − π

n+1/2
(0)j

)
+ a
(
%
n+1/2
(0)j+1 − %

n+1/2
(0)j

)(
u
n+1/2
(0)j+1 + u

n+1/2
(0)j

)]
,

which implies that the leading order of the computed density is constant, i.e., %n+1
(0)∆ = %

n+1/2
(0)∆ =

%n(0)∆. Similarly, one can find that the first-order components are also constant in time and space,

i.e., if they do not exist at tn, there is no O(ε) density (or pressure) fluctuation at tn+1:

%n+1
(1)j = %

n+1/2
(1)j −

∆t

2a∆x

[
−
(
%
n+1/2
(0)j+1 − %

n+1/2
(0)j

)(
π
n+1/2
(2)j+1 − π

n+1/2
(2)j

)
−
(
%
n+1/2
(1)j+1 − %

n+1/2
(1)j

)(
π
n+1/2
(1)j+1 − π

n+1/2
(1)j

)
−
(
%
n+1/2
(2)j+1 − %

n+1/2
(2)j

)(
π
n+1/2
(0)j+1 − π

n+1/2
(0)j

)
+ a
(
%
n+1/2
(0)j+1 − %

n+1/2
(0)j

)(
u
n+1/2
(1)j+1 + u

n+1/2
(1)j

)
+ a
(
%
n+1/2
(1)j+1 − %

n+1/2
(1)j

)(
u
n+1/2
(0)j+1 + u

n+1/2
(0)j

)]
,

which confirms that %n+1
(1)∆ = %

n+1/2
(1)∆ = %n(1)∆ = 0.

To show the div-free condition, we consider O(1) terms of the momentum update in (2.12):

%n+1
(0)j u

n+1
(0)j = %

n+1/2
(0)j u

n+1/2
(0)j −

∆t

2a∆x

[
−
(
%
n+1/2
(0)j+1u

n+1/2
(0)j+1 − %

n+1/2
(0)j u

n+1/2
(0)j

)(
π
n+1/2
(1)j+1 − π

n+1/2
(1)j

)
−
(
%
n+1/2
(1)j+1u

n+1/2
(0)j+1 − %

n+1/2
(1)j u

n+1/2
(0)j

)(
π
n+1/2
(0)j+1 − π

n+1/2
(0)j

)
−
(
%
n+1/2
(0)j+1u

n+1/2
(1)j+1 − %

n+1/2
(0)j u

n+1/2
(1)j

)(
π
n+1/2
(0)j+1 − π

n+1/2
(0)j

)
+ a
(
%
n+1/2
(0)j+1u

n+1/2
(0)j+1 − %

n+1/2
(0)j u

n+1/2
(0)j

)(
u
n+1/2
(0)j+1 + u

n+1/2
(0)j

)]
.

Thus, un+1
(0)∆ = u

n+1/2
(0)∆ = un(0)∆, and the leading order component of the velocity field is constant

(solenoidal). Hence, combining the results for the Lagrange and projection steps together, it is
obvious that the limit conditions are satisfied.

To prove asymptotic consistency in the sense of Definition 1.2.1, it remains to show the con-
sistency of the discretisation in the limit. The consistency holds for the Lagrange step if the



21

velocity update

u
n+1/2
j − unj

∆t
+

1

2ε2∆mnj

(
π
n+1/2
j+1 − πn+1/2

j−1

)
− a/ε

2∆mnj

(
u
n+1/2
j+1 − 2u

n+1/2
j + u

n+1/2
j−1

)
= 0, (2.20)

is a consistent discretisation of ∂tu+ 1
ε2 ∂mπ = 0 in the limit, when (2.20) gives

u
n+1/2
(0)j − u

n
(0)j

∆t
+

1

2∆mn(0)j

(
π
n+1/2
(2)j+1 − π

n+1/2
(2)j−1

)
− a

2∆mn(0)j

(
u
n+1/2
(1)j+1 − 2u

n+1/2
(1)j + u

n+1/2
(1)j−1

)
= 0.

(2.21)

It is clear that (2.21) is a Rusanov-type scheme applied to ∂tu(0) + ∂mπ(2) = 0; so, the Lagrange
step is AC.

To show the consistency of the discretisation in the limit for the projection step, we compare

(2.9) and (2.12). So, it is sufficient to confirm that ũ
n+1/2
(0)j+1/2 is consistent with u(0). This is, in

fact, the case, due to the definition of ũ
n+1/2
j+1/2 in (2.11) and the asymptotic behaviour of u

n+1/2
(0)∆

and π
n+1/2
(1)∆ , namely that u

n+1/2
(0)∆ and π

n+1/2
(1)∆ are constant in space. So, the projection step (2.12)

is a consistent discretisation of (2.9) and the scheme is AC in the sense of Definition 1.2.1.

2.3.1.2 Density positivity

In this section, we show that the density is positive under a time step condition which is not
restrictive for ε � 1. Like [CNPT10, eq. (2.25a)], we define the local acoustic CFL ratio

µj := a∆t
∆mnj

and the local apparent propagation factor ej :=
µj/ε

1+µj/ε
. Then, one can write the

Lagrange step (2.10b) as

−→w n+1/2
j = ej

−→w n+1/2
j−1 + (1− ej)−→w n

j .

Since 0 < ej < 1 (which can be satisfied uniformly in ε), the updates for −→w and←−w are monotone,
i.e., no new extremum can be generated. To show it for −→w n+1/2, assume that i is the index of

maximum value of −→w n+1/2
j , that is −→w n+1/2

i ≥ −→w n+1/2
j for all j ∈ ΩN . So,

−→w n+1/2
i ≤ ei−→w n+1/2

i + (1− ei)−→w n
i .

Thus, −→w n+1/2
i ≤ −→w n

i ; so, it is bounded from above. The proofs for the lower-bound and ←−w n+1/2

are likewise. Hence, defining the upper-bounds
−→
Mn and

←−
Mn and the lower-bounds −→mn and ←−mn

for −→w n and ←−w n, one can write for all j ∈ ΩN

−→mn ≤ −→w n+1/2
j ≤

−→
Mn, ←−mn ≤ ←−w n+1/2

j ≤
←−
Mn. (2.22)

With the bound (2.22) at our disposal, one can show the following theorem.

Theorem 2.3.5. For some ∆t satisfying

∆t

∆x
≤ 2a/ε(−→

Mn −←−mn
)+

−
(−→mn −

←−
Mn

)− , (2.23)

the LP-IMEX scheme preserves the positivity of density provided that %0
j > 0 for all j ∈ ΩN .
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Proof. Along the lines of [CNPT10], for the Lagrange step to satisfy positivity, one gets from
the τ -update (2.10a) that

∆t

∆x

(
ũ
n+1/2
j−1/2 − ũ

n+1/2
j+1/2

)
< 1, (2.24)

which ensures %
n+1/2
j > 0 for all j ∈ ΩN . But on the other hand, ∆t should be such that the

projection step is a convex combination, which requires

∆t

∆x

((
ũ
n+1/2
j−1/2

)+

−
(
ũ
n+1/2
j+1/2

)−)
< 1. (2.25)

Between the conditions (2.24) and (2.25), the stronger condition should be chosen, which is

(2.25). Then, based on the definition of ũn+1/2, we express ∆t in terms of
−→
M ,
←−
M , −→m and ←−m,

which concludes the proof.

The next goal is to show the ε-uniformity of this bound for the time step, i.e., to show that
the bound (2.23) does not vanish for ε→ 0. One can pose the following corollary.

Corollary 2.3.6. For well-prepared initial data, the time step restriction (2.23) is ε-uniform.

Proof. Recall that asymptotic consistency implies that with a well-prepared initial datum and for
ε� 1, the density (and thus the pressure) has a constant leading order term. So, the differences
−→
Mn − ←−mn and −→mn −

←−
Mn are not of O(1/ε2) but O(1/ε); thus, the CFL constraint (2.23) is

uniform in ε. In other words, using the asymptotic expansion for a well-prepared datum gives

−→
Mn ≤

pn(0)

ε2
+ max
j∈ΩN

pn(2)j +
a

ε

(
un(0) + ε max

j∈ΩN
(un(1)j)

)
,

−→mn ≥
pn(0)

ε2
+ min
j∈ΩN

pn(2)j +
a

ε

(
un(0) + ε min

j∈ΩN
(un(1)j)

)
,

←−
Mn ≤

pn(0)

ε2
+ max
j∈ΩN

pn(2)j −
a

ε

(
un(0) + ε max

j∈ΩN
(un(1)j)

)
,

←−mn ≥
pn(0)

ε2
+ min
j∈ΩN

pn(2)j −
a

ε

(
un(0) + ε min

j∈ΩN
(un(1)j)

)
.

Thus,

−→
Mn −←−mn ≤ a

ε

(
2un(0) + ε

(
max
j∈ΩN

(un(0)j) + min
j∈ΩN

(un(1)j)

))
+

(
max
j∈ΩN

pn(2)j − min
j∈ΩN

pn(0)j

)
,

−→mn −
←−
Mn ≤ a

ε

(
2un(0) − ε

(
max
j∈ΩN

(un(1)j) + min
j∈ΩN

(un(1)j)

))
−
(

max
j∈ΩN

pn(2)j − min
j∈ΩN

pn(0)j

)
,

and one gets

lim
ε→0

 2a/ε(−→
Mn −←−mn

)+

−
(−→mn −

←−
Mn

)−
 ≥ 2a/ε

O( 1
ε ) +O(1)

≥ C. (2.26)

Hence, there is an O(1) constant as the lower-bound of the estimate (2.23), i.e., the condition
(2.23) is uniform in ε.
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The following lemma shows that the density is also bounded from below for a finite time.

Lemma 2.3.7. Under the condition (2.23), the computed density {%n+1
j }j∈ΩN is bounded away

from zero in a finite time, where the lower-bound is given by

%n+1
LB :=

minj∈ΩN %
n
j

1 +
ε∆t

2a∆x

[(−→
Mn +

←−
Mn

)
− (−→mn +←−mn)

] > 0. (2.27)

Proof. From the τ -update (2.10a) and ũ
n+1/2
j+1/2 = ε

2a (−→w n+1/2
j −←−w n+1/2

j+1 ), one can get

%nj = %
n+1/2
j

(
1 +

ε∆t

2a∆x

(−→w n+1/2
j −←−w n+1/2

j+1 −−→w n+1/2
j−1 +←−w n+1/2

j

))
.

So, to find the minimum value of the computed density, one should determine the maximum
value of the rhs. Due to (2.22) and under the condition (2.24), it can be seen that

%
n+1/2
j ≥

%nj

1 +
ε∆t

2a∆x

[(−→
Mn +

←−
Mn

)
− (−→mn +←−mn)

] .
Thus, since the projection step is a convex combination under the condition (2.23), the lower-
bound is obtained as (2.27).

2.3.1.3 Local energy inequality

We show that the scheme satisfies the energy inequality under an ε-independent time step restric-
tion. For the Lagrange step, based on [CNPT10, Theorem 2.3], we define the entropy function
for the symmetric advection problem, (2.8b)–(2.8c), as

η(−→w ,←−w ) := s(−→w ) + s(←−w ), s(w) :=
ε2w2

4a2
.

So, it can be rewritten as

η(−→w ,←−w ) =
1

2

(
u2 +

π2

ε2a2

)
= E − E

ε2
+

π2

2a2ε2
(2.28)

since after non-dimensionalisation, one gets E = E
ε2 + u2

2 where E(%) = κ
γ−1%

γ−1. We also define

an entropy flux function q(−→w ,←−w ) as

q(−→w ,←−w ) :=
a

ε
(s(−→w )− s(←−w )) =

πu

ε2
. (2.29)

Then, the cell entropy inequality reads

η
n+1/2
j − ηnj +

∆t

∆mnj

(
q
n+1/2
j+1/2 − q

n+1/2
j−1/2

)
≤ 0. (2.30)
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Substituting (2.28) and (2.29) into (2.30), one can relate the entropy inequality for the symmetric
advection problem to the energy inequality for the acoustic sub-system, i.e.,

%nj

(
E
n+1/2
j − Enj

)
+

∆t

∆x

((πu
ε2

)n+1/2

j+1/2
−
(πu
ε2

)n+1/2

j−1/2

)
≤
%nj
ε2

En+1/2
j − Enj −

(
π
n+1/2
j

)2

−
(
πnj
)2

2a2


︸ ︷︷ ︸

=:Rn+1/2
j

.

(2.31)

Then, to prove entropy stability of the scheme, one should show that the entropy residual Rn+1/2
j

is non-positive. Considering πnj = pnj and due to (2.17), we rewrite Rn+1/2
j as

Rn+1/2
j := En+1/2

j − Enj −
pnj
2a2

(
π
n+1/2
j − pnj

)
−

(
π
n+1/2
j − pnj

)2

2a2

= En+1/2
j − Enj + pnj

(
τ
n+1/2
j − τnj

)
− a2

2

(
τ
n+1/2
j − τnj

)2

.

On the other hand, from a Taylor expansion with an integral remainder, one gets

En+1/2
j = Enj + Eτ |xj ,tn

(
τ
n+1/2
j − τnj

)
+

∫ τ
n+1/2
j

τnj

Eττ (θ)
(
τ
n+1/2
j − θ

)
dθ.

Then, Weyl’s assumptions (2.2) and a change of variables in the integral (re-parameterisation)
yield that

En+1/2
j = Enj − pnj

(
τ
n+1/2
j − τnj

)
+
(
τ
n+1/2
j − τnj

)2
∫ 1

0

Eττ (τn†j )(1− θ)dθ,

where τn†j := θτ
n+1/2
j + (1− θ)τnj . So, for the entropy residual to be non-positive, one gets

Rn+1/2
j =

(
τ
n+1/2
j − τnj

)2
∫ 1

0

(
Eττ (τn†j )− a2

)
(1− θ)dθ

=
(
τ
n+1/2
j − τnj

)2
∫ 1

0

(
−pτ (τn†j )− a2

)
(1− θ)dθ ≤ 0, (2.32)

and a sufficient condition would be to set the integrand to be negative. Since pτ = −κγ%1+γ , it
yields

a2 ≥ κγ max
j∈ΩN

max
0≤θ≤1

(
%n†j

)γ+1

= κγmax
(
‖%n+1/2‖γ+1

`∞
, ‖%n‖γ+1

`∞

)
, (2.33)

which satisfies the sub-characteristic condition.

For the projection step, it is clear that due to Jensen’s inequality the energy inequality holds:

(%E)n+1
j ≤ %njE

n+1/2
j − ∆t

∆x

(
(%Eũ)

n+1/2
j+1/2 − (%Eũ)

n+1/2
j−1/2

)
. (2.34)

Combining (2.31) and (2.34), we get the energy inequality (2.15), under the ε-uniform time
restriction (2.23) and the sub-characteristic condition (2.33).



25

2.3.1.4 `∞-stability of the solution

In this section, we prove the stability of the LP-IMEX scheme in the `∞-norm.

Lemma 2.3.8. For the well-prepared initial data, the computed density, momentum and velocity
are stable in the `∞-norm, uniformly in ε.

Proof. We have shown in Appendix 2.B that, for a fixed ε, the entropy stability implies the
`∞-stability provided that the density is shown to be positive. Thus, the density, velocity and so
the momentum are stable. For the proof of ε-uniformity of these results see Appendix 2.B.

2.3.2 Rigorous analysis of asymptotic consistency

The existing asymptotic consistency proofs in the literature are often based on the formal asymp-
totic expansion as we have already presented in Section 2.3.1, by investigating the method as
ε→ 0. The analysis is rather formal as one does not show how the variables change in terms of
ε and simply balances the equal powers of ε, assuming implicitly that all the variables are O(1)
(in terms of ε). In this section, we show that it is possible for the LP-IMEX scheme to go further
and show asymptotic consistency more rigorously.

The main point is to study the implicit step in order to check how the unique updated solution
behaves as ε→ 0. Once we show that this solution does not blow up in the limit, one can combine
it with the formal analysis (as in Section 2.3.1), and conclude asymptotic consistency rigorously.
The approach we present here to justify the formal analysis is close to what has been used in
[Bis15], in the context of the finite volume evolution Galerkin (FVEG) scheme [BALMN14]. For
future reference, we name this boundedness of the numerical solution for ε → 0 as “ε-stability
(boundedness)”.

Note that for the scheme written in the form of (2.10a)–(2.10c), −→w n+1/2
∆ and ←−w n+1/2

∆ should

be computed implicitly, and then τ
n+1/2
∆ is obtained explicitly. Now, let us define the matrix

−→
Jε

as the coefficient matrix of size N for the implicit update of −→w n+1/2
∆ , i.e.,

−→
Jε
−→w n+1/2

∆ = −→y∆,
−→
Jε :=

a∆t

ε



1 +
ε∆mn1
a∆t

−1

−1 1 +
ε∆mn2
a∆t

. . .
. . .

−1 1 +
ε∆mnN
a∆t


, (2.35)

with vector −→y∆ specified in the case of isentropic Euler equations by (2.10b), as −→y∆ := ∆mn�−→w n
∆ ,

where ∆mn is the discretised vector of ∆mn, and � denotes the entry-wise or Hadamard product.

Likewise, we denote
←−
Jε and ←−y∆. Now, we are in a position to pose the following theorem.

Theorem 2.3.9. Consider the matrix
−→
Jε as defined in (2.35). Then

(i)
−→
Jε is non-singular for all ε > 0;
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(ii) lim
ε→0
‖
−→
Jε
−1‖ is bounded for any natural matrix norm.

Proof. Regarding part (i), it is clear that matrix
−→
Jε is strictly diagonally dominant (SDD), and

it is a classical result that SDD matrices are non-singular; see, e.g., [HJ86, Thm. 6.1.10]. This is

enough to show the non-singularity of
−→
Jε, so, to conclude that the solution of the implicit step,

⇀
wn+1/2

∆ , is unique.

For part (ii), the ∞-norm of the inverse of an SDD matrix M ∈ RN×N can be bounded as
[Var75]

‖M−1‖∞ ≤ max
1≤i≤N

1

∆i(M)
, ∆i(M) := |Mii| −

∑
j 6=i

|Mij |. (2.36)

For
−→
Jε, one can find that ∆i(

−→
Jε) = ∆mni > 0. So, there is an ε-uniform bound for the∞-norm of

matrix inverse. Since N is fixed, all matrix norms are equivalent which concludes the result.

From Theorem 2.3.9, one can immediately conclude that a unique solution −→w n+1/2 exist for the
implicit step, thus for the whole scheme, which has the same order as −→w n in terms of ε. Also, by

Theorem 2.3.9 and (2.35), one can see that the leading order of −→w n+1/2
∆ , thus π

n+1/2
(0)∆ , is constant

due to a similar result for ←−w n+1/2
∆ . Employing (2.17), one can confirm that %

n+1/2
∆ = O(1), thus

ε-stable. Showing the ε-stability of u
n+1/2
(0)∆ needs more work. From (2.35) one can write the

update for u
n+1/2
∆ as(

∆mnj +
a∆t

ε

)
u
n+1/2
j − a∆t

2ε
u
n+1/2
j−1 − a∆t

2ε
u
n+1/2
j+1 = unj ∆mnj −

∆t

2ε2

(
π
n+1/2
j+1 − πn+1/2

j−1

)
, (2.37)

which can be recast as a linear system of equations with the companion matrix Hε defined as

Hε :=


∆mn1 +

a∆t

ε
−a∆t

2ε
−a∆t

2ε

−a∆t

2ε
∆mn2 +

a∆t

ε
−a∆t

2ε
. . .

. . .
. . .

 . (2.38)

Matrix Hε is SDD; so, it is invertible with a bounded inverse in the limit, as in Theorem 2.3.9.

Since we have already proved in Section 2.3.1.1 that π
n+1/2
(0)∆ and π

n+1/2
(1)∆ are constant, the rhs of

(2.37) is O(1), and the ε-boundedness of H−1
ε concludes the ε-stability, i.e., u

n+1/2
(0)∆ = O(1).

Remark 2.3.10. Interestingly enough, one can show that H−1
ε is an almost constant matrix, i.e.,

it consists of a constant O(1) part with some O(ε) fluctuations. This, combined with periodicity

of the domain and being the difference (π
n+1/2
j+1 − πn+1/2

j−1 ) central, implies that the O(1/ε2) term

in the rhs vanishes after multiplication by H−1
ε provided that π

n+1/2
(0)∆ is constant. We refer to

Lemma 2.4.5 for the complete proof, where the companion matrix is similar but a bit simpler to
be analysed rigorously.

The boundedness in terms of ε makes the asymptotic consistency analysis in Section 2.3.1
rigorous and shows the behaviour of the quantities in terms of ε. Since the projection step is
explicit, its asymptotic consistency can be simply studied as in Section 2.3.1.
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Remark 2.3.11. This approach proves asymptotic consistency rigorously, i.e., the solution
moves to the limit as ε → 0. This is the result that makes the uniformity proofs of the pre-
vious sections valid and rigorous, as has been mentioned earlier in Remark 2.3.4.

To summarise, the scheme is AC and AS, and since
−→
Jε and

←−
Jε can be inverted simply due to

their structure and that the time step is ε-uniform, it is also AEf. Thus, the scheme is AP in
the sense of Definition 1.2.1.

2.4 LP-IMEX scheme for the shallow water equations

In this section and along the same lines as the previous section, we analyse the LP-IMEX scheme
applied to the non-dimensionalised shallow water equations (SWE) (1.10) for d = 1:

∂th+ ∂xm = 0,

∂tm+ ∂x

(
m2

h
+
p(h)

ε2

)
= − h

ε2
∂xη

b,
(2.39)

where h and m := hu stand respectively for the water height and the momentum and ε denotes
the Froude number, defined as the ratio of the characteristic speed to the speed of gravity waves.
Also, ηb is the bottom function, and the pressure function is chosen as before but with κ = 1

2

and γ = 2, i.e., p(h) = h2

2 . Note that for this shallow water model to be valid, the bottom
slope ∂xη

b should be small enough such that tan θ ≈ θ where tan θ is the bottom slope; see
[BW04, BMCPV03] and references therein. Note also that the energy equation for the shallow
water system (2.39) in the conservative form writes

∂t(hE) + ∂x

((
hE +

p

ε2
+
hηb

ε2

)
u

)
= 0,

with E = E +
u2

2
+
ηb

ε2
and E =

h

ε2
, cf. [ABB+04] for instance.

We omit the details of the splitting and the numerical scheme, and refer the reader to consult
[CGK13, Sect. 3.2.2] and [CMV15]; although the considered source terms are not exactly the
same, the structure is similar. Also, [CKKS16] has tailored the scheme to the SWE, very recently.
We only need to mention that the transport sub-system is exactly like (2.3b) with the conservative
variable φ ∈ {h, hu} in (2.9), while the acoustic sub-system includes the source term in addition.
So, the relaxation system reads as follows, with the same αε = a

ε as in Section 2.2 for the
isentropic Euler equations (see also [CKKS16]):

∂tτ − ∂mu = 0,

∂t
−→w + αε∂m

−→w = − αε
τε2

∂mη
b,

∂t
←−w − αε∂m←−w =

αε
τε2

∂mη
b.

(2.40)

Using this splitting, one can see that the projection step is like (2.12). Also, motivated by
[CGK13, Sect. 5] (see also [CKKS16]), a self-similar solution can be proposed for Riemann
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problems using the appropriate notion of consistency in the integral sense [HLVL97, Gal02,
Gal03], leading to the Lagrange step of the scheme as

τ
n+1/2
j = τnj +

∆t

∆mnj

(
ũ
n+1/2
j+1/2 − ũ

n+1/2
j−1/2

)
, (2.41a)

−→w n+1/2
j = −→w n

j −
a∆t

ε∆mnj

(−→w n+1/2
j −−→w n+1/2

j−1

)
− a∆t

ε3

∆mnj−1/2

∆mnj
ηbx,j−1/2, (2.41b)

←−w n+1/2
j = ←−w n

j +
a∆t

ε∆mnj

(←−w n+1/2
j+1 −←−w n+1/2

j

)
+
a∆t

ε3

∆mnj+1/2

∆mnj
ηbx,j+1/2, (2.41c)

where ∆mnj+1/2 :=
∆mnj +∆mnj+1

2 , ηbx,j+1/2 :=
ηbj+1−η

b
j

∆x is the one-sided discretisation of the bottom
function, and the interface velocity is defined as

ũ
n+1/2
j+1/2 :=

1

2

(
u
n+1/2
j + u

n+1/2
j+1

)
− 1

2aε

(
π
n+1/2
j+1 − πn+1/2

j

)
− 1

2aε
∆mnj+1/2η

b
x,j+1/2. (2.42)

Notice that this choice of ηbx,j+1/2 provides the well-balancing for the lake at rest (LaR) equi-
librium state which is defined as the set

U∆
LaR :=

{[
hj
mj

] ∣∣hj = ηs − ηbj , uj = 0,∀j ∈ ΩN

}
, (2.43)

with zero velocity and a constant water surface ηs := h+ ηb. Note that the failure in satisfying
the LaR equilibrium state at the discrete level leads to spurious oscillations.

The basic difference of the LP-IMEX for the SWE (2.41a)–(2.41c) with the LP-IMEX for the
isentropic Euler equations (2.10a)–(2.10c) is the source term discretisation in the rhs, which on
the one hand, requires refining the arguments for asymptotic consistency (see Section 2.4.1.1 and
2.4.2 below), and on the other, does not allow for the conservative form of the discrete entropy
inequality. For the latter, we refer to [CKKS16] where the authors could show the entropy
inequality in the non-conservative form.

2.4.1 Numerical analysis of the LP-IMEX scheme

Before we proceed with the stability results for the SWE, let us define the formal zero-Froude
limit system and the well-prepared initial datum, with the following asymptotic expansion for
height and momentum

h(x, t) = h(0) + εh(1) + ε2h(2),

m(x, t) = m(0) + εm(1) + ε2m(2).

Definition 2.4.1. The formal zero-Froude limit of the SWE (2.39) gives the so-called “lake
equations”, and reads (see Appendix 2.A as well as [BKL11] for the formal justification)

ηs(0) = h(0) + ηb = const., h(1) = const.,

∂xm(0) = 0,

∂tm(0) + ∂x

(
m2

(0)

h(0)
+ p(2)

)
= −h(2)∂xη

b.
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Definition 2.4.2. For the 1d SWE (2.39), we call the initial data (h0,ε,m0,ε) well-prepared if
it holds that

h(0, ·) = h0,ε := h0
(0) + ε2h0

(2),ε,

m(0, ·) = m0,ε := m0
(0) + εm0

(1),ε,
(2.44)

where h(0)(x) = ηs(0) − η
b(x) with constant ηs(0) and m(0).

The following theorem summarises the results of this section.

Theorem 2.4.3. The LP-IMEX scheme (2.41a)–(2.41c) and (2.12), applied to the shallow water
equations with a well-prepared initial datum, satisfies the following properties:

(i) It can be expressed in the locally conservative form for the density.

(ii) The scheme is AC, i.e., it gives a consistent discretisation of the lake equations, as ε→ 0,
in terms of Definition 2.4.1.

(iii) Under the ε-uniform CFL constraint (2.25), the scheme is positivity preserving, i.e., hnj > 0

provided that h0
j > 0 for all j ∈ ΩN .

(iv) The scheme preserves the lake at rest equilibrium state, i.e., it is well-balanced.

The proof of (i) is clear and skipped. We go through the proof of parts (ii), (iii) and (iv) of
the theorem, briefly.

2.4.1.1 Asymptotic consistency

Because of Definition 2.4.1, the argument for the asymptotic consistency should consider two
important differences compared to Section 2.3. The SWE with a non-flat bottom topography
have a different limit as ε → 0: rather than the density (or height), the surface elevation is
constant. Also, instead of a div-free velocity field, the momentum field should be solenoidal.
Since the Lagrangian formulation does not consider these two differences into account, it is a bit
complicated to check if the scheme drives the solution toward the limit manifold or not; however,
one can check the consistency of the discretisation rather readily. Note that as before, we start
with a well-prepared initial datum in the sense of Definition 2.4.2.

For the Lagrange step and using the τ -update (2.41a) as well as (2.42), one obtains that(
π
n+1/2
(0)j+1 − π

n+1/2
(0)j

)
+ ∆mn(0)j+1/2η

b
x,j+1/2 = 0. (2.45)

To show the consistency of the discretisation in the limit, using (2.45) and (2.42), one can show
the consistency of the interface velocity in the limit. Having that, it is straightforward to show
that the Lagrange step (2.41a)–(2.41c) is consistent with (2.40) in the limit. For the projection
step, the consistency of the interface velocity concludes the argument.
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2.4.1.2 Height positivity

The proof is very similar to Section 2.3.1, but compared to that, there is an additional contri-
bution due to the source terms. It is not difficult to show that, due to (2.45), the condition
(2.25)—with the interface velocity as defined in (2.42)—can be fulfilled uniformly in ε. So under
the non-restrictive CFL condition (2.25), the scheme is positivity preserving.

2.4.1.3 Well-balancing

Note that, one can write the Lagrangian update for −→w and ←−w (2.41b)–(2.41c) with the same

matrices
−→
Jε and

←−
Jε as in (2.35). Thus, the scheme is solvable. So, to show that the LP-IMEX

scheme preserves the LaR equilibrium state, firstly, we show that the scheme may have such a
solution, given the initial datum at equilibrium. Then, we argue that since the solution of the
scheme is unique, this should be the only case which can happen.

Since the projection step is a convex combination of φ
n+1/2
j under the CFL constraint (2.25),

one can confirm that to have a discrete solution in U∆
LaR, it is sufficient and necessary that

φ
n+1/2
∆ ∈ U∆

LaR and ũ
n+1/2
j+1/2 = 0 for all j ∈ ΩN . Then, we can check if such a state is compatible

with the scheme, i.e., if the scheme may have such a solution. It is clear for the projection step;
so, let us clarify it for the Lagrange step.

The τ -update is compatible with a zero interface velocity and a steady height. We can obtain
the τ–π relation (2.17) for the SWE as well, which clearly shows that given a steady height, the
relaxation pressure would be also steady; so, the solution remains at the equilibrium. It only
remains to show the compatibility condition for the velocity after the Lagrange update, that is

to show u
n+1/2
∆ = 0, and also to complete the loop by confirming the compatibility of the zero

interface velocity. One can write the update for the velocity as

u
n+1/2
j = unj −

∆t

2ε2∆mnj

(
π
n+1/2
j+1 − πn+1/2

j−1 + h
n+1/2
j−1/2 (ηbj − ηbj−1) + h

n+1/2
j+1/2 (ηbj+1 − ηbj)

)
. (2.46)

Since π
n+1/2
∆ = πn∆ from the arguments above, one can confirm that u

n+1/2
∆ = 0 is compatible.

Since the velocity is zero and the relaxation pressure is at equilibrium, the definition of the
interface velocity (2.42) makes the loop complete.

Up to now, we have shown the compatibility of such a solution at equilibrium. By Theorem
2.3.9, the existence and uniqueness of a solution (which should be the well-balanced solution) is
known, thus the well-balancing is concluded. One can also formulate the proof more precisely,
like [CKKS16]:

Lemma 2.4.4. Starting with an initial data on the LaR manifold U∆
LaR, the LP-IMEX scheme

(2.41a)–(2.41c) and (2.12) preserves the discrete equilibrium.

Proof. We write the Lagrangian update for −→w as in (2.35), but with a different vector in the rhs
since there is also a contribution from the bottom topography:(

a∆t

ε
+ ∆mnj

)
−→w n+1/2
j −

(
a∆t

ε

)
−→w n+1/2
j−1 = ∆mnj

−→w n
j −

a∆t

ε3
∆mnj−1/2η

b
x,j−1/2. (2.47)
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Since for all j ∈ ΩN , hnj + ηbj is constant and unj = 0, one can verify that

−a∆t

ε3
∆mnj−1/2η

b
x,j−1/2 =

a∆t

ε

(−→w n
j −−→w n

j−1

)
,

and (2.47) can be written as
−→
Jε
−→w n+1/2

∆ =
−→
Jε
−→w n

∆ , which implies that −→w n+1/2
∆ = −→w n

∆ as
−→
Jε is non-

singular. Similarly, ←−w n+1/2
∆ = ←−w n

∆ , which implies that ũ
n+1/2
j+1/2 ≡ 0 and that the Lagrangian step

preserves the equilibrium. The proof for the projection step is trivial.

2.4.2 Rigorous analysis of asymptotic consistency

Given a non-flat bottom topography, Theorem 2.3.9 also applies with the same
−→
Jε and the rhs

vector from (2.47) as

−→y∆ = ∆mn �−→w n − a∆t

2ε3
∆mn− �∆ηb−,

where ∆mn− and ∆ηb− are the vectors of ∆mnj−1/2 and (ηbj − ηbj−1) respectively. One can see that

‖−→y∆‖ = O(1/ε3); so, using the boundedness of ‖(
−→
Jε)
−1‖ is futile to prove the ε-stability of the

solution. Instead, one has to study the structure of (
−→
Jε)
−1, which proposes the following lemma.

Lemma 2.4.5. Denote
−→
Jε
′ :=

ε

a∆t

−→
Jε. Then,

(i) Denote the adjugate matrix of
−→
Jε
′ by adj(

−→
Jε
′), and the all-ones matrix of size N by 1N .

Then, adj(
−→
Jε
′) = (1 +O(ε)) 1N .

(ii) det(
−→
Jε
′) = O(ε).

Proof. It is known that the inverse of a circulant matrix is also circulant [Gra06]. So, it is enough

if we show that the entries of the first column of adj(
−→
Jε
′) are 1 +O(ε), which correspond to the

first row of the cofactor matrix. We denote χj :=
ε∆mnj
a∆t and for simplicity of the notation, we

assume that χj = χ is constant; the proof is similar for the non-constant case. For the cofactor
matrix, one can see that the entry of the first row and j-th column is

cof(
−→
Jε
′)1j = (−1)j+1 det

[
K1 0(j−1)×(N−j)

0(N−j)×(j−1) K2

]
,

where 0q×r is the zero matrix of size q × r, and K1 and K2 are square matrices of size (j − 1)
and (N − j), respectively, defined as

K1 :=


−1 1 + χ

−1 1 + χ
. . .

. . .

−1

 , K2 :=


1 + χ
−1 1 + χ

. . .
. . .

−1 1 + χ

 .
Then, it is clear that

cof(
−→
Jε
′)1j = (−1)2j(1 + χ)N−j = (1 + χ)N−j ,
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which shows that all the entries of cof(
−→
Jε
′), so adj(

−→
Jε
′), are 1 +O(ε) and concludes part (i). As

we mentioned, the proof for the scheme (2.41a)–(2.41c) with non-constant χj is similar.

For part (ii), one can compute the determinant directly as
∏N
j=1(1+χj)−1 which is O(ε).

With (
−→
Jε
′)−1 = adj(

−→
Jε
′)/ det(

−→
Jε
′), Lemma 2.4.5 implies that the implicit operator (

−→
Jε)
−1 =

ε
a∆t (
−→
Jε
′)−1, is bounded as ε→ 0 and almost constant, up to some deviation of order O(ε). Using

this and periodic boundary conditions, one can prove the following theorem.

Theorem 2.4.6. The norm of the updated solution vector −→w n+1/2
∆ , is of the same order as

‖−→w n
∆ ‖ = O(1/ε2), for periodic or compactly supported bottom topography function.

Proof. For the statement of the theorem to be true, we should show that the structure of (
−→
Jε)
−1

implies ‖(
−→
Jε)
−1−→y∆‖ = O(1/ε2). In other words, it filters the O(1/ε3) part of the vector −→y∆,

denoted as −→y ∗∆ := −a∆t
2ε3 ∆mn− � ∆ηb−. Manipulating −→y ∗∆ and since the initial datum is well-

prepared, one can find that

y∗j = −a∆t

2ε3

(
hnj + hnj−1

) (
ηbj − ηbj−1

)
= −a∆t

2ε3

(
2ηs,n(0)j − η

b
j − ηbj−1 +O(ε2)

) (
ηbj − ηbj−1

)
= −a∆t

2ε3

(
2ηs,n(0) − η

b
j − ηbj−1

) (
ηbj − ηbj−1

)
+O(1/ε2).

Now, it is enough to show that −→y ∗ belongs to the kernel of the leading order part of (
−→
Jε)
−1,

which consists of constant vectors. That is to show ‖(
−→
Jε)
−1−→y ∗∆‖ = O(1/ε2), which can be done

simply by making a spatial summation and using the boundary condition, i.e.,∑
j∈ΩN

y∗j = −a∆t

2ε3

∑
j∈ΩN

[
2ηs,n(0)

(
ηbj − ηbj−1

)
−
(
ηb,2j − η

b,2
j−1

)]
= 0.

Hence, the O(1/ε3) terms vanish and one is left with the contributions of order O(1/ε2).

Similar results to Lemma 2.4.5 and Theorem 2.4.6 hold for
←−
Jε and←−w respectively. This implies

the following corollary.

Corollary 2.4.7. The asymptotic consistency analysis for the LP-IMEX scheme, (2.41a)–(2.41c)
and (2.12) is rigorous, i.e., the asymptotic expansion is justified.

Proof. Due to Theorem 2.4.6, the implicit step preserves the order of ‖−→w∆‖. It gives πn+1
∆ = O(1),

thus recovers (2.45). As in Section 2.3.2, one can show the boundedness of %
n+1/2
∆ using the τ–π

relation (2.17). Also, due to (2.45), the proof of the boundedness of u
n+1/2
∆ is similar to Section

2.3.2 since the coefficient matrix Hε is exactly like (2.38). This concludes the rigorous asymptotic
consistency of the implicit step, and also the whole scheme since the explicit step has already
been shown to be asymptotically consistent.
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2.A Formal asymptotic analysis of the shallow water equa-
tions

This section is to provide the formal asymptotic analysis for the low-Froude limit of the 1d SWE
in the periodic domain Ω (see also [BKL11]). Consider the non-dimensionalised SWE (1.10) for
d = 1 and with the bottom function ηb (as (2.39)):

∂th+ ∂xm = 0,

∂tm+ ∂x

(
m2

h
+
p(h)

ε2

)
= − h

ε2
∂xη

b.
(2.48)

Then, we substitute the Poincaré expansion for h and m, in terms of the Froude number ε, as

h(t, x) = h(0)(t, x) + εh(1)(t, x) + ε2h(2)(t, x),

m(t, x) = m(0)(t, x) + εm(1)(t, x) + ε2m(2)(t, x),
(2.49)

in (2.48), and balance equal powers of ε. O(ε−2) terms yield h(0) ∂x(h(0) + b) = 0; so, the

leading order of the water surface (or total height) ηs := h + ηb is constant in space since
ηs

(0) := h(0)+ηb = ηs(0)(t). Using this, one can find for the higher order terms that h(0) ∂xh(1) = 0,

thus h(1) = h(1)(t).

Moreover, the leading order of the continuity equation ∂th(0) + ∂xm(0) = 0 gives

d

dt

∫
Ω

h(0)dx = −
∫

Ω

∂xm(0)dx = 0,

owing to the divergence theorem and the assumption of periodic boundary conditions. Thus,
∂th(0) = 0 and ηs(0) = const., which give h(0) = h(0)(x) = ηs(0) − η

b(x) and m(0) = m(0)(t). With

similar arguments, one can easily find that ∂th(1) = 0, so h(1) = const. and m(1) = m(1)(t). For
the evolution of m(0) in time, one gets

∂tm(0) = − 1

|Ω|

∫
Ω

h(2)∂xη
bdx = − 1

|Ω|

∫
Ω

z(2)∂xη
bdx.

Thus, the leading order momentum does not evolve in time when the bottom is flat, i.e., ∂tm(0) =
0. Summing up, one can justify Definition 2.4.1 as the formal asymptotic limit of the SWE.

2.B Entropy (energy) stability in the zero-Mach limit

In this section, we discuss the implications of entropy stability for the limit ε→ 0, aiming to show
the stability of the solution and, due to the compactness or by the Bolzano–Weierstrass theorem,
its strong convergence to a consistent limit. The main objective is to discuss the stability region
which entropy stability provides. For this section, we assume the positivity of density and energy
inequality for the numerical scheme; so, it is not limited to the LP-IMEX scheme.

Firstly, we recall that positivity and energy inequality give boundedness of the density and
velocity, but not directly in the limit ε→ 0. Then, we show this boundedness as ε→ 0, thus the
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existence of a converging sub-sequence due to the compactness. We, finally, show that the limit
density is the incompressible limit solution. Since this analysis does not use any detail neither
from the splitting nor the discretisation, it cannot recover the asymptotic consistency for the
limit velocity.

Consider the entropy (energy) function J := %E = 1
2

(%u)2

% + κ/ε2

γ−1 %
γ and assume a fixed grid

of size N defining the discrete domain ΩN . Having the discrete entropy (energy) inequality, e.g.,
(2.15), we make a spatial summation to get the global entropy (energy) inequality∑

j∈ΩN

J n+1
j ≤

∑
j∈ΩN

J nj =⇒
∑
j∈ΩN

J n+1
j ≤

∑
j∈ΩN

J 0
j ≤ Cε <∞. (2.50)

If, in addition, we assume positivity, J is positive and 0 < J n+1
j ≤ Cε for all j ∈ ΩN .

One immediate result, for a fixed ε, is the `∞-boundedness of discrete solution vectors, i.e.,
%n+1

∆ , un+1
∆ ∈ `∞. So, the energy inequality, accompanied by positivity, provides a stability region,

which depends on the initial condition as well as ε. The question is how does this stability region
change if ε→ 0? If one keeps the grid fixed and considers ε→ 0, the boundedness of the density
is rather clear, either due to positivity or due to the boundedness of the energy. But, it is not
straightforward to conclude the boundedness of the velocity.

Also, note that the boundedness of the density sequence w.r.t. ε provides strong convergence,
that is to say that positive-density solutions, by virtue of compactness, have a converging sub-
sequence of vectors {%εk,n∆ }k∈N for any step n, where εk → 0 is a sequence approaching the
incompressible limit. This sub-sequence converges strongly to some limit %ε∞,n∆ , i.e.,

lim
k→∞

‖%εk,n∆ − %ε∞,n∆ ‖ = 0.

However, it is not clear if the limit is in the space of incompressible solutions. In the following
lemma, we show that the computed density converges to its incompressible limit, with the help
of energy inequality. We, then, show that the same assumptions are not enough to prove that
the computed velocity is div-free. Nonetheless, the boundedness of the velocity sequence, so its
convergence to some limit, can be obtained.

Lemma 2.B.1. Consider the sequence {(%εk,n∆ , uεk,n∆ )}k∈N, accompanied by a well-prepared initial
datum, as the discrete solution of the isentropic Euler equations (2.1). Assume that the solution
sequence satisfies the density positivity and the energy inequality. Then, the sequence is bounded
in `∞ as ε→ 0 such that the density sub-sequence approaches the incompressible limit %0,n

∆ with
the rate of O(ε).

Remark 2.B.2. The rigorous analysis [KM82] and the formal one based on asymptotic expan-
sions lead us to expect the convergence rate of the density to be of O(ε2). So, the convergence rate
of Lemma 2.B.1 is not optimal. We see that exactly due to this issue, the asymptotic consistency
of the velocity cannot be obtained by these assumptions.

Proof. Consider a well-prepared initial density as %ε,0i := %0,0 + δε,0i with δε,0i = O(ε2) for all
i ∈ ΩN . We, also, write the density at step n as %ε,ni := %0,0 + δε,ni . Mass conservation and

positivity imply that ‖%ε,n∆ ‖`1 = ‖%ε,0∆ ‖`1 ; so, one can simply get∑
i∈ΩN

δε,ni =
∑
i∈ΩN

δε,0i = NO(ε2). (2.51)
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It seems that, in the limit, the density oscillates around a constant state. But this does not
imply convergence since the perturbations have no sign. By the global energy inequality (as in
(2.50)) one can see that∑
i∈ΩN

(
%0,0 + δε,ni

)2 ≤ ∑
i∈ΩN

(
%0,0 + δε,0i

)2

+ C0ε
2, C0 :=

∑
i∈ΩN

(
%0,0 + δε,0i

)(
u0,0 + µε,0i

)2

,

(2.52)

where µε,0i = O(ε) to fulfil the well-preparedness of initial datum. Then, combining (2.51) and

(2.52) yields ‖δε,n∆ ‖2`2 = ‖δ0,n
∆ ‖2`2 +C0ε

2 = O(ε2), which shows that each component converges to
the incompressible limit (at least) with the O(ε) rate, though, this rate is slower than expected.
Furthermore, by straightforward calculations, one can show that

‖%ε,n∆ ‖
2

`2
−
∥∥∥%ε,0∆

∥∥∥2

`2
= ‖δε,n∆ ‖

2

`2
+O(ε4) = O(ε2).

Then, by the complete energy inequality, not (2.52), one can obtain∥∥∥(%u2
)ε,n

∆

∥∥∥
`1
−
∥∥∥(%u2

)ε,0
∆

∥∥∥
`1
≤ O(1).

Thus, ‖(%u2)ε,n∆ ‖`1 is bounded, and since the density uniformly converges to its incompressible
limit, the velocity is bounded as well.

Remark 2.B.3. With the additional assumption of ‖δε,n∆ ‖`2 = O(ε2), one can show that ‖µε,n∆ ‖`2 =
O(ε). Thus, the asymptotic consistency would be obtained completely.

A similar analysis can be done for the case of shallow water equations. Here we state the main
result and sketch of the proof.

Lemma 2.B.4. Consider the sequence {(hεk,n∆ , uεk,n∆ )}k∈N, accompanied by a well-prepared initial
datum, as the discrete solution of the shallow water equations (2.39). Assume that the solution
sequence satisfies the height positivity and the energy inequality. Then, the sequence is bounded
in `∞ as ε→ 0 such that the height sub-sequence approaches the zero-Froude limit h0,n

∆ with the
rate of O(ε).

Proof. We consider the well-prepared initial datum as hε,0i := ηs− ηbi + δε,0i with δε,0i = O(ε) for
all i ∈ ΩN . Then, we write the height at step n as hε,ni := ηs−ηbi +δε,ni . Using mass conservation,
one can find

∑
i δ
ε,n
i =

∑
i δ
ε,o
i and from the global energy inequality

∑
i∈ΩN

[(
ηs − ηbi + δε,ni

)2
+ 2ηbi

(
ηs − ηbi + δε,ni

)]
≤
∑
i∈ΩN

[(
ηs − ηbi + δε,0i

)2

+ 2ηbi

(
ηs − ηbi + δε,0i

)]
+
∑
i∈ΩN

(h0,0 + δε,0i )(u0,0 + µε,0i )2ε2.

Analogous arguments as for Lemma 2.B.1 conclude the boundedness of the velocity sequence.





Chapter 3

The modified equation analysis

“Modified equations have been a commonly used tool in the study of difference schemes.
Because of the lack of any theoretical foundation, this use has been accompanied by
constant difficulties and results derived from modified equations have sometimes been
regarded with apprehension. As a result, a situation arises where authors either disre-
gard entirely the technique or have an unjustified faith in its scope.”

– Griffiths and Sanz-Serna, On the scope of the method of modified equations (1986)

In this chapter and motivated by [SN14], we investigate the modified equation as a heuristic tool
for the stability analysis of implicit-explicit flux-splitting schemes for stiff systems of conservation
laws with the singular parameter ε. With the help of the (truncated) modified equation and
inspired by [MP85], we derived some criteria for the stability of symmetric and non-symmetric
flux-splittings, and apply the latter to several well-known splittings. We prove that—for the
isentropic Euler equations—the Degond–Tang splitting [DT11] and the Haack–Jin–Liu splitting
[HJL12], and—for the shallow water equations—the RS-IMEX splitting [Zak16a] are stable in
the sense of [MP85]. We also discuss an example of the splitting of the full Euler equations
[Kle95, NBA+14]. In fact, the validity of the whole analysis is based on a crucial assumption—
which has not been elaborated in [SN14]—that is the truncation of higher order terms of the full
modified equation (in terms of discretisation parameters ∆x and ∆t) is justified. Here, we find
a sufficient condition to justify this truncation, which is somewhat restrictive as it requires the
initial datum to be almost constant, i.e., to possess only very long waves. This chapter is based
heavily on [ZN17].

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 On the validity of the truncated modified equation . . . . . . . . . 40

3.3 Stability of symmetric splittings . . . . . . . . . . . . . . . . . . . . 41

3.4 Stability of non-symmetric splittings . . . . . . . . . . . . . . . . . . 43

3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

37



38

3.1 Introduction

For IMEX schemes, one splits the system into stiff and non-stiff parts w.r.t. the parameter ε,
then, treats the stiff one implicitly in time while an explicit method is used for non-stiff part.
Mainly due to the non-linearity of the system, the way of splitting the system into stiff and non-
stiff parts is not unique and believed to be of crucial importance for stability; see [HJL12, DT11]
for two recent examples for the isentropic Euler system. In [SN14], the authors tried to present
a unified approach in determining the stability of IMEX splittings using the modified equation
analysis. In this section, we first review the framework introduced in [SN14]. We consider the
linear system of hyperbolic conservation laws in the (one-dimensional) domain Ω ⊂ R

∂tU + ∂xF (U) = 0, F (U) = AU , (3.1)

where U : [0,∞) × Ω → Rq are conservative variables and A ∈ Rq×q is a constant matrix
depending only on the parameter ε, which is real diagonalisable with eigenvalues of λ1 ≥ . . . ≥ λq.
We assume the initial condition U(0, x) = U0(x) to be well-prepared so that the time derivatives
of the solution, ∂kt U , are bounded uniformly in ε for k ∈ N, cf. [MS01, KLN91, Gre97]. Now,
we decompose the matrix A into stiff and non-stiff parts in an admissible way, as defined below:

Definition 3.1.1. [Admissible splitting [SN14]] The splitting A = Ã + Â, with “stiff” Ã and

“non-stiff” Â, is called to be admissible provided that

(i) each Ã and Â induces a hyperbolic system, i.e., they have real eigenvalues and a complete
set of eigenvectors;

(ii) the eigenvalues of Â are bounded independently of ε, e.g., O(1), and at least one of the

eigenvalues of Ã is O( 1
ε ).

As in [SN14], we choose a Rusanov-type scheme for both stiff and non-stiff parts, in the

computational domain ΩN with N cells of size ∆x := |Ω|
N . Also, the time step is denoted by ∆t.

Such an IMEX scheme can be written either in the un-split form

Un+1
j = Un

j −
∆t

∆x

(
F̃ n+1
j+1/2 − F̃

n+1
j−1/2 + F̂ nj+1/2 − F̂

n
j−1/2

)
,

or the split form with an explicit step (from the temporal step n to some intermediate step
n+ 1/2) and an implicit step (from the intermediate step n+ 1/2 to the new temporal step n+ 1)U

n+1/2
j = Un

j − ∆t
∆x

(
F̂ nj+1/2 − F̂

n
j−1/2

)
,

Un+1
j = U

n+1/2
j − ∆t

∆x

(
F̃ n+1
j+1/2 − F̃

n+1
j−1/2

)
,

where the numerical fluxes are defined as

F̃ n+1
j+1/2 :=

1

2
Ã
(
Un+1
j+1 +Un+1

j

)
− α̃

2

(
Un+1
j+1 −U

n+1
j

)
,

F̂ nj+1/2 :=
1

2
Â
(
Un
j+1 +Un

j

)
− α̂

2

(
Un
j+1 −Un

j

)
,

with O(1) numerical diffusion coefficients α̃ and α̂ for stiff and non-stiff parts, respectively. Then,
the (truncated) modified equation (see [SN14, eq. (10)]) reads

∂tU +A∂xU =
∆t

2

(α∆x

∆t
Iq − Â2 + Ã2 + [Ã, Â]

)
∂2
xU , (3.2)
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where α := α̃+ α̂ and [Ã, Â] := ÃÂ− ÂÃ is the commutator of the stiff and non-stiff Jacobians.

Assuming that U ∈ [L2(Ω)]q, one can apply the Fourier transform to (3.2), which yields

d

dt
Û +

(
−iξA− ξ2∆t

2

(α∆x

∆t
Iq − Â2 + Ã2 + [Ã, Â]

))
Û = 0,

with ξ denoting the frequency variable. This gives the following convenient stability result.

Lemma and Definition 3.1.2 (Corollary 1, [SN14]). The modified equation (3.2) is L2-stable
if the “frequency matrix”

P(ξ) := −iAξ − ξ2Dν , Dν :=
∆t

2

(α∆x

∆t
Iq − Â2 + Ã2 + [Ã, Â]

)
, (3.3)

is stable, i.e., it only has eigenvalues with negative real parts. In this case, we say that the IMEX
splitting satisfies condition (A).

Remark 3.1.3. (i) Throughout this chapter, whenever we talk about stability, it means sta-
bility in the sense of condition (A), unless explicitly stated otherwise.

(ii) The modified equation (3.2) is derived formally by truncating Taylor expansions in space
and time. We conjecture that a rigorous justification will have to rely on a “low-frequency
assumption” such as

‖ξkAk‖ = O(1) for k = 3, 4, . . . , (3.4)

together with a suitable CFL condition. We will discuss this conjecture in further details
in Section 3.2.

(iii) Recalling a famous result of Gel’fand [Gel59], if one considers a convection-diffusion system
of equations like (3.3), the well-posedness requires the viscosity matrix (in this case Dν) to
be parabolic, i.e., its eigenvalues should have positive real parts. So, in general, parabolicity
is a necessary condition for stability. Since in [Gel59] this necessity has been justified only
for very high-frequency modes, it cannot be applied in the context of this chapter as the
frequencies are small due to a low-frequency assumption. Hence, the parabolicity is not a
necessary condition anymore.

Unfortunately, without any additional structural assumption, obtaining a general stability
condition for the matrix P is very delicate. For example, in [SN14] the authors introduce a
characteristic splitting, for which the Jacobians are simultaneously diagonalisable, hence, the
commutator [Ã, Â] vanishes. This immediately provides stability of the modified equation; see
Remark 3.4.4 below. Here, we take another approach as, in Section 3.3, we study the eigenvalues
of P assuming symmetry of the splitting and relate it to the strict stability in the sense of Majda–
Pego [MP85]. Also, in Section 3.4, given a general background state, we study Fourier symbols
for linearised modified equations of non-symmetric flux-splittings. Note that our analysis applies
to a general background state and any frequency variable for which the modified equation is valid,
while the previous work [SN14] evaluated the Fourier symbols numerically using fixed background
states and frequencies. Finally, in Section 3.5, we confirm that the modified equations obtained
from the splittings in [DT11, HJL12] for the isentropic Euler equations, as well as the RS-IMEX
splitting for the shallow water system (see Chapter 4) are stable in the sense of Majda–Pego.
We also study Klein’s auxiliary splitting [Kle95], and discover a small instability region for the
example of two colliding pulses [Kle95, NBA+14], for a moderate CFL number. This seems to
give a hint at the numerical difficulties observed in [NBA+14]. Before all these discussions, let
us justify the truncation of the modified equation as appeared in (3.2).
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3.2 On the validity of the truncated modified equation

It has been proposed since [Hir68, WH74] (see also [VR99, GSS86] for the literature review)
that the modified equation can give an interesting intuition about the behaviour of numerical
schemes, that is if the solution of the modified equation is stable, the computed solution is stable
as well. But, there are some difficulties incorporated with modified equations: they are non-
unique [GSS86] and have in fact an infinite number of terms, making a series which is usually
not convergent and only valid in the asymptotic limit (∆t,∆x)→ 0. So, for the modified equation
to be practical, one should be able to justify the use of its first few terms; see [WH74, MM98] for
some interesting discussions on this issue.1 Here, in addition to the discretisation parameters ∆t
and ∆x, there is the scaling parameter ε � ∆t,∆x, which requires justifying the truncation of
the modified equation to be rethought; we show that the low-frequency assumption (3.4) achieve
this goal for the linear system (3.1). We do the analysis for the linear advection equation. Then,
we comment briefly on linear systems.

With the help of [PTA12, Chap. 4] and [VR99, Eq. (8)], we consider the modified equation
of some explicit numerical scheme for the (stiff) linear advection equation ∂tu+ a

ε∂xu = 0 as

∂tu+
a

ε
∂xu =

∞∑
`=2

ε−`∆x`−1c`∂
`
xu, (3.5)

where c` <∞ are some known coefficients, independent of ε and ∆x, and ∆t ∼ ∆x for the sake
of simplicity of presentation. Then, the Fourier transform of the modified equation (3.5) reads

d

dt
û+

iξa

ε
û =

∞∑
`=2

i`ε−`∆x`−1c`ξ
`û.

Now, assuming that ξ = O(ε), which comes from the low-frequency assumption (3.4), only the
first few terms of the rhs will formally define its sign (as ∆x � 1), so the growth or decay of û
in time. Thus, the truncation is formally valid and (3.2) is justified.

One can confirm (see [VR99, Eq. (8)]) that in (3.5) the leading order terms are like (aε )`. For
the case of linear systems, one expects to get similar equations but with powers of A as A`; this
motivates the following conjecture.

Conjecture 3.2.1. For a linear system with the flux vector F (U) = AU , the boundedness of
A`∂`xU justifies the truncation of the modified equation of an explicit/implicit method. So, in the
Fourier space, ‖ξ`A`‖ = O(1) should hold.

This is precisely the low-frequency assumption in Remark 3.1.3. Note that assuming an ad-
missible splitting A = Â + Ã such that ‖Â‖, ‖Ã‖ . ‖A‖, the analysis for an IMEX scheme can
also be done with this low-frequency assumption.

Remark 3.2.2. Although one cannot truncate the modified equation for high frequencies, it
has been shown in [WH74] that it is possible to remedy this issue for linear scalar equations by
establishing a relation between the coefficients of the modified equation and the von Neumann
stability analysis (which provides a complete stability argument).

1 Interestingly enough and as mentioned in [GSS86], there is an analogy between the modified equation and
the backward error analysis of Wilkinson, that is to say, that one can use a fixed number of terms of the modified
equation and ask for the backward error; see [CJ16] for an illustrative example.
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Example 3.2.3. Consider the non-dimensionalised isentropic Euler equations as (1.6). So, the
flux Jacobian (denoted by A) and its power write

A =

[
0 1

−u2 +
p′(%)

ε2
2u

]
, A2 =

 p′(%)− ε2u2

ε2
2u

2u(p′(%)− ε2u2)

ε2

3ε2u2 + p′(%)

ε2

 . (3.6)

It is straightforward to check that Ak has an entry (so the norm) of O(ε−2b(k+1)/2c). Thus,
assuming ξ ∼ εσk for each k, the condition ‖ξkAk‖ = O(1) gives σk as

σk =
bk+1

2 c
k/2

, (3.7)

which has been computed in Table 3.1. Because σ := mink>2 σk = 4
3 and we aim to ignore terms

for k > 2, the condition ξ ∼ ε
4/3 justifies truncation of the modified equation. Note that for the

full Euler equations, the procedure is similar, which comes to the same σ. Note also that this
analysis only suggests a sufficient condition; so, the existence of a smaller σ cannot be excluded
by the analysis.

k 1 2 3 4 5 even k odd k ∞
σk 2 1 4

3 1 6
5 1 k+1

k 1

Table 3.1: The values of σk from (3.7).

3.3 Stability of symmetric splittings

In this section, we assume that A, Â and Ã are symmetric, and point out the stability of such
a splitting in Corollary 3.3.3. Then, by introducing the notion of strict stability in the sense of
Majda–Pego [MP85], we generalise condition (A) (for “linear” systems) to “linearised” systems.
This notion gives a more general stability result for symmetrisable systems (see Theorem 3.3.6).
Non-symmetric splittings are treated in Section 3.4.

For any symmetric matrix A, a symmetric splitting is always possible, e.g., if one chooses
Â = diag (A|ε=1). For any symmetric splitting, the commutator is a skew-Hermitian matrix,
therefore

P(ξ) = −

[
iAξ + ξ2 ∆t

2
[Ã, Â]︸ ︷︷ ︸

=:A

+ ξ2 ∆t

2

(α∆x

∆t
Iq − Â2 + Ã2

)
︸ ︷︷ ︸

=:H

]
, (3.8)

where A and H are skew-Hermitian and Hermitian, respectively. One may conjecture that the
eigenvalues of H would be positive. The following lemma verifies this conjecture.

Lemma 3.3.1. The Hermitian matrix H is positive-definite under a non-restrictive CFL con-
dition, independently of ε.
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Proof. One way to conclude the lemma is to use the eigenvalue stability inequality (see [Tao12,
eq. 1.64]), which states that for two Hermitian matrices L and M of size q, the following holds

|λk(L+M)− λk(L)| ≤ ‖M‖op, k = 1, . . . , q, (3.9)

where the operator norm is defined as ‖M‖op := max
(
|λ1(M)|, |λq(M)|

)
. So, if one puts L = Ã2

and M = −Â2 in (3.9), it yields

−c < λk(Ã2)− ‖Â‖2op ≤ λk(−Â2 + Ã2) ≤ λk(Ã2) + ‖Â‖2op,

with c ≥ 0. Due to the order of magnitude of eigenvalues, c can be chosen to be positive and
O(1), namely c > ‖Â‖2op, which implies the time step restriction ∆t < α∆x/‖Â‖2op. This CFL

condition shifts the eigenvalues to the right (by α∆x
∆t Iq), so that the eigenvalues of H are positive.

Another way to conclude the same result is to use the sub-additivity of the numerical range
(see Section 3.4): to show that the numerical range of Ã2 is positive, and to put the numerical

range of α∆x
∆t Iq − Â2 in the right half-plane under some CFL condition.

Given these properties of A and H , there is a sum of a Hermitian and a skew-Hermitian
matrix in (3.8), and one can use the Bendixon’s theorem in [Hir02] (see [Ben02] for the original
work which is limited to real matrices), which shows that given a Hermitian matrix with stable
eigenvalues in the left half-plane and a skew-Hermitian matrix, the sum will have stable eigenval-
ues, i.e., the eigenvalues have negative real parts. To recall, we restate the theorem from [Hir02];
see also [Bro30] for a nice review.

Theorem 3.3.2 (Theorem II, [Hir02]). Consider the matrix M ∈ Kq×q with K = C or R, where
λk
(
H(M)

)
= pk ∈ R for k = 1, . . . , q and H stands for the Hermitian part. Then, the following

bounds hold
min
k
pk ≤ <

[
λk(M)

]
≤ max

k
pk. (3.10)

From Lemma 3.3.1 and Theorem 3.3.2, one can conclude immediately the following corollary.

Corollary 3.3.3. Under a non-restrictive CFL condition, an admissible symmetric splittings is
stable, i.e., it satisfies condition (A).

Remark 3.3.4. One could also use an energy estimate to show that for the hyperbolic-parabolic
system (3.2) with a symmetric matrix A, the positive-definiteness of the viscosity matrix Dν is
necessary and sufficient for L2-stability.

In order to generalise Lemma 3.1.2 for systems which are linearised around an arbitrary state
U0, we introduce the notion of strict stability in the sense of Majda–Pego [MP85] below.

Definition 3.3.5 ([MP85]). For the non-linear system ∂tU+∂xF (U) = ∂x (Dν∂xU), the viscos-
ity matrix Dν is strictly stable at U0 if and only if there exists a δ > 0 such that the eigenvalues
λk(ξ) of the matrix P(ξ) := −F ′(U0)iξ − ξ2Dν(U0) satisfy the following algebraic condition

<
[
λk(ξ)

]
≤ −δ|ξ|2, for all ξ ∈ R. (3.11)

This definition also provides some non-linear stability results; see [MP85]. Note that Definition
3.3.5 refers to a given state (arbitrary, but fixed) U0, around which the system is linearised. To
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keep the notation simpler and when there is no confusion, we suppress the dependence on U0.
Using this framework, one can also find the generalisation of the stability of symmetric splittings
at U0, as in [Moc80, MP85]:

Theorem 3.3.6. Consider the modified equation in Fourier space (3.3) and let M(U0) be a
real symmetric positive-definite matrix, symmetrising A(U0) from the left, i.e., (MA) |U0

is
symmetric. Then, if (MDν) |U0

is positive-definite, the frequency matrix (3.3), so the modified
equation (3.2), are strictly stable the modified equation in Fourier space (3.3) is strictly stable at
U0, i.e., there exists a δ > 0 such that <

[
λk(P(ξ))

]
≤ −δ|ξ|2.

It is clear that for symmetric splittings, the identity matrix can play the role of the symmetris-
ing matrixM and Theorem 3.3.6 is reduced to the arguments we have presented above, leading
to Corollary 3.3.3.

3.3.1 Extension to two-dimensional systems

One can easily extend the stability analysis to two-dimensional symmetric systems on Cartesian
grids. With a similar procedure as [SN14], the modified equation can be obtained as

∂tU +A1∂xU +A2∂yU =
∆t

2

[(α1∆x

∆t
Iq − Â2

1 + Ã2
1 + [Ã1, Â1]

)
∂2
xU

+
(
− (A1A2 +A2A1) + 2Ã1A2 + 2Ã2A1

)
∂2
xyU

+
(α2∆y

∆t
Iq − Â2

2 + Ã2
2 + [Ã2, Â2]

)
∂2
yU

]
.

Then, using two-dimensional Fourier transform, one can find the frequency matrix as

P(ξ1, ξ2) := −iξ1A1 − iξ2A2 −
∆t

2

[(
ξ2
1

α1∆x

∆t
+ ξ2

2

α2∆y

∆t

)
Iq

+ ξ1ξ2[Ã1, Â2] + ξ1ξ2[Ã2, Â1]

+
(
ξ1Ã1 + ξ2Ã2

)2 − (ξ1Â1 + ξ2Â2

)2]
.

Since the commutator of two Hermitian matrices is skew-Hermitian, the Hermitian part of
P(ξ1, ξ2) writes

H(P)(ξ1, ξ2) = −∆t

2

[(
ξ2
1

α1∆x

∆t
+ ξ2

2

α2∆y

∆t

)
Iq +

(
ξ1Ã1 + ξ2Ã2

)2 − (ξ1Â1 + ξ2Â2

)2]
,

which, like the one dimensional case, can be shown to have positive eigenvalues if the splitting is
admissible, e.g., if ξ1Â1 + ξ2Â2 have O(1) eigenvalues. So, Lemma 3.3.1 concludes the stability
of the frequency matrix.

3.4 Stability of non-symmetric splittings

In this section, we study the stability of the frequency matrix P without the symmetry assump-
tion so that the commutator contributes to the real parts of the eigenvalues of P and makes the



44

analysis more involved. Note that, due to the linearity of the system (3.1), it is always possible
to rewrite it as ∂tV +B∂xV = 0 with a symmetric B—either by the characteristic form (with a
diagonal B) or the symmetric decomposition [Fro10, TZ59] (with a general symmetric B—and
to use the analysis presented in the preceding section. However, as our main interest in such a
linear analysis is to extend basic ideas to linearised systems, we should also consider the general
non-symmetric system.

Let us denote the spectrum of P as λ(P). Then, by the theorem of spectral inclusion [GR97,
Theorem 1.2-1], this spectrum (and in particular its convex hull) is contained in the closure of
the numerical range of P. In other words, Conv (λ(P)) ⊆ W (P), where the numerical range
W (P) is defined as W (P) := {〈v,Pv〉,v ∈ Cq, ‖v‖`2 = 1}. In fact, the real part of the numerical
range of P is bounded by the spectrum of its Hermitian part, i.e.,

< [W (P)] = −Conv
(
λ
(
ξH(iA) + ξ2H(Dν)

))
.

The eigenvalue stability inequality gives the upper-bound of the numerical range as

< [W (P)] ≤ −
(
ξ2λq(H(Dν))− ξ‖H(iA)‖op

)
, (3.12)

where λq(H(Dν)) denotes the smallest eigenvalue. So, for the stability of P, it is sufficient to set
the numerical range to be in the left half-plane. Thus, as a subsidiary result, for symmetric sys-
tems H(iA) vanishes and one can conclude immediately from (3.12) that the positive-definiteness
of Dν implies strict stability with δ = λq(H(Dν)), the smallest eigenvalues of H(Dν). For a non-
symmetric A, although the positive-definiteness of Dν does not necessarily imply condition (A),
we suggest the stability by a modified version of positivity in Theorem 3.4.1 below; this is the
same result as [MP85, Thm. 2.1].

Theorem 3.4.1. For a hyperbolic system (3.1) with A ∈ Rq×q, and with eigenvector matrix R,

the positivity of D̃ν := R−1DνR is sufficient for the stability in terms of condition (A).

Proof. By construction, A is hyperbolic and can be diagonalised as A = RΛR−1, where R is the
matrix of eigenvectors. Substituting this into the definition of P yields

P(ξ) = −iξA− ξ2Dν = R
(
− iξΛ− ξ2D̃ν

)
R−1,

where D̃ν := R−1DνR. Since similarity transformations do not change the spectrum, we instead
study the eigenvalues of P̃(ξ) defined as P̃(ξ) := −iξΛ− ξ2D̃ν .

One can decompose D̃ν as the sum of Hermitian and skew-Hermitian matrices, i.e., H(D̃ν) +

A(D̃ν). From positivity −ξ2H(D̃ν) is stable and by Theorem 3.3.2, the addition of skew-

Hermitian −ξ2A(D̃ν) and −iξΛ cannot destabilise the stable Hermitian matrix −ξ2H(D̃ν). So
P is stable.

Note that Â2 + Ã2 + [Ã, Â] = (Ã − Â)(Ã + Â). Also, the term α∆x
∆t Iq in D̃ν only leads to a

shift in the eigenvalues. So, we only need to study D̃′ν := R−1(Ã− Â)(Ã+ Â)R (instead of D̃ν)
as claimed by the following lemma. The proof is straightforward and skipped here.
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Lemma 3.4.2. Consider the linear hyperbolic system (3.1). Let R to be the eigenvector matrix

of A, and suppose that the splitting A = Â+ Ã is admissible in the sense of Definition 3.1.1. If
there exists a lower-bound λH(D̃′ν) for the eigenvalues of the Hermitian part of D̃′ν := R−1(Ã −
Â)(Ã+ Â)R, such that λH(D̃′ν) = O(1), the splitting is strictly stable in the sense of Majda–Pego.

Remark 3.4.3. Compared to the full frequency matrix P(ξ) used in Lemma 3.1.2, Lemma 3.4.2

is a convenient simplification since H(D̃′ν) does not depend on ξ. Such a dependence requires
choosing a “distinguished limit” for ξ–ε relation, due to the low-frequency assumption. This will
play a crucial role in the example in Section 3.5.4.

One can go one step further and use the structure of the viscosity matrix, which is known for
the modified equation (3.2) unlike most of the literature in the hyperbolic-parabolic systems, cf.

[MP85, Gel59, CS70]. Because of the hyperbolicity assumption, A and Ã are real diagonalisable,
i.e.,

A = RΛR−1, Ã = R̃Λ̃R̃−1,

where R and R̃ are matrices of eigenvectors and R̃ = RQR→R̃, where QR→R̃ stands for the

change of basis matrix. Substituting these into the definition of P̃ gives

P̃(ξ) = −iξΛ− ξ2 ∆t

2

[α∆x

∆t
Iq − Λ2 + 2QR→R̃Λ̃Q−1

R→R̃
Λ
]

︸ ︷︷ ︸
=D̃ν

. (3.13)

This form of D̃ν reveals more of its structure. As one can see, for the positivity of D̃ν the role
of QR→R̃ is crucial. For example for the admissible characteristic splitting, QR→R̃ = Iq, and the

positivity (and stability) is clear since the components of D̃ν are diagonal. The equation (3.13)
suggests that the splittings whose eigenspaces are close to each other such that QR→R̃ is close to
the identity matrix are more likely to be stable, This, essentially, matches the results of [LeV07,
Sect. D.7], that if the eigenspaces of the split matrices coincide, the power-boundedness of each
explicit and implicit operators is enough for the stability of the whole scheme. We will come
back to this form later on, in Chapter 4, when we analyse a flux-splitting scheme for a non-linear
hyperbolic system.

Remark 3.4.4. (i) The IMEX scheme based on the characteristic splitting is uniformly stable
not only in the sense that its modified equation is stable (as discussed in [SN14]), but also
in the `2-norm. This is because for such a splitting, one can decouple the system into q
scalar equations ∂twk + λk∂xwk = 0 for k = 1, . . . , q; then, by the von Neumann stability
analysis, both explicit and implicit steps can be shown to be `2-stable, respectively, under an
appropriate (and ε-uniform) CFL condition, and unconditionally (see [Tra09, Sect 3.3.4]).

(ii) In the light of [HJL12, Lemma 3.1], the stability of each step is clearly enough for the
stability of the whole scheme; however, it is far from being necessary in most cases, and
often not practical to be fulfilled. For instance, notice that the example in [SN14, Sect. 7]
does not have stable steps. One could confirm numerically that for both stable and unstable
settings (with ε1 = 0.1 and ε2 = 0.01 respectively) the implicit operator S̃ is power-bounded

while the explicit operator Ŝ is not. Nonetheless, their multiplication S̃Ŝ makes one case
stable and the other one unstable. For further details about the stability of the difference
equations, the reader can consult [LeV07, Appendix D] and [Tre96, Chap. 4].



46

(iii) One may conjecture that if the commutator is O(1), the viscosity matrix is parabolic under
a suitable and non-restrictive choice of CFL condition, using the continuity of eigenvalues
[Ost66, Appendix K] [Mar49, Chap. 1]. But on one hand, the constant of that continuity
grows as ε → 0, and on the other, it is not even clear if the parabolicity is a relevant
condition to be used for low-frequency modes, as mentioned earlier in Remark 3.1.3. Since
the smallness of the commutator provides the heuristic for the development of the RS-IMEX
scheme in Chapter 4, it is interesting to investigate such a question in more depth.

3.5 Applications

In this section, we show that Lemma 3.4.2 provides the linearised stability at any given state U0

of several splittings used in practice, namely the splitting of Haack–Jin–Liu [HJL12] (abbrevi-
ated as HJL hereinafter), Degond–Tang [DT11] (DT hereinafter) and the RS-IMEX splitting. We
also discuss the numerical instability which has been reported in [NBA+14] for Klein’s auxiliary
splitting of the Euler equations [Kle95]. Let us recall that our analysis is based on the modi-
fied equation (3.2), hence on the IMEX Euler time integration accompanied by Rusanov-type
numerical fluxes.

3.5.1 Haack–Jin–Liu splitting

Consider the (linearised) Jacobian matrix A for the isentropic Euler equations as in (3.6). The
HJL splitting [HJL12] decomposes A as

Â =

[
0 β

−u2 +
p′(%)− a(t)

ε2
2u

]
, λ̂ = u±

√
(1− β)u2 +

β
(
p′(%)− a(t)

)
ε2

,

Ã =

[
0 1− β

1
ε2 a(t) 0

]
, λ̃ = ±

√
a(t)(1− β)

ε
,

where %, u, and p(%) = κ%γ are the density, velocity, and pressure. β ∈ [0, 1] is a parameter
to be chosen (note that it is called α in [HJL12]) and a(t) := minx p

′. With these settings, the
splitting is admissible in the sense of Definition 3.1.1. For further details see [HJL12].

Assume that the system has been linearised around an arbitrary state U0 = (%0, u0)
T

. Then,

in the light of Lemma 3.4.2, we have to study the positivity of D̃′ν . With the aid of Maple
TM

,
one can get

lim
ε→0

(
ε2λ1,2

H(D̃′ν)

)
= lim
ε→0

[
ε2(β − 2)u2

0 +
(
a0 − βp′0 ±

(
(β − 1)p′0 + a0

))]
= lim
ε→0

[
ε2(β − 2)u2

0 +
(
a0 ± (−p′0 + a0) + β(−p′0 ± p′0)

)]
.

Owing to the formal analysis for ε� 1, the asymptotic expansion gives p′0 − a0 = O(ε2), so

lim
ε→0

(
ε2λ1,2

H(D̃′ν)

)
= a0, (1− 2β)a0.
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Since a0 > 0, both eigenvalues are non-negative in the limit and one can find the lower-bound
λH(D̃′ν) = O(1), provided we set β ≤ 1/2. So, when β ≤ 1/2, Lemma 3.4.2 implies the strictly

stability of the scheme, in the sense of Majda–Pego, under a non-restrictive CFL condition.
Note that for the numerical experiments of [HJL12], β is chosen in this stable region and often
of O(ε2).

3.5.2 Degond–Tang splitting

In [DT11] and for the isentropic Euler equations with the pressure function p(%) = κ%γ (like the
HJL splitting example), the following splitting has been proposed for A in (3.6):

Â =

[
0 0

−u2 + θp′(%) 2u

]
, λ̂ = 0, 2u,

Ã =

 0 1
1− θε2

ε2
p′(%) 0

 , λ̃ = ±
√

(1− θε2) p′(%)

ε
,

where θ is an ad hoc parameter to be chosen between 0 and 1/ε2. Note that it is discussed in
[DT11, CDK12, Tan12] that taking θ = O(1) leads to the AP property; so, we assume θ to be
O(1). Then, one can clearly confirm that this splitting is admissible in the sense of Definition
3.1.1.

As for the HJL splitting and with U0 = (%0, u0)T , we study the positivity of D̃′ν . With the

aid of Maple
TM

, one gets

lim
ε→0

(
ε2λ1,2

H(D̃′ν)

)
= lim
ε→0

[
− ε2

(
θ + 2u2

0

)
p′0 + p′0 ±O(ε2)

]
= p′0 > 0.

Thus, both eigenvalues are positive in the limit, and due to Lemma 3.4.2, the scheme is strictly
stable in the sense of Majda–Pego under a non-restrictive CFL condition. Note that this stability
does not depend on the choice of θ.

3.5.3 RS-IMEX splitting

RS-IMEX splitting will be introduced in Chapter 4, but to keep the discussion of the modified
equation analysis integrated, we discuss its stability in the section. Here, we consider the RS-
IMEX splitting for the shallow water equations with a flat bottom topography, in the form
∂tU + ∂xF (U) = 0 with a different formulation from (1.8) (see the equation (4.8)):

U =

[
z
m

]
, F =

 m
m2

h
+
z2 − 2zb

2ε2

 , A =

 0 1

− m2

(z − b)2
+
z − b
ε2

2m

z − b

 , (3.14)

with the same notation as [BALMN14], cf. Chapter 4: z denotes the perturbation of the height
from the mean height, h + b = z, m := (z − b)u is the momentum and b is the depth function,
which is negative and constant. For a scaled version of (3.14) and based on the formal asymptotic
analysis in Appendix 2.A, we define the scaled perturbation V := [v1, v2]T (from a constant state)
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such that v1 := z/ε2 and v2 := m; then, the RS-IMEX splitting with the lake at rest reference
solution gives the following flux splitting, cf. Chapter 4:

Â =

 0 0

ε2v1 −
ε2v2

2

(ε2v1 − b)2

2v2

ε2v1 − b

 , λ̂ = 0,
2v2

ε2v1 − b
,

Ã =

[
0 1/ε2

−b 0

]
, λ̃ = ±

√
−b
ε2

.

So, it can be concluded that this splitting is admissible in the sense of Definition 3.1.1.

As for the HJL splitting and with V0 = (v1,0, v2,0)T , one can obtain that

lim
ε→0

(
ε2λ1,2

H(D̃′ν)

)
= lim
ε→0

−b5 +O(ε2)

(ε2v1,0 − b)4
= −b > 0, (3.15)

since b < 0. Hence, using Lemma 3.4.2 and similar to the HJL splitting example, the splitting
is strictly stable, in the sense of Majda–Pego, under a non-restrictive CFL condition. Note that
the leading orders ε2λ1,2

H(D̃′ν)
are the same for the HJL (with β = O(ε2)), DT and RS-IMEX

splittings.

Remark 3.5.1. It would be interesting to extend the stability result to equations with a varying
bottom topography. Nonetheless, it is not clear how to linearise the Jacobian matrices Ã and Â
(by freezing b), and, simultaneously, the source term (by freezing bx). Thus, it is more difficult
to understand the linearisation error, hence the validity of the stability analysis.

Example 3.5.2. In addition to the previous analysis of the modified equation in the low-Mach
and the low-Froude number limits (ε � 1), we now study λ1,2

H(D̃′ν)
for all ε ∈ (0, 1]. To have the

“same” settings for all these three splittings, we consider the pressure law p(%) = %2/2 for the HJL
and DT splittings so that it coincides with the pressure function of the shallow water equations.
We also choose (%0, u0) = (1, 1) for HJL and DT splittings, and (v1,0, b, v2,0) = (0,−1, 1) for the
RS-IMEX splitting. With these settings, all the systems are the same and can be compared to
each other. We also set the ad hoc parameters of HJL and DT splittings as the typical values,
β = ε2 and θ = 1. Figure 3.1 shows that λ1,2

H(D̃′ν)
are bounded from below. Indeed, λ1

H(D̃′ν)

is always positive, while λ2
H(D̃′ν)

is positive in the left of the kink—around ε ∈ (0.4, 0.6)— and

negative in the right, but uniformly bounded. Thus, owing to Lemma 3.4.2, all these splittings
are asymptotically stable. Note that the plots are hardly distinguishable for small ε.

3.5.4 Klein’s auxiliary splitting

In his influential paper [Kle95], Klein introduced two flux-splittings for the full Euler equations:

U =

 %
%u
%E

 , F =

 %u
%u2 + 1

ε2 p
(%E + p)u

 , A =

 0 1 0
γ−3

2 u2 (3− γ)u γ−1
ε2

−Hu+ (γ−1)ε2

2 u3 H − ε2(γ − 1)u2 γu

 ,
(3.16)

where the total energy %E satisfies the dimensionless equation of state %E = p
γ−1 + ε2

2 %u
2, and

H := E + p
% stands for total enthalpy.
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Figure 3.1:
∣∣λ1

H(D̃′ν )

∣∣ (left) and
∣∣λ2

H(D̃′ν )

∣∣ (right) for RS-IMEX, HJL and DT splittings w.r.t. ε.

The main splitting introduces two sub-systems, called system (I) and (II), given by [Kle95, eqs.
(3.1)–(3.2)]. In the second splitting, the system (I) is replaced by the so-called auxiliary system
(I∗), which is given by [Kle95, eq. (3.8)]. In this section, we analyse the stability of a flux-splitting
IMEX scheme, which uses Klein’s auxiliary splitting as a building block (cf. [NBA+14]).

Here, the background state for the linearisation is U0 = (%0, %0u0, %0E0)T . Following the
derivation in [NBA+14], the auxiliary splitting is given by (for 1 < γ ≤ 5

3 )

Ã = (1− ε2)


0 0 0

1

2
(γ − 1)u2 −(γ − 1)u

γ − 1

ε2

−up− pinf

%
+
γ − 1

2
ε2u3 p− pinf

%
− ε2(γ − 1)u2 (γ − 1)u

 ,

Â =


0 1 0( (γ − 1)ε2

2
− 1
)
u2

(
2− (γ − 1)ε2

)
u γ − 1

Â31 Â32 Â33

 ,
Â31 := −u

[(
1 + ε2(γ − 1)

)
E − 2ε4(γ − 1)u2 + (1− ε2)

pinf

%

]
+

(γ − 1)ε4

2
u3,

Â32 := E + ε2(γ − 1)

(
E − ε2

2
u2

)
+ (1− ε2)

pinf

%
− (γ − 1)ε4u2,

Â33 :=
(
1 + ε2(γ − 1)

)
u.

The choice of the parameter pinf := minx p(t, x) guarantees the hyperbolicity of split systems,
whose eigenvalues read

λ̂ = u, u± c∗, c∗ :=

√
p+ (γ − 1)Π

%
, Π := (1− ε2)pinf + ε2p,
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λ̃ = 0, ± (1− ε2)

ε

√
(γ − 1)(p− pinf)

%
.

So, the splitting is admissible in the sense of Definition 3.1.1 (see [NBA+14]).

Our attempts to compute the eigenvalues of H(D̃′ν) for this case, with Maple
TM

, failed. Thus,
we study the full frequency matrix P(ξ). As mentioned in Remark 3.4.3, another complication
comes on the scene, which is the relation between ξ and ε through the low-frequency assumption;
this makes the limit of the eigenvalues path-dependent. Finding the limit, we examine paths I and
III in the following (see Figure 3.2). Note that path I is not consistent with the low-frequency
assumption (3.4) as it requires ξ ∼ εε for ε � 1. Path III implies ξ ∼ ε1+ε for some positive ε.
With a suitable choice of ε, this path is consistent with the low-frequency assumption. In the
following, we consider the case of ε = 1/3 which fulfils the low-frequency assumption for the Euler
system as explained in Section 3.2. Path II in Figure 3.2 denotes the intermediate regime ξ ∼ ε,
and is not consistent with our restrictive low-frequency assumption but has been considered in
[Kle95, NBA+14].2

ε

ξ

III
II

I

1

Figure 3.2: Different distinguished limits of ε and ξ.

Path I: Although this path does not match the low-frequency assumption, it is worth being
analysed as it is related to the analysis in [SN14]. We, first, compute the ε→ 0 limit, which can

be obtained using Maple
TM

as

lim
ε→0
<
[
ε2λ1,2

I (P(ξ))
]

= lim
ε→0

(γ − 1)ξ2∆t

2%0

[
− %0E0(γ − 1) + pinf ± (%0E0 + pinf)

]
= lim
ε→0

(γ − 1)ξ2∆t

2%0

{
2pinf + (2− γ)%0E0

−γ%0E0

<
[
λ3

I (P(ξ))
]

=
ξ2∆t

2

(
u2

0 −
α∆x

∆t

)
.

So, the third non-stiff eigenvalue can be controlled by an ε-uniform CFL condition. Regarding
the first two stiff eigenvalues, since 2pinf + (2− γ)%0E0 > 0 for γ < 2, the corresponding acoustic
eigenvalue is positive in the limit; therefore, the scheme is unstable. Note that the path should
get completed by ξ → 0 limit, which does not change the sign of the eigenvalues; thus, the
instability result holds as computed in [SN14, Sect. 7].

2 Note that the choice of ξ ∼ ε4/3 gives only one sufficient condition, but it is not necessary; one may obtain
less restrictive conditions on the frequencies by more careful analysis.
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Path III: Unfortunately for this path, λ1,2
III are very complicated while λ3

III is similar to the
previous case and can be controlled to be negative uniformly in ε. So, we have to study the
stability by an example, which is the example of two colliding pulses [Kle95], for which the
ε-dependency of the time step has been shown [NBA+14].

Example 3.5.3. The domain [−L,L) is set to be periodic (like [Kle95, NBA+14]) with L :=
2/ε

4/3, for γ = 1.4. The initial data are

%(0, x) = %(0) +
ε

2
%(1)

(
1− cos

(
2πx

L

))
, %(0) = 0.955, %(1) = 2, (3.17a)

p(0, x) = p(0) +
ε

2
p(1)

(
1− cos

(
2πx

L

))
, p(0) = 1, p(1) = 2γ, (3.17b)

u(0, x) =
1

2
u(0)sign(x)

(
1− cos

(
2πx

L

))
, u(0) = 2

√
γ. (3.17c)

As explained in Section 3.2, the frequency should be small, i.e., ξ ∼ ε
4
3 . So, with this initial

condition, the small frequency assumption does hold. Now, in order to apply the Majda–Pego
stability framework, we linearise around

%0 = %(0) +
ε

2
%(1) = 0.955 + ε,

p0 = p(0) +
ε

2
p(1) = 1 + εγ,

u0 =
√
γ,

and pinf = 1. Note that we have replaced 1 − cos
(

2πx
L

)
by its mean value 1. The numerical

diffusion and the grid parameters are chosen as in [NBA+14]:

α =

√
γp0

%0
+ max

x
(u(0, x)) , ∆x = 0.05, ∆t =

CFL

max
x

(u(0, x))
∆x.

As the domain is periodic, it only provides a countable set of frequencies as ξ = kπ
|Ω| for k ∈

{1, 2, . . . , kmax}, where kmax determines the largest Fourier mode that the mesh can carry, and
kmax ≤ π

∆x [MM98]. We compute the real parts of the eigenvalues of the frequency matrix P of
the modified equation numerically, for the most stable (and non-trivial) mode corresponding to
k = 1. Figure 3.3 displays <(λ1

P), the possibly unstable eigenvalue, for different CFL numbers.
The figures are zooms in ε. The figures reveal a small instability region near ε ∈ (0.02, 0.06)
and for CFL = 0.45. This seems to correspond closely to some of the numerical experiments in
[NBA+14], where the CFL number needed to be reduced when changing ε from 0.1 to 0.05. Note,
however, that the lack of uniform stability in [NBA+14] is much stronger than the one Figure 3.3
suggests since in [NBA+14] the CFL needed to decrease linearly with the Mach number, while in
Figure 3.3, <(λ1

P) ≤ 0 uniformly in ε, for the fixed CFL = 0.02. This discrepancy may possibly
be due to a fundamental difference between the Fourier analysis in the present chapter and the
real computation in [NBA+14] as, based on Lemma 3.1.2, Figure 3.3 studies a single Fourier
mode while, due to the sign(x) function in (3.17c), the initial data for the velocity contain a
superposition of all Fourier modes, which may trigger instabilities not explained by the present
analysis. Note that the size of the domain is a bit larger for this example compared to [NBA+14]
but it does not affect the results.
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Figure 3.3: <(λ1
P) for Klein’s auxiliary splitting w.r.t. ε, in different regions of ε and for the Fourier mode corresponds

to k = π
4 ε

4/3.

Remark 3.5.4. It is important to point out some differences between the algorithms in [NBA+14]
and [Kle95]. Klein develops his approach using the more complex setting of multiple space vari-
ables and multiple pressures. Algorithmically, he “combines explicit predictor steps for long wave
linear acoustics or global compression with a single implicit scalar Poisson-type corrector scheme”
[Kle95, p.3]. Thus, our stability analysis has no direct implication for the scheme proposed in
[Kle95]. Rather, it should be seen as a comment to [NBA+14].



Chapter 4

The RS-IMEX scheme for the 1d
shallow water equations

“Die Mathematiker sind eine Art Franzosen: Redet man zu ihnen, so übersetzen sie es
in ihre Sprache, und dann ist es alsobald ganz etwas anders.”

– Goethe, Maximen und Reflektionen

In this chapter, motivated by the modified equation analysis in Chapter 3, we
introduce the so-called reference solution implicit-explicit scheme for singularly-
perturbed systems of balance laws. RS-IMEX scheme’s bottom-line is to use the
Taylor expansion of the flux function and the source term around a reference
solution (typically the asymptotic limit or an equilibrium solution) to decompose
the flux and the source into stiff and non-stiff parts so that the resulting IMEX
scheme is asymptotic preserving (AP) w.r.t. the singular parameter ε tending
to zero. We prove the asymptotic consistency, asymptotic stability, solvability
and well-balancing of the scheme for the case of the one-dimensional shallow
water equations when the singular parameter is the Froude number. We will
also study several test cases to illustrate the quality of the computed solutions
and to confirm the analysis. This chapter is heavily based on [Zak16a].
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4.1 Introduction

In [NBA+14], the authors applied a flux-splitting scheme to the full Euler equations, which uses
a variant of Klein’s auxiliary splitting [Kle95]. The scheme required an ε-dependent time step
for stability. Motivated by this, [SN14] began a stability analysis of the modified equation of
linear systems in Fourier variables, and suggested that the commutator of the stiff and non-stiff
flux Jacobian matrices may be important for the stability as it is roughly O(1/ε); see also [ZN17]
for a generalisation of the analysis. That study leads to the main idea of the RS-IMEX scheme
whose rigorous asymptotic analysis is the core topic of this chapter.

The fundamental idea is the linearisation around an (asymptotic) reference solution such that
the resulting modified equation is stable; see Chapter 3. In fact, using the asymptotic reference
solution gives a small commutator, which provides a heuristic argument for the stability of the
modified equation as mentioned in Remark 3.4.4; see also Remark 4.2.2 below for a discussion on
this. In addition to this manuscript, the RS-IMEX scheme has been studied in the works of our
collaborators and has been shown to be quantitatively well-behaved in practice. For instance in
[SK16], the applicability of the scheme has been illustrated for the stiff Van der Pol equation; also
in [KSSN16, KS17], the uniform accuracy and formal asymptotic consistency of the scheme have
been studied for the (high-order) RS-IMEX scheme applied to the isentropic Euler equations.

In the present chapter, we restrict our attention to the rigorous AP analysis for the case
of 1d shallow water equations (SWE), i.e., asymptotic consistency, asymptotic stability and
convergence to the limit for fixed grids (see Remark 4.3.11). These make a solid background for
next chapters which extend the scheme to the multi-dimensional SWE with different source terms.
Note that broadly speaking, the splitting developed in [BALMN14, Bis15] can be considered as
a particular example of the RS-IMEX scheme, with the zero reference solution; see Remark 4.3.5
for more details. We would also like to mention that a somewhat similar idea to the RS-IMEX
scheme has been used in [FJ10] (as the so-called penalisation method [HJL16]) for the kinetic
equations with a low Knudsen number, where the authors split the collision operator using the
linearisation around the Maxwellian distribution. Also, one can see similarities between the RS-
IMEX scheme and the multiple pressure variables (MPV) approach [KM95]; we will elaborate
on this point in Chapter 5.

The remainder of this chapter is organised as follows. In Section 4.2 we present a short
introduction to the RS-IMEX scheme, which follows in Section 4.3 and Section 4.4 with the
rigorous AP analysis (consistency and stability) of the RS-IMEX scheme for the 1d SWE, with
the lake at rest and the zero-Froude limit reference solutions. We will see that although the
reference solution is rather simple, the rigorous analysis is not too straightforward. Section 4.5
provides some numerical evidence to confirm the AP analysis and test the quality of the solutions.

4.2 RS-IMEX splitting for hyperbolic systems of balance
laws

The goal of this section is to provide an introduction to the RS-IMEX scheme to be applied to the
SWE in Section 4.3. Consider the hyperbolic system of balance laws in the d-dimensional domain
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Ω ⊂ Rd, depending on the singular parameter ε ∈ (0, 1] (e.g., the Froude or Mach number):

∂tU(t,x; ε) + divxF (U , t,x; ε) = S(U , t,x; ε), (4.1)

where U : [0,+∞)×Ω× (0, 1]→ Rq is the vector of unknowns, F : Rq × [0,+∞)×Ω× (0, 1]→
Rq×d is the flux matrix (in d space dimensions), i.e., F = [f1, . . . ,fd] with fk ∈ Rq, and
S : Rq × [0,+∞)×Ω→ Rq is the source term, e.g., due to the gravitational force, Coriolis force,
or bottom friction. Note that we often suppress the dependence of U , F and S on ε. Ω is chosen
to be periodic (a torus), i.e., Ω = Td for the sake of simplicity. To have a hyperbolic system, we
also assume that F has a real diagonalisable Jacobian F ′ := ∂UF .

Let us consider the given ε-independent function U as the reference solution:

U : [0,+∞)× Rd → Rq, (t,x) 7→ U(t,x). (4.2)

The ε-independence assumption can be relaxed; but, we stick to it here. Typically, U is a steady
state solution of the balance law, or the solution of the asymptotic limit equation, derived from
(4.1) as ε→ 0, e.g., it can be the lake at rest state for the SWE or the incompressible limit for
the Euler equations.

Given the reference solution, we split the solution U of the balance law (4.1) into the reference
solution U and a perturbation Upert, that is U(t,x; ε) = U(t,x; ε) + Upert(t,x; ε). We aim to
design an algorithm for the perturbation Upert which is asymptotically stable and consistent.
The algorithm uses the IMEX approach, and the CFL number for the explicit part should be
ε-uniform. Achieving this goal, we split the flux and source terms using the Taylor expansion
(linearisation) around U :

F (U) = F (U) + F ′(U)Upert +
(
F (U)− F (U)− F ′(U)Upert

)
=: F + F̃ + F̂ , (4.3a)

S(U) = S(U) + S′(U)Upert +
(
S(U)− S(U)− S′(U)Upert

)
=: S + S̃ + Ŝ. (4.3b)

Note that the stiff part of the splitting is linear by construction, which is very advantageous in
terms of computational cost, compared to splittings with non-linear stiff parts like [HJL12, DT11].
Hence, there is no need for solving non-linear systems, e.g., by the Newton-Raphson iteration
method. The idea of such a linearisation goes back to [Ros63] (see also [HW96, Chap IV.7]) for
ODEs (the so-called linearly-implicit methods) and has been used later in [BALMN14] for the
SWE, motivated by [GR10]. So, in a sense, the RS-IMEX splitting is a linearly-implicit method
with a general linearisation state.

It may be useful to scale the components of the perturbation by a suitable scaling in order
to work with O(1) terms in the analysis of the scheme. Later on in Section 4.3, we see that
an appropriate choice of the scaling matrix, not only makes the analysis more illustrative (see
Remark 4.3.10) but also may affect the numerical solution (see Remark 4.4.2). For this rea-
son, we introduce the diagonal matrix D := diag(εdj ) with j = 1, . . . , q, and define the scaled
(preconditioned) perturbation V (t,x) as V := D−1Upert and denote the corresponding scaled

flux and source terms by G := D−1F and Z := D−1S. So, with G, G̃, Ĝ,Z, Z̃ and Ẑ defined
analogously as for F and S, the splittings (4.3a) and (4.3b) can be rewritten:

G = G+ G̃+ Ĝ, Z = Z + Z̃ + Ẑ.

Remark 4.2.1. It is really important to note that the eigenvalues of F̃ ′ := ∂UpertF̃ and F̂ ′ :=

∂UpertF̂ are exactly the same as the eigenvalues of G̃′ := ∂V G̃ and Ĝ′ := ∂V Ĝ, respectively.
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This is because these matrices can be transformed into each other by a similarity transformation
with D. So, the scaling does not change the eigenvalues, thus the admissibility of the splitting.

Then, one is left with the following system for the perturbation V = (v1, . . . , vq)
T :

∂tV + divx

(
G̃(U ,V ) + Ĝ(U ,V )

)
= Z̃(U ,V ) + Ẑ(U ,V )− T (U), (4.4)

where T (U) is the (a priori -known) scaled residual of the reference solution and reads

T (U) := D−1∂tU + divxG(U)−Z(U). (4.5)

Remark 4.2.2. One can confirm that the non-stiff Jacobian is Ĝ′ = G′(U)−G′(U) while the

stiff one reads G̃′ = G′(U). So, the commutator can be obtained as[
Ĝ′, G̃′

]
:= Ĝ′G̃′ − G̃′Ĝ′ =

[
G′(U),G′(U)

]
.

By choosing the reference solution as the asymptotic limit, ‖U − U‖ � 1, which suggests that
the commutator can be small, and supports the stability of the modified equation, cf. Chapter
3 and [ZN17]. Moreover, in the light of the form (3.13), one can deduce that the eigenvectors
of G′(U) and G′(U) are asymptotically close to each other. So, QR→R̃ approaches the identity
matrix, and (3.13) confirms the stability of the modified equation.

Nonetheless, it does not mean that only the asymptotic reference solution provides stability.
In fact, the similarity in the structure of the eigenvectors of G′(U) and G′(U)—which does not
depend on ‖U−U‖—motivates the conjecture that it is the linearly-implicit strategy which makes
the modified equation stable, neither using the asymptotic reference solution nor smallness of the
commutator. We are not able to prove or disprove that; but, at least, we discuss an example
in Section 4.3 showing that even with a non-asymptotic reference solution, which gives a large
commutator, QR→R̃ tends to the identity matrix and the modified equation is stable. Although the
reference solution may not affect the stability of the scheme, we will show in analysis and practice
that the choice of the reference solution does matter for the quality of the computed solution (see
Remark 4.4.4 below).

Defining R := −divxG+Z (with analogous definitions for R, R̃ and R̂), one can reformulate
(4.4) as

∂tV = −T + R̃+ R̂, (4.6)

which is a balance law for the scaled perturbation V . Note that using (4.4) and (4.6) is not
indispensable for the numerical scheme, but it is suitable, notably, for the asymptotic consistency
analysis. Note also that T ≡ 0 if and only if the reference solution U satisfies the original system
(4.1).

4.2.1 Numerical scheme

The Jacobian F̃ ′ in (4.3a) (and G̃′ due to Remark 4.2.1) has stiff eigenvalues. So, to solve (4.6)

numerically, we treat the stiff part R̃ implicitly in time to avoid restrictive time steps, by using
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the implicit Euler time integration. The term R̂ is expected to be non-stiff;1 so, the explicit
Euler scheme is employed. Note that in the sequel, we limit ourselves to first-order schemes. The
residual T is computed independently, e.g., by an appropriate incompressible solver for the Euler
system with the incompressible reference solution. Thus, we can define the RS-IMEX scheme as

follows, where ∆t is the time step, Dtφ(t,x) := φ(t+∆t,x)−φ(t,x)
∆t , and the subscript ∆ stands for

a choice of spatial discretisation.

Definition 4.2.3. Given the reference solution U , the fully-discrete RS-IMEX scheme for (4.6)
is given by

DtV
n

∆ = −T n+1

∆ + R̃n+1
∆ + R̂n

∆. (4.7)

For the spatial discretisation of the flux, a Rusanov-type numerical flux will be used, which

is defined as fi+1/2 := f(ui)+f(ui+1)
2 − αi+1/2

2 (ui+1 − ui), in one space dimension and for the
scalar flux f(u) at the interface i+ 1/2, where i denotes the cell index. The numerical diffusion
coefficient α is originally chosen such that αi+1/2 ≥ maxu∈[ui,ui+1] |f ′(u)|, which means that
for the stiff sub-system, which would be treated implicitly, the numerical diffusion coefficient
would be substantial. As the implicit schemes are diffusive inherently, we choose α for the stiff
sub-system rather arbitrary, e.g., by computing it for ε = 1 such that α̃, α̂ = O(1). Later on
and for numerical examples, we also define corresponding coefficients 0 ≤ cα̃, cα̂ ≤ 1, and α̃
and α̂ would be multiplied by them so that only by tuning these coefficients we can control the
numerical diffusion in practice (see Section 4.5 as well as next chapters). The extension of this
numerical flux to systems and in multi-dimensions is obvious. Note that the source term should
be discretised appropriately so that the scheme preserves the equilibrium (well-balancing). We
will see in Section 4.3 that the central discretisation is appropriate for the SWE with topography.

In fact for the RS-IMEX scheme, two systems should be solved, one for the reference solution
and the other for the scaled perturbation. With a given reference state at step n, one finds the

discretised scaled perturbation V n+1
∆ , while the reference state U

n+1

∆ may evolve over time and
should be computed independently. At the end of each step, the solution can be computed as

U
n+1

∆ +DV n+1
∆ . The RS-IMEX procedure has been summarised in Algorithm 1.

Algorithm 1 RS-IMEX scheme

1: Get U
n

∆ and V n
∆ .

2: Reference step: Find the updated reference state U
n+1

∆ .

3: Explicit step: Solve DtV
n

∆ = R̂n
∆ to find V

n+1/2
∆ .

4: Implicit step: Solve DtV
n+1/2

∆ = −T n+1

∆ + R̃n+1
∆ to find the updated perturbation V n+1

∆ .

5: Find the updated solution as Un+1
∆ = U

n+1

∆ +DV n+1
∆ .

6: Continue with step 2.

Remark 4.2.4. The RS-IMEX scheme introduced here is a bit different from [KSSN16, SK16]
mainly in two aspects. Firstly, in those series of papers, the reference solution is computed im-
plicitly as the limit of the singularly-perturbed system while here we employ off-the-shelf methods
for this purpose. Moreover, here we use the reformulation (4.6) with the scaled perturbation,
which makes the analysis easier and more illustrative as we will see later on.

1 In general, we do not know if the system is non-stiff or not. But this can be shown for the systems we are
dealing with in practice like the shallow water or Euler equations.
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4.3 Shallow water equations with the lake at rest reference
solution

In this section and as an example of the RS-IMEX scheme for the system (4.1), we follow the
procedure described in Section 4.2 to derive the scheme for the 1d SWE with topography and
the LaR reference solution. Then, in Section 4.4, we use the zero-Froude limit reference solution.

The non-dimensionalised SWE in one space dimension, using z = h + b (with b < 0) and
m = hu, can be written as in [BALMN14]:

U =

[
z
m

]
, F =

 m
m2

z − b
+
z2 − 2zb

2ε2

 , S =

[
0

− z

ε2
∂xb

]
. (4.8)

In this notation, z is the surface elevation from some chosen constant surface level Hmean (namely
the mean water level), m is the momentum and b is the water depth measured from Hmean with
a negative sign (see Figure 4.1). The singular parameter ε ∈ (0, 1] is the Froude number; see
(1.10).

Figure 4.1: Variables used in the shallow water formulation (4.8).

We set the reference state as the LaR equilibrium state, U := (z,m)
T

with z constant in space
and m = 0. Therefore, due to (4.3a)–(4.3b), the splitting reads

F =

[
0

z(z − 2b)

2ε2

]
, F̃ =

[
mpert

(z − b)
ε2

zpert

]
, F̂ =

 0
m2
pert

z + zpert − b
+
z2
pert

2ε2

 , (4.9a)

S =

[
0

− z

ε2
∂xb

]
, S̃ =

[
0

−zpert
ε2

∂xb

]
, Ŝ = 0. (4.9b)

One can see that the Jacobian of F̃ (w.r.t. Upert) has stiff eigenvalues λ̃ = O(1/ε), while the

eigenvalues of F̂ ′, denoted by λ̂, are non-stiff. More precisely

F̃ ′ =

[
0 1

z − b
ε2

0

]
, λ̃ = ±

√
z − b
ε

,

F̂ ′ =

[
0 0

−u2
pert +

zpert
ε2

2upert

]
, λ̂ = 0, 2upert,

(4.10)
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with upert := mpert/(z + zpert − b). Thus, the splitting is admissible in the sense of Definition
3.1.1. Note that the case U = 0 gives the same splitting as in [BALMN14, Bis15].

Finding the scaling matrix D, we employ the formal asymptotic analysis in Appendix 2.A
(see also [KM81, KM82] for the rigorous justification for the flat bottom case), which suggests
the formal zero-Froude limit in Definition 4.3.1 below, with the following asymptotic (Poincaré)
expansion

z(t, x) = z(0) + εz(1) + ε2z(2),

m(t, x) = m(0) + εm(1) + ε2m(2).
(4.11)

Definition 4.3.1. The formal zero-Froude limit of the shallow water system (4.8) gives the
so-called “lake equations”, and reads (see Appendix 2.A as well as [BKL11] for the formal justi-
fication)

z(0), z(1) = const.,

∂xm(0) = 0,

∂tm(0) + ∂x

(
m2

(0)

z(0) − b
+ p(2)

)
= −z(2)∂xη

b.

This suggests the following definition for the well-prepared initial condition for the SWE.

Definition 4.3.2. For the 1d SWE (4.8), we call the initial data (z0,ε,m0,ε) well-prepared if it
holds that

z(0, ·) = z0,ε = z0
(0) + ε2z0

(2),ε,

m(0, ·) = m0,ε = m0
(0) + εm0

(1),ε,
(4.12)

where z(0) and m(0) are constant.

The motivation for scaling the equations was to work with O(1) quantities. So, due to (4.12),
we pick z = z0

(0), which implies D := diag(ε2, 1). For simplicity, we stick to this particular
choice of z throughout this section. Nonetheless, it is rather straightforward to confirm that the
asymptotic analysis we are going to present holds for every constant z, while the choice may
affect the numerical diffusion of the scheme, thus the solution.

4.3.1 RS-IMEX scheme

For the scaling matrix diag(ε2, 1), the scaled split perturbation is V := (v1, v2)T := (zpert/ε
2,mpert)

T

and the scaled splitting writes

Ĝ =

 0
v2

2

z + ε2v1 − b
+
ε2

2
v2

1

 , G̃ =

[
v2/ε

2

(z − b)v1

]
, (4.13a)

Ẑ = 0, Z̃ =

[
0

−∂xb v1

]
. (4.13b)
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Owing to (4.10) and Remark 4.2.1, this splitting is also admissible even with an ill-prepared
initial datum (as defined in Appendix 4.B).

Since the LaR equilibrium state is a stationary solution of the system, z is constant in time,
and the reference solution needs not to be updated. Thus, T ≡ 0, and one can reformulate the
1d SWE as

∂tV = −∂x
[
v2/ε

2

(z − b)v1

]
− ∂x

 0
v2

2

z + ε2v1 − b
+ ε2 v

2
1

2

+

[
0

−∂xbv1

]
. (4.14)

The RS-IMEX scheme approximates this reformulated system as below, written as a two-step
scheme:

V
n+1/2
i = V n

i −
∆t

∆x

(
Ĝn
i+1/2 − Ĝ

n
i−1/2

)
(Explicit step), (4.15a)

V n+1
i = V

n+1/2
i − ∆t

∆x

(
G̃n+1
i+1/2 − G̃

n+1
i−1/2

)
+ ∆t Z̃n+1

i (Implicit step), (4.15b)

for each cell i ∈ {1, 2, . . . , N} in the computational domain ΩN with N cells of size ∆x, where

G̃i+1/2 and Ĝi+1/2 denote the Rusanov flux at cell interfaces as defined in Section 4.2, but for the
simplicity of notation with a constant diffusion coefficient α chosen as the maximum value over
the domain, with Ĝ and G̃ as in (4.13a), and Z̃ni is the central discretisation of the source term
(4.13b). Denoting ∇h and ∆h respectively as the central discretisation of the first and second
derivatives, one can rewrite (4.15a)–(4.15b) as

V
n+1/2
i = V n

i −∆t∇h

 0

vn,22,i

z + ε2vn1,i − bi
+
ε2

2
vn,21.i

+
α̂∆x

2
∆t∆hV

n
i , (4.16a)

V n+1
i = V

n+1/2
i −∆t∇h

[
vn+1

2,i /ε2

(z − bi) vn+1
1,i

]
+
α̃∆x

2
∆t∆hV

n+1
i −∆t

[
0

vn+1
1,i ∇hbi

]
. (4.16b)

Due to Remark 4.2.1, the eigenvalues of F ′ and G′ (and their splittings) are the same; so, the
eigenvalues of the non-stiff system are O(1). Also, note that the reference solution is not close
to the solution in the limit. So, this splitting may not give a small commutator needed for the
stability of the modified equation. Indeed, the commutator is formally O(1/ε2):

[
G̃′, Ĝ′

]
:= G̃′Ĝ′ − Ĝ′G̃′ =

v1 −
v2

2

(z + ε2v1 − b)2

2v2/ε
2

z + ε2v1 − b
−2(z − b)v2

z + ε2v1 − b
−v1 +

v2
2

(z + ε2v1 − b)2

 . (4.17)

However, as shown in Chapter 3, the modified equation is asymptotically stable (for slow enough

Fourier modes). One can confirm that the eigenvector matrices R and R̃ are very similar in
structure so thatQR→R̃ is the identity matrix to the leading order, which corroborate the stability
of the modified equation by virtue of the form (3.13). Denoting by rj and r̃j the eigenvectors of
the original and the stiff system and h := z − b, due to (4.13a), one obtains

r1,2 =

 ±1

ε
√
h

+ o(ε−1)

1

 , r̃1,2 =

 ±1

ε
√
h

+ o(ε−1)

1

 , lim
ε→0

QR→R̃ = I2. (4.18)

So, the modified equation is supposed to be stable despite the very large commutator.
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Remark 4.3.3. Note that (4.18) does not expose the structure of QR→R̃ completely as zpert is
assumed to be O(ε), so vanishes in the limit. A more complete picture can be obtained using the
original splitting (4.9a), which results in

r1,2 =

 ±ε√
h(0)

+ o(ε)

1

 , r̃1,2 =

±ε√h + o(ε)

1

 , lim
ε→0

QR→R̃ =

1 +
√

h(0)

h
1−

√
h(0)

h

1−
√

h(0)

h
1 +

√
h(0)

h

 .
If the |h− h| tends to zero as ε→ 0, (4.18) is recovered and QR→R̃ tends to the identity (up to
a scaling).

4.3.2 Asymptotic analysis of the scheme

We collect the properties of the RS-IMEX scheme in the following theorem.

Theorem 4.3.4. For the shallow water equations with topography and well-prepared initial data
in the sense of Definition 4.3.2, the RS-IMEX scheme (4.16a)–(4.16b), with (4.13a)–(4.13b), a
constant α̃, and under an ε-uniform time step restriction

(i) is solvable, i.e., it has a unique solution for all ε > 0.

(ii) has an ε-stable solution, i.e., it is bounded for ε � 1. So, there is a strongly convergent
subsequence of the discrete solutions as ε→ 0.

(iii) is consistent with the asymptotic limit in the fully-discrete settings, i.e., it is asymptotically
consistent.

(iv) is asymptotically `2-stable for the fixed grid ∆x, in finite time Tf < ∞ and with small
enough initial data, i.e., there exists a constant CN,Tf such that ‖V n

∆ ‖`2 ≤ CN,Tf ‖V 0
∆ ‖`2 .

(v) preserves the lake at rest equilibrium state, i.e., it is well-balanced.

We present the proof of Theorem 4.3.4 in the next sections.

Remark 4.3.5. As we have already mentioned, the scheme in [BALMN14, Bis15] is a particular
example of the RS-IMEX scheme with the zero reference solution. So, one may expect that the
analysis in [Bis15] coincides with Theorem 4.3.4. The difference is that the analysis of [Bis15]
is basically for the flat bottom case and detailed analysis has been done for various high order
reconstructions. By contrast, throughout this chapter, we focus on the first-order schemes in one
space dimension and prove asymptotic consistency for a non-flat topography. In Section 4.4, we
show that a similar analysis can be used for more general reference solutions.

4.3.2.1 Solvability of the scheme

Here, we aim to show that there exists a unique solution for the implicit step (so for the scheme)
for all ε > 0. At first and for simplicity, we assume the topography b to be constant, which
makes the system similar to the isentropic Euler system. Then, we generalise the arguments for
the SWE with a varying bottom. To simplify the notation, we β := ∆t

2∆x .
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(i) Constant b Owing to (4.16b), we write the implicit step as JεV
n+1

∆ = V
n+1/2

∆ , i.e., the
implicit solution operator is J−1

ε . The matrix Jε ∈ R2N×2N writes

Jε :=

[
P

β

ε2
Q

βhQ P

]
, (4.19)

where P and Q are circulant matrices defined as

P := Circ (1 + 2α̃β,−α̃β, 0, . . . , 0,−α̃β) , Q := Circ (0, 1, 0, . . . , 0,−1) .

Matrix P is symmetric and strictly diagonally dominant (SDD); so, it has positive real eigen-
values. Matrix Q, as the companion matrix for the central discretisation, is skew-symmetric with
eigenvalues on the imaginary axis.

Since P and Q are circulant, they commute [Gra06], and one knows from [Sil00, Thm. 1] (see
also [Ber09, Sect. 2.14]) that since all blocks of Jε commute with each other, the determinant of
Jε can be computed as

det(Jε) = det

(
P 2 − hβ2

ε2
Q2

)
.

Due to Gerschgorin’s circle theorem [HJ86, Chap. 6], the numerical range [HJ91, Chap. 1] of

−hβ
2

ε2 Q
2 is non-negative while of P 2 is strictly positive, and both of these parts are symmetric

with real eigenvalues. So, using the sub-additivity of numerical range (or the Rayleigh quotient)
(cf. [HJ91, Chap. 1]), the eigenvalues of the sum cannot be zero. Thus Jε is not singular, and
there exists a unique solution for the scheme.

(ii) Non-constant b For this case, one of the blocks of Jε is not circulant; the matrix Jε is
written as

Jε =

[
P

β

ε2
Q

βRb P

]
, (4.20)

whereRb is an almost circulant matrix such that its i-th row is (Rb)i = (bi+1−bi−1, hi+1, 0, . . . , 0,−hi−1),
up to a circulation. Note that Rb is circulant only if its arguments are constant for all rows, i.e.,
if the bottom is flat.

Showing solvability of the scheme for the non-flat bottom case, we can use the fact that since
circulant matrices are commutable, they are simultaneously diagonalisable, i.e., any circulant
matrix M ∈ RN×N can be diagonalised as F ∗NMFN =: ΛM , where ∗ denotes the conjugate
transpose, FN is a (unique) unitary matrix, which consists of eigenvectors of circulant matrices
of size N , and ΛM is the diagonal matrix of eigenvalues. It is important to mention that FN
does not depend on the entries of M , but only on the size N (see [Gra06]). Using this fact, one
can consider the transformed matrix Ξε for showing solvability where

Ξε := diag (F ∗N , F
∗
N ) Jε diag (F ∗N , F

∗
N ) =

[
ΛP

β

ε2
ΛQ

βhF ∗NRbFN ΛP

]
.
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From [Ber09, Fact 2.14.13] and since the blocks Ξ11 and Ξ12 are commutable, the determinant
of Ξε can be written as

det(Ξε) = det

(
Λ2
P −

hβ2

ε2
ΛQF

∗
NRbFN

)
.

Matrix P is SDD and invertible [HJ86, Thm. 6.1.10]; thus, ΛP does not have a zero on the
diagonal. So, as the matrix ΛQF

∗
NRbFN does depend neither on ε nor on β, a suitable choice for

β makes Ξε invertible and concludes that Jε in (4.20) is invertible as well.

4.3.2.2 ε-stability of the solution

In this section, aiming to justify the validity of the formal Poincaré expansion to be used for the
formal asymptotic consistency analysis, we prove that the implicit operator is bounded in terms
of ε. As in Section 2.3.2, we call such a property ε-stability. Note that the ε-stability of the
implicit operator does not provide ε-stability of the solution per se. For that, one also needs the
ε-stability of the explicit step at the intermediate time n+ 1/2; see Section 4.3.2.3. Similar to the
solvability analysis, we present the proofs for flat and non-flat bottom topographies separately.

(i) Constant b For this case the matrix Ξε can be obtained as

Ξε :=

[
ΛP

β

ε2
ΛQ

βhΛQ ΛP

]
. (4.21)

Since Q is skew-symmetric, it has only eigenvalues on the imaginary axis, so Λ∗Q = −ΛQ. Also,

note that diag (FN , FN ) is a unitary matrix. Thus, one can bound the norm of J−1
ε as

‖J−1
ε ‖ ≤ ‖diag (FN , FN ) ‖‖diag (F ∗N , F

∗
N ) ‖‖Ξ−1

ε ‖ ≤ cond (diag (FN , FN )) ‖Ξ−1
ε ‖,

for any natural matrix norm. This bound depends on ε only through ‖Ξ−1
ε ‖; so, we have to

show that Ξ−1
ε is uniformly bounded in ε. Before this, let us mention the following lemma for

the inverse of partitioned matrices, since we are going to use it several times. This is a classical
result; see, e.g., [Ber09, Prop. 2.8.7].

Lemma 4.3.6 (Schur complement). Consider the partitioned matrix M =

[
M11 M12

M21 M22

]
. Then,

the inverse of M exists and writes

M−1 =

[ (
M11 −M12M

−1
22 M21

)−1 −M−1
11 M12

(
M22 −M21M

−1
11 M12

)−1

−M−1
22 M21

(
M11 −M12M

−1
22 M21

)−1 (
M22 −M21M

−1
11 M12

)−1

]
(4.22)

if all the inverses exist.

Now, we can prove the uniform boundedness of ‖Ξ−1
ε ‖ in ε.

Lemma 4.3.7. The inverse of matrix Ξε in (4.21), has a bounded norm for ε→ 0.
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Proof. From Lemma 4.3.6, the inverse of Ξε reads

Ξ−1
ε =


(

ΛP −
β2h

ε2
Λ2
QΛ−1

P

)−1

− β
ε2

Λ−1
P ΛQ

(
ΛP −

β2h

ε2
Λ2
QΛ−1

P

)−1

−bβΛ−1
P ΛQ

(
ΛP −

β2h

ε2
Λ2
QΛ−1

P

)−1 (
ΛP −

β2h

ε2
Λ2
QΛ−1

P

)−1

 .
So, one can easily check that each block is bounded, thus is ‖Ξ−1

ε ‖.

Remark 4.3.8. Lemma 4.3.7 concludes that the implicit solution operator J−1
ε is bounded in

terms of ε. The immediate result of this ε-stability is that the scaled perturbation V∆ should
be O(1) as long as the explicit step is ε-stable. This result justifies the asymptotic consistency
analysis we are going to present in Section 4.3.2.3.

(ii) Non-constant b For this case, employing the diagonal form of circulant matrices cannot
simplify all the blocks of J−1

ε (unlike (4.21)) and the procedure of Lemma 4.3.7 does not seem
to be fruitful. Using Lemma 4.3.6 for the inversion of partitioned matrices, one gets (with α̃ = 0
for simplicity)

J−1
ε =


(
In −

β2

ε2
QRb

)−1

− β
ε2
Q

(
IN −

β2

ε2
RbQ

)−1

−βRb
(
IN −

β2

ε2
QRb

)−1 (
IN −

β2

ε2
RbQ

)−1

 .
As Rb is close to Q, it is plausible to guess that the block (In− β2

ε2 QRb)
−1 is a constant matrix with

some O(ε2) fluctuations (see [Zak17a] for further details). However, the fact that the bottom
topography is rather general makes the proof difficult. So, we employ an indirect approach,
motivated by ‖J−1

ε ‖`2 = σ−1
min (Jε) for σ denoting the singular values, and show that the smallest

singular value of Jε does not approach zero in the limit. From Section 4.3.2.1, Jε is not singular
for all ε > 0; so, the singular values are equal to the square root of the eigenvalues of J∗ε Jε. In
the following, we prove the non-existence of a vanishing lower-bound for the eigenvalues of J∗ε Jε,
which concludes the boundedness of J−1

ε .

Lemma 4.3.9. For Jε as in (4.20), there exists a constant C independent of ε, such that
limε→0 ‖J−1

ε ‖ ≤ C.

Proof. Here, we consider α̃ = 0 to simplify the analysis; however, the analysis for α̃ 6= 0 can be
done similarly. Using (4.20), one can write J∗ε Jε as

J∗ε Jε =

 IN + β2R∗bRb β

(
Q

ε2
+R∗b

)
β

(
Q

ε2
+R∗b

)∗
IN +

β2

ε4
Q∗Q

 .
Now, consider the vector w := (w1,w2)T ∈ C2N living on the unit sphere, i.e., ‖w‖`2 = 1, where
both w1 and w2 are vectors of size N with complex entries. Then, by the definition of numerical
range, one gets

W (J∗ε Jε) = ‖βRbw1 +w2‖2`2 +
∥∥ β
ε2
Qw2 +w1

∥∥2

`2
. (4.23)
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From this, it is clear that if w2 /∈ N ε2

Q := {w2| ‖Qw2‖ = O(ε2)}, then ‖ βε2Qw2 +w1‖`2 goes far

from zero when ε → 0. Otherwise, w2 ∈ N ε2

Q and we conclude the result by contradiction, as
follows. Assume that W (J∗ε Jε) approaches zero in the limit; so, from (4.23)

w1 = − β
ε2
Qw2 + o(1), (4.24a)

w2 = −βRbw1 + o(1). (4.24b)

Multiplying (4.24a) by ε2 yields βQw2 = o(ε2)− ε2w1. For ε→ 0, both terms in the right-hand
side have a limit (note that w2 is a bounded function); so, the limit of w2 should lie in the kernel
of the central difference operator, i.e., its leading order is constant (up to possible checker-board

oscillations). That is to say that w2 = w
(0)
2 + ε2w

(2)
2 where w

(0)
2 consists, in general, of two

constants for odd and even indices.

Now, putting w1 from (4.24a) into (4.24b) yields

w2 =
β2

ε2
RbQw2 + o(1),

which can be rewritten as (IN − β2

ε2 RbQ)w2 = o(1). So, sending to the limit and balancing the

leading order terms implies that w
(0)
2 = β2RbQw

(2)
2 , and it is shown in Appendix 4.A that, due

to the periodicity and the structure of Q and Rb, the constant w
(0)
2 can only be zero. So, w2

has a limit and w
(0)
2 = 0.

The equation (4.24b) implies that Rbw1 → 0. Since the kernel of Rb consists of vectors with
a checker-board like structure (see Appendix 4.A), w1 should tend to a constant. But from
(4.24a), w1 has a difference structure, thus a vanishing mean. As discussed in Appendix 4.A,
for a smooth bottom topography, the summation on odd and even indices indicates that, in the
leading order, there is not CB structure and w1 → 0. Hence, (w1,w2) is tending to zero, which
contradicts the assumption that w lives on the unit sphere. This concludes the lemma.

Assuming the ε-stability of the explicit step, Lemma 4.3.9 verifies that the scaled perturbation
V∆ is O(1), which justifies the formal asymptotic consistency of the next section.

Remark 4.3.10. So far, one important advantage of the RS-IMEX scheme based on (4.6)
with a suitable scaling and reference solution has been to enrich Lemma 4.3.7 and Lemma 4.3.9
to conclude the ε-stability of the numerical solution since we directly work with perturbations.
Otherwise, one needs to study the structure of J−1

ε , e.g, to show that it extracts a constant part
from the solution with some small fluctuations around it; this is generally more difficult.

Remark 4.3.11. Note that, by the Bolzano–Weiertrass theorem and a norm equivalence argu-
ment, the ε-stability of the solution implies that there exists a sequence {V n+1

∆,εk
}k∈N (εk → 0 as

k →∞) converging strongly to a limit (after extracting a subsequence if necessary). To determine
whether this limit is the correct zero-Froude limit will be the topic of Section 4.3.2.3.

4.3.2.3 Asymptotic consistency

For the RS-IMEX scheme applied to the 1d SWE, the asymptotic consistency requires the leading
order of the surface perturbation and the momentum to be constant in space. As we have al-
ready proved solvability and ε-stability of the implicit solution operator, the (formal) asymptotic
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consistency analysis we aim to present in this section is, in fact, rigorous because the coefficients
of the asymptotic expansion are bounded in terms of ε, owing to the ε-stability.

Now, consider the discrete version of the asymptotic expansion (4.11), for all i ∈ ΩN and the
temporal step n:

z(tn, xi) = z(0) + εz(1) + ε2z(2)(tn, xi), m(tn, xi) = m(0)(tn) + εm(1)(t) + ε2m(2)(tn, xi).

Since the reference state is the LaR equilibrium state with the scaling matrix diag(ε2, 1), the
scaled variables write

v1(tn, x) = z(2)(tn, x), v2(tn, x) = m(0)(tn) + εm(1)(tn) + ε2m(2)(tn, x). (4.25)

Note that (4.25) and ε-stability imply that the scheme provides a consistent discretisation
for the leading order of the surface perturbation, simply by construction. So, it remains to
determine if the leading order of the momentum is constant in space. Substituting (4.25) into
the momentum update of the explicit step (4.16a) yields (with k = 0, 1)

v
n+1/2
2(k)i = vn2(k)i −

∆t

2∆x

vn,22(k)i

hi+1hi−1

(bi+1 − bi−1) = vn2(k)c −
∆t

2∆x

vn,22(k)c

hi+1hi−1

(bi+1 − bi−1),

where vn2(k)c is a constant from (4.25). So, the explicit step for the momentum does not intro-

duce an O(1/ε) term into the scheme, i.e., ‖V n+1/2
∆ ‖ = O(1). Remark 4.3.8 implies that the

boundedness of V
n+1/2

∆ leads to the ε-stability of the implicit solution. Thus, from the implicit
v1 update (4.16b), one can (rigorously) conclude that for all i ∈ ΩN

vn+1
2(0)i+1 = vn+1

2(0)i−1, vn+1
2(1)i+1 = vn+1

2(1)i−1.

So, the updated momentum is almost constant, i.e., the discrete divergence operator vanishes in
the limit ∇hvn+1

2,∆ = O(ε2). Although this is often interpreted as the asymptotic consistency in
the literature, it does not imply necessarily that the limit would be obtained. For example, one
can confirm that although the discretisation is consistent with the continuous div-free condition
of the momentum, its null space allows for non-constant sequences, which may lead to the so-
called checker-board oscillations. Here, we prove that the checker-board phenomenon for the flat
bottom case, if happens, is as small as O(ε2). Thus, it does not ruin the numerical solution in
the limit. We will illustrate the smallness of checker-board oscillations for the non-flat bottom
case by a numerical example, in Section 4.5.1.1.

Lemma 4.3.12. For the RS-IMEX scheme (4.16a)–(4.16b) with a constant α̃, applied to the 1d
SWE with flat bottom, the deviations of the computed momentum is O(ε2), as ε → 0. In other
words, the possible checker-board oscillations for the computed momentum are at most O(ε2).

Proof. The linearity of the implicit step implies that for the differences of the solution [[vk,i]] :=
vk,i − vk,i−1 with k = 1, 2, the following holds:

Jε

[
[[V n+1

1,∆ ]]

[[V n+1
2,∆ ]]

]
=

[
[[V

n+1/2
1,∆ ]]

[[V
n+1/2

2,∆ ]]

]
. (4.26)

We will show that the blocks of Kε := J−1
ε behave as

‖K11‖, ‖K12‖, ‖K22‖ = O(1), ‖K21‖ = O(ε2). (4.27)
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Then, owing to (4.25), ‖[[V n+1/2
1,∆ ]]‖ = O(1) and ‖[[V n+1/2

2,∆ ]]‖ = O(ε2). Combining it with (4.26)
yields∥∥∥[[V n+1

2,∆ ]]
∥∥∥ =

∥∥∥K21[[V
n+1/2

1,∆ ]] +K22[[V
n+1/2

2,∆ ]]
∥∥∥ ≤ C (∥∥∥[[V

n+1/2
2,∆ ]]

∥∥∥+ ε2
∥∥∥[[V

n+1/2
1,∆ ]]

∥∥∥) = O(ε2),

which implies that the possible checker-board oscillations are O(ε2).

It only remains to confirm the orders of magnitudes of the blocks in equation (4.27), and in
particular, K21 and K22. Let us re-write the inverse Kε as (using Lemma 4.3.6)

Kε =


(
P − βh

ε2
QP−1Q

)−1

−β
2

ε2
P−1Q

(
P − β2h

ε2
QP−1Q

)−1

−βhP−1Q

(
P − β2h

ε2
QP−1Q

)−1 (
P − β2h

ε2
QP−1Q

)−1

 . (4.28)

Then, it is clear from Lemma 4.3.7 and the structure of Kε, that K12 = β

ε2h
K21 and ‖K12‖ =

O(1); so, ‖K21‖ = O(ε2) and ‖K22‖ = O(1), which concludes the proof of Lemma 4.3.12.

Remark 4.3.13. When the bottom is non-flat, (4.26) does not hold anymore since the momentum
equation has contributions of non-constant coefficients terms. However, one can confirm that
(assuming α̃ = 0 for simplicity)

Hε

[
[[V n+1

1,∆ ]]

[[V n+1
2,∆ ]]

]
=

[
[[V

n+1/2
1,∆ ]]

[[V
n+1/2

2,∆ ]]

]
, Hε =:

[
IN

β

ε2
Q

βR∆
b IN

]
. (4.29)

The only difference compared to (4.26) is the block R∆
b whose non-zero entries of the i-th row read

(hi+1,−(bi−bi−1),−hi−2), compared to those of Rb in Jε which read (hi+1, (bi+1−bi−1),−hi−1).

Assuming that H−1
ε is ε-stable (as it is very similar to J−1

ε ), one can conclude that ‖[[V n+1
2,∆ ]]‖ =

O(1). The matrix R∆
b is close to hQ (with O(∆x) difference); so, it is plausible to claim that

since ‖[[V n+1/2
2,∆ ]]‖ = O(∆x) there is an O(∆x) deviation from the result of the flat bottom, which

gives ‖[[V n+1
2,∆ ]]‖ = O(ε2) +O(∆x). Hence, for both cases, one can conclude that the momentum

is close to a constant value in the limit.

To conclude the asymptotic consistency, it is also required to show that the scheme provides a
consistent discretisation of ∂tm(0). Showing that, we consider the limit of the momentum update
for each step (with a constant α̂ and α̃):

(Explicit step)
v
n+1/2
2(0),i − v

n
2(0),i

∆t
+∇h

[
v2,n

2(0),i

hi + ε2vn1(0),i

+
ε2

2
v2,n

(0)1,i

]
− α̂∆x

2
∆hv

n
2(0),i = 0. (4.30a)

(Implicit step)
vn+1

2(0),i − v
n+1/2
2(0),i

∆t
+∇h

(
hiv

n+1
1(0),i

)
− α̃∆x

2
∆hv

n
2(0),i = −vn+1

1(0),i∇hbi. (4.30b)

It is clear that (4.30a) and (4.30b) provide consistent discretisations of ∂tm(0) for both explicit
and implicit steps, (4.16a) and (4.16b). Thus, in the light of Lemma 4.3.9 and Lemma 4.3.12 for
the ε-stability and smallness of checker-board modes, the scheme is AC.
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4.3.2.4 Asymptotic stability

In this section, we discuss the rigorous stability analysis of the RS-IMEX scheme in the `2-norm,
for a fixed grid and in finite time (Tf <∞). Consider the scheme as the following iteration with
a constant ∆t

Y k =

s−1∏
i=0

Es−i Y k−1, k = 0, 1, . . . , n− 1, n = Tf/∆t, (4.31)

where Ei for i = 1, . . . , s are some discrete evolution operators, like explicit and implicit operators
for the RS-IMEX scheme.

Motivated by [HJL12, Lemma 3.1] (see also [RM67, Tre96]), one can show that the scheme
(4.31) is stable for a finite time and in the `p-norm, provided that there exist constants ci
independent of ∆t such that

‖Ei‖`p ≤ 1 + ci∆t, i = 1, . . . , s. (4.32)

That is to say that ‖Y n‖`p ≤ eCTf ‖Y 0‖`p and with the constant C independent of ∆t.

Concerning the RS-IMEX scheme, s = 2 and E1 and E2 denote the explicit and implicit
operators, respectively. At first, we consider the implicit step and show that the condition (4.32)
holds. Since the explicit step is non-linear, obtaining (4.32) directly is not feasible. Instead,
we find a weaker estimate using a discrete Grönwall’s inequality. Combining these two results
proves the stability.

Stability of the implicit step E2 As we have mentioned earlier, the implicit operator is J−1
ε .

So, one should find some bound of the form 1 + c2∆t for ‖J−1
ε ‖. Let us assume the norm to be

`2. So, one can write

‖E2‖`2 = ‖J−1
ε ‖`2 =

1

σmin (Jε)
=

1

ω1/2(J∗ε Jε)
,

where ω(J∗ε Jε) := min |W (J∗ε Jε)|. On the other hand, one can conclude from (4.23) that the lower
bound of the numerical range ω(J∗ε Jε) can be written as 1 − βc′′2 with some positive ε-uniform
constant c′′2 . Defining another constant c′2 such that ω

1/2(J∗ε Jε) ≥ 1− βc′2 gives

‖E2‖`2 ≤
1

1− βc′2
=

∞∑
k=0

(βc′2)
k ≤ 1 + βc2,

due to the Taylor expansion around β = 0 and with another positive ε-uniform constant c2.
Thus, redefining c2, ‖E2‖`2 ≤ 1 + c2∆t, and the implicit operator is asymptotically stable (in
finite time and for a fixed grid).

Stability of the explicit step E1 To prove the stability of the explicit step is more delicate
since it is not linear; consequently c1 can be obtained but it depends on the solution Y k =
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[
V k

1,∆,V
k

2,∆

]T
. Assuming α̂ = 0 for simplicity and from (4.16a), one can bound ‖E1Y k‖`2 as

‖E1Y k‖`2 ≤ ‖Y k‖`2 +
2β

hkmin

‖〈V k
2,∆,V

k
2,∆〉‖`2 + ε2β‖〈V k

1,∆,V
k

1,∆〉‖`2

≤ ‖Y k‖`2 + β

(
2

hkmin

+ ε2

)
‖Y k‖2`4 ,

≤
[
1 + β

(
2

hkmin

+ ε2

)
‖Y k‖`2

]
‖Y k‖`2 (4.33)

since for sequence spaces, ‖Y ‖`q ≤ ‖Y ‖`p for 1 ≤ p ≤ q. Here, hkmin is the lower-bound for
the water height at step k, i.e., hkmin := mini∈ΩN

∣∣z + ε2vk1,i − bi
∣∣. Owing to ε-stability, hkmin

is bounded away from zero for a small enough ε. For larger ε, one should add the positivity
assumption to conclude the result.

For simplicity, one can rewrite (4.33) as

yk+1 ≤ yk + βky
2
k, yk := ‖Y k‖`2 , βk := β

(
2

hkmin

+ ε2

)
. (4.34)

The stability of the explicit step means to find an upper-bound for yk for which we use the
following discrete Grönwall’s inequality from [WW65].

Theorem 4.3.14 (Thm. 4 [WW65]). Consider the sequences {µk}k>0, {νk}k>0 ≥ 0 for k =
0, 1, . . . while µ0 = ν0 = 0. If for the non-negative sequence {yk}k=0,1,... it holds that

yk+1 ≤ σ +

k∑
i=0

νiyi +

k∑
i=0

µiy
p
i , (σ > 0, p ≥ 0, p 6= 1),

then, by denoting q := 1− p and ψ(k) :=
∏k
i=0(1 + νi)

−1 for k = 0, 1, . . . , the sequence {yk}k≥0

is bounded as

yk+1 ≤
1

ψ(k)

(
σq + q

k∑
i=0

µkψ
q(i)

)1/q

, k = 0, 1, . . . . (4.35)

Using Theorem 4.3.14, the following corollary can be obtained.

Corollary 4.3.15. Given a small enough initial datum, the sequence {yk}k=0,1,... defined in
(4.34) is bounded uniformly in ε.

Proof. One can rewrite (4.34) as

yk+1 ≤ y0 +

k∑
i=0

βiy
2
i =

(
y0 + β0y

2
0

)
+

k∑
i=1

βiy
2
i . (4.36)

Comparing to (4.35), we set νi = 0, µ0 = 0, µi>0 = βi>0, p = 1 and σ = y0 + β0y
2
0 . So, ψ(i) = 1,

and

yk+1 ≤

(
1/σ −

k∑
i=1

βi

)−1

=
(1 + β0y0) y0

1− (1 + β0y0) y0

∑k
i=1 βi

.
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For yk+1 to be bounded, the denominator should be bounded away from zero, which imposes a
bound for the norm of the initial condition y0, i.e.,

(1 + β0y0) y0

k∑
i=1

βi < 1. (4.37)

So, the norm of solution of the explicit step yk is bounded under a “smallness assumption”.

Remark 4.3.16. Note that a simpler version of such bounds can be obtained by induction like
[NT92, eq. (3.11)].

Combining the bounds for explicit and implicit steps, one can bound the norm of the updated
solution as

yk+1 ≤ (1 + c2∆t)(1 + c1∆tyk)yk, (4.38)

where it is assumed that c1 and c2 do not change with k, for simplicity. After some straightforward
calculations, one gets

yk+1 ≤ (1 + c2∆t)k+1y0 + c1∆t(1 + c2∆t)ky2
0 +

k∑
i=1

c1∆t(1 + c2∆t)k−iy2
i .

Thus, by picking σ = (1+c2∆t)k+1y0 +c1∆t(1+c2∆t)ky2
0 and νi = c1∆t(1+c2∆t)k−i, Theorem

4.3.14 yields the following stability result for the RS-IMEX scheme.

Theorem 4.3.17. Given a small enough initial datum and for ε � 1, the RS-IMEX scheme
(4.16a)–(4.16b) is `2-bounded uniformly in ε and for a finite time.

Remark 4.3.18. One can read the smallness condition (4.37) as a time step restriction. This
condition is restrictive, not in ε, but in terms on the number of grid points. One may circumvent
this issue by obtaining some non-linear energy estimates, e.g., as in [Gie15]; this is in the course
of investigation.

Remark 4.3.19. As we have seen so far, the scheme is AC and AS. Due to Definition 1.2.1, for
the scheme to be AP, asymptotic efficiency is also necessary: The CFL condition is ε-uniform
(with material velocity), but the condition number of Jε increases as ε→ 0 (see Remark 4.4.2).
Although, literally speaking, the scheme is not AP in the sense of Definition 1.2.1, we call it AP
(at least in a weaker sense) since it is AC and AS under a non-restrictive CFL condition.

4.3.2.5 Well-balancing

To have the LaR equilibrium state at step n, (2.43) implies that mn
i = 0 and zni is constant for all

i ∈ ΩN . The reference solution is at equilibrium, so is its perturbation, i.e., vn1 is constant and

vn2 is zero, which implies that Ĝ is also constant; so, V
n+1/2

∆ = V n
∆ . Note that the well-balancing

of the explicit step is in fact the consistency of the numerical flux (due to lack of non-stiff source
term).

For the implicit step, the central discretisation suffices the compatibility of the equilibrium
solution as there is exactly such a term in the difference of Rusanov fluxes. To show this
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compatibility, we assume that vn+1
2,i is zero and vn+1

1,i is constant, which makes the contributions of
numerical diffusion to vanish. This compatibility, combined with the unique solvability, suggests
that the solution remains stationary, i.e., V n+1

∆ = V n
∆ ; thus, the scheme is well-balanced. For a

more rigorous proof, we write the implicit step as (assuming α̃ = 0 for simplicity)

V n+1
1,∆ +

β

ε2
V n+1

2,∆ = c1N , (4.39a)

βRbV
n+1

1,∆ + V n+1
2,∆ = 0N , (4.39b)

with some constant c denoting the constant value for the surface perturbation at n+ 1/2.

Putting (4.39a) into (4.39b) gives

cβRb1N +

(
IN −

β2

ε2
RbQ

)
V n+1

2,∆ = 0,

which implies that V n+1
2,∆ = 0 since 1N ∈ NRb and (IN − β2

ε2 RbQ) is non-singular (from Section

4.3.2.1). Also, (4.39a) concludes that V n+1
1,∆ is constant, and completes the well-balancing proof.

Remark 4.3.20. It is important to note that, generally speaking, having the solution at equilib-
rium does not necessarily imply that the reference solution or its perturbation is at equilibrium.
This 1d case with the LaR reference solution is exceptional since the reference solution is constant
and stationary.

4.4 Shallow water equations with the zero-Froude limit
reference solution

Here, we consider the SWE as in (4.8) in a periodic domain, and with a flat bottom topography,
while the reference solution U = (z,m)T is chosen as the zero-Froude limit solution of (4.8). It
can be obtained from Definition 4.3.1 and equation (4.12) that z = z0

(0) and m = m0
(0), both

constant. We have assumed the bottom topography to be flat in order to make the zero-Froude
limit stationary (owing to periodic boundary conditions); this makes T to vanish and avoids the
difficulties stemming from its discretisation in the asymptotic analysis (as will be discussed in
Chapter 5). With this reference solution, the splitting can be obtained as

F :=

 m
m2

z − b
+
z2 − 2zb

2ε2

 , F̃ :=

 mpert

−m
2zpert

(z − b)2 +
z − b
ε2

zpert +
2mmpert

z − b

 ,
F̂ :=

 0

(m+mpert)
2

z + zpert − b
+
z2
pert

2ε2
− m2

z − b
+
m2zpert

(z − b)2 −
2mmpert

z − b

 .
One can check that the splitting is admissible in the sense of Definition 3.1.1; the eigenvalues of
F̃ ′ are stiff and those of F̂ ′ are non-stiff:

λ̃ =
m

z − b
±
√
z − b
ε

, λ̂ = 0, 2upert. (4.40)
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The asymptotic analysis presented in Appendix 2.A suggests the scaling matrix should be
D := diag(ε2, ε); so, the scaled RS-IMEX splitting reads

G̃ :=

 v2/ε

− m2v1ε

(z − b)2 +
(z − b)v1

ε
+

2mv2

z − b

 ,
Ĝ :=

 0
(m+ εv2)2

ε (z + ε2v1 − b)
+
εv2

1

2
− m2

ε (z − b)
+

m2v1ε

(z − b)2 −
2mv2

z − b

 .
(4.41)

Due to the well-prepared initial velocity (4.12), the zero-Froude limit reference state makes the
wave speeds of the slow system really small, i.e., O(ε), as upert = O(ε). Also, U is asymptotically
close to the solution. Thus, the commutator would be O(1), i.e.,

lim
ε→0

[
G̃′, Ĝ′

]
=

[
v1

2v2

z − b
−2v2 −v1

]
. (4.42)

Similar to the case of the LaR reference solution, the modified equation is stable for this splitting.
Also, one can again confirm that the eigenvector matrices R and R̃ are very similar in structure,
which supports the stability of the modified equations. Using (4.41), one obtains

lim
ε→0

(r1,2) = lim
ε→0

(r̃1,2) =

±1√
h

1

 =⇒ lim
ε→0
‖QR→R̃ − I2‖ = 0.

For this case, the RS-IMEX scheme is defined as in (4.15a)–(4.15b) when Ĝ and G̃ change
according to (4.41).

4.4.1 Asymptotic analysis of the scheme

We collect the properties of the RS-IMEX scheme in the following theorem.

Theorem 4.4.1. For the shallow water equations with a flat bottom and well-prepared initial
data in the sense of Definition 4.3.2, the RS-IMEX scheme (4.15a)–(4.15b), with (4.41) and a
constant α̃,

(i) is solvable, i.e., it has a unique solution for all ε > 0.

(ii) its solution is ε-stable, i.e., it is bounded for ε� 1. So, there is convergent subsequence of
the discrete solutions as ε→ 0.

(iii) is consistent with the asymptotic limit in the fully-discrete settings, i.e., it is asymptotically
consistent.

(iv) is asymptotically `2-stable for the fixed grid ∆x, in finite time Tf < ∞ and with a small
enough initial data, i.e., there exists a constant CN,Tf such that ‖V n

∆ ‖`2 ≤ CN,Tf ‖V 0
∆ ‖`2 .

We present the proof of Theorem 4.4.1 in the next sections.
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4.4.1.1 Solvability of the scheme

Like Section 4.3.2, it is not difficult to see that Jε reads

Jε :=

 P
β

ε
Q(

−m
2ε

h
2 +

h

ε

)
βQ P +

2βm

h
Q

 . (4.43)

The blocks of Jε commute and from [Sil00, Thm. 1] the determinant of Jε can be computed as

det(Jε) = det

P 2 − β2

ε

(
−m

2ε

h
2 +

h

ε

)
Q2︸ ︷︷ ︸

=:A

+
2βm

h
PQ︸ ︷︷ ︸

=:B

 .

One can confirm that PQ, so B, is skew-symmetric and does not change the bounds for
the real eigenvalues of the symmetric part A, owing to the Bendixon’s theorem [Ben02, Hir02].
Thus, it remains to show that A has only non-zero eigenvalues. Note that the eigenvalues of

P 2+ β2m2

h
2 Q2 can be set positive, by a suitable and ε-uniform choice of β. Using the sub-additivity

of the numerical range (spectrum for symmetric matrices), adding −β
2h
ε2 Q

2 with non-negative
eigenvalues makes Jε non-singular.

4.4.1.2 ε-stability of the solution

Similar to Section 4.3.2, we can find Ξε as

Ξε :=

 ΛP
β

ε
ΛQ(

−m
2ε

h
+
h

ε

)
βΛQ ΛP +

2βm

h
ΛQ

 .
We then can show that Ξ−1

ε has a bounded norm in terms of ε. Due to Lemma 4.3.6, the blocks
of Ξ−1

ε read

Ξ−1
11 =

(
ΛP −

β2

ε

(
−m

2ε

h
+
h

ε

)
Λ2
Q

(
ΛP +

2βm

h
ΛQ

)−1
)−1

,

Ξ−1
12 = −β

ε
Λ−1
P ΛQΞ−1

22 ,

Ξ−1
21 = −

(
ΛP +

2βm

h
ΛQ

)−1(
−m

2ε

h
2 +

h

ε

)
βΛQΞ−1

11 ,

Ξ−1
22 =

(
ΛP +

2βm

z − b
ΛQ −

β2

ε

(
−m

2ε

h
2 +

h

ε

)
Λ−1
P Λ2

Q

)−1

,

which are all bounded; so, Ξ−1
ε is ε-stable. Assuming the ε-stability of the explicit step (see

Section 4.4.1.3), the solution of the implicit step (thus the whole scheme) can be shown to be
ε-stable. The ε-stability of the solution implies that the scaled perturbation V∆ is O(1), which
justifies the asymptotic consistency analysis we are going to present in the next section.
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Remark 4.4.2. The condition number of Jε depends on the scaling matrix. For example, one
can confirm that using diag(ε2, 1) and diag(ε2, ε) makes the condition number to be O(1/ε2) and
O(1/ε), respectively. In this sense, the scaling by the diagonal matrix D is the “equilibration of
matrices” [GVL12, Sect. 3.5.2] in essence, and may improve the condition number of Jε; see
Table 4.1.

Table 4.1: Comparison of different scaling for matrix Jε.

Scaling by diag(ε2, 1) Scaling by diag(ε2, ε)

Jε

 1 O(1/ε2)

1 1

  1 O(1/ε)

O(1/ε) 1



4.4.1.3 Asymptotic consistency

We are going to show the asymptotic consistency of the scheme formally. But, as we mentioned
before, the analysis is, in fact, rigorous owing to the ε-stability results.

For the explicit step and similar to the case with the LaR reference solution, no O(1/ε)
contribution is associated with the explicit update since

lim
ε→0

[
(m+ εvn2 )2

ε (z + ε2vn1 − b)
− m2

ε (z − b)

]
= O(1). (4.44)

So, it is asymptotically consistent (and ε-stable). This implies that for the implicit step, as
shown in the previous section, V n+1

∆ = O(1). Balancing O(1/ε) terms for the implicit v1-update
implies that ∇hvn+1

2,∆ = O(ε). These conclude the asymptotic consistency of the scheme.

Remark 4.4.3. The asymptotic stability analysis for the implicit step is very similar to Section
4.3.2.4. We just wish to stress that for the explicit step, one should use (4.44) to find an ε-
uniform bound. Hence, one can conclude that the scheme is again AP (in a weaker sense than
Definition 1.2.1), i.e., it is AC and AS under a non-restrictive CFL condition while the condition
number of Jε increases as ε→ 0.

Remark 4.4.4. Comparing the results of this section to Section 4.3.2, both schemes are AC and
AS. As we pointed out in Remark 4.2.2, the modified equation analysis in Chapter 3 suggests that
the reference solution does not affect stability of the scheme. However, asymptotically smaller
wave speeds for the zero-Froude case (compare (4.40) with (4.10)) indicate that the choice of
reference solution affects the numerical diffusion, so the accuracy. We will illustrate this point
in Section 4.5.1.1 for a numerical example.

4.5 Numerical experiments

In this section, we show that the solutions computed by the RS-IMEX scheme have good quality,
comparable to existing schemes. Also, we confirm the AP property (asymptotic consistency and



75

asymptotic stability) of the scheme, numerically. At first, we consider the flat bottom case in
two examples. Then, we continue with a non-flat bottom example.

For all the examples discussed in this section, we put α̂ like in the Lax–Friedrichs scheme as
the maximum value of all wave speeds over the whole domain, and α̃ is likewise but computed
for ε = 1 avoiding excessive diffusion. Also, we choose cα̃ = cα̂ = 1. The time step has been
computed as ∆t := min (∆tCFL,∆tAux) where the CFL time step ∆tCFL and the auxiliary time
step ∆tAux are defined as

∆tCFL := CFL ∆x/max
j∈ΩN

α̂j , ∆tAux := CFL ∆x/max
j∈ΩN

α̃j |ε=1.

Note that this (non-restrictive) auxiliary time step is only needed to avoid issues when the
velocity field is zero.

4.5.1 Shallow water equations with a flat bottom

In this section, we discuss numerical results for the case of SWE with a flat bottom topography.
Firstly, we consider a colliding pulses example of [DT11], which has also been discussed in [Bis15].
Then, we discuss another colliding pulses example from [AN12].

4.5.1.1 (i) Colliding pulses

As [DT11, Example 6.1], we consider the following well-prepared initial data in the periodic
domain [0, 1):

h(0, x) = 1[0≤x≤0.2]
⋃

[0.3<x≤0.7]
⋃

[0.8<x≤1] + (1 + ε2)1[0.2<x≤0.3] + (1− ε2)1[0.7<x≤0.8],

m(0, x) =
(

1− ε2

2

)
1[0≤x≤0.2]

⋃
[0.8<x≤1] + 1[0.2<x≤0.3]

⋃
[0.7<x≤0.8] +

(
1 +

ε2

2

)
1[0.3<x≤0.7],

where 1ω is the characteristic function in the domain ω, and Href = 1; so, z = 0. We also set the
final time Tf = 0.05 and CFL = 0.45. In [DT11, Example 6.1] the pressure function p(%) = %2

has been used; so, we compare the results of the RS-IMEX scheme with [Bis15, Sect. 8.1], where
the pressure function is the same as the SWE.

Figures 4.2 and 4.3 show the results of the RS-IMEX scheme with m = 0 (LaR) and m = 1
(zero-Froude limit) for ε = 0.8 and ε = 0.1. Compared to [Bis15, Fig. 8.2], it is clear that
the computed solutions are well-qualified. Note that for this example, the schemes in [Bis15,
Fig. 8.2] uses the same splitting as the RS-IMEX; but, they employ an elliptic approach for
the surface perturbation update; see [Bis15] for more details. As Figure 4.2 and Figure 4.3
suggest, the computed surface perturbation z does not change that much with the reference
momentum, particularly for ε = 0.1. For the momentum, the m = 1 case gives slightly more
accurate solutions in terms of capturing the extrema. This is due to O(ε2) wave speeds of the
non-stiff system (compare (4.40) with (4.10)) which leads to smaller numerical diffusion; this can
be clearly seen in Figure 4.3 where the solution is computed on a very fine mesh with N = 6400.
Note that for ε = 0.1, both schemes cannot capture the details of the waves (micro-structures),
which is also the case in [DT11, Bis15].
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Figure 4.4 illustrates the experimental order of convergence (EOC) for different ε and m ∈
{0, 1}, for a normalised version of the error defined as

e(φnum
∆ ) := ‖φnum

∆ − φref
∆ ‖L1(ΩNref

) =
1

Nref

∑
j∈ΩNref

∣∣φnum
j − φref

j

∣∣ . (4.45)

where φ is the variable of interest (momentum, height, etc.), and φnum
∆ and φref

∆ are respectively
the computed solution and the “reference” solution computed on a finer mesh with N = 3200.
The figures shows that the scheme, regardless of the reference solution, has an almost uniform
order of convergence for ε′in{0.8, 0.1, 0.05}, which coincides with the result of [DT11, Tab. 2].
Both for the surface perturbation and the momentum, the error is normalised by 1/ε2 as the initial
data consist of O(ε2) perturbations around zero surface perturbation and around a constant value
for the momentum.

Verifying asymptotic consistency and stability, Figure 4.5 shows the solution for a small ε,
namely ε = 10−8. It confirms that the solution is close to the limit manifold. That is to say,
the surface elevation is almost constant, and the momentum is div-free. It also confirms the
smallness of the checker-board oscillations. Note that for both cases here (and for all other
examples in this chapter), the scheme uses D = diag(ε2, ε), which makes the condition number
of Jε to be O(1/ε) (see Remark 4.4.2). Note also that for the zero-Froude limit reference state,
due to O(ε) eigenvalues for the non-stiff system as in (4.40), ∆tCFL = O(1/ε); so, it gets larger
as ε decreases. For this example, since there are only O(ε2) deviations of the initial momentum
from m, one expects ∆tCFL = O(1/ε2).

(a) Surface perturbation z. (b) Momentum m.

Figure 4.2: The RS-IMEX solutions for Example (i), with ε = 0.8, CFL = 0.45, Tf = 0.05, and with two reference states:
the LaR and the zero-Froude limit.
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(a) (b)

(c)

Figure 4.3: (a) and (b): The RS-IMEX solutions for Example (i), with ε = 0.1, CFL = 0.45, Tf = 0.05, and with two
reference states: the LaR and the zero-Froude limit. (c) is like (b) but for a very fine mesh.

4.5.1.2 (ii) Colliding pulses

Consider the following ill-prepared initial data in the periodic domain [−1, 1), as in [AN12]
(motivated by [Kle95]):

h(0, x) = 0.955 +
ε

2
(1− cos(2πx)) ,

u(0, x) = −sign(x)
√

2 (1− cos(2πx)) .
(4.46)

Figure 4.6 shows the evolution of the water height for the final time Tf = 0.1 and ε = 0.1 with
N = 200, CFL = 0.45 and the LaR reference solution. We have also chosen z = −0.045, i.e.,
Hmean = 1. The figure shows that, comparing to [AN12], the computed solution is accurate. Note
that in [AN12], the height is computed by an elliptic approach. Moreover, Figure 4.7 confirms
the ε-uniformity of the time step, and stability of the scheme in the `2-norm, with the growth
factor Gφ, which is defined as Gnφ := ‖φn∆‖`2/‖φ0

∆‖`2 for some quantity φ. As Figure 4.7 suggests,
the scheme is stable uniformly in ε for variables like z, m and u. Note that z should be scaled
with ε2; so, having Gz ≈ 6 does not imply that the water height is changing a lot. Also, one can
see that as discussed in Appendix 4.B, the scheme moves the solution toward the well-prepared
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(a) (b)

(c) (d)

Figure 4.4: The EOC of the RS-IMEX scheme in Example (i), with CFL = 0.45, Tf = 0.05: (a) and (b) for the LaR
(m = 0) reference state, (c) and (d) for the zero-Froude limit (m = 1) reference state. The black solid line is the line
with slope one.

(limit) manifold. Because the mean value of the momentum is zero, the analysis of Appendix
4.B shows that the scheme makes the momentum O(ε2), which is indicated by a very small Gm
for small ε. Note that after the second step, it is α̂ = O(1) which dissipates small variations of
the solution and gives an almost constant solution at t = Tf .

To compare the LaR and the zero-Froude limit reference solutions, for the case (4.46), we keep
z = −0.045 and change the reference momentum to m =

√
2 (case iib) (which is not the zero-

Froude limit). As Figure 4.8 shows, such a choice gives rise to a non-symmetric solution. Since
the solution of the PDE does not change regardless of the choice of the reference solution, this
issue should stem from the operator splitting, which does not necessarily preserve the structure
of the solution. In particular, for this example, this choice of the reference momentum destroys
the odd-symmetry of the momentum for each step which cannot be fully compensated due to the
splitting error. This non-symmetry is, in fact, a well-known issue for operator splitting schemes;
see [DR06, p. 526]. Figure 4.8 confirms this conjecture, as it shows that the solution tends to
get symmetric with mesh refinement, i.e., as the operator splitting error gets smaller.
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(a) (b)

(c) (d)

Figure 4.5: Limit of the RS-IMEX solution in Example (i), with N = 200, Tf = 0.05 and ε = 10−8. (a) and (b) are for
the LaR reference solution, (c) and (d) are for the zero-Froude limit reference solution.

Figure 4.6: Evolution of the surface perturbation for the RS-IMEX solution in Example (iia), with ε = 0.1, CFL = 0.45,
N = 200, and the LaR reference solution.
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(a) ε = 10−1. (b) ε = 10−4.

Figure 4.7: Growth factor and time step regarding ε, in Example (iia) with the LaR reference solution.

Figure 4.8: Vanishing effect of an unsuitable reference solution in Example (iic) as ∆x → 0, for ε = 0.1, Tf = 0.1 and
N = 200, 400, 800, 1600.

4.5.2 Shallow water equations with a non-flat bottom

In this section, we study the result of the RS-IMEX scheme for the non-flat bottom case and
confirm the experimental order of convergence for a specific example. Also, we verify the asymp-
totic consistency of the scheme, numerically. We set the initial condition as in Example (i) but
with a non-flat bottom topography ηb(x) = 0.2 sin(3πx); we denote these settings as Example
(iii).

In Figure 4.9, the convergence rate of the scheme has been plotted, which shows the ε-uniform
EOC for the scheme. Moreover, Table 4.2, shows the smallness of the checker-board oscillations
for v2. It can be seen that ‖[[V2,∆]]‖`∞ , which indicates the amplitude of possible checker-board
oscillations, is of O(ε) as ε → 0, up to some threshold ε where the condition number of Jε gets
very large and affects the solution. This is better than the analysis in Section 4.3.2.3 which
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suggests O(ε+ ∆x). It can also seen that cond2(Jε) = O(1/ε). The condition number is almost
independent of ∆x; the refinement can improve the oscillations to some extent (for rather coarse
meshes); however, after some point, the amplitude of the oscillations does not change with ∆x.

(a) Error in z. (b) Error in m1.

Figure 4.9: EOC of the RS-IMEX scheme in Example (iii), with Tf = 0.05, CFL = 0.45 and the LaR reference solution.

ε N ‖[[V n+1
2,∆ ]]‖`∞ cond2(Jε) ε N ‖[[V n+1

2,∆ ]]‖`∞ cond2(Jε)

10−2 200 3.68e-05 8.72e+01 10−6 50 1.52e-08 7.98e+05
10−3 200 8.30e-10 8.18e+03 10−6 100 1.75e-11 8.11e+05
10−4 200 5.97e-11 8.17e+03 10−6 200 5.89e-13 8.17e+05
10−5 200 5.83e-12 8.17e+04 10−6 400 1.95e-14 8.21e+05
10−6 200 5.89e-13 8.17e+05 10−6 800 7.73e-14 8.22e+05
10−7 200 6.91e-14 8.17e+06 10−6 1600 2.54e-13 8.23e+05
10−8 200 1.49e-14 8.17e+07
10−9 200 1.29e-14 8.17e+08

Table 4.2: Smallness of the checker-board oscillations regarding the refinement in ε and ∆x in Example (iii).

4.A On the proof of Lemma 4.3.9

In this section, we complete the proof of Lemma 4.3.9, in particular, we show that the relation

β2RbQw
(2)
2 = w

(0)
2 implies that w

(0)
2 can only be zero. We also show that kernel of the matrix

Rb includes only vectors with a checker-board like structure (denoted by CB hereinafter), as
defined in Lemma 4.A.1 below.

For the non-flat bottom case, the matrix Rb is defined as in (4.20) and β2RbQw
(2)
2 = w

(0)
2
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gives the following linear system of equations:

β2


hN − h2 h2 −hN
−h1 h1 − h3 h3

−h2 h2 − h4 h4

. . .
. . .

. . .



w

(2)
2,2 −w

(2)
2,N

w
(2)
2,3 −w

(2)
2,1

w
(2)
2,4 −w

(2)
2,2

...

 =


w

(0)
2,odd

w
(0)
2,even

w
(0)
2,odd
...

 . (4.47)

We want to characterise the null space of the coefficient matrix and show that the system has a

solution only if w
(0)
2,odd,w

(0)
2,even = 0. One can pose the following lemma.

Lemma 4.A.1. Consider the linear system of equations My = c of size N , in accordance with
equation (4.47), and with a positive sequence {mk}k > 0, as

mN −m2 m2 −mN

−m1 m1 −m3 m3

−m2 m2 −m4 m4

. . .
. . .

. . .

m1 −mN−1 mN−1 −m1




y2 − yN
y3 − y1

y4 − y2

...
y1 − yN−1

 =


co
ce
co
...

co/e

 . (4.48)

Then,

(i) every y ∈ NM is either constant or has a CB-like structure, i.e., yk − yk−1 has different
signs for odd and even k’s.

(ii) the system (4.47) is inconsistent, i.e., its solution set is empty, unless ci, c0 = 0.

Proof. For part (i), we aim to characterise all vectors y such that My = 0. We rewrite the

system as M̃θ = 0 by denoting θj := yj+1 − yj , where

M̃ :=


m2 mN

m1 m3

. . .
. . .

mN−1 m1

 . (4.49)

One can check that for an odd N , det(M̃) =
∏N
k=1mk 6= 0. So, M̃ is non-singular and has only a

trivial null space. That is to say that only the zero vector belongs to its kernel, which corresponds
to a constant vector y by definition. If N is even, det(M̃) = 0 and one can find a non-zero
minor of size N − 1. So, NM is of rank one with the basis θ∗ such that θ∗k = (−1)k mk−1

mk+1
θ∗k−1 for

k ∈ ΩN . The sequence {mk}k is smooth as it corresponds to the discretisation of a smooth bottom
function, and it is also positive, i.e., {mk}k ≥ mink∈ΩN hk > 0. So, the quotient mk−1/mk+1 ≈ 1
is also smooth for small enough ∆x. This implies that, like for θ∗, the components yk should
have a CB-like structure.

Note that for such a θ∗ to belong to the kernel of M , it should fulfil the compatibility condition∑
j θj = 0 due to its definition. It is not straightforward to check a priori if this relation holds;

but fortunately, we only need to confirm the CB-like structure of elements of NM .

For part (ii), note that the system (4.48) is equivalent to the auxiliary system M̃θ = c as
soon as θ can be written as a difference form. So, it is enough to show the incompatibility of all
possible solutions of the auxiliary system.
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N is odd If N is odd, we should consider co = ci = c. As we already shown, M̃ is non-singular
and the system M̃θ = c has the solution θ∗ such that for k ∈ ΩN

m2θ
∗
1 +mNθ

∗
N = c

m1θ
∗
1 +m3θ

∗
2 = c

...

mN−1θ
∗
N−1 +m1θ

∗
N = c

=⇒ θ∗k+1 +
mk

mk+2
θ∗k =

c

mk+2
. (4.50)

Then, making a spatial sum on ΩN for (4.50) gives∑
k∈ΩN

(
1 +

mk

mk+2

)
θ∗k =

∑
k∈ΩN

c

mk
.

Owing to the smoothness of the sequence {mk}k, one gets mk
mk+2

≈ 1, which implies that
∑
θ∗k ≈∑

c
2mk

. This contradicts the compatibility condition
∑
θ∗k = 0, unless c = 0.

Denoting ϑk := mk
mk+2

and c̃k := c
mk+2

, a more precise argument can be performed by rewriting

(4.50) as


ϑNθ

∗
N + θ∗1 = c̃N

ϑ1θ
∗
1 + θ∗2 = c̃1

...

ϑN−1θ
∗
N−1 + θ∗N = c̃N−1

=⇒



θ∗2 = c̃1 − ϑ1θ
∗
1

θ∗3 = −c̃2 − ϑ2θ
∗
2 = c̃2 − ϑ2c̃1 + ϑ1ϑ2θ

∗
1

θ∗4 = c̃3 − ϑ3θ
∗
3 = c̃3 − ϑ3θ

∗
2 + ϑ2ϑ3c̃1 − ϑ1ϑ2ϑ3θ

∗
1

...

θ∗N = (−1)N−1
[N−1∏
j=1

ϑjθ
∗
1 −

N−1∑
j=1

(−1)j c̃j

N−1∏
`=j+1

ϑ`

]
So, one gets two different relations for θ∗N , which, indeed, should be the same:

θ∗N = −ϑ−1
N θ∗1 + ϑ−1

N c̃N , θ∗N =

N−1∏
j=1

ϑjθ
∗
1 +

N−1∑
j=1

(−1)j c̃j

N−1∏
`=j+1

ϑ`.

It is not difficult to confirm that
∏N−1
j=1 ϑj = ϑ−1

N ; so

θ∗1 =
c̃N
2
− ϑN

2

N−1∑
j=1

(−1)j c̃j

N−1∏
`=j+1

ϑ`. (4.51)

In (4.51), since {c̃k}k and {νk}k vary smoothly, there are some cancellations for the second term,
which suggests that it is of O(∆x). Performing a similar procedure for every k ∈ ΩN implies

that the leading order of θ∗k is c̃k−1

2 , which implies that
∑
θ∗k 6= 0, i.e., the solution cannot be

compatible, unless c = 0.

N is even For this case, the procedure is very similar to the previous one. Assuming the
existence of a solution θ∗, one gets∑

k∈ΩN

mk

mk+2
θ∗k =

∑
(k=2j)∈ΩN

ce
mk+2

+
∑

(k=2j+1)∈ΩN

co
mk+2

, (4.52)
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which, in general, resembles the previous argument for an odd N . However, for co = −ce, the
previous argument seems not working as the rhs vanishes. Here, we show that in such a case, for
the system to be consistent ce = ce = 0 should hold which matches the statement of the lemma.
Consider the same definition of ϑk and c̃k as above, with ce = −co = c. So,


ϑNθ

∗
N + θ∗1 = −c̃N

ϑ1θ
∗
1 + θ∗2 = c̃1

...

ϑN−1θ
∗
N−1 + θ∗N = c̃N−1

=⇒



θ∗2 = c̃1 − ϑ1θ
∗
1

θ∗3 = −c̃2 − ϑ2θ
∗
2 = −c̃2 − ϑ2c̃1 + ϑ1ϑ2θ

∗
1

θ∗4 = c̃3 − ϑ3θ
∗
3 = c̃3 + ϑ3θ

∗
2 + ϑ2ϑ3c̃1 − ϑ1ϑ2ϑ3θ

∗
1

...

θ∗N = (−1)N−1
[N−1∏
j=1

ϑjθ
∗
1 −

N−1∑
j=1

c̃j

N−1∏
`=j+1

ϑ`

]
One gets two different relations for θ∗N , which should be the same:

θ∗N = −ϑ−1
N θ∗1 − ϑ−1

N c̃N , θ∗N = −
N−1∏
j=1

ϑjθ
∗
1 +

N−1∑
j=1

c̃j

N−1∏
`=j+1

ϑ`.

Because
∏N−1
j=1 ϑj = ϑN

−1 and the sign of second terms are different, c̃k = 0 for all k, i.e.,
c = 0.

Lemma 4.A.1 implies the system (4.47) or (4.48) is only consistent if w
(0)
2,odd,w

(0)
2,even = 0. Also,

it confirms that Rbw1 → 0 if and only if w1 tends to a vector with the CB-like structure. The

relation (4.24a) shows that the mean of w
(0)
1 vanishes for a summation on odd and even indices

while, owing to the smoothness of the bottom function and because of this vanishing mean, odd

and even entries of w
(0)
1 should have different signs. This concludes that w

(0)
1 is the zero vector.

4.B Asymptotic consistency of the RS-IMEX scheme with
ill-prepared initial data

Regarding AP schemes for hyperbolic balance laws, the focus is often limited to the well-prepared
initial data (Definition 4.3.2). Here, we briefly show that the rigorous asymptotic consistency
analysis can also be done for the ill-prepared initial data (cf. [FN09, Sect. 4.6]), i.e.,

z0,ε = z0
(0) + εz0

(1),ε,

m0,ε = m0
(0) + εm0

(1),ε,
(4.53)

where z0
(0) is constant, z0

(1),ε = O(1) and m0
(0) is not solenoidal (constant in 1d).

We consider the LaR reference solution and assume a flat bottom topography. One can check
from (4.10) that the splitting is still admissible in the sense of [SN14]. Also, without scaling the
perturbation, we pick V = Upert.

At first we show the ε-stability of the updated solution to justify the use of asymptotic expan-
sion. From the definition of F̃ and F̂ , one can simply check that the intermediate step solution is
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ε-stable as the pressure term v2
1/2ε

2 is O(1), owing to (4.53); this implies that ‖V n+1/2
∆ ‖ = O(1).

Since J−1
ε is ε-stable (with similar arguments as in Section 4.3.2.2), ‖V n+1

∆ ‖ = O(1) and the use
of asymptotic expansion is justified.

BalancingO(1/ε2) andO(1/ε) terms in the implicit momentum update shows that∇h
(
hvn+1

1,i

)
=

O(ε2). This, combined with ‖V n+1/2
1,∆ ‖ = O(ε) and the implicit v1-update, implies that ∇hvn+1

2,i =

O(ε). In other words, vn+1
2 (similarly vn+1

1 ) consists of an O(1) (similarly O(ε)) constant plus
some O(ε) (similarly O(ε2)) perturbations, where the constant can be shown (by a spatial sum-
mation) to be the mean value of the leading order of the initial momentum. Note that for the
colliding pulses example 4.5.1.2, these constants are zero. So, after only one step, the solution is
moved to the mean value plus small perturbations. Performing a similar procedure for the next

step, one obtains ‖V n+3/2
1,∆ ‖ = O(ε2), thus ∇hvn+2

2,i = O(ε2), which concludes that the solution is
completely projected onto the limit manifold, and is moved beyond the initial layer. This gives
the correct uniform behaviour for the scheme; see [CJR97] for some discussions on this topic for
relaxation systems. Hence, the scheme is AC even with an ill-prepared initial datum in the sense
of (4.53).





Chapter 5

The RS-IMEX scheme for the 2d
shallow water equations

“Life can only be understood backwards, but it must be lived forwards.”

– Kierkegaard (1844)

The present chapter, following Chapter 4, extends the asymptotic analysis of the RS-IMEX
scheme for the shallow water equations in two space dimensions. Along the same lines as Chapter
4, we prove the asymptotic preserving property w.r.t. the Froude number, i.e., we prove that
the scheme is consistent and stable, uniformly in the Froude number. We discuss the discrete
preservation of the equilibrium states and confirm the analytical results by a series of numerical
experiments. This chapter is based on [Zak16b].

Contents
5.1 RS-IMEX scheme for the shallow water equations . . . . . . . . . 87
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5.B On the well-balancing of the RS-IMEX scheme . . . . . . . . . . . 113

5.1 RS-IMEX scheme for the shallow water equations

In this chapter and along the same lines as Chapter 4, we study the RS-IMEX scheme for the 2d
SWE with bottom topography. In the current section, the RS-IMEX scheme will be derived for
this system, followed by the asymptotic analysis in Section 5.2. Finally, in Section 5.3, several
numerical experiments will be presented to confirm the analysis and show the quality of the
scheme.
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Let us consider the 2d SWE (1.10) in the reformulated form as [BALMN14, Bis15], which is
the extension of the 1d SWE (4.8) in Chapter 4:

∂tz + divxm = 0,

∂tm+ divx

(
m⊗m
z − b

+
z2 − 2bz

2ε2
I2
)

= − z

ε2
∇xb,

(5.1)

with the same notations as in Chapter 4, and in a periodic domain, i.e., Ω = T2. However, we
use also open domains in two numerical experiments in Sections 5.3.1 and 5.3.2. The system
(5.1) converges to the lake equations as ε→ 0:

∂tm− divx

(
m⊗m

b

)
− b∇xπ = 0,

divxm = 0,

(5.2)

where the auxiliary pressure (or more precisely, surface perturbation) π acts as the Lagrange
multiplier fulfilling the divergence constraint; see Appendix 5.A and Definition 5.2.1 as well as
[BKL11]. Note that −b is the zero-Froude limit of the water height, i.e., the water surface is flat
in the limit. The aim of this chapter, in particular, is to check if the RS-IMEX scheme provides
a consistent and stable approximation of (5.2) in the limit.

Using the general form of hyperbolic balance laws (4.1) for the system (5.1), the choice of
conservative variables U = (z,m1,m2)T implies that the flux F and the source term S can be
written as

F =


m1 m2

m2
1

z − b
+
z2 − 2zb

2ε2

m1m2

z − b
m1m2

z − b
m2

2

z − b
+
z2 − 2zb

2ε2

 , S =

 0
−z ∂xb/ε2

−z ∂yb/ε2

 .

Assuming the reference solution U = (z,m1,m2)T to be the solution of the lake equations
(5.2), and following the RS-IMEX splitting as described in Chapter 4, with the scaling matrix
D = diag(ε2, 1, 1), the splitting can be obtained as

G =


m1/ε

2 m2/ε
2

m1
2

z − b
+
z2 − 2zb

2ε2

m1m2

z − b
m1m2

z − b
m2

2

z − b
+
z2 − 2zb

2ε2

 , (5.3a)

G̃1 =


v2/ε

2

−m1
2v1ε

2

(z − b)2
+

2m1v2

z − b
+ (z − b)v1

−m1m2v1ε
2

(z − b)2
+
m1v3

z − b
+
m2v2

z − b

 , G̃2 =


v3/ε

2

−m1m2v1ε
2

(z − b)2
+
m1v3

z − b
+
m2v2

z − b

−m2
2v1ε

2

(z − b)2
+

2m2v3

z − b
+ (z − b)v1

 , (5.3b)



89

Ĝ1 =


0

m2
1

z − b
+
z2 − 2zb

2ε2
− m1

2

z − b
− z2 − 2zb

2ε2
+
m1

2v1ε
2

(z − b)2
− 2m1v2

z − b
− (z − b)v1

m1m2

z − b
− m1m2

z − b
+
m1m2v1ε

2

(z − b)2
− m1v3

z − b
− m2v2

z − b

 ,

Ĝ2 =


0

m1m2

z − b
− m1m2

z − b
+
m1m2v1ε

2

(z − b)2
− m1v3

z − b
− m2v2

z − b
m2

2

z − b
+
z2 − 2zb

2ε2
− m2

2

z − b
− z2 − 2zb

2ε2
+
m2

2v1ε
2

(z − b)2
− 2m2v3

z − b
− (z − b)v1

 ,
(5.3c)

Z =

 0
−z ∂xb/ε2

−z ∂yb/ε2

 , Z̃ =

 0
−v1∂xb
−v1∂yb

 , Ẑ = 0. (5.3d)

Unlike Chapter 4, this choice of scaling matrix is not what the formal asymptotic analysis
suggests (see Appendix 5.A). However, we will see in Section 5.2.2.2 that this choice is more
appropriate for the rigorous asymptotic consistency analysis. One should verify that the Jacobian
matrices Ĝ′ and G̃′ have a complete set of eigenvectors, and that eigenvalues of Ĝ′ are non-stiff
as there is no O(1/ε) term in Ĝ after simplification. The hyperbolicity of G̃′ is trivial by

construction. For the Jacobian of the slow system Ĝ′ (or more precisely Ĝ′n), the eigenvalues
can be obtained as (see [KSSN16] for instance)

λ̂1 = 0, λ̂2 = (u− u) · n, λ̂2 = 2(u− u) · n,

with the velocity u := m
z−b , the reference velocity u := m

z−b and the unit normal vector n. So,
the splitting is admissible in the sense of Definition 3.1.1. Note that this splitting will be reduced
to the splitting in [BALMN14, Bis15] as soon as one picks m = 0.

Based on Algorithm 1, the RS-IMEX scheme can be written in the split form:

V
n+1/2
ij = V n

ij −
∆t

∆x

(
Ĝn

1,i+1/2j − Ĝ
n
1,i−1/2j

)
− ∆t

∆y

(
Ĝn

2,ij+1/2 − Ĝ
n
2,ij−1/2

)
, (5.4a)

V n+1
ij = V

n+1/2
ij − ∆t

∆x

(
G̃n+1

1,i+1/2j − G̃
n+1
1,i−1/2j

)
− ∆t

∆y

(
G̃n+1

2,ij+1/2 − G̃
n+1
2,ij−1/2

)
(5.4b)

+ ∆t Z̃n+1
ij −∆tT

n+1

ij ,

for each cell (i, j) ∈ {1, 2, . . . , Nx}×{1, 2, . . . , Ny} in the computational domain ΩN , with spatial

steps ∆x and ∆y and the time step ∆t, where G̃i+1/2j and Ĝi+1/2j are Rusanov fluxes at cell

interfaces as defined in Section 4.2.1, with Ĝ and G̃ as in (5.3b)–(5.3c). Z̃n+1
ij is the central

discretisation of the source terms in (5.3d) and T
n+1

ij is the discretisation of the residual of the
reference solution, and is computed as

T
n+1

ij = D−1
U
n+1

ij −Un

ij

∆t
+
G
n+1

1,i+1/2j −G
n+1

1,i−1/2j

∆x
+
G
n+1

2,ij+1/2 −G
n+1

2,ij−1/2

∆y
−Zn+1

ij , (5.5)

again using the Rusnaov numerical flux but with the numerical diffusion coefficient α; we will
discuss about the role of this diffusion in Appendix 5.B.
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By denoting ∇h,x and ∆h,x, respectively, as the central discretisation of the first and second
derivatives in the x-direction, one can rewrite (5.4a)–(5.4b) as

V
n+1/2
ij = V n

ij −∆t∇h,xĜn
1,ij −∆t∇h,yĜn

2,ij +
α̂1∆x

2
∆t∆h,xV

n
ij +

α̂2∆y

2
∆t∆h,yV

n
ij , (5.6a)

V n+1
ij = V

n+1/2
ij −∆t∇h,xG̃n+1

1,ij −∆t∇h,yG̃n+1
2,ij +

α̃1∆x

2
∆t∆h,xV

n+1
ij +

α̃2∆y

2
∆t∆h,yV

n+1
ij

+ ∆tZ̃n+1
ij −∆tT

n+1

ij . (5.6b)

For the reference solution U , the surface perturbation z is constant (in time and space) and
the momentum field m is solenoidal. We also pick α1 = α2 = 0 for the sake of simplicity. So,

one can write T block-wise as T
n+1

∆ := [T
n+1

1,∆ ,T
n+1

2,∆ ,T
n+1

3,∆ ]T such that

T
n+1

1,ij =
(
∇h,xm1

n+1
ij +∇h,ym2

n+1
ij

)
/ε2,

T
n+1

2,ij = Dtm1
n
ij +∇h,x

(
m1

n+1,2
ij

z − bij

)
+∇h,y

(
m1

n+1
ij m2

n+1
ij

z − bij

)
,

T
n+1

3,ij = Dtm2
n
ij +∇h,x

(
m1

n+1
ij m2

n+1
ij

z − bij

)
+∇h,y

(
m1

n+1,2
ij

z − bij

)
.

(5.7)

So far, the scheme for computing the scaled perturbation has been introduced. The remaining
point to be clarified is how to solve the equations for the reference solution, which is explained
in the next section. Note that from now on and for the sake of simplicity, we assume the same
number of grid points in both directions, i.e., Nx = Ny = N . Also, we pick α̂1 = α̂2 and α̃1 = α̃2.

Remark 5.1.1. (i) Note that unlike the one-dimensional system in Chapter 4, the reference
velocity field is not constant in general; so, the limit reference solution is not the solution
of the original system, i.e., the residual T does not vanish.

(ii) In fact, T∆ corresponds to the discretisation of the lake equations, without the second order
“incompressible” pressure p(2) or π. So, other terms in (5.6a)–(5.6b) can be seen as an
approximation of that missing pressure term. Formally speaking, in the limit ε → 0 and
∆ → 0, one expects to recover the limit system; so, (v2, v3) → (0, 0), which leaves the
desired pressure term (z − b)v1.

(iii) It is not difficult to verify that (5.3a)–(5.3d) give similar system as in the multiple pressure
variables (MPV) approach, where a system for the perturbations around the incompressible
Euler system is obtained, cf. [MDR07, eqs. (30)–(32)] for instance. However, that approach
makes use of an implicit method to solve for the perturbations and ignore higher order terms
in terms of the Mach number in order to deal with a linearised system.

(iv) The non-vanishing of T∆ can be seen from the definition of T∆ in (5.7) as the discrete
divergence of the limit momentum field “may” vanish only approximately, and there “may”
be a missing term in T 2,∆ and T 3,∆ regarding the contributions of the incompressible pres-
sure. In fact, with a constant reference surface perturbation, the pressure gradient vanishes
completely in T 2,∆ and T 3,∆ while its O(1) contribution is present in the lake equations.
So, ‖T 2,∆‖ and ‖T 3,∆‖ would be generally O(1). This leads to the fact that starting with
an initial datum on the limit manifold, i.e., V n

∆ = 0, the scheme produces some O(∆t)
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disturbances such that V n+1
∆ 6= 0. This is the matter of importance as it indicates that the

explicit part of the scheme does not vanish in the limit, i.e., limε→0∇ · Ĝ 6= 0. Showing
this, we assume that V n

∆ = V n+1
∆ = 0 and that the discrete divergence constraint is fulfilled

for the reference solution. So, all terms in the scheme

V n+1
∆ = V n

∆ −∆tT
n+1

∆ + ∆t
(
−∇h,x · G̃∆ + Z̃∆

)n+1

−∆t
(
∇·h,xĜ∆

)n
,

vanish but T 2,∆ and T 3,∆, which implies that V n+1
∆ = 0 cannot hold. Thus, the explicit

part may not be zero. We will illustrate this in Section 5.3.4 by a numerical example.

5.1.1 Solving for the reference solution

In the RS-IMEX procedure, one needs to solve the reference system in time and compute T . Here,
the reference system is chosen as the zero-Froude limit (the lake equations), which is the same as
the incompressible limit of the isentropic Euler system if the bottom topography is flat. Because
the lake equations are globally well-posed (see [LOT96]), finding a numerical approximation of
its solution is justified.

Indeed, there exist several numerical methods for the incompressible Euler or Navier–Stokes
equations, see, e.g., [PTA12, DR06]. Here and to solve the lake equations (5.2) numerically, we
employ the so-called projection scheme (mainly by Chorin [Cho68, Cho69] and Temam [Tem69])
because of its simplicity and applicability to collocated grids. The projection method, in the
time-discrete form, for the lake equations (5.2) can be outlined as follows (see [PTA12]):

(i) Update the momentum field only due to the advection term −divx

(
mn⊗mn

b

)
, using the

(local) Lax–Friedrichs scheme. This leads to the momentum field m?.

(ii) Now, consider the pressure term and impose the div-free condition. Then, solve the elliptic
equation for the updated auxiliary surface perturbation πn+1:

−divx

(
b∇xπ

n+1
)

=
divxm

?

∆t
. (5.8)

(iii) Update the momentum field to mn+1 with the updated pressure field (using the central
scheme):

mn+1 −m?

∆t
− b∇xπ

n+1 = 0.

The procedure seems straightforward; however, as we impose periodic boundary conditions for
the auxiliary pressure π (and z), computing the solution of the elliptic equation (5.8) is not
trivial, because the companion matrix for the discretised equation is not invertible (for doubly-
periodic domains). This discrete system is, though, solvable under a solvability condition, which
is, in fact, a no-net-flux condition on the boundaries. For continuous and discretised equations,
this condition writes

−∆xθ = f in Ω :

∫
Ω

fdx = 0
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−∆h,xθij = fij in ΩN :
∑

(i,j)∈ΩN

fij = 0

Due to this singularity of the coefficient matrix, lots of methods for linear systems of equations
(LSE) cannot be employed. Nevertheless, one can consider the following approaches.

Discrete Fourier transform (DFT) For the flat bottom case, the elliptic equation has
constant coefficients. So, for a doubly-periodic domain, one can make use of DFT and find the
solution very efficiently. Since this is a somewhat standard approach in the context of numerical
schemes for elliptic problems, we skip the details here and refer the reader to [VL92].

Parabolic regularisation of the problem For the non-flat bottom case, DFT is of no use
as the coefficients are not constant. But, one can introduce a regularised parabolic problem, by
adding a time derivative in some pseudo time τ , whose stationary solution gives the solution
of the original elliptic one. For the elliptic equation −∆xθ = f , the regularised problem is
∂τθ − ∆xθ = f , leading to the following non-singular discretised system for the implicit Euler
time integration:

(1−∆τ∆h,x) θn+1
ij = θnij −∆τfij .

One can even circumvent solving an LSE by using explicit methods, e.g., the explicit Euler
method:

θn+1
ij = (1 + ∆τ∆h,x) θnij −∆τfij .

Seeking the stationary solution of this system gives the solution of the original Poisson prob-
lem. Note that we impose the steadiness of the solution approximately by requiring the relative
temporal change of the solution to be less than 0.01% (from the solution at the previous step).

5.2 Asymptotic analysis of the scheme

Before we proceed with the main theorem of this section, let us fix the definition of the well-
prepared initial data, using the following asymptotic (Poincaré) expansion

z(t,x) = z(0) + εz(1) + ε2z(2),

m(t,x) = m(0) + εm(1) + ε2m(2).
(5.9)

Definition 5.2.1. The formal zero-Froude limit of the shallow water system (5.1) gives the so-
called lake equations, and reads (see Appendix 5.A as well as [BKL11] for the formal justification)

z(0), z(1) = const.,

divxm(0) = 0,

∂tm(0) + divx

(
m(0) ⊗m(0)

z(0) − b

)
+∇xp(2) = −z(2)∇xη

b.
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Thus, the well-prepared initial data can be defined as follows.

Definition 5.2.2. For the 2d SWE (5.1), we call the initial data (z0,ε,m0,ε) well-prepared if it
holds that

z(0, ·) = z0,ε = z0
(0) + ε2z0

(2),ε,

m(0, ·) = m0,ε = m0
(0) + εm0

(1),ε,
(5.10)

where z0
(0) is constant and divxm

0
(0) = 0.

Considering well-preparedness for the initial datum, we pose the main theorem of this chapter.

Theorem 5.2.3. For the 2d SWE with topography and a well-prepared initial datum in a periodic
domain, the RS-IMEX scheme (5.6a)–(5.6b), with (5.3a)–(5.3d), the zero-Froude limit reference
solution, a constant α̃, and under an ε-uniform time step restriction

(i) is solvable, i.e., it has a unique solution for all ε > 0.

(ii) is consistent with the asymptotic limit in the fully-discrete settings, i.e., it is asymptotically
consistent.

(iii) is asymptotically `2-stable for the fixed grid, in finite time Tf <∞ and with small enough
initial data provided the reference solution is stable, i.e., there exists a constant CN,Tf such
that ‖V n

∆ ‖`2 ≤ CN,Tf ‖V 0
∆ ‖`2 .

(iv) preserves the lake at rest equilibrium state, provided that both U∆ and V∆ are at equilibrium.

(v) may produce checker-board oscillations for the surface perturbation only as small as O(ε2).

We discuss the proof of Theorem 5.2.3 in the next sections.

5.2.1 Solvability

Assuming α̃ = 0 and ∆x = ∆y for simplicity, one can write the coefficient matrix of the implicit
step, Jε, as

Jε =

 IN2
β
ε2 J12

β
ε2 J13

βJ21 IN2 + βJ22 βJ23

βJ31 βJ32 IN2 + βJ33

 , (5.11)

with β := ∆t
2∆x and where all Jij are O(1); we can write the blocks more explicitly as

J12 = Qx, J13 = Qy,

J21 = diag(Qbx) +Qhx − ε2(Qu1
2

x +Qu1u2
y ), J22 = 2Qu1

x +Qu2
y , J23 = Qu1

y , (5.12)

J31 = diag(Qby) +Qhy − ε2(Qu1u2
x +Qu2

2

y ), J32 = Qu2
x , J33 = Qu1

x + 2Qu2
y ,

where Qφx and Qφy stand for corresponding matrices of central discretisation of the variable φ in

each direction and diag(Qbx) and diag(Qby) are diagonal matrices with central discretisation of b
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as entries (like Chapter 2); compare Jε with [Bis15, eq. (6.99)], which makes clear that the main
difference is that u 6= 0.

So, the matrix Jε, which is the inverse of the solution operator of the implicit step (5.6b), can
be rewritten as Jε := I3N2 +βΞε, where Ξε is a matrix not depending on β. Hence, with a suitable
choice of β, none of the eigenvalues of βΞε is equal to −1, implying that Jε is non-singular, and
the implicit step, so the whole scheme, is solvable. The proof for α̃ 6= 0 is likewise.

5.2.2 Asymptotic consistency

Like Chapter 4, we discuss the asymptotic consistency of the scheme in two ways, rigorously and
formally. At first, we investigate the ε-stability of the solution, that is if the scaled perturbation
is O(1). Then, we do the formal asymptotic consistency analysis, which would be rigorous, in
virtue of the ε-stability. We assume α̃ = 0 for the sake of simplicity.

5.2.2.1 ε-stability of the implicit step operator

For the ε-stability of the solution, in addition to the formal asymptotic analysis of the explicit
step, one needs to show that the solution of the implicit step is ε-stable. Like Chapter 4, we,
firstly, show that Jε has a bounded inverse in terms of ε. But, unlike the 1d case, T∆ does not
necessarily vanish and may change the order of the rhs in the implicit step. More precisely, it
can be seen from (5.7) that T 1,∆ is O(1/ε2) since the projected velocity field on the grid may
not have a zero divergence. This inexact discrete divergence makes T 1,∆ to be unbounded in the
limit; so, the boundedness of limε→0 J

−1
ε is not sufficient to conclude ε-stability of the solution.

Hence, we should also analyse the structure of the blocks of J−1
ε in the next step.

After some manipulations, one can confirm that the following holds for the numerical range
W (J∗ε Jε):

W (J∗ε Jε) =
∥∥∥w1 +

β

ε2
J12w2 +

β

ε2
J13w3

∥∥∥2

`2
+
∥∥∥w2 + βJ21w1 + βJ22w2 + βJ23w3

∥∥∥2

`2

+
∥∥∥w3 + βJ31w1 + βJ32w2 + βJ33w3

∥∥∥2

`2
,

wherew1,w2,w3 ∈ CN and ‖w1‖2`2+‖w2‖2`2+‖w3‖2`2 = 1. DefiningN ε2

M :=
{
w| ‖Mw‖ = O(ε2)

}
,

it is clear that for w2 /∈ N ε2

J12
or w3 /∈ N ε2

J13
, the numerical range W (J∗ε Jε) is bounded away from

zero. Otherwise, we can conclude the result by contradiction, as follows, by assuming that the
bottom function is constant.

If the numerical range W (J∗ε Jε) approaches zero in the limit, it implies that

w1 = − β
ε2

(J12w2 + J13w3) + o(1), (5.13a)

(IN2 + βJ22)w2 = −β (J21w1 + J23w3) + o(1), (5.13b)

(IN2 + βJ33)w3 = −β (J31w1 + J32w2) + o(1). (5.13c)

Then, one can check that in the limit ε→ 0, the matrix J21 obtains a skew-symmetric pattern.
Furthermore, for the flat bottom case, the structure of J21 and J12 are the same, up to a scaling
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(see equation (5.12)). This implies that in the limit, J21J12 (similarly J31J13) is almost symmetric
and diagonally-dominant, up to higher order termsO(ε2). Adding I2N+βJ22 (similarly IN+βJ33),
with a suitably chosen β, makes the sum strictly diagonally dominant (SDD). So, due to the

result of [Var75], the matrices M2 := (IN2 +βJ22− β2

ε2 J21J12) and M3 := (IN2 +βJ33− β2

ε2 J31J13)
have bounded inverses, i.e.,

lim
ε→0

∥∥∥∥(IN2 + βJ22 −
β2

ε2
J21J12

)−1
∥∥∥∥ <∞, lim

ε→0

∥∥∥∥(IN2 + βJ33 −
β2

ε2
J31J13

)−1
∥∥∥∥ <∞. (O1)

Owing to (O1), and by manipulating (5.13b)–(5.13c), one can justify the following relations

w2 = C2w3 + o(1), C2 :=
(
IN2 + βJ22 −

β2

ε2
J21J12

)−1(β2

ε2
J21J13 − βJ23

)
,

w3 = C3w2 + o(1), C3 :=
(
IN2 + βJ33 −

β2

ε2
J31J13

)−1(β2

ε2
J31J12 − βJ32

)
,

(5.14)

where the matrices C2 and C3 are O(1) as M2 and M3 make the large terms β2

ε2 J21J13 and
β2

ε2 J31J12 to vanish; this can be be proved along the similar lines as in Chapter 2.

If, like [Bis15], one additionally assumes u = 0, the blocks of Jε will get simplified extensively
as J22 = J33 = J23 = J32 = 0N2 , and the analysis will be much simpler because the relations
(5.13b) and (5.13c) yield

w2 = −βhJ12w1 + o(1), w3 = −βhJ12w1 + o(1).

Then, the leading order of (5.13a) indicates J12w
(0)
2 + J13w

(0)
3 = 0. So,(

J2
12 + J2

13

)
w

(0)
1 = 0,

which gives a classical central discretisation of the Poisson equation, and implies that w
(0)
1 should

lie in the null spaces of J12 and J13. Thus w
(0)
2 = w

(0)
3 = 0.

Because J12w
(0)
1 = 0 and J13w

(0)
1 = 0, the vector w

(0)
1 is either constant or has a checker-

board (CB) like structure. It is helpful to see w
(0)
1 as a lexicographically-ordered array of the

following matrix: 
� N � N . . .
� 4 � 4 . . .
� N � N . . .
� 4 � 4 . . .
...

...
...

...
. . .

 (5.15)

This implies that w
(0)
1 has at most 4 degrees of freedom. On the other hand, w1 has a central

difference structure due to (5.13a), so has a vanishing mean. Thus, in the light of (5.15), taking
a sum on the leading order of (5.13a) for each type of the entries (4,�,N,�) and using the

periodicity imply that the rhs vanishes while the lhs is proportional to w
(0)
1 . Hence w

(0)
1 = 0, and

limε→0(w1,w2,w3) = (0,0,0) which contradicts the assumption that ‖w‖`2 = 1 and concludes
the ε-stability of the implicit solution operator since the numerical range cannot tend to zero.
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Remark 5.2.4. (i) Note that we could show the rigorous proof of ε-stability of the implicit
solution operator only for the case of flat bottom topography and with the zero reference
solution, which were the assumptions in the asymptotic consistency proof in [Bis15].

(ii) For the non-flat bottom case or the non-zero reference velocity field, the proof would be
much more involved, e.g., the matrices C2 and C3 are not bounded anymore with a non-flat
bottom topography; this makes the analysis more complicated. In that case, we would rely
on the numerical evidence to conclude the result.

(iii) In numerical examples we will study later on in Section 5.3, limε→0 ‖J−1
ε ‖ has been checked

to be bounded; so, we have this ε-stability. Based on the numerical evidence we suggest that
the result would hold generally.

5.2.2.2 ε-stability of the implicit solution

So far, we have shown the ε-stability of the implicit solution operator. However, we need the
ε-stability of the implicit step solution for the rigorous asymptotic consistency. As mentioned
earlier, an obstacle to conclude it immediately from the ε-stability of the implicit solution opera-
tor is that the reference solution computed by the projection scheme does not satisfy the div-free
condition exactly (even for the well-prepared initial data) and enters a truncation error into the
rhs vector of the implicit step, i.e., ‖T 1,∆‖ = O(∆x/ε2), which is large for a small ε. So, having
‖J−1
ε ‖ = O(1) does not suffice to show that ‖V n+1

∆ ‖ = O(1). Hence, proving ε-stability gets
more involved and requires making use of the structure of J−1

ε , aiming to show that O(1/ε2)
terms in T 1,∆ are not present in the updated solution.

Remark 5.2.5. Note that the issue with T 1,∆ has roots in the representation of the reference
momentum field in the discrete space, which does not preserve necessarily the solenoidality of the
momentum field. Note also that with this choice of d2 and d3, there is not such an issue with
T 2,∆ and T 3,∆.

Finding the structure of J−1
ε =: Kε, we use the identity KεJε = I3N2 , which can be written

as follows by abusing the notations we have used previously in (5.11) for blocks of Jε.K11 K12 K13

K21 K22 K23

K31 K32 K33

J11 J12/ε
2 J13/ε

2

J21 J22 J23

J31 J32 J33

 = I3N2 ,

which implies that for i = 1, 2, 3

Ki1J12 = O(ε2), Ki1J13 = O(ε2). (5.16)

In other words, Ki1 can be decomposed as an O(1) matrix whose null space contains the columns
of J12 and J13, plus a matrix which is O(ε2). So, it remains to show that the former does cancel
O(1/ε2) terms in T 1,∆. Showing this, one needs to determine the null space of Ki1 using the
conditions in (5.16).

For the implicit step (5.6b), blocks J12 and J13 are companion matrices of central discretisations
in x- and y-directions, respectively. The first condition in (5.16) implies that after multiplying
each row of Ki1 by each column of J12, only O(ε2) terms remain. As J12 consists of skew-
symmetric circulant blocks Circ (0, 1, 0, . . . , 0,−1), the condition (5.16) requires that for each
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row, entries of odd and even columns of the first (and analogously other) Nx×Ny sub-block(s) of
Ki1 are equal to each other up to O(ε2); but the values of these entries may be different for each
sub-block and row. A similar argument with J13 implies that for each row of Ki1, the structure
repeats for every other sub-block, i.e., each row has a structure like

�odd Nodd �odd Nodd . . . | �even Neven �even Neven . . . | �odd Nodd �odd Nodd . . .

Hence, owing to the periodicity and since T 1,∆ consists of central differences, the leading order
of Ki1T 1,∆ vanishes and some O(1) terms remain. This implies that no O(1/ε2) term stays in
the implicit update; thus, the solution of the implicit step is O(1) and the scheme is ε-stable,
thanks to the ε-stability of the explicit step, which is the topic of the next section.

5.2.2.3 Formal asymptotic consistency

Confirming the ε-stability of the explicit step, we assume that ‖V n
∆ ‖ = O(1), which is compatible

with the well-prepared initial data (in the sense of Definition 5.2.1), and confirm that ‖V n+1/2
∆ ‖ =

O(1). Since Ĝ1,1 = Ĝ2,1 = 0, one can immediately conclude that ‖V n+1/2
1,∆ ‖ = O(1). For V

n+1/2
2,∆

(and similarly V
n+1/2

3,∆ ), one can simply confirm that

lim
ε→0

(
∇h,xĜn

1,2,ij +∇h,yĜn
2,2,ij

)
= O(1),

such that no O(1/ε2) or O(1/ε) contribution would exist in the explicit update, as

lim
ε→0

[
∇h,x

(
m2

1

z − b
+
z2 − 2zb

2ε2
− m1

2

z − b
− z2 − 2zb

2ε2
+
m1

2v1ε
2

(z − b)2
− 2m1v2

z − b
− (z − b)v1

)n
ij

+∇h,y
(
m1m2

z − b
− m1m2

z − b
+
m1m2v1ε

2

(z − b)2
− m1v3

z − b
− m2v2

z − b

)n
ij

]
= O(1).

So, the explicit step does not change the leading order of V n
2,∆ and analogously V n

3,∆. This
completes the ε-stability proof of the previous section.

To confirm asymptotic consistency, we consider the implicit step and show that the limit of
the solution is consistent with the limit manifold. From the v1-update and considering (5.7) and
(5.3a)–(5.3c), one can simply check that the momentum field is solenoidal, i.e.,

∇h,x (m1 + v2)
n+1
ij +∇h,y (m2 + v3)

n+1
ij = O(ε2). (5.17)

The interesting point is that although the divergence of the reference momentum field is expected
to be O(∆x), the solver for the perturbation compensates this issue and makes the divergence
to vanish as ε→ 0.

Since proving the consistency of the evolution of the leading order of the momentum is straight-
forward, the asymptotic consistency of the scheme is concluded, but only up to possible oscil-
lations for the momentum field in the null space of central difference operators ∇h,x and ∇h,y
which leads to potential checker-board oscillations.
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Remark 5.2.6. The ε-stability of the solution implies immediately that since ‖V n+1
1,∆ ‖ = O(1),

the possible checker-board oscillations for the surface perturbation are O(ε2). This seems to solve
the problem in [KSSN16] regarding the checker-board oscillations in a periodic domain. This is
why we stated in Remark 4.2.4 that using the reformulated scheme (4.7) is more illustrative; in
essence, it makes the perturbation variable V∆ more accessible for the asymptotic analysis. This
result seems to suggest that it is not necessary to add a large diffusion for precluding checker-board
oscillations. This is in contradiction with [KSSN16, KS17, Bis15], where adding a large O(1/ε2)
numerical stabilisation term to the continuity equation has been proposed, although those schemes
are not literally the same as the one analysed here. Note that such a large O(∆x/ε2) diffusion
makes the scheme excessively diffusive and degrades its accuracy unless one takes ∆x ∼ ε2

(resolved grid), which is not practical and contradicts the AP property of the scheme [Jin16].

5.2.3 Asymptotic stability

The proof of the asymptotic stability of the 2d RS-IMEX scheme is very similar to the 1d case,
which has been explained in detail in Chapter 4. There are two basic elements required for
the proof, ε-stability of the implicit step and a non-linear ε-uniform bound for the explicit one,
alongside with the assumption of positivity which is justified in the ε � 1 regime. Since the
reference solution is not stationary and should be computed in time, one should also obtain some
estimate for the solution of the reference solver. For now, we simply assume that the reference
solver is stable in a proper sense such that the computed reference solution is bounded in a norm;
see [GMS06] and the references therein for further details. This implies that the residual of the

reference solution should be bounded as well, i.e., there are constants such that ‖T k∆‖ ≤ ck.
Thus, very similar to Chapter 4, one can estimate the norm of the computed solution for the
step k as (assuming constants not depending on the time for simplicity)

yk+1 ≤ (1 + c2∆t)(1 + c1∆tyk)yk + ∆t(1 + c2∆t)c.

The bound for the first term in the rhs is exactly like in Chapter 4. The second term can be
simply bounded as

∑k
j=0 ∆t(1 + c2∆t)jc.

Lemma 5.2.7. Given a small enough initial datum and for ε� 1, the RS-IMEX scheme (5.6a)–
(5.6b) is `2-stable in finite time, i.e., ‖V n

∆ ‖`2 ≤ CN,Tf ‖V 0
∆ ‖`2 .

Proof. Like Chapter 4, the boundedness of J−1
ε confirms that the implicit operator is power-

bounded for a finite time Tf < ∞. For the explicit step, the proof can be carried out using a
discrete Grönwall’s inequality [WW65], which would be very similar to Chapter 4.

5.2.4 Well-balancing

Showing the well-balancing of schemes for the LaR equilibrium state, it is crucial to check if the
discretisations of the source terms are consistent with of the pressure flux. For the RS-IMEX
scheme (5.6a)–(5.6b), as the reference surface perturbation is a constant value and both of these
terms have been discretised by central differences, it is clear that the discretisations are consistent
with each other. Nonetheless, this consistency may not be enough in proving well-balancing as
the reference momentum is not constant. Clarifying this, note that to prove the well-balancing
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of a scheme, one assumes that the solution is initially on the equilibrium manifold and shows
that the updated solution is also at equilibrium. So, let us assume that Un

∆ ∈ U∆
LaR, defined as

U∆
LaR :=


 zij
m1,ij

m2,ij

 ∣∣∣ zij = ηs − bij ,mij = 0,∀(i, j) ∈ ΩN

 , (5.18)

for a constant water surface level ηs. Referring back to Algorithm 1, one can see that Un
∆ has

two parts, and belonging to U∆
LaR enforces a constraint on the sum of U

n

∆ and V n
∆ . As U

n

∆ is

not generally constant, assuming Un
∆ ∈ U∆

LaR does not determine if U
n

∆ ∈ U∆
LaR or V n

∆ ∈ U∆
LaR.

So, one should consider a non-zero momentum field in the well-balancing analysis, for both the
reference solution and the perturbation. Thus, non-stationary equilibrium states should be taken
into account whose discrete preservation is much more complicated to be studied, cf. [NXS07].
This is, in fact, the price we are paying for decomposing the solution, which was helpful for the
asymptotic consistency analysis.

This issue with the well-balancing analysis does not affect the results of [BALMN14, Bis15]
and Chapter 4 since they employ the LaR reference solution which is a constant state. Also,
note that the same difficulty would happen even for the flat bottom case.

Keeping the integrity of the chapter, we discuss some observations as well as a remedy regarding
well-balancing of the RS-IMEX scheme in Appendix 5.B. Here, we only wish to show that
assuming both parts of the solution to be at equilibrium enforces the updated solution to be
also at equilibrium, so the well-balancing of the scheme.

Lemma 5.2.8. For the RS-IMEX scheme (5.6a)–(5.6b) in a periodic domain, if U
n

∆ ,V
n

∆ ∈ U∆
LaR

then U
n+1

∆ ,V n+1
∆ ∈ U∆

LaR. So, the scheme is well-balanced regarding the lake at rest equilibrium
state.

Proof. For the reference solution, it is clear that m?
∆ = 0, so ∆h,xπ

n+1
∆ = 0, which only has

constant solutions in a periodic domain. Thus, mn+1
∆ = mn

∆ = 0, U
n+1

∆ ∈ U∆
LaR, and the

projection scheme preserves the LaR equilibrium state. For the explicit part of the scheme, as z
and vn1 are constant, one is left with (−zb+ zb+ ε2bv1)/ε2 in the explicit flux of the momentum

equation, which is zero; so, V
n+1/2

∆ ∈ U∆
LaR. For the implicit step, T

n+1

∆ = 0 and the LaR
solution is compatible as the only non-zero term it leaves in the stiff flux is the pressure flux
(z − b)v1, which is discretised consistently with the source term. Since the scheme is solvable,
the LaR solution is necessarily the unique solution of the scheme, i.e., V n+1

∆ ∈ U∆
LaR.

5.3 Numerical experiments

In this section, we verify the quality of the computed solutions by the RS-IMEX scheme and
confirm the asymptotic analysis of Section 5.2.3 by the help of several numerical examples. At
first, we test the performance of the scheme for the ε = O(1) regime, in Sections 5.3.1 and 5.3.2.
Then, in Sections 5.3.3 and 5.3.4, we consider examples with ε� 1 and illustrate the asymptotic
preserving property of the scheme. The time step is computed as in Section 4.5, with cα̃ = 0
and cα̂ = 1 (like [Bis15]), and with an additional constraint for the time step required for the
reference solver.
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5.3.1 (i) 2d quasi-stationary states

This example is used in [LMNK07] to test the preservation of a stationary steady state and the
approximation of small perturbations around it. Consider the domain [0, 2] × [0, 1] with open
boundaries, where the bottom topography is given by

ηb(x, y) = 0.8 exp(−5(x− 0.9)2 − 50(y − 0.5)2),

the mean water level is set as Hmean = 1, ε = 1, and the initial data are

z(0, x, y) = 0.01 1[0.05≤x≤0.15],

u1(0, x, y) = u2(0, x, y) = 0.

We pick the reference solution as zero and CFL = 0.45. In Figure 5.1, we present the contours
of the surface perturbation, computed on the 200×100 grid. The initial perturbation propagates
without any oscillations until it reaches the hump. As the wave speed is slower over the hump,
due to the smaller water height, the initially planar perturbation gets distorted. Also, note that
the solution is symmetric in the y-direction. The solution of the RS-IMEX scheme matches very
well the existing results like [LMNK07, NPPN06].

(a) Tf = 0.6. (b) Tf = 1.2.

Figure 5.1: Solution of the RS-IMEX scheme for the 2d quasi-stationary example (i): Surface perturbation computed on
the 200× 100 grid, with CFL = 0.45.

5.3.2 (ii) 2d Riemann problem

Similar to [HJL12] and inspired by the well-known examples of [LL98], we also run a test on a 2d
Riemann problem in the domain [0, 1]2 with open boundaries and the following initial conditions
in each quadrant of the domain:

h(0) = 0.5323
u1(0) = 1.206
u2(0) = 0

h(0) = 1.5
u1(0) = 0
u2(0) = 0

h(0) = 0.138
u1(0) = 1.206
u2(0) = 1.206

h(0) = 0.5323
u1(0) = 0

u2(0) = 1.206

h(0) = 0.5065
u1(0) = 0.8939
u2(0) = 0

h(0) = 1.1
u1(0) = 0
u2(0) = 0

h(0) = 1.1
u1(0) = 0.8939
u2(0) = 0.8939

h(0) = 0.5065
u1(0) = 0

u2(0) = 0.8939

(Configuration 3) (Configuration 4)
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We set ε = 1 and Hmean = 1, and choose the reference solution as zero. Figure 5.2 shows the
results of these two configurations, computed on the 150 × 150 grid and with CFL = 0.45. As
the figures suggest, these configurations result in four shock waves. Also, note that the solutions
have the symmetry w.r.t. the diagonal.

(a) Configuration 3 (Tf = 0.3). (b) Configuration 4 (Tf = 0.25).

Figure 5.2: Solution of the RS-IMEX scheme for different configurations of the 2d Riemann problem (ii): Surface
perturbation computed on the 150× 150 grid, with CFL = 0.45.

5.3.3 (iii) Periodic flow

This example was used in [DT11] and with a slight difference in [HJL12]. Here, we use the settings
of [DT11]; we consider the periodic domain [0, 1)2 with a flat bottom topography b(x, y) = −1,
and with the following well-prepared initial data (see Figure 5.3):

z(0, x, y) = ε2 sin2(2π(x+ y)),

m1(0, x, y) = sin(2π(x− y)) + ε2 sin(2π(x+ y)),

m2(0, x, y) = sin(2π(x− y)) + ε2 cos(2π(x+ y)).

We decompose the initial momentum field and pick the solenoidal leading order part as the
initial reference momentum field. The solutions for ε ∈ {0.8, 0.05} have been plotted in Figure
5.4, which are computed on the same spatial grid as in [DT11] with CFL = 0.45. The figures
suggest that the solution of the RS-IMEX scheme is comparable to the Degond–Tang method
[DT11].

Experimental order of convergence Studying the asymptotic accuracy of the scheme, we
check the experimental order of convergence for two different values of ε. The error is computed
with the help of a numerical solution on a fine reference grid, Nref,x = Nref,y = 320, as the
“reference” solution; we define the error in the L1-norm as

e(φnum
∆ ) := ‖φnum

∆ − φref
∆ ‖L1(ΩNref

) =
1

N2
ref

∑
(i,j)∈ΩNref

∣∣φnum
ij − φref

ij

∣∣ , (5.19)
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Figure 5.3: Initial condition for the periodic flow example (iii) with ε = 0.8, computed on the 80× 80 grid.

(a) ε = 0.8 on the 20× 20 grid. (b) ε = 0.05 on the 80× 80 grid.

Figure 5.4: Solution of the RS-IMEX scheme for the periodic flow example (iii), with CFL = 0.45 and Tf = 1.

where φ is the variable of interest (momentum, height, etc.) and φnum
∆ and φref

∆ are respectively
the numerical solution given by the scheme and the “reference” solution. Figure 5.5 confirms
that the EOC is ε-uniform for the scaled perturbations v1 and v2 (similarly for v3).

Asymptotic preserving property To confirm the asymptotic consistency of the scheme
numerically, we obtain the solution for ε = 5 × 10−6 with Tf = 0.1 and on the 80 × 80 grid.
As shown in Figure 5.6, the solution seems to be consistent with the limit, i.e., the divergence
is zero up to the machine accuracy, and the water surface is almost constant up to some small
oscillations of order 10−12 ∼ ε2.
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(a) EOC for v1. (b) EOC for v2.

Figure 5.5: Experimental order of convergence of the RS-IMEX scheme for the periodic flow example (iii), with CFL =
0.45 and Tf = 1.

Figure 5.6: Solution of the RS-IMEX scheme for the periodic flow example (iii) with ε = 5 × 10−6, CFL = 0.45 and
Tf = 1, computed on the 80× 80 grid.

Efficiency of the RS-IMEX scheme A very natural question may arise regarding the ef-
ficiency of the scheme; one may argue that the scheme is not efficient since two independent
solutions should be computed in time, the reference solution and its perturbation, which doubles
the computational cost. It has been explained in [KSSN16] that since the RS-IMEX scheme is
more accurate on the same grid (at least compared to the scheme in [HJL12] and for examples
in Section 5.3.3 and Section 5.3.4), it compensates that drawback as one can use a coarser mesh.

Moreover, as mentioned in Remark 4.2.4, there is an important difference between the RS-
IMEX scheme in [KSSN16] and the RS-IMEX scheme in this manuscript, which is how to find
the evolution of the reference solution in time. We use an established efficient method for this
purpose (like the projection method) while in [KSSN16] the authors solve the limit system with
an implicit step with a huge computational cost. For this reason, the scheme presented here
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does not suffer from being costly. This can be confirmed by Table 5.1, which shows that the cost
of computing the reference solution is not comparable to the whole CPU time. The bottleneck
is, in fact, the implicit solver; however, note that the backslash operator of Matlab

TM

has been
used for this purpose. This operator employs an LU decomposition, which explains the cost of
the implicit solver. As the comparison in Table 5.1 shows, employing an iterative method like
GMRES (without pre-conditioning) may circumvent this issue, while affecting the robustness of
the code since there are several parameters to be tuned a priori.

Table 5.1: CPU time comparison (in seconds) for different ε on the fixed 80× 80 grid and for Tf = 1 and ∆t/∆x = 0.25
in the periodic flow example (iii).

Total Implicit step LSE solver Poisson solver for πn+1
∆

LU 322.833 178.293 (55.2%) 0.200 (0.1%)
GMRES 240.911 41.257 (17.1%) 0.228 (0.1%)

(a) ε = 0.8.

Total Implicit step LSE solver Poisson solver for πn+1
∆

LU 338.938 194.766 (57.5%) 0.198 (0.1%)
GMRES 241.308 53.318 (22.1%) 0.387 (0.2%)

(b) ε = 0.05.

Consistency of the reference solver One can check that since the initial velocity field is
div-free and u1(0, ·, ·) = u2(0, ·, ·), the exact solution for the reference system is steady state and
does not evolve over time. Note that since m1(0, ·, ·) = m2(0, ·, ·), the equation for m1 writes

∂tm1 +
m1

z − b
∇x ·m+

m1

z − b
∂xm1 +

m2

z − b
∂ym1︸ ︷︷ ︸

m1
z−b (∂xm1+∂ym2)=0

= 0. (5.20)

Thus, ∂tm1 = 0, and similarly ∂tm2 = 0.

On the other hand, the projection scheme does not preserve this steady state exactly, i.e.,
the discrete version of (5.20), so m?

∆ = m0
∆, does not hold. This is, basically, due to the

numerical diffusion required for stability, which has first-order consistency. So, the scheme adds
O(∆t∆x) disturbances at each step, which leads to preserving the equilibrium approximately
(up to O(∆x)). Table 5.2 confirms this and shows the difference between the computed reference
solution and the exact solution w.r.t. mesh refinement. Note that this error is of the order of
truncation errors and does not affect the formal consistency order of the scheme.

Table 5.2: Error in computation of the reference solution for the periodic flow example (iii), with Tf = 1 and on different
grids.

Nx ×Ny ‖uprojection1,∆ (Tf )− uexact1,∆ (Tf )‖`∞ Order

20× 20 6.55e-1 -
40× 40 4.75e-1 0.46
80× 80 3.11e-1 0.61

160× 160 1.87e-1 0.73



105

Stability of the reference solver Figure 5.7 indicates the stability of the computed reference
velocity field as its `∞-norm is bounded, where the initial data are set for ε = 0.8. Note that the
two lines coincide with each other.

Figure 5.7: Stability of the projection scheme for the periodic flow example (iii): Norm of the reference velocity compo-
nents versus time for Tf = 2, computed on the 40× 40 grid, with CFL = 0.45.

5.3.4 (iv) Travelling vortex

This is one of the few examples for the SWE whose exact solution is available; see [RB09a]. We
consider the well-prepared initial condition (see Figure 5.8) as in [BALMN14] with the periodic
domain [0, 1)2:

z(0, x, y) = 1[r≤ πω ]

(
Γε

ω

)2

(g(ωr)− g(π)) ,

u1(0, x, y) = u0 + 1[r≤ πω ]Γ (1 + cos(ωr)) (yc − y),

u2(0, x, y) = 1[r≤ πω ]Γ (1 + cos(ωr)) (x− xc),

(iva)

with b(x, y) = −110, u0 = 0.6 and

r := ‖x− xc‖, xc = (0.5, 0.5)T , Γ = 1.4, ω = 4π,

g(r) := 2 cos r + 2r sin r +
1

8
cos 2r +

r

4
sin 2r +

3

4
r2.

We pick the initial velocity field as the initial reference velocity u0. Figure 5.9 confirms the
quality of the solution for ε ∈ {0.8, 0.01} compared to [Bis15]; it is computed for a short time
Tf = 0.1 with CFL = 0.45, on the 100 × 100 grid, and with no implicit diffusion, i.e., cα̃ = 0.
The figures suggest that the scheme does not preserve the symmetry of the solution, though, the
un-symmetry is very small. This is, in fact, a well-known issue for operator splitting schemes;
see [DR06, p. 526].
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Figure 5.8: Initial condition for the travelling vortex example (iva) with ε = 0.8, computed on the 100× 100 grid.

With these preliminary results at our disposal, we study the accuracy of the scheme in the
next section, which is feasible since the exact solution of this example is available. Then, we
investigate the AP property of the scheme numerically.

(a) ε = 0.8. (b) ε = 0.01.

Figure 5.9: Solution of the RS-IMEX scheme for the travelling vortex example (iva), on the 100 × 100 grid and with
CFL = 0.45 and Tf = 0.1.

Experimental order of convergence The exact solution of the travelling vortex example is
simply the initial condition advected by u0 with the period Tπ = 5

3 , i.e., for φ ∈ {z, u1, u2}, it
holds that φ(t, x, y) = φ(0, x−u0t, y). Employing this exact solution, we can find the experimental
order of convergence with the error defined as (5.19), but with a different norm and reference
solution. Tables 5.3 shows EOC for different ε; it is clear that the order of convergence is not
deteriorated for small ε, and it is close to the theoretical one. That is to say that the scheme
is uniformly-accurate for all ε > 0. We also illustrate this fact in Figure 5.10, where both exact
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and numerical solutions are plotted along the centrelines of the domain, for the 80 × 80 grid,
Tf = 1, and with ε ∈ {0.8, 0.01}.

Table 5.3: Experimental order of convergence for the travelling vortex example (iva) with Tf = 1 and for different ε.

ε = 0.8 ε = 0.01
N ez,`∞ EOCz,`∞ eu1,`∞ EOCu1,`∞ ez,`∞ EOCz,`∞ eu1,`∞ EOCu1,`∞

20 2.61e-2 - 1.04e-1 - 4.08e-6 - 1.04e-1 -
40 2.00e-2 0.38 6.80e-2 0.61 3.12e-6 0.38 6.80e-2 0.61
80 1.23e-2 0.70 3.63e-2 0.91 1.92e-6 0.71 3.63e-2 0.91
160 6.20e-3 0.99 1.65e-3 1.14 9.69e-7 0.99 1.65e-3 1.14

ε = 10−4 ε = 10−6

N ez,`∞ EOCz,`∞ eu1,`∞ EOCu1,`∞ ez,`∞ EOCz,`∞ eu1,`∞ EOCu1,`∞

20 4.08e-10 - 1.04e-1 - 4.08e-14 - 1.04e-1 -
40 3.13e-10 0.38 6.80e-2 0.61 3.13e-14 0.38 6.80e-2 0.61
80 1.92e-10 0.71 3.63e-2 0.91 1.92e-14 0.71 3.63e-2 0.91
160 9.69e-11 0.99 1.65e-3 1.14 9.69e-15 0.99 1.65e-3 1.14

(a) ε = 0.8. (b) ε = 0.01.

Figure 5.10: Error of the RS-IMEX scheme for the travelling vortex example (iva) with the incompressible reference
solution, on the 80× 80 grid and with CFL = 0.45 and Tf = 1.

Asymptotic preserving property In this part, we aim to confirm the AP property of the
scheme, which is to say that the solution is consistent with the limit solution in an appropriate
sense and it is stable, uniformly. Figure 5.11 shows the solution of the scheme for a small ε, in
particular ε = 10−6. One can see that there is a very good agreement between the result of the
RS-IMEX scheme and the exact solution (which is the initial data since Tf = Tπ). It is also clear
that there is no checker-board oscillation for the momentum and surface perturbation. Figure
5.12a shows the scaled perturbation V3,∆; one can see that it grows with time. But as has been
shown in Figure 5.12b, it is of order of the scheme, O(∆x), so can be controlled efficiently.

Long-time simulation It is also of interest to check the behaviour of the scheme in a long run.
For this purpose, we change the final time to Tf = 2Tπ. Figure 5.13 confirms that for different
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Figure 5.11: Solution of the RS-IMEX scheme for the travelling vortex example (iv), computed on the 100 × 100 grid,

with ε = 10−6, CFL = 0.45 and Tf = Tπ .

(a) Perturbation on the 100× 100 grid for Tf = Tπ .
(b) Time dependence of the norm of the perturbation
regarding the mesh refinement.

Figure 5.12: Behaviour of the scaled perturbation for the travelling vortex example (iva), with CFL = 0.45 and ε = 10−6.

ε, the computed solution does not show any kind of instability; but, it is a bit dissipative, which
is expected since the scheme is first-order.

Effects of the reference solution Finding the evolution of the reference solution in time
requires additional computational costs, which should be justified. For this example, we show
that using the asymptotic reference solution provides better accuracy; thus, it is reasonable to
invest in finding a suitable reference solution. Figure 5.14 illustrates the error of the RS-IMEX
solution with the zero reference solution. One can clearly observe that, compared to Figure 5.10,
the scheme is much more diffusive and less accurate.

Behaviour of the scheme in the limit As explained earlier in Remark 5.1.1, the residual
of the reference solution T∆ does not vanish in general, e.g., owing to the reference momentum
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Figure 5.13: Long-time solution for the travelling vortex example (iva) by the RS-IMEX scheme, computed on the

100× 100 grid for ε = 10−6 with CFL = 0.45 and Tf = 2Tπ .

(a) ε = 0.8. (b) ε = 0.01.

Figure 5.14: Error of the RS-IMEX scheme for the travelling vortex example (iva) with the zero reference solution U = 0,
on the 80× 80 grid, with CFL = 0.45 and Tf = 1. The results should be compared with Figure 5.10.

field whose discrete divergence may not be translated precisely on the grid or due to the missing
incompressible pressure term in T 2,∆ and T 3,∆. To observe how this issue affects the computed
solution, we consider a travelling vortex example with an initial datum on the limit manifold,
i.e., with the same initial velocity field as (iva), but with z(0, x, y) = 0 so that V 0

∆ = 0. We also
pick ε = 10−6, and denote these settings as Example (ivb). As Figure 5.15a shows, the discrete
divergence (as in T 1,∆) is only approximately zero, i.e., it is O(∆x), as the velocity field is not
smooth enough (continuously differentiable with jumps in the second derivatives), the central
difference is only first-order consistent. Also, T 2,∆,T 3,∆ 6= 0, which can be explained similarly to
the periodic flow example as the analytical solution for the reference system is an advection in the
x-direction, which can be preserved by the projection scheme only approximately. However, there
is an important difference with the periodic flow example since for this case the incompressible



110

pressure is not zero; so, T 2,∆,T 3,∆ = O(1).

These contributions produce some disturbances, accelerate the scaled perturbation V n
∆ and

make it to grow (by order O(∆t∆x) at each step), as shown in Figure 5.15b. Note that due to
the ε-stability results we have proved, the perturbation of the water surface should be O(ε2),
which is confirmed by Figure 5.16, where the solution has been compared with the exact one.

(a) (b)

Figure 5.15: (a): Numerical divergence of the initial velocity field for the travelling vortex example (ivb), computed
on the 80 × 80 grid. (b): Time evolution of the norm of the perturbation from the reference solution for the solution

computed on the 80× 80 grid with ε = 10−6, CFL = 0.45 and Tf = 1.

Figure 5.16: Comparison of the computed solution by the RS-IMEX scheme with the exact one in Example (ivb) with

ε = 10−6 on the 80× 80 grid, and with CFL = 0.45 and Tf = 1.

To complete the claim of Remark 5.1.1, we should study the contribution of each part of the
scheme. Figure 5.17 shows norm of the update corresponding to ‖T∆‖`∞ , ‖∇h,x · Ĝ∆‖`∞ and

‖∇h,x · Ĝ∆‖`∞ for the reference, explicit and implicit parts, respectively. It is evident from the
figure that in the limit ε→ 0, the contribution of none of these steps can be ignored. Note that
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the O(1/ε2) contributions of implicit and reference steps cancel each other, as shown in Section
6.3.2.2, and an O(1) contribution would remain, like the contribution of the explicit step.

Figure 5.17: Norm of the update for each step as well as the total update of the scheme in Example (ivb), for the solution

computed on the 80× 80 grid with ε = 10−6, CFL = 0.45 and Tf = 1.

5.3.5 (v) Travelling vortex with topography

In this section, we study the previous travelling vortex example but with a non-flat topography.
Like [BALMN14], the bottom topography is given by

ηb(x, y) = 10 exp(−5(x− 1)2 − 50(x− 0.5)2)

in the periodic domain [0, 2) × [0, 1). Note that this initial condition is not well-prepared as
the initial momentum field is not solenoidal (but the velocity field is). In this case, the exact
solution is no longer available; so, one should compare the results of the RS-IMEX scheme
with [BALMN14, Bis15], for Tf = 0.1, CFL = 0.3 and on the 160 × 80 grid. Note that, due to
varying topography, one cannot use DFT and should employ the parabolic regularisation method
described in Section 5.1.1. Here, we use the explicit version of the regularisation with the 0.01%
tolerance for the steadiness of the solution (in the pseudo-time and using a normalised version
of the difference between temporal steps). Figure 5.18 verifies the asymptotic consistency of the
scheme as the surface perturbation and divergence of the momentum field are O(ε2).

Regarding asymptotic stability of the scheme, Figure 5.19 confirm that for a small ε, the
scaled perturbation remains bounded in time. The solution is computed on the 160 × 80 grid,
with CFL = 0.3 and for Tf = 2. The computational cost of the reference solver is not that much
different from the flat bottom case, as the solution seeks the steady state rather fast.
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(a) ε = 0.1. (b) ε = 0.001.

Figure 5.18: Solution the RS-IMEX scheme for Example (v) with different ε on the 160× 80 grid, with CFL = 0.3 and
Tf = 1.

Figure 5.19: Asymptotic stability of the RS-IMEX scheme Example (v): Norm of the perturbation versus time for

ε = 10−6 on the 80× 160 grid, with CFL = 0.3 and Tf = 2.

5.A Asymptotic analysis of the shallow water equations

This section is to provide the formal asymptotic analysis for the low-Froude 2d SWE. In the
periodic domain Ω, consider the usual formulation of dimensionless SWE (1.10), with ηb as the
bottom function and ε as the Froude number:

∂th+∇x ·m = 0,

∂tm+ divx

(
m⊗m

h

)
+∇x

(
h2

2ε2

)
= − h

ε2
∇xη

b.
(5.21)

We use the Poincaré expansion of h and m in terms of ε as

h(t,x) = h(0)(t,x) + εh(1)(t,x) + ε2h(2)(t,x),

m(t,x) = m(0)(t,x) + εm(1)(t,x) + ε2m(2)(t,x).
(5.22)

Then, we substitute (5.22) in (5.21), and balance equal powers of ε. So, O(ε−2) terms yield
h(0)∇x(h(0) + b) = 0, which implies that the leading order of the water surface ηs := h + ηb
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is constant in space, i.e., ηs
(0) = ηs(0)(t). Using this, one can find that h(0)∇xh(1) = 0, so

h(1) = h(1)(t).

Moreover, the leading order of the continuity equation ∂th(0) + divxm(0) = 0 yields that

d

dt

∫
Ω

(
h(0) + ηb

)
dx = −

∫
∂Ω

m(0).nds = 0,

owing to the divergence theorem and the periodicity of Ω. Thus, ∂th(0) = 0 and ηs(0) = const.,

which gives h(0) = ηs(0)−η
b(x). Hence, from the continuity equation, we get the div-free condition

for the leading order momentum field, i.e., divxm(0) = 0. With similar arguments, one can easily
find that ∂th(1) = 0, so h(1) = const. and divxm(1) = 0. Summing up all these gives the formal
asymptotic limit of the SWE as in Definition 5.2.1.

5.B On the well-balancing of the RS-IMEX scheme

In this section, we discuss an example regarding the well-balancing issue for the RS-IMEX scheme,
and based on that, we suggest a remedy for recovering the well-balancing. We limit our focus on
cases with a flat bottom topography; similar concerns could be raised for the case of a non-flat
bottom but will be skipped here.

Consider the SWE in the periodic domain [0, 1)2 with Hmean = 1, ε = 0.8, and with the
following initial condition, together with the U +DV decomposition:

z(0, x, y) = 0

m1(0, x, y) = 0

m2(0, x, y) = 0

,


z(0, x, y) = 0

m1(0, x, y) = sin(2π(x− y))

m2(0, x, y) = sin(2π(x− y))

,


v1(0, x, y) = 0

v2(0, x, y) = − sin(2π(x− y))

v3(0, x, y) = − sin(2π(x− y))

. (vi)

This setting is peculiar as, for the RS-IMEX scheme with such a zero initial datum, one does
not consider a non-zero reference solution. However, this example is only designed to investigate
how the well-balancing can be obtained when U

n

∆ + V n
∆ = 0 when neither the reference part

U
n

∆ nor the perturbation V n
∆ is at equilibrium. The reference part corresponds to a steady state

solution and can be solved by the projection scheme. As explained in Section 5.3.3, the projection
scheme cannot preserve such a steady state and adds an O(∆t∆x) disturbance at each step. As
Figure 5.20 shows, the surface perturbation computed by the RS-IMEX scheme is zero, up to the
machine accuracy; but, the calculated velocity field is far from zero (though can be controlled by
the mesh refinement). These unbalances do not originate solely from the reference solver; even if
with the exact U , the scheme does not preserve the equilibrium exactly and the result is almost
the same as Figure 5.20.

Understanding the reason behind this observation, we write down the whole scheme in one
step and pick α̃ = 0 for simplicity. For the v1-update, we find (α̂1, α̂2 = α̂):

vn+1
1,ij = vn1,ij −

∆t

ε2
∇h,x ·

(
m1 + v2

m2 + v3

)n+1

ij

+
α̂∆x

2
∆t∆h,xv

n
1,ij , (5.23)

which implies that the zero surface perturbation is compatible with a zero momentum field.
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Figure 5.20: Comparison of the RS-IMEX solution with the exact one, with ε = 0.8, Tf = 0.1, CFL = 0.45 on the 80×80
grid for the stationary well-balancing example (vi).

For the v2-update (and analogously v3-) one gets

vn+1
2,ij = vn2,ij −∆t∇h,xĜn

1,2,ij −∆t∇h,yĜn
2,2,ij +

α̂∆x

2
∆t∆h,xv

n
2,ij

−∆t∇h,xG̃n+1
1,2,ij −∆t∇h,yG̃n+1

2,2,ij (5.24)

−
(
m1

n+1 −m1
n
)
ij
−∆t∇h,x

(
m1

2

z − b
+
z2 − 2zb

2ε2

)n+1

ij

−∆t∇h,y
(
m1m2

z − b

)n+1

ij

.

To verify the compatibility of the LaR solution in (5.24), we assume an exact (steady) reference
solution, i.e., zn∆ = zn+1

∆ = 0 and mn+1
∆ = mn

∆, as well as mn+1
∆ = mn

∆ = 0 and vn+1
1,∆ = const..

For such a solution, one can verify that the only remaining term in (5.24) is the numerical
diffusion for the explicit step α̂∆x

2 ∆t∆h,xv
n
2,∆,ij . The problem is that, unlike Chapter 4 for the

1d case, vn2,∆ is not constant; so, unless α̂ = 0, the numerical diffusion does not vanish. It
accelerates the flow and destroys the compatibility with an O(∆x) disturbance. Thus, we can
guess that setting α̂ to zero balances the scheme, which has been corroborated by Figure 5.21,
where the only change compared to Figure 5.20 is that α̂ = 0. Note that setting α̂ = 0 furnishes
some oscillations which leads to instability; so, it is not favourable.

A more interesting remedy would be to add a diffusion for T 2,∆ and T 3,∆, i.e., α = α̂. Because
the sum of the two parts of the momentum should be zero for a LaR solution, this modification
balances the numerical diffusion coming from the explicit part and fulfils the compatibility. Figure
5.22 presents two case considering this modification, with the exact or the numerically-computed
reference solution. It indicates that the modified scheme can preserve the LaR equilibrium state
for this example. Note that such a strategy may not work if the reference solution is not steady
state.
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Figure 5.21: Comparison of the RS-IMEX solution with the exact one, with ε = 0.8, Tf = 0.1, CFL = 0.45, and α̂ = 0,
computed on the 80× 80 grid for the stationary well-balancing example (vi).
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(a) Exact U∆.

(b) U∆ is computed by the projection scheme.

Figure 5.22: Comparison of the RS-IMEX solution with the exact one, with ε = 0.8, Tf = 0.1, CFL = 0.45, and α = α̂,
computed on the 80× 80 grid for the stationary well-balancing example (vi).



Chapter 6

The RS-IMEX scheme for the 2d
rotating shallow water equations

“How can I help seeing what is in front of my eyes? Two and two are four!
Sometimes, Winston. Sometimes they are five. Sometimes they are three. Sometimes
they are all of them at once. You must try harder. It is not easy to become sane.”

– George Orwell, 1984

In this chapter, we investigate the applicability of the RS-IMEX scheme, already studied in
Chapters 4 and 5 for the shallow water equations, for the “rotating” shallow water equations,
where the additional Coriolis force is present in the system. We show the asymptotic consistency
of the scheme in the quasi-geostrophic distinguished limit, which is a commonly-adopted charac-
terisation of the rotation-gravity interplay in the ocean modelling. We also test the quality of the
scheme by several numerical examples. This chapter is based on [Zak17b].

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 RS-IMEX scheme for the rotating shallow water equations . . . . 119

6.3 Asymptotic analysis of the scheme . . . . . . . . . . . . . . . . . . . 124

6.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 Introduction

Despite the inherent limitations of the shallow water equations, as mentioned in Chapter 1, they
are often used to model the oceanic flows; see for instance [Ped13, Maj03]). The large-scale
oceanic flows are mainly affected by the earth’s rotation, which motivates studying the so-called
2d rotating shallow water equations (RSWE). Consider the domain Ω ⊂ R2 lying in the (x, y)

117
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plane; then, the RSWE write as (1.9):

∂th+ divx(hu) = 0,

∂t(hu) + divx

(
hu⊗ u+

gh2

2
I2
)

= −gh∇xη
b − fhu⊥,

(6.1)

where h is the water height, ηb is the bottom function, u = (u1, u2) is the 2d velocity vector,
u⊥ = (−u2, u1) is the perpendicular velocity, g is the gravity acceleration constant, I2 is the
2× 2 identity matrix and f is the Coriolis parameter assumed to be a constant value (zero-plane
approximation). We limit our focus to periodic domains Ω = T2 for simplicity.

Back then, when the system (6.1) was introduced, the huge computational cost for a numerical
approximation of its solution could not be paid. So, several simplified models have been intro-
duced to mimic the main behaviour of this system. Charney was the first who could simplify this
meteorological system in a successful and practical way [Cha48, Cha49]; by filtering out noises
or fast gravity waves, which do not contribute to the bulk motion of the fluid. So, the model
is left with slow Rossby waves, resulting in the so-called barotropic quasi-geostrophic equations;
see [Maj03, MW06, EM96, Ped13, Dur13] for an overview. Accurately enough, one can claim
that the modern era of numerical schemes for geophysical flows, in general, and ocean currents,
in particular, has been started with this approximation and the ice-breaking paper [CFvN50],
which presented a numerical method for it. Recently, thanks to high computing resources, one
is able to employ more sophisticated models like the RSWE (6.1) without such simplifying as-
sumptions. Nonetheless, in most practical cases, the fast gravity waves are present and make
the system stiff. This stiffness requires using very fine grids or devising schemes covering several
scales in time and space at once. Tackling such an issue, we adopt the AP framework to design
a scheme to capture the macroscopic behaviour of the system (6.1) for an under-resolved grid.

Due to the additional Coriolis force, an extra parameter will be introduced in the system, the
so-called Rossby number Ro. To study AP property requires choosing the desired distinguished
limit, as a characterisation of the relation between Ro and Fr, with only one scaling parameter
ε. Throughout this chapter, we limit our focus to the so-called quasi-geostrophic limit, which
is a singular limit denoted by ε → 0. The rationale for this choice is the famous result by
Majda [Maj03] that, in this limit, the RSWE converge to the quasi-geostrophic equations or
the barotropic vorticity equations, which are the equations derived formally by [Cha48]. This
ensures that, at least in the continuous level, there is a convergence for this singular limit. Thus,
regarding the famous AP diagram in Figure 1.1, it is justified to look for a scheme to preserve this
convergence at the discrete level. It would be of course interesting to consider more general cases
with centrifugal forces and viscosity, like those analysed in [FGGVN12, FGN12, FN14a, FN14b];
but, we skip them here.

Like other balances laws, preserving equilibrium states of the system is also crucial for nu-
merical schemes designed for the system (6.1). This can be really difficult; see [ADDMHP15,
AKNV11, AKO09, BLSZ04, LMNK07] for some simplified cases. For example in [LMNK07, CD-
KLM14], the authors devised second-order schemes preserving spacial one-dimensional equilib-
rium states, the so-called jets in the rotational frame, or in [AKNV11], an extension of the hydro-
static reconstruction method [BKLL04, ABB+04] has been employed to preserve the geostrophic
balance between the pressure gradient and the Coriolis force, combined with the technique pre-
sented in [VK09] to find the auxiliary water height.

In fact, other than [HZLMP11, ADDMHP15], the question of designing AP schemes for the
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RSWE has not yet been discussed in the literature and consists the main part of this chapter.1

It is already shown in Chapters 4 and 5, that the RS-IMEX scheme is well-behaved for the SWE
but without the Coriolis force; so, it is of our interest to check if the scheme works well with the
additional Coriolis force. This would be the main goal of the present chapter, organised as follows.
In Section 6.2, we introduce the RS-IMEX scheme for the RSWE after the reformulation and
non-dimensionalisation of system (6.1). Then, in Section 6.3, we present the numerical analysis
for the scheme in terms of well-balancing and asymptotic preserving property, followed by a set
of numerical examples in Section 6.4.

6.2 RS-IMEX scheme for the rotating shallow water equa-
tions

One can deduce from the Buckingham π-theorem [Buc15] that there are three different dimen-
sionless groups for this system: the Strouhal number Sr, the Froude number Fr and the Rossby
number Ro. But since we consider two height scales, as in [Maj03, Chap. 4], we should also
introduce another dimensionless group Θ. The height scales are H◦ for the mean water level
chosen equal to the actual mean water level Hmean, and Z◦ for the surface perturbation from
Hmean (denoted by z as in Chapters 4 and 5), i.e., h = Hmean + z − ηb. Defining dimensionless
variables as

x̂ :=
x

L◦
, t̂ :=

t

t◦
, û :=

u

u◦
, ẑ :=

z

Z◦
, η̂b :=

ηb

Z◦
, ĥ :=

h

H◦
,

where characteristic states are denoted by the subscript ◦, one obtains ĥ = 1 + Θ(ẑ − η̂b) and
can rewrite (6.1) as (cf. [Maj03])

Sr ∂t̂ (Θẑ) + divx̂

(
ĥû
)

= 0,

Sr ∂t̂

(
ĥû
)

+ divx̂

(
ĥû⊗ û+

ĥ2

2Fr2
I2

)
= − Θ

Fr2
ĥ∇x̂η̂

b − ĥ

Ro
u⊥,

(6.2)

with the following definitions for Sr, Fr, Ro and Θ:

Sr :=
L◦
u◦t◦

, Fr :=
u◦√
gH◦

, Ro :=
u◦
fL◦

, Θ :=
Z◦
H◦

.

It is well-known (see [KVPR10]) that the physical and mathematical properties of the system
may depend on the relation between these groups; so, one should select one path (so-called
distinguished limit) before going further. Like [VK09], we choose Sr = 1, which means that the
reference time scale is chosen as the advective time scale. Also, defining F

1/2 := fL◦/
√
gH◦ =

O(1), we choose

Ro = ε� 1, Fr = F
1/2ε, Θ = Fε.

This is the so-called quasi-geostrophic distinguished limit, i.e., the Rossby and Froude numbers
are small; there is an exact balance between the pressure gradient and the Coriolis force; and

1[HZLMP11] extends the well-balanced schemes developed in [LMNK07] and presents two large time step
methods for the low-Froude regime. [ADDMHP15] performs an asymptotic accuracy analysis for a linear rotating
model mimicking the Coriolis force, in the context of [DJOR16].



120

the variation of the bottom topography and surface perturbation are very mild compared to the
height of the water column, owing to Θ ∼ ε, i.e., ‖z‖, ‖∇xη

b‖ = O(ε) (see [Maj03, Ped13]). This
limit also requires Z◦ = fu◦L◦/g. With similar notations as previous chapters, we can rewrite
(6.2) as (after suppressing hats):

∂tz +
1

Θ
divxm = 0,

∂tm+ divx

(
m⊗m
Θz − b

+
Θz2 − 2bz

2ε
I2
)

= −1

ε
z∇xb−

1

ε
m⊥,

(6.3)

where m := (Θz−b)u is the momentum vector and b is the dimensionless water depth measured
from Hmean (scaled by H◦) with a negative sign, i.e., 1−Θηb = −b; see Figure 4.1. This implies
that the topography’s contribution in the rhs of (6.3) is O(1). It is important to remark that
Θz is the surface perturbation; picking Θ = 1 recovers the notation of Chapters 4 and 5.

Remark 6.2.1. Analogously to Ertel’s theorem for the conservation of potential vorticity (PV)
(cf. [Ped13, Chap. 2]), one can show that for the original system (6.1), the so-called potential
vorticity Πs := f+ζ

h is conserved, i.e., (∂t + u · ∇x) Πs = 0, where ζ is the magnitude of the
vorticity ζ := ‖∇x × u‖. For the non-dimensionalised system (6.3), Πs is obtained as

Π̂s =
1 + εζ

Θz − b
. (6.4)

As mentioned before, Majda showed in [Maj03] that as ε → 0 the system (6.3) or (6.2)
converges to the quasi-geostrophic equations (QGE):

u(0) = ∇⊥x z(0), (6.5a)

∆xz(0) = ζ(0), (6.5b)(
∂t + u(0) · ∇x

)
(ζ(0) − Fz(0) + Fηb(0)) = 0, (6.5c)

where the subscript (0) stands for the leading order term in the Poincaré expansion. Equation
(6.5a) means that the solution is at geostrophic equilibrium locally in time. It also implies that
the surface perturbation z(0) can be read as the stream function ψ, i.e., ∇⊥xψ = u(0); so, the

velocity field is solenoidal. Defining ξ as the leading order of Π̂s for ε � 1 (i.e., ξ := Π̂s(0))
and using (6.4) imply that equation (6.5c) is the conservation of the (leading order of the)
potential vorticity ξ := ζ(0) − Fz(0) + Fb(0) while the (relative) vorticity ζ(0) is given by (6.5b).
Note that (6.5a)–(6.5c) can be also realised in the usual velocity formulation, instead of this
vorticity–stream function formulation, as the ε→ 0 limit of

(∂t + u · ∇x)u+ ε−1u⊥ + ε−1∇xz = 0. (6.6)

Remark 6.2.2. For future reference, we define the geostrophic equilibrium by the notion of
“apparent topography” or “auxiliary water depth”; see [Bou04, BLSZ04, AKNV11]. This is to
model the effect of the Coriolis force with an auxiliary height so that one can use the same
well-balancing methods as for non-rotational systems. Considering the “potentials” Φ and Ψ, we
define “potential energies” K and L as

K := g(h+ ηb − Φ), ∂xΦ :=
f

g
u2,

L := g(h+ ηb + Ψ), ∂yΨ :=
f

g
u1.

(6.7)
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Then, for the solution to be at the geostrophic equilibrium it should hold that

divxu ≡ 0, ∂xK ≡ 0, ∂yL ≡ 0. (6.8)

6.2.1 Numerical scheme

As we already explained in Chapters 4 and 5, the RS-IMEX scheme decomposes the solution U
as U = U +Upert, where U is a chosen solution and Upert is the remaining part. For practical
as well as analytical reasons (see Chapter 4), one is interested to pick U as a solution which is
asymptotically close to U ; so, for the RSWE, we pick the QGE (6.5a)–(6.5c) as the reference
system. Then, we use a Taylor expansion around that solution to split the flux and source terms
into two parts, linear stiff and non-linear non-stiff parts. Let us rewrite the system (6.3) as

∂tU + divxF (U ,x) = SB(U ,x) + SC(U),

where U = (z,m1,m2)T and one can identify F , SB and SC as

F =


m1/Θ m2/Θ

m2
1

Θz − b
+

Θz2 − 2zb

2ε

m1m2

Θz − b
m1m2

Θz − b
m2

2

Θz − b
+

Θz2 − 2zb

2ε

 , SB =

 0
−z∂xb/ε
−z∂yb/ε

 , SC =

 0
m2/ε
−m1/ε

 .
Assuming the reference solution U = (z,m1,m2)T to be the solution of the QGE, and following
the RS-IMEX splitting as described in Chapter 4, the splitting can be obtained as

F =


m1/Θ m2/Θ

m1
2

Θz − b
+

Θz2 − 2zb

2ε

m1m2

z − b
m1m2

Θz − b
m2

2

Θz − b
+

Θz2 − 2zb

2ε

 , (6.9a)

F̃1 =


v2/Θ

− m1
2v1Θ

(Θz − b)2
+

2m1v2

Θz − b
+

(Θz − b)
ε

v1

−m1m2v1Θ

(Θz − b)2
+

m1v3

Θz − b
+

m2v2

Θz − b

 , F̃2 =


v3/Θ

−m1m2v1Θ

(Θz − b)2
+

m1v3

Θz − b
+

m2v2

Θz − b

− m2
2v1Θ

(Θz − b)2
+

2m2v3

Θz − b
+

(Θz − b)
ε

v1

 ,
(6.9b)

F̂1 =


0

m2
1

Θz − b
+

Θz2 − 2zb

2ε
− m1

2

Θz − b
− Θz2 − 2zb

2ε
+

m1
2v1Θ

(Θz − b)2
− 2m1v2

Θz − b
− (Θz − b)

ε
v1

m1m2

Θz − b
− m1m2

Θz − b
+
m1m2v1Θ

(Θz − b)2
− m1v3

Θz − b
− m2v2

Θz − b

,

F̂2 =


0

m1m2

Θz − b
− m1m2

Θz − b
+
m1m2v1Θ

(Θz − b)2
− m1v3

Θz − b
− m2v2

Θz − b
m2

2

Θz − b
+

Θz2 − 2zb

2ε
− m2

2

Θz − b
− Θz2 − 2zb

2ε
+

m2
2v1Θ

(Θz − b)2
− 2m2v3

Θz − b
− (Θz − b)

ε
v1

,
(6.9c)
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S
B

=

 0
−z∂xb/ε
−z∂yb/ε

 , S̃B =

 0
−v1∂xb/ε
−v1∂yb/ε

 , S
C

=

 0
m2/ε
−m1/ε

 , S̃C =

 0
v3/ε
−v2/ε

 , (6.9d)

and ẐB = ẐC = 0. Similar to Chapters 4 and 5, one can verify that the Jacobian matrices
F̂ ′ and F̃ ′ have complete sets of eigenvectors, and that the eigenvalues of F̂ ′ are non-stiff as
there is no O(1/ε) term in F̂ (note that Θ = Fε). So, the splitting is admissible in the sense of
Definition 3.1.1. One can confirm that, besides the scaling, the only difference of the system in
this chapter with the one in Chapter 5 is the additional Coriolis force SC .

Based on RS-IMEX algorithm, the scheme can be written as a two-step explicit-implicit
scheme:

V
n+1/2
ij = V n

ij − ∆t

∆x

(
F̂ n1,i+1/2j − F̂

n
1,i−1/2j

)
− ∆t

∆y

(
F̂ n2,ij+1/2 − F̂

n
2,ij−1/2

)
+ ∆t

(
ŜBij + ŜCij

)n
, (6.10a)

V n+1
ij = V

n+1/2
ij − ∆t

∆x

(
F̃ n+1

1,i+1/2j − F̃
n+1
1,i−1/2j

)
− ∆t

∆y

(
F̃ n+1

2,ij+1/2 − F̃
n+1
2,ij−1/2

)
+ ∆t

(
S̃Bij + S̃Cij

)n+1

−∆tT
n+1

ij , (6.10b)

for each cell (i, j) ∈ {1, 2, . . . , Nx}×{1, 2, . . . , Ny} in the computational domain ΩN , with spatial

steps ∆x and ∆y and the time step ∆t, where F̃i+1/2j and F̂i+1/2j are Rusanov fluxes at cell

interfaces as defined in Section 4.2.1, with F̂ and F̃ as in (6.9b)–(6.9c). S̃n+1
ij is the central

discretisation of the source terms in (6.9d) and T
n+1

ij is the discretisation of the residual of the
reference solution, and is computed as

T
n+1

ij =
U
n+1

ij −Un

ij

∆t
+
F
n+1

1,i+1/2j − F
n+1

1,i−1/2j

∆x
+
F
n+1

2,ij+1/2 − F
n+1

2,ij−1/2

∆y
−
(
S
B

ij + S
C

ij

)n+1

. (6.11)

By denoting ∇h,x and ∆h,x respectively as the central discretisations of the first and second
derivatives in the x-direction, one can rewrite (6.10a)–(6.10b) as

V
n+1/2
ij = V n

ij −∆t∇h,xF̂ n1,ij −∆t∇h,yF̂ n2,ij +
α̂1∆x

2
∆t∆h,xV

n
ij +

α̂2∆x

2
∆t∆h,yV

n
ij , (6.12a)

V n+1
ij = V

n+1/2
ij −∆t∇h,xF̃ n+1

1,ij −∆t∇h,yF̃ n+1
2,ij +

α̃1∆x

2
∆t∆h,xV

n+1
ij +

α̃2∆x

2
∆t∆h,yV

n
ij

+ ∆t
(
S̃Bij + S̃Cij

)n+1

−∆tT
n+1

ij . (6.12b)

Assuming α1,2 = 0 and with the reference surface perturbation z and the reference momentum
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field m, one can write T block-wise as T
n+1

∆ := [T
n+1

1,∆ ,T
n+1

2,∆ ,T
n+1

3,∆ ]T such that

T
n+1

1,ij = Dtz
n
ij +

1

Θ

(
∇h,xm1ij +∇h,xm2ij

)n+1
,

T
n+1

2,ij = Dtm1
n
ij +∇h,x

(
m1

2
ij

Θzij − bij

)n+1

+∇h,y
(
m1ijm2ij

Θzij − bij

)n+1

+
1

2ε
∇h,x

(
Θz2

ij − 2bijzij
)n+1

+
1

ε
zn+1
ij ∇h,xbij −

1

ε
m2

n+1
ij ,

T
n+1

3,ij = Dtm2
n
ij +∇h,x

(
m1ijm2ij

Θzn+1
ij − bij

)n+1

+∇h,y

(
m1

2
ij

Θzij − bij

)n+1

+
1

2ε
∇h,y

(
Θz2

ij − 2bijzij
)n+1

+
1

ε
zn+1
ij ∇h,ybij +

1

ε
m1

n+1
ij .

(6.13)

So far, the scheme for computing the perturbation V∆ has been introduced. The remaining
point to be clarified is how to solve the equations for the reference solution, which is explained
in the next section. Note that from now on and for the sake of simplicity, we assume the same
number of grid points in both directions, i.e., Nx = Ny = N . Also, we pick α̂1 = α̂2 and α̃1 = α̃2.

6.2.2 Solving for the reference solution

As explained before, we consider the solution of QGE as the reference solution. This system is,
in fact, very well-known in the meteorology and has been studied numerically since [CFvN50].
Although the system seems to be simple, obtaining stable numerical schemes is very challenging.
A very successful idea is due to Arakawa [Ara66]; he showed that using a particular staggered
grid, one can obtain non-linear stability for the semi-discrete scheme. Note that, as remarked in
[KM05], solving (6.5a)–(6.5c), which are in the vorticity-stream function form, is preferable as
it conserves automatically the geostrophy. For the sake of completeness, we review the Arakawa
Jacobian method briefly and refer the reader to consult [KAK11] and [Dur13, Sect 3.6].

Here, we implement the Arakawa Jacobian method as in [KAK11], using a predictor-corrector
approach. By having ψn from the initial height, we obtain ξn+1 using the Arakawa Jacobian.
Then, we solve for ψn+1, and redo this procedure to correct the predicted solution. The key ingre-
dient of this method is the Arakawa Jacobian, which provides a recipe for a stable discretisation
of (6.5c), rewritten as

∂tξ + J(ψ, ξ) = 0, J(ψ, ξ) :=
∂ψ

∂x

∂ξ

∂y
− ∂ψ

∂y

∂ξ

∂x
. (6.14)

A näıve discretisation of (6.14) leads to instability as observed in [Phi59]. Arakawa in [Ara66]
introduced a particular discretisation of this Jacobian, denoted here by JArakawa such that the
semi-discrete (discrete in space) scheme preserves the mean kinetic energy, mean PV, mean
square PV (enstrophy) and the mean wave number.2 Thus, the schemes provides some sort of
non-linear stability; see [Dur13]. Thanks to periodic domains, we neglect the boundary treatment
issues detailed in [KAK11, KM05]. Algorithm 2 provides the sketch of the method.

2 Note that the original work of Arakawa was about the barotropic vorticity equation (∂t +u ·∇x)ζ = 0. Here,
we have ξ instead of ζ.
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Algorithm 2 Arakawa method

1: Consider the initial height as the stream function ψn∆.
2: Compute the initial PV as ξn∆ = (∆h,x − F )ψn∆ + Fηb∆.

3: Predict ξ
n+1/2
∆ as ξ

n+1/2
∆ = ξn∆ −∆tJArakawa(ψn∆, ξ

n
∆).

4: Predict ψ
n+1/2
∆ as (∆h,x − F )ψ

n+1/2
∆ = ξ

n+1/2
∆ − Fηb∆

5: Repeat steps 2–4 to correct predicted values and obtain (ψn+1
∆ , ξn+1

∆ ):

ξ
n+1/2†
∆ = (∆h,x − F )ψ

n+1/2
∆ + Fηb∆

ξn+1
∆ = ξn∆ −∆tJArakawa(ψ

n+1/2
∆ , ξ

n+1/2†
∆ )

(∆h,x − F )ψn+1
∆ = ξn+1

∆ − Fηb∆

6: Continue with step 2 with the initial value (ψn+1
∆ , ξn+1

∆ ).

6.3 Asymptotic analysis of the scheme

Before we proceed with the main theorem of this section, let us fix the definition of the well-
prepared initial data:

Definition 6.3.1. For the RSWE (6.3), we call the initial data (z0,ε,u0,ε) well-prepared if it
holds that

z(0, ·) = z0,ε = z0
(0) + εz0

(1),ε,

u(0, ·) = u0,ε = u0
(0) + εu0

(1),ε,
(6.15)

where (z0
(0),u

0
(0)) is the solution of the QGE, i.e., u0

(0) is solenoidal with the stream function z0
(0).

Theorem 6.3.2. For the rotating shallow water equations with topography and a well-prepared
initial datum in a periodic domain, the RS-IMEX scheme (6.12a)–(6.12b), with (6.9a)–(6.9d),
the QGE reference solution, a constant α̃, and under an ε-uniform time step restriction

(i) is solvable, i.e., it has a unique solution for all ε > 0.

(ii) is consistent with the asymptotic limit in the fully-discrete settings, i.e., it is asymptotically
consistent.

(iii) is asymptotically `2-stable for the fixed grid, in finite time Tf <∞ and with a small enough
initial data provided the reference solution is stable, i.e., there exists a constant CN,Tf such
that ‖V n

∆ ‖`2 ≤ CN,Tf ‖V 0
∆ ‖`2 .

(iv) preserves the lake at rest (LaR) equilibrium state, provided that both U∆ and V∆ are at
equilibrium.

(v) may produce checker-board oscillations for the surface perturbation only as small as O(ε).

We discuss the proof of Theorem 6.3.2 in the next sections.
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6.3.1 Solvability

Like Chapter 5, but with an additional source term and a different scaling matrix, and by
assuming α̃ = 0 and ∆x = ∆y, one can write the coefficient matrix of the implicit step, Jε, as

Jε =

 IN2
β
ε J12

β
ε J13

β
ε J21 IN2 + βJ22 βJ23 − ∆t

ε IN2

β
ε J31 βJ32 + ∆t

ε IN2 IN2 + βJ33

 , (6.16)

where all Jij are of O(1) and can be defined similarly as in (5.11):

J12 = F−1Qx, J13 = F−1Qy,

J21 = diag(Qbx) +Qhx − εΘ(Qu1
2

x +Qu1u2
y ), J22 = 2Qu1

x +Qu2
y , J23 = Qu1

y ,

J31 = diag(Qby) +Qhy − εΘ(Qu1u2
x +Qu2

2

y ), J32 = Qu2
x , J33 = Qu1

x + 2Qu2
y ,

where Qφx and Qφy stand for corresponding matrices of central discretisation of φ in each direction

and diag(Qbx) and diag(Qby) are diagonal matrices with central discretisation of b as entries (like
Chapter 5).

So, the matrix Jε, which is the inverse of the solution operator of the implicit step (6.12b),
can be rewritten as Jε := I3N2 + ∆tΞε, where Ξε is a matrix not depending on ∆t. Hence,
with a suitable choice of ∆t, none of the eigenvalues of ∆tΞε is equal to −1, implying that Jε
is non-singular, and the implicit step, so the whole scheme, is solvable. The proof for α̃ 6= 0 is
likewise.

6.3.2 Asymptotic consistency

We discuss the asymptotic consistency of the scheme in two ways, rigorously and formally. At
first in Section 6.3.2.1, we investigate the ε-stability, i.e., if the perturbation V∆ is O(1). Then,
in Section 6.3.2.2, we perform the formal asymptotic consistency analysis, which turns out to be
rigorous, in virtue of ε-stability.

6.3.2.1 ε-stability of the implicit step

For the ε-stability of the solution, one needs to show that the solution of the implicit step is
ε-stable, in addition to the formal asymptotic analysis of the explicit step. At first, we show that
Jε has a bounded inverse in terms of ε. Unlike Chapter 5, the rhs in (6.13) will be shown to be
O(1). This concludes the ε-stability of the solution computed by the implicit step, owing to the
boundedness of the implicit solution operator.

With the same procedure as in previous chapters, one can confirm that the numerical range
of J∗ε Jε is

W (J∗ε Jε) =

∥∥∥∥βε J12w2 +
β

ε
J13w3 +w1

∥∥∥∥2

`2

+

∥∥∥∥βε J21w1 −
∆t

ε
w3 + βJ23w3 + βJ22w2 +w2

∥∥∥∥2

`2
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+

∥∥∥∥βε J31w1 +
∆t

ε
w2 + βJ32w2 + βJ33w3 +w3

∥∥∥∥2

`2

,

where w1,w2,w3 ∈ CN and ‖w1‖2`2 +‖w2‖2`2 +‖w3‖2`2 = 1. Similar to Chapter 5, one can argue
by contradiction to show that the numerical range cannot approach zero. Assume that W (J∗ε Jε)
approaches zero in the limit; so,

w1 = −β
ε

(J12w2 + J13w3) + o(1), (6.17a)

(IN2 + βJ22)w2 = −β
ε
J21w1 −

(
βJ23 −

∆t

ε
IN2

)
w3 + o(1), (6.17b)

(IN2 + βJ33)w3 = −β
ε
J31w1 −

(
βJ32 +

∆t

ε
IN2

)
w2 + o(1). (6.17c)

With a suitable choice of β, one can confirm that βJ23− ∆t
ε IN2 and βJ32 + ∆t

ε IN2 are invertible
with a bounded inverse, i.e.,

lim
ε→0

∥∥∥∥(βJ23 −
∆t

ε
IN2

)−1
∥∥∥∥ = O(ε), lim

ε→0

∥∥∥∥(βJ32 +
∆t

ε
IN2

)−1
∥∥∥∥ = O(ε). (O1)

So, using (6.17b), (6.17c) and (O1) yields

w3 =
(
βJ23 −

∆t

ε
IN2

)−1(
− β

ε
J21w1 −

(
IN2 + βJ22

)
w2

)
+ o(ε),

w2 =
(
βJ32 +

∆t

ε
IN2

)−1(
− β

ε
J31w1 −

(
IN2 + βJ33

)
w3

)
+ o(ε).

(6.18)

Manipulating (6.18), one can find a relation for w2 and w3 in terms of w1:

P ′2w2 = P ′′2 w1 + o(ε),

P ′3w3 = P ′′3 w1 + o(ε),
(6.19)

where

P ′2 := IN2 −
(
βJ32 +

∆t

ε
IN2

)−1(
IN2 + βJ33

)(
βJ23 −

∆t

ε
IN2

)−1(
IN2 + βJ22

)
,

P ′′2 := −β
ε

(
βJ32 +

∆t

ε

)−1

J31 +
β

ε

(
βJ32 +

∆t

ε
IN2

)−1(
IN2 + βJ33

)(
βJ23 −

∆t

ε
IN2

)−1

J21,

P ′3 := IN2 −
(
βJ23 −

∆t

ε
IN2

)−1(
IN2 + βJ22

)(
βJ32 +

∆t

ε
IN2

)−1(
IN2 + βJ33

)
,

P ′′3 := −β
ε

(
βJ23 −

∆t

ε

)−1

J21 +
β

ε

(
βJ23 −

∆t

ε
IN2

)−1(
IN2 + βJ22

)(
βJ32 +

∆t

ε
IN2

)−1

J31.

Note that matrices P ′′2 and P ′′3 are bounded because, using (O1), it is easy to confirm that

lim
ε→0

∥∥∥∥βε (βJ23 −
∆t

ε
IN2

)−1

J21

∥∥∥∥ = O(1), lim
ε→0

∥∥∥∥βε (βJ32 +
∆t

ε
IN2

)−1

J31

∥∥∥∥ = O(1). (O2)

So, using (O1) and (O2), one gets

P ′2 = IN2 −O(ε2), P ′′2 = −β
ε

(
βJ32 +

∆t

ε
IN2

)−1

J31 +O(ε),
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P ′3 = IN2 −O(ε2), P ′′3 = −β
ε

(
βJ23 −

∆t

ε
IN2

)−1

J21 +O(ε).

Since P ′2 and P ′3 are boundedly-invertible, we define P2 := (P ′2)−1P ′′2 and P3 := (P ′3)−1P ′′3 to
rewrite (6.17a) only in terms of w1 as(

IN2 +
β

ε
J12P2 +

β

ε
J13P3

)
w1 = o(1). (6.21)

Since the bottom is almost flat, ‖∇h,xbij‖ = O(ε), the leading order of J21 and J31 are the same

as J12 and J13 (up to a scaling). Also, ( βε∆tJ32 + IN2)−1 is like IN2 +O( βε∆t ). These imply that
the leading order terms of (6.21) vanish since [J12, J13] = 0N2 .

Balancing O(1) terms shows that (IN2 + β
εΞ)w

(0)
1 = 0, where Ξ consists of O(ε) terms in P2

and P3. So, it is plausible to claim that with a suitable choice of β, this matrix is non-singular and

w
(0)
1 = 0; our numerical evidence verifies this. Thus, due to (6.19), one finds w

(0)
2 = w

(0)
3 = 0;

thus, limε→0(w1,w2,w3) = (0,0,0), which contradicts the assumption that ‖w‖`2 = 1 and
concludes the ε-stability of the implicit solution operator since the numerical range cannot tend
to zero.

However, we need ε-stability of the solution for the rigorous asymptotic consistency. For that,
one also needs to show that ‖T∆‖ = O(1), which concludes that the solution of the implicit step
is O(1), owing to the boundedness of J−1

ε . We show that the projection of the reference solution
on the discrete grid is consistent to the leading order such that no large term remains in T∆.
Showing that, assume (ψij ,uij) to be an approximate solution of the QGE. By construction,
there is a discrete stream function which gives the discrete velocity field (by a central difference),
i.e., ∇h,xψij ≡ u⊥ij . This implies that ∇h,x · uij ≡ 0. Note that our scaling assumptions mean
that the bottom topography is almost flat (with O(ε) deviations); thus, ∇h,x ·mij ≡ 0 and
‖T 1,∆‖ = O(1). For T 2,∆ and T 3,∆, one can see that O(1/ε) terms gives ∇h,xψij − u⊥ij , which

vanishes by construction; so, ‖T 3,∆‖, ‖T 3,∆‖ = O(1). Hence, O(1/ε) terms in T∆ vanish in the
limit. This concludes the proof of ε-stability, owing to ε-stability of the explicit step, which is
topic of the next section.

Remark 6.3.3. Note that in Chapter 5, the projection scheme has been used for the lake equa-
tions, which does not satisfy the div-free condition exactly. So, for that case, the proof of the
ε-stability required studying the structure of J−1

ε .

6.3.2.2 Formal asymptotic consistency

Firstly, we show that the explicit step is ε-stable, i.e., it does not produce large, namely O(1/ε),
contributions in the explicit update. We assume that ‖V n

∆ ‖ = O(1), which is compatible with

the well-prepared initial data, and confirm that ‖V n+1/2
∆ ‖ = O(1). Since F̂1,1 = F̂2,1 = 0, one

can immediately conclude that ‖V n+1/2
1,∆ ‖ = O(1). For V

n+1/2
2,∆ (and similarly V

n+1/2
3,∆ ), one simply

gets that as ε→ 0 (note that Θ = Fε)

∇h,x
(

m2
1

Θz − b
+

Θz2 − 2zb

2ε
− m1

2

Θz − b
− Θz2 − 2zb

2ε
+

m1
2v1Θ

(Θz − b)2
− 2m1v2

Θz − b
− (Θz − b)

ε
v1

)n
ij

+∇h,y
(
m1m2

Θz − b
− m1m2

Θz − b
+
m1m2v1Θ

(Θz − b)2
− m1v3

Θz − b
− m2v2

Θz − b

)n
ij

= O(1).
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So, limε→0

(
∇h,xF̂ n1,2,ij +∇h,yF̂ n2,2,ij

)
= O(1) and the explicit step does not change the leading

order of V n
2,∆ (and V n

3,∆). This completes the ε-stability proof of the explicit step.

To complete the asymptotic consistency analysis, we show that the implicit step solution is
consistent with the limit manifold. Based on the ε-stability of Section 6.3.2.1, we suppose that
‖V n+1

∆ ‖ = O(1). From the v1-update and considering (6.13) and (6.9a)–(6.9c), the momentum
field (up to O(ε)) is solenoidal, i.e.,

∇h,x (m1 + v2)
n+1
ij +∇h,y (m2 + v3)

n+1
ij = O(ε). (6.22)

Using v2-update (similarly for v3), one can balance O(1/ε) terms, which gives

−∇h,x
(
bv1(0) + bz

)n+1

ij
= −

(
z + v1(0)

)n+1

ij
∇h,xbij + (m2 + v3(0))

n+1
ij . (6.23)

This is a consistent discretisation of (6.5a) since the bottom is almost flat, ‖∇h,xbij‖ = O(ε). In
other words, (6.23) implies that

∇h,x
(
z + v1(0)

)n+1

ij
= u⊥,n+1

(0),ij .

Thus, up to O(ε), the solution is consistent with the limit manifold. Since the consistency of
the evolution of the leading order of the momentum is clear (by equation (6.6)), the asymptotic
consistency of the scheme is concluded, but only up to possible checker-board oscillations for the
momentum field in the null space of central difference operators ∇h,x and ∇h,y. Note that the
ε-stability of the solution implies immediately that since ‖V n+1

1,∆ ‖ = O(1), the possible checker-
board oscillations for the surface perturbation are O(ε) for ε� 1.

Remark 6.3.4. The asymptotic stability of the scheme can be carried out similarly as in Chapter
5 as, assuming the ε-stability of the implicit solution operator, the additional stiff source term
does not make any difference for the analysis.

6.3.3 Well-balancing

It is already discussed in Chapter 5 that well-balancing analysis for the RS-IMEX scheme may
be challenging; the reason is that even for relatively simple steady states, the analysis should
handle moving equilibria. In fact, by decomposing the solution, we gain more information on
the asymptotic behaviour of the solution for ε� 1, but at the same time, we lose another part
of the information as we only know that the sum of the reference solution and its perturbation
is at equilibrium, which gives us no specific knowledge about individual parts. This issue would
be more pronounced for rotating shallow water equations with the quasi-geostrophic equilibrium
as in this case even the reference surface perturbation is not constant. For this case, U∆ is at
equilibrium by construction, i.e., U

n

∆ ∈ U∆
GE for all n, where U∆

GE is the geostrophic equilibrium
manifold defined as

U∆
GE :=


 zij
m1,ij

m2,ij

 ∣∣∣∇h,xhij = u⊥ij ,∀(i, j) ∈ ΩN

 .

To prove the well-balancing w.r.t. this equilibrium, one needs to show that V n+1
∆ ∈ U∆

GE provided
that V n

∆ ∈ U∆
GE , which is not true for the scheme (6.12a)–(6.12b) without any additional well-

balancing mechanism.
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We conclude the well-balancing discussion with the following lemma, which shows that assum-
ing both split parts of the solution to be at rest equilibrium, the well-balancing of the scheme
holds.

Lemma 6.3.5. For the RS-IMEX scheme (6.12a)–(6.12b) in a periodic domain, assume that

Un
∆ ∈ U∆

LaR (defined as (5.18)). If U
n

∆ ,V
n

∆ ∈ U∆
LaR then U

n+1

∆ ,V n+1
∆ ∈ U∆

LaR. So, the scheme is
well-balanced regarding the lake at rest equilibrium state.

Proof. One can check that the reference solution will be stationary, i.e., U
n+1

∆ ∈ U∆
LaR. So, the

Coriolis force vanishes and the problem is reduced to the well-balancing for the shallow water
equations with topography as studied in Chapter 5. This concludes the proof.

6.4 Numerical experiments

In this section, we test the quality of the computed solutions by the RS-IMEX scheme and
corroborate the AP property with the help of several numerical examples. The time step is
computed as in Section 5.3, with an additional constraint for the time step required for the
Arakawa method. The choices of cα̃ and cα̂ are reported for each example. Note that motivated
by the well-balancing discussion in Appendix 5.B, we set α = α̂ and tune it with cα, which will
be reported for each example.

6.4.1 (i) 1d Rossby adjustment in an open domain

This example is a classical Rossby adjustment [Ros38]—the relaxation of an arbitrary initial
configuration toward the state of linear geostrophic equilibrium—of an unbalanced jet-shaped
momentum in the open domain [−20, 20], and has been investigated by several authors, e.g.,
[AKO09, BLSZ04, CDKLM14, LMNK07]. The initial datum is a rest state superimposed by a
1d jet (a localised uni-directional velocity distribution):

z(0, x) = 0, u1(0, x) = 0, u2(0, x) =
2(1 + tanh(4x/`+ 2))(1− tanh(4x/`− 2))

(1 + tanh(2))2
,

where the maximum zonal velocity is one and the width of the jet ` = 2. Also, ηb(x, y) = 0,
Hmean = 1 and f = g = 1. Adopting this example in the framework of system (6.3), we should
non-dimensionalise (6.1); so, we pick H◦, u◦, t◦, L◦ = 1 and Z◦ = fu◦L◦/g = 1, which gives
Ro, Fr, F,Θ, ε = 1. Note that this choice for the non-dimensionalisation is only for the sake of
simplicity; the physical choice is L◦ = ` and u◦ = 2, which gives Z◦,Θ, F = 4 and Fr = 2. For
the RS-IMEX scheme, we pick cα̃ = 0 and cα̂ = 1 and the zero reference solution.

The initial jet adjusts a momentum unbalance in a transient phase, leading to the emission
of gravity waves out of the jet. The time evolution of the water height is illustrated in Figure
6.1 and matches the aforementioned works quite well. As time evolves, the solution tends to the
geostrophic balance as demonstrated in Figure 6.2. The conservation of the potential vorticity
is confirmed by Figure 6.3. The initial profile is a bit shifted to the right, but dissipated as well,
due to the inherent diffusive behaviour of first-order schemes. As pointed out in [BLSZ04], even
for long time simulations, there are still small oscillations around the geostrophic equilibrium
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because some modes with the frequencies close to f remain for a longer time in the core of the
jet. These very slow propagating waves have almost zero group velocities; see [BLSZ04].

Figure 6.1: Evolution of the water height in Example (i), computed with Nx = 10000, CFL = 0.45 and for Tf = 44π.

(a) (b)

Figure 6.2: Adjustment toward the geostrophic equilibrium in Example (i).

6.4.2 (ii) 1d geostrophic steady state

This example is as [CDKLM14, Ex. 1] (see also [CLP08]), in the domain [−5, 5] with open
boundaries. The bottom topography is flat ηb(x, y) = 0, f = 10 and g = 1, when the flow is
initially at the geostrophic equilibrium with

K(0, x) = 2, u1(0, x) = 0, u2(0, x) =
2g

f
xe−x

2

.

For non-dimensionalisation, we pick H◦, u◦, t◦, L◦ = 1. Also, Z◦ = fu◦L◦/g = 10 should be
chosen, which gives Ro = ε = 0.1, Fr = 1, F = 100, Θ = 10. In order to find h(0, x), one

should use (6.7) and solve Φx|t=0 = f
gu2|t=0 = 2xe−x

2

, which implies that Φ(0, x) = −e−x2

and
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Figure 6.3: Potential vorticity profile (in x-direction) in Example (i) for Tf = 44π.

h(0, x) = 2− e−x2

(up to a constant). So, we choose Hmean = 2, which is not equal to H◦. Also,
for the RS-IMEX scheme, we pick cα̃ = 0 and cα̂ = 0.1 and the zero reference solution.

Figure 6.4 indicates that the scheme preserves the steady state very well, as equilibrium vari-
ables u1 and ∂xK, computed using a uniform grid with 200 cells for Tf = 200, are still small. As
u1 is almost zero, one expects to see no advection for the potential vorticity in the x-direction,
which is confirmed by Figure 6.5.

(a) (b)

Figure 6.4: Preservation of the equilibrium state in Example (ii) by the RS-IMEX scheme, computed with Nx = 200,
CFL = 0.45 and for Tf = 200.

6.4.3 (iii) 1d geostrophic steady state with a periodic bottom

This example is as [CDKLM14, Ex. 2] with f = g = 1 and ηb(x) = 1 + f
g sin(π5x) (this is a shift

compared to the original example to have a non-negative bottom function). The flow is initially
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Figure 6.5: Potential vorticity profiles (in x-direction) in Example (ii) for Tf = 200.

at the geostrophic equilibrium in the periodic domain [−5, 5) with

K(0, x) = 1, u1(0, x) = 0, u2(0, x) =
π

5
cos(

π

5
x).

For non-dimensionalisation, we pick H◦, u◦, t◦, L◦ = 1. So Z◦ = 1 should be chosen, which
gives Ro, Fr, F,Θ, ε = 1. From the definition of K, one finds Φ(0, x) = sin(π5x) + CΦ with a
constant CΦ, and h(0, x) = CΦ . We then choose Cφ = 1.1 and Hmean = 2.1, which imply that
z(0, x) = sin(π5x). Also, for the RS-IMEX scheme, we pick cα̃ = 0 and cα = cα̂ = 0.1 as well as
the quasi-geostrophic reference solution with z(0, x) = z(0, x).

Similar to Example (i), Figure 6.6 indicates that the scheme preserves this steady state very
well, as equilibrium variables u1 and ∂xK, computed using a uniform grid with 200 cells for
Tf = 200, are still small. Also, as Figure 6.7 shows and since u1 ≈ 0, the potential vorticity has
not been advected in the x-direction.

(a) (b)

Figure 6.6: Preservation of the equilibrium state in Example (iii) by the RS-IMEX scheme, computed with Nx = 200,
CFL = 0.45 and for Tf = 200.
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Figure 6.7: Potential vorticity profiles (in x-direction) in Example (iii) for Tf = 200.

6.4.4 (iv) 2d geostrophic (Rossby) adjustment

For this example, as in [CDKLM14, Ex. 4], the computational domain is [−10, 10]2 with open
boundaries, the bottom topography is flat ηb(x, y) = 0, Href = 1 and f = g = 1, with the
following initial data:

z(0, x, y) =
1

4

(
1− tanh

(
10
√

2.5x2 + 0.4y2 − 1
))

, u1(0, x, y) = u2(0, x, y) = 0.

Like Example (i), one finds Ro, Fr, F,Θ, ε = 1 with a suitable non-dimensionalisation. For the
RS-IMEX scheme, we pick cα̃ = 0, cα̂ = 1 and the zero reference solution. To capture the
dynamics we set the time step as ∆t = 0.2∆x.

The evolution of the water surface for the RS-IMEX scheme on the 400×400 grid is presented
in Figure 6.8. The initial perturbation generates two circular shock waves propagating outwards
with a clockwise rotating elevation staying behind the shocks. As time evolves, the solution
converges to a nontrivial geostrophic steady state, as confirmed by Figure 6.9.

6.4.5 (v) 2d geostrophic jet

In this example, as in [CDKLM14, Ex. 5], we test the RS-IMEX scheme for the general 2d
geostrophic jet. The computational domain is [−10, 10)2 with open boundaries, the bottom
topography is flat ηb(x, y) = 0, Hmean = 1, and f = g = 1, with the following initial data:

z(0, x, y) =
1

4

(
1− tanh

(
10
√

2.5x2 + 0.4y2 − 1
))

,

u1(0, x, y) =
y√

2.5x2 + 0.4y2

(
1−

(
tanh

(
10
√

2.5x2 + 0.4y2 − 10
))2

)
,

u2(0, x, y) =
−6.25x√

2.5x2 + 0.4y2

(
1−

(
tanh

(
10
√

2.5x2 + 0.4y2 − 10
))2

)
.

Like Example (iv), one finds Ro, Fr, F,Θ, ε = 1 with a suitable non-dimensionalisation. For the
RS-IMEX scheme, we pick cα̃ = 0, cα̂ = 1 and the zero reference solution.
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Figure 6.8: Evolution of the water height in Example (iv), computed with Nx = Ny = 400, CFL = 0.45 and for Tf = 20.

In Figure 6.10, we present long-time evolution of ∂xK and ∂yL, computed using the 50 × 50
uniform grid. Comparing the results with [CDKLM14], it is evident that the RS-IMEX scheme
approximates this 2d geostrophic jets accurately.
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Figure 6.9: Adjustment toward the geostrophic equilibrium in Example (iv), computed with Nx = Ny = 400 and
∆t = 0.2∆x.

Figure 6.10: Adjustment toward the geostrophic equilibrium in Example (v), computed with Nx = Ny = 50 and
CFL = 0.45.

6.4.6 (vi) 2d stationary vortex

This example considers a 2d stationary (and non quasi-geostrophic) vortex in the periodic domain
[0, 1)2, as in [AKO09]. The initial data are

u0(r, θ) = ϑθ(r)θ̂, ϑθ(r) := 5r1[r< 1
5 ] + (2− 5r)1[ 1

5≤r<
2
5 ], z′0(r) = ϑθ +

ε

r
ϑ2
θ,

where r is the distance to the vortex centre (0.5, 0.5)T (see Figure 6.11) and we set Hmean = 2.
It is not difficult to check that with this choice of the initial condition, the height is stationary
and the pressure gradient is in balance with the Coriolis force and the advective terms. So, this
vortex is a particular case of fully non-linear 2d gradient wind equilibrium [AKO09]. Also, note
that ε

rϑ
2
θ is the contribution of the advective terms in this balance; so, it is O(ε) and the balance

would be geostrophic as ε → 0, which implies that the initial data are well-prepared. For the
RS-IMEX scheme, we pick CFL = 0.45, cα̂ = 1, cα̃ = 0.1, cα = 0 and the quasi-geostrophic
reference solution with z′0(r) = ϑθ, which implies u0(r) = ϑθ.
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(a) Contour of the surface perturbation. (b) Velocity vector field.

Figure 6.11: Initial condition of Example (vi) for ε = 1.

The accuracy of the scheme has been illustrated by Figure 6.12 in which the relative perturba-
tion from the equilibrium has been plotted for ε ∈ {1, 0.5, 0.1, 0.05, 0.01, 10−3, 10−4}. It appears
that, as [AKNV11], the error does not increase as ε → 0. Moreover, Figures 6.13 and 6.14
present the absolute error of the solution for different ε and Tf , and confirm the accuracy of the
RS-IMEX scheme even in the (geostrophic) limit of the solution and compared with the results
of [AKNV11, AKO09]. The error does not decrease with ε, but with the mesh refinement. This
can be explained by the fact that in the procedure of constructing the initial reference velocity
field by z0, there is an O(∆x) error since this polar initial condition cannot be presented ex-
actly on a Cartesian grid, which leads to ‖V 0

2,∆‖`∞ , ‖V 0
3,∆‖`∞ = O(∆x) rather than O(ε). This

issue does not affect the solution for ε = O(1) as ‖V 0
2,∆‖`∞ , ‖V 0

3,∆‖`∞ = O(1), which covers the
O(∆x) error. Moreover, similar to the discussion in Chapter 5, the reference solver adds some
ε-independent error to the solution. Note that in comparison to [AKNV11, AKO09], we are
considering the error for z rather than for the water height h = Θz− b. So, one expects that the
error in water height vanishes as ε→ 0.

(a) Relative error for z. (b) Relative error for u1.

Figure 6.12: Evolution of the relative error for the RS-IMEX scheme in Example (vi), computed on the 30 × 30 grid,
and for different ε.
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(a) t = 1 and ε = 0.1. (b) t = 10 and ε = 0.1.

(c) t = 1 and ε = 10−4. (d) t = 10 and ε = 10−4.

Figure 6.13: Perturbation from the equilibrium, |z∆(t) − z∆(0)|, for the RS-IMEX scheme in Example (vi), computed

on the 30× 30 grid and for ε = 0.1, 10−4 and t = 1, 10.

From Figure 6.14, one can see that the scheme is asymptotically stable and accurate. Regarding
the asymptotic consistency, the divergence of the velocity field is vanishing with ε → 0, as
suggested by the asymptotic analysis in (6.22). Also, Figure 6.15 shows that the deviation from
the geostrophic balance is O(ε), as proved in (6.23). Thus, the scheme is asymptotic preserving.

In Figure 6.16 a cut of the solution along the x-axis at y = 0.5 is presented to compare
the results for different ε. For a small ε, the two lines are not distinguishable from each other
anymore. Also, in Figure 6.17, we have illustrated the stability of the Arakawa method (for the
case ε = 1). It has been proved by [Ara66] that, for the semi-discrete Arakawa method applied
to the barotropic vorticity equation, the mean kinetic energy, the mean PV and the mean square
PV are conserved in time. For the QGE the kinetic energy is no longer conserved, but the total
energy, cf. [Dur13]. Figure 6.17 illustrates this for the fully-discrete scheme, also shows that the
stream function is bounded.

Effects of the reference solution Finding the evolution of the reference solution in time
requires additional computational costs, which should be justified. For this example, we show
that using the quasi-geostrophic reference solution leads to better accuracy; thus, it is reasonable
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(a) ε = 1.

(b) ε = 0.1.

Figure 6.14: Absolute perturbation from the equilibrium for the RS-IMEX solution in Example (vi), computed on the
30× 30 grid and for different ε.
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(c) ε = 0.01.

(d) ε = 0.001.

Figure 6.14: Absolute perturbation from the equilibrium for the RS-IMEX solution in Example (vi), computed on the
30× 30 grid and for different ε. (cont.)
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Figure 6.15: Components of the geostrophic equilibrium ∇h,xz = u⊥ for the RS-IMEX solution in Example (vi),

computed on the 30× 30 grid, with ε = 10−4 and for Tf = 1.

Figure 6.16: Surface perturbation along the cut y = 0.5 for the RS-IMEX scheme in Example (vi), computed on the
30× 30 grid, for Tf = 1 and different ε: Dotted red line is the initial (exact) solution and the continuous blue line is the
solution of the RS-IMEX scheme.

to invest in finding a suitable reference solution. Figure 6.18 illustrates the error of the RS-IMEX
solution with the zero reference solution. One can clearly observe that compared to Figure 6.16
and Figure 6.14, the scheme is much more diffusive and less accurate.

Efficiency of the RS-IMEX scheme Since the time evolution of the reference solution
should be computed in time, it is of interest to see how much time this computation requires.
As shown below in Table 6.1, the cost of computing the reference solution is a bit higher than
the non-rotating case (see Table 5.1), though, it is still not comparable to the total cost.

Table 6.1: CPU time (in seconds) for different steps of the RS-IMEX scheme in Example (vi), computed on the 30× 30
grid, with CFL = 0.45, Tf = 1 and for ε = 1.

Total Implicit step LSE solver Elliptic solver for ψ
n+1/2
∆ and ψn+1

∆

11.110 2.346 (21.1%) 0.17 (1.53%)



141

Figure 6.17: Non-linear stability of the fully-discrete Arakawa method in Example (vi), computed on the 30 × 30 grid
and with the initial data as for the case ε = 1.

(a) Surface perturbation along the cut y = 0.5. (b) Distance from the exact solution.

Figure 6.18: Error of the RS-IMEX scheme in Example (vi), with the zero reference solution and computed on the 30×30
grid for Tf = 1 and ε = 0.1. The results should be compared with Figure 6.16 and Figure 6.14.





Conclusion & perspectives

Throughout this manuscript, we have studied implicit-explicit (IMEX) asymptotic preserving
(AP) finite volume schemes for the low-Froude shallow water equations, in terms of rigorous
asymptotic consistency and stability. Regarding the source terms, we have taken the bottom
topography and the Coriolis force into account so that the model is suitable for geophysical flows.
At first, we studied the Lagrange-projection IMEX (LP-IMEX) scheme in one space dimension.
Then, we introduced the so-called reference solution IMEX (RS-IMEX) scheme and discussed its
asymptotic analysis starting from the rather simple one-dimensional case to the two-dimensional
system with the Coriolis force. The focus for each case has been put on the rigorous proof of
the asymptotic consistency and stability, and to verify these properties by numerical examples.
More precisely, each chapter can be concluded as follows.

In Chapter 2, we have extended the stability results of the LP-IMEX scheme for the one-
dimensional isentropic Euler equations, as in [CNPT10], regarding the uniformity in terms of the
Mach number with well-prepared initial data. We have shown that the scheme is asymptotically
consistent, rigorously. The key step for this result was to show the boundedness of the implicit
solution operator w.r.t. the Mach number. Also, we have obtained a Mach-uniform time step
restriction, which provides the discrete entropy stability and the density positivity, as well as the
stability of the computed solution in the `∞-norm. Moreover, we have applied a similar analysis
to the shallow water equations with a non-flat bottom topography as an important example of
balance laws.

In Chapter 3, generalising [SN14], we introduced the low-frequency assumption to justify the
use of truncated modified equations, reviewed the strict stability framework of Majda and Pego
[MP85] and employed it for the stability of modified equations. We also showed that for sym-
metric splittings the viscosity matrix is positive, leading to stability. Furthermore, we discussed
a general class of splittings and showed that positivity of the viscosity matrix, after being trans-
formed by the matrix of eigenvectors of the (linearised) flux Jacobian, is sufficient for stability;
this matches the results of [MP85] and motivated the RS-IMEX splitting introduced in Chapter
4. This criterium has been used to show the stability (of the modified equations) of several
flux-splitting IMEX schemes for stiff systems of hyperbolic conservation laws: the Haack–Jin–
Liu splitting [HJL12] and the Degond–Tang splitting [DT11] for the isentropic Euler equations,
and the RS-IMEX splitting for the shallow water equations with a flat bottom topography. For
the full Euler equation, we discovered a small region of instability for Klein’s so-called auxiliary
splitting [Kle95], for the colliding pulses example. This seems to confirm the computational
results in [NBA+14], and indicates a discrepancy between the stability analysis of the modified
equation and numerical results of [NBA+14], when one imposes the low-frequency assumption.
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In Chapter 4, we have analysed the RS-IMEX scheme for the one-dimensional shallow water
equations in the zero-Froude singular limit, and with two reference solutions, the lake at rest and
the zero-Froude limit. The quality of solutions computed by the scheme has been guaranteed
by numerical analysis as well as several numerical tests. We have proved that the scheme is
uniformly consistent and well-balanced regarding the lake at rest equilibrium state. Indeed,
the asymptotic consistency analysis is not only formal but also rigorous by virtue of a uniform
bound for the implicit solution operator. Moreover, we have proved the asymptotic stability of
the scheme, however, for a finite time, a fixed grid, and under a smallness assumption for the
initial datum.

In Chapter 5, we have extended the asymptotic consistency and stability results from the one-
dimensional case in Chapter 4 to the two-dimensional case. The formal asymptotic consistency
analysis has been provided while the rigorous analysis is more subtle due to the non-stationary
reference solution and could be verified based on some numerical evidence on the structure of
the implicit solution operator. The proof has been presented only for a simplified case with the
zero reference velocity field, u = 0, and for the flat bottom topography. The asymptotic analysis
of the scheme has been corroborated by several numerical experiments. The study has raised an
important question about the well-balancing analysis of the scheme, which is not a trivial issue
and a well-balancing remedy has been proposed by a compatibility analysis.

Finally, in Chapter 6, we have discussed the RS-IMEX scheme for the two-dimensional shallow
water equations with the additional Coriolis force in the quasi-geostrophic distinguished limit as
a characterisation of Rossby and Froude numbers. We have analysed the asymptotic consistency
of the scheme formally and, based on some numerical evidence, the rigorous proof is justified.
The computed solutions have been shown to be well-qualified in several numerical experiments.

There are some immediate extensions to be considered. Regarding the LP-IMEX scheme, it
is interesting to extend the analysis to the full Euler equations or multiple space dimensions,
which are formidable tasks, particularly the latter as has been discussed to some extent in
[CGK16, DJOR16]. Also, along the lines of [LS01], it is of interest to prove the convergence
of the scheme to the unique entropy solution by the compensated compactness approach. For
the RS-IMEX scheme, a more detailed well-balancing analysis is of quite an importance. Also,
studying other types of boundary conditions and higher order versions of the scheme are truly
desirable. A more delicate task is to improve the asymptotic stability results, e.g., using an
energy estimate, cf. [Gie15, BLMY17], or to refine the asymptotic consistency arguments in
terms of asymptotic preserving error estimates, cf. [GHMN17, FLMN+16, Fis15].
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pressure correction schemes and all speed barotropic flows. In Finite Volumes for Complex Ap-
plications VI Problems & Perspectives, pages 839–855. Springer, 2011.

[GHKL15] Grapsas, D., Herbin, R., Kheriji, W., and Latché, J.-C. An unconditionally stable staggered
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[HLS17] Herbin, R., Latché, J.-C., and Saleh, K. Low Mach number limit of a pressure correction MAC
scheme for compressible barotropic flows. In Finite Volumes for Complex Applications 8, 2017.

[HLVL97] Harten, A., Lax, P. D., and Van Leer, B. On upstream differencing and Godunov-type schemes for
hyperbolic conservation laws. In Upwind and High-Resolution Schemes, pages 53–79. Springer,
1997.

[HM14] Hiltebrand, A. and Mishra, S. Efficient computation of all speed flows using an entropy stable
shock-capturing space-time discontinuous Galerkin method. In Seminar for Applied Mathematics,
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[NMRR96] Nečas, J., Málek, J., Rokyta, M., and Růžička, M. Weak and measure-valued solutions to evolu-
tionary PDEs, volume 13. CRC Press, 1996.

[NPPN06] Noelle, S., Pankratz, N., Puppo, G., and Natvig, J. R. Well-balanced finite volume schemes of
arbitrary order of accuracy for shallow water flows. Journal of Computational Physics, 213(2):474–
499, 2006.

[NT92] Nessyahu, H. and Tadmor, E. The convergence rate of approximate solutions for nonlinear scalar
conservation laws. SIAM Journal on Numerical Analysis, 29(6):1505–1519, 1992.

[NXS07] Noelle, S., Xing, Y., and Shu, C.-W. High-order well-balanced finite volume WENO schemes
for shallow water equation with moving water. Journal of Computational Physics, 226(1):29–58,
2007.

[OSB+16] Oßwald, K., Siegmund, A., Birken, P., Hannemann, V., and Meister, A. L2Roe: a low dissipation
version of Roe’s approximate Riemann solver for low Mach numbers. International Journal for
Numerical Methods in Fluids, 81(2):71–86, 2016.

[Ost66] Ostrowski, A. M. Solution of equations and systems of equations, volume 9. Academic Press New
York, 1966.

[PDZ+14] Panda, N., Dawson, C., Zhang, Y., Kennedy, A. B., Westerink, J. J., and Donahue, A. S. Discon-
tinuous Galerkin methods for solving Boussinesq–Green–Naghdi equations in resolving non-linear
and dispersive surface water waves. Journal of Computational Physics, 273:572–588, 2014.

[Ped13] Pedlosky, J. Geophysical fluid dynamics. Springer Science & Business Media, 2013.

[Per98] Persson, A. How do we understand the Coriolis force? Bulletin of the American Meteorological
Society, 79(7):1373, 1998.

[Phi59] Phillips, N. A. An example of non-linear computational instability. The Atmosphere and the Sea
in motion, 501:501–504, 1959.

[PM05] Park, J. H. and Munz, C.-D. Multiple pressure variables methods for fluid flow at all Mach
numbers. International Journal of Numerical Methods in Fluids, 49:905–931, 2005.

[PR05] Pareschi, L. and Russo, G. Implicit-explicit Runge–Kutta schemes and applications to hyperbolic
systems with relaxation. Journal of Scientific Computing, 25(1-2):129–155, 2005.

[PTA12] Pletcher, R. H., Tannehill, J. C., and Anderson, D. Computational fluid mechanics and heat
transfer. CRC Press, 2012.

[RB09a] Ricchiuto, M. and Bollermann, A. Stabilized residual distribution for shallow water simulations.
Journal of Computational Physics, 228(4):1071–1115, 2009.

[RB09b] Rieper, F. and Bader, G. The influence of cell geometry on the accuracy of upwind schemes in
the low Mach number regime. Journal of Computational Physics, 228(8):2918–2933, 2009.

[Rie10] Rieper, F. On the dissipation mechanism of upwind-schemes in the low Mach number regime: A
comparison between Roe and HLL. Journal of Computational Physics, 229(2):221–232, 2010.

[Rie11] Rieper, F. A low-Mach number fix for Roe’s approximate Riemann solver. Journal of Computa-
tional Physics, 230(13):5263–5287, 2011.

[RM67] Richtmyer, R. D. and Morton, K. W. Difference methods for initial-value problems. Interscience
Publishers John Wiley & Sons, Inc., Academia Publishing House of the Czechoslovak Acad, 1967.

[Ros38] Rossby, C.-G. On the mutual adjustment of pressure and velocity distributions in certain simple
current systems, II. Journal of Marine Research, 1(3):239–263, 1938.

[Ros63] Rosenbrock, H. H. Some general implicit processes for the numerical solution of differential equa-
tions. The Computer Journal, 5(4):329–330, 1963.



155

[Sch05] Schochet, S. The mathematical theory of low Mach number flows. ESAIM: Mathematical Mod-
elling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique, 39(3):441–458,
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