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Résumé

Les travaux présentés dans cette thèse concernent les approches bayésiennes par patchs
des problèmes d’amélioration de la qualité d’images. Notre contribution réside en le
choix du dictionnaire construit grâce à un ensemble d’images de haute qualité et en
la définition et l’utilisation d’un modèle à priori pour la distribution des patchs dans
l’espace du dictionnaire.

Nous avons montré qu’un choix attentif du dictionnaire représentant les informations
locales des images permettait une amélioration de la qualité des images dégradées.
Plus précisément, d’un dictionnaire construit de façon exhaustive sur les images de
haute qualité nous avons sélectionné, pour chaque patch de l’image dégradée, un sous
dictionnaire fait de ses voisins les plus proches. La similarité entre les patchs a été
mesurée grâce à l’utilisation de la distance du cantonnier (Earth Mover’s Distance)
entre les distributions des intensités de ces patchs. L’algorithme de super résolution
présenté a conduit à de meilleurs résultats que les algorithmes les plus connus.

Pour les problèmes de débruitage d’images nous nous sommes intéressés à la distribu-
tion à priori des patchs dans l’espace du dictionnaire afin de l’utiliser comme pré requis
pour régulariser le problème d’optimisation donné par le Maximum à Postériori. Dans le
cas d’un dictionnaire de petite dimension, nous avons proposé une distribution constante
par morceaux. Pour les dictionnaires de grande dimension, la distribution à priori a été
recherchée comme un mélange de gaussiennes (GMM). Nous avons finalement justifié le
nombre de gaussiennes utiles pour une bonne reconstruction apportant ainsi un nouvel
éclairage sur l’utilisation des GMM.

Mots-Clés — Débruitage d’images, super-résolution d’images, maximum à posteriori,
modèle de mélange gaussien, earth mover’s distance, modèle parcimonieux, distribution
des patchs, restauration d’images basée sur l’exemple.
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Abstract

In this thesis, we investigate the patch-based image denoising and super-resolution
under the Bayesian Maximum A Posteriori framework, with the help of a set of high
quality images which are known as standard images. Our contributions are to address
the construction of the dictionary, which is used to represent image patches, and the
prior distribution in dictionary space.

We have demonstrated that the careful selection of dictionary to represent the
local information of image can improve the image reconstruction. By establishing an
exhaustive dictionary from the standard images, our main attribute is to locally select a
sub-dictionary of matched patches to recover each patch in the degraded image. Beside
the conventional Euclidean measure, we propose an effective similarity metric based on
the Earth Mover’s Distance (EMD) for image patch-selection by considering each patch
as a distribution of image intensities. Our EMD-based super-resolution algorithm has
outperformed comparing to some state-of-the-art super-resolution methods.

To enhance the quality of image denoising, we exploit the distribution of patches in
the dictionary space as a an image prior to regularize the optimization problem. We
develop a computationally efficient procedure, based on piece-wise constant function
estimation, for low dimension dictionaries and then proposed a Gaussian Mixture Model
(GMM) for higher complexity dictionary spaces. Finally, we justify the practical number
of Gaussian components required for recovering patches. Our researches on multiple
datasets with combination of different dictionaries and GMM models have complemented
the lack of evidence of using GMM in the literature.

Keywords — Image denoising, image super-resolution, Bayesian Maximum A Pos-
teriori, Gaussian Mixture Model, Earth Mover’s Distance, Sparse models, patches
distribution, example-based image restoration.
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i. The bold capital letters are used to represent a two-dimensional (2D) arrays,
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dictionary of K column vectors (e.g. D) or a 2D image with pixels arranged in
rows and columns such as X,Y.

ii. The bold letter, e.g. x, y, represents a column vector or a vectorization of a 2D
image obtained by raster scan the image from top to bottom and left to right.

iii. The subscripts below a symbol stand for the subsets. For instance, xi is a sub-
column vector (also called image patch) of a vectorization image x, Xi indicates
a 2D array where each of its column is an image patch, etc.

iv. The superscripts express the modes or state of a variable. For example, xs is a
standard (high quality) image, Dl denotes a dictionary of low-resolution image
patches, Dh a dictionary of high-resolution patches, etc.

v. The array indexing, which encloses the indices in parentheses, is used to access an
element of the array. E.g. X(i, j) is the pixel at i-th row and j-th column of 2D
image X, xi(j) is the j-th pixel of the column image patch xi, etc.

The list of important notations is described as follows.

Rn A n-dimensional space.
Rn×K A space of two-dimensional arrays of n rows and K columns.
X An image represented as a two-dimensional (2D) array.
X(i, j) A pixel in the image X at i-th row and j-th column.
x An image represented as a column vector by raster scan the 2D

image X from top to bottom, left to right.
xs A vectorization of a good quality image (also called standard

image).
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1 Introduction

Digital images undoubtedly play a huge part in many applications such as medical
imaging, remote sensing, surveillance, and entertainment, etc, because they can convey
and store the information that reflect the objects or environment. However, the images
acquired from digital imaging systems are the degraded observations of the unknown
clean images. The degradation comes from various factors, e.g. noise corruption,
blurring, resolution limitation, object movement, or a combination of them. Therefore,
image restoration (IR) is a fundamental task that aims to recover a latent high quality
image x ∈RN from its degraded observation y ∈RM . The IR problem can be modeled
as follows:

y = Hx + η (1.1)
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where H denotes the non-invertible degradation matrix and η is the Gaussian additive
noise of mean zero and standard deviation σ. Depending on different settings of H, the
model (1.1) can represent various IR problems. For example, in image denoising, H
is an identity matrix. For image deblurring, the matrix multiplication operation Hx
is equivalent to a two-dimensional convolution b⊗x between a blur kernel b and the
latent image x. By selecting a diagonal matrix of H with the entries are either 0 or 1
where the zero values denote the missing pixels in the image x, (1.1) becomes the image
inpainting issue. Another popular configuration is the super-resolution (SR) problem
where H = SB is a composition of a blurring B and a downsampling S operators.

Image restoration is an ill-posed inverse problem because a lot of informations have
been lost during the degradation which prevents a full recovery of the latent image
x. Several attempts have been made in the state-of-the-art to deal with the image
restoration problem by suppressing the degradation factors and preserving as much as
possible the image details. Due to the large space of image content, prior knowledge
of image structure is crucial to regularize the inverse solution and obtain a reliable
estimation x̂ of x. However, learning priors and optimizing over whole image may
lead to tremendous computational challenges. Instead, we select to handle the image
restoration problem on small local patterns of image, which are called the image patches,
in which the image priors can be learned more efficiently.

In the context of patch-based image restoration, each image is considered to be a set
of overlapping image patches, and the reconstruction will be performed on each patch.
The image restoration model in (1.1) can be formulated on each patch as follows.

yi = Hixi + ηi (1.2)

where yi ∈Rm is the i-th patch in the degraded image y, xi ∈Rn is the high-quality
latent version of yi, Hi is the degradation matrix on xi, and ηi is the residual noise in
yi.

Without loss of generality, we can represent the latent image patch xi by a linear com-
bination of a set of K basis vectors (also called atoms) {d1, . . . ,dj , . . . ,dK |dj ∈Rn} that
form a dictionary of patches D = [d1, . . . ,dk] ∈Rn×K . Let Ωα ⊂RK denote the vector
space generated by the K atoms of the dictionary D. Then, each image patch xi can
be described by a representation coefficients vector αi = [αi(1), . . . ,αi(j), . . . ,αi(K)]T

such that xi = Dαi. Therefore, the image restoration model in (1.2) becomes:

yi = HiDαi + ηi (1.3)

From the Bayesian framework, the restoration of an image patch yi is equivalent
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to estimating a representation coefficients vector αi that maximizes the posteriori
probability p(αi|yi,D) as shown in

α̂i = argmax
αi

p(αi|yi,D) = argmax
αi

{p(yi|D,αi)p(αi)} (1.4)

where p(αi) is called the prior model of αi since it specifies a priori statistical features
of image in the vector space Ωα and is independent of yi. With the assumption of
Gaussian noise corruption N (0,σ2), the likelihood can be described as p(yi|D,αi) ∝
exp

(
−1

2 ||yi−HiDαi||22
)
, and the Maximum A Posteriori (MAP) problem in (1.4) can

be reformulated as

α̂i = argmin
αi

{1
2 ||yi−HiDαi||22−λ logp(αi)

}
= argmin

αi

{1
2 ||yi−HiDαi||22 +λΦ(αi)

}
(1.5)

where Φ(αi)∝− logp(x) is called the regularization term and λ is the trade-off param-
eter which balances the two terms of (1.5). After solving the optimization problem
in (1.5), we can obtain an estimation of the latent image patch, denoted by x̂i, as
x̂i = Dαi. Finally, the latent image x can be found by aggregating the overlapped
regions between adjacent patches x̂i.

In this thesis, we investigate the image restoration in the context of image denoising
and super-resolution via solving the optimization problem in (1.5). The two main issues
involving to find the solution of (1.5) are the determination of the dictionary D and
the formulation of the prior model p(αi). The dictionary D contains atoms (patches)
that will be directly used to recover the latent patch xi and thus has effects on the
reconstruction quality. Thus it is preferable to build a dictionary that can hold the
similar information in the underlying patch. Additionally, the prior model p(αi) of
the probability distribution of representation coefficients describes the manner that the
latent image patch xi will be constructed from the K atoms. In this thesis, we will
alternatively discuss the influence of both factors on the reconstruction of a degraded
image.

The remainder of this chapter is organized as follows. Section 2 presents the
motivation and organization of our thesis. In section 3, we briefly describe some image
quality assessment metrics used for the evaluation of an image restoration algorithm.

2 Motivation and thesis organization

Patch-based image restoration under the Maximum A Posteriori (MAP) framework has
proved successful in the reconstruction of a degraded image [1–5]. The principal concept
of this thesis is built upon an interesting property of digital images that relates to the
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redundancy of information across different images, where the local patterns tend to
repeat between multiple images. It is a fact that for a patch in an underlying image x,
we can find a list of similar patches in other external good quality (clean, high resolution)
images {xs}, which are often used as references and referred to as the standard images
or example images.

For a better demonstration, we present on the left of Fig. 1.1 some reference patches,
which are marked by rose blocks with red contours, in four example images, including
two natural images of Peppers and of Boat, one CT image of Lung and one MRI image
of Brain. For standard images, we collected multiple datasets, including the Berkeley
Segmentation dataset [6] of natural images, the TCIA dataset [7] of CT image of Lung,
and the MRI image of Brain in [8]. For each dataset, we randomly collected 200000
image patches to create a database of patches. For each reference patch in each image,
we searched for 9 closest query patches in the database and portrayed them in blue
contour blocks as shown on the right of Fig. 1.1. We can observe that the databases
established from the external images contain several patches with similar structures to
the local patches in underlying images. Therefore, it is expected that we can exploit
the useful information in the database of patches in recovering a degraded image patch
yi. In particular, we can learn a dictionary D or analyze the statistical characteristics
of the distribution of image patches p(αi) in the database and then used them in image
restoration.

Our first research is in the context of super-resolution of images affected by Poisson
noise and inspired by previous work in the LAGA and L2TI labs on the SRSW method [1].
The patches in the input image are transformed into the Anscombe domain so that
the Poisson distribution is converted in approximately additive standard normal noise.
Thus we can apply the optimization framework in (1.5) to restore each patch yi in
the noisy image. In this approach, we construct an exhaustive dictionary D, which
is identical with the database of patches, so that we may ensure that the dictionary
can cover the local information appearing in the noisy image. However, solving the
problem (1.5) with a very large number of atoms in the dictionary requires tremendous
computational complexity and makes the implementation challenging. To deal with this
issue, a practical solution is to apply a patch-selection step on the dictionary D in order
to choose the most appropriate atoms for the reconstruction. Hence, for each noisy
patch yi, we exploit the Euclidean-based measurement to determine a set of similar
pairs of low and high resolution patches in the database to generate a local reproducing
kernel Hilbert space. The high resolution patch is recovered based on a linear regression
of similar patches in the Hilbert space. We perform experiments on synthetic images
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(a) Image of Peppers

(b) Image of Boat

Figure 1.1: Illustration of external similarity between multiple images. Referenced patches in
images are marked by the rose blocks with red contours, and a few of their matched patches
selected from standard images are denoted by blue contour blocks.
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(c) CT image of Lung

(d) MRI image of Brain

Figure 1.1: Illustration of external similarity between multiple images. Referenced patches in
images are marked by the rose blocks with red contours, and a few of their matched patches
selected from standard images are denoted by blue contour blocks.
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and medical image dataset and demonstrate the outperforming of the proposed method
comparing with some existing super-resolution methods. The details of this work will
be reported in chapter 3.

Our second work is an expansion of the first study and the method SRSW [1]
for super-resolution of an image corrupted by additive Gaussian noise. Similar to
the above approach, we construct a large, exhaustive dictionary to cover as much as
possible the local patterns in an input noisy and low-resolution image. However, we
study an alternate strategy for selecting the local dictionary (a set of smaller number
of atoms) for image super-resolution. Instead of taking into account the classical
Euclidean distance as originally designed in SRSW and our previous work, as well as
in many super-resolution methods in the literature, we consider an image patch as a
distribution of grey levels and propose to exploit the Earth Mover’s Distance (EMD) to
measure the similarity between image patches. We show that the EMD better describes
the perceptual similarity between patches than the Euclidean distance and helps to
improve the searching accuracy and efficiency. Moreover, we introduce an `1-norm-based
threshold for each low-resolution noisy patch yi, which is built on the characteristic
of the EMD, to facilitate the searching process and dynamically select the number of
similar patches for constructing the local dictionary. Finally, the degraded patch yi is
restored via solving (1.5) with the obtained local dictionary and the assumption of the
sparse model of the probability distribution p(αi). We carry out several experiments on
medical images with different modalities to demonstrate that the super-resolution with
EMD is more efficient than the classical Euclidean-based super-resolution methods, in
both case of noise-free and noise-corrupted images. We will present this work in further
details in chapter 4.

In the two previous works, we have created a dictionary D by purely extracting
a large number of patches in the standard images. Then to solve the restoration
problem in (1.5), we first apply a patch-selection strategy to collect a local dictionary
of smaller set of similar atoms for each degraded patch yi. After that, the latent patch
xi can be recovered using the obtained local dictionary with the assumption of sparsity
model for p(αi). In the conventional sparse representation methods, the distribution
of image patches in the vector space generated from the atoms in a local dictionary is
assumed to be sparsely distributed and can be characterized in a smaller dimensional
subspace. However, the choice of sparse models is too arbitrary and they cannot exactly
represent the true distribution of image patches. In our third work in this thesis, we
will analyze the distribution of representation coefficients p(αi) of patches in the vector
space generated by atoms of a dictionary. Moreover, to make convenient for studying
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the distribution of patches, we train a unique dictionary D and apply for all noisy
image patches rather than using the local dictionary as in the first two researches. By
exploiting the redundancy of local information between multiple images, we assume
that the distribution of representation coefficients of patches in the database and that of
latent patches xi in the latent image x have similar forms. Hence, instead of adopting
an arbitrary sparse prior, we propose to estimate the prior probability distribution
p(αi) from the empirical distribution of patches in the database and then apply it
to regularize the denoising problem via (1.5). In the scope of this work, we adopt a
simple scheme to estimate the prior probability of p(αi) via a construction of a cell-wise
constant histogram. This simple model for p(αi) allows us to solve the optimization
problem efficiently with application to image denoising. To demonstrate the potentiality
of the proposed approach, we study a toy problem in three dimensions. By carrying out
experiments on synthetic and natural images and making the comparison with existing
sparsity models, we justify the applicable capacity of the estimation-based probability
in dealing with an image denoising task. The proposed method will be discuss in detail
in chapter 5.

In our last contribution in this thesis, we develop the idea introduced in chapter 5 by
exploring Gaussian Mixture Models (GMMs) to represent the prior model of distribution
of image patches instead of the piecewise constant model. Gaussian mixture models
allow us to model the distribution of patches with more details and more regularity.
However, solving the denoising problem with the whole GMM prior is inefficient because
of high computational complexity. For favorable implementation in practice, the mixture
model is trained with all its components, but only one prominent component is used for
reconstructing each noisy patch. To our knowledge, justification for this approach is
lacking in the literature. Therefore, we attempt to verify this strategy on several image
datasets by evaluating the number of Gaussian components required for recovering
patches. Our contribution is a comprehensive assessment of the number of useful
components in the GMM for patch-based image denoising. We perform extensive
simulations for a combination of two dictionary choices, including an identity and a
K-SVD-based [2] matrices, and two model complexities of GMM, e.g. a small model
and a large one. We conduct several experiments on 8 image datasets, with diversity
of modalities and image structures, and study denoising with increasing number of
components, which is in range {1,5,10,15,20}. We show that all patches in the degraded
image can be recovered by only one prominent component with little loss of performance.
The interesting outcomes of our studies make strong evidence-based justification for the
current practical use of GMM in the literature and drastically reduce computational
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cost. The details of this work is introduced in chapter 6.

The structure of this thesis is organized as follows. In chapter 2, we will present
the concepts of image restoration methods, especially the existing works that inspired
our researches during my thesis. Chapter 3 introduces the super-resolution method
for images corrupted by Poisson noise under an exhaustive dictionary of patches and
reproducing kernel Hilbert space. In chapter 4, we propose to exploit the Earth Mover’s
Distance in the pre-filtering step for similar image patches selection in the large dictionary
to facilitate the super-resolution process. In chapter 5 we introduce an estimation-based
framework for learning the prior distribution of image patches from the standard images
and study its applications in image denoising. In chapter 6, we investigate the study of
Gaussian mixture model for estimating the image prior in image denoising by analyzing
the number of useful Gaussian components in the reconstruction of a noisy image patch.
We conclude this thesis and provide some future perspectives in chapter 7.

3 Image quality assessment metrics

Typically, we can not recover the exact unknown original image X ∈ RN1×N2 from
its degraded version Y because of the irreversible degradation process. By adopting
an image restoration algorithm, we can obtain the reconstructed image X̂ ∈ RN1×N2

from the observation Y, which is considered as an estimation and a distorted version
of the latent image X and is expected as close as possible to X. In order to evaluate
the quality of the reconstructed image X̂, and compare the performances of different
competition image restoration methods, we need to use some image quality assessment
(IQA) metrics.

Several attempts have been made in the literature to develop good metrics to
measure the image quality for different applications such as image denoising, deblurring,
super-resolution. Image quality assessment methods can be divided into two categories:
subjective assessment and objective assessment. The subjective IQA methods are
accurate in reflecting the human perception of the visual quality of an image because
they are carried out by human beings. In practice, however, subjective evaluation
is usually inconvenient due to the requirement of a large number of observers, time-
consuming and can not be an automated process.

On the other hand, the objective validations are computer-based methods that can
automatically predict the perceived image quality. Moreover, according to whether the
reference image is available or not, the objective assessment methods can be classified
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into full-reference metrics or no-reference metrics. In the full-reference approaches,
the original good quality image X, which is referred to as reference image, is assumed
to be known a priori. After that, we obtain a simulated degraded image Y through
the degradation process and apply a restoration method to get the reconstruction
image X̂. In our works, we adopt two objective full-reference metrics, namely the peak
signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [9], to measure
the quality of the recovered image X̂ by quantifying the distortion between X̂ and the
reference image X. The rest of this section will make a summary on these two metrics.

3.1 Peak signal-to-noise ratio (PSNR)

The PSNR is the most commonly used image quality assessment metric for many image
restoration task including denoising and super-resolution. The PSNR are mostly defined
via the mean square error (MSE) between the reference image X and the reconstructed
image X̂, which is determined by the `2-distance:

MSE(X,X̂) = 1
N1N2

N1∑
i=1

N2∑
j=1

(
X(i, j)− X̂(i, j)

)2
(1.6)

where X(i, j) denotes the pixel at i-th row and j-th column of the image X̂. The
definition of PSNR can be formulated as follows:

PSNR(X,X̂) = 10log10

(
MAX2

X

MSE(X,X̂)

)
= 20log10

 MAXX√
MSE(X,X̂)

 (1.7)

where MAXX is the maximum possible pixel value of the image, i.e. MAXX = 28−1 =
255 for 8-bit images. The PSNR is a simple yet effective metric to describe the gray-level
differences between two images. However, its fails to consider the structure distortions
of images, which relate to the human visual perception because higher PSNR does not
mean higher visual structural similarity between two images. Hence, many researchers
have made efforts on finding alternative and better IQA metrics.

3.2 Structural similarity index (SSIM)

In [9], Wang et al. proposed the Structural SIMilarity (SSIM) metric based on the
assumption that the human visual system is more sensitive to structural information.
The SSIM metric is very effective in evaluation the perceptual distortion between two
images and has been adopting by the image processing community since the time it was
introduced.

The SSIM value between two images is calculated by averaging the similarity index
between two local image patches xi,yi ∈ Rn taken from the same location of two
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images that are being compared. The local SSIM index measures the similarities of
three elements of the image patches: luminance, contrast and structure as indicated
in (1.8), (1.9) and (1.10).

`(xi,yi) = 2µxµy + c1
µ2
x +µ2

y + c1
(1.8)

c(xi,yi) = 2σxσy + c2
σ2
x +σ2

y + c2
(1.9)

s(xi,yi) = 2σxy + c3
σxσy + c3

(1.10)

where µx, µy are the means of the patches xi and yi, respectively; σx,σy the standard
deviations of xi and yi, and σ(xi,yi) = 1

n−1
∑n
j=1(xi(j)−µx)(yi(j)−µy) the covariance

of the two image patches xi and yi. c1, c2, c3 are positive constant to stabilize the
division with weak denominator. Then, the SSIM index between two image patches was
defined as a weighted combination of three comparative measures.

SSIM(xi,yi) = `(xi,yi)α · c(xi,yi)β · s(xi,yi)γ (1.11)

where α, β, γ are positive constant. In this thesis, we follow the configuration proposed
in [9] by setting α= β = γ = 1, c1 = (k1L)2, and c2 = 2c3 = (k2L)2, with L denote the
dynamic range of the pixel values (L= 255 for 8-bit images), k1 = 0.01 and k2 = 0.03 are
two constants determined by the authors to avoid instability in homogeneous regions.
Finally, Wang et al. get the specific form of the SSIM between two corresponding
patches in two images as:

SSIM(xi,yi) = (2µxµy + c1)(2σxy + c2)
(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2) (1.12)
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In this chapter, we first make a comprehensive resume of the development of the
image restoration methods in the state-of-the-art in section 1. After that, we will present
some background information and preliminary knowledge of direct relevance to our
researches in this thesis in section 2.

1 State-of-the-art Image Restoration

The history of image restoration began very early when image quality enhancement
started to attract much attention in many applications of satellite imagery and remote
sensing in the years 1970s. Several contributions have been made in the literature in
solving the image restoration problem in (1.1), which aim to estimate the latent image
x from its degraded observation y such that the original information like edges, image
details, etc., can be preserved.

Image restoration techniques can be categorized into three main groups: the local
filtering-based methods, the model-based methods and the discriminative learning-based
methods. In this chapter, we make a comprehensive overview on the state-of-the-art of
image restoration.

1.1 Filtering-based image restoration

An early and simple image restoration approach is known as the local filtering-based
methods because they estimate the true value of each pixel in the latent image x by
using a weighted combination of its around neighbor pixels found in a local windows in
the degraded image y. The weights are often specified by the coefficients of a spatial
filter kernel, whose values are dependent on the spatial distance between two pixels, or
by an interpolation function.

In the last few decades, many authors developed various simple local kernels for image
restoration applications such as Gaussian filter [10] in image denoising, fixed-function
kernels like nearest, bilinear and bicubic interpolation [11, 12] in image super-resolution,
etc. Later, several researchers investigated structure adaptive filters with regularized
weights and sizes such as bilateral filter [13], anisotropic filtering [14], SUSAN filter [15],
least-mean-square adaptive filter [16], steering kernel regression [17], and edge-guided
interpolation kernels [18, 19] to better preserve image structures such as edge, corner,
etc., and thus enhance the reconstruction results.

In spite of the low complexity and easy implementation, the major drawback of
local filtering methods is that they are very sensitive to heavily degraded factors such
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as high noise level or large upscaling factor because the correlation between neighbor
pixels has been severely corrupted and thus reduce the accuracy of the estimation of
pixels in latent image.

1.2 Model-based image restoration

Exploiting only the information of pixels in a local window of the degraded image y,
as proposed in the local filtering-based methods, is not enough to produce a reliable
estimation of the pixels in the latent image x. In order to achieve a better reconstruction,
we need to be provided with some prior knowledge about some properties of the latent
image such as the statistical distribution in image space to regularize the restoration
process.

Under the Bayesian MAP framework and the assumption of additive Gaussian noise
corruption on image, the image restoration problem is described as:

x̂ = argmax
x

p(x|y) = argmin
x

{1
2 ||y−Hx||22−λ log(p(x))

}
(2.1)

p(x) is called the prior model of x because it characterizes the distribution of the latent
image in a specific space and is independent of the observation y. Several efficient image
priors have been proposed in the literature for solving the image restoration problem
in (2.1). Many researchers investigated the prior models of the whole image by studying
some properties of images in a specific domain.

One characteristic of the images is that their total variations (TV), which measure
how much the image intensities change between the adjacent pixels and can be defined
as the sum of absolute of the image gradient, are often small with good quality images.
When an image is degraded, e.g. corrupted by noise, its TV will dramatically increase.
A representation class of image restoration method, named TV-based, exploits the TV
of images as a prior model of p(x) to regularize the TV of the degraded image y, with
the aim of matching the TV of reconstructed image close to that of latent image x [20].

Another approach is to study the distribution of images in the wavelet domain
which is generated by a set of fixed basis. An image will be represented by the wavelet
coefficients in the wavelet domain. Several studies [21–24] have been proposed in the
literature to learn a prior model from the distribution of wavelet coefficients of the
images.

Learning image priors and performing restoration over the whole image may require
tremendous computational effort. Instead, a considerable number of researchers at-
tempted to work with small patterns in the images, which are known as image patches.
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By observing the properties and distribution of patches in several images, numerous
priors of image patches have been proposed in the state-of-the-art. For example, the
nonlocal self-similarity and the low-rank approximation are based on the repetition of
patches in different places within an image. The sparse representation and Gaussian
mixture model are built to represent the distribution of patches in a vector space
generated by a set of fixed atoms. Additionally, there are many endeavors to combine
available priors to benefit their advantages and lead to more effective image restoration
performances.

1.2.1 Total variation

Total variation (TV) is a well-known, early developed class of methods for image
restoration. The TV of an image x relates to the gradient of image and can be
formulated as:

TV (x) = ‖Dx‖1 (2.2)

where D denotes the gradient operator.

In the pioneering work of TV restoration, Rudin et al. [20] exploited the TV as a
prior model p(x) of the image to regularize the denoising process and minimize the TV
of the reconstructed image. More specifically, the problem in (2.1) was written as

x̂ = argmin
x

{1
2 ||y−Hx||22 +λ||Dx||1

}
(2.3)

Many algorithms have been developed for solving the problem in (2.3), including
dual formation [25], Newton-based method [26], alternating direction method [27], split
Bregman algorithm [28], etc.

One of the shortcoming of the TV methods is the appearance of staircasing artifacts
in slanted regions. Many researchers [29–32] modified the TV model by adding variety
of higher-order derivatives of image to reduce the staircasing effects and produced more
pleasant reconstruction results. Another drawback of the TV is that it does not consider
the orientation of image gradients and thus is not very suitable for images with rich
textures where the edges and contours exhibit dominant directions. To overcome this
issue, Bayram and Kamasak [33] proposed the directional total-variation (DTV) by
introducing the weights in the image gradient coefficients depending on their directions.
The strategy of Bayram significantly improved denoising performance on nature texture
images with dominant direction. Later, Wang et al. [34] exploited the DTV in the image
super-resolution and obtained promising results.

The TV regularization showed its effectiveness for restoring of piecewise-smooth
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regions while having the capacity of preserving the sharp edges in the image. However,
due to the minimization of TV, the small details in degraded image can also be considered
as noise and thus will be remove during the reconstruction. In order to better preserve
the image details, a combination of the variational approach and another prior model
such as the nonlocal self-similarity [35, 36] has been proposed in recent years and
achieved promising performances in image restoration.

1.2.2 Wavelet-based image restoration

A critical landmark in the evolution of image restoration was the development of the
wavelet theory in the late of 1980s, in which an image is transformed into a wavelet
domain generated by a set of orthogonal basis functions, which are built from a mother
wavelet with different dilations and translation. Let W ∈RN×N denote the orthogonal
matrix constituted of the wavelet basis. In the wavelet domain, an image x ∈ RN

is represented by the wavelet coefficients αw determined as αw = Wx ∈ RN , which
is commonly divided into a low-frequency sub-band (which corresponds to the low-
frequency contents of images such as smooth regions, blurred structure) and a set of
high-frequency sub-bands (that convey the high-frequency information in image like
edges, texture, and noise, which are the most sensitive to human vision). Typically, the
image restoration is performed on the high-frequency sub-bands.

Instead of studying the prior model p(x) in the image domain, many researchers
investigate in analyzing the distribution of wavelet coefficients and thus introducing
prior models in the wavelet domain. A considerable success in application of wavelet
transform is in the image denoising. The noising model can be derived from (1.1), with
H is an identity matrix, as y = x + η . Applying the wavelet transform on these images,
we have:

Wy = Wx + Wη = αw + v (2.4)

where Wy ∈RN is the wavelet coefficients of the noisy image, αw and v are the wavelet
coefficients of the unknown clean image x and the residual noise, respectively. The
objective of wavelet-based denoising is to estimate α̂w from the wavelet transform Wy
of the noisy image. Finally, the latent image x can be recovered by applying the inverse
transform x̂ = W−1α̂w. Under the Bayesian perspective and MAP framework, we have:

α̂w = argmax
αw

{p(αw|Wy,v)}= argmax
αw

{p(Wy|αw,v) + p(αw)} (2.5)

Determining a priori model p(αw) on the statistic properties of wavelet coefficients is
crucial for solving the problem in (2.5). Several attempts [21, 23, 24, 30] have been made
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in the literature to learn the prior model of p(αw) based on the observation of wavelet
coefficients of multiple standard images. A fascinating characteristic of the wavelet
transform is that the wavelet coefficients αw of a clean image, in the high-frequency
sub-bands, often exhibit non-Gaussian behavior with a sharp peak centered around
zero and heavy-tailed distribution, which is close to sparse models. That means, only
a small portion of wavelet coefficients of image having high-magnitude (at the tails of
the distribution) which accounts for most energy of the image, while a large ratio of
coefficients (around center of distribution) are very small or close to zero. In practice, the
low-magnitude wavelet coefficients relate to noise and small details in image. Therefore,
by performing a shrinkage to eliminate small wavelet coefficients, we can remove the
noise (and certainly, the small details) from the image.

Many studies have been carried out on exploiting mathematical models to represent
the sparse distribution of wavelet coefficients such as the Laplacian model [21, 37],
the generalized Gaussian distribution [22], the Gaussian scale mixture model [23] or
bivariate distributions [24]. Based on the proposed sparsity models, numerous shrinkage
strategies were also introduced for noise reduction, e.g. VisuShrink [21], SureShrink [37],
BayesShrink [22], BiShrink [24].

The wavelet transform is also exploited in image super-resolution [38–42]. A common
feature of wavelet-based super-resolution reconstruction is the assumption, without loss
of generality, that the input low-resolution image y is considered as the low-frequency
sub-band of the wavelet decomposition of the latent high-resolution image x. Therefore,
the main purpose is to reconstruct the other missing high-frequency spectra of the latent
image x and then apply the inverse wavelet transform (W−1) to obtain the estimation of
x. One representative approach is to deploy the patch-based representation methods such
as the sparse representation or external nonlocal self-similarity, which will be discussed in
the next sections, to reconstruct the wavelet coefficients in the high-frequency sub-bands.

The wavelet-based methods have shown their efficiency for image restoration, in
particularly for denoising and super-resolution. However, when using shrinkage methods
to reject the small wavelet coefficients, we not only separate the noise from the image,
but also discard the small details in the image. As a result, the reconstructed image
can be oversmoothed or smeared out the details.

1.2.3 Sparsity-based learning image restoration

Developing an effective prior over the whole image and then solving the restoration
problem is a challenge because of high computation complexity. Another high-regarded
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class of method is to study the image restoration problem on image patches, from which
the learning of image priors, as well as the optimization process can be more easily
performed. In the last decade, the patch-based image restoration methods has been
received remarkable research interest. In the context of this thesis, we also concentrate
on studying the image restoration problem using the patch-based approaches.

In these methods, an image is partitioned into a set of overlapping image patches,
where each patch can be considered as an independent signal or in a correlation with other
similar patches in the image. By this way, the reconstruction will be performed on each
patch or on collaborative neighborhood patches. Let denote {yi|yi ∈Rm; i= 1, . . . ,M}
is the set of M overlapping patches in the degraded image y. Our aim is to find a latent
version xi ∈Rn of each patch yi that satisfies:

yi = Hixi + ηi (2.6)

where ηi is the additive noise in the patch yi, and Hi denotes the degradation matrix
on xi.

Without loss of generality, the motivation of patch-based methods is to represent
each latent image patch xi by a linear combination of K basis vectors, which are also
called atoms, {d1, . . . ,dj . . . ,dK |dj ∈ Rn} of a dictionary of patches D ∈ Rn×K . This
means xi = Dαi, where αi ∈ RK is called the representation coefficients vector of xi.
The problem in (2.6) can be rewritten as

yi = HiDαi + ηi (2.7)

The restoration of a degraded image patch yi is equivalent to estimate a coefficients
vector αi that satisfies the degradation model. Under the MAP framework and Gaussian
noise assumption, we have:

α̂i = argmin
αi

{||yi−HiDαi||22−λ log(p(αi))}= argmin
αi

{||yi−HiDαi||22 +λΦ(αi)}

(2.8)

In the last ten years, the sparse representation is one of the most highly regarded
class of methods for tackling patch-based restoration of images. The principal concept
of this approach is based on an assumption that each image patch xi can be described
as a linear combination of few atoms in the dictionary [2, 43–45]. This leads to the
prior model of αi in (2.8) which can be formulated as Φ(αi) = ||αi||0, where the pseudo
norm `0 counts the number of non-zero elements of the vector. Another well-known
approach is to assume that the distribution of representation coefficients αi in the vector
space of dictionary D exhibits the heavy-tailed forms and thus can be fitted by some
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well-known mathematical distributions such as the Laplacian model [1, 3, 46–50], with
Φ(αi)∝ λ||αi||1, or the hyper-Laplacian model [51–57], which leads to Φ(αi)∝ λ||αi||p
with 0 < p < 1. Likewise, the collaborative representation with `2-norm regularized
least squares, Φ(αi)∝ λ||αi||2, has been studied in many image processing task such as
recognition [58], super-resolution [59–62] and achieve competitive performances.

Though being useful and popular, `0 or `1 based sparsity priors have several lim-
itations, e.g., they fail to capture complex sparse structures. As a result, the elastic
net has been proposed [63], in which the regularization constraint can be written as
R(αi) = λ2||αi||22 +λ1||αi||1, where the `1 part (||αi||1) generates a sparse model, and
the `2 term (||αi||22) encourages group selection. The elastic net is also convex, which
can also be efficiently solved by many solvers, e.g., LARS-EN [64].

Despite the impressive performances in image restoration applications, one short-
coming of the sparse models is that they may fail to describe the true distribution of
image patch in the vector space generated by atoms of the dictionary D. Therefore,
exploring a prior model which can more accurately present the true distribution of image
patches can help to improve the quality of image recovering. In chapter 5 and 6, we
investigate mathematical models of piece-wise constant function and Gaussian mixture
model to precisely characterize the statistical distribution of patches and apply to restore
a degraded image.

1.2.4 Nonlocal self-similarity

One of the most remarkable priors for patch-based image restoration is the so-called
nonlocal self-similarity (NSS), which is motivated by the rich redundancy of local
informations within an image. Based on the fact that for each patch, we can find many
similar versions across the whole image, Buades et al. [65, 66] proposed a pioneer work
named nonlocal means (NLM) to gather repeating structures in a given image and
perform a weighted filtering to suppress the noise. The basic idea of NLM method is
that each pixel can be restored by a weighted average of other pixels over a large window
in the degraded image, where the weights are determined by the similarity between the
local patches surrounding these pixels. The NLM filter is able to remove additive white
noise while preserving sharp edges and fine texture details and has attracted significant
attention in the image processing community at the time of its introduction. Recently,
several variants of NLM have been proposed [67–70] to improve the adaptivity of the
nonlocal filter.

Image restoration methods with NSS priors have achieved competing performance
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in the literature. However, they have some drawbacks. First, the recovering of each
degraded patch is built on the weighted graph based on the similarity between image
patches, which can be disturbed in many cases, e.g. heavy noise corruption. Thus it
can produce inaccurate weights and lead to inexactness in reconstruction. Another
shortcoming of this approach is that the performance highly depends on the number
of matched patches used for reconstruction. To overcome these weakness, many re-
searchers [1, 4, 61, 62, 71–73] have investigated a combination of nonlocal self-similarity
and sparsity priors in the same framework and attained impressive results. We will have
a brief discussion on these approaches in section 1.2.7.

A brilliant variant of the nonlocal self-similarity is called the external similarity,
which is based on the fact that the similar local information can be found in different
images, as demonstrated in chapter 1. Several studies have been made in the literature
to exploit the redundancy across images for image restoration. In [74], Chang et al.
prepared a database of low- and high-resolution image patches from a set of good
quality images (called standard images) for image super-resolution. Each patch in
the low-resolution image can be approximated by a weighted average of its matched
patches retrieved from database. After that, these weights are used to estimate the
latent high-resolution patch. The concept of the external similarity is also exploited
in recent researches in the image super-resolution [61, 62, 73] where the database of
patches are divided into groups and the mappings between low- and high-resolution
feature spaces are constructed on each group with the helps of sparse models. Another
remarkable approach is to learn a prior model or study a property (e.g. the statistical
distribution) of image patches in a database extracted from the standard images. Due to
the redundancy of image contents, we can expected that every patch in the reconstructed
image is likely followed the prior of patches in the database. Therefore, we can use
the learned prior to regularize the image restoration process and recover a degraded
image. A glorious contribution in this approach is to take advantage of the mixture
model to simulate the probability distribution of image patches, and will be discuss in
subsection 1.2.6.

In chapters 3 and 4 of this thesis, inspired from the framework in [1, 74], we exploit
the external nonlocal similarity to establish a large dictionary of patches randomly
extracted from a set of standard images and then select a subset of similar patches
from the dictionary to reconstruct each patch in the degraded image. After that, we
investigate the use of some mathematical models such as the piece-wise constant function
(chapter 5) or the Gaussian mixture model (chapter 6) to estimate a prior image model
from the database of patches and then adopt them to restore a degraded image. The
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external nonlocal similarity and sparsity are the core ideas of our work.

1.2.5 Low-rank approximation

Another remarkable image prior derived from the nonlocal self-similarity property of
images, is known as the low-rank approximation, which aims to recover an underlying
low rank matrix from its degraded observation. The low rank terminology means that
the observed data can be represented in a lower dimensional subspace with some different
outliers corruption sources.

Recently, patch-based low-rank minimization methods for image/video denoising
have achieved great success [75–82]. For each patch yi in the underlying image y,
a set of its nonlocal similar patches across the image is first retrieved. Then these
similar patches (including yi) are stacking into a matrix Yi, where each column of Yi

corresponds to an image patch. The degraded model is described on each group of
patches as:

Yi = Xi + Vi (2.9)

where Xi is a matrix containing clean versions of patches (columns) in Yi and Ni is
the residual noise in these patches. It is intuitive that the matched patches in Yi have
close image structures, thus the noiseless version Xi should lie in a low dimensional
subspace. The denoising problem is performed on each of group of patches Yi under
the constraint of minimization of the rank of Xi as:

X̂i = argmin
Xi

{rank(Xi)} subject to ||Yi−Xi||22 ≤ ε (2.10)

where ε is a positive constant related to the noise level in the observed image y. Since
direct rank minimization in (2.10) is NP hard, non-convex and difficult to solve, the
problem is generally relaxed by substitutively minimizing the nuclear norm of the
estimated matrix Xi. The nuclear norm of a matrix Xi, denoted by ||Xi||∗, is defined
as the sum of its singular values, e.g. ||Xi||∗ =∑

k |σk(Xi)|, where σk(Xi) is the k-th
singular value of Xi. Using the Lagrange multiplier, the denoising is described as:

X̂i = argmin
Xi

{||Yi−Xi||22 +λ||Xi||∗} (2.11)

The optimization of (2.11) can be obtained by off-the-shell algorithms such as the
hard thresholding filter with principle component analysis (PCA) or singular value
decomposion (SVD) [75, 76, 83, 84]. The nuclear norm minimization (NNM) approach
has been attracting significant attention due to its rapid development in both theory and
implementation. In recent years, many researchers investigate to improve the flexibility
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of the original nuclear norm, by proposing the weighted nuclear norm [77, 81, 82] or
Schatten p-norm minimization [80], and achieve competitive denoising performances in
the state-of-the-art.

1.2.6 Gaussian mixture model (GMM)

Under the Bayesian MAP framework (1.5), learning good image priors is of most
importance for the success of an image restoration method. In the literature, mixture
models have attracted considerable attention due to their adaptability and flexibility in
describing the characteristic of signals by assuming that the signals are generated by a
mixture of probability distributions. Among various contributions, Gaussian Mixture
Models (GMMs) have shown their powerful ability in many applications such as image
classification and segmentation [85–88]. Moreover, several studies investigated to exploit
GMM as an image prior p(x) to regularize the inverse optimization problem in (1.5).
Portilla et al. [23] have attained impressive image denoising results by using the Gaussian
scale mixture, which is derived from the GMM by assuming different scale factors in
the mixture of Gaussians, to model the distribution of wavelet coefficients of an image.
Recently, by considering that natural images are non-Gaussian and image patches are
regarded as samples of a multivariate random variable, many researchers [5, 89–97] used
Gaussian mixture models (GMMs) to characterize the statistical distribution of image
patches and obtain state-of-the-art denoising and image restoration results.

In [5], Zoran et al. modeled the distribution of patches in the database by a mixture
of K Gaussian components as:

p(xi) =
K∑
k=1

πkN (xi|µk,Σk) (2.12)

where πk is the mixing weight with ∑K
k=1πk = 1, µk,Σk are the mean and covariance

matrix of the k-th Gaussian component. The generic GMM prior in (2.12) is then
exploited to regularize the denoising problem under the Bayesian MAP framework.
In [93], Xu et al. combined the nonlocal self-similarity prior and GMM in a unified
scheme by considering that a group of similar patches in an image should belong to
the same Gaussian component and proposed a collaborative patch-based denoising
algorithm called patch-group-based GMM to learn nonlocal self-similarity prior from
standard images and then adopted them to recover an underlying image.

Another noticeable GMM-based denoising approach is to learn a GMM from the noisy
observation [90, 92] by clustering patches in the degraded image into multiple groups
via nonlocal self-similarity and learning a Gaussian distribution for each cluster. An
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iterative MAP expectation-maximization algorithm was also proposed to alternatively
update the reconstructed image and parameters of the GMM.

Because of the large space of image patches, the generic GMM learned from standard
images may not be able to model every image patch well. Some image-specific patches
of a given image will be outliers in the view of a generic GMM prior and thus can not
be well reconstructed using that GMM. Many attempts have been made in order to deal
with this issue [94, 95, 97] by unifying internal and external GMM image patch priors. A
generic GMM model is first trained from a collection of patches randomly sampled from
standard images and then is adapted to the degraded image by simultaneously adding
additional components and refining the component parameters. Although it is very
effective for restoring images, a shortcoming of the GMM is the high runtime complexity
making them ill-suited for most practical applications. In [98], Parameswaran et al.
proposed an approximation algorithm to dramatically speed-up the implementation of
the GMM in image denoising and deblurring, while incurring a negligible drop in the
quality of reconstructed image.

Multiple variants of the Gaussian mixture models have been proposed in the literature
for image restoration, especially for image denoising. An important characteristic of
the GMM-based restoration is that a complete GMM is learn from the sample of image
patches. In the reconstruction process, only one prominent Gaussian component is
selected to represent the distribution of each patch in the degraded image. However,
to our knowledge, it lacks clear evidences on the use of GMM in the reconstruction
of an image. In this thesis, we made a contribution on justification of the number of
useful Gaussian components exploited for recovering patches in the degraded image.
The details of our proposal will be presented in chapter 6.

1.2.7 Combination of multiple image prior models

Different image priors characterize varying and complementary aspects of natural image
statistics, and thus it is possible to combine multiple priors to improve the image
restoration performance. In the last few years, numerous studies [1, 4, 61, 71–73,
99–103] have investigated the combination of nonlocal self-similarity (NSS) and sparsity
priors in a unified framework for image restoration. For example, Dabov et al. [99]
proposed a denoising method called BM3D by exploiting the NSS to enhance the sparse
representation in transform-domain and achieved state-of-the-art denoising performance.
By constructing 3D data from an orthogonal transform of groups of similar image
patches and carrying out a 3D collaborative filtering via thresholding and Wiener filter,
the residual noise in image patches can be effectively removed. Later, in [4], Dong
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et al. proposed an interesting image restoration model named nonlocally centralized
sparse representation (NCSR). Based on the NSS prior, Dong suggested a scheme to
estimate the sparse coefficients of the original image and defined a sparse coding noise
regularization (in `1-form), which is the difference between those estimates and the
sparse coefficients of the observed image, to improve the performance of sparsity-based
image restoration.

Many researchers [100, 101] offers a powerful mechanism of combining local sparsity
and nonlocal self-similarity of images simultaneously in a unified framework which is the
so-called group sparse coding. By partitioning the similar patches in the degraded image
into multiple groups and assuming that the patches in the same group are encouraged
to be sparsely represented by a similar set of the dictionary atoms, we can ensure that
the reconstruction of matches patches should have the same image structure, and thus
reduce the artifacts in the recovered image.

Another effective approaches [1, 50] joined the external similarity and sparsity in a
same scheme for image restoration. In [1], Trinh et al. exploited the external similarity to
construct a database of patches from the high quality images (called standard images).
After that, for each patch yi in the degraded image, the authors retrieved a local
dictionary consists of most similar patches in the database, from which the sparse
representation was performed to obtain an estimate of the latent patch xi. A part of our
work in this thesis (chapter 4) was inspired from the method [1] in which we proposed a
more efficient patch-selection step for searching the similar patches and thus improve
the reconstruction performances.

1.3 Discriminative learning-based image restoration

Recently, the discriminative learning methods for image restoration has been attracting
considerable attentions due to the blooming of artificial intelligence in computer vision.
The concept of these methods is to learn a compact inference or a mapping function
from a training set of degraded-latent image pairs, which then is used to reconstruct an
underlying image. The general model of learning process can be written as

argmin
Θ

L(x̂,x) s.t. x̂ = F(y,H;Θ) (2.13)

where F(·) is the inference or mapping function with parameter set Θ, and L(·) is the
loss function to measure the similarity between the output image x̂ and the ground-truth
image x of the training set. Several attempts have been made in the literature which
typically exploit the deep neural networks to represent the mapping function F(·) such
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as the convolutional neural network (CNN) [104–112], multi-layer perceptron [113],
stacked sparse denoising autoencoders [114, 115]. After training process and obtaining
the parameter Θ of the neuron network, we can recover the unknown latent image x̂ from
its degraded observation y by x̂ = F(y,H;Θ). In the last decade, the discriminative
learning methods using the deep convolutional neural network have achieved great success
and led the state-of-the-art performances in various image restoration applications.

In a seminal work on deep learning SR, Dong et al. [105, 116] first initialized
the low-resolution (LR) image to a high-resolution (HR) image using a single filter,
commonly bicubic interpolation, and then learns a CNN to predict the residual between
the initialized HR image and the ground-truth image. In the super-resolution step, an
underlying LR image is upscaled with bicubic interpolation and followed up by adding
the residual estimated from the CNN model. Later, Kim et al. [106] proposed to increase
the number of hidden layer in the convolutional neuron network and cascaded small
filters many times in this deep network structure to exploit contextual information
over large image regions and noticeably improve the accuracy and visual quality of
reconstructed image. Another very effective approach is to establish a deep recursive
convolutional network [107, 117], in which the same convolutional layer is repeatedly
applied multiple times, to efficiently reuse weight parameters while exploiting a large
image context. Another efficient deep learning approach is to directly predict the missing
HR pixels from the LR image, as proposed in [108], in which the handcrafted bicubic
filter in the SR pipeline is replaced by more complex upscaling filters specifically trained
on each feature map in the LR space via a sub-pixel convolution layer.

Recently, neuron network has also been successfully used in image denoising. In [104],
a convolutional neuron network is learned from a training set of noisy-clean image pairs
to map a degraded image to the reconstructed image. Chen and Pock [118] proposed a
Trainable Nonlinear Reaction Diffusion model to train filters and influence functions in
feed-forward deep network by unfolding a fixed number of gradient descent inference
steps. Instead of considering the whole image, mapping functions between noisy patches
and their noise-free versions extracted from standard images can be learned via multi
layer perceptrons [113] or Stacked Sparse Denoising Auto-encoder model [114] and
applied to image denoising.

Despite the very competitive performance of the discriminative model learning for
image restoration, its shortcoming is that the parameters Θ and mapping functions
F(. . .) are trained for each specific degradation process (e.g. a determined noise level).
Thus, this can restrict the flexibility of application capacity of the trained models for
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different image restoration tasks.

2 Methods related to our work

In this section, we present significant preliminary knowledges and background infor-
mation of some related works and directly relevant approaches that will be utilized or
examined in the thesis. We commence with a quick description of the super-resolution
method developed by our colleagues in the LAGA and L2TI labs named SRSW [1],
which inspires our researches proposed in chapter 3 and chapter 4. Afterwards, we briefly
summarize the principal concepts of two well-known competing super-resolution methods
called Neighbor Embedding (NE [74]) and Super-Resolution Via Sparse Representation
(ScSR [3]), which are used to evaluate the performance and effectiveness of our proposed
algorithms in chapter 3 and 4. Then, we present a résumé of the image restoration
method using Expected Patch Log Likelihood (EPLL [5]), which coincides with one
of our specific test cases proposed in chapter 6. After that, we will follow up with a
presentation of the celebrated K-SVD algorithm [2] using for training a dictionary of
patches, as well as a comprehensive comparison for dictionary selection mentioned in
our proposed methods discussed in chapter 5 and chapter 6. We finish this section with
the description of the Earth Mover’s Distance, which is used as a metric for measuring
the similarity between two image patches in chapter 4 of this thesis.

2.1 Image Super-Resolution by Sparse Weight (SRSW)

In [1], Trinh et al. proposed a patch-based super-resolution method, named Super-
Resolution by Sparse Weight (SRSW), for recovering each high-resolution image patch
xi ∈ Rn from its degraded low-resolution version yi ∈ Rm, which is assumed to be
generated by the following model (derived from (1.2)):

yi = SiBixi + ηi. (2.14)

where Bi and Si are the blurring and downsampling operations on image patch, respec-
tively. ηi ∼N(0,σ2) is the residual noise in each patch yi. The SRSW method consists
of two main phases: Building of dictionaries and Super-resolution reconstruction.

Dictionary construction

The authors constructed a couple of exhaustive high-resolution dictionary Dh and
low-resolution dictionary Dl from a list of available standard (clean, high resolution)
images {xs} as:
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i. Create a high-resolution database {xsk|xsk ∈Rn;k = 1, . . . ,P} by randomly extract
a set of P high-resolution patches from standard images.

ii. Generate the low-resolution database of patches {ysk|ysk ∈ Rm;k = 1, . . . ,P} by
downsampling the high-resolution database with the degrading factors: ysk =
SiBixsk.

iii. Obtain the couple of high- and low-resolution dictionaries by normalizing the
databases of patches:

Dh = {dhj |dhj =
xsj∥∥∥xsj∥∥∥2

, j = 1, . . . ,P}

Dl = {dlj |dlj =
ysj∥∥∥ysj∥∥∥2

, j = 1, . . . ,P}
(2.15)

Super-resolution

The SRSW method is developed based on a core idea that the distributions of
high-resolution patches and their corresponding low-resolution version in two vector
spaces generated by high-resolution dictionary Dh and low-resolution dictionary Dl are
identical. That means, a high-resolution patch and its corresponding low-resolution
version share the same representation coefficients vector. Thus, for each low-resolution
patch yi, the authors found the representation coefficients vector α̂i under the Bayesian
MAP framework

α̂i = argmax
αi

p(yi|Dl,αi)p(αi) (2.16)

and then used it as to decode the high-resolution dictionary Dh to get an estimation of
the latent high-resolution image patch as x̂i = Dhα̂i.

In [1], Trinh et al. adopt the sparse Laplacian distribution as a prior model of
p(αi). Moreover, they proposed a weighting vector wi, which measured to the similarity
between yi and the atoms dlj of the dictionary, to weight the sparse code αi. Hence,
the MAP problem in (2.16) is formulated as:

α̂i = argmin
αi

{∥∥∥yi−Dlαi

∥∥∥2

2
+
∥∥∥wT

i αi

∥∥∥
1

}
(2.17)

However, solving the problem (2.17) with the whole dictionary Dl with very large
number of P atoms is a really computational challenge. The authors introduced a
patch-filtering step to select a smaller set of most similar atoms for recovering the
underlying image patch yi. Hence, for each low-resolution patch yi, a couple of local
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dictionaries Dh
i and Dl

i were collected from the large dictionaries Dh and Dl:

Dl
i = {dlj ∈Dl|d(dlj ,yi)< ri}

Dh
i = {dhj ∈Dh|d(dlj ,yi)< ri}

(2.18)

where ri is a positive threshold chosen for each patch yi in such a way that the first K
atoms with smallest distances d(dlj ,yi) are selected (Dl

i ∈Rm×K ,Dh
i ∈Rn×K). d(dlj ,yi)

is the distance between the atom dlj and yi, and is defined in equation (26) in the
paper [1] as:

d(dlj ,yi) =
∥∥∥yi−µildlj∥∥∥2

2
+
∣∣∣E(yi−µildlj)

∣∣∣+ ∣∣∣Var(yi−µildlj)−σ2
∣∣∣ (2.19)

with µil = E(yi)/E(dlj). Thus, the problem (2.17) is rewritten on local dictionary Dl
i

as:
α̂i = argmin

αi

{∥∥∥yi−Dl
iαi

∥∥∥2

2
+
∥∥∥wT

i αi

∥∥∥
1

}
(2.20)

In addition, the weighting vector wi in (2.20) is now determined on the local
dictionary Dl

i, wi = [wi(1), . . . ,wi(j), . . . ,wi(K)]T , in term of distances d(dlj ,yi) as:

wi(j) =

e
d(dlj ,yi) if d(dlj ,yi)> γmσ2

d(dlj ,yi) otherwise
(2.21)

where γ is a positive constant.

After solving (2.20) with multiplicative updates algorithm to achieve the optimal
value of α̂i, the latent high-resolution image patch can be estimated by x̂i = Dh

i α̂i.

The above restoration process is repeated for every patches yi in the degraded image
y. After that, the super-resolved patches x̂i are aggregated to obtain a coarse estimate
of the high-resolution image x. The authors finally apply a back-projection process to
enhance the quality of the reconstructed image.

2.2 Image Super-Resolution through Neighbor Embedding (NE)

Chang et al. proposed in [74] a patch-based super-resolution method called Neighbor
Embedding (NE) to recover each patch yi in the low-resolution image y with a support
of standard images {xs}. Generally, this method can be divided into two phases:
construction of dictionaries and super-resolution.

Construction of dictionaries

From the list of standard high-resolution images {xs}, a couple of exhaustive
dictionaries, which is identical to the database of patches, is created as follows:
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i. Generate a low-resolution image ys for each standard image xs by blurring (with
operator B) and then downsampling (using operator S) as ys = SBxs.

ii. Randomly collect P couples of low-resolution patch ysk and its high-resolution
version xsk from the set of low- and high-resolution images {ys,xs} to form the
couple of low-resolution dictionary Dl and high-resolution dictionary Dh.

Dl = {dlj |dlj ≡ ysj , j = 1, . . . ,P}

Dh = {dhj |dhj ≡ xsj , j = 1, . . . ,P}
(2.22)

Super-reconstruction

Performing the patch super-resolution on very large dictionaries is difficult and
time-consuming. Thus Chang et al. proposed to retrieve a couple of local dictionaries
Dl
i ⊂ Dl and Dh

i ⊂ Dh for recovering each low-resolution patch yi in the degraded
image y:

Dl
i = {dlj ∈Dl|

∥∥∥dlj −yi
∥∥∥

2
< ri}

Dh
i = {dhj ∈Dh|

∥∥∥dlj −yi
∥∥∥

2
< ri}

(2.23)

The positive constant ri was set for each patch yi such that only first K atoms with
smallest Euclidean distance to yi is selected.

The NE method was developed based on two assumptions:

• The image patches form a manifold, and a set of similar patches lie on or close
to a locally linear part of the manifold. Thus, each image patch yi (or xi) can
be express by a linear combination of its neighbors in the local dictionary Dl

i (or
Dh
i ), e.g. yi = Dl

iαi with αi ∈RK is a weighting vector.

• The corresponding patches in low- and high-resolution manifolds share the same
weighting vector αi. Thus the authors can find αi from the relationship between yi
and Dl

i and then apply it to estimate the latent high-resolution patch xi = Dh
i αi.

For each low-resolution patch yi, Chang found the weighting vector αi = [αi(1), . . . ,αi(j), . . . ,αi(K)]T

by solving the least mean square reconstruction error:

α̂i = argmin
αi

∥∥∥yi−Dl
iαi

∥∥∥2

2
s.t.

K∑
j=1

αi(j) = 1 (2.24)

Hence, the latent high-resolution image patch can be estimated as x̂i = Dh
i α̂i. The

super-resolution was performed for every patch yi in the degraded image, then Chang
obtained the super-resolved image x̂ by aggregating the overlapping regions of the
attained patches x̂i.
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2.3 Image Super-Resolution Via Sparse Representation (ScSR)

In [3], Yang et al. proposed a patch-based dictionary learning method, named ScSR, for
enhancing the resolution of each low-resolution patch yi. This method is composed of
two main phases: dictionary learning and super-resolution.

Dictionary learning

Instead of constructing a large couple of dictionaries from the database of patches,
in which we have to perform a patch-filtering step to select a couple of local dictionaries
for each low-resolution patch yi as in the NE or SRSW method, Yang et al. proposed
to jointly train two smaller low- and high-resolution dictionaries with the support of
sparse model.

From the list of standard high-resolution images {xs}, Yang et al. generated the
corresponding low-resolution images {ys} by blurring and downsampling as ys = SBxs.
After that, a set of P couples of low- and high-resolution patches {ysk ∈Rm,xsk ∈Rn|k =
1, . . . ,P} were randomly collected from the training images {ys,xs}. From the database
of patches, the authors learned a couple of low-resolution dictionary Dl ∈ Rm×K

and high-resolution dictionary Dh ∈Rn×K in the Bayesian MAP perspective and the
Laplacian prior model of the probability distribution of image patches. The fundamental
of the ScSR method was to assume that the representation of each low-resolution
patch ysk and its corresponding high-resolution patch xsk under the low-resolution and
high-resolution dictionaries share the same sparse code αs

k. That means, they can
formulate the problem of determining the dictionaries as

Dl = argmin
Dl,{αsk}


P∑
k=1

∥∥∥ysk−Dlαs
k

∥∥∥2

2
+λ

P∑
k=1
‖αs

k‖1


Dh = argmin

Dh,{αsk}


P∑
k=1

∥∥∥xsk−Dhαs
k

∥∥∥2

2
+λ

P∑
k=1
‖αs

k‖1


(2.25)

Let Ys = [ys1, . . . ,ysk, . . . ,ysP ] ∈Rm×P denote the database of P low-resolution patches,
Xs = [xs1, . . . ,xsk, . . . ,xsP ] ∈Rn×P refer to the database of P high-resolution patches and
As = [αs

1, . . . ,α
s
k, . . . ,α

s
P ] ∈RK×P be the matrix of P representation coefficients vectors.

Yang combined the two objective functions in (2.25), forcing the high-resolution and
low-resolution representations to share the same codes, and obtained:

{Dl,Dh}= argmin
Dl,Dh,As

{ 1
m

∥∥∥Ys−DlAs
∥∥∥2

2
+ 1
n

∥∥∥Xs−DhAs
∥∥∥2

2
+λ

( 1
m

+ 1
n

)
‖As‖1

}
(2.26)
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By defining

Xc =


1√
m

Ys

1√
n

Xs

 , Dc =


1√
m

Dl

1√
n

Dh

 , λ̂= λ

( 1
m

+ 1
n

)
(2.27)

then, the problem in (2.26) can be rewritten as:

Dc = argmin
Dc,As

{
‖Xc−DcAs‖22 + λ̂‖As‖1

}
(2.28)

Therefore, we can use the same learning strategy in the single dictionary case for
training the two dictionaries Dl and Dh. In [3], the authors alternatively updated the
“pseudo” dictionary Dc and sparse code As using the sparse coding algorithm introduced
in [119].

Super-resolution

The super-resolution on degraded image y was performed on each low-resolution
patch yi using the couple of dictionaries Dl and Dh jointly trained from the database
of patches. Firstly, Yang found the sparse code αi of yi in the vector space generated
by low-resolution dictionary Dl by solving the Bayesian MAP problem:

α̂i = argmin
αi

{∥∥∥yi−Dlαi

∥∥∥+λ‖αi‖1
}

(2.29)

Then the estimation of the latent high-resolution image patch xi was obtained as
x̂i = Dhα̂i. The high-resolution patches x̂i were put into the proper locations in the
high-resolution grid and Yang calculated the average of overlapping regions to get the
super-resolved image. An iterative back-projection process was applied on the initial
super-resolution image to enhance the reconstruction quality.

2.4 Image restoration using Expected Patch Log Likelihood (EPLL)

Zoran and Weiss [5] proposed an effective method called Expected Patch Log Likelihood
(EPLL), which learned prior models from standard images to regularize the image
restoration problem that modeled in (1.1). The key idea of this method is to develop an
algorithm such that the patches in reconstructed image are likely to follow the designed
prior, while keeping the reconstructed image still close to the corrupted image.

The proposed method EPLL can be interpreted in the point view of Bayesian
MAP, which maximizes the posteriori probability of the latent image x ∈RN given the
observation y:

x̂ = argmax
x

p(x|y) = argmax
x
{p(y|x)p(x)} (2.30)
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With the assumption of Gaussian noise corruption, the likelihood is described as p(y|x)∝
exp

(
−‖y−Hx‖22 /2σ2

)
. Moreover, Zoran and Weiss construct prior on image patches

{xi ∈Rn|i= 1, . . . ,N} of the image. For more convenience, they denote an image patch
as Rix, where Ri is a matrix which extracts the i-th patch from the image. The prior
statistical model of the whole image can be inferred by assuming that each image patch
is independently draw from a prior model p. Thus p(x) = ∏N

i=1 p(xi) = ∏N
i=1 p(Rix).

The problem in (2.30) can be rewritten in the logarithm form as:

x̂ = argmin
x

λ2 ‖y−Hx‖22−
N∑
i=1

log(p(Rix))

 (2.31)

Direct optimization of the cost function in (2.31) may be very hard, depending on
the prior used. Zoran and Weiss presented an alternative optimization method called
“Half Quadratic Splitting”, in which a set of image patches {zi ∈Rn|i= 1, . . . ,N} are
introduced for the overlapping patches Rix in the latent image x.

x̂ = argmin
x,{zi}

λ2 ‖y−Hx‖22−
N∑
i=1

[
β

2 ‖zi−Rix‖22− log(p(zi))
] (2.32)

where β is a positive fixed value. The authors adopted an iterative manner for solv-
ing (2.32) by alternatively updating the variables as the following framework.

1. Fix x, update the new value for each image patch zi by solving

ẑi = argmin
zi

{
β

2 ‖zi−Rix‖22− log(p(zi))
}

(2.33)

2. Fix {zi}, update x by

x̂ =

λHTH +β
N∑
j=1

RT
j Rj

−1λHTy +β
N∑
j=1

RT
j zj

 (2.34)

3. Repeat step (1) and (2) until reaching the stopping condition.

At an iteration, the current reconstructed image x̂ is fixed and each patch i in
the image x̂ is updated via the optimizing zi in (2.33). After achieving new values of
image patches, the current reconstructed image x̂ will be updated by aggregating the
overlapping regions on image patches and then matching with the degraded image y
using (2.34).

Finding the solution of (2.33) depends on the determination of the prior model
of distribution of image patches in the image. In [5], Zoran and Weiss exploited the
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Gaussian Mixture Model (GMM) to characterize the probability distribution of patches
in a database and expected that the patches in the underlying image x will likely
follow the same distribution. More specifically, they randomly collected a set of P
patches {xsk|k = 1, . . . ,P} from a list of standard images {xs} and assumed that each
patch xsk was drawn from a mixture of finite M Gaussian components {πm,µm,Σm} as
p(αs

k) =∑M
m=1πmN (αs

k|µm,Σm). After learning the parameters of the GMM model,
Zoran and Weiss supposed the prior model of image patches in the reconstructed
image x can be described as p(zi) = ∑M

m=1πmN (zi|µm,Σm). However, solving the
problem in (2.33) is difficult. To tackle this issue, the authors proposed to select only
one Gaussian component from the GMM to model the prior probability of p(zi) and
introduced a scheme for optimizing (2.33) as follows.

i. Given each patch Rix in the current reconstructed image x, calculate the condi-
tional mixing weight γim

γim = πmN (Rix|µm,Σm +σ2
i I)∑M

l=1πmN (Rix|µm,Σm +σ2
i I)

(2.35)

with σi is the standard deviation of residual noise in i-th patch in the current
reconstructed image x, I is an identity matrix.

ii. Select one Gaussian component which has the highest conditional mixing mmax =
maxm γim. Thus the probability distribution of p(zi) in (2.33) is described as
p(zi)∝N (zi|µmmax

,Σmmax).

iii. Solve the problem(2.33) to obtain the new value of zi:

ẑi = (βΣmmax + I)−1 (βΣmmaxRix + µmmax
) (2.36)

In chapter 6 of this thesis, we will analyze the use of GMM as a prior model
of the distribution of representation coefficients of image patches, to regularize the
denoising process. We inherit the same iteration optimization process presented in (2.33)
and (2.34) the EPLL method. At each iteration, we first update each patch in the
current reconstructed image and then aggregate the obtained patches and match the
reconstructed image to the corrupted image to ensure the coherent of image contents
between the recovering image and the degraded image.

2.5 K-SVD: An over-complete dictionary learning for sparse representation

In [2], Aharon et al. proposed a brilliant method, known as K-SVD, for learning
a dictionary D from a training set of P image patches, denoted by Xs = {xsk|xsk ∈
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Rn,k = 1, . . . ,P}, in which the dictionary can well express the structure appearing
in the patches, as well as promote the sparse representation of each image patch
xsk. The fundamental principle of the K-SVD method is to construct the dictionary
D = [d1, . . . ,dj , . . . ,dK ] ∈Rn×K from the training set Xs such that each image patch
xsk ∈ Xs can be approximately represented by only a few number of atoms in the
dictionary. In [2], Aharon et al. study the following objective function:

D = argmin
D,{αsk}


P∑
k=1
‖xsk−Dαs

k‖

 subject to ∀k,‖αs
k‖0 ≤ T (2.37)

where T is a positive constant that constrains the sparsity (number of nonzero entries)
of the representation coefficient vector αs

k.

The authors use an iterative process to alternatively optimize the expression in (2.37).
First, they keep D unchanged and find the sparse code αs

k for each patch xsk in the
training set using the Orthogonal Matching Pursuit (OMP) algorithm [120] as present
in algorithm 2.1. After that, the sparse representation coefficients vectors {αs

k} are
fixed and the dictionary is updated atom by atom, with the support of the singular
value decomposition (SVD) on the representation error corresponding to each atom.
The summary of K-SVD algorithm is presented as follows:

i. Initialization: Set a initial value of dictionary D(0) ∈ Rn×K with `2 normalized
columns. Set iterator J = 1.

ii. Repeat until convergence:

• Sparse coding stage: Fix D(J−1), compute sparse representation coefficients
vector αs

k for each patch xsk in the training set by solving (2.38) using the
OMP introduced in algorithm 2.1.

α̂s
k = argmin

αsk

{
∥∥∥xsk−D(J−1)αs

k

∥∥∥2

2
} s.t. ‖αs

k‖ ≤ T0 (2.38)

• Dictionary update stage: Update each column (atom) di, i = 1, . . . ,K in
D(J−1) by

– Define a group of patches that use di in representation: ωi = {j|1≤ j ≤
N,αs

k(j) , 0}.

– Compute the representation error for all patches in ωi when removing
the di from the dictionary:

Eωi = (Xs
i )ωi −

∑
j,i

αs
k(j)dj (2.39)
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– Apply SVD decomposition Eωi = U∆VT . Update the atom di to be the
first column of U (di = U(:,1)). Similarity, update the corresponding
representation coefficients vector αs

i = ∆(1,1) ∗V(:,1)

• Increase the iterator J = J + 1.

Algorithm 2.1: The orthogonal matching pursuit (OMP)
Input : Image patch xsk, dictionary D, sparse constraint T0, representation error ε

1 Let ω be the index set of the selected dictionary atoms and initialize as ω = ∅
2 while not converged do
3 Compute the correlation of xsk to each dictionary atom dj which is not in ω,

as (xsk)Tdj
‖xsk‖2‖dj‖2

.

4 Pick the atom dj which has largest correlation and include in into the set
ω = ω ∪{i}.

5 Update the representation coefficient αs
k,ω = (DT

ωDω)−1(DT
ωxsk), where

Dω ⊂D contains all the atoms belonging to the set ω, αs
k,ω consists of

non-zero entries of αs
k.

6 Compute the signal residual by subtracting the selected atoms
xsk = xsk−Dωαk,ω.

7 Check stop criterion (|ω|> T0 or
∥∥xsk∥∥2 < ε)

8 end
Output : Sparse representation coefficient vector αs

k

2.6 Dictionary selection

In chapter 5 and 6, we demonstrate that the sparse models may fail to characterize
the true distribution of representation coefficients of image patches in a vector space
generated by atoms in a dictionary. Therefore, we investigate to estimate the probability
distribution of patches in a database extracted from standard images as a prior to
enhance the quality of a noisy image. However, analyzing the distribution of image
patches in different vector space created by local dictionary for each patch y is difficult.
To this end, we construct a unique vector space from one global dictionary D learned
from a training set of patches to recover all degraded patches in an underlying image.
In this subsection, we will discuss on our selection of a global dictionary for image
restoration.

Determining a dictionary D which can convey the local information of the training
set of patches is crucial for the success of an image restoration method. In the literature,
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there are two main categories of the dictionary: the analytical dictionary and the
data-adaptive dictionary.

(a) Airfield (b) Airplane (c) Baboon (d) Baby (e) Barbara

(f) Boat (g) Bridge (h) Cameraman (i) Couple (j) Fruits

(k) Boy (l) Hill (m) House (n) Jellybeans (o) Leaves

(p) Lena (q) Man (r) Monarch (s) Peppers (t) Zelda

Figure 2.1: 20 natural test images.

One simple and representative approach was the use of analytic dictionary where the
fixed transform bases such as wavelet [121], discrete cosine transform (DCT) [122], etc,
are taken into account to build the dictionary D. However, off-the-shelf bases dictionaries
have limitation in their ability to represent different types of image structures. Elad
and Aharon [44] indicated that the dictionary learned from the image patches produced
superior performances for image denoising than the analytic dictionary such as the
DCT.

On the other hand, several efforts have been made in the literature to design
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data-adaptive dictionaries including principal component analysis (PCA) [123–126],
sparsity learning [2, 3, 45, 47, 127–129], or PCA-sparsity combination [4, 71, 72]. In
the PCA-based dictionary learning, the patches in the training set X (which may be
collected from standard images or in the degraded image itself) is first partition into
multiple groups {Xk} and each dictionary is trained for each group via performing the
principal component analysis on the covariance matrices. In the stage of restoration,
each degraded patch yi in the underlying image y will be assigned to one group and thus
the corresponding dictionary is exploited to restore yi. However, in our researches in
chapter 5 and 6, we need to prepare a global dictionary for every patches in an image to
study the distribution of patches in a unique vector space. Therefore, we do not examine
the choice of PCA-based dictionary here. Instead, we investigate the sparsity-based
methods for the dictionary learning. In the literature, there are no full comprehensive
comparison between different sparse learning dictionary methods, and the choice of a
sparse model to learn the dictionary is an arbitrary decision. In our studies, we adopt
the seminal work of Aharon et al. [2] known as the K-SVD algorithm, for training a
data-adaptive dictionary. In the rest of this subsection, we make a comparison of image
reconstruction performances between the K-SVD dictionary and the other analytic
dictionaries.

For demonstration, we conducted the denoising on 20 widely used natural test images
as shown in Fig. 2.1. For simplicity, we only consider the luminance channel. Each
image was degraded by adding Gaussian noise of zero mean and standard deviation
σ = 10 and σ = 30, respectively. The noisy image y is first partitioned into a set of
overlapping patches of size 8× 8 (m = 64) and the denoising was performed on each
patch using the `0 sparse model as:

α̂i = argmin
αi

‖αi‖0 s.t. ‖yi−Dαi‖22 ≤ ε (2.40)

where ε is a positive constant relates to the noise level. The optimization of (2.40) can
be found using the orthogonal matching pursuit method (OMP) in algorithm 2.1. We
prepared three types of analytic dictionaries of K atoms, with K ∈ {64,128,256,512},
including the DCT dictionary, the Haar wavelet dictionary and the Daubechies D4 (Db4)
dictionary. Note that the analytic dictionaries were fixed for all images and different
noise levels. In addition, when K > 64, we constructed overcomplete dictionaries from
the orthogonal bases by shifting each basis (column) along vertical direction. For the
data-adaptive dictionary, we randomly collected P = 100000 patches from the noisy
image to train a dictionary using the K-SVD algorithm.

Fig. 2.2 displays these three overcomplete dictionaries of K = 256 atoms and the
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(a) DCT (b) Haar

(c) DB4 (d) K-SVD (Barbara with σ = 30)

Figure 2.2: Different types of overcomplete dictionaries of 256 atoms. (a)-(c) Fixed overcomplete
dictionaries constructed from Discrete Cosine Transform (DCT) bases, Haar Wavelet Transform
bases, and Daubechies D4 Wavelet Transform (Db4) bases. (d) Data-adaptive dictionary trained
from noisy image of Barbara with σ = 30 using K-SVD algorithm [2].
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(a) Original image (b) Noisy image at σ = 30 (18.59 - 0.342)

(c) Denoising by DCT dictionary (27.61 - 0.800) (d) Denoising by Haar dictionary (26.19 - 0.762)

(e) Denoising by Db4 dictionary (26.33 - 0.763) (f) Denoising by K-SVD dictionary (28.65 - 0.824)

Figure 2.3: Denoising results on image of Barbara at noise level σ = 30 using 4 types of
dictionaries of 256 atoms shown in Fig. 2.2.
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(a) σ = 10

(b) σ = 30

(c) σ = 10 (d) σ = 30

Figure 2.4: Denoising performance on 20 natural test images shown in Fig. 2.1 with 4 different
types of dictionaries: DCT, Haar, Db4 and K-SVD. Distribution of differences in term of PSNR
between denoising with DCT, Haar, Db4 dictionaries and K-SVD dictionary at two noise levels
σ = 10 (a) and σ = 30 (b). Average PSNR results on 20 test images with respect to variation of
dictionaries’ sizes at σ = 10 (c) and σ = 30 (d).
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K-SVD dictionary trained from the image of Barbara in case of noise level σ = 30. We
can observe that the K-SVD dictionary consists of multiple local structures appearing in
the test image (Barbara) like diagonal textures, which can not be found in the analytic
dictionaries. Fig. 2.3 presents the denoising results with 4 different dictionaries, which
demonstrates that the reconstruction using K-SVD dictionary can better preserve the
details of the image, as well as produce less artifacts than the others.

Moreover, Fig. 2.4(a)-(b) show the distribution of difference (in term of PSNR)
between the reconstruction of 3 analytic dictionaries DCT, Haar, Db4 and the result of
K-SVD dictionary on 20 images. It can be seen that for complete dictionary (K = 64)
and low noise σ = 10, a large portion of images can be better restored by K-SVD
dictionary. Furthermore, the K-SVD surpasses the other dictionaries for the case of
overcomplete dictionaries (K > 64). In addition, Fig 2.4(c)-(d) show the average PSNR
results of 20 images with respect to the number of atoms in the dictionaries which infers
that the use of an overcomplete K-SVD dictionary can improve the performance of a
denoising method.

We have indicated that a dictionary trained with K-SVD algorithm can promote the
reconstruction of a degraded image, comparing to the analytic dictionaries. Therefore,
in our studies in chapter 5 and 6, we exploit the K-SVD algorithm to learn a global
dictionary for image restoration.

2.7 The Earth Mover’s Distance (EMD)

In chapter 3 of this thesis, we present a super-resolution method that take advantage of
the redundancy of local information between different images of the same modality to
generate a large, exhaustive dictionary that is identical to the database of patches, to
recover a degraded low-resolution image y. Hence, for each patch yi in the underlying
image y, we need to apply a patch-filtering step to create a local dictionary that contains
only most similar patches in the database and use it in reconstruction of yi. Selecting a
good local dictionary is the key issue of the image reconstruction algorithm.

In chapter 4, rather than using the conventional Euclidean distance to measure
the similarity between two image patches, we consider an image patch yi ∈ Rm as a
distribution of gray levels at the pixels’ locations and thus we can explore a metric that
compares two histograms for image patches comparison. The commonly used metrics in
practice such as Minkowski (`1, `p, `2 distances), χ2, etc., are the bin-to-bin distances
which assume that two histograms, e.g. h1 and h2, are already aligned and compute the
bin-wise differences between them. However this assumption can be violated through
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degradation of image, shape deformation, or image translation, etc. Thus, a cross-bin
distance is preferred to address the alignment problem.

Among several contribution on cross-bin histogram comparison, the Earth Mover’s
Distance (EMD) has shown its effectiveness in perceptual evaluation the similarity
between two distributions in the literature. The remainder of this subsection will briefly
describe the concepts of the EMD, and in particularly one of its improvement version in
both accuracy and computational complexity called FastEMD and denoted as ÊMD.

The Earth Mover’s Distance is based on the minimal cost that must to be paid to
transform one distribution into the other. It has been used in many applications such
as image retrieval [130–135], texture and color classification [136], object recognition
and matching [137, 138] and image segmentation [139, 140]. The basic concept of
EMD was first introduced by Peleg et al. in [141] to measure perceptual similarity
between two gray images. Each L-gray-level image is considered as a distribution of
"pebbles" corresponding to its intensity, placed on the plane only at pixels’ locations.
Peleg measured the distance between two gray images by proposed a minimization of a
linear cost matching function to transfer the pebbles from one image to another. Later,
Rubner et al. [130] introduced the original EMD to measure the similarity between
two normalized histograms. The EMD is a natural and intuitive metric between two
histograms if we think one of them as piles of masses and the other as holes sitting on
the ground. Each pile of masses or a hole is a bin of the histogram. To quantify the
difference between two histograms, we can measure how many masses we should get
from one pile and how far to move them so that the holes are exactly filled in by the
masses from the piles. The moving distance from a pile to a hole is called the ground
distance, and the amount of masses is named the flow. Hence, EMD is the minimal
total ground distance traveled weighted by the amount of masses moved.

For more convenience, we denote h1 = [h1(1), . . . ,h1(i), . . . ,h1(m)]T ∈Rm to be the
first histogram of m bins and h2 = [h2(1), . . . ,h2(j), . . . ,h2(n)]T ∈Rm to be the second
histogram of n bins. Then the EMD distance between two histograms h1 and h2 is
defined as:

EMD(h1,h2) = min
fij

∑
i,j fijdij∑
i,j fij

subject to (2.42) (2.41)

fil ≥ 0,
∑
j

fij ≤ h1(i),
∑
i

fij ≤ h2(j),
∑
i,j

fij = min

∑
i

h1(i),
∑
j

h2(j)

 (2.42)

where 1≤ i≤m,1≤ j ≤ n, {fij} represents the amount masses moved from the bin i-th
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of h1 to the bin j-th of h2. dij denotes the ground distance between bin i and bin j of
two histograms. The constraints in(2.42) can be intuitively understood as the amount
of moving masses from a pile to a hole must be a positive value, and can not exceed
the available total masses of the pile, or can not be larger than the capacity of the
hole. There are two main problems with the original EMD of Rubner. First, it is only
designed for normalized histograms and can not be used to evaluate two histograms
with different masses (∑ih1(i) ,∑j h2(j)). Second, for a general ground distance (e.g.
Euclidean distance), it has a high computational time cost.

Based on the proposed model of Rubner [130], many authors developed different EMD
distance for image retrieval [134, 142, 143] such as interest point matching using feature
descriptors [142], contour matching by embedding the EMD into a normal space [137]
or in a Wavelet domain [143]. Their objective is to improve the performances and
reduce the time consumption of the EMD in many different ways, such as constructing a
tree-based graph [131, 142] or proposed different type of ground distance [134]. However,
like the original EMD of Rubner, all of these models are only used for distributions with
equal total mass.

In [132], Pele et al. proposed a variant of the original EMD model, called ÊMD to
deal with unequal total mass distributions by adding into 2.41 a term of the total mass
difference between them, as described in

ÊMDα(h1,h2) =

min
fij

∑
i,j

fijdij

+

∣∣∣∣∣∣
∑
i

h1(i)−
∑
j

h2(j)

∣∣∣∣∣∣×αmax
i,j

dij subject to (2.42)

(2.43)
Pele et al. have demonstrated that with α > 0.5 the ground distance dij is a metric, the
ÊMD is a metric distance.

Thereafter, Pele [133] presented a robust EMD algorithm, called FastEMD, ex-
panded the model from [132] by using the thresholded ground distances. That means

dij =

dij if dij ≤ dmax

dmax if dij > dmax

(2.44)

As demonstrated in [133], adopting thresholded distances into ÊMD helps to reduce
the number of edges in the flow-network of the ÊMD and thus it can accelerate the
speed of ÊMD. Compare to the original EMD distance of Rubner [130], the metric
ÊMD in [133] improves both accuracy and speed and could be capable to apply on
large histograms and databases. The implementation of the ÊMD can be found at
http://www.ariel.ac.il/sites/ofirpele/fastemd/code/.

http://www.ariel.ac.il/sites/ofirpele/fastemd/code/
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In the context of this thesis, we exploit the ÊMD as a metric to measure the
similarity between image patches and apply it to select a local dictionary for recovering
each degraded patch yi. The details of this process will be described in chapter 4.
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Patch-based super-resolution for medical images cor-
rupted by Poisson noise

This chapter investigates the patch-based super-resolution method for medical
images corrupted by Poisson noise, with the help of a given set of standard images.
The signal-dependent noise in the image can be stabilized to a constant variance
using the Anscombe transform. After that, for each patch in the noisy low-resolution
image, our aim is to find a couple of local dictionaries that contains the nearest
neighbor patches from the database and use them to estimate the latent high-
resolution patch by computing a regression function based on the construction of a
reproducing kernel Hilbert space. To obtain the corresponding local dictionaries, a
coarse search using the conventional Euclidean distance is first performed, followed
by a refinement using a statistical criterion. The proposed method shows its
effectiveness in enhancing the resolution and removing the Poisson noise in a
degraded image, comparing to some existing super-resolution methods. Our work
was published in the proceedings of the 2015 SPIE Medical Imaging conference1.

Abstract

1Dai-Viet Tran, Marie Luong, Sébastien Li-Thao-Té, Jean-Marie Rocchisani, Françoise Dibos, Thuong
Le-Tien, “Super-resolution for medical images corrupted by heavy noise”, Proc. SPIE 9413, Medical
Imaging 2015: Image Processing
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1 Introduction

The work presented in this chapter is inspired apart from my master’s internship at the
L2TI and LAGA labs, where I studies the performance of an available super-resolution
method2 developed by the colleagues of the laboratories. This method is the SRSW,
which was proposed for recovering a degraded low-resolution image corrupted by additive
Gaussian noise, with the support of a set of standard images (same modality, high-
resolution, good quality images). In this chapter, we investigate a novel super-resolution
method based on regression while inspiring the similar idea of using the standard images
for enhancing the spatial resolution of a degraded image but for the case of Poisson
noise. Our aim is to estimate a latent high-resolution image x ∈RN from its degraded
observation y ∈RM , which is assumed to be generated by the model:

y = ξP(SBx/ξ) (3.1)

where P(·) is the Poisson distribution law, S is the downsampling operator with the
magnification factor s, B is the blur operator and ξ is a constant using to control the
Poisson noise level (the higher value of ξ, the heavier the noise affects the image).

In this thesis, we investigate the patch-based approach for recovering a degraded
image y, in which the image is considered as a set of overlapping image patches
{yi|yi ∈Rm; i= 1, . . . ,M}. The model in (3.1) can be formulated on each image patch
as:

yi = ξP(SiBixi/ξ) (3.2)

where Si and Bi denote the downsampling and blurring operators on each image patch,
xi is the high-resolution version of yi. The fundamental proposals of our work are
based on two significant characteristics. First, because Poisson noise in (3.2) is a
signal dependent noise model, it is difficult to separate the noise from the true image.
Fortunately, in [144], Anscombe demonstrated that we can stabilize the noise variance
in the Poisson distribution by applying a nonlinear transform, which is then named as
Anscombe transform, on the signal as:

T (yi) =
√

yi + 3
8 (3.3)

As a result, the Poisson distribution of image patch is converted into the approximate
additive standard normal and thus we can more easily reduce the noise in image patch
by using a framework for Gaussian noise removal. Second, as mentioned in chapter 1,

2Super-Resolution by Sparse Weights (SRSW [1]). Please refer to section 2.1 of chapter 2 for more
details.
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we exploit the redundancy of local information across different images of the same
modality to collect a large couple of high- and low-resolution dictionaries Dh ∈Rn×P

and Dl ∈ Rm×P of P image patches from the list of standard images. However,
recovering an image patch yi with given large dictionaries is a high time-consuming
process. Therefore, similar to the existing super-resolution methods [1, 74, 145], we
only select a smaller couple of local dictionaries {Dh

i ∈ Rn×K ,Dl
i ∈ Rm×K ,K � P}

that match the image patch yi for reconstruction. In this work, we propose to learn a
regression function (mapping) between the low-resolution patches and high-resolution
patches in a reproducing kernel Hilbert space (RKHS) generated from the atoms of
local dictionaries, and then use it to map the degraded low-resolution patch yi into the
high-resolution space to estimate the latent high-resolution patch xi. The proposed
method is preferred to as SRRH which stands for Super-Resolution by Regression
function in a reproducing kernel Hilbert space.

The rest of this chapter is organized as follows. Section 2 presents our proposed
method for super-resolution of image corrupted by Poisson noise. In section 3, we
conduct some experimental tests to evaluate the performance of the proposed method in
comparison with other existing methods. The conclusion and future works are presented
in section 5.

2 Proposed SRRH method for image super-resolution

The proposed method consists of two phases: construction of dictionaries and super-
resolution.

2.1 Construction of the dictionaries

In the first stage, we construct a couple of high- and low-resolution dictionaries {Dh,Dl}
from the available standard images {xs}. We randomly extract a set of large P high-
resolution patches {xsk|xsk ∈Rn;k = 1, . . . ,P} from the standard images. After that, these
high-resolution patches are blurred and downsampled to obtain their corresponding low-
resolution versions {ysk|ysk ∈Rm;k = 1, . . . ,P}. The couple of high- and low-resolution
dictionaries Dh is determined to be identical to the database of high- and low-resolution
patches.

Dh =
{
dhk |dhk ≡ xsk;k = 1, . . . ,P

}
Dl =

{
dlk|dlk ≡ ysk;k = 1, . . . ,P

} (3.4)
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2.2 Image super-resolution

For each patch y in the degraded low-resolution image y, we first select a couple of
local dictionaries {Dh

i ∈Rn×K ,Dl
i ∈Rm×K ,K� P} of K most similar atoms from the

large dictionaries {Dh,Dl} using the following steps [50].

i. Coarse search: We find a subset of L couples of closest patches from the dictionaries
with the help of the Euclidean distance.

Dl
∗ =

{
dlj ∈Dl|

∥∥∥yi−dlj
∥∥∥

2
< ri

}
Dh
∗ =

{
dhj ∈Dh|

∥∥∥yi−dlj
∥∥∥

2
< ri

} (3.5)

where ri is a positive constant is chosen for each patch yi such that only the first
L most matched atoms dj with smallest Euclidean distance to yi are acquired.

ii. Refined search: We apply the Anscombe transform as (3.3) on both low-resolution
patches in Dl

∗ and yi to convert the Poisson noise in yi into approximately the
additive standard normal noise. After that, we keep only K(K < L) couples of
patches in {Dl

∗,Dh
∗} which have the smallest values of the statistical criterion Vj =∣∣∣E (T (yi)−T (dlj)
)∣∣∣+ ∣∣∣V ar(T (yi)−T (dlj)

)
− 1
∣∣∣ to create the local dictionaries.

Dl
i =

{
dlj ∈Dl

∗|Vj < ti
}

Dh
i =

{
dhj ∈Dh

∗ |Vj < ti
} (3.6)

where ti is a set such that only the first K most matched atoms are selected.

In the next stage, we construct a linear regression mapping function between the
low-resolution space of image patch and their corresponding high-resolution space,
denoted as fSR(·), from the low- and high-resolution atoms in the local dictionaries.
Hence, the estimation of the high-resolution latent patch xi can be found from its
degraded version yi by using the mapping function as xi = fSR(yi).

The linear regression function fSR(·) is built in a reproducing kernel Hilbert space
HK generated from the vector space of low-resolution atoms in local dictionary Dl

i,
which is defined in [146] as:

HK =

fSR(zi) | fSR(zi) =
K∑
j=1

κ
(
zi,dlj

)
αj ;zi ∈Rm;αj ∈Rn;j = 1, . . . ,K

 (3.7)

where κ(zi,dlj) = exp
(
−
∥∥∥zi−dlj

∥∥∥2

2
/2h2

)
is the Gaussian kernel function and h is a

decay parameter. The regression function fSR(·) is learned from the couple of local
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dictionaries {Dh
i ,Dl

i} by minimizing Tikhonov regularization as:

f̂sr = argmin
fSR∈HK


K∑
j=1

∥∥∥dhj − fSR(dlj)
∥∥∥2

2
+λ‖fSR‖2HK

 (3.8)

where λ is a regularization parameter.

Replacing fSR in(3.8) by its definition from (3.7), the problem in (3.8) is equivalent
to finding a set of basic vector {αj ∈Rn;j = 1, . . . ,K} such that:

{α̂j}= argmin
αj


K∑
j=1

∥∥∥∥∥∥dhj −
K∑
k=1

κ
(
dlj ,dlk

)
αk

∥∥∥∥∥∥
2

2

+λ
K∑
j=1
‖αj‖22

 (3.9)

If we denote R = {R(j,k)|R(j,k) = κ(dlj ,dlk);1 ≤ j,k ≤ K;dlj ,dlk ∈ Dl
i} to be a

K×K matrix of regression coefficients, and Ai = {αj |αj ∈Rn;j = 1, . . . ,K} ∈Rn×K to
be the matrix of basic vectors {αj}. The optimization problem in (3.9) can be written
as:

Âi = argmin
Ai

{∥∥∥Dh
i −AiR

∥∥∥2

2
+λ

∥∥∥Ai
∥∥∥2

2

}
(3.10)

The problem (3.10) has a close-form solution described in (3.11)

Âi = Dh
i RT

(
RRT +λI

)−1
(3.11)

After obtaining the optimal values of basic vectors {α̂j ∈ Âi}, we can achieve
an estimation x̂i of the latent high-resolution image patch xi from its low-resolution
degraded version yi by the linear regression mapping:

x̂i = fSR(yi) =
K∑
j=1

κ(yi,dlj)α̂j (3.12)

After performing the super-resolution on every low-resolution patches yi, the entire
latent high-resolution image x can be found by putting the super-resolved patches x̂i
on their proper locations in the image and averaging the overlapping regions between
adjacent patches.

3 Performance evaluation

In this section, we compare the performance of the proposed method with some other
existing super-resolution methods, including the Bicubic interpolation, the Neighbor Em-
bedding super-resolution (NE [74]) and the sparsity super-resolution method (ScSR [3]).
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(a) (b)

(c) (d) (e)

(f) (g)

(h) (i) (j)

Figure 3.1: (a)-(e) Standard image and (f)-(j) test images. (a) & (f) synthetic images, (b) &
(g) PET images of thorax (pet1), (c) & (h) PET images of abdomen in the area of the kidney
(pet2), (d) & (i) PET images of abdomen in the area of the kidney (pet3), (e) & (j) PET images
of thorax through the lungs and heart (pet4).
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PSNR SSIM
Image

Noise
scale ξ Bicubic NE ScSR SRRH Bicubic NE ScSR SRRH

1 28.39 29.73 36.08 33.03 0.613 0.934 0.948 0.933
3 24.47 28.89 31.54 30.22 0.411 0.884 0.891 0.859synthetic
5 22.51 28.02 29.34 28.72 0.327 0.844 0.845 0.799
1 35.29 34.77 37.53 41.55 0.901 0.947 0.955 0.979
3 30.68 33.66 35.20 37.06 0.782 0.920 0.933 0.946pet1
5 28.39 32.67 33.98 35.05 0.704 0.906 0.919 0.920
1 33.25 29.50 33.47 37.64 0.915 0.876 0.921 0.971
3 28.83 28.83 30.60 34.98 0.811 0.858 0.873 0.943pet2
5 26.79 28.31 29.69 32.42 0.742 0.836 0.855 0.908
1 30.35 26.83 31.12 30.86 0.871 0.891 0.922 0.932
3 25.87 26.15 27.72 29.05 0.718 0.863 0.876 0.891pet3
5 23.89 25.55 26.58 27.79 0.625 0.836 0.853 0.855
1 36.42 35.81 40.29 41.23 0.901 0.964 0.977 0.978
3 31.87 34.80 37.45 38.22 0.790 0.946 0.963 0.954pet4
5 29.65 33.92 35.90 36.65 0.718 0.933 0.952 0.939

Table 3.1: PSNR and SSIM comparison for SR with magnification factor s= 2

The summaries of NE and ScSR methods can be found in section 2 of chapter 2. The
two image quality assessment metrics PSNR and SSIM are used for objective evaluation.

We carry out experiments on one synthetic image and four Positron Emission
Tomography (PET) images as shown in Fig. 3.1(f)-(j) with different levels of Poisson noise
ξ = 1,3,5. We consider them as the high-resolution images and create the corresponding
low-resolution degraded images using the model in (3.1), with the 7× 7 Gaussian kernel
blur of standard deviation σ = 1, and the downsampling with magnigication factor s= 2.
For each test image, we use corresponding standard image displayed in Fig. 4.4(a)-(e),
to construct the couple of high- and low-resolution dictionaries {Dh,Dl} of P = 30000
patches according to section 2.1. The size of high-resolution and low-resolution patches
are set to 9× 9 and 5× 5 pixels, respectively. The number of atoms in local dictionaries
is set to K = 5, and the value of L in the coarse search step is chosen as L = 5×K.
The regularization parameter in (3.8) is set to λ = 10−5, and the decay parameter is
chosen as h= 1000.

For the ScSR method, the value of regularization parameter λ is set to 0.8, and the
size of dictionary is 1024. The number of nearest neighbor of the NE method is K = 5.

Table 3.1 presents the results of competing super-resolution methods, where the best
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values of PSNR and SSIM are in bold red numbers. We can observe that the proposed
method achieve superior performances for the PET images.

Fig. 3.2 introduces the super-resolution results on the synthetic image with noise
level ξ = 3. For the proposed method, we shows two results with the low-resolution
patch size is 5× 5 and 7× 7 in Fig. 3.2(f) and (g). We can see the competing method
(bicubic, NE, ScSR) recover the image with many artifacts. With the default patch
size 5× 5, our method produces some artifacts at the central of the image. When we
increase the patch size to 7× 7, the proposed method achieves better super-resolution
performance and generates very pleasant result.

We also show the super-resolution results on PET images in Fig. 3.3 - Fig. 3.5. It
can be seen that the proposed method yields better reconstructed image with much
preserved details and closer to the original images that the competing methods.

4 Empirical Study on Parameters

In this section, we will discover the effects of some parameters on the performance of the
proposed method, including the number of atoms K in the couple of local dictionaries
(which is also the nearest neighbors of patches in the dictionary for each noisy image
yi) and the size of patches. Note that the magnification factor is always set to s= 2.

4.1 Effect of number of atoms K in local dictionaries

We will study the variation of super-resolution performance in term of PSNR of five test
images in Fig. 3.1(f)-(j) with respect to the number nearest neighbors K. We present in
Fig. 3.6 experiments on these test images for several values of K in [1, 5, 10, 15, 20,
30, 50, 100], and at two noise levels ξ = 1 and ξ = 5. We can see that the choice of K
depends on the image content and noise level. In overall, the range of K yielding good
quality results of super-resolution is around 5 to 10, for both cases of noise.

4.2 Effect of patch size

We also examine the super-resolution performance of the proposed method in the
variation of size of low-resolution patch

√
m×

√
m. Fig. 3.7 presents the simulated

results in term of PSNR with respect to various sizes of patch,
√
m ∈ [3,5,7,9,11,19] at

three noise levels ξ = 1,3,5. We can observe show that the choice of m highly depends
on the image content. There exists a range of patch sizes

√
m ∈ [5,11] providing optimal

PSNR indices. In particularly, for the synthetic image, the LR patch size of the synthetic
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.2: Super-resolution results on synthetic image with noise level ξ = 3. (a) Original high-
resolution image. (b) The low-resolution noisy image (shown with nearest neighbor interpolation.
(c) Result of bicubic interpolation (PSNR = 24.47, SSIM = 0.411). (d) Result of NE method
(PSNR = 28.89, SSIM = 0.884). (e) Result of ScSR method (PSNR = 31.54, SSIM = 0.891).
(f) Result of the proposed method with low-resolution patch size 5× 5 (PSNR = 30.22, SSIM =
0.859). (g) Result of the proposed method with low-resolution patch size 7× 7 (PSNR = 32.30,
SSIM = 0.937).
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Super-resolution results on PET image of thorax with noise level ξ = 5. (a) Original
high-resolution image in Fig. 3.1(g). (b) The low-resolution noisy image (shown with nearest
neighbor interpolation. (c) Result of bicubic interpolation (PSNR = 28.39, SSIM = 0.704). (d)
Result of NE method (PSNR = 32.67, SSIM = 0.906). (e) Result of ScSR method (PSNR =
33.98, SSIM = 0.919). (f) Result of the proposed method (PSNR = 35.05, SSIM = 0.920).

image yielding good SR results is 7×7 pixels. With this patch size, the proposed method
obtains higher PSRN and SSIM values (PSNR = 34.58, SSIM = 0.972 for ξ = 1; PSNR
= 32.30, SSIM = 0.937 for ξ = 3 and PSNR = 30.77, SSIM = 0.918 for ξ = 5) than the
results of 5× 5 patch size in Table 3.1.

5 Conclusion

We present in this chapter an effective patch-based method that takes into account the
repetition of image patches across multiple images of the same modality to improve the
spatial resolution of a given noisy and low-resolution image. By selecting only a small
set of K nearest neighbors from the large dictionary, which is identical to the database
of patches, the super-resolution is performed via learning a regression function in the
reproducing kernel Hilbert space. Comparing to other state-of-the-art super-resolution
algorithms, the proposed method achieves better results, especially in case of heavy
Poisson noise.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Super-resolution results on PET image of abdomen with noise level ξ = 3. (a)
Original high-resolution image in Fig. 3.1(i). (b) The low-resolution noisy image (shown with
nearest neighbor interpolation. (c) Result of bicubic interpolation (PSNR = 25.87, SSIM =
0.718). (d) Result of NE method (PSNR = 26.15, SSIM = 0.863). (e) Result of ScSR method
(PSNR = 27.72, SSIM = 0.876). (f) Result of the proposed method (PSNR = 29.05, SSIM =
0.891).
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Super-resolution results on PET image of thorax with noise level ξ = 3. (a) Original
high-resolution image in Fig. 3.1(j). (b) The low-resolution noisy image (shown with nearest
neighbor interpolation. (c) Result of bicubic interpolation (PSNR = 29.65, SSIM = 0.718). (d)
Result of NE method (PSNR = 33.92, SSIM = 0.933). (e) Result of ScSR method (PSNR =
35.90, SSIM = 0.952). (f) Result of the proposed method (PSNR = 36.65, SSIM = 0.939).

(a) (b)

Figure 3.6: Effect of number of atoms K of the local dictionaries with noise levels ξ = 1 (a) and
ξ = 5 (b).
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(a) (b)

(c)

Figure 3.7: Effect of the size of low-resolution patch (
√
m×

√
m) with noise levels ξ = 1 (a),

ξ = 3 (b) and ξ = 5 (c).
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Example-based super-resolution for enhancing spatial
resolution of medical images

This chapter investigates the selection of a set of similar patches (called local
dictionary) from a large dictionary, which is identical to the database of patches, to
recover a degraded image patch under the Bayesian MAP and sparsity framework.
In the literature, the bin-to-bin metrics, e.g. Euclidean distance, are conventionally
used to measure the similarity between two image patches. However, these metrics
assume that two image patches are well aligned and thus fail to deal with the
distortion between two patches such as the translation. In this work, we proposed
to adopt an efficient cross-bin metric named the Earth Mover’s Distance (EMD)
to evaluate the similarity between two image patches, by considering each patch
as a distribution of image intensities. We introduce an `1-based threshold on the
EMD to dynamically select the number of similar patches in the local dictionary for
reconstructing each degraded image patch. Experiments on different modalities of
medical images have demonstrated the efficiency of the EMD as a patch-selection
metric for image restoration. A detailed description of our proposed method was
published in the 2016 International Conference of the IEEE Engineering in Medicine
and Biology Society1

Abstract

1D. V. Tran, S. Li-Thiao-Té, M. Luong, T. Le-Tien, F. Dibos and J. M. Rocchisani, “Example-
based super-resolution for enhancing spatial resolution of medical images”, 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 457-460.
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1 Introduction

This chapter handles the super-resolution problem to reconstruct a latent high-resolution
image x ∈RN from its degraded observation y ∈RM , which is assumed to be generated
by the following model (derived from (1.1)).

y = SBx + η (4.1)

where S is the downsampling operator with magnification factor s, B is the blur operator
and η ∼N (0,σ2) is the additive Gaussian noise of zero mean and standard deviation σ.

In the context of our thesis, we investigate the patch-based approach in which an
image y is considered as a set of overlapping patches {yi|yi ∈ Rm, i = 1, . . . ,M} and
the super-resolution is performed on each patch yi by finding its latent high-resolution
version xi. Without loss of generality, we can represent xi in a vector space created
by the atoms of a dictionary of patches Dh, denoted as xi = Dhαi, with αi is called
the representation coefficients vector. Under the Bayesian MAP perspective as shown
in (1.5), the restoration of yi is corresponding to find the representation vector αi which
satisfies:

α̂i = argmin
αi

{1
2 ||yi−SiBiDhαi||22−λ logp(αi)

}
(4.2)

where Si, Bi denote the degradation factors on image patch yi.

In order to find the solution of (4.2), we need to know the prior model of the
probability distribution p(αi). In this work, we adopt the sparse model where p(αi) is
assumed to obey the Laplacian distribution, described as p(αi) ∝ exp(−τ ‖αi‖1). In
addition, we define Dl = SiBiDh to be the dictionary of low-resolution patches, the
problem in (4.2) is formulated as:

α̂i = argmin
αi

{1
2 ||yi−Dlαi||22 +λ‖αi‖1

}
(4.3)

An important issue in our approach is to determine the couple of high- and low-
resolution dictionaries {Dh,Dl}. In this chapter, we adopt the similar idea of chapter 3
by exploiting the redundancy of information in multiple images to construct a couple of of
high- and low-resolution dictionaries identical to the large database of patches collected
from a list of standard images. In addition, we acquire a large number of atoms (patches)
in dictionaries to ensure that they can cover all the local structure of the degraded
image y. However, one shortcoming of this approach is the computational challenge
when solving (4.3) with a huge dictionary Dl. To overcome this issue, the conventional
solution is to apply a patch-filtering step to select a couple of local dictionaries {Dh

i ,Dl
i}
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for each degraded patch yi, on which we can perform the patch recovering. Therefore,
retrieving the local dictionaries is crucial in the success of our super-resolution method.
In the existing methods [1, 74], the common Euclidean distance is adopt for image patch
selection.

As indicated in section 2.7 of chapter 2, the Earth Mover’s Distance (EMD) developed
by Pele et al. [133], denoted as ÊMD, is an efficient cross-bin metric for measure the
distance between two distributions or histograms. Hence, we consider that each image
patch to be a histogram of gray levels placed at pixels’ locations, where each pixel can be
interpreted as a bin, and its gray level is the mass of this bin in the histogram. Therefore,
in the statistical perspective, comparison between two image patches is equivalent to
quantify the distance between two distributions and thus, can be calculated with the
ÊMD metric.

To demonstrate the effectiveness of the ÊMD for patch selection, we present in
Fig. 4.1 a simple example of synthetic image patches, where (a) is a reference patch,
(b) and (c) are two query patches. The intensity of yellow and green pixels of these
patches are 200 and 0, respectively. It is easily to compute the Euclidean distances
between these patches as `2(a,b) = ‖a− b‖2 = 282.8 and `2(a,c) = ‖a− c‖2 = 282.8. In
addition, with the EMD, we have ÊMD(a,b) = 200 and ÊMD(a,c) = 600. Therefore,
using the Euclidean assessment, we can not distinguish the two image patches (b) and
(c). On the other hand, by adopting the ÊMD, we can determine that the patch in (b)
is closer to the reference patch (a) than the other in (c). In addition, it can be observed
that the ÊMD correctly describes the perceptual similarity of patches in Fig 4.1(a)
and Fig 4.1(b), while the Euclidean distance falsely state that patches (b) and (c) are
similar.

(a) (b) (c)

Figure 4.1: Comparison of the FastEMD and the Euclidean distance for patch similarity.
The Euclidean distance (`2) does not match perceptual similarity. The intensity of yellow and
green pixels are 200 and 0, respectively. The Euclidean distance `2(a,b) = `2(a,c) = 282.8,
ÊMD(a,b) = 200, ÊMD(a,c) = 600.

For further illustration, we report in Fig 4.2 another example with natural image
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: Comparison of the FastEMD and the Euclidean distance (`2) for patch similarity.
(a) and (e) The zoom-in selected regions with one reference patch and two candidate patches. (b)
Reference image patch (blue square in (a)). (c) First candidate patch p1 (red square in (a)) with
`2 = 361.1, ÊMD = 812. (d) Second candidate p2 (yellow square in (a)) with `2 = 296.8, ÊMD

= 1027. (f) Reference image patch in (e). (g) First candidate patch in (e) with `2 = 326.8,
ÊMD = 1282. (h) Second candidate in (e) with `2 = 326.6, ÊMD = 2207.

patches. In each row, the left image shows a crop of a region in image of Baboon, with
the reference patch is marked by red contour and the two query patches are drawn with
blue contours. On the right, we show the zooming of the reference patch and the two
query, respectively. On the first row of Fig 4.2, the Euclidean distance selects the patch
(d) as a more similar candidate to represent the reference patch (a), while the ÊMD

indicates that the query patch in (b) is more suitable to approximate the reference in
(a). The same conclusion can be drawn in the second row. In summary, the ÊMD

metric may helps us to collect a set of patches with higher perceptual similarity for a
reference patch than the conventional Euclidean distance.

The rest of this paper is organized as follows. Section 2 describes details of the
proposed super-resolution method, referred to as SREMD, which makes use of the
ÊMD for patch similarity measurement. The experimental results and comparison with
some existing methods are reported in section 3. The conclusion and discussion are
presented in section 4.
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2 Super-Resolution using Earth Movers Distance (SREMD)

The proposed super-resolution method (SREMD) consists of two main stages, including
the construction of dictionary and the super-resolution.

2.1 Dictionary construction

In the first stage, we randomly extract a set of P high-resolution patches {xsk|xsk ∈
Rn,k = 1, . . . ,P} from a list of available standard images {xs}. The high-resolution
dictionary is determined to be identical with the database of high-resolution patches
as Dh = {dhk |dhk ≡ xsk,k = 1, . . . ,P} ∈ Rn×P . After that, we degrade each atom in the
high-resolution dictionary Dh to obtain the corresponding low-resolution dictionary
Dl = SBDh = {dlk|dlk ∈Rm,k = 1, . . . ,P} ∈Rm×P .

2.2 Super-resolution

In the super-resolution stage, the degraded low-resolution image y ∈RM is partitioned
into a set of overlapping patches {yi|yi ∈ Rm, i = 1, . . . ,M} and the super-resolution
is performed on each patch yi using (4.3). However, solving the sparse representation
of the whole dictionary of large atoms is challenged. Therefore, we collect a couple
of local dictionaries {Dh

i ∈ Rn×K ,Dl
i ∈ Rm×K} of K most similar atoms (K � P )

retrieved form the large dictionaries for recovering each degraded patch yi. Hence, the
problem (4.3) is rewritten as:

α̂i = argmin
αi

{1
2 ||yi−Dl

iαi||22 +λ‖αi‖1
}

(4.4)

With the solution of α̂i obtained from (4.4), we can estimate the latent high-
resolution image patches as:

x̂i = Dh
i α̂i (4.5)

A common approach for patch-filtering is to make use of the conventional bin-to-
bin distances such as the Euclidean metric (`2) as proposed in many methods [1, 74]
and in chapter 3 of this thesis. As indicated in previous section, the ÊMD suggests
a remarkable solution in dealing with image patch selection, which can return query
patches with higher perceptual similarity to the referenced patch than using the Euclidean
measurement. Moreover, because the ÊMD is a cross-bin metric, it can address to
the alignment and translation between image patches better than the `2 distance by
providing the candidates with less translation to the referenced patch, and thus leads to
improve the reconstruction of degraded image patch.
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In this work, instead of fixing the number of most similar patches K in the local
dictionaries {Dh

i ,Dl
i} as in chapter 3, we want to construct a couple of local dictionaries

with dynamic number of atoms, such that the value ofK depends on the local information
of each patch yi, as well as the redundancy of yi in the large dictionary Dl. Therefore,
in the rest of this section, we introduce a threshold of the ÊMD between the underlying
image patch yi and the atoms dlk in the dictionary Dl, for automatically selecting the
closest patches.

For each given low-resolution patch yi, we may not find atoms in the dictionary Dl

that exactly match to it, but we may retrieve its translated or rotated version. In the
scope of this work, we just consider the case of subpixel shift. That means for each
given patch yi in the observed image y, we expect to select the local dictionary Dl

i that
contains the subpixel shifted versions of yi from the dictionary Dl with the help of the
ÊMD metric.

Let yi = [yi(1), . . . ,yi(j), . . . ,yi(m)]T be the low-resolution patch of m pixels, and
yshi =

[
yshi (1), . . . ,yshi (l), . . . ,yshi (m)

]T
be the subpixel shifted version of yi. Inspired

from the definition of ÊMD [133] presented in (2.43), (2.44) in chapter 2, the ÊMD

between two patches yi and yshi is formulated as:

ÊMD
(
yi,yshi

)
=

min
{fjl}

m∑
j=1

m∑
l=1

fjldjl

+

∣∣∣∣∣∣
m∑
j=1

yi(j)−
m∑
l=1

yshi (l)

∣∣∣∣∣∣×max
j,l

djl

s. t. (4.7)
(4.6)



m∑
l=1

fjl ≤ yi(j),
m∑
j=1

fjl ≤ yshi (l),

m∑
j=1

m∑
l=1

fjl = min

 m∑
j=1

yi(j),
m∑
l=1

yshi (l)

 ,fjl ≥ 0
(4.7)

where djl = min(||j− l||2 ,dmax) is the thresholded ground distance in `2 norm between
the j-th pixel of yi and the l-th pixel of yshi , and dmax is a threshold of ground distance.

In order to dynamically select a couple of local dictionaries {Dh
i ,Dl

i} for the degraded
patch yi, we compute an upper bound (denoted as δisup) of the ÊMD between yi and
yshi in (4.6). Thereby, any low-resolution atoms dlk ∈Rm in the low-resolution dictionary
Dl such that ÊMD

(
yi,dlk

)
≤ δisup is acquired.

An upper bound of the first term in (4.6) can be inferred in the perspective of
transportation problem and is demonstrated in Fig. 4.3. For simplicity, we assume that
the intensity yi(j) of the j-th pixel of yi corresponds to yi(j) units of masses. For a
pixel j in the patch yi, suppose that yi(j) ≥ yshi (j), we will move yshi (j) units from
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Figure 4.3: Illustration of the transportation of units of masses between two corresponding pixels
in image patches.

pixel j of yi to the same location in yshi , and the remaining (yi(j)−yshi (j)) units will
be moved by dM (with dM ≥ bdmaxc) pixels away from j. The cost of this work is∣∣∣yi(j)−yshi (j)

∣∣∣× dmax. As a result, the first term in (4.6) is bounded by:

min
{fjl}

m∑
j=1

m∑
l=1

fjldjl ≤
m∑
j=1

∣∣∣yi(j)−yshi (j)
∣∣∣× dmax (4.8)

Now it is easy to get a margin for value of the ÊMD in (4.6):

ÊMD
(
yi,yshi

)
≤ 2×

m∑
j=1

∣∣∣yi(j)−yshi (j)
∣∣∣× dmax (4.9)

The upper bound δisup of the ÊMD is determined in the right side of (4.9) as:

δisup = 2×
m∑
j=1

∣∣∣yi(j)−yshi (j)
∣∣∣× dmax (4.10)

Consequently, we apply δisup as a threshold of the ÊMD to retrieve the local
dictionaries {Dh

i ,Dl
i} for each patch yi from the large couple of dictionaries {Dh,Dl}

as
Dl
i =

{
dlk|dlk ∈Dl;k = 1, . . . ,P ; ÊMD(yi,dlk)≤ δisup

}
Dh
i =

{
dhk |dhk ∈Dh;k = 1, . . . ,P ; ÊMD(yi,dlk)≤ δisup

} (4.11)

The couple of local dictionaries is now exploited to recover the degraded image
patch yi by first solving the sparse representation problem in (4.4). In the scope of this
work, we adopt the multiplicative updates algorithm proposed by Sha et al. [147] to
optimize (4.4). With the optimal value of the representation coefficient vector α̂i, we
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can estimate the high-resolution latent patch of yi, as in (4.5), x̂i = Dh
i α̂i. Moreover,

the denoised version of yi can be obtained by ŷi = Dl
iα̂i.

Algorithm 4.1: Image Super-Resolution with Earth Mover’s Distance (SREMD)
Input :Couple of high- and low-resolution dictionaries

{Dh ∈Rn×P ,Dl ∈Rm×P }, low-resolution observation y, size of
low-resolution patch

√
m×
√
m, regularization λ in (4.4), number of

shifted pixel ps, thresholded ground distance dmax, number of iteration
in back-projection step T

1 Partition the low-resolution image into a set of low-resolution patches
{yi|yi ∈Rm, i= 1, . . . ,M}.

2 foreach yi in image y do
3 Determine its shifted versions {yshi } of ps pixel in 8 main directions.
4 Calculate the threshold δisup using (4.10) for each of 8 shifted patches yshi and

choose the maximum value of δisup.
5 Calculate the distance ÊMD(yi,dlk) (k = 1, . . . ,P ) to all P atoms of Dl and

select the couple of local dictionaries {Dh
i ,Dl

i} according to (4.11).
6 Optimize (4.4) to get the representation coefficients vector α̂i.
7 Estimate the high-resolution patch x̂i = Dh

i α̂i and the denoised low-resolution
patch ŷi = Dl

iα̂i

8 end
9 Aggregate the patches to obtain the initial high-resolution image X0 and denoised

low-resolution image Ŷ.
10 Apply iterative back-projection as (4.13) to enhance the reconstruction

Output :The estimate of the latent high-resolution image X̂

Enforcing the Reconstruction of entire image

For achieving the whole high-resolution image, the super-resolved patch x̂i and the
denoised patch ŷi are put on their proper locations in the corresponding grids and
averaged in overlapping regions to produce an initial estimation of the high-resolution
image X0, as well as a denoised low-resolution image Ŷ. The final high-resolution
image X̂ is determine by project X0 onto the solution space of SBX = Ŷ to enforce
the constraint of the degradation model. Similar to [1], we have:

X̂ = argmin
X

∥∥∥X−X0
∥∥∥2

2
subject to SBX = Ŷ (4.12)

We use the iterative back-projection method [148] to optimize (4.12) as

Xt+1 = Xt +
((

Ŷ−SBXt
)
↑s
)
∗b (4.13)
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where Xt is the estimate of the latent high-resolution image at t-iteration (t≥ 0), ↑s is
the bicubic upscaling operation with magnification factor s, b is a Gaussian blur kernel
of size 5× 5 and standard deviation 1. We note that in case of noise-free low-resolution
image y (degradation model in (4.1) without the presence of noise η), we use the original
observation image Y to replace the denoised image Ŷ in the back-projection in (4.12).
The summary of our proposed super-resolution method is described in algorithm 4.1

3 Performance evaluation

In this section, the proposed method (SREMD) is compared with some super-resolution
algorithms in the literature, including bicubic interpolation, Neighbor Embedding-based
method (NE2) of Chang et al. [74], Sparse coding-based method (ScSR3) of Yang et al.
[3] and Super-Resolution by Sparse Weight (SRSW4) of Trinh et al. [1]. The summaries
of these methods can be found in section 2 of chapter 2 of this thesis. To evaluate
the objective performance of the super-resolved images, we adopt two image quality
assessment metrics called PSNR and SSIM. Please consult the section 3 presented in
chapter 1 for further details.

We first carried out the experiments on five images of organs as shown in Fig. 4.4(f)-(j),
which are considered as the original high-resolution images x. From these high-resolution
images, the corresponding low-resolution test images are generated by blurring and
downsampling with factor s = 2, and then added the zero-mean Gaussian noise at
different values of standard deviation (σ = 0,10,20). For each test image, we use the
corresponding standard image as shown in Fig. 4.4(a)-(e), to construct the couple
of high- and low-resolution dictionaries {Dh,Dl} of P = 50000 patches according to
section 2.1. The default sizes of low-resolution and high-resolution patches are 5×5 and
9× 9 pixels, respectively. The parameter λ in (4.4) is set to 1000. The subpixel shift of
each image patch is chosen to 0.5 pixel. The threshold of ground distance in (4.9) is set
to dmax = 3.

For the ScSR method, the value of regularization parameter λ is set to 0.8, and the
size of dictionary is 1024. The parameters of the SRSW method are set to λ= 0.0001
and γ = 64.

Table 4.1 provides the results of SR methods, where the best values of PSNR and
SSIM are in bold red numbers. We can observe that in most of cases the SREMD yields

2http://www.jdl.ac.cn/user/hchang/publication.htm
3http://www.ifp.illinois.edu/~jyang29/index.html
4http://www-l2ti.univ-paris13.fr/~luong/SRSW_IEEE_TIP/SRSW.html

http://www.jdl.ac.cn/user/hchang/publication.htm
http://www.ifp.illinois.edu/~jyang29/index.html
http://www-l2ti.univ-paris13.fr/~luong/SRSW_IEEE_TIP/SRSW.html
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 4.4: (a)-(e): Standard images used to establish the database. (a) CT image of abdomen,
(b) CT image of thorax, (c) and (d) CT images of chest, (e) MRI image of knee. (f)-(j): the
corresponding test images.
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better performance than the other SR methods, especially for the SSIM index.

PSNR SSIM
Image σ

Bb NE ScSR SRSW SREMD Bicubic NE ScSR SRSW SREMD
0 34.28 25.92 38.31 38.37 39.85 0.98 0.86 0.99 0.99 0.99
10 28.91 25.38 30.88 30.54 30.99 0.72 0.74 0.82 0.81 0.89(f)
20 24.10 24.09 26.90 27.12 27.78 0.51 0.66 0.70 0.70 0.76
0 30.99 24.09 35.70 34.96 36.58 0.94 0.81 0.97 0.97 0.98
10 27.45 23.76 29.26 28.67 28.79 0.72 0.76 0.82 0.81 0.82(g)
20 23.30 22.84 25.89 26.35 26.62 0.50 0.65 0.69 0.70 0.75
0 32.96 24.82 38.08 37.11 40.20 0.97 0.85 0.98 0.98 0.98
10 28.66 24.29 30.96 30.38 31.32 0.65 0.64 0.72 0.71 0.88(h)
20 24.23 23.20 26.94 26.85 27.70 0.45 0.55 0.59 0.59 0.68
0 29.78 23.83 33.01 32.19 32.87 0.92 0.73 0.96 0.95 0.96
10 27.08 23.43 27.91 27.19 27.61 0.68 0.58 0.70 0.69 0.83(i)
20 23.53 22.43 25.04 24.80 26.07 0.50 0.51 0.57 0.57 0.78
0 31.87 25.90 34.07 33.95 34.17 0.89 0.71 0.93 0.93 0.93
10 27.91 25.48 28.79 28.47 28.53 0.67 0.63 0.70 0.70 0.75(j)
20 23.50 24.35 25.93 26.28 26.22 0.45 0.56 0.59 0.59 0.64

Table 4.1: Comparison of the SR performance of different methods

For subjective comparison, we present in Fig. 4.5 the super-resolution results of a
region of interest (ROI) of the low-resolution image of thorax with noise level σ = 20
(created from Fig.4.4(g)). As can be seen in the zoom-in images in Fig. 4.5(b)-Fig. 4.5(d),
the results of bicubic interpolation is blur and noisy, the NE method gives a very blur
image, while the ScSR method brings an acceptable result with noise suppression but
with many artifacts. For high noise level (σ = 20), the SRSW and the SREMD methods
visually preserve the most details while achieving better noise reduction. But the
background in SRSW method has a little more artifacts than the SREMD.

We also conducted experiments on the publicly available image datasets of human
brain (MIDAS5), abdomen, chest and lung (NBIA6). The MIDAS contains MR images
of the brain of 100 healthy subjects acquired from 20 patients over 18 years old. We
randomly chosen 3 sequences of T1 MR images for the simulation, from which 11 images
are used for the test and 5 other images are collected as standard images. For the NBIA
dataset, which includes various sequences of CT images of abdomen, chest and lung, we
randomly selected 2 CT images of abdomen, 8 CT images of lung and 9 CT image of
chest for additional super-resolution evaluation. With each type of CT images, we also

5http://insight-journal.org/midas/community/view/21
6https://imaging.nci.nih.gov

http://insight-journal.org/midas/community/view/21
https://imaging.nci.nih.gov
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.5: The super-resolution results of a Region Of Interest (ROI) of the CT image of
thorax with magnification s= 2 and noise level σ = 20. (a) LR image (size 270× 180) created
from Fig. 4.4(g) with a ROI (the red rectangle). (b)-(f) The ROI up-scaled by the Bicubic
interpolation, the NE method (K = 4), the ScSR method (λ= 0.8), the SRSW method and the
proposed SREMD method. (g) The ROI in the original test image (Fig. 4.4(g)).

acquired 5 other images to generate the standard images. The SREMD is compared
to above competing methods without the presence of Gaussian noise (σ is set to 0 in
all test). For three methods NE, ScSR and SRSW, we use the same standard images
as the proposed SREMD method to create the database of patches. Fig. 4.6 shows
the evolution of PSNR with respect to the number of test images which proves the
out-performance of our proposed method over the competing algorithms for the noiseless
images.

3.1 Effect of the regularization parameter λ

To demonstrate the effects of the parameter λ on the super-resolution performance of
the proposed method, we conducted the experiments on CT image of chest (Fig. 4.4(i))
with magnification factor s= 2 for different noise levels (σ = 0,10,20). The values of λ
is set in

[
0,10,50,100,250,500,1000,1500,2000,5000,104,5 · 104,105]. Fig. 4.7 presents

the behavior of PSNR and SSIM on the variation of λ. We can observe that the range
of λ that brings the best performances of the SREMD methods is around 1000, with
all different noise levels. Therefore, the default value of λ is chosen as 1000 in the
experiments in this paper.
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Figure 4.6: PSNR values of different SR methods on MRI images of brain (1-11), CT images of
abdomen (12-13), CT images of chest (14-22) and CT images of lung (23-30).

Figure 4.7: Effect of the parameter λ on the SR performance of CT image of chest (Fig. 4.4(i))
through PSNR and SSIM values.

4 Conclusion

In this chapter, we present an effective example-based super-resolution method which
enhances the spatial resolution while robustly reducing the noise in a degraded low-
resolution image. By exploiting the redundancy of local contents in multiple images, we
construct a large couple of high- and low-resolution dictionaries which are identical to
the database of patches collected from the standard images.

We have demonstrated that the cross-bin ÊMD metric is more efficient than the
conventional Euclidean distance for patch-selection and apply it to search a couple of
local dictionaries for recovering each patch in the degraded image. We proposed a simple
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`1-based threshold to dynamically restrict the number of atoms in local dictionaries.

The experimental results proves the effectiveness of our method over some Euclidean-
based super-resolution methods in the literature either for noisy or noiseless LR images.
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Patch-based Image Denoising: Probability Distribu-
tion Estimation vs. Sparsity Prior

Determining a good prior model that can well characterize the statistical dis-
tribution of image in the vector space generated by the atoms of a dictionary is
essential in recovering a degraded patch under the Bayesian maximum a posteriori
perspective. In the sparsity approach, the prior model is often assumed to obey
an arbitrarily chosen distribution and sometimes may fail to describe the true
distribution of image patches. In this chapter, we motivate from the redundancy of
local information between multiple images to assume that, in a vector space, the
latent patches of an unknown image x share the same distribution with the patches
in a database extracted from a list of standard images. Therefore, our aim is to
justify that we can estimate a probability distribution function from the empirical
distribution of image patches in the database and then use it as a prior to regularize
the image restoration process. We introduce a simple histogram estimation scheme
to represent the distribution of image patches in a low-dimensional vector space and
apply it for image denoising. We demonstrate that using the estimated probability
distribution as an image prior is more efficient than the arbitrary sparsity models
for noise removal. The results of our work were published at the 25-th European
Signal Processing Conference in 20171.

Abstract

1D. V. Tran, S. Li-Thiao-Té, M. Luong, T. Le-Tien and F. Dibos, “Patch-based image denoising:
Probability distribution estimation vs. sparsity prior”, 25th European Signal Processing Conference
(EUSIPCO), Kos, 2017, pp. 1490-1494.
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1 Introduction

In two previous chapters, we have exploited the external similarity and redundancy
between multiple images in solving the restoration of a degraded image y in the patch-
based framework. By building an exhaustive dictionary of image patches which is
identical to the large database of patches, the reconstruction was performed on each
patch yi of the underlying image y by firstly applying a patch-filtering step on the
dictionary for selecting a smaller set of similar candidates (also called a local dictionary).
In the next stage, the latent image patch xi (high quality version of yi) was recovered
in the hypothesis of sparse representation in which the distribution of image patches is
assumed to follow a prior mathematical model such as the Laplacian distribution.

There are some shortcomings in the aforementioned approach. Firstly, utilizing a
large dictionary requires a pre-filtering step for selecting a local dictionary that can
slow down the reconstruction process. Secondly, the choice of sparse model in restoring
an image patch under the given local dictionary is an arbitrary decision and may not
reflect the true distribution of image patches.

In this chapter, we propose to use a unique global dictionary D for recovering
all patches yi in the degraded image y, which can be learned from the image itself
or from the database of patches (collected from the standard images). Additionally,
we concentrate on investigating the distribution of image patches in the vector space
generated by the dictionary D. In the next section, we will demonstrate that the sparsity
models may not exactly represent the true distribution of image patches. Additionally,
the main objective of this chapter is to justify that the probability distribution function
learned from the database of patches can be employed as a prior to regularize the
optimization process, leading to improvements in image reconstruction comparing to
an arbitrary selection of sparse models. For persuasive verification, especially in the
scope of this chapter, we study the application of estimation of probability distribution
for solving the image denoising problem by conducting several experiments on different
image modalities

The remainder of this chapter is organized as follows. Section 2 briefly describes the
context of image denoising and introduces our motivation of estimation of probability
distribution from the database of patches. In section 3, we expose how to employ the
estimated probability function in solving the image denoising problem. After that, we
present some denoising applications of the proposed method, which is referred to as
ProbaEst, including the case of synthetic images, binary images, and popular natural
test images. This chapter will be ended with some discussion and perspective presented
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in section 5.

2 Problem Statement and Motivation

Image denoising is a fundamental task in low level vision. In this work, we tackle a
simple and widely used degradation model (derived from (1.1) with H is the identity
matrix), where an image x ∈RN is assumed to be corrupted by additive Gaussian noise
η ∼N (0,σ2) of mean zero and standard deviation σ as shown in (5.1)

y = x + η (5.1)

In the context of this thesis, we focus on the patch-based image reconstruction in
which each image is considered as a set of overlapping patches, and the denoising will
be performed on each patch. We can formulate the problem in (5.1) as:

yi = xi + ηi (5.2)

where yi ∈Rn is the i-th (1≤ i≤N) patch in the noisy image y, xi ∈Rn is the latent
clean version of yi and ηi is the residual noise in yi.

Among various contribution on image patch-based restoration, the dictionary learning
approaches [2, 3, 43–45] have been receiving noticeable attention in the last decade.
The aim of these methods is to seek a set of K basis vectors (also referred to as
atoms) {d1, . . . ,dj , . . . ,dK |dj ∈ Rn,1 ≤ j ≤ K} to form a dictionary D ∈ Rn×K such
that the clean image patch xi can be described by a linear combination of atoms {dj}
in the dictionary. That means, xi = Dαi, where αi ∈RK is called the representation
coefficients vector. Let Ωα ⊂ RK be a vector space generated by K atoms of the
dictionary D. Then each image patch xi can be represented by the vector of coefficients
αi in Ωα. Therefore, rather than modeling the distribution of image patches, we can
analyze the distribution of representation coefficients in the vector space Ωα to extract
useful prior information to regularize the image denoising problem.

Under the Bayesian MAP perspective, the denoising task is equivalent to find a
representation vector α̂i which maximizes the posterior conditional probability:

α̂i = argmax
αi

p(αi|D,yi) = argmax
αi

{p(yi|D,αi)p(αi)}

= argmin
αi

{
||yi−Dαi||22−λ logp(αi)

}
= argmin

αi

{
||yi−Dαi||22 +λΦ(αi)

} (5.3)

Where p(αi) is called the prior model of image patches since it specifies a priori
statistical features of representation coefficients of patches in the vector space Ωα and is
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independent of observation yi. The two main issues in solving the problem in (5.3) are
how to determine a dictionary D ∈Rn×K and what is the prior model of the distribution
p(αi) in Ωα.

As mentioned in section 2.6 in chapter 2, a data-adaptive dictionary, e.g. the
K-SVD, has demonstrated its out-performances comparing to fixed analytic dictionaries
in restoring a noisy image. In this chapter, we construct a dictionary D such that it
contains similar local patterns in the images by observing the structure of images or
adopting an existing dictionary training method such as the K-SVD.

With a given dictionary D, determining a good prior model of p(αi) in the vector
space Ωα, which is expected to be identical to the real distribution of representation
coefficients of patches {xi} in the latent image x, is the key issue in the success of an
image denoising algorithm. A conventional approach in the literature is the sparsity
model [2, 44, 149, 150]. The principal idea is to assume that the representation
coefficients of image patches in the vector space Ωα to be sparsely distributed and can
be characterized in a smaller dimensional subspace, e.g. p(αi)∝ exp(−λ||αi||0), with
the `0 pseudo-norm counts the number of non-zero elements in αi. Many authors [1,
43, 51, 55] observed that the distribution of image patches in the vector space Ωα

exhibit heavy-tailed forms and proposed some mathematical models such as Laplacian
(Φ(αi) ∝ ||αi||1), hyper-Laplacian (Φ(αi) ∝ ||αi||p, with 0 < p < 1) to approximately
describe the distributions of patches.

There are two shortcomings of the sparsity priors. Firstly, the choice of a sparse
model in a denoising algorithm is an arbitrary decision, which can be either non-convex
models such as `0-norm, `p-norm (0< p < 1) or a convex relaxation `1 model. Secondly,
the selected sparse model may not well portray the true distribution of image patches in
the vector space Ωα generated by K atoms of the dictionary D. It is straightforwardly
recognized that a prior model which can accurately express the true distribution p(αi)
of image patches may enhance the reconstruction of the degraded image. However,
the true distribution p(αi) of representation coefficients of patches in the latent clean
image x is underdetermined in practice. Therefore, introducing a prior model that
can accurately approximate the true distribution of p(αi) is essential to improve the
denoising performance.

On the purpose of studying a more consistent and reliable prior model involving
to the distribution of representation coefficients of image patches in the vector space
Ωα, we explored the external similarity property of images to learn the model of the
probability distribution p(αi) from the standard clean images. More specifically, due to
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the repetition of image contents across multiple images, as illustrated in section 2 of
chapter 1, we can expect that the latent image patches {xi} in the unknown image x and
the patches in the database (extracted from the standard images {xs}) share the same
distribution of representation coefficients. Therefore, instead of adopting an available
sparse prior for representing the distribution of patches in the latent image x, we can
estimate the distribution p(αi) from the empirical distribution p(αs

k) of representation
coefficients of patches in the database and then use it to reconstruct the noisy image
patch yi in (5.3).

Figure 5.1: Some of standard images in Kodak PhotoCD Dataset (http: // r0k. us/ graphics/

kodak/ )

For better comprehensive understanding the statistical property of distribution of
representation coefficients of patches in the vector space Ωα, we carry out the following
experiment on image patches of the database extracted from standard images {xs}. The
dictionary D is prepared as follows. We use the image of Boat shown in Fig. 2.1(f) as an
example. First, we add the Gaussian noise of mean zero and standard deviration σ = 20
to the image. Then, we randomly extract a set of 100000 image patches of size 8× 8
pixels (n= 64) from the noisy image and adopt the K-SVD algorithm, as described in
subsection 2.5 of chapter 2, to learn an overcomplete dictionary D ∈R64×256 of K = 256
atoms.

To create the list of standard images {xs}, we collected 24 high-quality noise free
images from the Kodak photoCD dataset (see Fig. 5.1) which contains diversity of
real-life scenes such as human subjects, building, flowers, etc. From 24 standard images
of the Kodak dataset, we randomly extract a set of P = 200000 image patches {xsk|xsk ∈
R64;k = 1, . . . ,200000} and calculate their corresponding representation coefficients
vectors {αs

k} in the vector space Ωα ⊂ R256 by using the least mean square error

 http://r0k.us/graphics/kodak/
 http://r0k.us/graphics/kodak/
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(a) Distribution p(αsk(128)) of representation coefficients on 128-th atom

Figure 5.2: Empirical distribution p(αs
k(128)) of representation coefficients of image patches in

the database with respect to the 128-th atoms of the dictionary D are plotted (in log domain)
in green curve. The fitting sparse models for the real distribution of patches are also sketched,
including the `0-norm in magenta dash curve, Laplacian `1-norm in red dash curve and hyper-
Laplacian `p-norm (with p= 2/3) in blue dash curve

estimation

αs
k = argmin

αsk

||xsk−Dαs
k||22 = (DTD)−1DTxsk = PDxsk (5.4)

where PD = (DTD)−1DT is the projection matrix. Hence, with a database of patches in
the image domain, we obtain a distribution p(αs

k) of representation coefficients vectors
in Ωα.

Let A = [αs
1, . . . ,α

s
k, . . . ,α

s
200000] ∈R256×200000 denote the ensemble of all represen-

tation vectors. Thus, the j-th row of A coincides with the representation coefficients
{αs

k(j)} of image patches in the database on the j-th atom dj of the dictionary D. In
order to facilitate the observation of statistical property of the real distribution p(αs

k)
of image patches in the database, we plot (in log domain) the distribution of the 128-th
row of matrix A in green curve in Fig. 5.2, which corresponds to the representation
coefficients {αs

k(128)}. Moreover, we also portray the fittings of true distribution (the
green curves) with three sparse models, including the `0-norm (p(αs

k)∝ exp(−γ||αs
k||0))

in magenta dash line, Laplacian (p(αs
k) ∝ exp(−γ||αs

k||1)) in blue dash line, and the
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hyper-Laplacian (p(αs
k)∝ exp(−γ||αs

k||p) with p= 2/3) in red dash curve.

An important remark can be drawn from Fig. 5.2. The sparse models such as Lapla-
cian and hyper-Laplacian are imperfect, but satisfactory in approximately representing
the distribution of patches in the vector space Ωα. However, they fail to describe the
true distributions of image patches with the fitting errors between the green curves and
the simulated lines of sparse models. Therefore, in this chapter, instead of selecting
a sparse hypothesis as the prior model of the distribution p(αi) of latent patches, we
propose to estimate it from the real distribution p(αs

k) (e.g. shown in green curve) of
representation coefficients of patches in the database. The purpose of our research is to
demonstrate that an accurate estimation of the distribution p(αs

k) can be well employed
as a prior information of p(αi) to regularize the image patch denoising, and leads to
outperforming reconstructions than an arbitrary choice of a sparse model.

(a) Distribution p(αsk(128)) of representation coefficients on 128-th atom

Figure 5.3: Empirical distribution p(αs
k(128)) of representation coefficients of image patches in

the database (green curve). The fitting sparse models, including the `0-norm (in magenta dash
curve), Laplacian (in red dash curve) and hyper-Laplacian (in blue dash curve). The black dash
line is the histogram estimation of the real distribution of patches.

Histogram is a simple yet effective tool that gives a rough sense of the density
of an underlying distribution of the data and can be used to estimate its probability
distribution function. In our work, we propose a median-based binning approach to
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discretize the distribution p(αs
k) of patches, which will be introduced in more details

in the next section. For a quick demonstration, we show in Fig. 5.3 the empirical
distribution p(αs

k(128)) of representation coefficients of image patches in the database
corresponding to the 128-th atoms in the dictionary, as well as its estimation versions
in dashed black lines and the fitting simulated sparse models. We can observe that
the estimated histogram can well represent the empirical distribution of representation
coefficients of patches with smaller fitting errors comparing to the sparse models.

In the next section, we will present the idea of estimation of probability distribution
function p(αi) of patches in the latent image x from the empirical distribution p(αs

k) of
representation coefficients of patches in the database.

3 Denoising by probability distribution estimation

In this section, we consider the distribution p(αi) of representation coefficients of
latent patches as a histogram estimated from the distribution p(αs

k) of representation
coefficients of patches in the database. We will discover the concept of our work on
estimation of p(αi) from the empirical distribution p(αs

k) via constructing a histogram
of piecewise constant functions. After that, we propose a framework that exploits the
obtained probability functions in solving the denoising optimization problem.

3.1 Estimation of probability distribution p(αi) from the database

Building histograms on one- or two-dimensional data is easy and visualizing. However,
for high dimensional data, we are likely to run into the curse of dimensionality, where
we have an exponential number of hypercube bins and nearly all of them may probably
be empty. As estimation is a difficult problem in high dimensional spaces, we consider
the vector space with dimensions up to three (Ωα ⊂R3). This is equivalent to choosing
a dictionary with only three atoms (K = 3) D = [d1,d2,d3] ∈ Rn×3. After that, we
randomly extract a set of P image patches {xsk ∈Rn,k = 1,2, . . . ,P} from the standard
images xs to create a database of patches. Each image patch xsk is encoded in the vector
space Ωα by a corresponding representation coefficient vector αs

k, determined by the
projection as described in (5.4), αs

k = (DTD)−1DTxsk.

In the scope of this work, rather than arbitrarily selecting an available sparse model
to represent the probability distribution p(αi), we prefer to approximately calculate
it from the real distribution p(αs

k) in Ωα of representation coefficients αs
k of patches

in the database. We introduced a simple yet effective method, by constructing a
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three-dimensional (3D) histogram for estimating the empirical distribution of patches.
However, building a histogram for the distribution p(αs

k) in the whole vector space
Ωα is a complex problem and can be broken down into smaller and simpler steps by
determining 3 one-dimensional (1D) histograms according to 3 atoms in the dictionary.
Hence, the distribution of patches along the j-th coordinate, denoted as p(αs

k(j)), of
the vector space Ωα is roughly approximated by a piecewise constant function of a 1D
histogram. Finally, the estimated 3D histogram p(αi) of the real probability distribution
p(αs

k) becomes a cube-wise constant function whose values are generated from the three
1D histograms by computing the density of patches simultaneously falling into each cube
made of three 1D bins. As a results, the empirical distribution p(αs

k) of representation
coefficients of patches in the database is approximated by a grid of cubes {Ωc

α} such
that every patches αi stored in the same cube Ωc

α share an identical probability of
occurrence, as defined in (5.5).

p(αi) =


1

Volume of Ωc
α
× Number of patches in Ωc

α

Number of patches in Ωα
= 1
V cα
× Pc
P
, if αi ∈Ωc

α

0, otherwise
(5.5)

where Pc is the number of patches falls inside the cube Ωc
α which contains αi, V cα is the

volume of Ωc
α (as Ωα is the 3D vector space), P is the total number of patches in the

database.

A major question in estimating the histogram p(αi) is how to determine the size
of each cube Ωc

α such that p(αi) can accurately represent the empirical distribution
p(αs

k). To this end, we consider to establish a 1D histogram for each dimension j of
the space Ωα, which coincides with the representation coefficients αs

k(j) on the j-th
atom of the dictionary, by dividing the entire range of values of αs

k(j) into a series of B
non-overlapping intervals (also known as bins) and counting how many values falling into
each bin. Practically, the choice of bin width, which is commonly inversely proportional
to the number of bin B over the range, is often a little arbitrary. In a simply conventional
proposal, the range limited by the minimum and maximum values of αs

k(j) in the j-th
dimension is split into B equal-width intervals. Despite the straightforwardness, a
shortcoming of equal-size bin division is the inflexibility in describing the density of a
distribution. Moreover, to precisely characterize a true distribution, we need to divide
the range into a large number of bins B, which causes an increase in the complexity of
estimation algorithm.

To cope with this issue, we proposed a median-based division strategy in which
each axis of Ωα is split in such a way that each interval contains the same number
of patches. Hence, the width of each bin can adapt to the density of the values of
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(a) (b)

Figure 5.4: Partition of α-space into grid of 4× 4× 4 rectangular cells. (a) View in 3D. (b) A
x-y slice at position z = 0 with a zoom in of center.

representation coefficients αs
k(j). That means, for an interval of the j-th coordinate

of Ωα with high density of patches, its length will be set to small, and so on. In the
experiments, each dimension of the vector space Ωα is separated into B intervals by
B− 1 median points using a recursive division, so that each bin contains P/B points.
As a result, we obtain a grid of (B− 1)3 quantiles Gα = {αq

l |l = 1, . . . ,(B− 1)3} in the
R3 space Ωα. In Fig. 5.4, we demonstrate an example of distribution of points in Ωα

which is partitioned in 4× 4× 4 (with B = 4, K = 3) cubes.

Using the proposed approach, we can produce a good estimation of the histogram
p(αi) to portray the true empirical distribution p(αs

k) of representation coefficients of
patches in the database with only a small number of bins in each dimension of the vector
space Ωα. To illustration, we consider an example on the image of Boat. We generate a
noisy image by adding Gaussian noise of mean zero and standard deviation of 20. After
that, we randomly extract a set of 100000 patches of size 3×3 pixels to train a dictionary
of K = 3 atoms, thanks to the K-SVD algorithm. We also collect P = 200000 patches in
the 24 standard images of the Kodak dataset and project them into the vector space Ωα

of the dictionary. Fig. 5.5 shows (in green curve) the empirical distribution p(αs
k(1)) of

the representation coefficients of patches in the database corresponding to the first atom
of the dictionary, as well as two estimated histograms using equal-width bin division (in
red dash lines) and median-based split (in black dash lines). The number of intervals
(bins) in each dimension of Ωα is set to B = 32 for two methods. It can be observed that
in the median-based bin division, we only need to partition the coordinate into B = 32
bins to get a histogram that is very approximate to the true distribution of patches. On
the other hand, the histogram obtained by the conventional equal-bin division method
with the same number of bin B fails to match the distribution of patches. Therefore, in
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all experimental test, we adopt the median-based partition with the number of bin is
set to B = 32 for each dimension of the vector space Ωα.

(a) Distribution p(αsk(1)) of representation coefficients on 128-th atom

Figure 5.5: The empirical distribution p(αs
k(1)) of representation coefficients of image patches

in the database corresponding to the first atom in the dictionary (green curve) and the 32-bins
estimated histograms according to median-based division (black dash line) and equal-bin division
(red dash curve).

3.2 Solving the optimization problem

In this section, we will present how to recover a clean image patch xi from its noisy
version yi, given the same dictionary D ∈Rn×3 in section 3.1 and the prior knowledge
of probability distribution p(αi) estimated from the database of patches.

The denoised patch can be generated as a linear combination of atoms in the
dictionary, x̂i = Dα̂i. Our objective is equivalent to find the value of α̂i which satisfies
the MAP optimization problem in (5.3):

α̂i = argmin
αi∈Ωα

{
||yi−Dαi||22−λ logp(αi)

}
= argmin

αi∈Ωα

J(αi) (5.6)

Where J(αi) = ||yi−Dαi||22−λ logp(αi) is called the cost function, λ > 0 is a regular-
ization parameter.

As indicated in section 3.1, we have divided the vector space Ωα into disjoint cubes
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{Ωc
α}, and the value of p(αi) is constant in each cube Ωc

α and is determined as in (5.5).
Consequently, the cost function J(αi) in (5.6) becomes a convex piecewise quadratic
function. A simple way to handle the problem (5.6) is the exhaustive solution that
minimizes J(αi) on each 3D cube Ωc

α and then select the best value α̂i from which we
achieve the smallest cost. Therefore, we can rewrite (5.6) as:

α̂i = argmin
Ωc
α⊂Ωα

{
argmin
αi∈Ωc

α

J(αi)
}

= argmin
Ωc
α⊂Ωα

Jc(αi;Ωc
α) (5.7)

As defined in (5.5), the value of p(αi) is equal to zero when αi is outside a cube
Ωc
α, and receive a constant value for every point αi ∈Ωc

α. Thus, the minimum cost
function on Ωc

α, denoted as Jc(αi;Ωc
α), becomes:

Jc(αi;Ωc
α) = argmin

αi∈Ωc
α

J(αi) = argmin
αi∈Ωc

α

||yi−Dαi||22−λ log
(
Pc
V cαP

)
(5.8)

Jc(αi;Ωc
α) turns into the minimization of a convex quadratic function J(αi) on a

subspace Ωc
α. As a result, the optimized value of Jc(αi;Ωc

α) occurs at either a point
inside or one of the eight corner of Ωc

α. We will prove as follows.

Suppose that there exists a cube Ωd
α such that Jc(αi;Ωd

α) = argminαi∈Ωd
α
||yi −

Dαi||22−λ log
(
Nd
V dαN

)
gets the minimum at α∗i = (DTD)−1DTyi, and α∗i ∈Ωd

α. Hence,
for all other cubes Ωc

α ,Ω
d
α, the minimum of cost function on Ωc

α is determined as:

Jc(αi;Ωc
α) = argmin

αi∈Ωc
α,αi<Ω

d
α

||yi−Dαi||22−λ log
(
Pc
V cαP

)
(5.9)

Because the root of the first derivative ∂Jc(αi;Ω
c
α)

∂αi
only occurs at α∗i = (DTD)−1DTyi <

Ωc
α, we always have:

∂Jc(αi;Ωc
α)

∂αi
,
−→0 ∀αi ∈Ωc

α

∂2Jc(αi;Ωc
α)

∂α2
i

= DTD> 0 : is a positive definite matrix
(5.10)

Therefore, the value of the cost function J(αi) in a cube Ωc
α always increase as we

go from one corner to another corner of Ωc
α. Consequently, the optimized value of (5.9)

is only obtained at one of the corners of Ωc
α. As a result, the restoration of each noisy

image patch yi is attained via minimizing the cost function J(αi) in (5.6) under the
constraint of cube-wise constant function of the probability distribution p(αi).

Moreover, we have partitioned the vector space Ωα into B3 rectangular bins by grid
of (B− 1)3 quantiles Gα. Therefore, these points becomes the corners of cubes Ωc

α, and
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Algorithm 5.1: Image denoising with estimated probability
Input : Set of standard images {xs}, noisy image y, dictionary D, noise level σ,

regularized parameter λ, patch size
√
n×
√
n, overlap between two

patches, number of bin B

1 Randomly extract P patches {xsk,k = 1, . . . ,N} from standard images {xs}, then
subtract the mean value from each patch xsk = xsk−mean(xsk).

2 Project P patches into vector space Ωα generated by K atoms of the dictionary
D using (5.4) to obtain the distribution of representation coefficients p(αs

k).
3 Estimate the histogram p(αi) from the distribution p(αs

k) using (5.5)

3.1 Determine (B− 1)K quantile points Gα = {αq
l |l = 1, . . . ,(B− 1)K}, based on

recursive median splitting, which divide the entire range of values in each
dimension of Ωα into B bins.

3.2 Determine BK cubes {Ωc
α} from (B− 1)K quantiles Gα and compute the density

of patches falling in each cube Ωc
α.

4 Partition the noisy image y into overlapping patches yi.
5 for each image patch yi ∈ y do
6 Subtract its mean value: yi = yi−µy.
7 Calculate α∗i = (DTD)−1DTyi.
8 Define a set of anchor points: Lα = {α∗i ,Gα}= {αa

l |l = 1, . . . ,(B− 1)K + 1}.
9 Solve problem (5.11) by calculating values of the cost function J(αi) in (5.6)

at all anchor points αa
l ∈ Lα and choosing the optimized value

α̂i = argminαal ∈Lα J(αa
l ).

10 Estimate the denoised image patch: x̂i = Dα̂i +µy

11 end
12 Average the overlapped regions of denoised patches x̂i to obtain the entire

denoised image x̂.
Output :The denoised image x̂.
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the optimal value of J(αi) in (5.6) will take place either at α∗i = (DTD)−1DTyi or at
one point in Gα. Let Lα = {α∗i ,Gα} = {αa

l |l = 1, . . . ,(B − 1)K + 1} denote the set of
anchor points. For a noisy image patch yi, to minimize (5.6), we can easily compute
the value of cost function J(αi) at anchor points and choose the optimized value α̂i

among Lα such that J(α̂i) is smallest.

α̂i = argmin
αal ∈Lα

{
||yi−Dαa

l ||22−λ logp(αa
l )
}

(5.11)

The value of p(αa
l ) in (5.11) and the production Dαa

l at each anchor point αa
l ∈ Lα

can be computed offline to accelerate the speed of the optimization of (5.11). When we
obtain the solution of optimal representation coefficients α̂i, the clean version of the
noisy image patch yi can be estimated by the weighted combination of atoms in the
dictionary:

x̂i = Dα̂i (5.12)

The denoising process is repeatedly applied to all patches in the noisy image yi to
get the estimations of the latent clean patches. After that, we aggregate the overlapping
regions between adjacent patches to achieve the final denoised image x̂i. The summary
of the image denoising framework, including the estimation of probability distribution
function procedure, is presented in algorithm 5.1.

3.3 Complexity analysis

In the stage of estimation of probability distribution function (step 1 to 3 in the
algorithm 5.1), we firstly extract P patches {xsk} of size

√
n×
√
n from the standard

images and project them into the vector space Ωα ⊂RK generated from the dictionary
D ∈ Rn×K . The complexity of this process is O(PK3 + PK2n). After that, the
distribution of P representation coefficients vectors {αs

k} is estimated via constructing
a histogram in RK space. Each dimension of Ωα space is split into B bins using log(B)
times of recursive median finding algorithm. The complexity of searching (B − 1)K

median values of P points in K-dimension is O(PK(log(B))K). The calculation of
cube-wise histogram in (5.5) takes O(BK) operations. Thus the overall complexity of
the probability estimation is O(PK(log(B))K +BK +PK3 +PK2n).

In the denoising stage (steps 5 to 11 in the algorithm 5.1), the most expensive
computational complexity is to solve the optimization problem in (5.11), which takes
O(N(Kn+n2)BK) operations, with N is the number of noisy patches yi in the degraded
image y.
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As we can see, the computational complexity of the denoising algorithm is highly
depend on the number of atoms K of the dictionary D and the number of bins B
in each coordinate of the vector space Ωα. With a fixed value of B, we have an
algorithm with exponential complexity in term of K. If K is set to a large value (high
dimensional vector space Ωα), the complexity will dramatically increase and become
a big challenge in implementation of the algorithm. Because of the curse of high
dimensionality and expensive computational cost, we choose a small dictionary with
K = 3 atoms to demonstrate the idea of using estimated histogram of the distribution
of external patches in the denoising of an image patch.

Additionally, with a given dictionary (K is fixed), the complexity is described in
polynomial expression of the number of bins B in each coordinate of vector space Ωα.
It can be observed that if we increase the number of bins by 2 times, the denoising stage
(especially in step 9) needs 2K times longer to handle the reconstruction of the same
image. As indicated in section 3.1, we only need to divide each dimension of Ωα into
B = 32 bins using the median-based splitting approach to get a good estimation of the
distribution of external patches. Therefore, in our experiments, the value of B is set to
B = 32 to ensure the balance between time complexity and the restoration performance.

4 Denoising performance and evaluation

In this section, our aim is to demonstrate that for a given dictionary D, using the
estimated probability distribution from the patches in the database as an image prior
is more efficient than the sparsity models for noise removal in the Bayesian MAP
framework (5.3). Comparison with other denoising methods such as nonlocal self-
similarity [65, 99], deep-learning [114] is out of the scope of our work on this chapter.

Given a dictionary, our method differs from the existing sparsity models in the way
we determine the probability distribution function p(αi). While the sparsity methods
assume that the probability of representation coefficients p(αi) in Ωα obeys a specific
model such as the Laplacian p(αi ∝ exp(−λ||αi||1)), we propose to estimate p(αi) via
constructing a histogram of the empirical distribution of αs

k of external patches in Ωα.

In the remaining of this section, we make comparisons on the denoising performance
of our proposed method with two famous sparse models of `0-norm (5.13) and `1-
norm (5.14).

α̂i = argmin
αi

{
‖ yi−Dαi ‖22 +λ||αi||0

}
(5.13)
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α̂i = argmin
αi

{
‖ yi−Dαi ‖22 +λ||αi||1

}
(5.14)

The problem in (5.13) can be efficiently solved by the orthogonal matching pursuit
(OMP) algorithm [120]. In our implementation, we use the LARS algorithm developed
by Zou et al. [63] to find the solution of (5.14). For more convenient, we refer to our
proposed method as ProbaEst, and the others in (5.13) and (5.14) as OMP and LARS,
respectively. To have a nondiscriminatory assessment of these methods, we adopt the
same dictionary for all methods and interpret the results in terms of both quantitative
measures and visual quality.

Our proposed estimation method is limited to a dictionary with three atoms (K = 3).
For this reason, the method is a priori best suited for low complexity images. To
explore its performance, we have constructed a test benchmark on synthetic images
in section 4.2. We also discuss the results obtained on binary and natural images in
sections 4.3 and 4.4.

4.1 Parameter setting

In all experimental tests, the size of an image patch is set to 3× 3 and the overlap
between two adjacent patches is 2 pixels. In cases of binary and natural images, the
Kodak PhotoCD Dataset (shown in Fig. 5.1) is used as standard images. For the stage
of estimation of p(αi) as described in section 3.1, we use P = 500000 patches randomly
extracted from standard images to form the database of patches.

In our empirical work, the noisy images are generated from the corresponding
noise-free versions by adding Gaussian noise with different levels σ = 10,20,30. In
regard to binary tests, all images are converted into binary versions using a threshold
method. For objective quality assessment of denoising of vertical structure and natural
images, we employ two widely used metrics named peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM). In case of binary images, the PSNR is not
sufficient for subjective assessment, since it is a point-based measurement, and mutual
relations between pixels are not taken into account. Instead, we adopt two metrics
called the Dice ratio and the distance-reciprocal distortion measure (DRDM [151]) for
evaluation. The DRDM, which exploits the correlation distance between black and
white pixels within image, is a objective distortion measure to judge the similarity
between two binary images. As demonstrated in [151], the DRDM metric matches well
to subjective assessment by human visual perception. An essential notice is that the
small value of DRDM indicate that two binary images are close.
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4.2 Denoising of vertical structure images

We first evaluate the denoising performance of our proposed method ProbaEst with
two sparse models OPM and LARS on simple vertical structure images. We generate
10 vertical structure test images made of constant-gray-value stripes placed on a dark
background as show in Fig. 5.6(b)-(e), where both the width and values of stripes
are chosen randomly. We also need an adaptive standard image with similar vertical
structures to exploit the redundancy of informations between images. Therefore, we
create an image with stripes of gray levels gradually increasing from 1 to 255 as shown
on Fig. 5.6(a) and use it as standard image for all comparing methods.

(a)

(b)
∼

(c)
∼

(d)

(e)
∼

(f)
∼

(g)
∼

(h)
∼

(i)

Figure 5.6: (a) Vertical structure standard images with gradually increasing values of stripes.
(b)-(f) Some of vertical structure test images with random width and values of stripes (from
test1 to test5). (g)-(i) The patch-form of the three elements (atoms) of the dictionary D

In our experiments, we observe that the results of denoising are highly dependent
on the choice of dictionary D. In regard to our task, where all images are composed
of vertical stripes, a dictionary with vertical structural atoms can be more adapted to
the image structure. Therefore, we select a dictionary with the vertical structure as
exposed in Fig. 5.6(f)-(h). Tables 5.1 and 5.2 provide the results of denoising in terms
of PSNR and SSIM, where the best values are in bold red numbers. We can observe
that for small noise corruption (σ = 10), the LARS algorithm (5.14) yields better values
of PSNR, but our proposed method ProbaEst achieves higher SSIM performances. For
qualitative illustration, we present in Fig. 5.7 the denoising results of image test with
noise level σ = 10. Although the LARS algorithm attains the highest PSNR value, the
proposed method restores a more pleasant visual image with less vertical artifacts than
the LARS and OMP method.



4. Denoising performance and evaluation 95

σ = 10 σ = 20 σ = 30
Images

OMP LARS ProbaEst OMP LARS ProbaEst OMP LARS ProbaEst

test1 36.03 38.23 35.82 31.20 32.11 32.30 28.14 28.72 29.38
test2 36.03 38.21 35.77 31.31 32.20 32.43 28.25 28.75 29.60
test3 35.98 38.14 35.72 31.24 32.08 32.47 28.11 28.52 29.32
test4 35.97 38.08 35.56 31.23 32.02 32.54 28.16 28.67 29.50
test5 36.00 38.06 35.81 31.34 32.04 32.58 28.03 28.46 29.25
test6 36.08 38.23 35.83 31.28 32.08 32.53 28.15 28.60 29.57
test7 35.95 38.08 35.74 31.16 31.89 32.51 28.05 28.41 29.29
test8 36.06 38.10 35.77 31.26 32.21 32.58 28.14 28.58 29.59
test9 35.95 38.08 35.88 31.19 32.06 32.74 28.21 28.68 29.51
test10 36.03 38.11 35.74 31.42 32.25 32.66 28.14 28.43 29.49
test11 36.00 38.12 35.77 31.29 32.13 32.65 28.18 28.61 29.57
test12 36.09 38.16 35.70 31.32 32.14 32.51 28.32 28.73 29.77
test13 35.90 38.18 35.71 31.49 32.36 32.67 28.20 28.76 29.62
test14 35.96 37.93 35.75 31.31 31.94 32.63 28.16 28.63 29.66
test15 35.97 38.08 35.83 31.31 32.06 32.79 28.04 28.43 29.67
test16 36.09 38.19 35.79 31.31 32.18 32.61 28.08 28.62 29.44
test17 35.95 38.11 35.72 31.18 32.02 32.55 27.99 28.44 29.22
test18 36.03 38.18 35.87 31.32 32.12 32.62 28.28 28.66 29.70
test19 35.94 38.01 35.81 31.19 31.99 32.46 28.16 28.72 29.54
test20 35.93 37.88 35.68 31.18 31.99 32.57 28.04 28.37 29.50

Average 36.00 38.11 35.76 31.28 32.09 32.57 28.14 28.59 29.51

Table 5.1: The PSNR measure of denoising of vertical stripes images in Fig. 5.6 with different
methods.

Moreover, it can be seen that with heavier noise levels (σ = 20,30), the proposed
method is superior to the sparse models, with the improvements are 0.4 ∼ 1.4 dB of
PSNR and 0.05∼ 0.12 of SSIM. For visual assessment, Figures 5.8, 5.9, 5.10 show the
denoising results of image test9, test13 and test15, respectively. It is evident that the
OMP and LARS are likely to generate much more artifacts in the denoised images
than the proposed method. More precisely, referring to the results from Fig. 5.8(c)-(e),
Fig. 5.9(c)-(e), Fig. 5.10(c)-(e), the proposed method ProbaEst is more robust against
the vertical artifacts in reconstruction of noisy images and generates more preferable
outputs.
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(a) Original image (test1) (b) Noise image (28.14 - 0.549)

(c) OMP (36.03 - 0.878) (d) LARS (38.23 - 0.948)

(e) ProbaEst (35.82 - 0.961)

Figure 5.7: Results of denoising on image test1 with σ = 10. (a)-(e) are the original image, noisy
image, result of OMP, LARS and ProbaEst, respectively, with the zoom-in of region-of-interest
(R.O.I).

(a) Original image (test9) (b) Noise image (22.05 - 0.325)

(c) OMP (31.19 - 0.748) (d) LARS (32.06 - 0.837)

(e) ProbaEst (32.74 - 0.877)

Figure 5.8: Results of denoising on image test9 with σ = 20. (a)-(e) are the original image, noisy
image, result of OMP, LARS and ProbaEst, respectively, with the zoom-in of region-of-interest
(R.O.I).
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(a) Original image (test13) (b) Noise image (18.58 - 0.248)

(c) OMP (28.20 - 0.636) (d) LARS (28.76 - 0.716)

(e) ProbaEst (29.62 - 0.768)

Figure 5.9: Results of denoising on image test13 with σ = 30. (a)-(e) are the original image, noisy
image, result of OMP, LARS and ProbaEst, respectively, with the zoom-in of region-of-interest
(R.O.I).

(a) Original image (test15) (b) Noise image (18.56 - 0.270)

(c) OMP (28.04 - 0.646) (d) LARS (28.43 - 0.721)

(e) ProbaEst (29.67 - 0.773)

Figure 5.10: Results of denoising on image test15 with σ = 30. (a)-(e) are the original image,
noisy image, result of OMP, LARS and ProbaEst, respectively, with the zoom-in of region-of-
interest (R.O.I).
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σ = 10 σ = 20 σ = 30
Images

OMP LARS ProbaEst OMP LARS ProbaEst OMP LARS ProbaEst

test1 0.878 0.948 0.961 0.742 0.830 0.868 0.632 0.712 0.758
test2 0.879 0.950 0.962 0.751 0.837 0.872 0.640 0.718 0.768
test3 0.879 0.949 0.963 0.752 0.836 0.874 0.642 0.716 0.767
test4 0.882 0.950 0.962 0.759 0.842 0.876 0.645 0.720 0.769
test5 0.882 0.950 0.963 0.757 0.841 0.877 0.640 0.715 0.764
test6 0.884 0.951 0.963 0.760 0.843 0.878 0.645 0.721 0.770
test7 0.880 0.949 0.962 0.752 0.835 0.871 0.640 0.716 0.767
test8 0.885 0.952 0.964 0.758 0.842 0.877 0.646 0.722 0.772
test9 0.881 0.950 0.963 0.748 0.837 0.877 0.649 0.726 0.774
test10 0.885 0.952 0.964 0.756 0.839 0.876 0.646 0.721 0.770
test11 0.881 0.950 0.962 0.754 0.839 0.877 0.645 0.721 0.770
test12 0.882 0.951 0.963 0.754 0.839 0.875 0.651 0.728 0.773
test13 0.875 0.947 0.961 0.757 0.842 0.876 0.636 0.716 0.768
test14 0.884 0.951 0.963 0.766 0.845 0.879 0.656 0.731 0.779
test15 0.881 0.950 0.963 0.760 0.843 0.879 0.646 0.721 0.773
test16 0.881 0.951 0.963 0.747 0.834 0.872 0.631 0.710 0.763
test17 0.881 0.950 0.963 0.751 0.835 0.872 0.642 0.716 0.766
test18 0.879 0.950 0.963 0.750 0.835 0.870 0.642 0.719 0.771
test19 0.879 0.949 0.962 0.754 0.837 0.873 0.646 0.724 0.771
test20 0.886 0.952 0.964 0.770 0.851 0.884 0.657 0.731 0.782

Average 0.881 0.950 0.963 0.755 0.839 0.875 0.644 0.720 0.770

Table 5.2: The SSIM measure of denoising of vertical stripes images in Fig. 5.6 with different
methods.

4.3 Denoising of binary images

In this part, we will not only compare the performance of the proposed method with
the sparse patch-based algorithms OMP and LARS, but also with others denoising
methods developed for binary images, called Iterated Conditional Mode (ICM) [152] and
Graph Cuts [153]. The ICM method is based on the maximization of local conditional
probabilities, which begins from some initial assignment of states to pixels (0 or 1),
then cycles through the pixels, greedily maximizes the potential of each pixel given its
neighbors until no further local improvements are possible. While in the latter method,
we construct a graph of nodes (sources and sinks) from input image and optimize the
energy function by maximizing amount of flow passing from the source to the sink.

In the experiments, all images are converted into binary versions using a simple
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thresholding method as a pre-processing step. We used all the 24 images in the Kodak
PhotoCD Dataset (Fig. 5.1) as standard images and 5 natural images of Baby, House,
Lena, Monarch and Peppers shown in Fig. 2.1 are adopted for the evaluation. The
dictionary is chosen as the same as Fig. 5.6(f)-(h) for the ProbaEst, OMP and LARS
methods.

σ = 20 σ = 30 σ = 40
Images

OMP LARS ICM Gr.Cuts ProbaEst OMP LARS ICM Gr.Cuts ProbaEst OMP LARS ICM Gr.Cuts ProbaEst

House 0.875 0.877 0.902 0.819 0.900 0.856 0.856 0.883 0.797 0.883 0.838 0.838 0.871 0.788 0.875
Lena 0.908 0.917 0.940 0.916 0.941 0.883 0.884 0.921 0.889 0.923 0.847 0.848 0.902 0.871 0.900

Monarch 0.923 0.930 0.930 0.876 0.948 0.894 0.894 0.894 0.808 0.931 0.863 0.863 0.861 0.759 0.923
Peppers 0.941 0.948 0.955 0.946 0.963 0.918 0.918 0.930 0.919 0.951 0.888 0.888 0.907 0.885 0.939
Baby 0.971 0.974 0.980 0.976 0.980 0.961 0.961 0.974 0.969 0.976 0.945 0.945 0.967 0.962 0.970

Average 0.923 0.929 0.941 0.906 0.946 0.902 0.902 0.920 0.876 0.932 0.876 0.876 0.901 0.853 0.921

Table 5.3: Comparison of denoising methods for binary images using Dice ratio.

σ = 20 σ = 30 σ = 40
Images

OMP LARS ICM Gr.Cuts ProbaEst OMP LARS ICM Gr.Cuts ProbaEst OMP LARS ICM Gr.Cuts ProbaEst

House 10.56 10.00 6.44 19.90 6.24 12.73 12.72 8.91 23.90 8.48 14.93 14.96 10.32 25.21 9.51
Lena 9.43 8.24 4.96 8.57 4.61 12.23 12.21 7.04 12.52 6.57 16.58 16.53 9.43 15.50 9.29

Monarch 4.49 3.93 4.25 8.84 2.23 6.51 6.50 7.13 15.99 3.26 9.00 9.01 10.27 21.97 3.85
Peppers 6.19 5.22 4.31 5.17 2.90 8.99 8.99 7.73 9.11 4.16 12.93 12.94 10.98 14.71 5.69
Baby 4.08 3.44 1.90 2.43 1.72 5.77 5.78 2.77 3.53 2.37 9.05 9.07 4.17 5.04 3.40

Average 6.95 5.96 4.37 8.98 3.54 9.24 9.24 6.71 13.01 4.96 12.49 12.50 9.03 16.48 6.34

Table 5.4: Comparison of denoising methods for binary images using DRDM measurement.

Table 5.3 and 5.4 present the results of denoising of binary images in terms of Dice
Ratio and DRDM measurement, respectively, where the best values are shown in bold
red numbers. We can observe that the proposed method achieves better assessment
metrics than the other methods, which proves the effectiveness of our method for binary
image denoising.

For further illustration, Fig. 5.11, Fig. 5.12 and Fig. 5.13 show the denoising results
of competitive methods. In Fig. 5.11, the ICM, Graph Cuts and proposed method
ProbaEst achieve higher noise-reduction than the sparsity ones, but we have lost some
small details on the beanie. The results of ICM and ProbaEst are very close and similar
with the original image, while the Graph Cuts discards some black regions around the
eyes in the image. In the contrary, the OMP and LARS visually conserve more details
on the beanie, but they produce much more noise on the face, as well as the vertical
artifacts within the image.

In addition, Fig. 5.12 and Fig. 5.13 display the denoising results of binary image
of monarch and peppers, respectively. As can be observed, proposed method is more
efficient in noise reduction than the sparsity (OMP, LARS) and the ICM. More partic-
ularly, the OMP and LARS generate images with vertical artifacts, while the Graph
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Cuts tends to produce an over-expansion foreground image. Visually, proposed method
achieves very competitive denoising performance, where its results are more similar
compare to the original images.

(a) Original (b) Noise (c) OMP

(d) LARS (e) ICM (f) Graph Cuts

(g) ProbaEst

Figure 5.11: Results of denoising on binary image of Baby with σ = 30.
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(a) Original im. (b) Noise image (c) OMP

(d) LARS (e) ICM (f) Graph Cuts

(g) ProbaEst

Figure 5.12: Results of denoising on binary image of Monarch with σ = 30.
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(a) Original (b) Noise (c) OMP

(d) LARS (e) ICM (f) Graph Cuts

(g) ProbaEst

Figure 5.13: Results of denoising on binary image of Peppers with σ = 30.
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4.4 Denoising of natural images

In the rest of our work in this chapter, we compare the performance of the proposed
method with two sparsity-based algorithms OMP and LARS for denoising on 20 widely
used natural images as shown in Fig. 2.1. We use all 24 images in the Kodak dataset
(Fig. 5.1) as standard images {xs}. Moreover, we carry out the experiments by adopting
the same dictionary for all methods, which is directly trained from each noisy image,
using the K-SVD algorithm [2].

σ = 10 σ = 20 σ = 30
Images

OMP LARS ProbaEst OMP LARS ProbaEst OMP LARS ProbaEst

Airfield 32.19 32.04 31.74 28.48 29.03 29.05 26.15 26.99 27.19
Airplane 33.57 34.40 33.96 29.37 30.55 30.60 26.74 28.03 28.30
Baboon 28.45 27.05 26.28 25.42 24.81 24.73 23.35 23.11 23.20
Baby 33.66 34.69 34.64 29.57 31.12 30.98 27.07 28.75 28.91
Barbara 31.32 30.66 29.75 27.54 27.31 27.31 25.06 25.15 25.35
Boat 33.56 34.19 33.96 29.20 30.21 30.34 26.54 27.83 28.07
Bridge 30.28 29.29 28.82 26.71 26.56 26.64 24.67 24.94 25.01
Cameraman 31.22 30.53 30.07 27.80 28.04 28.07 25.63 26.17 26.53
Couple 32.49 32.35 31.93 28.42 28.84 28.96 26.02 26.82 27.06
Fruits 33.37 34.00 33.68 29.42 30.61 30.54 26.81 28.13 28.44
Boy 31.83 31.59 31.53 28.48 29.29 29.27 26.29 27.51 27.68
Hill 32.19 32.01 31.85 28.49 29.14 29.22 26.16 27.20 27.41
House 33.16 33.63 33.35 29.22 30.19 30.28 26.60 27.79 28.15
Jellybeans 34.40 36.35 35.94 29.89 31.62 31.57 27.12 28.75 29.01
Leaves 31.44 31.05 30.19 27.52 27.41 27.69 24.86 24.80 25.49
Lena 33.09 33.59 33.37 29.21 30.36 30.34 26.69 28.09 28.31
Man 32.44 32.47 32.20 28.61 29.39 29.45 26.22 27.34 27.57
Monarch 32.27 32.39 31.89 28.44 28.95 29.15 25.88 26.57 27.05
Peppers 32.54 32.71 32.36 28.92 29.95 29.89 26.52 27.78 28.09
Zelda 32.81 33.20 33.02 29.06 30.14 30.13 26.59 27.96 28.19

Average 32.31 32.41 32.03 28.49 29.17 29.21 26.05 26.99 27.25

Table 5.5: Denoising performance on 20 natural images with respect to PSNR.

In reality, with a simple dictionary of three atoms, the denoising results will not
be good enough for visual quality requirement. But we have to emphasize again that
the objective of our research is to demonstrate that using the estimated probability
distribution as the image prior is more efficient than a sparsity model for noise removal.
As illustrated in Tables 5.5 and 5.6, the proposed method yields better values of PSNR
and SSIM than the sparsity algorithms in most of cases of high noise levels (σ = 20,30).
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σ = 10 σ = 20 σ = 30
Images

OMP LARS ProbaEst OMP LARS ProbaEst OMP LARS ProbaEst

Airfield 0.845 0.839 0.840 0.713 0.743 0.744 0.607 0.655 0.665
Airplane 0.848 0.899 0.901 0.702 0.790 0.793 0.584 0.682 0.704
Baboon 0.879 0.841 0.821 0.768 0.736 0.735 0.668 0.641 0.644
Baby 0.856 0.902 0.904 0.711 0.795 0.792 0.596 0.692 0.707
Barbara 0.867 0.874 0.862 0.740 0.763 0.762 0.625 0.653 0.666
Boat 0.869 0.905 0.910 0.732 0.797 0.801 0.618 0.695 0.714
Bridge 0.892 0.867 0.862 0.775 0.761 0.767 0.678 0.681 0.683
Cameraman 0.849 0.882 0.881 0.701 0.765 0.768 0.592 0.662 0.682
Couple 0.874 0.879 0.879 0.745 0.775 0.782 0.640 0.686 0.702
Fruits 0.839 0.876 0.876 0.690 0.768 0.765 0.568 0.658 0.678
Boy 0.807 0.791 0.789 0.647 0.675 0.674 0.525 0.575 0.583
Hill 0.852 0.844 0.847 0.717 0.745 0.750 0.608 0.658 0.670
House 0.833 0.855 0.856 0.689 0.752 0.754 0.577 0.653 0.674
Jellybeans 0.861 0.937 0.937 0.719 0.827 0.823 0.601 0.711 0.731
Leaves 0.944 0.961 0.957 0.882 0.906 0.908 0.818 0.842 0.858
Lena 0.834 0.857 0.855 0.694 0.757 0.755 0.578 0.660 0.675
Man 0.863 0.881 0.881 0.729 0.779 0.782 0.618 0.685 0.699
Monarch 0.908 0.936 0.933 0.813 0.862 0.862 0.721 0.780 0.796
Peppers 0.813 0.819 0.816 0.666 0.720 0.720 0.552 0.625 0.643
Zelda 0.838 0.866 0.865 0.694 0.759 0.757 0.576 0.655 0.670

Average 0.859 0.875 0.874 0.726 0.774 0.775 0.617 0.677 0.692

Table 5.6: Denoising performance on 20 natural images in term of SSIM.

Particularly, with σ = 30, the improvements are around 0.3 to 1.2 dB on average in
term of PSNR.

For visual assessment, Fig. 5.14, 5.15, 5.16 show the denoising results of competing
methods on image of Peppers, Airplane and Baby, respectively. Globally, the three
methods produce acceptably visual results. For better evaluation, we display the
zooming of some regions in the images. It can be observed that the proposed method
ProbaEst demonstrates its effectiveness in reconstruction of degraded images with less
artifacts than the sparsity models.

5 Conclusion

This chapter gives some significant remarks on the use of sparse model to describe the
priori knowledge of distribution of representation coefficients of latent image patches, in
the perspective of Bayesian MAP. First, the choice of an available sparse model in a
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image restoration algorithm is an arbitrary decision. Second, the selected model may
be insufficient to characterize the true distribution of image patches.

In this chapter, we investigate the distribution of representation coefficients of image
patches in the vector space generated from the atoms in an available dictionary to study
a prior model for patch-based image denoising. The principal idea of our research is
built upon the interesting property of redundancy of local patterns across images, where
local patches tend to repeatedly appear in an underlying image and the standard images.
Therefore, the patches in a latent image and in the database are considered to share
the same distribution of representation coefficients. Thus we proposed to estimate a
prior model from the empirical distribution of representation coefficients of patches in
the database and use it to restore a degraded image.

We have demonstrated that with a small dimensional vector space (or a dictionary
contains up to 3 atoms), we can produce an accurate estimation of the true distribution of
representation coefficients of image patches in the database by constructing a histogram
with piecewise constant functions. An efficient median-based division approach has been
proposed to precisely model the distribution of image patches with small number of bins
of histogram in each dimension of the vector space. We also introduce a framework that
takes into account the estimation-based probability distribution in reconstruction of a
noisy image. By exploring experiments on multiple type of images, we have proved that
using estimated prior from the distribution of patches in the database can improve the
performance of a denoising algorithm, rather than adopting an arbitrary sparse model.

However, the proposed approach with piecewise constant estimation of probability
distribution is inefficient for high dimensional vector space, which corresponds to a large
dictionary in practice, due to the curse of dimensionality and the high computational
complexity. To deal with this problem, we can use a kernel density estimator such as
the Gaussian Mixture Model (GMM) to learn the prior model of probability distribution
function from the distribution of external patches in high-dimensional vector space. We
will expand the proposed method, as well as discuss the use of GMM in solving the
denoising optimization in the next chapter.
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(a) Original (b) Noise (18.59 - 0.219)

(c) OMP (26.52 - 0.552) (d) LARS (27.78 - 0.625)

(e) ProbaEst (28.09 - 0.643)

Figure 5.14: Results of denoising on image of peppers with σ = 30.
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(a) Original (b) Noise (18.58 - 0.22)

(c) OMP (26.74 - 0.584) (d) LARS (28.03 - 0.682)

(e) ProbaEst (28.30 - 0.704)

Figure 5.15: Results of denoising on image of airplane with σ = 30.
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(a) Original (b) Noise (18.60 - 0.209)

(c) OMP (27.07 - 0.596) (d) LARS (28.75 - 0.692)

(e) ProbaEst (28.91 - 0.707)

Figure 5.16: Results of denoising on image of airplane with σ = 30.
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Number of Useful Components in Gaussian Mixture
Models for Patch-based Image Denoising

In the previous work, we showed that estimating the actual probability distribution
of image patches improves image reconstruction. However our estimation method is
limited to low dimensional dictionaries, so we now consider Gaussian Mixture Models
(GMMs) for better representing the prior. However, when using GMMs as a prior for
image denoising under the Bayesian maximum a posteriori (MAP) perspective, only
a single prominent Gaussian component is usually selected to recover a noisy image
patch, which leads to computationally efficient implementations. In this chapter,
we attempt to justify this on several image datasets by evaluating the number of
Gaussian components required for recovering patches. We show that even patches
without a prominent component in the prior can be recovered with little loss of
performance. Comparisons between two dictionary choices and between small and
large models suggest that large gains are attainable, but only one component is
required for reconstruction. A summary of our work has been submitted in the
2018 International Conference on Image and Signal Processing (ICISP1).

Abstract

1Dai-Viet Tran, Sébastien Li-Thiao-Té, Marie Luong, Françoise Dibos, “Number of Useful Com-
ponents in Gaussian Mixture Models for Patch-based Image Denoising”, accepted to ICISP, July 2-4,
2018.
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1 Introduction

The initial results of the proposed method in chapter 5 have validated the successfulness
of using the estimation of empirical distribution of patches in the database to recover a
degraded image, rather than adopting an arbitrarily available sparse model. However,
the developed framework using histogram to estimate the distribution p(αi) of patches
has limitation in dealing with high-dimensional vector space Ωα ⊂RK , due to the curse
of dimensionality where a large portion of number of hypercube bins may probably be
empty. Moreover, with a large dictionary K� 3, the complexity of histogram estimation
algorithm dramatically increases and makes the implementation impossible. Therefore,
in denoising applications presented in chapter 5, the number of atoms in the dictionary
D is chosen really small with K = 3, which corresponds to a three-dimensional vector
space Ωα. However, in practical applications, a complete dictionary (K = n) or an
over-complete dictionary (K > n) has demonstrated its out-performance for image
restoration comparing to a small dictionary.

One representative solution for dealing with estimation of probability in high-
dimensional vector space Ωα is the use of parametric kernel density estimators. Among
various contributions, the Gaussian Mixture Model (GMM) has been commonly exploited
in representing the distribution of data in a high-dimensional space and successfully
employed in image restoration [5, 89, 90, 92, 93, 97]. The fundamental of these
approaches is to estimate the empirical distribution of patches in the database by
a linear combination (often known as a mixture) of finite number of M Gaussian
distributions. However, when employing the GMM as a prior model for solving image
denoising under the Bayesian MAP perspective in (5.3), only a single prominent Gaussian
component is usually selected to represent the probability distribution p(αi), which
leads to computationally efficient implementations.

In this chapter, we explore the Gaussian mixture model to estimate the distribution
p(αs

k) of the representation coefficients of patches in the database and use it as an
image prior to represent the probability distribution p(αi) of patches in the latent
image. A questionable issue is how many useful components in GMM should be used to
describe the probability distribution p(αi) and thus reconstruct a noisy patch. Can we
apply all M Gaussian components or only one prominent component is enough? To
our knowledge, justification for this approach is lacking in the literature. Therefore,
earlier than making comparison the denoising performance of the proposed method
with other competing sparsity models as in chapter 5, we concentrate in this chapter
to verify this scientific question on several image datasets by evaluating the number of



112
Chapter 6. Number of Useful Components in Gaussian Mixture Models for Patch-based

Image Denoising

Gaussian components required for recovering patches.

The remainder of this chapter is organized as follows. Section 2 briefly introduces
the patch-based image denoising problem with the GMM prior, as well as our motivation
of exploiting GMM to estimate the probability distribution p(αi) from the empirical
distribution of representation coefficients of patches in the database. Section 3 gives
a quickly description of the datasets used for evaluation. The details of the Gaussian
mixture model as Prior for Image Denoising (GPID) method are presented in section 4.
The experimental results on a combination of two dictionary choices and two model
complexities of the GMM are shown in section 5. This chapter will be ended with some
discussion and perspective in section 6.

2 Problem Statement and Motivation

In this work, we consider the Gaussian Mixture Model (GMM) for distribution estimation.
The fundamental concept is to suppose that each representation coefficients vector αs

k

of patches in the database is drawn from a mixture of M Gaussian distributions of
unknown parameters {µm,Σm} as described in (6.1)

p(αs
k) =

M∑
m=1

πmN (αs
k|µm,Σm) (6.1)

Where {πm|m = 1, . . . ,M} are the mixing weights with ∑M
m=1πm = 1, µm ∈ RK and

Σm ∈ RK×K are the mean and covariance matrix of the m-th Gaussian component,
respectively. N (αs

k|µm,Σm) is the Gaussian distribution defined in (6.2)

N (αs
k|µm,Σm) = 1√

2π|Σm|
exp

(
−1

2(αs
k−µm)TΣ−1

m (αs
k−µm)

)
(6.2)

where |Σm| is the determinant of Σm.

In order to demonstrate the benefit of using GMM in approximately represent the
distribution of patches, we study some simulations on the image of Boat shown in
Fig. 2.1(f) as follows. We added Gaussian noise with σ = 20 to the image, and randomly
extracted 100000 patches of size 8× 8 (n= 64) to train a dictionary of K = 256 atoms
(D ∈R64×256) using the K-SVD algorithm (please refer to section 2.5 of chapter 2 for
detailed description).

We collected 200 training images from the Berkeley segmentation dataset [6] as
standard images {xs}. A database of P = 200000 clean patches {xsk|xsk ∈ R64;k =
1, . . . ,200000} are randomly extracted from standard images and we compute their
corresponding representation coefficients vectors αs

k using the least mean square error



2. Problem Statement and Motivation 113

(a) Distribution p(αsk(128)) of representation coefficients on 128-th atom

Figure 6.1: The empirical distribution p(αs
k(128)) of representation coefficients of image patches

in the database corresponding to the 128-th atom in the dictionary (green curve) and the estimated
distribution using GMM with M = 7 components (black dash line).

estimation as in (5.4). We examined the distribution of representation coefficients
αs
k(128) along the 128-th dimension of the vector space Ωα, which corresponds to

the weight of the 128-th atom of the dictionary. From 200000 values of {αs
k(128)|k =

1, . . . ,200000}, we learned a GMM model that approximates the distribution p(αs
k(128)).

Fig. 6.1 shows the empirical distribution p(αs
k(128)) of representation coefficients (in

green curve) of 200000 patches in the database. We also plot the estimated distribution
of GMM model in black dash line. It can be observed that, although there are some
fitting errors, but using a mixture of M = 7 Gaussian components can acceptably
characterize the true distribution p(αs

k(128)) of representation coefficients of patches in
the database, especially for the tails of the distribution. Therefore, the GMM model
can be exploited to estimate the distribution of image patches.

Our aim is to estimate the parameter {πm,µm,Σm|m= 1, . . . ,M} from the empirical
distribution p(αs

k) of P patches in the database. After that, the obtained GMM is used
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to model the prior distribution of representation coefficients p(αi) of latent patches x.

p(αi) =
M∑
m=1

πmN (αi|µm,Σm) (6.3)

Hence, the denoising problem in (5.3) becomes:

α̂i = argmin
αi

||yi−Dαi||22−λ log

 M∑
m=1

πmN (αi|µm,Σm)

 (6.4)

Optimization of (6.4) is a very time-consuming process and pose a huge challenge
in implementation of denoising algorithm.

Using GMM is not a new approach in image restoration with several publications
have been reported in the literature [5, 89–94]. Typically, a GMM model was learned
from the distribution of image patches in the database. However, a really difficult
obstacle that the researchers have to face is how to solve the optimization with the
given GMM model under the assumption of Bayesian MAP. A conventional solution
proposed in the existing works [5, 89–91, 93] is to select only one prominent Gaussian
among M distribution of the GMM to represent the prior model of p(αi) of each noisy
patch yi. Thus, the optimization turns into a convex quadratic problem and can be
easily solved by a close-form formula. In [92], the author first divided the degraded
image y into M groups of similar patches, and for each group, a Gaussian distribution
was estimated to model the distribution of image patches.

To our knowledge, existing GMM-based denoising methods only used one prominent
component of the GMM for representing the probability for each image patch, which
leads to computationally efficient implementations. However, a questionable issue is
using only one dominant component from M components of the GMM is enough to
produce a good estimation of the latent image patch xi? In other words, may we improve
the reconstruction performance when exploiting more Gaussian components to represent
the prior distribution of latent patches? Additionally, what is the useful number of
Gaussian components should be used for denoising an image patch yi? Unfortunately,
the justification for these issues is lacking in the state-of-the-art.

The proposed denoising model in this work is the development of our framework
introduced in chapter 5 by investigating the GMM for estimating distribution of represen-
tation coefficients of image patches in case of high-dimensional vector space Ωα (which
corresponds to a large dictionary K � 3). Optimization of denoising problem (6.4)
with GMM prior is an important step in our proposed method. In this chapter, our
motivation is to evaluate the useful number of Gaussian components using to recover
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a noisy image patch. To this end, we divide the patches yi in an input image into a
set N1 of simple patches with a prominent component and a set N2 of the remaining
patches. We focus on the set N2 and conduct multiple experiments to show that only
marginal gains can be obtained by considering the full GMM in denoising. We explore
different choices of dictionary (identity matrix and K-SVD based) and two choices of
GMM complexity on PSNR and reconstruction error and discuss the type of images
that are difficult to reconstruct.

3 Datasets

We conduct the experiments on denoising on 8 different datasets with different image
types and structures. Fig. 6.2 shows some example images of these datasets. For each
dataset, we collect two samples of images, one is used for training the GMM models,
and the other is adopted for the validation. We briefly present these datasets as follows:

Cartoon [154] contains 590 images of popular cartoon characters. We choose 45 images
to train a GMM and 80 images for evaluation.

Urban [155] contains 100 images of urban scenes with high self-similarity and many
repeated patterns. We use 25 images for training and 25 images for denoising.

Nature We use 200 training images in the Berkeley Segmentation datasets [6] to learn
a GMM model and 20 popular natural test images shown in Fig. 2.1 for testing.

Brodatz [156] contains 112 grayscale images of natural textures. We select 30 good
quality and content-rich images and split each of them into 4 non-overlapping
sub-images. 90 sub-images are used for training the GMM and 30 sub-images for
denoising validation.

Dtd [157] contains textural images in the wild such as band, braid, spiral, grid, etc.
We choose 55 images for training and 40 images for denoising.

CT of Thorax and CT of Lung We download 7 sequences of CT lung images and 12
sequences of CT thorax images from [7]. 40 thorax images are used for training
the GMM and 40 images for testing. The numbers of images for training and
testing of CT images of Lung are 40 and 60.

MRI Brain We download 16 sequences of MRI brain images from [8]. 80 images are
selected from 7 sequences for training and 60 images are chosen in other sequences
for denoising.
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(a) Cartoon (b) Urban

(c) Nature (d) Brodatz

(e) DTD (f) CT of Thorax

(g) CT of Lung (h) MRI of Brain

Figure 6.2: Some images in 8 datasets.

4 Image denoising with a Gaussian mixture model

In this section, we present the GMM-based image denoising method (referred to as GPID)
that takes into account the GMM model learned from the representation coefficients
of external patches as an image prior to regularize the denoising problem. We will
demonstrate how to learn the GMM from a set of standard images {xs} in section 4.1.
After that, we introduce a framework that evaluates the number of Gaussian components
used in solving the optimization problem in section 4.2.
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4.1 Training the GMM on a patch database

From the training set of good quality noise-free images xs, we randomly extract P
patches {xsk ∈ Rn|k = 1, . . . ,P} of size

√
n×
√
n. After mean subtraction, each patch

xsk is encoded in the vector space Ωα, generated by K atoms of the dictionary D, as
in (5.4), with αs

k = (DTD)−1DTxsk.

The probability distribution of representation coefficients vectors p(αs
k) of P patches

in the database can be modeled by a GMM of M components as indicated in (6.1), with
p(αs

k) = ∑M
m=1πmN (αs

k|µm,Σm). By assuming that each representation coefficients
vector αs

k is independently sampled from the GMM distribution, the overall likelihood
objective function is determined as

L(Θ) =
P∏
k=1

p(αs
k) =

P∏
k=1

M∑
m=1

πmN (αs
k|µm,Σm) (6.5)

Where Θ = {πm,µm,Σm|m = 1 . . . ,M} is the set of parameters of the GMM model,
which can be found by maximizing the likelihood L (or log-likelihood ln(L) in equiva-
lence).

Θ = argmax
Θ

{lnL(Θ)}= argmax
Θ


P∑
k=1

ln

 M∑
m=1

πmN (αs
k|µm,Σm)

 (6.6)

The problem in (6.6) can be solved using the iterative Expectation-Maximization
(EM) algorithm [158] via two alternative steps. In the E-step, with given values of
Θ, a hidden variable γkm (also called the "membership probability") which relates to
the probability of αs

k belonging to the m-th (1 ≤ m ≤ M) Gaussian components is
computed as in (6.7).

γkm = πmN (αs
k|µm,Σm)∑M

l=1πlN (αs
k|µl,Σl)

(6.7)

In the M-step, the parameters Θ of the GMM are updated using (6.8) - (6.10)

µm =
∑P
k=1 γkmαs

k∑P
k=1 γkm

(6.8)

Σm =
∑P
k=1 γkm(αs

k−µm)T (αs
k−µm)∑P

k=1 γkm
(6.9)

πm =
∑P
k=1 γkm
P

(6.10)
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4.2 Denoising algorithm

As indicated in section 2, we can adopt the GMM model learned from distribu-
tion of external images as an image prior to characterize the probability distribu-
tion of representation coefficients p(αi) of a latent clean image xi. That means
p(αi = ∑M

m=1πmN (αi|µm,Σm)). After mean substraction, denoising a patch yi is
equivalent to finding the optimal representation coefficients vector α̂i in (6.4) such that
the clean latent patch can be estimated x̂i = Dα̂i.

However, solving problem (6.4) with the whole GMM of p(αi) is a very time-
consuming process. To overcome this issue, existing studies [5, 89, 90, 92, 93] proposed
to assign the noisy patch yi to a single Gaussian component. The selection can be
done according to maximum of posterior probability γim that yi belongs to the m-th
Gaussian component. To determine the probability γim, we recall that the noise model
is formulated on each image patch as yi = Dαi + ηi, with ηi ∼ N (0,σ2). Thus if we
suppose that αi is drawn from the m-th Gaussian distribution with mean µm and
covariance matrix Σm, as well as αi and ηi are two independent variables, then yi
will belong to another Gaussian distribution with the corresponding mean Dµm and
covariance matrix DΣmDT +σ2I, with I ∈RK×K is an identity matrix. Therefore, the
posteriori probability γim is:

γim = p(πm,µm,Σm|yi) = πmN (yi|Dµm,DΣmDT +σ2I)∑M
l=1πlN (yi|Dµl,DΣlDT +σ2I)

(6.11)

where 0≤ γim ≤ 1 and∑M
m=1 γim = 1. For convenience, we assume that γi1 ≥ γi2 ≥ . . .≥

γiK . When only the first Gaussian component with maximum membership probability
γi1 is used to represent the probability distribution of p(αi), the problem (6.4) becomes:

α̂i = argmin
αi

{
||yi−Dαi||22−λ(αi−µ1)TΣ−1

1 (αi−µ1)
}

(6.12)

(6.12) is a convex quadratic problem and has a closed form solution as:

α̂i =
(
DTD +λΣ−1

1

)−1(
DTyi +λΣ−1

1 µ1
)

(6.13)

Typically, this approach is acceptable when the first component is dominant and the
other components do not contribute much to the optimization. In practice, we define
the set of dominant patches N1 = {yi|γi1 ≥ 0.9} and we call N2 the set of the remaining
patches. N1 patches are restored via (6.13) whereas the patches in N2 are restored by
considering the first L components of the GMM with largest posteriori probabilities
corresponding to {γi1,γi2, . . . ,γiL}. Consequently, for all N2 patches in the noisy image,
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we consider the simplification of problem 6.4, as described in (6.14), which can be solved
using a gradient descent algorithm. The denoising method is presented in Algorithm 6.1.

αi = argmin
αi

||yi−Dαi||22−λ log


L∑
l=1

πlN (αi|µl,Σl)

 (6.14)

Algorithm 6.1: GMM as Prior for Image Denoising (GPID)

1 Initialization: X(0) = Y.
2 for t= 1 to T do
3 for each patch yi ∈Y do
4 - Subtract its mean value (µy): yi = yi−µy.
5 - Calculate γim (1≤m≤M) via (6.11) and arrange in descending order.

6 - If γi1 ≥ 0.9 then α̂i =
(
DTD +λΣ−1

1

)−1(
DTyi +λΣ−1

1 µ1
)

7 - Else select L components with largest value of γim, then solve for α̂i in
(6.14) using gradient descent.

8 - Estimate the latent clean patch: xi = Dα̂i +µy.
9 end
10 Aggregate the denoised patches xi to recover the entire denoised image Xt

11 Regularize the denoised image: X(t) = (ηY(t−1) +βXt)/(η+β).
12 end

4.3 Complexity Analysis

The denoising method GPID consists of two parts: off-line training and denoising.

In the training phase, a GMM of M components are learned from a set of P
representation coefficients vector {αs

k|αs
k ∈RK ,k = 1, . . . ,P}. In the E-step, computing

the "membership probability" in (6.7) requires O(K3PM) operators. In the M-step, the
total complexity of updating the parameters of the GMM is O(K2PM). Therefore, the
overall complexity of training the GMM is O(K3PM).

In the denoising process, N1 patches in the noisy image are restored via (6.13)
that needs O(K2N1) operations, and N2 patches (N2 ≈ 10%N − 20%N) are recovered
using gradient descent with the complexity O(LTgdK3N2), where Tgd is the number
of iterations of the gradient descent algorithm. The computation of the membership
probabilities requires O(n3NM) operations. The denoising step is repeated T times
and therefore totally takes O(n3NMT +K2N1T +LTgdK

3N2T ) complexity.
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5 Experimental results

To show the effect of the restriction to the dominant component, we examine the
performance of the GPID method on N2 patches with a varying number of components
L ∈ {1,5,10,15,20} in step 7 of the optimization algorithm. We study the differences in
peak signal-to-noise ratio (PSNR) and mean gray-level reconstruction error for the 8
datasets presented in section 3, for the identity dictionary D = I and a K-SVD dictionary,
and for small (M = 20) and large (M = 200) numbers of Gaussian components.

In all experiments, we degrade the images from the database with white Gaussian
noise with standard deviation σ = 30. We train the two GMMs for each dataset on
P = 2.106 randomly extracted patches of size n= 8×8. In the GPID denoising method,
we use T = 5 regularizing iterations with η = n/σ2, β = [1,4,8,16,32]/σ2. We set
λ = 0.9σ2 and 1000 maximum iterations in gradient descent optimization. All the
experiments are implemented in the Matlab 2013a environment on a machine with Intel
Core i7-4770K CPU of 3.5 GHz and 16 GB of RAM.

From the examples in Figure 6.3, we notice that N2 patches can usually be found
close to the edges or contours. We also compute the PSNR values obtained for the GPID
method as a function of L. On these examples, only modest gains can be obtained by
considering several components in the reconstruction. These properties are explored
further by computing the distributions of PSNR gains and reconstruction error.

5.1 Denoising performance

When using the identity matrix as a dictionary, image patches are denoised without
transformation. Note that the GPID method coincides with the method EPLL proposed
by Zoran and Weiss in [5] when L = 1. We first observe that most image patches
correspond to a single dominant component from Fig 6.4. As expected, more complex
images such as textures (Brodatz and Dtd datasets) require more components and have
more N2 patches.

We compute the PSNR for N2 patches for L ∈ {1,5,10,15,20} and study the
distribution of the maximum improvement (maxLPSNR)− PSNRL=1. As shown
on Figure 6.4, for five datasets (Cartoon, Urban, Nature, CT Thorax and MRI), the
maximum improvement is negligible, less than 0.1dB for all test images except one from
Nature. For complex images such as textures (Brodatz and DTD datasets) and the CT
Lung images, some images can be modestly improved, up to 0.2dB for M = 20. PSNR
gains larger than 0.2dB are only observed for complex images (Dtd and CT Lung), with
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M = 200, i.e. with enough components in the GMM to model distribution details and
only for a small fraction of images (around 20%). These gains are require around 200
seconds for a 256× 256 image, whereas only 10 seconds are needed for one Gaussian
component.

We also analyze the reconstruction error on the central pixel of N2 patches ||X̂L=1−
X̂L=5||`1 on Fig. 6.4. For all images, this difference is less than 2 gray levels per pixel,
and cannot be seen by eye.

(a) Sas34 (Cartoon), p= 83.9, e= 1.2 (b) Img75 (Urban), p= 86.6, e= 1.2

(c) Boat (Nature), p= 77.1, e= 1.1 (d) D31 (Brodatz), p= 79.6, e= 1.2.

(e) Perforated_0012 (DTD), p= 79.5, e= 1.2 (f) CT of Lung, p= 52.7, e= 1.2

(g) CT of Thorax, p= 83, e= 1.1 (h) MRI of Brain, p= 79.4, e= 1.2

Figure 6.3: Examples from the 8 datasets, test image with N2 patches in red (left), PSNR as
a function of L (right). Captions indicate image name, percentage of N1 patches and average
reconstruction error ||X̂L=1− X̂L=5||`1 .

For each dataset, we learn an over-complete dictionary D with K = 256 atoms as
in [2]. Figure 6.5 shows a similar situation as Figure 6.4. Most patches in the test
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(a) Maximum PSNR improvement for small GMM model with M = 20

(b) Maximum PSNR improvement for large GMM model with M = 200

Figure 6.4: Denoising performance for the identity dictionary
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(c) Percentage of N1 pixels in images of 8 datasets

(d) Average reconstruction error ||X̂L=1− X̂L=5||L1

Figure 6.4: Denoising performance for the identity dictionary



124
Chapter 6. Number of Useful Components in Gaussian Mixture Models for Patch-based

Image Denoising

images belong to N1, and most images can be reconstructed with only one component
with a penalty less than 0.1dB. PSNR gains larger than 0.2dB can only be observed for
a few complex images in the Dtd and Urban datasets. Gray-level differences are lower
than for the identity dictionary, around 1.1 gray-levels per pixel.

(a) Maximum PSNR improvement for small GMM model with M = 20

(b) Maximum PSNR improvement for large GMM model with M = 200

Figure 6.5: Denoising performance for the K-SVD dictionary with 256 atoms
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(c) Percentage of N1 pixels in images of 8 datasets

(d) Average reconstruction error ||X̂L=1− X̂L=5||L1

Figure 6.5: Denoising performance for the K-SVD dictionary with 256 atoms
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5.2 Dictionary choice and model complexity

Using the denoising results from the 8 datasets with L = 1, we compare the two
dictionaries and GMM sizes in Figure 6.6 (see also the examples in Figure 6.3). We
observe that increasing the GMMmodel complexity is nearly always beneficial, sometimes
up to 2dB PSNR gains, and that the K-SVD dictionary tends to benefit more from
M = 200. The K-SVD dictionary yields slightly better PSNR especially for large GMM
models overall, but the results are variable, which implies that dictionary choice is
largely image-specific.

(a)

(b)

Figure 6.6: Effect of model complexity (a) and dictionary choice (b) on the denoising performance
for L= 1
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6 Conclusion

In a high-dimensional vector space generated by a large given dictionary, we can learn a
GMM to approximately represent the distribution of patches in the database and then
apply it as a prior model to denoise a degraded image.

However, rather than focus on comparing the performance of the proposed method
with other arbitrarily chosen sparse models, our main objective, in this chapter, is to
investigate the use of GMM model in solving the optimization problem, due to the lack
of justification in the literature. By studying the number of useful components in the
GMM for patch-based image denoising on 8 image datasets, we first remark that most of
the patches in an input image are well represented by a single prominent component. We
have explored denoising with increasing number of components L ∈ {1,5,10,15,20}, and
shown that only modest gains can be obtained in terms of PSNR and `1 reconstruction
error (gray-level differences) in all datasets when using more than one component.
This verifies the current practice and drastically reduces computational cost. We also
demonstrated that much larger improvements can be obtained with a suitable dictionary
and GMM model, but reconstruction only requires a single component.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum
ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu
libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu
neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames
ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat.
Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel
leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar
at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis
nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci
dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor
lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec
aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio
metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante.
Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes,
nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis.
Pellentesque cursus luctus mauris.
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Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt
tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante.
Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis,
molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula,
eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc
eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel
magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam
in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim.
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sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.
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Perspective and future work

In this thesis, we study patch-based methods for image restoration in the Bayesian
framework. Constructing the dictionary used to represent image patches and the prior
distribution in dictionary space is a challenging problem in this setting. We have
proposed several contributions, in the case of exhaustive dictionaries in Chapters 3 and
4, and in the estimation of the patch distribution in Chapters 5 and 6.

In particular, we have shown that careful selection of the local dictionary improves
image denoising and super-resolution in Chapters 3 and 4. The main ingredient was to
find matches in the patch database by selecting an appropriate patch distance such as
the EMD. In Chapters 5 and 6, we improve image denoising by selecting a better patch
prior, first with a computationally efficient procedure for low dimension dictionaries
and then with a Gaussian Mixture Model for higher complexity models. All of this
points towards the need to adapt the elements of a patch-based Bayesian method to the
current restoration problem.

The results presented in this thesis raise a few questions that we would like to
address in the future.

Dictionary construction. We have used several possible choices for dictionary construc-
tion (filtered exhaustive dictionaries, identity matrix, K-SVD), but we did not
explore the properties that a good dictionary should have. This raises the question
of the representation space of image patches, of its dimension, of its redundancy,
etc.
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Prior construction. Our intuition suggests that the prior should be constructed from
standard images related to the input image, but it is unclear how specific this
needs to be. Current approaches in deep learning and transfer learning suggest
that images share common properties and that these are reflected in the prior
distribution. In the near future, we would like to compare the dictionaries
constructed for different types of images as in Chapter 6 to evaluate if there exists
a universal prior or which kind of modifications are required to adapt to different
contexts.

Locality. In Chapters 3 and 4, we used filtering to construct locally-adapted sub-
dictionaries. The results in Chapter 6 also suggest that the prior distribution is
locally simple. Following the insight from Nonlocal Self Similarity methods, would
the input image itself provide enough information for estimating a local patch
prior? Can this information be combined with a generic prior estimated from an
image database?
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Titre : Approaches bayésiennes par patchs pour l’amélioration de la qualité des images.

Mots-clefs : Débruitage d’images, super-résolution d’images, maximum à posteriori, modèle de mélange
gaussien, earth mover’s distance, modèle parcimonieux, distribution des patchs, restauration d’images basée
sur l’exemple.

Résumé : Les travaux présentés dans cette thèse concernent les approches bayésiennes par patchs des
problèmes d’amélioration de la qualité d’images. Notre contribution réside en le choix du dictionnaire
construit grâce à un ensemble d’images de haute qualité et en la définition et l’utilisation d’un modèle à
priori pour la distribution des patchs dans l’espace du dictionnaire. Nous avons montré qu’un choix attentif
du dictionnaire représentant les informations locales des images permettait une amélioration de la qualité
des images dégradées. Plus précisément, d’un dictionnaire construit de façon exhaustive sur les images de
haute qualité nous avons sélectionné, pour chaque patch de l’image dégradée, un sous dictionnaire fait de
ses voisins les plus proches. La similarité entre les patchs a été mesurée grâce à l’utilisation de la distance
du cantonnier (Earth Mover’s Distance) entre les distributions des intensités de ces patchs. L’algorithme
de super résolution présenté a conduit à de meilleurs résultats que les algorithmes les plus connus. Pour
les problèmes de débruitage d’images nous nous sommes intéressés à la distribution à priori des patchs
dans l’espace du dictionnaire afin de l’utiliser comme pré requis pour régulariser le problème d’optimisation
donné par le Maximum à Postériori. Dans le cas d’un dictionnaire de petite dimension, nous avons proposé
une distribution constante par morceaux. Pour les dictionnaires de grande dimension, la distribution à
priori a été recherchée comme un mélange de gaussiennes (GMM). Nous avons finalement justifié le nombre
de gaussiennes utiles pour une bonne reconstruction apportant ainsi un nouvel éclairage sur l’utilisation des
GMM.

Title : Patch-based Bayesian approaches for image restoration.

Keywords : Image denoising, image super-resolution, Bayesian Maximum A Posteriori, Gaussian Mixture
Model, Earth Mover’s Distance, Sparse models, patches distribution, example-based image restoration.

Abstract : In this thesis, we investigate the patch-based image denoising and super-resolution under
the Bayesian Maximum A Posteriori framework, with the help of a set of high quality images which are
known as standard images. Our contributions are to address the construction of the dictionary, which is
used to represent image patches, and the prior distribution in dictionary space. We have demonstrated
that the careful selection of dictionary to represent the local information of image can improve the image
reconstruction. By establishing an exhaustive dictionary from the standard images, our main attribute is
to locally select a sub-dictionary of matched patches to recover each patch in the degraded image. Beside
the conventional Euclidean measure, we propose an effective similarity metric based on the Earth Mover’s
Distance (EMD) for image patch-selection by considering each patch as a distribution of image intensities.
Our EMD-based super-resolution algorithm has outperformed comparing to some state-of-the-art super-
resolution methods. To enhance the quality of image denoising, we exploit the distribution of patches in the
dictionary space as a an image prior to regularize the optimization problem. We develop a computationally
efficient procedure, based on piece-wise constant function estimation, for low dimension dictionaries and
then proposed a Gaussian Mixture Model (GMM) for higher complexity dictionary spaces. Finally, we
justify the practical number of Gaussian components required for recovering patches. Our researches on
multiple datasets with combination of different dictionaries and GMM models have complemented the lack
of evidence of using GMM in the literature.
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