Tokamks are toroidal devices where a hot plasma is magnetically confined in order to produce energy from nuclear fusion reactions. However, several issues have to be resolved before achieving commercial capabilities. Among them are disruptions, which are undesired fast plasma terminations leading to large heat fluxes on plasma facing components (PFC) as well as electromagnetic forces on the machine. In addition disruptions might lead to the formation of Runaway Electrons (RE) which are electrons having an energy high enough that the collision drag does not counterbalance the electric (E) field acceleration. These electrons can therefore reach large kinetic energies (∼10MeV) and tend to form a beam, capable to carry a considerable fraction of the plasma current and, if strikes PFC, to cause substantial melting or sputtering. Therefore, the understanding of RE generation mechanisms is desirable for avoiding their formation. In this perspective, this thesis, investigates the electron dynamics during the disruption thermal quench (TQ) phase (phase characterised by a sudden loss of plasma confinement). In this respect, a relativistic particle tracker is introduced in the JOREK 3D non-linear magnetohydrodynamics (MHD) code and applied to analyse the dynamics of test electrons in a simulation of a JET disruption triggered by massive gas injection. This tracker integrates relativistic particle trajectories, with either a Full Orbit or a Guiding Center approach, in JOREK numerical 3D time-varying fields and it was successfully tested and benchmarked. We firstly study the electron transport caused by the TQ chaotic magnetic field. For doing so, test electron populations are initialised in the pre-TQ with different energies and radial positions, and evolved until the CQ onset. Collisions and inductive E-field are neglected in these simulations. Results show that at least a few percent of the initial population remain confined throughout the TQ, whatever the initial energy. This is due to the fact that closed magnetic flux surfaces reappear promptly after the completely stochastic magnetic field characterising the simulated TQ. These findings seem to support the possibility of the mechanism. Secondly, a possible RE generation during the TQ are investigated. Indeed, the strong TQ MHD activity generates

Résumé

Les tokamaks sont des machines toroïdales qui confinent un plasma chaud pour générer des réactions de fusion nucléaire. Une des problématiques de ces réacteurs sont les disruptions, qui sont des terminaisons rapides et non désirées du plasma conduisant parfois à l'apparition d'Electrons Découplés (ED). Ceux-ci sont des électrons ayant une vitesse suffisamment grande pour que la trainée collisionelle soit incapable de contrebalancer l'accélération due au champ électrique (E) présent lors de la disruption. Ils atteignent ainsi des hautes énergies (∼10 MeV), et tendent à former un faisceau portant un fort courant (∼100 kA), qui, s'il vient à impacter les CFP, peut causer une fusion ou une pulvérisation conséquente. Par conséquent, la compréhension de la physique des ED est désirable pour prévenir leur formation ou les supprimer sans dégâts. Dans cette perspective, cette thèse présente une étude sur la dynamique des électrons pendant la phase dite de Disjonction Thermique (DT) d'une disruption (phase caractérisée par une perte quasi-totale de confinement thermique). A cette fin, un traceur de particules a été implémenté dans le code de magnétohydrodynamique (MHD) non-linéaire 3D JOREK. Celui-ci permet d'intégrer les trajectoires des particules relativistes, avec une approche orbite complète ou centre guide, dans les champs numériques 3D et dépendant du temps calculés par JOREK. Après vérification, le traceur aété utilisé pour investiguer la dynamique des électrons dans une simulation JOREK de disruption déclenchée par injection massive de gaz dans JET. On a investigué d'abord les dépendances enénergie et position radiale du transport des électrons dans la DT. Dans cette simulation, cette phase est caractérisée par un champ magnétique (B) complétement chaotique pendant une brève période, ce qui tend à fortement déconfiner les électrons. Il a néanmoinsété constaté que, indépendamment de l'énergie initiale, quelques % des populations initiales 'survivent' à la DT du fait de la reformation rapide des surfaces magnétiques fermées. Ces résultats semblent soutenir la possibilité du mécanisme de génération d'ED dit de 'queue chaude'. Ensuite, une investigation concernant la génération des ED par des champs E intenses dus aux fluctuations MHD au moment de la DT a été conduite. Après l'introduction d'une force de trainée modélisant les collisions Coulombiennes des électrons, les champs de trainée et de E parallèle (au champ B) ont été comparés. Cela a révélé que, à des énergies thermiques pré-disruptives (∼1keV), la trainée est dominante et empêche l'accélération d'électrons à la fois avant et après la DT. Par contre, pendant la DT ou à des énergies >∼10 keV, le champ E domine et la génération des ED devient envisageable. Cette possibilité a été étudiée par des simulations de suivi des particules qui ont montré, pour des électrons initialisés à 1keV avant la DT, qu'une fraction de la population initiale est accélérée pendant la DT de façon modérée mais suffisante pour qu'ils soient découplés pendant la DC, après avoir été reconfinés (pour une partie d'entre eux) par la reformation des surfaces magnétiques fermées. Cependant, les simulations surestiment la génération des ED car ils n'ont pas été observés dans l'expérience simulée. Le désaccord pourrait venir des paramètres utilisés dans les simulations JOREK qui ne sont pas tous réalistes. L'utilisation d'un paramètre de résistivité plasma plus grand que la réalité notamment (pour des raisons numériques), semble conduire à une surestimation de la production d'ED. Enfin, une étude des données expérimentales d'ASDEX Upgrade est présentée et montre que le courant maximal des faisceaux d'ED semble être limité par l'intensité de l'activité MHD de la DC. Une interprétation possible est que l'activité MHD déconfine les électrons et réduit donc la formation d'ED, en accord qualitatif avec les simulations JOREK.

(at least in the simulation) an intense parallel electric field capable of creating RE.

This study required the introduction of a drag force modelling the effects of Coulomb collisions. An analysis of the parallel (to the magnetic field) E and of the drag force fields shows that the drag dominates the pre-TQ and CQ phases for 1keV electron populations, i.e. typical pre-TQ thermal electrons, while the E field is predominant during the TQ for energies >∼1keV and during the whole disruptions for energies >10keV. Test particle simulations show, for a population initialised at 1keV, that the TQ E-field accelerates a small number of electrons to energies high enough for later becoming RE due to the CQ E-field, for those of them which reconfined by the reformation of closed flux surfaces. However, results are not in quantitative agreement with the experimental measurements, possibly due to differences between simulated and experimental plasma parameters. For example, higher than realistic JOREK plasma resistivity is found to increase the RE production in these simulations. Finally, first experimental data analyses of the interactions between CQ MHD activity and the RE beam current in ASDEX Upgrade suggest that the RE current decreases with some indicators of the intensity of MHD activity. A possible interpretation is that the MHD activity deconfines the electrons and thereby reduces RE formation.

Résumé Étendu

Les tokamaks sont des machines toroïdales où un plasma chaud est confiné par un champ magnétique. Ils représentent le concept le plus avancé à ce jour dans la quête de la fusion nucléaire contrôlée. Cependant, plusieurs problèmes restent à résoudre avant de pouvoir produire de l'énergie. L'un d'entre eux est le problème des disruptions, qui sont des terminaisons rapides et non désirées du plasma générant des flux de chaleurs importants sur les Composants Face au Plasma (CFP) ainsi que des forces électromagnétiques sur la machine. De plus, les disruptions conduisent parfois à l'apparition d'électrons très énergétiques (relativistes) appelés Electrons Découplés (ED). Ces derniers tendent à former un faisceau qui, s'il vient à impacter les CFP, peut causer une fusion ou une pulvérisation conséquente. Ceci a été observé dans plusieurs machines passées ou présentes comme le tokamak européen JET. Il y a actuellement une inquiétude que dans le futur tokamak expérimental international ITER, les disruptions et les ED endommagent la machine et ralentissent le programme expérimental. Par conséquent, des moyens sont étudiés pour les éviter ou mitiger leurs effets. A cette fin, une bonne compréhension théorique et une capacité de modélisation sont fortement désirables. Une disruption comprend deux phases principales. Pendant la première, appelée 'Disjonction Thermique' (DT), l'énergie thermique du plasma est transférée soudainement sur les CFP du tokamak (sur une échelle de temps de l'ordre de la ms, typiquement), créant des flux de chaleur intenses.

La baisse de la température du plasma associée à la DT accroît dramatiquement la résistivité électrique du plasma. En conséquence, le courant initialement porté par le plasma décroît sur une échelle de temps allant de quelques ms à quelques dizaines de ms en fonction de la taille de la machine et d'autres paramètres. Ceci représente la deuxième phase de la disruption, appelée 'Disjonction de Courant' (DC). Le processus de découplage est associé au fait que la trainée collisionnelle ressentie par un électron est inversement proportionnelle au carré de sa vitesse. De ce fait, pour un champ électrique (E) parallèle (au champ magnétique) donné, il existe une vitesse au-dessus de laquelle les collisions ne compensent plus l'accélération due au champ E. L'électron sera alors accéléré jusqu'à atteindre des énergies telles (typiquement quelques MeV) que d'autres processus, comme par exemple le rayonnement synchrotron, restaurent une force de trainée compensant la force électrique. Il est bien connu que pendant la phase de DC d'une disruption, la décroissance du courant plasma génère un fort champ E auto-induit dans le plasma. Ce champ conduit parfois à la formation d'un faisceau d'ED. Dans ce cas, un comportement typique est que le courant plasma ne décroît pas jusqu'à 0 mais se stabilise à une valeur finie. Ce 'plateau de courant' est dû au fait que tout le courant a été transféré aux ED. Plusieurs types de terminaisons du plateau sont ensuite possibles mais cette phase ne sera pas décrite ici. Dans le but de comprendre la formation des ED, un point-clé à considérer est que le champ E présent pendant la DC est typiquement beaucoup plus petit que le champ dit 'de Dreicer', c'est-à-dire le champ au-dessus duquel les électrons thermiques se découpleraient. En d'autres termes, le champ E de la DC ne peut expliquer le plateau d'ED que s'il existe des électrons supra-thermiques au départ. L'origine de ces derniers est l'une des plus importantes questions ouvertes concernant les ED. Contribuer à répondre à cette question est la motivation principale du présent travail.

Plusieurs travaux théoriques et de modélisation proposent des mécanismes pouvant expliquer l'existence d'électrons supra-thermiques au début de la phase de DC. Ces mécanismes sont tous liés à la dynamique de la DT. L'un d'entre eux est le mécanisme dit de 'queue chaude', qui est basé sur le fait que la DT est tellement rapide que les électrons de la queue à haute énergie de la maxwellienne existant avant la DT n'ont pas le temps de se refroidir par collision. La grande majorité des travaux publiés ne prennent cependant pas en compte l'activité magnétohydrodynamique (MHD), ce qui est fortement douteux pendant la phase de DT. En effet, les mesures expérimentales et les simulations indiquent que la DT est associée à une activité MHD très intense. L'objet du présent travail est d'investiguer les relations entre cette activité et les ED.

Cette investigation est réalisée principalement sous l'angle de la modélisation, en introduisant des électrons tests dans le code de MHD non-linéaire 3D JOREK et en analysant leur dynamique dans une simulation de disruption déclenchée par Injection Massive de Gaz (IMG) dans JET. Ceci est l'objet des chapitres 2, 3 et 4 du présent manuscrit. Une approche expérimentale, basée sur une analyse de données collectées sur le tokamak ASDEX Upgrade, est aussi proposée au chapitre 5. Le chapitre 2 décrit le traceur de particules rapides implémenté dans le code JOREK. Celui-ci permet d'intégrer les trajectoires de particules relativistes, avec une approche Orbite Complète (OC) ou Centre Guide (CG), dans les champs numériques 3D et dépendant du temps calculés par JOREK. Le modèle CG est une approximation dans laquelle le mouvement rapide de gyration autour des Lignes de Champ (LC) est éliminé, ce qui réduit considérablement le coût calculatoire. Les équations OC sont résolues à l'aide du 'schéma préservant les volumes' qui permet une bonne précision à long terme des simulations grâce à l'encadrement des erreurs numériques sur les invariants du mouvement. L'intégration des orbites CG est obtenue par le schéma Cash-Karp Runge-Kutta 5 [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF], où les erreurs numériques sur l'énergie totale et le moment canonique toroïdal de la particule sont limitées au moyen d'un contrôle du pas de temps. Les champs déterminant la dynamique des électrons sont obtenus par l'interpolation des solutions de JOREK en espace et en temps. L'interpolation dans l'espace est basée sur les surfaces de Bézier dans le plan poloïdal et les harmoniques de Fourier dans la direction toroïdale alors que l'interpolation en temps est basée sur les polynômes de Hermite-Birkhoff. Une particule est suivie dans le maillage non-structuré de JOREK à l'aide d'itérations de Newton avec retour en arrière. Enfin, les populations OC ou CG peuvent être générées aléatoirement dans l'espace physique et des moments. Des tests conduits dans des champs JOREK stationnaires, axisymétriques ou non, montrent une précision remarquable sur la conservation des invariants du mouvement à la fois pour les OC et pour les CG. La précision ne décroît pas significativement pour des champs magnétiques stochastiques. De plus, le traceur de particules de JOREK a été comparé avec succès au code ASCOT dans des champs numériques d'équilibre. Une conséquence de l'activité MHD pendant la DT est que les surfaces de flux (c'est-à-dire les surfaces générées par les LC en l'absence d'activité MHD, qui sont des tores emboîtés les uns dans les autres) sont détruites, c'est-à-dire que le champ magnétique devient stochastique. Ceci a des implications majeures sur le transport des électrons car ces derniers se déplacent très rapidement le long des LC.

En particulier, en présence de stochasticité magnétique, les électrons peuvent être rapidement déconfinés en suivant des LC connectant le coeur du plasma aux CFP. D'un autre côté, il n'y a pas de preuve directe de la stochasticité globale du champ magnétique il est possible que des surfaces Kolmogorov-Arnold-Moser survivent. De plus, une décroissance de l'activité MHD est observée expérimentalement après la DT, de telle sorte que la stochasticité magnétique n'est probablement présente que pendant une brève période. Il apparaît donc difficile de dire dans quelles proportions les électrons (et en particulier ceux concernés par le mécanisme de queue chaude mentionné plus haut) sont déconfinés par la stochasticité magnétique. Cette question est abordée dans le chapitre 3 au moyen de simulations de particules tests dans une simulation JOREK de disruption déclenchée par IMG dans JET. Pour cela, des populations d'électrons tests sont initialisées dans la phase de pré-DT à différentes énergies et positions radiales, et suivies jusqu'au début de la phase de DC. Etant donné que les effets collisionnels ne sont pas inclus dans cette étude pour des raisons de simplicité, le champ électrique inductif est lui aussi négligé afin d'éviter l'accélération rapide des électrons qui se produirait autrement. Les résultats montrent que pour des populations initialisées dans le coeur du plasma, une fraction d'au moins quelques'% des électrons restent confinés pendant la DT, quelle que soit l'énergie initiale. Ceci est dû au fait que, même s'il y a un moment où le champ magnétique est complètement stochastisé, des surfaces magnétiques fermées réapparaissent très rapidement au coeur du plasma. Il faut souligner que de telles fractions représentent des quantités très importantes dans le contexte des ED puisqu'elles sont de plusieurs ordres de grandeur supérieures à ce qui est nécessaire pour que les ED portent tout le courant plasma. La dépendance du transport en fonction de la vitesse des électrons suggère, sans grande surprise, que le mouvement parallèle aux LC est le canal de transport principal. Ainsi, à des énergies cinétiques initiales modérées, les pertes d'électrons s'accroissent avec l'énergie. Les pertes saturent à plus haute énergie (∼1 MeV) car la vitesse sature à la vitesse de la lumière, et une inversion de tendance est observée à des énergies encore supérieures, probablement imputable à un effet de moyennement sur les orbites lié à des vitesses de dérives de plus en plus importantes. Ces résultats semblent soutenir la possibilité du mécanisme de queue chaude. Une autre conséquence, moins évidente, de l'activité MHD pendant la DT est la génération d'intenses champs E parallèles (au champ B). Le chapitre 4 s'intéresse à la question de savoir si ces champs peuvent créer des ED. La force nette résultant de la somme de la force électrique et de la friction collisionnelle est d'abord analysée pour différentes énergies des électrons dans la même simulation JOREK de disruption JET que celle utilisée au chapitre 3. Ceci montre que pendant les phases de pré-DT et de DC (c'est-à-dire avant et après la DT), les électrons énergétiques (> ∼10 keV) sont accélérés par le champ E, mais les électrons proches ou en-dessous de 1 keV sont freinés par les collisions (la température électronique pré-DT est proche de 1 keV dans le coeur du plasma).

Par contre, pendant la DT, le champ E généré par l'activité MHD est suffisamment grand pour dominer fortement la friction collisionnelle, même à 1 keV. Cependant, ce champ E présente une topologie 'cellulaire' constituée d'une juxtaposition de cellules accélératrices (dans la direction co-ED) et décélératrices (contre-ED). Il n'est donc pas évident de savoir dans quelles proportions les électrons peuvent être accélérés. Cette question est étudiée au moyen de simulations de particules tests similaires à celles du chapitre 3 mais en incluant cette fois la trainée collisionnelle et le champ E inductif. Il est trouvé qu'environ 1% d'une population initialisée à 1 keV finit avec une énergie supérieure à 1 MeV, c'est-à-dire se découple. Ceci résulte d'une combinaison de 1) une accélération modérée (jusqu'à quelques dizaines de keV) pendant la DT due à une interaction préférentielle avec des cellules accélératrices plutôt que décélératrices ; 2) un confinement dans le coeur lié à la reformation rapide de surfaces de flux après la phase entièrement stochastique (phénomène déjà identifié au chapitre 3) ; 

Extended abstract

Tokamaks are toroidal devices where a hot plasma is confined by a magnetic field. They represent the most advanced concept to date toward controlled nuclear fusion.

Several open issues however remain on the way to energy production. Among them are disruptions, which are undesired fast terminations of the plasma leading to large heat fluxes on Plasma Facing Components (PFC) as well as electromagnetic forces on the machine. In addition, disruptions sometimes lead to the formation of very energetic (relativistic) electrons called Runaway Electrons (RE). These tend to form a beam which, if it strikes PFC, can cause substantial melting or sputtering. This has been observed in several past or present machines such as the European JET tokamak. There is concern that in the future international experimental tokamak ITER, disruptions and RE may cause harm to the machine and slow down the experimental program. Therefore, means are being studied in order to avoid them or mitigate their effects. For this purpose, a good theoretical understanding and modelling capability are highly desirable. A disruption comprises two main phases. During the first one, called 'Thermal Quench' (TQ), the plasma thermal energy is suddenly lost to the tokamak PFC (on a ∼1 ms timescale, typically), causing high heat fluxes. The drop of plasma temperature associated to the TQ increases dramatically the plasma electrical resistivity. As a consequence, the current initially carried by the plasma decays on a timescale of a few to tens of ms depending on machine size and other parameters. This is the second phase of the disruption, called 'Current Quench' (CQ). The runaway process is related to the fact that the collisional drag force undergone by an electron is inversely proportional to the square of its velocity. Hence, for a given parallel (to the magnetic field) E field, there is a velocity above which collisions cannot compensate the E field acceleration. The electron energy will then increase until, at high energies (typically several MeV), other processes such as synchrotron radiation restore a drag force which compensates the electric acceleration. It is well known that during the CQ phase of a disruption, the decay of the plasma current generates a large self-induced toroidal electric (E) field in the plasma. This field sometimes leads to the formation of a RE beam. In such cases, a typical behavior is that the plasma current does not decay entirely but stabilizes at a finite value. This so-called 'current plateau' is due to the fact that all the current has been transferred to RE. Various types of terminations of the plateau phase are then possible, but details will not be given here. In view of understanding RE formation, a key point to consider is that the E field present during the CQ is typically much smaller than the so-called 'Dreicer electric field', i.e. the field above which thermal electrons would run away.

In other words, the CQ E field cannot explain the RE plateau unless supra-thermal electrons exist in the first place. The origin of the latter is one of the most important open questions in the field of RE. Contributing to answering this question is the main motivation of the present work. Several theoretical and modelling works propose mechanisms which may explain the existence of supra-thermal electrons at the beginning of the CQ phase. These mechanisms are all related to TQ dynamics.

One of them is the 'hot tail' mechanism, which is based on the fact that the TQ is so fast that electrons from the high energy tail of the pre-TQ Maxwellian do not have the time to cool down by collisions.

The vast majority of published works however does not take magnetohydrodynamic (MHD) activity into account, which is highly dubious during the TQ. Indeed, measurements as well as simulations indicate that the TQ is associated to very intense MHD activity. The object of the present work is to investigate the relation between MHD activity and RE. This is done mainly from a modelling point of view, by introducing test electrons in the JOREK 3D non-linear MHD code and analyzing their dynamics in a simulation of a JET disruption triggered by Massive Gas Injection (MGI). This is the object of Chapters 2, 3 and 4 of the present manuscript.

An experimental approach based on data analysis in the ASDEX Upgrade tokamak is also proposed in Chapter 5. Chapter 2 describes the fast particle tracker that has been implemented in the JOREK code. It allows integrating relativistic particle trajectories, with either a Full Orbit (FO) or a Guiding Centre (GC) approach, in JOREK numerical 3D time-varying fields. The GC model is an approximation in which the fast gyromotion around the magnetic Field Line (FL) is eliminated, significantly reducing the computational costs. The FO equations are resolved using the Volume Preserving Scheme which provides long term simulation accuracy due to the bounding of numerical errors on invariants of motion. The integration of GC orbits is obtained via the Cash-Karp Runge-Kutta 5(4) scheme, where numerical errors on the particle total energy and canonical toroidal momentum conservation are reduced via time step control. The background fields ruling the electron dynamics are obtained by interpolating the JOREK solution in space and time. Space interpolation is based on Bézier surfaces in the poloidal plane and Fourier harmonics in the toroidal direction while the time interpolation is based on the Hermite-Birkhoff polynomials. A particle is tracked within the JOREK non-structured mesh grid via Newton iterations with backtracking. Finally, the initial FO or GC populations are randomly initialized in physical and momentum spaces. Tests conducted in stationary axisymmetric and non-axisymmetric JOREK fields showed a remarkable accuracy in the conservation of invariants of motion for both FO and GC integrators. The accuracy does not significantly degrade when stochastic magnetic fields are used. In addition, the JOREK fast particle tracker was successfully benchmarked against the ASCOT code using numerical equilibrium fields. One consequence of the TQ MHD activity is that equilibrium flux surfaces (i.e. surfaces generated by magnetic FL in the absence of MHD activity, which are tori nested into each other) are destroyed, i.e. the magnetic field becomes stochastic. This has major consequences on electron transport since electrons move very fast along FL. In particular, when magnetic stochasticity exists, electrons may easily be deconfined by following FL which connect the core of the plasma to the PFC. On the other hand, there is no direct experimental evidence that the field is globally stochastic Kolmogorov-Arnold-Moser surfaces may remain. Furthermore, MHD activity is observed to decay after the TQ, so that magnetic stochasticity is probably present only for a short time. It is therefore not obvious to what extent electrons (and in particular those electrons involved in the above-mentioned hot tail mechanism) are deconfined by magnetic stochasticity. This question is addressed in Chapter 3 by means of test electron simulations in a JOREK-simulated JET MGItriggered disruption. In order to do so, test electron populations are initialized in the pre-TQ phase with different energies and radial positions, and evolved until the CQ onset. Since collisional effects are not included in this study for the sake of simplicity, the inductive electric field is also neglected in order to avoid the prompt electron acceleration that would otherwise occur. Results show that for populations initialized in the core of the plasma, fractions of at least a few percent of the initial population remain confined throughout the TQ, whatever the initial energy. This is due to the fact that, even though there is a moment when the magnetic field is completely stochastic, closed flux surfaces reappear very promptly in the core of the plasma.

It should be stressed that such fractions represent large numbers in a RE context, since they are orders of magnitude larger than what is needed for RE to carry the whole plasma current. The transport dependency on electron velocity suggests, with no surprise, that motion parallel to the magnetic FL is the main transport channel.

Thus, at moderate initial kinetic energies, electron losses increase with energy. Losses saturate at higher energies (∼1 MeV) since the velocity saturates at the speed of the light, and a trend inversion even occurs for energies above 1 MeV, which we attribute to orbit averaging effects related to increasing drift velocities. These findings seem to support the possibility of the hot tail mechanism. Another, less obvious, consequence of the TQ MHD activity is the generation of intense parallel E fields. Chapter 4 addresses the question of whether these fields may create RE. For this purpose, a drag force is introduced in the GC model, accounting for collisions between test electrons and the background. The net force field resulting from the sum of the electromotive and drag forces is then studied for different test electron energies in the same JOREK JET disruption simulation as used in Chapter 3. This shows that during the pre-TQ and CQ phases (i.e. before and after the TQ), energetic electrons (> ∼10 keV) are accelerated by the E field, but electrons at or below ∼1 keV are braked by collisions (the pre-TQ electron temperature is around 1 keV in the core in this pulse).

In contrast, during the TQ, the MHD-generated E field is large enough to strongly dominate the collisional drag even at 1 keV. However, the E field presents a 'cellular' topology with a juxtaposition of accelerating (co-RE direction) and decelerating (counter-RE direction) cells. It is therefore not obvious to what extent electrons may be accelerated. This is addressed by means of test particle simulations similar to those of Chapter 3 but now including the collisional drag and inductive electric field.

It is found that about 1% of a population initialized at 1 keV ends up with an energy above 1 MeV, i.e. runs away. This results from the combination of 1) a moderate acceleration (up to a few tens of keV) during the TQ due to more interaction, on average, with accelerating than decelerating E field cells; 2) confinement in the core by the prompt reformation of flux surfaces after the stochastic phase (a phenomenon identified already in Chapter 3); and 3) a subsequent steady acceleration by the CQ E field. Simulations thus predict the formation of a large amount of RE (as mentioned above, 1% should be considered as a large number). However, the simulated pulse in fact produced no measurable RE. The RE formation scenario found here should therefore be considered only as a qualitative possibility and efforts should be made to reconcile simulation and experiment in the quantitative sense. The disagreement may well come from the JOREK simulation, which has not been fully quantitatively validated against measurements, and not from the test particle tracker itself. In fact, some parameters of the JOREK simulation are known not to be realistic. This is the case of the plasma resistivity which is, for numerical reasons, a factor 5 higher than the experimental one. In order to assess the consequences of this, the above study is repeated for JOREK simulations with different (larger) resistivities. Results

show that higher resistivity causes stronger E fields before and after the TQ (but interestingly not during the TQ). RE production consistently increases with resistivity but, although extrapolation is not easy, the trend does not seem strong enough to reconcile simulation and experiment. The interaction between the TQ MHD activity and RE production is very difficult to analyze in detail experimentally. However, statistical studies can reveal interesting trends. For example, several machines have found a negative correlation between the amount of magnetic fluctuations during or just after the TQ, as measured by Mirnov coils, and the production of RE. This could be an indication that more MHD activity results in a stronger deconfinement of fast electrons and thus less RE production. Chapter 5 presents a study made on ASDEX Upgrade data with the purpose of assessing whether a similar trend exists. Nuclear fusion is a reaction consisting of the generation of a heavy nucleus from the collision of lighter nuclei. The difference among product and reactant nuclear binding energies is returned to the system under the form of nuclear products having kinetic energies higher than the reactants one. In this case, the binding energy is defined as the negative of the difference between the nuclear mass and the sum of the masses of the constituents [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF]:

B(A, Z) = N m N c 2 + Zm P c 2 -m(A, Z)c 2 (1.1)
Where B is the binding energy, {N, Z, A = N + Z} are respectively the neutron, proton and mass numbers of the considered nucleus, m is the nuclear mass, {m N , m P } are respectively the neutron and proton masses and c is the speed of light. A fusion reaction can happen only when the product binding energy is higher (more stable nuclear configuration) than the reactant one (less stable nuclear configuration). A first model describing the stability of nuclei is known as the liquid-drop model. This model, firstly proposed by Bohr, describes the nucleons interactions within a nucleus using an interaction model similar to the one describing the dynamics of atoms living in a fluid drop, so considering nucleus global properties such as radius, density, surface and volume energies [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF]. One of the most successful fluid drop model, called mass formula, was proposed by Bethe and Weizsäcker in 1935 [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF] and is reported below:

B(A, Z) = a v A -a s A 2 3 -a c Z 2 A 1 3 -a n (N -Z) 2 A + δ(A) (1.2)
where {a v , a s , a c , a n } are interaction parameters and δ(A) is the quantum pairing term. It is important to note that all parameters and δ(A) are chosen in order to best match the experimental ground state binding energy (a possible parametrisation is given in [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF]). In Figure 1.1 the nuclear binding energy as a function of the element mass number is reported as given in [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF]. [START_REF] Bosch | Review of data and formulas for fusion cross-sections[END_REF][107], clearly shows that D + T , 3 He + D and 6 Li + D are the most suitable fuels from an energetic point of view. The reaction rate, which is defined as the number of reactions in a unit volume per unit of time, for a uniform bi-gas mixture in thermodynamical equilibrium is given by, [START_REF] Thompson | Thermonuclear reaction rates[END_REF]:

r = n 1 n 2 < σ(v)v > (1.4) < σ(v)v >= 4π m 1 m 2 2π (m 1 + m 2 ) kT 3 2 ∞ 0 v 3 σ(v) exp - 1 2 m 1 m 2 m 1 + m 2 v 2 kT dv (1.5)
Where < σ(v)v > and σ(v) are respectively the collision probability and crosssection. The most suitable fuel has to maximise r which, for a specific reaction, translates in maximizing the reaction probability. In Table 1.1, the < σv > for 1.3c [START_REF] Thompson | Thermonuclear reaction rates[END_REF] for equilibrium uniform gas mixture at temperature Tritium or Temperature (T). Table 1.1 awards deuterium and tritium reactants as the best fuel for pratical fusion devices such as thermonuclear warheads [START_REF] Goncharov | American and soviet H-bomb development programmes: historical background[END_REF] or future power plants [START_REF] Rax | Physique des tokamaks[END_REF].

A point which is not discussed yet is the disponibility of reactants in the environment. In fact, while deuterium can be extracted at relatively low cost from the oceanic environment, tritium is an extremely rare isotope on planet Earth due to its short half-life time (t 1 2 ≈ 12.33 years [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF]) β-radioactive decay. The solution to the problem of the scarcity of T is resolved using a secondary fusion reaction. The main idea is to use specific components made of lithium-6 or -7 exposed to neutrons generated by the primary D -T reaction. When a neutron collides with these lithium isotopes, reactions (1.3i) and (1.3j) can take place, directly giving birth to a tritium nucleus [START_REF] Goncharov | American and soviet H-bomb development programmes: historical background[END_REF] [START_REF] Wu | Conceptual design and testing strategy of a dual functional lithium-lead test blanket module in ITER and EAST[END_REF].

Nuclear fusion plasmas and their confinement

As explained in the previous section, the collision interaction between two light nuclei can lead to their fusion but, before such a process can happen, these two elements should be brought to an energy level high enough for overcoming the Coulomb's barrier. The Coulomb barrier is defined as the maximum of the repulsive potential due to electrostatic (Coulomb) forces between two nuclei. Its piercing by an electric charge can be described only using quantum mechanical arguments, for this reason this process is called 'quantum tunneling'. When this barrier is 'tunneled', the nuclear attractive force becomes dominant and fusion takes place. For simple nuclear structures, such as the deuterium and tritium one, an analytical expression representing the probability of 'tunneling' the Coulomb barrier does exist and takes the name of Gamow factor [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF]:

P tunneling ∼ exp - E B E kin (1.6)
where

E B = µZ 2 1 Z 2 2 q 2 8 2 0 2
is the electrostatic barrier potential energy, µ is the reduced mass and E kin is the center-of-mass kinetic energy for the reduced mass µ. Considering a thermal reactant population at temperature T, an estimate of the distribution of particles capable of fusion reaction is given by the product between their equilibrium distribution, f ∼ exp[-E kin k B T ], and Eq.(1.6) [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF]:

f tunneling ∼ exp - E kin k B T • exp - E B E kin (1.7)
Figure 1.2 reports the tunneling probability distribution computed using Eq.(1.7)

for temperatures of: 1keV (in magenta), 10keV (in red) and 100keV (in blue). Results for 1keV and 10keV are magnified respectively by a factor of 10 6.5 and 10 2 for visualisation purposes. In Figure 1.2 it is possible to recognise that each tunneling distribution is similar to a gaussian one with a peak, called Gamow peak, situated at E G ∼ [6.7, 30.9, 143.5]keV (where

E G ∼ (0.5k B T √ E B ) 2 
3 ) and with a height of ∼ [10 -9 , 10 -4 , 10 -2 ]. These last allows to identify the equilibrium temperature of k B T ≥ 10keV as the 'lowest' temperatures for having a considerable amount of fusion reactions.

At such high thermal temperatures the nuclear fuel is in a completely ionised state called 'plasma'. The plasma is defined as [START_REF] Stevenson | Oxford dictionary of English[END_REF]: 'an ionized gas consisting of positive ions and free electrons in proportions resulting in more or less no overall electric charge' (an example of natural plasma is reported in Figure ). In other words, a plasma is a peculiar type of medium whose constituents are free electric positive Eq. (1.4) shows that the fusion reaction rate is not only dependent on the collision probability but also on the reactant density. This means that the high temperature plasma has to be confined within a limited space in order to increase the extracted fusion power (the fusion power is the product of the reaction rate and the free energy per reaction). Unfortunately, a material capable to preserve its integrity at such a high temperature (1keV ∼ 10 7• C) does not exist in nature thus, force fields have to be used in order to maintain an adequate plasma density.

In nature this is achieved via strong gravitational forces. Indeed, the mass of a star (Figure 1.4), which is the only working fusion reactor at the moment, induces a high enough gravitational field capable of compressing and confining the plasma up to the fusion ignition point. At the moment of this writing, the gravitational confinement of a star cannot be replicated in laboratory. Instead, either particle inertia or strong electromagnetic fields are used. The first one is typical of the inertial confinement fusion. This fusion technique consists of the attack of a small sphere containing a deuterium-tritium (Deuterium (D)-T) charge, call the target, via high energy lasers. The sudden energy deposition on the target shell is supposed to compress the D-T mixture up to densities of n ∼ 10 31 m -3 , igniting fusion reactions. Then, the target explodes. A strategy of this process, called Indirect Laser Drive, is reported in the upper plot of Figure 1.5 while the lower one shows an example of inertial confinement fusion reactor. The name 'inertial confinement' comes from the fact that the plasma confinement is due to the inertia of its constituents. On the contrary, with the term 'magnetic confinement fusion' are identified the attempts to control a hot plasma using intense magnetic fields (an example of magnetic confinement fusion reactor concept called stellarator is given in Figure 1.6 upper plot). Indeed, a plasma can be considered as a conductive fluid sensitive to the application of magnetic forces. More precisely, charges immersed in a strong magnetic field are characterised by a movement which is mainly parallel to the magnetic field lines. Thus, it is possible to confine a plasma within a closed magnetic topology in a similar way that a bottle can constrain a gas (Figure 1.6 bottom plot). After being confined in the magnetic bottle, the fuel is heated via external systems (fast neutral beam injection or electromagnetic waves) until reaching fusion relevant temperatures.

For comparison purposes, magnetic confined plasmas have densities which are ∼ 10 11 times smaller than the inertial confined ones but its energy can be confined ∼ 10 12 times longer (∼ 10s with strong power injection). 
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In this work, we consider a specific type of magnetic confinement fusion reactor called tokamak. As an example, the french WEST tokamak is shown in Figure 1.7. The tokamak is a reactor which uses a toroidal (ring shaped) magnetic field for confining purposes. The generation of this particular topology is partially obtained using external coils and partially by generating a current within the plasma itself. This plasma current is typically induced using a transformer effect where the plasma represents the secondary winding while the primary winding is coil called central solenoid. More details on the tokamak configuration are given in Section 1.4.

Description of particle dynamics in a magnetic field

The non-relativistic dynamics of a particle having charge q and mass m in an electromagnetic field is given by [START_REF] Landau | The classical theory of fields, volume 2 of Course of theoretical physics[END_REF]:

dx dt = v (1.8) dp dt = q m (E + v × B) (1.9)
where x and v are respectively the particle position and velocity while E and B denote respectively the background electric and magnetic fields. Considering a uniform magnetic field, the movement can be decomposed in two parts: the first one Indeed, if the magnetic field has non zero curvature, ∇ × b = 0, the particle dynamics will be affected by a movement orthogonal to b called curvature drift (Figure 1.9): It has to be remarked that magnetic field gradients are also responsible for the so-called mirror force acting on the particle parallel momentum, defined as:

v 2 ω gyro ∇ × b (1.10)
F gradB = -µb • ∇B (1.12)
Similarly, a time varying magnetic field induces a charge movement orthogonal to its field line: Other drifts, such as the polarisation one, are not considered in this work (the interested reader might refer to [START_REF] Rax | Physique des tokamaks[END_REF] and references therein for further readings). As already introduced in Section 1.2, in a tokamak the plasma confinement is obtained using an intense magnetic field which has a toroidal geometry. A tokamak schematic representing its main components and the plasma relative position with respect the coils are shown in the left plot of Figure 1.12. Due to the magnetic field inhomogeneities, particles would experience vertical drift motions, such as the curvature and gradB drifts discussed in Section 1.3, which would cause their fast deconfinement. In order to avoid this undesired feature, a secondary magnetic field called poloidal field B θ , is added to the toroidal one coming from the coils B φ . This is generated inducing a plasma current I p flowing in the toroidal direction. As stated in Section 1.2, I p is obtained via transformer effect i.e., it is induced by the tokamak central solenoid [START_REF] Wesson | Tokamaks[END_REF].

v ω gyro b × ∂b ∂t (1.

Tokamak configuration

B θ twists the circular toroidal magnetic field lines into helicoidal ones which generate nested tori (shown in the left and right plots of Figure 1.12). The helicoidal field lines induce a circular movement to the charges which, on average, cancels out the vertical drift motion, greatly improving their confinement. The nested magnetic 'flux surfaces' (depicted in the Figure 1.12 right plot for a circular cross-section plasma) can be identified using their poloidal flux ψ which, for a given point P , is defined as:

ψ (P ) = S P B • ndS P (1.15)
where S P is the disk lying on P and having as normal direction n the reactor vertical axis of symmetry. The possibility to use ψ as a radial-like coordinate is given by the fact that this quantity is constant on a flux surface (hence the name 'flux surface') [START_REF] Rax | Physique des tokamaks[END_REF].

Despite the confinement given by the closed flux surface topology, a region where field lines intercept the reactor wall necessarily exists. In this region, named the 'scrape-off layer', a relatively cold plasma (∼ 5 • 10 4• C -10 6• C) interacts with the solid components composing the tokamak, usually called 'Plasma Facing Components' (PFCs). The magnetic surface delimiting the confined core and the scrape-off layer is identified as 'last closed flux magnetic surface' or, more commonly, the separatrix.

The geometry of this last defines the tokamak magnetic configuration which, usually, can be [START_REF] Wesson | Tokamaks[END_REF]: The definition of the separatrix flux surface ψ sep and the innermost one, which degenerates in a curve called magnetic axis, ψ axis allows to use the following normalisation:

ψ = ψ -ψ axis ψ sep -ψ axis (1.16)
In terms of ψ, the separatrix has the value of ψ = 1 while the magnetic axis corresponds to ψ = 0.

An important physical parameter has to be presented which is denoted q and called the 'safety factor'. It is defined as [START_REF] Wesson | Tokamaks[END_REF]:

q(ψ) = 1 2π L ψ 1 R B φ B θ dl (1.17)
where R is the tokamak major radius and L ψ is a curve defined by the intersection of the ψ th flux surface and a poloidal plane (plane at constant toroidal angle φ).

The safety factor measures the number of toroidal turns that a field line does while performing a single poloidal turn. It has to be noted that q diverges at the X-point.

Indeed, when B θ → 0 (at constant B φ ) q → ∞. Thus, in X-point configurations, the edge safety factor is evaluated at ψ = 0.95 and noted q 95 . Of particular importance for the plasma magnetohydrodynamics stability studies is the notion of rational flux surfaces, i.e. flux surfaces defined by rational values of q. In conclusion, we furnish three definitions which are used in the following of this work [START_REF] Wesson | Tokamaks[END_REF]:

• Low Field Side (Low Field Side (LFS)) and High Field Side (High Field Side (HFS)) designate respectively the outermost and innermost sides of a tokamak. These names refer to the 1/R dependency of B φ which is stronger in the inner side than in the outer one.

• Passing particles: particles having sufficiently large velocity parallel to the magnetic field to circulate continually around the torus. Thus, for a circular magnetic cross section a passing particle orbit is a circle too when projected at a given toroidal angle φ.

• Trapped particles: particles which are reflected by the mirror force and therefore trapped in the LFS region. The trapped particle orbit is characterised by the typical 'banana' shape caused by the mirror force induced parallel velocity inversion combined with the gradB-drift.

ITER

ITER is a tokamak, in advanced phase of construction in Cadarache, resulting from a broad international collaboration. This is meant to be the leading fusion experimental reactor for the next decades and the first one to achieve a fusion power ten times higher than the one consumed to heat the plasma. The discharge duration is foreseen to last for 400s. For comparison purposes, we report in Table 1. 

Magnetohydrodynamics

Magnetohyrodynamics (MHD) is defined as the macroscopic theory of electrically conducting fluids [START_REF] Biskamp | Nonlinear magnetohydrodynamics. Cambridge monographs on plasma physics[END_REF]. Indeed, MHD describes self-consistently the plasma dynamics considered as a single conductive fluid and the slow time scale (neglecting electromagnetic waves) evolution of its electric and magnetic fields. To some extent, this model can be considered as the coupling between the Navier-Stokes equations ruling fluid dynamics and the Maxwell equations describing electromagnetic fields. This coupling is obtained introducing the Laplace forces in the fluid model and the plasma current in the electromagnetic one. In the following, the resisitve MHD approximation is considered. Resistive MHD models kinetic collision processes via the introduction of a resistivity η which describes the macroscopic forces due to microscopic Coulomb collisions opposing the Lorentz force on the electrons (whose inertia is neglected) [START_REF] Wesson | Tokamaks[END_REF]. One of the simplest version of this model is [START_REF] Biskamp | Nonlinear magnetohydrodynamics. Cambridge monographs on plasma physics[END_REF]:

∂ρ ∂t + ∇ • (ρv) = 0 (1.18) ρ ∂ ∂t + v • ∇ v + ∇p = j × B (1.19) ∂p ∂t + v • ∇p + γp∇ • v = 0 (1.20) ∂B ∂t -∇ (v × B) = - 1 µ 0 ∇ × (η∇ × B) (1.21) E = -v × B + ηj (1.22) ∇ • B = 0 (1.23)
where ρ, v, j and p are respectively the plasma density, velocity, current density and pressure (considered isotropic in this case), γ is the heat capacity ratio and µ 0 is the vacuum permeability.

The MHD equation analysis shows that perturbations within a plasma can lead to the development of different instabilities [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]. These last can be categorised as a function of their driving mechanisms such as the current drinven and the pressure driven instabilities. The first one are instabilities which develop due to the presence of an unstable current density gradient (profile) while the second are sensitive to unstable pressure gradients (profiles) [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]. Within the first category are contained modes such as the internal and external kinks [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF] and the tearing one which are briefly described in the following.

The internal m=1 kink mode is a current driven instability which occurs when a steep position perturbation is applied to the plasma enclosed within the q=1 surface while the part outside this last remains unperturbed [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]. For simplicity, only the m = 1, n = 1 mode is considered hereafter. In this particular case, a constant perturbation is applied within the q=1 surface and, just outside it, fastly decreases to zero within a δ-radial distance. The m = 1, n = 1 kink instability is obtained when the limit δ → 0 is considered (for ideal incompressible plasmas): this kink consists of a rigid circular displacement of every magnetic surfaces enclosed within the q=1 one [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]. In toroidally shaped plasmas, the m = 1, n = 1 kink is followed by a tail of higher n-number instabilities which causes an helical deformation of the flux surfaces [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]. Moreover, it worth remarking that the internal kink plays an important role in the dynamics of the non-linear sawthooth instability which is a periodic relaxation of the unstable core of a toroidal plasma [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]. On the contrary, the external kink modes are instabilities characterised by a global plasma movement. These are caused by the presence of a vacuum region between the plasma and the perfectly conducting walls. The stability analysis of this system shows that the coupling between the plasma and the vacuum magnetic field can generate kink instabilities if the condition q(a) < m n is satisfied, where q(a) is the edge safety factor and a is the plasma minor radius [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]. These perturbations take the form of global plasma displacements, as sketched in Figure 1.15, which become rigid at the core [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]. The tearing modes are current driven instabilities for which the plasma resistivity plays a major role. We start considering two adjacent regions having opposite magnetic field directions. If the plasma is perfectly conductive, these two regions can stay in equilibrium if the pressure at their interface is balanced out. On the other hand, non perfectly conductive, or resisitive, plasmas develop instabilities which relax this configuration towards a new equilibrium having lower energy. These instabilities, called tearing modes, cause the breaking of the magnetic field lines and their reconnection in a new topology which is named magnetic island from its particular shape.

These islands generally, appear in chains wrapping the rational surfaces on which they are generated [START_REF] Wilson | Neoclassical Tearing Modes[END_REF] as shown in Figure 1.16. The presence of magnetic islands causes a reduction of plasma confinement indeed, field lines can radially migrate around them causing an enhancement of radial particle and energy transport localised in the region where the islands are formed [START_REF] Wilson | Neoclassical Tearing Modes[END_REF]. Moreover, the overlapping of island chains located on different rational surfaces generates areas of magnetic chaos through which the plasma can be deconfined. A typical example of pressure driven instabilities are the ballooning modes [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF] which are briefly described hereafter. The ballooning modes are caused by the presence of regions having unfavorable magnetic curvature in toroidal plasma configurations [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]. For understanding their origins, we rewrite the equilibrium momentum balance equation ∇p = j × B in terms of magnetic pressure and megnetic curvature [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]:

∇p = B 2 • κ - 1 2 ∇ ⊥ B 2 (1.24)
Where b and κ = b • ∇b are respectively the magnetic field direction and curvature. In tokamak plasmas, the magnetic field is proportial to 1 R thus, its pressure ( 1 2 ∇B 2 ) at the LFS is directed towards the edge as same as the plasma pressure gradient. This implies that the magnetic pressure at the LFS cannot prevent the radial expansion of a plasma column. Thus, the only term capable of balancing this behavior is the curvature one and this can happen only if the condition ∇p • κ < 0 (favorable curvature) is satisfied. In regions of unfavorable curvature (∇p • κ > 0) flux tubes having high pressure are pushed towards the edge and interchange their positions with the low pressure one which, by contrast, are pulled towards the core by their own magnetic tension. This interchange process releases pressure energy which allows the growth of instabilities [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]. These instabilities are the ballooning modes which, in general, are radially localised and are characterised by high mode numbers and a poloidally varying amplitude. This last has maximum in the region where the ballooning modes are originally generated [START_REF] De Blank | MHD instabilities in Tokamaks[END_REF]. A sketch representing the shapes of the ballooning instabilities is reported in Figure 1.17. It has to be noted that, in tokamaks, the presence of magnetic shear (s = r q dq dr ) and large regions of favorable curvature can prevent the interchange process at low pressures thus, a stability domain in which ballooning instabilities are not observed exists.

Disruptions

Disruptions are global plasma instabilities leading to the termination of the discharge in a fast time scale (tens of milliseconds), leading to considerable thermal and mechanical loads on the reactor components and the possible generation of runaway electron beams. Figure 1.18 reports the experimental data of the JET pulse 86887 consisting of a disruption triggered via massive deuterium gas injection. The upper plot shows the plasma current profile, the second visualises the MHD activity, the third furnishes a measure of the radiated power while the electron density is given in the fourth. One of the SXR diagnostic signals is given in the fifth plot.

A disruptive event can be subdivided into three main phases: the precursor phase or pre-thermal quench phase (pre-TQ), the thermal (TQ) and current quench (CQ) phases. The pre-thermal quench phase is the time interval, which can last from few to a hundred milliseconds, characterised by the beginning and the growth of the disruption precursors. This phase is roughly associated to the Figure 1.18 time interval delimited by green and red dashed lines. In general, these MHD instabilities are triggered by the crossing of the maximum current, density and pressure limits within which a tokamak plasma can be considered stable. The first one is directly Figure 1.18: JET pulse 86887 disruption: the first (upper) plot is the plasma current profile I p , the second report the MHD activity (dB/dt), the third is the radiated power P rad , the fourth is the electron density (n el ) while the last is a measurement of the Soft X-Ray Radiation (SXR) emitted during the disruption. The dashed green line denotes the pre-TQ phase (from the MGI) while red and magenta ones identify respectively the TQ and CQ phases. A possible RE plateau would be identified by a quasi-constant I p signal after the CQ. related in the minimum edge safety factor required for not destabilising a m = 2, n = 1 tearing and/or an external kink mode. Indeed, it is found that safe operations are achieved for q 95 ≥ 2 [START_REF] Biskamp | Nonlinear magnetohydrodynamics. Cambridge monographs on plasma physics[END_REF]. It is easy to show that this safety factor condition translates to a maximum allowed plasma current whichm for circular plasmas in large aspect ratio tokamaks, is given by [START_REF] Wesson | Tokamaks[END_REF]:

max(I p ) = 2πa 2 B φ µ 0 Rq(a) q(a)=2 = πa 2 B φ µ 0 R (1.25)
where I p is the plasma current, R the tokamak major radius and µ 0 the vacuum permittivity. The second limit is directly dependent from edge plasma density (n e ) [START_REF] Biskamp | Nonlinear magnetohydrodynamics. Cambridge monographs on plasma physics[END_REF]. High edge n e is though to cause the generation of radiative phenomena which reduce the plasma temperature. The temperature drop causes an increase of plasma resistivity, contracting the current profile thus, destabilising tearing modes (magnetic islands). The understanding of this cooling as a radiative phenomenon derives directly from experimental observations which suggest that this limiting density is reached when the ohmic heating power is lost almost entirely via radiative channels [START_REF] Biskamp | Nonlinear magnetohydrodynamics. Cambridge monographs on plasma physics[END_REF]. This remark allows to derive the following relation (also known as Greenwald density limit):

n G = α n I p 2πa 2 (1.26)
where n G is the Greenwald density measured in 10 20 m -3 , I is measured in MA and α n is a coefficient, normally within ≈ 2-3, which takes into account the particular plasma discharge characteristics [START_REF] Biskamp | Nonlinear magnetohydrodynamics. Cambridge monographs on plasma physics[END_REF]. The third and last main stability limit is the pressure, or beta, one. This is typically related to the destabilisation of edge ballooning modes and core MHD instabilities which, if large enough to be coupled, can convectively evacuate the core plasma towards the wall. The pressure condition is described by the following Troyon law [START_REF] Biskamp | Nonlinear magnetohydrodynamics. Cambridge monographs on plasma physics[END_REF]:

β t = α p I p aB φ (1.27)
where β t , which is the ratio between the thermodynamic pressure and the toroidal magnetic field one, is expressed in %, I p is expressed in MA and α p is a coefficient depending from both the pressure profile and I p . Typically, the two limits are reported on an I p -n e diagram called Hugill diagram which identifies the tokamak operational domain [START_REF] Biskamp | Nonlinear magnetohydrodynamics. Cambridge monographs on plasma physics[END_REF](a representation of the tokamak operation domain is given in Figure 1.

19).

Generally, is difficult to identify a specific event of phenomenon which destabilise the plasma. One possibility is the presence of highly radiating impurities which, when assimilated, can cool enough the plasma to cross the density limit. Normally, the entry in disruptive regimes is caused by a sequence of unfortunate events which are case and machine sensitive. For these reasons, surveys trying to statistically defining all the possible chains of events leading to disruptions are conducted on different machines. A survey for the JET tokamak can be found in [START_REF] De Vries | Survey of disruptions causes at JET[END_REF].

The second phase of a disruption is the thermal quench which denotes the period (from hundred of microseconds to a few milliseconds) characterised by the almost complete loss of the plasma thermal energy. This phase is approximately identified with the Figure 1.18 time interval comprised within red dashed lines. It is thought that the thermal quench generally involves the growth of MHD instabilities leading to magnetic field stochastisation on a macroscopic scale. An example of TQ scenario considers a plasma having an unstable current profile at the edge region (for example due to intense radiative cooling for too high density) which leads to the destabilisation of m = 2, n = 1 magnetic islands [START_REF] Wesson | Tokamaks[END_REF]. The magnetic field topology typical of an island increases the transport through magnetic surfaces which induces a flattening of the plasma temperature profile [START_REF] Wesson | Tokamaks[END_REF]. This augments the plasma resistivity which further steepens the current profile destabilising higher order tearing modes [START_REF] Hopcraft | Criteria for initiation of tokamak disruptions[END_REF]. Due to magnetic island overlapping, large regions of chaotic magnetic field are generated.

The magnetic chaoticity causes a prompt and almost total loss of plasma thermal energy (roughly related to the SXR signal decrease reported in the Figure 1.18 lower plot) to the wall and the flattening of the current profile. This is typically associated to a brief increase of plasma current, called I p -spike (shown in the upper plot of Figure 1.18).

The drop of the plasma temperature happening during the thermal quench dramatically increases the plasma resistivity without significantly modifying its total current. The resulting high resistive dissipation does not allow to sustain the I p which therefore decreases down to termination. This phase characterised by the decay of plasma current and of magnetic energy is called current quench and it is approximately associated to the time interval delimited by red and magenta lines reported in Figure 1.18. The magnetic energy is essentially dissipated via radiation and via the generation of inductive currents in the tokamak structures and components which undergoes important mechanical loads. The most important current quench feature for the aims of this work is the generation of a self-induced toroidal electric field (E φ ) capable of generating fast electron beams. Indeed, strong enough E φ can drive a small fraction of the initial electron population to highly relativistic energies (tens of MeV) generating a runaway electron (RE) beam. If no RE beam is seen, the current quench ends with the plasma discharge termination. Otherwise, a fourth phase called runaway plateau takes place. The runaway plateau is characterised by a plasma current completely carried by highly relativistic electrons which slowly decreases with time.

This phase finishes with a controlled (soft landing) or uncontrolled (wall strike) RE beam termination.

Disruption consequences

In a disruption, the times scales ruling the thermal and magnetic energy dissipation are much faster than the tokamak standard operation ones, resulting in a considerable increase of thermo-mechanical loads. These loads might be strong enough to threaten the integrity of the tokamak components. The tokamak threats representative of a disruptive behaviour can be divided into three main categories: thermal loads on thePFCs, electromagnetic forces on the tokamak structure and the generation of runaway electron beams. Hereafter, only the first two are discussed, leaving the presentation of runaway electrons to the next section.

In the introduction of this section, we stated that during the thermal quench phase an important fraction of the plasma thermal energy is transported to the plasma facing components due to the magnetic field stochastisation. The heat flux resulting from such a loss can be high enough to cause local melting and/or sputtering. A parameter used for their evaluation is the heat impact factor which is defined as: s while in JET φ heat deriving from transient loads is estimated to be within 28 and 106 MJ m 2 √ s [START_REF] Riccardo | Timescale and magnitude of plasma thermal energy loss before and during disruptions in JET[END_REF]. Thus, it is clear that for a particularly virulent thermal quench PFC melting is likely to happen. This picture worsens when a tokamak of the size of ITER is considered. Indeed, a pessimistic extrapolation of the ablation parameter to ITER, (100% of energy transferred to the wall during a 1ms thermal quench) gives a value of 450 MJ m 2 √ s which would seriously compromise both the berilium wall and the tungsten divertor [START_REF] Hender | Chapter 3: Mhd stability, operational limits and disruptions[END_REF] [START_REF] Lehnen | Disruption in ITER and strategies for their control and mitigation[END_REF]. Even if a 100% energy transfer is not realistic due to the presence of radiating impurities, it is clear that heat loads during a possible ITER disruption have to be effectively mitigated in order to protect the first wall.

φ heat = E S √ t dep (1.28)
The electromagnetic loads act mainly during the current quench. Indeed, during this phase, the plasma I p decay induces currents in the tokamak conductive parts.

These last interacts with the magnetic field generating Laplace forces. For fast enough current decay these forces might cause considerable damage, as shown for example in A second source of electromagnetic loads are the halo current which is related to the passage of a fraction of the plasma current through the wall. Vertically elongated plasmas are typically vertically unstable. As a consequence, in tokamaks operating in divertor configuration, most of the disruptions are accompanied by a vertical plasma motion called Vertical Displacement Event. When the plasma compresses into the wall, a fraction of its current circulates within the tokamak structure which, as before, potentially generates harmful Laplace forces (a schematic of the structure currents during a vertical displacement event is given in Figure 1.21). Due to their importance, these stresses have to be controlled and, if necessary, mitigated in order to avoid structural damage.

Disruption avoidance and mitigation

The reduction of risks deriving from disruptive events is known under the name of disruption avoidance and mitigation. While the first one consists of the application of control actions in order to recover the plasma from a degraded stability situation, the second involves the triggering of a preemptive disruption, for example by the delivery of high atomic number (high-Z) materials. Indeed, large amounts of gases such as neon, argon or xenon dramatically increase the radiative cooling, triggering a disruption. Before discussing the mitigation methods, we briefly introduce disruption detection methods. Corrective actions such as disruption avoidance or mitigation, requires the detection of disruption precursors sufficiently in advance for allowing an effective control action. Generally, precursors such as the strong MHD activity or radiated power indicates the imminence of a disruptive event but their establishment may take place just a few milliseconds before the thermal quench which is not a long enough time interval for an effective reaction. On JET, a signal which allows to predict most of the disruptions with sufficient warning time to be able to trigger the mitigation system is the locked mode signal which detects magnetic islands which are stationary with respect to the laboratory frame.

If a disruption is detected and if it is not possible to recover a healthy plasma condition, a disruption mitigation procedure takes place. As introduced above, this typically consists of a massive injection of (often high-Z) material in order to trigger a preemptive disruption whose consequences are tolerable. Several ways of injecting the material have been tested: killer pellets, massive gas injection and shattered pellets. The first one consists injected a monolithic solid pellet [START_REF] Taylor | Disruption mitigation studies in DIII-D[END_REF] into the plasma. An example is given by the early DIII-D disruption mitigation experiments where pellets having a diameter up to 4mm of neon or argon were injected at a velocity of 500 m/s [START_REF] Taylor | Disruption mitigation studies in DIII-D[END_REF]. This method resulted in an effective disruption thermal load mitigation thanks to the pellet deep penetration (between 20% and 50% of the plasma minor radius), its prompt ablation and a pellet induced anomalous transport which allows the fast entering of the radiating material into the core region [START_REF] Taylor | Disruption mitigation studies in DIII-D[END_REF]. Unfortunately, major problems such has the local gas deposition, which causes strong radiation peaks, and the too fast core cooling, which leads to the generation of large runaway electron currents (discussed in Section 1.7) caused the abandon of this technique, [START_REF] Taylor | Disruption mitigation studies in DIII-D[END_REF]. The usage of gas instead of a solid pellet has the advantage to create fewer runaway electrons. However, the penetration of the injected matter may not be as deep.

Besides the mitigation of thermal and electromagnetic loads, MGI has also been shown to be able to dissipate a runaway electron beam (this suggest a possible disruption mitigation strategy involving two successive MGI).

The third and most recent material injection technique is the Shattered Pellet

Injection (Shattered Pellet Injection (SPI)) which is in use at DIII-D [START_REF] Combs | Alternative techniques for injecting massive quantities of gas for plasma-disruption mitigation[END_REF][24] which is shown in Figure 1.23. This method is similar to the killer pellet one except that the pellet is shattered before entering the plasma, for example by bending the end of the guiding tube. This technique is thought to allow a deeper penetration of the killing material into the plasma than for MGI and an assimilation faster than with the killer pellet technique. SPI shows beneficial effects similar to the MGI ones in terms of heat and electromagnetic loads mitigation. On the other hand, the improved penetration seems to induce a higher increase of density which is of primary importance for an effective runaway beam mitigation [START_REF] Commaux | Novel rapid shutdown strategies for runaway electron suppression in DIII-D[END_REF]. For these reasons, SPI is the foreseen technical 

Runaway electrons

Runaways are electrons for which the drag force due to collisions with the plasma thermal population is weaker than the acceleration by a background electric field. Thus, RE are continuously accelerated by the electric force up to highly relativistic kinetic energies (E kin ∼ 30MeV [START_REF] Reux | Runaway electron beam generation and mitigation during disruptions at JET-ILW[END_REF]), acceleration which is accentuated by the drag force reduction with the particle velocity (F drag ∼ v -2 ). Then, the energy increase is limited by radiative effects such as synchroton radiation [START_REF] Stahl | Synchrotron radiation from a runaway electron distribution in tokamaks[END_REF] or bremsstrahlung [START_REF] Embréus | Effect of bremsstrahlung radiation emission on fast electrons in plasmas[END_REF]. In tokamaks, RE can be found during the plateau phase in low density plasma discharges [START_REF] Nilsson | Kinetic modelling of runaway electron avalanches in tokamak plasmas[END_REF] or, more commonly, after the disruption thermal quench phase [START_REF] Reux | Runaway electron beam generation and mitigation during disruptions at JET-ILW[END_REF].

In this work only the second case is considered. In this context, RE are thought to be related to the large self-induced electric field during the CQ, but the precise RE formation mechanisms remain not completely understood. The main aim of the present work is to contribute to this question. This section is structured as follows: the first paragraph discusses mechanisms generating runaways while the second describes the threats to the first wall represented by RE and furnishes an insight on the present RE mitigation strategies. An 

Generation mechanisms

The most simple model describing the drag force acting on a test electron due to collisions with its thermal background at non-relativistic limit energies is given by [START_REF] Connor | Relativistic limitations on runaway electrons[END_REF]:

F coll = m e vν ee ≈ m e v n e q 4 ln(Λ) 4π 2 0 m 2 e v 3 (1.29)
where m e , q e , v and ν ee are respectively the electron mass, charge, velocity and the electron-electron Coulomb collision frequency, n e and ln(Λ) are the bulk density and Coulomb logarithm [START_REF] Connor | Relativistic limitations on runaway electrons[END_REF] and 0 is the vacuum permittivity. From Eq.(1.29) it is evident that the drag force quadratically decreases with the particle speed F coll ∼ 1 v 2 . On the other hand, forces due to driving electric fields are independent from the particle velocity. Thus, a critical velocity exists, v c , at which the electric force dominates the drag one accelerating an electron up to highly relativistic energies. A schematic representing the electron population becoming runaway is given in Figure 1. [START_REF] Commaux | Novel rapid shutdown strategies for runaway electron suppression in DIII-D[END_REF]. In order to estimate vc we write the equation ruling the dynamics of a test electron subjected to a driving electric field and collisions [START_REF] Connor | Relativistic limitations on runaway electrons[END_REF]:

m e dv dt = qE -F coll ≈ q E -m e v n e q 3 ln(Λ) 4π 2 0 m 2 e v 3
(1.30) from Eq.(1.30), v c is obtained equating dv dt to zero:

|v c | = n e q 2 ln(Λ) 4π 2 0 m e E (1.31)
In addition, Eq.(1.30) permits the definition of two critical quantities. The first one is called critical electric field and represents the field below which no electron, however fast, can run away. This is obtained by substituting the electron actual velocity with the speed of the light c (as shown in Figure 1.24):

E c = n e q 3 ln(Λ) 4π 2 0 m e c 2 (1.32)
The second is the electric field required for letting a particle at the thermal velocity run away. This quantity is called Dreicer electric field and is obtained substituting the test particle velocity with the thermal one v 2 th = T e /m e (denoted by E D in Figure 1.24) [START_REF] Connor | Relativistic limitations on runaway electrons[END_REF]:

E D = n e q 3 ln(Λ) 4π 2 0 T e = E c m e c 2 T e (1.33) 
obviously the inequality E D > E c holds. Electrons having v > v c run away and they are replaced by the thermal one diffusing through the tail of the distribution function [START_REF] Wesson | Tokamaks[END_REF]. The RE production rate for the Dreicer mechanism is defined as the flux of electrons crossing the runaway threshold [START_REF] Wesson | Tokamaks[END_REF]. For a completely ionised plasma and for E/E D 1 this can be estimated as follow [START_REF] Wesson | Tokamaks[END_REF] (an adapted version taking into account high Z-impurities can be found in [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF]):

dn r dt = 2 √ 2π n e ν ee E E D exp - E D 4E + 2E D E (1.34)
where n r is the runaway electron density. More accurate calculations can be obtained numerically by resolving the Fokker-Planck equation which describes the electron distribution function evolution in a background plasma [29][43]. In the disruption context, the Dreicer mechanism may or may not act during the current quench depending on the toakmak and the disruptive discharge settings. It is important to mention that estimations for ITER foresee a negligible contribution of this generation mechanism [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF].

The Hot Tail generation is a primary seed production mechanism which is intimately related to the plasma cooling taking place during the thermal quench. This mechanism involves electrons composing the 'hot tail' of an equilibrium distribution function. Indeed, if their collision period τ ee (τ ee = ν -1 ee ) is longer than the thermal quench plasma cooling time (t TQ ), these hot electrons will not thermalise at the postthermal quench temperature, generating a supra-thermal population [START_REF] Smith | Runaway electron generation in a cooling plasma[END_REF][101] [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF]. Then, after the establishment of a toroidal electric field, these supra-thermal electrons are promptly accelerated due to their low collisionality with the low temperature background. An estimation of the number of runaways obtained via Hot Tail can be derived by integrating the Fokker-Planck equation describing collisions between fast electrons and a Maxwellian bulk evolving towards lower temperatures. Denoting the pre-disruption plasma characteristics with ( * ) 0 and assuming a bulk exponential cooling T = T 0 exp -t t TQ , which is representative of the experimental profile, the post thermal quench runaway density is estimated as follows [START_REF] Smith | Runaway electron generation in a cooling plasma[END_REF][101] [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF]:

n r = n e0 2 √ π u c,min exp -u 2 c,min (1.35) 
u 3 c,min = t T Q ν ee,0 2 ln E D0 E ,0 - 4 3 ln 4 3 t T Q ν ee,0 - 5 3 (1.36) 
The hot tail mechanism is considered as one of the most important primary RE production mechanisms in ITER [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF]. In particular, in the case of a fast thermal quench followed by a slow current quench, estimates foresee hot tail runaway currents up to 10MA [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF]. However, this result is highly sensitive to the plasma cooling rate and, more importantly, does not consider hot electron losses due to the magnetic chaos characterising the thermal quench, which may reduce the RE seed production by orders of magnitude. This point will be partially treated in Chapter 3.

The last two phenomena possibly giving birth to primary runaway seeds are the tritium β-decay and the Compton scattering of wall emitted γ-rays. These mechanisms have not been experimentally studied yet because they respectively require a nuclear environment and a strong γ radiation emission due to PFC activation [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF].

Nevertheless, they might become important during ITER operations due to the use of D-T plasmas and the expected high neutron flux, coming from nuclear fusion reactions, which will activate the wall. It has to be pointed out that experiments dedicated to the observation of β-decay induced runaways might be carried out during the possible future JET D-T campaign. As seen in paragraph 1.1, T is an unstable hydrogen isotope which decays into helium-3 via the following β-decay process [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF][74]:

T → 3 2 H e + e + νe (1.37)
where e is an electron and νe is an electronic anti-neutrino. Its half-life is of t T = 4500 ± 8 days with a maximum electron kinetic energy of E kin,max = 18.6keV. If the critical energy E kin,c = 1 2 m e v 2 c is smaller than the T β-decay electron one, this last will run away. Estimations of the β-decay RE seed production are obtained using the tritium decay rate and its electron energy spectrum f β (E kin ) [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF]:

dn r dt β ≈ ln(2) n T t T E kin,max E kin,c f β (E kin )dE kin (1.38)
Differently from the β-decay, the Compton scattering RE are generated due to collisions between an electron and a photon [START_REF] Berestetskii | Quantum electrodynamics, volume 4 of Course of theoretical physics[END_REF]. γ-photons coming from the ITER activated wall might collide with a plasma electron, accelerating this last to kinetic energies above E kin,c . Estimations of RE productions due to Compton scattering are the most difficult ones because they require a model of the photon energy spectrum.

One of these is reported in [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF]:

Γ γ (E γ ) ∝ exp [-exp(x) -x + 1] (1.39) x = ln(E γ (M eV )) + 1.2 0.8 (1.40) 
where E γ and Γ γ are respectively the γ-photon energy (estimated to be between 0.1 and 10 MeV) and its spectrum. The RE production rate related to this phenomenon is given by [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF]:

dn r dt β ≈ Γ γ (E γ )σ(E γ )dE γ (1.41)
where σ(E γ ) is the scattering cross section derived in [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF]. In ITER, primary RE currents due to tritium β-decay and Compton scattering are expected to be of

∼ 4M A [74]
As stated at the beginning of this paragraph, if a primary RE seed is obtained via one or more mechanisms described above then there exists a probability that a RE might collide with a thermal electron. If the impact parameter is small enough, if such a collision occurs the resulting pair of electrons are likely to be at energies above the critical one. This process is called avalanche mechanism and results in an exponential growth of the runaway population. It has to be remarked that this kind of collisions, known as knock-on collisions, involve high-angle scattering phenomena. Thus, they have to be treated within the framework of quantum electrodynamics [START_REF] Rosenbluth | Theory for avalanche of runaway electrons in tokamaks[END_REF][102] [START_REF] Nilsson | Kinetic modelling of runaway electron avalanches in tokamak plasmas[END_REF].

An analytical formula for the avalanche growth rate is obtained resolving Fokker-Planck equation describing knock-on collisions in the E E c limit and for zero pitch angle scattering [START_REF] Rosenbluth | Theory for avalanche of runaway electrons in tokamaks[END_REF]:

dn r dt ≈ n r 2τ ee,c ln(Λ) E E c -1 (1.42)
where τ ee,c is the electron-electron collision time at the ultra-relativistic limit (v → c where c is the speed of the light). In addition, an analytical fitting of the exact runaway current growth rate can be obtained at the high aspect ratio limit -1 = R/r 1 (where R and r are respectively the tokamak major and minor radii) [START_REF] Rosenbluth | Theory for avalanche of runaway electrons in tokamaks[END_REF]. From Eq.(1.42) and estimating the current quench parallel electric field as a function of the magnetic flux time variation:

d dt (LI p ) ≈ -2πR 0 E (1.43)
where L is the plasma internal inductance and R 0 is the magnetic axis major radius, it is possible to derive a simple formula relating the avalanche generated runaway current and the I p decay [START_REF] Martin-Solis | On the avalanche generation of runaway electrons during tokamak disruptions[END_REF]:

I r ≈ I r,seed exp q 2πR 0 m e ca(Z ef f ) ln(Λ) L(I p,0 -I p ) (1.44)
where I r and I r,seed are respectively the RE and primary RE seed total current, a = 3(5 + Z ef f )/π, Z ef f is the plasma effective charge and I p,0 is the pre-disruptive plasma current. It has to be remarked that, in this case, the RE current is approximated as j r = n r c. Considering an ITER post-disruptive RE scenario (I p,0 = 15M A, L = 5µH Z ef f = 3 n e = 10 20 m -3 [START_REF] Martin-Solis | On the avalanche generation of runaway electrons during tokamak disruptions[END_REF]) Eq. (1.44) shows that an initial RE seed of only 10kA is sufficient for having a final RE current beam of 10MA [START_REF] Martin-Solis | On the avalanche generation of runaway electrons during tokamak disruptions[END_REF]. Thus, the avalanche mechanism is potentially really powerful in ITER.

Problems related to and mitigation of runaway electrons

High current runaway beams represent a threat for present and future tokamak operations. Indeed, melting of the JET-ITER Like Wall beryllium wall has been observed even for short lived beams having a current of about 150kA [START_REF] Reux | Runaway electron beam generation and mitigation during disruptions at JET-ILW[END_REF], as shown in Figure 1.25. In carbon limited reactors, such as Tore Supra, 10MeV RE beams carrying a current of 100kA and striking on area of 5cm 2 were found to be sufficient for creating clouds of carbon dusts polluting the vacuum [START_REF] Laurent | Overview of runaway electron control and mitigation experiments on Tore Supra and lessons learned in view of ITER[END_REF]. This picture worsens when reactors having the size of ITER are considered. Indeed, present ITER estimates [START_REF] Lehnen | Disruption in ITER and strategies for their control and mitigation[END_REF] foresee possible RE currents up to 10MA with a kinetic energy of 20MJ [START_REF] Lehnen | Disruption in ITER and strategies for their control and mitigation[END_REF]. Such a high energy, which does not take into account the magnetic-to-kinetic energy conversion taking place during the beam termination, would be able melt the beryllium and tungsten PFC locally, necessitating possible long lasting repairing periods. From this discussion it is evident that an effective mitigation schemes is required to either prevent the formation of RE or to dissipate their energy before they strike PFC.

On JET, it is possible to trigger a mitigated disruption without generating RE by means of MGI with an appropriate gas mixture. Typically, a mixture of deuterium and argon does not generate RE provided that the argon fraction is small enough. A different philosophy consists of generating wide chaotic regions in the plasma magnetic field by means of resonant magnetic perturbations (RMP) in order to deconfine fast electrons before the beam onset. This method was tested successfully in the Japan Tokamak-60U (JT-60U) and Tokamak Experiment for Technology Oriented Research (TEXTOR) tokamaks [START_REF] Lehnen | Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions[END_REF][66] [START_REF] Yoshino | Runaway electrons in magnetic turbulence and runaway current termination in tokamak discharges[END_REF]. However, simulations for ITER suggest that this method will not be effective due to the impossibility to create strong enough RMP [START_REF] Papp | Runaway electron losses caused by resonant magnetic perturbations in ITER[END_REF].

If a beam is produced, a secondary matter injection may allow its dissipation. This has been demonstrated for example in DIII-D [START_REF] Hollmann | Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D[END_REF] while first attempts in JET have not been successful [START_REF] Reux | Runaway electron beam generation and mitigation during disruptions at JET-ILW[END_REF] (but recent experiments, with a different RE beam formation recipe, show an effect). Another method (not necessarily incompatible with the previous one) is the use the real time control system in order to maintain the beam away from PFC and to slowly dissipate it for example by applying negative loop voltage [START_REF] Eidietis | Control of post-disruption runaway electron beams in DIII-D[END_REF][53] (eventually a RE strike on PFC might happen if the control system power supply is not strong enough to stabilise the beam at arbitrary small currents [START_REF] Eidietis | Control of post-disruption runaway electron beams in DIII-D[END_REF]). This method has been successfully tested in DIII-D [START_REF] Eidietis | Control of post-disruption runaway electron beams in DIII-D[END_REF][53] and Tore Supra [START_REF] Laurent | Overview of runaway electron control and mitigation experiments on Tore Supra and lessons learned in view of ITER[END_REF]. On the other hand, studies suggest that the initial RE current required for controlling the beam during a 15MA ITER discharge disruption is of 10MA with an imposed RE current decay no faster than 0.5 MA/s. The achievement of these values is questionable. Thus, at the moment, beam control in ITER is not considered as a reference option [START_REF] Lehnen | Disruption in ITER and strategies for their control and mitigation[END_REF].

At the moment, the envisaged ITER disruption mitigation scheme is based on a first SPI injection for mitigating the heat and mechanical loads and possibly avoid RE generation. This would be complemented by a second SPI injection in case a RE beam is formed. A schematic of the ITER disruption mitigation system is reported in Figure 1.26.

An open question

The understanding of RE generation, dynamics and termination in a disruptive plasma represents a formidable challenge. This is due to the complex physics at play combined with the fact that RE measurements during disruptions are extremely inaccurate or, for some of them, impossible since most diagnostics are not conceived for disruptive situations. For these reasons, numerical modelling appears as a necessary way to make progress. One of the most critical open questions concerns the RE generation and its relation to MHD activity and magnetic stochasticity during the thermal quench phase. In particular the validity of the hot tail mechanism depends on the extent to which fast electrons are deconfined by the TQ stochastic magnetic field.

In this respect, the consequences of magnetic stochasticity on fast electron transport have been explored in several theoretical [START_REF] Abdullaev | Magnetic stochasticity in magnetically confined fusion plasmas, chaos of field lines and charged particle dynamics[END_REF][8][10][9] [START_REF] Abdullaev | Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak[END_REF], numerical [START_REF] Papp | Runaway electron drift orbits in magnetostatic perturbed fields[END_REF][83] [START_REF] Särkimäki | An advection-diffusion model for cross-field runaway electron transport in perturbed magnetic fields[END_REF] and experimental [START_REF] Abdullaev | Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak[END_REF] works, but not necessarily in disruptive situations. From the experimental point of view and in a disruptive context, a clear trend has been observed in some machines toward smaller RE currents as MHD fluctuations during (and just after) the TQ get stronger [START_REF] Zeng | Experimental observation of a magnetic-turbulence threshold for runaway-electron generation in the TEXTOR tokamak[END_REF] [START_REF] Zeng | Runaway electron generation during disruptions in the J-TEXT tokamak[END_REF]. Regarding numerical modelling, to our knowledge the only studies on fast electron transport in fields from disruptions simulated by a 3D non-linear MHD code have been performed by Izzo et al. with the Non-Ideal Magnetohydrodynamics with Rotation (NIMROD) code [START_REF] Izzo | Runaway electron confinement modelling for rapid shutdown scenarios in DIII-D, Alcator C-Mod and ITER[END_REF][58] [START_REF] Izzo | Modeling of rapid shutdown in the DIII-D tokamak by core deposition of high-Z material[END_REF].

Another open question is whether the strong MHD fluctuations taking place during the disruption thermal quench might be responsible for RE generation due to the large electric field associated to them. At the best author knowledge, this possibility has not been considered in literature yet.

Thesis layout

In this thesis, a new module capable of computing the relativistic particle orbits in 3D time-varying numerical MHD plasma fields is presented. These last are obtained from the non-linear 3D MHD code JOREK. In this manuscript, studies will focus on a simulation of an MGI-triggered disruption in JET.

Chapter 2 describes the relativistic particle dynamics models and the numerical schemes used in the JOREK fast particle tracker. In addition, a code accuracy analysis is furnished for a series of test cases. In Chapter 3 a study of the electron population confinement during a JOREK simulated disruption is presented. Chapter 4 discusses numerical simulations concerning possible electron acceleration mechanisms induced by the thermal quench MHD activity. In contrast with the rest of the thesis, Chapter 5 is concerned with experimental data analysis, but the intention is also to investigate the relationships between MHD activity and RE production. Indeed, it contains a preliminary investigation on the correlations between the initial RE beam current and the magnetic fluctuations measured during ASDEX-Upgrade disruptions.

A summary of the thesis results and perspectives for future works conclude this work.

Chapter 2

The JOREK fast particle tracker

Introduction

The study of the MHD effects on a(n) (runaway) electron population and vice-versa requires the resolution of a relativistic Vlasov equation (for collisionless particles) having dimensionality 6+1 (six dimensions for the phase space and one for the time).

Its resolution represents a formidable task due to its high dimensionality, the large difference in terms of spatial and time scales between the MHD and the electron dynamics (few meters and milliseconds against millimeters and picoseconds) and the wide interval of momentum space relevant for the evolution of a RE population (kinetic energies from a few keV to tens of MeV and pitch angles from trapped to passing particles). It is then clear that the calculation of the complete distribution function describing the evolution of RE in complex electromagnetic fields has such a high cost to not be feasible with the current numerical and information technologies. Thus, in this work, we limit our attention to the assessment of the probability that an electron population, being initialised in a narrow phase space region, forms a primary RE seed in a disruptive plasma simulation. To accomplish this task, the Monte-Carlo method is selected due to its high flexibility and the simple treatment of the boundary conditions. This method consists of generating a population of test subjects, called markers, and let them evolve resolving the stochastic ordinary differential, or Langevin, equation associated to the random process describing the problem. Then, the final results are obtained by calculating statistics on this marker family all along the simulation. The application of this method is justified by the complete equivalence between the distribution functions obtained via the Monte-Carlo method and the direct resolution of the stochastic partial differential equation associated to the same problem. For a collisionless plasma, the Langevin equation to be resolved is the set of equations ruling the particle dynamics while the stochastic nature is given by the random sampling from a set of initial conditions [START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF][3] [START_REF] Hirvijoki | Monte Carlo implementation of a guiding-center Fokker-Planck kinetic equation[END_REF].

In this Chapter, the JOREK fast particle module developed for computing the orbits of relativistic particles in 3D time-varying MHD fields (Monte Carlo method) is presented. In Section 2.2 the JOREK code used for obtaining the MHD simulations of plasma disruptions is introduced. Section 2.3 describes the symplectic algorithm used for computing a particle full orbit while the reduced Guiding Center model and its associated numerical scheme are discussed respectively in Section 2.4 and 2.5. In Section 2.6 the schemes employed for interpolating the MHD field in space and time are presented. The particle tracking and initialisation procedures are given in Section 2.7 and 2.8. Module tests and verifications are presented in Section 2.9. A summary, Section 2.10, concludes this chapter.

JOREK model 500: a 3D-non linear reduced MHD code simulating gas-plasma interactions

JOREK is a code resolving the 3D non-linear reduced magnetohydrodynamic equations [56][26]. In addition, the model 500 adds a diffusive model for taking into account the deuterium neutral density evolution [START_REF] Fil | Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in jet[END_REF] required for simulating a massive gas injection. With full MHD we define a model describing the evolution of a conductive fluid and its associated electromagnetic field in which the fastest electromagnetic time scales are neglected. The reduced MHD model is a further simplification of the full one which exploits the fact that the plasma is strongly magnetised (which means that its pressure is smaller than the magnetic one) along one preferential direction (the toroidal direction in the tokamak) [START_REF] Kruger | Generalized reduced magnetohydrodynamic equations[END_REF]. For completeness, the JOREK model 500 equations are reported below:

∂ψ ∂t = η(T )∆ * ψ -R [u, ψ] -F 0 ∂u ∂φ (2.1) j = ∆ * ψ (2.2) R∇ • R 2 ρ∇ pol ∂u ∂t = 1 2 [R 2 ∇ pol u • ∇ pol u, R 2 ρ] + [R 4 ρω, u] + [ψ, j] -F 0 R ∂j ∂φ + [ρT, R 2 ] + Rµ(T )∇ 2 ω + ∇ • ((ρρ n S ion (T ) -ρ 2 α rec (T )) R 2 ∇ pol u) (2.3) ω = ∇ 2 pol u (2.4) ∂ρ ∂t = ∇ • D ∇ ρ + D ⊥ ∇ ⊥ ρ -ρv + ρ (ρ n S ion (T ) -ρα rec (T )) ∂ρT ∂t = -v • ∇(ρT ) -γρT ∇ • v + ∇ • k ∇ T + k ⊥ ∇ ⊥ T + 2 3R 2 η Spitzer (T )j 2 -ρ (ρ n (ξ ion S ion (T ) + L lines (T )) + ρL brem (T )) (2.5) ρB 2 ∂v ∂t = -F 0 2R 2 ρ ∂B 2 v 2 ∂φ + ∂ρT ∂φ + 1 R [ψ, ρT ] -ρ 2 B 2 v 2 , ψ +B 2 µ (T )∇ 2 pol v + (ρα rec (T ) -ρ n S ion (T )) ρB 2 v
(2.6)

∂ρ n ∂t = ∇ • D n • ∇ρ n + ρ (ρα rec (T ) -ρ n S ion (T )) + S n (2.7) 
where {ψ, j, u, ω, ρ, T, v , ρ n } are respectively the poloidal magnetic flux, the plasma current density, the velocity stream function, the plasma vorticity, the plasma density, the plasma temperature, the plasma velocity parallel to the magnetic field lines and the neutral gas density, {R, Z, φ} are the JOREK cylindrical coordinates (major radius, height and toroidal angle), γ is the heat capacity ratio, µ (µ ) is the (parallel) viscosity, {D , D ⊥ } and {k , k ⊥ } are respectively the particle diffusivity (D) and heat conductivity (k) in the parallel and perpendicular directions, D n is the neutral gas diffusion coefficient matrix, F 0 = R 0 B 0 where R 0 and B 0 are the magnetic axis (central) major radius and magnetic field, ∇ pol and ∇ are respectively the del-operator in the poloidal plane and in the parallel direction, [ * , * ] are the Poisson brackets in the poloidal plane. η Spitzer and η are the Spitzer resistivity and a Spitzer-like resistivity (η = η 0 T 0 T 3 2 with η 0 and T 0 denoting the central resistivity and temperature). In general, an η higher than η Spitzer is used in Eq.(2.1) in order to increase the thickness of the current sheets which is necessary for numerical reasons. For the same reason, hyper resistivity and viscosity are also added (not shown in the equations). The ionisation (S ion ), recombination (α rec ), ionisation energy (ξ ion ) and the line (L lines ) and bremsstrahlung (L brem ) radiation rate terms are, for simplicity, taken to be the atomic deuterium one [START_REF] Fil | Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in jet[END_REF]. S n is a volumetric source term simulating the influx of neutral gas from the MGI (for a deeper insight into the JOREK neutral gas model see [START_REF] Fil | Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in jet[END_REF] and references therein). As a side but important remark for the aims of this work, the electric field E in the reduced MHD approximation is given by:

E = -F 0 ∇u + 1 R ∂ψ ∂t e φ (2.8)
where e φ is a unitary vector associated to the toroidal direction.

In the simulations used in this work, the JOREK model 500 is completed by an ideal wall boundary condition (constant variable at the boundary). An exception is represented by the divertor region in which a Bohm boundary condition is imposed on the plasma parallel velocity (v = c s = γT /m i denoting with c s the speed of sound and m i the ion mass) completed by an outflow boundary respectively for the temperature and densities and Dirichlet conditions for all other variables.

The JOREK code initialisation is based on a plasma equilibrium solution which is given by the resolution of the Grad-Shafranov equation [START_REF] Wesson | Tokamaks[END_REF]:

R ∂ ∂R 1 R ∂ψ ∂R + ∂ 2 ψ ∂Z 2 = -µ 0 R 2 dp dψ (ψ) -µ 2 0 F dF dψ (ψ) (2.9) 
F = RB φ µ 0 (2.10)
where µ 0 is the vacuum permittivity, p is the plasma pressure and B φ is the toroidal magnetic field. The right hand side and the boundary conditions for Eq.(2.9) are obtained from experimental data.

In JOREK, the reduced MHD equations are numerically resolved using the generalised finite element method (Finite Element Method (FEM)) in three dimensions ( [START_REF] Huysmans | MHD stability in X-point geometry: simulation of elms[END_REF] and references therein) where the basis functions are Bézier surfaces on the poloidal plane [START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF] and Fourier harmonics [START_REF] Quarteroni | Numerical mathematics. Texts in applied mathematics[END_REF] for the toroidal coordinate (a deeper insight on these polynomials is given in Section 2.6). These bases are defined on a non-structured mesh grid which is composed of quadrangular elements aligned on the equilibrium magnetic flux surfaces. It has to be remarked that JOREK is capable to handle realistic magnetic configurations such as X-point and double X-points as shown in Figure 2.8 of Section 2.7. The time integration is performed using the θ -ξ algorithm with backward linearisation of the non-linear terms [START_REF] Beam | Alternating direction implicit methods for parabolic equations with a mixed derivative[END_REF][49]:

(1 + ξ) ∂P ∂u k -θ∆t ∂Q ∂u k δu k = ∆tQ k + ξ ∂P ∂u k δu k-1 (2.11)
where { * } k denotes the k th time iteration, u = u(x, t) and δu k = u k+1 -u k are respectively the solution vector and its increment, P(u) and Q(u) are the vectors defining the continuous problem ∂P ∂t = Q, ∆t is the JOREK time step and {ξ, θ} ∈ [0, 1] × [0, 1] are free parameters defining a specific integration algorithm as reported in Table 2.1:

θ ξ Scheme 1 0
Implicit Euler 0.5 0 Crank-Nicholson 1 0.5 Gears Table 2.1: Time integration schemes defined by specific settings of the θ -ξ parameters.

Finally, the linear problem resulting from this space-time discretisation is resolved using the parallel sparse matrix solver Parallel Sparse matriX package (PaStiX) [START_REF] Hénon | PASTIX: a high-performance parallel direct solver for sparse symmetric positive definite systems[END_REF].

Numerical scheme: relativistic full orbit solver

The set of equations modelling the full orbit (FO) dynamics of relativistic particles are the following [START_REF] Landau | The classical theory of fields, volume 2 of Course of theoretical physics[END_REF]:

ẋ = p mγ (2.12) ṗ = q E + p mγ ×B (2.13) γ = 1 + p mc 2 , p 2 = p • p (2.14)
where x,p and γ are respectively the particle position, momentum and relativistic factor, m and q are the particle rest mass and charge, c is the speed of light and the electric and magnetic fields are denoted with E and B. An accurate electron dynamics description requires the resolution of the particle gyration around magnetic field lines [64][45]. The typical time step needed for calculating a gyromotion is of ∆t = 0.01 • T gyro where T gyro = 2π mγ |q|B is the gyration period [START_REF] Landau | The classical theory of fields, volume 2 of Course of theoretical physics[END_REF] (in this work we will implicitly use T gyro | γ=1 = 2π m |q|B ), i.e., ∆t ∼ 10 -13 s for an electron in a 2T magnetic field. Typically the phase of interest (TQ and early CQ) of a JOREK simulated disruption lasts a few milliseconds thus, the integration of an orbit requires up to 10 10 iterations which may result in poor solution accuracy if non-conservative numerical schemes are used. Therefore, the second order Volume Preserving Algorithm (VPA), the symplectic scheme developed in [START_REF] Zhang | Volume-preserving algorithm for secular relativistic dynamics of charged particles[END_REF] [START_REF] He | High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields[END_REF], is implemented. For completeness, we report its derivation, referring the interested reader to [START_REF] Zhang | Volume-preserving algorithm for secular relativistic dynamics of charged particles[END_REF] [START_REF] He | High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields[END_REF] for deeper insights on this subject. The second order VPA is obtained using a splitting method [START_REF] Hairer | Geometric Numerical Integration: structure-preserving algorithms for ordinary differential equations[END_REF] [START_REF] Feng | Symplectic geometric algorithms for hamiltonian systems[END_REF] which consists of three main steps:

1 Split a divergence free system in simpler sub-systems which are divergence free.

2 Identify a volume preserving numerical scheme for each subsystem.

3 Obtain the global numerical method via symmetric composition of the subalgorithms.

We first increase the phase space dimension introducing the variable t = σ in order to rewrite the non-autonomous hamiltonian system Eqs.(2.12),(2.13), (2.14) Since the latter satisfies Liouville's theorem the former also does and is, therefore, divergence free. This last can be decomposed into three volume preserving sub-systems as following [START_REF] He | High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields[END_REF]:

  ẋ ṗ σ   =   p mγ(p) 0 1   +   0 qE(x, σ) 0   +   0 q mγ(p) p × B(x, σ) 0   (2.19)
We remark that each sub-problem of Eq.(2.19) has four integrable equations, more precisely for the first:

p k+1 = p k+ 1 2 = p k σ k+1 = σ k + ∆t (2.20)
and for the second and third:

x k+1 = x k+ 1 2 = x k σ k+1 = σ k+ 1 2 = σ k (2.21)
The first and second sub-problems of Eq.(2.19) can be resolved using the Leap-Frog method, which is known to be volume preserving [START_REF] Hairer | Geometric Numerical Integration: structure-preserving algorithms for ordinary differential equations[END_REF], for the first one, leading to:

x k+1 = x k + ∆tp k+ 1 2 mγ(p k+ 1 2 ) = x k + ∆tp k mγ(p k ) (2.22)
for the first second one: The discretisation of the last sub-system is more tricky. As a first remark we note that: 

p k+1 = p k + q∆tE(x k+ 1 2 , σ k+ 1 2 ) = p k + q∆tE(x k , σ k ) (2.
dp 2 dt = 2p • ṗ = 2q mγ(p 2 ) p • (p × B) = 0 (2.
× B =   0 B 3 -B 2 -B 3 0 B 1 B 2 -B 1 0   (2.25) obtaining: ṗ = q mγ(p 2 ) × B • p (2.26)
Using Eqs.(2.20), the central difference scheme and reminding that γ(p 2 k ) = γ(p 2

k+ 1 2 ) = γ(p 2 k+1
), we can write:

p k+1 = q∆t 2mγ(p 2 k ) × B(x k , σ k )(p k+1 + p k ) (2.27)
The final algorithm form is obtained by arranging the ( * ) k+1 terms to the left hand side and inverting the resulting matrix:

p k+1 = { I - q∆t 2mγ(p 2 k ) × B(x k , σ k ) -1 I + q∆t 2mγ(p 2 k ) × B(x k , σ k ) } • p k (2.28)
where the matrix operation of Eq.(2.28) is the Cayley transform (denoted with Cay( * )) of the therm q∆t 2mγ(p 2 k ) × B which is known to be symplectic [START_REF] Feng | Symplectic geometric algorithms for hamiltonian systems[END_REF]. Thus, also the third discrete map is volume preserving. Finally, the second order VPA integrating the motion of a relativistic charged particle in an electromagnetic field is achieved by [START_REF] Zhang | Volume-preserving algorithm for secular relativistic dynamics of charged particles[END_REF] (where the indices identify the sub-problems given in Eq.(2.19)):

applying the symmetric composition Φ(∆t) = φ 1 ( ∆t 2 )•φ 2 ( ∆t 2 )•φ 3 (∆t)•φ 2 ( ∆t 2 )•φ 1 ( ∆t 2 )
x k+ 1 2 = x k + ∆t 2m p k 1 + p k mc 2 (2.29) p = p k + q∆t 2 E x k+ 1 2 , t k + ∆t 2 (2.30) p = Cay   q∆t 2m × B x k+ 1 2 , t k + ∆t 2 1 + ( p mc ) 2   • p (2.31
)

p k+1 = p + q∆t 2 E x k+ 1 2 , t k + ∆t 2
(2.32)

x k+1 = x k+ 1 2 + ∆t 2m p k+1 1 + p k+1 mc 2 (2.33) (2.34)
It has to be noted that this procedure allows to derive higher order schemes such as the fourth order one presented in [START_REF] He | High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields[END_REF].

An example of the integrator performances is given in Figures 2.1 Top left and right plots of Figure 2.2 present respectively the conservation of the electron kinetic energy (E kin ) and total canonical momentum (P φ ). The P φ dynamics is characterised by an oscillatory behaviour with drift-free fluctuations comprised within ∼ 10 -7 % of the initial value, confirming the good integrator conservation properties. This oscillatory behaviour allows us to point out that the symplectic space structure conservation does not imply a perfect preservation of the invariants of motion. Indeed, it means that their error dynamics is not afflicted by drifts, i.e., that invariants are bounded within upper and lower limits set by the scheme order and time step (for a deeper insight into this subject see [START_REF] Morrison | Structure and structure-preserving algorithms for plasma physics[END_REF] and references therein). Conversely, the E kin error, given in the left plot of Figure 2.2, is afflicted by a drift which increases the electron energy up to ∼ 10 -10 %. Given its smallness, this drift is probably caused by the accumulation of round-off errors typical of the finite machine precision instead of the algorithm itself [START_REF] Zhang | Volume-preserving algorithm for secular relativistic dynamics of charged particles[END_REF]. However, the numerical errors arising from the plasma field numerical description (such as the finite numerical solution smoothness and accuracy), the particle tracking procedure and the cartesianto-cylindrical coordinates transformation , described in Section 2.6 and 2.7, degrades the VPA scheme invariant of motion bounding when the JOREK MHD simulations are used.

An interesting property of the electron motion in gentle magnetic field is that the magnetic moment

(µ = p-(p•b)b 2 2m B
, having defined b = B B ) is bounded, as shown by the lower plot of Figure 2.2. Indeed, if the magnetic field is sufficiently smooth, µ can be considered to be an adiabatic invariant and the associated motion, the gyromotion, integrable. This characteristic allows the construction of reduced phase space particle models integrating the gyromotion at each approximation order, eliminating the fastest electron dynamics time scale. Reduced particle models, such as the Guiding Center one described in Section 2.4, are widely used in the plasma physics community due to their ability to recover the particle orbit main features with much fewer computational efforts than with the FO model.

Finally, we remark that in the following, we use the exact Cayley transformation instead of the computationally less expensive approximated form proposed in [START_REF] Zhang | Volume-preserving algorithm for secular relativistic dynamics of charged particles[END_REF]:

p = I + 2α 1 + α 2 B k+ 1 2 2 × B k+ 1 2 + 2α 2 1 + α 2 B k+ 1 2 2 × B 2 k+ 1 2 • p (2.35)
where α = q∆t 2mγ(p 2 ) and { * }

k+ 1 2 = { * }(x k+ 1 2 , t k + ∆t 2 )
. This choice is based on a comparison between the two methods, computing the orbit of an electron with a kinetic energy of 10MeV and a pitch angle of 170 • in a JOREK calculated equilibrium plasma field. The total simulation time and time step were respectively of T = 1ms and ∆t = 0.014 • T gyro . Despite a 27% reduction of computational time (average on 10 tests), the approximated Cayley transform was found to perform much worse regarding the P φ conservation with fluctuations having an amplitude of 2.5%, while the exact one showed a bounding error of only 2.8 • 10 -7 % (the total energy errors of the two methods were similar).

The relativistic guiding center approximation

In Section 2.3 we mentioned that the electron magnetic moment µ

= p-(p•b)b 2 2m B
can be considered as an adiabatic invariant (an almost constant quantity) for sufficiently smooth electromagnetic fields. Indeed, the lower plot of Figure 2.2 shows that µ is characterised by fast oscillatory dynamics with an amplitude of ∼ 0.8% and indiscernible drifts. In addition we also stated that this property allows to derive approximated models of the particle motion in which µ is considered constant and its conjugate coordinate [START_REF] Landau | The classical theory of fields, volume 2 of Course of theoretical physics[END_REF], the gyroangle, integrable. The advantage of these approximations is the elimination of the fastest electron dynamics time scale (T gyro ) which considerably decreases the computational and memory cost. We will now derive the first order relativistic GC model for clarity purposes. We firstly consider a particle immersed in a constant and homogeneous magnetic field directed along an arbitrary direction e x : B = Be x . It is easy to prove that the solution of Eqs.(2.12),(2.13) and (2.14) provided with the initial conditions x = {0, 0, 0} and p = {p x0 , p ⊥0 sin(χ 0 ), p ⊥0 cos(χ 0 )} is:

     x = p x0 mγ t , p x = p x0 y = -ρ cos(Ωt + χ 0 ) , p y = p ⊥0 sin(Ωt + χ 0 ) z = ρ sin(Ωt + χ 0 ) , p z = p ⊥0 cos(Ωt + χ 0 )      (2.36)
where Ω = qBx mγ is the particle cyclotron frequency and ρ = p ⊥0 qBx is the gyroradius. Eq.(2.36) states that the charge movement in a stationary and homogeneous magnetic field is composed by a translation along and a gyration around its magnetic field line.

Thus, defining with X the coordinates of the geometric centre around which the particle is gyrating, the position vector can be rewritten as follows [START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF][105]:

x = X + ρ ρ = ρ(cos(χ)1(X, t) + sin(χ)2(X, t)) (2.37)
where {1(X, t), 2(X, t)} is a non-rotating basis on the gyration plane. At this point, we move to a general electromagnetic field but we assume that the gyroperiod and the gyroradius are much smaller than the electric and magnetic field characteristic time and space scales. So the electric and magnetic fields can be considered constant during a gyration and homogeneous over a gyroradius. Thus it is possible to write:

B(x, t) B(X, t) E(x, t) E(X, t) (2.38)
This allows the decomposition of the particle momentum into two components: one parallel to the magnetic field line and a rigid gyration perpendicular to it [START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF][105]:

p = p b(X, t) + ρΩ⊥ ⊥ = -sin(χ)1(X, t) -cos(χ)2(X, t) (2.39)
where p is the momentum parallel to a magnetic field line, b = B B and the term ρΩ can be rewritten in function of the magnetic moment ρΩ = √ 2mµB (where B = B ). Now, the objective is to eliminate the gyromotion from the relativistic particle dynamics without losing the phase space conservation property of the full orbit model. For doing this, we firstly consider the particle Lagrangian 1-form Γ and its associated Hamiltonian [START_REF] Tao | Hamiltonian theory of adiabatic motion of relativistic charged particles[END_REF]:

Γ = [qA(X, t) + p] • dx -Hdt H = mc 2 γ + qΦ(X, t) γ = 1 + ( p mc ) 2 (2.40)
where A(X, t) and Φ(X, t) are respectively the vector and scalar (electric) potentials. As done in Section 2.3, we pass from a non-autonomous to an autonomous by system increasing the phase space dimension and we substitute Eqs.(2.38) and Eqs.(2.39) into Eqs.(2.40) [START_REF] Tao | Hamiltonian theory of adiabatic motion of relativistic charged particles[END_REF] leading to [START_REF] Tao | Hamiltonian theory of adiabatic motion of relativistic charged particles[END_REF]:

Γ σ = q A(X, t) + p b + √ 2mµB⊥ • dx -p t dt -H σ dσ H σ = mc 2 γ + q Φ(X, t) -p t γ = 1 + ( p mc ) 2 + 2µB mc 2 (2.41)
where p t is the momentum conjugated to the time variable t and is a scaling parameter q ∼ q (physical quantities are recovered setting = 1) [START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF].

After these preliminary transformations, the gyromotion can be eliminated by using the Lie-transform perturbation theory. Indeed, [START_REF] Littlejohn | A guiding center hamiltonian: A new approach[END_REF][72] firstly found that the application of the Lie-transform to the particle Lagrangian 1-form allows to derive the particle guiding center (GC) equation of motion without breaking the phase space conservation (it should be noted that this statement is not true for an arbitrary symplectic model [START_REF] Morrison | Structure and structure-preserving algorithms for plasma physics[END_REF]). The Lie-transformation pull-back and push-forward are [START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF]:

T n = exp( n L Gn ) T -1 n = exp(-n L Gn ) (2.42)
where L Gn is the Lie-derivative generated by the vector field G n , which for a 0-from ω 0 and a 1-form ω 1 = ω α dz α forms reads [START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF]:

L G ω 0 = G α ∂ω 0 ∂xα L G ω 1 = G β ( ∂ωα ∂x β - ∂ω β ∂xα )dz α + d(G α ω α ) (2.43)
where, in our case, z = {x, p; t; p t } is the phase space coordinate vector, d * is the exterior derivative of a differential form and repeated indices are summed (Einstein's notation). It has to be noted that the dω terms do not influence the final equations of motion due to the property d 2 * = 0. Thus they are a gauge of the Lagrangian 1-form and they can be used for cleaning up terms in the following equations [START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF].

The basic idea behind the Lie-perturbation theory is to apply the Lie-transform to Eq.(2.41) and to choose the vector field G n in order to eliminate the majority of terms containing the gyroangle variable at each order. The elimination of residual oscillating terms can be performed via gyro-average (integration of the gyroangle variable) [START_REF] Brizard | Nonlinear gyrokinetic Vlasov equation for toroidally rotating axisymmetric tokamaks[END_REF]. From Eq.(2.42) the Lie-transform push-forward is:

T -1 n = 1 -L G 1 + 2 (L G 2 - 1 2 L G 1 L G 1 ) + . . . (2.44) 
We firstly order Eq.(2.41) as a function of : 

Γ σ = 1 [ω 0 + H 0 dσ] + [ω 1 + H 1 dσ] ω 0 = qA • dx ω 1 = p b + √ 2mµB⊥ • dx -p t dt H 0 = qΦ H 1 = mc 2 γ -p t ( 2 
Γ σ,GC = 1 Γ σ,GC,0 + Γ σ,GC,1 Γ σ,GC,0 = ω 0 Γ σ,GC,1 = ω 1 -L G 1 ω 0 + dS (2.46)
We note the zero order GC approximation is already independent from the gyro angle:

Γ 0 σ,GC = q [A(X, t) • dX -Φ(X, t)dσ] (2.47) 
where we set = 1. Remembering that t = σ, we derive the Euler-Lagrange L 0 GC equation associated to Eq.(2.47) [START_REF] Tao | Hamiltonian theory of adiabatic motion of relativistic charged particles[END_REF]:

Γ 0 σ,GC = L 0 GC dt = q A(X, t) • Ẋ -Φ(X, t) dt (2.48)
which leads to the zero order GC model:

Ẋ = E × B B 2 (2.49) 
where B = ∇ × A and E = -(∇Φ-∂A ∂t ) are respectively the magnetic and electric fields.

Continuing in the derivation of the first order approximation, we apply the Liederivative to the ω 0 one form which leads to:

L G 1 ω 0 = qB × G x 1 + G t 1 q ∂A ∂t • dX -G x 1 • q ∂A ∂t dt + dc (2.50)
where dc contains all the external derivatives, G X 1 and G t 1 are the vector fields respectively associated to the GC position and time. Inserting Eq.(2.45) and Eq.(2.50) into Eq.(2.46) we have:

Γ σ,GC,1 = p b + 2mµB⊥ + qG x 1 × B + qG t 1 ∂A ∂t • dX -p t + qG x 1 • ∂A ∂t dt + dS (2.51)
where we regrouped in dS every gauge factor. In this derivation, potential fields are considered almost constant during a gyrorbit ∂A ∂t ∼ Tgyro T ∼ O( ) [START_REF] Brizard | Nonlinear relativistic gyrokinetic Vlasov-Maxwell equations[END_REF] but Eq.(2.51) retains only the ∼ O(1) thus vector potential time derivatives can be dropped. In addition, noting that ⊥ = ρ ρ × b and defining :

G x 1 = -m q 2µ mB ρ ρ + (G x 1 • b)b (2.52)
we obtain:

Γ σ,GC,1 = p b • dX -p t dt + dS (2.53)
Finally, dropping dS, extracting the gyroangle, setting = 1 and using Eq.(2.46), the first order GC Lagrangian one form and Hamiltonian are given by [START_REF] Tao | Hamiltonian theory of adiabatic motion of relativistic charged particles[END_REF][19]:

Γ 1 σ,GC = qA(X, t) + p b(X, t) • dX -p t dt + m q µdχ -H σ,GC dσ H σ,GC = mc 2 γ GC + qΦ(X, t) -p t γ GC = mc 2 1 + p mc 2 + 2µB mc 2 (2.54)
It has to be noted that the complete definition of the G 1 vector field is required in order to derive the first order Lie coordinate transformation [START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF]:

Z = T n z (2.55) 
where z = {x, p, t, p t } and Z = {X, p , µ, χ, t, p t } are respectively the particle and GC phase space coordinates. Due to the fact that terms such as G p 1 and G µ 1 are missing, not every GC coordinate can be coherently transformed back into the particle one, making it difficult to benchmark this model against the FO one. The complete derivation of the first order G 1 vector field can be achieved via approximating the particle dynamics at higher order in . Now that the GC Lagrangian 1-form is identified, we proceed with the calculation of the GC equations of motion which are given by [START_REF] Cary | Hamiltonian theory of guiding-center motion[END_REF] [START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF]: 

dZ dσ = Π αβ ∂H σ,GC ∂Z β Π αβ = ζ -1 αβ = ∂ω GC,β ∂Z α - ∂ω GC,α ∂Z β -1 ( 
Π =              1 B * b × B * B * 0 0 0 -b B * × ∂A * ∂t -(B * ) T B * 0 0 0 0 B * B * • ∂A * ∂t 0 0 0 -q m 0 0 0 0 q m 0 0 0 0 0 0 0 0 -1 b B * × ∂A * ∂t T -B * B * • ∂A * ∂t 0 0 1 0              (2.57)
where B * = B * • b, denoting the vector transposition with ( * ) T and b × is:

b × =   0 -b 3 b 2 b 3 0 -b 1 -b 2 b 1 0   (2.58)
It has to be pointed out that the Jacobian of the Lagrange tensor (ζ) used for inverting the Poisson one is:

J = det(ζ) = m q B * (2.59) 
Finally using Eq.(2.57) in Eq.(2.56) we obtain the first order energy-like relativistic Guiding Center model:

Ẋ = 1 b • B * qE×b -p ∂b ∂t × b + mµb×∇B + p B * mγ GC (2.60) ṗ = B * b • B * • qE -p ∂b ∂t - µ∇B γ GC (2.61) γ GC = 1 + p mc 2 + 2µB mc 2 (2.62) B * = p ∇ × b + qB (2.63)
The equations for { χ, μ, ṫ, ṗt } are not reported because they do not directly influence Eqs.(2.60)(2.61) thus, they are not resolved in the numerical practice. It has to be pointed out that this form of the GC model is defined 'energy-like' because the time momentum p t is equal to the total particle energy which means that in the extended phase space the dynamics is constrained on the surface H σ = 0 [105] [START_REF] Cary | Hamiltonian theory of guiding-center motion[END_REF].

The verification of the phase space conservation is obtained by directly applying the Liouville theorem [START_REF] Cary | Hamiltonian theory of guiding-center motion[END_REF]:

∂J ∂t + ∂J ∂Z α (J dZ α dt ) = 0 (2.64)
where repeated indices are summed. Plugging Eq.(2.59) and Eqs.(2.60)(2.61) in Eq.(2.64), the phase space conservation of the GC approximation is proven:

∂B * ∂t + ∇ X • (B * Ẋ) + ∂ ∂p (B * ṗ ) = 0 (2.65)
Thus, invariants of motion are conserved by this GC model.

As discussed at the beginning of this section, the GC reduced model is valid when the electric and magnetic fields are almost constant and uniform at the gyromotion scales, more precisely:

1 The electromagnetic field time scale T has to be much longer than the particle gyro-period T gyro : Tgyro It is interesting to estimate whether points 1, 2 and 3 are satisfied at least in a JET-like plasma equilibrium field for typical RE energies. In order to compute these estimates, the length and time scales for electrons with energies between 0.5 and 500MeV, as well as the order of magnitude of the ratios Tgyro T , ρ L and l L are given in Table 2.2. These values assume a magnetic field of 2T and a tokamak major radius of 3m and minor radius of 1m (i.e. JET-like parameters). Here, L and L are calculated as the minimum gradient lengths (L = min B ∇B and L = min B |b•∇B| ) of a simple axisymmetric equilibrium tokamak-like magnetic field with a constant q=1 profile (estimations in fields from JOREK disruption simulations are provided in Section 2.9). Their values are L= 2.66m and L = 5.22m. The plasma characteristic time T is conservatively taken to be the smallest JOREK time step used in the most extreme disruption simulations: T= 3 • 10 -8 s (a typical JOREK time step is within ∼ [10 -7 , 10 -5 ]s). The Larmor radius is obtained using the limiting pitch angle of 90 degrees while 0 degrees is used for the parallel displacement. Table 2.2 indicates that the GC model should be a good approximation for electrons up to a few MeV while a numerical assessment is required for energies of tens of MeV. For energies above hundreds of MeV, FO simulations are advisable [START_REF] Wang | Multi-scale full-orbit analysis on phase-space behavior of runaway electrons in tokamak fields with synchroton radiation[END_REF]. Numerical assessments are also required concerning the validity of condition 4 since it is hard to estimate the electric field a priori. Further readings on the GC model validity can be found in [START_REF] Brizard | On the validity of the guiding center approximation in the presence of strong magnetic gradients[END_REF] and references therein.

E kin (MeV) T gyro (ns) ρ (mm) l (mm) OoM (T gyro /T) OoM (ρ/L) OoM l /L 0.

Numerical scheme: relativistic guiding center solver: Runge-Kutta integrator with time step control

In the JOREK fast particle tracker, the GC equations, described in Section 2.4, are resolved using the Runge-Kutta (Runge-Kutta (RK)) [START_REF] Quarteroni | Numerical mathematics. Texts in applied mathematics[END_REF] scheme. The RK is a family of non-linear single step ordinary differential equation integrators which uses multiple functional evaluations in order to increase the solution accuracy [START_REF] Quarteroni | Numerical mathematics. Texts in applied mathematics[END_REF]. We chose this method due to its locality and the possibility to easily mitigate its dissipative nature.

Indeed, the fact that only the information at the time t k is needed for computing the solution at t k+1 = t k + ∆t allows the usage of adaptive time-step schemes for numerical error control purposes, reduces the algorithm memory consumption and guarantees its automatic starting. It has to be remarked that if a symplectic method adapted to the relativistic GC equations has to be developed in the near future, its implementation in JOREK would be carefully considered. Indeed, the absence of numerical dissipation typical of the symplectic schemes might cause an accumulation of numerical error due to the presence of discontinuities in the JOREK fields second order spatial derivatives. Considering the standard ordinary differential equation form dy dt = f(t, y(t)), the most general description of a s-stage RK algorithm is given by [START_REF] Quarteroni | Numerical mathematics. Texts in applied mathematics[END_REF]:

y k+1 = y k + ∆tF o (t k , y k , ∆t; f ) (2.66) F o (t k , y k , ∆t; f ) = s i=1 b oi K i (2.67) K i = f (t k + c i ∆t, y k + ∆t s j=1 a ij K j ), i = 1, 2, . . . , s (2.68) 
where the a ij , b oi and c i coefficients define a specific RK integrator. These are normally represented using the Butcher's matrix form [START_REF] Quarteroni | Numerical mathematics. Texts in applied mathematics[END_REF]:

c 1 a 11 a 12 • • • a 1s c 2 a 21 a 22 • • • a 2s . . . . . . . . . . . . . . . c s a s1 a s2 • • • a ss b o1 b o2 • • • b os b (o-1)1 b (o-1)2 • • • b (o-1)s . . . . . . . . . . . . b 11 b 12 • • • b 1s (2.69) 
where the index o denotes the o th -order solution. For the development of a particle tracking code, two algorithm characteristics are desired: the first one is the explicit formulation which means that the y k+1 solution depends only on the y k one while the second is the possibility to change the RK scheme convergence order only modifying the b oi coefficients. The importance of these properties lies respectively in the lower code computational time and better error control efficiency. Indeed, the explicit scheme solution is obtained directly by evaluating the Eq.(2.66) right hand side which, for this kind of problems, is much faster than the matrix inversion typical of the implicit method. However, it has to be pointed out that, when an explicit algorithm is used, the time step has to be small enough for accurately resolving the fastest particle dynamics. The second, or improved error control efficiency, comes from the fact that the (o) th and the (o -1) th -order results, required for the estimation of the numerical error after one integration step, are obtained only by reevaluating the last algorithm stage changing the set of b oi , which is much faster than using two completely different schemes at the same time [START_REF] Quarteroni | Numerical mathematics. Texts in applied mathematics[END_REF]. For these reasons, we identified two possible candidates: Dormand-Price RK5(4)7M [START_REF] Dormand | A family of embedded Runge-Kutta formulae[END_REF] (Eq.(2.70)) and Cash-Karp RK5(4) (Eq.(2.71) [START_REF] Cash | A variable Order Runge-Kutta method for initial value problems with rapidly varying right hand sides[END_REF]. The first one is an improvement of the standard Fehlberg RK5(4) [START_REF] Quarteroni | Numerical mathematics. Texts in applied mathematics[END_REF], i.e., it has larger stability interval, higher accuracy (thus less computational cost) and allows the truncation estimation of the quadrature problem ( dy dt = f(x)) but its seven stage representation causes a higher memory consumption [START_REF] Cash | A variable Order Runge-Kutta method for initial value problems with rapidly varying right hand sides[END_REF]. The second also represents an improvement in terms of accuracy and computational efficiency with respect to the Fehlberg method but maintains a six stage description. In addition, it has a complete set of embedded low order integrators which permits the application of a RK-order controller for the resolution of rough and discontinuous equations. The GC integrators are completed by a truncation error controller. The basic idea behind it is to reduce the RK time step so that, after one integrator time iteration, the numerical error is below a given tolerance. For accomplishing this, within each k th -time integration step the controller performs a series of ∆t reductions until the condition |y k+1,p -ŷk+1,p | < tol is respected. In our case, y k+1,p and y k,p are the k thtime p th -controller iteration solutions obtained respectively with the fifth and fourth order formulae and tol is the tolerance setting. The ∆t update rule used in this work is given by [START_REF] Shampine | Local error control in codes for ordinary differential equations[END_REF][87]:

∆t k,p+1 = S∆t k,p | tol y k+1,p -ŷ k+1,p | 0.25 , if tol < |y k+1,p -ŷk+1,p | (2.72)
having denoted with ∆t k,p the k th -time p th -controller iteration time step and with S the safety coefficient, generally set at 0.9 [START_REF] Press | Numerical recipes in Fortran 77 the art of scientific computing[END_REF]. In the JOREK fast particle tracker, we selected the invariants of motion as control variables which are the total GC energy (E tot ) and canonical toroidal momentum (P φ ) for stationary axisymmetric fields while only the first one is used for non-axisymmetric configurations. It has to be remarked that the E tot and P φ time derivative control may further reduce the total accumulated error but at higher computational costs [START_REF] Press | Numerical recipes in Fortran 77 the art of scientific computing[END_REF]. An interesting feature is represented by the possibility to increase the time step when tol ≥ |y k+1,p -ŷk+1,p | [START_REF] Press | Numerical recipes in Fortran 77 the art of scientific computing[END_REF]. Unfortunately, it is not clear to the author how this practice would afflict the particle solution when invariants of motion do not exist, e.g., in time-varying 3D MHD fields. Thus, we preferred to implement only the controller given in Eq.(2.72), leaving the code speed-up studies for future work. ing in a 1T tokamak-like circular cross-section magnetic field for a total simulation time of T ∼ 4µs. Three simulations are studied, the first one is a high accuracy calculation which is used as reference solution (∆t = 453 • T gyro ) while the second is a low accuracy one (∆t = 45230 • T gyro ). The third result is obtained using the same input parameter as the second but, in this case, we activated the kinetic (total) energy time step controller with a tolerance of ∆E kin E 0 = tol = 10 -16 . Figure 2.3 upper plot shows the particle poloidal cross-sections for the three different cases. Clearly, the solution obtained with ∆t = 45230 • T gyro (in magenta) is afflicted by E kin drift which corrupts the particle orbit. Indeed, its reflection points move towards the midplane, shrinking the classical 'banana' shape. In contrast, when the time step control is activated the orbit is not distinguishable from the reference one, representing a first proof of the controller ability to partially compensate the scheme numerical energy dissipation. This is also confirmed by the middle plot of Figure 2.3 which reports the energy variation with respect to its initial value in terms of ∆E kin E 0

(where E 0 is the electron rest energy). The low accuracy solution sees a ∆E kin E 0 ∼ 2 • 10 -5 decrease, which corresponds to ∼ 0.06% of the initial kinetic energy. On the other hand, the other two cases have drifts small enough (respectively O( ∆E kin E 0 ) = 10 -13 or O( ∆E kin E kin (t=0) ) = 10 -9 % and O( ∆E kin E 0 ) = 10 -15 or O( ∆E kin E kin (t=0) ) = 10 -12 % for the time step control and the ∆t = 453 • T gyro results) to be indistinguishable at first sight. We finally compare the Dormand-Price Runge-Kutta 5(4) (DPRK5(4)) and CKRK5(4) kinetic energy error and CPU time respectively in the upper and lower plots of Figure 2.4. It has to be pointed out that the computational time is indicative because its values are obtained only from one run. A general remark on the upper plot of Figure 2.4 is that both algorithms recover the fifth order error convergence. Comparing the two methods, when the time step control is not used the CKRK5(4) is more accurate than the DPRK5(4) especially at large time steps (small N step ). Contrarily, when the time step controller is activated this picture is reversed with the DPRK5(4) one order of magnitude more precise that the CKRK5(4). Turning our attention to the CPU time consumption the DPRK5(4) is a factor of two to five faster than the CKRK5(4).

However, the real speed-up coefficient might be different due to non-constant machine occupation.

In conclusion, we have not found striking differences between the DPRK5(4) of the CKRK5(4) performances in terms of CPU time and accuracy. Taking into account that the time step controller is used only as failsafe in real JOREK applications, the lower memory consumption and the possibility to implement an order control method, we adopted the Cash-Karp Runge-Kutta 5(4) as preferred scheme for the GC equation integration.

Numerical scheme: MHD fields interpolation

In Sections 2.3 and 2.5, we assumed that the background plasma fields are known at every time and space location. This hypothesis is not always applicable. Indeed, fields derived from numerical simulations are described using sets of discrete points in space and time. It is evident that the particle pusher field continuity requirement cannot be satisfied by such a discrete fields description, thus, methods capable of reconstructing a C n -continuous background in space and time have to be employed: these are known under the name of numerical interpolation schemes. The basic idea behind the numerical interpolation is to find a function (Φ(x)), called interpolant, defined everywhere within a domain [a, b] such that for a set of m+1 discrete nodes {x i } ∈ [a, b] having values {y i } for i=0,...,m, Φ(x i ) = y i and we say that Φ(x i ) interpolates {y i } at the node {x i } [START_REF] Quarteroni | Numerical mathematics. Texts in applied mathematics[END_REF].

We firstly consider the spatial interpolation problem. JOREK is a hybrid finite element (FEM)-spectral decomposition computational code where the FEM discretises the spatial differential operator in the poloidal plane via the Galerkin method [START_REF] Donea | Finite element methods for flow problems[END_REF] and the spectral part, acting on the toroidal coordinate, uses the real Fourier series [START_REF] Huysmans | MHD stability in X-point geometry: simulation of elms[END_REF] [START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF]. Noting ψ an arbitrary JOREK variable, its representation on the Fourier harmonic basis is [START_REF] Boyd | Chebyshev and Fourier Spectral Methods[END_REF]:

ψ(t, R, Z, φ) = N harm k=0 [Ψ k (t, R, Z) cos(kφ) + Ψk (t, R, Z) sin(kφ)] (2.73)
where {t, R, Z, φ} are respectively the time, radial, vertical and toroidal coordinates, Ψ k (res. Ψk ) is the cosines (res. sines) k th -Fourier coefficient and N harm is the total number of harmonics.

The poloidal field description derives directly from the JOREK FEM scheme. In general, a FEM discretisation is obtained following three main steps [START_REF] Donea | Finite element methods for flow problems[END_REF]:

1 Partitioning of the global physical domain in a set of contiguous sub-domains called mesh element. The mesh element ensemble is called the mesh grid.

2 For each mesh elements, definition of a finite set of polynomials locally interpolating the problem variables.

3 Insertion of the variable finite polynomial description into the problem equations and their rewriting in weak form.

Due to their implications on the present work, only steps 1 and 2 are detailed hereafter, referring the interested reader to [START_REF] Donea | Finite element methods for flow problems[END_REF] for a deeper insight into weak problem formulations (step 3). Evidently, in tokamak physics the physical domain is the reactor space volume containing the plasma. In JOREK, this is obtained calculating the initial equilibrium configuration (solution of the Grad-Shafranov equations)

for the chosen plasma discharge and tokamak first wall data. After the definition of the plasma equilibrium, the JOREK mesh grid, which is composed of quadrangular elements, is obtained connecting two-by-two the nodes placed on the same and on neighbouring equilibrium magnetic surfaces (the quadrangular elements at the magnetic axis degenerate into triangular ones). This procedure guarantees the alignment between mesh elements and magnetic flux surfaces increasing the code performances (except at the magnetic axis). The quadrangular mesh geometry allows the definition of a particular polynomial basis called Bézier surface [START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF]. The Bézier surface is a 2-D spline polynomial obtained by the tensor product of two cubic Bernstein interpolants. Defining {r, s} ∈ [0, 1] × [0, 1] the coordinate system local to a mesh element, the Bézier surface representation of the generic function f = f (r, s) is:

f (r, s) = 3 i,j=0 F i,j B 3 i (r) B 3 j (s) (2.74) B 3 n (p) = 3! n! (3 -n)! p n (1 -p) 3-n (2.75)
where F i,j is the {i, j} th -interpolation coefficient and B 3 n is the n th cubic Bernstein polynomial. To our purposes, the most important feature of this basis is its C 1 -continuity which comes from coefficient constraints typical of the Bézier representation [START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF]. Another interesting feature is the possibility to use an isoparametric representation of the mesh grid which means that the m th -element shape in physical global coordinates is represented by the same Bézier surface constituting its basis function. Thus, the m th -element edges are described by cubic curves which better interpolate the equilibrium magnetic surfaces.

For obtaining the discrete JOREK plasma field description, we project the Ψ k (res. Ψk ) Fourier coefficients of Eq.2.73 on the m th -element Bézier surface and we use the isoparametric mesh grid representation ({R, Z}| m = {R m (r, s), Z m (r, s)}) for passing from global Ψ k (t, R m , Z m ) to local Ψ k,m,i,j (r, s) variables:

Ψ k (t, r, s) = N elem m=1 3 i,j=0 Ψk,m,i,j (t)B 3 i (r) B 3 j (s) (2.76) Ψk (t, r, s) = N elem m=1 3 i,j=0
Ψk,m,i,j (t)

B 3 i (r) B 3 j (s) (2.77)
where N elem is the total number of mesh elements and the set { Ψk,m,i,j } { Ψk,m,i,j } is the JOREK discrete spatial description of the ψ physical variable. One of the main problems which has to be addressed for simulating the kinetic evolution of an electron population in a time evolving MHD field is the difference between particle and MHD time scales. Indeed, we remind that the electron (res. GC) dynamics has to be integrated using a time step of ∆t ∼ 10 -13 s (res. ∆t ∼ 10 -11 s) while the smallest JOREK ∆t, used in the most extreme disruption simulation, is of ∼ 10 -8 s thus, the electron-kinetic time scale is 5 (res. 3) order of magnitudes smaller than the MHD one. In addition, JOREK solutions are normally recorded at each T out = n out ∆t JOREK , increasing the time scale difference by an n out factor (normally, during a disruption simulation TQ, n out = 10). It becomes clear that a 0 th -order MHD solution time evolution would be too inaccurate for any significant physical application. In addition, this representation would raise questions on how to consistently estimate the time derivative of critical quantities. For these reasons, an MHD solution time interpolation routine is introduced within the JOREK particle module. This routine allows to interpolate two JOREK variables given at time t 0 and t 1 using or a linear or cubic Hermite-Birkhoff interpolant f which, for a generic function f = f (t) in the time interval t 0 ≤ t ≤ t 1 , is defined as: The JOREK discrete variable interpolation is obtained by substituting f (t) with Ψk,m,i,j (t) (res. Ψk,m,i,j (t)) and f (t e ) with Ψk,m,i,j (t e ) (res. Ψk,m,i,j (t e )). In the following, the Hermite-Birkhoff polynomials are always preferred to the linear ones due to their global C 1 continuity which is guaranteed without loss of locality (interpolations in the time interval [t 0 , t 1 ]) depend only on the JOREK variables at the interval boundaries).

f (t) = 1 e=0 f (t e )
The combined use of Bézier surfaces, Fourier polynomials and Hermite-Birkhoff interpolants permits to have a global C 1 continuity description of both electric and vector potentials in space and time, which translates to a C 0 continuity of the electric and magnetic fields. Despite the advantages of the Hermite-Birkhoff interpolation, a delicate point has to be addressed. Eq.2.78 shows that this scheme requires the evaluation of the function time derivatives at each time interval node: [ df dt (t 0 ), df dt (t 1 )]. At the moment, the JOREK outputs do not contain the MHD field time derivatives but only the solution at the time t and t-∆t JOREK . In addition, among the JOREK code time integration schemes, only the 2 nd order backward differential (Gears) formula is fully coherent with the Hermite-Birkhoff interpolation (2 nd order df dt (t) estimate at both [t 0 , t 1 ] nodes) while the others either calculate the df dt (t) in a non-nodal point (Cranck-Nicolson) or have a low derivative estimation order (implicit Euler). In order to verify the Hermite-Birkhoff polynomials sensitivity with respect to the choice of the time derivative estimate, we applied this scheme to the problem involving the reconstruction of a sinusoidal function (f (x) = sin(πx), x ∈ [-1, 1]) using three different numerical derivatives: linear ( df dx | lin ), linear with shift ( df dx | shif t ) and quadratic ( df dx | quad ) (derived as shown in [START_REF] Quarteroni | Numerical mathematics. Texts in applied mathematics[END_REF]):

df dx lin (x i ) = f (x i ) -f (x i-1 ) x i -x i-1 (2.82) df dx shif t (x i ) = f (x i ) -f (x shif t,i ) x i -x shif t,i (2.83) df dx quad (x i ) = x i -x i-1 x i+1 -x i f (x i+1 ) -f (x i ) x i+1 -x i-1 + x i+1 -x i x i -x i-1 f (x i ) -f (x i-1 ) x i+1 -x i-1 (2.84)
where x * denotes the * th -node of the [-1, 1] interval and the shifted point x shif t,i is defined as Figure 2.5 reports the sinusoid interpolation test using an 11 point spatial discretisation: the upper, middle and bottom plots are respectively related to the interpolation, details of the sinusoid upper extremum and the interpolant derivative. The exact solution is denoted using blue lines while the ochre, red and magenta ones are related to the linear (Eq.2.82), linear with shift (Eq.2.83) and quadratic (Eq.2.84)

x shif t,i = x i -0.1 • (x i -x i-1 ).
estimates. The upper plot of Figure 2.5 shows that the Hermite-Birkhoff basis is globally well behaved in every case although a remarkable loss of accuracy is found at the sinusoid extrema when the linear derivative estimate is used, loss which is particularly evident when zooming on the function maximum (middle plot of Figure 2.5).

A different picture appears when the interpolant derivative is considered (Figure 2.5 bottom plot). In this case, the linear estimation (ochre line) poorly reproduce the exact solution ( df dx = π cos(πx)) at every point. Thus, this solution has to be discarded. The quadratic scheme (magenta line) has far better performances than the linear one. Indeed, it is able to properly describe the exact derivative almost everywhere. The only significant mismatches are found at the extrema where the interpolant is not able to recover the solution maxima and minima. Finally, the linear scheme with shifting (red line) appears to have the best interpolation accuracy of both solution and derivative. In addition, this scheme is directly compatible with the JOREK outputs if the condition n out ≥ 10 is verified (for n out ≤ 10 the author recommends to use the quadratic derivative estimation). For these reasons, the Hermite-Birkhoff polynomials with shifted-linear finite difference scheme is chosen for empowering the JOREK fast particle tracker time interpolation routine. We conclude this chapter with a final remark on the monotonic constrained splines. Due to the intense and fast MHD activity during a disruption TQ phase, we might expect to face steep time derivatives in both scalar and vector potentials. If such events happen, the Hermite-Birkhoff continuity will cause an interpolant overshooting with a significant loss of accuracy. This phenomenon can be easily visualised when this spline function is used for interpolating a Heaviside (step) function. Indeed, if a control point is located at the step discontinuity, the interpolating polynomial shows a non-monotonic overshoot [START_REF] Quarteroni | Numerical mathematics. Texts in applied mathematics[END_REF]. This undesired feature can be avoided by obliging the polynomial to be monotonic via a modification of the numerical derivative estimation [START_REF] Fritsh | A method for constructing local monotone piecewise cubic interpolants[END_REF]. In this work, we applied the constraint given in Eq.3 of [START_REF] Fritsh | A method for constructing local monotone piecewise cubic interpolants[END_REF] to the shifted-linear derivative:

df dx shif t,M C =          0 if S 1 S 2 ≤ 0 S 1 |S 1 | 3|S 1 ||S 2 | |S 1 |+2|S 2 | if |S 2 | ≤ |S 1 | df dx shif t otherwise (2.85)
where S 1 and S 2 are respectively defined as S 1 = f (x i+1 )-f (x i )

x i+1 -x i and S 2 = f (x i )-f (x i-1 )

x i -x i-1 [START_REF] Fritsh | A method for constructing local monotone piecewise cubic interpolants[END_REF]. study case. Due to the fact that near its extrema a function is not monotonic, this constraint responds by flattening the interpolant and its derivatives with consequent loss of accuracy in the MHD fluctuation reconstruction. However, if the particle simulations would be afflicted by overshooting phenomena in future applications, the implementation of a monotonically constrained scheme will be strongly recommended.

Numerical scheme: particle tracking procedure in JOREK mesh

In Section 2.6 we stated that the evaluation of a JOREK MHD field at an electron position requires the knowledge of the element containing this particle and its location expressed in the element local coordinates ({r, s} ∈ [0, 1]×[0, 1]). In the same Section, we also reported that the JOREK code uses an isoparametric description of the mesh grid which means that the element shape in physical coordinates is described using the same Bézier surface basis used for the field representation:

{R, Z} k (r, s) = 3 i,j=0 { R, Z} k,i,j B 3 i (r) B 3 j (s) (2.86) B 3 n (p) = 3! n! (3 -n)! p n (1 -p) 3-n (2.87)
where { R, Z} k,i,j are the k th -element nodal coefficients describing its geometry in physical space. While it is easy to obtain an {R, Z} point knowing its local attributes {k, r, s}, the inverse problem (finding the associated {k, r, s} description from the {R, Z} one) resolution is far more complicated due to the following two reasons:

1 It is necessary to search for the correct k th -element within a list composed of (typically) hundreds to thousands of them.

2 At the best author's knowledge, an analytical form expressing the relation {r, s} = {r(R, Z), s(R, Z)} does not exist. Thus, the problem solution has to be sought numerically with an increase of computational cost.

After this brief introduction, we remind the reader that the particle pushers described in Section 2.3 and 2.5 resolve respectively the FO and GC equations of motion in global coordinates. Thus, a numerical method capable of efficiently computing the local particle position has to be used before the field interpolation. This algorithm, called particle tracking method, is the subject of this Section.

The first routine composing the JOREK particle tracking procedure consists of finding the neighbourhood of each mesh element, where with neighbourhood we identify the ensemble containing the four oriented elements sharing an edge with the k th -one. This is performed by checking the equality between couples of nodes defining the four edges of the k th and l th elements (which means that taking the two nodes identifying the k th -element i th -edge, if they share the same identifiers or physical coordinates as the l th -element j th -edge node couple, then the k th and l th elements are labelled neighbours through the i th and j th edges). In addition, the knowledge of the k th and l th -element shared edge indices allows defining the transformation of the k th -element local reference system into the l th one (Table 2.3):

Reference element edge Neighbour edge Transformation This routine permits also to identify the elements requiring special treatment, such as the magnetic axis ones, and the sides constituting the computational domain boundary.

1 3 [r, s]| l = [0, 1] + [r, s]| k 2 4 [r, s]| l = [-1, 0] + [r, s]| k 3 1 [r, s]| l = [0, -1] + [r, s]| k 4 2 [r, s]| l = [1, 0] + [r, s]| k
The second constituent of tracking procedure is the numerical solver which has the function of finding the mesh element containing a particle and computing its position in local coordinates. During the JOREK fast particle tracker development, two different tracking schemes have been tried: the first one is based on Newton iterations with time step control, the second on the Newton scheme with backtracking, already been used in the JOREK non-relativistic particles module (a JOREK nonrelativistic particle tracker developed in parallel to the one presented in this thesis). The Newton method with time step control consists of a standard Newton method [START_REF] Quarteroni | Numerical mathematics. Texts in applied mathematics[END_REF], applied for solving the {r, s} = {r(R, Z), s(R, Z)} problem, and of a time step control scheme employed for repeating the time integration step when the particle moves outside the element neighbourhood. The idea behind it is relatively simple: after an integration step, Newton iterations are used for computing the particle {r, s} coordinates using the reference system of the mesh element where the particle was at the previous time iteration, having defined the o th -Newton iteration as: 2.3 for computing an initial position guess in the neighbour local coordinate system. Then, the particle is sought in this new element via a second series of Newton iterations. If the converged solution is still not contained in [0, 1] × [0, 1], which means that the particle escaped the neighbourhood, then the time step integration is repeated with half of the previous ∆t. It has to be remarked that this method cannot be used at the magnetic axis due to the presence of a degenerated mesh. In this region, the particle is searched via Newton iterations within each element. Despite the tracking scheme simplicity and robustness to numerical and human errors, it was found to be slower than the Newton scheme with backtracking. Thus we discarded its application.

[∆r o , ∆s o ] T = [J(r o-1 , s o-1 )] -1 [∆R o-1 , ∆Z o-1 ] T (2.
Due to its better performances, we adopted the Newton iterations with backtracing method, originally developed for the JOREK non-relativistic particles module, as preferred tracking routine for the JOREK fast particle tracker. As before, the first routine action is to seek a particle in its initial mesh element via the Newton scheme expressed in Eq.2.88, but, in order to increase the convergence rate, a backtracking loop is performed between each Newton iteration refining the local position estimate as follows:

{r, s} (o,n) = {r, s} (o-1) + 0.5 n-1 {∆r, ∆s} o (2.89)
where with n we denote the backtracking loop index. The backtracking procedure stops when its error, defined as

err o,n = (R -R o,n ) 2 + (Z -Z o,n ) 2 ,
is smaller than the (o -1) th -Newton iteration one, or when a maximum number of backtracking iterations is reached. If the converged {r, s} / ∈ [0, 1] × [0, 1], a logic verifies which edge has been crossed by the particle trajectory and selects a new candidate from the neighbourhood in which the Newton method with backtracking is then repeated (the first guess is obtained using Table 2.3). If the searching procedure is not converged within a fixed number of elements, the particle is sought in each mesh element with the standard Newton method. A possible tracking routine evolution might be represented by the macro-patch method. This method consists of regrouping the mesh elements having similar geometry into a small number of macro-elements (patches). For example the mesh represented in the left plot of Figure 2.8 can be assembled in 7 macro-patches (right plot): magnetic axis (not visible), plasma closed flux surface region (in blue), open flux region surface (in red), X-point (not visible), left leg (in magenta), private flux region (in yellow) and right leg (in green). Within a macro-patch, each element local reference system might be clumped together to generate a common set of coordinates. If this is possible, a particle orbit can be integrated directly in patch coordinates limiting the tracking procedure usage to moments when a particle crosses the macro-element edges, boosting the code computational speed.

Numerical scheme: particle distribution initialisation

The initialisation of a test particle population is typically performed via a Monte Carlo method where the sequence of random numbers is obtained using the PCG random number generator [START_REF] O'neill | PCG: A family of simple fast space-efficient statistically good algorithms for random number generation[END_REF]. In physical space, particles are selected from uniform distributions for the Z and φ coordinates while for the radial one the R =

R 2 min + N s (R 2 max -R 2 min ) (where N s ∈ [0, 1
] is a random number sampled from a uniform distribution) correction has to be applied in order to guarantee a uniform density profile. The initialisation routine also contains standard acceptance-rejection algorithms for generating particles in narrow mesh regions, for example near a specific magnetic surface.

In momentum space, the generation of GC and FO particles is different: the first ones are obtained by a uniform sampling in both kinetic energy and pitch angle (cos(θ) = p•b p with b = B B ) which are rewritten in GC coordinates using the relations:

p GC = mc cos(θ) E kin E 0 + 1 2 -1 (2.90) µ GC = E 0 sin 2 (θ) 2B(x GC , t 0 ) E kin E 0 + 1 2 -1 (2.91) (2.92)
where x GC , m, E 0 and E kin are respectively the GC position, the particle mass and the rest and kinetic energies, t 0 is the initial time, c is the speed of light and 

B(x GC , t 0 ) = B(x GC , t 0 )
p = [cos(θ)b -sin(θ) sin(χ)e ∇ψ + sin(θ) cos(χ)e ⊥ ] mc E kin E 0 + 1 2 -1 (2.93)
The JOREK fast particle tracker is also capable of initialising a GC particle from a FO one by matching their total energy and toroidal canonical momentum [START_REF] Pfefferl | Doctoral dissertation: Energetic ion dynamics and confinement in 3D saturated MHD configurations[END_REF]:

x GC = x - B qB 2 × p (2.94) p GC = 1 p φ b φ Rp φ + q ψ -ψ GC (2.95) µ GC = E 0 2B GC    γ + q E 0 Φ -Φ GC 2 -   1 + p GC mc 2      (2.96)
where q is the particle charge, ( * ) GC and ( * ) φ denote respectively the GC quantities and vector components along the toroidal direction, and Φ is the electric potential. It has to be remarked that these relations are not fully coherent with the GC transform.

Indeed, the FO and GC magnetic moments cannot be matched [START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF], generating a (generally) small difference between their orbits. We leave as future work the derivation of a fully consistent GC transform for each particle variable which requires, at least, a truncation to the second order of the GC expansion introduced in Section 2.4 [START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF].

Code verification

In the last section of this Chapter we present tests conducted on the JOREK fast particle tracker for both GC and FO models. The plasma fields are obtained from a JOREK disruption simulation of the JET pulse 86887 which was an ohmic pulse with B t = 2T, I p = 2MA and q 95 = 2.9 (where B t is the axis magnetic field, I p is the plasma current and q 95 is the safety factor at 95% of the minor radius) where the disruption was triggered using a D 2 massive gas injection (MGI) [START_REF] Fil | Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in jet[END_REF] In the right plots of Figure 2.9 and 2.10, zooms on a small portion of the orbit are given for the two cases which show a good consistency between FO and GC trajectories.

Conservation characteristics are assessed for both the above cases, where electrons are located in the core region, as well as for tests near the plasma edge which are expected to be harsher than the first ones. Indeed, the JOREK mesh at the edge is coarser than in the core, degrading the field description quality and thus, increasing the accumulation of numerical error. The E tot is well conserved for every time step (Figure 2.12) with drifts bounded within 10 -9 % for the core particles and 5 • 10 -9 % for the edge ones. In addition, these errors are not dependent form the time step as long as ∆t < 0.14 • T gyro . Contrarily, the right plot of Figure 2.11 shows that for ∆t = 0.14 • T gyro the P φ conservation is degraded with an error constantly increasing up to 1.5 • 10 -4 % (core passing particle). This is caused by the electron orbit poor resolution for this time step. Indeed, the algorithm conservation characteristics are restored when smaller ∆t are used. Considering the simulations obtained using ∆t = 0.014 • T gyro , P φ is conserved within 3 • 10 -7 % in the core and 2 • 10 -5 % at the edge for passing particles and within 7 • 10 -6 % in the core and 8 • 10 -4 % at the edge for the trapped ones (Figure 2.12). As introduced above, the difference between core and edge conservation errors may be related to the coarser grid used in this second region. Finally, in Figure 2.12 it can be remarked that the P φ conservation improves roughly quadratically in the core and slightly super-linearly at the edge when the time step is reduced of one order of magnitude. E tot (left plot) and P φ (right plot) error profiles for a core-passing 10MeV GC orbit integrated using the CKRK5(4) scheme as a function of the time step are given in Figure 2.13. This figure clearly shows the non conservative nature of this method. Indeed, both E tot and P φ present respectively unbounded increasing and decreasing errors. In addition, we note that their profiles do not change significantly with ∆t. This is probably due to the accumulation of error coming from the field numerical description. More precisely, the field first order derivatives (second order for the JOREK variables) are discontinuous between neighbouring elements. Thus, when a GC changes mesh element it sees a jump in Eqs.(2.60)(2.61) gradient and curl terms introducing a numerical error weakly dependent on ∆t. For a wider view, the GC conservation performances in equilibrium axisymmetric fields as a function of the time step are furnished in Figure 2.14 for all test cases (core/edge, passing/trapped). As expected, the GC final errors are generally higher than the FO simulations obtained using ∆t < 0.14 • T gyro (Figure 2.12). This worsen of the GC conservation properties is imputable to the lack of symplecticness and the higher order derivatives appearing in Eqs.(2.60)(2.61). The only exception is the P φ conservation for the core trapped electron test for which the two schemes are comparable. Moreover, in a majority of cases, convergence is reached at ∆t = 14 • T gyro .

It has to be noted that the GC numerical errors increase towards the edge region, as for the FO ones. The last verification of the JOREK fast particle tracker in axisymmetric equilibrium fields is obtained by benchmarking its solutions against the ones calculated by the ASCOT code [51][3] developed in the Finnish university AALTO (the authors wish to thank prof. Taina Kurki-Suonio and Konsta Särkimäki for the fruitful collaboration). For doing this, we projected the equilibrium JOREK solution on the ASCOT 3D-cartesian grid. Then, the JOREK and ASCOT teams calculated relativistic GC orbits in the common equilibrium background using the same initial conditions (10MeV passing and 1MeV trapped electrons). The ASCOT and JOREK fast particle tracker solutions are reported in Figure 2.15 where the left plot shows a 10MeV passing GC while in the right and bottom plots a 1MeV trapped case is given.

In both tests JOREK and ASCOT calculations are in perfect agreement, validating our relativistic particle tracker.

We turn out attention to the GC validity conditions. As predicted in Section 2.4, 10MeV electrons in equilibrium fields satisfy the GC validity conditions. This is in line width the µ dynamics which is characterised by high frequency fluctuations around an approximately constant mean value as required for being considered as an adiabatic invariant.

After having assessed the relativistic particle module in axisymmetric stationary fields, tests in JOREK-simulated non-axisymmetric plasma configurations are described. In this case, the E tot conservation characteristics are studied for 10MeV passing and 1MeV trapped electrons initialised in proximity of the q=2 surface. In Figure 2.16 the GC (in green) and FO (in red) orbits for the 10MeV passing particle are given. As it can be remarked in Figure 2.16, the passing electron orbits reproduce the m = 2, n = 1 magnetic island within which the particles were initialised. However, drifts acting on their dynamics shifts the electron island with respect to the magnetic one. In addition the FO (in red) and GC (in green) solutions are in agreement, as found in the equilibrium tests. As for the equilibrium case, the FO-VPA scheme shows a better conservation than the GC one but a pronounced performance degradation is observed for ∆t = 0.14 • T gyro (left and right upper plots of Figure 2.17). On the other hand, Figure 2.17 lower plot reports that the GC E tot error profile has similar features as the Figure 2.13 left one, especially, the E tot error convergence is already obtained for ∆t = 14 • T gyro as for the equilibrium case. However, a general CKRK5(4) conservation properties degradation is observed which is probably caused by the reduction of the plasma field smoothness induced by the presence of a m = 2, n = 1 magnetic island. Anyway, final errors (given in Figure 2.18) remain of the order of 10 -2 % which seems to be acceptable for the physics investigated in the following chapters. Concerning the validity of the GC hypothesis, their critical quantities are given in Table 2.5 for a 10MeV passing FO simulation with ∆t = 0.01.4 • T gyro . From the data presented in Table 2.5 we note that the loss of axisymmetry does not violate the GC validity conditions for the considered initial energy.

ρ L ∇B l L ∇B < E E ⊥ > max(µ-<µ>)
µ(t=0) % Passing particle 5.2e-03 7.0e-02 4.4e-03 1.1e+01 Trapped particle 2.2e-03 1.7e-03 4.4e-03 1.5e-01 Table 2.5: Estimation of critical quantities involved in GC validity conditions (see Section 2.4) and magnetic moment variation for stationary non-axisymmetric test cases

Finally, tests on the E tot conservation in stationary fully chaotic plasma fields are conducted for the GC and FO models using a time step of ∆t = 14 • T gyro and ∆t = 0.014 • 10 -2 • T gyro respectively. For this analysis, we studied the dynamics of two electrons initialised within the core region (R = 3.25m, Z = 0.22m, φ = 45 • ) for kinetic energies and pitch angles respectively of E kin = 1keV θ = 170 • and E kin = 1MeV θ = 100 • . The total simulation time is unchanged (T = 1ms). It has to be remarked that the usage of E kin = 1keV instead of E kin = 10MeV is necessary in order to avoid a prompt electron deconfinement. In this test, the conservation error is of 2.9 • 10 -5 % (passing electron) and 1.5 • 10 -2 % (trapped case) for the GC model and 1.8 • 10 -7 % (passing) 2.1 • 10 -4 % (trapped) for the FO one, which are again acceptable values for the purposes of this work. It has to be mentioned that a small increment in total energy is observed when a particle crosses the magnetic axis, which is a singular point for the JOREK mesh in this simulation but, this increment is small enough not to significantly affect the global E tot conservation.

Summary

As summary of this chapter, we recall the main JOREK fast particle tracker features:

1 Possibility to compute both full (FO) and guiding center (GC) orbits. These last are obtained using the Lie perturbation theory in order to preserve the phase space conservation property of the particle model.

2 Full orbits are numerically obtained via the second order Volume Preserving Algorithm for relativistic particles which bounds the invariants of motion conservation errors.

3 GC orbits, on the other hand, are calculated using the standard Cash-Karp Runge-Kutta 5(4) which is a six-stages Runge-Kutta scheme with multiple embedded formulae spanning all the orders from one to five. The mitigation of the lack of symplecticness is obtained by controlling the time step in function of the invariants of motion errors which is estimated from comparing the fifth and fourth order formulae. [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF] The MHD fields are interpolated using the JOREK Bézier basis functions in the poloidal plane and the Fourier polynomials along the toroidal direction. A time interpolation using the Hermite-Birkhoff polynomials is introduced in order to preserve a complete C 1 -continuity description of the JOREK potential fields. This module was verified computing the orbits of passing and trapped relativistic FO and GC electrons in stationary equilibrium and non-axisymmetric JOREK MHD solutions. In each test, the VPA algorithm showed good conservation properties for ∆t ≤ 0.014 • T gyro . Conversely, the invariants of motion present drfits when the CKRK5( 4) is employed with the maximum conservation errors increasing with the plasma field complexity. However, the final error is small enough to be acceptable for our applications. In addition, it has to be remarked that the scheme accuracy decreases from the core towards the edge, probably due to the coarser grid used in this region. The FO and GC orbits were successfully benchmarked one against the other for all tests. Moreover, GC simulations in JOREK equilibrium fields were found to be in agreement with the ones obtained using the ASCOT code.

In conclusion, a new module for computing the relativistic particle orbits in JOREK calculated MHD fields is developed and successfully tested. This tool is used in Chapters 3 and 4 for studying the evolution of electron populations in a JOREK simulated disruption.

Chapter 3

Test electron transport during a JET MGI-triggered disruption

One critical question regarding the generation of RE during disruptions concerns the deconfinement of electrons, especially energetic electrons, due to the MHD activity and, in particular, due to magnetic stochasticity during the TQ and early CQ phases.

The answer to this question is of fundamental importance for establishing the role played by the hot tail mechanism in the primary RE seed generation [START_REF] Smith | Runaway electron generation in a cooling plasma[END_REF][101], which is expected to be important in ITER according to, e. g., [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF].

At present, little is known about RE confinement during the early phases of a tokamak disruption even though the fast electron dynamics in stochastic magnetic field was subject of extensive studies from the theoretical [START_REF] Abdullaev | Magnetic stochasticity in magnetically confined fusion plasmas, chaos of field lines and charged particle dynamics[END_REF] [2][8] [10] [START_REF] Boozer | Runaway electrons and magnetic island confinement[END_REF], numerical [START_REF] Papp | Runaway electron drift orbits in magnetostatic perturbed fields[END_REF] [83] [START_REF] Särkimäki | An advection-diffusion model for cross-field runaway electron transport in perturbed magnetic fields[END_REF] and experimental [START_REF] Abdullaev | Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak[END_REF] [84] points of view. Experiments in the middle size tokamak TEXTOR [START_REF] Zeng | Experimental observation of a magnetic-turbulence threshold for runaway-electron generation in the TEXTOR tokamak[END_REF] and Joint-Texas Experimental Tokamak (J-TEXT) [START_REF] Zeng | Runaway electron generation during disruptions in the J-TEXT tokamak[END_REF] showed that a trend between RE plateau current and intensity of the 'magnetic turbulence' taking place during the early CQ does exist, especially, the higher the 'magnetic turbulence' intensity the lower the I RE . At the best author's knowledge, the only numerical works on RE confinement in disruptive MHD fields, simulated with the 3D non-linear MHD code NIMROD, have been reported by V. Izzo in [START_REF] Izzo | Runaway electron confinement modelling for rapid shutdown scenarios in DIII-D, Alcator C-Mod and ITER[END_REF] and in [START_REF] Izzo | Analysis of shot-to-shot variability in post-disruption runaway electron currents for diverted DIII-D discharges[END_REF]. These simulations showed an increase of RE confinement time with the reactor major radius (τ RE ∝ R 3 ).

In this Chapter, we furnish our contribution to this field studying the RE confinement in the JOREK disruption simulation of JET pulse 86887 via the fast particle tracker implemented in the same code. In Section 3.2, a description of the JET pulse 86887 JOREK simulation is given. After describing the particle calculation set-up in Section 3.2, Section 3.3 shows the spatial evolution of electron populations induced by the time-varying disruptive MHD fields. In Section 3.4 an analysis of particle time loss profiles is presented while in Section 3.5 a benchmark between FO and GC models is proposed. In Section 3.6 the dependencies among the initial electron energies/locations and the number of 'survivors' are discussed. In Section 3.7 a comparison between particle and magnetic field line local transport during the disruption TQ phase is given. A summary (Section 3.8) concludes the Chapter.

A JOREK simulation of the disruption in JET pulse 86887

The understanding of the electron dynamics in the treated disruption requires the knowledge of its MHD field evolution thus, in this Section, an overview of the JOREK JET pulse 86887 is provided.

Every particle study presented in the following of this Chapter are based on the deuterium MGI-triggered disruption simulation proposed in [START_REF] Nardon | Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK[END_REF]. The only difference with respect to [START_REF] Nardon | Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK[END_REF] is in the F0 = B 0 R 0 term which is increased from 5.7459 to 6.9 (R 0 and B 0 are the magnetic field major radius and its toroidal magnetic field). The magnetic field strengthening has the effect to avoid the destabilisation of the internal kink mode observed in [START_REF] Nardon | Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK[END_REF]. In addition, the higher F0 causes the complete magnetic field stochastisation.

In the set of plots composing Table 3.1 the evolution of the plasma temperature (first column), electron density (second column), toroidal current density (third column) and magnetic field line Poincaré plots (fourth column) is reported at four simulation times: t = 0.00ms, t = 3.55ms, t = 4.03ms and t = 6.9ms. The first row represents the plasma initial equilibrium condition (t = 0.00ms). At the initial stage, the plasma has well behaved magnetic surfaces, as shown by the magnetic field Poincaré plot (right plot). This allows the build-up of both current density and temperature profiles which have their maximum in the core region (1.26keV for the temperature and 3.5 MA m 2 for the current density). The electron density is slightly constant in the plasma core with a value of 0.3•10 20 m -3 while it decreases sharply at the edge. From this starting point, the deuterium MGI term is activated. The injection of neutral gas causes a cooling of the plasma edge which also experiences an increase in electron density. This destabilises a m = 2, n = 1 mode as shown by the second row (t = 3.55ms) of Table 3. plot also reveals the presence of a ∼ 1 MA m 2 current withing the magnetic island which, in concert with the increase of resistivity due to te cooling, is able to generate an electron driving electric field. The steepening of the current density profile, described in [START_REF] Nardon | Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK[END_REF], generates modes with higher m,n numbers whose overlapping triggers the development of magnetic chaos. The apex of this process is the disruption TQ reported in the third row of table 3.1 (t = 4.03ms). During this phase all magnetic surfaces are destroyed, i. e., the plasma magnetic field is fully stochastic (fourth column plot). This in contrast with the simulation analysed in [START_REF] Nardon | Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK[END_REF] where a m = 1, n = 1 surface is present all along the disruption. The loss of plasma confinement due to fully chaotic magnetic field produces a drop in plasma temperature (maximum T e ∼ 0.35keV) and a flattening of its profile (the T e variation within the core is of ∼ 35keV), as reported by the first plot of the Table 3.1 third row. It is also interesting to notice that the current density profile is strongly perturbed by very localised and intense (j φ varies from +20 M A m 2 to -15 M A m 2 ) current sheets but it is not completely flattened. After the TQ, plasma relaxes and closed magnetic surfaces reappear starting from the core, as shown by the Poincaré plot of the Table 3.1 fourth row. This phenomenon represents the beginning of the CQ phase (t=6.94ms) which is characterised by the disspation of plasma electromagnetic energy up to the pulse termination. The reformation of closed magnetic surfaces allows the reconstruction of temperature and current density profiles even though the second presents a m = 2, n = 1 mode rotated with respect to the pre-TQ one. The interplay between low temperature (T e ∼ 0.3keV) and high current density (j φ ∼ 3 MA m 2 ) generates a driving electric field which might accelerate electrons up to relativistic energies. This possibility is counteract by the increased core electron density (n e ∼ 0.6 -0.8•10 20 m -3 ) and by the presence of an annulus of high density plasma at the edge n e ∼ 2.0•10 20 m -3 which enhance particle collision drag.

The most important feature for the study of electron confinement is the sequence of magnetic surface destruction -fully developed magnetic chaos -magnetic surface reformation which will be shown to be the key process governing electron losses.

Description of the simulation set-up

Hereafter, we describe the configurations and the sets of parameters used for obtaining the simulations presented in this Chapter. Most of the results given in the following are obtained using the GC model. The FO model is employed only for obtaining the simulations analysed in Section 3.5 and 3.7. The test particle calculations start with randomly initialising 10 3 GC within an annulus centred on a magnetic surface having a radial width of ∆ ψinit = 10 -3 , where ψ is the normalised poloidal magnetic flux coordinate at t = 0 ( ψ = 0 defines the magnetic axis while ψ = 1 locates the last closed magnetic surface). We select ten toroidal surfaces: the first is in proximity of the plasma core ( ψinit = 0.05) while the others are chosen in the interval 0.1 ≤ ψinit ≤ 0.9 with a step of 0.1. In velocity space both electron initial kinetic energy and pitch angle are generated using δ -Dirac distributions. Five kinetic energy levels are taken into account: E kin = [START_REF] Abdullaev | Magnetic stochasticity in magnetically confined fusion plasmas, chaos of field lines and charged particle dynamics[END_REF][START_REF] Boozer | Loss of relativistic electrons when magnetic surfaces are broken[END_REF][START_REF] Smith | Runaway electron generation in a cooling plasma[END_REF] keV and E kin = [START_REF] Abdullaev | Magnetic stochasticity in magnetically confined fusion plasmas, chaos of field lines and charged particle dynamics[END_REF][START_REF] Boozer | Loss of relativistic electrons when magnetic surfaces are broken[END_REF] MeV. The pitch angle is set for having counter-plasma current deeply passing particles (θ = 170 • ). θ is selected in agreement with the experimental range of θ ∈ [5 • , 12 • ], as reported in the current literature [START_REF] Jaspers | A synchrotron radiation diagnostic to observe relativistic runaway electrons in a tokamak plasma[END_REF] [21] [START_REF] Stahl | Synchrotron radiation from a runaway electron distribution in tokamaks[END_REF]. Electrons are followed using a time step of 14T gyro (where T gyro is the non-relativistic cyclotron period) from the pre-TQ phase up to the reformation of closed magnetic surfaces at the CQ beginning, for a total simulation time of t ∼ 3.4ms. Figure 3.1: Kinetic energy time profiles for a ψinit = 0.05, E kin = 1keV electron distribution during the pre-TQ phase: left plot is a simulation where the full electric field is used while in the right plot the ∂ψ ∂t term is set to zero. Green lines are electrons lost during the simulation while red (resp. blue) lines are electrons having final kinetic energy above (resp. below) 1MeV.

The electric field used for the particle tracking deserves a detailed explanation. The main aim of the work presented hereafter is to study the deconfinement mechanisms acting on an electron distribution arriving to the TQ with a specific energy and pitch angle. The evolution of the plasma magnetic configuration implies the presence of an inductive ( ∂ψ ∂t ) contribution to the electric field which, in absence of collisions, necessarily increases the particle kinetic energy during the pre-TQ phase. The sequence shown by Figure 3.2 clearly illustrates that the average slow (1keV) and fast (10MeV) electron dynamics can be decomposed into three main phases. The first (left plot) extends from the simulation starting point up to the first particle loss.

Spatial evolution of electron populations

During this period, electrons have closed drift orbits as long as well behaved magnetic surfaces exist. When magnetic stochasticity starts to develop, the fraction of the electron distribution interacting with regions of magnetic chaos presents a transition from regular to chaotic orbits filling all the accessible plasma volume. The second one is the particle loss phase which also corresponds to the disruption TQ (middle plot). As shown in Section 3.1, this phase is characterised by fully developed magnetic stochasticity which allows the electrons to completely span the radial direction. Due to this, particles are able to interact with regions of open magnetic field causing, unavoidable electron losses to the tokamak divertor and walls. Finally, the plasma relaxation after the TQ, causes the reformation of closed magnetic surfaces first in the core and later at the edge region. This magnetic field regularisation implies the reconfinement of a 'surviving' fraction of the initial electron population in both zones of closed drift orbits and in chaotic regions limited by regular surfaces. The exposed reconfinement mechanism is clearly depicted by the right plot of Figure 3.2 which shows that particles in areas of closed magnetic surfaces or in limited chaotic seas are maintained within the plasma volume (no particles are flushed to the divertor through the open magnetic field line regions). A quantitative proof of losses termination is given in the following Section. The particle losses ending due to reformed close magnetic surfaces also signs the beginning of the third phase which continues until the simulation completion.

To finish this Section, we propose a comparison between distributions initialised in the plasma core (Figure 3.2) and edge (Figure 3.3) regions. The most interesting feature is the strong similarity between Figure 3.2 and 3.3 for both the TQ (middle plot) and CQ (right plot) phases. The only obvious difference is the reduced number of surviving particles found in the edge (Fig. 3.3) case with respect to the core one (Fig. 3.2), but their distribution topologies are in good agreement. This means that the magnetic chaoticity propagates toward the core region sufficiently fast for making the plasma core accessible to the edge electrons before their complete loss. As a consequence, any plasma region is able to provide 'survivors'.

Characterisation of the electron losses during the time evolution of a disruption

Hereafter, the discussion given in Section 3.3 is enriched via an analysis of the particle losses as a function of time.

The electron loss time profiles (represented as the fraction of surviving electrons after a given time) for initial kinetic energies of 1keV (upper plot) and 10MeV (lower plot) are displayed in Figure 3.4. Each initial radial position is identified using a unique colour line. Looking at Figure 3.4, we recover the three phases discussed in Section 3.3. The first one takes place from the simulation beginning to the first particle loss. It is interesting to notice that the time at which the first electron is lost depends almost uniquely on the initialisation radius and not on the initial energy. For example, for the innermost distribution the first loss is recorded at t = 0.5ms for 1keV and t = 0.46ms for 10MeV while for the outermost distribution it is characterised by t = 0.18ms for 1keV and t = 0.15ms for 10MeV. This is due to the fact that the loss beginning is essentially set by the time at which magnetic chaos reaches the plasma volume containing all the electron closed drift orbits. This means that the pre-loss time interval length is mainly related to the velocity at which magnetic chaos propagates toward the core. The initial electron kinetic energy, which defines the particle transport velocity, might modify this period only up to few tens of %.

The second phase is the particle draining phase. During this period the magnetic field is characterised by a stochastisation of the edge which, eventually, extends across the whole plasma (middle plot of Figures 3.2 and 3.3). Loss rates are strongly dependent on the initial energy, which comes from the fact that the transport is mainly parallel to the magnetic field lines (a deeper insight in electron transport is given in Section 3.7 of this Chapter). This dependence is visible comparing the two plots of Broadly speaking, it is remarkable that typically the 25% of 1keV electrons remain confined throughout the simulation, which is a very large number in the RE context, and that a few % of 10MeV electrons remain confined, again representing a large number.

GC loss time profile verification via FO calculations

An open question raised in the recent literature concerns the importance of full orbit effects in fast particle simulations [START_REF] Zhang | Volume-preserving algorithm for secular relativistic dynamics of charged particles[END_REF] [110] [START_REF] Carbajal | Space dependent, full orbit effects on runaway electron dynamics in tokamak plasmas[END_REF]. For this reason, a 'verification' of a subset of GC solutions is conducted using the FO particle pusher. We stress the fact that these benchmarks are not intended as comparison of GC and FO orbits but as comparison of global statistics, such as the fraction of lost particles, between the two models.

The chosen distributions have initial kinetic energies of E kin = [1keV, 10MeV] and are started on ψinit = [0.05, 0.7] surfaces. The FO particles have gyro-angles randomly chosen within the interval χ ∈ [0, 360) in order to avoid bias in statistics and are followed using a time step of ∆t FO = 0.014T gyro . Results are given in Figure 3.5 where solid lines refer to GC calculations while FO ones are reported using dashed lines. In every test of Figure 3.5, an agreement within a few % is found, validating the use of the GC approximation in our electron loss studies. 

Dependencies between the number of 'survivors' and the distribution initial conditions

We now turn our attention to the description of the connections among electron initial conditions and the final fraction of 'surviving' particles (N alive ). Figure 3.6 reports N alive as a function of the initial kinetic energy. Lines having different colours represent different initial radial positions. As expected, N alive reduces with the increase of the initial radius due to the increment in particle exposure to magnetic chaoticity.

The N alive evolution with respect to the initial kinetic energy is more interesting. The total number of survivors decreases with the increment of E kin until a saturation-like behaviour is reached at 1MeV. Above 1MeV, the trend is inverted. The inverse dependency between N alive and E kin below 1MeV is consistent with a transport predominantly parallel to the magnetic field lines [START_REF] Rechester | Electron heat transport in a tokamak with destroyed magnetic surfaces[END_REF]: the faster the electrons, the stronger their transport and so their probability to be deconfined. When the particle velocity saturates near the speed of light, losses become independent from the initial energy and saturate accordingly. The trend inversion happening when E kin > 1MeV is most probably related to orbit-averaging and/or radial shift effects, which are strong at high energy due to large drifts [START_REF] Mynick | Transport of runaway and thermal electrons due to magnetic microturbulence[END_REF] [78] [START_REF] Abdullaev | Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak[END_REF].

A study of the electron and field line local transport during the disruption TQ

The aim of this Section is to furnish a first insight into the local transport properties via the comparison of the evolution of three electron distributions initialised respectively in the core, intermediate and edge plasma sectors. The chosen phase is the disruption TQ (t = 0.47ms) which is when the peak of MHD activity is registered. As a side result, the dominant action of the particle transport parallel to the magnetic field lines ((Magnetic) Field Line (FL)) is justified via comparison between electron and FL distribution evolution.

For this study, six populations of 10 4 electrons are tracked using the FO pusher for a total simulation time of ∼ 2µs (∆t FO = 0.014T gyro ) which is approximately the time required for a 1keV electron to accomplish two toroidal turns. The six populations are initialised as narrow Heaviside distributions (∆ ψ = 10 -3 ) centred on three initial radii ψinit = [0.05, 0.7, 0.95] at two kinetic energies: E kin = [1keV, 10MeV], while the pitch and gyro angles follow the same rules as in Sections 3.3 and 3.4. The three radial positions are chosen because they are representative of the main sectors composing the plasma closed flux surface region: core, intermediate and edge. For comparison purposes, three field line distributions, counting 10 4 markers each, are initialised similarly and followed using a toroidal angle step of ∆φ = 0.036 • for 10 2 toroidal turns.

Figure 3.7 shows the particle radial distribution after 0 (initial condition, black lines), 1 (blue lines) and 2 (red lines) toroidal turns for 1keV (dashed-dotted trait) and 10MeV (dashed trait) particles and for field lines (solid trait). Evidently, the time corresponding to a blue (res. red) particle distribution is approximately the period of time needed by a particle to accomplish one toroidal turn (res. two toroidal is quickly deformed and radially dispersed. The pictures in the core (top-left) and at the edge (bottom-middle) are clearly different. In the first one, the initial field line ring is already deformed in a spiral-galaxy like shape after two toroidal revolutions but its radial spreading is contained until ten toroidal turns. The second presents a laminar like behaviour: field lines are transported within a small annulus centred on the initial surface before being able to fill the plasma volume. In the end, it is possible to state that this low-high-low radial FL transport profile seems to play a major role in global electron confinement properties. These differences are probably due to the fact that the m = 2, n = 1 mode is dominant.

As side remark, Figure 3.7 shows that in both core (upper plot) and intermediate (middle plot) sectors, field lines and particle distributions, after the same number of turns, are in good agreement independently from their initial energy. This is another strong evidence that electron radial transport is essentially dictated by parallel motion along stochastic field lines. The only exception is the 10MeV population initialised at ψinit = 0.95, whose distribution spreads more than that of FL at 1keV electrons.

As before, these differences are probably related to important particle drift effects.

In order to check the coherency among the discussion presented in this Section and the results given in Sections 3.4 and 3.6, a rough estimation of the numbers of 'survivors' is obtained for the 1keV and 10MeV cases. We make the assumption that the electron transport is strictly diffusive and constant in space and time with diffusion coefficient defined as D = ( ψ-ψinit ) 2

2∆t

. We approximate the root mean squared displacement with the width of the one-toroidal-turn distribution given in the middle plot of Fig. 3.7 (blue lines), neglecting the initial distribution span. Thus, the diffusion coefficients after one toroidal turn are: D 1keV = 1.3005 • 10 5 s -1 for the 1keV population and D 10MeV = 2.16750 • 10 6 s -1 for the 10MeV one (the time interval ∆t is the one required by an electron to perform one toroidal turn). An estimation of the period of time in which electrons are lost can be extracted from the two plots of Fig. 3.4: t loss 1keV = 1.3ms and t loss 10MeV = 0.6ms respectively for the 1keV and 10MeV cases which, with the diffusion coefficients, allows to calculate the spreading of the particle distribution function during the loss phase: ψloss 1keV = 2t loss 1keV D 1keV = 18.4 and ψloss 10MeV = 2t loss 10MeV D 10MeV = 51. Finally, the estimate of the fraction of 'surviving' electrons is given by: N alive 1keV = ψ-1 loss 1keV ∼ 5% and N alive 1keV = ψ-1 loss 10MeV ∼ 2% which are coherent with the results of Figure 3.6 (we remind that the plasma small radious in terms of normalised poloidal flux coordinates is 1).

Summary

The magnetic field evolution plays an predominant role in electron transport during a disruption. Indeed, electron radial transport is found to be dominated by the one along the field lines. The magnetic field evolution in the MGI-triggered disruption analysed here consists mainly of the growth of a m = 2, n = 1 magnetic island, followed by a field stochastisation progressing from the edge to the very core. At the TQ, the magnetic fields is chaotic everywhere. Then a region of well behaved magnetic surfaces is reformed firstly in the centre and, later, at the plasma edge.

Results from the JOREK fast particle tracker show that electrons initially follow integrable drift orbits until the appearance of magnetic chaos. When the latter enters in regions of closed drift orbits, particle begin to be lost. This view finds confirmation in the electron loss time profiles which show that the first electron loss time is almost independent from the population energy. This means that the moment of magnetic chaos onset and its propagation velocity are key parameters ruling the electron loss of confinement. At the full magnetic field stochastisation, electrons fill completely the plasma volume and their transport effectiveness increases with the increment of initial energy. The importance of the kinetic energy level on fast electron loss mechanism is also confirmed by the steepening of the loss time profiles suggesting that transport phenomena are mainly parallel to the magnetic field lines. Finally, the reformation of closed magnetic flux surfaces reconfines the 'surviving' population. This is mainly a two step process where particles in the core region are firstly trapped while losses stop due to both the generation of edge closed surfaces (slow electrons) or the complete depletion of the fraction of the initial distribution still interacting with the outer stochastic sea (fast electrons). A confirmation of the strong dependence between particle losses and initial kinetic energy is also given by the study of the 'surviving' particles fraction as a function of the initial conditions. It is shown that the number of survivors decreases with the increase of kinetic energy up to a saturation point found to be at 1MeV, in agreement with the idea that high parallel velocities allow faster particles diffusion (the saturation occurs due to the speed of light limit). A trend inversion is observed for energies above 1MeV, likely related to drift orbit effects which reduces electron sensitivity to magnetic fluctuations.

Finally, a first characterisation of the electron dynamics in fully stochastic regimes was proposed. The study shows that particle and field line distributions (number of markers within a radial bin) evolve similarly. This is a second evidence of the parallel to the field line transport importance on the overall electron dynamics. This analysis also proved the existence of a strong radial dependency of the transport, presumably due to the dominant m = 2, n = 1 mode.

As commonly expected, chaotic magnetic fields are found to strongly deconfine electrons, all the more if they are energetic. However, a key finding of this study is that a fraction of 'survivors' is present in most of the treated cases. Although it may appear relatively small (few %), this fraction is, in fact, considerable in the RE context, i. e., a RE density of ∼ 0.1 -0.01%n e is sufficient for carrying all the plasma current.

Chapter 4

Test electron acceleration during a JET MGI-triggered disruption simulation

The understanding of the mechanisms and plasma configurations allowing the generation of a disruptive primary RE seed is not fully achieved yet. Reaching this goal is of paramount importance for the advance of tokamak physics because it may allow safer reactor operation and design [START_REF] Boozer | Theory of runaway electrons in ITER: equations, important parameters, and implications for mitigation[END_REF]. In large machines, the Hot Tail mechanism is thought to be the dominant RE generation mechanism due to the low plasma resistivity which prevents the appearance of parallel electric fields above the Dreicer one during the CQ [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF]. While the theory behind the Hot Tail mechanism is well established [START_REF] Smith | Runaway electron generation in a cooling plasma[END_REF][101], little is known about the possibility of accelerating electrons to runaway conditions due to the TQ MHD activity. Recently, [START_REF] Boozer | Loss of relativistic electrons when magnetic surfaces are broken[END_REF] analysed the RE generation and loss processes, hypothesising a TQ magnetic configuration consisting of a stochastic magnetic sea enclosed by well behaved magnetic surfaces. A different magnetic configuration is studied in [START_REF] Boozer | Runaway electrons and magnetic island confinement[END_REF] where the RE beam is created by the interactions between electrons and residual magnetic islands. In both works, the main idea behind the production of RE during the TQ is based on the existence of magnetic flux tubes, not intercepting the wall, in which electrons can be accelerated due to a temporal variation of magnetic flux. In this chapter, we explore the electron dynamics during the TQ phase of the JOREK simulated JET pulse 86887 disruption via the fast particle tracker introduced in Chapter 2 and used in Chapter 3. In contrast with Chapter 3, where we were interested only in the electron transport, hereafter we investigate the phase space dynamics including possible acceleration mechanisms. For this purpose, a GC collision drag model is introduced, which is described in Section 4.1, the evolution of the parallel effective electric field (sum of the parallel electric force and collision drag) during the disruption studied in Section 4.2. In Section 4.3 an analysis of the particles behaviour during the simulated TQ is given. Dring this phase, RE formation is observed due to an acceleration by large local MHD-induced parallel electric fields. A first study on the dependencies between the plasma resistivity (as a parameter of the MHD disruption simulations) and the particle acceleration processes is furnished in Section 4.4. A summary (Section 4.5) concludes this Chapter.

The drag due to collisions

As discussed in Chapter 3, a surviving electron left free to evolve in a disruptive plasma field would experience, in the absence of dissipative processes in the model, a constant increase of its total energy, becoming inevitably runaway. In Chapter 3, we neglected the inductive electric field in order to avoid this acceleration. In reality, particles are affected by dissipative processes, such as collisions and synchrotron radiation, which counteract the electric acceleration [START_REF] Goldston | Introduction to plasma physics[END_REF]. It is clear that the addition of a dissipation term in our particle models is of fundamental importance for analysing the transition from the thermal to the runaway electron regimes. A review of the current RE literature, [START_REF] Connor | Relativistic limitations on runaway electrons[END_REF][102] [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF], shows that at low energies, particle collisions are the main phenomenon which opposes the generation of a suprathermal particle population. Thus, their modeling is the subject of this Section. The simplest model describing collision effects is the drag force one ( [START_REF] Fussman | On the motion of runaway electrons in momentum space[END_REF] and references therein). The drag force derives from the pitch angle coordinate integration of the Langevin equation describing small angle collisions between a relativistic test electron and a homogeneous background plasma (at the moment, we do not consider plasma response and feedbacks). For completeness, the derivation presented in [START_REF] Fussman | On the motion of runaway electrons in momentum space[END_REF] is reported here: denoting with p and p the test particle momentum before and after a collision, it is possible to define the momentum variation as ∆p = p -p = ∆p +∆p ⊥ , where ∆p = (∆p • p p ) p p and ∆p ⊥ = ∆p -∆p (we stress that here the parallel subscript refers to the direction of the momentum before the collision and not that of the magnetic field), and the collision force felt by the test particle as

F coll = lim t→0 ∆p ∆t | coll = dp dt | coll .
In order to calculate F coll , we introduce the scattering pitch angle θ, defined by tan 2 θ = ∆p ⊥ •∆p ⊥ (p+∆p )•(p+∆p ) , and the collision energy variation, defined by ∆E| coll = mc 2 

1 + p 2 m 2 c 2 (1 + ∆p p ) 2 (1 + tan 2 θ) -mc 2 1 + p 2 m 2 c 2 .
We assume small angle collisions { ∆p p , θ} 1, which is an assumption typical of the Coulomb collision process, and we linearise at the smallest order with respect to these variables:

∆E| coll = p 2 mγ ∆p p + θ 2 2 (4.1)
where m is the particle rest mass and γ = 1 + p 2 m 2 c 2 is its relativistic factor. Isolating the ∆p to the left hand side, dividing by the process time length ∆t and using ∆l = p mγ ∆t, Eq.4.1 becomes:

∆p ∆t coll = ∆E ∆l - p 2 2mγ θ 2 ∆l coll (4.2)
having defined p = p and ∆p = ∆p . Passing to the limit {∆t, ∆l } → 0, we obtain:

dp dt coll = dE dl - p 2 2mγ dθ 2 dl coll (4.3)
We report the electron-electron collision cross section, obtained from the Dirac equation [START_REF] Fussman | On the motion of runaway electrons in momentum space[END_REF]:

dσ dθ coll = 8πe 4 m 2 v 4 γθ 3 coll , dE| coll = - p • p 2m dθ 2 | coll (4.4) 
where e 2 = q 2 4π 0 and 0 is the vacuum permittivity. The ion-electron collision cross section, under the infinite mass hypothesis m mp → 0, is [START_REF] Fussman | On the motion of runaway electrons in momentum space[END_REF]:

dσ dθ coll = 8πZ 2 e 4 m 2 v 4 γθ 3 coll , dE| coll = 0 (4.5)
having denoted the ion charge number with Z. Finally, the relativistic electron drag force is given by the average over collisions ( dθ 2 dl coll = n θmax θ min θ 2 dσ dθ dθ where n is the background plasma density [START_REF] Fussman | On the motion of runaway electrons in momentum space[END_REF]) of Eq.(4.3): where E 0 = mc 2 is the electron rest energy, ln(Λ) is the Coulomb logarithm, N species the number of ion species composing the background plasma and the subscripts ( * ) e and ( * ) i refer respectively to electron and ion quantities. Ref. [START_REF] Mosher | Interactions of relativistic electron beams with high atomic-number plasmas[END_REF] noticed that additional collision processes, such as collisions with bound electrons, result in a modification of the α e and α i terms of Eq.4.6. This observation is used in [START_REF] Martin-Solis | Formation and temrination of runaway beams in ITER disruptions[END_REF] for deriving the drag force experienced by a relativistic test electron colliding with a hydrogen plasma having partially ionised impurities:

dp dt = - q 4 4π 2 0 E 0 γ((γ + 1)α e + α i ) (γ 2 -1)
α e = n ef ln(Λ ef ) + n eb ln(Λ eb ) (4.9)

α i = n i ln(Λ i ) + N species k=1 n ik Z ik 2 ln(Λ ik ) + Z 2 nucl,k ln(Λ nucl,k ) (4.10) Λ ef = (γ -1) √ γ + 1λ D 2γr e , Λ eb = (γ -1) γ + 1 E 0 I z (4.11) Λ i = (γ 2 -1)λ D γr e , Λ ik = λ D I z Z ik r e E 0 , Λ nucl,k = (γ 2 -1)E 0 γI z (4.12) (4.13) 
where n ik is the k th -impurity number density, Z ik and Z nucl,k are respectively the average and k th -nuclear impurity charge, r e = q 2 /(4π 0 E 0 ) is the classical electron radius, I z is the ionisation energy and λ D is the Debye length which, for a electron-ion plasma, is λ D = 0 k B TeT i q 2 (neTe+n i T i ) . We specialised Eqs.4.6, 4.9, 4.10 for the JOREK code fast particle tracker. JOREK is composed of multiple single-fluid MHD models which satisfy the quasi-neutrality condition (n e = n i = n) but not necessarily the single temperature one. Thus, for a JOREK hydrogen plasma the Debye length is λ D = 0 k B TeT i nq 2 (Te+T i ) . The present JOREK MGI model describes the evolution of a neutral molecular deuterium gas as a single fluid (the implementation of a multi-species multi-ionisation MGI is underway). This implies that no partially ionised impurities are considered in our simulations ( Z ik = 0) and, from Ref. [START_REF] Linstrom | NIST Chemistry WebBook. NIST Standard reference database 69[END_REF], the ionisation energy is I z = 15.5eV. For the nuclear charge, we made the assumption of a simultaneous collision with the two nuclei composing the D 2 molecule: Z nucl,k = 2. This choice might be questionable but, for the case treated here, is not very important due to the low neutral density (injected neutrals are almost fully ionised at the edge).

Finally, we obtain an approximated GC collision drag force by projecting Eq.(4.6)

on the direction parallel to the magnetic field and we include this term in the GC parallel momentum equation: 

dp dt = B * B * • b • qE -p ∂b ∂t - µ∇B γ GC + F ,coll (4.14) 
F ,coll = - q 4 4π 2 0 E 0 γ GC ((γ GC + 1)α e + α i ) (γ GC -1)
α i = nln (Λ if ) + n D 2 (Z nucl,D 2 ) 2 ln (Λ nucl,D 2 ) (4.17)
where the parallel and ( * ) D2 subscripts refer respectively to direction parallel to the effective magnetic field and the molecular deuterium quantities. This is a minimal model to account for collision effects. More refined models [START_REF] Brizard | Orbit-average guidingcenter fokker-planck operator[END_REF][30][52] [START_REF] Fussman | On the motion of runaway electrons in momentum space[END_REF] would be needed to take into account the magnetic momentum variation and the stochastic nature of collisions. One consequence of the simplicity of our model is that the particle parallel momentum tends to decrease towards zero instead of being maintained at thermal values. In order to minimise the consequences of this effect, we initialise our simulations below just before the TQ.

Effective electric field

In order to assess whether particles are accelerated or decelerated, the critical quantity is what we call here the effective electric field, which represents the net parallel force due to the action of the parallel electric field (E ) and collision drag at fixed particle parameters, divided by the particle charge |q|:

E ef f = 1 |q| B * B * • b • qE + F ,coll (4.18) 
where B * is the effective magnetic field defined in Equation 2. [START_REF] Kruger | Generalized reduced magnetohydrodynamic equations[END_REF] always in the opposite direction [START_REF] Papp | Runaway electron drift orbits in magnetostatic perturbed fields[END_REF]. Thus, regions of negative (in blue) and positive (in red) E eff cause respectively the acceleration or deceleration of runaways. Let us describe the temporal evolution of E eff . The first row of Table 4.1 shows E eff when the presence of neutral gas has significantly destabilised a m = 2, n = 1 tearing mode (magnetic island) but before the TQ onset. A comparison among Figures at different energies reveals that E eff evolves from a fully decelerating to an almost fully accelerating condition when the kinetic energy is augmented from 1keV to 100keV. This evolution is mainly related to the reduction of collisionality with the kinetic energy increase. As remarked in [START_REF] Nardon | Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK[END_REF], the highest electron density rise is localised within the m = 2, n = 1 magnetic island, which causes an inevitable increase of drag force and plasma resitivity in this region. At higher kinetic energies, electron collisions become less probable implying an inevitable decrease of the drag force. At the same time, the 100keV plot reveals the presence of an accelerating electric field mainly due to the increase of plasma resistivity. This double effect due to the massive gas injection deposition in the m = 2, n = 1 tearing mode is more clearly visualised in Figure 4.1 which presents the 1keV collision drag (left plot) and the parallel electric field (right plot) for the same simulation time (3.55ms). When Figure 4.1 is juxtaposed to the first row of Table 4.1 it becomes evident that the augmentation of particle energy causes a transition from a collision to an electric field dominated E eff . The parallel electric field variation with the kinetic energy has important effects on the electron population dynamics. If electrons are initialised in thermal conditions (E kin 1keV) the collision drag will prevent their acceleration. On the other hand, electrons from the far tail of the thermal distribution (E kin ≥ 10keV) may run away before the TQ, especially inside the m = 2, n = 1 magnetic island.

We now turn our attention to the second row of Table 4.1, which corresponds to the beginning of the magnetic field stochastisation (in the following, we will refer to this time instant as the TQ beginning). In contrast with the previous phase, at the TQ beginning the effective electric field is completely dominated by the E term: the figures composing the second row of Table 4.1 are indeed virtually impossible to distinguish. In addition, it has to be remarked that the parallel electric field activity is mainly focused at the plasma core with an intensity two orders of magnitude higher than at t=3.55ms.

The last row of figures composing Table 4.1 is dedicated to the E eff acting during the MHD-activity peak of the TQ, when closed magnetic surfaces are completely destroyed. As before, solutions for [START_REF] Abdullaev | Magnetic stochasticity in magnetically confined fusion plasmas, chaos of field lines and charged particle dynamics[END_REF][START_REF] Boozer | Loss of relativistic electrons when magnetic surfaces are broken[END_REF][START_REF] Smith | Runaway electron generation in a cooling plasma[END_REF] keV do not differ significantly so, also in this case, the E term is dominant. The strongest electric activity is localised around mid-radius. During this phase, the electric field presents a cellular-like topology with an alternation of accelerating and decelerating regions in the poloidal direction which extends up to the plasma edge. These cells are smaller than the ones observed at the TQ beginning (t=3.83ms) but their intensities are similar. This particular E eff topology suggests that it is mainly due to the large MHD fluctuations taking place during this phase but a dedicated analysis would be required to understand the precise mechanisms at play. We turn our attention to the first row of Table 4.2 which presents the post-TQ E eff (t=4.21ms). As described before, after the TQ magnetic perturbations decay, allowing the reformation of closed magnetic surfaces, first in the plasma core and later at the edge. At this stage, the plasma is relaxing toward a new equilibrium.

The E eff is reduced by at least one order of magnitude compared to the one during the TQ (last two rows of Table 4.1). Comparing 1keV (left), 10keV (middle) and 100keV (right) results, it is easy to understand that only these last two are still dominated by the parallel electric field while at 1keV collisions start to dominate again. This suggests that only electron populations being accelerated at or above 10keV during the previous phases have a chance to become runaway. The others have higher chances of being thermalised back to equilibrium conditions.

The second row of Table 4.2 corresponds to the beginning of the CQ (t=6.94ms) which is characterised by the presence of large areas having good confinement properties and by the beginning of the plasma current decay. The CQ stage is distinguished by the return of the competition between collision drag and accelerating electric field: 1keV electrons are always decelerated due to high collision braking while particles having a kinetic energy ≥ 10keV and confined in the plasma core will be accelerated and become runaway. As remarked for the 1keV plot of the Table 4.1 first row, the drag force is stronger at the plasma edge due to the higher MGI-induced increase in electron density. In Figure 4.2 the parallel electric field is decomposed into scalar and vector potential components. Figure 4.2 shows that the E is dominated by the ∂ψ ∂t (inductive) term, which is related to the plasma current decay caused by the increase of plasma resistivity.

At this point of our discussion, we present a summary of Table 4.1 and 4.2 results.

In the pre-TQ (first row of Table 4.1) and during the CQ (second row of Table 4.2)

phases, E eff is strongly dependent on the kinetic energy. The dynamics of a 1keV m ) at the beginning of the CQ (t=6.94ms). Blue and red colours represent respectively regions of accelerating and decelerating field (thermal) electron is everywhere dominated by the drag force; thus, a thermal population cannot reach runaway energies in these time periods. Conversely for kinetic energies of 10keV, regions of accelerating E appear at the plasma core allowing the generation of RE. Further increase of E kin implies a greater drag force reduction thus stronger accelerating electric fields which extend towards the plasma edge. In contrast, all along the TQ (second and third rows of Table 4.1), the most prominent contribution to E eff is given by E . During this phase, the MHD activity generates cells of accelerating and decelerating electric fields which strengthen and reduce in size until the complete magnetic field stochastisation (t=4.03ms) and relax. The presence of large E eff fluctuations at the TQ and the possibility to generate RE if E kin > 10keV during the CQ raise the question of whether the TQ electric fields are able to accelerate a fraction of an initially thermal electron population up to this critical energy level leading to the formation of RE. This question motivates the study presented in Section 4.3.

Electron acceleration during the TQ phase

In this Section we study the capability of the TQ electric field to accelerate a thermal electron up to runaway conditions. For this purpose, we track multiple GC populations from t=4.01ms, i.e., just before the time of the Table 4.1 last row, up to the beginning of the CQ (t=6.94ms), for a total simulated time of ∼ 3ms. The late initialisation in the disruption simulation (t=4.01ms) is necessary to avoid a significant decrease of p due to the intense drag force typical of the E kin = 1keV case. This momentum reduction is caused by the drag force model dissipation which does not preserve the thermodynamic equilibrium. The procedure is similar to the one exposed in Chapter 3: the plasma minor radius, expressed in normalised magnetic flux coordinates, is divided into 10 nodes from the plasma core to the edge. A population consisting of 10 3 GC is randomly initialised on the toroidal surface associated to each radial node. As done in Chapter 3, a mono-energetic mono-pitch angle electron beam is used. The chosen energies are: E kin = [START_REF] Abdullaev | Magnetic stochasticity in magnetically confined fusion plasmas, chaos of field lines and charged particle dynamics[END_REF][START_REF] Beam | Alternating direction implicit methods for parabolic equations with a mixed derivative[END_REF][START_REF] Boozer | Loss of relativistic electrons when magnetic surfaces are broken[END_REF][START_REF] Connor | Relativistic limitations on runaway electrons[END_REF][START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF]keV while the pitch angle is set to 170 • (counter-current passing particle) for each run. Then, the electron distribution is evolved in the disruption simulation using a time step of 14•T gyro where T gyro is the non-relativistic cyclotron period. In Figure 4.3, the kinetic energy (upper plot) and the parallel momentum (lower plot) time profiles for 10 3 particles initialised in the core region with an initial kinetic energy of 1keV are displayed for the first 0.3ms of the simulation. It has to be reminded that in Figure 4.3 and following, the time origin (t=0ms) corresponds to the t=4.01ms E eff (last row of Table 4.1). Lost particle profiles are shown using green lines while red and blue lines are associated to electrons having a final energy respectively above and below 1MeV. The first plot of Figure 4.3 clearly shows that a fraction of the initial population (in blue) loses its kinetic energy until reaching the minimum energy level allowed by the drag operator. Contrarily, a few electrons (in red) see an increase in their kinetic energies up to relativistic conditions, positively answering to the question asked at the end of Section 4.2. Recalling the interpretation also given in Section 4.2, 1keV particles which are not accelerated during the TQ cannot reach runaway conditions during the CQ (last row-left plot of Table 4.2). This means that the simulated runaway electrons interact with regions of counter-I p accelerating E eff during the TQ. Despite the beam-type initialisation, which obliges all electrons to have equal parallel momentum, when the population enters the TQ phase a significant spread of the distribution function in velocity space is recorded. This spreading is mainly caused by the presence of accelerating and decelerating electric cells shown in the second and third rows of Table 4.1.The intense p fluctuations in concert with the permanent presence of particles at the plasma core (discussed in Chapter 3) allow the confinement of a small electron population having an energy high enough and the correct direction (p < 0) for becoming runaway due to the CQ inductive electric field, as depicted by the red lines of are reconfined by the reformation of magnetic surfaces at the end of the TQ chaotic phase. In this case, electrons being accelerated before reconfinement become RE (red dots) otherwise they are slowed down by collisions (blue dots). Thereby, the probability of an electron to become runaway seems to be related to the combined effects of the momentum and physical space transports. The RE near-to-magnetic-axis positioning found in our simulation seems to be in agreement with observations obtained from DIII-D [START_REF] Hollmann | Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D[END_REF] and, less clearly, from TEXTOR [START_REF] Abdullaev | Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak[END_REF] RE experiments, where the measured RE synchrotron radiation suggest that the beam is mainly localised at the core of the post-disruptive plasma.

As last part of this Section, the dependencies between the total number of generated RE and the electron population initial radial position and E kin are discussed. and lost to the PFCs (bottom plot). Black, blue, red, magenta and green lines are respectively associated to initial kinetic energies of [START_REF] Abdullaev | Magnetic stochasticity in magnetically confined fusion plasmas, chaos of field lines and charged particle dynamics[END_REF][START_REF] Beam | Alternating direction implicit methods for parabolic equations with a mixed derivative[END_REF][START_REF] Boozer | Loss of relativistic electrons when magnetic surfaces are broken[END_REF][START_REF] Connor | Relativistic limitations on runaway electrons[END_REF][START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF]keV. upper plot reveals that, independently from the initial kinetic energy, a few % of each initial electron population reaches runaway conditions. In particular, about ∼ 1% of the initial thermal (1keV) population (we recall that the pre-TQ central electron temperature is 1keV) runs away. This is one to two orders of magnitude larger than the RE density needed for carrying the whole plasma current. Since no signs of RE were observed during the experiment, it seems that our model strongly over-estimate the runaway seed production. A possible reason for this over-prediction will be studied in the next section. A second remark on Figure 4.7 is on the augmentation of the runaway and lost electron fractions with E kin . While the first one is related to the decrease of collision drag at higher kinetic energies, the second is probably linked to the faster particle transport shown in Chapter 3. However, in these simulations particle losses are lower than in the Chapter 3 ones for each initial energy level, e.g., less than 10% of the ψinit = 0.05, E kin = 10keV distribution is lost in Figure 4.7 against the 50% reported in Figure 3.6. These discrepancies are probably related to the presence of regions having decelerating E eff which negatively afflict the particle transport. Finally, it has to be recognised that for E kin < 10keV the number of RE reduces considerably when the initial radius increases, supporting the idea that the plasma core has the most favourable conditions for the generation of runaways, essentially because the collision drag is smaller in the core due to the smaller density. This spatial dependency considerably reduces for initial energies above 10keV due to the electron less sensitivity to the collision.

MHD fields and RE generation dependency on the plasma resistivity used in JOREK

In this Section, we present a first analysis of the disruption simulation input parameters influence on the magnetic field, E eff and RE generation. This is motivated by the impossibility of obtaining JET disruption simulations with realistic input parameters. For example, the initial central resistivity (η 0 ) used in the JOREK simulation analysed above is about a factor of five larger than the realistic one. We focus our attention on η 0 (noting that in JOREK the Spitzer-like plasma resistivity model η(T ) = η 0 (T /T 0 ) -1.5 is used, where the η 0 and T 0 are respectively the central plasma resistivity and temperature). This is one of the key parameters ruling the electric field dynamics and the reformation of closed magnetic surfaces after the TQ. For doing this, we analyse two more JOREK disruption simulations in which the resistivity is increased from η 0 = 10 -7 (in JOREK units) to η 0 = 10 -6 and η 0 = 10 -5 , all other parameters being left unchanged. As before, electrons are initialised just before the magnetic field complete stochastisation and followed until closed magnetic surfaces are reformed (total simulation time of 1ms for η 0 = 10 -6 and 0.28ms for η 0 = 10 -5 ).

In Table 4.3 the Poincaré and E eff plots for the JOREK simulations obtained using plasma resistivities of 10 -5 , 10 -6 and 10 -7 (respectively upper, middle and bottom rows) during the disruption TQ (first and second columns) and CQ (third and fourth columns) phases are reported. The TQ Poincaré plots (fist column) show that the magnetic field is globally chaotic independently from the resistivity. Similarities are found in E eff (second column of Table 4.3). Indeed, in all three cases E eff has a cellular topology composed of poloidally alternating accelerating and decelerating cells. However, while the E eff magnitude is similar for the η 0 = 10 -6 and η 0 = 10 -7 cases, it is much smaller for η 0 = 10 -5 . One can also note the presence of an accelerating electric field at the plasma core for the η 0 = 10 -5 case which is not present in the other cases. The magnetic and E eff topologies during the CQ, respectively third and fourth columns of Table 4.3, vary significantly with η 0 . Indeed, while all simulations display the reformation of closed magnetic surfaces reform at the centre, differences are visible in the Poincaré cross sections and, more importantly, on E eff . The latter transits from a strong accelerating to a decelerating configuration with the decrease of plasma resistivity. This changeover is explained by the faster I p decay induced by the higher resistivity, which is visible in Figure 4.8 displaying the experimental and JOREK simulated I p traces. Summarising, Table 4.3 establishes that, in this case of study, the CQ E eff is strongly sensitive to the choice of η 0 . Conversely, initial resistivity variations weakly influence the CQ magnetic configuration and the TQ fields, especially if we compare the η 0 = 10 -6 and η 0 = 10 -7 cases. .9 which suggests that the experimental I p decay rate would be recovered if the realistic resistivity could be used.

As a side remark on Figure 4.9, the JOREK dIp dt (black line) is not directly proportional to η 0 . We presume that this due to the CQ plasma temperature increasing with η 0 due to a larger ohmic heating.

The fraction of electrons becoming RE (averaged over the initial positions) as a function of η 0 for different initial E kin is given in Figure 4.10. This figure shows that a decrease of η 0 reduces the number of produced RE. In particular, the fraction of RE produced by the 1keV populations drops from ∼ 37% for η 0 = 10 -5 to ∼ 2.6% and ∼ 0.6% respectively for η 0 = 10 -6 and η 0 = 10 -7 . However, it seems that for η 0 = 2 • 10 -8 the fraction of RE would still be significant compared to the 10 -1 -10 -2 % required for carrying the whole plasma current. It is worth remarking that the dependence between the RE number and the initial plasma resistivity for the range η 0 ∈ [10 -7 , 10 -6 ] weakens when the E kin is increased.

Summary

In order to study the generation of fast electrons, a drag force, modeling collisions between relativistic electrons and an impure (D 2 neutrals) background plasma, is introduced in the GC pusher of the JOREK fast particle tracker.

After having introduced the effective electric field (electric force plus drag force), we analysed its evolution during the treated disruption simulation for kinetic energies of E kin = [START_REF] Abdullaev | Magnetic stochasticity in magnetically confined fusion plasmas, chaos of field lines and charged particle dynamics[END_REF][START_REF] Boozer | Loss of relativistic electrons when magnetic surfaces are broken[END_REF][START_REF] Smith | Runaway electron generation in a cooling plasma[END_REF]keV. The 1keV E eff is dominated by the drag force before (t=3.55ms), at the end of (t=4.21ms) and after (t=6.94ms) the TQ whereas at higher energies a transition towards an E dominated E eff is observed. In contrast, during the TQ, E dominates the drag force independently from initial E kin . During this phase, the E eff topology is characterised by poloidally alternated accelerating and decelerating cells which shrink in size and extend from the plasma core to the edge with time. The origin of this field is most likely related to the strong MHD activity taking place during the TQ but, at the moment, the precise mechanisms remain to be investigated.

We then used test particles simulations in order to analyse the generation of fast electrons. Results show that the E activity taking place during the TQ causes an important spreading of the momentum space particle distribution in counter and coplasma current directions. Considering the counter-I p accelerated particles, a few % of them reach kinetic energies at which E eff remains dominated by the electric field after the TQ while remaining within the plasma core region. After the TQ, these electrons are confined by the reformation of closed magnetic surfaces and driven to RE energies during the CQ by the inductive electric field. The fate of the non-RE electrons strongly depends on the population initial energy, i.e., particles having high initial E kin are generally lost to the wall while at low E kin electron thermalisation is the dominant process.

In the JET 86887 disruption experiment, no RE were observed. In contrast, the JOREK particle simulation indicates a strong generation of RE even for initially thermal electron populations. One of the possible reasons explaining this discrepancy involves the fact that the JOREK disruption simulations are run with a plasma resistivity significantly higher than the experimental one. A scan of η 0 has been performed to assess the importance of this parameter. Simulations show that the CQ E eff (at E kin = 1keV) varies significantly with η 0 , i.e., for the very high resistivity of η 0 = 10 -5 a strong accelerating E is the dominant contribution to E eff while for η 0 = 10 -7 the collision drag dominates. Contrarily, the TQ E eff is weakly affected by η 0 variations, especially below 10 -6 . An extrapolation of the JOREK results towards a realistic resistivity suggests that, while the experimental CQ dIp dt would be recovered, RE production would still be overestimated. It therefore appears that further efforts are needed to reconcile simulation and experiment. It may will be that the problem does not lie in the test particle model but rather in the MHD disruption simulations. For example, as visible in Figure 4.8, the I p spike associated to the TQ is far smaller in simulations than in the experiment, which could be a sign that the MHD activity is not well reproduced.

In conclusion, despite the quantitative mismatch between simulations and experiment, the present work suggests a possible, so far not considered, RE formation mechanism: Dreicer acceleration due to large local parallel electric fields associated to the TQ MHD activity, combined with a prompt reconfinement after the TQ due to the reformation of magnetic flux surfaces and subsequent acceleration by the CQ inductive electric field.

Chapter 5 A first analysis of runaway electron current -MHD activity relation in ASDEX-Upgrade disruption experiments

The assessment of relations between the disruptive MHD activity and the RE beam initial current represents a challenge to the present tokamak disruption experimentalists. Despite the availability of a complete set of magnetic diagnostics in present tokamaks, such as Mirnov and saddle coils, magnetic measurements during a disruption are still a difficult task to accomplish due to the richness and intensity of the plasma MHD activity. In medium and large devices, such as ASDEX-Upgrade, Tokamak à Configuration Variable (TCV), Tore-Supra and JET, sensor coils are not able to furnish enough accurate and precise data for describing the electromagnetic field during the disruption TQ phase. This picture slightly improves in the CQ, where quieter MHD phenomena take place, but the complete modal identification of the electromagnetic perturbations is not achieved yet. In the contemporary literature few works tried to correlate the RE plateau initial current and the magnetic fluctuations registered during this phase. Examples can be found in [START_REF] Zeng | Experimental observation of a magnetic-turbulence threshold for runaway-electron generation in the TEXTOR tokamak[END_REF] and [START_REF] Zeng | Runaway electron generation during disruptions in the J-TEXT tokamak[END_REF]: the former shows that in TEXTOR experiments the RE plateau current decreases linearly with the magnetic turbulence level δB Bt during the beginning of the CQ and claims that a complete RE current suppression can be obtained for δB Bt > 10 -3 . The latter reports an analysis of J-TEXT tokamak experiments showing a clear decrease of the RE current (in the plateau phase) with the increase of the n 2 e δB Bt figure of merit (FOM). It should be remarked that this last FOM integrates somehow the information regarding the electron slow down due to collision processes (n 2 e term) and the RE deconfinement due to magnetic fluctuations ( δB Bt term).

In this Chapter, a preliminary analysis of the relation between RE current and δB Bt in ASDEX-Upgrade disruption experiments is reported. Section 5.1 describes the methodology used for the data analysis while preliminary results are given and discussed in Section 5.2. A summary (Section 5.3) ends this chapter. The objective is to investigate correlations between the CQ magnetic fluctuations and the runaway current at the plateau phase beginning. This is obtained via the following six step signal processing procedure:

Description of the experimental data analysis

1 The Mirnov coil signal ( ∂B ∂t ) recorded during the CQ phase is extracted using a rectangular window in time which starts 0.2 ms after the plasma current spike (t 0 ) and ends 2ms before the runaway plateau onset (t 1 ) 2 The windowed signal is transformed from the time to the Fourier space via fast Fourier transform (MATLAB FFT routine) non-standard set-up, we highlight their FOM with a specific label (described in each figure capture). Results reported from Figure 5.2 through 5.9 show an upper limit in the magnetic fluctuation-RE current curve, i.e., an increase in FOM values is related to a RE current decrease. The presence of this runaway current limit as a function of the magnetic perturbations in ASDEX-Upgrade experiments represents the main findings of this work however, some additional remarks are worth to be discussed. One of these is based on the observation that when the q 95 is reduced under the value of 3 (points labelled Dq95 < 3) both strong magnetic turbulence and negligible RE currents are registered. The only exception is the discharge number 32009 which presents a figure of merit and I RE comparable to the other low RE current pulses. This correlation might be related to enhanced fast electron losses due to MHD-induced instabilities appearing at low edge safety factor.

A low RE current is also obtained when helium pollutants are introduced in the disruption triggering-MGI (points labelled PH e ). In this case, a clear correlation between I RE and MHD turbulence is difficult to define because the presence of helium can change the overall disruption dynamics. Nonetheless, both FOM-energy and FOM-max figures of merit are higher than a significant fraction of discharges having experienced RE production. This might be related to increased fast electron losses.

Differences between Figure 5.2 and 5.3 (res. 5.6 and 5.7 for FOM-max) may furnish some insights on the plasma radial positioning and, eventually, on the MHD turbulence HFS-LFS asymmetries while the ones with respect to the tokamak midplane can be visualised relating Figure 5.4 and 5.5 (res. 5.8 and 5.9 for FOM-max). A first comparison of the FOM intensities (in the following we will not specify the FOM when a comment is applicable to both FOM-energy and FOM-max) shows that the plasma is located slightly above the midplane (C09-09 FOM are three times higher than the C09-26 one) and mostly leans on the inner wall (C09-16 FOM are one order of magnitude higher than the C09-01 one), as discussed in [START_REF] Papp | Runaway electron generation and mitigation on the european medium sized tokamaks ASDEX Upgrade and TCV[END_REF]. Considering the top (C09-09) -down (C09-26) effects, we note that the bottom Mirnov coil presents a less clear of FOM-I RE correlation. A possible explanation for this disagreement can be found in the relative sensor-plasma position. 

Conclusions

In this thesis studies on the electron dynamics during a JOREK simulated disruption thermal quench are presented. These were possible due to the development of a new relativistic particle tracker module within the framework of the JOREK 3D nonliear MHD code. The tracker integrates a particle full (FO) and guiding center (GC) dynamics in 3D time-varying plasma fields. Tests in stationary axisymmetric and nonaxisymmetric numerical background plasma show its good conservation properties for both FO and GC models.

First investigations on the confinement of fast electrons during a simulated thermal quench phase are conducted after the successful module verification. In this case, the inductive electric field is neglected in order to avoid a prompt electron acceleration.

Simulation shows that the thermal quench magnetic chaos flattens the electron initial distribution inducing particle losses to the divertor region. At the thermal quench end, closed flux surfaces reform firstly in the core and, secondly, at the plasma edge, reconfining the 'surviving' electrons. This result seems to support the possibility of the hot tail mechanism. In addition, evidences relating the particle distribution evolution to the magnetic field line one were found, suggesting that the main transport channel is parallel transport along field lines. This was also supported by the decrease of the number of survivors with the initial velocity increase, with a saturation occurring near the speed of light. Finally, radial dependencies of the distribution function dynamics were also identified.

Afterwards, the GC model was enlarged with the introduction of a drag force modeling Coulomb collisions between a test particle and the background plasma. This drag force allowed to define a quantity, called effective electric field, representing the net sum of the collision and electromotive forces acting on an electron. The effective electric field analysis showed that at low kinetic energies (∼1keV) the collision drag is dominant during the pre-thermal quench and current quench while, in these phases, RE can be generated for energies of ∼10keV. On the contrary, during the thermal quench, the electric field, characterised by RE accelerating and decelerating cells in a poloidally alternating pattern, overwhelms the drag force. This suggests the possible Dreicer generation onset during the thermal quench phase. This possibility was studied following 1keV GC populations from just before the complete magnetic field stochastisation up to the current quench using both collision drag and inductive electric forces. It was found that a few percents of the initial population are accelerated during the thermal quench with electron reconfinement caused by the reappearance of close flux surfaces in the plasma core after the complete stochastisation. After being trapped, hot electrons become runaways during the current quench. The effect of the central plasma resistivity, used in the MHD simulations, on the production of RE was also analysed. Results showed that a decrease of resistivity reduces the final RE number but it is not clear how to extrapolate towards realistic resistivity.

As side work, a preliminary investigation aimed at the identification of correlations between RE beam current and the current quench MHD activity in ASDEX-Upgrade experiments was conducted. It was observed that this last probably limits the RE current. Indeed, the higher the magnetic fluctuations, are the lower the RE current is. However, deeper analyses are required for confirming this trend.

In conclusion, the work presented in this thesis suggests the necessity to take into account the electron transport and acceleration taking place during a disruption thermal quench in order to achieve a correct estimation of the primary RE seed. However, the specific results described in this manuscript should by no means be considered universal. Indeed, different disruption scenarios are obtained in NIMROD simulations [57][58][59] as a function, for example, of the machine size, divertor vs limited configuration, existence and structure of the internal kink mode, different neutral gas depositions, etc. In addition, theoretical works might assume different magnetic topologies. An example, described in [START_REF] Boozer | Loss of relativistic electrons when magnetic surfaces are broken[END_REF], is represented by a hypothetical disruption magnetic configuration consisting of a broad stochastic region bounded by an annulus of closed flux surfaces which are progressive destroyed in time. Also, a quantitative validation of the presented simulations is not achieved yet. Indeed, the numbers of hot electrons presented in Chapters 3 and 4 are probably overestimated.

In fact, simulations predict that a few percents of the initial population is capable to achieve RE conditions while, in the experimental practice, a hundred times smaller fraction would be sufficient to carry the whole plasma current.

As it was discussed, the lack of quantitative validation might be due to the parametric settings used for obtaining the JOREK MHD simulations. Indeed, they can be different from the experimental ones, especially, when large tokamaks, such as JET, are considered. On the other hand, more realistic plasma parameters may be used when smaller size tokamaks, such as Compact Assembly (COMPASS) and TCV, are studied. In this respect, it may be a good strategy to use medium-to-small size tokamak disruption simulations in order to validate both the MHD and fast particle codes. However, large machine simulations should not be abandoned. In fact, despite the difficulties found in performing a one-to-one match between numerical and experimental results, experimental trends might be recovered. For example, one possible application of this kind is the analysis of the dependencies between the RE production and the discharge plasma current and/or the type of injected impurity found in JET [START_REF] Reux | Runaway electron beam generation and mitigation during disruptions at JET-ILW[END_REF]. These dependencies might be studied using the JOREK fast particle tracker code. Of special interest might be the investigation of the JET RE existence domain as a function of the toroidal magnetic field intensity and the fraction of injected argon. Indeed, this might furnish a deeper understanding on the mitigating effect of the interactions between the MHD activity and the plasma collisionality. Another possibility is represented by the study of plasma configurations, such as limiter and divertor geometry, plasma elongation or neutral gas injection position, on the RE generation. For example, a definitive explanation of the reduced RE production in plasma divertor configuration is not achieved yet. Another application should be the investigation of the shattered pellet injection effectiveness in mitigating the RE which is of high importance for the design of the ITER disruption mitigation system. Despite the large variety of physical problems which can be studied using the JOREK fast particle tracker in the present form, further developments are possible.

The first possible improvement regards the implementation of a more refined collision operator. Indeed, the current drag force model does not take into account the pitch angle scattering, the particle thermalisation and the drag related to the gyromotion.

This last could be included by applying the GC approximation to the drag force, after the complete definition of the GC first order transformation G 1 . On the other hand, the first two effects are related to stochastic processes and would require the implementation of a stochastic ordinary differential equation solver. For the FO case, collisions have to be solved with a direct Monte Carlo method in order to preserve the phase space volume conservation, while for the GC pusher either a direct Monte Carlo or a Langevin integrator can be applied [START_REF] Särkimäki | Adaptive time-stepping monte carlo integration of Coulomb collisions[END_REF]. Another amelioration is the introduction of more advanced particle shape functions for fastening the distribution function convergence. It should be remarked that the shape functions in physical space have to be the JOREK basis functions. Finally, a long term development would be the self-consistent coupling between JOREK and its fast particle tracker. Indeed, one of the present code configuration limitations is that only populations small enough not to modify the background solution can be simulated. This 'trace' approximation is valid only when the moments of a supra-thermal electron population, such as current, density and pressure, are negligible with respect to the plasma ones. This condition might be valid for the thermal quench phase but it is definitely not satisfied during the beam onset and plateau phases. Thus, a self-consistent coupling between the MHD and fast particle codes is required for their study.
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 3 subséquemment, une accélération régulière par le champ E de la DC. Les simulations prédisent donc la formation d'une grande quantité d'ED (comme mentionné plus haut, 1% doit ici être considéré comme un grand nombre). Cependant, le cas simulé n'a en fait produit aucun ED mesurable. Le scénario de formation d'ED observé dans ces simulations ne peut donc être considéré que comme une possibilité qualitative et des efforts sont nécessaires pour réconcilier simulation et expérience dans un sens quantitatif. Le désaccord pourrait bien venir de la simulation JOREK, qui n'a pas été entièrement validée quantitativement par rapport aux mesures expérimentales, et pas du module de particules tests lui-même. En fait, certains paramètres de la simulation JOREK sont connus comme non réalistes. C'est le cas de la résistivité qui est, pour des raisons numériques, un facteur 5 plus grande que la valeur expérimentale. Afin d'estimer les conséquences de ce fait, l'étude ci-dessus a été répétée pour des simulations JOREK à différentes résistivités (encore plus grandes). Les résultats montrent qu'une plus grande résistivité engendre des champs E plus grands avant et après la DT (mais de façon intéressante pas pendant la DT). La production d'ED croît donc avec la résistivité mais, même s'il est difficile de faire une extrapolation robuste, la tendance ne semble pas assez forte pour réconcilier simulation et expérience. L'interaction entre l'activité MHD durant la DT et la production d'ED est très difficile à analyser en détail expérimentalement. Cependant, des études statistiques peuvent révéler des tendances intéressantes. Par exemple, plusieurs machines ont trouvé une corrélation négative entre l'amplitude des fluctuations magnétiques pendant ou juste après la DT, telles que mesurées par des bobines de Mirnov, et la production d'ED. Ceci pourrait être une indication qu'une plus grande activité MHD résulte dans un plus fort déconfinement des électrons rapides et donc une moindre production d'ED. Le chapitre 5 présente une étude réalisée sur des données collectées sur ASDEX Upgrade visant à voir si une telle tendance y existe aussi. Pour un jeu de disruptions issues d'expériences sur les ED, le courant d'ED mesuré est comparé à plusieurs indices construits à partir des mesures de bobines de Mirnov censés représenter l'intensité de l'activité MHD. Le courant d'ED maximal semble bien décroître lorsque l'activité MHD devient plus intense, mais des analyses plus poussées sont recommandées pour consolider cette conclusion.
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 11 Figure 1.1: Specific binding energy per nucleon as a function of nucleon mass number. The upper figure represents the light nucleus region of the lower one. Unfilled circles represent unstable (radioactive) nuclei while filled circles represent stable (nonradiactive) nuclei [4].
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 11 Figure 1.1 (lower plot) shows that nuclei having mass numbers between iron and nickel are the most stable elements (maximum of binding energy) while lighter and heavier ones are respectively stabilised by increasing (fusion reaction) and decreasing (fission reaction) their mass number. Moreover, the upper plot of Figure 1.1 suggests as easiest fusible elements the ones in the range hydrogen-boron, for which some examples of reactions are reported below [55][89]:
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 12 Figure 1.2: Tunneling distribution for 1keV (magenta line), 10keV (red line) and 100keV (blue line) thermal populations. For comparison purposes the 1keV and 10keV distributions are respectively magnified by a factor of 10 6.5 and of 10 2 .
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 13 Figure 1.3: An example of a natural magnetised plasma interacting with the Earth atmosphere seen from the International Space Station. Credits: National Aeronautics and Space Administration
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 1415 Figure 1.4: A gravitational confinement nuclear fusion reactor. Credits: National Aeronautics and Space Administration -Solar Dynamics Observatory
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 16 Figure 1.6: The Wendelstein 7-X stellarator (Wendelstein 7-X Magnetic Confinement Fusion nuclear reactor) is presented in the upper plot while the lower one shows the Wendelstein 7-X magnetic surface visualisation obtained via electron beam -fluorescence detector method. Courtesy of Max Planck Institute for Plasma Physics -Greifswald
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 17 Figure 1.7: The WEST tokamak (upper plot) and its vacuum chamber (lower plot). Courtesy of Atomic Energy Commission -Institute for Magnetic Fusion Research

  is a translation at velocity v along the magnetic field direction b = B/ B . The second is a rotation around the magnetic field line (shown in Figure 1.8) characterised by an angular velocity of ω gyro = (q B )/m and radius, called Larmor radius, of ρ = (m v ⊥ )/(q B ), where v ⊥ denotes the velocity perpendicular to b.
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 18 Figure 1.8: Gyromotion. Courtesy of the Massachusetts Institute of Technology
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 19110 Figure 1.9: Curvature drift. R c and F cf denotes respectively the magnetic field curvature radius and the 'centrifugal' (drift) force. Courtesy of the Massachusetts Institute of Technology
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 13111 Figure 1.11: E × B drift. Courtesy of the Massachusetts Institute of Technology
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 112 Figure1.12: The main tokamak components and its plasma confined within are represented in the left plot while the right one shows a schematic of tokamak plasmas having circular closed magnetic surfaces. In the right plot R and a are respectively the major and minor radii, r, z, φ and θ identify the radial, vertical, toroidal and ploidal coordinates while B φ and B θ are associated to the toroidal and poloidal magnetic fields.
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 113 Figure 1.13: Left and right plots present respectively a limiter and divertor plasma configurations.
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 2 Figure 1.14: An ITER tokamak representation. Courtesy of ITER Organisation
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 115 Figure 1.15: Representation of an external kink mode[START_REF] Schnack | Lectures in Magnetohydrodynamics[END_REF] 
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 116 Figure 1.16: Magnetic island chain (upper plot) and island details (lower plot) [69]
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 117 Figure 1.17: Representation of a ballooning mode: Courtesy of the University of Maryland -Institute for Research in Electronics and Applied Physics
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 1 Figure 1.19: A schematic of the tokamak operational domain. The upper density and current limits are set in order to avoid disruptions while the lower density one is imposed by the generation of runaway electrons [42].
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 120 Figure 1.20: Bending of a PFC due to eddy currents generated during a disruption in the Tore Supra tokamak
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 1 Figure 1.20.
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 1 Figure 1.21: A schematic of a vertical displacement event and its induced currents in ITER. Different lines represent different currents, forces and electric and magnetic fields. Green and red arrows are respectively associated to halo and eddy currents [68].
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 1 Figure 1.22: Schematics of the JET massive gas injection system DMV1 and DMV2 [62][60].

Figure 1 .

 1 Figure 1.23: A concept of shattered pellet injector for the DIII-D tokamak [22].
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 1 Figure 1.24: Schematic representing an electron distribution as a function of the friction force and kinetic energy. Electrons within the region delimited by the plasma electric field E and the critical one E c become runaways. E D denotes the Dreicer field.

Figure 1 .

 1 Figure 1.25: PFC damage caused by RE strike in a JET disruption experiment. The left plot show the melted PFC while the right one is a infrared image of the RE heat deposition onto the wall (in red)[START_REF] Reux | Runaway electron beam generation and mitigation during disruptions at JET-ILW[END_REF] 
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 1 Figure 1.26: A schematic of the ITER Disruption Mitigation System[START_REF] Lehnen | Disruption in ITER and strategies for their control and mitigation[END_REF] 

24 ) thus p 2 =

 242 const which implies that γ(p 2 ) = const. Secondly, we use the skewsymmetric matrix representation of the ×B (where B = [B 1 , B 2 , B 3 ] T ) operator:

  and 2.2 which show respectively the orbit and the conservation errors of a 1MeV passing electron immersed in an analytic 3T tokamak-like axisymmetric circular cross-section plasma (time step and total simulation time are respectively of ∆t = 0.014 • T gyro and T = 1µs).
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 21 Figure 2.1: VPA-calculated 1MeV passing electron orbit (left-plot) and a zoom on its gyro-orbit (right plot). The simulation was conducted using a time step of ∆t = 0.014•T gyro for a total simulation time of T = 1µs.
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 22 Figure 2.2: Kinetic energy (upper left) and canonical toroidal momentum (upper right) VPA conservation error profiles for a 1MeV passing electron simulated using a ∆t = 0.014•T gyro for T = 1µs. The lower plot reports the magnetic moment dynamics with respect to its initial value.
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 45 In Eqs.(2.45) only the first order symplectic part ω 1 is gyroangle-dependent via ⊥(χ), thus the Hamiltonian component is left unchanged. Applying Eq.(2.44) to the symplectic part of Eqs.(2.45) and keeping the terms up to the ∼ O(1) order, we can write:

  2.56) where Π and where ζ are respectively the Poisson and Lagrange tensors and ω GC,α is the symplectic part of Eq.(2.54). Defining A * = qA + p b and B * = ∇ × A * respectively the effective vector potential and magnetic field, the GC Poisson tensor is:

T∼E ⊥ ∼ ρ L 1 ,

 1 O( ) 1, with T gyro defined in subsection 2.3. 2 The electromagnetic field length scale L has to be much larger than the gyroradius ρ: ρ L ∼ O( ) 1, where ρ = p-p b |q|B [64]. 3 The particle displacement in a gyro-period along b has to be small compared to the electromagnetic field parallel variation length scale L : is an estimate from Eq.(2.60) of the GC parallel displacement. 4 The electric field has to satisfy |E | having defined E = E•b and E ⊥ = E -E b . This condition results from the preservation of the GC ordering consistency between Eq.(2.49) and Eqs.(2.60)(2.61).
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 2 Figure 2.3 compares solutions of a {E kin = 10keV, θ = 80 • } trapped electron evolv-
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 23 Figure 2.3: Cash-Karp Runge-Kutta (CKRK5(4)) trapped orbit test: comparison between non-controlled and time-step controlled solutions: red, magenta and blue lines denote respectively solutions using N step = 1.5 • 10 5 , N step = 1.5 • 10 3 and N step = 1.5 • 10 3 with time step control (N step is the total number of time steps). The upper plot is the orbit poloidal cross-sections, the middle plot shows the energy conservation error while the lower one is the time step control time step profile.
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 24 Figure 2.4: Relative energy error (upper plot) and CPU computational time (lower plot) for different integrators: blue, magenta lines define respectively the Cash-Karp, Dormand-Price Runge-Kutta. Round (res. triangular) markers are non-controlled (res. time-step controlled) solutions.
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 25 Figure 2.5: Hermite-Birkhoff sinusoidal interpolation test: the upper, middle and lower plots refer to the full interpolation, a zoom on the positive maximum and the function derivative. The exact solution is given in blue while ochre, red and magenta are related to the following derivative discretisation: linear, linear with shift and quadratic.
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 26 Figure 2.6: Hermite-Birkhoff Heaviside's function test: upper and lower plot report respectively the interpolation and its derivative. The exact, interpolated and monotonic constrained solutions are respectively given in blue, red and green.

Figure 2 .

 2 Figure2.6 upper and lower plots show respectively the interpolant and its derivative behaviours applied to the Heaviside's function case. These plots confirm that the unconstrained spline (red line) is afflicted by a non-monotonic overshoot in the proximity of the exact solution (blue line) discontinuity. Conversely, the monotonic constrained one (green line) properly recovers the Heaviside step but not its 'derivative' (δ-Dirac distribution). However, the current JOREK fast particle tracker time interpolation routine does not include this feature in order to avoid the scheme loss of accuracy at function extrema, reported in Figure2.7.
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 27 Figure 2.7: Hermite-Birkhoff sinusoidal test: upper and lower plot report respectively the interpolation and its derivative. The exact, interpolated and monotonic constrained solutions are respectively given in blue, red and green.

Figure 2 .

 2 Figure 2.7 presents the monotonic constraint application to the f (x) = sin(πx)

  88) where {∆R, ∆Z} o = {R, Z} -{R, Z} o having identified with {R, Z} o the position obtained evaluating the Bézier surface at {r, s} o while J(r, s) is the Jacobian matrix of the {r, s} → {R, Z} transformation. The Newton solver ends if the error err o-1 = (R -R o-1 ) 2 + (Z -Z o-1 ) 2 is below a pre-set tolerance or a maximum number of iterations is reached. If {r, s} / ∈ [0, 1] × [0, 1], the routine selects a new element from the neighbourhood in function of the edge crossed by the particle and uses the transformation given in Table
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 28 Figure 2.8: JOREK mesh (left) and macro patches (right). In blue, red, magenta, yellow and green are respectively depicted the following macro patches: closed flux surfaces, open flux surfaces, left leg, private fluxes and right leg.

  is the magnetic filed intensity. In addition to the E kin and θ choices, the FO case also requires the selection of a gyroangle χ from a uniform distribution (tan(χ) = p•e ⊥ p•e ∇ψ , having defined e ∇ψ = ∇ψ-(∇ψ•b) ∇ψ-(∇ψ•b) and e ⊥ = b × e ∇ψ and denoting with ψ the poloidal magnetic flux) thus, the FO initial momentum is:

  [START_REF] Nardon | Progress in understanding disruptions triggered by massive gas injection via 3D non-linear MHD modelling with JOREK[END_REF]. GC and FO orbits are calculated for a physical time of ∼ 1ms in equilibrium (axisymmetric) and pre-disruptive (non-axisymmetric) MHD fields which are kept constant in time. This particular choice allows testing the conservation of invariants of motion such as the total energy (which is equivalent to the kinetic one for the equilibrium case) and the total canonical momentum (only for the equilibrium case) as functions of the time step (∆t) choice. In each field we simulated both a passing electron (E kin = 10MeV, θ = 170 • , χ = 0 • where θ is the pitch angle) and a trapped one. Numerical assessment of the integrators performances in chaotic fields and the GC validity conditions are also reported.We start our discussion considering the FO and GC solutions in the stationary axisymmetric field (initial electron position R = 3.25m, Z = 0.22m and φ = 45 • ). Figure 2.9 shows the Poincaré plots of the FO (in red) and GC (in green) solutions with respect to the field line positions (in blue) for the passing electron case. The left plot shows that the particle orbit forms a closed torus called drift surface which is outwardly shifted with respect to the magnetic one. This shift is caused by the grad-B and the curvature drifts which intensifies with the increase of E kin[START_REF] Abdullaev | Magnetic stochasticity in magnetically confined fusion plasmas, chaos of field lines and charged particle dynamics[END_REF][39][START_REF] Brizard | Compact formulas for guiding-center orbits in axisymmetric tokamak geometry[END_REF].

Figure 2 . 9 :

 29 Figure 2.9: Passing orbit in stationary axis symmetric field (left) and details of the particle gyro-orbit (right): red, green and blue dots are respectively FO, GC and field lines positions.

Figure 2 .

 2 Figure 2.10 (left plot) presents the banana shaped orbits typical of a trapped particle.

Figure 2 . 10 :

 210 Figure 2.10: Trapped orbit in stationary axis symmetric field (left) and details of the orbit tip (right): red, green and blue dots are respectively FO, GC and field lines positions.

Figure 2 .Figure 2 . 12 :

 2212 Figure 2.11: Passing FO orbit in stationary axis symmetric field: E tot (left) and P φ (right) conservation error profiles. Black, red and magenta lines correspond to solutions having time step of ∆t = [0.14, 0.014, 0.0014]•T gyro

Figure 2 .

 2 Figure 2.11 reports the total energy, E tot , (left plot) and toroidal canonical momentum P φ , (right plot) numerical errors of the 10MeV core-passing FO simulations (VPA). Different line colours are associated to different ∆t. In addition, the maximum FO E tot and P φ conservation errors for all test cases are reported in Figure 2.12.

Figure 2 . 13 :

 213 Figure 2.13: Passing GC orbit in stationary axis symmetric field: E tot and P φ conservation error profiles. Black, red, magenta and green lines are respectively calculations having time step of ∆t = [14, 1.4, 0.14, 0.014]•T gyro .

Figure 2 .

 2 Figure 2.14: GC energy and toroidal canonical momentum error profiles for 1ms simulations in stationary axis symmetric fields. The time step is normalised to the electron gyro-period T gyro .

Figure 2 . 15 :

 215 Figure 2.15: Benchmark between ASCOT (magenta lines) and JOREK fast particle tracker (blue lines): upper left and right plots compare the two codes respectively for 10MeV passing and 1MeV trapped orbits. The lower plot magnifies the trapped orbit central section.

Figure 2 . 16 :

 216 Figure 2.16: Passing orbit in a m = 2, n = 1 magnetic island (non-axis symmetric field): red, green and blue dots are respectively FO, GC and field lines positions.

Figure 2 .

 2 Figure 2.17 upper and lower plots report the E tot conservation error time profiles for respectively FO and GC simulations of passing electrons initialised within a m = 2, n = 1 magnetic island (orbits shown in Figure 2.16). Different colours are associated to different simulation time steps.

Figure 2 . 17 :

 217 Figure 2.17: Passing orbit in m = 2, n = 1 magnetic island: energy conservation error profiles for FO (upper left and right plots) and GC (lower plot) models. Black, red and magenta lines in the FO plots correspond to solutions having time step of ∆t = [0.14, 0.014, 0.0014]•T gyro . Black, red, magenta and green lines in the GC plot are associated to calculations using time step of ∆t = [14, 1.4, 0.14, 0.014]•T gyro .

Figure 2 .

 2 Figure 2.18: GC (dashed lines) and FO (solid lines) energy error profiles for 1ms simulations in a m = 2, n = 1 magnetic island. The time step is normalised to the electron gyro-period T gyro .

1 .

 1 The comparison between the plasma density and the magnetic field Poincaré plot highlights that the highest n e increase is achieved within the m = 2, n = 1 magnetic island (n e = 1.25•10 20 m -3 ) which induces a strong plasma cooling and a contraction of the toroidal current density profile. The current density T e (keV) n e • 10 20 ( 1 m 3 ) j φ ( MA m 2 ) Poincaré plots Table 3.1: Poloidal cross sections at φ = 45 • of electron temperature, toroidal current density, electron density and magnetic field line Poincaré plots (from left to right) at times: t = 0.00ms, t = 3.55ms, t = 4.03ms, t = 6.94ms (from top to bottom).

Figure 3 .

 3 Figure 3.1 shows the kinetic energy time profile of a population having ψinit = 0.05 and E kin = 1keV respectively including (left plot) and cutting (right plot) the ∂ψ ∂t term. Clearly, in the first case electrons are accelerated up to > 5keV before the TQ phase

Figure 3 . 2 :

 32 Figure 3.2: Pseudo-Poincaré plots for populations initialised in the plasma core, for different times in the simulation: left, middle and right plots are respectively associated to pre-TQ, TQ and CQ phases. Violet (resp. red) dots are electrons with an initial kinetic energy of 1keV (resp. 10MeV) while black dots are magnetic field lines.

Figures 3 .

 3 Figures 3.2 and 3.3 are composed of electron pseudo-Poincaré plots (violet and red dots) for populations initialised in the plasma core ( ψinit = 0.05, Fig. 3.2) and edge ( ψinit = 0.7, Fig. 3.3) regions underlayed with magnetic field line Poincaré plots (black dots). Pseudo-Poincaré plots are defined as plots representing the nearest particle positions with respect to a reference poloidal plane within specified time and toroidal angle intervals. All pseudo-Poincaré plots presented in this study refer to a poloidal plane placed at φ = 45 • with a time and toroidal angle tolerance of δφ = ±30 • and δt = ±0.05ms. Plots in Figures 3.2 and 3.3 are taken at different disruption phases: the left, middle and right plots are respectively pictures of the distribution state during the pre-TQ, TQ and CQ phases. Violet dots are positions associated to electrons initialised at 1keV while red dots corresponds to the E kin = 10MeV case.

Figure 3 . 3 :

 33 Figure 3.3: Pseudo-Poincarés plot for populations initialised at the plasma edge, for different times in the simulation: left, middle and right plots are respectively associated to pre-TQ, TQ and CQ phases. Violet (resp. red) dots are electrons with an initial kinetic energy of 1keV (resp. 10MeV) while black dots are magnetic field lines.

Figure 3 . 4 :

 34 Figure 3.4: Electron loss time profiles for initial energies of 1keV (upper plot) and 10MeV (lower plot) and various initial radii (each colour is associated to a specific ψinit ).

Figure 3 . 4 :

 34 Figure 3.4: the 1keV (upper plot) loss profile slopes are less pronounced than in the 10MeV case (lower plot). The end of the loss (second) phase is set by the reformation of closed magnetic surfaces (right plot of Figures 3.2 and 3.3). Remarkable differences are found between 1keV and 10MeV distribution behaviours. While in the first case the slopes are smoothly reduced to zero, in the second an earlier and almost instantaneous particle losses termination occurs. The explanation of such differences is based on the relative velocity at which electrons are transported toward the open flux region. In both 1keV and 10MeV cases, electrons in the core region are promptly confined when closed magnetic surfaces reappear there. A different fate expects particles outside the

Figure 3 . 5 :

 35 Figure 3.5: Comparison between guiding center (solid lines) and full orbit (dashed lines) simulations. Different cases are associated to different line colours.

Figure 3 . 6 :

 36 Figure 3.6: Fraction of electrons surviving the plasma disruption as a function of their initial kinetic energies and positions. This last are identified with multiple colours

Figure 3 . 7 :

 37 Figure 3.7: Distribution of magnetic field lines (solid lines), 1keV (dashed-dotted lines) and 10MeV (dashed lines) electrons after 0 (black), 1 (blue) and 2 (red) toroidal turns. The ψinit = 0.05 case is reported in the upper plot, the middle plot refers to ψinit = 0.7 and the lower one shows the ψinit = 0.95 case. A narrow Heaviside function is used for radial initialisation purposes.

Figure 3 . 8 :

 38 Figure 3.8: Magnetic field line Poincaré plots at φ = 45 • . The field line evolution for initial positions of ψinit = 0.05, ψinit = 0.7 and ψinit = 0.95 are respectively reported in the top-left, top-right and middle-bottom plots. Colours identify the ψinit = 0.7 (res. ψinit = 0.05 and ψinit = 0.95) solutions after different numbers of toroidal turns.

  α e = n e ln(Λ e ), α i = N species j=1 n ji Z ji ln(Λ ji )

  α e = nln (Λ ef ) + n D 2 ln (Λ eb ) (4.16)

E

  kin = 1keV E kin = 10keV E kin = 100keV Poincaré plot Table 4.1: Effective electric field (×7.26•10 8 V m ) at φ = 45 • for a pitch angle of 170 • . From top to bottom different disruption instants are reported: pre-TQ (t=3.55ms), TQ beginning (t=3.83ms) and fully developed TQ (t=4.03ms). Kinetic energies of [1, 10, 100] keV are shown from left to right. Blue and red shades represent respectively regions of accelerating and decelerating E eff . A column-wise reading of both Tables 4.1 and 4.2 shows the E eff evolution for the times: [3.55, 3.83, 4.03, 4.21, 6.94]ms while a row-wise scan allows comparisons between different energies. A Poincaré plot is also provided for each time. For a good understanding of the E eff plots, it should be mentioned that in JET the plasma current (I p ) and the toroidal magnetic field are in the same direction while RE are E kin = 1keV E kin = 10keV E kin = 100keV Poincaré plot Table 4.2: Effective electric field (×7.26•10 8 V m ) at φ = 45 • for a pitch angle of 170 • . From top to bottom different disruption instants are reported: TQ termination (t=4.21ms) and CQ beginning (t=6.94ms). Kinetic energies of [1, 10, 100] keV are shown from left to right. Blue and red shades represent respectively regions of accelerating and decelerating E eff .

Figure 4 . 1 :

 41 Figure 4.1: Decomposition of the E kin = 1keV E eff (×7.26•10 8 V m ) during the pre-TQ phase (t=3.55ms): left and right plots report respectively the collision drag and the E at φ = 45 • . Blue and red colours represent respectively regions of accelerating and decelerating field.

Figure 4 . 2 :

 42 Figure 4.2: Electric scalar (left) and vector (right) potential contributions to the E (×7.26•10 8 V m ) at the beginning of the CQ (t=6.94ms). Blue and red colours represent respectively regions of accelerating and decelerating field

Figure 4 . 3 :

 43 Figure 4.3: Kinetic energy (upper plot) and parallel momentum (lower plot) time profiles for a population initialised in the plasma core region with a kinetic energy of 1keV for the simulation early phase. Green lines are lost particles while red and blue lines are respectively particles having final energy above and below 1MeV.

Figure 4

 4 

Figure 4 .

 4 Figure 4.4 reports the electron Pseudo-Poincaré and the field line Poincaré plots for the times: t=0.005ms (top left), t=0.05ms (top right), t=0.1ms (bottom left) and t=0.2ms (bottom right). Red, blue and green dots denote respectively electrons having final kinetic energy above 1MeV, below 1MeV and lost particles while field line positions are identified with black dots. As discussed in Chapter 3, Pseudo-Poincaré plots represent the nearest particle positions to a specific poloidal plane within a given time interval.Figure 4.4 is obtained using the φ = 180 • plane as reference, a toroidal

Figure 4 .

 4 4 is obtained using the φ = 180 • plane as reference, a toroidal angle interval of ±30 • and a time window of ±0.005ms. As observed in Chapter 3, the magnetic stochasticity destroys the initial particle torus (Figure4.4 top left plot) spreading electrons in the whole plasma volume (Figure4.4 top right plot). In this simulation, electrons dispersed outside the plasma centre do not reach runaway energies. Indeed, they are either lost to the wall (green dots) or decelerated to low kinetic energies (blue dots) probably due to the MGI-induced increase of collisionality in the plasma outer region. Conversely, those remaining close to the magnetic axis

Figure 4 . 4 :

 44 Figure 4.4: Pseudo-Poincaré plots (φ = 180 • ) for a 1keV population initialised at the plasma core, for different simulation times: t=0.005ms (top left), t=0.05ms (top right), t=0.1ms (bottom left) and t=0.2ms (bottom right). Red, blue and green dots correspond respectively to electrons having final E kin ≥ 1MeV, final E kin < 1MeV and lost particles. Black dots represent the field line positions.
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 5 Figures 4.5and 4.6 report the RE final radial distribution for a set of initial kinetic

  Figures 4.5 and 4.6 report the RE final radial distribution for a set of initial kinetic energies and initial radial positions respectively.

Figure 4 .

 4 Figure 4.5 reports the final RE radial distribution averaged over all initial radii in terms of normalised poloidal flux, for different kinetic energies. Clearly, RE are focused in the plasma core region ( ψ ≤ 0.2). This beam-like focusing happens independently from the particle initial position as shown in Figure 4.6 for the 1keV case.
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 45 Figure 4.5: RE final radial positions (averaged over all ψinit ). Black, blue, red, magenta and green lines are respectively associated to initial kinetic energies of [1, 5, 10, 25, 50]keV.

Figure 4 . 6 :

 46 Figure 4.6: RE final radial positions for an initial kinetic energy of 1keV. Each line colour is associated to a specific initial radial position.

Figure 4 .

 4 Figure 4.7 upper and lower plots present respectively the fraction of electrons having final kinetic energy above 1MeV and lost to the wall as a function of the initial radial position, for a range initial kinetic energies. A first observation of the Figure 4.7

Figure 4 . 7 :

 47 Figure 4.7: Fraction of electrons having final kinetic energy above 1MeV (top plot)and lost to the PFCs (bottom plot). Black, blue, red, magenta and green lines are respectively associated to initial kinetic energies of[START_REF] Abdullaev | Magnetic stochasticity in magnetically confined fusion plasmas, chaos of field lines and charged particle dynamics[END_REF][START_REF] Beam | Alternating direction implicit methods for parabolic equations with a mixed derivative[END_REF][START_REF] Boozer | Loss of relativistic electrons when magnetic surfaces are broken[END_REF][START_REF] Connor | Relativistic limitations on runaway electrons[END_REF][START_REF] Hirvijoki | Doctoral dissertation: Theory and Models for Monte Carlo simulations of minority particle population in tokamak plasmas[END_REF]keV.

3 :

 3 Poincaré and E eff (E kin = 1keV, θ = 170 • ) plots of the TQ and CQ phases for simulations with different plasma resistivities: top, middle and bottom plots refer respectively to η 0 of 10 -5 , 10 -6 and 10 -7 .
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 48 Figure 4.8: Plasma current from the first gas-plasma interactions to the CQ beginning: the experimental data is the black line while blue, magenta and red lines denote respectively the 10 -5 , 10 -6 and 10 -7 JOREK MHD simulations.

Figure 4 .

 4 Figure 4.9: CQ dIp dt linear regression (normalised to the experimental value) in function of the plasma resistivity: red, black and magenta lines represent respectively the experimental value, JOREK simulations and their extrapolation to the experimental η 0 .

Figure 4 . 10 :

 410 Figure 4.10: Fraction of electrons having final kinetic energy above 1MeV in function of the initial plasma resistivity for different initial kinetic energies (averaged over all initial radial positions). Black, blue, red, magenta and green lines correspond t respectively to initial E kin of 1keV, 5keV, 10keV, 25keV and 50keV

  This analysis is based on the elaboration of the Mirnov coil signals obtained during the ASDEX-Upgrade disruption CQ phase (from shot 31318 to 34183). We used measurements coming from four different coils: mid-plane low field side (C09-01), mid-plane high field side (C09-16), top (C09-09) and bottom (C09-26). The Mirnov coil positions in ASDEX-Upgrade are shown in figure 5.1.

Figure 5 . 1 :

 51 Figure 5.1: Magnetic coil positions in ASDEX-Upgrade tokamak: left and right figures are respectively poloidal and horizontal cross-sections. Light green indicates Mirnov coils, dark green boxes highlight the analysed Mirnov coils, in red and light blue are reported respectively the ballooning coils and the Passive Stabilising Loops (PSL). Courtesy of Max Planck Institute for plasma physics -Garching (Germany)

Figure 5 . 2 :

 52 Figure 5.2: Normalised initial RE current vs. FOM-energy (equation 5.1a) for the mid-plane low field side Mirnov coil: C09-01. The upper plot shows the whole FOM set while the bottom one furnishes a zoom of the region having the highest density of points. Different colours are related to different amplifier gain settings: black, red and green are respectively measurements taken with an amplifier gain of 1, 0.1 and 0.01. Labels refer to the discharge set-ups: Dq95 ≤ 3 are discharges having q 95 ≤ 3, no EZ3 are shots with malfunctioning gyrotron, ECR refers to discharges with 10ms Electron Cyclotron Resonance Heating firing, Rfo are discharges with +45 • RMP, Rni with +90 • RMP, Rnu with -90 • , 0 • , 180 • RMP, Hpl and Hep refer respectively to experiments conducted in hydrogen and helium plasmas, EVV are discharges where the ex-vessel electromagnetic valves are used instead of the in-vessel piezoelectric valves and PHe are experiments where the high-Z MGI was polluted with helium.

Figure 5 . 3 :

 53 Figure 5.3: Normalised initial RE current vs. FOM-energy (equation 5.1a) mid-plane high field side Mirnov coil: C09-16. The upper plot shows the whole FOM set while the bottom one furnishes a zoom of the region having the highest density of points. Different colours are related to different amplifier gain settings: black, red and green are respectively measurements taken with an amplifier gain of 1, 0.1 and 0.01. The discharge set-ups associated to the figure labels are described in the caption of Figure 5.2.

Figure 5 . 4 :

 54 Figure 5.4: Normalised initial RE current vs. FOM-energy (equation 5.1a) for top Mirnov coil: C09-09. The upper plot shows the whole FOM set while the bottom one furnishes a zoom of the region having the highest density of points. Different colours are related to different amplifier gain settings: black, red and green are respectively measurements taken with an amplifier gain of 1, 0.1 and 0.01. The discharge set-ups associated to the figure labels are described in the caption of Figure 5.2.

Figure 5 . 5 :

 55 Figure 5.5: Normalised initial RE current vs. FOM-energy (equation 5.1a) for bottom Mirnov coil: C09-26. The upper plot shows the whole FOM set while the bottom one furnishes a zoom of the region having the highest density of points. Different colours are related to different amplifier gain settings: black, red and green are respectively measurements taken with an amplifier gain of 1, 0.1 and 0.01. The discharge set-ups associated to the figure labels are described in the caption of Figure 5.2.

Figure 5 . 6 :

 56 Figure 5.6: Normalised initial RE current vs. FOM-max (equation 5.1b) for midplane low field side Mirnov coil: C09-01. The upper plot shows the whole FOM set while the bottom one furnishes a zoom of the region having the highest density of points. The discharge set-ups associated to the figure labels are described in the caption of Figure 5.2.

Figure 5 . 7 :

 57 Figure 5.7: Normalised initial RE current vs. FOM-max (equation 5.1b) for midplane high field side Mirnov coil: C09-16. The upper plot shows the whole FOM set while the bottom one furnishes a zoom of the region having the highest density of points. Different colours are related to different amplifier gain settings: black, red and green are respectively measurements taken with an amplifier gain of 1, 0.1 and 0.01. The discharge set-ups associated to the figure labels are described in the caption of Figure 5.2.

Figure 5 . 8 :

 58 Figure 5.8: Normalised initial RE current vs. FOM-max (equation 5.1b) top Mirnov coil: C09-09. The upper plot shows the whole FOM set while the bottom one furnishes a zoom of the region having the highest density of points. Different colours are related to different amplifier gain settings: black, red and green are respectively measurements taken with an amplifier gain of 1, 0.1 and 0.01. The discharge set-ups associated to the figure labels are described in the caption of Figure 5.2.

Figure 5 . 9 :

 59 Figure 5.9: Normalised initial RE current vs. FOM-max (equation 5.1b) bottom Mirnov coil C09-26. The upper plot shows the whole FOM set while the bottom one furnishes a zoom of the region having the highest density of points. Different colours are related to different amplifier gain settings: black, red and green are respectively measurements taken with an amplifier gain of 1, 0.1 and 0.01. The discharge set-ups associated to the figure labels are described in the caption of Figure 5.2.
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 5510 Figure 5.10: Mirnov coil measurements for shot 33505 (black), 33957 (blue) and 34148 (green). These discharges have zero FOM for the C09-16 coil and non-zero figures of merit for the C09-01

Figure 5 .

 5 11 reports the FOM energy as a function of the max ones for the C09-01 Mirnov coil measurements. This figure shows that strong dependencies between the two FOM exist indeed, it seems that a parabola could fit the FOM point distribution.

Figure 5 . 11 :

 511 Figure 5.11: Comparison between the energy and max FOM calculated using the C09-01 Mirnov coil signals (the lower plot is a zoom of the small FOM value region of the upper one). Label and colour legends are described in the caption of Figure 5.2.
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Table 1 .

 1 • 10 -50 6.22 • 10 -30 5.56 • 10 -21 1.05 • 10 -16 8.0 • 10 -16 3 He + D 2.3 • 10 -79 4.73 • 10 -43 1.49 • 10 -26 7.43 • 10 -20 4.52 • 10 -16 6 Li + D 1.02 • 10 -95 3.31 • 10 -51 6.68 • 10 -31 5.26 • 10 -22 4.9 • 10 -18 1: Reaction probabilities, in (cm 3 /s), calculated in

	1.3d 1.3k reactions are reported as given in [107].		
	T (keV)	0.01	0.1	1.0	10.0	100.0
	D + T	6.1				

Table 2 .

 2 2: Electron length and time scale estimates, as well as the order of magnitude (denoted OoM) of the critical ratios for GC validity, at different energies (see text for details)

	5	0.035	1.45	9.14	10 -4	10 -4	10 -3
	5	0.19	9.15	57.5	10 -3	10 -3	10 -2
	50	1.77	84.2	529	10 -2	10 -2	10 -1
	500	17.5	835	5245	10 -1	10 -1	10 0

Table 2 . 3

 23 

: Transform used to translate a position from a reference (k th -) element coordinates into a neighbour's (l th -element) ones

Table 2

 2 

	ρ L ∇B	l L ∇B	max(µ-<µ>) µ(t=0)	%
	Core passing orbit 5.1e-03 5.3e-02	7.8	
	Core trapped orbit 2.0e-03 2.9e-04	1.1e-01	
	Edge passing orbit 5.1e-03 7.0e-02	8.4	
	Edge trapped orbit 1.7e-03 2.7e-03	1.3e-01	

.4 reports the ρ L ∇B , l L ,∇B quantities discussed in Section 2.4 and the magnetic moment variation with respect to its initial value (FO simulations using ∆t = 1.4 • 10 -2 • T gyro )

Table 2 .

 2 4: Estimation of critical quantities involved in GC validity conditions (see Section 2.4) and magnetic moment variation for stationary axisymmetric test cases

  , E denotes the electric field and F ,coll is the collision drag defined in Equation4.15. It should be remarked that the parallel momentum equation 4.14 can be rewritten in terms of •b • µ∇B γ GC terms have small effects on the electron distribution spreading in momentum space during the TQ thus, they are not included in the E eff definition. In Tables 4.1 and 4.2, the E eff for energies and pitch angle respectively of[START_REF] Abdullaev | Magnetic stochasticity in magnetically confined fusion plasmas, chaos of field lines and charged particle dynamics[END_REF][START_REF] Boozer | Loss of relativistic electrons when magnetic surfaces are broken[END_REF][START_REF] Smith | Runaway electron generation in a cooling plasma[END_REF]keV and 170 • are reported at different times in the disruption simulation.

	effective electric field as follows:						
	dp dt	= |q|E eff -	B * B * • b	• p	∂b ∂t	+	µ∇B γ GC	(4.19)
	We point out that the B * B * •b • p ∂b ∂t and B				

* B *

The particle tracking in the JOREK non-structured mesh grid and the calculation of its position in the mesh element local coordinate system are obtained via Newton iterations with backtracking.

6 A random sampling procedure is used for initialising both FO and GC markers.In addition, a GC particle can be obtained from a FO one by equating their total energy and toroidal canonical momentum.

3 A high pass filter, having rectangular shape, is applied for eliminating the low frequency plasma movements. We set a passing frequency of 100Hz which is the highest one containing information (at higher cutting frequencies trends are lost). [START_REF] Basdevant | Fundamentals in nuclear physics: from nuclear structure to cosmology[END_REF] The magnetic perturbations (δB) are obtained integrating the filtered signal via the identity F(

iω + πX(0)δ(ω) (where F is the Fourier transform operator, x(t) is the signal in time domain which in the present work 

(5.1a)

Where B t is the toroidal magnetic field at the magnetic axis. The first one (called FOM-energy, equation 5.1a) represents the average power (in the signal processing sense) of the magnetic fluctuation signal. This FOM is chosen as a measure of the total electron transport caused by the magnetic perturbations, i.e, we might expect that short high-intensity and long low-intensity fluctuations having similar FOM-energy also have similar total electron losses. Conversely, the second one (called FOM-max in the following, equation 5.1b) is used to explore the δB strength influences on the RE beam generation as done in [START_REF] Zeng | Experimental observation of a magnetic-turbulence threshold for runaway-electron generation in the TEXTOR tokamak[END_REF]. Note that the electron spatial diffusion coefficient in chaotic magnetic field is proportional to δB 2 B 2 t .

Analysis of the results

The analysis presented in this Chapter takes into account a large number of disruptive discharges, most of which are obtained using a deuterium plasma with q 95 > 3 (called 'standard configuration' in the following). In order to distinguish pulses having a

Summary

In this chapter a first analysis of the correlations between the CQ MHD turbulence and the initial RE beam current in ASDEX-Upgrade disruption experiments is performed. This is based on an estimation of the fast (≥ 100Hz) magnetic fluctuations from different Mirnov coil data. These last are used for computing an energetic (equation 5.1a) and maximum (equation 5.1b) figure of merit characterising the CQ MHD level for each plasma discharge. Results are summarised in the following:

1 Despite the fact that the correlation between MHD activity and RE current is not perfect, a general trend is found: the higher the FOM, the lower the RE current. This may be interpreted as a sign of enhanced fast particle losses due to CQ MHD turbulence 2 The presence of Helium (He) pollutant in the disruption triggering-MGI does not allow the formation of RE beams and might increase the magnetic turbulence intensity.

3 Most of the shots having q 95 < 3 presents high magnetic perturbations and no RE current. Probably, this is related to the destabilisation of the MHD activity with consequent degradation of the particle confinement.

4 Different Mirnov coil signals can cause differences in the presented results. This can be due to coil-plasma relative positioning, different wall screening factors and saturation phenomena.

It is worth stressing that our study is preliminary but it justifies the need to increase the efforts devoted to a better understanding of the relations between MHD activity and RE beam formation mechanisms.