Joel Lehman

Jeff Clune

Dusan Misevic3

Christoph Adami

Julie Beaulieu

Peter J Bentley

Samuel Bernard

Guillaume Beslon

David M Bryson

Fred- Eric Carrere

Nick Cheney

Antoine Cully

Stephane Doncieux

Fred C Dyer

Andreas Ehinger

Kai Olav Ellefsen

Robert Feldt

Stephan Fischer

Dario Floreano

Stephanie Forrest

Antoine Frenoy

Leni Christian Gagne

Le Goff

Laura M Grabowski

Babak Hodjat

Laurent Keller

Carole Knibbe

Peter Krcah

Richard E Lenski

Hod Lipson

Robert Maccurdy

Carlos Maestre

Frederic Mansanne

Risto Miikkulainen

Sara Mitri

David E Moriarty

Jean- Baptiste Mouret

Anh Nguyen

Charles Ofria

Marc Parizeau

David Parsons

Robert T Pennock

William F Punch

Thomas S Ray

Marc Schoenauer

Eric Schulte

Karl Sims

The current chapter identifies relevant features for the resolution of tasks adapted to the current context. Then, we propose a new method to generate actions adapted to both low-level and high-level contextual states

This section introduces works of the developmental robotics literature and the learning from demonstration literature related to A 2 L. As explained in Chapter 1, our method (1) explores the robot's environment to acquire information of the interactions between the robot and an object, (2) builds skills and predictive models based on this information, and (3) validates the skills reproducing effects on objects. Therefore, this section presents works for each one of these steps. Similarly to our experiments, the works introduced in this section are performed by either anthropomorphic robots or robotics arms.

English Abstract

Robots are expected to assist us in our daily tasks. To that end, they may need to perform different tasks in changing scenarios. The number of dissimilar scenarios a robot can face is unlimited. Therefore, it is plausible to think that a robot must learn autonomously to perform tasks. A task consists in generating an expected change, i.e. an effect, in the environment, the robot configuration, or both. Therefore, the robot must learn to perform the right action on the environment to obtain the expected effect.

An approach to learning these actions is through a continuous interaction of the robot with its environment focusing on those actions producing effects on the environment. The acquired relation of applying an action on an object to obtain an effect is called affordance. During the last years many Research efforts were devoted to affordance learning. Related works cover from the learning of simple push actions on tabletop scenarios to the definition of complex cognitive architectures. These works rely on different building blocks, as vision methods to identify the position of the objects or predefined sensorimotor skills to generate effects on a constrained environment.

The use of predefined actions eases the learning of affordances, producing a rich and consistent information of the changes produced on an object. However, we claim that the use of these actions constrains the scalability of the available experiments to dynamic and noisy environments. The current work addresses the autonomous learning of a set of sensorimotor skills through interactions with an environment. Each skill must generate a continuous action to reproduce an effect on an object, adapted to the object position. Besides, each skill is simultaneously adapted to lowlevel perturbations, e.g. a change in the object position, and high-level contextual changes, e.g. a stove gets on.

Few questions arise while addressing the skill generation: first, how can a robot explore an environment gathering information with limited a priori information about it? We address this question through a babbling of the environment driven by an intrinsic motivation. We define a method, called Novelty-driven Evolutionary Babbling (NovEB), to explore possible robot's movements, while focusing on those that generate the highest novelty from the perception point of view. Perception relies on raw images gathered through the robot's cameras. A simulated PR2 robot, using this method, discovered on its own which regions of the workspace generate novel perceptions and focuses its exploration around them.

Second, how can a robot autonomously build a set of skills based on an initial information about the environment? We propose a method, named Adaptive Affordance Learning (A 2 L), which endows a robot with the capacity to learn affordances associated to an object, both adapting the robot's skills to the object position, and increasing the robot's information about the object when needed. Two main contributions are presented: (1) an interaction process with the object adapting each movement to the fixed object position, decomposing each action into a sequence of discrete movements; (2) an iterative process to increase the information about the object. These contributions are assessed in two experiments where a robot learns to push a box to different positions on a table. First, on a virtual setup on a simulated robotic arm. Finally, on a simulated Baxter robot.

Finally, we extend the previous skill generation to environments including both low-level and high-level perturbations. Initially, one or more kinaesthetic demonstrations of an action producing an effect on the object are provided to the robot, through a Learning from Demonstration approach. Then, a vector field is computed for each demonstration, generating information about the next movement to execute based on the robot context, composed of the relative positon of the object w.r.t. the robot's end-effector, and other high-level information. An action generator is learned, inferring in a closed-loop the next movement to reproduce an effect on the object based on the current robot context. In this work, a study is performed in order to select the best parametrization to build a push to the right and a grasp skill to reproduce an effect. Then, the selected parametrization is used to build a set of diverse skills, which are validated in several experiments performing tasks with different objects. The assessment of the built skills is directly performed on a physical Baxter.

French Abstract

Les robots sont censés nous aider dans nos tâches quotidiennes. À cette fin, ils peuvent devoir effectuer différentes tâches dans des scénarios changeants. Le nombre de scénarios dissemblables auxquels un robot peut faire face est illimité. Par conséquent, il est plausible de penser qu'un robot doit apprendre de manière autonome pour effectuer des tâches. Une tâche consiste à générer un changement attendu, c'est-à-dire un effet, dans l'environnement, la configuration du robot, ou les deux. Par conséquent, le robot doit apprendre à effectuer la bonne action sur l'environnement pour obtenir l'effet attendu.

Une approche de l'apprentissage de ces actions est à travers une interaction continue du robot avec son environnement en se concentrant sur ces actions produisant des effets sur l'environnement. La relation acquise de l'application d'une action sur un objet pour obtenir un effet est appelée affordance. Au cours des dernières années, de nombreux efforts de recherche ont été consacrés à l'apprentissage des affordances. Les travaux connexes couvrent l'apprentissage de simples actions saissir sur des scénarios de table à la définition d'architectures cognitives complexes. Ces travaux s'appuient sur différents blocs de construction, comme méthodes de vision pour identifier la position des objets ou des compétences sensorimotrices prédéfinies pour générer des effets sur un environnement contraint.

L'utilisation d'actions prédéfinies facilite l'apprentissage des affordances, produisant une information riche et cohérente des changements produits sur un objet. Cependant, nous affirmons que l'utilisation de ces actions limite l'évolutivité des expériences disponibles aux environnements dynamiques et bruyants. Le travail actuel porte sur l'apprentissage autonome d'un ensemble de compétences sensorimotrices à travers des interactions avec un environnement. Chaque compétence doit générer une action continue pour reproduire un effet sur un objet, adapté à la position de l'objet. En outre, chaque compétence est simultanément adaptée aux perturbations de bas niveau, par ex. un changement dans la position de l'objet, et des changements contextuels de haut niveau, par ex. un poêle s'allume.

Peu de questions se posent en abordant la génération de compétences: d'abord, comment un robot peut-il explorer un environnement rassemblant des informations avec des informations a priori a priori limitées à son sujet? Nous abordons cette question à travers un balbutiement de l'environnement animé par une motivation intrinsèque. Nous définissons une méthode, baptisée Novelty-driven Evolutionary Babbling (NovEB), pour explorer les mouvements possibles du robot, tout en mettant l'accent sur ceux qui génèrent la plus grande nouveauté du point de vue de la perception. La perception repose sur des images brutes recueillies à travers les caméras du robot. Un robot PR2 simulé, utilisant cette méthode, a découvert à lui seul quelles régions de l'espace de travail génèrent des perceptions nouvelles et concentre son exploration autour d'elles.

Deuxièmement, comment un robot peut-il construire de manière autonome un ensemble de compétences sur la base d'une information initiale sur l'environnement? Nous proposons une méthode, nommée Adaptive Affordance Learning (A 2 L), qui permet à un robot d'apprendre les affordances associées à un objet, en adaptant les compétences du robot à la position de l'objet et en augmentant les informations sur le robot. objet en cas de besoin. Deux contributions principales sont présentées: (1) un processus d'interaction avec l'objet adaptant chaque mouvement à la position de l'objet fixe, décomposant chaque action en une séquence de mouvements discrets; (2) un processus itératif pour augmenter les informations sur l'objet. Ces contributions sont évaluées dans deux expériences où un robot apprend à pousser une boîte à différentes positions sur une table. Tout d'abord, sur une configuration virtuelle sur un bras robotique simulé. Enfin, sur un robot Baxter simulé.

Enfin, nous étendons la génération de compétences précédente à des environnements comprenant à la fois des perturbations de bas niveau et de haut niveau. Initialement, une ou plusieurs démonstrations kinesthésiques d'une action produisant un effet sur l'objet sont fournies au robot, par le biais d'une approche L'apprentissage par démonstration. Ensuite, un champ de vecteur est calculé pour chaque démonstration, générant des informations sur le mouvement suivant à exécuter en fonction du contexte du robot, composé de la position relative de l'objet par rapport l'effecteur du robot, et d'autres informations de haut niveau. Un générateur d'action est appris, déduisant en boucle fermée le mouvement suivant pour reproduire un effet sur l'objet en fonction du contexte actuel du robot. Dans ce travail, une étude est effectuée afin de sélectionner la meilleure paramétrisation pour construire des compétences pousser vers la droite et saissir pour reproduire un effet. Ensuite, la paramétrisation sélectionnée est utilisée pour construire un ensemble de compétences diverses, qui sont validées dans plusieurs expériences exécutant des tâches avec différents objets. L'évaluation des compétences construites est directement réalisée sur un Baxter physique.

Four years ago I had a comfortable life in Madrid, close to my family and friends, a good job and a fancy apartment in the city center. I was in my early thirties, and I had a prosperous future in front of me. However, I needed a challenge in my life. And now I cannot be happier of the decision I chose one night at four o'clock in the morning: I was going to work with robots. Few months later I started an intership in robotics at the ISIR, in Paris, with very little knowledge about robotics and AI. That is the reason why this fantastic adventure would have not been able without the help of many people, of many friends. If I had the space to properly thank to each one of the people who helped me during my thesis, this section would become another chapter of the manuscript. However, I am going to briefly mention few people without who this manuscript would not have been possible.

Before starting with the acknowledgments I have to ask for forgiveness to the person I love more in the world, my son Leonardo: Leo, I did not spend enough time with you during more than one year to follow my personal goal working with robots. A goal that I hope someday we can share, and that it helps you in the future. I am sorry, son.

First, I would like to thank to my family for their support from the very beginning. I was able to face all the risks related to this adventure thanks to knowing they are always there for me, no matter what I do, when or where.

There is a person who always believed in me, who always supported me, who always guided my path, who corrected hundreds of times my writing, and to whom I will always be grateful: Stéphane. I did not only learn from him about robotics, but about how to make proper Research, among many other things. I also want to give special thanks to Christophe for his help to learn and apply Bayesian Networks, the core method of my work.

I believe when someone spends few years working in a place, projects come and go, but what it remains always with you is your workmates. In this sense, I am aware of how lucky I have been. I could have not find a better group of friends, with who I spent a wonderful time. I would like to specially mention Alex Vazques and Ryan Lober, much more than friends, my Parisian family. I would like also to thank Ghanim Mukhtar for all his support in my experiments. If Baxter is moving in the carried out experiments it is thanks to him. I also would like to mention to the group of friends who started at the same time that me as as inters, the excellent team of the famous J01, the Spanish corner guys at the lunch time, among others. And other wonderful people I met out of the lab, who helped me to chill, and who also helped in my French evangelization, as faire du pique-nique, aller aux musées, manger pheasant au jouer à la petanque.

When people ask me what I do in life I always say the French government pays me to play with robots. Although being a joke it is partially true, and that is why I also want to thank all the support from the ISIR, from the thesis grants to the isfy internal or external goals by its own actions while in continuous long-term interaction with the environment in which it is situated" (Beer, 1995, page 173). Autonomous robots are expected to help us in our daily tasks 1 . Depending on the complexity of the task goal to reach, the capacities of the robot need to be versatile enough to adapt to the situations it will be faced with. For instance, in order to clean an area a vacuum cleaner robot just executes one of its available behaviors reacting to the sensory information acquired through its sensors [START_REF] Forlizzi | Service Robots in the Domestic Environment: A Study of the Roomba Vacuum in the Home[END_REF]. Conversely, in order to reach certain location an autonomous car must analyze the sensory information and combine it with previous knowledge to plan the next steps to perform, accordingly adapting its behavior to its environment [START_REF] Thrun | Stanley: The robot that won the DARPA Grand Challenge[END_REF]. Therefore, a robot performing a complex task should understand its environment to select and execute the next adapted action to reach the task goal.

A robot can be endowed with built-in capacities defined by a designer. In constrained environments a robot can reach a task goal using them. However, in unconstrained environments the number of dissimilar scenarios a robot can face is unlimited. Similarly, it is very complex to foresee all the situations in which a robot can be involved. For example, the Spirit rover behavior was programmed by a team of engineers to wander around a specific area in Mars gathering information [START_REF] Sanderson | Mars rover Spirit (2003-10)[END_REF]. Nevertheless, during the wandering it became entrapped into a sandpit, and it was unable to release itself because of not being programmed for it. More recently, during the last DARPA Robotic Challenge [START_REF] Atkeson | What Happened at the DARPA Robotics Challenge and Why[END_REF] several robots failed to perform a trial due to the fact that the execution of builtin actions under incorrect circumstances. One trial consisted in turning a valve 360 degrees to the left. The robot of the NEDO-JSK team did not situate itself properly in front of the valve, and after the execution of a built-in grasping action not grasping anything the built-in turn action made the robot fell. Therefore, it is plausible to think that a robot must develop its own behavioral capacities with the minimum a priori knowledge, and learn when to use them, in order to perform a task.

During the last decades another approach has emerged concerning the generation by a robot of its own behavioral capacities through interactions with the environment, similarly as infants do, called Developmental Robotics [START_REF] Asada | Cognitive developmental robotics as a new paradigm for the design of humanoid robots[END_REF][START_REF] Asada | Cognitive Developmental Robotics : A Survey[END_REF][START_REF] Lungarella | Developmental robotics: a survey[END_REF][START_REF] Weng | Developmental robotics: Theory and experiments[END_REF][START_REF] Meeden | Introduction to developmental robotics[END_REF][START_REF] Stoytchev | Some Basic Principles of Developmental Robotics[END_REF][START_REF] Cangelosi | Developmental Robotics: From Babies to Robots[END_REF]. The underlying idea is that through a developmental process a robot executes a trial-and-error approach learning from its failures to improve its performance. In the psychology literature there are different theories explaining infant development [START_REF] Newcombe | Cognitive development: Changing views of cognitive change[END_REF]: empiricism, which suggests that babies are born with very little initial capabilities, and knowledge is based on the experiences acquired by the sensors; nativism, in which knowledge and skills are innate to newborns; and contructivism, proposing that newborns seek for knowledge to construct their own world model, developing abstract concepts through the interaction with the environment. Based on a constructivist approach [START_REF] Guerin | A Survey of the Ontogeny of Tool Use : from Sensorimotor Experience to Planning. Autonomous Mental Development[END_REF] make a study of infant developmental process from basic actions to task planning using tools, aimed at providing insights about the developmental process to roboticists. Guerin defines two parallel tracks of development: the abstract track, composed of the abstract representations the infant uses, and the concrete track, representing the development of sensorimotor schemas [START_REF] Piaget | The origins of intelligence in children[END_REF], i.e. progressively building complex behaviors from simple ones. Sensorimotor schemas are described as the minimal unit of knowledge connecting a context, an action and an effect. More precisely, given a context an agent selects and executes the next action to produce a desired effect on an object. Although in the developmental robotics literature there is not a clear definition of context explaining its content and boundaries, based on the available works we propose a definition: Definition 1 Context: A context represents all the circumstances related to a robot-object interaction at a certain instant of time.

Definition 2 Robot-object interaction: A robot-object interaction represents the trajectory executed by the robot's end-effector to change the features of the object, and these features during the robot's movement.

A context is composed of contextual states, or just states: Definition 3 Contextual state: A contextual state represents a feature of a robot or an object related to the interaction between the robot and its environment.

There are two types of contextual states:

• low-level contextual states, or just low-level states, related to the execution of an action, i.e. motor control, represented by continuous values, e.g. an object position [START_REF] Calinon | A probabilistic approach based on dynamical systems to learn and reproduce gestures by imitation[END_REF].

• high-level contextual states, or just high-level states, representing higher level concepts related to the objects, represented by continuous and discrete values, e.g. an object color or circleness [START_REF] Montesano | Learning Object Affordances: From Sensory-Motor Coordination to Imitation[END_REF].

Guerin mentions that in psychology the terms sensorimotor schema [START_REF] Piaget | The origins of intelligence in children[END_REF], sensorimotor skill [START_REF] Fischer | A theory of cognitive development: The control and construction of hierarchies of skills[END_REF], sensorimotor process [START_REF] Smith | Toward a Unified Theory of Development Connectionism and Dynamic System Theory Re-Consider[END_REF] and perception-action routine [START_REF] Lockman | A perception-action perspective on tool use development[END_REF] can be considered as equivalent. Another close terms used in the developmental robotics literature are affordances [START_REF] Gibson | The senses considered as perceptual systems[END_REF] and behavior [START_REF] Sahin | To Afford or Not to Afford: A New Formalization of Affordances Toward Affordance-Based Robot Control[END_REF]. In the current manuscript, we use: Definition 4 Sensorimotor skill: A sensorimotor skill, or just skill, is the process transforming robot contextual states into robot motor commands2 .

Although the learning of skills can lead to the development of high cognitive capabilities, as the sense of agency or self-awareness [START_REF] Schillaci | Is that me? Sensorimotor learning and self-other distinction in robotics[END_REF][START_REF] Vernon | Artificial Cognitive Systems[END_REF], in the current manuscript skills are focused on generating actions to accomplish a task.

For a given context, it is supposed that a task requires the execution of a sequence of skills. When a skill produces the expected effect the next skill runs. This process continues until the task goal is reached. It is possible that a task plan cannot be executed, e.g. an effect cannot be produced or an object disappears from the environment, and thus a new task planning must be performed. Works in the robotics literature in which a robot learns to perform a task can be clustered in two groups:

• Learning predictive models: the predictive models learn the relation of the high-level states of the context. Task resolution is based on a planning process relying on these models, sometimes called affordances. An affordance is initially defined as the actions an agent can afford to execute through direct perception of an object [START_REF] Gibson | The senses considered as perceptual systems[END_REF][START_REF] Gibson | The Ecological Approach to Visual Perception[END_REF]. In robotics, it has been defined as the acquired relation of applying an action on an object to obtain an effect [START_REF] Sahin | To Afford or Not to Afford: A New Formalization of Affordances Toward Affordance-Based Robot Control[END_REF] (see Section 2.1.3 for an elaborated description discussion). In most of the experiments within the affordance literature a built-in repertoire of skills is available. In these works, given the contextual high-level states and an effect to produce, the predictive models based on affordance knowledge infer which skill among the available ones can reproduce the effect. Then, a task planner selects the skill related to the selected action, and the built-in skill executes the action based on the contextual low-level states (see top of Figure 1.1). A comparison of related works is available in Section 2.1.3.

• Building skills: in these works an action is demonstrated to a robot by an external agent, based on an approach called Learning from Demonstration, LfD (further explained in Section 2.1.1). Then, a method learns a skill to reproduce the action. These works focus on the learning of one or few actions, and thus there is no need to perform a task planning, i.e. the designer in charge of the experiment directly selects the skill to run. The skill execution is driven by a motion primitive based on the low-level states of the context (see workflow at the middle of Figure 1.1). A motion primitive (MP) generates a continuous motion of a robot's end-effector reproducing a demonstrated action. The learned MPs are robust to changes, i.e. perturbations, during the execution of an action produced externally or by the lack of accuracy of robot sensors. Perturbations represent either spatial or temporal changes [START_REF] Gribovskaya | Learning Nonlinear Multivariate Dynamics of Motion in Robotic Manipulators[END_REF]. Spatial perturbations are those related to a change of the spatial values of a state. For example, changes of the initial position of the robot's end-effector w.r.t. the object position before the execution of an action, or changes of the object position during the execution. Temporal perturbations are those related to a change of the duration of an action, i.e. if the robot's end-effector gets stuck or delayed during the execution of the action. A comparison of related works is available in Section 2.1.2.

We have identified several gaps in the current robotics literature w.r.t. the autonomous performance of tasks using objects: first, there is a lack of works combining task planning based on predictive models with motion control, i.e. combining high-level action selection with low-level adaptive action execution. To the best of the authors' knowledge, [START_REF] Kroemer | A Kernel-based approach to Direct Action Perception[END_REF] is the only work combining these features. In this work, a pouring task experiment is executed, in which a robotic arm grasps a watering can and pours water into a glass. The main objective of this experiment is to use affordance knowledge to learn predictive models mapping subparts of objects to MPs based on direct perception.

Second, in the same vein, the execution of a skill is disconnected from the robot cognitive architecture, i.e. it is a black box for the architecture. A skill is evaluated by the visual result obtained when executing an action, i.e. the designer of an experiment evaluates if the effect of the action is as expected. If the effect is not as expected the designer analyses the execution of the skill to improve the skill performance. We consider that providing a trace of the internal skill process to the cognitive architecture can be useful in higher-level stages to identify behavioral regularities, which can be exploited for transfer learning and generalization techniques.

Finally, in the experiments available in the developmental robotics literature, contexts are limited to high-level states affording similar actions on objects, e.g. shape and dimension to push, grasp and stack objects [START_REF] Szedmak | Knowledge propagation and relation learning for predicting action effects[END_REF]. Conversely, in daily environments object contextual states comprehend both high-level and low-level states. We suggest that in order to scale up the use of the learning methods used in the literature to our daily environments these methods should si-multaneously address both types of states. Besides, high-level states should also represent different and less stable features. For instance, the context of a robot cooking a piece of meat can be composed of different types of high-level states, e.g. the meat size, quite stable, and the meat color, less stable, together to low-level states, e.g. the meat position. As a consequence of the constant stability of the high-level states in the literature, actions executed by skills are only reactive to low-level states, not reacting to changes of high-level states.

At this point a question arises: how can a robot autonomously build skills

• in contexts with different levels of complexity,

• simultaneously adapting to both -low-level spatio-temporal perturbations -and high-level state changes,

• and generating a trace of its internal functioning.

Adaptive Affordance Learning (A 2 L)

We propose a method named Adaptive Affordance Learning (A 2 L) that autonomously builds skills to reproduce effects on objects. Given a dataset of interactions the method builds on-the-fly an ad hoc skill to infer an action reproducing an effect (see workflow at the bottom of Figure 1.1). Actions are inferred based on the robot context. More precisely, actions are inferred adapted to the low-level and high-level contextual states representing features of the robot and its environment at each instant of time. In order to simultaneously adapt to both types of contextual states they are discretized, based on a discretization configuration. In the current manuscript, this configuration is empirically computed based on experience. A 2 L is composed of two complementary processes:

• Skill Building: given a dataset of interactions this process builds skills that infer actions to reproduce an effect on an object.

• Iterative Interaction Acquisition and Validation: an iterative process generating new interactions and validating them.

Given a dataset of interactions the skill building process generates one or more skills. A skill is an action generator.

Definition 5 Action: An action is a sequence of movements to reproduce an effect on an object. Definition 6 Action Generator: An action generator infers a movement to reproduce an effect given a context.

Definition 7 Movement: A movement is a displacement of the robot's end-effector between two subsequent instants of time to reproduce an effect.

of the close loop performed by a skill is very short, A 2 L uses discrete values to represent effects, movements, and low-level and high-level states. Effects are already discrete. Movements and contextual states are discretized in the previous step, and thus the available repertoire of movements and contextual states is already discretized. Therefore, the output of this step is an action generator that infers discrete movements to reproduce an effect in an object based on discrete low-level and high-level contextual states.

In order to build a skill, the repertoire must contain movements and low-level states representing the execution of the action. Besides, it can also represent highlevel states defining the circumstances in which the action can be executed. For example, a repertoire can be composed of movements and low-level states representing how a robot can press a button from different relative positions of its end-effector. Therefore, A 2 L would build a skill pressing the button from those positions. However, if the button can be only pressed under certain circumstances, e.g. a stove is off, the dataset would be extended with this high-level state. And thus A 2 L would build a skill to press the button from the relative positions only when the stove is off; either if this is a consequence of a robot action, or if it was externally turned on. This feature provides to a higher-level stage with a high flexibility to decide the circumstances in which an action can be executed, i.e. it allows a robot to perform an action in different contexts.

The iterative process generates a dataset of interactions, used to build the skills, through interactions of the robot with its environment. The process consists of three phases, executed in an iterative fashion: in the first phase, called Interaction Acquisition, an exploration of the robot's environment is performed. The result of this exploration is a dataset of interactions. This dataset can be alternatively provided to the robot through a demonstration by an external agent (LfD). The second phase, called Skill Generation, executes the Skill building process for the current dataset of interactions. In the third phase, called Interaction Validation, the skill obtained in the previous phase is executed to reproduce a set of effects on an object. In a closed loop, the action generator analyses the context, both low-level and high-level states, and infers the next movement of the end-effector to execute, adapted to the object position. Thus, the dataset of interactions used to build the skill is validated. The iterative process stops after the phase 3 if all the effects are reproduced or after a preset number of iterations is reached. Otherwise, the phase 1 is executed again.

A 2 L relies on a previous developmental stage, consisting in the identification of the relevant contextual states for a skill. E. J. Gibson calls to this process differentiation [START_REF] Gibson | Perceptual Learning in Development: Some Basic Concepts[END_REF][START_REF] Gibson | The World Is So Full of a Number of Things: On Specification and Perceptual Learning[END_REF], which is out of the scope of our work (a recent and relevant approach is available in [START_REF] Jonschkowski | Learning state representations with robotic priors[END_REF]; [START_REF] Jonschkowski | PVEs: Position-Velocity Encoders for Unsupervised Learning of Structured State Representations[END_REF]). Besides, although a robot endowed with A 2 L can autonomously learn to interact with the environment to reproduce an effect, the execution of the method requires some a priori information, e.g. the discretization. This information is described in the next chapters while describing the method.

Contributions

The main contributions of A 2 L and thus of the current manuscript are:

• The autonomous generation and validation of the dataset of interactions.

• The online generation of skills based on a repertoire of discrete movements and states.

• The execution of actions simultaneously adapted to spatio-temporal perturbations and high-level contextual changes.

• The generation by the skills of a discrete trace which can be exploited in higher-level stages, for example for transfer learning or generalization.

• Regarding the study of the state-of-the-art, a literature survey focused on action selection and execution is available in Section 2.1.2.

Dissertation Outline

Chapter 2 This chapter covers the state-of-the-art of different areas of the developmental robotic literature related to the proposed method. First, some psychology insights explaining how infants interact with the environment are provided. In order to acquire contextual states relevant for a task, both the exploration of an environment driven by intrinsic motivations, and the skill learning from demonstration are detailed. The affordance theory is introduced and some relevant works are explained. Afterwards, a comparison of different works reproducing actions previously demonstrated by an external agent are described. Finally, some works focused on task planning are described.

Chapter 3

The methods on which A 2 L relies are described in this chapter, i.e. Novelty Search for the exploration of an environment, hill-climbing and K2 to learn the action generator, a diffeomorphic matching algorithm to generate actions robust to low-level spatio-temporal perturbations, and PDDL (Planning Domain Definition Language) as task planner in experiments validating the generated repertoire of states.

Chapter 4 We present a method named Novelty-driven Evolutionary Babbling (NovEB), designed to perform a task-agnostic exploration of an unknown environment. Its main feature is to look for actions that maximize novelty in the raw sensorimotor space. It is based on Novelty Search [START_REF] Lehman | Abandoning objectives: evolution through the search for novelty alone[END_REF], which relies on Evolutionary Algorithms driven by a behavior novelty criterion. The outcome of this approach is a raw dataset representing the interactions of a PR2 robot with its environment, which can be exploited by methods as A 2 L. The content of this chapter has been published in [START_REF] Maestre | Bootstrapping interactions with objects from raw sensorimotor data: a Novelty Search based approach[END_REF].

Chapter 5 This chapter presents the two complementary processes of A 2 L: the Iterative Repertoire Acquisition and Validation and the Skill Builder. A robot autonomously explores its environment using random actions building a repertoire of discrete movements and low-level states. The environment is static, i.e. the position of the objects only changes when the robot touches them. An experiment is executed in simulation, pushing a box in different directions on a table. Once the repertoire is available, the states are tested by the physical Baxter continuously pushing the box. The content of this chapter has been introduced in [START_REF] Maestre | Bootstraping manipulation skills to learn affordances in open-ended environments[END_REF] and published in [START_REF] Maestre | Iterative affordance learning with adaptive action generation[END_REF].

Chapter 6

The Skill Builder available in Chapter 5 is updated to build skills robust to perturbations, using both low-level and high-level states. The states are built using raw data directly demonstrated to a physical Baxter robot by an external agent, i.e. learning from demonstration [START_REF] Billard | Handbook of Robotics Chapter 59 : Robot Programming by Demonstration[END_REF]). The assessment of the generated skills is directly performed on the Baxter through a set of experiments performing tasks of increasing complexity. The content of this chapter has been partially presented in Maestre et al. (2017a).

Chapter 7 This chapter discusses about the obtained results by the method. Also it identifies some drawbacks, and it proposes how to address them in future works.

Chapter 8 Finally, some general conclusions of the manuscript are presented.

Publications

In conference proceedings:

• Maestre, C., Mukhtar, G., Gonzales, C., and Doncieux, S. (2017, September). Iterative affordance learning with adaptive action generation. In IEEE International Conference on Developmental and Learning and on Epigenetic Robotics (ICDL-Epirob). Referenced in the bibliography as [START_REF] Maestre | Iterative affordance learning with adaptive action generation[END_REF].

• Maestre, C., Cully, A., Gonzales, C., and Doncieux, S. (2015, August). Bootstrapping interactions with objects from raw sensorimotor data: a Novelty Search based approach. In IEEE International Conference on Developmental and Learning and on Epigenetic Robotics (ICDL-Epirob). Referenced in the bibliography as [START_REF] Maestre | Bootstrapping interactions with objects from raw sensorimotor data: a Novelty Search based approach[END_REF].

In workshops:

• Maestre, C., Mukhtar, G., Gonzales, C., and Doncieux, S. (2017, October). Context-Based Generation of Continuous Actions to Reproduce Effects on Objects. In the Third International Workshop on Intrinsically Motivated Open-ended Learning (IMOL). Referenced in the bibliography as Maestre et al. (2017a).

• Maestre, C., Mukhtar, G., Gonzales, C., and Doncieux, S. (2016, September). Bootstraping manipulation skills to learn affordances in open-ended environments. In the workshop Autonomous Perception: Applying Sensorimotor Contingencies and Predictive Processing to Developmental Robotics (ICDL-Epirob). Referenced in the bibliography as [START_REF] Maestre | Bootstraping manipulation skills to learn affordances in open-ended environments[END_REF].

• Ecarlat, P. and Cully, A. and Maestre, C. and Doncieux, S. (2015, September). Learning a high diversity of object manipulations though an evolutionarybased babbling. In the workshop Learning Object Affordances (IROS).

• Legoff, L. and Maestre, C. and Doncieux, S. (2015, September). Visual saliency-based babbling of unknown dynamic environments. In the workshop Learning Object Affordances (IROS).

To appear:

Interacting with the Environment

A robot can be endowed with built-in knowledge to interact with its environment defined by a designer. However, as discussed in Section 1.1 this approach constrains the number of situations and environments the robot can face. During the last decades an approach has emerged concerning the generation by a robot of its own skills and predictive models through interactions with the environment, similarly as infants do. This is called Developmental Robotics [START_REF] Asada | Cognitive developmental robotics as a new paradigm for the design of humanoid robots[END_REF][START_REF] Asada | Cognitive Developmental Robotics : A Survey[END_REF][START_REF] Lungarella | Developmental robotics: a survey[END_REF][START_REF] Weng | Developmental robotics: Theory and experiments[END_REF][START_REF] Meeden | Introduction to developmental robotics[END_REF][START_REF] Stoytchev | Some Basic Principles of Developmental Robotics[END_REF][START_REF] Cangelosi | Developmental Robotics: From Babies to Robots[END_REF]. The underlying idea is that a robot improves its performance executing a trial-and-error approach, learning from its failures.

Neuroscience has revealed how action is coupled to perception [START_REF] Kandel | Principles of Neural Science, Fifth Edition[END_REF][START_REF] Snyder | Coordinate transformations for eye and arm movements in the brain[END_REF][START_REF] Buneo | Direct visuomotor transformations for reaching[END_REF][START_REF] Gallivan | Decoding the neural mechanisms of human tool use[END_REF] and infant psychology has demonstrated that action is key in the development of cognition [START_REF] Adolph | Physical and Motor Development[END_REF][START_REF] Von Hofsten | Action, the foundation for cognitive development[END_REF], 2013). The capabilities of a robot endowed with A 2 L are similar to those capabilities infants acquire at early stages [START_REF] Jamone | Affordances in psychology, neuroscience and robotics: a survey[END_REF]. By 7-8 months of age infants pose a repertoire of basic actions, such as grasping, holding and shaking, allowing them to perform a goal-free exploration of their environment called motor babbling [START_REF] Meltzoff | Explaining Facial Imitation: A Theoretical Model[END_REF]. At this age, babbling involves performing actions on single objects. The result of this babbling is the identification of actions and its posterior correlation to effects [START_REF] Elsner | Effect anticipation and action control[END_REF]. At around 9 months of age, infants use this knowledge to learn object affordances [START_REF] Adolph | Gibson's Theory of Perceptual Learning[END_REF]. They use the acquired affordance knowledge to perform simple tasks, i.e. achieving simple goals predicting the changes of the environment [START_REF] Piaget | The origins of intelligence in children[END_REF]. Infants of 12 months of age are able to learn more complex action-effect mappings by imitating other agents' actions and demonstrations [START_REF] Want | How do children ape? Applying concepts from the study of non-human primates to the developmental study of 'imitation' in children[END_REF], and thus to extend their affordance knowledge.

Information Acquisition

A key step to learn to interact with the environment is the acquisition of information to build models to that end. In the analyzed works there are two main approaches:

• (i) the robot explores the environment in an unsupervised fashion using motor babbling, similarly as infant exploratory activities, e.g. mouthing, feeling, licking, and shaking. Exploration reduces uncertainty [START_REF] Gibson | Principles of perceptual learning and development. Principles of perceptual learning and development[END_REF] and improves predictability [START_REF] Gibson | Has psychology a future?[END_REF]. Motor babbling is performed either randomly or driven by an intrinsic motivation [START_REF] Barto | Intrinsically motivated learning of hierarchical collections of skills[END_REF]. The exploration is performed as an iterative process in which the acquired information is analyzed and used to define the next robot action.

• (ii) the robot acquires the information from a demonstration performed by an external agent. This is called Learning from Demonstration (LfD), or Programming by Demonstration (PbD). In the current manuscript, we focus on supervised kinesthetic demonstrations of interactions of a robot with an object, i.e. demonstrations in which an external agent performs an action moving a robot end-effector.

Unsupervised Exploration

Random motor babbling consists in arbitrarily modifying the values of a robot's end-effector in order to move it. [START_REF] Mugan | Autonomous Learning of High-Level States and Actions in Continuous Environments[END_REF] and [START_REF] Demiris | From motor babbling to hierarchical learning by imitation: a robot developmental pathway[END_REF] are examples of works that use this type of explorations to bootstrap their systems. Random motor babbling provides the capacity to explore an environment with very little a priori information. For example, not providing information about the composition of the environment, only providing the capacity of executing actions, i.e. providing the robot's kinematic model. However, it also presents some limitations. On one hand, it can execute many movements that do not produce any contact with the objects composing the scene, repeatedly exploring regions not providing any information. On the other hand, when an interaction happens it has a small impact, if any, on the rest of the babbling process.

Baldassarre and Mirolli (2013) provides a complete study of intrinsic motivations, providing both a theoretical explanation and references to key related works. In this work three types of intrinsic motivations are defined: (i) prediction-based intrinsic motivations, exploring the less predictable areas of the environment state space; (ii) novelty-based intrinsic motivations, focused on the regions generating more novel results in the robot perception; and (iii) competence-based intrinsic motivations, prioritizing the exploration of regions where the learning of skills is higher.

A relevant work based on intrinsic motivations is [START_REF] Oudeyer | Intrinsic Motivation Systems for Autonomous Mental Development[END_REF], which proposes an exploration method called Intelligent Adaptive Curiosity. Endowed with this method a robot executes actions in its search space and it uses the corresponding data to train predictors, called experts, which progressively get specialized in different regions of the sensorimotor space. The next action to apply is then randomly chosen in the action space covered by the expert with the maximum learning progress. This method has been used in different works, for example to explore an environment by a robot [START_REF] Mugan | Autonomous Learning of High-Level States and Actions in Continuous Environments[END_REF] or for phonetic learning [START_REF] Moulin-Frier | Curiosity-driven phonetic learning[END_REF]. Recently, [START_REF] Baranes | Active learning of inverse models with intrinsically motivated goal exploration in robots[END_REF]; Forestier and[START_REF] Forestier | Overlapping waves in tool use development: A curiosity-driven computational model[END_REF] have extended the method allowing one to use it in more complex and challenging scenarios, for instance using tools.

Supervised Demonstrations

In Billard's own words: "LfD is not a record and play technique. LfD implies learning, henceforth, generalization" (Billard andCalinon, 2016, page 1995). Namely, given one or more demonstrations a robot can learn to perform an action that can be applied in contexts different from those in which the demonstrations were performed. Moreover, a robot can learn to reach a task goal learning from demonstrations all the required actions. This sequence of actions can be demonstrated to a robot in two different ways: on the one hand, performing all the task during a single demonstration. Then, this demonstration can be segmented into actions relevant for the task [START_REF] Zimmer | Action('set-food-dish', preconditions=(('at', 'stove-power', 'on'), ('at', 'food-coocking[END_REF][START_REF] Kulić | Incremental learning of full body motion primitives and their sequencing through human motion observation[END_REF][START_REF] Niekum | Learning and generalization of complex tasks from unstructured demonstrations[END_REF]. On the other hand, different actions can be individually demonstrated to the robot. Once this repertoire of actions is available the objective would be learning the right sequence of action execution in order to reach the task goal. This sequence could be also demonstrated to the robot in a second stage, or it could be autonomously learned by the robot, for example using Reinforcement learning [START_REF] Schaal | Is imitation learning the route to humanoid robots[END_REF]. Relevant examples of works using LfD to build a skill generating an action are described in Section 2.1.2

Building skills

This section presents some of the most relevant works learning motion primitives, i.e. MPs, reproducing an action. These action demonstrations are usually performed by an external agent, and thus works reproducing actions are within the LfD literature (Section 2.1.1). In Table 2.1 there is a comparison of these works.

The variables selected for the comparison represent the features identified in Section 1.1 for the execution of actions interacting with the environment to solve a task: discrete representations to handle high-level states changes, a strong inference capability to infer the next action to perform, and mechanisms to be robust to spatio-temporal low-level perturbations. Besides, other features studied within the motor control literature are added: the stability of a MP, the number of examples needed for the learning, and the combination of different MPs to reproduce an unseen action. Paraschos categorizes MPs in trajectory-based representations and state-based representations: "Trajectory-based primitives typically use time as the driving force of the movement. They require simple, typically linear, controllers, and scale well to a large number of DoFs. In contrast, state-based primitives do not require the knowledge of a time step but often need to use more complex, non-linear policies." (Paraschos et al., 2017, page 2). On the one hand, trajectory-based MPs are based on dynamical systems (DS), which represent motion as time-independent functions. The principal disadvantage of DS is that they do not ensure the stability of the system. A relevant method to represent trajectory-based MPs is Dynamical Movement Primitives, i.e. DMPs [START_REF] Ijspeert | Learning Attractor Landscapes for Learning Motor Primitives[END_REF][START_REF] Ijspeert | Dynamical movement primitives: learning attractor models for motor behaviors[END_REF]. This method adds an external stabilizer based on time to generate stable motion. In the current work, the term stable includes global asymptotic stability, i.e. motions converge towards a single position, where the velocity profile of the robot's end-effector tends to zero. A drawback of time-dependent DS is the generation of inappropriate accelerations of motion during execution if the end-effector gets delayed with regard to the expected execution. The delay can be externally produced, e.g. by another agent, or it can be the result of the unexpected interaction with the environment. [START_REF] Pastor | Learning and Generalization of Motor Skills by Learning from Demonstration[END_REF] and [START_REF] Muelling | Learning to select and generalize striking movements in robot table tennis[END_REF], among others, introduce few improvements to the original DMPs. ProMP [START_REF] Paraschos | Probabilistic Movement Primitives[END_REF][START_REF] Paraschos | Using probabilistic movement primitives in robotics[END_REF] represents a relevant enhancement improving most of the features in the same framework. For example ProMP are time-independent and stable, avoiding the previous drawback. Also, the action execution is consistent with regard to spatial perturbations at any position of the executed trajectory; and MPs are learned from multiple combined demonstrations. It is important to underline that trajectory-based MPs do not have inference capabilities.

On the other hand, state-based MPs are time-independent with inference capabilities by definition. Also, multiple demonstrations are provided, and therefore there is no need to combine MPs. States are represented by Gaussian functions, and computed based on the demonstrated trajectories of the robot's end-effector. For a specific position of the robot's end-effector, weights are computed using Hidden Markov Models (HMM) to identify the next state based on the current state. Once the state is available, the motion is computed using Gaussian Mixture Regression (GMR). The initial works [START_REF] Calinon | On learning, representing, and generalizing a task in a humanoid robot[END_REF][START_REF] Calinon | A probabilistic approach based on dynamical systems to learn and reproduce gestures by imitation[END_REF][START_REF] Calinon | Encoding the time and space constraints of a task in explicit-duration hidden Markov model[END_REF] do not generate stable actions. This drawback was solved in posterior studies by a method called Stable Estimator of Dynamical Systems (SEDS) (Khansari-Zadeh andBillard, 2011, 2014; ities provided by objects to the agent. [START_REF] Jones | What Is an Affordance?[END_REF] explains that Gibson updated this definition during his lifetime. For instance, in his last work [START_REF] Gibson | The Ecological Approach to Visual Perception[END_REF] affordance is defined as not only being part of the environment, but it is related to the relation of an agent and its environment. Other ecological psychologists provide different interpretations of what an affordance is. For example, while [START_REF] Turvey | Affordances and Prospective Control: An Outline of the Ontology[END_REF] and [START_REF] Stoffregen | Affordances as Properties of the Animal-Environment System[END_REF] define affordances as properties, [START_REF] Chemero | An Outline of a Theory of Affordances[END_REF] defines them as relations between particular aspects of the agent and particular aspects of the environment. These different interpretations have in common that "an affordance manifests itself in relation to the action and perception capabilities of a particular actor" (Jamone et al., 2016, page 4). Also, they are directly perceived by the agent. [START_REF] Steedman | Plans, Affordances, And Combinatory Grammar[END_REF] makes the relation of a robot's action with its environment and the corresponding change, i.e. effect. In the same vein, from a robotics point of view [START_REF] Sahin | To Afford or Not to Afford: A New Formalization of Affordances Toward Affordance-Based Robot Control[END_REF] formalized affordances as the acquired relation of applying a behavior on an entity to obtain an effect:

(effect, (entity, behavior)) [START_REF] Montesano | Learning Object Affordances: From Sensory-Motor Coordination to Imitation[END_REF] provides a pragmatical definition, in which an affordance is the acquired relation of applying an action on an object to obtain an effect (see Figure 2.1). The Skill Builder presented in Chapter 5 and 6 gets inspiration from this formalization to create skills.

In this section predictive models either rely on affordance knowledge or are based on deep learning techniques. In the works learning predictive models, actions are usually considered as built-in knowledge, externally tailored by a designer. Therefore, the objective of a predictive model is to choose the right built-in action to perform, which is later executed in an open-loop. These works are only robust to spatial perturbations before the execution of an action, i.e. to the object position, not adapting the action to spatial and/or temporal perturbations during its execution. This offline spatial adaptation is usually externally hard-coded by the experiment designer. This low adaptation capability can result in the inability to scale up the executed experiments to realistic setups.

The works depicted in Tables 2.2 and 2.3 are categorized based on the classification available in [START_REF] Jamone | Affordances in psychology, neuroscience and robotics: a survey[END_REF]. The relevant categories for the current manuscript are Pioneering works representing those first studies where the initial insights to learn the relation between objects and actions were identified; Representing the effects is the category with more related works, including A 2 L, and extends the previous action-object relations to take into account the corresponding effect; Multi-object interaction represents affordances among several objects; and finally Multi-step prediction represents the use of affordances in high-level task planners to solve complex tasks.

The goal of most of the pioneering works [START_REF] Krotkov | Robotic Perception of Material[END_REF][START_REF] May | GPU-accelerated affordance cueing based on visual attention[END_REF][START_REF] Metta | Better Vision through Manipulation[END_REF]Fitzpatrick and Metta, 2003) was the improvement of object perception through actions. More precisely, the identification of an affordance through the observation of the result performing actions on an object, e.g. rollability. Posterior works (Fitzpatrick et al., 2003;[START_REF] Stoytchev | Toward Learning the Binding Affordances of Objects: A Behavior-Grounded Approach[END_REF] attempts to learn the relation between the action and the obtained result, trying to choose the best action to reproduce it. These works identify simple changes on objects, and thus the complexity of the performed actions is low, i.e. from random actions to built-in tap or poke actions modifying the contact angle.

In contrast, the works representing the effects focus on the learning of an inverse model to reproduce a previously observed effect on an object. [START_REF] Dearden | Learning forward models for robots[END_REF] is the first work to propose representing the forward model using Bayesian Networks (BN) in this context. The BN infers the expected visual perception of opening and closing a gripper. Afterwards, the same authors [START_REF] Demiris | From motor babbling to hierarchical learning by imitation: a robot developmental pathway[END_REF] transform the learned BN into an inverse model, inferring the motor commands to play imitation games. Because of the simplicity of the effects, these works use random motor commands as actions. [START_REF] Hart | A Relational Representation for Procedural Task Knowledge[END_REF] uses a classical approach for built-in actions. The action is split up into an approach phase where the robot's end-effector moves to a predefined position with regard to the object, and a final phase where the effector actually performs the action, i.e. in this case grasp. This work also uses a probabilistic approach to represent the inverse model. Inspired by the previous works, [START_REF] Lopes | Affordance-based imitation learning in robots[END_REF]; [START_REF] Montesano | Learning Object Affordances: From Sensory-Motor Coordination to Imitation[END_REF] define an affordance as a BN representing the relation between action, object and effect (see Figure 2.1). They provide built-in grasp, tap, and touch actions to also play imitation games. In these works, the execution of the actions depends on some free parameters, as the height of the robot's end-effector related to the object. [START_REF] Osório | Gaussian Mixture Models for Affordance Learning using Bayesian Networks[END_REF] extended these works improving the robustness to noisy environments, representing the perceptual information as GMM. [START_REF] Ugur | Affordance learning from range data for multi-step planning[END_REF][START_REF] Ugur | Goal emulation and planning in perceptual space using learned affordances[END_REF] define a very complete framework for imitation games. They define a set of experiments, as cleaning a table or move an object to a specific position, where a robotic arm executes a sequence of built-in push and grasp actions. Ridge et al. (2010) is another example of affordances learning performed by a robotic arm. However, this is one of the few works using Neural Networks (NN) to represent the affordance knowledge. The objective of [START_REF] Kopicki | Learning to predict how rigid objects behave under simple manipulation[END_REF] is to learn to predict effects on a set of different objects using regression techniques in a probabilistic framework using a built-in push action. [START_REF] Mugan | Autonomous Learning of High-Level States and Actions in Continuous Environments[END_REF] is a end-to-end work endowing a robot to learn to autonomously perform tasks from continuous perception. Although Mugan does not specifically mention affordance learning, he defines a Dynamical Bayesian Network (DBN) to represent an inverse model to choose the right action to reproduce an effect. Notice that a DBN infers actions taking time into account. The proposed methodology is evaluated by a simulated robot grasping an object in a tabletop setup using a built-in grasp action. In [START_REF] Hermans | Learning contact locations for pushing and orienting unknown objects[END_REF] a PR2 robot uses a built-in push action on few objects to either displace them in straight line or to rotate them. In [START_REF] Hangl | Robotic playing for hierarchical complex skill learning[END_REF] a robot uses a built-in push action to rotate a book. Besides, the book is lifted using a grasp action. Also, a flip action is performed using both of the robot's end-effectors to open a small box. [START_REF] Chavez-Garcia | Discovering affordances through perception and manipulation[END_REF] learns the affordances of composite objects using the affordance knowledge of the elementary objects. The authors use continuous values of the random variables relying on Gaussian Inference Diagrams [START_REF] Shachter | Gaussian Influence Diagrams[END_REF].

Multi-object interactions has gathered many research attention during the last years, mainly focused on the use of tools to reproduce effects on objects. Jain andInamura (2011, 2013) use a BN to model affordances to push and pull objects using tools with different features. Similarly, Goncalves et al. (2014a,b) use this approach to extend the work performed by [START_REF] Montesano | Learning Object Affordances: From Sensory-Motor Coordination to Imitation[END_REF] to be applied using tool. The approach is validated on tapping, pushing and pulling objects. A different and promising approach is used in [START_REF] Dehban | Denoising Auto-encoders for Learning of Objects and Tools Affordances in Continuous Space[END_REF][START_REF] Dehban | A Deep Probabilistic Framework for Heterogeneous Self-Supervised Learning of Affordances[END_REF]. These works use Denoising Autoencoders [START_REF] Vincent | Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion Pierre-Antoine Manzagol[END_REF] to model tool affordances using continuous values in order to push and pull different objects. Conversely to tool use, [START_REF] Szedmak | Knowledge propagation and relation learning for predicting action effects[END_REF] proposes to model the interactions of 83 objects with different features. A robotic arm is assisted by a human expert to build a dataset of interactions poking and stacking pairs of objects.

In order to perform complex tasks, affordance knowledge must be used to predict a sequence of actions. Although task planning is not directly related to A 2 L it is relevant to mention few architectures that could use the skills built using our method (see Section 2.2).

In the previous works a repertoire of built-in actions was available for the affordance learning. Nevertheless, a couple of works by Ugur built this repertoire beforehand [START_REF] Ugur | Self-discovery of motor primitives and learning grasp affordances[END_REF](Ugur et al., , 2015b)). And thus they are more suitable for learning in realistic environments. In these works a built-in generic swipe action is available, which executes a trajectory of a robot's end-effector from a fixed initial position to the position of a close object. Therefore, for different object positions different trajectories are built. Nevertheless, the shape of these trajectories does not differ much among them, because of the use of the same heuristic to generate them. The behavior of each instance of the swipe action is determined by five parameters: the initial, middle and final displacement regarding the center position of the object to be reached by the effector, the moment at which the hand is closed (it is assumed to be open), and the moment at which the hand reopens again. Whereas the displacement values are obligatory, the open/close values are optional. The duration of the swipe action is fixed to five seconds. The variation of the values of these parameters allow the robot to produce different actions on an object. The changes of object features produced by those actions are clustered using the X-Means algorithm [START_REF] Pelleg | X-means: Extending K-means with efficient estimation of the number of clusters[END_REF] identifying a repertoire of skills generating the push, no touch, release and grasp actions. Other works in the same vein are [START_REF] Finn | Unsupervised Learning for Physical Interaction through Video Prediction[END_REF]; Finn and Levine (2017); [START_REF] Ebert | Self-Supervised Visual Planning with Temporal Skip Connections[END_REF], which use a deep learning technique called convolutional LSTM [START_REF] Hochreiter | Long Short-Term Memory[END_REF] in order to predict the visual output of an action. Finn builds a repertoire of continuous push actions based on an exploration performing thousands of interactions of a robotic arm with a set of objects. Ebert improves the results obtained by Finn adding a discrete lift action to move the end-effector away from the objects during the exploration (see [START_REF] Wong | Towards Lifelong Self-Supervision: A Deep Learning Direction for Robotics[END_REF] for a recent survey about applying deep learning techniques in robotics).

Performing a Task

Mugan suggests that "there are two broad planning frameworks within AI: STRIPSbased goal regression, and Markov Decision Process (MDP) planning." (Mugan, 2011, page 7).

PDDL, Planning Domain Definition Language, [START_REF] Mcdermott | PDDL -The Planning Domain Definition Language[END_REF] is a common planner used in the literature using a STRIPS-like notation [START_REF] Nilsson | Principles of Artificial Intelligence[END_REF] (further details are available in Section 3.4). Some works using PDDL are Ugur and Piater (2015a,b), which propose building planning rules based on the affordance knowledge of a set of object and effect categories identified during the exploration of an environment. The exploration is performed using the built-in grasp, release, and poke actions. Also [START_REF] Konidaris | Constructing Symbolic Representations for High-Level Planning[END_REF][START_REF] Konidaris | Symbol acquisition for probabilistic high-level planning[END_REF] use a probabilistic PDDL planner to play computer games, called PPDDL. A recent paper extends these works using PDDL to drive the actions of a physical robot performing a task consisting in moving a bottle from a cooler to a cupboard [START_REF] Konidaris | From Skills to Symbols : Learning Symbolic Representations for Abstract High-Level Planning[END_REF].

On the other hand, MDP planning [START_REF] Puterman | Markov decision processes[END_REF] is directly related to Reinforcement learning [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF], and thus it is widely used. [START_REF] Mugan | Autonomous Qualitative Learning of Distinctions and Actions in a Developing Agent[END_REF]; [START_REF] Mugan | Autonomous Learning of High-Level States and Actions in Continuous Environments[END_REF] learn predictive models as Dynamic BN, which are transformed into a MDP for task planning.

Another planner called PRADA [START_REF] Lang | Planning with noisy probabilistic relational rules[END_REF] is used by [START_REF] Antunes | From human instructions to robot actions: Formulation of goals, affordances and probabilistic planning[END_REF] to connect human command with actions. In this work, an iCub robot prepares a hamburger, as a stack game, approaching with a tool different objects when needed.

Conclusions and Open Questions

As depicted in Figure 2.2, the skills generated by A 2 L are the only skills that simultaneously adapt to perturbation in an online fashion, handle high-level and low-level information, and are able to infer actions based on uncertain information.

On the one hand, regarding the online adaptation to perturbations, the action generator of A 2 L is time-independent and relies on low-level states and movements to infer motion. Similarly to the state-based works, in our method low-level states are used to determine the robot motion. However, whereas in our method the lowlevel states are common to different robot-object interactions, as push and grasp, in these works the states are only useful to reproduce some specific demonstrations from exactly the same initial positions.

On the other hand, the skills generated by A 2 L can handle discrete representations and have a strong inference capability. And thus actions can be inferred based on movements, low-level information, e.g. object position, and high-level information, e.g. object color. And even abstract information, e.g. danger. However, handling discrete information comes at a cost: A 2 L cannot ensure stable actions. This chapter makes an introduction to the methods A 2 L relies on:

Background Contents

• In Chapter 4, an environment exploration is executed by a robot driven by our method called NovEB. This method is based on Novelty Search, which relies on evolutionary algorithms driven by an intrinsic motivation based on a behavior novelty criterion. The concept of intrinsic motivation has been already addressed in 2.1.1. Therefore, we directly introduce the concept of evolutionary robotics and evolutionary algorithms, followed by an explanation of Novelty Search.

• The action generator of A 2 L, used in Chapters 5 and 6, is implemented as a Bayesian Network (BN). BN outputs, adapted to low-level states, are translated to motor commands through a Dynamical System (DS), and to highlevel states using predictive models based on affordance knowledge (already explained in Section 2.1.3). We first provide an introduction to the BN principle, and next to other BN features used by our method, e.g. d-separation [START_REF] Pearl | Fusion, propagation, and structuring in belief networks[END_REF]. Then, the main concepts of DS are presented. Later, an explanation of the Behavioral Dynamics approach [START_REF] Warren | The dynamics of perception and action[END_REF] is available. Finally, we present the DS on which A 2 L relies. 2015).

• The system implemented for the validation experiments uses A 2 L to learn and execute skills, and a higher-level planning method to identify the sequence of actions to perform. The corresponding state-of-the-art planning methods are then introduced at the end of this chapter.

Evolutionary Algorithms

Principle

Evolutionary algorithms (EA) rely on the variation and selection principles of natural selection in order to drive a search and optimization process [START_REF] Eiben | Introduction to Evolutionary Computing (Natural Computing Series)[END_REF]. Namely, evolutionary algorithms are an abstraction of the processes and principles established by Darwinism [START_REF] Darwin | The origin of species by means of natural selection; or, The preservation of favored races in the struggle for life[END_REF]. They perform a black box optimization process just driven by a cost function called fitness function by reference to biology. It is a blind search process that is robust to noisy and multi-modal fitness functions and versatile with respect to what is optimized (bit strings, vectors of float, graphs, trees, etc). A key feature of these algorithms comes from the fact that it is a robust technique, which can you deal with a great variety of problems coming from different areas, including those in which other methods encounter difficulties. While it is not guaranteed that the evolutionary algorithms find the optimal solu-

Novelty Search

Evolutionary robotics relies on evolutionary algorithms to generate robot controllers or morphology (Doncieux et al., 2015a). They have been used to generate controllers for locomotion, navigation or foraging tasks [START_REF] Nelson | Fitness functions in evolutionary robotics: A survey and analysis[END_REF]. They have the specificity of not requiring the definition of a discrete set of actions and they can explore large sets of continuous variables, provided that they can make enough solution evaluations. These features are very interesting w.r.t the task-agnostic exploration of an environment because they can be exploited to generate actions of a high diversity avoiding premature convergence. It was recently shown that using task-independent behavior-based criteria to drive an exploration had a very significant impact on the generated results [START_REF] Doncieux | Beyond black-box optimization: A review of selective pressures for evolutionary robotics[END_REF]. Novelty Search is an evolutionary algorithm to search for novel behaviors [START_REF] Lehman | Abandoning objectives: evolution through the search for novelty alone[END_REF]. It is a task-independent method, driven by the seek of novelty (see Figure 3.2). The main features with respect to the previous algorithm are: (i) the use of a specific fitness function to compute the novelty, (ii) the comparison of individuals of different generations, stored in an archive. The novelty of an individual, i.e. a behavior, is defined as the average behavioral distance between this behavior and its k-nearest neighbors in the current population and in an archive of previously explored behaviors:

N ovelty(i, p, a) = 1 k k j=0 dist(i, neigh(i, p, a) j) (3.1)
where neigh(i, p, a) j is the jth-nearest neighbor of individual i, including the current population, p and the archive, a, with respect to the distance, dist, representing the distance between the corresponding behaviors. N ovelty(i, p, a) is then used as a fitness function in the evolutionary process. The method strongly relies on the behavioral distance used to compute novelty. This distance is typically defined in a space of behavior descriptors and is problem-specific. A related example is [START_REF] Cully | Evolving a Behavioral Repertoire for a Walking Robot[END_REF], in which a hexapod robot quickly and autonomously learns to walk in any possible direction in its vicinity, using novelty to modify the robot's controllers.

Bayesian Networks

Principle

Bayesian Networks (BN) are a graphical representation of dependencies for probabilistic reasoning, in which the nodes represent random variables and the lack of arcs represent conditional independence relationships between the variables [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems[END_REF]. More precisely, a BN is a directed acyclic graph (DAG), i.e. a collection of nodes or vertices joined by directed edges without directed cycles. The topology or structure of the network provides information about the probabilistic dependencies between the variables as Conditional Probabilistic Distributions (CPDs). CPDs are represented as tables, which grow exponentially with the number of parents of a node. This is the corresponding computational cost or complexity that is called curse of dimensionality [START_REF] Bellman | Dynamic Programming[END_REF]. Figure 3.3 shows both the topology and CPD of an example computing the probability of a grass being wet. The grass will be wet, W, if it rained that day, R, or if the sprinkler, S, run (below table).

The sprinkler runs half of the times if it was not cloudy, C. Conversely, it rains almost each time it is cloudy. In this section upper case letters represent random variables and lower case letters represent possible values of the random variables. P(X) represents the probability distribution of X, whereas P(X=x) represents the probability that the value of X is x. If there is an arc linking a node X to another node Y, X is called a father of Y, and Y is called a child of X. The parents of a node X are all the fathers of the node. If node X has no parents, its local probability distribution is taken as unconditional, otherwise it is conditional. If the value of a node is observable -and therefore labeled as observed, that node is an evidence node.

In a BN the joint probability is specified by the product of the probabilities of each variable, X i , given their parents, Pa(X i):

P (X 1 , X 2 , X 3 , ..., X n) = n i=1 P (X i |P a(X i)) (3.2)
In the previous example:

P (C, S, R, W) = P (C)P (S|C)P (R|C)P (W |S, R)

Background

The conditional probability, or posterior probability, is the probability that X=x given that Y=y:

P (x|y) = P (x ∧ y) P (y) (3.3)
And then the Bayes theorem can be used to compute P (y|x) as:

P (x ∧ y) = P (x|y)P (y) = P (y|x)P (x) (3.4) P (y|x) = P (x|y)P (y) P (x) (3.5)

Inference Capability

The probabilistic reasoning or propagation of probabilities consists in propagating the effects of the evidence through the network to know the a posteriori probability of the variables. Namely, the values of certain variables are observed, called evidence, and the posterior probability of the other variables is obtained given the known variables. For example, in the wet grass example it is possible to compute the posterior probability of the sprinkler switched on if the grass is already wet, e.g. it is already raining:

P (S = 1|W = 1) = P (W = 1|S = 1)P (S = 1) P (W = 1) = P (W = 1|S = 1)P (S = 1) P (W = 1, S = 1) + P (W = 1, S = 0)
where P (W = 1, S = 1) and P (W = 1, S = 0) can be computed using the joint probability.

In order to facilitate the inference computation, the DAG of a BN is transformed to another structure. In the current manuscript, the inference capability of a BN relies on a junction tree based inference called lazy propagation (for a detailed explanation see [START_REF] Madsen | Lazy propagation: a junction tree inference algorithm based on lazy evaluation[END_REF]). This approach allows inferring simultaneously more than one variable, if needed.

d-separation

Another relevant feature for A 2 L is the concept of d-separation [START_REF] Geiger | Identifying independence in bayesian networks[END_REF], which represents the independence model of a BN. Being P a path between two nodes X and Y, i.e. a set of arcs linking X and Y, without taking into account their directions. P is said to be d-separated by a set of Z nodes if and only if (at least) one of the following conditions is true:

• P contains a directed chain, X . . . ← M ← . . . Y or X . . . → M → . . . Y , in
which the middle node M belongs to Z,

• P contains a divergence of M, X . . . ← M → . . . Y , in which the node M belongs to Z,

• P contains a convergence to M, X . . . → M ← . . . Y , in which neither the middle node M nor its descendants belong to Z.

Thus, X and Y are said to be d-separated by Z if all the paths between them are d-separated. More precisely, two nodes X and Y are d-separated given Z whenever they are conditionally independent given Z. If X and Y are not d-separated, they are called d-connected.

Structure Learning

In order to learn the probability distribution among the random variables, a BN must have a well-defined structure. This structure can be learned (as in Chapter 5) or it can be externally defined (as in Chapter 6). Structure learning consists in finding the structure best fitting a given dataset. Structure learning is a NP-hard problem [START_REF] Chickering | Learning Bayesian networks is NP-hard[END_REF]. There are three main approaches for structure learning: (i) constraint-based approach, which first uses statistical independence tests to identify a set of arc constraints for the graph and then finds the best DAG that satisfies the constraints [START_REF] Pearl | A theory of inferred causation[END_REF][START_REF] Spirtes | Causation, Prediction, and Search[END_REF], (ii) scorebased searching approach, which searches over the space of graphical structures for a structure with maximal score [START_REF] Heckerman | A Tutorial on Learning With Bayesian Networks[END_REF][START_REF] Chickering | Optimal structure identification with greedy search[END_REF][START_REF] Buntine | Theory refinement on Bayesian networks[END_REF], and (iii) hybrid approach, which computes an initial DAG using the constraint-based approach, and refines it using a score-based searching approach [START_REF] Tsamardinos | The max-min hill-climbing Bayesian network structure learning algorithm[END_REF][START_REF] Van Dijk | A Skeleton-Based Approach to Learning Bayesian Networks from Data[END_REF]. A 2 L relies on a score-based searching approach for the structure learning.

There are two types of scoring functions: (i) Bayesian scoring functions, which compute the posterior probability distribution, starting from a prior probability distribution on the possible networks given a dataset D and on the possible parameters (CPD), and (ii) Information-theoretic scoring functions, which are based on the compression that can be achieved over D with an optimal code induced by the BN. In the current manuscript, two closely related information-theoretic scoring functions are used, penalizing a log-likelihood score, LL.

• Akaike Information Criterion (AIC) [START_REF] Akaike | A new look at the statistical model identification[END_REF]. It is mainly used when there is a large number of models to evaluate. AIC provides a measure of the relative quality of the model. Its formula is:

AIC(B|T) = LL(B|D) -k
where B represents a BN graphical structure, D represents the given data and k is the sum of the number of free parameters of B. AIC measures the fit with the likelihood and at the same time penalizes the use of many parameters.

• Bayesian Information Criterion (BIC) [START_REF] Schwarz | Estimating the Dimension of a Model[END_REF]. This scoring criterion is very similar to AIC:

BIC(B|T) = LL(B|T) - 1 2 log(N) * k
where N represents the total number of instances in the data T. It is based on maximum likelihood as fitting measure, as AIC. The measure of complexity introduces both k and log(N), penalizing more the inclusion of many variables than AIC does.

In the current manuscript two structure learning methods are used, with different a priori knowledge about the structure:

• Hill-climbing [START_REF] Chickering | Learning Bayesian networks: Search methods and experimental results[END_REF]. The method uses an iterative improvement technique. There is no initial information to drive the learning process. It starts with a BN structure, with or without arcs. At each step, it attempts to change the graph structure by a single operation of adding an arc, removing an arc or reversing an arc, preserving the acyclic property. If there are changes that increase the score, it is selected the change maximizing the score. Otherwise it makes another attempt. The method ends when there are no improvements, or when a preset number of iterations is reached.

• K2 [START_REF] Cooper | A bayesian method for the induction of probabilistic networks from data[END_REF]. A visual demonstration of its functioning is available in [START_REF] Ruiz | Illustration of the K2 algorithm for learning Bayes net structures[END_REF]. It is one of the fastest methods for structure learning in BN. A topological order of the graph is needed. It starts with a structure, possibly empty. For each random variable, the method searches among its parent set the parent that most increases the score. The method stops when no improvement can be made.

Dynamical Systems

Principle

This section makes a brief description of the main features of dynamical systems (DS) relevant for A 2 L. For a complete explanation see [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF] and [START_REF] Siciliano | Springer Handbook of Robotics[END_REF]. Dynamical systems are systems whose internal parameters, i.e. state variables, follow a series of temporary rules. They are called systems because they are described by a set of equations, and dynamical because their parameters vary with respect to some variable, usually time. A DS is autonomous if it is represented by an autonomous ordinary or unforced differential equation of the form:

ẋ = F (x) (3.6)
whereas a non-autonomous DS has the form:

ẋ = F (x, t) (3.7)
The difference between these systems lies in the fact that Equation 3.6 does not contain any external stimulus to the system dependent on the system that forces the natural behavior of the dynamics of the system, while 3.7 does. A system is time-independent if it does not depend explicitly on time. From the definition it can be concluded that every autonomous system is invariant in time. In general, a DS is invariant in time if:

x(0) = x(δ) = x 0 → x(t) = x(t + δ)∀t (3.8)
Namely, for the system to be time-independent two trajectories passing through the same point in different times will have the same evolution. If Equation 3.8 does not comply, the DS is time-dependent.

The way of visualizing the behavior of the state variables of a dynamic system can be in the form of a time series (graph of a state variable versus time), or in the form of a phase space, used in the current manuscript. The phase space of an n-dimensional system as in Equation 3.6 is the space where all the possible states of a system are represented. Each system parameter is represented as an axis of a multidimensional space and each point of the space represents each possible status of system variables. In this type of representation, time becomes an implicit parameter (see Figure 3.4).

The phase space is described by a vector field, F, which governs the path of the system variables x(t) in time, called path. It is said that a singularity of the phase space is an attractor if every trajectory that starts close to it approaches it as time passes. On the other hand, a singularity of the phase space is Lyapunov-stable if all trajectories that start sufficiently close to it remain close to it during all time. The situation may arise that a singularity of the phase space is Lyapunov-stable but it is not an attractor. If this happens it is said to be neutrally stable. However, when the two types of stability usually occur at the same time it is called asymptotically Background stable. Finally, a singularity is a repulsor when it is neither attractor nor Lyapunovstable. That is, the trajectories that start close to it diverge as time passes. The importance of the stability of singularities lies in the fact that this determines the stability of the system in which the singularities are presented.

Behavioral Dynamics

During the 70's and the 80's different psychologists proposed theories to describe the interaction of an agent with its environment as DS. First, human and animal behavior was formalized by [START_REF] Kugler | On The Concept of Coordinative Structures as Dissipative Structures[END_REF] as low-dimensional DS. More precisely, stable behaviors were described as attractors, behavior states to be avoided correspond to repellers, and changes in number or type of attractors and repellers are described as bifurcations.

Later, the perception-action cycle was introduced by Kugler and Turvey (1987) and [START_REF] Warren | Action modes and laws of control for the visual guidance of action[END_REF]. In these works, the interaction of an agent with its environment is described as a goal-oriented continuous loop, where the perceptual information acquired by the agent drives the generation and execution of an action, possibly interacting with the environment and modifying the perception of the agent. [START_REF] Warren | The dynamics of perception and action[END_REF] defines a theoretical framework to apply the previous theories in realistic use cases. To that end, he extends and complements the existing works as follows: first, both perception and action are ruled by different laws. On the one hand, the perceptual information follows the ecological laws defined by [START_REF] Gibson | The senses considered as perceptual systems[END_REF], e.g. the law of visual perception [START_REF] Gibson | The Ecological Approach to Visual Perception[END_REF]). On the other hand, [START_REF] Warren | Action modes and laws of control for the visual guidance of action[END_REF] describes the laws of control by which to visually regulate the actions. Namely, the definition of a set of free parameters to tailor an action to the environment features. Second, Warren describes two levels of analysis for any interaction (Figure 3.5). The perception-action cycle, at the first level of analysis, represents the global behavior of the interaction. A lower level of analysis, i.e. second level, represents a low-dimensional description of the global behavior. This level describes the temporal evolution of a behavior, its behavioral dynamics. Warren claims the current state of a behavior, regarding a specific goal, is described based on the change of few variables, the behavioral variables. Therefore, at this level, observed trajectories are described based on these variables, and can be formalized as DS.

Both levels of analysis are tightly coupled. In a bottom-up approach, the behavioral dynamics emerge from the regularities identified during the interaction of the agent with its environment. Therefore, adapting a behavior to an environment involves both levels of analysis. The first level, gathering the environmental information, and the second level adapting the behavior to this information. In a top-down approach goals are defined as attractors, and therefore the low-level vector field affects the global success of the interaction. Warren claims that the correlation between both levels satisfies the features of emergent behavior and self-organization proposed by [START_REF] Bar-Yam | A mathematical theory of strong emergence using multiscale variety[END_REF] and [START_REF] Haken | Synergetics: An introduction[END_REF].

The previous concepts are formalized as DS. At the first level of analysis, on the one hand, an ecological law Φ (Equation 3.9) represents the change over time of Figure 3.5: Description of the two levels of analysis of a robot interaction with its environment. From [START_REF] Warren | The dynamics of perception and action[END_REF].

the environment state, e, after applying some forces, c, on it. Notice that forces are denoted as c instead of F, as in Figure 3.5, to avoid a nomenclature conflict with the formalization available in Chapters 5 and 6. On the other hand, a law of control Ψ (Equation 3.10) represents the change over time of the agent state, a, based on some information acquired about the environment, i.

ė = Φ(e, c) (3.9) ȧ = Ψ(a, i) (3.10)
Changes on both ecological and control laws rely on external information. The aforementioned forces, c, modifying the environment are the result of the execution of an action (Equation 3.11), called the effector function, β. From a robotics perspective this function corresponds to the computation of an action, based on the robot's inverse kinematic model, and its posterior execution.

c = β(a) (3.11)
Similarly, an information function λ (Equation 3.12) transforms the state of the environment into the behavioral variables, adapting an action to the robot's environment.

i = λ(e) (3.12)
At the second level of analysis, the DS corresponds to the change of value of the behavioral variables, h, over time. Equation 3.13 represents a DS Ω where some behavioral systems change over time based on some parameters of the available velocity field, v.

ḣ = Ω(h, v) (3.13)
In summary, the relation of a robot with its environment is described using DS. This approach is utilized in Section 6.3 to endow a robot with the capacity to dynamically adapt to the position of an object while executing an action to reproduce an effect.

Building a Dynamical System in a Deformed Space

Perrin and Schlehuber-Caissier (2016) present a method to build a DS, i.e. a vector field, given the trajectory of a demonstrated action. A robot can use the vector field to reproduce the demonstrated action using one of its end-effectors. The method proposes applying a deformation to the motion space in order to fit a simple trajectory like x = -x to the demonstrated trajectory. More precisely, the authors aim to minimize a defined distance between both trajectories using a diffeomorphic matching algorithm (see Figure 3.6).

The proposed approach is complementary to the works presented in Section 2.1.2. The authors stress that the deformed space could improve the design of building asymptotically stable DS by methods like SEDS (Khansari-Zadeh and Billard, 2011Billard, , 2014)) because the number of Lyapunov candidates is higher in this space. In Chapter 6, A 2 L relies on this diffeomorphic matching to build vector fields of the demonstrated trajectories performed by an external agent.

Task planning

Mugan suggests that "there are two broad planning frameworks within AI: STRIPSbased goal regression, and Markov Decision Process (MDP) planning." (Mugan, 2011, page 7). On the one hand, goal regression techniques generate a sequence of actions to execute, given a task goal and information about the environment. On the other hand, MDP-based planning is related to Reinforcement learning [START_REF] Schaal | Is imitation learning the route to humanoid robots[END_REF], using rewards to select the next action to perform. In the current manuscript, the skills performed by A 2 L are validated through the performance of a task. We are thus interested on using for the validation a method that selects the next action to perform based on the changes produced on the environment. Therefore, we have selected a goal regression method called PDDL (Planning Domain Definition Language) [START_REF] Mcdermott | PDDL -The Planning Domain Definition Language[END_REF], because it is used on other works performing task planning within the developmental robotics literature, e.g. [START_REF] Konidaris | Constructing Symbolic Representations for High-Level Planning[END_REF] and Ugur and Piater (2015a).

PDDL is an action-centered language, inspired by the well-known STRIPS formulations of planning problems [START_REF] Nilsson | Principles of Artificial Intelligence[END_REF]. It uses pre-and post-conditions to describe the applicability and effects of actions. It is partially inspired by the programming language called Lisp. PDDL has been recently extended1 , for instance to handle probabilities using MPDs, i.e. PPDDL, as in [START_REF] Konidaris | Constructing Symbolic Representations for High-Level Planning[END_REF]. The components of PDDL are split up into two blocks, the domain and the problem. The domain defines some components available to solve different problems, whereas the problem defines a specific task. The components of the domain are:

Domain of the task

< P DDL code f or last action >)

Predicates Object properties defined as booleans.

(: predicates (room ?x)

(robot ?r) (robot -at ?x ?r)
where room is true if and only if x is a room, where robot is true if and only if x is a robot, and robot-at is true if and only if x is a room, if r is a robot, and the robot is in the room.

Actions They change the task state.

(: action move : parameters (?x ?y ?r) : precondition (and (room ?x) (room ?y) (robot ?r) (robotat ?x ?r))

: ef f ect (and (robotat ?y ?r) (not (robotat ?x ?r))))

where the precondition of the action move consists in having 2 rooms, x and y, a robot, r, and the robot is in room x; and the effect is that the robot moved from room x to room y.

The components of the task are:

Task It defines the task goal, initial state and objects for a specific domain.

(: objects kitchen dinner_room living_room roomba baxter)

A domain can be used in many problems. And thus it should contain a wide range of actions and objects.

Chapter 4

Bootstrapping Interactions with the Environment

The results and text of this chapter have been published in the following article.

Introduction

Learning models to predict a robot's actions and skills to execute them requires a substantial amount of data of robot-object interactions (see Definition 2). A robot with the capacity to move, i.e. endowed with a kinematic model, could acquire this data through an exploration of its environment, given a minimal a priori knowledge to drive the exploration. To that end, in this chapter, we present a method named Novelty-driven Evolutionary Babbling (NovEB), designed to perform a taskagnostic exploration of an environment. Its main feature is to look for actions that maximize novelty in the raw sensorimotor space. It is based on Novelty Search [START_REF] Lehman | Abandoning objectives: evolution through the search for novelty alone[END_REF], which relies on Evolutionary Algorithms driven by a behavior novelty criterion. The outcome of this approach is a dataset of interactions composed of robot actions and their consequences, e.g. changes in the visual perception. The generated data are aimed at preparing a future developmental step for a robot, which would consist in training classifiers or predictors, e.g. A2 L. This method uses as a priori knowledge:

• w.r.t. to the actions, a forward/inverse kinematic model is available1 .

• w.r.t. to the action consequences, a distance to compare them is predefined (further details are available in Section 3.1). Also, NovEB makes the assumption that new perceptions result from robot actions.

Besides, although the method does not need any information of the environment to run, in order to reach a good performance it is necessary that after each action the environment is reset, that is, objects move to their initial position.

Method

The method generates many different robot arm trajectories, c 1 , . . . , c S , and it looks at the modifications they may create in the environment, as perceived from the robot's sensors (vision in particular). Based on the Novelty Search principles, a movement (see Definition 7) that generates perceptions that have never been encountered before has a higher chance to survive, namely to be selected to generate new close movements through the mutation operator. Movements that do not generate any perceptual novelty are discarded, thus focusing the search on movements generating new perceptions.

The main algorithm of NovEB to explore an environment is presented in Algorithm 1. Generate_children_pop(pop) is the function that creates a new population with mutation and crossover. Novelty(i, p, a) is defined as in Equation 3.1, on the basis of both the nearest neighbors in the current population, and in an archive of past behaviors with a distance defined in a behavioral space (an example is described in Section 4.3). At each generation, the individual with the highest novelty is added to the archive. In mono-objective problems, Select(pop) is an elitist algorithm that selects the best individuals among the parent and the children populations, using the function Fitness(i). Both Generate_children_pop(pop) and Select(pop) are based on NSGA-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF], a Pareto-based multi-objective evolutionary algorithm, which is a state-of-the art algorithm for multi-objective problems; but it is also very efficient in mono-objective ones.

The genotype is a vector of waypoints in an Euclidean space, used to define a trajectory of the robot's end effector 2 . In the initial population, these values are randomly generated within a defined range. Afterwards, the values are modified by the mutation operator, without any restriction on the resulting values. Two mutation operators are defined. The first one adds a random Gaussian noise to a Algorithm 1 Novelty-driven Evolutionary Babbling (NovEB) pop ←Select(pop)

1: pop ← c 1 , c 2 , ...,
16:

g ← g + 1
given trajectory. The second one can change the complexity of the trajectory by adding one waypoint. Added points are put in the middle of two other points of the trajectory. This ability to change the complexity of the genotype is inherited from NEAT [START_REF] Stanley | Evolving neural networks through augmenting topologies[END_REF], and is also a feature of Novelty Search: the search starts with simple solutions, considers the behaviours they can generate and progressively considers solutions of higher complexities [START_REF] Lehman | Abandoning objectives: evolution through the search for novelty alone[END_REF].

The behavior associated with an individual is an image of the scene as seen by the robot once its arm has come back to its initial position3 . The robot's movements eventually change the scene by moving objects, being this reflected in the gathered images. In this work, a behavioral distance is predefined, used to compute novelty among the images. Namely, this distance drives the exploration of the environment.

Experimental Framework

The objective of this experiment is the generation of contacts of the robot's end effector with objects around the robot. The experiment is executed in a tabletop setup, i.e. a table with objects on top of it: on the left a gray box, on the frontcenter a can, on the right a blue box, and on the back-center a ball. All the objects https://youtu.be/zCO7qOIvKOU are within reach of the right arm of the robot, except for the ball, that can be moved only if it is pushed by another object. The two boxes and the can are located at the border of the table, and the ball is located behind them. The can is located just in front of the robot, in the middle of the table (see Fig. 4.1). The weight chosen for the objects on the table is low to facilitate their movement when the end effector of the robot makes contact with them. The experiment run for around 20000 iterations, as in [START_REF] Mugan | Autonomous Learning of High-Level States and Actions in Continuous Environments[END_REF]. At the end of each iteration, the objects are reinitialized to their original position.

A trajectory is initially composed of an initial position, common to all trajectories, and a final point to be reached. The randomly generated final coordinates are in the range [0,1], being able to go beyond these bounds afterwards. The robot relies on a motion planner, called OMPL4 , to plan a trajectory. It is not always possible to compute a trajectory given a final point, because either the trajectory is without reach of the robot, or the trajectory includes collisions with the table, the ground or the robot. Only the safe and feasible trajectories are executed.

The behavior descriptor associated to a trajectory is the final image of the scene, which is taken once the arm came back to the initial position. To compute the distances required for the novelty objective, images are encoded into a numeric string by using the pHash library5 , because perceptual hashes are close to one another if the features [of the two images] are similar [START_REF] Zauner | Implementation and benchmarking of perceptual image hash functions[END_REF]. The distance between two strings is then computed with the Hamming distance [START_REF] Hamming | Error detecting and error correcting codes[END_REF].

To assess the performance of our approach, the final positions of the objects of the scene have also been recorded (objects and their positions are unknown to the robot).

Robotic Platform

The robot used in the experiments is called PR26 . The main feature of the PR2 robot w.r.t. the experiments is that the robot arm has 7 degrees of freedom, and another one for the gripper that has not been used in these experiments. Environment images are acquired using the right color stereo camera on the robot's head. ROS Hydro Medusa7 was used to manage the robot. The simulation has been executed in Gazebo 1.98 . MoveIt9 provides the robot with the capability of defining safe trajectories for the end effector, using OMPL, based on a set of points in the space. It also provides collision avoidance. The evolutionary algorithm, on which the execution of this method relies, is executed in Sferes v2 [START_REF] Mouret | Sferes v2: Evolvin' in the multi-core world[END_REF], a framework for evolutionary computation designed for multi-core parallelization. executed movements, the novelty found in the right part of the table decreases, and the robot comes back to search new behaviors in the left side.

Conclusions and Open Questions

In this chapter, we have proposed a novel method for generating interactions with the objects surrounding a robot through babbling. The approach has been applied on a simulated robot, which discovers on its own which regions of the workspace generate novel perceptions and focuses its exploration around them. The results show that NovEB is able to generate several thousand different interactions with this environment, an order of magnitude higher than the number of interactions produced with a random motor babbling approach. This difference is obtained thanks to the ability of NovEB to focus its exploration in regions that lead to novel visual perceptions. The outcome of this approach is a dataset of interactions composed of robot actions and their consequences, e.g. changes in the visual perception.

NovEB can be considered as an intrinsic motivation for exploration, like the Intelligence Adaptive Curiosity (IAC) defined by [START_REF] Oudeyer | Intrinsic Motivation Systems for Autonomous Mental Development[END_REF]. One of the main differences between these two approaches lies in the assumptions on which these methods are based. The only requirement for NovEB is the robot's kinematic model, and the definition of a distance between two perceptions (in this chapter, between two images). This is specific to the robot's sensors and is independent from the task or the environment. Conversely, IAC, at least in its current implementation, requires to train predictors in order to estimate the learning progress. Training such algorithms to predict the consequences of an action only on the basis of raw perceptions is a challenge per se. Although recent works based on deep learning techniques are starting to predict the image that the robot's camera will capture based only on previously captured raw images and the executed actions, as [START_REF] Lesort | Unsupervised Deep Learning of State Representation using Robotic Priors[END_REF], training these predictors is still an open question. Current implementations of IAC rely on higher level information, for example on the position of the objects in the scene [START_REF] Oudeyer | Intrinsic Motivation Systems for Autonomous Mental Development[END_REF]. However, providing the tools that extract these higher information from raw perceptions cannot be environmentagnostic. For example, when predicting the positions of the objects, the algorithm needs to know how many objects compose the scene, or how to extract these objects from the raw perceptions (using large object database, for instance). Based on this observation, these two approaches can be complementary. NovEB can be used to generate a large amount of data that can afterwards be used to extract information from the scene (number or shape of objects, for instance). Then, the high level information extracted can be used to run IAC for a detailed or goal-oriented exploration [START_REF] Baranes | Active learning of inverse models with intrinsically motivated goal exploration in robots[END_REF]. NovEB can be also complementary with [START_REF] Legoff | Segmenting objects through an autonomous agnostic exploration conducted by a robot[END_REF], a work to segment the environment based on visual inputs. The trajectories generated by our method can be related to the object position using the inverse kinematic model, and thus they could be used as push primitive.

As NovEB is driven by novelty only, it suffers from some of the limitations that have motivated the development of IAC: it should get focused on interactions that generate perceptions with a large variability. These interactions could constrain the exploration to an area of the setup, neglecting contacts in other areas producing less novelty, i.e. avoiding the exploration of possible relevant areas. IAC can avoid this phenomenon as the learning progress in such situations will remain low. This would be a strong limitation for the exploration ability of the system if NovEB was expected to handle the whole developmental process. But this is not an issue, as NovEB is aimed only at acquiring the data to bootstrap other developmental processes.

The direct comparison of the action consequences produces the necessity to run the method in static environments that reset after each action to obtain a good performance. This constraint makes very difficult the execution of the method by a physical robot. An alternative would be the direct execution of its output in simulation by the physical robot. However, this approach could not be satisfactory because of the reality gap [START_REF] Doncieux | Beyond black-box optimization: A review of selective pressures for evolutionary robotics[END_REF]. Different approaches have been developed in the next chapters to avoid this constraint.

Chapter 5

Autonomous Generation of Interactions with the Environment

The results and text of this chapter have been published in the following article.

Introduction

This chapter focuses on the autonomous generation by a robot of a dataset of interactions (see Definitions 3, 7 and 8) used to build a skill reproducing an effect on an object. In this chapter, a list of effects to reproduce is provided. Interactions are represented by the position of the robot's end-effector and the object position during the interaction execution, i.e. they are represented by low-level states. In this work an object is represented by its position, not relying either on its orientation or its shape, as young infants [START_REF] Rosenbaum | Human Motor Control[END_REF].

On the one hand, in order to solve the drawbacks identified in the previous chapter we provide more a priori knowledge to the method about the environment. In this case, a skill is related to a known object, because the skill compares the relative position of the object to the end-effector position in order to infer the next movement of the robot. This relative position is used to compare changes in the object, making unnecessary the definition of a distance based on visual inputs. Therefore, the object can be placed in any location within reach of the robot, not needing to reset the object position after each action.

On the other hand, we reduce the a priori knowledge to explore the environment. In this case, the exploration is performed using random actions. The number of robot-object interactions generated by random actions is low (see Figure 4.5). As the goal of the exploration is to increase the number of interactions, this exploration is not completely random. The generated actions extend those trajectories of the available dataset of interactions touching the object with random movements (see Section 5.2.4). This approach, inspired by intrinsic motivations, allows the robot to progressively extend the dataset using the knowledge acquired in previous explorations, although in a naive fashion. However, even using this approach the exploration of the robot's environment would generate a low number of interactions, because of representing a big search space. Therefore, this search space is constrained to two dimensions, and the movements are discretized (more details are available in Section 5.3). This is a drawback w.r.t. methods driving the exploration using some knowledge, for example intrinsic motivations, as in the case of NovEB. But, it is the consequence of reducing the a priori information provided for the exploration using random actions.

In this chapter we present the two complementary processes of A 2 L:

• Skill Building: given a dataset of interactions it builds skills that infer actions reproducing effects on objects, adapted to the object position.

• Iterative Interaction Acquisition and Validation: an iterative method generating and validating the dataset of interactions.

In order to execute A 2 L, a dataset of interactions (see Definition 2) must have been generated in a previous developmental step (see Fig. 5.1), for example the result of executing NovEB. In this chapter, this initial dataset is the result of a random motor exploration performed by the robot's end-effector.

Once this dataset is available, the execution of the iterative process can start. At the beginning of each iteration of the process, a short exploration of the environment is executed. New robot-object interactions are identified, which are combined with the available dataset of interactions into a new extended dataset. Then, the skill builder creates a skill based on this dataset. The last step of an iteration consists in the validation of the skill trying to reproduce the set of given effects. If more effects are reproduced than in the previous iteration the extended dataset is consolidated as the working dataset, to be extended in the next iterations of the process. Otherwise, Algorithm 2 Initial random exploration nb_it p : number of current iteration executed nb_it max : maximum number of iterations D b : dataset of interactions obtained from exploration y p : position of the object at the end of iteration p y p-1 : position of the object at the end of iteration p-1 Increase(nb_int p)

1: nb_int p = 1 2: D b = ∅ 3: while nb_it p ≤

Iterative Developmental Framework

Initial Available Information

Before the execution of the method, two sets of information are required: (i) an initial dataset of interactions, representing robot-object interactions, to bootstrap the skill building process and to be increased in posterior iterations of the method; and (ii) a set of effects to be reproduced by the robot, to assess the generated states.

Dataset of Interactions

The dataset of interactions is environment-dependent, and thus it must be generated by the robot. It is initially composed of the interactions acquired by the robot during a random, goal-free, exploration of its environment [START_REF] Demiris | From motor babbling to hierarchical learning by imitation: a robot developmental pathway[END_REF], i.e. the execution of random actions (Algorithm 2). The interactions represent both the position of one of the robot's end-effectors and the object position at an instant of time:

x t = end effector position y t = object position XY k = { (x k 0 , y k 0), . . . , (x k T , y k T) } e = label associated to a specific effect D = { (XY k , e) }
where XY k represents an interaction, k, between the robot's end-effector and the object when executing a trajectory, and D represents a dataset of interactions. x t and y t are acquired at different instants of the trajectory execution, t ∈ [0, T], where T represents the total time of the execution of the trajectory.

Set of Effects

The set of effects to reproduce is externally provided:

f t = y t ∆f t = y t -y t-1 E = { (e 1 , ∆f 1), . . . , (e N , ∆f N) }
where f t represents the object position at an instant of time, ∆f t represents a variation of the object position between two instants of time, E represents the set of effects to reproduce, N is the number of effects, and ∆f i represents the change of the object position associated to the effect e i , which is also provided to the robot.

Method

This section details the two complementary processes of A 2 L:

• Skill Building: given a dataset of interactions this process builds skills that infer actions to reproduce an effect on an object.

• Iterative Interaction Acquisition and Validation: an iterative process generating new interactions and validating them.

Skill Building

In the current manuscript, an action is a sequence of movements to reproduce an effect on an object (see Definition 5). Given a context, a skill infers and executes an action adapted to the object position reproducing an effect on the object. Therefore, a skill is an action generator φ (see Definition 6) inferring a movement reproducing an effect on the object given a context:

φ(e, context) = ∆x t
The action generator is implemented as a Bayesian Network (BN) [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems[END_REF]) (introduced in Section 3.2), similarly to [START_REF] Montesano | Learning Object Affordances: From Sensory-Motor Coordination to Imitation[END_REF], among others. A BN is a graphical representation of dependencies for probabilistic reasoning, in which the nodes represent random variables and the lack of arcs represent independence relationships between the variables (further details are available in Section 3.2.1). The reasons for using a BN as an action generator are twofold: (i) it has a strong inference capability, and (ii) its representation of the contextual state relations as probabilistic dependencies allows one to analyze and understand the outcomes of learning. [START_REF] Lauritzen | Propagation of Probabilities, Means, and Variances in Mixed Graphical Association Models[END_REF] introduced a BN combining variables using continuous and discrete values, and there are works applying similar concepts to robotics [START_REF] Osório | Gaussian Mixture Models for Affordance Learning using Bayesian Networks[END_REF][START_REF] Stramandinoli | Heteroscedastic Regression and Active Learning for Modeling Affordances in Humanoids[END_REF]. However, Osorio mentions

Definition 9 Robot-Object Relation State: A robot-object relation state, or just relation state, is a physical relation between the robot's end-effector and the object at an instant of time.

An example of robot-object relation state is the distance and orientation between the robot's end-effector position and the object position.

In other words, the dataset of interactions, D, is transformed into a repertoire of movements and states, R: R = { (e, ∆x t , δ t) } As already discussed in Section 1.2, the performance of a BN combining continuous and discrete variables is often much slower than directly using discrete variables. As A 2 L is aimed to generate actions adapted to the object position, the action generator needs to generate movements as quickly as possible. And thus, in the current work, the action generator infers discrete movements based on discrete robot-object relation states and discrete effects. Their discretization is performed when the dataset of interactions, D, is transformed into the repertoire of movements and states, R, performed based on a discretization configuration. This configuration may have a deep impact in the results obtained using the method. A suitable configuration must entail a trade-off between being generic to be suitable for different sets of effects, and specific enough for the current set of effects. In the current work this configuration has been empirically designed for each experiment. Future work may include the selection of the discretization configuration in a developmental process in which discretizations are generated and tested using an iterative approach.

Step 2: Learning the Action Generator Once the discrete repertoire of movements and states, R, is available the BN can be learned. Learning a BN consists of two steps: (i) identifying the structure representing the conditional dependencies among the random variables, and (ii) learning their conditional probability distributions (CPD). The structure can be either learned combining some of the structure learning methods available in the literature to a score (see Section 3.2) or it can be externally provided by a designer. However, the CPDs are always learned from the available repertoire.

In order to complete the information of the skill building process, let us define it based on the new available definitions. Given an effect to reproduce and the robotobject relation state, an action generator, φ, infers the next movement to execute to reproduce the effect on the object: φ(e, δ t) = arg max

φ p ← BuildSkill(R p) 8: ψ p ← ValidateRepertoire(E, φ p , x 0) 9:
if ψ p ≥ ψ p-1 then 10:

ψ max = ψ p 11: D p = D * p 12:
Increase(nb_it p)

Iterative Interaction Acquisition and Validation

Phase 1: Interaction Acquisition

The process presented in Section 5.2.3, i.e. the skill building, creates a skill based on a dataset of robot-object interactions. However, given a set of effects to reproduce, it is possible that some of them could not be generated at an instant of time.

In order to build a skill reproducing those effects the dataset has to be extended with new interactions. To that end, the robot executes at the beginning of each iteration of the process a short exploration around the object, i.e. it executes a small number of trajectories, possibly generating new interactions with the object. These new interactions are combined with the available dataset, generating an extended dataset of interactions, D * i . This extended dataset is later used in the skill building. The short exploration is based on the interactions within the dataset touching the object. A new trajectory is generated randomly selecting one of those trajectories, and modifying it. This modification consists in selecting one waypoint of

ψ p = 0 3: for ê ∈ E do 4:
y 0 ← GetInitialObjectPosition() 5:

x pq = x 0 6: nb_mov q = 0 7:

a ê = ∅ 8:
while ¬contact ∩ nb_mov q < nb_mov max do 9:

y pq ← GetObjectPosition() return ψ p * N the trajectory and modify it moving it the distance and orientation of one of the discrete movements used by the robot in the current work. For example, the final waypoint of a vertical straight trajectory can be moved to the right transforming the trajectory into a curve. This approach, inspired by intrinsic motivations, allows the robot to progressively extend the dataset of interactions using the knowledge acquired in previous explorations, although in a naive fashion.

The execution of a trajectory by a robot is very time consuming, possibly taking few seconds to complete it. The execution by the robot of all the trajectories defined in the short exploration could entail the execution of hundreds of trajectories, most of them not having any impact on the object. In the current chapter, this issue has been addressed making a mathematical estimation of the possible contact of a trajectory with the object, based on its position. Only if the Euclidean distance of a waypoint of the trajectory is under a predefined threshold, i.e. if it is close to the object, the action is executed by the robot.

Phase 2: Skill Generation Phase

This phase just consists in executing the complementary skill building process providing the extended dataset of interactions, D * i , to generate a skill to validate the datatset in the next phase.

Phase 3: Interaction Validation

The skill validation of the extended dataset of interactions consists in the comparison of the number of effects reproduced before and after the extension of the dataset of interactions. More precisely, if more effects are generated using the extended dataset than before extending it, this is consolidated as the working dataset, to be extended in the next iterations of the process. Otherwise, it is discarded. A score is computed to measure the number of effects reproduced. This score relies on the result of the actions inferred by the robot trying to reproduce the effects. These actions produce changes in the object position:

∆f ae t = y ae t -y ae t-p ∈ S f
where a e represents an action to reproduce an effect, S f represents the set of changes of the object position produced by the robot during the exploration, and t and p represent different instants of time, such that t is posterior to p. An action is considered a success if after its execution the change of the object position produced in the object is similar to the change expected from the desired effect, n:

∃ n ∈ [1,N], ∃ t ∈ [0,T-1], ∆f an t ∈ S f , ∆f an t ≈ ∆f n ,
a false positive, if the change is similar to the change expected from another effect:

∃ n ∈ [1,N], ∃ t ∈ [0,T-1], ∆f an t ∈ S f , ∆f an t = ∆f n
or a failure, if there is no change in the position of the object:

∀ t ∈ [0,T-1], ∆f an t / ∈ S f
The score, ψ i , is computed as:

ψ i = (e∈E res e * W rese) * N
where res e is the result obtained after the execution of an action reproducing an effect, W represents the predefined weight associated to a result (based on experience), and N represents the total number of given effects to reproduce. The actions are inferred using the skill obtained in the previous phase. Running a skill, α, to reproduce an effect, e, on an object, f, consists in inferring a sequence of movements:

α(e, f) = {φ(e, δ t)} = {∆x t }, (5.2)

Experimental Framework

Two sets of experiments are executed to asses A 2 L, using a robotic arm (Section 5.3.1) and a Baxter robot (Section 5.3.2), respectively. The objective of these experiments is the acquisition by a robot of a dataset of interactions to build skills pushing a box in different directions. Although a robot endowed with A 2 L can autonomously learn to interact with the environment to reproduce an effect, the execution of the method requires some a priori knowledge. Each set is composed of two experiments: In Experiment 1 a predefined dataset of interactions, reproducing all the given effects, is available. Therefore, only the skill building process is executed. Conversely, in Experiment 2 the dataset of interactions is built in different iterations of the method, and thus both the iterative process and the skill building process are executed. Table 5.1 shows the a priori knowldge available in each experiment.

• List of effects to reproduce: the experiments are validated based on the reproduction of the pushing effects.

• Constrained movements: the exploration of the environment is performed using random actions. In order to increase the number of contacts the space to be explored by the robot is constrained to two dimensions. Besides, the movements are discrete, with a fix distance of 5 centimeters and as possible orientations moving to the right, to the left, far from the robot, close to it, and the diagonals, i.e. right-far, right-close, left-far and left-close. Thus, the action generator infers one of these movements, which are vectors with fix distance and orientation.

• Discretization configuration: the movement and contextual states are discretized because of the capacity of A 2 L to generate actions based on low-level contextual states and high-level contextual states. To that end, in all the experiments a discretization configuration is available. This configuration is empirically designed, composed of the distance and orientation between one of the robot's end-effector and the object to interact with. In this case, the distance has a range of 0.5 meters, and it is divided in 8 sections of the same size. The orientation has a range of 360 degrees, and it is also divided in 8 sections of the same size.

• Predefined dataset of interactions: Experiment 1 is aimed at validating the approach with an ideal dataset of interactions reproducing all the effects, whereas Experiment 2 is aimed at validating the approach with a self generated dataset.

• Predefined BN structure: There are two versions of each experiment: (i) a version in which a hard-coded structure of the BN is available, representing the conditional dependencies of the random variables of the action generator, i.e. the relation between, effect, movement and relation state; (ii) another one in which structure learning methods try to identify the structure. In both cases the corresponding CPDs are learned using a Maximum Likelihood estimator, i.e. without a priori. The Bayesian learning is computed using the aGrUM library1 [START_REF] Gonzales | aGrUM: A graphical universal model framework[END_REF]. In these experiments the robotic arm can only push a box. Therefore, the relevant robot-object relation states for this action are the distance and the orientation between the arm's end-effector and the box.

Simulated Robotic Arm

Experiment 1 and Experiment 2 have been carried out in order to assess A 2 L in a virtual setup, implemented in Python. The experiments are executed by a simulated robotic arm. The results obtained in each experiment are analyzed in Section 5.3.1.1.

structure Experim. 1 X X X X X X X X X Experim. 2 X X X X X X X

Experimental Setup

All the experiments are carried out in the same setup. This setup is a twodimensional (2D) squared working space of 2 x 2 units, with range [-1, 1] in each axis (Fig. 5.3). In the center of the space there is a box, of side size 0.3 units. A simulated camera is located on top of the box, capturing the whole working space. 32 positions around the box, describing a circle, with a distance of 11.25 degrees among them, represent the initial positions of the virtual robotic end-effector during the experiments. The robotic arm is represented as a 2D coordinate in the working space, and thus neither its kinematics nor its DoF are relevant for the experiment. The box is represented as the coordinate (0,0), with a side size of 0.3 units. The only perceptual representation of the setup available for the robot is the position of the box. At the beginning of each iteration of the method, the box is relocated at its initial position.

Discrete effects

A contact between the arm and the box occurs when the position representing the arm is within the area represented by the box. A contact produces a displacement, of a fix distance, of the position of the box. Only four displacements are possible: the box moves to the left if it the trajectory executed by the arm intersects with the right side of the box; to the right if it intersects with the left side; up if it intersects with the bottom side; and down if it intersects with the top side. Therefore, only four effects are available: pushed_left, pushed_right, pushed_up and pushed_down, respectively.

Validation

The weights chosen for the skill validation must reflect than a successful result of a trajectory is better than a false_positive, and much better than a failure. Choosing different sets of values based on this principle did not seem to have a relevant impact in the behavior of the method. Based on experience we have selected a value of 8 for W success , 2 for W false_positive , and 1 for W failure . As the number of effects does not change along the experiments, the computation of the score (Equation 5.2.4) only depends on the results of the trajectories. In each iteration of the method the robot infers 128 trajectories (32 initial positions * 4 effects) trying to reproduce the effects. Therefore, the maximum possible score is 128 * 8. However, the value of the score is normalized between 0 and 100.

Experiment 1

A predefined dataset of interactions is available, generated by trajectories reproducing all the effects, interacting with the four sides of the box from each initial position of the robotic arm. This dataset is used to learn an action generator by the skill builder, which generates trajectories from the 32 initial positions of the arm. It is expected to obtain very high success ratios, and thus very high validation scores.

Experiment 2

In this experiment both processes of A 2 L, the iterative process and the skill building, are executed. The robotic arm explores the working space executing random version learning the structure using hill climbing. These results show the capacity of A 2 L to build a skill given interactions properly representing the reproduction of the effects. The false positive results identified in Table 5.2 are the result of an involuntary contact of the arm's end-effector with the box while executing a move turning around it, because of the use of discrete movements. The learned BN structure is depicted at the left of Figure 5.6.

Experiment 2: using A 2 L the robotic arm has reproduced most of the effects (see Figure 5.7). In this case, the results obtained by the version of the experiment using the hard-coded structure are better than those obtained by hill climbing. Both methods are able to reproduce half of the effects using the interactions result of the initial exploration before the execution of the method. Later, through the iterative process, these methods generate new interactions allowing the robot to reproduce other effects, improving the score around a 40 per cent, i.e. ∆Sc. The improvement of the score grows rapidly during the first iterations, and reaches a plateau afterwards. These plateaus result from the size of the dataset of interactions. After several iterations the dataset has thousands of interactions. It would be necessary to generate many new interactions to modify the inferred trajectory to reproduce the effect from an initial position. This is also the reason of the generated false positives, because of the high complexity of generating randomly some example trajectories from each initial position, e.g. the trajectory around the box needed for the pushed_right effect from the initial position at the right side of the circle. Therefore, the number of examples related to those complex trajectories is low, being poorly reproduced by the action generator. The BN structure learned by hill climbing is depicted at the right side of Figure 5.6. Figure 5.8: In the top-left corner, a simulated Baxter robot in the tabletop setup used for the experiments. This setup is composed of a box on a table in front of the robot. In the top-right corner, a physical Baxter robot in a similar tabletop setup used for to asses the generated repertoire of states performing a simple test. In the bottom-left corner, top view of the simulated setup. In the bottom-right corner, the virtual setup emulating the top view of the simulated setup. The red circles represent both initial positions of the end-effector from where the actions are inferred and executed. The blue triangle and torus represent, respectively, the orientation and distance from the left end-effector to the box. In the current work, the distance is discretized in three sections (dark blue text), and the orientation in 16 sections (brown text). For instance, in the example the box is at distance 1 and orientation 0 of the end-effector.

Simulated Baxter Robot

Experiment 1 and Experiment 2 are executed to assess the generation and validation of a dataset of interactions by a simulated Baxter robot2 in a setup with ODE as physics engine3 . The main features of the robot w.r.t the experiments are that the robot has two arms of 7 DoF each one of them. Similarly to the robotic arm experiments, the goal is pushing a box in different positions. In this case, the box can be located in different initial positions, and thus the actions generated by the skills must be adapted to its position. Besides, we show that the generated dataset of interactions generated in the Experiment 2 can be used by a physical Baxter, in a similar setup, continuously pushing a box on a table. This section finishes with an analysis of the obtained results.

ROS Indigo Igloo4 was used to manage the robot. The simulation has been executed in Gazebo 1.95 . We developed a library to manage the kinematics of the Baxter robot6 , based on MoveIt7 and the own robot's kinematics library. During the execution of the task, the position of the physical box is acquired using a QR code (see top-right corner of Figure 5.8).

Experimental Framework

Experimental Setup

The scenario of the experiment simulates a three-dimensional (3D) Cartesian tabletop setup composed by a table and a box. The robot is located in front of the table (Fig. 5.8). The dimensions of the box are 7 x 8.5 x 8 centimeters (cm) of width, length and height, respectively. The position of the box at the beginning of the experiment is at 65 cm in front of the robot, and 10 cm to the left. The reference frame of the setup is located at the base of the robot, and thus the perceptions of the robot are relative to itself. The robot only perceives the position of the box8 . The position of the box is located at the center of the object, which can change during the experiment. However, in order to allow the method to infer actions that the robot can execute, if the box is moved more than 10 centimeters away from its initial position it is automatically relocated around the initial position.

In simulation, the position of the box is directly provided by Gazebo. In the physical robot, the location of the box is provided by a QR code obtained by a RGB-D camera.

The robot moves its left end-effector to interact with the box starting from two initial positions. These initial positions are located at 20 cm to the left of the box

Pushing a Box with a Physical Baxter Robot

In this simple test a physical Baxter robot builds a skill to continuously interact with a box, based on the dataset of interactions generated in Experiment 2 using K2.

The interaction is performed using both end-effectors of the robot, located randomly at each side of the box, respectively (see top-right corner of Figure 5.8). In each run of the test the action generator infers a trajectory for each one of the given effects, using each one of the end-effectors (see Figure 5.12). These trajectories are computed based on a mathematical approximation of the execution of each movement. If a trajectory gets close to the object position, it is considered as touching it. For each of the trajectories touching the object, the mean value of the posterior probability of each movement is computed. That trajectory with higher probability is executed.

Experimental Results

The results obtained for the experiments are available in the Table 5.3 Experiment 1: based on the predefined interactions the robot reproduces all the effects for the hand-coded method and most of them for K2. These results reflect that, given a dataset of interactions representing the reproduction of the effects, the method is able to build a skill reproducing most of the effects.

Experiment 2: similarly to the results obtained in the robotic arm experiment the robot has increased around 40 per cent the number of effects reproduced throughout the running of the iterative process with both available learning methods (Fig. 5.11) showing the capability of the method to generate the dataset of interactions. However, in this case the number of effects reproduced after the initial exploration of the environment before the use of A 2 L is very low for the hard-coded method, and no effect is identified for K2. Therefore, the size of the initial dataset is very low (see blue lines) and after 25 iterations of the method is still low. Using the hard-coded structure half of the effects are reproduced, meaning that interactions reproducing the other half of the effects are missing or there is a low number of them. Using the structure learned using K2 only 4 effects are reproduced, although it produces a high number of false positive results. This means that the structure of the BN has not identified the right dependencies among the movement, effect and the relation state (on the right of Fig. 5.9). Therefore, more interactions are needed to both, identify the right structure of the BN and to reproduce the complete set of effects.

Test with the physical Baxter robot: the robot interacts with the box using the repertoire of states generated in the previous experiment until the robot pushes the box out of the table. This result proves that the repertoire of states generated by the simulated Baxter can be directly executed by a physical Baxter if their surrounding environments share the same features. The execution of a trajectory is shown in Figure 5.11. An online video is available10 showing the interactions of the robot with the box.

Conclusions and Open Questions

In this chapter we have analyzed the capability of A 2 L to generate and validate interactions, and to build skills used by a robot to reproduce effects on an object. With respect to NovEB (see Chapter 4) more a priori knowledge about the environment is provided, i.e. the object position, but the method explores the environment with very low a priori knowledge using random variables. Moreover, explorations are constrained to two Cartesian dimensions using discrete movements to increase the numbers in robot-object interactions generated.

In order to assess the method, two sets of experiments have been carried out. In the first set, a simulated robotic arm in a virtual setup performs the experiments. The execution of the actions and their effects in the virtual setup are based on mathematical approximations because of the lack of a physics engine. The second set of experiments is performed by a simulated Baxter robot in a setup with physics engine. Besides, interactions generated in these experiments are directly used by a physical Baxter robot to interact with a box. In both sets of experiments the environments are static, that is, only the robot can move the box. However, in the robotic arm experiments the position of the box is reinitialized after the execution of an action, whereas in the experiments with the Baxter it is enough if the box is within reach of the robot.

Our method mainly relies on a discretization configuration and in the conditional dependencies, i.e. the BN structure, among an effect, a movement and the robotobject relation state, to run. On the one hand, the obtained results show that given a dataset of interactions properly representing effects on an object, a correct discretization and the proper BN structure the method is able to reproduce most of the effects. The better the trajectories of the interactions produce the effects are, the better the inferred actions are reproducing the effects. On the other hand, it requires a very high number of interactions in order to identify the conditional dependencies represented in the BN of the action generator. In the simulated Baxter experiment the use of a structure learning method without a priori knowledge about these dependencies was directly discarded, because of not being able to reproduce any effect. The method was able to reproduce half of the possible effects using K2 with some insights about the conditional dependencies. Possibly with a higher number of interactions K2 could improve its results, although the generation of those interactions would last for a very long period of time.

A similar temporal constraint is the reason to use discrete movements in a 2D environment. This approach can limit the reuse of the inferred actions to execute some tasks in posterior higher-level stages. Chapter 6 extends the skill builder to create skills generating continuous actions adapting in a close loop to the object position, i.e. actions are adapted the object position even it this changes during the execution of the action. Moreover, the use of random actions to drive robot motion generates poor actions. For example, while exploring an environment. We suggest the use of intrinsic motivations to drive the unsupervised explorations, as described in Section 2.1.1 and implemented in Chapter 4; or building the repertoire of skills directly demonstrating to the robot the right actions to reproduce an effect, as also described in Section 2.1.1 and implemented in Chapter 6.

It is relevant to mention that the use of relative positions for the object, i.e. the robot-object relation states, make the method very robust to different object positions.

The use of more realistic scenarios, with daily objects represented with both low-level and high-level states, and different actions, as grasp, would challenge the capabilities of the method. Also, the setup of the experiments could be extended to more than one object. These challenges have been also addressed in Chapter 6.

Another improvement to A 2 L is related to the autonomous generation of a priori information needed to execute, currently externally provided, i.e. the set of effects to reproduce and the discretization configuration. This information could have been computed in an unsupervised fashion within the iterative process.

The use of more realistic scenarios, with daily objects represented with both low-level and high-level states, and different actions, as grasp, would challenge the capabilities of the method. Also, the setup of the experiments could be extended to more than one object. These challenges have been also addressed in Chapter 6.

Chapter 6

Online Generation of Actions Adapted to Contextual States

The results and text of this chapter have been presented in the following article.

• Maestre, C., Mukhtar, G., Gonzales, C., and Doncieux, S. (2017, October).

Context-Based Generation of Continuous Actions to Reproduce Effects on Objects. In the Third International Workshop on Intrinsically Motivated Open-ended Learning (IMOL). Referenced in the bibliography as Maestre et al. (2017a).

Introduction

In Chapter 5 we demonstrated how a robot can build skills through interactions with its environment to infer actions reproducing effects on objects (see Definitions 2, 4 and 5). To that end, we proposed a method, named Adaptive Affordance Learning (A 2 L), which endows a robot with the capacity to generate a dataset of robot-object interactions used to build the skill. The method presented two main processes: (i) the acquisition of interactions when needed, called Iterative Interaction Acquisition and Validation, and (ii) the adaption of the robot's actions to the object position, called Skill Building. The method was validated on a physical Baxter robot in a tabletop setup, generating a dataset of interactions pushing a box in different directions. However, in those experiments the actions generated were discrete and constrained to a 2D space; and the setup was static, i.e. the position of the box only changed when the robot touched it. This chapter is focused on improving the generation of skills presented in Chapter 5, addressing the different identified constraints, in order to scale up their use to our daily environments. In these environments, the skills must be robust to spatio-temporal perturbations. Namely, the position of an object can change independently from the robot's actions, and an action can be modified during its execution. In order to address this feature, in the current work A 2 L builds adaptive skills using a Dynamical System (DS) called diffeomorphism (explained in Section 3). The DS generates a vector field, in which a vector represents a movement of the end-effector [START_REF] Schaal | Is imitation learning the route to humanoid robots[END_REF][START_REF] Ijspeert | Learning Attractor Landscapes for Learning Motor Primitives[END_REF] (see Definition 7). Therefore, in a closed loop, the action generator of the skill infers movements adapted to the object position, i.e. its low-level contextual states (see Definitions 6, 1 and 3). Moreover, the inference of movements by a vector field removes the necessity to use discrete movements, and the constraints applied to the robot environment, which is now a 3D Cartesian space.

In Chapter 5 the dataset of interactions was generated through an iterative process. Although the method was able to reproduce most of the effects in a virtual setup, it was not able to reach a high performance in a simulated tabletop setup. Besides, the acquired information was very noisy because of the use of random actions. This chapter is focused on building skills directly in physical environments, which are already noisy due to the lack of accuracy of the robot's sensors. In order to avoid adding more noisy information through an exploration of the environment, different robot-object interactions are directly demonstrated to the robot by an external agent. For example, the experiment designer shows how to produce an effect on an object through a kinesthetic demonstration moving the robot's end-effector, i.e. learning from demonstration (LfD) [START_REF] Billard | Handbook of Robotics Chapter 59 : Robot Programming by Demonstration[END_REF]). Moreover, in this chapter each skill is built from an individual dataset of interactions, including one or more demonstrations of interactions with an object producing the same effect, i.e. a skill is built using batch learning.

Our method mainly relies on the conditional dependencies among the effect to reproduce, a context at an instant of time and the next movement to perform, and on a discretization of the context. Regarding the conditional dependencies, the action generator is a Bayesian Network (BN) [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems[END_REF]. Therefore, the structure of the BN represents these dependencies. In the previous chapter, the context was represented by the end-effector and object positions, and a robot-object relation state was computed based on these positions. However, in order to better represent our daily environments, in this chapter the context is composed of lowlevel and high-level states (see Description 9). Therefore, the structure of the BN must represent the conditional dependencies among an effect, a robot-object relation performed by the physical Baxter in Section 6.5.

Extended formalization

In Chapter 5 a detailed formalization of A 2 L was provided. This section redefines basic aspects common to the previous formalization, required to explain the structure of a skill (Section 6.3) and the upgraded method to learn skills and execute them (Section 6.4) .

Skills are based on interactions of the robot with an object to reproduce an effect. An interaction represents (i) a trajectory of the robot's end-effector and (ii) the robot's context during the execution of the trajectory. A trajectory is stored as a sequence of Cartesian positions, i.e. waypoints, representing continuous positions of the end-effector, x t , and gripper states, g t , at certain instant of time. The robot's context is composed of low-level and high-level contextual states of the object at certain instant of time, f t . In the current work, the low-level object states correspond to the continuous object's position, y t . These states and the endeffector position are acquired at certain instants of time during the execution of the trajectory. Therefore, an interaction between the robot's end-effector and the object when executing a trajectory, Υ xgyc , is represented as:

x t = end effector position g t = gripper state y t = object position h t = high-level object states Υ xgyc = {(x 0 , g 0 , y 0 , h 0), ..., (x T , g T , y T , h T)} (6.1) An effect is defined as an expected variation of the object contextual states, Λf , and it is associated to a label, e. In the current work the expected variation can be related to either a variation of the object position or a variation of the high-level object states:

e ≡ Λf = y t -y t-1 ∨ h t -h t-1
where the subscript t represents an instant of time.

The dataset of interactions containing the demonstrations performed by an external agent, D, is composed of an effect and one or more interactions producing the effect:

D = (e, {Υ k xgyh }) (6.2)
where k represents one of the K interactions available.

Once the skill is available it can be used to generate actions to reproduce effects on objects. An action, a e , is a sequence of movements reproducing an effect. A movement, (Λx t , Λg t), consists in a displacement of the robot's end-effector and a change of the gripper state between two subsequent instants of time (see Definition 7):

Λx t = x t -x t-1 Λg t = g t -g t-1 a e = {(Λx t , Λg t)}
Actions produce changes in the object states (see Definition 5):

Λf ae t = y ae t -y ae p
where a e represents an action to reproduce an effect, and t and p represent different instants of time, such that t is posterior to p. An action is a success, if after its execution the change produced in the object is equivalent to the desired effect:

Context-based and Adaptive Skills

Theoretical framework

The skills generated by A 2 L must be robust to spatio-temporal perturbations. Therefore, it is necessary to add a dynamical framework providing this capability of adaptation. [START_REF] Warren | The dynamics of perception and action[END_REF] defines a theoretical framework describing the interaction of an agent with its environment as a DS, applied in realistic use cases (a detailed explanation is available in Section 3.3.2). We use this framework to upgrade our method to add the adaptation capability.

The most relevant features from this framework, regarding our work, are twofold: first, the description of two levels of analysis for any interaction of the agent with its environment (Figure 6.2). At the first level of analysis a perception-action cycle represents the global behavior of the interaction [START_REF] Kugler | Information, natural law, and the selfassembly of rhythmic movement[END_REF][START_REF] Warren | Action modes and laws of control for the visual guidance of action[END_REF]. In a constant loop, the perceptual information gathered by the agent drives the generation of an action. Its execution modifies the environment, generating novel perceptual information. The second level of analysis represents a low-dimensional description of the global behavior. This level describes the temporal evolution of a behavior, i.e. an action, called behavioral dynamics. The status of an action is described based on the change of few variables, the behavioral variables. At this level, a vector field is generated based on one or more effect-oriented trajectories of a demonstrated interaction. The vector field is described by the behavioral variables. The perceptual information of the first level is described using Figure 6.2: Description of the two levels of analysis of a robot interaction with its environment. From [START_REF] Warren | The dynamics of perception and action[END_REF]. A full explanation is available in Section 3.3.2. the same variables. Then the perceptual information at a certain instant defines the current action state in the low-level vector field, and the action is computed from that state. Second, at the second level, the effects produced by the demonstrated interactions are attractors within the vector fields. Therefore, the generation of an action at the first level is driven by the effect-oriented vector fields, from the current action state. Namely, the vector fields drive the global interactions of the agent. This is important to easily adapt the actions to the environment. For example, if the perceptual information identifies a new object to be avoided during the action to execute, a repeller could be added to the vector field to avoid that area of the environment.

Warren applies the theoretical framework to a steering and obstacle avoidance problem, with the aim of predicting routes through complex scenes. Based on his insights, different problems must be addressed at each level of analysis: "The problem at this level [first level] is to identify the informational variables that are used to guide behavior and to formalize the control laws by which they regulate action. [...] the problem at the second level of analysis is to identify a system of differential equations (i.e., a dynamical system) whose solutions capture the observed behavior" (Warren et al., 2010, page 1). In order to apply the theoretical framework to the building of skills by A 2 L we must also address these problems. Regarding the problem at the first level of analysis, a skill generates continuous actions adapted to an object position to reproduce an effect. As aforementioned, generating an action entails the inference of a sequence of movements of the robot's end-effector. Therefore, the states used to guide behavior are those related to the generation of a movement, i.e. low-level contextual states. In the current work, these states correspond to the robot-object relation states, i.e. the distance, orientation and inclination between the end-effector and the object. Regarding the problem at the second level of analysis, we must define a dynamical system that, based on one or more trajectories, produces a vector field representing the temporal evolution of the trajectories. In the current chapter a continuous vector field is generated using a diffeomorphism, explained in Section 6.4.2. Information from this vector field is extracted and discretized to learn the action generator (a detailed explanation is available in Section 6.4).

Skill structure

Once the previously identified problems have been properly addressed, the theoretical framework can be applied to A 2 L in order to build adaptive skills. The structure of a skill is depicted in Figure 6.3. The skill receives information to reproduce an effect on an object. In Section 3.3.2 the theoretical framework was described for a general interaction of a robot with its environment. Conversely, a skill reproduces a specific effect. And thus its execution has to stop at certain instant of time, providing a result, together to a detailed trace of the execution. The running of the skill stops either producing a failure after a maximum number of iterations, or producing a successful result when a condition representing the expected effect is reached:

Λf = t i=1 Λf i
where Λf represents the variation of the object features representing the effect and the summation represents the accumulated variation of the object features after t iterations.

This condition is integrated into the perception-action cycle within the higher level of analysis. At the beginning of the cycle, the condition is evaluated. If the effect has been reproduced the skill execution stops. If not, the object position, y t , and high-level contextual states, H t , of the object are acquired (equivalent to the information function, Equation 3.12):

y t , h t = GetContextStates() (6.3)
Then, together to the available robot's state, the robot-object relation state is computed and discretized:

δ t = ComputeRelationState(x t , f t) (6.4)
where δ t represents the discrete robot-object relation state at a certain moment, , i.e. the position of the object with respect to the end-effector, x t represents the continuous position of the robot's end-effector at a certain moment, f t represents the object features at a certain moment, and ComputeRelationState is a function computing the continuous robot-object relation state.

Once the previous information is available, the continuous next movement to reproduce the effect, Λx t , is computed. As aforementioned, the movement is not directly computed by a dynamical system, as in Equation 3.10. An action generator, φ, computes it based on the available relation state and high-level object states:

∆x t = φ(δ t , H t) (6.5)
Then the robot executes the movement with its end-effector, ε, generating a set of forces, z (equivalent to Equation 3.11):

z t = Execute(ε, ∆x t) (6.6)
The execution of the movement modifies the position of the end-effector, Λx t . The forces associated to the movement may modify the object states, Λf t following the Physical laws of the environment, Φ, if the robot touches the object (equivalent to Equation 3.9):

Λf t = Φ((x t , f t), z t) (6.7)
At the second level of Figure 6.3, an example is depicted of the movements (grey arrows) inferred by the action generator (Equation 6.5) for different discrete values of the behavioral variables. In this example these variables only correspond to the relation state, i.e. the position of the object with respect to the end-effector, composed of a distance, d i , and an orientation, o i . The states are represented in polar coordinates used in the discretization process explained in Section 6.4.2.

Method

This section explains the improvement in the process of A 2 L to learn and execute skills adapted to the contextual states. A skill is learned from one or more demonstrations of interactions with an object, producing the same effect on it, e.g. pushing it to the right. Therefore, a dataset of interactions must be available. These interactions are acquired by an external agent through one or more demonstrations (LfD), and stored into a dataset of interactions, D (Section 6.4.1).

Initial Interaction Acquisition by Demonstration

The external agent performs the demonstrations manipulating the Baxter robot (LfD). In each demonstration, the external agent grasps the wrist of one of the robot's end-effectors, presses a button located in the end-effector to start the recording of the demonstration, moves the end-effector to perform an action (usually interacting with an object) and releases the button once the trajectory has finished. The external agent presses another button during the execution of the action whether the gripper has to open or close.

The acquired information is continuous, composed of the trajectory, i.e. a sequence of position of the end-effector, and for each position of the end-effector (i) T e , T o , T g , T c ← RecordInteraction()

6: D ← SaveInteraction(T e , T o , T g , T c)
the position of the object, (ii) the openness of the gripper, and (iii) the high-level object states. Once all the demonstrations are finished to reproduce the same effect, i.e. to build the same skill, the acquired information is stored into a repertoire of states, D (Equation 6.2). Algorithm 5 shows the pseudo-code of this process. Each skill is used to perform an action reproducing an effect. Therefore, before the demonstrations, a name is provided to the skill, representative of the action, e.g. grasp or push right .

Once the dataset of interactions is available the method to build skills starts. This process entails two steps (see Figure 6.4):

Step 1 The dataset of interactions, D, is transformed into a repertoire of movements and contextual states, R, in order to build skills that can generate actions adapted to changes of both the object position and the high-level object states (Section 6.4.2).

Step 2 Based on the discrete repertoire created during the previous step, the action generator is built (Section 6.4.3). The action generator can be used to infer movements to reproduce an effect on an object.

Step 1: Adapting the Interactions to Learn Adaptive Skills

The dataset of interactions, D, represents an action producing an effect on an object. Namely, these interactions can be used to generate an action reproducing the effect under the same context, i.e. given the same robot-object relation states, and with similar high-level states. However, the movements inferred by the action generator must be adapted to (i) changes of the high-level object states and/or (ii) changes of the position of an object, i.e. changes of the robot-object relation state. Therefore, the objective of this section is to generalize the knowledge to reproduce the effect provided by an interaction in a specific context to different but close contexts. Close

N dist ← ComputeDistanceBins(ς ̺) 3: θ s ← ComputeDiscretization(N dist , N orien , N inclin) 4: D ← LoadContinuousDataset(S) 5:
R← CreateEmptyDiscreteRepertoire(S)

6:

for τ ∈ D do 7:

ϑ τ ← ComputeVectorField(τ) 8:
for ω τ ∈ τ do 9:

y ωτ ← GetObjectPosition(ω τ) 10: ̺ ← SamplingArea(ω τ) 11:
for ρ ∈ ̺ do 12:

x ρ ← GetEndEffectorPosition(ρ) For each position of the end-effector within the vicinity a episodic block of information related to a movement at an instant of time, B, is acquired (Step 1.3). Each block is a triple composed of (i) the movement to execute to reproduce the effect from a position of the end-effector, (Λx t , Λg t), (ii) the robot-object relation state at that moment, δ, and (iii) the high-level object state at that moment, H :

B = ((Λx t , Λg t), δ, H)
In order to compute the movement needed to reproduce the effect from the current position of the vicinity, previously avector field is generated based on the demonstrations (Step 1.2). Finally, in the Step 1.4, the blocks from the different interactions are discretized and stored together into a discrete repertoire of states, R:

R = {B}

The pseudo-code of the adaptation process is available in Algorithm 6.

Step 1.1: Computing the Vicinity A vicinity is computed for each demonstrated trajectory. First, the trajectory is reduced to a set of equidistant waypoints (represented as red stars in the Figure 6.4). The number of waypoints is computed based on the length of the trajectory. The higher the number of waypoints, the more precise the representation of the demonstration1 . For each waypoint the function SamplingArea creates a vicinity of positions of the end-effector around the waypoint. The vicinity is represented as a cubic grid centered in the waypoint with side size Q, and composed of P x P x P equidistant positions, P and Q being preset values.

Step 1.2: Computing Movements of the End-effector from New Positions

The objective of using a vector field is computing the next movement of the endeffector to reproduce the effect. In the current manuscript a vector field is obtained from a demonstration using a DS called diffeomorphism (explained in Section 3). This DS has a parameter to compute the tendency to reproduce the demonstrated trajectory, defined based on experience.

The vector field is computed, by the function ComputeVectorField, based on the trajectory of each demonstration using a diffeomorphism (see Section 3.3.3 for further details). An example is depicted in Figure 6.4, c. If the end-effector is in a position close to the demonstrated trajectory the vector field provides a vector converging to the trajectory, possibly reproducing the expected effect. The vector corresponds to a movement of the end-effector. However, even with the right parameter, if the position of the end-effector is far from the demonstrated trajectory, e.g. at the left corner in the Figure, the movements directly converge to the attractor, not reproducing the effect.

Step 1.3: Creating Blocks of Information

This process entails the following stages:

Acquiring the Movement: the movement of the end-effector from a position to reproduce an effect is a vector in Cartesian coordinates. It is directly provided by the vector field for a position of the end-effector by the function GetEndEffec-torDisplacement from the available vector field related to the trajectory. Similarly, the continuous state of the gripper is a value with range [0, 100], acquired by the function GetGripperState. The value of the gripper state for positions of the same vicinity is similar to the value of the corresponding waypoint.

Acquiring the Robot-Object Relation State: as aforementioned, the robot-object relation state represents the position of the end-effector, always available, with respect to the object position, acquired by the function GetContextStates. It is a vector from the end-effector to the object in Cartesian coordinates, computed by the function ComputeRelationState.

Acquiring the High-level Object States: in the current work the high-level states are always discrete, and they are directly acquired by the function GetContextStates. Similarly to the gripper state, positions of the same vicinity have the contextual information of the corresponding waypoint. Figure 6.5: Example of the discretization configuration used in experiments (see Section 6.5). The black arrow represents a robot-object relation state, i.e. the position of the object with respect to the robot's end-effector (at the origin). At the top, representation of the distance bins, with value d4 for the vector in the example. At the center, representation of the orientation bins, with value o10 for the vector in the example. At the bottom, representation of the inclination bins, with value i2 for the vector in the example.

Step 1.4: From Continuous to Discrete Information

The action generator is a BN, learned using a discrete dataset. Therefore, each block of information is discretized before being stored into R. To that end, a discretization configuration must be available. The values for the orientation and inclination are predefined, whereas the values for the distance is computed. The length of the minimal size of a distance bin is related to the distance between two positions in the vicinity:

minimal distance bin size = Q P -1 (6.8)
This bin size is used to compute the whole distance discretization, e.g. every bin can have the same size or the size can grow following some heuristic (see Experiment 1 for more details). Therefore, the accuracy of the actions inferred by the action generator depends on the values of P and Q. This configuration is applied to discretize the displacement of the end-effector, the relation state and the gripper state. On the one hand, the definition of a gripper state directly depends on the accuracy of the task to perform, e.g. for some tasks open and close can be enough, whereas for others degree of openness can be relevant. On the other hand, both a movement of the end-effector and the relation state are vectors defined in the Cartesian coordinates. In these coordinates the range of each axis is [-∞, ∞], which makes very difficult to find a proper discretization. For this reason, the displacement of the end-effector and the relation state are transformed to spherical coordinates before being discretized. A vector in spherical coordinates is composed of a distance, with range [0, ∞], an orientation, with range, [-π, π) and and inclination, with range [0, π]. In the current work, the range of the distance is constrained to the range [0, 0.5) because any object farther than one meter is considered as far from the robot. And thus several movements are needed to reach it, becoming close eventually. Each of these ranges is divided into a preset number of bins of the same size. Figure 6.5 shows an example of this discretization. In Section 6.5 an experiment shows the impact of using different discretization configurations.

Step 2: Running a Skill to Reproduce an Effect on an Object

An action generator, φ, is a BN that infers discrete movements, ∆x, to reproduce an effect, e, on an object. Each movement is adapted to both the position of the object with respect to the end-effector, i.e. the discrete relation state, δ, and the discrete high-level object states, H, at certain instant of time (see Figure 6.1). A movement is composed of the end-effector displacement and the gripper state, which are independently inferred: As described in Section 6.4.2, a discrete vector is composed of a distance, an orientation and an inclination. Therefore, a discrete movement is described using three discrete values:

(∆x t , ∆g t) = φ(e,
∆x t = (∆ dist x t , ∆ orien x t , ∆ inclin x t)
Although it is possible that there is a weak dependency among these values, in order to speed up the computation of a movement we consider tha these values are independent. And thus the inference of a movement consist in the individual inference of each one of them (see d-separation in Section 3.2.3): In the current work, an action generator is learned each time the skill runs, based on the dataset of discrete blocks, D, computed in the previous section (Step 2.1).

∆x t = (arg max ∆ dist xt P (∆ dist x t | e,
The inference and execution of each movement is performed within the perception-action cycle explained in Section 6.3.2 and depicted in Figure 6.3. The perceptual information of the robot is transformed and provided to the action generator, which infers the movement (Step 2.2). Then, the movement is executed by the robot using its inverse kinematic model. This execution generates a displacement of the position of the robot's end-effector, which can modify the robot's environment. If the effect has not been reproduced, or a maximum number of movements executed, a new iteration of the cycle is executed.

The pseudo-code to run a skill is available in Algorithm 7.

Step 2.1: Learning the Action Generator Learning a BN consists in two steps: (i) the generation of a structure representing the causal relations of the components of a block, and (ii) the computation of their conditional probability distributions (CPDs).

The discrete dataset of blocks can contain information of one ore more interactions, i.e. they have been computed based on different trajectories. And these trajectories can suggest different movements for the same robot-object relation state and contextual information. The uncertainty generated in these cases is directly handled by the probability distributions of the BN, computing different probabilities for each movement observed under the same circumstances.

T E , P E ,T G , T O ← ∅ 8:
while ¬ReproducedEffect(e s) ∩ know mov ∩ nb_mov < nb_mov max do 9:

x, g ← GetProprioceptiveInformation(ε) 10:

y, H ← GetContextualStates() x, y, g, H) 12:

11: Λx, p Λx , G = InfereMov(θ s , φ R ,
if Λx = ∅ then Algorithm 7

Step 2: Running a skill to reproduce an effect (continuation) 13:

x = x + Λx G ← ComputeMeanGripperOpenness(Θ)

14:

return Λx, p Λx , G

Step 2.2: Inferring a Movement

The process to infer a movement (Equation 6.9) is detailed in this section. The pseudo-code is available in Algorithm 8. While computing the vicinity of a trajectory some robot-object relation states may not have been covered by the positions of the grid. Covering all the positions would entail a complex parametrization of the vicinity grid and the discretization configuration. In order to avoid the identification of this parametrization, the movement inferred for a relation state and contextual information to reproduce an effect is computed as the mean value of a set of relation states, Ξ. This set consists of the nearest neighbors relation states of the current relation state, including itself. In this case, for each dimension of the current state, the previous and the next values. For example, for dimension 3, the neighbors are d2 and d4. And thus, the size of each dimension is always 3, except for the maximum and minimum distance, which is 2, e.g. the extreme distance only have 1 neighbor. The set of states, including the current state, i, is [d i-1 , d i , d i+1] for each dimension of the relation state:

length(nearest neighbors) = M d=1 N d
where M represents the number of dimensions, and N represents the size of the current dimension d. An example of this computation is available in Figure 6.4. In this example the relation state, the black arrow, is described using a distance and an orientation, e.g. d21 and o10. The ranges of nearest neighbors would be [d20, d21, d22] for the distance, and [o9, o10, o11] for the orientation. Therefore, the set of nearest neighbors would have 9 elements, 3 x 3. Conversely, for the current state d0, with range [d0, d1], and o10, the set of nearest neighbors would have 6 elements, and thus 2 x 3 elements. If another dimension with 3 elements is added, e.g. the inclination, the set of nearest neighbors would have 18 elements, 2 x 3 x 3.

The action generator infers discrete movements of the end-effector. Therefore, it is necessary to transform these movements to continuous values. The function ToContinuous() selects the mid value of the range corresponding to each value composing the movement. For example, for the movement (d2, o11) of the Step 2.4 in Figure 6.4 the function computes the mid value for the ranges of d2 and o11.

Experimental Framework

Experiments

Two sets of experiments have been executed to validate the building of skills adapted to the contextual states (see Table 6.1). For each skill one or more demonstrations of trajectories reproducing the corresponding effect are previously performed, i.e. a repertoire of contextual states is available to build each skill. Videos of the experiments are available online. 2As aforementioned in Section 6.4.2, the accuracy of an action generator is based on the number of positions, P, and the size of the vicinity, Q, selected to transform the repertoire of states representing the demonstrated trajectories. In these experiments two actions generators with different levels of accuracy are learned (see Figure 6.7): a fine-grained action generator inferring small movements (around 2.5 cm) and a coarse-grained action generator inferring small movements (around 6). Although just the fine-grained action generator would be enough to accurately reproduce the effects, the use of the coarse-grain generator provides more realistic trajectories, with bigger movements far from the object and smaller ones close to it. The corresponding P and Q values are 7 positions and 20 cm for the fine-grained one, and 40cm and 8 positions for the coarse-grained one, respectively. The fine-grained generator is used if the end-effector is close to an object (arbitrarily preset to 10 cm), whereas the coarse-grained generator is used in any other case.

For these experiments the gripper state is simply discretized into two states: open if its continuous state is bigger than 50, or closed otherwise.

Robotic Platform

Similarly to the experiments carried out in the previous chapter (see Section 5.3.2), the validation of the method is performed on a Baxter robot. Nevertheless, in the current chapter only the physical robot is used. Each gripper of the robot has a different configuration: on the left gripper, the fingers of the gripper are in the farthest position, in order to grasp big objects. On each finger there are adapters to facilitate the pushing and the grasping. On the right gripper, the fingers are in a intermediate position, in order to grasp smaller objects. And there are only adapters to grasp. The execution of the robot relies on ROS Indigo Igloo and our kinematic library3 .

Skill Building Experiments

The first set of experiments makes a study of the results obtained executing A 2 L by a Baxter robot in order to reproduce an effect on an object, located on the table in front of the robot. In these experiments only the low-level object states are used, that is, the perception of the robot is constrained to the position of the object.

In these experiments, the robot tries to grasp a cylinder and push it to the right 5 centimeters with its left end-effector from different initial positions (see Figure 6.12). The initial positions for the push action are located at 30 cm in X, Y and Z from the object (yellow point), at 30 cm in Y and Z from the object (orange point), at 30 cm in Y and Z and -30 cm in X from the object (brown point), and the purple points share the same X and Y than these points, except that Z has the same value than the object. The initial positions for the grasp action are located at 30 cm in X, Y and Z from the object (yellow point), at 30 cm in Z from the object (orange point), and at 30 cm in X and Y from the object (brown point). The initial positions have been selected close to the initial positions of the demonstrations. All the trajectories inferred by A 2 L in these experiments are available in Appendix A.

Experimental Setup

A table of 180 x 80 x 75 centimeters (cm) of width, length and height, respectively, is located in front of the Baxer robot (see Step 1 of Figure 6.4).

Figure 6.8 shows the set of objects used for the experiments. In this set of experiments only the cylinder and the tea box are used. The number of objects used in an experiment is small, based on the idea that a human being cannot handle simultaneously more than 3 or 4 objects [START_REF] Spelke | Core knowledge[END_REF]. The positions of the objects are acquired using an OptiTrack motion capture system4 . This system is composed of 4 cameras located at the ceiling, over the setup, and it generates a virtual structure of the markers located on the objects, providing the position of each object defined in the center of it, for instance.

The reference frame of the setup is located at the base of the robot, and thus the perceptions perceived by the robot are relative to itself, e.g. an object position.

Experiment 1: Study of the Discretization Impact The objective of this experiment is to analyze the impact of different discretization configurations in the reproduction of an effect on an object. In this case, the discretization for the orientation and inclination have bins of the same size, because the range of both is [0, 2π]. And thus, the first and last bins are connected. In this experiment, the values used for the orientation and inclination are 4, 8 and 16, selected based on experience. Conversely, the distance has a range of [0, M], where M represents the longest distance of a movement of the robot, in this case 50 cm. Two different types of discretizations for the distance are compared: on the one hand, a linear discretization, in which M is split up in bins of the same size. On the other hand, a progressive discretization is computed inspired on the Fibonacci sequence, in which each number is the result of the addition of the previous two numbers, being the first two numbers 0 and 1, respectively. In our case, the distance of each bin is the addition of the size of the previous two bins:

dist 0 = minimal distance bin size dist 1 = dist 0 * 2 dist n = dist n-1 + dist n-2 (6.11)
In both cases the minimal size of each bin is computed as in Equation 6.8.

In order to test different discretization configurations a hard-coded structure of the BN representing the action generator is provided, in the same vein that the structure used in Chapter 5. This structure represents relations of dependency of the lowlevel states to be inferred by the BN, i.e. the movement and gripper state, w.r.t. any other state (see Figure 6.14b).

The cylinder has been selected because of the complexity to interact with it. More precisely, in order to push it in a specific direction, e.g. to the right, the end-effector has to touch it exactly in the center of the left side of the object. Otherwise it will be moved in a different direction. Similarly, while executing a grasping action the end-effector must be on the center of the object from the top, or it will slip from the gripper.

Experiment 2: Study of the Structure Learning This experiment builds the push and grasp skills using the hard-coded structure, and compare their performance when these skills are built using structures created combining structure learning methods and scores available in the literature. To that end, a fix discretization configuration is provided, based on the results obtained in Experiment 1.

As in the Chapter 5, we have selected hill climbing [START_REF] Chickering | Learning Bayesian networks: Search methods and experimental results[END_REF] , with no a priori information about the structure, and K2 [START_REF] Cooper | A bayesian method for the induction of probabilistic networks from data[END_REF], which needs as input an order of the random variables of the BN for the structure learning. In this experiment, the random variables are:

• the effect,

• grasped, the object state representing if the object is grasped,

• the distance, orientation, and inclination of the robot-object relation state,

• the distance, orientation, and inclination of the movement,

• the openness of the gripper In this experiment, two versions of the K2 algorithm are available, with the current increasing order, and with the opposite decreasing order. These methods are combined with the score methods AIC, BIC, Likelihood, K2 and BDeu to learn the structure. These scores are described in Section 3.2. Once the structure is available the correspondings CPDs are learned using Maximum a posteriori (MAP) with a smooth a priori. Except for K2 and BDeu, which have their own a prioris.

Experiment 3: Skill Generalization In this experiment the push skill is built using the best discretization and structure identified in the previous experiments. Then, the generalization capabilities of the skill is analyzed in two different situations: pushing the cylinder from positions not observed during the demonstrations; and pushing the tea box, with different size and weight than the cylinder.

Validation

Similarly to [START_REF] Calinon | A probabilistic approach based on dynamical systems to learn and reproduce gestures by imitation[END_REF][START_REF] Calinon | Encoding the time and space constraints of a task in explicit-duration hidden Markov model[END_REF], we use metrics to evaluate each reproduction attempt w.r.t. the available demonstrations. However, our goal is not reproducing the demonstrations, but rather reproducing their effect. Therefore, instead of using techniques as the root-mean-square to compare the error of the inferred trajectory, we define two metrics to measure the error in the effect depending on the type of skill used:

• For pushing an object, the mean-square-error of the Euclidean distance between the final position of the object and the expected one is computed, with a precision threshold of 1 cm.

• For grasping an object, the number of times the object is grasped, in the range 0, if all the attempts fail, and 3 if all are successful.

The quality of the performed action is measured based on two values:

• The number of movements inferred, with a maximum of 15 movements.

• The mean smoothness value among the movements. The smoothness value between two movements, m 1 and m 2 , is computed as:

smoothness value = cos -1 (| m 1 | * | m 2 |)
As the Baxter robot does not provide tactile feedback, an object is considered as grasped if the robot-object relation state is under certain preset distance, and if the value of the gripper state is in the lower half range (under 50). The object is considered as pushed certain distance if it is under an Euclidean distance of 1.5 cm from that position.

Task Experiments

In the second set of experiments, the best discretizaton parameters and structure used to build skills identified the first set of experiments are validated. To that end, two experiments are defined with different objectives:

Experiment 4: Solving a Maze

The goal of this experiment is twofold: (i) to validate the reproduction of different results for the same skill, e.g. push to the right an object different distances; and (ii) to combine different skills to solve a task.

The setup of this experiment consist of two mazes of different configurations. The robot must reproduce a sequence of actions pushing an object specific distances to reach the goal (see Figure 6.9). The objects to push have different sizes, shapes and weights. These are the cyilinder for the first maze, and the cake for the second maze.

In order to reproduce the sequence of actions different skills have been demonstrated to the robot. First, a set of demonstrations are executed to push an object to the left, to the right, close to the robot, and far from the robot. Before executing each push action it is necessary to set the robot's end-effector on one side of the object, e.g. to push it to the right the end-effector must be located at the left of the object. Therefore, a set of demonstrations are executed to move the end-effector from the object to on of its sides (see Figures 6.15 and 6.16).

In these experiments the experiment designer chooses the next actions to execute and the expected effect, including the distance to move an object or the robot's endeffector.

Experiment 5: Heating a Croissant

The objective of this experiment is to show (i) that skills built by A 2 L, based on demonstrations, can be used to perform a multi-step task in a realistic scenario, adapting to both low-level and high-level contextual states; and (ii) that the skill behavior can be traced. The possibility to understand the behavior of a skill can be exploited in higher-level stages to identify behavioral regularities, for instance to perform transfer learning and skill generalization.

A scenario is defined, comprising a toy-like kitchen and other objects on it (see Figure 6.10). Two tests have been initially carried out in order to show the robustness of the skills w.r.t. spatio-temporal perturbations. In these tests the robot context is composed of low-level states. First, a pick-and-place experiment has been executed. The robot has to grasp the croissant and release it inside the pan. The position of both objects changes and the ongoing robot action has to adapt to these changes. Second, the robot has to grasp the croissant. In this case, during the execution of the grasping action the position of the end-effector is externally modified. Besides, the croissant position changes.

Th same scenario is used to assess the adaptability of the system to changes of the high-level states. Therefore, the robot context is composed of low-level and high-level states. The task consists in heating a croissant until reaching a specific temperature. The high-level states of the objects are:

• Stove number 4 : on (red) or off (black).

• Croissant: cold (yellow), mid temperature (salmon), high temperature (brown) or grasped (green).

• Button: pressed or not pressed.

These state colors are visually represented during the experiment in a screen next to the robot (see Figure 6.17). Initially, the value of the high-level states are the following: the stove is off, the button is not pressed, the croissant is cold and it is located in the dish, over the stove 1 (which is always off). If the croissant is in the pan, the pan is over the stove 4, and the stove is on, the temperature of the croissant changes from cold to mid temperature after few seconds; and from mid temperature to high temperature again after few seconds.

The sequence of actions to reach the task goal are:

1. Push the button to turn the stoves on.

2. Grasp the croissant.

3. Release it into the pan.

4. When the croissant has reached the mid temperature, grasp it again.

5.

Release it back into the dish.

6. Turn the stove off.

Therefore, the actions demonstrated to the robot are pressing the button, grasping the croissant, and releasing the croissant from the dish to the pan, and vice versa. The demonstrations are performed with the left robot end-effector, and actions executed with the right end-effector. Before the grasp and press actions the end-effector is randomly located over the setup, in a range of 20 to 40 cm of height, in order to show that actions can be inferred from different initial positions of the end-effector.

The multi-step experiment is executed using a STRIPS planner with PDDL-like problem specification (see Section 3.4). It is written in Python, and called PyDDL5 . The problem, domain and planned sequence of actions actions are available in Annex B. The task planner perceives the state of the objects using ROS. Initially, the sequence of required actions is computed. Then, each time a state changes the corresponding action is executed. The task planner is also in charge of changing the colors of the screen representing the object states.

Experimental Results

Experiment 1: Study of the Discretization Impact Results are similar using both linear and progressive discretizations for pushing and grasping the cylinder (see Figure 6.11). However, the linear discretization reaches slightly better results (see top of Figure 6.11, a). previous Experiment, i.e. linear distance, with 16 bins for the orientation and 16 bins for the inclination. The obtained results show a clear difference between using the hard-coded structure and the structure learning methods.

For the pushing experiment, the final position of the cylinder is very close to the expected position using the hard-coded structure combined with any of the scores. This is depicted in Figures 6.13, a and 6.12. However, the structure learning methods have not been able to identify the proper causal relations among the random variables (see Annex A). And thus the mean error of the final position of the cylinder using these methods is high.

The mean smoothness value of the hard-coded approach generates very smooth trajectories and a constant number of movements using any of the scores. The trajectories generated by the learning methods are also smooth with a constant number of movements because they are mainly straight lines from the initial positions to the cylinder.

Experiment 3: Skill Generalization A 2 L shows a very good generalization capability to push the tea box, similar to those obtained from the initial positions used in the demonstrations. Conversely, the results obtained pushing the cylinder are poor. The obtained results are clearly connected to the precision needed to push the object, because the method looses some accuracy while executing the action.

After the execution of the Experiments 1, 2 and 3 there is a combination of discretization and structure learning approach which we have selected to validate building other skills and using them to perform tasks:

• Linear distance 6.14a, 6.14b and 6.14c show more details about this combination. The actions inferred by the coarse-and fine-grained action generators are easy to observe based on their length, i.e. longer and shorter, respectively. The different colors make reference to the probability values computed by the action generators: light violet (not present) means that the generator has very little knowledge to infer the movement, violet means that the generator has a good knowledge to infer the movement (as most of the push movements), magenta means that the generator has a high knowledge to infer the movement (as the movements close to the object while grasping, and black that the generator only has one possibility result inferring the next movement. The pushing actions are smooth, first, aligning to the object position, and then approaching in a straight line. Conversely, the grasping actions are less smooth, although the fine-grained action generator has a high knowledge of the approximation to infer, producing a high success ratio. Regarding the generated structures, it is relevant to underline that they handle the same contextual states, even when they are not necessary, as grasped and next_openness for pushing.

Experiment 4: Solving a Maze The results obtained for both mazes are depicted in Figures 6.15 and 6.16. In both cases, the robot was able to solve the maze, showing precision on the pushing actions, confirming the results obtained in the Experiments 1 and 2. A 2 L has built skills that can reproduce different effects, and thus they can be used in different tasks. Besides, the reproduced effects can be combined.

In Figure 6.15, the figure in J shows the actions executed between two screenshots. These actions are: (A-B) the robot sets the end-effector behind the cylinder, (B-C) the robot pushes the cylinder far, (C-D) the robot sets the end-effector at the left of the cylinder, (D-E) the robot pushes the cylinder to the right, (E-F) the robot sets the end-effector in front of the cylinder, (F-G) the robot pushes the cylinder close, (G-H) the robot sets the end-effector at the right of the cylinder, (F-G) the robot pushes the cylinder to the left. All the actions are accurate, except setting the arm at the back (B) and in front of the cylinder (F), due to reaching the kinematic limits of the right arm of the robot.

In Figure 6.16, the figure in F shows the actions executed between two screenshots. These actions are: (A) the robot pushes the cylinder to the right, (A-B) the robot sets the end-effector at the back of the cylinder, (B-C) the robot pushes the cylinder far, (C-D) the robot sets the end-effector at the right of the cylinder, (D-E) the robot pushes the cylinder to the right, a different distance than A. Similarly, in B the actions is not very precise due to reaching the kinematic limits of the arm of the robot.

Experiment 5: Heating a Croissant Figures 6.18 and 6.19 show the trajectories obtained in the tests, i.e. executing actions with spatio-temporal perturbations. In both cases the skills are robust, reproducing the expected effect. In Figure 6.18, the action A-C shows a curve of the action adapting to the change in the croissant position. Similarly, at the beginning of the action C-F there is an abrupt change in to high-level contextual states means that the robot has to change its behavior based on the values of these states. High-level states can be continuous, but they are commonly discrete. In order to handle discrete values low-level and high-level context states, and movements are discretized. Effects are already discrete. Thus, a discretization configuration is necessary.

Contexts are acquired during the interaction of a robot with an object. Therefore, a dataset of interactions must be generated in order to learn skills. In this chapter, different robot-object interactions are directly demonstrated to the robot by an external agent. In this case, the agent moves the robot's end-effector touching an object reproducing an effect (LfD).

In the current work, a study is performed in order to select the best parametrization to build a push to the right and a grasp skill to reproduce an effect. This study is composed of the identification of the most adequate discretization configuration and the structure of the BN to use. Then, the selected parametrization is used to build a set of diverse skills, which are validated in several experiments performing tasks with different objects. The assessment of the built skills is directly performed by the physical Baxter.

The obtained results show that our method builds skills that can be used to perform tasks using objects. Besides, the skills built using the method are transparent, i.e. its behavior can be traced. Regarding the low-level contextual states, the inference of a movement at each instant of time computed by a vector field allows the robot to adapt its actions to changes in the position of an object, and to perform these actions for relative object positions unobserved during the demonstrations. Given an interaction reproducing an effect, using the best skill parametrization the precision of the inferred actions allows the robot to reproduce the expect effect under similar relative object position w.r.t. the end-effector. The precision decreases from unobserved relative positions, but the robot is able to reproduce the effect in most of the cases. A key feature of the method is the capability to combine the knowledge acquired from different interactions reproducing the same effect. This capability allows the execution of a developmental approach, as the iterative process of A2L, in which the robot through trial-and-error acquires the required knowledge to reproduce an action under different contexts. For example, the robot can learn to push the cylinder from different initial positions. Regarding the high-level contextual states, the robot performs actions only under certain high-level contextual states. For example, the robot turns a stove on only if it is off.

In our experiments we built two actions planners with different levels of accuracy. For both of them a unique discretization configuration was needed to push and grasp the cylinder. These skills have only in common the robot's end-effector approaches to the object without a specific velocity. The same configuration was later used for other skills sharing this feature, as press or release. This means that it is not necessary to identify a configuration discretization for each skill, but for a group of skills sharing global features, as approaching or moving away the end-effector from an object. Therefore, for a single discretization configuration different tasks can be performed.

Similarly to the simulated Baxter experiment in Chapter 5, the different structure learning methods and scores have not been able to properly identify the conditional dependencies needed to learn action generators reproducing the effects. In this case, the size of the repertoire of movements and contextual states used for learning the generators has around 1000 examples. It is clearly insufficient for these algorithms. Fortunately, the actions generators learned based on the hard-coded structure are able to reproduce different effects, as pushing or grasping.

The output of the execution of the skills by our method is a trace of the contextual states provided to the action generator, the inferred movement and the result of the action at different instants of time of the execution. This trace makes transparent the internal skill behavior. The possibility to understand the behavior of a skill can be exploited in higher-level stages to identify behavioral regularities, for instance to perform transfer learning and skill generalization. Besides, it could be used in a developmental process to generate and to update the provided a priori information needed for the model to execute, mainly the discretization configuration and the conditional dependencies.

It is also relevant to mention that the obtained results confirm the consideration that we did suggesting that distance, the orientation and the inclination can be considered are independent.

Chapter 7

Concluding Remarks

Discussion and Perspectives

The main objective of this manuscript was to endow a robot with the capacity to perform tasks in environments with features similar to those of our daily environments. Through an exploration of the environment the robot should autonomously identify the interactions to learn to reproduce effects on objects. We have demonstrated that using A 2 L a robot is able to autonomously generate a dataset of interactions through interactions with the environment. These interactions allowed the robot to perform tasks adapted to its context.

We have tried to provide the less possible a priori knowledge to the method, to increase its adaptability and generalization capabilities. However, during the development of the method we have identified several constraints. The acquisition of interactions to build skill through an exploration of the environment requires a minimal a priori knowledge to drive the robot actions. The use of random actions generates a lot of noise that complicates the skill generation. Directly providing to the robot the ideal interactions, for example through demonstrations, allows us to build methods that generate good results. However, this approach requires a supervisor to show the gestures to reproduce, i.e. a priori knowledge. A combination of both techniques could be a better solution, as in Ugur et al. (2015a). In this work, a caretaker helps a robot to grasp a mug handle physically modifying the on-going end-effector trajectory. Although it is not included in this manuscript, this is a clear next step to combine the iterative process generating interactions with the skill building presented in Chapter 6.

The learning of the action generators of the skills relies on (i) the conditional dependencies among the effect to reproduce, the context and the next movement to perform, and on (ii) a discretization of the context. On the one hand, the different structure learning methods and scores used to learn the structure of the BN representing the action generators need a very high number of interactions to identify the corresponding dependencies. Generating such a number of interactions with a robot is very complex. In this case, the use of a hard-coded structure has been useful to reproduce different effects, as pushing and grasping. Fortunately, the a priori knowledge used to build this structure is very low, because it only refers to connect the action inferred by the skill, e.g. a movement or a gripper open/close action, to the remaining available information. Therefore, this structure can be used in many different situations the robot has to face. On the other hand, the carried out experiments have demonstrated that a unique discretization configuration can be used to perform different actions. The objects used for the experiments are available in our daily environments, and have different shapes and sizes. However, they also have features in common, as being rigid objects. Running the skills to reproduce the created skills in other types of objects, e.g. paper tissue, could require a different discretization configuration. Besides, this configuration could be learned in a developmental fashion, and adapted to the type of object the robot has to interact with. A possible improvement to the method would be using BNs that can handle continuous and discrete variables, as [START_REF] Lauritzen | Propagation of Probabilities, Means, and Variances in Mixed Graphical Association Models[END_REF]. However, these techniques should have a very fast inference capacity, contrary to what Osorio suggests [START_REF] Osório | Gaussian Mixture Models for Affordance Learning using Bayesian Networks[END_REF].

Also, a priori knowledge has been added in order to acquire the position of an object. This has been one of the most challenging aspects of the execution of the experiments. We have tested different techniques with different a priori knowledge, e.g. blob, SIFT, QR codes, point cloud, and found positive features and drawbacks in all of them. In the current manuscript, we have added markers to the objects, and use a motion capture system to track their position. We have to define the exact part of the object provided to the robot as its position. In this case, we have always provided the center of mass of the object. The use of this approach is a significant limitation for the context acquisition in our daily environments. Besides, during the task performance the markers produce unexpected and unrealistic object contacts. A desired method would allow the generation of object models from visual perception, and their tracking robust to occlusions, as our visual library1 .

The current status of the method provides a lot of room for improvements. For example, the DS can be used to add more capacities to the method. In the current implementation only the distance and orientation are used from the vector provided by the DS. A necessary improvement to the method is using the velocities and accelerations provided by the vector field. This would allow the robot to execute actions at different velocities, to execute actions as poke. Also w.r.t. the DS, the use of repellers in the vector fields generated would provide to the method an obstacle avoidance capacity, allowing the use of the method in more realistic environments.

The execution of the adaptive skills built by A 2 L relies on the perception-action cycle presented in Figure 6.3.2. In this cycle, after the execution of a movement the contextual states are acquired and the next movement to execute is inferred. This approach generates reactive actions, adapting to the current robot's context. In the executed experiments, both action generators compute a movement in between 0.4 and 0.6 seconds. There is evidence that this computation lasts at least 0.2 seconds in adults, and much longer in infants [START_REF] Von Hofsten | Action in Infancy: A Foundation for Cognitive Development[END_REF]. Von Hofsten suggests that humans use predictive control to predict the next changes in the context. And thus infer the next action based on these predictions, rather than on the actual context. This approach can be applied to the skill building presented in this manuscript.

In the same vein, another possible improvement to the method would be the capability to connect a sequence of contexts in a period of time. This would give to the method the possibility of inferring a sequence of movements, and it would also reduce the time of computation. A possible method providing this feature would be the use of Dynamic Bayesian Networks [START_REF] Mugan | Autonomous Learning of High-Level States and Actions in Continuous Environments[END_REF].

Also, the number of context states that a BN can handle are limited, because of the curse of dimensionality related to the generation of the tables representing the conditional probabilities. This constraint has been already solved in Goncalves et al. (2014a) reducing the dimensionality of the information provided to the BN using the Principal Component Analysis (PCA) technique. This approach would allow the BN to handle more information. For example, the orientation of both the end-effector and the object, or higher-level abstract information, as the idea of danger. Also, the BN could handle contextual states of more than one object at a time, building skills inferring actions using several objects, e.g. multi-object interactions. However, the use of PCA or other dimensionality reduction techniques could complicate the definition of a hard-coded structure.

Conclusion

In this manuscript, we have proposed a method named Adaptive Affordance Learning (A 2 L) that autonomously builds skills to reproduce effects on objects. Given a context, a skill infers and executes an action adapted to the object position reproducing an effect on an object. A context is composed of low-level contextual states, related to the execution of an action, e.g. an object position; and high-level contextual states representing higher level concepts of the objects, e.g. an object color.

Skills are built based on a dataset of interactions of the robot with an object. In order to acquire these interactions, we have presented in Chapter 4 a method named Novelty-driven Evolutionary Babbling (NovEB), designed to perform a taskagnostic exploration of an environment. Its main feature is to look for actions that maximize novelty in the raw sensorimotor space. It is based on Novelty Search, which relies on Evolutionary Algorithms driven by a behavior novelty criterion. Although the method has focused its exploration in regions that lead to the generation of interactions, the method runs in static environments that reset after each action to obtain a good performance. This constraint makes very difficult the execution of the method by a physical robot. Later, in Chapter 5 we have introduced the iterative process of A 2 L, which generates a dataset of interactions, used to build the skills, through interactions of the robot with its environment. The process consists of three phases, executed in an iterative fashion: first, an exploration of the robot's environment has been performed based on random actions. The result of this exploration was a dataset of interactions. Then, a skill was built based on these interactions, which has been later validated reproducing a set of effects on an object.

The building of skills has been introduced in Chapter 5. The skills were action generators implemented as Bayesian Networks. In that chapter, because of the use of random actions during the exploration of the environment, the actions inferred by the skills were discrete and constrained to a 2D Cartesian space. Besides, they were executed in an open loop, and thus the object position could not change during the actions execution. These constraints have been addressed in Chapter 6 building skills using a Dynamical System. Actions inferred by these skills were robust to spatio-temporal perturbations because each movement of the end-effector is generated as a continuous vector. In the carried out experiments the position of an object could change independently from the robot's actions.

These actions are also adapted to high-level contextual changes. High-level states can be continuous, but they are commonly discrete. In order to adapt to lowlevel and high-level contextual states these are discretized. Therefore, the Bayesian Networks representing the actions generators receive the next effect to reproduce and discrete contextual states, and infer discrete movements.

The output of the execution of the skills by our method is a trace of the contextual states provided to the action generator, the inferred movement and the result of the action at different instants of time of the execution. This trace makes transparent the internal skill behavior, which can be useful in higher-level stages to identify behavioral regularities to exploit transfer learning and generalization.

Figure 2 . 2 :

 22 Figure 2.2: Comparison of works in the developmental robotics literature addressing the features proposed at the end of Section 1.1. The numbers represent works available in Tables 2.1, 2.2 and 2.3. On the left, comparison of the adaptation to the environment and the use of discrete representations. On the right, comparison of the adaptation to the environment and the inference capability. The adaptation values are as follows: no means the skills do not have any adaptation capabilities, low means the skills can only adapt to the object position before the execution of the action, high means the skills can adapt to both spatial and temporal perturbations before and during the execution of the action, and strong extends the high value being stable, i.e. always reproducing the effect.

Figure 3 . 1 :

 31 Figure 3.1: Steps of an evolutionary algorithm. (A) Generate (randomly) an initial population. (B) Calculate fitness value of each individual. (C) Select individuals based on this value. (E) The rest are discarded. (D) Apply genetic operators (crossover and mutation) to the selected individuals in order to generate the next population. From Cully and Mouret (2015).

Figure 3 . 3 :

 33 Figure 3.3: Example of a Bayesian Network and the related Conditional Probabilistic Distributions (from the aGrUM documentation).

Figure 3

 3 Figure 3.4: Example of an attractor from Warren (2006). The black point represents the position of an attractor, and the black arrows show the attraction directions to the point.

Figure 3

 3 Figure 3.6: Example of a diffeomorphic matching, Φ, of a simple trajectory (blue line) to a demonstrated trajectory (dotted line). The space of the vector field is represented by the red grid. From Perrin and Schlehuber-Caissier (2016).

 It contains the predicates and the actions. (def ine (domain < domain name >) < P DDL code f or predicates > < P DDL code f or f irst action > [...]

 (def ine problem < problem name >) (: domain < domain name >) < goal specif ication > < initial state > < objects > Task goal It defines the goal to reach. (: goal (robotat kitchen roomba)) Initial state It defines the initial values for the task objects. (: init room kitchen room dinner_room room living_room robot roomba) Objects Entities of interest.

Figure 4 . 1 :

 41 Figure 4.1: Examples of different moments during the experiments using NovEB. Each row represents the execution of a trajectory (except for column A that displays the initial state before any trajectory is executed). The right column represents the moment just after the execution of a trajectory, i.e., when the robot's arm has completed the trajectory. The left column shows the final image obtained once the arm has come back to its initial position. (Row B) A trajectory without any object on the table being touched does not produce any change in the environment. (Row C) A trajectory in which an object is touched, hence producing a change in its position. (Row D) A trajectory in which the contact with the object is slightly different can result in a very different output. (Row E) A trajectory in which several the blue box is touched. An illustrating video of the experiment is available:

Figure 4 . 2 :

 42 Figure 4.2: Top view showing the space covered during the execution of NovEB(top) and during that of the control experiment (bottom). The representation is composed of the PR2 (white box) in front of the table (brown box). The small circle and boxes represents the objects on the table. The green dots represent the final position of each trajectory executed by the robot. For the control experiment, dots show that a majority of the space within reach of the robot's right arm is searched, whereas NovEB clearly focuses on the interesting parts of the space.

Figure 4 . 3 :

 43 Figure 4.3: Top view showing the final positions of the objects during the execution of NovEB (top) and during that of the control experiment (bottom). The representation is similar to that of Fig. 4.2. The blue, gray, yellow and red dots represent the final positions of the blue box, of the gray box, of the can, and of the ball respectively. Some dots are located behind the robot due to the fact that the simulator's physics engine not always handling correctly the dynamics of the objects. However, this has no impact on the results of the experiments because such objects are out of the field of vision of the robot. Note again that NovEB produces much more changes than the control experiment.

Figure 5 . 3 :

 53 Figure 5.3: Example of the setup used in the experiments. The box is also represented with a position, i.e. its center. The grey points represent initial positions of the arm. The clear blue areas represent both the orientation, i.e. the triangle, and the distance, i.e. the circle, of the box w.r.t. the end-effector. An example of distance and orientation discretizations are also represented, in blue and brown respectively.

Figure 5 . 4 :

 54 Figure5.4: Some sequential steps of an inferred trajectory performing the pushed_left effect on the box. At the beginning, the end-effector is located at an initial position (in red). The next movement to execute is computed by the action generator based on the robot-object relation state. In this case, the distance and orientation between them (darker blue area), e.g. dist_2 and orient_7 in step 1, and dist_1 and orient_6 in step 2. This process repeats (from step 1 to 6) until the end-effector touches the box. A related video is available online: https: //www.youtube.com/playlist?list=PL2drYAFCMtzcZ_RlfiFr2AWtcvgc1qR8o.

Figure 5

 5 Figure5.5: Example of skill building along the iterative process of the method to reproduce the four available effects from an initial position. The actions in the figure have been inferred with an action generator learned based on a self-generated dataset of interactions, using hill climbing and AIC to learn the conditional dependencies among effect, movement and relation state. After five iterations (left) of the process only one trajectory can be inferred, because the dependencies have not been correctly identified, mostly producing false-positive results (grey box). In the tenth iteration (middle) new actions have been inferred, reproducing successful results (green box) for the pushed_left and pushed_right effects. Finally, in the fifteenth iteration (right), also the most complex pushed_down effect has been reproduced.

Figure 5 . 7 :

 57 Figure 5.7: Evolution of the results obtained in the Experiment 2 along the iterations. The scores are computed as the mean values of 5 runs of the experiment, where each run executes 25 iterations.

 framework . 83 6.3.2 Skill structure . 2: Running a Skill to Reproduce an Effect on an Object 95 6.5 Experimental Framework . 99 6.5.1 Experiments . 99 6.5.2 Experimental Results . 107 6.6 Conclusions and Open Questions 115

 Λf ae t ≈ Λf e or a failure, if the change is equivalent to another effect: Λf ae t = Λf e or if there is no change in the position of the object:

Algorithm 5

 5 Initial interaction acquisition by demonstration S: skill name D: continuous dataset of interactions acquired from demonstration T e : trajectory composed of end-effector positions T o : object position during the trajectory T g : openness of the gripper during the trajectory T c : high-level object states during the trajectory 1: S ← GetSkillName() 2: D ← CreateEmptyDataset(S)

•

 16 bins for the orientation • 16 bins for the inclination • Hard-coded approach • AIC score

Figures

 Figures 6.14a, 6.14b and 6.14c show more details about this combination. The actions inferred by the coarse-and fine-grained action generators are easy to observe based on their length, i.e. longer and shorter, respectively. The different colors make reference to the probability values computed by the action generators: light violet (not present) means that the generator has very little knowledge to infer the movement, violet means that the generator has a good knowledge to infer the movement (as most of the push movements), magenta means that the generator has a high knowledge to infer the movement (as the movements close to the object while grasping, and black that the generator only has one possibility result inferring the next movement. The pushing actions are smooth, first, aligning to the object position, and then approaching in a straight line. Conversely, the grasping actions are less smooth, although the fine-grained action generator has a high knowledge of the approximation to infer, producing a high success ratio. Regarding the generated structures, it is relevant to underline that they handle the same contextual states, even when they are not necessary, as grasped and next_openness for pushing.

Table 1

 1

	Chapter

.1: Contents addressed in each chapter

Table 2 .

 2 1: Comparison of methods generating adaptive skills, DR stands for Discrete representation, IC stands for Inference capability, SP stands for Spatial perturbation, TP stands for Temporal perturbation, TD stands for Time-dependency, St stands for Stable, NE stands for Number of examples, and C stands for Combination of MPs

		7, 8	Paraschos et al. (2013, 2017)	ProMP	No	No	All positions and velocities	Yes No Yes M	Yes
	State-based	9	Calinon et al. (2007)	GMR-DS	No	Yes No	Yes No No M	-
		10, 11 Calinon et al. (2010, 2011)	HMM + GMR No	Yes Final position Yes No No M	-
		12	Khansari-Zadeh and Billard (2011),					
		13	Khansari-Zadeh and Billard (2014),	SEDS	No	Yes Final position Yes No Yes M	-
		14	Kim et al. (2014)					
		15	Calinon (2016)	TP-GMM	No	Yes All positions	Yes No Yes M	-

The current work A 2 L Yes Yes All positions Yes No No M Yes

 made the firstTable 2.2: Comparison of action used within the affordance literature, where * represents ambiguous information, DR stands for Discrete representation, IC stands for Inference capability, OffSP stands for Offline Spatial Perturbation, OnSP stands for Online Spatial Perturbation, TP stands for Temporal Perturbation, BA stands for Built-in actions, and RA stands for Repertoire of actions. Regarding the learning methods PI stands for Probabilistic Inference, DT stands for Decision Tree, BN stands for Bayesian Network, DRN stands for Relational Dependency Network, SVM stands for Support Vector Machine, NN stands for Neural Network, LWPR stands for Locally Weighted Projection Regression, DBN stands for Dynamic Bayesian Network, SVR stands for Support Vector Regression, LSTM stands for Long Short-term Memory, MMR stands for Maximum Margin Regression, GBN stands for Gaussian Bayesian Network, and DA stands for Denoisy autoencoder.

			Table 2.3: Continuation of Table 2.2	
				Affordance				
	Type	ID	Publication	learning				
				method				
					Affordance				
	Type	ID	Publication		learning	DR IC	OffSP	OnSP TP BA RA
					method				
	Pioneering works	16	Krotkov (1995)		-	-	-	No	No	No Yes Poke
		17	May et al. (2007)		-	-	-	No	No	No No Random
		18 19	Metta and Fitzpatrick (2003), Fitzpatrick and Metta (2003)	-	-	-	Object position No	No Yes Tap
		20	Fitzpatrick et al. (2003)		PI	No Yes* Object position No	No Yes Tap
		21	Stoytchev (2005)		DT	No No	Object position No	No No Random
	Representing the effects	22 23	Demiris and Dearden (2005) Dearden and Demiris (2005)		BN	Yes Yes	Object position No	No No Random
		24	Hart et al. (2005)		DRN	Yes No	Object position No	No Yes Reach, Grasp
		25							
		26							

•

 Maestre, C.,Cully, A., Gonzales, C., and Doncieux, S. (2015, August). Bootstrapping interactions with objects from raw sensorimotor data: a Novelty Search based approach. In IEEE International Conference on Developmental and Learning and on Epigenetic Robotics (ICDL-Epirob). Referenced in the bibliography as[START_REF] Maestre | Bootstrapping interactions with objects from raw sensorimotor data: a Novelty Search based approach[END_REF].

Contents 4.1 Introduction . 41 4.2 Method . 42 4.3 Experimental Framework . 43 4.3.1 Robotic Platform . 45 4.3.2 Experiments . 48 4.3.3 Experimental Results . 48 4.4 Conclusions and Open Questions 50

72 5.4 Conclusions and Open Questions 77

 Mukhtar, G.,Gonzales, C., and Doncieux, S. (2017, September). Iterative affordance learning with adaptive action generation. In IEEE International Conference on Developmental and Learning and on Epigenetic Robotics (ICDL-Epirob). Referenced in the bibliography as[START_REF] Maestre | Iterative affordance learning with adaptive action generation[END_REF].

• Maestre, C., Contents 5.1 Introduction . 53 5.2 Iterative Developmental Framework 56 5.2.1 Initial Available Information 56 5.2.2 Method . 57 5.2.3 Skill Building . 57 5.2.4 Iterative Interaction Acquisition and Validation 60 5.3 Experimental Framework . 63 5.3.1 Simulated Robotic Arm . 64 5.3.2 Simulated Baxter Robot .

 nb_it max do

	4:	{x p } ← GenerateRandomTrajectory()
	5:	y p , XY p ← ExecuteTrajectory({x p })

6:

∆f p ← y py p-1 7:

if ∆f p = 0 then 8: e p ← IdentifyEffect(∆f p) 9: D b ← AddInteractionsToDataset(XY p , e i) 10:

Table 5

 5

	List of	Constrained	Discretization	Predefined	Predefined
	effects	movements	configuration	interactions	

.1: A priori knowledge available in each experiment.

Table 5 .

 5 3: Results of the experiments. S stands for trajectories producing successful results, FP stands for trajectories producing false positives, F stands for trajectories producing failures, Sc stands for the normalized score, and ∆Sc stands for the variation of the score between the initial and the final iteration.

		Hard-coded				K2
	S FP F	Sc	∆Sc S FP P	Sc	∆Sc
	Experiment 1 16	0	0 100	-	15	1	0 95.3	-
	Experiment 2 8	2	6 53.1 33.1 4	12 0 43.57 43.57
	a Maximum Likelihood estimator.					

 Algorithm 6 Step 1: Adapting the interactions to learn adaptive skills S: skill name D: continuous dataset from demonstration R discrete repertoire of movements and context states N dist : number of discrete bins used for the distance N orien : number of discrete bins used for the orientation N inclin : number of discrete bins used for the inclination θ s : discretization configuration associated to the skill τ : a demonstrated trajectory ω τ : information associated to a waypoint of a trajectory ϑ τ : vector field associated to a trajectory ̺: sampling area ς ̺ : size of the sampling area ρ: information associated to an element of the sampling area x ρ : position of the end-effector associated to a sampling element Λx ρ : continuous displacement of the end-effector associated to a sampling element y ωτ : position of the object associated to a waypoint γ ρ : continuous relation state associated to a sampling element g ωτ : continuous gripper state associated to a waypoint h ωτ : continuous high-level object states associated to a waypoint ∆x ρ : discrete displacement of the end-effector associated to a sampling element δ ρ : discrete relation state associated to a sampling element G ωτ : discrete gripper state associated to a waypoint H ωτ : discrete high-level object states associated to a waypoint B : block of discrete information

1: function DatasetAdaptation(S, ς ̺ , N orien , N inclin) 2:

 Algorithm 6Step 1: Adapting the Acquired Repertoire of States (continuation)∆x ρ , δ ρ , G ωτ , H ωτ ← DiscretizeInfo(θ s , Λx ρ , γ ρ , g ωτ , h ωτ) CreateBlock(∆x ρ , δ ρ , G ωτ , H ωτ)contexts are composed of different robot-object relation states. It would be highly expensive to record examples of the robot reproducing an effect encompassing all the possible positions of the object with respect to the robot's end-effector. In[START_REF] Calinon | A probabilistic approach based on dynamical systems to learn and reproduce gestures by imitation[END_REF] a set of Gaussians is computed given a trajectory, representing position states of the robot's end-effector around the trajectory (Section 2.1.2). Inspired by this approach, a sampling of positions of the end-effector around each demonstrated trajectory is computed. This sampling is called the vicinity of a trajectory, and it is explained in Step 1.1.

	13:	Λx ρ ← GetEndEffectorDisplacement(ϑ τ , x ρ)
	14:	γ ρ ← ComputeRelationState(x ρ , y ωτ)
	15:	g ωτ ← GetGripperState(ω τ)
	16:	h ωτ ← GetContextStates(ω τ)
	17:	
	18: B ← 19: R ← StoreInfo(R s , B)
	20:	return R, θ s

 Algorithm 7 Step 2: Running a skill to reproduce an effect S: skill name e s : effect associated to the skill ReproducedEffect(): boolean function indicating if the effect has been reproduced ε: end-effector selected to run the skill R: discrete repertoire of movements and states T E : sequence of continuous waypoints representing the inferred trajectory P E : set of probabilities for each waypoint T O : set of continuous object positions acquired at the same instant of time that the waypoints T G : sequence of values of the gripper openness acquired at the same instant of time that the waypoints θ s : discretization configuration associated to the skill φ Ds : action generator nb_mov: number of movements executed nb_mov max : maximum number of movements that can be executed know mov : indicates the current knowledge to infer a movement x: current position of the end-effector y: current position of the object g: current gripper openness H : current discrete high-level contextual states Λx: inferred continuous Cartesian movement vector p Λx : inferred probability associated to a movement G: inferred discrete gripper action state ExecuteMov(): function executing a movement 1: function ReproduceEffect(S, ε, e s , ReproducedEffect(), nb_mov max)

	2:	R ← LoadDiscreteRepertoire(S)
	3:	φ R ← CreateActionGenerator(R)
	4:	θ s ← LoadDiscretizationConfiguration(S)
	5:	nb_mov is initially set to 0
	6:	mov_knowledge is initially set to True
	7:	

 return ReproducedEffect(e s), T E , P E ,T G , T O

	22:	
	Algorithm 8 Step 2.2: Inferring a movement
	Ξ: set of discrete relation states
	Θ: set of inferred values
	Note: Refer to Algorithm 7 for more definitions
	1: function InfereMov(θ s , φ R , x, y, g, H)
	2:	Θ ← ∅
	3:	γ ← ComputeRelationState(x, y)
	4:	δ, G ← DiscretizeInfo(θ s , γ, g)
	5:	Ξ ← ComputeNearestNeighbours(δ)
	6:	for δ ∈ Ξ do
	7:	∆x, p ∆x , G ← φ R (e s , δ, H)
	8:	if ∆x = ∅ then
	9:	Λx ← ToContinuous(∆x)
	10:	Add (Λx, p Λx , G) to Θ
	11:	Λx ← ComputeMeanMov(Θ)
	12:	p Λx ← ComputeMeanProb(Θ)
	13:	

Table 6 .

 6 1: Details of the experiments

	ID Type	Objective	A priori	A priori	Skills	Objects
			of the study	structure	discretization	
	1	Skill building	Discretization impact	X X		Push Grasp	Cylinder Cylinder
	2		Structure learning		X X	Push Grasp	Cylinder Cylinder
	3		Generalization	X X	X X	Push Push	Cylinder Tea box
	4	Task planning and execution	Solving a maze X	X	Push Set	Cylinder Cake
	5		Heating a croissant	X	X	Grasp Release Press	Croissant Pan Dish Button
	cm					

Table 6 .

 6 2: Results of Experiment 3.

						Mean action
	Object	Initial positions Mean error X Mean error Y	Mean number	smoothness
					of movements
						value
	Cylinder	Demonstrations 1	1.1	13	1
		Generalization	8	6.7	13	0.9
	Tea box	Demonstrations 1	1.4	10	1.1
		Generalization	0.7	1.5	9	1.03

Our work gets inspiration from infant psychology, although the proposed methods do not directly model infant behavior.

https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language

The robot's kinematic model is available in all the works presented in this manuscript. Henceforth, we omit it when describing the a priori knowledge provided.

2 This type of environment exploration is inspired by the goal-directed exploration[START_REF] Rolf | Goal babbling permits direct learning of inverse kinematics[END_REF]. We do not follow the same terminology to avoid any misunderstanding with the use of the term goal as a synonym of a task to solve.

This is meant to avoid to take into account robot's arm movements as a source of novelty. This could be useful to generate a self-model, but it would be misleading for building predictive models.

http://ompl.kavrakilab.org/

https://www.phash.org/

http://www.willowgarage.com/pages/pr2/specs

http://wiki.ros.org/hydro

http://gazebosim.org/

http://moveit.ros.org/

https://forge.lip6.fr/projects/agrum/wiki.

http://www.rethinkrobotics.com/baxter/

http://www.ode.org/

http://wiki.ros.org/indigo

http://gazebosim.org/

https://github.com/cmaestre/baxter_kinematics

http://moveit.ros.org/

In the current work, the low-level states of an object are only represented by its position, not relying either on its orientation or its shape, as in young infants[START_REF] Rosenbaum | Human Motor Control[END_REF].

https://youtu.be/RKJRXmRTHDc

A too high number of waypoints can affect the velocity in which the action generator infers a movement, because of the size of the BN.

https://www.youtube.com/playlist?list=PL2drYAFCMtzcZ_RlfiFr2AWtcvgc1qR8o

https://github.com/cmaestre/baxter_kinematics

http://optitrack.com/

https://github.com/garydoranjr/pyddl

https://github.com/cmaestre/pcl_tracking

Acknowledgement

Appendix B

Annex B -Task Planning

This section shows the task definition and planned action sequence obtained using a PDDL-inspired task planner.

Domain and Problem