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To Leo





English Abstract
Robots are expected to assist us in our daily tasks. To that end, they may need to
perform different tasks in changing scenarios. The number of dissimilar scenarios a
robot can face is unlimited. Therefore, it is plausible to think that a robot must learn
autonomously to perform tasks. A task consists in generating an expected change,
i.e. an effect, in the environment, the robot configuration, or both. Therefore,
the robot must learn to perform the right action on the environment to obtain the
expected effect.

An approach to learning these actions is through a continuous interaction of
the robot with its environment focusing on those actions producing effects on the
environment. The acquired relation of applying an action on an object to obtain an
effect is called affordance. During the last years many Research efforts were devoted
to affordance learning. Related works cover from the learning of simple push actions
on tabletop scenarios to the definition of complex cognitive architectures. These
works rely on different building blocks, as vision methods to identify the position
of the objects or predefined sensorimotor skills to generate effects on a constrained
environment.

The use of predefined actions eases the learning of affordances, producing a rich
and consistent information of the changes produced on an object. However, we claim
that the use of these actions constrains the scalability of the available experiments
to dynamic and noisy environments. The current work addresses the autonomous
learning of a set of sensorimotor skills through interactions with an environment.
Each skill must generate a continuous action to reproduce an effect on an object,
adapted to the object position. Besides, each skill is simultaneously adapted to low-
level perturbations, e.g. a change in the object position, and high-level contextual
changes, e.g. a stove gets on.

Few questions arise while addressing the skill generation: first, how can a robot
explore an environment gathering information with limited a priori information
about it? We address this question through a babbling of the environment driven
by an intrinsic motivation. We define a method, called Novelty-driven Evolutionary
Babbling (NovEB), to explore possible robot’s movements, while focusing on those
that generate the highest novelty from the perception point of view. Perception
relies on raw images gathered through the robot’s cameras. A simulated PR2 robot,
using this method, discovered on its own which regions of the workspace generate
novel perceptions and focuses its exploration around them.

Second, how can a robot autonomously build a set of skills based on an initial
information about the environment? We propose a method, named Adaptive Affor-
dance Learning (A2L), which endows a robot with the capacity to learn affordances
associated to an object, both adapting the robot’s skills to the object position, and
increasing the robot’s information about the object when needed. Two main con-
tributions are presented: (1) an interaction process with the object adapting each
movement to the fixed object position, decomposing each action into a sequence of
discrete movements; (2) an iterative process to increase the information about the
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object. These contributions are assessed in two experiments where a robot learns to
push a box to different positions on a table. First, on a virtual setup on a simulated
robotic arm. Finally, on a simulated Baxter robot.

Finally, we extend the previous skill generation to environments including both
low-level and high-level perturbations. Initially, one or more kinaesthetic demon-
strations of an action producing an effect on the object are provided to the robot,
through a Learning from Demonstration approach. Then, a vector field is com-
puted for each demonstration, generating information about the next movement to
execute based on the robot context, composed of the relative positon of the object
w.r.t. the robot’s end-effector, and other high-level information. An action genera-
tor is learned, inferring in a closed-loop the next movement to reproduce an effect
on the object based on the current robot context. In this work, a study is performed
in order to select the best parametrization to build a push to the right and a grasp

skill to reproduce an effect. Then, the selected parametrization is used to build
a set of diverse skills, which are validated in several experiments performing tasks
with different objects. The assessment of the built skills is directly performed on a
physical Baxter.



French Abstract
Les robots sont censés nous aider dans nos tâches quotidiennes. À cette fin, ils
peuvent devoir effectuer différentes tâches dans des scénarios changeants. Le nom-
bre de scénarios dissemblables auxquels un robot peut faire face est illimité. Par
conséquent, il est plausible de penser qu’un robot doit apprendre de manière au-
tonome pour effectuer des tâches. Une tâche consiste à générer un changement
attendu, c’est-à-dire un effet, dans l’environnement, la configuration du robot, ou
les deux. Par conséquent, le robot doit apprendre à effectuer la bonne action sur
l’environnement pour obtenir l’effet attendu.

Une approche de l’apprentissage de ces actions est à travers une interaction con-
tinue du robot avec son environnement en se concentrant sur ces actions produisant
des effets sur l’environnement. La relation acquise de l’application d’une action
sur un objet pour obtenir un effet est appelée affordance. Au cours des dernières
années, de nombreux efforts de recherche ont été consacrés à l’apprentissage des af-
fordances. Les travaux connexes couvrent l’apprentissage de simples actions saissir

sur des scénarios de table à la définition d’architectures cognitives complexes. Ces
travaux s’appuient sur différents blocs de construction, comme méthodes de vision
pour identifier la position des objets ou des compétences sensorimotrices prédéfinies
pour générer des effets sur un environnement contraint.

L’utilisation d’actions prédéfinies facilite l’apprentissage des affordances, pro-
duisant une information riche et cohérente des changements produits sur un objet.
Cependant, nous affirmons que l’utilisation de ces actions limite l’évolutivité des
expériences disponibles aux environnements dynamiques et bruyants. Le travail
actuel porte sur l’apprentissage autonome d’un ensemble de compétences sensori-
motrices à travers des interactions avec un environnement. Chaque compétence
doit générer une action continue pour reproduire un effet sur un objet, adapté à la
position de l’objet. En outre, chaque compétence est simultanément adaptée aux
perturbations de bas niveau, par ex. un changement dans la position de l’objet, et
des changements contextuels de haut niveau, par ex. un poêle s’allume.

Peu de questions se posent en abordant la génération de compétences: d’abord,
comment un robot peut-il explorer un environnement rassemblant des informations
avec des informations a priori a priori limitées à son sujet? Nous abordons cette
question à travers un balbutiement de l’environnement animé par une motivation
intrinsèque. Nous définissons une méthode, baptisée Novelty-driven Evolutionary

Babbling (NovEB), pour explorer les mouvements possibles du robot, tout en met-
tant l’accent sur ceux qui génèrent la plus grande nouveauté du point de vue de
la perception. La perception repose sur des images brutes recueillies à travers les
caméras du robot. Un robot PR2 simulé, utilisant cette méthode, a découvert à
lui seul quelles régions de l’espace de travail génèrent des perceptions nouvelles et
concentre son exploration autour d’elles.

Deuxièmement, comment un robot peut-il construire de manière autonome un
ensemble de compétences sur la base d’une information initiale sur l’environnement?
Nous proposons une méthode, nommée Adaptive Affordance Learning (A2L), qui
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permet à un robot d’apprendre les affordances associées à un objet, en adaptant les
compétences du robot à la position de l’objet et en augmentant les informations sur
le robot. objet en cas de besoin. Deux contributions principales sont présentées: (1)
un processus d’interaction avec l’objet adaptant chaque mouvement à la position de
l’objet fixe, décomposant chaque action en une séquence de mouvements discrets; (2)
un processus itératif pour augmenter les informations sur l’objet. Ces contributions
sont évaluées dans deux expériences où un robot apprend à pousser une boîte à
différentes positions sur une table. Tout d’abord, sur une configuration virtuelle
sur un bras robotique simulé. Enfin, sur un robot Baxter simulé.

Enfin, nous étendons la génération de compétences précédente à des environ-
nements comprenant à la fois des perturbations de bas niveau et de haut niveau.
Initialement, une ou plusieurs démonstrations kinesthésiques d’une action pro-
duisant un effet sur l’objet sont fournies au robot, par le biais d’une approche
L’apprentissage par démonstration. Ensuite, un champ de vecteur est calculé pour
chaque démonstration, générant des informations sur le mouvement suivant à exé-
cuter en fonction du contexte du robot, composé de la position relative de l’objet par
rapport l’effecteur du robot, et d’autres informations de haut niveau. Un généra-
teur d’action est appris, déduisant en boucle fermée le mouvement suivant pour
reproduire un effet sur l’objet en fonction du contexte actuel du robot. Dans ce
travail, une étude est effectuée afin de sélectionner la meilleure paramétrisation
pour construire des compétences pousser vers la droite et saissir pour reproduire
un effet. Ensuite, la paramétrisation sélectionnée est utilisée pour construire un
ensemble de compétences diverses, qui sont validées dans plusieurs expériences exé-
cutant des tâches avec différents objets. L’évaluation des compétences construites
est directement réalisée sur un Baxter physique.
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Chapter 1

Introduction

Contents

1.1 Autonomous Robots . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Adaptive Affordance Learning (A2L) . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Autonomous Robots

An autonomous agent has been defined as "any embodied system designed to sat-

isfy internal or external goals by its own actions while in continuous long-term

interaction with the environment in which it is situated" (Beer, 1995, page 173).
Autonomous robots are expected to help us in our daily tasks1. Depending on the
complexity of the task goal to reach, the capacities of the robot need to be versatile
enough to adapt to the situations it will be faced with. For instance, in order to
clean an area a vacuum cleaner robot just executes one of its available behaviors
reacting to the sensory information acquired through its sensors (Forlizzi and Dis-
alvo, 2006). Conversely, in order to reach certain location an autonomous car must
analyze the sensory information and combine it with previous knowledge to plan the
next steps to perform, accordingly adapting its behavior to its environment (Thrun
et al., 2007). Therefore, a robot performing a complex task should understand its
environment to select and execute the next adapted action to reach the task goal.

A robot can be endowed with built-in capacities defined by a designer. In
constrained environments a robot can reach a task goal using them. However, in
unconstrained environments the number of dissimilar scenarios a robot can face
is unlimited. Similarly, it is very complex to foresee all the situations in which a
robot can be involved. For example, the Spirit rover behavior was programmed by
a team of engineers to wander around a specific area in Mars gathering information
(Sanderson, 2010). Nevertheless, during the wandering it became entrapped into
a sandpit, and it was unable to release itself because of not being programmed for
it. More recently, during the last DARPA Robotic Challenge (Atkeson et al., 2015)

1The nomenclature used in the current manuscript is inspired by the nomenclature described
in the Deliverable 6.1 of the DREAM project (Doncieux et al., 2015b).
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several robots failed to perform a trial due to the fact that the execution of built-
in actions under incorrect circumstances. One trial consisted in turning a valve
360 degrees to the left. The robot of the NEDO-JSK team did not situate itself
properly in front of the valve, and after the execution of a built-in grasping action
not grasping anything the built-in turn action made the robot fell. Therefore, it is
plausible to think that a robot must develop its own behavioral capacities with the
minimum a priori knowledge, and learn when to use them, in order to perform a
task.

During the last decades another approach has emerged concerning the gener-
ation by a robot of its own behavioral capacities through interactions with the
environment, similarly as infants do, called Developmental Robotics (Asada et al.,
2001, 2009; Lungarella et al., 2003; Weng, 2004; Meeden and Blank, 2006; Stoytchev,
2009; Cangelosi et al., 2015). The underlying idea is that through a developmen-
tal process a robot executes a trial-and-error approach learning from its failures to
improve its performance. In the psychology literature there are different theories
explaining infant development (Newcombe, 2013): empiricism, which suggests that
babies are born with very little initial capabilities, and knowledge is based on the
experiences acquired by the sensors; nativism, in which knowledge and skills are
innate to newborns; and contructivism, proposing that newborns seek for knowl-
edge to construct their own world model, developing abstract concepts through the
interaction with the environment. Based on a constructivist approach Guerin et al.
(2013) make a study of infant developmental process from basic actions to task
planning using tools, aimed at providing insights about the developmental process
to roboticists. Guerin defines two parallel tracks of development: the abstract track,
composed of the abstract representations the infant uses, and the concrete track,
representing the development of sensorimotor schemas (Piaget and Cook, 1952), i.e.
progressively building complex behaviors from simple ones. Sensorimotor schemas

are described as the minimal unit of knowledge connecting a context, an action and
an effect. More precisely, given a context an agent selects and executes the next
action to produce a desired effect on an object. Although in the developmental
robotics literature there is not a clear definition of context explaining its content
and boundaries, based on the available works we propose a definition:

Definition 1 Context: A context represents all the circumstances related to a

robot-object interaction at a certain instant of time.

Definition 2 Robot-object interaction: A robot-object interaction represents the

trajectory executed by the robot’s end-effector to change the features of the object,

and these features during the robot’s movement.

A context is composed of contextual states, or just states:

Definition 3 Contextual state: A contextual state represents a feature of a robot

or an object related to the interaction between the robot and its environment.

There are two types of contextual states:
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• low-level contextual states, or just low-level states, related to the execution of
an action, i.e. motor control, represented by continuous values, e.g. an object
position (Calinon et al., 2010).

• high-level contextual states, or just high-level states, representing higher level
concepts related to the objects, represented by continuous and discrete values,
e.g. an object color or circleness (Montesano et al., 2008).

Guerin mentions that in psychology the terms sensorimotor schema (Piaget and
Cook, 1952), sensorimotor skill (Fischer, 1980), sensorimotor process (Smith, 2009)
and perception-action routine (Lockman, 2000) can be considered as equivalent.
Another close terms used in the developmental robotics literature are affordances

(Gibson, 1966) and behavior (Sahin et al., 2007). In the current manuscript, we
use:

Definition 4 Sensorimotor skill: A sensorimotor skill, or just skill, is the process

transforming robot contextual states into robot motor commands2.

Although the learning of skills can lead to the development of high cognitive capa-
bilities, as the sense of agency or self-awareness (Schillaci et al., 2013; Vernon, 2014),
in the current manuscript skills are focused on generating actions to accomplish a
task.

For a given context, it is supposed that a task requires the execution of a se-
quence of skills. When a skill produces the expected effect the next skill runs. This
process continues until the task goal is reached. It is possible that a task plan
cannot be executed, e.g. an effect cannot be produced or an object disappears from
the environment, and thus a new task planning must be performed. Works in the
robotics literature in which a robot learns to perform a task can be clustered in two
groups:

• Learning predictive models: the predictive models learn the relation of the
high-level states of the context. Task resolution is based on a planning pro-
cess relying on these models, sometimes called affordances. An affordance is
initially defined as the actions an agent can afford to execute through direct
perception of an object (Gibson, 1966, 1986). In robotics, it has been defined
as the acquired relation of applying an action on an object to obtain an effect
(Sahin et al., 2007) (see Section 2.1.3 for an elaborated description discus-
sion). In most of the experiments within the affordance literature a built-in
repertoire of skills is available. In these works, given the contextual high-level
states and an effect to produce, the predictive models based on affordance
knowledge infer which skill among the available ones can reproduce the effect.
Then, a task planner selects the skill related to the selected action, and the
built-in skill executes the action based on the contextual low-level states (see
top of Figure 1.1). A comparison of related works is available in Section 2.1.3.

2Our work gets inspiration from infant psychology, although the proposed methods do not
directly model infant behavior.
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• Building skills: in these works an action is demonstrated to a robot by an
external agent, based on an approach called Learning from Demonstration,
LfD (further explained in Section 2.1.1). Then, a method learns a skill to
reproduce the action. These works focus on the learning of one or few actions,
and thus there is no need to perform a task planning, i.e. the designer in
charge of the experiment directly selects the skill to run. The skill execution
is driven by a motion primitive based on the low-level states of the context (see
workflow at the middle of Figure 1.1). A motion primitive (MP) generates
a continuous motion of a robot’s end-effector reproducing a demonstrated
action. The learned MPs are robust to changes, i.e. perturbations, during
the execution of an action produced externally or by the lack of accuracy
of robot sensors. Perturbations represent either spatial or temporal changes

(Gribovskaya et al., 2011). Spatial perturbations are those related to a change
of the spatial values of a state. For example, changes of the initial position
of the robot’s end-effector w.r.t. the object position before the execution of
an action, or changes of the object position during the execution. Temporal
perturbations are those related to a change of the duration of an action, i.e.
if the robot’s end-effector gets stuck or delayed during the execution of the
action. A comparison of related works is available in Section 2.1.2.

We have identified several gaps in the current robotics literature w.r.t. the
autonomous performance of tasks using objects: first, there is a lack of works com-
bining task planning based on predictive models with motion control, i.e. combining
high-level action selection with low-level adaptive action execution. To the best of
the authors’ knowledge, Kroemer et al. (2012) is the only work combining these
features. In this work, a pouring task experiment is executed, in which a robotic
arm grasps a watering can and pours water into a glass. The main objective of
this experiment is to use affordance knowledge to learn predictive models mapping
subparts of objects to MPs based on direct perception.

Second, in the same vein, the execution of a skill is disconnected from the robot
cognitive architecture, i.e. it is a black box for the architecture. A skill is eval-
uated by the visual result obtained when executing an action, i.e. the designer
of an experiment evaluates if the effect of the action is as expected. If the effect
is not as expected the designer analyses the execution of the skill to improve the
skill performance. We consider that providing a trace of the internal skill process
to the cognitive architecture can be useful in higher-level stages to identify behav-
ioral regularities, which can be exploited for transfer learning and generalization
techniques.

Finally, in the experiments available in the developmental robotics literature,
contexts are limited to high-level states affording similar actions on objects, e.g.
shape and dimension to push, grasp and stack objects (Szedmak et al., 2014). Con-
versely, in daily environments object contextual states comprehend both high-level
and low-level states. We suggest that in order to scale up the use of the learning
methods used in the literature to our daily environments these methods should si-
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multaneously address both types of states. Besides, high-level states should also
represent different and less stable features. For instance, the context of a robot
cooking a piece of meat can be composed of different types of high-level states, e.g.
the meat size, quite stable, and the meat color, less stable, together to low-level
states, e.g. the meat position. As a consequence of the constant stability of the
high-level states in the literature, actions executed by skills are only reactive to
low-level states, not reacting to changes of high-level states.

At this point a question arises: how can a robot autonomously build skills

• in contexts with different levels of complexity,

• simultaneously adapting to both

– low-level spatio-temporal perturbations

– and high-level state changes,

• and generating a trace of its internal functioning.

1.2 Adaptive Affordance Learning (A2L)

We propose a method named Adaptive Affordance Learning (A2L) that au-
tonomously builds skills to reproduce effects on objects. Given a dataset of inter-

actions the method builds on-the-fly an ad hoc skill to infer an action reproducing
an effect (see workflow at the bottom of Figure 1.1). Actions are inferred based on
the robot context. More precisely, actions are inferred adapted to the low-level and
high-level contextual states representing features of the robot and its environment
at each instant of time. In order to simultaneously adapt to both types of contextual
states they are discretized, based on a discretization configuration. In the current
manuscript, this configuration is empirically computed based on experience.

A2L is composed of two complementary processes:

• Skill Building: given a dataset of interactions this process builds skills that
infer actions to reproduce an effect on an object.

• Iterative Interaction Acquisition and Validation: an iterative process gener-
ating new interactions and validating them.

Given a dataset of interactions the skill building process generates one or more
skills. A skill is an action generator.

Definition 5 Action: An action is a sequence of movements to reproduce an effect

on an object.

Definition 6 Action Generator: An action generator infers a movement to repro-

duce an effect given a context.

Definition 7 Movement: A movement is a displacement of the robot’s end-effector

between two subsequent instants of time to reproduce an effect.
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of the close loop performed by a skill is very short, A2L uses discrete values to rep-
resent effects, movements, and low-level and high-level states. Effects are already
discrete. Movements and contextual states are discretized in the previous step,
and thus the available repertoire of movements and contextual states is already
discretized. Therefore, the output of this step is an action generator that infers
discrete movements to reproduce an effect in an object based on discrete low-level
and high-level contextual states.

In order to build a skill, the repertoire must contain movements and low-level
states representing the execution of the action. Besides, it can also represent high-
level states defining the circumstances in which the action can be executed. For ex-
ample, a repertoire can be composed of movements and low-level states representing
how a robot can press a button from different relative positions of its end-effector.
Therefore, A2L would build a skill pressing the button from those positions. How-
ever, if the button can be only pressed under certain circumstances, e.g. a stove is
off, the dataset would be extended with this high-level state. And thus A2L would
build a skill to press the button from the relative positions only when the stove is
off; either if this is a consequence of a robot action, or if it was externally turned
on. This feature provides to a higher-level stage with a high flexibility to decide the
circumstances in which an action can be executed, i.e. it allows a robot to perform
an action in different contexts.

The iterative process generates a dataset of interactions, used to build the skills,
through interactions of the robot with its environment. The process consists of
three phases, executed in an iterative fashion: in the first phase, called Interaction

Acquisition, an exploration of the robot’s environment is performed. The result
of this exploration is a dataset of interactions. This dataset can be alternatively
provided to the robot through a demonstration by an external agent (LfD). The
second phase, called Skill Generation, executes the Skill building process for the
current dataset of interactions. In the third phase, called Interaction Validation,
the skill obtained in the previous phase is executed to reproduce a set of effects
on an object. In a closed loop, the action generator analyses the context, both
low-level and high-level states, and infers the next movement of the end-effector to
execute, adapted to the object position. Thus, the dataset of interactions used to
build the skill is validated. The iterative process stops after the phase 3 if all the
effects are reproduced or after a preset number of iterations is reached. Otherwise,
the phase 1 is executed again.

A2L relies on a previous developmental stage, consisting in the identification
of the relevant contextual states for a skill. E. J. Gibson calls to this process
differentiation (Gibson, 2000, 2003), which is out of the scope of our work (a recent
and relevant approach is available in Jonschkowski and Brock (2015); Jonschkowski
et al. (2017)). Besides, although a robot endowed with A2L can autonomously
learn to interact with the environment to reproduce an effect, the execution of the
method requires some a priori information, e.g. the discretization. This information
is described in the next chapters while describing the method.
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1.3 Contributions

The main contributions of A2L and thus of the current manuscript are:

• The autonomous generation and validation of the dataset of interactions.

• The online generation of skills based on a repertoire of discrete movements
and states.

• The execution of actions simultaneously adapted to spatio-temporal pertur-
bations and high-level contextual changes.

• The generation by the skills of a discrete trace which can be exploited in
higher-level stages, for example for transfer learning or generalization.

• Regarding the study of the state-of-the-art, a literature survey focused on
action selection and execution is available in Section 2.1.2.

Table 1.1: Contents addressed in each chapter

Chapter

Content Type 4 5 6

1
Dataset of

interactions
X X X

2
Available

contextual states

Low-level states X X X

High-level states X

3 Information

acquisition

autonomous X X

4 from demonstration X

5 Actions adapted to

pertutbations

in static environment X

6 in dynamic environment X

7 Skill validation by a physical robot X X

1.4 Dissertation Outline

This section details the content of each chapter of the current manuscript (see table
1.1 for more details about chapters presenting this thesis contribution):

Chapter 1 The current chapter identifies relevant features for the resolution of
tasks adapted to the current context. Then, we propose a new method to generate
actions adapted to both low-level and high-level contextual states.
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Chapter 2 This chapter covers the state-of-the-art of different areas of the devel-
opmental robotic literature related to the proposed method. First, some psychology
insights explaining how infants interact with the environment are provided. In order
to acquire contextual states relevant for a task, both the exploration of an environ-
ment driven by intrinsic motivations, and the skill learning from demonstration
are detailed. The affordance theory is introduced and some relevant works are ex-
plained. Afterwards, a comparison of different works reproducing actions previously
demonstrated by an external agent are described. Finally, some works focused on
task planning are described.

Chapter 3 The methods on which A2L relies are described in this chapter, i.e.
Novelty Search for the exploration of an environment, hill-climbing and K2 to learn
the action generator, a diffeomorphic matching algorithm to generate actions robust
to low-level spatio-temporal perturbations, and PDDL (Planning Domain Definition
Language) as task planner in experiments validating the generated repertoire of
states.

Chapter 4 We present a method named Novelty-driven Evolutionary Babbling
(NovEB), designed to perform a task-agnostic exploration of an unknown environ-
ment. Its main feature is to look for actions that maximize novelty in the raw
sensorimotor space. It is based on Novelty Search (Lehman and Stanley, 2011),
which relies on Evolutionary Algorithms driven by a behavior novelty criterion.
The outcome of this approach is a raw dataset representing the interactions of a
PR2 robot with its environment, which can be exploited by methods as A2L. The
content of this chapter has been published in Maestre et al. (2015).

Chapter 5 This chapter presents the two complementary processes of A2L: the
Iterative Repertoire Acquisition and Validation and the Skill Builder. A robot
autonomously explores its environment using random actions building a repertoire
of discrete movements and low-level states. The environment is static, i.e. the
position of the objects only changes when the robot touches them. An experiment
is executed in simulation, pushing a box in different directions on a table. Once
the repertoire is available, the states are tested by the physical Baxter continuously
pushing the box. The content of this chapter has been introduced in Maestre et al.
(2016) and published in Maestre et al. (2017b).

Chapter 6 The Skill Builder available in Chapter 5 is updated to build skills
robust to perturbations, using both low-level and high-level states. The states
are built using raw data directly demonstrated to a physical Baxter robot by an
external agent, i.e. learning from demonstration (Billard and Calinon (2016)). The
assessment of the generated skills is directly performed on the Baxter through a
set of experiments performing tasks of increasing complexity. The content of this
chapter has been partially presented in Maestre et al. (2017a).

Chapter 7 This chapter discusses about the obtained results by the method. Also
it identifies some drawbacks, and it proposes how to address them in future works.
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Chapter 8 Finally, some general conclusions of the manuscript are presented.

1.5 Publications

In conference proceedings:

• Maestre, C., Mukhtar, G., Gonzales, C., and Doncieux, S. (2017, Septem-
ber). Iterative affordance learning with adaptive action generation. In IEEE
International Conference on Developmental and Learning and on Epigenetic
Robotics (ICDL-Epirob). Referenced in the bibliography as Maestre et al.
(2017b).

• Maestre, C., Cully, A., Gonzales, C., and Doncieux, S. (2015, August). Boot-
strapping interactions with objects from raw sensorimotor data: a Novelty
Search based approach. In IEEE International Conference on Developmental
and Learning and on Epigenetic Robotics (ICDL-Epirob). Referenced in the
bibliography as Maestre et al. (2015).

In workshops:

• Maestre, C., Mukhtar, G., Gonzales, C., and Doncieux, S. (2017, October).
Context-Based Generation of Continuous Actions to Reproduce Effects on
Objects. In the Third International Workshop on Intrinsically Motivated
Open-ended Learning (IMOL). Referenced in the bibliography as Maestre
et al. (2017a).

• Maestre, C., Mukhtar, G., Gonzales, C., and Doncieux, S. (2016, Septem-
ber). Bootstraping manipulation skills to learn affordances in open-ended
environments. In the workshop Autonomous Perception: Applying Sensori-
motor Contingencies and Predictive Processing to Developmental Robotics
(ICDL-Epirob). Referenced in the bibliography as Maestre et al. (2016).

• Ecarlat, P. and Cully, A. and Maestre, C. and Doncieux, S. (2015, September).
Learning a high diversity of object manipulations though an evolutionary-
based babbling. In the workshop Learning Object Affordances (IROS).

• Legoff, L. and Maestre, C. and Doncieux, S. (2015, September). Visual
saliency-based babbling of unknown dynamic environments. In the workshop
Learning Object Affordances (IROS).

To appear:

• Joel Lehman, Jeff Clune, Dusan Misevic3, Christoph Adami, Julie Beaulieu,
Peter J Bentley, Samuel Bernard, Guillaume Beslon, David M Bryson, Fred-
eric Carrere, Nick Cheney, Antoine Cully, Stephane Doncieux, Fred C Dyer,
Andreas Ehinger, Kai Olav Ellefsen, Robert Feldt, Stephan Fischer, Dario
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Floreano, Stephanie Forrest, Antoine Frenoy, Christian Gagne, Leni Le Goff,
Laura M Grabowski, Babak Hodjat, Laurent Keller, Carole Knibbe, Peter
Krcah, Richard E Lenski, Hod Lipson, Robert MacCurdy, Carlos Maestre,
Frederic Mansanne, Risto Miikkulainen, Sara Mitri, David E Moriarty, Jean-
Baptiste Mouret, Anh Nguyen, Charles Ofria, Marc Parizeau, David Parsons,
Robert T Pennock, William F Punch, Thomas S Ray, Marc Schoenauer, Eric
Schulte, Karl Sims, Kenneth O Stanley, Francois Taddei, Danesh Tarapore,
Simon Thibault, Westley Weimer, Richard Watson, Jason Yosinski (2018).
The Surprising Creativity of Digital Evolution: A Collection of Anecdotes
from the Evolutionary Computation and Artificial Life Research Communi-
ties. Trends in Ecology and Evolution.
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This section introduces works of the developmental robotics literature and the
learning from demonstration literature related to A2L. As explained in Chapter 1,
our method (1) explores the robot’s environment to acquire information of the in-
teractions between the robot and an object, (2) builds skills and predictive models
based on this information, and (3) validates the skills reproducing effects on ob-
jects. Therefore, this section presents works for each one of these steps. Similarly
to our experiments, the works introduced in this section are performed by either
anthropomorphic robots or robotics arms.

2.1 Interacting with the Environment

A robot can be endowed with built-in knowledge to interact with its environment
defined by a designer. However, as discussed in Section 1.1 this approach constrains
the number of situations and environments the robot can face. During the last
decades an approach has emerged concerning the generation by a robot of its own
skills and predictive models through interactions with the environment, similarly
as infants do. This is called Developmental Robotics (Asada et al., 2001, 2009;
Lungarella et al., 2003; Weng, 2004; Meeden and Blank, 2006; Stoytchev, 2009;
Cangelosi et al., 2015). The underlying idea is that a robot improves its performance
executing a trial-and-error approach, learning from its failures.

Neuroscience has revealed how action is coupled to perception (Kandel et al.,
2014; Snyder, 2000; Buneo et al., 2002; Gallivan et al., 2013) and infant psychology
has demonstrated that action is key in the development of cognition (Adolph and
Berger, 2015; Von Hofsten, 2009, 2013). The capabilities of a robot endowed with
A2L are similar to those capabilities infants acquire at early stages (Jamone et al.,
2016). By 7-8 months of age infants pose a repertoire of basic actions, such as
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grasping, holding and shaking, allowing them to perform a goal-free exploration of
their environment called motor babbling (Meltzoff and Moore, 1997). At this age,
babbling involves performing actions on single objects. The result of this babbling is
the identification of actions and its posterior correlation to effects (Elsner and Hom-
mel, 2001). At around 9 months of age, infants use this knowledge to learn object
affordances (Adolph and Kretch, 2015). They use the acquired affordance knowl-
edge to perform simple tasks, i.e. achieving simple goals predicting the changes of
the environment (Piaget and Cook, 1952). Infants of 12 months of age are able
to learn more complex action-effect mappings by imitating other agents’ actions
and demonstrations (Want and Harris, 2002), and thus to extend their affordance
knowledge.

2.1.1 Information Acquisition

A key step to learn to interact with the environment is the acquisition of information
to build models to that end. In the analyzed works there are two main approaches:

• (i) the robot explores the environment in an unsupervised fashion using mo-
tor babbling, similarly as infant exploratory activities, e.g. mouthing, feeling,
licking, and shaking. Exploration reduces uncertainty (Gibson, 1969) and
improves predictability (Gibson, 1994). Motor babbling is performed either
randomly or driven by an intrinsic motivation (Barto, 2004). The explo-
ration is performed as an iterative process in which the acquired information
is analyzed and used to define the next robot action.

• (ii) the robot acquires the information from a demonstration performed by
an external agent. This is called Learning from Demonstration (LfD), or
Programming by Demonstration (PbD). In the current manuscript, we focus
on supervised kinesthetic demonstrations of interactions of a robot with an
object, i.e. demonstrations in which an external agent performs an action
moving a robot end-effector.

Unsupervised Exploration

Random motor babbling consists in arbitrarily modifying the values of a robot’s
end-effector in order to move it. Mugan and Kuipers (2012) and Demiris and Dear-
den (2005) are examples of works that use this type of explorations to bootstrap
their systems. Random motor babbling provides the capacity to explore an environ-
ment with very little a priori information. For example, not providing information
about the composition of the environment, only providing the capacity of executing
actions, i.e. providing the robot’s kinematic model. However, it also presents some
limitations. On one hand, it can execute many movements that do not produce
any contact with the objects composing the scene, repeatedly exploring regions not
providing any information. On the other hand, when an interaction happens it has
a small impact, if any, on the rest of the babbling process.
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Baldassarre and Mirolli (2013) provides a complete study of intrinsic motiva-
tions, providing both a theoretical explanation and references to key related works.
In this work three types of intrinsic motivations are defined: (i) prediction-based
intrinsic motivations, exploring the less predictable areas of the environment state
space; (ii) novelty-based intrinsic motivations, focused on the regions generating
more novel results in the robot perception; and (iii) competence-based intrinsic
motivations, prioritizing the exploration of regions where the learning of skills is
higher.

A relevant work based on intrinsic motivations is Oudeyer et al. (2007), which
proposes an exploration method called Intelligent Adaptive Curiosity. Endowed
with this method a robot executes actions in its search space and it uses the cor-
responding data to train predictors, called experts, which progressively get spe-
cialized in different regions of the sensorimotor space. The next action to apply
is then randomly chosen in the action space covered by the expert with the maxi-
mum learning progress. This method has been used in different works, for example
to explore an environment by a robot (Mugan and Kuipers, 2012) or for phonetic
learning (Moulin-Frier and Oudeyer, 2012). Recently, Baranes and Oudeyer (2013);
Forestier and Oudeyer (2016, 2017) have extended the method allowing one to use
it in more complex and challenging scenarios, for instance using tools.

Supervised Demonstrations

In Billard’s own words: "LfD is not a record and play technique. LfD implies learn-

ing, henceforth, generalization" (Billard and Calinon, 2016, page 1995). Namely,
given one or more demonstrations a robot can learn to perform an action that
can be applied in contexts different from those in which the demonstrations were
performed. Moreover, a robot can learn to reach a task goal learning from demon-
strations all the required actions. This sequence of actions can be demonstrated
to a robot in two different ways: on the one hand, performing all the task during
a single demonstration. Then, this demonstration can be segmented into actions
relevant for the task (Zimmer and Doncieux, 2017; Kulić et al., 2012; Niekum et al.,
2012). On the other hand, different actions can be individually demonstrated to
the robot. Once this repertoire of actions is available the objective would be learn-
ing the right sequence of action execution in order to reach the task goal. This
sequence could be also demonstrated to the robot in a second stage, or it could
be autonomously learned by the robot, for example using Reinforcement learning
(Schaal, 1999). Relevant examples of works using LfD to build a skill generating
an action are described in Section 2.1.2

2.1.2 Building skills

This section presents some of the most relevant works learning motion primitives,
i.e. MPs, reproducing an action. These action demonstrations are usually per-
formed by an external agent, and thus works reproducing actions are within the
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Table 2.1: Comparison of methods generating adaptive skills, DR stands for Discrete representation, IC stands for Inference
capability, SP stands for Spatial perturbation, TP stands for Temporal perturbation, TD stands for Time-dependency, St stands for
Stable, NE stands for Number of examples, and C stands for Combination of MPs

Type ID
Publication

reference

MP learning

method
DR IC SP TP TD St NE C

Trajectory-based 1, 2 Ijspeert et al. (2002, 2013) DMP No No Final position No Yes Yes 1 No

3

4

Pastor et al. (2009),

Kober et al. (2010)
DMP No No Final position No Yes Yes 1 No

5 Kroemer et al. (2012) DMP No No
Final position

and velocity
No Yes Yes 1 Yes

6 Muelling et al. (2013) MoMP No No
Final position

and velocity
No Yes Yes 1 Yes

7, 8 Paraschos et al. (2013, 2017) ProMP No No
All positions

and velocities
Yes No Yes M Yes

State-based 9 Calinon et al. (2007) GMR-DS No Yes No Yes No No M -

10, 11 Calinon et al. (2010, 2011) HMM + GMR No Yes Final position Yes No No M -

12

13

14

Khansari-Zadeh and Billard (2011),

Khansari-Zadeh and Billard (2014),

Kim et al. (2014)

SEDS No Yes Final position Yes No Yes M -

15 Calinon (2016) TP-GMM No Yes All positions Yes No Yes M -

The current work A2L Yes Yes All positions Yes No No M Yes
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LfD literature (Section 2.1.1). In Table 2.1 there is a comparison of these works.
The variables selected for the comparison represent the features identified in Sec-
tion 1.1 for the execution of actions interacting with the environment to solve a
task: discrete representations to handle high-level states changes, a strong infer-
ence capability to infer the next action to perform, and mechanisms to be robust
to spatio-temporal low-level perturbations. Besides, other features studied within
the motor control literature are added: the stability of a MP, the number of exam-
ples needed for the learning, and the combination of different MPs to reproduce an
unseen action.

Paraschos categorizes MPs in trajectory-based representations and state-based

representations: "Trajectory-based primitives typically use time as the driving force

of the movement. They require simple, typically linear, controllers, and scale well

to a large number of DoFs. In contrast, state-based primitives do not require the

knowledge of a time step but often need to use more complex, non-linear policies."

(Paraschos et al., 2017, page 2). On the one hand, trajectory-based MPs are based
on dynamical systems (DS), which represent motion as time-independent functions.
The principal disadvantage of DS is that they do not ensure the stability of the sys-
tem. A relevant method to represent trajectory-based MPs is Dynamical Movement
Primitives, i.e. DMPs (Ijspeert et al., 2002, 2013). This method adds an external
stabilizer based on time to generate stable motion. In the current work, the term
stable includes global asymptotic stability, i.e. motions converge towards a single
position, where the velocity profile of the robot’s end-effector tends to zero. A
drawback of time-dependent DS is the generation of inappropriate accelerations of
motion during execution if the end-effector gets delayed with regard to the expected
execution. The delay can be externally produced, e.g. by another agent, or it can
be the result of the unexpected interaction with the environment. Pastor et al.
(2009) and Muelling et al. (2013), among others, introduce few improvements to
the original DMPs. ProMP (Paraschos et al., 2013, 2017) represents a relevant
enhancement improving most of the features in the same framework. For example
ProMP are time-independent and stable, avoiding the previous drawback. Also, the
action execution is consistent with regard to spatial perturbations at any position of
the executed trajectory; and MPs are learned from multiple combined demonstra-
tions. It is important to underline that trajectory-based MPs do not have inference
capabilities.

On the other hand, state-based MPs are time-independent with inference ca-
pabilities by definition. Also, multiple demonstrations are provided, and therefore
there is no need to combine MPs. States are represented by Gaussian functions, and
computed based on the demonstrated trajectories of the robot’s end-effector. For
a specific position of the robot’s end-effector, weights are computed using Hidden
Markov Models (HMM) to identify the next state based on the current state. Once
the state is available, the motion is computed using Gaussian Mixture Regression
(GMR). The initial works (Calinon et al., 2007, 2010, 2011) do not generate stable
actions. This drawback was solved in posterior studies by a method called Stable
Estimator of Dynamical Systems (SEDS) (Khansari-Zadeh and Billard, 2011, 2014;
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ities provided by objects to the agent. Jones (2003) explains that Gibson updated
this definition during his lifetime. For instance, in his last work (Gibson, 1986)
affordance is defined as not only being part of the environment, but it is related to
the relation of an agent and its environment. Other ecological psychologists provide
different interpretations of what an affordance is. For example, while Turvey (1992)
and Stoffregen (2003) define affordances as properties, Chemero (2003) defines them
as relations between particular aspects of the agent and particular aspects of the
environment. These different interpretations have in common that "an affordance

manifests itself in relation to the action and perception capabilities of a particular

actor" (Jamone et al., 2016, page 4). Also, they are directly perceived by the agent.
Steedman (2002) makes the relation of a robot’s action with its environment

and the corresponding change, i.e. effect. In the same vein, from a robotics point of
view Sahin et al. (2007) formalized affordances as the acquired relation of applying
a behavior on an entity to obtain an effect:

(effect, (entity, behavior))

Montesano et al. (2008) provides a pragmatical definition, in which an affordance
is the acquired relation of applying an action on an object to obtain an effect (see
Figure 2.1). The Skill Builder presented in Chapter 5 and 6 gets inspiration from
this formalization to create skills.

In this section predictive models either rely on affordance knowledge or are based
on deep learning techniques. In the works learning predictive models, actions are
usually considered as built-in knowledge, externally tailored by a designer. There-
fore, the objective of a predictive model is to choose the right built-in action to
perform, which is later executed in an open-loop. These works are only robust
to spatial perturbations before the execution of an action, i.e. to the object posi-
tion, not adapting the action to spatial and/or temporal perturbations during its
execution. This offline spatial adaptation is usually externally hard-coded by the
experiment designer. This low adaptation capability can result in the inability to
scale up the executed experiments to realistic setups.

The works depicted in Tables 2.2 and 2.3 are categorized based on the classi-
fication available in Jamone et al. (2016). The relevant categories for the current
manuscript are Pioneering works representing those first studies where the initial
insights to learn the relation between objects and actions were identified; Represent-

ing the effects is the category with more related works, including A2L, and extends
the previous action-object relations to take into account the corresponding effect;
Multi-object interaction represents affordances among several objects; and finally
Multi-step prediction represents the use of affordances in high-level task planners
to solve complex tasks.

The goal of most of the pioneering works (Krotkov, 1995; May et al., 2007;
Metta and Fitzpatrick, 2003; Fitzpatrick and Metta, 2003) was the improvement
of object perception through actions. More precisely, the identification of an affor-
dance through the observation of the result performing actions on an object, e.g.
rollability. Posterior works (Fitzpatrick et al., 2003; Stoytchev, 2005) made the first
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Table 2.2: Comparison of action used within the affordance literature, where * represents ambiguous information, DR stands for
Discrete representation, IC stands for Inference capability, OffSP stands for Offline Spatial Perturbation, OnSP stands for Online
Spatial Perturbation, TP stands for Temporal Perturbation, BA stands for Built-in actions, and RA stands for Repertoire of actions.
Regarding the learning methods PI stands for Probabilistic Inference, DT stands for Decision Tree, BN stands for Bayesian Network,
DRN stands for Relational Dependency Network, SVM stands for Support Vector Machine, NN stands for Neural Network, LWPR
stands for Locally Weighted Projection Regression, DBN stands for Dynamic Bayesian Network, SVR stands for Support Vector
Regression, LSTM stands for Long Short-term Memory, MMR stands for Maximum Margin Regression, GBN stands for Gaussian
Bayesian Network, and DA stands for Denoisy autoencoder.

Type ID Publication
Affordance

learning

method

DR IC OffSP OnSP TP BA RA

Pioneering

works
16 Krotkov (1995) - - - No No No Yes Poke

17 May et al. (2007) - - - No No No No Random

18

19

Metta and Fitzpatrick (2003),

Fitzpatrick and Metta (2003)
- - - Object position No No Yes Tap

20 Fitzpatrick et al. (2003) PI No Yes* Object position No No Yes Tap

21 Stoytchev (2005) DT No No Object position No No No Random

Representing

the effects

22

23

Demiris and Dearden (2005)

Dearden and Demiris (2005)
BN Yes Yes Object position No No No Random

24 Hart et al. (2005) DRN Yes No Object position No No Yes Reach, Grasp

25

26

27

Lopes et al. (2007),

Montesano et al. (2008),

Osório et al. (2010)

BN Yes Yes Object position No No Yes Grasp, Tap, Touch

28, 29 Ugur et al. (2009, 2011) SVM No No Object position No No Yes Push

30 Ridge et al. (2010) NN No No No No No Yes Push

31 Kopicki et al. (2011) LWPR No Yes* Object position No No Yes Push

32, 33 Ugur et al. (2012, 2015b) SVM No No Object position No No No Grasp, Hit, Drop, Tap
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Table 2.3: Continuation of Table 2.2

Type ID Publication
Affordance

learning

method

DR IC OffSP OnSP TP BA RA

34 Mugan and Kuipers (2012) DBN Yes Yes Object position No No Yes Grasp

35 Hermans et al. (2013) SVR No Yes*
Object position

and orientation
No No Yes Push

36

37

Finn et al. (2016),

Finn and Levine (2017)
LSTM No No

Object position

and orientation
No No No Push

38 Ebert et al. (2017) LSTM No No
Object position

and orientation
No No

Yes,

No
Lift, Push

39 Hangl et al. (2016) MMR Yes No
Object position

and orientation
No No Yes Push, Grasp, Flip

40 Chavez-Garcia et al. (2017) GBN No Yes Object position No No Yes Push, Grasp

The current work BN Yes Yes Object position Yes Yes No Push, Grasp, Press

Multi-object

interaction

41

42

Jain and Inamura (2011)

Jain and Inamura (2013)
BN Yes Yes Object position No No Yes Push, Pull

43, 44 Goncalves et al. (2014a,b) BN Yes Yes Object position No No Yes Tap, Push, Pull

45 Szedmak et al. (2014) SVM No No Object position No No Yes Stack, Poke

46, 47 Dehban et al. (2016, 2017) DA No Yes Object position No No Yes Push, Pull

Multi-step

predictions

48

49

Omrčen et al. (2008),

Krüger et al. (2011)
NN Yes No

Object position

and orientation
No No Yes Poke, Push, Grasp

50, 51 Ugur and Piater (2015a,b) SVM Yes Yes Object position No No Yes Pick, Release, Poke

52

53

Lang and Toussaint (2010)

Antunes et al. (2016)
BN Yes Yes Object position No No Yes Grasp, Release, Pull
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attempts to learn the relation between the action and the obtained result, trying
to choose the best action to reproduce it. These works identify simple changes on
objects, and thus the complexity of the performed actions is low, i.e. from random
actions to built-in tap or poke actions modifying the contact angle.

In contrast, the works representing the effects focus on the learning of an inverse
model to reproduce a previously observed effect on an object. Dearden and Demiris
(2005) is the first work to propose representing the forward model using Bayesian
Networks (BN) in this context. The BN infers the expected visual perception of
opening and closing a gripper. Afterwards, the same authors (Demiris and Dear-
den, 2005) transform the learned BN into an inverse model, inferring the motor
commands to play imitation games. Because of the simplicity of the effects, these
works use random motor commands as actions. Hart et al. (2005) uses a classical
approach for built-in actions. The action is split up into an approach phase where
the robot’s end-effector moves to a predefined position with regard to the object,
and a final phase where the effector actually performs the action, i.e. in this case
grasp. This work also uses a probabilistic approach to represent the inverse model.
Inspired by the previous works, Lopes et al. (2007); Montesano et al. (2008) define
an affordance as a BN representing the relation between action, object and effect

(see Figure 2.1). They provide built-in grasp, tap, and touch actions to also play
imitation games. In these works, the execution of the actions depends on some free
parameters, as the height of the robot’s end-effector related to the object. Osório
et al. (2010) extended these works improving the robustness to noisy environments,
representing the perceptual information as GMM. Ugur et al. (2009, 2011) define
a very complete framework for imitation games. They define a set of experiments,
as cleaning a table or move an object to a specific position, where a robotic arm
executes a sequence of built-in push and grasp actions. Ridge et al. (2010) is an-
other example of affordances learning performed by a robotic arm. However, this
is one of the few works using Neural Networks (NN) to represent the affordance
knowledge. The objective of Kopicki et al. (2011) is to learn to predict effects on
a set of different objects using regression techniques in a probabilistic framework
using a built-in push action. Mugan and Kuipers (2012) is a end-to-end work en-
dowing a robot to learn to autonomously perform tasks from continuous perception.
Although Mugan does not specifically mention affordance learning, he defines a Dy-
namical Bayesian Network (DBN) to represent an inverse model to choose the right
action to reproduce an effect. Notice that a DBN infers actions taking time into
account. The proposed methodology is evaluated by a simulated robot grasping an
object in a tabletop setup using a built-in grasp action. In Hermans et al. (2013)
a PR2 robot uses a built-in push action on few objects to either displace them in
straight line or to rotate them. In Hangl et al. (2016) a robot uses a built-in push

action to rotate a book. Besides, the book is lifted using a grasp action. Also,
a flip action is performed using both of the robot’s end-effectors to open a small
box. Chavez-Garcia et al. (2016) learns the affordances of composite objects using
the affordance knowledge of the elementary objects. The authors use continuous
values of the random variables relying on Gaussian Inference Diagrams(Shachter
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and Kenley, 1989).

Multi-object interactions has gathered many research attention during the last
years, mainly focused on the use of tools to reproduce effects on objects. Jain
and Inamura (2011, 2013) use a BN to model affordances to push and pull objects
using tools with different features. Similarly, Goncalves et al. (2014a,b) use this
approach to extend the work performed by Montesano et al. (2008) to be applied
using tool. The approach is validated on tapping, pushing and pulling objects. A
different and promising approach is used in Dehban et al. (2016, 2017). These works
use Denoising Autoencoders (Vincent et al., 2010) to model tool affordances using
continuous values in order to push and pull different objects. Conversely to tool
use, Szedmak et al. (2014) proposes to model the interactions of 83 objects with
different features. A robotic arm is assisted by a human expert to build a dataset
of interactions poking and stacking pairs of objects.

In order to perform complex tasks, affordance knowledge must be used to predict
a sequence of actions. Although task planning is not directly related to A2L it is
relevant to mention few architectures that could use the skills built using our method
(see Section 2.2).

In the previous works a repertoire of built-in actions was available for the af-
fordance learning. Nevertheless, a couple of works by Ugur built this repertoire
beforehand (Ugur et al., 2012, 2015b). And thus they are more suitable for learn-
ing in realistic environments. In these works a built-in generic swipe action is
available, which executes a trajectory of a robot’s end-effector from a fixed initial
position to the position of a close object. Therefore, for different object positions
different trajectories are built. Nevertheless, the shape of these trajectories does
not differ much among them, because of the use of the same heuristic to gener-
ate them. The behavior of each instance of the swipe action is determined by five
parameters: the initial, middle and final displacement regarding the center posi-
tion of the object to be reached by the effector, the moment at which the hand
is closed (it is assumed to be open), and the moment at which the hand reopens
again. Whereas the displacement values are obligatory, the open/close values are
optional. The duration of the swipe action is fixed to five seconds. The variation
of the values of these parameters allow the robot to produce different actions on an
object. The changes of object features produced by those actions are clustered using
the X-Means algorithm (Pelleg and Moore, 2000) identifying a repertoire of skills
generating the push, no touch, release and grasp actions. Other works in the same
vein are Finn et al. (2016); Finn and Levine (2017); Ebert et al. (2017), which use a
deep learning technique called convolutional LSTM (Hochreiter and Schmidhuber,
1997) in order to predict the visual output of an action. Finn builds a repertoire of
continuous push actions based on an exploration performing thousands of interac-
tions of a robotic arm with a set of objects. Ebert improves the results obtained by
Finn adding a discrete lift action to move the end-effector away from the objects
during the exploration (see Wong (2016) for a recent survey about applying deep
learning techniques in robotics).
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Figure 2.2: Comparison of works in the developmental robotics literature addressing
the features proposed at the end of Section 1.1. The numbers represent works
available in Tables 2.1, 2.2 and 2.3. On the left, comparison of the adaptation to
the environment and the use of discrete representations. On the right, comparison
of the adaptation to the environment and the inference capability. The adaptation
values are as follows: no means the skills do not have any adaptation capabilities,
low means the skills can only adapt to the object position before the execution of the
action, high means the skills can adapt to both spatial and temporal perturbations
before and during the execution of the action, and strong extends the high value
being stable, i.e. always reproducing the effect.

2.2 Performing a Task

Mugan suggests that "there are two broad planning frameworks within AI: STRIPS-

based goal regression, and Markov Decision Process (MDP) planning." (Mugan,
2011, page 7).

PDDL, Planning Domain Definition Language, (McDermott et al., 1998) is a
common planner used in the literature using a STRIPS-like notation (Nilsson, 1981)
(further details are available in Section 3.4). Some works using PDDL are Ugur
and Piater (2015a,b), which propose building planning rules based on the affordance
knowledge of a set of object and effect categories identified during the exploration of
an environment. The exploration is performed using the built-in grasp, release, and
poke actions. Also Konidaris et al. (2014, 2015) use a probabilistic PDDL planner
to play computer games, called PPDDL. A recent paper extends these works using
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PDDL to drive the actions of a physical robot performing a task consisting in
moving a bottle from a cooler to a cupboard (Konidaris et al., 2018).

On the other hand, MDP planning (Puterman, 1990) is directly related to Re-
inforcement learning (Sutton and Barto, 1998), and thus it is widely used. Mugan
(2011); Mugan and Kuipers (2012) learn predictive models as Dynamic BN, which
are transformed into a MDP for task planning.

Another planner called PRADA (Lang and Toussaint, 2010) is used by Antunes
et al. (2016) to connect human command with actions. In this work, an iCub robot
prepares a hamburger, as a stack game, approaching with a tool different objects
when needed.

2.3 Conclusions and Open Questions

As depicted in Figure 2.2, the skills generated by A2L are the only skills that
simultaneously adapt to perturbation in an online fashion, handle high-level and
low-level information, and are able to infer actions based on uncertain information.

On the one hand, regarding the online adaptation to perturbations, the action
generator of A2L is time-independent and relies on low-level states and movements
to infer motion. Similarly to the state-based works, in our method low-level states
are used to determine the robot motion. However, whereas in our method the low-
level states are common to different robot-object interactions, as push and grasp,
in these works the states are only useful to reproduce some specific demonstrations
from exactly the same initial positions.

On the other hand, the skills generated by A2L can handle discrete represen-
tations and have a strong inference capability. And thus actions can be inferred
based on movements, low-level information, e.g. object position, and high-level in-
formation, e.g. object color. And even abstract information, e.g. danger. However,
handling discrete information comes at a cost: A2L cannot ensure stable actions.
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This chapter makes an introduction to the methods A2L relies on:

• In Chapter 4, an environment exploration is executed by a robot driven by
our method called NovEB. This method is based on Novelty Search, which
relies on evolutionary algorithms driven by an intrinsic motivation based on
a behavior novelty criterion. The concept of intrinsic motivation has been
already addressed in 2.1.1. Therefore, we directly introduce the concept of
evolutionary robotics and evolutionary algorithms, followed by an explanation
of Novelty Search.

• The action generator of A2L, used in Chapters 5 and 6, is implemented as a
Bayesian Network (BN). BN outputs, adapted to low-level states, are trans-
lated to motor commands through a Dynamical System (DS), and to high-
level states using predictive models based on affordance knowledge (already
explained in Section 2.1.3). We first provide an introduction to the BN prin-
ciple, and next to other BN features used by our method, e.g. d-separation
(Pearl, 1986). Then, the main concepts of DS are presented. Later, an ex-
planation of the Behavioral Dynamics approach (Warren, 2006) is available.
Finally, we present the DS on which A2L relies.
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Figure 3.1: Steps of an evolutionary algorithm. (A) Generate (randomly) an initial
population. (B) Calculate fitness value of each individual. (C) Select individuals
based on this value. (E) The rest are discarded. (D) Apply genetic operators
(crossover and mutation) to the selected individuals in order to generate the next
population. From Cully and Mouret (2015).

• The system implemented for the validation experiments uses A2L to learn and
execute skills, and a higher-level planning method to identify the sequence of
actions to perform. The corresponding state-of-the-art planning methods are
then introduced at the end of this chapter.

3.1 Evolutionary Algorithms

3.1.1 Principle

Evolutionary algorithms (EA) rely on the variation and selection principles of natu-
ral selection in order to drive a search and optimization process (Eiben and Smith,
2008). Namely, evolutionary algorithms are an abstraction of the processes and
principles established by Darwinism (Darwin, 1872). They perform a black box op-
timization process just driven by a cost function called fitness function by reference
to biology. It is a blind search process that is robust to noisy and multi-modal fit-
ness functions and versatile with respect to what is optimized (bit strings, vectors of
float, graphs, trees, etc). A key feature of these algorithms comes from the fact that
it is a robust technique, which can you deal with a great variety of problems coming
from different areas, including those in which other methods encounter difficulties.
While it is not guaranteed that the evolutionary algorithms find the optimal solu-
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3.1.2 Novelty Search

Evolutionary robotics relies on evolutionary algorithms to generate robot controllers
or morphology (Doncieux et al., 2015a). They have been used to generate controllers
for locomotion, navigation or foraging tasks (Nelson et al., 2009). They have the
specificity of not requiring the definition of a discrete set of actions and they can
explore large sets of continuous variables, provided that they can make enough
solution evaluations. These features are very interesting w.r.t the task-agnostic
exploration of an environment because they can be exploited to generate actions
of a high diversity avoiding premature convergence. It was recently shown that
using task-independent behavior-based criteria to drive an exploration had a very
significant impact on the generated results (Doncieux and Mouret, 2014).

Novelty Search is an evolutionary algorithm to search for novel behaviors
(Lehman and Stanley, 2011). It is a task-independent method, driven by the seek
of novelty (see Figure 3.2). The main features with respect to the previous algo-
rithm are: (i) the use of a specific fitness function to compute the novelty, (ii) the
comparison of individuals of different generations, stored in an archive. The nov-

elty of an individual, i.e. a behavior, is defined as the average behavioral distance
between this behavior and its k-nearest neighbors in the current population and in
an archive of previously explored behaviors:

Novelty(i, p, a) =
1
k

k∑

j=0

dist(i, neigh(i, p, a)j) (3.1)

where neigh(i, p, a)j is the jth-nearest neighbor of individual i, including the current
population, p and the archive, a, with respect to the distance, dist, representing the
distance between the corresponding behaviors. Novelty(i, p, a) is then used as a
fitness function in the evolutionary process. The method strongly relies on the
behavioral distance used to compute novelty. This distance is typically defined in a
space of behavior descriptors and is problem-specific. A related example is Cully
and Mouret (2015), in which a hexapod robot quickly and autonomously learns to
walk in any possible direction in its vicinity, using novelty to modify the robot’s
controllers.

3.2 Bayesian Networks

3.2.1 Principle

Bayesian Networks (BN) are a graphical representation of dependencies for prob-
abilistic reasoning, in which the nodes represent random variables and the lack of
arcs represent conditional independence relationships between the variables (Pearl,
1988). More precisely, a BN is a directed acyclic graph (DAG), i.e. a collection of
nodes or vertices joined by directed edges without directed cycles. The topology or
structure of the network provides information about the probabilistic dependencies
between the variables as Conditional Probabilistic Distributions (CPDs). CPDs are



3.2. Bayesian Networks 31

represented as tables, which grow exponentially with the number of parents of a
node. This is the corresponding computational cost or complexity that is called
curse of dimensionality (Bellman, 1966). Figure 3.3 shows both the topology and
CPD of an example computing the probability of a grass being wet. The grass
will be wet, W, if it rained that day, R, or if the sprinkler, S, run (below table).
The sprinkler runs half of the times if it was not cloudy, C. Conversely, it rains
almost each time it is cloudy. In this section upper case letters represent random
variables and lower case letters represent possible values of the random variables.
P(X) represents the probability distribution of X, whereas P(X=x) represents the
probability that the value of X is x.

Figure 3.3: Example of a Bayesian Network and the related Conditional Probabilis-
tic Distributions (from the aGrUM documentation).

If there is an arc linking a node X to another node Y, X is called a father of
Y, and Y is called a child of X. The parents of a node X are all the fathers of
the node. If node X has no parents, its local probability distribution is taken as
unconditional, otherwise it is conditional. If the value of a node is observable - and
therefore labeled as observed, that node is an evidence node.

In a BN the joint probability is specified by the product of the probabilities of
each variable, Xi, given their parents, Pa(Xi):

P (X1, X2, X3, ..., Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (3.2)

In the previous example:

P (C, S,R,W ) = P (C)P (S|C)P (R|C)P (W |S,R)
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The conditional probability, or posterior probability, is the probability that X=x

given that Y=y:

P (x|y) =
P (x ∧ y)
P (y)

(3.3)

And then the Bayes theorem can be used to compute P (y|x) as:

P (x ∧ y) = P (x|y)P (y) = P (y|x)P (x) (3.4)

P (y|x) =
P (x|y)P (y)

P (x)
(3.5)

3.2.2 Inference Capability

The probabilistic reasoning or propagation of probabilities consists in propagating
the effects of the evidence through the network to know the a posteriori probabil-
ity of the variables. Namely, the values of certain variables are observed, called
evidence, and the posterior probability of the other variables is obtained given the
known variables. For example, in the wet grass example it is possible to compute
the posterior probability of the sprinkler switched on if the grass is already wet,
e.g. it is already raining:

P (S = 1|W = 1) =
P (W = 1|S = 1)P (S = 1)

P (W = 1)

=
P (W = 1|S = 1)P (S = 1)

P (W = 1, S = 1) + P (W = 1, S = 0)

where P (W = 1, S = 1) and P (W = 1, S = 0) can be computed using the joint
probability.

In order to facilitate the inference computation, the DAG of a BN is trans-
formed to another structure. In the current manuscript, the inference capability
of a BN relies on a junction tree based inference called lazy propagation (for a de-
tailed explanation see Madsen and Jensen (1999)). This approach allows inferring
simultaneously more than one variable, if needed.

3.2.3 d-separation

Another relevant feature for A2L is the concept of d-separation (Geiger et al., 1990),
which represents the independence model of a BN. Being P a path between two
nodes X and Y, i.e. a set of arcs linking X and Y, without taking into account their
directions. P is said to be d-separated by a set of Z nodes if and only if (at least)
one of the following conditions is true:

• P contains a directed chain, X . . . ← M ← . . . Y or X . . . → M → . . . Y , in
which the middle node M belongs to Z,

• P contains a divergence of M, X . . . ← M → . . . Y , in which the node M

belongs to Z,
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• P contains a convergence to M, X . . . → M ← . . . Y , in which neither the
middle node M nor its descendants belong to Z.

Thus, X and Y are said to be d-separated by Z if all the paths between them are
d-separated. More precisely, two nodes X and Y are d-separated given Z whenever
they are conditionally independent given Z. If X and Y are not d-separated, they
are called d-connected.

3.2.4 Structure Learning

In order to learn the probability distribution among the random variables, a BN
must have a well-defined structure. This structure can be learned (as in Chapter
5) or it can be externally defined (as in Chapter 6). Structure learning consists in
finding the structure best fitting a given dataset. Structure learning is a NP-hard
problem (Chickering et al., 1994). There are three main approaches for structure
learning: (i) constraint-based approach, which first uses statistical independence
tests to identify a set of arc constraints for the graph and then finds the best DAG
that satisfies the constraints (Pearl and Verma, 1995; Spirtes et al., 2003), (ii) score-

based searching approach, which searches over the space of graphical structures for a
structure with maximal score (Heckerman, 1996; Chickering, 2002; Buntine, 1991),
and (iii) hybrid approach, which computes an initial DAG using the constraint-based
approach, and refines it using a score-based searching approach (Tsamardinos et al.,
2006; van Dijk et al., 2003). A2L relies on a score-based searching approach for the
structure learning.

There are two types of scoring functions: (i) Bayesian scoring functions, which
compute the posterior probability distribution, starting from a prior probability
distribution on the possible networks given a dataset D and on the possible param-
eters (CPD), and (ii) Information-theoretic scoring functions, which are based on
the compression that can be achieved over D with an optimal code induced by the
BN. In the current manuscript, two closely related information-theoretic scoring
functions are used, penalizing a log-likelihood score, LL.

• Akaike Information Criterion (AIC) (Akaike, 1974). It is mainly used when
there is a large number of models to evaluate. AIC provides a measure of the
relative quality of the model. Its formula is:

AIC(B|T ) = LL(B|D)− k

where B represents a BN graphical structure, D represents the given data and
k is the sum of the number of free parameters of B. AIC measures the fit with
the likelihood and at the same time penalizes the use of many parameters.

• Bayesian Information Criterion (BIC) (Schwarz, 1978). This scoring criterion
is very similar to AIC:

BIC(B|T ) = LL(B|T )−
1
2
log(N) ∗ k
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where N represents the total number of instances in the data T. It is based on
maximum likelihood as fitting measure, as AIC. The measure of complexity
introduces both k and log(N), penalizing more the inclusion of many variables
than AIC does.

In the current manuscript two structure learning methods are used, with differ-
ent a priori knowledge about the structure:

• Hill-climbing (Chickering et al., 1995). The method uses an iterative im-
provement technique. There is no initial information to drive the learning
process. It starts with a BN structure, with or without arcs. At each step,
it attempts to change the graph structure by a single operation of adding an
arc, removing an arc or reversing an arc, preserving the acyclic property. If
there are changes that increase the score, it is selected the change maximizing
the score. Otherwise it makes another attempt. The method ends when there
are no improvements, or when a preset number of iterations is reached.

• K2 (Cooper and Herskovits, 1992). A visual demonstration of its functioning
is available in Ruiz (2005). It is one of the fastest methods for structure
learning in BN. A topological order of the graph is needed. It starts with
a structure, possibly empty. For each random variable, the method searches
among its parent set the parent that most increases the score. The method
stops when no improvement can be made.

3.3 Dynamical Systems

3.3.1 Principle

This section makes a brief description of the main features of dynamical systems
(DS) relevant for A2L. For a complete explanation see Katok and Hasselblatt (1995)
and Siciliano and Khatib (2008). Dynamical systems are systems whose internal
parameters, i.e. state variables, follow a series of temporary rules. They are called
systems because they are described by a set of equations, and dynamical because
their parameters vary with respect to some variable, usually time. A DS is au-
tonomous if it is represented by an autonomous ordinary or unforced differential
equation of the form:

ẋ = F (x) (3.6)

whereas a non-autonomous DS has the form:

ẋ = F (x, t) (3.7)

The difference between these systems lies in the fact that Equation 3.6 does not
contain any external stimulus to the system dependent on the system that forces
the natural behavior of the dynamics of the system, while 3.7 does.
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Figure 3.4: Example of an attractor from Warren (2006). The black point represents
the position of an attractor, and the black arrows show the attraction directions to
the point.

A system is time-independent if it does not depend explicitly on time. From the
definition it can be concluded that every autonomous system is invariant in time.
In general, a DS is invariant in time if:

x(0) = x(δ) = x0 → x(t) = x(t+ δ)∀t (3.8)

Namely, for the system to be time-independent two trajectories passing through the
same point in different times will have the same evolution. If Equation 3.8 does not
comply, the DS is time-dependent.

The way of visualizing the behavior of the state variables of a dynamic system
can be in the form of a time series (graph of a state variable versus time), or in
the form of a phase space, used in the current manuscript. The phase space of
an n-dimensional system as in Equation 3.6 is the space where all the possible
states of a system are represented. Each system parameter is represented as an axis
of a multidimensional space and each point of the space represents each possible
status of system variables. In this type of representation, time becomes an implicit
parameter (see Figure 3.4).

The phase space is described by a vector field, F, which governs the path of the
system variables x(t) in time, called path. It is said that a singularity of the phase
space is an attractor if every trajectory that starts close to it approaches it as time
passes. On the other hand, a singularity of the phase space is Lyapunov-stable if all
trajectories that start sufficiently close to it remain close to it during all time. The
situation may arise that a singularity of the phase space is Lyapunov-stable but it
is not an attractor. If this happens it is said to be neutrally stable. However, when
the two types of stability usually occur at the same time it is called asymptotically
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stable. Finally, a singularity is a repulsor when it is neither attractor nor Lyapunov-
stable. That is, the trajectories that start close to it diverge as time passes. The
importance of the stability of singularities lies in the fact that this determines the
stability of the system in which the singularities are presented.

3.3.2 Behavioral Dynamics

During the 70’s and the 80’s different psychologists proposed theories to describe
the interaction of an agent with its environment as DS. First, human and animal
behavior was formalized by Kugler et al. (1980) as low-dimensional DS. More pre-
cisely, stable behaviors were described as attractors, behavior states to be avoided
correspond to repellers, and changes in number or type of attractors and repellers
are described as bifurcations.

Later, the perception-action cycle was introduced by Kugler and Turvey (1987)
and Warren (1988). In these works, the interaction of an agent with its environment
is described as a goal-oriented continuous loop, where the perceptual information
acquired by the agent drives the generation and execution of an action, possibly
interacting with the environment and modifying the perception of the agent.

Warren (2006) defines a theoretical framework to apply the previous theories
in realistic use cases. To that end, he extends and complements the existing works
as follows: first, both perception and action are ruled by different laws. On the
one hand, the perceptual information follows the ecological laws defined by Gibson
(1966), e.g. the law of visual perception (Gibson (1979)). On the other hand, War-
ren (1988) describes the laws of control by which to visually regulate the actions.
Namely, the definition of a set of free parameters to tailor an action to the environ-
ment features. Second, Warren describes two levels of analysis for any interaction
(Figure 3.5). The perception-action cycle, at the first level of analysis, represents
the global behavior of the interaction. A lower level of analysis, i.e. second level,
represents a low-dimensional description of the global behavior. This level describes
the temporal evolution of a behavior, its behavioral dynamics. Warren claims the
current state of a behavior, regarding a specific goal, is described based on the
change of few variables, the behavioral variables. Therefore, at this level, observed
trajectories are described based on these variables, and can be formalized as DS.

Both levels of analysis are tightly coupled. In a bottom-up approach, the be-
havioral dynamics emerge from the regularities identified during the interaction of
the agent with its environment. Therefore, adapting a behavior to an environ-
ment involves both levels of analysis. The first level, gathering the environmental
information, and the second level adapting the behavior to this information. In a
top-down approach goals are defined as attractors, and therefore the low-level vector
field affects the global success of the interaction. Warren claims that the correlation
between both levels satisfies the features of emergent behavior and self-organization
proposed by Bar-Yam (2004) and Haken (1978).

The previous concepts are formalized as DS. At the first level of analysis, on
the one hand, an ecological law Φ (Equation 3.9) represents the change over time of
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Figure 3.5: Description of the two levels of analysis of a robot interaction with its
environment. From Warren (2006).

the environment state, e, after applying some forces, c, on it. Notice that forces are
denoted as c instead of F, as in Figure 3.5, to avoid a nomenclature conflict with
the formalization available in Chapters 5 and 6. On the other hand, a law of control

Ψ (Equation 3.10) represents the change over time of the agent state, a, based on
some information acquired about the environment, i.

ė = Φ(e, c) (3.9)

ȧ = Ψ(a, i) (3.10)

Changes on both ecological and control laws rely on external information. The
aforementioned forces, c, modifying the environment are the result of the execution
of an action (Equation 3.11), called the effector function, β. From a robotics per-
spective this function corresponds to the computation of an action, based on the
robot’s inverse kinematic model, and its posterior execution.

c = β(a) (3.11)

Similarly, an information function λ (Equation 3.12) transforms the state of
the environment into the behavioral variables, adapting an action to the robot’s
environment.

i = λ(e) (3.12)

At the second level of analysis, the DS corresponds to the change of value of
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Figure 3.6: Example of a diffeomorphic matching, Φ, of a simple trajectory (blue
line) to a demonstrated trajectory (dotted line). The space of the vector field is
represented by the red grid. From Perrin and Schlehuber-Caissier (2016).

the behavioral variables, h, over time. Equation 3.13 represents a DS Ω where some
behavioral systems change over time based on some parameters of the available
velocity field, v.

ḣ = Ω(h, v) (3.13)

In summary, the relation of a robot with its environment is described using
DS. This approach is utilized in Section 6.3 to endow a robot with the capacity
to dynamically adapt to the position of an object while executing an action to
reproduce an effect.

3.3.3 Building a Dynamical System in a Deformed Space

Perrin and Schlehuber-Caissier (2016) present a method to build a DS, i.e. a vector
field, given the trajectory of a demonstrated action. A robot can use the vector
field to reproduce the demonstrated action using one of its end-effectors. The
method proposes applying a deformation to the motion space in order to fit a simple
trajectory like x̂ = −x to the demonstrated trajectory. More precisely, the authors
aim to minimize a defined distance between both trajectories using a diffeomorphic

matching algorithm (see Figure 3.6).
The proposed approach is complementary to the works presented in Section

2.1.2. The authors stress that the deformed space could improve the design of
building asymptotically stable DS by methods like SEDS (Khansari-Zadeh and
Billard, 2011, 2014) because the number of Lyapunov candidates is higher in this
space. In Chapter 6, A2L relies on this diffeomorphic matching to build vector fields
of the demonstrated trajectories performed by an external agent.
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3.4 Task planning

Mugan suggests that "there are two broad planning frameworks within AI: STRIPS-

based goal regression, and Markov Decision Process (MDP) planning." (Mugan,
2011, page 7). On the one hand, goal regression techniques generate a sequence of
actions to execute, given a task goal and information about the environment. On
the other hand, MDP-based planning is related to Reinforcement learning (Schaal,
1999), using rewards to select the next action to perform. In the current manuscript,
the skills performed by A2L are validated through the performance of a task. We
are thus interested on using for the validation a method that selects the next action
to perform based on the changes produced on the environment. Therefore, we
have selected a goal regression method called PDDL (Planning Domain Definition
Language) (McDermott et al., 1998), because it is used on other works performing
task planning within the developmental robotics literature, e.g. Konidaris et al.
(2014) and Ugur and Piater (2015a).

PDDL is an action-centered language, inspired by the well-known STRIPS for-
mulations of planning problems (Nilsson, 1981). It uses pre- and post-conditions to
describe the applicability and effects of actions. It is partially inspired by the pro-
gramming language called Lisp. PDDL has been recently extended1, for instance
to handle probabilities using MPDs, i.e. PPDDL, as in Konidaris et al. (2014). The
components of PDDL are split up into two blocks, the domain and the problem.
The domain defines some components available to solve different problems, whereas
the problem defines a specific task. The components of the domain are:

Domain of the task It contains the predicates and the actions.

(define (domain < domain name >)

< PDDL code for predicates >

< PDDL code for first action >

[...]

< PDDL code for last action >

)

Predicates Object properties defined as booleans.

(: predicates (room ?x)

(robot ?r)

(robot− at ?x ?r)

where room is true if and only if x is a room, where robot is true if and only if x is
a robot, and robot-at is true if and only if x is a room, if r is a robot, and the robot
is in the room.

1https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
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Actions They change the task state.

(: action move : parameters (?x ?y ?r)

: precondition (and (room ?x) (room ?y) (robot ?r)

(robot− at ?x ?r))

: effect (and (robot− at ?y ?r)

(not (robot− at ?x ?r))))

where the precondition of the action move consists in having 2 rooms, x and y, a
robot, r, and the robot is in room x; and the effect is that the robot moved from
room x to room y.

The components of the task are:

Task It defines the task goal, initial state and objects for a specific domain.

(define problem < problem name >)

(: domain < domain name >)

< goal specification >

< initial state >

< objects >

Task goal It defines the goal to reach.

(: goal (robot− at kitchen roomba))

Initial state It defines the initial values for the task objects.

(: init room kitchen

room dinner_room

room living_room

robot roomba)

Objects Entities of interest.

(: objects kitchen dinner_room living_room

roomba baxter)

A domain can be used in many problems. And thus it should contain a wide

range of actions and objects.
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4.1 Introduction

Learning models to predict a robot’s actions and skills to execute them requires a
substantial amount of data of robot-object interactions (see Definition 2). A robot
with the capacity to move, i.e. endowed with a kinematic model, could acquire this
data through an exploration of its environment, given a minimal a priori knowl-
edge to drive the exploration. To that end, in this chapter, we present a method
named Novelty-driven Evolutionary Babbling (NovEB), designed to perform a task-
agnostic exploration of an environment. Its main feature is to look for actions that
maximize novelty in the raw sensorimotor space. It is based on Novelty Search
(Lehman and Stanley, 2011), which relies on Evolutionary Algorithms driven by a
behavior novelty criterion. The outcome of this approach is a dataset of interac-
tions composed of robot actions and their consequences, e.g. changes in the visual
perception. The generated data are aimed at preparing a future developmental step
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for a robot, which would consist in training classifiers or predictors, e.g. A2L. This
method uses as a priori knowledge:

• w.r.t. to the actions, a forward/inverse kinematic model is available1.

• w.r.t. to the action consequences, a distance to compare them is predefined
(further details are available in Section 3.1). Also, NovEB makes the assump-
tion that new perceptions result from robot actions.

Besides, although the method does not need any information of the environment to
run, in order to reach a good performance it is necessary that after each action the
environment is reset, that is, objects move to their initial position.

4.2 Method

The method generates many different robot arm trajectories, c1, . . . , cS , and it looks
at the modifications they may create in the environment, as perceived from the
robot’s sensors (vision in particular). Based on the Novelty Search principles, a
movement (see Definition 7) that generates perceptions that have never been en-
countered before has a higher chance to survive, namely to be selected to generate
new close movements through the mutation operator. Movements that do not gen-
erate any perceptual novelty are discarded, thus focusing the search on movements
generating new perceptions.

The main algorithm of NovEB to explore an environment is presented in Algo-
rithm 1. Generate_children_pop(pop) is the function that creates a new population
with mutation and crossover. Novelty(i, p, a) is defined as in Equation 3.1, on the
basis of both the nearest neighbors in the current population, and in an archive of
past behaviors with a distance defined in a behavioral space (an example is described
in Section 4.3). At each generation, the individual with the highest novelty is added
to the archive. In mono-objective problems, Select(pop) is an elitist algorithm that
selects the best individuals among the parent and the children populations, us-
ing the function Fitness(i). Both Generate_children_pop(pop) and Select(pop) are
based on NSGA-II Deb et al. (2002), a Pareto-based multi-objective evolutionary

algorithm, which is a state-of-the art algorithm for multi-objective problems; but it
is also very efficient in mono-objective ones.

The genotype is a vector of waypoints in an Euclidean space, used to define a
trajectory of the robot’s end effector2. In the initial population, these values are
randomly generated within a defined range. Afterwards, the values are modified
by the mutation operator, without any restriction on the resulting values. Two
mutation operators are defined. The first one adds a random Gaussian noise to a

1The robot’s kinematic model is available in all the works presented in this manuscript. Hence-
forth, we omit it when describing the a priori knowledge provided.

2This type of environment exploration is inspired by the goal-directed exploration (Rolf et al.,
2010). We do not follow the same terminology to avoid any misunderstanding with the use of the
term goal as a synonym of a task to solve.
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Algorithm 1 Novelty-driven Evolutionary Babbling (NovEB)

1: pop← c1, c2, ..., cS ⊲ random population
2: a← ∅ ⊲ a stands for the novelty archive
3: g ← 0 ⊲ number of generations in the population
4: while g < gmax do

5: for i ∈ pop do

6: Execute_trajectory (i) ⊲ compute behaviour of i

7: maxnovelty ← 0

8: for i ∈ pop do

9: Fitness(i) ← Novelty(i, p, a)

10: if Novelty(i, p, a) >maxnovelty then

11: maxnovelty ← Novelty(i, p, a)

12: bestcandidate ← i

13: archive← archive ∪ {bestcandidate}

14: pop← pop ∪ Generate_children_pop(pop)

15: pop←Select(pop)

16: g ← g + 1

given trajectory. The second one can change the complexity of the trajectory by

adding one waypoint. Added points are put in the middle of two other points of the

trajectory. This ability to change the complexity of the genotype is inherited from

NEAT (Stanley and Miikkulainen, 2002), and is also a feature of Novelty Search:

the search starts with simple solutions, considers the behaviours they can generate

and progressively considers solutions of higher complexities (Lehman and Stanley,

2011).

The behavior associated with an individual is an image of the scene as seen by

the robot once its arm has come back to its initial position3. The robot’s movements

eventually change the scene by moving objects, being this reflected in the gathered

images. In this work, a behavioral distance is predefined, used to compute novelty

among the images. Namely, this distance drives the exploration of the environment.

4.3 Experimental Framework

The objective of this experiment is the generation of contacts of the robot’s end

effector with objects around the robot. The experiment is executed in a tabletop

setup, i.e. a table with objects on top of it: on the left a gray box, on the front-

center a can, on the right a blue box, and on the back-center a ball. All the objects

3This is meant to avoid to take into account robot’s arm movements as a source of novelty.
This could be useful to generate a self-model, but it would be misleading for building predictive
models.
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Figure 4.1: Examples of different moments during the experiments using NovEB.
Each row represents the execution of a trajectory (except for column A that displays
the initial state before any trajectory is executed). The right column represents the
moment just after the execution of a trajectory, i.e., when the robot’s arm has
completed the trajectory. The left column shows the final image obtained once
the arm has come back to its initial position. (Row B) A trajectory without any
object on the table being touched does not produce any change in the environment.
(Row C) A trajectory in which an object is touched, hence producing a change in
its position. (Row D) A trajectory in which the contact with the object is slightly
different can result in a very different output. (Row E) A trajectory in which
several the blue box is touched. An illustrating video of the experiment is available:
https://youtu.be/zCO7qOIvKOU

https://youtu.be/zCO7qOIvKOU
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are within reach of the right arm of the robot, except for the ball, that can be moved
only if it is pushed by another object. The two boxes and the can are located at
the border of the table, and the ball is located behind them. The can is located
just in front of the robot, in the middle of the table (see Fig. 4.1). The weight
chosen for the objects on the table is low to facilitate their movement when the
end effector of the robot makes contact with them. The experiment run for around
20000 iterations, as in Mugan and Kuipers (2012). At the end of each iteration, the
objects are reinitialized to their original position.

A trajectory is initially composed of an initial position, common to all trajec-
tories, and a final point to be reached. The randomly generated final coordinates
are in the range [0,1], being able to go beyond these bounds afterwards. The robot
relies on a motion planner, called OMPL4, to plan a trajectory. It is not always
possible to compute a trajectory given a final point, because either the trajectory
is without reach of the robot, or the trajectory includes collisions with the table,
the ground or the robot. Only the safe and feasible trajectories are executed.

The behavior descriptor associated to a trajectory is the final image of the
scene, which is taken once the arm came back to the initial position. To compute
the distances required for the novelty objective, images are encoded into a numeric
string by using the pHash library5, because perceptual hashes are close to one
another if the features [of the two images] are similar (Zauner, 2010). The distance
between two strings is then computed with the Hamming distance (Hamming, 1950).

To assess the performance of our approach, the final positions of the objects of
the scene have also been recorded (objects and their positions are unknown to the
robot).

4.3.1 Robotic Platform

The robot used in the experiments is called PR26. The main feature of the PR2
robot w.r.t. the experiments is that the robot arm has 7 degrees of freedom, and an-
other one for the gripper that has not been used in these experiments. Environment
images are acquired using the right color stereo camera on the robot’s head. ROS
Hydro Medusa7 was used to manage the robot. The simulation has been executed
in Gazebo 1.98. MoveIt9 provides the robot with the capability of defining safe
trajectories for the end effector, using OMPL, based on a set of points in the space.
It also provides collision avoidance. The evolutionary algorithm, on which the exe-
cution of this method relies, is executed in Sferesv2 (Mouret and Doncieux, 2010),
a framework for evolutionary computation designed for multi-core parallelization.

4http://ompl.kavrakilab.org/
5https://www.phash.org/
6http://www.willowgarage.com/pages/pr2/specs
7http://wiki.ros.org/hydro
8http://gazebosim.org/
9http://moveit.ros.org/
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Figure 4.2: Top view showing the space covered during the execution of NovEB
(top) and during that of the control experiment (bottom). The representation is
composed of the PR2 (white box) in front of the table (brown box). The small circle
and boxes represents the objects on the table. The green dots represent the final
position of each trajectory executed by the robot. For the control experiment, dots
show that a majority of the space within reach of the robot’s right arm is searched,
whereas NovEB clearly focuses on the interesting parts of the space.
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Figure 4.3: Top view showing the final positions of the objects during the exe-
cution of NovEB (top) and during that of the control experiment (bottom). The
representation is similar to that of Fig. 4.2. The blue, gray, yellow and red dots
represent the final positions of the blue box, of the gray box, of the can, and of
the ball respectively. Some dots are located behind the robot due to the fact that
the simulator’s physics engine not always handling correctly the dynamics of the
objects. However, this has no impact on the results of the experiments because such
objects are out of the field of vision of the robot. Note again that NovEB produces
much more changes than the control experiment.
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executed movements, the novelty found in the right part of the table decreases, and
the robot comes back to search new behaviors in the left side.

4.4 Conclusions and Open Questions

In this chapter, we have proposed a novel method for generating interactions with
the objects surrounding a robot through babbling. The approach has been applied
on a simulated robot, which discovers on its own which regions of the workspace
generate novel perceptions and focuses its exploration around them. The results
show that NovEB is able to generate several thousand different interactions with
this environment, an order of magnitude higher than the number of interactions pro-
duced with a random motor babbling approach. This difference is obtained thanks
to the ability of NovEB to focus its exploration in regions that lead to novel visual
perceptions. The outcome of this approach is a dataset of interactions composed of
robot actions and their consequences, e.g. changes in the visual perception.

NovEB can be considered as an intrinsic motivation for exploration, like the
Intelligence Adaptive Curiosity (IAC) defined by Oudeyer et al. (2007). One of the
main differences between these two approaches lies in the assumptions on which
these methods are based. The only requirement for NovEB is the robot’s kinematic
model, and the definition of a distance between two perceptions (in this chapter,
between two images). This is specific to the robot’s sensors and is independent from
the task or the environment. Conversely, IAC, at least in its current implementa-
tion, requires to train predictors in order to estimate the learning progress. Training
such algorithms to predict the consequences of an action only on the basis of raw
perceptions is a challenge per se. Although recent works based on deep learning
techniques are starting to predict the image that the robot’s camera will capture
based only on previously captured raw images and the executed actions, as Lesort
and Filliat (2017), training these predictors is still an open question. Current im-
plementations of IAC rely on higher level information, for example on the position
of the objects in the scene (Oudeyer et al., 2007). However, providing the tools
that extract these higher information from raw perceptions cannot be environment-
agnostic. For example, when predicting the positions of the objects, the algorithm
needs to know how many objects compose the scene, or how to extract these objects
from the raw perceptions (using large object database, for instance). Based on this
observation, these two approaches can be complementary. NovEB can be used to
generate a large amount of data that can afterwards be used to extract information
from the scene (number or shape of objects, for instance). Then, the high level
information extracted can be used to run IAC for a detailed or goal-oriented ex-
ploration (Baranes and Oudeyer, 2013). NovEB can be also complementary with
LeGoff et al. (2017), a work to segment the environment based on visual inputs.
The trajectories generated by our method can be related to the object position
using the inverse kinematic model, and thus they could be used as push primitive.

As NovEB is driven by novelty only, it suffers from some of the limitations that
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have motivated the development of IAC: it should get focused on interactions that
generate perceptions with a large variability. These interactions could constrain the
exploration to an area of the setup, neglecting contacts in other areas producing
less novelty, i.e. avoiding the exploration of possible relevant areas. IAC can avoid
this phenomenon as the learning progress in such situations will remain low. This
would be a strong limitation for the exploration ability of the system if NovEB
was expected to handle the whole developmental process. But this is not an issue,
as NovEB is aimed only at acquiring the data to bootstrap other developmental
processes.

The direct comparison of the action consequences produces the necessity to run
the method in static environments that reset after each action to obtain a good
performance. This constraint makes very difficult the execution of the method by
a physical robot. An alternative would be the direct execution of its output in
simulation by the physical robot. However, this approach could not be satisfactory
because of the reality gap (Doncieux and Mouret, 2014). Different approaches have
been developed in the next chapters to avoid this constraint.
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5.1 Introduction

This chapter focuses on the autonomous generation by a robot of a dataset of
interactions (see Definitions 3, 7 and 8) used to build a skill reproducing an effect
on an object. In this chapter, a list of effects to reproduce is provided. Interactions
are represented by the position of the robot’s end-effector and the object position
during the interaction execution, i.e. they are represented by low-level states. In
this work an object is represented by its position, not relying either on its orientation
or its shape, as young infants (Rosenbaum, 2010).
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On the one hand, in order to solve the drawbacks identified in the previous
chapter we provide more a priori knowledge to the method about the environment.
In this case, a skill is related to a known object, because the skill compares the
relative position of the object to the end-effector position in order to infer the next
movement of the robot. This relative position is used to compare changes in the
object, making unnecessary the definition of a distance based on visual inputs.
Therefore, the object can be placed in any location within reach of the robot, not
needing to reset the object position after each action.

On the other hand, we reduce the a priori knowledge to explore the environ-
ment. In this case, the exploration is performed using random actions. The number
of robot-object interactions generated by random actions is low (see Figure 4.5).
As the goal of the exploration is to increase the number of interactions, this explo-
ration is not completely random. The generated actions extend those trajectories
of the available dataset of interactions touching the object with random movements
(see Section 5.2.4). This approach, inspired by intrinsic motivations, allows the
robot to progressively extend the dataset using the knowledge acquired in previous
explorations, although in a naive fashion. However, even using this approach the
exploration of the robot’s environment would generate a low number of interac-
tions, because of representing a big search space. Therefore, this search space is
constrained to two dimensions, and the movements are discretized (more details are
available in Section 5.3). This is a drawback w.r.t. methods driving the exploration
using some knowledge, for example intrinsic motivations, as in the case of NovEB.
But, it is the consequence of reducing the a priori information provided for the
exploration using random actions.

In this chapter we present the two complementary processes of A2L:

• Skill Building: given a dataset of interactions it builds skills that infer actions
reproducing effects on objects, adapted to the object position.

• Iterative Interaction Acquisition and Validation: an iterative method gener-
ating and validating the dataset of interactions.

In order to execute A2L, a dataset of interactions (see Definition 2) must have
been generated in a previous developmental step (see Fig. 5.1), for example the
result of executing NovEB. In this chapter, this initial dataset is the result of a
random motor exploration performed by the robot’s end-effector.

Once this dataset is available, the execution of the iterative process can start. At
the beginning of each iteration of the process, a short exploration of the environment
is executed. New robot-object interactions are identified, which are combined with
the available dataset of interactions into a new extended dataset. Then, the skill
builder creates a skill based on this dataset. The last step of an iteration consists in
the validation of the skill trying to reproduce the set of given effects. If more effects
are reproduced than in the previous iteration the extended dataset is consolidated as
the working dataset, to be extended in the next iterations of the process. Otherwise,
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Algorithm 2 Initial random exploration

nb_itp: number of current iteration executed
nb_itmax: maximum number of iterations
Db: dataset of interactions obtained from exploration
yp: position of the object at the end of iteration p
yp-1: position of the object at the end of iteration p-1

1: nb_intp = 1
2: Db = ∅
3: while nb_itp ≤ nb_itmax do

4: {xp} ← GenerateRandomTrajectory()

5: yp, XYp ← ExecuteTrajectory({xp})

6: ∆fp ← yp - yp-1

7: if ∆fp 6= 0 then

8: ep ← IdentifyEffect(∆fp)

9: Db ← AddInteractionsToDataset(XYp, ei)

10: Increase(nb_intp)

5.2 Iterative Developmental Framework

5.2.1 Initial Available Information

Before the execution of the method, two sets of information are required: (i) an
initial dataset of interactions, representing robot-object interactions, to bootstrap
the skill building process and to be increased in posterior iterations of the method;
and (ii) a set of effects to be reproduced by the robot, to assess the generated states.

Dataset of Interactions

The dataset of interactions is environment-dependent, and thus it must be generated
by the robot. It is initially composed of the interactions acquired by the robot during
a random, goal-free, exploration of its environment (Demiris and Dearden, 2005),
i.e. the execution of random actions (Algorithm 2). The interactions represent both
the position of one of the robot’s end-effectors and the object position at an instant
of time:

xt = end effector position

yt = object position

XYk = { (xk
0, yk

0), . . . , (xk
T, yk

T) }
e = label associated to a specific effect

D = { (XYk, e) }

where XYk represents an interaction, k, between the robot’s end-effector and the
object when executing a trajectory, and D represents a dataset of interactions. xt
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and yt are acquired at different instants of the trajectory execution, t ∈ [0, T ], where
T represents the total time of the execution of the trajectory.

Set of Effects

The set of effects to reproduce is externally provided:

ft = yt

∆ft = yt - yt-1

E = { (e1, ∆̂f 1), . . . , (eN, ∆̂f N) }

where ft represents the object position at an instant of time, ∆ft represents a vari-
ation of the object position between two instants of time, E represents the set of
effects to reproduce, N is the number of effects, and ∆̂f i represents the change of
the object position associated to the effect ei, which is also provided to the robot.

5.2.2 Method

This section details the two complementary processes of A2L:

• Skill Building: given a dataset of interactions this process builds skills that
infer actions to reproduce an effect on an object.

• Iterative Interaction Acquisition and Validation: an iterative process generat-
ing new interactions and validating them.

5.2.3 Skill Building

In the current manuscript, an action is a sequence of movements to reproduce an
effect on an object (see Definition 5). Given a context, a skill infers and executes an
action adapted to the object position reproducing an effect on the object. Therefore,
a skill is an action generator φ (see Definition 6) inferring a movement reproducing
an effect on the object given a context:

φ(e, context) = ∆xt

The action generator is implemented as a Bayesian Network (BN) (Pearl, 1988)
(introduced in Section 3.2), similarly to (Montesano et al., 2008), among others.
A BN is a graphical representation of dependencies for probabilistic reasoning, in
which the nodes represent random variables and the lack of arcs represent indepen-

dence relationships between the variables (further details are available in Section
3.2.1). The reasons for using a BN as an action generator are twofold: (i) it has
a strong inference capability, and (ii) its representation of the contextual state
relations as probabilistic dependencies allows one to analyze and understand the
outcomes of learning. Lauritzen (1992) introduced a BN combining variables using
continuous and discrete values, and there are works applying similar concepts to
robotics (Osório et al., 2010; Stramandinoli et al., 2017). However, Osorio mentions
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Definition 9 Robot-Object Relation State: A robot-object relation state, or just

relation state, is a physical relation between the robot’s end-effector and the object

at an instant of time.

An example of robot-object relation state is the distance and orientation between
the robot’s end-effector position and the object position.

In other words, the dataset of interactions, D, is transformed into a repertoire
of movements and states, R:

R = { (e, ∆xt , δt) }

As already discussed in Section 1.2, the performance of a BN combining con-
tinuous and discrete variables is often much slower than directly using discrete
variables. As A2L is aimed to generate actions adapted to the object position, the
action generator needs to generate movements as quickly as possible. And thus, in
the current work, the action generator infers discrete movements based on discrete

robot-object relation states and discrete effects. Their discretization is performed
when the dataset of interactions, D, is transformed into the repertoire of movements
and states, R, performed based on a discretization configuration. This configuration
may have a deep impact in the results obtained using the method. A suitable config-
uration must entail a trade-off between being generic to be suitable for different sets
of effects, and specific enough for the current set of effects. In the current work this
configuration has been empirically designed for each experiment. Future work may
include the selection of the discretization configuration in a developmental process
in which discretizations are generated and tested using an iterative approach.

Step 2: Learning the Action Generator

Once the discrete repertoire of movements and states, R, is available the BN can
be learned. Learning a BN consists of two steps: (i) identifying the structure
representing the conditional dependencies among the random variables, and (ii)
learning their conditional probability distributions (CPD). The structure can be
either learned combining some of the structure learning methods available in the
literature to a score (see Section 3.2) or it can be externally provided by a designer.
However, the CPDs are always learned from the available repertoire.

In order to complete the information of the skill building process, let us define it
based on the new available definitions. Given an effect to reproduce and the robot-
object relation state, an action generator, φ, infers the next movement to execute
to reproduce the effect on the object:

φ(e, δt) = arg max
∆̂xt

P (∆̂xt | e, δt) = ∆xt (5.1)
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Algorithm 3 Iterative Interaction Acquisition and Validation

nb_itp: number of current iteration
nb_itmax: maximum number of iterations
x1: initial position of the end-effector
ψp: score computed in an iteration
ψmax: maximum score obtained
E : set of available effects
Dp: available dataset on interactions
Ds: dataset on interactions from short exploration
D

∗

p: extended dataset on interactions
Rp: repertoire of discrete states
φp: action generator

1: nb_itp = 1
2: ψmax = 0
3: while nb_itp ≤ nb_itmax do

4: Ds ← ExecuteShortExploration(Dp)

5: D
∗

p ← ComputeExtendedDataset(Dp, Ds )

6: Rp ← DiscretizeAcquiredStates(D∗

p)

7: φp ← BuildSkill(Rp)

8: ψp ← ValidateRepertoire(E, φp, x0)

9: if ψp ≥ ψp-1 then

10: ψmax = ψp

11: Dp = D
*
p

12: Increase(nb_itp)

5.2.4 Iterative Interaction Acquisition and Validation

Phase 1: Interaction Acquisition

The process presented in Section 5.2.3, i.e. the skill building, creates a skill based on
a dataset of robot-object interactions. However, given a set of effects to reproduce,
it is possible that some of them could not be generated at an instant of time.
In order to build a skill reproducing those effects the dataset has to be extended
with new interactions. To that end, the robot executes at the beginning of each
iteration of the process a short exploration around the object, i.e. it executes a small
number of trajectories, possibly generating new interactions with the object. These
new interactions are combined with the available dataset, generating an extended
dataset of interactions, D*

i . This extended dataset is later used in the skill building.

The short exploration is based on the interactions within the dataset touching
the object. A new trajectory is generated randomly selecting one of those trajec-
tories, and modifying it. This modification consists in selecting one waypoint of
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Algorithm 4 Validation of the repertoire of states

E : set of identified effects
φp: action generator
ae: action inferred for effect e

x0: initial position of the end-effector
y0: reference position of the object
xpq: current position of the end-effector
ypq: current position of the object
N : number of available effects
nb_movq: current number of movement
nb_movmax: maximum number of movements to execute
θ: available discretization configuration
δpq: relation state based on environment and robot states
∆xpq : discrete movement
ê: expected effect
ei: obtained effect
resei

: result of an effect
wresei

: weight associated to a result
ψp: score obtained

1: function ValidateRepertoire(E, φp, x0)

2: ψp = 0

3: for ê ∈ E do

4: y0 ← GetInitialObjectPosition()

5: xpq = x0

6: nb_movq = 0

7: aê = ∅

8: while ¬contact ∩ nb_movq < nb_movmax do

9: ypq ← GetObjectPosition()

10: δpq ← ComputeInteractionFeatures(xpq, ypq)

11: ∆xpq ← InfereMovement(φp, ê, δpq) ⊲ Equation 5.1

12: xpq ← MovementExecution(xpq, ∆xpq)

13: contact ← CheckObjectContact()

14: Increase(nb_movq)

15: if contact then

16: eaê
← IdentifyObtainedEffect(ypq, y0)

17: if eaê
= ê then:
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18: resê = success

19: else

20: resê = false_positive

21: else

22: resê = failure

23: ψp = ψp + resê * wresê
⊲ Update score

24: return ψp * N

the trajectory and modify it moving it the distance and orientation of one of the
discrete movements used by the robot in the current work. For example, the final
waypoint of a vertical straight trajectory can be moved to the right transforming
the trajectory into a curve. This approach, inspired by intrinsic motivations, allows
the robot to progressively extend the dataset of interactions using the knowledge
acquired in previous explorations, although in a naive fashion.

The execution of a trajectory by a robot is very time consuming, possibly taking
few seconds to complete it. The execution by the robot of all the trajectories defined
in the short exploration could entail the execution of hundreds of trajectories, most
of them not having any impact on the object. In the current chapter, this issue
has been addressed making a mathematical estimation of the possible contact of a
trajectory with the object, based on its position. Only if the Euclidean distance of
a waypoint of the trajectory is under a predefined threshold, i.e. if it is close to the
object, the action is executed by the robot.

Phase 2: Skill Generation Phase

This phase just consists in executing the complementary skill building process pro-
viding the extended dataset of interactions, D*

i , to generate a skill to validate the
datatset in the next phase.

Phase 3: Interaction Validation

The skill validation of the extended dataset of interactions consists in the com-
parison of the number of effects reproduced before and after the extension of the
dataset of interactions. More precisely, if more effects are generated using the ex-
tended dataset than before extending it, this is consolidated as the working dataset,
to be extended in the next iterations of the process. Otherwise, it is discarded. A
score is computed to measure the number of effects reproduced. This score relies
on the result of the actions inferred by the robot trying to reproduce the effects.
These actions produce changes in the object position:

∆f ae

t = y ae

t - y ae

t-p ∈ Sf
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where ae represents an action to reproduce an effect, Sf represents the set of changes
of the object position produced by the robot during the exploration, and t and
p represent different instants of time, such that t is posterior to p. An action is
considered a success if after its execution the change of the object position produced
in the object is similar to the change expected from the desired effect, n:

∃ n ∈ [1,N], ∃ t ∈ [0,T-1], ∆f an

t ∈ Sf, ∆f an

t ≈ ∆̂fn,

a false positive, if the change is similar to the change expected from another effect:

∃ n ∈ [1,N], ∃ t ∈ [0,T-1], ∆f an

t ∈ Sf, ∆f an

t 6= ∆̂fn

or a failure, if there is no change in the position of the object:

∀ t ∈ [0,T-1], ∆f an

t /∈ Sf

The score, ψi, is computed as:

ψi = (
∑

e∈E

rese ∗Wrese
) ∗N

where rese is the result obtained after the execution of an action reproducing an
effect, W represents the predefined weight associated to a result (based on experi-
ence), and N represents the total number of given effects to reproduce.

The actions are inferred using the skill obtained in the previous phase. Running
a skill, α, to reproduce an effect, e, on an object, f, consists in inferring a sequence
of movements:

α(e, f) = {φ(e, δt)} = {∆xt}, (5.2)

5.3 Experimental Framework

Two sets of experiments are executed to asses A2L, using a robotic arm (Section
5.3.1) and a Baxter robot (Section 5.3.2), respectively. The objective of these ex-
periments is the acquisition by a robot of a dataset of interactions to build skills
pushing a box in different directions. Although a robot endowed with A2L can
autonomously learn to interact with the environment to reproduce an effect, the
execution of the method requires some a priori knowledge. Each set is composed
of two experiments: In Experiment 1 a predefined dataset of interactions, repro-
ducing all the given effects, is available. Therefore, only the skill building process

is executed. Conversely, in Experiment 2 the dataset of interactions is built in dif-
ferent iterations of the method, and thus both the iterative process and the skill

building process are executed. Table 5.1 shows the a priori knowldge available in
each experiment.

• List of effects to reproduce: the experiments are validated based on the repro-
duction of the pushing effects.
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• Constrained movements: the exploration of the environment is performed
using random actions. In order to increase the number of contacts the space
to be explored by the robot is constrained to two dimensions. Besides, the
movements are discrete, with a fix distance of 5 centimeters and as possible
orientations moving to the right, to the left, far from the robot, close to it,
and the diagonals, i.e. right-far, right-close, left-far and left-close. Thus, the
action generator infers one of these movements, which are vectors with fix
distance and orientation.

• Discretization configuration: the movement and contextual states are dis-
cretized because of the capacity of A2L to generate actions based on low-level
contextual states and high-level contextual states. To that end, in all the
experiments a discretization configuration is available. This configuration is
empirically designed, composed of the distance and orientation between one
of the robot’s end-effector and the object to interact with. In this case, the
distance has a range of 0.5 meters, and it is divided in 8 sections of the same
size. The orientation has a range of 360 degrees, and it is also divided in 8
sections of the same size.

• Predefined dataset of interactions: Experiment 1 is aimed at validating the
approach with an ideal dataset of interactions reproducing all the effects,
whereas Experiment 2 is aimed at validating the approach with a self gener-
ated dataset.

• Predefined BN structure: There are two versions of each experiment: (i) a
version in which a hard-coded structure of the BN is available, representing
the conditional dependencies of the random variables of the action generator,
i.e. the relation between, effect, movement and relation state; (ii) another
one in which structure learning methods try to identify the structure. In
both cases the corresponding CPDs are learned using a Maximum Likelihood
estimator, i.e. without a priori. The Bayesian learning is computed using the
aGrUM library1 (Gonzales et al., 2017). In these experiments the robotic arm
can only push a box. Therefore, the relevant robot-object relation states for
this action are the distance and the orientation between the arm’s end-effector
and the box.

5.3.1 Simulated Robotic Arm

Experiment 1 and Experiment 2 have been carried out in order to assess A2L
in a virtual setup, implemented in Python. The experiments are executed by a
simulated robotic arm. The results obtained in each experiment are analyzed in
Section 5.3.1.1.

1https://forge.lip6.fr/projects/agrum/wiki.

https://forge.lip6.fr/projects/agrum/wiki.
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Figure 5.3: Example of the setup used in the experiments. The box is also repre-
sented with a position, i.e. its center. The grey points represent initial positions
of the arm. The clear blue areas represent both the orientation, i.e. the triangle,
and the distance, i.e. the circle, of the box w.r.t. the end-effector. An example
of distance and orientation discretizations are also represented, in blue and brown
respectively.

Table 5.1: A priori knowledge available in each experiment.

List of

effects

Constrained

movements

Discretization

configuration

Predefined

interactions

Predefined

structure

Experim. 1
X X X X X

X X X X

Experim. 2
X X X X

X X X

Experimental Setup

All the experiments are carried out in the same setup. This setup is a two-
dimensional (2D) squared working space of 2 x 2 units, with range [-1, 1] in each
axis (Fig. 5.3). In the center of the space there is a box, of side size 0.3 units. A
simulated camera is located on top of the box, capturing the whole working space.
32 positions around the box, describing a circle, with a distance of 11.25 degrees
among them, represent the initial positions of the virtual robotic end-effector during
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Figure 5.4: Some sequential steps of an inferred trajectory performing the
pushed_left effect on the box. At the beginning, the end-effector is located at
an initial position (in red). The next movement to execute is computed by the
action generator based on the robot-object relation state. In this case, the distance
and orientation between them (darker blue area), e.g. dist_2 and orient_7 in step
1, and dist_1 and orient_6 in step 2. This process repeats (from step 1 to 6)
until the end-effector touches the box. A related video is available online: https:

//www.youtube.com/playlist?list=PL2drYAFCMtzcZ_RlfiFr2AWtcvgc1qR8o.

https://www.youtube.com/playlist?list=PL2drYAFCMtzcZ_RlfiFr2AWtcvgc1qR8o
https://www.youtube.com/playlist?list=PL2drYAFCMtzcZ_RlfiFr2AWtcvgc1qR8o
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5 10 15

Figure 5.5: Example of skill building along the iterative process of the method to
reproduce the four available effects from an initial position. The actions in the
figure have been inferred with an action generator learned based on a self-generated
dataset of interactions, using hill climbing and AIC to learn the conditional depen-
dencies among effect, movement and relation state. After five iterations (left) of the
process only one trajectory can be inferred, because the dependencies have not been
correctly identified, mostly producing false-positive results (grey box). In the tenth
iteration (middle) new actions have been inferred, reproducing successful results
(green box) for the pushed_left and pushed_right effects. Finally, in the fifteenth
iteration (right), also the most complex pushed_down effect has been reproduced.
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the experiments.
The robotic arm is represented as a 2D coordinate in the working space, and

thus neither its kinematics nor its DoF are relevant for the experiment. The box is
represented as the coordinate (0,0), with a side size of 0.3 units. The only perceptual
representation of the setup available for the robot is the position of the box. At the
beginning of each iteration of the method, the box is relocated at its initial position.

Discrete effects

A contact between the arm and the box occurs when the position representing the
arm is within the area represented by the box. A contact produces a displacement,
of a fix distance, of the position of the box. Only four displacements are possible: the
box moves to the left if it the trajectory executed by the arm intersects with the right
side of the box; to the right if it intersects with the left side; up if it intersects with
the bottom side; and down if it intersects with the top side. Therefore, only four
effects are available: pushed_left, pushed_right, pushed_up and pushed_down,

respectively.

Validation

The weights chosen for the skill validation must reflect than a successful result of a

trajectory is better than a false_positive, and much better than a failure. Choosing

different sets of values based on this principle did not seem to have a relevant impact

in the behavior of the method. Based on experience we have selected a value of 8

for Wsuccess, 2 for Wfalse_positive, and 1 for Wfailure. As the number of effects does

not change along the experiments, the computation of the score (Equation 5.2.4)

only depends on the results of the trajectories. In each iteration of the method the

robot infers 128 trajectories (32 initial positions * 4 effects) trying to reproduce the

effects. Therefore, the maximum possible score is 128 * 8. However, the value of

the score is normalized between 0 and 100.

Experiment 1

A predefined dataset of interactions is available, generated by trajectories repro-

ducing all the effects, interacting with the four sides of the box from each initial

position of the robotic arm. This dataset is used to learn an action generator by

the skill builder, which generates trajectories from the 32 initial positions of the

arm. It is expected to obtain very high success ratios, and thus very high validation

scores.

Experiment 2

In this experiment both processes of A2L, the iterative process and the skill build-

ing, are executed. The robotic arm explores the working space executing random
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Figure 5.7: Evolution of the results obtained in the Experiment 2 along the iter-
ations. The scores are computed as the mean values of 5 runs of the experiment,
where each run executes 25 iterations.

version learning the structure using hill climbing. These results show the capacity
of A2L to build a skill given interactions properly representing the reproduction
of the effects. The false positive results identified in Table 5.2 are the result of
an involuntary contact of the arm’s end-effector with the box while executing a
move turning around it, because of the use of discrete movements. The learned BN
structure is depicted at the left of Figure 5.6.

Experiment 2: using A2L the robotic arm has reproduced most of the effects
(see Figure 5.7). In this case, the results obtained by the version of the experiment
using the hard-coded structure are better than those obtained by hill climbing.
Both methods are able to reproduce half of the effects using the interactions result
of the initial exploration before the execution of the method. Later, through the
iterative process, these methods generate new interactions allowing the robot to
reproduce other effects, improving the score around a 40 per cent, i.e. ∆Sc. The
improvement of the score grows rapidly during the first iterations, and reaches a
plateau afterwards. These plateaus result from the size of the dataset of interactions.
After several iterations the dataset has thousands of interactions. It would be
necessary to generate many new interactions to modify the inferred trajectory to
reproduce the effect from an initial position. This is also the reason of the generated
false positives, because of the high complexity of generating randomly some example
trajectories from each initial position, e.g. the trajectory around the box needed
for the pushed_right effect from the initial position at the right side of the circle.
Therefore, the number of examples related to those complex trajectories is low,
being poorly reproduced by the action generator. The BN structure learned by hill

climbing is depicted at the right side of Figure 5.6.
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Figure 5.8: In the top-left corner, a simulated Baxter robot in the tabletop setup
used for the experiments. This setup is composed of a box on a table in front of
the robot. In the top-right corner, a physical Baxter robot in a similar tabletop
setup used for to asses the generated repertoire of states performing a simple test.
In the bottom-left corner, top view of the simulated setup. In the bottom-right
corner, the virtual setup emulating the top view of the simulated setup. The red
circles represent both initial positions of the end-effector from where the actions
are inferred and executed. The blue triangle and torus represent, respectively, the
orientation and distance from the left end-effector to the box. In the current work,
the distance is discretized in three sections (dark blue text), and the orientation in
16 sections (brown text). For instance, in the example the box is at distance 1 and
orientation 0 of the end-effector.
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5.3.2 Simulated Baxter Robot

Experiment 1 and Experiment 2 are executed to assess the generation and validation
of a dataset of interactions by a simulated Baxter robot2 in a setup with ODE as
physics engine3. The main features of the robot w.r.t the experiments are that
the robot has two arms of 7 DoF each one of them. Similarly to the robotic arm
experiments, the goal is pushing a box in different positions. In this case, the box
can be located in different initial positions, and thus the actions generated by the
skills must be adapted to its position. Besides, we show that the generated dataset
of interactions generated in the Experiment 2 can be used by a physical Baxter, in
a similar setup, continuously pushing a box on a table. This section finishes with
an analysis of the obtained results.

ROS Indigo Igloo4 was used to manage the robot. The simulation has been
executed in Gazebo 1.95. We developed a library to manage the kinematics of the
Baxter robot6, based on MoveIt7 and the own robot’s kinematics library. During
the execution of the task, the position of the physical box is acquired using a QR
code (see top-right corner of Figure 5.8).

5.3.2.1 Experimental Framework

Experimental Setup

The scenario of the experiment simulates a three-dimensional (3D) Cartesian table-
top setup composed by a table and a box. The robot is located in front of the table
(Fig. 5.8). The dimensions of the box are 7 x 8.5 x 8 centimeters (cm) of width,
length and height, respectively. The position of the box at the beginning of the
experiment is at 65 cm in front of the robot, and 10 cm to the left. The reference
frame of the setup is located at the base of the robot, and thus the perceptions of
the robot are relative to itself. The robot only perceives the position of the box8.
The position of the box is located at the center of the object, which can change
during the experiment. However, in order to allow the method to infer actions that
the robot can execute, if the box is moved more than 10 centimeters away from its
initial position it is automatically relocated around the initial position.

In simulation, the position of the box is directly provided by Gazebo. In the
physical robot, the location of the box is provided by a QR code obtained by a
RGB-D camera.

The robot moves its left end-effector to interact with the box starting from two
initial positions. These initial positions are located at 20 cm to the left of the box

2http://www.rethinkrobotics.com/baxter/
3http://www.ode.org/
4http://wiki.ros.org/indigo
5http://gazebosim.org/
6https://github.com/cmaestre/baxter_kinematics
7http://moveit.ros.org/
8In the current work, the low-level states of an object are only represented by its position, not

relying either on its orientation or its shape, as in young infants (Rosenbaum, 2010).

http://www.rethinkrobotics.com/baxter/
http://www.ode.org/
http://wiki.ros.org/indigo
http://gazebosim.org/
https://github.com/cmaestre/baxter_kinematics
http://moveit.ros.org/




https://youtu.be/5a02TkaaaRk
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Table 5.3: Results of the experiments. S stands for trajectories producing successful
results, FP stands for trajectories producing false positives, F stands for trajectories
producing failures, Sc stands for the normalized score, and ∆Sc stands for the
variation of the score between the initial and the final iteration.

Hard-coded K2

S FP F Sc ∆Sc S FP P Sc ∆Sc

Experiment 1 16 0 0 100 - 15 1 0 95.3 -

Experiment 2 8 2 6 53.1 33.1 4 12 0 43.57 43.57

a Maximum Likelihood estimator.

Pushing a Box with a Physical Baxter Robot

In this simple test a physical Baxter robot builds a skill to continuously interact
with a box, based on the dataset of interactions generated in Experiment 2 using K2.
The interaction is performed using both end-effectors of the robot, located randomly
at each side of the box, respectively (see top-right corner of Figure 5.8). In each
run of the test the action generator infers a trajectory for each one of the given
effects, using each one of the end-effectors (see Figure 5.12). These trajectories
are computed based on a mathematical approximation of the execution of each
movement. If a trajectory gets close to the object position, it is considered as
touching it. For each of the trajectories touching the object, the mean value of the
posterior probability of each movement is computed. That trajectory with higher
probability is executed.

5.3.2.2 Experimental Results

The results obtained for the experiments are available in the Table 5.3
Experiment 1: based on the predefined interactions the robot reproduces all the

effects for the hand-coded method and most of them for K2. These results reflect
that, given a dataset of interactions representing the reproduction of the effects,
the method is able to build a skill reproducing most of the effects.

Experiment 2: similarly to the results obtained in the robotic arm experi-
ment the robot has increased around 40 per cent the number of effects reproduced
throughout the running of the iterative process with both available learning methods
(Fig. 5.11) showing the capability of the method to generate the dataset of inter-
actions. However, in this case the number of effects reproduced after the initial
exploration of the environment before the use of A2L is very low for the hard-coded

method, and no effect is identified for K2. Therefore, the size of the initial dataset is
very low (see blue lines) and after 25 iterations of the method is still low. Using the
hard-coded structure half of the effects are reproduced, meaning that interactions
reproducing the other half of the effects are missing or there is a low number of
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them. Using the structure learned using K2 only 4 effects are reproduced, although
it produces a high number of false positive results. This means that the structure of
the BN has not identified the right dependencies among the movement, effect and
the relation state (on the right of Fig. 5.9). Therefore, more interactions are needed
to both, identify the right structure of the BN and to reproduce the complete set
of effects.

Test with the physical Baxter robot: the robot interacts with the box using the
repertoire of states generated in the previous experiment until the robot pushes the
box out of the table. This result proves that the repertoire of states generated by the
simulated Baxter can be directly executed by a physical Baxter if their surrounding
environments share the same features. The execution of a trajectory is shown in
Figure 5.11. An online video is available10 showing the interactions of the robot
with the box.

5.4 Conclusions and Open Questions

In this chapter we have analyzed the capability of A2L to generate and validate
interactions, and to build skills used by a robot to reproduce effects on an object.
With respect to NovEB (see Chapter 4) more a priori knowledge about the environ-
ment is provided, i.e. the object position, but the method explores the environment
with very low a priori knowledge using random variables. Moreover, explorations
are constrained to two Cartesian dimensions using discrete movements to increase
the numbers in robot-object interactions generated.

In order to assess the method, two sets of experiments have been carried out. In
the first set, a simulated robotic arm in a virtual setup performs the experiments.
The execution of the actions and their effects in the virtual setup are based on
mathematical approximations because of the lack of a physics engine. The second
set of experiments is performed by a simulated Baxter robot in a setup with physics
engine. Besides, interactions generated in these experiments are directly used by
a physical Baxter robot to interact with a box. In both sets of experiments the
environments are static, that is, only the robot can move the box. However, in the
robotic arm experiments the position of the box is reinitialized after the execution
of an action, whereas in the experiments with the Baxter it is enough if the box is
within reach of the robot.

Our method mainly relies on a discretization configuration and in the conditional
dependencies, i.e. the BN structure, among an effect, a movement and the robot-
object relation state, to run. On the one hand, the obtained results show that
given a dataset of interactions properly representing effects on an object, a correct
discretization and the proper BN structure the method is able to reproduce most
of the effects. The better the trajectories of the interactions produce the effects
are, the better the inferred actions are reproducing the effects. On the other hand,
it requires a very high number of interactions in order to identify the conditional

10https://youtu.be/RKJRXmRTHDc

https://youtu.be/RKJRXmRTHDc
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dependencies represented in the BN of the action generator. In the simulated Baxter
experiment the use of a structure learning method without a priori knowledge about
these dependencies was directly discarded, because of not being able to reproduce
any effect. The method was able to reproduce half of the possible effects using
K2 with some insights about the conditional dependencies. Possibly with a higher
number of interactions K2 could improve its results, although the generation of
those interactions would last for a very long period of time.

A similar temporal constraint is the reason to use discrete movements in a 2D
environment. This approach can limit the reuse of the inferred actions to execute
some tasks in posterior higher-level stages. Chapter 6 extends the skill builder to
create skills generating continuous actions adapting in a close loop to the object
position, i.e. actions are adapted the object position even it this changes during the
execution of the action. Moreover, the use of random actions to drive robot motion
generates poor actions. For example, while exploring an environment. We suggest
the use of intrinsic motivations to drive the unsupervised explorations, as described
in Section 2.1.1 and implemented in Chapter 4; or building the repertoire of skills
directly demonstrating to the robot the right actions to reproduce an effect, as also
described in Section 2.1.1 and implemented in Chapter 6.

It is relevant to mention that the use of relative positions for the object, i.e.
the robot-object relation states, make the method very robust to different object
positions.

The use of more realistic scenarios, with daily objects represented with both
low-level and high-level states, and different actions, as grasp, would challenge the
capabilities of the method. Also, the setup of the experiments could be extended
to more than one object. These challenges have been also addressed in Chapter 6.

Another improvement to A2L is related to the autonomous generation of a priori

information needed to execute, currently externally provided, i.e. the set of effects
to reproduce and the discretization configuration. This information could have been
computed in an unsupervised fashion within the iterative process.

The use of more realistic scenarios, with daily objects represented with both
low-level and high-level states, and different actions, as grasp, would challenge the
capabilities of the method. Also, the setup of the experiments could be extended
to more than one object. These challenges have been also addressed in Chapter 6.



Chapter 6

Online Generation of Actions

Adapted to Contextual States

The results and text of this chapter have been presented in the following article.

• Maestre, C., Mukhtar, G., Gonzales, C., and Doncieux, S. (2017, October).
Context-Based Generation of Continuous Actions to Reproduce Effects on
Objects. In the Third International Workshop on Intrinsically Motivated
Open-ended Learning (IMOL). Referenced in the bibliography as Maestre
et al. (2017a).

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Extended formalization . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Context-based and Adaptive Skills . . . . . . . . . . . . . . . 83

6.3.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . 83

6.3.2 Skill structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.1 Initial Interaction Acquisition by Demonstration . . . . . . . 87

6.4.2 Step 1: Adapting the Interactions to Learn Adaptive Skills . 90

6.4.3 Step 2: Running a Skill to Reproduce an Effect on an Object 95

6.5 Experimental Framework . . . . . . . . . . . . . . . . . . . . . 99

6.5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 107

6.6 Conclusions and Open Questions . . . . . . . . . . . . . . . . 115

6.1 Introduction

In Chapter 5 we demonstrated how a robot can build skills through interactions with
its environment to infer actions reproducing effects on objects (see Definitions 2, 4
and 5). To that end, we proposed a method, named Adaptive Affordance Learning
(A2L), which endows a robot with the capacity to generate a dataset of robot-object
interactions used to build the skill. The method presented two main processes: (i)
the acquisition of interactions when needed, called Iterative Interaction Acquisition
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and Validation, and (ii) the adaption of the robot’s actions to the object position,
called Skill Building. The method was validated on a physical Baxter robot in
a tabletop setup, generating a dataset of interactions pushing a box in different
directions. However, in those experiments the actions generated were discrete and
constrained to a 2D space; and the setup was static, i.e. the position of the box
only changed when the robot touched it.

This chapter is focused on improving the generation of skills presented in Chap-
ter 5, addressing the different identified constraints, in order to scale up their use
to our daily environments. In these environments, the skills must be robust to
spatio-temporal perturbations. Namely, the position of an object can change in-
dependently from the robot’s actions, and an action can be modified during its
execution. In order to address this feature, in the current work A2L builds adaptive
skills using a Dynamical System (DS) called diffeomorphism (explained in Section
3). The DS generates a vector field, in which a vector represents a movement of the
end-effector (Schaal, 1999; Ijspeert et al., 2002) (see Definition 7). Therefore, in a
closed loop, the action generator of the skill infers movements adapted to the object
position, i.e. its low-level contextual states (see Definitions 6, 1 and 3). Moreover,
the inference of movements by a vector field removes the necessity to use discrete
movements, and the constraints applied to the robot environment, which is now a
3D Cartesian space.

In Chapter 5 the dataset of interactions was generated through an iterative pro-
cess. Although the method was able to reproduce most of the effects in a virtual
setup, it was not able to reach a high performance in a simulated tabletop setup.
Besides, the acquired information was very noisy because of the use of random ac-
tions. This chapter is focused on building skills directly in physical environments,
which are already noisy due to the lack of accuracy of the robot’s sensors. In order
to avoid adding more noisy information through an exploration of the environment,
different robot-object interactions are directly demonstrated to the robot by an ex-
ternal agent. For example, the experiment designer shows how to produce an effect
on an object through a kinesthetic demonstration moving the robot’s end-effector,
i.e. learning from demonstration (LfD) (Billard and Calinon (2016)). Moreover, in
this chapter each skill is built from an individual dataset of interactions, includ-
ing one or more demonstrations of interactions with an object producing the same
effect, i.e. a skill is built using batch learning.

Our method mainly relies on the conditional dependencies among the effect to
reproduce, a context at an instant of time and the next movement to perform,
and on a discretization of the context. Regarding the conditional dependencies,
the action generator is a Bayesian Network (BN) (Pearl, 1988). Therefore, the
structure of the BN represents these dependencies. In the previous chapter, the
context was represented by the end-effector and object positions, and a robot-object

relation state was computed based on these positions. However, in order to better
represent our daily environments, in this chapter the context is composed of low-
level and high-level states (see Description 9). Therefore, the structure of the BN
must represent the conditional dependencies among an effect, a robot-object relation
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performed by the physical Baxter in Section 6.5.

6.2 Extended formalization

In Chapter 5 a detailed formalization of A2L was provided. This section redefines
basic aspects common to the previous formalization, required to explain the struc-
ture of a skill (Section 6.3) and the upgraded method to learn skills and execute
them (Section 6.4) .

Skills are based on interactions of the robot with an object to reproduce an
effect. An interaction represents (i) a trajectory of the robot’s end-effector and
(ii) the robot’s context during the execution of the trajectory. A trajectory is
stored as a sequence of Cartesian positions, i.e. waypoints, representing continuous
positions of the end-effector, xt, and gripper states, gt, at certain instant of time.
The robot’s context is composed of low-level and high-level contextual states of
the object at certain instant of time, ft. In the current work, the low-level object
states correspond to the continuous object’s position, yt. These states and the end-
effector position are acquired at certain instants of time during the execution of
the trajectory. Therefore, an interaction between the robot’s end-effector and the
object when executing a trajectory, Υxgyc, is represented as:

xt = end effector position

gt = gripper state

yt = object position

ht = high-level object states

Υxgyc = {(x0, g0, y0, h0), ..., (xT , gT , yT , hT )}

(6.1)

An effect is defined as an expected variation of the object contextual states, Λ̂f ,
and it is associated to a label, e. In the current work the expected variation can be
related to either a variation of the object position or a variation of the high-level
object states:

e ≡ Λ̂f = yt − yt−1 ∨ ht − ht−1

where the subscript t represents an instant of time.
The dataset of interactions containing the demonstrations performed by an ex-

ternal agent, D, is composed of an effect and one or more interactions producing
the effect:

D = (e, {Υk
xgyh}) (6.2)

where k represents one of the K interactions available.
Once the skill is available it can be used to generate actions to reproduce effects

on objects. An action, ae, is a sequence of movements reproducing an effect. A
movement, (Λxt, Λgt), consists in a displacement of the robot’s end-effector and a
change of the gripper state between two subsequent instants of time (see Definition
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7):

Λxt = xt − xt−1

Λgt = gt − gt−1

ae = {(Λxt,Λgt)}

Actions produce changes in the object states (see Definition 5):

Λf ae

t = y ae

t - y ae

p

where ae represents an action to reproduce an effect, and t and p represent different
instants of time, such that t is posterior to p. An action is a success, if after its
execution the change produced in the object is equivalent to the desired effect:

Λf ae

t ≈ Λ̂fe

or a failure, if the change is equivalent to another effect:

Λf ae

t 6= Λ̂fe

or if there is no change in the position of the object:

Λf ae

t = 0

6.3 Context-based and Adaptive Skills

6.3.1 Theoretical framework

The skills generated by A2L must be robust to spatio-temporal perturbations.
Therefore, it is necessary to add a dynamical framework providing this capabil-
ity of adaptation. Warren (2006) defines a theoretical framework describing the
interaction of an agent with its environment as a DS, applied in realistic use cases
(a detailed explanation is available in Section 3.3.2). We use this framework to
upgrade our method to add the adaptation capability.

The most relevant features from this framework, regarding our work, are twofold:
first, the description of two levels of analysis for any interaction of the agent with
its environment (Figure 6.2). At the first level of analysis a perception-action cy-

cle represents the global behavior of the interaction (Kugler and Turvey, 1987;
Warren, 1988). In a constant loop, the perceptual information gathered by the
agent drives the generation of an action. Its execution modifies the environment,
generating novel perceptual information. The second level of analysis represents a
low-dimensional description of the global behavior. This level describes the tempo-
ral evolution of a behavior, i.e. an action, called behavioral dynamics. The status
of an action is described based on the change of few variables, the behavioral vari-

ables. At this level, a vector field is generated based on one or more effect-oriented
trajectories of a demonstrated interaction. The vector field is described by the be-
havioral variables. The perceptual information of the first level is described using
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Figure 6.2: Description of the two levels of analysis of a robot interaction with its
environment. From Warren (2006). A full explanation is available in Section 3.3.2.

the same variables. Then the perceptual information at a certain instant defines the
current action state in the low-level vector field, and the action is computed from
that state. Second, at the second level, the effects produced by the demonstrated
interactions are attractors within the vector fields. Therefore, the generation of an
action at the first level is driven by the effect-oriented vector fields, from the current
action state. Namely, the vector fields drive the global interactions of the agent.
This is important to easily adapt the actions to the environment. For example, if
the perceptual information identifies a new object to be avoided during the action
to execute, a repeller could be added to the vector field to avoid that area of the
environment.

Warren applies the theoretical framework to a steering and obstacle avoidance
problem, with the aim of predicting routes through complex scenes. Based on
his insights, different problems must be addressed at each level of analysis: "The

problem at this level [first level] is to identify the informational variables that are

used to guide behavior and to formalize the control laws by which they regulate

action. [...] the problem at the second level of analysis is to identify a system of

differential equations (i.e., a dynamical system) whose solutions capture the observed

behavior" (Warren et al., 2010, page 1). In order to apply the theoretical framework
to the building of skills by A2L we must also address these problems. Regarding the
problem at the first level of analysis, a skill generates continuous actions adapted
to an object position to reproduce an effect. As aforementioned, generating an
action entails the inference of a sequence of movements of the robot’s end-effector.
Therefore, the states used to guide behavior are those related to the generation
of a movement, i.e. low-level contextual states. In the current work, these states
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correspond to the robot-object relation states, i.e. the distance, orientation and
inclination between the end-effector and the object. Regarding the problem at the
second level of analysis, we must define a dynamical system that, based on one or
more trajectories, produces a vector field representing the temporal evolution of
the trajectories. In the current chapter a continuous vector field is generated using
a diffeomorphism, explained in Section 6.4.2. Information from this vector field is
extracted and discretized to learn the action generator (a detailed explanation is
available in Section 6.4).

6.3.2 Skill structure

Once the previously identified problems have been properly addressed, the theoreti-
cal framework can be applied to A2L in order to build adaptive skills. The structure
of a skill is depicted in Figure 6.3. The skill receives information to reproduce an
effect on an object. In Section 3.3.2 the theoretical framework was described for a
general interaction of a robot with its environment. Conversely, a skill reproduces
a specific effect. And thus its execution has to stop at certain instant of time,
providing a result, together to a detailed trace of the execution. The running of
the skill stops either producing a failure after a maximum number of iterations, or
producing a successful result when a condition representing the expected effect is
reached:

Λ̂f =
t∑

i=1

Λ̂fi

where Λ̂f represents the variation of the object features representing the effect and
the summation represents the accumulated variation of the object features after t

iterations.
This condition is integrated into the perception-action cycle within the higher

level of analysis. At the beginning of the cycle, the condition is evaluated. If the
effect has been reproduced the skill execution stops. If not, the object position, yt,
and high-level contextual states, Ht, of the object are acquired (equivalent to the
information function, Equation 3.12):

yt, ht = GetContextStates() (6.3)

Then, together to the available robot’s state, the robot-object relation state is
computed and discretized:

δt = ComputeRelationState(xt, ft) (6.4)

where δt represents the discrete robot-object relation state at a certain moment, ,
i.e. the position of the object with respect to the end-effector, xt represents the
continuous position of the robot’s end-effector at a certain moment, ft represents
the object features at a certain moment, and ComputeRelationState is a function
computing the continuous robot-object relation state.
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Once the previous information is available, the continuous next movement to
reproduce the effect, Λxt, is computed. As aforementioned, the movement is not
directly computed by a dynamical system, as in Equation 3.10. An action generator,
φ, computes it based on the available relation state and high-level object states:

∆xt = φ(δt, Ht) (6.5)

Then the robot executes the movement with its end-effector, ε, generating a set
of forces, z (equivalent to Equation 3.11):

zt = Execute(ε,∆xt) (6.6)

The execution of the movement modifies the position of the end-effector, Λxt.
The forces associated to the movement may modify the object states, Λft following
the Physical laws of the environment, Φ, if the robot touches the object (equivalent
to Equation 3.9):

Λft = Φ((xt, ft), zt) (6.7)

At the second level of Figure 6.3, an example is depicted of the movements
(grey arrows) inferred by the action generator (Equation 6.5) for different discrete
values of the behavioral variables. In this example these variables only correspond
to the relation state, i.e. the position of the object with respect to the end-effector,
composed of a distance, di, and an orientation, oi. The states are represented in
polar coordinates used in the discretization process explained in Section 6.4.2.

6.4 Method

This section explains the improvement in the process of A2L to learn and execute
skills adapted to the contextual states. A skill is learned from one or more demon-
strations of interactions with an object, producing the same effect on it, e.g. pushing

it to the right. Therefore, a dataset of interactions must be available. These in-
teractions are acquired by an external agent through one or more demonstrations
(LfD), and stored into a dataset of interactions, D (Section 6.4.1).

6.4.1 Initial Interaction Acquisition by Demonstration

The external agent performs the demonstrations manipulating the Baxter robot
(LfD). In each demonstration, the external agent grasps the wrist of one of the
robot’s end-effectors, presses a button located in the end-effector to start the record-
ing of the demonstration, moves the end-effector to perform an action (usually inter-
acting with an object) and releases the button once the trajectory has finished. The
external agent presses another button during the execution of the action whether
the gripper has to open or close.

The acquired information is continuous, composed of the trajectory, i.e. a se-
quence of position of the end-effector, and for each position of the end-effector (i)
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Algorithm 5 Initial interaction acquisition by demonstration

S : skill name
D: continuous dataset of interactions acquired from demonstration
Te: trajectory composed of end-effector positions
To: object position during the trajectory
Tg: openness of the gripper during the trajectory
Tc: high-level object states during the trajectory

1: S ← GetSkillName()
2: D ← CreateEmptyDataset(S)
3: while WaitForDemonstration() do

4: while demonstration do

5: Te, To, Tg, Tc ← RecordInteraction()

6: D ← SaveInteraction(Te, To, Tg, Tc)

the position of the object, (ii) the openness of the gripper, and (iii) the high-level
object states. Once all the demonstrations are finished to reproduce the same effect,
i.e. to build the same skill, the acquired information is stored into a repertoire of
states, D (Equation 6.2). Algorithm 5 shows the pseudo-code of this process.

Each skill is used to perform an action reproducing an effect. Therefore, before
the demonstrations, a name is provided to the skill, representative of the action,
e.g. grasp or pushright.

Once the dataset of interactions is available the method to build skills starts.
This process entails two steps (see Figure 6.4):

Step 1 The dataset of interactions, D, is transformed into a repertoire of move-
ments and contextual states, R, in order to build skills that can generate
actions adapted to changes of both the object position and the high-level
object states (Section 6.4.2).

Step 2 Based on the discrete repertoire created during the previous step, the action
generator is built (Section 6.4.3). The action generator can be used to infer
movements to reproduce an effect on an object.

6.4.2 Step 1: Adapting the Interactions to Learn Adaptive Skills

The dataset of interactions, D, represents an action producing an effect on an object.
Namely, these interactions can be used to generate an action reproducing the effect
under the same context, i.e. given the same robot-object relation states, and with
similar high-level states. However, the movements inferred by the action generator
must be adapted to (i) changes of the high-level object states and/or (ii) changes of
the position of an object, i.e. changes of the robot-object relation state. Therefore,
the objective of this section is to generalize the knowledge to reproduce the effect
provided by an interaction in a specific context to different but close contexts. Close
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Algorithm 6 Step 1: Adapting the interactions to learn adaptive skills

S : skill name
D: continuous dataset from demonstration
R discrete repertoire of movements and context states
Ndist: number of discrete bins used for the distance
Norien: number of discrete bins used for the orientation
Ninclin: number of discrete bins used for the inclination
θs: discretization configuration associated to the skill
τ : a demonstrated trajectory
ωτ : information associated to a waypoint of a trajectory
ϑτ : vector field associated to a trajectory
̺: sampling area
ς̺: size of the sampling area
ρ: information associated to an element of the sampling area
xρ: position of the end-effector associated to a sampling element
Λxρ : continuous displacement of the end-effector associated to a sampling element
yωτ

: position of the object associated to a waypoint
γρ: continuous relation state associated to a sampling element
gωτ

: continuous gripper state associated to a waypoint
hωτ

: continuous high-level object states associated to a waypoint
∆xρ : discrete displacement of the end-effector associated to a sampling element
δρ: discrete relation state associated to a sampling element
Gωτ

: discrete gripper state associated to a waypoint
Hωτ

: discrete high-level object states associated to a waypoint
B : block of discrete information

1: function DatasetAdaptation(S, ς̺, Norien, Ninclin)

2: Ndist ← ComputeDistanceBins(ς̺)

3: θs ← ComputeDiscretization(Ndist, Norien, Ninclin)

4: D ← LoadContinuousDataset(S)

5: R← CreateEmptyDiscreteRepertoire(S)

6: for τ ∈ D do

7: ϑτ ← ComputeVectorField(τ)

8: for ωτ ∈ τ do

9: yωτ
← GetObjectPosition(ωτ )

10: ̺← SamplingArea(ωτ )

11: for ρ ∈ ̺ do

12: xρ ← GetEndEffectorPosition(ρ)
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Algorithm 6 Step 1: Adapting the Acquired Repertoire of States (continuation)

13: Λxρ ← GetEndEffectorDisplacement(ϑτ , xρ)

14: γρ ← ComputeRelationState(xρ, yωτ
)

15: gωτ
← GetGripperState(ωτ )

16: hωτ
← GetContextStates(ωτ )

17: ∆xρ, δρ, Gωτ
, Hωτ

← DiscretizeInfo(θs, Λxρ, γρ, gωτ
, hωτ

)

18: B ← CreateBlock(∆xρ, δρ, Gωτ
, Hωτ

)

19: R ← StoreInfo(Rs, B)

20: return R, θs

contexts are composed of different robot-object relation states. It would be highly
expensive to record examples of the robot reproducing an effect encompassing all the
possible positions of the object with respect to the robot’s end-effector. In Calinon
et al. (2010) a set of Gaussians is computed given a trajectory, representing position
states of the robot’s end-effector around the trajectory (Section 2.1.2). Inspired by
this approach, a sampling of positions of the end-effector around each demonstrated
trajectory is computed. This sampling is called the vicinity of a trajectory, and it
is explained in Step 1.1.

For each position of the end-effector within the vicinity a episodic block of in-
formation related to a movement at an instant of time, B, is acquired (Step 1.3).
Each block is a triple composed of (i) the movement to execute to reproduce the
effect from a position of the end-effector, (Λxt,Λgt), (ii) the robot-object relation
state at that moment, δ, and (iii) the high-level object state at that moment, H :

B = ((Λxt,Λgt), δ,H)

In order to compute the movement needed to reproduce the effect from the current
position of the vicinity, previously avector field is generated based on the demonstra-
tions (Step 1.2). Finally, in the Step 1.4, the blocks from the different interactions
are discretized and stored together into a discrete repertoire of states, R:

R = {B}

The pseudo-code of the adaptation process is available in Algorithm 6.

Step 1.1: Computing the Vicinity

A vicinity is computed for each demonstrated trajectory. First, the trajectory is
reduced to a set of equidistant waypoints (represented as red stars in the Figure
6.4). The number of waypoints is computed based on the length of the trajectory.
The higher the number of waypoints, the more precise the representation of the
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demonstration1. For each waypoint the function SamplingArea creates a vicinity of
positions of the end-effector around the waypoint. The vicinity is represented as a
cubic grid centered in the waypoint with side size Q, and composed of P x P x P

equidistant positions, P and Q being preset values.

Step 1.2: Computing Movements of the End-effector from New Positions

The objective of using a vector field is computing the next movement of the end-
effector to reproduce the effect. In the current manuscript a vector field is obtained
from a demonstration using a DS called diffeomorphism (explained in Section 3).
This DS has a parameter to compute the tendency to reproduce the demonstrated
trajectory, defined based on experience.

The vector field is computed, by the function ComputeVectorField, based on
the trajectory of each demonstration using a diffeomorphism (see Section 3.3.3
for further details). An example is depicted in Figure 6.4, c. If the end-effector
is in a position close to the demonstrated trajectory the vector field provides a
vector converging to the trajectory, possibly reproducing the expected effect. The
vector corresponds to a movement of the end-effector. However, even with the
right parameter, if the position of the end-effector is far from the demonstrated
trajectory, e.g. at the left corner in the Figure, the movements directly converge to
the attractor, not reproducing the effect.

Step 1.3: Creating Blocks of Information

This process entails the following stages:
Acquiring the Movement: the movement of the end-effector from a position to

reproduce an effect is a vector in Cartesian coordinates. It is directly provided
by the vector field for a position of the end-effector by the function GetEndEffec-

torDisplacement from the available vector field related to the trajectory. Similarly,
the continuous state of the gripper is a value with range [0, 100], acquired by the
function GetGripperState. The value of the gripper state for positions of the same
vicinity is similar to the value of the corresponding waypoint.

Acquiring the Robot-Object Relation State: as aforementioned, the robot-object
relation state represents the position of the end-effector, always available, with
respect to the object position, acquired by the function GetContextStates. It is a
vector from the end-effector to the object in Cartesian coordinates, computed by
the function ComputeRelationState.

Acquiring the High-level Object States: in the current work the high-level states
are always discrete, and they are directly acquired by the function GetContextStates.
Similarly to the gripper state, positions of the same vicinity have the contextual
information of the corresponding waypoint.

1A too high number of waypoints can affect the velocity in which the action generator infers a
movement, because of the size of the BN.
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Figure 6.5: Example of the discretization configuration used in experiments (see
Section 6.5). The black arrow represents a robot-object relation state, i.e. the
position of the object with respect to the robot’s end-effector (at the origin). At
the top, representation of the distance bins, with value d4 for the vector in the
example. At the center, representation of the orientation bins, with value o10 for
the vector in the example. At the bottom, representation of the inclination bins,
with value i2 for the vector in the example.
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Step 1.4: From Continuous to Discrete Information

The action generator is a BN, learned using a discrete dataset. Therefore, each block
of information is discretized before being stored into R. To that end, a discretization

configuration must be available. The values for the orientation and inclination are
predefined, whereas the values for the distance is computed. The length of the
minimal size of a distance bin is related to the distance between two positions in
the vicinity:

minimal distance bin size =
Q

P − 1
(6.8)

This bin size is used to compute the whole distance discretization, e.g. every bin
can have the same size or the size can grow following some heuristic (see Experiment
1 for more details). Therefore, the accuracy of the actions inferred by the action
generator depends on the values of P and Q.

This configuration is applied to discretize the displacement of the end-effector,
the relation state and the gripper state. On the one hand, the definition of a gripper
state directly depends on the accuracy of the task to perform, e.g. for some tasks
open and close can be enough, whereas for others degree of openness can be relevant.
On the other hand, both a movement of the end-effector and the relation state are
vectors defined in the Cartesian coordinates. In these coordinates the range of each
axis is [−∞,∞], which makes very difficult to find a proper discretization. For this
reason, the displacement of the end-effector and the relation state are transformed
to spherical coordinates before being discretized. A vector in spherical coordinates
is composed of a distance, with range [0,∞], an orientation, with range, [−π, π) and
and inclination, with range [0, π]. In the current work, the range of the distance
is constrained to the range [0, 0.5) because any object farther than one meter is
considered as far from the robot. And thus several movements are needed to reach
it, becoming close eventually. Each of these ranges is divided into a preset number of
bins of the same size. Figure 6.5 shows an example of this discretization. In Section
6.5 an experiment shows the impact of using different discretization configurations.

6.4.3 Step 2: Running a Skill to Reproduce an Effect on an Object

An action generator, φ, is a BN that infers discrete movements, ∆x, to reproduce
an effect, e, on an object. Each movement is adapted to both the position of the
object with respect to the end-effector, i.e. the discrete relation state, δ, and the
discrete high-level object states, H, at certain instant of time (see Figure 6.1). A
movement is composed of the end-effector displacement and the gripper state, which
are independently inferred:

(∆xt,∆gt) = φ(e, δ,H)

∆xt = arg max
∆̂xt

P (∆̂xt | e, δ,H)

∆gt = arg max
∆̂gt

P (∆̂gt | e, δ,H)

(6.9)
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As described in Section 6.4.2, a discrete vector is composed of a distance, an orien-

tation and an inclination. Therefore, a discrete movement is described using three
discrete values:

∆xt = (∆distxt,∆orienxt,∆inclinxt)

Although it is possible that there is a weak dependency among these values,
in order to speed up the computation of a movement we consider tha these values
are independent. And thus the inference of a movement consist in the individual
inference of each one of them (see d-separation in Section 3.2.3):

∆xt = ( arg max
∆distxt

P (∆distxt | e, δ,H),

arg max
∆orienxt

P (∆orienxt | e, δ,H),

arg max
∆inclinxt

P (∆inclinxt | e, δ,H))

(6.10)

Examples of learned BN are available in Figures 6.14b and 6.14c.

In the current work, an action generator is learned each time the skill runs,
based on the dataset of discrete blocks, D, computed in the previous section (Step
2.1).

The inference and execution of each movement is performed within the
perception-action cycle explained in Section 6.3.2 and depicted in Figure 6.3. The
perceptual information of the robot is transformed and provided to the action gener-
ator, which infers the movement (Step 2.2). Then, the movement is executed by the
robot using its inverse kinematic model. This execution generates a displacement
of the position of the robot’s end-effector, which can modify the robot’s environ-
ment. If the effect has not been reproduced, or a maximum number of movements
executed, a new iteration of the cycle is executed.

The pseudo-code to run a skill is available in Algorithm 7.

Step 2.1: Learning the Action Generator

Learning a BN consists in two steps: (i) the generation of a structure representing
the causal relations of the components of a block, and (ii) the computation of their
conditional probability distributions (CPDs).

The discrete dataset of blocks can contain information of one ore more inter-
actions, i.e. they have been computed based on different trajectories. And these
trajectories can suggest different movements for the same robot-object relation state
and contextual information. The uncertainty generated in these cases is directly
handled by the probability distributions of the BN, computing different probabilities
for each movement observed under the same circumstances.
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Algorithm 7 Step 2: Running a skill to reproduce an effect

S : skill name
es: effect associated to the skill
ReproducedEffect(): boolean function indicating if the effect has been reproduced
ε: end-effector selected to run the skill
R: discrete repertoire of movements and states
TE : sequence of continuous waypoints representing the inferred trajectory
PE : set of probabilities for each waypoint
TO: set of continuous object positions acquired at the same instant of time that

the waypoints
TG: sequence of values of the gripper openness acquired at the same instant of

time that the waypoints
θs: discretization configuration associated to the skill
φDs

: action generator
nb_mov: number of movements executed
nb_movmax: maximum number of movements that can be executed
knowmov: indicates the current knowledge to infer a movement
x: current position of the end-effector
y: current position of the object
g: current gripper openness
H : current discrete high-level contextual states
Λ̃x: inferred continuous Cartesian movement vector
p̃Λx : inferred probability associated to a movement
G̃: inferred discrete gripper action state
ExecuteMov(): function executing a movement

1: function ReproduceEffect(S, ε, es, ReproducedEffect(), nb_movmax)

2: R ← LoadDiscreteRepertoire(S)

3: φR ← CreateActionGenerator(R)

4: θs ← LoadDiscretizationConfiguration(S)

5: nb_mov is initially set to 0

6: mov_knowledge is initially set to True

7: TE , PE ,TG, TO ← ∅

8: while ¬ReproducedEffect(es) ∩ knowmov ∩ nb_mov < nb_movmax do

9: x, g ← GetProprioceptiveInformation(ε)

10: y, H ← GetContextualStates()

11: Λ̃x, p̃Λx , G̃ = InfereMov(θs, φR, x, y, g, H)

12: if Λ̃x 6= ∅ then
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Algorithm 7 Step 2: Running a skill to reproduce an effect (continuation)

13: x = x+ Λ̃x

14: Add x to TE

15: Add p̃Lambdax to PE

16: Add G̃ to TG

17: y = ExecuteMov(Λ̃x, G̃)

18: Add y to TO

19: else

20: knowmov = False

21: Add 1 to nb_mov

22: return ReproducedEffect(es), TE , PE ,TG, TO

Algorithm 8 Step 2.2: Inferring a movement

Ξ: set of discrete relation states
Θ: set of inferred values
Note: Refer to Algorithm 7 for more definitions
1: function InfereMov(θs, φR, x, y, g, H )

2: Θ← ∅

3: γ ← ComputeRelationState(x, y)

4: δ, G ← DiscretizeInfo(θs, γ, g)

5: Ξ← ComputeNearestNeighbours(δ)

6: for δ ∈ Ξ do

7: ∆x, p∆x , G ← φR(es, δ, H)

8: if ∆x 6= ∅ then

9: Λx ← ToContinuous(∆x)

10: Add (Λx, pΛx, G) to Θ

11: Λ̃x ← ComputeMeanMov(Θ)

12: p̃Λx ← ComputeMeanProb(Θ)

13: G̃ ← ComputeMeanGripperOpenness(Θ)

14: return Λ̃x, p̃Λx , G̃

Step 2.2: Inferring a Movement

The process to infer a movement (Equation 6.9) is detailed in this section. The
pseudo-code is available in Algorithm 8.

While computing the vicinity of a trajectory some robot-object relation states
may not have been covered by the positions of the grid. Covering all the positions
would entail a complex parametrization of the vicinity grid and the discretization
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configuration. In order to avoid the identification of this parametrization, the move-
ment inferred for a relation state and contextual information to reproduce an effect
is computed as the mean value of a set of relation states, Ξ. This set consists of the
nearest neighbors relation states of the current relation state, including itself. In
this case, for each dimension of the current state, the previous and the next values.
For example, for dimension 3, the neighbors are d2 and d4. And thus, the size of
each dimension is always 3, except for the maximum and minimum distance, which
is 2, e.g. the extreme distance only have 1 neighbor. The set of states, including
the current state, i, is [di−1, di, di+1] for each dimension of the relation state:

length(nearest neighbors) =
M∏

d=1

Nd

where M represents the number of dimensions, and N represents the size of the
current dimension d. An example of this computation is available in Figure 6.4. In
this example the relation state, the black arrow, is described using a distance and
an orientation, e.g. d21 and o10. The ranges of nearest neighbors would be [d20,

d21, d22 ] for the distance, and [o9, o10, o11 ] for the orientation. Therefore, the
set of nearest neighbors would have 9 elements, 3 x 3. Conversely, for the current
state d0, with range [d0, d1 ], and o10, the set of nearest neighbors would have 6
elements, and thus 2 x 3 elements. If another dimension with 3 elements is added,
e.g. the inclination, the set of nearest neighbors would have 18 elements, 2 x 3 x 3.

The action generator infers discrete movements of the end-effector. Therefore,
it is necessary to transform these movements to continuous values. The function
ToContinuous() selects the mid value of the range corresponding to each value
composing the movement. For example, for the movement (d2, o11 ) of the Step
2.4 in Figure 6.4 the function computes the mid value for the ranges of d2 and o11.

6.5 Experimental Framework

6.5.1 Experiments

Two sets of experiments have been executed to validate the building of skills adapted
to the contextual states (see Table 6.1). For each skill one or more demonstrations
of trajectories reproducing the corresponding effect are previously performed, i.e.
a repertoire of contextual states is available to build each skill. Videos of the
experiments are available online.2

As aforementioned in Section 6.4.2, the accuracy of an action generator is based
on the number of positions, P, and the size of the vicinity, Q, selected to trans-
form the repertoire of states representing the demonstrated trajectories. In these
experiments two actions generators with different levels of accuracy are learned (see
Figure 6.7): a fine-grained action generator inferring small movements (around 2.5
cm) and a coarse-grained action generator inferring small movements (around 6

2https://www.youtube.com/playlist?list=PL2drYAFCMtzcZ_RlfiFr2AWtcvgc1qR8o

https://www.youtube.com/playlist?list=PL2drYAFCMtzcZ_RlfiFr2AWtcvgc1qR8o
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Table 6.1: Details of the experiments

ID Type
Objective

of the study

A priori

structure

A priori

discretization
Skills Objects

1
Skill building Discretization

impact

X Push Cylinder

X Grasp Cylinder

2
Structure

learning

X Push Cylinder

X Grasp Cylinder

3 Generalization
X X Push Cylinder

X X Push Tea box

4
Task planning

and execution
Solving a maze X X

Push

Set

Cylinder

Cake

5
Heating a

croissant
X X

Grasp

Release

Press

Croissant

Pan

Dish

Button

cm). Although just the fine-grained action generator would be enough to accu-
rately reproduce the effects, the use of the coarse-grain generator provides more
realistic trajectories, with bigger movements far from the object and smaller ones
close to it. The corresponding P and Q values are 7 positions and 20 cm for the
fine-grained one, and 40cm and 8 positions for the coarse-grained one, respectively.
The fine-grained generator is used if the end-effector is close to an object (arbitrar-
ily preset to 10 cm), whereas the coarse-grained generator is used in any other case.
For these experiments the gripper state is simply discretized into two states: open

if its continuous state is bigger than 50, or closed otherwise.

Robotic Platform

Similarly to the experiments carried out in the previous chapter (see Section 5.3.2),
the validation of the method is performed on a Baxter robot. Nevertheless, in the
current chapter only the physical robot is used. Each gripper of the robot has a
different configuration: on the left gripper, the fingers of the gripper are in the
farthest position, in order to grasp big objects. On each finger there are adapters
to facilitate the pushing and the grasping. On the right gripper, the fingers are
in a intermediate position, in order to grasp smaller objects. And there are only
adapters to grasp.

The execution of the robot relies on ROS Indigo Igloo and our kinematic library3.

3https://github.com/cmaestre/baxter_kinematics

https://github.com/cmaestre/baxter_kinematics
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Skill Building Experiments

The first set of experiments makes a study of the results obtained executing A2L
by a Baxter robot in order to reproduce an effect on an object, located on the table
in front of the robot. In these experiments only the low-level object states are used,
that is, the perception of the robot is constrained to the position of the object.

In these experiments, the robot tries to grasp a cylinder and push it to the right

5 centimeters with its left end-effector from different initial positions (see Figure
6.12). The initial positions for the push action are located at 30 cm in X, Y and
Z from the object (yellow point), at 30 cm in Y and Z from the object (orange
point), at 30 cm in Y and Z and -30 cm in X from the object (brown point), and
the purple points share the same X and Y than these points, except that Z has the
same value than the object. The initial positions for the grasp action are located at
30 cm in X, Y and Z from the object (yellow point), at 30 cm in Z from the object
(orange point), and at 30 cm in X and Y from the object (brown point). The initial
positions have been selected close to the initial positions of the demonstrations. All
the trajectories inferred by A2L in these experiments are available in Appendix A.

Experimental Setup

A table of 180 x 80 x 75 centimeters (cm) of width, length and height, respectively,
is located in front of the Baxer robot (see Step 1 of Figure 6.4).

Figure 6.8 shows the set of objects used for the experiments. In this set of
experiments only the cylinder and the tea box are used. The number of objects
used in an experiment is small, based on the idea that a human being cannot
handle simultaneously more than 3 or 4 objects (Spelke and Kinzler, 2007). The
positions of the objects are acquired using an OptiTrack motion capture system4.
This system is composed of 4 cameras located at the ceiling, over the setup, and it
generates a virtual structure of the markers located on the objects, providing the
position of each object defined in the center of it, for instance.

The reference frame of the setup is located at the base of the robot, and thus
the perceptions perceived by the robot are relative to itself, e.g. an object position.

Experiment 1: Study of the Discretization Impact The objective of this
experiment is to analyze the impact of different discretization configurations in
the reproduction of an effect on an object. In this case, the discretization for the
orientation and inclination have bins of the same size, because the range of both
is [0, 2π]. And thus, the first and last bins are connected. In this experiment,
the values used for the orientation and inclination are 4, 8 and 16, selected based
on experience. Conversely, the distance has a range of [0, M], where M represents
the longest distance of a movement of the robot, in this case 50 cm. Two different
types of discretizations for the distance are compared: on the one hand, a linear

discretization, in which M is split up in bins of the same size. On the other hand, a

4http://optitrack.com/

http://optitrack.com/
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progressive discretization is computed inspired on the Fibonacci sequence, in which
each number is the result of the addition of the previous two numbers, being the
first two numbers 0 and 1, respectively. In our case, the distance of each bin is the
addition of the size of the previous two bins:

dist0 = minimal distance bin size

dist1 = dist0 ∗ 2

distn = distn−1 + distn−2

(6.11)

In both cases the minimal size of each bin is computed as in Equation 6.8.

In order to test different discretization configurations a hard-coded structure of the
BN representing the action generator is provided, in the same vein that the structure
used in Chapter 5. This structure represents relations of dependency of the low-
level states to be inferred by the BN, i.e. the movement and gripper state, w.r.t.
any other state (see Figure 6.14b).

The cylinder has been selected because of the complexity to interact with it. More
precisely, in order to push it in a specific direction, e.g. to the right, the end-effector
has to touch it exactly in the center of the left side of the object. Otherwise it will
be moved in a different direction. Similarly, while executing a grasping action the
end-effector must be on the center of the object from the top, or it will slip from
the gripper.

Experiment 2: Study of the Structure Learning This experiment builds the
push and grasp skills using the hard-coded structure, and compare their performance
when these skills are built using structures created combining structure learning
methods and scores available in the literature. To that end, a fix discretization
configuration is provided, based on the results obtained in Experiment 1.

As in the Chapter 5, we have selected hill climbing (Chickering et al., 1995) , with
no a priori information about the structure, and K2 (Cooper and Herskovits, 1992),
which needs as input an order of the random variables of the BN for the structure
learning. In this experiment, the random variables are:

• the effect,

• grasped, the object state representing if the object is grasped,

• the distance, orientation, and inclination of the robot-object relation state,

• the distance, orientation, and inclination of the movement,

• the openness of the gripper

In this experiment, two versions of the K2 algorithm are available, with the current
increasing order, and with the opposite decreasing order.

These methods are combined with the score methods AIC, BIC, Likelihood, K2

and BDeu to learn the structure. These scores are described in Section 3.2. Once
the structure is available the correspondings CPDs are learned using Maximum a
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posteriori (MAP) with a smooth a priori. Except for K2 and BDeu, which have
their own a prioris.

Experiment 3: Skill Generalization In this experiment the push skill is built
using the best discretization and structure identified in the previous experiments.
Then, the generalization capabilities of the skill is analyzed in two different situa-
tions: pushing the cylinder from positions not observed during the demonstrations;
and pushing the tea box, with different size and weight than the cylinder.

Validation

Similarly to Calinon et al. (2010, 2011), we use metrics to evaluate each reproduction
attempt w.r.t. the available demonstrations. However, our goal is not reproducing
the demonstrations, but rather reproducing their effect. Therefore, instead of using
techniques as the root-mean-square to compare the error of the inferred trajectory,
we define two metrics to measure the error in the effect depending on the type of
skill used:

• For pushing an object, the mean-square-error of the Euclidean distance be-
tween the final position of the object and the expected one is computed, with
a precision threshold of 1 cm.

• For grasping an object, the number of times the object is grasped, in the range
0, if all the attempts fail, and 3 if all are successful.

The quality of the performed action is measured based on two values:

• The number of movements inferred, with a maximum of 15 movements.

• The mean smoothness value among the movements. The smoothness value
between two movements, m1 and m2, is computed as:

smoothness value = cos−1(| m1 | ∗ | m2 |)

As the Baxter robot does not provide tactile feedback, an object is considered

as grasped if the robot-object relation state is under certain preset distance, and if
the value of the gripper state is in the lower half range (under 50). The object is
considered as pushed certain distance if it is under an Euclidean distance of 1.5 cm
from that position.

Task Experiments

In the second set of experiments, the best discretizaton parameters and structure
used to build skills identified the first set of experiments are validated. To that end,
two experiments are defined with different objectives:
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Experiment 4: Solving a Maze

The goal of this experiment is twofold: (i) to validate the reproduction of different
results for the same skill, e.g. push to the right an object different distances; and
(ii) to combine different skills to solve a task.

The setup of this experiment consist of two mazes of different configurations.
The robot must reproduce a sequence of actions pushing an object specific distances
to reach the goal (see Figure 6.9). The objects to push have different sizes, shapes
and weights. These are the cyilinder for the first maze, and the cake for the second
maze.

In order to reproduce the sequence of actions different skills have been demon-
strated to the robot. First, a set of demonstrations are executed to push an object
to the left, to the right, close to the robot, and far from the robot. Before executing
each push action it is necessary to set the robot’s end-effector on one side of the
object, e.g. to push it to the right the end-effector must be located at the left of the
object. Therefore, a set of demonstrations are executed to move the end-effector
from the object to on of its sides (see Figures 6.15 and 6.16).

In these experiments the experiment designer chooses the next actions to execute
and the expected effect, including the distance to move an object or the robot’s end-
effector.

Experiment 5: Heating a Croissant

The objective of this experiment is to show (i) that skills built by A2L, based on
demonstrations, can be used to perform a multi-step task in a realistic scenario,
adapting to both low-level and high-level contextual states; and (ii) that the skill
behavior can be traced. The possibility to understand the behavior of a skill can
be exploited in higher-level stages to identify behavioral regularities, for instance
to perform transfer learning and skill generalization.

A scenario is defined, comprising a toy-like kitchen and other objects on it
(see Figure 6.10). Two tests have been initially carried out in order to show the
robustness of the skills w.r.t. spatio-temporal perturbations. In these tests the
robot context is composed of low-level states. First, a pick-and-place experiment
has been executed. The robot has to grasp the croissant and release it inside the
pan. The position of both objects changes and the ongoing robot action has to adapt
to these changes. Second, the robot has to grasp the croissant. In this case, during
the execution of the grasping action the position of the end-effector is externally
modified. Besides, the croissant position changes.

Th same scenario is used to assess the adaptability of the system to changes
of the high-level states. Therefore, the robot context is composed of low-level and
high-level states. The task consists in heating a croissant until reaching a specific
temperature. The high-level states of the objects are:

• Stove number 4 : on (red) or off (black).
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• Croissant: cold (yellow), mid temperature (salmon), high temperature (brown)
or grasped (green).

• Button: pressed or not pressed.

These state colors are visually represented during the experiment in a screen next
to the robot (see Figure 6.17). Initially, the value of the high-level states are the
following: the stove is off, the button is not pressed, the croissant is cold and it
is located in the dish, over the stove 1 (which is always off). If the croissant is in
the pan, the pan is over the stove 4, and the stove is on, the temperature of the
croissant changes from cold to mid temperature after few seconds; and from mid

temperature to high temperature again after few seconds.
The sequence of actions to reach the task goal are:

1. Push the button to turn the stoves on.

2. Grasp the croissant.

3. Release it into the pan.

4. When the croissant has reached the mid temperature, grasp it again.

5. Release it back into the dish.

6. Turn the stove off.

Therefore, the actions demonstrated to the robot are pressing the button, grasp-

ing the croissant, and releasing the croissant from the dish to the pan, and vice
versa. The demonstrations are performed with the left robot end-effector, and ac-
tions executed with the right end-effector. Before the grasp and press actions the
end-effector is randomly located over the setup, in a range of 20 to 40 cm of height,
in order to show that actions can be inferred from different initial positions of the
end-effector.

The multi-step experiment is executed using a STRIPS planner with PDDL-like
problem specification (see Section 3.4). It is written in Python, and called PyDDL5.
The problem, domain and planned sequence of actions actions are available in Annex
B. The task planner perceives the state of the objects using ROS. Initially, the
sequence of required actions is computed. Then, each time a state changes the
corresponding action is executed. The task planner is also in charge of changing
the colors of the screen representing the object states.

6.5.2 Experimental Results

Experiment 1: Study of the Discretization Impact Results are similar using
both linear and progressive discretizations for pushing and grasping the cylinder
(see Figure 6.11). However, the linear discretization reaches slightly better results
(see top of Figure 6.11, a).

5https://github.com/garydoranjr/pyddl

https://github.com/garydoranjr/pyddl
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Table 6.2: Results of Experiment 3.

Object Initial positions Mean error X Mean error Y
Mean number

of movements

Mean action

smoothness

value

Cylinder
Demonstrations 1 1.1 13 1

Generalization 8 6.7 13 0.9

Tea box
Demonstrations 1 1.4 10 1.1

Generalization 0.7 1.5 9 1.03

previous Experiment, i.e. linear distance, with 16 bins for the orientation and 16
bins for the inclination. The obtained results show a clear difference between using
the hard-coded structure and the structure learning methods.

For the pushing experiment, the final position of the cylinder is very close to the
expected position using the hard-coded structure combined with any of the scores.
This is depicted in Figures 6.13, a and 6.12. However, the structure learning meth-
ods have not been able to identify the proper causal relations among the random
variables (see Annex A). And thus the mean error of the final position of the cylinder
using these methods is high.

The mean smoothness value of the hard-coded approach generates very smooth
trajectories and a constant number of movements using any of the scores. The tra-
jectories generated by the learning methods are also smooth with a constant number
of movements because they are mainly straight lines from the initial positions to
the cylinder.

Experiment 3: Skill Generalization A2L shows a very good generalization
capability to push the tea box, similar to those obtained from the initial positions
used in the demonstrations. Conversely, the results obtained pushing the cylinder
are poor. The obtained results are clearly connected to the precision needed to push

the object, because the method looses some accuracy while executing the action.

After the execution of the Experiments 1, 2 and 3 there is a combination of
discretization and structure learning approach which we have selected to validate
building other skills and using them to perform tasks:

• Linear distance

• 16 bins for the orientation

• 16 bins for the inclination

• Hard-coded approach

• AIC score
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Figures 6.14a, 6.14b and 6.14c show more details about this combination. The
actions inferred by the coarse- and fine-grained action generators are easy to observe
based on their length, i.e. longer and shorter, respectively. The different colors
make reference to the probability values computed by the action generators: light

violet (not present) means that the generator has very little knowledge to infer
the movement, violet means that the generator has a good knowledge to infer the
movement (as most of the push movements), magenta means that the generator
has a high knowledge to infer the movement (as the movements close to the object
while grasping, and black that the generator only has one possibility result inferring
the next movement. The pushing actions are smooth, first, aligning to the object
position, and then approaching in a straight line. Conversely, the grasping actions
are less smooth, although the fine-grained action generator has a high knowledge of
the approximation to infer, producing a high success ratio. Regarding the generated
structures, it is relevant to underline that they handle the same contextual states,
even when they are not necessary, as grasped and next_openness for pushing.

Experiment 4: Solving a Maze The results obtained for both mazes are de-
picted in Figures 6.15 and 6.16. In both cases, the robot was able to solve the
maze, showing precision on the pushing actions, confirming the results obtained in
the Experiments 1 and 2. A2L has built skills that can reproduce different effects,
and thus they can be used in different tasks. Besides, the reproduced effects can be
combined.

In Figure 6.15, the figure in J shows the actions executed between two screenshots.
These actions are: (A-B) the robot sets the end-effector behind the cylinder, (B-C)
the robot pushes the cylinder far, (C-D) the robot sets the end-effector at the left

of the cylinder, (D-E) the robot pushes the cylinder to the right, (E-F) the robot
sets the end-effector in front of the cylinder, (F-G) the robot pushes the cylinder
close, (G-H) the robot sets the end-effector at the right of the cylinder, (F-G) the
robot pushes the cylinder to the left. All the actions are accurate, except setting the
arm at the back (B) and in front of the cylinder (F), due to reaching the kinematic
limits of the right arm of the robot.

In Figure 6.16, the figure in F shows the actions executed between two screenshots.
These actions are: (A) the robot pushes the cylinder to the right, (A-B) the robot
sets the end-effector at the back of the cylinder, (B-C) the robot pushes the cylinder
far, (C-D) the robot sets the end-effector at the right of the cylinder, (D-E) the
robot pushes the cylinder to the right, a different distance than A. Similarly, in B
the actions is not very precise due to reaching the kinematic limits of the arm of
the robot.

Experiment 5: Heating a Croissant Figures 6.18 and 6.19 show the trajectories
obtained in the tests, i.e. executing actions with spatio-temporal perturbations. In
both cases the skills are robust, reproducing the expected effect. In Figure 6.18,
the action A-C shows a curve of the action adapting to the change in the croissant
position. Similarly, at the beginning of the action C-F there is an abrupt change in
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to high-level contextual states means that the robot has to change its behavior
based on the values of these states. High-level states can be continuous, but they
are commonly discrete. In order to handle discrete values low-level and high-level

context states, and movements are discretized. Effects are already discrete. Thus,
a discretization configuration is necessary.

Contexts are acquired during the interaction of a robot with an object. There-
fore, a dataset of interactions must be generated in order to learn skills. In this
chapter, different robot-object interactions are directly demonstrated to the robot
by an external agent. In this case, the agent moves the robot’s end-effector touching
an object reproducing an effect (LfD).

In the current work, a study is performed in order to select the best parametriza-
tion to build a push to the right and a grasp skill to reproduce an effect. This study
is composed of the identification of the most adequate discretization configuration
and the structure of the BN to use. Then, the selected parametrization is used to
build a set of diverse skills, which are validated in several experiments performing
tasks with different objects. The assessment of the built skills is directly performed
by the physical Baxter.

The obtained results show that our method builds skills that can be used to per-
form tasks using objects. Besides, the skills built using the method are transparent,
i.e. its behavior can be traced. Regarding the low-level contextual states, the infer-
ence of a movement at each instant of time computed by a vector field allows the
robot to adapt its actions to changes in the position of an object, and to perform
these actions for relative object positions unobserved during the demonstrations.
Given an interaction reproducing an effect, using the best skill parametrization the
precision of the inferred actions allows the robot to reproduce the expect effect un-
der similar relative object position w.r.t. the end-effector. The precision decreases
from unobserved relative positions, but the robot is able to reproduce the effect in
most of the cases. A key feature of the method is the capability to combine the
knowledge acquired from different interactions reproducing the same effect. This
capability allows the execution of a developmental approach, as the iterative process
of A2L, in which the robot through trial-and-error acquires the required knowledge
to reproduce an action under different contexts. For example, the robot can learn
to push the cylinder from different initial positions. Regarding the high-level con-
textual states, the robot performs actions only under certain high-level contextual
states. For example, the robot turns a stove on only if it is off.

In our experiments we built two actions planners with different levels of accuracy.
For both of them a unique discretization configuration was needed to push and grasp

the cylinder. These skills have only in common the robot’s end-effector approaches
to the object without a specific velocity. The same configuration was later used
for other skills sharing this feature, as press or release. This means that it is not
necessary to identify a configuration discretization for each skill, but for a group of
skills sharing global features, as approaching or moving away the end-effector from
an object. Therefore, for a single discretization configuration different tasks can be
performed.
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Similarly to the simulated Baxter experiment in Chapter 5, the different struc-
ture learning methods and scores have not been able to properly identify the con-
ditional dependencies needed to learn action generators reproducing the effects. In
this case, the size of the repertoire of movements and contextual states used for
learning the generators has around 1000 examples. It is clearly insufficient for these
algorithms. Fortunately, the actions generators learned based on the hard-coded

structure are able to reproduce different effects, as pushing or grasping.
The output of the execution of the skills by our method is a trace of the contex-

tual states provided to the action generator, the inferred movement and the result
of the action at different instants of time of the execution. This trace makes trans-
parent the internal skill behavior. The possibility to understand the behavior of a
skill can be exploited in higher-level stages to identify behavioral regularities, for
instance to perform transfer learning and skill generalization. Besides, it could be
used in a developmental process to generate and to update the provided a priori in-
formation needed for the model to execute, mainly the discretization configuration
and the conditional dependencies.

It is also relevant to mention that the obtained results confirm the consideration
that we did suggesting that distance, the orientation and the inclination can be
considered are independent.



Chapter 7

Concluding Remarks

7.1 Discussion and Perspectives

The main objective of this manuscript was to endow a robot with the capacity to
perform tasks in environments with features similar to those of our daily environ-
ments. Through an exploration of the environment the robot should autonomously
identify the interactions to learn to reproduce effects on objects. We have demon-
strated that using A2L a robot is able to autonomously generate a dataset of inter-
actions through interactions with the environment. These interactions allowed the
robot to perform tasks adapted to its context.

We have tried to provide the less possible a priori knowledge to the method,
to increase its adaptability and generalization capabilities. However, during the
development of the method we have identified several constraints. The acquisition
of interactions to build skill through an exploration of the environment requires a
minimal a priori knowledge to drive the robot actions. The use of random actions
generates a lot of noise that complicates the skill generation. Directly providing to
the robot the ideal interactions, for example through demonstrations, allows us to
build methods that generate good results. However, this approach requires a super-
visor to show the gestures to reproduce, i.e. a priori knowledge. A combination of
both techniques could be a better solution, as in Ugur et al. (2015a). In this work,
a caretaker helps a robot to grasp a mug handle physically modifying the on-going
end-effector trajectory. Although it is not included in this manuscript, this is a
clear next step to combine the iterative process generating interactions with the
skill building presented in Chapter 6.

The learning of the action generators of the skills relies on (i) the conditional
dependencies among the effect to reproduce, the context and the next movement

to perform, and on (ii) a discretization of the context. On the one hand, the
different structure learning methods and scores used to learn the structure of the
BN representing the action generators need a very high number of interactions to
identify the corresponding dependencies. Generating such a number of interactions
with a robot is very complex. In this case, the use of a hard-coded structure has
been useful to reproduce different effects, as pushing and grasping. Fortunately, the
a priori knowledge used to build this structure is very low, because it only refers to
connect the action inferred by the skill, e.g. a movement or a gripper open/close
action, to the remaining available information. Therefore, this structure can be used
in many different situations the robot has to face. On the other hand, the carried
out experiments have demonstrated that a unique discretization configuration can
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be used to perform different actions. The objects used for the experiments are
available in our daily environments, and have different shapes and sizes. However,
they also have features in common, as being rigid objects. Running the skills to
reproduce the created skills in other types of objects, e.g. paper tissue, could
require a different discretization configuration. Besides, this configuration could be
learned in a developmental fashion, and adapted to the type of object the robot
has to interact with. A possible improvement to the method would be using BNs
that can handle continuous and discrete variables, as Lauritzen (1992). However,
these techniques should have a very fast inference capacity, contrary to what Osorio
suggests (Osório et al., 2010).

Also, a priori knowledge has been added in order to acquire the position of an
object. This has been one of the most challenging aspects of the execution of the
experiments. We have tested different techniques with different a priori knowledge,
e.g. blob, SIFT, QR codes, point cloud, and found positive features and drawbacks
in all of them. In the current manuscript, we have added markers to the objects,
and use a motion capture system to track their position. We have to define the
exact part of the object provided to the robot as its position. In this case, we
have always provided the center of mass of the object. The use of this approach is a
significant limitation for the context acquisition in our daily environments. Besides,
during the task performance the markers produce unexpected and unrealistic object
contacts. A desired method would allow the generation of object models from visual
perception, and their tracking robust to occlusions, as our visual library1.

The current status of the method provides a lot of room for improvements.
For example, the DS can be used to add more capacities to the method. In the
current implementation only the distance and orientation are used from the vector
provided by the DS. A necessary improvement to the method is using the velocities

and accelerations provided by the vector field. This would allow the robot to execute
actions at different velocities, to execute actions as poke. Also w.r.t. the DS, the use
of repellers in the vector fields generated would provide to the method an obstacle
avoidance capacity, allowing the use of the method in more realistic environments.

The execution of the adaptive skills built by A2L relies on the perception-action

cycle presented in Figure 6.3.2. In this cycle, after the execution of a movement the
contextual states are acquired and the next movement to execute is inferred. This
approach generates reactive actions, adapting to the current robot’s context. In the
executed experiments, both action generators compute a movement in between 0.4
and 0.6 seconds. There is evidence that this computation lasts at least 0.2 seconds in
adults, and much longer in infants (Von Hofsten, 2013). Von Hofsten suggests that
humans use predictive control to predict the next changes in the context. And thus
infer the next action based on these predictions, rather than on the actual context.
This approach can be applied to the skill building presented in this manuscript.

In the same vein, another possible improvement to the method would be the
capability to connect a sequence of contexts in a period of time. This would give to

1https://github.com/cmaestre/pcl_tracking

https://github.com/cmaestre/pcl_tracking
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the method the possibility of inferring a sequence of movements, and it would also
reduce the time of computation. A possible method providing this feature would
be the use of Dynamic Bayesian Networks (Mugan and Kuipers, 2012).

Also, the number of context states that a BN can handle are limited, because
of the curse of dimensionality related to the generation of the tables representing
the conditional probabilities. This constraint has been already solved in Goncalves
et al. (2014a) reducing the dimensionality of the information provided to the BN
using the Principal Component Analysis (PCA) technique. This approach would
allow the BN to handle more information. For example, the orientation of both
the end-effector and the object, or higher-level abstract information, as the idea
of danger. Also, the BN could handle contextual states of more than one object
at a time, building skills inferring actions using several objects, e.g. multi-object
interactions. However, the use of PCA or other dimensionality reduction techniques
could complicate the definition of a hard-coded structure.

7.2 Conclusion

In this manuscript, we have proposed a method named Adaptive Affordance Learn-
ing (A2L) that autonomously builds skills to reproduce effects on objects. Given
a context, a skill infers and executes an action adapted to the object position re-
producing an effect on an object. A context is composed of low-level contextual
states, related to the execution of an action, e.g. an object position; and high-level
contextual states representing higher level concepts of the objects, e.g. an object
color.

Skills are built based on a dataset of interactions of the robot with an object.
In order to acquire these interactions, we have presented in Chapter 4 a method
named Novelty-driven Evolutionary Babbling (NovEB), designed to perform a task-
agnostic exploration of an environment. Its main feature is to look for actions that
maximize novelty in the raw sensorimotor space. It is based on Novelty Search,
which relies on Evolutionary Algorithms driven by a behavior novelty criterion. Al-
though the method has focused its exploration in regions that lead to the generation
of interactions, the method runs in static environments that reset after each action
to obtain a good performance. This constraint makes very difficult the execution
of the method by a physical robot. Later, in Chapter 5 we have introduced the
iterative process of A2L, which generates a dataset of interactions, used to build
the skills, through interactions of the robot with its environment. The process con-
sists of three phases, executed in an iterative fashion: first, an exploration of the
robot’s environment has been performed based on random actions. The result of
this exploration was a dataset of interactions. Then, a skill was built based on
these interactions, which has been later validated reproducing a set of effects on an
object.

The building of skills has been introduced in Chapter 5. The skills were action
generators implemented as Bayesian Networks. In that chapter, because of the use
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of random actions during the exploration of the environment, the actions inferred
by the skills were discrete and constrained to a 2D Cartesian space. Besides, they
were executed in an open loop, and thus the object position could not change
during the actions execution. These constraints have been addressed in Chapter
6 building skills using a Dynamical System. Actions inferred by these skills were
robust to spatio-temporal perturbations because each movement of the end-effector
is generated as a continuous vector. In the carried out experiments the position of
an object could change independently from the robot’s actions.

These actions are also adapted to high-level contextual changes. High-level
states can be continuous, but they are commonly discrete. In order to adapt to low-
level and high-level contextual states these are discretized. Therefore, the Bayesian
Networks representing the actions generators receive the next effect to reproduce
and discrete contextual states, and infer discrete movements.

The output of the execution of the skills by our method is a trace of the con-
textual states provided to the action generator, the inferred movement and the
result of the action at different instants of time of the execution. This trace makes
transparent the internal skill behavior, which can be useful in higher-level stages to
identify behavioral regularities to exploit transfer learning and generalization.



Acronyms

A2L Adaptive Affordance Learning

BN Bayesian Network

CPD Conditional Probability Distribution

DoF Degrees of Freedom

DS Dynamical System

HL Contextual High-Level Skills

LfD Learning From Demonstration

LL Contextual Low-Level Skills

MP Motion Primitive

NovEB Novelty-driven Evolutionary Babbling

PDDL Planning Domain Definition Language
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Appendix B

Annex B - Task Planning

This section shows the task definition and planned action sequence obtained using
a PDDL-inspired task planner.

Domain and Problem

domain = Domain((

Action(

’turn-stove-on’,

preconditions=(

(’at’, ’stove-power’, ’off’),

(’at’, ’food-coocking’, ’none’),

(’at’, ’food-grasped’, ’no’),

),

effects=(

(’at’, ’stove-power’, ’on’),

(’at’, ’food-location’, ’dish’),

),

),

Action(

’grasp-food-dish’,

preconditions=(

(’at’, ’stove-power’, ’on’),

(’at’, ’food-grasped’, ’no’),

(’at’, ’food-location’, ’dish’),

),

effects=(

(’at’, ’food-grasped’, ’yes’),

),

),

Action(

’set-food-pan’,

preconditions=(

(’at’, ’stove-power’, ’on’),

(’at’, ’food-coocking’, ’none’),

(’at’, ’food-location’, ’dish’),

(’at’, ’food-grasped’, ’yes’),

),

effects=(
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(’at’, ’food-location’, ’pan’),

(’at’, ’food-grasped’, ’no’),

),

),

Action(

’cook-food’,

preconditions=(

(’at’, ’stove-power’, ’on’),

(’at’, ’food-coocking’, ’none’),

(’at’, ’food-location’, ’pan’),

(’at’, ’food-grasped’, ’no’),

),

effects=(

(’at’, ’food-coocking’, ’mid’),

),

),

Action(

’grasp-food-pan’,

preconditions=(

(’at’, ’stove-power’, ’on’),

(’at’, ’food-coocking’, ’mid’),

(’at’, ’food-location’, ’pan’),

(’at’, ’food-grasped’, ’no’),

),

effects=(

(’at’, ’food-grasped’, ’yes’),

),

),

Action(

’set-food-dish’,

preconditions=(

(’at’, ’stove-power’, ’on’),

(’at’, ’food-coocking’, ’mid’),

(’at’, ’food-location’, ’pan’),

(’at’, ’food-grasped’, ’yes’),

),

effects=(

(’at’, ’food-location’, ’dish’),

(’at’, ’food-grasped’, ’no’),

),

),

Action(

’turn-stove-off’,

preconditions=(

(’at’, ’stove-power’, ’on’),

(’at’, ’food-coocking’, ’mid’),

(’at’, ’food-grasped’, ’no’),

),

effects=(
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(’at’, ’stove-power’, ’off’),

),

),

))

problem = Problem(

domain,

{

’food-coocking’: (’none’, ’rare’, ’mid’),

’food-grasped’: (’yes’, ’no’),

’food-location’: (’dish’, ’pan’),

’stove-power’: (’on’, ’off’),

},

init=(

(’at’, ’food-location’, ’dish’),

(’at’, ’stove-power’, ’off’),

(’at’, ’food-coocking’, ’none’),

(’at’, ’food-grasped’, ’no’),

),

goal=(

(’at’, ’stove-power’, ’off’),

(’at’, ’food-coocking’, ’mid’),

(’at’, ’food-location’, ’dish’),

)

)

Planned Sequence of Actions

1. turn-stove-on()

2. grasp-food-dish()

3. set-food-pan()

4. cook-food()

5. grasp-food-pan()

6. set-food-dish()

7. turn-stove-off()
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