
HAL Id: tel-01809505
https://hal.science/tel-01809505v1

Submitted on 6 Jun 2018 (v1), last revised 1 Feb 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Middleware and programming models for multi-robot
systems

Stefan-Gabriel Chitic

To cite this version:
Stefan-Gabriel Chitic. Middleware and programming models for multi-robot systems. Ubiquitous
Computing. INSA Lyon, 2018. English. �NNT : �. �tel-01809505v1�

https://hal.science/tel-01809505v1
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2018LYSEI018

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

L’INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON

Ecole Doctorale 512
INFORMATIQUE ET MATHÉMATIQUES

Spécialité/ discipline de doctorat :

Informatique

Soutenue publiquement le 15/03/2018, par :
ȘTEFAN-GABRIEL CHITIC

Middleware and programming models
for multi-robot systems

Devant le jury composé de :

Abderrafiaa KOUKAM Professeur Université de Technologie

de Belfort-Montbéliard
Rapporteur

Philippe LALANDA Professeur Université ́ Joseph Fourier,
Saint-Martin-d'Hères

Rapporteur

Noury BOURAQADI Professeur IMT Lille Douai Président de jury

Stéphanie CHOLLET Maître de
conférences

Grenoble INP - Esisar,
Valence

Examinatrice

Olivier SIMONIN Professeur INSA Lyon Directeur de thèse
Julien PONGE Maître de

conférences
INSA Lyon Co-directeur de thèse

Département FEDORA – INSA Lyon - Ecoles Doctorales – Quinquennal 2016-2020

SIGLE ÉCOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE CHIMIE DE LYON

http://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr
INSA : R. GOURDON

M. Stéphane DANIELE
Institut de recherches sur la catalyse et l’environnement de Lyon
IRCELYON-UMR 5256
Équipe CDFA
2 Avenue Albert EINSTEIN
69 626 Villeurbanne CEDEX
directeur@edchimie-lyon.fr

E.E.A. ÉLECTRONIQUE,
ÉLECTROTECHNIQUE,
AUTOMATIQUE

http://edeea.ec-lyon.fr
Sec. : M.C. HAVGOUDOUKIAN
ecole-doctorale.eea@ec-lyon.fr

M. Gérard SCORLETTI
École Centrale de Lyon
36 Avenue Guy DE COLLONGUE
69 134 Écully
Tél : 04.72.18.60.97 Fax 04.78.43.37.17
gerard.scorletti@ec-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,
MICROBIOLOGIE, MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : H. CHARLES
secretariat.e2m2@univ-lyon1.fr

M. Fabrice CORDEY
CNRS UMR 5276 Lab. de géologie de Lyon
Université Claude Bernard Lyon 1
Bât. Géode
2 Rue Raphaël DUBOIS
69 622 Villeurbanne CEDEX
Tél : 06.07.53.89.13
cordey@univ-lyon1.fr

EDISS INTERDISCIPLINAIRE
SCIENCES-SANTÉ

http://www.ediss-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : M. LAGARDE
secretariat.ediss@univ-lyon1.fr

Mme Emmanuelle CANET-SOULAS
INSERM U1060, CarMeN lab, Univ. Lyon 1
Bâtiment IMBL
11 Avenue Jean CAPELLE INSA de Lyon
69 621 Villeurbanne
Tél : 04.72.68.49.09 Fax : 04.72.68.49.16
emmanuelle.canet@univ-lyon1.fr

INFOMATHS INFORMATIQUE ET
MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46 Fax : 04.72.43.16.87
infomaths@univ-lyon1.fr

M. Luca ZAMBONI
Bât. Braconnier
43 Boulevard du 11 novembre 1918
69 622 Villeurbanne CEDEX
Tél : 04.26.23.45.52
zamboni@maths.univ-lyon1.fr

Matériaux MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Marion COMBE
Tél : 04.72.43.71.70 Fax : 04.72.43.87.12
Bât. Direction
ed.materiaux@insa-lyon.fr

M. Jean-Yves BUFFIÈRE
INSA de Lyon
MATEIS - Bât. Saint-Exupéry
7 Avenue Jean CAPELLE
69 621 Villeurbanne CEDEX
Tél : 04.72.43.71.70 Fax : 04.72.43.85.28
jean-yves.buffiere@insa-lyon.fr

MEGA MÉCANIQUE, ÉNERGÉTIQUE,
GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Marion COMBE
Tél : 04.72.43.71.70 Fax : 04.72.43.87.12
Bât. Direction
mega@insa-lyon.fr

M. Philippe BOISSE
INSA de Lyon
Laboratoire LAMCOS
Bâtiment Jacquard
25 bis Avenue Jean CAPELLE
69 621 Villeurbanne CEDEX
Tél : 04.72.43.71.70 Fax : 04.72.43.72.37
philippe.boisse@insa-lyon.fr

ScSo ScSo*

http://ed483.univ-lyon2.fr
Sec. : Viviane POLSINELLI
Brigitte DUBOIS
INSA : J.Y. TOUSSAINT
Tél : 04.78.69.72.76
viviane.polsinelli@univ-lyon2.fr

M. Christian MONTES
Université Lyon 2
86 Rue Pasteur
69 365 Lyon CEDEX 07
christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

ii

To Anda, my faithfully, lovely wife.

Acknowledgements
The journey behind this PhD thesis started in 2013 when I was a technical student at CERN.

After discovering the previous year, the working environment in one of the largest software

companies, my stay at CERN connected me with the research and academia world. I was

curious to discover this new world that was, step by step, revealing to me during my internship.

As a result, I have decided to continue my master’s degree with a PhD. First, I have contacted

my co-supervisor, Dr. Julien Ponge with whom I have already worked on various projects

during my bachelors and master’s degree. He then mange to find my thesis supervisor, Prof.

Olivier Simonin and together to plan and start this magnificent journey, my PhD thesis.

I would like first to thank my supervisor Prof. Olivier Simonin for his good guidance and

support in a robotic research community. Having just a software engineer background, his

advices helped me understand and apply robotic related concepts. It has been a great pleasure

to work with him, both from a professional and a personal point of view. I would also like to

thank deeply my co-supervisor Dr. Julien Ponge for all the time we worked together, for his

support, technical debates and guidance. It was a pleasure and an honor to have him as a

colleague and as a friend. Special thanks for the period when he supported me and give me

the power to re-find my motivation to finish this PhD.

Secondly, I would like to thank to Prof. Fabrice Valois for his precious administrative and

moral support. It was a pleasure to have him as teacher in my master’s degree, as a laboratory

head, and as a colleague.

Many thanks to all the colleague and CITI stuff for their guidance and support. Thank you! It

was a pleasure to work with you.

Many thanks go to my reviewers and examiners of my PhD defense: Philippe Lalanda, Abder-

rafiaa Koukam, Noury Bouraqadi and Stéphanie Chollet. It has been a great honor to have you

all as part of the examination committee!

The biggest and most profound thanks go to my wife, Anda-Catalina Chelba-Chitic for her

deeply love, hard working in motivating me finish this PhD and profound support. I know that

during these years of PhD, you have made sacrifices and I am thankful from all my heart that

you not only accepted them but also endorsed them with all your love. Thanks, my love!

i

Acknowledgements

And finally let me switch to Romanian, my native language in order to thank to my parents.

In final, mulţumirle cele mai călduroase sunt pentru părinţii mei, Gheorghe-Constantin Chitic

şi Maria Chitic pentru simplu fapt că au fost alături de mine la bine şi la rau. Probabil nu aş fi

ajuns aşa de departe in studiile şi cariera mea fără încurajările şi educatia care mi le-au oferit.

Această lucrare le este dedicată şi lor. Vă mulţumesc!

Saint Genis Pouilly, 21 December 2017, on my 29th anniversary S. G. C.

ii

Abstract

Despite many years of work in robotics, there is still a lack of established software architec-

ture and middleware for multi-robot systems. A robotic middleware should be designed to

abstract the low-level hardware architecture, facilitate communication and integration of new

software. This PhD thesis is focusing on middleware for multi-robot system and how we can

improve existing frameworks for fleet purposes by adding multi-robot coordination services,

development and massive deployment tools. We expect robots to be increasingly useful as

they can take advantage of data pushed from other external devices in their decision making

instead of just reacting to their local environment (sensors, cooperating robots in a fleet, etc.).

This thesis first evaluates one of the most recent middleware for mobile robot(s), Robot

operating system (ROS) and continues with a state of the art about the commonly used

middleware in robotics. Based on the conclusions, we propose an original contribution in the

multi-robot context, called SDfR (Service discovery for Robots), a service discovery mechanism

for Robots. The main goal is to propose a mechanism that allows highly mobile robots to

keep track of the reachable peers inside a fleet while using an ad-hoc infrastructure. Another

objective is to propose a network configuration negotiation protocol. Due to the mobility

of robots, classical peer to peer network configuration techniques are not suitable. SDfR is

a highly dynamic, adaptive and scalable protocol adapted from Simple Service Discovery

Protocol (SSDP). We conducted a set of experiments, using a fleet of Turtlebot robots, to

measure and show that the overhead of SDfR is limited.

The last part of the thesis focuses on programming model based on timed automata. This type

of programming has the benefits of having a model that can be verified and simulated before

deploying the application on real robots. In order to enrich and facilitate the development of

robotic applications, a new programming model based on timed automata state machines

is proposed, called ROSMDB (Robot Operating system Model Driven Behavior). It provides

model checking at development phase and at runtime. This contribution is composed of

several components: a graphical interface to create models based on timed automata, an

integrated model checker based on UPPAAL and a code skeleton generator. Moreover, a ROS

specific framework is proposed to verify the correctness of the execution of the models and

to trigger alerts. Finally, we conduct two experiments: one with a fleet of Parrot drones and

second with Turtlebots in order to illustrates the proposed model and its ability to check

properties.

iii

Acknowledgements

Key words:

Dynamic middleware, Connected robots, reconfiguration, resilience, mobility, programming

languages, multi-robot systems, robotic cloud, Robotic fleet, Service Discovery, Service ori-

ented Architecture.

iv

Résumé

Malgré de nombreuses années de travail en robotique, il existe toujours un manque d’ar-

chitecture logicielle et de middleware stables pour les systèmes multi-robot. Un intergiciel

robotique devrait être conçu pour faire abstraction de l’architecture matérielle de bas niveau,

faciliter la communication et l’intégration de nouveaux logiciels. Cette thèse se concentre sur

le middleware pour systèmes multi-robot et sur la façon dont nous pouvons améliorer les

frameworks existantes dans un contexte multi-robot en ajoutant des services de coordination

multi-robot, des outils de développement et de déploiement massif. Nous nous attendons à ce

que les robots soient de plus en plus utiles car ils peuvent tirer profit des données provenant

d’autres périphériques externes dans leur prise de décision au lieu de simplement réagir à

leur environnement local (capteurs, robots coopérant dans une flotte, etc.).

Cette thèse évalue d’abord l’un des intergiciels les plus récents pour robot(s) mobile(s), Robot

operating system (ROS), suivi par la suite d’un état de l’art sur les middlewares couramment

utilisés en robotique. Basé sur les conclusions, nous proposons une contribution originale

dans le contexte multi-robots, appelé SDfR (Service discovery for Robots), un mécanisme de

découverte des services pour les robots. L’objectif principal est de proposer un mécanisme

permettant aux robots de garder une trace des pairs accessibles à l’intérieur d’une flotte tout

en utilisant une infrastructure ad-hoc. Un autre objectif est de proposer un protocole de négo-

ciation de configuration réseau. A cause de la mobilité des robots, les techniques classiques

de configuration de réseau pair à pair ne conviennent pas. SDfR est un protocole hautement

dynamique, adaptatif et évolutif adapté du protocole SSDP (Simple Service Discovery Proto-

col). Nous conduisons un ensemble d’expériences, en utilisant une flotte de robots Turtlebot,

pour mesurer et montrer que le sur débit de SDfR est limité.

La dernière partie de la thèse se concentre sur un modèle de programmation basé sur un

automate temporisé. Ce type de programmation a l’avantage d’avoir un modèle qui peut

être vérifié et simulé avant de déployer l’application sur de vrais robots. Afin d’enrichir et de

faciliter le développement d’applications robotiques, un nouveau modèle de programmation

basé sur des automates à états temporisés est proposé, appelé ROSMDB (Robot Operating

system Model Driven Behaviour). Il fournit une vérification de modèle lors de la phase de

développement et lors de l’exécution. Cette contribution est composée de plusieurs compo-

sants : une interface graphique pour créer des modèles basés sur un automate temporisé, un

vérificateur de modèle intégré basé sur UPPAAL et un générateur de squelette de code. De

plus, un framework spécifique à ROS est proposé pour vérifier l’exactitude de l’exécution du

v

Acknowledgements

modèle et déclencher des alertes. Enfin, nous avons effectué deux expériences : une avec une

flotte de drones Parrot et l’autre avec des Turtlebots afin d’illustre le modèle proposé et sa

capacité à vérifier les propriétés.

Mots clefs :

Middleware dynamique, robots connectés, reconfiguration, résilience, mobilité, langages de

programmation, systèmes multi-robots, cloud robotisé, flotte robotisée, service deécouverte,

architecture orientée service.

vi

Contents
Acknowledgements i

Abstract (English/Français) iii

List of figures xi

List of tables xv

I Introduction and background 1

1 Introduction 3

1.1 Context . 3

1.2 Key research issues . 3

1.3 Contributions Overview . 4

1.4 Outline . 5

2 Middleware for robotics 7

2.1 Introduction . 7

2.2 Middlewares in distributed systems . 8

2.2.1 Classes of middlewares . 9

2.2.2 Middlewares in robotics systems . 15

2.3 Challenges for middleware in robotics . 16

2.3.1 Why a middleware for robotics ? . 17

2.3.2 Infrastructure and communication . 17

2.3.3 Application programming interfaces and services 18

2.3.4 Robotic applications as services . 19

2.3.5 Limitations . 20

2.4 Existing middlewares . 20

2.5 Comparative criteria . 23

2.6 Middleware Comparison . 25

2.6.1 Architecture . 25

2.6.2 Infrastructure . 26

2.6.3 Usage . 28

2.7 Conclusion . 30

vii

Contents

3 Formalisms to design systems behavior 33

3.1 Introduction . 33

3.2 Model driven development . 34

3.2.1 Model driven development characteristics 35

3.2.2 Model driven development paradigm . 36

3.2.3 Model driven development in robotics . 37

3.2.4 Conclusion . 37

3.3 Classical formalism . 38

3.3.1 Finite state machine . 38

3.3.2 Petri nets . 38

3.3.3 Markov decision process . 39

3.3.4 Process algebras . 40

3.4 Timed automata . 40

3.4.1 Overview . 41

3.4.2 Classes of timed automata . 45

3.4.3 Software tools . 47

3.5 Conclusion . 49

II Model driven multi-robot
applications development 51

4 Service discovery for robots 53

4.1 Objectives and motivation for fleet service discovery 53

4.2 Limitation of existing service discovery protocols 54

4.3 Definition of SDfR protocol . 56

4.3.1 SDfR as a derivate of SSDP . 57

4.3.2 Protocol model and description . 60

4.3.3 Implementation . 64

4.4 Evaluation of SDfR overhead with robots . 68

4.4.1 Experimental settings . 68

4.4.2 Functional validation . 70

4.5 Summary . 81

5 ROSMDB: Development methodology 83

5.1 From component services to fleet applications 84

5.1.1 Service oriented architecture as root for model based robotic software

development . 84

5.1.2 Alternative approach for service oriented architecture 87

5.2 Modeling component external interactions with timed automata 88

5.2.1 Motivating example . 89

5.2.2 Timed automata . 91

5.2.3 Event recording timed automata . 93

viii

Contents

5.3 Validating service compositions . 95

5.3.1 Applications, services and components . 96

5.3.2 Event recording automata composition . 99

5.3.3 Model validation . 103

5.4 The ROSMDB toolset . 105

5.4.1 Global overview of the environment . 106

5.4.2 Design . 107

5.4.3 Validation . 110

5.4.4 Code generation . 113

5.4.5 ROSMDB framework . 115

5.4.6 Summary of SDfR usage . 117

5.4.7 Fleet deployment . 118

5.4.8 Runtime validation feedback . 120

5.5 Summary . 123

6 ROSMDB: Experimentations 125

6.1 Package delivery by drones swarm . 125

6.1.1 Flight synchronization based on N pole: Description 126

6.1.2 Flight synchronization based on N pole: Models 127

6.1.3 Flight synchronization based on N pole: Experimental Results 130

6.2 Guest welcoming and management with intrusion detection system 132

6.2.1 Random movement object search: Description 136

6.2.2 Random movement object search: Model 136

6.2.3 Random movement object search: Experimental results 139

6.3 Summary . 142

7 Conclusion and perspectives 143

7.1 Concluding remarks . 143

7.2 Perspectives beyond Robot operating system Model Driven Behavior (ROSMDB)

and Service Discovery for Robots (SDfR) . 144

7.2.1 Short-term perspectives . 145

7.2.2 Long-term perspectives . 146

A Selected Middlewares descriptions 149

A.1 Player/Stage . 149

A.2 Robot operating system . 150

A.3 Miro . 151

A.4 MRDS . 151

A.5 MARIE . 152

A.6 Orca . 152

A.7 Carmen . 152

A.8 Pyro . 153

ix

Contents

B Model driven development in robotics 155

B.1 RobotML . 155

B.2 3-View Component Meta-Model for Model-Driven Robotic Software Development

(V3CMM) . 155

B.3 SmartSoft . 156

B.4 BRICS model . 156

C Product construction of examples 157

C.1 Obstacle detection and avoidance navigation service 157

C.1.1 Optical sensor component . 157

C.1.2 Navigation component . 158

C.1.3 Product construction of the service . 159

C.2 Fleet platooning service . 160

C.2.1 Leader component . 160

C.2.2 Networking component . 161

C.2.3 Platooning manager component . 161

C.2.4 Product construction of the service . 162

C.3 Fleet platooning robot with collision avoidance application 164

D Flight synchronization based on N pole 165

D.1 Commander application . 165

D.1.1 Take off manager service . 165

D.1.2 Lock North manager service . 168

D.1.3 Drone Movement Manager service . 170

D.1.4 Networking service . 172

D.2 Controller application . 174

D.2.1 Command sender service . 174

E Random movement object search 177

E.1 Collision avoidance application . 177

E.1.1 Engine stopper service . 177

E.1.2 Avoidance service . 180

E.2 Object detection application . 182

E.2.1 Image analyzer service . 182

E.2.2 Mover service . 184

Bibliography 205

Glossary 207

Acronyms 209

x

List of Figures
2.1 Middleware layer interaction . 8

2.2 RPC progress . 9

2.3 DOM architecture . 10

2.4 MOM progress . 11

2.5 Three phase commit protocol . 12

2.6 SOA meta-model . 13

2.7 Serial Bus communication architecture . 15

2.8 Ad-hoc fleet infrastructure . 19

3.1 Object Management Group modelling . 37

3.2 Simple light controller . 41

3.3 Example of a simple timed automata . 41

3.4 An LTS example . 44

3.5 Example of an event timed automata . 46

3.6 Example of a robust automata . 46

3.7 Example of a silent transition . 47

3.8 Model checking principle . 47

3.9 UPPALL screen-shot . 49

4.1 SSDP and SDfR protocol timed diagram. 57

4.2 SSDP and SDfR differences . 59

4.3 SDfR protocol timed diagram. 61

4.4 SDfR common header. 62

4.5 Service oriented architecture in SDfR. 64

4.6 SDfR service architecture. 65

4.7 Turtlebots in the experimentation hall. 70

4.8 Average request time for publishing a service. 71

4.9 Average request time for unpublishing a service. 72

4.10 Average request time for subscribing a consumer. 73

4.11 CPU usage . 74

4.12 % of cpu usage for 6 robots with 70% publishers. 75

4.13 Memory usage . 76

4.14 % of memory usage for 6 robots with 70% publishers. 77

xi

List of Figures

4.15 TX usage . 78

4.16 Average number of kilobytes transmitted per robot in 5 minutes with 70% pub-

lishers using 6 robots. 79

4.17 RX usage . 80

4.18 Average number of kilobytes received per robot in 5 minutes with 70% publishers

using 6 robots. 81

5.1 Proposed robotic application life cycle . 84

5.2 Computing speed developments . 86

5.3 Obstacle detection and avoidance . 89

5.4 Fleet platooning . 90

5.5 Simple collision avoidance modelling . 91

5.6 Simple collision avoidance timed automaton . 92

5.7 Simple collision avoidance Event Recording automata 94

5.8 Event Recording Automaton operations . 95

5.9 Bottom-up approach of Event Recording automata composition 96

5.10 Components of service: Obstacle detection and avoidance navigation 97

5.11 Components of service: Fleet platooning . 98

5.12 Timed automata product construction example 100

5.13 Obstacle detection and avoidance navigation as product 101

5.14 Obstacle detection and avoidance navigation as reduce product 102

5.15 Product of entire example application . 103

5.16 General architecture for ROSMDB . 106

5.17 File manager in ROSMDB . 107

5.18 Graphical user interface in ROSMDB . 109

5.19 UPPAAL - ROSMDB integration . 111

5.20 ROSMDB model-validation front-end . 112

5.21 User code interaction with ROSMDB . 115

5.22 ROSMDB framework . 116

5.23 SDfR metadata input . 118

5.24 Deployment interface in ROSMDB tool chain . 119

5.25 ROSMDB fleet deployment process . 120

5.26 ROSMDB trace feedback . 121

5.27 ROSMDB trace feedback . 122

6.1 Fleet of drones network . 127

6.2 Command sender Model . 128

6.3 Networking Model . 128

6.4 Take off Model . 128

6.5 Lock North Model . 129

6.6 Drone Movement Model . 129

6.7 Experimenting Flight synchronization with Parrot Drones 130

6.8 Lock North messages inter-arrival time . 131

xii

List of Figures

6.9 Drone movement messages inter-arrival time . 132

6.10 Refined Lock North Model executed on each drone assigned laptop 133

6.11 Refined Drone Movement Model executed on each drone assigned laptop . . . 133

6.12 Guest handeling . 134

6.13 Intrusion detection . 135

6.14 Engine stopper Model . 137

6.15 Avoidance Model . 137

6.16 Image analyser Model . 138

6.17 Movement Model . 138

6.18 Experimenting Random movement object search with Turtlebots 139

6.19 Engine stopper messages inter-arrival time . 139

6.20 Avoidance service messages inter-arrival time . 140

6.21 Image analyzer messages inter-arrival time . 141

6.22 Mover messages inter-arrival time . 141

C.1 Optical sensor component Event Recording Automaton 157

C.2 Navigation component Event Recording Automaton 158

C.3 Product construction of components for service: Obstacle detection and avoid-

ance navigation . 159

C.4 Reduced product construction of components for service: Obstacle detection

and avoidance navigation . 160

C.5 Leader component Event Recording Automaton 160

C.6 Networking component Event Recording Automaton 161

C.7 Platooning manager component Event Recording Automaton 161

C.8 Partial Product construction of components for service: Fleet platooning 162

C.9 Product construction of components for service: Fleet platooning 163

C.10 Reduced product construction of components for service: Fleet platooning . . 163

C.11 Product construction for entire robotic application 164

C.12 Reduced Product construction for entire robotic application 164

D.1 Take off manager: ROSMDB model screenshot . 165

D.2 Take off manager: ROSMDB model-checking screenshot 166

D.3 Take off manager: feedback results example screenshot 167

D.4 Lock North manager: ROSMDB model screenshot 168

D.5 Lock North manager: ROSMDB model-checking screenshot 168

D.6 Lock North manager: feedback results example screenshot 169

D.7 Drone Movement Manager: ROSMDB model screenshot 170

D.8 Drone Movement Manager: ROSMDB model-checking screenshot 170

D.9 Drone Movement Manager: feedback results example screenshot 171

D.10 Networking: ROSMDB model screenshot . 172

D.11 Networking: ROSMDB model-checking screenshot 172

D.12 Networking: feedback results example screenshot 173

D.13 Command sender: ROSMDB model screenshot 174

xiii

List of Figures

D.14 Command sender: ROSMDB model-checking screenshot 174

D.15 Command sender: feedback results example screenshot 175

E.1 Engine stopper: ROSMDB model screenshot . 177

E.2 Engine stopper: ROSMDB model-checking screenshot 178

E.3 Engine stopper: feedback results example screenshot 179

E.4 Avoidance: ROSMDB model screenshot . 180

E.5 Avoidance: ROSMDB model-checking screenshot 180

E.6 Avoidance: feedback results example screenshot 181

E.7 Image analyzer: ROSMDB model screenshot . 182

E.8 Image analyzer: ROSMDB model-checking screenshot 182

E.9 Image analyzer: feedback results example screenshot 183

E.10 Mover: ROSMDB model screenshot . 184

E.11 Mover: ROSMDB model-checking screenshot . 184

E.12 Mover: feedback results example screenshot . 185

xiv

List of Tables
2.1 Architecture . 26

2.2 Infrastructure . 27

2.3 Usage . 29

4.1 RESTful API for SDfR protocol. 66

4.2 Test-cases for static scenario. 69

xv

Part IIntroduction and background

1

1 Introduction

1.1 Context

One of the common practices while creating new robotic applications is to start with a model

that later will become a software component. We think that the robotic application develop-

ment can be improved by the interaction with software engineering. As an example, Robot

operating system (ROS) is starting to be largely used nowadays in robotic application in both

academia and industry. But, as shown later, ROS and the other existing middlewares need an

extension in order to facilitate the development, deployment and run-time of an application

designed for a fleet of robots.

Moreover, robotic applications are often developed from a behavioral model. These models

could be validated using different techniques and formalisms like model checking. Techniques

from software engineering field like Model driven development (MDD) could also be applied

into multi-robot applications, allowing for a faster and better mapping of the model to the

executed source code of the fleet application.

Furthermore, in the context of a robotic fleet application, the peers need to be able to commu-

nicate in order to share information and cooperate. Communication in multi-robot systems is

a central and challenging issue, whether the architecture is centralized or decentralized.

1.2 Key research issues

The existing middlewares have improved the development of robotic applications. But there

is still a gap between the software experience brought by the middleware (e.g. modularity,

abstraction, scalability, etc.) and the commonly used practice in robotics development (e.g.

model based behaviour, mission planning, etc.).

These middleware for robotics are designed and adapted for single robot applications. Their

usage can be affected by expertise needed and their complexity. Furthermore, their appli-

cability in multi-robot context is not adapted. Their usage can be extended to multi-robot

3

Chapter 1. Introduction

applications by developing new components.

One of the concepts used in middlewares and sometimes in robotics development is modular-

ity. The robotic software architectures could be designed using Service Oriented Architecture

(SOA) in which modules/components become services. This allows the design of model that

could be composed with others to generate (a) service(s). This granularity could increase the

extensibility and the scalability of the new robotic application.

The first question that arises is how can an application whose behavior was designed using a

model can be automatically verified based on defined properties before starting the source

code development process? Next question is how can this model based application be applied

to an existing middleware and which is(are) the adapted programming paradigm? Further-

more, can the process of development, deployment and run-time monitoring be simplified

and automatized? Finally, can the run-time behavior be analyzed and compared to the original

model?

1.3 Contributions Overview

In order to answer these question, we have first started to analyze the common element of

all the life-cycle of an application: the communication inside the fleet. The focus of our

research targets the distributed architecture where each peer can communicate with each

other without a centralized infrastructure in an ad-hoc network.

We have noticed the absence of dedicated mechanisms that will allow the robotic applications

to be aware of the near-by peers and what services they are offering. In order to answer this

matter, we propose and study a service and neighbors discovery protocol that allows an ad-hoc

fleet of robots to know at any time the reachable peer and what are the services/components

on this peer.

Another objective of this research was to build an adapted programming model based on our

observation of the commonly used practice of robotic development. We present a model based

programming approach that offers properties validation based on timed automata models.

This model checking is done at the conception phase. The tool we propose is also capable

of translating the interaction between models of a robotic application to an automatically

generated ROS1 based code skeleton.

To simplify the process of development and fleet provisioning, we propose an automated

mechanism capable of distributing new software components in an ad-hoc, highly mobile,

fleet of robots. This allows robots to be capable of auto-provisioning by automatically discov-

ering their peers and being able to self-install software modules and libraries used by the these

peers in the fleet. Furthermore, robots benefit from self-profiling which allows them to set

up and launch software components and services without the direct intervention of external

1Robot Operating System

4

1.4. Outline

components.

There is still a gap between the modelled application and the final software. Another objective

of this work is to reduce this gap by proposing a ROS based framework that is checking the

correctness of models interactions at run-time and offers adapted support for ROS based and

fleet communications. The interactions and the model guard violations can be analyzed via

the monitoring system we propose. The entire life-cycle can then be reiterated in order to

refine the behavior of the application.

1.4 Outline

This thesis has been divided in the following two parts.

Introduction and background The present chapter (chapter 1) provided an introduction.

Chapter 2 is an overview of the existing dedicated robotic middlewares. We also provide

an extended comparison between the selected middleware and conclude on their ap-

plicability in multi-robot context. Finally, chapter 3 provides background knowledge

on formalisms to design robotic behaviors. It focuses on timed automata formalisms

and it introduces Model driven development (MDD). This is especially interesting in the

context of this work, as we make a different usage of timed automata and MDD.

Model driven multi-robot applications development Chapter 4 presents the challenges of

service discovery in robotic fleet context and proposes a service discovery protocol called

Service Discovery for Robots (SDfR) using MDD on a Service Oriented Architecture (SOA).

Chapter 5 presents our proposal for a complete tool-chain, called Robot operating system

Model Driven Behavior (ROSMDB), that uses timed automata to model the behavior

of each services in a SOA, verifies the correctness of the model in the design phase by

verifying liveness and reachability properties, provides a code skeleton and a dedicated

framework for the development phase of the applications, integrates an automatically

deployment system using SDfR for the robotic fleet and provides a trace collection and

monitoring system for the run-time. A series of scenarios and experimental applications

are presented to evaluate the proposed ROSMDB approach in chapter 6. Finally, chapter

7 opens perspectives for future work, and gives hints for applying the contributions of

this work.

5

2 Middleware for robotics

This chapter presents a summary of the existing classes of middleware, focusing

on these applied to robotics and compares a limited number of selected

middlewares for multi-robotic systems.

2.1 Introduction . 7

2.2 Middlewares in distributed systems . 8

2.3 Challenges for middleware in robotics . 16

2.4 Existing middlewares . 20

2.5 Comparative criteria . 23

2.6 Middleware Comparison . 25

2.7 Conclusion . 30

This chapter gives some background knowledge on existing middleware commonly used in

robotic applications. It first begins with a brief description of various families of middlewares

used in general distributed systems and in robotics systems, then it defines, from our point of

view, the challenges a multi-robot middleware may encounter. It then reviews some of the

existing middleware for single robot application and study their applicability in a multi-robot

context.

2.1 Introduction

Nowadays, distributed computing systems are everywhere. In this kind of systems, there is a

great need for distributed elements to interact in order to share information or consume each

7

Chapter 2. Middleware for robotics

Application

Middleware

Operating System

Network

Hardware Hardware Hardware

Figure 2.1 – Middleware layer interaction with the runtime stack

other functionalities. This trend is accelerated by the "information technology of all forms

becoming highly commodities (i.e. hardware and software artefacts are getting faster, cheaper,

and better at a relatively predictable rate)" and by the "growing acceptance of a network-centered

paradigm" [Schantz and Schmidt, 2002]. Even if this approach of distributing components

can be developed directly over the operation system and network layer, it will generate yet

another layer of complexity that need to be managed. In order to avoid this, the new layer of

complexity can be delegated to the appropriate families of middlewares.

We start with an overview of the families of middleware used in general distributed systems

and later we will focus on the advantages of using middleware in robotics systems. The next

section continues this discussion by presenting the challenges that a family of middlewares

needs to solve in order to be used in robotics.

2.2 Middlewares in distributed systems

A family of middlewares is composed of software and tools sets that act as abstraction and

integration layers between network, operating system and applications as shown in fig. 2.1.

The middlewares are an important component in the process of developing, deploying and

operating new software.

The main purposes of using a family of middlewares are:

• Facilitate the development and evolution of distributed systems

• Orchestrate the interconnection and communication of application components

• Allow the inter-operability, portability and integration of components using different

technologies

8

2.2. Middlewares in distributed systems

2.2.1 Classes of middlewares

In general, the families of middleware can be regrouped [Qilin and Mintian, 2010] using their

mechanism to communicate with distributed components in:

• Remote Procedure Call (RPC) and Distributed Object Middleware (DOM) middleware

A RPC [Birrell and Nelson, 1981] represents an action triggered by a program in order to

execute a subroutine in another process, usually on another network shared computer.

This procedure is developed as it was a local subroutine call, without the complexity

of the remote interaction. This allows to have the same functions whether the call is

local or remote. It can be seen as a client-server architecture where the client is the

process calling the execution of the subroutine and the server is the executor. The

communication is realized via message-passing system [Waldo, 1998].

A RPC middleware offers the following services [Issarny et al., 2007]: generating client

and server stub1, marshalling2/ un-marshalling data and establishing synchronous

communication. As show in fig. 2.2, a RPC is initiated by the client via its stub which

sends a request message to a known remote server to execute a specified procedure.

The remote server replies with the result of the execution, and the application continues

its processing.

Client functions

Client stub

Sockets Sockets

Server stub
(Skeleton)

Server functions

1

2

3

8
4

5 6

79

10

Figure 2.2 – Steps in executing a RPC

The biggest inconvenient for RPC is the possibility of the call to fail because of unpre-

dictable network problems. The caller must deal with such failures without knowing

whether the remote procedure was actually invoked. Idempotent procedures (those that

have no additional effects if called more than once) are easily handled. Another problem

is the limited use of parallelism via multiple threads since RPCs are synchronous [Qilin

and Mintian, 2010].

1A object participating in distributed object communication acting as a proxy object. For the server side is also
known as skeleton.

2The process of transforming the memory representation of an object to a data format suitable for storage or
transmission, and it is typically used when data must be moved between different parts of a computer program or
from one computer to another.

9

Chapter 2. Middleware for robotics

DOMs is a middleware class that provides communication between a client object that

executes an operation on a server object that resides on another host [Capra et al., 2001].

DOMs evolved more or less directly from the idea of RPCs. The main difference between

those two is the tight link between DOMs and Object-oriented programming (OOP) 3.

DOMs offers a great interoperability between heterogeneous platforms and components.

It provides an abstraction layer for remote objects whose methods can be invoked like

the object is part of the same runtime as the requester. It allows all the benefits of OOP

like inheritance, polymorphism or encapsulation to be applied over distributed objects

across a network.

A DOM offers mechanisms [Issarny et al., 2007] to generate stubs for object interfaces,

get and access references on remote objects and provides synchronous communication

to invoke methods by marshalling/ un-marshalling the requests.

Client

Client OS

Run-time

Proxy

User code

Server

Server OS

Run-time

Skeleton

Object

MethodsStates

Figure 2.3 – DOM architecture

A typical DOM architecture is presented in fig. 2.3. A client object invokes methods on

a proxy object residing on the same host. The proxy object marshals the request and

sends the invocation request to a remote object server. The server runtime dispatches

the request to an appropriate object skeleton who is responsible for un-marshalling the

request and invoking the appropriate methods on a local object instance. The results

are sent via the same procedure.

• Message-Oriented Middleware (MOM)

A MOM represents a software layer that provides mechanisms for sending and receiving

messages between distributed systems. It allows the integration of software modules

that reside over heterogeneous platforms and it reduces the complexity of the client-

server architecture. The middleware offers a distributed communication layer which

provides application sand-boxing4 from the heterogeneous network and operating

3OOP is a programming paradigm based on the concept of objects, which may contain data, in the form of
fields, often known as attributes; and code, in the form of procedures, often known as methods.

4Component isolation or sand-boxing is a security mechanism for separating running process. The code and
data spaces are also separated for each process.

10

2.2. Middlewares in distributed systems

system layers. Those Application programming interfaces (APIs) are typically provided

by the MOM [Curry, 2004].

Sending
application

Sending
application

Receiving
application

Queue

1

2
12

12

(a) Queue MOM

Sending
application

Sending
application

Receiving
application

Receiving
application

Message
broker

1 1

1

2

22

Subscribe

Subscribe

(b) Pub/Sub MOM.

Figure 2.4 – Steps in sending a message in a MOM

Even if all MOMs support a communication mechanism where clients send messages

with their requests for a service execution to (a) server(s) across the network, which later

responds with the result of the execution [Capra et al., 2001], they can be classified in

two categories based on their mechanism to relay messages:

– Queue-based middlewares

Queue-based MOMs are based on a one-to-one architecture as show in fig. 2.4a.

The receiver application has a queue where it stocks all the messages received from

all the client applications. It then processes those messages based on a First in

First out (FIFO) or custom policy.

– Publish/Subscribe middlewares

Publish/Subscribe MOM provides an architecture where the messages are routed

by a central element: a message broker. Receivers need to subscribe prior to

receiving messages. As show in fig. 2.4b, the main difference from a queue-based

MOM , is the architecture that allows messages to be received by all the subscribed

receivers. This allows m to n communications.

MOMs can also include features like message persistence and replication. They can also

provide time-bound Quality of service (QoS) performance and increase the scalability

and security of applications. They can guarantee durability, which is essential for some

types of distributed system interactions. Furthermore, since the architecture is based

on a client/server model, they support asynchronous communications [Capra et al.,

2001, Issarny et al., 2007].

11

Chapter 2. Middleware for robotics

• Transaction-Oriented Middleware (TOM)

A transaction represents a task usually executed within a distributed system that requires

consistency and reliability [Capra et al., 2001]. A transaction is executed independently

from other transactions in a reliable and coherent way. It usually represents any change

in database. It ensures that the task is correctly recovered from failures and the database

remains consistent even in case of an incomplete execution stop. Furthermore, a

transaction guarantees the sand-boxing between applications accessing distributed

components. In other words, a transaction is a mechanism of coordination among

distributed systems that respects the Atomicity, Consistency, Isolation, and Durability

(ACID) properties [Issarny et al., 2007].

A TOM can provide the correctness of transaction operations within a distributed system:

a client accumulates several tasks in a transaction which is route to a server via a network

in a transparent way. The main downside of TOMs is the significant overhead generated

by the respect of the ACID properties, and, as showed in [Issarny et al., 2007], it often

offers unnecessary QoS guarantees.

Sending
application

Receiving
application

Can Commit?

pre Commit

ACK

Yes

Soliciting votes
Pre C

om
m

it

do Commit

have Committed

C
om

m
it

Figure 2.5 – Three phase commit protocol

TOMs supports both asynchronous and synchronous communication among heteroge-

neous hosts providing an easy mechanism for clients, servers and database management

systems to cooperate and provides high reliability. If all the participants implement a

two-phase-commit [Cotner et al., 1999] or a three-phase-commit protocol [Al-Houmaily

and Samaras, 2009], as show in fig. 2.5, the ACID properties are maintained. In a three-

phase-commit protocol, when a node receives a transaction request, the system enters

a soliciting votes state. The peer sends request a decision to commit from the cohort

nodes and moves to the waiting state. If there is a failure, timeout, or if the coordinator

receives a negative message in the waiting state, the coordinator aborts the transaction

and sends an abort message to all cohorts. If the coordinator succeeds in the pre-commit

state, it will move to the commit state.

12

2.2. Middlewares in distributed systems

• Service Oriented Architecture (SOA), Service Oriented Middleware (SOM) and Enterprise

Service Bus (ESB)

SOM is a class of middleware systems based on SOA. A SOA is an architectural pattern in

software design in which application components provide services to other components

via a communications protocol, typically over a network. The principles of service-

orientation are independent of any vendor, product or technology [Papazoglou et al.,

2007]. A service is defined as a loosely linked set of functionality that is self-contained.

A service needs to implement at least one specific action like requesting the value of a

sensor, updating a mission configuration or changing the environment settings.

SOA is bounded on service-orientation by its fundamental design principle. The com-

position of the services is transparent for the user since each service should define

an interface which abstracts the underlying complexity and its platform implementa-

tion [Channabasavaiah et al., 2003].

 Monitoring / Event management

Process / Orchestration

Services / API

Data services / Messaging

Data abstraction

Se
cu

rit
y

G
ov

er
na

nc
e

Se
cu

rit
y

Data Data New
Services

Legacy

Figure 2.6 – SOA meta-model based on The Linthicum Group, 20075

Figure 2.6 represents one view of SOA, working up from the data, to the data abstraction

layer, to the data services, to the services, to the orchestration layers, and finally mon-

itoring and event management. Both governance and security are linked to all layers.

Depending on the requirements and functionality of each service, if this stack does

not meet the specifications, each service is open to use any software stack as long as it

provides an abstraction interface for the other peers to use it.

In a SOA, services need to communicate in order to exchange information and perform

actions. Services need to implement protocols that specify how data is parsed and

passes using metadata. The information in the metadata can describe the functionality

5 http://semanticommunity.info/@api/deki/files/7640/=EA07_Keynote_Linthicum.pdf

13

Chapter 2. Middleware for robotics

of the service, as well as the mechanism to marshalling/ un-marshalling the information

used by the service. SOA description metadata should comply with the following criteria:

– The metadata should be shared using a well-defined serialization format that

allows other components the discovery and incorporation of the service, but also

to maintain integrity and coherence. The metadata can be used by other services

to dynamically discover the services without modifying the functional contract of

a service.

– The metadata serialization type should be readable with a limited cost and effort.

The main advantage of SOA is the ability of combining an elastic number of functionality

in order to create an ad-hoc application created entirely form existing services [Bell,

2010]. The larger the number of functionality implemented by a service implies a

smaller number of services use, thus a fewer interfaces required to combine the services.

However, the services need to implement a limited number of functionalities in order

to maintain the granularity of each services and the easy reuse of them. Because each

service interface has its overhead, the performance of the entire application is related to

the number of services and their granularity.

SOM enhances DOM by the concept of services. A service is represented by a group of

objects and their behavior. These objects offers an external interface in order to allow the

services to be used form other distributed components. It also provides communications

protocols between services.

SOM is composed of three main components: a service provider, a service requester and

a registry. It allows support for service providers to deploy their components and further

publish their presence to the registry. It usually includes a mechanism to discover the

published services. SOM also provides an abstraction of the heterogeneity of the services.

The communications can be established in both synchronous and asynchronous way.

ESB is another middleware that proposes a software architecture for communication

between components in a SOA [Schmidt et al., 2005]. Its architecture and communica-

tion model is derived from the client-server paradigm and it facilities the agility and

flexibility of the communication mechanisms between components. It is mostly used in

the integration of heterogeneous enterprise software components.

Based on the bus paradigm which is found in many hardware architectures, ESB benefits

of the concurrent and modular model-design of modern operating systems. ESB is used

to structure and design the implementation of loosely coupled services that are deployed

and run independently on network distributed architectures. The main difference

between ESB and SOM is the absence of a central broker, making the ESB more flexible

and scalable for enterprise-wide solutions.

As shown in fig. 2.7, ESB is capable of allowing heterogeneous components that com-

municate using various marshalling formats like JavaScript Object Notation (JSON) or

14

2.2. Middlewares in distributed systems

Phone app .Net app C++ app Java app

SQL app Java appExternal appWeb app

Service requestors

Service providers

JSON
JNI

SOAP
REST

ESB

Figure 2.7 – Serial Bus communication architecture

Simple Object Access Protocol (SOAP). It translates the message to the correct type prior

to sending it to the right service provider/requester.

The next subsection presents how this classes of middleware are applied to robotics systems

and next we present which are the challenges for a robotic middleware.

2.2.2 Middlewares in robotics systems

These families of middleware presented above are applied to general distributed systems. One

group of these systems is represented by (multi)-robot systems. Generally, a robot is a complex

and heterogeneous distributed system that requires communication and interaction between

robot components (various sensors, actuators and software components). An autonomous

robot fleet refers to multiple robots (two at least) capable of sharing data and performing

one or several tasks together. It can also include mobile or fix connected objects and sensors

cooperating together to achieve a common goal.

As mentioned in [Ferber, 1999], in the field of distributed artificial intelligence, the division of

tasks of a greater problem reduces the complexity and the difficulty of a problem, even if this

requires coordination mechanisms. In the challenge of having large scale multi-robot systems

there is a need of information and services sharing between robots and external objects.

Despite many years of work in robotics, there is still a lack of a software architecture and well-

accepted family of middlewares [Smart, 2007]. This makes sharing modules and algorithms

almost impossible in practice. Furthermore, the robots different hardware, thus different

software architectures. This interoperability6 is a vivid example of the sharing problem.

A family of robotic middlewares should manage heterogeneity of the hardware, facilitate

the communication inside and outside a robot, improve software quality, reduce time and

costs in order to build new applications, allow robots to be self-configuring, self-adaptive

6“Interoperability is a characteristic of a product or system, whose interfaces are completely understood,
to work with other products or systems, present or future, in either implementation or access, without any
restrictions.” [McCreesh and Daniel, 2014]

15

Chapter 2. Middleware for robotics

and self-optimizing to environment changes. Combining component and service-oriented

programming greatly simplifies the implementation of highly-adaptive, constantly-evolving

applications [Frénot et al., 2010]. In our vision, robots could be capable of auto-provisioning

by automatically discover their peers and being able to self-install software modules and

libraries used by these peers in the fleet. Furthermore, robots could benefit from self-profiling

which allows them to set up and launch software components and services without the direct

intervention of external components.

Using the appropriate family of middlewares, multi-robot systems can increase their com-

putation power using external architectures like data-grids [Torkestani, 2013] or clouds for

robots. The main advantage of a cloud of robots is the decreased time of computation as it is

parallelized, since the computation is executed into a datacenter with many Central Processing

Unit (CPU) working on the same task. This approach has also its downsides, since each robotic

system has to communicate and share information with a centralized system hosted in a

datacenter using Internet network.

However, there is a convergence trend between the robotic and the middleware world, in

order to build efficient middleware solutions for robotics. This trend establishes a more

typical loosely-coupled, layered software architecture as found in traditional general-purpose

software engineering.

There already exists middlewares that try to achieve parts of the desired needs. Most of them

are designed for single robot contexts and they can also be used in a fleet context, but there also

exist new cloud based approaches designed for multi-robot goals. The next section discusses

the needs of having a family of middlewares in large scale multi-robot systems and how it

facilitates software development. We compare the different existing solutions presenting the

advantages and down-sides of the existing middleware based on several criteria that cover the

architecture, infrastructure and use of each framework.

2.3 Challenges for middleware in robotics

As seen in the classical distributed computing, middleware is an important asset on which

relies the development of new applications since it can hide the complexity of the heteroge-

neous components by providing a layer of abstraction, it can offer value-added components

and functionality and it can facilitate the deployment of new services.

Nowadays, robots are more and more used in a fleet context, being capable of having a

global environment perception and also a communication inside the fleet and with external

communicating objects like sensors, network and service gateways, mobile devices with wire-

less capabilities. The robots are often heterogeneous. More, all the devices and the robots

themselves are made of a diversity of hardware controlled by a variety of software developed

in different programming languages using multiple standards and protocols to communi-

cate. Robotic middleware could be used to manage this heterogeneity and interoperability

16

2.3. Challenges for middleware in robotics

problems.

2.3.1 Why a middleware for robotics ?

All these aspects of communication, application deployment and configuration can be facili-

tated using a proper middleware. The biggest difference between a classic middleware that

runs in a cloud infrastructure and a robotic one, is the mobility of the fleet and the decen-

tralization of its components. Furthermore, a datacenter has a reliable and stable network,

while in a robotic fleet context the network is considered unreliable and changing due to the

mobility of the robots, thus the robotic applications must compensate for this problem.

One of the challenges is software modularity as presented in [Elkady and Sobh, 2012]. In the

fleet context, task dedicated software modules can be composed in order to form a complex

behaviour for all the peers in the fleet.. The robotic applications development need to embrace

a more software oriented modular vision. The software design should emphasize separating

functionalities and algorithms into independent, interchangeable, cross-platform modules.

Applications for multi-robot environments are not easy to develop. The development process

should be simplified by integrating higher-layers of abstraction with APIs [Mohamed et al.,

2008]. Old modules and code should be easy to integrate in new projects, even if the robot

architecture is different. Also, the middleware should support plug-and-play mechanism for

new developed modules, being capable of hot swapping new packages.

Furthermore, a robotic middleware should integrate the functionalities of a classic middleware

[Issarny et al., 2007]. It should have the properties of scalability of a MOM . The middleware

should be service oriented in order to allow robotic services to be published by the providers

and discovered by the consumers.

2.3.2 Infrastructure and communication

The software components of a robotic application should run on any infrastructure, which

implies that the middleware should propose a hardware abstraction layer in order to facilitate

the reuse of the modules. This need is generated by the heterogeneous hardware and software

involved in operating a robot. The middleware should hide the complexity and diversity of the

components and provide a mechanism of self-service discovery of its hardware elements. The

robots can be based on different architectures, using different sensors and actuators which

offer a variety of services. The middleware should make the robot aware of its capabilities by

automatically discovering the sensors and actuators running on the robot.

Those capabilities should be organized in robotic services that should be broadcasted to allow

each robot to know what its team members are capable of. Such automatic resource and

service discovery and configuration mechanisms could increase the potential of a robot. Since

the robots are part of environments that can evolve, move and be dynamic, they need to

17

Chapter 2. Middleware for robotics

organise7 inside the fleet in a decentralized network.

Also, due to the mobility of robots, the fleet can divide or regroup itself at a communication

layer (physical layer) but keeping the same fleet configuration at an application layer, allowing

the members should self-adapt to the new fleet-configuration [Valle et al., 2013]. New robots

can be integrated into the fleet meaning that a robot should be capable of self-profiling

and self-provisioning. It is very useful to have a mechanism that allows to deploy new non-

configured robots into a fleet and to have them automatically perform packages update and

service configuration based on the fleet previous profile.

Furthermore, having a layer of hardware abstraction, the software will be platform indepen-

dent. This means that the robots can be built with different hardware, sensors and actuators.

All these internal components need to share information in order to make the robot function

correctly. The middleware should provide a system of information sharing and collaboration

among all involved components offering communication support and interoperability. It

should make this system transparent to the developer by masking the low-level communica-

tion with a more human-comprehensible language. Also, this system should be extensible at a

network layer, allowing direct information sharing across the fleet. The network communica-

tion layer should support both centralized networks (access points, media gateways), as well

as ad-hoc networks that could be created on demand to allow communication across the fleet.

2.3.3 Application programming interfaces and services

The middleware should also provide collaboration support among the robots making sure

that all robots share the same values of shared information. Also, it should provide API

that will make the development of multi-robot collaboration application easier. This will

make the application layer portable across fleets of different architecture robots. The robotic

application developer will not have to program consensus mechanism for networked shared

memories or rewrite network modules to share services. The development time of a new multi-

robot application will decrease, facilitating the research effort to discover new algorithms and

applications for robot fleets.

Another challenge for a robotic fleet middleware is to provide specific uses for a robot. Well-

known functionality like Simultaneous localization and mapping (SLAM), obstacle avoidance,

autonomous navigation in a known map or object follower should be provided by the middle-

ware. Without a middleware, the same known algorithms must be rewritten depending on

the robot evolutionary hardware. Those features should use hardware abstraction message

interfaces that should be independent of the platform that the middleware is running onto,

supporting a large number of inputs (different sensors, actuators). This can be done using the

previous explained hardware abstraction layer and software modularity.

7e.g. A leader election using a peer to peer biding system

18

2.3. Challenges for middleware in robotics

2.3.4 Robotic applications as services

In our vision, robots need to advertise their functionality as services in order to allow other

members of the fleet to interact with them. In network based application, service-oriented

programming is now a largely accepted principle [Issarny et al., 2011].

Service-oriented architecture greatly simplifies the implementation of highly-adaptive, constantly-

evolving applications [Frénot et al., 2010]. It also reduces the process of developing and de-

ploying new robotic applications. This architecture is very suitable to quickly cope with new

developing models and requirements.

Services can become the basic blocks of complex robotic behaviors and applications. This

provide sand-boxing for each software component which renders the robotic application

more robust and tolerant to failure and still disposing of the flexibility in developing new

components.

Services are platform independent and they can be described, discovered and composed

dynamically. Having a service oriented architecture increases the ability to develop distributed

software components in various programming languages and for heterogeneous target devices.

In addition, higher levels of functionality provided by service-oriented programming reduce

the implementation of redundant software.

In centralized communication systems, robots mobility is reduced because they cannot

move outside the coverage area of the infrastructure. Moreover, if the central node fails,

the whole communication of the fleet stops. In order to increase the mobility of the robots

and to distribute the communication without having a central node, there is a need for

the communication to be decentralized using ad-hoc networks. In this case, the robots do

not have a complete communication scheme of their nearby neighbors. Furthermore, the

communication across peers is susceptible to route change and different peers can be used to

relay a data package as shown in Figure 2.8. The ad-hoc network becomes the sum of peer to

peer network across at least 2 robots.

Figure 2.8 – Ad-hoc fleet infrastructure with per-robot communication ranges.

19

Chapter 2. Middleware for robotics

2.3.5 Limitations

Even the most elaborated middleware might have problems. As mentioned in [Smart, 2007],

the fact of having a hardware abstraction layer that hides the heterogeneity of the sensor and

actuators has its down-sides. The specificity of sensors, their position, their limits and failures,

the shape of the robot increases the complexity of a controlling software. Extrapolating and/or

integrating these assumptions makes the middleware more complex and more failure prone.

Also, the heterogeneity of a robot fleet means that different robots have different resources

like computation power, hardware capabilities, battery life, which makes the design of a

middleware further difficult.

While in classic cloud environment the network could be considered as almost totally-reliable,

in a robotic fleet context is susceptible to frequent failures. The middleware should not try

to catch a network failure exception, but instead accept that the network is temporary un-

reachable and operate in a degraded mode until the network communication is reestablished.

The same logic should be applied also in case of hardware failure since robots usually run in

hazardous environment.

Taking everything into account, the challenges for a multi-robot middleware are high. There

are lots of techniques and research done in cloud middleware that can be applied into a fleet

context. However, there is a lot of differences between a cloud and a fleet due to mobility and

communication limits inside a fleet. Up to now, many attempts into creating a promising

middleware for robots have been done.

The next sections will present and compare the most relevant middlewares for robotic fleets.

2.4 Existing middlewares

In this section, we present the most used middleware with applicability in a fleet. A complete

survey of all the middleware for single robot contexts is clearly impossible because of the large

number of existing middleware and frequent releases of new ones. To reduce the amount

presented, we first considered their compatibility in a multi-robot environment and the

number of citations. Based on that, we have selected eight most used robot middleware:

• Player/Stage

• ROS

• Miro

• Microsoft Robotics Developer Studio

(MRDS)

• Mobile and Autonomous Robotics Inte-

gration Environment (MARIE)

• Orca

• Carnegie Mellon Robot Navigation

Toolkit (Carmen)

• Python Robotics (Pyro).

20

2.4. Existing middlewares

The reader should keep in mind that there are also other available middlewares. Some of the

middlewares worth mentioning are:

• Claraty [Nesnas et al., 2006]

• OpenRTMaist [Chishiro et al., 2009]

• OPRos [Jang et al., 2010]

• Orocos [Soetens, 2010]

• ERSP [ERSP, 2010]

• RoboFrame [Petters et al., 2007]

• WURDE [Heckel et al., 2006]

• Aseba [Magnenat et al., 2010]

• Skilligent [Skilligent, 2010]

• SmartSoft [Schlegel et al., 2009a]

• iRobotAware [iRobotware, 2010]

• Yarp [Fitzpatrick et al., 2008]

• Spica [Baer et al., 2008]

• Babel [Fernandez-Madrigal et al., 2006]

• DROS [Dave, 2009]

• IRSP [Kwak et al., 2006]

• K-MIDDLEWARE [Choi et al., 2006]

• OpenRDK [Calisi and Censi, 2009]

• OpenJAUS [openJaus, 2010]

• ORCCAD [Arias et al., 2010]

• RIK [Bruemmer et al., 2006]

• MRPT [MRPT, 2010]

• MissionLab [Endo et al., 2004]

• Webots [Michel, 2004]

The following sections gives a brief overview of each selected software. A larger description

of them, the compatible robotic platforms and the most relevant features can be found in

Appendix A. Then we propose in sections 2.5 and 2.6 a comparison between them.

Player/Stage

The Player/Stage ([Kranz et al., 2006], [Collett et al., 2005]) project is designed to provide

an infrastructure, drivers and a collection of dynamically loaded device-shared libraries for

robotic applications. It is one of the first middleware that emerged for robotic systems and

there are other middlewares that wrap Player. It doesn’t consider a robot as a unity, but

it instead treats each device separately, being a repository server for actuators and sensors.

Players main futures are the device repository server, the variety of the programming languages,

the socket based transport protocol, modularity and the implementation being open-source.

Robot operating system (ROS)

ROS is a recent flexible middleware for robot applications [Cousins et al., 2010, ROS, 2014].

It is a collection of tools, libraries, and conventions that aim to simplify the task of creating

complex and robust robot behavior across a wide variety of robotic platforms. It provides

21

Chapter 2. Middleware for robotics

hardware abstraction, device drivers, visualizers, message-passing, package management.

ROS is composed of two key components: the ROS master and ROS nodes. The ROS Core

is composed of the master node (a name server that allows node to subscribe and keeps

tracks of each created node and topic) and ROS parameter server (a shared, multi-variate

dictionary that is accessible via network APIs). The ROS nodes are executables that use ROS to

communicate with other nodes and represent the application layer of the architecture.

Miro

Miro is a distributed, object-oriented middleware developed to improve the software devel-

opment process by increasing the integrality of heterogeneous software, the modularity and

the portability of robot applications [Kraetzschmar et al., 2002, Krüger et al., 2006]. It was

developed in C++ for Linux based on the Common Object Request Broker Architecture (CORBA).

This allows cross-platform interoperability making the middleware applicable to a distribute

multi-robot context. Due to the restrictive nature of CORBA, software application can be only

written in languages that provide CORBA implementations.

Microsoft Robotics Developer Studio (MRDS)

MRDS is a Windows-based middleware for robot control and simulation from Microsoft [Johns

and Taylor, 2008, MRDS, 2012]. It is composed of four major components: Concurrency and

Coordination Runtime (CCR), Decentralized Software Services (DSSs), Visual Programming

Language (VPL) and Visual Simulation Environment (VSE). MRDS is aimed at academic,

hobbyist, and commercial developers. It handles a wide variety of robot hardware like Eddie

Robot, ABB Group Robotic, CoroWare CoroBot, Lego Mindstorms NXT, iRobot Create, Parallax

Boe-Bot and more.

Mobile and Autonomous Robotics Integration Environment (MARIE)

MARIE is a middleware designed to allow the integration and distribution of software for

robotic systems [Côté et al., 2007, Côté et al., 2006]. Its main objectives are to allow devel-

opers share, reuse and integrate software in order to accelerate the development of robotic

applications. It was created in C++ and uses the Adaptive Communication Environment (ACE)

communication framework. The centralized component provided by the middleware called

Mediator Design Pattern (MDP) allows software components to connect to MARIE.

Orca

Orca is an open-source middleware for developing component-based systems

[Makarenko et al., 2006, Makarenko et al., 2007]. It provides the mechanics to create building-

blocks which can be pieced together to form arbitrarily complex robotic systems. Orca can

22

2.5. Comparative criteria

be used in various applications, from single vehicles to distributed sensor networks. It was

designed and developed to maximise the software reuse and modularity in robotic applications.

Orca is highly dynamic, with a distributed component base system that allows the user to

define custom interfaces and communication protocols.

Carnegie Mellon Robot Navigation Toolkit (Carmen)

Carmen is an open-source collection of middlewares that focuses on the robot control by

providing various control interfaces [Montemerlo et al., 2003, CARMEN, 2008]. It is written in

the C programming language and it is organized in three layers: hardware interface, common

services and application layer. The hardware interface provides low-level communication,

control by creating a hardware abstraction for sensors and other components. The second

layer offers off-needed robotic services like navigation, localization, object tracking, and

motion planning. The last layer is represented by the user-defined applications that share

information and relies on data revived from the lower layers.

Python Robotics (Pyro)

The goal of Pyro is “to provide a programming environment for easily exploring advanced topics

in artificial intelligence and robotics without having to worry about the low-level details of

the underlying hardware a robot programming environment” [Blank et al., 2006, Blank et al.,

2005, Pyro, 2012]. It has an educational purpose, and it wraps the Player/Stage middleware so

that any component written for this system is also available to Pyro.

2.5 Comparative criteria

The comparison of the eight robotic frameworks presented is done from a software engineering

vision. It groups the comparative criteria into tree major groups: Architecture, Infrastructure,

Usage. Each major group is composed of different criteria relevant to the group.

The Architecture evaluates the impact that the framework has over the host operating system

and it is composed of:

Overhead (OV) - the consumption of hardware resource that is added besides the operating

system. It is important that a middleware to have a lower overhead in order to limit the

resource consumption (energy, CPU , memory) especially for real-time systems.

Vendor locking (VL) - the middleware operating system dependence. This criteria expresses

the portability of a system across multiple platforms and systems.

Robustness to failures (RF) - the detection of a software failure, any degraded model to run

and the afterwards recovery process. The fact that a middleware is aware of failures is

23

Chapter 2. Middleware for robotics

essential for the robotic applications. Furthermore, it is important that robots continue

performing their tasks in a degraded mode until the system has recovered from the

failure.

The Infrastructure evaluates tools and APIs provided by the middleware and it is composed of:

Management and monitoring (MM) - tools provided to manage, debug, configure and moni-

tor the middleware components. Since robots are complex devices, it is important to

facilitate the supervisor task by offering a complete vision of the sensors, actuators and

other components status of each robot.

Multi-robot coordination services (MCS) - tools to make consensus over network shared

values, to elect a leader or to assign specific robotic tasks. Inside a robotic fleet, it is

important to have management tools to distribute algorithms in order to reduce the

complexity of the robotic applications development.

Scheduled operations and tasks services (SOTS) - tools to perform repetitive tasks like Chron

job schedulers.8 Having a scheduler will facilitate certain tasks.

Durable data storage services (DDSS) - tools that allow to persist data from sensors and other

robots from the fleet. The data persistence layer is important for saving mission results,

for experimental data validations, for off-line data processing as well as for sensors data

replay in a simulator.

Communication (COM) - APIs for requesting data or setting parameters from components,

services, messaging. The communication is very important between different compo-

nents of a robot in order to allow it to successfully perform its task, as well as inside a

fleet in order to allow robots to interact with others.

The Usage evaluates the impact of integrating the middleware into new robotic applications

and it is composed of:

Deployment and life-cycle (DLC) - the facility to deploy across the robotic fleet, integration

with compilations chains, night builds testing environments and life-cycle management

of new robotic applications. It is very useful and time reducing to have a building and

automated testing environment that allows task simplifications especially in complex

distributed systems.

Programming model (PM) - type of programming model that can be used: synchronous9,

asynchronous10, event triggered, service triggered, etc. Having different programming

8The software utility chron is a time-based job scheduler in Unix-like computer operating systems.
9Synchronous programming model are used for sequential blocking execution tasks

10Asynchronous programming model are used for programming interactive systems that interact continuously
with their environment, at their own speed

24

2.6. Middleware Comparison

models approach is very useful since a problem can be solved using one type and other

problem using other type.

Code and data integration services (CDIS) - the easiness to integrate new services and mod-

ules into existing robotic software via APIs. Having a layer of interfaces that allows the

developer to enrich the robotic applications will simplify the development tasks.

Extension points and interfaces (EPI) - available libraries with APIs to use often-needed ser-

vices. Offering often-used services reduces the time and the difficulty of developing new

robotic software.

2.6 Middleware Comparison

This section analyses each middleware based on the criteria presented in the previous section.

Each major group is represented as a separate subsection that includes a table that summaries

the subsection. The evaluation is relative to all middlewares. A represents that all the

criteria requirements are satisfied, a represents that most of the requirements are present,

a shows the fact that the criteria is partially satisfied, a represents that the criteria is

not fulfilled and a represents that not only the criteria is not satisfied but there is a big gap

compared to the other middlewares.

2.6.1 Architecture

Table 2.1 summaries the Architecture group. It is composed of Overhead (OV), Vendor locking

(VL) and Robustness to failures (RF).

Overhead (OV) and Vendor locking (VL)

The less overhead is owned by ROS since communication and nodes name service framework

has small overhead. It can run on a machine with less CPU power like the Raspberry Pi. The

overhead is generated mostly by imaging processing packages that add extra CPU usage.

Another middleware with small overhead is Player/Stage, but its performances are limited by

the speed of the operating system. Pyro has a larger overhead because it wraps Player/Stage.

The major CPU load for Carmen comes from two sources: localization and navigation. Carmen

can run on machines compatible with RedHat Linux or SuSE. MRDS supports only Windows.

The overhead in Orca is introduced by the use of ICE [Michi Henning, 2010]. The middleware

is cross-platform and their performance differs on the operating system. Miro has a large

overhead introduced by the use of CORBA. Also MARIE has considerable overhead caused by

the additional software for the functional components.

25

Chapter 2. Middleware for robotics

Middleware OV VL RF

Player/Stage Linux
Windows

ROS Ubuntu
Debian
Windows
MacOS

Miro
CORBA

Linux

MRDS
DSS and CCR

Windows

MARIE
additional
functional
components

Linux

Orca
ICE

Linux

Carmen Red Hat
SuSE

Pyro Linux
Neither degraded
mode, nor component
isolation

Table 2.1 – Architecture

Robustness to failures (RF)

None of the middlewares has a special dedicated degraded mode and nodes cannot be

restarted automatically after failure. Besides Pyro, all the middlewares provide component

isolation. Player/Stage and Carmen supports components isolation sandbox due to Inter-

Process Communication System (IPC) communication. In Miro and MARIE, ACE objects are

providing component sand-boxing. MRDS includes DSS that provides components isolation.

Orca uses ICE which provide objects isolation. ROS needs an Internet Protocol (IP) address at

the initialization to run roscore.

2.6.2 Infrastructure

Table 2.2 summarizes the Infrastructure criteria. It has the following columns: Management

and monitoring (MM), Multi-robot coordination services (MCS), Scheduled operations and

tasks services (SOTS), Durable data storage services (DDSS) and Communication (COM).

26

2.6. Middleware Comparison

Middleware MM MCS SOTS DDSS COM

Player/Stage
Third-party co-
ordination

ROS
Dashboard and
management

Rosbags Multiple type
communica-
tion

Miro

MRDS
Visual Studio
plugins

Multiple type
communica-
tion

MARIE
RobotFlow

Orca

Carmen
Single robot

Pyro

Table 2.2 – Infrastructure

Management and monitoring (MM)

Besides Miro, Orca and Carmen which provide neither a monitoring nor a management

interface, the rest of the middlewares include monitoring software. Player/Stage, MARIE and

Pyro include a graphical interface to display components status and control them. MRDS uses

the Microsoft Visual Studio IDE that provides monitoring and management interfaces. ROS

has multiple management tools that include roslaunch, rosrun and parameter server. It has a

dashboard monitoring interface that can be access remotely.

Multi-robot coordination services (MCS)

None of the middlewares provide native multi robot coordination services. Player/Stage

includes third-party coordination algorithms developed for it. ROS, Miro, MRDS, Orca, MARIE

and Pyro delegate the coordination services to the application layer. Carmen has no multi-

robot services since the middleware has a single robot vision.

Scheduled operations and tasks services (SOTS)

The only framework that provides scheduled operations and tasks services is MARIE. It is built

on RobotFlow that include operation scheduler. RobotFlow is a mobile robotics toolkit based

27

Chapter 2. Middleware for robotics

on the FlowDesigner project. FlowDesigner is a data-flow oriented architecture, similar to

Simulink. Neither Player/Stage, nor ROS, nor Miro, nor Orca, nor Carmen, nor Pyro provide a

dedicated system. Their tasks can be managed by a Linux scheduler. MRDS can be included

in Windows Task Scheduler.

Durable data storage services (DDSS)

ROS is the only middleware that provides durable data storage services. Topics and service

messages can be persisted in rosbags. The other frameworks don’t provide any native API to

save sensor information. Player/Stage, MRDS, Orca and Pyro configuration files are stored into

text files, while Miro, MARIE and Carmen use Extensible Markup Language (XML) files to store

configuration variables.

Communication (COM)

Communication between the infrastructure layers in Player/Stage and Pyro are done using

direct socket connections as their primary method of communication. Miro data sharing

is assigned to CORBA’s IIOP, while Carmen uses ICE [Michi Henning, 2010]. MARIE uses

shared memory and sockets and Carmen is based only on IPC. MRDS and ROS support both

synchronous and asynchronous communication. MRDS uses Decentralized Software Services

Protocol (DSSP) and Hypertext Transfer Protocol (HTTP) as the foundation for interacting with

services. DSSP is a SOAP-based protocol that provides a symmetric state transfer application

model with support for state manipulation and an event model driven by state changes. ROS

supports synchronous communication via services, asynchronous communication via topics,

structured messages using a specific Interface description language (IDL). Both ROS and MRDS

support well documented, broad specter communication mechanisms using well known

protocols like Transmission Control Protocol (TCP) and HTTP.

2.6.3 Usage

Table 2.3 summaries the Usage group. It is composed of Deployment and life-cycle (DLC),

Programming model (PM), Code and data integration services (CDIS) and Extension points and

interfaces (EPI).

Deployment and life-cycle (DLC)

Neither of the middlewares provide a multi-robot deployment system. ROS doesn’t have any

repository based deployment system but includes a CMake based compilation chain called

catkin. It uses the Gazeboo simulator for testing environment. Miro has an IDL compiler,

which helps to generate all the code for the communication and underlying middleware

service. It uses Stage and Gazeboo for simulation and testing purposes. MRDS uses Visual

28

2.6. Middleware Comparison

Middleware DLC PM CDIS EPI

Player/Stage
component reloca-
tion at run-time

API access

ROS
Catkin, Gazeboo Asynchronous and

synchronous pro-
gramming model

roslaunch, rosrun large number of
often-demanded
services like gmap-
ping, etc

Miro
IDL compiler, Gaze-
boo)

CORBA

MRDS
Visual Studio C# VPL

MARIE
wraps Player and
Carmen

Orca
CMake Multiple program-

ming languages

Carmen

Pyro
Gazeboo wraps Player

Table 2.3 – Usage

Studio as IDE which provides a compilation chain, deployment tool as well as a simulator for

testing. Orca uses CMake compilation and includes a graphical simulator for testing. Pyro

includes multiple simulators for code testing: Stage, Gazeboo and Khepera but it doesn’t have

a deployment tool. There is no need of compilation chain since the code is interpreted. It

needs a properly installed and set-up runtime stack. Carmen provides configuration tools, a

simulator, and graphical displays and editors, but no deployment and compilation chain tools.

Player/Stage doesn’t have a native compilation chain, but there exist third-party compilation

chains included in IDEs to compile the application source code. It provides testing environ-

ment in Stage simulator. MARIE has no specific compilation tools or deployment system. In

general, none of the selected middlewares provide a complete tool-set for managing both the

deployment and the life-cycle of a robotic application.

Programming model (PM)

ROS supports both synchronous and asynchronous programming models. The applications

can be written in Python and C++ natively but there is integration for Java, Lisp and other lan-

29

Chapter 2. Middleware for robotics

guages. It has the highest grade due to the variety of the programming languages and models.

Player/Stage application can be written in any programming language. MARIE supports both

a set of foundation behavior classes and finite state automate. Carmen application can be

written only in C. Pyro is Python based. Miro application can be written in any languages that

provide CORBA implementations. The data exchanges are event-triggered. MRDS uses the

VPL, a graphical development environment that uses a service and an activity catalog. The

main programming language in MRDS is C#. Orca supports essential C/C++ on Linux, but it

can be used using Java, Python, and C#.

Code and data integration services (CDIS)

All middlewares support modular architecture and allow easy integration or reuse of code.

Miro provides service abstractions for sensors and actuators by means of the CORBA IDL. Orca

maximizes the software reuse and modularity in robotic applications while Carmen has a

large number of libraries. The portability of devices in Player/Stage allows manual component

relocation at run-time and it is easy to integrate new features in the existing code as well

as new modules. MRDS, with the use of VPL, allows to generate the code of new “macro”

services from diagrams created by users. They can interact graphically, a service or an activity

is represented by a block that has inputs and outputs that just need to be dragged from the

catalog to the diagram. Linking can be done with the mouse, it allows the users to define if

signals are simultaneous or not, permits to perform operations on transmitted values. MARIE

provides translation facilities such that components written for Carmen or Player/Stage can be

used. Pyro supports modules created for Player/Stage. ROS has well designed package and

launch system capable of launching the dependencies.

Extension points and interfaces (EPI)

Most of the frameworks provide often-used robotic services and APIs. Player/Stage has a large

extendability due to interfaces for different robot devices and services. It has a direct API access

to often-needed robotic services. ROS has also a large number of often-demanded services.

Both Player/Stage and ROS has a large number of APIs reported at the other middlewares. Miro,

Carmen and MARIE provide APIs for modules specific to robotics. Pyro offers integrated APIs

and interfaces while Orca allows the user to define custom interfaces and communication

protocols.

2.7 Conclusion

The advantages of a robotic fleet are the information sharing, the robustness to failure and

the parallelization of tasks that reduce the time needed to accomplish them. If a robot fails

during a task, the task can be reassigned to another fleet member. New distributed software

infrastructures are proposed to assist the progress of robotic fleets. The concept of cloud for

30

2.7. Conclusion

robots is emerging, allowing them to communicate with external cloud infrastructure [Tenorth

et al., 2012] and deport heavy computing operations as well as allowing them to interact with

the Internet of things [KnowRob, 2014]. A robotic cloud is mostly formed of robots, com-

municating objects and other hardware infrastructure elements that share information and

resources in a transparent way for the developer. The down-side of the existing infrastructure

for this new concept is the communication infrastructure that supposes: a centralized WiFi

access. This reduces the use cases of robotic fleets that may also be used in uncontrolled

environments without a broad communication infrastructure.

Based on the tables above, ROS [ROS, 2014] is one of the most suitable robot middleware

that can be applied to a fleet of robots, followed by MRDS [MRDS, 2012]. Both of them are

fulfilling totally or partially almost all the criteria. In our opinion, ROS [ROS, 2014] is the

emerging middleware with the most potential to become the most used framework for robotic

fleets [Chitic et al., 2015]. It still needs work since it has no multi-robot coordination system

and no automated testing environment, but it has already the advantage of having a large

community that develops new packages for it. Another key element of ROS is its communica-

tion mechanism. It supports both synchronous and asynchronous communications and can

easily be customized with new message types. It has a large database of drivers making a very

good abstraction of the hardware layer. New modules and packages can be developed and

integrated quickly. It is very permissive for the developers allowing them to code in different

programming languages. ROS is used later in this thesis as a robot middleware that allows the

communication between the new applications developed with our contribution and the real

hardware.

All these middlewares propose a modular vision of software components. One of the many

practices in developing these components is to start with a model design. Multiple models can

be composed in order to create software services in a SOA. The next chapter presents different

types of formalism that can be used to design models for system behavior.

31

3 Formalisms to design systems behav-
ior

This chapter presents the Model Driven Development (MDD) approach and a

summary of existing formalism used to design (robotic) software components. It

focuses on timed automata formalism that will be later used in this thesis for the

tool-chain that we propose to be used in order to apply MDD over SOA in a fleet

context.

3.1 Introduction . 33

3.2 Model driven development . 34

3.3 Classical formalism . 38

3.4 Timed automata . 40

3.5 Conclusion . 49

In this chapter, we give some background knowledge on formalism to design system behavior.

We first begin with a brief description of an approach to design (robotic) software based

on models, called Model driven development (MDD). Then we present some of the existing

formalism that have already been used in developing robotic applications. Later, we focus on

timed automata, a formalism that will later be used in the tool-chain that we propose to be

used in order to apply MDD over SOA in a fleet context.

3.1 Introduction

As the robotic applications move towards a fleet context, there is an increase in the need of

having software architectures and systems that can perform better in terms of scalability, fault-

tolerance, manageability and maintainability as well as understandability. In this context,

33

Chapter 3. Formalisms to design systems behavior

multi-robot applications can be developed from behavioral models in a SOA. One of the

paradigm that could be considered in the process of designing model based behaviors for

robots is Model Driven Development.

When using such paradigms, choosing the right formalism to model the applications is difficult.

Since robots evolve in the physical world, the time should be an important factor in the

process of modelling new software architectures. In this case, the model will be bound to the

development of the application, thus to the real-world.

3.2 Model driven development

As seen in the previous chapter, SOA can increase the modularity of a robotic software while

reducing the complexity of development. But the complexity of developing by dividing a

bigger application into services still remains. As mentioned in [Bruyninckx et al., 2013], even

in the robotics domain, the attitude of software developers is to produce code faster and

better in their favorite programming language than via the “detour” of formal models even

if in academia models are the starting point of robotic software components [Brugali and

Scandurra, 2009]. In this section the reader will be presented with a process of development

based on models called Model driven development (MDD).

In other engineering fields, the use of models is motivated by the design of complex systems.

The abstraction given by a model helps to understand the solution of a complex problem.

The same concept can be applied to software development which deals with the same high

level of complexity, especially in robotic applications for fleet context. This paradigm has

already been applied with success in context heterogeneous environments like self-aware

pervasive systems [Gerbert-Gaillard and Lalanda, 2016]. However, this technique is not a

common practice in software engineering. Furthermore, the use of models usually ends in the

conception phase of a new application.

MDD is a process to conceive new software using models not just as a starting point but

also to develop the corresponding software. The main feature of this technique relies on the

automation of the development process.

The main goal behind MDD is to increase productivity and to reduce the costs of debugging

and testing complex software. As mentioned in [Atkinson and Kühne, 2003], two kinds of

impact are visible:

• Short-term results because the process minimizes the time of developing new compo-

nents and maximize the correctness between the model and the final software product.

• Long term results because the process maximizes maintainability of the code that is

strongly bound to the model, thus the obsoletely of components. Furthermore, it is

minimizing the software sensitivity to change which can be:

34

3.2. Model driven development

– Personal - Software development is tide to the persons developing them. Without a

proper documentation, there is a risk that only the original creator can maintain it.

Using MDD reduces this risk since models are described using a concise notation.

– Requirements - Changing requirements during the development phase of a soft-

ware usually does not imply changing the conceptual model. In MDD, this forces

the change of the model that will be reflected in the software.

– Development platform - Software components are usually tied to the development

tools used. But the development platforms are evolving, thus making the compo-

nents obsolete. MDD can help the decouple of software from the development

platform allowing interoperability [Kleppe et al., 2003].

– Deployment platform - The deployment platform needs to be as transparent as

possible for new software artefacts. The constant evolving of deployment environ-

ments can render a software obsolete after a short life-time. Using the abstraction

in MDD allows this cross-platform capacity by using custom mappings [Varró et al.,

2002].

3.2.1 Model driven development characteristics

In MDD, a model is characterized as a formal meta-model capable of joining the specifications

of a given application domain and the syntactic links between these. An infrastructure offering

MDD support must specify [Bézivin et al., 2003]:

1. How models can be created and how they are allowed to interact and be used.

2. What are the notations in used.

3. What is the connection between the model and the real world/environment.

4. How models can be extended.

5. How models can be shared.

6. How the models can be mapped form other software components.

Up to now, various techniques have been used with success to respond to these specifications.

Visual programming has proven successful as a method to create models and the links be-

tween them (Spec. 1-3). Even-more, OOP 1 has proven its benefits in supporting extensible

languages by allowing the extensions of types, objects (Spec. 4). Furthermore, meta description

techniques have proven efficiency in dynamically extensible run time environments (Spec.

5-6).

1OOP is a programming paradigm based on the concept of objects, which may contain data, in the form of
fields, often known as attributes; and code, in the form of procedures, often known as methods.

35

Chapter 3. Formalisms to design systems behavior

Summing up a Visual programming applied over an object-oriented language with meta

description support can create the right infrastructure for MDD. But this is not enough. In

order to be efficient, a MDD process should satisfy the following properties [Selic, 2003]:

• abstraction - the models should remove unnecessary details and create a layer of abstrac-

tion in order to form a better way of understanding the system and its interconnections.

• understandability - after abstraction, the model should be represented in a comprehen-

sive way. The understandably is bound tightly with the expressiveness of the model.

Ideally, a model should minimize the effort required to understand it.

• predictiveness - the model should be used to predict and validate the system behavior

via experimentation (e.g. executing a software on a robot and analyzing the behavior) or

formal analysis (e.g. analyzing using model checking the properties of a model).

• inexpensiveness - the costs to model and use MDD should be less than normal develop-

ment (without MDD).

• accuracy - the capacity of a modelled system to mimic as close as possible the real life

system it is modelling.

3.2.2 Model driven development paradigm

MDD is based on the meta-modelling paradigm which has been originally used in Model

driven engineering (MDE) domain. Its main purpose was to improve the automatic code

generation from abstract domain specific models. This paradigm aims to start with a higher

level of abstraction in order to end with a detailed specification of the application domain, to

go “from platform-independent to platform-specific” [Ringert et al., 2015].

The standardization of MDD and MDE is mainly conducted by Object Management Group

(OMG) [OMG, 2016] which is using the term Model Driven Architecture (MDA) for those

processes. OMG defines four levels of model abstraction (shown in figure 3.1) traditionally

used in MDD meta-model paradigm.

This form of defining the model abstraction consists of hierarchical levels. Each level repre-

sents an instance of the upper layer. The lower level, M0 represents the real-world system.

In our case, this layer stores the actual software components the application needs to use at

run-time. The upper level, M1, stores a model representation of the software components. It

is refereed as the Model level because it holds the user models. The next level, M2, holds the

model of information used by the M1 layer and it is called the Meta model level because it

holds the information model of a model. The top layer, M3, is the higher level of abstraction

and it holds the model of information used in M2, thus it is named Meta Meta Model or,

historically, Meta Object Facility.

36

3.2. Model driven development

Real World systems

Model

Meta model

Meta Meta modelM3

M2

M1

M0

Model Model

instance of

instance of

instance of

Figure 3.1 – Object Management Group modelling

The model abstraction is used in building tool kits capable of automatically generation of the

software components used in M0 based on the information in M3, M2 and M1. Most of the

well-defined technologies used in compilers can be applied in model-based automatic code

generators [Jouault et al., 2008].

3.2.3 Model driven development in robotics

As mentioned in [Ramaswamy et al., 2014] and to the best of our knowledge, MDD has been

applied in robotics in frameworks like: RobotML [Dhouib et al., 2012], V3CMM [Alonso et al.,

2010], SmartSoft [Schlegel et al., 2009b] and BRICS model [Bruyninckx et al., 2013]. A brief

description of each of these frameworks can be found in Appendix B.

It is worth mentioning that BRICS applies the separation in layers of the model composition,

RobotML uses a Domain Specific Language (DSL) in order to define the models while V3CMM

and SmartSoft allows for code skeleton generation from the model. None of the frameworks

offer a integrated model checker, thus the models cannot be validated against any properties.

3.2.4 Conclusion

The general experience with MDD has shown that it can improve the process of development

by minimizing the costs and maximizing productivity. The focus on MDD is oriented on the

automatically code generated based on models. But there is a great gap between MDD and a

software that is formally proven to be correct [Bert et al., 2005].

In the next sections, the reader may find a brief overview of some of the formalism used to

model and analyze systems and how they are applied in robotics.

37

Chapter 3. Formalisms to design systems behavior

3.3 Classical formalism

In this section, we present some of the existing formalism that can be used to define the

behavior of a robotic application when using a MDD approach. We present briefly each

formalism and its applicability in computer science, in robotics and in industry.

All the formalism presented in this section use or are based on Finite-state machine s (FSMs).

Next sections present a detailed background on a particular extension of FSM , called timed

automata.

3.3.1 Finite state machine

A Finite-state machine (FSM) is a mathematical formalism used to design both software and

sequential logic circuits [Gill et al., 1962]. It is defined by the its (finite) number of states,

its triggering conditions (or inputs) and its transitions. The particularity for FSM is that the

machine can be in just one state at any given time, called current state.

FSMs are present in many automated devices that surround us [Gajski et al., 1994]. They

can be found in elevators, vending machines, traffic lights, washing machines, etc. But their

applications are beyond hardware logical circuits. Mostly, FSMs are used in computer software.

They have been used to design programming languages and models [Berry and Gonthier,

1992], compilers [Corbett et al., 2000], networked system [Hershey et al., 1995], software testing

environments and methods [Chow, 1978], etc. Furthermore, FSM are at the base of Turing

machines [Shannon, 1957].

FSM is a classical formalism used in robotics. The applications include modelling autonomous

navigation [Sales et al., 2010], path planning [Choset, 2001], mission planning and control

[Pirjanian et al., 2000], defining the entire robotic behavior based on FSM [Martinoli et al.,

2004, Bautin et al., 2012].

Section 3.4 will present a detailed background on a particular extension of FSM, called timed

automata.

3.3.2 Petri nets

Introduced by Carl Adam Petri in 1962, Petri nets are a powerful graphical and mathematical

tool that can be used to represent complex sequential mechanisms and phenomena [Petri,

1962]. It allows to model complex processes by supporting synchronization and path choice.

It has been used to model and analyze discrete event systems [Murata, 1989], [David and Alla,

2010].

Petri nets have been used in several domains. In the manufacturing system, they have been

used to model and analyze production lines including automated assembly lines, resource

38

3.3. Classical formalism

sharing systems and Kanban productions2 lines. Another domain where Petri nets were

successfully used is to model sequence controller on Programmable Logic Controllers allowing

a decrease in the development time compared to the traditional approach. Related works in

this domain can be found in: [Murata et al., 1986], [Crockett et al., 1987] or [Jafari, 1992].

Petri nets have also been used in software developments. In order to model and analyze

software system using Petri nets [Reisig, 1986], an extension of them, called Colored Petri

nets has been introduced [Jensen, 1989]. Integrated software development system [Pinci and

Shapiro, 1990] allows for the automatic conversion of graphical Petri nets into executable code.

Other interesting works can be found in: [McLendon Jr and Vidale, 1992] or [Murata et al.,

1989].

In robotics, Petri nets have been successfully used to model flexible manufacturing systems

[Beck and Krogh, 1986], [Kodate et al., 1987]. It was also used to model Sensory-Based robots

[Lyons and Arbib, 1989] as well as unmanned vehicles [Jaulin et al., 2012]. As mentioned

in [Freedman, 1991], Petri nets supports a convenient mechanism to express a complex

robotic behavior. Lately, Petri Nets were used in a number of frameworks and architectures

for modelling both single and multi-robot plans [King et al., 2003] [Costelha and Lima, 2007],

[Kotb et al., 2007], [Ziparo et al., 2011]. The various extensions of Petri Nets used in robotics

include Colored Petri nets [Marciano, 2013], Timed Petri nets [Zuberek, 2001] or Self-Modifying

nets [Rust and Rammig, 2004].

3.3.3 Markov decision process

Markov decision process (MDP) is a formalism framework that supplies the mathematical

tools to model decision making process where the result can be partially based on the decision

as well as partially random. As presented by [Bellman, 1957], a MDP represents a discrete

time stochastic control mechanism that satisfies the Markov property3. Over time, multiple

extensions for MDP emerged. These include Partially observable Markov decision process

(POMDP) [Spaan, 2012], Constrained Markov decision processes (CMDP) [Altman, 1999],

Continuous-time Markov Decision Process [Guo and Hernández-Lerma, 2009].

MDP has a large applicability. In industry, the applications include the modelling water reser-

voirs [Lamond and Boukhtouta, 2002], design and maintenance support for traffic systems [Ro-

belin and Madanat, 2007, Zhang and Gao, 2012], etc. MDP was also used in finance to model

stock markets in order to maximize investors profit [Schäl, 2002]. In (tele)-communications,

MDP has been used to model the management of traffic in core networks [Altman, 2000] as

well as in wireless communications [Djonin and Krishnamurthy, 2007].

One of the largest application of MDP is in computer science. It has been used to design

2Kanban is a scheduling mechanism for lean manufacturing (a management philosophy derived mostly from the
Toyota) and just-in-time manufacturing (methodology aimed primarily at reducing flow times within production,
also derived mostly from the Toyota

3The decision in the current state is conditionally independent of all the previous states and actions.

39

Chapter 3. Formalisms to design systems behavior

algorithms for dynamic programming [Lovejoy, 1991,Puterman, 2014]. In artificial intelligence

and machine learning, MDP contributed to reinforcement learning [Kaelbling et al., 1998],

learning automata [Barto and Anandan, 1985], etc. Game theory is another area of applicability

of MDP [Liggett and Lippman, 1969].

In robotics, MDP has been used for planning and control of robotic navigation [Christensen

and Pirjanian, 1997], in the process of planning the robotic missions [Theocharous et al., 2001]

as well as in unmanned vehicles [Bagnell and Schneider, 2001]. MDP has also been used in

the decision making process of robots [Mihaylova et al., 2002]. Furthermore, it has been used

to design entire new robotic architectures [Koenig and Simmons, 1998], etc.

3.3.4 Process algebras

Process algebras represent a family of approaches for formally modelling concurrent systems.

As defined in [Baeten, 2005], the term process algebras refer to the behavior of a system

defined using an algebraic approach [Birkhoff and MacLane, 1948]. In this context, a behavior

represents the composition of all the events and actions that a system can perform. Process

algebras represents a high-level formalism used to model the interactions, communications,

and synchronizations between a set of independent processes or agents [Hermanns et al.,

2002]. They also define methods that allow the manipulation of process description and offer

a mechanism for analyzing the equivalence between processes via bisimulation4 [Bergstra

and Klop, 1986].

In software development, Process algebras has been used at the core of frameworks used in the

design of communication protocols and distributed systems like Construction and Analysis of

Distributed Processes(CADP) [Garavel et al., 2013]. It has also been used in tools for analyzing

system behavior like mCRL2 [Cranen et al., 2013] and in various software applications like

web services [Ferrara, 2004], etc.

Process algebras usage in robotics includes specifications and planning of robotic missions

[Karaman et al., 2009], distributed control architecture for robotics [Petersson et al., 2001] and

definition of robotic behavior [Košecká et al., 1997]

3.4 Timed automata

In this section, we present some detailed background information on timed automata, a

formalism that has been used in the process of modelling and validating real-time applica-

tions as well as in robotic applications. This formalism is later used in this thesis for a new

programming methodology designed for multi-robot applications. The reader will first be

presented with an overview of the model. Then we present some of the different classes of

timed automata focusing on a particular class related to this work before reviewing different

4A bisimulation represents a binary relation between state transition systems

40

3.4. Timed automata

model checking software.

In the later part of this thesis, timed automata will be very useful in the conception phase of

robotic applications using our new development methodology. It is used as the base of the tool-

set to design new robotic behaviors. Our work depends on the closure under intersection used

in the composition of behaviors models of components in order to analyse the reachability

properties of applications running on the entire fleet.

3.4.1 Overview

Defined as an extensions of classical finite state automata [Hopcroft, 1979], a timed (finite

automata) was introduce by [Alur and Dill, 1994] to model of real-time systems. It provides

a simple and powerful annotations of states-transitions timed constrained graphs by using

real-valued clocks [Alur, 1999]. In order to better understand the need of adding time to a

finite state automata, [Alur, 2004] presents the following problem: “A simple light controller

with one button needs to be modelled. When the button is pressed two times with a delay less

than 3 seconds, the light becomes brighter. If the delay is greater than 3 seconds, the light

turns off.”

Off Light Bright
Press Press

Press

Press

Start

(a) Finite state automata

x:=0 x<3

x>=3

Off Light Bright
Press Press

Press

Press

Start

(b) Timed automata

Figure 3.2 – Simple light controller model

Figure 3.2a presents the light controller modelled as a finite state automata. The reader

should notice that the automata is non-deterministic because, when in state l i g ht , after

the press of the button, the transition pr ess can bright the system into both br i g ht or o f f

states. This problem is solved in fig. 3.2b by the introduction of clock x, which transforms the

non-deterministic automaton (fig. 3.2a) into a deterministic timed automaton.

s0 s1 s2
a bStart

x<3, x:=0 x<3

Figure 3.3 – Example of a simple timed automata A

41

Chapter 3. Formalisms to design systems behavior

Definition and properties

The real-life example of the light controller is abstracted into the example of a simple timed

automata A in fig. 3.3. The automata A can be considered as a finite state automata because it

presents three locations (s0, s1 ,s2) of which s0 is the initial state and s2 is an accepting state.

The automata A has also two possible transitions over the alphabet
∑ = {a,b}, thus A can

recognized only a · b as an accepting word.

What differentiate the sample automata A from a finite state automata, is the presence of

timing conditions over a clock x which is a continuous variable over the set of real-valued

numbers R≥0. A is recognizing the timed word a · b only if the transition from s0 towards

s1 is done in less than three time units and the transition from s1 towards s2 is also done is

less than three time units. Initially, the clock x is set to 0, evolving synchronously as time

advances, in the state s0 and it is reset to 0 when the automaton switches from state s0 to

s1. A timed automaton can have an elastic number of clocks and any transition can reset an

arbitrary number of clocks. The time constrains that validate or invalidate labeled transitions

are called guards. A guard allows or not a transition to be executed depending on the result of

the boolean function represented by the guard. In the automata A, the clock x is used in the

guard of both transitions so that a or b cannot be recognized after more than 3 times units

elapsed in state s0 or s1.

Time always progresses. In the case of the timed automata, time evolves in the states, while

the transitions are instantaneous. In order to ensure time progress, it is possible to bound

the time elapsed in a state by defining time constrains inside a state called invariants. An

invariant can be used to force a transition to be triggered before its constraint becomes

violated. This ensures that the time can always progress. Furthermore, the progress of time

is always non-negative and this is also visible in the timed words recognized by any timed

automata. A timed word is a sequence of tuples formed by a non-negative real value attached

to a symbol. For example, the A automaton can recognize the timed word w = (a,1) · (b,2)

where b was recognized after 1 unit of time after a. In general, a timed word over an alphabet∑
is a sequence (a0, t0) · (a1, t1) · · · (an , tn) such that ai ∈∑

, ti ∈R≥0 and t0 < t1 < · · · < tn .

In the following definition and explications, the notation used are the same as in [Alur and

Dill, 1994, Alur, 1999].

Definition 1 (Timed Automata) [Alur and Dill, 1994] A timed automaton A is a tuple A =
(
∑

L,L0,L f , X , I ,E) where:

•
∑

is the alphabet,

• L is a finite set of states (or locations),

• L0 ⊆ L is the set of initial states,

• L f ⊆ L is the set of final (accepting) states,

42

3.4. Timed automata

• X is a finite set of clocks,

• I : L →C≺(X) the function that associates an invariant to each state

• E ⊆ L × C (X) × ∑ × 2X × L is a finite set of transitions where e = (l , g , a,r, l ′) ∈ E is a

transition from state l to l’, where g is the guard, r is the set of clock to be reset and a is the

label.

The timed words recognized by a timed automata A is represent by (a0, t0) · (a1, t1) · · · (an , tn)

where ∀i ∈ 1,2, · · · ,n, ai ∈∑
is a symbol of the alphabet and ti ∈R≥0 is the time when ai was

recognized. L(A) represents the timed language of the timed automata A and is the set of all

timed words recognized by A.

Let X be the set of clocks for a timed automata A having its values in R≥0. A clocks valuation

v for X is a function X →R≥0 which maps each clock x ∈ X with the value v(x). RX
≥0 denotes

the notation for the set of clocks valuations for X . C (X) represents the set of clocks constrains

over X and it is formed using an arbitrary number of combinations of atomic expressions x # c

where x ∈ X , # ∈ {<,≤,=, 6=,≥,>} and c ∈Q. The set of the clocks constraints ∈C (X) of the form

x < c or x ≤ c is noted C≺(X).

A clocks valuation v fulfils an atomic expression x # c if and only if v(x) # c evaluates positive.

Using this way, a complete constraint g , formed by an arbitrary combinations of atomic

expressions, can be check if it is satisfied by a clocks valuation v . v |= g represents the clock

valuation v that satisfies g . A clocks valuation v ′ = v + d implies that v ′(x) = v(x) +d ∀d ∈
R≥0 and ∀x ∈ X . Furthermore, given a subset of clocks r ⊆ X , v ′ = [r ← 0]v represents the

clocks valuations that v ′(x) = 0 ∀x ∈ r and v ′(x) = v(x) ∀x ∈ X \ r .

Being an extension of classical automata [Hopcroft, 1979], the union and the intersection of

timed automata are also an extension of classical operators on generic automata. The closure

under both the operands stands from the property of timed automata of being in-deterministic,

supporting more than one location. [Alur and Dill, 1994] has proven that reachability analysis

is decidable, yet PSPACE-Complete [Ponge, 2008].

Semantics

The semantics of a timed automata A is defined by associating an infinite timed Labeled

transition system (LTS) with it. A state of the LTS is a pair (l , v) ∈ L ×RX
≥0 such that l is the

current state in A and v is a clock valuation. The semantics of A = (
∑

L,L0,L f , X , I ,E) is given

by the LTS S A = (S, s0, →,
∑

) where:

• S = L× RX
≥0,

• s0 = (l0, v0) where l0 ∈ L0 and v0 = 0 ∀ x ∈ X ,

• → is the transition,

43

Chapter 3. Formalisms to design systems behavior

s0
{x=0} s1 s2

a bStart

s0
{x=0.3}

s0
{x=2}

s1
{x=0}

a

s2
b

0.3

s1 s2

a b

…

x=0
s2

b

s1
{x=2}

2

time transition
action transition

Ti
m

e
ev

ol
ut

io
n

t=
0

Figure 3.4 – The LTS associated with the timed automaton in fig. 3.35

•
∑

is the alphabet of A.

There are two types of transition ins S A :

• action transition - a state can change due to a location change

(l , v)
a−→ (l ′, v ′) ⇔ ∃ e = (l , g , a,r, l ′) ∈ E such that v |= g , v ′ = [r ← 0]v and v ′ |= I (l ′)

• time transition - a state can change due to elapse of time

∀ d ∈ R≥0, (l , v)
d−→ (l , v +d) ⇔ v +d |= I (l)

Figure 3.4 presents the semantic LTS S A of the timed automaton A presented in fig. 3.3.

(s0,0)
0.3−→ (s0,0.3)

0.1−→ (s0,0.4)
1.6−→ (s0,2)

a−→ (s1,0)
2−→ (s1,2)

b−→ (s2,2) is a valid execution

of the S A . The timed word recognized is (a,2) · (b,4) of the timed language L(A). S A starts from

an initial state with each clock set to 0. With the time progress, either an action transitions

changing the state of the automaton with the possibility of resetting a subset of clocks or

time transitions allow the synchronous evolution of clocks values. A can recognize an infinite

number of timed words resulted in the execution of the S A from the initial states to final states.

5Based on figure 3.2 from [Ponge, 2008]

44

3.4. Timed automata

3.4.2 Classes of timed automata

Multiple extensions and classes of timed automata have been studied. In this subsection, we

focus on the classes that were mostly related to modelling robotic behavior and is used in the

later contributions. Interesting contribution are presented in [Tripakis, 2003], [Ouaknine and

Worrell, 2004], [Alur and Madhusudan, 2004] or [Bouyer and Laroussinie, 2010].

Deterministic timed automata

Defined by [Alur and Dill, 1994], the class of deterministic finite automata narrows the defini-

tion of a timed automata because:

• It allows only for a single initial state.

• It imposed that if two transitions from the same state have the same input symbol,

then the guards associated with this transitions need to be disjoint. In this case the

determinism of the transition is maintained.

Both the automate in fig. 3.2b and fig. 3.3 are deterministic. In the case of fig. 3.2b, the reader

should notice that, even the symbol is identical for the transitions from state “light”, the guards

are disjoint. This class can be used in the design of behavior models for robotics because the

result of a recognized word (a behavior in the robotic context) is the same given the same

conditions, only the value of clocks changes.

Event-recording timed automata

Proposed by [Alur et al., 1999], event-recording timed automata is a particular class of timed

automata, where each input symbol of the alphabet is associated with a clock. The specificity

of this class stands from the fact that when a symbol is recognized, the corresponding clock is

reset to 0. Even if the guards can be composed of several clocks, only the clock corresponding

to the action transition can be reset.

This restriction of this class makes the values of clock tight to the input word recognized. Fur-

thermore, an in-deterministic event-clock automaton can be translated into a deterministic

automaton. This is not the case for any generic timed automata [Alur et al., 1999]. This class

can be used to design behavior models for robotic fleet that react on signal (symbols) from

various sensors, actuators and environmental surroundings.

Figure 3.5 presents a transformation of the example in fig. 3.2b form a general timed au-

tomaton into an event-recording timed automaton. The reader should notice that, since the

alphabet only has one symbol (Press), only one clock is present (xPress). This clock is reset at

every transition.

45

Chapter 3. Formalisms to design systems behavior

Off Light Bright
Press Press

Press

Press

Start

xPress:=0 xPress <3 ; xPress = 0

xPress > 3 ; xPress = 0

xPress:=0

Figure 3.5 – An example of event timed automata corresponding with the timed automaton in
fig. 3.2b

.
Other classes of timed automata

Some classes or extensions of time automata worth mentioning are:

• Robust automata - this class of timed automata allows time words to be recognised with

a certain error measuring interval for the value of the clocks, which correspond better to

real physical system. Their timed languages expressiveness cannot be compared with

one timed language. [Alur and Madhusudan, 2004]

Figure 3.6 presents a transformation of the example in fig. 3.2b form a general timed

automaton into a robust timed automaton. The dx present in each state signifies the

interval of error (e.g. for state Off is +/- 3 times units) for the clocks value when the

transition(s) from this state is performed.

Off
dx = 3

Light
dx = 1

Bright
dx = 2

Press Press

Press

Press

Start

x:=0 x <3 ; x = 0

x > 3 ; x = 0

x:=0

Figure 3.6 – An example of robust timed automata corresponding with the timed automaton
in fig. 3.2b

.

• Silent transitions - Silent transitions correspond to the internal communications or

internal states changes of a timed automata state. In timed automaton, silent transitions

can be used to model discrete-time behaviors embedded in continuous time.

Figure 3.7 presents a transformation of the example in fig. 3.2b by adding the silent

transitions ε. The ε transition corresponds with an internal silent transition in the

46

3.4. Timed automata

Off Light Bright
Press Press

Press

Press

Start

x:=0 x <3

x:=0

ε- check internal status x > 3

Figure 3.7 – An example of silent transition corresponding with the timed automaton in fig.
3.2b

.

state Off, where the module (in our case, the lamp) checks its internal components for

dysfunctions.

3.4.3 Software tools

In order to verify that a (timed) automata model corresponds to the specifications of the system

modelled, the notion of model checking has been introduced. It allows to test properties of

the system against the model version of the system. A Model checker, represented in fig 3.8

as a black box, has as input the model of the system and the property to verify and outputs a

boolean that shows if the property is satisfied and, optional, a trace of errors if the property is

not satisfied.

Model checker

Model

s1
s2

s3
s4

Property

true - satisfied
false - unsatisfied

error trace

Figure 3.8 – Model checking principle

Even if a model checker dose not classify the properties to be verified, them can be regrouped

into:

• Reachability properties specify if a property can possibly be satisfied by the model (e.g

the light can be brighter).

• Safety properties specify that "bad" things will never happen in the model (e.g the light

cannot stay off for more than 24h hours).

• Liveness properties specify that "good" things will eventually happen in the model (e.g

pressing the button will trigger the light to turn on).

47

Chapter 3. Formalisms to design systems behavior

Temporal logics

The properties used in the model checkers usually are written as form of temporal logics.

Temporal logic focuses on the qualitative time properties rather than quantitative ones. Take

the example in fig. 3.2b, a temporal logic can verify the succession of events (e.g. When the

button is pressed and the light is off, the light will turn on). On the other hand, it cannot verify

the quantity of events (e.g. When the button is pressed twice in less than 3 time units, the

light will turn brighter). The main purposed of temporal logics is to verify if there exists a path

between the state that will satisfy it. A detailed survey of timed temporal logics can be found

in [Bouyer, 2009].

It exists two branches of temporal logics:

Linear-time temporal logics - that allows the verification of the formula over a single time

line. The most common temporal logic in this category is Linear temporal logic (LTL)

[Pnueli, 1977]. In the base form, it supports only qualitative time properties. In order to

extend these properties for quantitative time, [Koymans, 1990] proposes Metric temporal

logic (MTL) (with its extension Metric interval temporal logic (MITL) [Alur et al., 1996],

Safety metric temporal logic (Safety-MTL) [Ouaknine, 2007] and Flat metric temporal

logic (Flat-MTL) [Ouaknine and Worrell, 2005]) and [Alur and Henzinger, 1994] proposes

Timed propositional temporal logic (TPTL).

Branching-time temporal logics - that allows the verification of the formula over several

branching time line. The most common temporal logic in this category is Computational

tree logic (CTL) [Clarke et al., 1986]. One extension of CTL work mentioning is Time

computational tree logic (TCTL) [Henzinger et al., 1994].

Model checkers

It exists a large number of model checkers. They differ from the classes of timed automata

used as models as well as from the branch and type of temporal logics used for expressing the

properties and query the model. We briefly introduce the main tools and focus on the UPAAL,

which is later used in the contributions.

Most of the tools are using branching timed temporal logics due to the decidability of the

model checking. Kronos [Bozga et al., 1998] is s a model checker that support analysis of a

multiple communicating timed automata. It is one of the few model checkers that uses generic

timed automata. Tempo [Sorea, 2001] is a model checker for event-recording timed automata.

Timed COSPAN [Hardin et al., 1996] was developed at Bell Labs and uses an approximation

of continuous semantics as one of its heuristics. HyTech [Henzinger et al., 1997] is a model

checker that uses a hybrid automata 6 [Alur et al., 1997] as model and an extension of TCTL as

temporal logics called ICTL.

6An hybrid automata includes both continuous (e.g., variables in R) and discrete behavior (e.g., variables inN)

48

3.5. Conclusion

Figure 3.9 – UPPALL screen-shot

UPPAAL is a model designer and checker tool emerged from an academic research prototype

to a commercial product. UPPAAL, as for HyTech, uses an hybrid extension of timed automata

as a model and TCTL as a query language to express properties. It can be used to describe

systems that can be modelled as a collection of non-deterministic processes with finite control

structure and real-valued clocks, communicating through channels or shared variables. It

used typically for application that timing aspects are critical like real-time controllers, com-

munication protocols (fig. 3.9 shows the timed automata of a discovery protocol, part of

our contributions, designed in UPPALL). It has been used in several industrial studies7 like

: [Iversen et al., 2000], [Lindahl et al., 2001], [David et al., 2003], [Hessel and Pettersson, 2004]

or [Ravn et al., 2011].

As for our knowledge, UPPAAL is the only mature model checker project that has extensible API

and can be integrated as external library with other projects. This key aspect was considered

when choosing UPPALL as the model checker for our contributions.

3.5 Conclusion

In this section, we have presented a development approach to design and develop new soft-

ware components called MDD. It was presented a series of classical formalism to design

software behavior and their applications in robotics. We have focused on a particular formal-

ism called timed automata.

As show above, models have been used as a starting point into developing robotic software

and architectures. We believe MDD can also be applied in robotics, to allow an automated

translation from models to software components.

This chapter ends the first part of this thesis related to the state of the art in (robotic) middle-

7 (A detailed list can be found at http://www.it.uu.se/research/group/darts/uppaal/examples.shtml).

49

Chapter 3. Formalisms to design systems behavior

ware and formalism and methodology to design (robotic) system behavior. We have focused

on ROS, which became a largely accepted middleware for robotics, on MDD approach to

develop software components and on timed automata formalism. Robotic applications are

tight to real-time systems. It is clear that time is an important component in modelling robotic

software. Furthermore, we have chosen timed automata as formalism applied to MDD be-

cause it allows time to be considered in the modelling phase of a robotic application and it

provides a powerful mathematical tool-set for model checking.

In the next part of the thesis, we present our contributions. We begin with a protocol for

service discovery in robotics modelled using timed automata. This protocol will be integrated

with a tool-set designed to develop ROS based applications using a model based programming

methodology, presented in the following chapters. This programming model applied the

concepts of SOA and MDD.

50

Part IIModel driven multi-robot
applications development

51

4 Service discovery for robots

This chapter presents a protocol for service and neighbors discovery, called

Service Discovery for Robots, in the context of highly mobile fleet robots and

evaluates several variants of its implementation.

4.1 Objectives and motivation for fleet service discovery 53

4.2 Limitation of existing service discovery protocols 54

4.3 Definition of SDfR protocol . 56

4.4 Evaluation of SDfR overhead with robots . 68

4.5 Summary . 81

4.1 Objectives and motivation for fleet service discovery

In order to cooperate inside the fleet and be able to share data, the robots need to know with

which peers they can exchange data, how to manage the communications and what are the

services offered by their peers.

New applications that are operating in a multi-robot context are generating multiple layers

of complexity into the robotic development. This chapter focuses on a central need of fleets

of robots: how to allow them to be aware of connected neighbors and their services using

the network interfaces. Combining component and service-oriented programming greatly

simplifies the implementation of highly-adaptive, constantly-evolving applications [Frénot

et al., 2010]. We think robots should advertise their functionality as services in order to

allow other members of the fleet to interact with them. Furthermore, robotic fleets need an

automated mechanism that allows for an ad-hoc network to be automatically provisioned.

53

Chapter 4. Service discovery for robots

In order to solve the problem of neighbors and service discovery in an ad-hoc network, a robot

needs a protocol that is able to constantly discover new robots in its coverage area, while

maintaining a neighbor connectivity quality indicator. Since there is not any central node

that can manage IP address allocation, the protocol should be able to negotiate an IP address

inside the network and to have a conflict management tool in case of an IP collision.

In the robotic context, this chapter contribution proposes to adapt Simple Service Discovery

Protocol (SSDP), a well-known network discovery protocol in order to allow robots to discover

their connected neighbors, their services and their capabilities in any IP based Wifi infrastruc-

ture. Discovery protocols are highly used nowadays in most of the connected devices. To take

into account the mobility of robots, we change a series of fields in the messages headers as

well as add a memory mechanism to limit consumed bandwidth. This proposal is validated

using experimental benchmarks on multiple scenarios with a various number of Turtlebot 2.

The chapter is structured as follows: Section 4.2 discusses limitation of existing service discov-

ery protocols if applied into robotics, Section 4.3 defines a proposal for service discovery in a

fleet context, called Service Discovery for Robots (SDfR). Section 4.4 evaluates the protocol via

a series of benchmarks and Section 4.5 concludes the chapter.

4.2 Limitation of existing service discovery protocols

A way to see a fleet of robots is like a service-oriented multi agent system. Such environments

like Peer to peer (P2P), Multi-Agent Systems (MAS) or Service-Oriented Environments (SOE)

tend to approach the problem of service discovery in a centralized, distributed or decentralized

way:

• Centralized mechanisms like super-peers [Gummadi et al., 2002],

middle-agents [Klusch et al., 2006] or central registries [Rompothong and Senivongse,

2003] are limited in number of peers in the system and in terms of number of requests.

They also use a centralized node which can have serious impact if the central point

becomes unreachable.

• Distributed approaches such as Distributed Hash Tables (DHT) [Maymounkov and

Mazieres, 2002] offer more scalability and robustness by having multiple specific nodes

that can manage the resources.

• Decentralized systems consider all the nodes to be equal. This approach provides more

flexibility, but it has its downsides, since each node only has partial view of the entire

system. As mentioned in [del Val et al., 2014], an interesting way to discover service

inside a decentralized and self-organized multi-peer system is to use homogeneity

between agents.

Another way is to apply classical protocols and middlewares for service discovery in distributed

54

4.2. Limitation of existing service discovery protocols

environments like data-grids, clouds or even smart environments.

Universal Plug and Play (UPnP) [Jeronimo and Weast, 2003] represents a service discovery

mechanism that enables network devices to advertise, discover and control their services.

Initially developed by Microsoft, the software stack of the protocol is developed over the IP

in order to facilitate the communication between peers by using a series of standardized

protocols like HTTP for discovery, XML for description and SOAP for control of the services.

The main purposes of UPnP are [Talal and Rachid, 2013]:

Address management UPnP manages the IP address allocation for peers by either requesting

an address from a Dynamic Host Configuration Protocol (DHCP) server on the network

or by assigning a random address to each client. The address conflict detection is then

delegated to the client.

Service description In UPnP, each peer describes via a XML document. This documents

contains the device related information (e.g. model, serial number, position, etc.) as

well as a list of available services on the peer. Each service is described via a URL that is

also included in the list.

Service control Based on the retrieved service description, the control manager can invoke

remote services via control messages to a specific URL. This messages are sent via SOAP

protocol.

Events management In UPnP, the peers can receive notification including update of services

or status of other peers. A service that wants to publish an update will send an event

messages formatted with General Event Notification Architecture (GENA) via a XML

message.

Discovery The discovery protocol of UPnP is based on SSDP which allows UPnP ready device

to advertise their presence and their services as well as to discover other peers’ services.

It uses a series of multicast messages [Jeronimo and Weast, 2003]. SSDP operates on the

top of the existing open standard protocols, using HTTP and User Datagram Protocol

(UDP). The main disadvantage of SSDP is the absence of a attribute-based querying

mechanism for services [Ververidis and Polyzos, 2008].

In a centralized infrastructure, all the robots can have a complete image of their neighbors

and can use classical Service Discovery Protocol like UPnP [Ahn et al., 2005] that manages into

a repository all the services published by other members of the fleet.

In the robotic world, an approach for service discovery in centralized networks could be to

use classical UPnP protocol. Since the concept of having the robotic tasks and processes

as services is not mature yet, the main focus on research on service discovery in robotics is

oriented toward the integration with the environment where the robot is considered only as

one device, part of the smart environment. In [Borja et al., 2013] provides a case study of

55

Chapter 4. Service discovery for robots

integration of service robots and smart-homes via UPnP. In these cases, the authors are not

referring to a robot as part of a specific fleet, but as part of an environment, in which the robot

is considered as an entity that can offer services. This point of view is slightly different in

case of a robotic fleet [Ververidis and Polyzos, 2008], where robots are composed of multiple

services that need to be discovered by the other members.

Decentralized systems (e.g UPnP [Ahn et al., 2005], Jini [Pereira et al., 2011] or Service location

protocol (SLP) [Romero et al., 2010]) can be a purely distributed solution where each node

stores its own service repositories or a hybrid solution that includes super-nodes that aggregate

information from other peers.

The solutions presented above have their downsides if applied to ad-hoc multi-robot systems.

Firstly, due to the mobility of the robots, the network connection is highly unstable. UPnP

discovery protocol, SSDP, does not perform the same way in a highly mobile environment

as in a static one due to the mobility of the robots. As mentioned in [Issarny et al., 2011],

the challenge is to set the tradeoff between physical mobility and scalability. The discovery

protocol should be ready to be used at any time and track its usage and failures. Secondly,

existing protocols are not very adaptive in terms of same user connection/disconnection from

the IP network. If a robot moves out of the communication area, SSDP protocol needs to wait

unit a time-out is reached in order to remove the robot from the neighbors list. This may

cause other robots to requests services that are out of their communication area, resulting in

failures. Existing protocols like SSDP, do not remember already connected nodes, thus, when

the connection is timed-outed, the discovery process is reinitialized. When the robots rejoin

the network, the discovery process of its services is re-triggered in multicast, thus flooding the

network with the same messages as the previous discovery step.

4.3 Definition of SDfR protocol

This contribution main goal is to propose a mechanism that allows highly mobile robots to

keep track of the reachable peers inside a fleet while using an ad-hoc infrastructure. This

mechanism is able to provide a list of services available on each peer. Another objective is to

propose a network configuration negotiation protocol, because due to the mobility of robots,

classical peer to peer network configuration techniques are not suitable.

This section presents the general description of a service discovery protocol for robotic appli-

cations, called Service Discovery for Robots (SDfR). Based on this description, the evaluation

section presents a comparison of different variations of SDfR by combining a series of binary

and text-based protocols in the different layers of SDfR.

56

4.3. Definition of SDfR protocol

4.3.1 SDfR as a derivate of SSDP

The contribution proposes a protocol that is not flooding the network and has an already

seen memory feature build-in. SDfR protocol is a highly dynamic, adaptive and scalable

protocol adapted from SSDP that is being used in UPnP. The main advantage of deriving from

SSDP is represented by the possibility of interconnections with already deployed devices and

architectures. SDfR can be also used to provide service discovery with the smart-environment

in which the robots are being deployed. Having an identical messages exchanges diagram

(shown in fig. 4.1), the interoperability between SDfR and SSDP ready devices is supported.

R1 R2 Rn…
Discovery
Discovery

Update
Update

Alive
Alive
Alive

Byebye

Byebye

……

………
Figure 4.1 – SSDP and SDfR protocol timed diagram.

In order to limit the network use for the service discovery process, SDfR is sending most of the

internal messages in multicast1, avoiding the overhead generated by unicast2 transmission in

order to propagate the same message. In addition, in order to avoid failure in case of a discon-

nection due to the movement of the robots outside the coverage area, all the communications

are done using UDP. Furthermore, to limit the network flooding when the protocol needs

information from just one robot, a second transmission is enabled in unicast 2 mode. SDfR

does not need to reinitialize the entire discovery protocol when the connection is lost, because

it disposes of a history map of all the already seen robots and their services.

In order to avoid services that are out of reach (e.g. service of robots that are present in the

history map but are not present in the covered communication area), a connection indicator

is computed for each robot represented by the success rate of pinging the connected peers.

1In networking, multicast refers to a mechanism to address the same information simultaneously to a group of
nodes.

2In networking, unicast refers to a mechanism to address the information to a single node.

57

Chapter 4. Service discovery for robots

As shown in fig. 4.2, SSDP and SDfR are based on a similar automaton. Figure 4.2a shows the

main automaton that uses only multicast transmissions, that are being reused in fig. 4.2b in

order to maintain the retro-compatibility with SSDP. However, the SSDP native automaton

has its downsides when applied to a highly mobile ad-hoc robotic environment because it

uses a request-response model and it only sends multicast messages. This mechanism can

generate a significant overhead on the network, making it unreliable for other robotic usages.

Both protocols propose:

Multicast transmissions In order to avoid the overhead of re-transmitting the same unicast

message, most of the internal messages are multicast and uses the same timed diagram

as SSDP (fig. fig. 4.1).

HTTP-style messages The messages that are being sent use an HTTP-style structure com-

posed of headers and a body.

In Section 4.3.3, different protocol versions in the SDfR protocol layer are proposed. The

text version protocol is represented by the actual HTTP message equivalent to the SSDP

message. The binary version protocol represents an encapsulation of the HTTP message

inside a compressed binary stream.

Differences between SSDP and SDfR

The main differences between SSDP and SDfR are:

Limited multicast transmissions To avoid failure in case of a disconnection due to the move-

ment of the robots outside the coverage area, all the communications in SDfR are done

using UDP and only in request mode.

Unicast transmissions SDfR add to the SSDP protocol a new mechanism (see fig.4.2b) that

sends only unicast messages. To limit the network flooding when the protocol needs

information from just one robot (e.g. a "Alive messages" arrived from a robot that has

just entered the communication area of a peer), a second transmission mechanism is

enabled in unicast mode in SDfR.

History map SDfR does not need to reinitialize the entire discovery protocol when the con-

nection is lost, because it disposes of a history map of all the already seen robots and

their services. In order to avoid services that are out of reach (e.g service of robots

that are present in the history map but are not present in the covered communication

area), a connection indicator is computed for each robot. This feature also plays an

important role in deciding in the type of transmissions used when a robot reenters the

communication area of its peers. fig. 4.2b shows a state where the protocol checks in

the history map if the robot has already been seen and decides if the message is sent in

unicast or multicast.

58

4.3. Definition of SDfR protocol

Closed

Wait for
timer

Listen for
messages

Listen for
command

Process
Alive

request

Process
Bye

request

Process
Discovery
request

Process
Update
request

Send Discovery msg
Multicast

Wait for external commands

Wait for internal counter

Received Discovery msg
Multicast

Received ByeBye msg
Multicast

Received Alive msg
Multicast

Received Update msg
Multicast

Send ByeBye message
Multicast

Update
neighbors

table

Send Alive msg
Multicast

Send Update msg
Multicast

Neighbour info

Neighbour info

Table updated

Send Update msg
Multicast

(a) SSDP automaton

Closed

Wait for
timer

Listen for
messages

Listen for
command

Process
Discovery
request

Process
Alive

request

Process
Bye

request

Process
Discovery
request

Process
Update
request

Process
Update
request

Send Discovery msg
Multicast

Wait for external commands

Wait for internal counter

Received Discovery msg
Multicast

Received ByeBye msg
Multicast

Received Alive msg
Multicast

Received Discovery msg
Unicast

Received Update msg
Unicast

Received Update msg
Multicast

Send ByeBye message
Multicast

Update
neighbors

table

Send Alive msg
Multicast

Send Update msg
Multicast

Neighbour info

Neighbour info

Neighbour info

Table updated

Send Update msg
Multicast

Send Update msg
Unicast

Check if
neighbour
is known

Neighbour info

Neighbour info
Received Discovery msg

Unicast

(b) SDfR automaton.

Figure 4.2 – SSDP and SDfR differences (represented in orange) 59

Chapter 4. Service discovery for robots

4.3.2 Protocol model and description

The protocol is designed as a finite state timed automaton. SDfR protocol behavior is defined

by the request method. Each method has at least one type of message that reside inside the

request payload. Two methods representing the desired action of a request are used in SDfR:

M-SEARCH and NOTIFY.

The M-SEARCH method is used for discovery requests to get the list of nearby members and

their services. The only message type associated with this method is Discovery.

The other method, NOTIFY is used to respond to a Discovery request or to inform the others

about changes in the current state of the robot. The message types associated with this method

are: Update, Alive and Byebye.

The Update message is sent as a response to a Discovery request or when the current services

or capacities of the robot change.

The Alive message is sent recurrently, as a beacon, in order to inform the others about the

presence of the robot. The rate to send the beacon can be set depending on the services need.

The default value is at 10s.

The Byebye message is sent when the robot stops gracefully, in order to inform the others

about its disappearance. Fi Figure 4.3 presents a SDfR specific view of the timed diagram in

fig. 4.1. It shows the state changes of the automaton in fig. 4.2 and the message chains that

triggers the state changes.

When the protocol initializes, a discovery multicast message ((1) of fig. 4.3) is sent, and then

the protocol changes state into listen on a multicast as well as on an unicast socket. When the

other robots receive a discovery message, they will respond with an update message ((2) of

fig. 4.3).

When the protocol receives an update message, it passes into an atomic state, Updating

neighbors table and updates their neighbors table. The protocol sends periodic alive messages

((3) of fig. 4.3). When the protocol receives an alive message ((3) of fig. 4.3), it passes into

Check if known state, that determines if the unicast IP of the sender is already known. If so, it

changes into Updating neighbors table, otherwise it will send a unicast discovery message ((4)

of fig. 4.3). The sender of the alive message responds by sending an unicast update message

((5) of fig. 4.3).

If the protocol traps a graceful shutdown, a byebye message ((6) of fig. 4.3) is sent and the

other robots will update their neighbor table.

60

4.3. Definition of SDfR protocol

R1 R2 R3

Update
(2)

Updating
Neighbors

table

Listen

Updating
Neighbors

table

Listen

Discovery
(1)

Alive
(3)

Alive
(3)

Updating
Neighbors

table

Check if
known

Check if
knwon

R3 entering the
communication

area of R1

Listen

Listen

Updating
Neighbors

table

Check if
known

Discovery
(4)

Listen

Listen
Alive
(3)

Listen

Update
(5)

Listen

Updating
Neighbors

table

Listen

Byebye (6)
Byebye (6)

Updating
Neighbors

table

Updating
Neighbors

table

Multicast

Unicast

… …

Figure 4.3 – SDfR protocol timed diagram.

61

Chapter 4. Service discovery for robots

Messages and headers

To better understand the dynamic of the protocol, the following subsection focuses on the

messages and their headers, and on how they differ from UPnP in order to be adapted for

multi-robot systems.

The SDfR version that uses plain-text communication protocol is compatible with UPnP

because it uses the structures of SSDP, the service discovery protocol used in UPnP. This

makes SDfR inter-operable with any smart environment. In Fig 4.4, the fields inside a SDfR

message header is displayed.

Method Location USN

MAN DTYPE DMOB Length

DCAP
hhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhh

Key
Values
Map

Figure 4.4 – SDfR common header.

A full description of the SDfR header can be found below (fields with a + are new):

Location - Location of the device. This field was present in UPnP and was kept for retro-

compatibility with this protocol.

USN - Unique Service Name. The field was present already in UPnP and reused by SDfR.

MAN - Message Type. The field was present already in UPnP and reused by SDfR.

DTYPE+ - Device Type. This represents the type of hardware platform. (e.g. Turtlebot2, PR2,

etc).

DMOB+ - Device Mobility. This new field was added in order to characterise the mobility of a

robot. (e.g. Mobile, Temporary Mobile, Static, etc.).

Content Length - The length of the message content without the header. For transmissions

without any payload, the field is set to 0.

DCAP+ - Device Capacities. It represents a dictionary of keys and values that characterizes

the state of the robot. It can include static information like the CPU frequency or the

memory capacity, as well as dynamic information like the percentage of battery, the

CPU usage ratio, etc. This data is included in every header of the SDfR because the

information sent is highly-dynamic.

62

4.3. Definition of SDfR protocol

All the messages share the same header information, only the payload of the message dif-

fers from one message type to another. There are messages without payload like Byebye or

Discovery.

The main difference between SDfR and SSDP in the message headers is the addition of 3 new

fields: DTYPE, DMOB and DCAP. Another difference is the location field that is always marked

by a ‘*’. In SSDP, the location was used to physically pin point the device like ‘kitchen-fridge’,

but in a fleet context it is hardly the case to have a fix physical location. Furthermore, the USN

from SSDP, which represents the unique name of the service, is replaced with the unicast IP

address of the robot. All the SDfR messages are being sent in multicast, but the robot needs

the unicast address in order to use the information given by the protocol.

Bellow are two examples of SDfR message. First a discovery message is presented.

M-SEARCH
Location:*
USN:10.1.124.134
MAN:ssdp:discovery
DTYPE:Turtlebot2
DCAP:CPU=2.0Ghz|RAM=4Gb|BAT=59%
DMOB:Mobile,
ContentLength:0

The following message is the update message send in response to the previous message

by another robot. In this example, the reader can notice that the DCAP filed specifies that

capabilities of the robot are 2.0Ghz, with GB of ram and the battery level is at 98%. In the same

header, it is specified the that the robot is a Turtulebot2, in the DTYPE field. Furthermore,

in the payload of the message, each service is described by its name as well as a compulsory

auto-description URL. In this example, the URL is 10.1.101.94:8042/auto_description

NOTIFY
Location:*
USN:10.1.101.94
MAN:ssdp:update
DTYPE:Turtlebot2
DCAP:CPU=2.0Ghz|RAM=4Gb|BAT=98%
DMOB:Mobile,
ContentLength:247

{"Services":
[

{
"Name":"P2P Monitoring",
"URL":"10.1.101.94:8042/auto_description",

63

Chapter 4. Service discovery for robots

"Uuid":"3FA2F711-E142-4572-9AF0"
"Metadata":{

"status" : "ok",
"alerts" : "0",

}
}

]
}

4.3.3 Implementation

Service Discovery for Robots is developed as a service itself. The service-oriented architecture

approach for robotic software development is not very wildly used in the robotic community.

The practice in this community is to develop built-in libraries in order to extend software

features.

Robot
code

in C++

Robot
code

in Python

Robot
code

in Java

SDfR service Other
peer

Other
peer

Figure 4.5 – Service oriented architecture in SDfR.

The main advantage of having a service-oriented architecture, as shown in Figure 4.5, is the

compatibility with other robotic services developed in different programming languages and

running over different operating systems. This is a critical feature for a heterogeneous robotic

fleet.

Furthermore, SDfR service can run separately of the other processes on the robot and all the

messages are consumed by instances of the service on multiple robots. If it fails, it would

not affect the other services running on the robot. This sand-boxing also ensures that the

information sent by the protocol is not corrupted by any other third-parties.

64

4.3. Definition of SDfR protocol

SDfR service is composed of two layers as shown in Figure 4.6: an API layer that communicates

with other services and a Discovery Protocol layer. Each layer has an independent life-cycle

and communicates internally via a shared memory. The API layer responds to requests

independently from the lower layer, using the information from the shared memory. The

lower discovery protocol layer is in charge of communication with the other SDfR nodes on an

elastic number of robots in order to discover the reachable peers and their services.

The SDfR service is implemented in the ‘Go’ programming language [Pike, 2012] version 1.3.3.

Go provides concurrent abstractions and safe memory management, something lacking in

C/C++ and to a certain degree from Python. ‘Go’ can build all-in-one package that does not

have any dependencies since the binary offers static linking for them. Considering all the

dependencies, the executable has still a small size in memory. Furthermore, ‘Go’ allows the

built of cross-platform executable which is an important aspect in deploying SDfR service

across a heterogeneous platform of robots.

API

Discovery protocol

Internal data

Applications

Other SDfR nodes on an
elastic number of robots

Independent lifecycles

n robotic services

m peers

Figure 4.6 – SDfR service architecture.

RESTful communication API

A Representational State Transfer (REST) [Fielding, 2000] web-service was chosen for the API

that lets other services to communicate with SDfR service because it is based on normal HTTP

requests which is completely stateless. A full description of each web-service provided by

SDfR can be found in Table 4.1. All the responses are JSON3 messages.

When a producer wants to register to SDfR Service, it sends a POST request to the API . One of

the parameters that needs to be included is an auto-description URL which is used for other

peer services to negotiate the use of this producer. When the request gets processed by the

API , SDfR will perform a GET request to check if the auto-description URL is working. Only

3JSON is a data format used for asynchronous communication. It is an open-standard human-readable format
formed by attribute-value pair objects. A legacy alternative is represented by XML.

65

Chapter 4. Service discovery for robots

URL Method Description
/me/services GET Returns the registered service list
/me/services POST Registers or updates a service in the

local service list
/me/services/<uuid> DELETE Deletes a local service from the list
/me/capacities GET Returns the capacities of the robot
/me/capacities POST Adds or updates a capacity
/me/capacities/<uuid> DELETE Deletes a capacity
/neighbors GET Returns a full list of neighbors and

full description of their services
/search/capacities/?<value>=[><]<key> GET Filters the list of neighbors for ca-

pacities in the URL query. > < can
be used for comparison and | for
regular expression

/search/services/<name>/?<value>=[><]
<key>

GET Filters the list of neighbors for
services with the specified name
and metadata filters from the URL
query. > < can be used for compari-
son and | for regular expression

Table 4.1 – RESTful API for SDfR protocol.

if this is working, the producer will become register into SDfR. When another service wants

to retrieve information about the services of the neighbors, it sends a GET request to one of

the REST APIs. A JSON message that represents the list of neighbors is generated. Since the

communication between the upper REST layer and SDfR protocol layer is done via a shared

memory, responses are generated immediately, without having to wait for an internal SDfR

protocol transmission.

Ad-hoc configuration management

Since the fleet is operating in an ad-hoc infrastructure, the peers need to be able to negotiate

and auto-configure their network configuration. A robotic fleet ad-hoc network is different

from a classic ad-hoc hot-spot because the robots can move, thus rapidly change position,

and the network can be partitioned or merged. The mobility of the peers needs to be taken

into consideration in the negotiation protocol of the configuration. SDfR service, based on a

simple configuration file, is able to automatically connect to an ad-hoc network. The secured

WiFi network is composed using the fleet id. This mechanism allows to have multiple fleets of

robots in the same networked space. Moreover, the robots can auto assign IP addresses. The

standard network space is 10.<fleet id>.<x>.<y>, where x and y are computed by each robot

from its internal MAC address in order to avoid IP conflict [Thomson et al., 2007]. Furthermore,

if an IP conflict happens, the service has a mechanism to trigger an IP change on the robots.

This mechanism is available all the time since an IP conflict can be triggered by a merge of 2

66

4.3. Definition of SDfR protocol

sub networks.

ROS integration

In order to make SDfR service user friendly, a ROS node that communicates with SDfR service

and can be used by other nodes via topics and services was created. When the node starts,

it launches a instance of SDfR if it is not running and then it provides support for other ROS

nodes to publish or unpublish their services and their capacities. Furthermore, the ROS node

provides the neighbors list of services and is capable of allowing other ROS applications to

search for a specific service with a specific configuration.

A producer node can publish its services or capacities in an asynchronous way using ROS

topics because the registration is not highly bound to time. The same concept applies for the

unpublish commands and for getting the list of neighbors. On the other hand, the search

command for a specific neighbor and their services needs to be done in synchronous way

using ROS services because the behaviors of the consumer node is depending on it.

SDfR alternative implementations

Several variants of SDfR service were implemented in order to better observe their overhead

by using different protocols in both the API layer as well as the internal SDfR protocol layer.

SDfR base variant is derived from SSDP and is designed to maintain a retro-compatibility

with UPnP. This is why in SDfR base variant the messages between peer instances are created

using a HTTP/1.1 like message in plain-text format. SDfR base variant service is piloted using

a REST web-service in order to standardize the control API .

To compare the base variant, different alteration of the protocols used in both the API layer

and internal SDfR protocol layer of the service by switching from text-plain encoding into a

binary encoding were chosen.

API layer Since the API layer was designed as a REST web-service using HTTP/1.1 request, it

is consider encoding the same REST requests /responses in HTTP/2.0. As mentioned

in [Grigorik, 2013], “HTTP/2.0 makes applications faster, secured, and more robust

by enabling efficient multiplexing and low-latency delivery over a single connection”.

This allowed to have a compressed binary channel between the clients and the API .

Furthermore, the API is secured since HTTP/2.0 provides a native TLS encryption.

Besides HTTP/2.0, CoAP is also used because it offers a REST like communication

scheme over UDP and was designed for nodes with low-computation power [Shelby

et al., 2014].

SDfR protocol layer A variant for SDfR is to encode the transmission into binary by using

Protocol buffers because this offers a reduced overhead when sending as binary com-

67

Chapter 4. Service discovery for robots

pressed variant a large number of object types [Google,]. Another way is to include

a widely used protocol in The Internet of things, MqTT, a highly used Wireless Sensor

Network protocol [Thangavel et al., 2014]. It is being used for the lower layer of SDfR

Service as publish/subscribe protocol.

The different variants of SDfR-base protocol for experiments are:

SDfR This is the base variant of the service. The API layer is using a HTTP/1.1 REST web-

service and the lower internal layer is using SSDP like HTTP/1.1 plain-text messages.

The retro-compatibility with UPnP is maintained.

SDfR-binary - This variant keeps the HTTP/1.1 REST web-service but has a compressed

internal communication layer using the binary encoding of the plain-text messages

with Protocol Buffers. The retro-compatibility with UPnP is not maintained.

SDfR-Http2 - This variant encodes the REST web-service in HTTP/2.0 and keeps the SDfR

communication in a pain-text protocol. The retro-compatibility with UPnP is main-

tained.

SDfR-Http2-binary - This variant combines the HTTP/2.0 encoding with the Protocol Buffers

binary messages. The retro-compatibility with UPnP is not maintained.

SDfR-mqtt-coap - This variant simulates the behavior of SDfR service by using CoAP as API

protocol to pilot it and MqTT as publish / subscribe environment in the lower layer. The

retro-compatibility with UPnP is not maintained. The main drawback of this variant is

the use of a central node as MqTT broker.

4.4 Evaluation of SDfR overhead with robots

The evaluation aims to measure what is the CPU , memory and network overload generated

by the use of SDfR in a robotic fleet context. Another objective is to see the impact of using

text-plain protocol in the upper and the lower layer of the SDfR service. This evaluation

includes different combination of text-base and binary protocols based on SDfR in order to

compare important metrics in a multi-robot context. This section provides the bench-marking

scenario and the evaluation results.

4.4.1 Experimental settings

The evaluation of the five variants of SDfR is performed in two types of contexts:

• a static scenario where the robots do not move to evaluate the overhead in an ideal WiFi

communication scheme

68

4.4. Evaluation of SDfR overhead with robots

Nb Robots Pub/Sub ratio Nb pub Nb sub
2 30% 60 140
2 50% 100 100
2 70% 140 60
4 30% 120 280
4 50% 200 200
4 70% 280 120
6 30% 180 420
6 50% 300 300
6 70% 420 180

Table 4.2 – Test-cases for static scenario.

• a real dynamic scenario where robots are moving and transmission can drop.

In both scenarios, all peers should discover their neighbors, but in the second one, the neigh-

bors discovery depends on the distance between peers.

The benchmarks were performed on Turtlebot 2 robots equipped with an Intel Core 2 Duo, 2.1

GHz CPU, 4Gb of Ram PC, WiFi enabled (supporting Ad-Hoc networks) running on Ubuntu

13.04

Each test run was given 5 minutes to collect the data.

In the test runs, simulated services were used that try to register/subscribe into SDfR. Three

type of actions were simulated:

1. Publish. New service providers try to publish via a POST to /me/services/ with a delay

time of 10 seconds. In order to simulate publishers, an Apache server was used on each

robot that responds to the auto-discovery URL of each publisher.

2. Unpublish. Each of the already published service provider could be unpublished with a

random delay between 5 seconds via a DELETE to /me/services/<uuid>.

3. Subscribe. Separated threads for each consumer that perform GET requests on /
neighbors/ were generated. Each thread constantly request the table of neighbors

from SDfR, in order to stress at maximum the protocol.

In the static scenario, different numbers of robots (2, 4, 6) were considered. Each robot had

a total number of service-providers and service-consumers equal to 100 simulated services.

For each number of robots different ratios between providers and consumers were used: 30%,

50% and 70% publishers. Table 4.2 recalls the total number of providers and consumers per

number of robots used.

69

Chapter 4. Service discovery for robots

For each variant of SDfR, 6 robots with a number of 100 simulated services per robot were

used in the dynamic test-case. 70% of the services on each robot were publishers. The robots

moved randomly in a 200 square meters room with poles and other obstacles. The room (see

Fig. 4.7) was exposed to WiFi interference from other networks that occupy all of the 2.4Ghz

channels.

Figure 4.7 – Turtlebots in the experimentation hall.

4.4.2 Functional validation

To perform the bench-marking of the different variants, the various impacts that SDfR variants

have on the system composed by the robots were considered. Firstly, it is important to

consider the request time of a producer that advertises its service and a consumer that requests

information about the services on nearby neighbors. Secondly, the impact on the machine on

which the SDfR runs, especially the CPU and memory used was analyzed. Finally, keeping in

mind that the protocol should not use a large bandwidth, the quantity of sent and received

bytes was studied.

Latency

A robotic application that provides a service for the fleet needs to register with SDfR. This

must be done as fast as possible in order to avoid blocking the service when it starts. Each

provider needs to provide an auto-description URL that allows the consumers to negotiate the

configuration in order to use the service. Since SDfR has to check the existence of this URL,

the registration process is completed only after this step.

In the registration time evaluation, it was measured the time since a registration request

has been made and the time when the response from SDfR has arrived. This includes the

time of the auto-description URL check. On each instance of SDfR registration requests were

70

4.4. Evaluation of SDfR overhead with robots

0 20 40 60 80 100 120 140 160 180
Request time in ms

SDfR

SDfR-Http2

SDfR-Http2-binary

SDfR-binary

SDfR-mqtt-coap

S
D

fR
 v

e
rs

io
n
s

Dynamic
Static

Figure 4.8 – Average request time for publishing a service.

simulated with a delay of 10 seconds per producer.

Figure 4.8 reveals the result of time consumed by a producer to publish its service in the static

and dynamic scenarios.

In the static scenario, when using the SDfR and SDfR-binary variant, it is noticed a time of

response for registration request ranging from 103ms to 109ms. This represents the time of

performing HTTP/1.1 requests. In SDfR-Http2 and SDfR-Http2-binary it is observed a fairly

higher time of response between 118ms and 159ms. This is explained by the time to encode

the request and the response using the built in TLS3.0 encryption method from HTTP/2.0.

The less time consuming is SDfR-mqtt-coap variant because it used a plain-text encoding over

UDP in CoAP protocol. It is noticed that during all the scenarios this response time remains

in the same variation interval regardless the number of robots used because the registration

requests are concluded in local host.

In the dynamic scenario (Fig. 4.8) the latency is higher but the difference from the static

scenario are less than 30%. It is noticed that SDfR-mqtt-coap is still the less time consuming,

but with a higher standard deviation than in the static scenarios. The grouping of SDfR variants

remain the same: SDfR and SDfR-binary that are using plain-text encoding have smaller

response times than SDfR-Http2 and SDfR-Http2-binary. In general, all the response times are

higher than the static scenarios and this can be explained by the increase in computation load

on robots generated by the mobility of the fleet.

In both scenarios, it is notice that the HTTP/2.0 protocol variants have longer response times

than the plain-text variants. Even if the requests are compressed in terms of data sent, since the

request are performed on local-host, the time to encrypt the date is a downside for response

times. The best variant from registration response time is SDfR-mqtt-coap by using the CoAP

71

Chapter 4. Service discovery for robots

protocol.

0 20 40 60 80 100 120 140 160 180
Request time in ms

SDfR

SDfR-Http2

SDfR-Http2-binary

SDfR-binary

SDfR-mqtt-coap

S
D

fR
 v

e
rs

io
n
s

Dynamic
Static

Figure 4.9 – Average request time for unpublishing a service.

Another important overhead measure is the time of unregister request. This happens whenever

a producer wants to remove itself from the SDfR registry. This may occur when a robotic

application gracefully ends or when it recovers after a failure and it needs to register to SDfR.

It is an important metric since the unregister time may affect the run-cycle time of a stopping

or restarting robotic node.

In the evaluation, in each test-run an unregister request for each register provider at a time

interval of 5 seconds is performed. It is measured the time since the request is sent until the

response is received.

Figure 4.9 shows the response time for unregistered request in static scenarios. As for the

registration request, the time was in the same variation interval for all robots in all the scenarios.

The reader can notice the same grouping due to the encoding techniques: SDfR and SDfR-

binary with plain-text protocols and SDfR-Http2 and SDfR-Http2-binary with binary protocols

at the API-level. Also in this case, SDfR-mqtt-coap has the lower response time due to CoAP

protocol. In the dynamic case (Fig. 4.9) the reader can see an increase in the time for each

variant tested as well as an increase in the standard variation interval.

As for the publish request time, the unpublished time is greater for compressed protocols as

for plain-text ones. The same explanation applies here. Furthermore, it is noticed that the

grouping of protocols in binary and plain-text variant is more pronounced in the dynamic

scenario.

One of the most important metric for robotics application from a latency point of view is the

time to request the list of neighbors and their services. In a real scenario, a producer registers

once for its life-time cycle, but a consumer may request multiple times the list of reachable

72

4.4. Evaluation of SDfR overhead with robots

neighbors and services. The subscription response time can have a impact on the time to

complete a fleet task.

In order to stress the protocol, multiple threads based on the number of consumers per robot

are generated. Each thread represents a consumer and all the consumers are parallelized.

Each consumer requests continuously the neighbors list.

The averages values for the static and dynamic scenarios are presented in Fig. 4.10. For the

static experiment, it is noticed a response time for subscription request between 4.5ms and

8.5ms for SDfR and SDfR-binary variants. The time for binary variants is 8ms and 12ms. The

biggest time response was for SDfR-mqtt-coap at an average of 64ms. In the dynamic scenario

(Fig. 4.10) the response times are under 14ms for all SDfR variant except SDfR-mqtt-coap.

Since the request from the consumer in case of HTTP/1.1 and HTTP/2.0 has a small header

(having all the information needed in the URL of the request) it is normal to have a small

response time in both static and dynamic cases. On the other hand, CoAP is using UDP in a

connection-less state and acknowledging each request through a separate connection. It has

a larger response time because requests get re-transmitted due to packet-loss in burst mode.

0 20 40 60 80 100
Request time in ms

SDfR

SDfR-Http2

SDfR-Http2-binary

SDfR-binary

SDfR-mqtt-coap

S
D

fR
 v

e
rs

io
n
s

Dynamic
Static

Figure 4.10 – Average request time for subscribing a consumer.

73

Chapter 4. Service discovery for robots

1 2 3 4 5 6 71 7
Number of robots

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

1.477

9.591

%
 c

p
u
 u

se
d

SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(a) Static with 30% publishers

1 2 3 4 5 6 71 7
Number of robots

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

1.46

7.68

%
 c

p
u
 u

se
d

SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(b) Static with 50% publishers

1 2 3 4 5 6 71 7
Number of robots

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

0.941

5.447

%
 c

p
u
 u

se
d

SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(c) Static with 70% publishers

Figure 4.11 – % of cpu usage.

74

4.4. Evaluation of SDfR overhead with robots

Usage overhead

In robotic applications, the computation power is critical. Fleet of robots are heterogeneous

and can include different types of robots with different computational factor. Having a low

CPU consumption discovery service benefits the other processes involved in performing the

fleet mission.

Figure 4.11 presents the results for % of CPU used during the bench-marking for each SDfR

variant in the static scenario while varying the number of robots and the pub/sub ratio. CPU

consumption varies between 1.7% to 8.4% of CPU usage. It is observed that the CPU usage

evolves linearly to the number of robots. Another interesting fact is that the CPU usage is

reduced if more producers are used. This is explained by the reduction in number of consumes

which are performing burst request in parallel.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
% cpu used

SDfR

SDfR-Http2

SDfR-Http2-binary

SDfR-binary

SDfR-mqtt-coap

S
D

fR
 v

e
rs

io
n
s

Dynamic
Static

Figure 4.12 – % of cpu usage for 6 robots with 70% publishers.

Figure 4.12 presents the evolution of CPU usage for all SDfR variants for both static and

dynamic scenarios for 6 robots using a 70% pub/sub ratio. The usage is between 1.8% and

4.4%. It is observed that the CPU usage is higher for the dynamic scenario because the CPU

time is consumed by the mobility management and the number of CPU slots is less for other

processes.

Unsurprisingly, those results show that the SDfR variants that are using HTTP/2.0 as API layer

protocol have a higher CPU consumption due to the encryption and compression phase while

the plain-text variant have a lower CPU usage. The best result in all the scenario is obtained by

SDfR-mqtt-coap. It can be said also that the CPU usage increased with the number of robots

in the fleet with a rate of maximum 1% per robot.

75

Chapter 4. Service discovery for robots

1 2 3 4 5 6 71 7
Number of robots

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

%
 m

e
m

 u
se

d
SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(a) Static with 30% publishers

1 2 3 4 5 6 71 7
Number of robots

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

%
 m

e
m

 u
se

d

SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(b) Static with 50% publishers

1 2 3 4 5 6 71 7
Number of robots

0.10

0.12

0.14

0.16

0.18

0.20

0.22

%
 m

e
m

 u
se

d

SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(c) Static with 70% publishers

Figure 4.13 – % of memory usage.

76

4.4. Evaluation of SDfR overhead with robots

Besides the CPU usage, another critical resource in fleets of robots is the memory. As an

example, robotic fleets may include visual sensors like 3d cameras which are in high demand

of memory. A service discovery protocol needs to have a low usage of the robot memory.

A memory usage evaluation for all of SDfR variants was performed. Figure 4.13 shows the

percentage of the memory used for static scenarios. For the HTTP/2.0 protocols the memory

used tends to be constant to the number of robots used, but higher than the SDfR plain-text

API protocol variants. Furthermore, the protocols that use a binary compression for the lower

layer of the service have an increase memory usage. Figure 4.14 presents the results for both

static and dynamic scenarios with 6 robots with 70% pub/sub ratio. It is noticed that the

differences in memory usage between scenarios is less 1% of the total memory of the robot.

0.00 0.05 0.10 0.15 0.20 0.25
% mem used

SDfR

SDfR-Http2

SDfR-Http2-binary

SDfR-binary

SDfR-mqtt-coap

S
D

fR
 v

e
rs

io
n
s

Dynamic
Static

Figure 4.14 – % of memory usage for 6 robots with 70% publishers.

Network overhead

In a fleet context, the communication between peers in ad-hoc network are very sensitive.

The transmissions can be unreliable due to the mobility of the robots. This is why the network

overhead needs to be as limited as possible in order to allow services to exchange information.

The network overhead generated by the different variant of SDfR was analyzed.

The measurements include the average of transmitted and received bytes per robot in a test

run of 5 minutes. To increase the quality of the measurements, intermediary check-points for

each metric at each 10 seconds were used.

77

Chapter 4. Service discovery for robots

1 2 3 4 5 6 71 7
Number of robots

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

220.0

33.0

240.4

 T
ra

n
sm

is
si

o
n
 K

ilo
B

y
te

s
p
e
r

ro
b
o
t

in
 5

 m
in

u
te

s

SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(a) Static with 30% publishers

1 2 3 4 5 6 71 7
Number of robots

50.0

100.0

150.0

200.0

250.0

300.0

35.3

317.4

 T
ra

n
sm

is
si

o
n
 K

ilo
B

y
te

s
p
e
r

ro
b
o
t

in
 5

 m
in

u
te

s

SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(b) Static with 50% publishers

1 2 3 4 5 6 71 7
Number of robots

50

100

150

200

250

300

350

33

384

 T
ra

n
sm

is
si

o
n
 K

ilo
B

y
te

s
p
e
r

ro
b
o
t

in
 5

 m
in

u
te

s

SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(c) Static with 70% publishers

Figure 4.15 – Average number of kilobytes transmitted per robot in 5 minutes.

78

4.4. Evaluation of SDfR overhead with robots

Figure 4.15 presents the quantity of transmitted kilobytes per robot on each test-case in static

scenarios. The number of bytes varies from 55 kilobytes for 2 robots with 30% providers to 320

kilobytes for 6 robots with 70% providers. This remains very limited considering the time of

5 minutes. Figure 4.16 compares the dynamic with the static scenario for 6 robots with 70%

providers.

0 100 200 300 400 500 600 700
Transmission KiloBytes per robot in 5 minutes

SDfR

SDfR-Http2

SDfR-Http2-binary

SDfR-binary

SDfR-mqtt-coap

S
D

fR
 v

e
rs

io
n
s

Dynamic
Static

Figure 4.16 – Average number of kilobytes transmitted per robot in 5 minutes with 70% pub-
lishers using 6 robots.

It is noticed that the use of binary protocols with Proto Buffers in the lower layer of SDfR

can reduce the quantity of transmissions up to 50%. An interesting behavior is showed by

SDfR-mqtt-coap variant when the number of robots increase to 6. Since this variant is using a

MqTT broker on a central peer, the increase in number of robots generates packet loss and

re-transmission which increases the quantity of kilobytes sent. More interesting, the fact of

having this central point has a significant impact on the dynamic scenario since the quantity

of kilobytes sent explodes to almost 700 kilobytes (Fig. 4.16). Under all circumstances, the

quantity of kilobytes sent is less than 160 kilobytes/minute/robot which is reasonably for an

ad-hoc WiFi network.

Figure 4.17 presents the average quantity of kilobytes received by a robot in 5 minute in the

static scenario. As for the quantity of transmitted kilobytes, there is a correlation between it and

the protocol used at the lower layer of SDfR. The quantity of kilobytes received is proportional

with the number of robots and with the quantity of kilobytes sent by each robot.

79

Chapter 4. Service discovery for robots

1 2 3 4 5 6 71 7
Number of robots

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

32.9

903.5

 R
e
ce

p
ti

o
n
 K

ilo
B

y
te

s
p
e
r

ro
b
o
t

in
 5

 m
in

u
te

s

SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(a) Static with 30% publishers

1 2 3 4 5 6 71 7
Number of robots

0

200

400

600

800

1000

35

1150

 R
e
ce

p
ti

o
n
 K

ilo
B

y
te

s
p
e
r

ro
b
o
t

in
 5

 m
in

u
te

s

SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(b) Static with 50% publishers

1 2 3 4 5 6 71 7
Number of robots

0

200

400

600

800

1000

1200

1400

1600

35

1664

 R
e
ce

p
ti

o
n
 K

ilo
B

y
te

s
p
e
r

ro
b
o
t

in
 5

 m
in

u
te

s

SDfR
SDfR-Http2
SDfR-Http2-binary
SDfR-binary
SDfR-mqtt-coap

(c) Static with 70% publishers

Figure 4.17 – Average number of kilobytes received per robot in 5 minutes.

80

4.5. Summary

The mobility (Fig. 4.18) has a great impact on the quantity of kilobytes received with a variation

of more than 66,66% between dynamic and static scenarios for lower layer plain-text variants.

SDfR-mqtt-coap has special behavior since it communicates with the central peer broker

which re-transmits lost packages and it receives more in the dynamic scenario than in the static

one. For the other variants of SDfR, the communication is unidirectional and in multi-cast

UDP and the behavior of the service is not affected by the loss of packages.

0 200 400 600 800 1000 1200 1400 1600
Reception KiloBytes per robot in 5 minutes

SDfR

SDfR-Http2

SDfR-Http2-binary

SDfR-binary

SDfR-mqtt-coap

S
D

fR
 v

e
rs

io
n
s

Dynamic
Static

Figure 4.18 – Average number of kilobytes received per robot in 5 minutes with 70% publishers
using 6 robots.

4.5 Summary

This chapter presented the challenges to define a service discovery protocol for robot fleet

systems. It discussed the limited applicability of existing service discovery protocols in the

context of robot fleets and then, it proposed a new protocol called SDfR that is suitable for

service discovery inside an ad-hoc networked fleet. SDfR includes a two-layer service that

provides neighbors and service discovery in both multi-cast and unicast communications.

It includes a memory map that limits the overhead on the network. We made an extensive

evaluation of different text and binary alternatives to implement SDfR.

The results show that using HTTP/2.0 as binary protocol for the API layer of SDfR increases

the load on the robots as well as the response times. The gain of having a binary protocol

using Proto Buffers in the lower network layer is less significant compared to the benefits of

maintaining the retro-compatibility with UPnP. While the MqTT and CoAP variant performs

better in a centralized context, SDfR with plain-text protocols shows to be a better fit for

robots service discovery in decentralized environments. The results are encouraging, although

benchmarking with a larger number of robots as yet to be made.

SDfR is further used in tooling provided with the timed automata model based programming

methodology contribution detailed in the next chapters.

81

5 ROSMDB: Development methodology

This chapter presents a toolchain, called Robot operating system Model Driven

Behavior (ROSMDB), that provides a MDD over SOA approach to design with

time properties, develop, validate, deploy and monitor multi-robot applications.

5.1 From component services to fleet applications 84

5.2 Modeling component external interactions with timed automata 88

5.3 Validating service compositions . 95

5.4 The ROSMDB toolset . 105

5.5 Summary . 123

The main objective of this chapter is to provide a methodology and a toolset that improve the

process of creating new multi-robot applications. It proposes a software that allows the user to

conceive a model, validate it, develop the code related to the model, deploy, run and monitor

the resultant application inside a fleet of robots.

In our opinion, a robotic application in a fleet context can be designed starting from a behav-

ioral model. We propose a development methodology adapted to multi-robot context which

can be expressed based on the life-cycle of application development, as shown in fig. 5.1. The

process starts with the design phase where each part of the application is modelled using the

appropriate formalism. Next, we introduce a new step in the life-cycle of application devel-

opment where these models are analyzed and verified against predefined properties. Only

after this step has been completed, the development phase can start. Once the application

has been fully developed, it can be deployed and executed inside the fleet of robots. During

the run-time traces of the execution are collected in order to verify again the correct mapping

between the model and the executed code. These traces are then analyzed and verified against

83

Chapter 5. ROSMDB: Development methodology

the same properties. Once the entire process ended, a new iteration can start in order to refine

both the model and the source code used.

We think that this methodology can be automated in order to accelerate the process of devel-

oping new multi-robot application using a MDD over SOA approach. The following sections

argue the software architecture and class of formalism chosen in order to provide such tool.

Design
Model

analysis
and properties

verification

Development

Deployment

Runtime
Monitoring and

feedback
analysis

Figure 5.1 – Proposed robotic application life cycle

5.1 From component services to fleet applications

As already mentioned in section 2.4 of chapter 2, we believe the two most suitable robot

middleware that can be applied to a fleet of robots are ROS and MRDS. Nowadays, these

frameworks are often used for their service-based robotics packages and libraries. Both

frameworks use distributed computing paradigm as their core architecture. These two are,

however, very different: ROS is a open-source framework that is designed to run on UNIX

based devices where MRDS is a Windows based framework supported by Microsoft. However,

both frameworks use the same software architecture paradigm: Service Oriented Architecture

(SOA). The following subsections argues the use of SOA in the services developed with the

toolset proposed in this chapter.

5.1.1 Service oriented architecture as root for model based robotic software de-
velopment

SOA has been used with success in web services [Ponge, 2008]. In that context, SOA is referred

as a collection of paradigms, standards and technologies such as XML, SOAP or Web Services

Description Language (WSDL). In the robotic context, services are the basic blocks of complex

robotic behaviors and applications. This provides sand-boxing for each software component

which renders the robotic application more robust and tolerant to failure and still disposing

84

5.1. From component services to fleet applications

of the flexibility in developing new components. Let’s take an example where a robot needs

to recognize an object while performing a collision avoidance movement. In case of service

failure of the object detection component, if provided with the isolation of the services, the

robot can still move without hitting obstacles.

A robot is a device composed of various sensors and actuators, each with their own micro-

controller as low level processing units. On the highest level, vision processing, mapping and

navigation, speech processing, and behavior selection may require enough resources, thus

dedicated CPUs. All those components are interconnected in a distributed system to form

a robot. Imagine that an object recognition service needs to be written in a programming

language that offers a robust and complex level of computing like C++. Meanwhile, the

collision avoidance service can be written in a prototyping interpreted language like Python.

Each of the two services operates on different computational units. This example consolidates

the need of a SOA because it increases the ability to develop distributed software components

in various programming languages and for heterogeneous target devices.

At fleet level, the robots represent a series of multi-level interconnected processing units. This

implies a large number of different systems that need to exchange data and those exchange

mechanisms are provided by the SOA paradigm. Extrapolating the previous example, a series

of robots can look up for specific objects cooperating together. The movement service in each

robot needs to exchange information in order to avoid robot-to-robot collision. Even inside

of each robot, the movement can be piloted by the detection service. All the exchanges need

a communication infrastructure. The components message exchange mechanisms in SOA

include data transfer via two types of messaging schemes: request/reply, and publish/subscribe,

which is also the case of core components in ROS or MRDS.

SOA can improve performance in any general distributed application that may run on an

elastic number of devices, even on a single CPU node. If the device provides only a single core

processing unit, the runtime of the services is sequential. Its performance is equal or greater

(due to overhead of process changing) than monolithic approach. Using specialised micro-

applications (services) on a single processor machine can improve performance by taking

advantage of parallelism. As CPU speed is reaching its upper boundaries due to overheating

effect, computer engineers are increasing the CPU efficiency by increasing the number of

cores per processor (as shown in fig. 5.2) in order to validate Moore’s law1 [Schaller, 1997].

In fig. 5.2, we can see that the single threaded performance, the frequency and the typical

power have reached an upper boundary due to the overheating of CPU since 2010. But the

performance of CPUs has continued to increase because the number of transistors continues

to increases by increasing the number of core in each unit. With more cores, a larger number

of threads and processes can be run in parallel up to certain limits (e.g. a CPU that manages a

1000 network concurrent connections in 1000 threads has a significant overhead generated by

1Moore’s law is the observation that the number of transistors in a dense integrated circuit doubles approxi-
mately every two years. The observation is named after Gordon Moore, the co-founder of Fairchild Semiconductor
and Intel, whose 1965 paper described a doubling every year in the number of components per integrated circuit,
and projected this rate of growth would continue for at least another decade

85

Chapter 5. ROSMDB: Development methodology

the context switching between the threads). This is also true even for micro-controller robotic

applications [Zhang, 2012].

Figure 5.2 – Computing speed developments 2over the years

Most of nowadays robots are equipped with CPUs that have at least 4 cores that allows at least

two applications to run in parallel. As an example of a simple robotic service, a SLAM can be

composed of two services that run in parallel: one that maps the environment and the second

that controls the movement of the robot. These two services can run in parallel allowing the

movement of the robot to be executed concurrently with the mapping function outside of a

round-robin CPU scheduler.

With the development of grid computing, it turns out that the performances of a single super-

computer is inferior to many slower computers working in parallel [Raicu et al., 2008]. The

elastic number of machines interconnected inside a robotic fleet can allow for an increase in

computational power [Hazelhurst, 2008]. If a complex task can be split in subtasks, it can be

distributed across the fleet in order to accelerate the execution time, thus taking advantage of

the parallel execution of subtasks.

2https://www.nextplatform.com/2015/08/04/future-systems-pitting-fewer-fat-nodes-against-many-skinny-
ones/

86

5.1. From component services to fleet applications

5.1.2 Alternative approach for service oriented architecture

In contrast with SOA, traditional software development process like waterfall3 usually results

in developers working on a single monolithic application. A monolithic architecture implies

that the software is written as one cohesive unit of code whose components are designed to

work together, sharing the same memory space and resources.

The key advantages of monolithic software compared to SOA architecture include:

• The large number of cross-cutting concerns such as rate limiting, security features

(audit trails or Deny of service (DOS) protection), logging, etc. As an example, in the

logging component of a robotic application, the monolithic serial execution of the

software ensures that the order of log messages is equivalent to the sequence of the

code execution. In a distributed service context, the order relies on the synchronization

between nodes as well as the concurrent execution of code.

• Simplified mechanism to bind modules to these cross-cutting concerns since the entire

code is running in the same application. For a SOA, a messaging system is required

to allow services to exchange data asynchronously. In the case of monolithic develop-

ment, inserting new components in robotic application does not require a messaging

framework because the hookups are done at development level and not at runtime.

• Possible performance advantages given by the shared-memory access which is faster

than IPCs. As everything resides inside of a single robotic application memory space,

the overhead of data exchange is none.

However, there are some lurking issues in monolithic approaches:

• Components in monolithic software tend be become tightly coupled with the evolution

of the software. This makes very difficult the isolation of components for purposes such

as independent scaling, evolution or code maintainability. On the other hand, each

service in SOA is a self-contained component that has its own life cycle, allowing for

isolated benchmarking, improving and monitoring.

• Components code reuse is very limited across monolithic applications. Due to its tight

hookups with the main application, modules reuse is limited. In SOA, components can

be easily reused since their connection to the main application relies only on the data

exchange schemes.

• Scaling monolithic applications gets harder with the evolution of software during time

since other components are stacked on top of existing ones. In SOA the code sand-

boxing allows the independent life-cycle of each service.

3The waterfall model is a sequential (non-iterative) design process, used in software development processes, in
which progress is seen as flowing steadily downwards (like a waterfall) through the phases of conception, initiation,
analysis, design, construction, testing, production/implementation and maintenance.

87

Chapter 5. ROSMDB: Development methodology

• Monolithic applications are platform dependent and stack dependent. Usually they

are implemented using a single development stack (i.e. Java or .NET). SOA paradigm

ensures the ubiquity of the software and hardware involved in the robotic application.

Before the acceptance of ROS, monolithic architecture was mostly used in robotics applica-

tions.“[...] For many applications, creating a monolithic entity that can address all aspects of

a problem can be very expensive and complex; instead, creating multiple, more specialized

entities that can share the workload offers the possibility of reducing the complexity of the

individual entities [...]” [Parker, 2008]. In what follows, the entities are denoted as services

inside a SOA approach.

As already mentioned in section 2.2.2, SOA greatly simplifies the implementation of highly-

adaptive, constantly-evolving applications [Frénot et al., 2010]. It also reduces the process of

developing and deploying new robotic applications as well as the execution time of complex

task by taking advantage of task parallelization. Services are platform independent and

they can be described, discovered and composed dynamically. In addition, higher levels

of functionality provided by service-oriented programming reduce the implementation of

redundant software. As a conclusion, SOA paradigm is very suitable to develop model driven

robotic software.

5.2 Modeling component external interactions with timed automata

In mobile robotic fleets, a key feature of each robot is the ability to operate and interact

with a highly dynamic, constantly changing environment as well as with the evolution of

the fleet configuration. A successful method for creating such robotic software that handles

this problem is to use a behavior MDD [Arkin, 1998]. Different elementary behaviors can

be mapped as actions to different inputs from internal sensors or data exchange with other

robots or environment. Combining elementary behaviors can generate more robust robotic

control applications. Some examples of elementary behaviors are: the detection of a target by

an optical sensor which results in the robot movement towards the target or the arrival of a

network message from the fleet leader resulting in the task execution. This type of modular

behavior approach, combined with SOA in a MDD offers the robotic application the possibility

of using decentralized controlling modules mapped to specific tasks. This concept of using

model base service composition has been already applied for dynamic environments in tools

like Apache Felix iPOJO [Chollet et al., 2015]. Combining the ideas from the field of distributed

artificial intelligence exposed by [Ferber, 1999] with the fleet robotic behavior based software,

the application can be divided in subparts significantly simplifying the process of design and

development. This also allows new behaviors to be easily added to the system.

As already mentioned in section 2.4 of chapter 2, nowadays multi-robot applications are

mostly based on distributed computing paradigm that enables subsystems (e.g. nodes in ROS)

to perform dedicated tasks. A first layer of complexity is represented by the task execution

88

5.2. Modeling component external interactions with timed automata

code itself. All those subsystems are communicating with each other in order to exchange data

and execute behavior control, thus adding an inside robot communication layer of complexity.

At the fleet level, a third layer of complexity is added by the inter-robot communications.

These layers of complexity in multi-robot distributed computing application make a software

hard to debug at both development (code compilation) and monitoring (runtime), even if the

general behavior model is simple.

One of the objectives of this chapter is to provide the user with a novel methodology to

design the robotic fleet application using MDD by first designing the general robotic behavior

as composition of elementary tasks. It provides a way to analyze if the interconnections

between the elementary blocks do not violate specific guards and if the model is correct in

both developing phase and monitoring at runtime.

5.2.1 Motivating example

Modelling robotic behaviors appears in countless scenarios. The reader is shown here two

examples of robotic fleet application where modelling the robotic behavior using a design

formalism like MDD prior to developing the software can reduce pitfalls.

A: Obstacle detection and avoidance navigation

One key module of a mobile robot fleet application is real time obstacle detection and avoid-

ance. In nowadays context, most of the mobile robots are featured with some type of collision

avoidance, starting from less complex algorithms which will stop the robot immediately when

an obstacle is detected, towards more complex algorithms that will recompute the path in

order for the robots to detour the obstacles as shown in fig. 5.3. Those latter algorithms involve

not only the means of detecting the obstacle, its size and dimensions, but also they include a

more resourceful computational unit, since they need to drive the robot around the obstacle

and resume the path to the initial target. These algorithms are being part of the autonomous

navigation concept. In general, in autonomous navigation, the environment may have known

and unknown obstacles. All these assumptions are taken into account in the global path

planning algorithm that plans the robot initial path in order to avoid known obstacles as well

as in local path planning involved in unknown obstacles avoidance.

Initial path

Wall detection and avoidance path

Figure 5.3 – Obstacle detection and avoidance

89

Chapter 5. ROSMDB: Development methodology

B: Fleet platooning

A fleet platoon is a group of robots that move in a coordinated way. A platoon is defined as a

convoy of robots (i.e. train of robots) that move together in order to increase the throughput of

circulation lane [Coelingh and Solyom, 2012]. There exist two types of platooning: centralized

platooning with one leader and a decentralized platooning where each robot follows its

predecessor.

Leaders path

Followers path

Followers path

Wireless path propagation

(a) Leader path computation

Leaders path

Followers path

Followers path

(b) Fleet robots following the leader path

Figure 5.4 – Centralized fleet platooning via wireless communication

Typically, in a centralized fleet platoon, there is one robot that leads the platoon while all other

robots are following it with the same speed and within certain boundaries for inter-robot

distance. As shown in fig. 5.4, the leader can decide to accelerate, to brake or change direction

(see fig. 5.4a) and the following robots will mimic its actions (see fig. 5.4b). Coupled with

autonomous navigation of an unknown map, the leader can avoid an obstacle leading to

the entire fleet avoiding the same obstacle. Such systems that are found on the cooperation

between peers (in the platooning case, cooperation between the leader and the other fleet

members or between two adjacent robots) relay on wireless communication or on other

sensors that can estimate the actions of the leader (e.g. an optical sensor like a 3d camera). In

the case of wireless communication, the network should have standardized, efficient protocols

with a minimum loss of packets.

In the second case of decentralized platooning, the mechanism of perceptions via sensors

changes the general scenario because each robot is considered the local leader for the robot

90

5.2. Modeling component external interactions with timed automata

behind him. In this case, each robot needs to analyze the movement of the robot in front of it

with information form the optical sensors and perform the movement to follow its local leader.

This makes the propagation of the first robot (initial leader) longer and less fault tolerant.

5.2.2 Timed automata

In order to model robotic behaviors, multiple formalisms can be used. Petri nets have been

successfully used to model Sensory-Based robots [Lyons and Arbib, 1989] as well as unmanned

vehicles [Jaulin et al., 2012]. Process algebras usage in robotics includes specifications and

planning of robotic missions [Karaman et al., 2009], distributed control architecture for

robotics [Petersson et al., 2001] and definition of robotic behaviour [Košecká et al., 1997].

But, as mentioned in [König et al., 2009], [Egerstedt, 2000] and in [Ferber, 1999], the most

used formalism in modelling Artificial intelligence (AI) and robotic behaviors is FSM and its

extensions. Its applications include modelling autonomous navigation [Sales et al., 2010],

path planning [Choset, 2001], mission planning and control [Pirjanian et al., 2000], defining

the entire robotic behavior based on FSM [Martinoli et al., 2004, Bautin et al., 2012].

S1 S2 S3 S4

Obst

Obst

NoObst NoObstObst

NoObst

Start

Obst

NoObst

Figure 5.5 – Simple collision avoidance modelling as a FSM

Figure 5.5 shows the formal modelling of a simple collision avoidance system (example A) as

a FSM . In this case, the robot is going straight in state S1. If the robot detects an obstacle, it

will change its path with a 30 degrees angle until the obstacle is avoided (S2) and then will

continue its linear movement in S3. Finally returns to its initial trajectory in S4 and resumes

the movement in S1. The FSM definition based on this example is:

• The alphabet:
∑= {Obst, NoObst } where Obst means that an obstacle was found and

No obstacle means that no obstacle was found.

• Finite set of states (or locations): Q = { S1, S2, S3, S4 }

• The set of initial states: Q0 = { S1 } ⊆Q

• The set of final (accepting) states: F = { S1 } ⊆Q

In the example above
Start−−−→ S1

NoObst−−−−−→ S1
NoObst−−−−−→ S1

Obst−−−→ S2
Obst−−−→ S2

NoObst−−−−−→ S3
NoObst−−−−−→ S4

NoObst−−−−−→
S1 is a valid execution over A which recognizes the word NoObst · NoObst ·Obst ·Obst ·

91

Chapter 5. ROSMDB: Development methodology

NoObst ·NoObst ·NoObst of the timed language L A . A word like NoObst ·Obst ·Obst ·Obst

is not recognized by the automaton A because there is not a path starting from Q0 towards F .

This simple FSM allows for displaying the interactions and component behavior of the system

(in this case obstacle detection via a sensor and robot movement) but it is ignoring that all the

actions/data collection happen in a time sensitive fashion. Different from software, where

time is discrete and depends on the CPU cycles, in hardware, the time is continuous and

events/actions can happen anytime. Since the robots are a complex combination of software

and hardware, their behavior should be modelled with time into account because all the

events, message sending and receiving inside the robot and outside happen in continuous

time. Timing is an important abstraction in state change protocols.

[Alur and Dill, 1994] defined an extension of classical finite state automata [Hopcroft, 1979]

called timed (finite) automata and was introduced to model real-time systems. It provides

simple and powerful annotations of state-transitions timed constrained graphs by using real-

valued clocks [Alur, 1999]. The previous example can be modelled using a timed automaton

for better defining the real-time behavior of the robot as shown in fig 5.6.

S1 S2 S3
y< 2 S4

?NoObst

?NoObst, y>3, x=0

?NoObst, x>1, x=0

Start ?Obst, x<1, y=0 ?NoObst, y<1, x=0

?Obst, y<1, y=0

?Obst, y<3, y=0
?Obst, x<1, x=0

Figure 5.6 – Simple collision avoidance modelling as a Timed Automaton

The timed automata definition based on this example is:

• The alphabet:
∑= {Obst, NoObst } where Obst means that an obstacle was found and

No obstacle means that no obstacle was found. In this example, the state change is

synchronized on the arrival of a notification from the optical sensor that detects the

obstacle. In fig. 5.6, the arrival of a message is noted with ? in front of the alphabet

element. In general the arrival of the message is market with ? < s ymbol > and the

departure is mark with ! < s ymbol >.

• Finite set of states (or locations): L = { S1, S2, S3, S4 }.

• The set of initial states: L0 = { S1 } ⊆ L.

• The set of final (accepting) states: L f = { S1 } ⊆ L .

• The finite set of clocks: X = x, y . This example presents a set of 2 clocks: x being a global

clock that counts the total time of the movement action and y which measures only the

92

5.2. Modeling component external interactions with timed automata

time when the automaton enters the phase of obstacle avoidance (states: S2 to S4). The

clock x resets when no obstacle is found in state S1 while y resets each time an obstacle

is found and the automaton enters the state S2.

• I : L →C (X) the function that associates an invariant to each state. C (X) represents the

set of clocks constrains over X and it is formed using an arbitrary number of combina-

tions of atomic expressions x # c where x ∈ X , # ∈ {<,≤,=, 6=,≥,>} and c ∈Q. The set of

the clocks constraints ∈C (X) of the form x < c or x ≤ c is noted C (X).

• E ⊆ L × C (X) × ∑ × 2X × L is a finite set of transitions where e = (l , g , a,r, l ′) ∈ E is a

transition from state l to l’, where g is the guard, r is the set of clock to be reset and a is

the label.

Time elapses in the locations, while the switches are instantaneous. A requirement for a timed

automaton is that time must always progress. Visible in fig. 5.6, the state S3 presents an

annotation y < 2 called invariant. An invariant denotes a boundary of the time spent in a state.

It forces the trigger of a state change when the time has elapsed its value. In our case, the

transition to S4 will be forced after the elapse of 2 time units.

In the example above,
Start−−−→ S1

1.23−−→ S1
NoObst−−−−−→ S1

0.4−−→ S1
Obst−−−→ S2

0.3−−→ S2
Obst−−−→ S2

0.2−−→ S2
NoObst−−−−−→

S3
NoObst−−−−−→ S4

4.3−−→ S4
NoObst−−−−−→ S1 is a valid execution over A which recognizes the word (NoObst ,1.23)·

(Obst ,0.4) · (Obst ,0.3) · (NoObst ,0.9) · (NoObst ,0.9) · (NoObst ,5.11) of the timed language

L A . A word like (NoObst ,1.1) · (Obst ,1.1) · (Obst ,0.4) · (Obst ,2.4) is not recognized by the

automaton A because there is not a path starting from L0 towards L f and it also violates the

time guards.

In the example, the state is changed based on external observation of the environment. Differ-

ent classes of timed automata propose different external behaviors. The external behavior,

also called observable behavior, is given by its sequences of external actions. It also considers

the passage of time as an externally observable event.

5.2.3 Event recording timed automata

In the toolchain that is proposed in this chapter, each state is seen as a black box where the

logic and the actions inside the state are transparent for the system. It focuses on how the

states transitions are done in response to external stimuli, called events (e.g. the detection of

an obstacle by an optical sensor). It monitors how the system reacts to those stimuli and how

the robotic application is composed from different timed automata that are synchronized on

reciprocal events.

Event recording automata (ERA) is the class of timed automata that is the most suitable for

analyzing such behavior [Alur et al., 1999]. In an ERA, each input symbol is mapped to a clock.

Every time a symbol is recognized, its assigned clock is reset. ⊥ symbol signifies that a given

93

Chapter 5. ROSMDB: Development methodology

input symbol has not been recognized yet (i.e. the initial value of all clocks is set to ⊥). The

time domain T of the clocks in an ERA is represented by {v |v ∈R≥0}∪ {⊥}.

In this chapter work, the timed automata alphabet is represented by the set of externally

observable stimuli, called events. An event is represented by arrival or departure of a message.

The events can be a ROS notification (i.e. a new entry on a topic or a data exchange on a

service) or a network message. The robotic application behavior is expressed by the product of

all services formalized as synchronized timed automata. (i.e. the state change of each service

happens only on an event). The property of the ERA that resets the clocks each time the events

mapped to them are triggered, allows for monitoring and measuring the interval between two

consecutive occurrences of reciprocal events.

The example represented in fig. 5.6 is modelled as an ERA in fig. 5.7. The reader should notice

that, compared to a general timed automata, the set {X } of clocks is mapped to each symbol

becoming X = {XObst , X NoObst }. Those clocks are set to 0 each time the associated event is

triggered. Even on state changes that are not subject to clock guard (e.g. transition from S3 to

S4), the clock associated to the event is reset. In this context, the guard evaluates to the last

time an event was observed.

S1 S2 S3
XNoObst< 2

S4

?NoObst,
XNoObst =0

?NoObst, XNoObst>3,
XNoObst =0

?NoObst, XNoObst>1, XNoObst =0

Start
?Obst, XObst<1,

XObst =0

?NoObst,
XNoObst <1,
 XNoObst =0

?Obst, XObst <1,
XObst =0

?Obst, XObst <3,
XObst =0?Obst, XObst<1,

 XObst =0

Figure 5.7 – Simple collision avoidance modelling as an Event Recording automata

The Event Recording Timed automaton definition based on this example is:

• The alphabet:
∑= {Obst, NoObst } where Obst means that an obstacle was found and

No obstacle means that no obstacle was found. In this example, the state change is

synchronized on the arrival of a notification from the optical sensor that detects the

obstacle. In fig. 5.6, the arrival of a message is noted with ? in front of the alphabet

element. In general the arrival of the message is market with ? < s ymbol > and the

departure is mark with ! < s ymbol >.

• Finite set of states (or locations): L = { S1, S2, S3, S4 }.

• The set of initial states: L0 = { S1 } ⊆ L defined as a singleton. The execution of an ERA

needs to be deterministic, thus it can only have a single initial state.

• The set of final (accepting) states: L f = { S1 } ⊆ L .

• The finite set of clocks: X = XObst , X NoObst .

94

5.3. Validating service compositions

As already mentioned, the input symbols create a tight influence on the value of the mapped

clocks. This fundamental property of an ERA makes the automata complementable (i.e. ERAs

are closed under complementation) and determinable (i.e. for each in-deterministic ERA there

is a transformation to a deterministic ERA with the same language). ERAs can be extended

as long as the values of the clocks only depend on the symbols they are mapped to. Those

properties ensure that the product and union of two ERAs are internal (closed) operations. Fig

5.8a presents a product of two automata: A - the automaton formed by S1 and S2 and B - the

automaton formed by S3 and S4. In fig 5.8b represents the union of the automaton formed by

the states S1, S2 and S3 with the automaton formed by the states S1, S4 and S5.

S1 S2
Start a, Xa =0

b, Xa>3, Xb =0

c, Xb>3, Xc =0

S1S3
Start

S2S3

a, Xa =0

S3 S4
Start

b, Xb =0

b, Xb =0

S1S4S2S4

a, Xa =0

a, Xa =0

b, Xa>3, Xb =0

a, Xa =0

a, Xa =0

c, Xb>3, Xc =0 c, Xb>3,
Xc =0

(a) Event Recording Automata Product

S1 S2
Start

a, Xa<1,
Xa =0 S3

b, Xb<1,
Xb =0

S1 S4
Start

c, Xc<1,
Xc =0

S5

d, Xd<1,
Xd =0

S1

S4

Start

c, Xc<1,
Xc =0

S5
d, Xd<1,

Xd =0

S2
a, Xa<1,

Xa =0 S3

b, Xb<1,
Xb =0

(b) Event Recording Automata Union

Figure 5.8 – Event Recording Automaton operations

5.3 Validating service compositions

In order to propose a solution to apply MDD to multi-robot application, our approach is

combining a model based construction over a SOA. As mentioned in [Hilaire et al., 2008],

formal driven prototyping and composition can be applied to Multiagent Systems (MAS), thus

to multi robot systems.

The formalism that we think fits such ROS based software is ERA since it allows modelling our

robotic external behavior as timed automata where the leaps of time between the arrivals of

messages can be monitored and conditioned.

95

Chapter 5. ROSMDB: Development methodology

5.3.1 Applications, services and components

The examples presented in subsection 5.2.1 can be represented as services that can be com-

bined inside of a same robotic application that is running on each robot inside a fleet. The

robotic application, in this case, consists of a fleet platooning capable of avoiding collisions.

Each robot is running the application in order to form the distributed behavior of the fleet.

Each of the application services are specialized on a specific task. Example A (Obstacle

detection and avoidance navigation) represents a robotic service that allows for navigation

without colliding with the environment (i.e. with objects and with other robots from the fleet).

Example B (Fleet platooning) allows for a designed leader to send the path constructed by the

service in example A via a IP network. The other fleet members (i.e. followers) will use the

information to control the navigation system in order to follow the leader.

Each one of the two services is composed of dedicated components that deals with a partic-

ular part of the robot. The components include managers for optical sensors, actuators for

movement, IP communication, etc. Each of these components are modelled using an ERA

and represents the building blocks of the multi-robot application.

In order to model the component, the design begins by specifying the complex robotic ap-

plication and then dividing it into successively smaller pieces called services. Each service

is divided again in components. This approach of design, called top-down, is often found in

software programming where the developing starts with the main procedure that names all

the major functions it needs. Later, the developing focuses on the requirements of each of

those functions and the process is repeated.

Multiple components can be composed in order to form a service. Multiple services can be

associated to form a robotic application that will run on the fleet members. This approach is

called bottom-up approach where the building blocks are first modelled in great detail. These

elements are then linked together to form larger subsystems, which, at their turn, are linked,

sometimes in many levels, until a complete top-level system is formed.

Fleet platooning with obstacle avoidance

Fleet platooning

Platooning
manager

Networking

Leader
detection

Obstacle detection and
avoidance navigation

Navigation

Optical sensor

Object Tracker

Path planner

Decision maker

Image analyser

Figure 5.9 – Bottom-up approach of Event Recording automata composition

96

5.3. Validating service compositions

Our MDD proposal combines both techniques. First the top-down approach is used. A robotic

application is structured in task specialized services. Each service is organized in components

that manage a specific sensor or actuator. Once the organization of the robotic application is

done, each of the components is modelled using an ERA. The bottom-up approach is then used

in order to model the general behavior of the application. The component’s timed automata

are composed in order to model services which join into robotic application model.

The example presented above, fleet platooning capable of avoiding collisions illustrated in fig.

5.9, is composed of the two services presented in subsection 5.2.1 in a bottom-up approach.

Each of the service is composed as follows:

Obstacle detection and avoidance navigation The model is constructed, as shown in fig.

5.10, from two components:

S1 S2

!NoObst, XNoObst>1, XNoObst=0

Start

!Obst, XObst<1, XObst=0

?Image, XImage < 1, XImage=0

(a) Optical sensor component Event Recording Automaton

S3 S5
S6

XNoObst<
2

S7

?NoObst,
XNoObst =0

?NoObst, XNoObst>3,
XNoObst =0

?NoObst,
XNoObst>1,
XNoObst =0

Start

?Path,
XPath<5,
XPath =0

?NoObst,
XNoObst <1,
XNoObst =0

?Obst,
XObst <1,
XObst =0

?Obst, XObst <3,
XObst =0

S4

S8

?Obst,
XObst<1,
XObst =0

!RPath,
XRPath<1, XRPath =0

?Obst, XObst<1,
 XObst =0

(b) Navigation component Event Recording Automaton

Figure 5.10 – Components of service: Obstacle detection and avoidance navigation

Optical sensor component Its dedicated task is to get a depth and RGBA4 image from

the optical sensor in order to analyse if an obstacle is present on the robot trajectory.

As shown in fig. 5.10a, the set of states is formed from only two states. In the initial

state, S1, the model waits for the arrival of a image from the optical sensor that

should arrive with a frequency smaller than 1 time unit. When the image message

arrives, the model changes state to S2. In this state, the image is analyzed for the

4RGBA stands for red green blue alpha. While it is sometimes described as a color space, it is actually simply a
use of the RGB color model, with extra alpha channel information

97

Chapter 5. ROSMDB: Development methodology

S9

Start

!NoLeader, XNoLeader=0

!Leader, XLeader=0

S10

S11

!Leader,
XLeader<1,
XLeader=0

!NoLeader,
XNoLeader<1,
XNoLeader=0

(a) Leader component Event Recording Automaton

S12 S13

?Net && ?No Leader,
XNet<10,
XNet=0

Start

!Net, XNet<1, XNet=0

?RPath && ?Leader,
XRPath < 10, XRPath=0

S14
!PLeader,

XPLeadert<10,
XPLeader=0

!timeout
XTimeout>10,
XTimeout=0

(b) Networking component Event Recording Automaton

S18

Start
?Leader,

XLeader < 1, XLeader=0

S19

S15 S17

!Path,
XPath< 1, XPath=0

?RPath,
XRPath< 1, XRPath=0

S16

?NoLeader,
XNoLeader < 1,
XNoLeader=0

!timeout
XTimeout>10,
XTimeout=0

?PLeader, XPLeadert<10,
XPLeader=0

!Path,
XPath< 1, XPath=0

(c) Platooning manager component Event Recording Automaton

Figure 5.11 – Components of service: Fleet platooning

presence of obstacle. If an obstacle is found, the system returns in S1, which is

also the final state, by firing an Obst message. If no obstacle was found a NoObst

message is triggered.

Navigation component This component performs the actual movement of the robot

and avoids obstacles. The ERA is formed from several states (see fig. 5.10b.). In the

initial state, S3 (which is also an acceptance/final state), the robot waits for a Path

message. When the message arrives, the robot executes in state S4 the trajectory

specified in the message. If an obstacle is found (i.e. arrival of a Obst message),

the model switches to state S5 where the robot turns around in order to avoid

the obstacle. If no new obstacles are found on the new trajectory, the system will

avoid the initial obstacle in states S6 and S7. If new obstacles are found during the

transitions from S5 to S7, the system returns in state S5. In all cases, the system

will enter in state S8 where the corresponding executed path, which include path

for avoided obstacles is observed (i.e. messages from the odometer services of the

robots which can result in a slightly different path compared to the leaders path)

and then sent via a RPath message. In the end, the system will switch to S3 and the

execution will loop again.

98

5.3. Validating service compositions

Fleet platooning The model is constructed, as shown in fig. 5.11, from three components:

Leader detection component The main task of this model is to decide if a robot is a

leader (first robot in the platooning row) or not based on a configuration file. The

example can be future detailed with a leader election process, but it is out of the

scope of this example. The model, visible in fig. 5.11a, is composed of an initial

state S9 where the decision is made. If the robot is a leader, the system will translate

in S10 by triggering a Leader message. If not, the system will end in S11 and a

NoLeader (i.e. not a leader) message will be sent. In both cases, the model will

end in a final state. When switching from S9 to S10 or S11, the model has no

time constrains. Once in one of the final states, the system will send in a loop the

corresponding message to the state in order to inform the other components of

the robot role.

Networking component This component is managing the IP messages that are ex-

changed between to robots in the fleet. It starts in state S12 (see fig. 5.11b) where

it loops with a timeout of 10 time units if no other message is produced. When a

RPath (i.e. real path) message arrives to the leader, the model will switch to S13

where it prepares the IP message, broadcasts it via Net symbol and then returns to

the initial state S12. If the robot is not a leader, the model will switch to S14 when

a network message arrives and transforms it to a PLeader (i.e. Path from leader)

message.

Platooning manager component This component represents the main logic of the

service. As shown in fig. 5.11c, it waits in S15 until the role of the robot is decided

by Leader detection component. If the robot is a leader, it will switch to state S16

where it computes and sends via a Path message the trajectory of the fleet. Then

it translates into S17 where it waits for the execution of the trajectory via RPath

(i.e. real path). Then the real executed path is taken into account in S16 in order

to repeat de process. If the robot is a follower, in S18 it will wait to execute the

path coming from the fleet leader via PLeader(i.e. path from leader). In S19 the

model integrates the trajectory to execute and sends a Path message to its internal

movement service.

All the ERA presented above represent the models for individual parts after the breakdown of

the entire robotic application in task specific components following a top-down approach. In

order to prove that this MDD approach respects the initial behavior of multi-robot application,

those components ERA need to be combined in models for each service, followed by the

composition of service models into global application behavior model.

5.3.2 Event recording automata composition

The composition of ERA (and timed automata in general), called product construction for

timed automata, is used to define a complex model as a product of subsystems. Let A1 =

99

Chapter 5. ROSMDB: Development methodology

〈L A1 ,L0
A1

,
∑

A1
, X A1 , I A1 ,E A1〉 and A2 = 〈L A2 ,L0

A2
,
∑

A2
, X A2 , I A2 ,E A2〉 where the set of clocks X A1

and X A2 are disjoint. The product construction of two timed automata is presented in fig. 5.12.

Each of the automaton have two states (L A1 = {S1,S2} and L A2 = {Sa,Sb}).

S1 S2
Start a, x=0

b , x < 10

Sa Sb
Y<10

Start b, y=0

c

S1Sa S2Sa

S1Sb
Y<10

S2Sb
Y<10

a, x=0

a, x=0

b, x < 10, y=0

c

c

Start

Figure 5.12 – Timed automata product construction example

A1 ∥ A2 represents the product of timed automata A1 and A2. The product is defined as

the automaton: A1 ∥ A2 = 〈L A1 × L A2 ,L0
A1

× L0
A2

,
∑

A1
∪∑

A2
, X A1 ∪ X A2 , I ,E〉 where I (l1, l2) =

I (l1)∧ I (l2) and the transitions are defined by:

• for a ∈∑
A1

∩∑
A2

, for every 〈l1, g1, a,r1, l ′1〉 in E A1 and 〈l2, g2, a,r2, l ′2〉 in E A2 , E contains

〈(l1, l2), (g1 ∧ g2), a,r1 ∪ r2, (l ′1, l ′2)〉.

• for a ∈ ∑
A1

\
∑

A2
, for every 〈l1, g1, a,r1, l ′1〉 in E A1 and for every l2 in L A2 , E contains

〈(l1, l2), g1, a,r1, (l ′1, l2)〉.

• for a ∈ ∑
A2

\
∑

A1
, for every 〈l2, g2, a,r2, l ′2〉 in E A2 and for every l1 in L A1 , E contains

〈(l1, l2), g2, a,r2, (l1, l ′2)〉.
The locations of the product (L A1∥A2 = {S1Sa,S2Sa,S1Sb,S2Sb}) are pairs of component loca-

tions and the invariant of product location S1Sb is the conjunction of the invariants of the

component location (S2 and Sb). The transitions are obtained by synchronizing the transitions

with identical labels and different types: emission of the event market with ! and reception of

the event, marked with ?.

In the case of black box states, where the focus is to analyze the external behavior of the model,

the labels represent the arrival or departure of a message (e.g. ROS or IP). In order to construct

the product of ERA, the synchronization of the events is done on transitions with the same

event, but with different directions (i.e. the departure of a message is synchronized with the

arrival of the same message in another automaton or vice versa).

The components of the service Obstacle detection and avoidance navigation produce the

product in fig. 5.13. Even if the clocks of same message type have the same name in both

ERA, the clocks are disjoint. (i.e Xobst from the Optical sensor component is not the same

clock with Xobst from Navigation component). Let’s suppose that the exchange time between

100

5.3. Validating service compositions

S1S3

Start

S2S3

?Image, XImage < 1, XImage=0

!Obst, XObst<1, XObst=0

!NoObst, XNoObst<1, XNoObst=0

S2S4

?Path,
XPath<5,
XPath =0

S1S4

?Path,
XPath<5,
XPath =0

?Image & ?Path,
XImage < 1, XPath<5,
XImage=0, XPath =0

!Obst & ?Path,
XObst < 1, XPath<5,
XObst=0, XPath =0

!NoObst & ?Path,
XNoObst < 1, XPath<5,
XNoObst=0, XPath =0

?Image, XImage < 1, XImage=0

S1S5

S1S6

S1S8

S1S7

!?Obst,
XObst<1, XObst=0

S2S5
?Image, XImage < 1, XImage=0

!?Obst, XObst<1, XObst=0

S2S6
?Image, XImage < 1,

XImage=0

!?NoObst,
XNoObst>1,
XNoObst=0

S2S7

S2S8

?Image, XImage < 1, XImage=0

?Image, XImage < 1, XImage=0

!?NoObst,
XNoObst<1,
 XNoObst=0

!?Obst,
XObst<1,
 XObst=0

!?NoObst,
XNoObst<1,
 XNoObst=0

!?Obst,
XObst<1,
 XObst=0

!?NoObst,
XNoObst<1,
 XNoObst=0

!Obst, XObst<1, XObst=0

!NoObst, XNoObst<1, XNoObst=0

!RPath,
XRPath<1,
XRPath =0

!RPath,
XRPath<1,
XRPath =0

!RPath &
!Obst,

XRPath<1,
XObst<1

XRPath =0,
XObst=0

!RPath & !NoObst,
XRPath<1, XNoObst<1
XRPath =0, XNoObst=0

Figure 5.13 – Product construction of components for service: Obstacle detection and avoid-
ance navigation

components (e.g. ROS and IP messages RRT5) is null. For simplification purposes, fig. 5.13 only

presents the most strict guard of a XOpti cal sensor ∪XN avi g ati on . The final product automaton

consists of:

5Round-trip time (RTT) is the length of time it takes for a signal to be sent plus the length of time it takes for an
acknowledgment of that signal to be received.

101

Chapter 5. ROSMDB: Development methodology

• The alphabet:
∑=∑

Opti cal sensor ∪
∑

N avi g ati on . The reader should also notice in this

example that the synchronization of events is marked with !? meaning that a message

was sent from one automaton and received in the second one.

• Finite set of states (or locations): L = LOpti cal sensor ×LN avi g ati on = { S1S3, S1S4, S1S5,

S1S6, S1S7, S1S8, S2S3, S2S4, S2S5, S2S6, S2S7, S2S8 }.

• The set of initial states: L0 = L0
Opti cal sensor ×L0

N avi g ati on = { S1S3 } ⊆ L.

• The set of final (accepting) states: L f = L f
Opti cal sensor ×L f

N avi g ati on = { S1S3 } ⊆ L.

• The finite set of clocks: X = X A1 ∪X A2 .

• I (l1, l2) = I (l1)∧ I (l2).

The product in fig. 5.13 represents the internal state of the entire service. But when this service

is composed with other services, the internal behavior of the service is not requested, since

the service itself becomes a black box. The full representation of the product can be simplified

just to two states showing how the service reacts with the external environment as shown in

fig. 5.14.

Sa
Start

Sb
?Path,XPath<5, XPath =0

!RPath, XRPath<1, XRPath =0

Figure 5.14 – Reduced product construction of components for service: Obstacle detection
and avoidance navigation

A reminder of Obstacle detection and avoidance navigation as well as a detailed product

construction for the service Fleet platooning can be found in Appendix C. The simplified

automaton for Fleet platooning service is presented in fig. 5.15a. The two services can be

composed again in order to obtain the application automaton. This product is displayed in fig

5.15b and the simplified version is shown in 5.15c. This one state application (i.e. a black box

application) is exchanging data with the environment (e.g. with the other peers of the fleet)

via Net events. A last composition can be made in order to study the entire fleet behavior. It

consists of combining the automaton with itself.

All the product construction can be realized based on the properties of ERA. [Alur and Dill,

1994] has analyzed the closure of: union and intersection. Closure under union and inter-

section is based on fact that ERA are in-deterministic, thus they can support more than one

location. This ensures that the composition of ERA still remains an ERA. Furthermore, the

product of ERA is associative: A1 ∥ A2 ∥ A3 = (A1 ∥ A2) ∥ A3.

102

5.3. Validating service compositions

Se

Sd

Sf

Start

!Path,
XPath< 1, XPath=0

?RPath
XRPath< 1, XRPath=0

!Net, XNet<1, XNet=0

?Net,
XNet<10,
XNet=0

!Path,
XPath< 1,
 XPath=0

Sc

(a) Reduced product construction of components for service: Fleet platooning

SfSa

Start

!Path,
XPath< 1, XPath=0

!?RPath
XRPath< 1,
XRPath=0

!Net, XNet<1, XNet=0

?Net,
XNet<10,
XNet=0

!?Path, XPath< 1,XPath=0
ScSa SdSb

SeSaScSb

?RPath
XRPath< 1,
XRPath=0

(b) Product construction for entire robotic application

Start !Net,
XNet<1,
XNet=0

?Net,
XNet<10,
XNet=0

S

(c) Reduced Product construction for entire robotic appli-
cation

Figure 5.15 – Product of entire example application

5.3.3 Model validation

Each component ERA and their compositions (i.e. the ERA of services and application) are

checked in the tool presented in the next section against the following properties in order to

verify the correctness of the model:

• Reachability properties specify if a property can possibly be satisfied by the model. A

location Ss of a ERA A is reachable if a state Sq with location component Ss is a reachable

state of the transition system S A
6. In order to verify the reachability property, A and the

set L f ⊆ L (i.e. the final set of states) are considered. The analysis consists of determining

if ∀s ∈ L f , s is reachable or not. In the previous examples, this property can be addressed

to verify if an obstacle can be detected by the optical sensor and navigation starts (i.e.

optical sensors component in S1 and the navigation component in S3)

• Liveness properties asserts that a model can eventually reach a good state. The analysis

6A state of a transition system S A is a pair 〈s, v〉 such that s ∈ locations of A and v is a clock interpretation of X
with the property that v satisfies I (s).

103

Chapter 5. ROSMDB: Development methodology

of the liveness properties of a real-time system consists of checking for reachability of

cycles containing final states in a ERA model, A. The main challenge for such cycle

analysis is to handle the infinite domain of clocks. [Alur and Dill, 1994] proposed the

first approach to handle real valued clock domain by partitioning the clock domain into

a finite set of regions, called R. The result of R × A has a finite symbolic semantics for

A. In the examples above, such property can be defined to verify if a leader can send a

network message to the followers (i.e. the leader component can switch from S10 to S10

while the networking component translates from S12 to S13 and back to S12).

The properties of ERA used in the model checkers are usually written as form of temporal

logics. Temporal logic focuses on the qualitative time properties rather than quantitative ones.

The main purpose of temporal logics is to verify if there exists a path between the states that

will satisfy it. In the analysis of the properties over the composition of component models,

TCTL is used. Timed computational temporal logics allows the verification of the formula over

several time lines.

The syntax of a TCTL expression is composed of:

• a set of propositional variables AP = {φ,ψ, ...}.

• logical operator like ¬, ∨ .

• temporal modal operator:

– Aφ - all - φ has to hold on all paths starting from the current state.

– Eφ - exists - there exists at least one path starting from the current state where φ

holds.

– ©φ - next - φ has to hold at the next state.

– �φ - globally - φ has to hold on the entire subsequent path.

– ♦φ - finally - φ eventually has to hold (somewhere on the subsequent path).

– ψU φ - until - ψ has to hold at least until φ , which holds at the current or a future

position.

– ψR φ - release -φhas to be true until and including the point whereψfirst becomes

true; ψ never becomes true, φ must remain true forever.

A TCTL formula can be satisfied by an infinite sequence of truth evaluations of variables

in AP. These sequences can be viewed as a timed-word over alphabet
∑

of an ERA A. Let

w = a0, a1, a2, ... be such a word. Let w(i) = ai . Let w j = a j , a j+1, which is a suffix of w.

Formally, the satisfaction relation |= between a word and an TCTL formula is defined as

follows:

• w |= p if p ∈ w(0)

104

5.4. The ROSMDB toolset

• w |= ¬ψ if w 6|=ψ

• w |=φ∨ψ if w |=φ or w |=ψ

• w |=©ψ if w1 |=φ (in the next time step φ must be true)

• w |=φU ψ if there exists i ≥ 0 such that w i |=ψ and ∀0 ≤ k < i , wk |=φ (φ must remain

true until ψ becomes true)

[Alur and Henzinger, 1994] presents the reachability problem of timed automata in general

as PSPACE-complete. In [Courcoubetis and Yannakakis, 1992], reachability is shown to be

PSPACE-complete even with a small number of clocks. For TCTL, model checking is also

PSPACE-complete [Alur et al., 1993].

These properties for the examples above translate into:

• reachability property - an obstacle can be detected by the optical sensor and

navigation starts:

E♦(S1∧S3)

• liveness property - the leader component can switch from S10 to S10 while the

networking component translates from S12 to S13 and back to S12:

E ©S10 U A�(S12 → S13 → S12)

Even if properties of models and their compositions can be verified using query languages

like TCTL inside model checkers, there is a need to verify those properties against a model

refinement based on runtime observations. The models are based on theoretical assumptions

which in real time systems could be invalided by factors outside the system.

5.4 The ROSMDB toolset

In order to allow new multi-robot applications to be develop using MDD approach, we propose

a toolset called Robot operating system Model Driven Behavior (ROSMDB). ROSMDB provides

the ability to create new SOA applications designed for fleet environment. It allows for design

of the services based on ERA and provides a complete tool-chain from the model verification

up to the execution (runtime) of applications. With ROSMDB it is possible to compare the

theoretical model checking with real-time observation collected at runtime and to iterate

until both give the same behavior. Furthermore, this contribution includes also a framework

that will be enabled in each robotic software issued from the toolset that will shadow the

management of generic events non-related to robotic behavior.

105

Chapter 5. ROSMDB: Development methodology

5.4.1 Global overview of the environment

ROSMDB tool-chain is a software designed to accompany the process of development of

new multi-robot applications from the conception phase through the lifecycle of a software:

development, deployment and runtime. It was designed based on the idea that output of the

tool-chain (i.e. multi-robot services that interact together to form the behavior of the final

application) will represent a ROS based SOA application. In the output, it generates ROS nodes

which will be executed together at runtime.

Behavior
Design

Graphical
Design

Text based
(YAML)
Design

Model
checking
(development)

Code
generation

(ROS nodes)

Application
code

completion

Fleet
Deployment

Mission
Execution

Start

Trace
Collection

Trace
retrieval

Application
feedback
analysis

User
defined

properties

Design Model
Validation

Development Deployment Execution (Runtime)

Figure 5.16 – General architecture for ROSMDB

The generic architecture of the toolset is visible in fig. 5.16. The squares in the figure mean that

the user action is required while the circles mean that action is automatically executed. The

blue colored shapes represent steps taking place in the development phase while the green

shapes represent steps executed at run-time on the robot.

The cycle of creating new multi-robot application starts with the design of the software

application using a top-down method in order to split the behavior in small task oriented

components. They can be inputted in two methods: using a drag-and-drop Graphical User

Interface (GUI) where the automaton can be drown or using a text-based input. This step

is called in fig 5.16 Design. The next phase is the local offline validation of the models and

their composition. The Model Validation verifies the model against predefined properties and

against user specific rules. In the Development phase, the model is translated into Python ROS

based code and the link to the ROSMDB framework is injected. In this step, the specific code

of the application needs to be filled in. The tool-chain provides a method of provisioning all

the fleet robots in the Deployment. At the Execution (Runtime), the application is executed

and traces of the model execution are collected in order to allow the user to analyze the real

behavior of the application and compare it to theoretical one. This mechanism allows for

multiple iterations of the design process in order to refine the software robotic behavior.

The tool-chain is implemented as Python web based application. The core application is

106

5.4. The ROSMDB toolset

developed on top of Django7, Bootstrap8 and jQuery9 frameworks and includes technologies

like: Hypertext Markup Language 5 (HTML5), Cascading Style Sheets 3 (CSS3), JavaScript (JS).

It is cross-platform and cross-version. All the steps can be executed even from mobile devices

(e.g. tablets, etc.) allowing for a better reactivity in the development process. All the projects

developed in the tool-chain are stored on the server which needs to be able to exchange data

with the robots.

Figure 5.17 – File manager in ROSMDB

ROSMDB provides a file management tool (see fig.

5.17) for multiple multi-robot application projects.

Each project is stored on internal workspace on

the server running the tool-chain. A project ex-

ample can be Package Transportation that al-

lows for a fleet of robots to form a platoon and

move freight from point A to point B. Each Project

is composed of one or multiple multi-robot ap-

plication(s) that are needed, but which can be

independently used in other projects. The ex-

ample project can be formed from the fleet
platooning with collision avoidance pre-

sented in the previous sections (which can be

used as stand-alone application) and from a

Package handling application. Each applica-

tion represents a combination of service that

have dedicated tasks (e.g Obstacle avoidance,

Platooning) and each service is composed of

components that manage a specific sensor, actua-

tor or behaviour logic (e.g Navigation, Optical
Sensor, Networking).

5.4.2 Design

In order to design and later verify the correctness of the behavior of a robotic application

inside a project, the division of the application into services and components needs to be

done by using a top-down approach. This structuring is translated into model organization via

the file management presented above. As a reminder, the structure is represented in ROSMDB

as follows:

7Django is a free and open-source web framework, written in Python, which follows the model-view-template
(MVT) architectural pattern.

8Bootstrap is a free and open-source front-end web framework for designing websites and web applications. It
contains HTML5 and CSS3 based design templates for typography, forms, buttons, navigation and other interface
components, as well as optional JavaScript extensions

9jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting of HTML

107

Chapter 5. ROSMDB: Development methodology

• 1st layer consists of projects: Multiple projects can coexist in the same workspace.

• 2nd layer consists of applications: Multiple applications form a project, but each appli-

cation can be used as standalone application or in different projects.

• 3r d layer consists of services: Multiple services form a robotic application.

• 4th layer consists of components: Multiple components form a service

In order to use later in model validation and execution phases a bottom-up composition

approach, the only layer that a user needs to address is the 4th layer. Each component needs

to be designed independently as an ERA. The design is persisted as a .mdb file in order to be

used later for component compositions and model validation.

ROSMDB allows the design of each component ERA in two ways:

• a GUI interface that allows for the automaton to be drawn using a drag-and-drop

interface.

• a text based interface that allows the design in YAML Ain’t Markup Language (YAML)10

format.

Each of the ways of inputting the component ERA is automatically converted into the other

type (i.e. the ERA designed with the GUI is converted to YAML and vice-versa). The automaton

is persisted as YAML in the .mdb file corresponding to the component.

As shown in fig. 5.18a, the GUI allows the design of states and transitions as a graph. Each

state is represented as a circle with its name. As shown in fig. 5.18b, a transition label can be

a local symbol specific for the automaton, a ROS message or a network message. For each

symbol in the automaton, a clock is assigned. The transitions are decorated with the symbol

(message) that needs to be recognized (sent or received) and the clocks guards. The guards

are represented as boolean logic composition of multiple clocks (if needed). The clock reset

is omitted from the representation because, in an ERA, the clock corresponding to a given

symbol is automatically reset when the input is recognized.

In the text based mode, the states and transitions can be declared as shown in the YAML listing

5.1. The information required for states include the state name, the flag isAcceptState if the

state is a final state, and other optional information like global variables and constants needed

by the state. A transition is defined by the origin and destination state (nodeA and nodeB), by

the label (which can be one of ros_message,network_message or symbol values) and by the

time guard.

10Initially called Yet Another Markup Language, YAML is a human-readable data serialization language. It is
commonly used for configuration files, but could be used in many applications where data is being stored (e.g.
debugging output) or transmitted (e.g. document headers).

108

5.4. The ROSMDB toolset

(a) Graphical representation of automaton in ROSMDB (b) Graphical symbol assignation in ROSMDB

Figure 5.18 – Graphical user interface in ROSMDB

1 automaton:

2 s t a t e s :

3 - constants: ’’
4 isAcceptState : ’True’
5 name: S1

6 variables : ’’
7 - constants: ’’
8 isAcceptState : ’False’
9 name: S2

10 variables : ’’
11 ---

12 vertex:

13 - guard: /camera/rgb/ image_color_clock < 1

14 network_message: ’’
15 nodeA: S1

16 nodeB: S2

17 ros_message: /camera/rgb/ image_color

18 symbol: ’’

Listing 5.1 – States and transitions YAML in ROSMDB

The design tool-chain allows the components to declare communication channels that will

be future used to interconnect components and services via both GUI and YAML editors (see

listing 5.2). In order for the output robotic application to be ROS compliant, the tool-chain

allows the registration on ROS topics to provide an asynchronous communication and on ROS

services to offer a synchronous exchange mechanism. Furthermore, the robotic application

will be executed in a fleet environment with multi ROS master nodes (i.e. one master node

109

Chapter 5. ROSMDB: Development methodology

per robot). The tool-chain allows for the declaration of network broadcast communication

scheme that will be used later by the ROSMDB framework to open and handle network

messages transparently.

1 ---

2 ros:

3 services : []

4 topics :

5 - function: l isten_for_image

6 message_type: /sensor_msgs/Image

7 name: /camera/rgb/ image_color

8 type: l i s t e n

9 network:

10 − callback: callback_function

11 name: NetworkMessageExxample

12 port: ’10001’
13 push: push_function

14 ---

Listing 5.2 – Communications channels YAML in ROSMDB

After the design of each components ERA in one of the previous editors and the definition

of all the communication channels, the models can be composed and validated by verifying

certain properties of them.

5.4.3 Validation

In order to validate the properties of components and services ERA, ROSMDB is integrated

with a part of an external model checker, called UPPAAL. UPPAAL is an integrated tool box for

modelling (via a graphical simulator), validation and verification (supported by an automatic

model-checking) of real-time systems designed as compositions (networks) of timed automata,

extended with various data types that include bounded integers and arrays.

The philosophy behind UPPAAL is to model a real system using timed automata or classes

of timed automata, simulate it and then verify a set of properties on it. Multiple models can

be constructed in order to form a system which consists of a network of processes that are

composed of locations (or states). The transitions between these states define how the system

behaves. UPPAAL is running the system interactively in the simulation step in order to check

if the systems behave as intended.

UPPAAL is formed of two parts: a GUI and a model-checker engine. The GUI is written in

Java and is executed independently on Java Runtime Environment. The model design and the

simulation component are part of the GUI . The use of this GUI is not subject to ROSMDB.

110

5.4. The ROSMDB toolset

The model-checker is written in C and can run on the same machine as the UPPAAL GUI , but

also on a dedicated server. This latter component is used in ROSMDB on the same server. This

verifier can check reachability properties, (i.e. if a certain state is reachable or not) as well as

liveness properties (i.e. if there is a state where the system blocks). It represents a complete

search that covers all possible dynamic behaviors of the system. The engine reduces the

verification to solving simple constraint systems [Larsen et al., 1995] by combining a symbolic

technique with on-the-fly verification.

Event recording timed
automata composition

C1.mdb

C2.mdb

C3.mdb

Properties

User
defined

properties

Autogenerated
properties

Automaton
Parser

Properties
Parser

YAML
format

String
 format

UPPAAL
Model

Checker
Engine

XML format

Q format

Status
Parser

Q format

ROSMDB
Graphical

User interface

String format

Property

true - satisfied
false - unsatisfied

error trace

Model

String
format

Figure 5.19 – Integration of ROSMDB with UPPAAL model-checker engine

In order for ROSMDB to use the model-checking engine, format change is needed. As shown

in fig 5.19, the ERA of each automaton is automatically parsed in a XML format. The user

inputted properties combined with the autogenerated verification rules are parsed into Q11

format. At this step, ROSMDB injects into the UPPAAL model-checking engine both the model

and the list of properties to verify. When the validation ends, a parser transforms the properties

results from Q format to JSON format. Both the results and the error trace are displayed in

ROSMDB front-end as shown in fig. 5.20.

The ERA model validation can be executed at any layer of granularity: starting from component

validation at 4th layer, to service model validation by automatically making the product of

components automata, towards entire application model validation. At each layer of the

granularity, the user can select the number of components involved into the behavior. This

allows the validator to mimic the use of multiple robots running the same application.

11A UPPAAL specific text format for properties

111

Chapter 5. ROSMDB: Development methodology

Figure 5.20 – ROSMDB model-validation front-end

When a new component ERA is designed, ROSMDB tool-chain autogenerates rules for the

Validation step of the chain. These rules verify two kind of properties:

• liveness property: the rule queries the model checker for the existence of deadlocks.

• reachability properties: ∀s ∈ Lcomponent , the rule verifies that ∃ a path p starting from

si ∈ L0
component that can reach s.

These autogenerated rules, as well as the user inputted rules, are required to be in UPPAAL

specific query language which is based on TCTL. The queries available in the verifier are:

• E<> p: there exists a path where p eventually holds.

• A[] p: for all paths p always holds.

• E[] p: there exists a path where p always holds.

• A<> p: for all paths p will eventually hold.

• p –> q: whenever p holds, q will eventually hold.

p and q represent state formulas that are logical combination of <process>.<state> and

clocks guards (e.g. OpticalSensor0.ObjectDetected and XObjectFound<1). A special

form E<> not deadlock that checks for deadlocks. This notation is the ROSMDB generated

rule for liveness. The other autogenerated rules for reachability are formed on the pattern E<>
component.state ∀ component ∈ { product of components},∀ state ∈ Lcomponent .

The autogenerated rules for the OpticalSensor are:

112

5.4. The ROSMDB toolset

• E<> C0OpticalSensor.S1 - it exists a path from the initial state towards S1

• E<> C0OpticalSensor.S2 - it exists a path from the initial state towards S2

• E<> not deadlock - the model has no deadlocks

In addition to these generated rules, the user can also add their own TCTL rules like: E[]

C0OpticalSensor.S1 and XObjectFound<1 that translates into there exists a series of events

where an obstacle will be detected in less than 1 time unit after a previous obstacle was

detected.

This phase of development can be iterated any number of times, thus allowing for a refinement

of the initial model. The user can go back to the design phase, improve the ERA model and

verify again against the same or different properties. When the resulting behavior is correct,

the model can advance in the lifecycle of the robotic application to development step.

5.4.4 Code generation

When applying a MDD methodology, the difficult part is to translate the model design to

software code. The task is further complicated when the model evolves and the source code

needs to be updated. Keeping the equivalence between the code and the model is a complex

task that can be managed by ROSMDB at a component level.

In the development phase of a robotic fleet application designed with ROSMDB tool-chain,

the equivalent Python source code is generated automatically. It presents itself as a ROS

compatible model. Each component is associated with a ROS node and it is generated as

a Python object class that extends a Base class from the ROSMDB framework. For each

component, this is the only file that needs to be edited in order for the application to run.

The name of the generated skeleton class is similar with the component name. It consists

of the various routines that will be executed automatically at runtime by the framework. An

extract from a generated skeleton can be seen in listing 5.3. The routines are decorated with a

Python decorator and their type can be:

• @Transition decorated routine: it is executed each time the associated event or symbol

is recognized by the ERA. The header of the routine includes a data object that carries

the eventual payload of the event message into the function. Those types of routines

can return the event payload if the event should be triggered by the transition. The

event push and pull are not managed by the routines themselves because these tasks

are delegated to ROSMDB framework.

• @State decorated routine: it is executed each time the internal ERA translates to the

associated state. This function should be edited with the specific code of the state. (e.g.

113

Chapter 5. ROSMDB: Development methodology

for the optical sensor example, the routine associated with the state S2 analyses the

depth image and decides if an obstacle is present or not).

1 """..."""

2 # This code was autogenerated. Please modifiy only the parts marked as #TODO

3

4 class OpticalSensor(BaseClass):

5 def __init__(self):

6 BaseClass.__init__(self)

7

8 @Transition("?/camera/rgb/image_color−/camera/rgb/image_color")
9 def listen_for_image(self, data):

10 # @param − sensor_msgs/Image − the data for the callback function

from the topic /camera/rgb/image_color

11 # TODO

12 pass

13

14 """..."""

15

16 @State("S1")

17 def state_S1(self):

18 # This function should be called when the state changes into this

state

19 # TODO

20 pass

21

22 """..."""

23 if __name__ == "__main__":

24 runner = OpticalSensor()

Listing 5.3 – Example of code skeleton

The reader can remark in the listing 5.3 the presence of (TODO) metadata. The tool-chain only

generates the skeleton of the component based on the states and transitions in the model and

guarantees the equivalence to the model based on it. The source code of each transition or

state function it is not generated and it is neither guaranteed for model equivalence nor taken

into account for the model validation. The validation of the model at the runtime relies on

the structure of the skeleton. If the functions headers are changed or remove, ROSMDB does

not guarantee anymore the equivalence to the theoretical model. As already mentioned, this

contribution looks only at the exchange of a model with the environment (sensors, actuators

and software components). Even if the tool-chain allows the user to input the specific source

code logic, it will only be used at runtime and not into evaluation of the model behavior.

114

5.4. The ROSMDB toolset

This feature allows not only for MDD methodology, but also reduces the time to develop a ROS

node by removing from the user space redundant ROS code because all the nodes registration

and listeners or pushers mapping are delegated to ROSMDB framework.

5.4.5 ROSMDB framework

ROSMDB framework is a self-contained Python package that allows the robotic application

issued from ROSMDB tool-chain to be executed at runtime. It is designed to abstractize

the model handling of an ERA in a MDD approach. Furthermore, it allows a transparent

management of ROS nodes and IP network connections.

ROSMDB
framework

Model

User code

Network
Messages

ROS
Messages

Network
Messages

ROS
Messages

Figure 5.21 – User code interaction with ROSMDB

Figure 5.21 presents how the framework interacts with the user code of the robotic applica-

tion that is based on the skeleton issued from ROSMDB tool-chain. An application developed

and deployed with this contribution contains an automatically generated JSON represen-

tation of the model among the actual Python files of the user code. The framework loads

transparently this configuration file and declares on-the-fly all the ROS nodes in the user code.

Moreover, the framework registers all the network listeners. Each function call in the user
source code triggers a transition and a state change in the model. This mapping between

the model and the user source code is transparent since the framework is managing all the

interactions. In general, a transition can happen when a message arrives or when it needs to

be published. The arrival of a message (ROS or network message) fires a function call in the

user code as well as a state change in the model. If the user code needs a message to be

published, it will forward it to the framework which will send it on the right communication

channel. The framework will also reflect this in the current state of the model.

ROSMDB framework makes the link between the user robotic application, ROS and networking

service of the operating system as shown in fig. 5.22. This package needs to be installed on

each robot that is included in the projects developed with ROSMDB tool-chain. Internally, the

framework is composed as follows:

115

Chapter 5. ROSMDB: Development methodology

User code

ROSMDB Framework

ROS

Networking

Operating system

Hardware

SDfR

Trace Manager

States Manager

Runtime watchdog

Core framework

Network manager

Figure 5.22 – ROSMDB framework architecture

• Trace manager is logging all the events that happen at runtime. It inserts data collec-

tion probes in the stack execution of the application via Core framework in order to

provide the feedback for the tool-chain. It also relies on SDfR integration in order to

provide these traces back to the ROSMDB tool-chain.

• State manager is handling the memory representation of each components ERA. It

maps each function from the user code space to the model and keeps track of the

transitions based on the memory stack evolution of the components runtime. It is also

used to determine the current state of the system by the Runtime watchdog.

• Runtime watchdog decides to trigger an alert based on the information from the model

description and the current state of the system. It uses the traces generated by the trace

manager and relies on SDfR to push in real time alerts to ROSMDB toolchain GUI .

• Core framework is orchestrating all the internal components together. It is the main

communication point between the framework and the user code space because each of

the components skeleton extends a base class from it. It allows messages to be send to

and from the user code to other components. Furthermore, this framework registers

all the ROS nodes and performs the data exchange between ROS topics and/or services

and the robotic application.

• Network manager is managing all the network connections of the robotic application.

Transparently for the user, it sets up listening workers on the ports specified in the model.

When a network message arrives, it pushes the data to the user code space and calls back

the function configured in the model description with the help of Core framework. If the

user space needs to broadcast a message, the network manager receives the payload

from the Core framework and broadcasts to all reachable peers (i.e. all the neighbors

visible through SDfR protocol) in a point-to-point mechanism exchange in order to

avoid flooding the network.

116

5.4. The ROSMDB toolset

• SDfR, the robotic service discovery protocol presented in chapter 4, integration is reg-

istering each service on the fleet network and allows the framework to have a list of

reachable peers.

Each state transition is monitored at runtime by trace manager via collection probs. The

main reason for this logging system is to allow the user to analyze the runtime behavior of the

application and compare it to the validation via model-checker. An example of a trace can

be found in listing 5.4. The state manager can reset the associated clocks of the event (the

reader should remind that the behavior model is an ERA, thus when a symbol is recognized,

the associated clock is reset) based on the trace.

1 ’symbol’: ’/camera/rgb/image_color’, # − The recognised symbol

2 ’current_state’:’S1’, # − The current state when the trace was recorded

3 ’destination_state’: ’S2’, # − The desired destination state

4 ’clocks_value’: 0.345465, # − The value of associated clock

5 ’time’: 1510586388.771781, # − The unix time when the trace was recorded

6 ’is_valid’: True, # − Is the transition possible ? Updated by the watchdog
7 ’error’: None # − Does the clock violates any guard? Updated by the

watchdog

Listing 5.4 – Example of transition trace

The alerting system pushes alerts in in real time, thus the developer station will receive the

message if it is visible in the SDfR neighbours table. There are two types of alerts:

• Time guard violations: This logging of each state switch allows the watchdog to

measure the value of the clocks associated with transition and to trigger an alert if the

guards form the model are violated.

• Transition violations: Coupled with the State manger, the watchdog is capable of

detecting if incorrect transitions (i.e transitions that are not designed in the model) are

produced due to the arrival of an event. In this case, it does not block the execution, but

it triggers an alert.

5.4.6 Summary of SDfR usage

All the subcomponents in ROSMDB framework relay on SDfR to provide information about

reachable neighbors [Chitic et al., 2016]. The applications designed and developed with

ROSMDB tool-chain are running in a fleet context where each service of these application

needs to be advertised in order to exchange data with peers.

To allow the framework to register the services on SDfR protocol, each of the service needs

to be described in the tool-chain GUI as shown in fig. 5.23. This metadata is added to each

117

Chapter 5. ROSMDB: Development methodology

Figure 5.23 – SDfR metadata input

service ERA and packed together with the source code. At runtime, the SDfR integration of

the framework will automatically fill the missing information and register the service. It also

provides the support and manages the auto-description URL needed by SDfR. Finally, it maps

each of the SDfR service REST endpoint in order abstractize the usage of SDfR protocol by the

ROSMDB framework and by the user code.

SDfR is also used by the ROSMDB tool-chain GUI . The applications running on the fleet robots

need to push the alerts to the developer station (if it is visible in the SDfR neighbors table) in

real-time and all the collected traces at the end of the mission (i.e. runtime end). Moreover,

the tool-chain provides an application deployment and execution scheduling system that

relies on SDfR to provide the reachable fleet robots.

5.4.7 Fleet deployment

When testing a multi-robot application, deploying it in order to have a real test is very time

consuming since each robot of the fleet needs to be provisioned with new software version. In

our vision of using MDD, we propose multiple iterations in order to refine an initial model.

Once an iteration is developed, it needs to be tested in a real environment in order check if the

runtime behavior is similar to the modelled one. In order to reduce the time to deploy the new

version, ROSMDB tool-chain propose an automatically deployment feature.

The automatically deployment feature packages each of the component source code and the

model metadata in a tarball 12. The user can deploy directly this archive to the reachable

robots from the fleet as shown in fig. 5.24. The discovery of such robots is done by using

12In computing, tar is a computer software utility for collecting many files into one archive file, often referred to
as a tarball, for distribution or backup purposes.

118

5.4. The ROSMDB toolset

Figure 5.24 – Deployment interface in ROSMDB tool-chain

the tool-chain integration with SDfR. The system is tracking when the last time a robot was

reachable in order to filter out unreachable robots. As a disclaimer, we are not taking into

security and integrity of the packages. We are aware of the security vulnerabilities but the

solutions to these problems are out of the scope of this chapter.

The fleet deployment component has an add-on feature that allows the developer to trigger

the execution of the application immediately after the deployment or it can be scheduled to

start at later time. This metadata is sent to all robots with a higher priority than the tarball.

The tool-chain also includes a mechanism to abort the execution of a user code directly from

the GUI that uses SDfR in order to directly command any reachable robot from the fleet.

The tarball and metadata transfer is taking into account the mobility of the robots and is

designed to exchange the payload in a chunk-by-chunk approach as shown in fig. 5.25.

When the deployment starts in fig. 5.25a, the robots Robot 1 and Robot 2 are in the WiFi

communication area of the development station. They receive the new package and the

metadata before they start moving. At t = 5, in fig. 5.25b, Robot 2 discovers Robot 3 via SDfR

and starts sending the new package. First, the metadata is sent with the highest priority. Chunk

3 of the package is the only part sent because the Robot 3 moves outside of the communication

area. At t = 10, in fig. 5.25c, Robot 3 encounters Robot 1 and continues to receive the missing

chunks of the package.

This mechanism allows for a fast propagation of the new version inside of a fleet even if not

all the robots are in communication with the development station. This process combined

with the mechanisms of designing ERA based applications, developing and executing the

associated code allows ROSMDB tool-chain to be fully integrated with a robotic application

lifecycle. A model can be designed, verified, developed, deployed and executed. There is still

the need to compare the executed software and its behavior to the theoretical model. In order

to answer this issue, ROSMDB tool-chain proposes a runtime validation feedback tool.

119

Chapter 5. ROSMDB: Development methodology

Robot 2Robot 1

Development station

Metadata Chunk 1 Chunk 2 Chunk 3

Robot 3

(a) Step t=0

Robot 2

Robot 1

Development station

Metadata Chunk 1 Chunk 2 Chunk 3

Robot 3

Metadata Chunk 1 Chunk 2 Chunk 3

Metadata Chunk 1 Chunk 2 Chunk 3

Metadata Chunk 3

(b) Step t=5

Robot 2

Robot 1

Development station

Metadata Chunk 1 Chunk 2 Chunk 3

Robot 3

Metadata Chunk 1 Chunk 2 Chunk 3

Metadata Chunk 1 Chunk 2 Chunk 3

Metadata Chunk 1 Chunk 2 Chunk 3

(c) Step t=10

Figure 5.25 – ROSMDB fleet deployment process

5.4.8 Runtime validation feedback

When a mission is executed by running a multi-robot application using ROSMDB tool-chain,

the user has the possibility to retrieve traces of what happened during the runtime as well as

alerts in the GUI . As shown in fig. 5.26 and in fig. 5.27, the alerts monitor shows a complete

image of the system when the event happened. This includes information about the source

state and the destination state of the transition associated with the event and the value of all

the ERAs clocks.

The information provided by the monitor includes a global image on the number of correct

transitions compared to the number of switches that violated the guard and the percentage

of visits in each state. Furthermore, this monitor includes measurements of the evolution

of internal clocks and the delay between the recognition of the same event. Even-more, the

system is computing the average and the standard deviation of each event symbol for the

current execution and for the total execution of the code. All the data is pulled from each robot

reachable via SDfR protocol and displayed in a per robot view.

Let’s go back to the example presented in 5.2.1. The component Optical sensor was modelled,

120

5.4. The ROSMDB toolset

Figure 5.26 – ROSMDB trace feedback for example A (part 1)

verified, developed and deployed using ROSMDB. During the model checking step, all the

reachability properties (i.e. every state is reachable) and liveness property (i.e. there is not a

deadlock) were fulfilled. The results of the traces collected at runtime are displayed in fig. 5.26.

The reader should first notice the two alerts that were displayed. The first violation happens

on the transition from state S1 to S2 because the clock associated with the Camera listening

topic of the optical sensor overpassed 1 second. Being in an ERA, this clock only resets when

a new image arrives. The model did not take into account that while processing the image

for obstacles, new arrivals are suspended. Even if the optical sensor is providing the image

at a constant rate, the time analysis of the image in S2 may vary due to the CPU usage, thus

the transitions from S2 to S1 can overpass 1 second which makes the clock associated with

Camera listening topic to violate the guard. However, the average value of the clock is 0.3135

seconds which makes this alert a rare event.

The second alert concerns the detection of an object. In the model, this transition from S2 to

S1 (via Notify Obstacle found) when an object is found should happen after 1 second since the

121

Chapter 5. ROSMDB: Development methodology

Figure 5.27 – ROSMDB trace feedback for example A (part 2)

last object was found. The average of this clock value is 0.3451 seconds at the runtime which

makes this violation to happen every time an object is found because the clock will always be

reset. This means that the initial model has a flow: the frequency of the object detection is

greater than the ability of the robot to move in order to avoid the object, so the same obstacle

is present in the next loop of the component.

The kind of analysis presented above can be applied by the user based on the data collected at

runtime to compare the validated ERA in the model checker with the actual behavior of the

application at runtime. In this way, guards can be refined. The upper limit of a guard can be

modified from the theoretical value to the average of the real value. Moreover, the lower limit

of the guards can be estimated in order to avoid deadlocks and unpredicted behavior of the

system.

This mechanism of refinement can be done in iterative steps that bring back the lifecycle of the

application from runtime to design. From this later phase, the application goes again through

ROSMDB tool-chain in order to obtain the same behavior both in the model-checker and at

122

5.5. Summary

execution time. These iterations, called sprints in software development, allow to define the

finite multi-robotic application by granularly improving the behavior of an ERA based model

using MDD in a SOA.

5.5 Summary

This chapter presented the challenges to define a complete tool-chain to develop MDD multi-

robot application over a SOA. The most appropriate formalism to design such application is, in

our opinion, timed automata. In this context, we have proposed ROSMDB that interacts with

the entire lifecycle of a multi-robot application: design of the behavioral model, theoretical

validation using timed automata formalism, code development, application deployment and

runtime monitoring and feedback retrieval.

Furthermore, a ROS compliant framework has been proposed that allows the user to focus

less on ROS and networking modules development. The ROSMDB framework allows for

transparent states and transition manager and lets the user to only define the specific code

logic for the multi-robot application.

In order to validate our proposal, we have defined a series of scenarios and we have im-

plemented and benchmarked sample applications of these scenarios with ROSMDB. The

following chapter presents our results.

123

6 ROSMDB: Experimentations

This chapter presents a series of case-studies and sample experimentation of

parts of these case-studies in order to validate the usage of Robot operating

system Model Driven Behavior (ROSMDB) and how errors that can be present at

runtime even if everything is correctly validated at design phase, can be detected

via ROSMDB.

6.1 Package delivery by drones swarm . 125

6.2 Guest welcoming and management with intrusion detection system 132

6.3 Summary . 142

In these chapter, the reader is presented first with a series of case-studies that involves complex

multi-robot software projects composed each one of multiple applications. These scenarios

are: Package delivery by drones swarm and Guest welcoming and management with intrusion

detection system. We present the experimental results of our implementation of sample robotic

applications that answer to at least one of the problems (i.e Flight synchronization based on

N pole for the first scenario, Random movement object search for the second one) from these

projects using Robot operating system Model Driven Behavior (ROSMDB).

6.1 Package delivery by drones swarm

In 2013, Amazon announced its intention to deliver packages by drone1 in a US TV show. At

this time, it was suggested that the company would begin delivery in 2018 which started a large

number of concerns around theft, liability and safety. What is more interesting is that they

1https://www.amazon.com/Amazon-Prime-Air/b?node=8037720011

125

Chapter 6. ROSMDB: Experimentations

are designing drones capable of delivery payloads up to 5 pounds (2.26 kg)2 which represents

small parcels.

In the case of large parcel delivery, the total weight of a parcel can be devised by using a swarm

of drones instead of only one. In this case, only of a fraction of the weight will be assigned to

each drone. This multi-drone project needs to handle not only the navigation inside urban

areas, but also the coordination mechanism between drones in order to load, fly and deliver a

parcel.

First, the drones need to be assigned a fly plan from centralized system which computes it

based on the total weight and distance. Based on this computation, the exact number of

drones needed for the flying will take off from their base station to the loading system.

The loading system will assign each drone an exact position where to hook their payload

cables. After this process is done, the drones will fly in a coordinated way towards the delivery

point and will unhook their cables at the destination.

This complex fleet of drones project faces several challenges which can each be expressed as a

multi-robot problems:

• Flight synchronization

• Localization and navigation of a flight plan

• Network communication in a wide area network (i.e. networks that cover a city or a

region; e.g. 3G/4G networks)

• Decision making based on environmental changes

• Local synchronization with external systems to the fleet.

In the next subsection, we have designed, developed and analyzed using ROSMDB one of the

application from this project: Flight synchronization based on N pole.

6.1.1 Flight synchronization based on N pole: Description

One of the applications needed by the case study Package delivery by drones swarm is repre-

sented by a coordinated formation flight of drones in an indoor environment like a wear-house.

In this case, the Global Positioning System (GPS) position is unavailable. Furthermore, this

system is not highly reliable even in outdoor flights since its accuracy is over 1m [Shepard

et al., 2012]. To solve this issue, we have experimented in ROSMDB a formation flight based on

the detection of the North Pole which can be done in both indoor and outdoor environments.

2https://consumermediallc.files.wordpress.com/2015/04/amazon_com_11290.pdf

126

6.1. Package delivery by drones swarm

The experiment provides an application that runs on a fleet of Parrot Bebop drones developed

using MDD over a SOA. Its purpose is to allow drones to take off simultaneously, synchronize

their orientation based on the North Pole and fly for a given distance synchronously.

Dedicated WiFi network Dedicated WiFi network Dedicated WiFi network

Fleet WiFi network

Figure 6.1 – Fleet of drones network

In order to test this scenario, we have used 3 Bebop drones3. Since the embedded software on

the drones only allows for data exchange over HTTP over a point-to-point WiFi, the experiment

includes a controller pc for each drone as shown in fig. 6.1. Each drone is connected to its

controller PC via a dedicated WiFi connection and all the laptops are connected in a fleet

network. In this case, each laptop has 2 network cards. The benchmarks were performed on

laptops equipped with Intel Core 2 Duo, 2.1 GHz CPU, 4Gb of Ram, WiFi enabled (supporting

Ad-Hoc networks) running on Ubuntu 13.04.

The communication between the laptop and its corresponding drone is managed by ROS

Ardrone package that is converting ROS messages to HTTP messages and proving the data

exchange. For this case, the tuple drone-laptop is represented as a single robot. The application

developed with ROSMDB is hosted on the laptop and fleet network is represented by the

laptops network.

6.1.2 Flight synchronization based on N pole: Models

In order to model this scenario, we propose 2 applications: a controller application that

will be used on a separate laptop in order to trigger the execution of the mission and a

Commander application that manages all the commands for the drone, the fleet network

communication and the synchronizations between the drones. A series of screenshots from

ROSMDB corresponding to this scenario design, validation, development and feedback can

be found in Appendix D.

The Controller application is composed of only Command sender service. As shown in fig. 6.2,

it waits for a keyboard command to trigger the mission start using the networking service.

3https://www.parrot.com/fr/drones/parrotbebopdrone#in-the-box

127

Chapter 6. ROSMDB: Experimentations

Start

!SendNetworkCommand,
XSendNetworkCommand=0

Done,
XDone=0

?WaitForKeyboardCommand,
XWaitForKeyboardCommand=0S1 S2

S3

Figure 6.2 – Command sender Model executed on a separated control laptop

The Commander application is composed of several services:

Networking service is managing all the communications between drones (i.e. the laptops

corresponding to each drone). The model is represented in fig. 6.3. The models waits

for a local command in S2 and it broadcasts it using SDfR over the network.

Start

!SendNetworkCommand,
XSendNetworkCommand=0

Done,
XDone=0

?WaitForLocalCommand,
XWaitForLocalCommand=0S1 S2

S3

Figure 6.3 – Networking Model executed on each drone assigned laptop

Take off manager service is managing the synchronous take off of all the drones and their

stabilization before the coordinated flight. The model is represented in fig. 6.4. In state

S1, the model waits for a network command coming from the controller pc to start the

mission and when the command is given, it will trigger the take off command in S2 and

notify the Lock North service in S3.

Start

!TakeOff,
XTakeOff=0

!NotifyLockNorthService,
XNotifyLockNorthService=0

?WaitForCommand,
XWaitForCommand=0

S1 S2

S2

Figure 6.4 – Take off Model executed on each drone assigned laptop

Lock North manager service is taking care of drone’s position in order to face the North Pole.

Each drone waits for the other drones to finish locking the North pole before the flight

in formation. The model is represented in fig. 6.5. The model is waiting for the take off

command to be finished in S2 and starts the process of rotating the drone. In S2, it waits

for a position change in altitude or in rotation. This information is requested by the

source code on the laptop from the drone internal CPU over HTTP. The model needs

to wait for the response to the request to be propagated. Then it checks if the angle

between the current position and the North Pole is 0 (+/−ε since the angle is cast to an

128

6.1. Package delivery by drones swarm

integer). If the angle in S3 is not 0, it switches to S4 where is stops the current movement

of the drone and applies the new rotation in S5. The rotation movement ends when the

angle in S3 is 0(+/−ε since the angle is cast to an integer). The Movement service of

each drone is notified that the drone faces North in the transition between S6 and S1.

Start

?PositionChanged,
XPositionChanged=0

?NotifyLockNorthService,
XNotifyLockNorthService=0

S1 S2

S3S4

S5

S6

AngleKO,
XAngleKO=0

!ResetDroneMovement,
XResetDroneMovement=0

!RotateDrone,
XRotateDrone=0

AngleOK,
XAngleOK=0

!NotifyDroneMovement,
XNotifyDroneMovement=0

Figure 6.5 – Lock North Model executed on each drone assigned laptop

Drone Movement Manager service is executing the synchronous flight of the drones for a

linear distance of 2m. When the drones reach their destination, the service triggers

the landing command of the drones. The model is represented in fig. 6.6. The model

waits for the north pole to be locked in S1 and starts the drone movement in S2. After a

movement command is applied in S2, the model passes through the states S3, S4 and

S5 where it waits (i.e. blocking states) for information about drone speed, altitude and

position. In S6 it computes the position of the drone and resets the movement if the

final position is not reached in S7. If the final position is reached, the model triggers the

landing command and notifies the system in S8.

Start
!LandCommand,

XLandCommand=0

S1

S2 S3

S4

S5

!NotifyLanded,
XNotifyLanded=0

S6

S7

?WaitForAltitude,
XWaitForAltitude=0

?WaitForPosition,
XWaitForPosition=0

?WaitForSpeed,
XWaitForSpeed=0

S8

?NotifyDroneMovement,
XNotifyDroneMovement=0

!ResetCurrentCommand,
XResetCurrentCommand=0

!MoveDrone,
XMoveDrone=0

!RestAllDronesCommand,
XResetAllDronesCommand=0

Figure 6.6 – Drone Movement Model executed on each drone assigned laptop

129

Chapter 6. ROSMDB: Experimentations

Before filling the python skeleton, all the models and their composition were validated using

ROSMDB model checker component. The reader may find in appendix D a series of screen-

shots from the tool-chain which includes also the validation of each model. We have checked

if all the states are reachable from the initial state as well as if the final state is reachable (i.e.

reachability properties) and for deadlocks in the models (i.e. liveness property). Below are

listed some of the properties that were validated:

• E<> not deadlock (liveness property)

• E<> c0DroneMovement.GetAltitude (reachability property)

• E<> c0DroneMovement.GetSpeed (reachability property)

• E<> c0DroneMovement.stopDrone (reachability property)

The reader should notice that in all the previous models, no time guard is set. In this case, it

was difficult to set a time guard since we could not anticipate the behavior of the system.

Figure 6.7 – Experimenting Flight synchronization with Parrot Drones

6.1.3 Flight synchronization based on N pole: Experimental Results

The results in the first iteration of the applications give us an idea of how the time evolves

between each state. The reader can watch a movie of the experimentation at

https://www.youtube.com/watch?v=BqvcCYOnyGs. Figure 6.7 shows a in illustration of the

experiment.

After running the first iteration of the application 10 times (each iteration is defined below as

a Run), we have noticed that the inter-arrival time of events for simple services like Take off

manager or Networking is constant. This was not the case for more complex services where a

full interaction with the drone was needed.

130

6.1. Package delivery by drones swarm

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Run id

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
im

e
 i
n
 s

e
co

n
d
s

Inter-arrival time of events in service LockNorth PositionChanged
NotifyDroneMovement
NotifyLockNorthService
AngleKO
AngleOK
DroneMovementMessage

Figure 6.8 – Lock North messages inter-arrival time

For the Lock North service, as shown in fig 6.8, the notification message from the taking off

service arrives (i.e. arrival of NotifyLockNorthService) with an average of 0.7368 seconds which

means that the time for a drone take off depends on the drone hardware parameters like

battery, position, luminosity4, etc. Another interesting event is the PositionChanged which

arrives with an average of 0.4 seconds. This value shows us the time to collect the information

from the drone. The fact that is not constant can be explained by the workload of the CPU of

the drone. The internal symbols AngleOK and AngleKO are recognized under the same time

per run with an average of 0.8 seconds. The DroneMovementMessage is almost constant at an

average of 0.3914 seconds. The final message after the north pole is locked, is sent with an

average of 0.7789 seconds, meaning that this service is running in average 0.7789 seconds in

order to lock the north pole.

In the case of the Drone movement service (see fig. 6.9), we can see that the inter-arrival

time for the information coming from the drone is almost constant within multiple runs:

WaitForAltitude has an average of 1.2475 seconds, WaitForSpeed has an average of 1.3745

seconds while WaitPosition has an average of 0.6475 seconds. The average for a DroneMove-

ment message to be executed is 0.3158 seconds. Those values show us that the time to get

information from the drones via HTTP is, on average constant.

These results allow us to refine the initial model by adding the time guards to our initial model.

This initial application allows us to test the usage of ROSMDB as a complete tool-chain to

develop a multi-robot project.

Figure 6.10b shows the refined model for Networking service (fig. 6.10a) and for Take off

service (fig. 6.10b) after 3 iterations of the entire life-cycles. In fig. 6.10 the reader can notice

4A bebop drone uses a camera to detect the altitude and its position

131

Chapter 6. ROSMDB: Experimentations

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Run id

0.0

0.5

1.0

1.5

2.0

T
im

e
 i
n
 s

e
co

n
d
s

Inter-arrival time of events in service DroneMovement PositionReached
NotifyDroneMovement
LandDroneMessage
PositionChanged
WaitForAltitude
WaitForSpeed
DroneMovementMessage

Figure 6.9 – Drone movement messages inter-arrival time

the refine model for Lock North service while in fig. 6.11 it is displayed the refine model for

Drone Movement service. Compared to the initial versions, all the models have been updated

with time guards that were extracted form the run-time observations.

Start

!SendNetworkCommand,
XSendNetworkCommand<2
XSendNetworkCommand=0

Done,
XDone<3
XDone=0

?WaitForLocalCommand,
XWaitForLocalCommand<1,
XWaitForLocalCommand=0S1 S2

S3

(a) Refined Networking Model executed on each drone
assigned laptop

Start

!TakeOff,
XTakeOff< 11,
XTakeOff=0

!NotifyLockNorthService,
XTakeOff < 15,

XNotifyLockNorthService=0

?WaitForCommand,
XWaitForCommand < 10,

XWaitForCommand=0S1 S2

S2

(b) Refined Take off Model executed on each drone as-
signed laptop

6.2 Guest welcoming and management with intrusion detection sys-

tem

In this section, we present a hypothetical example of the problems of a guest welcoming and

intrusion detection system operated with a fleet of robots. Let’s take the example of a nuclear

research facility, like CERN5. The organization is located in two main campuses and several

remote complexes. These campuses house a large number of buildings. The complex is highly

secured with different access zones. Each employee has different access clearances based

on its role and on its qualifications. But the organization needs to handle a lot of external

5The European Organization for Nuclear Research, known as CERN, is a European research organization that
operates the largest particle physics laboratory in the world.

132

6.2. Guest welcoming and management with intrusion detection system

Start

?PositionChanged,
XPositionChanged < 3,
XPositionChanged=0

?NotifyLockNorthService,
XNotifyLockNorthService < 1,
XNotifyLockNorthService=0S1 S2

S3S4

S5

S6

AngleKO,
XAngleKO < 4,
XAngleKO=0

!ResetDroneMovement,
XResetDroneMovement=0

!RotateDrone,
XRotateDrone=0

AngleOK,
XAngleOk< 4,
XAngleOK=0

!NotifyDroneMovement,
XNotifyDroneMovement< 5,
XNotifyDroneMovement=0

Figure 6.10 – Refined Lock North Model executed on each drone assigned laptop

Start
!LandCommand,

XLandCommand<6
XLandCommand=0

S1

S2 S3

S4

S5

!NotifyLanded,
XNotifyLanded=0

S6

S7

?WaitForAltitude,
XWaitForAtitude<3
XWaitForAltitude=0

?WaitForPosition,
XWaitForPosition<5
XWaitForPosition=0

?WaitForSpeed,
XWaitForSpeed<4
XWaitForSpeed=0

S8

?NotifyDroneMovement,
XNotifyDroneMovement<1,
XNotifyDroneMovement=0

!ResetCurrentCommand,
XResetCurrentCommand=0

!MoveDrone,
XMoveDrone<2
XMoveDrone=0

!RestAllDronesCommand,
XResetAllDronesCommand=0

Figure 6.11 – Refined Drone Movement Model executed on each drone assigned laptop

interactions because it is a research facility with collaborations all across the world and it has

several public sights inside the campuses where visitors can view the results of the research

and the infrastructure in use. This complex task of guiding and handling access to those

external people inside the campuses costs the organization more than 9.000.000 CHF in 20176.

In our vision, such complex and costly guest management could be fully automatized using

a guest welcoming and management with intrusion detection system. The main role of the

system will be to create a human-machine interaction and to be able to guide guests in a

complex environment. The environment is separated in different access zones and credentials

need to be checked. Furthermore, the system should be able to detect undesired intrusion in

such restricted areas.

In the design of the system, we make some assumptions. First, the complex needs to be large

enough in order to be able to deploy a fleet of robots. Examples include large warehouses,

6CERN budget for 2017: https://cds.cern.ch/record/2240771/files/English.pdf

133

Chapter 6. ROSMDB: Experimentations

(a) Initial space configuration

ID check
ID skeleton
Path programming

I want to
go to R21

R21

(b) Guest detection and clearance check

R21

(c) Robots guiding target

R21

(d) Robots guiding target

Figure 6.12 – Guest handeling

medical centers, university campuses, secured banks or military facilities. The space needs

to be devised in several security clearances protected areas and all the accesses between

zones should present smart enabled doors (e.g. NFC door openers, biometrical openers, etc.).

Finally, those accesses and the paths inside the complex should be robot friendly in order to

allow the movement of robot (i.e. ramps instead of staircases, enough space clearance for

robots to pass through, etc.).

The fleet robots’ main goals are:

• to automatically welcome and interact with guests

• to guide the guests

• to detect human intrusion via their optical sensor

Figure 6.12a presents the initial configuration of a fleet of robots in a research facility. The

space is devised in 6 areas with a robot of the fleet in each zone: the access area (i.e. the pink

134

6.2. Guest welcoming and management with intrusion detection system

R21

Intrusion detection
Broadcast alarm

(a) Intrusion detection

R21

(b) Lockdown configuration

Figure 6.13 – Intrusion detection

colored space) and other 5 zones with restricted access. When a guest arrives in the buffer

zone area (see fig. 6.12b), the robot in this zone will verify its credentials (e.g. secured access

card, fingerprint or retina scan), will compute a skeleton id of the guest in order for the other

fleet members to recognize this guest and will compute the path to the guest desired location.

In fig. 6.12c, the initial welcoming robot arrives at the end of its assigned controlled area, and

will inform the guest that the robot in the green area will continue the guiding. The initial

robot passes the information about the guest that includes the skeleton id. The same exchange

is performed between the green and the yellow zone in fig. 6.12d and the guest arrives in the

desired R21 area.

In fig 6.13a the robot in the pink area detects a violation of the access rights in the secured

area. In this case the buffered zone is compromised. In order to prevent the intrusion in the

secured facilities, an alert is broadcasted to all the fleet robots in the secured zones to create a

lockdown. Their reaction is to block the access to those areas by locking the secured doors

(i.e. interaction with the environment) or by creating a passage blockage with themselves (fig.

6.13b).

This complex fleet robotic project faces several challenges which can each be modelled as a

multi-robot application:

• Human / object detection

• Localization and navigation of a known map

• Face recognition

• Decision making based on environmental changes

• Robot fleet connectivity

135

Chapter 6. ROSMDB: Experimentations

In the next subsection, we have designed, developed and analyzed using ROSMDB one of the

application from this project: Random movement for Human/ Object detection.

6.2.1 Random movement object search: Description

One of the applications in the project Guest welcoming and management with intrusion

detection system is represented by the detection of a guest or an intruder. Each fleet member

needs to scan its designated control area by performing a random movement in order to avoid

pattern recognition by possible unwanted guests. In the experimentation bellow we have

simplified the imaging processing application by replacing a skeleton detection with a moving

target: a green ball. We propose a solution that allows each fleet robot to move randomly inside

a confined space and search for the target. Once found, the robot will approach the target. The

solution was designed, developed, deployed and analyzed using ROSMDB. Multiple iterations

were done in order to obtain the final results.

The benchmarks were performed on Turtlebot 2 robots equipped with an Intel Core 2 Duo, 2.1

GHz CPU, 4Gb of Ram, WiFi enabled (supporting Ad-Hoc networks) running on Ubuntu 13.04.

The robots were looking for a green ball in an environment with no green objects.

6.2.2 Random movement object search: Model

The models of the final iteration are described below. A series of screenshots from ROSMDB

corresponding to this scenario design, validation, development and feedback can be found in

Appendix E. Our solution is composed of two independent applications: Collision avoidance

application which main purpose is to avoid obstacles and other peer members and Object

detection application which detects if the target is visible and moves towards it or performs a

random movement.

The Collision avoidance application is composed of the following services:

Engine stopper service responsibility is to detect if an obstacle different from the target is

close to the robot and stop the robot motor until a decision on how to avoid the obstacle

is taken. The corresponding model can be found in fig. 6.14. In state S1, the model loops

until an obstacle is found. In this case, it stops the motor of the robot in S2 and sends

an alert to other services in S3. Then it waits in S4 for a decision on how the obstacle

should be avoided by synchronizing with the other services on ack ROS topic.

Avoidance service objective is to compute and execute a path to avoid an obstacle when is

detected. The model also verifies if the computed path was physically executed correctly.

The corresponding model can be found in fig. 6.15. In the initial state S1, the robot

waits for an alert to be triggered by Engine stopper service. In this case, in the state S2,

the robot verifies the status of the motor. If the motor is on, the system switches directly

to S4. If not, the model execution passes through S3 where it sends a ROS command to

136

6.2. Guest welcoming and management with intrusion detection system

Start
S1

S2 S3

S4

!Alert,
XObstacleFound < 3,

XAlert=0

ObstacleFound,
XObstacleFound=0

!StopEngine,
XObstacleFound < 2

XStopEngine=0

?Ack,
XObstacleFound < 4,

XAck=0

ObstacleNotFound,
XAck > 1,

XObstacleNotFound=0

Figure 6.14 – Engine stopper Model executed on each robot

trigger the start of the motor. In S4, the robot computes the reverse path to be executed

in order to avoid the obstacle and executes it. In S5, it waits for odometer data from ROS

topic and verifies if the path was executed correctly in S6. If this is the case, it switches

to S7 where it informs all the other services that the movement was executed correctly.

If an alert arrives while the model is in one of the states related to the movement, the

system resets the computed behavior and goes back to state S2.

Start
S1 S2

S4

S3

S5S6S7

?Alert,
XAlert=0

?Alert,
XAlert=0

?Alert,
XAlert=0

EngineOff,
XAlert < 2,

XEngineOff=0

EngineOn,
XAlert < 2,

XEngineOn=0

!StartEngine,
XAlert < 3
XStartEngine=0

!ReverseCommand,
XAlert < 4

XReversCommand=0

?OdometryCheck,
XOdometryCheck=0

MovementOK,
XOdometryCheck < 2

XMovementOK=0

MovementKO,
XOdometryCheck < 2

XMovementKO=0

!Ack,
XOdometryCheck < 3,
XAck=0

Figure 6.15 – Avoidance Model executed on each robot

The Object detection application is composed of the following services:

Image analyzer service is specialized in detecting the moving target (i.e. the green ball) and

computing the path that needs to be executed in order to reach it. The corresponding

model can be found in fig. 6.16. The model loops in S1 until the ball is detected. In

S2 it computes the path needed to be executed in order to approach it and waits for

the movement to be executed in S4. The execution is repeated multiple times until the

target is reached because the movement can be cancelled by the Collision avoidance

application or because the target has moved.

Movement service responsibility is to move the robot towards the target if it is detected or

to perform a random movement in order to search for it. In S1, it waits for a computed

137

Chapter 6. ROSMDB: Experimentations

Start
S1

S2

S4

ObjectFound,
XObjectFound=0

!MovementAction,
XObjectFound < 2

XMovementAction=0

?MovementReady,
XObjectFound < 10,
XMovementReady=0

ObjectNotFound,
XObjectNotFound=0

Figure 6.16 – Image analyser Model executed on each robot

path from Image analyzer service. If the path arrives in less than 5 seconds, the model

applies the path in S2 and acknowledges the movement in S3. If no path arrives in the

time interval, a random path is computed and executed in S4. This movement is also

acknowledged in S3.

Start

S1

S2

S3

S4RandomMovement,
XDirectionFromImage > 5

XRandomMovement=0

?MovementAction
XMovementAction=0

!ApplyMovement,
XRandomMovement < 2

XApplyMovement=0

!MovementReady,
XMovementReady=0

!ApplyMovement,
XDirectionsFromImage < 2

XApplyMovement=0

Figure 6.17 – Movement Model executed on each robot

Before filling the python skeleton, all the models and their composition were validated using

ROSMDB model checker component. The reader may find in appendix E a series of screenshots

from the tool-chain which includes also the validation of each model. We have checked for

deadlocks in the models (i.e. liveness property) and if all the states are reachable from the

initial state as well as if the final state is reachable (i.e. reachability properties). Below are

listed some of the properties that were validated:

• E<> not deadlock (liveness property)

• E<> c0EngineStopper.WaitForKinnectImage (reachability property)

• E<> c0EngineStopper.Stop motor (reachability property)

• E<> c0EngineStopper.brodcastAlert (reachability property)

138

6.2. Guest welcoming and management with intrusion detection system

Figure 6.18 – Experimenting Random movement object search with Turtlebots

6.2.3 Random movement object search: Experimental results

What is more interesting for the use of ROSMDB is that all the models were valid in the model

checker. The initial approach was to set all the clocks guards to 1 second which failed in

practice because the code execution in each state depended on processing images that was

time consuming. The initial iteration helped us understand the real guards that we need to

assigned. We have refined the model and have checked it again with the model checker. Figure

6.18 shows a in illustration of the experiment.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Run id

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
 i
n
 s

e
co

n
d
s

Inter-arrival time of events in service EngineStopper ObstacleFound
ObstacleNotFound
Alert
StopEngine
Ack

Figure 6.19 – Engine stopper messages inter-arrival time

Even if the time guards were correct and the model checker did not detect any deadlocks in

the theoretical model, a deadlock was found at runtime as shown in E.6 of appendix E. This is

139

Chapter 6. ROSMDB: Experimentations

explained by the delay of message propagation in ROS. When the Engine stopper detected a

possible collision with an obstacle, it stopped the motor of the robot and triggered an alert

event. The Avoidance service received the alert, checked the status of the engine. The delay in

ROS stopping the motor made the Avoidance service to see that it was still on and triggered

computing an avoidance path, but in reality, the motor was shutting down. Once the path

was computed and the motor was shut down, the movement message could not succeed in

moving the robot, thus when the system checked if the execution was correct, it was not the

case. The system blocked because the service Avoidance was waiting for an alert in S1 and

the only model that could sent this alert was Engine stopper which was waiting for an ack

event from the Avoidance service. This problem, that could not have been seen by the model

checker due to its dependence on the physical system, was corrected in the latest iteration by

simply waiting for the motor state to fully change state.

The results for the final refined code that avoided deadlocks collected in a benchmarking of 10

runs are shown below. In the case of Engine stopper, as shown in fig. 6.19, the ack, alert and

StopEngine events are happening with the same frequency in the same run. The average of

these events across all the benchmarking is 0.5125 seconds. The average inter-arrival time of

ObstacleFound (i.e. 0.5125 seconds) and ObstacleNotFound (i.e. 0.46 seconds) is environment

related and vary from run to run. We should remark that when an obstacle is found, the

following events in the model have the same inter-arrival average.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Run id

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
im

e
 i
n
 s

e
co

n
d
s

Inter-arrival time of events in service Reverser Ack
OdometryCheck
StartEngine
EngineOff
Alert
MovementKO
MovementOK
EngineOn
ReverseCommand

Figure 6.20 – Avoidance service messages inter-arrival time

As shown in fig. 6.20, the event with the higher inter-arrival time is MovementKO (average of

1.2076 seconds) followed by EngineOff (average of 1.1 seconds) and OdometryCheck (average

of 0.9807 seconds). The EngineOff is triggered only after a waiting time in which the robot

motor is allowed to completely change state from on to off, while the two other events are

linked by the time it takes to compute the real executed path. The ReverseCommand event is

correlated with the EngineOff because the same waiting time is propagated to the state where

140

6.2. Guest welcoming and management with intrusion detection system

the reverse command is computed. Having a high inter-arrival time for MovementKO means

that the robot executed correctly the assigned path most of the time.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Run id

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
 i
n
 s

e
co

n
d
s

Inter-arrival time of events in service ImageAnalizer ObjectNotFound
MovementAction
ObjectFound
MovementReady

Figure 6.21 – Image analyzer messages inter-arrival time

Figure 6.21 presents the results for Image analyzer service. The events ObjectNotFound, Move-

mentAction and MovementReady are correlated because when an object is not found, no other

events of that time are triggered. Their average is 0.575 seconds.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
Run id

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
 i
n
 s

e
co

n
d
s

Inter-arrival time of events in service Mover RandomMovement
MovementReady
ApplyMovement
MovementAction

Figure 6.22 – Mover messages inter-arrival time

In fig. 6.22, a random movement is executed with an average of 0.54 seconds while the action

of computed path that will approach the robot to the moving path has an average of inter-

arrival time of 0.6375 seconds. The MovementAction and MovementReady are linked together

because they are serialised events.

141

Chapter 6. ROSMDB: Experimentations

This experimentation has allowed us to verify the use of ROSMDB tool-chain. First, it shows

how mistakes that are not visible when applying model checking on theoretical models can

happen in runtime. The tool was useful enough to detect this problem and we have corrected

the behavior. Second, the feedback provided by the tool helped us to refine the source code in

order to be compliant to the desired behavior of the robot.

6.3 Summary

We provided two scenarios and experimented with two sample applications in each scenario

the use of ROSMDB tool-chain. It was proven to be helpful in the process of iterating multiple

versions of the applications by allowing us to refine the model and detect violations that were

not visible using classical off-line model checkers.

The main advantages of using ROSMDB that we have noticed in the previous experiments

are the gain in time in performing multiple iterations of the development phase (the python

skeleton was generated automatically, the deployment was done transparent from the devel-

opment station, the feedback was displayed in a human readable way) as well as the possibility

of noticing different behaviors between the theoretical model and runtime model. Combining

development phase model validation with runtime alerts and transparent mapping of the

theoretical model to the executed code allows for a faster and simpler iterations. On the

other hand, the downside of ROSMDB is generated by the time needed by a developer to

accommodate with the MDD approach in a web GUI .

ROSMDB uses timed automata as formalism to design multi-robot applications using a MDD

over SOA. The framework behind uses SDfR and point to point network connections, being

able to scale up with an extensible number of robots. The model checker behind ROSMDB is

UPPAAL which accepts TCTL properties. The tool-chain can verify liveness and reachability

properties and only analyses the events between the components (i.e. each component is

seen as a black box).

142

7 Conclusion and perspectives

We conclude this thesis by summarizing the contributions. Then, we provide research and

applications perspectives beyond this work.

7.1 Concluding remarks

First, we have reviewed and compared the existing middlewares for robotics that can be

applied to a fleet context. It was noted that a robotic fleet can benefit from parallelization

of tasks which reduces the time needed to accomplish them. The use of middlewares im-

proves the information sharing and the robustness to failure. Based on this comparison, we

believe that Robot operating system (ROS) [ROS, 2014] and Microsoft Robotics Developer Studio

(MRDS) [MRDS, 2012] are the most suitable single robot middleware that can be applied out

of the box to a fleet of robots. One assumption made in the beginning of this thesis, is to use

ROS as low level robotic middleware because we think it is the emerging middleware with the

most potential to become the most used framework for robotic fleets [Chitic et al., 2015]. The

main reason for this assumption is based on the communication schemes provided by ROS

(i.e. it supports both synchronous and asynchronous communications and it can easily be

customized with new message types), on the large drivers ecosystem which allows a very good

abstractions of hardware, on its plug-and-play modules system. It also allows the use of many

programming languages including Python and C++. ROS was designed using a modular vision,

thus, it allows us to compose multiple modules in order to create software services in a Service

Oriented Architecture (SOA)

Secondly, it was reviewed a development approach to design and develop new software

components called Model driven development (MDD). Next, a series of classical formalism

that can be used to design software behavior and their applications in robotics were reviewed.

The focus was then assigned on a particular formalism called timed automata [Alur and Dill,

1994]. We have observed that models are used as a starting point into developing robotic

software and architectures. MDD can also be applied in robotics, allowing an automated

translation from models to software components. Robotic applications require often real-time

143

Chapter 7. Conclusion and perspectives

processes. Timed automaton was chosen as formalism applied to MDD because it allows time

to be considered in the modelling phase of a robotic applications and it provides a powerful

mathematical tool-set for model checking.

Then, we have combined the concepts reviewed in the state of the art in order to provide

a service discovery protocol for robot fleet systems. After starting discussing the limited

applicability of existing service discovery protocols in the context of robot fleets, we proposed

afterwards a new protocol called Service Discovery for Robots (SDfR) that is suitable for service

discovery inside an ad-hoc networked fleet. An extensive evaluation of different text and

binary alternatives to implement SDfR was made using a fleet of Turtlebot robots, in order

to measure and show that the overhead of SDfR is limited. SDfR is not only a contribution

that combined a MDD approach using timed automata on a ROS based SOA, but was further

used in tooling provided with the timed automata model based programming methodology

we propose, Robot operating system Model Driven Behavior (ROSMDB)

Finally, the challenges to define a complete tool-chain to develop MDD multi-robot appli-

cations over a SOA using timed automata were presented. ROSMDB was proposed which

includes a methodology based on timed automata to express robotic behavior, to specify

temporal properties and to verify those properties against the model at both design and run-

time phase. It represents a tool-chain that interacts with the entire lifecycle of a multi-robot

application: design of the behavioral model, validation using timed automata formalism, code

development, application deployment and runtime monitoring and feedback retrieval. In

addition to the tool-chain, a ROS compliant framework has been proposed that allows the user

to focus less on ROS and networking modules development. The ROSMDB framework allows

for transparent states and transition manager and lets the user to only define the specific

application source code logic for the multi-robot application. We provided a series of scenarios

and experimented with samples applications in each scenario the use of ROSMDB tool-chain.

These experiments, executed first on a fleet of Parrot Bebop Drones and secondly on a fleet of

mobile Turtlebot allowed us to develop, validated, deploy real applications in order to evaluate

our methodology and the proposed tool-chain. It was proved to be helpful in the process of

iterating multiple versions of the applications by allowing us to refine the model and detect

violations that were not visible using classical off-line model checkers.

We believe that modelling and analysis techniques with formal foundations such as the ones

that we have presented will help at transforming the development and the maintenance of

multi-robot fleet applications from a process that requires a substantial amount of manual

interventions, to a model-driven process that is automated to a large extent.

7.2 Perspectives beyond ROSMDB and SDfR

The concepts and software presented in this thesis focused on providing a fully integrated

timed automaton model based developing environment for robotic fleet application. While

already being innovative by themselves, we believe that those contributions can play a signifi-

144

7.2. Perspectives beyond ROSMDB and SDfR

cant role when leveraged in the following contexts.

7.2.1 Short-term perspectives

Collaborative and Versioning extension for ROSMDB Even if ROSMDB tool-chain is repre-

sented as a web application that can be hosted on a centralized server and used by

multiple developers, multiple users cannot work on the same model at the same time

because this will end in overriding the others work, thus in version conflicts. A chal-

lenging extension could allow multiple users to work at the same time by providing a

collaborative working environment.

These extensions should allow each user to trace the progress of his own work, thus to

provide an historical view of the models and source code evolutions over time. Moreover,

being able to work in a cooperative way, multiple user can share the same workspace

and collaborate in order to design or refine the multi-robot application.

Both the Collaborative and the Versioning extensions provides interesting research and

development problems:

• Versioning both the user code and the models needs to guarantee the mapping

between those two in any given version. If the system tags a version with a refined

model but with an un-updated source code, the mapping can be broken. This will

end in properties being valid during the model checking phase but the application

might have a different behavior at runtime. A departing point in building such

system can be found in [Chacon and Straub, 2014] where the versioning systems

reflects the existing model as a local copy on the user workspace. All the model

modifications and updates will be saved only in this workspace. As mentioned

in [Loeliger and McCullough, 2012], such system can facilitate the distributed

development, scale to large number of developers, perform quickly and efficiently,

provide atomic transactions and enforce accountability.

• Collaborative work on the same models and source code needs a consensus system

that needs to take into account not only each user updates, but also the order of

these updates [Weiss et al., 2009]. As mentioned in [Sun et al., 1998], one of the

most challenging problems in real-time collaborative editing systems is consis-

tency maintenance. This kind of system should provide not only a consistency

model, with properties of convergence but also schemes and algorithms for generic

operation transformation in order to support intention preservation. For the mod-

els, two users might refine the model together and the result is represented by the

sum in time of both contributions. If a third person needs to work on the same

model and gets only the updates for one of the two previous users, the consensus

system should guarantee the final model is represented by the sum in time of all 3

contributors.

Other development perspectives for ROSMDB From development point of view, the follow-

145

Chapter 7. Conclusion and perspectives

ing features would be interesting to be included in ROSMDB:

a. Models and components repositories for existing services for ROSMDB : For exam-

ple, if a robotic application needs a collision avoidance service, it could automati-

cally obtain it from a repository including all the avoidance service models and

source codes (if it was already published to the repository).

Existing software tool-chain like Apache Maven1 or Gradle2 provide such reposi-

tories. The user only specifies its dependencies in the manifest file of the service,

and the tool-chain automatically downloads the corresponding packages. Such

mechanism could be implemented in ROSMDB tool-chain allowing for a better

reuse of existing components and services.

b. Security layer : The security issue was out of the scope of ROSMDB contribution.

The main issue is how a system that relies on message passing communication

scheme and which relies on source code deployment can be made secured?

ROSMDB framework offers an unsecured communication layer between fleet

peers. This mechanism and the service description urls used by SDfR could provide

service signatures and all the transported data should be encrypted [Tyagi et al.,

2017].

Secondly, a security improvements can be also done in the tool-chain GUI (i.e.

authentication and user management) by implementing a AAA3 security protocol

[Park et al., 2003]. Moreover, the package distributing system of the tool-chain

could be render secured by implementing asymmetric encryption system using

private-public security keys for data transmissions [Rodgers et al., 2017].

7.2.2 Long-term perspectives

Continuous integration system for robotic fleets In today’s applications, providing automated

testing at different layers (i.e unit-testing, integration and regressions tests) and con-

tinuous integration is critical. "Continuous integration is a software practice where

developers integrate frequently, at least daily updates for their software" [Ståhl and

Bosch, 2014]. This software concepts can be also applied in developing multi-robot

applications.

This is becoming even more true in the case of SOA because no one has control on

the services it uses. Even if a component model is valid today and the corresponding

code acts in concordance with the model today, if an upgrade of the model or source

code is performed tomorrow, it might generate changes in behaviors. If the model is

1Maven is a build automation tool used primarily for Java projects.
2Gradle is an open-source build automation system that builds upon the concepts of Apache Ant and Apache

Maven and introduces a Groovy-based domain-specific language (DSL) instead of the XML form used by Apache
Maven for declaring the project configuration

3 AAA refers to Authentication, Authorization and Accounting. It is used to refer to a family of protocols which
mediate network access.

146

7.2. Perspectives beyond ROSMDB and SDfR

updated, this may cause the mapping corresponding code to become obsolete. In the

other case, the update of the source code may introduce violations of the model. Indeed,

performing continuous model validation based on the inputted rules can guarantee

that a model is correct even after the update.

Such continuous integration system provides interesting research and development

problems:

• Provide a test-case generator that, based on a model and properties can generate

experimental test cases. The models validation test cases are represented by its

properties. The output of injecting the model and its predefined properties into the

model checker is represented as a boolean meaning if the properties are satisfied

or not [Aichernig et al., 2017]. On the other hand, generating test-case for the

executed behavior at runtime becomes more complex because these test cases

should include a large number of possible failure points including communication

problems, hardware problems, operating system errors, etc. [Panichella et al., 2017].

A test-case generator for such scenarios is needed in order to simulate at runtime

various problems that may appear during the real execution of the mission.

• Provide a framework to analyze the trace-files based on the test-cases and the

model. Currently, the analysis of the trace-files is executed manually. Such task

needs to be automatized and included in an AI framework in order to decide if a

generated test case has passed or failed [Lam et al., 2017].

Extend the usage of ROSMDB outside robotic environment ROSMDB is tool-chain that al-

lows for the design, development, deployment and monitoring of multi-robot applica-

tions using models as starting point in the design of services inside a SOA. The same

concept of modelling services could be used outside the robotic ecosystem that includes

Internet of Things [Bermudez-Edo et al., 2017], smart home environments [Desolda

et al., 2017] or vehicle to vehicle networks [Baldessari et al., 2007].

The main open question is if these environments are different from a robotic fleet or on

which scale? It is true that the components in such environments are less mobile than

robots (except vehicles), but all the components are network connected devices that

offer services and capabilities in possible ad-hoc networks. Moreover, their behavior

can be as well modelled using time automata MDD in a SOA.

If the robotic component is extended, ROSMDB could be used to model generic dis-

tributed services in a SOA as timed automata models. The tool-chain could be used to

validate reachability and liveness properties of these models and their composition. Fur-

thermore, the existing deployment system can be used to provision the newly developed

application on networked nodes.

The main research issue in order to generalize the usage of ROSMDB outside the robotic

world is generated by the specialty of ROSMDB framework. It is tightly linked to ROS and

its data exchange schemes. Furthermore, generic distributed services may depend on a

larger spectrum of communications types [Zeng et al., 2004]. The open question is how

147

Chapter 7. Conclusion and perspectives

could ROSMDB framework evolve in order to take into account all the communication

and events handling in such nonspecific environments? Should the communication

be delegated to the user code and rely on the user to hook the probes directly into the

source code?

148

A Selected Middlewares descriptions

A.1 Player/Stage

The Player/Stage ([Kranz et al., 2006], [Collett et al., 2005]) project is designed to provide

an infrastructure, drivers and a collection of dynamically loaded device-shared libraries for

robotic applications. It is one of the first middleware that emerged for robotic systems and

there are other middlewares that wrap Player. It doesn’t consider a robot as a unity, but it

instead treats each device separately, being a repository server for actuators and sensors.

The middleware is composed of 2 components: Player and Stage. Player/Stage is based on a

three-layers architecture in which the top layer is represented by clients that are specialized

software components. The middle layer is Player which provides common interfaces for

different robot devices and services. The last layer is the robots, sensors, and actuators. Player

refers to the device and server interface. The devices are made of a driver and an interface, and

are independent of each other. They can subscribe to a Player server repository to become

accessible to clients. Clients can connect to this repository to request data from the sensors,

send commands to the actuators, or perform configuration changes to an existing device.

The connection between the clients and the devices are done in separate sockets, making

the data transfer available for multiple concurrent clients. The communications between

clients and devices are connection-less, leaving the control architecture for the client to deal

with. The components of the device that allow the client to retrieve information and send

control commands to the devices are the device interfaces. These interfaces communicate

with the device drivers that process the information. The socket communication implies that

the clients software can be written in any programming language that has socket support. C,

C++, Java, Common Lisp, TCL and Python are supported client programming languages. Other

programming languages can access the interface provided by Player using various client-side

libraries.

Stage is a graphical 2D simulator that models devices in a user defined environment. It also

has socket based communication that uses the same interface on the real robot as in the

149

Appendix A. Selected Middlewares descriptions

simulator. The platform that can run the Player/Stage middleware include: MobileRobots,

Segway, Acroname, K-Team robots, iRobot’s RFLEX-based, Botrics and Evolution Robotics.

Players main futures are the device repository server, the variety of the programming languages,

the socket based transport protocol, modularity and the implementation being open-source.

A.2 Robot operating system

Robot operating system (ROS) is a recent flexible middleware for robot applications [Cousins

et al., 2010, ROS, 2014]. It is a collection of tools, libraries, and conventions that aim to

simplify the task of creating complex and robust robot behavior across a wide variety of

robotic platforms. It provides hardware abstraction, device drivers, visualizers, message-

passing, package management.

At a low-level, ROS is a XML-RPC communication framework for sending information across

processes. The processes in ROS are call nodes. Since communications are being wrapped

into HTTP requests, which represent a language-agnostic Transmission Control Protocol

over Internet Protocol (TCP/IP) protocol, the applications that uses ROS can be written in

a variety of languages and can be distributed across multiple TCP/IP enabled devices. The

communication between nodes can be done in two ways. For asynchronous communications,

a publish-subscriber mechanism is provided where multiple nodes can publish / receive

broadcast information on a name channel (known as topic). Alternatively, synchronous

communications can be done using ROS services, a RPC system that allows a node to call a

service from another node.

ROS is composed of two key components: the ROS master and ROS nodes. The messages that

are sent across the topics are written in a specific IDL. A message is a simple semi-structured

data type. Standard primitive types (integer, floating point, boolean, etc.) and arrays of these

types are supported. Messages can include arbitrarily nested structures and arrays (much

like C structures). The ROS Core is composed of the master node (a name server that allows

node to subscribe and keeps tracks of each created node and topic) and ROS parameter server

(a shared, multi-variate dictionary that is accessible via network APIs). The ROS nodes are

executables that use ROS to communicate with other nodes and represent the application

layer of the architecture. ROS comes with a series of libraries containing often-need robotic

services like SLAM, Autonomous navigation of a known map, object follower, etc. ROS is

designed to be cross-platform.

The official supported programming languages for ROS are C++ and Python, but there are

compatibility libraries for Java, C#, Lisp and Go. Up to now, it can run native on Ubuntu

Linux, but it is compatible with other Unix operating systems, MacOS and Windows. The

platforms that support ROS include PR2, Turtlebot, Kobuki, Husky and Dr. Robot Jaguar V4

with Manipulator Arm, etc.

150

A.3. Miro

A.3 Miro

Miro is a distributed, object-oriented middleware developed to improve the software devel-

opment process by increasing the integrability of heterogeneous software, the modularity

and the portability of robot applications [Kraetzschmar et al., 2002, Krüger et al., 2006]. It was

developed in C++ for Linux based on the CORBA. This allows cross-platform interoperability

making the middleware applicable to a distribute multi-robot context. Due to the restrictive

nature of CORBA, software application can be only written in languages that provide CORBA

implementations.

The Miro architecture is organized in three layers: the device layer, the service layer, and the

class framework layer. The device layer provides object-oriented interface abstractions for

all hardware devices (sensor and actuator) and makes it platform-dependent. The service

layer provides abstractions for the device layer via the CORBA IDL. The class framework

provides a number of services usually needed by application such as mapping, self-localization,

visualization facilities, and so on.

All the Miro’s components data exchanges are event-triggered. The platform supporting Miro

include iRobot B21 and MobilieRobots Pioneer. Miro is very flexible and can be easily extended

to support new devices and robot applications.

A.4 MRDS

Microsoft Robotics Developer Studio (MRDS) is a Windows-based middleware for robot control

and simulation from Microsoft [Johns and Taylor, 2008, MRDS, 2012]. It is composed of four

major components: CCR, DSSs, VPL and VSE. The CCR is a .NET-based concurrent library im-

plementation for managing asynchronous parallel tasks. DSS, which allows the orchestration

of multiple services to achieve complex behaviors is lightweight services-oriented runtime

using message-passing technique.

VPL is a graphical development environment that uses a service and activity catalog. A service

or an activity is represented by a block that has inputs and outputs that just need to be dragged

from the catalog to the diagram. These components can interact graphically. VPL also allows

the generation of code of new “macro” services from diagrams created by users. Finally, VSE is

a simulation environment.

MRDS is aimed at academic, hobbyist, and commercial developers. It handles a wide variety

of robot hardware like Eddie Robot, ABB Group Robotic, CoroWare CoroBot, Lego Mindstorms

NXT, iRobot Create, Parallax Boe-Bot and more.

151

Appendix A. Selected Middlewares descriptions

A.5 MARIE

Mobile and Autonomous Robotics Integration Environment (MARIE) is a middleware designed

to allow the integration and distribution of software for robotic systems [Côté et al., 2007, Côté

et al., 2006]. Its main objectives are to allow developers share, reuse and integrate software in

order to accelerate the development of robotic applications. It was created in C++ and uses

the ACE communication framework. The centralized component provided by the middleware

called MDP allows software components to connect to MARIE.

MARIE is organized in three layers: Core, Component and Application layer. The core layer

consists of services for low-level communication, data handling, Input/Output (I/O) control,

and distributed computing functions. The Component layer is used to add components for

integrated services and support domain specific concepts. The Application layer contains

useful services to build and manage integrated applications. MARIE can run on MobileRobots

Pioneer 2. Its main features are the interoperability and re-usability of robotic software

modules.

A.6 Orca

Orca is an open-source middleware for developing component-based systems

[Makarenko et al., 2006, Makarenko et al., 2007]. It provides the mechanics to create building-

blocks which can be pieced together to form arbitrarily complex robotic systems. Orca can

be used in various applications, from single vehicles to distributed sensor networks. It was

designed and developed to maximize the software reuse and modularity in robotic applica-

tions. Orca is highly dynamic, with a distributed component base system that allows the user

to define custom interfaces and communication protocols.

To implement a distributed component-based system, CORBA was chosen in the first version

of Orca, but it was rapidly changed with ICE [Michi Henning, 2010], a new approach to

object-oriented middleware that offers a much smaller and more consistent API , lighter

implementations, advanced services, and good performance. It supports essential C/C++

programming languages on Linux. Since ICE supports C++, Java, Python and C# and since ICE

clients and servers can work together regardless of the programming language in which they

are implemented, the supported programming languages can be extended to these languages.

The platform that can run the Orca middleware include: MobileRobots, Segway, K-Team

robots, iRobot’s RFLEX-based, Evolution Robotics.

A.7 Carmen

Carnegie Mellon Robot Navigation Toolkit (Carmen) is an open-source collection of middle-

wares that focuses on the robot control by providing various control interfaces [Montemerlo

et al., 2003, CARMEN, 2008]. It is written in the C programming language and it is organized

152

A.8. Pyro

in three layers: hardware interface, common services and application layer. The hardware

interface provides low-level communication, control by creating a hardware abstraction for

sensors and other components. The second layer offers off-needed robotic services like navi-

gation, localization, object tracking, and motion planning. The last layer is represented by the

user-defined applications that share information and relies on data revived from the lower

layers.

A key feature of the middleware is the modularity. The communication between different

modules is done using IPC. The platforms that supports Carmen include MobileRobots,

Nomadic Technologies Scout, iRobot ATRV, etc. The middleware is accompanied by a simulator

with graphical display and editors.

A.8 Pyro

The goal of Python Robotics (Pyro) is “to provide a programming environment for easily explor-

ing advanced topics in artificial intelligence and robotics without having to worry about the

low-level details of the underlying hardware a robot programming environment” [Blank et al.,

2006, Blank et al., 2005, Pyro, 2012]. It has educational purposes, and it wraps the Player/Stage

middleware so that any component written for this system is also available to Pyro.

There are many libraries for Pyro that provide specific robotic services. The only programming

language supported is Python. The middleware is compatible with MobileRobots Pioneer,

Sony Aibo and all robots supported by Player/Stage.

153

B Model driven development in robotics

B.1 RobotML

RobotML [Dhouib et al., 2012] is a MDD approach based on DSL that allows the design,

simulation and development of robotic software components. The model behind RobotML is

composed of four sub-models. The first sub-model, the architectural, specifies the structure of

the application. It also contains meta information about the data types used, the environment,

the platform on which the application is being deployed and the context of the robotic mission.

The communication is the second sub-model and is in charge of defining the means of

communication like ports mapping and protocols used. The third sub-model is associated

with the behavior of the robot. Using state machines, it specifies what is the behavior of

the robot during its missions. The last sub-model refers to the rules to compose the robotic

software during the deployment phase to a target robot or simulator. The framework is part of

the PROTEUS [Dhouib et al., 2012] French research project.

B.2 V3CMM

V3CMM [Alonso et al., 2010] is a modelling language. It is composed of three views:

• Structural view - a static representation of the structure used to create the components

from the model. It also includes the ports and interfaces used to communicate as well

as a description of how these interfaces are bound together.

• Coordination view - describes the interconnections of components in an event-triggered

context. The models are created by state machines described using Unified Modeling

Language (UML).

• Algorithmic view - describes the specific business logic of the application. It is created

using UML.

155

Appendix B. Model driven development in robotics

B.3 SmartSoft

In SmartSoft [Schlegel et al., 2009b], the model is used in the generation of component “hull”

(skeleton) which is in charged with the external publication of its service and the internal

interactions between parts of the component. This skeleton is composed of four layers:

• User code layer - This layer is filed with the specific application business logic.

• Communication layer - The communication is created over a top of communication

patterns allowing external services to share information via internal interfaces to user

code inside component.

• Platform independence layer - It includes all the concepts that are independent from

the platform in use, such as threads management, processes management, etc

• Platform specific layer - It refers to the specific middleware, operating system and

hardware in use.

B.4 BRICS model

BRICS [Bruyninckx et al., 2013] is based on model driven approach in which the model, named

Component Port Connector (CPC) meta model, is oriented on:

• Configuration - The components are dynamically configured based on their properties

defined in the meta-model.

• Composition - Components can be composed hierarchically in order to form a compos-

ite component.

• Coordination - A composite component includes a coordinator part who is scheduling

the computational process.

• Computation - It contains the meta information needed for the algorithms resulted

from the composition to perform the robotic mission.

• Communication - The information at this layer represent the means of communications

like how connectors are linked to allow 2 components to execute event or service calls.

156

C Product construction of examples

C.1 Obstacle detection and avoidance navigation service

One key module of a mobile robot fleet application is real time obstacle detection and avoid-

ance. In nowadays context, most of the mobile robots are featured with some type of collision

avoidance, starting from less complex algorithms which will stop the robot immediately when

an obstacle is detected, towards more complex algorithms that will recompute the path in

order for the robots to detour the obstacles. Those latter algorithms involve not only the means

of detecting the obstacle, its size and dimensions, but also they include a more resourceful

computational unit, since they need to drive the robot around the obstacle and resume the

path to the initial target. These algorithms are being part of the autonomous navigation con-

cept. In general, in autonomous navigation, the environment may have known and unknown

obstacles. All these assumptions are taken into account in the global path planning algorithm

that plots the robot initial path in order to avoid known obstacles as well as in local path

planning involved in unknown obstacles avoidance.

C.1.1 Optical sensor component

Its dedicated task is to get a depth and RGBA image from the optical sensor in order to analyze

if an object is present on the robot trajectory. The component ERA is presented in C.1.

S1 S2

!NoObst, XNoObst>1, XNoObst=0

Start

!Obst, XObst<1, XObst=0

?Image, XImage < 1, XImage=0

Figure C.1 – Optical sensor component Event Recording Automaton

157

Appendix C. Product construction of examples

C.1.2 Navigation component

This part is performing the actual movement of the robot and it avoids objects. The ERA is

formed from several states, show in fig. C.2.

S3 S5
S6

XNoObst<
2

S7

?NoObst,
XNoObst =0

?NoObst, XNoObst>3,
XNoObst =0

?NoObst,
XNoObst>1,
XNoObst =0

Start

?Path,
XPath<5,
XPath =0

?NoObst,
XNoObst <1,
XNoObst =0

?Obst,
XObst <1,
XObst =0

?Obst, XObst <3,
XObst =0

S4

S8

?Obst,
XObst<1,
XObst =0

!RPath,
XRPath<1, XRPath =0

?Obst, XObst<1,
 XObst =0

Figure C.2 – Navigation component Event Recording Automaton

158

C.1. Obstacle detection and avoidance navigation service

C.1.3 Product construction of the service

AOpti cal sensor ∥ AN avi g ati on represents the product of timed automata AOpti cal sensor and

AN avi g ati on it is presented in fig C.3.

S1S3

Start

S2S3

?Image, XImage < 1, XImage=0

!Obst, XObst<1, XObst=0

!NoObst, XNoObst<1, XNoObst=0

S2S4

?Path,
XPath<5,
XPath =0

S1S4

?Path,
XPath<5,
XPath =0

?Image & ?Path,
XImage < 1, XPath<5,
XImage=0, XPath =0

!Obst & ?Path,
XObst < 1, XPath<5,
XObst=0, XPath =0

!NoObst & ?Path,
XNoObst < 1, XPath<5,
XNoObst=0, XPath =0

?Image, XImage < 1, XImage=0

S1S5

S1S6

S1S8

S1S7

!?Obst,
XObst<1, XObst=0

S2S5
?Image, XImage < 1, XImage=0

!?Obst, XObst<1, XObst=0

S2S6
?Image, XImage < 1,

XImage=0

!?NoObst,
XNoObst>1,
XNoObst=0

S2S7

S2S8

?Image, XImage < 1, XImage=0

?Image, XImage < 1, XImage=0

!?NoObst,
XNoObst<1,
 XNoObst=0

!?Obst,
XObst<1,
 XObst=0

!?NoObst,
XNoObst<1,
 XNoObst=0

!?Obst,
XObst<1,
 XObst=0

!?NoObst,
XNoObst<1,
 XNoObst=0

!Obst, XObst<1, XObst=0

!NoObst, XNoObst<1, XNoObst=0

!RPath,
XRPath<1,
XRPath =0

!RPath,
XRPath<1,
XRPath =0

!RPath &
!Obst,

XRPath<1,
XObst<1

XRPath =0,
XObst=0

!RPath & !NoObst,
XRPath<1, XNoObst<1
XRPath =0, XNoObst=0

Figure C.3 – Product construction of components for service: Obstacle detection and avoid-
ance navigation

The full representation of the product can be simplified just to two states showing how the

service reacts with the external environment as shown in fig. C.4.

159

Appendix C. Product construction of examples

Sa
Start

Sb
?Path,XPath<5, XPath =0

!RPath, XRPath<1, XRPath =0

Figure C.4 – Reduced product construction of components for service: Obstacle detection and
avoidance navigation

C.2 Fleet platooning service

A fleet platoon is a group of robots that react in a coordinated way. Typically, in a fleet, there is

one robot that leads the platoon while all other robots are following it with the same speed

and within certain boundaries for inter-robot distance. The leader can decide to accelerate,

to brake or change direction and the following robots will mimic its actions. Coupled with

autonomous navigation of an unknown map, the leader can avoid an obstacle leading to

the entire fleet avoiding the same obstacle. Such systems that are found on the cooperation

between peers (in the platooning case, cooperation between the leader and the other fleet

members or between two adjacent robots) relay on wireless communication. In this case, the

network should have standardized, efficient protocols with a minimum loss of packages.

C.2.1 Leader component

The main task of this model is to decide if a robot is a leader (first robot in the platooning row)

or not based on a configuration file. The example can be future detailed with a leader election

process, but it is out of the scope of this example. The model is visible in fig. C.5.

S9

Start

!NoLeader, XNoLeader=0

!Leader, XLeader=0

S10

S11

!Leader,
XLeader<1,
XLeader=0

!NoLeader,
XNoLeader<1,
XNoLeader=0

Figure C.5 – Leader component Event Recording Automaton

160

C.2. Fleet platooning service

C.2.2 Networking component

This part is managing the IP messages that are exchanged between the robots in the fleet. The

component ERA is presented in C.6.

S12 S13

?Net && ?No Leader,
XNet<10,
XNet=0

Start

!Net, XNet<1, XNet=0

?RPath && ?Leader,
XRPath < 10, XRPath=0

S14
!PLeader,

XPLeadert<10,
XPLeader=0

!timeout
XTimeout>10,
XTimeout=0

Figure C.6 – Networking component Event Recording Automaton

C.2.3 Platooning manager component

This component represents the main logic of the service. The model is visible in fig. C.7.

S18

Start
?Leader,

XLeader < 1, XLeader=0

S19

S15 S17

!Path,
XPath< 1, XPath=0

?RPath,
XRPath< 1, XRPath=0

S16

?NoLeader,
XNoLeader < 1,
XNoLeader=0

!timeout
XTimeout>10,
XTimeout=0

?PLeader, XPLeadert<10,
XPLeader=0

!Path,
XPath< 1, XPath=0

Figure C.7 – Platooning manager component Event Recording Automaton

161

Appendix C. Product construction of examples

C.2.4 Product construction of the service

Using the associativity property of the timed automata product, ALeader ∥ ANet wor ki ng ∥
APl atooni ng manag er = (ALeader ∥ ANet wor ki ng) ∥ APl atooni ng manag er .

ALeader ∥ ANet wor ki ng represents the product of timed automata ALeader and ANet wor ki ng ,

used afterwards as a partial product, and it is presented in fig C.8. The non-connected states

are unreachable combinations of states.

S11S
12

Start !Leader,
XLeader < 1, XLeader=0

S9S1
2

?RPath && !?Leader,
XRPath< 1, XRPath=0

S10S
12

!NoLeader,
XNoLeader < 1,
XNoLeader=0

!timeout
XTimeout>10,
XTimeout=0

!PLeader, XPLeadert<10,
XPLeader=0

S10S
13

S11S
14

S10S
14

S11S
13

S9S1
3

S9S1
4

!timeout
XTimeout>10,
XTimeout=0

!timeout
XTimeout>10,
XTimeout=0

!Leader,
XLeader < 1,
XLeader=0

!Leader,
XLeader < 1,
XLeader=0

!Net, XNet<1, XNet=0

!NoLeader,
XNoLeader < 1,
XNoLeader=0

!NoLeader,
XNoLeader < 1,
XNoLeader=0

?Net && !?No Leader,
XNet<10,
XNet=0

Figure C.8 – Partial Product construction of components for service: Fleet platooning

Apar ti al ∥ APl atooni ng manag er represents the full product of service timed automata and it is

presented in fig C.9. The non-connected states are unreachable combinations of states.

162

C.2. Fleet platooning service

S9S1
2

S15

S10S
12

S16

S10S
13

S16

S10S
12

S17

S11S
12

S18

S11S
14

S18

S11S
12

S19

S9S1
2

S16

S9S1
2

S17

S9S1
2

S18
S9S1

2
S19

S10S
12

S15

S10S
12

S19
S10S

13
S15

S10S
13

S17

S10S
13

S19

S11S
12

S15
S11S

12
S17

S11S
14

S15

S11S
14

S17
S11S

14
S19

S11S
14

S16

S11S
12

S16

S10S
12

S18

S10S
12

S18

!?Leader,
XLeader < 1,
XLeader=0Start

!?NoLeader,
XNoLeader < 1,
XNoLeader=0

!timeout
XTimeout>10,
XTimeout=0

!timeout
XTimeout>10,
XTimeout=0

!Leader,
XLeader < 1,
XLeader=0

!timeout
XTimeout>10,
XTimeout=0

!Leader,
XLeader < 1,
XLeader=0

!Path,
XPath< 1, XPath=0

?RPath && !?Leader,
XRPath< 1, XRPath=0

!Leader,
XLeader < 1,
XLeader=0

!Net, XNet<1, XNet=0

!timeout
XTimeout>10,
XTimeout=0

!timeout
XTimeout>10,
XTimeout=0

!NoLeader,
XNoLeader < 1,
XNoLeader=0 !NoLeader,

XNoLeader < 1,
XNoLeader=0

?Net && !?No Leader,
XNet<10,
XNet=0

!NoLeader,
XNoLeader < 1,
XNoLeader=0

!?PLeader,
XPLeadert<10,

XPLeader=0
!Path,

XPath< 1, XPath=0

Figure C.9 – Product construction of components for service: Fleet platooning

The full representation of the product can be simplified just to four states showing how the

service reacts with the external environment as shown in fig. C.10.

Se

Sd

Sf

Start

!Path,
XPath< 1, XPath=0

?RPath
XRPath< 1, XRPath=0

!Net, XNet<1, XNet=0

?Net,
XNet<10,
XNet=0

!Path,
XPath< 1,
 XPath=0

Sc

Figure C.10 – Reduced product construction of components for service: Fleet platooning

163

Appendix C. Product construction of examples

C.3 Fleet platooning robot with collision avoidance application

The examples presented above can be represented as services that can be combined inside of

a same robotic application that is running inside a fleet. The robotic application, in this case,

consists of a fleet platooning capable of avoiding collisions.

AObst acl edetect i onand avoi d ancenavi g ati onser vi ce ∥ AF leet pl atooni ng ser vi ce represents the full prod-

uct of application timed automata and it is presented in fig C.11.

SfSa

Start

!Path,
XPath< 1, XPath=0

!?RPath
XRPath< 1,
XRPath=0

!Net, XNet<1, XNet=0

?Net,
XNet<10,
XNet=0

!?Path, XPath< 1,XPath=0
ScSa SdSb

SeSaScSb

?RPath
XRPath< 1,
XRPath=0

Figure C.11 – Product construction for entire robotic application

The full representation of the product can be simplified just to one state showing how the

application reacts with the external environment as shown in fig. C.12. In this case, the

application will exchange information with other instances of the same application running

on different robots via IP messages.

Start !Net,
XNet<1,
XNet=0

?Net,
XNet<10,
XNet=0

S

Figure C.12 – Reduced Product construction for entire robotic application

164

D Flight synchronization based on N
pole

This appendix displays the screenshots of the project modelled, verified in ROSMDB tool-chain

as well as the feedback given by the tool.

D.1 Commander application

D.1.1 Take off manager service

Figure D.1 – Take off manager: ROSMDB model screenshot

165

Appendix D. Flight synchronization based on N pole

Figure D.2 – Take off manager: ROSMDB model-checking screenshot

166

D.1. Commander application

Figure D.3 – Take off manager: feedback results example screenshot 167

Appendix D. Flight synchronization based on N pole

D.1.2 Lock North manager service

Figure D.4 – Lock North manager: ROSMDB model screenshot

Figure D.5 – Lock North manager: ROSMDB model-checking screenshot

168

D.1. Commander application

Figure D.6 – Lock North manager: feedback results example screenshot

169

Appendix D. Flight synchronization based on N pole

D.1.3 Drone Movement Manager service

Figure D.7 – Drone Movement Manager: ROSMDB model screenshot

Figure D.8 – Drone Movement Manager: ROSMDB model-checking screenshot

170

D.1. Commander application

Figure D.9 – Drone Movement Manager: feedback results example screenshot

171

Appendix D. Flight synchronization based on N pole

D.1.4 Networking service

Figure D.10 – Networking: ROSMDB model screenshot

Figure D.11 – Networking: ROSMDB model-checking screenshot

172

D.1. Commander application

Figure D.12 – Networking: feedback results example screenshot 173

Appendix D. Flight synchronization based on N pole

D.2 Controller application

D.2.1 Command sender service

Figure D.13 – Command sender: ROSMDB model screenshot

Figure D.14 – Command sender: ROSMDB model-checking screenshot

174

D.2. Controller application

Figure D.15 – Command sender: feedback results example screenshot 175

E Random movement object search

This appendix displays the screenshots of the project modelled, verified in ROSMDB tool-chain

as well as the feedback given by the tool.

E.1 Collision avoidance application

E.1.1 Engine stopper service

Figure E.1 – Engine stopper: ROSMDB model screenshot

177

Appendix E. Random movement object search

Figure E.2 – Engine stopper: ROSMDB model-checking screenshot

178

E.1. Collision avoidance application

Figure E.3 – Engine stopper: feedback results example screenshot

179

Appendix E. Random movement object search

E.1.2 Avoidance service

Figure E.4 – Avoidance: ROSMDB model screenshot

Figure E.5 – Avoidance: ROSMDB model-checking screenshot

180

E.1. Collision avoidance application

Figure E.6 – Avoidance: feedback results example screenshot 181

Appendix E. Random movement object search

E.2 Object detection application

E.2.1 Image analyzer service

Figure E.7 – Image analyzer: ROSMDB model screenshot

Figure E.8 – Image analyzer: ROSMDB model-checking screenshot

182

E.2. Object detection application

Figure E.9 – Image analyzer: feedback results example screenshot

183

Appendix E. Random movement object search

E.2.2 Mover service

Figure E.10 – Mover: ROSMDB model screenshot

Figure E.11 – Mover: ROSMDB model-checking screenshot

184

E.2. Object detection application

Figure E.12 – Mover: feedback results example screenshot

185

Bibliography

[Ahn et al., 2005] Ahn, S. C., Kim, J. H., Lim, K., Ko, H., Kwon, Y.-M., and Kim, H.-G. (2005).

Upnp approach for robot middleware. In Robotics and Automation, 2005. ICRA 2005.

Proceedings of the 2005 IEEE International Conference on, pages 1959–1963. IEEE.

[Aichernig et al., 2017] Aichernig, B. K., Marcovic, S., and Schumi, R. (2017). Property-based

testing with external test-case generators. In Software Testing, Verification and Validation

Workshops (ICSTW), 2017 IEEE International Conference on, pages 337–346. IEEE.

[Al-Houmaily and Samaras, 2009] Al-Houmaily, Y. J. and Samaras, G. (2009). Three-phase

commit. In Encyclopedia of Database Systems, pages 3091–3097. Springer.

[Alonso et al., 2010] Alonso, D., Vicente-Chicote, C., Ortiz, F., Pastor, J., and Alvarez, B. (2010).

V3cmm: A 3-view component meta-model for model-driven robotic software development.

Journal of Software Engineering for Robotics, 1(1):3–17.

[Altman, 1999] Altman, E. (1999). Constrained Markov decision processes, volume 7. CRC

Press.

[Altman, 2000] Altman, E. (2000). Applications of markov decision processes in communication

networks: A survey. PhD thesis, INRIA.

[Alur, 1999] Alur, R. (1999). Timed automata. In International Conference on Computer Aided

Verification, pages 8–22. Springer.

[Alur, 2004] Alur, R. (2004). Timed automata. http://www.cis.upenn.edu/ alur/Talks/sfm-rt-

04.ppt.

[Alur et al., 1993] Alur, R., Courcoubetis, C., and Dill, D. (1993). Model-checking in dense

real-time. Information and computation, 104(1):2–34.

[Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical

computer science, 126(2):183–235.

[Alur et al., 1996] Alur, R., Feder, T., and Henzinger, T. A. (1996). The benefits of relaxing

punctuality. Journal of the ACM (JACM), 43(1):116–146.

187

Bibliography

[Alur et al., 1999] Alur, R., Fix, L., and Henzinger, T. A. (1999). Event-clock automata: a deter-

minizable class of timed automata. Theoretical Computer Science, 211(1):253–273.

[Alur and Henzinger, 1994] Alur, R. and Henzinger, T. A. (1994). A really temporal logic. Jour-

nal of the ACM (JACM), 41(1):181–203.

[Alur et al., 1997] Alur, R., Henzinger, T. A., and Wong-Toi, H. (1997). Symbolic analysis of

hybrid systems. In Decision and Control, 1997., Proceedings of the 36th IEEE Conference on,

volume 1, pages 702–707. IEEE.

[Alur and Madhusudan, 2004] Alur, R. and Madhusudan, P. (2004). Decision problems for

timed automata: A survey. In Formal Methods for the Design of Real-Time Systems, pages

1–24. Springer.

[Arias et al., 2010] Arias, S., Boudin, F., Pissard-Gibollet, R., and Simon, D. (2010). Orccad,

robot controller model and its support using eclipse modeling tools. In 5th National

Conference on Control Architecture of Robots.

[Arkin, 1998] Arkin, R. C. (1998). Behavior-based robotics. MIT press.

[Atkinson and Kühne, 2003] Atkinson, C. and Kühne, T. (2003). Model-driven development: a

metamodeling foundation. Software, IEEE, 20(5):36–41.

[Baer et al., 2008] Baer, P. A., Reichle, R., and Geihs, K. (2008). The Spica Development Frame-

work – Model-Driven Software Development for Autonomous Mobile Robots. In Burgard,

W., Dillmann, R., Plagemann, C., and Vahrenkamp, N., editors, IAS-10, pages 211–220.

IAS Society, Proceedings of the 10th International Conference on Intelligent Autonomous

Systems.

[Baeten, 2005] Baeten, J. C. (2005). A brief history of process algebra. Theoretical Computer

Science, 335(2):131–146.

[Bagnell and Schneider, 2001] Bagnell, J. A. and Schneider, J. G. (2001). Autonomous he-

licopter control using reinforcement learning policy search methods. In Robotics and

Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, volume 2,

pages 1615–1620. IEEE.

[Baldessari et al., 2007] Baldessari, R., Bödekker, B., Deegener, M., Festag, A., Franz, W., Kel-

lum, C. C., Kosch, T., Kovacs, A., Lenardi, M., Menig, C., et al. (2007). Car-2-car communica-

tion consortium-manifesto.

[Barrett, 1995] Barrett, G. (1995). Model checking in practice: The t9000 virtual channel

processor. IEEE transactions on software engineering, 21(2):69–78.

[Barto and Anandan, 1985] Barto, A. G. and Anandan, P. (1985). Pattern-recognizing stochas-

tic learning automata. IEEE Transactions on Systems, Man, and Cybernetics, (3):360–375.

188

Bibliography

[Bautin et al., 2012] Bautin, A., Simonin, O., and Charpillet, F. (2012). Stratégie d’exploration

multirobot fondée sur les champs de potentiels artificiels. Revue des Sciences et Technologies

de l’Information-Série RIA: Revue d’Intelligence Artificielle, 26(5):523–542.

[Beck and Krogh, 1986] Beck, C. and Krogh, B. (1986). Models for simulation and discrete

control of manufacturing systems. In Robotics and Automation. Proceedings. 1986 IEEE

International Conference on, volume 3, pages 305–310. IEEE.

[Bell, 2010] Bell, M. (2010). SOA Modeling patterns for service-oriented discovery and analysis.

Wiley Online Library.

[Bellman, 1957] Bellman, R. (1957). A markovian decision process. Technical report, DTIC

Document.

[Bergstra and Klop, 1986] Bergstra, J. and Klop, J. W. (1986). Process algebra: specification

and verification in bisimulation semantics. Math. & Comp. Sci. II, 4.

[Bermudez-Edo et al., 2017] Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., and Taylor, K. (2017).

Iot-lite: a lightweight semantic model for the internet of things and its use with dynamic

semantics. Personal and Ubiquitous Computing, pages 1–13.

[Berry and Gonthier, 1992] Berry, G. and Gonthier, G. (1992). The esterel synchronous pro-

gramming language: Design, semantics, implementation. Science of computer program-

ming, 19(2):87–152.

[Bert et al., 2005] Bert, D., Potet, M., and Stouls, N. (2005). Genesyst: A tool to reason about

behavioral aspects of B event specifications. application to security properties. In ZB 2005:

Formal Specification and Development in Z and B, 4th International Conference of B and Z

Users, Guildford, UK, April 13-15, 2005, Proceedings, pages 299–318.

[Bezemer et al., 2011] Bezemer, M. M., Wilterdink, R. J., and Broenink, J. F. (2011). Luna: Hard

real-time, multi-threaded, csp-capable execution framework.

[Bézivin et al., 2003] Bézivin, J., Farcet, N., Jézéquel, J.-M., Langlois, B., and Pollet, D. (2003).

Reflective model driven engineering. In International Conference on the Unified Modeling

Language, pages 175–189. Springer.

[Birkhoff and MacLane, 1948] Birkhoff, G. and MacLane, S. (1948). A survey of modern alge-

bra. New York.

[Birrell and Nelson, 1981] Birrell, A. D. and Nelson, B. J. (1981). Remote procedure call.

[Blank et al., 2005] Blank, D., Kumar, D., Meeden, L., and Yanco, H. (2005). Pyro: an integrated

environment for robotics education. In AAAI’05: Proceedings of the 20th national conference

on Artificial intelligence 2005, pages 1718–1719. AAAI Press.

[Blank et al., 2006] Blank, D. S., Kumar, D., Meeden, L., and Yanco, H. A. (2006). The pyro

toolkit for ai and robotics. AI Magazine, 27(1):39–50.

189

Bibliography

[Borja et al., 2013] Borja, R., de la Pinta, J., Álvarez, A., and Maestre, J. (2013). Integration

of service robots in the smart home by means of UPnP: A surveillance robot case study.

Robotics and Autonomous Systems, 61(2):153 – 160.

[Bouyer, 2009] Bouyer, P. (2009). Model-checking timed temporal logics. Electronic Notes in

Theoretical Computer Science, 231:323–341.

[Bouyer and Laroussinie, 2010] Bouyer, P. and Laroussinie, F. (2010). Model checking timed

automata. Modeling and Verification of Real-Time Systems: Formalisms and Software Tools,

pages 111–140.

[Bozga et al., 1998] Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., and Yovine, S.

(1998). Kronos: A model-checking tool for real-time systems. In International Symposium

on Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 298–302. Springer.

[Brookes, 1983] Brookes, S. D. (1983). A model for communicating sequential processes.

[Brookes et al., 1984] Brookes, S. D., Hoare, C. A., and Roscoe, A. W. (1984). A theory of

communicating sequential processes. Journal of the ACM (JACM), 31(3):560–599.

[Brookes and Roscoe, 1984] Brookes, S. D. and Roscoe, A. (1984). An improved failures model

for communicating processes. In International Conference on Concurrency, pages 281–305.

Springer.

[Bruemmer et al., 2006] Bruemmer, D. J., Few, D. A., Walton, M. C., and Nielsen, C. W. (2006).

The robot intelligence kernel. In AAAI.

[Brugali and Scandurra, 2009] Brugali, D. and Scandurra, P. (2009). Component-based robotic

engineering (part i)[tutorial]. IEEE Robotics & Automation Magazine, 16(4):84–96.

[Bruyninckx et al., 2013] Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N., Kraet-

zschmar, G., Gherardi, L., and Brugali, D. (2013). The brics component model: a model-

based development paradigm for complex robotics software systems. In Proceedings of the

28th Annual ACM Symposium on Applied Computing, pages 1758–1764. ACM.

[Calisi and Censi, 2009] Calisi, D. and Censi, A. (2009). Robotic software development and

interoperability using the openrdk framework. In ICAR’09 Workshop on "Rapid Applica-

tion Development in Robotics: On the role of re-use and adaptation of system components,

middleware, and control architectures", Munich, Germany.

[Capra et al., 2001] Capra, L., Emmerich, W., and Mascolo, C. (2001). Middleware for mobile

computing: Awareness vs. transparency (position summary).

[CARMEN, 2008] CARMEN (2008). the carnegie mellon robot navigation toolkit.

http://carmen.sourceforge.net/.

[Chacon and Straub, 2014] Chacon, S. and Straub, B. (2014). Pro git. Apress.

190

Bibliography

[Channabasavaiah et al., 2003] Channabasavaiah, K., Holley, K., and Tuggle, E. (2003). Migrat-

ing to a service-oriented architecture. IBM DeveloperWorks, 16.

[Chishiro et al., 2009] Chishiro, H., Fujita, Y., Takeda, A., Kojima, Y., Funaoka, K., Kato, S., and

Yamasaki, N. (2009). Extended rt-component framework for rt-middleware. pages 161 –168.

[Chitic et al., 2015] Chitic, S.-G., Ponge, J., and Simonin, O. (2015). Are middlewares ready for

multi-robots systems? In Simulation, Modeling, and Programming for Autonomous Robots,

Volume 8810 of the series Lecture Notes in Computer Science, pages 279–290.

[Chitic et al., 2016] Chitic, S.-G., Ponge, J., and Simonin, O. (2016). Sdfr-service discovery

for multi-robot systems. In ICAART 2016 The 8th International Conference on Agents and

Artificial Intelligence.

[Choi et al., 2006] Choi, D.-H., Kim, S.-H., Lee, K.-K., Beak, B.-H., and Park, H.-S. (2006). Mid-

dleware architecture for module-based robot. SICE-ICASE International Joint Conference,

0:4202–4205.

[Chollet et al., 2015] Chollet, S., Lalanda, P., and Escoffier, C. (2015). Extension of service-

oriented component models for dynamic environment. In Services Computing (SCC), 2015

IEEE International Conference on, pages 648–655. IEEE.

[Choset, 2001] Choset, H. (2001). Coverage for robotics–a survey of recent results. Annals of

mathematics and artificial intelligence, 31(1-4):113–126.

[Chow, 1978] Chow, T. S. (1978). Testing software design modeled by finite-state machines.

IEEE transactions on software engineering, 4(3):178.

[Christensen and Pirjanian, 1997] Christensen, H. I. and Pirjanian, P. (1997). Theoretical

methods for planning and control in mobile robotics. In Knowledge-Based Intelligent Elec-

tronic Systems, 1997. KES’97. Proceedings., 1997 First International Conference on, volume 1,

pages 81–86. IEEE.

[Clarke et al., 1986] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic verification

of finite-state concurrent systems using temporal logic specifications. ACM Transactions on

Programming Languages and Systems (TOPLAS), 8(2):244–263.

[Coelingh and Solyom, 2012] Coelingh, E. and Solyom, S. (2012). All aboard the robotic road

train. Ieee Spectrum, 49(11).

[Collett et al., 2005] Collett, T. H., MacDonald, B. A., and Gerkey, B. P. (2005). Player 2.0:

Toward a practical robot programming framework.

[Corbett et al., 2000] Corbett, J. C., Dwyer, M. B., Hatcliff, J., Laubach, S., Pasareanu, C. S.,

Zheng, H., et al. (2000). Bandera: Extracting finite-state models from java source code.

In Software Engineering, 2000. Proceedings of the 2000 International Conference on, pages

439–448. IEEE.

191

Bibliography

[Costelha and Lima, 2007] Costelha, H. and Lima, P. (2007). Modelling, analysis and execution

of robotic tasks using petri nets. In 2007 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1449–1454. IEEE.

[Côté et al., 2006] Côté, C., Brosseau, Y., Létourneau, D., Raïevsky, C., and Michaud, F. (2006).

Robotic software integration using marie. International Journal of Advanced Robotic Systems,

3(1):55–60.

[Côté et al., 2007] Côté, C., Brosseau, Y., Létourneau., D., Raïevsky, C., Brosseau, Y., and

Michaud, F. (2007). Using marie for mobile robot component development and integration.

Software Engineering for Experimental Robotics Book Series Springer Tracts in Advanced

Robotics Publisher Springer Berlin / Heidelberg, 30/2007:211–230.

[Cotner et al., 1999] Cotner, C. L., Crus, R. A., Howell, B. K., Pickel, J. W., and Wisneski, D. J.

(1999). System, method and program for performing two-phase commit with a coordinator

that performs no logging. US Patent 5,884,327.

[Courcoubetis and Yannakakis, 1992] Courcoubetis, C. and Yannakakis, M. (1992). Minimum

and maximum delay problems in real-time systems. Formal Methods in System Design,

1(4):385–415.

[Cousins et al., 2010] Cousins, S., Gerkey, B., Conley, K., and Garage, W. (2010). Sharing

software with ros [ros topics]. Robotics & Automation Magazine, IEEE, 17(2):12–14.

[Cranen et al., 2013] Cranen, S., Groote, J. F., Keiren, J. J., Stappers, F. P., de Vink, E. P., Wes-

selink, W., and Willemse, T. A. (2013). An overview of the mcrl2 toolset and its recent

advances. In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 199–213. Springer.

[Creese, 2001] Creese, S. (2001). Data independent induction: Csp model checking of arbitrary

sized networks.

[Crockett et al., 1987] Crockett, D., Desrochers, A., DiCesare, F., and Ward, T. (1987). Imple-

mentation of a petri net controller for a machining workstation. In Robotics and Automation.

Proceedings. 1987 IEEE International Conference on, volume 4, pages 1861–1867. IEEE.

[Curry, 2004] Curry, E. (2004). Message-oriented middleware. Middleware for communica-

tions, pages 1–28.

[Dave, 2009] Dave (2009). Dave’s robotic operating system. Online: http://dros.org/.

[David et al., 2003] David, A., Moller, M. O., and Yi, W. (2003). Verification of uml statechart

with real-time extensions. FASE 2002, pages 218–232.

[David and Alla, 2010] David, R. and Alla, H. (2010). Discrete, continuous, and hybrid Petri

nets. Springer Science & Business Media.

192

Bibliography

[del Val et al., 2014] del Val, E., Rebollo, M., and Botti, V. (2014). Enhancing decentralized

service discovery in open service-oriented multi-agent systems. Autonomous Agents and

Multi-Agent Systems, 28(1):1–30.

[Desolda et al., 2017] Desolda, G., Ardito, C., and Matera, M. (2017). Empowering end users to

customize their smart environments: Model, composition paradigms, and domain-specific

tools. ACM Transactions on Computer-Human Interaction (TOCHI), 24(2):12.

[Dhouib et al., 2012] Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., and Ziane, M. (2012).

Robotml, a domain-specific language to design, simulate and deploy robotic applica-

tions. In Simulation, Modeling, and Programming for Autonomous Robots, pages 149–160.

Springer.

[Diaz et al., 2011] Diaz, D., R-Moreno, M. D., Cesta, A., Oddi, A., and Rasconi, R. (2011). Toward

a csp-based approach for energy management in rovers. In Space Mission Challenges for

Information Technology (SMC-IT), 2011 IEEE Fourth International Conference on, pages

121–128. IEEE.

[Djonin and Krishnamurthy, 2007] Djonin, D. V. and Krishnamurthy, V. (2007). Mimo trans-

mission control in fading channels-a constrained markov decision process formulation with

monotone randomized policies. IEEE Transactions on Signal Processing, 55(10):5069–5083.

[Egerstedt, 2000] Egerstedt, M. (2000). Behavior based robotics using hybrid automata. In

HSCC, pages 103–116. Springer.

[Elkady and Sobh, 2012] Elkady, A. and Sobh, T. (2012). Robotics middleware: A comprehen-

sive literature survey and attribute-based bibliography. Journal of Robotics, 2012.

[Endo et al., 2004] Endo, Y., MacKenzie, D., and Arkin, R. (2004). Usability evaluation of high-

level user assistance for robot mission specification. IEEE Transactions on Systems, Man,

and Cybernetics, 34:168–180.

[ERSP, 2010] ERSP (2010). Ersp 3.1 software development kit. Online:

http://www.evolution.com/products/ersp/.

[Ferber, 1999] Ferber, J. (1999). Multi-Agent Systems. An Introduction to Distributed Artificial

Intelligence. Addison Wesley, London.

[Fernandez-Madrigal et al., 2006] Fernandez-Madrigal, J., Galindo, C., and Gonzalez, J. (2006).

Integrating heterogeneous robotic software. In Electrotechnical Conference, 2006. MELECON

2006. IEEE Mediterranean, pages 433 –436.

[Ferrara, 2004] Ferrara, A. (2004). Web services: a process algebra approach. In Proceedings of

the 2nd international conference on Service oriented computing, pages 242–251. ACM.

[Fielding, 2000] Fielding, R. (2000). Representational state transfer. Architectural Styles and

the Design of Netowork-based Software Architecture, pages 76–85.

193

Bibliography

[Fitzpatrick et al., 2008] Fitzpatrick, P., Metta, G., and Natale, L. (2008). Towards long-lived

robot genes. Robot. Auton. Syst., 56(1):29–45.

[Freedman, 1991] Freedman, P. (1991). Time, petri nets, and robotics. IEEE transactions on

robotics and automation, 7(4):417–433.

[Frénot et al., 2010] Frénot, S., Le Mouël, F., Ponge, J., and Salagnac, G. (2010). Various Exten-

sions for the Ambient OSGi framework. In Adamus Workshop in ICPS, Berlin, Allemagne.

[Gajski et al., 1994] Gajski, D. D., Vahid, F., Narayan, S., and Gong, J. (1994). Specification and

design of embedded systems. Prentice Hall Englewood Cliffs.

[Garavel et al., 2013] Garavel, H., Lang, F., Mateescu, R., and Serwe, W. (2013). Cadp 2011: a

toolbox for the construction and analysis of distributed processes. International Journal on

Software Tools for Technology Transfer, 15(2):89–107.

[Gerbert-Gaillard and Lalanda, 2016] Gerbert-Gaillard, E. and Lalanda, P. (2016). Self-aware

model-driven pervasive systems. In Autonomic Computing (ICAC), 2016 IEEE International

Conference on, pages 221–222. IEEE.

[Gill et al., 1962] Gill, A. et al. (1962). Introduction to the theory of finite-state machines.

[Google,] Google. Protocol buffers. https://developers.google.com/protocol-buffers/.

[Grigorik, 2013] Grigorik, I. (2013). Making the web faster with http 2.0. Commun. ACM,

56(12):42–49.

[Gummadi et al., 2002] Gummadi, P. K., Saroiu, S., and Gribble, S. D. (2002). A measurement

study of napster and gnutella as examples of peer-to-peer file sharing systems. ACM

SIGCOMM Computer Communication Review, 32(1):82–82.

[Guo and Hernández-Lerma, 2009] Guo, X. and Hernández-Lerma, O. (2009). Continuous-

time markov decision processes. In Continuous-Time Markov Decision Processes, pages

9–18. Springer.

[Hall and Chapman, 2002] Hall, A. and Chapman, R. (2002). Correctness by construction:

Developing a commercial secure system. IEEE software, 19(1):18–25.

[Hardin et al., 1996] Hardin, R. H., Har’El, Z., and Kurshan, R. P. (1996). Cospan. In Interna-

tional Conference on Computer Aided Verification, pages 423–427. Springer.

[Hazelhurst, 2008] Hazelhurst, S. (2008). Scientific computing using virtual high-performance

computing: a case study using the amazon elastic computing cloud. In Proceedings of

the 2008 annual research conference of the South African Institute of Computer Scientists

and Information Technologists on IT research in developing countries: riding the wave of

technology, pages 94–103. ACM.

194

Bibliography

[Heckel et al., 2006] Heckel, F., Blakely, T., Dixon, M., Wilson, C., and Smart, W. D. (2006). The

wurde robotics middleware and ride multi-robot tele-operation interface. AAAI Mobile

Robotics Workshop, 2006.

[Henzinger et al., 1997] Henzinger, T. A., Ho, P.-H., and Wong-Toi, H. (1997). Hytech: A model

checker for hybrid systems. In International Conference on Computer Aided Verification,

pages 460–463. Springer.

[Henzinger et al., 1994] Henzinger, T. A., Nicollin, X., Sifakis, J., and Yovine, S. (1994). Symbolic

model checking for real-time systems. Information and computation, 111(2):193–244.

[Hermanns et al., 2002] Hermanns, H., Herzog, U., and Katoen, J.-P. (2002). Process algebra

for performance evaluation. Theoretical computer science, 274(1):43–87.

[Hershey et al., 1995] Hershey, P. C., Johnson, D. B., Le, A. V., Matyas, S. M., Waclawsky, J. G.,

and Wilkins, J. D. (1995). Network security system and method using a parallel finite state

machine adaptive active monitor and responder. US Patent 5,414,833.

[Hessel and Pettersson, 2004] Hessel, A. and Pettersson, P. (2004). A test case generation

algorithm for real-time systems. In Quality Software, 2004. QSIC 2004. Proceedings. Fourth

International Conference on, pages 268–273. IEEE.

[Hilaire et al., 2008] Hilaire, V., Gruer, P., Koukam, A., and Simonin, O. (2008). Formal driven

prototyping approach for multiagent systems. International Journal of Agent-Oriented

Software Engineering, 2(2):246–266.

[Hilderink et al., 2003] Hilderink, G. H., Jovanovic, D. S., and Broenink, J. F. (2003). A mulit-

model robotic control law modelled and implemented with the csp/ct framework.

[Hoare, 1983] Hoare, C. A. R. (1983). Communicating sequential processes. Communications

of the ACM, 26(1):100–106.

[Hopcroft, 1979] Hopcroft, J. E. (1979). Introduction to Automata Theory, Languages and

Computation: For VTU, 3/e. Pearson Education India.

[iRobotware, 2010] iRobotware (2010). Aware 2 robot intelligient software. Online:

http://www.irobot.com/gi/developers/Aware/.

[Issarny et al., 2007] Issarny, V., Caporuscio, M., and Georgantas, N. (2007). A perspective on

the future of middleware-based software engineering. In Future of Software Engineering,

2007. FOSE ’07, pages 244–258.

[Issarny et al., 2011] Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili,

M., Gerosa, M. A., and Hamida, A. B. (2011). Service-oriented middleware for the future in-

ternet: state of the art and research directions. Journal of Internet Services and Applications,

2(1):23–45.

195

Bibliography

[Iversen et al., 2000] Iversen, T. K., Kristoffersen, K. J., Larsen, K. G., Laursen, M., Madsen,

R. G., Mortensen, S. K., Pettersson, P., and Thomasen, C. B. (2000). Model-checking real-

time control programs: verifying lego mindstorms tm systems using uppaal. In Real-Time

Systems, 2000. Euromicro RTS 2000. 12th Euromicro Conference on, pages 147–155. IEEE.

[Jafari, 1992] Jafari, M. A. (1992). An architecture for a shop-floor controller using colored

petri nets. International journal of flexible manufacturing systems, 4(2):159–181.

[Jang et al., 2010] Jang, C., Lee, S.-I., Jung, S.-W., Song, B., Kim, R., Kim, S., and Lee, C.-H.

(2010). Opros: A new component-based robot software platform. ETRI Journal.

[Jaulin et al., 2012] Jaulin, L., Le Bars, F., Clement, B., Gallou, Y., Menage, O., Reynet, O., Sliwka,

J., and Zerr, B. (2012). Suivi de route pour un robot voilier. In Conférence Internationale

Francophone d’Automatique (CIFA2012), pages 695–702.

[Jensen, 1989] Jensen, K. (1989). Coloured petri nets: A high level language for system design

and analysis. In International Conference on Application and Theory of Petri Nets, pages

342–416. Springer.

[Jeronimo and Weast, 2003] Jeronimo, M. and Weast, J. (2003). UPnP design by example: a

software developer’s guide to universal plug and play. Intel Press.

[Johns and Taylor, 2008] Johns, K. and Taylor, T. (2008). Professional Microsoft Robotics Devel-

oper Studio. Wrox Press Ltd., Birmingham, UK, UK.

[Jones and Jones, 1987] Jones, G. and Jones, G. (1987). Programming in OCCAM. Prentice-Hall

International New York, NY.

[Jouault et al., 2008] Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008). Atl: A model

transformation tool. Science of computer programming, 72(1):31–39.

[Kaelbling et al., 1998] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning

and acting in partially observable stochastic domains. Artificial intelligence, 101(1):99–134.

[Karaman et al., 2009] Karaman, S., Rasmussen, S., Kingston, D., and Frazzoli, E. (2009). Spec-

ification and planning of uav missions: a process algebra approach. In 2009 American

Control Conference, pages 1442–1447. IEEE.

[King et al., 2003] King, J., Pretty, R. K., and Gosine, R. G. (2003). Coordinated execution of

tasks in a multiagent environment. IEEE Transactions on Systems, Man, and Cybernetics-Part

A: Systems and Humans, 33(5):615–619.

[Kleppe et al., 2003] Kleppe, A. G., Warmer, J. B., and Bast, W. (2003). MDA explained: the

model driven architecture: practice and promise. Addison-Wesley Professional.

[Klusch et al., 2006] Klusch, M., Fries, B., and Sycara, K. (2006). Automated semantic web

service discovery with owls-mx. In Proceedings of the fifth international joint conference on

Autonomous agents and multiagent systems, pages 915–922. ACM.

196

Bibliography

[KnowRob, 2014] KnowRob (2014). Knowledge processing for robots.

http://www.knowrob.org/.

[Kodate et al., 1987] Kodate, H., Fujii, K., and Yamanoi, K. (1987). Representation of fms

with petri net graph and its application to simulation of system operation. Robotics and

Computer-Integrated Manufacturing, 3(3):275–283.

[Koenig and Simmons, 1998] Koenig, S. and Simmons, R. (1998). Xavier: A robot navigation

architecture based on partially observable markov decision process models. Artificial

Intelligence Based Mobile Robotics: Case Studies of Successful Robot Systems, pages 91–122.

[König et al., 2009] König, L., Mostaghim, S., and Schmeck, H. (2009). Decentralized evolu-

tion of robotic behavior using finite state machines. International Journal of Intelligent

Computing and Cybernetics, 2(4):695–723.

[Košecká et al., 1997] Košecká, J., Christensen, H. I., and Bajcsy, R. (1997). Experiments in

behavior composition. Robotics and Autonomous systems, 19(3):287–298.

[Kotb et al., 2007] Kotb, Y. T., Beauchemin, S. S., and Barron, J. L. (2007). Petri net-based

cooperation in multi-agent systems. In Computer and Robot Vision, 2007. CRV’07. Fourth

Canadian Conference on, pages 123–130. IEEE.

[Koymans, 1990] Koymans, R. (1990). Specifying real-time properties with metric temporal

logic. Real-time systems, 2(4):255–299.

[Kraetzschmar et al., 2002] Kraetzschmar, G. K., Utz, H., Sablatnög, S., Enderle, S., and Palm,

G. (2002). Miro - middleware for cooperative robotics. In RoboCup 2001: Robot Soccer World

Cup V, pages 411–416, London, UK. Springer-Verlag.

[Kranz et al., 2006] Kranz, M., Rusu, R. B., Maldonado, A., Beetz, M., and Schmidt, A. (2006). A

player/stage system for context-aware intelligent environments.

[Krüger et al., 2006] Krüger, D., Lil, I., Sünderhauf, N., Baumgartl, R., and Protzel, P. (2006).

Using and extending the miro middleware for autonomous robots. In Towards Autonomous

Robotic Systems (TAROS), Guildford, September 2006.

[Kwak et al., 2006] Kwak, J.-Y., Yoon, J. Y., and Shinn, R. (2006). An intelligent robot architec-

ture based on robot mark-up languages. In Engineering of Intelligent Systems, 2006 IEEE

International Conference, pages 1 –6.

[Lam et al., 2017] Lam, A. N., Nguyen, A. T., Nguyen, H. A., and Nguyen, T. N. (2017). Bug

localization with combination of deep learning and information retrieval. In Proceedings of

the 25th International Conference on Program Comprehension, pages 218–229. IEEE Press.

[Lamond and Boukhtouta, 2002] Lamond, B. F. and Boukhtouta, A. (2002). Water reservoir

applications of markov decision processes. In Handbook of Markov Decision Processes,

pages 537–558. Springer.

197

Bibliography

[Lankenau and Meyer, 1999] Lankenau, A. and Meyer, O. (1999). Formal methods in robotics:

Fault tree based verification. In In: Proc. of Quality Week. Citeseer.

[Larsen et al., 1995] Larsen, K. G., Pettersson, P., and Yi, W. (1995). Model-checking for real-

time systems. In International Symposium on Fundamentals of Computation Theory, pages

62–88. Springer.

[Liggett and Lippman, 1969] Liggett, T. M. and Lippman, S. A. (1969). Stochastic games with

perfect information and time average payoff. Siam Review, 11(4):604–607.

[Lindahl et al., 2001] Lindahl, M., Pettersson, P., and Yi, W. (2001). Formal design and analysis

of a gear controller. International Journal on Software Tools for Technology Transfer, 3(3):353–

368.

[Loeliger and McCullough, 2012] Loeliger, J. and McCullough, M. (2012). Version Control with

Git: Powerful tools and techniques for collaborative software development. " O’Reilly Media,

Inc.".

[Lovejoy, 1991] Lovejoy, W. S. (1991). A survey of algorithmic methods for partially observed

markov decision processes. Annals of Operations Research, 28(1):47–65.

[Lyons and Arbib, 1989] Lyons, D. M. and Arbib, M. A. (1989). A formal model of computation

for sensory-based robotics. IEEE Transactions on Robotics and Automation, 5(3):280–293.

[Magnenat et al., 2010] Magnenat, S., Retornaz, P., Bonani, M., Longchamp, V., and Mon-

dada, F. (2010). Aseba: A modular architecture for event-based control of complex robots.

Mechatronics, IEEE/ASME Transactions on, PP(99):1 –9.

[Makarenko et al., 2007] Makarenko, A., Brooks, A., , and Kaupp, T. (2007). On the benefits of

making robotic software frameworks thin. In POn the Benefits of Making Robotic Software

Frameworks Thin IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS’07), San Diego CA, USA, 29 Oct. - 02 Nov. 2007.

[Makarenko et al., 2006] Makarenko, A., Brooks, A., and Kaupp, T. (2006). Orca: Components

for robotics. In Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS’06) Workshop on Robotic Standardization, Beijing, China, 11 Oct. - 13

Oct. 2006.

[Marciano, 2013] Marciano, L. (2013). CPNP: Colored Petri Net Represention of Single-Robot

and Multi-Robot Plans. PhD thesis, Citeseer.

[Martinoli et al., 2004] Martinoli, A., Easton, K., and Agassounon, W. (2004). Modeling swarm

robotic systems: A case study in collaborative distributed manipulation. The International

Journal of Robotics Research, 23(4-5):415–436.

[Maymounkov and Mazieres, 2002] Maymounkov, P. and Mazieres, D. (2002). Kademlia: A

peer-to-peer information system based on the xor metric. In Peer-to-Peer Systems, pages

53–65. Springer.

198

Bibliography

[McCreesh and Daniel, 2014] McCreesh, J. and Daniel, E. (2014). Interoperability definition.

http://interoperability-definition.info/en/.

[McLendon Jr and Vidale, 1992] McLendon Jr, W. W. and Vidale, R. F. (1992). Analysis of an

ada system using coloured petri nets and occurrence graphs. In International Conference

on Application and Theory of Petri Nets, pages 384–388. Springer.

[Mell and Grance, 2011] Mell, P. and Grance, T. (2011). The nist definition of cloud computing.

[Michel, 2004] Michel, O. (2004). Cyberbotics ltd. webots tm : Professional mobile robot

simulation. Int. Journal of Advanced Robotic Systems, 1:39–42.

[Michi Henning, 2010] Michi Henning, M. S. (2010). Distributed programming with ice.

http://www.zeroc.com/doc/Ice-3.4.0/manual/.

[Mihaylova et al., 2002] Mihaylova, L., Lefebvre, T., Bruyninckx, H., Gadeyne, K., and De Schut-

ter, J. (2002). A comparison of decision making criteria and optimization methods for active

robotic sensing. In International Conference on Numerical Methods and Applications, pages

316–324. Springer.

[Mohamed et al., 2008] Mohamed, N., Al-Jaroodi, J., and Jawhar, I. (2008). Middleware for

robotics: A survey. In Robotics, Automation and Mechatronics, 2008 IEEE Conference on,

pages 736–742. IEEE.

[Montemerlo et al., 2003] Montemerlo, M., Roy, N., and Thrun, S. (2003). Perspectives on

standardization in mobile robot programming: The carnegie mellon navigation (carmen)

toolkit. In In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)2003,

pages 2436–2441.

[MRDS, 2012] MRDS (2012). Microsoft robotics developer studio.

http://msdn.microsoft.com/en-us/library/bb648760.aspx.

[MRPT, 2010] MRPT (2010). The mobile robot programming toolkit. Online:

http://www.mrpt.org/.

[Murata, 1989] Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings

of the IEEE, 77(4):541–580.

[Murata et al., 1986] Murata, T., Komoda, N., Matsumoto, K., and Haruna, K. (1986). A petri

net-based controller for flexible and maintainable sequence control and its applications in

factory automation. IEEE Transactions on Industrial Electronics, (1):1–8.

[Murata et al., 1989] Murata, T., Shenker, B., and Shatz, S. M. (1989). Detection of ada static

deadlocks using petri net invariants. IEEE Transactions on Software engineering, 15(3):314–

326.

199

Bibliography

[Nesnas et al., 2006] Nesnas, I. A., Simmons, R., Gaines, D., Kunz, C., Diaz-Calderon, A., Estlin,

T., Madison, R., Guineau, J., McHenry, M., Shu, I.-H., and Apfelbaum, D. (2006). Claraty:

Challenges and steps toward reusable robotic software. International Journal of Advanced

Robotic Systems.

[OMG, 2016] OMG (2016). Object Management Group.

[openJaus, 2010] openJaus (2010). Openjaus. http://www.openjaus.com/.

[Ouaknine, 2007] Ouaknine, J. (2007). Patricia bouyer, nicolas markey, joël ouaknine, and

james worrell.

[Ouaknine and Worrell, 2004] Ouaknine, J. and Worrell, J. (2004). On the language inclusion

problem for timed automata: Closing a decidability gap. In Logic in Computer Science, 2004.

Proceedings of the 19th Annual IEEE Symposium on, pages 54–63. IEEE.

[Ouaknine and Worrell, 2005] Ouaknine, J. and Worrell, J. (2005). On the decidability of metric

temporal logic. In 20th Annual IEEE Symposium on Logic in Computer Science (LICS’05),

pages 188–197. IEEE.

[Panichella et al., 2017] Panichella, A., Kifetew, F., and Tonella, P. (2017). Automated test case

generation as a many-objective optimisation problem with dynamic selection of the targets.

IEEE Transactions on Software Engineering.

[Papazoglou et al., 2007] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. (2007).

Service-oriented computing: State of the art and research challenges. Computer, 40(11).

[Park et al., 2003] Park, J.-M., Bae, E.-H., Pyeon, H.-J., and Chae, K. (2003). A ticket-based aaa

security mechanism in mobile ip network. In International Conference on Computational

Science and Its Applications, pages 210–219. Springer.

[Parker, 2008] Parker, L. E. (2008). Distributed intelligence: Overview of the field and its

application in multi-robot systems. Journal of Physical Agents, 2(1):5–14.

[Pereira et al., 2011] Pereira, A., Costa, N., and Serôdio, C. (2011). Peer-to-peer Jini for truly

service-oriented WSNs. International Journal of Distributed Sensor Networks, 2011.

[Petersson et al., 2001] Petersson, L., Austin, D., and Christenseni, H. (2001). Dca: a dis-

tributed control architecture for robotics. In Intelligent Robots and Systems, 2001. Proceed-

ings. 2001 IEEE/RSJ International Conference on, volume 4, pages 2361–2368. IEEE.

[Petri, 1962] Petri, C. A. (1962). Kommunikation mit automaten.

[Petters et al., 2007] Petters, S., Thomas, D., and von Stryk, O. (2007). Roboframe - a modular

software framework for lightweight autonomous robots. In Proc. Workshop on Measures and

Procedures for the Evaluation of Robot Architectures and Middleware of the 2007 IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, San Diego, CA, USA.

200

Bibliography

[Pike, 2012] Pike, R. (2012). Go at google. In Proceedings of the 3rd Annual Conference on

Systems, Programming, and Applications: Software for Humanity, SPLASH ’12, pages 5–6,

New York, NY, USA. ACM.

[Pinci and Shapiro, 1990] Pinci, V. O. and Shapiro, R. M. (1990). An integrated software devel-

opment methodology based on hierarchical colored petri nets. In International Conference

on Application and Theory of Petri Nets, pages 227–252. Springer.

[Pirjanian et al., 2000] Pirjanian, P., Huntsberger, T. L., Trebi-Ollennu, A., Aghazarian, H., Das,

H., Joshi, S. S., and Schenker, P. S. (2000). Campout: a control architecture for multirobot

planetary outposts. In Intelligent Systems and Smart Manufacturing, pages 221–230. Inter-

national Society for Optics and Photonics.

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In Foundations of Computer

Science, 1977., 18th Annual Symposium on, pages 46–57. IEEE.

[Ponge, 2008] Ponge, J. (2008). Model based analysis of Time-aware Web service interactions.

PhD thesis, Université Blaise Pascal-Clermont-Ferrand II.

[Puterman, 2014] Puterman, M. L. (2014). Markov decision processes: discrete stochastic dy-

namic programming. John Wiley & Sons.

[Pyro, 2012] Pyro (2012). Website. http://pyrorobotics.com/?page=PyroModuleIntroduction/.

[Qilin and Mintian, 2010] Qilin, L. and Mintian, Z. (2010). The state of the art in middleware.

In Information Technology and Applications (IFITA), 2010 International Forum on, volume 1,

pages 83–85. IEEE.

[Raicu et al., 2008] Raicu, I., Foster, I. T., and Zhao, Y. (2008). Many-task computing for grids

and supercomputers. In Many-Task Computing on Grids and Supercomputers, 2008. MTAGS

2008. Workshop on, pages 1–11. IEEE.

[Ramaswamy et al., 2014] Ramaswamy, A., Monsuez, B., and Tapus, A. (2014). Model-driven

software development approaches in robotics research. In Proceedings of the 6th Interna-

tional Workshop on Modeling in Software Engineering, pages 43–48. ACM.

[Ravn et al., 2011] Ravn, A. P., Srba, J., and Vighio, S. (2011). Modelling and verification of web

services business activity protocol. In International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, pages 357–371. Springer.

[Reed and Roscoe, 1988] Reed, G. M. and Roscoe, A. W. (1988). A timed model for communi-

cating sequential processes. Theoretical Computer Science, 58(1):249–261.

[Reisig, 1986] Reisig, W. (1986). Petri nets in software engineering. In Advanced Course on

Petri Nets, pages 62–96. Springer.

201

Bibliography

[Ringert et al., 2015] Ringert, J. O., Rumpe, B., and Wortmann, A. (2015). Transforming

platform-independent to platform-specific component and connector software architec-

ture models. arXiv preprint arXiv:1511.05365.

[Ritchie, 1997] Ritchie, D. M. (1997). The limbo programming language. Inferno Programmer’s

Manual, 2.

[Robelin and Madanat, 2007] Robelin, C.-A. and Madanat, S. M. (2007). History-dependent

bridge deck maintenance and replacement optimization with markov decision processes.

Journal of Infrastructure Systems, 13(3):195–201.

[Rodgers et al., 2017] Rodgers, R. S., Eatherton, W. N., Beesley, M. J., Dyckerhoff, S. A.,

Lacroute, P. G., Swierk, E. R., Geraghty, N. V., Holleman, K. E., Giuli, T. J., Rajagopal, S.,

et al. (2017). Method and system for key management. US Patent 9680805B1.

[Romero et al., 2010] Romero, D., Rouvoy, R., Seinturier, L., and Carton, P. (2010). Service dis-

covery in ubiquitous feedback control loops. In Distributed Applications and Interoperable

Systems, pages 112–125. Springer.

[Rompothong and Senivongse, 2003] Rompothong, P. and Senivongse, T. (2003). A query fed-

eration of uddi registries. In Proceedings of the 1st international symposium on Information

and communication technologies, pages 561–566. Trinity College Dublin.

[ROS, 2014] ROS (2014). Robot operating system. http://www.ros.org/.

[Rust and Rammig, 2004] Rust, C. and Rammig, F. J. (2004). A petri net approach for the design

of dynamically modifiable embedded systems. In Design Methods and Applications for

Distributed Embedded Systems, pages 257–266. Springer.

[Sales et al., 2010] Sales, D. O., Shinzato, P., Pessin, G., Wolf, D. F., and Osorio, F. S. (2010).

Vision-based autonomous navigation system using ann and fsm control. In Robotics

Symposium and Intelligent Robotic Meeting (LARS), 2010 Latin American, pages 85–90.

IEEE.

[Schäl, 2002] Schäl, M. (2002). Markov decision processes in finance and dynamic options. In

Handbook of Markov decision processes, pages 461–487. Springer.

[Schaller, 1997] Schaller, R. R. (1997). Moore’s law: past, present and future. IEEE spectrum,

34(6):52–59.

[Schantz and Schmidt, 2002] Schantz, R. E. and Schmidt, D. C. (2002). Research advances in

middleware for distributed systems: State of the art. In Communication Systems, pages

1–36. Springer.

[Schlegel et al., 2009a] Schlegel, C., Hassler, T., Lotz, A., and Steck, A. (2009a). Robotic software

systems: From code-driven to model-driven designs. In Advanced Robotics, 2009. ICAR

2009. International Conference on, pages 1 –8.

202

Bibliography

[Schlegel et al., 2009b] Schlegel, C., Haßler, T., Lotz, A., and Steck, A. (2009b). Robotic software

systems: From code-driven to model-driven designs. In Advanced Robotics, 2009. ICAR

2009. International Conference on, pages 1–8. IEEE.

[Schmidt et al., 2005] Schmidt, M.-T., Hutchison, B., Lambros, P., and Phippen, R. (2005). The

enterprise service bus: making service-oriented architecture real. IBM Systems Journal,

44(4):781–797.

[Selic, 2003] Selic, B. (2003). The pragmatics of model-driven development. IEEE software,

20(5):19.

[Shannon, 1957] Shannon, C. E. (1957). A universal turing machine with two internal states.

Automata studies, 34:157–165.

[Shelby et al., 2014] Shelby, Z., Hartke, K., and Bormann, C. (2014). The constrained applica-

tion protocol (coap).

[Shepard et al., 2012] Shepard, D. P., Bhatti, J. A., Humphreys, T. E., and Fansler, A. A. (2012).

Evaluation of smart grid and civilian uav vulnerability to gps spoofing attacks. In Proceedings

of the ION GNSS Meeting, volume 3, pages 3591–3605.

[Skilligent, 2010] Skilligent (2010). Skilligent. Online: http://www.skilligent.com/index.shtml.

[Smart, 2007] Smart, W. D. (2007). Is a common middleware for robotics possible? In Pro-

ceedings of the IROS 2007 workshop on Measures and Procedures for the Evaluation of Robot

Architectures and Middleware. Citeseer.

[Soetens, 2010] Soetens, P. (2010). RTT: Real-Time Toolkit. http://www.orocos.org/rtt.

[Sorea, 2001] Sorea, M. (2001). Tempo: A model checker for event-recording automata. In In

Proceedings of RT-Tools’ 01. Citeseer.

[Spaan, 2012] Spaan, M. T. (2012). Partially observable markov decision processes. In Rein-

forcement Learning, pages 387–414. Springer.

[Ståhl and Bosch, 2014] Ståhl, D. and Bosch, J. (2014). Modeling continuous integration prac-

tice differences in industry software development. Journal of Systems and Software, 87:48–

59.

[Sun et al., 1998] Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D. (1998). Achieving conver-

gence, causality preservation, and intention preservation in real-time cooperative editing

systems. ACM Transactions on Computer-Human Interaction (TOCHI), 5(1):63–108.

[Talal and Rachid, 2013] Talal, B. K. and Rachid, M. (2013). Service discovery–a survey and

comparison. arXiv preprint arXiv:1308.2912.

203

Bibliography

[Tenorth et al., 2012] Tenorth, M., Perzylo, A. C., Lafrenz, R., and Beetz, M. (2012). The

roboearth language: Representing and exchanging knowledge about actions, objects, and

environments. In Robotics and Automation (ICRA), 2012 IEEE International Conference on,

pages 1284–1289. IEEE.

[Thangavel et al., 2014] Thangavel, D., Ma, X., Valera, A., Tan, H.-X., and Tan, C. K.-Y. (2014).

Performance evaluation of mqtt and coap via a common middleware. In Intelligent Sen-

sors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth International

Conference on, pages 1–6. IEEE.

[Theocharous et al., 2001] Theocharous, G., Rohanimanesh, K., and Maharlevan, S. (2001).

Learning hierarchical observable markov decision process models for robot navigation. In

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on,

volume 1, pages 511–516. IEEE.

[Thomson et al., 2007] Thomson, S., Narten, T., and Jinmei, T. (2007). Ipv6 stateless address

autoconfiguration. IETF RFC 4862.

[Torkestani, 2013] Torkestani, J. A. (2013). A highly reliable and parallelizable data distribution

scheme for data grids. Future Generation Computer Systems, 29(2):509 – 519. Special section:

Recent advances in e-Science.

[Tripakis, 2003] Tripakis, S. (2003). Folk theorems on the determinization and minimization

of timed automata. In International Conference on Formal Modeling and Analysis of Timed

Systems, pages 182–188. Springer.

[Tyagi et al., 2017] Tyagi, N., Gilad, Y., Leung, D., Zaharia, M., and Zeldovich, N. (2017). Sta-

dium: A distributed metadata-private messaging system. In Proceedings of the 26th Sympo-

sium on Operating Systems Principles, pages 423–440. ACM.

[Valle et al., 2013] Valle, D., Nuno, E., Basañez, L., and Arana-Daniel, N. (2013). Consensus of

networks of nonidentical robots with flexible joints, variable time-delays and immeasurable

velocities. In IROS, pages 5878–5883.

[Varró et al., 2002] Varró, D., Varró, G., and Pataricza, A. (2002). Designing the automatic

transformation of visual languages. Science of Computer Programming, 44(2):205–227.

[Ververidis and Polyzos, 2008] Ververidis, C. N. and Polyzos, G. C. (2008). Service discovery

for mobile ad hoc networks: a survey of issues and techniques. IEEE Communications

Surveys & Tutorials, 10(3).

[Waldo, 1998] Waldo, J. (1998). Remote procedure calls and java remote method invocation.

Concurrency, IEEE, 6(3):5–7.

[Weiss et al., 2009] Weiss, S., Urso, P., and Molli, P. (2009). Logoot: A scalable optimistic

replication algorithm for collaborative editing on p2p networks. In Distributed Computing

Systems, 2009. ICDCS’09. 29th IEEE International Conference on, pages 404–412. IEEE.

204

Bibliography

[Whitcomb and Koditschek, 1990] Whitcomb, L. L. and Koditschek, D. E. (1990). Robot con-

trol in a message passing environment: Theoretical questions and preliminary experiments.

In Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on,

pages 1198–1123. IEEE.

[Zeng et al., 2004] Zeng, J.-z., Xu, J., Wu, Y., Li, Y., and Xu, N. (2004). Service unit based network

architecture and its micro-communication element system. ACTA ELECTRONICA SINICA.,

32(5):745–749.

[Zhang and Gao, 2012] Zhang, X. and Gao, H. (2012). Road maintenance optimization through

a discrete-time semi-markov decision process. Reliability Engineering & System Safety,

103:110–119.

[Zhang, 2012] Zhang, Z. (2012). The internet remote robot with skype webcam. In System

Science and Engineering (ICSSE), 2012 International Conference on, pages 117–119. IEEE.

[Ziparo et al., 2011] Ziparo, V. A., Iocchi, L., Lima, P. U., Nardi, D., and Palamara, P. F. (2011).

Petri net plans. Autonomous Agents and Multi-Agent Systems, 23(3):344–383.

[Zuberek, 2001] Zuberek, W. M. (2001). Timed petri nets in modeling and analysis of cluster

tools. IEEE Transactions on Robotics and Automation, 17(5):562–575.

205

Glossary

C C is a general-purpose, imperative computer programming language, supporting structured

programming, lexical variable scope and recursion, while a static type system prevents

many unintended operations. 23, 30, 151, 152, 154

C++ C++ is a general-purpose programming language. It has imperative, object-oriented

and generic programming features, while also providing facilities for low-level memory

manipulation.. 22, 29, 30, 151–154

C# C# is a multi-paradigm programming language including strong typing, imperative,

declarative, functional, generic, object-oriented and component-oriented program-

ming paradigms from Microsoft. 29, 30, 152, 154

cloud “Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction ” [Mell and Grance, 2011].

16, 17, 20, 30, 31

CoAP Constrained Application Protocol (CoAP) is a software protocol intended to be used in

very simple electronics devices, allowing them to communicate interactively over the

Internet. . 69, 70, 73–75, 83

Go Go (often referred to as golang) is an open source programming language from Google..

152

Java Java is a general-purpose computer programming language that is concurrent, class-

based, object-oriented and specifically designed to have as few implementation depen-

dencies as possible.. 29, 30, 151, 152, 154

Lisp Lisp is a family of computer programming languages with a long history and a distinctive,

fully parenthesized Polish prefix notation. 29, 151, 152

object In the class-based OOP paradigm, "object" refers to a particular instance of a class

where the object can be a combination of variables, functions, and data structures.. 10,

14, 22, 35, 153, 209

207

Glossary

Python Python is a widely used high-level, general-purpose, interpreted, dynamic program-

ming language. 29, 30, 151, 152, 154, 155

TCL TCL is a scripting language.. 151

UNIX Unix is a family of multitasking, multiuser computer operating systems that derive

from the original AT&T Unix, development starting in the 1970s at the Bell Labs research

center by Ken Thompson, Dennis Ritchie, and others. 86

Windows Microsoft Windows, or simply Windows, is a meta-family of graphical operating

systems developed, marketed, and sold by Microsoft. It consists of several families of

operating systems, each of which cater to a certain sector of the computing industry

with the OS typically associated with IBM PC compatible architecture. 86

208

Acronyms

ACE Adaptive Communication Environment. 22, 154

ACID Atomicity, Consistency, Isolation, and Durability. 12

AI Artificial intelligence. 93

API Application programming interface. 11, 17, 18, 22, 24, 25, 28–30, 50, 67–70, 77, 79, 83, 152,

154

Carmen Carnegie Mellon Robot Navigation Toolkit. 20, 23, 25–30, 154, 155

CCR Concurrency and Coordination Runtime. 22, 26, 153

CDIS Code and data integration services. 25, 28–30

CMDP Constrained Markov decision processes. 39

COM Communication. 24, 26–28

CORBA Common Object Request Broker Architecture. 22, 25, 26, 28–30, 153, 154

CPC Component Port Connector. 158

CPU Central Processing Unit. 16, 23, 25, 70, 77, 79, 87, 88, 94, 123, 130, 133

CSP Communicating Sequential Processes. 40, 41, 93

CSS3 Cascading Style Sheets 3. 109

CTL Computational tree logic. 49

DDSS Durable data storage services. 24, 26–28

DHCP Dynamic Host Configuration Protocol. 57

DHT Distributed Hash Tables. 56

DLC Deployment and life-cycle. 24, 28, 29

209

Acronyms

DOM Distributed Object Middleware. 9, 10, 14

DOS Deny of service. 89

DSL Domain Specific Language. 37, 157

DSS Decentralized Software Service. 22, 26, 153

DSSP Decentralized Software Services Protocol. 28

EPI Extension points and interfaces. 25, 28–30

ERA Event recording automata. 95–102, 104–107, 110, 112–115, 117–125, 159, 160, 163

ESB Enterprise Service Bus. 13, 14

FIFO First in First out. 11

Flat-MTL Flat metric temporal logic. 49

FSM Finite-state machine. 38, 93, 94

GENA General Event Notification Architecture. 57

GPS Global Positioning System. 128

GUI Graphical User Interface. 108, 110–113, 118–122, 144, 148

HTML5 Hypertext Markup Language 5. 109

HTTP Hypertext Transfer Protocol. 28, 57, 67, 129, 130, 133, 152

I/O Input/Output. 154

IDL Interface description language. 28–30, 152, 153

IP Internet Protocol. 26, 56, 57, 98, 101–103, 117, 163, 166

IPC Inter-Process Communication System. 26, 28, 89, 155

JS JavaScript. 109

JSON JavaScript Object Notation. 14, 67, 68, 113

LTL Linear temporal logic. 49

LTS Labeled transition system. 44, 45

MARIE Mobile and Autonomous Robotics Integration Environment. 20, 22, 25–30, 154

210

Acronyms

MAS Multi-Agent Systems. 56

MCS Multi-robot coordination services. 24, 26, 27

MDA Model Driven Architecture. 36

MDD Model driven development. 3, 5, 33–38, 41, 50, 51, 85, 86, 90, 91, 97, 99, 101, 107, 115,

117, 120, 125, 129, 144–146, 149, 157

MDE Model driven engineering. 36

MDP Markov decision process. 39, 40

MDP Mediator Design Pattern. 22, 39, 154

MITL Metric interval temporal logic. 49

MM Management and monitoring. 24, 26, 27

MOM Message-Oriented Middleware. 10, 11, 17

MRDS Microsoft Robotics Developer Studio. 20, 22, 25–31, 86, 87, 145, 153

MTL Metric temporal logic. 49

OMG Object Management Group. 36

OOP Object-oriented programming. 10, 35, 209

OV Overhead. 23, 25, 26

P2P Peer to peer. 56

PM Programming model. 24, 28, 29

POMDP Partially observable Markov decision process. 39

Pyro Python Robotics. 20, 23, 25–30, 155

QoS Quality of service. 11, 12

REST Representational State Transfer. 67–70

RF Robustness to failures. 23, 25, 26

ROS Robot operating system. 3–5, 20–22, 25–31, 50, 51, 69, 86, 87, 90, 96, 97, 102, 103, 108,

110, 111, 115, 117, 118, 125, 129, 138, 139, 142, 145, 146, 149, 152

ROSMDB Robot operating system Model Driven Behavior. vii, 5, 85, 107–109, 112–125, 127–

129, 132, 133, 138, 140, 141, 144, 146–150

211

Acronyms

RPC Remote Procedure Call. 9, 10, 152

Safety-MTL Safety metric temporal logic. 49

SDfR Service Discovery for Robots. vii, 5, 56, 58–60, 62, 64–75, 77, 79, 81, 83, 119–122, 130,

144, 146–149

SLAM Simultaneous localization and mapping. 18, 88, 152

SLP Service location protocol. 58

SOA Service Oriented Architecture. 4, 5, 13, 14, 31, 33, 34, 51, 85–87, 89, 90, 97, 107, 108, 125,

129, 144–146, 148, 149

SOAP Simple Object Access Protocol. 15, 28, 57, 86

SOE Service-Oriented Environments. 56

SOM Service Oriented Middleware. 13, 14

SOTS Scheduled operations and tasks services. 24, 26, 27

SSDP Simple Service Discovery Protocol. 56–60, 65, 69

TCP Transmission Control Protocol. 28

TCP/IP Transmission Control Protocol over Internet Protocol. 152

TCTL Time computational tree logic. 49

TOM Transaction-Oriented Middleware. 12

TPTL Timed propositional temporal logic. 49

UDP User Datagram Protocol. 57, 59, 60, 73, 75

UML Unified Modeling Language. 157

UPnP Universal Plug and Play. 57–59, 64, 69, 70, 83

V3CMM 3-View Component Meta-Model for Model-Driven Robotic Software Development.

viii, 37, 157

VL Vendor locking. 23, 25, 26

VPL Visual Programming Language. 22, 29, 30, 153

VSE Visual Simulation Environment. 22, 153

WSDL Web Services Description Language. 86

212

Acronyms

XML Extensible Markup Language. 28, 57, 86, 113, 152

YAML YAML Ain’t Markup Language. 110, 111

213

FOLIO ADMINISTRATIF

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON

NOM : CHITIC DATE de SOUTENANCE : 15/03/2018

Prénoms : Ștefan-Gabriel

TITRE : Middleware and programming models for multi-robot systems

NATURE : Doctorat Numéro d'ordre : 2018LYSEI018

Ecole doctorale : Ecole Doctorale 512 - INFORMATIQUE ET MATHÉMATIQUES

Spécialité : Informatique

RESUME :

Malgré́ de nombreuses années de travail en robotique, il existe toujours un manque d’architecture logicielle et de
middleware stables pour les systèmes multi-robot. Un intergiciel robotique devrait être conçu pour faire abstraction
de l’architecture matérielle de bas niveau, faciliter la communication et l’intégration de nouveaux logiciels. Cette
thèse se concentre sur le middleware pour systèmes multi-robot et sur la façon dont nous pouvons améliorer les
frameworks existantes dans un contexte multi-robot en ajoutant des services de coordination multi-robot, des outils
de développement et de déploiement massif. Nous nous attendons à ce que les robots soient de plus en plus
utiles car ils peuvent tirer profit des données provenant d’autres périphériques externes dans leur prise de décision
au lieu de simplement réagir à leur environnement local (capteurs, robots coopérant dans une flotte, etc.).
Cette thèse évalue d’abord l’un des intergiciels les plus récents pour robot(s) mobile(s), Robot operating system
(ROS), suivi par la suite d’un état de l’art sur les middlewares couramment utilisés en robotique. Basé sur les
conclusions, nous proposons une contribution originale dans le contexte multi-robots, appelé́ SDfR (Service
discovery for Robots), un mécanisme de découverte des services pour les robots. L’objectif principal est de
proposer un mécanisme permettant aux robots de garder une trace des pairs accessibles à l’intérieur d’une flotte
tout en utilisant une infrastructure ad-hoc. Un autre objectif est de proposer un protocole de négociation de
configuration réseau. A cause de la mobilité́ des robots, les techniques classiques de configuration de réseau pair
à pair ne conviennent pas. SDfR est un protocole hautement dynamique, adaptatif et évolutif adapté du protocole
SSDP (Simple Service Discovery Proto- col). Nous conduisons un ensemble d’expériences, en utilisant une flotte
de robots Turtlebot, pour mesurer et montrer que le surdébit de SDfR est limité.
La dernière partie de la thèse se concentre sur un modèle de programmation basé sur un automate temporisé. Ce
type de programmation a l’avantage d’avoir un modèle qui peut être vérifié et simulé avant de déployer
l’application sur de vrais robots. Afin d’enrichir et de faciliter le développement d’applications robotiques, un
nouveau modèle de programmation basé sur des automates à états temporisés est proposé́, appelé́ ROSMDB. Il
fournit une vérification de modèle lors de la phase de développement et lors de l’exécution. Cette contribution est
composée de plusieurs composants : une interface graphique pour créer des modèles basés sur un automate
temporisé, un vérificateur de modèle intègré basé sur UPPAAL et un générateur de squelette de code. De plus, un
framework spécifique à ROS est proposé́ pour vérifier l’exactitude de l’exécution du modèle et déclencher des
alertes. Enfin, nous avons effectué deux expériences : une avec une flotte de drones Parrot et l’autre avec des
Turtlebots afin d’illustre le modèle proposé et sa capacité́ à vérifier les propriétés.

MOTS-CLÉS :

Middleware dynamique, robots connectés, reconfiguration, résilience, mobilité́, langages de programmation, systèmes multi-
robots, cloud robotisé, flotte robotique, service de découverte, architecture orientée service.

Laboratoire (s) de recherche :

Equipes Dynamid et Inria Chroma, Laboratoire CITI, INSA Lyon

Directeur de thèse: Prof. Olivier SIMONIN, INSA Lyon
Co-directeur de thèse: Dr. Julien PONGE, INSA Lyon

Président de jury :

 Prof. Noury BOURAQADI, IMT Lille Douai

Composition du jury :
 Prof. Abderrafiaa KOUKAM, Université de Technologie de Belfort-Montbéliard Rapporteur
 Prof. Philippe LALANDA, Université ́ Joseph Fourier, Saint-Martin-d'Hères Rapporteur
 Prof. Noury BOURAQADI, IMT Lille Douai Examinateur
 Dr. Stéphanie CHOLLET, Grenoble INP - Esisar, Valence Examinatrice
 Prof. Olivier SIMONIN, INSA Lyon Directeur de thèse
 Dr. Julien PONGE, INSA Lyon Co-directeur de thèse

	Acknowledgements
	Abstract (English/Français)
	List of figures
	List of tables
	I Introduction and background
	Introduction
	Context
	Key research issues
	Contributions Overview
	Outline

	Middleware for robotics
	Introduction
	Middlewares in distributed systems
	Challenges for middleware in robotics
	Existing middlewares
	Comparative criteria
	Middleware Comparison
	Conclusion

	Formalisms to design systems behavior
	Introduction
	Model driven development
	Classical formalism
	Timed automata
	Conclusion

	II Model driven multi-robot applications development
	Service discovery for robots
	Objectives and motivation for fleet service discovery
	Limitation of existing service discovery protocols
	Definition of SDfR protocol
	Evaluation of SDfR overhead with robots
	Summary

	ROSMDB: Development methodology
	From component services to fleet applications
	Modeling component external interactions with timed automata
	Validating service compositions
	 The ROSMDB toolset
	Summary

	ROSMDB: Experimentations
	Package delivery by drones swarm
	Guest welcoming and management with intrusion detection system
	Summary

	Conclusion and perspectives
	Concluding remarks
	Perspectives beyond ROSMDB and SDfR

	Selected Middlewares descriptions
	Player/Stage
	Robot operating system
	Miro
	MRDS
	MARIE
	Orca
	Carmen
	Pyro

	Model driven development in robotics
	RobotML
	V3CMM
	SmartSoft
	BRICS model

	Product construction of examples
	Obstacle detection and avoidance navigation service
	Fleet platooning service
	Fleet platooning robot with collision avoidance application

	Flight synchronization based on N pole
	Commander application
	Controller application

	Random movement object search
	Collision avoidance application
	Object detection application

	Bibliography
	Glossary
	Acronyms

