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Abstract

In this project, we investigate the recovery of subsurface Earth parameters. We consider
the seismic imaging as a large scale iterative minimization problem, and deploy the Full
Waveform Inversion (FWI) method, for which several aspects must be treated. The recon-
struction is based on the wave equations because the characteristics of the measurements
indicate the nature of the medium in which the waves propagate. First, the natural het-
erogeneity and anisotropy of the Earth require numerical methods that are adapted and
efficient to solve the wave propagation problem. In this study, we have decided to work
with the harmonic formulation, i.e., in the frequency domain. Therefore, we detail the
mathematical equations involved and the numerical discretization used to solve the wave
equations in large scale situations.

The inverse problem is then established in order to frame the seismic imaging. It is
a nonlinear and ill-posed inverse problem by nature, due to the limited available data,
and the complexity of the subsurface characterization. However, we obtain a conditional
Lipschitz-type stability in the case of piecewise constant model representation. We derive
the lower and upper bound for the underlying stability constant, which allows us to quantify
the stability with frequency and scale. It is of great use for the underlying optimization
algorithm involved to solve the seismic problem. We review the foundations of iterative
optimization techniques and provide the different methods that we have used in this project.
The Newton method, due to the numerical cost of inverting the Hessian, may not always be
accessible. We propose some comparisons to identify the benefits of using the Hessian, in
order to study what would be an appropriate procedure regarding the accuracy and time.
We study the convergence of the iterative minimization method, depending on different
aspects such as the geometry of the subsurface, the frequency, and the parametrization. In
particular, we quantify the frequency progression, from the point of view of optimization,
by showing how the size of the basin of attraction evolves with frequency.

Following the convergence and stability analysis of the problem, the iterative minimiza-
tion algorithm is conducted via a multi-level scheme where frequency and scale progress
simultaneously. We perform a collection of experiments, including acoustic and elastic
media, in two and three dimensions. The perspectives of attenuation and anisotropic re-
constructions are also introduced. Finally, we study the case of Cauchy data, motivated by
the dual sensors devices that are developed in the geophysical industry. We derive a novel
cost function, which arises from the stability analysis of the problem. It allows elegant
perspectives where no prior information on the acquisition set is required.
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Abstract

Dans ce projet, nous étudions la reconstruction de milieux terrestres souterrains. L’imagerie
sismique est traitée avec un problème de minimisation itérative à grande échelle, et nous
utilisons la méthode de l’inversion des formes d’ondes (Full Waveform Inversion, FWI
method). La reconstruction est basée sur des mesures d’ondes sismiques, car ces ondes
sont caractérisées par le milieu dans lequel elles se propagent. Tout d’abord, nous présen-
tons les méthodes numériques qui sont nécessaires pour prendre en compte l’hétérogénéité et
l’anisotropie de la Terre. Ici, nous travaillons avec les solutions harmoniques des équations
des ondes, donc dans le domaine fréquentiel. Nous détaillons les équations et l’approche
numérique mises en place pour résoudre le problème d’onde.

Le problème inverse est établi afin de reconstruire les propriétés du milieu. Il s’agit
d’un problème non-linéaire et mal posé, pour lequel nous disposons de peu de données.
Cependant, nous pouvons montrer une stabilité de type Lipschitz pour le problème inverse
associé avec l’équation de Helmholtz, en considérant des modèles représentés par des con-
stantes par morceaux. Nous explicitons la borne inférieure et supérieure pour la constante
de stabilité, qui nous permet d’obtenir une caractérisation de la stabilité en fonction de la
fréquence et de l’échelle. Nous revoyons ensuite le problème de minimisation associé à la
reconstruction en sismique. La méthode de Newton apparaît comme naturelle, mais peut
être difficilement accessible, dû au coup de calcul de la Hessienne. Nous présentons une
comparaison des méthodes pour proposer un compromis entre temps de calcul et précision.
Nous étudions la convergence de l’algorithme, en fonction de la géométrie du sous-sol, la
fréquence et la paramétrisation. Cela nous permet en particulier de quantifier la progres-
sion en fréquence, en estimant la taille du rayon de convergence de l’espace des solutions
admissibles.

A partir de l’étude de la stabilité et de la convergence, l’algorithme de minimisa-
tion itérative est conduit en faisant progresser la fréquence et l’échelle simultanément.
Nous présentons des exemples en deux et trois dimensions, et illustrons l’incorporation
d’atténuation et la considération de milieux anisotropes. Finalement, nous étudions le cas
de reconstruction avec accès aux données de Cauchy, motivé par les dual sensors dévelop-
pés en sismique. Cela nous permet de définir une nouvelle fonction coût, qui permet de
prometteuses perspectives avec un besoin minimal quant aux informations sur l’acquisition.
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General introduction

The study of the Earth is a challenging research, where many fields interact. It has been
considered for centuries, and it remains a very active subject of interest. The nature of
the Earth subsurface is yet broadly well established. The different layers are defined as
follow: the continental crust, the upper mantle, the lower mantle, the outer core, and
the inner core. However, depending on the resolution (scale) of accuracy, the information
is relatively partial. As an illustration, we have very few knowledge on the ocean floor,
which represents more than 70% of the Earth surface. The seismology, which aims the
study of earthquakes and the propagation of waves on Earth is also arduous and suffers
from the minimal information and the scale of the problem; for instance, the prediction of
earthquakes remains out of reach. On the other hand, the understanding of Earth is valuable
for different reasons. On the planetary scale, it can allow the prediction of potentially
dangerous events such as earthquakes and tsunamis. On a more local scale, it can help to
identify structures or materials of interest in the subsurface (seismic prospecting). Overall,
it is scientifically crucial to characterize precisely the very place where humankind lives. The
methods employed to study the Earth depends on the scale investigated. In this project, we
focus on the recovery subsurface region of several ten kilometers, by means of quantitative
reconstructions of the subsurface properties. It is a large scale inverse problem.

The understanding of Earth usually relies on the propagation of waves. The waves are
influenced by the medium in which they propagate so that the analysis of this propagation
reveals information on the zone. In particular, we refer to seismic waves for the mechanical
waves that propagate in the Earth. Therefore, the first step is to define the behavior of waves
in terms of mathematical equations: these are the wave equations. They are extracted from
the pioneering work of Newton, and allow the different situations to be accounted for (fluid,
solid, anisotropy, etc). It defines, in seismic, the direct (or forward) problem, which refers
to the resolution of the waves propagation problem, from the knowledge of the medium
properties (wave speed, density, etc).

The forward problem invokes the wave equations, and necessitates the knowledge of

1



General introduction

the material properties, as well as the initial source perturbation, to accurately predict the
waves path. On the contrary, the inverse problem aims at recovering the subsurface prop-
erties, using the observation of waves at the surface. Those measurements can result from
physical phenomena (e.g., earthquakes) or can result from a human made source. It is the
latest in our context of seismic prospecting. More generally, the essence of inverse problems
is the recovery of information which we cannot access. The medical imaging is probably
a well-known example, where the interior of the human body (bone, organ, tumor) is ex-
plored from measurements at the skin level. Many applications involve inverse problems;
we can mention, for instance, the study of celestial objects, archeology, helioseismology,
sonar, etc. The methods to recover the investigated parameters may differ depending on
the situations, but the concept is the same: the discovery of the invisible, the unknown. It
usually consists in a nonlinear ill-posed problem, which requires precautious treatments at
both mathematical and numerical levels.

In our project, the inverse wave problem is processed by casting it into an iterative
optimization problem. This vision was developed in the 1980’s, following the pioneering
work of Tarantola. The method, relatively restricted at its early ages due to the computa-
tional limitation, has been widely popularized since then. Indeed, because of the intrinsic
heterogeneity of the Earth, and the scale of the area of interest, the computational burden
grows rapidly. That is why the improvement of the computational power, and the High
Performance Computing (HPC) framework, have allowed significant advances regarding
large scale problems in general, and the seismic reconstruction in particular.

We follow the time-harmonic formulation of the waves and consequently work in the fre-
quency domain. The wave problem naturally occurs in the time domain, but the frequency
approach has some interesting impacts: the numerical boundary conditions are easier to
handle, the incorporation of attenuation is natural, the frequency decomposition is required
for the stability of the inverse problem, etc. The drawback of the method is certainly the
computational time and memory required to solve large linear systems (by means of matrix
factorization); yet, the research on novel solvers is an active field, and also benefits from
the constant increase of computational power. At the end of the day, the two formulations
have their pros and cons, and both can be justified.

We have given a brief overview of the concepts involved in this project. We do not
elaborate because every chapter is composed of its own introduction, where more details
and the appropriate references are given on the specific aspect investigated therein.
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Plan of the manuscript

The first two chapters are dedicated to the forward problem, which is not really the heart of
the project, but a fundamental key to apprehending it. We review the propagation of waves
in terrestrial media in Chapter 1, and introduce the underlying wave equations. We define
their time-harmonic formulation, which is the one employed throughout the manuscript,
and depict the different possible situations: acoustic, elastic, anisotropic. Then, we provide
the numerical methods to solve the wave propagation problems in Chapter 2. We review
the discretization schemes that have been used in our work, with the finite differences, and
the continuous and discontinuous Galerkin approaches.

We introduce the inverse problem in Chapter 3, where we examine the stability of the
inverse problem associated with the Helmholtz equation. Providing a piecewise constant
representation of the model, a Lipschitz-type stability is obtained, and we give the charac-
terization of the stability constant, with its lower and upper bounds. The analytical proof
is confronted with numerical situations to demonstrate the sharpness of the bounds. The
stability depending on the frequency and scale gives the first brick in our reconstruction
algorithm.

The inverse problem is cast as an iterative minimization problem in Chapter 4, follow-
ing the Full Waveform Inversion method, and the pioneering work of Tarantola. Newton
types methods appear naturally as the best candidates to conduct the minimization, but
they can suffer from numerical restriction (time and memory). We detail the methods that
have been used in our software, and the computation of the gradient and Hessian via ad-
joint state methods. The Hessian is approximated using a Conjugate Gradient algorithm
to limit the computational requirement. We further compare the efficiency of using gra-
dient based methods or incorporating Hessian information. Depending on the situation,
the computational burden involved in the large scale optimization problems we face is of
importance and restrict the possibilities.

The convergence of the iterative scheme is probed in Chapter 5. We designed estima-
tions of the size of the basin of attraction depending on the frequency and the geometry,
to quantify the nonlinearity of the problem with respect to these aspects. Using the radius
of curvature, we also identify the maximum distance between the data and the attainable
set. We finally inquire the effect of parametrizations during the reconstruction.

Following the stability and convergence analysis of the seismic inverse problem, we
deploy a multi-level iterative algorithm for the minimization, where frequency and scale
evolve simultaneously. In Chapter 6, we proceed to experimental tests, with two and three-
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dimensional domains, using acoustic and elastic media. We introduce the possibility for
the consideration of attenuation and anisotropy as well.

Finally, in Chapter 7, we investigate the seismic reconstruction from Cauchy data,
motivated by the measurements obtained from dual sensors, in marine seismic campaigns.
We illustrate how it is revealed to be promising, by the definition of a novel cost function,
adequate for this type of measurements. It allows minimal information on the acquisition
set, and new perspectives to reduce the numerical cost.

Related productions

During the three years of this thesis, one article has been published and two are currently
in preparation,

– In preparation, “Convergence Properties for Numerical Acoustic and Elastic Full
Waveform Inversion in the Frequency Domain" with Hélène Barucq, Guy Chavent
and Henri Calandra.
The essence of this paper is in Chapter 5.

– In preparation, “Inverse problem for the Helmholtz equation with Cauchy data: re-
construction with conditional well-posedness driven iterative regularization" with Gio-
vanni Alessandrini, Maarten V. de Hoop, Romina Gaburro, Eva Sincich and Hélène
Barucq.
The essence of this paper is in Chapter 7.

– “Inverse boundary value problem for the Helmholtz equation: quantitative conditional
Lipschitz stability estimates" with Elena Beretta, Maarten V. de Hoop and Otmar
Scherzer. SIAM Journal on Mathematical Analysis 48, no. 6 (2016): 3962-3983.
This paper is reproduced in the Appendix A.

We also mention the proceedings, expanded abstracts and conferences attended in relation
to this work,

– “Stability and convergence for seismic reconstruction” with Hélène Barucq, Henri
Calandra, Guy Chavent and Maarten V. de Hoop. Johann Radon Institut for Com-
putational and Applied Mathematics (RICAM), Linz, Austria, July 2017.

– “Stability and convergence for seismic reconstruction using full waveform inversion”
with Hélène Barucq, Henri Calandra, Guy Chavent and Maarten V. de Hoop. Work-
shop on Computational Inverse Problems for Partial Differential Equations. Oberwol-
fach Research Institute for Mathematics, Germany, May 2017.
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– “Acoustic Full Waveform Inversion from Cauchy data via conditional well-posedness
driven iterative regularization" with Giovanni Alessandrini, Maarten V. de Hoop,
Romina Gaburro and Eva Sincich. Proceedings of the Project Review, Geo Mathe-
matical Imaging Group, Houston, USA, 2017.

– “Elastic full-waveform inversion with surface and body waves" with Jia Shi, Maarten
V. De Hoop and Henri Calandra. SEG Technical Program Expanded Abstracts 2016,
pp. 1120-1124. Society of Exploration Geophysicists, 2016.

– “Full waveform inversion for elastic medium using quantitative Lipschitz stability
estimates" with Hélène Barucq, Henri Calandra, Maarten V. de Hoop and Jia Shi. 7th
EAGE Saint Petersburg International Conference and Exhibition, Saint-Petersburg,
Russia, 2016.

– “Inverse Problem in the Frequency Domain for Subsurface Reconstruction". Workshop
DIP – Depth Imaging Partnership (INRIA-TOTAL), Houston, USA, 2016

– “Elastic isotropic full waveform inversion via quantitative stability estimates" with
Hélène Barucq, Henri Calandra, Maarten V. de Hoop and Jia Shi. PANACM (Pan-
American Congress On Computational Mechanics), Buenos Aires, Argentina, 2015.

– “Stability estimates for full waveform inversion"Workshop DIP – Depth Imaging Part-
nership (INRIA-TOTAL), Pau, France, 2015.

– “Multi-level elastic full waveform inversion in isotropic media via quantitative Lip-
schitz stability estimates" with Jia Shi, Henri Calandra and Maarten V. de Hoop.
Proceedings of the Project Review, Geo-Mathematical Imaging Group, Chicago, USA,
2014.

– “Multi-level, multi-frequency, 3D Full Waveform Inversion", MATHIAS – TOTAL
Symposium on Mathematics, Paris, France, 2014.
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Introduction Générale

L’étude de la Terre demeure un secteur de recherche actif, où beaucoup de domaines inter-
ragissent. Cela fait par ailleurs des siècles que la Terre est un sujet d’étude. La nature de
la structure souterraine est assez bien définie, avec la croûte, le manteau supérieur, le man-
teau inférieur, le noyau externe et le noyau interne. Cependant, selon la précision souhaitée,
l’information se révèle partielle. Par exemple, nous avons très peu de connaissances sur le
fond des océans, qui représente pourtant 70% de la surface terrestre. La sismologie, qui
étudie les tremblements de terre ou la propagation d’ondes dans la Terre, est également
complexe à cause de la faible quantité d’information et la taille du système à résoudre; ainsi,
la prédiction des tremblements de terre reste inaccessible. L’étude de la Terre est cependant
très importante pour différentes raisons. À l’échelle planétaire, cela pourrait permettre la
prédiction de phénomènes dangereux (comme les tramblements de terre et les tsunamis).
D’un point de vue plus local, cela peut permettre d’identifier des ressources d’intérêt dans
le sous-sol. Il est par ailleurs scientifiquement crucial de comprendre précisément l’endroit
où nous vivons. Les méthodes à employer pour étudier la Terre dépendent de la résoluton
souhaitée. Dans notre projet, nous nous intéressons la reconstruction de mileux souterrains
dont la taille est de quelques dizaines de kilomètres, avec une reconstruction quantitative
des propriétés du milieu. Il s’agit d’un problème inverse à grande échelle.

La compréhension de la Terre se repose généralement sur la propagation d’ondes. Les
ondes sont influencées par le milieu dans lequel elles se propagent et l’analyse de leur prop-
agation donne ainsi des informations sur le domaine. En particulier, nous parlons d’ondes
sismiques pour les ondes mécaniques qui se propagent dans la Terre. De fait, la première
étape est de définir le comportement des ondes en termes d’équations mathématiques: ce
sont les équations des ondes. Elles dérivent des lois de Newton, et permettent de prendre
en compte différents cas (acoustique, élastique, etc). Nous parlons alors de problème direct
pour la résolution de ces équations, qui nécessitent la connaissance des propriétés du milieu
(vitesse, densité, etc).

A l’opposé, le problème inverse vise la reconstruction de milieux souterrains, à par-
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tir d’observations d’ondes à la surface. Ces mesures peuvent résulter de phénomènes na-
turels (tremblement de terre) ou provoqués par l’homme. C’est cette dernière situation
qui prévaut pour la prospection sismique. De manière générale, l’essence du problème
inverse est la reconstruction d’information pour lesquelles nous n’avons pas d’accès di-
rect. L’imagerie médicale est certainement l’exemple le plus évident, où l’intérieur du
corps humain (os, organe, tumeur) est exploré à partir de mesures d’ondes au niveau de la
peau. De nombreuses applications sont basées sur des problèmes inverses: l’étude d’objets
célestes, l’archéologie, l’héliosismologie, le sonar, etc. Les méthodes permettant d’identifier
les paramètres d’intérêt diffèrent selon la situation, mais le concept reste le même: la décou-
verte de l’inconnu, de l’invisible. De plus, il s’agit généralement d’un problème non-linéaire
et mal posé, qui demande des précautions de traitements, tant aux niveaux mathématiques,
que numériques.

Dans notre projet, le problème inverse est représenté par un problème d’optimisation.
Cette vision, développée dans les années 1980, découle du travail de Tarantola. La méthode,
relativement restreinte d’un point de vue numérique à son établissement, s’est depuis pop-
ularisée avec l’avènement du calcul haute performance, et l’accroissement des puissances de
calcul à disposition.

Nous nous intéressons à la propagation d’ondes harmoniques, et travaillons de fait dans
le domaine fréquentiel. Alors que le phénomène se relie naturellement au temps, l’approche
fréquentielle présente certains avantages tels que la facilité de traitement des conditions aux
limites ou la prise en compte de l’atténuation. La décomposition en fréquence est également
fondamentale pour la stabilité du problème. L’inconvénient majeur est le coût de calcul, en
temps et mémoire, pour la création et la factorisation de la matrice dans le cas de grands
problèmes 3D. De manière générale, les deux approches, temporelle et fréquentielle, ont
chacune leurs avantages et inconvénients, et peuvent toutes deux se justifier.

Plan du manuscrit

Les deux premiers chapitres se concentrent sur le problème direct, qui, s’il n’est pas réelle-
ment le coeur du projet, est une brique fondamentale pour le traiter. Nous présentons la
propagation des ondes en milieux terrestres au Chapitre 1 et introduisons les équations des
ondes. Nous définissons leur formulation harmonique, qui est employée dans notre étude.
Ensuite, nous déployons les méthodes numériques pour résoudre la propagation d’ondes au
Chapitre 2. Les techniques de discrétisation qui sont utilisées dans notre travail sont intro-
duites, il s’agit des différences finies, et des méthodes de Galerkin continues et discontinues.
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Le problème inverse est présenté au Chapitre 3, où nous étudions en particulier la
stabilité du problème inverse associé à l’équation de Helmholtz. Avec une représentation
du modèle par des constantes par morceaux, la stabilité de type Lipschitz est obtenue, et
nous caractérisons la borne inférieure et supérieure de la constante de stabilité. La théorie
est comparée à des expérimentations numériques et nous illustrons notamment la précision
des bornes. La stabilité dépend de la fréquence et de l’échelle, et constitue la première
brique de notre algorithme de reconstruction.

Nous présentons le problème de minimisation itérative associé à l’imagerie sismique au
Chapitre 4, avec la méthode d’inversion des formes d’ondes (FWI, Full Waveform Inver-
sion). La méthode de Newton apparaît naturellement comme la meilleure option, mais peut
générer des coûts numériques prohibitifs. Nous présentons les différentes techniques qui ont
été introduites dans notre software, avec le calcul du gradient et de la Hessienne basé sur
l’état adjoint. L’inversion de la Hessienne est en fait approchée en utilisant un algorithme
de gradient conjugué afin de réduire le coût numérique. Nous présentons également des
expériences numériques afin d’illustrer le problème d’optimisation à grande échelle, et les
possibles bénéfices d’utiliser la Hessienne.

La convergence de la méthode itérative est détaillée au Chapitre 5. Nous estimons
la taille du bassin d’attraction en fonction de la fréquence et de la géométrie du milieu
souterrain. Nous proposons également l’estimation du rayon de courbure, qui identifie la
distance maximale autorisée avec l’ensemble des possibles. Finalement, nous détaillons
l’effet de la paramétrisation durant la reconstruction.

À partir de l’analyse de stabilité et de convergence, nous deployons un algorithme
de minimisation multi-niveaux, où la fréquence et l’échelle évoluent simultanément. Au
Chapitre 6, nous présentons des tests numériques, en deux et trois dimensions, avec des
milieux acoustiques et élastiques. Nous présentons également les possibilités dans le cas de
l’atténuation et l’anisotropie.

Enfin, au Chapitre 7, nous présentons les perspectives de reconstruction avec des don-
nées de Cauchy, motivés par le développement du ‘dual sensors’ en sismique marine. Cela
nous permet de promouvoir une nouvelle fonction coût, adéquate à ce type de mesures.
Ainsi, une information minimale est requise quant aux données d’acquisition, et le coût
numérique s’en trouve réduit.
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Chapter 1

The wave equations

Abstract

The mathematical framework to study the propagation of seis-
mic waves is discussed in this chapter. The different equations are
introduced following the laws of classical mechanics. Seismic waves
require a physical material for their propagation and the nature of
this material affects the formulation of the equations. For instance,
the state of the matter, fluid or solid, gives insight into the form
of propagation, as does the condition of isotropy for example. The
simplifications of the wave equations arise from those properties
and are required for a proper understanding of the problem. The
propagation of wave naturally occurs in the time domain, and the
harmonic formulation follows from solutions having special forms.
The wave equation is transformed to expose the frequency variable,
which is possibly complex. It is the formulation of choice for the
rest of this manuscript. The notion of attenuation in the medium
is easily incorporated in this situation, and introduces a complex-
valued velocity.
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Seismic exploration, and more generally the study of Earth, relies mainly on waves.
Waves, as traveling energy, contain fundamental information of the medium in which they
propagate. Similarly to any traveler, the wave is affected by the path it takes. However,
opposite to the traveler’s free will, the wave movement is deterministic and decided by the
medium; for example, the speed of the wave is fixed by the medium in which it propagates.
That is why the understanding of Earth first necessitates the understanding of wave prop-
agation. It is further required to predict and anticipate some potentially dangerous effects
carried by the waves propagation such as tsunami or earthquake.

There exist different types of propagating waves, and their nature has to be specified.
The most natural one to think of is the mechanical wave, which we will consider throughout
this manuscript. The mechanical waves need matter to propagate, more precisely the oscil-
lation of this matter defines the propagation as the resulting transport of energy. It is not
the only possibility when referring to wave, as illustrated with the case of electromagnetic
waves. Mechanical and electromagnetic waves differ in the type of energy they create: elec-
tromagnetic waves induce a coupling of an electrical and a magnetic stimulations while it is
a physical displacement (and pressure) in the case of mechanical waves. Another important
difference lies in that electromagnetic waves do not specially need a medium to propagate;
instead they can travel in the vacuum and through entire galaxies while mechanical waves
fundamentally need a material for the support of information. When a material is used as
the support of information, the wave energy suffers from attenuation at increasing distance
from the source (which is not the case for electromagnetic waves in vacuum).

All types of wave have in common that they come into existence via an initial pertur-
bation: this is what we will refer to as the source. For instance, when a hammer hits a wood
panel, it generates a mechanical wave starting from the collision point. Alternatively, the
nuclear reactions continuously happening in the solar core produce electromagnetic waves
(radiation) that travel through space. As we mentioned, the speed of the waves is decided
by the material in which they propagate. In the case of vacuum, the electromagnetic waves
travel at the speed of light (approximately 3× 108 m s−1). Inside materials, the motion of
waves is slower, for example, mechanical waves in water usually reach the speed of about
1500 m s−1. They travel slightly faster in solid, about 5100 m s−1 in iron and about 3500

m s−1 in wood. Yet it is nothing compared to the speed in the vacuum of electromagnetic
waves.

In our project we focus on the waves propagating through the Earth: seismic waves.
In Section 1.1 we review the classification of the seismic waves and illustrate their influence
onto the medium of propagation. In Section 1.2 the successive historical developments
concerning the study of waves are reviewed. It is interesting to notice that waves are
originally strongly connoted to the notion of the visible (etymologically speaking as well),
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yet it is now widely used to identify the unseen, the unknown.

From the mathematical point of view, waves propagation is governed by the so-called
wave equations, which give the framework from the knowledge of the geophysical properties
(density, velocity, etc). The plural form reveals the different possibilities in the formulation,
possibilities arising from the nature of the medium of interest. In particular, the propa-
gation of waves in fluid and solid does not focus on the same quantity, pressure for the
fluid and displacement (or velocity) for the solid. It further makes the distinction between
acoustic (fluid) and elastic (solid) propagations. Behind this distinction is the underlying
notion of Lagrangian or Eulerian approach, see Aki and Richards (2002). The general wave
equations are derived from the law of classical mechanics and successive simplifications
can be obtained by including assumptions on the medium of interest. Section 1.3 intro-
duces the different steps to formulate the mathematical equations that coincide with wave
propagation. We introduce the word wavefield to identify the general solution of the wave
equation, independently of the situation. The mathematical framework is extended to iden-
tify simplified equations depending on the medium characteristics (isotropy, acoustic, etc)
in Section 1.4. The isotropic characterization of the medium is established when the waves
propagate similarly in all directions; this can be pictured by some consistency in the mate-
rial. It is unfortunately rarely the case in the nature but it provides important modification
to simplify the mathematical equations and consequently the numerical problem.

The time dependent nature of the propagation is a instinctive aspect in our mind. In-
deed the phenomenon has a point of departure (the excitation generated by the source),
and the waves propagate for ‘some time’. This thinking is altered by the harmonic (fre-
quency domain) formulation of the wave equations, which utilizes a special solution of the
equation to replace the time variable by the frequency. More details and the reformulated
equations will be explained in Section 1.6. This is the formulation selected for the rest
of the manuscript. We also review some additional components in Sections 1.7 and 1.8
such as the incorporation of attenuation, the boundary conditions, and we give some initial
material regarding the analytical study of the mathematical problem and the consequent
Partial Differential Equation (PDE).

1.1 Seismic waves

The seismic waves propagating through a medium are divided upon two classes: the surface
waves, which, as the name indicates, refer to waves that propagate at the surface of the ma-
terial; and the body waves, for the component that propagates inside, through the medium.
Let us picture the common image of a rock thrown to the water, the surface waves are the
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1.1. SEISMIC WAVES

visible circles appearing at the water surface while the body waves are the underwater ones,
likely to be unseen by the observer. These two main families can be further divided into
subclasses, following the general structure presented in Figure 1.1.

Seismic waves

Body waves

Surface waves

P-waves

S-waves

Love waves

Rayleigh waves

Interface waves (Stoneley, Sholte)

Figure 1.1: The different classes encompassed by the seismic waves.

The body waves are separated into two subclasses: the P-waves (also referred to as
primary or compressional waves) and the S-waves (also referred to as secondary or shear
waves). The P-waves appear via the compression and dilatation of the medium along the
longitudinal axis, perpendicular to the surface where the initial perturbation occurs. The
S-waves correspond to the transverse perturbations of the medium: parallel to the surface.
The latest can further be separated into horizontal and vertical displacement, the SH-and
SV-waves respectively. Figure 1.2 illustrates the decomposition of those two waves: the
starting medium at rest is pictured on the top left, the P-wave is illustrated in the central
top and the S-wave on the top right and bottom left figures (SH and SV-waves respectively).
The speed of propagation, the wave speed, also differs for both types. P-waves are faster
than S-waves, with a factor of about 8/5. S-waves are generally more difficult to detect
and only appear in a solid medium, i.e. not in fluids. This is because the shear force does
not exist in fluid (namely fluids cannot be seen as rigid).

The surface wave travels slower than the body waves, they can also be separated in
different families. The Love waves (named after Augustus Edward Hough Love, 1863–1940)
result from the shear (S-) waves and correspond to the lateral (perpendicular to the direction
of propagation) surface motion. The Rayleigh waves (named after John William Strutt
Rayleigh, 1842–1919) propagate in the longitudinal direction (parallel to the propagation)
and refers to the rolling displacement along the surface, see Figure 1.2 (at the bottom).
There are finally the waves appearing at the interface between two domains, for instance
between solid and fluid (the Scholte waves) or between two solid sections (the Stoneley
waves). We refer to Aki and Richards (2002) for complete descriptions.

The source of seismic waves, that initiates the oscillations of matter, can be natural
or human made. For example, the source is natural for an earthquake, where the waves
travel from the origin, the hypocenter, through the subsurface medium and possibly reach
the surface. Similarly, a volcano eruption generates powerful waves. We can also think of
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(a) Initial medium (b) Illustration of the (body)
P-wave

(c) Illustration of the (body) SH-wave

(d) Illustration of the (body)
SV-wave

(e) Illustration of the (sur-
face) Rayleigh wave

(f) Illustration of the (surface) Love
wave

Figure 1.2: Illustration of the decomposition of a seismic wave into body (1.2(b), 1.2(c) and
1.2(d)) and surface (1.2(e) and 1.2(f)) waves. Figure 1.2(a) corresponds to the medium without
perturbation, where the source is located at the center of the front face, marked with the red star.
It is where the wave is generated from. The body wave is decomposed into the P- (1.2(b)), SH-
(1.2(c)) and SV- (1.2(d)) waves. The P-wave component propagates along the longitudinal axis of
the medium, normal to the front surface and introduces inner compression and dilatation of the
medium as shown by the displacement of the blue sections. The S-wave corresponds to the part of
the wave which is parallel to the surface and introduces the oscillations marked by the blue sections.
Surface wave can further be decomposed into the Rayleigh (1.2(e)) and Love (1.2(f)) waves. The
Rayleigh wave is along the longitudinal axis and the Love wave perpendicular. The blue arrows
represents the direction of propagation of the wave components.

tides, resulting from the gravitational force. On the other hand, for the scientific study of
subsurface material properties of Earth, the source is often artificially created by humans.
In this case it can be an explosion (literally dynamite placed in the area) that initiates
the process. Another possibility on land is the use of vibroseis: large truck that applies
heavy constraint on the Earth surface to create the initial vibration. For marine source,
ultrasound can also be used via air gun, in this case the wavefield propagates through water
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and eventually reaches the bottom rocks, where the propagation continues. The cost of a
seismic exploration campaign is high, especially considering the size of the area of interest,
commonly several tens of kilometers, and the cost of the machines used (vibroseis, boat,
receivers, sources).

Contrary to natural phenomenon like earthquakes where the source is relatively deep
in the subsurface, artificial sources position is often limited to surface or near surface lo-
cations, due to understandable access restriction. The will of not altering the media (i.e.
we disregard borehole) is also important and such processes are called non-intrusive. Lim-
iting the source to the surface area obviously restricts the study of the deepest subsurface
structures because the waves may not have enough energy to reach them. This is of crucial
importance for the inverse problem that is addressed in the sequel.

1.2 Historical background

The study of waves comes from a very ancient interest. It has originally been strongly
related to the phenomena appearing in water and the oscillating movement than can be
easily seen at the surface by any observer. The etymology of the word reflects this original
meaning, that has later been extended. The Latin root, ‘unda’, which has given the origin
of many designations in current languages (‘onde’ in French, ‘onda’ in Spanish and Italian),
is also related to the general notion of movement in liquids. Alternatively, the English root
is directly related to the notion of oscillation (as well as the German word ‘welle’). We can
find similar significance for the Greek word ‘κύμα’ and its ancient root ‘κύω’, which literally
means swell. Here we see that the concept of wave is directly related to the phenomenon
of oscillation, especially in liquids and as what can be seen. Later this relation to water
and liquid has been widely extended to other kind of traveling information, such as the
previously mentioned electromagnetic waves.

The understanding of waves has been initially thought of in the ancient Greece, espe-
cially because of the properties of music. Pythagoras (circa 570–495 BC) related the notion
of harmony with the sounds produced by different strings of proportional length (as well
as sounds depending on the weight of a blacksmith hammer). Such experiments clearly
make appear the concept of frequency and period. We can remark that this concept is
still applied in the music where an octave can be seen as doubling (or halving) the size of
the string (hence introducing a factor two in the frequency), and more generally a rational
ratio is applied to link the musical notes. In ancient Greece, Aristotle (384–322 BC) defined
the notion of vibration and period for traveling waves. Later the Italian scientist Galileo
Galilei (1564–1642) discovered the law of the vibrating string, as well as the French Marin
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Mersenne (1588–1648) independently. Eventually, we will see that the work of Isaac New-
ton (1642–1727) in the seventeenth century allowed the development of the mathematical
equations to describe the propagation of waves from physical acoustics (the term acoustic
was initially devoted to the music and sounds, and was introduced by Joseph Sauveur,
1653–1716). Later, Jean le Rond D’Alembert (1717–1783), Daniel Bernoulli (1700–1782)
and Leonhard Euler (1707–1783) developed the equation corresponding with a vibrating
string. This work was then extended to find analytical solutions as well as approximate
solutions, and to consider other types of geometries (membrane, plate) with the contri-
bution of many scientists in the eighteenth and nineteenth centuries such as Joseph-Louis
Lagrange (1736–1813), Sophie Germain (1776–1831, plate vibration), Claude-Louis Navier
(1785–1836, elasticity in mechanics), Gustav Kirchhoff (1824–1887) or John William Strutt
Rayleigh (1842–1919, author of The theory of sound, 1896), among others. Regarding the
propagation of waves in plates, the work of Horace Lamb (1849–1934) has also contributed
in the increase of understanding, with the incorporation of the eponymous Lamb waves.
The work of George Green (1793–1841) and its contribution An Essay on the Application of
Mathematical Analysis to the Theories of Electricity and Magnetism (1828) is also revealed
to produce crucial advances for the wave problems, with the subsequent Green’s functions.
This long history of wave studies is obviously made of trials, mistakes and corrections to
eventually reach the current state of the art, but it is important to keep in mind those
progressive steps. More details regarding the historical review can be found, for example,
in Aki and Richards (2002); Dahlen and Tromp (1998); Rao (2007).

1.3 Formulation of the wave equations

The wave equations give a mathematical representation of the propagation of waves in a
medium. We consider mechanical waves, which means that they require a physical material
(opposed to electromagnetic waves that can travel in vacuum). It is easy to comprehend
mechanical waves from the resulting oscillations of the matter they produce, where matter
here naturally refers to the medium in which they propagate. Many images can be used to
illustrate this oscillating behavior, such as the traditional thinking of throwing an object
into a fluid, which induces the circular oscillations visible at the surface. We have also
thought of an earthquake and the vibrations that can be experienced in the near area
around the epicenter, created by the wave propagation. More generally we are interested
in the resulting effect of a physical perturbation through an area of interest.

The wave equations are obtained from the classical (Newtonian) mechanics (by oppo-
sition to the quantum mechanics) and arise naturally from the revolutionary work of Isaac
Newton (1642–1727) in Philosophiae naturalis principia mathematica (1687) whom intro-
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duced the underlying Newton’s laws, which are the essential point of departure in defining
the wave equations. The formulation of the wave equation can be found in many books and
courses. Here we especially refer to the work of Aki and Richards (2002); Slawinski (2010);
Tsvankin and Grechka (2011). The reader is warmly encouraged towards these productions
for additional details with precise geophysical context in the framework of linear elasticity.

1.3.1 Physical quantities

It is important to distinguish the Lagrangian and the Eulerian approaches to describe the
wave phenomena. The Lagrangian approach focuses on the particles itself and it is the
framework for the elastic propagation (which occurs in solid material) where the displace-
ment is considered. Indeed by displacement is referred the displacement of the medium
particles. The Eulerian approach focuses on an area of space instead, whatever particles
appear to be in the considered region. In the context of acoustic media, i.e. fluid, it is the
natural approach when investigating the pressure field. We refer to Aki and Richards (2002)
for further discussion, noting that this distinction is not critical in the seismic context.

Hence we have two quantities of interest for the wave propagation. The displacement,
denoted u is given in meter (m) and usually accounts for elastic propagation. The pressure
p is given in Pascal (Pa) and is of interest for propagation in acoustic, i.e. fluid media. The
bold notation for the displacement indicates a vector, with size given by the dimensions,
see below.

1.3.2 Newton’s second law

The Newton’s second law (Newton, 1687) gives a fundamental relation between the forces
applied to a body and the acceleration of this body. Namely, the sum of the different forces
equals the acceleration multiplied by the mass, under the important assumption that the
mass remains unchanged in the considered body. This assumption is always imposed for
the geophysical situations we investigate, and appears natural. Indeed the geophysical time
scale is much longer than the duration of the phenomena we study.

Let us consider a body Ω as a three-dimensional domain of space: Ω ⊂ R3. We
further denote the boundary of this domain by Γ. The spacial position is represented in
the Cartesian coordinates by the variable x = (x, y, z) and t stands for the time variable.
We introduce a(x, t) the vector acceleration of this body, encompassing the components
for the three directions in the Cartesian system of coordinates. We assume that n forces
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Fi(x, t), where i ∈ {1, . . . , n} (with similar vectorial notation as for the acceleration) are
applied to the body. The mass of the body, m, is defined to be invariable, as required by
the assumption. The Newton’s second law states that

∑

i

Fi(x, t) = ma(x, t). (1.1)

To further study the forces apply on the domain of interest, the body is considered
as the addition of infinitesimally small particles dΩ. The associated density is denoted by
ρ(x) and defined by

ρ(x) =
m

dΩ
.

We see that the density does not depend on the time, which is a consequence of the invariable
mass assumption.

The acceleration is recast as the second derivative of the vector displacement u(x, t)
such that

a(x, t) =
∂2u(x, t)
∂t2

.

Remark 1.1. We can briefly recall the standard units using the International System of
Units (SI) for the different quantities:

– the mass is given in kilogram: kg;

– the displacement is given in meter: m;

– the acceleration is given in meter per second squared: m s−2;

– the force is given in Newton: N, which is equivalent to kilogram meter per second
squared: 1 kg m s−2 = 1 N;

– the density is given in kilogram per meter cubed: kg m−3 or kilogram per meter squared
in two dimensions, kg m−2.

1.3.3 Decomposition of the forces

The different forces that apply on the body are separated in two types, the ones that apply
in the interior of Ω (‘inside’), that we denote Fb(x, t) (for body force) and the forces onto
the surface Γ, say Fs(x, t) (for surface force). The body force applies on all particles of the
domain dΩ meanwhile the surface force only concerns the particles of the boundary of Ω,
i.e. the ones that are on Γ. For the interior, we separate the gravitation (the weight of the
object) from other forces so that

dFb(x, t) = ρ(x)g(x, t) dΩ + ρ(x)f(x, t) dΩ,
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where dF indicates the force on the infinitesimal domain, g(x, t) is the acceleration due
to gravity, with typical value approximated as 9.81 m s−2 (with small variation depending
on the location of the body on Earth). The sign of the gravitation can also be adjusted
depending on the convention of the orientation of the axis. Standardly with the Cartesian
basis it is only existing for the direction −−→z . Non gravity forces are taken into account by
f(x, t).

The surface forces are given as the composition of the different constraints applying
in the three Cartesian directions. We introduce the normal unit vector at the surface
ν = (−→νx,−→νy ,−→νz). In every direction, the corresponding surface force is the sum of the
contribution on each normal directions to this surface. This is illustrated Figure 1.3, where
we only represent the component for the y-axis on a selected part of the surface and where
we use the notation σij to identify the forces.

dΩ
x

z

y

σyx

σyy

σyz

σyx
−→νx + σyy

−→νy + σyz
−→νz

Figure 1.3: Illustration of the decomposition of the surface force along the y-axis considering a
cubical shape of a boundary particle dΩ, using the Cartesian system of coordinates. The total force
along the (x, z) (blue) plane surface is represented by the red arrow. It is decomposed onto the three
normal axes, marked by the blue arrows. The normal force for the considered surface is σyy(x, t),
parallel forces contributing are σyx(x, t) and σyz(x, t), where σyx and σyz are perpendicular. At
equilibrium, the forces applied on surfaces of both sides are balanced, this is represented with
dashed arrows on the opposite left surface.

The surface force is then given over the boundary Γ by,

dFs(x, t) = σ(x, t)ndΓ.

We have introduced σ(x, t), which is the (Cauchy) stress tensor of order two (named after
Augustin Louis Cauchy, 1789–1857, who introduced the mathematical formulation of stress,
see (Slawinski, 2010, Section 2.3) for further discussion) and can be represented by the
following three by three matrix

σ(x, t) =



σxx(x, t) σxy(x, t) σxz(x, t)
σyx(x, t) σyy(x, t) σyz(x, t)
σzx(x, t) σzy(x, t) σzz(x, t)


 . (1.2)
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Remark. An order d tensor in dimension n can be seen as a multi-dimensional array
(similar to a hypermatrix, generalization of matrices). More precisely the dimensions of the
underlying array is nd. For example, the three-dimensional order two stress tensor σ(x, t)
is represented with an array of size 3× 3, thus a squared matrix, as in the Equation (1.2).

The state of equilibrium of the considered medium implies that the sum of the momenta
applied to the body equates to zero. Using the conservation of mass, (Slawinski, 2010,
Section 2.7), it gives that σ(x, t) is symmetric so that σij = σji. Consequently, there are
only six remaining independent coefficients instead of the initial nine coefficients such that

σ(x, t) =



σxx(x, t) σxy(x, t) σxz(x, t)
σxy(x, t) σyy(x, t) σyz(x, t)
σxz(x, t) σyz(x, t) σzz(x, t)


 .

1.3.4 General wave equation

We have developed the concepts to differentiate surface and interior forces in the domain
of interest. The definitions of the forces are incorporated in the main Newton’s second law,
Equation (1.1). By integrating over the domain, it leads to

∫

Γ
σ(x, t)ndΓ +

∫

Ω
ρ(x)g(x, t) + ρ(x)f(x, t) dΩ =

∫

Ω
ρ(x)

∂2u(x, t)
∂t2

dΩ. (1.3)

Remark 1.2. The integral notation in the above equation should be denoted in three dimen-
sions by three integral signs for the volume (

∫∫∫
Ω) to be strictly correct. Similarly the further

boundary integrals should have two signs (
∫∫

Γ). We implicitly consider this repetition and
always use only one sign to simplify the expressions because it is naturally implicitly induced
by the index of the integral, Γ or Ω.

The use of the Ostrogradsky’s theorem (which is also referred to as the divergence,
Gauss, or Green–Ostrogradsky theorem) requires assumptions on Ω to be compact and
σ(x, t) to be differentiable. Then this theorem (named after Mikhaïl Ostrogradski, 1801–
1862) states that ∫

Ω
∇ · σ(x, t) dΩ =

∫

Γ
σ(x, t).ndΓ,

where (∇·) stands for the divergence. Following the use of the theorem, the Equation (1.3)
can be rewritten equivalently

∫

Ω
ρ(x)

∂2u(x, t)
∂t2

−∇ · σ(x, t)− ρ(x)g(x, t)− ρ(x)f(x, t) dΩ = 0.
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From this formulation, the common assumption is to neglect the gravitational force and
consequently remove the term (ρ(x)g(x, t)). This can be justify by the weight of the object
particles, easily negligible as compared to the forces considered in geophysics (earthquake,
air gun, etc). Only remains the other interior forces, f , which can possibly incorporate the
source of the phenomenon.

Because the equation is true for any arbitrary volume Ω, the equality with zero can be
established for the inner part of the integrals, it verifies

ρ(x)
∂2u(x, t)
∂t2

= ∇ · σ(x, t) + ρ(x)f(x, t). (1.4)

This defines the general wave equation in terms of the displacement. It can be seen as the
mathematical representation of the propagation of waves and where the only assumptions
are to neglect the gravitational force, the conservation of mass and state of equilibrium. It
represents the general relation between the displacement u and the constraint σ applied to
the domain of interest. In the case where no body forces are included, then f = 0 and the
wave equation becomes

ρ(x)
∂2u(x, t)
∂t2

= ∇ · σ(x, t). (1.5)

Here the wave equation is expressed depending on the displacement u but it is straightfor-
ward to obtain similar formulation using the velocity v(x, t) = ∂tu(x, t) or, less commonly
in literature, the acceleration as it has been defined above.

1.3.5 Constitutive law for linear elasticity

The resolution of the wave equation (1.4) signifies the recovery of the displacement field u.
In fact the stress tensor σ contains the properties that characterize the medium, as well as
the strain coefficients. Robert Hooke (1635–1703) first noticed the linear relation between
the force applied to a string and its length. The extension of this relation was later found
for materials in the context of linear elasticity, meaning linear relation between the stress
and the strain.

Hence the Hooke’s law gives the coefficients of the stress tensor σ as a linear combination
of stiffness (or elasticity) coefficients C (which represents the resistance of the body to
deformation) and strain coefficients ε (which are related to the deformation of the body).
In three dimensions we have

σi,j(x, t) =
∑

k

∑

l

Ci,j,k,l(x)εk,l(x, t), (1.6)

where (i, j, k, l) = {x, y, z} stand for the directions. The stiffness tensor C(x) (or elastic-
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ity tensor) encompasses the coefficients Ci,j,k,l(x) which are representative of the material
properties. Those coefficients do not depend on the time in general, assuming the relatively
small duration (compared to the geophysical time scale) of the event we analyze, as we
already mentioned for the density. Therefor, we do not consider any time dependency in
the stiffness tensor, it only depends on the space variable. It is a tensor of order four (i.e.
a three by three by three by three array for three-dimensional cases). ε(x, t) is the strain
tensor, it is of order two with coefficients depending on the displacement such that

εi,j(x, t) =
1

2

(
∂jui(x, t) + ∂iuj(x, t)

)
. (1.7)

Considering the matrix representation for the tensor ε(x, t), which is clearly symmetric,
the resulting three by three matrix is written as

ε(x, t) =



εxx(x, t) εxy(x, t) εxz(x, t)
εxy(x, t) εyy(x, t) εyz(x, t)
εxz(x, t) εyz(x, t) εzz(x, t)


 .

The stiffness tensor C(x), being of order four, has originally 34 = 81 different coeffi-
cients. The symmetry of the stress tensor σ gives σi,j = σj,i and involves that Ci,j,k,l =

Cj,i,k,l, reducing the number of independent coefficients to fifty-four (54). Using the sym-
metry of the strain tensor ε, one can show that Ci,j,k,l = Ci,j,l,k. At this point the stiffness
tensor has thirty-six (36) different coefficients and can in particular be pictured as a six by
six matrix.

In order to visualize the formulation in a clearer fashion, the Voigt notation (named
after Woldemar Voigt, 1850–1919) is introduced. It allows us to represent the Equation (1.6)
in a matrix vector multiplication way. First the six independent coefficients of the tensors
σ(x, t) and ε(x, t) are concatenated and represented in a vector, such that

σ(x, t) = (σxx(x, t), σyy(x, t), σzz(x, t), σyz(x, t), σxz(x, t), σxy(x, t))T ,

where T stands for the transposed, and similarly for ε(x, t). Following the same idea, the
thirty six coefficients of the stiffness tensor C(x) are replaced by a six by six matrix and
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the Equation (1.6) is written as



σxx(x, t)
σyy(x, t)
σzz(x, t)
σyz(x, t)
σxz(x, t)
σxy(x, t)




=




C11(x) C12(x) C13(x) C14(x) C15(x) C16(x)

C21(x) C22(x) C23(x) C24(x) C25(x) C26(x)

C31(x) C32(x) C33(x) C34(x) C35(x) C36(x)

C41(x) C42(x) C43(x) C44(x) C45(x) C46(x)

C51(x) C52(x) C53(x) C54(x) C55(x) C56(x)

C61(x) C62(x) C63(x) C64(x) C65(x) C66(x)







εxx(x, t)
εyy(x, t)
εzz(x, t)
2εyz(x, t)
2εxz(x, t)
2εxy(x, t)




.

(1.8)
This formulation allows a clear understanding of how the properties of the media, contained
in the stiffness coefficients C(x), impact the wave equations following a modification of the
stress tensor. Eventually, one can derive the formulation and using the arbitrariness of the
order of differentiation and Schwarz’s theorem (Slawinski, 2010, Section 4.2), it implies that
Ci,j,k,l = Ck,l,i,j . This reduces the thirty six independent coefficients of the stiffness tensor
to twenty one. Hence the formulation (1.8) can be rewritten where C is represented with a
symmetric matrix such that



σxx(x, t)
σyy(x, t)
σzz(x, t)
σyz(x, t)
σxz(x, t)
σxy(x, t)




=




C11(x) C12(x) C13(x) C14(x) C15(x) C16(x)

C12(x) C22(x) C23(x) C24(x) C25(x) C26(x)

C13(x) C23(x) C33(x) C34(x) C35(x) C36(x)

C14(x) C24(x) C34(x) C44(x) C45(x) C46(x)

C15(x) C25(x) C35(x) C45(x) C55(x) C56(x)

C16(x) C26(x) C36(x) C46(x) C56(x) C66(x)







εxx(x, t)
εyy(x, t)
εzz(x, t)
2εyz(x, t)
2εxz(x, t)
2εxy(x, t)




.

(1.9)

We utilize this visualization in the following Section 1.4 where we introduce the different
types of medium. It results in further reduction of the number of independent coefficients in
the stiffness tensor which leads to fundamental simplifications in the general wave equation
formulation.

1.4 The wave equation depending on the media

The propagation of waves in a medium with time can be represented by an hyperbolic
partial differential equation of order two, where the vector field displacement u(x, t) is
solution of the general Equation (1.4). This formulation makes use of the stress tensor σ,
which itself is defined with the strain tensor ε, defined with the displacement field. The use
of the stress tensor, see Equation (1.9), results in equations which can be complicated to
deal with due to the number of parameters in the stiffness tensor C, which represents the
material properties. Yet they can be simplified by assuming some special characterizations
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in the nature of the medium. For instance symmetry axis in the material reduces the
number of stiffness coefficients. Those simplifications deriving from assumptions on the
medium are important for the resolution of the problem. Despite the general anisotropy of
the Earth, they are considered in seismic to give fundamental reduction of the complexity
of the equations and allow efficient numerical resolution.

Several classes of media can be found in the literature, for example monoclinic, trig-
onal, cubic, etc. Each of them has specific properties which involve dependencies on the
stiffness tensor coefficients. The objective is to reduce the original twenty one independent
coefficients. Details concerning such media can be found in Bos et al. (2004); Felício Fuck
and Tsvankin (2009); Tsvankin and Grechka (2011); Slawinski (2010); Tsvankin (2012).
Here we present the main characterizations that are used in geophysical applications. The
notion of isotropy in the medium is one of the major property to reduce the number of stiff-
ness coefficients. Isotropy refers to similar properties of the material in every directions.
Alternatively this characteristic can be limited to a single direction, using a horizontal,
vertical, or oriented axis of symmetry. These are referred to as Horizontal, Vertical and
Titled Transverse Isotropy (HTI, VTI and TTI) respectively. A different aspect is the
consideration of homogeneity in the medium parameters, meaning that the parameters do
not depend on the space but are simply constant over the domain. This is independent of
the type of media and can indistinctly holds in the context of isotropy or anisotropy. We
will not use this assumption in applications but it allows simple analytical solutions of the
wave equations via the Green’s functions, see Subsection 1.8.3. In Section 1.5 we study the
acoustic wave propagation, which refers to the propagation of waves in fluid.

One way to derive the stiffness tensor associated with specific class of media is to intro-
duce matrices to represent the symmetry. The interested reader is referred to (Slawinski,
2010, Chapter 5) for the procedure, here we will simply review the resulting tensors.

Remark 1.3. In order to clarify the equations, the time and space dependencies (x, t) is
omitted in the following subsections. Hence we denote C = C(x), ε = ε(x, t) and σ = σ(x, t).
The dependencies are usually reminded when introducing new quantities.

1.4.1 Orthotropic medium

Orthotropic media (also referred to as orthorhombic media, Tsvankin (1997)) have three
orthogonal symmetric axis. In this case, the stiffness tensor is reduced to nine independent
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coefficients with

Corthotropic =




C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66




.

This representation already gives a significant simplification by introducing twelve zero
coefficients. Yet the number of coefficients can further be reduced.

1.4.2 Titled transverse isotropy

Transverse isotropy signifies that there is one plan of isotropy in the medium. It has been
studied in Thomsen (1986) to show that it reshapes the stiffness tensor so that it is reduced
to five independent coefficients. When assuming a vertical plane of isotropy, it gives

CVTI =




C11 C11 − 2C66 C13 0 0 0

C11 − 2C66 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66




. (1.10)

From those five different coefficients, the Thomsen’s parameters, (Thomsen, 1986), are
defined and represent dimensionless quantities useful in geophysics: δ(x), ε(x) and γ(x)

with following relation with the stiffness coefficients,

δ(x) =
(C13(x) + C44(x))2 − (C33(x)− C44(x))2

2C33(x)(C33(x)− C44(x))
,

ε(x) =
C11(x)− C33(x)

2C33(x)
,

γ(x) =
C66(x)− C44(x)

2C44(x)
.

(1.11)

The introduction of those three coefficients allows the distinction between the isotropic and
anisotropic nature of the material. We shall see in Subsection 1.4.3 that the Thomsen’s
parameter are equal to zeros when reducing to the isotropic case. Furthermore, the special
case when ε = δ is called elliptical anisotropy and the weak anisotropy is defined when those
parameters have relatively small values (< 0.2 in Thomsen (1986)).
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It is natural to extend the formulation for any oriented axis of isotropy by including
two angles which represent the inclination of the plane, those angles are denoted θ and
φ and introduce the so-called Titled Transverse Isotropy (TTI) characterization. Let us
introduce the associated rotation matrix RTTI such that (Zhang et al., 2011),

RTTI =




cos(θ) cos(φ) cos(θ) sin(φ) − sin(θ)

− sin(φ) cos(φ) 0

sin(θ) cos(φ) sin(θ) sin(φ) cos(θ)


 .

Then the coefficients CTTI of the TTI stiffness tensor are given from the VTI coefficients
by

CTTIijkl =
3∑

p=1

3∑

q=1

3∑

r=1

3∑

s=1

RTTIpi RTTIqj RTTIrk RTTIsl CV TIpqrs . (1.12)

We see that TTI media eventually give a full (symmetric) stiffness tensor. However, the
number of actual independent coefficients is limited to seven. The rotation matrix R can
further be written in different ways depending on the situation, e.g. Iversen and Pšenčík
(2007). Note that the idea of defining TTI with a rotation of the VTI tensor using
an underlying rotation matrix is also sometimes referred to as the Bond transform, with
reference to the work of Bond (1943) for crystals physics.

Some special cases of TTI media can be considered, depending on the angles of incli-
nation for the isotropic plane. We see that in the case where θ = φ = 0 we retrieve the
VTI case as defined in Equation (1.10). If the plane of symmetry is perpendicular to the
VTI one, we obtain the HTI medium, which gives similar non-zero pattern with

CHTI =




C11 C13 C13 0 0 0

C13 C33 C33 − 2C44 0 0 0

C13 C33 − 2C44 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55




.

1.4.3 Elastic isotropy

The consideration of isotropic material is now regarded. In this case, the number of inde-
pendent coefficients in the stiffness tensor C(x) is reduced to two. Only C33(x) and C44(x)
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are independent and the Equation (1.8) becomes, with the use of the Voigt notation,



σxx

σyy

σzz

σyz

σxz

σxy




=




C33 C33 − 2C44 C33 − 2C44 0 0 0

C33 − 2C44 C33 C33 − 2C44 0 0 0

C33 − 2C44 C33 − 2C44 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44







εxx

εyy

εzz

2εyz

2εxz

2εxy




. (1.13)

Hence, compared to the VTI, the isotropic case gives the following relation between the
stiffness coefficients,

C11(x) = C33(x),

C66(x) = C44(x),

C13(x) = C33(x)− 2C44(x).

There is no notion of angle as we assume here similar properties in every direction. It
is straightforward to notice from this definition that the Thomsen’s parameter δ, ε and γ,
Equation (1.11), are equal to zero for isotropic media. That is why those parameters are
representative of the anisotropic nature of the material and we recall that Thomsen (1986)
also refers to weak anisotropy when these coefficients are sufficiently small.

The two remaining coefficients C33(x) and C44(x) give the definition of the Lamé
parameters (named after Gabriel Lamé, 1795–1890) λ(x) and µ(x) such that

C33(x) = λ(x) + 2µ(x),

C44(x) = µ(x).

λ(x) is simply referred to as the first Lamé parameter (or coefficient) and µ(x) is the
shear modulus (or second Lamé parameter). The unit of those quantities is the Pascal (Pa,
i.e. kg m−1 s−2). Other coefficients can also be defined, the most popular being the bulk
modulus κ(x) and the Poisson’s ratio ν(x) (named after Siméon Poisson, 1781–1840), they
are expressed with respect to the Lamé parameters in the case of elastic material by

ν(x) =
λ(x)

2(λ(x) + µ(x))
,

κ(x) = λ(x) +
2

3
µ(x).

(1.14)

The bulk modulus is expressed in Pascal while the Poisson’s ratio is a dimensionless coeffi-
cient. From its definition and due to the positiveness of the quantities, the Poisson’s ratio
varies between 0 and 0.5. The bulk modulus also represents the invert of the compressibility.
We introduce the P-wave speed cp(x), also referred to as compressional or primary wave
speed, and the S-wave speed cs(x), also shear or secondary wave speed, which incorporate
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the density such that,

cp(x) =

√
λ(x) + 2µ(x)

ρ(x)
,

cs(x) =

√
µ(x)

ρ(x)
.

(1.15)

They are expressed in m s−1 and correspond to the wave velocity in the medium. The
P-wave speed naturally represents the velocity of the P-waves while the S-wave speed is
the velocity of the shear waves (see Figure 1.2), see the later Remark 1.4. Clearly because
λ and µ are positive, the P-wave speed has higher values than the S-wave speed and the
P-waves propagate faster than the S-waves.

We can rewrite the Equation (1.13) replacing the stiffness coefficients with the Lamé
parameters expression,




σxx

σyy

σzz

σyz

σxz

σxy




=




λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ







εxx

εyy

εzz

2εyz

2εxz

2εxy




=




λ(εxx + εyy + εzz) + 2µεxx

λ(εxx + εyy + εzz) + 2µεyy

λ(εxx + εyy + εzz) + 2µεzz

2µεyz

2µεxz

2µεxy




,

where the space and time dependencies are omitted. Here the Voigt notation can be sub-
stituted back to the original matrix representation for the second order tensors,



σxx σxy σxz

σxy σyy σyz

σxz σyz σzz


 =λ



εxx + εyy + εzz 0 0

0 εxx + εyy + εzz 0

0 0 εxx + εyy + εzz




+2µ



εxx εxy εxz

εxy εyy εyz

εxz εyz εzz


 .
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Finally, the stress tensor for elastic isotropic media follows to be

σ = λTr(ε)Id + 2µε,

where Tr(·) stands for the trace operator of the matrix (the sum of the diagonal coefficients)
and Id is the three by three identity matrix. This formulation is injected into the wave
equation where the body forces have been ignored for simplicity, Equation (1.5), to give,

ρ
∂2u

∂t2
= ∇ · (λTr(ε)Id) +∇ · (2µε). (1.16)

The wave equation can finally be reformulated by replacing the strain tensor ε with the
displacement field u, using the definition of Equation (1.7). Let us consider the first term
in the right-hand side of the equation, (∇ · (λTr(ε)Id)), we note that by definition

Tr(ε) = εxx + εyy + εzz =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= ∇ · (u),

which gives

∇ · (λTr(ε)Id) = ∇ ·




λ∇ · (u) 0 0

0 λ∇ · (u) 0

0 0 λ∇ · (u)




=




∂

∂x
(λ∇ · (u))

∂

∂y
(λ∇ · (u))

∂

∂z
(λ∇ · (u))




= ∇(λ∇ · u),

(1.17)

introducing the gradient ∇. For the second term in the right-hand side of Equation (1.16),
(∇ · (2µε)), we develop

2µε = µ




2
∂ux
∂x

∂uy
∂x

+
∂ux
∂y

∂uz
∂x

+
∂ux
∂z

∂uy
∂x

+
∂ux
∂y

2
∂uy
∂y

∂uz
∂y

+
∂uy
∂z

∂uz
∂x

+
∂ux
∂z

∂uz
∂y

+
∂uy
∂z

2
∂uz
∂z




= µ




∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x

∂uy
∂y

∂uy
∂z

∂uz
∂x

∂uz
∂y

∂uz
∂z




+ µ




∂ux
∂x

∂uy
∂x

∂uz
∂x

∂ux
∂y

∂uy
∂y

∂uz
∂y

∂ux
∂z

∂uy
∂z

∂uz
∂z




= µ
[
∇u+ (∇u)T

]
,

(1.18)
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where T lies for the transposed of the matrix, so that a matrix AT has coefficients ATij = Aji.
We now inject Equations (1.17) and (1.18) in Equation (1.16). This defines the isotropic
elastic wave equation:

ρ
∂2u

∂t2
−∇

(
λ∇ · u

)
−∇ ·

(
µ
[
∇u+ (∇u)T

])
= 0. (1.19)

Vectorial identities can be applied to rewrite this equation in a slightly different fashion,
we briefly explicit another popular version of the elastic isotropic equation, starting with
the term (∇(λ∇ · u)), we develop the gradient operator,

∇(λ∇ · u) = ∇λ∇ · u+ λ∇∇ · u.

The second term, ∇·
(
µ
[
∇u+(∇u)T

])
, is rewritten after developing the divergence operator

such that

∇ ·
(
µ
[
∇u+ (∇u)T

])
=∇ · µ

[
∇u+ (∇u)T

]
+ µ∇ ·

[
∇u+ (∇u)T

]

=∇ · µ
[
∇u+ (∇u)T

]
+ µ∇ · (∇u) + µ∇ ·

(
[∇u]T

)
.

Vectorial identity provides ∇·(∇u) = ∇∇·u−∇×∇×u, where ∇× denotes the rotational.
We also notice that ∇ · ([∇u]T ) = ∇∇ · u, thus we can write,

∇ ·
(
µ
[
∇u+ (∇u)T

])
= ∇ · µ

[
∇u+ (∇u)T

]
+ 2µ∇∇ · u− µ∇×∇× u.

We finally replace in Equation (1.19) to obtain

ρ
∂2u

∂t2
−∇λ∇ · u−∇ · µ

[
∇u+ (∇u)T

]
− (λ+ 2µ)∇∇ · u+ µ∇×∇× u = 0. (1.20)

The propagation of waves in isotropic elastic medium is defined via an hyperbolic
partial differential equation for which the two equivalent formulations (1.19) and (1.20) are
the most commons. The general wave equation with stress, strain and stiffness tensors has
been replaced by the formulation involving the physical parameters (the density and the
Lamé coefficients λ and µ) and the displacement field u.

Remark 1.4 (P- and S-waves decomposition). We have seen in Figures 1.1 and 1.2 that
body waves propagating in solid can be separated into the P- and S-waves. In particular for
elastic isotropy we have defined the associated P- and S-wave speeds, see Equation (1.15).
The differentiation appears also from the mathematical wave equation by employing the
Helmholtz decomposition (named after Hermann Ludwig Ferdinand von Helmholtz, 1821–
1894 and later extended by the work of William Vallance Douglas Hodge, 1903–1975). It is
applied for the displacement field u, which is expressed as a composition of two functions,

u = ∇φ+∇×ψ.
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Here φ is a scalar function and ψ a vector field. We remind the general vectorial identities
∇× (∇φ) = 0 and ∇ · (∇×ψ) = 0. Therefore, the displacement is divided into two: ∇φ is
rotational free and actually corresponds to the P-waves (compressional waves) and ∇×ψ,
which is divergence free, is related to the shear, S-waves. Let us denote u = u(p) + u(s)

where u(p) and u(s) are identified with ∇φ and ∇×ψ respectively. From (Kupradze et al.,
1976, Theorem 2.5 p.123), we have that, in the context of homogeneous media, u(p) and
u(s) are each solution of {

(∆ + k2
p)u

(p) = 0,

(∆ + k2
s)u

(s) = 0,

where the wavenumbers kp and ks are given by




kp = ω

√
ρ

λ+ 2µ
=
ω

cp
,

ks = ω

√
ρ

µ
=
ω

cs
.

These new equations interestingly relate to the acoustic wave equation that is detailed in
Section 1.5.

1.4.4 2D wave equations

We have presented the wave equations for a three dimensional domain of interest Ω. In this
context the displacement field u has one component per directions, i.e. three: ux, uy and
uz. The two-dimensional formulation of the equations reduces this number to two, by sup-
pressing one of the direction. It does not change the isotropic elastic wave Equation (1.19)
(nor the acoustic wave propagation that is to follow in Section 1.5). However, a major
modification of the two-dimensional approach lies in the tensors. The strain, stress and
stiffness tensors loose one dimension and the Voigt notation must be written accordingly.
In 2D, the Equation (1.9) becomes, where only x and z directions are kept,



σxx(x, t)
σzz(x, t)
σzx(x, t)


 =



C11(x) C12(x) C13(x)

C12(x) C22(x) C23(x)

C13(x) C23(x) C33(x)






εxx(x, t)
εzz(x, t)
2εxz(x, t)


 .

Using the symmetry of the tensors, six independent coefficients remain in the 2D case.

In the context of orthotropic medium, the stiffness tensor is reduced to four coefficients
and becomes

Corthotropic 2D =



C11 C12 0

C12 C22 0

0 0 C33


 .
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In order to consider titled transverse isotropy in the model, we follow the same idea as
with Equation (1.12) and the rotation matrix, with only one angle θ, is defined by

RTTI2D =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)
.

1.5 Acoustic propagation

The elastic case presented above corresponds to waves propagating through solid materials.
When the medium is a fluid, we refer to the phenomenon as acoustic propagation. In
such media, there is no shear waves and thus the shear modulus is null (µ = 0). It is
easily understandable that no shear appears in a fluid because it cannot have any aspect
of rigidity. Then the Equation (1.19) is simplified and the acoustic isotropic wave equation
becomes

ρ
∂2u

∂t2
−∇(λ∇ · u) = 0.

It is most common to employ the bulk modulus, with given expression Equation (1.14),
which in this case can directly substitute the first Lamé parameter λ, as µ is zero. Therefore,
we obtain

ρ
∂2u

∂t2
−∇(κ∇ · u) = 0.

This expression can further be developed,

ρ
∂2u

∂t2
−
(
∇κ
)(
∇ · u

)
− κ∇

(
∇ · u

)
= 0.

An important modification of the acoustic case appears as we can account for the
(scalar) pressure field p = p(x, t) instead of the (vector) displacement field u. The pressure
and displacement can be linked under the assumption of incompressible fluid, with the
Euler equations (reminded for example in Colton and Kress (1998); Kirsch (1996); Demanet
(2014)). It defines 




∂2u(x, t)
∂t2

= − 1

ρ(x)
∇p(x, t),

∂p(x, t)
∂t

= −κ(x)∇ · ∂u(x, t)
∂t

,

where the gravity force is not considered according to our initial assumption. The second
equation can be derived with respect to the time t and the first equation can be injected
to the right-hand side, then the wave equation with respect to the pressure follows

∂2p(x, t)
∂t2

= κ(x)∇ ·
(

1

ρ(x)
∇p(x, t)

)
. (1.21)
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The rewriting in terms of pressure of the acoustic wave propagation produces a crucial
modification of the equation. It is now a scalar equation and acknowledges one and only
one equation, whatever the dimension of the domain. When considering the displacement,
we have vectorial equations which are as many as the dimensions. Under the assumption
that the density is constant, ρ(x) = ρ, the vectorial identity ∇ · ∇ = ∇2 = ∆ reveals the
Laplacian (named after Pierre-Simon de Laplace, 1749–1827), and the equation becomes

∂2p(x, t)
∂t2

− κ(x)

ρ
∆p(x, t) = 0.

Replacing with the velocity cp(x) = c(x) =

√
κ(x)

ρ(x)
gives

1

c(x)2

∂2p(x, t)
∂t2

−∆p(x, t) = 0. (1.22)

Remark 1.5 (Acoustic anisotropy). Anisotropy can also be incorporated in acoustic media
via some special characterization but it is physically difficult to apprehend and we have not
used it in our work. We mention the work of Duveneck et al. (2008); Plessix and Cao
(2011); Alkhalifah and Plessix (2014).

1.6 Formulation of the time-harmonic waves propagation

When we consider the wave motion and intend to retrieve the wavefield, p or u, the formu-
lation in the time domain is natural because we think of the physical phenomenon involved.
The time dependency of the field (expressed with the time variable t) is equally intuitive.
Wave propagations are primarily defined by their starting and ending, which correspond in-
tuitively to the temporal notion: when it starts (the perturbation generated by the source)
and when it ends (when the waves have vanished completely or when they have left the area
of interest). Similarly, the spatial location of such phenomena is equally intuitive and justi-
fies the general spatio-temporal dependency of the quantity of interest, (x, t). Nonetheless,
in our project, we only deal with time-harmonic formulation of the wave equations. The
time-harmonic formulation is less natural to picture, because it does not account for the
time variable but the frequency instead. This formulation can also be referred to as the
frequency domain. Our motivation is mainly related to the numerical resolution of the wave
equations and will be made explicit later.
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1.6.1 Time-harmonic waves

The time-harmonic formulation, e.g. Colton and Kress (1998), of the wave equations is
based on solutions of the form

u(x, t) = û(x)e−iωt, (1.23)

where the time and space variable are separated. i represents the complex imaginary unit
such that i2 = −1 and ω is the angular frequency with

ω = 2πf, (1.24)

where f ∈ R is the frequency in Hertz (Hz, named after Heinrich Rudolf Hertz, 1857–1894),
1 Hz = 1 s−1).

Remark 1.6. In the sequel of this manuscript we often refer to the angular frequency ω
simply with the term frequency. It is only motivated to simplify the writing, we believe ω
is a common symbol which speaks for itself with an intrinsic 2π multiplication.

This provides a very powerful rewriting of the equations, because the separation of
variable directly impacts the derivatives, in particular

∂u(x, t)
∂t

=− iωû(x)e−iωt,

∂2u(x, t)
∂t2

=− ω2û(x)e−iωt.

Concerning the space derivative, the exponential part can simply be taken out of the gra-
dient and the divergence operator. we illustrate the modifications for the isotropic elastic
wave equation that we obtained Equation (1.19), injecting the Equation (1.23) gives

−ρω2ûe−iωt −∇
(
λ∇ · û

)
e−iωt −∇ ·

(
µ
[
∇û+ (∇û)T

])
e−iωt = 0,

where the spatial dependency x is omitted. One can simplify the e−iωt to obtain the time-
harmonic elastic wave equation:

−ρω2û−∇
(
λ∇ · û

)
−∇ ·

(
µ
[
∇û+ (∇û)T

])
= 0.

There is no more dependency in time in this equation, it is instead replaced by the ap-
pearance of the frequency variable. We can reproduce the same steps for the other wave
equations. The time-harmonic acoustic wave equation with respect to pressure is estab-
lished from Equation (1.21),

−ω2p̂(x)− κ(x)∇ ·
(

1

ρ(x)
∇p̂(x)

)
= 0.

When we consider the acoustic wave equation with constant density ρ, Equation (1.22),
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the time-harmonic waves verify
(
− ω2

c(x)2
−∆

)
p̂(x) = 0.

This is the well known Helmholtz equation, named after Hermann Ludwig Ferdinand von
Helmholtz (1821–1894). The wavenumber k and potential q are defined subsequently. The
wavenumber is the ratio of the angular frequency and wave speed,

k(x, ω) =

(
ω

c(x)

)
,

the potential is the wavenumber squared, q(x, ω) = k2(x, ω).

Remark 1.7 (Complex frequency). We have defined ω with Equation (1.24), where f is
naturally though as a scalar of R. This can be extended with the consideration of complex
frequency ω. Because only ω squared appears in the wave equation, we now define it such
that

−ω2 = (σ + 2iπf)2, (1.25)

where σ ∈ R is a damping coefficient. In this configuration,

−ω2 = σ2 + 4iπfσ − 4π2f2,

so that when the damping is set to zero, ω2 is identified with 4π2f2, which corresponds with
the standard real frequency. This is revealed to be particularly useful when we examine the
inverse problem.

Remark 1.8. We note that the partial differential equations (PDE) obtained for the time
domain and their time-harmonic formulation counterpart, differ in types. The time domain
PDE is hyperbolic while the time-harmonic PDE is weakly elliptic.

1.6.2 Note on the Fourier transform

The relation between time-harmonic wave equation and the frequency domain is clear as
the frequency parameter supplants the time. Then it is natural to think that the Fourier
transform is closely related. It is indeed the case even if some precautions must be taken
regarding the mathematical aspect.

The Fourier transform is the operator that maps from the time to the frequency domain.
Because the frequency dependency of a signal is harder to picture than the common time
dependency, we will first give some physical intuitions in a very simple setup. Let us consider
a single oscillating particle of space in one dimension. The displacement of this particle, say
m(t), is pictured in Figure 1.4 (left). We have considered a quite naive oscillating motion
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defined by a sum of sine and cosine functions. For the frequency domain representation, the
first step is to formulate the displacement to retrieve the sine and cosine functions involved,
such that

m(t) =
∑

n

Xn cos(2πfnt) + Yn sin(2πfnt), (1.26)

where Xn and Yn are scaling coefficients and fn is a real parameter. This is the representa-
tion of the function in terms of Fourier series where fn represents the frequency components
of the signal, see Figure 1.4 (middle). Representing the particle motion in the frequency
domain gives picks for the frequency components, see Figure 1.4 (right).

0 1 2

time

m
(t
)

0 1 2

time

0 2 4

frequency

=

+

+

f3 = 4

f2 = 2

f1 = 1

Figure 1.4: From time to frequency domain, illustration of the decomposition: the left plot rep-
resents a motion of a particle in one dimension with time. It is given by m(t) = 10 cos(2πx) +
10 cos(2π2x) + 5 cos(2π4x). The middle plot shows how the initial motion is composed of a sum
of cosine functions, with appropriate content indicated with fj , j = {1, 2, 3}. The right plot trans-
lates the time-dependent motion into its frequency domain counterpart, where the amplitude of the
frequency fj content is connected to the weight of the cosines, i.e. the Xj in the Equation (1.26).

This simple example illustrates the relation between time and frequency domain, from
the decomposition given in the Equation (1.26). In general, the signals do not have a discrete
set of frequency component and generate a continuous representation in the frequency
domain. Alternatively, the sum of sine and cosine functions can be substituted with an
equivalent sum of exponential, such that,

m(t) =
∑

n

X̂ne
2iπfnt + Ŷne

−2iπfnt.

The mathematical way to step from time to frequency is the Fourier transform, which,
as the name indicates, comes from the work of Joseph Fourier (1768–1830).
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1.6.2.1 Definition

We consider an integrable function of time h(t) such that

h : R→ C,

t→ h(t).

The Fourier transform is defined by F(h) = ĥ and introduce a new variable, ξ, following

F(h) : ξ → ĥ(ξ),

with definition
(
F(h)

)
(ξ) = ĥ(ξ) =

∫ +∞

−∞
h(t)e−2iπξtdt.

Assuming ĥ is integrable, the inverse Fourier transform, F−1 is given by

(
F−1(ĥ)

)
(t) =

∫ +∞

−∞
ĥ(ξ)e2iπξtdξ,

so that
(
F−1(ĥ)

)
(t) = h(t). In the above expressions, the frequency ξ is given in Hertz.

The angular frequency ω can easily be incorporated with ω = 2πξ.

1.6.2.2 Derivation

The wave propagation equations in the time domain make appear the second derivative
of the field with respect to the time t: ∂2u/∂t2. An important property of the Fourier
transform concerns the derivative, which is simplified via the use of integration by part.
Let us consider h to be differentiable and assume ∂h/∂t to be differentiable as well. We
have, (

F
(∂h(t)

∂t

))
(ξ) =

∫ +∞

−∞

∂h(t)

∂t
e−2iπξtdt

=
[
h(t)e−2iπξt

]+∞
−∞ −

∫ +∞

−∞
h(t)(−2iπξ)e−2iπξtdt

= (2iπξ)

∫ +∞

−∞
h(t)e−2iπξtdt

= (2iπξ)F(h) = iωĥ(ξ),

where we have use the fact that h is integrable by definition. More generally, we can extend
this formulation for higher order derivatives, in particular, for the second order derivative,

41



CHAPTER 1. THE WAVE EQUATIONS

we have (
F
(∂2h(t)

∂t2

))
(ξ) = −(2πξ)2ĥ(ξ)

= −ω2ĥ(ξ).

Remark 1.9. We have used the special solutions to obtain the time-harmonic equations be-
cause it would not be correct to apply the Fourier transform directly onto the wave equations.
In particular, because the solution of the time domain wave equations we have proposed is
not in L2, due to the absence of attenuation in the formulation. We have illustrated the
intrinsic relation between the two approaches, but applying the Fourier transform requires
assumptions on the solution first. We will indistinctly refer to frequency domain and time-
harmonic in the rest of the manuscript. Regarding the complex frequency introduced in the
Remark 1.7, it is actually related to the Laplace transform instead of the Fourier transform
when f = 0.

1.6.3 Summary of the time-harmonic equations

Because we will not use the time domain formulation in the sequel of the manuscript we
use the notation u and p by abuse of notation and omit the ̂ to clarify the equations.
We review the main equations that we will use throughout the manuscript. We give the
acoustic wave equation involving the pressure field, the elastic wave equation involving the
displacement field and the general anisotropic wave equation:

Helmholtz
(
− ω2c(x)−2 −∆

)
p(x) = 0, (1.27)

acoustic − ω2p(x)− κ(x)∇ ·
(

1

ρ(x)
∇p(x)

)
= 0, (1.28)

elastic − ρ(x)ω2u(x)−∇
(
λ(x)∇ · u(x)

)
(1.29)

−∇ ·
(
µ(x)

[
∇u(x) + (∇u(x))T

])
= 0,

anisotropic − ρ(x)ω2u(x)−∇ · σ(x) = 0. (1.30)

At this moment, we have assumed no source at the right-hand side and have not yet specified
the boundary conditions, we have simply equate the formulation to zero. The boundary
terms are addressed in the following Section 1.8.

1.7 The consideration of attenuation in the media

The frequency domain formulation is advantageous to easily incorporate visco-acoustic
behavior in materials, in particular by the consideration of complex valued wave speeds
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leading to attenuation, Muller (1983). Attenuation refers to the progressive decrease in
the waves energy with the distance to the source. This aspect appears natural when we think
of any physical phenomenon, yet it is not clearly considered in the wave equations we have
derived in the previous sections (note that attenuation doe not exist only in vacuum). Also,
because the attenuation usually depends on the frequency, it is less convenient to account
for it in the time domain formulation. For a comprehensive review of attenuating media
and models, we refer to Aki and Richards (2002); Ursin and Toverud (2002). An important
aspect is the causality of the models of attenuation, which is not always guaranteed. Here
we only indicate the steps to define attenuation in the wave equations and the use of the
Kolsky–Futterman model to represent it. Other models have been defined and are used in
the literature; we mention, for example, the Kjartansson’s model (Kjartansson, 1979) used
by Liao and McMechan (1996), which also makes use of a complex velocity. We consider
the acoustic wave propagation following the Helmholtz equation, (1.27), so the propagation
only depends on the wavefield c.

The incorporation of attenuation in the propagation of waves is standardly realized
by the requirement of a complex wavenumber k (e.g. Aki and Richards (2002); Ursin and
Toverud (2002)) defined with

k(x, ω) =
ω

ca(x, ω)
=

ω

c(x, ω)
+ iα(x, ω),

where ca is the complex wave speed, c the phase velocity, which can here depend on the
frequency, and α is the imaginary part of the wavenumber. A rewriting of this equation
directly gives

ca(x, ω) =
ωc(x, ω)

ω + iα(x, ω)c(x, ω)
.

We also introduce the quality factor Q as the inverse of the dissipation. It is defined when
αc� 2|ω| (Ursin and Toverud, 2002) by

Q(x, ω) =
|ω|

2α(x, ω)c(x, ω)
.

We represent the attenuation using the Kolsky-Futterman model (Kolsky, 1956; Fut-
terman, 1962) which has been used in applications and defines the following relation (Ursin
and Toverud, 2002, Eq. 17),





1

c(x, ω)
=

1

cωr(x)
+

log
∣∣∣ωr
ω

∣∣∣
πcωr(x)Qωr(x)

,

α(x, ω) =
|ω|

2cωr(x)Qωr(x)
,

where cωr and Qωr represent the values of the phase velocity c and the quality factor Q at
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a reference angular frequency, ωr.

Replacing the expression of c and α given by the Kolsky–Futterman model produces
the following definition of the quality factor,

Q(x, ω) = Qωr(x) +
1

π
log
∣∣∣ωr
ω

∣∣∣ .

It is straightforward to notice that if Q and c are both frequency independent, then
c = cωr and Qωr = Q. Following this simplification, the complex wave speed ca is given by

ca(x) =
ωc(x)

ω +
i|ω|

2Q(x)

=
2ωc(x)Q(x)

2ωQ(x) + i|ω| =
4c(x)Q(x)2 − 2i sgn(ω)c(x)Q(x)

4Q(x)2 + 1
,

where sgn(ω) is the sign of ω. In the case of weak attenuation, 4Q2 � 1 the expression can
be approximated with

ca(x, ω) = c(x)− i sgn(ω)c(x)

2Q(x)
= c(x)

(
1− i sgn(ω)

2Q(x)

)
. (1.31)

Eventually, we observe that in this case, the complex wave speed is composed of a real part
being the phase wave speed and an imaginary part depending on a quality factor Q:

Im
(
ca(x)

)
=

sgn(ω)

2

c(x)

Q(x)
.

Clearly if the quality factor tends to be very high, there is no attenuation in the material
and only the real wave speed remains. This notion of complex wave speed and attenuation
factor depending on the frequency has motivated the use of the time-harmonic form of the
wave equations, e.g. Muller (1983); Körnig and Müller (1989). The given formulation of the
Kolsky–Futterman representation of visco-acoustic behavior was also used in the context
of subsurface parameter reconstruction in Ribodetti and Virieux (1998); Malinowski et al.
(2011).

The extension to elastic isotropic wave, Equation (1.29), naturally introduces two sep-
arate quality factor, say Qp and Qs which are related to the P- and S-waves respectively.
As an alternative, Štekl and Pratt (1998) defined complex valued Lamé parameters λ and
µ, yet one should carefully consider the way from one formulation to the other.

1.8 Some aspects regarding wave propagation PDEs

The amount of studies for the PDEs associated with the wave equations is monumental, let
us point out some of the aspects that we have overlooked so far, in particular the boundary
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conditions and their mathematical study.

1.8.1 Source and boundary conditions

1.8.1.1 Problem statement

In order to solve the wave equations we have defined, additional information must be
incorporated: the source and the boundary conditions. By boundary we refer to the limit
of the domain of interest (numerical or physical). These two facets are actually not always
independent, namely when the source is located on the boundary. As for any PDE, they
are required for the characterization of the solution and in order to prove well-posedness of
the problem.

The source in particular, as the initial perturbation, is indispensable to even start the
physical phenomenon of wave propagation. The location of this source, as well as its general
characteristics (amplitude, phase), impact directly the solution. In seismic, the source can
usually be represented by a Gaussian-shaped function, that we illustrate in Figure 1.5. If
the source is inside the domain of interest, then it appears in the right-hand side of the wave
equation following the decomposition of the forces of Subsection 1.3.3, it is represented by
f in the Equation (1.4).

0
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Figure 1.5: Illustration of the source amplitude as a Gaussian shape located at the center of a
two-dimensional surface.

The boundary conditions give information on how the field behaves when reaching the
limit of the domain of interest. In particular, what happens to the wave propagating in the
Earth interior (acoustic or elastic) when it reaches the surface. Different types of boundary
conditions exist: Dirichlet, Neuman, Robin, etc. In seismic we usually focus on the two first
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only. The Dirichlet boundary condition imposes the value of the field and the Neumann
boundary condition the value of the normal derivative. Let us consider a domain Ω ⊂ Rn

with boundary denoted by Γ, in dimension n (usually 2 or 3). The general formulation of
the PDE becomes, by incorporating the different boundary conditions,





P(u(x, ω)) = f(x), x ∈ Ω,

u(x, ω) = g(x), x ∈ Γ1,

∂νu(x, ω) = h(x), x ∈ Γ2,

where P is an operator, which can be assimilated to a wave operator of choice (acoustic,
elastic, anisotropic), u is the wavefield, and ∂ν represents the normal derivative. We have
taken Γ1 ∩ Γ2 = Γ.

1.8.1.2 Free-surface boundary conditions

The boundary conditions can reflect physical situation in addition to the source character-
istic. In particular for a geophysical experiment where the wave propagates in the Earth’s
interior, the condition when the wave attains the surface (interface between the Earth and
the air) is defined to be a free surface. It basically means that the surface is free to move.
This refers to the interface between the air and solid material as well as between the liquid
and the air. However, the condition naturally differs depending on the context.

Some intuitive characterization can be developed for the free surface conditions. In
particular, the displacement should be free (the ground surface can moved) while there
would not be any pressure. It means that for acoustic wave equations, involving the pressure
p, the free surface can be characterized by imposing

p = 0, acoustic free surface.

The interface is a Dirichlet boundary condition. The free surface for elastic wave propa-
gation (involving the displacement u) is characterized by a Neumann boundary condition
(the seismic acquisition follows a Neumann-to-Dirichlet map, see Baeten (1989)),

∂νu = 0, elasticstic free surface.

We will later detail those conditions when introducing the seismic data used for the inverse
problem, in Section 4.2.

Remark 1.10. When we think about numerical simulation for Earth domain in geophysical
exploration, it is not realistic (nor useful) to simulate over the whole Earth. Instead it is
truncated, usually with a domain of interest representing a box of several kilometers cubed.
If the Earth surface is still defined as a free surface, the lateral and bottom boundaries of the
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numerical domain (arising from the truncation) need special treatment. They must be dealt
taking into account that the medium possibly continues on large distance and without any
reflection. It usually results in the definition of absorbing boundary conditions or perfectly
matched layers. We will naturally introduce those aspects during the numerical resolution
of the wave equation, more precisely in Section 2.3.

1.8.2 Notes on the existence and uniqueness

Concerning the wave equations, the analytical study of the problem has been widely in-
vestigated and remains an active field of research, we mention for example Martin (2006)
and the references therein. In particular, anisotropy and heterogeneity remain complicate
to handle. For such study, the concept of well-posedness is crucial, and follows the notions
introduced by Hadamard (1902, 1923). Let us consider a PDE, say Pu = 0 in Ω with
appropriate boundary condition (P can be assimilated to a wave operator). The problem
is said to be well-posed if

– the solution u exists (existence),

– the solution u is unique (uniqueness),

– the solution u depends continuously on the initial conditions.

In order to obtain such properties, P and the boundary conditions must be acutely defined.
We give some simple considerations regarding homogeneous media in the following.

1.8.2.1 Sommerfeld radiation condition

For the Helmholtz equation (1.27), the Sommerfeld radiation condition assures that waves
are not coming from infinity, it is named after Arnold Sommerfeld (1868–1951). Assuming
the propagation in a sphere, it states that (Colton and Kress, 1998, Definittion 2.3),

lim
r→+∞

r
(∂p
∂r
− ikp

)
= 0,

where k is the wavenumber and r the distance to the center of the sphere. It ensures
uniqueness, see, for example, Colton and Kress (1998); Kirsch (1996), where existence is
also proven.
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1.8.2.2 Elasticity

For the study of elasticity , we refer to the pioneering work of Kupradze (1963); Kupradze
et al. (1976), in particular for existence and uniqueness. Following the decomposition in P-
and S-waves, see Remark 1.4, two conditions are imposed to assure that the waves do not
propagate from infinity, 




lim
r→+∞

r
(∂up
∂r
− ikup

)
= 0,

lim
r→+∞

r
(∂us
∂r
− ikus

)
= 0,

These are often referred to as the Summerfeld–Kupradze conditions.

1.8.3 Analytical solution of the Helmholtz equation: Green’s function

The Green’s function are the solutions of the Helmholtz equations. Imposing the Sommer-
feld radiation condition and an homogeneous velocity c(x) = c, they are given by





p(1D)(x) =
eiωc−1x

2iωc−1
, in one dimension,

p(2D)(x) =
i

4
H0(ωc−1x), in two dimensions,

p(3D)(x) =
eiωc−1x

4πx
, in three dimensions,

(1.32)

where H0 is the Hankel function of the first kind. We illustrate the Green’s function in two
dimensions in Figure 1.6, on a 5 km square example with velocity 2000 m s−1 and frequency
4 Hz.

We observe the pattern of the wave propagating from the centrally located source.
However, the Green’s functions given in Equation (1.32) are restrictive because they as-
sume an homogeneous medium. That is why we introduce the numerical discretization in
Chapter 2, to accordingly account for Earth complexity.

1.9 Conclusion

In this chapter, we have defined the mathematical equations for the propagation of waves,
starting from Newton’s second law. The general formulation, with a full stiffness tensor,
is further simplified depending on the type of medium. The distinction between acoustic
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Figure 1.6: Illustration of the two-dimensional Green’s function, see Equation (1.32). We have
taken a 5 km square with constant velocity c = 2000 m s−1 and frequency 4 Hz.

(fluid) and elastic (solid) medium imposes the modification of the quantity of interest, which
is the scalar pressure field for acoustic media and the displacement vector field for elastic
media. We have noted the underlying notion of Eulerian and Lagrangian approaches in this
differentiation. The time-harmonic formulation of the wave equations substitutes the time
variable with the angular frequency. It is the formulation elected for the rest of the project.
We have addressed the case of attenuation in the medium with one of the existing models
of representation, to define a complex valued wave speed. Following the introduction of
boundary conditions, we have proposed initial material regarding the problem, regarding
the existence and uniqueness of the solution. Homogeneous media provide advantageous
behavior and allow the definition of analytical solutions, via the Green’s functions. However,
heterogeneous media are revealed to be much more complex to deal with. That is why we
now study the standard numerical tools employed for the resolution of wave propagation
in heterogeneous media.
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Chapter 2

Numerical modeling of waves propagation

Abstract

We introduce the methods employed to solve the wave equa-
tions numerically. It consists in the discretization of the domain
of interest and consequently the wave equations. In this project,
we have used Finite Differences (FD) and Galerkin methods (con-
tinuous and discontinuous). The discretization of the harmonic
equations generates a linear system, which is large depending on
the domain of interest. We employ direct solvers, motivated by
the multi right-hand sides possibilities and the re-use of the fac-
torization. We carry out numerical experiments to illustrate the
modeling of waves, in two and three dimensions and considering a
TTI medium.
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In Chapter 1, we have established the equations for the propagation of waves in the
frequency domain. The Equations (1.27), (1.28), (1.29) and (1.30) summarize the possi-
bilities, depending on acoustic, elastic, and anisotropic media. Analytical solutions exist,
such as the Green’s functions that we have illustrated in Section 1.8, but they require a
homogeneous medium, which is not acceptable to model the Earth. The multi-scattering
of obstacles can also be resolved analytically from boundary element methods, and we refer
to the work of Martin (2006); Barucq et al. (2016) and the references therein. In particular,
Barucq et al. (2016) provides a comprehensive numerical implementation of the method
and compare the efficiency depending on a finite element method and the solver (direct or
iterative) used.

In order to find the solution of a PDE with heterogeneous coefficients, it is common to
rely on a discretization of the equation. First, the domain of interest is decomposed into a
discrete set of partitions. Then, one can select the method to discretize the equation which
is accordingly rewritten. Different methods exist, and we simply present the ones that
have been used in this project. These are the Finite Differences (FD), the Finite Elements
(FE, or Continuous Galerkin, CG), the Discontinuous Galerkin (DG) and the Hybridizable
Discontinuous Galerkin (HDG). The respective formulations are prescribed in Sections 2.1
and 2.2.

The FD approach presents the advantage of being relatively simple to implement but is
usually restricted to the consideration of a structured partition of the domain. It is uneasy
to handle the topography of subsurface structures of complex geometries, or it may require
a very small step size for the discretization, which induces the increase in the computational
time. The alternative of Galerkin method (named after Boris Grigoryevich Galerkin, 1871–
1945) is interesting because it allows an unstructured mesh which can easily account for
the geometry. The high flexibility is clearly an advantage for the method, but they are cer-
tainly less straightforward than FD. Historically the finite differences method was initially
promoted in the article of Richard Courant, Kurt Friedrichs and Hans Lewy (1928), for the
time domain wave equation. Finite elements were developed a few decades later; we refer
to Thomée (2001) for a comprehensive review of the historical steps from FD to FE. DG
appears from the work of Reed and Hill (1973) considering hyperbolic equations; we refer
to Arnold et al. (2002) for a historical review. Those methods are now widely employed
to provide numerical solution of PDEs for time and frequency domains formulations; for
example, we mention Monk (2003) (for the Maxwell’s equations), Ihlenburg (2006); Cohen
(2003); Ainsworth et al. (2006); Hesthaven and Warburton (2007); Riviere (2008); Brossier
et al. (2010a); Allaire (2012); Cohen and Pernet (2017), among (many) others.

We discuss the boundary conditions to apply for the numerical discretization. In par-
ticular, in the case of seismic, the domain of interest is a section of Earth, and the waves
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should be allowed to pursue the propagation outside the considered domain. Hence, ar-
tificial boundaries are required to ensure that no waves are reflected from the numerical
boundaries, we review two common methods for this purpose: the Perfectly Matched Layers
(PML) and Absorbing Boundary Conditions (ABC), see Section 2.3.

The harmonic approach of the problem, by suppressing the time variable, naturally
avoid the discretization in time and the underlying choice of implicit or explicit scheme.
Instead, it eventually leads to a (possibly large) linear system, which requires efficient
techniques for the solver, due to computational limitation in memory. In this project, we
have employed direct solvers only, motivated by the possibility to handle multiple right-
hand sides. It is a crucial aspect in seismic where a campaign usually consists of several
hundreds of shots. It also allows the re-use of the factors obtained from the factorization,
which permits faster computation of the gradient for the inverse problem we depict in the
sequel.

The resolution of the forward problem is actually not the purpose of this project,
which concentrates on the seismic inverse problem instead. However, the inverse problem
relies on the resolution of the forward problem and it is natural to introduce the main
formulations for a self-sustained manuscript. Hence we will try to remain concise on the
subject, pointing out that the discretized methods implemented in the software are due
to the work of Wang et al. (2011, 2012) for FD, Chaumont-Frelet (2015) for FE and DG,
and Bonnasse-Gahot (2015) for HDG. Numerical experiments are presented to illustrate
the propagation of harmonic waves in Section 2.5, for two and three-dimensional domains,
including anisotropy.

2.1 Introduction to the Finite Differences method

The Finite Differences (FD) method standardly relies on a structured decomposition of the
domain of interest and a Taylor approximation of the derivative. We will review the method
and illustrate with a simple configuration: a two-dimensional domain Ω ⊂ R2 of rectangular
shape. The method is divided in two steps, first the domain (structured) discretization and
then the discretization of the equation, with the derivative operator.

2.1.1 Spatial discretization

We assume a two-dimensional domain of interest, Ω to have length Lx (x-axis) and depth Lz
(or height, z-axis). The finite differences method commonly takes a structured decomposi-
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tion of the domain, which is partitioned in a regular grid of nodes. This grid is determined
by the step of discretization, denoted ∆x for the x-axis and ∆z for the z-axis. This process
naturally creates nx = (Lx/dx + 1) partitions in length and nz = (Lz/dz + 1) partitions in
depth. The total number of grid points follows to be n = nx×nz. We illustrate the domain
discretization in Figure (2.1). The nodal points are labeled as (i, j) where i is the z index,
from 1 to nz and j stands for the x index, from 1 to nx.

Lx

Lz

Ω

(a) Two-dimensional domain Ω of size Lx × Lz.

(1, nz)

(nx, 1)(1, 1)

(nx, nz)

∆x

∆z(i, j)

(b) Structured discretization of the two-dimensional
domain Ω: the horizontal axis is partitioned into nx
nodes and the vertical axis into nz nodes. The dis-
cretization generates a total of nx×nz nodes, equidis-
tant per direction.

Figure 2.1: Illustration of a structured discretization applied on a two-dimensional rectangular
domain for the use of the FD method.

Following the spatial discretization, the FD method seeks for the discretized solution
of the PDE defined at every node.

2.1.2 Operators discretization

Let us consider the PDE to be the acoustic harmonic wave equation, (see Equation (1.28)),

−ω2κ−1(x)p(x)−∇ ·
(
ρ(x)−1∇p(x)

)
= 0, in Ω, (2.1)

where we postpone the consideration of boundary conditions. The FD method aims the
recovery of a discretized solution, at the nodal points only. Here it is materialized by the
vector P defined by

P = {p(x1,1); p(x1,2); . . . ; p(xi,j); . . . ; p(xnz ,nx)}
= {P1,1;P1,2; . . . ;Pi,j ; . . . ;Pnz ,nx},
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where x(i,j) indicates the position at the node (i, j), accordingly with the nodal discretiza-
tion given in Figure 2.1. We introduce Pi,j for the value of the vector P corresponding with
p(xi,j). Similarly the model parameters must be discretized, and we refer to κi,j and ρi,j
for the bulk modulus and density respectively.

The discretization of the derivative is based upon the Taylor formula, which indicate
at first order that for an integrable function f ,

f(x+ h) = f(x) + h
∂f(x)

∂x
+ o(h2) lim

h→0
o(h2) = 0.

Neglecting the term in o(h2) gives an approximation of the derivative,

∂f(x)

∂x
' f(x+ h)− f(x)

h
.

This formulation can be substituted if we consider f(x− h) instead of f(x+ h), giving the
approximation

∂f(x)

∂x
' f(x)− f(x− h)

h
,

we can eventually sum the two to obtain

∂f(x)

∂x
' f(x+ h)− f(x− h)

2h
.

In order to discretize the derivative operator in the FD framework, we apply this
approximation onto the structured grid. For instance the gradient of the pressure field at
the nodal position xi,j is approximated by

∇p(xi,j) =




∂p(xi,j)
∂x

∂p(xi,j)
∂z



'




Pi,j+1 − Pi,j−1

2∆x

Pi+1,j − Pi−1,j

2∆z



.

For second order derivatives, the Taylor’s theorem gives for ±h,

f(x+ h) = f(x) + h
∂f(x)

∂x
+
h2∂2f(x)

2∂x2
+ o(h3) lim

h2→0
o(h3) = 0,

f(x− h) = f(x)− h∂f(x)

∂x
+
h2∂2f(x)

2∂x2
+ o(h3) lim

h2→0
o(h3) = 0.

The sum of those two expressions, neglecting the term o(h3), gives the approximation of
the second order derivative:

∂2f(x)

∂x2
' f(x+ h)− 2f(x) + f(x− h)

h2
.

56



2.1. INTRODUCTION TO THE FINITE DIFFERENCES METHOD

If we apply onto the discretized pressure field, we have




∂p

∂x2
(xi,j) '

Pi,j+1 − 2Pi,j + Pi,j−1

∆2
x

,

∂p

∂z2
(xi,j) '

Pi+1,j − 2Pi,j + Pi−1,j

∆2
z

.

In particular, the Laplacian is obtained by summing the two second order derivatives.

The discretization of the wave operator follows from the injection of the Taylor approx-
imations for the derivatives at every nodal points. Let us illustrate with Equation (2.1), in
the position xi,j we have

− ω2κ−1(xi,j)p(xi,j)−∇ ·
(
ρ−1(xi,j)∇p(xi,j)

)

=− ω2κ−1(xi,j)p(xi,j)−
(
∂ρ−1

∂x
(xi,j)

∂p

∂x
(xi,j) +

∂ρ−1

∂z
(xi,j)

∂p

∂z
(xi,j)

+ ρ−1(xi,j)(∆p)(xi,j)
)

'− ω2κ−1
i,j Pi,j −

((
ρ−1
i,j+1 − ρ−1

i,j−1

)(
Pi,j+1 − Pi,j−1

)

4∆2
x

+

(
ρ−1
i+1,j − ρ−1

i−1,j

)(
Pi+1,j − Pi−1,j

)

4∆2
z

+ ρ−1
i,j

(
Pi,j+1 − 2Pi,j + Pi,j−1

∆2
x

+
Pi+1,j − 2Pi,j + Pi−1,j

∆2
z

))
.

Then we organize to factor out the nodal pressure such that,

− ω2κ−1(xi,j)p(xi,j)−∇ ·
(
ρ−1(xi,j)∇p(xi,j)

)

' Pi,j

(
− ω2κ−1

i,j + ρ−1
i,j

(
2

∆2
x

+
2

∆2
z

))

− Pi,j+1

((
ρ−1
i,j+1 − ρ−1

i,j−1

)

4∆2
x

+
ρ−1
i,j

∆2
x

)
+ Pi,j−1

((
ρ−1
i,j+1 − ρ−1

i,j−1

)

4∆2
x

−
ρ−1
i,j

∆2
x

)

− Pi+1,j

((
ρ−1
i+1,j − ρ−1

i−1,j

)

4∆2
z

+
ρ−1
i,j

∆2
z

)
+ Pi−1,j

((
ρ−1
i+1,j − ρ−1

i−1,j

)

4∆2
z

−
ρ−1
i,j

∆2
z

)
.

(2.2)

The discretization generates one equation per nodal points and each of them involves
five grid points: the node itself and its four neighbors (at the exception of boundary nodes
where the neighboring node outside the domain can be substituted with zeros). It produces
a linear system of the form AP = 0 where the matrix A is of size n × n and encompasses
the values resulting from the Taylor approximation. In this case only five coefficients are
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non-zeros per line of the matrix, according to the formulation (2.2).

2.1.3 Extension

In our approach, we have simply used the neighboring nodes but it is possible to extend
the Taylor formula and increase the number of nodes involved. This leads to the higher
order FD, and other extensions are possible

Staggered grid. In the standard formulation of the FD, only the nodal values of the field
have been considered, namely Pi,j . Alternatively the consideration of intermediate positions
has been introduced by Madariaga (1976) for time domain wave problem, in particular for
the time variable discretization. Instead of limiting the discretization at nodal values (i, j),
we consider half position such that (i+ 1/2, j). This is referred to as staggered grid. This
formulation has been successfully employed by Virieux (1984, 1986) for the time domain
wave equation.

Rotated grid. Another alternative is to consider a rotation of the standard vertical and
horizontal axes for the discretization of the derivatives. Instead of considering the vertical
and horizontal neighbors only, the method considers rotated axes by π/4, as illustrated in
Figure 2.2. It basically proceeds to a change of coordinates.

(i, j)

(a) Classical formulation.

(i, j)

(b) Rotated formulation

Figure 2.2: The standard FD formulation (left) utilizes the neighbor nodes following orthonormal
axis horizontal and vertical. In this case a derivative discretization for a node of interest (in blue)
will need information from the nodes in red. The axes are rotated by π/4 on the right to generate
a formulation where the information is needed on the ‘diagonal’ neighbors.

The use of rotated axis for FD scheme has been applied for the frequency domain wave
equation in Jo et al. (1996) in acoustic and Štekl and Pratt (1998) for the elastic wave
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equation. The major difference resides in the step size for the discretized derivative, the
distance is now the same for the two axes. Introducing ∆xz =

√
∆2
x + ∆2

z, the derivative
is approximated with

∇p(xi,j) =




Pi+1,j−1 − Pi−1,j+1

2∆xz

Pi+1,j+1 − Pi−1,j−1

2∆xz



.

Assuming the grid to be equally spaced in the two axis, ∆x = ∆z, then the new step can
be replaced by ∆xz =

√
2∆x =

√
2∆z.

Mixed grid. The centered and rotated schemes can be considered jointly. It defines a
mixed scheme where the eight adjacent nodal points are used to defined the discretization,
i.e all the red points in Figure 2.2. This approach was used in Jo et al. (1996). This idea
of considering all the closest points is also employed in Marfurt (1984) when treating the
elastic wave equation, where he also addresses the FE method. Eventually, the scheme is
developed as a weighted sum of the two formulations (rotated and staggered). Referring
by α ∈ [0, 1] the weighting coefficient, the derivative is expressed as

∇p(xi,j) = α




Pi+1,j − Pi−1,j

2∆x

Pi,j+1 − Pi,j−1

2∆z




+ (1− α)




Pi+1,j−1 − Pi−1,j+1

2∆xz

Pi+1,j+1 − Pi−1,j−1

2∆xz



.

This approach is used in Hustedt et al. (2004) in the frequency domain with extension
to the so-called parsimonious grid. Operto et al. (2007) develops the method for three-
dimensional cases. Wave equations for TTI media are treated in Operto et al. (2009). This
method has been proven to be of order fourth in Hustedt et al. (2004).

We see that the FD method has many variations but all of them lead to the formation
of the linear system which size is the number of nodes in the representation. The major
drawback is probably the difficulty of the FD method to consider topography or complex
geometry in the subsurface. It inherits from its structured domain decomposition which
the Galerkin approach is free of.
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2.2 Introduction to Galerkin methods

The FD method seeks a discretized representation of the solution at nodal positions. The
numerical discretization based upon Galerkin methods seeks the solution over the whole
domain, by assuming it is (usually) represented with piecewise polynomial functions and
considering the variational formulation.

We illustrate the application of the Galerkin method in a domain Ω with boundary
Γ = Γ1 ∩ Γ2 and the Helmholtz equation,





(
−∆− ω2

c2(x)

)
p(x) = f(x) in Ω,

p(x) = 0 on Γ1,

∂νp(x) = 0 on Γ2.

(2.3)

We have considered a Dirichlet boundary condition on Γ1 and a Neumann boundary con-
dition for Γ2, where ν is the normal direction. We further assume that the source term, f
is in L2(Ω).

We take the velocity c to be a piecewise continuous function defined on Ω. Obviously,
c never vanishes and is bounded in practice, because it is the physical wave speed. By
using the Fredholm theory it is possible to prove that the Problem (2.3) is well-posed in
the following sense:

∀f ∈ L2(Ω), the problem admits a unique solution u ∈ {w ∈ H1(Ω) ; ∆w ∈ L2(Ω)},

where H1 is a Hilbert space and L2 the space of square integrable functions.

2.2.1 Domain discretization, reference element

The discretization of the domain for Galerkin methods is standardly realized with triangles
in two dimensions and tetrahedra in three dimensions. This is the decomposition selected
in this project, yet one can also employ other kind of elements, such as quadrangles for
example. The domain of interest Ω is partitioned in NK non-overlapping cells Kj such that

Ω =
{
∪NKk=1 Kk, Ki ∩Kj = ∅ ∀i 6= j

}
,

In Figure 2.3(a) we illustrate the decomposition of a simple domain in 3D, with few
tetrahedra. In Figure 2.3(b) we show the discretization of a wave speed into a piecewise
constant representation defined over the cells of a mesh. In our case, we mainly work
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with paved domain but the implementation is totally suitable for other geometries, such as
geophysical topography or even balls (via curved element for example).

(a) Illustration of tetrahedral mesh,
the tetrahedral cells are indicated in
blue, the black lines indicate the rest
of the domain (transparent).

(b) Representation of a velocity onto a three-
dimensional mesh. A quarter of the domain has been
ignored to allow the visualization of inner cells. The
blue area is water and several structures are present
in the subsurface, see Chapter 7 for more details on
the model.

Figure 2.3: Illustration of three-dimensional tetrahedral meshes for rectangle domains and param-
eter decomposition into a piecewise constant.

We introduce the reference element K̂ and the linear transformation Te from K̂ to any
cell Ke, as illustrated Figure 2.4. It allows any cell of the mesh (assuming triangles or
tetrahedra) to be mapped to this reference element.

Reference element K̂ Mesh element Ke

(0, 0, 0) (1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Te

T̂e = T−1
e

Figure 2.4: Illustration of the reference element. The tetrahedron Ke is mapped with the reference
element K̂ with the transformation Te.

The difference between continuous and discontinuous Galerkin methods lies in partic-
ular in the representation of the space where the approximate solution is defined. As the
name indicates, the DG method considers discontinuous shape functions and they are con-
tinuous for CG/FE. In Figure 2.5, we illustrate the degrees of freedom of order two for two
triangle cells.
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(a) Continuous Galerkin (b) Discontinuous Galerkin

Figure 2.5: Illustration of the degrees of freedom between CG/FE and DG for a two-dimensional
domain decomposed with triangles and order 2 polynomial. Shared degrees of freedom are present
in the CG method, on the contrary every degree of freedom belongs to a single element in DG.

2.2.2 Continuous Galerkin discretization

The Continuous Galerkin (CG) or Finite Elements (FE) method consider the approximate
solution of the PDE to be a continuous piecewise polynomial functions. We recast the
problem into a variational formulation. For this purpose we introduce the function space
V such that

V =
{
v ∈ H1(Ω) such that v |Γ1= 0

}
.

Then if p is solution of the Problem (2.3) for a given f ∈ L2(Ω) we have that ∀v ∈ V ,
∫

Ω

(
− ω2c(x)−2p(x)v(x)−∆p(x)v(x)

)
dx =

∫

Ω
f(x)v(x) dx, (2.4)

where v stands for the conjugate of the test function v.

Let us apply integration by parts to the variational formulation (2.4), we obtain
∫

Ω

(
− ω2c(x)−2p(x)v(x) +∇p(x)∇v(x)

)
dx−

〈
∂νp(x), v

〉
Γ

=

∫

Ω
f(x)v(x) dx.

Here < , >Γ stands for the dual pairing H−
1
2 (Γ), H

1
2 (Γ). We remind the Neumann

condition on Γ2 where ∂νp = 0 and note that v = 0 on Γ1. The variational formulation can
be written accordingly,

∫

Ω

(
− ω2

c(x)2
u(x)v(x) +∇u(x)∇v(x)

)
dx =

∫

Ω
f(x)v(x) dx. (2.5)

We now introduce the space of discretization Vh, defined with piecewise polynomial
functions of order less than or equal to r over the tetrahedra,

Vh =
{
w ∈ V such that ∀i, w |Ki∈ Pr(Ki)

}
.

Here Pr denotes the space of polynomials of order less than or equal to r given in three
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dimensions by

Pr =
{
h(x, y, z) =

r∑

i,j,k=0

hijkx
iyjzk

}
. (2.6)

Hence p is approximated by a sum of piecewise polynomial functions. We write,

p(x) |Ke=
∑

k

pkφk(x),

where the φk ∈ Pr are the basis functions. In our case we choose the Lagrangian basis
functions. We define Ph the vector encompassing the functions coefficients pj with

p(x) =
∑

j

pjφj(x).

We further choose v = {φi}. Then the Equation (2.5) can be written as a linear system

APh = F,

with A = M + L, where M is the mass matrix and L the stiffness matrix. The different
coefficients are given by





[M ]i,j =

∫

Ω
−ω2c(x)−2φi(x)φj(x) dx,

[L]i,j =

∫

Ω
∇φi(x)∇φj(x) dx,

[F ]i =

∫

Ω
f(x)φi(x) dx,

where we have assumed that φ ∈ R to neglect the conjugation. Because the basis functions
are defined on the tetrahedra, the integrals can further be specified by the cells contained
in the support of φ, for instance

[L]i,j =
∑

e∈(supp(φi)∩supp(φj))

∫

Ke

∇φi(x)∇φj(x) dx,

and similarly for [M ]i,j and [F ]i. Let us now reformulate p with the reference element basis
functions φ̂,

p(x) |Ke=
∑

k

pk
(
φ̂k ◦ T̂e(x̂)

)
,

where x̂ denotes the coordinates in the reference element. The matrix coefficients can be
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rewritten accordingly using DT to denote the Jacobian of T :




[M ]i,j =
∑

e∈(supp(φi)∩supp(φj))

|det(DTe)|
∫

K̂e

−ω2c−2(x)φ̂i(x̂)φ̂j(x̂) dx̂,

[L]i,j =
∑

e∈(supp(φi)∩supp(φj))

|det(DTe)|
∫

K̂e

(DT−1
e )(DT̂−Te )∇φ̂i(x̂)∇φ̂j(x̂) dx̂,

[F ]i =
∑

e∈supp(φi)

| det(DTe)|
∫

K̂e

f(x)φ̂i(x̂) dx̂.

Eventually, we obtain a linear system, where the integrals are computed using a Gauss
quadrature.

2.2.3 Discontinuous Galerkin discretization

The DG method, by allowing a discontinuous function between element, requires a different
variational formulation, where the jumps of the function are incorporated. For this purpose
we introduce inward and outward normals, as illustrated in Figure 2.6 with two adjacent
cells, say K+ and K−.

K+

K−
ν+ν−

Figure 2.6: Illustration of the notation for DG method at the interface between two cells.

We define the jump of a scalar w by

[w] = wK
+ · ν+ + wK

− · ν− = wK
+ · ν+ − wK− · ν+,

where wK+ and wK− are the quantity on the cell K+ and K− respectively. For a vector u
we define

[u] = uK
+ · ν+ + uK

− · ν− = uK
+ · ν+ − uK− · ν+.

We now introduce the average,

{w} =
1

2

(
wK

+ |
Υ

(e)
1

+wK
− |

Υ
(e)
1

)
,
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where Υ
(e)
1 is the shared boundary. We note that

[w1]{w2}+ [w2]{w1} = [w1w2] (2.7)

Assuming p is solution of the problem (2.3), we impose [p] = 0 to ensure the continuity,
and [∇p] = 0. We now introduce the notation Υ(e) = {Υ(e)

i , i = 1, . . . , d + 1} which
corresponds to the boundary of the inner element Ke and where d is the dimension. For
example in two dimensions we have three edges per triangle, see Figure 2.6.

For the variational formulation, we now let the function space V to be

V =
{
v ∈ L2(Ω) such that v |Ke∈ H1(Ke), ∀e; v |∂Ke∩Γ1= 0 if ∂Ke ∩ Γ1 6= ∅

}
.

The variational formulation is given ∀v ∈ V ,
∫

Ω

(
− ω2c(x)−2p(x)v(x)−∆p(x)v(x)

)
dx =

∫

Ω
f(x)v(x) dx,

similarly to the previous situation but where v is allowed to have discontinuities. The
integration over a cell Ke is given by

∫

Ke

(
− ω2c(x)−2p(x)v(x)−∆p(x)v(x)

)
dx

=

∫

Ke

(
− ω2c(x)−2p(x)v(x) +∇p(x)∇v(x)

)
dx−

∫

Υ(e)

∂ν+
e
p(x)v(x) dx,

where the test function v is possibly not continuous.

In order to sum over the cells, we introduce the set of cell boundaries Υ = {∪NKe=1Υ(e)},
where only the boundaries shared between two cells are considered. From the relation
between the outward and inward normal, ν+ and ν−, we obtain

∑

Ke

∫

Ke

(
− ω2c(x)−2p(x)v(x)−∆p(x)v(x)

)
dx

=
∑

Ke

∫

Ke

(
− ω2c(x)−2p(x)v(x) +∇p(x)∇v(x)

)
dx

−
∫

Υ
∂ν+p(x)v(x) + ∂ν−p(x)v(x) dx−

∫

Γ
∂νp(x)v(x) dx

=
∑

Ke

∫

Ke

(
− ω2c(x)−2p(x)v(x) +∇p(x)∇v(x)

)
dx

−
∫

Υ
[∇p(x)v(x)] dx−

∫

Γ
∂νp(x)v(x) dx.
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Using the identity (2.7) and the fact that [∇p] = 0 we eventually get
∑

Ke

∫

Ke

(
− ω2c(x)−2p(x)v(x)−∆p(x)v(x)

)
dx

=
∑

Ke

∫

Ke

(
− ω2c(x)−2p(x)v(x) +∇p(x)∇v(x)

)
dx−

∫

Υ
{∂νp(x)}[v(x)] dx

−
∫

Γ
∂νp(x)v(x) dx.

This formulation is not coercive and it is common to introduce a penalty term (Riviere,
2008). Therefore, we add the term αe[p][v], where the index e indicates that α depends on
the cell. We get

∑

Ke

∫

Ke

(
− ω2c(x)−2p(x)v(x) +∇p(x)∇v(x)

)
dx−

∫

Υ
{∂νp(x)}[v(x)] + αe[p][v] dx

−
∫

Γ
∂νp(x)v(x) dx.

Remark 2.1. In order to handle the Dirichlet boundary condition on Γ1, we have introduced
the space function V where the function is zero on Γ1. As an alternative, we can instead
include a penalization term onto this boundary. Replacing with the Neumann boundary
condition on Γ2, the formulation becomes

∑

Ke

∫

Ke

(
− ω2c(x)−2p(x)v(x) +∇p(x)∇v(x)

)
dx−

∫

Υ
{∂νp(x)}[v(x)] + αe[p][v] dx

−
∫

Γ1

∂νp(x)v(x) dx + α̃e[p][v] dx.

The space of discretization Vh is defined with piecewise polynomial functions of order
less than or equal to r over the tetrahedra, similarly to the FE method,

Vh =
{
w ∈ V such that ∀i, w |Ki∈ Pr(Ki)

}
,

where Pr denotes the space of polynomials of order less than or equal to r given in the
equation (2.6). Following this discretization we can inject in the variational formulation
and one can eventually obtain a linear system. It follows exactly the same techniques as
for the CG/FE method that we have detailed above, and one similarly makes use of the
reference element and the Gauss quadrature for the computation.

2.2.4 Hybridizable Discontinuous Galerkin

The HDG method introduces two levels of discretization. A global linear system is formed
for Lagrange multipliers located on the interface of the cells only. From these multipliers
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the field of interest is retrieved locally on the cell. The implementation of this method in
our software has been realized by Bonnasse-Gahot (2015) where we refer for all details as
well as the validation of the method. In Subsection 4.4.7, we briefly review the formulation
and depict the specificities it generates regarding the computation of the gradient of the
cost function (introduced for the resolution of the inverse problem).

2.3 Artificial boundary conditions

Boundary conditions are obviously essential for numerical approximations. We must clearly
distinguish the actual boundary (interface between the air and the medium), and the bound-
ary forced by the limitation of the domain of interest. For the actual interface boundary
between the air and the ground, we have already mentioned the free surface boundary con-
ditions, see Section 1.8. In Figure 2.7 we illustrate the different boundaries in the seismic
context, in two dimensions.

Free surface Γ1

Γ2

Earth area investigated

Ω

Figure 2.7: Distinction between artificial boundary conditions and free surface. The interface
between the air and the medium, Γ1 is a free surface. In seismic numerical applications, Γ2 must
ensure no reflection from incident waves.

The numerical computation is performed on a spatially limited, finite, domain of in-
terest, which can be of several kilometers but the selected seismic domain is only a part
of the Earth subsurface. The waves should leave the numerical domain freely. Hence the
numerical treatment must ensure that no wave are reflecting or appearing from these numer-
ical boundaries. For this purpose, we review the two most common approaches: perfectly
matched layer and absorbing boundary conditions, we refer to Diaz (2005); Nataf (2013)
and the references therein for additional details.

Perfectly Matched Layers (PML). The perfectly matched layers (PML) have been
initially promoted in electromagnetic for the Maxwell equations with the work of Bérenger
(1994). It consists in the incorporation of an artificial layer where incident waves are not
reflected. We illustrate the layers in Figure 2.8.
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Free surface Γ1

Earth area investigated

Ω

PML

Figure 2.8: Illustration of the PML: a layer is incorporated on the boundary of the domain where
no reflection is expected.

In the PML layer, the derivative is rewritten such that

∂x 7−→
(

1 + i
σ(x)

ω

)−1

∂x,

where σ is a selected function. It can have different shapes and in our case it is defined from
the work of Turkel and Yefet (1998); Wang et al. (2011) which includes a cosine function.

Absorbing Boundary Conditions (ABC). As an alternative one can consider absorb-
ing boundary conditions which are limited to Γ2, they are defined by Engquist and Majda
(1977),

∂νp(x)− iωc−1(x) = 0, on Γ2.

Higher order ABC can be obtained, at order two it is defined by

−iωc−1(x)∂νp(x)− ω2c−2(x)p(x)− 1

2
∂2
τp(x) = 0, on Γ2,

where ∂τ represents the tangential derivative.

2.4 Direct solvers for linear system solution

The discretization of the wave equations leads to the formation of a linear system, whatever
method is used, FD, FE or DG. The underlying system can represent a large scale matrix
and we rely on external packages for the resolution of these linear systems. Two main
families exist for the solver: direct and iterative. In our project, we only rely on direct
solvers, which factorize the matrix. This step represents an important computational effort
(time and memory) but is of importance as it allows multi-right-hand sides and the re-use of
the factors. The multi-right hand sides technique refers to the possibility of solving several
independent right-hand sides at low cost. Seismic acquisition usually consists in hundreds
of independent sources so this option is extremely valuable. Similarly the reuse of the factor
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is helpful for the inverse problem and the computation of the gradient (see Section 4.4).
Despite current advances, iterative solvers are still restricted on those aspects, but they
are usually less demanding for the computational memory, and we do not discard them for
future applications.

Mumps. MUltifrontal Massively Parallel sparse direct Solver (Amestoy et al., 2001, 2006)
is a reference among direct solvers for sparse matrices. Born from the collaborations of six
French institutes (CERFACS, CNRS, ENS Lyon, INP Toulouse, Inria and University of
Bordeaux), it is in constant evolution and benefits from continuous support. Recently,
block low rank techniques have been implemented to reduce the factorization time.

Hsolver. We have also been able to use the Hsolver, which has been developed by the
work of Wang et al. (2011, 2012) as part of the Geo-Mathematical Imaging Group1. This
solver is optimized for the FD method by intrinsically considering the structured decom-
position. It is based upon a structured nested dissection of the domain to achieve high
parallelization. In Figure 2.9 we illustrate the concept of nested dissection for a structured
domain decomposition. The size of the interface between two subdomains depends on the
order of the FD method.

(a) Level 1. (b) Level 2.

Figure 2.9: FD discretization (black) and nested dissection decomposition (blue). At level one (left)
two sets are separated by an interface so that the two main groups are independent and interact
only with the interface set (assuming the FD discretization involves only the closest neighbors).
Higher levels of nested dissection follow the same concept.

Then the factorization of the matrix is conducted using a multi-frontal method with the

1The GMIG, previously at Purdue University, is now at Rice University, see http://maartendehoop.
rice.edu/
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CHAPTER 2. MODELING OF WAVE PROPAGATION

possibility of promoting Hierarchically SemiSeparable (HSS) matrix, see Xia et al. (2009,
2010). Therefore, this solver is particularly efficient but limited to the FD method.

A follow-up of this solver is currently realized, to allow the same features with unstruc-
tured mesh, see Xin et al. (2017). This is part of an ongoing collaboration and we expect
to be able to evaluate the performance (compared to Mumps) in a near future.

2.5 Numerical experiments in the frequency domain

We briefly illustrate the numerical resolution of the wave equation with a three-dimensional
acoustic experiment and a two-dimensional anisotropic one. In the Appendix B, we provide
the detail of the computational toolbox implemented during this project. Regarding the
HDG method, thorough experiments have been conducted in Bonnasse-Gahot (2015) where
the reader is referred for additional information.

In Figure 2.10, we show the resolution of the acoustic isotropic wave equation where
we have used the velocity of Figure 2.3(b). It is a model of size 2.54×1.44×1.22 km, which
is further detailed in Chapter 7. For this experiment we have taken the frequency to be 10

Hz and used a FE method.
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Figure 2.10: Resolution of the acoustic three-dimensional wave equation for the wave speed given
in Figure 2.3(b) for which the density is constant: ρ = 1000 kg m−3.

In Figure 2.11, we show the resolution of the TTI wave equation (1.30) in two dimen-
sions for homogeneous parameters. The domain is of size 2.46 by 0.6 km and the parameters
have the following constant values: cp = 5000 m s−1, cs = 2400 m s−1, ρ = 1000 kg m−2,
θ = 10◦, the Thomsen parameters are given by ε = 0.20, δ = 0.10. For the simulation the
frequency is set to 10 Hz.

In Figure 2.12, we show the resolution of the TTI wave equation in two dimensions for
variable parameters. This is the same domain as for the previous experiment, 2.46 by 0.6

km. The medium parameters are given in Figure 2.13.
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Figure 2.11: Simulation of TTI wave propagation using a homogeneous two-dimensional medium
of size 2.46 by 0.6 km. The constant parameters are cp = 5000 m s−1, cs = 2400 m s−1, ρ = 1000
kg m−2, θ = 10◦, and the Thomsen parameters ε = 0.20, δ = 0.10.
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Figure 2.12: Simulation of TTI wave propagation using a two-dimensional medium of size 2.46 by
0.6 km, the model parameters are given Figure 2.13.
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Figure 2.13: Experimental TTI models of size 2.46 by 0.6 km for the numerical resolution of the
wave equation, the x axis is indicated in km.

2.6 Conclusion

In this chapter, we have briefly introduced the methods for the numerical resolution of
the wave equations. We have given the ones that have been used during this project:
FD, FE/CG, DG and HDG methods. The FD method relies on a structured grid and
is usually the fastest option. However, to handle complex geometry and topography, the
other methods are certainly more appropriate. we have given some illustrations for the
resolution of the wave equation. The inverse problem requires the resolution of several
forward problems, and it is consequently fundamental to have a robust, efficient and fast
discretization method.
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Chapter 3

Stability results for the Helmholtz inverse
problem

Abstract

In this chapter, we introduce the principal concepts relative to
inverse problems, in particular, the one we face in seismic, associ-
ated with harmonic wave equations. We give the general framework
and notations that will be employed throughout the manuscript.
This inverse problem is nonlinear and ill-posed. We show that
the conditional Lipschitz stability of the inverse problem for the
Helmholtz equation can be obtained and we give the result that
defines the lower and upper bound of the underlying stability con-
stant. The analytical formulations are then confronted with the
numerical situation where we demonstrate the sharpness of the re-
sults in the case of seismic reconstruction. Numerically, we focus
on one of the main conditions for the conditional stability to hold:
the use of piecewise constant parameters and we propose different
methods for such model representations. Following the stability
analysis, we establish a relation between frequency and scale.
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Chapters 1 and 2 were devoted to the forward problem for wave propagation. The
mathematical formulation of the equations and their numerical resolution have been pro-
cessed. In this context, there is the need to know all parameters of the system: the type
of medium, the associated material properties (which define the stiffness tensor) and the
source term. In seismic, the subsurface Earth parameters must be known, and then one
can anticipate the propagation of waves. The inverse problem results from the opposite
vision and aspires, instead, in the recovery of the unknown subsurface parameters from
the observation of wave propagation. In addition, the observation is usually limited at the
surface. This notion of forward or inverse appears quite clear in geophysics: the forward
problem predicts the waves, and the inverse tends to recover the medium parameters. It
can however be a matter of perspective depending on the context, and we refer to Keller
(1976) for an interesting discussion. The method to conduct the reconstruction of the pa-
rameters depends on the situation. One would be tempted to say that there are as many
methods of reconstruction as there are of inverse problems. It depends fundamentally on
the kind of forward operator and the data available. In the context of scattering, we refer to
Colton and Kress (1998). Bal (2012) gives the details on some techniques utilized to solve
inverse problems. For seismic reconstruction, we note the early work of Pekeris (1934),
which studies the inverse boundary problem in seismology for the recovery of the density
and the Lamé parameters in the half-space.

The success of the reconstruction procedure is correlated with the method and the
quantity of information at our disposal: the quantity of observations, prior knowledge on
the unknowns, etc. In our seismic applications, the acquisition setup is usually located
at the surface only, i.e., we disregard boreholes. This configuration provides a physical
framework where the body is not altered by the experiment (depending on the power of the
source): it is called a nonintrusive or non-invasive process. The first consequence is that the
procedure suffers from this limited amount of information. Mathematically we formulate
the reconstruction as an inverse boundary value problem (IBVP) for obvious reasons: the
data are only acquired onto the boundary of the domain of interest, and similarly for the
initial source term. In our case as in many, the inverse problems is nonlinear and ill-posed,
Kirsch (1996); Colton and Kress (1998); Isakov (2006); Bal (2012); Tarantola (2005).

The notions of existence and uniqueness are crucial in the inverse problem, always fol-
lowing the conception of Hadamard (1923; 1902). The uniqueness in particular guarantees
that one and only one solution exists for the inverse problem: is there only one medium
that can produce the observed data? The answer is not trivial in general, depends on the
problem (homogeneous, anisotropy, etc) and incorporating noise and partial data further
complicates the process. Here again, a priori information and the amount of data are re-
vealed to be capital, see Tarantola and Valette (1982) for discussions related to the seismic
problem. In order to mitigate the ill-posedness of the inverse problem, one can incorporate
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regularization, as advocated, for example, in Kirsch (1996); Isakov (2006).

The growth in the comprehension of inverse problems is marked with medical imaging,
in particular, the Electrical Impedance Tomography (EIT), where the recovery is based
upon electrical measurements (our seismic problem relates to mechanical measurements).
The formulation of this problem by Calderón (1980) gave birth to the eponymous Calderón
problem which is a milestone. This problem is also referred to as the Gel’fand problem,
see Novikov (1994). The considered type of data inherits from this EIT approach with
the Dirichlet-to-Neumann map. In Section 3.1, we review the formulation of the problem.
In this chapter, we focus on the inverse problem associated with this Helmholtz equation
(1.27). It corresponds with an acoustic medium where the objective is the reconstruction
of the velocity c.

This problem has been increasingly studied since then, and here we only point at the
appropriate references on the topic. We do not aim to cover the techniques and methods in
details, as it is not the purpose of this manuscript. In particular, existence and uniqueness
for this problem have been obtained by Sylvester and Uhlmann (1987) in three dimen-
sions with the use of complex geometrical optics (CGO) solutions. These are exponential
solutions of the equation (e.g. Uhlmann and Wang (2008); Feldman et al. (2015)). It
clearly represents a landmark of the Calderón problem and inverse problem in general. The
two-dimensional case is also investigated by Novikov (1986); Nachman (1988) and Nach-
man (1996) gives a global uniqueness result. For the Calderón (or Gel’fand) problem, we
mention the results of Henkin and Novikov (1988); Novikov (1988, 2004, 2010, 2011). For
the state of the art review, we refer to Sylvester and Uhlmann (1990); Novikov (1994);
Uhlmann (2009); Feldman et al. (2015) and the references therein. The case of partial data
is studied in Kenig et al. (2007); Imanuvilov et al. (2010); Feldman et al. (2015). Nakamura
and Uhlmann (1993, 1994) study reconstruction in the case of elasticity, where uniqueness
holds if the Lamé parameter µ is close to constant, see Nakamura and Uhlmann (2003).

Here we focus on inquiring the stability of the inverse problem. It can be apprehended
as the response of the solution to small perturbations in the acquired data. It provides
a comprehensive relation between two sets of data, and their respective parameters. In
Section 3.2, we introduce the notion of stability and the fundamental work associated.
This project resulted in the production of Beretta et al. (2016), which is reproduced in
the Appendix A. It establishes the lower and upper bound of the stability constant in
the case of piecewise constant model representation. Supplementary materials are given
in Section 3.3, and we develop different methods to decompose the model in Section 3.4.
Sometimes the mathematical study requires relatively strong assumptions, such that full
boundary information or the absence of noise, which are unrealistic in practical situations.
We will see that despite those restrictions it can give precise guidelines on how to conduct
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the reconstruction of unknown parameters. The stability in the context of elasticity, for the
recovery of the density and the Lamé parameters, is considered by Beretta et al. (2013b,
2014). For the time domain, we mention the work of Stefanov and Uhlmann (1998, 2005,
2009); Datchev and de Hoop (2015) show the convergence of the Landweber iteration
scheme when the frequency content of the data is considered bounded. It also motivates
our approach in the frequency domain directly.

3.1 Minimal foundations

3.1.1 Notation

Let us first introduce the general inverse problem framework and associated quantities. We
consider the domain Ω ⊂ Rr with boundary Γ for which we aim the recovery (reconstruc-
tion) of selected parameters of interest. Typically r is equal to 2 or 3 as we consider two
and three-dimensional cases. The parameter of interest will also be referred to as model
due to the seismic context, it is denoted

m ∈M represents the model (or parameter) to recover. (3.1)

m actually encompasses one or several physical parameters for the seismic subsurface (e.g.,
the density, the velocity, etc). M is the model space and represents the subspace where
those parameters are. In our case it usually consists in a subset of R as we research physical
coefficients. The model space takes any a priori knowledge on the subsurface model.

The information that are at the disposal for the reconstruction are referred to as the
data or measurements, and denoted d. Due to physical feasibility, the data are acquired on
some discrete part of the space which we denote Σ. There is no restriction for Σ, which
can be away from Ω (think of helioseismology where information is not acquired in or at
the surface of the sun but at relative distance). We write

d ∈ D represents the data (or measurements), (3.2)

where D is the data space. One can be tempted to assume that D ⊂ R, because it comes
from physical apparels. However, because we work in the frequency domain we need to
perform the Fourier transform of the data, so that eventually D ⊂ C for our problem.
Typically, D andM are assumed to be Banach or Hilbert spaces (Bal, 2012).

The forward operator prescribes the correspondence between the model and the quan-
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tity observed (the data):

F : M→D, F(x) = z. (3.3)

This notation is further extended for the numerical resolution of the inverse problem in
Section 4.1. For example, in seismic, x is identified with the subsurface characterization
(velocity, density, etc) and z corresponds to the measurements of waves at the receivers
locations.

Remark 3.1. It is usually not conceivable to assume that the observations d verifies
F(m†) = d for some parameterm†. Several reasons are involved: the noise in the acquisition
and limited accuracy of the devices. Another aspect is the model error: the approximation
used to represent F numerically (any discretization scheme) generates imperfection. In the
case of seismic, one straightforward implication is the use of special medium characteristics
(isotropy, elasticity, titled isotropy) to represent the anisotropic Earth. This aspect is post-
poned for now but will be investigated in Chapter 5, where the maximal distance between
the observations and the attainable set is investigated.

3.1.2 The Calderón problem

Following the Helmholtz equation provided in the Equation (1.27), the parameter of interest,
that describes the medium, is the velocity c. We establish that this problem can be derived
from the commonly denominated Calderón problem.

The Calderón problem is named in reference of the work of Calderón (1980) who defines
the inverse problem for Electrical Impedance Tomography (EIT) (see Uhlmann (2009) for
historical background). It is formulated as the inverse boundary value problem associated
with the conductivity equation:

{
∇ ·
(
γ(x)∇u(x)

)
= 0 in Ω,

u(x) = f(x) on Γ.
(3.4)

We assume the Dirichlet boundary condition represented by f(x), γ stands for the electrical
conductivity and is positive. Here f and u are voltage. Furthermore, we require f ∈
H1/2(Γ), the conductivity γ ∈ C∞(Ω) and the solution u ∈ H1(Ω). The inverse problem
consists of the reconstruction of the conductivity γ from observation at the boundary. In
EIT the measurements are current (while the conductivity problem gives the voltage) so
that those boundary data are defined as the Dirichlet-to-Neumann (DtoN) map Λγ ,

Λγ : f(x) → γ(x)
∂u(x)

∂ν

∣∣∣∣
Γ

,

where ∂ν is the normal derivative. In the case of EIT, the DtoN map is also referred to as
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the current-to-voltage map for obvious physical reason. This problem has been extensively
studied in the mathematical framework, as mentioned in the introduction.

3.1.3 Relation with the Helmholtz equation

At first it seems that the problem stated with Equation (3.4) differs from the wave equa-
tion we have established. Actually the conductivity equation can be generalized to the
Schrödinger operator, hence showing similarities with the Helmholtz equation. A few sim-
ple steps have to be taken to see the relation, as reminded in Nachman (1988, 1996);
Mandache (2001). Let us make the substitution

u(x) = γ(x)−
1
2w(x).

We can replace in the conductivity equation to have (omitting the x dependency for clarity)

∇ ·
(
γ∇
(
γ−

1
2w
))

= 0.

We precise the formula 



∇(γ−
1
2 ) = −1

2

(
γ−

3
2
)
∇(γ),

∇(γ
1
2 ) =

1

2

(
γ−

1
2
)
∇(γ),

so that

∇(γ−
1
2 ) = −1

2

(
γ−

3
2

)(
2γ

1
2∇(γ

1
2 )
)

= −γ−1∇(γ
1
2 ).

The conductivity equation can eventually be written as

∇ ·
(
− w∇

(
γ

1
2
)

+ γ
1
2∇
(
w
))

=−∇ ·
(
w∇(γ

1
2 )
)

+∇ ·
(
γ

1
2∇(w)

)

=− w∆γ
1
2 −∇(γ

1
2 )∇(w) + γ

1
2 ∆(w) +∇(γ

1
2 )∇(w)

=− w∆γ
1
2 + γ

1
2 ∆(w).

The original equation is replaced by

−wγ− 1
2 ∆γ

1
2 + ∆(w) = 0.

We can further introduce q = γ−
1
2 ∆γ

1
2 ,

−wq + ∆(w) = 0,

and we recognize the Schrödinger operator. Finally, assuming q is strictly negative we obtain
the Helmholtz equation. Moreover, Nachman (1988) reveals that the Calderón problem can
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be generalized to the general acoustic propagation encompassing a variable density,

−∇ ·
(1

ρ
∇p
)
− ω2κp = 0.

3.2 Stability result for the Helmholtz inverse problem

The stability is a fundamental characteristic of the inverse problem. It provides a relation
between measurements and models. Assuming two parameters m1 and m2, the stability is
of the general form

‖m1 −m2‖M ≤ C
(
‖F(m1)−F(m2)‖D

)
,

where F is the forward operator, which maps the quantities observed. The function C indi-
cates the stability of the problem. The objective of the reconstruction is often to minimize
the quantity ‖F(m1) − F(m2)‖ and the stability provides an error on the reconstruction
(‖m1 −m2‖) in terms of the error in the forward maps. Hence we see the crucial aspect of
this function C. We further refer to Bal (2012) where extended discussion and intuition is
provided, in particular how the stability relates to the injectivity of the forward operator
and defines the ill-posedness of the inverse problem.

We study the stability of the inverse boundary value problem associated with the
Helmholtz equation, using the Dirichlet-to-Neumann (DtoN) map as the data. In this
context, see Equation (1.27), the problem concerns the recovery of one single parameter,
the velocity c. The stability associated with this inverse problem has been obtained by
Alessandrini (1988), where the function C is proven to be the inverse of a logarithm. This
has further been proven to be optimal by Mandache (2001), with reference to “exponential
instability”. The way to overcome the issue is to introduce assumptions and derive a
conditional stability. In particular, Alessandrini and Vessella (2005) obtain a Lipschitz
type stability result by the use of piecewise constant models. Lipschitz type stability (e.g.
Bourgeois (2013)) indicates that the stability condition reduces to the formula

‖m1 −m2‖ ≤ C‖F(m1)−F(m2)‖,

where C is the stability constant. The result is also developed in the case of EIT by Beretta
and Francini (2011).

This is the point of departure of our work, which is given in the Appendix A, where we
reproduce the article that has been published in collaboration with E. Beretta, M. V. de
Hoop and O. Scherzer. The objective is to characterize the stability constant to understand
under which conditions it varies. The smallness of the constant guarantees the accuracy
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of the reconstruction in terms of the proximity between observed quantities. Let us only
summarize the main steps established in this paper:

1. we consider the Helmholtz equation with Dirichlet boundary condition on the domain
of interest Ω,

{
(−ω2c−2(x)−∆)u(x) = 0 x in Ω,

u(x) = g(x) x on ∂Ω.

The forward operator is defined by

Fω(c−2) = Λω2c−2 .

Λ is the DtoN map,

Λω2c−2 : g → ∂νu |∂Ω,

where ∂ν stands for the normal derivative.

2. The domain Ω is partitioned in N non-overlapping subdomains Dk,

Ω =
{
∪Nk=1 Dk ; Di ∩ Dj = ∅ ∀i 6= j

}
. (3.5)

The velocity is defined via a piecewise constant representation over the partition,

c−2(x) =

N∑

k=1

ckχDk(x), (3.6)

where χDk is the characteristic function over the domain Dk and ck are constants.
Hence N stands for the number of coefficients used to represent the parameter. It
indicates the scale of the model: low values of N imply a coarse representation and
large values of N give a refined representation.

3. From the work of Alessandrini and Vessella (2005), this problem is known to have
Lipschitz type stability such that for two velocities c0 and c1,

‖c−2
0 − c−2

1 ‖2 ≤ C‖F(c−2
0 )−F(c−2

1 )‖2.

C is the stability constant.

4. The main result of this production is to establish the lower and upper bounds for the
stability constant, C, depending on the frequency ω and the scale N :

1

4ω2
eK1N1/5 ≤ C ≤ 1

ω2
e(K(1+ω2B2)N4/7), (3.7)

where B2, K1 and K are constants. Hence we have the quantification of the stability
evolution with frequency and scale.

5. We provide numerical estimates for the evolution of the stability constant with scale.
It validates the sharpness of the bounds in the case when the full DtoN map is used
as the data (i.e. where the data are acquired on all the boundary).
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6. We estimate the stability constant for the geophysical context where data are only
located at the surface, and when artificial boundaries are introduced on the other
sides. We show that the estimates follows accurately the full DtoN description of the
Equation (3.7) and conjecture that it should hold in the context of partial data.

Following this work, we see that frequency and scale are crucial for the stability of the
inverse problem. It is natural to think that increasing the number of unknowns in problem
deteriorates its stability. Here we have shown that the stability worsen (i.e. the stability
constant increases) exponentially with the number of coefficients to represent the model
(N). Despite the lack of analytical results, our numerical estimation intuits that the case
of partial data and absorbing boundaries would follow the same path.

In Section 3.3 we provide additional materials regarding the stability associated with
the Helmholtz inverse problem. We give the evolution of the stability constant estimation
with frequency in Subsection 3.3.1. Consequently, we illustrate the possibility for pairing
frequency and scale in Subsection 3.3.2.

3.3 Supplementary materials

This section is the continuation of the work realized in the article given in the Appendix A,
on page 93. We follow the same framework and extend the analysis with the same tech-
niques, thus the reader must have read the Appendix A prior to read this supplement.

3.3.1 Numerical stability estimates with frequency

In the Appendix A, we have shown the evolution of the stability constant with scale, and
demonstrated that it follows the exponential behavior anticipated by the lower and upper
bounds given in the Equation (3.7). We now show the evolution of the stability constant
estimates with frequency. We follow the setup of Section A.3, where the models and the
procedure employed are prescribed. Contrary to the estimation of Figure A.5, we now fix
the partition and vary the frequency. We plot the resulting estimates in Figure 3.1, in the
context of partial data (described Subsection A.3.2).

The estimates decrease with increasing frequencies, in the selected range which is mo-
tivated by seismic so that the frequency varies from 1 to 50 Hz. Regarding the lower and
upper bounds given in the Equation (3.7), we see that the lower bound decreases with
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Figure 3.1: The black squares represent the computational estimates of the stability constant
( ) depending on the frequency at selected partition N = 4 597 248. The model chosen for c0
and c1 are given Figures A.3 and A.2.

frequency (in ω−2) but the upper bound makes appear the frequency in the exponential.
Hence we can suspect that the frequency regime we experiment is relatively low and that
the exponential increase with frequency appears at higher frequencies. However, as it has
been mentioned in the introduction of the Appendix A, the exponential increase with fre-
quency in the upper bound, Equation (3.7), may actually not be optimal. It is inherent
from the use of CGO solutions: this may be an artifact of the method of proof and this
is also remarked in Nagayasu et al. (2013). A more precise frequency characterization is
subject of further research.

3.3.2 Pairing frequency and scale

Following the Appendix A and the previous Subsection 3.3.1, we conclude that the frequency
and scale have the following impact on the stability of the inverse problem:

– the stability worsens (i.e. the stability constant increases) with increasing scale N
(exponentially),

– the stability improves (i.e. the stability constant decreases) with increasing frequency.

Following this statement, a very natural idea is to pair frequency and scale so that the
stability constant remains (relatively) stable. The low frequencies should consequently use
a low scale and the higher frequencies can use a refined scale. To illustrate this idea we
plot the evolution of the stability constant estimates with frequency for different partitions
in Figure 3.2. We employ the setup described in Section A.3, Subsection A.3.2.

The decrease of the stability constant with frequency is sufficiently significant to allow a
refinement in scale. If we consider a threshold for our estimate we can establish a progression
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Figure 3.2: Evolution of the computational estimates of the stability constant depending on the
frequency. The models chosen for c0 and c1 are given Figures A.3 and A.2. The blue circles ( )
employ the partition N = 336. The red crosses ( ) employ the partition N = 2 880. The green
pentagons ( ) employ the partition N = 23 040. The orange squares ( ) employ the partition
N = 187 492. The grey triangles ( ) employ the partition N = 1 527 168. The black diamonds
( ) employ the partition N = 4 597 248.

in scale with frequency. We illustrate this selection in Figure 3.3 for an arbitrary threshold
which allows a smooth progression in scale associated with the increase in frequency.
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Figure 3.3: Illustration of the possible simultaneous progression in frequency and scale. The
models chosen for c0 and c1 are given Figures A.3 and A.2. The blue circles ( ) employ the
partition N = 336. The red crosses ( ) employ the partition N = 2 880. The green pentagons
( ) employ the partition N = 23 040. The orange squares ( ) employ the partition N = 187
492. The grey triangles ( ) employ the partition N = 1 527 168. The black diamonds ( )
employ the partition N = 4 597 248. The plain black circles ( ) select the largest scale which
has an estimates lower than 4× 104, value indicated by the red line ( ).

The stability analysis provides an understanding of frequency and scale matching. Yet,
in terms of stability, nothing prevents us from selecting arbitrarily high frequency, to benefit
from the improved stability (see Figure 3.1). There is no clear motivation for the frequency
progression here. However, this progression, namely from low to high frequencies, is a
well-known component for the numerical reconstruction. We shall explain the reason in
Chapter 5, where the size of the radius of convergence is shown to evolve with frequency.
The stability results associated with the convergence gives rise to our multi-level, multi-
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frequency algorithm, where simultaneous progression of frequency and scale is employed,
see Section 6.1.

3.3.3 Numerical stability estimates for elastic media

In the elastic case, Beretta et al. (2013b, 2014) show that the reconstruction can be obtained
only if the Lamé parameters and the density are considered separately, still incorporating
the piecewise constant assumption for the models representation. Here we want to probe
numerically the stability constant in this elastic context. Hence we investigate the pro-
gression of the numerical estimates of the stability constant with frequency and scale. The
exact progression is not known but we conjecture similar behavior as in the acoustic case.

We designed a two-dimensional elastic case in order to compute numerical estimation
of the stability constant. It is based upon two sets of parameters, m0 and m1 defined by the
Lamé parameters and the density such that m0 = {λ0, µ0, ρ0} and similarly for m1. The
models used are given in Figure 3.4, where m0 is actually the Marmousi2 elastic model (see
Chapter 5 and 6). Then the computational estimates follow the same method as prescribed
in the Appendix A.
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Figure 3.4: Elastic media of size 17 × 3.5 km used for the numerical estimates of the stability
constant, m0 is the Marmousi2 model.

In Figure 3.5 we show the estimates of the stability constant with frequency in the
elastic case. We compare this evolution for different partitioning, in a similar fashion as
in Figure 3.2 for the acoustic case. The method for the model decomposition is given in
Section 3.4. Motivated by the work of Beretta et al. (2014), we only consider the Lamé
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parameter λ and µ.

0 2 4 6 8 10 12 14 16

105

1010

frequency (Hz)

C

(a) Stability estimates for λ.
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(b) Stability estimates for µ.

Figure 3.5: Evolution of the computational estimates of the stability constant depending on the
frequency for elastic media. The models chosen form0 andm1 are given Figure 3.4. We compare the
evolution for the Lamé parameters λ and µ. The blue circles ( ) employ the partition N = 530.
The red crosses ( ) employ the partition N = 2 226. The green pentagons ( ) employ the
partition N = 9 116. The orange squares ( ) employ the partition N = 36 975.

We see that the estimates associated with the elastic problem behaves similarly to the
acoustic one: they decrease with increasing frequencies, and increase with increasing scale.
It demonstrates that the relation between frequency and scale should not be restricted to
the acoustic situation. We later provide numerical experiments of reconstruction in the
acoustic and elastic framework in Chapter 6, based on this simultaneous progression.

3.4 Numerical representation of the model

An important aspect to obtain the stability result is the consideration of a piecewise con-
stant representation for the velocity, see Equations (3.5) and (3.6). In this section, we
review some numerical possibilities that have been implemented for the construction.

Remark 3.2. All of the representations that are subsequently presented have been imple-
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mented in the software developed to solve the seismic inverse problem, depicted in Chapter 4
and Appendix B. The illustrations we provide are two-dimensional for a better visualization
but all representations have been implemented to treat three-dimensional domains as well
(as it is used in the Appendix A).

3.4.1 Structured and unstructured representations

We illustrate the domain partition with a two-dimensional model, pictured in Figure 3.6. It
is actually the Marmousi2 P-wave speed that is later employed in numerical experiments.
It is of size 17 × 3.5 km with values between 1450 and 5500 m s−1. The model is origi-
nally represented via a structured architecture of 1701 × 351 nodes for a total of 597 051

coefficients.
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Figure 3.6: Initial model used for the illustration of model partition, it is the elastic Marmousi2
wave speed of size 17× 3.5 km. the velocity varies between 1450 and 5500 m s−1 and is represented
via 597 051 nodal coefficients.

The creation of the domain partition is said to be structured if the resulting subdo-
mains are homogeneous. In 2D, the domain is divided into nh horizontal sections and nv
consecutive vertical nodes. The new representation is the collection of the resulting subdo-
mains, where the coefficients are given by the average value of the original image. When
the number of consecutive nodes is given by a power of two, nh = nv = 2h, with h an
integer, it can actually be assimilated to Haar wavelets (Haar, 1911).

As an alternative we allow the possibility for unstructured decomposition. The pro-
cedure consists in creating subdomain as group of adjacent nodes which have values that
are close. In our method, the notion of ‘close’ is made via an automatic criterion decided
to reduce the amount of coefficients in the representation. This method allows much more
flexibility but is based upon an initial image for the decision. In Figures 3.7 and 3.8 we
compare the model decomposition with structured or unstructured decision, reducing the
total number of coefficients to less than 0.1% of the original scale.
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(b) Unstructured decomposition leading to 120 sub-
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Figure 3.7: Piecewise constant decomposition of the model pictured Figure 3.8 from structured
and unstructured decision resulting in about 0.02% of the original number of coefficients. The
subdomains are indicated with the white lines.
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(a) Structured decomposition resulting in 530 sub-
domains with piecewise constant representation.
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domains with piecewise constant representation.

Figure 3.8: Piecewise constant decomposition of the model pictured Figure 3.8 from structured
and unstructured decision resulting in about 0.08% of the original number of coefficients. The
subdomains are indicated with the white lines.

Due to the inherent lack of flexibility in the structured approach, it is not able to capture
the variation accurately. However, the unstructured decomposition provides interesting
structures in accordance with the original ones. We have drastically reduced the number
of coefficients and yet the structures are interestingly designed (benefiting from the large
upper layer of water where the velocity is constant).

The unstructured partition is naturally better suited for model representation, allowing
profound flexibility. However, in the context of inverse problem, there is no indication on
how to proceed to the decision. Indeed the initial subsurface guess does not usually have
any information and hence it is impossible to decide on the appropriate subdomains. In
the context of iterative minimization (see Chapter 4), we employ the gradient of the cost
function to decide on the partition. Yet the structured decision remains relevant in practice.
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3.4.2 Piecewise linear extension

The stability results we have presented necessitates a piecewise constant representation of
the velocity. However, in the case where Cauchy data are acquired instead of the DtoN map,
the results hold for piecewise linear decomposition, see Chapter 7. We simply illustrate the
extension of the decomposition to this case. Following the domain partition, the velocity is
represented with a linear function over each subdomain. The velocity is written as

c−2(x) =

N∑

k=1

Hk(x)χDk(x).

Taking the space variable x = {x1, . . . , xr} in dimension r, Hk is given by

Hk(x) = αk,0 +
r∑

j=1

αk,jxj .

The total number of coefficients to represent the model is (r + 1)N , i.e. 4N in three
dimensions and 3N in two dimensions.

The structured and unstructured decisions are applied similarly, now imposing linear
functions on the resulting subdomains. In Figure 3.9 we illustrate the structured and
unstructured piecewise linear decompositions where the total number of coefficient is about
0.25% of the original model given in Figure 3.6. In Figure 3.10 we compare piecewise
linear and piecewise constant unstructured decomposition resulting in the similar number
of coefficients.
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to 3× 470 = 1410 coefficients.

Figure 3.9: Piecewise linear decomposition of the model pictured Figure 3.8 from structured
and unstructured decision resulting in about 0.25% of the original number of coefficients. The
subdomains are indicated with the white lines.

We have illustrated the procedure for our model decomposition, which relies on piece-
wise constant or piecewise linear representations. It can be seen as relatively simple but it is
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(a) Unstructured decomposition leading to 359 sub-
domains with piecewise constant representation.
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(b) Unstructured decomposition leading to 357 sub-
domains with piecewise linear representation leading
to 3× 530 = 1590 coefficients.

Figure 3.10: Comparison of piecewise linear and piecewise constant decompositions of the model
pictured Figure 3.8 using unstructured decision resulting in about 0.06% of the original number of
coefficients. The subdomains are indicated with the white lines.

entirely motivated by the stability results. Numerically speaking, many possibilities can be
used to decompose a model in terms of wavelets (e.g., Mallat (2008)) and such techniques
have been employed, for example, in seismic tomography for the purpose of regularization
by Loris et al. (2007, 2010). For full waveform inversion, we mention the work of Yuan and
Simons (2014); Yuan et al. (2015).

Remark 3.3. In our applications, the relation between this model representation and the
way the model is taken into account for the resolution of the forward problem (numerical
discretization) is relatively simple. Indeed, the generated subdomains actually consist in
a group of mesh cells, and the parameter value is constant in each mesh cell. Because
our technique is employed to coarsen the representation, this approach is sufficient, see
Remark 7.1. For higher flexibility, we can mention the techniques where the model is allowed
to vary inside each mesh cell. It could certainly be used to obtain an higher correspondence
between the model representation and its numerical discretization.

3.5 Conclusion

In this chapter, we have studied the stability of the inverse problem associated with the
Helmholtz equation. The conditional Lipschitz type stability is obtained when considering
a piecewise constant representation of the model, and we have given analytical lower and
upper bounds for the underlying stability constant. The main result is delivered in the
Appendix A. It is obtained in the case where the full DtoN map is taken as the data, but
we demonstrate its validity in the geophysical framework with partial data. Motivated
by the stability analysis, we deploy a pairing between frequency and scale to apply for
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numerical reconstruction. The low frequencies suffer from the increase of the stability
constant, and low scale should be employed. On the other hand, higher frequencies, by
reducing the stability constant, allow the scale refinement and consequently improve the
resolution. The piecewise constant model partition is of importance, and for this purpose,
we have established structured and unstructured decisions. Unstructured partitions, by
their flexibility, provides much more contrast. However, the initial model can experience
limited a priori information, and the structured partition is not to discard.
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Article: Inverse boundary value problem for
the Helmholtz equation: quantitative

conditional Lipschitz stability estimates

E. Beretta, M. V. de Hoop, F. Faucher and O. Scherzer.

published in SIAM Journal on Mathematical Analysis, 48 (6): 3962–3983, 2016.

Key words. Inverse problems, Helmholtz equation, stability and convergence of numerical
methods.
AMS subject classifications. 35R30, 86A22, 65N12, 35J25.

Abstract. We study the inverse boundary value problem for the Helmholtz equation
using the Dirichlet-to-Neumann map at selected frequencies as the data. A conditional Lip-
schitz stability estimate for the inverse problem holds in the case of wavespeeds that are a
linear combination of piecewise constant functions (following a domain partition) and gives
a framework in which the scheme converges. The stability constant grows exponentially
as the number of subdomains in the domain partition increases. We establish an order
optimal upper bound for the stability constant. We eventually realize computational ex-
periments to demonstrate the stability constant evolution for three-dimensional wavespeed
reconstruction.
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A.1 Introduction

In this paper we study the inverse boundary value problem for the Helmholtz equation
using the Dirichlet-to-Neumann map at selected frequencies as the data. This inverse prob-
lem arises, for example, in reflection seismology and inverse obstacle scattering problems
for electromagnetic waves Bao and Li (2005b); Symes (2009); Bao and Triki (2010). We
consider wave speeds containing discontinuities.

Uniqueness of the mentioned inverse boundary value problem was established by Sylvester
and Uhlmann (1987) assuming that the wave speed is a bounded measurable function. This
inverse problem has been extensively studied from an optimization point of view. We men-
tion, in particular, the work of Ben-Hadj-Ali et al. (2008).

It is well known that the logarithmic character of stability of the inverse boundary value
problem for the Helmholtz equation Alessandrini (1988); Novikov (2011) cannot be avoided,
see also Hähner and Hohage (2001); Hohage (1997). In fact, Mandache (2001) proved that
despite of regularity a priori assumptions of any order on the unknown wavespeed, logarith-
mic stability is the best possible. However, conditional Lipschitz stability estimates can be
obtained: accounting for discontinuities, such an estimate holds if the unknown wavespeed
is a finite linear combination of piecewise constant functions with an underlying known do-
main partitioning Beretta et al. (2013a). It was obtained following an approach introduced
by Alessandrini and Vessella (2005) and further developed by Beretta and Francini (2011)
for Electrical Impedance Tomography (EIT) based on the use of singular solutions. If, on
one hand, this method allows to use partial data, on the other hand it does not allow to
find an optimal bound of the stability constant. Here, we revisit the Lipschitz stability
estimate for the full Dirichlet-to-Neumann map using complex geometrical optics (CGO)
solutions which give rise to a sharp upper bound of the Lipschitz constant in terms of the
number of subdomains in the domain partitioning. We develop the estimate in L2(Ω).

Unfortunately, the use of CGO’s solutions leads naturally to a dependence of the sta-
bility constant on frequency of exponential type. This is clearly far from being optimal
as it is also pointed out in the paper of Nagayasu et al. (2013). There the authors prove
a stability estimate, in terms of Cauchy data instead of the Dirichlet-to-Neumann map
using CGO solutions. They derive a stability estimate consisting of two parts: a Lipschitz
stability estimate and a Logarithmic stability estimate. When the frequency increases the
logarithmic part decreases while the Lipschitz part becomes dominant but with a stability
constant which blows up exponentially in frequency.

We can exploit the quantitative stability estimate, via a Fourier transform, in the cor-
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DIRICHLET-TO-NEUMANN MAP AS THE DATA

responding time domain inverse boundary value problem with bounded frequency data.
Datchev and de Hoop (2015) showed how to choose classes of non-smooth coefficient func-
tions, one of which is consistent with the class considered here, so that optimization formu-
lations of inverse wave problems satisfy the prerequisites for application of steepest descent
and Newton-type iterative reconstruction methods. The proof is based on resolvent esti-
mates for the Helmholtz equation. Thus, one can allow approximate localization of the
data in selected time windows, with size inversely proportional to the maximum allowed
frequency. This is of importance to applications in the context of reducing the complexity
of field data. We note that no information is lost by cutting out a (short) time window,
since the boundary source functions (and wave solutions), being compactly supported in
frequency, are analytic with respect to time. We cannot allow arbitrarily high frequencies
in the data. This restriction is reflected, also, in the observation by Blazek et al. (2013) that
the adjoint equation, which appears in the mentioned iterative methods, does not admit
solutions.

As a part of the analysis, we study the Fréchet differentiability of the direct problem
and obtain the frequency and domain partitioning dependencies of the relevant constants
away from the Dirichlet spectrum. Our results hold for finite fixed frequency data including
frequencies arbitrarily close to zero while avoiding Dirichlet eigenfrequencies; in view of the
estimates, inherently, there is a finest scale which can be reached. Finally, we estimate
the stability numerically and demonstrate the validity of the bounds, in particular in the
context of reflection seismology.

A.2 Inverse boundary value problem with the Dirichlet-to-
Neumann map as the data

A.2.1 Direct problem and forward operator

We describe the direct problem and some properties of the data, that is, the Dirichlet-to-
Neumann map. We will formulate the direct problem as a nonlinear operator mapping Fω
from L∞(Ω) to L(H1/2(∂Ω), H−1/2(∂Ω)) defined as

Fω(c−2) = Λω2c−2 ,
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where Λω2c−2 indicates the Dirichlet to Neumann operator. Indeed, at fixed frequency ω2,
we consider the boundary value problem,

{
(−∆− ω2c−2(x))u = 0, in Ω,

u = g on ∂Ω,

while Λω2c−2 : g → ∂u
∂ν |∂Ω, where ν denotes the outward unit normal vector to ∂Ω. In this

section, we will state some known results concerning the well-posedness of problem (A.2.1)
(see, for example, Gilbarg and Trudinger (1983)) and regularity properties of the nonlinear
map Fω. We will sketch the proofs of these results because we will need to keep track of
the dependencies of the constants involved on frequency. We invoke

Assumption A.1. There exist two positive constants B1, B2 such that

B1 ≤ c−2 ≤ B2 in Ω.

In the sequel of Section 2 C = C(a, b, c, . . . ) indicates that C depends only on the
parameters a, b, c, . . . and we will indicate different constants with the same letter C.

Proposition A.1. Let Ω be a bounded Lipschitz domain in R3, f ∈ L2(Ω), g ∈ H1/2(∂Ω)

and c−2 ∈ L∞(Ω) satisfying Assumption A.1. Then, there exists a discrete set Σc−2 :=

{λ̃n |λ̃n > 0, ∀n ∈ N} such that, for every ω2 ∈ C\Σc−2, there exists a unique solution
u ∈ H1(Ω) of {

(−∆− ω2c−2(x))u = f in Ω,

u = g on ∂Ω.

Furthermore, there exists a positive constant C such that

‖u‖H1(Ω) ≤ C
(

1 +
ω2

d(ω2,Σc−2)

)(
‖g‖H1/2(∂Ω) + ‖f‖L2(Ω)

)
, (A.1)

where C = C(Ω, B2) and d(ω2,Σc−2) indicates the distance of ω2 from Σc−2.

Proof. We first prove the result for g = 0. Consider the linear operators −∆ : H1
0 (Ω) →

H−1(Ω) and the multiplication operator

Mc−2 : L2(Ω)→ L2(Ω) ,

u→ c−2u
(A.2)

respectively. We can now consider the operator K = ∆−1Mc−2 : H1
0 (Ω) → H1

0 (Ω). The
equation

(−∆− ω2c−2(x))u = f .
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for u ∈ H1
0 (Ω) is equivalent to

(I − ω2K)u = ∆−1f (A.3)

Note that K : H1
0 (Ω) → H1

0 (Ω) is compact by Rellich–Kondrachov compactness theorem.
Furthermore, by Assumption A.1 and the properties of ∆−1 it follows that K is self-adjoint
and positive. Hence, K has a discrete set of positive eigenvalues {αn}n∈N such that αn → 0

as n → ∞. Let λ̃n := 1
αn
, n ∈ N and define Σc−2 := {λ̃n : n ∈ N} and let ω2 ∈ C\Σc−2 ,

and show that it satisfies the assumptions of this proposition. Then, by the Fredholm
alternative, there exists a unique solution u ∈ H1

0 (Ω) of (A.3).

To prove estimate (A.1) we observe that

u =

∞∑

n=1

〈u, en〉en, Ku =

∞∑

n=1

αn〈u, en〉en

where {en}n∈N is an orthonormal basis of L2(Ω). Hence we can rewrite (A.3) in the form
∞∑

n=1

(1− ω2αn)〈u, en〉en =
∞∑

n=1

〈h, en〉en where h = ∆−1f

Hence,

〈u, en〉 =
1

1− ω2

λ̃n

〈h, en〉, ∀n ∈ N

and

u =

∞∑

n=1

1

1− ω2

λ̃n

〈h, en〉en

so that

‖u‖L2(Ω) ≤
(

1 +
ω2

d(ω2,Σc−2)

)
‖h‖L2(Ω) ≤ C

(
1 +

ω2

d(ω2,Σc−2)

)
‖f‖L2(Ω)

where C = C(Ω, B2).

Now, by multiplying equation (A.1) with u, integrating by parts, using Schwartz’ in-
equality, Assumptions (A.1) and (A.2.1) it follows in the case g = 0:

‖∇u‖L2(Ω) ≤ C
(

1 +
ω2

d(ω2,Σc−2)

)
‖f‖L2(Ω)

Hence, by (A.2.1) and (A.2.1) we finally get

‖u‖H1(Ω) ≤ C
(

1 +
ω2

d(ω2,Σc−2)

)
‖f‖L2(Ω).

If g is not identically zero then we reduce the problem to the previous case by considering
v = u − g̃ where g̃ ∈ H1(Ω) is such that g̃ = g on ∂Ω and ‖g̃‖H1(Ω) ≤ ‖g‖H1/2(∂Ω) and we
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derive easily the estimate

‖u‖H1(Ω) ≤ C
(

1 +
ω2

d(ω2,Σc−2)

)
(‖f‖L2(Ω) + ‖g‖H1/2(∂Ω))

which concludes the proof.

The constants appearing in the estimate of Proposition A.1 depends on c−2 and Σc−2

which are unknown. To our purposes it would be convenient to have constants depending
only on a priori parameters B1, B2 and other known parameters. Let us denote by Σ0 the
spectrum of −∆. Then, we have the following

Proposition A.2. Suppose that the assumptions of Proposition A.1 are satisfied. Let
{λn}n∈N denote the Dirichlet eigenvalues of −∆. Then, for any n ∈ N,

λn
B2
≤ λ̃n ≤

λn
B1
.

If ω2 is such that,

0 < ω2 <
λ1

B2
, (A.4)

or, for some n ≥ 1,
λn
B1

< ω2 <
λn+1

B2
, (A.5)

then there exists a unique solution u ∈ H1(Ω) of Problem A.2.1 and the following estimate
holds

‖u‖H1(Ω) ≤ C
(
‖g‖H1/2(∂Ω) + ‖f‖L2(Ω)

)
,

where C = C(B1, B2, ω
2,Σ0).

Proof. To derive estimate (A.2) we consider the Rayleigh quotient related to equation
(A.2.1) ∫

Ω |∇v|2∫
Ω c
−2v2

.

By Assumption A.1, for any non trivial v ∈ H1
0 (Ω) we have

1

B2

∫
Ω |∇v|2∫

Ω v
2
≤
∫

Ω |∇v|2∫
Ω c
−2v2

≤ 1

B1

∫
Ω |∇v|2∫

Ω v
2

.

Now, we apply Courant-Rayleigh minimax principle (see for instance (Davies, 1995, The-
orem 4.5.1), where the infinite dimensional Courant-Rayleigh minimax principle has been
considered): The following arguments are similar as in the simple one-dimensional Example
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of Davies’ book (Davies, 1995, Example 4.6.1). Due to Assumption A.1 the Hilbert space

L2
c(Ω) = {v :

∫

Ω
c−2v2 <∞} ,

with norm ‖v‖L2
c

=
∫

Ω v
2c−2 is equivalent to L2(Ω).

λ̃n := inf
{ũ1,··· ,ũn∈H1

0 (Ω)}
sup

v∈span{ũ1,··· ,ũn}:‖v‖L2
c
≤1

∫
Ω |∇v|2∫
Ω c
−2v2

,

λn := inf
{u1,··· ,un∈H1

0 (Ω)}
sup

v∈span{u1,··· ,un}:‖v‖L2≤1

∫
Ω |∇v|2∫

Ω v
2

.

Note that ‖v‖L2 ≤ 1 implies that ‖v‖2L2
c
≤ B2 and that L2

c(Ω) = L2(Ω). Therefore

λn ≤ inf
{u1,··· ,un∈H1

0 (Ω)}
sup

v∈span{u1,··· ,un}:‖v‖2L2
c
≤B2

∫
Ω |∇v|2∫

Ω v
2

.

Now, using the scale invariance of
∫
Ω |∇v|2∫

Ω v
2 and that c−2 ≤ B2, we get

λn ≤ B2 inf
{u1,··· ,un∈H1

0 (Ω)}
sup

v∈span{u1,··· ,un}:‖v‖L2
c
≤1

∫
Ω |∇v|2∫
Ω c
−2v2

= B2λ̃n .

To get lower bound estimate for λ̃n observe that if ‖v‖L2
c
≤ 1 then ‖v‖2L2 ≤ 1

B1
. Hence

λ̃n ≤ inf
{ũ1,··· ,ũn∈H1

0 (Ω)}
sup

v∈span{ũ1,··· ,ũn}:‖v‖2L2≤ 1
B1

∫
Ω |∇v|2∫
Ω c
−2v2

.

Now, using the scale invariance of
∫
Ω |∇v|2∫

Ω v
2 and that c−2 ≥ B1, we get

λ̃n ≤ inf
{ũ1,··· ,ũn∈H1

0 (Ω)}
sup

v∈span{ũ1,··· ,ũn}:‖v‖L2≤1

∫
Ω |∇v|2∫
Ω c
−2v2

=
1

B1
λn .

Thus we have shown that
λn
B2
≤ λ̃n ≤

λn
B1
, ∀n ∈ N.

Hence, we have well-posedness of problem (A.2.1) if we select an ω2 satisfying (A.4) or
(A.5) and the claim follows.

We observe that in order to derive the uniform estimates of Proposition A.2 we need to
assume that either the frequency is small (A.4) or that the oscillation of c−2 is sufficiently
small (A.5). This observation can also been found in Davies (1995).

In the seismic application we have in mind we might know the spectrum of some
reference wavespeed c−2

0 . The following local result holds
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Proposition A.3. Let Ω and c−2
0 satisfy the assumptions of Proposition A.1 and let ω2 ∈

C\Σc−2
0

where Σc−2
0

is the Dirichlet spectrum of equation (A.2.1) corresponding to c−2
0 .

Then, there exists δ = δ(Ω, ω2, B2,Σc−2
0

) > 0 such that, if

‖c−2 − c−2
0 ‖L∞(Ω) ≤ δ,

then ω2 ∈ C\Σc−2 and the solution u of Problem A.1 corresponding to c−2 satisfies

‖u‖H1(Ω) ≤ C
(

1 +
ω2

d(ω2,Σc−2
0

)

)(
‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)
,

C = C(Ω, B2).

Proof. Let δc := c−2− c−2
0 and consider u0 ∈ H1(Ω) the unique solution of A.1 for c−2

0 and
consider the problem

{
−∆v − ω2c−2

0 v − ω2δcv = ω2u0δc in Ω,

v = 0, on ∂Ω.

Let now

L := −∆− ω2c−2
0

then, by assumption, it is invertible from H1
0 (Ω) to L2(Ω) and we can rewrite problem

(A.2.1) in the form

(I −K)v = h, (A.6)

where K = ω2L−1Mδc and Mδc is the multiplication operator defined in (A.2) and h =

L−1(ω2u0δc). Observe now that from (A.1) ‖L−1‖ ≤ C(1 + ω2

d0
) with C = C(Ω, B2) and

where d0 = dist(ω2,Σc−2
0

). Hence, we derive

‖K‖ ≤ ω2‖L−1‖‖Mδc‖ ≤ ω2‖L−1‖δ ≤ Cω2(1 +
ω2

d0
)δ.

Hence, choosing δ = 1
2(Cω2(1 + ω2

d0
))−1 the bounded operator K has norm smaller than

one. Hence, I−K is invertible and there exists a unique solution v of (A.6) in H1
0 satisfying

(A.1) with C = C(B2, ω
2,Ω, d0) and since u = u0 + v the statement follows.

Let ω2 be such that either

0 < ω2 <
λ1

B2
,

or for some n ≥ 1
λn
B1

< ω2 <
λn+1

B2
,
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and let

W := {c−2 ∈ L∞(Ω) : B1 ≤ c−2 ≤ B2} .

Then the direct operator

Fω :W → L(H1/2(∂Ω), H−1/2(∂Ω)),

c−2 7→ Λω2c−2 ,

is well defined.

We will examine regularity properties of Fω in the following lemmas. We will show the
Fréchet differentiability of it.

Lemma A.1 (Fréchet differentiability). Let c−2 ∈ L∞(Ω) satisfy Assumption (A.1). As-
sume that ω2 ∈ C\Σc−2 . Then, the direct operator Fω is Fréchet differentiable at c−2 and
its Fréchet derivative DFω(c−2) satisfies

‖DFω[c−2]‖L(L∞(Ω),L(H1/2(∂Ω),H−1/2(∂Ω))) ≤ Cω2

(
1 +

ω2

d(ω2,Σc−2)

)2

where C = C(Ω, B2).

Proof. Consider c−2 + δc−2. Then, from Proposition A.3, if ‖δc−2‖L∞(Ω) is small enough,
ω2 /∈ Σc−2+δc−2 . An application of Alessandrini’s identity then gives

〈(Λω2(c−2+δc−2) − Λω2c−2)g , h〉 = ω2

∫

Ω
δc−2 uv dx,

where where 〈·, ·〉 is the dual pairing with respect to H−1/2(∂Ω) and H1/2(∂Ω) and u and
v solve the boundary value problems,

{
(−∆− ω2(c−2 + δc−2))u = 0, x ∈ Ω,

u = g, x ∈ ∂Ω,

and {
(−∆− ω2c−2)v = 0, x ∈ Ω,

v = h, x ∈ ∂Ω,

respectively. We first show that the map Fω is Fréchet differentiable and that the Fréchet
derivative is given by

〈DFω[c−2](δc−2)g , h〉 = ω2

∫

Ω
δc−2 ũv dx,
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where ũ solves the equation
{

(−∆− ω2c−2)ũ = 0, x ∈ Ω,

ũ = g, x ∈ ∂Ω.

In fact, by (A.2.1), we have that

〈(Λω2(c−2+δc−2) − Λω2c−2)g , h〉 − ω2

∫

Ω
δc−2 ũv dx = ω2

∫

Ω
δc−2 (u− ũ)v dx.

We note that u− ũ solves the equations
{

(−∆− ω2c−2)(u− ũ) = −ω2δc−2 u, x ∈ Ω,

u− ũ = 0, x ∈ ∂Ω.

Using the fact that u − ũ and v are in H1(Ω) and that δc−2 ∈ L∞(Ω) and applying
Cauchy-Schwarz inequality, we get

∣∣∣∣ω2

∫

Ω
δc−2 (u− ũ)v dx

∣∣∣∣ ≤ ω2‖δc−2‖L∞(Ω)‖u− ũ‖L2(Ω)‖v‖L2(Ω).

Finally, using the stability estimates of Proposition A.1 applied to u− ũ and to v and the
stability estimates of Proposition A.3 applied to u we derive
∣∣∣∣ω2

∫

Ω
δc−2 (u− ũ)v dx

∣∣∣∣ ≤ Cω4

(
1 +

ω2

d(ω2,Σc−2)

)3

‖δc−2‖2L∞(Ω)‖g‖H1/2(∂Ω)‖h‖H1/2(∂Ω).

Hence ∣∣∣∣〈(Λω2(c−2+δc−2) − Λω2c−2)g , h〉 − ω2

∫

Ω
δc−2 ũv dx

∣∣∣∣

≤Cω4

(
1 +

ω2

d(ω2,Σc−2)

)3

‖δc−2‖2L∞(Ω)‖g‖H1/2(∂Ω)‖h‖H1/2(∂Ω),

which proves differentiability.
Finally, by

〈DFω[c−2](δc−2)g , h〉 = ω2

∫

Ω
δc−2 ũv dx,

and we get
∣∣〈DFω[c−2](δc−2)g , h〉

∣∣ ≤ω2‖δc−2‖L∞(Ω)‖ũ‖L2(Ω)‖v‖L2(Ω)

≤ω2

(
1 +

ω2

d(ω2,Σc−2)

)2

‖δc−2‖L∞(Ω)‖g‖H1/2(∂Ω)‖h‖H1/2(∂Ω).

from which (A.1) follows.
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A.2.2 Conditional quantitative Lipschitz stability estimate

Let B2, r0, r1, A, L,N be positive with N ∈ N, N ≥ 2, r0 < 1. In the sequel we will refer
to these numbers as to the a priori data. To prove the results of this section we invoke the
following common assumptions

Assumption A.2. Ω ⊂ R3 is a bounded domain such that

|x| ≤ Ar1, ∀x ∈ Ω.

Moreover,

∂Ω of Lipschitz class with constants r1 and L.

Let DN be a partition of Ω given by

DN ,

{
{D1, D2, . . . , DN} |

N⋃

j=1

Dj = Ω , (Dj ∩Dj′)
◦ = ∅, j 6= j′

}

such that

{∂Dj}Nj=1 is of Lipschitz class with constants r0 and L.

Assumption A.3. The function c−2 ∈ WN , that is, it satisfies

B1 ≤ c−2 ≤ B2, in Ω

and is of the form

c−2(x) =
N∑

j=1

cjχDj (x),

where cj , j = 1, . . . , N are unknown numbers and {D1, . . . , DN} ∈ DN .

Assumption A.4. Assume

0 < ω2 <
λ1

B2
,

or, for some n ≥ 1,
λn
B1

< ω2 <
λn+1

B2
.

Under the above assumptions we can state the following preliminary result
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Lemma A.2. Let Ω and DN satisfy Assumption (A.2) and let c−2 ∈ WN . Then, for every
s′ ∈ (0, 1/2), there exists a positive constant C with C = C(L, s′) such that

‖c−2‖Hs′ (Ω) ≤ C(L, s′)
1

rs
′

0

‖c−2‖L2(Ω).

Proof. The proof is based on the extension of a result of Magnanini and Papi (1985) to the
three-dimensional setting. In fact, following the argument in Magnanini and Papi (1985),
one has that

‖χDj‖2Hs′ (Ω)
≤ 16π

(1− 2s′)(2s′)1+2s′
|Dj |1−2s′ |∂Dj |2s

′
. (A.7)

We now use the fact that {Dj}Nj=1 is a partition of disjoint sets of Ω to show the following
inequality

‖c−2‖2
Hs′ (Ω)

≤ 2

N∑

j=1

c2
j‖χDj‖2Hs′ (Ω)

(A.8)

In fact, in order to prove (A.8) recall that

‖c−2‖2
Hs′ (Ω)

=

∫

Ω

∫

Ω

|∑N
j=1 cj(χDj (x)− χDj (y))|2

|x− y|3+2s′
dx dy

and observe that, since the {Dj}Nj=1 is a partition of disjoint sets of Ω, we get

|
N∑

j=1

cj(χDj (x)− χDj (y))|2 =

N∑

j=1

c2
j (χDj (x)− χDj (y))2 −

∑

i 6=j
cicjχDi(x)χDj (y)

Again, by the fact that the {Dj}Nj=1 are disjoint sets, we have

∑

i 6=j
|cicj |χDi(x)χDj (y) ≤

∑

i 6=j

c2
i + c2

j

2
χDi(x)χDj (y)

=
∑

i 6=j

c2
i

2
(χDi(x)− χDi(y))2χDi(x)χDj (y) +

∑

i 6=j

c2
j

2
(χDj (x)− χDj (y))2χDi(x)χDj (y)

≤
∑

i 6=j

c2
i

2
(χDi(x)− χDi(y))2χDj (y) +

∑

i 6=j

c2
j

2
(χDj (x)− χDj (y))2χDi(x)

≤
N∑

i=1

c2
i

2
(χDi(x)− χDi(y))2

N∑

j=1

χDj (y) +
N∑

j=1

c2
j

2
(χDj (x)− χDj (y))2

N∑

i=1

χDi(y)

≤
N∑

i=1

c2
i

2
(χDi(x)− χDi(y))2 +

N∑

j=1

c2
j

2
(χDj (x)− χDj (y))2

=

N∑

i=1

c2
i (χDi(x)− χDi(y))2
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where we have used the fact that
∑N

i=1 χDi ≤ 1. So, we have derived that

|
N∑

j=1

cj(χDj (x)− χDj (y))|2 ≤ 2

N∑

j=1

c2
j (χDj (x)− χDj (y))2

from which it follows that

‖c−2‖2
Hs′ (Ω)

=

∫

Ω

∫

Ω

|∑N
j=1 cj(χDj (x)− χDj (y))|2

|x− y|3+2s′
dx dy

≤ 2

∫

Ω

∫

Ω

∑N
j=1 c

2
j (χDj (x)− χDj (y))2

|x− y|3+2s′
dx dy

≤ 2
N∑

j=1

c2
j

∫

Ω

∫

Ω

(χDj (x)− χDj (y))2

|x− y|3+2s′
dx dy = 2

N∑

j=1

c2
j‖χDj‖2Hs′ (Ω)

which proves (A.8). so that finally from (A.8), (A.7) and from Assumption (A.2) we get

‖c−2‖2
Hs′ (Ω)

≤ 2

N∑

j=1

c2
j‖χDj‖2Hs′ (Ω)

≤ C(s′)
N∑

j=1

c2
j |Dj |

( |∂Dj |
|Dj |

)2s′

≤ C(L, s′)

r2s′
0

‖c−2‖2L2(Ω).

We are now ready to state and prove our main stability result

Proposition A.4. Assume (A.2) and let c−1
1 , c−1

2 ∈ WN and let ω2 satisfy Assumption
A.4. Then, there exists a positive constant K, depending on A, r1, L, such that,

‖c−2
1 − c−2

2 ‖L2(Ω) ≤
1

ω2
eK(1+ω2B2)(|Ω|/r3

0)
4
7 ‖Λω2c−2

1
− Λω2c−2

2
‖L(H1/2(∂Ω),H−1/2(∂Ω)).

Proof. To prove our stability estimate we follow the idea of Alessandrini of using CGO
solutions but we use slightly different ones than those introduced in Sylvester and Uhlmann
(1987) and in Alessandrini (1988) to obtain better constants in the stability estimates
as proposed by Feldman et al. (2015). We also use the estimates proposed in Feldman
et al. (2015) (see Theorem 4.4) and due to Hähner (1996) concerning the case of bounded
potentials.

In fact, by Theorem 4.3 of Feldman et al. (2015), since c−2 ∈ L∞(Ω), ‖c−2‖L∞(Ω) ≤ B2,
there exists a positive constant C = C(ω2, B2, A, r1) such that for every ζ ∈ C3 satisfying
ζ · ζ = 0 and |ζ| ≥ C the equation

−∆u− ω2c−2u = 0
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has a solution of the form

u(x) = eix·ζ(1 +R(x))

where R ∈ H1(Ω) satisfies

‖R‖L2(Ω) ≤
C

|ζ| , ‖∇R‖L2(Ω) ≤ C.

Let ξ ∈ R3 and let ω̃1 and ω̃2 be unit vectors of R3 such that {ω̃1, ω̃2, ξ} is an orthogonal
set of vectors of R3 . Let s be a positive parameter to be chosen later and set for k = 1, 2,

ζk =





(−1)k−1 s√
2
(
√

(1− |ξ|2
2s2

)ω̃1 + (−1)k−1 1√
2s
ξ + iω̃2) for |ξ|√

2s
< 1,

(−1)k−1 s√
2
((−1)k−1 1√

2s
ξ + i(

√
( |ξ|

2

2s2
− 1)ω̃1 + ω̃2)) for |ξ|√

2s
≥ 1.

Then an straightforward computation gives

ζk · ζk = 0

for k = 1, 2 and

ζ1 + ζ2 = ξ.

Furthermore, for k = 1, 2,

|ζk| =
{

s for |ξ|√
2s
< 1,

|ξ|√
2

for |ξ|√
2s
≥ 1.

Hence,

|ζk| = max{s, |ξ|√
2
}.

Then, by Theorem 4.3 of Feldman et al. (2015), for |ζ1|, |ζ2| ≥ C1 = max{C0ω
2B2, 1},

with C0 = C0(A, r1), there exist u1, u2, solutions to −∆uk − ω2c−2
k uk = 0 for k = 1, 2

respectively, of the form

u1(x) = eix·ζ1(1 +R1(x)), u2(x) = eix·ζ2(1 +R2(x))

with

‖Rk‖L2(Ω) ≤
C0

√
|Ω|

s
ω2B2

and

‖∇Rk‖L2(Ω) ≤ C0

√
|Ω|ω2B2

for k = 1, 2. It is common in the literature to use estimates which contain
√
|Ω|; Different

estimates in terms of |Ω| are possible and just change the leading constant C0.
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Consider again Alessandrini’s identity
∫

Ω
ω2(c−2

1 − c−2
2 )u1u2dx = 〈(Λ1 − Λ2)u1|∂Ω, u2|∂Ω〉,

where uk ∈ H1(Ω) is any solution of −∆uk − ω2c−2
k uk = 0 and Λk = Λω2c−2

k
for k = 1, 2.

Inserting the solutions (A.2.2) in Alessandrini’s identity we derive
∣∣∣∣
∫

Ω
ω2(c−2

1 − c−2
2 )eiξ·xdx

∣∣∣∣

≤‖Λ1 − Λ2‖‖u1‖H1/2(∂Ω)‖u2‖H1/2(∂Ω) +

∣∣∣∣
∫

Ω
ω2(c−2

1 − c−2
2 )eiξ·x(R1 +R2 +R1R2)dx

∣∣∣∣

≤‖Λ1 − Λ2‖‖u1‖H1(Ω)‖u2‖H1(Ω) + E(‖R1‖L2(Ω) + ‖R2‖L2(Ω) + ‖R1‖L4(Ω)‖R2‖L4(Ω)).

where E := ‖ω2(c−2
1 − c−2

2 )‖L2(Ω). By (A.2.2), (A.2.2), (A.2.2) and since Ω ⊂ B2R(0) we
have

‖uk‖H1(Ω) ≤ C
√
|Ω|(s+ |ξ|)eAr1(s+|ξ|), k = 1, 2.

Let s ≥ C2 so that s + |ξ| ≤ eAr1(s+|ξ|). Then, for s ≥ C3 = max(C1, C2), using (A.2.2),
(A.2.2) and the standard interpolation inequality (‖u‖L4(Ω) ≤ ‖u‖3/4L6(Ω)

‖u‖1/4
L2(Ω)

) we get

|ω2(c−2
1 − c−2

2 )̂ (ξ)| ≤ C
√
|Ω|
(
e4Ar1(s+|ξ|)‖Λ1 − Λ2‖+

ω2B2E

s

)
(A.9)

where the ω2c−2
k ’s have been extended to all R3 by zero andˆdenotes the Fourier transform.

Hence, from (A.9), we get
∫

|ξ|≤ρ
|ω2(c−2

1 − c−2
2 )̂ (ξ)|2dξ ≤ C|Ω|ρ3

(
e8Ar1(s+ρ)‖Λ1 − Λ2‖2 +

ω4B2
2E

2

s2

)

and hence

‖ω2(c−2
1 − c−2

2 )̂ ‖2L2(R3) ≤ C|Ω|ρ3

(
e8Ar1(s+ρ)‖Λ1 − Λ2‖2 +

ω4B2
2E

2

s2

)

+

∫

|ξ|≥ρ
|ω2(c−2

1 − c−2
2 )̂ (ξ)|2 dξ

where C = C(A, r1). By (A.2) and (A.8) we have that

‖ω2(c−2
1 − c−2

2 )‖2
Hs′ (Ω)

≤ C

r2s′
0

E2,

where C depends on L, s′ and hence

ρ2s′
∫

|ξ|≥ρ
|ω2(c−2

1 − c−2
2 )̂ (ξ)|2 dξ ≤

∫

|ξ|≥ρ
|ξ|2s′ |ω2(c−2

1 − c−2
2 )̂ (ξ)|2 dξ

≤
∫

R3

(1 + |ξ|2)s
′ |ω2(c−2

1 − c−2
2 )̂ (ξ)|2 dξ ≤ C

r2s′
0

E2.
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Hence, we get ∫

|ξ|≥ρ
|ω2(c−2

1 − c−2
2 )̂ (ξ)|2 dξ ≤ CE2

r2s′
0 ρ2s′

for every s′ ∈ (0, 1/2). Inserting last bound in (A.2.2) we derive

‖ω2(c−2
1 − c−2

2 )̂ ‖2L2(R3) ≤ C
(
ρ3|Ω|e8Ar1(s+ρ)‖Λ1 − Λ2‖2 + ρ3|Ω|ω

4B2
2E

2

s2
+

E2

r2s′
0 ρ2s′

)
.

where C = C(L, s′). To make the last two terms in the right-hand side of the inequality of
equal size we pick up

3
√
|Ω|ρ =

( |Ω|
r3

0

) 2s′
3(3+2s′)

(
1

α

) 1
3+2s′

s
2

3+2s′

with α = max{1, ω4B2
2}. Then, by Assumption A.2 and observing that we might assume

without loss of generality that |Ω|
r3
0
> 1. In fact, if this is not the case we can choose a

smaller value of r0 so that the condition is satisfied.

‖ω2(c−2
1 − c−2

2 )‖2L2(Ω) ≤ CE2

( |Ω|
r3

0

) 2s′
3+2s′


e

C4(
|Ω|
r30

)
2s′

3(3+2s′) s
(‖Λ1 − Λ2‖

E

)2

+
( α
s2

) 2s′
3+2s′




for s ≥ C3 and where C depends on s′, L,A, r1 and C4 depends on L,A, r1. We now make
the substitution

s =
1

C4( |Ω|
r3
0

)
2s′

3(3+2s′)

∣∣∣∣log
‖Λ1 − Λ2‖

E

∣∣∣∣

where we assume that

‖Λ1 − Λ2‖
E

< c := e
−C̄ max{1,ω2B2}( |Ω|

r30
)

2s′
3(3+2s′)

with C̄ = C̄(R) in order that the constraint s ≥ C3 is satisfied. Under this assumption,

‖ω2(c−2
1 − c−2

2 )‖L2(Ω) ≤ C(
√
α)

2s′
3+2s′

( |Ω|
r3

0

) 2s′
3+2s′

9+10s′
6(3+2s′)

E



∣∣∣∣log
‖Λ1 − Λ2‖

E

∣∣∣∣
− 2s′

3+2s′




where C = C(L, s′, A, r1) and we can rewrite last inequality in the form

E ≤ C(1 + ω2B2)
2s′

3+2s′

( |Ω|
r3

0

) 2s′
3+2s′

9+10s′
6(3+2s′)

E



∣∣∣∣log
‖Λ1 − Λ2‖

E

∣∣∣∣
− 2s′

3+2s′




which gives

E ≤ e
C(1+ω2B2)(

|Ω|
r30

)
9+10s′

6(3+2s′)

‖Λ1 − Λ2‖
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where C = C(L, s′, A, r1). On the other hand if

‖Λ1 − Λ2‖
E

≥ c,

then

‖ω2(c−2
1 − c−2

2 )‖L2(Ω) ≤ c−1‖Λ1 − Λ2‖ ≤ e
C̄(1+ω2B2)

(
|Ω|
r30

) 1
3(3+2s′)

‖Λ1 − Λ2‖

Hence, from (A.2.2) and (A.2.2) and recalling that s′ ∈ (0, 1
2), we have that

E ≤ e
C(1+ω2B2)(

|Ω|
r30

)
9+10s′

6(3+2s′)

‖Λ1 − Λ2‖

Choosing s′ = 1
4 , we derive

‖c−2
1 − c−2

2 ‖L2(Ω) ≤
1

ω2
eK(1+ω2B2)(|Ω|/r3

0)
4
7 ‖Λ1 − Λ2‖

where K = K(L,A, r1, s
′) and the claim follows.

Remark A.1. Here we state an L∞-stability estimate, in contrast to the L2-stability esti-
mate in Proposition A.4.

Observing that

1√
|Ω|
‖c−2

1 − c−2
2 ‖L2(Ω) ≤ ‖c−2

1 − c−2
2 ‖L∞(Ω) ≤

C

r
3/2
0

‖c−2
1 − c−2

2 ‖L2(Ω),

where C = C(L), and we immediately get the following stability estimate in the L∞ norm

‖c−2
1 − c−2

2 ‖L∞(Ω) ≤
C

ω2
eK(1+ω2B2)(|Ω|/r3

0)
4
7 ‖Λ1 − Λ2‖

with C = C(L).

Remark A.2. In Beretta et al. (2013a) the following lower bound of the stability constant
has been obtained in the case of a uniform polyhedral partition DN

CN ≥
1

4ω2
eK1N

1
5

Choose a uniform cubical partition DN of Ω of mesh size r0. Then,

|Ω| = Nr3
0 (A.10)

and estimate (A.4) of Proposition A.4 gives

CN =
1

ω2
eK(1+ω2B2)N

4
7 ,
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which proves a sharp bound on the Lipschitz constant with respect to N when the global DtN
map is known. In Beretta et al. (2013a) a Lipschitz stability estimate has been derived in
terms of the local DtN map using singular solutions. This type of solutions allows to recover
the unknown piecewise constant wavespeeds by determining it on the outer boundary of the
domain and then, by propagating the singularity inside the domain, to recover step by step
the wavespeed on the interface of all subdomains of the partition. This iterative procedure
does not lead to sharp bounds of the Lipschitz constant appearing in the stability estimate. It
would be interesting if one can get a better bound of the Lipschitz constant using oscillating
solutions.

Remark A.3. In Lemma A.1 we have seen that Fω is Fréchet differentiable with Lipschitz
derivative DFω for which we have derived an upper bound in terms of the apriori data.
From the stability estimates we can easily derive the following lower bound

min
c−2∈WN ; h∈RN , ‖h‖L∞(Ω)=1

‖DFω[c−2]h‖∗ ≥ ω2e
−K(1+ω2B2)(

|Ω|
r30

)4/7

.

where K = K(L,A, r1) and ‖ · ‖∗ indicates the norm in L(H1/2(∂Ω), H−1/2(∂Ω)) i.e.

‖T‖∗ = sup{〈Tg, f〉| : g, f ∈ H1/2(∂Ω), ‖g‖H1/2(∂Ω) = ‖f‖H1/2(∂Ω) = 1}

In fact, by the injectivity of DFω

min
c−2∈WN ; h∈RN , ‖h‖L∞(Ω)=1

‖DFω[c−2]h‖∗ = m0/2 > 0

Then, there exists h0 satisfying ‖h0‖L∞(Ω) = 1 and c−2
0 ∈ WN such that

‖DFω[c−2
0 ]h0‖∗ ≤ m0 .

Hence, by the definition of ‖ · ‖∗ it follows that

∣∣〈DFω[c−2
0 ](h0)g, f〉

∣∣ =

∣∣∣∣
∫

Ω
h0ũ0v0

∣∣∣∣ ≤ m0‖ũ0‖H1/2(∂Ω)‖v0‖H1/2(∂Ω)

where ũ0 and v0 are solutions to the equation (−∆− ω2c−2
0 )u = 0 in Ω with boundary data

g and f , respectively. Proceeding like in the proof of the stability result (Proposition A.4)
and Remark A.1 we derive that

1 = ‖h−2
0 ‖L∞(Ω) ≤

1

ω2
e
K(1+ω2B2)(

|Ω|
r30

)4/7

m0

which gives the lower bound (A.3).
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A.3 Computational experiments

In this section, we numerically compute the stability constant for the inverse problem
associated with the Dirichlet-to-Neumann map. We illustrate the stability behavior and
compare it with the analytical bounds derived in Section A.2. The estimates we provide
here are obtained from the definition of the stability constant,

‖c−2
1 − c−2

2 ‖2 < C‖Fω(c−2
1 )− Fω(c−2

2 )‖2, (A.11)

where ‖c−2
1 − c−2

2 ‖ denotes the L2-norm of the functions from the finite dimensional Ansatz
space. In particular, we consider here a geophysical example of reconstruction where normal
data are collected on the boundary. In this situation c1 and c2 are assimilated to two differ-
ent wavespeeds. Hence the boundary value problem A.2.1 corresponds to the propagation
of acoustic wave in the media for a boundary source g using the wavespeeds c1 and c2 re-
spectively. In our experiments, Gaussian shaped (spatial) source functions (see Figure A.1)
are applied. Then the normal data (measurements of the normal derivative of the field)
are acquired on the boundary in order to generate the forward operator. The numerical
stability estimates are finally obtained by the knowledge of all quantities of equation (A.11).

In Remark A.2, we have formulated the stability constant depending on the number of
cubical partitions N in the model representation (equation (A.10)). This situation is well
adapted for numerical applications where the domain is commonly discretized. Hence we
want to verify the (exponential) dependence of the stability constant with N .
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Figure A.1: Illustration of the source shape for a localized boundary source.

The model (assimilated to a wave speed here) is defined on a cubical (structured)
domain partition of a rectangular block. With increasing N , the size of the cubes decreases,
possibly non uniformly. We use piecewise constant functions on the cubes to define the wave
speeds following the main assumption for the Lipschitz stability to hold. Such a partition
can be related to Haar wavelets, where N determines the scale. These naturally introduce
approximate representations, that is, when the scale of the approximation is coarser than
the finest scale contained in the model.
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In order to solve the forward problem, the numerical discretization of the operator is
realized using discontinuous Galerkin method, where Dirichlet boundary conditions are in-
voked. The Dirichlet sources at the top boundary introduce Identity block in the discretized
Helmholtz operator and give the following linear problem

(
Aii Ai∂

A∂i A∂∂

)(
ui

u∂

)
=

(
Aii Ai∂

0 Id

)(
ui

u∂

)
=

(
0

g

)
,

where A represents the discretized operator, i labels interior points and ∂ labels bound-
ary points, g has values at the source location and is zero elsewhere. This system verifies
u∂ = u|∂Ω = g (i.e. Dirichlet boundary condition) and Aiiui + Ai∂u|∂Ω = 0. The normal
derivative data are generated by taking the normal derivative of the solution wave field u
on the surface.

Our experiments use a three-dimensional model of size 2.55×1.45×1.22km. The wave
sepeed c1 is viewed as a reference model (which is known in this test case) and is represented
Figure A.2 (courtesy of Statoil). We also illustrate the different partitions of a model and
the notion of approximation. Obviously the larger the number of subdomains is, the more
precise will the representation be.

For the computation of the stability estimates we consider c2 as the model shown in
Figure A.3. This setup can be associated with the ‘true’ subsurface Figure A.2 and starting
model Figure A.3. In this context we have chosen the initial guess with no knowledge of
any structures by simply considering a one-dimensional variation in depth.

A.3.1 Estimates using the full Dirichlet-to-Neumann map

We consider the full data case where the Gaussian sources (see Figure A.1) are positioned
on each surface following a regular map. For each source, the data are acquired all over the
boundary. We introduce a total of 630 sources and 76538 data points for each.

At a selected partition (number of domains) and frequency, we simulate the data for
the two media c1 and c2 and compute the difference, from which we deduce the stability
constant following equation (A.11).The main difference with the standard seismic setup is
that we consider data on all the boundary and not only at the top. This last case will be
mentioned in Subsection A.3.2.

The numerical estimates for the stability constant C should depend on the number of
domains N following the expression of the lower and upper bounds defined in Remark A.2,
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(a) Partition using N = 2, 880 domains.
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(b) Partition using N = 1, 527, 168 domains.

Figure A.2: Three-dimensional representations and horizontal sections at 800m depth of the refer-
ence wave speed (c1) using different partition, i.e. scales. Every scale has a structured (rectangular)
decomposition using piecewise constant. The size of the rectangular boxes defines the scale of the
wave speed.

equations (A.2) and (A.2). Thus we fix the frequency and estimate the stability for dif-
ferent partitions. The evolution of the estimates and underlying bounds are presented in
Figure A.4 at two selected frequencies, 5 and 10Hz. We plot on a log log scale the function
log(Cω2) to focus on the power of N in the estimates, which is the slope of the lines (4/7
for the upper bound and 1/5 for the lower bound).

Regarding the different coefficients in the analytical bounds, K and K1 remain unde-
cided and are numerically approximated so that the bounds match the estimates at best.
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Figure A.3: Three-dimensional wave speed used for the successive estimation of the stability
constant (c2), 3D representation (left) and horizontal sections at 800m depth (right).
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Figure A.4: The black squares represent the computational estimates of the stability constant ( )
depending on the number of domains N at selected frequency. The dashed line ( ) represents the
analytical lower bound and the dotted line ( ) the upper bound, estimated with equation (A.3.1).

For instance the numerical value for K1 is obtained from equation (A.2) by computing the
average value based on the numerical stability estimates and K is approximated following
the same principle:

K1 =
1

nst

nst∑

i=1

log(4ω2Ci)
N

1/5
i

, K =
1

nst

nst∑

i=1

log(ω2Ci)
(1 + ω2B2)N

4/7
i

.

Here, nst is the number of numerical stability constant estimates and Ci the corresponding
estimate for partitioning Ni. We actually limit the computation of K to use the first scales
as it grows too rapidly. The numerical values obtained are given Table A.1. We also note
that the term ω2B2 of the upper bound equation (A.2) is relatively small in the geophysical
context as we have here B2 = 5.10−7.

We can see that the stability constant increases with the number of subdomains, as
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expected. There are clearly two states in the evolution of the estimates at the highest
frequency (10Hz, Figure A.4(b)). For a low number of partitions N the numerical estimates
match particularly well the upper bound while at finer scale it follows accurately the lower
bound. This is illustrated in Figure A.5 where we decompose the two parts of the estimates
between the low and high number of domains.

1,000 2,000 3,000 4,000 5,000

100

101

lo
g
(ω

2
C)

104 105 106

Number of domains (N)

Figure A.5: The black squares represent the computational estimates of the stability constant
( ) depending on the number of domains N at 10Hz. The left part shows the coarsest scales
which match accurately the upper bound (dotted line, ). On the right the finer scale estimates
are accurately anticipated by the lower bound (dashed line, ). The constants K and K1 for
the computation of the lower and upper bounds are numerically approximated with values given
Table A.1, following equation (A.3.1).

5Hz 10Hz
K1 1 0.7

K 0.15 0.05

Table A.1: Numerical estimation of the constant in the analytical bounds formulation for the
numerical estimates of the stability (Figure A.4, with B2 = (1/1400)2.

Alternatively for a lower frequency, i.e. 5Hz on Figure A.4(a), the upper bound appears
to increase too rapidly while the lower bound matches accurately the evolution of the
stability constant estimates. Hence the upper bound we have obtained here is particularly
appropriate for coarse scale and high frequency: when the variation of model is much coarser
compared to the wavelength.

A.3.2 Seismic inverse problem using partial data

In realistic geophysical experiments for the reconstruction of subsurface area (seismic to-
mography), it is more appropriate not to consider the full data but partial data only located
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on the upper surface. The data obtain from c1 can be seen as field observation (sensor
measurement of a seismic event at the surface). The data using c2 are simulation using
an ‘initial guess’. For the reconstruction, we mention the full waveform inversion method,
where the recovery follows an iterative minimization of the difference between the mea-
surements and simulations, to successively update the initial guess (see Tarantola (1984);
Pratt et al. (1998)). There is also the difference in the boundary conditions where perfectly
matched layers (PMLs) or absorbing boundary conditions are invoked instead of the Dirich-
let boundary condition for the lateral and bottom boundaries. However, the top boundary
is a free surface and remains a Dirichlet boundary condition.

For this test case we reproduce the same experiments but limiting the set of sources
and the collected data to be at the top boundary only. We define a set of sources at the
surface, separated by 160m along the x−axis and 150m along y−axis to generate a regular
map of 16 × 10 points. The receivers (data location) are positioned in the same fashion
every 60m along the x−axis and 45m along y−axis and generate a regular map of 43× 32

points, see Figures A.6(a) and A.6(b). The partial boundary data computed are illustrated
for a single centered boundary shot at 5Hz frequency Figure A.6(c).
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(b) The lattice represents the discretization of the
data, i.e. the receivers location.
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(c) Data recovered from a boundary centered shot, i.e.
wavefield measured at the receivers location.

Figure A.6: Illustration of the seismic acquisition set.

In Figure A.7 we compare the stability constant estimates using partial data with the
stability constant estimates obtained when considering the full Dirichlet-to-Neumann map
as the data. We incorporate the analytical lower bound that was computed in the previous

116



A.4. ACKNOWLEDGMENT

test case.
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Figure A.7: Comparison of the computational stability estimates using partial data only located on
the top boundary ( ) and using the full boundary data ( ). The dashed line ( ) represents
the analytical lower bound as found in Figure A.4.

The numerical estimates of the stability constants for the full and partial data in a
log log-scale differ by a constant. This leads us to our conjecture that the log log of the
stability constants (as a function of N) of the full and partial data case in the continuous
setting differ by a constant.
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Chapter 4

Seismic inverse problem resolution: Full
Waveform Inversion

Abstract

The seismic inverse problem aims the recovery of subsurface
Earth parameters and is established depending on the type of the
considered subsurface area (reconstruction of the bulk modulus and
density in acoustic, reconstruction of the Lamé parameters and the
density in elastic, etc). It is also characterized by the available data
(field measurements). However, the general method for the recon-
struction does not depend on the types of media and is based on
an iterative minimization scheme using the seismograms measure-
ments information. It is commonly referred to as Full Waveform
Inversion (FWI) and targets a quantitative reconstruction of the
area of interest. The optimization problem is naturally conducted
using Newton types methods for the iterations. Nonetheless, the
numerical cost of second order information (Hessian) might become
overwhelming for large scale seismic models, and the gradient de-
scent is an alternative for time-saving. We present here the options
we have implemented in our toolbox to solve the harmonic FWI.
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CHAPTER 4. SEISMIC INVERSE PROBLEM: FWI

In Chapter 3, we have introduced the inverse problem in the mathematical framework
and studied the associated stability. We now focus on the numerical method to reconstruct
seismic subsurface. In regards to the theoretical framework, partial data and noise are
usually difficult to handle. Furthermore, the observed data usually do not correspond
to the same forward operator as the simulation (the Earth is anisotropic by nature). In
our project, we reconstruct the subsurface properties following an iterative minimization
algorithm, but several alternatives exist for seismic imaging. For example, we can mention
the reverse time migration (RTM) where the recovery is based upon the cross-correlation
of the forward and backward fields, and appropriate imaging conditions (Claerbout, 1971,
1985). We can also mention the popular Kirchoff migration. The interested reader is
referred to the work of Biondi (2006), where different imaging techniques are given.

Iterative methods for the recovery of subsurface parameters allow a quantitative recon-
struction of the parameters but requires intense numerical computations. They have been
collectively referred to, in reflection seismology, as Full Waveform Inversion (FWI). It con-
sists in the minimization of the residuals, defined as the difference between the observation
and numerical simulations. The recovery of the subsurface coefficients based upon a least
squares minimization scheme originates from the work of Lailly (1983) and Tarantola (1984,
1987b) and relies on the adjoint state method for the computation of the descent direction.
We also mention the original work of Bamberger et al. (1977, 1979) in the one-dimensional
case. Pan et al. (1988) supposedly introduced the term ‘full waveform inversion’, with ref-
erence to the use of full seismograms information. Lailly, in particular, noticed that the
gradient of the cost function could be assimilated to an imaging procedure and computed
with the adjoint state method. The use of adjoint state method to calculate the derivative
with respect to the parameter is originally promoted by Chavent (1974). Numerical ex-
periments in the two-dimensional case were initially carried out by Gauthier et al. (1986).
Mora (1987) extended the formulation to elastic waves. He also noticed that both acoustic
and elastic FWI can benefit from wide-aperture data to build the large and intermediate
wavelengths in parameter variations in the subsurface. Crase et al. (1990) implemented
elastic waveform inversion with field data using short offset and manage to solve the short
wavelengths of both P- and S-impedances in the time domain.

This pioneering work was realized in the time domain, and the time-harmonic formula-
tion was promoted by Pratt and other collaborators (Pratt and Worthington, 1990; Pratt
and Goulty, 1991), specifically for wide-angle reflection data in Pratt et al. (1996). They
also presented the features of the frequency domain formulation of FWI, based on the New-
ton method and using the discretized Helmholtz equation. Recently, Xu and McMechan
(2014) utilize time domain modeling and frequency domain gradient formulation for 2D
elastic FWI. This hybrid method is also used by Jun et al. (2013). The recovery of sub-
surface Earth materials has been extensively developed in the recent years with numerical
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methods benefiting from the increase in the computational power.

Newton type algorithms provide a natural framework to solve this nonlinear mini-
mization problem, with early applications in Pratt et al. (1998). However, second order
information may be limited due to the underlying numerical cost involved. To avoid the
computation (or approximation) of the Hessian, the nonlinear conjugate gradient is the
method of choice in the early applications (Gauthier et al., 1986; Mora, 1987). It neces-
sitates the computation of a step length that can typically be estimated by a simple line
search. However, one needs to be careful as a wrong estimation may lead to a failure
of convergence. For this purpose, different methods exist, see (Nocedal and Wright, 2006,
Chapter 3). We also mention the maximum projected curvature depicted in Chavent (2010)
and note that for the Landweber iteration scheme, de Hoop et al. (2012) give the analytical
definition of this step. In addition, research based on the trust region is also carried out by
Eisenstat and Walker (1994); Conn et al. (2000).

In the recent approaches, one accounts for the Hessian, or at least its diagonal, as Shin
et al. (2001); Choi et al. (2008) in the Gauss-Newton framework. The second order part
in the Hessian (for the Newton method) can be interpreted in terms of multiple scattering
(Pratt et al., 1998). To avoid extensive computation, Akcelik et al. (2002) apply multi-scale
Newton methods and Ma and Hale (2012) use projected Hessian matrix, so-called P-BFGS.
Alternatively, Gélis et al. (2007) use a preconditioned gradient method where the Fréchet
derivative is computed by Born and Rytov formulations for least-squares misfit. They
note that the model anomalies are hard to reconstruct with the presence of surface waves.
They improve the resolution and convergence via selecting the first body waves and surface
waves. The conjugate gradient method also provides the possibility of inverting the Hessian
without explicitly forming it, following an iterative procedure, see (Nocedal and Wright,
2006, Chapter 5). Application to FWI has been processed in Métivier et al. (2013) with the
definition of Hessian vector product from the second order adjoint method (Wang et al.,
1992). We refer to this method as Hessian CG (for Hessian Conjugate Gradient). In certain
earthquake seismology applications, one can even build the Fréchet derivative or Jacobian
(for sensitivity purpose, see, for example, Chen et al. (2007)) explicitly. Epanomeritakis
et al. (2008) combine outer Gauss-Newton nonlinear iterations with inner conjugate gradient
linear iteration, preconditioned by L-BFGS to solve large scale 3D elastic FWI problem in
the time domain.

The choice of the norm of the cost function has also been investigated, in particular
functions using a logarithmic norm were explored in Tarantola (1987a); Shin and Min
(2006). Subsection 4.3.2 reviews some possibilities. Motivated by the lack of the low
frequency component in the field data, the use of complex frequencies is also studied in
Shin and Cha (2009); Ha et al. (2010). In the underlying Laplace domain, the damping
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effects can be treated as time windowing, see Ha et al. (2010). The subsequent improvement
of the algorithm following this use of complex frequencies is analyzed in Chapter 5, where
we show its connection with the size of the radius of convergence. Another aspect of interest
that we study in Chapter 5 is the parametrization, which is known to have crucial effect
on the algorithm, and we refer to Section 5.4.

The nonlinearity of FWI has motivated the development of hierarchical multiscale
strategies. In the time domain, Bunks et al. (1995) propose the inversion of successive sub-
sets of increasing frequencies, following the intuition that low frequencies are less sensitive
to cycle skipping. This multiscale approach can, for example, be related to the subspace
search method advocated by Kennett et al. (1988). The time-harmonic formulation, how-
ever, is more natural for this purpose. The concept of frequency progression has been
considered, amongst others, by Sirgue and Pratt (2004), where the selection of consecutive
frequencies is also provided from wavenumber coverage. It is also studied in the problem
associated with electromagnetic waves, see, for example, Bao and Li (2005a, 2009).

The application of wavelet bases to compress the successive models in the iteration
has been considered by Loris et al. (2007, 2010) in wave-equation tomography, and in FWI
by Lin et al. (2012) to reduce the size of the Jacobian. Multi-scale using wavelets is also
employed for seismic reconstruction in Yuan and Simons (2014); Yuan et al. (2015). In our
approach, the compression, in particular, the compression rate, is connected to the conver-
gence of our multi-level scheme by acting on the stability constant. It provides a conditional
well-posedness while reducing the number of unknowns, as depicted in Chapter 3.

Accurate seismic reconstruction requires accounting for the complexity of the subsurface
Earth properties: attenuation, elasticity, anisotropy, etc. Malinowski et al. (2011) demon-
strate high-resolution imaging of attenuation and phase velocity in the visco-acoustic case.
In this context, we also mention the work of Askan et al. (2007). We note that accounting
for attenuation is natural for the harmonic wave equation, with the representation complex
valued velocity, depicted in Section 1.7. With the recent evolution of high performance
computing, FWI becomes more and more popular and heads towards anisotropic media
reconstruction, for acoustic we mention Plessix and Cao (2011); Alkhalifah and Plessix
(2014) and Rusmanugroho et al. (2017); Guitton and Alkhalifah (2017) in elastic.

Elastic FWI has also been introduced in global seismology. Tromp et al. (2005) connect
seismic tomography with adjoint methods for elastic waves, and they also select phase and
smoothed models. Fichtner and Trampert (2011) explore both first-order and second-order
influence zones of Hessian kernels, recalling the idea of Tarantola (2005). For tomographic
model, they demonstrate the difference between Gauss-Newton and full-Newton Hessians,
especially for off-diagonal elements. They state that the Gauss-Newton Hessian can lead to
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erroneous inferences while full Hessian can correctly account for the effect of nonlinearity
on model resolution. Trampert et al. (2012) provide a randomized method to update linear
model iteratively, which works if the resolution operator is diagonal-dominant. However,
the Hessian matrix may not always have such property. Based on gradient optimization
scheme, Fichtner et al. (2013) apply the FWI method in a tomographic model and design
a multigrid approach based on the decomposition of a multi-scale earth model.

Some of the major milestones related to FWI have been hereby given and we refer to
Virieux and Operto (2009) for an extensive review. Regarding the more general framework
of optimization and the Newton method, the literature is certainly voluminous, here we
insist on Nocedal and Wright (2006) for a review of optimization algorithms and Chavent
(2010); Allaire (2012); Kern (2016), among others.

In this chapter, we will proceed to the formulation of the reconstruction of subsurface
properties as a minimization problem. We first review the data available from a seismic
campaign in Section 4.2. We emphasize the non-intrusive process for which data are only
collected in the near surface area. We present different possibilities regarding the seismic
data and the mechanism involved in the two main situations: land and marine seismic. In
order to solve the minimization problem, we need the computation of the gradient, and
possibly the Hessian, which are conducted from the adjoint state method, see Sections 4.4
and 4.5. Several possibilities can be employed to conduct an optimization problem and
we only focus on the ones that have been implemented during this project, in the precise
context of FWI, in Section 4.6. Eventually, we provide numerical experiments to compare
the effect of incorporating Hessian information (via the conjugate gradient method) with
gradient descent methods in Section 4.7.

4.1 Notation

The general quantities related to the inverse problem have already been introduced in Sub-
section 3.1.1. We naturally follow the same notation and give some more details related to
the seismic situations and numerical algorithm. In this chapter, we focus on the discretized
representation of the quantities (field, models) so that the numerical framework comes into
place naturally.

The essence of the FWI is to conduct the subsurface reconstruction following an it-
erative minimization of the residual. The residual is the difference between the observed
measurements and simulations. The simulations employ a guess model and compute the
quantities of interest at the receivers positions. The cost function J can be defined with
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different choices of norms, and the standard least squares minimization gives

J (m) =
1

2
‖F(m)− d‖2, least squares cost function.

In the following we detail the quantities that have already been introduced Subsection 3.1.1
and propose some numerical understanding associated with the inverse wave problem. In
Table 4.1, we review the list of symbols.

4.1.1 Acquisition, data and models

Let us first re-give the notation of the problem regarding the domain, which is illustrated
in Figure 4.1, for a two dimensional domain. Ω ⊂ R2 or R3 is the area of interest with
boundary Γ. The upper boundary, where it is natural to consider a free surface boundary
condition is denoted by Γ1, the lateral and bottom boundaries, are denoted by Γ2 = Γ/Γ1.

Surface Γ1

Γ2
area of interest

Ω

Figure 4.1: Notation for the domain of interest Ω, Γ1 denotes the upper boundary, Γ2 = Γ/Γ1 the
others. The upper boundary usually consists in a free surface characterizing the interface between
the air and the medium. On the other hand the lateral and bottom boundaries have to reflect the
natural continuation of the Earth.

The models m are the quantities of interest over the domain. In the context of seismic,
we have identified the main parameters of interest as the wave speed, the density, the Lamé
parameters, etc. Following the Equation (3.1) we have that m ∈M, whereM is the model
space.

The measurements data are denoted by d ∈ D, where D is the data space, as indicated
in the Equation (3.2). The data are obtained from a combination of sources and receivers,
which are located at, or near, the upper surface for the seismic problem. We introduce

– nsrc the number of source in the acquisition,

– nrcv the number of receivers per source. In order to simplify the formulation, the
number of receivers is assumed to be the same for all sources. However, the use of an
independent number of receivers for every source does not change the process.

At selected frequency, the data are denoted dω and encompass nd = nsrc × nrcv complex
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measures. We further denote by Σ, the positions of the receivers, i.e., where the observations
are acquired.

4.1.2 List of symbols

The list of symbols related to the quantities used is given Table 4.1. All symbols are also
introduced at their first appearance.

Notation Meaning Detail
Ω domain of interest ⊂ R2 or R3

Γ domain boundary
Γ1 free surface boundary ⊂ Γ

Γ2 absorbing boundary or PML Γ/Γ1

Pω general wave operator at frequency ω
(acoustic, elastic)

uω general field of interest, solution of the wave
equation Pω (pressure or displacement)

Σ receivers positions
M model space
D data space
m models of interest (density, wave speed, etc) ∈M
nsrc number of sources
nrcv number of receivers
nd quantity of data per frequency nrcv × nsrc
dω data available at selected frequency ω ∈ D
Fω forward operator at frequency ω Fω :M→D
R linear restriction operator associated with

the forward problem
Fω = Ruω

J cost function

Table 4.1: List of symbols introduced for the seismic inverse problem.

4.2 Seismic data acquisition

In order to reveal subsurface materials, we rely on observations obtained from seismic
acquisition on the area of interest. It consists of a set of sources and receivers localized at
the surface or slightly underneath when it is possible (in the case of water for example).
We have already mentioned the possibility of natural sources for the generation of waves
but seismic exploration involves artificial sources for which the position and formulation
are (relatively well) known. We recall that our problem is nonintrusive, that is why the
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acquisition devices are only localized at (or near) the surface (i.e., we do not consider
boreholes, nor any underground a priori data).

The seismic acquisition is naturally related to the phenomenon of wave propagation
prescribed by the direct and forward problem. The source emits waves which propagate in
the subsurface and receivers are positioned to record the resulting signal. Then the source
(and possibly the receivers) is moved, and the operation is reproduced. In Figure 4.2(a) we
portray the seismic setup in a simple two-dimensional illustration, for a single source posi-
tioned at the surface and where the receivers are located underneath. The wave propagates
from the source and is recorded by the receivers. We shall specify the meaning of record in
the following subsections. In Figure 4.2(b), we present the recorded information from the
receivers in a synthetic experiment. We have considered a two-dimensional domain with a
centered source. The seismic trace indicates the amplitude of the quantity recorded by the
receivers with time.

SurfaceSource

Receivers
set Σ

Subsurface area of interest Ω

(a) 2D seismic acquisition.
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(b) Seismic trace.

Figure 4.2: (a): Illustration of seismic acquisition for a two-dimensional domain for a single source
positioned at the surface which is represented by the red triangle. The wave propagates through
the area of interest, then subsurface structures reflect part of the wave (indicated with the dashed
arrows). The receivers (represented by the squares) record the resulting signal (direct wave and
reflections).
(b): Example of a recorded seismic trace associated with a centrally localized shot in a two-
dimensional experiment. The y-axis is the time variable (here from 0 to 10 s). The x-axis denotes
the receivers index, here we have considered 183 receivers. The amplitude of the recorded signal
is given by the grey scale. This is an acoustic synthetic experiment where the amplitude is the
measurement of the pressure at the position of the receiver.

We see that the seismic trace depends naturally on time. However, our method is
designed in the frequency domain so that we need the discrete Fourier transform of the
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original measurements. Let us denote Sk = {Sk,i} the signal recorded by the receiver k,
where k = {1, . . . , nrcv}, i = {1, . . . , nt} with nrcv the total number of receivers and nt the
number of time steps. For each i corresponds a local experimental time ti = (i−1)dt, where
dt is the time step between successive measures, assuming we start from t1 = 0. Then the
data at frequency ω are given by the discrete Fourier transform of the signal:

F(Sk) = Ŝk(ω) =

nt∑

i=1

Sk,ie
−iωti . (4.1)

Meanwhile the original measurements are real, the resulting frequency domain signal is
complex. The discrete Fourier transform (Equation (4.1)) of the trace Figure 4.2(b) is
shown Figure 4.3 at the selected 5 Hz frequency. We shall see that in the presence of noise
in the original time domain trace, the Fourier transform is the less affected around the
source frequency peak, which we illustrate as part of the experiments in Chapter 6.
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Figure 4.3: Discrete Fourier transform of the seismic trace Figure 4.2(b) at 5 Hz. For every receiver
index k the Fourier domain complex value is given by Ŝk, as indicated in Equation (4.1)

Standardly, seismic acquisition is composed of several hundreds of shots, with even
more receivers associated for each of them. The actual type of recorded data depends on
the acquisition devices; we focus here on the pressure, displacement or velocity components,
which are the usual quantities arising from seismic campaigns. In particular, it is adapted
to the type of medium, and we distinguish marine and land acquisitions. In Chapter 1, we
have presented the wave equation accordingly to these two types of propagation (acous-
tic or elastic), and the forward problem is associated with the pressure for acoustic and
displacement for elastic.

4.2.1 Marine acquisition

Seismic marine acquisition aims at retrieving acoustic or acoustic-elastic subsurface media.
The upper layer of water can be known and it is where the seismic acquisition is conducted.
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The coupling of acoustic and elastic media refers to the consideration of solid matters
underneath the water bottom, but it does not change the setup. Namely, the sources and
receivers are carried out by a ship at the surface. These consist of towed streamers which
are grouped via parallel cables. In this setup the receivers usually move for every source
position, yet we disregard this possibility for simplicity.

In this situation an air gun is employed for the source and generates a pressure per-
turbation. In the case where the source is positioned at the surface it corresponds to a
Dirichlet boundary condition. Following the acoustic wave equation (1.28) the resulting
pressure, p, for a single air gun, solves




−ω2p(x)− κ(x)∇ ·

(
1

ρ(x)
∇p(x)

)
= 0, x ∈ Ω

p(x) = f(x), x ∈ Γ1,

where f is the characterization of the air gun, Γ1 denotes the free surface boundary, i.e.
the interface between air and water. Here we omit boundary conditions to be implemented
on Γ2, which are numerically represented with PMLs or ABC .

4.2.1.1 Hydrophones measurements

Seismic marine acquisition standardly relies on a single type of waves observation obtained
from hydrophones, which provide measurements of the pressure field. It records the informa-
tion p(xk), where xk stands for the hydrophone position. The forward problem associated
with a single source is

Fω : m = (c, ρ) →
{
p(x) |Σ

}
=
{
p(x1), . . . , p(xnrcv)

}
,

where Σ denotes the receivers location set, i.e., nrcv positions.

4.2.1.2 Dual sensors devices

It is relatively recently that PGS (Petroleum Geo-Services) developed new types of ac-
quisition devices which allow multi components data recordings. The dual sensors allow
the recording of the vertical velocity in addition to the pressure, see Carlson et al. (2007);
Tenghamn et al. (2007). In this case we have the following forward operator:

Fω : m = (c, ρ) →
{
p(x) |Σ; vν(x) |Σ

}

=
{
p(x1), . . . , p(xnrcv); vν(x1), . . . , vν(xnrcv)

}
,

(4.2)
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where vν denotes the normal velocity. Chapter 7 is devoted to the use of Cauchy data,
which we relate to the dual sensors, and illustrates novel perspectives.

4.2.2 Land acquisition, Neumann-to-Dirichlet map

Land seismic campaigns make use of vibroseis trucks. The initial perturbation is generated
from a baseplate that imposes pressure at the surface. For the measurement, geophones
are employed and allow the recording of the particle displacement. All devices in land
acquisition are usually exclusively located at the surface. This configuration is thoroughly
studied in Baeten (1989). In the case of isotropic elastic wave propagation the displacement
u solves the system with Neumann boundary condition,
{
−ρ(x)ω2u(x)−∇

(
λ(x)∇ · u(x)

)
−∇ ·

(
µ(x)

[
∇u(x) + (∇u(x))T

])
= 0, x ∈ Ω,

∂νu(x) = g(x), x ∈ Γ1.

Then the geophones record the information on the displacement u(xk) so that the forward
problem is written for the single source g,

Fω : m = (λ, µ, ρ) →
{
u(x) |Σ

}
=
{
u(x1), . . . ,u(xnrcv)

}
.

Here we have considered isotropic elastic medium but the consideration of the TTI equa-
tion is straightforward and simply modify the wave equation in Ω accordingly (see Equa-
tion (1.30)). Then it redefines m = (λ, µ, ρ, ε, δ, γ, θ, φ) in three dimensions: accounting for
the Thomsen’s parameters.

Elastic data are represented with the so called Neumann-to-Dirichlet (NtoD) map and
we refer to Baeten (1989) for further details. We also mention that the geophones may not
be able to record all directions, in particular the measure of normal direction to the surface
may be the only available component.

4.3 Iterative minimization problem

4.3.1 Representation of the forward problem and cost function

The forward problem F describes the correspondence between the model and the data.
It has been introduced in the Equation (3.3). It usually encompasses the wave operator,
which depends on the type of medium (acoustic, elastic, etc) as introduced in Chapter 1.
In order to remain general we represent the wave equation at selected frequency ω with the
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operator Pω, such that the wave equation is written as (omitting the spatial dependency)

Pω(m)u = f. (4.3)

Here u = u(m) represents arbitrarily the displacement or pressure, depending on the nature
of the propagation medium (elastic and acoustic respectively). Similarly, f represents the
appropriate kind of source. The wave equation is here identified with Pω. For example,
taking the Helmholtz equation gives Pω = (−∆ − ω2c−2), where m is identified with the
velocity c. This notation will be very practical to derive the different steps to conduct the
resolution of the inverse problem, because those steps are identical for all types of medium.

Let us denote by u
(s)
ω the solution of the wave equation associated with Pω for the

source f (s). Let us decompose the forward problem and the data in the same way such
that we denote F (s)

ω and d
(s)
ω the quantities associated with a single source s at selected

frequency ω. The essence of the forward operator F is to prescribe some quantity of interest
at the position of the receivers. We have seen in Section 4.2 that for seismic, it is often
directly the solution of the wave equation that is recorded (i.e. hydrophones or geophones
measurement). Then it is common to represent the forward operator with the introduction
of a linear restriction operator, R, acting on the solution of the wave equation u such that

F (s)
ω (m) = R(u(s)

ω (m)). (4.4)

Numerically, the creation of the numerical simulation for the cost function follows two
steps: first we solve the appropriate wave problem Equation (4.3) to obtain the solution u.
Second we restrict this solution to the receiver locations, applying the proper transform if
needed (e.g., in the case of Cauchy data, the operator R encompasses a normal derivative),
Equation (4.4).

The cost function can consequently be rewritten separating the set of sources s and
frequencies ω:

J (m) =
1

2

ωnω∑

ω=ω1

nsrc∑

s=1

‖F (s)
ω (m)− d(s)

ω ‖2,

=
1

2

ωnω∑

ω=ω1

nsrc∑

s=1

‖R(u(s)
ω (m))− d(s)

ω ‖2.
(4.5)

Eventually, the reconstruction of the subsurface parameters is cast as the resolution of
the following minimization problem

min
m∈M

J (m).

The data dω and Fω(m) can clearly be seen as complex vectors following Section 4.2. dω
is the list of measurements, and Fω(m) the simulation at the position of interest. The cost
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function is naturally formulated with the complex inner product,

J (m) =
1

2

ωnω∑

ω=ω1

nsrc∑

s=1

〈
F (s)
ω (m)− d(s)

ω ,F (s)
ω (m)− d(s)

ω

〉

=
1

2

ωnω∑

ω=ω1

nsrc∑

s=1

(
F (s)
ω (m)− d(s)

ω

)∗(F (s)
ω (m)− d(s)

ω

)
,

where ∗ stands for the adjoint, i.e. the transposed complex conjugate such that for a vector
v ∈ C, v∗ = vT . Note that the use of complex data is a specificity of the frequency domain
algorithm.

The notation can become unnecessarily complicated because of the multiple indexes, on
the other hand the sums do not affect in any way the steps we follow to solve the problem.
That is why we omit the sum over the sources to simplify the notation. This can be seen
as assuming one single source in the acquisition so that the cost function is written as

J (m) =
1

2

ωnω∑

ω=ω1

‖Fω(m)− dω‖2. (4.6)

The sum over the frequency can be omitted as well, for simplicity. Yet it requires a little
more details, see Subsection 4.3.3.

4.3.2 Norm of the objective function

The misfit functional for the minimization problem can be defined in different ways regard-
ing the norm. The traditional L2 norm has been widely employed and remains the most
popular, and it is the one we have used to introduce the cost function, see Equation (4.6).
However, one can easily imagine a wide variety of norms for the functional. For example
Shin et al. (2007); Bednar et al. (2007); Pyun et al. (2007) render a comparison of misfit
functions depending on the use of the phase and/or the amplitude of the signal, and also
employ the logarithmic function. The phase criterion is also studied in Bozdağ et al. (2011).
In the frequency domain, following the Fourier transform of the data, one can select the
real or imaginary part of the signal to conduct the reconstruction as well. We also mention
the work of Brossier et al. (2010b), which emphasize the use of the L1 norm.

Among those possibilities, the logarithmic function has been explored in the early work
of Tarantola (1987a) and has been proven to be crucial in the case of complex frequency
inversion, see Shin and Min (2006). The misfit function is written as

J (m) =
1

2

ωnω∑

ω=ω1

‖ log(Fω(m))− log(dω)‖2. (4.7)
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Naturally the logarithm gives more importance on small signal variations. We will later
use this cost function when running experiments using complex frequency, see Chapter 6.

4.3.3 Frequency progression

Following the frequency decomposition, the sum over frequencies appeared in the cost func-
tion Equation (4.5). We have mentioned the operation of filtering subset of frequency bands,
in the time domain with the work of Bunks et al. (1995). This is obviously very natural
in the frequency domain, see Sirgue and Pratt (2004). Hence the general sum over the
frequencies do not cover all the frequencies but subset of one or several consecutive fre-
quencies. After the iterative minimization has been conducted on a first subset, we update
the set and pursue the inversion. We can also invert frequency sequentially. We propose an
analysis and explanation for the frequency separation and progression in Chapter 5 where
we study the effect of the frequency on the size of the basin of attraction.

In order to have clearer expression, we drop the ω indexes for now, as if we had a
sequential frequency update in the reconstruction algorithm, and write the cost function

J (m) =
1

2
‖F(m)− d‖2

=
1

2
‖Ru(m)− d‖2.

(4.8)

Remark 4.1. in the following we employ the least squares minimization to derive the suc-
cessive expressions. However, the analysis is not restricted to the L2 norm and alternative
misfits can be used, as given in Subsection 4.3.2. Regarding this choice of cost function,
the use of Cauchy data certainly provides the major difference and we will elaborate in
Chapter 7.

4.3.4 Minimization using Newton type methods

FWI performs successive updates of the subsurface model so that the simulation can even-
tually match (with more or less accuracy) the measurements. It is a nonlinear iterative
minimization problem. The Newton method naturally appears as the best candidate when
resolving such optimization problems. It is based upon the first order Taylor expansion
which states that, assuming a small model perturbation δm,

J (m+ δm) = J (m) + J ′(m)δm + o(δ2
m),

where o(δ2
m) stands for the terms of order higher than or equal to two. It is well known that

when the minimum, say m†, of the cost function is reached, then the derivative J ′(m†) is
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zero. Hence we are looking for this critical point (the minimizer). The Taylor expansion is
applied onto the derivative of the cost function and we obtain

J ′(m+ δm) = J ′(m) + J ′′(m)δm + o(δ2
m).

The Newton method aims in building a sequence of mi converging towards the zero of
the function where the iterative update is given from δm, neglecting the higher order terms.
We have

mi+1 = mi −
J ′(mi)

H(mi)
. (4.9)

H is the second order derivative of the cost function, i.e. the Hessian (named after Ludwig
Otto Hesse, 1811–1874).

Remark 4.2. The global minimum of the cost function has its gradient to zero. However,
the gradient is also null for any local minimum of the cost function. Hence the condition
∇J = 0 does not guarantee to find the global minimum, especially because of the large scale
(in particular the number of parameters to reconstruct) of our inverse problem. This issue
is addressed with the use of model partition to provide some regularization for the problem.
Also in Chapter 5, we review the class of problems where local minima can be avoided. It
allows us to define quantitative estimates of the model space size, see Chapter 5.

In the general Algorithm 1, we present the iterative minimization process with the
appropriate steps, accounting for frequency progression. The heart of the problem is the
model update. In the next sections we further explicit some of the various possibilities
available for iterative optimization; we refer to the work of Nocedal and Wright (2006) for
an extensive review of optimization techniques.

4.3.5 Complications

We have already mentioned the nonlinearity and ill-posedness of the problem, which makes
it complex to solve. Now we distinguish two categories of complication for the iterative
reconstruction. The first is due to numerical capability. Indeed, due to the size of seis-
mic domains, the resulting large scale optimization problem may suffer from numerical
restriction. The cost of computing the Hessian can easily become too expensive and second
order information becomes unavailable. This is probably the major limitation for the com-
putations and it can justify the use of gradient descent algorithm (see Subsection 4.6.1).
More generally, large scale optimization requires to use the computational memory wisely,
such as some algorithms presented in Nocedal and Wright (2006). We also mention the
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Data:
– Acquisition set (sources and receivers positions),
– frequency domain measurements,
– initial model m1.

for k ∈ {1, . . . , nω} do
for i ∈ {1, . . . , niter} do

j = i+ (k − 1)× niter
for s ∈ {1, . . . , nsrc} do

Numerical resolution of the wave equation using mj

end
Apply the appropriate restriction operator R to deduce Fωk(mj)
Compute the residuals and underlying cost function J (mj)
if J (mj) is ‘low enough’ then

end iteration loop
else

Update the model with method of choice to obtain mj+1

end
end

end

Algorithm 1 – General FWI algorithm: FWI iterative minimization in the frequency
domain. The model update is typically performed using Newton type methods. When using
direct solver for the resolution of the frequency domain wave equation, the loop over the shots
can straightforwardly be replaced by a multi right-hand sides linear system solve, largely reducing
the numerical cost involved.

cost of solving many forward simulations, which requires the use of advanced and efficient
computing as well, in particular the linear algebra solver for our harmonic propagation.

The second category of complication is related to the general setup of the problem and
can be associated with several other applications of inverse problem, in particular we can
mention that

– few data are available compared to the number of coefficients investigated to define
the area,

– data have relative accuracy, due to the devices precision,

– data are only located at the surface, no information can be obtained inside the domain,
nor on the sides,

– no prior information on the subsurface structures is usually available.

When one takes into account those partial data with limited accuracy, very few mathemat-
ical results hold. For the seismic reconstruction, the problem can be non-unique in practice
(Landa and Treitel, 2016). Hence, the frequency progression and multi-scale techniques
are important to mitigate the issues arising from the nonlinearity and ill-posedness of the
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problem.

4.4 Gradient computation with first order adjoint state

Following the Newton method, we seek the computation of the gradient of the cost func-
tion. Here we consider the formulation where the frequency and sources sums have been
simplified, see Equation (4.8). We make use of the notation introduced for the forward
problem, based on the general wave operator given in Equation (4.3).

Because we work with the frequency domain formulation of the wave equation, the
quantity of interest which defines u (pressure, displacement, etc) is complex. This complex
data set is a particularity of the frequency domain approach and does not hold in the time
domain. This is an important difference with working in the time domain and we believe
this aspect is too often omitted (we actually have not been able to find an appropriate
reference of the adjoint state problem using complex data in a geophysical framework). Let
us introduce the function G, obtained from the cost function definition of Equation (4.8)
by

J (m) = G(m,u(m)). (4.10)

It is important to notice that here, G is not analytic (holomorphic) with respect to the
field u. It may appear not important at first sight (we seek the derivative with respect
to m and not u), but it is crucial because of the nonlinearity in m of the cost function.
In the following subsection we detail the tools which are required to pursue the gradient
computation.

4.4.1 Derivative and gradient

Let us first remind some standard definitions concerning the gradient. We refer to Kern
(2016) for more details and discussion.

Definition 4.1 (Fréchet derivative). Let U and V be Banach spaces, the function h : U →
V is Fréchet differentiable at x ∈ U if there exists a bounded linear operator A : W → V ,
with U ⊂W such that

lim
δ→0

‖h(x+ δ)− h(x)−Aδ‖W
‖δ‖V

= 0,

We can equivalently apply the first order expansion, which gives

h(x+ δ) = h(x) +Aδ + o(‖δ‖),
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If A exists, it is the Fréchet derivative of h at x, that we denote A = h′(x).

Definition 4.2 (Gradient). We denote ∇h(x) the gradient of h at the point x ∈ U . It is
defined such that

< ∇h(x), δ >= h′(x)δ, ∀δ ∈ U.

This is also the Riesz-representation of the derivative f ′.

We note that in the finite dimensional case, where < ∇h(x), δ >= ∇h(x)T δ in R, the
relation between the gradient and the differential is

∇h(x)T = h′(x). (4.11)

By considering the variable x = {x1, . . . , xn} we have

∇h(x)T = h′(x) =

(
∂h(x)

∂x1
, . . . ,

∂h(x)

∂xn

)
.

4.4.2 Complex derivation

In the frequency domain, we have seen that G is not analytic, thus not differentiable,
with respect to u, due to the complex conjugation. A workaround is relatively standard
for such functional, see for example the work of Brandwood (1983); Li and Adali (2006);
Kreutz-Delgado (2009). It is based on elements of complex calculus such as the Wirtinger
calculus. The main idea is to consider independently the complex variable and its conjugate.
Respectively we denote z and z, where z = x + iy and z = x − iy with i2 = −1. We first
review the results of Brandwood (1983).

Theorem 4.1. (Brandwood, 1983, Theorem 1) Let g : C × C → C be a function of a
complex number z and its conjugate z and let g be analytic with respect to each variable
(z and z) independently. Let f : R × R → C be the function of the real variables x and
y such that g(z, z) = f(x, y) where z = x + iy. Then the partial derivative ∂zg (treating
z as a constant) gives the same result as (∂xf − i∂yf)/2. Similarly, ∂zg is equivalent to
(∂xf + i∂yf)/2.

Corollary 4.1. Following the statement of Theorem 4.1, we have

∂g

∂z
=
∂g

∂z
.

Proof. By direct application of Theorem 4.1,

∂g

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
=
∂g

∂z
.
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Theorem 4.2. (Brandwood, 1983, Theorem 2) Let f : C→ R be a function of a complex
variable z. Let f(z) = g(z, z) where g : C × C → R is such that g(z, a) and g(b, z) are
each analytic function of z (with a and b ∈ C). Then a necessary and sufficient condition
for f to have a stationary point is that ∂zg = 0 where the partial derivative with respect to
z treats z as constant. Similarly ∂zg = 0 is also a necessary and sufficient condition.

Theorem 4.3. (Brandwood, 1983, Theorem 3) Let f : CN → R be a function of a complex
vector z. Let f(z) = g(z, z) where g : CN × CN → R is analytic ∀ z and z considered
independently. Then a necessary and sufficient condition for f to have a stationary point
is that ∇zg = 0. Similarly ∇zg = 0 is also a necessary and sufficient condition.

We straightforwardly apply the theorems to the misfit function where we consider
u := z = x+ iy. In this context the functional can be written as

G : (x, y) → 1

2
‖R(x+ iy)− d‖2,

where x, y and d can be assimilated with vectors. Then by deriving independently with
respect to x and y we obtain





∂G

∂x
=

1

2
R∗(R(u)− d) +

1

2
(R(u)− d)∗R,

∂G

∂y
= − i

2
R∗(R(u)− d) +

i

2
(R(u)− d)∗R.

With Theorem 4.1, we can further deduce the derivative of G with respect to u and u,
where they are considered independent such that G = G(u, u),





∂G

∂u
=

1

2
(R(u)− d)∗R,

∂G

∂u
=

1

2

(
R∗(R(u)− d)

)T
=

1

2
(R(u)− d)TR.

(4.12)

The computation of the Hessian requires the second order derivative, here we straightfor-
wardly see that 




∂2G

∂u2
= 0,

∂2G

∂u2 = 0,

∂2G

∂u∂u
=

∂2G

∂u∂u
=

1

2
R∗R.

Remark 4.3. We can proceed similarly working with the forward problem instead of the
wavefield, using a function T in a similar fashion as G was introduced in Equation (4.10)
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with J (m) = T (m,F(m)). The complex derivation with respect to F gives analogously




∂T

∂F =
1

2
(F(m)− d)∗,

∂T

∂F =
1

2
(F(m)− d)T ,

(4.13)

and 



∂2T

∂F2
= 0,

∂2T

∂F2 = 0,

∂2T

∂F∂F =
∂2T

∂F∂F =
1

2
.

(4.14)

We have presented how to derive a function with respect to complex variable, namely
by considering independently the conjugate. For the update of the cost function, however,
we need to derive with respect to a real parameter (the model) a function involving complex
variable. The following theorems give the proper framework by introducing what can be
seen as the chain rule for complex derivation.

Theorem 4.4. Consider the complex-valued function f of a real parameter m and the
real-valued functions g1 and g2 such that f(m) = g1(z(m), z(m)) + ig2(z(m), z(m)). The
derivative with respect to the real parameter m is defined by

∂f

∂m
=
∂g

∂z

∂z

∂m
+
∂g

∂z

∂z

∂m
.

Proof. From the definition of f we have

∂f

∂m
=
∂g1(z(m), z(m))

∂m
+ i

∂g2(z(m), z(m))

∂m

=
∂g1

∂z

∂z

∂m
+
∂g1

∂z

∂z

∂m
+ i

∂g2

∂z

∂z

∂m
+ i

∂g2

∂z

∂z

∂m

=
∂(g1 + ig2)

∂z

∂z

∂m
+
∂(g1 + ig2)

∂z

∂z

∂m

=
∂g

∂z

∂z

∂m
+
∂g

∂z

∂z

∂m

Theorem 4.5. Consider the real-valued functions f and g defined by f(m) = g(z(m), z(m)).
From Theorem 4.4 we have

∂f

∂m
= 2 Re

(
∂g

∂z

∂z

∂m

)
= 2 Re

(
∂g

∂z

∂z

∂m

)
.

Proof. Direct application of Theorem 4.4 gives

∂f

∂m
= Re

(
∂g

∂z

∂z

∂m
+
∂g

∂z

∂z

∂m

)
. (4.15)
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We use Theorem 4.1 and Corollary 4.1, and take z(m) = x(m) + iy(m) to have

Re

(
∂g

∂z

∂z

∂m

)
= Re

(
∂g

∂z

∂z

∂m

)
= Re

(
∂g

∂z

∂z

∂m

)
= Re

(
∂g

∂z

∂z

∂m

)
,

where
∂z

∂m
=
∂(x− iy)

∂m
=

(
∂x

∂m
− i

∂y

∂m

)
=

∂x

∂m
+ i

∂y

∂m
=

∂z

∂m
.

We inject in Equation (4.15) to obtain

∂f

∂m
= Re

(
∂g

∂z

∂z

∂m

)
+ Re

(
∂g

∂z

∂z

∂m

)
= 2 Re

(
∂g

∂z

∂z

∂m

)
.

The alternative expression is obtained similarly but by replacing ∂zg in Equation (4.15),
instead of ∂zg.

Theorem 4.5 provides the necessary tools to compute the cost function gradient with
respect to the model m, which is the one we require. The functional depends on the field
u which itself depends on m. We write the functional with respect to the forward problem
first, following the notation of the Remark 4.3,

∂

∂m

(
J (m)

)
=

∂

∂m

(
T (m,F(m))

)
= 2 Re

(
∂T

∂F
∂F
∂m

)
= Re

(
(F(m)− d)∗DF(m)

)

= 2 Re

(
∂T

∂F
∂F
∂m

)
= Re

(
(F(m)− d)TDF(m)

)
.

Here DF stands for the Fréchet derivative of the forward problem with respect to m. The
two formulations are identical because of the real part. we define DF∗ = DFT = DFT .
We write the gradient from the derivative, following the formula of Equation (4.11),

∇mJ (m) = ∇J (m) = J ′(m)T = Re

(
DF(m)∗(F(m)− d)

)
. (4.16)

Similarly, we can write the gradient with the use of the restriction operator using the
function G of Equation (4.10),

∇J (m) = Re

(
∂u(x)

∂m

∗
R∗
(
R
(
u(x)

)
− d
))

. (4.17)

The steps to formulate the gradient are general and can easily be specified depending on
the data (acoustic, elastic, Cauchy, etc). Similarly it is easily adapted to alternative norms
for the cost function.
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4.4.3 Adjoint state method

The seismic inverse problem involves large scale media. The computation of the Fréchet
derivative (or ∂mu) is expensive in terms of numerical operations, which is related to the
number of unknowns (i.e., the number of coefficients to represent the subsurface medium).
Moreover, the underlying discretization of DF leads to a large matrix which may suffer
from memory limitation. The computation of this Jacobian gives rise to the sensitivity
kernel, which can, however, be useful for optimization schemes, allowing a more precise
algorithm, (Chavent, 2010; Allaire, 2012; Kern, 2016).

Instead, the adjoint state method allows us to obtain the gradient of the cost function
without the direct computation of the Fréchet derivative. This method has been introduced
in the framework of control theory by Lions and Mitter (1971) and Chavent (1974) imple-
mented it for the computation of the gradient of a functional with respect to a parameter.
It is further detailed for the wave problem in the work of Lailly (1983); Tarantola (1987b,
1988). It has become a fundamental technique employed for many optimization problems,
e.g., Allaire (2012); Chavent (2010); Kern (2016). For geophysical inverse problem, a re-
view can be found in Plessix (2006) for time and frequency domain formulation of the wave
propagation. However, the specificity implied by the complex derivation is less common in
geophysics.

In order to compute the gradient of the cost function, we formulate the following
minimization problem incorporating the solution of the wave equation as a constraint,

min
m
J (m) = G(m, v(m)) subject to P(v) = f. (4.18)

The problem is recast into a formulation with Lagrangian to give

L(m, v(m), γ̃) = G(m, v(m)) +
〈
P(v)− f, γ̃

〉
,

where γ̃ represents the Lagrange multipliers associated with v. Here we have that m ∈ R
and v ∈ C so that we need to use the complex derivation techniques of Subsection 4.4.2.
In particular, from Theorem 4.4, the derivation with respect to m gives

∂

∂m

(
L(m, v(m), γ̃)

)
= Re

(
∂L
∂m

+
∂L
∂v

∂v

∂m
+
∂L
∂v

∂v

∂m

)
.

From Theorem 4.5, we have observed that this can be written as

∂

∂m

(
L(m, v(m), γ̃)

)
= Re

(
∂L
∂m

+ 2
∂L
∂v

∂v

∂m

)
. (4.19)

The minimization of the Problem (4.18) is obtained when the derivative is equal to
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zero (Allaire, 2012). In particular, the adjoint state γ is selected to verify Re(∂vL+∂vL) =

2 Re(∂vL) = 0. We have

2 Re

(
∂L
∂v

)
= 2 Re

(
∂G

∂v
+ P∗γ

)
.

Let us now substitute the derivative of the cost function with respect to the complex field,
given in the Equation (4.12); so that γ verifies

Re

(
R∗(R(v)− d) + P∗γ

)
= 0.

Hence the adjoint state γ is selected to solve the problem

P∗(γ) = −R∗(R(v)− d). (4.20)

By taking u solution of Pu = f , we observe that Equation (4.19) becomes

∂

∂m

(
L(m,u(m), γ)

)
=

∂

∂m

(
J (m)

)
= Re

(
∂L
∂m

+ 2
∂L
∂u

∂u

∂m

)
= Re

(
∂L
∂m

)
,

where the latest equality is obtained by taking γ solution of the problem (analogous to
Equation (4.20))

P∗(γ) = −R∗(R(u)− d). (4.21)

In this context, the gradient of the cost function is given by

∇mJ (m) = ∇mL = Re

(〈
∂m
(
P
)
u, γ

〉)T
. (4.22)

The adjoint state method provides the gradient of the cost function at the cost of an
additional problem (for the computation of γ). This additional problem, Equation (4.21)
is the adjoint of the forward problem where the right-hand side basically consists in the
residuals. Eventually, it requires the derivative of the operator with respect to the model
parameters, which we have referred to as ∂mP. We further illustrate the computation in
the following.

Remark 4.4. We have formulated the adjoint state without considering the boundary con-
ditions for the wave equation. This should appear as additional constraints in the Prob-
lem 4.18. Dirichlet or Neumann boundary conditions do not affect the steps, simply gen-
erating analogous conditions in the definition of the adjoint state. However, the use of
absorbing boundary conditions or PMLs may be delicate due to the introduction of complex
numbers.
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4.4.4 Numerical cost

We have shown that the computation of the gradient of the misfit function requires the
resolution of one additional problem, to obtain the adjoint state, Equation (4.21). The
problem stands for every source in the seismic acquisition so that there are as many ad-
ditional problems as the number of forward problems to generate the simulation. The
gradient is the trivially given with the sum over the sources,

∇J (m) =
∑

s

Re

(〈
∂m
(
P
)
u(s), γ(s)

〉)T
.

Once again we emphasize the importance of having multi-right-hand sides solvers which
allow the resolution of linear system for many independent right-hand sides at a reduced
cost (this is less straightforward with the time domain formulation). Moreover, there is no
need in matrix factorization, which is the computationally expensive (time and memory)
step of the direct solvers. Indeed the adjoint state solves the adjoint of the direct problem
and we have P∗γ = f equivalent to Pγ∗ = f∗ so that the same information can be used for
the forward and the adjoint problem (for example LU factors). Hence the cost of obtaining
the adjoint state is relatively low in terms of time, and the memory does not require much
more than what is already used for the forward problem.

Finally, once the adjoint field has been retrieved, there is still the need to derive the
operator with respect to the models. Yet this operation can usually remain relatively cheap
following a little thinking, as illustrated in the following subsection.

4.4.5 Derivation of the operator

After the appropriate discretization of the wave equation has been carried out, R and
P can be seen as a matrix. All of the ingredients to compute the gradient of the cost
function through the first order adjoint state are known but the derivative of the operator,
∂mP. This quantity depends obviously on the model but also on the method used for the
discretization. Here we illustrate the computation in the context of Finite Differences, for
an acoustic case with constant density, with one single parameter to invert: the velocity.
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4.4.5.1 Example for finite differences discretization

The Helmholtz equation defines the propagation of waves from a single medium parameter,
the wave speed c. In such media, the inverse problem aims at reconstructing this velocity.
The general wave operator P we have used for the adjoint state method is defined by

P := (−∆− ω2c−2),

see Equation (1.27). For simplicity we derive P with respect to c−2. The FD stencil
standardly gives one coefficient per nodes in the discretization, let us say we have a total of
n coefficients. Then the gradient of the cost function with respect to the model is a vector
of size n such that every component is given by

[
∇mJ (m)

]
k

= Re

(∑

j

[
∂c−2
k

(
P
)
u
]
j
[γ]j

)
.

Here we have used the notation [·]k for the kth component of the vector.

For FD method, it is common to consider the velocity with one coefficient per node
(where the structured grid has n nodes). Then, those coefficients only appear in the diagonal
of the discretization matrix, unlike Galerkin methods where fluxes terms can give different
patterns. The derivation with respect to one of those coefficients, say c−2

k gives a matrix with
only one non-zero value at the diagonal position [k, k] and this value is −ω2. The resulting
matrix is a squared matrix with size the total number nodes. In this configuration the
quantity

[
∂c−2
k

(
P
)
u
]
j
is not zero only when k = j and we have

[
∂c−2
k

(
P
)
u
]
j

=

{
0 if k 6= j,

−ω2uk if k = j.

The components of the gradient are straightforwardly given by
[
∇mJ (m)

]
k

= Re
(

(−ω2uk)γk

)
.

We have obtained an important simplification of the formulation as the derivative of
the discretized operator does not require the computation of an additional matrix. Instead,
we end up with a multiplication of two vectors with an appropriate weight.

Remark 4.5. This formulation holds in the case where we have assumed a piecewise con-
stant representation of the velocity with one coefficients per nodal value, which is similar to
the number of coefficients for the discretized solution u. This assumption appears natural
for the finite differences case, where nodal disretization is performed. It is important to no-
tice that defining a different representation for the velocity will impact the gradient formula,
which must be rewritten accordingly.
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4.4.5.2 Extension

The derivation of the discretized operator must be conducted carefully depending on the
situation. In particular some aspects must be taken into account when deriving the dis-
cretized wave operator from a Galerkin type discretization. Here fluxes involving the models
may appear in the discretization and must be dealt with, as well as penalty terms. More-
over, as mentioned in the Remark 4.5, the way the model is represented generates specific
derivation.

4.4.6 Parametrization

The parametrization refers to the choice of parameter to invert in the algorithm (e.g., c−2 or
c for acoustic inversion). It naturally influences the gradient and it is proven to be crucial,
especially in the context of multi-parameters reconstruction. Tarantola (1986) already
mentioned the importance of an appropriate choice by selecting parameters as uncorrelated
as possible. Since then, various possibilities have been tested. (Tarantola, 2005, p.126)
also decides the parametrization to incorporate a priori information based on Gaussian
functions. In Chapter 5, Sections 5.4, 5.5 and 5.6 we compare several parametrization in
the point of view of the Fréchet derivative and illustrate the differences with application to
seismic reconstruction.

4.4.7 Adjoint state for the HDG formulation

The adjoint state formulation has been derived assuming the forward operator P acts di-
rectly on the field u when solving the wave equation, with Pu = f . However, depending
on the discretization method, the field can be obtained from an alternative problem reso-
lution. This is in particular the case of the HDG method, where the field is expressed from
multipliers Λ, which are solutions of a specific linear system. The method is for example
given in Bonnasse-Gahot (2015). Here the point is not to review the method but simply
to show how it affects the computation of the gradient through the adjoint state method.
We follow the formulation of Bonnasse-Gahot (2015) which states the wave problem in the
HDG framework as {

AkUk + CkAkΛ = Sk ∀k,
BkUk + LkAkΛ = 0 ∀k,

(4.23)

where A, B, C and L are matrices defined for the individual cell k (following the domain
discretization, see Subsection 2.2.1), U encompasses the wavefield while Λ represents the
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appropriate Lagrange multipliers for the system. S is the source. Note that A and C

depend on the medium parameter, but neither B and L. Here the field is expressed locally
on each cell with Uk whereas the multipliers Λ are defined for the interface of the cells only.
Thus, A can be seen as the map from interface (global) to the cell (local) index. To finalize
the HDG formulation we can sum over all the cells, and use the transposed of the index
matrix on the second equation of the System (4.23) to define

∑

k

ATk
(
BkUk + LkAkΛ

)
= 0. (4.24)

U is then expressed from Λ with the first equation of the System (4.23):

AkUk = Sk − CkAkΛ ∀k,

injecting in the Equation (4.24) gives the following linear system for the resolution of the
multipliers Λ: ∑

k

ATk
(
Lk −BkA−1

k Ck
)
AkΛ = −

∑

k

ATkBkA−1
k Sk. (4.25)

For simplicity we refer to the linear system (4.25) with

PHDGΛ = SHDG,

where PHDG = (
∑

kATk
(
Lk −BkA−1

k Ck
)
Ak) and SHDG = −∑kATkBkA−1

k Sk.

Hence, the resolution of the wave equation follows two steps. First we retrieve the
global multipliers Λ from the Equation (4.25) and then we deduce the wavefield U on each
cell. Once again, the reader is referred to Bonnasse-Gahot (2015) and the references therein
for the details. Eventually, the total field u can be expressed from the local one,

u =
∑

k

WT
k Uk,

introducing W to link the local (cell) to the global (domain) indexes.

The computation of the cost function gradient follows the adjoint state method and
the underlying minimization problem becomes

min
m
J (m) subject to AkUk + CkAkΛ = Sk and ATk

(
BkUk + LkAkΛ

)
= 0, ∀k,

where the system of equations (4.23) has been included for the constraints. The formulation
with Lagrangian multipliers becomes

L(m, Ũ, Λ̃, γ̃1, γ̃2) = J (m)+
∑

k

〈
AkŨk +CkAkΛ̃−Sk, γ̃1,k

〉
+
〈
ATk
(
BkŨk +LkAkΛ̃

)
, γ̃2

〉
,

so that two multipliers are introduced, γ̃1 and γ̃2, for each constraint. γ̃1 is defined over
the cell and γ̃2 is global for the cells interfaces, following the nature of the field U and Λ
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respectively. Furthermore, we define

Lk(m, Ũk, Λ̃, γ̃1,k, γ̃2) = J (m) +
〈
AkŨk +CkAkΛ̃−Sk, γ̃1,k

〉
+
〈
ATk
(
BkŨk +LkAkΛ̃

)
, γ̃2

〉
.

The derivative of the function is given by

∂

∂m

(
L(m, Ũ, Λ̃, γ̃1, γ̃2)

)
= Re

(
∂L
∂m

+
∂L
∂Λ̃

∂Λ̃

∂m
+
∑

k

∂Lk
∂Ũk

∂Ũk
∂m

)
.

Note that here, the complex derivation is hidden for Λ̃ and Ũ for the sake of notation but
the derivation must be carried out with respect to the field and its conjugate, similarly to
what has been done in Subsection 4.4.3.

We now take U and Λ to solve the Problem (4.24), and we select the adjoint states γ1

and γ2 such that they are the critical point of the Lagrangian, with ∂UL = 0 and ∂ΛL = 0.
We consider the derivative with respect to Uk at fixed k and use the complex derivation
introduced in Section 4.4.2 to obtain the conditions





∂UkL = 0 = AkR∗(R(u)− d) +A∗kγ1,k +B∗kAkγ2, ∀k,
∂ΛL = 0 =

∑

k

ATkC∗kγ1,k +ATkL∗kAkγ2,

where we have used that the index matrix is real, A = A. The formulation of the adjoint
states equations follow

A∗kγ1,k = −AkR∗(R(u)− d)−B∗kAkγ2, ∀k,
∑

k

ATkC∗kγ1,k +ATkL∗kAkγ2 = 0.
(4.26)

Replacing γ1 in the second equation gives
∑

k

ATkC∗kA−∗k
(
AkR∗(R(u)− d)−B∗kAkγ2

)
+ATkL∗kAkγ2 = 0,

∑

k

ATk
(
L∗k − C∗kA−∗k B∗k

)
Akγ2 =

∑

k

ATkC∗kA−∗k
(
AkR∗(R(u)− d)

)
.

We recognize on the left hand side the adjoint of the operator PHDG introduced for Equa-
tion (4.25), so that γ2 solves the problem

P∗hγ2 =
∑

k

ATkC∗kA−∗k
(
AkR∗(R(u)− d)

)
.

From the computation of γ2, one deduces the expression of γ1 with the first equation
of (4.26). The gradient is eventually given by

∇mJ (m) =
∂

∂m

(
L(m,U,Λ, γ1, γ2)

)T
= Re

(∑

k

< ∂mAkUk + ∂mCkAkΛ, γ1,k >

)T
,

because L and B do not depend on the models. Eventually, we see that the adjoint state
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can easily be adapted for other situations, following the same steps with caution. Here, the
two steps necessary to obtain the wavefield (computation of the multipliers Λ and then the
computation of U on each cell) are retrieved for the adjoint, with the computation of the
global γ2 first and the resolution of γ1 locally on each cell from γ2 next.

4.5 Hessian computation

The computation of a dense Hessian is usually unrealistic for optimization in seismic, due to
the dimension of the problem and numerical restrictions (regarding the computational time
and memory). Furthermore, the Newton algorithm requires the computation of the inverse
of the matrix. Pratt et al. (1998) recall the full and Gauss-Newton Hessian computation
in the time-harmonic domain, feasible for relatively small area of interest. More generally
Hessian kernels for wave problem are detailed in Tarantola (1984); Fichtner and Trampert
(2011). In order to avoid large computation, some applications simply approximate the
Hessian or account for the diagonal, references have already been given in introduction.

In the Newton method, the descent direction, say s, is given by the Equation (4.9),
which can be written as

H(m)s = −∇J (m), (4.27)

where H designates the Hessian. In order to solve the system, the conjugate gradient
method, see Subsection 4.5.4, provides an iterative approximation of the direction only
requiring the matrix vector multiplication H(m)v, ∀v. The problem is then recast to
compute the product Hessian vector for any vector at reduced cost, see Wang et al. (1992);
Nocedal and Wright (2006); Métivier et al. (2013). This computation can rely on the adjoint
state approach. In the context of seismic, the method is detailed and applied in Métivier
et al. (2013).

We review the computation of Hessian vector multiplication using the second order
adjoint state in Subsection 4.5.2. We consider the two main cases for Hessian utilization:
full and Gauss-Newton approximation. Then we detail the conjugate gradient iterations
in Subsection 4.5.4, in order to define the appropriate descent direction for the iterative
minimization.

149



CHAPTER 4. SEISMIC INVERSE PROBLEM: FWI

4.5.1 Hessian formulations

The second order derivative of the cost function employs the complex derivation techniques
introduced in Subsection 4.4.2. We can apply Theorem 4.4 to derive the cost function twice,
using the function T introduced in Remark 4.3,

∇2J (m) = H(m) = Re

(
∂

∂m

(
∂T

∂F
∂F
∂m

+
∂T

∂F
∂F
∂m

))
.

From Theorem 4.5, we know that this is equivalent to

H(m) = 2 Re

(
∂

∂m

(
∂T

∂F
∂F
∂m

))

= 2 Re

(
∂2T

∂F2

(
∂F
∂m

)2

+
∂2T

∂F∂F
∂F
∂m

∂F
∂m

+
∂T

∂F
∂2F
∂m2

)
.

We have shown in Remark 4.3, Equation (4.14), that the second order derivatives of T with
respect to F and F vanish and the cross derivative gives 1/2 so that we have

H(m) = Re

(
2
∂T

∂F
∂2F
∂m2

+
∂F
∂m

∂F
∂m

)
.

Let us introduce DF = ∂mF , and inject Equation (4.13), using the real part, we can finally
obtain

H(m) = Re

(
D2F(m)∗(F(m)− d) +DF(m)∗DF(m)

)
. (4.28)

The Hessian expression defined in the above Equation (4.28) may also be referred to
as the ‘full Hessian’ and consists in all the terms of the Hessian. Alternatively, the Gauss-
Newton approximation HGN can be employed and neglect the second order term D2F(m),
such that

HGN (m) = DF(m)∗DF(m). (4.29)

The approximation may in particular be justified by the complexity and relative weak effect
of second order term for seismic application, as explained in Tarantola (2005); Pratt et al.
(1998).

Remark 4.6 (Regularization). In our application we also incorporate a regularization
parameter to be added on the diagonal of the Gauss-Newton Hessian (i.e. Levendberg–
Marquardt, see Chavent (2010); Kern (2016)). the Hessian becomes H = H + βId, where
Id is the identity matrix and β ≥ 0 is a scalar. For seismic problem, Pratt et al. (1998)
explain that it stabilizes the method, because of the generally ill-conditioned Hessian matrix.
More generally, several techniques exist in term of regularization, such as the Tikhonov reg-
ularization for example. The main problem is to select efficiently the damping parameter β,
which is a difficult step. For this purpose, the trust region that we mentioned in introduction
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may be applied (Kern, 2016).

Remark 4.7. From the complex derivation we can detail the Fréchet derivative with the
restriction operator as it was realized for the gradient, see Equation (4.17). We have

H(m) = Re

((
∂2u

∂m2

)∗
R∗
(
R
(
u
)
− d
)

+

(
∂u

∂m

∗
R∗
)(
R ∂u

∂m

))
.

The full and Gauss-Newton Hessians are identified similarly.

4.5.2 Second order adjoint state

Let us take a real vector v, we seek the computation of its multiplication with the Hessian,
H(m)v (note that the Hessian is a real symmetric matrix), in the full and Gauss-Newton
senses. In order to illustrate the different steps we consider the general framework intro-
duced for the first order adjoint state computation. The misfit function corresponds with
Equation (4.8). Here we follow the steps defined in Métivier et al. (2013) but we adapt
them to the use of the complex derivation framework introduced before. The adjoint state
follows the traditional three steps:

1. define the minimization problem with constraints and underlying formulation with
Lagrangian,

2. the Lagrange multipliers give the adjoint sates when imposing the derivative to zero,

3. the gradient is computed.

In Table 4.2, we review the different functions introduced so that one can follow more easily,
they are also introduced at their first appearance.

Notation Detail
v real vector to multiply with the Hessian
u wavefield solution of the wave equation
γ first order adjoint state

JD(m,u, γ) =
〈
∂m
(
P
)
u, γ

〉
‘complex’ gradient of the misfit functional J

h1(m,u, γ) = JD(m,u, γ)v function minimized for the full Hessian vector
product case

h2(m,u(m), w) =< u(m), w > function minimized for the Gauss-Newton Hessian
vector product case

Table 4.2: List of notation used for the second order adjoint state.
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4.5.2.1 Full Hessian multiplication

For the computation of the full Hessian multiplication, we consider the following minimiza-
tion problem,

min
m

h1(m,u, γ) subject to P(u) = f ; P∗(γ) = −R∗(R(u)− d).

This minimization problem encompasses two constraints: for the forward wave problem (u)
and the first order adjoint state equation (γ). h1 is defined such that

h1(m,u, γ) = JD(m,u, γ)v

where JD(m,u, γ) can be viewed as the ‘complex’ gradient from the first order adjoint state
definition of Equation (4.22), without the real part,

JD(m,u, γ) =
〈
∂m
(
P
)
u, γ

〉
.

Direct derivation gives the expression we seek with

∂

∂m

(
h1(m,u, γ)

)
= H(m)v.

Once again, because u and γ are complex, the derivation of JD must be considered carefully.
By definition, we have

JD(m,u, γ) =
(
∂m(P)u

)∗
γ.

We apply Theorem 4.1 considering u and u are independent, as well as γ and γ, let us
denote JD(m,u, γ) = GD(m,u, u, γ, γ), we have





∂GD
∂γ

=
(
∂m(P)u

)∗
,

∂GD
∂γ

= 0,

∂GD
∂u

= 0,
∂GD
∂u

=
(
∂m(P)

)∗
γ.

Similarly, we compute the derivative for Gh(m,u, u, γ, γ) = h1(m,u, γ) with respect to γ
and u,





∂Gh
∂γ

= 0,
∂Gh
∂γ

=
(
∂m(P)u

)
v,

∂Gh
∂u

=
(
∂m(P)Tγ

)T
v =

〈
∂m(P)∗γ, v

〉
,

∂Gh
∂u

= 0.

(4.30)

Let us now formulate the problem with Lagrange multipliers, introducing two adjoint
variables, γ̃1 and γ̃2, for the two constraints,

L(m, ũ, γ̃, γ̃1, γ̃2) = h1(m, ũ, γ̃) +
〈
P(ũ)− f, γ̃1

〉
+
〈
P∗(γ̃) +R∗(R(ũ)− d), γ̃2

〉
.
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We now take u to be the actual solution of P(u) = f and γ the solution of P∗(γ) =

−R∗(R(u)− d). Using the complex derivation Theorem 4.4, we have

∂

∂m

(
L(m,u, γ, γ̃1, γ̃2)

)
= H(m)v = Re

(
∂L
∂m

+
∂L
∂u

∂u

∂m
+
∂L
∂u

∂u

∂m
+
∂L
∂γ

∂γ

∂m
+
∂L
∂γ

∂γ

∂m

)
.

(4.31)
The adjoint states γ1 and γ2 are then selected to verify





Re

(
∂L
∂u

∂u

∂m
+
∂L
∂u

∂u

∂m

)
= 0,

Re

(
∂L
∂γ

∂γ

∂m
+
∂L
∂γ

∂γ

∂m

)
= 0.

We can replace using the appropriate expression of Equation (4.30),




∂L
∂u

=
〈
∂m(P)∗γ, v

〉
,

∂L
∂u

= P∗γ1 +RR∗γ2,

∂L
∂γ

= 0,

∂L
∂γ

=
(
∂m(P)u

)
v + Pγ2.

The last equation straightforwardly gives the adjoint state γ2. For γ1 we use the Corol-
lary 4.1 to obtain

Re

(
∂L
∂u

∂u

∂m
+
∂L
∂u

∂u

∂m

)
= Re

((∂L
∂u

+
∂L
∂u

) ∂u
∂m

)
.

Therefore, the adjoint states have to satisfy
{
P∗γ1 = −RR∗γ2 −

〈
∂m(P)∗γ, v

〉
,

Pγ2 = −
(
∂m(P)u

)
v.

(4.32)

From this definition of the adjoint states, we have that ∂uL + ∂uL = ∂γL + ∂γL = 0, and
from Equation (4.31) we deduce the Hessian vector product formulation:

H(m)v = Re

(〈(
∂2
m(P)u

)∗
γ, v
〉

+
〈
∂m(P)u, γ1

〉
+
〈
∂m(P∗)γ, γ2

〉)
.

4.5.2.2 Gauss-Newton Hessian multiplication

The Gauss-Newton approximation disregards the second order derivative of the forward
problem, see the Equation (4.29). For the calculation of the Gauss-Newton Hessian vector
product, we proceed similarly to the full Hessian with some adjustments for the definition
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of the minimization problem. We consider

min
m

h2(m,u,w) subject to P(u) = f.

Here h2 is defined such that

h2(m,u(m), w) =
〈
u(m), w

〉
.

The derivation with respect to m gives

∂

∂m

(
h2(m,u(m), w)

)
= Re

(
∂u(m)

∂m

∗
w

)
.

We write the minimization problem with Lagrange multiplier as

L(m, ũ, γ̃1) =
〈
ũ, w

〉
+
〈
P(ũ)− f, γ̃1

〉
.

We take u solution of Pu = f so that

∂

∂m

(
L(m,u, γ̃1)

)
=

∂

∂m

(
h2(m,u,w)

)
= Re

(
∂L
∂m

+
∂L
∂u

∂u

∂m
+
∂L
∂u

∂u

∂m

)
. (4.33)

The adjoint state γ1 is selected to have the derivative with respect to u equal to zero,

Re

(
∂L
∂u

∂u

∂m
+
∂L
∂u

∂u

∂m

)
= 0.

We note that 



∂L
∂u

= 0,

∂L
∂u

= P∗γ1 + w.

Hence the adjoint state solves the problem

P∗γ1 = −w. (4.34)

We can finally inject back in the Equation (4.33) to get

∂

∂m

(
h2(m,u,w)

)
= Re

(〈 ∂u
∂m

,w
〉)

= Re

(〈
∂m(P)u, γ1

〉)
, (4.35)

where γ1 depends on w from the problem (4.34).

Let us take w such that w = R∗DF(m)v, where v is a real vector. We recall that
DF = R∂mu and we see that

〈 ∂u
∂m

,w
〉

=
〈
R−1DF(m), w

〉
=
〈
R−1DF(m),R∗DF(m)v

〉

=
〈
DF(m), DF(m)v

〉
= DF(m)∗DF(m)v.
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The latest is the Gauss-Newton Hessian vector product,

HGN (m)v = Re

(〈 ∂u
∂m

,R∗DF(m)v
〉)
.

From the Equation (4.35) the Gauss-Newton Hessian can be expressed as

HGN (m)v = Re

(〈
∂m(P)u, γ1

〉)
, (4.36)

where γ1 is given by Equation (4.34) where w is now specified,

P∗γ1 = −R∗DF(m)v = −R∗R ∂u

∂m
v. (4.37)

We still need to compute the right-hand side of Equation (4.37). We remind that u
solves the problem Pu = f so that the derivation with respect to m is

P∂mu = −∂mPu.

Here we recognize that (∂mu)v is actually identical to the adjoint state γ2 defined for the
full Hessian vector product in the Equation (4.32) so that

−R∗DF(m)v = −R∗R ∂u

∂m
v = −R∗Rγ2.

Finally, in order to compute the Gauss-Newton Hessian vector product, two additional
problems are required, where one is in common with the full Hessian situation,

{
P∗γ1 = −R∗Rγ2,

Pγ2 = −
(
∂m(P)u

)
v.

The matrix vector multiplication is then obtained from Equation (4.36).

4.5.2.3 Summary of the methods

The computation of Hessian vector product, or Gauss-Newton Hessian vector product,
requires two additional forward problems to be solved, where one of the two is common
to both situations. The computation of the gradient has already required the solution of
two problems, in order to find the wavefield u and the first order adjoint state, γ (see
Equation (4.21)). The Hessian vector multiplication generates the additional problems

Pγ2 = −
(
∂m(P)u

)
v,

P∗γFH1 = −RR∗γ2 −
〈
∂m(P)∗γ, v

〉
,

P∗γGN1 = −R∗Rγ2.

(4.38)
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Here γFH1 is for the full Hessian and γGN1 for the Gauss-Newton version. After the appro-
priate two second order adjoint states have been computed, the matrix vector product is
appropriately chosen between

H(m)v = Re

(〈(
∂2
m(P)u

)∗
γ, v
〉

+
〈
∂m(P)u, γFH1

〉
+
〈
∂m(P∗)γ, γ2

〉)
,

HGN (m)v = Re
(〈

(∂mP)u, γGN1

〉)
.

(4.39)

4.5.3 Multi-parameters Hessian

We are able to compute the Hessian vector product for the full and Gauss-Newton Hessian
when deriving with respect to the model parameter. However, one should take carefully the
formulation (4.38) in the context of multi parameters. Indeed the number of parameters
affects directly the derivative of the operator, hence the actual number of adjoint equations.
Let us specify the Hessian for the acoustic and elastic seismic situation, decomposing the
models of interest

Hacoustic =

(
Hλλ(m) Hρλ(m)

Hλρ(m) Hρρ(m)

)
, m = {λ, ρ},

Helastic =



Hλλ(m) Hµλ(m) Hρλ(m)

Hλµ(m) Hµµ(m) Hρµ(m)

Hλρ(m) Hµρ(m) Hρρ(m)


 , m = {λ, µ, ρ}.

(4.40)

Generally by denoting m = {m1, . . . ,mnm} the nm models of interest we have

H =




Hm1m1(m) Hm2m1(m) . . . Hmnmm1(m)

Hm1m2(m) Hm2m2(m) . . . Hmnmm2(m)
...

...
. . .

...
Hm1mnm (m) Hm2mnm (m) . . . Hmnmmnm (m)



,

where every block is a squared matrix of size the number of coefficients to represent one of
the models. Similarly, the vector that multipliesH can be decomposed by v = {v1, . . . , vnm}
(here vi is a vector of size the number of coefficients used to define the model). We obtain

H(m)v =




∑
iHmim1vi∑
iHmim2vi

...∑
iHmimnvi



.

The Hessian vector multiplication that we obtained in the Equations (4.38) and (4.39)
correspond to the computation of a single Hmi,mjvi, where m = mi = mj . Let us specify
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the case when i 6= j, for which the adjoint problems Equation (4.38) become

Pγ2 = −
(
∂mj (P)u

)
vi,

P∗γFH1 = −RR∗γ2 −
〈
∂mj (P)∗γ, vi

〉
,

P∗γGN1 = −R∗Rγ2.

That is, γ2 must be computed for every model mj and vector vi, giving n2
m possibilities,

similarly for γ1. The final formulation Equation (4.39) is

< Hmi,mj (m), vi > = Re

(〈(
∂2
mi,mj (P)u

)∗
γ, vi

〉
+
〈
∂mi(P)u, γFH1

〉
+
〈
∂mi(P∗)γ, γ2

〉)
,

< HGN,mi,mj (m), vi > = Re
(〈

(∂miP)u, γGN1

〉)
.

Remark 4.8. We see that the adjoint states hold for every model of interest and associated
vector v. Thus the multi-parameter situation multiplies accordingly the number of adjoint
problems to be solved. This is not the case for the first order adjoint state where the adjoint
equation (4.22) is unique, whatever the number of models is.

4.5.4 Conjugate gradient

The conjugate gradient method is an iterative algorithm to approximate the solution of
Ax = b without forming explicitly the matrix A, nor its inverse; it is amatrix free algorithm.
The algorithm is based upon the use of matrix vector multiplications Av only, where A is
symmetric positive definite matrix. The method is in particular reviewed in (Nocedal and
Wright, 2006, Chapter 5) and well known in association with the Newton method, e.g.,
Le Dimet and Shutyaev (2000).

In the context of the Newton optimization, the search direction is selected to solve
Equation (4.27), so that using the conjugate gradient avoids the formulation and inversion of
the Hessian, but only requires Hessian vector multiplication, which we have established with
the second order adjoint state formulation for the computation of (full or Gauss-Newton)
Hessian vector multiplication. The method is well known in this context of optimization and
is often referred to as Hessian CG. It is detailed for example, in (Nocedal and Wright, 2006,
Section 5.1), and applied for seismic reconstruction in Métivier et al. (2013). We do not
aim at providing much details but simply review the iterative method in the Algorithm 2,
which refers to (Nocedal and Wright, 2006, Algorithm 5.2).

The criterion η is incorporated to define an acceptable approximation. Otherwise the
number of iterations is limited to, say, niter. Note that the method gives the exact solution
when the number of iterations matches the size of the matrix. However, one commonly
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Objective: We aim to find x solution of the linear system Hx = b.
Initial guess: x0

compute the matrix vector product Hx0 =: v0

compute r0 = v0 − b and set p0 = −r0

for k = 1, . . . , niter do
if ‖rk−1‖ < η (‘low enough’) then

exit k loop
else

compute the matrix vector product Hpk =: wk

αk =
rTk rk

pTkwk
xk+1 = xk + αkpk
rk+1 = rk + αkwk

βk+1 =
rTk+1rk+1

rTk rk
pk+1 = −rk+1 + βk+1pk

end
end
end of algorithm with x := xk

Algorithm 2 – Conjugate gradient (CG) algorithm: approximate the solution
of linear systems avoiding the explicit formulation and inversion of the matrix. The method
only needs matrix vector multiplication. The tolerance η acts as a threshold for acceptable
approximation, as an alternative, a maximum number of iterations niter is performed.

processes only a few iterations.

4.5.5 Numerical cost

The Hessian vector multiplication requires two problems to be solved per model of interest
and per vector associated with each of them, which gives a total of 2n2

m adjoint states, with
nm the number of models of interest. Similarly to the first order adjoint state, it has to
be repeated for every source of the acquisition but direct solvers, using the factorization
obtained for the forward problem and benefiting from multi right-hand sides options, can
reduce the numerical cost.

However, when we incorporate the method in the conjugate gradient framework, with,
say niter iterations, the number of system to be solved is now 2nitern

2
m. We see that multi-

parameters inversion has drastic effect on the numerical cost. For example, assume an elastic
isotropic inverse problem where the medium is defined with three parameters (the density
and the Lamé parameters), say we want to perform twenty iterations of the conjugate
gradient (which is not incredibly high), it already gives an additional 360 problems. At this
point, even if the factorization has not to be conducted and multi right-hand sides provides
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a profound benefit, the cost may not worth the effort. Namely, increasing the amount of
gradient descent iterations may be a better substitution, as suggested by Tarantola (2005).
On the other hand, the Hessian can give major insight into the subsurface properties, Pratt
et al. (1998), and one should be careful when reducing the computational time at all cost.

4.5.6 Higher order adjoint state

We have extended the adjoint state formulation to arbitrary order, in a joint work with Jia
Shi, Maarten V. de Hoop and Henri Calandra, see Shi et al. (2014); particularly when the
data are represented with the Neumann-to-Dirichlet map, following land seismic situation.
The reader is referred to this additional work for more information.

4.6 Full waveform inversion algorithm options

Many methods exist to conduct iterative minimization algorithm and many can be found,
for example, in Nocedal and Wright (2006). The computation of the gradient of the cost
function at each iteration seems a minimal requirement (we do not account for the gradi-
ent free techniques arising in the stochastic approach here). Second order information can
provide tremendous help but its access may be limited due to numerical restriction. As an
alternative the family of Quasi-Newton method can be employed to conduct the iterative
algorithm using approximation of the Hessian. Several methods have been designed to
approximate the Hessian while avoiding the computation and inversion of the full matrix,
and we have given the Hessian CG in Subsection 4.5. In the context of seismic reconstruc-
tion, it is mentioned in (Tarantola, 2005, p. 158) that the benefit of Newton method is not
obvious and one can prefer performing more iterations of steepest descent algorithm. Yet,
Pratt et al. (1998) advocate the necessity of the Hessian and gives an understanding on the
information it carries in seismic.

Here we review the methods that have been employed during this project for FWI,
where some of the first and second order techniques have also been compared. In particular,
we detail the methods that require only the computation of the gradient in Subsection 4.6.1.
The formulation of the Hessian approximation using conjugate gradient (Hessian CG), given
in Subsection 4.5, is briefly reminded.
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4.6.1 Nonlinear conjugate gradient, limited-BFGS

The limited use of first order derivative information via the gradient is primarily motivated
by the large size of the seismic inverse problems where the computational time becomes
critical. Indeed when one considers large three-dimensional media and multi-parameters
inversion, the computational cost is understandably vastly increasing. That is why the
gradient descent algorithm (and its variations) may be preferred instead of more standard
Newton method. It consists in updating the model using the gradient only such that the
updated model is defined by

mi+1 = mi − α∇J (mi). (4.41)

Here, α is the step length, typically approached using line search algorithm which we later
depict in Subsection 4.6.3. This method can also be interpreted as a Landweber iteration
scheme, Landweber (1951); Kirsch (1996); Hanke (2014); de Hoop et al. (2012).

4.6.1.1 Nonlinear conjugate gradient

Following the gradient descent, an alternative approach can be developed, still being based
on the gradient only. In particular, nonlinear conjugate gradient (NLCG) methods use the
gradient computed at previous iterations to improve the direction of minimization. It relies
on an additional parameter which definition can follow different formulations. Here we
have used the four main formulations: Fletecher–Reeves (FR, Fletcher and Reeves (1964)),
Polak–Ribière (PR, Polak and Ribiere (1969)), Hestenes–Stiefel (HS, Hestenes and Stiefel
(1952)) and more recently Dai–Yuan (DY, Dai and Yuan (1999)). In the Algorithm 3, we
show the modification of the descent direction generated by the NLCG method.

Numerically speaking, the NLCG method does not require heavy computation because
it only requires simple operations. However, it necessitates to keep the gradient at previ-
ous iterations, which can be expensive memory-wise. A simple alternative is to store the
gradients on the disk, in order to save the computational memory.

4.6.1.2 Limited-BFGS

The BFGS method aims to estimate the inverse of the Hessian and corresponds with a
quasi-Newton method. It is named after Broyden, Fletcher, Goldfarb and Shanno and
their series of papers in 1970’s. In order to reduce the memory required, Nocedal (1980)
introduces a version which is now referred to as limited-memory BFGS, limited-BFGS, or
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• Gradient for iteration i, gmi = −∇mJ (mi)
• Compute parameter β following one of the following definition:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Fletcher–Reeves formula βi =
(gmi)

T gmi(
gmi−1

)T
gmi−1

,

Polak–Ribière formula βi =
(gmi)

T (gmi − gmi−1

)
(
gmi−1

)T
gmi−1

,

Hestenes–Stiefel formula βi = −(gmi)
T (gmi − gmi−1

)

sTi−1

(
gmi − gmi−1

) ,

Dai–Yuan formula βi = − (gmi)
T gmi

sTi−1

(
gmi − gmi−1

) .

• Compute the conjugate direction si = gmi + βisi−1

• Perform line search algorithm to find the step α = argminα J (mi + αsi)
• Update the model mi+1 = mi + αsi

Algorithm 3 – Nonlinear conjugate gradient (NLCG) algorithm: it requires the
computation of the gradient to update the model in an iterative optimization framework. The
first conjugate direction is given by s1 = −∇mJ (m1) and the NLCG can be employed for i >= 2.

L-BFGS method. In the Algorithm 4, we give the steps for the model update.

4.6.2 Hessian method

In our application, we only employ the Hessian CG method to account for the second order
information. The method has been depicted in Subsection 4.5.4, following the formulation
of Hessian vector product. We also employ a regularization term on the diagonal, see
Remark 4.6. In Section 4.7, we experimentally compare the effect of reconstruction using
the gradient and the Hessian.

Several possibilities have been proposed in the literature to account for the Hessian or its
approximation and we have mentioned some applications in the introduction already. The
implementation of these promising techniques is clearly an evolution we need to consider
for the short term future of our code.
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• We define at iteration i,
gmi = ∇mJ (mi),

∆mi = mi+1 −mi,

∆Gi = gmi+1 − gmi ,

γi =
1

∆T
Gi

∆mi
.

• Set q = gmi
for k = (i− 1), (i− 2), . . . , (i− l) do

αk = γk∆
T
mk
q

q = q − αk∆Gk

end

• Wi =
∆T
Gi−1

∆mi−1

∆T
Gi−1

∆Gi−1

• si = Wiq
for k = (i− l), (i− l + 1), . . . , (i− 1) do

βk = γk∆
T
Gk
si

si = si + ∆mk(αk − βk)
end
• Perform line search algorithm to find the step α = argminα J (mi − αsi)
• Update the model mi+1 = mi − αsi

Algorithm 4 – Limited-Memory BFGS (L-BFGS) algorithm: we introduce l, a
chosen integer. W acts as the approximate of the Hessian inverse.

4.6.3 Line search method

When the update direction has been computed with the method of choice (gradient descent,
nonlinear conjugate gradient, Hessian CG, etc), it is common to adjust the direction with
an appropriate step length. If we refer by s the update direction, the updated model is
written

mi+1 = mi − αisi,

and α is the step length (as in Equation (4.41) for the gradient descent). It is formally
defined by

αi = argmin
α
J (mi − αsi).

For simplicity and to reduce the number of evaluation of the misfit function J , one can
limit the search to the first α that decreases the cost function instead of looking for the
actual minimum. However, some conditions must be respected by the step length: these
are the Wolfe and Armijo conditions (Armijo, 1966; Wolfe, 1969, 1971). Those conditions
guarantee in some sense that the step α would not be too large or too small.
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– The Armijo condition is

J (mi − αsi) ≤ J (mi) +K1αs
T
i ∇J (mi).

– The Wolfe condition is

sTi ∇J (mi − αsi) ≥ K2s
T
i ∇J (mi).

As it is mentioned in Chavent (2010), the latest Wolfe condition can be replaced by the
Goldstein condition.

– The Goldstein condition (as an alternative to the Wolfe condition) is

J (mi − αsi) ≥ J (mi) +K2αs
T
i ∇J (mi).

In the above relations, K1 and K2 are constants such that K1 < K2 < 1.

In our iterative scheme the line search is conducted via a backtracking algorithm for
simplicity. We start with a relatively high initial step α(0)

i and it is decreased until the cost
function decreases correctly. Hence every iteration for α(l)

i only requires the evaluation of
the cost function. This gives us a computationally inexpensive formula. However, better
alternatives are possible, yet they require more computations. We mention in particular
the Maximum Projected Curvature (MPC) step of Chavent (2010). Finally, de Hoop et al.
(2012) give the analytic step when considering for Landweber iteration scheme. For more
details about the line search, we refer to (Nocedal and Wright, 2006, Chapter 3).

4.6.4 Source inversion

The experimental source(s) employed to generate the wave is not exactly known. One can
expect to have the time domain source wavelet with relative accuracy but one cannot expect
the exact behavior. This is due to noise, limited accuracy of the devices, etc. That is why
it is necessary to approximate the source simultaneously to the model update. Naturally
defined in the time domain, the initial frequency domain source corresponds with the Fourier
transform of the wavelet, giving a complex number associated with the current frequency.
The problem is then to recover the source amplitude (and not the spatial position). It is
relatively easy to handle because it is a linear inverse problem. Indeed, the source acts
typically at the right-hand side of the linear system describing the wave phenomenon. In
geophysics, the source update has been given in particular by Pratt (1999); Virieux and
Operto (2009) who define

gi+1 = gi

〈
Ru(mi), d

〉
〈
Ru(mi),Ru(mi)

〉 ,
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where gi stands for the source at iteration i. Hence we update simultaneously the model
and the source value. Even if the initial source wavelet, is accurate, it is ‘safer’ to adjust
the source with the iterations.

4.6.5 Complex frequency

In our algorithm the angular frequency is denoted by ω. Let us introduce the notation for
complex frequency, ω̃, such that the Helmholtz equation becomes

−
( ω̃2

c2(x)
−∆u(x)

)
= f(x).

We define ω̃, following the introduction made in the Remark 1.7, such that

−ω̃2 = (σ + 2iπf)2,

where f is the frequency in Hz. We see that in the case where σ = 0 we have the traditional
angular frequency and −ω̃2 = −(2πf)2 = −ω2.

This approach has been popularized for the purpose of seismic inversion in the work of
Shin and Cha (2009); Ha et al. (2010) with reference to the Laplace and Laplace-Fourier
domain. Indeed, if f = 0, the resulting wave equation can be understood as a Laplace
transform of the time domain formulation. Yet, in the following of this manuscript we
prefer to use the term complex frequency which is more general. Several applications have
been carried out since then, we mention for example the work of Shin et al. (2010); Petrov
and Newman (2014) where the benefits of using such frequencies are illustrated. We will
later study the effect of using complex frequencies, which are particularly useful for the
reconstruction of subsurface salt body of high velocity contrast, see Chapter 6. We also
justify the usefulness of such approach by the study of the size of the basin of attraction of
the optimization problem in Chapter 5. This justification gives a clear understanding on
why complex frequency can provide benefits. However, the data at such frequencies suffer
from the noise an may be inaccessible in seismic.

Remark 4.9. By abuse of notation we will keep ω as the general frequency notation in the
equations for the rest of the manuscript. It is justified for simplicity, but always represents
a possibly complex frequency.

4.6.6 Detailed algorithm

We review the general scheme to conduct the iterative minimization in the Algorithm 5,
where the model update is detailed. In the Appendix B we further give the major options
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that have been implemented in the FWI toolbox and how the software works. This toolbox
have been created in Fortran90 and designed for parallel architecture using MPI and OpenMP.

Data:
– Acquisition set (sources and receivers positions),
– frequency domain measurements,
– selection of options (norms of the cost function, search direction method, etc),
– initial model m1.

for k ∈ {1, . . . , nω} do
for i ∈ {1, . . . , niter} do

j = i+ (k − 1)× niter
for s ∈ {1, . . . , nsrc} do

Numerical resolution of the wave equation using mj

end
Apply the appropriate restriction operator R to deduce Fωk(mj)
Compute the residuals and underlying cost function J (mj)
if (J (mj) < η1) then

end iteration loop
else

Solve the adjoint state problem
Compute the derivative of the wave operator with respect to the model(s)
Compute the gradient with respect to the model(s)
Compute the search direction si:
if Hessian CG method then

for l ∈ {1, . . . , nH} do
Apply the conjugate gradient algorithm from Hessian vector
product method

end
else

Non-linear conjugate gradient formula of choice
end
Line search to estimate the step length αj
Update the model mj+1 = mj + αjsj
if (J (mj+1)− J (mj) < η2) then

end iteration loop
end

end
end

end

Algorithm 5 – Detailed FWI algorithm: FWI iterative minimization in the frequency
domain. The model update is conducted using the gradient descent or Hessian CG, η2 > 0 prevent
excessive iterations in case of the stagnation of the cost function; η1 ≥ 0 provides a tolerance for
an acceptable convergence. Appendix B provides the detailed FWI toolbox created in Fortran
90 according to seismic inversion.
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4.7 Seismic reconstruction from gradient and Hessian

In this section, the iterative minimization algorithm is carried out using synthetic experi-
ments. Among the options that have been presented, only the use of first order information
(through gradient descent and NLCG variation), or second order (with the Hessian con-
jugate gradient method) are compared. The Hessian should naturally provide the wanted
framework for the resolution of optimization problem following the Newton method, how-
ever, the numerical cost involved by the large scale seismic problem handled may undermine
the benefits. That is why it is important to identify the situations in which the Hessian
gives a major breakthrough in the recovery.

Here we design experiments for acoustic media with constant or variable density. The
study should be pursued for elastic media as well, which certainly requires heavier com-
putation but where the benefits may be crucial. More generally, we hereby illustrate one
of the central features of our seismic inverse problem software. We review the different
possibilities of nonlinear conjugate gradient methods for gradient descent algorithm and
integrate a regularization term in the Hessian computation. For the latest we clearly detect
its impact, but it requires more meticulous consideration and a precise definition.

Remark 4.10. In this section we have used the slowness squared parametrization (1/c2) to
conduct the acoustic iterative minimization with constant density. For the variable density,
we have selected to invert (1/κ, 1/ρ). The choice of parametrization is later analyzed, in
the Chapter 5, Sections 5.4, 5.5 and 5.6.

4.7.1 The acoustic Marmousi 2D model with constant density

We consider the two-dimensional acoustic Marmousi model, of size 9.2 × 3 km. It has
been synthetically designed by the Institut Français du Pétrole (IFP) in 1988 and has
since become the most popular geophysical model for experiments. It has been thoroughly
studied, as in the work of Martin (2004); Martin et al. (2006), whom further extend the
model to elastic media (we will later use this elastic version for experiments). The wave
speed varies from 1450 to 5500 m s−1 and is shown in Figure 4.4. It consists of different
sedimentary structures with different celerities in every layer. We further assume a constant
density with value 1000 kg m−2. Hence, the propagation of wave follows the Helmholtz
equation and the inverse problem aims the recovery of the wave speed.

The seismic acquisition is designed with sources and pressure measurements located
in the near surface area. We impose 91 sources that are generated one by one. For every
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Figure 4.4: Wave speed for the acoustic Marmousi medium of size 9.2× 3 km, the velocity varies
between 1450 and 5500 m s−1.

source, 183 receivers record the corresponding pressure data. The sources are equally spaced
by 100 m and the receivers by 50 m. In this experiment, synthetic data are generated in
the frequency domain using a different discretization and order of approximation compared
to the one used during the inverse algorithm. Namely, the FWI algorithm employs a
Discontinuous Galerkin discretization with order 2 polynomials while the data use an order
3, also the mesh is refined for the data generation. The data are generated using frequencies
from 2 to 10 Hz.

From the data (pressure recorded at the receivers location for the frequencies) we aim at
reconstructing the velocity without knowing any information on the subsurface structures.
The model used to initiate the iterative minimization is presented in Figure 4.5. We simply
consider a one-dimensional variation of velocity, with increasing value with depth.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

x (km)

de
pt

h
(k

m
)

2

3

4

5

wave speed (km s−1)

Figure 4.5: Initial wave speed for the iterative minimization algorithm and reconstruction of the
Marmousi model. The model has no information on any of the true structures and consists of a
one-dimensional variation of velocity with depth.
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4.7.1.1 Gradient descent and nonlinear conjugate gradient

We iterate following the Algorithm 5. The set of frequency varies from 2 to 10 Hz with 1

Hz increment. We perform 30 iterations per frequency. We first review the reconstruction
using only first order information (i.e. the gradient). In particular, we compare the gradient
decent with the four nonlinear conjugate gradient formulas: Fletcher–Reeves (FR), Polak–
Ribière (PR), Hestenes–Stiefel (HS) and Dai–Yuan (DY), see Subsection 4.6.1.

In the Firgure 4.6, we compare the evolution of the cost function with iterations for
different frequencies. It allows a quantification of the methods efficiency in terms of residual
diminution and convergence. We provide the results at the beginning of the inversion scheme
(2 and 3 Hz), and for later iterations (6 and 8 Hz).
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(a) 2 Hz iterations.
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Figure 4.6: Evolution of the cost function for different frequencies using the nonlinear conjugate
gradient method. The black circles ( ) use the Fletcher–Reeves (FR) formula, the blue crosses
( ) the Polak–Ribière (PR) formula, the red crosses ( ) the Hestenes–Stiefel (HS) formula
and the green triangles ( ) the Dai–Yuan (DY) formula. The yellow squares ( ) uses the
gradient descent algorithm. At every frequency, the cost function progression is scaled with the
value of the first iteration.

The initial frequency iterations (2 Hz) do not show any difference between the formu-
lations. The second set of iterations (3 Hz) shows a slight improvement in the convergence
rate with the PR formulation of the NLCG method. For the latest frequencies, it ap-
pears that the tendency is confirmed with the PR formulation ( ) that gives the best
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convergence. Namely, at 6 Hz, while the other formulations start to stagnate after about
15 iterations, the PR formula keeps improving the cost function drastically. It is inter-
esting to notice that the FR formulation gives the worst convergence at 6 Hz but shows
major improvement for the 8 Hz iterations (without being impacted by the previous slow
convergence). The gradient descent presents very similar results between the HS and YD
formulations. Overall, all methods seem to converge relatively nicely for the first 10 to 20

iterations and then the decrease of the cost function slows down. In Figure 4.7, we compare
the final wave speed reconstructed from the different methods.
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Figure 4.7: Final reconstructions of the acoustic Marmousi wave speed assuming constant density
and using frequencies from 2 to 10 Hz. 30 iterations are performed per frequency (for a total of 270
iterations) and we compare the methods involving only the gradient of the cost function.

The iterative minimization algorithm accurately recovers the Marmousi wave speed
with comparable accuracy for all the methods involving the gradient of the cost function
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only. The different layers are well retrieved with the appropriate velocity values, except for
the deepest parts of the model. As it was expected by the cost function evolution presented
Figure 4.6, the PR formula slightly improves the reconstruction, in particular with the
deepest central structures. However, in this first experiment, all methods behave pretty
well.

4.7.1.2 Hessian approximation using conjugate gradient

Following the result using the first order information, we proceed to the same experiment
but using techniques that involved the second order information (Hessian). In particular,
we employ the Newton CG where the search direction given by the (full or Gauss-Newton)
Hessian is approximated by the conjugate gradient method, see Section 4.5. Compared to
the gradient descent (and the NLCG alternatives), the general FWI Algorithm 5 incorpo-
rates a second loop for the conjugate gradient approximation of the Hessian inversion. We
take a reasonable number of iterations to limit the computational time, i.e., 10 (and exact
resolution is not the objective of the method anyway).

We compare the evolution of the cost function at selected frequencies using the full or
Gauss-Newton Hessian approximation. We also show the results where the NLCG is used
with the Polak–Ribière formula. Figure 4.8 presents the evolution of the residuals for two
frequencies, and we remind that the complete set is a sequential progression from 2 to 10

Hz.
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Figure 4.8: Evolution of the cost function for different frequencies using different methods for the
model update. The blue crosses ( ) use the Polak–Ribière (PR) nonlinear conjugate gradient.
The red crosses ( ) use the Gauss-Newton Hessian CG approximation. The yellow crosses ( )
use the full Hessian CG approximation. The number of iterations for the conjugate gradient is set
to 10.

During the initial iterations (at low frequencies) the NLCG provides the best results,
while the Gauss-Newton approximation shows a surprisingly slow convergence rate. The
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later iterations give a different situation where the nonlinear conjugate gradient stagnates
meanwhile the Gauss-Newton approximation keeps converging. In this case, the method
based on the full Hessian does not converge for the higher frequencies. Hence the benefit of
using Hessian information is not straightforward for this acoustic situation. Because of the
numerical cost involved, one can imagine to iterate first using the gradient only and then
the approximation of the Hessian for the latest iterations.

Regarding the Hessian, it can be important to consider regularization to improve the
conditioning of the Hessian, as explained in the Remark 4.6. Here we decide to incorporate
a term on the diagonal, following a Levenberg–Marquardt approach. We recall that the
Hessian ‘becomes’ H + βId, where Id is the identity matrix and β a scalar. Hence, we
simply consider a constant damping on the diagonal for every iteration, with value

βi =
‖Hi(mi −mi−1)− (∇Ji −∇Ji−1)‖

‖mi −mi−1‖
, (4.42)

where ∇Ji indicates the gradient of the cost function at iteration i, m is the model of
interest. It is certain that a more profound study is required to optimize the use of the
preconditioner, benefiting from the existing theory. However, the choice of an appropriate
value for β is not by any means a simple task, see Kern (2016), especially for large scale
optimization problems. The point is here to simply illustrate its importance. In Figure 4.9,
we compare the residuals evolution for the Gauss-Newton Hessian for different values of
the preconditioner.

The value of the damping parameter on the diagonal of the Hessian (Equation (4.42))
plays an important role, as expected. If this coefficient is too low, then the results are
naturally close to the original Hessian approximation. Increasing the damping generates
a variety of possibilities. It is important to notice that the well chosen preconditioner
eventually gives better convergence than either the natural Hessian or the gradient, which
indicates its usefulness. However, the choice of this diagonal coefficient may be complex,
here it is clear that to obtain the best convergence rate, it needs to be adapted at each
frequency. At early frequencies, using the value β directly seems to be sufficient for the
convergence, yet when increasing the frequency, the preconditioner with value 10−3β or
10−4β provides a much better decrease of the misfit functional. From these comparisons
we conclude that the preconditioner is clearly needed to improve the convergence of the
method, however, it would require a much better understanding to clarify how to choose it
and make it evolved with frequency.
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Figure 4.9: Evolution of the cost function for different frequencies using different methods. The
blue crosses ( ) use the non-linear conjugate gradient Polak–Ribière formula. The red crosses
( ) use the Gauss-Newton Hessian and 10 conjugate gradient iterations. The yellow squares
( ) use a diagonal preconditioner with value β of Equation (4.42). The black circles ( ) use a
diagonal preconditioner with value 10−3β. The green triangles ( ) use a diagonal preconditioner
with value 10−4β. The magenta crosses ( ) use a diagonal preconditioner with value 10−2β. All
methods using preconditioner use the Gauss-Newton Hessian and 10 conjugate gradient iterations.

4.7.1.3 Final reconstruction using 75 iterations per frequency

We continue the Marmousi experiments increasing the number of iterations per frequency,
from 30 to 75. We compare the final results of the FWI algorithm, where the frequency still
varies from 2 to 10 Hz, with 1 Hz increment. The reconstructions obtained from the NLCG,
Gauss-Newton and full Hessian CG are illustrated in Figure 4.10. We also incorporate a
preconditioner for the Hessian.

The general accuracy of the reconstruction is relatively good and some differences
clearly appear in the deepest structures. The use of Hessian information captures deeper
information better than when we restrict the algorithm to the use of the gradient. Here
the preconditioner provides a more precise resolution. In particular, for the Gauss-Newton
Hessian CG method. Finally, the full Hessian gives larger values than expected in this
example.
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CG.
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Figure 4.10: Final reconstruction of the acoustic Marmousi wave speed assuming constant density
and using frequencies from 2 to 10 Hz. 75 iterations are performed per frequency (for a total of
675 iterations), and we compare the methods involving the gradient and the Hessian of the cost
function.

In this experiment, the starting model has no prior information on the velocity and yet
the algorithm is capable of recovering the main velocity structures. The acoustic Marmousi
test case may be a simple one but it still reveals how the use of Hessian information can
improve the reconstruction. Naturally, the numerical cost can easily become extreme, even
in this simple acoustic isotropic situation. In Table 4.3, we provide the total time to run the
algorithm for the different methods. The computational time given should be mitigated by
the fact that we have used only 4 processors2 and could certainly be reduced for this reason.
However, there is still an intrinsic cost in time for approximating the Hessian. A mixed
algorithm with initial iterations using the gradient and the use of Hessian information for
a few set of final iterations would be an appropriate compromise.

Remark 4.11. The Marmousi acoustic reconstruction is continued in Chapter 6, Sec-
tion 6.2, in particular with the use of time domain noisy data.

2The experiments have been conducted on the Purdue Conte clusters, https://www.rcac.purdue.
edu/compute/conte/, specifications: 16 cores per node with two 8-Core Intel Xeon-E5; 64 GB per node;
Infiniband: 40 Gbps FDR10.
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Number of
processors

Iterations Nd.o.f. NLCG GNH CG GNH CG
preconditioner

4 675 734 022 8h 60h 75h

Table 4.3: Computational time for the FWI algorithm in the reconstruction of the acoustic Mar-
mousi model with constant density. The experiments have been running on the Purdue Conte
Cluster. Nd.o.f. indicates the number of degrees of freedom for the forward problem.

4.7.2 The acoustic Overthrust 2D model with constant density

We now consider the two-dimensional Overthrust (OT) model. It is actually originated
from the SEG-EAGE Overthrust 3D velocity model of Aminzadeh et al. (1994), where a
two-dimensional section has been extracted. We will proceed similarly to the Marmousi
test case, in order to verify the experimental observations we have on the different methods
of inversion. This model is of size 20× 4.65 km and the velocity ranges from 2000 to 6000

m s−1. It is pictures in Figure 4.11.
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Figure 4.11: Wave speed for the acoustic Overthrust medium of size 20 × 4.65 km, the velocity
varies between 2000 and 6000 m s−1.

This model mainly consists of horizontal layers of constant speed with some faults
in the upper area. It is larger than the Marmousi experiment. We generate the seismic
acquisition with sources and receivers located in the near surface area. We positioned 199

sources and 399 receivers per source. The sources are equally spaced by 100 m and the
receivers by 50 m. The data are generated using a finite differences discretization of the
wave equation and the iterative minimization is conducted using Discontinuous Galerkin
discretization. Furthermore, the source value used to generate the data is assumed not to
be precisely known and we recover it following the methodology of Subsection 4.6.4. The
set of frequency varies from 1 to 10 Hz, where we use only sequential integer frequencies.

In Figure 4.12 is shown the initial model taken to start the iterative reconstruction.
We do not assume any knowledge of the structures and the velocity is lower compared to
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the original scale. As in the previous experiment, it is simply a one-dimensional variation
of velocity with depth.

0 2 4 6 8 10 12 14 16 18 20

0

2

4

x (km)

de
pt

h
(k

m
)

2

3

4

5

6

wave speed (km s−1)

Figure 4.12: Initial wave speed for the iterative minimization algorithm and reconstruction of the
Overthrust model. The model has no information on any of the true structures and consists of a
one-dimensional variation of velocity with depth.

The FWI algorithm proceeds to 30 iterations per frequency. Following the Marmousi
experiment, we have selected two methods to conduct the inversion: the NLCG using the
Polak–Ribière formula and the Gauss-Newton Hessian CG with a diagonal preconditioner,
where the conjugate gradient algorithm to approximate the Hessian inverse uses 10 iter-
ations. (We have actually run more complete tests, as in Subsection 4.7.1, but because
the results are relatively similar we focus on the main methods for clarity). The residuals
evolution (cost function) using these two methods are presented in Figure 4.13, for different
frequencies.
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Figure 4.13: Evolution of the cost function for different frequencies. The blue crosses ( )
involve the Polak–Ribière (PR) formula, the red crosses ( ) use the Gauss-Newton Hessian with
10 conjugate gradient iterations and diagonal preconditioner with value 10−4β (see Equation (4.42)).

The initial frequency shows few differences between the two methods. However, for
the latest iterations, the benefit of using the Gauss-Newton Hessian approximation is very
clear. In particular the nonlinear conjugate gradient stagnates very early, in less than 10

iterations in Figure 4.13(b), but the Gauss-Newton Hessian CG keeps improving the cost

175



CHAPTER 4. SEISMIC INVERSE PROBLEM: FWI

function, providing a major advantage. It confirms the observation of the Marmousi test
case reconstruction of Figure 4.9.

Remark 4.12. In Figure 4.13(a) there is a drastic improvement after the first iteration.
This is due to the reconstruction of the source. Indeed, in this experiment we have assumed
the source not to be precisely known. Because the source reconstruction is a linear problem
(see Subsection 4.6.4), the appropriate value is easily recovered. It has great impact on the
residual, as it can be observed.

The velocities reconstructed for the two methods are presented in Figure 4.14. We
perform 30 iterations per frequency from 1 to 10 Hz with 1 Hz step, leading to a total of
300 iterations.
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(a) Reconstruction with NLCG PR formula.
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(b) Reconstruction with Gauss-Newton Hessian CG and preconditioner.

Figure 4.14: Final reconstruction of the acoustic OT wave speed assuming constant density and
using frequencies from 1 to 10 Hz. 30 iterations are performed per frequency (for a total of 300
iterations) and we compare the methods involving the gradient and the Hessian of the cost function.

The benefit of using the Gauss-Newton Hessian CG method appears in the reconstruc-
tion, as revealed by the residuals evolution. The different layers are slightly less accurate
when using the NLCG method, and the upper area is better designed when employing the
Hessian. Yet, the deeper part is hardly recovered, with both methods. Especially, the
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sides suffer from limited illumination. Nevertheless, in this experiment as well, the recon-
structions are relatively close and the extra cost involved by using the Hessian may not be
justified, or should be restricted to a final set of iterations for each frequency. Because we
do not exactly know the source value, the very near surface area remains perturbed but it
does not impact the rest of the medium.

Remark 4.13. The OT acoustic reconstruction is continued in Chapter 6, Section 6.3,
where we illustrate in particular how the velocity recovery is improved by the use of complex
frequencies.

4.7.3 The acoustic Marmousi 2D model with variable density

In the previous two experiments, we have considered a single parameter reconstruction
where the velocity is the only unknown, meanwhile the density is homogeneous. We now
define a multi-parameters inverse problem where, in addition to the velocity, the density
depends on the space, and is not known. For this purpose we consider the elastic version
of the Marmousi model, which was introduced by Martin et al. (2006), and is also referred
to as Marmousi2. We extract the P-wave speed and density only to generate our acoustic
test case with variable density. The new model is of size 17 × 3.5 km. The wave speed
varies from 1000 to 4700 m s−1, the density varies from 1000 to 2700 kg m−2. The models
are presented in Figure 4.15. The structures are analog to the Marmousi ones.

In order to perform subsurface reconstruction, the seismic acquisition is conducted
from 141 sources (the greater amount compared to the initial Marmousi test is motivated
by the increase of dimension). As usual, the sources emit a wave one by one and receivers are
positioned to record the resulting pressure field. There are 281 receivers for each source. The
data are generated in the frequency domain using a discontinuous Galerkin discretization, as
for the initial experiment, the order and mesh differ compared to the inversion algorithm, to
avoid inverse crime. The initial models for the reconstruction do not assume any knowledge
of the structures: neither for the wave speed, nor for the density. The starting models are
presented in Figure 4.16.

For the reconstruction of acoustic media with variable density, it is actually more
convenient to invert the bulk modulus and the density instead of the velocity and the
density. This is motivated by the wave equation, see Equation (1.28), which decouples
the bulk modulus and the density whereas the velocity would depend on the density. A
discussion on the parametrization and comparison of experiments will later be processed
in Chapter 5, Sections 5.4, 5.5 and 5.6. Let us remind the definition of the bulk modulus
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Figure 4.15: Wave speed and density for the acoustic Marmousi medium of size 17× 3.5 km with
variable density.
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Figure 4.16: Initial wave speed and density for the reconstruction of the acoustic Marmousi medium
with variable density.

from the velocity and density:

c =

√
κ

ρ
, c2ρ = κ.
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In Figure 4.17, we show the bulk modulus extracted from the true and starting Marmousi
media. It obviously encompasses the same structures as the velocity and density but with
the appropriate unit.
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Figure 4.17: True and initial bulk modulus related to the acoustic Marmousi medium with variable
density, the corresponding velocity and density have been shown in Figures 4.15 and 4.16.

The reconstruction of the density is known to be more complicated (Virieux and Operto,
2009) than the bulk modulus (once again we refer to the complete set of experiments of
Chapter 5, Sections 5.4, 5.5 and 5.6). That is why we do not perform the iterative
minimization for the density parameter but only for the bulk modulus (hence reducing
the computational time). Nonetheless, we do not assume the knowledge of the density, we
simply keep the initial representation (see Figure 4.16(b)), and we do not modify it through
the process.

We present three methods that have been used to conduct the iterative scheme: the
nonlinear conjugate gradient with Fletcher–Reeves formula and the Gauss-Newton Hessian
CG with and without the diagonal preconditioner. We perform 25 iterations per frequency.
In Figure 4.18, we show the evolution of the cost function with iterations for the first and
last frequency.

From the residuals evolution, we observe a similar behavior as for the single parame-
ter reconstruction: the difference between the methods is more important for the higher
frequency iterations. Moreover, the use of Hessian information allows a better convergence
and the NLCG stagnates rapidly. In this experiment, the use of a preconditioner seems
not to improve the convergence but this should be complimented by a thorough study con-
cerning the variety of possibilities for the damping factor. In Figure 4.19 are presented
the final reconstructions of the bulk modulus using NLCG and Gauss-Newton CG with no
preconditioner.

The benefit of using Hessian, which appears in the plot of the cost function evolution,
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Figure 4.18: Evolution of the cost function for different frequencies using different methods for the
model update. The blue crosses ( ) use the Fletcher–Reeves (FR) nonlinear conjugate gradient.
The red crosses ( ) use the Gauss-Newton Hessian CG approximation. The black circles ( )
use the Gauss-Newton Hessian CG approximation with preconditioner. The number of iterations
for the conjugate gradient is set to 10.

is very clear in the final reconstruction. The upper part of the model is well recovered
by both methods, however, the deepest structures are only recovered with the Hessian. In
particular, the circular layers in the central deepest part of the model appear very well with
the Hessian, but are not shown when using the NLCG method. Even the lateral borders
seem slightly more accurate with the Hessian, despite the limited illumination. We detail
this gain with a one-dimensional section of the bulk modulus at fixed position x = 10 km

in Figure 4.20. Both methods recover well the upper part of the medium but it is clear
that only the Gauss-Newton Hessian CG approximates accurately the deepest variations,
and the NLCG remains at very low values in comparison. It is also important to notice
that despite the absence of knowledge in the density, we are still able to recover the bulk
modulus precisely.

4.7.4 Concluding remark

The benefits of using the Hessian were relatively limited in our initial experiments involving
a single parameter reconstruction. However, when two models are unknown, the gain of
using the Hessian is much more relevant. There is a need to pursue the comparison and
analysis of the methods, in particular to clarify the following aspects:

1. choice of preconditioner for the Hessian,

2. use of full or Gauss-Newton Hessian,

3. mixed algorithm with initial iterations using the gradient and a few set of final iter-
ations involving the Hessian to optimize the computational time,

4. the effect of the noise in the data.
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(a) Reconstruction using NLCG FR.
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Figure 4.19: Final reconstruction of the acoustic Marmousi bulk modulus assuming variable density
and using frequencies from 1 to 10 Hz. 25 iterations are performed per frequency (for a total of 250
iterations) and we compare the methods involving the gradient and the Gauss-Newton Hessian of
the cost function.

More generally a wide variety of regularization techniques exists in the literature and a
thorough study for the seismic application could be engaged, in particular to quantify the
gain in accuracy in relation with the numerical cost, which remains a limitation in seismic
exploration.

4.8 Conclusion

In this chapter, we have presented the seismic imaging for subsurface media from an opti-
mization point of view. This reconstruction method, relying on an iterative minimization,
is the essence of FWI. We have reviewed the specificity of the geophysical situation with
the types of data available depending on land or marine area of interest. Newton type
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Figure 4.20: One-dimensional profile of the acoustic Marmousi bulk modulus for a fixed position
x = 10 km. The position is indicated with the black line on the original Marmousi bulk modulus
(right). The reconstructed profiles are extracted from the results presented Figure 4.19.

methods provide the natural framework to solve the minimization problem, and we have
given the main features that have been implemented in this project. In particular, the
cost of computing the Hessian may be numerically overwhelming, and we have presented
some techniques based on gradient descent. Finally, we have compared the efficiency of
the FWI with and without computing the Hessian. We have illustrated that in our pre-
liminary experiments, the benefits of the Hessian appear in the multi-parameters inversion
situation. The proper analysis of the methods should be pursued, in particular with the
preconditioner, also because of the many optimization techniques existing.
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Chapter 5

Quantitative convergence of FWI with
geometry, frequency and parametrization

Abstract

We study the convergence of the iterative minimization algo-
rithm deployed for the reconstruction of subsurface coefficients.
The associated inverse problem is nonlinear and ill-posed, provid-
ing complications in the process. Here we propose a quantification
of the convergence properties based on least squares optimization
theory, which matches the Full Waveform Inversion (FWI) method.
We define numerical estimates to indicate the nonlinearity of the
problem depending on several aspects: the model space size, the
selection of (complex) frequencies and the geometry of the subsur-
face structures. It allows us to precisely characterize the scheme
and define the proper procedure to follow. It also indicates how
the reconstruction is affected by the type of experiments. Our es-
timates are general and could as well be employed in other inverse
problems solved via optimization methods. Eventually, we study
the effect of the choice of parameters (the parametrization) and
how it acts on the Fréchet derivative. The impact of parametriza-
tion is further illustrated with synthetic numerical reconstructions
for acoustic and elastic media.

Disclaimer: This is an ongoing work in part of collaboration with Profs. Hélène Barucq,
Henri Calandra and Guy Chavent.
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CHAPTER 5. CONVERGENCE OF FWI

The convergence of the minimization algorithm, coupled with the stability, are the
keys to obtaining the appropriate recovery of subsurface parameters based on iterative
minimization algorithms. We have already studied the stability associated with the inverse
problem in Chapter 3, which legitimizes the minimization of surface information in order to
obtain the medium coefficients. The stability directly relates the minimization of the cost
function with the accuracy of the parameters reconstruction, and we have shown (Chapter 3)
that under some advantageous situations, we have a Lipschitz-type stability and ways to
quantify the underlying stability constant. For the convergence, we are more interested in
the optimization algorithm itself (namely iterative minimization), to guarantee that our
iterations ‘head’ to the appropriate solution. The seismic inverse problem is nonlinear
and ill-posed, and the amount of information at our disposal is relatively limited (surface
measurements only). Usually, as the available data further suffer from reduced accuracy,
the uniqueness is not guaranteed, e.g., Landa and Treitel (2016), and local minima can
lead to the failure of the minimization process. Hence, it is fundamental to understand the
convergence of the scheme, and possibly extract the quantity of importance for its success.

In this chapter, we consider least squares minimization algorithm and follow the work
of Chavent and Kunisch (1996); Chavent (2010). In particular, we use the notation and
framework introduced in Chavent (2010). Then we extend it with numerical estimates
applied to the geophysical situation to investigate the quantities reflecting the nonlinearity
of the problem. In our approach, we first explore two aspects: the basin of attraction
indicates how large (or restricted) is the research (model) space for the targeted parameters.
It is particularly important as we aim to use minimal prior information in the experimental
test cases. Then, the maximal distance allowed between the observed measurements and
the attainable set is accessed with the radius of curvature, and validates the optimization
scheme. In some sense it may be seen as the robustness to noise and model error of the
problem.

Those two aspects are numerically quantified, and their behavior is inspected depending
on several aspects, such as the frequency, the geometry of the subsurface models, etc; see
Sections 5.2 and 5.3. It allows us to suitably define the (complex) frequency progression to
follow during the procedure of iterative minimization.

We review how the choice of parametrization influences the conduction of FWI. By
parametrization, we refer here to the selection of a parameter to target. For example,
elastic media reconstruction can focus on the Lamé parameters, the velocities (P- and S-
wave speeds) or the impedances. This choice may appear harmless but is actually crucial.
As early applications suggested, Tarantola (1986), the combination must use as uncorrelated
parameters as possible. Besides the choice of parameters, the application of functions
(inverse, logarithm) onto the parameter also affects the reconstruction. In Section 5.4 we
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give references and depict some of the possible parametrizations, depending on acoustic
or elastic media. Here we study their influence onto the condition number and singular
values of the associated Fréchet derivatives. FWI algorithm is finally conducted to compare
the impact on the accuracy of the reconstruction, using acoustic and elastic synthetic
experiments, see Sections 5.5 and 5.6.

5.1 Convergence of least squares minimization

In this section, we review convergence properties of minimization problems. In particular,
we give an estimation of the radius of curvature of the problem. We also introduce the
deflection which is related to the model space. The notation follows the work of Chavent
(2010), where the reader is referred to for more details. Let us consider the L2 mini-
mization of the cost function (as we introduced for the seismic reconstruction problem in
Equation (4.8)),

min
m∈M

J (m) =
1

2
‖F(m)− d‖2F . (5.1)

Following the already used notation, F represents the forward problem and d stands for
the observed data. We further introduce the requirements of Chavent (2010):

– E is a Banach space with norm ‖ . ‖E ,
– M is the parameter set,M⊂ E andM is convex and closed,

– d ∈ F , where F is a Hilbert space with norm ‖ . ‖F ,
– the forward operator F : M → F is differentiable along segments of M and F(M)

represents the attainable set,

– ∃ C ≥ 0 such that ∀m1,m2 ∈ M, ∀t ∈ [0, 1], ‖DtF
(
(1 − t)m1 + tm2

)
‖F ≤

C‖m2 −m1‖E , where Dt stands for the derivative with respect to the parameter t.

The parametric curve P is defined such that

∀m1,m2 ∈M, P : t ∈ [0, 1]→ F
(
(1− t)m1 + tm2

)
∈ F(M).

Assuming P is twice differentiable, the velocity V and acceleration A are given by the
derivatives of the curve,





V (t) = P ′(t), A(t) = P ′′(t),

v(t) =
V (t)

‖V (t)‖ , a(t) =
A(t)−

〈
A(t), v(t)

〉
v(t)

‖V (t)‖2 .
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5.1.1 Finite curvature/limited deflection problem

We define the finite curvature/limited deflection (FC/LD) framework for the least squares
minimization problem. Then we explicit the underlying advantages of such problems with
Proposition 5.1. For this review, we follow the work of (Chavent, 2010, pp. 167–171).

Definition 5.1 (Finite Curvature (FC)). The minimization Problem (5.1) is a finite cur-
vature least squares problem if the following condition is satisfied:
there exists R > 0 such that ∀m1,m2 ∈ M, the curve P satisfies P ∈ W 2,∞([0, 1], F ) and

‖A(t)‖F ≤
1

R
‖V (t)‖2F for a.e. t ∈ [0, 1].

Definition 5.2 (Radius of curvature). Assuming a finite curvature least squares problem
for which V (t) 6= 0 ∀t ∈ [0, 1], the radius of curvature Rρ(t) along the curve P satisfies

1

Rρ(t)
= ‖a(t)‖ ≤ ‖A(t)‖F

‖V (t)‖2F
for a.e. t ∈ [0, 1].

Hence, the radii of curvature of the curve P and of the attainable set F(M), verify

1

Rρ(P )
= sup

t∈[0,1]

1

Rρ(t)
≤ 1

Rρ(F(M))
= sup

m1,m2∈M;t∈[0,1]

1

Rρ(t)
≤ 1

R
≤ +∞.

Definition 5.3 (Deflection). The deflection Θ of the curve P is defined as the largest angle
θ(ta, tb) ∈ [0, π] between any two tangent vectors V (ta) and V (tb) for any two points ta and
tb of P . An infinitesimal variation of the deflection dθ satisfies

dθ ≤ ‖A(t)‖F
‖V (t)‖F

dt.

Denoting t1 and t2 the values of t where the deflection is maximum, the maximum deflection
along the curve P , Θ(P ), is given by

Θ(P ) =

∫ t2

t1

dθ ≤
∫ 1

0

‖A(t)‖F
‖V (t)‖F

dt.

Definition 5.4 (Limited Deflection (LD)). A finite curvature problem is a limited deflection
least squares problem if it satisfies the deflection condition

Θ ≤ π

2
.

Proposition 5.1 (FC/LD properties). Let us consider a finite curvature limited deflection
problem with finite curvature 1/R and let V be the enlargement neighborhood of F(M)

defined by

V =
{
z ∈ F | dist

(
d,F(M)

)
< R

}
.

Then the projection on the attainable set F(M) has the following properties:

– Uniqueness: ∀d ∈ V, there exists at most one projection of d on F(M).
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– Unimodality: if d ∈ V admits a projection x̂ on F(M), the function dist(d, ·) has no
parasitic stationary point on F(M).

– Existence: if z ∈ V, any minimizing sequence Xn ∈ F(M) of the function d(z, ·) is
a Cauchy sequence for both distance ‖X − Y ‖F and the arc length distance δ(X,Y ).
Hence Xn converges in F to the unique projection x̂ of z onto F(M).

Local stability is also obtained, see (Chavent, 2010, Proposition 4.2.7), but we do not insist
on it as it has been studied in Chapter 3.

We have reviewed the main components of the FC/LD problem, and the proofs can be
found in Chavent (2010). Those type of problems were also referred to as weakly nonlinear
inverse problem in Chavent and Kunisch (1996). If the original minimization Problem 5.1
is cast to have a FC/LD property, it shows rightful dispositions so that one can legitimately
aim at obtaining the appropriate minimizer. Finite curvature and limited deflection are the
two aspects of importance to give such guarantees on the convergence of the minimization
algorithm. First, the deflection must be lower than π/2 (Definition 5.4). Then we must
assure that the distance between the measurements and the attainable set is lower than
the curvature R (Proposition 5.1). We illustrate some quantities with a one-dimensional
forward problem setup in Figure 5.1. The deflection gives information on the attainable
structure and the radius of curvature ensures the data are ‘not too far’ from the attainable
set.

F(m1)

F(m2)d

dist(d,F)

Figure 5.1: Illustration of forward operator in one dimension. The FC condition imposes m1 and
m2 to be such that the deflection along the path [F(m1),F(m2)] is less that π/2. the LD condition
imposes the distance between the data d and their projection to attainable set, dist(d,F), to be
bounded by the radius of curvature. The data generally do not belong on the attainable set because
of model error, accuracy of acquisition devices and noise in the measurements.

5.1.2 Quantitative estimates

In general, the seismic inverse problem, without special assumptions, is impossible to be
cast as an FC/LD problem. In particular, when no prior information is known on the
subsurface, the model space can be a ‘large’ subset of R. Our idea here is to control how
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much the model space has to be reduced to eventually guarantee the deflection condition
around a center point. We also give an estimation of the radius of curvature.

5.1.2.1 Model space size through estimation of the deflection

In the case of limited deflection problems, the deflection on the model space is less than or
equal to π/2. Here, we study the restriction of the model space,Mm0

θ ⊂M, for which we
assume that the property is validated. Namely, the idea is to reduce the size of the model
space so that the condition is eventually obtained. In the following, we only focus on all
paths that pass by the central (initial) parameter m0 to extract the estimates.

Definition 5.5. For any unit vector δmk , we defineM
m0,δmk
θ as the interval [m0−∆

δmk
m0 δmk ,

m0 + ∆
δmk
m0 δmk ] where ∆

δmk
m0 > 0 is chosen such that the deflection along the interval is

smaller than π/2.

We can extract a lower bound for the size of the subspace,

Definition 5.6. Mm0
θ is the ball made of all intervals of the form [m0 − ∆m0δmk ,m0 +

∆m0δmk ] where δmk is a unit vector and ∆m0 > 0 is chosen such that the deflection along
all intervals passing by m0 is smaller than π/2.

Hence we require the original Problem (5.1) restricted toMm0
θ to have limited deflec-

tion. More precisely we are interested in the estimation of ∆m0 which can be seen as the
size of the basin around m0 which satisfies radially the limited deflection property. The
path P for an interval of size 2∆m0 in the direction δmk (of norm 1) is

P (t) = F
(
m0 + (2t− 1)∆

δmk
m0

)
,

where a simple change of variable has been carried out, as illustrated in Figure 5.2.

F(m0)
F(m0 −∆

δmk
m0 )

F(m0 + ∆
δmk
m0 )d

dist(d,F)

Figure 5.2: Change of variable for the forward operator in one dimension. Our estimates are
designed to give the value of ∆m0 such that the limited deflection condition is respected in the
direction δmk

.

One can then straightforwardly use m(t) = (m0 + (2t− 1)∆
δmk
m0 ) and the chain rule to
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define the velocity and acceleration in terms of the derivative with respect to m. Following
the notation of Cartan (1971), we write




V (t) = 2∆

δmk
m0 DF(m0)δmk ,

A(t) = 4(∆
δmk
m0 )2D2F(m0)(δmk , δmk),

where δmk acts as the direction of the derivation. Finally, the deflection for the interval
[m0−∆

δmk
m0 ,m0+∆

δmk
m0 ] in the direction δmk is approximated with a rectangle approximation

of the integral (which is consistent when the interval is sufficiently small) and we write

Θ ≤
∫ 1

0

‖A(t)‖
‖V (t)‖dt ∼

‖A(1/2)‖
‖V (1/2)‖ = 2∆

δmk
m0

‖D2F(m0)(δmk , δmk)‖
‖DF(m0)(δmk)‖ .

We can further identify an upper bound for the formulation,

‖D2F(m0)(δmk , δmk)‖
‖DF(m0)(δmk)‖ ≤ ‖D

2F(m0)‖‖δmk‖2
λDFmin‖δmk‖

=
‖D2F(m0)‖

λDFmin

,

where λDFmin denotes the lowest singular value of DF(m0).

We impose the quantity Θ to be lower than or equal to π/2 in order to obtain a
condition on ∆m0 that ensures that the deflection property is satisfied in the direction δmk

∆
δmk
m0 =

π

4

‖DF(m0)(δmk)‖
‖D2F(m0)(δmk , δmk)‖ . (5.2)

Similarly we define a lower bound valid for all directions δmk passing by m0,

∆m0 =
π

4

‖λDFmin‖
‖D2F(m0)‖ . (5.3)

The size of the model space indicates how large is the basin of attraction when mini-
mizing the functional starting from m0. When the search of the solution is restricted to
the ballMm0

θ , one can expect that the LD property still holds approximately.

5.1.2.2 Distance to the attainable set, radius of curvature

The neighborhood V introduced in Proposition 5.1 is necessary because the observed data,
d, do not belong in the attainable set in general. This is explained by the limited accuracy
of the recording devices, model error and noise. Following the FC condition, the size of the
radius of curvature gives an indication of the possibility of convergence. Because the data
are not in the attainable set, they must be ‘not too far’ so that they can still be processed.
This maximum distance is materialized by the radius of curvature.
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For the numerical estimates, we follow the Definition 5.2. We consider the same interval
as for the deflection: [m0−∆

δmk
m0 δmk ,m0 +∆

δmk
m0 δmk ] so that the estimation of the maximal

distance in the direction δmk (with ‖δmk‖ = 1) is obtained analogously to what has been
done for the deflection. Our estimate is denoted R̂δmkm0 and is extracted from Definition 5.2
with a(t). It is defined by

R̂
δmk
m0 =

‖DF(m0)(δmk)‖2
‖D2F(m0)(δmk , δmk)− ξ(m0, δmk)‖ , (5.4)

where

ξ(m0, δmk) =
〈
D2F(m0)(δmk , δmk),

DF(m0)(δmk)

‖DF(m0)(δmk)‖
〉 DF(m0)(δmk)

‖DF(m0)(δmk)‖ .

A lower bound for the radius of curvature in all directions passing by m0 follows

R ≥ (λDFmin)2

‖D2F(m0)− ξ(m0)‖ = R̂m0 , (5.5)

with λDFmin the lowest singular value of the Fréchet derivative and

ξ(m0) =
〈
D2F(m0),

DF(m0)

‖DF(m0)‖
〉 DF(m0)

‖DF(m0)‖ .

5.2 Model space size estimates via limited deflection

In this section, we select a modelm0 and estimate the quantity ∆
δmk
m0 for different directions.

The direction, δmk , is normalized and can be seen as the geometry of the parameter to be
reconstructed. The larger the estimate is, the larger is the interval size and the better
is the chance to converge. Here we consider a two-dimensional geophysical setup with
data (observations from sources and receivers) located only near the surface. The upper
boundary (Γ1) consists in free surface boundary condition meanwhile the lateral and bottom
ones (Γ2) use artificial boundaries (PML or absorbing boundary conditions) to avoid wave
reflections. We sketch the computational domain in Figure 5.3.

5.2.1 Geometry and sequential frequency

Let us first consider an acoustic medium with constant density. The model m0 is taken to
represent a smooth background velocity, analogous to the starting model for the iterative
reconstruction. It is pictured in Figure 5.4 and is of size 9.2 × 3 km (it is the starting
medium used for the reconstruction of the acoustic Marmousi medium using FWI).
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Free surface Γ1

Γ2

area of interest

Ω

source

receivers positions Σ

Figure 5.3: Illustration of the computational domain for the quantitative estimates of the quantity
∆
δmk
m0 such that it validates the limited deflection property. It characterizes a geophysical setup

where the blue area stands for the location of the PMLs, positioned to avoid the reflection of the
waves attaining the lateral and bottom boundaries.
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Figure 5.4: Acoustic wave speed c0 used to deduce m0 = c−2
0 . It is of size 9.2× 3 km.

In this acoustic situation, the propagation of waves follows the traditional Helmholtz
equation (1.27). We consider the parameter of interest to be m0 = c−2

0 . It is expressed in
s2 m−2, and similarly for the selected directions δmk . This choice is motivated by the wave
equation where the velocity c appears as c−2, see Equation (1.27).

We study the evolution of the ∆
δmk
m0 for different directions δmk , which are chosen to

be based on straight reflectors, or extracted from the Marmousi model. They are shown in
Figure 5.5. Our purpose is to analyze the size of the interval depending on the geometry of
the search direction, as well as the frequency. We have designed four directions, δm1 , δm2 ,
δm3 and δmm . δm1 has a single, slim reflector (Figure 5.5(a)), δm2 has two slim reflectors
(Figure 5.5(b)), δm3 has a single large reflector (Figure 5.5(c)) and δmm represents the
reflectors extracted from the Marmousi velocity medium (Figure 5.5(d)). The amplitude
for the directions are selected so that ‖δmk‖ = 1, ∀k.

We follow Equation (5.2) to compute the quantity of interest, which requires the first
and second order Fréchet derivatives in the direction δmk . In this acoustic situation, the
forward problem gives the pressure at the receivers position for each source s and frequency

193



CHAPTER 5. CONVERGENCE OF FWI

0 2 4 6 8

0

1

2

3

x (km)

de
pt

h
(k

m
)

−2

0

2

·10−2

(a) δm1 : single reflector.
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(b) δm2 : two reflectors.
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(c) δm3 : single large reflector.
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(d) δmm : reflectors following Marmousi struc-
ture.

Figure 5.5: Four different directions for the estimation of the quantities of interest (R̂δmk
m0 and

∆
δmk
m0 ). The amplitude is determined so that ‖δmk

‖ = 1. The values of δmk
are given in (m s−1)−2 =

s2 m−2.

ω such that

F (s)
ω : m → p(s)(x) |Σ = {p(s)(x1), . . . , p(s)(xnrcv)},

where p(s) stands for the pressure field associated with source s, and xi denotes the position
of the ith receiver. The forward problem associated with a selected frequency is a vector of
C(nrcv×nsrc). nrcv is the number of receivers per source and nsrc the number of sources. In
this experiment, we take 19 sources and 183 receivers for each source. Both are located near
the surface (see Figure 5.3). The computation of ∆

δmk
m0 is processed for sequential frequencies

from 1 to 15 Hz, every 0.5 Hz, and for each of the four directions of Figure 5.5. We
also incorporate an additional direction, δmc , which corresponds to a constant background
perturbation.

We first point out that whatever direction is taken, the estimation of ∆
δmk
m0 decreases

with increasing frequency. This is the expected behavior that indicates that lower frequen-
cies give a better chance for the iterative minimization to converge when no prior informa-
tion is known for the initial model. Namely, the lower frequencies increase the radius of
convergence, which is the natural intuition that has widely been observed in applications,
as in Bunks et al. (1995); Pratt et al. (1996); Sirgue and Pratt (2004). The latest also
propose how to select consecutive frequencies, based on wavenumber coverage quantities.
Comparing the geometry of the directions, at low frequencies, perturbations δm1 and δm2
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Figure 5.6: Evolution of the interval size verifying the deflection condition, quantity ∆
δmk
m0 , with

frequency using m0 as a smooth velocity background and different directions δmk
. The blue squares

( ) employ one reflector (δm1
, Figure 5.5(a)), the green circles ( ) two reflectors (δm2

, Fig-
ure 5.5(b)) the red stars ( ) one large reflector (δm3

, Figure 5.5(c)) and the black squares ( )
the reflectors extracted from the Marmousi model (δmm , Figure 5.5(d)). The yellow squares ( )
represent the estimates using constant direction.

give the larger interval but they are surprisingly rapidly overcome by the many reflectors
of the Marmousi medium. Yet, all give very similar size. On the other hand, having one
large reflector produces a marked reduction of the size of the interval, which indicates that
having a large objects is complicated to recover, even more than the many reflectors of
Marmousi-like models. This is actually observed in numerical applications for geophysics
where salt domes are more difficult to recover, we illustrate this difficulty with the numerical
applications, see Chapter 6. Note that if low frequencies are required to counter the lack
of prior information, the increase of frequency is motivated by the stability result which
shows that higher frequencies are necessary to improve the resolution, see Chapter 3.

We now investigate the influence of the initial model m0 onto the estimates. We
consider two models: the acoustic Marmousi medium and a model encompassing objects
of high contrasts, given in Figure 5.7. The respective estimates for ∆

δmk
mj are plotted in

Figure 5.8.

The interval size follows the same pattern as for the smooth background: we have
a decrease of the estimate with increasing frequencies. In terms of magnitude, it appears
that the estimates are more affected by the perturbation (direction) selected than the initial
model.

As a short conclusion for the iterative minimization algorithm, the frequency should
evolve from low to high in order facilitate the convergence. When no prior information
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(a) cm: Marmousi velocity model.
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(b) cs: velocity including high contrast objects.

Figure 5.7: Acoustic models of size 9.2× 3 km used as initial models for the estimation of ∆
δmk
mj ,

we take cj = m
−1/2
j , j = {m, s}. The estimation are plotted in Figure 5.8.
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(a) Using mm from the Marmousi medium of Fig-
ure 5.7(a).
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(b) Using ms from model incorporating salt
domes, see Figure 5.7(b).

Figure 5.8: Evolution of the interval size verifying the deflection condition, quantity ∆
δmk
mj , with

frequency where mj is the Marmousi model or a model containing salt domes, see Figure 5.7. The
blue squares ( ) employ one reflector (δm1

, Figure 5.5(a)) and the red stars ( ) one large
reflector (δm3 , Figure 5.5(c)).

is known for the initial model, one should take advantage of the larger interval size ∆
δmk
mj

given by low frequencies. Here we motivate the well-known frequency progression from a
quantitative estimates of the size of the basin of attraction. However, it is not that simple
because of the lack of low frequency information and their possible dependence on noise.

5.2.2 Frequency bandwidth data

We have seen that the sequential progression in frequency must be conducted from low
to high regime. We now investigate the case of frequency bandwidth: when the forward
problem encompasses not only one, but several frequencies. This approach is particularly
common for time domain inverse problem where interval of frequencies can be successively
considered. The forward problem is a vector of C(nrcv×nsrc×nω), where nω is the number of
frequency taken in the subgroup.
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We consider the smooth background of Figure 5.4 for m0, motivated by its representa-
tion of an initial guess for reconstruction. We proceed to similar computations but using
groups of frequency. Every group consists of ten frequencies. The initial group is the fre-
quencies from 0.1 to 1 Hz using 0.1 Hz increment. Similarly, we design fifteen groups so
that the last one is from 14.1 to 15 Hz, employing identical increment. The results are
shown Figure 5.9.
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Figure 5.9: Evolution of the interval size verifying the deflection condition, quantity ∆
δmk
m0 , with

sequential or group of frequency using m0 as a smooth velocity background and different direc-
tions δmk

. The blue squares ( ) employ one large reflector (δm3
, Figure 5.5(c)) and subgroup

of ten frequencies. The green circles ( ) employ one large reflector (δm3 , Figure 5.5(c)) and
sequential frequency. The red stars ( ) employ reflectors extracted from the Marmousi model
(δmm

, Figure 5.5(d)) and subgroup of ten frequencies. The black squares ( ) employ reflectors
extracted from the Marmousi model (δmm

, Figure 5.5(d)) and sequential frequency. For the group
of frequency, the x axis indicates the largest frequency in the subgroup.

We basically see very few differences between the estimates using group of frequencies
and the largest frequency in the group taken individually. In Table 5.1, we detail the
numerical estimates and compare sequential and group of frequencies.

single frequency ∆
δmk
m0 frequency group ∆

δmk
m0

0.1 Hz 1.2× 10−1 {0.1, 0.2, . . . , 1} Hz 2.3× 10−3

1.0 Hz 2.3× 10−3 {1.1, 1.2, . . . , 2} Hz 1.1× 10−3

1.1 Hz 2.1× 10−3 {2.1, 2.2, . . . , 3} Hz 7.1× 10−4

2.0 Hz 1.1× 10−3 {3.1, 3.2, . . . , 4} Hz 5.2× 10−4

2.1 Hz 1.0× 10−3 {4.1, 4.2, . . . , 5} Hz 4.2× 10−4

Table 5.1: Evolution of ∆
δmk
m0 with frequency depending on the use of sequential or group of

frequencies. Here δmk
is chosen to be the Marmousi directions, δmk

= δmm , according to the
Figure 5.5(d). ∆

δmk
m0 is given in s2 m−2.

We observe that the estimates for the frequency group exactly match the largest fre-
quency taken independently. Because the estimates decrease with frequency it means that
using group of frequencies produces an unwanted decrease of the interval size compared with
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taking the lowest frequency in the group individually. In particular, for initial iterations,
without prior information, it is important to consider the lowest frequency available alone
instead of group of adjacent frequencies. This strategy is actually advocated in Brenders
et al. (2012), motivated, as the frequency progression in Bunks et al. (1995), to reduce the
cycle-skipping effect. Here we justify this choice by a quantitative estimation of the size of
the radius of convergence. It has to be mitigated by the fact that certainly more informa-
tion are contained in the group of frequencies, which for example can be more robust to
noise. It only indicates that the basin of attraction is larger for individual frequency, which
is an useful property without prior knowledge on the subsurface.

5.2.3 Complex frequencies

The use of complex frequencies (also referred to as the Laplace-Fourier domain) has shown
advantageous behavior when used during reconstruction algorithm. In this case the fre-
quency is expressed with Equation (1.25), which gives −ω2 = (σ + 2iπf)2. It incorporates
a damping factor σ and the traditional component f (in Hz). Here we are interested in
deciding how to select the progression of those coefficients to obtain the best convergence
properties. Several applications have been carried out with progression that appears mostly
intuitive. In the case of zero-frequency (f = 0), we mention Shin and Cha (2008), who
conduct the iterative inversion from low to high damping coefficients. However, for a com-
plex frequency progression (f 6= 0 and σ 6= 0), the evolution of the damping parameter at
fixed f is proposed to be from high to low damping, as in Shin et al. (2010); Petrov and
Newman (2014).

We compute the estimation of ∆
δmk
m0 with complex frequencies to see how it affects the

basin of attraction. We consider m0 the smooth background velocity and similar setup
as employed in Subsection 5.2.1. In Figure 5.10, we compare the evolution with damping
factor at fixed f , in particular we depict the choice f = 0, which is when only a damping
is present, case which can be assimilated to the Laplace domain (Shin and Cha, 2008). We
compare two selected directions: the Marmousi structures and the large reflector, illustrated
in Figures 5.5(c) and Figures 5.5(d) respectively.

Two situations arise from the estimates: when the frequency only consists in the damp-
ing term (f = 0), then the interval decreases with increasing damping. However, when
f 6= 0 the interval grows with increasing damping coefficients. Moreover, the largest size is
obtained when f = 0. It means that when complex frequencies are available, one should
start with the damping coefficient only, f = 0 and select increasing damping factor. Then,
one can select f 6= 0 as low as possible and select the damping factors from high to low.
Finally, the standard frequency progression when σ = 0 is conducted from low to high.
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(a) Using direction δmm (Marmousi reflectors).
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(b) Using direction δm3 (single large reflector).

Figure 5.10: Evolution of the interval size verifying the deflection condition, quantity ∆
δmk
m0 , with

complex frequency. m0 is taken to be the smooth background velocity of Figure 5.4. The angular
frequency is defined by −ω2 = (σ+ 2iπf)2. The blue squares ( ) use f = 0 Hz, the green circles
( ) f = 1 Hz, the red stars ( ) f = 2 Hz and the black squares ( ) f = 5 Hz.

More generally we observe that the use of complex frequency (in particular when f = 0)
increases notably the size of the interval, hence, it provides a fundamental benefit for the
reconstruction when no information is initially known. It basically acts as a very low
frequency (note that the magnitude of the estimates for complex frequencies eventually
match the low frequency ones). This will be further illustrated in the numerical experiments
of Chapter 6.

5.2.4 Lower bound estimates

The lower bound for the maximal size of the interval was obtained in the Equation (5.3). It
involved the lowest singular value of the Fréchet derivative and the computation of the full
second order derivative matrix. In order to perform the computation, we need to reduce
the model space to limit the number of coefficients. This reduction is performed through
compression where adjacent values are averaged to generate a coarse representation of the
wave speed, similarly to the techniques introduced in Chapter 3, Section 3.4. We apply this
to the smooth velocity background and show the resulting wave speed in Figure 5.11(a)
where the number of coefficients has been reduced to 56. Using the benefit of this limited
size, we can compute the lower bound ∆m0 . We present the result in Figure 5.11(b), where
we compare with the directional estimate ∆

δmm
m0 , i.e., when the reflectors extracted from

the Marmousi model, δmm , are used for the direction, see Figure 5.5(d).

The lower bound gives an important reduction compared to the directional estimates
(four orders of magnitude). Yet it confirms the main property which is the decrease of
the size of interval verifying the limited deflection with increasing frequencies. The lower
frequencies are clearly beneficial for the iterative minimization.
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(b) The lower bound of the interval size verifying the
deflection condition is marked by the blue squares
( ), the black squares ( ) use the direction of the
reflectors extracted from the Marmousi model (δmm ,
Figure 5.5(d)).

Figure 5.11: Lower bound of the interval size computed from a wave speed in a reduced model
space dimensions.

5.2.5 Influence of the data

The quantity of data to conduct the reconstruction necessarily has an influence on the size
of the basin of attraction, and we expect its increase when increasing the amount of data
available. In the original example of Subsection 5.2.1, we employed 19 sources and 183

receivers. Here we increase the quantity of data by incorporating sources and receivers on
the side and bottom of the domain of interest. This configuration is sketched Figure 5.12.

Free surface Γ1

Γ2

area of interest
Ω

source

receivers positions Σ

Figure 5.12: Illustration of the computational domain for the quantitative estimates of the quan-
tity ∆

δmk
m0 assuming the data can be recovered on the four sides of the domain, here sources can

potentially be placed on the sides as well.

More precisely, we consider a total of 50 sources positioned all around the domain and
484 receivers also positioned on the four sides. In Figure 5.13, we compare the estimate
with frequency for the direction δm3 of Figure 5.5(c), which consists in a large reflecting
object.

Increasing the amount of data available and incorporating bottom and sides illumina-
tion information provide an increase of the basin of attraction size. However, the difference
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Figure 5.13: Evolution of the interval size verifying the deflection condition, quantity ∆
δmk
m0 , with

frequency using m0 as smooth velocity background for direction δm3
. The blue squares ( )

employ an acquisition of 19 sources and 183 receivers, which are only located at the top surface.
the green circles ( ) employ 50 sources and 484 receivers, which are located all around the domain
of interest.

is not very important and one would expect a larger contrast between the situations. We
might need to increase the size of the domain to see a larger contrast.

5.2.6 Elastic model reconstruction

It is natural to expect a similar behavior when stepping from acoustic to elastic and in-
corporating the multi-parameters reconstruction. This certainly increases the complexity
of the reconstruction but the pattern of low frequencies improving the basin of attraction
should be verified. Here we consider isotropic elastic media, characterized by three models:
the Lamé parameters λ and µ, and the density ρ. The propagation of waves in such media
follows Equation (1.29). In order to estimate the quantity ∆

δmk
m0 , that validates the limited

deflection property, we consider the models m0 to be a smooth background, similarly to
the previous acoustic case. They are illustrated in Figure 5.14.

We follow a geophysical acquisition setup where we consider 19 sources and 168 receivers
for each source, both being located at the surface. In this case, the derivatives have to
be computed with respect to the three parameters. For the directions, we consider the
elastic Marmousi medium and extract the different reflectors. The directions for the Lamé
parameters and the density are presented in Figure 5.15 where the amplitude has been
chosen so that ‖δmm‖ = 1. Because of the difference of magnitude between the different
quantities, we actually employ a scaling parameter to obtain dimensionless coefficients
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Figure 5.14: Elastic smooth model of size 17× 3.5 km used to define m0.

such that the parameters of interest are (λ/λ0, µ/µ0, ρ/ρ0), where λ0, µ0 and ρ0 are scalar
coefficients given by the maximal values of the respective quantities, similarly to what we
use to study the parametrization (Remark 5.1 below). For simplicity, we further omit the
scaling coefficients λ0, µ0 and ρ0 in the notation. In Figure 5.16, we show the evolution of
the estimates ∆

δmm
m0 with frequency. We have considered that the forward problem is given

by the measurements of displacement in the two spatial directions.
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Figure 5.15: The elastic directions extracted from the Marmousi model. The amplitude is accord-
ingly selected to give ‖δmm‖ = 1, where the parameters of interest are the Lamé coefficients and
the density, such that m = {λ, µ, ρ}.
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Figure 5.16: Evolution of the interval size verifying the deflection condition, quantity ∆
δmm
m0 ,

with frequency using m0 as a smooth elastic background and using the Marmousi structures of
Figure 5.15 for the directions. The derivation uses scaled quantities: (λ/λ0, µ/µ0, ρ/ρ0).

We see that the estimates of ∆
δmk
m0 for the least squares minimization algorithm asso-

ciated with the elastic wave equation behave similarly to the acoustic case: the size of the
interval so that the limited deflection property is obtained decreases with frequency.
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5.2.7 Influence of the boundary conditions

The estimates we have derived are related to the least squares optimization problem and can
be employed for other situations than the inverse wave problem affiliated with a geophysical
setup. Let us first study the consideration of alternative boundary conditions for the domain
of interest. We acknowledge two situations with a completely absorbing medium or Dirichlet
condition for all boundaries (p = 0). They are sketched in Figure 5.17. The latest one is
certainly closer to the medical imaging situation where free surface can be considered for
all boundaries of the domain of interest.

Γ

area of interest

Ω

source

receivers positions Σ

(a) Computational domain using PML for all
boundaries.

Free surface Γ

area of interest

Ω

source

receivers positions Σ

(b) Computational domain using Dirich-
let boundary conditions only.

Figure 5.17: Illustration of different boundary conditions for the computational domain used to
estimates the quantity ∆

δmk
m0 .

We compute the estimates according to the new situations and show the new evolution
of ∆

δmk
m0 with sequential frequency progression. We consider the smooth velocity background

of Figure 5.4 to extract m0 and the directions introduced in Figure 5.5 so we match the
same context of Subsection 5.2.1, where only the boundary conditions of the medium are
changed. In Figures 5.18, we show the respective evolution of ∆

δmk
m0 for Dirichlet and

absorbing media.

The maximal size of the interval that verifies the deflection condition decreases with
increasing frequencies independently of the situation, as expected. However, in the case
of full Dirichlet boundary the behavior is much more chaotic and reveals a much higher
magnitude in the evolution, namely it has four order of magnitude versus only two for the
other situation. It indicates that the requirement for low frequency may even be more
important in this case. Moreover we intuit that this behavior may be due to the multiple
reflections introduced by the Dirichlet condition on all boundaries.
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(a) Absorbing medium where all boundaries are
treated as PML.
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let condition set to 0.

Figure 5.18: Evolution of the interval size verifying the deflection condition, quantity ∆
δmk
m0 , with

frequency where m0 is the smooth background model. The blue squares ( ) employ one reflector
(δm1

, Figure 5.5(a)), the red stars ( ) one large reflector (δm3
, Figure 5.5(c)) and the black

squares ( ) use reflectors extracted from the Marmousi model (δmm
, Figure 5.5(d)).

5.2.8 Perspectives

The quantitative estimates we have presented are general and can be established analogously
to any optimization problem involving leas-squares minimization. We have developed the
estimation of the size of the basin of attraction as an indication on how to control the
convergence of our problem. In our case, it is realized via the choice of frequency, namely
by initiating the iterations at the lowest available frequency to counterpart the lack of prior
information. The quantitative estimates could easily be extended to many other situations
in order to analyze the effect of a method or parametrization onto the problem, for example
we can naturally think of:

– how does the choice of different norms of cost functions affect the estimates?

– Other inverse problems, based on different equations (e.g., Maxwell’s equations) may
present different patterns,

– does the type data (reflectivity in seismic) also affect the estimates?

5.3 Distance to the attainable set

The FC property requires the data not to be ‘too far’ from the attainable set. The maximal
distance is materialized by the radius of curvature for which we have provided the numerical
estimates in the direction δmk : R̂

δmk
m0 , see Equation (5.4) and the illustration Figure 5.2.

We follow the similar situations as in Section 5.2, where we estimate the size of the do-
main verifying the LD property, and estimate the maximum distance according to several
directions. We take m0 to be represented from the smooth background of Figure 5.4 and
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the directions given in Figure 5.5. The structure of the successive estimations is similar to
Section 5.2.

5.3.1 Geometry and sequential frequency

The maximal distance between the data and the attainable set according to different direc-
tions is plotted with respect to the frequency in Figure 5.19.
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Figure 5.19: Evolution of the maximal distance between the data and the attainable set, quantity
R̂
δmk
m0 , with frequency using m0 as a smooth velocity background and different directions δmk

. The
blue squares ( ) employ one reflector (δm1

, Figure 5.5(a)), the green circles ( ) two reflectors
(δm2 , Figure 5.5(b)) the red stars ( ) one large reflector (δm3 , Figure 5.5(c)) and the black
squares ( ) reflectors extracted from the Marmousi model (δmm , Figure 5.5(d)). The yellow
squares ( ) represent the estimates using constant background direction.

We observe that the maximal distance allowed for the data increases with frequency.
The different directions also affects the relative magnitude; in particular, the directions
extracted form the Marmousi model reduce the maximal distance allowed between the
data and the attainable set compared to having one large reflector. It is the opposite
compared to the behavior observed to verify the deflection property, where the Marmousi
directions are advantageous. We note that the behavior is opposed to the interval size
verifying the deflection. Here increasing the frequency increases the acceptable distance
to the attainable set. It however follows the stability analysis carried in Chapter 3, where
increasing the frequency is shown to improves the stability.
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5.3.2 Frequency bandwidth data

We reproduce the experiment where frequencies are summed so that not only one but several
frequencies are contained simultaneously in the data. We follow the similar approach as for
the estimates relative to the deflection and choose a group of frequencies with 0.1 Hz step.
We create fifteen groups, each of ten frequencies such that the first one is {0.1, 0.2, . . . , 1} Hz

and the last one is {14.1, 14.2, . . . , 15} Hz. In Figure 5.20 we compare the evolution between
sequential and group of frequencies for the large reflector direction δm3 , and the reflectors
extracted from the Marmousi medium δmm . The estimates for the group of frequencies are
plotted at the horizontal position corresponding to the largest frequency in the group (i.e.
integer frequency).
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Figure 5.20: Evolution of the maximal distance between the data and the attainable set, quantity
R̂
δmk
m0 , with sequential or group of frequency using m0 as a smooth velocity background and dif-

ferent directions δmk
. The blue squares ( ) employ one large reflector (δm3

, Figure 5.5(c)) and
subgroup of frequency. The green circles ( ) employ one large reflector (δm3

, Figure 5.5(c)) and
sequential frequency. The red stars ( ) employ reflectors extracted from the Marmousi model
(δmm , Figure 5.5(d)) and subgroup of frequency. The black squares ( ) employ reflectors ex-
tracted from the Marmousi model (δmm

, Figure 5.5(d)) and sequential frequency. For the groups
of frequencies, the x axis indicates the largest frequency in the subgroup.

We observe some differences between the type of reflectors, as in Figure 5.19. Contrary
to the basin of attraction, we clearly see the benefits of using several frequencies in the data.
It provides a noticeable improvement in the maximal distance between the observation and
the attainable set which gives the finite curvature property. One can imagine that in
this case, the frequency bandwidth acts as some regularization of the problem by adding
information. Therefore, we see two different situations: the low frequency improves the
convergence by increasing the basin of attraction (observed from the deflection estimates),
but high frequencies allow an increase of the radius of curvature, thus an increase of the
distance between the data and the attainable set. Furthermore, using sequential frequency
provides benefits to the radius of convergence, but using several frequencies increase the
radius of curvature.
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5.3.3 Lower bound estimates

When reducing the number of coefficients to represent the model, we can compute the lowest
singular value of the Fréchet derivative and following lower bound R̂m0 with Equation (5.5).
We follow the realization of Subsection 5.2.4 and generate an initial model m0 represented
with 56 coefficients, see Figure 5.11(a). In Figure 5.21, we compare the lower bound with
directional estimates using the reflectors extracted from the Marmousi model.
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Figure 5.21: The lower bound of the maximal distance between the data and the attainable set
is marked by the blue squares ( ), the black squares ( ) use the direction of the reflectors
extracted from the Marmousi model (δmm

, Figure 5.5(d)). We have reduced the representation of
the model according to Figure 5.11(a).

The lower bound behaves as expected but still shows an important reduction compared
to the directional estimates. There is approximately one or two orders of magnitude differ-
ence between the lower bound and directional estimates. It confirms the general behavior
that the distance between the data and the attainable set increases with frequency.

5.3.4 Influence of the data

We increase the quantity of data available by incorporating sources and receivers on the
sides and bottom of the domain, following Figure 5.12. We now take 50 sources positioned
all around the domain and 484 receivers also positioned on the four sides. In Figure 5.22,
we compare the estimates of the curvature with frequency for the large reflection δm3 of
Figure 5.5(c).

The incorporation of data from all directions gives an important improvement of the
possible distance with the attainable set, particularly for low frequencies. Higher frequencies
are less affected but we still observe the benefits of adding information.
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Figure 5.22: Evolution of the maximal distance between the data and the attainable set, quantity
R̂
δmk
m0 , with frequency using m0 as smooth velocity background for direction δm3. The blue squares

( ) employ an acquisition of 19 sources and 183 receivers, which are only located at the top
surface. the green circles ( ) employ 50 sources and 484 receivers, which are located all around
the domain of interest.

5.3.5 Elastic model reconstruction

We review the estimates in the context of elastic reconstruction, following the situation of
Subsection 5.2.6. It is a multi-parameters reconstruction where the quantities of interest are
the density ρ and the Lamé parameters λ and µ. m0 is the smooth background depicted
in Figure 5.14; the direction, extracted from the Marmousi model, has been introduced
in Figure 5.15. The seismic acquisition consists in 19 sources and 168 receivers for each
sources, located at the surface. In Figure 5.23, we plot the estimates of R̂δmkm0 for this elastic
medium inversion.
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Figure 5.23: Evolution of the maximal distance between the data and the attainable set, quantity
R̂
δmk
m0 , with frequency using m0 as a smooth elastic background and using the Marmousi structures

of Figure 5.15 for the directions. The derivation uses scaled quantities: (λ/λ0, µ/µ0, ρ/ρ0).
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The maximal distance between the data and the attainable set appears now to be
decreasing with frequency, contrary to the acoustic situation. However, the final magnitude
is overall comparable to the acoustic case.

5.3.6 Influence of the boundary conditions

Many other configurations could be probed, similarly to what we discussed for the esti-
mation of the model size verifying the LD property. We illustrate the case of alternative
boundary conditions, introduced in Subsection 5.2.7. It consists in representing the domain
with absorbing or Dirchlet boundary conditions on all sides, see Figure 5.17. The associated
estimates of the maximal distance between the data and the attainable set is plotted in
Figure 5.24.
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(a) Medium where all boundaries are treated as
PML.
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Dirichlet condition set to 0.

Figure 5.24: Evolution of the maximal distance between the data and the attainable set, quantity
R̂
δmk
m0 , with frequency where m0 is the smooth background model. The blue squares ( ) employ

one reflector (δm1
, Figure 5.5(a)), the red stars ( ) one large reflector (δm3

, Figure 5.5(c)) and
the black squares ( ) use reflectors extracted from the Marmousi model (δmm

, Figure 5.5(d)).

The medium where all boundaries are absorbing presents a decrease of the distance with
increasing frequencies, contrary to the other setups. As for the deflection estimates, the
medium with Dirichlet boundary condition renders a more perturbed evolution, probably
induced by the multiple reflections.

5.4 Analysis of parametrization for FWI

5.4.1 Parametrization

We have briefly mentioned the concept of parametrization in Subsection 4.4.6. The choice
of a parametrization is crucial because different parameters can cost abnormal influences on
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the data, directly affecting the behavior of the iterative reconstruction. For instance, the
elastic isotropic version gives three unknown models and m = {λ, µ, ρ}. This may appear
as the ‘natural’ selection following the wave equation. However, many possibilities are
available, following some quantities introduced in Subsection 1.4.3. For multi-parameters
reconstructions, we have already mentioned the selection advanced by Tarantola (1986),
suggesting that the parameters should be as uncorrelated as possible.

The choice of a parameter affects the computation of the gradient and Hessian (Pratt
et al., 1998), and consequently the iterative reconstruction. Based on numerical experi-
ments, Tarantola (1986) further suggests the use of the density, P-wave impedance and
S-wave impedance for elastic inversion. The use of the impedance is also promoted in
Lavaud et al. (1999) in the case of Amplitude Versus Offset (AVO). More recently, FWI
test cases illustrating this idea have been provided by Brossier (2011); Köhn et al. (2012).
In general, the density has been recognized for being more complicated to retrieve (Virieux
and Operto, 2009). Jeong et al. (2012) propose a two-step strategy to overcome the is-
sue, inverting the density after the other parameters. For acoustic reconstruction, Prieux
et al. (2013a) compare the combination of two parameters between wave speed, density and
impedance with diffraction patterns and decide that the combination of the wave speed and
density is the best. The study is pursued in Prieux et al. (2013b) for elastic media where
P- and S-wave speeds are selected. As far as an analytical study of the inverse problem is
considered, Beretta et al. (2014) show that the density and the Lamé parameters must be
considered separately in elasticity. Extension can be carried out for anisotropy, where the
stiffness tensor coefficient Cij can be of interest. In the case of VTI media, a sensitivity
analysis was conducted by Kamath and Tsvankin (2016) using the time domain wave equa-
tion. Guitton and Alkhalifah (2017) also compares the reconstruction for VTI media. We
also mention the work of Tromp et al. (2005) in seismic tomography where Fréchet kernels
based on the bulk and shear moduli, as well as the P- and S-velocities, are computed.

Another consideration is the application of a function of the parameter. For instance,
we can consider the acoustic situation with constant density. Following the Helmholtz
equation, there is only one parameter to be retrieved, which is the velocity. However, one
can choose to invert the slowness (c−1) or the slowness squared (c−2) instead of the velocity
(c). The logarithmic of the parameter is also advanced, see Tarantola (2005); de Hoop et al.
(1999).

This change of parametrization may appear as a tool at first glance but we will illustrate
how it becomes critical. It first implies a modification of the gradient of the cost function
(given Equation (4.16)). We assume that m = {mi} is composed of several parameters,
and apply the chain rule to consider an alternative for one of the parameter, m̃k. The
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derivation follows to be
∂

∂m̃k

(
F(m)

)
=
∑

i

∂F(m)

∂mi

∂mi

∂m̃k
.

Traditionally we compute the gradient with respect to a reference parametrization, ∂mF
and then apply the change by computing ∂m̃m, usually consisting in simple numerical
operations.

5.4.2 Model partition

We propose to analyze the effect of the parametrization onto the Fréchet derivative, in terms
of its condition number and singular values. The computation of the full matrix Fréchet
derivative may be expensive, and consequently is the singular values decomposition. That
is why we consider the reduced model representation to achieve efficiently the numerical
computations. The model representation has been introduced in Chapter 3 for the purpose
of the stability, and illustrated in Section 3.4.

We restrict ourselves to the piecewise constant model representation. Let us recall
the model partition with Marmousi wave speed of size 9.2 × 3 km. The number of coeffi-
cients to represent the model is denoted by N where reducing N implies a coarser velocity
representation, as illustrated in Figure 5.25.
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Figure 5.25: The Marmousi model of size 9.2 × 3 km represented with two different partitions.
This process can be assimilated with compression in order to reduce the size of the model space.
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5.5 Acoustic parametrization

5.5.1 Acoustic models

In the case of acoustic media, the subsurface is characterized by the density and the bulk
modulus. Alternative quantities can be extracted, the most commons are

c(x) =

√
κ(x)

ρ(x)
wave speed,

I(x) =
√
ρ(x)κ(x) impedance.

(5.6)

In the case where the density is constant, the propagation of waves follows the Helmholtz
equation (1.27), and only the velocity characterizes the medium so that m := c. In this case
the possible parametrizations are only given by functions of the velocity. The standard ones
have been mentioned above, they consist in the slowness (c−1) and the slowness squared
(c−2). It is straightforward to obtain the appropriate Fréchet derivative





∂F(c)

∂c−1
= −c2DF(c), slowness parametrization,

∂F(c)

∂c−2
= −c

3

2
DF(c), slowness squared parametrization,

(5.7)

where DF(c) stands for the derivative with respect to c.

Let us now consider the acoustic case where the density is not constant, see Equa-
tion (1.28). We define the model to reconstruct to be m = {κ, ρ}, motivated by the struc-
ture of the equation. The other quantities that have been defined from those parameters
are the velocity and the impedance, see System (5.6). In the context of multi-parameters
inversion, it is important to notice that changing one of the parametrization may affect the
other one as well. Assuming the gradient has been computed with respect to κ and ρ we
introduce the notation

F(κ, ρ) = F̃(m1,m2),

where m1 and m2 represent the alternative parameters (velocity, impedance, etc) but may
also be unchanged (here we only require m1 6= m2). The choice of parametrization defines
which quantities are assumed to be independent in the wave equation. The appropriate
gradients with respect to these chosen parameters are given by





∂

∂m1

(
F̃(m1,m2)

)
=
∂F(κ, ρ)

∂κ

∂κ

∂m1
+
∂F(κ, ρ)

∂ρ

∂ρ

∂m1
,

∂

∂m2

(
F̃(m1,m2)

)
=
∂F(κ, ρ)

∂κ

∂κ

∂m2
+
∂F(κ, ρ)

∂ρ

∂ρ

∂m2
.
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Let us assume we select m1 = κ. It is important to remark that the term
∂ρ

∂m1
is zero

only if m2 = ρ, otherwise κ and ρ are not considered independent anymore and the gradient
with respect to κ has to be updated accordingly. Based on original gradients computed
with respect to κ and ρ, we give some alternatives in Table 5.2.

parametrization
(m1,m2)

∂κ

∂m1

∂ρ

∂m1

∂κ

∂m2

∂ρ

∂m2

(κ, c) 1 c−2 0 −2κc−3

(κ, I) 1 −I2κ−2 0 2Iκ−1

(c, ρ) 2cρ 0 c2 1

(I, ρ) 2Iρ−1 0 −I2ρ−2 1

(I, c) 2Iρ−1 2Iκ−1 2cρ −2κc−3

Table 5.2: Derivative formula for different acoustic parametrization assuming the original deriva-
tions were carried out with respect to κ and ρ.

Following the choice of parameters, one can then apply a general function such as
the inverse, the inverse squared, or the logarithm following some simple calculations, for
example,





∂F(m)

∂m−1
= −m2DF(m), inverse parametrization,

∂F(m)

∂m−2
= −m

3

2
DF(m), inverse squared parametrization,

∂F(m)

∂ log(m)
= mDF(m), logarithmic parametrization,

5.5.2 Acoustic Fréchet derivative, constant density

Let us first consider the inverse reconstruction of an acoustic isotropic medium that is
defined with a single model: the wave speed c, and where the waves are prescribed by
the Helmholtz equation (1.27). It follows that the Fréchet derivative is represented with a
matrix of size [(nrcvnsrcnω)×N ], where nsrc is the number of sources, nrcv is the number of
receivers per source and nω is the number of simultaneous frequencies. For this experiment,
the acquisition set consists of 19 sources and 183 receivers for each sources, following the
situation we already employed in Sections 5.2 and 5.3, and we refer to the illustration of
Figure 5.3.

The parametrizations that we consider here are the velocity (c), the slowness (1/c) and
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the slowness squared (1/c2). The change of variable has been given in the Equation (5.7).
In order to study the influence of the geometry onto the parametrization, we introduce
three different acoustic wave speeds:

– Marmousi velocity, presented in Figures 5.7 and 5.25, where the latest one shows the
effect of partitioning,

– smooth velocity background, presented in Figure 5.4,

– smooth velocity background with strong contrasting objects, which is given in Fig-
ure 5.7.

5.5.2.1 Matrix representation using the Gauss-Newton Hessian

We compute the Fréchet derivative for different partitionings and parametrizations. We
consider the concatenation of all frequencies of interest, from 1 to 15 Hz, with 1 Hz incre-
ment. Eventually, the Fréchet derivative is a complex matrix of size [(nrcvnsrcnω)×N ] = [52

155×N ]. As an alternative, one can represent the Gauss-Newton Hessian, which is given
by HGN = DF∗DF , see Section 4.5 for further information. The advantage of the Gauss-
Newton Hessian is that it is a symmetric, squared matrix, of size N×N . In Figure 5.26, we
compare the Fréchet derivative and Gauss-Newton Hessian associated with the Marmousi
wave speed. In Figure 5.27, we compare the Gauss-Newton Hessian matrices depending
on the parametrization for the acoustic Marmousi model. The original matrices are scaled
with their respective maximum values so that they can all fit on the same scale.

We observe the effect of the parametrization onto the Gauss-Newton Hessian. The
slowness squared parametrization, 1/c2, provides much more insight into the values mean-
while the velocity parametrization c restricts the resolution to the upper left of the Hessian.
The slowness parametrization, 1/c, gives an intermediate result. We further refer to Pratt
et al. (1998) where an interpretation of the Gauss-Newton Hessian and its underlying pat-
tern can be found. From this observation we expect the slowness squared parametrization
to allow a better reconstruction as the magnitude of information is better shared.

In Figure 5.28, we compare the effect of the velocity model, comparing the Marmousi
wave speed and the medium encompassing salt domes, see Figure 5.7, using the slowness
squared parametrization.

There is an important difference between the two media. the Gauss-Newton Hessian
resulting from the use of the model with few high contrast reflectors shows a pattern that
is more ‘straight’. Clearly, the reflection induced by the many structures of the Marmousi
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Figure 5.26: Comparison of the Fréchet derivative and Gauss-Newton Hessian for the acoustic
Marmousi wave speed. The data cover a set of frequency from 1 to 15 Hz, using 1 Hz increment.
The partitioning is selected to generate N = 56 coefficients, this corresponds to the size of the
model space.
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Figure 5.27: Comparison of the Gauss-Newton Hessian, DF∗DF , for the acoustic Marmousi wave
speed. The data cover a set of frequency from 1 to 15 Hz, using 1 Hz increment. The partitioning is
selected to generate N = 252 coefficients, this corresponds to the size of the matrix. The matrices
are scaled with their respective maximum value to fit on the same scale.

model are revealed somehow in the matrix while the only few reflections of the salt model
produce a very different pattern.
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Figure 5.28: Comparison of the Gauss-Newton Hessian, DF∗DF , for the models of Figure 5.7,
using the slowness squared parametrization. The data cover a set of frequency from 1 to 15 Hz,
using 1 Hz increment. The partitioning is selected to generate N = 252 coefficients, this corresponds
to the model space and size of the matrix. The matrices are scaled with their respective maximum
value to fit on the same scale.

5.5.2.2 Condition number of the Fréchet derivatives

In Figure 5.29, we compare the condition number of the Fréchet derivative associated
with the velocity c, the slowness 1/c, and the slowness squared 1/c2 for different model
partitionings. We also compare the effect of different velocity models: Marmousi, the salt
model and the smooth model.
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Figure 5.29: Comparison of the Fréchet derivative condition number for different parametrizations
and different partitionings. The medium assume a constant density ρ = 100 kg m−2. The blue bars
( ) indicate the use of the Marmousi velocity (of Figure 5.7(a)), the red bars ( ) the salt velocity
(of Figure 5.7(b)), and the green bars ( ) the smooth acoustic velocity (of Figure 5.4).

There is a clear benefit in using the slowness or slowness squared compared to the
velocity. Finally, the use of slowness squared seems to give the smallest condition number.
When we increase the partition, the number of unknowns increases, which impacts on the
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condition number as well. We remark that the salt model generates a higher condition
number, reflecting its higher reconstruction complexity, result that we also observed with
the deflection analysis of Section 5.2.

5.5.2.3 Singular values of the Fréchet derivatives

In Figure 5.30, we compare the evolution of the singular values of the global Fréchet
derivative (encompassing all frequencies) for different partitionings and depending on the
parametrization. The Marmousi velocity has been employed for this experiment. The singu-
lar values are scaled with their respective largest value. The slowness squared parametriza-
tion gives much better results as the singular values rate of decrease is much less than the
velocity and slowness parametrization. It indicates that this parametrization is more robust
to noise.
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Figure 5.30: Evolution of the Fréchet derivative singular values for different partitioning. The blue
dashed line ( ) represents the slowness squared parametrization, the green dashed line ( )
the slowness parametrization and the red dashed line ( ) the velocity parametrization. This
experiment uses the Marmousi velocity (of Figure 5.7(a)).
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5.5.2.4 Sequential frequency progression

We now separate every frequency and compute the Fréchet derivative associated with in-
dividual frequency. In Figure 5.31, we compare the evolution of the Fréchet derivative
condition number with frequency for different partitioning and parametrization, using the
Marmousi wave speed. Once again, the slowness squared parametrization gives the low-
est condition number, which indicates the benefit. We observe that the condition number
decreases with frequency, which is consistent with the stability analysis. Indeed, we have
shown in Chapter 3 that the stability constant estimates decrease with frequency, and
we expect the condition number to decrease with frequencies. Then increasing the parti-
tion naturally increases the condition number, because of the addition of unknowns in the
problem.
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Figure 5.31: Evolution of the Fréchet derivative condition number with frequency for different
partitioning. The blue squares ( ) represent the slowness squared parametrization, the green
circles ( ) the slowness parametrization and the red crosses ( ) the velocity parametrization.
This experiment uses the Marmousi velocity (of Figure 5.7(a)).

5.5.3 Acoustic Fréchet derivative, variable density

Incorporating a variable density provides many possibilities for the choice of parameters to
be inverted, and we have selected the ones presented in Table 5.2, that are: the velocity, bulk
modulus, density and impedance. For the experiments, we consider the acoustic Marmousi
model with a variable density, given in Figure 5.32.

In Figure 5.33, we compare the Gauss-Newton Hessians associated with different parametriza-
tions. The choice of comparing the inverse function of the bulk modulus and density with
the inverse squared function of the velocity and impedance is motivated by the definition
of the quantity and the square root appearing in Equation (5.6), e.g., κ = c2ρ.
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Figure 5.32: Representation of the acoustic Marmousi model with variable density, the medium is
of size 9.2× 3 km.

Remark 5.1. In the context of multi-parameters inversion, the coefficients may have a very
different magnitude. For example, the density is of around one thousand kilogram per meters
cubed (or squared), while the bulk modulus is of several giga Pascal, i.e. 109 magnitude.
In order to counter this effect, we usually introduce a scaling coefficient with the selected
parameter to make the quantity dimensionless and of the same magnitude. Namely, instead
of choosing (κ, ρ) we take (κ/κ0, ρ/ρ0) such that κ0 = max(κ) and ρ0 = max(ρ). We proceed
similarly for any other parametrization. For clarity we later omit this scaling parameter in
the notation.

The Gauss-Newton Hessians have distinctively four sub-matrices: the diagonal blocks
correspond with the derivative of the selected parameters squared and the extra diagonal
ones (which are identical as the matrix is symmetric) represent the multiplication of the
different derivatives (see Equation (4.40)). Similarly to the acoustic case with constant
density, we observe a clear benefit in using the inverse parameterization, which gives a
much better insight regarding the matrix, see Figures 5.33(a) and 5.33(b). The use of the
velocity, impedance or bulk modulus in addition to the density provides very similar pattern
and scale, with a slight improvement in contrast for the impedance (see Figures 5.33(b),
5.33(c) and 5.33(d)). It also appears to be a wise choice to have the density separated from
the other parameters, as the coupling of two parameters between velocity, impedance and
bulk modulus gives a poor resolution, Figures 5.33(e) and 5.33(f).

Let us fix the second parameter to be 1/ρ. In Figure 5.34, we compare the condition
number of the Fréchet derivative for the other parameters, depending on the function
applied, in particular, logarithm and square root. We also notice very few differences
between the three remaining parameters (c, κ and I).

The comparison of the condition numbers confirms what is observed from the Gauss-
Newton Hessian matrices, the inverse parametrization gives the best results for the bulk
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Figure 5.33: Comparison of the Gauss-Newton Hessian, DF∗DF , for the acoustic Marmousi wave
speed with variable density. The data cover a set of frequency from 1 to 10 Hz, using 1 Hz increment.
The partitioning is selected to generate N = 252 coefficients, so that the size of the matrix is 504.
The matrices are scaled with their respective maximum value to fit on the same scale.
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Figure 5.34: Comparison of the Fréchet derivative condition number for different parametrization
associated with the Marmousi medium with variable density imposing model partition N = 252.
The blue bars ( ) employ p1 = κ, the red bars ( ) p1 = I and the green bars ( ) p1 = c. The
second parameter is fixed to be p2 = 1/ρ.

modulus κ, and it is the inverse squared for the impedance and velocity, I and c respectively.

The results are confirmed in Figure 5.35 where we compare the singular values evolu-
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tion for the different parametrizations. In Figure 5.35(a) we see that using 1/κ, 1/I2 or
1/c2 in addition to the density provides very similar rates for the singular values. However,
the use of κ creates a disadvantage as the singular values decrease much faster. In Fig-
ure 5.35(b), we compare the evolution for the singular values associated with the Fréchet
derivative computed with respect to the density (1/ρ actually). It is affected by the selected
combination and we identify 1/c2 to be the best candidate, meanwhile 1/κ and 1/I2 give
very similar results.
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Figure 5.35: Evolution of the Fréchet derivative singular values for partitioning N = 252. (a) The
blue dashed line ( ) represents the singular values for 1/κ using a parametrization (1/κ, 1/ρ), the
green dashed line ( ) is the singular values for 1/I2 using parametrization (1/I2, 1/ρ), the red
dashed line ( ) is the singular values for 1/c2 using parametrization (1/c2, 1/ρ) and the orange
dashed line ( ) is the singular values for κ using parametrization (κ, ρ).
(b) The blue dashed line ( ) represents the singular values for 1/ρ using a parametriza-
tion (1/κ, 1/ρ), the green dashed line ( ) is the singular values for 1/ρ using parametriza-
tion (1/I2, 1/ρ), the red dashed line ( ) is the singular values for 1/ρ using parametrization
(1/c2, 1/ρ).

There are many possibilities and combinations available for the selection of two param-
eters. We distinctively see that this choice must be made wisely as it influences the Fréchet
derivative. The inverse function of the parameter improves the behavior, particularly as
the singular values rate of decrease is much slower. Also in our estimates, the density is
kept separated and the impedance, velocity or bulk modulus are selected in supplement. It
appears that they are globally very close but the velocity, with 1/c2, seems the best candi-
date as it also influences positively the singular values of the Fréchet derivative associated
with the density. We shall compare the parametrization in the reconstruction algorithm in
the following experiments.

5.5.4 Acoustic FWI experiments

After we have analyzed the acoustic parametrizations in terms of effect on the condition
number and singular values of their respective Fréchet derivative, we now illustrate their
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influence during the iterative reconstruction procedure. We provide two acoustic synthetic
experiments based on the Marmousi model, with constant and variable density.

5.5.4.1 Marmousi experiment, constant density

Regarding the acoustic situation with constant density, it seems that the slowness squared
parametrization should behave much better than the other parametrizations we have inves-
tigated. We want to verify this observation by employing the FWI on a Marmousi test case,
and perform the reconstruction for the three parametrizations of interest. We consider the
acquisition made of 91 sources and 183 receivers for each. The true and starting models
are presented in Figure 5.36, where we just have side to side the models already presented
in Figures 5.25 and 5.4. Here we use synthetic data that are generated in the frequency do-
main with a discontinuous Galerkin discretization. The reconstruction is performed using
a finite difference discretization, to avoid inverse crime.
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Figure 5.36: Experimental FWI setup for the Marmousi medium of size 9.2× 3 km, the true and
starting wave speed are given.

We perform an iterative minimization using frequencies from 2 to 10 Hz, with 1 Hz

step. In Figure 5.37, we compare the results using exactly the same algorithm but different
parametrization: c, 1/c and 1/c2. Clearly the velocity inversion provides limited accuracy
for the deepest structures, while the others detect the contrasts. Also the amplitude of the
velocity is much lower than expected for parametrization using c, meanwhile slowness and
slowness squared parametrizations are accurate. Here the inversion of 1/c2 gives the overall
best reconstruction. This result was predicted by the analysis of the Fréchet derivatives of
Subsection 5.5.2.
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Figure 5.37: Final reconstruction after 10 Hz iterations of the Marmousi medium using different
parametrization, the initial and true velocities are presented in Figure 5.36.

5.5.4.2 Marmousi experiment, variable density

Let us pursue the reconstruction depending on the parametrization for acoustic media by
incorporating the density. The velocity and density models are presented in Figure 5.32. Let
us first extract the other quantities, following the relation (5.6), and illustrate the resulting
models in Figure 5.38 with the underlying bulk modulus and impedance. We obviously
obtain the similar structures as seen for the density and velocity. For the reconstruction,
we assume no knowledge of the structures and start with a one-dimensional variation, with
depth only, illustrated in Figure 5.39.

For the reconstruction, we iterate from 2 to 10 Hz with 20 iterations per sequential
frequencies and 1 Hz step. We first fix one of the two parameters to be 1/ρ and compare
the recovery of the other parameter, depending of its choice (bulk modulus, velocity or
impedance) and function applied. This comparison is presented Figure 5.40.

We see that the choice between the impedance, bulk modulus or velocity does not affect
the recovery much. However, the choice of function to apply is revealed to be important,
in particular the inverse of the parameters gives better recovery than when using the pa-
rameters themselves. The main structures are captured with accurate variations. It seems
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Figure 5.38: Quantities associated with the Marmousi model, extracted from the wave speed and
density given Figure 5.32.
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Figure 5.39: Acoustic models used as initial guess for the recovery of the Marmousi medium.

that the velocity gives slightly less information on the deepest structures but the overall
accuracy is very similar for the three parameters. In Figure 5.41, we compare the recovered
density that is obtained in parallel.

The iterative minimization fails to reconstruct the density for all parametrizations.
It is interesting to notice that it does not affect the recovery of the other, which is very
accurate in comparison, see Figure 5.40. The couple density and velocity probably gives the
better results, as anticipated by the singular value decomposition, but the overall resolution
remains poor in comparison to Figure 5.40. Finally, we try to mix the parameters, thus
not taking the density specifically. In Figure 5.42, we compare the reconstruction of the
bulk modulus when associated to the impedance and wave speed, namely we compare the
choice of parametrizations (κ−1, I−1) and (κ−1, c−1).

Clearly the reconstruction is the best when the density is associated with the bulk
modulus. Taking the combination of the bulk modulus with the impedance or the velocity
deteriorates the reconstruction. It confirms that the density should be kept alone, and it is
probably the less correlated parameter.
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Figure 5.40: Final reconstruction after 10 Hz iterations of the Marmousi model using different
parametrizations and functions. The recovered parameter is the bulk modulus for (a), (b) and (c);
the impedance in (d), (e) and (f) and the wave speed in (g), (h) and (i). The second inverted
parameter is fixed to be 1/ρ.

Following the complexity of retrieving the density (Virieux and Operto, 2009), we decide
to perform the iterative minimization on one single parameter, and the density is kept as
its initial guess illustrated Figure 5.39(b), all along the iterative process. In Figure 5.43,
we compare the recovery of the parameter.

As expected, the single parameter inversion keeping the initial density gives accurate
reconstruction of the parameters. It is important to note that not knowing the density or
failing in approximating it does not appear to prevent the recovery of the other parameters.
After the reconstruction of one selected parameter between impedance, bulk modulus and
velocity, one can then try to focus on the density only, as proposed in Jeong et al. (2012);
or even take a first approximation from the Gardner’s relation (Gardner et al., 1974).
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Figure 5.41: Final reconstruction after 10 Hz iterations of the Marmousi density from different
parametrizations.
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Figure 5.42: Final reconstruction after 10 Hz iterations of the Marmousi bulk modulus using
different parametrizations.

5.6 Elastic parametrization

We can proceed similarly in the context of elastic medium where the model is now char-
acterized by three parameters, related to the density (ρ) and the Lamé parameters (λ and
µ).
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Figure 5.43: Final reconstruction after 10 Hz iterations of the Marmousi model using different
parametrization and keeping the density fixed as its initial value pictured Figure 5.39(b).

5.6.1 Elastic models

Let us first review some of the standard physical quantities that can be introduced depend-
ing on the density and the Lamé parameters:

ν(x) =
λ(x)

2(λ(x) + µ(x))
Poisson ratio,

κ(x) = λ(x) +
2

3
µ(x) bulk modulus,

cp(x) =

√
λ(x) + 2µ(x)

ρ(x)
P-wave speed,

cs(x) =

√
µ(x)

ρ(x)
S-wave speed,

Ip(x) = ρ(x)cp(x) =
√
ρ(x)

(
λ(x) + 2µ(x)

)
P-impedance,

Is(x) = ρ(x)cs(x) =
√
ρ(x)µ(x) S-impedance.

In the case of an isotropic elastic medium, the propagation of wave follows Equation (1.29)
and we take the basis subsurface parametrization to be m = {λ, µ, ρ}, in accordance with
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the wave equation. Following what has been observed in the acoustic situation, we leave
aside the density ρ in the parametrization and limit our study to the four following combi-
nations:

– Lamé parametrization (λ, µ, ρ),

– impedance parametrization (Ip, Is, ρ),

– velocity parametrization (cp, cs, ρ),

– and the parametrization (ν, κ, ρ).

As before, we use coefficients to scale the quantities and guarantee similar magnitude,
see Remark 5.1.

5.6.2 Elastic Fréchet derivative parametrization

For the analysis of parametrizations, we consider the elastic Marmousi2 model, which we
picture in Figure 5.44 with the P-wave speed, S-wave speed and density.
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Figure 5.44: Elastic isotropic Marmousi2 medium of size 17 × 3.5 km, it is represented with the
P- and S-wave speeds and the density.
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The acquisition is composed of 19 sources and 168 receivers record the displacement
information for every source, for a total of 168 × 19 = 3192 measurements per frequency.
The frequency bandwidth covers from 1 to 10 Hz using 1 Hz step. Similarly to the acoustic
case, we apply model partition to reduce the number of coefficients in the representation and
allow the computation of the Fréchet derivative. In Figure 5.45, we compare the resulting
Gauss-Newton Hessian from two parametrizations inherited from the Lamé parameters. In
Figure 5.46 are compared the condition numbers of the Fréchet derivatives depending on
the parametrization and the function applied on the parameters.
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Figure 5.45: Comparison of the Gauss-Newton Hessian, DF∗DF , for the elastic Marmousi2 wave
speed. The data cover a set of frequency from 1 to 10 Hz, using 1 Hz increment. The partitioning
is selected to generate N = 130 coefficients per parameter, so that the size of the matrix is 3× 130.
The matrices are scaled with their respective maximum value to stand on the same scale.

We see a large variation of the condition number depending on the situation. Using
the inverse function provides the best result for all parametrization. Note that despite the
square root relation between some of the quantities (e.g., between the Lamé parameters
and the velocities as, for instance, c2

sρ = µ) and contrary to the acoustic situation, the
inverse squared parametrization is not the best choice and we should restrict to use of the
inverse one.

5.6.3 FWI experiments

We now compare the parametrization selection during the FWI reconstruction. We remain
with the Marmousi2 elastic media presented Figure 5.44. The acquisition is now composed
of 141 sources and 281 receivers per source. The starting model for the reconstruction does
not assume any knowledge of the subsurface structures, they are pictured in Figure 5.14.
We use a sequential frequency progression from 1 to 10 Hz. In this experiment, following
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Figure 5.46: Comparison of the Fréchet derivative condition number for different parametriza-
tions associated with the elastic Marmousi2 medium imposing the model partition N = 530 per
parameter. The blue bars ( ) represent the condition number of the Fréchet derivative of the first
parameter of interest, the red bars of the second parameter and the green bars ( ) of the last
parameters. The parameters are indicated in the parenthesis.

the results of the acoustic situation, we disregard the density reconstruction and only focus
on the remaining two parameters (which depend on the selected parametrization). Namely,
the density is kept in its initial and false representation of Figure 5.14(c).

5.6.3.1 Ignoring surface waves

In Figure 5.47, the final reconstructions for the P-velocity are compared depending on
the parametrization. In this experiment, we do not consider surface waves by imposing
an absorbing condition for the upper surface. This simplification noticeably improves the
reconstruction as we will see below.

The elastic reconstruction follows the analysis provided by the Fréchet derivative con-
dition number: the inverse parametrization gives clearly the best recovery. The logarithmic
function generates a smooth representation but the standard one (when no function is ap-
plied) lacks major information on the deepest structures. Concerning the elastic coefficients,
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Figure 5.47: Final reconstruction after 10 Hz iterations of the Marmousi2 P-velocity model using
different parametrization and functions. The density is kept fixed with the iterations, to its initial
representation. In this experiment, surface waves are not considered.

the choice of the Lamé parameters gives more accurate resolution for the deepest contrasts
but this intuition should be confirmed with non synthetic and more complicated examples.
However, because the density is kept unknown, it seems natural that the impedance and ve-
locity parametrizations are more affected while the other parametrization should suffer less.
We see that the inaccuracy of the density does not prevent us from recovering the models.
It is not really fair to compare the recovery of the wave speed while some parametrizations
do not aim at recovering it directly. In Figure 5.48, we compare alternative quantities: the
P-impedance and Poisson ratio.

The different quantities do not provide the same accuracy in the subsurface approxi-
mation. It is interesting to notice that the choice of parametrization may lead to accuracy
improvement on quantities that were not considered. For instance the inversion using
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Figure 5.48: Final reconstruction after 10 Hz iterations of the Marmousi P-impedance (top)
and Poisson ratio (bottom) using different parametrizations. The density is kept fixed with the
iterations, to its initial representation.

the Lamé parameters (Figures 5.48(a) and 5.48(d)) gives insight into the impedance and
Poisson ratio with more accuracy than inverting directly those quantities, (Figures 5.48(b)
and 5.48(f) respectively). In this experiment, we can observe that the Lamé parameters
inversion (with the inverse function applied: 1/λ and 1/µ) gives the best reconstruction,
providing more information on the deepest structures, and the appropriate contrast.

5.6.3.2 Free Surface boundary condition

We reproduce this elastic experiment incorporating the surface waves, that is, imposing a
free surface boundary condition on the top surface. It is known to increase the complexity
of the recovery (due to the introduction of multiple surface reflections), as shown in Gélis
et al. (2007). Indeed, we observe a reduction in the accuracy compared to the original
example, see Figures 5.49.

In this case, the logarithm function appears to provide the best reconstructions. It
gives a smooth velocity with appropriate accuracy for the upper part of the models, yet
the deepest parts are missing. The inverse functions fail to recover the structures, opposite
to the case where surface waves are deleted. The combination of parameters has also a
clear impact on the reconstructions, while it was relatively insensitive previously (the use
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Figure 5.49: Final reconstructions after 10 Hz iterations of the Marmousi2 P-velocity model using
different parametrizations and functions. The density is kept fixed along the iterations as its initial
representation. Free surface boundary condition is incorporated for the upper boundary.

of inverse function had the major effect). The choice of Lamé parameters and the couple
made of the Poisson ratio and bulk modulus give a much better recovery than the use of
impedance or velocity, which fails. However, this is a simple experimental comparison and
it should be confirmed by a thorougher study on various subsurface geometries.

Remark 5.2. The difficulties of the reconstruction provoked by the surface waves have also
been noted by Gélis et al. (2007); Brossier (2009); Yuan et al. (2015). In our experiment, the
iterative reconstruction is conducted using a gradient descent algorithm and we can expect at
least some improvement by employing a more advanced iterative scheme, possibly involving
Hessian information for example. Another alternative can be a preprocessing of the data to
suppress the surface waves. The sensitivity of the inverse scheme to the surface waves is
also related to the subsurface geometry. We will illustrate in Chapter 6, Section 6.10, that
subsurface parameters including salt domes suffer less from the surface waves.
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5.7 Conclusion

In this chapter, we have characterized the framework of FC/LD optimization problem. Such
problems provide important guarantees regarding the convergence of the iterative scheme
towards the proper minimizer (in particular by assuring the absence of local minimum).
We have studied the two quantities involved: the deflection and the curvature. From the
deflection, we extract an estimation of the model space size for which the LD property is
satisfied. We wish to have the largest size possible. The FC property indicates the maximal
distance allowed between the data and the attainable set. The successive estimates with
frequency have been proven to be very useful to give a quantitative understanding of the
behavior of the problem. Here, we have try to supplement the general procedure with some
additional quantification regarding the frequency progression, the geometry, etc.

1. The frequency progresses from low to high values, and we have provided quantitative
understanding on the basin of attraction size behavior for this well-known progression.

2. Using multi frequencies data is not useful to increase the basin of attraction, mean-
ing that initial iterations, when no prior is known, should use the lowest frequency
sequentially.

3. However, the maximal distance between the data and the attainable set is affected
positively by the use of frequency bandwidth.

4. The use of complex frequencies, especially when only the damping is considered,
provides an increase in the size of the basin of attraction.

5. The progression using complex frequencies depends on the damping factor. Namely,
when only the damping is taken, it should vary from low to high values. When both
imaginary and real part are non-zero, the damping should go from high to low at fixed
Fourier frequency. This is precisely what has been observed in Shin and Cha (2008);
Shin et al. (2010); Petrov and Newman (2014), here we have given a quantitative
behavior of this progression.

6. The geometry has an impact on the convergence, having one large reflector provokes
a reduction of the basin of attraction, meaning that it requires more prior information
(or alternatively lower or complex frequencies).

It would be interesting to pursue the study to find the progression in the selection of
frequency based on the basin of attraction size. This could be compared to what is proposed
by Sirgue and Pratt (2004).

Then, we have analyzed the effect of the parametrization on the problem, by studying
the Fréchet derivative of the associated forward operator. Both condition number and
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singular values of the derivative give information on how the parametrization affects the
problem. Two aspects have been analyzed, first the choice of the quantities (density, bulk
modulus, Poisson ratio, etc) and then the application of a function onto those coefficients.
It is not easy to comprehend how the reconstruction can be positively or negatively affected
but we have shown some fundamental differences. Many combinations are possible, and we
have tried to review the major ones. In conclusion, applying the inverse function appears
the best choice in the majority of cases. It also seems valuable to separate the density from
the other parameters. We have demonstrated how a wrong choice of parametrization can
easily lead to the failure of the method.
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Chapter 6

Seismic reconstruction experiments using
FWI method

Abstract

We perform seismic reconstruction of subsurface coefficients
using Full Waveform Inversion (FWI), where observed data are
only located at or near the surface. Motivated by the stability
and convergence analysis, we design a multi-level algorithm where
frequency progresses simultaneously with scale (model partition) in
order to make full use of the analytical understanding of the inverse
problem. We employ the computational toolbox we have developed
during this project to process the underlying iterative minimization
algorithm and illustrate the possibilities and efficiency in different
configurations. The software we have created can handle marine
and land acquisition, and we accordingly review geophysical exam-
ples for acoustic and elastic media, in two and three dimensions. We
also illustrate the way towards anisotropy and attenuation. In ad-
dition to the type of medium, the specific characteristics of the sub-
surface are investigated (structures, layers, salt domes, etc). One
of the key points in these experiments is to start from models with
no prior information on the subsurface structures.
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CHAPTER 6. NUMERICAL EXPERIMENTS

In this chapter, we investigate the efficiency of the FWI method for subsurface recon-
struction in various situations. The inverse problem is solved using an iterative minimization
algorithm, based on the techniques introduced in Chapter 4. The detail of the computa-
tional toolbox developed during this project, and the options implemented, are given in the
Appendix B. Here we consider acoustic and elastic media and examine the reconstruction
from observations located at or near the surface, for two and three-dimensional domains.
Specificities of the geophysical inverse problem include the available data, only located at
(or near) the surface, large scale area of interest (several kilometers cubed), and limited
accuracy of the observed measurements. Following our choice to work in the frequency
domain, we require the Fourier transform of the original time domain observations.

In Section 6.1, we present the multi-level multi-frequency algorithm that is deployed
for the benchmark. The design of this algorithm is motivated by the stability analysis of
the inverse problem of Chapter 3, and the convergence (more precisely the evolution of the
size of the basin of attraction) realized in Chapter 5. It induces a mutual progression in
frequency (from low to high) and model partition (from low scale to refined scale).

Several possibilities are available to conduct the optimization scheme, and some have
been already reviewed. For example in Section 4.7 we have analyzed the effect of Hessian
information. Due to the numerical cost involved, here we solely employ nonlinear conju-
gate gradient methods, without accounting for the Hessian. Similarly, the parametrization
has been studied in Chapter 5, where we reviewed some of the possible combinations for
acoustic and elastic inverse problems. Following this analysis, the parameter inverted are
the following, when no mention is specified:

– acoustic with constant density case: the wave propagation is given by Equation (1.27)
and we invert the slowness squared (1/c2),

– acoustic with variable density case: the wave propagation is given by Equation (1.28)
and we invert the inverse of the bulk modulus and density (1/κ, 1/ρ),

– elastic case: the wave propagation is given by Equation (1.29) and we invert the
inverse of the Lamé parameters and density (1/λ, 1/µ, 1/ρ).

Regarding the cost function, different norms can be employed, and we focus here both
on the traditional least squares and the logarithm one. The latest is in particular crucial
in the case of complex frequency. Hence when no mention is specified we employ the
logarithmic norm with complex frequencies and the least squares for real frequencies.

In our experiments, we also insist on using initial models without any prior information.
None of the subsurface structures are assumed at the beginning to push the algorithm as far
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as possible. Therefore, all starting models are represented with one-dimensional profiles,
which only varies with the depth. Those points of departure are also motivated because
we mainly work with synthetic data with noise. The feasibility of the reconstruction is
then tightly intertwined with the (complex) frequencies available, in particular, the lowest
ones. We also illustrate how the noise affects the data and can make the algorithm fails, in
particular by making the lowest frequencies unavailable.

The geometry of the subsurface structures impacts on the efficiency of the reconstruc-
tion. In particular, we illustrate how high contrasted objects (salt domes) are more com-
plicated to recover and rely massively on lower or complex frequencies. It confirms the
observation made in Chapter 5, where the size of the basin of attraction is shown to shorten
for high contrasted objects. In Section 6.7, we further demonstrate, with some test cases,
how it is related to the scale of the model.

The detailed computational toolbox developed, and the features implemented, are re-
vealed in the Appendix B. In the various experiments we propose here, many aspects are
faced. We mention

– the effect of the noise,

– the effect of model partition (compression),

– the effect of the subsurface geometry and underlying difficulties to recover salt domes,

– the difficulties for density reconstruction,

– surface waves perturbing the elastic reconstruction.

In Table 6.1, we list the experiments that are presented in this chapter, with the detail of the
size and quantity of data (number of receivers and sources). Despite the number of tests,
we will try to learn from the specificities of each of them. The code has been written in
parallel to be able to perform on clusters. Here the majority of the computations has been
processed on the Conte clusters deployed at Purdue University3. The experiments have all
been running on several cores to reduce the computational burden. The more demanding
experiment, which is the three-dimensional elastic Epati model (see Section 6.11) has been
running on 1024 cores, probing scalability performances. In Table 6.2, we further detail the
lowest frequency employed, the total number of iterations and the computational time for
the different experiments. Except for the three-dimensional elastic case, we use a relatively
limited amount of parallel resources. Namely, we only use one node (which is composed of
sixteen cores). The computational time could be reduced by increasing the number nodes.

3https://www.rcac.purdue.edu/compute/conte/, specifications: 16 cores per node with two 8-Core
Intel Xeon-E5; 64 GB per node; Infiniband: 40 Gbps FDR10.
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Model name Type Size (km) nsrc nrcv ∼ Ndof
1. Marmousi acoustic 2D 9.2× 3 91 183 4× 105

2. Overthrust acoustic 2D 20× 4.65 199 399 8× 105

3. Sigsbee2A acoustic 2D 24.4× 9.1 135 232 1× 106

4. Seam acoustic 2D 35× 15 174 349 1.1× 106

5. Louro acoustic 3D 2.6× 1.6× 0.6 96 1000 3× 105

6. Statoil4 acoustic 3D 2.6× 1.5× 1.2 160 1376 7× 105

7. Marmousi2 elastic 2D 17× 3.5 141 281 1× 106

8. Pluto elastic 2D 31.16× 7.08 150 310 1.2× 106

9. Epati elastic 3D 1.8× 1.4× 1 176 936 1× 107

10. Toy model TTI 2D 2.46× 0.6 150 304 3× 105

Table 6.1: List of media used for the FWI experiments. We consider the same number of receivers
for all sources so that the number of data at fixed frequency is given by nsrc×nrcv. Ndof indicates
the approximate number of degrees of freedom for the numerical discretization (we try to keep a
relative similar amount between finite differences and Galerkin methods when both are compared).

Model name Type Starting
frequency

niter ncpu Total
time

1. Marmousi acoustic 2D (2Hz,0) 180 4 1h45min

2.a Overthrust acoustic 2D (1Hz,0) 200 4 4h

2.b Overthrust acoustic 2D (1Hz,10) 400 4 8h

3. Sigsbee2A acoustic 2D (0Hz,1) 420 4 9h30min

4. Seam acoustic 2D (0Hz,1) 420 4 12h

5. Louro acoustic 3D (2Hz,0) 180 16 2h

6. Statoil acoustic 3D see Chapter 7
7. Marmousi2 elastic 2D (1Hz,0) 200 16 2h

8. Pluto elastic 2D (0Hz,1) 440 4 14h

9. Epati elastic 3D (2Hz,0) 195 1024 100h

10. Toy model TTI 2D (1Hz,0) 200 8 4h

Table 6.2: Computational details regarding the FWI experiments. We use complex frequency such
that −ω2 = (σ+2iπf)2, the initial frequency is given as (f ,σ). niter is the total number of iterations
for the minimization, ncpu indicates the number of cores used for the computation. Except for the
3D elastic case, few computational resources are used, meaning that the computational time can
certainly be improved.

6.1 Multi-level, multi-frequency algorithm

We design a multi-level, multi-frequency algorithm based on the stability and convergence
analysis provided in Chapters 3 and 5. In Chapter 3, we have established that the stability
of the inverse problem improves (i.e., the stability constant decreases) when the number of

4The 3D acoustic Statoil model is actually used in Chapter 7 to illustrate the performance working with
Cauchy data.
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6.1. MULTI-LEVEL, MULTI-FREQUENCY ALGORITHM

coefficients to represent the unknown decreases. However, the stability appears to worsen
when the frequency decreases. Numerically, we can make use of these results with the
following:

– at low frequency, one should use a coarse representation for the parameters to prevent
the stability to diminish because of the frequency,

– at high frequency, one can use a refined partition to improve the resolution, benefiting
from the improved stability given by higher frequencies.

Stability-wise, we could be tempted to remain in a high frequency regime in order to
allow an improved resolution while maintaining a relatively low stability constant. However,
from the evaluation of the size of the basin of attraction (cf Chapter 5), we have seen that
low frequencies are required to expect any convergence when minimal prior information is
assumed. That is why we have designed a natural mutli-level multi-frequency scheme where
frequency and scale progress simultaneously. Denoting N the number of coefficients in the
representation (low N implies coarse representation), the iterations are conducted pairing
frequency and scale such that:

1. we start with the couple (ω0, N0) where ω0 is the lowest frequency available (to
increase the size of the basin of attraction) and where N0 is relatively low (the coarse
representation is required to reduce the stability constant).

2. After the iterative minimization has been conducted for this set, we naturally take
the current recovery as the new initial guess. It allows the frequency to be increased
(assuming this current reconstruction belongs to the new basin of attraction area).
Following the stability, increasing the frequency means that we can increase the scale,
i.e., refine to gain accuracy. Hence the next couple (ω1, N1) is chosen where ω1 ≥ ω0

and N1 ≥ N0.

3. We continue the iterative scheme successively updating the frequency and scale, to
reach the desired resolution eventually.

In this project, we have been able to give foundations to this very natural algorithm with
joint progression in frequency and scale, from the stability and convergence point of view.
In the following, we are only using an empirical progression in frequency (usually 1 Hz step)
and scale. The next task is to be able to quantify the progression and introduce automatic
parameters deciding on the next frequency and scale. It represents an ongoing investigation,
where the conjecture is to expect the wavelength to play a major role in the decision,
associated with the stability constant bounds definition and convergence estimation.
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6.2 Acoustic 2D Marmousi model

The acoustic Marmousi model has been presented to illustrate the effect of reconstruction
using the gradient information only or with the Hessian in Section 4.7. In this example,
we used synthetic data modeled in the frequency domain directly, here we use time domain
data to start with, and incorporate noise. To make this section independent we first recall
the main properties of the medium and show the velocity model.

6.2.1 Acquisition setup and data

The Marmousi model is a two-dimensional acoustic medium of size 9.2 × 3 km, very pop-
ular in seismic (extended for elastic by the work of Martin (2004) that we later study in
Section 6.9). It is defined with a wave speed for which the velocity varies between 1450

and 5500 m s−1. This velocity is presented in Figure 6.1. This velocity model has several
structures which can be assimilated to faults in the subsurface. In this acoustic example
we further assume to have a constant density ρ = 1000 kg m−2.
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Figure 6.1: Wave speed for the acoustic Marmousi medium of size 9.2× 3 km, the velocity varies
between 1450 and 5500 m s−1.

The seismic acquisition is conducted with 91 sources located near the surface, every
100 m at the exception of the corners. For each source, 183 receivers record the pressure
information resulting from the wave propagation. In this experiment we consider an acoustic
medium with constant density so that the propagation of waves is given by the Helmholtz
equation. We generate data in the time domain using the research code Hou10ni5.

5This code is developed at INRIA Bordeaux Sud-Ouest, in the Project-Team Magique 3D; it uses
Interior Penalty Discontinuous Galerkin (IPDG) method for the discretization, see (https://team.inria.
fr/magique3d/software/hou10ni/)
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6.2. ACOUSTIC 2D MARMOUSI MODEL

It results in time domain traces, obtained for every source. We further incorporate
white Gaussian noise for the signal recorded by a receiver; here the noise is generated
independently for each receiver and each source. More precisely by denoting Sk,j the signal
recorded by the receiver k for the source j, the signal to noise ratio is set to be of δ dB, we
have

10 log10

(
STk,jSk,j

NT
k,jNk,j

)
= δ, (6.1)

where Nk,j represents the noise vector applied to the original signal Sk,j and where its
values follow Gaussian distribution, T stands for the transposed. In this experiment, we
consider δ = 5 dB. The original trace and the one with noise are presented for a central
shot in Figure 6.2
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Figure 6.2: Time domain trace data for a central shot simulated using the Marmousi model. The
horizontal axis represents the receivers index so that every column is the record of one receiver for
this central source. The devices record the amplitude of the pressure field.

The Fourier transform is applied for the resulting time domain seismic traces in order
to obtain the frequency domain data. Because our original source wavelet has a 10 Hz

frequency peak for the source (Ricker source), the frequency data suffer from the noise
at (relatively) low frequency meanwhile the higher frequencies remain slightly impacted.
Figure 6.3 demonstrates this effect, where the 3 Hz content is extremely noised and barely
usable while the 5 Hz content stays relatively similar to the original one without noise.

The initial model for the iterative reconstruction FWI algorithm is presented in Fig-
ure 6.4. It is a one-dimensional profile with increasing velocity with depth. None of the
structures are known and the amplitude of the velocity is much lower than the true one.
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Figure 6.3: Real part of the Fourier transform of the pressure measurements recorded by the
receivers for a centrally localized shot illustrated Figure 6.2. The blue circles ( ) represent the
Fourier transform of the original data, the green crosses ( ) depict the Fourier transform of the
trace where Gaussian white noise has been incorporated.

In particular, we test our algorithm when no prior information is known on the models, so
that the robustness and convergence of the scheme are emphasized.
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Figure 6.4: Initial wave speed for the iterative minimization algorithm and reconstruction of the
Marmousi model. The model has no information on any of the true structures and consists in a
one-dimensional variation of velocity with depth.
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6.2. ACOUSTIC 2D MARMOUSI MODEL

6.2.2 Reconstruction

For the reconstruction we compute the Fourier transform of the time domain data (with
noise) for frequencies from 2 to 10 Hz. Furthermore, we only use the integer set of frequency.
In Section 4.7, we have compared different methods to conduct the iterative minimization
algorithm. We have seen that the use of second order information via the Hessian can help
the reconstruction but can be computationally expensive. Here we limit the algorithm to
the use of nonlinear conjugate gradient method which only necessitates the computation of
the gradient of the cost function (see Subsection 4.6.1).

In addition to the model, the value of the source is also updated at each iteration. The
initial value is given by the Fourier transform of the time domain source wavelet but this
wavelet is not given with perfect accuracy. Thus we use the source reconstruction formula,
depicted in Subsection 4.6.4.

The FWI algorithm has been implemented for the finite differences and continuous
or discontinuous Galerkin discretizations. In the sequel we compare the reconstruction
depending on the choice of discretization. A major difference is that Galerkin approach
easily accounts for a change of order of approximation, contrary to the finite differences.
In particular, our implementation is limited to first order finite differences so it is not
completely fair to compare the method as is. However, we can already verify the proper
convergence of the iterative scheme and the accuracy of the reconstruction (and reduce the
step size of the discretization using finite differences to increase precision).

6.2.2.1 Discontinuous Galerkin discretization

The Helmholtz equation is discretized using discontinuous Galerkin method. Because of
the constant density, the only geophysical parameter to be reconstructed is the velocity.
The order of approximation is set to 2 and we have a total of 734 022 degrees of freedom.

Cost function selection We have identified two cost functions for the minimization of
the residuals: the traditional least squares functional and the logarithmic representation
(see Subsection 4.3.2). We remind the two cost functions:

J (m) =
1

2
‖F(m)− d‖2 lest squares functional,

J (m) =
1

2
‖ log

(
F(m)

)
− log(d)‖2 logarithmic functional.
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We perform 20 iterations for every frequency between 2 and 10 Hz, with 1 Hz increment.
We have a sequential progression in frequency. The reconstructions for the least squares
and logarithmic cost function are shown in Figure 6.5.
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(a) Wave speed reconstructed using the least
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(b) Wave speed reconstructed using the logarith-
mic misfit function.

Figure 6.5: Reconstructions of the acoustic Marmousi wave speed assuming constant density and
using frequencies from 2 to 10 Hz. 20 iterations are performed per frequency (for a total of 180
iterations).

Both reconstructions are accurate in the upper part of the medium (at low depth). Yet
there is a lack of sharpness in the different layers compared to the true model. The use
of the logarithmic cost function gives more perturbed recovery for the deepest structures,
this can be seen in the deepest central, round structure. Despite the noise in the data, the
overall reconstruction provides the appropriate subsurface interfaces and the values for the
velocity are well attained.

Starting frequency In the first experiment the lowest frequency is set to 2 Hz. Here the
lowest available frequency is set to 3 or 4 Hz. The reconstruction is presented in Figure 6.6.
where the least squares cost function has been used.

The necessity of low frequency content in the data is illustrated by this example. Start-
ing with 4 Hz clearly complicates the reconstruction and less accuracy is obtained in the
different layers of the model. It is of importance for seismic applications because low fre-
quency content is usually extremely affected by the noise, and even missing.

Order of approximation The order of approximation for the DG method can be raised
to increase the accuracy of the numerical solution of the wave propagation. We investigate
the usefulness of increasing the accuracy of the modeling in the context of the inverse
problem. Because the observed data have noise and limited accuracy in general, it is not
clear if improving drastically the accuracy of the forward problem will provide benefits.
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(b) Wave speed reconstructed using 4 Hz for the
lowest frequency in the data.

Figure 6.6: Reconstructions of the acoustic Marmousi wave speed assuming constant density and
using different starting frequencies.

The reconstruction starting with 2 Hz frequency and using the least squares cost function
is shown in Figure 6.7 where the DG method is used with order of approximation 3 and 4.
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(b) Wave speed reconstructed using DG method
with order of approximation 4.

Figure 6.7: Reconstructions of the acoustic Marmousi wave speed assuming constant density using
different order of approximation for the DG discretization method.

There are no benefit in increasing the order of approximation for the forward discretiza-
tion in this test. It is clear that due to the limited accuracy of the observed measurements,
there is no interest in simulating data with an over demanding accuracy.

6.2.2.2 Finite Differences discretization

Following the same idea, the experiment is conducted using a finite differences discretization
and different step sizes. The results are shown in Figure 6.8.

We clearly obtain similar accuracy compared to DG. Here the decrease of the step size
does not play any role, similarly to the increase of order of approximation in DG. This
can be explained by the limited accuracy of the data which are the more important factor

249



CHAPTER 6. NUMERICAL EXPERIMENTS

0 2 4 6 8

0

1

2

3

x (km)

de
pt

h
(k

m
)

(a) Wave speed reconstructed using FD method
with discretization step of 10 m
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Figure 6.8: Reconstructions of the acoustic Marmousi wave speed assuming constant density using
different discretization step for the FD discretization method.

in the reconstruction. The precision of the forward problem is less important and gaining
few digits of accuracy in the modeling does not improve the resolution when it is already
beyond the noise level. However, some other aspect of the numerical resolution, such as the
dispersion must be accounted for (e.g., Barucq et al. (2017) and the references therein).

This simple geophysical test case is the initial way to verify the FWI algorithm that we
have implemented and control some of the options. The accuracy of the reconstruction is
to be put in perspective with the relatively gentle geophysical structures. This also justifies
the few differences obtained in the recovery with the different methods. For example, it is
clear that the DG method is naturally more adapted to the topography, benefiting from
the freedom in the mesh, but this is not useful in such simple experiment. Yet we have
shown that the recovery of the deepest structures is already a complex procedure.

6.3 Acoustic 2D Overthrust model

The acoustic two-dimensional Overthrust (OT) model has been presented when comparing
the reconstruction from gradient descent algorithms and the use of Hessian information, in
Section 4.7. Here we will review the model to make the present section consistent. As for
the Marmousi test case we use synthetic data generated in the time domain, with added
noise.
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6.3.1 Acquisition setup and data

The Overthrust model is originated from the SEG-EAGE 3D velocity model of Aminzadeh
et al. (1994) where a two-dimensional section is extracted. It is of size 20 × 4.65 km. We
assume a constant density with value ρ = 1000 kg m−3 so that the medium is only defined
with the wave speed, which is pictured in Figure 6.9. It varies between 2000 to 6000 m s−1.
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Figure 6.9: Wave speed for the acoustic Overthrust (OT) medium of size 20×5.65 km, the velocity
varies between 2000 and 6000 m s−1.

The wave speed is composed of several layers with increasing velocity with depth. Most
of the area consists in horizontal layers at the exception of a circular fault shape in the upper
left part of the medium.

For the seismic acquisition, we define 199 sources equally spaced in the near surface
zone. For every source we have 399 receivers that record the wave propagation, in terms of
pressure field. Synthetic data are generated in the time domain with the already mentioned
software Hou10ni. It is illustrated with a seismic trace resulting from a central shot in
Figure 6.10.

Figure 6.11 represents the initial wave speed for the iterative reconstruction of the OT
medium. We do not assume any knowledge of the structures and take a one-dimensional
profile, to highlight the behavior of the algorithm when no initial assumption is made on
the subsurface coefficients.

6.3.2 Reconstruction using compression

We first compute the Fourier transform of the data for integer frequencies between 1 and
10 Hz. The FWI algorithm performs 20 iterations per frequency. We employ the least
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Figure 6.10: Time domain trace data for a central shot simulated using the OT model. The
horizontal axis represents the receivers index so that every column is the record of one receiver for
this centrally located source. The devices record the amplitude of the pressure field.
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Figure 6.11: Initial wave speed for the iterative minimization algorithm and reconstruction of the
OT model. The velocity is represented with a one-dimensional variation, increasing with the depth.

squares misfit function. In this experiment we compare the use (or not) of model repre-
sentation based on compression during the algorithm, Table 6.3 indicates the relation we
select between the number of unknowns in the representation and the frequency. Namely,
following the multi-level scheme of Section 6.1, the low frequencies use small amount of
unknowns and the scale is refined with increasing frequency. We further employ a struc-
tured decomposition to produce the subdomains, and piecewise constant representation.
In this experiment, the original wave speed is represented with a mesh defined with 118

848 elements (without any consideration of geometry). We drastically reduce the number
of possible coefficients for the velocity, so that the more refined scale employs 14 337 sub-
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domains, and the initial (coarser) scale is of 330 coefficients, see Table 6.3. Figure 6.12
compares the final reconstruction after the 10 Hz iterations depending on the use, or not,
of reduced model representation.

frequency
iterations

model representation
(number of unknowns)

percentage compared
to the original scale

1 330 0.30%
2 504 0.42%
3 816 0.70%
4 1 008 0.85%
5 1 872 1.60%
6 3 264 2.75%
7 5 781 4.90%

8–10 14 337 12.10%

Table 6.3: Relation between frequency and scale selected for the reconstruction of the acoustic OT
model.
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(b) Reconstruction using evolution of model parti-
tions with frequency, prescribed in Table 6.3.

Figure 6.12: Reconstructions of the acoustic OT wave speed assuming constant density and using
frequencies from 1 to 10 Hz. 20 iterations are performed per frequency (for a total of 200 iterations).

We observe a consequent improvement in the reconstruction when we employ piecewise
constant model partitions to reduce the number of coefficients. In particular, in this ex-
periment we benefit from the natural structures of the original medium with the different
layers. We see that even the upper part of the reconstruction, near the surface, is much
better recovered when a model partition is used. Also it clearly acts as some regularization
by avoiding some artifact oscillatory behaviors that appear in the standard reconstruction.
We remark that few information is retrieved for the deepest corners but once again the
use of compression seems to increase the resolution. Despite the relatively low number of
unknowns, 12% of the original scale, it is still able to capture the variations and the coarse-
ness of the representation is not visible. The benefits are further illustrated in Figure 6.13
with the plot of the cost function evolution with the iterations for the starting frequencies
(1 and 2 Hz iterations).
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Figure 6.13: First iterations of the minimization algorithm for the reconstruction of the OT model
using the starting wave speed of Figure 6.11 The blue dots ( ) do not use any compression
meanwhile the green crosses ( ) reduce the model partition to 330 unknown coefficients at 1 Hz
and 504 coefficients at 2 Hz, see Table 6.3.

The convergence is obtained in both cases and we remark a much faster decrease when
model partition is used. The early iterations already provide great benefits and it is further
confirmed when increasing the frequency. It illustrates how the reduction of unknowns in
the model improves the convergence in this experiment.

6.3.3 Reconstruction using complex frequencies

We examine the effect of complex frequencies during the first iterations of the minimization
algorithm. The new formula for ω is depicted in the Equation (1.25), with an imaginary
and a real part, −ω2 = (σ + 2iπf)2. The transform of the time domain data is conducted
appropriately using the seismic trace where no noise has been included. Here we do not
take any ‘zero’ Fourier frequency part but only complex frequencies with both real and
imaginary parts. Following the analysis provided in Section 5.2, the imaginary (related to
the Fourier domain) part of the complex frequency is chosen to be increasing, while the
real (Laplace domain) part of the frequency is chosen to be decreasing. The selected sets
of complex frequencies are given in Table 6.4, with a total of eight complex frequency sets,
for which the logarithmic norm is employed for the misfit function.

Starting from the initial model given in Figure 6.11, the reconstruction obtained after
the last of the complex frequencies is given in Figure 6.14.

The use of complex frequencies provides an increase of the basin of attraction, which
is especially important when no information is initially known on the model. It results
in the recovery of a smooth wave speed with important information on the structures
obtained for the near surface area. In particular, the horizontal layers of low velocity are
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Set of
iterations

damping
parameter (σ)

Fourier
frequency (f)

1 10 1 Hz

2 7 1 Hz

3 5 1 Hz

4 2 1 Hz

5 10 2 Hz

6 7 2 Hz

7 5 2 Hz

8 2 2 Hz

Table 6.4: Set of complex frequencies employed for the reconstruction of the acoustic OT model.
Every set is performed with 20 iterations of the minimization algorithm. The complex frequency is
defined by −ω2 = (σ + 2iπf)2.
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Figure 6.14: Reconstructions of the acoustic OT wave speed assuming constant density and using
the complex frequencies set depicted in Table 6.4.

well approximated. After the initial set of complex frequencies, we continue the iterative
reconstruction by only employing the standard Fourier frequency set that was originally
taken for the reconstruction of Figure 6.12: from 2 to 10 Hz with 1 Hz increment and 20

iterations per frequency. In Figure 6.15, the final reconstruction is presented. For those
iterations, we employ the traditional least squares functional.

The benefits of using complex frequencies for the initial iterations are clear. The
structures of the wave speed are much better defined than when the set of frequencies is
restricted to the Fourier domain. The horizontal layers of constant speed are identified with
the appropriate values. It also improves the information retrieved for the deepest zone.

255



CHAPTER 6. NUMERICAL EXPERIMENTS

0 2 4 6 8 10 12 14 16 18 20

0

2

4

x (km)

de
pt

h
(k

m
)

2

3

4

5

6

wave speed (km s−1)

Figure 6.15: Reconstructions of the acoustic OT wave speed assuming constant density using
frequencies from 2 to 10 Hz and starting with the reconstructed wave speed obtained from the
complex frequencies iterations (Figure 6.14).

6.3.4 Incorporating noise in the traces

We now incorporate white noise in the time domain traces, following the same steps as
for the Marmousi example, using Equation (6.1). We know that the low (and complex)
frequencies are particularly affected by the noise, and we illustrate when deciding the level
of noise to be 10 and 20 dB. We observe the impact of the noise on the data for the
reconstruction using the complex frequencies sets (Table 6.4) in Figure 6.16.
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(b) Reconstructed wave speed after complex frequen-
cies from the data set where the level of added noise
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Figure 6.16: Reconstructions of the acoustic OT wave speed assuming constant density and using
the complex frequencies set depicted in Table 6.4. Different levels of white noise are initially applied
onto the time domain seismic data set.

The complex frequencies reconstruction is considerably affected by the incorporation of
noise in the observation. For low level of noise (20 dB, Figure 6.16(b)) the reconstruction
is still correct with the smooth structures appearing, however, when the level of noise is
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slightly larger (10 dB, Figure 6.16(a)) the reconstruction fails completely. It illustrates
that the benefits of using complex frequencies have to be carefully considered because of
their sensitivity to noise (as for low frequencies in general). We pursue the iterations
with frequencies from 2 to 10 Hz with the 20 dB level of noise in the data set. The
final reconstruction (starting from the complex frequency reconstruction) is pictured in
Figure 6.17
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Figure 6.17: Reconstruction of the acoustic OT wave speed assuming constant density using
complex frequencies from 2 to 10 Hz and starting with the reconstructed wave speed obtained from
the complex frequencies iterations (Figure 6.16(b)). White noise is incorporated in the time domain
seismic signals.

The final reconstruction captures the velocity structures and the effect of the noise
appears in particular near the boundaries. We remark that the effect of noise is strongly
related to the geometry of the subsurface coefficients to retrieved. For the reconstruction
of the Marmousi wave speed in Section 6.2 we had a strong level of noise (5 dB) and the
reconstruction was not very disturbed; here the noise has much more influence, because the
geometry of the velocity requires lower frequency content.

Remark 6.1. In this experiment, we have used the data with noise without any treatment.
One could imagine to anticipate noise, and apply consequently a pre-processing of the data
set to improve the accuracy. Hence the observed impact of noise could possibly be attenuated.

6.3.5 Incorporating variable density

To test the performance of our algorithm, we now incorporate a variable density in the
problem, so that we have a multi-parameter inverse problem. The density is created to
have similar structures as the velocity and is pictured in Figure 6.18. From the velocity and
the density we can extract the additional quantities that are useful for the parametrization,
in particular the bulk modulus and the impedance, pictured in Figure 6.19. We observe
that both density and wave speed have relatively low variations of profile, the minimum
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and maximum values of each model lie in the same magnitude (103 m s−1 and 103 kg m−2

for the velocity and density respectively). However, the bulk modulus shows two orders of
magnitude between the minimum and maximum value, one order for the impedance.
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Figure 6.18: Density considered for the acoustic OT medium of size 20×5.65 km, it varies between
1500 and 3000 kg m−2.
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Figure 6.19: Bulk modulus and impedance extracted from the OT wave speed and density, the
bulk modulus is given by κ = ρc2, and the impedance I =

√
κρ.

We keep the same acquisition as above, using 199 sources with 399 receivers. The
observation are obtained from time domain simulations and the seismic trace corresponding
with a centrally located source is given in Figure 6.20, where we compare with the original
experiment using a constant density. We see that the contrast is reduced when incorporating
the variable density, in particular some of the central reflections do not appear clearly. In
order to use complex frequencies, we do not incorporate noise.

The starting density profile used to start the subsurface model recovery is pictured in
Figure 6.21, where none of the layers is assumed. It is simply a profile where the density
increases with depth.
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Figure 6.20: Comparison of time domain data trace for a central shot simulated using the OT
model with constant or variable density. The devices record the amplitude of the pressure field.

0 2 4 6 8 10 12 14 16 18 20

0

2

4

x (km)

de
pt

h
(k
m

)

1

2

3

103kgm−2

Figure 6.21: Initial density for the iterative minimization algorithm and reconstruction of the OT
model. It is a one-dimensional variation, increasing with the depth.

6.3.5.1 Keeping the fixed initial density

Following the expertise developed in Chapter 5, Section 5.5 where the difficulties of recover-
ing the density have been highlighted, we first disregard its reconstruction and focus on one
single parameter. It means that the density is kept at the initial, smooth representation
of Figure 6.21 all along the iterative procedure. Based on the wave equation (1.28), we
select the inversion of the bulk modulus (more precisely its inverse, following the results of
Chapter 5 on the parametrization).

We follow the similar frequency progression as in the previous test, starting with the
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complex frequency set prescribed in Table 6.4. The reconstructed bulk modulus at this
step is given in Figure 6.22.
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Figure 6.22: Reconstructions of the acoustic OT bulk modulus assuming variable density and
using complex frequencies set depicted in Table 6.4.

We see that the bulk modulus is smoothly recovered from the complex frequencies sets.
The incorporation of the density barely affects the resolution, and we retrieve very similar
results as when the density was constant. Moreover, the density remains at its original
smooth representation and is not updated, yet it does not affect the bulk modulus recovery.
We pursue the iterative minimization starting with the complex frequencies result and using
sequential frequencies from 2 to 10 Hz, with 1 Hz step. We still perform 20 iterations per
frequency, the bulk modulus reconstructed is presented in Figure 6.23.
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Figure 6.23: Reconstructions of the acoustic OT bulk modulus assuming variable density using
frequencies from 2 to 10 Hz and starting with the reconstructed bulk modulus obtained from the
complex frequencies iterations (Figure 6.22).

The lack of knowledge in the density does not affect the recovery. The resolution is
accurate and the different layers are present. The amplitude of the bulk modulus, with the
two orders of magnitude is partially retrieved with values slightly inferior to the exact ones.
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We notice the lack of accuracy in both sides, particularly for the deeper part, similarly to
the original experiment.

Remark 6.2 (Review of parametrization). We have chosen to invert the bulk modulus,
based on the wave equation where it is separated from the density. However, one can process
the iterative minimization choosing the velocity or the impedance as parameter of choice
instead. From the experiments we have run in Chapter 5, we expect similar accuracy for
the other parametrization (actually inverting the inverse of the selected parameter). It is
confirmed by the experimental recoveries carried here, see Figure 6.24.
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Figure 6.24: Reconstructions of the acoustic OT velocity and impedance assuming variable density.
We compare the reconstruction depending on the choice of inverted parameter. The procedure is
exactly similar as for the bulk modulus reconstruction, only the choice of parameter varies.

As expected, the accuracy is relatively similar for the two other selections, and the layers
of the model appear with appropriate magnitude. We notice that the velocity makes appear
sharper contrasts than the impedance, in particular in the upper region.

6.3.5.2 Simultaneous density reconstruction

Let us try the multi-parameter reconstruction inverting simultaneously the density in ad-
dition to the bulk modulus. We follow the exact same steps, adding the reconstruction of
the density in parallel with the bulk modulus. In Figure 6.25 we first show the recovery
after the complex frequency set.

The reconstructed density shows some of the upper layer of the profile, but the magni-
tude is incorrect, the upper layer should have low density values while the recovery shows
higher values. Concerning the bulk modulus, the smooth reconstruction remains relatively
similar as when not inverting the density, however, the upper layer seems affected by the
large (incorrect) increase of density. We pursue the reconstruction with frequencies from 2

to 10 Hz. The final reconstruction is shown in Figure 6.26.
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Figure 6.25: Reconstructions of the acoustic OT bulk modulus and density using complex fre-
quencies set depicted in Table 6.4.

0 5 10 15 20

0

2

4

x (km)

de
pt

h
(k
m

)

1

40

80

GPa

(a) Bulk modulus.

0 5 10 15 20
0

2

4

x (km)

1

2

3

103kgm−2

(b) Density.

Figure 6.26: Reconstructions of the acoustic OT bulk modulus assuming variable density using
frequencies from 2 to 10 Hz and starting with the reconstructed modulus obtained from the complex
frequencies iterations (Figure 6.22).

The final reconstruction confirms the partial results after the complex frequencies. The
density layers are missing, at the exception of the near surface layers, but with inaccurate
magnitudes. The reconstructed bulk modulus acquires the proper layers but suffers from
the large magnitude of the density.

6.4 Acoustic 2D Sigsbee2A model

The acoustic two-dimensional Sigsbee2A model is a synthetic geophysical medium which
was released by the Society of Exploration Geophysicists (SEG). On the contrary to the me-
dia that we have presented before, it contains an object with high contrast, which represents
a challenging experiment.
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6.4.1 Acquisition setup and data

The Sigsbee2A velocity model is illustrated in Figure 6.27. It has a size of 24.4 × 9.1 km.
It consists of a smooth background where the speed varies from low to high values, with
increasing depth. A strong contrasting object of high velocity is located in the middle.
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Figure 6.27: Wave speed for the acoustic Sigsbee2A medium of size 24.4 × 9.1 km, the velocity
varies between 1430 and 4500 m s−1.

Because of this large structure of high velocity, this model generates strong reflections.
The shape of the object is also interesting with some sort of hole in the upper surface
and a general width that strongly varies. The speed inside the structure is of 4500 m s−1

meanwhile the background velocity varies from 1500 to 3300 m s−1. We take a constant
density ρ = 1000 kg m−2.

The seismic acquisition is conducted with 135 sources and 232 receivers record the
pressure measurement for every source. Contrary to the previous test, case the data are
directly generated in the frequency domain. Compared to the inverse algorithm, the order
of discretization and mesh refinement are different. It allows us to avoid inverse crime, yet
there is clearly much less noise and model error than for the previous examples where we
started from time domain data.

For the reconstruction, we start with a model that does not have any information on
the object, see Figure 6.28. This absence of knowledge is challenging for the algorithm
as no expectation of an object involving strong reflections is anticipated. Regarding the
background velocity, we roughly follow the variation of the actual one.
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Figure 6.28: Initial wave speed for the iterative minimization algorithm and reconstruction of the
Sigsbee2A model. The velocity is a one-dimensional profile of increasing velocity with depth.

6.4.2 Reconstruction using only Fourier frequency

The iterative minimization is conducted with 20 iterations per frequency, from 1 to 10 Hz

and the least squares norm for the misfit function. The final reconstruction obtained is
given in Figure 6.29.
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Figure 6.29: Reconstructions of the acoustic Sigsbee2A wave speed assuming constant density and
using frequencies from 1 to 10 Hz. 20 iterations are performed per frequency (for a total of 200
iterations).

At the exception of a very vague idea of the upper interface between the background
and the contrasting object, the minimization algorithm does not recover any information
on the subsurface coefficient. The method fails to discover the large structure and the
deepest parts are perturbed by artifacts. The failure of the recovery can be justified by
the initial model we have taken where no information is assumed. We believe this initial
guess to be outside the radius of convergence for the problem, preventing any possibility
of reconstruction. For this reason the use of complex frequencies is justified, as it increases
the size of the radius of convergence (see Chapter 5).
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6.4.3 Reconstruction starting from complex frequency

The use of complex frequencies allows an increase of the size of the basin of attraction, as we
have shown in Chapter 5. It is crucial in this case to identify the object, particularly because
our initial guess does not have any knowledge of it. It should provide insight regarding the
discovery of the obstacle. In this case, the frequency is given by the Equation (1.25):
−ω2 = (σ + 2iπf).

We initiate the algorithm starting with equating to zero the imaginary part, f = 0, so
that only remains the damping parameter (i.e. we are positioned in the Laplace domain).
Following the analysis of Section 5.2, the damping frequency varies from low to high values.
Then we take f 6= 0, and in this context, the damping coefficient is chosen to vary from
high to low values. Finally, we run the standard Fourier frequency set, by taking σ = 0.
The summary and the progression of frequency is given in Table 6.5.

Set of
iterations

damping
parameter (s)

Fourier frequency (f)

1–5 {1, 2, 5, 7, 10} 0 Hz

6–8 {7, 5, 2} 1 Hz

9–11 {7, 5, 2} 2 Hz

12–21 0 {1,2,3,4,5,6,7,8,9,10} Hz

Table 6.5: Sets of frequencies employed for the reconstruction of the acoustic Sigsbee2A model.
Every frequency is performed with 20 iterations of the minimization algorithm for a total of 420
iterations. The complex frequency is defined by −ω2 = (σ + 2iπf)2.

After the initial iterations using the five first sets (keeping f = 0, see Table 6.5), the
current reconstruction is pictured in Figure 6.30.
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Figure 6.30: Current reconstructions of the acoustic Sigsbee2A wave speed after the iteration sets
using only the damping coefficients (i.e. after the fifth set of iterations indicated in Table 6.5).
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The object smoothly appears in the reconstruction, with velocity values well approxi-
mated. As expected, the use of damping frequency, by increasing the basin of attraction,
allows insight regarding the strong reflection object lying in the area, which was impossible
to discover before. It provides a relatively smooth model which is now an interesting initial
base for higher frequencies iterations. Eventually, we show the final reconstructed wave
speed in Figure 6.31.
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Figure 6.31: Final reconstruction of the acoustic Sigsbee2A wave speed when all sets of frequencies
have been carried out (i.e. after the twenty-first set of iterations indicated in Table 6.5) for a total
of 420 iterations.

The continuation of the reconstruction algorithm with higher frequencies sharpens the
outline of the object. The upper interface is relatively well approximated, at the exception
of the well. The deepest interface is much less accurate, and the object is globally much
smaller than in reality. We also observe some artifacts appearing underneath the body.
In this experiment, we have highlighted the difficulties arising when reconstructing strong
reflection body, in particular when taking a blind guess for point of departure. We have
demonstrated the usefulness of complex frequencies to allow the discovery of the object.
This efficiency must be mitigated by the high impact on noise on the low and complex
frequencies data. In Section 6.7, we further investigate such seismic reconstructions with
toy experiments where the dimensions of the problem is shown to be crucial as well.

6.5 Acoustic 2D Seam model

6.5.1 Acquisition setup and data

We investigate the acoustic two-dimensional Seam model of size 35 × 15 km. This model
originates from the Society of Exploration Geophysicists (SEG) in collaboration with oil
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industries (SEAM referring to SEG Advanced Modeling Program6). The wave speed is
given in Figure 6.32. The velocity model includes a salt dome near the surface. Similarly
to the previous Sigsbee2A case, there is an object of high velocity immersed in a relatively
smooth background. In this model we also observe deeper layers of velocity, underneath
the salt dome. The higher celerity is located in a deep horizontal layer with value of 4800

m s−1, the celerity in the salt dome is of 4500 m s−1.
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Figure 6.32: Wave speed for the acoustic Seam medium of size 35 × 15 km, the velocity varies
between 1430 and 4800 m s−1.

The seismic acquisition is conducted with 174 sources located near the surface, equally
distributed by 200 m. For every source, 349 receivers record pressure measurements. As
usual the initial wave speed taken for the iterative reconstruction does not have any knowl-
edge of the velocity structures, it is depicted in Figure 6.33. It is basically a smooth
background.

Similarly to the Sigsbee2A experiment, the reconstruction of the salt dome is challeng-
ing and we demonstrate the necessity of using complex frequencies.

6.5.2 Reconstruction using only Fourier frequency

We start performing the iterative minimization in the Fourier domain only, with frequency
from 1 to 10 Hz. We first compare the use of sequential frequency progression and group of
frequencies. For the sequential progression, we use single frequencies from 1 to 10 Hz with
1 Hz increment. The second algorithm uses ten groups of frequency, where every group
encompasses five consecutive frequencies with 0.2 Hz step, starting from the integer fre-

6Many models have arisen from this program (http://seg.org/News-Resources/Research-and-Data/
SEAM), including elastic and anisotropic media. Here we only focus on the acoustic 2D, avoiding ambiguity
for the keyword SEAM.
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Figure 6.33: Initial wave speed for the iterative minimization algorithm and reconstruction of the
Seam model. The velocity is a one-dimensional profile, increasing with depth.

quency; for example the first group employs the following frequencies: {1, 1.2, 1.4, 1.6, 1.8}
Hz. 20 iterations are processed for every set of frequencies (sequential or group) and the
final recoveries are pictured in Figure 6.34.
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Figure 6.34: Reconstructions of the acoustic Seam wave speed using frequencies from 1 to 10 Hz.
20 iterations are performed per set of frequencies (for a total of 200 iterations).

There is no difference between the two methods, both fail. They do not recover any
of the wave speed characteristics: the salt as well as the layers are missing. It tends to
confirm the analysis we did in Chapter 5 that using several frequencies does not impact
on the basin of attraction and does not help in the case where the initial model lacks of
information (it can, however, help regarding noise robustness).

268



6.5. ACOUSTIC 2D SEAM MODEL

6.5.3 Reconstruction starting from complex frequencies

We proceed similarly to the Sigsbee2A medium, where the use of complex frequencies
is motivated to increase the basin of attraction (cf Chapter 5). We expect that it will
give us insight into the velocity structures, when our initial model does not have any prior
information. Let us start with initial complex frequencies having a zero Fourier component,
such that f = 0 in Equation (1.25). We follow the same sets as for the previous Sigsbee2A
velocity reconstruction, which is reminded in Table 6.6. The reconstruction after all the
five first sets (keeping f = 0 Hz) is presented in Figure 6.35.

Set of
iterations

damping
parameter (σ)

Fourier frequency (f)

1–5 {1, 2, 5, 7, 10} 0 Hz

6–8 {7, 5, 2} 1 Hz

9–11 {7, 5, 2} 2 Hz

12–21 0 {1,2,3,4,5,6,7,8,9,10} Hz

Table 6.6: Sets of frequency employed for the reconstruction of the acoustic Seam model. Every
frequency is performed with 20 iterations of the minimization algorithm for a total of 420 iterations.
The complex frequency is defined by −ω2 = (σ + 2iπf)2.
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Figure 6.35: Current reconstruction of the acoustic Seam wave speed after the sets of iteration
using only the damping coefficients (i.e. after the fifth set of iterations indicated in Table 6.6).

The use of the Laplace domain iterations gives a breakthrough on the salt dome posi-
tion. It provides an initial smooth structure, which is revealed to be very appropriate. Once
again it illustrates the benefit of the complex frequency when intending the reconstruction
of model without knowledge on the subsurface structures. We then pursue the iterative
reconstruction and show the final results obtained after the 10 Hz iterations in Figure 6.36
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Figure 6.36: Reconstruction of the acoustic Seam wave speed when all sets of frequency have
been carried out (i.e., after the twenty-first set of iterations indicated in Table 6.6, with maximum
frequency of 10 Hz).

The use of complex frequencies has allowed the recovery of the salt dome in the model.
In particular, the upper boundary of the salt is accurately defined, as well as some of its
lateral boundaries. The values of the velocity are appropriately retrieved in the salt. We
can barely distinguish the lower part of the salt dome but it is not very sharp. We can even
notice the appearance of the little tail at the bottom left of the salt. However, the deepest
layers are still missing, the maximal depth involved, 15 km, may be too demanding. In
such context it would be interesting to see how the Hessian behaves and if it helps in the
recovery of the salt or the deepest structures, as it should following our initial experiments
of Section 4.7.

6.6 Acoustic 3D Louro model

6.6.1 Acquisition setup and data

The seismic inverse problem is conducted for the acoustic three-dimensional Louro model
(courtesy of Total). It is a model of size 2.46 × 1.56 × 0.6 km, characterized by several
bodies which have high velocity values while the velocity background remains smooth. It
is presented in Figure 6.37. In the figure, we select two sections in order to have a better
visualization of the model: the vertical section is at fixed y = 680 m and the horizontal
section is at fixed depth z = 340 m. For this experiment, the density is taken to be constant
with ρ = 1000 kg m−3.

We identify eight separate bodies of various sizes where some are located very near the
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Figure 6.37: Wave speed for the three-dimensional acoustic Louro medium of size 2.46×1.56×0.6
km (courtesy of Total). The velocity varies between 1500 and 4500 m s−1. Vertical section at
y = 680 m is indicated with the red dashed frame and plotted in the right. The horizontal section
at fixed depth z = 340 m is indicated with the green frame and shown at the bottom.

medium boundary. The velocity inside the contrasting objects is of 4500 m s−1 in a smooth
velocity background which increases almost linearly with depth.

The seismic acquisition consists of a two-dimensional array of sources equally spaced.
The source lattice is composed of 12 and 8 sources along the x and y axis respectively,
for a total of 96 sources. More precisely the sources are positioned every 200 m along x
and y axis, avoiding positions near the boundaries. Similarly the lattice for the receivers
is composed of a map of 40 × 25 along the x and y axis respectively, they are positioned
every 60 m in both directions. Data are generated in the time domain, creating three-
dimensional seismic traces for every source. We illustrate the resulting data in Figure 6.38,
for a centrally located shot. The 3D visualization of the trace is in the upper left part
of the figure, two-dimensional sections are extracted at a fixed time (t = 0.6 s, bottom
left) and for a fixed line of receivers positioned at y = 855 m (upper right). Naturally,
the section with a fixed line of receivers produces a picture that resembles to a traditional
two-dimensional trace. The propagating wave can be observed in the cross section at fixed
time.

For the reconstruction, we start with a wave speed that does not have the knowledge
of any of the salt domes, it is a smooth velocity background with a one-dimensional profile
that increases with depth. It is presented in Figure 6.39. The background we have taken
here is not even close to the original background velocity (true model removing the salt
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Figure 6.38: Three-dimensional trace for a centrally located source, the 3D visualization is plotted
in the upper left figure. A two-dimensional section at a fixed time t = 0.6 s is pictured in the
bottom left figure, the section is indicated in green in the 3D visualization. The upper right figure
selects a fixed line receivers positioned at y = 855 m, it is indicated by the red dashed line in the
3D visualization.

domes), we have taken much lower velocity values.

6.6.2 Homogeneous density

We perform a Fourier transform to obtain the data in the frequency domain, after incorpo-
rating a level of noise of 20 dB in the time domain trace, following the signal to noise ratio
of Equation (6.1). The iterative reconstruction is conducted with sequential frequencies
from 2 to 10 Hz with 1 Hz increment. 20 iterations are processed per frequency for a total
of 180 iterations. The final reconstruction is presented in Figures 6.40 and 6.41, where we
have used finite differences and finite elements for the discretization of the inverse wave
problem, respectively.
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Figure 6.39: Initial wave speed for the iterative minimization algorithm and reconstruction of the
Louro model. Vertical section at y = 680 m and horizontal section at fixed depth z = 340 m are
detailed.
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Figure 6.40: Reconstruction of the Louro three-dimensional acoustic model after 10 Hz frequency
iterations. Vertical section at y = 680 m and horizontal section at fixed depth z = 340 m are
detailed. The method uses finite differences for the discretization.

The FWI iterative minimization scheme is able to capture the main salt domes for
both discretizations. Several bodies appear at their righteous position, with slightly smaller
shapes than the original ones. The two central bodies are particularly well recovered, as
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Figure 6.41: Reconstruction of the Louro three-dimensional acoustic model after 10 Hz frequency
iterations. Vertical section at y = 680 m and horizontal section at fixed depth z = 340 m are
detailed. The method uses finite elements for the discretization. The mesh is composed of about
300 000 cells, leading to about 430 000 degrees of freedom.

illustrated by the horizontal section. The smallest one of the two is not large enough, as one
can barely see it on the vertical section. The salt bodies that are on the sides are harder
to recover, due to their limited illumination, yet some are visible on the three-dimensional
visualization. The wave speed in the domes is accurately recovered with the value of 4500

m s−1. Concerning the background, it is correctly retrieved at the exception of the area
under the large salt dome (see the vertical sections). The FE method appears less smooth,
which seems to be inherited from the underlying tetrahedral partition. Here the original
mesh does not assume any of the bodies. It would be interesting to re-mesh the domain in
parallel to the iterative reconstruction, to account for the ongoing salt domes recovery and
see if it improves the resolution. This idea of mesh adaptation is part of future development.

Remark 6.3 (Parametrization). In Chapter 5, Section 5.5, we have illustrated how the
parametrization affects the reconstruction for acoustic media. We have shown that the use
of the slowness squared (1/c2) is more appropriate, and demonstrated the benefits on the
Marmousi experiment. It is the parametrization employed for the current experiments.
Here we can compare the effect for this three-dimensional test case, where salt domes are
present. In Figure 6.42 we compare the reconstruction depending on the parametrization.
The algorithm is exactly the same, only the inverted parameter changes, we compare the
inversion of the velocity (c) and the slowness (1/c). The reference results of Figure 6.40
used the slowness squared (1/c2).
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(a) Using slowness parametrization (1/c).
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Figure 6.42: Reconstruction of the Louro three-dimensional acoustic model after 10 Hz frequency
iterations depending on the parametrization used when conducting the iterative minimization.
Vertical sections at y = 680 m are given on the right.

We observe exactly the same behavior as in the Marmousi experiment comparing the
parametrization, see Figure 5.37. Namely, the slowness inversion provides a smooth re-
covery, where the 3D visualization shows some limitation in the shape of the salt domes.
The velocity inversion fails in recovering the appropriate wave speed and even the large
central dome is barely visible. It confirms the experimental observation we have provided in
Section 5.5, and the necessity for slowness squared inversion in geophysical applications.

Remark 6.4. Despite the presence of salt domes, the algorithm does not require complex
frequencies, contrary to the two-dimensional situations (Seam and Sigsbee2A in particular).
We believe that the size of the bodies and domain (much smaller than the 2D ones) is the
main reason for such behavior. We further illustrate this aspect of body reconstruction with
some experiments in Section 6.7.

Remark 6.5. This type of experiments, with contrasting objects, are well adapted for mesh
deformation. We have mentioned the possibility of simultaneous re-meshing during the
iterative procedure. Another possibility is the use of segmentation or level-sets method.
Moreover, it would be interesting to investigate how such method can perform when no
expectation on the domes is initially taken.
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6.6.3 Incorporating variable density

In our initial experiment, we have assumed a constant density with value 1000 kg m−3. We
will now incorporate a variable density, encompassing the similar structures as the wave
speed. This density is shown in Figure 6.43. Here the density varies from 1000 to 2500

kg m−3.
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Figure 6.43: Density for the three-dimensional acoustic Louro medium of size 2.46 × 1.56 × 0.6
km. The density varies between 1000 and 2500 kg m−3. Vertical section at y = 680 m is indicated
with the red dashed frame and plotted in the right. The horizontal section at fixed depth z = 340
m is indicated with the green frame and shown at the bottom.

In this context, the wave propagation is dictated by the Equation (1.28). The time
domain data are reproduced appropriately. In Figure 6.44, we compare the two-dimensional
sections of the seismic trace for a fixed line of receivers. We barely see any difference with
the use of variable or constant density.

For the reconstruction we now have two parameters to recover: the bulk modulus and
the density. We keep the same starting velocity we pictured in Figure 6.39. For the density
we take an initial model without any information, consisting in our usual one-dimensional
variation, see Figure 6.45.

For the iterative scheme, we proceed similarly to the constant density situation, but
increasing the maximum frequency to 15 Hz, and we use 20 iterations per frequency. Fol-
lowing the analysis proposed in Chapter 5, Section 5.5, we decide not to invert the density,
and to keep it as its original representation of Figure 6.45 along with the iterations. In
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Figure 6.44: Comparison of two-dimensional sections of the trace for a centrally located source, it
corresponds to a fixed line of receivers positioned at y = 855 m.
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Figure 6.45: Initial density for the iterative minimization algorithm and reconstruction of the
Louro model. Vertical section at y = 680 m is given on the right.

Figure 6.46, we show the final reconstruction after 15 Hz iterations.

Despite the absence of knowledge on the density, the method is able to recover the main
salt domes. The resolution is not as precise as for the experiment with constant density
but we still obtain the appropriate wave speed, and some of the smaller domes (see the
3D visualization of Figure 6.46). Clearly the incorporation of a variable, unknown density
complicates the reconstruction but the overall results remain correct. This can be explained
by the weak sensibility of the data for the density, observed in the comparison proposed in
Figure 6.44.

277



CHAPTER 6. NUMERICAL EXPERIMENTS

0

1

2

0

1

0
0.2
0.4
0.6

x (km)
y (km)

de
pt

h
(k
m

)

00.511.52

0

0.2

0.4

0.6

x (km)

00.511.52
0

0.5

1

1.5

x (km)

y
(k
m

)

1.5 3 4.5

wave speed (km s−1)

Figure 6.46: Reconstruction of the Louro three-dimensional acoustic model with variable density
after 15 Hz frequency iterations. Vertical section at y = 680 m and horizontal section at fixed depth
z = 340 m are detailed. The method uses finite differences for the discretization.

6.7 Perspective 1: geometrical understanding, salt dome re-
construction

The presence of high contrast objects in the subsurface area affects deeply the reconstruc-
tion algorithm. As it has been shown in Chapter 5, we know that such geometry generates
a decrease of the size of the basin of attraction, and we require the use of lower or com-
plex frequencies to overcome this issue. It is exactly what we observed in the numerical
experiments for the reconstruction of Seam and Sigsbee2A models, see Sections 6.5 and 6.4
respectively. However, in the latest three-dimensional salt dome experiment we have pro-
cessed, see Section 6.6, we did not require any low or complex frequency and the objects
appeared appropriately. Following this observation we conjecture that there is an additional
parameter that makes the salt reconstruction more difficult. Here, we investigate how the
scale of the model affects such recovery.

For this purpose, we design a two-dimensional acoustic test case where salt domes are
included. We will play with the size of the model (width and length) and illustrate how it
affects the recovery. To remain consistent the number of sources and receivers is adjusted
depending on the size of the medium. Yet we always keep the same distance between two
consecutive sources: 80 m, similarly we have 40 m between consecutive receivers. Then
the number of sources and receivers is automatically given by the size of the domain. The
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initial model for the reconstruction consists of the background velocity, which is illustrated
in Figure 6.47.
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Figure 6.47: 2D initial wave speed for the reconstruction of synthetic salt domes subsurface media.
The length and width of the model vary depending on the experiments.

For the reconstruction, synthetic data are generated in the frequency domain (without
noise to only study the effect of the salt domes). The iterative minimization is conducted
with frequencies from 1 to 10 Hz, with 1 Hz increment and processing 20 iterations per
frequency.

6.7.1 First realization

We start with the same targeted velocity, simply playing with the size of the domain of
interest. In Figure 6.48 we compare two realizations of the same experiment, where the
domain of interest is either 9.225× 2.25 km or 12.3× 3 km.

We see that the size of the domain of interest plays a fundamental role in the recovery.
In the small domain, we see a smooth recovery of the salt and the three bodies appear.
Even if the background is inaccurate, the high contrast objects are identified. However,
when considering a slightly larger domain, the method fails and no information is obtained.

Remark 6.6 (Low frequency compensation). In order to overcome the impossibility of
retrieving the obstacles, we have successfully used complex frequencies in previous experi-
ments. Similarly, one can use lower frequency to extract the missing information. In the
Figure 6.49 we illustrate the recovery for the larger domain (12.3×3 km) incorporating data
for nine frequencies from 0.1 to 0.9 Hz. Then the salt is perfectly designed and even the
background velocity is well approximated. Nonetheless, such low frequencies are impossible
to attain in practice.
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Figure 6.48: 2D reconstruction of wave speed including salt domes with data covering frequencies
from 1 to 10 Hz. The models on the left represent the target model (from which the observations
are acquired). The test on the top considers the domain with size 9.225 × 2.25 km; the test on
the bottom consider the domain with size 12.3× 3 km. The initial model used for the algorithm is
given in Figure 6.47.
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Figure 6.49: 2D reconstruction of wave speed including salt domes with data covering frequencies
from 0.1 to 10 Hz for the domain of size 12.3 × 3 km. The initial model used for the algorithm is
given in Figure 6.47. The algorithm takes full benefits of the low frequency content in the data.

6.7.2 Salt position

When increasing the dimension of the domain, we have increased the dimension of the salt
dome, and the depth at which it is positioned. We shall see that the latest has tremendous
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importance. In Figure 6.50, we experiment a test case for a domain of size 9.225 × 3 km

for which the larger salt dome is located between about 1000 and 2000 m depth.
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Figure 6.50: 2D reconstruction of wave speed including salt domes with data covering frequencies
from 1 to 10 Hz. The models on the left represent the target model (from which the observations
are acquired). The domain has size 9.225 × 3 km. The larger salt dome is approximately located
between 1000 and 2000 m depth. The initial model used for the algorithm is given in Figure 6.47.

In this case the algorithm fails to recover the salt. We now reproduce the test by
changing the upper and bottom limit of the salt. In Figure 6.51, we show the reconstruction
when the bottom of the salt has been moved up to about 1500 m. In Figure 6.52, we show
the reconstruction when the upper boundary of the salt has been moved up to about 500
m.
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Figure 6.51: 2D reconstruction of wave speed including salt domes with data covering frequencies
from 1 to 10 Hz. The models on the left represent the target model (from which the observations
are acquired). The domain has size 9.225× 3 km. The larger salt is approximately located between
1000 and 1500 m depth. The initial model used for the algorithm is given in Figure 6.47.

Reducing the lower boundary of the salt dome is not sufficient to allow the recovery.
When the upper boundary is closer to the surface however, the algorithm is able to detect
the object, which starts to appear. The underneath limit is not approximated but we see a
clear improvement. We can conjecture that the depth at which the salt is located is crucial,
as well as its general dimension.

Remark 6.7. The relation between salt position, reconstruction and frequency is obviously

281



CHAPTER 6. NUMERICAL EXPERIMENTS

0 2 4 6 8

0

1

2

3

x (km)

de
pt

h
(k
m

)

(a) Target wave speed.

0 2 4 6 8

x (km)

2

3

4

km s−1

(b) 10 Hz reconstruction.

Figure 6.52: 2D reconstruction of wave speed including salt domes with data covering frequencies
from 1 to 10 Hz. The models on the left represent the target model (from which the observations
are acquired). The domain has size 9.225 × 3 km. The larger salt dome is approximately located
between 500 and 2000 m. The initial model used for the algorithm is given in Figure 6.47.

tightly correlated with the wavelength, which needs to be sufficiently large to allow the re-
covery. Therefore, reducing the frequency, by increasing the wavelength, is a substitution to
identify the salt dome. We expect some kind of relation between the largest wavelength and
the location of the upper and bottom interface of the body to allow the reconstruction. For
the same reason, if the velocity has higher value, then the shape of the obstacle is easier to
retrieve.

Remark 6.8. In Figure 6.53, we reconstruct the Marmousi model, where the dimensions
have been artificially increased to 12.3 × 3 km. Here the algorithm does not suffer from
the increase in dimension and the reconstruction is accurate. It completely demonstrates
the results of Chapter 5, where the size of the basin of attraction in the direction of one
large reflector is much smaller than in the direction of the Marmousi structures. Hence, the
Marmousi model is less affected by the increase in dimensions.
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Figure 6.53: 2D reconstruction of the Marmousi wave speed with synthetic data covering frequen-
cies from 1 to 10 Hz. The dimensions are artificially increased to the size 12.3× 3 km. The initial
model used for the algorithm is given in Figure 6.4.
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In this short benchmark, we have exposed the specific complexity of recovering high
contrast objects from surface observations. The size and position of the object are fun-
damental for the recovery. The use of low (or complex) frequencies, by increasing the
wavelength, is an alternative but applications cannot usually rely on them, due to the
noise. If no prior information is known on the subsurface, there is no hope of anticipating
this kind of object and the algorithm necessarily fails. Finally, we believe that this simple
experiment should also be compared with the introduction of the Hessian in the procedure,
which may provide interesting benefits.

6.8 Perspective 2: reconstruction with attenuation

In Section 1.7, we have explained how attenuation can be incorporated in the formulation
of the wave equation. Assuming the Kolsky–Futterman model for attenuation, the veloc-
ity becomes complex valued and the attenuation factor Q appears. We can remind the
expression for the wavenumber in this context (following Equation (1.31))

k(x, ω) =
ω

c(x)− i sgn(ω)c(x)

2Q(x)

.

Accounting for attenuation is clearly a key in applications of FWI and we investigate how
the iterative minimization can perform in this situation. In terms of algorithm, the adjoint
state method (see Section 4.4) naturally provides the gradient with respect to Q.

The computation of the gradient requires the derivation of the wave operator with
respect to the parameter, see Equation (4.22). Let us illustrate the technicality with an
acoustic medium with constant density, where the waves follow the Helmholtz equation.
The velocity is taken with an imaginary part and the derivation of the wave operator with
respect to c and Q (following the notation of the Kolsky–Futerman model Equation (1.31))
gives 




∂P
∂c

= − 2ω2

c3

(
1− i sgn(ω)

2Q

)2 ,

∂P
∂Q

= − i sgn(ω)ω2

c2Q2

(
1− i sgn(ω)

2Q

)3 .

It shows that when accounting for attenuation, the gradient with respect to the wave speed
must be appropriately adjusted as well.
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Here we design a three-dimensional toy example to study the behavior of the atten-
uation factor reconstruction. We basically take the background velocity of the Louro
model, introduced in Figure 6.37, and design a cross-shaped obstacle. The model is of
size 2.46 × 1.56 × 0.6 km, the wave speed and attenuation factor are pictured in Fig-
ures 6.54 and 6.55 respectively. The background consists in a constant attenuation factor
and an increasing velocity with depth. Inside the cross-shaped body, the wave speed and
attenuation are constant with values 4000 m s−1 and Q = 80.
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Figure 6.54: Wave speed for the three-dimensional experiment including attenuation of size 2.46×
1.56× 0.6 km. The velocity inside the body is constant with value 4000 m s−1. Vertical section at
y = 680 m is indicated with the red dashed frame and plotted in the right. The horizontal section
at fixed depth z = 400 m is indicated with the green frame and shown at the bottom.
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Figure 6.55: Quality factor for three-dimensional experiment. Vertical section at y = 680 m is
indicated with the red dashed frame and plotted in the right. The horizontal section at fixed depth
z = 400 m is indicated with the green frame and shown at the bottom.
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For the reconstruction we consider synthetic data where the initial models match with
the backgrounds. Hence the initial wave speed is similar as the Louro experiment, see
Figure 6.39; the initial attenuation factor is constant with value 20 (value of the background
in Figure 6.55). Hence we simply try to retrieve the subsurface body. We perform 20

iterations using sequential frequencies from 2 to 10 Hz, using 1 Hz step. Synthetic data
have been generated prior to the reconstruction. In Figures 6.56 and 6.57 we show the
reconstructed wave speed and attenuation factor.
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Figure 6.56: Reconstructed wave speed of the three-dimensional acoustic model with attenuation
and the subsurface cross-shaped body. Vertical section at y = 680 m and horizontal section at fixed
depth z = 400 m are detailed.

0

1

2

0
1

0
0.2
0.4
0.6

x (km)
y (km)

de
pt

h
(k
m

)

0 1 2

0
0.2
0.4
0.6

x (km)

0 1 2

0

0.5

1

1.5

x (km)

y
(k
m

)

10 50 100

Q

Figure 6.57: Reconstructed attenuation factor of the three-dimensional acoustic model with atten-
uation and the subsurface cross-shaped body. Vertical section at y = 680 m and horizontal section
at fixed depth z = 400 m are detailed.

The subsurface body appears in the recovered wave speed and attenuation factor. The
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position is well approximated for the velocity, but the values are noticeable lower than
expected. For the attenuation factor, we observe some circular artifacts appearing around
the shape. The value is well approximated but it seems that the position of the cross is
underneath the actual one (it is particularly visible on the vertical section of Figure 6.57).

In this preliminary experiment, we have shown how the recovery of attenuation is
possible in the algorithm. We have obtained interesting results in terms of reconstruction
but this is a synthetic experiment. It has to be enriched with more realistic ingredients.
In particular, here, both forward and inverse problems account for the attenuation with
the Kolsky–Futterman model. We need to incorporate consequent model error to test the
reliability of the method, and the use of time domain noisy data. Hence we see this test as
an initial step towards more challenging experiments.

6.9 Elastic 2D Marmousi2 model

The elastic Marmousi2, introduced by Martin et al. (2006) is an extension of the acoustic
Marmousi model. It has already been thoroughly employed in Chapter 5, and numerical
reconstructions have been carried out with a comparison on the elastic parametrization in
Section 5.6. The elastic coefficients, P-velocity, S-velocity and density have been presented
in Figure 5.44, the starting models are in Figure 5.14. This model is of size 17 km by 3.5

km.

In this section, we only reproduce the experiment incorporating piecewise constant
domain partition in parallel with the iterations. We do not consider surface waves for
simplicity and follow the same frequency progression as in Section 5.6. In Table 6.7 we
provide the selected relation between frequency and model representation.

frequency
iterations

model representation
(number of unknowns)

1 Hz 530
2 Hz 2 226

3–4 Hz 9 116
5–6 Hz 36 975
7–8 Hz 148 750

Table 6.7: Relation between frequency and scale selected for the multi-level reconstruction of the
elastic Marmousi2 model. No partition is employed for the last frequencies, 9 and 10 Hz.

During the iterative minimization, we do not reconstruct the density, which is kept as its
initial representation, see Figure 5.14. The progression of frequency and model partitioning
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leads to a step by step reconstruction, starting with coarse representation where only rough
recovery can be expected. In Figure 6.58, we show the results after 1 and 2 Hz iterations,
to illustrate the scale progression.
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Figure 6.58: Progressive reconstruction of the elastic Marmousi2 model, where scale and frequency
are paired according to Table 6.7. The density is kept fixed along the iterations as its initial
representation. In this experiment surface waves are not considered.

The evolution of scale provides the progressive recovery of the structures. The initial
frequencies, where the number of model coefficients remains low is still able to anticipate
the variation. We show the results after the final 10 Hz iterations in Figure 6.59.
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Figure 6.59: Reconstruction of the elastic Marmousi2 model after 10 Hz iterations.
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We see that the multi-level reconstruction eventually gives the correct structures for
both velocities with similar accuracy. Compared to our original experiment without model
partition, the deepest areas of the velocities are better recovered, in particular regarding
the amplitude of the velocity.

6.10 Elastic 2D Pluto model

In this section, we investigate the reconstruction of an elastic medium encompassing salt
domes. We compare the consideration, or not, of surface waves.

6.10.1 Acquisition setup and data

Let us introduce the elastic Pluto model, which is a two-dimensional medium composed of
salt domes. It is a medium of size 31.16× 7.08 km, represented with the P-wave speed, S-
wave speed and density pictured in Figures 6.60, 6.61 and 6.62 respectively. It is composed
of three separate bodies, the largest is positioned in the center while two smaller ones are
located on the sides.
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Figure 6.60: P-wave speed for the elastic Pluto medium of size 31.16×7.08 km, the velocity varies
between 1500 and 4500 m s−1.

In this experiment, the seismic acquisition is composed of 150 sources and 310 receivers
for every source. We generate synthetic data in the frequency domain using different order
and meshes for the method of discretization. As usual we start from initial models where
no information are assumed on any of the domes. We take smooth velocity backgrounds,
illustrated in Figure 6.63.

We do not consider the density for the reconstruction, and it is kept as its original
representation of Figure 6.63. We try to confirm the demonstration we have initiated that
inaccurate density does not prevent from the recovery of the other coefficients. Because of
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Figure 6.61: S-wave speed for the elastic Pluto medium of size 31.16×7.08 km, the velocity varies
between 880 and 2700 m s−1.
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Figure 6.62: Density for the elastic Pluto medium of size 31.16× 7.08 km, it varies between 1000
and 3000 kg m−2.

the salt domes, we can anticipate that the use of complex (or very low) frequencies will be
required, following the expertise carried out in Chapter 5 and the acoustic experiments of
Sections 6.4, 6.5 and 6.7.

6.10.2 Ignoring surface waves

Let us start by neglecting surface waves, for a simpler framework, as illustrated in Sec-
tion 5.6 with the Marmousi2 reconstruction, and mentioned in Gélis et al. (2007); Yuan
et al. (2015). It means that both the synthetic data generated and the inverse algorithm
do not account for them. We select sequential frequencies from 1 to 10 Hz, with 1 Hz step
and perform 20 iterations per frequency. In Figure 6.64, we show the reconstructed P- and
S-wave speeds.

As expected, the algorithm fails to recover the subsurface information, due to the high
velocity domes. It confirms the acoustic situation where high contrast objects have required
the use of complex frequencies when no information is initially known on the subsurface
area. Therefore, we reproduce the experiments starting with complex frequencies. The

289



CHAPTER 6. NUMERICAL EXPERIMENTS

0 10 20 30

0

2

4

6

x (km)

de
pt

h
(k
m

)

1
2
3
4

km s−1

(a) Initial P-wave speed.

0 10 20 30

x (km)

0

1

2

3
km s−1

(b) Initial S-wave speed.

0 10 20 30

0

2

4

6

x (km)

de
pt

h
(k
m

)

1

1.5

2

2.5

density (103kgm−2)

(c) Initial density.

Figure 6.63: Initial models for the reconstruction of the elastic Pluto medium of size 31.16× 7.08
km. All starting models use a one-dimensional profile which only varies with depth.
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Figure 6.64: Reconstructions of the elastic Pluto models using frequencies from 1 to 10 Hz. 20
iterations are performed per frequency (for a total of 200 iterations).

complete set of frequencies is given in Table 6.8, 20 iterations are performed per frequency.

We also employ the multi-level algorithm so that frequency and scale progress simul-
taneously, starting with coarse model representation. In Table 6.9, we give the relation
between the set of frequency and the number of coefficients to represent the parameter. In
this experiment, the mesh of the domain is generated with about 140 000 cells, without
accounting for any of the domes shapes.
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Set of
iterations

damping
parameter (σ)

Fourier
frequency (f)

1 to 4 2,5,7,10 0 Hz

5 to 7 7,5,2 1 Hz

8 to 10 7,5,2 2 Hz

11 to 20 0 1 to 10 Hz

Table 6.8: Set of complex frequency employed for the reconstruction of the elastic Pluto model.
Every set is composed of one single frequency defined by −ω2 = (σ+ 2iπf)2. For instance the very
first frequency is only composed of the damping with σ = 2; the seventh set is (σ = 2, f = 1Hz).
20 iterations of the minimization algorithm are performed per set, for a total 400 iterations.

frequency set model representation
(number of unknowns)

percentage compared
to the original scale

1 to 4 75 0.05%
5 to 7 160 0.12%
8 to 10 234 0.20%

11 384 0.30%
12 and 13 702 0.50%
14 and 15 3 744 3.00%
16 to 20 11 232 8.00%

Table 6.9: Relation between frequency set and scale selected for the reconstruction of the acoustic
Pluto model without accounting for surface waves. The corresponding frequencies in the set are
given from Table 6.8.

In Figure 6.65, we picture the reconstruction at different steps of the complex frequency
sets. Figures 6.65(a) and 6.65(b) show the reconstruction of the velocities after the iterations
where only the damping is used (Laplace domain reconstruction, after the fourth set of
Table 6.8). Figures 6.65(c) and 6.65(d) show the final reconstruction after all complex
frequencies have been processed (after the tenth set of Table 6.8).

We see that the objects appear smoothly. The complex frequencies have increased the
size of the radius of convergence, and allow an initial recovery of the parameters. The
reduction of the number of coefficients provides a coarse reconstruction, which is actually
well adapted to the recovery of subsurface domes. We pursue the iterative minimization,
incorporating increasing frequency parameters f , see Table 6.8. The final reconstructions of
the P- and S-wave speeds, after the maximum 10 Hz iterations, are pictured in Figure 6.66.

The three subsurface salt domes are captured, benefiting from the complex frequencies
initial iterations. The three objects are appropriately designed and the value of velocities is
well approximated, both for the P- and S-wave speeds. We observe that the overall shapes of
the objects are slightly smaller than the actual ones, the underneath interface being harder
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(a) Reconstructed P-wave speed after damping itera-
tions (set 1 to 4 of Table 6.8).
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(b) Reconstructed S-wave speed after damping it-
erations (set 1 to 4 of Table 6.8).
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(c) Reconstructed P-wave speed after complex frequen-
cies iterations (set 1 to 10 of Table 6.8).
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Figure 6.65: Reconstructions of the elastic Pluto models after complex frequencies have been used
(set 1 to 10 in Table 6.8).
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Figure 6.66: Final reconstructions of the elastic Pluto models after 10 Hz iterations, using the
progression of frequency and scale prescribed in Table 6.8).

to obtain. It is certain that the need for complex frequencies may be complicated to fulfill
when noise perturbs the data. An alternative is to start from an initial guess including
a priori knowledge. We also note that keeping the inaccurate density does not prevent
from the recovery. Regarding the compression, we have largely decreased the number of
coefficients to represent the model (see Table 6.9) but the resolution does not suffer from
it and remains accurate.
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6.10.3 Incorporating surface waves

We reproduce the experiment but considering the surface waves. We follow the same set
of complex frequencies given in Table 6.8 and we still use 20 iterations per frequency. In
Figure 6.67, we picture the reconstruction of the P- and S-wave speeds. We show the recon-
struction after the complex frequencies have been processed, and the final reconstruction.
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(a) Reconstructed P-wave speed after complex fre-
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(b) Reconstructed S-wave speed after complex
frequencies iterations (set 1 to 10 of Table 6.8).

0 10 20 30

0

2

4

6

x (km)

de
pt

h
(k
m

)

1
2
3
4

km s−1

(c) Reconstructed P-wave speed after the final 10 Hz
iterations (all sets of Table 6.8 are processed).
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Figure 6.67: Reconstructions of the elastic Pluto models with surface waves. The progression of
frequency and scale is prescribed in Table 6.8.

Contrary to the Marmousi2 experiment (see Section 5.6), the incorporation of surface
waves does not affect the recovery and we still retrieve the salt domes. In particular, the
complex frequency sets seem to provide a larger dome compared to when we neglect the
surface waves. Yet the final reconstruction shows low resolution regarding the deepest
structures, more precisely, one can see that the dome on the left is less accurate. We can
conjecture that it is strongly related with the pattern of the subsurface structures. Indeed,
having high contrast object generates few, reflections back to the surface and having several
layers (as in the Marmousi2 medium) induces much more reflections.
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6.11 Elastic 3D Epati model

6.11.1 Acquisition setup and data

We now study a three-dimensional elastic medium. With such media, we attain the current
computational limitations of the frequency domain approach, imposed by the numerical
cost of the matrix factorization. Here, more than the efficiency of the recovery, we aim at
illustrating that our software is able to handle large scale computations, as an initial step
towards even larger domains. We study the Epati model (courtesy of Total), which is a
model of size 1.8 km by 1.4 km by 1.2 km. It is a relatively small model in geophysics, but
already challenging for the frequency approach. The corresponding P-wave speed, S-wave
speed and density are presented in Figures 6.68, 6.69 and 6.70 respectively where we show
a three-dimensional visualization and a two-dimensional section for fixed y = 700 m. The
resolution of the wave equation is conducted with about ten millions degrees of freedom.
Note that we do not change the discretization during the frequency progression, even if
it would be easily imaginable to employ a coarser discretization for low frequency (hence
reducing the computational cost consequently).
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Figure 6.68: P-wave speed for the three-dimensional elastic Epati medium of size 1.8×1.4×1.2 km
(courtesy of Total). The velocity varies between 2000 and 4700 m s−1. Vertical section at y = 700
m is indicated with the red dashed frame and pictured in the right.

It is interesting to notice that, in addition to difficulties due to the large scale, the
P- and S-wave speeds have very different profiles. The P-wave speed presents a cone of
increasing velocity while the S-wave speed has a structure with layers of constant velocity
values. This is a major difference compared to the previous elastic experiments where
the P- and S-wave speeds have similar patterns (see Marmousi2 and Pluto experiments of
Sections 6.9 and 6.10).

The seismic acquisition is conducted with 176 sources positioned in an two-dimensional
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Figure 6.69: S-wave speed for the three-dimensional elastic Epati medium of size 1.8×1.4×1.2 km
(courtesy of Total). The velocity varies between 700 and 2400 m s−1. Vertical section at y = 700
m is indicated with the red dashed frame and pictured in the right.
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Figure 6.70: Density for the three-dimensional elastic Epati medium of size 1.8 × 1.4 × 1.2 km
(courtesy of Total). The velocity varies between 600 and 3000 kg m−3. Vertical section at y = 700
m is indicated with the red dashed frame and pictured in the right.

lattice. Every source is separated by 80 m on both the x and y axis. Similarly, 936 fixed
receivers are incorporated with 40 m distance in both directions.

6.11.2 Reconstruction using synthetic data

Synthetic data are generated directly in the frequency domain, and we incorporate noise in
the data. For the reconstruction, the initial models have no information on the subsurface
structures and correspond with depth varying profiles, see Figure 6.71.

Following the previous elastic experiments, we do not account for the density recon-
struction and utilizes the multi-level algorithm to associate frequency and scale progression
(with a piecewise constant representation of the model). The available frequencies cover a
set from 2 to 14 Hz. Here we use sequential progression selecting integer frequencies and
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(a) Initial P-wave speed.
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(b) Initial S-wave speed.
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(c) Initial density.

Figure 6.71: Initial P-wave speed, S-wave speed and density for the reconstruction of the three-
dimensional elastic Epati medium. Initial models consist of one-dimensional profiles with variation
in depth only.

15 iterations are performed for each. This progression, in association with the number of
coefficients to represent the models, is given in Table 6.10.

The final reconstructions after the 14 Hz iterations of our FWI minimization algorithm
are presented in Figures 6.72 and 6.73, with the P- and S-wave speeds respectively.

Providing synthetic data, the reconstruction accurately recovers the variation of wave
speeds, despite the difference between the profiles and the inaccurate density. The recon-
structed P-wave speed has the increasing cone of high velocity (see the vertical section in
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frequency
iterations

model representation
(number of unknowns)

2 Hz 60
3 Hz 616

4–5 Hz 5 610
7–7 Hz 47 250
8–10 Hz 378 000

Table 6.10: Relation between frequency and scale selected for the multi-level reconstruction of the
elastic Epati model. No partition is employed for the last frequencies, from 11 to 14 Hz.
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Figure 6.72: Reconstructions of the elastic Epati P-wave speed using frequencies from 2 to 14
Hz.Vertical section at y = 700 m is indicated with the red dashed frame and pictured in the right.
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Figure 6.73: Reconstructions of the elastic Epati S-wave speed using frequencies from 2 to 14
Hz.Vertical section at y = 700 m is indicated with the red dashed frame and pictured in the right.

Figure 6.72). The reconstructed S-wave speed makes appear the different layers of con-
stant speed, with accuracy. As usual, both sides have limited resolution due to the limited
illumination. Once again, despite the unknown density, the recovery of the velocities is
achieved.

This three-dimensional elastic test case shows some promises. There is clearly a need
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to continue the experiment decreasing the accuracy of the observed data but we see that
the optimization scheme can be conducted for large scale problems. The frequency domain
approach certainly carries a computational burden regarding the matrix factorization but
with novel linear algebra techniques, there is a promising road ahead.

6.12 Perspective 3: towards TTI reconstruction

We ave throughly benchmarked acoustic and elastic media, in two and three dimensions.
The natural extension is to move towards TTI subsurface media. Such media are repre-
sented with six subsurface parameters in 2D and eight in 3D, see Section 1.4. Here we
develop a test case to try out the algorithm in this context. We remain in two dimensions
and design a domain of size 2.46 by 0.6 km. The medium is composed of the following
parameters: the P-wavespeed, the S-wavespeed, the density, the Thomsen parameters (ε
and δ) and the angle θ; they are pictured in Figure 6.74.
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Figure 6.74: Experimental TTI models of size 2.46 by 0.6 km. The x axis is indicated in km.

Our algorithm is designed to handle the anisotropic wave equation and we attempt
TTI reconstruction in this simple framework, just to verify that it behaves appropriately.
We generate synthetic data in the frequency domain, without any noise and perform the
iterative minimization with frequencies from 1 to 10 Hz. The initial models are given in
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Figure 6.75: we start from one-dimensional profile. Moreover the initial angle θ is set to
0◦. We follow a naive approach for the reconstruction where all parameters are inverted
simultaneously.

0 0.5 1 1.5 2

0

0.2

0.4

0.6de
pt

h
(k
m

)

2

3

4

(a) P-wave speed (km s−1).

0 0.5 1 1.5 2
0

1

2

3

(b) S-wave speed (km s−1).

0 0.5 1 1.5 2

0

0.2

0.4

0.6de
pt

h
(k
m

)

0

0.2

0.4

(c) Thomsen parameter ε.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

(d) Thomsen parameter δ.

0 0.5 1 1.5 2

0

0.2

0.4

0.6de
pt

h
(k
m

)

1.6

2

2.4

(e) Density (103kg m−2).

Figure 6.75: Initial models used for the reconstruction of the TTI medium. The profiles consist
in one-dimensional variations with depth. The x axis is indicated in km. The initial angle θ is
constant with θ = 0◦.

After the final 10 Hz iterations, only the P- and S-wave speeds have been accurately
approximated, they are pictured in Figure 6.76. We do not present the other parameters
because the recovery fails, yet we see that the high contrast object appears in the recon-
struction of the velocities. It seems that having inaccurate representation for the density,
Thomsen parameters and angle still allows some insight into the subsurface structures.
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Figure 6.76: Reconstruction of the P- and S-wave speeds of the TTI experiments. The other
parameters are inverted as well but the algorithm fails to recover any useful information.
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This is a very simple experiment and we cannot draw many conclusions out. Our
code is able to handle anisotropy and we are now facing many questions regarding the
reconstruction. The parametrization should be clarified to see if inverting from the stiffness
tensor or the physical parameters makes a difference. Also it appears that the data are
more sensitive to some parameters (the velocities here) so we should design the method to
focus on those parameters. We have also use a small, noise-free, experiment and stepping
to credible applications necessitates increased robustness and understanding.

6.13 Conclusion

We have benchmarked the FWI algorithm developed during this project and tested its
robustness. Several experiments have been carried out, with acoustic and elastic media,
in two and three dimensions. We have designed a multi-level multi-frequency algorithm
based on our previous stability and convergence reasonings, so that frequency and model
partitions evolved simultaneously. The benefits may be limited in the simplest cases (e.g.,
acoustic Marmousi), but it has proven to give some acute insight. It is in particular naturally
adapted for salt domes reconstruction. It can also be appropriate when dealing with noise,
because the compression can be assimilated to some regularization.

Concerning the recovery of the density, which is known to be a challenging problem,
we have found that keeping an inaccurate representation does not prevent the algorithm
from retrieving the subsurface structures. In particular, we have kept the density at some
one-dimensional representation, and the reconstruction of the velocity (for both acoustic
and elastic media) has only been marginally affected. Yet, there is a need for an alternative
method for the approximation of the density.

We have shown that low or complex frequencies are required to initiate the recovery,
due to their effect on the size of the basin of attraction. In particular, it has a crucial impact
when salt domes are investigated. However, these frequencies are usually unavailable due
to the noise. Hence there is a need to improve the robustness. It can consist of alternative
techniques to build initial models (we have started with absolutely no information) or
alternative algorithm. Here, we mention the MBTT algorithm (Migration Based Travel
Times), developed by Chavent and Clément (1992); Clément et al. (2001) which shows some
promises in avoiding low frequencies (Tcheverda et al., 2016). We plan its implementation
in a very near future to evaluate its performance. Regarding salt domes reconstruction, we
think that an appropriate way to handle it would be the use of level-sets methods (Lewis
and Vigh, 2016; Kadu et al., 2017). However, without any a priori knowledge, it is hard to
anticipate what to look for, and a more appropriate approach should be needed initially.
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Because of the inherent optimization method involved, several possibilities are available,
and their performance should be investigated. It includes the selection of the norm for the
misfit function and the choice of descent direction to conduct the minimization. Here it
would be interesting to pursue the benchmark in regards to the use of Hessian, or its
approximation (such as pseudo-Hessian, Choi et al. (2008); Jun et al. (2015)) to identify
how and when it is astute. Following the same idea, the use of regularization terms in the
cost function (e.g., Qiu et al. (2016); Brandsberg-Dahl et al. (2017)) or following optimal
control framework as recently developed for geophysical reconstruction in Métivier et al.
(2016); Qiu et al. (2017), is an evolution that needs to be processed.

We have carried out a three-dimensional elastic test case which is an initial, yet fun-
damental, step towards more realistic applications of harmonic FWI. It must be put in
perspective with new linear algebra techniques, to allow the handling of large matrix fac-
torization. Finally, we have probed the algorithm to work with attenuation and anisotropy.
These are crucial steps towards geophysical prospecting. They still require a thorough anal-
ysis to comprehend what can or cannot be expected in complex media and how it behaves
with noise. Here we believe that the numerical algorithm cannot be sufficient and that
a more global, analytical understanding can help to develop the appropriate workflow, to
help focus on the parameter of interest.

301





Chapter 7

The perspectives of reconstructions from
Cauchy data

Abstract

We investigate the seismic marine subsurface reconstruction in
the frequency domain with the use of Cauchy data. It is motivated
by the dual sensors acquisition devices, where pressure and vertical
velocity are measured. Conditional Lipschitz stability for the asso-
ciated inverse problem can be obtained for piecewise linear model
representations. It involves a novel cost function derived from the
Green’s identity. We illustrate the effectiveness through computa-
tional experiments in three dimensions starting with time domain
data. The reconstruction is carried out with single and multi fre-
quency data. We also show that the use of Cauchy data with this
new cost function leads to promising results, when minimal infor-
mation is known on the acquisition set (namely we only require
the position of the receivers but not the sources position, nor their
wavelet).

Disclaimer: This is an ongoing work in part of collaboration with Profs. Giovanni Alessan-
drini, Hélène Barucq, Maarten V. de Hoop, Romina Gaburro and Eva Sincich. we mention
the two related proceedings: Alessandrini et al. (2017a,b).
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We study the possibility of reconstructions in the marine geophysical context when
Cauchy data are available. Seismic marine acquisition standardly relies on measurements
obtained from hydrophones, but perspectives have arisen with the new types of acquisition
devices that allow multi components data recordings. In particular, the dual sensors7 are
able to capture the vertical (or normal) velocity in addition to the pressure, see Carlson
et al. (2007); Tenghamn et al. (2007). It increases the quantity of information and provides
benefits in terms of noise reduction and for image processing, as indicated in Whitmore
et al. (2010); Rønholt et al. (2015). In this chapter, we investigate the application of our
Full Waveform Inversion (FWI) algorithm with this type of data in order to identify the
possible gains.

Instead of the normal velocity measures, we first focus on the use of Cauchy data, moti-
vated by mathematical reasons, but having in mind the data probed by dual sensors devices
for applications. However, our numerical experiments are conducted with the derivative of
the pressure with respect to the vertical direction, which accordingly relates to the vertical
velocity from the Euler’s equations, as illustrated in Carlson et al. (2007). We note that
compared to the Dirichlet-to-Neumann map employed in Chapter 3 (data which, as men-
tioned, are not observed directly in seismic acquisition anyway), the Cauchy data do not
suffer from eigenfrequencies.

The inverse problem associated with Cauchy data has been proven to have a conditional
Lipschitz stability, when the model is represented by piecewise linear functions. The result
holds in particular in the case of partial data, using a free surface and absorbing boundary
conditions on some portion of the boundary. For the analysis, we refer to Alessandrini
et al. (2017c,b). In Section 7.1, we review the formulation of the problem and identify
the appropriate cost function to employ. We also defined the associated adjoint state for
the gradient computation. In Section 7.2, we experiment the reconstruction for a three-
dimensional acoustic situation. First, the reconstruction is conducted with data at one
single frequency and a fixed piecewise linear representation of the velocity. Then we allow
a multi-frequency reconstruction with scale evolution. Finally, we show that from the novel
cost function that is introduced, minimal information is actually required on the seismic
acquisition set, see Section 7.3. We show that we can artificially incorporate sources for the
simulations, which further allows a reduction of the computational time.

7Dual sensors are developed by Petroleum Geo-Services, PGS, see https://www.pgs.com/
publications/feature-stories/dual-sensor-stands-high-after-ten-years/
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CHAPTER 7. CAUCHY DATA FWI

7.1 Iterative minimization from Cauchy data

7.1.1 Framework

We consider the domain Ω ⊂ R2 or R3, with boundary Γ = Γ1 ∩ Γ2. The distinction of
boundaries is made so that Γ1 denotes the free surface boundary and Γ2 the others. The
pressure field p satisfies the wave equation,





−ω2c−2p(x)−∆p(x) = f(x) in Ω,

p(x) = 0, in Γ1,

∂νp(x)− iωc−1(x)p(x) = 0, in Γ2,

(7.1)

We have taken the free surface condition on Γ1 and absorbing boundary conditions on Γ2,
(Engquist and Majda, 1977). Here, f denotes the source. For the reconstruction, Cauchy
data (p and ∂νp) are acquired on a portion Σ of the domain which is the receivers location.
In particular, we make the important assumption that Σ is located below the sources. The
associated forward problem at frequency ω (see Equation (4.2)) is

Fω : c →
{
p(x) |Σ; ∂νp(x) |Σ

}
.

We assume the source and receivers to be located slightly underneath the surface, and
we further consider the knowledge of the upper part of the medium where they lie, which is
water. This setup is sketched in Figure 7.1 in two dimensions. In the numerical experiment
we later consider the derivative with respect to z of the pressure field instead of the normal
derivative. This is actually closer to the actual measurements of dual sensors, where the
vertical velocity is related to the derivative of the pressure with the Euler’s equations.

free surface Γ1, p |Γ1= 0

source

receivers line Σ known wave speed

Γ2

unknown wave speed

Figure 7.1: Illustration of the configuration in two dimensions. We apply a Dirichlet boundary
condition on Γ1 and absorbing boundary conditions on Γ2, following Problem (7.1). We note that
Γ = Γ1 ∩ Γ2. The sources that probe the Cauchy data lie in between the receivers and the free
surface, in a layer of known velocity (water).
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7.1. ITERATIVE MINIMIZATION FROM CAUCHY DATA

7.1.2 Piecewise linear model representation

The unknown parameter, the velocity, is represented following a piecewise linear model
representation. The domain Ω is partitioned with N non-overlapping subdomains Dk such
that

Ω =
{
∪Nk=1 Dk, Di ∩ Dj = ∅ ∀i 6= j

}
. (7.2)

Following the partition, the velocity is represented via piecewise linear functions, such that

c(x) =
N∑

k=1

Hk(x)χ(Dk),

where χ(Dk) represents the characteristic function over the subdomain Dk and Hk(x) is a
linear function. Denoting the space variable x = {x1, . . . , xr}, where r is the dimension (2
or 3 here), this function is given by

Hk(x) = αk,0 +
r∑

j=1

αk,jxj .

αk,j is defined for k ∈ {1, . . . , N}, j ∈ {1, . . . , r}. The number of scalar coefficients αk,j is
given by (r + 1)N . Therefore, we have 4N coefficients in three dimensions and 3N in two
dimensions. We refer to Section 3.4 of Chapter 3 for additional details and illustrations.

Remark 7.1 (Relation with the forward discretization). The Galerkin discretization of the
wave equation generates a mesh of the domain Ω, such that

Ω =
{
∪NKk=1 Kk, Ki ∩Kj = ∅ ∀i 6= j

}
,

where the NK cells are usually triangles for a two-dimensional domain and tetrahedra in
three dimensions. This domain decomposition can have no relation with the piecewise linear
partition in N subdomains given in the Equation (7.2). Yet we naturally define the subdo-
mains for the piecewise linear approximation in terms of the mesh cells and we take each
Dk as the union of Ki,

Dk =

NDk⋃

i=1

Ki, ∀k ∈ {1, . . . , N}.

We have introduced NDk , the number of mesh cells in the subdomain Dk, which varies with
k. Eventually, we have the relation between the total number of mesh cells (NK) and the
number of piecewise linear partitions (N),

N∑

k=1

NDk = NK .
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7.1.3 Misfit functions

For the iterative minimization we denote the decomposition of the data with dD and dN .
dD refers to the pressure observations and dN stands for the normal derivative observations.
Similarly, we require two restriction operators to apply onto the simulated pressure field p
(following what is introduced in Section 4.3). We define

{
RD(p(x)) = p(x) |Σ,
RN (p(x)) = ∂νp(x) |Σ .

We note that RD is the same restriction operator as R in Chapter 4 , meanwhile RN
encompasses a normal derivative.

With the Cauchy data, we first naively derive a cost function based on the traditional
least squares, by incorporating the norm of the normal derivative such that

JLS(c) =
1

2

nsrc∑

k=1

‖RD(p(sk)(c))− d(sk)
D ‖2 +

η

2
‖RN (p(sk)(c))− d(sk)

N ‖2, (7.3)

where the index (sk) denotes the sources. We have also introduced a weighting parameter
η to penalize the data, and give more or less influence on the normal derivative data. By
taking η = 0, we revert back to the original marine seismic FWI, with pressure data only.

In Alessandrini et al. (2017c,b), the conditional stability of the inverse problem associ-
ated with the Problem (7.1) is obtained, in the case of piecewise linear model representation.
It is a particularly powerful result because it accounts for the geophysical context: the par-
tial data, the free surface and the absorbing boundary conditions (contrary to the more
standard Dirichlet-to-Neumann data case we have proven in Chapter 3). On the other
hand, it does not use the cost function (7.3), but instead defines the following,

JG(c) =
1

2

nsrc∑

k=1

nsrc∑

l=1

‖d(sk)T
N RD(p(sl)(c))− d(sk)T

D RN (p(sl)(c))‖2. (7.4)

Hence we have a new cost function based on the correlation of observation with simulation.
The understanding of this cost function is extracted from the second Green’s identity which
states that, for two regular enough functions φ, ψ,

∫

V
φ∆ψ − ψ∆φ dV =

∫

S
φ∂νψ − ψ∂νφ dS,

where V is a volume with boundary S. We notice that the left hand side equates to zero if
both φ and ψ solves the Helmholtz equation with same velocity c. The cost function can be
recognized in the right-hand side but requires a little effort in the context of partial data.
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7.1.4 Discretized gradient computation with adjoint state

The computation of the gradient follows the adjoint state method we prescribed in Sec-
tion 4.4 where the appropriate references have been given.

7.1.4.1 Least squares cost function

From the least squares cost function of Equation (7.3), the adjoint state is derived following
the exact same path as in Section 4.4, incorporating the additional norm of the difference
for the normal derivative data. It is straightforward to see that now, the adjoint state γ(sk)

(associated with the source sk) is selected to solve the problem (analog to Equation (4.21))

P∗γ(sk) = −R∗D(RD(p(sk))− d(sk)
D )− ηR∗N (RN (p(sk))− d(sk)

N ).

One adjoint state needs to be computed per source and the gradient of the cost function
follows (similarly to Equation (4.22)),

∇JLS =

nsrc∑

k=1

Re

(〈
∂c
(
P
)
p(sk), γ(sk)

〉)
,

where P correspond to the wave operator.

7.1.4.2 Green’s cost function

Let us now study the new cost function given in the Equation (7.4). The adjoint state is
computed in the same manner, without any more technicality. It is given as the solution
of the adjoint of the forward problem, where the right-hand side is the derivative of the
cost function with respect to p. According to the double sum in the Equation (7.4), there
is now two indexes associated with the adjoint: one related to the observation source and
one for the simulation source, denoted by sk and sl respectively. The adjoint state γ(sk,sl)

solves the problem

P∗γ(sk,sl) = −
(
d

(sk)T
N RD − d(sk)T

D RN
)∗(

d
(sk)T
N RD(p(sl))− d(sk)T

D RN (p(sl))
)
. (7.5)

The gradient follows to be expressed by

∇JG =

nsrc∑

k=1

nsrc∑

l=1

Re

(〈
∂c
(
P
)
p(sl), γ(sk,sl)

〉)
.

At this point, we would require the computation of the adjoint state for every couple
(sk, sl), which would represent an important computational burden. This can actually be
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immensely reduced. We have

∇JG =

nsrc∑

k=1

nsrc∑

l=1

Re

(〈
∂c
(
P
)
p(sl), γ(sk,sl)

〉)
=

nsrc∑

l=1

Re

(〈
∂c
(
P
)
p(sl),

nsrc∑

k=1

γ(sk,sl)
〉)
.

Let us introduce
nsrc∑

k=1

γ(sk,sl) = γ(sl).

From the linearity of the wave equation (7.5), we see that γ(sl) solves the problem

P∗γ(sl) = −
nsrc∑

k=1

(
d

(sk)T
N RD − d(sk)T

D RN
)∗(

d
(sk)T
N RD(p(sl))− d(sk)T

D RN (p(sl))
)
.

One needs to solve only one adjoint state per simulated source. Hence, the cost for the
computation of the gradient of this cost function is similar to the cost of the least squares
one.

Remark 7.2. We notice that in the variational formulation of the problem, the right-hand
side is tested against basis functions (see Chapter 2). It provides a natural framework
because we have, by definition, ∀ψ, φ ∈ H1(Σ),

< R∗Nφ, ψ |Σ>=< φ |Σ,RNψ >,

where < ·, · > is the dual pairing H−1/2(Σ), H1/2(Σ). Therefore, the normal derivative
(encompassed in RN ) can be considered on the test functions.

7.2 Acoustic 3D model reconstruction

7.2.1 Acquisition setup and Cauchy data

To evaluate the performance of the reconstruction from Cauchy data, we consider the
acoustic three-dimensional model of Figure 7.2 (courtesy of Statoil). It is a model of size
2.54× 1.44× 1.22 km, where we also visualize selected sections at fixed y = 1125 m and at
fixed depth z = 800 m. The density is set to a constant with ρ = 1000 kg m−3. The profile
is particularly interesting because there is a deep layer where the wave speed is reduced,
and then it increases again.

The data are generated in the time domain, where we have considered a regular lattice
for the sources and receivers. We take a total of 160 sources and 1376 receivers for each
source. The resulting three-dimensional seismic traces for a centrally located shot are
pictured in Figures 7.3(a) and 7.3(b) for the pressure observation and the its derivative
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Figure 7.2: Three-dimensional acoustic wave speed (courtesy of Statoil) of size 2.54× 1.44× 1.22
km, the velocity varies between 1500 and 5200 m s−1. Vertical section at y = 1125 m is indicated
with the red dashed frame and plotted in the right. The horizontal section at fixed depth z = 800
m is indicated with the green frame and shown at the bottom. The model is represented from 1
527 168 nodal values.

with respect to z, which can be assimilated to the vertical velocity (using the Euler’s
equation, Carlson et al. (2007)). We present the three-dimensional traces and associate
two two-dimensional sections, at fixed time t = 0.5 s (bottom left) and for a fixed line of
receivers positioned at y = 695 m (upper right).

We observe a large difference of scale between the two types of data, with one order
of magnitude difference in the amplitude. It justifies the scaling parameter η in the least-
squares misfit function Equation (7.3), which allows us to adjust the influence of the different
types of data.

7.2.2 Single frequency reconstruction

From the observed data in the time domain, we apply a Fourier transform to extract the
frequency content that we use in our harmonic FWI algorithm. We first try to use the data
extracted for one single frequency equal to 10 Hz. The initial model for the reconstruc-
tion consists in a smooth background: a one-dimensional velocity profile, increasing with
depth, as depicted in Figure 7.4. For the discretization, we employ continuous Galerkin
discretization, the number of cells in the mesh is about 3× 105 and the number of degrees
of freedom is 7× 105.
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(a) Pressure measurements.
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(b) Vertical derivative measurements.

Figure 7.3: Three-dimensional trace associated with a centrally located source. A two-dimensional
section at a fixed time t = 0.5 s is pictured in the bottom left of each figure, and is indicated in
green in the 3D visualization. The upper right of each figure selects a fixed line receivers positioned
at y = 695 m, which is indicated by the red dashed line in the 3D visualization.
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Figure 7.4: Initial wave speed for the iterative minimization algorithm and reconstruction of the
Statoil model with single frequency data. Vertical section at y = 1125 m and horizontal section at
fixed depth z = 800 m are detailed.

Following the stability result, we employ a domain partition where piecewise linear rep-
resentation is applied, see Subsection 7.1.2. The original model representation (Figure 7.2)
is made of 1.5× 106 nodal values and the mesh we employ to discretize the domain is of
3× 105 tetrahedra. We largely reduce this number for the piecewise linear representation
and select 1089 subdomains. Because our initial guess has no information on the subsur-
face, the choice of subdomain follows a structured decomposition of the domain. Following
the piecewise linear representation, it leads to 4× 1089 = 4356 coefficients to represent the
velocity. It is 0.3% of the nodal representation and 1.3% in regards to the number of cells.
Hence, we have drastically reduced the number of unknowns in the problem.

We perform the iterative minimization of the cost function established from the Green’s
identity, Equation (7.4). We only use 10 Hz data and the piecewise linear representation.
In Figure 7.5, we show the reconstruction after 175 iterations.

We are able to recover the variations of the velocity from single frequency data at 10

Hz. In particular, in the vertical section of Figure 7.5, we see that the profile with a layer
where the velocity decreases is well captured. Despite the lack of initial information and the
single frequency content, the method benefits from the Cauchy data and proves successful
reconstruction. We have drastically reduced the number of coefficients (0.3% compared
to Figure 7.2), it is visible in the reconstruction but the resolution is appropriate, it can
further easily be improved, see Remark 7.3.

We can also evaluate the performance with the comparison of data at the receivers
location. In Figures 7.6 and 7.7, we show the data of the map of receivers for a centrally
localized shot. We compare the Fourier transform of the observed measurements with the
records simulated from the initial and reconstructed models.

We can observe the improvement provided by the iterative reconstruction and verify
that both types of data have been ameliorated. In order to have a better visualization,
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Figure 7.5: Reconstruction of the acoustic 3D Statoil wave speed from Cauchy data at 10 Hz
only, with the initial guess of Figure 7.4. The model is represented via 1089 structured subdomains
where piecewise linear functions are applied, for a total of 4356 coefficients. The vertical section at
y = 1125 m and horizontal section at fixed depth z = 800 m are detailed.
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Figure 7.6: Comparison of the real part of the 10 Hz frequency pressure data for a centrally located
source.

we plot the information for a fixed receivers index y in Figure 7.8, where we select the
tenth index. The data from the reconstructed model match the observed measurements,
at the exception of the central area, near the source position. Both types of data are well
approximated.
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Figure 7.7: Comparison of the real part of the 10 Hz frequency vertical data for a centrally located
source.
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Figure 7.8: Real part of the 10 Hz data recorded by a single line of receivers associated with a
centrally located source. The blue circles ( ) represent the Fourier transform of the observed
data, the green squares ( ) are the simulation using the initial model and the red crosses ( )
are the simulation from the final reconstruction.
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7.2.3 Multi-frequency reconstruction

The reconstruction from single frequency data has been successfully carried out and we
now investigate the, more traditional, multi-frequency situation. From the time domain
observation, we apply the Fourier transform for frequencies from 3 to 15 Hz, using 1 Hz

step. Because we have access to lower frequency, we can take a starting model with even
less accuracy, see Figure 7.9. Here the one-dimensional variation in depth assumes a much
lower velocity background compared to the starting velocity of Figure 7.4.
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Figure 7.9: Initial wave speed for the iterative minimization algorithm and reconstruction of the
Statoil model with multi frequency data. The vertical section at y = 1125 m and horizontal section
at fixed depth z = 800 m are detailed.

For the reconstruction, we employ the multi-level algorithm (see Section 6.1) with a
simultaneous progression in scale and frequency. Contrary to the experiments performed
in Chapter 6, we now consider piecewise linear functions over the partitions. Table 7.1
provides the relation between frequency and scale during the iterative procedure.

frequency
iterations

number of coefficients in the
model representation

3 Hz 600
4 Hz 840
5 Hz 1 764
6 Hz 3 520
7 Hz 6 760

8–15 Hz 52 000

Table 7.1: Relation between frequency and scale selected for the reconstruction of the acoustic Sta-
toil model. The representation employs piecewise linear functions, so that the number of coefficients
corresponds to 4N where N is the number of subdomains in the representation.

We perform 20 iterations per frequency and compare the results depending on three sit-
uations. The reconstruction using Cauchy data and the cost function JG of Equation (7.4)
is pictured in Figure 7.10. Then we depict the reconstruction using Cauchy data with the
least squares functional JLS (of Equation (7.3)) and the reconstruction using the pressure

316



7.2. ACOUSTIC 3D MODEL RECONSTRUCTION

data only in Figure 7.11.
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Figure 7.10: Reconstruction of the acoustic 3D Statoil wave speed from Cauchy data using fre-
quencies from 3 to 15 Hz and the cost function JG (Equation (7.4)). The initial guess is pictured
in Figure 7.9. The reconstruction uses simultaneous progression in frequency and scale, prescribed
in Table 7.1.
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(a) Reconstruction using Cauchy data and the least squares cost function JLS given in the Equation (7.3).

0
1

2

0 0.5
1

0

0.5

1

x (km)
y (km)

de
pt

h
(k
m

)

00.511.522.5

0

0.5

1

x (km)

2

3

4

5

km s−1

(b) Reconstruction using the pressure data only.

Figure 7.11: Comparison of reconstructions of the acoustic 3D Statoil wave speed from Cauchy data
using frequencies from 3 to 15 Hz. The initial guess is pictured in Figure 7.9. The reconstruction
uses simultaneous progression in frequency and scale, prescribed in Table 7.1.
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We see that the method is able to recover the model appropriately in all situations.
The vertical sections are accurately designed, in particular the layer of low velocity in be-
tween larger values is retrieved. When we only use the pressure data (i.e. the standard
marine FWI from hydrophone measurements), see Figure 7.11(b), we obtain limited ac-
curacy on the sides and the model looks not as sharp as when using the Cauchy data.
When comparing the reconstruction with Cauchy data obtained from the two choices of
cost functions, Figures 7.10 and 7.11(a), the resolution is similarly satisfying and we barely
see any difference.

Remark 7.3 (Smoothing the images). We have seen in the previous experiments that
the overall recovery suffers from the drastic reduction in the number of coefficients, and
from the tetrahedral mesh. It results in some coarse aspect in the visualization of the final
reconstruction. An easy way to overcome this is to apply a smoothing filter onto the final
image. This can be done, for example, with the imgaussfilt function of MATLAB R©,
which applies a Gaussian smoothing filter. In Figure 7.12, we show its application onto the
reconstruction of Figure 7.10.
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Figure 7.12: Application of a Gaussian smoothing filter onto the velocity reconstruction shown in
Figure 7.10. The smoothing has been realized using the function imgaussfilt in MATLAB R©.

The smoothing of the final reconstruction is an effortless procedure which provides a very
astute visualization of the final results. Here we realize even more the accuracy obtained
from the minimization of the Cauchy data.
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7.3 Perspective from the Green’s cost function

In our previous experiment, we have compared the reconstructions from Cauchy data de-
pending on the choice of cost function (JLS or JG), and when using the pressure data
only. We have observed some improvements from the use of Cauchy data but the choice of
cost functions seems to provoke few modification. It is however important to remain in the
analytical framework to validate the conditional Lipschitz stability result. Also, by taking
a closer look at the architecture of JG in the Equation (7.4), tremendous opportunities
appear.

Indeed, let us uncouple the set of sources for the simulations and the observations, we
write

JG(c) =
1

2

nobssrc∑

k=1

nsimsrc∑

l=1

‖d(sk)T
N RD(p(sl)(c))− d(sk)T

D RN (p(sl)(c))‖2,

where nobssrc is the number of sources in the set of observations and nsimsrc is the number of
sources in the acquisition used for the simulation. By doing this, we emphasize the fact that
the two sets of sources (for the observation and the simulation) could be totally uncorrelated.
This is impossible for the least squares misfit function where the same acquisition must be
used.

By differentiating the set of sources, we are free from some important information
usually required on the sources and which can be difficult to apprehend. For instance, the
sources positions for the observations can be not precisely known, and can easily lead to
the failure of the algorithm. Similarly, the source wavelet is not initially well known and
requires to be approximated (see Subsection 4.6.4). Using JG for the cost function implies
that those two aspects have no importance anymore, we only need to know the position
of the receivers. Furthermore, we can arbitrarily choose the number of sources (and their
positions) for the simulations, and increase or decrease the quantity compared to the seismic
acquisition used for the observations. Many possibilities follow.

7.3.1 Changing the acquisition set

In order to illustrate the promising potential of the method, we reproduce the multi-
frequency experiment with a different acquisition for the simulations and the observations
set. Namely, we halve the number of sources compared to the observation set, their posi-
tions are changed and we choose a different source wavelet. Those changes are detailed in
Table 7.2. The progression in frequency and scale is prescribed in Table 7.1, and we show
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the reconstruction after 15 Hz iterations in Figures 7.13 and 7.14. In the latest we employ
a smoothing filtering of the final reconstruction, see Remark 7.3.

acquisition for the
observation

acquisition for the
simulation

nsrc 160 80
sources depth 100 m 80 m

Table 7.2: Comparison of acquisition setups employed for the observations and simulations. The
source wavelet also differs.
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Figure 7.13: Reconstruction of the acoustic 3D Statoil wave speed from Cauchy data using fre-
quencies from 3 to 15 Hz, and the cost function JG (Equation (7.4)). The set of sources is different
between the observations and the simulations, see Table 7.2. The initial guess is pictured in the
Figure 7.9. The reconstruction uses simultaneous progression in frequency and scale, prescribed in
Table 7.1.
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Figure 7.14: Application of a Gaussian smoothing filter (see Remark 7.3) onto the reconstruction
of the acoustic 3D Statoil wave speed from Cauchy data using frequencies from 3 to 15 Hz, and the
cost function JG (Equation (7.4)). The set of sources is different between the observations and the
simulations, see Table 7.2.

The reconstruction captures the main variations and accurately recovers the wave
speed. We have halved the number of sources in the simulation compared to the ob-

320



7.3. PERSPECTIVE FROM THE GREEN’S COST FUNCTION

servation, reducing the numerical cost accordingly. Yet we make full use of the observed
data, benefiting from the cost function defined for the Cauchy data. Furthermore, we do
need to know the position of the sources employed for observation, nor the source wavelet.
Eventually, we observe similar accuracy as in the original experiment. This results is in-
conceivable from the standard least squares where the sources positions and wavelet must
be known (or approximated) to expect any recovery.

7.3.2 Artificial simultaneous point sources

We pursue the illustration of the perspectives with another experience where the acquisition
for the simulation is further modified. We reduce the number of sources to five. Yet,
instead of taking a single point to characterize every source, we consider several points,
as if there were simultaneous shots. Every shot consists in sixteen point sources that are
simultaneously propagated. Hence we have kept 80 point sources but separated in five
groups only. In Figure 7.15, we illustrate the source generated for the observed data (single
point-source) and the multi-point source employ for the simulation. The use of this kind of
simulations does not require any modification of the data set, and emphasizes the benefit
of the cost function adapted to the Cauchy data.
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(a) One source consisting of a single shot.
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(b) One source consisting of a nine simultaneous
shots.

Figure 7.15: Illustration of single or simultaneous point sources. In our experiment, the data are
generated from single point source and the simulation employ multi-point source where each source
is composed of sixteen shots.

The reconstruction is conducted similarly to in the previous experiment, with frequency
from 3 to 15 Hz and with the progression in scale prescribed in Table 7.1. In Figure 7.16,
we show the final reconstruction after the use of the 15 Hz data. Figure 7.17 applies a
Gaussian smoothing filter for a better visualization, see Remark 7.3.

The drastic reduction of the number of sources is perfectly compensated by the in-
corporation of simultaneous shots. The final reconstruction shows some limitation on the
side, see Figure 7.17, but otherwise it carries the same accuracy as for the previous test.
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Figure 7.16: Reconstruction of the acoustic 3D Statoil wave speed from Cauchy data using fre-
quencies from 3 to 15 Hz, and the cost function JG (Equation (7.4)). The set of sources is different
between the observations and the simulations. The simulations use only 5 sources composed of 16
simultaneous shots for every source. The initial guess is pictured in Figure 7.9. The reconstruction
uses simultaneous progression in frequency and scale, prescribed in Table 7.1.
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Figure 7.17: Application of a Gaussian smoothing filter (see Remark 7.3) onto the reconstruction of
the acoustic 3D Statoil wave speed where the acquisition for the simulations use 5 sources composed
of 16 simultaneous shots for every source.

The layer where the velocity decreases is well retrieved and the speed values are accurate.
The use of Cauchy data with the cost function JG allows a minimal acquisition for the
simulation. It also naturally has a large impact onto the computational time. These ex-
periments have all been done with 8 cores, it took about 22 h when all sources are used
(Subsection 7.2.3, see Figure 7.10) and 15 h for the hereby test, that uses 5 sources only.
Hence, we have, for this simple experiment, a gain of more than 30% in time.

The perspective of differentiating the observations and simulations acquisition sets is a
promising extension of this work, and appears consistent with the results of this preliminary
experiment. It shall allow less prior on the observational environment, without impacting
on the reconstruction.
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7.4 Conclusion

We have initiated the reconstruction from Cauchy data, motivated by the dual sensor
devices developed in marine seismic acquisitions. Following the conditional stability result,
the multi-level algorithm is conducted with piecewise linear model representations. It also
provides a new cost function based on the Green’s identity. We have performed numerical
reconstruction for a three-dimensional acoustic domain starting from time domain data.
We have been able to show the recovery from single frequency data and with a limited
amount of coefficients to represent the model.

With the new cost function, we have seen that it is possible to differentiate the set
of sources employed for the observations and the simulations. We also do not need any
information on the source wavelet used for the observation. Those facets are impossible
to obtain with the traditional least squares cost function, nor with any alternative relying
on the direct difference between observation and simulation. Those perspectives offer a
promising road ahead. The selection of the number and position of the sources to employ
for the simulation should be investigated, in particular, in association with the multi-point
sources acquisition we use.

Then, we would need to confront the behavior in more realistic applications, working
with the observed vertical velocity and reduced accuracy data. Moreover, it is not clear
if this can be extended for elastic prospecting. Yet it may be of interest for (rotational)
seismology, where the source can be complicated to precisely identify; with our method, we
can overcome this issue, if we access the two types of data.
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In this project, we have developed methodologies to solve the seismic inverse problem for
harmonic waves. The first cornerstone is a robust and efficient method to solve the forward
problem, because it is intensively used during the process of reconstruction. For this pur-
pose, we have used both finite differences, finite elements, and (hybridizable) discontinuous
Galerkin. The latest family certainly provides the more flexibility, and can easily account
for the topography, or incorporate knowledge on the geometry. However, large scale har-
monic wave problems suffer from the numerical cost involved to factorize the matrix, and
there is a need for new techniques.

The inverse problem for the reconstruction of subsurface properties is nonlinear and
ill-posed. It is important to remember this fact when addressing its resolution, in order
to carefully perform the method. Therefore, the essence of this project is to work hand
in hand with the theory and numerical applications. We have studied the stability and
convergence of the problem, and emphasized the mechanism of simultaneous progression
in frequency and scale. This connection between the two must be extended for a precise
quantification of the evolution. Namely, assuming the cost function has been reduced by
δ%, it should be able to provide the next frequency and scale to employ, while maintaining
the stability and convergence properties. This is an ongoing investigation. The machinery
we have developed relies on piecewise constant (or linear) model representation, motivated
by the analytical results. The numerical procedure should be extended to the use of more
general wavelets. It can allow more flexibility in the reconstruction.

The inverse problem is solved via an iterative minimization algorithm. Intrinsically,
many methods are available to conduct such schemes. The large scale imposes some re-
strictions, such as the limited information on the Hessian, and we have given examples of
reconstructions with and without its utilization. Several perspectives regarding the evolu-
tion of the software have been pointed out, and the performance of such techniques should
be evaluated. In particular, we can mention: a more precise line search, regularization terms
in the cost function, the choice of preconditioner for the Hessian, and the use of level-sets
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methods to identify subsurface objects. In addition, the methods must be adapted to the
large scale problem and computationally effective. During this project, a toolbox to solve
the seismic inverse problem has been developed. Because efforts have been made to allow
a generic code, we expect for its evolution and growth in a near future. Eventually, we
imagine to extend the seismic oriented algorithm we have developed to other reconstruc-
tions, where similar procedure holds. We have in mind the helioseismology, which has its
own particularities but where the expertise of seismic can be valuable. The connection and
specificities between the two topics are emphasized in Cobden et al. (2015).

The reconstruction from Cauchy data is a promising perspective and illustrate perfectly
how analytical understanding and numerical applications can interact. In the context where
both the pressure and vertical velocity are acquired, we have provided a novel procedure
involving a distinct cost function, arising from the stability analysis. It allows the recovery
of the subsurface medium with minimal information on the observation set, and we have
initiated the possibilities of using multi-point sources for the simulation, in order to reduce
the computational time. The investigation must now be continued, in particular, to confront
the method to more realistic data sets.
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Dans ce projet, nous avons développé une méthodologie pour résoudre le problème inverse en
sismique avec des ondes harmoniques. La première étape est d’avoir une méthode robuste et
efficace pour résoudre le problème direct, qui est intensivement utilisée lors de la procédure
de reconstruction. Ainsi, nous avons présenté les méthodes utilisées au cours de notre
étude: les différences finies, les méthodes de Galerkin continues et discontinues. Cette
dernière famille est certainement la plus flexible et permet la considération précise de la
topographie et de la géométrie des milieux. Cependant, la taille des matrices créées, dans
le domaine fréquentiel, et leur factorisation, peuvent être rédhibitoires en termes de coûts
de calcul pour les cas 3D élastiques. Ceci donne d’ailleurs lieu à des recherches actives dans
les domaines de la discrétisation des EDPs et de l’algèbre linéaire.

Il est important de rappeler que le problème inverse est non-linéaire et mal posé, afin
de mettre en avant les précautions à prendre au cours de sa résolution. L’essence de ce
projet est de travailler à la fois sur des notions théoriques et numériques, pour obtenir de
la robustesse. Pour ce faire, nous avons étudié la stabilité et la convergence du problème,
et en avons déduit une progression simultanée en fréquence et en échelle. Cette connex-
ion naturelle doit maintenant être précisément caractérisée, dans l’optique d’obtenir une
méthode où la suite de fréquences et d’échelles est automatique. La représentation du
modèle se base sur des fonctions constantes ou linéaires par morceaux, et il serait intéres-
sant d’étendre la mise en place numérique à d’autres types d’ondelettes, pour apporter de
possibles améliorations.

Le problème inverse est résolu via une méthode de minimisation itérative. La taille du
problème restreint les possibilités, notamment en ce qui concerne la Hessienne, et nous avons
illustré son utilisation. Il reste encore de nombreuses possibilités quant à la conduction de
l’algorithme. La flexibilité du code développé au cours de cette étude doit permettre son
évolution dans un futur proche.

La reconstruction avec les données de Cauchy illustre parfaitement les bénéfices mutuels
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entre théorie et application. Nous avons employé une nouvelle fonction coût, qui découle
de l’analyse de stabilité. Cela permet en particulier de limiter considérablement les infor-
mations nécessaires sur l’acquisition, et de prévoir une réduction des coûts de calcul avec
des sources multi-points pour les simulations. Il faut maintenant poursuivre les tests, en
particulier sur des données réalistes.
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Appendix B

FWI toolbox code developed in Fortran 90

During this project, a computational toolbox has been developed to perform seismic imag-
ing in the frequency domain. In this appendix, the different options implemented in the
code are reviewed. This code has been developed in Fortran 90. It is capable of solving
both the direct (modeling) and inverse seismic problems, designed following the Full Wave-
form Inversion algorithm. Yet the author has not taken action in the development of the
discretization of the wave equation methods. Four discretizations techniques are currently
operational and have been thoroughly validated in the context of the forward problem: the
Finite Differences (FD) scheme has been developed with the work of Wang et al. (2010,
2011, 2012), the Discontinuous Galerkin (DG) and Finite Element (FE) approaches are
due to the work of Chaumont-Frelet (2015) and the Hybridizable Discontinuous Galerkin
(HDG) approach is the work of Bonnasse-Gahot (2015). Each of the discretization methods
requires some code specifications, for example an appropriate adjoint state problem for the
computation of the gradient. Here we present the main options that have been developed,
without giving the details on those inner routine specificities.

The main difference between the discretizations is that they are not all able to solve
any wave equations, we have the following situations:

– FD solve acoustic and elastic isotropic media, in two and three dimensions,

– DG solve acoustic and elastic isotropic media, in two dimensions,

– FE solve acoustic and elastic isotropic media, in three dimensions,

– HDG solve elastic and anisotropic media, in two and three dimensions.

Hence, the HDG discretization is currently the only method to handle a full stiffness tensor.
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We note that the purpose of the toolbox is to generate generic developments so that all
of the options developed for the full waveform inversion algorithm are available for all
discretization methods, and an additional one could easily be incorporated as well.

B.1 Input parameter file

The software works with input parameter files, following the types of architecture developed
in Total. The input parameter file is established with keywords, followed by the sign = and
the value. Depending on the keywords the argument may be: numbers, strings or logical
(true or false). We can also indicate a list of arguments, where every value is separated
by a comma: ,. For example, the list of frequency is given in the parameter file by:
frequency_list=1,2,3,4,5 # the frequency varies from 1 to 5 Hz.

directory_out=./output_directory # directory for the results.

In the parameter file, the # indicates a comment and is not taken into account.

This structure of parameter files has greatly beneficiated from the architecture of Total
and allows very clear setup for test cases. We now detail the different options that have
been implemented in the code. We review the general options regarding the domain in
Section B.2. The options to conduct the inverse scheme are detailed in Section B.3. At the
exception of the discretization and choice of solver for the linear system, all of the options
that are presented below are selected in the input parameter file and do not require a new
compilation of the code. Indeed the objective is to provide a generic toolbox which must
be user friendly.

B.2 Acquisition and propagators

B.2.1 Domain of interest

The domain of interest has a cubical shape, it is a rectangle in 2D and a rectangular cuboid
in 3D. The domain size is read following a velocity header file where all dimensions are spec-
ified. Alternatively one can give the coordinates of the different bounding box. Depending
on the discretization, the mesh file must also be given. The physical coefficients are read
from different binary files (for the density, the wave speed, etc) yet one can instead specify
a constant in the input parameter file to automatically generate homogeneous coefficients.
The binary files represent the geophysical coefficients onto a Cartesian grid and are then
projected on the mesh in the code. All the different informations concerning the seismic
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acquisition (receivers and sources) are retrieved from external files. Then from the input
parameter file, one can select specific sources only and discard receivers according to offsets.

The complex frequency (damping parameter and Fourier frequency) are entered as a
list, as illustrated above.

B.2.2 Linear algebra

Once the appropriate wave equation has been taken into account (see the options for FD,
DG and FE above), one can decide on the resolution of the underlying linear system. We
employ direct solvers for the resolution because they are able to obtain the solution for
several right-hand sides at the same time. In particular, in seismic several sources are
typically considered in the acquisition (namely several hundreds or even thousands). Hence
there will be as many right-hand sides created and as many requirement for linear system
resolution. The use of direct solvers allows the solution of several right hand sides in parallel,
which is more complicated with iterative solvers. During our project we have implemented
and tested three solvers:

– Hsolver : developed in Wang et al. (2012) and totally adapted to structured discretiza-
tion (i.e. finite differences). It is in particular completely optimized for frequency do-
main wave equation. It also incorporates Hierarchically Semiseparable (HSS) methods
in order to reduce the amount of memory required for the factorization of the system.
It also allows a block low rank approximation to reduce the computational time (at
the price of accuracy).

– GMIG solver : developed by the Geo-Mathematical Imaging Group at Rice University,
it is the extension of the Hsolver but for general geometry. It is still at an early stage
but we have seen some promising results.

– Mumps: linear solver for sparse matrix, see Amestoy et al. (2001, 2006). It greatly
benefits from constant improvements and recently provides block low rank approxi-
mation.

We leave the possibility to the user to choose how many right-hand sides (sources) are
solved in parallel. It is interesting to select as many as possibly, but because of the memory
limitation and the large number of sources involved in seismic, it is not always possible to
deal with all sources at the same time.
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B.2.3 Modeling

The user can choose to save the results (propagation of wave in the medium) following
different formats:

– structured wavefield on a Cartesian grid, it is natural for FD discretization; for FE or
DG we project the solution at the degrees of freedom onto a structured representation.

– unstructured wavefield for FE and DG discretizations; the solution is kept on the
given mesh and saved in VTK format (Will et al. (2006)).

– The wavefield can also be saved only at the receivers positions. This is in particular
useful to generate dataset that can later be used for inversion.

The quantities available to save are the following:

– pressure field for acoustic media,

– displacement or velocity field for elastic media.

– For acoustic and elastic media using DG or FE discretizations, one can also retrieve
the derivative with respect to z or the quantities. (Neumann information would
require a proper normal derivative, yet if the receiver position is at the boundary or
in a constant layer of water for example, this simplification can hold).

In the Listing B.1 we show an example of input parameter file used for the modeling
of wave propagation.

# 1) Dimension
dimension=3d

# 2) Acqu i s i t i on in format ion and dec i s i on
# a) a c q u i s i t i o n f i l e f o r s rc and rcv
i nd ex_ f i l e =. ./ a c q u i s i t i o n / d e c i s i o n . index
# b ) depth o f the sources and r e c e i v e r s
src_z=0
rcv_z=20
# c ) sho t s to be t r e a t e d
s h o t_ f i r s t=1
shot_last=10
shot_step=2
# d) v e l o c i t y f i l e s
f i l e_vp=my_vp. header
f i l e_v s=my_vs . header
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# e ) den s i t y
constant_rho=1.0
# f ) d i s c r e t i z a t i o n
mesh_fi le=my_mesh
poly_deg=4 # order o f approximation
# g ) f requency l i s t
damping_list=0,1
f r equency_ l i s t =1 ,2 ,3 ,4 ,5

# 3) s o l v e r in format ion
nb_rhs=5 # number o f rhs to be s o l v e d in p a r a l e l

# 4) r e s u l t s
# a) out main d i r e c t o r y
directory_out=./my_directory_outputs/
# b ) s t r u c t u r ed g r i d p r o j e c t i on s i z e
dx=10
dy=10
dz=10
# c ) wr i t e onto d i s k
save_wavef ie ld=true # s t ru c t u r ed p r o j e c t i on
save_rece ive r s=true # informat ion at the r e c e i v e r s
save_vtk=true # save wav e f i e l d on mesh

Listing B.1: Illustration of an input parameter file for the modeling of wave propagation. In this
example we deal with a three-dimensional domain. From the input acquisition file, we select sources
from 1 to 10, every two shots so that there is a total of five sources: the indexes {1,3,5,7,9}. The
frequency varies from 1 to 5 Hz with damping parameter of 0 and 1, i.e. there is a total of 10
complex frequencies.

B.3 Inversion algorithm

Here we review the main options to solve the seismic inverse problem using FWI. The
different methods have been presented in Section 4.6 and we only indicate how the toolbox
works.

B.3.1 Initial information

Most of the options specified in Section B.2 are also required to process the iterative mini-
mization algorithm for the reconstruction of subsurface properties. In particular, the user
needs to specify the domain size and give the initial geophysical quantities following the
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same keywords. Similarly the list of frequencies and acquisition setup have to be given. For
additional requirement, the user must give the folder where the observed data are recorded.

Regarding the frequency, the user can choose to group frequencies or to follow a se-
quential progression.

B.3.2 Cost functions

The choice of the misfit functional follows two possibilities:

– standard least squares functional based on L2 minimization, Equation (4.8),

– logarithmic functional, Equation (4.7).

Furthermore, one can choose to only work with the real or imaginary part of the data. This
is due to the frequency domain data, which are complex signals. Hence there is a total of
six different functionals.

Similar options are given for the reconstruction of the source. The method was given
for the least squares minimization in Subsection 4.6.4 but one can also specify the up-
date for a logarithmic type functional. Hence we also define six functionals for the source
reconstruction, based on the real and imaginary parts of the data as well.

B.3.3 Parametrization

The choice of parameter to be inverted is capital for the proper reconstruction and we have
studied their effect in Chapter 5. Because it is yet unclear if an universal parametrization
can be employed, we leave many possibilities in the toolbox. The selection is composed of
the possibilities invoked in Chapter 5.

B.3.3.1 Acoustic parameterization

Acoustic media involve the reconstruction of the bulk modulus and the density. We have
also identified some alternative quantities with the impedance and velocity. Basically, any
combination of two parameters between c, κ, I and ρ is possible. In addition two functions
can be applied to the selected parameter: the inverse and the inverse squared for the
impedance and velocity; the inverse and the inverse of the square root for the bulk modulus
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and density. It actually gives many possibilities but we have seen that it is more interesting
to leave the density separated so that 27 remains. Furthermore, one can decide not to
reconstruct the density to save time.

B.3.3.2 Elastic parameterization

Isotropic elastic wave equations are characterized by three geophysical coefficients: the
density ρ and the Lamé parameters λ and µ. Several alternatives have been defined in
Chapter 5, Section 5.6 which are:

– Lamé parameters and density (λ, µ, ρ),

– velocities and density (cp, cs, ρ),

– Poisson ratio, bulk modulus and density (κ, ν, ρ),

– impedances and density (Ip, Is, ρ),

For all of the four possibilities, we also consider functions of the parameters: the inverse
and the logarithm, for a total of 12 possibilities. Similarly to the acoustic medium, one can
also choose not to reconstruct the density, in order to reduce the computational time.

B.3.3.3 TTI parameterization

For the inversion of TTI parameters, we have implemented parametrization based on the
stiffness tensor or the Thomsen’s parameters. The user can choose between

– stiffness coefficients inversion (C11, C22, . . .) or their inverse representation (1/C11,

1/C22, . . .).

– Lamé and Thomsen’s parameters (λ, µ, ε, δ, γ, θ, φ, ρ) or their inverse.

Any of the parameters listed can be reconstructed or left aside.

B.3.4 Update methods

The choice of the method to conduct the iterative minimization algorithm follows the ones
depicted in Chapter 4. In Section 4.6 we have detailed the final algorithm. Let us review
those choices:
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– gradient method (see Subsection 4.6.1): choice between gradient descent, nonlinear
conjugate gradient and L-BFGS.

– Hessian methods (see Subsection 4.6.2): Gauss-Newton approximation or full Hessian
method; possibility for regularization parameter on the diagonal.

Finally, the line search is conducted via a simple backtracking algorithm for which only the
initial step needs to be given. The user can also decide to have a fixed step all along the
iterative minimization.

B.3.5 Other options

The following options can also be defined by the user:

– the offset around the source to limit the receivers data to be included (e.g., to ignore
receivers that are too close or too far from the source);

– the maximum and minimum number of iterations per frequency.

After the minimum number of iterations per frequency has been performed, the algorithm
compares the benefit of the cost function between the current iteration i and the iteration
i−5. If the update has been less than 5% (this tolerance can be adjusted) then the frequency
is updated as it assumes a stagnation of the convergence.

We also mention the possibility of model reduction through compression, illustrated in
Chapter 3. Two aspects can be chosen:

– for the domain decomposition (we can force a structured partition or an automatic
one according to neighboring values),

– the choice of model representation: piecewise constant or piecewise linear over each
of the resulting subdomain of the partition.

B.4 Concluding remark

One of the objective of this software is to have generic routines so that new techniques, dis-
cretization methods or solvers can easily be implemented. We have mentioned the current
options, and the goal is to keep this platform evolving in the future, and we have mentioned
several techniques of interest regarding the resolution of the inverse problem via iterative
minimization.
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Abstract

We investigate the recovery of subsurface Earth parameters. We consider the seismic imaging
as a large scale iterative minimization problem, and deploy the Full Waveform Inversion (FWI)
method, for which several aspects must be treated. The reconstruction is based on the wave
equations because the characteristics of the measurements indicate the nature of the medium in
which the waves propagate. First, the natural heterogeneity and anisotropy of the Earth require
numerical methods that are adapted and efficient to solve the wave propagation problem. In this
study, we have decided to work with the harmonic formulation, i.e., in the frequency domain.
Therefore, we detail the mathematical equations involved and the numerical discretization used
to solve the wave equations in large scale situations.

The inverse problem is then established in order to frame the seismic imaging. It is a nonlin-
ear and ill-posed inverse problem by nature, due to the limited available data, and the complexity
of the subsurface characterization. However, we obtain a conditional Lipschitz-type stability in
the case of piecewise constant model representation. We derive the lower and upper bound for
the underlying stability constant, which allows us to quantify the stability with frequency and
scale. It is of great use for the underlying optimization algorithm involved to solve the seismic
problem. We review the foundations of iterative optimization techniques and provide the differ-
ent methods that we have used in this project. The Newton method, due to the numerical cost
of inverting the Hessian, may not always be accessible. We propose some comparisons to identify
the benefits of using the Hessian, in order to study what would be an appropriate procedure re-
garding the accuracy and time. We study the convergence of the iterative minimization method,
depending on different aspects such as the geometry of the subsurface, the frequency, and the
parametrization. In particular, we quantify the frequency progression, from the point of view of
optimization, by showing how the size of the basin of attraction evolves with frequency.

Following the convergence and stability analysis of the problem, the iterative minimization
algorithm is conducted via a multi-level scheme where frequency and scale progress simultane-
ously. We perform a collection of experiments, including acoustic and elastic media, in two and
three dimensions. The perspectives of attenuation and anisotropic reconstructions are also in-
troduced. Finally, we study the case of Cauchy data, motivated by the dual sensors devices that
are developed in the geophysical industry. We derive a novel cost function, which arises from
the stability analysis of the problem. It allows elegant perspectives where no prior information
on the acquisition set is required.

Key words: Inverse Problem – Seismic Imaging – Time-Harmonic Wave Propagation –
Stability and Convergence Analysis – Full Waveform Inversion.
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