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Abstract

Julien MATHIAUD (CEA)

Contribution à la modélisation et à la
simulation des écoulements complexes :
application à la rentrée atmosphérique et aux
interactions particules-fluide

This manuscript is devoted to the presentation of the different studies that I have done since 2003
and the beginning of my Phd at the French Atomic Agency (CEA). I will try to put in perspec-
tive all the things done since then and give guidelines of what I should explore later. The works
presented here essentially deal with the physics of atmospheric reentry and fluid-particles interac-
tions. For these two mains applications we focus on models, mathematical properties, numerical
results and experimental results.
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Part I

Introduction
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Context

This manuscript deals with ten years of research that have been done at the French Atomic Agency
(CEA) as a Phd student and later on as an engineer and an associate professor at Bordeaux INP
(Enseirb/Matmeca). It was made possible through internal collaborations and also with people at
CMLA (ENS Cachan), at LJLL (Jussieu, Paris), IMB (Bordeaux) and LCTS (Bordeaux). The models,
results and numerics that are presented here are generally linked with applications at CEA. Three
main topics have appeared during these ten years:

• rarefied gas dynamics,

• turbulence and interaction fluid/solid,

• spray interactions.

These three main topics are principally connected with two domains of applications:

• atmospheric reentry (for the first two topics),

• fluid/particle interactions (for the third one).

In this manuscript we give the advances made during these years concerning:

• models,

• theoretical results (on these models),

• numerical methods,

• model validation.

These four subjects are of equal importance for the engineer who needs models that have cor-
rect physical and mathematical backgrounds and that can be numerically solved and validated
through robust methods. Of course the works presented here have different levels of complexity
but they all have the same objective: go further in the comprehension of the phenomena we will
encounter.

Some physics

We now briefly describe the physics that is encountered in the manuscript.

Physics of reentry

During the atmospheric reentry of a vehicle of several meters, it encounters several layers in atmo-
sphere (thermosphere, mesosphere, stratosphere and troposphere: see figure 1). At the beginning
(> 120km) atmosphere is very rarefied so that free transport of molecules of dioxygen and nitro-
gen essentially governs the behavior of the flow . Then some collisions between molecules appear
when atmosphere is less rarefied (> 70km) and chemistry phenomena appear: Boltzmann equa-
tion rules the phenomena. Finally when atmosphere is dense enough the flow is controlled by
Navier-Stokes equation (in laminar regime and closer to the ground in turbulent regime).

All these flows are characterized by high temperatures (> 1000K) and high Mach numbers: these
two phenomena are hard to emulate by ground facilities so that validation is always difficult to
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FIGURE 1: Atmosphere layers (credit: UCAR)

perform. Moreover the kind of entry (lifting or ballistic as it can be seen in figure (2)) leads to
different phenomena to study with high velocities at stake included near the ground.

FIGURE 2: Reentry flight: [And06]

In this manuscript we essentially deals with rarefied regime and turbulent Navier-Stokes regime
especially in a supersonic regime.

Physics of fluid/particles interactions

Fluid/particles interactions occur in a lot of applications: Diesel motor, spray in lungs, Ariane
motors. They are generally associated to complex physics of the particles (collisions, break-up,
drag force, thermal exchanges, vaporization...). Besides various models exist in the literature to
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tackle with this problem. Some people will prefer to deal with two-phase flows models whereas
other will try to deal with kinetic/fluid models. In this manuscript both approaches are tested.
The crossing of jet presented in figure 3 show a computation by the two approaches of a crossing
jet.

FIGURE 3: Crossing of two jets of particles in a gas (velocity in m.s−1): kinetic/fluid
approach (top) vs. fluid/fluid approach (bottom)

.

Guidelines for the manuscript

We have chosen to follow the physics and the three main topics presented before to construct this
manuscript so that it is divided in three parts. In the first one we deal with rarefied gas dynamics.
Then we deal with turbulence and interaction wall/fluid during an atmospheric reentry. We will
essentially propose new models for reentry with "good" physical properties. Finally we study
gas-particle interactions: it will include some physics, theoretical results and numerics.

This manuscript is based on the following papers and reports:

[BM12a] Laurent Boudin and Julien Mathiaud. “A numerical scheme for the one-dimensional
pressureless gases system”. In: Numerical Methods for Partial Differential Equations 28.6 (Sept.
2012), pp. 1729–1746. DOI: 10.1002/num.20700. URL: https://hal.archives- ouvertes.fr/hal-
00537145.

[BM12b] Laurent Boudin and Julien Mathiaud. “Asymptotic behavior of a diffusive scheme solv-
ing the inviscid one-dimensional pressureless gases system”. In: HYP’2012 - Fourteenth Inter-
national Conference on Hyperbolic Problems. Vol. 8. AIMS Series on Applied Mathemat- ics -
Hyperbolic Problems: Theory, Numerics, Applications. Padova, Italy: AIMS, June 2012, p. 1066.
URL: https://hal.inria.fr/hal-00765620.
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[Bar+ 18] Baranger,C., Marois,G., Mathé,J., Mathiaud, J. and Mieussens,L. “A BGK model for high
temperature rarefied gas flows”. In: Work in progress (2018).

[CDM10] Aude Champmartin, Laurent Desvillettes, and Julien Mathiaud. "A BGK-type model for
inelastic Boltzmann equations with internal energy." In: Rivista di Matematica della Università di
Parma 1.2 (Dec. 2010). final version available on Riv. Mat. Univ. Parma, Volume 1 - Number 2 -
2010., pp. 271–305. .

[DM10] Laurent Desvillettes and Julien Mathiaud. “Some Aspects of the Asymptotics Leading
fromGas-Particles Equations Towards Multiphase Flows Equations”. In: Journal of Statistical
Physics 141.1 (Oct. 2010), pp. 120–141. ISSN: 1572-9613. DOI: 10.1007/s10955-010- 0044-3.
URL: https://doi.org/10.1007/s10955-010-0044-3.

[Lev + 17] C. Levet, B. Helber, J. Couzi, J. Mathiaud, J.-B. Gouriet, O. Chazot and G.L. Vignoles
“Microstructure and gas-surface interaction studies of a 3D carbon/carbon composite in atmo-
spheric entry plasma”. In: Carbon 114.Supplement C (2017), pp. 84–97.
ISSN : 0008-6223. DOI : https://doi.org/10.1016/j.carbon.2016.11.054.
URL : http://www.sciencedirect.com/science/article/pii/S0008622316310284.

[Mat + 08] Julien Mathiaud. "Local smooth solutions of the incompressible k-epsilon model and
the low turbulent diffusion limit". In: Communications in Mathematical Sciences 6.2 (2008),pp.
361–383.

[Mat03] J. Mathiaud. "Différents aspects du modèle k-epsilon". MA thesis. ENS Lyon, 2003.

[Mat06] J. Mathiaud. "Etude de systèmes de type gaz-particules." PhD thesis. CMLA, Ecole nor-
male supérieure de Cachan, 2006.

[Mat07] Julien Mathiaud. Ordres de grandeur pour le passage d’un modèle gaz-particules vers
un modèle HEM. Tech. rep. CEA DAM DIF, 2007.

[Mat10] Julien Mathiaud. "Local smooth solutions of a thin spray model with collisions". In:Mathematical
Models and Methods in Applied Sciences 20.02 (2010), pp. 191–221. DOI: 10. 1142 / S0218202510004192.
eprint: http : / / www . worldscientific . com / doi / pdf / 10 .1142/S0218202510004192. .

[MM16] J. Mathiaud and L. Mieussens. “A Fokker–Planck Model of the Boltzmann Equation with
Correct Prandtl Number”. In: Journal of Statistical Physics 162.2 (Jan. 2016), pp. 397–414. ISSN :
1572-9613. DOI : 10.1007/s10955-015-1404-9. URL : https://doi.org/10.1007/ s10955-015-1404-9.

[MM17] J. Mathiaud and L. Mieussens. “A Fokker–Planck Model of the Boltzmann Equation
with Correct Prandtl Number for Polyatomic Gases”. In: Journal of Statistical Physics 168.5 (Sept.
2017), pp. 1031–1055. ISSN: 1572-9613. DOI: 10.1007/s10955- 017- 1837- 4.

URL: https://hal.archives- ouvertes.fr/hal-00589307
URL: http://www.worldscientific.com/doi/abs/10.1142/ S0218202510004192


8

[MM18] J. Mathiaud and L. Mieussens. “Vibrational models of Boltzmann equation with correct
second principle: BGK and Fokker-Planck”. In: Work in progress (2018).

[MR16] Julien Mathiaud and Xavier Roynard. “Local Smooth Solutions of the Incompressible k-
omega Model”. In: Acta Applicandae Mathematicae 146.1 (Dec. 2016), pp. 1–16. DOI: 10.1007/
s10440-016-0054-5. URL: https://doi.org/10.1007/s10440-016-0054-5.

[Ola + 17] M Olazabal-Loumé et al. “Study on k-omega shear stress transport model corrections
applied to rough wall turbulent hypersonic boundary layers”. In Proceedings Eucass (2017).



9

Part II

Atmospheric reentry: Rarefied Gas
Dynamics
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Context and Boltzmann equation

There are various ways to represent a flow. The most common way is to look at it at a macroscopic
level using Navier-Stokes equations. Only space and time are used as variables in this context. In
this chapter we want to look at a more discrete level when the molecules are numerous enough
not to be treated individually but are not numerous enough to be considered as a continuum: each
molecule will have its own velocity, internal energy... By adding more variables, one can describe
more precisely what happens at this molecular/microscopic level ([Bir94]; [And06]). The master
equation associated with these problems is Boltzmann equation ([Cer88]; [CC70]): it combines
free transport of particles and collisions between them. From now on we use the term of rarefied
gas flow to describe this regime. To understand when one has to use this equation, we need to
define the Knudsen number Kn which compares the mean free path λ of the molecules in the flow
(that is the distance traveled by a particle between two collisions) with a characteristic length L

of the flow. The Knudsen number is defined through: Kn =
λ

L
. The diagram (4) explains the

different regimes available according to the value of the Knudsen number. The more important
the Knudsen number is, the more rarefied the flow is. For instance a satellite of size 1m which is
coming back from earth orbit to the ground encounters different regimes of flows according to the
altitude:

• when the altitude is greater than 120km, the flow is in a collision less regime (Kn� 1),

• between 120km and 70km, collisions appear so that Boltzmann equation rules (Kn ≈ 1),

• under 70km, we go back to macroscopic flows (Kn� 1).

FIGURE 4: Regimes according to Knudsen number: discrete/continuous models
([And06])

As shown in the diagram, there is a zone (near 60km) when both Navier-Stokes equation and
Boltzmann equation can be used. By using what is called an hydrodynamic limit it can be proved
that Euler or Navier-Stokes equations can arise from Boltzmann equation ([Cer88]). Besides we
can add rarefied boundary conditions on Navier-Stokes equations to be able to use them up to a
Knudsen of order 0.1 ([Aok+17]).
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Boltzmann equation

In 1872, Ludwig Boltzmann wrote down his famous equation for rarefied gas dynamics ([Bol64]).
From then, the model has been extended for several problems. We now present the Boltzmann
equation in two cases: the one for mono-atomic gases and the one for diatomic gases. These two
models can describe the behavior of perfect mono-atomic and diatomic-gases. As far as we know
they cannot describe more complex effects such as high-temperature that can occur in atmospheric
reentry without some modifications that we explain later.

Mono-atomic case

Let us turn to the model for mono-atomic gases. We consider a gas described by particle density
function f (t, x, v) that at time t have the position x and the velocity v (note that both position x and
velocity v are scalar). The corresponding macroscopic quantities are (ρ, ρu, E) =

〈
(1, v, 1

2 |v|2) f
〉
,

where ρ, ρu, and E are the mass, momentum, and energy densities, and 〈φ〉 =
∫

R3 φ(v) dv for any
velocity dependent function. The temperature T of the gas is defined by relation E = 1

2 ρ|u|2 +
3
2 ρRT, where R is the gas constant, and the pressure is p = ρRT. The evolution of the gas is
governed by the following Boltzmann equation (for a hard-sphere cross -section):

∂t f + v · ∇x f = Q( f , f ), (1)

with

Q( f , f )(v) =
∫

v∗∈R3

∫
σ∈S2

(
f (v′∗) f (v′)− f (v∗) f (v)

)
r2 |v− v∗| dσ dv∗,

and

v′ =
v + v∗

2
+
|v− v∗|

2
σ , v′∗ =

v + v∗
2
− |v− v∗|

2
σ.

The cross-section is important to determine the value of viscosities or heat conductivity of the
fluid of molecules as functions of the temperature. It is well known that this operator conserves
the mass, momentum, and energy, and that the local entropy H( f ) = 〈 f log f 〉 is locally non-
increasing (H-theorem). As before this operator makes the distribution f relax towards its own
local Maxwellian distribution, which is defined by

M( f )(v) =
ρ

(2πRT)3/2 exp
(
|v− u|2

2RT

)
. (2)

Polyatomic case

The Boltzmann equation can be extended for polyatomic molecules through the Borgnakke-Larsen
model ([BL75]; [Bou+94]): we consider a gas described by the mass density of particles f (t, x, v, I)
that at time t have the position x, the velocity v and an internal energy parameter I (note that
both position x and velocity v are vectors and that I is a scalar). The internal energy of a par-
ticle is equal to ε(I) = I

2
δ , δ being linked to the number of degrees of freedom of the poly-

atomic gas (δ = 2 for diatomic gases). The corresponding macroscopic quantities are (ρ, ρu, E) =〈
(1, v,

( 1
2 |v|2) + ε(I)

)
f
〉
, where ρ, ρu, and E are the mass, momentum, and energy densities, and

〈φ〉 =
∫

R3 φ(v, I) dvdI for any velocity dependent function. The temperature T of the gas is de-
fined by relation E = 1

2 ρ|u|2 + 3+δ
2 ρRT, where R is the gas constant, and the pressure is p = ρRT.
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We can also define a translational energy Etr, a translational temperature Ttr, an internal energy
Eint and an internal energy temperature Tint through:

〈 1
2 |v|2 f

〉
= Etr =

3
2

ρRTtr, (3)

〈ε(I)〉 f = Eint =
δ

2
ρRTint, (4)

so that: T =
3

3 + δ
Ttr +

δ

3 + δ
Tint. (5)

The polyatomic operator conserves the mass, momentum, and energy, and the local entropy
H( f ) = 〈 f log f 〉 is still locally non-increasing. This means that the effect of this operator is to
make the distribution f relax towards its own local Maxwellian distribution, which is defined by

Mp( f ) =
ρΛδ

(2π)3/2(RT)
3+δ

2
exp

(
− (v− u)2 + I2/δ

2RT

)
, (6)

with Λδ =
(∫

R
exp(−I2/δ)dI

)−1
.

Hydrodynamic limit of Boltzmann equation

Thanks to the second principle, one can obtain hydrodynamic limits for both Boltzmann equa-
tions: when the density of molecules is important enough (when the Knudsen number tends to
zero) the particle density function f tends towards its equilibrium. At order zero in terms of
Knudsen number, one gets Euler equations for mono-atomic/polyatomic perfect gases (Hilbert
expansion, 1912). At order one, Navier-Stokes equations can be obtained (Chapmman-Enskog
expansion: Chapmann 1916, Enskog 1917). For almost one century these problems have been
purely formal; recently, Golse and Saint Raymond managed to mathematically prove some results
for Euler ([Sai03]) and Navier-Stokes ([GS04]). Finally one gets the following limits ([Cer88]) for
mono-atomic and diatomic gases:

Mono-atomic limit: The solution of the kinetic model (1) satisfies, up to O(Kn2), the Navier-Stokes
equations

∂tρ +∇ · (ρu) = 0,
∂tρu +∇ · (ρu⊗ u) +∇p = −∇ · σ,
∂tE +∇ · (E + p)u = −∇ · q−∇ · (σu),

(7)

where the shear stress tensor and the heat flux are given by

σ = −µ
(
∇u + (∇u)T − 2

3
∇ · u

)
, and q = −κ∇ · T, (8)

with µ viscosity and κ heat conductivity depending on the cross-section through a function of temperature,

p = ρRT. (9)

Generally the Prandtl number Pr = µCp
λ is close to 2/3 for monoatomic perfect gases (Cp is the specific heat

at constant pressure).
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Diatomic limit: The solution of the diatomic Boltzmann equation satisfies, up to O(Kn2), the Navier-
Stokes equations

∂tρ +∇ · ρu = 0,
∂tρu +∇ · (ρu⊗ u) +∇p = −∇ · σ,
∂tE +∇ · (E + p)u = −∇ · q−∇ · (σu),

(10)

where the shear stress tensor and the heat flux are given by

σ = −µ
(
∇u + (∇u)T − α∇ · u

)
, and q = −κ∇ · T, (11)

with µ viscosity, α second viscosity, κ heat conductivity depending on the expression of the cross-section
through a function of temperature,

p = ρRT = (γ− 1)ρe.

Generally the Prandtl number Pr = µCp
λ is close to 5/7 for diatomic perfect gases.

Towards other models: vibrations, high-temperature models

The Boltzmann equations that have been presented here cannot take into account the whole
physics of reentry on earth. When the reentry is hypersonic, the gas no longer remains a per-
fect gas: chemistry is activated and molecules start to vibrate. Worse at very high temperature,
plasma phenomena appear ([And06]) as it can be seen in figure (5). We will see how to take into
account these phenomena in the next chapters.

FIGURE 5: Chemistry of air according to temperature ([And06])
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Objectives and main results

In this part we will present some new models to better capture the physics of rarefied supersonic
high-enthalpy flows (flows at high Mach number with temperatures of several thousands of de-
grees) without having the complexity of Boltzmann kernel of collisions. We first present recent
works on BGK (P.L. Bhatnagar, E.P. Gross, M. Krook) models to increase the domain of validity of
the BGK equation. then we study another simple approach: new Fokker-Planck models which are
able to capture correct hydrodynamic limits for low temperatures as well as vibration phenomena.
We present the results from ([MM16]; [MM17] ) and works in progress ([Bar+18]; [MM18]). The
high-temperature BGK model comes from a work with Jordane Mathé (post-doc).
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Chapter 1

BGK Models

The BGK model (P.L. Bhatnagar, E.P. Gross, M. Krook) has been widely used instead of Boltzmann
equation because of the qualitatively satisfactory results it provides at relatively low computa-
tional cost ([GBK54]). This model emulates the relaxation of the particle density function (p.d.f.)
towards its Maxwellian equilibrium, like does Boltzmann equation. This model is widely used
and provides very fast results ([DL13]). Nonetheless for very rarefied or anisotropic flows it can
fail or at least be rather inaccurate ([Mie99]). It was first proposed for mono-atomic gases and
naturally extended to polyatomic gases:

Zoology of BGK /ESBGK models

• mono-atomic BGK model:

The original BGK model given in [GBK54] describes the evolution of the distribution of
particles of a mono-atomic gas by the following equation:

∂t f + v · ∇x f =
Mmo[ f ]− f

τ
,

where:
-v is the microscopic velocity of the particles,

-τ =
µ

P
is a relaxation time (µ dynamic viscosity, P pressure),

-Mmo[ f ](v) = ρ
√

2πRT
3 exp

(
− |u−v|2

2RT

)
is the local Maxwellian equilibrium.

This equilibrium is defined via the macroscopic properties of f , i.e. the mass density ρ =

〈 f 〉v, the impulsion ρu = 〈 f v〉v and the temperature T =
1

3ρR
〈
|v− u|2 f

〉
v, where we use

the notation 〈·〉v =
∫

R3 ·dv.
One of the main properties of Mmo[ f ] is that it has the same moments as f in the space of
microscopic velocities, i.e.

〈Mmo[ f ]〉v = 〈 f 〉v , 〈Mmo[ f ]v〉v = 〈 f v〉v and
〈
|v− u|2Mmo[ f ]

〉
v =

〈
|v− u|2 f

〉
v .
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It is also well-known that the stress tensor and the heat flux of Mmo[ f ] are respectively

〈(v− u)⊗ (v− u)Mmo[ f ]〉v = ρRT Id , (1.1)〈
|v− u|2

2
(v− u)Mmo[ f ]

〉
v

= 0 . (1.2)

• polyatomic BGK model:

In order to take into account the extra degrees of freedom (DoF) of a polyatomic molecule,
we introduce the internal energy variable of the particle, denoted by ε and δ the number of
degrees of freedom of the molecule. Then the polyatomic distribution function g(t, x, v, ε)
describes at time t the number of particles with position x, velocity v and internal energy ε.
It satisfies the following equations:

∂tg + v · ∇g =
M[g]− g

τ
, (1.3)

where the Maxwellian equilibrium is M[g] = M[ρ, u, e] defined by

M[g](v, ε) =
ρ

√
2πRT

3 exp
(
−|u− v|2

2RT

)
Λ(δ)

( ε

RT

) δ
2−1 1

RT
exp

(
− ε

RT

)
. (1.4)

The macroscopic quantities are given by

ρ = 〈〈g〉〉 , (1.5)

u =
1
ρ
〈〈gv〉〉 , (1.6)

3 + δ

2
RT =

1
ρ

〈〈(
|v− u|2

2
+ ε

)
g
〉〉

, (1.7)

with the notation 〈〈·〉〉 =
∫∫

R3×R+ ·dvdε, and the closure relation on the pressure (1.29). The
constant Λ(δ) comes from the normalization on the space of internal energy. Its definition
is:

Λ(δ) =

(∫
R+

y
δ
2−1 exp(−y)dy

)−1

. (1.8)

• ESBGK models:

The classical BGK models cannot capture the correct hydrodynamic limits so that a cor-
rection of the model was constructed ([Low66]; [And+00c]) to assess correctly the Prandtl
number (Pr). The mono-atomic model then reads

∂t f + v · ∇x f =
Gmo[ f ]− f

τ
,

with

Gmo( f ) =
ρ√

det(2πΠ)
exp

(
− (v− u)Π−1(v− u)

2

)
, (1.9)

Θ :=
1
ρ
〈(v− u)⊗ (v− u) f 〉 , Π = (1− ν)RTId + νΘ, (1.10)
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with ν a parameter between −1/2 and 1.

The function Gmo has the same 5 first moments as f〈
(1, v, 1

2 |v|2)Gmo( f )
〉
= (ρ, ρu, E),

and has the temperature tensor 〈(v− u)⊗ (v− u)G( f )〉 = Π.

It was extended later on for polyatomic gases. These models still conserve mass, momentum
and energy. Furthermore the second principle is still satisfied.

In this chapter we present works to capture better physics (thermodynamics essentially) with
BGK models. We first try to understand how vibrations in molecules can affect the relaxation to-
wards equilibrium for diatomic gases and then how we can capture real gas effects during re-entry
(chemistry at equilibrium essentially). What is at stake behind these two problems is to capture
the correct energy balance so that at the wall of the re-entry vehicles fluxes are well captured.

1.1 Vibrational BGK model for a diatomic gas

As we have seen before a reentry vehicle that comes back to earth will encounter high-enthalpy
flows. At temperature 1000K in the air, diatomic molecules start to vibrate ([And06]; [Bir94]). In
this section we create a new BGK model taking into account vibrations (this work is in progress
([MM18])).

1.1.1 Vibrations

Atoms of a molecule can vibrate with respect to an equilibrium location in the molecule ([And06]).
So that an energy of vibration can be defined. Like translational or rotational energy it is defined
at a discrete level. The main difference is that translational energy becomes continuous at very
low temperature (1K for air), rotational energy at low temperatures (10K for air) whereas the
distribution in vibrational energies is continuous for larger temperature (2000K for dioxygen and
3300K for nitrogen).

In this work we want to deal with flows up to 3000K around the reentry vehicles so that we
will consider continuous translational and rotational energies but discrete levels of energy for the
vibrations.

If a gas is supposed to be at local thermodynamic equilibrium, the equilibrium can now be defined
as:

Mvib[ f ](v, ε, i) =
ρ

√
2πRT

3 exp
(
−|u− v|2

2RT

)
Λ(δrot)

( ε

RT

) δrot
2 −1 1

RT
exp

(
− ε

RT

)
(1− e−T0/T)e−iT0/T,

(1.11)

with i , i− th level of vibrational energy, T0 characteristic vibrational temperature of the molecule
(see [Bir94]). The vibrational energy of the i − th level is iRT0. ρ is the density of the gas, T its
temperature of equilibrium and u its mean velocity. δrot = 2 is the constant number of degrees of
freedom of rotations for a diatomic gas.
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Λ(δrot) =

(∫
R+

y
δrot

2 −1 exp(−y)dy
)−1

= 1 . (1.12)

Now that the equilibrium is defined it is easy to define the corresponding BGK model.

1.1.2 A BGK model with vibrations

We now define f (t, x, v, ε, i) the particle density function of particles whose position is x, velocity
is v, internal energy is ε and whose vibrational energy is iRT0. The natural BGK equation coming
from the equilibrium is:

∂t f + v · ∇ f =
Mvib[ f ]− f

τ
, (1.13)

This equilibrium is defined via the macroscopic properties of f , i.e. the mass density ρ = ∑
i
〈 f 〉v,ε,

the momentum ρu = ∑
i
〈 f v〉v,ε and the internal energy e =

1
ρ ∑

i

〈(
1
2
|v− u|2 + ε + iRT0

)
f
〉

v,ε
,

where we use the notation 〈·〉v,ε =
∫

R3,R3
·dvdε. The characteristic time τ is still µ

P . It remains to

understand the link between the internal energy e and the temperature. Some fast computations
lead to the relation:

e(T) =
3 + δ(T)

2
RT, (1.14)

with δ(T) = δrot +
2T0/T

eT0/T − 1
.

Immediate computations leads to a unique T for a given e (the function T → e(T) is monotonic).
One can note that δrot ≤ δ(T) ≤ δrot + 2. We will note T−1 the function that gives T according to e.

Moreover we have the following properties (proofs are immediate):
Property 1.1.1 (Conservation, Second principle).

• Mass, momentum and total energy are conserved by the BGK operator.

• Furthermore if one defines the entropy as H( f ) = ∑
i
〈 f log( f )〉v,ε, it is a non increasing function.

1.1.3 A reduced BGK model with vibrations

By adding the vibrational energy we have increased the dimension of the space phase and con-
sequently the numerical cost to simulate the BGK model. One classical technique is often used
to pass over this flaw: a two particle density functions approach in a reduced space phase as it is
done for the polyatomic BGK model ([And+00c]). We can define the following set of equations:
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∂tF + v · ∇xF =
1
τ
(Mvib[F, G]− F) , (1.15)

∂tG + v · ∇xG =
1
τ

(
δ(T)

2
RTMvib[F, G]− G

)
. (1.16)

with:

F = ∑
i

f (t, x, v, ε, i), (1.17)

G = ∑
i

iRT0 f (t, x, v, ε, i), (1.18)

Mvib[F, G] =
ρ

√
2πRT

3 exp
(
−ρ|u− v|2

2p

)
Λ(δrot)

( ε

RT

) δrot
2 −1 1

RT
exp

(
− ε

RT

)
, (1.19)

ρ = 〈F〉v,ε , (1.20)
ρu = 〈Fv〉v,ε , (1.21)

ρe =

〈
F
(

1
2
(v− u)2 + ε

)〉
v,ε

+ 〈G〉v,ε , (1.22)

T = T−1(e). (1.23)

We no longer have discrete levels: F and G only depend on t, x, v, ε; these equations are contin-
uous. Moreover we immediately recover the conservation of the mass, momentum and energy.
The most difficult part is to recover the second principle. Minimization techniques leads to the
following definition for the entropy:

Remark 1.1.1. The entropy H(F, G) of the reduced model is the following:

H(F, G) =

〈
F log(F) + F log

(
RT0F

RT0F + G

)
+

G
RT0

log
(

G
RT0F + G

)〉
v,ε

. (1.24)

Using convex analysis as in [And+00c] one can prove the following proposition.
Proposition 1.1.1. The function H(F, G) is a non increasing function so that the second principle holds.

1.1.4 Hydrodynamic limit of the reduced system

Using Chapman-Enskog analysis on the reduced model, one will get the following proposition
Proposition 1.1.2. Let (F, G) be solutions of BGK equations up to O(Kn2). Then the moments of (F, G)
satisfy the following Navier-Stokes equations up to O(Kn2):

∂tρ +∇x · (ρu) = 0

∂t(ρu) +∇x · (ρu⊗ u) +∇x p = −∇x · (σ) + O(Kn2)

∂tE +∇x · ((E + p)u) = −∇x · (q)−∇x · (σu) + O(Kn2) ,

(1.25)
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with:

E =

〈(1
2
|v|2 + ε

)
F + G

〉
v,ε

= ρe +
1
2

ρ|u|2 , (1.26)

σ = −µ
(
∇xu +∇xuT − C∇x · (u)Id

)
, (1.27)

q = −µ∇xh , (1.28)

where h = e(T) + RT is the enthalpy of the system and C = ∂e(RT) = R∂e(T) =
R

Cv(T(e))
. The specific

heat (at constant volume) is equal to Cv(T) =
5
2

R +
(T0/T)2eT0/T

(eT0/T − 1)2 R. If one defines Cp = Cv + R the

specific heat at constant pressure then one gets q = −µCp∇xT so that as usual only a gas with a Prandtl
number of one is obtained for this BGK model.

1.1.5 Comments

This work is very recent so we need to understand all the implications it could have. At the
beginning we only wanted to create a Fokker-Planck model with vibrations to extend our models
of Fokker-Planck. We managed to do it only once it was done for the BGK thanks to a reduced
model ([MM18]).

1.2 High temperature BGK model

The nature of the gas seems to play an important role, especially in the hypersonic regime (Mach
number higher than five). For these regimes, the air is a mixture of mono-atomic and polyatomic
gases, in which occurs chemical reactions when the temperature is high enough. Moreover the
characteristics of the gas mixture (viscosities and specific heats) also depend on its temperature
(see [NBK86]).

One way to take into account this variability is to use an approximate equation of state for air.
This approximation permits to compute, for example, all thermodynamical quantities (pressure,
entropy, temperature, specific heats) in terms of density and internal energy. To do such a thing,
one has to assume that the gas is at local chemical equilibrium. In the case of a local thermody-
namic equilibrium, the temperature is implicitly given by the internal energy of the mixture (see
[And06]). Either, one can use a constitutive law based on empirical considerations, like the one
given in [Han60]. In the framework of fluids dynamics, this kind of law consists of a closure of the
compressible Navier-Stokes equations and it can be used for simulations in the domain of small
Knudsen number (see, for example, [Mon+88]).

For rarefied gases, this macroscopic point of view on the effects of real gas are not often been
studied. To our knowledge, the first attempt to introduce this kind of law into a kinetic model has
recently been published in [RS16]. In this article, the authors define the constant volume specific
heat cv as a third-order polynomial function of the temperature of the gas. Another way to take
into account the variation of behavior of the gas in a kinetic model is to model it as a mixture
of polyatomic gases ([BC16]). This approach seems to be more precise in terms of physics, but
the cost in terms of numerical resources is also much higher. Besides high temperatures that can
appear for reentry problems are not studied in these papers.
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The aim of the present work is to propose a kinetic model based on BGK collision kernel ([GBK54])
including the effects of real gas in a more general way than the one chosen in [RS16]. We first con-
struct an extended BGK model.Then using Chapman-Enskog expansion, we prove that this model
reduces to Navier-Stokes equations with appropriate constitutive laws and transport coefficients
when the Knudsen number is small enough. Under the hypothesis of an enthalpy only depending
on the temperature, we prove that our model provides correct viscosity and thermal conductiv-
ity in the corresponding Navier-Stokes equations when the Prandtl number is equal to one (it is
a restriction of BGK models [And+00b]; [And+00a]; [GTJ11]; [GJ12]; [MM16]; [MM17]). Finally
we show how the model has been developed and validated in a deterministic BGK code([DM99];
[Mie00]): we will focus on a non reacting mixture of two vibrating diatomic perfect gases.

This work is a first attempt to capture the correct physics at high temperatures and should be
extended to an ES-BGK like models (as introduced in [And+00b]), in a further work, so that it
provides realistic Prandtl number.

1.2.1 A generalized BGK model for polyatomic gases

Our goal is to study high enthalpy rarefied flows (temperatures up to 10000K). When one con-
siders dense flows, the Navier-Stokes equations which are used have to be completed with a con-
stitutive law, which gives the pressure and the temperature as functions of its density ρ and its
internal energy e:

p = p(ρ, e) , (1.29)
T = T(ρ, e) . (1.30)

A classical constitutive law is the one of perfect gases p = ρRT, where R is the constant of the gas.
In this case, we speak about thermally perfect gas. But when one works with air at high tempera-
tures, it does not behave like a thermally perfect gas and there is no obvious relation between p
and T. This remark has no impact on the formulation of the Navier-Stokes equations, nor on its nu-
merical resolution. Besides the BGK (Gross, Bhatnagar and Krook) model is historically designed
for perfect mono-atomic gases and is only defined through (ρ, u, T) the pressure being p = ρRT
([GBK54]). It was extended to polyatomic non vibrating gases ([And+00b]). In this section, we
extend the BGK model for a gas which has general closure relations (1.29) and (1.30). This ex-
pansion is developed with the objective to have correct transport coefficients in the Navier-Stokes
equations obtained by Chapman-Enskog expansion, which is performed in section 1.2.2.

The generalized polyatomic BGK model

In order to take into account the extra degrees of freedom (DoF) of a polyatomic molecule, we
introduce the internal energy variable of the particle, denoted by ε: this variable contains all the
energy of the molecule that is no translational energy (rotational, vibrational, chemical ...). It is
already a reduction of model since all these various energies are put into only one variable. Then
the polyatomic distribution function g(t, x, v, ε) describes at time t the number of particles with
position x, velocity v and internal energy ε. Our extended BGK model satisfies the following
equations:

∂th + v · ∇h =
M[h]− h

τ
, (1.31)
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where the Maxwellian equilibrium is M[h] = M[ρ, u, e] defined by

M[h](v, ε) =
ρ√

2π
p
ρ

3 exp
(
−ρ|u− v|2

2p

)
Λ(δ)

(
ρε

p

) δ
2−1 ρ

p
exp

(
− ρε

p(ρ, e)

)
. (1.32)

The macroscopic quantities are given by

ρ = 〈〈h〉〉 , (1.33)

u =
1
ρ
〈〈hv〉〉 , (1.34)

e =
1
ρ

〈〈(
|v− u|2

2
+ ε

)
h
〉〉

, (1.35)

with the notation 〈〈·〉〉 =
∫∫

R3×R+ ·dvdε, and the closure relation on the pressure (1.29). The
constant Λ(δ) comes from the normalization on the space of internal energy. Its definition is:

Λ(δ) =

(∫
R+

y
δ
2−1 exp(−y)dy

)−1

. (1.36)

As we will see in the next subsection, the number of DoF δ is defined by

δ(ρ, e) =
2ρe

p(ρ, e)
− 3 , (1.37)

to capture the correct conservation of total energy for the system. It is not a real degree of freedom
(it is not always an integer).

Finally one has to note there is no longer a temperature in the Maxwellian. It is replaced by p/ρ:
of course if p is defined through a perfect gases law p/ρ is equal to RT the classical BGK model is
recovered. We will see that using this replacement ensure to capture Euler equations at order 0 in
the Chapman expansion.

Main properties of the Maxwellian equilibrium

We now explain the properties satisfied by the extended BGK model. First note that the Maxwellian
M[g] (defined by (1.32)) is a product of two distributions, the first being the “mono-atomic” equi-
librium (or translational equilibrium) and the second one the distribution in internal energy. To
simplify the forthcoming computations, we adopt the following notations:

M[h](v, ε) = Mmo[h](v)Mdi[h](ε) , (1.38)

Mmo[h](v) =
ρ√

2π
p
ρ

3 exp
(
−ρ|u− v|2

2p

)
, (1.39)

Mdi[h](ε) = Λ(δ)

(
ρε

p

) δ
2−1 ρ

p
exp

(
−ρε

p

)
. (1.40)
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Because of the separation of variables one directly obtains:

〈(v− u)⊗ (v− u)Mmo[h]〉v = p Id , (1.41)〈
|v− u|2

2
(v− u)Mmo[h]

〉
v

= 0 , (1.42)

Furthermore, thanks to the definition (1.36) of Λ(δ) and easy calculation, one can remark that

〈Mdi[h]〉ε =
∫

R+
Mdi[h]dε = 1 , (1.43)

〈Mdi[h]ε〉ε =
∫

R+
Mdi[h]εdε =

δ

2
p
ρ

. (1.44)

Now we give the moments of M[h] and compare it to those of h.
Proposition 1.2.1. The Maxwellian equilibrium M[g] defined by (1.32) satisfies the following equalities:

〈〈M[g]〉〉 = ρ = 〈〈h〉〉 , (1.45)
〈〈M[h]v〉〉 = ρu = 〈〈hv〉〉 , (1.46)〈〈

M[h]
(
|u− v|2

2
+ ε

)〉〉
= 3+δ

2 p = ρe =

〈〈
h
(
|u− v|2

2
+ ε

)〉〉
. (1.47)

1.2.2 Asymptotic properties and local entropy dissipation

Chapman-Enskog expansion

We begin this section with the general definitions of the stress tensor and the heat flux for any
distribution on the phase space (t, x, v, ε).
Definition 1.2.1. The stress tensor Σ(H) of a function H(t, x, v, ε) is defined by

Σ(H) = 〈〈(v− u)⊗ (v− u)H〉〉 . (1.48)

The heat flux q(H) of a function H(t, x, v, ε) is given by

q(H) =

〈〈(
|v− u|2

2
+ ε

)
(v− u)H

〉〉
. (1.49)

Thanks to the result of proposition 1.2.1, one can show that the moments of the solution g of
equation (1.31) satisfy the following conservation laws:

∂tρ +∇x · (ρu) = 0 ,
∂t(ρu) +∇x · (ρu⊗ u + Σ(h)) = 0 ,
∂tE +∇x · (Eu + Σ(h)u + q(h)) = 0 ,

(1.50)

where E =
〈〈(

|v|2
2 + ε

)
h
〉〉

= ρe + 1
2 ρ|u|2. The goal of the Chapman-Enskog analysis is to find

an approximation of Σ(h) and q(h) up to second order with respect to the Knudsen number Kn
(defined below). Doing so, we find the equivalent Navier-Stokes equations of the model with the
expressions of the viscosities and the heat transfer coefficient as functions of (ρ, u, p) and their
derivatives.
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Before we begin this procedure, we give a non-dimensional form of the model. To do so, let x∗, p∗
and e∗ be respectively a length, a pressure and an energy of reference. Then we can derive refer-
ence values of all other quantities: mass density ρ∗ = p∗/e∗, velocity v∗ =

√
e∗, time t∗ = x∗/v∗,

distribution function h∗ = ρ∗/e5/2
∗ . We also assume we have a reference value for the relaxation

time τ∗ = τ. If we denote by w′ = w/w∗ the non-dimensional form of any variable w of the model,
the equation reads

∂t′h′ + v′ · ∇x′h′ =
1

Kn
(M′[h′]− h′) ,

with M′[h′] =
M[h]

h∗
and Kn =

τ

t∗
.

Using classical Chapman expansion one gets the following result:
Proposition 1.2.2. Let h be the solution of BGK equation up to O(Kn2). Then the moments of g satisfy
the following Navier-Stokes equations up to O(Kn2):

∂tρ +∇x · (ρu) = 0

∂t(ρu) +∇x · (ρu⊗ u) +∇x p = −∇x · (σ) + O(Kn2)

∂tE +∇x · ((E + p)u) = −∇x · (q)−∇x · (σu) + O(Kn2) ,

(1.51)

with

E =

〈〈(1
2
|v|2 + ε

)
g
〉〉

= ρe +
1
2

ρ|u|2 , (1.52)

σ = −µ
(
∇xu +∇xuT − C∇x · (u)Id

)
, (1.53)

q = −µ∇xh , (1.54)

where h =
5 + δ

2
p
ρ

is the enthalpy of the system and C = ρ
p

(
∂1 p + p

ρ2 ∂2 p− p
ρ

)
, in which the notation ∂1 p

(resp. ∂2 p) is the partial derivative of p with respect to the first (resp. the second) variable (i.e. ρ (resp. e)).

Remark 1.2.1.

• The dynamic viscosity µ is given thanks to the relaxation time τ and depends on T(ρ, e).

• The second viscosity λ is proportional to µ, with coefficient C. In the particular case where δ
is constant, this coefficient is given by C = 2

3+δ .

• When the enthalpy satisfies h = h(T), the thermal transfer coefficient κ is equal to µcp (cp =

h′(T)), so that Pr = µcp
κ = 1.

Local entropy dissipation

Another critical point to check for any kinetic model is if it satisfies the second principle or not.
With our model, if we look at a relative entropy function, then we can prove the local dissipation
but not the global dissipation in the general case.
Proposition 1.2.3. Let g be the solution of the BGK equation. Then the following inequality is satisfied:

〈〈
(M− h) ln

 h

δ
2

(
ρε
p

) δ
2−1


〉〉
≤ 0 . (1.55)
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Remark 1.2.2. This result does not imply in the general case the dissipation of the global entropy,
except, for example, if δ is constant. There still remains some work to understand if there is any
second principle with respect to the model for the whole space in x.

1.2.3 Numerical validation

We now present our first numerical tests on a reduced model which has the same properties as
the original but which does not need a full discretization in internal energy. Then we explain
how it was implemented in our deterministic BGK code. Finally we show some results on an
hypersonic test case when the gas is a mixture of two vibrating perfect diatomic gases (nitrogen
and dioxygen).

Reduced polyatomic model with two distribution functions

For the polyatomic model, the phase space is of dimension 7 for 2D simulations and 8 for 3D
simulations, which is one more (the one of the internal energy) than in the mono-atomic case. So
numerical simulations for this model are very expensive. That is why a simpler formalism has
been introduced in [DM99], which gives the same macroscopic variables with two distribution
functions on a phase space of the dimension of the mono-atomic model. More precisely, it defines
one distribution function for the mass ( f ) and one for the internal energy (g) by

f (t, x, v) = 〈h〉ε and g(t, x, v) = 〈εh〉ε , (1.56)

where g is the solution of the equation (1.31). We can obtain the macroscopic quantities of g
from ( f , g):

ρ = 〈 f 〉v , ρu = 〈 f v〉v , ρe =
〈
|v− u|2

2
f + g

〉
v

.

The pressure p, which is a function of ρ and e, is also defined from ( f , g). Furthermore, the asso-
ciated Maxwellian distribution M[ f , g] is given by the mono-atomic part of M[g] defined by the
relation (1.39):

M[ f , g](v) = Mmo[g](v) =
ρ√

2π
p
ρ

3 exp
(
−ρ|u− v|2

2p

)
. (1.57)

The BGK system governing the evolution of ( f , g) is obtained from (1.31) by integration in dε
and εdε. Thanks to (1.43) and (1.44), these calculations yield:

∂t f + v · ∇x f =
1
τ
(M[ f , g]− f ) , (1.58)

∂tg + v · ∇xg =
1
τ

(
δ

2
p
ρ

M[ f , g]− g
)

. (1.59)

Some words on the numerical solving and the existing code

To solve the problem, we have a deterministic BGK code developed by L. Mieussens and al.([Mie99];
[Bar+13]): it uses Cartesian or AMR grids in velocity and finite volumes in physical space phase.
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The scheme is of order 2 (including boundary conditions). The set of equations which is solved is

∂t f + v · ∇x f =
1
τ
(M[ f , g]− f ) , (1.60)

∂tg + v · ∇xg =
1
τ

(
δ

2
RTM[ f , g]− g

)
, (1.61)

so that it is very close to our new model.

The solving of the problem (eq.1.60 - 1.61) is made possible thanks to the use of the entropic
variable α (a vector) which is defined through: M[ f , g] = exp(α ·m(v)) where m(v) is the vector
(1, v, 1

2 v2). Numerically a Newton method is used to determine α (see [Mie99]) by looking for α
such that:

ρ = < f >, (1.62)
ρu = < f v >, (1.63)

ρ

[
1
2

u2 + e
]

= =< f
1
2

v2 > + < g >, (1.64)

ρ = < exp(α ·m(v)) >, (1.65)
ρu = < exp(α ·m(v))v >, (1.66)

ρ

[
1
2

u2 + e
]

= < exp(α ·m(v))
1
2

v2 > +
δ

2
RT < exp(α ·m(v)) > . (1.67)

Modifications of the code for the new model

We have chosen to adapt our code to the new model ( equations (1.58) and (1.59)). In order to do
so, we have to modify equation (1.67) since we modify the definition of g in our model: to capture
the new α we first compute the moments of f and g as before through:

ρ = < f >, (1.68)
ρu = < f v >, (1.69)

ρ

[
1
2

u2 + e
]

= =< f
1
2

v2 > + < g > . (1.70)

This gives us ρ and e so that through the equation of state we get p = p(ρ, e) and δ = δ(ρ, e) =
2ρe

p(ρ, e)
− 3. Now we can find α solution of

ρ = < exp(α ·m(v)) >, (1.71)
ρu = < exp(α ·m(v))v >, (1.72)

ρ

[
1
2

u2 + e
]

= < exp(α ·m(v))
1
2

v2 > +
δ

2
p
ρ
< exp(α ·m(v)) > . (1.73)

Numerically integrals are replaced by sums other all the velocities in each cell of the mesh in x
variable and α is the numerical solution on the discrete grid of velocities.
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A first test case of validation

We test the model on a mixture of two vibrating gases(N2 and O2) for an hypersonic flow over a
cylinder with diffusive boundary conditions(figure 1.1). At the inlet, the following data are used:

Mass concentration of N2 (cN2) 0.75
Mass concentration of O2 (cO2) 0.25
Mach number of the mixture 10
Velocity of the mixture 2267m.s−1

Density of the mixture 3.059× 10−4kg.m−3

Pressure of the mixture 11.22Pa
Temperature of the mixture 127.6K
Temperature of the cylinder 293K
Radius of the cylinder 0.1m

FIGURE 1.1: Flow over a cylinder at Mach 10 (velocity field)

Pressure and energy laws We consider a mixture of two perfect vibrating gases so that the pres-
sure laws reads:

P = ρRT (1.74)

with R = cO2 RO2 + cN2 RN2 . The energy equation for two vibrating perfect gases reads:

e = cO2 eO2 + cN2 eN2

= cO2

3 + δO2(T)
2

RO2 T + cN2

3 + δN2(T)
2

RN2 T

=
3
2

RT +
1
2
(cO2 δO2(T)RO2 + cN2 δN2(T)RN2)T (1.75)

where the internal energy of the dioxygen (resp. nitrogen) is eO2 (resp. eN2). The number of degrees
of freedom activated for dioxygen and nitrogen are respectively defined as :

δO2(T) = 2 + 2
Tvib

O2
/T

exp(Tvib
O2

/T)− 1
, δN2(T) = 2 + 2

Tvib
N2

/T

exp(Tvib
N2

/T)− 1
,
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with the following vibrational temperatures: Tvib
O2

= 2256.K and Tvib
N2

= 3373.K. Consequently, the
corresponding δ function for the mixture is:

δ(ρ, T) =
cO2 δO2(T)RO2 + cN2 δN2(T)RN2

R
= 2 + 2

cO2 RO2

Tvib
O2

/T

exp(Tvib
O2

/T)−1
+ cN2 RN2

Tvib
N2

/T

exp(Tvib
N2

/T)−1

R

The only thing to know is that for a given energy of the mixture e there exists a unique temperature
T. Furthermore, e(T) is a monotonic function so that one can recover easily T from e numerically
using a fixed point method and then compute δ.

Results The test case presented here is set so that vibrations occur in molecules (as seen in figure
1.67) but no chemical reactions are active (temperatures go up to 3000K whereas chemical reactions
occur at 5000K at pressure P = 1atm): our thermodynamical approach is then licit. Since the
test case is dense enough (Knudsen number of order 0.01) we can compare the new model with
a Navier-Stokes code (a 2D structured code with finite volumes). To do it properly one has to
choose the same law of viscosity (µ) for the two codes. Once it is done you have to define the law

of conductivity (λ) in the Navier Stokes by λ =
µCp

Pr
= µCp (Cp: specific heat at constant pressure)

since BGK models only provide Prandtl numbers (Pr) equal to one. To validate the new model we
have made four types of computations for the mixture:

• a Navier-Stokes computation without taking into account vibrations (called NS1),

• a Navier-Stokes computation taking into account vibrations (called NS2),

• a BGK computation without taking into account vibrations (called BGK1),

• a BGK computation taking into account vibrations (called BGK2).

We make three different comparisons :

• the first is between NS1 and BGK1 to show that they agree (we are dense enough): it val-
idates that viscosity and conductivity law are the same. As it can be seen in figure 1.2, the
results agree very well for non vibrating gases.

• the second one one is between NS2 and BGK2 to show that for another physics (vibrations)
we still have a good agreement. This is what we observe in figure 1.3. One can observe that
due to vibrations The temperature has fallen from 2682K to 2358K for Navier-Stokes and
from 2695K to 2365K for BGK.

• the last one is between BGK1 and BGK2 to show what we gain by using our model in terms
of physical relevancy. We can observe that the shock is no longer at the same position.
Since there is a transfer of energy into vibrations the maximum temperature is lower and the
shock slightly goes back to the cylinder (figure 1.4). If we make a cut along the axis of the
temperature we clearly see the difference between the two physics (figure 1.5).

1.2.4 Conclusion

In this work, we have proposed a generalized BGK model to capture more physics for high tem-
peratures. The study of this model is motivated by the necessity to take into account the fact that,
for polyatomic gases, some internal degrees of freedom are partially excited with a level of exci-
tation depending on the temperature. Namely, the goal is to simulate a flow of a polyatomic gas
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FIGURE 1.2: Velocity field and Temperature field (Top: NS1, bottom: BGK1)

FIGURE 1.3: Velocity field and Temperature field (Top: NS2, bottom: BGK2)
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FIGURE 1.4: Velocity field and Temperature field (Top: BGK2, bottom: BGK1)

FIGURE 1.5: Temperature along the axis
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with non-constant specific heat Cp = Cp(T). Under low hypothesis, we have given the Chapman-
Enskog expansion of order 1 of the model, i.e. the Navier-Stokes equations, in which the viscosities
and heat transfer coefficient are explicitly expressed. Furthermore, we have proved the local en-
tropy dissipation of the model. A description with two distribution functions has been also given
in order to compute faster numerical simulations. Finally, some numerical results have been com-
puted and compared successfully to those of the corresponding Navier-Stokes simulations. The
next step of the study is the extension to ES-BGK model of these results to recover the correct
Prandtl number in the hydrodynamic limit.
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Chapter 2

Fokker-Planck models

Numerical simulations of rarefied gas flows are fundamental tools to study the behavior of a gas
in a system which length is of same order of magnitude as the mean free path of the gas molecules.
For instance, these simulations are used in aerodynamics to estimate the heat flux at the wall of
a re-entry space vehicle at high altitudes; numerical simulations are also used to estimate the at-
tenuation of a micro-accelerometer by the surrounding gas in a micro-electro-mechanical system;
a last example is when one wants to estimate the pumping speed or compression rate of a turbo-
molecular pump. Very recently, in a series of paper [JTH10]; [GTJ11]; [GJ12]; [GJ13], Jenny et
al. proposed a very different and innovative approach: they proposed to use a different model
equation known as the Fokker-Planck model to design a rarefied flow solver. In this model, the
collisions are taken into account by a diffusion process in the velocity space. Like the model equa-
tions mentioned above, this equation also satisfy the main properties of the Boltzmann equation,
even the H-theorem. Instead of using a direct discretization of this equation, the authors used the
equivalent stochastic interpretation of this equation (the Langevin equations for the position and
velocity of particles) that are discretized by a standard stochastic ordinary differential equation
numerical scheme. This approach turned out to be very efficient, in particular in the transition
regime, since it is shown to be insensitive to the number of simulated particles, as opposed to
the standard DSMC. However, this Fokker-Planck model is parametrized by a single parameter,
like the BGK model, and hence cannot give the correct transport coefficients in near equilibrium
regimes: this is often stated by showing that the Prandtl number–which is the ratio of the viscos-
ity to the heat transfer coefficient–has an incorrect value. The authors have proposed a modified
model that allow to fit the correct value of the Prandtl number [GTJ11], and then have extended
it to more complex flows (multi-species [GJ12] and diatomic [GJ13]). However, even if the results
obtained with this approach seem very accurate, it is not clear that these models still satisfy the H-
theorem. In this part, we propose another kind of modification of the Fokker-Planck equation to
get a correct Prandtl number: roughly speaking, the diffusion coefficient (which is the equilibrium
temperature) is replaced by a non diagonal temperature tensor. This approach is closely related to
the way the BGK model is extended to the ES-BGK model, and we call our model the ES-Fokker
Planck (ES-FP) model. Then, we are able to prove that this model satisfies the H-theorem. For
illustration, we also show numerical experiments that confirm our analysis, for a space homoge-
neous problem. We present here the papers [MM16] and [MM17] which deal with monoatomic
and polyatomic models.

2.1 Mono-atomic model

We consider a gas described by the mass density of particles f (t, x, v) that at time t have the posi-
tion x and the velocity v. The corresponding macroscopic quantities are (ρ, ρu, E) =

〈
(1, v, 1

2 |v|2) f
〉
,
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where ρ, ρu, and E are the mass, momentum, and energy densities, and 〈φ〉 =
∫

R3 φ(v) dv for any
velocity dependent function. The temperature T of the gas is defined by relation E = 1

2 ρ|u|2 +
3
2 ρRT, where R is the gas constant, and the pressure is p = ρRT. The evolution of the gas is
governed by the following Boltzmann equation

∂t f + v · ∇x f = Q( f , f ), (2.1)

where the collision operator is, in the hard-sphere case,

Q( f , f )(v) =
∫

v∗∈R3

∫
σ∈S2

(
f (v′∗) f (v′)− f (v∗) f (v)

)
r2 |v− v∗| dσ dv∗,

with

v′ =
v + v∗

2
+
|v− v∗|

2
σ, v′∗ =

v + v∗
2
− |v− v∗|

2
σ,

and r is the radius of the molecules. It is well known that this operator conserves the mass,
momentum, and energy, and that the local entropy H( f ) = 〈 f log f 〉 is locally non-increasing.
This means that the effect of this operator is to make the distribution f relax towards its own local
Maxwellian distribution, which is defined by

M( f )(v) =
ρ

(2πRT)3/2 exp
(
|v− u|2

2RT

)
.

For the sequel, it is useful to define another macroscopic quantity, which is not conserved: the
temperature tensor, defined by

Θ :=
1
ρ
〈(v− u)⊗ (v− u) f 〉 . (2.2)

In an equilibrium state (that is to say when f = M( f )), Θ reduces to the isotropic tensor RTI.

2.1.1 The ES-Fokker Planck model

The standard Fokker-Planck model for the Boltzmann equation is (see [Cer88]):

∂t f + v · ∇x f =
1
τ
∇v ·

(
(v− u) f + RT∇v f

)
, (2.3)

Our model is obtained in the same spirit as the ES model is obtained from a modification of the
BGK equation: the temperature that appears in (2.3), as a diffusion coefficient, is replaced by a
tensor Π so that we obtain

∂t f + v · ∇x f = D( f ), (2.4)

where the collision operator is defined by

D( f ) =
1
τ
∇v ·

(
(v− u) f + Π∇v f

)
, (2.5)

where τ is a relaxation time, and Π is a convex combination between the temperature tensor Θ
and its equilibrium value RTI, that is to say:

Π = (1− ν)RTI + νΘ, (2.6)
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with ν a parameter. According to [And+00b], Π is symmetric positive definite if ν ∈]− 1
2 , 1]. In

fact, this condition is too restrictive and we have the following result.
Proposition 2.1.1 (Condition of positive definiteness of Π).

The tensor Π is symmetric positive definite for every tensor Θ if, and only if,

− RT
λmax − RT

< ν <
RT

RT − λmin
, (2.7)

where λmax and λmin are the (positive) maximum and minimum eigenvalues of Θ. Moreover Π is positive
definite independently of the eigenvalues of Θ as long as:

− 1
2
< ν < 1, (2.8)

The operator D has two other equivalent formulations:

D( f ) =
1
τ
∇v ·

(
ΠG( f )∇v

f
G( f )

)
, (2.9)

and
D( f ) =

1
τ
∇v ·

(
Π f∇v log

(
f

G( f )

))
, (2.10)

where G( f ) is the anisotropic Gaussian defined by

G( f ) =
ρ√

det(2πΠ)
exp

(
− (v− u)Π−1(v− u)

2

)
, (2.11)

which has the same 5 first moments as f〈
(1, v, 1

2 |v|2)G( f )
〉
= (ρ, ρu, E),

and has the temperature tensor 〈(v− u)⊗ (v− u)G( f )〉 = Π.

Now, we state that D has the same conservation and entropy properties as the Boltzmann collision
operator Q ([MM16]).
Proposition 2.1.2. We assume ν satisfies (2.29) and that ν < 1. The operator D conserves the mass,
momentum, and energy: 〈

(1, v, 1
2 |v|2)D( f )

〉
= 0, (2.12)

it satisfies the dissipation of the entropy:

〈D( f ) log f 〉 ≤ 0,

and we have the equilibrium property:

D( f ) = 0⇔ f = G( f )⇔ f = M( f ).

2.2 Polyatomic model

We consider a gas described by the mass density of particles f (t, x, v, I) that at time t have the
position x, the velocity v and an internal energy parameter I (note that both position x and velocity
v are vectors and that I is a scalar). The internal energy of a particle is equal to ε(I) = I

2
δ , δ being
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linked to the number of degrees of freedom of the polyatomic gas (δ = 2 for diatomic gases).
The corresponding macroscopic quantities are (ρ, ρu, E) =

〈
(1, v,

( 1
2 |v|2) + ε(I)

)
f
〉
, where ρ, ρu,

and E are the mass, momentum, and energy densities, and 〈φ〉 =
∫

R3 φ(v, I) dvdI for any velocity
dependent function. The temperature T of the gas is defined by relation E = 1

2 ρ|u|2 + 3+δ
2 ρRT,

where R is the gas constant, and the pressure is p = ρRT. We can also define a translational energy
Etr, a translational temperature Ttr, an internal energy Eint and an internal energy temperature Tint
through:

Etr =
3
2

ρRTtr =
〈 1

2 |v− u|2 f
〉

, (2.13)

Eint =
δ

2
ρRTint = 〈ε(I) f 〉 , (2.14)

so that:
T =

3
3 + δ

Ttr +
δ

3 + δ
Tint. (2.15)

The evolution of the gas can be governed by the following Boltzmann equation (if we do not take
into account exchanges in internal energy)

∂t f + v · ∇x f = Q( f , f ), (2.16)

where Q( f , f ) is for instance the Borgnakke-Larsen kernel of collision described in ([Des97b];
[DMS05]) which allows reversible exchanges of energy between internal energy and translational
energy of the particles.

It is well known that this operator conserves the mass, momentum, and energy, and that the local
entropy H( f ) = 〈 f log f 〉 is locally non-increasing. This means that the effect of this operator is to
make the distribution f relax towards its own local Maxwellian distribution, which is defined by

Mp( f )(v, I) =
ρΛδ

(2π)3/2 (RT)(3+δ)/2
exp

(
−|v− u|2

2RT
− I2/δ

RT

)
, (2.17)

where Λδ =
(∫ +∞

0 exp(−I2/δ)dI
)−1

.

For the sequel, it is useful to define another macroscopic quantity, which is not conserved: the
“temperature” tensor, defined by

Θ :=
1
ρ
〈(v− u)⊗ (v− u) f 〉 . (2.18)

In an equilibrium state (that is to say when f = M( f )), Θ reduces to the isotropic tensor RTI.

2.2.1 The ES-Fokker-Planck model for polyatomic gases

Our extension of the previous model to polyatomic gases is based on two ideas. First, the variation
of the internal energy of the particles due to collisions are taken into account by an additional dif-
fusion term (with respect to the internal energy variable) in the collision operator. Then, the trans-
fers between translational and internal energies are taken into account by an additional parameter
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θ, like in the construction of the ESBGK model for polyatomic gases proposed in [And+00b]. This
leads to our ES-Fokker-Planck model for polyatomic gases:

∂t f + v · ∇x f = D( f ), (2.19)

where the collision operator is defined by

D( f ) =
1
τ

(
∇v ·

(
(v− u) f + Π∇v f

)
+ ∂I(δ f I +

δ2

2
RTrel I2− 2

δ ∂I f )
)

, (2.20)

with τ its relaxation time, and Π the following combination between the temperature tensor Θ,
the translational temperature tensor RTtr Id and its equilibrium value RTId:

Π = (1− θ) ((1− ν)RTtr Id + νΘ) + θRTId, (2.21)

where the coefficients ν and θ are some free parameters, and the temperature Trel is defined by

Trel = (1− θ)Tint + θT. (2.22)

This model is the natural extension of the monoatomic ESFP model to get the polyatomic anisotropic
Gaussian as equilibrium for polyatomic gases, as it was done for the ESBGK model for polyaty-
omic gases (see [And+00b]).

Now, we give a few comments about parameters θ and δ. First, it can be seen that θ governs the re-
versible exchanges between internal and translational energies. Indeed, for a space homogeneous
problem (we neglect the space dependence of the problem), it can easily be seen the relaxation
time of exchanges between internal energies and translational energies is 3+δ

2δθ τ, and a relaxation
collision number on the collision rate time-scale τ (see [Bir94]) can be defined by Z = 3+δ

2δθ which
is clearly parametrized by θ. Consequently, it is clear that when θ = 0 we no longer have ex-
changes between internal and translational energies. Note that this model is compatible with the
monoatomic model: indeed, when δ = 0 we immediately recover the monoatomic model since in
this case Ttr = T.

For the following, it is usefull to rewrite model (2.19) a bit differently. We define the generalized
tensor Ω by

Ω =

(
Π 0
0 δ2

2 RTrel I2− 2
δ

)
, (2.23)

so that the collision operator of (2.19) reads

D( f ) =
1
τ
∇v,I ·

((
v− u

δI

)
f + Ω∇v,I f

)
,

where ∇v,I denotes the derivative operator with respect to both v and I variables. We can now
define the generalized Gaussian Gp( f ) for polyatomic gases as:

Gp( f ) =
ρΛδ√

det(2πΠ)(RTrel)δ/2
exp

(
−1

2

(
v− u

δI

)T

Ω−1
(

v− u
δI

))
. (2.24)

One can note that contrary to the case of monoatomic gases the tensor Ω depends on the vari-
ables of the phase space through the internal parameter. The generalized Maxwellian Mp( f ) of
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equilibrium for polyatomic gases (2.17) can also be defined as:

Mp( f ) =
ρΛδ

(2π)3/2(RT)
3+δ

2
exp

−( v−u√
2RT

I1/δ
√

RT

)T ( v−u√
2RT

I1/δ
√

RT

) (2.25)

We now look for the properties of the collision kernel D( f ) as it was done in the monoatomic case.
Proposition 2.2.1. The operator D has two other equivalent formulations:

D( f ) =
1
τ
∇v,I ·

(
ΩGp( f )∇v,I

f
Gp( f )

)
, (2.26)

and
D( f ) =

1
τ
∇v,I ·

(
Ω f∇v,I log

(
f

Gp( f )

))
, (2.27)

Moreover Gp has the same 5 first moments as f〈
(1, v, 1

2 |v|2 + I2/δ)Gp( f )
〉
= (ρ, ρu, ρE),

and has its translationnal temperature tensor equal to
〈
(v− u)⊗ (v− u)Gp( f )

〉
/ρ = Π.

Proposition 2.2.2 (Condition of definite positiveness of Π).

Assume 0 < θ < 1, the tensor Π is symmetric positive definite if, and only if,

−
RTtr +

θ
1−θ RT

λmax − RTtr
< ν <

RTtr +
θ

1−θ RT
RTtr − λmin

, (2.28)

for every tensor Θ ( λmax and λmin being its (positive) maximum and minimum eigenvalues). Moreover Π
is positive definite independently of the eigenvalues of Θ as long as:

− 1
2
< ν < 1, (2.29)

Now, we state that D has the same conservation and entropy properties as the Boltzmann collision
operator Q.
Proposition 2.2.3. We assume ν satisfies (2.28) and that ν < 1. The operator D conserves the mass,
momentum, and energy: 〈

(1, v, 1
2 |v|2 + I2/δ)D( f )

〉
= 0, (2.30)

it satisfies the dissipation of the entropy:

〈D( f ) log f 〉 ≤ 0,

and we have the equilibrium property:

D( f ) = 0⇔ f = Gp( f )⇔ f = Mp( f ).

2.2.2 Equation on internal energy

While the formulation of our model with the internal energy parameter I is useful to prove the
H-theorem, using the internal energy ε(I) = I2/δ turns out to be more convenient for numerical
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simulations. If we denote by g(t, x, v, ε) the corresponding distribution function (that is to say,
such that g dε = f dI), we get the following equation

∂tg + v · ∇xg = D(g), (2.31)

where the collision operator is defined by

D(g) =
1
τ

(
∇v ·

(
(v− u)g + Π∇vg

)
+∇ε

(
2(ε− δ

2
RTrel)g +∇ε2(RTrelεg)

))
. (2.32)

The equilibrium and its Gaussian extension are now

M(g) =
ρΛg

(2π)3/2
ε

δ−2
2

(RT)
δ
2

exp

(
−

1
2 (v− u)2 + ε

RT

)

and

G(g) =
ρΛg√

det(2πΠ)

ε
δ−2

2

(RTrel)
δ
2

exp
(
−1

2
(v− u)tΠ−1(v− u)− ε

RTrel

)
with

Λg =

(∫
R

ε
δ−2

2 exp(−ε)dε

)−1

.

When one deals with diatomic gases (δ = 2) one recovers the same equation as before since ε(I) is
equal to I. The main difference with the ε-formulation of the problem is that the entropy inequality
is transformed into a relative entropy inequality, that is〈

Dg(g) log
(

g

ε
δ−2

2

)〉
≤ 0,

due to the change of variables.

2.3 Hydrodynamic limits

2.3.1 The monoatomic case

From (2.3) and (2.30), the moments of f satisfy the conservation laws

∂tρ +∇x · ρu = 0,
∂tρu +∇x · (ρu⊗ u) +∇x · Σ( f ) = 0,
∂tE +∇x · (Eu + Σ( f )u + q( f )) = 0,

(2.33)

where Σ( f ) and q( f ) denote the stress tensor and the heat flux, defined by

Σ( f ) = 〈(v− u)⊗ (v− u) f 〉 q( f ) =
〈 1

2 (v− u)|v− u|2 f
〉

. (2.34)

The Chapman-Enskog procedure consists in looking for an approximation of Σ( f ) and q( f ) up to
second order with respect to the Knudsen number Kn which is defined below.

To do so, we now write our model in a non-dimensional form. Assume we have some reference
values of length x∗, pressure p∗, and temperature T∗. With these reference values, we can derive
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reference values for all the other quantities: mass density ρ∗ = p∗/RT∗, velocity v∗ =
√

RT∗, time
t∗ = x∗/v∗, distribution function f∗ = ρ∗/(RT∗)3/2. We also assume we have a reference value for
the relaxation time τ∗. By using the non-dimensional variables w′ = w/w∗ (where w stands for
any variables of the problem), our model can be written

∂t f + v · ∇x f =
1
ε

D( f ), (2.35)

where Kn = v∗τ∗
x∗ is the Knudsen number. Note that since we always work with the non-dimensional

variables from now on, these variables are not written with the ’ in (2.35).

Note that an important consequence of the use of these non-dimensional variables is that RT has
to be replaced by T in every expressions given before. Namely, now Π is defined by

Π = (1− ν)TI + νΘ, (2.36)

the temperature is now defined by
E = 1

2 ρ|u|2 + 3
2 ρT,

and the Maxwellian of f now is

M( f ) =
ρ

(2πT)3/2 exp
(
|v− u|2

2T

)
.

Now, it is standard to look for the deviation of f from its own local equilibrium, that is to say
to set f = M( f )(1 + Kng). However, this requires the linearization of the collision operator D
around M( f ), which is not very easy. At the contrary, it will be shown that it is much simpler to
look for the deviation of f from the anisotropic Gaussian G( f ) defined in (2.24). Since it can easily
be seen that M( f ) and G( f ) are close up to O(Kn) terms, this expansion is sufficient to get the
Navier-Stokes equations: we will then prove the following result.
Proposition 2.3.1. The moments of the solution of the kinetic model (2.3) satisfy, up to O(Kn2), the
Navier-Stokes equations

∂tρ +∇ · ρu = 0,
∂tρu +∇ · (ρu⊗ u) +∇p = −∇ · σ,
∂tE +∇ · (E + p)u = −∇ · q−∇ · (σu),

(2.37)

where the shear stress tensor and the heat flux are given by

σ = −µ
(
∇u + (∇u)T − 2

3
∇ · u

)
, and q = −κ∇ · T, (2.38)

with the following values of the viscosity and heat transfer coefficients

µ =
τp

2(1− ν)
, and κ =

5
6

τpR. (2.39)

Moreover, the corresponding Prandtl number is

Pr =
3

2(1− ν)
,

and Kn is the Knudsen number defined below.
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The ES-Fokker Planck model with a non constant ν

We establish how we deal with the Prandtl number in all cases.

Some limits of the model with a constant ν In the previous section, we have found that the
Prandtl number obtained for the ES-Fokker Planck model is

Pr =
µ

κ

5R
2

=
3

2(1− ν)
, (2.40)

and can be adjusted to various values by choosing a corresponding value of the parameter ν.

Moreover, we have seen that the model is well defined (that is to say that the tensor Π is posi-
tive definite for every f ) if, and only if − 1

2 < ν < 1. This last condition leads to the following
limitations for the Prandtl number:

1 < Pr < +∞,

so that the correct Prandtl number for monoatomic gases (which is equal to 2
3 ) cannot be obtained.

In the next section, we show that this analysis, which is based on the inequality (2.29) is too re-
strictive, and that there is a simple way to adjust the correct Prandtl number.

Recovering the good Prandtl number The previous analysis relies on inequality (2.29) of propo-
sition 2.2.2 that does not take into account the distribution f itself: this inequality ensures the
positive definiteness of Π independently of f . However, proposition 2.2.2 also indicates that Π is
positive definite for a given f if ν satisfies (2.28). This inequality is less restrictive, since it depends
on f via the temperature T and the extreme eigenvalues of Θ.

Now, our first idea is that ν can be set to a non constant value (it may depend on time and space):
it just has to lie in the interval [− RT

λmax−RT , 1], so that it satisfies the assumptions of proposition 2.2.3.
The second idea is that the Prandtl number makes sense when the flow is close to the equilibrium,
that is to say when f is close to its own local Maxwellian M( f ): in such case, Θ = RTI + O(Kn),
and all the eigenvalues of Θ are close to RT up to O(Kn) terms, which implies λmax = RT + CKn
. Consequently, the value of ν now lies in [− RT

RCKn , 1] which shows that ν can take any arbitrary
value between −∞ and 1 when Kn is small enough, and in particular the value ν = − 5

4 that gives
the correct Prandtl number Pr = 2

3 can be used.

In other words, by defining ν as a non constant value that satisfies (2.28) and is lower than 1,
we can adjust the correct Prandtl number provided that ν can be set to − 5

4 near the equilibrium
regime.

This analysis suggests a very simple definition of ν : we propose to use the smallest negative ν
such that:

• Π remains strictly definite positive,

• ν ≥ − 5
4 .

This leads to the following definition:

ν = max
(
−5

4
,− RT

λmax − RT

)
. (2.41)
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Note that in most realistic cases ν is equal to − 5
4 . Indeed, ν 6= − 5

4 implies λmax > 1.8RT which
can only happen in case of highly non equilibrium flow with strong directional non isotropy: such
cases are very specific and are usually not observed in aerodynamical flows, for instance.

2.3.2 The diatomic case

From (2.19) and (2.30), it can easily be shown that the moments of f satisfy the following conser-
vation laws

∂tρ +∇x · ρu = 0,
∂tρu +∇x · (ρu⊗ u) +∇x · Σ( f ) = 0,
∂tE +∇x · (Eu + Σ( f )u + q( f )) = 0,

(2.42)

where Σ( f ) and q( f ) denote the stress tensor and the heat flux, defined by

Σ( f ) = 〈(v− u)⊗ (v− u) f 〉 q( f ) =
〈
( 1

2 |v− u|2 + I2/δ)(v− u) f
〉

. (2.43)

Once more we proceed to a Chapman-Enskog procedure (as it was done for the mono-atomic case)
and prove the following proposition:
Proposition 2.3.2. The moments of the solution of the kinetic model (2.35) satisfy, up to O(Kn2), the
Navier-Stokes equations

∂tρ +∇ · ρu = 0,
∂tρu +∇ · (ρu⊗ u) +∇p = −∇ · σ,
∂tE +∇ · (E + p)u = −∇ · q−∇ · (σu),

(2.44)

where the shear stress tensor and the heat flux are given by

σ = −µ
(
∇u + (∇u)T − α∇ · u

)
, and q = −κ∇ · T, (2.45)

with the following values of the viscosity and heat transfer coefficients (in dimensional variables)

µ =
τp

2(1− (1− θ)ν)
, α = (γ− 1)− (1− ν)(1− θ)

θ

(
5
3
− γ

)
and κ =

5 + δ

6
τpR, (2.46)

and γ = δ+5
δ+3 . Moreover, the corresponding Prandtl number is

Pr =
3

2(1− (1− θ)ν)
. (2.47)

Note that we still have to adjust the Prandtl number following the procedure proposed for monoatomic
gases ([MM16]) just before: it can be read in ([MM17]).
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2.4 Numerical results

2.4.1 Numerical method

We use a DSMC method to solve these different problems. For homogeneous cases, the probability
density function in the mono-atomic case) is approximated with N numerical particles so that

f (t, v) ' α
N

∑
i

ωiδVi(t),

where ωi is the numerical weight of numerical particle i and δVi(t) is the Dirac function at the
particle velocity Vi(t). Moreover α is defined through the constant density ρ =

∫
R3 f (t, v)dv by

ρ = α
N

∑
i

ωi.

In the test cases presented here, all numerical weights ωi are equal, and we just have to define
the dynamics of the numerical particles. To solve diffusive problems, it is well-known that using
Brownian motion is a good way to proceed (see [Lap+98]): the corresponding stochastic ordinary
differential equation is called the Ornstein-Uhlenbeck process that reads

dVi(t) = −
dt
τ
(Vi(t)− u) + AdB(t), (2.48)

for each 1 ≤ i ≤ N. The quantity dB(t) is a three dimensional Brownian process. The matrix A
has to satisfy AAT = Π. Several choices are available for A. The obvious one would be to use the
square root of Π (which is a positive definite matrix): this requires to compute the eigenvectors of
Π and may lead to expensive computations. We find it simpler to use the Cholesky decomposition
because of the simplicity of the algorithm. For the time discretization we use a backward Euler
method. The complete algorithm is the following:

1. Approximate the initial data f (0, v) by ∑N
i ωδVi(t), where N is the number of numerical par-

ticles and ω a constant numerical weight. The velocities are chosen randomly according to
the particle density function f (0, .).

2. Compute the tensor Θ

3. Compute the three real eigenvalues the positive definite tensor Θ with Cardan’s formula.

4. Compute the Cholesky factorization Π = AT A of Π.

5. For i from 1 to N, advance the velocity Vn
i through the process:

Vn+1
i =

(
1− ∆t

τ

)
(Vn

i − u) +

√
2∆t

τ
A

 B1
B2
B3


where ∆t = tn+1− tn, B1, B2, B3 are random numbers chosen through a standard normal law.
Since the scheme is explicit we enforce ∆t

τ ≤ 0.1 to ensure stability: this leads to around Tf
0.1×τ

time steps to reach the final time Tf .

The scheme we propose here preserves mass but does not preserve momentum and energy, like
most DSMC methods. However, these quantities are preserved in a statistical way. Moreover at
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the end of each time step, the distribution is renormalized to keep the mean velocity constant and
to decrease the error in Θ.

We extended the approach for the polyatomic case through

f (t, v, e) ' α
N

∑
i

ωiδVi(t),εi(t),

where ωi is the numerical weight of numerical particle i and δVi(t) is the Dirac function at the par-
ticle velocity Vi(t) and particle internal energy ε i(t). Moreover α is defined through the constant
density ρ =

∫
R3 f (t, v)dv by

ρ = α
N

∑
i

ωi.

The Ornstein-Uhlenbeck process now reads

dVi(t) = −dt
τ
(Vi(t)− u) + AvdBv(t), (2.49)

dε i(t) = −2dt
τ

(
ε i(t)−

δ

2
RTrel

)
+ 2
√

RTrelε i(t) dBε(t), (2.50)

for each 1 ≤ i ≤ N. The quantities dBv(t) and dBε(t) respectively are three dimensional and one
dimensional Brownian processes.

We now focus on the internal energy equation. Since the diffusion coefficient depends on the
square root of the internal energy, this latter variable must remain positive, and hence a simple
Euler algorithm cannot work in this case. We will adapt the Milshtein scheme (see [Lap+98]) that
reads on our problem:

εn+1
i =

(√εn
i +

√
dt
τ

RTrel Bε

)2

+ (δ− 1)RTrel
dt
τ

 /
(

1 +
2dt
τ

)
, (2.51)

with Bε a random number chosen from a standard normal law.

2.4.2 Numerical results

Simulations that are presented here were done with one million particles. One way to validate the
model is to recover the correct relaxation times for the flux and the directional temperatures (see
[MM16]; [MM17]). We only show results without corrections on ν.

mono-atomic case

We choose three independent laws for the three components of velocity of the numerical particles:

• the first component is equal to 100s4 − 20 where s follows a uniform law between [0, 1],

• the second and third components of the velocity follow a uniform law between [−50, 50],

The choice for the first component seems a little bit strange but we need to have a non zero heat
flux at the beginning of the computations to be able to capture a characteristic time of variation
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for q. However, we have chosen distributions whose variances are of the same order so that the ν
which is used all along this computation is equal to − 5

4 . The final time is set to 1.

As expected, we observe the convergence of the directional temperatures Ti,i (the diagonal el-
ements of Θ) towards the temperature and the relaxation towards the Maxwellian (figure 2.1).
Moreover, all along the computation, the correction of ν is not activated and hence the Prandtl
number defined by (2.40) is always equal to 2

3 (figure 2.2). Finally, the Prandtl number is com-
puted by using linear regression on the logarithm curves of Θ(t) and q(t) (figure 2.2). We get a
numerical Prandtl number Prn = 2.8971

4.5001 = 0.6428, which is close to 2
3 .

0.2 0.4 0.6 0.8 1
720

740

760

780

800

820

t

T11

T22

T33

T

−150 −100 −50 0 50 100 150
0

10000

20000

30000

40000

FIGURE 2.1: Left: time evolution of the diagonal components T11, T22, T33 of the ten-
sor Θ and of its trace T. Right: histogram of the first component of velocity at final

time t = 1.
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FIGURE 2.2: Left: time evolution of ν (defined by (2.41)) and Pr (defined by (2.40)).
Right: time history of log |T − T11| and log |q|.

diatomic case

In this test case, we use air whose Prandtl number is approximately 0.71. We take the standard
value θ = 0.2, and the Prandtl number is adjusted with νair = −1.3908. The initial data is not too
anisotropic so that the correction on ν is not active.

We use 2 million particles. We choose three independent laws for the three components of velocity
of the numerical particles:

• the first component is equal to 1000s4 − 200 where s follows a uniform law between [0, 1],
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• the second component of velocity is equal to 1000s − 500 where s follows a uniform law
between [0, 1],

• the second component of velocity is equal to 1000s − 500 where s follows a uniform law
between [0, 1].

The internal energies are defined by 40.000s+ 40.000 where s follows a uniform law between [0, 1].

The time step is set to 0.02. The final simulation time is 10τ, where the relaxation time is set to
τ = 1 to capture the relaxation towards equilibrium for velocities and internal energies (whose
characteristic time is 5τ).

On figure 2.3 we can observe after some time the convergence of the directional translational tem-
peratures T11, T22, T33 (diagonal components of Θ). towards the same translational temperature
Ttr, and later the convergence of all these temperatures with the internal energy temperature Tint
to the equilibrium temperature T.

At convergence we recover the Maxwellian distribution on velocities (figure 2.4) and the exponen-
tial one on internal energies (figure 2.5).

FIGURE 2.3: Convergence of the directional translational temperatures and the in-
ternal temperature to their equilibrium value.

FIGURE 2.4: Maxwellian equilibrium for the distribution of the first component of
the velocities, at time t = 10s: number of numerical particles on the y axis as a

function of the Vx component
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FIGURE 2.5: Distribution of the internal energies at time t = 10: exponential equilib-
rium.

2.5 Conclusions

In this chapter we propose several ways to emulate Boltzmann equation with a Fokker-Planck
model. All the results are very encouraging but there remains to code the model in non homoge-
neous codes to compare with BGK models and Boltzmann equation.
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Chapter 3

Conclusions and perspectives

In this part we have presented several new models to deal with rarefied gas dynamics. These
models still need some validations. We will try to provide numerical results in the next years to
comfort our approach: for instance we should get experiments at Mach 20 in the ICARE facility
(CNRS Orléans) in collaboration with V. Lago. There remains also to extend our new BGK models
to ESBGK models in order to capture the correct heat fluxes.
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Part III

Atmospheric reentry: turbulence and
interactions with the wall
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Introduction

In this part we present some first results that have been obtained around turbulence and the in-
teraction between a wall and a fluid for a supersonic flow. In the first chapter we describe some
RANS (Reynolds Averaged Navier-Stokes) models and explain the difficulties which arise from
them. We also look at mathematical solutions for this model. This work has lead to two theo-
retical papers in which we construct smooth solutions for the models ([Mat08]; [MR16]). Then in
a second chapter we present some experiments around the fluid/wall interaction during reentry
for a laminar/turbulent flow: these works have been done through a Phd (Cyril Levet at LCTS
(Bordeaux) with G. Vignoles (LCTS) and J. Couzi(CEA)) and the masters thesis of F. Danvin(CEA)
with M. Olazabal-Loumé and B. Aupoix( Onera).
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Chapter 4

RANS models: theoretical results and
application to turbulent supersonic flows

4.1 RANS models

Turbulence has always been a stumbling block for understanding the behavior of flows. It appears
almost everywhere: astrophysics, aerodynamics, FCI ... A lot of progress has been made to com-
pute turbulence for the last decades. Although more precise and costly methods are now used
(DNS(Direct numerical simulations),LES (Large Eddy simulations,ZDES (Zonal Detached Eddy
Simulation)...), industrials still rely on "old methods" to simulate the phenomenon. The classical
way to do so is the use of Reynolds Averaged Navier-Stokes equations (RANS): these methods
have been developed for years now on ([MP94]). They have proved their efficiency but it is gen-
erally admitted that the use of RANS models is not very accurate in complex compressible flows
(RANS models were first constructed fo incompressible flows): having no model for turbulence is
worse (300% of error for reentry problems on the heat flux). In this chapter we present some works
around the RANS models. There are several models available in the literature (Spalart-Allmaras
([SA92]), Baldwin-Lomax ([BB90]), k− ω model ([Wil94], k− ω SST model ([Men92]). Theoreti-
cal results which are proved are based on incompressible models which are easier to tackle with
from a mathematical viewpoint whereas we will deal with applications for compressible fluids in
next chapter. This part is a sum up of theoretical results, numerical implementation and works in
progress around models of physics (which need a lot of experiments to be validated).

4.2 Theoretical results for some RANS models: the k− ε model

We recall the results that were obtained in [Mat08]. Although the original application was tur-
bulence for supernova, the theoretical result still remains true for other applications. We re-use
the original article but only keep the main results. The existence and uniqueness of solutions are
principally obtained through maximum principle and the use of Sobolev spaces.

4.2.1 Introduction

The k-ε model is widely used in various physical models to assess isotropic turbulence effects
(see [MP94]). It is based on two scalar quantities characterizing turbulence: the kinetic turbu-
lent energy and the rate of dissipation of turbulent energy. This model, proposed by Laun-
der and Spalding ([LS72]), was designed to model the evolution of large turbulent structures
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and their effect on the large scale mean velocity flow. Its main applications can be found in
Aerodynamics, for instance to study the influence of turbulence on airfoils boundary layers (cf.
[Cou89] and [GHP91]). It is also considered for modeling turbulent mixing induced by Rayleigh–
Taylor, Kelvin–Helmholtz and Richtmyer–Meshkov instabilities, for instance in Astrophysical
framework.

As a matter of fact, observations of the famous supernova 1987A have indicated that radioactive
cobalt is far more thoroughly distributed among the explosive debris in the envelope than was pre-
dicted by model calculations of thin-shell nucleosynthesis in the pre-supernova star. It suggests
the occurrence of large-scale mixing in the ejecta during the explosion [Kum+89] [Arn+89]. The
most promising mechanism for explaining mixing in the ejecta is a combination of the Rayleigh-
Taylor and Kelvin-Helmholtz instabilities. The Rayleigh-Taylor instability can arise in the su-
pernova envelope when the outwardly moving shock wave from the initial explosion propa-
gates through layers of the star with radial stratification of the heavy elements. As the shock
passes through the composition interfaces (i.e., oxygen/silicon, helium/carbon+oxygen and hy-
drogen/helium), a rarefaction front moves back into the star, resulting in an effective reversal of
gravity as low-density composition is pressure-accelerated into the underlying high-density com-
position. Any perturbation at the interface (i.e., velocity perturbation or spatial perturbation) will
get amplified by the Rayleigh-Taylor and Richtmyer-Meshkov instabilities and result in the over-
turning of light and heavy elements. This results in the mixing of heavy elements throughout
the envelope of the supernova remnant, with associated observational consequences in the light
curve. A further mixing will occur as the dense "tongues" of the heavy elements experience differ-
ential shear with the lighter elements, resulting in Kelvin-Helmholtz instabilities. Thus the fingers
of heavy and light fluid that developed initially get far more distorted and the mixing layer in-
creases its width. Eventually these instabilities become so nonlinear that the mixing layer appears
to become fully turbulent. The properties of turbulently mixed layers may be equally important in
understanding how interstellar clouds get reprocessed back into the interstellar medium. Efficient
mixing of cloud and inter-cloud matter has been shown to occur after clouds get crushed by the
interaction of strong shocks from supernova remnants [KMC90] [KMC94].

Here we study the mathematical properties of the incompressible model. Let us emphasize that
this model is widely used in industrial codes because of its physical relevance and its simplicity.
In order to introduce the mathematical setting and write the model equations, let us first introduce
some notations. The domain will be a 3–dimensional box T3 = R3/(2πZ)3 with periodic bound-
ary conditions in order to avoid additional difficulties (specific physical modeling and mathemat-
ical tools are needed to handle boundaries but here we choose not to deal with boundary layers
for sake of simplicity). The system of equations can be written as follows (cf.[MP94]):

∂U
∂t

+ U · ∇U +∇P− ν∆U −∇ · R = 0, (4.1)

∇ ·U = 0, (4.2)
∂k
∂t

+ U · ∇k−
cµ

2
k2

ε
|∇U +∇UT|2 −∇ ·

(
cµ

k2

ε
∇k
)
+ ε = 0, (4.3)

∂ε

∂t
+ U · ∇ε− c1

2
k|∇U +∇UT|2 −∇ ·

(
cε

k2

ε
∇ε

)
+ c2

ε2

k
= 0, (4.4)

U(0, x) = U0(x), k(0, x) = k0(x), ε(0, x) = ε0(x), (4.5)

where U := U(t, x) ∈ R3 denotes the large scale flow, k := k(t, x) the kinetic turbulent energy,
ε := ε(t, x) its dissipation rate. P = P(t, x) stands for the mean pressure of the fluid; as usual
in incompressible fluid models, it may be interpreted as a lagrangian multiplier of the constraint
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(4.27). Moreover R := R(t, x) denotes the Reynolds stress tensor given by,

R = −2
3

kI + cµ
k2

ε
(∇U +∇UT). (4.6)

Finally, ν denotes the constant positive molecular viscosity of the fluid, while c1, c2, cµ and cε

are given positive constants that allow to capture the large scale features of turbulence (typical
numerical values taken in realistic computations are: c1 = 0.126, c2 = 1.92, cµ = 0.09 and cε =
0.07).

For a survey about uniqueness and existence results concerning the Navier – Stokes equation
without the k–ε extension, we refer to [Lio96]. Some inequalities on k and ε can be found in
[Lew93] and [MP94]: they are extended here using the same ideas. There also exist some results on
a modified k–ε model (the so-called φ–θ model) given by Mohammadi and Lewandowski ([LM93])
when U is supposed to be known so that one has only to solve the equations on φ and θ (which
are very close to (4.28) and (4.29)); nonetheless the solutions which are found are more general
than the ones found here - in a weaker sense- and still unique. More recently, the elliptic problem
associated to k and ε has been studied ([GO01]): this problem arises in geophysics when one
intends to study stationary mean flows. Weak solutions have been found: the main difficulty is to
deal with the control of the singularity of the turbulent viscosity cµ

k2

ε , when k and ε both tend to
zero, as we will also see in this paper.

As far as we know, it is the first result on smooth solutions for the coupled equations (4.1)-(4.5).

The aim of this article is to provide a first study of this problem:

1. First we prove the following result for short enough time:
Theorem 4.2.1 (existence and uniqueness of smooth solutions).

The following two results hold:

(a) Let the initial data U0, k0, ε0 be in Hs for s > 4 + 3/2 (s ∈ N) with k0 and ε0 bounded away
from zero by a positive constant. Then there exists a positive T and a strong1 solution (U, k, ε) to
system (4.1)-(4.5) on [0, T] which belongs to C([0, T]; Hs(T3)) ∩ C1([0, T]; Hs−2(T3)), such
that k and ε remain positive on [0, T].

(b) Moreover let (U1,k1,ε1) and (U2,k2,ε2) be two solutions of system (4.1)-(4.5) in the sense of
distributions. We suppose that they belong to C([0, T]; H2(T3)) ∩ C1([0, T]; L2(T3)) and that
k1, ε1, k2 and ε2 are positive functions.

If U0
1 =U0

2 , k0
1= k0

2, ε0
1= ε0

2, then U1=U2, k1= k2, ε1= ε2 on [0, T].

2. Then we study a particular regime when turbulent diffusion effects are small compared with
dissipation and when the mean flow is supposed to be at rest (so that U is considered to be
identically 0). Rescaling the k− ε system is classical in order to obtain further information.
For instance S. Lasserre provides a study of the system depending on the couple of variables
(k, ln(kσk/σε /ε)) ([Las05]) to study compact solutions but here we want to stay as close as
possible to the original equations to preserve the parabolic behavior and also to be in ac-
cordance with physical data. We consider the following non dimensional system (see the

1By strong we mean a classical C1
t (C

2
x) solution
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beginning of subsection 4.2.4):

∂k
∂t
− η∇ ·

(
k2

ε
∇k
)
+ Aε = 0, (4.7)

∂ε

∂t
− η∇ ·

(
cε

cµ

k2

ε
∇ε

)
+ c2A

ε2

k
= 0, (4.8)

with A = ε0T/k0, η = cµ(k0)2T/(ε0L2), k0 denoting the typical kinetic turbulent energy, ε0

the rate of kinetic turbulent energy dissipation, T and L the typical time and length scales of
the physical situation.

We make an asymptotic expansion with respect to η for this model since for some typical physical
set of values, η is negligible while A’s value is of order 1. The difference between the solution (k,ε)
of equations (4.7)–(4.8) and the first terms of its η expansion (k0 + ηk1, ε0 + ηε1) can be controlled
through the following result:
Theorem 4.2.2 (Asymptotic expansion). Let k0, ε0 belong to H7(T3)) and be bounded away from
zero by positive constants, k and ε be positive solutions of (4.7) and (4.8) bounded away from zero in
C1([0, T]; H5(T3)). Then there exist a positive time T′ ≤ T and a constant C such that for all t ≤ T′:

‖k− k0 − ηk1‖L∞(T3)(t) ≤ C η
3
2 , ‖ε− ε0 − ηε1‖L∞(T3)(t) ≤ C η

3
2 ,

where k0, k1, ε0, ε1 are solutions of the following ordinary differential and partial differential equations sys-
tems:

1. Zero-th order system

∂k0

∂t
+ Aε0 = 0, k0(0, .) = k0(.),

∂ε0

∂t
+ c2A

ε2
0

k0
= 0, ε0(0, .) = ε0(.).

2. First order system

∂k1

∂t
−∇ ·

(
k2

0
ε0
∇k0

)
+ Aε1 = 0, k1(0, .) = 0,

∂ε1

∂t
−∇ ·

(
cε

cµ

k2
0

ε0
∇ε0

)
+ c2A

(
2ε0ε1

k0
− ε2

0k1

k2
0

)
= 0, ε1(0, .) = 0.

From a mathematical viewpoint, the main difficulty in the proof of Theorems 1 and 2 is the control
of the positivity of k and ε since the mathematical model degenerates when k or ε vanish: because
of the ε (resp. c2ε2/k) term in equation (4.28) (resp.(4.29)) we cannot ensure strict positivity of k
(resp. ε).

Three classical mathematical tools are used all along the article to carry on the study. The first
one is the maximum principle for parabolic PDE’s. The second one is the use of energy methods
for parabolic PDE’s to obtain a priori estimates. The last one is the use of Sobolev embeddings
(see [Bre83] and [Tay96a]) and Gagliardo-Niremberg inequalities in order to control the different
norms. Since we need smoothness of the solutions in order to be able to use these inequalities, our
study is for data which belong to Hs with s > 4 + 3/2 so that the L∞-norms of the gradients of the
data are bounded by the Hs-norms.



56 Chapter 4. RANS models: theoretical results and application to turbulent supersonic flows

In subsection 4.2.2 we give an a priori estimate and in subsection 4.2.3, we solve the problem of
existence and uniqueness of solutions of (4.26)–(4.36), proving the first theorem; in Section 4.2.4
we perform the expansion with respect to η and prove the second theorem. All the results are
given for small times since there is no hope in controlling the strict positivity of k and ε for long
times.

4.2.2 Preliminary results

We establish a priori estimates on U, k and ε solutions of system (4.26)–(4.36). In all the com-
putations, we consider solutions (U, k, ε) belonging to C([0, T]; Hs(T3)) ∩ C1([0, T]; Hs−2(T3)) for
some T > 0 for s integer such that s > 4 + 3/2 (and consequently to C2([0, T]; Hs−4(T3)) at least).
All the integrals are computed on T3; k and ε are supposed to be strictly positive quantities for
t ∈ [0, T]. We systemically use Sobolev embedding Hs(T3) ↪→ Cs−2(T3) so that the (s− 2)th space
derivatives of U, k and ε are L∞–bounded by the Hs norm of U, k and ε (see [Bre83]) in dimension
3.

A priori estimates on the Navier–Stokes equations

We obtain the following estimates on smooth solutions of the incompressible Navier–Stokes equa-
tion:
Property 4.2.1 (Estimates on U). Let U, k and ε be solutions of (4.26)-(4.36) which belong to C([0, T]; Hs(T3))∩
C1([0, T]; Hs−2(T3)), with k and ε strictly positive and s ≥ 4 + 3/2. We have:

d
dt
||U||2Hs ≤ C Q4s+8(U, k, ε)(t),

where C is a generic constant and Q1, . . . , Qn are functions defined by:

Q1(U, k, ε)(t) = 1+||U(t)||Hs + ||k(t)||Hs+||ε(t)||Hs+
1

kmin(t)
+

1
εmin(t)

,

Qn = (Q1)
n ,

where we note

kmin(t) = min
x∈T3

k(t, x), kmax(t) = max
x∈T3,0≤s≤t

k(s, x),

εmin(t) = min
x∈T3,0≤s≤t

ε(s, x), εmax(t) = max
x∈T3,0≤s≤t

(ε(s, x)),

and Dih denote the ith derivative of a function h.

A priori estimates on k and ε

We are now able to control positive lower bounds k and ε through the following lemma.
Lemma 4.2.1 (Maximum principle). Let U, k and ε be solutions of System (4.26)-(4.36) which belong
to C([0, T]; Hs(T3)) ∩ C1([0, T]; Hs−2(T3)), with k and ε bounded below by a strictly positive constant.
Let k0, ε0 belong to Hs(T3)) and be bounded away from zero by strictly positive constants. We have for all
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t ≥ 0:

1
kmin(t)

− 1
kmin(0)

≤ C
t

k2
min(t)

sup
0≤t′≤t

||ε(t′, .)||Hs ,

1
εmin(t)

− 1
εmin(0)

≤ C
t

kmin(t)ε2
min(t)

sup
0≤t′≤t

||ε(t′, .)||2Hs .

In addition, we obtain the following estimates for k and ε (strict positivity of both k and ε is neces-
sary for the inequalities).
Property 4.2.2 (a priori estimates on k and ε). Let U, k and ε be solutions of (4.26)-(4.36) which belong
to C([0, T]; Hs(T3)) ∩ C1([0, T]; Hs−2(T3)), with k and ε strictly positive and s ≥ 4 + 3/2. We have:

d
dt
||k||2Hs ≤ C Q4s+9(U, k, ε),

d
dt
||ε||2Hs ≤ C Q4s+9(U, k, ε).

Positive lower bounds for k and ε

We establish an a priori estimate for the turbulent fields k and ε and then prove that solutions of
the system can be controlled locally in time.
Property 4.2.3. Let s ∈ N such that s ≥ 4 + 3/2 and U, k and ε be smooth solutions of (4.26)–(4.36) in
C([0, T]; Hs(T3)) ∩ C1([0, T]; Hs−2(T3)). Let k0, ε0 belong to Hs(T3)) and be bounded away from zero
by strictly positive constants. Then there exists a positive time T′ (T′ ≤ T) such that k, ε remain strictly
positive on [0, T′] (bounded below by a strictly positive constant) and such that U, k and ε have finite Hs

norm.

4.2.3 Existence and uniqueness of solutions for the whole system

Thanks to the ideas used to obtain the a priori estimates, we are able to prove Theorem 4.3.1.

Existence:

We only give a sketch of proof for the existence. We use an iterative method to obtain the result.
We note Un, kn and εn (kn and εn are supposed to be strictly positive) the n− th iterate of U, k and
ε which are defined on [0, tn]: the time of existence depends on n; we have to prove that it can be
bounded below. U0, k0 and ε0 are the initial data defined above.

Iterative process We obtain Un+1, kn+1 and εn+1 through the following iterative process:

∂Un+1

∂t
+ Un · ∇Un+1 +∇Pn+1 − ν∆Un+1 =

∇ ·
(
−2

3
kn I + cµ

(kn)2

εn (∇Un+1 +∇Un+1T
)
)

(4.9)

∇ ·Un+1 = 0 (4.10)
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∂kn+1

∂t
+ Un+1 · ∇kn+1 −∇ ·

(
cµ
(kn)2

εn ∇kn+1
)
=

cµ

2
(kn)2

εn |∇Un+1 +∇Un+1T|2 − εn (4.11)

∂εn+1

∂t
+ Un+1 · ∇εn+1 −∇ ·

(
cε
(kn)2

εn ∇εn+1

)
=

c1

2
kn|∇Un+1 +∇Un+1T|2 − c2

(εn)2

kn (4.12)

Un+1(0, x) = U0(x) (4.13)
kn+1(0, x) = k0(x) (4.14)
εn+1(0, x) = ε0(x) (4.15)

In the article [Mat08], we prove that all iterates exist and can be controlled through the previous
estimates.

Passing to the limit Finally, it can be proven by decreasing the time T, if necessary, that the
iterative scheme converges using that for this time,

∑
n≥1

(
||Un −Un+1||2L∞([0,T];L2) + ||ε

n − εn+1||2L∞([0,T];L2)

+||kn − kn+1||2L∞([0,T];L2)

)
< +∞. (4.16)

(see the proof below).

The convergence of the series ensures that Un, kn and εn converge in L∞([0, T]; L2) and conse-
quently in C([0, T]; L2) since all the terms are continuous. They also converge in C([0, T]; Hs′) for
s′ < s as they are bounded in L∞([0, T]; Hs) (one can prove that using Gagliardo-Niremberg in-
equality -see [Maj84]-) Using classical arguments on the regularity of Sobolev spaces (see [Maj84]
or [Ser96a])) and distribution theory, we see that the limits of the sequences Un, kn and εn are so-
lutions of the problem in C([0, T]; Hs(T3))∩ C1([0, T]; Hs−2(T3)): for instance, since Hs′ and Hs′−1

are algebra for s′ near enough s > 4 + 3
2 , in the k equation we get that Un+1 · ∇kn+1 converges in

L∞([0, T]; Hs′−1)) towards U · ∇k and consequently converges in a distribution sense.

Concerning the pressure term, it can be recovered from the Navier–Stokes equations as usual (see
[CF88] for instance: the series of pressure is also bounded since U, k and ε are bounded). Therefore,
the theorem is finally proven.

We can prove that the series is indeed convergent for T small enough

Uniqueness

As the solutions are regular enough (they belong indeed to the functional space C([0, T]; H2(T3))∩
C1([0, T]; L2(T3))), the U · ∇U term does not prevent us from proving uniqueness. So adapting
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the proofs of uniqueness of parabolic equations (see [Tay96b] and Navier–Stokes equations (see
[Lio96]) leads to uniqueness.

4.2.4 Study of a simplified k–ε model

Here we simplify the model by assuming the system is initially at rest so that U = 0 - as it is the
case for instance in the early development of a Rayleigh–Taylor or Richtmyer–Meshkov mixing
layer (see [DLY99])-. Consequently we only take account of the following simplified k–ε equations:

∂k
∂t
−∇x ·

(
cµ

k2

ε
∇k
)
+ ε = 0, k(0, x) = k0(x) ∈ H7(T3), (4.17)

∂ε

∂t
−∇ ·

(
cε

k2

ε
∇ε

)
+ c2

ε2

k
= 0, ε(0, x) = ε0(x) ∈ H7(T3), (4.18)

We make a dimensional analysis which leads us to compute an asymptotic expansion.

Dimensional analysis

We analyze the different terms of the equations by making a change of variables:

• x ↪→ x̃ =
x
L

with L: typical length scale

• t ↪→ t̃ =
t
T

with T: typical time scale

• ε ↪→ ε̃ =
ε

ε0 with ε0: typical rate of dissipation of turbulent energy scale

• k ↪→ k̃ =
k
k0 with k0: typical turbulent energy scale

Thanks to the change of variable we obtain:

∂k
∂t
− η∇.

(
k2

ε
∇k
)
+ Aε = 0 ,

∂ε

∂t
− η∇ ·

(
cε

cµ

k2

ε
∇ε

)
+ c2A

ε2

k
= 0,

with: A =
ε0T
k0 and η = cµ

(k0)2T
ε0L2 dimensionless numbers.

For instance we have the following numerical data (in c.g.s. system) for Rayleigh-Taylor instabili-
ties in dense hot plasma (see [Tha+00]: k0 = 1016cm2/s,T = 10−3s, A = 0.5, ε0 = 5.1018cm2/s3, L =
107cm, η ∼ 10−5

As it can be noticed η is small for the physical applications we study. This is why we expand ε
and k in formal series (see next subsubsection).

We can also write η as: cµ A(
(k0)

3
2

ε0L
)2 with

(k0)
3
2

ε0 representing the typical length of turbulent vor-
tices (see [LB03]). So a small η is equivalent to neglect diffusion of vortices because they are too

small. Another equivalent approach is to say (writing η as
cµ

A
× (T

√
k0

L
)2) that the typical time of

creation of the vortices
L√
k0

is large enough so that vortices cannot diffuse turbulence.
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Bounds for k and ε

We obtain bounds for the solutions of the simplified system which are independent of η and which
allow us to control nonlinear terms.
Property 4.2.4 (Maximum principle for k and ε). Let k0, ε0 belong to H7(T3) and be bounded below
by a strictly positive constant. Let k and ε be strictly positive solutions of (4.7) and (4.8) and belong to
C1([0, T]; H5(T3)). Then we get that ∀x ∈ T3 and ∀t ∈ [0, T]

k(t, x) ≤ kmax(0)

ε(t, x) ≤ εmax(0)

k(t, x) ≥ kmin(0)− A εmax(0) t

ε(t, x) ≥ εmin(0)/
(

1− c2
εmin(0)
εmax(0)

log
(

1− t A εmax(0)
kmin(0)

))
Let us observe that we obtain a time of strict positivity T independent of η whose value is kmin/(Aεmax)
and for which k and ε remain positive. Nonetheless this time is of the same order of the typical
time (see numerical data above).

Asymptotic analysis of the system

The values used in physics lead to make an asymptotic expansion in η−series (η tends to zero) in
order to approach the real solution; we write k and ε as:

k =
∞

∑
n=0

knηn, ε =
∞

∑
n=0

εnηn.

We first establish properties on the differential systems obtained by expanding in η−series. Then
the real solution is compared with the truncated series. Moreover we obtain that the more η
decreases the more the real solution remains positive. Replacing k and ε by their expansion we
get the following systems. We limit our study to second order even if it can be extended further:
although the main result concerns only zero-th and first order systems, we need the second order
to prove it.

Zero-th order system

∂k0

∂t
+ Aε0 = 0, k0(0, .) = k0(.),

∂ε0

∂t
+ c2A

ε2
0

k0
= 0, ε0(0, .) = ε0(.).

First order system

∂k1

∂t
−∇ ·

(
k2

0
ε0
∇k0

)
+ Aε1 = 0, k1(0, .) = 0,

∂ε1

∂t
−∇ ·

(
cε

cµ

k2
0

ε0
∇ε0

)
+ c2A

(
2ε0ε1

k0
− ε2

0k1

k2
0

)
= 0, ε1(0, .) = 0.
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Second order system

∂k2

∂t
−∇ ·

(
k2

0
ε0
∇k1 +

2k0k1

ε0
∇k0 −

k2
0ε1

ε2
0
∇k0

)
+ Aε2 = 0,

∂ε2

∂t
− cε

cµ
∇ ·

(
k2

0
ε0
∇ε1 +

2k0k1

ε0
∇ε0 −

k2
0ε1

ε2
0
∇ε0

)
+c2A

(
2ε0ε2

k0
− ε2

0k2

k2
0
− 2

ε0ε1k1

k2
0

+
ε2

0k2
1

k3
0

+
ε2

1
k0

)
= 0,

k2(0, .) = 0, ε2(0, .) = 0.

After some computations we obtain the following solutions of these systems.
Property 4.2.5 (Solutions of the systems). Let k0, ε0 belong to H7 and be strictly positive. Let’s define
k0 and ε0 as:

k0(t, x) = k0(x)
(

1 + (c2 − 1)A
ε0(x)
k0(x)

t
) 1

1−c2

ε0(t, x) = ε0(x)
(

1 + (c2 − 1)A
ε0(x)
k0(x)

t
) c2

1−c2

k0 et ε0 are solutions of the zero-order system, belong to C∞([0,∞[; H7(R)) and remain strictly positive.
k1 and ε1 exist, are unique and belong to C∞([0,∞]; H5(R)). Moreover their growth and those of their
derivatives is at worst polynomial in time.
k2 and ε2 exist, are unique and belong to C∞([0,∞]; H3(R)). Moreover their growth and those of their
derivatives is at worst polynomial in time.

A priori estimates

We now compare k and ε with their second order expansion with respect to η in H2-norm. Let us
define

K = k−
2

∑
n=0

ηnkn and E = ε−
2

∑
n=0

ηnεn.

We obtain the following equations for K and E:

∂K
∂t

+ η∇ · (F1) + AE = 0 , K(0, .) = 0 (4.19)

∂E
∂t

+
cε

cµ
η∇ · (F2) + c2A× (F3) = 0 , E(0, .) = 0 (4.20)

with:

(F1) =

(
k2

0
ε0
∇k0 + η

(
k2

0
ε0
∇k1 + (

2k0k1

ε0
− k2

0ε1

ε2
0
)∇k0

)
− k2

ε
∇k
)

,

(F2) =

(
k2

0
ε0
∇ε0 + η

(
k2

0
ε0
∇ε1 +

2k0k1

ε0
∇ε0 −

k2
0ε1

ε2
0
∇ε0

)
− k2

ε
∇ε

)
,
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(F3) =

(
ε2

k
− ε2

0
k0

+ η
( ε2

0k1

k2
0
− 2ε0ε1

k0

)
+η2

( ε2
0k2

k2
0
− ε2

1
k0
− 2ε0ε2

k0
+ 2

ε0ε1k1

k2
0
− ε2

0k2
1

k3
0

))
.

We define T 7→ B(T) by

B(T)−1 = inf
0≤t≤T,x∈T3

(k(t, x), k0(t, x), ε(t, x), ε0(t, x))

which is bounded as k and ε are bounded and strictly positive on [0, T].

We assess the norm of the different terms to obtain energy estimates or the whole system. To
simplify computations we suppose η < 1 (η tends to zero..). We get:
Lemma 4.2.2. Let k0, ε0 belong to H7 and be strictly positive. Let k and ε be strictly positive solutions
of (4.7) and (4.8) and belong to C1([0, T]; H5(T3)). There exists a positive function f depending in a
polynomial way of time 2 but independent of η such that:

|(F1)(t, x)|+ |(F2)(t, x)| ≤ B(T)5 f (T)
[
(‖K‖H2 + ‖E‖H2)6 + η2]

|D1(F1)(t, x)|+ |D1(F2)(t, x)| ≤ B(T)5 f (T)
[

η2

+
(

1 + |D2K(t, x)|+ |D2E(t, x)|
)

×
(
||K||H2 + ||E||H2

)7
]

|(F3)(t, x)|+ |D1(F3)(t, x)| ≤ B(T)5 f (T)
[(
‖K‖H2 + ‖E‖H2

)6
+ η3

]
|D2(F3)(t, x)| ≤ B(T)5 f (T)

[
η3

+
(

1 + |D2K|(t, x) + |D2E(t, x)|
)

×
(
‖K‖H2 + ‖E‖H2

)7
]

Property 4.2.6 ( H2 estimates). Let k0, ε0 belong to H7 and be strictly positive. Let k and ε be strictly posi-
tive solutions of (4.7) and (4.8) and belong to C1([0, T]; H5(T3)). There exists f depending in a polynomial
way of time but independent of η such that:

d
dt
||D2K||2L2 ≤ B(T)5 f (t)

[(
‖K‖2

H2 + ‖E‖2
H2

)9
+ η3

]
, (4.21)

d
dt
||D2E||2L2 ≤ B(T)5 f (t)

[(
‖K‖2

H2 + ‖E‖2
H2

)9
+ η3

]
, (4.22)

d
dt
(‖K‖2

H2 + ‖E‖2
H2) ≤ B(T)5 f (t)

[(
‖K‖2

H2 + ‖E‖2
H2

)9
+ η3

]
. (4.23)

Thanks to these results one obtains the following proof for the theorem:

2by this we mean f ≤ C(1 + t)n for some integer n
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Proof of theorem 4.2.2 Let’s define S(t) = ‖K‖2
H2(t) + ‖E‖2

H2(t). Note that S(0) = 0. Thanks
to Proposition 4.2.6, there exists f function of time bounded by C(1 + t)n such that we have (we
recall that we have already supposed that η ≤ 1):

S′(t) ≤ B(T)5 f (t)
[
S(t)9 + η3]

≤ H(T)
[
S(t)9 + η3]

≤ H(T)
[
S(t)9 + 1

]
(4.24)

with H(T) = B(T)5 sup0≤t≤T f (t).

Let T1 be the first time such as S(T1) = 1 (T1 is independent of η thanks to inequality 4.24). For all
t ≤ T1, S9(t) ≤ S(t) and S′(t) ≤ H(T)

[
S(t) + η3] so that,

∀t ≤ T1 , S(t) ≤ η3(exp(H(T)t)− 1) (using Gronwall lemma), (4.25)

So we get:

∀t ≤ T1 , ‖K‖H2(t) ≤
√

exp(H(T)t)− 1 η
3
2 ,

∀t ≤ T1 , ‖E‖H2(t) ≤
√

exp(H(T)t)− 1 η
3
2 .

Then using Sobolev embeddings, as H2(T3) ↪→ L∞(T3), one gets:

∀t ≤ T1 , ‖k− k0 − ηk1 − η2k2‖∞(t) ≤ C
√

exp(H(T)t)− 1 η
3
2 ≤ C η

3
2

∀t ≤ T1 , ‖ε− ε0 − ηε1 − η2ε2‖∞(t) ≤ C
√

exp(H(T)t)− 1 η
3
2 ≤ C η

3
2

Using the fact that k2 and ε2 are bounded by a polynomial function of time which are bounded on
[0, T](see prop 4.2.5), one gets the theorem.

4.3 Theoretical results for some RANS models: the k−ω model

In this section we prove existence and uniqueness of solutions to the k−ω model.

The main difference with the results on the k− ε result is that we have to deal with infinite space
so that the control of the solutions is trickier for the maximum principle. Other difficulties are
tackled as it was done for the k − ε. The original article was done with X. Roynard a former
masters student ([MR16]). Since the way of constructing solutions is very similar to the one of the
k− ε model we only recall the result.

Turbulence is a key-point for modeling complex flows in aerodynamics ([Cou89]). Under tur-
bulence, fluxes and viscosity can be strongly modified. There are different level of complex-
ity in turbulence modeling from the algebraic models which introduce a variable viscosity (e.g.
the Baldwin-Lomax model ([BB90])) on the Navier-Stokes equations to the more complex one-
equation models (e.g. Spalart and Allmaras model([SA92]) and the two-equations models (e.g.
k− ε and k−ω models) and even second-order models (also called Stress-Transport models).

In this work we deal with the k−ω model because of its relevance for aerodynamics applications
([Wil94]; [Wil93]; [Wil08]; [Men92]) and because no mathematical results are known up to now for
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this model. In this context we focus on the local well posedness of the k − ω model in the three
dimensional space R3.

Here we study the mathematical properties of the incompressible model. Let us emphasize that
this model is widely used in industrial codes because of its physical relevance and its simplicity.
In order to introduce the mathematical setting and write the model equations, let us first introduce
some notations. The domain will be the 3-dimensional space R3. The system of equations can be
written as follows ([Wil94]).

∂U
∂t

+ U · ∇U +∇P− ν∆U −∇ · R = 0, (4.26)

∇ ·U = 0, (4.27)

∂k
∂t

+ U · ∇k− k
ω

∣∣∣∣∇U +∇UT

2

∣∣∣∣2 −∇ · ((ν + σνT)∇k) + βωk = 0, (4.28)

∂ω

∂t
+ U · ∇ω−

∣∣∣∣∇U +∇UT

2

∣∣∣∣2 −∇ · ((ν + σνT)∇ω) + β?ω2 = 0, (4.29)

with the boundary conditions kb and ωb:

∀t ∈ R+, U(t, x) −→
‖x‖→+∞

0, (4.30)

k(t, x) −→
‖x‖→+∞

kb, (4.31)

ω(t, x) −→
‖x‖→+∞

ωb, (4.32)

and the initial data U0, k0 and ω0 (which satisfy the previous conditions, take t = 0):

∀x ∈ R3, U(0, x) = U0(x), (4.33)

k(0, x) = k0(x), (4.34)

ω(0, x) = ω0(x), (4.35)

where U = U(t, x) ∈ R3 denotes the large scale flow, k = k(t, x) the kinetic turbulent energy and
ω = ω(t, x) a characteristic frequency of turbulence. P = P(t, x) stands for the mean pressure of
the fluid; as usual in incompressible fluid models, it may be interpreted as a Lagrangian multiplier
of the constraint (4.27). And there is a constant C > 0 such that k0 > C, ω0 > C, kb > C and
ωb > C. Moreover R = R(t, x) denotes the Reynolds stress tensor given by,

R = −2
3

kI + νT

(
∇U +∇UT

2

)
. (4.36)

Finally, ν denotes the constant positive molecular viscosity of the fluid, while σ =
1
2

, νT =
k
ω

, and
β and β? are given positive constants that allow to capture the large scale features of turbulence
(typical numerical values taken in realistic computations are β = 9/125 and β? = 9/100 according
to [Wil94]).

As far as we know, it was the first result for smooth solutions for the coupled equations (4.26)-
(4.36) on the whole 3-D domain.
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The aim of this paper is to provide a first study of this problem : we prove the following result for
short enough time :
Theorem 4.3.1 (existence and uniqueness of smooth solutions).

The following two results holds :

(a) Let the initial data U0, k0 and ω0 be in Hs for s > 4 + 3/2 (s ∈ N) with k0 and ω0 bounded
away from zero by a positive constant. And the boundary conditions kb and ωb be strictly positive
constants.

Then there exists a positive T and a strong3 solution (U, k− kb, ω−ωb) to system (4.26)-(4.36) on
[0, T] which belongs to C([0, T]; Hs(R3)) ∩ C1([0, T]; Hs−2(R3)), such that k and ω − ω remain
positive on [0, T].

(b) Moreover let (U1, k1 − kb, ω1 − ωb) and (U2, k2 − kb, ω2 − ωb) be two solutions of system (4.26)-
(4.36) in the sense of distributions. We suppose that they belong to C([0, T]; Hs(R3))∩C1([0, T]; Hs−2(R3))
and that k1, ω1, k2 and ω2 are positive functions.

If U0
1 = U0

2 , k0
1 = k0

2 and ω0
1 = ω0

2, then U1 = U2 , k1 = k2 and ω1 = ω2.

From a mathematical viewpoint, the main difficulty in the proof of Theorem 4.3.1 is the control of
positivity of k and ω since the mathematical model degenerates when k or ω vanishes: because of
the βωk (resp. β?ω2) term in equation (4.28) (resp. (4.29)) we cannot ensure strict positivity of k
(resp. ω).

Three classical mathematical tools are used all along the article to carry on the study. The first
one is the maximum principle for parabolic PDE’s. The second one is the use of energy methods
for parabolic PDE’s to obtain a priori estimates. The last one is the use of Sobolev embeddings
(see [Bre83] and [Tay96a]) and Gagliardo-Nirenberg inequalities in order to control the different
norms. Since we need smoothness of the solutions in order to be able to use these inequalities, our
study is for data which belong to Hs with s > 4 + 3/2 so that the L∞-norms of the gradients of the
data are bounded by the Hs-norms (practically s is an integer such that s > 6).

4.4 A numerical implementation of a modified k−ω model

We now show some numerics around turbulence. The results were presented at the Multimat
Conference in 2013 in San Francisco.

4.4.1 Introduction and model

Since we are interested in atmospheric reentry at high Mach numbers, we need to use a compress-
ible RANS model. We chose to use the k−ω Wilcox model of 1998 ([Wil08]) to assess its efficiency
for supersonic test cases. The main difference with the model presented just before is that we need
to solve the mass equation on density ρ. The global system to solve is the following

3By strong we mean a classical C1
t (C

2
x) solution
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∂t(ρ) +∇ · (ρU) = 0, (4.37)

∂t(ρU) +∇ (ρU ⊗U) +∇
(

P +
2
3

ρk
)

= ∇ ·
[

ρ (ν + νt)

(
∇U +∇UT − 2

3
(∇ ·U)I

)]
, (4.38)

∂t(ρE) +∇
((

ρE + P +
2
3

ρk
)

U
)
−∇ ·

((
λ +

ρνtCp

Prt

)
∇T
)

= ∇ ·
[

ρ (ν + νt)

(
∇U +∇UT − 2

3
(∇ ·U)I

)
U
]
+∇ · [ρ (ν + σ∗νt)∇k] , (4.39)

∂t(ρk) +∇ · (ρkU) = − fcρR : ∇U − β∗newρkω +∇ · [ρ (ν + σ∗νt)∇k] , (4.40)
∂t(ρω) +∇ · (ρωU) = −α fcρR : ∇U − βnewρω2 +∇ · [ρ (ν + σνt)∇ω] , (4.41)

νt = α∗
k
ω

, ν =
µ

ρ
, (4.42)

S =
∇U +∇UT

2
, Ω =

∇U −∇UT

2
, R = νt

(
2S− 2

3
(∇ ·U)I

)
− 2

3
kI, (4.43)

with the following constants:

fc = 1.7, Ret =
k

νω
, σ = σ∗ = 0.5, β0 =

9
125

, β∗0 =
9

100
, α∗0 =

1
3

β0 , α0 =
1
9

, (4.44)

α∗ =
α∗0 + Ret/Rk

1 + Ret/Rk
, α =

13
25

α0 + (Ret/Rω)

1 + (Ret/Rω)
(α∗)−1, (4.45)

β = β0
4/15 + (Ret/Rβ)

4

1 + (Ret/Rβ)4 fβ, β∗ = β∗0 fβ, (4.46)

β∗new = β∗ − 1.5 max(Ma2
t −Ma2

t0
, 0)β with Mat0 = 0.5 (4.47)

βnew = β(1 + 1.5 max(Ma2
t −Ma2

t0
, 0)) (4.48)

Rβ = 8 , Rk = 6 , Rω = 6 (4.49)

fβ =
1 + 70χω

1 + 80χω
with χω =

∣∣∣∣ (Ω⊗Ω) : S
(β0ω)3

∣∣∣∣ , (4.50)

f ∗β =


1 , χk ≤ 0
1 + 680χ2

k
1 + 400χk

, χk ≥ 0
, χk =

1
ω3∇k∇ω, (4.51)

Prt = 0.7. (4.52)

As one can see corrections on turbulent the Reynolds number (Ret) are added to the basic model
in order to capture as best as possible the boundary layer. Besides we modified the production
term by a factor fc to improve the results. Some corrections are also added for supersonic flows
([Wil08]) by taking account of the turbulent Mach number. As usual what is difficult to tackle with
with such a complex model is the validation of all terms especially when turbulence becomes a
non linear phenomena.
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4.4.2 Solving and Numerical results

Solving

The solving of these equations is based on a Roe solver (finite volumes) developed at the French
Atomic Agency. We want to deal with stationary test cases so we use a Time-Marching method
([And06]; [Wil08]).

Numerical results

What is important in aerodynamics is the assessment of the following quantities at the boundaries
on the object:

• Cp defined as:

Cp =
P− P∞
1
2

ρ∞V2
∞

,

the pressure coefficient (P∞: pressure far from the ramp, V∞: velocity far from the ramp, ρ∞:
density far from the ramp)

• the Stanton number defined as:

St =
λ∇T · −→n

ρ∞V∞C
(

T∞(1 +
γ−1

2 M2
∞)− Tp

) ,

which assess thermal fluxes (M∞: Mach number far from the ramp, T∞: temperature far
from the ramp).

The following problem was solved (ramp of Delery (1990):see [DC91]):

�������������������������
�������������������������
�������������������������
�������������������������

35
deg

Mach 5

Pression 5932 SI

Densite 0.2489 SI 

FIGURE 4.1: Ramp at Mach 5

It is a ramp of compression which creates a zone of recirculation when the geometry changes.
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FIGURE 4.2: Cp on the wall.

In figure 4.2 and 4.3, we compare the pressure coefficient for the k − ω model in 2D and in 3D
(several cuts in green) with results from the k− ε model and experimental data ("données expéri-
mentales"). As one can see, results with the k− ω model agree well with the experiments on this
test case.
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FIGURE 4.3: Stanton number at the wall (logarithm scale).

4.4.3 Conclusions and perspectives

The aim of this chapter is just to show that we have developed and assessed some RANS models
in our code at the French atomic agency. The complex part is to come in next chapters: we want
to couple these widely used models with ablation and roughness.
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Chapter 5

Roughness and ablation

During a reentry phase, an object which is going to the ground will encounter very high fluxes.
To be able to land, the object has to be protected through a TPS (Thermal Protection System). Se-
lection and thickness definition of the Thermal Protection Material (TPM) are key performance
parameters in TPS design. Prediction inaccuracies can be fatal for the re-entry vehicle. In this
chapter we show the two sides of the problem. From a solid viewpoint we want to be able to de-
scribe the ablation according to the fluxes and chemistry seen by the solid. From a fluid viewpoint
we want to know the impact of ablation on the fluid through the modification of the surface. It
is generally admitted that roughness of the TPS surface can increase by a factor 3 the fluxes and
turbulence can also multiply fluxes by the same factor. So a gain up to 9 can be obtained, putting
in danger the re-entry vehicle. In a first section we study ablation (at a laminar level; note that a
thesis for the transition regime (X. Lamboley at LCTS) has begun after the thesis of C. Levet). in
a second section we study the impact of roughnesses on the the fluxes for supersonic/hypersonic
re-entry regimes.

5.1 Interaction with the wall: the solid viewpoint (ablation)

In this section we rapidly present some results around ablation ([Vig+10]; [DAA13]) which were
done during the Phd of C. Levet (2013-20116) at the LCTS in Bordeaux ([Lev17]; [Lev+17]).

5.1.1 Introduction

Carbon-fiber reinforced carbon composites (CFRC, CFC, Carbon/ Carbon) are dedicated to high
technology structural and thermal applications in aggressive environments. They are used as ther-
mostructural protections in various applications such as atmospheric re-entry, rocket propulsion,
aircraft braking systems and plasma facing elements of the Tokamak. In the first two applications,
the composites are progressively destroyed by oxidation, nitridation, sublimation, and, up to a
certain extent, thermo-mechanical erosion. These phenomena are collected in the generic term
of ablation. They are usually globally endothermic, transforming the thermal energy into mass
loss and surface recession, whilst the remaining solid material insulates the vehicle substructure.
Selection and thickness definition of the Thermal Protection Material (TPM) are key performance
parameters in Thermal Protection System (TPS) design.
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5.1.2 Some experimental results

In this subsection, we briefly report new data to improve the understanding of the behavior of
dense composites during atmospheric re-entry and to feed multi-scale models of ablation. In
order to reproduce the aero-thermodynamic environment of atmospheric entry in the boundary
layer, the subsonic 1.2 MW Inductively Coupled Plasma (ICP) torch of the Plasmatron facility of
the von Karman Institute (VKI) has been used. It allows the use of a wide range of pressures and
heat fluxes ([Lev+17]). For instance under oxidation we got the following results at the facility:

FIGURE 5.1: Samples of composites before/after oxidation at the plasmatron



72 Chapter 5. Roughness and ablation

FIGURE 5.2: SEM (Scanning Electron Microscopy) pictures of fiber bundles perpen-
dicular to the surface for ST(standard) and HS(hemispheric) samples ablated under

air. A scheme of the observations locations on HS samples is presented in a)
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What can be seen in these kind of experiments which were done in supersonic conditions for the
flow is that roughnesses can be very different according to the chemistry which is at stake in the
flow. We will see later that the form of roughnesses can influence the increase in fluxes (in next
chapter). A code (AMA) has been developed during the Phd of C. Levet to emulate the process of
ablation based on the works of G. Vignoles at LCTS (Bordeaux). This code is still being improved
during the Phd of X. Lamboley.

5.2 Interaction with the wall: the fluid viewpoint (roughness)

We briefly present some results that were obtained during the master of F. Danvin (CEA) with the
help of M. Olazabal-Loumé (CEA) and B. Aupoix (ONERA). The results were shown at EUCASS
2017 ([Ola+17]).

5.2.1 Introduction

During a supersonic/hypersonic reentry flight, heating may damage the vehicle body causing
rough surface state. In the low atmospheric layers, roughness effects on the turbulent flows have
to be accounted for in CFD (Computational Fluid Dynamics) code simulations. Indeed, roughness
is known to increase the skin friction and heat flux on the wall causing a dramatic modification
of the aerodynamic coefficients. Usually, for such applications, turbulence effects are modeled
using RANS (Reynold Averaged Navier-Stokes) approaches. Two-equation models like the k−ω
Shear Stress Transport (SST) ([Men92]) model are being commonly used in aeronautic applications
requiring accurate treatment of the near wall turbulent flow. For studying the roughness effect
with numerical simulation, different approaches have been developed. In the direct numerical
simulation (DNS), roughness elements have to be included in the initial geometry. The accuracy of
the flow simulation around them and computational cost may be prohibiting for complex and /or
huge size geometries. The discrete element method consists in directly include some roughness
corrective terms into the Navier-Stokes or boundary layer equations. This method includes a
form drag term and a blockage coefficient as a ratio between the volume accessible by the fluid
over the total volume. It accounts for corrections related to both drag and heat-transfer around the
roughness elements. This method has been widely used to describe the interaction between well-
defined distributed roughness patterns and the turbulent flow. Nevertheless, it needs considerable
modifications of the original equations. The equivalent sand-grain approach consists in bringing
any kind of 3-D roughness to an equivalent sand-grain height to reproduce a turbulence level in
the skin friction. As this method is non intrusive for an existing code, it appears to be the most
suitable for industrial purposes. Several formulations were developed to be applied to RANS
turbulence models. Such corrections for the k−ω SST model were recently proposed to take into
account roughness effects on the skin friction and thermal flux ([Aup15b]; [Aup15a]). They were
widely validated on low Mach number experiment data. This paper presents the first application
of these corrections to hypersonic flows using a Navier-Stokes (N-S) code.



74 Chapter 5. Roughness and ablation

5.2.2 Turbulent flow modeling on a rough wall

Equivalent sand grain approach

Nikuradse’s experiment study ([Nik50]) , on the effect of distributed sand grain roughness on
pressure loss in cylindrical pipes constitutes a reference work. It was observed that the rough-
ness influence on the flow field depends on a non-dimensional sand grain height The effect of
roughness on the flow field can be decomposed into three regimes:

• Hydraulically smooth : The effect of roughness is not influencing the flow field. The wall
skin friction remains unchanged.

• Transient Drag is generated both by viscous forces and by the pressure exerting on the
roughness elements.

• Fully rough : Skin friction increases and the effects of roughness are independent from the
Reynolds number. The viscous effects become negligible.

The given bounds can differ according to the authors. It is worth noticing that the equivalent
sand-grain approach is not physical in the sense that it doesn’t allow to describe the interaction
between specific roughness elements and the flow. However, several correlations were proposed
to calculate values from real roughness geometries and enable to reproduce the effect of roughness
on the skin friction.

A few years later, Schlichting ([Sch37]) proposed for the completely rough regime to assimilate any
kind of roughness to an equivalent sand grain (of height ), which would generate the same skin
friction increase as in Nikuradse’s experiments. Importance of both roughness element form and
density were pointed out. This approach is advantageous thanks to its ease of implementation
and its cheap additional computational cost. Nevertheless, the method is quite sensitive to the
equivalent sand-grain height estimate.

Roughness effect on the turbulent boundary layer

To study velocity variations inside the boundary layer, it is a common practice to use the non
dimensional variables u+ and y+. It is worth reminding that a turbulent boundary layer on a
smooth wall can be decomposed into three different regions ([Cou89]). In the viscous sublayer,
where the viscous forces prevail due to the no-slip condition at the wall, the velocity profile can
be approximated by y+ < 11. Then, the log layer corresponds to a turbulence development zone
with a decrease of viscous effects. The velocity profile follows the so-called logarithmic law. The
third region is the defect layer related to the boundary layer edge state.

On a rough wall, the boundary layer structure is modified: the roughness element presence tends
to suppress viscous effects in the wall vicinity. Moreover, the flow characteristics may be different
above roughness elements and in the troughs between them. According to Nikuradse ([Nik50])
and confirmed by others authors, the velocity fluctuates from the roughness trough until two to
five times the actual roughness height before being able to define a mean velocity. Roughness
effect is then described by introducing a ∆U+ shift in the velocity profile logarithmic law towards
lower velocities along the relation. Nikuradse’s work also evidenced the δU+ dependency re-
garding the non dimensional sand grain height . Grigson’s study ([Gri92]) exhibited a law on
δU+ in order to fit Colebrook’s data ([Col37].
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5.2.3 Application to the k−ω SST turbulence model

The k−ω SST model was proposed by Menter ([Men92]) to mitigate some lack in the framework
of two-equation turbulence models. It combines the suitability of Wilcox’s k− ω model ([Wil94])
to near wall turbulent flow capture and the k − ω model properties in the far from wall field.
This is achieved using a coupling function so that the compressible equations of kinetic turbulent
energy and specific dissipation rate conservation.

Dynamic corrections

Several dynamic corrections applicable to the k−ω SST model were studied by Aupoix ([Aup15b]),
in order to improve the predictions in the transient and fully rough regimes. ONERA-type cor-
rections applied to Colebrook’s data were selected, firstly because they overestimate skin-friction
in the transient rough regime, and secondly due to their consistency with the Von Karman’s con-
stant, which provides a fine fluid representation in the fully rough regime. These modifications
applied to the k−ω SST turbulence model consist in changing the boundary conditions on k and
ω. The velocity shift is achieved thanks to an increase in the turbulence level at the wall and an
increase in wall heat fluxes.

Thermal corrections

The proportional increase of wall heat fluxes with respect to drag increase, which is called Reynolds
analogy, does not necessarily hold for rough walls as observed in several experiments. In refer-
ence ([Aup15a]), it is suggested to account for this phenomenon by including some corrections
applicable to the equivalent sand grain approach. The discrete element method was used to study
different roughness element density and shape effects on heat fluxes. This database served to the
construction of thermal corrections suitable to the equivalent sand grain approach to improve the
wall heat flux prediction. These thermal corrections are based on a modification of the turbulent
Prandtl number in order to lower the wall heat fluxes. The turbulent Prandlt number correction
depends on the equivalent sand grain height (ks), on the roughness height (h), and on a corrected
wetted surface (Scorr).

5.2.4 Hill experiment simulation

The paper by Hill et al. ([HVW80]) reports the realization and the analysis of wind tunnel tests on
a 7-degrees half-angle sharp and blunt cones at Mach 10. Nitrogen gas was used and experiment
data were obtained for smooth and rough wall with three different roughness patterns. Wall tem-
perature is 311 K. Simulations of the experiment using the N-S code and CLICET are performed
for the sharp cone using the approximation of air gas and perfect gas assumption. Both dynamic
and thermal corrections are used in simulations.

Equivalent sand grain height evaluation

To evaluate the equivalent sand grain height, one has to refer to Finson’s study ([ML82]) where
averaged roughness patterns were defined to analyse Hill’s experiment data. They are based on
profilometer measurements and on the assumption of identical roughness elements with uniform
density to be suitable to the discrete element type method used. In the present study, due to a lack
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of detailed information on the real surface state in experiment tests, these averaged patterns are
used to evaluate the equivalent sand grain height and the corrected surface needed in dynamic
and thermal correction evaluations.. Moreover, different correlations can lead to different rough
regime identification. Note also that free-stream conditions vary from one test to another and two
of them correspond to smooth wall tests.

Comparison between experiment data and simulations

Simulations are performed with the N-S code and the boundary layer code CLICET. For this,
boundary layer edge quantities are extracted from the N-S simulations using a criterium of 99.5
to 99.8 % of the freestream total enthalpy which is conserved through the shock wave. Unfortu-
nately, they are not so many detailed results presented in the original Hill’s paper. Figure (5.4)
presents the boundary layer velocity profile for the smooth wall and the 65mil rough wall case.
N-S simulations reproduce correctly the experiment data for both cases. In Figure (5.4), Stanton
number from Finson’s paper ([ML82]) are compared with N-S simulations. The Stanton number
is evaluated using the boundary layer edge quantities.

Simulations match well with experiment data in the case of smooth wall and rough wall with
weak equivalent sand grain height (11mil case with Dirling correlation). For higher ks values,
corresponding to transient and fully rough regimes, a difference is noticeable between simula-
tions and experiment data, including the 65mil case for which velocities profiles are comparable.
Simulations give overestimated values of the Stanton number (40% to 70%). N-S results are then
compared to CLICET simulations showing a good agreement in wall heat flux evaluations for all
the roughness patterns. The maximal difference observed on heat flux is of 5% for the 37mil and
65mil cases while it reaches 9% for the 11mil case with W-K correlation. Figures (5.3,5.4,5.5) show
the resulting heat flux respectively for 65mil, 11mil and 37mil cases. To interpret these discrepan-
cies in the Stanton values, several potential origins can be pointed out: first, some uncertainties
may come from the use of modeled roughness instead of real surface patterns and the application
of correlations to evaluate ks. We noticed that the ks value needed to retrieve the Stanton data
level is of order of 5 x 10-4 m for the 65mil case. However, it seems inconsistent with the reason-
able agreement found for boundary layer velocity profiles shown in figure (5.3). Another point is
the application of Stanton formulae based on the boundary layer outer edge quantities. However,
smooth wall Stanton numbers are well reproduced by simulations. Even accounting for the fact
that slight modifications in N-S simulations could be found between smooth and rough cases, the
uncertainty on outer edge quantity evaluation may not be sufficient to explain such discrepancies.
In this experiment configuration, wall roughness and thermal combined effects are expected to
play an important role in the final heat flux level, according to the Reynolds analogy failure. It is
worth noticing that in simulations, a weak 5% to 10% difference was found applying dynamic cor-
rections only or both dynamic and thermal corrections. These simulations of Hill’s experiments
constitute a first step of the validation of Aupoix’s k − ω SST corrections applied to hypersonic
flows. While dynamic corrections provided reasonable results, deeper investigation is needed in
the application of the thermal corrections to high Mach flows. This validation is being pursued on
the base of additional experiment data.
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FIGURE 5.3: Boundary layer velocity profiles, experiment data (dots) from Hill’s
paper ([HVW80]) and N-S simulations (plain) for smooth wall and 65mil rough wall

case
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FIGURE 5.4: Stanton number obtained with N-S simulations and experiment data
(dots/squares) given in ref. ([HVW80])
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FIGURE 5.5: N-S and CLICET simulations - Heat flux at the wall for the 65mil case
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Chapter 6

Conclusions and Perspectives

Several aspects of turbulence and ablation have been presented in this part. Although it has not
been the essential task of my research work there is still a lot to do on the subjects. For instance
RANS models need to be enriched by more subtle models such as DNS or LES as soon as it is
possible to get more precise results. For ablation, transition to turbulence has to be studied to
characterize as much as possible the size and distribution of roughnesses since we have shown
their importance in understanding the fluxes. Of course it can be made possible if and only if
experiments are available...
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Part IV

Interactions between particles and fluid
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Spray models

Fluid-particles flows (or equivalently sprays) are complex flows to model. They can be found in
various applications (combustion, medicine, dusts in Mars atmosphere...). One can describe them
using partial differential equations. They are mainly two ways to describe them.

The first one will use a continuous approach (Eulerian/Eulerian approach) using two phase flow
models ([Sai95],[Bou98], [Rov06], et [GHS04]) considering that the characteristics of the spray
(radius, energy, velocity) are not too dispersed (see chapter 8 for instance). The second one is
based on a kinetic approach using Vlasov-Boltzmann equation to describe the behavior of the
particles [ORo81], [MV01], [Hyl99], [VH97], [Lau02], [Bar04], [Duf05] , [HF92] et [HF95]).

In this part we will study both approaches form various viewpoints: theoretical results, models
and asymptotic as well as numerics. Through an asymptotic limit we will also establish the link
between the two kinds of models.
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Chapter 7

Spray with collisions

In this chapter we study models of sprays with collisions. We will first look at mathematical
solutions of the problem, then try to understand what happens when collisions are very numerous
so that the spray regime is near to two-phase flow regimes and finally try to explore another model
of collision in this dense regime to decrease the numerical cost in computations. These works are
based on the papers ([Mat10]; [DM10]; [CDM10]) and can also be found with more details in the
Phds [Mat03] and [Cha11].

7.1 Existence and uniqueness of solutions

We now present a work on existence and uniqueness of solutions for sprays with collisions. We go
into details of the proof to illustrate the difficulty to deal with complex flows from a mathematical
viewpoint.

The gas is described through compressible Euler equations: it evolves at high Reynolds numbers
(like in the model proposed for instance in [BDM03]). The density ρg, the velocity ug and the
internal energy eg characterize the behavior of the gas (considered as a perfect gas for the sake of
simplicity).

The particles are described via a particle density function (p.d.f.) f which satisfies a Vlasov-
Boltzmann equation. The parameters of the p.d.f. are the time t, the position x, the velocity v
and the internal energy e. The collision kernel corresponds to hard spheres.

The coupling between the two phases is made through the drag force and thermal exchanges.
Although viscosity is neglected in the gas equations, the drag force (which is proportional to
viscosity) has to be taken into account because particles can be very small compared with the
length scale of the gas (the Reynolds numbers of the particles are not very high)).

From a mathematical viewpoint, existence and uniqueness results exist for both Boltzmann equa-
tion and Euler equations taken independently. Concerning the Boltzmann equation, there exists
global renormalized solutions ([DL89]), perturbative solutions near gaussians ([UA82], [MP97],
[Guo03]) or vacuum ([IS84], [BT85]). Some of these results can be extended to the Vlasov-Boltzmann
equation when the force acting on the particles has a specific form ([Lio94]). For the compressible
Euler equations, only local smooth solutions are known ([Maj84]) in all dimensions. Global solu-
tions with small total variation also exist in 1D ([Ser96b]).

Some mathematical results have already been proved for sprays. For instance, Domelevo and
Roquejoffre have shown the existence and uniqueness of regular solutions for a coupling of the
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viscous (1D) Burgers equation with Vlasov equation (see [DR99]). Hamdache proved the exis-
tence of solutions for large times for a coupling of the Stokes equation with a Vlasov equation
([Ham98]). Recently Baranger and Desvillettes proved the existence and uniqueness of local in
time C1 solutions for a coupling of 3D compressible isentropic Euler equations with a Vlasov
equation ([BD06]). The present work is the next step towards thick sprays, where the volume
fraction occupied by the particles is explicitly appearing in the equations. It is also the first work
which deals with the energies of the two phases, and also the first mathematical work where col-
lisions are taken into account in the context of a coupling between fluid and kinetic equations.
Furthermore, it is the coupling through drag force which allows us to solve the problem.

We now write down the system of equations:

∂tρg +∇x · (ρgug) = 0 , (7.1)

∂tug + (ug · ∇x)ug +
∇x p
ρg

= − 1
ρg

∫∫
v,e

mpF f dvde , (7.2)

∂teg + ug · ∇xeg +
p

ρg
∇x · ug =

1
ρg

∫∫
v,e

mp
(

F · (ug − v)− φ
)

f dvde, (7.3)

∂t f + v · ∇x f +∇v · ( f F) + ∂e( f φ) = Q( f , f ) , (7.4)
F = Dp(ug − v) , (7.5)

φ =
4πr
mp

λNu(Tg − Tp) , (7.6)

p = (γ− 1)ρgeg, (7.7)

Tg =
eg

Cvg
, (7.8)

Tp =
e

Cv p
. (7.9)

We define the constants of the model in this way: Dp is the drag coefficient (one can note that,
in some models, Dp is proportional to the density of the gas ([BD06]): our theorem still holds in
this case), the quantity Cvg (resp. Cv p) is the specific heat at constant volume of the gas (resp.
particles), λ is the thermal conductivity of the gas, Nu is the Nusselt number, and finally γ is the
specific heat ratio of the gas. The particles are supposed to have the same mass mp and radius r.
All these data are supposed to be constant.

Equations (7.1)-(7.3) are balance laws for the density ρg := ρg(t, x), the velocity ug := ug(t, x)
and the internal energy (per mass unit) eg := eg(t, x) of the gas, while equation (7.4) is a Vlasov-
Boltzmann equation for the particle density function f := f (t, x, v, e) of the particles. The gas is
supposed to be perfect (equations (7.7) and (7.8)).

The coupling between (7.1)-(7.3) on one hand, and (7.4) on the other hand is made through the
source terms in (7.2) and (7.3), an through the divergence terms in velocity and energy in (7.4). In
these source terms appear the force mpΓ and the term of energy exchange mpφ. The whole system
is closed by the thermodynamic laws (7.7), (7.8) and (7.9).

Finally, Q( f , f ) is a suitable hard-sphere type collision kernel taking into account internal energies:

Q( f , f )(t, x, v, e) =
∫∫∫

σ∈S2,v∗∈R3,e∗∈R+

(
f ′∗ f ′ − f∗ f

)
r2|v− v∗|dσdv∗de∗, (7.10)
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with,

• σ: vector in S2,

• v′ =
v + v∗

2
+
|v− v∗|

2
σ: post-collisional velocity,

• v′∗ =
v + v∗

2
− |v− v∗|

2
σ: post-collisional velocity,

• e′ = e : post-collisional internal energy,

• e′∗ = e∗ : post-collisional internal energy.

• f ′∗ = f (t, x,′ v′∗, e′∗)

• f ′ = f (t, x, v′, e′)

• f∗ = f (t, x, v∗, e∗)

• f = f (t, x, v, e)

From now on, the constants λ, Cvg,Cv p, Dp, mp, r are taken equal to 1 for mathematical purposes,

and γ is such that γ > 1. Nu is chosen so that
4πr
mp

λNu = 1 in order to simplify computations.

We can now write down the final form of the system that we shall study. The unknowns are
ρg := ρg(t, x) ≥ 0, ug := ug(t, x) ∈ R3, eg := eg(t, x) ≥ 0, and f := f (t, x, v, e) ≥ 0, and they
satisfy:

∂tρg +∇x · (ρgug) = 0 , (7.11)

∂tug + (ug · ∇x)ug +
∇x p
ρg

= − 1
ρg

∫∫
v,e

F f dvde , (7.12)

∂teg + ug · ∇xeg +
p

ρg
∇x · ug =

1
ρg

∫∫
v,e

(
F · (ug − v)− φ

)
f dvde , (7.13)

∂t f + v · ∇x f +∇v · ( f F) + ∂e( f φ) = Q( f , f ) , (7.14)
F = ug − v , (7.15)
φ = eg − e , (7.16)
p = (γ− 1)ρgeg, (7.17)

where Q( f , f ) is defined by (7.10) (with r = 1).

Functional space and norms

We now define the space of functions for f . We denote by ||g|| the L2-norm and by ||g||w the
weighted-L2 norm (w = (1 + |v|2)),

||g|| =
(∫∫∫

x,v,e
g2dedvdx

) 1
2

,

||g||w =

(∫∫∫
x,v,e

g2wdedvdx
) 1

2

.
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We define |g| and |g|w the local L2-norms,

|g| =
(∫∫

v,e
g2dedv

) 1
2

, |g|w =

(∫∫
v,e

g2wdedv
) 1

2

.

Sobolev spaces Ws,2 are denoted by Hs.

We write down ∂
β,γ
α := ∂α

x∂
β
v ∂

γ
e . Let s be an integer such that s > 4. Using Guo’s Energy method,

we define the energy of a function as

Es,ε(g)(t) = ∑
|α|+|β|+|γ|≤s

[
1
2

∣∣∣∣∣∣∂β,γ
α g

∣∣∣∣∣∣2 (t) + ∫ t

0
2(1− ε)

∣∣∣∣∣∣∂β,γ
α g

∣∣∣∣∣∣2
w
(u)du

]
, (7.18)

where ε is a constant which satisfies 0 < ε < 1 (cf. [Guo02]; [Guo03]).

We define Es,ε,T as the intersection of the nonnegative functions and the functional space made of
the functions f in C([0, T], Hs(R3 ×R3 ×R+)) such that

sup
0≤t≤T

Es,ε( f )(t)
1
2 < +∞.

The norm associated with Es,ε,T is denoted ||.||Es,ε,T and defined through

|| f ||Es,ε,T = sup
0≤t≤T

Es,ε( f )(t)
1
2 .

The space Es,ε,T is complete since it is the intersection of a complete functional space and the cone
of positive functions.

7.1.1 Outline of the work

We first establish an a priori estimate for the Boltzmann equation, thanks to the use of a sim-
ple change of unknown in the equation. We define g := f × exp(v2 + e) using Guo’s method
([Guo03]). The function g satisfies

∂tg + v · ∇xg +∇v · (gF) + ∂e(gφ)− 2v · gF− gφ = Γ(g, g), (7.19)

where Γ is defined through

Γ[g1, g2](t, x, v, e)
= Γ+[g1, g2](t, x, v, e)− Γ−[g1, g2](t, x, v, e)

=
∫∫∫

R3×R+×S2

|v− v∗| exp(−(v∗2 + e∗))g1(t, x, v′∗, e′∗)g2(t, x, v′, e′)dv∗de∗dσ

− g2(t, x, v, e)
∫∫∫

R3×R+×S2

|v− v∗| exp(−(v∗2 + e∗))g1(t, x, v∗, e∗)dv∗de∗dσ.
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We prove that ||g||Es,ε,T remains bounded for small T, using the fact that the "new" collision kernel
Γ can be controlled by the term coming from the drag force −2v · gF.

Then, we establish a result of existence and uniqueness for a given ug, eg for equation (7.19). In
order to do so, we use Picard’s fixed point theorem and estimates based on the characteristics
method (as in [BD06]). More precisely, we prove the following result:
Theorem 7.1.1 (Existence and uniqueness for equation (7.19)). We suppose that eg is a strictly
positive function. Furthermore, we assume that ug and ẽg = eg − 1 belong to C([0, T], Hs(R3)) ∩
C1([0, T], Hs−1(R3)) for some T > 0 and s integer such that s ≥ 5. We suppose that g0 := f0 exp(v2 + e)
satisfies

∑
|α|+|β|+|γ|≤s

1
2

∣∣∣∣∣∣∂β,γ
α (g0)

∣∣∣∣∣∣2 < +∞.

Then:

1. One can find T′ > 0 such that there exists a solution g to equation (7.19) with g0 for initial data (and
F and φ given by (7.15) and (7.16)). Besides, g remains positive and

Es, 1
2
(g(t, .)) = ∑

|α|+|β|+|γ|≤s

[
1
2

∣∣∣∣∣∣∂β,γ
α g

∣∣∣∣∣∣2 (t) + ∫ t

0

∣∣∣∣∣∣∂β,γ
α g

∣∣∣∣∣∣2
w
(u)du

]

remains bounded on [0, T′]. Finally, T′ is controlled through

T′ ≥ 3

8C
[
1 + sup0≤t≤T ||ug||2Hs + sup0≤t≤T ||ẽg||Hs + 3

2 ||g0||2Hs

] (7.20)

with C strictly positive constant depending only on s.

Moreover, g lies in C([0, T], Hs(R3 ×R3 ×R+)) ∩ C1([0, T], Hs−1(R3 ×R3 ×R+)).

2. If g1 and g2 are two positive solutions of eq. (7.19) in C([0, T], Hs(R3×R3×R+)) ∩ C1([0, T], Hs−1(R3×
R3 ×R+)) with same initial data - ρg, ug and ẽg being fixed- and such that sup

0≤t≤T
Es, 1

2
(g1(t, .)) <

+∞ and sup
0≤t≤T

Es, 1
2
(g2(t, .)) < +∞, then g1 = g2.

The main point of the proof is the control of the loss of moments due to the collision operator.

Then we tackle the global system (7.11)-(7.17). Using an iterative scheme based on the symmetriza-
tion of the hyperbolic equations for the gas and theorem 7.1.1 for the particles, we prove the fol-
lowing result:
Theorem 7.1.2. We consider I =]0,+∞[×R3×]0,+∞[, s ∈ N such that s ≥ 5, and I1, I2 open
sets of I such that I1 ⊂ I2, and such that I1, I2 are compact in I. Let (ρg0 , ug0 , eg0) : R3 → I1 be
functions satisfying ρ̃g0 = ρg0 − 1 ∈ Hs(R3), ug0 ∈ Hs(R3) and ẽg0 = eg0 − 1 ∈ Hs(R3). Let also
g0 = f0 exp(v2 + e) : R3 ×R3 ×R+ → R+ be a function of Hs(R3 ×R3 ×R+) .

Then, one can find T > 0 such that there exists a solution (ρg, ug, eg; f ) to system (7.11) - (7.17) belonging
to C1([0, T] × R3, I2) × C1([0, T] × R3 × R3 × R+, R+). Moreover, ρ̃g(= ρg − 1), ug, ẽg(= eg −
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1) ∈ C([0, T], Hs(R3)) ∩ C1([0, T], Hs−1(R3)), f̃ = f exp(v2 + e) ∈ C([0, T], Hs(R3 ×R3 ×R+)) ∩
C1([0, T], Hs−1(R3 ×R3 ×R+)).

Finally, if (ρ̃g1 , ug1 , ẽg1 ; f1) and (ρ̃g2 , ug2 , ẽg2 ; f2) are in (C([0, T], Hs(R3))∩ C1([0, T], Hs−1(R3)))
× (C([0, T], Hs(R3×R3×R+))∩ C1([0, T], Hs−1(R3×R3×R+))), if (ρg1 , ug1 , eg1 ; f1) and (ρg2 , ug2 , eg2 ; f2)

belong to C1([0, T] × R3, I2) × C1([0, T] × R3 × R3 × R+, R+) and they satisfy (7.11)-(7.17), then
ρg1 = ρg2 , ug1 = ug2 , eg1 = eg2 and f1 = f2.

We first establish a priori estimates for the p.d.f. . Then we give the proof of theorem 7.1.1. Finally,
we establish the main result (theorem 7.1.2) in the last section.

7.1.2 A priori estimates on the p.d.f. equation

We now study the following equation,

∂t f + v · ∇x f +∇v · ( f F) + ∂e( f φ) = Q( f , f ), (7.21)

with F, φ, Q given by (7.14)− (7.16)

We suppose that ug and ẽg = eg − 1 are in C([0, T], Hs(R3)) ∩ C1([0, T], Hs−1(R3)) for some T > 0
and s integer such that s ≥ 5 (typical space for hyperbolic problems -cf [Maj84]-): the gas is at rest
at infinity. Moreover we suppose that f0 exp(v2 + e) is in Hs(R3 ×R3 ×R+).

Rewriting Boltzmann equation

We define g as the following function: g : (t, x, v, e) ↪→ f (t, x, v, e) exp(v2 + e). Putting g in the
Vlasov-Boltzmann equation, one obtains

∂tg + v · ∇xg +∇v · (gF) + ∂e(gφ)− 2v · gF− gφ = Γ(g, g), (7.22)

where Γ is defined through

Γ[g1, g2](t, x, v, e)
= Γ+[g1, g2](t, x, v, e)− Γ−[g1, g2](t, x, v, e)

=
∫∫∫

R3×R+×S2

|v− v∗| exp(−(v∗2 + e∗))g1(t, x, v′∗, e′∗)g2(t, x, v′, e′)dv∗de∗dσ

− g2(t, x, v, e)
∫∫∫

R3×R+×S2

|v− v∗| exp(−(v∗2 + e∗))g1(t, x, v∗, e∗)dv∗de∗dσ. (7.23)

The form of Γ is obtained by noticing that both kinetic and internal energy are conserved during
collisions.

We only recall the two main a priori estimates: the one on the collision kernel which needs a lot of
computations to be proved and the one on the drag force term which counterbalances the loss of
moment in velocity due to the hard sphere cross section in the kernel of collision.
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Collision kernel

We now consider the modified collision operator introduced in (7.23), and present a formula for
its derivatives of any order. The collision kernel is defined by:

Γ[g1, g2](t, x, v, e)
= Γ+[g1, g2]− Γ−[g1, g2]

=
∫∫∫

R3×R+×S2

|v− v∗| exp(−(v∗2 + e∗))g1(t, x, v′∗, e′∗)g2(t, x, v′, e′)dv∗de∗dσ

− g2(t, x, v, e)
∫∫∫

R3×R+×S2

|v− v∗| exp(−(v∗2 + e∗))g1(t, x, v∗, e∗)dv∗de∗dσ. (7.24)

Using the change of variables v∗ ↪→ v∗+ v in the integral, and the fact that collisions do not change
internal energy, one gets:

Γ[g1, g2](t, x, v, e)
= Γ+[g1, g2](t, x, v, e)− Γ−[g1, g2](t, x, v, e)

=
∫∫∫

R3×R+×S2

|v∗| exp(−((v∗ + v)2 + e∗))g1(t, x, v +
1
2
(v∗ − |v∗|σ), e∗)

×g2(t, x, v +
1
2
(v∗ + |v∗|σ), e)dv∗de∗dσ

−
∫∫∫

R3×R+×S2

|v∗| exp(−((v∗ + v)2 + e∗))g1(t, x, v∗ + v, e∗)dv∗de∗dσ.

×g2(t, x, v, e) (7.25)

Using this form of the kernel, one can differentiate this expression (see [Guo03]) and, using the
change of variables backwards, one gets

∂
β,γ
α Γ(g1, g2) = ∑ C(|α|, |α1|, |α2|, |β|, |β0|, |β1|, |β2|, |γ|, |γ0|, |γ1|, |γ2|)

×Γ0

[
∂

β1,γ1
α1 g1, ∂

β2,γ2
α2 g2

]
, (7.26)

the summation being over β = β0 + β1 + β2, α = α1 + α2 and γ = γ0 + γ1 + γ2. The coefficients
C(...) are integers that we do not compute and Γ0 is defined as

Γ0

[
∂

β1,γ1
α1 g1, ∂

β2,γ2
α2 g2

]
= Γ+

0

[
∂

β1,γ1
α1 g1, ∂

β2,γ2
α2 g2

]
(t, x, v, e)− Γ−0

[
∂

β1,γ1
α1 g1, ∂

β2,γ2
α2 g2

]
(t, x, v, e)

=
∫∫∫

R3×R+×S2
|v− v∗|∂β0,γ0 [exp(−(v∗2 + e∗))](∂

β1,γ1
α1 g1)

′
∗(∂

β2,γ2
α2 g2)

′

−
∫∫∫

R3×R+×S2
|v− v∗|∂β0,γ0 [exp(−(v∗2 + e∗))](∂

β1,γ1
α1 g1)∗∂

β2,γ2
α2 g2.

(7.27)

Note that in fact γ1 = γ0 = 0, and γ2 = γ for all γ since the derivatives in e are only the derivatives
of g2.
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We can now prove the two different properties on the gain and loss terms of the collision kernel
(note that weighted norms appear):
Lemma 7.1.1. Let β = β0 + β1 + β2, α = α1 + α2 and γ = γ0 + γ1 + γ2.

1. The following inequalities hold:∣∣∣∣∫∫∫ Γ+
0

[
∂

β1,γ1
α1 g1, ∂

β2,γ2
α2 g2

]
∂

β,γ
α g3dvdedx

∣∣∣∣
≤ C

[
∑
|δ|≤3

∣∣∣∣∣∣∂β1,γ1
α1+δ g1

∣∣∣∣∣∣] ∣∣∣∣∣∣∂β2,γ2
α2 g2

∣∣∣∣∣∣ ∣∣∣∣∣∣∂β,γ
α g3

∣∣∣∣∣∣
w

, (7.28)

∣∣∣∣∫∫∫ Γ−0
[
∂

β1,γ1
α1 g1, ∂

β2,γ2
α2 g2

]
∂

β,γ
α g3dvdedx

∣∣∣∣
≤ C

[
∑
|δ|≤3

∣∣∣∣∣∣∂β1,γ1
α1+δ g1

∣∣∣∣∣∣] ∣∣∣∣∣∣∂β2,γ2
α2 g2

∣∣∣∣∣∣ ∣∣∣∣∣∣∂β,γ
α g3

∣∣∣∣∣∣
w

. (7.29)

2. The following inequalities hold:∣∣∣∣∫∫∫ Γ+
0

[
∂

β1,γ1
α1 g1, ∂

β2,γ2
α2 g2

]
∂

β,γ
α g3dvdedx

∣∣∣∣
≤ C

[
∑
|δ|≤3

∣∣∣∣∣∣∂β2,γ2
α2+δ g2

∣∣∣∣∣∣] ∣∣∣∣∣∣∂β1,γ1
α1 g1

∣∣∣∣∣∣ ∣∣∣∣∣∣∂β,γ
α g3

∣∣∣∣∣∣
w

, (7.30)

∣∣∣∣∫∫∫ Γ−0
[
∂

β1,γ1
α1 g1, ∂

β2,γ2
α2 g2

]
∂

β,γ
α g3dvdedx

∣∣∣∣
≤ C

[
∑
|δ|≤3

∣∣∣∣∣∣∂β2,γ2
α2+δ g2

∣∣∣∣∣∣] ∣∣∣∣∣∣∂β1,γ1
α1 g1

∣∣∣∣∣∣ ∣∣∣∣∣∣∂β,γ
α g3

∣∣∣∣∣∣
w

. (7.31)

Drag term

The most important result of this subsection is the following, which allows to recover the loss of
moments due to the collision kernel:
Lemma 7.1.2 (gF · v-term). For all ε such that 1 > ε > 0,

∑
|α|+|β|+|γ|≤s

∫∫∫
∂

β,γ
α g ∂

β,γ
α (gF · v)dvdedx

≤ −(1− ε) ∑
|α|+|β|+|γ|≤s

||∂β,γ
α g||2w + C1||g||2Hs +

C2

ε
||g||2Hs ||ug||2Hs . (7.32)

A priori estimates

Thanks to all the previous results, we are able to get the following a priori estimate for solutions
of the modified Boltzmann equation (7.19). We now sum up all the results through the following



92 Chapter 7. Spray with collisions

lemma:
Lemma 7.1.3. Let g be a nonnegative solution of (7.19) in C([0, T], Hs(R3×R3×R+))∩C1([0, T], Hs−1(R3×
R3 ×R+)), with eg strictly positive function and ug and ẽg = eg − 1 belonging to C([0, T], Hs(R3)) ∩
C1([0, T], Hs−1(R3)) for some T > 0. For all s ≥ 5, 1 > ε > 0, we have the following a priori estimate for
the energy Es,ε defined by (7.18),

d
dt
Es,ε ≤

C
ε

(
1 + ||ug||2Hs + ||ẽg||Hs + Es,ε

)
Es,ε. (7.33)

where C depends only on the physical constants and s.

7.1.3 Solving the Boltzmann equation for a given gas

We now want to use lemma 7.1.3 in order to prove theorem 7.1.1. We first prove the existence
of solutions thanks to an iterative scheme as it is done in [Guo03] and [BD06]. Then we prove
uniqueness.

For the sake of simplicity, we shall suppose that the initial datum g0 is C∞ and compactly sup-
ported (so that integrations by parts are valid), and ρg, ug, eg are also smooth C∞ functions.

Existence: iterative scheme and characteristics

We adopt the following iterative scheme in order to prove the existence of a solution to equation
(7.19) in theorem 7.1.1:

∂tgn+1 + v · ∇xgn+1 +∇v · (gn+1F) + ∂e(gn+1φ) =

Γ+(gn, gn)− Γ−(gn, gn+1) + 2v · gn+1F + gn+1φ, (7.34)

g(0, ., ., .) = g0(., ., .). (7.35)

The first iterate g0 of the sequel (gn)n∈N is equal to the constant function (in time) g0.

There are two main reasons for using this iterative scheme. First, we ensure positiveness of all
iterates if g0 is positive by taking Γ−(gn, gn+1). Secondly, we can use the characteristics method in
order to prove the existence of all iterates (see [BD06]).

We define X(s; x, v, e, t), V(s; x, v, e, t), E(s; x, v, e, t) as the characteristics linked to the flow of the
modified Boltzmann equation (7.19). They satisfy the following equations:

d
dt

X = V , X(s; x, v, e, s) = x,
d
dt

V = −(V − ug(t, X)) , V(s; x, v, e, s) = v,
d
dt

E = −
(
E− eg(t, X)

)
, E(s; x, v, e, s) = e.

The characteristics are well defined since ρg, ug and eg are smooth functions. We define Y as the
point in the phase space (X, V, E).
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Solution

We now give the expression of the solution of the linear Vlasov equation appearing in (7.34) using
the characteristics. Equation (7.34) can be rewritten

∂tgn+1 + v · ∇xgn+1 + (ug − v) · ∇vgn+1 + (eg − e)∂egn+1

= Γ+(gn, gn) + h(gn)gn+1, (7.36)

where h(gn) is defined through

h(gn)(t, x, v, e) = 4 + 2v · (ug − v) + (eg − e)

−
∫∫∫

R3×R+×S2
|v− v∗| exp(−(v∗2 + e∗))gn(t, x, v∗, e∗)dv∗de∗dσ. (7.37)

The solution of the iterative scheme at step n can be written explicitly thanks to the formula

gn+1(t, x, v, e) = exp
(∫ t

0
h(gn)(τ, Y(τ; x, v, e, t))dτ

)
g0(Y(0; x, v, e, t))

+
∫ t

0
exp

(∫ t

τ
h(gn)(τ, Y(τ; x, v, e, t))dτ

)
Γ+(gn, gn)(Y(τ; x, v, e, t))dτ. (7.38)

One can notice that all iterates are compactly supported and C∞ by induction since g0 = g0 has
these properties. Contrary to [BD06], we do not need to control the support of all iterates: because
of collisions, we already know that the limit of the sequence gn is not compactly supported. This
formula also shows that all iterates remain positive.

Convergence of the iterative scheme, uniqueness

We prove the convergence of the scheme using Picard’s fixed point theorem. We define the fol-
lowing application G:

G : Es,1/2,T′ ∩ C∞ 7→ C∞,
k 7→ ` (7.39)

where ` is the unique solution given by formula (7.38) of the equation:

∂t`+ v · ∇x`+ (ug − v) · ∇v`+ (eg − e)∂e` = Γ+(k, k) + h(k)`, (7.40)
`(0, .) = g(0, .) ∈ C∞. (7.41)

The operator G is well-defined: ` exists, is nonnegative and smooth (k is nonnegative). We recall
that Es,1/2,T′ is complete: in order to use Picard’s theorem, it remains to prove that for each g0
there exists a radius R and T′ small enough, such that the application maps the ball of radius R
of Es,1/2,T′ into itself and is a contraction on this ball. Once we know that the fixed point exists, it
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automatically lies in Es,1/2,T′ , and therefore in C([0, T′], Hs(R3×R3×R+)). Using equation (7.19),
one gets that the partial derivative in time of the fixed point will lie in C([0, T′], Hs−1(R3 ×R3 ×
R+)) so that the fixed point belongs to C1([0, T′], Hs−1(R3 ×R3 ×R+)).

We choose the radius R of the ball in the following way:

R = ||g0||Hs = 2Es,1/2(g0)(0)
1
2 .

Then, we choose T′:

T′ =
3

4C
[
1 + sup0≤t≤T ||ug||2Hs + sup0≤t≤T ||ẽg||Hs + 2R2

] , (7.42)

for some C that is given later.

We now explain how we have obtained the time of existence given in theorem 7.1.1. For ordinary
differential equations with locally Lipschitz coefficients, it is known that if the solution is bounded
on [0, T1], then it can be extended for a time T2 strictly greater than T1 using Cauchy’s theorem.
The same result holds here as long as the energy of g is bounded, it can be extended and the a
priori estimate given in lemma 7.1.3 controls the solution. Using this a priori estimate, we obtain
the time given in theorem 7.1.1. Obviously, the uniqueness of the solution comes from the proof
of the constricting behavior of G. Theorem 7.1.1 is now proved.

7.1.4 Coupling Euler and Vlasov-Boltzmann equation: existence and uniqueness of
Hs-solutions

We now prove theorem 7.1.2. In order to obtain this theorem, we combine theorem 7.1.1 and
results on local solutions for the hyperbolic system of Euler equations of perfect gases (see [Ser96a]
and [Maj84])). The proof of theorem is close to the one in [BD06], especially for the hyperbolic part
of the problem. Therefore we only describe the main steps of the proof:

• we first recall some classical results for hyperbolic systems (especially in the linearized case),

• we write down an iterative scheme based on the results obtained for the Boltzmann-Vlasov
equation for a given gas (theorem 7.1.1) and on linearized hyperbolic systems,

• we finally pass to the limit in the scheme in order to obtain theorem 7.1.2.

Hyperbolic part of the system

We now recall some facts about the compressible Euler equations of perfect gases (see [Ser96a] for
further details). Let’s define I =]0,+∞[×R3×]0,+∞[ as the space in which (ρg, ug, eg) lies. The
system of equations for perfect gases (7.11)-(7.12)-(7.13) can be put in a symmetrized form:
Lemma 7.1.4. We define Ug as Ug = t(ρg, ug, eg), δj,i as the Kronecker’s symbol, and c as the sound

speed of the gas defined by c :=
√

γ(γ− 1)eg. System (7.11)-(7.12)-(7.13) is symmetrized thanks to the
following formula:

S(Ug)∂tUg + ∑
i
(SAi)(Ug)∂xi Ug = S(Ug) b(Ug, f ), (7.43)



7.1. Existence and uniqueness of solutions 95

where S, Ai (for i = 1, 2, 3) and b are respectively defined by:

S =


(
(γ−1)eg

ρg

)2
0 0

0 1
γ c2 0

0 0 (γ− 1)

 ,

Ai =



ugi ρgδ1,i ρgδ2,i ρgδ3,i 0
(γ−1)eg

ρg
δ1,i ugi 0 0 egδ1,i

(γ−1)eg
ρg

δ2,i 0 ugi 0 egδ2,i
(γ−1)eg

ρg
δ3,i 0 0 ugi egδ3,i

0 (γ− 1)egδ1,i (γ− 1)egδ2,i (γ− 1)egδ3,i ugi


,

b =



0

−
∫∫ 1

ρ g
f (ug1 − v)dvde

−
∫∫ 1

ρ g
f (ug2 − v)dvde

−
∫∫ 1

ρ g
f (ug3 − v)dvde

−
∫∫ 1

ρ g
f (eg − e)dvde +

∫∫ 1
ρ g

f
(
ug − v

)2 dvde


.

For s ≥ 5, if f exp(v2 + e)(t, .) is in Hs(R3 × R3 × R+), if moreover
(
ρg − 1, ug, eg − 1

)
(t, .) is in

(Hs(R3))5 and belongs to I2, then b(t, .) is in Hs(R3) and we have the following control:

||b(t, .)||Hs

≤ C(s, I2)(1 + ||ρg − 1||Hs)

× || f exp(v2 + e)(t, .)||Hs
(
1 + ||eg − 1||Hs + ||ug||2Hs

)
. (7.44)

The constant C only depends on the compact set I2 and on the Sobolev index s. Moreover, the symmetric
definite positive matrix S(Ug) is a smooth function of Ug satisfying

d Id5 ≤ S(Ug) ≤ d−1 Id5, (7.45)

when Ug ∈ I1 (or I2), for some constant d > 0 (depending on I1 (or I2)). Finally, all the matrices SAi(Ug)
are symmetric.

In fact, we shall only consider a linearized hyperbolic problem of the type

S(U)∂tV + ∑
i
(SAi)(U)∂xi V = S(U) b(U, f ), (7.46)

V(0, .) = U(0, .) ∈ I1, (7.47)

in the iterative scheme. Here, U = (U1, U2, U3) and V = (V1, V2, V3) are in (R+ ×R3 ×R+). The
matrices SAi are the ones defined above.
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This linear system is strictly hyperbolic as soon as U1 > 0 and U3 > 0. Then, if f is known
and regular enough ( f exp(v2 + e) ∈ C

(
[0, T]; Hs(R7)

)
), there exists a (local in time) solution to

(7.46) − (7.47) since b(t, .) belongs to Hs(R3). This solution exists as long as f and U exist but
may stay in I2 for a shorter time. More precisely, we have the following a priori estimate for these
hyperbolic systems with smooth coefficient (cf. [Maj84], [Ser96a] and [AG91]):
Lemma 7.1.5 (Control of linear hyperbolic systems). Let s be an integer such that s ≥ 5. If f exp(v2 +
e) is in C

(
[0, T]; Hs(R7)

)
and U−U(0, .) is in C

(
[0, T]; (Hs(R3))5), then the linearized problem (7.46)-

(7.47) has a solution V such that V(t, .)−V(0, .) belongs to C
(
[0, T]; (Hs(R3))5)∩C1 ([0, T]; (Hs−1(R3))5),

and such that for a strictly positive time Tp, V remains in I2 on [0, Tp]. Besides, the following inequality
holds:

∀t ≤ Tp, ||V(t, .)−V(0, .)||Hs(t) ≤ Ct, (7.48)

where C is a constant depending on the compact set I2, the Sobolev index s, sup
0≤u≤T

|| f exp(v2 + e)(u, .)||Hs

and sup
0≤u≤T

||U(u, .)−U(0, .)||Hs .

Iterative scheme

We now start the proof of theorem 7.1.2. We recall that Ug0−
t(1, 0, 0, 0, 1) ∈ Hs and that f0exp(v2 +

e) ∈ Hs. Furthermore, we recall that Ug0(x) is in I1 for all x. We define R by R := || f0 exp(v2 +
e)||Hs .

We define by induction the following iterative scheme,

Ug
0(t, .) = Ug0(.), (7.49)

f 0(t, .) = f0(.), (7.50)
T0 = +∞, (7.51)

( one can notice that Ug
0 lies in I2 since Ug0 is in I1).

Then,

S(Ug
k)∂tUg

k+1 +
N

∑
i=1

(SAi)(Ug
k)∂xi Ug

k+1 = S(Ug
k) b(Ug

k, f k), (7.52)

Ug
k+1(0, x) = U0(x), (7.53)

∂t f k+1 +∇x · (v f k+1) +∇v · ( f k+1(uk
g − v)) + ∂e( f k+1(ek

g − e))

= Q( f k+1, f k+1), (7.54)

f k+1(0, x, v) = f0(x, v). (7.55)

We define Tk+1 (for k ≥ 0) as the minimum of:

• the maximal time of existence for Ug
k+1 (which is Tk thanks to lemma 7.1.5),
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• the maximal time such that Ug
k+1 remains in I2,

• the maximal time such that ||Ug
k+1 −Ug0||s ≤ 2||Ug0 −

t (1, 0, 0, 0, 1)||s,

• the maximal time of existence for f k+1,

• the maximum time such that ∀t/0 ≤ t ≤ Tk+1,

∑
|α|+|β|+|γ|≤s

[
1
2

∣∣∣∣∣∣∂β,γ
α

(
f k+1 exp(v2 + e)

)∣∣∣∣∣∣2 (t)
+
∫ t

0

∣∣∣∣∣∣∂β,γ
α

(
f k+1 exp(v2 + e)

)∣∣∣∣∣∣2
w
(u)du

]
≤ R2. (7.56)

The iterates are well defined since the initial data and the first iterates (Ug
0, f0) are in Hs. Uk+1

g

and f k+1 are solved "separately". The hyperbolic part is solved using results on hyperbolic linear
systems with smooth coefficients (lemma 7.1.5). The kinetic part is solved using theorem 7.1.1 for
the Boltzmann equation with fixed gas: for Tk+1 small enough strictly positive, the condition (7.56)
is verified. Finally using the results of regularity in lemma 7.1.5 and theorem 7.1.1, (ρg

k+1 − ρg0,
uk+1

g , ek+1
g − eg0) ∈ C ([0, Tk+1], Hs(R3)) ∩ C1([0, Tk+1], Hs−1(R3)), and gk+1 = f k+1 exp(v2 + e) ∈

C ([0, Tk+1], Hs(R3 ×R3 ×R+)) ∩ C1([0, Tk+1], Hs−1(R3 ×R3 ×R+)).

The aim is now to prove that the sequence of existence times (Tk)k∈N has a strictly positive lower
bound T.

Using the conditions giving Tk, one gets that

sup
0≤t≤Tk

||Ug
k −Ug0||s ≤ 2||Ug0 −

t (1, 0, 0, 0, 1)||s. (7.57)

Using the control on the hyperbolic system (lemma 7.1.5), we get

∀t ≤ Tk+1, ||Uk+1
g −Ug0||Hs(t) ≤ C1t, (7.58)

where C1 depends on 2||Ug0 −
t (1, 0, 0, 0, 1)||s, I2 and R.

Moreover, using Sobolev embeddings, there exists C2 such that

||Uk+1
g −Ug0||L∞ ≤ C2||Uk+1

g −Ug0||Hs

≤ C1C2t. (7.59)

Since I1 ⊂ I2, the distance dist( f r(I2), I1) between the frontier of I2 (called f r(I2)) and I1 is strictly

positive. Uk+1
g remains in I2 as long as t ≤ 1

C1C2
dist( f r(I2), I1) .
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There remains to obtain a time for which all the iterates fk satisfy || f k||2Es,1/2,Tk
≤ || f0 exp(v2 + e)||2Hs .

Using theorem 7.1.1, one gets that fk is at least defined for all t such that

t ≥ 3

8C

(
1 + sup

0≤t≤T
||uk−1

g ||2Hs + sup
0≤t≤T

||ẽk−1
g ||Hs + 3

2 || f0 exp(v2 + e)||2Hs

)

≥ 3

8C

(
1 + sup

0≤t≤T
2||Ug0 −t (1, 0, 0, 0, 1)||s + 3

2 || f0 exp(v2 + e)||2Hs

) .

Using this inequality, one gets a time T∗ independent of k (since the constants no longer de-
pend on k) for which all iterates f k satisfy || f k||2Es,1/2,T∗

≤ || f0 exp(v2 + e)||2Hs . By defining T :=

min(T∗,
dist( f r(I2), I1))

C1C2
), one finally gets a time T strictly positive for which the scheme is stable:

all Tk are larger than T.

Passing to the limit

We pass to the limit. To begin with, the following lemma holds:
Lemma 7.1.6. We consider the sequence Tk, Uk

g, f k of the iterative scheme, and T > 0 the time of stability
of the scheme. Then one can find T∗ ∈]0, T[ such that (for k ≥ 2),

sup
0≤t≤T∗

‖|( f k − f k−1) exp(v2 + e)|| ≤ C1(I2, s, Ug0, f0) sup
0≤t≤T∗

||Uk−1
g −Uk−2

g ||, (7.60)

sup
0≤t≤T∗

||Uk+1
g −Uk

g|| ≤
1
4

sup
0≤t≤T∗

||Uk
g −Uk−1

g ||+ 1
4

sup
0≤t≤T∗

||Uk−1
g −Uk−2

g ||. (7.61)

Thanks to (7.61), we see that

∑
k

sup
0≤t≤T∗

‖Uk+1
g −Uk

g‖ < +∞. (7.62)

Then, (Uk
g) is a Cauchy sequence and converges in L∞([0, T∗], (L2(R3))5) towards some limit Ug

which satisfies Ug − t(1, 0, 1) ∈ L∞([0, T∗], (L2(R3))5).

It is clear that Ug− t(1, 0, 0, 0, 1) ∈ C([0, T∗], (L2(R3))5) (∀k ≥ 0, Uk
g− t(1, 0, 1) ∈ C([0, T∗], (L2(R3))5)).

Moreover, thanks to (7.60) and (7.62),

∑
k

sup
0≤t≤T∗

‖( f k+1 − f k) exp(v2 + e)‖L2 < +∞. (7.63)

Using classical arguments (see[Mat06]; [Mat10]) on Sobolev embeddings one can now recover
existence of solutions through Cauchy sequences.

Uniqueness of solutions is a consequence of the proof of lemma 7.1.6.
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7.2 Hydrodynamic limit

We now go to the study of dense sprays when the volume fraction of particles has to be considered.
We want to show that two-phase flow systems can be recovered from sprays equations. Unfor-
tunately it has been done only at a formal level as we will see in this work. From a mathematic
viewpoint, it is always difficult to tackle with the volume fraction.

We consider in this work only monodisperse sprays (that is, all the droplets in the disperse phase
have the same radius r). Moreover, we shall also suppose that all droplets are incompressible and
that no evaporation occurs, so that r will be in the sequel an absolute constant.

We denote by α := α(t, x) ∈ [0, 1] the volume fraction of gas at time t ∈ R+ and point x ∈ Ω (Ω
being a subset of R3). Considering this quantity makes sense when the volume 4

3 π r3 of a typical
droplet is much smaller than a small (but macroscopic) elementary volume of fluid. We say that
the spray is thick [it was first introduced in [Duk80] and then used in the KIVA code [ORo81];
[AOB89]; [AO89]; [OZS09]] when 1− α(t, x) is not negligible in at least part of R+ ×Ω (typically
1 − α(t, x) >> 10−3) but not too big either (typically, 1 − α(t, x) ≤ 0.2 at worst). We refer to
[Duk80]; [ORo81] for the concept of thick spays.

Thick sprays are modeled by a coupling of a kinetic equation and a fluid equation. This coupling
is done through the volume fraction α and the drag between the two phases. We write below the
set of equations described in [Duk80], with a few differences that we explain in the sequel.

We denote by ρg := ρg(t, x) ∈ R+, p := p(t, x) ∈ R+, ug := ug(t, x) ∈ R3, eg := eg(t, x) ∈ R+,
Eg := Eg(t, x) = eg(t, x) + 1

2 |ug(t, x)|2 ∈ R+ and Tg := Tg(t, x) ∈ R+ the respective density (of
mass), pressure, velocity, internal energy (per unit of mass), total (internal + kinetic) energy (per
unit of mass), and temperature of the gas. Those quantities satisfy the following balance laws:

∂t(αρg) +∇x · (αρgug) = 0 , (7.64)
∂t(αρgug) +∇x · (αρgug ⊗ ug) +∇x p = −A, (7.65)

∂t(αρgEg) +∇x ·
(

αρg

(
Eg +

p
ρg

)
ug

)
+ p∂tα = −B1 − B2, (7.66)

where A is the momentum transferred to the (elementary volume at time t and point x of) gas
by the dispersed phase and B1, B2 constitute the corresponding (resp. mechanical and thermal)
transfer.

The density in the phase space f := f (t, x, up, ep) ≥ 0 of droplets which at time t and point x have
velocity up ∈ R3 and internal energy ep ∈ R+ satisfies the following Vlasov-Boltzmann equation:

∂t f + up · ∇x f +∇up · ( f Γ) + ∂ep( f φ) = Q( f , f ), (7.67)

where Γ and φ represent the transfer of momentum and energy of the gaseous phase on a given
droplet (which at time t and point x has velocity up ∈ R3 and internal energy ep ∈ R+). Accord-
ingly,

mpΓ = −
mp

ρp
∇x p− D (up − ug); mpφ = Φ (Tg − Tp), (7.68)

A =
∫∫
up,ep

mpΓ f dupdep, (7.69)
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B1 =
∫∫
up,ep

mp

(
Γ +
∇x p
ρp

)
· up f dupdep, (7.70)

B2 =
∫∫
up,ep

mpφ f dupdep, (7.71)

where mp is the mass of one droplet, ρp is the density of the liquid constituting the droplets (mp =
4
3 π r3 ρp, and mp, ρp, r are absolute constants), and Tp is the temperature of the droplet. In (7.68),
the term D (up−ug) models the drag. The drag coefficient D is in general a function of ρg, |ug−up|
(and also r, ρp and the molecular viscosity of the gas [this last quantity being neglected in the
equation of momentum of the gas]).

Also in (7.68), the term Φ (Tg − Tp) models the thermal exchanges between the droplets and the
gas. The coefficient Φ in general depends upon the thermal viscosity of the particle and the Nus-
selt number (and therefore upon r, |ug − up|, etc.).

The system is closed thanks to the constitutive equations of the gas and the liquid:

p(t, x) = P1(ρg(t, x), eg(t, x)), Tg(t, x) = T1(ρg(t, x), eg(t, x)), (7.72)

Tp = T2(ep), (7.73)

and the identity for the volume fraction of droplets:

1− α(t, x) =
4
3

πr3
∫∫
up,ep

f (t, x, up, ep) dupdep. (7.74)

The set of equations (7.64) – (7.74) is sometimes called “Gas-particles” or “Eulerian-Lagrangian”.
The main differences with the model proposed by Dukowicz ([Duk80]) is that we take into account
collisions (they were neglected in the original model) and equations for the energy ([BDM03]).

Note that the presence of a non-infinitesimal volume fraction 1− α of droplets is not compatible
with the presence of a non-infinite Boltzmann kernel (this is a consequence of the Boltzmann-Grad
asymptotic: cf. [CIP94]). The situation in the classical work of Dukowicz [Duk80] is even worse
since no collision kernel is considered there. The scaling that we propose in next section partially
removes the incompatibility, since the collision kernel tends to infinity.

We provide in this work a link between eq. (7.64) – (7.74) and a different class of systems, some-
times called "Eulerian-Eulerian", which models two-phase flows (including thick sprays). Those
systems are thoroughly described in [IH06]. They are obtained at a heuristic level by taking aver-
ages of Euler-type equations for both phases, and by imposing reasonable closures.

In the "Eulerian-Eulerian" approach, the phase space f of droplets is replaced by macroscopic
quantities, namely: the density (of mass) ρ := ρ(t, x) ∈ R+ of liquid, its velocity v := v(t, x) ∈ R3,
its internal energy (per unit of mass) e := e(t, x) ∈ R+, its total (internal + kinetic) energy (per
unit of mass) E := E(t, x) = e(t, x) + 1

2 |v(t, x)|2 ∈ R+ and its temperature T := T(t, x) ∈ R+. The
equations write

∂t(αρg) +∇x · (αρgug) = 0, (7.75)

∂t(αρgug) +∇x · (αρgug ⊗ ug) + α∇x p = −Ã, (7.76)

∂t(αρgEg) +∇x ·
(

αρg

(
Eg +

p
ρg

)
ug

)
+ p∂tα = −B̃1 − B̃2, (7.77)
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∂t((1− α)ρ) +∇x · ((1− α)ρv) = 0, (7.78)

∂t((1− α)ρv) +∇x · ((1− α)ρv⊗ v) + (1− α)∇x p = Ã, (7.79)

∂t ((1− α)ρE) +∇x ·
(
(1− α)ρ

(
E +

p
ρ

)
v
)
+ p∂t(1− α) = B̃1 + B̃2. (7.80)

Those balance laws are completed by the constitutive equations of the gas (similar to (7.72))

p(t, x) = P1(ρg(t, x), eg(t, x)); Tg(t, x) = T1(ρg(t, x), eg(t, x)), (7.81)

together with the constitutive equations of the liquid (incompressible) phase

T(t, x) = T2(e(t, x)), ρ(t, x) = ρp. (7.82)

Finally, the transfer terms Ã, B̃1, B̃2 of momentum and energy write

Ã = −(1− α)
ρ

mp
D̃ (v− ug), B̃1 = −(1− α)

ρ

mp
D̃ (v− ug) · v, (7.83)

B̃2 = −(1− α)
ρ

mp
Φ̃ (T − Tg). (7.84)

The terms Ã, B̃1, B̃2 respectively represent the drag force term, its deposit in terms of energy, and
the thermal exchanges. The constants D̃, Φ̃ respectively represent the drag force coefficient and
the thermal conduction coefficient. They can be fitted using experimental data and in general
depend upon α, |v− ug|, etc . Note that systems like (7.75) – (7.82) appear not only in the theory
of sprays, but also in many other kinds of multiphase flows (stratified, churning flows, etc.), the
transfer terms (like Ã, etc.) depend in general of the type of flows which are considered and are
generally obtained by using statistical averages ([IH06]; [AOB89]; [ORo81]; [OZS09]).

Our goal in this paper is to provide a clear scaling which enables to derive “rigorously at the
formal level” macroscopic equations such as (7.75) – (7.84) from “gas-particles” equations such as
(7.64) – (7.74). It is clear that eq. (7.78) – (7.80) will be obtained by taking moments (with respect to
v, e) of eq. (7.67). This stategy has already been used in many works concerning the modeling of
sprays ([Mas96]; [Lau02]; [Duf05]), in the more complicated case when the spray is polydisperse:
it uses however heuristic closures in order to derive the "Eulerian-Eulerian" equations.

Our approach, though it is restricted to the simpler case of monodisperse sprays, is quite different
since:

i) It is based on a scaling of the sprays equation obtained after a non-dimensionalization of those
equations;

ii) It provides non heuristical closures (that is, a mathematical link between A, B1, B2 and Ã, B̃1,
B̃2);

iii) It involves the description of a new variant of the Boltzmann kernel where all the parameters
are assessed.

In the scaling that we propose, the collision term Q appearing in (7.67) must be dominant. This
exactly corresponds in the context of standard kinetic theory to the limit of small Knudsen number,
in which 1

ε is put in front of the collision kernel, and which leads from the Boltzmann equation
of rarefied gases towards the compressible Euler equations of fluid dynamics (Cf. [KMN79] for a
rigorous proof in the context of very smooth solutions on a small time interval, and [Gol05] for a
general survey on the question).
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Our paper is structured as follows: in section 7.2.1, the gas-particles equations are specified in
detail, including the collision kernel Q. Then, a non-dimensional version of those equations is
provided in section 7.2.2. The distributions which cancel Q are described in section 7.2.3. Then,
equations for the macroscopic quantities (for both phases) are written down and the system is
closed (in section 7.2.4). Some conclusions and perspectives are presented at the end of the paper
(section 7.2.5).

7.2.1 Presentation of the inelastic collision kernel

General form of the collision kernel

We now recall the main assumptions that we presented in the introduction of this work about the
flow we consider.We assume that the flow is constituted of a surrounding gas and of a dispersed
liquid phase. This phase is itself assumed to be of relatively small volume fraction (typically
between 10−3 and 0.2), and to be constituted of very tiny spherical incompressible droplets having
all the same radius r (that is, the spray is monodisperse). The flow inside the droplets is not
modeled.

As stated in the introduction, a system which models the spray under this assumption can be
written down by considering the unknown f := f (t, x, up, ep) ≥ 0 for the droplets and ρg :=
ρg(t, x) ∈ R+, ug := ug(t, x) ∈ R3, p := p(t, x) ∈ R+, Eg := Eg(t, x) ∈ R+ for the gas. The set of
equations is then (7.64) – (7.74), and it remains to precisely define the collision operator Q.

The assumptions that underly the establishment of this operator are the following: First, since
the spray is monodisperse, no complex phenomena of coalescence or breakup of droplets are
considered. For the same reason, all collisions are supposed to be binary (that is, two droplets are
present at the beginning of the collision and produce two droplets at the end of the collision).

Then, since droplets are macroscopic objects, the cross section will be that of hard spheres. For the
same reason, kinetic energy conservation during the process of collision is not expected in general.
As a consequence, one needs to write down a model in which part of the kinetic energy is lost:
models of granular media (Cf. [BCG00]; [Vil02]; [CCC09]) provide a good solution for that.

Moreover, since the internal energy of the droplets is one of the variables in f , one needs a rule to
exchange internal energy during the process of collision: models for polyatomic gases (Cf. [BL75];
[Des97a]) provide a simple solution for this physical phenomenon.

Finally, the kinetic energy which is lost has to be converted in internal energy, and to be distributed
between the two outgoing droplets. Since those droplets have the same volume, we choose to
divide it equally.

Collecting all those ideas, we end up with a collision kernel which writes

Q( f , f )(t, x, up, ep) =
∫∫∫∫∫

σ∈§2,up∗∈R3

ep∗∈R+

(
1

1− a
1
β2 f (t, x,′ up∗,

′ ep∗) f (t, x,′ up,′ ep)

− f (t, x, up∗, ep∗) f (t, x, up, ep)

)
× 1{′ep,′e∗p≥0} r2 |up − up∗| dσdup∗ dep∗, (7.85)
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where the pre-collisional velocities ′up∗ and ′up are defined as

′up =
up + up∗

2
− 1− β

4β

(
up − up∗

)
+

1 + β

4β
|up − up∗|σ,

′up∗ =
up + up∗

2
+

1− β

4β

(
up − up∗

)
− 1 + β

4β
|up − up∗|σ,

where σ belongs to the unit sphere §2, and
∫

σ∈§2 dσ = 4π. The pre-collisional internal energies ′ep∗
and ′ep are defined as

′ep =
2− a
2− 2a

ep −
a

2− 2a
ep∗ −

1
2

∆E,

′ep∗ = −
a

2− 2a
ep +

2− a
2− 2a

ep∗ −
1
2

∆E,

where

∆E =
1
2
(′up

2
+ ′up∗

2 − up∗
2 − up

2) =

(
1− β2

8β2

)
|up − up∗|

2 − 1− β2

8β2 |up − up∗|
(
up − up∗

)
· σ

(7.86)
is the loss of kinetic energy (or gain of internal energy) [divided by mass].

In those formulas, β := β(|up − up∗|) is a measure of the inelasticity of the collision (the collision
is elastic when β = 1), and a := a(|up − up∗|) is the parameter which measures what part of the
internal energy is exchanged during a collision (no internal energy is exchanged when a = 0).

Note that the prefactor
1

1− a
1
β2 is related to the Jacobian of the pre-collisional transform (up, ep, up∗, ep∗) 7→

(′up,′ ep, ′up∗,
′ ep∗), and to the cross section of hard spheres ([Vil06]). The model presented here is

strongly reminiscent of models appearing in granular gases. The only difference is the treatment
of the internal energy of the droplets.

Using the weak form of the kernel of we get the conservations of mass, momentum and total
energy ([DM10]): ∫∫

up,ep

Q( f , f )(up, ep)mp dupdep = 0, (7.87)

∫∫
up,ep

Q( f , f )(up, ep)mp up dupdep = 0, (7.88)

∫∫
up,ep

Q( f , f )(up, ep)

[
1
2

mpu2
p + mpep

]
dupdep = 0. (7.89)

The equations for thick sprays being now complete, we introduce in next section a scaling based
on the dimensional analysis of those equations.

7.2.2 Non dimensional form of the Vlasov-Boltzmann equation

We write down in this short section the dimensional analysis which enables to obtain a formal
limit for the Vlasov-Boltzmann equation (7.67). In order to do so, we first introduce the following
time/space typical quantities:

• tg: typical time of the experiment,
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• L: typical length of the experiment.

Next, we introduce quantities related to the gas and the droplets (remember that r, mp, ρp are the
radius, mass and density of droplets, and that D, Φ are the coefficients for drag force and thermal
exchanges)

• N: typical number of droplets of the experiment,

• V: typical mean velocity of the droplets. We shall assume that it is also the typical thermal
velocity of the droplets [that is, the square root of the variance of the velocity distribution],
and the typical velocity of the gas. One has V tg = L.

• Ip: typical internal energy of the droplets per mass unit,

• Ig: typical internal energy of the gas per mass unit,

• TT: typical temperature of the droplets. We shall assume that it is also the typical tempera-
ture of the gas.

• P: Typical pressure of the gas

• P′ = ρp V2: this quantity has the dimension of a pressure

It is customary to introduce at this level the mean free path σ = L3

r2 N . Finally, we denote by ε the

Knudsen number ε =
σ

L
. This quantity is at the basis of the passage from Boltzmann equation

towards Euler equation. (see [Cer88] and [CC70]). We now introduce non-dimensional quantities
(denoted with a tilde) for the unknowns and parameters entering eq. (7.67). That is, we consider

t̃ =
t
tg

, x̃ =
x
L

, ũp =
up

V
, ẽp =

ep

Ip
, T̃p =

Tp

TT
,

f̃ (t̃, x̃, ũp, ẽp) =
IpL3V3

N
f (tg t̃ , L x̃ , V ũp , Ip ẽp),

for the particles and

ũg(t̃, x̃) =
ug(tg t̃ , L x̃)

V
, T̃g(t̃, x̃) =

Tg(tg t̃ , L x̃)
TT

, ẽg(t̃, x̃) =
eg(tg t̃ , L x̃)

Ig
, P̃(t̃, x̃)

p(tg t̃ , L x̃)
P

for the gas.

The equation satisfied by f̃ then becomes

∂t̃ f̃ + ũp · ∇x̃ f̃ +∇ũp · ( f̃ Γ̃) + ∂ẽp( f̃ φ̃) =
1
ε

Q( f̃ , f̃ ), (7.90)

where

Γ̃ =
P
P′
∇x̃ p̃ + C2

(
ũp − ũg

)
, φ̃ = C3(T̃g − T̃p), C2 =

D
mp

tg, C3 =
ΦTTtg

mp Ip
.
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We shall now study the limit of eq. (7.90) when ε → 0. We see that this limit makes sense when
the typical parameters of the experiment under study are such that

1� ε, (7.91a)
P′

P
� ε, (7.91b)

mp

D tg
� ε, (7.91c)

mp Ip

ΦTTtg
� ε. (7.91d)

A typical situation appearing in industry where those assumptions are fulfilled is described in
[Mat06]. Other scaling can be done on sprays ([GJV02]).

7.2.3 Limit of the pdf in the scaling

In order to pass to the limit (at the formal level) in eq. (7.90) when ε → 0, we study the solutions
of the functional equation Q( f , f ) = 0, when collisions are truly inelastic, that is when β :=
β(|up − up∗ |) ∈ [0, 1[. The computation of the exchange of kinetic energy leads to

∫∫
up,ep

Q( f , f )
1
2

mpu2
p dupdep = −

∫∫∫∫
up,ep,up∗ ,ep∗

1− β2

8
f f∗4πr2 mp|up − up∗|

3 dup∗dep∗dupdep , (7.92)

so that the effect of inelastic collisions is to concentrate the velocities of the droplets. Note first
that when considering only the evolution of velocities, in absence of internal energy exchange, the
convergence towards a Dirac mass is rigorously proven in [BCG00], [Vil02] or [FM05] for solutions
of the spatially homogeneous Boltzmann equation ∂t f = Q( f , f ) (for β constant).

We now wish to show, at the formal level, that when considering the evolution of both velocities
and internal energies in ∂t f = Q( f , f ),

lim
t→+∞

f (t, up, ep) = Gδup=v(up)⊗ δep=e(ep), (7.93)

with v ∈ R3, G ≥ 0, e > 0.

Note that this cannot be done directly by the study of the solutions of Q( f , f ) = 0 since all densi-
ties of the form

f (up, ep) = δup=v(up)⊗ µ(ep)

are such solutions (equilibria).

The case of constant coefficients of inelasticity and energy exchange

We assume in the following computation that a and β are constant, for the sake of simplicity. An
extension of this computation in a case in which a and β are not constant was done (in [Mat06]).
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In order to do so, we first recall Haff’s law ([Haf83]): For f := f (t, up) satisfying the spatially
homogeneous equation ∂t f = Q( f , f ) (with β ∈ [0, 1[ and no exchange of energy involved), the
following estimate holds:

m
1 + t2 ≤ T(t) ≤ M

1 + t2 , (7.94)

where T(t) :=

∫
up

f (t, up)
1
3

mp(up − v)2dup∫
up

f (t, up)mpdup

, and where m and M are constants depending on

initial data. A rigorous proof of this result can be found in [MM06] and [MMR06] (when β is a
constant).

A first hint of the proof can be found in [BCG00] when one assumes that |v− v∗| is replaced by a
term proportional to

√
T. Our goal here is to estimate the evolution of the mean internal energy

along the solutions of the equation

∂t f (t, up, ep) = Q( f , f )(t, up, ep). (7.95)

The computations that we provide are only approximations. They give an idea of what should be
the evolution of the quantity

g(t) :=

∫∫
up,ep

f (t, up, ep)mp
(
ep − e(t)

)2 dupdep∫∫
up,ep

f (t, up, ep)mp dupdep

,

that is the variance of f w.r.t. ep. They will be sustained in next subsection by numerical simula-
tions. Note first that thanks to the conservation of mass,

g′(t) =

∫∫
Q( f , f )(t, up, ep)mp(ep − e(t))2dupdep∫∫

f (t, up, ep)mp dupdep

=

(
−a(1− a

2
)
∫∫∫∫ 1

2
f f ∗4πr2(ep − ep∗)

2|up − up∗|dupdup∗depdep∗

+
1
2

∫∫∫∫
4πr2 f f ∗

[
1
2

∆E2 + ∆E (ep + ep∗ − 2e)
]
|up − up∗|dupdup∗depdep∗

)
/∫∫

f dupdep . (7.96)

We use the following approximation based on Haff’s law: in all computations we replace |up −
up∗| by

√
6T (the 6 comes from the fact that we are in 3D): it is more or less the same approach as

in [BCG00].
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After some computations and using (according to Haff’s law) the approximation T(t) =
c2

1
(1 + c2t)2

where c1 and c2 > 0, we obtain (except in the exceptional case when
3
r
(1− α)

c1

c2

√
6a(1− a/2) = 4):

g(t) ∼ g(0)

(1 + c2t)
3
r (1−α)

c1
c2

√
6a(1−a/2)

+
1
4

(
1− β2

4

)2
(√

6c1

)5
/c2

3
r (1− α) c1

c2

√
6a(1− a/2)− 4

[
(1 + c2t)−4 − (1 + c2t)−

3
r (1−α)

c1
c2

√
6a(1−a/2)

]
. (7.97)

We now discuss the behavior of g according to the sign of
3
r
(1− α)

c1

c2

√
6 a(1− a/2)− 4.

• When 4 <
3
r
(1− α)

c1

c2

√
6a(1− a/2): we get

g(t) ∼ Cst
(1 + c2t)4 . (7.98)

This is the situation when thermal exchanges are predominant:
√

g(t) then converges to
zero as rapidly as the temperature T(t) (note that

√
g has the same dimension as an energy).

• When 4 >
3
r
(1− α)

c1

c2

√
6a(1− a/2), we get

g(t)∼ Cst

(1 + c2t)
3
r (1−α)

c1
c2

√
6a(1−a/2)

,

so that
√

g(t) still converges towards 0, but this convergence is slower than that of the tem-
perature T(t). It can even be very slow when a is close to 0 (that is, when the exchanges of
internal energy are of small amplitude).

Note finally that the exceptional case
3
r
(1− α)

c1

c2

√
6 a(1− a/2) = 4 leads to a formula close to

(7.98) [but with a logarithmic correction].

The previous computations show (although not rigorously) that the only stable equilibrium in the
case of inelastic collisions for ∂t f = Q( f , f ) (β ∈ [0, 1[) are functions defined by (7.93).

We now detail a numerical simulation which confirms the approximate computations presented
above. We present some numerical tests for the spatially homogeneous Boltzmann equation ∂t f =
Q( f , f ), when Q is the inelastic collision kernel defined by (7.85), with a and β fixed constants. The
computations are performed thanks to a particle method (Cf. [Bar04]; [PR04]), where the density
f := f (t, up, ep) is approximated by a sum of Dirac masses with the same numerical weight (that is,
f (t, up, ep) ∼ w ∑N

i=1 δup=upi ;ep=epi ). This set of numerical particles then evolves according to Bird’s
method (Cf. [Bir94]). The tests which are presented correspond to the following parameters:

r = 10−4, f (0, up, ep) = Cst 1up∈[−104,104]3;ep∈[5.105,5.106].

About 104 numerical particles are used.

First test: Convergence towards the Dirac mass w.r.t. velocity; Haff’s law
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We check that Haff’s law holds for a = 1 and β = 0.99, 0.95, 0.8: we plot the results in logarithm
scale: we expect to get a (asymptotically) straight line whose slope is −2 (since Haff’s law means
that T(t) ∼ t−2).

It is indeed what we observe in the figure below. Note also that, as expected, the convergence is
slower when β increases.
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FIGURE 7.1: Behavior of kinetic temperature: ln T as a function of ln t for different β

Second test: Convergence towards the Dirac mass w.r.t. the internal energy

We now check the convergence towards the Dirac mass w.r.t internal energy. We fix β = 0.99 and
let a vary between 0.01 and 1.0. We plot

W = ln
(∫∫

f (t, up, ep)|ep − e(t)|depdup/
∫∫

f (t, up, ep)depdup

)
as a function of ln(t). As can be seen in figure 7.2, the more a increases, the more the coefficients
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Convergence of f towards a Dirac mass in internal energy
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FIGURE 7.2: Convergence in internal energy:
ln
(∫∫

f (t, up, ep)|ep − e(t)|depdup/
∫∫

f (t, up, ep)depdup
)

as a function of ln t
for various values of parameters

of the asymptotic straight line tend to −2. More precisely (in accordance with the theoretical
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computation), we see that there exists a critical a (around 0.06) which separates a zone in which the
behavior of W seems to be in t−2, and a zone in which it is rather in t−θ , with θ ∈]0, 2[ depending
on a. Finally, we observe that for small a, the function W increases during a certain amount of time:
thermal exchanges are then not significant enough to completely counterbalance the positive term
in equation (7.96) (that is, the transfer of kinetic energy to internal energy) at all times.

7.2.4 Fluid of particles:

According to the dimensional analysis of section 7.2.2, we end up with the following set of scaled
equations for the spray:

∂t(α
ερε

g) +∇x · (αερε
guε

g) = 0 , (7.99)
∂t(α

ερε
guε

g) +∇x · (αερε
guε

g ⊗ uε
g) +∇x pε = −Aε, (7.100)

∂t(αρε
gEε

g) +∇x ·
(

αερε
g

(
Eε

g +
pε

ρε
g

)
uε

g

)
+ pε∂tα

ε = −Bε
1 − Bε

2, (7.101)

∂t f ε + uε
p · ∇x f ε +∇up · ( f εΓε) + ∂ep( f εφε) =

1
ε

Q( f ε, f ε), (7.102)

where
mpΓε = −

mp

ρp
∇x pε − D(up − uε

g); mpφε = Φ (Tε
g − Tp), (7.103)

Aε =
∫∫
up,ep

mpΓε f ε dupdep, (7.104)

Bε
1 =

∫∫
up,ep

mp (Γε +
∇x pε

ρp
) · up f ε dupdep, (7.105)

Bε
2 =

∫∫
up,ep

mpφε f ε dupdep. (7.106)

In this section, we present the computations which enable to pass to the limit at the formal level
in eq. (7.99) – (7.106), when ε→ 0. These formal computations are based on the same principle as
the traditional passage from the Boltzmann eq. towards fluid mechanics: we first take moments of
eq. (7.102), and then close the corresponding equations thanks to the study (in section 7.2.3) of the
solutions of Q( f , f ) = 0 (more precisely, of the large time behavior of the solutions of the spatially
homogeneous equation ∂t f = Q( f , f )). We define the following quantities associated with the

moments of order zero (mass), one (momentum), two (energy, pressure (Reynolds’) tensor) and
three (flux of energy) of the fluid of particles:

(1− α)ρ =
∫∫
up,ep

f mp dupdep, (1− α)ρv =
∫∫
up,ep

f mpup dupdep,

(1− α)ρ ec =
∫∫
up,ep

1
2

f mp|up|2 dupdep, (1− α)ρ e =
∫∫
up,ep

f mpep dupdep,

(1− α)ρ E =
∫∫
up,ep

f
{

1
2

mp|up|2 + mpep

}
dupdep,
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(1− α)P′ =
∫∫
up,ep

f mp(v− up)⊗ (v− up) dupdep,

(1− α)q =
∫∫
up,ep

f mp(v− up)
2(up − v) dupdep.

Note that the pressure tensor P′ will appear in our set of equations because the fluid of droplets
does not "see" the same pressure as the gas. This extra term of pressure, sometimes called in-
terfacial pressure, appears (usually in a non tensorial form) in many works concerned with the
modeling of two-phase flows (see [Sai95] and [GHS04] for example). This pressure tensor van-
ishes when all the droplets have the same velocity (in the limit ε→ 0).

We now integrate the Boltzmann equation against mpdupdep (mass conservation), mpupdupdep

(momentum conservation), and mp[
1
2 |up|2 + ep] dupdep. We use properties (7.87), (7.88) and (7.89)

of the collision kernel. This leads to

∂t(1− α) +∇x · ((1− α)v) = 0.

since ρ is constant for the particles,

∂t((1− α)ρv) +∇x · ((1− α)ρv⊗ v) + (1− α)∇x p + ∇x ·
(
(1− α)P′

)
=

−
∫∫
up,ep

D (up − ug) f dupdep,

and

∂t ((1− α)ρE) +∇x ·
(
(1− α)ρ

(
E +

p
ρ

)
v
)
+ p∂t(1− α) +∇x · ((1− α)(P′v + q))

= −
∫∫
up,ep

D (up − ug) · up f dupdep +
∫∫
up,ep

Φ (Tg − Tp) f dupdep. (7.107)

We now close the equations by formally letting ε go to 0 in (7.99) – (7.106) According to the results
of subsection 7.2.3, we know (at the formal level) that f ε → f , with

f (t, x, up, ep) = G(t, x) δup=v(t,x)(up) δep=e(t,x)(ep). (7.108)
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We end up with a system of 6 equations which write (remember that eg = Eg − 1
2 u2

g and e =

E− 1
2 v2).

∂t(αρg) +∇x · (αρgug) = 0, (7.109)

∂t((1− α)ρ) +∇x · ((1− α)ρv) = 0, (7.110)
∂t(αρgug) +∇x · (αρgug ⊗ ug) + α∇x p = −Ã, (7.111)

∂t((1− α)ρv) +∇x · ((1− α)ρv⊗ v) + (1− α)∇x p = (7.112)
Ã, (7.113)

∂t(αρgEg) +∇x ·
(

αρg

(
Eg +

p
ρg

)
ug

)
+ p∂tα = −B̃1 − B̃2, (7.114)

∂t ((1− α)ρE) +∇x ·
(
(1− α)ρ

(
E +

p
ρ

)
v
)
+ p∂t(1− α) = B̃1 + B̃2, (7.115)

where Ã, B̃1 and B̃2 are defined in the introduction, the functions D̃ and Φ̃ being the same as D,
Φ, but taken at points v, e instead of up, ep. We recall the equations of state which complete this
system:

p = P1(ρg, eg), Tg = T1(ρg, eg), (7.116)

ρ = ρp, T = T2(e). (7.117)

7.2.5 Conclusion and perspectives

We now wish to briefly comment some of the issues related to this paper.

Firstly, we wish to explain what can be the extensions of the asymptotics presented in this work:
the presence of (molecular or turbulent) diffusion in the gas equations does not change the compu-
tations. It is also possible in principle to take into account chemistry terms (e.g. combustion terms)
in the equations: this leads however to serious complications. Finally, it is known that polydisper-
sion plays a decisive role in the construction of macroscopic models starting from spray equations
(Cf. [DMV03]). In general, it is not possible to guess the evolution of droplets w.r.t. radius, and
one has to cut into "sections" the various possible radiuses r. It however sometimes happens that
processes of coagulation/breakup lead to such specific profiles (Cf. for example [AB79]). In such
(unfortunately unrealistic, at least when sprays are concerned) situations, two-phase macroscopic
equations can be obtained (at the formal level) by an asymptotics.

Secondly, we would like to emphasize the extreme difficulty of making rigorous the passage to the
limit that we propose (even in a "small time" setting). This is related to the very bad mathematical
behavior of the limiting eq. (7.75) – (7.82). Those equations are not written in conservative form
and have a domain of non hyperbolicity (Cf. [Ram00]). Moreover, the set of eq. (7.64) – (7.74)
has not yet been studied from the mathematical point of view. It might indeed present a behavior
as bad as the limiting system [though this guess is not yet sustained by convincing arguments].
One possibility could be to try to pass to the limit in an analogous system, where the molecular
viscosity of the gas is not neglected (then the limiting equations are better behaved, Cf. [Ram00]).
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7.3 Another model for inelastic collisions in sprays

Later on, after the hydrodynamic limit was obtained, we tried to simplify our model of inelastic
collisions for having a gain in terms of numerical costs during the thesis of A. Champmartin
(CMLA, ENS Cachan)

We consider droplets are characterized by their radius r > 0, their position x ∈ Ω (domain of
computation), their velocity v ∈ R3, and their internal energy (by unit of mass) e > 0. [some other
parameters are sometimes taken into account, like the distortion of the droplets, Cf. [AOB89];
[ORo81], etc.]. We restrict ourselves in this paper to so-called monodisperse sprays, where all
droplets have the same radius r > 0.

During a collision, two droplets are in contact and therefore exchange some internal energy. More-
over, the droplets being macroscopic objects, part of the kinetic energy (in the center of mass ref-
erence frame) is transformed in internal energy (that is, the collisions are inelastic).

A standard model for inelastic collisions (Cf. [BCG00]; [BGP04]; [Vil06] for example in the context
of granular gases) consists in writing

v
′
= v+v∗

2 + 1−γ
4 (v− v∗) + 1+γ

4 |v− v∗|σ, (7.118)

v
′∗ = v+v∗

2 − 1−γ
4 (v− v∗)− 1+γ

4 |v− v∗|σ, (7.119)

where v, v∗ ∈ R3 are precollisional velocities, v′, v
′∗ ∈ R3 are postcollisional velocities, γ ∈ [0, 1]

is the inelasticity parameter, and σ is parametrizing the sphere S2.

The kinetic energy lost (by unit of mass) in (7.118), (7.119) is given by

∆E
′
c = (1− γ2)

|v− v∗|2
8

− 1− γ2

8
|v− v∗| < σ, v− v∗ > . (7.120)

The exchange of internal energy is then simply modelled by the equations

e
′
= 2−a

2 e + a
2 e∗ + 1

2 ∆E
′
c, (7.121)

e
′∗ = a

2 e + 2−a
2 e∗ + 1

2 ∆E
′
c, (7.122)

where e, e∗ > 0 are precollisional internal energies, e
′
, e
′∗ > 0 are postcollisional internal energies,

and a ∈ [0, 1] is the parameter which characterizes the typical time scale of the exchange.

Note that the kinetic energy lost in (7.118), (7.119) is equally distributed between the energies e′

and e
′∗.

In all generality, both γ and a are functions of |v − v∗| which sometimes can be assessed (Cf.
[Mat06]; [DM10]).

The corresponding Boltzmann operator Q can be written in weak form according to the following
formula (for all function ψ for which the integrals make sense)∫

v

∫
e Q( f , f )(v, e)ψ(v, e)dvde (7.123)

=
∫

v

∫
e

∫
v∗
∫

e∗
∫

σ f (v, e) f (v∗, e∗) [ψ(v′, e′)− ψ(v, e)]r2S̃(|v− v∗|)dvdedv∗de∗dσ, (7.124)
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where
S̃(w) = w (7.125)

corresponds to the cross section of hard spheres, and r > 0 is the radius of the droplets.

Note that by taking ψ(v, e) = 1; vi;
|v|2

2 + e, we obtain the conservation of mass, (ith component of
the) momentum, and total (kinetic + internal) energy:

∫
v

∫
e

Q( f , f )

 1
(vi)i=1,2,3
|v|2

2 + e

 dvde = 0. (7.126)

We also briefly indicate here the strong formulation of Q [in the case of hard spheres], which
makes explicit the Jacobian of the transformation T : (v, v∗, e, e∗) 7→ (v′, v

′∗, e′, e
′∗), but which is

not used in the sequel (cf. [Vil06] for more on the Jacobian):

Q( f , f )(v, e) =∫∫∫
v,e,σ

(
JT
|′v−′v∗|
|v−v∗| f (′v∗,′ e∗) f (′v,′ e)− f (v∗, e∗) f (v, e)

)
r2|v− v∗|dσdvde

=
∫∫∫

v,e,σ

(
1

γ2
1

1−a f (′v∗,′ e∗) f (′v,′ e)− f (v∗, e∗) f (v, e)
)

r2|v− v∗|dσdvde. (7.127)

The Jacobian JT is composed of a part ( 1
γ2
|v−v∗|
|′v−′v∗| ) which is typical of the inelastic collision kernels

([GPV04]; [Vil02]), and of another part ( 1
1−a ) which comes from the exchanges of internal energies.

In (7.127) is used the following shorthand (related to precollisional velocities, Cf. [Mat06]; [DM10])

′v = v+v∗
2 − 1−γ

4γ (v− v∗) + 1+γ
4γ |v− v∗|σ, (7.128)

′v∗ = v+v∗
2 + 1−γ

4γ (v− v∗)− 1+γ
4γ |v− v∗|σ, (7.129)

′e = 2−a
2−2a e− a

2−2a e∗ + 1
2 ∆′Ec, (7.130)

′e∗ = − a
2−2a e + 2−a

2−2a e∗ + 1
2 ∆′Ec, (7.131)

∆′Ec =
1− γ2

8γ2 |v− v∗|2 − 1− γ2

8γ2 |v− v∗| < σ, v− v∗ > . (7.132)

In many instances, the Knudsen number related to the droplets in a spray is small (Cf. [Mat06];
[DM10]), so that the number of collisions to perform in a computation is quite high, and the
treatment of Q sometimes requires a large part of the time spent in the computation (up to an
increase of more than 100%).

As a consequence, one needs simplified models of collision, which leads to less expensive compu-
tations, but keep some of the main features of the original model (7.127) – (7.132).

This problem has already been studied by many authors in the case of the elastic Boltzmann oper-
ator for rarefied gases, and has led to various models, among which the BGK model (Cf. [BGK54])
and the ESS model (Cf. [Low66]). These models have been adapted to the case of inelastic Boltz-
mann kernels for granular media (Cf. [J M00], [San03]), and to the case of Boltzmann kernels
taking into account chemical reactions (Cf. [CGS07], [GK02], [MG99]).
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The simplified model that we propose writes

∂t f +∇v ·
(
c1 f (v− vavr)

)
+ ∂e(c2 f ) + ∂e(c3(e− eavr) f )

+ ∂e(c4|v− vavr|4∂e f ) = −ν( f − f0), (7.133)

where vavr is the mean velocity

vavr =

∫
v

∫
e f (t, v, e)vdvde∫

v

∫
e f (t, v, e)dvde

, (7.134)

eavr is the mean internal energy

eavr =

∫
v

∫
e f (t, v, e)ededv∫

v

∫
e f (t, v, e)dedv

, (7.135)

f0 is the Maxwellian function of v with the same parameters as f

f0(t, v, e) =
( 1

2πT(t)

)3/2
e−
|v−vavr |2

2T(t)

∫
w

f (t, w, e)dw, (7.136)

and T is the statistical temperature:

T(t) =
1
3

∫
v

∫
e f (t, v, e)|v− vavr|2dvde∫

v

∫
e f (t, v, e)dvde

. (7.137)

It combines:

• a drift towards the mean velocity ∇v ·
(

f (v− vavr)
)
, which enables to model the inelasticity

(loss of kinetic energy) coupled with a term which ensures the conservation of total energy
∂e( f ),

• a relaxation towards a Maxwellian distribution −ν( f − f0),

• a drift towards the mean internal energy ∂e((e− eavr) f ), which models the exchange of in-
ternal energies during collisions,

• a diffusive term ∂e(|v − vavr|4∂e f ) coming from the fact that some diffusion w.r.t. internal
energy appears when part of the kinetic energy is transformed into internal energy. Note
that the term |v− vavr|4 naturally appears by homogeneity if we want c4 to be the inverse of
a time.

The parameters c1, c2, c3, c4, ν are defined by

c1 =
3S1(t)

8r
[
− 1 +

γ

2
+ γ2](1− α), (7.138)

c2 = −9S1(t)
8r

[
− 1 +

γ

2
+ γ2](1− α)T(t), (7.139)

c3 = −3S3(t)
4r

a(2− a)(1− α), (7.140)

c4 = −S4(t)
32r

(1− γ2)2(1− α), (7.141)
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ν =
3S1(t)

8r
(1 + γ)2(1− α), (7.142)

where S1, S3, S4 depend on the type of collision kernel:

• In the case of Maxwell molecules (that is, when S̃(|v− v∗|) = S is a constant in (7.124), we
take S1(t) = S3(t) = S4(t) = S;

• In the case of hard spheres (that is, when S̃(|v− v∗|) = |v− v∗|), we take

S1 =

√
3(T̃2

11 + T̃2
22 + T̃2

33) + 2(T̃11T̃22 + T̃22T̃33 + T̃11T̃33)

9T2

√
6T, (7.143)

S3 =
4
√

T√
π

, (7.144)

S4 =
32
√

T
5
√

π
. (7.145)

Here, the T̃ii are the eigenvalues of the matrix made out of the Tij, which are the directional tem-
peratures:

Tij(t) =

∫
v

∫
e f (vi − viavr)(vj − vjavr)dvde∫

v

∫
e f dvde

; i, j = 1.., 3, (7.146)

and α is the volume fraction of gas in the spray:

1− α(t) =
∫

v

∫
e

f (t, v, e)
4
3

πr3dvde. (7.147)

Those coefficients are chosen in such a way that the main properties of the kernel Q (conservation
of mass, momentum, total energy) are satisfied, and that some typical quantities (kinetic energy,
directional temperatures, variance of the internal energy) have a behavior which is as close as
possible to the original kernel Q.

Their choice can be made in an almost completely rational way when one wishes to mimic a kernel
with a cross section of Maxwell molecules type [that is, when one chooses S̃ as a constant function
instead of (7.125)]. Unfortunately, in the (much more realistic) case of hard spheres (that is, when
S̃ is given by (7.125)), this choice is made after some approximations which are not always valid,
and other choices of coefficients are possible.

This work is built as follows: in Section 7.3.1 are computed (the evolution of) some moments
of the density function f satisfying the Boltzmann eq. ∂t f = Q( f , f ). This computation is exact
(except for the variance of internal energy) when hard spheres are replaced by Maxwell molecules,
but can only be an approximation in the realistic case of hard spheres. The difficulties related to
the treatment of hard spheres [that is, the link between S1, S3, S4 and S̃] are discussed in article
[CDM10].

Then, the same computation is repeated in section 7.3.2 for the simplified model (7.133) – (7.136),
with arbitrary coefficients c1, ., c4, ν. This enables the identification of the coefficients (formulas
(7.138) to (7.142)).



116 Chapter 7. Spray with collisions

Section 7.3.3 is devoted to the numerical simulations and comparisons between the simplified and
original model. In subsection 7.3.3 is presented the numerical (particle Monte Carlo) scheme used
to solve (7.133) – (7.136). We only provide some numerical results in subsection 7.3.3 when a and
γ depend on |v− v∗|. Other cases can be found in the paper.

7.3.1 Evolution of some moments of the solution of Boltzmann equation

We consider in this section a solution f of the spatially homogeneous Boltzmann equation

∂t f = Q( f , f ), (7.148)

where Q is the kernel defined in (7.118) – (7.124) [or (7.127) – (7.132)].

We want to track the following moments in order to build our simplified model:

• The directional temperatures Tij defined by (7.146),

• The variance of the internal energy

g(t) :=

∫
v,e f (e− eavr)2dvde∫

v,e f dvde
. (7.149)

Computation of some moments of the collision kernel in the case of Maxwell molecules

Property 7.3.1. We note

M0 =
∫

v,e
m f dvde (7.150)

the total mass of the spray (where m is the mass of a droplet). We consider Q defined in (7.118) – (7.124), in
the case when S̃(|v− v∗|) := S is a constant function of the relative velocity (case of Maxwell molecules).
The following identities hold (provided that f is a smooth enough nonnegative function of v)

• For i, j = 1, .., 3, i 6= j,∫
v,e

Q( f , f )m(vi − viavr)(vj − vjavr)dvde =
3S
r
[
− 3

8
+

γ

4
(

γ

2
− 1)

]
(1− α)M0Tij, (7.151)

• For i = 1, .., 3,∫
v,e

Q( f , f )m(vi − viavr)
2dvde =

3S
r
[
− 3

8
+

γ

4
(

γ

2
− 1)

]
(1− α)M0Tii

+
3S
8r

(1 + γ)2(1− α)M0T, (7.152)
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• ∫
v,e

Q( f , f )m(e− eavr)
2dvde = −3S

2r
a(2− a)(1− α)M0g

+ πr2 (1− γ2)S
4

∫
v,e,v∗,e∗

f f ∗m(e + e∗ − 2eavr)|v− v∗|2dvdedv∗de∗

+ πr2 (1− γ2)2S
48

∫
v,e,v∗,e∗

f f ∗m|v− v∗|4dvdedv∗de∗.

Eq. (7.153) can be simplified if f is a tensor product (as a function of v and e) in the following way:∫
v,e

Q( f , f )m(e− eavr)
2dvde =

− 3S
2r

a(2− a)(1− α)M0g

+ πr2 (1− γ2)2S
48

∫
v,e,v∗,e∗

f f ∗m|v− v∗|4dvdedv∗de∗. (7.153)

It can even be further simplified when moreover f is an (isotropic) Gaussian function of v:

f (v, e) =
(∫

v
f (w, e) dw

)
1

(2πT)3/2 exp(−|v− vavr|2
2T

). (7.154)

In that case, we end up with∫
v,e

Q( f , f )m(e− eavr)
2dvde = (7.155)

− 3S
2r

a(2− a)(1− α)M0g +
15S
16r

(1− γ2)2(1− α)M0T2.

From these expressions we were able to compute the evolution of the moments of the Boltzmann
equation in the case of Maxwell molecules or hard-spheres (see [CDM10]) so that we could create
our simpler model (next subsection).

7.3.2 Establishment of the simplified model

Evolution of the moments of the simplified model with arbitrary coefficients

We introduce here the simplified model [which hopefully mimicks the behavior of (7.127) – (7.128)],
with arbitrary coefficients c1, .., c4, ν:

∂t f +∇v ·
(
c1 f (v− vavr)

)
+ ∂e(c2 f + c3(e− eavr) f + c4|v− vavr|4∂e f )

= −ν( f − f0) (7.156)

where vavr, eavr, and f0 are defined by (7.134), (7.135) and (7.136).

It is possible to compute explicitly the evolution of some moments of the solution of eq. (7.156).
Those computations are summarized in the following
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Property 7.3.2. We assume that c1, .., c4, ν ≥ 0 do not depend on v, e (they can depend on T and t). Then
the (smooth) solutions of eq. (7.156) satisfy the following properties:

• Conservation of mass and momentum:

∂t

∫
v,e

f
(

1
v

)
dvde = 0, (7.157)

• Evolution of the total energy:

∂t

∫
v,e

m f
(
|v|2

2
+ e
)

dvde = [3c1T + c2] M0, (7.158)

• Evolution of the directional temperatures:

∀i, j = 1, .., 3, i 6= j, ∂tTij = (2c1 − ν) Tij, (7.159)

∀i = 1, .., 3, ∂tTii = (2c1 − ν) Tii + ν T, (7.160)

• Evolution of the variance of the internal energy:

∂tg = 2c3g− 2c4

M0

∫
v

∫
e

f m|v− vavr|4dvde. (7.161)

Computation of the coefficients: case of Maxwell molecules

We now write down the constraints on the parameters which enable to identify the behavior of
the moments (total energy, g and Tij) for the simplified model and for the original model, in the
case of Maxwell molecules (that is, when S̃(|v− v∗|) = S).

In order to recover the conservation of total energy which held in the original model, one needs
to ensure (according to (7.158)) that

c2 = −3c1T (7.162)

In order to mimick the behavior of the directional temperatures when f satisfies the original
model, we write the following constraints (corresponding to the cases i 6= j and i = j respec-
tively):

2c1 − ν =
3S
r
[−3

8
+

γ

4
(

γ

2
− 1)](1− α), (7.163)

ν =
3S
8r

(1 + γ)2 (1− α). (7.164)

Finally, we wish to mimick the behavior of g. This first leads to

c3 = − 3
4r

a(2− a)(1− α)S. (7.165)

It remains to perform the computation of
∫∫

v,e f m|v− vavr|4dvde. This is not possible in general,
and we retain as an approximate result what is obtained when f is assumed to be an (isotropic)
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Gaussian w.r.t. v (that is, f is given by formula (7.154)). In this situation, one is led to∫
v,e

f m|v− vavr|4dvde = 15M0T2. (7.166)

Then, the identification with the (approximate) ode (??) satisfied by g(t) when f is solution of the
Boltzmann equation with Maxwell molecules leads to:

c4 = − 1
32r

(1− γ2)2(1− α)S. (7.167)

Collecting all those identities, we get the equations (7.138) – (7.142) for the parameters of the model
described in the introduction (with S1(t) = S3(t) = S4(t) = S).

Computation of the coefficients: case of hard spheres

In this subsection, we write down the constraints on the parameters which enable to identify the
behavior of the moments (total energy, g and Tij) for the simplified model and for the original
model, in the case of hard spheres (that is, S̃(|v− v∗|) = |v− v∗|).

The conservation of total energy still leads to eq. (7.162). Then, it is easy to see that (7.163) –
(7.165), (7.167) become

2c1 − ν =
3S1

r
[−3

8
+

γ

4
(

γ

2
− 1)](1− α), (7.168)

ν =
3S1

8r
(1 + γ)2 (1− α), (7.169)

c3 = − 3
4r

a(2− a)(1− α)S3, (7.170)

c4 = − 1
32r

(1− γ2)2(1− α)S4, (7.171)

where S1, S3 and S4 are given by (7.143), (7.144) and (7.145). In the last equation, the same as-
sumptions on

∫
v

∫
e f m|v− vavr|4dvde has been performed as in the case of Maxwell molecules. We

end up again with the equations (7.138) – (7.142) for the parameters of the model described in the
introduction.

We have thus obtained our simplified model in the case of Maxwell molecules as well as in the
case of hard spheres.

Extension of the model when a, γ depend on |v− v∗|

We now briefly explain how to extend our analysis when the kernel Q (with hard spheres cross
section) defined in (7.127) – (7.132) includes inelasticity and energy exchange parameters a and
γ which depend on |v − v∗| instead of being absolute constants, that is, a := a1(|v − v∗|), γ :=
γ1(|v− v∗|) (Cf. [Mat06]; [DM10]).

Our proposition consists in introducing the simplified model (7.133) – (7.147), where a and γ
(appearing in formulas (7.138) – (7.142)) are replaced by a1(

√
6T) and γ1(

√
6T) respectively [that

is, |v− v∗| is replaced by its mean quadratic value].
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7.3.3 Numerical simulations

Numerical method

In order to solve (7.133) – (7.147), we use a particle method (with constant weight w): the density
f is discretized as

f (n∆t, v, e) ∼
N

∑
i=1

w δvi(n∆t),ei(n∆t).

The "Vlasov-Fokker-Planck" part of eq. (7.133) is solved by discretizing (at the first order) the
characteristic ODEs for vi and ei. Moreover, a realization of the Brownian motion is used for the
term proportional to ∂2

e f . The exact conservation of the momentum and total energy is enforced
at the end of this procedure. The "BGK" part of eq. (7.133) [that is, the r.h.s. of the equation] is
treated by modifying the velocities of a randomly chosen set of particles (Monte-Carlo method).
Once again, the conservation of momentum and kinetic energy (which implies total energy too
since the internal energy remains unchanged in that step) is enforced at the end of the time step.

Note also that the numerical results obtained with this discretization of eq. (7.133) – (7.147) are
compared with simulations of the original equation (7.148) obtained thanks to a DSMC scheme
(the code is a modified version of the code used in [Bar04]; [DM10])

In this document we choose to only present results on velocity-depending parameters (results on
Maxwell molecules or hard-spheres can be found in the article [CDM10]).

Numerical experiments; velocity-depending parameters

This subsection is devoted to the presentation of results when both γ and a are functions of |v− v∗|
in eq. (7.148), as described in subsection 7.3.2.

More precisely, we consider the following formulas for the parameters γ and a:

γ̃1(|v− v∗|) = exp(− γ1

|v− v ∗ | ), (7.172)

ã1(|v− v∗|) = 1− exp(− a1

|v− v ∗ | ). (7.173)

We compare the results obtained on one hand by using the original Boltzmann equation (with
a := ã(|v − v∗|) and γ := γ̃(|v − v∗|) given by (7.172), (7.173); and with hard spheres), and on
the other hand by using our simplified model with a := ã(

√
6T), γ := γ̃(

√
6T), as proposed in

subsection 7.3.2.

We first compare the evolution of the directional temperatures T12(t), T11(t), T22(t), in order to
observe the equilibrium of those temperatures (Fig. 7.5). We take two different values for the
parameter γ1 in γ̃.

On a longer time scale, we also present results in LogLog scale (Fig. 7.11) for the evolution of the
temperature T (that is, we check Haff’s law numerically).

We end up this series of simulation by one example of evolution of the variance of internal energy
g(t) (Fig. 7.12).
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FIGURE 7.5: Evolution of T12(t). γ depending on |v− v∗|.
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FIGURE 7.8: Evolution of T11(t), T22(t). γ depending on |v− v∗|.
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FIGURE 7.11: Evolution of T(t). γ depending on |v− v∗|. Log Log scale

FIGURE 7.12: Evolution of g(t). γ1 = 160. a1 = 6000. γ, a depending on |v− v∗|.
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In our simulations, no sensible degradation was observed w.r.t. the case of hard spheres (with
given a, γ).

7.3.4 Conclusion

We introduced in this paper a model of BGK type for the description of the effect of collisions
which are inelastic and in which the internal energy of the particles (droplets) is tracked (and
can be exchanged during collisions). This model can be obtained almost entirely in a rational way
when the collisions occur with a cross section of Maxwell molecules type. In the more realistic case
of hard spheres (and even more when the inelasticity and internal energy exchange parameters
can depend on the relative velocity of incoming droplets), approximations must be performed.
The quality of these approximations were tested at the numerical level.
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Chapter 8

Fluid methods for sprays

8.1 Mixing model

We now present another approach to emulate sprays. Due to the cost of Williams equations it
seems reasonable to look for other ways to model the problem. Since it is well-known that two-
phase flows problems are also difficult to solve, we tried to use another model during the Phd of A.
Champmartin ([Cha11]; [Ber+14]). We tried to simplify the model obtained in the hydrodynamic
limit ([Mat06]; [DM10]) thanks to the different orders of magnitude of the problem so that we end
upwith a more or less classical Euler system. We now present the results that were obtained.

Dispersed flows (i.e. droplets in a carrying fluid) as described in [Ish75], are ubiquitous in na-
ture and in industrial applications (see e.g. [ORo81]; [Bau+05]; [LO08]; [SM95]; [Gal09]). In the
past fifteen years, the continuous increase of computational power triggered the interest of apply-
ing computational fluid dynamics to flows involving several phases. However a full description
of these flows requires such a tremendous amount of computational power that engineers must
resort to simplified models.

These flows are governed by the exchanges that occur between the two phases due to the pres-
ence of temperature, pressure or velocity differences. Depending on the degree of equilibrium
between the two phases and the degree of complexity that we want to conserve, different types
of model are available (c.f. [SW84] for a complete review). When the two phases can be followed
by equations of fluid mechanics, we have two main classes of models. The first one is the bifluid
models in which each phase is described separately. This conducts to a set of 7 (or 6) equations
depending on the assumption of equilibrium or non equilibrium in pressure (see e.g. [RT04]). Due
to the complexity of these models (due to e.g. presence of source terms, definition of terms of
exchanges at the interface, high number of equations, loss of hyperbolicity in some cases) which
entertain numerical difficulties, when the two phases have started to balance (thanks to exchange
of momentum and energy), an other class of models is often preferred: the mixture models. These
are a good compromise between accuracy and simplicity, since they follow the evolution of mix-
ture quantities between the two phases and allow to deal with less equations due to equilibrium
assumptions. This work deals with the description of a model of that type.

The so-called Homogeneous Equilibrium Model (HEM) presented in this work is dedicated to two-
phase flows where a small volume fraction of solid particles (denoted as the heavy fluid in the
following) moves through a continuous fluid phase (either gas or liquid). In that kind of model,
the two phases are considered as a mixture [Amb+08]; [Gal09]; [Pan06]: the model is given in the
form of a continuity equation for each phase and a single momentum equation, which contains an
additional term representing the effect of velocity differences between the phases. A model based
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on a force balance for the dispersed phase is required for the computation of the relative velocity
(called a drift relation). This formula is obtained either thanks to the experiment as in [HI03],
either using simplifying assumptions in order to find an approximate solution on the equation
checked by the relative velocity [Mam79]; [GD07]; [Amb+08]. The basic assumption is that a local
equilibrium establishes over short times scales and spatial length scales: this leads us to suppose
that the movement of the two phases is strongly coupled and can be described by an unique
equation in mean velocity with a corrective factor, the relative velocity mur. Note that the drift
formula obtained depends on the problem considered (in particular of the form of the drag force
term) and the assumption that are used to get it.

Typically, we will be interested in the case of tin droplets surrounded by air, with a disequilibrium
between the velocities. In our particular applications, the chain of events starts when the particles
are released in the gas. During the first stage, where the relative velocity between particles and
the surrounding gas may be important, a detailed description of the motion of each particle (via
a numerical weighting process [ORo81]; [Mat06]; [Duk80]) is possible because the flow is driven
by hydrodynamics only. It has been implemented in the so-called "spray" simulation. On the
contrary, the last stage involves additional physical phenomena and it becomes computationally
out of reach to go on with the detailed description of the particles. One then resorts to a two-
fluid simulation (see e.g. [Ish75]; [SW84]; [Bes90]; [Ram00]) where the solid particles are averaged
out to constitute the heavy fluid (dispersed phase) and thus follow continuous equation of fluid
mechanics. During the transition between these two stages, the goal of the HEM model is to keep
track of a simplified list of averaged physical quantities and thus to avoid implementing a two-
fluid model, while continuing to take into account a disequilibrium in velocity between the two
phases. It is initialized at the end of the spray simulation and the output of the HEM simulation
is given as an input to the two-phase flow simulation (classical mixture model, i.e. HEM model
with a relative velocity set to zero). It is assumed that the outcome of the whole simulation is not
too sensitive to the transition period where no special physical event should occur.

8.1.1 Model: from two-phase flows towards balanced homogeneous mixture model
(HEM)

With our notations, a physical quantity z relative to the heavy fluid (resp. light fluid), or dispersed
(resp. continuous) phase, is denoted z+ (resp. z−). Then, the averaged volume fraction of both
kinds of fluid is noted α±, the mass fraction c±, the density ρ±, the Favre velocity mu±, the specific
energy (sum of the specific internal energy and kinetic energy) E± = e±+ 1/2 mu±2, and the total
enthalpy H± (H± := E± + p

ρ± , where p is the pressure).

In a standard two fluid model, physical quantities for each fluid satisfy two scalar equations
(mass conservation and energy conservation) and one vector equation (momentum conservation)
[Ish75]; [Mat06]:

∂t(α
±ρ±) +∇ · (α±ρ±mu±) = 0, (8.1)

∂t(α
±ρ±mu±) +∇ · (α±ρ±mu± ⊗mu±) + α±∇p = ±mFD,Fluid + α±ρ±mg, (8.2)

∂t(α
±ρ±E±) +∇ · (α±ρ±H±mu±) + p ∂tα

± = ±QE + α±ρ±mg ·mu±, (8.3)

where QE represents the heat exchanges between phases (which depend on the difference of tem-
perature between the two fluids) and mg is the external gravity acceleration. For our applica-
tions, the drag force experienced by the particles, mFD,Fluid, is mainly due to turbulence. This
is why it is quadratic with respect to relative velocity, mur = mu− −mu+, in such a way that
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mFD,Fluid = θρ
C∗
r∗

α+α−ρ+ρ−

ρ |mur|mur with

θρ =
α+

α−
+

ρ+

ρ−
=

ρ−

c−ρ+
(8.4)

a dimensionless parameter; and C∗
r∗ proportional to the ratio between the drag coefficient CD (see

[BDM03] for a definition) and the mean radius of the particle r ( C∗
r∗ = 3

8
CD
r ). Moreover, an ideal

isobar mixing is assumed throughout this article:

p = P±(ρ±, T±),
with T± = T±(ρ±, e±) and e± = E± − 1/2|mu±|2. (8.5)

The simplicity conditions placed on the transition model require that the evolution of its averaged
physical quantities depends upon only one velocity field: the mixture velocity mu = c+ mu+ +
c−mu−. The information about the relative velocity, mur, fundamental when dealing with energy
budget within the mixed fluid, is then lost in this procedure. It needs to be recovered with a
suitable algebraic closure. Let us define two additional quantities: the averaged mixture density ρ

1
ρ
=

c+

ρ+
+

c−

ρ−
, (8.6)

i.e. ρ = ρ+ρ−

ρ−c++ρ+c−
1 and the averaged total energy E = c+E+ + c−E− [You84]; [You89]; [Gal09]

(all the other mean quantities are built on the same model: z = c+z+ + c−z− using the mass frac-
tion c±). We also build relative quantities zr := z− − z+ that take into account the disequilibrium
between the two phases (e.g. cr the relative concentration and 1

ρr
:= 1

ρ− −
1

ρ+ the relative den-
sity inverse). Starting from the two-fluid model equations (8.1)-(8.3), the evolution of the mixing
quantities that have just been defined, can be devised after tedious algebraic manipulations:

∂tρ +∇ · (ρ mu) = 0, (8.7)

∂t(ρ cr) +∇ · (ρ crmu + ρ
1− c2

r
2

mur) = 0, (8.8)

∂t(ρ mu) +∇ · (ρ mu⊗mu + ρ
1− c2

r
4

mur ⊗mur) + m∇ p = ρ mg, (8.9)

∂t(ρ E) +∇ · (ρ H mu + ρ (hr −
cr

2
mu2

r + mu ·mur)
1− c2

r
4

mur) = ρmu ·mg,

(8.10)

where the averaged specific enthalpy is defined by H := c+H+ + c−H− = E + p
ρ . Due to the

relation c+ + c− = 1, we have: c± = (1∓ cr)/2. mFD denotes the drag force of the mixture:

mFD = ρθρ
C∗

r∗
1− c2

r
4
|mur|mur. (8.11)

Combining the equations (8.7)-(8.10) and the next equation above relative velocity (8.13) with the
relation check by the mean internal and total energies (E = e + 1

2 |mu|2 + 1
2

1−c2
r

4 mu2
r ), the last

1The mean density ρ (8.6) can be rewritten in terms of an algebraic average of the specific quantity of each phase
ρ = α+ρ+ + α−ρ−.
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equation (8.10) can equally be replaced by:

∂t(ρe) +∇ · (ρ (emu + er
1− c2

r
4

mur)) + p (∇ ·mu +∇ · ( ρ

ρr

1− c2
r

4
mur)) = mFD ·mur, (8.12)

where e = c+e+ + c−e− and 1
ρr

= 1
ρ− −

1
ρ+ (see [Cha11] §1.1.4 p 45− 52 for more details on the

algebraic manipulations). In these equations, the relative velocity mur satisfies:

∂tmur + (mu− ·m∇)mu− − (mu+ ·m∇)mu+ + (
1

ρ−
− 1

ρ+
)m∇ p = −C∗

r∗
θρ |mur|mur. (8.13)

That last equation was brought to the fore in [SEL04]; [You89]; [Gal09]; [GD07] to show that
a straightforward algebraic closure of the relative velocity can be found if it is assumed that
∂tmur + (mu− ·m∇)mu−− (mu+ ·m∇)mu+ is negligible compared to the remaining two terms.
Neglecting that particular set of terms requires that the time scale of the evolution of the relative
velocity and that the length scales characteristic of the fluctuations of mu± are small enough. If
this is justified, the algebraic closure of the relative velocity reads:

mur = −
√

r∗

C∗θρ

√
1
ρr

∇p
|∇p|1/2 . (8.14)

In accordance with intuition, the relative velocity should vanish if ρ+ = ρ− and it should be along
m∇p if ρ+ > ρ− (a heavy fluid falls in a lighter fluid) and in the opposite direction if ρ+ < ρ−

(a light fluid rises in an heavier fluid). More explanations on the obtention of the formula (8.14)
can be found in [Ber+14]. The final HEM model is composed of equations (8.7)-(8.9), (8.12) and of
the formula (8.14) for the relative velocity. The missing equation in energy is replaced by a unique
temperature hypothesis (T± = T in (8.5), which is reasonable in our applications, c.f. [Mat07]).
The HEM equations are then closed by a closure law which gives both the pressure p and the
specific quantities of each fluid: ρ±, e± (useful in the HEM equations for the quantities 1

ρr
and

er), given by the knowledge of ρ, e and cr: [p, ρ±, e±] = f ( 1
ρ , e, cr), the function f depends on the

equation of states chosen for the two fluids. Note that due to the use of an algebraic closure for the
relative velocity mur instead of equation (8.13), the two systems formulated in total or in internal
energy are not equivalent. We choose a model written in internal energy e due to requirements of
the study code where the model should be implemented. We do not give the details for the drift
formula. They can be found in [Ber+14].

8.1.2 Numerical results

Simulations

The simulations were obtained through a Lagrange-remap solver ([Cha11]). For the discretization
of the relative velocity, we use a limiter of MIN-MOD type to limit the pressure gradient. We only
show results for the Rayleigh-Taylor instability (other results can be found in [Cha11]).

First case: Rayleigh-Taylor instabilities: We consider an unstable case where a heavy fluid (wa-
ter) is put on top of a lighter fluid (gas) and submitted to the gravity field. The equation of states
(EOS) are those of perfect gas type at standard conditions (compressible for the air and incom-
pressible for the water). We initially perturb the interface between the two fluids and at the be-
ginning, the pressure is uniformly equal to 105 (and thus the relative velocity mur = 0) and the
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mean velocity mu is also put to 0 (Fig. 8.1). The box is 0.07 m by 0.1 m with Nx = 56 and Ny = 60
(∆x = Lx/(Nx + 1), with Nx the number of points of discretization along the x direction). In Fig.
8.2, we observe that the initial perturbation leads to the formation of a Rayleigh-Taylor mushroom.
In Fig. 8.3, we can check that these mushrooms originate from initial instabilities of the border.

FIGURE 8.1: Test case configuration for the Rayleigh-Taylor instability.

In Fig. 8.2 as well as in Fig. 8.3, the relative velocity is equal to zero at the beginning. Then, due to
the instability, the pressure p evolves and the inherent gradient pressure is captured by our HEM
model thanks to the relative velocity mur. This allows us to see the formation of mushrooms.

8.1.3 Conclusion

We have proposed in this paper an homogeneous mixture model in which we consider the two-
phase flows as a mixture. The closure law of mur allows us to take into account relative velocity
between the fluids and to avoid the use of two fluids models while being able to tender the drag
effects. This model is valid when the velocities of the two fluids are coupled (i.e. when the drag
force is already acting) and it has been tested on numerical experiments. It would be interesting
now to use this model as a transition model during the thermalization in velocity between the two
phases, for a complete chain of simulation.
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FIGURE 8.2: Heavy fluid (in red) above a lighter one (in blue) with a single initial
perturbation of the border (gravity goes from the left to the right).

FIGURE 8.3: Heavy fluid (in red) above a lighter one (in blue) with an initial periodic
perturbation of the border.
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8.2 Simulating pressureless gas

Pressureless gas equation can appear when one wants to use sectional approach for sprays ([DMV03]):
using the Eulerian/Eulerian approach for spray is a way to considerably decrease the numerical
cost of simulating spray as it has already been mentioned. Although the work that is presented
now was not intended for sprays, it can be re-used for them. The work which is presented now
comes from the article ([BM12a]] and the proceeding ([BM12b]).

During the last two decades, there have been many contributions on the pressureless gases system,
and it seems natural to tackle the question of its discretization. The pressureless gases system ap-
pears as a system of conservation laws on the mass and momentum. Hence, it is relevant to won-
der if standard numerical schemes for conservation laws, like the upwind scheme, for instance,
are fitted to this particular system. However, we emphasize that it is a degenerate hyperbolic
system (the Jacobian is not diagonalizable).

Let us now recall the one-dimensional system describing a pressureless gas. Let T > 0. The gas
density ρ(t, x) ≥ 0 and the momentum q(t, x) ∈ R satisfy the following equations in (0, T)×R

∂tρ + ∂x(ρu) = 0, (8.15)
∂tq + ∂x(qu) = 0. (8.16)

One must define the velocity u(t, x) ∈ R as a quotient of q by ρ, but this may not be possible,
since ρ can be zero. We discuss this issue below, by recalling the notion of duality solutions [BJ98].
As already stated, each equation consists of a conservation law, (8.15) for mass and (8.16) for
momentum. We obviously need initial conditions

ρ(0, ·) = ρin, q(0, ·) = qin, (8.17)

in which the condition on the momentum can be replaced by an initial condition on the velocity
u(0, ·) = uin, and then written again as q(0, ·) = ρinuin.

The previous system can be seen as a simplified model of the Euler equations, where the pres-
sure has been set to zero. It can describe either cold plasmas or galaxies’ dynamics [Zel70]. This
system (8.15)–(8.16) and related problems (traffic models, magnetohydrodynamics, astrophysics,
pressureless fluid equations...) have been widely studied, see, for instance, [Bou94]; [Gre95];
[ERS96]; [BG98]; [PR97]; [BJ99]; [Bou00]; [Sev01]; [Ber02]; [Pou02]; [LeV04]; [BJM05]; [GS05];
[Cou06]; [Ber+08]; [NT08]. Those references use the same fluid point of view we choose here,
or the kinetic one, involving the adhesion dynamics of the so-called sticky particles.

When one studies smooth solutions of the pressureless gases system, (8.16) can be replaced by the
standard Burgers equation:

∂tu + ∂x

(
u2

2

)
= ∂tu + u∂xu = 0. (8.18)

System (8.15)–(8.16) is then uncoupled, since we obtain u from (8.18), and then ρ from (8.15).
On the other hand, it is well-known that smooth initial data can result in mass concentration,
for example, when the velocity does not increase. In that case, the velocity cannot satisfy (8.18)
anymore.

In [BJ98], Bouchut and James introduced the notion of duality solution for one-dimensional trans-
port equations and conservation laws. In [BJ99], they prove that this framework is fitted to the
pressureless gases system. Let us briefly recall the results they obtain.
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Definition 1. A couple (ρ, q) ∈ C(R+; w*-Mloc(R))2, with ρ ≥ 0, is a duality solution to (8.15)–
(8.16), if there exists a bounded Borel function a and α ∈ L1

loc(R
∗
+) such that

∂xa ≤ α, q = aρ, in R∗+ ×R,

and, in the duality sense on (t1, t2)×R, for any 0 < t1 < t2,

∂tρ + ∂x(ρa) = 0, ∂tq + ∂x(qa) = 0.

In that setting, u is defined ρ-almost everywhere, and we have u = a ρ-a.e. Bouchut and James
prove that duality solutions are stable, and also entropic, i.e. the following inequality holds, in the
distributional sense,

∂t(ρS(u)) + ∂x(ρuS(u)) ≤ 0, (8.19)

for any convex function S. Using those properties and the sticky particles dynamics, they obtain
the following existence result.
Theorem 8.2.1. Let ρin, qin ∈ Mloc(R), with ρin ≥ 0 and |qin| ≤ Uρin, U ≥ 0. Then there exists a duality
solution to (8.15)–(8.17), and we have ‖a‖∞ ≤ U and α(t) = 1/t.

As proven in [Hof83], the one-sided Lipschitz (OSL) condition on the expansion rate ∂xa ≤ 1/t,
also known as the Oleinik entropy condition, is optimal for a convex scalar conservation law. In
the proof of Theorem 8.2.1, it is clear that the standard convex entropy condition (8.19) is not
enough, and the OSL condition is really required. Note that, when the solutions are smooth, this
estimate can easily be proven, since the Burgers equation (8.18) lies in the class of convex scalar
conservation laws [BO88]; [LeV92].

Eventually, Bouchut and James also obtain uniqueness when ρin is nonatomic (essentially meaning
that ρin is smooth).

In this work, we also consider the viscous pressureless gases system. In this system, as explained
in [Bou00], (8.16) is replaced by an equation on the velocity itself. Let us choose ε > 0. The gas
density ρ(t, x) > 0 and the velocity u(t, x) ∈ R satisfy, in (0, T)×R, Equation (8.15) and

∂tu + u∂xu =
ε

ρ
∂2

xxu, (8.20)

with the same set of initial conditions (8.17). That writing imposes that ρ remains nonnegative,
which is true if ρin is also nonnegative, see [Bou00]. Note that (8.20) is equivalent, when ε is fixed,
to

∂tu + ∂x

(
u2

2

)
=

ε

ρ
∂2

xxu, (8.21)

if we take into account the smoothness of the viscous velocity given in [Bou00].

In fact, (8.20) or (8.21) can also be rewritten as an equation on the momentum, with a viscosity
term ε∂2

xxu on the right-hand side,

∂t(ρu) + ∂x(ρu2) = ε∂2
xxu,

which yields (8.16) when ε goes to 0. In [Bou00], the author proved the existence, in the sense of
distributions, of solutions to the viscous system (8.15), (8.17) and (8.21), and that the expansion
rate is upper-bounded: ∂xu ≤ A/(At + 1), when A = max(ess sup ∂xuin, 0) is finite. He also
obtains the convergence of the viscous solutions towards the duality solutions to the pressureless
gases system when ε vanishes. More precisely, the following convergence result holds.
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Theorem 8.2.2. Let (ρin
ε ), (uin

ε ) such that, for any ε > 0,

ρin
ε > 0, ρin

ε ∈ L∞(R), ‖1/ρin
ε ‖L∞(R) ≤ Cε−1/4,

uin
ε ∈ L1 ∩ Ł∞(R), ‖uin

ε ‖L∞(R) ≤ C,

∂xuin
ε L1 ∩ L2(R), ess sup ∂xuin

ε ≤ Cε−1/2.

We assume that (ρin
ε ) ⇀ ρin and (ρin

ε uin
ε ) ⇀ qin in w*-Mloc(R). Then, up to a subsequence, (ρε, ρεuε),

given by the solutions to (8.15) and (8.21), with initial datum (ρin
ε , ρin

ε uin
ε ), converges in Ct(w*-Mloc(R))

towards the duality solution (ρ, q) of (8.15)–(8.17).

Both viscous and inviscid systems can also be studied in a periodic framework, i.e. we focus on
the closed interval [0, 1] and impose that all the physical quantities have the same values at both
x = 0 and x = 1, so that the solutions are 1-periodic.

This work is dedicated to the numerical approximation of the pressureless gases system (8.15)–
(8.16), where the latter may be replaced by (8.21). For readability reasons, we choose the periodic
framework.

There are two methods to get a priori relevant schemes. The first one is to use the natural kinetic
framework which underlies the pressureless gas dynamics, with kinetic schemes, as in [Bou94];
[BJL03], or with particle methods [CKR07]. The second one is related to the discretization of
hyperbolic conservation laws. Gosse and James [GJ00] point out the relevance of two families of
numerical schemes: the upwind schemes and the Lax-Friedrichs schemes. In [BBT06], Berthon et
al. investigate a relaxation scheme for the pressureless gases system in one and two-dimensional
settings.

As we already pointed out, the key condition to obtain the duality solution is that the velocity
expansion rate must be upper-bounded by 1/t. Brenier and Osher [BO88] obtained the relevance
of the OSL condition in a discrete framework for the convex scalar conservation laws. In this
work, we first investigate the upwind scheme associated to (8.15)–(8.16), and prove that it fails
to ensure the OSL condition. Subsequently, we try the upwind diffusive scheme associated to
(8.15) and (8.21), and explain how we can obtain a good numerical approximation of the duality
solution to the inviscid pressureless gases system using this scheme. We do not study the Lax-
Friedrichs schemes described in [GJ00]. Indeed, the numerical dissipation induced by those first
order schemes is too significant. Since it is then natural to use higher order schemes, we recover
the same kind of problems as in the diffusive upwind scheme we here propose, involving second
order terms.

In the remainder, let ∆t, ∆x > 0 such that N = T/∆t ∈ N∗ and I = 1/∆x ∈ N∗, and set
λ = ∆t/∆x. We respectively denote ρn

i , qn
i and un

i the approximate values of ρ, q and u at time
n∆t ∈ [0, T] and coordinate (i + 1/2)∆x ∈ [0, 1), for 0 ≤ n ≤ N and 0 ≤ i < I. Since we use a
periodic framework, we define ρn

i , qn
i and un

i for any i ∈ Z, by

ρn
i+pI = ρn

i , qn
i+pI = qn

i , un
i+pI = un

i , 0 ≤ i < I, p ∈ Z∗.

For the sake of readability, in the previous notations, we may drop the time iteration index n and
replace n + 1 by a prime symbol “ ′ ”. For instance, the velocity at time (n + 1)∆t and coordinate
(i + 1/2)∆x can be written as u′i or un+1

i .
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Apart from the density, momentum and velocity, the quantity of interest, which we name the
numerical expansion rate, is, for each time and space indices n and i,

wn
i := nλ(un

i+1 − un
i ).

Indeed, the OSL condition at time n∆t then reads max
i

wn
i ≤ 1.

8.2.1 Upwind scheme

Let us first denote the positive and negative parts of a ∈ R

a+ = max(0, a), a− = min(0, a).

The upwind scheme writes, for any 0 ≤ i < I,

ρ′i = ρi − λ
[
ρi(ui)

+ − ρi−1(ui−1)
+
]
− λ

[
ρi+1(ui+1)

− − ρi(ui)
−] ,

q′i = qi − λ
[
qi(ui)

+ − qi−1(ui−1)
+
]
− λ

[
qi+1(ui+1)

− − qi(ui)
−] ,

u′i =
q′i
ρ′i

, if ρ′i > 0,

and u′i is not defined if ρ′i = 0. It is quite clear that the previous schemes on both ρ and q are
monotonic, if the standard Courant-Friedrichs-Lewy (CFL) condition λ max |u| ≤ 1 is satisfied.
Hence, we only choose positive initial data to study positive velocities. The scheme then becomes,
for any 0 ≤ i < I,

ρ′i = (1− λui)ρi + λui−1ρi−1, (8.22)
q′i = (1− λui)qi + λui−1qi−1, (8.23)

u′i =
q′i
ρ′i

. (8.24)

As we already stated, this last equality allows to define u′i only when ρ′i > 0. This fits the mathe-
matical setting of the pressureless gases system, since u can only be defined ρ-almost everywhere.
Nevertheless, it is not satisfying from a numerical viewpoint, since the computations stop when-
ever the density becomes equal to 0. We can impose whichever value we want, for instance, u′i = 0,
when ρ′i = 0. Indeed, we do not care about the value of the velocity at a point where is there is no
matter. But we must keep in mind not to use those artificial nil values of u′i to study the numerical
expansion rate.

Thanks to (8.24), we immediately have

ρ′iρ
′
i+1(u

′
i+1 − u′i) = ρ′iq

′
i+1 − ρ′i+1q′i,

which implies

ρ′iρ
′
i+1

w′i
(n + 1)λ

= (1− λui+1)ρi+1ρ′i
wi

nλ
+ λui−1ρi−1ρ′i+1

wi−1

nλ
.

Under the CFL condition λ max |u| ≤ 1, if (wi)0≤i<I are negative, and if (ρ′i)0≤i<I are nonnegative,
it is clear that the quantities (w′i) also remain negative. Unfortunately, if wj is nonnegative for a
given j, the OSL condition w′i ≤ 1 for all i may not be satisfied.



8.2. Simulating pressureless gas 133

Property 8.2.1. Let 0 < λ < 1 and U such that 0 < λU < 1, and choose an integer I > 2 + 1/λ. We
consider the following initial data

ρ0
i = 1, 0 ≤ i ≤ I − 1, u0

0 = U, u0
i = 0, 1 ≤ i ≤ I − 1. (8.25)

Then the upwind scheme (8.22)–(8.24) does not satisfy the OSL condition. More precisely, we have

max
i

wI−2
i > U. (8.26)

The assumption on the Courant number 0 < λ < 1 is standard and is a natural consequence of
the CFL condition λU ≤ 1 when U is large. The initial data can of course be defined without the
discretization grid: we have ρin ≡ 1 and uin ≡ 0 except in 0 where uin(0) = U.
Remark 8.2.1. As we already pointed out, the standard numerical version of the OSL condition
reads max

i
wn

i ≤ 1. It may have been relaxed into max
i

wn
i ≤ K, where K is a nonnegative constant,

which does not depend on the initial data. But (8.26) implies that the quantity max
i

wI−2
i can be as

large as we want, depending on the value of U.

Proposition 8.2.1 means in particular that, if the space step ∂x is refined enough, the numerical OSL
condition cannot be satisfied anymore, with initial data given by (8.25). Moreover, we must point
out that, whatever the final time is, one can find a discretization for which the upwind scheme
cannot satisfy the OSL condition, because I does not depend on T.

The initial datum uin in the previous proposition is not smooth. Nevertheless, even with smooth
(and periodic) initial data, the upwind scheme does not necessarily provide a solution satisfying
the OSL condition, see 8.2.2.

8.2.2 Adding an artificial viscosity

As it was done in [Bou00], we now add a small viscosity term in (8.16) to obtain (8.21), and we
study the numerical approximation of (8.15) and (8.21). We still deal with arbitrary 1-perodic
initial data uin ≥ 0, ρin ≥ 0.

In what follows, we consider a fixed ε > 0, small enough. If necessary, we regularize both uin and
ρin so that (keeping the same notations for both, even if they depend on ε) uin, ρin ∈ C1(R; R∗+),
remain periodic and satisfy the assumptions of Theorem 8.2.2, which can be written as

ρin(x) ≥ Cε1/4, uin(x) ≤ C, (uin)′(x) ≤ C√
ε
, ∀x ∈ [0, 1], (8.27)

where C is a constant which does not depend on ε. The regularized ρin must lie in R∗+, since the
continuous diffusive model involves a division by ρ.

In the following, we set

U = max
[0,1]

uin > 0, V = min
[0,1]

uin > 0,

A = max(0, max
[0,1]

(uin)′) ≥ 0, R = min
[0,1]

ρin > 0.
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The previous quantities can depend on ε, and must satisfy properties which come from (8.27), i.e.

R ≥ Cε1/4, V ≤ U ≤ C, A ≤ C√
ε
, (8.28)

where C does not depend on ε.

Then we consider ∆t, ∆x > 0, and set

λ =
∆t
∆x

, σ =
∆t

∆x2 .

In the remainder, we make the following assumptions on the time and space steps:

0 < ∆x ≤ 2V
1 + A

, (8.29)

0 < ∆t ≤ min
(

1
4A + 1

,
1

4U
∆x,

R
4ε(1 + AT)

∆x2
)

. (8.30)

In fact, (8.29) and (8.30) are not so restrictive, since, eventually, ∆x and ∆t will go to 0, ε being
fixed. From now on, even if we do not write the dependence on ε, we must keep in mind, in the
numerical examples, that U, V, A and R can depend on ε and must satisfy (8.28), at least for ε
small enough. That dependence implies that, at most, ∆x is of order

√
ε and ∆t of order 4

√
ε. Note

that it cannot prevent ∆t and ∆x from going to 0 while ε remains fixed.

With the same notations for quantities at times n∆t and (n+ 1)∆t as in Section 8.2.1, we now focus
on the following scheme, corresponding to the discretization of (8.15) and (8.21).

u′i = ui − λ

(
ui

2

2
− ui−1

2

2

)
+

εσ

ρi
(ui−1 + ui+1 − 2ui), (8.31)

ρ′i = (1− λu′i)ρi + λu′i−1ρi−1. (8.32)

Note that (8.31) is obtained from (8.21), which is written under a conservative form, as suggested
in [BO88].

If we choose uin ≡ 1, we can note that both upwind and diffusive schemes give un
i = 1 for any

i and n, which is reassuring: in that case, and when ρ remains nonnegative, the velocity satisfies
the Burgers equation, which implies, at least formally, that u remains constant.
Remark 8.2.2. The velocity terms which appear in (8.32) are the ones at time (n+ 1)∆t. They must
not be at time n∆t to ensure the lower bound on ρ, as we shall see in the proof of Theorem 8.2.3
below.

Numerical strategy. Let us here sum up the strategy used to build a relevant numerical solution
to the pressureless gases system.

1. Consider 1-periodic initial data.

2. Fix ε > 0 small enough.

3. Regularize ρin, uin so that they become C1(R; R∗+) and satisfy (8.27).

4. Fix ∆x and ∆t satisfying (8.29)–(8.30).

5. Use the numerical scheme (8.31)–(8.32).
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The previous strategy holds for two reasons. First, the following theorem states that the scheme
(8.31)–(8.32) is L∞-stable, consistent, monotonic, and that it satisfies the OSL condition. Conse-
quently, (ρn

i ) and (un
i ) converge towards to ρ and u, solutions to the viscous pressureless gases

system when both ∆t and ∆x go to 0, ε being fixed. Second, thanks to Theorem 8.2.2, the scheme
eventually provides a good approximation of a solution to the inviscid pressureless gases sys-
tem, if one chooses ε small enough, and regularized initial data in C1(R; R∗+) close to the original
ones and satisfying (8.27). The error between the diffusive numerical and the duality solutions is
currently under study, see [BM12b].
Theorem 8.2.3. We assume that (8.29)–(8.30) hold. Then we have, for any i and n ≥ 0,

V ≤ un
i ≤ U, (8.33)

un
i − un

i−1 ≤
A∆x

1 + An∆t
, (8.34)

ρn
i ≥

R
1 + An∆t

≥ R
1 + AT

> 0. (8.35)

Moreover, the discrete total mass is conserved, i.e., for any n ≥ 0,

∑
i

ρn
i ∆x = ∑

i
ρ0

i ∆x. (8.36)

Finally, when ε > 0 is fixed, the scheme (8.31)–(8.32) is consistent with (8.15) and (8.21), is first order
accurate in time and space, and is monotonic.

Equations (8.33) and (8.35) respectively correspond to the maximum principles on the velocity and
the density, (8.34) stands for the discrete version of the OSL condition.
Remark 8.2.3. The assumptions (8.30) on ∆t ensure the stability of the scheme. More precisely,
the second one is induced by the CFL condition and the third one is similar to standard stability
conditions for explicit diffusive schemes. The first one is needed for the required properties of the
scheme, as it will be detailed in the proof of Theorem 8.2.3.
Remark 8.2.4. Let us check the behavior of the numerical total momentum. Indeed, in its continu-
ous version (8.21), the total momentum is conserved, since all the terms besides the time derivative
of ρu are partial derivatives in x. Unfortunately, the scheme does not ensure the exact conservation
of the total momentum. Nevertheless, we can write

∑
i

q′i = ∑
i

ρiu′i + λ ∑
i

ρiu′i(u
′
i+1 − u′i),

which implies the following inequalities

[1− λ(U −V)]∑
i

ρiu′i ≤∑
i

q′i ≤
[

1 + min
(

1
n + 1

, λ(U −V)

)]
∑

i
ρiu′i.

Then we have to study the behavior of the quantity

∑
i

ρiu′i = ∑
i

qi −
λ

2 ∑
i

ρi(ui
2 − ui−1

2),

for which we have

∑
i

qi −U min
(

1
n

, λ(U −V)

)
∑

i
ρ0

i ≤∑
i

ρiu′i ≤∑
i

qi + λV(U −V)∑
i

ρ0
i .
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We eventually can write

∑
i

q′i ≥ [1− λ(U −V)]

[
∑

i
qi −U min

(
1
n

, λ(U −V)

)
∑

i
ρ0

i

]
,

∑
i

q′i ≤
[

1 + min
(

1
n + 1

, λ(U −V)

)] [
∑

i
qi + λV(U −V)∑

i
ρ0

i

]
,

which is not really satisfactory. Nevertheless, since the time and space steps satisfy (8.30), we have

λ ≤ R
4ε(1 + AT)

∆x,

which ensures that λ is small when both ∆x and ∆t go to 0, and ε > 0 is fixed. Of course, that will
not prevent the numerical total momentum from varying, but, at least, from one time step to the
next one, the variations have to remain small. It is interesting to note that, in the examples of the
next section, the total momentum conservation almost holds, meaning that the previous estimates
may be improved in some cases.

Numerical examples

As we already pointed out, a significant drawback of our scheme (8.31)–(8.32) is that it does not
ensure the exact conservation of the total momentum, since it involves a scheme on the velocity
and not on the momentum. Moreover, initial data with vacuum need to be regularized since our
scheme cannot stand nil values of ρ. In this section, apart from checking that the OSL condition is
satisfied (or not, if studying the behavior of the upwind scheme), we shall also study the numerical
total momentum.

Of course, we choose the time and space steps in the following tests such that the CFL condition
is satisfied when using the upwind scheme, and (8.29)–(8.30) when using the diffusive scheme.

Nil velocity almost everywhere

This test is the one described in Proposition 8.2.1 to prove that the OSL condition was eventually
not satisfied by the upwind scheme. We choose ε = 10−6. The (regularized) initial data are given
by ρin ≡ 1 and

uin(x) =



U + ε

2
+

U − ε

2
cos

(
πx√

ε

)
if 0 ≤ x ≤

√
ε,

ε if
√

ε ≤ x ≤ 1−
√

ε,
U + ε

2
− U − ε

2
cos

[
π√

ε

(
x− 1 +

√
ε
)]

if 1−
√

ε ≤ x ≤ 1,

We immediately check that min uin = ε, max uin = U, max(uin)′ ≤ Uπ

2
√

ε
and min ρin = 1. We

numerically choose U = 1. The space step is set to ∆x = 10−4 on [0, 1], i.e. I = 104, and the Courant
number to λ = 0.25, so that ∆t = 2.5 10−5. We perform 100 iterations in time, i.e. T = 2.5 10−3 s.
Eventually, it is clear, on Figure 8.4, that the diffusive scheme is more efficient than the upwind
one regarding the OSL condition.
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FIGURE 8.4: Positive part of the numerical expansion rate near 1 at final time T

Piecewise linear velocity

There are other situations when the upwind scheme does not satisfy the OSL condition. For in-
stance, let us consider the following set of initial data

ρin(x) = 1, uin(x) = 1− x ≥ 0, ∀x ∈ [0, 1), (8.37)

extended by 1-periodicity on R. In both tests, we choose T = 1.2 and ∆x = 10−4.

Using the upwind scheme Using the upwind scheme implies choosing the Courant number λ
so that the CFL condition holds. We set λ = 0.1, which ensures λ max u < 1. Then, on Figure 8.5,
the positive part of the numerical expansion rate w is plotted on [0, 1].

0 0.2 0.4 0.6 0.8 1
x

0

1

2

3

4

N
u

m
er

ic
al

 e
x

p
an

si
o

n
 r

at
e

FIGURE 8.5: “Upwind” plot of w+ at t = 0.2 s with initial data (8.37)

It is then clear that there are some values of i such that wi > 1, and, in anticipation of the next
paragraph, we must point out that, of course, choosing a lower Courant number does not have
any effect on the behavior of the numerical expansion rate.

Using the diffusive scheme We choose ε = 0.001. As explained in Section 8.2.2, the initial data
must be regularized: both ρin and uin must be C1(R; R∗+), and uin is regularized near 0 in order to
have a reasonable periodic agreement with the value in 1, and satisfy (8.27). Since (8.29)–(8.30)
must hold, it is possible to check that (λ = 0.01, ∆t = 10−6) is a relevant choice.

This time, the OSL condition is satisfied, as one can see on Figure 8.6 at x = 0.1, where the upwind
scheme experiences trouble with the expansion rate for times smaller than 0.2.

Eventually, to investigate the total numerical momentum, on Figure 8.7, we show its behavior
with respect to t, till T, and the result is quite convincing. On the same figure, we also show the
total numerical mass, which is of course exactly conserved.
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FIGURE 8.6: “Diffusive” plot of w+ at x = 0.1 with regularized initial data (8.37)
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Chapter 9

Conclusions and Perspectives

The works presented are not the most recent: we have started studies on particles-fluid interac-
tions when the fluid is at a supersonic regime, especially on break-up (Phd of G. Marois) and first
results should soon be available: a numerical code has been developed to capture the interac-
tion of a shock with droplets for different Mach numbers and study the influence of the break-up
model on the behavior of the shock.
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