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Alain Rakotomamonjy - Universit́e de Rouen

Examinateurs : George Michailidis - University of Michigan
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Introduction

“Mathematics is biology’s next microscope, only better; biology is mathematics’
next physics, only better” wrote Joel E. Cohen in 2004. The microscope has
allowed many breakthroughs in biology. It has revealed a formerly invisible
world, the existence of microorganisms such as microbes, and gave birth to
cellular biology. Similarly, mathematics can shine a new light on biological
problems. Computational methods can test many candidates tofind drugs to
block a virus such as HIV. Furthermore, mathematics offer tools to visualize
and understand data. Conceiving such tools is an important challenge in today’s
biology, as the quantity of data is booming. Firstly, scientists’ collaboration and
internet databases have increased the amount of available data. Secondly, the
price to acquire new data has dropped in many fields. For example, in 1990
started the Human Genome Project, which successfully sequenced a human
genome after 13 years of work, mobilizing a hundred laboratories and costing
three billion dollars. Today, companies consider sequencing someone’s genome
for less than a thousand dollars, and within thirty hours. Molecular biology is
switching from an era of data scarcity to an era of data abundance. One hopes that
mathematics will reveal knowledge from large data, as the microscope revealed
images of micro-organisms.

For mathematicians, biology raises many challenges. The dynamics of liv-
ing systems are caused by interactions of many actors, on various scales. In most
biological cases, mathematicians have very few data compared to the problem
complexity, not to mention the noise surrounding those data. However, challenges
in the empirical sciences have fostered discoveries in mathematics, in particular
physics. As Joseph Fourier said, “L’étude approfondie de la nature est la source
la plus f́econde des d́ecouvertes math́ematiques”1. His study of heat propagation
lead to modeling by partial derivative equations, Fourier analysis, Fourier series,

1“Nature’s In-depth study is the most prolific source of mathematic discoveries”
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etc. Similarly, the theory of distributions was inspired bychallenges in physics.

The synergy between mathematics, computer science and biology has been
highly visible in the last decades. Biological problems havefound useful
available tools in the two other fields. Yet, there is no doubtthat collaboration can
go much further, and can increase our understanding of biological mechanisms.
In particular, much bioinformatic research is devoted to identify gene regulatory
network (GRN). A GRN is a collection of DNA segments that interact indirectly
with each other, interact with other substances in the cell and respond to the
external environment. For example, in the presence of sugar, a yeast cell will
turn on genes to process the sugar to alcohol. Yeast’s GRN commanded this
process, which is necessary to yeast’s living as it made the yeast cell gain energy
to multiply - incidentally, this process is necessary to menfor wine-making.
With the multiplication of data -in particular gene expression data-, scientists
hope to discover the GRN’s mechanisms. This knowledge would increase our
understanding of the living system, and may help creating cure against specific
pathology. Considering a living system’s malfunction, one could see which genes
are involved in that malfunction, then target some genes in the functional pathway
to make the living system healthy.

Bioinformaticians have tackled the GRN inference (GRNI) problem, with
the relevant mathematical tools. A common approach to GRNI inbioinformatic is
reverse-engineering. Given gene expression data, bioinformaticians build a model
that mimic the observed genes’ behavior. Then, the bioinformaticians know what
regulatory interactions happen in his model, and assume that the same interactions
happen in the living system. Mathematical tools exist to model an observed
system. In particular, many tools are provided by machine learning, a field of
computer science and mathematics that sprang up with computational capacities
and its applicability to many fields (image recognition, text categorization, spam
detection). Nevertheless, gene modeling is a very demanding task: observed data
contain much noise, gene have a nonlinear behavior, some actors of the GRN are
not observed, the scale of the data demands computationallyfast methods, data
types are heterogeneous and, compared to the problem complexity, few data are
available.

Among the relevant tools, kernel functions provide methodsthat are robust-to-
noise, able to model any nonlinear behavior and computationally fast. Besides,
kernel-based models are the result of minimizing a loss function. By adding

Page 6



Contents

constraints or modifying the loss function, one can incorporate prior knowledge
or external sources of information to reduce the problem’s complexity. Never-
theless, kernel methods have scarcely been used for GRN Inference. The reason
was mainly their lack of interpretability. In this work, I present two contributions
to network inference using interpretable kernel methods. The two approaches
originate from the same idea: a model is interpretable if theimportance of
input features for the output prediction can be weighted. Inthe first approach, I
assume that partial derivatives of a perfect gene model should reflect the GRN.
Indeed, if the concentration of a regulator gene changed, itshould affect the
concentration of the regulated gene. I demonstrate that partial derivatives of
kernel-based models can consistently estimate the mean of partial derivatives of
the ideal model. Thus I will interpret feature importance ina kernel-based model
by its partial derivatives. In the second approach, I turn tomultiple kernel-based
models with multiplelocal kernels, each kernel being devoted to one feature.
The idea is to find the optimal linear combination of theselocal kernelsfor the
modeling of a target gene. The linear combination will weight the importance of
eachlocal kernel, thus of each feature. To get more stability and to tackle high
dimension data in both approaches, ensemble of those modelsare built using
a double scheme of randomization which provides a drastic improvement in
terms of performance. Besides, this randomization scheme allow learning from
heterogeneous data types. These two ways to interpret kernel models are then
used to infer GRNs. On real and realistically simulated datasets, these methods
show state-of-the-art performances: on some well-referenced datasets, they
perform better than current state-of-the-art methods. They do under-perform on
some other datasets. However, combining a kernel GRN inference method with
other state-of-the-art GRN inference methods lead to substantial improvement
over state-of-the-art.

This thesis is organized as follows: in Chapter 1, I introduceinformally
the GRN Inference problem, as well as the relevant ideas of machine learning and
kernel methods, and describe current GRN inference methods.In the Chapter
2, I demonstrate that kernel methods consistently estimateany continuous linear
form of the partial derivatives. In Chapter 3, I give several methods to interpret
a kernel model, and observe that, on many realistically simulated data, using
partial derivatives is the most efficient method for network inference. Then, I use
this method on real and real-sized networks, showing complementary results to
other GRNI methods. In Chapter 4, I describe prevalent kernel feature selection
methods, and develop two methods: one based on multiple kernel learning,
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another based on kernel alignment. On realistically simulated data, these two
methods yield better results than other kernel feature selection methods. In Chap-
ter 5, one of these two feature selection methods is used on real data, and show
state-of-the-art performances. I suggest a modification ofthis method, to take
into account prior information and specificities of biological data. Incorporation
of reasonable prior knowledge greatly enhances the performances of this method.
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Chapter 1

Context

1.1 Introduction

In the twentieth century, many breakthroughs have profoundly transformed the
field of biology. Firstly, as early as 1930, new knowledge andtechnologies have
allowed scientists to analyze living systems and phenomenaon a molecular scale;
most notably, the discovery of DNA. Secondly, starting in the nineties, new tools
have been developed to measure gene or protein expression levels, giving scien-
tists another type of data to analyze and understand cells and living systems. The
cost of these tools has greatly decreased over the years. Also, scientific collab-
oration through data publication—in journals or in databases—greatly increased.
As a result, the amount of available data augmented, creating new possibilities for
scientific research.
Along with experimental design,i.e. choosing which experiments to perform, the
study of large data is a considerable step toward new knowledge. Mathematics
and computer science provide powerful tools for the exploration of large datasets.
The inter-disciplinary field of bioinformatics has developed in this context. This
is the study of mathematical and computational tools for theanalysis of biologi-
cal systems. Bioinformatics includes storing and visualizing biological data, and
assessing relationships between phenomena. In particular, many bioinformatics
methods have been developed for the problem of gene regulatory network infer-
ence (GRN inference, or GRNI). This thesis is devoted to developing new tools
for GRNI.
This chapter will explain the matter and current approaches. In the first section,
I introduce informally the gene regulatory network inference problem. Secondly,
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Section 1.2: Gene Regulatory Networks - an introduction

I describe and discuss available data and the technology to produce these data.
Thirdly, I introduce a central tool in bioinformatics: machine learning, and, in
particular, kernel methods. Fourthly, I present current methodologies and discuss
their most efficient version. In the fifth section, I mention key papers comparing
GRNI methods, and give their conclusions.

1.2 Gene Regulatory Networks - an introduction

All of our cells contain the same genetic information, contained in our DNA.
Nevertheless, skin cells are different from liver or kidney cells. These differences
come about because different genes are expressed at high levels in different tis-
sues. So, how are genes “expressed” ? The “central dogma of molecular biology”
asserts that “DNA make RNA make protein” [1], as illustrated in Figure 1.1.

1.2.1 How are genes expressed ?

DNA consists of sequences of nucleobases A, T, G and C1. These sequences hold
all necessary information for the development and functioning of a living system.
In particular, these sequences hold the system’s genes. Nowadays, many defini-
tions exist for a “gene”. The following definition, from [2], is sufficient for this
thesis: “a gene is a locatable region of genomic sequence, corresponding to a unit
of inheritance, which is associated with transcribed regions, regulatory regions,
and or other functional sequence regions”, with the following explanations:

• a transcribed regionis a sequence of A, T, G and C that will be “copied”
(transcribed) into messenger RNA. Most messenger RNAs are then “read”
by ribosomes, which translates such a sequence into a sequence of amino
acids, which forms the protein carrying out the function coded in the gene.

• a regulatory regionis a segment of DNA capable of increasing or decreasing
gene expression. A particular regulatory region, shared byalmost all genes,
is known as the promoter, which provides a position that is recognized by
the transcription machinery when a gene is about to be transcribed and ex-
pressed. A gene can have more than one promoter, resulting indifferent
RNAs.

1Adenine, Thymine, Guanine and Cytosine
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Chapter 1. Context

Figure 1.1: Molecular biology’s central dogma

Only 1.5% of the human genome consists of protein-coding nucleobases.
Some of the noncoding DNA is transcribed in microRNAs, which regulate gene
expression, but the purpose of most of the noncoding DNA is yet unknown.

1.2.2 How are genes differentially expressed ?

Some of the proteins hold a gene regulatory function. They are called “Transcrip-
tion Factors” (sometimes called sequence-specific DNA-binding factors). These
proteins bind to specific DNA sequences, controlling gene expression, by promot-
ing (activator) or blocking (repressor) the gene’s transcription into mRNA. Thus,
expression of specialized genes can regulate other genes, leading to a specialized
cell.

1.2.3 How is gene expression measured ?

New technologies allow us to learn many aspects of the genome. In particular,
gene expression can be evaluated through RNA sequencing, which gives a snap-
shot of RNA’s presence and quantity in a given tissue at a giventime. With mRNA
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Section 1.2: Gene Regulatory Networks - an introduction

concentration, one has a measure of gene expression - even though other post tran-
scriptional gene regulation events exist, such as RNA interference.
The main tool for RNA concentration measure consists in DNA microarrays. To
measure an mRNA concentration, one uses a probe, which is a complementary
sequence of a part of this mRNA. Each spot of a DNA microarray contains mil-
lions of copies of a probe. After extraction from a cell, mRNAsare spread over
the array, where they bind to their specific complementary sequence. The array
is then washed to remove unbound sequences. Then, the array is scanned with a
laser. Each probe produces a fluorescent signal, whose intensity is linked to the
number of bound mRNAs.
This method faces several noise sources, and noise reducingmethods have been
developed. For example, probes can ”cross-hybridize”,i.e. bind with the wrong
target. To control cross-hybridization, some arrays pair probes that should work
(Perfect Match, PM) with probes that should not (Mismatch MM). PM is perfectly
complementary to the sequence of interest, and MM is the sameas PM for all but
one base. Further discussion of DNA microarrays gene expression measure prob-
lematics can be found in [3].
The reader must be aware of three main sources of noise in geneexpression data.
First, there is a noise inherent to observing a living system, especially on these
scales. Second, probes have different binding affinities to their target mRNA.
Thus, it is difficult to tell whether “gene A beats gene B in experiment 1”, as op-
posed to “there is more gene A in experiment 1 than in experiment 2”. Microarrays
only produce relative measurements of gene expression. Thirdly, the number of
genes is well above the number of available experiments. This is known as the
“ large p small N” framework, wherep is the problem dimension (here, the num-
ber of genes) andN is the number of data samples (here, the number of available
experiments). This is a very challenging framework, with uncertainties on the
results.

1.2.4 GRN Inference

The gene regulatory network represents gene interactions at the transcription level,
i.e. which gene regulates which gene. Knowledge of a living system’s GRN has
many potential applications. It would enhance our understanding of the system.
As a possible consequence, it could help the development of cures. Considering a
pathology resulting from a system’s malfunction, one couldsee which genes are
involved in that malfunction, then target some genes in the functional pathway to
enhance or inhibit this function, and hopefully cure the pathology. This explains
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Chapter 1. Context

why GRN inference has become a major challenge in biology.
GRN can be described by a graph whose nodes are genes and in which a directed
edge from nodei to nodej means that genei regulates genej. This is a simplified
view, which does not take into account several key players such as microRNAs.
In fact, a regulatory interaction involves DNA, mRNAs and proteins. All these
elements are merged into one element, the gene representative, see Figure 1.2. Let
us callA the adjacency matrix of this graph :ai j = 1 if j regulatesi, 0 otherwise.
Network inference usually refers to the estimation of this matrix A.

1.2.5 Available data

A p-gene system is observed through mRNA expression levels in steady-state and
time-series data. Steady-state data consist in the concentration of each of thep
genes in a particular cell. Notingxk the vector containing thep concentrations
in experimentk, xi

k is the concentration of thei th gene in thekth experiment. The
different types of measures that may be available are: steady-state measures on
unperturbed individuals, called wild-type data; mRNA concentration of perturbed
individuals, on which a gene’s mRNA concentration has been increased or dimin-
ished; knock-out experiments, in which a gene is knocked out, hence its expres-
sion is null. These data are called “perturbed” or “perturbational data”.
Time-series, measures of genes’ mRNA concentrations through time, are also
available. The vectorx(t,u) groups concentrations of all genes at timet in ex-
perimentu. Usually, the individual has received an exogenous perturbation or
signal at timet = 0, such as a heat step, presence of a molecule like glucose, or
exposure to radiations. A finite number of observations is available; the system is
observed at timest1, . . . , tk.

1.3 Machine Learning

Machine learning aims at extracting information or knowledge from data. GRN
inference takes special interest in supervised learning, abranch of machine learn-
ing identifying the link between input variablesX and a response or output vari-
ableY. Supervised learning is useful in many domains (computer vision, medical
imaging, bioinformatics, etc.), and has fostered the development of many perfor-
mant algorithms. In particular, Gaussian kernel methods have valuable properties
in theory (consistency) and in practice (efficiency, robustness-to-noise), thus are
good candidates for GRN Inference.
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Section 1.3: Machine Learning

Regulation at the transcriptional level

A simplified view Adjacency matrix

A =


0 0 0
1 0 0
1 1 0



Figure 1.2: Regulatory interactions are simplified into a network representing only
genes. Image modified from [4]
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Chapter 1. Context

In this section, I first present generalities of supervised learning: notations, goals
and difficulties. Next, I describe linear methods, and the associated solutions to
supervised learning problems. Finally, I present kernel methods, which can be
seen as an extension of linear methods.

1.3.1 Generalities on supervised Learning

The objective of supervised learning is to identify the linkbetween some input
variablesx =

(
x1, . . . , xp

)′
and an output variable, or responsey. The random

variables (X,Y) ∈ (X,Y) are assumed to be distributed according to a distribution
P. In all the problems of this thesis,X is a finitep-dimensional space,Y is either
a subset ofR (regression problem), the discrete set{−1,1} (binary classification)
or a discrete set{1, . . . ,m} (multi-class classification). A bold upper case letter,
e.gX, denotes a random variable, a lower case letter, such asy or xi, a scalar, and a
bold lower case denotes a column vector, e.g.x = (x1, . . . , xp)T . Variables (X,Y)
are linked through a functionf

Y ∼ f (X) + ǫ (1.1)

with ǫ a zero-mean noise.N realizations of (X,Y) are observed and usually as-
sumed independent and identically distributed (i.i.d.). They form the learning set
S = (xi , yi)i=1...N. Given a prediction functiong ∈ F (X,Y), let l : Y × Y → R+
be a loss function, quantifying the cost for predictingg(xi) instead ofyi (see ex-
amples of classic loss functions in Figure 1.3). Therisk of a functiong, R(g), is
defined as the expected loss:

R(g) = EP (l (g(X),Y)) (1.2)

The goal is to find functionf ∗, fromH the set of admissible functions, that mini-
mizes the risk:

f ∗ = arg min
g∈H

R(g) (1.3)

Unfortunately, the functionR(.) is not known. However, the training setS
is available so that theempirical risk, i.e. the mean of the loss function of the
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Section 1.3: Machine Learning

Binary classification
Hinge loss square loss
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Regression
Epsilon-insensitive loss square loss

l(g(x), y) = max(0, |g(x) − y| − ǫ), ǫ = 0.5 l(g(x), y) = (g(x) − y)2
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Figure 1.3: Examples of loss functions
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training data, is minimized instead:

Remp(g) =
1
N

N∑

i=1

l(g(xi), yi) (1.4)

f̂ = arg min
g∈H

Remp(g) (1.5)

Bias-variance tradeoff

The choice of the functional spaceH is critical for the performance of the empir-
ical risk minimization approach. If one chooses too “small” a functional space,
there could be no function inH that approximate correctly the true functionf and
the true risk will be high. The model hasbias.
On the other hand, the empirical risk minimizerf̂ depends of the learning setS.
If the functional space is too “big”, data may be insufficient, and the learned func-
tion f̂ may be very different of the true risk minimizerf ∗. Those two sources of
error can be decomposed this way:

Model error = R( f̂ ) − R( f ) , (1.6)

= R( f̂ ) − R( f ∗)︸         ︷︷         ︸
(1)

+R( f ∗) − R( f )︸         ︷︷         ︸
(2)

. (1.7)

(1) is the error from learning fromS and not infinite data. (2) is the error from
choosing the functional spaceH .
To find the best model, one has to find the right balance betweenthe bias and the
variance of the model. This is quantified by the biais-variance tradeoff. Consider-
ing that the loss function is the square loss, the expected true risk of f̂ according
to the distribution of the learning setS:

ES(R( f̂ )) = ES
[
EP

[(
y− f̂ (x)

)2
]]

(1.8)

T.Hastie and R.Tibshirani [5] prove that this can be decomposed in the follow-
ing manner—proof in appendix, page 125:

ES(R( f̂ )) = EP,S[ǫ
2] + EP

[
( f (x) − f ∗(x))2

]
+ ES,P

[(
f ∗(x) − f̂ (x)

)2
]

(1.9)

= σ2 + (bias)2 + (variance) (1.10)
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with σ2 be the variance of the noise,σ2 = EP[ǫ2]. This exposes all the sources
of error in supervised learning.σ2 is the best error one can have, when trying
to predicty from x. The bias, (bias)2 = EP

[
( f (x) − f ∗(x))2

]
, expresses the error

from choosing functional spaceH . This term can be high ifH is poorly chosen.
Finally, if H is too big, the learned function̂f will greatly vary with the learning
setS, resulting in a third source of error.

Curse of dimensionality

The expression “curse of dimensionality”, coined by Richard Bellman (1961),
illustrates the problem of the dramatic increase of the volume of data with the
increase of dimension. I give an illustrative example in Figure 1.4, where I have
drawn 64 points with coordinates in the interval [0,1]. In one dimension, the
whole space is well occupied. In two dimensions, the data become more sparse.
In three dimensions, the space [0,1]3 is clearly under-sampled. To have, in the
10-dimensional space [0,1]10, the same space coverage as for 100 points in a 1-
dimensional space, we would need 1020 points [6].
In this context, it becomes clear that one cannot identify the best prediction func-
tion in a ”big” functional spaceH by minimizing only the empirical risk.

Overfitting

Related to the “curse of dimensionality” and the bias-variance tradeoff is the dan-
ger of overfitting. Figure 1.5 shows a toy classification problem. NotingU(X) the
uniform distribution inX, the test and training data have been drawn according to
the following distributions:

X ∼ U([0,1]2) (1.11)

Y ∼ sign(−3+ x2 + 3x1 + 2×U([0,1])) . (1.12)

The linear model makes mistakes on the training set, but captures the true
classification solution. The nonlinear classification function has perfect prediction
on the training set, but would give worse results on the test set.To avoid overfitting,
an approach is to regularize the prediction function. One minimizes the empirical
risk under a constraint on the complexity of the function:

min
g∈H

Remp(g) (1.13)

s.t. Ω(g) ≤ T (1.14)
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Figure 1.4: Illustration of the curse of dimensionality. Asdimension increases,
data become more sparse.
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Figure 1.5: Example of overfitting by a nonlinear predictor.

with Ω : H → R+ a convex penalty on the complexity of the function. This can
be equivalently formulated as

min
g∈H

Remp(g) + λΩ(g) . (1.15)

Even with linear functions, one faces the curse of dimensionality as well as
the possibility of overfitting if the vectorx is high-dimensional, which is typically
the case in bioinformatics. I will now show efficient regularized methods.

1.3.2 Linear model

The first functional space to be studied is the space of linearfunctions:

flin(x) =
p∑

m=1

amxm (1.16)

= < a, x > (1.17)

The choice of the loss functionl(., .) and of the complexity penaltyΩ(.) will
define various algorithms. For regression problems, the most common methods
are ridge-regression (or Tikhonov regression) and LASSO. Each method insures
smoothness in a different way.
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Ridge-regression

In the case of regression, a popular loss function is the quadratic loss

lquad(y, flin(x)) = (y− flin(x))2 . (1.18)

When adding theℓ2-norm as regularization termΩ(.), the problem is known as
ridge regression:

min
a∈Rp

∑

i

(yi− < a, xi >)2 + λ‖a‖22 . (1.19)

It admits a closed-form solution:

â =
(
XTX + λIp

)−1
(XT)y , (1.20)

where Ip is the identity matrix of orderp. The matrix
(
XTX + λIp

)
is always

invertible; the problem is well-posed. As can be seen in equation (1.21),

| flin(x1) − flin(x2)| = |< a, x1 − x2 >| ≤ ‖a‖2‖x1 − x2‖2 , (1.21)

the norm ofa bounds the ratio between the distance of two input points (x1, x2)
and their image through the functionflin, ( flin(x1), flin(x2)). The function flin is
smooth in a Lipschitzian way.

LASSO

By choosing theℓ1-norm as a penalty term, the problem is known as LASSO
(”Least Absolute Shrinkage and Selection Operator”):

min
a∈Rp

∑

i

(yi− < a, xi >)2 + λ‖a‖1 . (1.22)

With this regularization term, the solutiona is sparse,i.e. many of its entries will
be zeroes. Figure 1.6 gives a geometric intuition why. Levelsets, or contour lines,
are the curves such that the empirical risk has the same valuefor all values ofa
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Figure 1.6: Illustration thatℓ1-norm induces sparsity.a∗ is the minimizer of the
empirical risk.aℓ· is the minimizer ofℓ·-regularized empirical risk.aℓ· will be the
first intersection between a level set of the empirical risk and the level set of the
regularization norm. Due to its form, theℓ1-norm level set intersects the empirical
risk level set at a vertex, where many features are null.

along them. At their center isa∗ the minimizer of the quadratic loss function on
the learning set. The regularization can be seen as a second term to minimize, but
also as a constraint. In the figure, it is interpreted as a constraint. One optimizesa
to minimize the empirical risk given thata’s ℓ·-norm is below a thresholdT. The
optimum, notedaℓ· , will be found at the first intersection between a contour line
and the set of admissible values. With theℓ1-norm, the intersection will be found
at a vertex of the set of admissible points. The vertices of admissible points with
ℓ1-norm are points with some zero components.
The property of giving sparse solutions makes the LASSO model interpretable.
The few non-zero entries are the only relevant ones. This interpretability allowed
LASSO to be used as a feature selection method and also to become a popular
regression technique.
Unfortunately, many regression problems are not solved with sufficient accuracy
by linear methods. I present in the following section an extension of those methods
to nonlinear models.

1.3.3 Kernel Methods

To extend the linear model methods to non-linear separation, one approach is to
map the data in a high dimensional space. In the example in Figure 1.7, taken
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Figure 1.7: Illustration of a nonlinear problem transformed in a linear problem by
the appropriate mapφ

from [7], a linear model cannot correctly classify the data.But if we map the data
according toφ : (x1, x2) 7→ (z1, z2) = (x2

1, x
2
2), a perfect linear classifier is available.

Clearly better classifiers can be built by mapping data in the proper space, but
selecting the mapφ for each problem would be a very hard task. This difficulty has
been overcome by using kernel functions and the so-called kernel trick, explained
below, without calculating the map or the higher dimensional space.
A functionk : X × X → R is called a kernel if it has the following properties:

• symmetric: for all (x, x′) ∈ X2, k(x, x′) = k(x′, x)

• positive semi-definite: for all N ∈ N, for all (xi)i=1...N ∈ XN, for all
(αi)i=1...N ∈ RN,

∑N
i, j=1αiα jk(xi , x j) ≥ 0

Aronszjan showed, in [8], thatk(x, x′) is a scalar product in a particular func-
tional spaceH ⊂ F (X,R). In particular, there exists a mappingφ such as
k(x, x′) =< φ(x), φ(x′) >H . The functional spaceH has the property that, for any
f ∈ H , for anyx ∈ X, < f , k(x, .) >H= f (x); H is called a Reproducing Kernel
Hilbert Space (RKHS). The best function in functional spaceH is searched:

f̂ = arg min
g∈H

Remp(g) + λΩ(g) (1.23)

f̂ (x) = < â, φ(x) >H (1.24)
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Using as regularization term an increasing function of‖g‖H , the form of f̂ can
be deduced from the representer theorem.

Theorem 1. Representer theorem. Let X be a nonempty set and k a positive-
definite real-valued kernel onX × X with corresponding reproducing kernel
Hilbert spaceH . Given a training sample(x1, y1), . . . , (xN, yN) ∈ (X × R)N, a
strictly monotonically increasing real-valued functionΩ : [0,∞) → R, and an
arbitrary empirical risk function L: (R × R)N → R ∪ {∞}, then for any f∗ ∈ H
satisfying

f̂ = arg min
f∈H

L ((y1, f (x1)), . . . , (yN, f (xN))) + Ω(‖ f ‖) (1.25)

f̂ admits a representation of the form:

f̂ (.) =
N∑

i=1

αik(., xi) (1.26)

with αi ∈ R for all 1 ≤ i ≤ N

This is the general formulation of the representer theorem,as given in [9].
Proof is given in appendix, page 126.

The kernel trick [10] consists in calculating all scalar products through the
kernelk, and never computing the feature mapφ

f̂ (x) =
∑N

i=1αik(xi , x) (1.27)

‖ f ‖2H = < f , f >H (1.28)

=
∑N

i, j=1αiα j < φ(xi), φ(x j) >H (1.29)

=
∑N

i, j=1αiα jk(xi , x j) (1.30)

With a convex lossl and a strictly increasing convex functionΩ, solving the
problem

min
f∈H

∑

i

l(yi , f (xi)) + λΩ(‖ f ‖H ) (1.31)

reduces to a convex problem inα, which is quickly solved by gradient descent. In
the following work, I will mainly use the kernel-ridge regression.
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Kernel ridge-regression

We now have tools to learn non-linear functions with regularization enforcing
smoothness. I will use them with the quadratic loss and a regularization term

min
f∈H

N∑

i=1

(yi − f (xi))
2
+ λ‖ f ‖2H . (1.32)

Noting K the Gram matrix (Ki j = k(xi , x j)) and using the representer theorem,
this amounts to solving:

min
α∈RN

(y − Kα)T(y − Kα) + λαTKα , (1.33)

α admits the closed form solution

α̂ = (K + λIN)−1y . (1.34)

Note that minimizing the norm of functionf give smoother functions in a
Lipschtzian way, similarly to the ridge-regression case

| f (x) − f (x′)| = | < f , φ(x) − φ(x′) >H | (H RKHS) (1.35)

≤ ‖ f ‖H × ‖φ(x) − φ(x′)‖H (Cauchy-Schwarz). (1.36)

1.4 GRN Inference from gene expression data

Mathematical tools and, in particular, machine learning tools have been used to
infer a GRN from gene expression data, without knowledge of existing interac-
tions. Although they may use supervised learning tools, they are unsupervised
methods as they try to predict the existence or absence of edges, but they were not
trained with examples of existing or non-existing edges. They can be decomposed
into two groups:scoringmethods, where one evaluates the dependency of one
gene to another through a pre-defined metric, andmodelingmethods, or reverse-
engineering methods, where one creates a modelf̂ with parameterŝθ such as this
model mimics observed expression data. The model is built sof̂ or θ̂ can be inter-
preted to infer a gene regulatory network. I give below a listof existing methods
with short technical details.
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Figure 1.8: Examples of data (x, y) and their Pearson correlation. Each observed
couple (x, y) is represented by a blue dot. The regressiony = ax is drawn in red.
Pearson’s correlation can miss nonlinear dependencies

1.4.1 Scoring methods

Statistic dependency measures are used in these methods to evaluate the likeliness
of a link between genei and genej. Adaptations of these measures have also been
suggested to be more relevant in the biological context, or to remove spurious
interactions.

Correlation

Correlation studies the intensity of a link between two variables. Many forms
of correlation measures exist (Spearman’s rank correlation [11], Kendall’sτ [12],
Goodman and Kruskal’sγ [13]); the following methods use Pearson’s correlation
ρ. With two variablesx andy, ρ’s value is contained in [−1,1], and evaluate the
linear dependency of those two variables. With ¯x (resp. ȳ) the mean ofx (resp.
y), (xi , yi) observed examples of the couple (x, y), ρ is the cosine between the two
centered vectorsx andy and is defined as:

ρ(x, y) =
∑

i(xi − x̄)(yi − ȳ)√(∑
i(xi − x̄)2

) (∑
i(yi − ȳ)2

) (1.37)

Figure 1.8 shows some examples, includingρ = 0 for uncorrelated variables and
ρ = −1 for y = ax+ b if a < 0. If gene j excites (resp. inhibits) genei, i will
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have low (resp. high) concentration whenj has low concentration, and they will
have a highly positive (resp. negative) correlation. If thecorrelation is superior to
a threshold, a link between these two genes is inferred [14].
For more plausible biological networks, some researchers have proposed to post-
process the obtained adjacency matrix to producescale-freenetworks2, see the
Symmetric-N[21] or theAsymmetric-Nalgorithm [22].
Kuffner et al. used a non-linear correlation coefficient, calledη2 [23], for GRN
inference. They improved this measure in [24] by giving additional weights to
perturbed data.

Mutual information

Another metric is the mutual informationI between a pair of random variables

I (xi , x j) = H(xi) − H(xi |x j) =
∑

xi ,x j

p(xi , x j) log

(
p(xi , x j)

p(xi)p(x j)

)

WhereH(xi) is the entropy of random variablexi, measuring its unpredictabil-
ity, and H(xi |x j) is the entropy ofxi oncex j is observed, hence is always lower
than H(xi). If gene j regulates genei, its concentration will be responsible of
much of genei’s concentration, thusxi should be much more predictable oncex j

is observed, and the mutual information will be high. See thework onRelevance
Network [25] for a first use of mutual information. Many network inference al-
gorithm use mutual information, such asARACNE [26].
Faith et al. suggest theCLR algorithm [27]. The mutual information between
all gene pair (i, j) is computed. Then, authors can compute thepi distribution of
mutual information with genei. For a randomly chosen genez, the mutual in-
formation between genei andz follows the distributionpi, MI (i, z) ∼ pi. For a
gene j, Faith et al. computeZi j (resp.Z ji ), the unlikeliness of observingMI (i, j)
given pi (resppj). They score the likelihood of an interaction with the following
equation:

s(i, j) =
√

Z2
i j + Z2

ji . (1.38)

An edge between genesi and j is inferred ifs(i, j) is superior to a threshold.

2A scale-free network is a network whose degree distributionfollows a power law, at least
asymptotically. This property is observed on many large-scale networks, such as the scientific
collaboration network [15] or biological networks [16, 17,18]. Note that the scale-free assumption
for biological networks is contested in [19, 20]
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Covariance

For the same reason as for correlation, genes interacting together should have rel-
atively high absolute value for their covariance. Opgen-Rhein and Strimmer [28]
suggest an estimation of covariance through an efficient multi-dimensional es-
timator: the James-Stein estimator [29].Gaussian graphical models(GGM),
also called concentration graph, covariance selection or Markov random field
model [30, 31, 32], estimate the concentration matrixΩ = Σ−1, i.e. the inverse
of the covariance matrixΣ, assuming all gene expression levels are distributed ac-
cording to a multivariate normal distribution. The partialcorrelation between gene
i and j knowing all other genes is related to the concentration matrix according to:

ρ(i, j|{1, . . . , p}\{i, j}) =
−Ωi j√
ΩiiΩ j j

(1.39)

In particular,Ωi j should be equal to 0 if two genes do not interact, even if a
third genez interacts with both of them. Various methods exist to evaluateΩ or to
test if the observed value ofΩi j is sufficiently high to infer an edge between gene
i and j. See [33, 34, 35, 36].

Z-score

Static, dynamic and perturbed data are available. In particular, an experiment with
gene j perturbed should highlight a change of behavior in every gene that genej
regulates. Pinna et al. [37] measure the Z-scores: for each genei, they calculate
from wild type experiments its meanµi and standard deviationσi. Then the Z-
score is computed as:

Zi j =
G j

i − µi

σi
(1.40)

with G j
i the concentration of genei in the experiments where genej has been

knocked out. Zi j measures how “unlikely” the stateG j
i would be reached by

chance if j did not regulatei. The authors also used a method to remove indirect
edges. This last approach performed very well on synthetic data, where perturbed
data is available for all genes.
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1.4.2 Modeling

Another approach to gene regulatory network inference is through modeling of
the genes. The parameterθ is sought such that:

xi = f i
stat(x

−i , θ) + ǫ for static data, (1.41)

x(t + τ) = fdyn(x(t), θ) + ǫt for time-series, (1.42)

Where the functionf is in a particular functional space. The network is learned
from the parameter vectorθ. I describe here the tried functional space and the
procedure to identifyθ.

Linear Methods

A linear dynamical model has the form:

xi(t + τ) =
p∑

j=1

θi j x
j(t) (1.43)

Whereθi j gives the importance of genej for the prediction of genei. One would
usually add constraints to obtain a sparseθ, and consequently have an interpretable
model. Thus, the LASSO [38] was used in [39]. In biological systems, there may
be a delay between the presence of a genei and its influence on another genej.
Shojaie and Michailidis [40] build linear models dependingon the system’s state
at several previous times (x(t), x(t − 1), . . . ).
Besides, linear methods offer a framework to learn from heterogeneous data.
Given dynamic data, illustrating a dynamicsx(t + τ) = fdyn(x(t)), and steady-
state data, illustratingxi = fstat(x−i), one can learn a linear regression for each
modelθdyn andθstat that result from the same network. One wantsθdyn andθstat

to be null on genes not interacting with genei, thus (θdyn) j = 0 if (θstat) j = 0,
and reciprocally. Marbach et al. [41] used group-LASSO [42]and bootstrap sam-
ples; J.Chiquet et al. [43] also wanted (θdyn) j and (θstat) j to share the same sign,
which they obtained through cooperative-LASSO. Another approach [44] con-
sists in learningθ separately on each dataset, then findθ̂, the linear regression that
would be closer to all the found regressions.
The state-of-the-art method TIGRESS [45] uses linear modelscombined withsta-
bility selection[46]. Given a target genei and a potential regulatorj, TIGRESS
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wants to evaluate the probability thatθi j is non-null. To this purpose, it uses LARS
regressors [47], that iteratively select theL most important regulators for the linear
model. TIGRESS runsR LARS regressor on modified data: the expression levels
of candidate transcription factors are multiplied by a random number in the inter-
val [r,1], and the model is trained on a random subsample of the data.TIGRESS
now has, for all candidate transcription factorj and allℓ ∈ [1, L], the frequency
F(i, j, ℓ) with which the TF j was selected by LARS in the topℓ features to pre-
dict the expression of genei. By selecting a too small value forℓ, many TF would
have 0 score; by selecting too large a value forℓ, several TF may have the same
probability 1. Thus, TIGRESS will infer an edge fromj to i with an averaged
version ofF(i, j, ℓ), with the scores(i, j):

s(i, j) =
1
L

L∑

ℓ=1

F(i, j, ℓ) . (1.44)

s(i, j) corresponds to the area under the curve of the probability to select transcrip-
tion factor j for target genei when selectingℓ regulators, withℓ varying from 1 to
L. An edge from genej to genei is inferred ifs(i, j) is superior to a threshold.

Boolean Model

In the Boolean framework, a gene can only be active (1) or inactive (0). Let x̃i

be the discrete state of genei, x̃i = xi ≥ θi, x̃ =
(
x̃1, . . . , x̃p

)′
. In the dynamical

case, given a system state at timet, x̃(t), there exists a Boolean function giving
the state at timet + 1. This function can be represented by a truth table, or a
wiring diagram, as shown in Figure 1.9. For ap-gene system, there exists 22p

possible Boolean functions for each output. Finding the optimal Boolean function
is a combinatorial problem, and its resolution by brute-force algorithms is com-
putationally too expensive. Heuristics are used to simplify the problem. Akutsu et
al. [48] limit the number of regulators that one gene can haveto a constantK, thus
drastically reducing the search space. In the REVEAL algorithm [49], S.Liang et
al. start by identifying genej which has highest mutual information with output
genei. They iteratively add to the list of regulators of genei the gene which most
improve the Boolean function.
Boolean networks focus on generic network behavior rather than quantitative bio-
chemicals details. Despite a simplification of the input variables, Boolean net-
works succeeded in retrieving meaningful biological information [50, 51, 52] and
are able to model the behavior of biological systems [53]. Particularly, they allow
to study attractor states for the system.
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Graph Truth table

x1

x2

x3

AND

Input Output
x1 x2 x3 x1 x2 x3

0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 1
0 1 1 1 0 1
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 1 0

Figure 1.9: Different representations of a Boolean function. Left: wiring diagram.
→: positive regulation (excitate);⊣: negative regulation (inhibit). Right: truth
table

Bayesian methods

Bayesian networks and Bayesian methods offer a probabilistic framework able to
use noisy data and prior knowledge to infer dependencies. A causal relationship
between variables is described by a directed acyclic graphG (for an example see
Figure 1.10). LetΠi be the parents of genei in graphG, i.e. all genesj such as the
edgej → i exists inG. The state of genei is assumed to depend only on the state
of its parents. Given a graphG, conditional probabilitiesp(Xi = xi |XΠi = xΠi ) are
estimated. Bayesian methods search for the graphG and probabilitiesp(.|.) that
maximizes the probability of the observed data, with a penalty term representing

Directed acyclic graph Adjacency matrix
x1

x2

x3

x4

x5

G =



0 1 0 1 0
0 0 1 0 1
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0



Figure 1.10: Example of a Bayesian network, represented as a graph or an adja-
cency matrix
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x1(t)

x2(t)

x3(t)

x1(t + τ)

x2(t + τ)

x3(t + τ)

Figure 1.11: graph of a dynamical Bayesian network

a prior knowledge:

L((xi)i=1...N,G, η) = prior(G, η) ×
N∏

i=1



p∏

j=1

pη(Xj = xi j |XΠ j = xiΠ j )

︸                            ︷︷                            ︸
likelihood of observingxi


︸                                    ︷︷                                    ︸
likelihood of observing all data

(1.45)

The prior is usually a penalty on the density of the graph, to obtain a
sparse graph. Bayesian networks usually learn simplified dynamics, with dis-
crete variables, or linear dynamics with continuous variables. Optimization of
L((xi)i=1...N,G, η) is an NP-hard problem, and is computationally prohibitivefor
brute-force algorithms [54, 55], thus most algorithms use heuristics or approxi-
mated solutions. Friedman et al. [56] use theSparse candidate algorithm[57],
in which parents of a node can only be found in a small subset ofgenes that are
highly correlated with target gene. Another approach [58] is the estimation of a
score of several networks through variational approximation methods [59, 60].
The assumption of an acyclic graph is false for biological networks, which con-

tain feedback loops. This limitation is overcome by dynamical Bayesian network,
see Figure 1.11. These networks can only learn from time-series data. The state
of a gene at timet depends only on gene states at previous times [61, 62]. In the
dynamical case, algorithms have been developped for learning nonlinear continu-
ous dynamics [63, 64, 65].
Gene expression level are usually measured by mRNA concentration, but there
are other components influence a gene’s dynamic, such as protein concentration
or microRNA. Bayesian methods can furthermore consider thoseunseen variables
through latent variables. Bayesian methods alternatively identify the most likely
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latent variables given the model and optimize the model given the data and current
estimated latent variables [66, 67].

Other approaches

Other, more specific, models have been developed.Kalman filters model noisy
and partially observed systems. They can model nonlinear dynamics, via vari-
ants such as “Extended Kalman filters” or “ Unscented Kalman filters”, used for
GRN inference in [68, 69, 70].S-Systemsoffers very generic modeling, but are
computationally intensive and no method guarantees to find the best solution for
the model. They were used in [71, 72].Neural network models mimic the way
the brain functions, with neurons sending signals to othersto calculate an out-
put signal. They suffer from the same weaknesses as S-systems, and have been
used in [73, 74].Gaussian processescan model a nonlinear stochastic process
such as gene dynamics, as shown by Aijo et al. [75].Logistic regressionoffers
a nonlinear interpretable model, useful for GRN inference [76]. Lim et al. [77]
usedoperator-valued kernelsto model genes. Using partial derivatives of their
models, Lim et al. were able to infer GRNs.
Finally, best performances in several GRNI challenges were reached by the GE-
NIE3 method [78]. GENIE3 learns a modelf i(x−i) with Regression trees. For a
new input variablex, f i will make a binary test, for examplex j ≥ 0.5. Following
the answer to this binary test, input variable will either goin the left branch or the
right branch of the tree. It will land on another node, with a new binary test clas-
sifying x−i, until it lands on a leave, giving the value off i(x−i). After each binary
test, f (x−i), the prediction for genei, is more determined. One can interpret the
importance of featurej in f i as the amount of variance it reduces. For example,
given a nodeN , with its left branchNℓ and its right branchNr . Let S (resp.Sℓ,
Sr) be all data from training setS that reaches nodeN (resp. branchNℓ, Nr).
Noting |S| the number of elements inS, Var(S) the variance ofxi for all x ∈ S,
the variance reductionI of nodeN is computed following:

I(N) = |S|Var(S) − |Sℓ|Var(Sℓ) − |Sr |Var(Sr) (1.46)

Importance of featurej is the sum of the variance reductionI for all nodesN
where the binary test was done onx j. A randomization scheme is added. Instead
of uses a single regression tree, Huynh et al. usesrandom forests, i.e. many trees
learned on random subsamples of the data.
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1.5 Assessment of GRNI methods

Each author of a GRNI method tested his method in one or severalof the following
manners: inferring network from real gene expression data and comparison of the
inferred network to the known GRN; inferring from real data and inspection by
an expert of the inferred network; inferring from simulateddata and comparison
to the true regulatory network. Each method has its advantages and its draw-
backs. When using real data and the known GRN, the results are questionable as
large-scale GRN are, to a large extend, incomplete. The knownGRN is called a
bronzestandard. To overcome errors from our limited knowledge of GRN, some
author also justified their inferred network by observing that the topology of the
network they inferred was in agreement with other studies. Using simulated data,
one knows the true GRN producing the gene expression data. Theinferred net-
work is compared with agold standard, but simulated data may badly reflect the
real behavior of genes. In addition to questions on a dataset’s quality to evaluate a
GRNI method, most methods have some hyper-parameters to select a-priori. The
arbitrariness of these parameters may put the study in question.
GRNI methods have also been evaluated by comparative studies. GRNI is an
active field of research, and reviews quickly become outdated. I will mention
two reviews: Emmert-Streib [79] gives an overview of correlation or mutual-
information-based methods and summarizes papers comparing these methods;
Narendra [80] compares 32 state-of-the-art methods on 15 real or realistically
simulated data. No method clearly stands out. Authors essentially conclude that
some methods are always underperforming, and should not be used.
Yet, comparative studies are not a perfectly fair manner to compare methods. In-
deed, as the study’s authors both use and evaluate methods, they might fine-tune
the GRNI method or the dataset to produce better results, suchas results stress-
ing their method’s advantages. This can be overcome by blind-challenges. In
these competitions, organizers released gene expression data on several networks.
Each contestant sent the networks inferred by his methods with no knowledge of
the target network. In particular, Stolovitzky, Monroe andCalifano created the
Dialogue for Reverse-Engineering Assessments and Methods (DREAM) confer-
ences and challenges [81] in 2006. They released data for many bioinformatic
challenges, producing a fair evaluation of researchers’ methods and many bench-
mark sets. Currently, there has been eight editions of DREAM challenges. In
particular, the issue of GRNI was tackle in challenge four of the third edition and
challenge four of the fifth edition. Organizers surveyed strengths and weaknesses
of each method. They also reached several conclusions [82, 41]. Firstly, on simu-
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lated data, when knock-out data are available for each gene,Z-score methods give
excellent results, with a simple and fast algorithm. Secondly, results on a partic-
ular network depend mainly on the chosen model; two mutual-information-based
methods would essentially find the same network. Thirdly, some methods give
relatively good results: GENIE3, TIGRESS, ANOVA and CLR. Fourthly, and
most importantly, the consensus of several methods usuallyperforms better than
methods taken individually. In the DREAM5 Challenge, Marbachet al. compared
the results of each contestant to the results of averaging all contestants’ responses.
The consensus was always ranked in the three best methods, and often was the
best. Besides, for consensus to perform best, methods using different modeling
should be used: the consensus of a Bayesian, a mutual-information-based and
a regression-based methods is expected to perform better than the consensus of
three regression-based methods.

1.6 Problem formulation

In this manuscript, I suggest model-driven, nonparametric, GRN inference meth-
ods, using kernel functions and gene expression data. I set this work in the com-
mon simplified view, described in Section 1.2.4 and shown in Figure 1.2. Letp
be the number of genes andA be thep × p adjacency matrix:ai j = 1 if gene j
regulates genei, ai j = 0 otherwise. To estimate this adjacency matrixA, I decom-
pose this task intop independent tasks: for each genei, I will estimate the row
vectorai·, assuming that I observe data with an additive noise whose covariance
is diagonal.
As seen in Section 1.2.5, time-series data are available, allowing us to learn a
model:

xi(t + τ) = f i
dyn,τ(x

−i) + ǫ idyn,t+τ , (1.47)

with x−i = (x1, . . . , xi−1, xi+1, . . . , xp) and ǫ idyn,t+τ a zero-mean noise. There also
exists data with no time dependence, called steady-state data. They allow us to
learn a model:

xi = fstat(x−i) + ǫ i , (1.48)

with ǫ i a zero-mean noise. Those models are learned using dynamic data,
Sdyn,τ = {(x−i(t1), xi(t1 + τ)), . . . , (x−i(tNτ − τ), xi(Nτ))}, or static data,Sstat =
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{(x−i
1 , x

i
1), . . . , (x

−i
N , x

i
N)}. Both modeling use the same supervised learning tools,

that will be described using the general notationS = {(z1, y1), . . . , (zN, yN)}.
These data are observations of a biological system, hence they are noisy and result
from nonlinear functions. Gene can be modeled through parametric approaches,
where one assumes that gene dynamics is ruled by particular ordinary differential
equations (ODE), and one has to find optimal parameters. These approaches can
tackle nonlinear problems, but, in practice, they face prohibitive computational
time on large dataset. Not to mention the relevance of the ODEfor gene model-
ing.
Kernel functions, nonparametric models seen in Section 1.3.3, are good candi-
dates for gene modeling. Very few works have applied kernel methods to GRN
inference, mainly because they are not easily interpretable, so, even if they per-
fectly modeled genes, extracting the GRN from the kernel model would not be
straightforward. This manuscript describes two GRN inference methods using
kernels. In the first part, I propose a method to interpret a kernel model, called
Ĵac. Given f̂ i a model for genei learned on steady-state or time-series data with
kernel functions,̂Jacestimatesai· through the partial derivatives of̂f i

âi j =

∫
∂ f̂ i

∂x j
dx (1.49)

In Chapter 2, I demonstrate that, under some assumptions on the distribution of the
genesx and the kernel functionk, kernel methods consistently estimate the mean
of partial derivatives. In Chapter 3, I describe other methods to interpret variable
importance in a model̂f i. I suggest a method to learn from both steady-state and
time-series data. I comparêJac to those other model interpretation methods and
to state-of-the-art methods for GRN inference. In the secondpart, I develop an
interpretable kernel-based model, called LocKNI:

xi ≈ f̂ i(x−i ,wi) + ǫ , (1.50)

with wi a feature weighting parameter;wi
j measures the importance of genej

for the modeling of genei. wi is learned from data. Then I estimate the adjacency
matrix:

ai. = wi (1.51)
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In Chapter 4, I compare LocKNI to other kernel feature weighting methods on
realistic and widespread datasets. In Chapter 5, I describe amethod to incorporate
prior knowledge when learningw. I show improvements when adding reasonable
prior knowledge. I also compare LocKNI to state-of-the-artmethods on real and
realistically simulated datasets. LocKNI shows state-of-the-art performances, and
also a behavior complementary to other existing methods.
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Part I

Estimation of Partial Derivatives for
Network Inference
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Given a modelf i for a genei, the partial derivative∂ f i/∂x j should reflect
the action of genej on genei. Indeed, if j regulates genei, a change in gene
j’s concentration would have repercussions on genei, thus∂ f i/∂x j

, 0. This
approach raises two questions: how should genes be modeled and how the partial
derivatives should be estimated.

Concerning the first question, several characteristics of gene behavior are
difficult to model; most notably, the nonlinear dynamics of concentration of
gene mRNAs. Research in supervised learning developed several methods able
to tackle these difficult problems, such as regression trees, neural networks or
kernel-based methods. However, regression trees produce piecewise constant
functions, thus their model cannot be derived, while computation of neural
networks may be prohibitive for real-sized networks. On theother hand, kernel
methods possess desirable properties, such as robustness to noise. Kernel
methods seem therefore to be good candidates for gene modeling.

With respect to the second question, many works exist for theestimation
of derivatives of univariate functions. Unfortunately, gene models will be
multivariate functions, and very few works exist for this problem.

In Chapter 2, I tackle the problem of partial derivative estimation from a
theoretical point of view. Given some assumptions on the observationsx that
should be met by genes, I give sufficient conditions on a learning algorithmK ,
taking training dataS to learn a modelf̂ , so that, for any continuous linear form
g, g(∂ f̂ /∂x j) consistently estimatesg(∂ f /∂x j). I then show that some kernel
methods meet these conditions. Finally, I test this partialderivative estimation
method on toy examples.

In Chapter 3, I implement the use of partial derivatives to infer the gene
regulatory network. This method is improved by an ensemble method, allowing
to learn from both steady-state and dynamic modeling. Estimation of partial
derivatives∂ f̂ i/∂x j can be seen as a way to interpret the importance of feature
j in the model f̂ i. Therefore, I compare this network inference method to other
feature importance interpretations. I also compare this network inference method
to state-of-the-art GRNI methods on realistic datasets. It provides state-of-the-art
results.

Page 41



Section 1.6: Problem formulation

Page 42



Chapter 2

Estimation of Partial Derivatives

2.1 Introduction

Learning a relationshipf between input variablesx and outputy from past ex-
amples is a common task in machine learning. Many domains (computer vision,
medical imaging, bioinformatics, etc) present such problems, fostering the de-
velopment of many efficient algorithms for learninĝf , an estimation off , from
observational data. Most learning methods provide of theoretical bounds for con-
vergence and performances. One can mention linear, tree-based or kernel-based
methods. However, the partial derivatives estimation problem has fewer theoreti-
cal guarantees. Recently, several fields have shown interestin learning the partial
derivatives∂ f /∂xi. For the characterization of nanoparticles, quantitativefeatures,
such as the diameter of a nanoparticle, can be more accurately estimated by the
derivative of a response function [83, 84, 85]. Derivativesallow to quantify the
progress of a disease [86] or to infer gene regulatory networks [77]. Besides,
independently of the domain, partial derivatives may quantify the relevance of
an input variable for a function, thus can be used as a featureselection crite-
rion. Several saliency measures are based on partial derivatives, see [87, 88] and
references therein. Nevertheless, theoretical consistency of derivative estimation
must be proved. Technical difficulties arise because differentiation is not contin-
uous, without assumption on the studied functional space. Thus estimatingf by
f̂ through a consistent learning algorithm does not imply that∂ f̂ /∂xi consistently
estimate∂ f /∂xi.
Consistency of several derivative estimation methods for univariate problems has
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been proven. The approach calculates empirical derivatives [89]. Given a sorted1

training dataset (xi , yi)i=1...N, xi ≤ xi+1 for all i, De Brabanter et al. set the empirical
derivative [89]

y′i =
yi+1 − yi−1

xi+1 − xi
.

For more robustness to noise, Charnigo et al. calculate an averaged empirical
derivative [90]

y′i =
∑

k

wk
yi+k − yi−k

xi+k − xi−k

with wk a decaying weight,
∑

k wk = 1, wk−1 ≥ wk ≥ 0 for all k. The algorithm
in [91] trains f̂ so that f̂ (xi) fits yi and f̂ ′(xi) fits y′i for all i. Another approach is
to model f with locally polynomial functions, such as splines [92]. Charnigo et
al. [90] learn a model̂f (x) =

∑
ℓ wℓ(x)µℓ(x), with µℓ a polynomial andwℓ a func-

tion determining ifx is in the region modeled byµℓ. With wℓ(x) = exp(−(x−xl)/h),
Charnigo [93] proves consistency of derivatives of orderj. For multivariate prob-
lems, there is only, to our knowledge, Mosci’s new kernel-based approach that has
been proven to estimate‖∂ f /∂xi‖2 consistently [94].
In this work , I firstly give sufficient conditions on a target functionf and a learn-
ing algorithm to consistently estimateg(∇ f ), with g any continuous linear form,
and∇ f the gradient off , ∇ f = (∂ f /∂x1, . . . , ∂ f /∂xp). Secondly, I prove that
Gaussian kernel methods satisfy these conditions. Thirdly, I suggest to approxi-
mate the integrals by sum, for faster and simpler computation. Finally, I experi-
ment this partial derivative estimation method on toy examples.

2.2 Consistent estimation of mean partial deriva-
tives

In the following, (X,Y) are random variables fromΩ × Y, with Ω a finite p-
dimensional space, andY is a bounded subset ofR. X is drawn from a distribution
µ. I make the following assumptions:

(A-1) The support ofµ, notedXo, is bounded and convex. The closure ofXo is
denoted byXc.

1this assumption can be made without loss of generality
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(A-2) The random variableY follows

y = f (x) + u (2.1)

with u a zero-mean noise. I further assume thatf is continuous and contin-
uously differentiable onXc, i.e. belongs to the spaceC1(Xc,Y).

In theory, assumption (A-1) is met by many empirical distributions, notably,
the truncated Gaussian distribution. In practice, many random variables are as-
sumed to follow a Gaussian distribution and the loss of generality induced by
using a truncated Gaussian distribution is very small. Besides, assuming that gene
concentration is bounded seems reasonable; the convexity assumption of reach-
able states is more debatable. Assumption (A-2) describes the link betweenY and
X and the additive nature of the noise. It makes mild constraints on f , namely that
∇ f exists and is continuous, criteria met by many biological models.
I will use the following norm notations.L2(Ω, µ) is the space integrable function,
according to distributionµ, with the norms:

‖ f ‖2L2(Ω,µ) =

∫

Ω

f (x)2µ(x)dx =
∫

Xc

f (x)2µ(x)dx , (2.2)

‖ f ‖∞ = max
x∈Xc

| f (x)| . (2.3)

The Euclidian norm in spaceΩ is ‖x‖2 =
√∑p

i=1(x
i)2.

The last needed notations and assumptions concern the learning algorithm. Letf̂ℓ
be f ’s estimate by algorithmK with ℓ data pairs, (xi , yi)i=1...ℓ. I assume that:

(A-3) f̂ℓ is a consistent estimator: for allǫ, η > 0, there exists an integerℓ0 such
that, for all integerℓ ≥ ℓ0, the probability that

∥∥∥ f − f̂ℓ
∥∥∥L2(Ω,µ)

≤ ǫ is greater
than 1− η, and

(A-4) there exists a integerℓ0 such that, for all integerℓ ≥ ℓ0, the norm of f̂ℓ’s
gradient is bounded by a constantM.

Machine Learning research has developed many algorithm satisfying (A-3).
Assumption (A-4) is satisfied by some of them, in particular kernel methods, as
we shall see later.
If all assumptions are met, any continuous linear form of thederivatives off will
be consistently estimated by the one off̂ℓ. This is proven using the following two
theorems:
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Theorem 2. Let f be a function belonging to the spaceC1(Xc,Y). Assume the
gradient of f is bounded by M,‖∇ f ‖2 < M. Then, for anyǫ > 0, there exists C1,ǫ,
independent of f , such as:

‖ f ‖∞ ≤ C1,ǫ ‖ f ‖L2(Ω,µ) + ǫ . (2.4)

Theorem 3. Let f be aC1(Xc,Y) function, with gradient bounded by M. Let g be
a linear continuous form ofC0(Xc,Y), g : C0(Xc,Y) → R. Then, for anyǫ > 0,
there exists a constant C2,g,ǫ such that:

|g(∇ f )| ≤ C2,g,ǫ ‖ f ‖∞ + ǫ (2.5)

These two theorems are proven in the appendix, pages 128 for theorem 2 and
page 129 for theorem 3). I show next that kernel-ridge regression and partial least-
square regression learning algorithms both satisfy assumptions (A-3) and (A-4).

2.3 Kernel methods for partial derivative estimation

There existuniversalkernels,i.e. kernels whose RKHSH is the whole space
of continuous functions fromXc to R (or C) [95]. Using consistency of kernel-
ridge [96] or partial least-square [97] regression and a universal kernel, I obtain a
learning algorithmK satisfying assumption (A-3). I give sufficient conditions on
a universal kernelk ensuring that the associated learning algorithmK satisfies (A-
4):

Lemma 4. LetH be the RKHS of universal kernel k. If, for allx ∈ Ω

• the kernel is constant on the set of points(x, x), k(x, x) = c,

• at point(x, x), the gradient of the kernel is null ,∇zk(x, z)|z=x = 0p, and

• at point (x, x), the Hessian matrix H(x, z)i j =
∂2k(x,z)
∂zi∂zj has eigenvalues

bounded by a constant M,| < u,H(x, x)u > | ≤ M‖u‖2 for all x ∈ X
and all u∈ Rp

then, for all f ∈ H and for allx ∈ Xc, the gradient of f satisfies:

‖∇ f (x)‖2 ≤
√

M‖ f ‖H . (2.6)
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Sketch of proof. The RKHS property and Cauchy-Schwarz inequality give:

| f (x) − f (x + h)| = < f , φ(x) − φ(x + h) >H (2.7)

≤ ‖ f ‖H‖φ(x) − φ(x + h)‖H , (2.8)

while we also have:

| f (x) − f (x + h)| = | < ∇ f ,h > +o(‖h‖)| (2.9)

Using the polarization identity, the distance‖φ(x) − φ(x + h)‖2H can be ex-
pressed with scalar products. Using the kernel trick, I can express this distance
with functionk. Using a Taylor expansion and conditions of lemma 4:

‖φ(x) − φ(x + h)‖2H = k(x, x) + k(x + h, x + h) − 2k(x, x + h) (2.10)

= h′H(x, x)h + o(‖h‖2) (2.11)

‖φ(x) − φ(x + h)‖H ≤
√

M + o(‖h‖) (2.12)

Equations (2.8) and (2.12) gives the result. A detailed proof is given in the
appendix, page 130.
The conditions of lemma 4 are satisfied by the Gaussian kernel.

Lemma 5. The Gaussian kernel of bandwidthσ satisfies the hypothese of lemma
4.

The universality of the Gaussian kernel is proven in [95]. The other conditions
are proven using calculus. This is done in the appendix, page131.
Consistent estimation of continuous linear forms of partialderivatives with Gaus-
sian kernel methods is obtained by lemma 5 then lemma 4, then theorem 2 and,
finally, theorem 3 can be applied, giving us the following theorem:

Theorem 6. With samples(xi , yi)i=1...ℓ i.i.d., for any ǫ and η > 0, and for any
continuous linear form g, g: C0(Xc,Y) → R, there existsℓ0 such that ifℓ ≥ ℓ0,
then, with probability greater than1− η,

∣∣∣∣∣∣

∫

Xc

g(∇ f̂ℓ(x)) − g(∇ f (x))dx

∣∣∣∣∣∣ ≤ ǫ , (2.13)

wheref̂ℓ is the estimator of f based on Gaussian kernel ridge regression or Gaus-
sian partial least-square regression.

A detailed proof is given in the appendix, page 132. Now, the term∫
Xc

g(∇ f̂ℓ(x))dx may be hard to compute. I give below a simple and fast approxi-
mation of this integral.
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2.4 Approximation of integrals

An analytical formula for the integral of the estimatef̂ overX may not be avail-
able. To overcome this difficulty, I suggest a simple method to approximate this
integral by a sum. By the central limit theorem:

1
ℓ

ℓ∑

i=1

∇ f̂ (xi) −→
ℓ→+∞

∫

Xc

∇ f̂ (x)µ(x)dx (2.14)

Moreover, as the gradient∇ f̂ is bounded, the central limit theorem gives
bounds on the difference between the sum and the integral, provided in the ap-
pendix, page 133.
If one wants to estimate a linear form different from equation (2.14), one can use
the following sum, assuming that the distributionµ is known:

1
ℓ

ℓ∑

i=1

h(xi)
µ(xi)

∇ f̂ (xi) −→
ℓ→+∞

∫

Xc

∇ f̂ (x)h(x)dx (2.15)

In most cases, the distributionµ is unknown, but several accurate methods ex-
ist to estimate it. In particular, multivariate kernel density estimation [98] provides
nonparametric and consistent estimation ofµ. Notingκ(u) = (2π)−p/2 exp(‖u‖22/2),
aℓ a sequence such thataℓ −→

ℓ→+∞
0 andℓaℓ −→

ℓ→+∞
+∞ (for example,aℓ = ℓ−1/2), Si-

monoff defines:

µ̂ℓ(x) =
1

ℓap
ℓ

ℓ∑

i=1

κ

(
x − xi

aℓ

)
(2.16)

This estimator ˆµ satisfies:

‖µ̂ℓ − µ‖∞ −→
ℓ→+∞

0 (2.17)

Proofs and bounds can be found in [99]. Thus, one can estimatethe integral
according to:

∫

Xc

∇ f̂ (x)h(x)dx ≈ 1
ℓ

ℓ∑

i=1

h(xi)
µ̂ℓ(xi)

∇ f̂ (xi) (2.18)
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2.5 Numerical simulations

In this section, I illustrate the consistency of kernel-ridge regression for the es-
timation of continuous linear forms of partial derivatives. I build toy examples
with input variablesx drawn independently and uniformly in [−1,1]p. The output
variabley is a function of the following form:

y = f (x) + gǫ = tanh
(
xTAx + bTx

)
sin

(
cTx

)
+ gǫ (2.19)

with ǫ a normal noise,ǫ ∼ N(0,1), uncorrelated between samples, andA,b
andc independently chosen random parameters:

A ∼ U([0,1]p×p) (2.20)

b ∼ U([0,1]p) (2.21)

c ∼ U([0,2π]p) (2.22)

See Figure 2.1 for examples of functions given by equation (2.19).
In order to measure the error in partial derivative estimation, I defineE, the error
in partial derivative estimation for one simulation as follows:

E =
p∑

m=1

(∫

Xc

∂ f ∗

∂xm
µ(x)dx −

∫

Xc

∂ f̂ ∗

∂xm
µ(x)dx

)2

(2.23)

For fixed parameters (number of training pointsN, dimension of input vari-
ablesp, noise to signal ratioσ, with g = σ

√
var(f (x))), I simulate 100 models

following equation (2.19) and plot the mean and variance of the E in box plots.
Figure 2.2 shows that the error decreases with the number of training points. In
these examples, the problem dimensionp is 2. The noise to signal ratio is 0% in
the top left plot, 100% in the top right plot. The bottom plotsshow the evolution
of the error with the noise to signal ratioσ (plot at the bottom left), and with the
input dimensionp (plot at the bottom right). As expected, the error increaseswith
the noise-to-signal ratio. Besides, the estimator is very sensitive to the dimension
of input variables. Whenp increases, the error greatly increases.
We also dispose of a partial derivative estimation to estimate other linear forms of
the partial derivatives. To simulate this, I drawx following a centered and reduced
Gaussian distribution,

X ∼ N(0, Ip) , (2.24)
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Figure 2.1: Examples of functions of the form given by equation (2.19) with di-
mensionp = 2

and I estimate the integral off ’s derivatives in the cube [−1,1]p,

E =
p∑

m=1

(∫

[−1,1]p

∂ f ∗

∂xm
dx −

∫

[−1,1]p

∂ f̂ ∗

∂xm
dx

)2

. (2.25)

Results are shown in Figure 2.3, withp = 3 andσ = 25% . These results
illustrate the property that kernel-ridge regression consistently estimates partial
derivatives.

2.6 Conclusion

In this chapter, I tackled the partial derivative estimation problem. Observing the
scarcity of results for the multi-dimensional case, their specificity to the learn-
ing algorithm used, I showed that, under a few assumptions onthe learning al-
gorithm, linear forms of partial derivatives were consistently estimated. Further-
more, I showed that kernel methods met these assumptions. Inaddition, if a kernel
method is proved not to require thei.i.d. assumption to learnf , this results and
the theorems in this chapter can be used to prove consistencyof the estimates of
partial derivatives without thei.i.d. assumption.
Finally, the proposed method to estimate derivatives was tested on toy examples.
We saw that this method gives good quality results in the low-dimensional case,
but its performance decreases quickly with the dimension ofthe input. In the
following chapter, I will use partial derivatives to infer gene regulatory networks.
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Figure 2.2: Mean and variance of
∑p

m=1(g(∂ f ∗/∂xm) − g(∂ f̂ /∂xm))2. The top plots
show the error in function of the number of training samplesN for noise to signal
ratio 0% (top left) and 100% (top right), dimensionp = 2. The bottom plots show
the error in function of the signal-to-noise ratioσ (bottom left - withp = 3,N =
250) and the dimension ofx p (bottom rightσ = 25%,N = 250)
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Figure 2.3: Error in the estimation of partial derivatives when input variablesx
are drawn from a Gaussian distribution, and the integral is estimated on the cube
[−1,1]p
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Chapter 3

Network inference using partial
derivatives of kernel-based models

3.1 Introduction

As shown in the first chapter, many model-driven approaches have been devel-
oped for gene regulatory network inference. Although kernel methods provide
efficient nonparametric modeling, they have rarely been used for gene network
inference, mainly due to their “black box” behavior. However, we saw, in the pre-
vious chapter, that partial derivatives of a regression model based on a universal
kernel, typically a Gaussian kernel, can be used to provide consistent estimates of
the mean of the partial derivatives of the target function. Therefore, I propose here
to use the partial derivatives to interpret a kernel-based regressiona posteriori.
Calculating the empirical mean of the partial derivative fora given feature on data
is seen as an importance measure of this feature. This chapter presents a study of
this new GRN inference method. To improve this measure and to deal with large
dimensions, this approach is extended to an ensemble of randomized kernel-based
models. The whole approach is presented in Section 2. Then, related works about
other measures of feature importance are reviewed. Section4 describes methods
for hyper-parameters selection. Section 5 is devoted to thenumerical experiments
which involve results on small-scale realistic networks and large scale, real-sized
biological networks.Ĵac, the GRN inference method using partial derivative, is
compared to other importance measures applied on kernel-based models.
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3.2 Partial derivatives of kernel-based models

3.2.1 Jacobian matrix estimation for GRN inference

Several works have studied the importance of a feature through partial deriva-
tives, see [87, 88, 94] and references therein. Assume that the behavior of a gene
regulatory network is governed at steady-state by the following p modelsf i:

∀i ∈ {1, . . . , p}, ℓ ∈ {1, . . . ,N}, xi
ℓ = f i(xℓ) + ǫ iℓ, (3.1)

whereS = {x1, . . . , xN} are the observed dataset andf i is the true model gov-
erning the expression level of genei in function of the expression levels of the
other genes. If genej excites (resp. inhibits) genei, then its action should be ob-
served in the partial derivatives:∂ f i/∂x j should be positive (resp. negative). Note
that the effect of a genej on genei may be visible only on some of the system’s
possible statesX. For example, genej may influence genei only if its concen-
tration is above a thresholdθ j, so that∂ f ∗,i· /∂x

j = 0 if x j ≤ θ j. Similarly, beyond
another concentrationγ j, genei’s receptors to genej’s action may saturate, and
∂ f ∗,i· /∂x

j = 0 if x j ≥ γ j. Therefore the mean partial derivative∂ f ∗,i· should be
estimated on all possible statesX. Let µ be the distribution of the system state, I
want to estimate the average value of the (i, j)th entry of the Jacobian matrices:

Jac( f )i, j =

∫

X

∂ f i(x)
∂x j

µ(x)dx, (3.2)

As seen in Chapter 2, the empirical mean of the partial derivatives of the esti-
mated modelŝf i consistently estimateJac( f ):

Ĵac( f̂ )i, j =
1
|S|

∑

x∈S

∂ f̂ i

∂x j
(x) . (3.3)

Similarly, the temporal behavior of the gene regulatory network may be assumed
to be governed by an autoregressive model that decomposes into p modelsf i

τ:

∀i ∈ {1, . . . , p}, ℓ ∈ {0, . . . ,N − 1}, xi(tℓ + τ) = f i(x(tℓ)) + ǫ
i
tℓ , (3.4)

with Dτ = {x(t0), . . . , x(tN)}, tℓ = t0 + ℓτ andǫ itℓ are i.i.d. realization of a gaussian
noise. Then

Ĵac( f̂τ)i, j =
1
N

∑

t∈{t1,...,tN}

∂ f̂ i
τ(x(t))
∂x j(t)

. (3.5)
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These Jacobian estimates of the learned model can be used in order to get an
estimate of the binary and asymmetric target adjacency matrix of the network.
One way to provide such an estimate is to threshold the absolute value of the
Jacobian’s coefficients given a thresholdθ:

Âi, j = H(|Ĵac( f̂ )i, j | − θ), (3.6)

with H : R→ {0,1}, the indicator function ofR+.
In the remaining part of the chapter, I will consider the problem of the estimation
of the i th row in adjacency matrix A. For the sake of simplicity, leti, the index
of a target gene, be fixed and consider the following base model that satisfies the
following equations:

yℓ = f (zℓ) + ǫℓ (3.7)

with S = {(zℓ, yℓ), ℓ = 1, . . .N} andǫℓ i.i.d. realization of a Gaussian noise. Input
variables have finite dimensionz ∈ Rp

Both these estimates would greatly suffer from high-dimensionality of the input
variablez. To overcome this difficulty, I propose to learn functionsf that uses
few dimensions of the variables. With an ensemble method, many functionsf are
learned using Gaussian kernel-ridge regression, but each function relies on a small
subset of features ofz—another approach is changing the base learned to produce
a sparse Jacobian matrix, and will be developed in Chapters 4 and 5. Moreover,
note that other partial derivatives open many possibilities to infer the GRN: for
example, one may consider that, if genej regulates genei, there must exists a
statez where genej exert much its influence on genei, and the partial derivative
∂ f i/∂zj will reach a high value, thus estimating the GRN by the maximumvalue
obtained by the partial derivatives. In this thesis, I was interested in the average
Jacobian.

3.2.2 Ensemble of randomized kernel-based models

From a very general point of view, performances have been improved in many
domains by using an ensemble method approach. Instead of using a function f̂
learned with one algorithmK on the whole datasetS, one can createB subsets
of S: (E1, . . . ,EB), and learn a prediction functionhb on each datasetEb. Using
the mean function1

B

∑B
b=1 hb is usually more accurate and more robust to noise

that using the single functionh learned using the whole dataset (see [100, 46] for
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some examples).
In this Chapter, there are many motivations to use ensemble methods. In order to
estimatef in 3.7, a Gaussian kernel-based model is considered:

h(z) =
N∑

ℓ=1

αℓk(zℓ, z) (3.8)

k(zℓ, z) = exp

(
−||zℓ − z||2

2σ2

)
(3.9)

(3.10)

Then, the partial derivatives are given by :

∂h(z)
∂zj

=

N∑

ℓ=1

αℓ
∂k(zℓ, z)
∂zj

(3.11)

∂k(zℓ, z)
∂zj

=
zj
ℓ
− zj

σ2
exp

(
−||zℓ − z||2

2σ2

)
(3.12)

(3.13)

As the Gaussian kernel uses each input feature in the same way, the partial deriva-
tives regarding two featuresj andmonly differs by the factors (zj

ℓ
−zj) and (zm

ℓ
−zm).

To increase this difference, the kernel-ridge regression is used as a base learner in
an ensemble method, each base learner is trained on a random subspace ofRp

and a subsample of the data. Contrary to random forests, the base learner does
not select further features; however, for a given size of thetraining data, models
trained on smaller subspaces are expected to give more contrasted partial deriva-
tives. Moreover, working in random subspaces allows to tackle a large number of
input features. Finally, I suggest an ensemble method approach allowing to learn
from heterogeneous datasets, here steady-state data and irregularly-observed time
series.

Learning from heterogeneous data types

In this work, my objective is not obtaining the most accurateprediction function
f̂ , but identifying the important features of genei’s behavior. I observe genei
under different perspectives (steady-state or dynamic) in dataset (Estat,Edyn), but
I assume that both behaviors are the results of the same GRN. Thus, learning
importance of features from both of these perspectives gives complementary in-
formation on the same network.
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Dataset building

All measures can be used as static dataEstat = (x1, . . . , xN) to learn a modelxi =

fstat(x−i) + ǫstat, with ǫstat a zero-mean noise, as done by several state-of-the-art
methods [78, 45]. In addition, these data include time-series, for which we also
have information about time dependencies. We have at our disposalNdyn data
from several time-series. For a time-seriesu, the system is observed at times
t1,u, . . . , tTu,u. The observation of the system at timetk,u in time-seriesu is denoted
x(tk,u,u). These data can be used to learn a dynamical model of the system:

xi(t + τ,u) = fτ(x−i(t,u)) + ǫτ ∀t,u (3.14)

for all 1 ≤ u ≤ Nu, and withǫτ a zero-mean noise.
To build a modelfτ from time-series, there must be regularly spaced time-points,
which is rarely the case in biological time series. Indeed, when the time-series is
the response of the system to an exogenous perturbation, most behavior will be
observed soon after the perturbation. After a long time, thesystem has stabilized.
Thus, experimentalists take many measurements right afterthe perturbation, and
few when much time has passed.
To overcome the problem of irregularly spaced observation time, I build for all
possible time stepsτ the datasetsEdyna,τ = {(x(t1,u1), x(t1 + τ,u1)), . . . , (x(tNτ −
τ,uNτ), x(tNτ ,uNτ))} of all time point pairs (t, t + τ) available in the data, see Fig-
ure 3.1 for a visual example. Each of these datasets allows tolearn a modelfτ, but
not every dataset is interesting: some of them contain too little data, others have a
time-stepτ very long compared to the characteristic time of the system,and only a
return to a steady-state is observed in the modelfτ. Without expert knowledge on
a system, I relied on the experimentalists’ competence, andassumed that the time
τ∗, for which Eτ∗ is the largest dynamical dataset (τ∗ = arg maxτ |Eτ|), is below
the characteristic time of the system. Thus I accepted dataset Eτ if τ ≤ τ∗ and
|Eτ| ≥ 30.

Subspaces and subsamples building

From available datasets (E0,E1, . . . ,ENe). I build B subsamplesEℓ, ℓ = 1 . . . B
with subbaggingand subsampling of variables, in a similar way toextreme-
randomization[101]. Subsamples are built according to the following procedure:

1. Randomly choose from which datasetEu to extract data. The probabil-
ity of choosing datasetEu is proportional to its size,p(Eu selected) =
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Figure 3.1: Example of irregularly spaced time-series, andthe building of datasets
Edyna,.
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|Eu|/(
∑Ne
ℓ=1 |Eℓ|). Let Eu be the selected dataset.

2. Each data vectorxi of Eu has probabilitypdata,u to be in subsampleEℓ. To
obtain subsamples of similar sizes,pdata,u is taken inversely proportional to
Eu’s size. Assuming, without loss of generality, thatE0 is the largest dataset,
I have fixedpdata,u = pdata

E0
Eu

, with pdata a fixed hyper-parameter. To obtain
test data,this probability is capped at 95%.

3. Randomly selectnvar variables to be the potential regulators of our system.
nvar is a hyper-parameter to fix. The set of selected variables is calledGℓ.

Let f̂ i
ℓ

be the model for genei learned on subsampleEℓ. One may directly
use Ĵac( f̂ℓ), but there is no unit nor references to assess that the valueĴac( f̂ℓ)i j

is significantly high. Thep-value statistical test will give more meaning to the
observed̂Jac( f̂ℓ) value.

3.2.3 p-value

Several ways exist to infer a GRN from an importance measures,as Ĵac( f̂ )i j can
be seen as a measure of the importance of genej to predict genei—related to
saliency measures. One can directly use the importance measure: for example,
one can assume thatj regulatesi if the importance measure is above a threshold
or if it is above a certain percentage of measured importances. I shall abbreviate
this interpretation method bydir.
Another approach is to compute thep-value of Ĵac( f̂ )i j . This is the probability
of observing such an importance value under the null hypothesis that genei and
j are independent. For example, one can assume that genej regulatesi if the p-
value of observed measured importance of genej for genei is smaller than 5%
or 1%. I obtain thep-values by a permutation test, theorized by Fisher [102] and
Pitman [103]. This test, also called randomization test or re-randomization test,
is an exact nonparametric test, making no assumptions on underlying distribu-
tions, thus it is legitimate to apply it here. Given an importance measure,Impo, a
training setS = (xi , yi)i=1...N, the test is performed as follows:

1. Randomly chooseπ, a permutation of{1, . . . ,N}. xπ(i) is now independent
of yi

2. CalculateImpo( j) for the dataset (xπ(i), yi).

Page 59



Section 3.3: Other measures for feature importance in a model

3. Repeat step (1-2)M times -in this work, I choseM = 10000. We now have
the distribution ofImpo( j) with j independent from output, hencep-values.

Among the advantages of the permutation test are its theoretical soundness
and the clear interpretability of its results. Its main drawback is the associated
computational time. By grouping several calculations, the permutation test may
be done by performingM matrix multiplications. Its full computational cost is
O(pMN2), which is the same order of magnitude than theO(pN3) cost for solving
each kernel-ridge regression.

3.2.4 Voting procedure

The introduction of a permutation test provides a way to calculate p-values and
use it to estimate the target matrix. LetLim be the indexes of subsamples allowing
to learn importance of genem for genei, i.e. Lim = {ℓ,m ∈ Gℓ, i < Gℓ}. Let Vmeth

be the matrix such as(Vmeth)im is the mean vote for a regulation of genei by gene
m for methodmeth:

(
VImpo

)
im
= 1

|Lim|

(∑
ℓ∈Lim

Impo(i,m, ℓ)
)

direct use ofImpo
(
VpVal

)
im
= 1

|Lim|

(∑
ℓ∈Lim
−pVal(i,m, ℓ)

)
use ofImpo’s p-value

(
VpVal<5%

)
im
= 1

|Lim|

(∑
ℓ∈Lim

(pVal(i,m, ℓ) < 5%)
)

subsample vote 1

iff pVal(i,m, ℓ) ≤ 5%(
VpVal≤1%

)
im
= 1

|Lim|

(∑
ℓ∈Lim

(pVal(i,m, ℓ) ≤ 1%)
)

subsample vote 1 iff

pVal(i,m, ℓ) ≤ 1%

The adjacency matrix is estimated by methodmethby inferring an edge from
variablem to variablej if (Vmeth)m j exceeds a thresholdθ ≥ 0

âm j = 1θ((Vmeth)m j) . (3.15)

3.3 Other measures for feature importance in a
model

I proposed one way to measure the importance of a feature in a model using the
model’s partial derivatives. Alternatively, other measures can be used and are
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compared to the partial derivatives estimate: (a) information loss resulting from
ignoring this feature, (b) the effect of this feature on the functional cost. Inspired
by related works, I propose othera posteriorimeasures of feature importance of
a (nonparametric) base model in the ensemble approach.

3.3.1 Feature relevance

Feature relevance has been defined in many ways (see [104] forvarious formula-
tions and their shortcomings). In particular, Kohavi and John [104] have defined
the notion ofstrong relevancein case of supervised classification. A featurej is
strongly relevantif removal of this feature alone will result in performance dete-
rioration of a Bayes optimal classifier. They give the formal definition:

Definition 7. (Strong relevance for supervised classification). A feature Zj is
strongly relevant if and only if there exist some zj , y andz− j such that

p(Y = y|Z j = zj ,Z− j = z− j) , p(Y = y|Z− j = z− j) (3.16)

In case of regression, a similar definition would involve theregression func-
tion: z→ E[Y|z], being optimal according to the mean squared error criterion.

Definition 8. (Strong relevance for regression). A feature Zj is strongly relevant
if and only if there exist some zj , y andz− j such that

E[Y|Z j = zj ,Z− j = z− j] , E[Y|Z− j = z− j] (3.17)

However, this optimal model is not available. Therefore, I suggest to evaluate
the relevance of a featurej by the change in the mean-square error of the kernel-
ridge regression based on all features, and based on all features butj. Let f̂ be the
regression function trained on all features, andf̂ − j the one trained on all features
but j. LetStrain be the set of data used for traininĝf and f̂ − j. LetStest be the test
data. I define a empirical relevance measure based either on training set or on test
set.

reltrain( j) =
1

|Strain|
∑

(z,y)∈Strain

[(
y− f̂ (z)

)2
−

(
y− f̂ − j(z− j)

)2
]
, (3.18)

reltest( j) =
1
|Stest|

∑

(z,y)∈Stest

[(
y− f̂ (z)

)2
−

(
y− f̂ − j(z− j)

)2
]
. (3.19)

(3.20)
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If feature j is relevant, there will be a loss of information;f̂ − j should be less
accurate than̂f , andreltrain( j) andreltest( j) will be positive. Note that, as we are
not using the regressionE[Y = y|z] optimal function,reltest( j) may be negative. If
feature j is irrelevant, its removal from training data will reduce noise, and allow
f̂ − j to be a better regression function thanf̂ .

3.3.2 Sensitivity analysis

Le Cun et al. [105] suggest that the sensitivity of a learning algorithm be measured
for each feature. In their work, a feature’s importance is the change in the func-
tional cost caused by the removal of the feature. Following Guyon et al. [106], I
measure the sensitivity as follows:

• Train a regression function̂f (z) =
∑

zi∈Strain
α̂ik(zi , z) with algorithmK . Cal-

culate the kernel-ridge functional cost

L(0) =
1

|Strain|
∑

(zi ,yi )∈Strain

yi −
∑

z j∈Strain

α̂ jk(zj , zi)



2

(3.21)

+λ
∑

(zi ,z j )∈S2
train

α̂ jα̂ik(zj , zi) (3.22)

• With the same coefficientsα̂, calculate the functional cost with kernelk− j,
the adaptation of kernelk to use all features but featurej

L( j) =
1

|Strain|
∑

(zi ,yi )∈Strain

yi −
∑

z j∈Strain

α̂ jk− j(zj , zi)



2

(3.23)

+λ
∑

(zi ,z j )∈S2
train

α̂ jα̂ik− j(zj , zi) (3.24)

• Define the sensitivity of algorithm to featurej by:

sens( j) = L(0)− L( j) (3.25)

The value ofsens( j) quantifies how featurej affects the functional cost using
all featuresL(0). Note that this measure follows [106], but one may also consider
its normalized variant (L(0)− L( j))/L(0).
These two importance measures will also be implemented withthe previously
described ensemble methods.
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3.4 Hyperparameter selection

Several parameters need to be fixed. The kernel function usedis the Gaussian
kernel

k(z, z′) = exp

(‖z− z′‖22
2σ2

)
(3.26)

since it is a very popular kernel, with good performance in practice and universal
consistency in theory. There remains four hyper-parameters to choose:

• For the subsampling parameters, cross-validation would bea biased proce-
dure. If a model was trained on more data, it would have lower test error.
Moreover, by using fewer variables, many models would not have any rele-
vant feature as explanatory variable, and would have a high test error. Our
experiments have shown that the subsampling parametersnvar andpdata have
little influence on the GRN inference performance, see Figure3.5. I chose
nvar = 5 andpdata = 80%.

• The regularization-data fitting tradeoff λ and kernel bandwidthσ are se-
lected through cross-validation. With subsampling, test error can be calcu-
lated by out-of-bag data, i.e. data not selected in the subsample. Performing
cross-validation forM values ofλ only costsM times the cost of perform-
ing the algorithm one time.σ can take the following values{0.1,0.5,1,2,5}.
With E0 the largest dataset,pdata|E0| is the average size of a subsample. Let
s= 1/

√
pdata|E0|. λ can take the following values{0.01s,0.1s, s,10s,100s}.

I consider thatB = 100×p
nvar

is enough subsamples, the vote matrix has converged.

3.5 Experiments on small-scale networks

3.5.1 Data: DREAM3 Challenge

The Dialogue for Reverse-Engineering Assessment and Methods (DREAM) chal-
lenge allows researchers’ team to compete on bioinformaticproblems. In the 3rd

edition [82, 107], the 4th challenge focused on gene regulatory network inference
from realistically simulated networks. The networks are modules from known net-
works ofE.ColiandYeast[108]. Data were generated with GeneNetWeaver [109].
With realistic simulations, one knows the real network behind the data, thus one
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can confidently compare the performances of network inference methods.
The challenge provides networks of size 10,50 and 100 genes. For each size,
there are 5 networks, 2 extracted fromE.Coli and 3 fromYeast. For each network,
there is a knock-out and a knock-down experiment for every gene, and, for size
10 networks (resp. 50,100), 4 (resp. 23, 46) time-series of 21 observation points.
Knock-down and knock-out experiments bring a lot of information by their meta-
information (which gene is perturbed). The challenge’s organizers showed that
best performances could be reached by only using the perturbed data and Z-score
(described in section 1.4.1, page 28). As our methods do not integrate this meta-
information, they under-perform with respect to methods using the complete in-
formation. Thus, I ignore the perturbed data and learn the network using only
time-series data. I compare our results to the best teams of the DREAM3 chal-
lenge also using only time-series data.

3.5.2 Performance evaluation

Given a GRN inference method, one obtains a score for each interaction and as-
sumes that there is a regulation from genei on gene j if Âj,m is superior to a
thresholdθ. NotingR the number of predicted regulations, this prediction is com-
pared with gold standard. By counting the number of true positives (T P), false
positives (FP = R− T P), false negatives (FN) and true negatives (T N), perfor-
mance can be calculated as precision, i.e. the percentage ofreal regulations in
the inferred regulations (pre = T P/(T P+ FP)), recall, i.e. percentage of all real
retrieved regulations (rec= T P/(T P+FN)), or false positive rate, i.e. percentage
of non-regulation predicted as regulation (FPR= FP/(FP+ T N)).
These statistics depend on the thresholdθ. To avoid the problem of poorly chosen
θ, one draws the ”Receiver Operating Characteristic” curve (ROC: (FPR, pre) =
f (θ)) and the precision-recall curve (PR: (pre, rec) = f (θ)). The better the
method, the higher the area under these curves. For example,with a perfect pre-
dictor, the area under theROCcurve will be 1. With a random predictor, it will be
0.5.

3.5.3 Performance without ensemble methods

These results are shown to complete this work, in Figure 3.6.Results are, as
expected, lower if no ensemble method is used. Performancesof each importance
measure on 50-genes networks are shown in Figure 3.6, using static or dynamic
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modeling. Overall, static modeling exhibits better performance for both AUROC
and AUPR. No importance measure has good performance.

3.5.4 Analysis ofp-value

The p-value is the probability of observing such an extreme valueunder an as-
sumption of independence between input variablex and outputy. Thus, some
false positive should occur. Considering that a regulation from genej to genei ex-
ists if thep-value ofImpo(i, j) is inferior or equal toθ; calculatingM importance
measures, we expectθM false regulations, noted EFP, expected false positives.
Noting P, for positive, the number of edges considered, the ratioP/EFP quan-
tifies how this importance measure produces extreme values compared to values
obtained with features independent from the output. If thisratio is below 1, it
means that this importance measure does not produce extremevalues. This does
not mean that the measure does not rank features well.
We see in Table 3.1 the values of the mean of theE/EFP ratio on all 5 networks,
and on how many networks this ratio was superior to 1 for the two thresholds
θ = 5% andθ = 1%. From this perspective, both sensitivity analysis and partial
derivatives’ integral do not produce extreme values. On thecontrary, relevance
on the training data seems to clearly separate independent and dependent cases.
Surprisingly, relevance on test data is not as extreme. Thisdifference may arise
from the difficult nature of the data. We have few noisy and incomplete data; for
example, data contains only RNAm concentrations, and no protein concentration
or exogenous stimuli. This may cause the poor generalization of our model, thus
the irrelevance of measuring mean-square error on test data.

The plot in Figure 3.2 shows the performance of the adjacencymatrix esti-
mateVmeth as a function of the number of subsamples, on the DREAM3 size 50
networks for two importance measures: relevance on training data and integral
of partial derivatives. The behavior is similar for all fourimportance measures.
For both importance measures, we observe thatV·,dir andV·,pVal converge faster
thanV·,pVal<5% andV·,pVal<1%. Also, with the two latter methods, we observe some
gaps, which occur sometimes after many subsamples. Thus, the direct andpVal
methods appears to perform better, as far as speed of convergence is concerned.
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Edge threshold pVal≤ 5% pVal≤ 1%
Method P/EFP #{(P/EFP) > 1} P/EFP #{(P/EFP) > 1}
Ĵac 0.53 1 2.27 3
reltest 1.41 5 5.71 5
reltrain 3.86 5 16.34 5
sens 0.24 0 1.02 2

Table 3.1: Using a thresholdp-value of Impo < θ%, one expects to obtain false
positives, preciselyθ% times number ofImpocalculated. NotingEFPthe number
of Expected False Positives, the table shows the mean ratio of number ofp-values
superior to threshold divided by the EFP and gives the numberof networks (out
of 5) for which this ratio exceeded 1.

3.5.5 Performances on DREAM3 50-gene and 100-gene Net-
works

On size 50 datasets, results are shown in Table 3.4 for AUROC and in Table 3.5
for AUPR. Note that, aside from relevance on training data, using the importance
measure directly or throughp-values makes very little difference. For relevance on
training data,p-values seem to enhance performance, but the change is very small.
Figure 3.3 compares each directly used importance measure .Partial derivatives’s
integral clearly stands out of other methods. On four networks, this method has
the highest AUROC; on three networks, it has the highest AUPR. Moreover,Ĵac
has a large difference with second best methods on some networks (+0.09,+0.12
AUROC on networks Ecoli1 and 2), and it is never far from the best performing
method (in the worst cases,̂Jac has−0.01 AUROC and−0.015 AUPR with re-
spect to the best performing method).
Those results are confirmed on 100-gene networks.Ĵachas the best AUROC on
four datasets, and best AUPR on all five. Note that these are difficult datasets. I
compared̂Jacwith other GRN inference methods: TIGRESS [45], GENIE3 [78],
a dynamic Bayesian method, called G1DBN [110], and the best DREAM3 team
using only the time-series data. Results are shown in Figure 3.4. Ĵac is the best
of the five methods in four datasets out of five both in AUROC andAUPR. This
shows that a naive implementation of estimation of partial derivatives is very com-
petitive with state-of-the-art methods.
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Figure 3.2: Evolution of AUROC and AUPR ofVmethas a function of the number
of subsamplesB, on DREAM3 size 50 EColi1 network
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Figure 3.3: Comparison of importance measures on DREAM3 size 50 and size
100 networks
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Figure 3.4: On DREAM3 size 100 networks, comparison of̂Jacagainst G1DBN,
TIGRESS, GENIE3 and best DREAM3 performer using only time-series data.
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Network # TF p N Ndyn

DREAM5 Network 1 (in-silico) 195 1643 805 463
DREAM5 Network 3 (E.Coli) 334 4511 805 463

DREAM5 Network 4 (S.cerevisiae) 333 5950 536 298

Table 3.2: Characteristics of datasets: # TF is the number of potential transcription
factors,p is the number of genes of the system,N is the number of data points,
Ndyn is the number of data from time-series, among theN data

3.6 Experiments on real and real-sized networks

Ĵac importance measure has been evaluated on four well-referenced benchmarks.
The scales and sizes of the datasets are summarized in Table 3.2.

3.6.1 Datasets

The datasets were found in the DREAM5 challenge [41]. The firstdataset is a real-
istic simulation of genes—see [108] and [109] for a completeexplanation—while
the last two are real data. For each dataset, gene expressiondata of heterogeneous
types is available: steady-state, time-series and perturbed data. We have a list
of potential regulators, called“Transcription Factors” (TF). The gold standard is
given by the DREAM organizers.
I compared̂Jacwith state-of-the-art methods. DREAM5 organizers providedthe
contestants’ inferred networks. I compared my results to those of the best contes-
tants.

3.6.2 Using other GRN Inference methods: A consensus ap-
proach

One talks ofwisdom of crowds[111] when a group, using the vote of each individ-
ual, makes better decisions than any individual alone. Thisphenomenon is well
illustrated in gene regulatory network inference. Using different methods, the
mean of all inferred networks is often closer to reality thaneach network taken
alone, as Marbach et al. have shown with the DREAM5 challenge [41].
To average each prediction, Marbach et al. sorted, for each method, which link
was considered most likely. They hadnJ inference methods. Methodi gives a
score for each interaction, score stored inBi ∈ Rp×p the score matrix of methodi.
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The higher the score, the more likely this interaction is, according to the method.
Marbach et al. [111] ranked each interaction in the matrixRi.

(Ri) j,m = r (3.27)

s.t. ∃( jb,mb)b=1...r−1 (Bi) jb,mb ≥ (Bi) j,m (3.28)

∃( jb,mb)b=r+1...p×p (Bi) jb,mb ≤ (Bi) j,m (3.29)

and then built the mean average over all network inference method,

R=
1
nJ

nJ∑

i=1

Ri . (3.30)

To obtain an adjacency matrix, one can threshold the matrixR to obtain only a
given percentage of most likely interactions.
One hopes that kernel-based models infer well gene regulatory network, but also
that this modelling method, as it is very different from others, will contribute well
to enhance the GRN inference when used in a consensus method. For real-sized
networks, I compared the performances of the consensus withand without the
network inferred by the importance measures obtained in theprevious subsection.

3.6.3 Performance

Results are shown in Table 3.3. WhilêJacdoes reach best performance for AU-
ROC for two networks out of three, it shows very poor performances for AUPR.
Ĵac obtains interesting performance on the difficult and interesting problem of
GRN inference, but does not seem competitive with state-of-the-art methods as an
individual method.
When observing the consensus, we observe a substantial increase in performance
by addingĴac to other methods. Besides,̂Jacaccounts for only 1 vote out of 30,
so the performance increase is noteworthy. Marbach et al. have shown that con-
sensus worked better if the methods gathered relied on different models, grasping
different types of information. It seems that̂Jac, by its Gaussian kernel and partial
derivatives approach, which are both novel, acquire an information that was not
captured before.

3.7 Conclusion

In this work, I proposed a reverse-engineering GRN method notby learning an
interpretable model, but by interpreting a Gaussian kernel-based model. From ex-
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Figure 3.5: Sensivity of̂Jac to parameterspdata andnvar on DREAM3 size 50
networks
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networks DREAM 5 N1 DREAM 5 N3 DREAM 5 N4
AUROC AUPR AUROC AUPR AUROC AUPR

Individual
Ĵac 71.89 8.64 63.19 3.47 52.57 2.21
GENIE3 81.5 29.1 61.7 9.3 51.8 2.1
TIGRESS 78.2 30.1 59.5 6.9 51.7 2.0
CLR 77.3 25.5 59.0 7.5 51.6 2.1

Consensus
Consensus 80.89 32.65 64.94 8.99 52.02 2.24
C+Ĵac 81.23 31.81 72.78 8.75 53.48 2.30

Table 3.3: Performance measured as AUROC and AUPR in % on DREAM5 Net-
works 1, 3 and 4. The results in bold font are the best ones. Thefirst row is the
consensus of other methods which are all the participating teams on DREAM5
and GENIE3, TIGRESS and CLR onEColi .
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Figure 3.6: Results of importance measures without subsampling, using either
static or dynamic modeling
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Network EColi1 EColi2 Yeast1 Yeast 2 Yeast 3

Importance measure: integral of partial derivatives
Ĵac 0.62 0.70 0.54 0.58 0.58
pVal 0.58 0.69 0.56 0.58 0.57
pVal≤5% 0.56 0.65 0.58 0.54 0.57
pVal≤1% 0.54 0.63 0.58 0.54 0.57

Importance measure: relevance on test data
reltest 0.49 0.55 0.51 0.49 0.54
pVal 0.48 0.5 0.52 0.42 0.51
pVal≤5% 0.47 0.5 0.51 0.43 0.52
pVal≤1% 0.47 0.5 0.51 0.43 0.51

Importance measure: relevance on train data
reltrain 0.46 0.58 0.55 0.54 0.55
pVal 0.51 0.62 0.56 0.56 0.56
pVal≤5% 0.55 0.63 0.53 0.55 0.56
pVal≤1% 0.55 0.63 0.52 0.55 0.56

Importance measure: sensivity analysis
pVal 0.53 0.53 0.55 0.50 0.53
pVal≤5% 0.51 0.49 0.50 0.50 0.51
pVal≤1% 0.51 0.48 0.50 0.51 0.51
sens 0.55 0.55 0.53 0.51 0.53

Table 3.4: AUROC results on the DREAM3 size 50 networks of presented net-
work inference methods using a Gaussian kernel
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Network EColi1 EColi2 Yeast1 Yeast 2 Yeast 3

Importance measure: integral of partial derivatives
Ĵac 0.047 0.094 0.078 0.108 0.132
pVal 0.044 0.106 0.078 0.107 0.14
pVal≤5% 0.042 0.105 0.08 0.107 0.136
pVal≤1% 0.04 0.103 0.081 0.1 0.136

Importance measure: relevance on test data
reltest 0.025 0.055 0.051 0.068 0.098
pVal 0.026 0.033 0.035 0.052 0.074
pVal≤5% 0.025 0.033 0.034 0.054 0.073
pVal≤1% 0.025 0.033 0.034 0.054 0.072

Importance measure: relevance on train data
reltrain 0.022 0.077 0.093 0.11 0.109
pVal 0.025 0.068 0.105 0.111 0.134
pVal≤5% 0.027 0.069 0.10 0.109 0.128
pVal≤1% 0.028 0.07 0.093 0.109 0.12

Importance measure: sensivity analysis
sens 0.029 0.043 0.039 0.067 0.077
pVal 0.027 0.039 0.050 0.065 0.078
pVal≤5% 0.027 0.035 0.035 0.070 0.074
pVal≤1% 0.027 0.034 0.035 0.070 0.074

Table 3.5: AUPR results on the DREAM3 size 50 networks of presented network
inference methods using a Gaussian kernel
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periments on realistic datasets, integrals of partial derivatives have shown promis-
ing results. This interpretation of a modelf̂ can be used with any model type
(preferably fitting the conditions of the proof).
The Ĵacimportance measure has shown that it could deal with real-size networks,
and provide good results. It seems that this approach captures some interactions
which were overlooked by previously established methods.
For future work, one can use thêJac measure with regression methods that are
more specific to gene modeling. One can add constraints on thefunctional cost
to incorporate prior information, or change the regressionmodel, for example
operator-valued kernels, that learn structured output. Particular mention should
be made of the work of N.Lim et al. [77] that shows very good performances on
dynamic data, using partial derivatives of an operator-valued kernel model.
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Kernel Feature Weighting for
Network Inference
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In the previous part, we saw a method to interpret a kernel-based model. In
the next part, I design an interpretable kernel model, a method that can model
nonlinear behavior and can estimate which genes are regulating the target gene as
directly as linear model. In addition, this method produce models whose gradient
is sparse, thus the kernel model may be better suited to interpretation through par-
tial derivatives than the one obtained with kernel-ridge regression. An additional
advantage of this method is its ability to incorporate priorknowledge. Such a
method is made possible by the versatility of kernels. GivenM different kernels
k1, . . . , kM, a positive linear combination of these kernels,k∗ =

∑
m wmkm, with

wm ≥ 0 for all m = 1 . . .M, is a kernel. In particular, defininglocal kernelor
component kernelas a kernel function that uses one feature of the input vector
km(x, z) = k(xm, zm), the weightswm measure the importance of genem for the tar-
get gene. Using kernelk∗ on the learning setS = (x1, . . . , xN), the model will have
the following form:

f (x) =
N∑

ℓ=1

αℓ


M∑

m=1

wmkm(x, xℓ)



=

M∑

m=1

wmgm(xm)

The vectorw will be learned from the training set, using multiple kernel
learning. In particular, this additive model can be seen as an extension of the
linear model to additive nonlinear dynamics.

The vectorw can be seen as feature weighting. In Chapter 4, I describe
several feature weighting or feature selection methods that can take into account
nonlinear dynamics. On realistic datasets, thelocal kernelapproach performs
better that other feature selection methods. In Chapter 5, I compare mylocal
kernel approach, called LocKNI (LOCal Kernels for Network Inference), to
state-of-the-art methods on real and realistic datasets. LocKNI gives state-of-
the-art results. Besides, when used with other methods in a “wisdom of crowds”
approach, LocKNI substantially enhances the performance of the consensus,
hinting thatlocal kernelsgrasp information that is not captured by other models.
Finally, I provide a simple approach to incorporate prior knowledge to the
multiple kernel learning approach, and use two reasonable biological sources
of prior knowledge that greatly enhance LocKNI’s performance on a realistic
dataset.
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Chapter 4

Local Kernels and feature selection

4.1 Introduction

In our era of data abundance, the scale of supervised learning problems has
changed. Whereas few domains used more than 40 variables in 1997, today, many
papers explore domains with hundreds to tens of thousands ofvariables. For ex-
ample, text categorization [112], image classification [113] or cancer prognostic
from genomic data [114, 115] deal with thousands of variables for a classification
task. Reducing the problem size has many benefits: from a computational point of
view, it reduces data storing requirements and computational time; from a human
point of view, it helps understand and visualize the problem; from a pragmatic
point of view, it helps defy the curse of dimensionality [6].
In this context, researchers have developed feature selection methods. Among all
the variables, many may be redundant or noisy features, see [116, 104] for a for-
mal definition of relevant features. In many cases, the best subset of features is
the one that minimizes the generalization error. Feature selection methods can be
decomposed in three categories [117]:

• Filtering methods. They constitute a preprocessing step, independent of the
choice of the learning algorithm. One evaluates the dependence between
the features and the value to predict through a pre-defined metric, such as
mutual information or correlation. Generally, one uses this metric to rank
features, and then select the most informative features. Filters are the fastest
feature selection methods. Two classical filtering examples are Fisher’s lin-
ear discriminant [118] and mutual information [119]
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• Embedded methods. These machine learning methods simultaneously select
relevant features and build the prediction function. While slower than filters,
these methods select the best features for a specific model. LASSO [38] and
decision trees, as viewed in CART [120], are examples of such methods

• Wrapper methods. These methods take into account the model of prediction
functions and are the most general, but also the slowest methods. They
consist in selecting a subset of featuresF, learning a prediction function
usingF, and then training a prediction function on other subset of features
F′ until a subsetF∗ is found that is optimal with respect to a criterion, such
as accuracy of the prediction function. Sequential ForwardSelection [104]
is a wrapper method.

Feature weighting -where features is given a weight from 0 to1- can be seen
as an extension of feature selection -where feature are either useful (weight is
1) or ignored (weight is 0)-. The field of gene regulatory network (GRN) infer-
ence from gene expression data is keen of feature selection or feature weighting
methods. Using these methods, one can evaluate which genes are relevant for
the prediction of a target gene, and consequently assume that they regulate this
target gene. Filtering methods [26, 27] and linear [45, 39],Boolean [50, 48],
Bayesian [66] or tree-based [78] embedded feature selectionmethods have been
successfully used for GRN inference.
In this context, I propose a new feature weighting methods. Using the versatility
of kernels, I definelocal kernels, that rely on only one feature. I propose several
methods to optimizelocal kernel-based models. Moreover, I test various pop-
ular kernel feature selection or feature weigthing methodsalong with thelocal
kernelapproach on realistically simulated GRN. Firstly, I describe kernel feature
selection methods, and how to use them for GRN inference; Secondly, I describe
hyper-parameter selection methods. Finally, I show the experiments and experi-
mental results.

4.2 Feature weighting methods

In order to infer a GRN from gene expression data, given training dataS =
(x1, . . . , xN), N observations of the expression level of ap-gene system, one can
learn a static or dynamic model. If each gene is modeled independently, a fea-
ture weighting/selection algorithm may be used to weight the importance of other
genes for the prediction of a target gene. One can learn
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a static model xi = f i
stat(x

−i) + ǫ (4.1)

a dynamic model xi(t + τ) = f i
dyn,τ(x(t)) + ǫ (4.2)

Using a feature weighting (resp. selection) algorithm in learning f i
· , one ob-

tains the vector of weightswi ∈ Rp
+ (resp.wi ∈ {0,1}p) that evaluates the impor-

tance of each gene for the prediction of genei. The estimated adjacency matrix is
the juxtaposition of these feature weights:

Â =
(
w1, . . . ,wp

)T
(4.3)

4.2.1 Local Kernel Approach

In order to have a nonlinear interpretable model, I suggested to uselocal kernels
or component kernels, k1, . . . , kM, kernelkm relying only on featurem of input
variable. Then, a weighted combinationk∗ of those kernels is used as a kernel;
k∗ =

∑M
m=1 wmkm, with weightsw learned from the training set. This produces a

model of the form:

f̂ (x) =
N∑

ℓ=1

αℓ


M∑

m=1

wmkm(x, xℓ)

 , (4.4)

=

M∑

m=1

wmgm(xm) , (4.5)

with a sparse vectorw. This additive model has several advantages: firstly, it
is able to model nonlinear dynamics in order to reflect the true behavior of bi-
ological systems. Secondly, by controling the sparsity ofw, the sparsity of the
partial derivatives off̂ is controlled (∂ f̂ /∂xm = 0 if wm = 0). Thirdly, extraction
of regulators is as direct as in linear models, vectorw quantifying each feature’s
importance. This model can be seen as an extension of linear models.
The vectorw is learned from data, using Multiple kernel learning (MKL).MKL
was introduced in [121] for protein function prediction. MKL has improved state-
of-the-art classification performances in various domains, such as bioinformat-
ics [121, 122], image classification [123, 113], or sound localization [124]. For
a review of MKL algorithm, I recommend [125]. In this chapter, I will use three
MKL algorithms: SimpleMKL [126],ℓ2 − MKL, developed in this thesis, and
SUpport vector Parsimonious ANOVA (SUPANOVA) [127].
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SimpleMKL In this algorithm, one obtains a linear combination of kernels
by minimizing a functional cost with anℓ1-constraint on the kernel weightsw:
wm ≥ 0 for all m and

∑
m wm = 1. These constraints produce sparse weightsw,

thus giving interpretable feature selection.
To define the functional cost, we notice that each kernelkm has a reproducing ker-
nel Hilbert spaceHm. For any functionf ∈ Hm, one has< f , km(x, .) >Hm= f (x).
In particular, for any function of the following typef (x) =

∑
i αikm(xi , x), one has

‖ f ‖2Hm
=

∑
i, j αi , α jkm(xi , x j) = αTKmα. A.Rakotomamonjy [126] considers the

following optimization cost:

L( f1, . . . , fM,w) =
∑

i

l(yi ,

M∑

m=1

fm(xi)) + λ
M∑

m=1

1
wm
‖ fm‖2Hm

(4.6)

s.t. wm ≥ 0∀m,
∑

m

wm = 1 (4.7)

If l(., .) is the hinge loss or theǫ-insensitive loss, Rakotomamonjy et al. prove
that solution f̂m has the formf̂m(x) =

∑
i αiwmkm(xi , x). With convention0

0 = 0,
the functional cost is define for allw ∈ [0,1]M.
Rakotomamonjy et al. proves that the functional cost (4.6) isconvex, so it has a
unique minimum, which is global. They reformulate the functional cost:

min
w

[J(w)] = min
w

[
min

f1,..., fM
L( f1, . . . , fM,w)

]
(4.8)

s.t wm ≥ 0∀m,
∑

m

wm = 1 (4.9)

Existence and computation of derivatives ofJ(.) are done in [126]. They ob-
tain the minimizer ofJ(.) by a reduced gradient method, which converges for such
function [128]. Once∇J is calculated, they use a descent direction∇redJ assuring
thatw+s∇redJ still satisfies the constraints (4.9). They perform line-search to find
the optimal descent-step.
These reduced gradient-descent will giveŵ, the minimizer ofJ().

ℓ2 − MKL I use the MKL framework of SimpleMKL, but I change the loss
function for the square error loss functionl(yi ,

∑
m f (xi) = (yi −

∑
m fm(xi))2. I

constrain fm to have the formfm(.) =
∑

i αiwmk(xi , .). I minimize the following
functional cost:
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L( f1, . . . , fM,w) =
∑

i

(yi −
M∑

m=1

fm(xi))
2 + λ

M∑

m=1

1
wm
‖ fm‖2Hm

(4.10)

s.t. fm(x) =
∑

i

αiwmkm(xi , x), ∀m (4.11)

wm ≥ 0∀m,
∑

m

wm = 1 (4.12)

I alternatively optimize (a) overα with w fixed and (b) overw with α fixed.
For the (a) step, I have a closed-form solution:

α =


∑

m

Km+ λId


−1

y (4.13)

For (b), I do a reduced-gradient descent. The functional cost L( f1, . . . , fM,w)
decreases at each iteration and is lowerly bounded by 0, thusit converges to a
local minimum.

SUPANOVA In this article [127], sparsity ofw is not assured by anℓ1-
constraint, but by anℓ1-regularization term. S.Gunn et al. minimize the following
functional cost:

L(α,w) =
∑

i

yi −
∑

j

α j


∑

m

wmkm(x j , xi)




2

(4.14)

+λ1α
T


∑

m

wmKm

α + λ2‖w‖1 (4.15)

s.t. wm ≥ 0∀m (4.16)

They kept the positivity constraint onw, so
∑

m wmkm(., .) is still a semi-definite
positive function. Functional cost (4.14) is a quadratic problem inα and inw.
They alternatively solve it forα with w fixed and forw with α fixed. For optimal
α, they have closed-form formula:

α =


∑

m

wmKm+ λ1Id


−1

y (4.17)
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For w, they use an optimization algorithm for quadratic functions under con-
strains [129].
S.Gunn and J.S. Kandola [127] proves convergence to a globalminimum by this
argument : “In the quadratic case the second order partial derivatives with re-
spect toα andw are always positive ensuring that every slice is convex. This fact
combined with the knowledge that the solution is finite inα andw should ensure
convergence to the global minimum”.

4.2.2 Filtering methods

Many filtering methods are based on correlation and mutual information, see [130,
131] for comparative study of filtering methods. I will not experiment with cor-
relation or mutual information-based filters, as they have been used and improved
a lot for GRN inference, see section 1.4.1, page 26. In the following, I will test
kernel target alignment, a feature selection method which tries to find optimal fea-
ture weights for the classification or regression task. Thismethod should take into
account multivariate dependencies. I also implement RReliefF, a filter capable to
identify nonlinear dependency, and that was not tested for GRN inference, to my
knowledge.

Kernel target alignment (KA)

This measure was first published in [132]. A classification orregression problem
would be easy to solve if the input variablexi were only the label to predictyi = xi

for all i from 1 to N. In this case, the perfect predictor would simply be the
identity f ∗(xi) = f ∗(yi) = yi. Using a linear kernel, one would have the perfect
Gram-matrixK∗linear = yyT whose entries are

(
K∗linear

)
i j
=< yi , yj >. Cristianini

et al. look for the best feature weighting to make the Gram-matrix Kw close to
the perfect Gram-matrix. With feature weightsw, the Gram-matrixKw take the
values(Kw)i j = k(w ◦ xi ,w ◦ x j), where◦ denotes the Hadamard product,w ◦
xi =

(
w1x1

i , . . . ,w
pxp

i

)
. Noting< ., . >F the Euclidian scalar product between two

matrices of sizeN × N:

< A, B >F=
N∑

i, j=1

Ai j Bi j , (4.18)

Cristianini defines the alignment between two matrices,K andK∗, as:
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A(K,K∗linear) =
< K,K∗linear >F

‖K‖F ‖K∗linear‖F
, (4.19)

which can be interpreted as the cosine between the two matrices. If the employed
Gram-matrix is aligned with the perfect Gram-matrix, the prediction function
should be easy to find. For the classification case, Cristianini, in [132], shows
that the generalization error is bounded by 1− A(K,K∗linear) and that is has the
concentration property1.
Kernel alignment has been used for regression, in [133], with centered output
y′i = yi − ȳ, with ȳ the mean ofy. In the regression case, kernel alignment still has
the concentration property.
In my experiments, I shall use a weighted Gaussian kernel:

Kw(x, z) = exp

−
p∑

i=1

wi(xi − zi)
2

 (4.20)

and optimizew in order to aligneKw with K∗linear. I also suggest to alignKw with
K∗Gauss, the Gaussian kernel that would be obtained with perfect input:

(
K∗Gauss

)
i j = exp

(
(yi − yj)2

2

)
(4.21)

I follow the optimization procedure in [134], calledScaled Alignment method.
Starting fromw0 = [1, . . . 1]T , I perform a gradient descent until I have found a
local minimum, see Algorithm 1.

RReliefF

This filter is employed to measure the quality of an attribrute for the task of pre-
diction. First developed for binary classification [135], ”Relief” randomly selects
an instancer of the training setS. It looks at the nearest instance of the same
class (nearest hit,h) and of the opposite class (nearest miss,m). It evaluates the
distance between two instancesa andb according to attributei with the function
dist:

1the probability of the empirical estimate deviating from its mean can be bounded as an expo-
nentially decaying function of that deviation
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Algorithm 1 Scaled Alignment Selection
Starting valuesw0 = (1, . . . ,1)T ,A0 = 0, n = 0
ChooseK∗ = K∗linear/Gaussian
while |An −An−1| ≥ ǫ do

Compute gradientgn+1 = ∇wnA(Kw,K∗)
Obtain descent-step by line searchηn+1 = arg maxη∈[0,1]A(Kwn+ηgn+1,K

∗)
wn+1 = wn + ηn+1gn+1

An+1 = A(Kwn+1,K
∗)

n← n+ 1
end while

dist(i,a,b) =

{
0 if ai = bi

1 otherwise
if attribute i is discrete, (4.22)

dist(i,a,b) = |ai−bI |
maxx∈S xi−minx∈S xi

if attribute i is continuous. (4.23)

A good attribute will have a large distance between the selected instancer and
its nearest miss, and a small distance with its nearest hit. To measure the quality
of each attribute in the vectorw, Kim et al. initializew at 0p, randomly selectn
instances in the training set and for each selected instancer with nearest hith and
nearest missm, incrementw according to:

wi ← wi +
1
n

(dist(i, r ,m) − dist(i, r ,h)) (4.24)

This algorithm is given in Algorithm 2. An improvement of ”Relief” by selecting
thek nearest hit and miss, called ”ReliefF” [136],is more robust to noise and can
be applied to multiclass problems. Furthermore, it can be interpreted probabilis-
tically. Notingyr the label of instancer , if all attributes are discrete, ”ReliefF” is
an approximation of the difference between probabilities:

wi = P(dist(i, r ,m)|yr , ym) − P(dist(i, r ,h)|yr = yh) (4.25)

Noting the probability of label differencePdi f f Y = P(yr , ym), the probability of
attribute distancePdi f fi = P(dist(i, r ,m)) and the probability of label difference
knowing attribute distancePdi f f Y|di f fi = P(yr , ym|dist(i, r ,m)), equation (4.25)
may be extended following Bayes’s rule according to:
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wi =
Pdi f f Y|di f fi Pdi f fi

Pdi f f Y
−

(
1− Pdi f f Y|di f fi

)
Pdi f fi

1− Pdi f f Y
(4.26)

Inspired by equation (4.26), ”ReliefF” has been extended to regression problems
under the name ”RReliefF” [137], . In a regression problem, thenotions of nearest
hit or miss do not exist. Given a selected instancer0 with labely0 and itsk nearest
neighborsr1, . . . , r k with labelsy1, . . . , yk, (a)Pdi f f Y evaluates how much the labels
vary (b) Pdi f fi how much each attribute varies and (c)Pdi f f Y|di f fi how much the
labels vary with a variation of the attribute. Robnik-Sikonja et al. [137] suggest to
weight the influence of thej th nearest neighbor with functionI :

I ( j) = I1( j)∑k
ℓ=0 I1(ℓ)

whereI1 is a method to weight the influence, (4.27)

I1( j) = 1 uniform weight, (4.28)

I1( j) = exp
(
−

(
j
σ

))
exponentially decreasing weight, (4.29)

Similarly to ”ReliefF”, they randomly selectn instances of the training set.
They setPdi f f Y = 0, and, for alli, Pdi f fi = 0 andPdi f f Y|di f fi = 0. Then, for each
selected instancer0, they identify thek nearest neighborsr1, . . . , r k and perform
the following updates:

Pdi f f Y ← Pdi f f Y +

k∑

j=1

I ( j)|yr0 − yr j | (4.30)

Pdi f fi ← Pdi f fi +
∑

j

I ( j)dist(i, r0, r j) (4.31)

Pdi f f Y|di f fi ← Pdi f f Y|di f fi +
∑

j

I ( j)|yr0 − yr j |dist(i, r0, r j) (4.32)

Once these computations have terminated, they evaluate theweights of each
attribute according to:

wi =
Pdi f f Y|di f fi

Pdi f f Y
−

Pdi f fi − Pdi f f Y|di f fi

n− Pdi f f Y
. (4.33)

This algorithm is described in Algorithm 3. For a study of theoretical and
empirical performances of ”RReliefF”, see [138].
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Algorithm 2 Relief algorithm
Given learning setS
Startingw = 0p

for ℓ = 1 ton do
Randomly select instancer ∈ S
Find nearest hith and nearest missm in S
for i = 1 to p do

wi = wi + dist(i, r ,m) − dist(i, r ,h)
end for

end for
Outputw

Algorithm 3 RReliefF algorithm
Given learning setS
StartingPdi f f Y = 0, Pdi f fi = 0, Pdi f f Y|di f fi = 0
for ℓ = 1 ton do

Randomly select instancer0 ∈ S
Findk nearest instancesr1, . . . , r k in S
Pdi f f Y = Pdi f f Y +

∑k
j=1 I ( j)|yr0 − yr j |

for i = 1 to p do
Pdi f fi = Pdi f fi +

∑
j I ( j)dist(i, r0, r j)

Pdi f f Y|di f fi = Pdi f f Y|di f fi +
∑

j I ( j)dist(i, r0, r j)|yr0 − yr j |
end for

end for
wi =

Pdi f f Y|di f fi

Pdi f f Y
− Pdi f fi−Pdi f f Y|di f fi

n−Pdi f f Y

Outputw
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4.2.3 Embedded methods

Recursive Feature Elimination

One feature selection method iteratively eliminates the least informative fea-
ture [104]. Starting fromF0, the set of all features, one creates nested subsets
of featuresF0 ⊃ F1 ⊃ · · · ⊃ Ffinal until Ffinal is an optimal subset of features. To
identify the least informative feature, one can learn, for each featurei, a predictor
ignoring this featurei, but this has a high computational cost. To avoid running
the learning algorithm many times, Le Cun et al. [105] suggesttheOptimal Brain
Damagealgorithm (OBD). A prediction functionfα̂, characterized by parameter
α̂, is learned by minimizing a cost functionJ(α̂). To learn the importance of each
featurei, Le Cun et al. calculate the change in objective functionJ for a change
in parameterαi = α̂i + hi:

J(α̂ + h) = J(α̂) +
∑

i

hi
∂J
∂αi
+

∑

i

h2
i

2
∂2J

∂α2
i

+
∑

j,i

hihj

2
∂2J
∂αi∂α j

+ O(‖h‖3), (4.34)

They suggest the following simplifications:

• the ”extremal” approximation: they assume ˆα is an optimum ofJ, therefore
∂J
∂αi
= 0

• the ”diagonal” approximation: they assume that a change inJ by deleting
several parameters is close to the sum of changes caused by individually
deleting parameters. Therefore, they neglect cross-terms∂2J

∂αi∂α j
if j , i

• The ”quadratic” approximation: the functional cost is nearly quadratic, so
they neglect the last term of the equation

Equation (4.34) thus reduces to:

J(α̂ + h) − J(α̂) ≈
∑

i

h2
i

2
∂2J

∂α2
i

. (4.35)

A changehi = −αi corresponds to removing featurei. They denote by:

Di J =
α̂2

i

2
∂2J

∂α2
i

(4.36)
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the importance of featurei.
Guyon et al. [106] apply this methodology to SVM with SVM-RFE,meaning
SVM Recursive Feature Elimination. In particular, for linear SVM, they obtain a
prediction functionfα(x) =< α, x > +b andDi J = α2

i . Starting from the set of all
featureF, they train a linear SVM. They eliminate thenF featuresi with smallest
parameterαi, nF being a number of features. They continue (a) learning a linear
SVM on the remaining features and (b) removing the least informative features
until they have found an optimal subset of features. The corresponding algorithm
is described in Algorithm 4. I present later in this section ways to determine the
optimal subset of features using several criteria.
For non-linear kernel methods, I.Guyon et al. computeKF, the Gram-matrix on
all features, and they have a prediction function of the form:

fα,F(x) =
n∑

i=1

αikF(xi , x) (4.37)

with kF the kernel function calculated with all features of setF. With α fixed, they
calculate the cost functionJ if featurei was removed, with kernelkF\{i}. If feature
i is not important, the functional costJ will have little change. The algorithm is
described in Algorithm 5.
In this chapter, I will use RFE with kernel-ridge regression using linear and Gaus-
sian kernel.

Algorithm 4 SVM-RFE for linear SVM
Input: training examplesX0 = [x1, . . . , xn] with labelsy = [y1, . . . , yn]
Initialize remaining featuresF = [1, . . . , p], feature ranked listR= []
while F , [] do

Remaining training featuresX = X0(F, :)
Train the classifierw = S VM train(X, y)
Find the least informative featuref = arg mini w2

i
R= [F( f ),R]
F = [F(1 : f − 1), F( f + 1 : end)]

end while
Output: feature ranked listR
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Algorithm 5 SVM-RFE for non-linear SVM
Input: training examplesX0 = [x1, . . . , xn] with labelsy = [y1, . . . , yn]
Initialize remaining featuresF = [1, . . . , p], feature ranked listR= []
while F , [] do

Compute the Gram matrixKF

Train the classifierw = S VM nonlinear train(KF , y)
Find least informative featuref = arg mini J(KF\{i},w)
R= [F( f ),R]
F = [F(1 : f − 1), F( f + 1 : end)]

end while
Output: feature ranked listR

KerNel Iterative Feature Extraction - KNIFE

This algorithm performs feature selection by weighting each feature in the ker-
nel. One chooses a kernel functionk. Two instancesx, z are compared with the
weighted kernelkw(x, z) = k(w ◦ x,w ◦ z), where (w ◦ x)i = wi xi. This feature
selection idea was described in [139, 140]. In the KNIFE algorithm [141], the
following cost is minimized:

min
α,w
L(α,w) = L(y,Kwα)︸     ︷︷     ︸

loss function

+ λ1α
TKwα︸     ︷︷     ︸

α regularization

+ λ2‖w‖1︸ ︷︷ ︸
w regularization

(4.38)

subject to 0≤ w j ≤ 1, for all j = 1 . . . p . (4.39)

The ℓ1-regularization produces sparsity in the feature-weightsw. The func-
tional is minimized by alternatively optimizingα with w fixed and optimizing
w with α fixed. Optimalα is found via standard SVM algorithms. To op-
timize w, Allen et al. [141] consider the linear approximation of theGram-
matrix around current feature-weight estimationw(t), K̃i j = k̃w(xi , x j) where
k̃w(x, x′) = kw(t)(x, x′)+ < ∇wkw(t)(x, x′),w − w(t) >. They minimize a convex
surrogate cost function:

min
w
L̃(α,w) = L(y, K̃w, α) + λ1α

T K̃wα + λ2‖w1‖1 (4.40)

s.t. 0≤ w j ≤ 1, for all j = 1 . . . p (4.41)

Allen proves that this algorithm converges to a local minimum for several loss
functions: the hinge loss (support vector machine), squared error loss (kernel-
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ridge regression) and binomial deviance loss (logistic regression).
I shall use this algorithm with the squared error loss and theGaussian kernel.
Note that, since the algorithm scales the inputs withw, the kernel bandwidthσ
is no longer an hyper-parameter. There remains only two hyper-parameters, the
regularization parametersλ1 andλ2.

Algorithm 6 KNIFE algorithm
Input: training examplesX = [x1, . . . , xn] with labelsy = [y1, . . . , yn]
Randomly initialize weights 0≤ w(0) < 1, sett = 0
while ‖w(t) − w(t−1)‖1 ≥ ǫ do

Compute, with a SVM algorithm,α(t) = arg minα L(y,Kw(t)) + λ1α
TKw(t)α

t = t + 1
Compute, by gradient descent,w(t) = arg minw L̃(α,w)
under constraints 0≤ w ≤ 1

end while
Output: weight of all featuresw

4.3 Hyper-parameter selection method

The described feature selection methods often require somehyper-parameters,
be it the Gaussian kernel bandwidthσ or a regularization parameterλ1, λ2, ǫ. I
present several methods to determine hyper-parameter values such that the trained
prediction function would generalize well. Then, I will notverify that the predic-
tion function generalize well, I check if the feature selection method selected the
genes that regulate a target gene.
Given a feature selection method withc hyper-parameters, I define a finite set of
valuesΛi that hyper-parameteri can take, notingµ ∈ (Λ1 × · · · × Λc) a value of
hyper-parameters for the feature selection method.

4.3.1 Cross-Validation (CV)

Given a valueµ for the hyper-parameters, the goal is not to measure the quality
of the prediction function on the training set but on new unlabeled data, usually
by means of the generalization error. Cross-validation is one of the most popular
methods to evaluate the generalization error [142]. To estimate the generalization
error, I performk-fold cross-validation. The training dataS is partitionned in
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k equal size sets, the subsamplesE1, . . . ,Ek. One subsampleEi is kepts as the
validation data to test. Denotinĝf−i to be the prediction function trained on the
k− 1 remaining subsamples, the mean square error (MS E) is evaluated according
to:

MS E=
1
|Ei |

∑

(x,y)∈Ei

(y− f̂−i)
2 . (4.42)

For each choiceµ of hyperparamaters, theMS E is obtained on each subsam-
ple, using a function trained with hyper-parameterµ on the other subsamples. The
value ofµ for which theMS E is the lowest is selected for the hyper-parameter.

4.3.2 Stability

Breiman [143] points out that, since cross-validation selects a hyper-parameter
value on the training data, theMS Emay be greatly underestimated by this proce-
dure when the dataset is not large enough. He suggests aimingfor a stable model
if we have few data - which is typically the case in gene regulation network infer-
ence. If a small variation in the training data leads to significant changes in the
prediction function, the model is unstable, hence it is not reliable.
To evaluate the stability of a method with hyperparameter value µ, I follow the
procedure in [144]. I createns = 50 subsamples of the training dataS:E1, . . . ,Ens.
Each subsample uses a fractionf = 80% of the training data. Denotingwi be
the feature weights of the model trained on subsampleEi. The stability of an
algorithm with hyper-parameterµ is evaluated a the mean alignment of feature
weights, whose definition is in equation (4.19):

stab=
2

ns(ns− 1)

ns∑

i=1

ns∑

j=i+1

A(wi ,w j) (4.43)

I select the value of the hyperparameterµ for which the feature selection
method has the highest stability.

4.3.3 Block-Stability

Politis et al. [145, 146] observe that this stability evaluation treats data from train-
ing set as if they were independent. When the data is a time-series, the data
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samples are not independent. To get around this limitation,they introduced a
block-stability procedure, that takes into account the dependence of data. After
having selected a block-sizeb and randomly chosen an integerr ∈ [1,n], I build
subsampleEi = (xr , xr+1, . . . , x(r+b)mod n) of the training setS = (x1, . . . , xn). Given
subsamplesE1, . . . ,Ens built with the block-stability procedure, stability is then
calculated as in the previous method.

4.3.4 Bayesian and Akaike Information Criterion

The fewer parameters a model has, the less likely it is to overfit the data. From this
observation, Schwarz [147] developed a criterion for selecting hyperparameters,
consisting of the likelihood function and a penalty term forthe number of parame-
ters in the model. Assuming that the model errors are independent and distributed
according to a centered normal distribution, and denoting:

σ̂2
E =

1
n− 1

N∑

i=1

(yi − f (xi))
2 (4.44)

the empirical variance of the model errors, he measures the likelihood of observ-
ing y1, . . . , yN given the modelf (x1, . . . , xN) by:

p(y| f ) =
N∏

i=1

1√
2πσ̂2

E

exp

(
(yi − f (xi))2

2σ̂2
E

)
(4.45)

He looks for a model that maximizes the probability of observationsy under
model f while minimizing the number of free parameters. In my case, the number
of free parameters is the number of features used in the model. Denotingk the
number of used features,,i.e. features for whichwi > 0, I aim to minimize the
Bayesian Information Criterion:

BIC = −2 log(p(y| f )) + k log(N) (4.46)

= N log(σ̂2
E) + k log(N) +Constant (4.47)

The Akaike Information Criterion [148] relies on the same idea of maximizing the
log likelihood of observed data while minimizing the numberof free parameters,
and is given by this formula:
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AIC = 2k− 2 log(p(y| f )) (4.48)

= 2k+ 2N log(σ̂E) +Constant (4.49)

4.4 Experiments

The experiments are carried out using the DREAM3 Challenge 4 data, described
in Chapter 3. Performance will be evaluated for AUROC and AUPR,defined in
Chapter 3.

4.4.1 Hyperparameter selection

The methods have been tested with hyper-parameters in the following sets:

• For SimpleMKL, regularization tradeoff C ∈ {0.01,0.1,1,10,100}, ǫ-
insensitive lossǫ ∈ {0.01,0.05,0.15} and kernel bandwidthσ ∈ {0.5,1,2}.

• For ℓ2 − MKL, regularization tradeoff λ ∈ {0.01,0.1,1,10,100} and kernel
bandwidthσ ∈ {0.5,1,2}.

• For SUPANOVA,α regularization tradeoff λ1 ∈ {0.01,0.1,1,10,100}, w
regularization tradeoff λ2 ∈ {0.01,0.1,1,10,100} and kernel bandwidthσ ∈
{0.5,1,2}.

• For KNIFE,α regularization tradeoff λ1 ∈ {0.01,0.1,1,10,100} andw reg-
ularization tradeoff λ2 ∈ {0.01,0.1,1,10,100}.

• For kernel target alignment and RReliefF, there is no hyper-parameter to set.

• For RFE, regularization tradeoff λ ∈ {0.01,0.1,1,10,100} and the number
of used features to model target genek ∈ [1, . . . , p]. For the number of used
features, stability is irrelevant, it will always use all the features. Thus the
selection of hyper-parameters must be performed through cross-validation,
BIC or AIC for RFE methods.

The performance of a feature selection method with a hyper-parameter selec-
tion criterion greatly varies with the network studied, seeFigure 4.1. For each
feature selection method and for each size 10 network, I compute the correlation
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Figure 4.1: For SimpleMKL, values of the points (MS E evaluated by cross-
validation, AUROC) for the different values of the hyper-parameterµ in the pre-
defined set. The AUROC appears to depend more on the dataset than the hyper-
parameters. Second, the shape of the distribution of the points varies greatly from
one network to another. Cross-validation does not seem to be agood hyper-
parameter selection method when SimpleMKL is used for the task of network
inference.

between the performance of the feature selection method andthe value of the
hyper-parameter criterion. The average of this correlation, across all networks, is
shown in Tables 4.1 and 4.2.MS E, BIC and AIC should be negatively correlated
with AUROCor AUPR; stability and block-stability should be positively corre-
lated.
First, we note that too few examples are available to be able to conclude that any
hyper-parameter selection criterion is good. We can conclude that most criteria
give poor results, no better than what would be obtained withan educated guess.
Second, the correlation is highly unstable. Forℓ2 − MKL and for AUROC, one
would rather use stability than cross-validation: stability has lower correlation
(0.44 against−0.54)2, but the standard deviation of this correlation is much lower
(0.16 against 0.34). Third, for RFE, the BIC criterion seems more relevant than
other methods, even though the results have a high variance.

2Note that stability should be positively correlated to performance, and MSE negatively corre-
lated. So a correlation of−0.54 for MSE is a better result than a correlation of 0.44 for stability.
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FS Method CV MSE Stability Block Stability BIC AIC
SimpleMKL 0.1±0.48 -0.35±0.15 -0.49±0.08 -0.06±0.14 -0.02±0.14
ℓ2 − MKL -0.54±0.34 0.44±0.16 0.43±0.1 0.47±0.36 0.45±0.37
SUPANOVA -0.23±0 -0.06±0.1 -0.02±0.07 0.22±0 -0.22±0
KNIFE 0.24±0.18 -0.04±0.5 -0.21±0.5 -0.01±0.42 -0.01±0.42
RFE linear 0.14±0.93 - - -0.4±0.35 -0.09±0.81
RFE Gaus 0.01±0.7 - - -0.27±0.51 0.25±0.53

Table 4.1: Correlation between various hyper-parameter selection criteria and the
AUROC for six feature selection methods for network inference. The values dis-
played are the mean± standard deviation over size 10 networks. The best hyper-
parameter selection criterion for a feature selection method is shown in bold. For
SimpleMKL and KNIFE, the criterion is either wrongly correlated with the feature
selection’s performance or the correlation is close to 0. Weconclude that none of
the considered hyper-parameter selection criteria works well in this context.

FS Method CV MSE Stability Block Stability BIC AIC
SimpleMKL 0±0.36 -0.3±0.22 -0.45±0.16 -0.05±0.18 -0.08±0.26
ℓ2 − MKL -0.03±0.41 -0.06±0.32 -0.03±0.27 -0.06±0.43 -0.07±0.43
SUPANOVA 0±0.04 0.05±0.17 0.06±0.12 -0.02±0.05 -0.01±0.03
KNIFE 0.19±0.21 -0.09±0.62 -0.25±0.58 -0.08±0.4 -0.08±0.4
RFE linear 0.27±0.97 - - -0.48±0.68 0.05±0.96
RFE Gaus -0.19±0.63 - - -0.28±0.55 0.19±0.57

Table 4.2: Correlation between various hyper-parameter selection criteria and the
AUPR for six feature selection methods. For every method butRFE, the criterion
is either wrongly correlated with the feature selection’s performance or the corre-
lation is close to 0. For RFE, the BIC criterion seems the most relevant, but is also
highly unstable.
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AUROC EColi1 EColi2 Yeast1 Yeast2 Yeast3 Avg time (sec)
SimpleMKL 0.66 0.36 0.56 0.54 0.51 2726.17
ℓ2 − MKL 0.65 0.41 0.49 0.57 0.63 200.78
SUPANOVA 0.5 0.5 0.5 0.5 0.65 104.83
KNIFE 0.61 0.57 0.65 0.45 0.33 3842.98
KA Gaus 0.58 0.54 0.43 0.62 0.53 0.45
KA Linear 0.36 0.44 0.47 0.48 0.34 0.54
RReliefF 0.5 0.53 0.54 0.49 0.54 0.86
RFE Linear 0.36 0.58 0.48 0.61 0.57 0.39
RFE Gaus 0.5 0.5 0.5 0.5 0.5 9.02
Team 236 0.62 0.65 0.65 0.44 0.49 -
Team 190 0.57 0.52 0.63 0.58 0.60 -

Table 4.3: Results in AUROC of nine eleven feature selection methods and two
DREAM competing methods on Size 10 networks. The best performing method
on a given network is highlighted in bold. The last column gives the average
computational time on one network for the whole testing process (i.e., computing
each hyper-parameter selection criterion and calculatingmodel for each selected
hyper-parameter)

4.4.2 Performance on size10networks

The performance is assessed by AUROC, AUPR and the computational time. For
SimpleMKL, SUPANOVA, KNIFE, hyper-parameters have been selected with
cross-validation, as no method stands out. Stability has been used forℓ2 − MKL;
BIC for RFE.
For AUROC, results are shown in Table 4.3. No method is competitive on all net-
works. Many methods underperform random guessing (AUROC= 0.50) on some
dataset. For AUPR, results are shown in Figure 4.2. The SUPANOVA and RFE
Gaussian methods stand out. We also see that these methods are competitive on
these few experiments.
Computational time is given in Table 4.3. Given a network, thetime given is the
sum of the time to calculate every hyper-parameter selection criterion, and com-
pute the prediction functionf for the selected hyper-parameters. Filter methods
(KA, RReliefF) are considerably faster, as expected, but the RFE methods are
competitive.ℓ2 − MKL and SUPANOVA are executed rather quickly, and can be
applied to size 50 networks. The computational time of SimpleMKL and KNIFE
is too large to be able to apply them to size 50 networks in thisstudy.
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Figure 4.2: Top: Comparison of the AUPR of described methods on the five
size 10 networks. Bottom: Comparison of the AUPR of RFE Gaussianand SU-
PANOVA to best competing teams in DREAM3 Challenge
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Figure 4.3: Comparison of kernel feature selection methods on DREAM 3 Size
50 Networks

4.4.3 Performance on size50networks

AUROC and AUPR on all networks are displayed in Figure 4.3. Also shown
in this figure are the two best kernel feature selection methods against the two
best competitors of the DREAM3 challenge. We see thatℓ2 − MKL is the best
performer in AUROC on all five 50-gene networks. In AUPR, the Gaussian kernel
alignment prevails. Performance is still poor, and computation time will be a
burden forℓ2−MKL on size 100 networks. As we shall see in Chapter 5, ensemble
methods will enable the use ofℓ2 − MKL for networks of size 100 or more.

4.5 Conclusion

Gene regulatory network inference from gene expression data is an active
research field, that will increasingly benefit from the abundance of data in
the coming years. Many approaches to GRNI have been explored,but kernel
feature selection methods has so far been neglected. In thiswork, I tested nine
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kernel feature selection methods, and five hyper-parameterselection methods
on realistic datasets. The results show the limitations of these methods. No
hyper-parameter selection method seems efficient, except BIC for RFE methods,
which would need further testing to be validated. Some methods are too
time-consuming to be directly applicable to real-size networks. This comparative
study also gave some positive indications for constructingmethods that would
give better results.ℓ2 − MKL and Gaussian kernel alignment appeared to extract
more information for inference of GRN. This motivated the enhancement of
the ℓ2 − MKL method, in particular its enhancement by ensemble methods.
Learning the network on many subsamples of data usually yields better result
than learning one network on all data [41]. In the following chapter, I will show
that an enhancedℓ2−MKL method yields state-of-the-art results on real networks.
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Chapter 5

LocKNI: Local Kernel for Network
Inference

5.1 Introduction

Local kernelswere motivated by several reasons. First, kernel methods deal with
several difficulties of gene modeling, since they are robust-to-noise, they provide
a nonlinear model, and the versatility of the loss function allows incorporation of
prior knowledge. We saw, in the previous chapter, thatℓ2 − MKL usinglocal ker-
nelsprovided some of the most interesting results in GRN inference among kernel
feature weighting or feature selection methods, therefore, this method will be im-
plemented with the ensemble method described in Chapter 3. Even on small scale
networks, ensemble methods will increase the performance of the GRNI method.
I shall call LocKNI the alliance ofℓ2 − MKL, local kernelsand the double ran-
domization scheme.
Original contributions can be made when usinglocal kernels in the regular
ℓ2 − MKL framework. A simple modification of the loss function introduces
prior knowledge in the regularization framework, thus improving LocKNI’s re-
sults. Besides, since they rely on a few features,local kernel-based models have
sparse gradients, thus have more interpretable partial derivatives. The drawback
of these local models is that they are no longer universal, hence they may be un-
able to approximate well the partial derivatives of a perfect model. In this chapter,
I first describeℓ2 − MKL and its modification to incorporate prior knowledge.
Second, as in Chapter 3, I use randomizedℓ2 − MKL models withlocal kernel
in an ensemble, exploiting a double scheme of randomizationboth on variables
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and on data. In the fourth section, I explain the chosen hyperparameter selection
method. In the fifth section, I compare, on real and real-sized networks, LocKNI
without prior knowledge with state-of-the-art methods. I also evaluate the par-
tial derivatives of LocKNI as a GRNI method. There will also bea discussion of
LocKNI’s strength and weaknesses: how does it behave compared to other GRNI
methods ? What types of error does LocKNI make ? In the fifth section, I propose
two reasonable priors that may be incorporated in LocKNI. I will test, on simu-
lated data, the improvement in LocKNI’s performance with incorporation of prior
knowledge.

5.2 ℓ2 − MKL and Prior Knowledge Incorporation

5.2.1 ℓ2 − MKL

We saw, in the previous chapters, that two types of training dataS = (x1, . . . , xp)
may be available, to learn either a static or a dynamic model:

xi = f i
stat(x

−i) + ǫ i static model, (5.1)

xi(t + τ) = f i
dyn,τ(x

−i(t)) + ǫ i(t) dynamic model. (5.2)

These models can be estimated with supervised learning tools on a training set.
With the general notationS = ((z1, y1), . . . , (zN, yN)), z being input variables,y
being an output variable to predict, a functiony = f (z) + ǫ is learned on the
training set. This notation will be used to describe the learning algorithm.
In the previous chapter, a multiple kernel approach was presented, usinglocal
kernels, i.e. kernels that use only one component of an input vector,km(z1, z2) =
k(zm

1 , z
m
2 ). We saw how a linear combination of these kernels,k∗ =

∑
m wmkm, could

be learned, by optimizing the weightw. The functionf and weightsw are found
by minimizing the following functional cost:

L(w, α) =
N∑

i=1

(yi −
M∑

m=1

fm(zi))
2 + λ

M∑

m=1

1
wm
‖ fm‖2Hm

(5.3)

s.t. (C) :
M∑

m=1

wm = 1, wm ≥ 0, ∀m ∈ {1, . . . ,M} (5.4)

fm(z) =
∑

i

αiwmkm(zi , z) . (5.5)
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This function can be optimized by alternately optimizingL(w, α f ixed) overw
whenα is fixed and optimizingL(w f ixed, α) overα whenw is fixed. Withw fixed,
the minimum is obtained in closed-form as:

α̂ = (K∗ + λIN)−1 y (5.6)

with K∗ =
∑

m

wmKm (5.7)

andIN is theN×N identity matrix. Withα fixed,w is optimized through reduced
gradient descent [128].

5.2.2 Prior knowledge incorporation

As kernel-based models result from the minimization of a unique global loss func-
tion, they benefit from the possibility of taking prior knowledge into account in
the definition of the loss function. In order to incorporate an assumption of the
existence of a regulator, I propose to relax the sparsity constraint imposed on the
weightwm by dividingλ by a coefficientλm. If prior knowledge hints that genem
should be a regulator genei, λm would be set larger than 1; if prior suggests that
mshould not be a regulator,λm < 1:

L(w, α) =
N∑

ℓ=1

(yℓ −
M∑

m=1

fm(zℓ))2 +

M∑

m=1

λ

λmwm
‖ fm‖2Hm

(5.8)

s.t.
M∑

m=1

wm = 1, wm ≥ 0, ∀m ∈ {1, . . . ,M} (5.9)

fm(z) =
∑

i

αiwmkm(zi , z) (5.10)

As in Section 5.2.1, this function can be optimized by alternately optimizing
L(w, α f ixed) overw with α fixed and optimizingL(w f ixed, α) overα with w fixed.
With w fixed, the minimum can be expressed in closed-form as:

α̂ =
(
K2
∗ + λK

prior
∗

)−1
(K∗y) (5.11)

with K∗ =
∑

m

wmKm (5.12)

and K̃prior
∗ =

∑

m

wm

λm
Km . (5.13)
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With α fixed,w is optimized through reduced gradient descent.

5.3 Ensemble method

We saw, in Chapter 3, an ensemble method to learn the GRN from several hetero-
geneous datasets. From available datasets (E0,E1, . . . ,ENe), I build B subsamples
Eℓ, l = 1 . . . B, with subbaggingand subsampling of variables, in a way similar
to extreme-randomization[101]. Subsamples are built according to the following
procedure:

1. Randomly choose from which datasetE· to extract data. The proba-
bility p(Eu) of choosing datasetEu is proportional to its size,p(Eu) =
|Eu|/(

∑Ne
ℓ=1 |Eℓ|). Let Eu be the selected dataset.

2. Each data vectorxi of Eu has probabilitypdata,u to be in subsampleEℓ. To
obtain subsamples of similar sizes,pdata,u is taken inversely proportional to
Eu’s size. Assuming, without loss of generality, thatE0 is the largest dataset,
I have fixedpdata,u = pdata

E0
Eu

, with pdata a fixed hyper-parameter.

3. Randomly selectnvar variables to be the potential regulators of the system.
The numbernvar is a hyper-parameter to fix. The set of selected variables is
calledGℓ.

To learn the importance of genes inGℓ for all the other genesi on subsample
Eℓ, the mean vote for a regulation of genei by genem is computed as the mean
weightwi

m of featurem when predicting genei with ℓ2 − MKL andlocal kernels.
Mean votes are stored in matrixB:

Bim =
1

nim


∑

ℓ,m∈Gℓ ,i<Gell

wi
m

 , (5.14)

with nim the number of subsamples where genem was a potential regulator and
genei was not. The estimated adjacency matrix can then by obtainedby thresh-
olding matrixB:

Âim = H(Bim − θ) (5.15)

whereH is the Heaviside step function.
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5.4 Experimental results

5.4.1 Hyperparameter choice

The chosen kernel function is the Gaussian kernel

k(z, z′) = exp

(
(z− z′)2

2σ2

)
, (5.16)

which has the advantage of being widely used, with good performances in practice
and universal consistency. Four hyperparameters remain tobe set:

• I select the kernel bandwidthσ = 1, as I have normalized the empirical
variance of the data to 1, and the Gram matrix achieves maximum entropy
whenσ matches the empirical standard deviation.

• Experiments have shown that the subsampling parameters,nvar and pdata,
have little influence on the capacity of LocKNI to recognize edges. Since
LocKNI is faster with smaller subsamples, I setnvar = 5 andpdata = 0.20.

• For the tradeoff λ between regularization and data fitting, I also use a heuris-
tic. With a sampleD of sizeND, it can be shown that kernel-ridge regression
is consistent ifλ = 1/

√
ND [96].

We can consider that convergence has been reached withL = 100×p
nvar

subsamples.
For each regression, computational complexity isO(|El |3) for each variable of each
subsample. There areL subsamples andp variables, computational complexity is
O(Lp(pdataN)3).

5.4.2 Datasets

The evaluation of LocKNI will be two-fold. First, it is evaluated without integra-
tion of prior knowledge. LocKNI will be compared to state-of-the-art methods
on four real and real-sized networks. The datasets are summarized in Table 5.1.
The Ĵacmeasure will be used on LocKNI’s model as a second approach toGRNI.
LocKNI’s strength and weaknesses will be studied on simulated data. LocKNI’s
error will be categorized. Then, LocKNI is evaluated with prior information on a
simulated dataset. The purpose of this assessment is to demonstrate the benefit of
incorporation of prior knowledge to the reverse-engineering approach.
For evaluation against state-of-the-art methods, the firstthree datasets come from
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Network # TF p N Ndyn

DREAM5 Network 1 (in-silico) 195 1643 805 463
DREAM5 Network 3 (E.Coli) 334 4511 805 463

DREAM5 Network 4 (S.cerevisiae) 333 5950 536 298
E.Coli 169 4297 466 186

Table 5.1: Characteristics of the datasets. # TF is the numberof potential regula-
tors, p is the number of target genes,N is the number of data in the training set,
Ndyn is the number, among theseN data, that are part of a time-series.

networks DREAM 5 N1 DREAM 5 N3 DREAM 5 N4 EColi
AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

LocKNI 78.7 25.54 65.6 7.68 51.43 1.98 65.11 8.56
Ĵac 71.89 8.64 63.19 3.47 52.57 2.21 63.5 5.75
Ĵac(LocKNI) 52.22 9.33 60.97 4.16 55.99 2.32 62.77 5.70
GENIE3 81.5 29.1 61.7 9.3 51.8 2.1 64.04 6.04
TIGRESS 78.2 30.1 59.5 6.9 51.7 2.0 64.54 3.98
CLR 77.3 25.5 59.0 7.5 51.6 2.1 63.26 6.59

Table 5.2: Performance of GRN inference methods measured by AUROC and
AUPR in percentages on DREAM5 Network 1, 3 and 4, and onEColi, for which
the data is fromM3D and the gold standard is from RegulonDB. The best results
are shown in bold font.

the DREAM5 challenge [41], as described in Chapter 3 and the fourth from the
Many Microbe Microarray Database (M3D) [149] (EColi version 4 build 6). For
EColi from M3D, the gold standard is the currently known network availablein
RegulonDB v8.1 [150].
For the DREAM5 datasets the network inferred by LocKNI is compared to the
best networks inferred in the challenge. For theEColi dataset fromM3D, LocKNI
is compared to three of the best methods in DREAM5, namely GENIE3 [78], CLR
[27] and TIGRESS [45], with their MATLAB implementation and their default
parameters.

Table 5.2 shows the performance of LocKNI compared to those of GENIE3,
TIGRESS and CLR, and other methods presented in this thesis—Ĵacfrom Chap-
ter 3 and Ĵac(LocKNI), the GRN inference through the partial derivativesof
LocKNI. On network N4 from the DREAM5 challenge all the methods perform
equally and just slightly better than a random guess in termsof AUROC. Such a
result suggests that this network inference problem is too difficult given the avail-
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able data.̂Jac(LocKNI) has better performance on this dataset, but 55.99 AUROC
is close to random guess. Overall,̂Jac(LocKNI) performs poorly. As LocKNI has
a performant feature selection, LocKNI’s model should givemore weight to the
partial derivative of relevant features than a Gaussian kernel-ridge regression. We
see that, in practice, this is not the case. It seems that muchinformation about
partial derivatives is lost by the additive model.
Results on the other networks are of greater interest. All methods perform signif-
icantly better than a random guess (e.g. an AUROC of 50%). On Network 3 and
E.coli, LocKNI achieves the best performance in terms of AUROC, evenoutpac-
ing GENIE3 in terms of AUPR forE.coli. On network 1, GENIE 3 leads over all
other methods for the AUROC, while TIGRESS performs the best according to
AUPR. Overall, LocKNI achieves state-of-the-art performance and improves it in
two cases. From these comparisons follows a new question: does the prediction
of LocKNI differ from the other methods? Can we benefit from that by including
LocKNI in a consensus method that will gather predictions ofthe whole set of
four methods?

5.4.3 Network inference by consensus of methods

As in Chapter 3, consensus of GRNI inference methods is used: one consen-
sus (C) consists of all competing methods, a second consensus(C+L) consists
of LocKNI and all competing methods, a third one (C+J) consists of̂Jac and
competing methods, and a fourth consensus (C+L+J) consists of all competing
methods, LocKNI and̂Jac together. On the DREAM5 datasets, the competing
methods are the 30 best contestants’ submissions; on theE.Coli dataset, the com-
peting methods are TIGRESS, GENIE3 and CLR. Results are shown in Table 5.3.
Interestingly, AUROC is always improved by including LocKNI in the ensemble.
However this improvement is small, approximately 1%, except for Network 3 of
the DREAM5 challenges. In this case LocKNI outperforms all the other methods
and also provides improvements when combined with the consensus models. This
improvement is obtained while being one vote out of thirty, which indicates that
LocKNI grasps different information than the other methods.
Note that consensus with LocKNI is usually better than consensus withĴac. This
is coherent as LocKNI is a better method on these datasets. Nevertheless, on
EColi, the network where LocKNI is the best in AUROC and AUPR, consen-
sus withĴacoutperforms the one with LocKNI. This shows that complementary
methods are necessary for the consensus approach. Besides, using all methods
(C+L+J) shows little improvement over adding LocKNI or̂Jac to the consensus.
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networks DREAM 5 N1 DREAM 5 N3 DREAM 5 N4 EColi
Method AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
Consensus
C 80.89 32.65 64.94 8.99 52.02 2.24 66.06 5.94
C+L 81.31 31.82 73.11 8.68 53.64 2.29 66.47 5.76
C+J 81.23 31.81 72.78 8.75 53.58 2.30 67.93 5.99
C+L+J 81.30 31.83 73.03 8.72 53.44 2.25 67.94 5.96
Best-of-Single 81.5 31.5 65.6 9.3 55.99 2.32 65.11 8.56
algorithms
Best algorithm G3 TIG L G3 Ĵac(L) Ĵac(L) L L

Table 5.3: AUROC and AUPR in %. Performance of Consensus Method first
with competing methods (C)—competing methods are GENIE3, TIGRESS and
CLR on EColi, all DREAM5 contestants on the DREAM5 dataset—, second,
also including LocKNI (C+L), third with competing methods and̂Jacon Gaus-
sian kernel-ridge regression (C+J), and, finally, consensus with competing meth-
ods, LocKNI andĴac (C+L+J). The best results are shown in bold font. In the
“best algorithm” row, “G3” stands for GENIE3, “TIG” for TIGRESS, “L” for
LocKNI and Ĵac(L) for the network inferred by the partial derivatives of the
LocKNI model.

It seems that, individually, LocKNI and̂Jacbring complementary results to other
methods, but little seems to be learned by using both LocKNI and Ĵac. The con-
tribution of LocKNI andĴac is similar, probably because kernels would capture
information that wasn’t identified before.
Following Marbach et al. [41], I perform PCA on the contestants’ predictions to
see which methods were close to each other (see Figure 5.1). LocKNI stands out
as yielding different results from other approaches. The improvements in AUROC
are obtained nearly without degrading AUPR.

5.4.4 Error analysis on Network N1

As LocKNI differs from the other network inference methods, the different types
of errors are studied here, following the categorization introduced in [45]:

• a reverse edgemeans that a regulation fromi to j is inferred instead of the
regulationj → i,

• siblings: LocKNI infers a link fromi to j because those genes are related
through a third genez. Genei may be a“grand-father” of j (i → z→ j),
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Figure 5.1: PCA on the prediction vector of all methods. For all DREAM5 net-
works, one method’s prediction is the rank it gives to each interaction, from most
likely to least likely.

a “grand-son” ( j → z→ i), a “brother” (i ← z→ j) or i and j may be a
couple (i → z← j),

• great-siblings: genesi and j are connected through two other genes,

• others: all links i → j which do not belong to any of the previous categories.

LocKNI’s errors were inspected on the simulated dataset (DREAM5 Network 1),
where the class of each error can be determined. The ROC curveof all types of
targets is shown in Figure 5.2. For a category, such asreverse edges, I look at
precision and false positive rate of LocKNI’s prediction ifI consider thatreverse
edges, without true edges, were the links to find. If LocKNI regularly made one
type of mistake, then the area under the ROC curve for this category would be
high. Figure 5.2 shows that LocKNI’s errors are rather well balanced. It has a
small bias towards selectingsiblingsrather than other edges. LocKNI seems as
sensitive togreat-siblingsas it is toothers. Note that LocKNI appears to identify
directionality well, asreverse edgesare rarely selected.

5.4.5 Incorporation of prior knowledge

As shown in section 5.2.2, in addition to being able to retrieve networks from the
experimental data, LocKNI inherits from the regularization framework the ability
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Figure 5.2: Types of links inferred by LocKNI for DREAM5 network 1.

to incorporate prior knowledge. A simple way to include evidence about a regu-
lation j → i consists of setting the hyperparameterλ j in Eq. 5.8 according to the
available information.
In knock-out or knock-down experiments information about existence of connec-
tions between genes are close to being elucidated. One can infer that genej regu-
lates genei if genei is very perturbed in genej knock-out experiments. This can
be measured by Z-scores [37]. Letµi

wt be the mean of genei’s expression level in
wild type experiments,σi

wt be its standard deviation in these experiments andµi
j

be its mean concentration in genej’s perturbation experiments. Pinna et al. [37]
define the metric:

Wi j =
µi

j − µi
wt

σi
wt

, (5.17)

which has given very good results for network inference on realistically simulated
datasets [82]. For prediction of target genei, I normalize the sparsity constraint
by dividingλ by the weightλ j = |Wi j | if the experiment with genej knocked-out
is available,λ j = 1 otherwise.
I examine the algorithm behavior with prior knowledge on a limited size
DREAM3 network of 50 genes, where knock-out’s are systematically provided.
The data set consists of 21 time point measurements and of steady-state measure-
ments. In the first experiment, I measure average AUROC and AUPR obtained
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Figure 5.3: (a) Average AUROC versus the number of KO experiments, using
E. coli 1, in DREAM3 challenge. (b) AUROC versus the number of chosen KO
experiments, usingE. coli 1, in DREAM3 challenge.

DREAM3 N1 Size 50 1 module (no prior) 2 modules 4 modules
AUROC 52.8 70.2 79.5
AUPR 2.91 3.96 7.1

Table 5.4: AUROC and AUPR when prior knowledge about module existence is
given (DREAM3 network E. Coli size 50).

by LocKNI trained on available time courses and enhanced by 12, 25, 37 and 50
uniformly drawn single KOs out of the 50 total knock-outs. Incorporation of prior
knowledge significantly improves the performance. Howeverthis experiment is
very different from what a biologist would do. A biologist, expert in the studied
biological system, would choose carefully the KO experiments to run by giving
preference to hubs. Figure 5.3 shows the results for an increasing number of KO
experiments chosen according the number of known targets oftranscription fac-
tors of the system. Contrary to the previous experiment, which provides average
results, this study shows how a biologist can improve drastically performance of
a network inference algorithm by producing a very few well chosen KOs. Only 5
well chosen single KO experiments are needed to make AUROC reach 78%.

Another aspect of networks is their decomposition into modules, where mod-
ules correspond to groups of genes strongly connected in theregulation graph.
Such an assumption is reasonably realistic and may be obtained in some cases
from gene ontology devoted to biological processes. In order to integrate this hy-
pothesis, the sparsity constraint may be modulated by differentiating two kinds
of regulation weights in the models: the weights that concern intra-module edges
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Figure 5.4: NetworkE.Coli1size 50 from DREAM3

and those that concern inter-module edges. For each subtaskPi trained on a given
subset and a target genei, the sparsity constraint is relaxed by dividing the hyper-
parameterλ by a parameterλ j: edges within a module are encouraged and for
them,λ j is chosen above 1 (for instance, 2 in the numerical results) to reduce the
effect of the sparsity constraint; edges between two modules are not encouraged
and sparsity is imposed with a larger strength by settingλ j = 1. The network
of DREAM3 Size 50E.Coli1and its decomposition in four modules is shown in
Figure 5.4. To decompose this network in two modules, I consider modules 1 and
2 to be one module, modules 3 and 4 to be the other module. Table5.4 shows
the drastic improvement provided when prior knowledge about module decom-
position become more precise: when using the assumption that the network can
be decomposed into four modules, AUROC reaches 79.5% ad the AUPR doubles
when a rough knowledge about modules (two modules) is replaced by a more
accurate one (four modules).

5.5 Conclusion

I have proposed a new model-driven network inference method, LocKNI, that
learns sparse nonlinear models and then extracts an estimate of the target regula-
tion graph matrix from estimated models. Interestingly, this kernel-based method
shares some features with linear approaches, such as the regularization frame-
work, and some features with ensemble-based methods such asrandomization
on both variables and individuals. Compared to tree-based algorithms based on
the greedy and incremental minimization of a local loss, kernel-based models are
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derived from the minimization of a global loss function under constraints, whose
choice offers some versatility. I show that the sparsity constraint can be modulated
according to the prior knowledge about existing edges. Fromprobabilistic and
Bayesian points of view, this is similar to choosing different variances in Laplace
priors of the model. In practice, evidence given by knock-out data can be used to
relax the sparsity constraint on potential edges. Another kind of prior knowledge,
about the decomposition of the target network into modules,can be easily incor-
porated by imposing a lower degree of sparsity within a module and encouraging
sparsity between modules. Another feature of LocKNI is the versatility it inher-
its from the property that kernels can be built using a convexcombination of base
kernels. Using 1D projection kernels, as presented in Chapter 4, provides a way to
select regulators. This can be further extended to joint regulations by considering
2D projection kernels, that involve pairs of regulators.
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In this thesis, I studied the gene regulatory network inference problem, from a
bioinformatic point of view. I attempted to develop machinelearning tools to
extract information about the gene regulatory network (GRN), from gene expres-
sion data. This work started by noticing that many methods had been tried for this
problem, but kernel methods had received little attention,although they have both
relevant theoretical advantages—they are nonparametric,robustness-to-noise;
they can estimate any function— and practical advantages—they have low
computational costs and give good results in practice on many applications—. I
have made two contributions: from a theoretical point of view, I have shown that
the mean of partial derivatives is estimated consistently by some Gaussian kernel
methods; from a practical point of view, I introduced and developed LocKNI, an
interpretable kernel method.

On real and realistically simulated datasets, I have obtained interesting re-
sults with Ĵac, a new partial derivative estimation method, and state-of-the-art
results with LocKNI. Currently, no method prevails in GRN inference, a noto-
riously difficult problem. The best way to infer a GRN is to average networks
inferred by several methods. In my opinion, in this “largep, smallN” framework
with noisy data, combining various methods will remain the best methodology.
Even if one had the perfect model, it would not be well learnedon such a hard
dataset. By using various models, each one makes error in its own way. Gathering
base learners that make independent mistakes would give a predictor that makes
fewer errors. This thesis was initiated by the idea that kernels grasped an infor-
mation that could not be seen by other methods—for example, linear methods
cannot understand nonlinear behavior; tree-based models provide piece-wise
constant functions, and not the smooth functions that may bebuilt using kernels.
Ĵac and LocKNI substantially enhanced the network inferred by the consensus
of other methods. Besides, even if LocKNI appears more accurate thatĴac, their
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contribution to the consensus are very similar, hinting that the main informa-
tion gain was not obtained by the way kernels were used, but bythe use of kernels.

The methods introduced in this thesis may be applied to otherproblems.
For example, these methods could be useful inbiomarker discovery for breast
cancer prognosis. Breast cancer prognosis is an important challenge, as better
prognosis can save lives. Studies have shown that gene expression is relevant to
detect subclasses of breast cancer. Scientists have searched for asignature, i.e. a
list of genes that contain prognostic power for breast cancer. Using expression
data from healthy and ill patients, LocKNI could identify a signature, and be
added to other classification methods used on breast cancer prognosis. Another
example is thedifferentially networkingproblem. One wants to identify subparts
of the regulatory network that change between healthy and disease-affected
tissues. One could infer two networks using LocKNI, one on healthy tissues,
another on disease-affected ones. The two networks could be compared.

Several improvements may be introduced. For̂Jac, I used a very general
regression method: kernel-ridge regression. One may use a regression better
suited to gene modeling. As long as this regression asymptotically finds the true
model f and its partial derivatives are bounded asymptotically, the method will
consistently estimate any continuous linear form of the partial derivatives of
f . For example, N.Lim [77] uses partial derivatives of operator-valued kernels.
His regression model learns a structured output, better adapted to gene dynamic
modeling.

LocKNI can be improved by adding prior information, as shownin Chap-
ter 5, using Z-score to weight potential regulators of a target gene. Knowing that
perturbational data are more informative than others, one may change LocKNI to
use Z-score weighting if available, or to give additional weight to perturbational
data. Because LocKNI has a functional cost and a simple optimization scheme
(solving a quadratic problem onα and doing a gradient descent onw), it can
easily be modified to take into account extra information.

Besides, this manuscript also contains several failed attempts, such as us-
ing p-values to estimate the adjacency matrix, or trying unsuccessfully many
hyper-parameters selection methods. These results shouldnot be overlooked, as
they may provide information to further work on GRNI. The hyper-parameter
selection problem is strategic. Many GRN inference methods choose beforehand
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their hyper-parameters. Performances can be increased or degraded by choosing
the right or wrong hyper-parameters. Yet, the most common hyper-parameter
selection methods does not seem relevant for GRN inference. Maybe they need
adjustments. Maybe a new metric has to be created. Computational cost is not
a limiting issue when using ensemble methods and evaluationon out-of-bag
samples, the computational burden is “only” multiplied by the number of
hyper-parameters to try. This is affordable with several state-of-the-art GRN
inference methods, and may substantially upgrade the methods.

Finally, many mathematical models have been tried for GRN inference.
Many tools are available freely online (GENIE3, TIGRESS, CLR, ANOVA,
LocKNI, etc), in a ready-to-use format. An important improvement will come:
more data will be available, thus increasing the size of the learning sets and
methods will be able to achieve a better identification of their optimal model.
Maybe we will then reach the limits of the simplified view, modeling the
network only with genes, and scientists will have to incorporate all actors of gene
regulation (mRNA, protein, microRNA, etc). This seems far away. For the near
future, biologists have at hand powerful tools, and the significant improvements
should occur by gathering data and using theses tools.
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Appendix: chapter 1

Bias-variance tradeoff Considering that the loss function is the squared-loss
one, the expected true risk off̂ according to the distribution of the learning setS
is given by:

ES(R( f̂ )) = ES
[
EP

[(
y− f̂ (x)

)2
]]

(18)

= ES

[
EP

[(
ǫ + f (x) − f̂ (x)

)2
]]

(19)

= ES
[
EP

[
ǫ2

]]
+ ES

[
EP

[(
f (x) − f̂ (x)

)2
]]

(20)

+2ES
[
EP

[(
f (x) − f̂ (x)

)
ǫ
]]

(21)

As EP[ǫ] = 0 andǫ is independent fromx, EP
[(

f (x) − f̂ (x)
)
ǫ
]
= 0. Letσ2

be the variance of the noiseσ2 = EP[ǫ2]. f ∗ is the minimizer of the true risk, thus
ES[ f̂ (x)] = f ∗(x).

ES(R( f̂ )) = σ2 + ES

[
EP

[(
f (x) − f ∗(x) + f ∗(x) − f̂ (x)

)2
]]

(22)

= σ2 + ES,P
[
( f (x) − f ∗(x))2

]
+ ES,P

[(
f ∗(x) − f̂ (x)

)2
]

(23)

+2ES,P
[
( f (x) − f ∗(x))( f ∗(x) − f̂ (x))

]
(24)

One can invert the integration over S and P, so
ES [EP [.]] = EP [ES [.]] = ES,P [.]. f and f ∗ do not depend on the learning
setS, andES

[
f ∗(x) − f̂ (x)

]
= 0, so

ES,P
[
( f (x) − f ∗(x))( f ∗(x) − f̂ (x))

]
= EP


( f (x) − f ∗(x))ES

[
f ∗(x) − f̂ (x)

]
︸               ︷︷               ︸

=0


(25)

= 0 (26)

So

ES(R( f̂ )) = EP,S[ǫ
2] + EP

[
( f (x) − f ∗(x))2

]
+ ES,P

[(
f ∗(x) − f̂ (x)

)2
]

(27)

= σ2 + (biais)2 + (variance) (28)
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Theorem 1 Representer theorem.
Let X be a nonempty set and k a positive-definite real-valued kernel on X × X
with corresponding reproducing kernel Hilbert spaceH . Given a training sample
(x1, y1), . . . , (xN, yN) ∈ (X × R)N, a strictly monotonically increasing real-valued
functionΩ : [0,∞)→ R, and an arbitrary empirical risk function L: (R×R)N →
R ∪ {∞}, then for any f∗ ∈ H satisfying

f̂ = arg min
f∈H

L ((y1, f (x1)), . . . , (yN, f (xN))) + Ω(‖ f ‖) (29)

f̂ admits a representation of the form:

f̂ (.) =
N∑

i=1

αik(., xi) (30)

with αi ∈ R for all 1 ≤ i ≤ N

Proof. Given a kernel functionk, thus an RKHSH and a feature mapφ (not
unique). LetE be the linear span of the mappingsφ(xi) in the RKHSH , E =
span({(φ(xi))i=1...N}) ⊂ H . Let ET be its orthogonal complement,ET

⊕
E = H .

Let f ∈ H :

f = vE + vET Decomposition off in vE ∈ E andvET ∈ ET(31)

f =
∑N

i=1αiφ(xi) + v Definition of E (32)

f (x j) =
〈
vE + vET , φ(x j)

〉
H

BecauseH is the RKHS ofk (33)

f (x j) =
〈
vE, φ(x j)

〉
H

BecauseET is the orthogonal complement (34)

of E, andφ(x j) ∈ E (35)

f (x j) = vE(x j) ∀ j ∈ {1, . . . ,N} (36)

(37)

Thus a functionf ∈ H will have the same value on the training set than its
projection inE. Then comes equality of the loss functions

L((y1, f (x1)), . . . , (yN, f (xN))) = L((y1, vE(x1)), . . . , (yN, vE(xN))) (38)

But the projection onE of function f will have smaller norm, as is shown:
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‖ f ‖2H = < f , f >H (39)

= < vE + vET , vE + vET >H (40)

= ‖vE‖2H + ‖vET‖2H + 2 < vET , vE >H︸          ︷︷          ︸
=0 becauseE andET orthogonal

(41)

= ‖vE‖2H + ‖vET‖2H (42)

≥ ‖vE‖2H (43)

So function f has same risk function asvE. ‖ f ‖ ≥ ‖vE‖, andΩ is a strictly
increasing function, so the minimum of the risk function plus regularization term
is reached inE, so the functionf ∗ has the form:

f ∗ =
N∑

i=1

αiφ(xi) (44)

f ∗(x) =
N∑

i=1

αik(xi , x) (45)

(46)

�
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Theorem 2 Let f be a function in spaceC1(Xc,Y). Assume f has gradient
bounded by M,‖∇ f ‖2 < M. Then, for anyǫ > 0, there exists C1,ǫ such as:

‖ f ‖∞ ≤ C1,ǫ ‖ f ‖L2(Ω,µ) + ǫ (47)

and C1,ǫ is independant of f .

Proof. Consider the infinite set of open balls
(
B(x, ǫ2M )

)
x∈Xc

. Clearly this set cov-
ersXc. By the Borel-Lebesgue theorem, we can extract a finite set of those balls
(Bi)i=1...N that will coverXc.
As Xc is compact andf continuous onXc, ‖ f ‖∞ is reached in a pointx∗ ∈ Xc.
Let Bi∗ be a ball of the finite set that containsx∗. For all x in Bi∗ , we have
‖x − x∗‖2 ≤ ǫ/M because they both belong to a ball of radiusǫ/(2M).

| f (x) − f (x∗)| = < ∇ f (c), x − x∗ > for somec, by the mean value theorem (48)

≤ M ‖x − x∗‖2 Cauchy-Schwarz and bounded gradient (49)

≤ ǫ (50)

Thus we have:
∫

Bi∗∩Xc

| f (x)|µ(x)dx ≥
∫

Bi∗∩Xc

(‖ f ‖∞ − ǫ
)
µ(x)dx (51)

≥ (‖ f ‖∞ − ǫ
)
µ(Bi∗ ∩ Xc) (52)

Notingµ(Bi∗ ∩ Xc) =
∫

Bi∗∩Xc
µ(x)dx. Using a Cauchy-Schwarz theorem, we have:

∫

Bi∗∩Xc

| f (x)|µ(x)dx ≤
√∫

Bi∗∩Xc

f (x)2µ(x)dx

√∫

Bi∗∩Xc

1µ(x)dx (53)

≤ ‖ f ‖L2(Ω,µ)

√
µ(Bi∗ ∩ Xc) (54)

Using equation (52) and (54), we have:

(‖ f ‖∞ − ǫ
)
µ(Bi∗ ∩ Xc) ≤ ‖ f ‖L2(Ω,µ)

√
µ(Bi∗ ∩ Xc) (55)

‖ f ‖∞ ≤
‖ f ‖L2(Ω,µ)√
µ(Bi∗ ∩ Xc)

+ ǫ (56)

The serie (µ(Bi ∩ Xc))i is finite, so there is a minimumµ(B∗). As Xc is the
closure of an open set,µ(Bi ∩ Xc) is stricly greater than 0 for alli, soµ(B∗) is
strictly greater than 0. So
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‖ f ‖∞ ≤
‖ f ‖L2(Ω,µ)√
µ(B∗)

+ ǫ (57)

�

Theorem 3 Let f be aC1(Xc,Y) function, with gradient bounded by M. Let
g be a linear continuous form ofC0(Xc,Y), g : C0(Xc,Y) → R. Then, for any
ǫ > 0, there exists C2,g,ǫ such that:

|g(∇ f )| ≤ C2,g,ǫ ‖ f ‖∞ + ǫ (58)

Proof. We are going to prove this in one dimension, without loss of generality:
∣∣∣∣∣∣g

(
∂ f
∂x j

)∣∣∣∣∣∣ ≤ C2,g,ǫ ‖ f ‖∞ + ǫ (59)

As we are in a finite-dimensional space, this suffices to prove forg(∇ f ). By
Fréchet-Riezs’theorem, there existsh ∈ C0(Xc,Y) such that:

g

(
∂ f
∂x j

)
=

∫

Xc

h(x)
∂ f
∂x j

(x)dx (60)

By Heine’s theorem, asXc is compact,h is uniformly continuous onXc. Thus,
there existsδ such that, for all (x, x′) with ‖x − x′‖2 < δ, we have

|h(x) − h(x′)| ≤ ǫ

MV(Xc)
(61)

with V(Xc) =
∫
Xc

1dx. As we did in the proof of theorem (2), we can coverXc

with a set of balls (Bi)i=1...N of radiusδ. We notePi = Bi ∩ Xc.

∣∣∣∣∣∣g
(
∂ f
∂x j

)∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

∑

i

∫

Pi

∂ f
∂x j

(x)(h(x) − hi︸    ︷︷    ︸
≤ǫ/(MV(Xc))

+hi)dx

∣∣∣∣∣∣∣∣∣
(62)

with hi = h(bi), with bi the center of ballBi
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∣∣∣∣∣∣g
(
∂ f
∂x j

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∑

i

∫

Pi

∂ f
∂x j

(x)
ǫ

MV(Xc)
dx +

∫

P− j
i

∫

P j
i

∂ f
∂x j

(x)hidxjdx− j

∣∣∣∣∣∣∣
(63)

≤ ǫ +
∣∣∣∣∣∣∣
∑

i

hi

∫

Pp j
i

f (xmax j) − f (xmin j)dx− j

∣∣∣∣∣∣∣
(64)

With xmax j = arg maxu∈Pi {uj ,u− j = x− j} andxmin j = arg minu∈Pi {uj ,u− j = x− j}.

∣∣∣∣∣∣g
(
∂ f
∂x j

)∣∣∣∣∣∣ ≤ ǫ +
∑

i

2‖ f ‖∞
∣∣∣hiV(P− j

i )
∣∣∣ (65)

≤ ǫ + 2V(X− j
c ) ‖h‖∞ ‖ f ‖∞ (66)

�

Lemma 4 LetH be the RKHS of universal kernel k. If, for allx ∈ Ω

• The kernel is constant k(x, x) = c

• On point(x, x), the gradient of the kernel is null ,∇zk(x, z)|z=x = 0p

• On point (x, x), the Hessian matrix H(x, z)i j =
∂2k(x,z)
∂zi∂zj has eigenvalues

bounded by a constant M,| < u,H(x, x)u > | ≤ M‖u‖2 for all x ∈ X
and all u∈ Rp

Then, for all f ∈ H , for all x ∈ Xc:

‖∇ f (x)‖2 ≤
√

M‖ f ‖H (67)

Proof. Let f ∈ H . We have:

| f (x) − f (x′)| = | < f ,Kx − Kx′ >H | (68)

≤ ‖ f ‖H‖Kx − Kx′‖H (69)

Using the property of reproducing kernel and Cauchy-Schwarz’s theorem. Using
polarization identity, the kernel trick, Taylor expansionand lemma (4)’s assump-
tions, we have:
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‖Kx − Kx+h‖2H = ‖Kx‖2H + ‖Kx+h‖2H − 2 < Kx,Kx+h >H (70)

= k(x, x) + k(x + h, x + h) − 2k(x, x + h) (71)

= 2c− 2c− 2 < ∇xk(x, x),h > (72)

− < h,H(x, x)h > +o(‖h‖22) (73)

= − < h,H(x, x)h > +o(‖h‖22) (74)

From equations (69,74), we have:

| f (x) − f (x + h)| = | < ∇x f ,h >Ω +o(‖h‖2)| (75)

≤ ‖ f ‖H
(
‖h‖
√

M + o(‖h‖2)
)

(76)

Thus

‖∇ f ‖2 ≤
√

M‖ f ‖H (77)

�

Lemma 5 The Gaussian kernel of bandwidthσ satisfies the hypothese of lemma
(4).

Proof. This result is obtained by a few calculations with the Gaussian kernel:

k(x, z) = exp

(
−
‖x − z‖22

2σ2

)
(78)

k(x, x) = 1 (79)

∂k
∂zi

(x, z) =
−(zi − xi)
σ2

exp

(
−
‖x − z‖22

2σ2

)
(80)

= 0 if x = z (81)

∂2k
∂zi∂zj

(x, z) =
(zi − xi)(zj − x j)

σ4
exp

(
−
‖x − z‖22

2σ2

)
(82)

= 0 if x = z (83)

∂2k
∂(zi)2

(x, z) =

(
(zi − xi)2

σ4
− 1
σ2

)
exp

(
−
‖x − z‖22

2σ2

)
(84)

=
−1
σ2

if z = x (85)
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We have the Hessian matrixH(x, x) = −Id/σ2, which has eigenvalues
bounded by 1/σ2.

�

Theorem 6 With samples(xi , yi)i=1...ℓ i.i.d., for any ǫ, η > 0, any continuous
linear form g ofC0(Xc,Y), g : C0(Xc,Y) → R, there existsℓ0 such as ifℓ ≥ ℓ0,
then, with probability greater than1− η:

∣∣∣∣∣∣

∫

Xc

g(∇ f̂ℓ(x)) − g(∇ f (x))dx

∣∣∣∣∣∣ ≤ ǫ (86)

with f̂ℓ the estimator of f based on a Gaussian kernel ridge regression or Gaussian
partial least-square regression.

Proof. From [96], we have consistency of kernel-ridge regression.From [97], we
have consistency of partial least-square regression. In both articles, authors prove
that the difference between the estimator and the true function is bounded in both
the norms‖.‖H and‖.‖L2(Ω,µ).
Using lemma (4) and bound on‖ f̂l − f ‖H , we obtain that, forℓ sufficiently large,
we have, with probability greater than 1− η:

‖∇ f̂ℓ(x) − ∇ f (x)‖2 ≤ 1 for all x ∈ Xc (87)

Let g be the linear form. By Fŕechet-Riezs’theorem, there existsν ∈ C0(Xc,Y)
such that::

g : f 7→
∫

A
f (x)ν(x)dx (88)

Using theorem (3):

∣∣∣∣∣∣g
(
∂ f̂ℓ − f
∂xj

)∣∣∣∣∣∣ ≤ C2,g,ǫ

∥∥∥ f̂ℓ − f
∥∥∥∞ +

ǫ

3
(89)

Using theorem (2):

∥∥∥ f̂ℓ − f
∥∥∥∞ ≤ C1,ǫ

∥∥∥ f̂ℓ − f
∥∥∥L2(Ω,µ)

+
ǫ

3C2,g,ǫ
(90)
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Using consistency result, forℓ sufficiently large, we have, with probability
greater than 1− η:

∥∥∥ f̂ℓ − f
∥∥∥L2(Ω,µ)

≤ ǫ

C1,ǫC2,g,ǫ3
(91)

Combining the 3 equations (89,90,91), we obtain the result:

∣∣∣∣∣
∫

A
∇ f̂ℓ(x) − ∇ f (x)ν(x)dx

∣∣∣∣∣ ≤ ǫ (92)

�

Bounds for integral estimation Let f be aC1(Xc,Y) function whose partial
derivatives are bounded by M. Let(xi)i=1...ℓ be independently and identically dis-
tributed random variables, drawn from a distributionµ. The difference between
the empirical mean of a partial derivative

Sl =
1
ℓ

ℓ∑

i=1

∂ f
∂x j

(xi)

and its true mean

e= E

(
∂ f
∂x j

)
=

∫

Xc

∂ f
∂x j

(x)µ(x)dx

follows the normal distributionN(0, ℓ−1σ2), withσ ≤ M. Thus we have

P


1
ℓ

ℓ∑

i=1

∂ f
∂x j

(xi) −
∫

Xc

∂ f
∂x j
µ(x)dx ≤ m

 ≤ Φ
(
mM
√
ℓ

)
(93)

withΦ(m) the cumulative distribution ofN(0,1)

Proof. Firstly, I show that the variance of∂ f
∂x j is lower or equal toM2. Then I

verify that I meet the central limit theorem’s assumption, and apply it to find the
previously stated bounds.
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Var

(
∂ f
∂x j

)
= E


(
∂ f
∂x j
− e

)2 (94)

=

∫

∂ f

∂xj (x)≥e

(
∂ f
∂x j
− e

)2

µ(x)dx +
∫

∂ f

∂xj (x)<e

(
∂ f
∂x j
− e

)2

µ(x)dx (95)

≤
∫

∂ f

∂xj (x)≥e
(M − e)2 +

∫

∂ f

∂xj (x)<e
(−M − e)2 (96)

Let p = P
(
∂ f
∂x j (x) ≥ e

)
. In the worst-case scenario where the partial derivative

only takes the values{−M,M}, e= M(2p− 1).

Var

(
∂ f
∂x j

)
≤ p(M − M(2p− 1))2 + (1− p)(−M − M(2p− 1))2 (97)

≤ M2
(
p(2− 2p)2 + (1− p)(2p)2

)
(98)

≤ 4M2(p(1− p)) (99)

And p(1− p) ≤1/4, minimum reached inp =1/2. Thus:

Var

(
∂ f
∂x j

)
≤ M2 (100)

As xi are i.i.d., ∂ f (xi )
∂x j are i.i.d.. Mean and variance of∂ f (xi )

∂x j are defined and
finite, thus, I can apply the central limit theorem. NotingSℓ =

∑ℓ
i=1
∂ f (xi )
∂x j , andσ

the standard deviation of∂ f (xi )
∂x j , the theorem implies that:

Sℓ − ℓe
σ
√
ℓ
−→
ℓ→+∞

N(0,1) (101)

or

P
(Sℓ
ℓ
− e≤ m

)
= Φ

(
mσ
√
ℓ

)
(102)

�
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[110] S Lèbre. Inferring dynamic genetic networks with low order independen-
cies.Statistical applications in genetics and molecular biology, 8(1):1–38,
2009.

[111] J. Surowiecki. The wisdom of crowds: Why the many are smarter than the
few and how collective wisdom shapes business.Economies, Societies and
Nations, 2004.

[112] G. Forman. An extensive empirical study of feature selection metrics for
text classification.The Journal of machine learning research, 3:1289–1305,
2003.

[113] D. Tuia, G. Camps-Valls, G. Matasci, and M. Kanevski. Learning relevant
image features with multiple-kernel classification.Geoscience and Remote
Sensing, IEEE Transactions on, 48(10):3780–3791, 2010.

[114] C. Sotiriou, P. Wirapati, S. Loi, A. Harris, S. Fox, J. Smeds, H. Nordgren,
P. Farmer, V. Praz, B. Haibe-Kains, et al. Gene expression profiling in
breast cancer: understanding the molecular basis of histologic grade to im-
prove prognosis.Journal of the National Cancer Institute, 98(4):262–272,
2006.

[115] L. Ein-Dor, I. Kela, G. Getz, D. Givol, and E. Domany. Outcome signature
genes in breast cancer: is there a unique set?Bioinformatics, 21(2):171–
178, 2005.

[116] G.H. John, R. Kohavi, K. Pfleger, et al. Irrelevant features and the subset
selection problem. InICML, volume 94, pages 121–129, 1994.

Page 145



Bibliography

[117] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
The Journal of Machine Learning Research, 3:1157–1182, 2003.

[118] C.M. Bishop.Neural networks for pattern recognition. Oxford university
press, 1995.

[119] M. Zaffalon and M. Hutter. Robust feature selection by mutual informa-
tion distributions. InProceedings of the Eighteenth conference on Uncer-
tainty in artificial intelligence, pages 577–584. Morgan Kaufmann Publish-
ers Inc., 2002.

[120] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and
regression trees belmont.CA: Wadsworth International Group, 1984.

[121] G.R.G. Lanckriet, M. Deng, N. Cristianini, M.I. Jordan,W.S. Noble, et al.
Kernel-based data fusion and its application to protein function prediction
in yeast. InProceedings of the pacific symposium on biocomputing, vol-
ume 9, page 2. World Scientific Singapore, 2004.

[122] S. Sonnenburg, G. R̈atsch, and C. Schäfer. Learning interpretable svms for
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