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Introduction

“Mathematics is biology’s next microscope, only betteglbgy is mathematics’
next physics, only better” wrote Joel E. Cohen in 2004. Therosimope has
allowed many breakthroughs in biology. It has revealed anéoly invisible
world, the existence of microorganisms such as microbed, gave birth to
cellular biology. Similarly, mathematics can shine a neghtion biological
problems. Computational methods can test many candidatéadalrugs to
block a virus such as HIV. Furthermore, mathemati@&rotools to visualize
and understand data. Conceiving such tools is an importatflecige in today’s
biology, as the quantity of data is booming. Firstly, sasst collaboration and
internet databases have increased the amount of availabtde &econdly, the
price to acquire new data has dropped in many fields. For ebeanmp 1990
started the Human Genome Project, which successfully segdea human
genome after 13 years of work, mobilizing a hundred laborgoand costing
three billion dollars. Today, companies consider sequensomeone’s genome
for less than a thousand dollars, and within thirty hours. ledolar biology is
switching from an era of data scarcity to an era of data abwrelaOne hopes that
mathematics will reveal knowledge from large data, as theascope revealed
images of micro-organisms.

For mathematicians, biology raises many challenges. Thwardics of liv-
ing systems are caused by interactions of many actors, arugascales. In most
biological cases, mathematicians have very few data ccedpiar the problem
complexity, not to mention the noise surrounding those.ddtavever, challenges

in the empirical sciences have fostered discoveries in emaditics, in particular
physics. As Joseph Fourier said, &tiide approfondie de la nature est la source
la plus conde des&touvertes mafimatiques®. His study of heat propagation
lead to modeling by partial derivative equations, Fouriealgsis, Fourier series,

“Nature’s In-depth study is the most prolific source of matlaéic discoveries”
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etc. Similarly, the theory of distributions was inspireddhallenges in physics.

The synergy between mathematics, computer science andgpidias been
highly visible in the last decades. Biological problems hdwand useful
available tools in the two other fields. Yet, there is no ddhhbt collaboration can
go much further, and can increase our understanding of dgitdbmechanisms.
In particular, much bioinformatic research is devoted &niify gene regulatory
network (GRN). A GRN is a collection of DNA segments that inttiadirectly
with each other, interact with other substances in the aall ®espond to the
external environment. For example, in the presence of saggeast cell will
turn on genes to process the sugar to alcohol. Yeast's GRN eoahead this
process, which is necessary to yeast's living as it madeehstycell gain energy
to multiply - incidentally, this process is necessary to nfienwine-making.
With the multiplication of data -in particular gene expiliessdata-, scientists
hope to discover the GRN’s mechanisms. This knowledge wadcease our
understanding of the living system, and may help creatirg against specific
pathology. Considering a living system’s malfunction, oonald see which genes
are involved in that malfunction, then target some genesariunctional pathway
to make the living system healthy.

Bioinformaticians have tackled the GRN inference (GRNI) peoml with
the relevant mathematical tools. A common approach to GRNiamformatic is
reverse-engineering. Given gene expression data, bronafitcians build a model
that mimic the observed genes’ behavior. Then, the biomé&ticians know what
regulatory interactions happen in his model, and assunméthaame interactions
happen in the living system. Mathematical tools exist to elath observed
system. In particular, many tools are provided by machiaeniag, a field of
computer science and mathematics that sprang up with caitiqmel capacities
and its applicability to many fields (image recognition,tteategorization, spam
detection). Nevertheless, gene modeling is a very demgndsk: observed data
contain much noise, gene have a nonlinear behavior, soraesaiftthe GRN are
not observed, the scale of the data demands computatidaatlynethods, data
types are heterogeneous and, compared to the problem cotpplew data are
available.

Among the relevant tools, kernel functions provide meththdd are robust-to-
noise, able to model any nonlinear behavior and computatiofast. Besides,
kernel-based models are the result of minimizing a losstionc By adding
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constraints or modifying the loss function, one can incoap® prior knowledge
or external sources of information to reduce the problemisnlexity. Never-
theless, kernel methods have scarcely been used for GRNehtier The reason
was mainly their lack of interpretability. In this work, |gsent two contributions
to network inference using interpretable kernel methodbe #wo approaches
originate from the same idea: a model is interpretable if ithportance of
input features for the output prediction can be weightedthinfirst approach, |
assume that partial derivatives of a perfect gene modelldhetlect the GRN.
Indeed, if the concentration of a regulator gene changedhould dfect the
concentration of the regulated gene. | demonstrate thatapaerivatives of
kernel-based models can consistently estimate the meaarwdlpderivatives of
the ideal model. Thus | will interpret feature importanceikernel-based model
by its partial derivatives. In the second approach, | turmtdtiple kernel-based
models with multiplelocal kernels each kernel being devoted to one feature.
The idea is to find the optimal linear combination of théseal kernelsfor the
modeling of a target gene. The linear combination will weitfie importance of
eachlocal kerne] thus of each feature. To get more stability and to tacklé hig
dimension data in both approaches, ensemble of those madelbuilt using
a double scheme of randomization which provides a drastgrasement in
terms of performance. Besides, this randomization schelow &arning from
heterogeneous data types. These two ways to interpretlkaodels are then
used to infer GRNs. On real and realistically simulated dasathese methods
show state-of-the-art performances: on some well-rebm@ndatasets, they
perform better than current state-of-the-art methods.y Teeunder-perform on
some other datasets. However, combining a kernel GRN inderarethod with
other state-of-the-art GRN inference methods lead to sotiskamprovement
over state-of-the-art.

This thesis is organized as follows: in Chapter 1, | introducrmally
the GRN Inference problem, as well as the relevant ideas ofimadearning and
kernel methods, and describe current GRN inference methivdthe Chapter
2, | demonstrate that kernel methods consistently estiaratecontinuous linear
form of the partial derivatives. In Chapter 3, | give severaitiods to interpret
a kernel model, and observe that, on many realistically kited data, using
partial derivatives is the mosfteient method for network inference. Then, | use
this method on real and real-sized networks, showing comggary results to
other GRNI methods. In Chapter 4, | describe prevalent kegstlfe selection
methods, and develop two methods: one based on multipleskérarning,
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another based on kernel alignment. On realistically sitedlalata, these two
methods yield better results than other kernel featuresefemethods. In Chap-
ter 5, one of these two feature selection methods is usedadmaga, and show
state-of-the-art performances. | suggest a modificatiothisf method, to take
into account prior information and specificities of biolcgli data. Incorporation
of reasonable prior knowledge greatly enhances the pesfoces of this method.
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Chapter 1

Context

1.1 Introduction

In the twentieth century, many breakthroughs have profgutrdnsformed the
field of biology. Firstly, as early as 1930, new knowledge tgehnologies have
allowed scientists to analyze living systems and phenoroarsamolecular scale;
most notably, the discovery of DNA. Secondly, starting ie tineties, new tools
have been developed to measure gene or protein expreseas, lgiving scien-
tists another type of data to analyze and understand ceallvamg systems. The
cost of these tools has greatly decreased over the years, gdentific collab-
oration through data publication—in journals or in datasasgreatly increased.
As aresult, the amount of available data augmented, cgeaéw possibilities for
scientific research.

Along with experimental desigme. choosing which experiments to perform, the
study of large data is a considerable step toward new kn@glelathematics
and computer science provide powerful tools for the expionsof large datasets.
The inter-disciplinary field of bioinformatics has devedalpin this context. This
is the study of mathematical and computational tools forathalysis of biologi-
cal systems. Bioinformatics includes storing and visuagjzbiological data, and
assessing relationships between phenomena. In parficodany bioinformatics
methods have been developed for the problem of gene reguladwork infer-
ence (GRN inference, or GRNI). This thesis is devoted to dgwetpnew tools
for GRNI.

This chapter will explain the matter and current approacheshe first section,
I introduce informally the gene regulatory network infezerproblem. Secondly,
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Section 1.2: Gene Regulatory Networks - an introduction

| describe and discuss available data and the technologyotiupe these data.
Thirdly, I introduce a central tool in bioinformatics: maeé learning, and, in
particular, kernel methods. Fourthly, | present currenthodologies and discuss
their most dicient version. In the fifth section, | mention key papers carmy
GRNI methods, and give their conclusions.

1.2 Gene Regulatory Networks - an introduction

All of our cells contain the same genetic information, camtd in our DNA.
Nevertheless, skin cells arefidirent from liver or kidney cells. Theseffirences
come about becausefidirent genes are expressed at high levels fifewint tis-
sues. So, how are genes “expressed” ? The “central dogmaletutar biology”
asserts that “DNA make RNA make protein” [1], as illustratedrigure 1.1.

1.2.1 How are genes expressed ?

DNA consists of sequences of nucleobases A, T, G adndiese sequences hold
all necessary information for the development and funatigof a living system.
In particular, these sequences hold the system’s genesaddys, many defini-
tions exist for a gené. The following definition, from [2], is sticient for this
thesis: ‘a gene is a locatable region of genomic sequence, correspgala unit
of inheritance, which is associated with transcribed regjaegulatory regions,
and or other functional sequence regitnsith the following explanations:

e a transcribed regioris a sequence of A, T, G and C that will be “copied”
(transcribed) into messenger RNA. Most messenger RNAs ang‘tbad”
by ribosomes, which translates such a sequence into a sggjoéamino
acids, which forms the protein carrying out the functionewh the gene.

e aregulatory regions a segment of DNA capable of increasing or decreasing
gene expression. A particular regulatory region, sharealtopst all genes,
is known as the promoter, which provides a position thateegeized by
the transcription machinery when a gene is about to be trdnestand ex-
pressed. A gene can have more than one promoter, resultidigfénent
RNAs.

!Adenine, Thymine, Guanine and Cytosine
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Chapter 1. Context

Figure 1.1: Molecular biology’s central dogma

Only 1.5% of the human genome consists of protein-codingeobases.
Some of the noncoding DNA is transcribed in microRNAs, whiepgulate gene
expression, but the purpose of most of the noncoding DNAtisigknown.

1.2.2 How are genes dferentially expressed ?

Some of the proteins hold a gene regulatory function. Theyalled Transcrip-
tion Factors (sometimes called sequence-specific DNA-binding fagtofhiese
proteins bind to specific DNA sequences, controlling gerpgession, by promot-
ing (activator) or blocking (repressor) the gene’s traipgion into mMRNA. Thus,
expression of specialized genes can regulate other geaesnd) to a specialized
cell.

1.2.3 How is gene expression measured ?

New technologies allow us to learn many aspects of the gendmparticular,
gene expression can be evaluated through RNA sequencingh) givies a snap-
shot of RNA's presence and quantity in a given tissue at a divezn With mRNA
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Section 1.2: Gene Regulatory Networks - an introduction

concentration, one has a measure of gene expression - exgghtbther post tran-
scriptional gene regulation events exist, such as RNA iaterice.

The main tool for RNA concentration measure consists in DNArgarrays. To
measure an mMRNA concentration, one uses a probe, which is pleoentary
sequence of a part of this mMRNA. Each spot of a DNA microarrayainos mil-
lions of copies of a probe. After extraction from a cell, mRN#&ge spread over
the array, where they bind to their specific complementaguerce. The array
is then washed to remove unbound sequences. Then, the asegrined with a
laser. Each probe produces a fluorescent signal, whosesitytés linked to the
number of bound mRNAs.

This method faces several noise sources, and noise redumatigpds have been
developed. For example, probes can "cross-hybridize” ,bind with the wrong
target. To control cross-hybridization, some arrays peobps that should work
(Perfect Match, PM) with probes that should not (Mismatch MRM is perfectly
complementary to the sequence of interest, and MM is the sarRM for all but
one base. Further discussion of DNA microarrays gene esjoresneasure prob-
lematics can be found in [3].

The reader must be aware of three main sources of noise iney@nession data.
First, there is a noise inherent to observing a living systespecially on these
scales. Second, probes havéeatient binding #inities to their target mRNA.
Thus, it is dificult to tell whether “gene A beats gene B in experiment 1”7, @s o
posed to “there is more gene A in experiment 1 than in expeariie Microarrays
only produce relative measurements of gene expressiomdlyhihe number of
genes is well above the number of available experimentss iBhknown as the
“large p small Nl framework, wherep is the problem dimension (here, the num-
ber of genes) andll is the number of data samples (here, the number of available
experiments). This is a very challenging framework, witlcentainties on the
results.

1.2.4 GRN Inference

The gene regulatory network represents gene interactiohs transcription level,
I.e. which gene regulates which gene. Knowledge of a living sp&&RN has
many potential applications. It would enhance our undadstey of the system.
As a possible consequence, it could help the developmenire§cConsidering a
pathology resulting from a system’s malfunction, one caéd which genes are
involved in that malfunction, then target some genes in timetional pathway to
enhance or inhibit this function, and hopefully cure thenp&dgy. This explains
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Chapter 1. Context

why GRN inference has become a major challenge in biology.

GRN can be described by a graph whose nodes are genes and mandirected
edge from nodeto nodej means that generegulates geng This is a simplified
view, which does not take into account several key playech si3 microRNAS.
In fact, a regulatory interaction involves DNA, mRNAs and teins. All these
elements are merged into one element, the gene represensate Figure 1.2. Let
us callA the adjacency matrix of this grapla;; = 1 if j regulates, O otherwise.
Network inference usually refers to the estimation of thagtnmw A.

1.2.5 Available data

A p-gene system is observed through mRNA expression levelganigtstate and
time-series data. Steady-state data consist in the coatientof each of thep
genes in a particular cell. Notirgk the vector containing the concentrations
in experimenk, X is the concentration of thé" gene in thek™ experiment. The
different types of measures that may be available are: steatdyraeasures on
unperturbed individuals, called wild-type data; mRNA camtcation of perturbed
individuals, on which a gene’s mRNA concentration has beereased or dimin-
ished; knock-out experiments, in which a gene is knockedlwrice its expres-
sion is null. These data are called “perturbed” or “perttidreal data”.
Time-series, measures of genes’ mMRNA concentrations thronge, are also
available. The vectox(t, u) groups concentrations of all genes at timia ex-
perimentu. Usually, the individual has received an exogenous peatiob or
signal at timet = 0, such as a heat step, presence of a molecule like glucose, or
exposure to radiations. A finite number of observations &lalle; the system is
observed at times, . . ., t.

1.3 Machine Learning

Machine learning aims at extracting information or knowgedrom data. GRN
inference takes special interest in supervised learnibgach of machine learn-
ing identifying the link between input variablésand a response or output vari-
ableY. Supervised learning is useful in many domains (compusonj medical
imaging, bioinformatics, etc.), and has fostered the agreent of many perfor-
mant algorithms. In particular, Gaussian kernel methods kaluable properties
in theory (consistency) and in practicef{eiency, robustness-to-noise), thus are
good candidates for GRN Inference.
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Section 1.3: Machine Learning

Regulation at the transcriptional level

Gene 1

s

mMANA 1

Protein 3

'| Protein 1

Gene 2

Protein 2 MRNA 2
B = =

A simplified view Adjacency matrix

Gene 1
/ e "
Gene2

el

k=)
= OO

o O o
~—_————

Figure 1.2: Regulatory interactions are simplified into awoek representing only
genes. Image modified from [4]
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Chapter 1. Context

In this section, | first present generalities of supervigadiing: notations, goals
and dfficulties. Next, | describe linear methods, and the assatsdkitions to
supervised learning problems. Finally, | present kernehiwds, which can be
seen as an extension of linear methods.

1.3.1 Generalities on supervised Learning

The objective of supervised learning is to identify the lipdtween some input
variablesx = (xl,...,xp)’ and an output variable, or responge The random
variables X, Y) € (X, Y) are assumed to be distributed according to a distribution
#. In all the problems of this thesi& is a finite p-dimensional spacé/ is either

a subset oR (regression problem), the discrete &et, 1} (binary classification)

or a discrete sefl, ..., m} (multi-class classification). A bold upper case letter,
e.gX, denotes a random variable, a lower case letter, sugbag, a scalar, and a
bold lower case denotes a column vector, &.¢. (X}, ..., xP)". Variables K, Y)

are linked through a functioh

Y ~ f(X)+e (1.1)

with € a zero-mean noiselN realizations of X, Y) are observed and usually as-
sumed independent and identically distributedd;). They form the learning set
S = (X, ¥)i-1.n. Given a prediction functiog € F(X,Y), letl : Y x Y — R,
be a loss function, quantifying the cost for predictig;) instead ofy; (see ex-
amples of classic loss functions in Figure 1.3). Tis& of a functiong, R(g), is
defined as the expected loss:

RO = Ep((9(X).Y)) (1.2)

The goal is to find functiorf*, from H the set of admissible functions, that mini-
mizes the risk:

f* = argminR(g) (1.3)
geH

Unfortunately, the functiorR(.) is not known. However, the training sét
is available so that thempirical risk i.e. the mean of the loss function of the
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Section 1.3: Machine Learning

Binary classification
Hinge loss square loss
1(9(), y) = max(Q 1 - g(x)y) 1(9(), ) = (9() - y)?
3 \ \ ‘ 4 ‘ ‘ ‘
3,
=7 =
=4 =
1
0 ‘ ‘
-2 -1 0 1 2 -2 -1 0 1
g(x)y g(x)-y
Regression
Epsilon-insensitive loss square loss
1(g(x), ) = max(Qlg(x) -yl — €), e = 0.5 1(9(), ) = (9() - y)?
15 " " ; 4 . ! :
3,
= Y =
:’057 =
1
95 -1 0 1 2 9% -1 0 1
g(x)-y g(x)-y

Figure 1.3: Examples of loss functions
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Chapter 1. Context

training data, is minimized instead:

N

Ren®) = = (006 ) (14)
i=1

f = argminRendg) (1.5)

Bias-variance tradedf

The choice of the functional spa@é is critical for the performance of the empir-
ical risk minimization approach. If one chooses t@oall’ a functional space,
there could be no function M that approximate correctly the true functibrand
the true risk will be high. The model hagas

On the other hand, the empirical risk minimizédepends of the learning sét

If the functional space is todig”, data may be insflicient, and the learned func-
tion f may be very dterent of the true risk minimizef*. Those two sources of
error can be decomposed this way:

R(f) - R(f) , (1.6)
R(f) - R(f*) + R(f*) = R(f) . (1.7)
1) 2

Model error

(1) is the error from learning fror¥ and not infinite data. (2) is the error from
choosing the functional spag¢.
To find the best model, one has to find the right balance bettteebias and the
variance of the model. This is quantified by the biais-vareatmmade&. Consider-
ing that the loss function is the square loss, the expectedrisk of f according
to the distribution of the learning sé&t

3R = Es|2|(y- f0o)]| (18)

T.Hastie and R.Tibshirani [5] prove that this can be decoragasthe follow-
ing manner—proof in appendix, page 125:

Bs(RD) = Bpsle’] + B [(00 - (0] + B (1700 - F00)] (1.9)

o + (biasy + (variance) (1.10)
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Section 1.3: Machine Learning

with o2 be the variance of the noise? = Ep[€?]. This exposes all the sources
of error in supervised learnings? is the best error one can have, when trying
to predicty from x. The bias, (biag)= Ep [(f(x) - *(x))*|, expresses the error
from choosing functional spack. This term can be high i+ is poorly chosen.
Finally, if H is too big, the learned functiof will greatly vary with the learning
setS, resulting in a third source of error.

Curse of dimensionality

The expressioncurse of dimensionality coined by Richard Bellman (1961),
illustrates the problem of the dramatic increase of the malwof data with the
increase of dimension. | give an illustrative example inufeyl.4, where | have
drawn 64 points with coordinates in the interval I In one dimension, the
whole space is well occupied. In two dimensions, the datariecmore sparse.

In three dimensions, the space Iff is clearly under-sampled. To have, in the
10-dimensional space [0]'°, the same space coverage as for 100 points in a 1-
dimensional space, we would needpoints [6].

In this context, it becomes clear that one cannot identiéftest prediction func-
tion in a "big” functional space by minimizing only the empirical risk.

Overfitting

Related to the ¢urse of dimensionalityand the bias-variance tradéas the dan-

ger of overfitting. Figure 1.5 shows a toy classification fpeath NotingZ{/(X) the
uniform distribution inX, the test and training data have been drawn according to
the following distributions:

X ~ U(0,1]) (1.11)
Y ~ signE=3+ xo+3x1 +2x U([0,1])) . (1.12)

The linear model makes mistakes on the training set, butuoeptthe true
classification solution. The nonlinear classification fimthas perfect prediction
on the training set, but would give worse results on the &tstg avoid overfitting,
an approach is to regularize the prediction function. Onammies the empirical
risk under a constraint on the complexity of the function:

min Remd9) (1.13)
st. Q@) <T (1.14)
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Figure 1.4: lllustration of the curse of dimensionality. éisnension increases,
data become more sparse.
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Figure 1.5: Example of overfitting by a nonlinear predictor.

with Q : H — R, a convex penalty on the complexity of the function. This can
be equivalently formulated as

min  RemdQ) + 21Q(0) . (1.15)
geH
Even with linear functions, one faces the curse of dimeraditynas well as

the possibility of overfitting if the vector is high-dimensional, which is typically
the case in bioinformatics. | will now showfiient regularized methods.

1.3.2 Linear model

The first functional space to be studied is the space of lieations:

fin() = > ankm (1.16)
m=1
= <aXx> (2.17)

The choice of the loss functidi.,.) and of the complexity penalt€(.) will
define various algorithms. For regression problems, theg cawamon methods

are ridge-regression (or Tikhonov regression) and LASSfehEnethod insures
smoothness in a flerent way.
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Ridge-regression

In the case of regression, a popular loss function is theratiadoss

lquad(Ys fin (X)) = (¥ — fiin (X)) . (1.18)

When adding th&,-norm as regularization terif2(.), the problem is known as
ridge regression:

acRP

min Z(yi— <ax >)?+Aal. (1.19)
i

It admits a closed-form solution:

a= (XX + A1) (XTy ., (1.20)

wherel, is the identity matrix of ordep. The matrix(XTX + /llp) is always
invertible; the problem is well-posed. As can be seen in tgougl.21),

[fin(X1) = fin(X2)| = I< & X1 — X2 >| < [lall2lIX1 — Xall2 , (1.21)

the norm ofa bounds the ratio between the distance of two input poixitsx§)
and their image through the functid,, (fin(X1), fin(x2)). The functionfj, is
smooth in a Lipschitzian way.

LASSO

By choosing thef;-norm as a penalty term, the problem is known as LASSO
("Least Absolute Shrinkage and Selection Operator”):

i _ )2

min > (i~ < a.x >)* + Alfall . (1.22)
|

With this regularization term, the soluti@nis sparsei.e. many of its entries will

be zeroes. Figure 1.6 gives a geometric intuition why. Lee&d, or contour lines,

are the curves such that the empirical risk has the same f@lal values ofa
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Figure 1.6: lllustration thaf;-norm induces sparsitya* is the minimizer of the
empirical risk.a, is the minimizer off.-regularized empirical riska, will be the
first intersection between a level set of the empirical risé the level set of the
regularization norm. Due to its form, tlig-norm level set intersects the empirical
risk level set at a vertex, where many features are null.

along them. At their center i&* the minimizer of the quadratic loss function on
the learning set. The regularization can be seen as a semonda minimize, but
also as a constraint. In the figure, it is interpreted as atcaming One optimizea

to minimize the empirical risk given thats £.-norm is below a threshol@. The
optimum, notedy, , will be found at the first intersection between a contoue lin
and the set of admissible values. With thenorm, the intersection will be found
at a vertex of the set of admissible points. The vertices ofissible points with
{1-norm are points with some zero components.

The property of giving sparse solutions makes the LASSO Iniotierpretable.
The few non-zero entries are the only relevant ones. Thespnétability allowed
LASSO to be used as a feature selection method and also tonleea@opular
regression technique.

Unfortunately, many regression problems are not solvell guficient accuracy
by linear methods. | presentin the following section an esien of those methods
to nonlinear models.

1.3.3 Kernel Methods

To extend the linear model methods to non-linear separatioa approach is to
map the data in a high dimensional space. In the example uwréit.7, taken
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A nonlinear classification problem transformed in a linear problem
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Figure 1.7: lllustration of a nonlinear problem transfodme a linear problem by
the appropriate map

from [7], a linear model cannot correctly classify the d&at if we map the data
according tap : (X1, %) — (z1, %) = (X3, x3), a perfect linear classifier is available.

Clearly better classifiers can be built by mapping data in tbegr space, but
selecting the magp for each problem would be a very hard task. Thifidulty has
been overcome by using kernel functions and the so-callewkgick, explained
below, without calculating the map or the higher dimensiepace.

A functionk : X x X — R is called a kernel if it has the following properties:

o symmetricfor all (x,x") € X?, k(X, X") = k(X’, X)

e positive semi-definitefor all N € N, for all (X)i-..n € XN, for all
(a’i)i:]__"N € RN, Zil?lj:]_ a’iajk(Xi,Xj) >0

Aronszjan showed, in [8], th&(x, x’) is a scalar product in a particular func-
tional spaceH c F(X,R). In particular, there exists a mappirgsuch as
k(x,x") =< ¢(X), p(X") >4;. The functional spacg( has the property that, for any
f e H, foranyx € X, < f,k(x,.) >¢= f(X); H is called a Reproducing Kernel
Hilbert Space (RKHS). The best function in functional spate searched:

A

f = arg ggnqi{nl-?’emp(g)+/1§2(gl) (1.23)
fx) = <a¢() >n (1.24)
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Section 1.3: Machine Learning

Using as regularization term an increasing functiotigiify, the form off can
be deduced from the representer theorem.

Theorem 1. Representer theorenmLet X be a nonempty set and k a positive-
definite real-valued kernel o x X with corresponding reproducing kernel
Hilbert spaceH. Given a training sampléxy, 1), ..., (Xn.Yn) € (X xR)Y, a
strictly monotonically increasing real-valued functiéh: [0,~) — R, and an
arbitrary empirical risk function L: (R x R)N — R U {eo}, then for any f € H
satisfying

f = argminL ((ys, ()., (v, FOw))) + QAU (1.25)

f admits a representation of the form:

N
f() = Z aik(., X)) (1.26)
i=1

witha; e Rforall1<i <N

This is the general formulation of the representer theorasngiven in [9].
Proof is given in appendix, page 126.

The kernel trick [10] consists in calculating all scalar gwots through the
kernelk, and never computing the feature map

fq = Y aik(x, ) (1.27)
115, = <f,f>y (1.28)
= Thoiaia) < ¢(X). ¢(X)) > (1.29)
= Zi’?ljzl ajaiK(Xi, Xj) (1.30)

With a convex los$ and a strictly increasing convex functiér solving the
problem

i 210 £0) + 401l (1.31)

reduces to a convex problemanwhich is quickly solved by gradient descent. In
the following work, I will mainly use the kernel-ridge reggon.
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Kernel ridge-regression

We now have tools to learn non-linear functions with regaktion enforcing
smoothness. | will use them with the quadratic loss and adaegation term

N
rfnygz i = FO))> + ANFIZ, . (1.32)

Noting K the Gram matrix Ki; = k(x;, X;)) and using the representer theorem,
this amounts to solving:

mI!RQ(y —Ka)"(y - Ka) + 1a'Ka, (2.33)

a admits the closed form solution

a=(K+ay)1y. (1.34)

Note that minimizing the norm of functiom give smoother functions in a
Lipschtzian way, similarly to the ridge-regression case

F00 = T = 1< £,6(0 - #(X) >3 | (H RKHS) (1.35)

11l < ll¢(x) — p(X)ls« (Cauchy-Schwarz) (1.36)

IA

1.4 GRN Inference from gene expression data

Mathematical tools and, in particular, machine learning/gdave been used to
infer a GRN from gene expression data, without knowledge aitieg interac-
tions. Although they may use supervised learning toolsy #re unsupervised
methods as they try to predict the existence or absence ebetgt they were not
trained with examples of existing or non-existing edgesyltan be decomposed
into two groups:scoringmethods, where one evaluates the dependency of one
gene to another through a pre-defined metric, modelingmethods, or reverse-
engineering methods, where one creates a mbeéth parameters such as this
model mimics observed expression data. The model is bufit@d@ can be inter-
preted to infer a gene regulatory network. | give below adfs¢xisting methods
with short technical details.
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Figure 1.8: Examples of data,fy) and their Pearson correlation. Each observed
couple &, y) is represented by a blue dot. The regressienaxis drawn in red.
Pearson’s correlation can miss nonlinear dependencies

1.4.1 Scoring methods

Statistic dependency measures are used in these methoddiuate the likeliness

of a link between genieand geng. Adaptations of these measures have also been
suggested to be more relevant in the biological contextpaeimove spurious
interactions.

Correlation

Correlation studies the intensity of a link between two JValga. Many forms
of correlation measures exist (Spearman’s rank corr@lqlid], Kendall'st [12],
Goodman and Kruskal’g [13]); the following methods use Pearson’s correlation
p. With two variablesx andy, p’s value is contained in{1, 1], and evaluate the
linear dependency of those two variables. Witfresp. y) the mean of (resp.

y), (X, Y;) observed examples of the coupley), o is the cosine between the two
centered vectors andy and is defined as:

2l = X)(yi - Y)
\/(Zi(xi - X)) (Ziyi —¥)?)

Figure 1.8 shows some examples, including O for uncorrelated variables and
p=-1fory = ax+bif a < 0. If genej excites (resp. inhibits) geriei will

p(xy) = (1.37)
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have low (resp. high) concentration whehas low concentration, and they will
have a highly positive (resp. negative) correlation. If¢berelation is superior to
a threshold, a link between these two genes is inferred [14].

For more plausible biological networks, some researchars proposed to post-
process the obtained adjacency matrix to prodscale-freenetworkg, see the
Symmetric-N21] or theAsymmetric-Nalgorithm [22].

Kuffner et al. used a non-linear correlation fiméent, calledn? [23], for GRN
inference. They improved this measure in [24] by giving &#ddal weights to
perturbed data.

Mutual information

Another metric is the mutual informatidnbetween a pair of random variables

WhereH(x) is the entropy of random variabié, measuring its unpredictabil-
ity, and H(X|x)) is the entropy ofx' oncex! is observed, hence is always lower
than H(x'). If gene j regulates geng its concentration will be responsible of
much of gené’s concentration, thug should be much more predictable onde
is observed, and the mutual information will be high. Seenbek onRelevance
Network [25] for a first use of mutual information. Many network inéeice al-
gorithm use mutual information, such ARACNE [26].

Faith et al. suggest theLR algorithm [27]. The mutual information between
all gene pairi j) is computed. Then, authors can compute pihdistribution of
mutual information with gené For a randomly chosen geraethe mutual in-
formation between genieandz follows the distributionp;, MI(i,2) ~ p;. For a
genej, Faith et al. comput&;; (resp.Z;), the unlikeliness of observinigl (i, j)
givenp; (respp;). They score the likelihood of an interaction with the faliag

equation:
s, ) = 1/Zizj +Zj2i : (1.38)

An edge between geneand| is inferred if (i, j) is superior to a threshold.

(X, x)) = H(X) = H(X|x}) = Z p(x, x)) log

X, xi

2A scale-free network is a network whose degree distributidlows a power law, at least
asymptotically. This property is observed on many largdescietworks, such as the scientific
collaboration network [15] or biological networks [16, IB]. Note that the scale-free assumption
for biological networks is contested in [19, 20]
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Covariance

For the same reason as for correlation, genes interactyagter should have rel-
atively high absolute value for their covariance. OpgeniRhad Strimmer [28]
suggest an estimation of covariance through fiitient multi-dimensional es-
timator: the James-Stein estimator [29kaussian graphical modelsGGM),

also called concentration graph, covariance selection arkb random field
model [30, 31, 32], estimate the concentration ma@ix X1, i.e. the inverse

of the covariance matriX, assuming all gene expression levels are distributed ac-
cording to a multivariate normal distribution. The partatrelation between gene

i andj knowing all other genes is related to the concentrationimaticording to:

_Qij

In particular,€;; should be equal to O if two genes do not interact, even if a
third genez interacts with both of them. Various methods exist to evaltor to
test if the observed value 6f;; is suficiently high to infer an edge between gene
i andj. See [33, 34, 35, 36].

p(, JKL ... PRI, ) = (1.39)

Z-score

Static, dynamic and perturbed data are available. In paatican experiment with
genej perturbed should highlight a change of behavior in everyegbat geng
regulates. Pinna et al. [37] measure the Z-scores: for eawhigthey calculate
from wild type experiments its mean and standard deviatiom;. Then the Z-
score is computed as:

Gl -y
z; = 2K (1.40)

(o

with G! the concentration of geniein the experiments where gerjehas been
knocked out. Z; measures how “unlikely” the sta®! would be reached by
chance ifj did not regulate. The authors also used a method to remove indirect
edges. This last approach performed very well on syntheta, dvhere perturbed
data is available for all genes.
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1.4.2 Modeling

Another approach to gene regulatory network inferencersutih modeling of
the genes. The parameteis sought such that:

X = fl.(x7,0)+¢e for static data (1.41)
X(t+71) = fayn(X(t),0) + & fortime-series (1.42)

Where the functiorf is in a particular functional space. The network is learned
from the parameter vect@. | describe here the tried functional space and the
procedure to identify.

Linear Methods

A linear dynamical model has the form:

p
X(t+1) = Zeijxi(t) (1.43)
=1

Whereg;; gives the importance of gerjefor the prediction of gene One would
usually add constraints to obtain a spatsand consequently have an interpretable
model. Thus, the LASSO [38] was used in [39]. In biologicadteyns, there may
be a delay between the presence of a ges&d its influence on another gene
Shojaie and Michailidis [40] build linear models dependamgthe system’s state
at several previous timeg(f), x(t - 1),...).

Besides, linear methoddfer a framework to learn from heterogeneous data.
Given dynamic data, illustrating a dynamig@ + 7) = fgy(X(t)), and steady-
state data, illustrating = fsa(X™'), Oone can learn a linear regression for each
modelfgyn and by that result from the same network. One waits, and Osiat

to be null on genes not interacting with geinghus Qgyn); = 0 if (Osta)j = O,
and reciprocally. Marbach et al. [41] used group-LASSO @2} bootstrap sam-
ples; J.Chiquet et al. [43] also wanted(); and @siap); to share the same sign,
which they obtained through cooperative-LASSO. Anothgirapch [44] con-
sists in learning separately on each dataset, then finthe linear regression that
would be closer to all the found regressions.

The state-of-the-art method TIGRESS [45] uses linear maaetdbined withsta-
bility selection[46]. Given a target genieand a potential regulatgr, TIGRESS
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wants to evaluate the probability tigtis non-null. To this purpose, it uses LARS
regressors [47], that iteratively select thenost important regulators for the linear
model. TIGRESS runR LARS regressor on modified data: the expression levels
of candidate transcription factors are multiplied by a @nchumber in the inter-
val [r, 1], and the model is trained on a random subsample of the GHERESS
now has, for all candidate transcription facfoand all¢ € [1, L], the frequency
F(, j, £) with which the TFj was selected by LARS in the tdjfeatures to pre-
dict the expression of geneBy selecting a too small value fér many TF would
have 0 score; by selecting too large a valueffoseveral TF may have the same
probability 1. Thus, TIGRESS will infer an edge frojrto i with an averaged
version ofF(i, j, £), with the scores(i, j):

L
s, j) = %Z F(i.j.0) - (1.44)
=1

(i, J) corresponds to the area under the curve of the probalmlgglect transcrip-
tion factor | for target gené when selecting regulators, with varying from 1 to
L. An edge from geng to genei is inferred if (i, j) is superior to a threshold.

Boolean Model

In the Boolean framework, a gene can only be active (1) or ive¢0). LetX

be the discrete state of geneX = X > 6, X = >~<1,...,>”<p)'. In the dynamical
case, given a system state at titpé&(t), there exists a Boolean function giving
the state at timeé + 1. This function can be represented by a truth table, or a
wiring diagram, as shown in Figure 1.9. Fompagene system, there exist$’ 2
possible Boolean functions for each output. Finding thenogtBoolean function
is a combinatorial problem, and its resolution by bruteséoalgorithms is com-
putationally too expensive. Heuristics are used to simptié problem. Akutsu et
al. [48] limit the number of regulators that one gene can iaeeconstank, thus
drastically reducing the search space. In the REVEAL algorif49], S.Liang et
al. start by identifying gen¢ which has highest mutual information with output
genei. They iteratively add to the list of regulators of garthe gene which most
improve the Boolean function.

Boolean networks focus on generic network behavior ratteer uantitative bio-
chemicals details. Despite a simplification of the inputialales, Boolean net-
works succeeded in retrieving meaningful biological infation [50, 51, 52] and
are able to model the behavior of biological systems [S3{ti€tdarly, they allow
to study attractor states for the system.
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Graph Truth table
Input Output
Xo Xg Xo X3 | X1 X2 X3
O 0 0|0 O 1
0O 0 1,0 0 1
AND 0O 1 0|1 0 1
0O 1 11 0 1
1 0 0|0 O O
X4 X3 1 0 1|{0 1 O
1 1 0|1 0 O
1 1 1|1 1 O

Figure 1.9: Diferent representations of a Boolean function. Left: wirirepdam.
—: positive regulation (excitate}y: negative regulation (inhibit). Right: truth
table

Bayesian methods

Bayesian networks and Bayesian methofiisraa probabilistic framework able to
use noisy data and prior knowledge to infer dependenciesausal relationship
between variables is described by a directed acyclic g&affor an example see
Figure 1.10). Lefl; be the parents of genén graphG, i.e. all genesj such as the
edgej — i exists inG. The state of geneis assumed to depend only on the state
of its parents. Given a grafb, conditional probabilitiep(X; = x|Xy, = Xp;,) are
estimated. Bayesian methods search for the g@gimd probabilitiegp(.].) that
maximizes the probability of the observed data, with a ggriarm representing

Directed acyclic graph Adjacency matrix
X1

X2 Xa

X3 X5

Figure 1.10: Example of a Bayesian network, represented aspd @r an adja-
cency matrix

®

[
ooooo
cooor
cooor o
cooor
oOr opr o
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Xl(t) — Xl(t + T)
Xo(t) Xo(t + 7)
x3(t) X3(t + 7)

Figure 1.11: graph of a dynamical Bayesian network

a prior knowledge:

N

p
L((Xi)i:l...N’Ga 77) = prior(G’ 77) X l—[ l_[ p?](XJ = X|J|XHJ = XiHj) (145)
1

i-1 | j=

likelihood of observing;

likelihood of observing all data

The prior is usually a penalty on the density of the graph, litaim a

sparse graph. Bayesian networks usually learn simplifiechmyes, with dis-
crete variables, or linear dynamics with continuous vaeisb Optimization of
L((X)i=1..n, G, 1) iIs an NP-hard problem, and is computationally prohibifive
brute-force algorithms [54, 55], thus most algorithms usarlstics or approxi-
mated solutions. Friedman et al. [56] use Bgarse candidate algorithf®7],
in which parents of a node can only be found in a small subsgénés that are
highly correlated with target gene. Another approach [S&he estimation of a
score of several networks through variational approxiamatethods [59, 60].
The assumption of an acyclic graph is false for biologicawoeks, which con-
tain feedback loops. This limitation is overcome by dynahigayesian network,
see Figure 1.11. These networks can only learn from timiessdata. The state
of a gene at timé depends only on gene states at previous times [61, 62]. In the
dynamical case, algorithms have been developped for legnmonlinear continu-
ous dynamics [63, 64, 65].

Gene expression level are usually measured by mRNA contentréut there
are other components influence a gene’s dynamic, such asrpomncentration
or microRNA. Bayesian methods can furthermore consider thnseen variables
through latent variables. Bayesian methods alternativintify the most likely
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latent variables given the model and optimize the modelgike data and current
estimated latent variables [66, 67].

Other approaches

Other, more specific, models have been developadman filters model noisy
and partially observed systems. They can model nonlineaardycs, via vari-
ants such asExtended Kalman filtefsor “Unscented Kalman filtefsused for
GRN inference in [68, 69, 70]S-Systemsofters very generic modeling, but are
computationally intensive and no method guarantees to ffiedést solution for
the model. They were used in [71, 7Heural network models mimic the way
the brain functions, with neurons sending signals to oth@rsalculate an out-
put signal. They dfier from the same weaknesses as S-systems, and have been
used in [73, 74].Gaussian processesan model a nonlinear stochastic process
such as gene dynamics, as shown by Aijo et al. [I®)gistic regressionoffers

a nonlinear interpretable model, useful for GRN inferend.[Lim et al. [77]
usedoperator-valued kernelsto model genes. Using partial derivatives of their
models, Lim et al. were able to infer GRNSs.

Finally, best performances in several GRNI challenges wesielred by the GE-
NIE3 method [78]. GENIE3 learns a modg(x") with Regression treesFor a
new input variable, f' will make a binary test, for exampbe > 0.5. Following
the answer to this binary test, input variable will eitheriigthe left branch or the
right branch of the tree. It will land on another node, witheavrbinary test clas-
sifying x~', until it lands on a leave, giving the value b{x™'). After each binary
test, f(x™'), the prediction for geng is more determined. One can interpret the
importance of featurg in f' as the amount of variance it reduces. For example,
given a nodeV, with its left branchN, and its right branciV;. LetS (resp.S,,

S;) be all data from training se$ that reaches nod#&’ (resp. branchV,, N;).
Noting |S| the number of elements i@, Var(S) the variance ok' for all x € S,

the variance reductiof of nodeN is computed following:

I(N) =|S|Var(S) — |S,|Var(S,) — |S;|Var(S;) (1.46)

Importance of featurgis the sum of the variance reductigrfor all nodesN
where the binary test was done ®h A randomization scheme is added. Instead
of uses a single regression tree, Huynh et al. vsedom forests i.e. many trees
learned on random subsamples of the data.
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1.5 Assessment of GRNI methods

Each author of a GRNI method tested his method in one or sevtad following
manners: inferring network from real gene expression datecamparison of the
inferred network to the known GRN; inferring from real datalanspection by
an expert of the inferred network; inferring from simulatkatta and comparison
to the true regulatory network. Each method has its advastagd its draw-
backs. When using real data and the known GRN, the results astigpable as
large-scale GRN are, to a large extend, incomplete. The kri®RN is called a
bronzestandard. To overcome errors from our limited knowledge BNGsome
author also justified their inferred network by observingttthe topology of the
network they inferred was in agreement with other studiesngysimulated data,
one knows the true GRN producing the gene expression datainféreed net-
work is compared with gold standard, but simulated data may badly reflect the
real behavior of genes. In addition to questions on a dasapgdlity to evaluate a
GRNI method, most methods have some hyper-parameters th agdeiori. The
arbitrariness of these parameters may put the study inignest

GRNI methods have also been evaluated by comparative stu@edNI is an
active field of research, and reviews quickly become outatewill mention
two reviews: Emmert-Streib [79] gives an overview of caatedn or mutual-
information-based methods and summarizes papers comgptn@se methods;
Narendra [80] compares 32 state-of-the-art methods on dl5orerealistically
simulated data. No method clearly stands out. Authors éafigrconclude that
some methods are always underperforming, and should natdzk u

Yet, comparative studies are not a perfectly fair manneotogare methods. In-
deed, as the study’s authors both use and evaluate methegianight fine-tune
the GRNI method or the dataset to produce better results, asicbsults stress-
ing their method’s advantages. This can be overcome by Holvadlenges. In
these competitions, organizers released gene expressi@mom several networks.
Each contestant sent the networks inferred by his methaitisnei knowledge of
the target network. In particular, Stolovitzky, Monroe aBdlifano created the
Dialogue for Reverse-Engineering Assessments and MetiziREAM) confer-
ences and challenges [81] in 2006. They released data foy biamformatic
challenges, producing a fair evaluation of researcherghats and many bench-
mark sets. Currently, there has been eight editions of DREAMI@hges. In
particular, the issue of GRNI was tackle in challenge fouhefthird edition and
challenge four of the fifth edition. Organizers surveyedrsfjiths and weaknesses
of each method. They also reached several conclusions I§2F#stly, on simu-
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Chapter 1. Context

lated data, when knock-out data are available for each gesegre methods give
excellent results, with a simple and fast algorithm. Sefgmdsults on a partic-
ular network depend mainly on the chosen model; two mutfakmation-based
methods would essentially find the same network. Thirdlyneanethods give
relatively good results: GENIE3, TIGRESS, ANOVA and CLR. Falyt and
most importantly, the consensus of several methods uspetfprms better than
methods taken individually. In the DREAMS5 Challenge, Marbathl. compared
the results of each contestant to the results of averadicgmtiestants’ responses.
The consensus was always ranked in the three best methatlsftan was the
best. Besides, for consensus to perform best, methods udfegedt modeling
should be used: the consensus of a Bayesian, a mutual-intfonrvizased and
a regression-based methods is expected to perform bedierthle consensus of
three regression-based methods.

1.6 Problem formulation

In this manuscript, | suggest model-driven, nonparameBRN inference meth-
ods, using kernel functions and gene expression data. hisewbrk in the com-
mon simplified view, described in Section 1.2.4 and shownigufe 1.2. Letp
be the number of genes aidbe thep x p adjacency matrixa; = 1 if gene|
regulates geng &; = 0 otherwise. To estimate this adjacency makij decom-
pose this task intg independent tasks: for each gané will estimate the row
vectora;., assuming that | observe data with an additive noise whogariemce
is diagonal.

As seen in Section 1.2.5, time-series data are availalteyiab us to learn a
model:

X(t+71) = fln (X" + elynier - (1.47)

with x7 = (x%,...,x71, x*1, ..., xP) and eéym” a zero-mean noise. There also
exists data with no time dependence, called steady-stéde daey allow us to
learn a model:

X = foaX ) +€ (1.48)

with €' a zero-mean noise. Those models are learned using dynamaic da
Saynr = {(X7'(t2), Xt + 7)),.... (X (tn, — 7),X(N,))}, or static dataSsar =
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Section 1.6: Problem formulation

(X7, %), ..., (xg, X§)}. Both modeling use the same supervised learning tools,
that will be described using the general notat®e {(z1, y1), .. ., (Zn, YN)}-

These data are observations of a biological system, heagatk noisy and result
from nonlinear functions. Gene can be modeled through petrésrapproaches,
where one assumes that gene dynamics is ruled by partiadliaaoy diterential
equations (ODE), and one has to find optimal parameters.eTdy@sroaches can
tackle nonlinear problems, but, in practice, they face {itie computational
time on large dataset. Not to mention the relevance of the @DBene model-
ing.

Kernel functions, nonparametric models seen in SectiorB,l&e good candi-
dates for gene modeling. Very few works have applied kerrethiods to GRN
inference, mainly because they are not easily interpretaal, even if they per-
fectly modeled genes, extracting the GRN from the kernel hadeld not be
straightforward. This manuscript describes two GRN infeeemethods using
kernels. In the first part, | propose a method to interpretraddlenodel, called
Jac Given f' a model for gene learned on steady-state or time-series data with
kernel functionsJacestimates through the partial derivatives df

& = faf dx (1.49)

axi

In Chapter 2, | demonstrate that, under some assumptiongalistinibution of the
genex and the kernel functiok, kernel methods consistently estimate the mean
of partial derivatives. In Chapter 3, | describe other meshtodnterpret variable
importance in a modef'. | suggest a method to learn from both steady-state and
time-series data. | compa/rlicto those other model interpretation methods and
to state-of-the-art methods for GRN inference. In the seqarti | develop an
interpretable kernel-based model, called LocKNI:

X~ fix,w)+e, (1.50)

with w' a feature weighting parametav'; measures the importance of gene
for the modeling of gene w' is learned from data. Then | estimate the adjacency
matrix:

a =w (1.51)




Chapter 1. Context

In Chapter 4, | compare LocKNI to other kernel feature weiggptinethods on
realistic and widespread datasets. In Chapter 5, | descni®lzod to incorporate
prior knowledge when learning. | show improvements when adding reasonable
prior knowledge. | also compare LocKNI to state-of-theradthods on real and
realistically simulated datasets. LocKNI shows statéhefart performances, and
also a behavior complementary to other existing methods.
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Given a modelf' for a genei, the partial derivativedf'/dx! should reflect
the action of geng on genel. Indeed, ifj regulates geng a change in gene
j’'s concentration would have repercussions on gernbBusof'/ox # 0. This
approach raises two questions: how should genes be modeddtba the partial
derivatives should be estimated.

Concerning the first question, several characteristics ofegkehavior are
difficult to model; most notably, the nonlinear dynamics of com@ion of
gene mMRNAs. Research in supervised learning developed sevetlaods able

to tackle these dicult problems, such as regression trees, neural networks or
kernel-based methods. However, regression trees prodacewise constant
functions, thus their model cannot be derived, while corapom of neural
networks may be prohibitive for real-sized networks. Ondtteer hand, kernel
methods possess desirable properties, such as robustmessise. Kernel
methods seem therefore to be good candidates for gene mgdeli

With respect to the second question, many works exist for éb@mation
of derivatives of univariate functions. Unfortunately, ngemodels will be
multivariate functions, and very few works exist for thi®plem.

In Chapter 2, | tackle the problem of partial derivative estilon from a
theoretical point of view. Given some assumptions on thesdagionsx that
should be met by genes, | givefBaient conditions on a learning algorithfq,
taking training dataS to learn a modef, so that, for any continuous linear form
g, g(@f/0x}) consistently estimateg(df/dx}). | then show that some kernel
methods meet these conditions. Finally, | test this pad@lvative estimation
method on toy examples.

In Chapter 3, | implement the use of partial derivatives tceiinthe gene
regulatory network. This method is improved by an ensemldéhod, allowing

to learn from both steady-state and dynamic modeling. Editon of partial
derivativesdf'/dx! can be seen as a way to interpret the importance of feature
j in the modelf. Therefore, | compare this network inference method torothe
feature importance interpretations. | also compare thiwaord inference method

to state-of-the-art GRNI methods on realistic datasetsoltides state-of-the-art
results.
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Chapter 2

Estimation of Partial Derivatives

2.1 Introduction

Learning a relationshig between input variables and outputy from past ex-
amples is a common task in machine learning. Many domaimagater vision,
medical imaging, bioinformatics, etc) present such pnwislefostering the de-
velopment of many féicient algorithms for Iearnin(_f, an estimation off, from
observational data. Most learning methods provide of tiszal bounds for con-
vergence and performances. One can mention linear, tissdla kernel-based
methods. However, the partial derivatives estimation jgrolhas fewer theoreti-
cal guarantees. Recently, several fields have shown infarkestrning the partial
derivativesd f /X . For the characterization of nanoparticles, quantitdtegures,
such as the diameter of a nanopatrticle, can be more acquestinated by the
derivative of a response function [83, 84, 85]. Derivatiadlsw to quantify the
progress of a disease [86] or to infer gene regulatory ndisvpf7]. Besides,
independently of the domain, partial derivatives may qgifyanhe relevance of
an input variable for a function, thus can be used as a fealextion crite-
rion. Several saliency measures are based on partial tieewasee [87, 88] and
references therein. Nevertheless, theoretical consigt@ihderivative estimation
must be proved. Technicalficulties arise becausefféirentiation is not contin-
uous, without assumption on the studied functional spateis Estimating by

f through a consistent learning algorithm does not imply #fg6x consistently
estimated f /0x'.

Consistency of several derivative estimation methods foraniate problems has
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Section 2.2: Consistent estimation of mean partial devigati

been proven. The approach calculates empirical derivaf8@]. Given a sorteld
training datasetq, v)i-1.n, X < Xi;1 for all i, De Brabanter et al. set the empirical
derivative [89]
Yirr — Vi1
yl’ Xit1 — X
For more robustness to noise, Charnigo et al. calculate aagae empirical

derivative [90]
y|+k y.
%= Zk: Xirk — Xi—k

with wy a decaylng welghtzkwk =1, Weer 2 W20 for all k. The algorithm
in [91] trains f so thatf(x.) fitsy, and f’ (x) fits y’ for all i. Another approach is
to modelf with locally polynomial functions, such as splines [92]. @figo et
al. [90] learn a modef (X) = 2, We(X)ue(X), with u, a polynomial andv, a func-
tion determining ifxis in the region modeled kyy,. With w,(X) = exp(x—x)/h),
Charnigo [93] proves consistency of derivatives of orfddfor multivariate prob-
lems, there is only, to our knowledge, Mosci’'s new kerneddebapproach that has
been proven to estimali@f /0x ||, consistently [94].

In this work , | firstly give stfficient conditions on a target functidnand a learn-
ing algorithm to consistently estimaggV f), with g any continuous linear form,
andVf the gradient off, Vf = (6f/0x,...,0f/0xP). Secondly, | prove that
Gaussian kernel methods satisfy these conditions. Thirdiyggest to approxi-
mate the integrals by sum, for faster and simpler computattenally, | experi-
ment this partial derivative estimation method on toy exi@sp

2.2 Consistent estimation of mean partial deriva-
tives
In the following, (X,Y) are random variables frof x YV, with Q a finite p-

dimensional space, adis a bounded subset Bt X is drawn from a distribution
u. 1 make the following assumptions:

(A-1) The support oft, notedX,, is bounded and convex. The closureXof is
denoted byX..

lthis assumption can be made without loss of generality
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(A-2) The random variabl¥ follows
y=f(X)+u (2.1)

with u a zero-mean noise. | further assume thé& continuous and contin-
uously diferentiable onX., i.e. belongs to the spac®(X., V).

In theory, assumption (A-1) is met by many empirical digttibns, notably,
the truncated Gaussian distribution. In practice, mangioanvariables are as-
sumed to follow a Gaussian distribution and the loss of gditgrinduced by
using a truncated Gaussian distribution is very small. Besidssuming that gene
concentration is bounded seems reasonable; the convesityrgtion of reach-
able states is more debatable. Assumption (A-2) descritedink betweerY and
X and the additive nature of the noise. It makes mild congsa@nf, namely that
Vf exists and is continuous, criteria met by many biologicatieis.
| will use the following norm notations£?(Q, ) is the space integrable function,
according to distributiop, with the norms:

Mgy = [ 100%u00x= [ fouoo0. 22)
Iflle = maxif(x)l. (2.3)

The Euclidian norm in spac@ is [[X|l, = /2", (X)2.

The last needed notations and assumptions concern thélgatfgorithm. Letf,
be f’s estimate by algorithrik with ¢ data pairs,X;, Y;)i-1_.. | assume that:

(A-3) f, is a consistent estimator: for allp > 0, there exists an integéds such
that, for all integei? > ¢o, the probability thaf f — < eis greater

ff”LZ(Q ) =
than 1- n, and

(A-4) there exists a integéi such that, for all integef > ¢, the norm off,'s
gradient is bounded by a constavit

Machine Learning research has developed many algorithisiysag (A-3).
Assumption (A-4) is satisfied by some of them, in particularmel methods, as
we shall see later.

If all assumptions are met, any continuous linear form ofdbevatives off will
be consistently estimated by the onefpfThis is proven using the following two
theorems:
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Section 2.3: Kernel methods for partial derivative estiorat

Theorem 2. Let f be a function belonging to the spaG&X., V). Assume the
gradient of f is bounded by MYV f||, < M. Then, for any > 0, there exists &,
independent of f, such as:

1flle < Crellfll 2o + € (2.4)

Theorem 3. Let f be aC'(X., ) function, with gradient bounded by M. Let g be
a linear continuous form of°(X., V), g : C%(X., YY) — R. Then, for any > 0,
there exists a constant,G. such that:

19(V)l < Cogellfll, +€ (2.5)

These two theorems are proven in the appendix, pages 128dorem 2 and
page 129 for theorem 3). | show next that kernel-ridge resjpasand partial least-
square regression learning algorithms both satisfy assang(A-3) and (A-4).

2.3 Kernel methods for partial derivative estimation

There existuniversalkernels,i.e. kernels whose RKHSH is the whole space
of continuous functions fronX. to R (or C) [95]. Using consistency of kernel-
ridge [96] or partial least-square [97] regression and &earsal kernel, | obtain a
learning algorithmK satisfying assumption (A-3). | give ficient conditions on
a universal kernét ensuring that the associated learning algoritkireatisfies (A-
4):

Lemma 4. LetH be the RKHS of universal kernel k. If, for alke Q
¢ the kernel is constant on the set of poi(sx), k(x, x) = c,

e at point(x, x), the gradient of the kernel is nuW;k(x, z)|,-x = O, and

e at point (x,x), the Hessian matrix k,2); = 22 has eigenvalues

bounded by a constant M,< u,H(X,X)u > | < MJu||® for all x € X
and allue RP

then, for all f e H and for allx € X, the gradient of f satisfies:

IVEX)I2 < VMIIfllg - (2.6)
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Sketch of proof. The RKHS property and Cauchy-Schwarz inégugive:
[f(X) - f(x+h) = < f,0(X)—¢(x+h) >y (2.7)
< Nfllallg(x) = ¢(x + D)l (2.8)
while we also have:
[f(x)— f(x+h)] = |<Vf,h>+o(]hl]) (2.9

Using the polarization identity, the distanfge(x) — ¢(X + h)||§{ can be ex-
pressed with scalar products. Using the kernel trick, | cgress this distance
with functionk. Using a Taylor expansion and conditions of lemma 4:

K(x,X) + k(X + h,x + h) = 2k(x,x + h)  (2.10)
h’H(x, x)h + o(||h|[%) (2.11)

() — p(x + M)ller < VM + o(lIh]]) (2.12)
Equations (2.8) and (2.12) gives the result. A detailed pi®given in the

appendix, page 130.
The conditions of lemma 4 are satisfied by the Gaussian kernel

lp(x) = $(x + h)IIZ,

Lemma 5. The Gaussian kernel of bandwidihsatisfies the hypothese of lemma
4.

The universality of the Gaussian kernel is proven in [95]e Bther conditions
are proven using calculus. This is done in the appendix, fpade
Consistent estimation of continuous linear forms of padeivatives with Gaus-
sian kernel methods is obtained by lemma 5 then lemma 4, tremrém 2 and,
finally, theorem 3 can be applied, giving us the followingdiem:

Theorem 6. With samplegX;, Y;)i-1.¢ I.i.d., for anye andn > 0, and for any
continuous linear form g, g C°%(X., Y) — R, there existg, such that if¢ > ¢,
then, with probability greater thath — 7,

; g(v (X)) — g(VF(X)dx| < e, (2.13)

wheref, is the estimator of f based on Gaussian kernel ridge regoessi Gaus-
sian partial least-square regression.

A detailed proof is given in the appendix, page 132. Now, teent
fX g(Vf,(x))dx may be hard to compute. | give below a simple and fast approxi-
mation of this integral.
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Section 2.5: Numerical simulations

2.4 Approximation of integrals

An analytical formula for the integral of the estimatever X may not be avail-
able. To overcome this flliculty, | suggest a simple method to approximate this
integral by a sum. By the central limit theorem:

RO -
£ Vo) . [ Voo (2.14)

Moreover, as the gradiethfA is bounded, the central limit theorem gives
bounds on the dierence between the sum and the integral, provided in the ap-
pendix, page 133.

If one wants to estimate a linear formfiirent from equation (2.14), one can use
the following sum, assuming that the distributj@is known:

1< )of ~
EZ;_) fow) — fx CVf(x)h(x)dx (2.15)

In most cases, the distributipnis unknown, but several accurate methods ex-
Ist to estimate it. In particular, multivariate kernel déyestimation [98] provides
nonparametric and consistent estimatiop.ooting«(u) = (27) P2 exp(ull3/2),
a, a sequence such that — 0 andfa, — +oo (for examplea, = ¢~ l/2) Si-

{—+ {—+00
mondT defines:

N 1 & (X=X
) = s x5 216
[ i=1
This estimatoy satisfies:
e —plls —> O (2.17)

Proofs and bounds can be found in [99]. Thus, one can estilnatategral
according to:

fx C v f(x)h(x)dx ~ %Z h(X‘_) V{(x) (2.18)
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2.5 Numerical simulations

In this section, | illustrate the consistency of kernelgaedregression for the es-
timation of continuous linear forms of partial derivativelsbuild toy examples
with input variablesc drawn independently and uniformly ir L, 1]°. The output
variabley is a function of the following form:

y = f(X) + Qe = tanh(xTAx + bTx) sin(ch) + Qe (2.19)

with € a normal noise¢ ~ N(0,1), uncorrelated between samples, @b
andc independently chosen random parameters:

A ~ U0, 1] (2.20)
b ~ wU(0,1]") (2.21)
¢ ~ U(0,2x]") (2.22)

See Figure 2.1 for examples of functions given by equaticl(2
In order to measure the error in partial derivative estiorgtl definek, the error
in partial derivative estimation for one simulation asdolk:

p
of*

E= (f
;1 Xe OXm

For fixed parameters (number of training poihtsdimension of input vari-
ablesp, noise to signal ratier, with g = o +/var(f(x))), | simulate 100 models
following equation (2.19) and plot the mean and varianceéheflt in box plots.
Figure 2.2 shows that the error decreases with the numbeaiafrtg points. In
these examples, the problem dimenspis 2. The noise to signal ratio is 0% in
the top left plot, 100% in the top right plot. The bottom plst®w the evolution
of the error with the noise to signal ratio(plot at the bottom left), and with the
input dimensiomp (plot at the bottom right). As expected, the error increagds
the noise-to-signal ratio. Besides, the estimator is vengisiee to the dimension
of input variables. Whep increases, the error greatly increases.

We also dispose of a partial derivative estimation to esgrother linear forms of
the partial derivatives. To simulate this, | draollowing a centered and reduced
Gaussian distribution,

2

£
,u(x)dx—fX ZXmu(x)dx) (2.23)

X ~ N(O,1p), (2.24)
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Figure 2.1: Examples of functions of the form given by equa{i2.19) with di-
mensionp = 2

and | estimate the integral dfs derivatives in the cubel, 1]°,

A2

5f* of*
E= f —f dX) . 2.25
Z( [—1.1]> O%m [—1.17p O%m (2.25)

Results are shown in Figure 2.3, with= 3 ando = 25% . These results
illustrate the property that kernel-ridge regression iastly estimates partial
derivatives.

2.6 Conclusion

In this chapter, | tackled the partial derivative estimagoblem. Observing the
scarcity of results for the multi-dimensional case, th@edficity to the learn-

ing algorithm used, | showed that, under a few assumptionthernearning al-

gorithm, linear forms of partial derivatives were conamtg estimated. Further-
more, | showed that kernel methods met these assumptioaddition, if a kernel

method is proved not to require théed. assumption to leart, this results and
the theorems in this chapter can be used to prove consistérlog estimates of
partial derivatives without thiei.d. assumption.

Finally, the proposed method to estimate derivatives wstedieon toy examples.
We saw that this method gives good quality results in the dawensional case,
but its performance decreases quickly with the dimensiothefinput. In the

following chapter, | will use partial derivatives to infeege regulatory networks.

Page 50



1.5¢

0.5r

error on partial derivative estimation
[

I

error on partial derivative estimation
N

Chapter 2. Estimation of Partial Derivatives

50

w
T

=
T

(=)
T

100 250 500
Number of training data
0 0.25 1

Noise to signal ratio

£

o

error on partial derivative estimation
N

=
o

I
3]

error on partial derivative estimation

w
T

=
T

=
T

o
T

50 100 250 500
Number of training data
2 5 10

p, dimension of x

Figure 2.2: Mean and variance Bf_(9(3f*/9%x) — 9(@f/9%-))2. The top plots
show the error in function of the number of training sampef®r noise to signal
ratio 0% (top left) and 100% (top right), dimensipn= 2. The bottom plots show
the error in function of the signal-to-noise ratio(bottom left - withp = 3, N =
250) and the dimension af p (bottom righto- = 25% N = 250)
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Chapter 3

Network inference using partial
derivatives of kernel-based models

3.1 Introduction

As shown in the first chapter, many model-driven approaclaes been devel-
oped for gene regulatory network inference. Although kkemethods provide
efficient nonparametric modeling, they have rarely been useddoe network
inference, mainly due to their “black box” behavior. Howewee saw, in the pre-
vious chapter, that partial derivatives of a regressionehbedsed on a universal
kernel, typically a Gaussian kernel, can be used to prowedsistent estimates of
the mean of the partial derivatives of the target functidmergfore, | propose here
to use the partial derivatives to interpret a kernel-basggessiora posteriori
Calculating the empirical mean of the partial derivatived@iven feature on data
is seen as an importance measure of this feature. This chaptents a study of
this new GRN inference method. To improve this measure anddbwith large
dimensions, this approach is extended to an ensemble afmairdd kernel-based
models. The whole approach is presented in Section 2. Takxed works about
other measures of feature importance are reviewed. Setti@scribes methods
for hyper-parameters selection. Section 5 is devoted tauhgerical experiments
which involve results on small-scale realistic networkd &rge scale, real-sized
biological networks.Jag, the GRN inference method using partial derivative, is
compared to other importance measures applied on kerseldbaodels.
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Section 3.2: Partial derivatives of kernel-based models

3.2 Partial derivatives of kernel-based models

3.2.1 Jacobian matrix estimation for GRN inference

Several works have studied the importance of a feature grqartial deriva-
tives, see [87, 88, 94] and references therein. Assumettadtehavior of a gene
regulatory network is governed at steady-state by theviatig p modelsf':

Vie{l....,phte{l,...,N}, X = fi(x,)+e, (3.1)

whereS = {X4,...,Xy} are the observed dataset afidis the true model gov-
erning the expression level of gené function of the expression levels of the
other genes. If gengexcites (resp. inhibits) genethen its action should be ob-
served in the partial derivative8f'/0x! should be positive (resp. negative). Note
that the #&ect of a geng on genea may be visible only on some of the system’s
possible stateX. For example, geng¢ may influence geneonly if its concen-
tration is above a thresholtj, so thatdf*'/ox) = 0 if X' < 6;. Similarly, beyond
another concentratiop;, genei’s receptors to gengs action may saturate, and
af+/ox) = 0if X} > y;. Therefore the mean partial derivatigé*' should be
estimated on all possible stat®s Let i be the distribution of the system state, |
want to estimate the average value of thg){" entry of the Jacobian matrices:

ox!

As seen in Chapter 2, the empirical mean of the partial devesbf the esti-
mated modeld' consistently estimatéaqf):
1 © of

Jaqf),; = Sl @(X)- (3.3)
XeS

Jadf), = fxafl(.x)u(x)dx, (3.2)

Similarly, the temporal behavior of the gene regulatoryvoek may be assumed
to be governed by an autoregressive model that decompdsgsnmodelsf!:

Vie{l,...,phte{0,....N=-1}, Xt +7) = f(xt)+¢, (3.4)

with D, = {X(tg), ..., X(t\)}, tr = to + {1 andet‘[ are i.i.d. realization of a gaussian
noise. Then

Ty, - L oR0)

(3.5)
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These Jacobian estimates of the learned model can be usegkint@ get an
estimate of the binary and asymmetric target adjacencyixmaitithe network.
One way to provide such an estimate is to threshold the ateswhlue of the
Jacobian’s ca@cients given a thresholgl

Ay = H(Jaaf), -6, (3.6)

with H : R — {0, 1}, the indicator function oR*.

In the remaining part of the chapter, | will consider the peoi of the estimation
of thei™™ row in adjacency matrix A. For the sake of simplicity, lethe index
of a target gene, be fixed and consider the following base htbdesatisfies the
following equations:

e = f(z)+e (3.7)

with S = {(z.,y,),€ = 1,...N} ande, i.i.d. realization of a Gaussian noise. Input
variables have finite dimensiae RP

Both these estimates would greatlyffen from high-dimensionality of the input
variablez. To overcome this diiculty, | propose to learn functionk that uses
few dimensions of the variables. With an ensemble methodyrhwnctionsf are
learned using Gaussian kernel-ridge regression, but eaclidén relies on a small
subset of features af—another approach is changing the base learned to produce
a sparse Jacobian matrix, and will be developed in Chaptensl 4aMoreover,
note that other partial derivatives open many possitslit@infer the GRN: for
example, one may consider that, if gepeegulates gene there must exists a
statez where geng exert much its influence on geneand the partial derivative
afl/0Z will reach a high value, thus estimating the GRN by the maxinvaiue
obtained by the partial derivatives. In this thesis, | waenested in the average
Jacobian.

3.2.2 Ensemble of randomized kernel-based models

From a very general point of view, performances have beemawagl in many
domains by using an ensemble method approach. Insteadnaf adinctionf
learned with one algorithrk” on the whole datas&$, one can creat8 subsets

of S: (&4,...,Eg), and learn a prediction functidm, on each datasé,. Using

the mean functior} > e, hy is usually more accurate and more robust to noise
that using the single functiomlearned using the whole dataset (see [100, 46] for
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some examples).
In this Chapter, there are many motivations to use ensembileoa® In order to
estimatef in 3.7, a Gaussian kernel-based model is considered:

N
h@) = ) ak.2) (3.8)
(=1
_ 712
z.2) = expl-Z2L (3.9)
202
(3.10)
Then, the partial derivatives are given by :
oh@) < ok(z,2)
o = ;af = (3.11)
Kz.z) _ 2-2 [ |z —2P
5 = —2 exp e (3.12)
(3.13)

As the Gaussian kernel uses each input feature in the samé¢heaartial deriva-
tives regarding two featurgsandmonly differs by the factorag—zj) and ¢'-z").
To increase this dlierence, the kernel-ridge regression is used as a baserl@arne
an ensemble method, each base learner is trained on a randsmase ofRP
and a subsample of the data. Contrary to random forests, geeléarner does
not select further features; however, for a given size otithiming data, models
trained on smaller subspaces are expected to give moreastedrpartial deriva-
tives. Moreover, working in random subspaces allows toleaakarge number of
input features. Finally, | suggest an ensemble method apfrallowing to learn
from heterogeneous datasets, here steady-state dataendarly-observed time
series.

Learning from heterogeneous data types

In this work, my objective is not obtaining the most accugatediction function
f, but identifying the important features of geit® behavior. | observe gerie
under diterent perspectives (steady-state or dynamic) in dat&sgt Eayn), but

| assume that both behaviors are the results of the same GRM, Tdarning
importance of features from both of these perspectivessgieenplementary in-
formation on the same network.
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Dataset building

All measures can be used as static dajg; = (X1,...,Xn) to learn a modek' =
fstalX ™) + €star, With esiar @ Zero-mean noise, as done by several state-of-the-art
methods [78, 45]. In addition, these data include timeeseffior which we also
have information about time dependencies. We have at oposi#dNgy, data
from several time-series. For a time-serigsthe system is observed at times
tiu - -, tr,u. The observation of the system at titpg in time-seriesu is denoted
X(txu, U). These data can be used to learn a dynamical model of thengyst

X(t+7,uU) = f.(x7'(t,u)) + & Vt,u (3.14)

for all 1 < u < Ny, and withe, a zero-mean noise.
To build a modelf, from time-series, there must be regularly spaced timetppin
which is rarely the case in biological time series. Indeeldemthe time-series is
the response of the system to an exogenous perturbation,b@loavior will be
observed soon after the perturbation. After a long timeststem has stabilized.
Thus, experimentalists take many measurements righttategoerturbation, and
few when much time has passed.
To overcome the problem of irregularly spaced observaiioe,tl build for all
possible time steps the dataset&gynar = {(X(t1, ur), X(ty + 7, u1)), ..., (X(tn, —
7, Un,), X(tn,, Uy, ))} Of all time point pairs{;t + 7) available in the data, see Fig-
ure 3.1 for a visual example. Each of these datasets allolgato a modef,, but
not every dataset is interesting: some of them contain tthe tlata, others have a
time-stepr very long compared to the characteristic time of the systard,only a
return to a steady-state is observed in the mddalvithout expert knowledge on
a system, | relied on the experimentalists’ competenceaaadmed that the time
7*, for which E,- is the largest dynamical dataset (= arg max |E.|), is below
the characteristic time of the system. Thus | accepted éafasf r < " and
|E.| > 30.

Subspaces and subsamples building

From available dataset&(, E,, ..., Ey,). | build B subsample&,, ¢ = 1...B
with subbaggingand subsampling of variables, in a similar way eéxtreme-
randomizatiorf101]. Subsamples are built according to the following pihare:

1. Randomly choose from which datad&t to extract data. The probabil-
ity of choosing dataseE, is proportional to its sizep(E, selectedl =
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Available time-series

[gene 1] after perturbation 1 [gene 1] after perturbation 2
[gene 1] l[gene 1] o
1 — 1 —
0.75 = 0.75 =
050 — 0.50 —
0.25 —( 0.25 —(
\
1 1 1 1 1 V4 1 1 1
0 15 30 45 60 120 time (s) 0 30 60 90 120 time (s)

Dataset| data collected

[gene 1] A
1 —
075 — (f X O’@
050 =
0.25 —c
1 [ | i [ |

0 15 15 30 30 45 45 60

Edynalss
[gene 1] A
1 —
075 = e G\@
050 —
N G\O
o C—o
1 I 1 I 1 I 1 I 1 M
0 30 15 45 30 60 0 30 30 60 60 90 90 120

Edyna305

Figure 3.1: Example of irregularly spaced time-series,tarduilding of datasets
Edyna.
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IEul/ (3%, |E]). Let E, be the selected dataset.

2. Each data vectox; of E, has probabilitypgaay to be in subsamplé&,. To
obtain subsamples of similar size%,, iS taken inversely proportional to
E,’s size. Assuming, without loss of generality, tiigtis the largest dataset,
| have fixedpgatau = pdataE_gu with pyata @ fixed hyper-parameter. To obtain
test data,this probability is capped at 95%.

3. Randomly seleat,,, variables to be the potential regulators of our system.
Nyar IS @ hyper-parameter to fix. The set of selected variablesllisdg,.

Let f;! be the model for genelearned on subsampl&,. One may directly

useJadf;), but there is no unit nor references to assess that the Valdd,);;
is significantly high. Thep-value statistical test will give more meaning to the
observedlaqf;) value.

3.2.3 p-value

Several ways exist to infer a GRN from an importance measassiad f); j can

be seen as a measure of the importance of getoepredict gene—related to
saliency measures. One can directly use the importanceuneea®r example,
one can assume thatregulates if the importance measure is above a threshold
or if it is above a certain percentage of measured importaniceghall abbreviate
this interpretation method kir.

Another approach is to compute tipevalue ofJ/z;df)ij. This is the probability

of observing such an importance value under the null hysathitbat gene and

j are independent. For example, one can assume thatjgegelates if the p-
value of observed measured importance of ggfa genei is smaller than 5%
or 1%. | obtain thep-values by a permutation test, theorized by Fisher [102] and
Pitman [103]. This test, also called randomization testeerandomization test,

is an exact nonparametric test, making no assumptions oerlynay distribu-
tions, thus it is legitimate to apply it here. Given an impode measurémpag a
training setS = (X, ¥i)i-1..n, the test is performed as follows:

1. Randomly choosg, a permutation ofl,..., N}. X, is now independent
of Vi

2. Calculatdmpq(j) for the datasetdy, Yi).
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3. Repeat step (1-2)1 times -in this work, | chosé = 10000. We now have
the distribution oimpq(j) with j independent from output, henpevalues.

Among the advantages of the permutation test are its theakestoundness
and the clear interpretability of its results. Its main dpawek is the associated
computational time. By grouping several calculations, temutation test may
be done by performingd matrix multiplications. Its full computational cost is
O(pMN?), which is the same order of magnitude thand@{@N?) cost for solving
each kernel-ridge regression.

3.2.4 \Voting procedure

The introduction of a permutation test provides a way touate p-values and
use it to estimate the target matrix. Lgt, be the indexes of subsamples allowing
to learn importance of genafor genei, i.e. L, = {{,me G,,i ¢ G¢}. Let Ve
be the matrix such a&/mem)im iS the mean vote for a regulation of geiney gene
mfor methodmeth

(V|mp0)|m = ||-|m (Zkhm Impa(i, m, f)) direct use oimpo

( pval), m (ZfeLim —pVali, m, 5)) use oflmpds p-value

)
( pVa|<5%)|m = llel (dele(pVaI(l m, £) < 5%)) subsample vote 1
i =

iff pval(i,m, ¢) < 5%
|L. (Z(’eL,m(pval(l m, £) < 1%)) subsample vote Hi
pVal(i,m¢) < 1%

\%
( pVakkl1% im

The adjacency matrix is estimated by metmoethby inferring an edge from
variablemto variablej if (Vinemm; €xceeds a thresholtl> 0

= 1o((Vmettdm;) - (3.15)

3.3 Other measures for feature importance in a
model

| proposed one way to measure the importance of a feature indelnasing the
model’'s partial derivatives. Alternatively, other measican be used and are

Page 60



Chapter 3. Network inference using partial derivatives shkébased models

compared to the partial derivatives estimate: (a) inforomaloss resulting from
ignoring this feature, (b) thefiect of this feature on the functional cost. Inspired
by related works, | propose otharposteriorimeasures of feature importance of
a (nonparametric) base model in the ensemble approach.

3.3.1 Feature relevance

Feature relevance has been defined in many ways (see [104rfous formula-
tions and their shortcomings). In particular, Kohavi andrdfil04] have defined
the notion ofstrong relevancén case of supervised classification. A featyiis
strongly relevanif removal of this feature alone will result in performancetet
rioration of a Bayes optimal classifier. They give the formefiition:

Definition 7. (Strong relevance for supervised classificatiol\ feature Z is
strongly relevant if and only if there exist somgyzandz~) such that

(Y =WZ =2, 271 =27 % p(Y = yiZ"! = 7)) (3.16)

In case of regression, a similar definition would involve tbgression func-
tion: z — E[Y]z], being optimal according to the mean squared error coiteri

Definition 8. (Strong relevance for regressjorA feature Z is strongly relevant
if and only if there exist some,¥ andz~! such that

E[Y|)Z =2,27 =271 #E[Y|Z7) = z7]] (3.17)

However, this optimal model is not available. Thereforejdgest to evaluate
the relevance of a featurjeby the change in the mean-square error of the kernel-
ridge regression based on all features, and based on alfésdiutj. Let f be the
regression function trained on all features, dntithe one trained on all features
but j. Let Syain be the set of data used for trainifigand 1. Let Ses; be the test
data. | define a empirical relevance measure based eithesiomg set or on test
set.

. 1 ~ 2 A i N\2

ehnl) = g7 - f@) - (- Fie)]. @)
. 1 . o

reles(j) S (Z,y)estest[(y— f(Z))Z_(y—f 'z J))Z] . (319

(3.20)
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If feature j is relevant, there will be a loss of informatiofi;} should be less
accurate tharf, andrelg,in(j) andrelies(j) will be positive. Note that, as we are
not using the regressideY = y|z] optimal function,relies(j) may be negative. If
featurej is irrelevant, its removal from training data will reduceisey and allow
f-1 to be a better regression function théin

3.3.2 Sensitivity analysis

Le Cun et al. [105] suggest that the sensitivity of a learniggr@thm be measured
for each feature. In their work, a feature’s importance es¢hange in the func-
tional cost caused by the removal of the feature. Followingdh et al. [106], |
measure the sensitivity as follows:

e Train a regression functiof(z) = YzeSuan @iK(Zi, 2) with algorithm¥. Cal-
culate the kernel-ridge functional cost

2
1
£0) = [y‘_ &jk(zj’Zi)J .
|Strain| (Zi’y;algtrain ZjEZSt;ain
1 Z ajaik(z;, z) (3.22)
(zi,Zj)ESZ

train

¢ With the same cd#cientsa, calculate the functional cost with kerriel;,
the adaptation of kern&lto use all features but featuje

2
L()) = IStrlaml Z [yi— Z &,-K,-(z,-,zi)] (3.23)

(zi,y1)€Strain Z€Strain
1D daik(z).z) (3.24)
(2.2 )EStzrain

¢ Define the sensitivity of algorithm to featujdoy:

sengj) = L(0) - L()) (3.25)

The value ofsengj) quantifies how featurg affects the functional cost using
all features£(0). Note that this measure follows [106], but one may alstsater
its normalized variant£(0) — .£(j))/.£L(0).

These two importance measures will also be implemented thahpreviously
described ensemble methods.
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3.4 Hyperparameter selection

Several parameters need to be fixed. The kernel function isséb@ Gaussian
kernel

Iz zng) (3.26)

202

k(zZ) = exp(

since it is a very popular kernel, with good performance mcfice and universal
consistency in theory. There remains four hyper-pararaéterhoose:

e For the subsampling parameters, cross-validation woulkl liesed proce-
dure. If a model was trained on more data, it would have lowst ¢rror.
Moreover, by using fewer variables, many models would ngelany rele-
vant feature as explanatory variable, and would have a leisthetrror. Our
experiments have shown that the subsampling parameteesd pya have
little influence on the GRN inference performance, see Figuse | chose
Nvar = 5 andpgata = 80%.

e The regularization-data fitting trad€ol and kernel bandwidtla- are se-
lected through cross-validation. With subsampling, tesirecan be calcu-
lated by out-of-bag data, i.e. data not selected in the suplsa Performing
cross-validation foiM values of1 only costsM times the cost of perform-
ing the algorithm one timer can take the following valug®.1,0.5,1, 2, 5}.
With Eg the largest datasepyaiaEol is the average size of a subsample. Let
S = 1/ 1/ Pgatd Eol- A can take the following valug$.01s, 0.1s, s, 10s, 100s}.

| consider thaB = “;ﬂ’ is enough subsamples, the vote matrix has converged.

3.5 Experiments on small-scale networks

3.5.1 Data: DREAMS3 Challenge

The Dialogue for Reverse-Engineering Assessment and Me{(lREAM) chal-
lenge allows researchers’ team to compete on bioinfornpatiblems. In the '3
edition [82, 107], the & challenge focused on gene regulatory network inference
from realistically simulated networks. The networks aredoles from known net-
works ofE.ColiandYeas{108]. Data were generated with GeneNetWeaver [109].
With realistic simulations, one knows the real network belthe data, thus one
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can confidently compare the performances of network inferemethods.

The challenge provides networks of size 30 and 100 genes. For each size,
there are 5 networks, 2 extracted fr&@rColiand 3 fromYeast For each network,
there is a knock-out and a knock-down experiment for evenegand, for size
10 networks (resp. 5000), 4 (resp. 23, 46) time-series of 21 observation points.
Knock-down and knock-out experiments bring a lot of infotima by their meta-
information (which gene is perturbed). The challenge’'saargers showed that
best performances could be reached by only using the peduwtata and Z-score
(described in section 1.4.1, page 28). As our methods dontegriate this meta-
information, they under-perform with respect to methodsagishe complete in-
formation. Thus, | ignore the perturbed data and learn theor& using only
time-series data. | compare our results to the best teaniteeddREAMS3 chal-
lenge also using only time-series data.

3.5.2 Performance evaluation

Given a GRN inference method, one obtains a score for eacfaatien and as-
sumes that there is a regulation from genen genej if A,-,m is superior to a
threshold. Noting Rthe number of predicted regulations, this prediction is €om
pared with gold standard. By counting the number of true pesit(T P), false
positives EP = R - T P), false negativesHN) and true negativesI(N), perfor-
mance can be calculated as precision, i.e. the percentagalofegulations in
the inferred regulationgpfe = TP/(TP + FP)), recall, i.e. percentage of all real
retrieved regulationg¢c = T P/(T P+ FN)), or false positive rate, i.e. percentage
of non-regulation predicted as regulatidhRR = FP/(FP + TN)).

These statistics depend on the thresl#olfio avoid the problem of poorly chosen
0, one draws the "Receiver Operating Characteristic’ cuR@C (FPR pre) =
f(0)) and the precision-recall curvé®’R (pre,rec) = f(0)). The better the
method, the higher the area under these curves. For exawifiiea perfect pre-
dictor, the area under tHROCcurve will be 1. With a random predictor, it will be
0.5.

3.5.3 Performance without ensemble methods

These results are shown to complete this work, in Figure Résults are, as
expected, lower if no ensemble method is used. Performarieesh importance
measure on 50-genes networks are shown in Figure 3.6, usitig & dynamic
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modeling. Overall, static modeling exhibits better pemfance for both AUROC
and AUPR. No importance measure has good performance.

3.5.4 Analysis ofp-value

The p-value is the probability of observing such an extreme vainder an as-
sumption of independence between input variabkend outputy. Thus, some
false positive should occur. Considering that a regulatiomfgenej to genea ex-
ists if the p-value ofImpd(, j) is inferior or equal t®; calculatingM importance
measures, we expeéM false regulations, noted EFP, expected false positives.
Noting P, for positive, the number of edges considered, the f@tiéFP quan-
tifies how this importance measure produces extreme valepared to values
obtained with features independent from the output. If thi#o is below 1, it
means that this importance measure does not produce extedues. This does
not mean that the measure does not rank features well.

We see in Table 3.1 the values of the mean offliE FP ratio on all 5 networks,
and on how many networks this ratio was superior to 1 for the thivesholds
0 = 5% andd = 1%. From this perspective, both sensitivity analysis antigda
derivatives’ integral do not produce extreme values. Oncth&rary, relevance
on the training data seems to clearly separate independdrdependent cases.
Surprisingly, relevance on test data is not as extreme. diffisrence may arise
from the dificult nature of the data. We have few noisy and incomplete data
example, data contains only RNAm concentrations, and n@jprabncentration
or exogenous stimuli. This may cause the poor generalizafi@our model, thus
the irrelevance of measuring mean-square error on test data

The plot in Figure 3.2 shows the performance of the adjacematyix esti-
mateVnyeh @s a function of the number of subsamples, on the DREAMS size 50
networks for two importance measures: relevance on trgidata and integral
of partial derivatives. The behavior is similar for all fomnportance measures.
For both importance measures, we observe Yhat andV. ;v converge faster
thanV. pvakse andV. pyakis. Also, with the two latter methods, we observe some
gaps, which occur sometimes after many subsamples. Thaugjréct andpVal
methods appears to perform better, as far as speed of cemeergs concerned.
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Edge threshold pVal < 5% pVal< 1%
Method P/EFP | #{(P/EFP) > 1} | P/EFP | #{(P/EFP) > 1}
Jac 0.53 1 2.27 3
rekhest 141 5 571 5
relirain 3.86 5 16.34 5
sens 0.24 0 1.02 2

Table 3.1: Using a thresholptvalue ofImpo < 6%, one expects to obtain false
positives, precisely% times number ofmpocalculated. Notinde FPthe number
of Expected False Positives, the table shows the mean fatinaber ofp-values
superior to threshold divided by the EFP and gives the nurabeetworks (out
of 5) for which this ratio exceeded 1.

3.5.5 Performances on DREAM3 50-gene and 100-gene Net-
works

On size 50 datasets, results are shown in Table 3.4 for AUR@GraTable 3.5
for AUPR. Note that, aside from relevance on training dataguhe importance
measure directly or througttvalues makes very little ffierence. For relevance on
training datap-values seem to enhance performance, but the change ismally s
Figure 3.3 compares each directly used importance meaBamial derivatives’s
integral clearly stands out of other methods. On four netaiothis method has
the highest AUROC; on three networks, it has the highest AUP&ebVer,Jac
has a large dierence with second best methods on some netwei®99, +0.12
AUROC on networks Ecolil and 2), and it is never far from thetlperforming
method (in the worst casedac has—0.01 AUROC and-0.015 AUPR with re-
spect to the best performing method).

Those results are confirmed on 100-gene netwalks.has the best AUROC on
four datasets, and best AUPR on all five. Note that these &ieuli datasets. |
comparedacwith other GRN inference methods: TIGRESS [45], GENIE3 [78],
a dynamic Bayesian method, called G1DBN [110], and the best DREfeam
using only the time-series data. Results are shown in FigdreJacis the best
of the five methods in four datasets out of five both in AUROC AdPR. This
shows that a naive implementation of estimation of pareai@tives is very com-
petitive with state-of-the-art methods.
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Method AUROC AUPR

Dream 3 Ecoli 1 Size 50 genes Dream 3 Ecoli 1 Size 50 genes

Jac

Dream 3 Ecoli 1 Size 50 genes Dream 3 Ecoli 1 Size 50 genes

reltrain

Figure 3.2: Evolution of AUROC and AUPR &, as a function of the number
of subsample8, on DREAM3 size 50 EColil network
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TIGRESS, GENIE3 and best DREAM3 performer using only timeeseaiata.
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Network #TF p N | Nayn

DREAMS Network 1 (in-silico) | 195 | 1643 | 805 | 463
DREAMS5 Network 3 E.Coli) 334 | 4511 | 805 | 463
DREAMS Network 4 S.cerevisiag| 333 | 5950| 536 | 298

Table 3.2: Characteristics of datasets: # TF is the numbestefpial transcription
factors, p is the number of genes of the systelhjs the number of data points,
Nayn is the number of data from time-series, amongiheata

3.6 Experiments on real and real-sized networks

J/a\cimportance measure has been evaluated on four well-refeddrenchmarks.
The scales and sizes of the datasets are summarized in Table 3

3.6.1 Datasets

The datasets were found in the DREAMS challenge [41]. Thedakdset is a real-
istic simulation of genes—see [108] and [109] for a compéedglanation—while
the last two are real data. For each dataset, gene expresdgeof heterogeneous
types is available: steady-state, time-series and pedudata. We have a list
of potential regulators, calleédranscription Factors” (TF). The gold standard is
given by the DREAM organizers.

I comparecﬁa\cwith state-of-the-art methods. DREAMS organizers provitte
contestants’ inferred networks. | compared my results ésetof the best contes-
tants.

3.6.2 Using other GRN Inference methods: A consensus ap-
proach

One talks ofwisdom of crowd§l11] when a group, using the vote of each individ-
ual, makes better decisions than any individual alone. phenomenon is well
illustrated in gene regulatory network inference. Usinfjedent methods, the
mean of all inferred networks is often closer to reality tleach network taken
alone, as Marbach et al. have shown with the DREAMS5 challeAgk [

To average each prediction, Marbach et al. sorted, for eaathad, which link
was considered most likely. They hagd inference methods. Methddgives a
score for each interaction, score storedBire RP*P the score matrix of method

Page 69



Section 3.7: Conclusion

The higher the score, the more likely this interaction igaading to the method.
Marbach et al. [111] ranked each interaction in the mdgix

(R)im =1 (3.27)
S.t. A(jbo, Mo)b=1..r-1 (Bi)jpm, = (Bi)jm (3.28)
(i, Mp)o=r+1..pxp (B)jpm, < (Bi)jm (3.29)
and then built the mean average over all network inferendbade
1<
R= o Z R . (3.30)

To obtain an adjacency matrix, one can threshold the m&iix obtain only a
given percentage of most likely interactions.

One hopes that kernel-based models infer well gene regulagiwork, but also
that this modelling method, as it is venyfidirent from others, will contribute well
to enhance the GRN inference when used in a consensus methoceaksized
networks, | compared the performances of the consensusandhwithout the
network inferred by the importance measures obtained iptéaous subsection.

3.6.3 Performance

Results are shown in Table 3.3. Whilac does reach best performance for AU-
ROC for two networks out of three, it shows very poor perfonoes for AUPR.
Jac obtains interesting performance on thefidult and interesting problem of
GRN inference, but does not seem competitive with statéefart methods as an
individual method.

When observing the consensus, we observe a substanticdsedreperformance
by addingJ/a\cto other methods. Beside3acaccounts for only 1 vote out of 30,
so the performance increase is noteworthy. Marbach et &k $laown that con-
sensus worked better if the methods gathered reliedféereint models, grasping
different types of information. It seems thatc by its Gaussian kernel and partial
derivatives approach, which are both novel, acquire anrnmétion that was not
captured before.

3.7 Conclusion

In this work, | proposed a reverse-engineering GRN methodogdéarning an
interpretable model, but by interpreting a Gaussian kebaskd model. From ex-
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networks DREAM 5 N1 DREAM 5 N3 DREAM 5 N4
AUROC AUPR| AUROC AUPR|AUROC AUPR

Individual

Jac 71.89 8.64 | 63.19 3.47 52.57 2.21

GENIE3 81.5 29.1 61.7 9.3 51.8 2.1

TIGRESS 78.2 30.1 59.5 6.9 51.7 2.0

CLR 77.3 25.5 59.0 7.5 51.6 2.1

Consensus

Consensus 80.89 32.65| 64.94 8.99 | 52.02 2.24

C+Jac 81.23 31.81| 72.78 8.75 53.48 2.30

Table 3.3: Performance measured as AUROC and AUPR in % on DRENSI-
works 1, 3 and 4. The results in bold font are the best ones.fildtieow is the
consensus of other methods which are all the participagaghs on DREAMS
and GENIE3, TIGRESS and CLR EBRoli .

Static Modeling Dynamic modeling
AUROC with static modeling without subsampling AUROC with dynamic modeling without subsampling
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Figure 3.6: Results of importance measures without subsagyplsing either
static or dynamic modeling
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Network | EColil | EColi2 | Yeastl| Yeast 2| Yeast 3|
Importance measure: integral of partial derivatives

Jac 0.62 0.70 | 0.54 0.58 0.58
pVal 0.58 0.69 0.56 0.58 0.57
pVal<5% | 0.56 0.65 0.58 0.54 0.57
pVal<1% | 0.54 0.63 0.58 0.54 0.57

Importance measure: relevance on test data
relest 0.49 055 | 051 | 0.49 0.54
pVal 0.48 0.5 052 | 042 0.51
pVal<5% | 0.47 0.5 051 | 043 0.52
pVal<1% | 0.47 0.5 0.51 | 043 0.51

Importance measure: relevance on train data
relyain 0.46 0.58 0.55 0.54 0.55
pVal 0.51 0.62 | 0.56 0.56 0.56
pVal<5% | 0.55 0.63 | 0.53 0.55 0.56
pVal<1% | 0.55 0.63 | 0.52 0.55 0.56

Importance measure: sensivity analysis
pVal 0.53 0.53 | 0.55 0.50 0.53
pVal<5% | 0.51 0.49 | 0.50 0.50 0.51
pVal<1% | 0.51 0.48 | 0.50 0.51 0.51
sens 0.55 0.55 | 0.53 0.51 0.53

Table 3.4: AUROC results on the DREAMS size 50 networks of @nésd net-
work inference methods using a Gaussian kernel
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Network | EColil | EColi2 | Yeastl| Yeast 2| Yeast 3|
Importance measure: integral of partial derivatives

Jac 0.047 | 0.094 | 0.078 | 0.108 | 0.132
pVal 0.044 | 0.106 | 0.078 | 0.107 | 0.14
pVal<5% | 0.042 | 0.105 | 0.08 | 0.107 | 0.136
pVal<1% 0.04 | 0.103 | 0.081| 0.1 0.136

Importance measure: relevance on test data
relest 0.025 | 0.055 | 0.051 | 0.068 | 0.098
pVal 0.026 | 0.033 | 0.035| 0.052 | 0.074
pVal<5% | 0.025 | 0.033 | 0.034 | 0.054 | 0.073
pVal<1% | 0.025 | 0.033 | 0.034 | 0.054 | 0.072

Importance measure: relevance on train data
relirain 0.022 | 0.077 | 0.093 | 0.11 | 0.109
pVal 0.025 | 0.068 | 0.105| 0.111 | 0.134
pVal<5% | 0.027 | 0.069 | 0.10 | 0.109 | 0.128
pVal<1% | 0.028 | 0.07 | 0.093 | 0.109 | 0.12

Importance measure: sensivity analysis
sens 0.029 | 0.043 | 0.039 | 0.067 | 0.077
pVal 0.027 | 0.039 | 0.050 | 0.065 | 0.078
pVal<5% | 0.027 | 0.035 | 0.035| 0.070 | 0.074
pVal<1% | 0.027 | 0.034 | 0.035| 0.070 | 0.074

Table 3.5: AUPR results on the DREAMS3 size 50 networks of presknetwork
inference methods using a Gaussian kernel
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periments on realistic datasets, integrals of partiabdéxies have shown promis-
ing results. This interpretation of a modélcan be used with any model type
(preferably fitting the conditions of the proof).

The Jacimportance measure has shown that it could deal with realrstworks,
and provide good results. It seems that this approach epsame interactions
which were overlooked by previously established methods.

For future work, one can use tl&ac measure with regression methods that are
more specific to gene modeling. One can add constraints ofutisgional cost
to incorporate prior information, or change the regressimdel, for example
operator-valued kernels, that learn structured outputtideéar mention should
be made of the work of N.Lim et al. [77] that shows very good@@nances on
dynamic data, using partial derivatives of an operatonedlkernel model.
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In the previous part, we saw a method to interpret a kerngddbanodel. In
the next part, | design an interpretable kernel model, a agkthat can model
nonlinear behavior and can estimate which genes are regythe target gene as
directly as linear model. In addition, this method produaaeis whose gradient
is sparse, thus the kernel model may be better suited tgnettion through par-
tial derivatives than the one obtained with kernel-ridggression. An additional
advantage of this method is its ability to incorporate pkaopwledge. Such a
method is made possible by the versatility of kernels. Givedifferent kernels
Ki,...,ku, a positive linear combination of these kernets= 3, Wmkn, with
Wy > O forallm = 1...M, is a kernel. In particular, defininigcal kernelor
component kerneds a kernel function that uses one feature of the input vector
kn(X, 2) = k(x™, Z"), the weightav,, measure the importance of gemeor the tar-
get gene. Using kern&t on the learning se$ = (X, ..., Xx), the model will have
the following form:

N

M
fx) = Zaf(Zwmmx,x»]
m=1

=1

Z WinGm(X™)
m=1

The vectorw will be learned from the training set, using multiple kernel
learning. In particular, this additive model can be seenragxension of the
linear model to additive nonlinear dynamics.

The vectorw can be seen as feature weighting. In Chapter 4, | describe
several feature weighting or feature selection methodsctratake into account
nonlinear dynamics. On realistic datasets, libeal kernelapproach performs
better that other feature selection methods. In Chapter 6mipare mylocal
kernel approach, called LocKNI (LOCal Kernels for Network Inferejc to
state-of-the-art methods on real and realistic datasetsKNI gives state-of-
the-art results. Besides, when used with other methods insdtm of crowds”
approach, LocKNI substantially enhances the performaricthe consensus,
hinting thatlocal kernelsgrasp information that is not captured by other models.
Finally, | provide a simple approach to incorporate prioroktedge to the
multiple kernel learning approach, and use two reasonaioledical sources
of prior knowledge that greatly enhance LocKNI's perforro@ron a realistic
dataset.
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Chapter 4

Local Kernels and feature selection

4.1 Introduction

In our era of data abundance, the scale of supervised lgaprimblems has
changed. Whereas few domains used more than 40 variableSntb@lay, many
papers explore domains with hundreds to tens of thousandsriables. For ex-
ample, text categorization [112], image classification3]1dr cancer prognostic
from genomic data [114, 115] deal with thousands of varghide a classification
task. Reducing the problem size has many benefits: from a datigmal point of
view, it reduces data storing requirements and computtione; from a human
point of view, it helps understand and visualize the probl&énmm a pragmatic
point of view, it helps defy the curse of dimensionality [6].

In this context, researchers have developed feature mglenethods. Among all
the variables, many may be redundant or noisy features14€e 104] for a for-
mal definition of relevant features. In many cases, the hdstet of features is
the one that minimizes the generalization error. Featuezten methods can be
decomposed in three categories [117]:

¢ Filtering methods They constitute a preprocessing step, independent of the
choice of the learning algorithm. One evaluates the deperelbetween
the features and the value to predict through a pre-definedansuch as
mutual information or correlation. Generally, one uses thetric to rank
features, and then select the most informative featuréeré-are the fastest
feature selection methods. Two classical filtering exasate Fisher’s lin-
ear discriminant [118] and mutual information [119]
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e Embedded method¥hese machine learning methods simultaneously select
relevant features and build the prediction function. WHibevgr than filters,
these methods select the best features for a specific mo8IS0O [38] and
decision trees, as viewed in CART [120], are examples of sustihoas

e Wrapper methodsThese methods take into account the model of prediction
functions and are the most general, but also the slowestaudethThey
consist in selecting a subset of featufeslearning a prediction function
usingF, and then training a prediction function on other subsetafures
F’ until a subseE* is found that is optimal with respect to a criterion, such
as accuracy of the prediction function. Sequential Forvgeldction [104]
is a wrapper method.

Feature weighting -where features is given a weight from D-toan be seen
as an extension of feature selection -where feature areraieful (weight is
1) or ignored (weight is 0)-. The field of gene regulatory ratw(GRN) infer-
ence from gene expression data is keen of feature seleatif@atire weighting
methods. Using these methods, one can evaluate which gemesl@ant for
the prediction of a target gene, and consequently assurh¢htharegulate this
target gene. Filtering methods [26, 27] and linear [45, $jplean [50, 48],
Bayesian [66] or tree-based [78] embedded feature selectethods have been
successfully used for GRN inference.

In this context, | propose a new feature weighting methodsndythe versatility

of kernels, | defindocal kernels that rely on only one feature. | propose several
methods to optimizéocal kernetbased models. Moreover, | test various pop-
ular kernel feature selection or feature weigthing methaldsg with thelocal
kernelapproach on realistically simulated GRN. Firstly, | deserilernel feature
selection methods, and how to use them for GRN inference;8&gd describe
hyper-parameter selection methods. Finally, | show theeergents and experi-
mental results.

4.2 Feature weighting methods

In order to infer a GRN from gene expression data, given tngirdataS =
(X1,...,%Xn), N observations of the expression level opaene system, one can
learn a static or dynamic model. If each gene is modeled iemidgntly, a fea-
ture weightingselection algorithm may be used to weight the importancefedro
genes for the prediction of a target gene. One can learn
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a static model X = flo(X) + € (4.1)
a dynamic model X' (t + 7) = fC‘,ym(x(t)) +€ (4.2)

Using a feature weighting (resp. selection) algorithm arméng f', one ob-
tains the vector of weights; € R? (resp.w; € {0, 1}P) that evaluates the impor-
tance of each gene for the prediction of genéhe estimated adjacency matrix is
the juxtaposition of these feature weights:

A

A= (wy,....wp)' (4.3)

4.2.1 Local Kernel Approach

In order to have a nonlinear interpretable model, | suggetsteiselocal kernels

or component kernelk, ..., kv, kernelkg, relying only on featuren of input
variable. Then, a weighted combinatiknhof those kernels is used as a kernel,
k' = 3™ | Winkm, With weightsw learned from the training set. This produces a
model of the form:

N M
f\(X) Z ay (Z kam(x’ X[)) > (44)
m=1

1

(4.5)

Il
3
«
3
—~

x
[

with a sparse vectow. This additive model has several advantages: firstly, it
is able to model nonlinear dynamics in order to reflect the tsahavior of bi-
ological systems. Secondly, by controling the sparsityvpthe sparsity of the
partial derivatives off is controlled §f/x™ = 0 if wy, = 0). Thirdly, extraction
of regulators is as direct as in linear models, vegtayuantifying each feature’s
importance. This model can be seen as an extension of linede|s

The vectorw is learned from data, using Multiple kernel learning (MKMKL
was introduced in [121] for protein function prediction. MKas improved state-
of-the-art classification performances in various domasugh as bioinformat-
ics [121, 122], image classification [123, 113], or soundalzation [124]. For
a review of MKL algorithm, | recommend [125]. In this chaptewill use three
MKL algorithms: SimpleMKL [126],¢, — MKL, developed in this thesis, and
SUpport vector Parsimonious ANOVA (SUPANOVA) [127].

Page 83



Section 4.2: Feature weighting methods

SimpleMKL In this algorithm, one obtains a linear combination of késne
by minimizing a functional cost with afy-constraint on the kernel weightg:
Wp, > 0 for allmand},,wyn = 1. These constraints produce sparse weights
thus giving interpretable feature selection.

To define the functional cost, we notice that each kekpélas a reproducing ker-
nel Hilbert spaceH,,. For any functionf € H,, one has< f,kn(X,.) >4 = f(X).

In particular, for any function of the following typ&(x) = ; @ikn(Xi, X), one has
||f||§{m = 2 i ajkn(Xi,Xj) = o' Kne. A.Rakotomamonjy [126] considers the
following optimization cost:

M M
L. fw) = Zl(yi,zfm(xi))mzwinfmn;m (4.6)
m=1 mel

S.t. Wp, > 0Vm, Z Wn=1 4.7)
m

If 1(.,.) is the hinge loss or the-insensitive loss, Rakotomamonjy et al. prove
that solutionfy, has the formfn(x) = X aiWmkan(Xi, X). With conventiond = 0,
the functional cost is define for all € [0, 1].

Rakotomamonjy et al. proves that the functional cost (4.@pis/ex, so it has a
unique minimum, which is global. They reformulate the fumicl cost:

min[Jw)] = mWin[min L(fl,...,fM,w)] (4.8)

f1,..fm

s.t Wn > 0Vm, Zwm =1 (4.9)
m

Existence and computation of derivativesJ¢f) are done in [126]. They ob-
tain the minimizer ofl(.) by a reduced gradient method, which converges for such
function [128]. OncévJis calculated, they use a descent direcWagJ assuring
thatw + sV ,¢qJ still satisfies the constraints (4.9). They perform linarsé to find
the optimal descent-step.

These reduced gradient-descent will givethe minimizer ofJ().

¢, — MKL | use the MKL framework of SimpleMKL, but | change the loss
function for the square error loss functibfy;, >, f(X) = (Vi = 2 fn(Xi))2. |
constrainf,, to have the formf,(.) = > &jwnk(X;,.). | minimize the following
functional cost:
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M M
L W) = D0 )P+ A i, (4.20)
i m=1 m=1 M
St fn0) = > @iWikn(xi, X), ¥Ym (4.11)

Wi > 0¥, Zwm =1 (4.12)
m

| alternatively optimize (a) ovewr with w fixed and (b) ovew with « fixed.
For the (a) step, | have a closed-form solution:

-1
a= (Z K + /lIdJ y (4.13)

For (b), | do a reduced-gradient descent. The functional €@$;, ..., fy,w)
decreases at each iteration and is lowerly bounded by 0,itloasmverges to a
local minimum.

SUPANOVA In this article [127], sparsity ofv is not assured by aw;-
constraint, but by af-regularization term. S.Gunn et al. minimize the following
functional cost:

2
Law) = [yi - e (Z wmkm(xj,xi)]] (4.14)
i m
+ha” (Z mem) @ + AWy (4.15)

Ss.t. Wy > 0Vm i (4.16)

They kept the positivity constraint am, S0}, Wmkn(., .) is still a semi-definite
positive function. Functional cost (4.14) is a quadratiohpem ina and inw.
They alternatively solve it forr with w fixed and forw with « fixed. For optimal
a, they have closed-form formula:

-1
a = (Zmem+/llld) y (4.17)
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Forw, they use an optimization algorithm for quadratic funcsiamder con-
strains [129].
S.Gunn and J.S. Kandola [127] proves convergence to a ghipainum by this
argument : “In the quadratic case the second order partraladizes with re-
spect to andw are always positive ensuring that every slice is convexs Tdut
combined with the knowledge that the solution is finiteriandw should ensure
convergence to the global minimum”.

4.2.2 Filtering methods

Many filtering methods are based on correlation and mutdainmation, see [130,
131] for comparative study of filtering methods. | will notgetiment with cor-
relation or mutual information-based filters, as they haserbused and improved
a lot for GRN inference, see section 1.4.1, page 26. In theviadg, | will test
kernel target alignment, a feature selection method whiek to find optimal fea-
ture weights for the classification or regression task. meshod should take into
account multivariate dependencies. | also implement RRgl&filter capable to
identify nonlinear dependency, and that was not tested RIN @G ference, to my
knowledge.

Kernel target alignment (KA)

This measure was first published in [132]. A classificationegrression problem
would be easy to solve if the input variablewere only the label to predigt = x;

for all i from 1 to N. In this case, the perfect predictor would simply be the
identity f*(x;) = f*(y;) = ;. Using a linear kernel, one would have the perfect
Gram-matrixK;.,. = yy" whose entries arfK;,,) =< %.y; >. Cristianini

et al. look for the best feature weighting to make the Grantim#,, close to
the perfect Gram-matrix. With feature weights the Gram-matrixK,, take the

values(Ky);; = k(w o x;,w o X;), whereo denotes the Hadamard produst,o

Xj = (Wl)(il, . .,prip). Noting < .,. ># the Euclidian scalar product between two
matrices of sizeN x N:

N
<A B>¢= ZA”B”' , (4.18)

ij=1

Cristianini defines the alignment between two matriegeandK*, as:
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<K, KITnear F (4 19)

ﬂ(K’ KITnear) = IK]IAIIK

I|near||

which can be interpreted as the cosine between the two mstiicthe employed
Gram-matrix is aligned with the perfect Gram-matrix, thedction function
should be easy to find. For the classification case, Crisfiamij132], shows
that the generalization error is bounded by JA(K,K? ) and that is has the
concentration property

Kernel alignment has been used for regression, in [133} wéntered output
y. =V — Y, with ythe mean of. In the regression case, kernel alignment still has
the concentration property.

In my experiments, | shall use a weighted Gaussian kernel:

linear

P
Kw(X, 2) = eXp[— Z wi(X — 2)2) (4.20)
i=1

and optimizew in order to aligneK,, with K¢
K*

Gauss

inear | @ISO suggest to aligK,, with
the Gaussian kernel that would be obtained with perfeaitinp

2
(K&ausd =e><p((y' Zy’) ) (4.21)

| follow the optimization procedure in [134], call&taled Alignment method
Starting fromwg = [1,...1]", | perform a gradient descent until | have found a
local minimum, see Algorithm 1.

RReliefF

This filter is employed to measure the quality of an attrieriatr the task of pre-
diction. First developed for binary classification [135R€lief” randomly selects
an instance of the training setS. It looks at the nearest instance of the same
class (nearest hit)) and of the opposite class (nearest misj, It evaluates the
distance between two instanaeandb according to attribute with the function
dist

the probability of the empirical estimate deviating fromitean can be bounded as an expo-
nentially decaying function of that deviation
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Algorithm 1 Scaled Alignment Selection
Starting valuesvy = (1,...,1)", Ag=0,n=0
ChooseK™ = KI>iknear/(3aussian

while | A, — An_1| > e do

Compute gradiend,,; = Vy, A(Kw, K*)

Obtain descent-step by line seargh; = arg maxeo 1] A(Kw,ng1» K*)
W1 = Wn + Tne10n+1

Ani1 = ﬂ(KWm-l’ K*)

n—n+1
end while
.. _ 0if a = bi . . .. .
dist(i,a,b) = { 1 otherwise if attributei is discrete, (4.22)
dist(i,a,b) = —BPL___ jfattributei is continuous.  (4.23)

MaXes Xi—MiNyes X;

A good attribute will have a large distance between the seddastance and
its nearest miss, and a small distance with its nearest dimdasure the quality
of each attribute in the vectav, Kim et al. initializew at 0,, randomly selech
instances in the training set and for each selected instawdé nearest hih and
nearest misa, incrementv according to:

Wi — W + % (dist(i, r,m) — dist(i, r, h)) (4.24)

This algorithm is given in Algorithm 2. An improvement of "Ref’ by selecting
thek nearest hit and miss, called "ReliefF” [136],is more robostoise and can
be applied to multiclass problems. Furthermore, it can berpmeted probabilis-
tically. Notingy; the label of instance, if all attributes are discrete, "ReliefF” is
an approximation of the ffierence between probabilities:

w, = P(dist(i,r,m)ly: # ym) — P(dist(,r, h)ly: = yn) (4.25)

Noting the probability of label dierencePgitry = P(Y; # Ym), the probability of
attribute distancé®gisr, = P(dist(i,r, m)) and the probability of label éerence
knowing attribute distanc®Byitryairr, = P(Yr # Ymldist(i,r, m)), equation (4.25)
may be extended following Bayes’s rule according to:
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Pait tviaif 1 Paitf, (1 - Pdifled‘”i) Pait, (4.26)
Pait v 1= Pairry

Wi

Inspired by equation (4.26), "ReliefF” has been extendec¢wassion problems
under the name "RReliefF” [137], . In aregression problemnibi@ns of nearest
hit or miss do not exist. Given a selected instanceith labely, and itsk nearest
neighbors,, ..., rywith labelsy,, ..., y« (&) Pgit fy €valuates how much the labels
vary (b) Pgirr, how much each attribute varies and g vairr, how much the
labels vary with a variation of the attribute. Robnik-Sikaet al. [137] suggest to
weight the influence of th@" nearest neighbor with functidn

1(j) = Z“Llji(f) wherel, is a method to weight the influence, (4.27)
11()) = 1 uniform weight, (4.28)
() = exp(— (i)) exponentially decreasing weight, (4.29)

Similarly to "ReliefF”, they randomly seleat instances of the training set.
They setPgirry = 0, and, for alli, Pgis;, = O andPgityiairs, = 0. Then, for each
selected instance, they identify thek nearest neighbons, ..., ry and perform
the following updates:

k
Paitty < Pdifry + Z L(DIYro = Y1l (4.30)

=
Paitr, < Paig + Z I (j)dist(i,ro,r;) (4.31)
j

Paittvdits, < Pditfydits + Z L(DIYro = Yr;Idist(i, ro, 1) (4.32)
j

Once these computations have terminated, they evaluatedights of each
attribute according to:

Paittvidits,  Paitf, — Paifvidies,
W= _ Pairs - 4.33
l Pait v N — Pgify ( )

This algorithm is described in Algorithm 3. For a study ofdhatical and
empirical performances of "RReliefF”, see [138].
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Algorithm 2 Relief algorithm

Given learning sef
Startingw = 0,
for £ =1tondo
Randomly select instancec S
Find nearest hih and nearest migs in S

fori=1topdo
w; = w; + dist(i,r,m) — dist(i, r, h)
end for
end for
Outputw

Algorithm 3 RReliefF algorithm

Given learning ses
StartingPgit v = O, Pgits, = 0, Puiftvairs, = 0
for £ =1tondo
Randomly select instaneg € S
Findk nearest instances, ..., rgin S
Paitry = Paitty + 251 1(J)IYro — )|
fori=1topdo
Pdiffi = Pdiffi + ZJ |(J)d|St(|, o, rj)
Paittvidit = Paitevigits, + 2 1(1)dist{i, ro, rjlyr, — Vi)l

end for
end for
W= Paiffviditfi  Pdif §—Paif fviit 1
'™ Puaitty n—Pgif ty
Outputw
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4.2.3 Embedded methods
Recursive Feature Elimination

One feature selection method iteratively eliminates thastlenformative fea-
ture [104]. Starting fronfF, the set of all features, one creates nested subsets
of features=o > F1 D - - D Fyjnq) until Fgin) is an optimal subset of features. To
identify the least informative feature, one can learn, Bwtefeature, a predictor
ignoring this feature, but this has a high computational cost. To avoid running
the learning algorithm many times, Le Cun et al. [105] sugtiesDptimal Brain
Damagealgorithm (OBD). A prediction functiorf;, characterized by parameter

a, is learned by minimizing a cost functialfa). To learn the importance of each
featurei, Le Cun et al. calculate the change in objective functidor a change

in parameter; = @; + h;:

o2 o hihy 2
— 2 aa-z L4 2 6ai6a,~
[ [ J#

3G +h) = I@) + Z hij—ji + +O(IIP), (4.34)

They suggest the following simplifications:

¢ the "extremal” approximation: they assumés an optimum of], therefore
8l _
2=

¢ the "diagonal” approximation: they assume that a changkby deleting
several parameters is close to the sum of changes cguseaﬂibiﬁlixally
deleting parameters. Therefore, they neglect cross-tg%js if j#i

e The "quadratic” approximation: the functional cost is neauadratic, so
they neglect the last term of the equation

Equation (4.34) thus reduces to:
Ja@+h) -J@)~ Y —— . (4.35)
i
A changeh; = —a; corresponds to removing featutrelThey denote by:

a? 92

DJ= 4o
' 2 9o

(4.36)
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the importance of featurie

Guyon et al. [106] apply this methodology to SVM with SVM-RREBganing
SVM Recursive Feature Elimination. In particular, for lin&/M, they obtain a
prediction functionf,(x) =< a,x > +b andD;J = o?. Starting from the set of all
featureF, they train a linear SVM. They eliminate time features with smallest
parameter;, ng being a number of features. They continue (a) learning atine
SVM on the remaining features and (b) removing the leastimédive features
until they have found an optimal subset of features. Theesponding algorithm
is described in Algorithm 4. | present later in this secticsy®/to determine the
optimal subset of features using several criteria.

For non-linear kernel methods, I.Guyon et al. compgite the Gram-matrix on
all features, and they have a prediction function of the form

far () = ) aike(x;, %) (4.37)
i=1

with ke the kernel function calculated with all features of BeWith « fixed, they
calculate the cost functiodif featurei was removed, with kerndt- ;. If feature

I is not important, the functional costwill have little change. The algorithm is
described in Algorithm 5.

In this chapter, | will use RFE with kernel-ridge regressising linear and Gaus-
sian kernel.

Algorithm 4 SVM-RFE for linear SVM
Input: training exampleX, = [Xy, ..., Xp] with labelsy = [yi, ..., Vil
Initialize remaining featureb = [1,..., p], feature ranked lisR = []
while F # [] do
Remaining training features = Xy(F, :)
Train the classifiew = SV M.train(X,y)
Find the least informative featufe= arg min w?

R=[F(f),R]
F=[F(1:f-1),F(f+1:end]
end while

Output: feature ranked lif
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Algorithm 5 SVM-RFE for non-linear SVM
Input: training exampleX, = [Xy, .. ., Xp] With labelsy = [y1, ..., Yn]
Initialize remaining featureb = [1,..., p], feature ranked lisR = []
while F # [] do
Compute the Gram matrir
Train the classifiew = SV Mnonlineartrain(Ke, y)
Find least informative feature = arg min J(Kg\ i, W)

R=[F(f),R]
F=[F@:f-1),F(f+1:end]
end while

Output: feature ranked lift

KerNel Iterative Feature Extraction - KNIFE

This algorithm performs feature selection by weightingregeature in the ker-
nel. One chooses a kernel functibn Two instance, z are compared with the
weighted kernek,(X,z) = k(w o X,w o z), where (v o X); = w;X. This feature
selection idea was described in [139, 140]. In the KNIFE atgm [141], the
following cost is minimized:

minL(a,w) = Ly,Kya) + Aia'Kya + Ao|lwWl|q (4.38)
a,W N———— — ~————
loss function « regularization w regularization
subject to Okwj<l forallj=1...p. (4.39)

The ¢;1-regularization produces sparsity in the feature-weightsThe func-
tional is minimized by alternatively optimizing with w fixed and optimizing
w with a fixed. Optimala is found via standard SVM algorithms. To op-
timize w, Allen et al. [141] consider the linear approximation of tGeam-
matrix around current feature-weight estimatio?, Kij = Rw(xi,x,-) where
ko, X) = Kyo (6, X))+ < Vkyo X, X),w — w® > They minimize a convex
surrogate cost function:

minL(a,w) = L(y, Kw, @) + 110" Kya + 2]l (4.40)
w
s.t. O<w;<lforallj=1...p (4.41)

Allen proves that this algorithm converges to a local mimmfor several loss
functions: the hinge loss (support vector machine), sguareor loss (kernel-
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ridge regression) and binomial deviance loss (logisticaggjon).

| shall use this algorithm with the squared error loss andGlaessian kernel.
Note that, since the algorithm scales the inputs withthe kernel bandwidtlr
is no longer an hyper-parameter. There remains only two yaemeters, the
regularization parametens andA,.

Algorithm 6 KNIFE algorithm
Input: training exampleX = [Xy, ..., X,] with labelsy = [y, ..., V]
Randomly initialize weights & w©® < 1, sett = 0
while [w® — w3, > e do
Compute, with a SVM algorithmy® = arg min, L(y, Kyo) + 21" Koo
t=t+1
Compute, by gradient descent?) = arg min, £(a, w)
under constraints @ w < 1
end while
Output: weight of all features

4.3 Hyper-parameter selection method

The described feature selection methods often require doyper-parameters,
be it the Gaussian kernel bandwidihor a regularization parametgi, A, €. |
present several methods to determine hyper-parametersvailich that the trained
prediction function would generalize well. Then, | will negrify that the predic-
tion function generalize well, | check if the feature sel@etmethod selected the
genes that regulate a target gene.

Given a feature selection method witthyper-parameters, | define a finite set of
valuesA; that hyper-parametercan take, notinge € (A X --- X A) a value of
hyper-parameters for the feature selection method.

4.3.1 Cross-Validation (CV)

Given a valueu for the hyper-parameters, the goal is not to measure thétyjual
of the prediction function on the training set but on new belad data, usually
by means of the generalization error. Cross-validation esafrthe most popular
methods to evaluate the generalization error [142]. Torege the generalization
error, | performk-fold cross-validation. The training dats is partitionned in
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k equal size sets, the subsamp@s. ..,E. One subsampl€&; is kepts as the
validation data to test. Denotinfy; to be the prediction function trained on the
k— 1 remaining subsamples, the mean square eM& E) is evaluated according
to:

1 -
MSE= — - 1) . 4.42
S |&I(X%E]&(y ) (4.42)

For each choicg of hyperparamaters, tHdS Eis obtained on each subsam-
ple, using a function trained with hyper-parameten the other subsamples. The
value ofu for which theMS Eis the lowest is selected for the hyper-parameter.

4.3.2 Stability

Breiman [143] points out that, since cross-validation dslechyper-parameter
value on the training data, tidS Emay be greatly underestimated by this proce-
dure when the dataset is not large enough. He suggests dioniagtable model

if we have few data - which is typically the case in gene reijuenetwork infer-
ence. If a small variation in the training data leads to gigant changes in the
prediction function, the model is unstable, hence it is ebable.

To evaluate the stability of a method with hyperparametéuwe/a, | follow the
procedure in [144]. | creates = 50 subsamples of the training d&l&t,, . . ., &n,.
Each subsample uses a fractibn= 80% of the training data. Denoting; be
the feature weights of the model trained on subsangpleThe stability of an
algorithm with hyper-parameter is evaluated a the mean alignment of feature
weights, whose definition is in equation (4.19):

2 Ns Ng
stab= ——— A(Wi, Wi 4.43
ns(ns_l);j;l (Wi, W) (4.43)

| select the value of the hyperparametefor which the feature selection
method has the highest stability.

4.3.3 Block-Stability

Politis et al. [145, 146] observe that this stability evaiomtreats data from train-
ing set as if they were independent. When the data is a timesse¢he data
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samples are not independent. To get around this limitatioely introduced a
block-stability procedure, that takes into account theethelence of data. After
having selected a block-sizeand randomly chosen an integee [1, n], | build
subsampl&; = (X, Xr+1, - - - » Xg+bymod n) Of the training sesS = (X4, ..., Xn). Given
subsampleg, ..., &, built with the block-stability procedure, stability is the
calculated as in the previous method.

4.3.4 Bayesian and Akaike Information Criterion

The fewer parameters a model has, the less likely it is tofibtlee data. From this
observation, Schwarz [147] developed a criterion for dglgdyperparameters,
consisting of the likelihood function and a penalty termtfoe number of parame-
ters in the model. Assuming that the model errors are ind#gr@rand distributed
according to a centered normal distribution, and denoting:

N
=21 0 1)) (4.44)
i=1

the empirical variance of the model errors, he measureskigihbod of observ-
iINg Vi, ...,Yn given the modef (X, ..., Xy) by:

N

L ))2
pyIf) = | = eXp((y' f(Xu))) (4.45)

~2
i=1 /2152 20¢

He looks for a model that maximizes the probability of obaéibpnsy under
model f while minimizing the number of free parameters. In my case number
of free parameters is the number of features used in the m@k=iotingk the
number of used features,e. features for whichw;, > 0, | aim to minimize the
Bayesian Information Criterion:

BIC

—2log(p(y|f)) + klog(N) (4.46)
= Nlog(G2) + klog(N) + Constant (4.47)

The Akaike Information Criterion [148] relies on the samesidé maximizing the
log likelihood of observed data while minimizing the numbéfree parameters,
and is given by this formula:
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AIC

2k — 2log(p(y|f)) (4.48)
= 2k+ 2Nlog(de) + Constant (4.49)

4.4 Experiments

The experiments are carried out using the DREAM3 Challengeal dascribed
in Chapter 3. Performance will be evaluated for AUROC and AU&ined in
Chapter 3.

4.4.1 Hyperparameter selection

The methods have been tested with hyper-parameters inltbwifty sets:

e For SimpleMKL, regularization tradéoC € {0.01,0.1, 1,10, 100, e-
insensitive losg € {0.01, 0.05, 0.15} and kernel bandwidth- € {0.5, 1, 2}.

e For ¢, — MKL, regularization trade® A € {0.01,0.1,1, 10,100} and kernel
bandwidtho € {0.5, 1, 2}.

e For SUPANOVA, a regularization trade® 1; € {0.01,0.1,1,10,100}, w
regularization trade® 1, € {0.01,0.1, 1, 10, 100 and kernel bandwidthr €
{0.5,1,2}.

e For KNIFE, a regularization traded 1; € {0.01,0.1, 1,10, 100t andw reg-
ularization tradefy 1, € {0.01,0.1,1, 10, 100

e Forkernel target alignment and RReliefF, there is no hypeapater to set.

e For RFE, regularization tradéal € {0.01,0.1, 1, 10,100} and the number
of used features to model target géne|[1, ..., p]. For the number of used
features, stability is irrelevant, it will always use aletfeatures. Thus the
selection of hyper-parameters must be performed througgseralidation,
BIC or AIC for RFE methods.

The performance of a feature selection method with a hypeapeter selec-
tion criterion greatly varies with the network studied, $eégure 4.1. For each
feature selection method and for each size 10 network, | céenghe correlation
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Performance of SimpleMKL on EColi1 Performance of SimpleMKL on EColi2
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Figure 4.1: For SimpleMKL, values of the pointM§g E evaluated by cross-
validation, AUROC) for the dferent values of the hyper-parametein the pre-

defined set. The AUROC appears to depend more on the datasethi hyper-

parameters. Second, the shape of the distribution of thegaaries greatly from
one network to another. Cross-validation does not seem to ¢p@od hyper-

parameter selection method when SimpleMKL is used for tkk td network

inference.

between the performance of the feature selection methodtendalue of the
hyper-parameter criterion. The average of this corratataross all networks, is
shown in Tables 4.1 and 4.RIS E BIC and AIC should be negatively correlated
with AUROCor AUPR stability and block-stability should be positively corre
lated.

First, we note that too few examples are available to be abdenclude that any
hyper-parameter selection criterion is good. We can calecthat most criteria
give poor results, no better than what would be obtained antleducated guess.
Second, the correlation is highly unstable. P~ MKL and for AUROC, one
would rather use stability than cross-validation: st&pihias lower correlation
(0.44 against-0.54Y, but the standard deviation of this correlation is much lowe
(0.16 against (4). Third, for RFE, the BIC criterion seems more relevant than
other methods, even though the results have a high variance.

2Note that stability should be positively correlated to periance, and MSE negatively corre-
lated. So a correlation 6f0.54 for MSE is a better result than a correlation agfDfor stability.
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FS Method | CVMSE | Stability | Block Stability BIC AIC
SimpleMKL | 0.1+0.48 | -0.35:0.15| -0.49:0.08 | -0.06:0.14 | -0.02+0.14
> — MKL -0.54+0.34 | 0.44+0.16 0.43:t0.1 0.47+0.36 | 0.45:0.37
SUPANOVA | -0.230 | -0.06:0.1 | -0.02+0.07 0.22:0 -0.22+:0
KNIFE 0.24:0.18 | -0.04+0.5 -0.21+0.5 | -0.01+0.42| -0.01+0.42
RFE linear | 0.14:0.93 - - -0.4+0.35 | -0.09:0.81
RFE Gaus 0.01+0.7 - - -0.27+0.51| 0.25t0.53

Table 4.1: Correlation between various hyper-parametecseh criteria and the
AUROC for six feature selection methods for network infe@nThe values dis-
played are the mean standard deviation over size 10 networks. The best hyper-
parameter selection criterion for a feature selection ogth shown in bold. For
SimpleMKL and KNIFE, the criterion is either wrongly cora¢ééd with the feature
selection’s performance or the correlation is close to 0.cdfeclude that none of
the considered hyper-parameter selection criteria wordbkimthis context.

FS Method | CV MSE Stability | Block Stability BIC AIC

SimpleMKL 0+0.36 -0.3£0.22 -0.45:0.16 | -0.05+0.18 | -0.08+0.26
¢, — MKL -0.03:0.41| -0.06:0.32| -0.03:t0.27 | -0.06:0.43| -0.07+0.43
SUPANOVA | 0+0.04 | 0.05:0.17 0.06:0.12 | -0.02£0.05 | -0.01+0.03
KNIFE 0.19£0.21 | -0.09+0.62| -0.25:0.58 -0.08:0.4 | -0.08:0.4
RFE linear | 0.27:0.97 - - -0.48:0.68 | 0.05£0.96
RFE Gaus | -0.19+0.63 - - -0.28+0.55| 0.19+0.57

Table 4.2: Correlation between various hyper-parametecseh criteria and the
AUPR for six feature selection methods. For every methoRiti, the criterion

is either wrongly correlated with the feature selectiorgsfprmance or the corre-
lation is close to 0. For RFE, the BIC criterion seems the maéstaat, but is also

highly unstable.
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AUROC EColil | EColi2 | Yeastl| Yeast2| Yeast3| Avg time (sec)
SimpleMKL | 0.66 0.36 056 | 054 | 051 2726.17
{, — MKL 0.65 0.41 049 | 057 | 0.63 200.78
SUPANOVA | 05 0.5 0.5 0.5 0.65 104.83
KNIFE 0.61 0.57 0.65 | 045 | 0.33 3842.98
KA Gaus 0.58 0.54 043 | 0.62 | 0.53 0.45
KA Linear 0.36 0.44 0.47 | 0.48 | 0.34 0.54
RReliefF 0.5 0.53 054 | 049 | 0.54 0.86
RFE Linear | 0.36 0.58 048 | 0.61 | 0.57 0.39
RFE Gaus 0.5 0.5 0.5 0.5 0.5 9.02
Team 236 0.62 0.65 0.65 | 0.44 | 049 -
Team 190 0.57 0.52 0.63 | 0.58 | 0.60 -

Table 4.3: Results in AUROC of nine eleven feature selectiethods and two
DREAM competing methods on Size 10 networks. The best penfgrmethod
on a given network is highlighted in bold. The last columnegivthe average
computational time on one network for the whole testing pssd.e., computing
each hyper-parameter selection criterion and calculatindel for each selected
hyper-parameter)

4.4.2 Performance on sizd0 networks

The performance is assessed by AUROC, AUPR and the commabtime. For
SimpleMKL, SUPANOVA, KNIFE, hyper-parameters have beefested with
cross-validation, as no method stands out. Stability has beed for, — MKL;

BIC for RFE.

For AUROC, results are shown in Table 4.3. No method is conypetn all net-
works. Many methods underperform random guessing (AUROGO0) on some
dataset. For AUPR, results are shown in Figure 4.2. The SURANEN RFE
Gaussian methods stand out. We also see that these metleattsngpetitive on
these few experiments.

Computational time is given in Table 4.3. Given a network,tthee given is the
sum of the time to calculate every hyper-parameter selectierion, and com-
pute the prediction functior for the selected hyper-parameters. Filter methods
(KA, RReliefF) are considerably faster, as expected, but thE Riethods are
competitive.f, — MKL and SUPANOVA are executed rather quickly, and can be
applied to size 50 networks. The computational time of SeiL and KNIFE

Is too large to be able to apply them to size 50 networks indtudy.
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Results on DREAM3 Size 10 networks
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Figure 4.2: Top: Comparison of the AUPR of described methadshe five
size 10 networks. Bottom: Comparison of the AUPR of RFE GaussiahSU-
PANOVA to best competing teams in DREAM3 Challenge
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Kernel Feature Comparison with
Selection method competitors
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Figure 4.3. Comparison of kernel feature selection methad®REAM 3 Size
50 Networks

4.4.3 Performance on siz&0 networks

AUROC and AUPR on all networks are displayed in Figure 4.3scA$hown

in this figure are the two best kernel feature selection nushagainst the two
best competitors of the DREAMS3 challenge. We see that MKL is the best
performer in AUROC on all five 50-gene networks. In AUPR, thei&san kernel
alignment prevails. Performance is still poor, and comjpanatime will be a
burden for’,— MKL on size 100 networks. As we shall see in Chapter 5, ensemble
methods will enable the use 6f — MKL for networks of size 100 or more.

4.5 Conclusion

Gene regulatory network inference from gene expressioa tkatan active
research field, that will increasingly benefit from the alamzk of data in
the coming years. Many approaches to GRNI have been explbtedsernel
feature selection methods has so far been neglected. Imvihnls | tested nine
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kernel feature selection methods, and five hyper-paransatiection methods
on realistic datasets. The results show the limitationshe6¢ methods. No
hyper-parameter selection method seeffisient, except BIC for RFE methods,
which would need further testing to be validated. Some nuhare too
time-consuming to be directly applicable to real-size meks. This comparative
study also gave some positive indications for constructimeghods that would
give better resultst, — MKL and Gaussian kernel alignment appeared to extract
more information for inference of GRN. This motivated the amtement of
the £, — MKL method, in particular its enhancement by ensemble methods.
Learning the network on many subsamples of data usuallylyibktter result
than learning one network on all data [41]. In the followirttapter, | will show
that an enhanced — MKL method yields state-of-the-art results on real networks.

Page 103



Section 4.5: Conclusion

Page 104



Chapter 5

LocKNI: Local Kernel for Network
Inference

5.1 Introduction

Local kernelsvere motivated by several reasons. First, kernel methoalsndth
several dificulties of gene modeling, since they are robust-to-nois®y; provide
a nonlinear model, and the versatility of the loss functitboves incorporation of
prior knowledge. We saw, in the previous chapter, that MKL usinglocal ker-
nelsprovided some of the most interesting results in GRN infeeemong kernel
feature weighting or feature selection methods, theretbre method will be im-
plemented with the ensemble method described in Chaptereh @vsmall scale
networks, ensemble methods will increase the performahtteedRNI method.

| shall call LocKNI the alliance of, — MKL, local kernelsand the double ran-
domization scheme.

Original contributions can be made when usilegal kernelsin the regular
¢, — MKL framework. A simple modification of the loss function intros
prior knowledge in the regularization framework, thus impng LocKNI's re-
sults. Besides, since they rely on a few featutesal kernetbased models have
sparse gradients, thus have more interpretable partistatiees. The drawback
of these local models is that they are no longer universalcé¢hey may be un-
able to approximate well the partial derivatives of a perfeadel. In this chapter,
| first describef, — MKL and its modification to incorporate prior knowledge.
Second, as in Chapter 3, | use randomiZgd MKL models withlocal kernel
in an ensemble, exploiting a double scheme of randomizéioth on variables
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and on data. In the fourth section, | explain the chosen Ipgrameter selection
method. In the fifth section, | compare, on real and realesmetworks, LocKNI
without prior knowledge with state-of-the-art methods. |[doaevaluate the par-
tial derivatives of LocKNI as a GRNI method. There will alsodeéiscussion of
LocKNTI’s strength and weaknesses: how does it behave cadparother GRNI
methods ? What types of error does LocKNI make ? In the fifth@eckpropose
two reasonable priors that may be incorporated in LocKNIill t@st, on simu-
lated data, the improvement in LocKNI’s performance witbarporation of prior
knowledge.

5.2 ¢, — MKL and Prior Knowledge Incorporation

5.2.1 ¢,- MKL

We saw, in the previous chapters, that two types of trainat@d = (X, ..., Xp)
may be available, to learn either a static or a dynamic model:

X =  flx)+€  static model, (5.1)
X(t+7)= fi _(x7(t)+€() dynamic model. (5.2)

|

dynr
These models can be estimated with supervised learning ook training set.
With the general notatio®® = ((zy, Y1), ..., (Zn,Yn)), Z being input variablesy
being an output variable to predict, a functipn= f(z) + € is learned on the
training set. This notation will be used to describe therewy algorithm.
In the previous chapter, a multiple kernel approach waseptesl, usingocal
kernels i.e. kernels that use only one component of an input ve&gg,, z,) =
k(Z", Z'). We saw how a linear combination of these kernlls; .., Wik, could
be learned, by optimizing the weight The functionf and weightsv are found
by minimizing the following functional cost:

N M M
Lwa) = D0 @)+ AY i, 53)
i=1 m=1 m=l M
M
st. (€)1 ) Wn=1 Wy>0, Vme{L,...,M} (5.4)
m=1
fn(2) = ) aWinken(2,2) - (5.5)
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This function can be optimized by alternately optimizifiw, aixeq) OVErw
whenq is fixed and optimizingl(Wrixeq, @) Overa whenw is fixed. Withw fixed,
the minimum is obtained in closed-form as:

= (K. +ay1ty (5.6)
with K, = ZWme (5.7)

andly is theN x N identity matrix. Witha fixed, w is optimized through reduced
gradient descent [128].

5.2.2 Prior knowledge incorporation

As kernel-based models result from the minimization of @uaiglobal loss func-
tion, they benefit from the possibility of taking prior knaudge into account in
the definition of the loss function. In order to incorporateassumption of the
existence of a regulator, | propose to relax the sparsitgttaimt imposed on the
weightwy, by dividing A by a codficientA,,. If prior knowledge hints that gena
should be a regulator gemel,, would be set larger than 1; if prior suggests that
m should not be a regulatot,, < 1:

N M M
2

Lowa) = > e= D @)+ ) il (5.8)
=1 m=1 m=1 Cmm
M

st. Zwmzl, Wi >0, Yme {1,..., M} (5.9)

m=1
fn(2) = ) aiWinkn(i,2) (5.10)

As in Section 5.2.1, this function can be optimized by akety optimizing
L(W, atixeg) OVErw with «a fixed and optimizingL(W+ixed, @) Overa with w fixed.
With w fixed, the minimum can be expressed in closed-form as:

a= (K24 aKPe) T (Kuy) (5.11)
with Ko=) WK (5.12)
m
> prior __ %
and R = ) oK (5.13)

m
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With « fixed,w is optimized through reduced gradient descent.

5.3 Ensemble method

We saw, in Chapter 3, an ensemble method to learn the GRN froenadénetero-
geneous datasets. From available dataggtE, . . ., Ey,), | build B subsamples
&Ee, | = 1...B, with subbaggingand subsampling of variables, in a way similar
to extreme-randomizatiofl01]. Subsamples are built according to the following
procedure:

1. Randomly choose from which datadet to extract data. The proba-
bility p(E,) of choosing dataseE, is proportional to its sizep(E,) =
IEJl/(Z)%, |E]). Let E, be the selected dataset.

2. Each data vectox; of E, has probabilitypgaiay t0 be in subsamplé&,. To
obtain subsamples of similar sizg®gay iS taken inversely proportional to
E,’s size. Assuming, without loss of generality, tligtis the largest dataset,
| have fixedpgatau = pdataE_S’ with pgata @ fixed hyper-parameter.

3. Randomly seleat,,, variables to be the potential regulators of the system.
The numben,, is a hyper-parameter to fix. The set of selected variables is
calledg,.

To learn the importance of genesgh for all the other geneson subsample
&, the mean vote for a regulation of genby genem is computed as the mean
weightw! . of featurem when predicting genewith £, — MKL andlocal kernels
Mean votes are stored in matiix

1
Bm=—

[ w'm) , (5.14)
Mim \ ¢ meGri¢Gen

with ni,, the number of subsamples where gemgas a potential regulator and
genei was not. The estimated adjacency matrix can then by obtdipedresh-
olding matrixB:

Aim = H(Bim - 9) (5-15)

whereH is the Heaviside step function.
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5.4 Experimental results

5.4.1 Hyperparameter choice

The chosen kernel function is the Gaussian kernel

(z- 1)2)
202 |’

k(z 2) = exp( (5.16)

which has the advantage of being widely used, with good padiaces in practice
and universal consistency. Four hyperparameters remée set:

¢ | select the kernel bandwiditr = 1, as | have normalized the empirical
variance of the data to 1, and the Gram matrix achieves mawiemiropy
wheno matches the empirical standard deviation.

e Experiments have shown that the subsampling parametgrsand pyata,
have little influence on the capacity of LocKNI to recogniziges. Since
LocKNI is faster with smaller subsamples, | g4 = 5 andpgata = 0.20.

e Forthe tradefi 1 between regularization and data fitting, | also use a heuris-
tic. With a sampleD of sizeNy, it can be shown that kernel-ridge regression
is consistent ift = 1/ v/Np [96].

We can consider that convergence has been reached_witﬁ%) subsamples.
For each regression, computational complexi®(s %) for each variable of each
subsample. There atesubsamples ang variables, computational complexity is

O(L p( pdataN)S)-

5.4.2 Datasets

The evaluation of LocKNI will be two-fold. First, it is evadiied without integra-
tion of prior knowledge. LocKNI will be compared to statetbe-art methods
on four real and real-sized networks. The datasets are stir@dan Table 5.1.
TheJacmeasure will be used on LocKNI’s model as a second approaGiRtel.
LocKNI's strength and weaknesses will be studied on siredlaata. LocKNI's
error will be categorized. Then, LocKNI is evaluated witiopinformation on a
simulated dataset. The purpose of this assessment is tondénatte the benefit of
incorporation of prior knowledge to the reverse-enginmegapproach.

For evaluation against state-of-the-art methods, thetfiree datasets come from
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Network #TF p N | Nayn

DREAMS Network 1 (in-silico) | 195 | 1643 | 805 | 463
DREAMS5 Network 3 E.Coli) 334 | 4511 | 805 | 463
DREAMS Network 4 S.cerevisiap| 333 | 5950 | 536 | 298
E.Coli 169 | 4297 | 466 | 186

Table 5.1: Characteristics of the datasets. # TF is the nupfljgotential regula-
tors, p is the number of target gendy,is the number of data in the training set,
Nayn IS the number, among theskdata, that are part of a time-series.

networks DREAM 5 N1 DREAM 5 N3 DREAM 5 N4 EColi
AUROC AUPR| AUROC AUPR| AUROC AUPR|AUROC AUPR
LocKNI 78.7 25.54| 65.6 7.68 51.43 1.98 | 65.11 8.56
Jac 71.89 8.64 | 63.19 3.47 | 5257 221 63.5 5.75
JadLocKNI) | 52.22 9.33 | 60.97 416 | 55.99 232 | 62.77 5.70
GENIES 81.5 20.1 61.7 9.3 51.8 21 64.04 6.04
TIGRESS 78.2 30.1 59.5 6.9 51.7 2.0 64.54 3.98
CLR 77.3 255 59.0 7.5 51.6 2.1 63.26 6.59

Table 5.2: Performance of GRN inference methods measuredUyQ and
AUPR in percentages on DREAMS5 Network 1, 3 and 4, ande@oli, for which

the data is fronM3D and the gold standard is from RegulonDB. The best results
are shown in bold font.

the DREAMS challenge [41], as described in Chapter 3 and thegHdtom the
Many Microbe Microarray Databas&@D) [149] (EColi version 4 build 6). For
EColi from M3D, the gold standard is the currently known network available
RegulonDB v8.1 [150].

For the DREAMS datasets the network inferred by LocKNI is caneal to the
best networks inferred in the challenge. ForB@oli dataset fronM3D, LocKNI
Is compared to three of the best methods in DREAMS5, namely GBIi8], CLR
[27] and TIGRESS [45], with their MATLAB implementation antdeir default
parameters.

Table 5.2 shows the performance of LocKNI compared to thdé$eENIE3,
TIGRESS and CLR, and other methods presented in this thekasfrom Chap-
ter 3 andJaqLocKNI), the GRN inference through the partial derivativefs
LocKNI. On network N4 from the DREAMS5 challenge all the metkquerform
equally and just slightly better than a random guess in terf#8JROC. Such a
result suggests that this network inference problem is tfiwdlt given the avail-
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able data.]/a\c(LocKNI) has better performance on this dataset, b @SAUROC
is close to random guess. OveralgoLocKNI) performs poorly. As LocKNI has
a performant feature selection, LocKNI's model should givere weight to the
partial derivative of relevant features than a Gaussianeéterdge regression. We
see that, in practice, this is not the case. It seems that imfiehmation about
partial derivatives is lost by the additive model.

Results on the other networks are of greater interest. Alhods perform signif-
icantly better than a random guess (e.g. an AUROC of 50%). éwbdlk 3 and
E.coli, LocKNI achieves the best performance in terms of AUROC, exgpac-
ing GENIE3 in terms of AUPR foE.coli. On network 1, GENIE 3 leads over all
other methods for the AUROC, while TIGRESS performs the besbraling to
AUPR. Overall, LocKNI achieves state-of-the-art perform@and improves it in
two cases. From these comparisons follows a new questias tthe prediction
of LocKNI differ from the other methods? Can we benefit from that by including
LocKNI in a consensus method that will gather predictionshef whole set of
four methods?

5.4.3 Network inference by consensus of methods

As in Chapter 3, consensus of GRNI inference methods is useg:consen-
sus (C) consists of all competing methods, a second consé@sli$ consists

of LocKNI and all competing methods, a third oneH} consists oflac and
competing methods, and a fourth consensusL(€]) consists of all competing
methods, LocKNI andlac together. On the DREAMS datasets, the competing
methods are the 30 best contestants’ submissions; db.@ai dataset, the com-
peting methods are TIGRESS, GENIE3 and CLR. Results are shovabie 5.3.
Interestingly, AUROC is always improved by including LocKiN the ensemble.
However this improvement is small, approximately 1%, exéepNetwork 3 of
the DREAMS challenges. In this case LocKNI outperforms adl tther methods
and also provides improvements when combined with the emusemodels. This
improvement is obtained while being one vote out of thirthiieh indicates that
LocKNI grasps diferent information than the other methods.

Note that consensus with LocKNI is usually better than cosss withJac This

is coherent as LocKNI is a better method on these datasetsertieless, on
EColi, the network where LocKNI is the best in AUROC and AUPR, corsen
sus withJacoutperforms the one with LocKNI. This shows that complerasnt
methods are necessary for the consensus approach. Besdesall methods
(C+L+J) shows little improvement over adding LocKNI dacto the consensus.
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networks DREAM 5 N1 DREAM 5 N3 DREAM 5 N4 EColi
Method AUROC AUPR| AUROC AUPR| AUROC AUPR | AUROC AUPR
Consensus

C 80.89 32.65| 64.94 8.99 | 52.02 2.24 | 66.06 5.94
C+L 81.31 31.82| 73.11 8.68 53.64 229 | 66.47 5.76
C+J 81.23 31.81| 72.78 8.75 | 53.58 2.30 | 67.93 5.99
C+L+J 81.30 31.83| 73.03 8.72 | 53.44 225 | 6794 5.96
Best-of-Single| 81.5 315 65.6 9.3 55.99 232 | 65.11 8.56
algorithms

Best algorithm|  G3 TIG L G3 Jaql) JadlL) L L

Table 5.3: AUROC and AUPR in %. Performance of Consensus Mietinst
with competing methods (C)—competing methods are GENIEGRESS and
CLR on ECaoli, all DREAMS5 contestants on the DREAM5 dataset—, second,
also including LocKNI (G-L), third with competing methods anthc on Gaus-
sian kernel-ridge regression{Q), and, finally, consensus with competing meth-
ods, LocKNI andJac (C+L+J). The best results are shown in bold font. In the
“best algorithm” row, “G3” stands for GENIE3, “TIG” for TIGRES, “L” for
LocKNI and ja\dL) for the network inferred by the partial derivatives ofeth
LocKNI model.

It seems that, individually, LocKNI anﬁ&:bring complementary results to other
methods, but little seems to be learned by using both LockidIZac. The con-
tribution of LocKNI andJacis similar, probably because kernels would capture
information that wasn’t identified before.

Following Marbach et al. [41], | perform PCA on the contessaptedictions to
see which methods were close to each other (see Figure KNI stands out
as yielding diferent results from other approaches. The improvements R&U
are obtained nearly without degrading AUPR.

5.4.4 Error analysis on Network N1

As LocKNI differs from the other network inference methods, thedent types
of errors are studied here, following the categorizatidromuced in [45]:

e areverse edgeneans that a regulation froimo j is inferred instead of the
regulationj — i,

¢ siblings LocKNIinfers a link fromi to j because those genes are related
through a third gene. Genel may be d‘grand-father” of j (i —» z — j),
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PCA methods on all DREAMS5 networks
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Figure 5.1: PCA on the prediction vector of all methods. FOD&EAMS5 net-
works, one method’s prediction is the rank it gives to eatéraction, from most
likely to least likely.

a“grand-son” (j —» z — i), a“brother” (i <« z — j) ori andj may be a
couple { = z« ),

e great-siblings genes and|j are connected through two other genes,
e others alllinksi — j which do not belong to any of the previous categories.

LocKNI’s errors were inspected on the simulated dataset (BRE Network 1),
where the class of each error can be determined. The ROC otialetypes of
targets is shown in Figure 5.2. For a category, suckeasrse edged look at
precision and false positive rate of LocKNI's prediction donsider thateverse
edgeswithout true edges, were the links to find. If LocKNI regiyamade one
type of mistake, then the area under the ROC curve for thesgoay would be
high. Figure 5.2 shows that LocKNI’s errors are rather wellanced. It has a
small bias towards selectirgiblingsrather than other edges. LocKNI seems as
sensitive tagreat-siblingsas it is toothers Note that LocKNI appears to identify
directionality well, ageverse edgeare rarely selected.

5.4.5 Incorporation of prior knowledge

As shown in section 5.2.2, in addition to being able to re&ieretworks from the
experimental data, LocKNI inherits from the regularizatitamework the ability
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Dream 5 network 1, predictions from LOCKNI
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Figure 5.2: Types of links inferred by LocKNI for DREAMS5 netwkol.

to incorporate prior knowledge. A simple way to include eride about a regu-
lation j — i consists of setting the hyperparametein Eq. 5.8 according to the
available information.
In knock-out or knock-down experiments information abous&nce of connec-
tions between genes are close to being elucidated. One feaithat geng regu-
lates gene if genei is very perturbed in gengknock-out experiments. This can
be measured by Z-scores [37]. L&}, be the mean of geriés expression level in
wild type experimentsg,, be its standard deviation in these experimentsp;}nd
be its mean concentration in gefis perturbation experiments. Pinna et al. [37]
define the metric:
| |
VVij _ ,Llj i:uwt ’ (517)
O wt

which has given very good results for network inference atisgcally simulated
datasets [82]. For prediction of target gané normalize the sparsity constraint
by dividing A by the weight1; = |W;]| if the experiment with geng knocked-out
is available1; = 1 otherwise.
| examine the algorithm behavior with prior knowledge on mited size
DREAMS3 network of 50 genes, where knock-out’s are systerabyiprovided.
The data set consists of 21 time point measurements andaofysttate measure-
ments. In the first experiment, | measure average AUROC andRA\Obtained
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Figure 5.3: (a) Average AUROC versus the number of KO expemisy using
E. coli 1, in DREAMS challenge. (b) AUROC versus the number of chosén K
experiments, using. coli 1, in DREAMS3 challenge.

DREAM3 N1 Size 50, 1 module (no prior)| 2 modules| 4 modules
AUROC 52.8 70.2 79.5
AUPR 291 3.96 7.1

Table 5.4: AUROC and AUPR when prior knowledge about modxistence is
given (DREAMS network E. Coli size 50).

by LocKNI trained on available time courses and enhanced®)y24, 37 and 50
uniformly drawn single KOs out of the 50 total knock-outscdnporation of prior
knowledge significantly improves the performance. Howelies experiment is
very different from what a biologist would do. A biologist, expert e tstudied
biological system, would choose carefully the KO experitagn run by giving
preference to hubs. Figure 5.3 shows the results for anasitrg number of KO
experiments chosen according the number of known targetamscription fac-
tors of the system. Contrary to the previous experiment, vprovides average
results, this study shows how a biologist can improve drakyi performance of
a network inference algorithm by producing a very few websén KOs. Only 5
well chosen single KO experiments are needed to make AUR@QEhré8%.
Another aspect of networks is their decomposition into nkesluvhere mod-
ules correspond to groups of genes strongly connected inethdation graph.
Such an assumption is reasonably realistic and may be ebt&#mnsome cases
from gene ontology devoted to biological processes. Inraa@tegrate this hy-
pothesis, the sparsity constraint may be modulated figréntiating two kinds
of regulation weights in the models: the weights that com@atra-module edges
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Figure 5.4: Networke.Colilsize 50 from DREAM3

and those that concern inter-module edges. For each sutaskned on a given
subset and a target genehe sparsity constraint is relaxed by dividing the hyper-
parameterl by a parameten;: edges within a module are encouraged and for
them, 1; is chosen above 1 (for instance, 2 in the numerical resaltgduce the
effect of the sparsity constraint; edges between two moduiesatrencouraged
and sparsity is imposed with a larger strength by setlipng= 1. The network

of DREAM3 Size 50E.Colil and its decomposition in four modules is shown in
Figure 5.4. To decompose this network in two modules, | @eranodules 1 and

2 to be one module, modules 3 and 4 to be the other module. Bablehows
the drastic improvement provided when prior knowledge almoodule decom-
position become more precise: when using the assumptidrtidanetwork can
be decomposed into four modules, AUROC reacheS%%d the AUPR doubles
when a rough knowledge about modules (two modules) is redldy a more
accurate one (four modules).

5.5 Conclusion

| have proposed a new model-driven network inference methodKNI, that
learns sparse nonlinear models and then extracts an estrhite target regula-
tion graph matrix from estimated models. Interestinglis #ernel-based method
shares some features with linear approaches, such as thi@rregtion frame-
work, and some features with ensemble-based methods su@m@dsmization
on both variables and individuals. Compared to tree-baggatitims based on
the greedy and incremental minimization of a local lossh&kbased models are
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derived from the minimization of a global loss function undenstraints, whose
choice dfers some versatility. | show that the sparsity constraintisamodulated
according to the prior knowledge about existing edges. Hpoobabilistic and
Bayesian points of view, this is similar to choosingfelient variances in Laplace
priors of the model. In practice, evidence given by knockdata can be used to
relax the sparsity constraint on potential edges. Anotiret &f prior knowledge,
about the decomposition of the target network into modwdas,be easily incor-
porated by imposing a lower degree of sparsity within a medud encouraging
sparsity between modules. Another feature of LocKNI is teesatility it inher-
its from the property that kernels can be built using a cormambination of base
kernels. Using 1D projection kernels, as presented in Chdpfrovides a way to
select regulators. This can be further extended to joinilegmpns by considering
2D projection kernels, that involve pairs of regulators.
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In this thesis, | studied the gene regulatory network infeesproblem, from a
bioinformatic point of view. | attempted to develop machiearning tools to
extract information about the gene regulatory network (GRf)n gene expres-
sion data. This work started by noticing that many methodddeeen tried for this
problem, but kernel methods had received little attentidthough they have both
relevant theoretical advantages—they are nonparameulmjstness-to-noise;
they can estimate any function— and practical advantagesy—have low
computational costs and give good results in practice onyragplications—. |
have made two contributions: from a theoretical point ofwiehave shown that
the mean of partial derivatives is estimated consistentlgdme Gaussian kernel
methods; from a practical point of view, | introduced andaleped LocKNI, an
interpretable kernel method.

On real and realistically simulated datasets, | have obthimteresting re-
sults with Jac a new partial derivative estimation method, and statthefart
results with LocKNI. Currently, no method prevails in GRN irédace, a noto-
riously difficult problem. The best way to infer a GRN is to average networks
inferred by several methods. In my opinion, in this “laggesmallN” framework
with noisy data, combining various methods will remain tlestomethodology.
Even if one had the perfect model, it would not be well learnadsuch a hard
dataset. By using various models, each one makes error witsvay. Gathering
base learners that make independent mistakes would givedecfor that makes
fewer errors. This thesis was initiated by the idea that ésrgrasped an infor-
mation that could not be seen by other methods—for examiplead methods
cannot understand nonlinear behavior; tree-based modelsdp piece-wise
constant functions, and not the smooth functions that mayuldeusing kernels.
Jacand LocKNI substantially enhanced the network inferred hy ¢onsensus
of other methods. Besides, even if LocKNI appears more atetiatJac their
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contribution to the consensus are very similar, hinting the main informa-
tion gain was not obtained by the way kernels were used, bilitdoyse of kernels.

The methods introduced in this thesis may be applied to offteblems.
For example, these methods could be usefubiomarker discovery for breast
cancer prognosis Breast cancer prognosis is an important challenge, asrbette
prognosis can save lives. Studies have shown that genessiqonas relevant to
detect subclasses of breast cancer. Scientists have sddocrasignaturei.e. a
list of genes that contain prognostic power for breast candsing expression
data from healthy and ill patients, LocKNI could identify mysature, and be
added to other classification methods used on breast caragngsis. Another
example is thaifferentially networkingoroblem. One wants to identify subparts
of the regulatory network that change between healthy asdade-fiected
tissues. One could infer two networks using LocKNI, one oaltgy tissues,
another on diseasdfacted ones. The two networks could be compared.

Several improvements may be introduced. Bar, | used a very general
regression method: kernel-ridge regression. One may usgrassion better
suited to gene modeling. As long as this regression asyialigtfinds the true

model f and its partial derivatives are bounded asymptoticallg, rtrethod will

consistently estimate any continuous linear form of thetigladerivatives of

f. For example, N.Lim [77] uses partial derivatives of operatalued kernels.
His regression model learns a structured output, bettggtaddo gene dynamic
modeling.

LocKNI can be improved by adding prior information, as shownChap-
ter 5, using Z-score to weight potential regulators of agaggene. Knowing that
perturbational data are more informative than others, omgchange LocKNI to
use Z-score weighting if available, or to give additionaligte to perturbational
data. Because LocKNI has a functional cost and a simple amiion scheme
(solving a quadratic problem om and doing a gradient descent @), it can
easily be modified to take into account extra information.

Besides, this manuscript also contains several failed atensuch as us-
ing p-values to estimate the adjacency matrix, or trying unssefodly many
hyper-parameters selection methods. These results shoulek overlooked, as
they may provide information to further work on GRNI. The hyparameter
selection problem is strategic. Many GRN inference methbdese beforehand
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their hyper-parameters. Performances can be increaseshoaded by choosing
the right or wrong hyper-parameters. Yet, the most commgrehparameter
selection methods does not seem relevant for GRN inferenegb#&lthey need
adjustments. Maybe a new metric has to be created. Commaatiost is not
a limiting issue when using ensemble methods and evaluatiout-of-bag
samples, the computational burden is “only” multiplied Hye tnumber of
hyper-parameters to try. This idfardable with several state-of-the-art GRN
inference methods, and may substantially upgrade the migtho

Finally, many mathematical models have been tried for GRNerarice.
Many tools are available freely online (GENIE3, TIGRESS, CLRY@VA,
LocKNI, etc), in a ready-to-use format. An important impeovent will come:
more data will be available, thus increasing the size of #erling sets and
methods will be able to achieve a better identification oirtlegtimal model.
Maybe we will then reach the limits of the simplified view, netidg the
network only with genes, and scientists will have to incogpe all actors of gene
regulation (MRNA, protein, microRNA, etc). This seems far aweor the near
future, biologists have at hand powerful tools, and theigamt improvements
should occur by gathering data and using theses tools.
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Appendix: chapter 1

Bias-variance tradedf Considering that the loss function is the squared-loss
one, the expected true risk dfaccording to the distribution of the learning get
is given by:

BsR() = Es|Bp|(y- fo0)]| (18)
_ ES[EP[(e+f(X)—f(X) ” (19)

~ Es[Bple ”+E3[Ep[(f(x)—f(x)) ” (20)

+2Es |Bp |(1(x) - f(x)) €| (21)

As Ep[e] = 0 ande is independent fromx, Ep [(f(x) - f(x)) e] = 0. Leto?
be the variance of the noise = Ep[€”]. f* is the minimizer of the true risk, thus
Es[f()] = f*(x).

Bs(R() = o2+ Es|Bp|(F00 - 100 + F(x) - f‘(x))z]] 22)
= 0%+ Egp[(F(X) - 1(0)] + Esp [(f*(x) ~f (x))z] (23)
+2B5p | () = £ 09)(F(9) - f(x))] (24)

One can invert the integraton overS and %, SO
Es[Ep[.]] =Ep[Es[.]] =Ese[.]. f and f* do not depend on the learning
setS, andEg [f*(x) - f(x)] =0, so

Ese [(F0) = £00)(F (0 - f(x)]

Ep |(F(x) = F"0) Es [ 700 - f()]| (25)
=0

=0 (26)

So

Es(R(f))

Bpsle] + Bp (10 - 1°00)] + Bsp (100 - f0) | @7)
o2 + (biaisy + (variance) (28)
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Theorem 1 Representer theorem.

Let X be a nonempty set and k a positive-definite real-valued kem& x X
with corresponding reproducing kernel Hilbert spagge Given a training sample
(X, Y1), - .., (Xns Yn) € (X x R)N, a strictly monotonically increasing real-valued
functionQ : [0, ) — R, and an arbitrary empirical risk function L (R x R)N —

R U {0}, then for any f € H satisfying

f = arg minL ((ys, (xa)). .. (yn. () + QQUITID (29)

f admits a representation of the form:

N
f() = > aik(,x) (30)
i=1
witha; e Rforall1<i<N

Proof. Given a kernel functiork, thus an RKHSH and a feature map (not
unique). LetE be the linear span of the mappingéx) in the RKHSH, E =
span({(¢(x;))i=.n}) € H. Let ET be its orthogonal complemer (P E = H.
Letf e H:

f= Vg + Vet Decomposition off in vg € E andvgr € ET(31)

f= SN ai¢(x)+v Definition of E (32)

f(x) = (Ve +Ver,¢(x;)), BecauseH is the RKHS ofk (33)
fq) = (ve.4(x))), ~ Becaus& isthe orthogonal complement (34)

of E, and¢(x;) € E (35)

f(x;) = VE(X;)) Vie{l,...,N} (36)

(37)

Thus a functionf € H will have the same value on the training set than its
projection inE. Then comes equality of the loss functions

L((y1, F(X1)), - - -5 (Un,> F(XN))) = L((Y1, VE(X1))s - - - » (YN» VE(XN))) (38)

But the projection ork of function f will have smaller norm, as is shown:
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115, = < f.f>u4 (39)
= < Vg + VET,VE + VET >¢ (40)
= [IVell}, + lIverll, + 2 < Ve, VE >3 (41)
—_——
-0 becausé& andE" orthogonal
= IVellZ, + IIver iz, (42)
> |vell5, (43)

So functionf has same risk function ag. ||f|| > ||vgll, andQ is a strictly
increasing function, so the minimum of the risk functiongptegularization term
is reached irE, so the functionf* has the form:

N
o= > aig(x) (44)
i=1
N
P00 = > aik(x,x) (45)
- (46)
O
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Theorem 2 Let f be a function in spac€(X.,Y). Assume f has gradient
bounded by M|V |, < M. Then, for any > 0, there exists ¢, such as:

1l < Crellfll 2y + € (47)
and G, is independant of f.

Proof. Consider the infinite set of open ba(IB(x, S0 )XGX . Clearly this set cov-
ersX.. By the Borel-Lebesgue theorem, we can extract a finite setosktballs
(Bi)i=1..n that will coverX..

As X, is compact and continuous ornX4, ||f||., is reached in a poit* € X..
Let B;- be a ball of the finite set that contains. For all x in B, we have

IIX = x*|l, < €/M because they both belong to a ball of radiy@M).

[f(xX) - f(x")|= < Vf(c),x—x*> forsomec, by the mean value theorem (48)
<M|x-x*l, Cauchy-Schwarz and bounded gradient (49)

<€ (50)
Thus we have:
f FU(dX > f (11l = &) u(X)clx (51)
B NXe B NXc
> (il — (B N Xo) (52)

Noting u(Bi- N X¢) = fB_mXc,u(x)dx. Using a Cauchy-Schwarz theorem, we have:

fsimxclf(x)l“(x)dx < \/ fB imxcf(X)zu(X)dx\/ j; - 1u()dx  (53)
S ”fHLZ(Q,u) \/m (54)

Using equation (52) and (54), we have:
(1l — €) u(Bi- N Xo) 11l gy VE(Bi N Xo) (55)

11l 20
11l s

Vu(Bi- N X¢) T

The serie g(B; N X.)); is finite, so there is a minimum(B*). As X. is the
closure of an open set(B; N X;) is stricly greater than O for all sou(B*) is
strictly greater than 0. So

IA

(56)
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||f||£2(g )
Ifll, < —Z +¢ 57
u(B) o)
Od

Theorem 3 Let f be aCY(X.,Y) function, with gradient bounded by M. Let
g be a linear continuous form @°(X., V), g : C°(X.,¥) — R. Then, for any
€ > 0, there exists &g, such that:

9(V )l < Cogellflle, + € (58)

Proof. We are going to prove this in one dimension, without loss oiggality:

of
o( 55 < Conett v 59)

As we are in a finite-dimensional space, thisfises to prove fog(Vf). By
Fréchet-Riezs'theorem, there exibts C°(X., V) such that:

o 5¢) = | moag00us (60)

By Heine’s theorem, aX. is compacth is uniformly continuous oX.. Thus,
there exist$ such that, for allX, x") with ||x — X||, < §, we have

In(x) — h(x')| <

€
- MV(X,) (61)

with V(X,) = f 1ldx. As we did in the proof of theorem (2), we can cov&r
with a set of ballslé)I _1_ Of radiuss. We noteP; = B N X..

bl -

with h; = h(b;), with b; the center of balB;

Z f 25 (9(h09 — hy +hy)ax (62)

<e/ (MV(X o))
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(63)

ﬂ
g oxl

‘Zf Oy ™ fp,fP, OO dxX !
S [ 10w =

IA

€+ (64)

With Xmaxj = arg maxep, {U, u) = X/} andXmin; = arg minep, {u, u=/ = x7J}.

of y
‘9(%) < €+Zzllfllm|hiV(Pi )| (65)
< e+ V(X Ihil NI fll, (66)
O

Lemma4 LetH be the RKHS of universal kernel k. If, for alk Q
e The kernel is constani(k, x) = ¢
e On point(x, x), the gradient of the kernel is nuW k(X z)|,.-x = Op
« On point (x,x), the Hessian matrix kk,z); = 249 has eigenvalues

bounded by a constant M,< u,H(X,x)u > | < MJu||? for all x € X
and allue RP

Then, for all fe H, forall x € X.:
VTl < VMg (67)

Proof. Let f € H. We have:

1£(x) - (X)) | < £, Ka = Ky >o¢ | (68)

[ llalIKx = Kl (69)

IA

Using the property of reproducing kernel and Cauchy-Schw/éneorem. Using
polarization identity, the kernel trick, Taylor expansiamnd lemma (4)’s assump-
tions, we have:
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IKx = Keanllz, = Kl + 1KxenllZy = 2 < Ky, Kyan > (70)
= k(x,Xx) + k(x + h,x + h) = 2k(x, x + h) (71)

= 2C-2c-2< Vik(x,x),h > (72)

— < h, H(x,x)h > +o(||h||3) (73)

= — < h,H(x,x)h > +o([|h]|3) (74)

From equations (69,74), we have:

1109 = fx+h)l = | < Vxf,h>q +o(lhl)] (75)
< Il (IR VM + o(lI0l12)) (76)
Thus
IVEllz < VMIIf (77)
O

Lemma5 The Gaussian kernel of bandwiditsatisfies the hypothese of lemma
(4).

Proof. This result is obtained by a few calculations with the Gaarsgernel:

Kx,2) = ex (—”X_Z”g) (78)
2) = expl-—5—
k(x,x) = 1 (79)
K _ —Z-x) X — 2113
ﬁ(x’ 7) = - 2 exp(— 202 ) (80)
= 0ifx=1z2 (81)
0%k (@ -X)(Z - X) Ix - ZI13
o702%? = e eXp(_ 202 ) (82)
= 0ifx=z (83)
52k L (E =X 1 lIx — zII3
3 (z‘)Z(X’ z) = ( s ;) exp(— 52 ) (84)
= ;—i if z=x (85)
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We have the Hessian matrid(x,x) = -ld/o?, which has eigenvalues
bounded by 1o2.
O

Theorem 6 With samplegX;,YV;)i-1.¢ i.i.d., for anye,n > 0, any continuous
linear form g ofC%(X,, ), g : C%(X., Y) — R, there exists, such as ift > ¢,
then, with probability greater thath — #:

fx AV ,() — gV ()| < e (86)

with f, the estimator of f based on a Gaussian kernel ridge regresziGaussian
partial least-square regression.

Proof. From [96], we have consistency of kernel-ridge regresstoam [97], we
have consistency of partial least-square regression.tmdrticles, authors prove
that the diference between the estimator and the true function is balindmth
the norms|.|lzr and|l.|| z2q,,-

Using lemma (4) and bound airf, — fll4, we obtain that, for suficiently large,
we have, with probability greater than-17:

IV f(x) = VE(X)Il. < 1 for allx € X, (87)

Let g be the linear form. By Fachet-Riezs'theorem, there exists C°(X¢, V)
such that::

g: e ff(x)v(x)dx (88)
A
Using theorem (3):

aﬁ—q . €
% < Coge||fe = fi|, + 3 (89)

' X; ¢ | 3

Using theorem (2):
1o = ]| < Coc||fe = ] oy + oo (90)
0 T T L2(Q.u) 3C2’g’ .
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Using consistency result, fat suficiently large, we have, with probability
greater than * n:

~ €
e =l < C1Cogc3 (1)
Combining the 3 equations (89,90,91), we obtain the result:
f Vf,(x) - VEX)v(X)dx| < € (92)
A
O

Bounds for integral estimation Let f be aC'(X., V) function whose partial
derivatives are bounded by M. Lé¢)i-1 . be independently and identically dis-
tributed random variables, drawn from a distributipn The dfference between
the empirical mean of a partial derivative

| <1}

f
-(Xi)

X!

of of
e= E(axl) fxcﬁ(x),u(x)dx

follows the normal distributionV (0, £-102), with o < M. Thus we have

( 6x1 () — f —u(x)dx < m] < cI)(nl/'\;) (93)

with ®(m) the cumulative distribution oWV (0, 1)

S =

SN )
D

and its true mean

Proof. Firstly, | show that the variance ((ﬁ:—l is lower or equal toM2. Then |
verify that | meet the central limit theorem’s assumptiomg apply it to find the
previously stated bounds.
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of ot \
() = ({79 &9
ot \ of  \
- f;—fj(x)ze(ﬁ —e) () + f:_f](x)@(@—e) u(x)dx (95)
< f (M —€)? +f (-M - e)? (96)
ﬂ(x)ze a—f(x)<e

axl ox)

Letp = P(g—)fj(x) > e). In the worst-case scenario where the partial derivative

only takes the values-M, M}, e = M(2p - 1).
Var(ﬂ) < pM-M2p-1)P+@A-p)(-M-M2p-1)y (97)

oxl
M2 (p(2 - 2p)* + (1 - P)(2p)°) (98)
AM?(p(1 - p)) (99)

And p(1 - p) <%, minimum reached ip =%. Thus:

IA

IA

of
Var|—| < M? 100
ar( 8xl) < (100)
As x; are i.i.d., 2% are i.i.d.. Mean and variance 8% are defined and
finite, thus, | can apply the central limit theorem. NotiBg= >, 2%} ando
the standard deviation 8§52, the theorem implies that:
S,—¢
(L NO D) (101)
o\ o+
or
S, Mo
P(— _e< m) _ cp(—) (102)
4 Ve
O
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