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Introduction

It all started 13 years ago. I was a young PhD student with no precise idea what direction
I was heading to. I had few other options than carefully listening to my supervisor singing
the praises of robustness analysis in general, and of µ-analysis in particular. I also saw my close
colleagues working on the same topic. And I noticed the growing interest among control engineers
from the aerospace industry. So I naturally took this path. At that time, it was already known
for a long time that computing the exact value of the structured singular value µ is NP hard.
So people were trying to develop polynomial-time algorithms to compute tight lower and upper
bounds instead. And my colleagues were playing a key role with signi�cant contributions that
remain references even today [Ferreres and Biannic, 2001; Ferreres et al., 2003], as evidenced by
the Skew-Mu Toolbox for Matlab which was widely used during a whole decade [Ferreres et al.,
2004]. It was in this environment that I took my �rst steps.

Then I started thinking a little bit on my own. The �rst major project I was involved in
dealt with the clearance of �ight control laws. Before an aircraft can be tested in �ight, it
has to be proven to the authorities that the �ight control system is reliable, i.e. it has to go
through a certi�cation and quali�cation process. It must notably be shown that the control laws
provide su�cient stability margins to guarantee a safe operation of the aircraft over the entire
�ight envelope and for all admissible parametric variations. In the aeronautical industry, this is
usually achieved using intensive Monte-Carlo simulations. A major drawback of this strategy is
that clearance is restricted to a �nite number of samples and nothing can in principle be assessed
for the rest of the parametric domain. Moreover, signi�cant time and money is frequently
spent on this task. Fortunately, many stability, handling, loads and performance criteria can
be formulated as robustness analysis problems, which can then be solved using modern analysis
techniques, such as µ-analysis, IQC-based analysis or Lyapunov-based analysis. At that point, I
realized that these techniques were not just research topics tailored to control theorists, but that
they could be of signi�cant practical importance to improve the e�ciency and the reliability of the
certi�cation process, and more generally to enhance the validation of any feedback system. My
conviction was reinforced when I noticed that the aerospace industry was following the subject
closely: Airbus [Puyou et al., 2012], Boeing [Dailey, 1990], Astrium Satellites [Beugnon et al.,
2003], Astrium Space Transportation [Ganet-Schoeller et al., 2009], Deimos & ESA [Pulecchi et
al., 2012], Thales Alenia Space [Charbonnel, 2010] and others were all evaluating the potential
bene�ts of µ-analysis on real-world applications. But they were also very critical. As I had
already invested quite a lot of time on this subject, I was cut to the quick, and I decided to try
making my own contribution to address the issues raised by our industrial partners.

A �rst recurrent criticism was that the gap between the bounds on µ was often too large. The
resulting robust stability margin was thus too pessimistic, and it was sometimes impossible to
conclude about stability even though the considered system was indeed stable. In this context,
my coworkers and I performed a thorough comparison of all pratical algorithms to compute
lower bounds on µ, and we proposed some strategies to take the most out of them (Section A.2).
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10 Introduction

Noting that the µ upper bound was generally responsible for the conservatism, we tried to
improve the accuracy of existing algorithms, while maintaining a reasonable computational time
(Section A.3). And as it was sometimes not su�cient, we proposed some enhanced branch-
and-bound algorithms to further tighten the gap up to a user-de�ned precision (Section A.4).
Evaluation on a wide set of real-world benchmarks available in the literature shows that non-
conservative robust stability margins can be obtained in almost all cases. So we believe now that
computing the exact value of µ is no longer an issue from a practical point of view.

Another criticism was that very few criteria could be evaluated with µ-analysis compared to
other techniques such as Monte-Carlo simulations. It was true, and despite our e�orts, it will
remain partially. We proposed several algorithms to compute tight bounds on the skewed robust
stability margin, the worst-caseH∞ performance level, the worst-case gain/phase/modulus/delay
margins (Section A.5). . . So µ-analysis clearly allows to go beyond stability and to address many
other practical issues. Nevertheless, it must be kept in mind that only parametric uncertainties
and neglected dynamics can be considered (although a few applications to nonlinear systems
have been reported in the literature). Other techniques must be used to go further, such as
IQC-based analysis or evolutionary algorithms, which allow uncertainties, varying parameters
and various kinds of nonlinearities to be considered at the same time. But even so, the size of
the considered models is limited to avoid high conservatism and prohibitive computational time.
µ-analysis and similar methods thus prove useful in the early validation stages, but there comes
a time when simulations are inevitable at the moment. It seems therefore obvious that there is
much to be gained from combining both approaches. And this is the message we are trying to
convey to control engineers.

µ-analysis was �nally criticized for being di�cult to apply by non-expert users, which I can
understand. I believe good theories only reveal their true potential when they become applicable
to realistic problems. That is why I spend a lot of time developing tools to help both researchers
and engineers get the most out of the methods I am working on. The SMART Library of the
Systems Modeling Analysis and Control (SMAC) Toolbox for Matlab is one of them (Section A.6).
It implements most of the µ-analysis based algorithms developed at ONERA during the last two
decades, and it symbolizes the way I position myself as a research engineer. I am not a pure
control theorist, others do that much better than me. And I am not an engineer either. I am
somehere between the two, trying to bridge the gap between these two worlds. This is how
my contribution should be understood. I sometimes propose heuristics without any theoretical
proof. But I prefer a heuristic which works on most real-world applications, than a more rigorous
approach which can only be applied to simple examples.

As can be seen in the literature, much has been done in the �eld of µ-analysis, and this
technique is now quite mature. Unfortunately, the same observation cannot be made for all
robustness analysis techniques, and I could be criticized for having been primarily interested
in µ-analysis at the expense of other methods. But many projects during and after my PhD
thesis dealt with this subject, so I naturally continued along this path. And anyway, I am still
young and I have quite a lot of time left to investigate other approaches! More seriously, I
began considering time-varying parameters and uncertainties as well a long time ago because
most aerospace vehicles are characterized by parameters that vary more or less rapidly. We �rst
proposed generalizations of the aforementioned µ-analysis tools to evaluate the stability and the
performance properties of linear systems in the presence of both LTI and arbitrarily fast varying
uncertainties. Two complementary solutions were developed: the �rst one (in the frequency
domain) is suitable for high-order models with few uncertainties (Section B.1), while the second
one (in the time domain using an extended version of the KYP lemma) is better for low-order
models with many uncertainties (not detailed in this manuscript due to space constraints). It
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should be noted that beyond analysis, these techniques also allow to design a robust feedforward
controller in order to improve performance. Nevertheless, in many practical applications, it is
desirable to consider the rate of variation of time-varying uncertainties and parameters to get
more accurate results. In this context, we proposed later a completely di�erent strategy based
on parameter-dependent Lyapunov functions (Section B.2). Several kinds of dependence can
be considered, but the resulting optimization problem always boils down to solving an in�nite
number of linear matrix inequalities. Rather than introducing some relaxation variables and
working on su�cient conditions, we proposed to solve the problem on a �nite parametric grid
and to check the result on the whole parametric domain using a fast and reliable µ-analysis based
test. This strategy is symbolic of our work. Most of the aforementioned methods were not new,
but the previously existing algorithms often had two major drawbacks when high-order systems
were considered, namely a high computational time and a high conservatism. The central concern
of our work and our main contribution have been to provide solutions to these problems.

Another issue that makes it di�cult to convince control engineers to use modern robustness
analysis techniques is that the considered systems must often be modeled using Linear Fractional
Representations (LFR). Unfortunately in most industrial applications, physical systems are de-
scribed using a mix of nonlinear analytical expressions and tabulated data, which are far from
being in linear fractional form. . . But as no LFR means no µ-analysis, we had no other choice
than developing dedicated tools that can be used by non-expert users. In general, a two-step
procedure has to be implemented to obtain a suitable LFR: a linear model with a polynomial
or a rational dependence on the system parameters is �rst generated, and then converted into a
linear fractional form. Several techniques already existed to perform the latter transformation
and to overcome complexity. Following the same motivations as for the SMART Library, we
implemented state-of-the-art algorithms in the GSS Library and proposed an intuitive yet very
general way to describe LFR, as well as a user-friendly Simulink interface (Section C.1.4). This is
not what we might call research, but sometimes you have to be pragmatic. We will have taken a
major step forward if engineers are no longer afraid to turn their models into LFRs. On the other
hand, the preliminary issue of converting the tabulated or irrational data into simple yet accurate
polynomial or rational expressions had been paid much less attention, although it is of signi�-
cant practical importance. Most of the methods that existed at that time have two drawbacks:
they only produce polynomial approximations, and all admissible monomials are usually nonzero
regardless of their real ability to model the data. Yet, the additional degrees of freedom o�ered
by rational expressions can lead to simpler expressions, and thus to avoid unnecessarily complex
LFRs, which are usually source of conservatism and can even lead to numerical intractability.
Moreover, computing approximations with sparse structure is bene�cial, since it is a natural way
to prevent data over�tting and to ensure a smooth behavior of the model between the points used
for approximation. In this context, we developed several methods to �ll this gap (Section C.1.3),
and in the spirit of what we did before, we implemented the whole set of tools in the APRICOT
Library, well organized for non-expert users (Section C.1.4). Finally, we proposed extensions
to generate a reduced-order LFR from a set of large-scale MIMO state-space representations,
representing for example an aerospace vehicle at various operating conditions (Section C.2).

While we are at it, let us take a closer look at aerospace vehicles. They depend on many
parameters and are a�ected by plenty of uncertainties, varying or not, for which we now have
a bunch of analysis tools at our disposal. But we are not out of the woods yet: they are
also full of nonlinearities, among which saturations �gure prominently. And this is a major
issue. By limiting both the amplitude and the rate of the control signals, saturations induce
particularly disturbing nonlinear phenomena (such as limit cycles), that can impair the closed
loop performance or even jeopardise its stability. We tried to model saturations with time-

Advanced control laws design and validation - A set of methods and tools to bridge the gap between theory and practice



12 Introduction

varying gains to apply the aforementioned tools, but the results obtained in practice are most
often disappointing. Thus, we decided to focus on more appropriate analysis tools. Based on
the Lyapunov theory, they allow to compute a stability domain and to quantify performance
degradation. But beyond analysis, there is also the problem of taking saturations into account
during the design step. Two strategies are possible. Either stay in the linear domain at the price
of a lower level of performance, by computing unsaturating control laws. Or be more adventurous
by allowing saturations and adapting control signals as soon as one of them is active, so as to
return as quickly as possible to the linear domain guaranteeing a well-controlled nominal behavior
of the system. The second approach, known as anti-windup, had already proved successful in
the past and we decided to go on in that direction. Indeed, aerospace applications cannot
tolerate an unnecessary loss of performance in the nominal case. Our contribution was again
pragmatic and was mainly twofold. First, we developed a methodology to design a reduced-order
anti-windup controller of low complexity (Section D.2). Then we introduced modal constraints
during the design to avoid too slow or too fast dynamics likely to lower performance or to cause
implementation issues (Section D.3). And unsurprisingly, the resulting algorithms were grouped
together with a Simulink interface in the AWAS Toolbox for Matlab, which was later updated
and became the SAW Library of the SMAC Toolbox (Section D.4).

Plenty of e�cient tools are now available to analyze robustness and to validate control laws,
and those we have developed so far are just a drop in the ocean. But in most cases, they are mainly
applied once the controllers have been computed. Yet it could be advisable to better integrate
them into the design process, in the hope of reducing a little bit the number of iterations between
design and validation in an industrial context. And this is what we are trying to do now. We have
proposed several methodologies, among which one is inspired by dynamic inversion techniques
and looks promising (Chapter E). It combines partially linearizing inner-loops with structured
and robust outer-loops, which are designed using a non-smooth multi-model H∞ optimization
approach. It also includes a robustness analysis scheme providing worst-case con�gurations,
which are then used to enrich the bank of design models and thus to iteratively improve the
robustness properties of the designed outer-loops. And it seems simple enough to be implemented
in a �ight computer. But for the moment, it is more a prospect than an achievement, and we
will talk about it again later.

This manuscript is deliberately concise and mainly contains personal contributions. It is
not exhaustive in the sense that I decided to highlight only certain methods, either because
they are important to me or because they are little known although they may have a practical
interest. Chapter A is signi�cantly longer than the others. Robustness analysis, and µ-analysis
in particular, has indeed been central to my work since day one. I do not always spend a lot
of time on it, but I come back to it regularly. Moreover, I decided to focus on methods and
tools rather than on their application. My philosophy is to propose general methods that can
be applied to di�erent kinds of systems. One could maybe do better by developing a speci�c
technique for each application. But my experience is that control engineers do not have much
time, so it is better to have few well-used methods than many ignored ones.

Remark: Chapters 1 and 3 present the topics I spent most of my time on. I cannot go into too
much detail because of space constraints, so I simply present a summary with the main results.
Chapters 2 and 4, on the other hand, deal with issues that I addressed several years ago, and which
I have now put aside (but maybe not forever!). Finally, Chapter 5 illustrates my current desire
to go further towards the development of advanced design methods and their implementation on
�xed wing UAVs.
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Chapter A

µ-analysis based robustness tools

Despite evermore powerful design tools and increasing computer power, control laws are
still designed based on mathematical models, which signi�cantly simplify reality. A necessary
but costly task consists in thoroughly validating them before they can be implemented. This
involves numerous simulations of generally nonlinear and nonstationary models, which are as
representative as possible of the real behavior of the considered physical system. However, it is
certainly possible to signi�cantly reduce the number of simulations by directing them towards
worst-case parametric con�gurations detected through a series of simpli�ed robust stability and
performance tests.

Several approaches can be considered in this perspective: µ-analysis [Ferreres, 1999], integral
quadratic constraints [Megretski and Rantzer, 1997], Lyapunov-based techniques [Garulli et al.,
2012], sum of squares [Chesi, 2010], evolutionary methods [Menon et al., 2009], randomized
algorithms [Tempo et al., 2013]. . . The objective of this chapter is not to perform an extensive
comparison of their advantages and drawbacks, but to focus on one of them, namely µ-analysis.
This is the approach I have been working on most for a certain number of reasons already
discussed in the introduction. And it is commonly accepted that this is the most suitable way
to compute stability margins and performance levels for LTI systems a�ected by structured
time-invariant uncertainties. The exact computation of the structured singular value µ being
NP-hard [Braatz et al., 1994], only lower and upper bounds on these quantities can usually be
obtained with a reasonnable computational e�ort. Until recently, it was quite common with the
available software to obtain a non-zero gap between the bounds, which could even be large in some
cases (typically �exible systems a�ected by real parametric uncertainties). This is undesirable,
as it may be impossible to conclude whether the required level of robustness is guaranteed or
not.

We have invested a great deal of e�ort in proposing solutions to this problem, as well as
to the various recurrent criticisms mentioned in the introduction. This chapter summarizes
our contributions. A complete strategy is �rst described to compute accurate bounds on µ
in Sections A.2 and A.3, and to bring the resulting gap to (almost) zero with a reasonable
computational cost in Section A.4. A brief overview of what can be done with µ is then presented
in Section A.5, where a series of pratical methods and computational tools are described to
compute the (almost) exact value of the (skewed) robust stability margin, the worst-case H∞
performance level, as well as the worst-case gain, phase, modulus and time-delay margins. Finally,
Section A.6 brie�y presents the SMART Library for Matlab, which implements most of the µ-
analysis based tools we developed at ONERA during the last two decades.
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14 µ-analysis based robustness tools

1 A brief introduction to µ-analysis

Let us consider the standard interconnection of Figure A.1. M(s) is a continuous-time stable
and proper real-rational transfer function representing the nominal closed-loop system. ∆(s) is
a continuous-time block-diagonal operator:

∆(s) = diag(∆1(s), . . . ,∆N (s)) (A.1)

which gathers all model uncertainties. Each ∆i(s) can be:

• either a time-invariant diagonal matrix ∆i(s) = δiIni , where δi is a real or a complex
parametric uncertainty, and Ini is the ni × ni identity matrix,

• or a stable and proper real-rational unstructured transfer function of size ni × ni usually
representing neglected dynamics.

-

�∆(s)

M(s)

Figure A.1: Standard interconnection for robustness analysis

Let n =
∑N

i=1 ni. The set of all n× n matrices with the same block-diagonal structure and the
same nature (real or complex) as ∆(jω) is denoted by ∆. Let then kB∆ = {∆ ∈∆ : σ(∆) < k},
where σ (∆) denotes the largest singular value of ∆. To simplify notation, ∆(s) ∈ ∆ is used to
specify that ∆(jω) ∈∆ for all ω ∈ Ω, where Ω denotes the frequency range of interest (equal to
R+ in the sequel without loss of generality). ∆(s) ∈ kB∆ means in addition that ‖∆(s)‖∞ < k.
In other words, ∆ is the set of all admissible uncertainties, whose size is measured in terms of
the H∞ norm. In the sequel, the expression real problem is used when ∆(s) is only composed
of real blocks corresponding to real parametric uncertainties. Conversely, the expression complex
problem is used when ∆(s) is only composed of unstructured transfer functions, which become
complex blocks when evaluated at a particular frequency.

The most e�cient technique to analyze the stability of the interconnection of Figure A.1
in the H∞ framework is certainly µ-analysis [Doyle, 1982], especially when high-dimensional
systems are considered. The underlying theory [Ferreres, 1999; Zhou et al., 1996] is not broached
as such in this document due to space limitations, but a few useful de�nitions and results are
recalled below.

De�nition A.1 (structured singular value) Let ω ∈ R+ be a given frequency. If no matrix
∆ ∈ ∆ makes I −M(jω)∆ singular, then the structured singular value µ∆(M(jω)) is equal to
zero. Otherwise:

µ∆(M(jω)) =
[

min
∆∈∆

{σ(∆), det(I −M(jω)∆) = 0}
]−1

(A.2)
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2 µ lower bound computation 15

Theorem A.1 (small gain theorem for structured uncertainties) The interconnection of
Figure A.1 is stable for all uncertainties ∆(s) ∈ kB∆ if and only if:

sup
ω∈R+

µ∆(M(jω)) ≤ 1

k
(A.3)

De�nition A.2 (robust stability margin) The robust stability margin kr is de�ned as the
largest value of k for which equation (A.3) holds. In other words, kr is the inverse of the largest
value of µ∆(M(jω)) over the whole frequency range:

kr =
[

sup
ω∈R+

µ∆(M(jω))
]−1

(A.4)

The following conclusions can be drawn from the small gain theorem:

• the interconnection is stable for all admissible uncertainties ∆(s) of size less than kr,

• there exists at least one admissible uncertainty ∆̃(s) of size kr for which the interconnection
is unstable.

Problem A.1 (robust stability margin) With reference to Figure A.1, compute the robust
stability margin kr de�ned in equation (A.4) for a given block structure ∆.

The exact computation of kr is known to be NP hard in the general case [Braatz et al., 1994],
so both lower and upper bounds kr and kr are computed instead. But even computing these
bounds is a challenging problem with an in�nite number of frequency-domain constraints, since
it requires to compute lower and upper bounds µ∆(M(jω)) and µ∆(M(jω)) on µ∆(M(jω)) for
each ω ∈ R+. On the one hand, a wide number of very di�erent approaches exist to compute
upper bounds on kr (i.e. µ lower bounds). They are summarized and compared in Section A.2
on a wide set of real-world benchmarks. A strategy is also proposed to combine them, so as to
improve accuracy while keeping a reasonable computational time. On the other hand, most of the
computationally tractable methods to compute lower bounds on kr (i.e. µ upper bounds) rely on
the so-called D and G scaling matrices. The problem is usually solved on a �nite frequency grid
with the risk to miss a critical frequency and to over-evaluate kr. An algorithm is presented in
Section A.3 to address this issue, and applied to the aforementioned benchmarks. Unfortunately,
the gap between the bounds on kr is sometimes large and concluding about robust stability is not
always straightforward. Assume, for instance, that the uncertainties are normalized. Stability
has to be investigated ∀∆(s) ∈ B∆ and is guaranteed if and only if kr > 1. But if kr < 1

and kr > 1, no conclusion can be drawn. Strategies can then be implemented to tighten the
gap between the bounds, among which branch-and-bound seems to be the most e�ective one, as
shown in Section A.4.

2 µ lower bound computation

2.1 Survey of existing methods

This section is exhaustive in the sense that all methods that can reasonably be applied to
real-world benchmarks are mentioned. Only a few exponential-time algorithms are omitted, as
well as techniques with a very limited range of application. In all cases, both µ lower bounds and
associated destabilizing values of the uncertainties are obtained. For most methods, frequency
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16 µ-analysis based robustness tools

is �xed during optimization. In this case, M(jω) and ∆(jω) are constant matrices, which are
simply denoted by M and ∆.

Exponential-time methods

The �rst methods to compute µ lower bounds were proposed in the 1980's and most of them
are exponential-time. One of the best known was introduced in [De Gaston and Safonov, 1988]
for non-repeated (ni = 1) real uncertainties and later generalized in [Sideris and Sanchez Pena,
1990]. It uses the mapping theorem of [Zadeh and Desoer, 1963]: the image of kB∆ by the
operator ∆→ det(I −∆M) is included into the convex hull of the images of the 2N vertices of
kB∆. A µ lower bound is obtained by considering the position of these images with respect to the
origin in the complex plane. Like the mapping theorem, the Kharitonov's theorem [Barmish and
Kang, 1993] and the edge theorem [Bartlett et al., 1988] can also be interpreted in a frequency
domain approach and used to derive µ lower bound algorithms. These are not detailed here, but
a few interesting references can be found in [Sideris and Sanchez Pena, 1990].

Then, the algebraic method proposed in [Dailey, 1990] for non-repeated real uncertainties
searches for a destabilizing uncertainty ∆ ∈ kB∆ such that all the δi except 2 attain the maximal
magnitude k, which can be achieved by simple matrix algebra operations. A one-dimensional
halving search on k is performed to compute a µ lower bound. There are N(N − 1)/2 ways to
choose 2 uncertainties among N and 2N−2 ways to set each of the N − 2 others to −k or k, so
N(N − 1)2N−3 searches are performed for each value of k. The method presented in [Elgersma
et al., 1996] is quite similar. It is based on the computation of the smallest common real root of
a system of linear polynomials using the Sylvester's theorem [van der Waerden, 1991]. The main
di�erence with [Dailey, 1990] is that both k and the two δi which do not attain the maximal
magnitude are computed in a single step. The optimal value of k is thus determined directly and
no halving search is required.

More recently, a method was presented in [Matsuda et al., 2009] for (possibly repeated) real
uncertainties. It consists of introducing b =

∏N
i=1(ni + 1) − 1 �ctitious uncertainties δ1, . . . , δb

and rewriting the numerator of det(I −M(s)∆) as f(s) = p̂(s) +
[
δ1 . . . δb

]
[p1(s) . . . pb(s)]

T ,
where p̂(s), p1(s), . . . , pb(s) are �xed real polynomials. The stability of f(s) is then evaluated
using the stability feeler introduced in [Matsuda and Mori, 2009], which leads to µ upper and
lower bounds.

The algorithms mentioned in this section have di�erent theoretical foundations. But they are
all exponential-time, which means that they cannot be applied to most real-world benchmarks
with a reasonable computational time. Thus, only polynomial-time algorithms are considered in
the sequel.

Power algorithm

This technique can be used for all kinds of uncertainties. It is based on the following charac-
terization [Young and Doyle, 1997]:

µ∆(M) = max
Q∈Q

ρR(QM) (A.5)

where ρR(QM) is the largest magnitude of the real eigenvalues of QM , while Q is the set of all
∆ = diag(∆1, . . . ,∆N ) ∈ ∆ such that δi ∈ [−1, 1] if ∆i = δiIni is real and ∆∗i∆i = Ini if ∆i is
complex. Equation (A.5) de�nes a non-concave optimization problem, which is solved in [Young
and Doyle, 1997] using a �xed point iteration usually referred to as the power algorithm. No
theoretical convergence guarantee exists. But if the algorithm converges, a local maximum, i.e.
a µ lower bound, is obtained. In practice, convergence is usually ensured for purely complex
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2 µ lower bound computation 17

and mixed real/complex uncertainties. But in the purely real case, limit cycles often appear
and no µ lower bound can be obtained. Nevertheless, a technique is proposed in [Young et
al., 1995] to get a nontrivial µ lower bound when the power algorithm does not converge but
returns nonzero values. Further improvements are also reported in [Tierno and Young, 1992;
Cheng and De Moor, 1994; Newlin and Glavaski, 1995].

A di�erent way to solve problem (A.5) is proposed in [Dehaene et al., 1997] in the particular
case of purely complex uncertainties (ρR is then replaced with the spectral radius ρ). The steepest
ascent and the conjugate gradient algorithms are used instead of a �xed-point iteration. Unlike
the power algorithm, which only provides a µ lower bound in case of convergence, a nontrivial
bound is obtained at each iteration at the price of a higher computational cost.

Gain-based algorithm

This method was introduced in [Seiler et al., 2010] to address the convergence issues of
the power algorithm when purely real uncertainties are considered. The initial µ problem is
replaced with a series of worst-case H∞ performance problems, which are e�ciently solved using
the approach of [Packard et al., 2000]. In the mixed real/complex case, the real blocks of the
destabilizing uncertainties are obtained using the aforementioned technique, while the complex
blocks are computed using the power algorithm described above.

Poles migration techniques

These techniques are mainly dedicated to purely real problems, although they can in some
cases be extended to handle mixed and complex uncertainties. The idea is to move an eigenvalue
of the interconnection between M(s) and ∆ towards the imaginary axis, which requires to work
in the time domain. The state matrix of the interconnection of Figure A.1 is A0 = A+B∆(I −
D∆)−1C, where (A,B,C,D) is a state-space representation of M(s). An equivalent de�nition
of the robust stability margin (A.4) can thus be derived:

kr = min
∆∈∆

{σ(∆), λmax(A0) = 0} (A.6)

where λmax(A0) = max
i
< (λi(A0)) and λi(A0) denotes the ith eigenvalue of A0.

A �rst approach is to use a �rst-order characterization of the variation dλi of λi(A0) caused by
a small variation d∆ of ∆. This can be expressed as dλi = (uB+tD)d∆(Cv+Dw), where u/v are
the left/right eigenvectors associated to λi(A0), t = uB∆(I−D∆)−1 and w = ∆(I−D∆)−1Cv. A
series of perturbations d∆ are computed, which progressively move the eigenvalues of A0 towards
the imaginary axis. Two algorithms exist. On the one hand, a series of quadratic programming
problems are solved in [Magni et al., 1999] for each λi(A0). The uncertainty with minimum
Froebenius norm which brings λi(A0) on the imaginary axis is �rst determined, and then the one
with minimum σ norm such that the interconnection remains at the limit of stability. On the
other hand, [Ferreres and Biannic, 2001] notes that the power algorithm of [Young and Doyle,
1997] is quite fast, but often su�ers from convergence problems when purely real uncertainties
are considered. A three-step procedure is proposed in this case. The initial problem is �rst
regularized by adding a small amount ε � 1 of complex uncertainty, i.e. ∆ is replaced with
∆ + ε∆C , where ∆C has the same structure as ∆ but can take on complex values [Packard and
Pandey, 1993]. The power algorithm is then run at each point of a rough frequency grid, usually
with good convergence properties. Using the resulting uncertainties as an initialization, a series
or linear programming problems are �nally solved, so as to �nd the value ∆̂ of ∆ with minimum
σ norm for which one of the eigenvalues of the initial interconnection becomes unstable. The
resulting µ lower bound is equal to σ(∆̂)−1.
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More recently, a direct approach has been proposed by [Iordanov and Halton, 2015; Iordanov
et al., 2003]. It considers the optimization problem:

min
∆∈∆

σ(∆) such that λmax(A0) = 0 (A.7)

which can be recast as a sequential quadratic programming problem and solved for example using
the Matlab Optimization Toolbox [The Mathworks, 2017a]. In practice, a relaxed condition is
considered to avoid convergence issues: the equality constraint is replaced with |λmax(A0)| ≤ ε,
where ε is a small user-de�ned threshold. Problem (A.7) is non-convex and the result thus
strongly depends on the initial value of ∆. Several strategies are combined in [Iordanov and
Halton, 2015] to improve the resulting µ lower bounds.

Even more recently, problem (A.7) was considered again in [Apkarian et al., 2016] and solved
this time with a nonsmooth bundle trust-region algorithm.

Direct optimization-based techniques

These algorithms are directly inspired by the de�nition of µ given in (A.2). A �rst approach
consists of directly solving the following non-convex optimization problem using standard non-
linear optimization tools such as the fmincon function of the Matlab Optimization Toolbox:

min
∆∈∆

σ(∆) such that det(I −M∆) = 0 (A.8)

In practice, a relaxed condition is considered to avoid convergence issues: the equality constraint
is replaced with σ(I −M∆) ≤ ε in [Hayes et al., 2001; Bates and Mannchen, 2004], and with
|det(I−M∆)| ≤ ε in [Halton et al., 2008], where ε is a small user-de�ned threshold. Any kind of
uncertainties can be considered, but this approach is especially relevant for purely real problems,
since the number of decision variables signi�cantly increases when complex uncertainties are
considered.

A formulation similar to (A.8) is considered in [Yaz�c� et al., 2011] in the case of (possibly
repeated) real uncertainties:

min
∆∈∆

λ1,λ2∈R

σ(∆) + (λq1 + λq2)λ such that
{
<(det(I −M∆)) = λp1
=(det(I −M∆)) = λp2

(A.9)

where p and q are odd and even positive integers respectively, and λ is a large penalty parameter.
This optimization problem is solved using the modi�ed subgradient algorithm based on feasible
values (F-MSG) introduced in [Kasimbeyli et al., 2009].

Another variation is proposed in [Brito and Kim, 2010]. The following optimization problem
is �rst solved for di�erent values of k using the fmincon function of the Optimization Toolbox:

g(k) = min
∆∈kB∆

< (det(I −M∆)) such that |= (det(I −M∆)) | ≤ ε (A.10)

where ε is a user-de�ned threshold. A function g is thus de�ned. A modi�cation of the Newton-
Raphson method called the secant method is then applied to determine the smallest value k of
k such that g(k) = 0. A µ lower bound is �nally obtained as the inverse of k.

A common feature of the previous optimization-based algorithms is that they all use standard
nonlinear optimization tools, although the objective to be minimized is a nonsmooth function.
Breakdowns might thus be encountered at points that are not local optima, because the latter are
typically nonsmooth points in practice. In this context, [Lemos et al., 2014] proposes a nonsmooth
optimization technique to solve (A.8), whose convergence to a local minimum is ensured.

Advanced control laws design and validation - A set of methods and tools to bridge the gap between theory and practice



2 µ lower bound computation 19

Geometrical approach

This method dedicated to (possibly repeated) real uncertainties combines randomization and
nonlinear optimization [Kim et al., 2009]. The signs of the real and the imaginary parts of
det(I −M∆) are computed for randomly selected points on the surface of a given hyperbox in
the uncertainty space RN . This hyperbox is enlarged until the four possible sign combinations
are found, which means that it might contain values of δ1, . . . , δN such that det(I −M∆) = 0.
A series of contractions and expansions are then performed to approach the singular region until
the size of the box becomes smaller than some tolerance value.

Remark A.1 Except for the poles migration techniques, a classical strategy is to compute µ
lower bounds on a prede�ned frequency grid. An alternative is to compute bounds on a set of
frequency intervals whose union covers the whole frequency range. This can be achieved by
considering frequency as an additional uncertainty δω. An augmented interconnection M̃ − ∆̃ is
obtained, where ∆̃ = diag(δωIm,∆), m is the state dimension of M(s), and the frequency interval
of interest is covered when δω ∈ R varies between −1 and 1 (see e.g. [Halton et al., 2008; Lemos
et al., 2014]). A skew-µ problem (see Section A.5.2) is then to be solved, since δω is bounded.

2.2 Testing framework

Considered algorithms

The most relevant µ lower bound algorithms are summarized in Table A.1 and compared
in Section A.2.3. The �rst two are implemented in the function mussv of the Robust Control
Toolbox for Matlab [The Mathworks, 2017b]. The fourth one is implemented in the SMAC
Toolbox for Matlab (see [Roos, 2013] and Section A.6). For the other �ve algorithms, Matlab
functions provided by the respective authors are used. It is worth being emphasized that each
of the eight considered algorithms is called in a similar fashion for all considered benchmarks.

Algorithm Description Reference Admissible uncertainties

1 Power algorithm [Young and Doyle, 1997] all

2 Gain-based algorithm [Seiler et al., 2010] real & mixed real/complex

3 Poles migration technique [Magni et al., 1999] all

4 Poles migration technique [Ferreres and Biannic, 2001] real

5 Poles migration technique [Iordanov and Halton, 2015] all

6 Direct nonlinear optimization [Halton et al., 2008] all

7 Direct nonsmooth optimization [Lemos et al., 2014] all

8 Geometrical approach [Kim et al., 2009] real

Table A.1: Considered µ lower bound algorithms

To compute the best possible upper bounds on kr, grid-based methods (1-2-6-7-8) are applied
at each point of a 100-point frequency grid, composed of 50 logarithmically-spaced points within
the system bandwidth and 50 additional points used to re�ne the grid in some frequency re-
gions corresponding to weakly damped modes. Interval-based implementations are available for
methods 6 and 7 (see Remark A.1). For these algorithms, the system bandwidth is divided into
6 and 4 frequency intervals of equal size on a logarithmic scale respectively. A coarse 10-point
frequency grid is used for method 4. Finally, methods 3 and 5 do not require any frequency grid.
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20 µ-analysis based robustness tools

List of benchmarks

As shown in Table A.2, 36 challenging benchmarks are considered here, corresponding to
various �elds of application, system dimensions and structures of the uncertainties. Some of
them contain poorly damped modes, which often produce extremely sharp peaks on the µ plot,
while others are characterized by large state vectors as well as numerous and/or highly repeated
uncertainties. Purely real uncertainties are majority (benchmarks 1-29), since they are more
common in engineering problems than complex or mixed ones (benchmarks 30-36). Moreover,
the presence of complex uncertainties usually simpli�es the computation of µ upper and lower
bounds, making them of less interest in the present study. All these benchmarks are described
in the litterature and the associated references are provided in [Roos and Biannic, 2015]. A
complete Matlab implementation is also available at http://w3.onera.fr/smac/smart_bench.

Benchmark Description Number of states
Uncertainty block ∆

Size Structure

1 Academic example 5 1 1×1
2 Academic example 4 3 3×1
3 Academic example 4 4 2×2
4 Inverted pendulum 4 3 3×1
5 Anti-aliasing �lter 2 5 3×1 + 1×2
6 DC motor 4 5 3×1 + 1×2
7 Bus steering system 9 5 1×2 + 1×3
8 Satellite 9 4 2×1 + 1×2
9 Bank-to-turn missile 6 4 4×1
10 Aeronautical vehicle 8 4 4×1
11 Four-tank system 10 4 4×1
12 Re-entry vehicle 6 8 1×2 + 2×3
13 Missile 14 4 4×1
14 Cassini spacecraft 17 4 4×1
15 Mass-spring-damper 7 6 6×1
16 Spark ignition engine 4 7 7×1
17 Hydraulic servo system 8 8 8×1
18 Academic example 41 5 3×1 + 1×2
19 Drive-by-wire vehicle 4 16 2×1 + 7×2
20 Re-entry vehicle 7 13 3×1 + 1×4 + 1×6
21 Space shuttle 34 9 9×1
22 Rigid aircraft 9 14 14×1
23 Fighter aircraft 10 27 7×1 + 1×2 + 1×3 + 1×15
24 Flexible aircraft 46 20 20×1
25 Telescope mockup 70 20 20×1
26 Hard disk drive 29 27 19×1 + 4×2
27 Launcher 30 45 16×1 + 10×2 + 1×3 + 1×6
28 Helicopter 12 120 4×30
29 Biochemical network 7 507 13×39
30 Himat �ghter aircraft 16 4 2×2(c)
31 F14 �ghter aircraft 52 8 1×2(c) + 1×6(c)
32 DC motor 4 6 3×1 + 1×2 + 1×1(c)
33 Four-tank system 12 6 4×1 + 1×2(c)
34 Missile 19 6 4×1 + 2×1(c)
35 Hydraulic servo system 9 9 8×1 + 1×1(c)
36 Space shuttle 46 18 9×1 + 1×9(c)

The notation m×p in the last column means that ∆ contains m blocks of size p×p.
All blocks are real unless (c) is speci�ed. All real/complex blocks are diagonal/full.

Table A.2: List of benchmarks
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2.3 Numerical results

Computations were performed in 2014 using Matlab R2010b on a Windows 7 Workstation
with a CPU Intel Xenon W3530 running at 2.8 GHz and 6 GB of RAM. Computational time
would certainly be lower with a state-of-the-art computer, but this is not an issue here. Indeed,
the main objective is to compare the algorithms, and it should be emphasized that all tests have
been performed with the same computer. More detailed numerical results can be found in [Roos
and Biannic, 2015].

Purely real problems

All algorithms are applied to benchmarks 1-29 and results are summarized in Table A.3,
where

˜
µ∆ and µ∆ denote the highest µ lower bound (i.e. the lowest upper bound on kr)

for the considered algorithm and the highest µ lower bound out of all algorithms respectively.
The notations (g) and (i) denote the grid-based and the interval-based implementations of the
algorithms (see Remark A.1). The mean computational time is computed for each algorithm
over all benchmarks except the biochemical network (benchmark 29), which is signi�cantly more
complicated than the others and requires a high computational e�ort.

Algorithm
Number of benchs for which (µ∆−

˜
µ∆)/µ∆ is Mean value of

Mean CPU time
=0% ≤1% ≤5% ≤25% <100% (µ∆−

˜
µ∆)/µ∆

1 6 6 9 13 25 44.10% 1.7 s

2 2 8 19 24 29 11.87% 27.1 s

3 5 6 16 22 27 18.81% 1.0 s

4 26 26 27 29 29 0.88% 0.9 s

5 22 25 26 26 29 8.95% 22.8 s

6 (g) 5 13 18 24 29 11.09% 448.8 s

6 (i) 9 18 20 23 29 15.72% 97.8 s

7 (g) 8 15 17 23 27 17.44% 1694.9 s

7 (i) 24 25 25 25 29 9.36% 124.3 s

8 0 4 8 17 28 24.38% 749.4 s

Table A.3: Synthetic results for purely real problems (benchmarks 1-29)

The poles migration technique of [Ferreres and Biannic, 2001] is the most e�cient
algorithm, with the highest accuracy (less than 1% on average for all 29 benchmarks) and
also the lowest computational time (less than 1 second on average for benchmarks 1-28 and 47
seconds for the biochemical network). The poles migration technique of [Iordanov and Halton,
2015] gives very good results too for all except 3 benchmarks, and the computational time
remains reasonable (but still 20 times higher). This shows that poles migration is probably the
most e�cient way to compute accurate µ lower bounds for purely real problems. Moreover, an
attractive feature of this approach is that frequency is not �xed, which allows to detect critical
frequencies corresponding to peak values of µ more easily. The gain-based algorithm of [Seiler
et al., 2010], the direct nonlinear optimization technique (grid-based version) of [Halton et al.,
2008] and the direct nonsmooth optimization technique (interval-based version) of [Lemos et
al., 2014] also give quite satisfactory results in most cases, since the accuracy is about 10%
on average. Nevertheless, these algorithms are much slower (especially the last two). This is
partly explained by the fact that they compute a µ lower bound as a function of frequency,
whereas the poles migration techniques focus on the peak values. Note also that the nonsmooth
technique gives the best results in most cases but sometimes proves very conservative, whereas the
nonlinear one usually produces bounds which are not the best ones but yet good ones. Moreover,
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interval-based versions allow to drastically reduce the computational time, but do not bring any
signi�cant improvement in terms of accuracy. Then, the poles migration technique of [Magni et
al., 1999] exhibits both a reasonable accuracy (less than 20% on average for all 29 benchmarks)
and a very low computational time (about 1.0 seconds on average for benchmarks 1-28 and only
63 seconds for the biochemical network). Finally, the power algorithm of [Young and Doyle,
1997] often su�ers from convergence problems, especially for frequencies corresponding to peak
values of µ∆(M(jω)). This is in stark contrast to the complex and mixed cases for which the
convergence properties are excellent (see below).

Purely complex and mixed real/complex problems

The poles migration technique of [Ferreres and Biannic, 2001] and the geometrical approach
of [Kim et al., 2009] cannot be applied in the presence of complex uncertainties. Moreover, the
gain-based algorithm of [Seiler et al., 2010] is not relevant when purely complex uncertainties
are considered, since it reduces to the power algorithm of [Young and Doyle, 1997], and no im-
provement over the power algorithm is observed for the considered mixed real/complex problems.
Therefore, these methods are not considered in Table A.4.

Algorithm
Number of benchs for which (µ∆−

˜
µ∆)/µ∆ is Mean value of

Mean CPU time
=0% ≤1% ≤5% ≤25% <100% (µ∆−

˜
µ∆)/µ∆

1 4 7 7 7 7 0.10% 1.1 s

3 0 2 4 6 7 16.60% 0.9 s

5 2 2 2 3 4 57.12% 140.8 s

6 (g) 1 6 7 7 7 0.34% 2648.8 s

6 (i) 0 4 5 7 7 4.26% 874.2 s

7 (g) 4 4 4 6 7 10.63% 3972.6 s

7 (i) 2 4 5 6 7 7.91% 249.5 s

Table A.4: Synthetic results for purely complex & mixed real/complex problems (benchmarks 30-36)

The power algorithm of [Young and Doyle, 1997] is the most e�cient algorithm,
with the highest accuracy and almost the lowest computational time. This con�rms its good
convergence properties when mixed or complex uncertaintes are considered. The direct nonlinear
optimization technique (grid-based version) of [Halton et al., 2008] also gives very accurate re-
sults, but the mean computational time is 2400 times higher. More generally, optimization-based
techniques (algorithms 5-6-7) are not attractive in terms of computational time, since full com-
plex blocks generate a large number of optimization variables (2n2

i variables for a ni × ni block).

2.4 Results improvement

Purely real problems

The results presented in Section A.2.3 show that the best µ lower bounds are obtained for 26
purely real benchmarks out of 29 with the poles migration technique of [Ferreres and Biannic,
2001]. Moreover, the bounds computed for the other 3 benchmarks (20/26/29) are not very
far from the highest values over all algorithms. Improving the poles migration technique to
obtain the best results in all cases does not seem to be a trivial issue. A more promising idea
is to combine di�erent algorithms to get the most out of them. Apart from the poles migration
techniques, the most e�cient methods are the gain-based algorithm of [Seiler et al., 2010] and
the global optimization tools of [Halton et al., 2008] and [Lemos et al., 2014]. The following
three-step strategy is thus proposed in [Roos and Biannic, 2015]:
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1. The poles migration technique of [Ferreres and Biannic, 2001] (algorithm 4) is executed
�rst as explained in Section A.2.1.

2. The gain-based algorithm of [Seiler et al., 2010] (algorithm 2) is then executed for a few
selected frequencies only using the previous results as an initialization. These frequen-
cies can be those for which the uncertain system becomes unstable after algorithm 4
is applied or if a single uncertainty is considered. The frequency for which the lower bound
on kr (i.e. the highest µ upper bound) is obtained is also a good candidate.

3. A global optimization tool is �nally applied using the previous results as an initialization.
Particle swarm optimization is implemented here, since it o�ers a bunch of tuning param-
eters (numbers of swarms, of particles in each swarm, of topologies. . . ), which allows to
easily handle the trade-o� between accuracy and computational time.

The improved µ lower bounds so obtained for benchmarks 20/26/29 are shown in Table A.5.
They are compared with the bounds computed in Section A.2.3 by independently applying all
algorithms one at a time.

Benchmark
Algorithm 4 only Other algorithms one at a time Proposed combination

value time best value time algorithm value time

20 0.9380 0.5 s 0.9947 41.6 s 7 0.9947 5.5 s

26 0.9881 2.2 s 1.2134 184.9 s 7 1.2144 18.0 s

29 724.15 46.9 s 733.86 2864.8 s 2 753.10 580.0 s

Table A.5: Improved µ lower bounds for purely real benchmarks

The best upper bound on kr is obtained in all cases with the proposed combination.
The computational time is of course larger than if algorithm 4 is applied alone. Nevertheless, it
remains much smaller than with algorithms 2 and 7, which produced the best results so far for
benchmarks 20/26/29. The bound is even improved for benchmarks 26 and 29, for which a single
application of any algorithm cannot bring the best value. The proposed strategy is implemented
in the SMART Library of the SMAC Toolbox (see [Roos, 2013] and Section A.6).

Remark A.2 The method of [Apkarian et al., 2016] was published after our comparative study
was conducted. It is therefore not evaluated in this work. Nevertheless, it was applied by the
authors to benchmarks 1-29 and results are very consistent with the strategy proposed in [Roos
and Biannic, 2015]. It con�rms once again that solving problem (A.7) is probably the best way
to compute accurate upper bounds on kr, i.e. µ lower bounds.

Purely complex and mixed real/complex problems

The results presented in Section A.2.3 show that the power algorithm of [Young and Doyle,
1997] is the most relevant technique for purely complex and mixed real/complex problems. Nev-
ertheless, the resulting upper bounds on kr are conservative in some cases: the power algorithm
is slightly outperformed by other techniques for benchmarks 33/34/35. A careful investigation
of several benchmarks shows that the main reasons for this are threefold:

• The power algorithm is applied at each point of a �xed frequency grid. Unless by some
stroke of luck, the critical frequency corresponding to the exact value of kr is usually not
part of this grid, even if the latter is very tight.
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• The power algorithm almost always converges in the presence of complex uncertainties,
but it sometimes requires a quite large number of iterations.

• Optimization problem (A.5) is non-concave. Thus, the accuracy of the resulting µ lower
bound strongly depends on the way the power algorithm is initialized.

In this context, the following strategy introduced in [Roos and Biannic, 2015] can be imple-
mented to improve the results of Section A.2.3. First, the power algorithm of [Young and Doyle,
1997] is classically applied at each point of a �xed frequency grid. In most cases, the µ plot
does not exhibit very sharp peaks in the presence of complex uncertainties. Thus, a reasonably
rough grid (e.g. 20 frequency points) is usually enough to capture approximately the main peaks.
Then, the grid is gradually tightened around the frequencies of these peaks until improvement
in the µ lower bound becomes marginal. This strategy allows to address the �rst two issues
highlighted before. Indeed, the grid becomes very tight in the most critical frequency regions
and the frequency corresponding to the exact value of kr can be detected with a very good ac-
curacy. Moreover, repeatedly applying the power algorithm with a limited number of iterations
(e.g. 100 iterations) at very close frequencies is roughly equivalent to applying it once with a
large number of iterations, provided that it is initialized every time with the result obtained at
the previous frequency. Finally, in order to address the third issue, the power algorithm is not
only applied with the latter initialization, but also with one or more random initializations. The
improved µ lower bounds so obtained for benchmarks 33/34/35 are shown in Table A.6. They
are compared with the ones computed in Section A.2.3 using the power algorithm of mussv on a
�xed frequency grid, but also the other available algorithms.

Benchmark
Standard power algo Other algorithms one at a time Improved power algo

value time best value time algorithm value time

33 0.4346 0.7 s 0.4362 1380.1 7 (g) 0.4362 0.6 s

34 0.9587 1.1 s 0.9604 565.8 7 (g) 0.9606 1.3 s

35 0.9910 1.7 s 0.9927 12.3 5 0.9927 2.1 s

Table A.6: Improved µ lower bounds for purely complex & mixed real/complex benchmarks

The best upper bound on kr is obtained in all cases with the proposed strategy. The
mean computational time over all purely complex & mixed real/complex benchmarks is 1.1 s.
It is exactly the same as with the standard call to mussv (see Table A.4). Indeed, the initial
frequency grid is quite rough and it is only tightened in a few frequency intervals. Moreover, the
number of power iterations performed at each frequency is quite low. The total computational
time thus remains very reasonable. The enhanced call to the power algorithm is implemented in
the SMART Library of the SMAC Toolbox (see [Roos, 2013] and Section A.6).

Remark A.3 Several techniques have been proposed to improve the convergence properties of the
power algorithm in case of purely real problems [Tierno and Young, 1992; Cheng and De Moor,
1994; Newlin and Glavaski, 1995]. But convergence is usually not an issue in the presence of
complex uncertainties. These techniques are thus of little help in the present context.

2.5 Conclusion

The main contribution of this section is to provide a thorough comparative analysis of all
practical methods to compute upper bounds on the robust stability margin kr, i.e. lower bounds
on the structured singular value µ. It appears that the tradeo� between accuracy and computa-
tional time is best handled by the poles migration technique of [Ferreres and Biannic, 2001] for
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purely real problems and by the power algorithm of [Young and Doyle, 1997] for purely complex
and mixed real/complex problems. Based on these conclusions, simple improvements and combi-
nations are proposed to further improve the bounds with a reasonable computational e�ort. The
resulting Matlab tools are evaluated on a wide set of 36 real-world benchmarks available in the
literature. Results are conclusive, since the best bounds are obtained in all cases. The next step
is to compute lower bounds on kr, i.e. guaranteed µ upper bounds on the whole frequency range.

3 µ upper bound computation

3.1 Classical (D,G)-scalings formulation

Most of the algorithms which can reasonably be applied to real-world benchmarks are based
on the following result [Young et al., 1995; Fan et al., 1991]:

Theorem A.2 Let M be a complex matrix and β > 0. If there exist matrices D ∈ D and G ∈ G
which satisfy one of the following relations:

M∗DM + j(GM −M∗G) ≤ β2D (A.11)

σ

(
(I +G2)−

1
4

(
DMD−1

β
− jG

)
(I +G2)−

1
4

)
≤ 1 (A.12)

where D = {D = D∗ > 0 : ∀∆ ∈ ∆, D∆ = ∆D} and G = {G = G∗ : ∀∆ ∈ ∆, G∆ = ∆∗G},
then µ∆(M) ≤ β. The problem of minimizing β can be solved either optimally using an LMI
solver or faster but suboptimally using a gradient descent algorithm.

Computing a lower bound on kr, i.e. an upper bound on µ∆(M(jω)) on the whole frequency
range R+, is a challenging problem with an in�nite number of frequency-domain constraints and
optimization variables, since Theorem A.2 must be applied for each ω ∈ R+. In practice, it
is usually solved on a �nite frequency grid only. However, a crucial problem appears in this
procedure: the grid must contain the frequency for which the maximal value of µ∆(M(jω)) is
reached. If not, the resulting lower bound on kr can be over-evaluated, i.e. be larger than the
real value of kr. Unfortunately, the aforementioned critical frequency is usually unknown!

To overcome this issue, several approaches have been proposed to compute µ upper bounds,
which are guaranteed on the whole frequency range. One of the �rst solutions was introduced
in [Sideris, 1992] and then further investigated in [Helmersson, 1995; Ferreres and M'Saad, 1994;
Ferreres et al., 1996; Ferreres and Fromion, 1997; Young, 2001; Halton et al., 2008]. It consists of
considering the frequency as an additional parametric uncertainty δω. An augmented operator
∆̃(s) = diag(δωIm, ∆(s)) is considered, where m is the order of M(s). A recursive application
of Theorem A.2 then provides a guaranteed lower bound on kr. Alternatively, the problem can
be solved by computing a single skew-µ upper bound, which is computationally cheaper and can
be achieved using a rather straightforward generalization of Theorem A.2 (see Section A.5.2).
Unfortunately, this approach is intractable for high-order systems. Indeed, the number of decision
variables associated to δωIm in the D and G matrices increases quadratically with m, and it can
be quite large in real-world applications.

Another approach was proposed in [Ferreres et al., 2003] and improved in [Biannic and
Ferreres, 2005; Roos and Biannic, 2010]. A µ upper bound β and associated matrices D and G
are �rst computed for a given frequency ω̃ by setting M = M(jω̃) in Theorem A.2. It is then
slightly increased, i.e. β ← (1 + ε)β, so as to enforce a strict inequality:

σ

(
(I +G2)−

1
4

(
DM(jω̃)D−1

β
− jG

)
(I +G2)−

1
4

)
< 1 (A.13)
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The objective is then to compute the largest frequency interval Iv containing ω̃, for which the in-
creased upper bound β and the associated matricesD and G remain valid, i.e. such that ∀ω ∈ Iv:

σ

(
(I +G2)−

1
4

(
DM(jω)D−1

β
− jG

)
(I +G2)−

1
4

)
≤ 1 (A.14)

Proposition A.1 shows that the determination of Iv boils down to an eigenvalues computation.

Proposition A.1 Let (AM,BM,CM,DM ) be a state-space representation of M(s). Build the
Hamiltonian-like matrix:

H =

[
AH 0

−CH∗CH −AH∗

]
+

[
BH

−CH∗DH

]
X
[
DH

∗CH BH
∗] (A.15)

where X = (I −DH
∗DH)−1 and:

[
AH BH
CH DH

]
=

I 0

0
(I +G2)−1/4

√
β

[AM − jω̃I BMD
−1

DCM DDMD
−1 − jβG

]I 0

0
(I +G2)−1/4

√
β


De�ne δω̃− and δω̃+ as follows:

δω̃− = max{λ ∈ R− : det(λI + jH) = 0}
= −ω̃ if jH has no positive real eigenvalue

δω̃+ = min{λ ∈ R+ : det(λI + jH) = 0}
= ∞ if jH has no negative real eigenvalue

Then inequality (A.14) holds ∀ω ∈ Iv where:

Iv = [ω̃ + δω̃− , ω̃ + δω̃+ ] (A.16)

An iterative algorithm is �nally implemented, which mainly consists of repeatedly applying the
previous strategy to a list of intervals. A guaranteed µ upper bound, i.e. a lower bound on kr,
is obtained as soon as the union of all intervals covers the whole frequency range.

Algorithm A.1 (computation of a lower bound on kr)

1. Initialization:

(a) Compute a µ lower bound βmax (see Section A.2.4).

(b) Let I = {R+} be the initial list of frequency intervals to be investigated.

2. While I 6= ∅, repeat:

(a) Choose an interval I ∈ I and a frequency ω̃ ∈ I.
(b) Compute the minimum value of β and the associated matrices D and G such that

inequality (A.12) holds with M = M(jω̃).

(c) Set β ← max((1 + ε)β, βmax). Apply Proposition A.1 to compute Iv.

(d) Set βmax ← β. Update the intervals in I by eliminating the frequencies contained in Iv.

3. A guaranteed lower bound on kr is given by 1/βmax.
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The proposed algorithm is implemented in the SMART Library of SMAC Toolbox (see [Roos,
2013] and Section A.6). It is not based on a frequency grid to be de�ned a priori, with the
risk of missing a critical frequency. On the contrary, the list of frequency intervals is updated
automatically during the iterations, and no tricky initialization is required.

Remark A.4 A fairly similar approach is proposed in [Lawrence et al., 2000] and implemented
in the function munorm of the Subroutine Library in Systems and Control Theory (SLICOT) for
Matlab.

3.2 Numerical results

A lower bound kr on kr is computed using Algorithm A.1 for each of the 36 benchmarks listed
in Table A.2. The same computer is used as in Section A.2.3. For the moment, the objective
is to get the most accurate results, i.e. to ensure that the gap with respect to the best upper
bound kr on kr computed in Section A.2.3 is as low as possible. Computational time is not an
issue here and an LMI solver is used in step 2(b) of Algorithm A.1 whenever possible, i.e. when
the number of repetitions of the uncertanties is not too large.

Purely real problems

For 19 benchmarks out of 29, the gap between kr and kr is less than 0.01%, which means
that the exact value of kr is obtained. For the other 10 benchmarks, the gap is less than 10%
in 4 cases, between 20% and 40% in 5 cases, and up to 215% for benchmark 27 (which has 28
uncertainties, 12 of them being repeated). The mean value of the gap over all benchmarks is
12.71%.

Purely complex and mixed real/complex problems

For 6 benchmarks out of 7, the gap between kr and kr is less than 0.01%, which means that
the exact value of kr is obtained. For the last one, the gap is 2.68%. The mean value of the gap
over all benchmarks is 0.39%.

3.3 Use of the µ-sensitivities

The gap between the bounds on kr can have several causes. The most obvious ones are
mentioned below:

1. The µ lower bound algorithms are conservative and they only provide an upper bound on kr,

2. A suboptimal result is obtained when the minimization of β in step 2(b) of Algorithm A.1
is performed with a gradient descent algorithm instead of an LMI solver,

3. The su�cient characterizations of Theorem A.2 are not necessary, and they only provide
a lower bound on kr.

In other words, is it the lower or the upper bound on kr which is responsible for this gap?
Although there is no theoretical proof, it is observed in practice that the best kr upper bound
obtained using the strategies proposed in Section A.2.4 almost always equals the exact value of kr.
This will be highlighted in the next sections. So item 1 above is not really an issue. In contrast,
two solutions are proposed in Sections A.3.4 and A.3.5 to address items 2 and 3 respectively, and
to improve the accuracy of the µ upper bound. They both use the µ-sensitivities. The latter
were introduced in [Braatz and Morari, 1991], and they allow to quantify the extent to which a
µ upper bound µ∆ changes when a single uncertainty slightly varies in ∆.
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De�nition A.3 Let M = M(jω) denote the frequency response of M(s) at a given frequency ω.
Pre- and post-multiply ∆ by a diagonal matrix A(εj) = diag(In1 , . . . , (1 − εj)Inj , . . . , InN ), so
that the jth uncertainty is multiplied by (1 − εj)2 while the others stay at their nominal values.
Let then Mεj = A(εj)MA(εj) (note that M0 = M). The jth µ-sensitivity is de�ned as:

Sµj =
∂

∂εj
µ∆(Mεj ) = lim

εj→0+

|µ∆(M)− µ∆(Mεj )|
εj

Using the above formulation is numerically sensitive and the algorithm proposed in [Douglas
and Athans, 1995] is preferred here. The µ-sensitivities can be very useful to identify which
uncertainties have the greatest in�uence on stability. This can be interesting when the µ upper
bound computation is based on solving large LMI problems. In such a case, only selected parts
of the LMIs corresponding to the uncertainties with the largest µ-sensitivities are solved with
a dedicated solver, while the others are solved using suboptimal and faster methods. This is
illustrated for the (D,G)-scalings based formulation of Theorem A.2 in Section A.3.4, and for
the more general and less conservative multiplier based formulation of [Fu and Barabanov, 1997]
in Section A.3.5. Branch-and-bound techniques can also bene�t from this approach by iteratively
cutting the uncertainty domain along the edges with the largest µ-sensitivities only, as described
in Section A.4.

3.4 Partial LMI optimization of the scaling matrices

As already emphasized, the µ upper bound of [Young et al., 1995; Fan et al., 1991] can be
computed either with an LMI solver or with a gradient descent algorithm. The �rst approach
allows to compute the minimum value of β such that (A.12) is satis�ed, at the price of a large (and
sometimes dissuasive) computational e�ort in case of highly repeated uncertainties (ni � 1). In
contrast, the second approach only gives a suboptimal result in most cases, but it is much faster.
In order to master the numerical complexity while preserving the accuracy of the LMI-based
technique, step 2(b) of Algorithm A.1 is adapted as follows. Initial values of D and G are �rst
obtained using the gradient descent algorithm. Selected parts of these matrices are then re-
optimized using an LMI solver, based on the µ-sensitivities computation and on a user-de�ned
maximum number of decision variables nopt, as described in [Lesprier et al., 2015c].

Remark A.5 The parameter nopt allows to handle the tradeo� between accuracy and computa-
tional time at step 2(b) of Algorithm A.1. A small value makes the algorithm faster but does not
signi�cantly increase the lower bound kr

GD on kr obtained with the gradient descent method. On
the contrary, a large value increases the computational time but makes the lower bound on kr
tend to the optimal value kr

LMI obtained with the full LMI optimization approach.

This technique is especially useful when both the gap between krLMI and krGD and the compu-
tational time required to compute krLMI are large. The results obtained on selected benchmarks
satisfying these conditions are summarized in Table A.7, where krpLMI denotes the lower bound on
kr computed using the aforementioned procedure. The maximum number of decision variables
is set to nopt =80, so that the computation time to apply Algorithm A.1 is reasonable (ideally
around 30 seconds). It can be observed that the gap between krLMI and krpLMI is usually quite low
(third column) compared to the initial gap between krLMI and krGD (�fth column), and that the
computational time remains quite reasonable. Note that the last benchmark is not part of the
list of Table A.2. It corresponds to a �exible satellite model with 95 states and a 34×34 ∆ opera-
tor composed of 15 parametric uncertainties with the following structure: 3×1+8×2+1×3+3×4.
For this benchmark, the gap is still high, but the improvement is nonetheless substantial since
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the initial gap between kr
LMI and kr

GD is very large. These results prove the capability of the
method to compute an upper bound close to krLMI with a computation time close to the gradient
descent algorithm.

Benchmark
kr

LMI kr
pLMI kr

GD

time gap w.r.t kr
LMI time gap w.r.t kr

LMI time

19 26s 0.43% 17 s 12.56% 5 s

20 122 s 14.60% 30 s 66.52% 4 s

25 63 s 0.01% 20 s 20.41% 9 s

26 306 s 0.57% 30 s 20.47% 6 s

27 3546 s 26.58% 100 s 63.37% 36 s

- 2555 s 97.34% 49 s 230.48% 22 s

Table A.7: Results for partial LMI optimization

3.5 Multiplier-based µ upper bound

The previous section deals with the case where the gap between krLMI and krGD is large. The
case where the gap between kr and kr

LMI is large is now considered. In this perspective, the
multiplier based µ upper bound introduced in [Fu and Barabanov, 1997] is �rst reviewed, which
is a generalization of the (D,G)-scalings based µ upper bound of [Young et al., 1995]. The main
results are based on the following lemma.

Lemma A.1 A matrix family A is nonsingular if there exists another matrix C (called a mul-
tiplier) such that He CA < 0 for all A ∈ A, where He X is the hermitian part of the matrix X.

In this section, it is assumed for simplicity reasons but without loss of generality that ∆ is
only composed of parametric uncertainties, i.e. ∆ = diag(δ1In1 , . . . , δNInN ). This assumption is
realistic anyway, since the gap between kr and krLMI is usually quite low as soon as there is at least
one complex block in ∆. The following theorem derives from Lemma A.1 and De�nition A.1.

Theorem A.3 [Fu and Barabanov, 1997] Let M be a complex matrix and α > 0. If there exists
a multiplier C ∈ Cn×n such that:

He C∗ (In −∆M) < 0 (A.17)

for all ∆ ∈ 1
αB∆, then µ∆(M) ≤ α.

Equation (A.17) is linear in δi, so B∆ can be equivalently replaced with B∆ = {∆ ∈∆ : δi = ±1}.
The aim is thus to �nd the minimum value of α > 0 such that (A.17) holds for each of the 2N ma-
trices ∆ ∈ (1/α)B∆, which can be formulated as a GEVP (Generalized EigenValue minimization
Problem):

ν∆(M) = min
α∈R+,C∈Cn×n

α

subject to He C∗ (αIn −∆M) < 0, ∀∆ ∈ B∆

(A.18)

where ν∆(M) is called the multiplier based µ upper bound. If M has the following structure:

M = AB∗ (A.19)

where A,B ∈ Cn×q and q = rank(M) ≤ n, then (A.17) can be equivalently replaced with:

He Ĉ∗(Iq −B∗∆A) < 0 (A.20)

Advanced control laws design and validation - A set of methods and tools to bridge the gap between theory and practice



30 µ-analysis based robustness tools

where Ĉ ∈ Cq×q. Hence, if M does not have full rank, solving (A.20) is obviously advantageous
since the size of the multiplier is q× q, rather than n× n in (A.17). The following theorem then
shows that ν∆(M) is less conservative than the (D,G)-scalings based upper bound µLMI

∆ (M).

Theorem A.4 (adapted from [Fu and Barabanov, 1997]) For every structure ∆ and matrix M ,
ν∆(M) ≤ µLMI

∆ (M).

The multiplier-based method is thus attractive, since it allows to get a more accurate µ upper
bound. Nevertheless, it su�ers from two main drawbacks:

1. This is an exponential-time method. Indeed, the GEVP (A.18) involves 2N LMIs, which
can be computationally very costly if the number of uncertainties is large.

2. It only provides a µ upper bound at a given frequency. Thus, a lower bound on the robust
stability margin kr is usually computed on a frequency grid and can be over-evaluated, as
already emphasized in Section A.3.1.

A way to address the �rst issue is to solve (A.18) only for a limited number of uncertainties
r < N and to use the (D,G)-scalings based formulation for the N − r others. The obtained
upper bound ν r∆(M) lies between ν∆(M) and µLMI

∆ (M), yielding a slightly looser but more
computationally-friendly bound than ν∆(M). Moreover, the µ-sensitivities can be used to select
the r uncertainties of ∆ with the greatest in�uence on stability, as explained in Section A.3.3.
M and ∆ are thus reordered, so that ∆ = diag(∆1,∆2), where ∆1 ∈ ∆1 ⊂ Rp×p contains the
selected r blocks (p =

∑r
i=1 ni) and ∆2 the other N − r blocks. Let D ∈ D2 and G ∈ G2

be the scaling matrices associated to ∆2, as de�ned in Theorem A.2. A rank decomposition

M =

[
A1

A2

] [
B∗1 B∗2

]
is also performed to reduce the number of decision variables, where A1, B1 ∈

Cp×q, A2, B2 ∈ C(n−p)×q and q = rank(M). The following problem must now be solved:

ν r∆(M) = min
α∈R+,Ĉ∈Cq×q ,D∈D2,G∈G2

α

subject to

[
L11 Ĉ∗B∗2 + jA∗2G

B2Ĉ − jGA2 −α2D

]
< 0, ∀∆1 ∈

1

α
B∆1

where L11 = 2He Ĉ∗(Iq −B∗1∆1A1) +A∗2DA2

(A.21)

With this new formulation there are only 2r LMIs to solve instead of 2N , and thanks to the µ-
sensitivities, only the most relevant ones are considered. Note that the solution to problem (A.21)
is also a solution to the initial problem (A.20), as shown below.

Theorem A.5 (adapted from [Fu and Barabanov, 1997]) Suppose that there exist α > 0 and
Ĉ ∈ Cq×q such that (A.21) is satis�ed. Then He Ĉ∗(Iq −B∗∆A) < 0 for all ∆ ∈ (1/α)B∆.

Let us now focus on the second issue. A method is proposed to determine on which frequency
intervals the multiplier C (or Ĉ) computed at one particular frequency remains valid. It is based
on the following theorem.

Theorem A.6 [Lesprier et al., 2015b] Let (AM , BM , CM , DM ) be a state-space representation
of M(s). Let α > 0, ∆ ∈ 1

αB∆ and C ∈ Cn×n such that X = 2He C∗(In −∆DM ) is nonsingu-
lar. Then He C∗(In − ∆M(jω)) is singular if and only if jω is an eigenvalue of the following
Hamiltonian matrix:

H =

[
AM 0

0 −A∗M

]
+

[
BM

C∗M∆C

]
X−1

[
C∗∆CM −B∗M

]
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Theorem A.6 can be used to compute the list of frequency intervals Iv on which:

He C∗(In −∆M(jω)) < 0 (A.22)

i.e. on which the multiplier C remains valid for a given uncertainty matrix ∆ ∈ 1
αB∆. Let

jω1, . . . , jωk be the purely imaginary eigenvalues of H such that 0 < ω1 < . . . < ωk. It is obvious
that [0 ω1]∪ [ω1 ω2]∪ . . .∪ [ωk−1 ωk]∪ [ωk +∞[= R+. So it su�ces to pick a frequency ωt inside
each of these k + 1 intervals and to test whether He C∗ (In −∆M(jωt)) < 0. Iv is composed of
all the invervals for which this condition is satis�ed.

Remark A.6 The nonsingularity condition on X in Theorem A.6 is not restrictive in practice.
Indeed, the feedthrough matrix DM is generally a null matrix when real systems are considered.
In this case, X is always nonsingular, since X = 2He C∗ < 0. Moreover, several benchmarks
have been studied, for which DM was not zero, and the condition on X was always satis�ed.

Theorem A.6 is only valid for a multiplier C with full rank n. For the case where a multiplier
Ĉ ∈ Cq×q, q < n, is computed (e.g. using (A.20) or (A.21)), the following theorem is applied
�rst to derive a valid full-rank multiplier C ∈ Cn×n so that Theorem A.6 can then be used.

Theorem A.7 [Lesprier et al., 2015b] Let M = M(jω) denote the frequency response of M(s)
at a given frequency ω. Consider the reduced-rank structure M = AB∗, where A,B ∈ Cn×q and
q = rank(M). Assume that there exist Ĉ ∈ Cq×q and α > 0 such that:

He Ĉ∗(Iq −B∗∆A) < 0, ∀∆ ∈ 1

α
B∆ (A.23)

Let C = BĈB∗ − εEE∗ ∈ Cn×n, where ε > 0 is small enough and E ∈ Cn×(n−q) is such that[
B E

]
has full rank. Then:

He C∗(In −∆M) < 0, ∀∆ ∈ 1

α
B∆ (A.24)

Remark A.7 Numerically speaking, a full-rank multiplier C is thus quickly computed from Ĉ
using the above theorem. Indeed it su�ces to choose a small enough ε and a random complex
matrix E such that

[
B E

]
has full rank. Note that the latter assumption is not restrictive and

that a suitable E can be easily obtained.

The following algorithm is now proposed to compute a guaranteed multiplier based µ upper
bound on the whole frequency range R+, i.e. a lower bound on kr.

Algorithm A.2 (computation of a lower bound on kr)

1. Initialization:

(a) Compute a µ lower bound αmax (see Section A.2.4).

(b) Let I = {R+} be the initial list of frequency intervals to be investigated.

(c) De�ne the number r of uncertainties with the highest µ-sensitivities to be put in ∆1.

2. While I 6= ∅, repeat:

(a) Choose an interval I ∈ I and a frequency ω̃ ∈ I.
(b) Compute the minimum value of α and the associated matrices Ĉ ∈ Cq×q, D and G

such that inequality (A.21) holds with M = M(jω̃).
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(c) If q < n, apply Theorem A.7 to �nd the corresponding full-rank multiplier C ∈ Cn×n.
Otherwise, set C = Ĉ.

(d) Set α ← max(α, αmax). Apply Theorem A.6 for each uncertainty matrix ∆j ∈
(1/α)B∆ to compute the list of frequency intervals Ivj on which (A.22) holds.

(e) Set αmax ← α. Update the intervals in I by eliminating the frequencies contained in⋂
j Ivj .

3. A guaranteed lower bound on kr is given by 1/αmax.

The results obtained on several benchmarks are summarized in Table A.8. These benchmarks
are interesting, since the (D,G)-scalings based approach of [Young et al., 1995] does not give
accurate enough µ upper bounds. Algorithm A.2 is thus applied to reduce conservatism. krLMI

and krMULT denote the lower bounds on kr obtained with Algorithm A.1 (using an LMI solver
to compute µ upper bounds at step 2(b)) and Algorithm A.2 respectively. kr is the best upper
bound on kr computed in Section A.2.4 among all existing algorithms.

Benchmark
kr

LMI (Algorithm A.1) kr
MULT (Algorithm A.2)

gap w.r.t. kr time r gap w.r.t. kr time iterations

3 41.03% 1 s 2 1.23% 42 s 27

10 27.59% 6 s
2 14.20% 120 s 50

4 0.09% 477 s 89

22 24.46% 11 s
5 12.88% 133 s 4

9 5.34% 1190 s 6

Table A.8: Comparison between the (D,G)-scalings and the multiplier based approaches

Conservatism is drastically reduced with a reasonable computation time. Note that for bench-
mark 22, the use of the reduced-rank structure ofM greatly decreases the computational burden.
This property can be exploited for many realistic systems. It is also interesting to notice that
the number of iterations to validate the multiplier based µ upper bound on the whole frequency
range is reasonable, and even very small for benchmark 22. On the contrary, solving the problem
on a frequency grid would require to consider a signi�cantly larger number of frequencies to get
reasonably accurate results. This would imply a much larger computation time in addition to
an impossibility to ensure that no critical frequency has been missed.

Finally, 50 runs of Algorithm A.2 are performed on benchmarks 10 and 22. At each iteration,
the r uncertainty blocks handled by the multiplier-based µ upper bound are randomly chosen
at step 2(b) instead of being selected using the µ-sensitivities. The corresponding results are
presented in Table A.9. The latter displays the minimum, the mean and the maximum values
of the gap between kr

MULT and kr, and compares them with the gap previously obtained in
Table A.8. This clearly shows the relevance of using the µ-sensitivities.

Benchmark r
Gap between kr

MULT and kr

using the µ-sensitivities min/mean/max values (50 runs)

10 2 14.20% 20.55% / 20.84% / 20.93%

22
5 12.88% 10.35% / 18.27% / 22.89%

9 5.34% 5.34% / 11.49% / 17.88%

Table A.9: Results showing the relevance of using the µ-sensitivities
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Remark A.8 The method of [Fu and Barabanov, 1997] was extended in [Chen and Sugie, 1997]

by considering a parameter dependent multiplier C(∆). The resulting µ upper bounds are nec-
essarily less conservative than the ones computed using a constant multiplier C, but the LMI
problem to be solved becomes more demanding. This extension is thus restricted to small-size
problems and has not been considered in this work.

3.6 Conclusion

A practical method is �rst proposed to compute lower bounds on the robust stability margin
kr, i.e. upper bounds on the structured singular value µ. Unlike classical grid-based methods,
the results are guaranteed on the whole frequency range, and there is no risk of missing a critical
frequency. Moreover, the algorithm is computationally e�cient and can be applied to high-order
models with highly repeated parametric uncertainties. The resulting Matlab tools are evaluated
on the same set of benchmarks as in Section A.2. The exact value of kr is obtained in 25 cases
out of 36, and the mean gap over all benchmarks between the bounds on kr is only 10%. Some
strategies are then proposed to improve the accuracy of the lower bounds on kr, while keeping a
reasonable computational time. Firstly, the µ-sensitivities are used to identify the uncertainties,
which have the greatest in�uence on stability. When the classical (D,G)-scalings based µ upper
bound is computed, the corresponding blocks of the matrices D and G are optimized with an
LMI solver, while the other ones are determined using a suboptimal and faster method. Secondly,
the multiplier-based µ upper bound of [Fu and Barabanov, 1997] is revisited. An algorithm is
proposed to compute a guaranteed robust stability margin on the whole frequency range, and
not only on a �nite frequency grid. To alleviate the computational cost, the µ-sensitivities are
also used to decide whether each uncertainty is treated with the more accurate multiplier based
characterization or the cheaper (D,G)-scalings based one. Signi�cantly less conservative µ upper
bounds are obtained for many benchmarks, but computational time becomes prohibitive for the
most complicated ones. The next step is to further tighten the gap between lower and upper
bounds on kr using branch-and-bound techniques, so as to approach the exact value in all cases
and with a moderate computational e�ort.

Remark A.9 Several other techniques exist to compute µ upper bounds (see e.g. [De Gaston
and Safonov, 1988; Ly et al., 1998; Lee and Edgar, 2003; Scorletti et al., 2007]). It could be
worthwhile to perform a detailed comparison of all existing algorithms and to propose e�cient
combinations to get the most out of them. This would probably further improve the results reported
in Section A.3.

4 Branch-and-bound to reduce conservatism

4.1 Standard algorithm

Conservatism is de�ned here as the relative gap η between the lower and the upper bounds
on the robust stability margin:

η =
kr − kr
kr

(A.25)

Despite the e�orts reported in Sections A.2 and A.3 to improve the bounds on kr, η some-
times reaches unacceptable values, notably in the presence of highly repeated real parametric
uncertainties (see Section A.3.2). To overcome this issue, a branch-and-bound algorithm can be
used to ensure that conservatism remains below a speci�ed threshold ηtol [Balemi et al., 1991;
Newlin and Young, 1997]. The idea is to partition the real parametric domain in more and more
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subsets until the relative gap between the highest lower bound and the highest upper bound com-
puted on all subsets becomes less than ηtol. This algorithm is known to converge for uncertain
systems with only real parametric uncertainties [Newlin and Young, 1997], i.e. η can be reduced
to an arbitrarily small value. However, it su�ers from an exponential growth of computational
complexity as a function of the number of real uncertainties. The choice of ηtol thus allows to
handle the tradeo� between accuracy and computational time.

A standard version of this branch-and-bound algorithm is �rst applied to the benchmarks
listed in Table A.2. Upper bounds on kr are computed using the strategies described in Sec-
tion A.2.4, and lower bounds on kr are obtained using Algorithm A.1. Algorithm A.2 could have
been used for some benchmarks to compute better lower bounds, but it has not been considered
here, since it cannot be applied to all benchmarks with a reasonable computational time.

Purely real problems

For 19 benchmarks out of 29, the gap between kr and kr is already less than 0.01%, so no
further improvement is needed (see Section A.3.2). For the other 10 benchmarks, branch-and-
bound allows to increase kr, leading to a gap less than 0.01% in 7 cases, and of 0.12%, 1.99%
and 10.00% in the last 3 cases. The mean value of the gap over all 29 benchmarks is reduced
from 12.71% to only 0.42%. And the exact value of kr is (almost) obtained in all but one case.

Purely complex and mixed real/complex problems

For 6 benchmarks out of 7, the gap between kr and kr is already less than 0.01%, so no
further improvement is needed (see Section A.3.2). For the last one, branch-and-bound allows to
increase kr, leading to a gap less than 0.01%. The mean value of the gap over all 29 benchmarks
is reduced from 0.39% to less than 0.01%. And the exact value of kr is obtained in all cases.

Remark A.10 In all cases where branch-and-bound is applied, kr is improved while kr is not. Al-
though there is no theoretical proof, this shows that the kr upper bounds obtained in Section A.2.4
almost always equal the exact value of kr, i.e. that the best µ lower bound algorithms are almost
always non-conservative. This justi�es the claim of Section A.3.3.

However, despite these good results, computational complexity grows exponentially as a
function of the number N of uncertainties. Thus, computing tight lower bounds on kr can be
extremely long (it can take hours and even days for some benchmarks).

4.2 Improved algorithm

Two solutions are proposed in this section to improve the computational time, while main-
taining the same level of accuracy. A strategy based on the progressive validation of the frequency
range is �rst proposed in [Roos et al., 2011]. Assume for example that a subset S and a frequency
domain Ω are considered at step k of the branch-and-bound scheme. Algorithm A.1 is applied to
compute a validated frequency domain Ωv ⊂ Ω such that det (I −M(jω)∆) 6= 0 holds ∀∆ ∈ S
and ∀ω ∈ Ωv. During the next step, the analysis performed on each subset of S only considers
the frequencies Ωnv = Ω r Ωv which have not been validated at step k. Consequently, after a
few steps, the analysis is restricted to very narrow frequency intervals corresponding to critical
frequencies. This results in a drastic reduction of the computational load induced by a classical
branch-and-bound procedure.

It is then proposed to use the µ-sensitivities to cut the uncertainty domain in a relevant way,
so as to reduce the number of iterations and to decrease the computational time. The following
algorithm is introduced in [Lesprier et al., 2015c]:
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Algorithm A.3 (branch-and-bound using the µ-sensitivities)

1. Initialization:

(a) Choose the maximum allowable gap η between the lower and the upper bounds on kr.

(b) Compute an upper bound kr on kr (see Section A.2.4). Let the candidate lower bound
ktest
r on kr be de�ned as kr = (1 + η)ktest

r .

(c) Let E = {(S0,Ω0)} be the initial list of elements to be tested, where S0 = ktest
r B∆ and

Ω0 = R+.

2. While E 6= ∅:

(a) Take an element (S,Ω) from E.
(b) Compute M̃(s) such that the interconnections (M(s),∆ ∈ S) and (M̃(s), ∆ ∈ B∆)

are equivalent.

(c) Apply Algorithm A.1 to determine the frequencies Ωv ⊂ Ω such that the µ upper
bound is less than 1 for the normalized interconnection (M̃(s),∆ ∈ B∆) computed
at step 2(b).

(d) If Ωv 6= Ω, compute the µ-sensitivities for a frequency ω ∈ Ωnv = Ω r Ωv. Partition
S along the edge with the largest µ-sensitivity to get two subdomains S1 and S2. Add
(S1,Ωnv) and (S2,Ωnv) to E.

Remark A.11 A new upper bound on kr, i.e. a µ lower bound, is also computed occasionally,
for example every 10 or 20 iterations. This is enough, since upper bounds on kr are usually very
close or even equal to kr, as highlighted in Section A.4.1. If the new upper bound is smaller,
ktest
r is updated as described in step 1(b) of Algorithm A.3 and the domain S associated to each
element of E is adjusted accordingly.

4.3 Numerical results

Algorithm A.3 is applied to all benchmarks for which the gap between the lower and the
upper bounds on kr is larger than 0.1%. The �nal results obtained for all 36 benchmarks are
summarized below:

• For 26 benchmarks out of 36, the computational time is negligible: less than 5 s for a gap
less than 0.1%.

• For 8 benchmarks, the computational time is low: between 8 s and 80 s for a gap less than
1%, and between 10 s and 158 s for a gap less than 0.1%.

• Only 2 benchmarks (among the most complex ones with many uncertainties, some of them
being highly repeated) require a larger but still reasonable computational e�ort:

� benchmark 27 (launcher model with 30 states and a 45×45 ∆ matrix): 9min 30 s for
a gap less than 1%, much longer for a gap less than 0.1%.

� benchmark 29 (biochemical network with 7 states and a 507×507 ∆ matrix): 22min 30 s
for a gap less than 10%, 3 h 04min for a gap less than 5%, 14 h 54min for a gap less
than 1%, much longer for a gap less than 0.1%.

Advanced control laws design and validation - A set of methods and tools to bridge the gap between theory and practice



36 µ-analysis based robustness tools

Therefore, computing the exact value of the robust stability margin kr, i.e. the exact
value of the structured singular value µ, is no longer an issue. Beyond this rather
provocative claim stands a conclusion supported by 20 years of research, software development
and practical validation. With very few exceptions, kr can be computed for all real-world ap-
plications with both an excellent accuracy (less than 1%) and a low computational time (less
than 5 minutes and usually just a few seconds) [Roos and Biannic, 2018]. This is illustrated in
Figure A.2, which must be interpreted as follows. Let (x, y) be the coordinates of any star sign.
Then x corresponds to the number of benchmarks for which the computational time is lower
than y. Note that benchmarks 27 and 29 are not represented, since it is not possible with the
current tools to reduce the gap to 0.1% with a reasonable computational time.
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Figure A.2: Computational time to compute tight bounds on the robust stability margin

5 What can be done with µ

The most common use of µ-analysis is to compute the robust stability margin kr. But other
criteria of practical importance can be evaluated. Modal performance is �rst considered in Sec-
tion A.5.1. The skewed structured singular value is then introduced. It serves as a basis to
compute the skewed robust stability margin in Section A.5.2, the worst-case H∞ performance
level in Section A.5.3, and the worst-case input-output margins in Section A.5.4. All the asso-
ciated algorithms are implemented in the SMART Library of SMAC Toolbox for Matlab, which
is �nally presented in Section A.6.

5.1 Modal performance

It is often desirable to quantify the performance degradations, which are induced by model
uncertainties and appear before instability. In this context, the objective is not only to check
that the poles of the uncertain system are stable, but also that they are su�ciently fast and
well damped. In other words, the largest size of the uncertainties is to be computed, for which
it can be guaranteed that the poles of the interconnection between M(s) and ∆ are located to
the left of the truncated sector depicted in Figure A.3. The structured singular value µ is thus
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computed along the boundary of this truncated sector instead of the imaginary axis, i.e. along
the two following segments:

• segment 1: s = −α+ jω for ω ≤ ωc,

• segment 2: s = jωz for ω ≥ ωc,

where z = [1 + j tan(φ)] and ωc = α/ tan(φ). Let (AM , BM , CM , DM ) be a state-space repre-
sentation of M(s). Then:

• M(−α + jω) = M1(jω) on segment 1, where (AM + αI, BM , CM , DM ) is a state-space
representation of M1(s).

• M(jωz) = M2(jω) on segment 2, where (AM/z,BM/
√
z, CM/

√
z,DM ) is a state-space

representation of M2(s).

Therefore, the adaptation of Algorithm A.1 to handle modal performance is rather straightfor-
ward by considering M1(s) and M2(s) instead of M(s) [Roos et al., 2011]. The µ lower bound
algorithm proposed in Section A.2.4 is modi�ed in the same way. A perturbation ∆ is computed,
which brings an eigenvalue of the interconnection of Figure A.1 on the boundary of the truncated
sector of Figure A.3.

ω
c

α

Φ

Figure A.3: Truncated sector used for modal performance assessment

5.2 Skewed robust stability margin

5.2.1 Problem statement

With the same notation as in Section A.1, assume now that ∆ is split into two distinct block
structures, i.e. ∆ = diag(∆1,∆2). Let ∆s = diag(B∆1 ,∆2) and kB∆s = diag(B∆1 , kB∆2).
The skewed structured singular value is de�ned as follows [Fan and Tits, 1992].

De�nition A.4 (skewed structured singular value) Let ω ∈ R+ be a given frequency. If no
matrix ∆ = diag(∆1,∆2) ∈∆s makes I−M(jω)∆ singular, then the skewed structured singular
value ν∆s(M(jω)) is equal to zero. Otherwise:

ν∆s(M(jω)) =
[

min
∆∈∆s

{σ(∆2), det(I −M(jω)∆) = 0}
]−1

(A.26)
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Lemma A.2 (skewed robust stability margin) The interconnection of Figure A.1 is stable
∀∆(s) ∈ ksB∆s , where the skewed robust stability margin ks is de�ned as the inverse of the largest
value of ν∆s(M(jω)) over the whole frequency range:

ks =
[

sup
ω∈R+

ν∆s(M(jω))
]−1

(A.27)

In other words, ks is the H∞ norm of the smallest uncertainty ∆2(s) ∈∆2 such that there exists
∆1(s) ∈ B∆1 for which the interconnection between M(s) and ∆(s) = diag(∆1(s),∆2(s)) ∈
∆s is unstable. ∆1(s) and ∆2(s) thus correspond to �xed range and unbounded uncertainties
respectively. ν-analysis is a more general framework than µ-analysis, since the classical structured
singular value is recovered in De�nition A.4 if ∆1 is empty. It also proves very useful in practice.
For example, it allows to compute the maximal allowable amount of parametric uncertainties in
the presence of neglected dynamics [Ferreres and Fromion, 1996]. And it provides a solution to
several analysis problems, such as computing the worst-case H∞ performance level (see [Roos,
2010; Fan and Tits, 1992] and Section A.5.3) and the worst-case gain, phase, modulus and delay
margins (see [Lescher and Roos, 2011] and Section A.5.4). Similarly to kr, the exact computation
of ks is NP hard in the general case, so both lower and upper bounds are computed instead.

Problem A.2 (skewed robust stability margin) With reference to Figure A.1, compute the
skewed robust stability margin ks de�ned in equation (A.27) for a given block structure ∆s.

5.2.2 Skew-µ lower bound computation

Most of the µ lower bound algorithms surveyed in Section A.2.1 can be extended more or
less easily to handle skew uncertainties. The objective here is not to study these generalizations
in details, but to show that the most relevant methods highlighted in Section A.2.4 still perform
very well in the skew case.

Purely complex and mixed real/complex problems

The power algorithm of [Young and Doyle, 1997] is the most e�cient way to compute µ lower
bounds. It can be easily extended as explained in [Ferreres and Fromion, 1996; Glavaski and
Tierno, 1998; Holland et al., 2005]. Combined with the strategy detailed in Section A.2.4, it usu-
ally provides very good ν lower bounds. A signi�cant number of tests have indeed revealed that
the exact value of ν can be obtained in many cases. This improved version of the power algorithm
is implemented in the SMART Library of the SMAC Toolbox (see [Roos, 2013] and Section A.6).

Purely real problems

The poles migration technique of [Ferreres and Biannic, 2001] is the most e�cient µ lower
bound algorithm. It can be easily extended (see [Roos and Biannic, 2015]), and the main lines
are summarized below. Similarly to the original algorithm brie�y described in Section A.2.1, the
considered skew-µ problem is �rst regularized by adding a small amount ε of complex uncertainty.
In this perspective, a new block structure ∆sc ⊂ Cn×n is introduced, which satis�es ∆s =
∆sc ∩ Rn×n [Packard and Pandey, 1993]. The power algorithm of [Ferreres and Fromion, 1996]
is then applied at a given frequency ωi to the augmented interconnection between Ma(jωi) and

∆a ∈ diag(∆s,∆sc), where Ma(s) =

[
M(s)

√
εM(s)√

εM(s) εM(s)

]
. Good convergence properties are

usually observed in practice. Nevertheless, the resulting ν lower bound is not a lower bound
for the original skew-µ problem. Indeed, an uncertainty ∆0

a = diag(∆0,∆0
c) is obtained, which
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renders the matrix I−Ma(jωi)∆
0
a singular, but it cannot be claimed that I−M(jωi)∆

0 is itself
singular. Nevertheless, if ε is small enough, an eigenvalue λ0 of the interconnection of Figure A.1
is usually located near the point jωi of the imaginary axis when ∆ = ∆0. Starting from this
good initial guess ∆0 = diag(δ0

1In1 , . . . , δ
0
NInN ) ∈ ∆s, the idea is now to move λ0 through the

imaginary axis to obtain a destabilizing uncertainty for the initial skew-µ problem. A solution is
to introduce a perturbation d∆ = diag(δ̂1In1 , . . . , δ̂NInN ) ∈ ∆. The problem is then to �nd the
uncertainty ∆̃ = ∆0 + d∆ = diag(∆̃1, ∆̃2) ∈ ∆s with minimum σ(∆̃2), which brings λ0 on the
imaginary axis. In this perspective, the �rst-order relationship between the variation dλ of λ0

due to a variation d∆ of ∆0 (see the subsection on poles migration techniques in Section A.2.1)
is reformulated as:

dλ =
N∑
i=1

αiδ̂i (A.28)

where αi = (uB + tD)
∂∆

∂δi
(Cv + Dw) and

∂∆

∂δi
= diag

(
0n1+···+ni−1 , Ini , 0ni+1+···+nN

)
. A simple

linear programming problem is �nally obtained:

min
δ̂i

η s.t.



−1 ≤ δ0
i + δ̂i ≤ 1 for �xed-range uncertainties

−η ≤ δ0
i + δ̂i ≤ η for unbounded uncertainties

<

(
λ0 +

N∑
i=1

αiδ̂i

)
= 0

(A.29)

In the above formulation, the inequality constraints ensure that ∆̃ ∈ ∆s, while the equality
constraint forces λ0 + dλ to lie on the imaginary axis once the perturbation d∆ is applied (or
very near since a �rst-order approximation is used here). Problem (A.29) can be e�ciently
solved using existing softwares [The Mathworks, 2017a]. The minimum value ηopt of η can thus
be computed with a very low computational cost, as well as the corresponding values dλopt
and d∆opt of dλ and d∆. Moreover, det(I − M(jω̃)∆̃) ≈ 0, where ω̃ = =

(
λ0 + dλopt

)
and

∆̃ = ∆0 + d∆opt. This quantity is not exactly equal to 0, since (A.29) is just a linearized version
of the problem to be solved. A solution to achieve equality is to replace ∆̃ with diag(∆̃1, α∆̃2)
and to perform a dichotomy search on α until |det(I −M(jω̃)diag(∆̃1, α∆̃2))| becomes small
enough. An upper bound on ks is then given by αηopt, where α is usually very close to 1. The
resulting ν lower bound is equal to (αηopt)

−1.

Remark A.12 If λ0 is not su�ciently close to the imaginary axis, the �rst order develop-
ment (A.28) may not be accurate enough to directly move the eigenvalue onto the imaginary
axis. A solution consists in partitioning the real segment which separates λ0 from the imaginary
axis, and to iteratively perform the migration on each sub-segment.

Remark A.13 The frequency at which the interconnection of Figure A.1 becomes unstable is
left free during optimization and it can be very far from the initial one. Thus, applying the
aforementioned algorithm at each point of a rough initial grid is usually su�cient to capture the
most critical frequencies.

The above method is implemented in the SMART Library of the SMAC Toolbox (see [Roos,
2013] and Section A.6). It has been applied to the realistic examples proposed in [Lemos et al.,
2014], and compared to the nonlinear and the nonsmooth optimization techniques of [Halton et
al., 2008] and [Lemos et al., 2014]. Results are similar as in the classical µ case: the proposed
algorithm gives the best upper bounds on ks for both examples with a very low computational
time (a few seconds on average).
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5.2.3 Skew-µ upper bound computation

Theorem A.2 can be extended to handle skew uncertainties. The matrices D and G are
split into two distinct blocks associated to the �xed range and the unbounded uncertainties
respectively, i.e. D = diag(D1, D2) and G = diag(G1, G2). If the following inequality derived
from (A.11) holds:

M∗
[
D1 0
0 D2

]
M + j

([
G1 0
0 G2

]
M −M∗

[
G1 0
0 G2

])
≤
[
D1 0
0 β2D2

]
(A.30)

then ν∆s(M) < β. A skew-µ upper bound can thus be computed by directly minimizing β
in (A.30) using an LMI solver. To alleviate the computational cost, another solution �rst consists
of reformulating inequality (A.12) in the same way as above. A dichotomic search on β is
then applied (or equivalently a �xed-point algorithm), and at each iteration a gradient descent
algorithm is used to check quickly whether it can be satis�ed or not. This is not detailed here
for the sake of brevity, but more details can be found in [Ferreres and Fromion, 1997]. The
resulting adapted version of Algorithm A.1 is implemented in the SMART Library of the SMAC
Toolbox (see [Roos, 2013] and Section A.6). It has been applied to the examples of [Lemos et
al., 2014]. In both cases, the lower bounds on ks are very good, and even equal to the upper
bounds computed in Section A.5.2.2. The exact value of ks is thus obtained in both cases, which
con�rms the good results already obtained in the classical µ case.

5.3 Worst case H∞ performance

Once robust stability is ensured, another question of interest is to determine whether the
worst-case H∞ performance of the system is satisfactory. Assuming the uncertainties are nor-
malized, i.e. ∆(s) ∈ B∆ , this can be formulated as follows:

Problem A.3 (worst-case H∞ performance level) With reference to Figure A.4 and as-
suming that kr > 1, compute the highest value k∞ of the H∞ norm ‖Te→y(M(s),∆(s))‖∞ of the
map from e to y when ∆(s) takes all possible values in B∆.

-

�

- -

∆(s)

M(s)
ye

Figure A.4: Standard interconnection for worst-case H∞ performance analysis

The following proposition is a direct consequence of the main loop theorem [Packard and
Doyle, 1993] and allows to reformulate Problem A.3 as a speci�c skew-µ problem. It is assumed
without loss of generality that both e and y are p-dimensional signals.

Proposition A.2 The following statements are equivalent:

1. max
∆(s)∈B∆

‖Te→y(M(s),∆(s))‖∞ ≤ γ
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2. µ∆a

(
diag(In, Ip/

√
γ)M(jω)diag(In, Ip/

√
γ)
)
≤ 1 ∀ω ∈ R+, where ∆a = diag(∆,Cp×p)

Therefore, it appears that checking whether k∞ is less than a given value γ amounts to computing
the robust stability margin of the interconnection between diag(In, Ip/

√
γ)M(s)diag(In, Ip/

√
γ)

and an augmented uncertainty ∆a ∈ ∆a. The computation of k∞ can be performed using a
dichotomic search on γ. But a better solution is to note that a skew-µ problem can be solved
instead. Indeed, statement 2. of Proposition A.2 is in turn equivalent to:

3. ν∆a(M(jω) ≤ γ ∀ω ∈ R+, where ∆a = diag(∆1,∆2) = diag(∆,Cp×p)

Thus, an upper bound on k∞ can be computed using a slightly modi�ed version of Algorithm A.1.
At step 2(b), γ is minimized under the following LMI constraint derived from (A.30):

M∗
[
D1 0
0 Ip

]
M + j

([
G1 0
0 0

]
M −M∗

[
G1 0
0 0

])
≤
[
D1 0
0 γ2Ip

]
(A.31)

Two strategies can be used to compute a lower bound on k∞ depending on the nature of ∆(s):

• For purely real problems, a two-step procedure is implemented at each frequency ωi of a
rough grid, in the spirit of the skew-µ lower bound algorithm described in Section A.5.2.2:

1. The unit ball B∆ is investigated by iteratively:

� computing the gradient of σ(Te→y(M(jωi),∆)),
� performing a line search to maximize this quantity (which boils down to comput-
ing the eigenvalues of a Hamiltonian-like matrix),

until the problem is roughly solved at ωi.

2. Using the value of ∆ computed at step 1 as an initialization, a linear (if p = 1) or a
quadratic (if p > 1) programming problem is repeatedly solved until convergence, so
as to locally maximize σ(Te→y(M(jω),∆)) with respect to both ∆ and ω.

A lower bound on k∞ is �nally obtained, as well as the associated value of ∆. The whole
algorithm is thoroughly described in [Roos, 2010] and implemented in the SMART Library
of the SMAC Toolbox (see [Roos, 2013] and Section A.6). Numerical results obtained on
several high-dimensional systems show that the proposed algorithm compares very favor-
ably with previously existing ones, and almost non-conservative bounds are obtained with
a low computational time. Note that another approach was published recently in [Apkarian
and Noll, 2017] after our comparative study was conducted. It is therefore not evaluated
in this work, but very accurate results are reported.

• For purely complex and mixed real/complex problems, the skew version of the power
algorithm presented in Section A.5.2.2 is applied.

Remark A.14 Problem A.3 assumes that there is a single performance channel between e and y.
However, it is possible to consider several channels by splitting e = [e1 . . . eq]

T and y = [y1 . . . yq]
T .

This leads to the following optimization problem:

k∞ = max
∆(s)∈B∆

max
1≤k≤q

‖Tek→yk(M(s),∆(s))‖∞ (A.32)

It su�ces to structure ∆2 and to solve a more general skew-µ problem using the algorithms
presented in Section A.5.2.2 and A.5.2.3.
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5.4 Worst-case input-output margins

Structured robustness analysis considers that the systems uncertainties are perfectly identi�ed
and localized, which can be unrealistic. So in addition to the robust stability margin, it is often
desirable to compute some worst-case gain, modulus, phase and delay margins to evaluate the
e�ective robustness. In this perspective, the uncertain closed-loop model is �rst opened at the
point where those margins are to be calculated. It is then rearranged to obtain the interconnection
of Figure A.4, in such a way that the uncertain closed-loop model can be recovered by directly
connecting y to e. The following problem can then be stated.

Problem A.4 (worst-case input-output margins)With reference to Figure A.4 and assum-
ing that kr > 1, compute the worst-case gain, modulus, phase and delay margins kg, km, kp and
kd, i.e. the highest value of the real gain, the complex gain, the phase shift and the time delay
respectively that can be inserted between y and e without destabilizing the system when ∆(s) takes
all possible values in B∆.

To address this issue, some additional uncertainties ∆m(s) = diag (δm,1, . . . , δm,p) are intro-
duced between e and y, such that e = ∆m(s) y. The δm,i correspond to real gains, complex gains,
phase shifts or time delays. Their expressions are given hereafter:

• real gain: δm,i = 1 + δ̂i, δ̂i ∈ R

• complex gain: δm,i = 1 + δ̂i, δ̂i ∈ C

• phase shift: δm,i = ejφi , φi ∈ [−π , π]

• time delay: δm,i = e−τis, τi ∈ R+

For the gain and the modulus margins, the expressions of δm,i are polynomial and can be written
directly in linear fractional form. For the phase and the delay margins, however, the non-rational
elements ejφi and e−τis must be transformed �rst. A bilinear transform is applied to replace ejφi

with 1−jδ̂i
1+jδ̂i

, where δ̂i ∈ R. Similarly to ejφi , this new expression has a unitary modulus. Moreover,

its phase variation covers the whole interval [−π , π] when δ̂i ∈ R. On the other hand, the case
of the delay e−τis is more complicated because of the Laplace variable s. A solution proposed
in [Lescher and Roos, 2011] consists of replacing it with a static rational complex function f(δ̂i),
where the range of variation of δ̂i ∈ R depends on ω.

The structured uncertainties ∆(s) and the additional real or complex parametric uncertain-
ties δ̂i are �nally stacked into a single block-diagonal operator ∆(s) in feedback loop with an
augmented plant M(s), leading to an interconnection similar to that in Figure A.1. In this
context, Problem A.4 can be reformulated as a skew-µ problem: �nd the highest amplitude of
the δ̂i for which the interconnection is stable for all ∆ ∈ B∆. On the one hand, upper bounds
on kg, km, kp or kd are obtained using the algorithms described previously:

• the poles migration technique of Section A.5.2.2 for purely real problems where the gain,
phase or delay margin is to be computed,

• the two-step procedure of Section A.5.3 for purely real problems where the modulus margin
is to be computed,

• the power algorithm of Section A.5.2.2 for purely complex or mixed real/complex problems
whatever the margin to be computed.
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On the other hand, lower bounds on kg, km or kp can be computed using the adapted version of
Algorithm A.1 presented in Section A.5.2.3. The case of the delay margin kd must be dealt with
separately, since the range of variation of δ̂i ∈ R depends on ω. This dependence can be treated
using some results from [Tits and Balakrishnan, 1998]. The whole process is quite tedious and is
not presented here for the sake of brevity. All details can be found in [Lescher and Roos, 2011],
where an extension of Algorithm A.1 is proposed and validated on a realistic application.

6 An insight into the SMART library

Despite numerous contributions to µ-analysis from many researchers during the past three
decades, only few practical algorithms have been implemented. Some routines are available in the
Robust Control Toolbox [The Mathworks, 2017b], but they cannot address all the aforementioned
issues, although progress has been made recently with a new routine based on Algorithm A.1
to compute a guaranteed µ upper bound on the whole frequency range. In this context, the
main purpose of the Skew-Mu Analysis based Robustness Tools (SMART) Library of the Sys-
tems Modeling, Analysis and Control (SMAC) Toolbox is to help bridging this gap between
theory and practice. As already highlighted in the previous sections, it implements most of
the µ-analysis based algorithms developed at ONERA during the last two decades [Roos, 2013;
Roos et al., 2011]. It provides a complete suite of routines to compute the (skewed) structured sin-
gular value, the (skewed) robust stability margin, the worst-caseH∞ performance level, as well as
the worst-case gain, modulus, phase and delay margins for linear time-invariant systems a�ected
by time-invariant uncertainties. A full version can be freely downloaded from the SMAC website
http://w3.onera.fr/smac/smart, which also provides a complete documentation as well as ap-
plicative examples. It has been evaluated on a large set of challenging benchmarks, corresponding
to various �elds of application, system dimensions and structures of the uncertainties.

7 Summary of the contributions

The main contributions presented in this chapter are brie�y summarized below, and a selec-
tion of related publications is given:

• Section A.2: detailed comparison of all existing methods to compute upper bounds on
the robust stability margin kr, i.e. lower bounds on the structured singular value µ ;
improvements and combinations of existing algorithms to further re�ne the bounds with a
reasonable computational e�ort [Roos and Biannic, 2015; Fabrizi et al., 2014].

• Section A.3: computation of lower bounds on kr, i.e. µ upper bounds, which are guaran-
teed on the whole frequency range ; use of the µ-sensitivities to better handle the tradeo�
between computational time and accuracy ; improvement of the multiplier-based approach
of Fu and Barabanov to make it reliable and computationally more attractive [Roos and
Biannic, 2010; Lesprier et al., 2015b; 2015c].

• Section A.4: branch-and-bound algorithms to further reduce the gap between the bounds
up to the desired accuracy [Lesprier et al., 2015c; Roos et al., 2011].

• Section A.5: extensions to modal performance, skewed robust stability, worst-case H∞
performance and worst-case gain/phase/modulus/delay margins [Roos and Biannic, 2015;
Roos, 2010; Lescher and Roos, 2011].
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• Section A.6: implementation of all algorithms in the SMART Library of the SMAC
Toolbox [Roos, 2013; Roos et al., 2011].

• all along Chapter A: validation of the proposed algorithms on a large set of realistic
benchmarks [Roos and Biannic, 2015].

A few other issues have also been addressed over the past decade, but they have not been discussed
in this chapter due to space constraints: determination of a guaranteed stability domain for
(possibly uncertain) parameter dependent plants [Roos and Biannic, 2010], evaluation of speci�c
clearance criteria using µ tools [Biannic and Roos, 2012], use of a probabilistic framework (see the
future prospects at the end of this manuscript), extension of the proposed tools to discrete-time
systems. . .
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Chapter B

Extensions to time-varying uncertainties

µ-analysis is now well recognized as mature and e�cient by the control community. Several
practical issues can be adressed, as emphasized in Chapter A. Nevertheless, only time-invariant
uncertainties can be considered, which may be restrictive in some applications, for example in the
aerospace domain. It is thus desirable to develop some methods and tools to handle time-varying
uncertainties and parameters as well.

In this perspective, the µ-analysis framework was extended in [Meinsma et al., 2000; Paganini,
1996; Shamma, 1994]. It is shown in these papers that the D and G scaling matrices classically
used to compute a lower bound on the robust stability margin in the LTI case can still be used
in the presence of mixed time-invariant and arbitrarily fast time-varying uncertainties. The
idea is to consider either frequency dependent or constant blocks according to the nature of the
uncertainties. The resulting optimization problem is convex, but it involves an in�nite number
of both decision variables and constraints. Moreover, it cannot be solved independently at each
frequency because of the constant blocks, and this can be computationally demanding.

Another approach has aroused a growing interest in the last twenty years. It consists of char-
acterizing the uncertainties using integral quadratic constraints (IQC) [Megretski and Rantzer,
1997]. In addition to time-invariant and arbitrarily fast time-varying uncertainties, this technique
allows to consider uncertainties with bounded rates of variation [Jonsson and Rantzer, 1996;
Helmersson, 1999; Köro§lu and Scherer, 2007; P�fer and Seiler, 2016]. Computing a robust
stability margin or a worst-case performance level is usually achieved by transforming an in�-
nite set of frequency-domain constraints into a single state-space based LMI using the Kalman-
Yakubovich-Popov lemma. But a special attention must be paid to computational complexity.
The resulting optimization problem may indeed become intractable when the size of the system
and the number of IQC used to characterize the uncertainties increase.

The main alternative to IQC analysis is to use parameter-dependent Lyapunov (PDL) func-
tions [Gahinet et al., 1996; Haddad and Kapila, 1998; Amato et al., 1997; Montagner and Peres,
2004; Chesi et al., 2007]. Indeed, this approach allows to introduce bounds on the rates of
variation of the uncertain parameters in a relatively simple and natural fashion. Several kinds
of dependence to the parameters can be considered: a�ne, multi-a�ne, quadratic, polynomial,
rational. . . In practice, the a�ne case is often preferred to avoid an excessive increase in com-
putational complexity. But whatever the form used, the resulting optimization problem almost
always boils down to solving an in�nite number of LMI. Various techniques can be implemented
to address this issue, but the large number of decision variables usually makes it di�cult to
consider high-order systems.

Most of the above techniques can be used to assess the robustness properties of a linear
system in the presence of mixed time-invariant and time-varying uncertainties. Nevertheless,
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when the dimension of the system increases, they usually su�er the same drawback: a dramatic
increase in the computational time. In this context, two methods are proposed in this chapter to
alleviate the computational e�ort, while keeping the same level of accuracy. The �rst one builds
upon the (D,G)-scalings based characterization of [Meinsma et al., 2000; Paganini, 1996]. A two-
step procedure is described in Section B.1. Some scaling matrices are �rst computed on a �nite
frequency grid. A validation is then performed on the whole frequency range using a µ-analysis
based technique inspired from Algorithm A.1. This procedure is repeated until all frequencies
are validated. The second method, presented in Section B.2, is also a two-step procedure. A
PDL function is �rst optimized on a �nite parametric grid. Its validity is then checked on the
whole parametric domain using a fast and reliable µ-analysis based test. In case the validation
fails, a worst-case con�guration is added to the grid and the whole process is repeated.

The objective of this chapter is not to make an extensive comparison of all practical algorithms
to analyze LTI systems in the presence of mixed time-invariant and time-varying uncertainties.
The primary concern is to show how µ-analysis can sometimes play a key role in making the
computation of robust stability margins and worst-case performance levels more e�cient.

1 A µ-analysis based approach

1.1 Problem statement

Let us consider the standard interconnections of Figure B.1. M(s) is a continuous-time stable
and proper real-rational transfer function representing the nominal closed-loop system, exactly
as in Chapter A. For the sake of simplicity and because this is often su�cient in practice, ∆ is
restricted to be a linear time-varying memoryless multiplication operator, i.e. w(t) = ∆(t)z(t)
for all t ≥ 0. Moreover, it has a block-diagonal structure of the form:

∆(t) = diag(δ[1](t)In1 , . . . , δ
[N ](t)InN ) (B.1)

where nv =
∑N

i=1 ni and each δ[i] is a real-valued scalar function corresponding to a time-varying
parameter or uncertainty. The set of all such operators is denoted by ∆, and kB∆ = {∆ ∈ ∆ :
‖∆‖i2 ≤ k}, where ‖ ‖i2 denotes the induced L2 norm.

�
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∆

M(s)

(a)

w z
$y$

�

-
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∆

M(s)
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w z

e y

Figure B.1: Interconnections for robust stability (a) and worst-case performance (b) analysis

De�nition B.1 (stability) The interconnection of Figure B.1(a) is stable with respect to a set
S of bounded operators ∆ if there exists α > 0 such that ‖(I −∆M)−1‖i2 < α for all ∆ ∈ S.

Two analysis problems are considered in this chapter. They are similar to Problems A.1 and A.3,
except that ∆ contains time-varying parameters. Note that the induced L2 norm reduces to the
H∞ norm when only time-invariant uncertainties are considered, and thus ki2 = k∞ in this case.
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De�nition B.2 (robust stability margin) The robust stability margin kr is de�ned as the
largest value of k such that the interconnection of Figure B.1(a) is stable for all ∆ ∈ kB∆.

Problem B.1 (robust stability margin) With reference to Figure B.1(a), compute (a lower
bound on) the robust stability margin kr for a given set of operators ∆.

Problem B.2 (worst-case performance level)With reference to Figure B.1(b) and assuming
that kr > 1, compute (an upper bound on) the highest value ki2 of the induced L2 norm ‖Te→y‖i2
of the map from e ∈ Lp2 to y ∈ Lp2 when ∆ takes all possible values in B∆.

The following theorem provides a su�cient condition of stability when the δ[i] are allowed to
vary arbitrarily fast, i.e. when no assumption is made on their rates of variation [Paganini, 1996;
Meinsma et al., 2000].

Theorem B.1 Let β > 0. If there exist matrices D ∈ DTV and G ∈ GTV such that the following
relation holds for all ω ∈ R+:

M∗(jω)DM(jω) + j(GM(jω)−M∗(jω)G) ≤ β2D (B.2)

where DTV = {0 < D = DT ∈ Rnv×nv : ∀∆ ∈ ∆, D∆ = ∆D} and GTV = {G = G∗ ∈ jRnv×nv :
∀∆ ∈ ∆, G∆ = ∆∗G}, then the interconnection of Figure B.1(a) is stable for all time-varying
uncertainties ∆ ∈ 1

βB∆. The inverse of the smallest value of β such that (B.2) holds is a lower
bound on the robust stability margin kr.

The characterization of Theorem B.1 is quite similar to the one dedicated to time-invariant
uncertainties (see Section A.3). But a main di�erence is worth being mentioned: the matrices D
and G are constant on the whole frequency range. This is in stark contrast to the time-invariant
case, where D and G can be di�erent at each frequency.

Computing kr using Theorem B.1 involves an in�nite number of frequency-domain con-
straints. There are two classical ways to address this issue. A �rst method consists of solv-
ing (B.2) on a frequency grid instead of the whole frequency range. But as already discussed in
Chapter A, there is a risk to miss a critical frequency and to over-evaluate the robust stability
margin. Another approach is to apply the KYP lemma, so as to transform the in�nite number
of frequency-dependent inequalities (B.2) into a unique LMI. In this case, no critical frequency
can be missed, but the computational time may be prohibitive for high-order systems.

Assume now that ∆ = diag(∆TI ,∆TV ) ∈∆ is a block-diagonal operator with time-invariant
uncertainties ∆TI ∈∆TI as in Chapter A, i.e. real parametric uncertainties and/or neglected dy-
namics, but also real time-varying parameters or uncertainties ∆TV ∈∆TV as above. The associ-
ated scaling matrices are de�ned for all ω ∈ R+ asD(ω) = diag(DTI(ω), DTV ) ∈ diag(DTI ,DTV )
and G(ω) = diag(GTI(ω), GTV ) ∈ diag(GTI ,GTV ), where DTI ,GTI ∈ Cni×ni are de�ned as in
Theorem A.2, and DTV ,GTV ∈ Cnv×nv are de�ned above. Theorem B.1 is modi�ed as follows:

Proposition B.1 Let β > 0. If there exist matrices D(ω) = diag(DTI(ω), DTV ) and G(ω) =
diag(GTI(ω), GTV ) such that the following relation holds for all ω ∈ R+:

M∗(jω)D(ω)M(jω) + j(G(ω)M(jω)−M∗(jω)G(ω)) ≤ β2D(ω) (B.3)

then the interconnection of Figure B.1(a) is stable for all mixed time-invariant / time-varying
uncertainties ∆ ∈ 1

βB∆. The inverse of the smallest value of β such that (B.3) holds is a lower
bound on the robust stability margin kr.
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The previous result can be extended to worst-case performance analysis.

Proposition B.2 Let γ > 0 and Mγ(s) = diag(Ini , Inv , γ
−1Ip)M(s). If there exist matrices

D(ω) = diag(DTI(ω), DTV , Ip) and G(ω) = diag(GTI(ω), GTV , 0p) such that one of the following
relation holds for all ω ∈ R+:

M∗γ (jω)D(ω)Mγ(jω) + j(G(ω)Mγ(jω)−M∗γ (jω)G(ω)) ≤ D(ω) (B.4)

σ
((
D(ω)Mγ(jω)D(ω)−1 − jG(ω)

) (
I +G(ω)2

)− 1
2

)
≤ 1 (B.5)

then ‖Te→y‖i2 ≤ γ for all mixed time-invariant / time-varying uncertainties ∆ ∈ B∆. The small-
est value γ∗ of γ such that (B.4) holds is an upper bound on the worst-case performance level ki2.

A practical method is proposed in this section to solve the in�nite dimensional optimization
problems of Proposition B.2, and to avoid the disadvantages of the classical grid-based and KYP-
based techniques. Section B.1.2 is �rst devoted to the computation of an upper bound on ki2
(i.e. a guaranteed worst-case performance level). A nontrivial extension to the design of robust
feedforward controllers is then highlighted in Section B.1.3. Note that the extension to the com-
putation of a lower bound on kr (i.e. a guaranteed robust stability margin) is straightworward,
so it is not detailed here. Indeed, it su�ces to work with (B.3) instead of (B.4).

Remark B.1 (B.3) and (B.4) are only su�cient conditions, that is why only a lower bound on
kr and an upper bound on ki2 are obtained. We do not focus on computing upper bounds on kr
and lower bounds on ki2 (see e.g. [Köro§lu and Scherer, 2007; Peni and Seiler, 2016]).

Remark B.2 The uncertainties in ∆TV can vary arbitrarily fast, i.e. no bounds on their rates
of variation are taken into account. A Lyapunov-based approach which addresses this issue is
proposed in Section B.2.

1.2 Performance analysis

1.2.1 Computation of a worst-case performance level

Proposition B.2 requires minimizing a linear objective γ under the LMI constraints (B.4).
This problem has an in�nite number of optimization variables, namely the matrices DTI(ω) and
GTI(ω). Let γ∗ be the global minimum solution. As already emphasized in Section B.1.1, there
are two classical ways to compute γ∗, which is the best upper bound on ki2 that can be computed
using Proposition B.2.

The �rst one is a state-space solution. It consists of applying the KYP lemma to transform the
constraints (B.4) into a single LMI, so as to obtain an augmented �nite dimensional optimization
problem. This requires turning the frequency dependent scaling matrices DTI(ω) and GTI(ω)
into LTI systems DTI(s) =

∑
i αiDi(s) and GTI(s) =

∑
i βiGi(s), where the �lters Di(s) and

Gi(s) are �xed while αi and βi are the optimization parameters. This approach has three
drawbacks. First, only an upper bound on γ∗ is computed, since �nite dimensional bases of
DTI(s) and GTI(s) are used, which cannot cover the whole set of possible scaling matrices
DTI(ω) and GTI(ω). Second, the choice of the bases is not obvious. Third, the order of the
augmented state-space representation resulting from the application of the KYP lemma can be
very high, since it containsM(s) as well as the Di(s) and the Gi(s). This can lead to an excessive
computational burden for the LMI solver.

The second approach consists of solving (B.4) on a frequency grid instead of the whole
frequency range, which is a �nite dimensional optimization problem. This was proposed in [Lind
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et al., 1995; Sparks et al., 1996; Paganini, 1996], but the result can be unreliable for reasons
already discussed in Chapter A and in Section B.1.1. Only a lower bound γ on γ∗ is obtained,
since the optimization problem is less constrained than on the whole frequency range, and it
cannot be guaranteed that γ > ki2. Moreover, the computational time can become prohibitive
if a �ne grid is considered to reduce the risk of missing a critical frequency. The idea here
is to go one step further by �rst solving the problem on a rough grid and then validating the
result on the whole frequency range using a fast and reliable Hamiltonian-based technique, in the
spirit of Algorithm A.1. The computational time will be much lower, but still larger than in the
time-invariant case because of the constant matrices DTV and GTV , which make it impossible to
independently solve the problem at each frequency. The inequalities (B.4) to be considered on
the grid must indeed be stacked into a single one before an LMI solver can be used. The following
algorithm is introduced in [Ferreres and Roos, 2007] to compute γ∗ with the desired accuracy.

Algorithm B.1 (optimal computation of an upper bound on ki2)

1. De�ne an initial frequency grid (ωi)i composed of a few points (or even a single one).

2. Solve the optimization problem of Proposition B.2 on the grid with respect to the frequency
dependent matrices DTI(ωi), GTI(ωi) and to the constant matrices DTV , GTV . Let γ be
the minimized value of γ. It is a lower bound on γ∗.

3. Let γ = (1 + ε)γ, where ε > 0 is a user-de�ned threshold. For the values of DTV and GTV
computed at step 2, check whether there exist frequency dependent matrices DTI(ω) and
GTI(ω) such that inequality (B.4) is satis�ed ∀ω ∈ R+ (see Section B.1.2.2). If the answer
is yes, stop the algorithm since γ = (1 + ε)γ is an upper bound on γ∗ and γ∗ has been
computed with a precision ε. Otherwise, let ω̃ be a frequency where (B.4) is not satis�ed.
Add ω̃ to the grid and go back to step 2.

Algorithm B.1 eliminates most disadvantages of the classical grid-based techniques:

• the value of γ∗ is obtained, and not only a lower bound,

• the validation performed at step 3 guarantees that no worst-case frequency is missed,

• to some extent, the size of the frequency grid is minimized, as well as the computational time.

1.2.2 Validation with a frequency elimination technique

At the end of step 2 of Algorithm B.1, the constant matrices DTV and GTV are �xed. Some
matrices DTI(ωi) and GTI(ωi) are known, which satisfy inequality (B.4) at each point of the
grid (ωi)i for γ = γ. The objective is now to determine whether there exist matrices DTI(ω)
and GTI(ω) such that inequality (B.4) holds on the whole frequency range for γ = (1 + ε)γ. The
following proposition reformulates this problem as a µ test, which can then be solved e�ciently
with Algorithm A.1.

Proposition B.3 [Ferreres and Roos, 2007] Let D̃2 = D
1/2
2 and G̃2 = D

−1/2
2 G2D

−1/2
2 . Let:

F (jω) =

 I 0 0

0 D̃2 0
0 0 I

M∗γ (jω)

 I 0 0

0 D̃−1
2 0

0 0 I


−j

 0 0 0

0 G̃2 0
0 0 0

 I 0 0

0 (I + G̃2
2)−

1
2 0

0 0 I
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The following two assertions are equivalent:

1. There exist matrices DTI(ω) and GTI(ω) satisfying inequality (B.4) for all ω ∈ R+, where
D(ω) = diag(DTI(ω), DTV , Ip), G(ω) = diag(GTI(ω), GTV , 0p) and γ = (1 + ε)γ.

2. There exist matrices DTI(ω) and GTI(ω) satisfying for all ω ∈ R+:

σ

((
D̃(ω)F (jω)D̃−1(ω)− jG̃(ω)

)(
I + G̃2(ω)

)− 1
2

)
≤ 1 (B.6)

where D̃(ω) = diag(DTI(ω), Inv , Ip), G̃(ω) = diag(GTI(ω), 0nv , 0p) and γ = (1 + ε)γ.

The �rst assertion is the one to be checked at step 3 of Algorithm B.1. The second one consists
of checking whether µ∆c(F (jω)) ≤ 1 for all ω ∈ R+, i.e. whether the robust stability margin of
F (s) is larger than 1. The corresponding block structure is ∆c = diag(∆TI,C(nv+p)×(nv+p)),
where nv and p are the size of ∆TV and of the performance channel, i.e. the map between e
and y, respectively. Algorithm A.1 can now be applied with βmax = 1 as an initialization. It is
interrupted if βmax becomes strictly larger than 1, which means that a worst-case frequency has
been found such that the test (B.6) cannot be satis�ed. This frequency is added to the grid and
another iteration of Algorithm B.1 is performed.

1.2.3 Convergence of the algorithm

Algorithm B.1 converges in a �nite number of iterations. The proof is quite technical and it
is omitted here, but all details can be found in [Ferreres and Roos, 2007]. Moreover, it has been
observed on several practical applications that the number of iterations is usually quite low.

1.2.4 A suboptimal but faster algorithm

The LMI optimization performed at step 2 of Algorithm B.1 can be very demanding. More-
over, the number of decision variables and the computational time increase with the number
of frequencies, since DTI(ω) and GTI(ω) have to be determined at each point of the grid. So
instead of performing a single LMI step, it can be worthwhile to compute DTI(ω) and GTI(ω)
using a gradient descent algorithm as it is classically done when computing µ upper bounds (see
Section A.3.1). In this context, a suboptimal but faster algorithm is introduced, which consists
of iteratively optimizing with respect to the frequency dependent matrices DTI(ω) and GTI(ω)
on the one hand, and to the constant matrices DTV and GTV on the other hand.

Algorithm B.2 (suboptimal computation of an upper bound on ki2)

1. De�ne an initial frequency grid (ωi)i as for Algorithm B.1. Let DTV = Inv and GTV = 0nv .

2a. Let DTV and GTV be �xed. At each frequency ωi, minimize γ with respect to DTI(ωi) and
GTI(ωi) under the constraint (B.4). This can be achieved by performing a dichotomy search
on γ and iteratively applying the gradient descent algorithm of [Young et al., 1995].

2b. Let DTI(ωi) and GTI(ωi) be �xed. Minimize γ with respect to DTV and GTV such that (B.4)
is satis�ed at all grid points. This can be achieved by stacking all constraints into a single
one and then using an LMI solver. If the decrease in γ after steps 2a and 2b have been
applied is larger than a given threshold, return to step 2a to go on with the γ minimization
process. Otherwise, let γ be the minimized value of γ, and continue to step 3.

3. Same as step 3 of Algorithm B.1.
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Unlike Algorithm B.1, the value of γ at the end of iteration 2b is not guaranteed to be a lower
bound of γ∗. Thus it is not possible to quantify the accuracy of the �nal upper bound γ on
γ∗. Nevertheless, Algorithms B.1 and B.2 can be combined to determine guaranteed lower and
upper bounds of γ∗ with a given accuracy ε, while keeping a reasonable computational time.

Algorithm B.3 (combination of optimal and suboptimal algorithms)

1. Perform Algorithm B.2 to determine an upper bound γ of γ∗.

2. Perform Algorithm B.1 to compute a lower bound γ of γ∗ and stop as soon as γ > (1−ξ)γ,
where ξ > 0 is the desired accuracy. Algorithm B.1 can be initialized with the frequency grid
and the values of DTV and GTV obtained at the end of step 1. To reduce the computational
time, this frequency grid can be reduced by keeping only critical frequencies corresponding
to peak values of the µ upper bound.

These algorithms have been applied in [Ferreres and Roos, 2007] to a realistic missile example
with 2 time-varying parameters and 8 time-invariant uncertainties, some of them being repeated
up to 6 times. All algorithms perform well, and the suboptimal one allows to decrease the
computational time with no loss of accuracy.

1.3 Extension to robust feedforward design

In many industrial applications, badly damped �exible modes and interactions among the
various degrees of freedom of the system can result in large tracking errors. Although this can
be accounted for by an inverse-based feedforward controller, �exible modes are often highly
uncertain, which may result in a large degradation of performance caused by the feedforward
components [Devasia, 2002]. This is a strong motivation to design robust feedforward controllers
for systems that are a�ected by structured time-invariant and time-varying uncertainties. In this
perspective, Proposition B.2 is now adapted, so that the methodology developed in Section B.1.2
can be further used.

1.3.1 Problem statement

Let us consider the interconnection of Figure B.2, where N(s) is a continuous-time stable
and proper real-rational transfer function representing the nominal closed-loop system. The
feedback controller is �xed and included into N(s). The objective is to compute a feedforward
controller H(s) which minimizes the induced L2 norm ‖Te→y‖i2 of the map from e to y when
∆ = diag(∆TI ,∆TV ) takes all possible values in B∆.

∆

N(s)

H(s)
e

w z

y

Figure B.2: Interconnection for robust feedforward design
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1.3.2 Practical solution

The design scheme of Figure B.2 is �rst transformed into the interconnection of Figure B.1(b):

ifN(s) =

[
N11(s) N12(s) N13(s)
N21(s) N22(s) N23(s)

]
, thenM(s) =

[
N11(s) N12(s) +N13(s)H(s)
N21(s) N22(s) +N23(s)H(s)

]
. Propo-

sition B.2 can now be applied to M(s). However, the considered feedforward design problem is
more complex than the worst-case performance problem solved in Section B.1.2, since inequal-
ity (B.4) is no longer convex. The �rst step to recover convexity in order to apply the algorithms
of Section B.1.2 is to set:

H(s) =

nH∑
i=1

θiHi(s) (B.7)

where the �lters Hi(s) are �xed, while the real parameters θi are to be optimized. The orthonor-
mal �lters basis of [Akcay and Ninness, 1999] is chosen to reduce numerical issues:

Hi(s) =

√
2<(ai)

s+ ai

i−1∏
k=1

s− ak
s+ ak

(B.8)

where ak is the conjugate of ak. So both the order nH and the poles −ak of the feedforward
controller H(s) must be �xed, but there is no constraint on the choice of nH . Proposition B.2
can then be reformulated as follows.

Proposition B.4 [Ferreres and Roos, 2007] Let γ > 0. If there exist real parameters (θi)1≤i≤nH

and matrices D(ω) = diag(DTI(ω), DTV ) and G(ω) = diag(GTI(ω), GTV ) such that the following
relation holds for all ω ∈ R+:
D −N11DN

∗
11 + j (N11G−GN∗11) −(N11D + jG)N∗21 N12 +N13

nH∑
i=1

θiHi

? γI −N21DN
∗
21 N22 +N23

nH∑
i=1

θiHi

? ? γI


≥ 0 (B.9)

where ? denotes the conjugate part of the hermitian matrix and where the dependence on ω is
removed to simplify notation, then ‖Te→y‖i2 ≤ γ for all mixed time-invariant and time-varying
uncertainties ∆ ∈ B∆.

The proof of Proposition B.4 is omitted here for the sake of brevity, but it shows that inequal-
ities (B.4) and (B.9) are equivalent. The latter being convex in D(ω), G(ω) and θi, il can be
handled by an LMI solver. All the algorithms detailed in Section B.1.2 can thus be applied.
The only di�erence concerns step 2, which now consists of solving the optimization problem
of Proposition B.4 with respect to the frequency dependent matrices DTI(ω), GTI(ω) and the
constant matrices DTV , GTV as previously, but also to the real parameters θi of the feedforward
controller.

Remark B.3 Another method is proposed in [Giusto and Paganini, 1999], which does not require
to write H(s) as in (B.7)-(B.8). Frequency responses H(jωi) are �rst computed independently
at each point of a frequency grid (ωi)i. They are then approximated so as to obtain a transfer
function H(s). However, this last step is a delicate one, as a high-order feedforward controller
may be necessary to get a good approximation. Moreover, there is no guarantee that performance
is satisfactory on the whole frequency range.
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Remark B.4 Another design method allowing to consider both time-invariant and time-varying
uncertainties is proposed in [Köse and Scherer, 2009; Scorletti and Fromion, 2006]. The main
advantage is that the poles of the feedforward controller do not have to be chosen a priori. The
counterpart is that the scaling matrices are restricted to a set of real rational transfer functions,
whose order and denominator are �xed. Moreover, the design problem is convex only in case a
full-order feedforward controller is computed. The order of H(s) is thus greater than or equal to
the order of the closed-loop system N(s), which can be quite large. A strategy could be to combine
this method and the one presented in this section, in the spirit of what is proposed in Section D.2
to design anti-windup controllers. A full-order feedforward controller is �rst designed. Its poles
are analyzed and the ones which are too slow or too fast compared to the system dynamics are
eliminated. The remaining ones are then used to de�ne the �lters Hi(s) in equation (B.8).

1.4 Conclusion

A practical approach is proposed in this section to compute guaranteed stability margins
and performance levels in the presence of mixed time-invariant and arbitrarily fast time-varying
uncertainties. It is shown that µ-analysis can be used both to handle the time-invariant uncer-
tainties with a low computational time, and to validate on the whole frequency range the results
initially obtained on a rough frequency grid. A convex extension to robust feedforward design
is also highlighted. An application to realistic missile models is reported in [Ferreres and Roos,
2007], which shows that computational time remains very reasonable despite the complexity of
the problem.

Another method (not detailed in this manuscript due to space constraints) is proposed
in [Roos and Biannic, 2006a] to address exactly the same issue. A state-space characteriza-
tion of the robust stability margin kr is obtained thanks to an extended version of the KYP
lemma. It involves the search for an extended Lyapunov matrix Z = R + jS where R = R∗

and S = S∗, and for scaling matrices D and G that are assumed to be constant but nevertheless
complex in the case of time-invariant uncertainties. Applications to several benchmarks of Ta-
ble A.2 show that almost non-conservative results are obtained in the purely time-invariant case.
Moreover, numerical results and computational time are similar to the ones obtained with the
method of Section B.1 on the aforementioned missile example. Extensions to robust feedforward
design, as well as to combined robust feedback/feedforward design, are also described in [Roos
and Biannic, 2006b].

Finally, it is worth being emphasized that both approaches are complementary. On the one
hand, the frequency-domain technique described in Section B.1 is adapted to high-order systems
with a limited number of uncertainties. On the other hand, the time-domain method of [Roos
and Biannic, 2006a] is better suited to low-order systems with a large number of uncertainties.

2 A Lyapunov based approach

2.1 Problem statement

The framework is roughly the same as in Section B.1.1. Let us consider the standard inter-
connections of Figure B.1. M(s) is a continuous-time stable and proper real-rational transfer
function representing the nominal closed-loop system. ∆ is a linear time-varying memoryless
multiplication operator, i.e. w(t) = ∆(t)z(t) for all t ≥ 0. It has a block-diagonal structure of
the form:

∆(t) = diag(δ[1](t)In1 , . . . , δ
[N ](t)InN ) (B.10)
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where nv =
∑N

i=1 ni and each δ[i] is a real-valued scalar function corresponding to a time-varying
parameter or uncertainty. The set of all such operators is denoted by ∆. It is assumed in the
sequel that ∆ is bounded:

‖∆‖i2 ≤ 1 (B.11)

which means that δ(t) = (δ[1](t), . . . , δ[N ](t)) belongs to the unit hypercube I for all t ≥ 0. Note
that any bounded operator (as de�ned above) can be normalized. Thus, imposing δ[k](t) ≤ 1 for
all k is not restrictive. It is also assumed that the rate of variation of each δ[k] is bounded:

δ̇(t) ∈ J = [ν[1], ν[1]]× · · · × [ν[N ], ν[N ]] (B.12)

for all t ≥ 0. The set of all operators ∆ ∈ ∆ such that δ(t) ∈ I and δ̇(t) ∈ J for all t ≥ 0 is
denoted by B∆ (same de�nition as in Section B.1.1 plus the constraint on δ̇).

Remark B.5 The method proposed here can be applied to a wider class of operators (including
for example time-invariant uncertainties as in Section B.1.1), but extensions are not presented
here for the sake of simplicity.

Two analysis problems are considered: robust stability and worst-case performance. The
latter exactly corresponds to Problem B.2. The former is a slight variation of Problem B.1:

Problem B.3 (robust stability check) Check whether the interconnection of Figure B.1(a)
is stable for all operators ∆ ∈ B∆, i.e. whether the robust stability margin kr is larger than 1.

As already emphasized in the introduction, these problems can be addressed in di�erent ways.
The �rst one consists of using IQC to characterize the uncertainties. The calculations can then be
carried out in the time domain using the KYP lemma, or in the frequency domain by generalizing
the method of Section A.1: the time-invariant uncertainties are handled by µ-analysis based
tools, while the IQC characterization of [Helmersson, 1999] is used for time-varying ones. The
second way, proposed in [Roos et al., 2012] and summarized here, is to use PDL functions.
Rather than introducing some relaxation variables or trying to deal with an in�nite dimensional
problem, a two-step procedure is proposed in Section B.2.2 to solve Problem B.3 with a reasonable
computational cost. The stability conditions are �rst formulated in Section B.2.2.1 as an LMI
feasibility problem involving the search of a suitable parameter-dependent Lyapunov function.
This problem is then solved in Section B.2.2.2 for a �nite number of parametric con�gurations and
the validity of the resulting Lyapunov function is checked on the whole parametric domain using
a µ-analysis based test in Section B.2.2.3. In case the validation fails, a worst-case con�guration
is determined using particle swarm optimization in Section B.2.2.4 and the whole process is
repeated using an augmented set of parametric con�gurations. Extension of the method to
performance analysis is �nally described in Section B.2.3.

2.2 Stability analysis

2.2.1 LMI-based formulation of the stability analysis problem

Let (A,B, C,D) denote a state-space representation of M . The dynamics of the interconnec-
tion depicted in Figure B.1(a) are described for all t ≥ 0 by:

ẋ = A(δ(t))x (B.13)

where:
A(δ(t)) = A+ B∆(t)(I −D∆(t))−1C (B.14)

Assumption B.1 A(δ) is well-posed ∀δ ∈ I, i.e. µ∆(D)<1.
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Lemma B.1 Stability of system (B.13) is guaranteed for all operators ∆ ∈ B∆ if there exists a
parameter-dependent Lyapunov function P (δ) such that ∀δ ∈ I:

P (δ) = P (δ)T > 0 (B.15)

and ∀(δ, ν) ∈ I × J :

Φ(δ, ν) = A(δ)TP (δ) + P (δ)A(δ) +
N∑
k=1

ν[k]∂P (δ)

∂δ[k]
< 0 (B.16)

Lemma B.1 is a direct consequence of the Lyapunov's stability theorem in which the Lyapunov
function is de�ned as:

V (x, δ) = xTP (δ)x (B.17)

Indeed, inequality (B.16) clearly implies that V̇ is negative along any trajectory of the plant
(characterized by δ(t) ∈ I and δ̇(t) ∈ J for all t ≥ 0).

Unfortunately, this characterization of P (δ) is numerically intractable, since it involves an
in�nite number of both variables and constraints. The �rst problem is easily solved by restricting
the parameter dependence to a polynomial expression:

P (δ) =

x(d,N)∑
i=1

fi(δ)Pi (B.18)

where x(d,N) denotes the dimension of the vector space of all N -variate polynomial functions of
degree d and (fi)1≤i≤x(d,N) is any associated basis, while (Pi)1≤i≤x(d,N) are constant symmetric
matrices to be determined. Using this polynomial expression, �nding a PDL function P (δ) which
satis�es inequalities (B.15) and (B.16) boils down to a standard LMI feasibility problem, which
can be stated as follows. Do there exist symmetric matrices (Pi)1≤i≤x(d,N) such that:

Ψ(δ) < 0 ∀δ ∈ I (B.19)

where:

Ψ(δ) = diag

− x(d,N)∑
i=1

fi(δ)Pi,Φ(δ, ν1), . . . ,Φ(δ, ν2N )

 (B.20)

and for all j ∈ [1 , 2N ]:

Φ(δ, νj) =

x(d,N)∑
i=0

(
fi(δ)(A(δ)TPi + PiA(δ)) +

N∑
k=1

ν
[k]
j

∂fi(δ)

∂δ[k]
Pi

)
(B.21)

In equation (B.21), ν[k]
j is equal to either ν[k] or ν[k] for each k ∈ [1 , N ], thus leading to 2N

combinations. Indeed, equation (B.16) is linear in the variables ν[k], which means that it is
satis�ed for all ν ∈ J if and only if it is satis�ed on the 2N vertices of J .

2.2.2 Grid-based resolution

Let us now focus on the second problem related to the in�nite number of constraints. Two
options are typically available here. The �rst one consists of using the Kalman-Yakubovic-Popov
lemma [Iwasaki and Hara, 2005]. By introducing some additional variables, this technique allows
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to convert the in�nite set of parameterized inequalities (B.19) into a unique LMI. Unfortunately,
as soon as either the order of the plant or the degree of the polynomial Lyapunov function
increases, the latter becomes too large for existing softwares. The second option is de�nitely
more intuitive. It simply consists in gridding the hypercube I, so as to replace (B.19) with:

Ψ(δl) < 0 ∀ l ∈ [1 , M ] (B.22)

where δl denotes the value of δ at the lth grid point. Checking whether there exists a PDL
function which satis�es (B.22) is numerically tractable. Moreover, no conservatism is introduced,
since (B.19) clearly implies (B.22). Of course, the converse is not necessarily true. The validity
of the PDL function must then be checked a posteriori between the grid points.

2.2.3 Validity of the parameter-dependent Lyapunov function

At this stage, a PDL function P (δ) has been computed such that Ψ(δl) < 0 for all l ∈ [1 , M ].
The objective is now to check whether this function also satis�es Ψ(δ) < 0 for all δ ∈ I. By
combining (B.14), (B.20) and (B.21), it can be easily checked that Ψ(δ) depends rationally on
the δ[k] and can thus be written in linear fractional form as follows (see Chapter C):

Ψ(δ) = L22 + L21∆̂(I − L11∆̂)−1L12 (B.23)

where ∆̂ = diag(δ[1]In̂1
, . . . , δ[N ]In̂N

) is a structured matrix. Let us now assume that Ψ(0) < 0.
Using a continuity argument, there exists ε > 0 such that for all δ ∈ RN which satisfy ‖δ‖∞ < ε,
then Ψ(δ) < 0 and thus det(Ψ(δ)) 6= 0. The following lemma is introduced in this context.

Lemma B.2 Let Ψ(δ) be de�ned by equation (B.23). Assume that Ψ(0) = L22 < 0. Let
X = L11 − L12L

−1
22 L21. The following two statements are equivalent:

1. det(Ψ(δ)) 6= 0

2. det(I −X∆̂) 6= 0

The largest value of ε for which det(I−X∆̂) 6= 0 for all δ ∈ RN such that ‖δ‖∞ < ε is by de�nition
equal to 1/µ

∆̂
(X), where µ

∆̂
(X) denotes the structured singular value of X. If µ

∆̂
(X) < 1,

then (B.19) is satis�ed and the interconnection of Figure B.1(a) is stable for all ∆ ∈ ∆, i.e.
kr > 1. The validity of the PDL function can thus be checked using a single structured singular
value computation. In practice, computing the exact value of µ

∆̂
(X) is known to be NP-hard

in the general case (see Chapter A), but both upper [Young et al., 1995] and lower [Seiler et
al., 2010] bounds µ

∆̂
(X) and µ

∆̂
(X) can be determined using polynomial-time algorithms. The

following strategy can thus be implemented:

1. If µ
∆̂

(X) < 1, then µ
∆̂

(X) < 1 and stability is proved by the current PDL function.

2. If µ
∆̂

(X) > 1, then µ
∆̂

(X) > 1 and stability cannot be proved by the current PDL function,
since there exists at least one value δ̃0 ∈ I such that Ψ(δ̃0) is not negative de�nite.

3. If µ
∆̂

(X) < 1 and µ
∆̂

(X) > 1, no conclusion can be drawn. In such a case, a recursive
algorithm is implemented. It consists in splitting the unit hypercube I in more and more
subsets until either the µ lower bound computed on one of the subsets becomes larger
than 1 (stability cannot be proved) or the highest µ upper bound computed on all subsets
becomes lower than 1 (stability is proved). Such an algorithm is described in [Roos and
Biannic, 2010] and in Section A.4. It is guaranteed to converge if the size of the subsets is
allowed to become arbitrarily small.
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2.2.4 Determination of a worst-case con�guration

In case the PDL function determined in Section B.2.2.2 does not satisfy Ψ(δ) < 0 for all δ ∈ I,
a worst-case parametric con�guration δ̃ is determined, for which Ψ(δ̃) is not negative de�nite.
Intuitively, a relevant choice is to compute the value of δ for which the constraint Ψ(δ) < 0 is
the most violated, which can be formulated as follows:

δ̃ = arg max
δ∈I

λ(Ψ(δ)) (B.24)

where λ(Ψ(δ)) denotes the maximum eigenvalue of the real symmetric matrix Ψ(δ). Prob-
lem (B.24) is nonconvex, which makes it di�cult to compute the global maximum. Nevertheless,
the objective here is not to capture exactly this maximum, but to quickly explore the parametric
domain I to �nd a con�guration δ̃ for which λ(Ψ(δ̃)) is as positive as possible. Particle swarm
optimization [Clerc, 2006] is well adapted to address this issue. It is based on the swarm behavior
of birds or �shes around food, and consists in moving a set of particles in the continuous para-
metric domain I according to simple mathematical formulas. The movement of each particle is
in�uenced by its own best known position, and by the ones found by the neighboring particles.
Such a strategy is expected to move the swarm towards the best solutions. It has been observed
in practice that only a few iterations are necessary to �nd a suitable worst-case con�guration.
Once the latter has been computed, it is added to the grid, and a new PDL function is computed.
Note that the search for a con�guration δ̃ such that λ(Ψ(δ̃)) > 0 is necessarily successful. In-
deed, the optimization is initialized with the con�guration δ̃0 obtained during the µ lower bound
computation, for which λ(Ψ(δ̃0)) ≥ 0 (see Section B.2.2.3).

2.2.5 Description of the algorithm

The results obtained in the previous sections are now combined. The following algorithm is
introduced, which provides a solution to Problem B.1.

Algorithm B.4 (robust stability check)

1. Select the initial degree d and the maximum degree dmax of the polynomial Lyapunov func-
tion. Choose the maximum number of iterations imax.

2. De�ne an initial grid G1 = (δl)1≤l≤M of the unit hypercube I. Set i = 1.

3. If i < imax, solve the LMI feasibility problem (B.22). If i = imax or (B.22) is infeasible,
then stop the algorithm if d = dmax (stability not proved) or increase d and go back to
step 2 otherwise.

4. Compute X and µ
∆̂

(X). If µ
∆̂

(X)< 1, stop the algorithm (stability proved). Otherwise,
compute µ

∆̂
(X).

→ If µ
∆̂

(X) > 1, solve problem (B.24). Set Gi+1 = Gi ∪ {δ̃}, increase i and go back to
step 3.

→ If µ
∆̂

(X) < 1, apply the recursive algorithm described at the end of Section B.2.2.3. If
the highest µ upper bound computed on all subsets is lower than 1, stop the algorithm
(stability proved). If the µ lower bound computed on one of the subsets is larger
than 1 or if the stopping criterion is reached and no conclusion can still be drawn,
then stop the algorithm if d = dmax (stability not proved) or increase d and go back
to step 2 otherwise.
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Remark B.6 The numerically most demanding step in Algorithm B.4 is clearly the third one.
An LMI feasibility problem has to be solved, whose complexity increases with the degree of the PDL
function and the number of grid points. To reduce the computational cost, it is then recommended
to start with a low-order PDL function at step 1 (d = 1) and a rough grid at step 2 (M = 1).

2.3 Extension to performance analysis

The method described in Section B.2.2 can be easily adapted to solve Problem B.2. Let

(A, [B1 B2],

[
C1

C2

]
,

[
D11 D12

D21 D22

])
denote a state-space representation of M . The dynamics of

the interconnection depicted in Figure B.1(b) are described for all t ≥ 0 by:

ẋ = A(δ(t))x+B(δ(t))e (B.25)

y = C(δ(t))x+D(δ(t))e (B.26)
where:

A(δ(t)) = A+ B1∆(t)(I −D11∆(t))−1C1

B(δ(t)) = B2 + B1∆(t)(I −D11∆(t))−1D12

C(δ(t)) = C2 +D21∆(t)(I −D11∆(t))−1C1

D(δ(t)) = D22 +D21∆(t)(I −D11∆(t))−1D12

Lemma B.3 Under the assumption that x(0) = 0, robust stability of system (B.25)-(B.26)
is guaranteed and γ is an upper bound on ki2 if there exists a parameter-dependent Lyapunov
function P (δ) such that ∀δ ∈ I:

P (δ) = P (δ)T > 0 (B.27)

and ∀(δ, ν) ∈ I × J :

Φ(δ, ν) =

A(δ)TP (δ) + P (δ)A(δ) +

N∑
k=1

ν[k]
∂P (δ)

∂δ[k]
+ C(δ)TC(δ) P (δ)B(δ) + C(δ)TD(δ)

B(δ)TP (δ) +D(δ)TC(δ) −γ2I +D(δ)TD(δ)

< 0 (B.28)

Algorithm B.4 can be applied with minor modi�cations. The optimization problem at step 3
now consists of minimizing the linear objective γ under the LMI constraints (B.22), where Ψ(δ)
is de�ned as in (B.20) and Φ(δ, νj) is obtained by combining (B.28) and (B.18). Moreover, a
parameter α > 0 can be introduced to facilitate the validation of the PDL function and to
improve the convergence of the algorithm: the value of γ determined at step 3 is simply replaced
with (1 + α)γ at step 4. The increase in conservatism remains reasonable if α is small enough.

2.4 Conclusion

A practical method is proposed to assess the robustness properties of a system in the presence
of linear time-varying perturbations with bounded rates of variation. A parameter-dependent
Lyapunov function is �rst optimized on a �nite parametric grid. Its validity is then checked on the
whole parametric domain using a fast and reliable µ-analysis based test. In case the validation
fails, a worst-case con�guration is added to the grid and the whole process is repeated. The
proposed method is applied to a satellite in [Biannic et al., 2011] and to a �ghter aircraft in [Roos
et al., 2012]. Numerical results show that it compares favorably to IQC based analysis: for the
same computational time, the results are less conservative. This demonstrates the bene�t of using
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µ-analysis to speed up the analysis process. Nevertheless, it should be kept in mind that an LMI
problem must be solved at each iteration, which might lead to a prohibitive computational cost
if the order of the system or the number of uncertainties is too large.

3 Summary of the contributions

The main contributions presented in this chapter are brie�y summarized below, and a selec-
tion of related publications is given:

• Section B.1: frequency-domain approach to compute guaranteed stability margins and
worst-case performance levels in the presence of mixed time-invariant and arbitrarily fast
time-varying uncertainties ; extension to robust feedforward design [Ferreres and Roos,
2007].

• Section B.1: time-domain approach to compute guaranteed stability margins and worst-
case performance levels in the presence of mixed time-invariant and arbitrarily fast time-
varying uncertainties ; extensions to robust feedforward design and combined robust feed-
back/feedforward design [Roos and Biannic, 2006a; 2006b].

• Section B.2: Lyapunov-based technique to compute guaranteed stability margins and
worst-case performance levels in the presence of time-varying uncertainties with bounded
rates of variation [Roos et al., 2012; Biannic et al., 2011].

The guiding line between these di�erent methods is to demonstrate that µ-analysis can play a key
role in assessing the robustness properties of a system even if some uncertainties are time-varying,
and to provide computational tools that can be applied to realistic applications.

Remark B.7 It would be interesting to compare all existing techniques to solve the aforemen-
tioned issues, in terms of both accuracy and computational time. And also to evaluate their
conservatism on a large set of real-world benchmarks as in Chapter A, by computing worst-case
uncertainties (see e.g. [Köro§lu and Scherer, 2007; Peni and Seiler, 2016]).
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Chapter C

Generation of low-order LFR

A Linear Fractional Representation (LFR) is a model in which all known and �xed dynamics
of a given system are put together in a linear time-invariant plant M , while the uncertain and
varying parameters are stored in a block-diagonal operator ∆, as shown in Figure C.1. LFR
modeling is an essential step before the robustness properties of uncertain closed-loop systems
can be evaluated, e.g. using the µ-analysis based tools implemented in the SMART Library of
the SMAC Toolbox (see Chapter A and [Roos, 2013]). It can also be useful to design robust
control laws (especially using H∞ approaches) or gain-scheduled controllers. But the e�ciency
of the aforementioned analysis and synthesis techniques strongly depends on the complexity of
the considered LFR, which is measured in terms of both the size of the operator ∆ and the order
of the plant M . An increase in complexity is usually source of conservatism, and can even lead
to numerical intractability.

�

-

- -

∆

M

Figure C.1: Linear Fractional Representation

In most industrial applications, physical systems are described using a mix of nonlinear ana-
lytical expressions and tabulated data. Therefore, a two-step procedure has to be implemented
to obtain a suitable LFR: a linear model with a polynomial or a rational dependence on the
system parameters is �rst generated, and then converted into a linear fractional form. Sev-
eral techniques such as object-oriented realization exist to perform the latter transformation.
Although the minimality of the resulting LFR cannot be guaranteed, symbolic preprocessing
techniques as well as numerical reduction usually permit to overcome complexity. Moreover,
e�cient software are available such as the LFR Toolbox for Matlab [Magni, 2006], which was
recently replaced by the GSS Library of the SMAC Toolbox [Biannic and Roos, 2016]. On the
other hand, the preliminary issue of converting the tabulated or irrational data into simple yet
accurate polynomial or rational expressions has been paid much less attention, although it is of
signi�cant practical importance. In the aeronautic �eld for example, most aircraft models include
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tabulated aerodynamic coe�cients determined by CFD (Computational Fluid Dynamics), wind
tunnel experiments or �ight tests, and several controller gains depend on the �ight parameters
in a tabulated fashion.

The motivations for developing enhanced computational tools dedicated to tabulated data
approximation are twofold. The �rst one is of physical nature. Computing sparse expressions,
for which the number of terms in the numerator and the denominator is as low as possible, is a
natural way to prevent data over�tting and to ensure a smooth behavior of the model between
the points used for approximation. On the other hand, building an LFR from a polynomial or a
rational expression f(x1, . . . , xn) results in a block diagonal matrix ∆ = diag(x1Ip1 , . . . , x

nIpn).
The number pj of repetitions of each parameter xj in ∆ is strongly linked to the number of
occurrences of xj in f . Indeed, although this is not an exact rule, the trend is as follows: the
fewer the occurrences of xj in f(x1, . . . , xn), the smaller the size of ∆. In other words, no matter
how e�cient the LFR generation tools can be, they are of little help if the expressions to be
converted are unnecessarily complex. Hence, the need to get tractable LFR for analysis and
design purposes is another strong motivation for generating sparse expressions.

The issue of converting tabulated or irrational data into polynomial or rational expressions
is the core of this chapter. The case of scalar samples is considered in Section C.1. The problem
is �rst stated in Section C.1.1 and an overview of existing approximation methods is provided in
Section C.1.2. Those allowing to get sparse expressions are then detailed in Section C.1.3 and
implementation issues to obtain a low-order static LFR are �nally discussed in Section C.1.4.
The case of a set of MIMO LTI models is considered next, and a whole methodology is described
in Section C.2 to obtain a low-order dynamic LFR.

1 From a set of scalar samples to a static LFR

1.1 Problem statement

Let {yk, k ∈ [1, N ]} be a set of samples (measurements, tabulated data. . . ) corresponding
to di�erent parametric con�gurations or operating points {xk, k ∈ [1, N ]} of a given system.
More precisely, each xk =

[
x1
k, . . . , x

n
k

]
∈ Rn contains the values of the n explanatory variables

x1, . . . , xn for which the sample yk ∈ R was obtained. The main objective is to compute a
polynomial or a rational function f : Rn → R of reasonable complexity which approximates
these data, i.e. such that f(xk) is close to yk for all k ∈ [1, N ] in the sense of a certain
criterion (root-mean-square error, maximum local error. . . ). Another objective is to ensure that
the denominator of f has no root in the considered parametric domain, which is assumed here
to be the smallest hyper-rectangle D ⊂ Rn containing every sampled data (xk)k∈[1,N ]. This
requirement guarantees that well-posed LFR are obtained.

Remark C.1 The case where an analytical expression fA : Rn → R is available instead of N
samples is not considered here (see e.g. [Petrushev and Popov, 1987]). Moreover, this work only
deals with approximation (or regression) and not with interpolation, which would aim at �nding
a rational function f such that the equalities f(xk) = yk are strictly satis�ed for a large number
N of samples (see [Floater and Hormann, 2007] and references therein).

1.2 Overview of existing methods

For a given precision, an intuitive idea is to determine a rational function for which the
numerator P and the denominator Q are two polynomials of the lowest possible degrees. This
fairly simple strategy is followed by most existing methods. A classical linear least-squares
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technique is usually applied in case the rational function is restricted to be polynomial [Magni,
2006]. In the general case, a nonlinear least-squares technique can be implemented to minimize
the approximation error [The Mathworks, 2014], whereas a quadratic programming problem can
be solved to ensure that the resulting rational function intersects a set of intervals containing the
data [Celis et al., 2007]. But all those techniques su�er from the same drawback: all admissible
monomials of P and Q are usually nonzero, regardless of their real ability to model the data.
More generally, the question of which terms should be included in the model is often addressed by
trial-and-error, or even ignored in practice. A way to deal with this question is to use orthogonal
least-squares. This allows to evaluate the ability of each monomial to e�ciently model the
data and therefore to select only the most relevant ones, leading to sparse expressions. This
approach is applied in [Poussot-Vassal and Roos, 2012; Roos, 2009; Döll et al., 2008; Morelli
and DeLoach, 2003] to model aeronautical data with polynomials, but until recently, practical
methods to compute rational functions were still missing. Yet, the additional degrees of freedom
can lead to simpler expressions and thus to smaller LFR. Consequently, two algorithms have
recently been developed to obtain rational expressions with sparse structure, i.e. with as few
monomials in P and Q as possible. A direct approach computing a rational expression in a
single step thanks to a symbolic regression technique is proposed in [Hardier et al., 2013a],
while an indirect approach creating a rational model by means of an intermediate surrogate
modeling is introduced in [Hardier et al., 2013b]. All these methods are now brie�y presented in
Sections C.1.2.1 and C.1.2.2.

1.2.1 Polynomial case

The most common approach consists in restricting f to be a polynomial function, that is:

f(x) = P (x) =

nP∑
i=0

airi(x) (C.1)

where (ri)i∈[0,nP ] is a set of polynomial regressors and (ai)i∈[0,nP ] are coe�cients to be determined.

• A classical solution consists in solving a linear least-squares (LS) problem with respect
to the coe�cients (ai)i∈[0,nP ], i.e. to minimize the following criterion [Magni, 2006]:

C =
N∑
k=1

[yk − P (xk)]
2 (C.2)

• A well-known improvement to that approach relies on a preliminary orthogonalization
process to decouple the regressors. As a result, the ability of each new regressor to reduce
the criterion C can be evaluated regardless of those already selected. Hence, only the
most relevant ones are considered, which amounts to a certain extent to minimizing the
complexity of the polynomial approximation while still guaranteeing a low approximation
error. This orthogonal least-squares (OLS) based variant was successfully applied
by [Morelli and DeLoach, 2003]. It was later improved, allowing to compute a sparse
polynomial expression satisfying the following global and local constraints:{ √

C/N ≤ ε1
|yk − P (xk)| ≤ ε2 ∀k ∈ [1, N ]

(C.3)

where ε1 and ε2 are some user-de�ned tolerances [Poussot-Vassal and Roos, 2012; Roos,
2009; Döll et al., 2008]. More details are given in Section C.1.3.1.
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1.2.2 Rational case

The more general case where f is a rational function is now considered:

f(x) =
P (x)

Q(x)
=

nP∑
i=0

air
P
i (x)

/ nQ∑
i=0

bir
Q
i (x) (C.4)

where (rPi )i∈[0,nP ] and (rQi )i∈[0,nQ] are two sets of polynomial regressors, while (ai)i∈[0,nP ] and
(bi)i∈[0,nQ] are coe�cients to be determined.

• A �rst method consists of solving a nonlinear least-squares (NLS) problem with respect
to the coe�cients (ai)i∈[0,nP ] and (bi)i∈[0,nQ], that is to minimize the following criterion:

C =

N∑
k=1

[
yk −

P (xk)

Q(xk)

]2

(C.5)

It is notably implemented in the Curve Fitting Toolbox of Matlab [The Mathworks, 2014],
where several optimization tools can be used to compute a solution (Levenberg-Marquardt
algorithms, trust-region methods...). One of its major drawbacks is that several local
minima may exist due to the non-convexity. Hence, the results strongly depend on the
initialization, which is not a trivial issue.

• A second method was introduced by [Markov et al., 1996] in the context of polynomial ap-
proximation and then generalized by [Celis et al., 2007] to the rational case. An uncertainty
interval

[
y
k
, yk

]
is �rst de�ned around each yk. A rational function is then determined

which intersects all those intervals, i.e. y
k
≤ P (xk)/Q(xk) ≤ yk ∀k ∈ [1, N ]. This can

be achieved by solving a quadratic programming (QP) problem in the coe�cients
(ai)i∈[0,nP ] and (bi)i∈[0,nQ] with a strictly convex objective function.

Those two algorithms su�er from the same drawback: all admissible monomials of P and
Q are usually nonzero, regardless of their real ability to model the data. In this context, two
additional methods have recently been developed to generate sparse rational approximations,
which avoid data over�tting and lead to simple yet accurate LFR.

• A third method proposed in [Hardier et al., 2013a] and described in Section C.1.3.2 looks
for a rational approximation in a single step thanks to a symbolic regression technique.
Genetic programming (GP) is implemented to select sparse monomials and coupled
with a nonlinear iterative procedure to estimate the coe�cients of the rational function.

• A fourth method proposed in [Hardier et al., 2013b] and described in Section C.1.3.3 creates
a rational expression by means of an intermediate surrogate modeling (SM). It performs
the data approximation by building a sparse modeling based on neural networks, before
translating the result into a fractional form. A stepwise selection algorithm is used, combin-
ing the bene�ts of forward orthogonal least-squares to estimate the regression parameters,
and of particle swarm optimization to determine the best location of the regressors.

Remark C.2 Rational approximation is also considered in linear systems theory, for example in
the �elds of model reduction [Karlsson and Lindquist, 2008] and system identi�cation [Deschrijver
et al., 2007], where least-squares methods are usually implemented.
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1.3 Focus on sparse approximation techniques

Our main contribution consists of developing some approximation methods which produce
sparse polynomial or rational expressions, with the ambition of limiting as much as possible
the size of the resulting LFR. In this context, the emphasis is put in this section on the OLS, GP
and SM methods presented in Section C.1.2. Note that the last two make use of techniques which
are a little outside the main topics of this manuscript, but they are the result of a successful
collaboration with a colleague specialized in modeling and identi�cation. So it seems relevant to
describe them brie�y.

1.3.1 Polynomial approximation using orthogonal least-squares

Let us assume for the moment that the polynomial regressors (ri)i∈[0,nP ] are �xed. A classic
way of doing this is to choose n positive integers d1, . . . , dn and to consider all monomials such
that the degree of xi is less than or equal to di, in which case nP = (d1 + 1) . . . (dn + 1)− 1. The
quadratic criterion (C.2) then only depends on the coe�cients (ai)i∈[0,nP ] and the optimization
problem to be solved can be reformulated as:

Aopt = arg min
A∈RnP+1

C(A) (C.6)

where:
C(A) = (Y −RA)T (Y −RA) (C.7)

R =

 r0(x1) . . . rnP (x1)
...

. . .
...

r0(xN ) . . . rnP (xN )

 =
[
R0 . . . RnP

]
(C.8)

AT =
[
a0 . . . anP

]
(C.9)

Y T =
[
y1 . . . yN

]
(C.10)

and (Ri)i∈[0,nP ] are called the modeling functions. This is a classical linear least-squares problem,
whose solution is given by:

Aopt = (RTR)−1RTY (C.11)

Assume now that the modeling functions which compose the matrix R are made orthogonal,
i.e. RTi Rj = 0 for all i 6= j, as proposed in [Morelli and DeLoach, 2003] and [Roos, 2009]. The
components of Aopt are then expressed as:

ai,opt =
RTi Y

RTi Ri
, i ∈ [0 , nP ] (C.12)

and the corresponding value Copt of C(A) is given by:

Copt = Y TY −
nP∑
i=0

(RTi Y )2

RTi Ri
(C.13)

Using orthogonal modeling functions is relevant for several reasons. First, RTR becomes diagonal
and can be trivially inverted. Then, it can be observed in (C.13) that the reduction in the least-
squares criterion C(A) resulting from the inclusion of Ri does not depend on Rj whatever j 6= i.
This allows to evaluate each orthogonal modeling function (an thus each monomial) in terms of its
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ability to reduce C(A), regardless of which other functions are selected. This property is exploited
in [Roos, 2009; Poussot-Vassal and Roos, 2012], where an iterative algorithm is introduced. By
progressively releasing some tolerances, the most relevant set of monomials is determined, for
which the approximation error remains lower than a given user-de�ned threshold. All the other
monomials are eliminated, thus leading to sparse polynomial expressions. This amounts to
a certain extent to minimizing the complexity of the approximation formulas, and then the
size of the resulting LFR. Some recent applications can be found e.g. in [Iannelli et al., 2017;
Biannic et al., 2016].

1.3.2 Rational approximation using genetic programming

In the rational case, when the model structure has to be determined as a whole (numerator
and denominator degrees, number and type of monomials), the approximation problem cannot
generally be solved by means of classical techniques. Over a few variables, a sequential and
systematic exploration cannot be carried out either: for example, with 2 explanatory variables
and a maximum degree of 10, there are not less than 1015 rational candidates available. Moreover,
the dual-purpose optimization (model structure and coe�cients) is complicated by the fact that a
rational model is no more Linear in its Parameters (LP). Fortunately, some promising techniques
have recently appeared for global optimization, with the purpose of solving symbolic regression
problems close to this one. This is especially the case of Genetic Programming (GP), and after
a short description of its main principles, the way it can be adapted to rational approximation
will be examined.

GP is part of the evolutionary family, as Genetic Algorithms (GA) are. It uses the principles
of natural evolution to evolve a population of individuals randomly created, until a satisfactory
solution is found. Opposite to GA, it is not based on a binary coding of information, but
it uses a structured representation in the form of syntax trees. These trees are well adapted
to solve structural or symbolic optimization problems, since they can have di�erent sizes and
shapes. The associated alphabet is also �exible enough to encode mathematical equations,
behavior models or computer programs. The �rst works date back to the early 60s, but GP was
really implemented and brought up to date only in the early 90s, thanks also to an increase in
computing power [Koza and Poli, 2005]. An iterative process breeds a population and transforms
the individuals generation after generation by applying Darwinian mechanisms: reproduction,
mutation, crossover, but also gene duplication or deletion. These are applied to the hierarchically
structured trees of the individuals, comprising a set of nodes which fall into two categories: the
set F of internal nodes called functions or operators, and the set T of tree leaves called terminals.

All types of functions are acceptable in F: mathematical (+,−,×, /,√ , exp . . . ), logical,
conditional (tests) or user-de�ned. On the other hand, the terminals correspond to the function
arguments but can also include some internal parameters or prede�ned constants. The content
of T is a central issue for the problem of a joint structural/parameter optimization. With LP
models, a good choice is to take the regression coe�cients away and to include only the explana-
tory variables xi and possibly some prede�ned constants. Hence, the individuals just represent
the functional relationships between the xi. At each GP iteration, the regressor functions rj (and
their number m ≤ nP + nQ) are derived by analyzing the tree structure of any individual from
its root. The numerical values of the regression coe�cients (aj , bj) are then adapted afterwards,
by applying any minimization technique to the squared error. Moreover, coupling GP with an
OLS algorithm allows to solve the optimization of the (aj , bj) very e�ciently.

GP allows to produce polynomials by setting F = {+,×} and T = {x0 = 1, x1, x2, . . . , xn},
hence restricting the regressors to monomials. The modeling complexity can also be controlled
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by penalizing some internal GP parameters like the tree depth, the number of branches/leaves,
or by favoring the selection of the simplest operators. Practically, this can be achieved thanks to
the �tness function which is used to handle the GP mechanisms of evolution. Similarly to what
is done in ridge regression, a penalty component can be added to the �tness function to favor
the simplest models and to prevent over�tting.

Let us now move on to the considered rational approximation problem. The following con-
siderations come to mind:

• the rational case extends the polynomial one (structured modeling expressed as the quotient
of two polynomials),

• GP is fully justi�ed since there is no other classical option available for jointly optimizing
the structure of the numerator and the denominator (e.g. a brute-force search does not
minimize the number of monomials),

• although a rational model is not LP, the numerator and the denominator remain LP when
considered separately, and it would be a pity not to take advantage of that.

Hence, GP appears as a promising alternative for rational modeling, but a prior adaptation of
the method is required to use it with maximum e�ciency. A dedicated tool named TRACKER
(Toolbox for Rational Approximation Computed by Knowing Evolutionary Research) was thus
developed, and it is brie�y described below (see also [Hardier et al., 2013a]).

Each component of the rational function (numerator or denominator) is represented by a
single separate chromosome, which comes in a syntax tree form as usual and a priori includes
several genes. The sets T and F are chosen as for the polynomial case, and a speci�c syntax
rule is de�ned to ensure that all the non-terminal nodes located below a ×-type node are also
×-type nodes. This trick avoids creating useless branching, which could result in splitting and
multiplying some monomials. Thanks to this architecture, a gene appears as a subtree linked to
the root node of its chromosome through one or several ×-type nodes. A parse analysis of the
di�erent genes composing a chromosome also permits to avoid the creation of spurious genes by
identifying and grouping them if any. Figure C.2 shows the architecture of a tree corresponding
to a simple f(x) example. 5 genes related to the di�erent monomials are highlighted by colors
(except the constants a0 and b0 which are an integral part of the structure).

Figure C.2: Parse tree example for rational modeling

Advanced control laws design and validation - A set of methods and tools to bridge the gap between theory and practice



68 Generation of low-order LFR

To solve the parametric optimization, i.e. to estimate the regression coe�cients (aj , bj) of
any created tree, a well-known technique used to identify transfer functions in the frequency
domain is implemented [Sanathanan and Koerner, 1963]. It consists of iteratively linearizing
the quadratic cost function C de�ned in equation (C.5) and computing estimates of (aj , bj)
until convergence. At a given iteration, the coe�cients bi in the denominator are replaced by
their most recent estimates b̂i, so they are �xed during optimization. And the denominator is
arbitrarily normalized by choosing b0 = 1 and rQ0 (xk) = 1. Therefore, the kth term of C becomes
linear in (aj , bj) and reads:

nP∑
i=0

air
P
i (xk)−

nQ∑
i=1

biykr
Q
i (xk)− yk

1 +
nQ∑
i=1

b̂ir
Q
i (xk)

(C.14)

Let D̂(xk) = 1 +
nQ∑
i=1

b̂ir
Q
i (xk) be the estimate of the denominator. The vector of normalized out-

puts is written as y∗ =
[
y1/D̂(x1) . . . yN/D̂(xN )

]T
, and the kth row Rk of the regression matrix

follows D̂(xk)Rk =
[
1 rP1 (xk) . . . r

P
nP

(xk) − ykrQ1 (xk) · · · − ykrQnQ(xk)
]
. With these notations,

some estimates ŵ of the coe�cients w =
[
a0 a1 . . . anP b1 . . . bnQ

]T are obtained by solving a
linear LS problem, whose solution is ŵ = (RTR)−1RT y∗. This method relies on the fact that the
approximation D(xk) ≈ D̂(xk) becomes fully justi�ed when the iterative process has converged.
In practice, the latter is initialized with D̂(xk) = 1, and 2 or 3 iterations are usually su�cient
to ensure convergence. In case of ill-conditioning, a few iterations of Levenberg-Marquardt op-
timization are used to recover a satisfactory result. Introduced into the selection process, this
technique enables to evaluate the performance of each individual very easily, by coming down to
a short series of ordinary LS problems. The overcost remains limited because the major part of
the computations required by matrix R can be stored and reused through the loop.

1.3.3 Rational approximation using surrogate modeling

The use of surrogate modeling is becoming widespread in many scienti�c domains to replace
the system or the reference model, when the latter is too restrictive to achieve some tasks like
optimization, modeling, parameter identi�cation. . . Hence, a wide range of techniques have been
developed to build surrogate models e�ciently, i.e. with both accuracy and parsimony. For
example, Neural Networks (NN) are recognized nowadays as an e�cient alternative to represent
complex nonlinear systems, and methods are available to model static nonlinearities such as those
encountered when confronted with the considered approximation problem. The idea consists of
using such methods to derive a rational model. In this perspective, an existing tool has been
adapted. It was initially developed for aircraft modeling and identi�cation purposes and is named
KOALA (Kernel Optimization Algorithm for Local Approximation), see [Bucharles et al., 2012;
Seren et al., 2011] for more details.

Let us �rst brie�y describe the standard version of KOALA. Forward selection is used to
choose the regressors, starting with an empty set and adding them one at a time in order
to gradually improve the approximation. A preliminary orthogonalization technique is used
to speed up this constructive process, allowing to evaluate each regressor regardless of those
previously selected. Particle Swarm Optimization (PSO) is then used to optimize the regressors
positioning [Clerc, 2006]. The coupling of this PSO algorithm with the constructive technique
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detailed in [Seren et al., 2011] allows to perform structural and parametric optimizations jointly
for di�erent types of regressors, typically Radial Basis Function (RBF) networks, but also more
general Local Linear Models (LLM) networks. The latter are obtained by replacing the RBF
linear weightings w by a�ne expressions depending on the model inputs. It is thus expected
that fewer regressors are required to achieve the same accuracy in most applications. For LLM,
the following generic formulation is used for the approximating function f :

f(x) =
m∑
j=1

(
n∑
i=0

wjix
i

)
rj(x) (C.15)

where rj(x) represents the kernel value of the jth regressor function, and where x0 = 1 to
include the constant terms of the a�ne modeling into the second sum. By choosing Gaussian
radial functions for rj , the jth term of f becomes:

fj(x) =

(
n∑
i=0

wjix
i

)
exp

(
−

n∑
i=1

(xi − cji)2

σ2
ji

)
(C.16)

With this choice, KOALA optimizes both the ellipsoid centers cji and radii σji associated to the
radial functions (structure) and the weightings wji (parameters).

A �rst idea to use KOALA in the context of rational modeling is to convert equation (C.16)
a posteriori into a rational form, i.e. once cji, σji and wji have been computed. A Pade ap-
proximation of the exponential function is used, so as to replace it with a rational function in
reduced form. The latter is expressed as the quotient of two polynomials of degrees p and q, and
the corresponding approximation of fj(x) becomes a rational function of degrees 2p+ 1 and 2q
for each explanatory variable xi. However, getting high quality approximations requires large
values for q. Hence, the degree of the resulting rational function is penalized, with no guarantee
about the accuracy of the global regression f(x).

A more relevant approach proposed in [Hardier et al., 2013b] consists of replacing the ex-
ponential function straight away with a Pade approximation, before optimizing cji, σji and wji
using this new kind of regressors. The simplest transformation corresponds to the reduced form
of degrees p = 0 and q = 1. Therefore, the resulting approximating function f is the sum of m
components given by:

fj(x) =

(
n∑
i=0

wjix
i

)/(
1 +

n∑
i=1

(xi − cji)2

σ2
ji

)
(C.17)

This solution is preferred here, since it leads to simpler and more accurate rational functions.
Hence, another class of models based on Pade approximation is included into KOALA, in addition
to the aforementioned RBF and LLM kernels.

A post-processing of the resulting rational function f is �nally performed before an LFR can
be computed, using for example the Matlab Symbolic Toolbox. Several options can be consid-
ered for gathering the m components fj(x) into a single rational function: global expansions
of numerator and denominator, factorization of the denominator, sum of elementary rational
terms. . . The latter appears to be the most relevant one, since it allows some simpli�cations, and
a factor of two can usually be gained in the �nal LFR size.
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1.4 Implementation issues

1.4.1 Non singularity of the rational function

The coe�cients (bi)i∈[1,nQ] being determined, an important issue is now to check whether the
denominator Q of f has no roots in the considered parametric domain, i.e. Q(x) 6= 0 for all
x ∈ D. Such a requirement is indeed a prerequisite to build a well-de�ned LFR. Unfortunately,
checking whether a multivariate polynomial of degree 4 or higher with real coe�cients has a real
zero is NP-hard in the general case [Blum et al., 1998]. A classical strategy is therefore to focus
on su�cient conditions, and some methods based on parameter-dependent slack variables [Sato,
2009] or sum-of-squares [Shor, 1987] have been proposed. They give quite accurate results, but
they are likely to become computationally demanding if some multivariate polynomials of high
degrees are considered.

An e�cient alternative based on µ-analysis is proposed here. In this perspective, Q(x)
is �rst converted into an LFR as depicted in Figure C.1, where M is a �xed matrix and

∆ = diag(x1Ip1 , . . . , x
nIpn) ∈ Rp×p. If M =

[
M11 M12

M21 M22

]
∈ R(p+1)×(p+1) is partitioned in

accordance with this interconnection, the following relation holds:

Q(x) = M22 +M21∆ (Ip −M11∆)−1M12 (C.18)

It is assumed here without loss of generality that D is the unit hypercube, i.e. xi ∈ [−1, 1] for
all i ∈ [1, n], which can always be achieved using a suitable a�ne transformation. The following
technical lemma is then introduced, where M22 = Q(0) is assumed to be nonzero (otherwise, it
could directly be concluded that Q has a real zero in D).
Lemma C.1 Let X = M11 −M12M

−1
22 M21. Then for all x ∈ D:

Q(x) 6= 0⇔ det(Ip −X∆) 6= 0 (C.19)

This result shows that the considered nonsingularity check is strongly linked to the notion of
structured singular value (see Chapter A). Computing the exact value of µ∆(X) is NP-hard, but
e�cient polynomial-time algorithms allow to compute both lower and upper bounds µ∆(X) and
µ∆(X) [Seiler et al., 2010; Young et al., 1995]. The following algorithm can then be implemented:

• If µ∆(X) > 1, a value x̃ ∈ D has been computed, for which Q(x̃) = 0.

• Else, if µ∆(X) < 1, it can be concluded that Q(x) 6= 0 for all x ∈ D.
• Otherwise, nothing can be assessed. A strategy is then to divide D recursively and to
apply the whole procedure again on each subdomain until one of the two aforementioned
scenarios occurs.

Remark C.3 Such a procedure is heuristic. Nevertheless, its convergence properties appear quite
good in practice. Indeed, it can usually be observed that the smaller a subdomain, the smaller the
gap between the bounds (see [Roos and Biannic, 2010] for a detailed study of such a behavior). A
conclusion is thus often obtained after only a few iterations, sometimes even after a single one.

Each time a worst-case value x̃ ∈ D is identi�ed for which Q(x̃) = 0, the rational approximation
algorithms presented in Section C.1.2.2 are applied again with the additional constraint Q(x̃) ≥
ε > 0 (where ε is a user-de�ned tolerance), until a nonsingular rational function is computed (or
a maximum number of iterations is reached).

Remark C.4 The non-singularity check presented here is useful only for the QP-based and the
GP-based methods. Indeed, the SM-based approach described in Section C.1.3.3 cannot produce
a singular solution, since the denominator of fj(x) in (C.17) is always strictly positive.
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1.4.2 A Matlab library for polynomial and rational approximation

Despite several theoretical contributions to polynomial and rational approximation, only few
practical algorithms have been implemented. Those available are mainly based on linear least-
squares in the polynomial case and nonlinear least-squares in the rational one [Magni, 2006;
The Mathworks, 2014]. However, none of them is able to produce sparse expressions, where only
the most relevant monomials are selected. In this context, the Approximation of Polynomial and
Rational-type for Indeterminate Coe�cients via Optimization Tools (APRICOT) Library of the
SMAC Toolbox has been developed to help bridging this gap between theory and practice [Roos
et al., 2014]. As shown in Table C.1, it is composed of �ve main approximation routines, which
implement most of the techniques surveyed in Sections C.1.2 and C.1.3. A full version can
be freely downloaded from the SMAC website http://w3.onera.fr/smac/apricot, which also
provides a complete documentation as well as applicative examples.

Matlab routine Description

lsapprox Polynomial approximation using linear least-squares

olsapprox Polynomial approximation using orthogonal least-squares

qpapprox Rational approximation using quadratic programming

tracker Rational approximation using genetic programming

koala Rational approximation using surrogate modeling

Table C.1: Main approximation routines of the APRICOT Library

The APRICOT library was evaluated on a number of challenging problems [Roos et al., 2014;
Iannelli et al., 2017; Biannic et al., 2016; Döll et al., 2012], which allowed us to gain good ex-
perience. Based on this, the main features of the di�erent rational approximation methods are
summarized below. The QP-based method implemented in the routine olsapprox is quite fast
and usually gives good results. But there are two main limitations. First, only full expres-
sions with a large number of monomials are obtained, which can result in large-size LFR. Then,
numerical problems are frequently encountered for degrees larger than 10. The GP-based algo-
rithm implemented in the routine tracker gives very sparse expressions with only few nonzero
monomials, and it exhibits good numerical properties. The size of the resulting LFR can thus
be signi�cantly reduced. However, it is computationally demanding. Finally, the SM-based
approach implemented in the routine koala also produces reduced-size LFR, but not for the
same reason as tracker. Indeed, the rational expressions are composed of a large number of
monomials, but they directly come in factorized form. Computational cost is quite low, so very
accurate approximations (with high degrees) can be obtained. Moreover, the non-singularity of
the resulting rational functions is guaranteed implicitly, so the iterative procedure described in
Section C.1.4.1 can be avoided. To conclude, GP and SM prove quite complementary: GP is more
accurate for low degree approximations, while SM gives better results for degrees larger than 10.

1.4.3 Towards low-order LFR

Once a suitable rational function with no pole in the considered parametric domain is ob-
tained, it is �nally converted into an LFR. Several techniques such as object-oriented realization
exist to perform this transformation. Although the minimality of the resulting LFR cannot be
guaranteed, symbolic preprocessing techniques as well as numerical reduction usually permit to
overcome complexity. Moreover, e�cient software are available such as the LFR Toolbox for Mat-
lab (see [Magni, 2006] and references therein). This software o�ers many functionalities and has
been widely used, but it su�ers from two main drawbacks. First, it is not maintained anymore,
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so compatibility with new versions of Matlab is increasingly di�cult to ensure. Moreover, it is
not easily accessible to non-expert users, due to a rather complicated way of describing LFR.
This motivated the development of the Generalized State-Space (GSS) Library of the SMAC
Toolbox. It implements the new Matlab class gss, which allows to model uncertain and non-
linear systems as Linear Fractional Representations [Biannic and Roos, 2016]. Several tools are
proposed to manipulate gss objects (addition, multiplication, inversion, concatenation, feed-
back. . . ), to obtain gss objects from symbolic models, to ensure compatibility with Matlab uss

objects, to manipulate the uncertainties and the nonlinearities (normalization, reordering, ran-
dom sampling. . . ) and to perform order reduction or approximation. It is designed to be more
user-friendly and it allows to handle a large class of continuous- and discrete-time systems with
real or complex uncertain or varying parameters, polytopic-type uncertain or varying elements,
linear time-invariant uncertainties, sector nonlinearities, saturations and deadzones. . . It is still
under development, and it will ultimately include the state-of-the-art realization and reduction
techniques. Finally, it is compatible with most libraries of the SMAC Toolbox: APRICOT (see
Section C.1.4.2), SMART (see Section A.6), IQC [Demourant, 2013], SAW (see Section D.4). . . A
full version can be freely downloaded from the SMAC website http://w3.onera.fr/smac/gss,
which also provides a complete documentation as well as applicative examples.

1.5 Conclusion

In an industrial context, physical systems are usually represented by a mix of nonlinear ana-
lytical expressions and tabulated data. A two-step procedure has to be implemented to obtain a
suitable linear fractional representation: a linear model with a polynomial or a rational depen-
dence on the system parameters is �rst generated, and then converted into a linear fractional
form. In this work, three methods are proposed to generate sparse polynomial and rational
approximations from a set of scalar or matrix samples, based on orthogonal least squares, ge-
netic programming and surrogate modeling respectively. They usually compare very favorably
to classical ones. For a given precision, the symbolic expressions are indeed more compact, and
hence the size of the resulting LFR is smaller. Good numerical properties are also observed.
All existing algorithms have been implemented in the APRICOT Library of the SMAC Toolbox.
The new Matlab class gss has also been de�ned and implemented in the GSS Library. It replaces
and improves the LFR Toolbox, which is no longer maintained, and it can be used in conjunc-
tion with the APRICOT Library to model uncertain and nonlinear systems as Linear Fractional
Representations. Several improvements are possible, among which two are worth being men-
tioned. The �rst one is to improve the computational time of the tracker routine by using gene
expression programming instead of genetic programming. The second one deals with rational
approximation of matrix samples. Currently, all coe�cients are approximated independently of
the others. This results in completely di�erent denominators, which strongly penalizes the size
of the resulting LFR. A better trade-o� between accuracy and complexity could probably be
achieved by imposing (partly) identical denominators for all coe�cients.

2 From a set of MIMO LTI models to a dynamic LFR

2.1 Motivations

A prerequisite to apply certain modern control techniques is to build a representative LPV
or LFT model of the system, see e.g. [Leith and Leithead, 2000]. This can be done in two dif-
ferent ways. On the one hand, if a nonlinear analytical model derived from physical equations
is available, either symbolic [Marcos and Balas, 2004] or numerical [P�fer and Hecker, 2011]
linearizations are usually performed around equilibrium points. In the �rst case, an LPV model
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is directly obtained, whereas in the second one, the resulting set of LTI models has to be approx-
imated by an LPV model. On the other hand, the initial nonlinear model is sometimes overly
complex or does not even exist, see e.g. [Ferreres, 2011]. Global or local identi�cation techniques
are thus applied provided a (possibly reduced-scale) prototype of the considered system exists.
Global techniques allow to obtain an LPV model in a single step, but they require the control
inputs and the scheduling parameters to be excited simultaneously and persistently during a sin-
gle experiment, which is not always possible. In contrast, local techniques consist of performing
several experiments during which the scheduling parameters remain constant, leading once again
to a set of LTI models to be approximated. An alternative to local identi�cation is to replace each
experiment by a numerical analysis of the system using for example �nite element techniques,
which is commonly done in the aerospace industry. In this context, this section focuses on the
generation of low-order LPV/LFT models from a set of large-scale LTI models. This can be seen
as a generalization of what is done in Section C.1 for a set of scalar samples.

This question arises in particular when �exible dynamics are to be taken into account. For
example, the issue of representing the aeroelastic behavior of an aircraft in linear fractional form
has already been addressed in several papers, but most of them assume that a reasonable-size
analytical expression is available [Bennani et al., 2005; Baldelli et al., 2005]. Nevertheless, this
assumption does not always hold in practice. We have indeed been confronted a few years ago
with purely numerical models of huge complexity, which describe both the rigid and the �exible
dynamics of an Airbus aircraft for di�erent mass con�gurations. They were obtained in an indus-
trial context, �rst by combining a structural �nite element model with a complete representation
of the aerodynamic forces and moments acting on the aircraft, and then by removing the less
relevant modes and making several adjustments to improve accuracy [Puyou and Losser, 2012].
The resulting large-scale LTI models have about 300 states and no speci�c structure. Moreover,
they cannot be directly approximated because of their size and of the non-consistency of their
state vectors. And this example is not an isolated case, because we have also been confronted
with large-scale aeroelastic bizjet aircraft models developped by Dassault Aviation, for which
the problem is roughly the same [Poussot-Vassal et al., 2014]. First attempts to obtain accu-
rate and tractable LFR from such sets of large-scale LTI models were made in [Ferreres, 2011;
Roos, 2009]. Good results are reported in these papers, but the dynamics to be included in
the LFR are chosen empirically in both cases. The two aforementioned examples as well as
this limitation were our motivation to go one step further and to propose a systematic approach
in [Poussot-Vassal and Roos, 2012], which can be applied to any set of purely numerical (and pos-
sibly unstructured) models. The resulting two-step strategy is brie�y described in this section.
All algorithms are omitted for the sake of simplicity, since reading them is a bit tedious.

2.2 Generation of reduced and consistent models

The �rst step is to generate a set of N reduced-order models, which all have the same
modal content and are as representative as possible of the N initial large-scale models. In [Fer-
reres, 2011] and [Roos, 2009], some empirical criteria combined with the physical knowledge
of the plant are used to generate reduced A matrices, and a biconvex optimization then pro-
duces some suitable B, C and D matrices. These approaches assume that the most relevant
modes can be selected by hand, which is quite questionable in the general case. In contrast,
a purely numerical method using a projection-based approach is proposed in [Poussot-Vassal
and Roos, 2012]. An algorithm built on the work of [Gallivan et al., 2004; Gugercin, 2008;
Van-Dooren et al., 2008] is implemented to obtain reduced-order models with consistent modal
content and accurate frequency responses.

Advanced control laws design and validation - A set of methods and tools to bridge the gap between theory and practice



74 Generation of low-order LFR

Let us �rst assume that a single LTI model H = (A,B,C,D), where A ∈ Rn×n, has to be
reduced. The objective is to compute state-space matrices Ĥ = (Â, B̂, Ĉ, D̂), where Â ∈ Rr×r
and r � n, such that H and Ĥ are close in the sense of a given norm (usually H2 or H∞).
The projection-based approach consists of �nding left and right projectors W and V such that
Â = W TAV , B̂ = W TB, Ĉ = CV and D̂ = D. Several iterative procedures have been proposed,
where the projectors are computed based on so-called interpolation points and directions (see
e.g. [Vuillemin et al., 2013]). The latter are updated at each iteration, for example by taking the
eigenvalues of the current reduced-order model and the associated right eigenvectors respectively.
This kind of algorithm works well in practice when a single LTI model has to be reduced. But in
the multi-model case, scattered sets of eigenvalues are usually obtained if reduction is performed
independently for each model, as can be seen in Figure C.3 (left). This is a critical issue, which
can lead to unrealistic modal trajectories after the state-space representations of the reduced-
order LTI models are approximated with polynomial or rational function and converted into an
LPV/LFT model in Section C.2.4.
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Figure C.3: Eigenvalues with classical (left) and multi-model (right) reduction algorithms

In this context, a multi-model reduction algorithm is proposed in [Poussot-Vassal and Roos,
2012], which forces the eigenvalues of the reduced-order models to remain within the same areas
of the complex plane. A three-step procedure is applied. First, each full-order model is ap-
proximated independently of the others using the algorithm of [Vuillemin et al., 2013]. Then,
the modes of the resulting reduced-order models are sorted and new interpolation points and
directions are selected. More precisely, let (λik)k∈[1,N ] denote the eigenvalues corresponding to
the ith mode for all reduced-order models (represented by the same symbol and color in Fig-
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ure C.3 (left)). If the variance of (λik)k∈[1,N ] is larger than a user-de�ned threshold, the mean
value of (λik)k∈[1,N ] is used as the new interpolation point for all models. Otherwise, the inter-
polation point for model number k is simply λik. The new interpolation directions are chosen in
a similar way. Finally, a single iteration of the algorithm of [Vuillemin et al., 2013] is performed
on each full-order model using these new interpolation points and directions as initialization.
A set of N rth-order LTI models is thus generated, whose modal content is now much more
consistent, as shown in Figure C.3 (right). The way of selecting the new interpolation points
and directions has the advantage to keep the eigenvalues of all the reduced-order models in the
same areas of the complex plane if it was already the case after step 2, and to force them to
belong to the same areas if it was not initially the case. The counterpart is that the optimality
conditions may no longer be guaranteed, and the approximation error may be higher than if each
model was reduced independently of the others. Nevertheless, this leads to reduced-order models,
whose modal content is more appropriate in the perspective of approximating their state-space
representations by polynomial or rational expressions.

Remark C.5 This reduction step is omitted in most existing works, where small-scale models
are often directly considered (see e.g. [de Caigny et al., 2011; Paijmans et al., 2006]). However, it
is of signi�cant practical importance, as shown by the two examples mentioned in Section C.2.1.

2.3 Choice of a suitable state-space form

The second step is to approximate the reduced-order models, and a necessary condition
to obtain a suitable LPV/LFT model is to use the same state-space form for all of them. Several
solutions have been proposed: the balanced state-space realization in [Lovera and Mercère, 2007],
the series interconnection of �rst- and second-order systems in [de Caigny et al., 2011], the scaled
companion form in [Ferreres, 2011] and the modal form in [Roos, 2009]. An intuitive way to
compute a simple LPV/LFT model is to limit the number of varying elements in the state-space
matrices of the reduced-order models [Steinbuch et al., 2003], which speaks in favor of the last
two representations. In this work, the emphasis is put on the modal form, although it does not
appear to be the easiest choice. Indeed, it requires to exactly pair the modes of the reduced-order
models. This is not an obvious task, but an algorithm is proposed in [Poussot-Vassal and Roos,
2012], based on the natural pairing obtained with the companion form. The main reason for this
choice is that each element of the state-space matrices of the resulting models can be associated
to a single mode. This allows to use an approximation formula with a speci�c structure and
complexity for each mode. A whole procedure that makes the best use of this property is then
introduced in Section C.2.4 to select only the most relevant monomials during the approximation
step and thus to prevent data over�tting. This signi�cantly reduces the LFR complexity, while
maintaining a satisfactory accuracy.

2.4 Generation of a low-order LFR

Once all reduced-order models are written in modal form, an element-wise polynomial or
rational approximation of their state-space matrices is performed to obtain an LPV model. This
can be achieved by applying any of the techniques described in Section C.1 and implemented in
the APRICOT Library of the SMAC Toolbox. The structured tree decomposition of [Cockburn
and Morton, 1997] implemented in the GSS Library is �nally applied to build an LFR. This fairly
simple strategy often works well in practice [Poussot-Vassal and Roos, 2012; Poussot-Vassal et
al., 2014], but it sometimes results in overly complicated representations. A three-step procedure
is described in [Poussot-Vassal and Roos, 2012] to address this issue and to master the complexity
of the resulting LFR:
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1. An iterative procedure is �rst implemented. The state-space coe�cients with the lowest
in�uence on the frequency responses are determined (in the sense of a certain norm, usually
H2 or H∞). They are progressively replaced by their mean value over the whole set of mod-
els until the error with respect to the initial full-order models becomes larger than a given
threshold ε1, which allows to limit the number of varying elements to be approximated.
The B and C matrices of the resulting models are then optimized alternatively until con-
vergence, so as to reduce the H2 error with respect to the initial full-order models. This
is quite fast, since each of these problems is convex [Roos, 2009]. Note that the elements
of B and C which are constant over the whole set of models are not modi�ed. The whole
algorithm is repeated until no more element can be replaced with its mean value.

2. The coe�cients which are not constant are now considered one after the other. An al-
gorithm is �rst applied to determine the smallest degrees d1, . . . , dn of the n explanatory
variables, for which a maximum admissible error ε2 > ε1 is guaranteed. One of the sparse
approximation techniques of Section C.1.3 is then applied, which identi�es the most rele-
vant monomials for which the approximation error remains lower than a given threshold
ε3 > ε2. All the other monomials are eliminated, thus leading to sparse polynomial or
rational expressions, which amounts to a certain extent to minimizing the complexity
of the approximation formulas. The structured tree decomposition is �nally applied to
get an LFR.

3. The H2 error between the resulting LFR and the initial full-order models is minimized.
More precisely, the matrices B and C of the LFR are optimized alternatively using the
method presented in [Torralba et al., 2009], which is a generalization to the LFR framework
of the biconvex optimization applied at step 1.

Remark C.6 The acceptable error is gradually relaxed thanks to the increasing tolerances ε1, ε2
and ε3. This allows to better handle the trade-o� between the accuracy and the complexity of the
resulting LFR.

Remark C.7 If the number N of available models is large enough, only some of them are usually
considered for approximation, the other ones being used to evaluate the accuracy of the resulting
LFR. Such an approach is relevant, since it provides quantitative information to validate the
behavior of the LFR between the parametric con�gurations used for approximation.

Remark C.8 This element-wise strategy is quite e�cient in terms of computational time and
usually leads to low-order LFR, which are tractable for control laws design and validation. But two
issues should be kept in mind. First, nothing can be assessed outside the parametric con�gurations
used for approximation, and a thorough validation is thus necessary. A common strategy to
address this issue is to evaluate the stability and the performance properties of the LPV/LFT
model at each point of a very �ne grid of the operating domain, as suggested in [Steinbuch et al.,
2003]. A more rigorous approach is to use the µ-analysis based tools described in Chapter A [Roos
et al., 2011], which usually solve the problem very e�ciently. Then, no input/output criterion
is considered during approximation. A solution to this problem is proposed in [Petersson and
Lofberg, 2009]. It consists of solving an SDP problem to minimize the H2 error between the desired
LPV model and the local LTI models. Nevertheless, such an approach can only be applied to low-
order systems due to a prohibitive computational cost. Fortunately, recent work reported in [Vizer
and Mercère, 2014] shows that non-smooth optimization techniques developed in [Apkarian et al.,
2009] could help solving the problem in the H∞ framework at a reasonable cost.
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2.5 Presentation of the LTI2LFR Library for Matlab

All the tools and algorithms presented in Section C.2 have been implemented in the LTI2LFR
Library for Matlab, which allows to convert a set of large-scale MIMO LTI models describing
the behavior of the considered system at various operating points into a single reduced-order
parameterized model (LPV model or LFR). Only a few high-level tuning parameters have to be
de�ned, which makes it possible to use the toolbox without mastering all the underlying theory,
and to e�ciently handle the trade-o� between accuracy and complexity. A detailed documen-
tation is available in [Roos, 2012; Poussot-Vassal et al., 2013], as well as several applications on
challenging Airbus and Dassault benchmarks already mentioned in Section C.2.1. The LTI2LFR
Library will be integrated in the SMAC Toolbox in a near future.

3 Summary of the contributions

The main contributions presented in this chapter are brie�y summarized below, and a selec-
tion of related publications is given:

• Section C.1.3.1: orthogonal least squares based method to compute sparse polynomial
approximations from a set of scalar or matrix samples [Poussot-Vassal and Roos, 2012;
Roos, 2009].

• Section C.1.3.2: genetic programming based method to compute sparse rational approx-
imations from a set of scalar or matrix samples [Hardier et al., 2013a].

• Section C.1.3.3: surrogate modeling based method to compute sparse rational approxi-
mations from a set of scalar or matrix samples [Hardier et al., 2013b].

• Section C.1.4.1: µ-analysis based approach to check whether the denominator of a ra-
tional function is non-singular, i.e. to ensure that the resulting LFR is well-posed [Hardier
et al., 2013a].

• Section C.1.4.2: implementation of all polynomial and rational approximation algorithms
in the APRICOT Library of the SMAC Toolbox [Roos et al., 2014].

• Section C.1.4.3: implementation of a new Matlab class in the GSS Library of the SMAC
Toolbox, which allows to model uncertain and nonlinear systems as Linear Fractional
Representations [Biannic and Roos, 2016].

• Sections C.2.1 - C.2.4: whole methodology to generate low-order LPV/LFT models
from a set of large-scale MIMO LTI models describing the behavior of a dynamical system
at various operating points [Poussot-Vassal and Roos, 2012; Poussot-Vassal et al., 2014;
Roos, 2009].

• Section C.2.5: implementation of all related tools and algorithms in the LTI2LFR Li-
brary [Roos, 2012; Poussot-Vassal et al., 2013].
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Chapter D

Analysis & control of saturated systems

In the previous chapters, a linear framework was generally considered. But most physical
systems, and especially aerospace ones, are also subject to nonlinearities, among which satura-
tions �gure prominently. And this is a major issue. By limiting both the amplitude and the rate
of the control signals, saturations induce particularly disturbing nonlinear phenomena (such as
limit cycles), that can impair the closed loop performance or even jeopardise its stability. Sev-
eral strategies are possible to cope with this issue. One of them consists of staying in the linear
domain by computing unsaturating control laws, at the price of a lower level of performance.
Another one is to allow saturations and to adapt the control signals as soon as one of them is
active, so as to return as quickly as possible to the linear domain guaranteeing a well-controlled
nominal behavior of the system. The second approach is often preferred, since many applications
cannot tolerate an unnecessary loss of performance in the nominal operating domain. In this
case, the controller can be designed in one or two steps. The latter solution is more intuitive
and �exible. A nominal controller is �rst designed using any linear technique to ensure that
the nominal speci�cations are met. An anti-windup controller is then computed, which becomes
active only when a saturation is reached and modi�es the closed-loop behavior such that it is
more resilient to saturations. Such a strategy is reassuring for control engineers, who can keep
their usual control architectures and simply connect an additional block.

The origins of anti-windup are rather vague. Practioners were already aware of the prob-
lems caused by saturations a long time ago, and they developed empirical solutions dedicated
in particular to PID controllers. Researchers began to consider saturations a few years af-
ter. They managed to explain how saturations could create problems with integrators in PI
controllers [Lozier, 1956], but it is only later that they proposed the �rst well-documented anti-
windup techniques, e.g. [Fertik and Ross, 1967; Åström and Rundqwist, 1989]. Among the
�rst modern contributions, let us mention [Kothare et al., 1994], where a unifying framework
inspired by the famous standard forms from robust control theory was developed. The study
of saturated systems then became very popular, as evidenced by the large number of papers in
this �eld (see [Zaccarian and Teel, 2011; Tarbouriech and Turner, 2009; Galeani et al., 2009;
Bernstein and Michel, 1995] and references therein).

Many LMI-based approaches exist to adjust the anti-windup gains in a systematic way.
Most often, these are based on the optimization of either a stability domain [Cao et al., 2002;
Tarbouriech et al., 2006c; Gomes da Silva Jr and Tarbouriech, 2005], or a nonlinear L2-induced
performance level [Castelan et al., 2004; Lu et al., 2005; Hu et al., 2005]. Based on the LFT/LPV
framework, extended anti-windup schemes were introduced in [Saeki and Wada, 2002; Turner and
Postlethwaite, 2004; Wu and Soto, 2004; Lu et al., 2005]. In these contributions, the saturations
are viewed as sector nonlinearities and the anti-windup control design issue is recast into a convex
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optimization problem under LMI constraints. Following a similar path, alternative techniques
using a less conservative representation of the saturation function based on a modi�ed sector
condition [Gomes da Silva Jr and Tarbouriech, 2005] were then proposed to compute either
static [Biannic et al., 2006b; Gomes da Silva Jr and Tarbouriech, 2005] or dynamic [Tarbouriech et
al., 2006a; Hu et al., 2005; Kiyama and Sawada, 2004] anti-windup controllers. These techniques
are further exploited in this chapter, and it is shown in Section D.1 that the design problem is
convex when the order of the anti-windup controller coincides with that of the nominal closed-
loop model.

Unfortunately, this order can be quite large in some cases. Moreover, it is not easy to constrain
the dynamics of the anti-windup controller, which usually has some very slow or very fast poles
likely to lower performance or to cause implementation issues. Finally, it is generally observed in
practice that reduced-order controllers can be as e�cient as full-order ones, provided their poles
are chosen appropriately. In this context, a convex characterization is proposed in Section D.3
to compute dynamically-constrained anti-windup controllers. More precisely, an upper bound is
introduced on the real part of their poles. An algorithm is also given in Section D.2 to compute
a reduced-order anti-windup controller based on the poles obtained in the full-order case. The
resulting tools are all implemented in the AWAS Toolbox, which has recently been updated and
integrated into the SMAC Toolbox, as explained in Section D.4.

1 Full-order anti-windup design

1.1 Problem statement

Consider the nonlinear interconnection of Figure D.1. The saturated plant G(s) to be con-
trolled is written in a standard LFT form, for example using the GSS Library of the SMAC
Toolbox (see [Biannic and Roos, 2016] and Chapter C):

G(s) :


ẋG = AG xG +BG

[
Φ(z)
u

]
[
z
y

]
= CG xG +DG

[
Φ(z)
u

] (D.1)

where u and y denote the control inputs and the measured outputs respectively. The nonlinear
operator Φ : Rm → Rm is characterized as follows:

Φ(z) =
[
φ(z1) . . . φ(zm)

]T (D.2)

where φ(.) is a normalized deadzone nonlinearity de�ned as:

φ(zi) =

{
0 if |zi| ≤ 1

zi − sign(zi) if |zi| > 1
(D.3)

This formulation is not restrictive, since any saturation satL(.) with lower and upper limits ±L
can be converted into a normalized deadzone φ(.) as follows:

satL(zi) = zi − Lφ
(zi
L

)
(D.4)

Remark D.1 Nested saturations are not considered here for the sake of simplicity. Therefore,

it is assumed that DG =

[
0 0

DG21 DG22

]
, see e.g. [Tarbouriech et al., 2006b] for more details.
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z

v1 v2

u

y = [yTr . . .]T

r

yr zp

yrlin

M(s)

K(s)

Figure D.1: Standard interconnection with a general anti-windup architecture

Suppose that a nominal linear controller K(s) has been �rst designed, so as to stabilize the
plant G(s) and ensure good performance properties in the linear region. To mitigate the adverse
e�ects of saturations, additional signals v1 and v2 are injected both at the input and output
of this controller [Grimm et al., 2003; Wu and Soto, 2004]. A state-space representation of the
resulting controller K(s) is then given by:

K(s) :


ẋK = AK xK +BK

[
r
y

]
+ v1

u = CK xK +DK

[
r
y

]
+ v2

(D.5)

The signals v1 and v2 are obtained as the outputs v =

[
v1

v2

]
∈ Rnv of the dynamic anti-windup

controller J(s) to be determined:

J(s) :

{
ẋJ = AJ xJ + BJ Φ(z)

v = CJ xJ + DJ Φ(z)
(D.6)

where the input signal Φ(z) can be interpreted as an indicator of the saturations activity.
This nonlinear closed-loop plant can be a�ected by some exogenous input signals r such as

perturbations (wind, turbulences) or commanded inputs. In terms of performance analysis, a
classical problem is to ensure that for these inputs, some outputs yr of the saturated plant remain
as close as possible to the outputs yrlin of the corresponding nominal unsaturated behavior L(s),
which amounts to minimizing the energy of the error signal zp. On the one hand, step inputs are
usually considered in practice to assess performance, and considering any kind of input signals
can lead to conservative results. On the other hand, it is convenient from a theoretical point of
view to work with �nite-energy signals, for which LMI characterizations based on the induced L2

norm exist. Unfortunately, step inputs are not L2-bounded. . . The performance level introduced
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in [Biannic et al., 2006b] allows to address this issue by restricting r to the set of slowly decreasing
exponential signals Wε(ρ) de�ned as:

Wε(ρ) =
{
r : R→ R , r(t) = r0e

−εt ∀t ≥ 0 , |r0| ≤ ρ
}

(D.7)

where ε is chosen small enough compared to the system dynamics. The elements of Wε(ρ) are
both L2-bounded and representative of step inputs, as can be seen in Figure D.2. A stable
autonomous system R(s) with a non-zero initial state r0 is thus inserted into the interconnection
of Figure D.1 to generate r(t). For the sake of simplicity, it has been assumed that r is a scalar
signal, but the generalization to vector signals does not raise any technical di�culties.

r(t)

r0

0 t

step input

slowly decreasing signal

Figure D.2: Approximation of a step input with a slowly decreasing L2-bounded signal

Let us now de�ne the augmented state vector ξ obtained by merging the states of the refer-
ence model (r), the nominal (linear) closed-loop system (xL), the open-loop plant (xG) and the
nominal controller (xK):

ξ =


r
xL
xG
xK

 ∈ RnM (D.8)

The resulting systemM(s) connected with the anti-windup controller is illustrated in Figure D.3
and can be de�ned as follows:

M(s) :


ξ̇ = Aξ + Bφ Φ(z) + Bav

z = Cφ ξ

zp = Cp ξ + Dpφ Φ(z) + Dpa v = yr − yrlin ∈ Rp
(D.9)

where yr corresponds to the �rst elements of the output vector y = [yTr . . . ]
T .

M(s)
J(s)

Φ

z

v zp

Figure D.3: A synthetic view of Figure D.1
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Finally, by adding the state xJ ∈ RnJ of the anti-windup controller, the following augmented
state vector is de�ned, where n = nM + nJ :

ν =

[
ξ
xJ

]
∈ Rn (D.10)

Therefore, the nonlinear closed-loop interconnection shown in Figure D.4 reads:

P (s) :


ν̇ =

[
A BaCJ
0 AJ

]
ν +

[
Bφ +BaDJ

BJ

]
w

z =
[
Cφ 0

]
ν

zp =
[
Cp DpaCJ

]
ν +

[
Dpφ +DpaDJ

]
w

w = Φ(z)

(D.11)

P (s)

Φ

zw

zp

Figure D.4: Nonlinear closed-loop interconnection including the anti-windup controller

Let the state vector ν be partitioned as ν = [r ζT ]T to distinguish more clearly the reference
r from the internal states ζ = [xTL x

T
G xTK xTJ ]T ∈ Rn−1. The anti-windup design problem to be

solved can then be summarized as follows:

Problem D.1 (anti-windup design) Compute a dynamic anti-windup controller J(s) (i.e.
matrices AJ , BJ , CJ , DJ) and a domain E(ρ) as large as possible such that, for a given positive
scalar ρ and any reference signal r ∈ Wε(ρ), the following properties hold:

• the nonlinear closed-loop plant (D.11) is stable for all initial condition ζ0 inside E(ρ),

• some outputs yr of the saturated plant remain as close as possible to the linear reference
outputs yrlin (associated with the nominal unsaturated behavior), i.e. the energy of the error
signal zp is minimized.

1.2 Performance analysis of saturated systems

Let us �rst assume that an anti-windup controller J(s) is available. The following proposition
introduced in [Biannic et al., 2006b] allows to compute a performance level for the saturated
interconnection of Figure D.4 when step-like input signals Wε(ρ) are considered. It makes use
of the modi�ed sector condition of [Gomes da Silva Jr and Tarbouriech, 2005] to describe the
saturations, which is less conservative than the classical one given in [Khalil, 1996].
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Proposition D.1 (performance characterization) Let γ and ρ be some positive scalars, and
u(ρ) = [ρ 0]T ∈ Rn. If there exist matrices Q = QT ∈ Rn×n, S = diag(s1, . . . , sm) > 0,
Z ∈ Rm×n such that the following LMI conditions hold:[

Q ?

u(ρ)T 1

]
> 0 (D.12)



[
A BaCJ
0 AJ

]
Q+Q

[
A BaCJ
0 AJ

]T
? ?

S

[
Bφ +BaDJ

BJ

]T
− Z −2S ?[

Cp DpaCJ
]
Q

[
Dpφ +DpaDJ

]
S −γIp

 < 0 (D.13)

[
Q ?

Zi +
[
Cφi 0

]
Q 1

]
> 0 , i = 1 . . .m (D.14)

where Zi and Cφi denote the ith rows of Z and Cφ respectively, and where the symmetric terms
in the above matrices are replaced by ?, then for all ρ ≤ ρ, the interconnection of Figure D.1 is
stable for all reference signals r ∈ Wε(ρ) and all initial condition ζ0 in the domain:

E(ρ) =

{
ζ ∈ Rn−1 :

[
ρ
ζ

]T
P

[
ρ
ζ

]
≤ 1

}
(D.15)

where P = Q−1. Moreover, the output energy satis�es:∫ ∞
0

zp(t)
T zp(t) dt ≤ γ (D.16)

Inequality (D.13) guarantees that the interconnection of Figure D.1 is stable if the internal states
ζ are initialized inside the ellipsoid E(ρ), and that (D.16) is satis�ed. Inequality (D.12) enforces
stability for all reference signals r ∈ Wε(ρ). Finally, inequality (D.13) is a technical condition,
which ensures that the modi�ed section condition of [Gomes da Silva Jr and Tarbouriech, 2005]
is satis�ed. Proposition D.1 is formulated as a feasibility problem, but there are several ways
to turn it into an optimization problem. A classical one consists of minimizing the performance
index γ for a given amplitude of the input signals r, i.e. for a �xed ρ. On the contrary, it is
also possible to maximize ρ, or more generally the volume of the ellipsoid E(ρ), for a given γ, in
which case inequality (D.12) has to be adapted.

1.3 Convex characterization of full-order anti-windup design

Let us now focus on the anti-windup design issue stated in Problem D.1. In this case,
the matrix Q introduced in Proposition D.1 and the state-space matrices of J(s) have to be
computed simultaneously. As a result, inequality (D.13) becomes a BMI and is no longer convex.
However, in the full-order case (i.e. nJ = nM ), convexity can be recovered thanks to the following
theorem [Biannic et al., 2007].

Theorem D.1 (full-order anti-windup design) Let v(ρ) = [ρ 0]T ∈ RnM . Let Γ = diag(Na,
Im, Npa), where Na and Npa denote any basis of the null-spaces of BT

a and DT
pa respectively.
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There exists an anti-windup controller J(s) such that the conditions of Proposition D.1 are sat-
is�ed i� there exist matrices X = XT , Y = Y T ∈ RnM×nM , S = diag(s1, . . . , sm) > 0 and
W =

[
U V

]
∈ Rm×(nM+nM ) such that the following LMI conditions hold:

v(ρ)TXv(ρ) < 1 (D.17)[
ATX +XA ?

Cp −γIp

]
< 0 (D.18)

ΓT

 AY + Y AT ? ?
SBT

φ − V −2S ?

CpY 0 −γIp

Γ < 0 (D.19)

 X ? ?
InM Y ?
Ui Vi + CφiY 1

 > 0 , i = 1 . . .m (D.20)

The most classical way to apply Theorem D.1 consists of �xing ρ and minimizing γ with respect
to the matrices X, Y , S, U and V under the linear constraits (D.17)-(D.20). This can be done
easily using an LMI solver.

Remark D.2 The matrix Q of Theorem D.1 is obtained from X and Y as described in [Gahinet
and Apkarian, 1994]:

Q =

[
Y InM

N 0

] [
InM X

0 M

]−1

where MTN = InM −XY (D.21)

Q being �xed, inequality (D.13) becomes convex with respect to AJ , B̃J = BJS, CJ , D̃J = DJS,
S and Z. These matrices can be computed with an LMI solver, and the anti-windup controller
AJ , BJ = B̃JS

−1, CJ , DJ = D̃JS
−1 is �nally obtained, since S is invertible.

2 Fixed-order anti-windup design

The order of the anti-windup controller J(s) computed in Section D.1.3 is equal to nM , and
it may be quite large in some cases. Moreover, it is not easy to constrain the poles of J(s), since
the state matrix AJ does not appear in equations (D.17)-(D.20), and unfortunately some of them
are usually very slow or very fast. Finally, it is generally observed in practice that reduced-order
controllers can be as e�cient as full-order ones, provided their poles are chosen appropriately.
So the objective now is to develop an e�ective procedure to design an anti-windup controller
of order nJ < nM . Fixing AJ is a convenient way to control precisely the dynamics of J(s).
Moreover, as stated in Proposition D.2 below, when CJ is also �xed, the anti-windup problem
becomes convex even if nJ < nM , and an algorithm can be implemented [Roos et al., 2010].

Proposition D.2 The BMI constraint (D.13) is convex if the matrices AJ and CJ are �xed.

Algorithm D.1 (�xed-dynamics anti-windup design)

1. Choose appropriate AJ and CJ matrices (see below).

2. Fix ρ and minimize γ under the LMI constraints (D.12)-(D.14) w.r.t. Q, S, Z, B̃J , D̃J .

3. Compute BJ = B̃JS
−1 and DJ = D̃JS

−1.
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The main di�culty in the above algorithm consists of choosing the matrices AJ and CJ . This
may appear more intuitive by considering the following decomposition:

J(s) = M0 +

n1∑
i=1

Mi1

s+ λi
+

n2∑
i=1

Mi2

s2 + 2ηiωi + ω2
i

(D.22)

where DJ = M0 and BJ contains the matrices Mi1 and Mi2. For this decomposition, the �xed
matrices AJ and CJ can be chosen as:

AJ = diag (−λ1, . . . ,−λn1 , A1, . . . , An2) where Ai =

[
0 1
−ω2

i −2ηiωi

]
CJk =

[
1 . . . 1︸ ︷︷ ︸
n1

[1 0] . . . [1 0]︸ ︷︷ ︸
n2

]
, k = 1, . . . , nv

(D.23)

where CJk denotes the kth row of CJ . From this observation, the �rst step of Algorithm D.1
simply boils down to choosing a list of poles for the anti-windup controller, whose matrices AJ
and CJ are then immediately deduced from (D.23). This choice can be made by �rst computing
a full-order controller, as suggested by the following algorithm [Roos et al., 2010]:

Algorithm D.2 (�xed-order anti-windup design)

1. Compute a full-order anti-windup controller using Theorem D.1.

2. Analyze the controller poles and keep only those that are neither too fast nor too slow.
Compute AJ and CJ as explained above.

3. Run Algorithm D.1 to compute a reduced-order anti-windup controller.

Remark D.3 Alternatively, an iterative procedure can be implemented at step 3. Starting from
the static case, the list of poles is progressively enriched until the gap between the full and the
reduced-order cases becomes small enough.

This is a heuristic approach and there is no guarantee that the optimal anti-windup controller
is obtained, but satisfactory results have been reported in [Biannic et al., 2007].

3 Dynamically-constrained anti-windup design

The fast anti-windup poles can generally be eliminated without consequences in step 2 of
Algorithm D.2. They are indeed not desirable from a practical point of view, since they make it
di�cult to implement the anti-windup controller, as is mentioned in [Turner and Postlethwaite,
2004]. Moreover, their contribution to the enlargment of the stability domain or the improve-
ment of the performance level is often negligible, which is notably con�rmed by [Hencey and
Alleyne, 2006]. The same cannot be said of slow anti-windup poles. Removing them can indeed
signi�cantly reduce the stability domain. But on the other hand, keeping them introduces slow
dynamics, which may remain visible on certain plant outputs even when the saturations are no
longer active. This issue can be partly addressed by choosing a good tradeo� between ρ and γ
when applying Theorem D.1, but this is not always obvious. Another option is to constrain the
dynamics of the full-order anti-windup controller in step 1 of Algorithm D.2. In this context,
Proposition D.1 and Theorem D.1 are modi�ed in this section: an upper bound is introduced on
the real part of the controller poles, while maintaining convexity [Roos and Biannic, 2008]. There
are no longer any slow poles to remove in step 2, and the aforementioned dilemma is avoided.
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Proposition D.3 (modi�cation of Proposition D.1) If (D.13) is replaced with:

[
A BaCJ
0 AJ

]
Q+Q

[
A BaCJ
0 AJ

]T
+

2λ

[
0 0
0 InJ

]
Q

[
0 0
0 InJ

] ? ?

S

[
Bφ +BaDJ

BJ

]T
− Z −2S ?[

Cp DpaCJ
]
Q

[
Dpφ +DpaDJ

]
S −γIp


< 0 (D.24)

in Proposition D.1, then in addition to other conclusions, the poles λ1, λ2, . . . , λnJ of the anti-
windup controller J(s) satisfy:

<(λj) < −λ for all j ∈ [1 , nJ ] (D.25)

Theorem D.2 (modi�cation of Theorem D.1) If (D.18) and (D.20) are replaced with: AX +XAT − 2λX ? ?
2λY −2λY ?
Cp 0 −γIp

 < 0 (D.26)

 X ? ?
X Y ?
Ui Vi + CφiY 1

 > 0 , i = 1 . . .m (D.27)

in Theorem D.1, then in addition to other conclusions, the poles λ1, λ2, . . . , λnJ of the anti-windup
controller J(s) satisfy:

<(λj) < −λ for all j ∈ [1 , nJ ] (D.28)

The most classical way to apply Theorem D.2 consists of minimizing γ with respect to matrices
X, Y , S, U and V under the linear constraits (D.17), (D.26), (D.19) and (D.27). This can be
done easily using an LMI solver.

Remark D.4 The matrix Q of Theorem D.2 is obtained from X and Y as follows:

Q =

[
Y InM

N 0

] [
InM X−1

0 M

]−1

where MTN = InM −X
−1Y (D.29)

Q being �xed, the anti-windup controller J(s) can be computed as in Remark D.4.

Remark D.5 Adding 2λ

[
0 0
0 InJ

]
Q

[
0 0
0 InJ

]
in Proposition D.3 allows to constrain only

the poles of the anti-windup controller and not the whole closed-loop plant dynamics as it is the
case in other contributions (see notably [Hencey and Alleyne, 2006]).

Proposition D.3 and Theorem D.2 can now be combined in the same way as in Section D.2 to
compute a reduced-order anti-windup controller with pole contraints. The only di�erence is that
there is no slow pole to remove in step 2 of Algorithm D.1. They are indeed avoided in step 1
thanks to the introduction of λ in Theorem D.2. Moreover, it is often observed that only a
few poles of J(s) lie within the bandwidth of the closed-loop plant M(s), the other ones being
signi�cantly faster. Thus it is possible to design low-order anti-windup controllers, which are
almost as e�cient as full-order ones. An application to a �ghter aircraft model in [Roos and
Biannic, 2008] con�rms it. A second-order controller is obtained, which guarantees the same
stability domain and performance level as the initial full-order controller with 6 states.
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4 From the AWAS Toolbox to the SAW Library

Anti-windup controllers are widely used to mitigate the negative e�ects of actuators satura-
tions on stability and performance. But despite recent theoretical advances in this �eld, their
computation remains a rather di�cult and time-consuming task from a control engineer per-
spective, which is often realized by a trial-and-error simulation-based approach. This can be
partly explained by the lack of user-friendly tools to help the designer de�ne and modify the
anti-windup structure, perform the optimization of the gains by simply calling an appropriate
routine, and test the results with simulations. In this context and similarly to other libraries
already mentioned in this manuscript (SMART, GSS, APRICOT. . . ), the ambition of the Anti-
Windup Analysis and Synthesis Toolbox for Matlab [Biannic and Roos, 2008] is to contribute
to bridging the gap between theory and practice. It implements the Lyapunov-based approach
described in this chapter, which is rigorous since guaranteed stability domains or performance
levels can be computed, but remains limited to medium-order models (less than 20 states) due to
the high number of decision variables involved in the associated LMI problems. Based on this ob-
servation, the AWAS Toolbox has recently been updated and integrated into the SMAC Toolbox
under the name of Saturated systems analysis & Anti-Windup design (SAW) Library [Biannic
and Roos, 2017]. Now the H∞-based approach of [Biannic and Apkarian, 2011] is also available.
Recently developed nonsmooth optimization techniques are used to compute �xed-order feed-
back and anti-windup controllers in a single step by minimizing the weighted transfer seen by
the deadzone nonlinearities. This approach is complementary to that described above. It does
not allow directly to maximise a stability domain or a performance level, but it can be applied
to high-order systems.

5 Summary of the contributions

The main contributions presented in this chapter are brie�y summarized below, and a selec-
tion of related publications is given:

• Section D.1 - D.2: convex characterization of full-order continuous-time anti-windup
controllers ; practical algorithm to design reduced-order controllers, whose poles are a
subset of those obtained in the full-order case [Roos et al., 2010; Biannic et al., 2007].

• Section D.3: introduction of an upper bound on the real part of the anti-windup con-
troller poles to avoid slow dynamics ; convex characterization of full-order continuous-time
controllers with pole constraints [Roos and Biannic, 2008].

• Section D.3: implementation in the AWAS Toolbox, which is now embedded in the SAW
Library of the SMAC Toolbox [Biannic and Roos, 2008; 2017].

An extension of this methodology to parameter-varying saturated systems is proposed in [Roos
et al., 2010; Roos, 2007], but it has not been discussed in this chapter due to space constraints.
A non-standard anti-windup design strategy is also presented in [Biannic et al., 2006a; Roos
et al., 2010] to improve the on-ground control system of a civilian aircraft. A linear fractional
representation of the system (see Chapter C) is combined with an original approximation of the
nonlinear ground forces by saturation-type nonlinearities. The resulting design method delivers
low-order and robust controllers, which are automatically adapted to the runway state and to
the aircraft longitudinal velocity (see Chapter E).
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Chapter E

Control laws design and implementation

As illustrated in Figure E.1, automatic landing of a commercial aircraft can be divided into
three main phases in the vertical plane: the �nal (or glide-slope) approach during which the
aircraft must follow a prede�ned descent path, the �are segment which is activated when the
landing gear height H falls below a threshold value HFLA ≈ 15m (50 ft), and the deceleration
on the runway where the aircraft velocity must be reduced up to taxi speed. Similarly, in the
horizontal plane, the aircraft trajectory must coincide with the runway axis (localizer phase) as
long as H ≥ HDEC ≈ 10m (30 ft). The alignment phase (or decrab mode) is then activated in
order to minimize the lateral e�orts on the landing gears at touchdown. Finally, once on the
runway, the lateral deviation with respect to the centerline must be maintained below a given
threshold (usually 16 meters) despite crosswind, varying runway state, comfort constraints. . .

Figure E.1: Approach, landing and ground phases in the vertical plane

The steady growth of air tra�c in recent years has led to drastic safety standards with the goal
of limiting the number of accidents. Since approach and landing remain the most critical phases
(almost 50% of fatal accidents and 75% of non-fatal hull losses between 1997 and 2016 [Airbus,
Technical Report 2017]), particular attention has recently focused on improving autoland systems
in adverse conditions. With the help of CAT III instrument landing systems (ILS), which are now
available in a rapidly growing list of airports, automatic landing control laws allow to better secure
these phases, notably in degraded weather conditions such as fog and crosswind. However, despite
numerous methodological works over the past two decades (see e.g. [Kaminer and Khargonekar,
1990; Biannic and Apkarian, 2001; Looye and Joos, 2006; Sadat-Hoseini et al., 2013]), the design,
tuning and validation process of �nal approach and �are control systems remains a challenging
and time-consuming task, which requires rather tricky multi-objective optimization.
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Once on ground, the motion of the aircraft is usually controlled manually by the pilot using
throttle levers, rudder pedals, handwheels and brake pedals. This is especially demanding in
case of contaminated runway and severe crosswind. According to a study carried out by the
International Civil Aviation Organization (ICAO), the number of runway excursions has not
decreased over the last 20 years [Eurocontrol, 2013]. So a �rst bene�t of developing enhanced
on-ground control functionalities would be to improve safety during airport operations. But it
would also allow for an increase in airport tra�c capacity. Most existing solutions focus on
low speed and taxiway maneuvers, where the nose-wheel steering system is su�cient to control
the aircraft (see e.g. [Duprez et al., 2004; Roos et al., 2010; Lemay et al., 2011; Bihua et al.,
2013]). However, the main issue after landing is runway axis hold at high speed despite varying
conditions and external perturbations. This gives rise to a di�cult control allocation problem,
where di�erential braking must be used in conjunction with classical control devices (nose wheel
steering system and rudder).

In the �eld of �ight control design, the most popular methods are still based today on
eigenstructure assignment [Magni, 1999] or Linear Quadratic Regulator (LQR) control [Sadat-
Hoseini et al., 2013]. Both approaches have been successfully used by Airbus and Boeing, and
they have contributed to signi�cant improvements in the �ight control design process for nearly
30 years. But they reach their limits when it comes to tackling the above issues. In the meantime,
H∞ control techniques have been progressively developed and evaluated on various �ight control
problems, see for example [Kaminer and Khargonekar, 1990; Biannic and Apkarian, 2001] where
the �are phase receives a particular attention. But despite promising results even in �ight tests
[Dorobantu et al., 2012], this third approach has not become as popular as the other two in
the industry. Things are, however, likely to change in the near future with the emergence of
new tools based on nonsmooth optimization techniques [Apkarian and Noll, 2006; Burke et al.,
2006]. The latter allow to impose constraints on the structure and the order of the controller.
Although convexity is unfortunately lost in that case, the aforementioned algorithms converge to
local solutions, which are in a large majority of standard applications not so far from the global
(non-structured) optimum. Another interesting feature of these new tools is their capacity to
handle multiple models and multiple separate channels [Apkarian et al., 2014].

In this context, the objective of this chapter is to show how such powerful control techniques
can be e�ciently combined with the analysis and design tools developed in Chapters A to D, in
order to solve challenging control problems such as automatic landing, for which classical meth-
ods do not allow anymore to satisfy increasingly constrained speci�cations. More precisely, three
methodology are proposed in Sections E.1, E.2 and E.3 to deal respectively with the approach,
�are and gound phases. The resulting control architectures comply with several stringent re-
quirements. Moreover, their complexity is compatible with implementation in �ight computers.
This will be demonstrated in a near future by means of �ight tests performed with �xed-wing
UAVs (see Section E.4).

1 Robust nonlinear compensation for the approach phase

1.1 Description of the methodology

Robust feedback linearization techniques [Isidori, 1995] have proved their e�ciency in many
aerospace applications, especially to control highly maneuverable aircraft or UAVs in large
operating domains [Snell et al., 1992; Adams and Banda, 1993; Reiner et al., 1995; 1996;
Kara Mohamed and Lanzon, 2012; Biannic et al., 2014]. Interestingly, such techniques do not
only permit to linearize and decouple a large class of nonlinear systems, but also to adapt the
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control laws to the operating point. Therefore, they become a competitive alternative to stan-
dard gain-scheduling techniques which often imply many adjustments, or to LPV control design
strategies which require high �delity LPV models [Marcos and Balas, 2004].

However, standard dynamic inversion methods are often criticized for their lack of robustness
and the need of an accurate model. This drawback is generally bypassed via robust linear
outer loops [Bing-Yu and Blaise, 1998], which still require di�cult and possibly time-consuming
robustness evaluation a posteriori [Papageorgiou and Glover, 2004; 2005]. Severe problems are
also likely to occur when the actuators dynamics and limitations prevent an exact cancellation of
the nonlinear terms. As emphasized in [Kara Mohamed and Lanzon, 2013], it is then essential to
take these dynamics into account in the design process. As observed in [Franco et al., 2006], one
of the main reasons why standard dynamic inversion schemes exhibit poor robustness properties
is due to the fact that the linearizing inner loops are designed to convert the nonlinear system
into a generic Brunovsky's form. Following an intuitive path, it is then proposed in [Franco et
al., 2006] to design the inner loops so that for given operating conditions, the nonlinear system
will converge to its Jacobian linearization. Hence, the design of the linear robust outer loops is
no longer based on a generic model but now explicitly depends on the linearized dynamics of the
initial plant.

A similar method is presented in this section, which consists of promoting interactions be-
tween the inner and outer loops. More precisely, a feedback linearization is �rst applied so that
in some enlarged neighborhood of given trim conditions, the nonlinear plant behaves like its
linearization. Then, a robust outer loop is designed. The originality of this approach lies in the
particular structure of the H∞-based outer controller, which uses a nonlinear signal as a key
input to further enlarge the operating domain of the closed-loop system. Various uncertainties
are also taken into account thanks to a µ-based robustness analysis step, during which worst-case
con�gurations are identi�ed and then used in an iterative multi-objective and multi-model H∞
design process.

1.1.1 Robust nonlinear compensation based on dynamic inversion

Consider a continuous-time parameter-dependent nonlinear input-a�ne system described as:{
ξ̇(t) = f(ξ(t), θp(t)) +G(ξ(t), θp(t))u(t)

u(t) = LA(uc(t))
(E.1)

where ξ(t) ∈ Rn denotes the physical states evolving in the admissible operating domain X ⊂ Rn.
The realized control inputs u(t) ∈ Rm are derived from the commanded inputs uc(t) ∈ Rm via
LTI actuator models LA with unitary static gains. The nonlinearities and parametric variations
of the system are captured by functions f and G, which both depend nonlinearly on the state
vector and on a set of parameters θp(t) ∈ Θ ⊂ Rr.

Notation 1 Let (ξ̄, θ̄p, ū) ∈ Rn × Rr × Rm be an equilibrium point for system (E.1):

f(ξ̄, θ̄p) +G(ξ̄, θ̄p)ū = f̄ + Ḡū = 0 (E.2)

Then f(ξ(t), θp(t)) is rewritten as follows:

f(ξ(t), θp(t)) = f̄ +Ax(t) + ∆f (t) (E.3)

where:

A =
∂f

∂ξ

∣∣∣∣
ξ̄,θ̄p

and x(t) = ξ(t)− ξ̄ (E.4)

and ∆f (t) denotes the deviation between the nonlinear function f and its linear approximation.
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Assumption E.1 There exists a constant matrix B ∈ Rn×m such that ∀(ξ(t), θp(t)) ∈ X × Θ,
a nonsingular matrix Λ ∈ Rm×m and a residual error matrix ∆G ∈ Rn×m can be found, which
satisfy:

G(ξ(t), θp(t)) = BΛ + ∆G (E.5)

LA(Λ−1υ(t)) ≈ Λ−1LA(υ(t)) ∀υ(t) ∈ Rm (E.6)

The square matrix Λ typically represents the control inputs e�ciency. When considering aerospace
systems evolving in standard operating domains, the above non-singularity assumption � con-
nected to the notion of controllability � is not restrictive. Moreover, the variations of this
diagonal-dominant matrix are mainly induced by slowly-varying terms such as the dynamic
pressure. This observation justi�es the commutative property (E.6) between Λ−1 and the fast
dynamics LA of the actuators. Yet, a possible relaxation of (E.6) is proposed in Section E.1.1.2.

Given any two signals v(t) ∈ Rm and ζ(t) ∈ Rm, let us now de�ne the intermediate, input
linearizing, control law:

uc(t) = Λ(ξ(t), θp(t))
−1(v(t)− ζ(t)) + ū (E.7)

With the above notation in mind, combining equations (E.7) and (E.1) leads to:

ẋ = Ax+BLA(v) + wf + wu (E.8)

where parametric- and time-dependence have been omitted for clarity and:

wf = ∆f −BLA(ζ) (E.9)

wu = (G− Ḡ)ū+ ∆GΛ−1LA(v − ζ) (E.10)

Equation (E.8) shows that the parameter-dependent nonlinear system (E.1) has been reduced to
a linear model with a new control input v and two measured perturbations wf and wu. As usual
in dynamic inversion schemes, wf can be partly canceled by an optimal choice of the auxiliary
input signal ζ(t):

ζ̂(t) = arg min
ζ(t)∈Rm

‖∆f (t)−BLA(ζ(t))‖ (E.11)

Remark E.1 In the special case of square systems with ideal actuators, i.e. LA(u(t)) = u(t),
wf = 0 is easily obtained with ζ̂(t) = B−1∆f (t).

Let w = wf + wu be the vector of remaining input perturbations which cannot be canceled,
and assume that it is available for feedback, via estimation, at least on a limited bandwidth.
The following structure for the linear outer loop can thus be considered:

v = K(s)

 ŵ
wc
y

 (E.12)

where ŵ, wc and y denote respectively the estimation of w, the reference inputs and the measured
outputs. Without signi�cant loss of generality in most applications, both y(t) = Cx(t) ∈ Rp
and z(t) = Lx(t) ∈ Rq are assumed to depend linearly on the state vector x, where z are the
variables to be tracked. The output feedback controller K(s) in (E.12) is to be designed so as to
satisfy the following requirements:

1. good tracking properties by minimizing the error between z and the reference outputs
zr = R(s)wc, where the LTI model R(s) describes the nominal closed-loop dynamics,
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2. reasonable control activity, which is indirectly obtained by limiting v to avoid control inputs
saturations,

3. good rejection of the perturbations w = wu + wf which could not be entirely removed by
the linearizing inner loop, so as to enlarge the operating domain.

Let ΣA(s) and Σ(s) =

[
L
C

]
(sI −A)−1 [ I B

]
denote the transfer functions associated to the

linear operator LA and to the linearized model (E.8) respectively. The above outer loop design
issue can be recast as a multi-objective H∞ minimization problem. More precisely, considering
the linear interconnection of Figure E.2, it is proposed to compute K(s) by solving:

K̂(s) = arg min
K(s)

‖Twc→zp(s)‖∞ (E.13)

under the constraints: {
‖Twc→zu(s)‖∞ ≤ γu
‖Tw→zp(s)‖∞ ≤ γr

(E.14)

Figure E.2: H∞ design-oriented scheme

The H∞-norm minimization of equation (E.13) corresponds to the nominal tracking require-
ment. A weighting function Wp(s) � typically a low-pass �lter � is used to specify the frequency
domain where this tracking should be the most e�cient. Next, the second and third require-
ments are respectively taken into account by the two additional constraints in (E.14). The �rst
one involves a high-pass weighting function Wu(s) to minimize the control activity in the high-
frequency domain. Finally, a low-pass transfer function F (s) is introduced and can be viewed as
an approximation of the estimation process, i.e. ŵ ≈ F (s)w.

Problem (E.13)-(E.14) is a di�cult nonconvex and nonsmooth optimization problem. How-
ever, it can be e�ciently solved thanks to recent advances in nonsmooth optimization tech-
niques [Apkarian and Noll, 2006; Burke et al., 2006]. Moreover the structure of the controller
as well as its order can be �xed a priori, which makes the implementation easier. And last
but not least, multiple models can be considered simultaneously during the design process. This
�exibility will be used below to improve the robustness properties of the proposed design scheme.

1.1.2 Preliminary LTI robustness analysis

Now that an initial controller has been designed, let us focus more closely on the validity
of the approximations made in Section E.1.1.1 and on their potential impact on the closed-
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loop behavior. More precisely, it is shown below how µ-analysis can be used to detect possible
problems induced by the three main sources of uncertainties.

Plant uncertainties

When combining equations (E.1) and (E.7) to get (E.8), it is assumed that both f and G are
well-known. But in practice, uncertainties δ are always present so that equation (E.8) reads:

ẋ = A(δ)x+B(δ)LA(v) + w (E.15)

where δ =
[
δ1 . . . δl

]T ∈ Rl. Assuming that both A and B depend rationally on δ, Σ(s) is
replaced with Σ(s, δ) and written as follows:

Σ(s, δ) = Fu(M(s),∆M ) (E.16)

where Fu denotes the upper Linear Fractional Transformation (LFT, see Chapter C), M(s) is
an LTI system and:

∆M ∈∆M = {diag(δ1In1 , . . . , δlInl
), δi ∈ R} (E.17)

Actuators uncertainties

In Assumption E.1, the commutative property (E.6) may not be valid in all cases. Follow-
ing [Biannic et al., 2012], it is then proposed to relax it as follows.

Assumption E.2 There exist a nonlinear bounded operator Γ(.) and a positive bound kΓ ∈ R+

such that ∀υ(t) ∈ Rm:

LA(Λ−1υ(t)) = Λ−1LA(υ(t)) + Γ(υ(t)) (E.18)

‖Γ(υ(t))‖ ≤ kΓ‖υ(t)‖ (E.19)

It results from Assumption E.2 that the linear model ΣA(s) in Figure E.2 should now be replaced
by ΣA(s) + Γ(.), as illustrated in Figure E.3.

Figure E.3: Closed-loop scheme for robustness analysis

Advanced control laws design and validation - A set of methods and tools to bridge the gap between theory and practice



1 Robust nonlinear compensation for the approach phase 95

Estimation uncertainties

Finally, it should be emphasized that only an estimate ŵ of the nonlinear input perturba-
tions w is available to the outer loop controller K̂(s). The estimation process has been taken into
account in the design phase through the approximation ŵ ≈ F (s)w, but it might be too opti-
mistic in practice. Therefore, a diagonal perturbation block ∆w corresponding to multiplicative
uncertainties is added to the robustness analysis diagram of Figure E.3, so that ŵ is replaced
with (I + ∆w)ŵ.

The three operators described above are then normalized, merged into a single block-diagonal
operator ∆ = diag (∆M ,Γ(.),∆w) and pulled out to generate an augmented linear model P (s),
as depicted in Figure E.4. This can be achieved using the APRICOT and the GSS Libraries of
the SMAC Toolbox (see [Roos et al., 2014; Biannic and Roos, 2016] and Chapter C).

Figure E.4: LFT-based representation for robustness analysis

Assuming for the moment that ∆ is a time-invariant operator, µ-analysis can be used to assess
the robustness properties of the uncertain closed-loop interconnection depicted in Figure E.4. The
SMART Library of the SMAC Toolbox (see [Roos, 2013] and Chapter A) can be used for this
purpose. Since ∆ is normalized, the system is robustly stable if the resulting µ upper bound
is lower than 1. Otherwise, if the µ lower bound is larger than 1, there exists a destabilizing
worst-case uncertainty matrix ∆∗ such that σ(∆∗) < 1.

1.1.3 Multi-model design

There exist two main ways to improve the initial controller K̂(s) using the above robustness
analysis results. Since it was designed in the H∞ framework, it seems natural to use a µ-synthesis
approach. Existing software [The Mathworks, 2017b] is based on [Young, 1996] and references
therein. It works well in the case of complex-valued uncertainties, but numerical di�culties are
often reported with real-valued uncertain parameters. Moreover, results may be quite conser-
vative in that case. A potentially more e�cient technique is proposed in [Apkarian, 2011], but
no practical implementation is currently available. For these reasons, an alternative is preferred
here, which consists of performing a multi-model design. First considered in [Ackermann, 1985],
this intuitive approach leads to nonconvex optimization problems. However, as already pointed
out in Section E.1.1.1, it has regained interest recently thanks to the �exibility of nonsmooth H∞
optimization algorithms. The latter indeed o�er new perspectives, since multiple models can be
considered simultaneously. From this observation, a simple iterative algorithm is proposed below.
Starting from a single-model design, the idea is to alternate robustness analysis and multi-model
design. During the analysis step, worst-case con�gurations ∆∗ are isolated to enrich the bank of
models to be considered in the next design step.
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Algorithm E.1 (robust multi-model design)

1. Choose a parametric con�guration θ̄p and apply the linearizing inner loop control law (E.7)
to the nonlinear system (E.1), so as to get a linear nominal model Σ0(s) described by (E.8).

2. Set i = 0. Solve problem (E.13)-(E.14) to compute an initial controller K̂0(s).

3. Perform a µ-analysis based robustness test as described in Section E.1.1.2. If the µ upper
bound is less than 1, stop since the controller stabilizes the system on the whole parametric
domain. If the µ lower bound in larger than one, extract the corresponding destabilizing
matrix ∆∗ and compute the associated model Σ(s, δ∗).

4. Set i ← i + 1. Add Σ(s, δ∗) to the bank of models. Compute K̂i(s) via multi-model H∞
design and go back to step 3.

1.1.4 Towards a global robustness analysis

In the simpli�ed robustness analysis approach of Section E.1.1.2, the nonlinear input signal
w is considered as an external perturbation. However, in view of (E.8) and (E.9), it is clear that
w may depend on x and θp in a quite complicated way. Robustness analysis thus becomes tricky
in the most general case. Fortunately, with a good knowledge of the considered system, such as
the one discussed in Section 1.2, reasonably simpler approximations can be obtained in practice,
for example:

w = H(θp)x+W (x) (E.20)

with the following assumptions:

• H(.) depends rationally on θp and can be written in LFT form,

• the nonlinear operator W (.) satis�es Lipschitz conditions.

Hence, the LFT model Fu(P (s),∆) of Figure E.4 is modi�ed to include additional blocks in ∆,
so that w no longer appears as an external perturbation:

∆ = diag (∆M ,Γ(.),∆w,W (.),Θp) (E.21)

The operator (E.21) now contains uncertainties ∆M and ∆w, time-varying parameters Θp, as
well as memoryless nonlinearities Γ(.) and W (.). Robustness analysis must then be performed
with more general tools based for example on the IQC framework [Megretski and Rantzer, 1997].

1.2 Application to the approach phase

The robust nonlinear compensation technique of Section E.1.1 is now applied to a commer-
cial aircraft during the approach phase. A full description of the considered benchmark is out
of the scope of this manuscript, but detailed equations are available in the appendix of [Biannic
and Roos, 2018] and the whole Matlab package can be downloaded from the SMAC website
http://w3.onera.fr/smac/aircraftModel. This section only focuses on the longitudinal be-
havior of the aircraft. The lateral behavior is described in [Biannic et al., 2017].

1.2.1 Nonlinear longitudinal aircraft model

Let us consider the following fourth-order longitudinal aircraft model:
mV̇ = −qSCD(α)−mg sin γ + F cosα

mV γ̇ = qSCL(α, q, V, δe)−mg cos γ + F sinα

Jq̇ = qSLCm(α, q, V, δe) + zeF

θ̇ = q

(E.22)
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with V the airspeed, γ the �ight path angle, q the pitch rate, θ the pitch angle, q = 1
2ρV

2 the
dynamic pressure, J the longitudinal inertia, m the mass, S the reference surface, L the reference
length, ρ the air density, α the angle of attack, F the engine thrust on the longitudinal axis and
ze the vertical shift between the position of the center of gravity and the thrust application point.
The drag, lift and pitching moment coe�cients CD, CL and Cm can be expressed as follows:

CD(α) = CD0 + CDαα+ CDα2α
2

CL(α, q, V, δe) = CL0 + CLαα+ CLq
q

V︸ ︷︷ ︸
C̃L

+CLδeδe

Cm(α, q, V, δe) = Cm0 + Cmαα+ CmqL
q

V︸ ︷︷ ︸
C̃m

+Cmδeδe

(E.23)

where δe is the elevator de�ection angle and the Cxy are �xed stability derivatives a�ected by
±30% of multiplicative uncertainties. Here ξ = [V γ q θ]T , u = [F δe]

T and θp = [m xcg V0]T ,
where xcg and V0 are the center of gravity position and the initial airspeed respectively. The
operating domain for the considered approach phase is m ∈ [123 180] tons, xcg ∈ [15 41] % and
V0 ∈ [60 80]m/s, de�ning the admissible set Θ. First-order linear actuators ΣA(s) are introduced.

Remark E.2 Using �rst-order models for the actuators is common practice in the aeronautical
industry, and it is su�ciently representative here. Rate limitations are neglected, but it would be
possible to add an anti-windup controller (see Chapter D) to take them into account.

Equation (E.22) is rewritten as in (E.1), (E.5) and (E.6), where:

f =


−qS
m CD − g sin γ
qS
mV C̃L −

g
V cos γ

qSL
J C̃m
q

 , B =


1 0
0 0
0 1
0 0

 , Λ =

[ cosα
m 0
ze
J

qSL
J Cmδe

]
, ∆G =


0 0

sinα
mV

qS
mV CLδe

0 0
0 0


Remark E.3 Given the operating domain of the system, Λ is nonsingular. Moreover, Λ is
slowly varying, since its dynamics mainly comes from the dynamic pressure q. Therefore, As-
sumption E.1 is satis�ed.

Remark E.4 The choice of B was made based on the maximum control e�ciency. Indeed, as
can be seen in (E.22), the thrust F mainly a�ects the airspeed V , while the elevator de�ection δe
has a large impact on the pitch rate q.

1.2.2 Nonlinear compensation technique

The method described in Section E.1.1.1 can now be applied. The inner loop control law (E.7)
is �rst implemented, which leads to the linearized system (E.8). ζ̂ is chosen to cancel the
nonlinear dynamics on Va and q, so that only the nonlinear terms on γ are kept in wf . The
nominal con�guration θ̄p corresponds to a mass of 150 tons, a center of gravity position at 21%
and an initial airspeed of 70m/s. This is a central con�guration in terms of the location of the
linearized system poles. Choosing an extreme con�guration may also be an option, but nominal
performance is severely degraded in this case and it is di�cult to control the opposite extreme
con�gurations. Finally, the frequency weighting functions Wp(s) and Wu(s) as well as the �lter
F (s) are de�ned as explaind in Section E.1.1.1 (see [Biannic et al., 2017] for numerical values).
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The optimization problem (E.13)-(E.14) is solved. A third-order controller K̂0(s) proves to be
a good compromise, since it o�ers a satisfactory performance level and it is su�ciently simple to
be implemented in a �ight computer. Simulations are performed with this controller on the full
nonlinear benchmark, and a few results are displayed in Figure E.5. The upper plots show the
aircraft response to a 3 deg step demand on the �ight path angle γ for various parametric con�g-
urations: m ∈ {120, 150, 180} tons, xcg ∈ {15, 20, 40}% and V0 ∈ {60, 70, 80}m/s. Similarly, the
lower plots show the response to a 3m/s step demand on the airspeed V . The red plots corre-
spond to the reference signals zr to be tracked, i.e. to the outputs of the reference model R(s).
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Figure E.5: Nonlinear simulations with the initial controller K̂0(s)

These simulations con�rm the good stability and performance properties of the robust nonlin-
ear compensation scheme, which maintains near-nominal performance in a large �ight domain.
Moreover, the controller follows the reference models quite well and a good decoupling between
γ and V is also ensured.

1.2.3 Robustness analysis and multi-model design

The controller K̂0(s) has been designed to cope with a large operating domain in nominal
conditions. Therefore, the uncertain operators represented by the gray boxes in Figure E.3 have
not yet been taken into account. The objective of this section is twofold. First, the e�ect of these
uncertainties is evaluated with µ-analysis tools. Next, the resulting worst-case con�gurations are
used in the multi-model design strategy of Algorithm E.1 to compute a more robust controller.

Multiplicative uncertainties δCD
, δCL

, δCm are introduced on the aerodynamic coe�cients
CD, CL, Cm, as well as additive uncertainties δV , δm, δxcg on the airspeed, the mass and the
center of gravity location. Equations (E.22) are linearized and a set of LTI models is obtained.
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An LFR is then generated as in equations (E.16)-(E.17) using the APRICOT and the LTI2LFR
Libraries presented in Chapter C. Thanks to sparse approximation techniques, the size of ∆M

is reasonable, so that µ-analysis tools can be easily applied:

∆M = diag
(
δCD

I2, δCL
I3, δCmI2, δV I6, δm, δxcg

)
∈ R15×15 (E.24)

As a result, the size of the operator ∆ = diag (∆M ,Γ(.),∆w) ∈ ∆ in Figure E.4 is 20×20.
A normalization step is performed, so that ±30% of uncertainties are introduced when ∆ is
restricted to the unit ball, i.e. σ(∆) < 1. Upper and lower bounds on the structured singular
value µ are �nally computed with the SMART Library of the SMAC Toolbox. With the nominal
controller K̂0(s), a lower-bound µ∆ > 1 is obtained as well as a worst-case con�guration ∆∗ such
that σ(∆∗) = µ−1

∆ < 1. ∆∗ is used to initialize the multi-model design procedure of Algorithm
E.1. A new controller K̂(s) is obtained after 5 iterations. Robustness is signi�cantly improved,
since µ∆ < 1 thanks to the branch-and-bound technique implemented in the SMART Library.

The same nonlinear simulations as in Section E.1.2.2, i.e. without uncertainties, are now
performed with K̂(s) instead of K̂0(s). Results are displayed in Figure E.6. As expected,
performance has slightly decreased, since K̂0(s) was optimized for the nominal case: responses
are a little bit slower and decoupling is not as good.
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Figure E.6: Nonlinear simulations with the more robust controller K̂(s)

However, major improvements are obtained with K̂(s) in the presence of uncertainties. This can
be observed in Figure E.7, where ±25% uncertainties are allowed on the aerodynamic coe�cients
CD, CL and Cm. Results are not presented for ±30%. Parametric con�gurations can indeed be
found, for which the nominal controller K̂0(s) is unstable (unlike K̂(s) which is always stable).
This demonstrates the e�ciency of the proposed methodology.

Remark E.5 The lateral controller design is not presented here for the sake of brevity, but the
whole process is described in [Biannic et al., 2017].
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Figure E.7: Comparison between K̂0(s) (left) and K̂(s) (right)

1.2.4 Final approach simulations

PID-based guidance laws are designed in addition to the control laws described above, so as
to bring to zero the lateral and the vertical deviations with respect to the glide and the localizer
beams respectively. Basic �are and debrab laws are also implemented, whose robustness will
be improved in Section E.2. Several landing simulations are then run. Results are displayed in
Figure E.8 for di�erent initial values of mass, center of gravity position, uncertainties and �ight
path angle. Two lateral wind gusts are generated at 35 sec and 55 sec.

(a) Lateral trajectory (b) Vertical trajectory

(c) φ vs time (d) ψ vs time (e) γ vs time

Figure E.8: Landing simulations in the presence of lateral wind for di�erent initial conditions

In all cases, the reference glide path γgld = −3 deg is reached long enough before touchdown
(Figure E.8(b)). The �are controller then allows to land around 400m after runway threshold,
while reducing γ (Figure E.8(e)) and consequently the vertical velocity. On the lateral axis,
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the decrab controller brings the azimuth angle Ψ back to 0 once arriving above the runway
(Figure E.8(d)), while keeping the wings in a horizontal position (bank angle φ very close to 0
in Figure E.8(c)). Finally, no lateral excursion can be observed at touchdown (Figure E.8(a)).

1.3 Conclusion

Inspired by dynamic inversion techniques, an original methodology is proposed to design
nonlinear controllers over possibly large operating domains. A partial feedback linearization of
the plant is combined with a �xed-structure multi-model H∞ design technique. A preliminary
µ-based validation step is then performed, during which worst-case con�gurations are identi�ed
and used to progressively enrich the set of design models. A global nonlinear validation strategy
is �nally sketched. The resulting algorithm is evaluated on a realistic aircraft landing problem.
Future work will focus on its application to a small �xed-wing UAV, including �ight tests, as
explained in Section E.4.

2 Robust multi-model H∞ design for the �are phase

2.1 Overall structure of the �are control system

The nominal slope during approach is generally �xed to γgld = −3 deg, and for the considered
aircaft the nominal approach airspeed is around V = 70m/s (see Section E.1.2). Therefore, the
vertical speed Vz remains above 3.5m/s. The objective of the �are phase is to provide enhanced
vertical speed control capacities, so that the aircraft hits the runway about 400m after threshold
with a much lower vertical speed of 0.76m/s (2.5 ft/s). During this short maneuver, rarely
exceeding 7 s, the engines are set to the idle position and the thrust δth is constant. Therefore,
the only control input along the longitudinal axis is the elevator de�ection δe. Basic �are control
laws were already used in Section E.1.2.4 to perform full landing simulations, but they are not
robust enough. A more e�cient structure is shown in Figure E.9, which consists of two nested
loops. A reference vertical speed pro�le is generated by the outer loop, which sends a commanded
vertical speed Vzc to the inner loop. This pro�le depends on both the initialization altitude
HFLA ≈ 15m (50 ft) and the airspeed. It must be tracked despite external perturbations and
model uncertainties thanks to an appropriate tuning of the inner loop vertical speed controller,
whose design is described in this section.

Vz , q , θ 

Vzc

V

V

Vertical

Controller

Speed

AIRCRAFT
idle

Vz,ref

 flare control system

δth

δe

Figure E.9: Flare control system
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2.2 Vertical speed control via multi-channel structured H∞ optimization

The central objectives and constraints of the �are phase are fundamentally di�erent from
those encountered during the �nal approach. From a control viewpoint, the design problem
appears to be simpler since only one variable (the vertical speed) is being tracked and only one
control input (the elevator de�ection) is being managed. However, the �uctuations of V (which
is no longer controlled) and the engines deceleration generate perturbations. In addition to the
ground and wind e�ects, this �nally makes the control problem quite di�cult. Fortunately, the
latter falls within the scope of H∞ techniques.

The key issue is to de�ne an appropriate design scheme, which begins with the choice of rel-
evant linear approximations of the aircraft longitudinal dynamics near the ground. Such models
are obtained using trimming and linearization tools for various points of the two-dimensional
�are trajectory. A set of third-order models Σ(s,H) parameterized by the landing gear height
H is obtained, whose state-space representation is of the following form: V̇z

q̇

θ̇

 = A(H)

 Vz
q
θ

+B1(H) δe +B2(H)

 V
δth
w


︸ ︷︷ ︸
wpert

(E.25)

In these models, V and δth are no longer viewed as a state and a control input respectively,
but as external perturbations. However, unlike wind inputs w, they are measured and can be
used for feedback. This is illustrated in the design diagram of Figure E.10. The controller to be
optimized is a static gain K ∈ R7. The proposed vertical speed control law then reads:

δec = K

[
Vzr Vzc

∫
(Vzc − Vz) Vz q θ V

]T
(E.26)

where δec is the commanded elevator de�ection and Vzr is the output of a linear reference model
R(s) to be tracked. The main interest of the proposed structure is to remain close to the one used
during the approach phase, which not only simpli�es the switching strategy but also contributes
to an improved safety level.

ff

Vzrw1=Vzc 

K

 Wu

Wpert

WЄ

 z11

 z2Vz WVz

ЄVz

 z12

 δe

 w2  wpert

V  V , δth , w

Vz

Vz , q , θ

X = [Vz  q  θ]T

R(s)

Figure E.10: H∞ design scheme
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Let us now focus on the optimization criteria. Beyond the standard closed-loop stability
requirements, the objective is to determine the best controller K̂ such that:

• the norm of the error εVz = Vzr − Vz is minimized,

• the control activity is such that magnitude and rate saturations are avoided,

• the perturbations wpert have a negligible e�ect on the vertical speed variations.

In the H∞ framework [Zhou et al., 1996] and using the notation of Figure E.10, the �rst two
objectives are realized through the H∞ norm minimization of the map from w1 to [z11 z12]T .
The latter can be written as:

Tw1→[z11 z12]T (s) = Fl(P1(s,H),K) (E.27)

where Fl stands for the lower linear fractional transformation and P1(s,H) is a parameterized
(height dependent) weighted LTI model. Following standard rules, the weighting functionsWε(s)
and Wu(s) can be chosen as a high-gain low-pass �lter and a static gain respectively. The
third objective is achieved by the H∞ norm minimization of the map from w2 (where wpert =
Wpert(s)w2) to z2 = WVz(s)Vz, which can be written as:

Tw2→z2(s) = Fl(P2(s,H),K) (E.28)

The three-dimensional �lter Wpert(s) is used to shape the input perturbations. As (E.28) is
considered independently of (E.27), it is not restrictive to choose a static function Wpert(s) =
diag(WV ,Wδth,Ww), where the gains WV ,Wδth and Ww are used to adjust the relative weights
of each input perturbation. The three corresponding transfer functions are then weighted by a
single scalar dynamic �lter WVz(s). In order to remove any static error on Vz (mostly induced
by the speed variations), which could be critical near ground, a high-gain low-pass �lter must
be used. To summarize the above discussion, the controller optimization can be stated as the
following multi-model and multi-channel structured H∞ control design problem:

K̂ = arg min
K

max
H≤HFLA

i=1,2

{∥∥Fl(Pi(s,H),K)
∥∥
∞

}
(E.29)

2.3 Robustness against parametric uncertainties and modeling errors

By simultaneously considering several design models for di�erent values of the landing gear
height H, robustness against ground e�ects modeling errors is enforced in the proposed design
process. This is, however, not su�cient in practice, where parametric robustness against mass
and center of gravity location is also required. To this end, the above multi-objective H∞ design
framework is generalized to take these additional uncertainties into account. Therefore, the
design problem (E.29) becomes:

K̂ = arg min
K

max
H≤HFLA

i=1,2

j=1...N

{∥∥Fl(Pi,j(s,H),K)
∥∥
∞

}
(E.30)

In this formulation, N models are selected in the (mass × centering) domain, which typically
correspond to the vertices. Problem (E.30) is then solved using the same H∞ design tools as in
Section E.1.1.1. A total of 2× 4× 2 = 16 design models are used, corresponding to:
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• 2 values of the landing gear height (H = 5m and H = 15m),

• 4 models (indexed by j) corresponding to the minimum and maximum values of the mass
and the center of gravity location,

• 2 separate optimization channels (indexed by i).

Numerical values of the reference model and weighting functions can be found in [Biannic and
Roos, 2018]. A static controller composed of 7 gains is computed, and the resulting minimized
H∞ norm is around 1, which means that the requirements are satis�ed.

Such a design can be followed by an analysis step in order to detect any potential worst-
case con�guration that could appear inside the operating domain. An iterative design process
similar to the one described in Section E.1.1.3 can therefore be considered by incorporating the
worst-case scenarios into the initial selection of design models.

2.4 Nonlinear implementation and simulation results

The structured �are control law resulting from the above optimization process is implemented
in the nonlinear aircraft benchmark already used in Section E.1.2, as shown in Figure E.11. It is
highlighted in green and activated as soon as the landing gear height H is lower than a threshold
value HFLA ≈ 15m.
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Figure E.11: Nonlinear closed-loop simulation model

A �rst simulation is displayed in Figure E.12 to evaluate the in�uence of external perturbations.
A deterministic wind step occurs at 30 s during the approach phase. Strong turbulence as well
as ILS noise are also introduced. The upper left plot shows the aircraft trajectory in the vertical
plane during the whole maneuver, and it appears that the proposed guidance and control system
behaves well. The impact point is slightly after the 400m threshold and meets the requirements.
A zoom on the �are trajectory reveals that the vertical speed Vz remains close to the reference
one (upper right plot). Next, the robustness of the proposed controller is assessed for extreme
values of the mass (120 tons and 180 tons) and the center of gravity location (15% and 40%).
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Results are presented in Figure E.13. A reasonable dispersion of the impact point is observed
(between 400 and 600m), and the vertical speed is well tracked whatever the �ight condition.
More detailed simulation results can be found in [Biannic and Roos, 2018].
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2.5 Conclusion

A multi-model H∞-based design approach is proposed to improve and shorten the tuning
process of �are control systems. A fast and accurate tracking of the vertical speed is achieved
despite measured (longitudinal speed variations) and external (wind, gust, ILS noise) perturba-
tions. Parametric uncertainties and modeling errors are also taken into account thanks to the
�exibility of the multi-model design tools, which are used here to improve robustness against
inaccurate modeling of the ground e�ects and signi�cant variations of the mass and the center
of gravity location. The resulting �are control laws are combined with the glide and the outer
loop controllers designed in Section E.1.2 to provide a complete control architecture that can be
used during �nal approach and until touchdown.

3 Adaptive anti-windup design for the ground phase

Safety and economy are the primary concerns during the ground phase for commercial aircraft,
the ultimate goals being the automation and the optimization of taxi operations. But for now,
most aircraft are still controlled manually by the pilot before landing and after touchdown. One
of the main reasons for this is that the on-ground motion is quite complex due to the coupling
of aerodynamic e�ects and tire-road interactions. The latter are indeed highly nonlinear and
depend on several parameters (runway characteristics and condition, tires characteristics, anti-
skid braking system, longitudinal speed of the aircraft. . . ). Advanced control techniques thus
prove necessary to reach satisfactory performance levels. In this context, an adaptive anti-
windup approach is presented in Section E.3.2 to control the aircraft at low speed with the
nose-wheel steering system. It is based on an original approximation of the nonlinear ground
forces by saturation-type nonlinearities, which is described in Section E.3.1. But one of the most
challenging on-ground control problems occurs at intermediate speed between 40 and 80 kts.
The main objective is to follow the runway centreline in the worst possible conditions, i.e.
on a contaminated runway and in the presence of crosswind. Achieving good robustness and
performance requires to combine all available actuators, and notably to use di�erential braking
in conjunction with classical control devices, such as nose-wheel steering system and rudder. If
di�erential braking should be used sparingly in dry weather to avoid excessive tire and brake wear,
it could signi�cantly reduce the lateral deviation on a wet or snowy runway. In this context,
a dynamic control allocation scheme combined with a robust outer loop is brie�y outlined in
Section E.3.3 to address this issue.

3.1 Design oriented modeling of an on-ground aircraft

High-�delity models with 6 or more degrees of freedom, such as the ones presented in [Rankin
et al., 2009; Jeanneau, 2007], are more convenient for analysis and validation than for control.
Therefore, simpli�ed design-oriented models have been developed. However, they generally focus
only on the lateral behavior of the aircraft [Lemay et al., 2011; Bihua et al., 2013; Looye, 2007].
A few ones consider also the longitudinal behavior, but most of the time they do not discuss the
coupling e�ects or do not provide a complete modeling of the tire-road interactions [Biannic et al.,
2006a; Turbuk and Paglione, 2010; Georgieva and Serbezov, 2017]. Moreover, the operational
domain is often limited to low speed, and if higher speed is considered, only the rudder is
usually taken into account in addition to the nose-wheel steering system [Bihua et al., 2013;
Biannic et al., 2006a; Looye, 2007].

In order to bridge the gap between high-�delity and oversimpli�ed representations, a simple
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but accurate design-oriented model with 3 degrees of freedom is proposed in [Sadien et al., 2018].
It includes both the longitudinal and the lateral aerodynamic e�ects and tire-ground interactions,
as well the dependence on runway conditions. The on-ground dynamics can be controlled by
engines thrust, rudder de�ection, nose wheel steering and (di�erential) braking, whose physical
limitations are taken into account. It can be used up to 100 kts, which makes it suitable to address
the above control issue. All equations are not described here, but a particular emphasis is placed
on the slip force model, which is the key point that will be used in Sections E.3.2 and E.3.3.

A �rst simpli�ed model was proposed in [Biannic et al., 2006a]. The slip force Fsy is repre-
sented by a saturated linear function in the case of pure lateral slip:

Fsy = Nt sat[µ̄Fsymax ] (Gyβs) (E.31)

where the saturation level depends on the runway state µ̄ and the maximum lateral force Fsymax

for a dry runway. Nt denotes the number of tires in the considered landing gear, βs is the sideslip
angle, and the cornering gain Gy =

∂Fsy

∂βs

∣∣∣
βs=0

is computed for a mean value of the normal

reaction Fz. No explicit dependence on Fz is considered, but an uncertainty is introduced on Gy,
whose bounds are determined by extensive simulations of the high-�delity model of [Jeanneau,
2007]. This is illustrated in Figure E.14, where the nominal model (E.31) is shown in green,
while the bounds on the uncertain cornering gain are displayed in brown.
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βs

Dry runway

Wet runway

Icy runway

Figure E.14: Lateral slip model proposed in [Biannic et al., 2006a]

Based on [Biannic et al., 2006a], an improved model is proposed in [Sadien et al., 2018], which
accounts for combined slip, runway state and normal load variation. The combined longitudinal
and lateral slip force Fs =

√
F 2
sx + F 2

sy generated by an isotropic tire, under non-zero sideslip and
longitudinal slip, cannot exceed µFz, where µ = µ̄µmax denotes the tire-road friction coe�cient
and µmax its maximum value corresponding to a dry runway [Brach and Brach, 2011]. The
maximum force boundary is illustrated by the pink circle in Figure E.15. The key idea to avoid
this coupling between Fsx and Fsy is to assume that the sideslip angle βs remains small during the
roll-out phase, typically less than 5 deg in practice. Furthermore, the anti-skid system prevents
the longitudinal slip ratio of becoming too large. In this context, it is reasonable to assume that
the resultant of the slip forces lies inside the pink area in Figure E.15 instead of the pink circle,
where the longitudinal and lateral maximum forces are represented in green and blue respectively.
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The following decoupled model is then assumed:

Fsx = Nt sat[
µ̄λsx

Fz
Nt

] (KxTbrk) (E.32)

Fsy = Nt sat[
µ̄λsy

Fz
Nt

](Ky
Fz
Nt
βs

)
(E.33)

Tbrk is the braking torque. Kx and Ky correspond to the inverse of the e�ective rolling radius
and to the reduced lateral cornering gain respectively, while λsx and λsy denote the longitudinal
and the lateral friction fractions, de�ned for a dry runway and satisfying λsx2 + λsy

2 = µmax
2.

Ky does not depend on speed in the considered operational domain, but it is function of the
runway state according to [Mitchell, 2006]:

Ky =
Kymax

2
3 + 1

3µ̄

(E.34)

where Kymax is the maximum value of Ky, obtained for a dry runway.

βs

~x

~y

Contact patch

~V

Cornering force
boundaries

Braking force
boundaries

Maximum force
boundary

Figure E.15: Main landing gear wheel seen from above

The whole on-ground aircraft model is described in [Sadien et al., 2018] and compared to a
high-�delity Airbus simulator [Goupil et al., 2014]. One of the considered maneuvers is repre-
sented in Figure E.16. It corresponds to a 3 deg de�ection of the brake pedal to the right and
then to the left on a wet runway at medium speed. The lateral behavior of the proposed model
is close to that of the simulator, and similar results are obtained for all maneuvers. Hence, it is
well-suited for the development of ground control laws.

3.2 Adaptive anti-windup for low speed maneuvers

The control objectives depend on the aircraft velocity. Let us �rst focus on low speed (be-
low 40 kts), where the main concern is maneuverability. The challenge is to design a control
architecture, which ensures a good tracking of the yaw rate r and the heading Ψ:

• with as fast a response as possible,

• without overshoot (especially in heading),

• whatever the runway state (dry, wet or icy),

• for any aircraft longitudinal speed.
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Figure E.16: Model validation - di�erential braking order

The only control input is the nose-wheel de�ection θNW . Typical maneuvers are runway exit at
the right speed while minimizing the occupation time, or autonomous motion along the taxiways
towards the selected gate. A methodology based on the on-ground aircraft model presented in
Section E.3.1 is described in [Roos et al., 2010]. The main steps are brie�y outlined below.

The huge variation of the lateral slip forces with respect to the runway state (see Figure E.14)
suggests that standard robust control methods would yield conservative results and reduced
performance. On the opposite, the proposed approach is to perform an on-line estimation of
these forces. This information can then be used to maintain the sideslip angle βs just below
the optimal value for which Fsy is the highest, so that the aircraft turns quickly without for
all that slipping on the runway. In this perspective, it is necessary to capture the nonlinear
behavior of the slip forces. Very accurate models are for example used in [Falcone et al., 2007],
but the resulting model predictive control approach is computationally demanding and cannot
be reasonably implemented in �ight computers. Therefore, a simpler model seems preferable,
such as the one proposed in Section E.3.1. And the associated saturations strongly suggest to
design an anti-windup controller using the techniques described in Chapter D, which becomes
active only when the sideslip angle reaches a certain limit. With this strategy, there is no need
to modify the nominal control laws, which is a strong industrial requirement.

The proposed ground control architecture is represented in Figure E.17. A nominal controller
depending on the aircraft longitudinal velocity Vx is �rst designed, so as to ensure good stability
and performance in the linear operating domain. It is composed of a �rst-order inner loop
controller Kr(s) for yaw rate tracking and a �rst-order outer loop controller KΨ(s) for heading
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tracking. The commanded yaw rate rc is followed without steady-state error, but an important
overshoot occurs when the saturations involved in the slip forces model are active, as shown by
the dotted line in Figure E.19(a). Therefore, a parameter-varying static anti-windup controller
Jr function of Vx is designed to counter the adverse e�ects of these nonlinearities. The overshoot
becomes negligible, which is con�rmed by the solid line in Figure E.19(a).

+

+

+

−

on−ground

aircraft

outer loop controller inner loop controller

Kr(s)

Jr

KΨ(s)

rθNWc

Vx

Vx

Vx

Vx

1
sΨ

Ψc

rc

ǫ

rpilot

rautopilot

Figure E.17: Ground control architecture

The input ε of the anti-windup controller Jr is computed as the di�erence between the
unsaturated and the saturated lateral slip forces. However, it is not available on a real aircraft
and has to be estimated on-line. This is a di�cult issue, since the saturation levels depend on
the runway state (see equation (E.31)), which is unknown and can change rapidly. An estimation
procedure is implemented, based on the dynamic inversion of the lateral aircraft model. Estimates
F̂sy of the lateral slip forces are obtained, and the signals:{

εNW = sign (βsNW ) |F̂syNW −GyNW βsNW |

εMG = sign (βsMG) |F̂syMG −GyMGβsMG |
(E.35)

can be used by the anti-windup device, where the subscripts NW and MG stand for the nose-
wheel and the main landing gears respectively (see [Roos et al., 2010] for details).

The resulting adaptive controller is composed of the parameter-varying nominal and anti-
windup compensators as well as the estimator. It is implemented on the nonlinear high-�delity
model of [Jeanneau, 2007] for validation, as shown in Figure E.18, where xNL = [rNL VyNL]T .
Selected simulation results are presented in Figure E.19(a) for the inner loop and E.19(b) for the
outer loop. It can be seen that the control objectives are satis�ed. In particular, the heading is
well tracked whatever the runway state, which demonstrates the ability of the on-line estimator
to identity the slip forces.

Finally, an extensive validation is performed in [Roos and Biannic, 2007]. Stability and
performance are �rst evaluated using the µ-analysis based tools presented in Chapter A. The
analysis techniques of Chapter B are then applied to take into account time-invariant uncer-
tainties (aerodynamic coe�cients) as well as time-varying uncertainties (cornering gains) and
parameters (aircraft longitudinal velocity).
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Figure E.18: Controller implementation
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Figure E.19: Simulation results on the high-�delity nonlinear model

3.3 Robust dynamic allocation for runway axis hold

The methodology presented in Section E.3.2 is limited to low speed maneuvers, where a
single actuator is su�cient to control the lateral behavior of the aircraft. At higher speed, the
main objective is to follow the runway centreline whatever the runway condition and despite
strong crosswind. All actuators must be combined to meet safety, performance and comfort
requirements, which raises a control allocation problem (see e.g. [Johansen and Fossen, 2013;
Zaccarian, 2009; Härkegård, 2004] for a review of dynamic allocation techniques). However,
di�erential braking is systematically ignored in the on-ground control literature, and even the
rudder is rarely mentioned. One of the very few works facing the above control allocation
problem is [Looye, 2007], which presents a simple solution depending on the aircraft velocity Vx:
only the nose wheel or the rudder is used if Vx < Vlow or Vx > Vhigh, and in between a linear
blend is applied. This kind of approach is typically implemented by aircraft manufacturers due
to its simplicity, but it is clearly suboptimal. Work is underway to improve these results. A
two-step strategy is proposed in [Cassaro et al., 2018], based on the on-ground aircraft model
developed in [Sadien et al., 2018] and brie�y reviewed in Section E.3.1. A robust outer loop
controller designed using structured H∞ tools allows to cope with severe crosswind and to limit
the aircraft lateral deviation, even on a contaminated runway. It produces a single output,
which corresponds to a di�erential braking command. Among the three available control actions,
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di�erential braking is indeed the only one to be e�ective across the entire speed range. A dynamic
control allocation scheme is then implemented based on the method of [Zaccarian, 2009], so as
to account for abrupt changes in the actuators e�ectiveness due to the fast variations of velocity
and loads during deceleration. Promising simulations are presented in [Cassaro et al., 2018],
although further validation is required.

4 Control laws implementation

A wide variety of military and civilian tasks can be assigned to �xed-wing UAV: search and
rescue, exploration and detection, surveillance, imaging. . .Many of them take place in hazardous
and remote environments, and their success often relies on e�cient and robust control systems.
However, the design of such systems is challenging because many speci�cations have to be taken
into account with a limited computing power.

The objective in this context is twofold. First, apply advanced control techniques such
as those presented in the previous sections to improve performance and increase the operating
domain of �xed-wing UAV. Then, prove that the resulting control architectures are simple enough
to be implemented on low-performance avionics. Work is still in progress, but the ambition is to
carry out �ight tests on some of the UAV operated by ONERA, which are shown in Figure E.20.
Both of them are quite large (approximately 4m wingspan) and can carry a substantial payload
(up to 20 kg for the K50). This makes it possible to integrate a whole set of sensors and all
necessary devices to monitor the �ight.

(a) Avion Jaune (b) K50

Figure E.20: Fixed-wing UAV operated by ONERA

Fairly accurate models of these UAV have already been obtained, as reported in [Lesprier et
al., 2015a]. A few key steps of the process are illustrated in Figure E.21:

(a)-(b) 3D modeling of the aircraft to compute the stability derivatives using software such as
XFLR5, AVL or Tornado, but also the inertia matrix using CATIA.

(c) Identi�cation of the dynamics as well as the rate and magnitude saturations of the actuators
thanks to ground tests.

(d) Application of the APRICOT Library of the SMAC Toolbox to �ight test data, so as to
express the engine speed as a polynomial function of the thrust command and the airspeed.

(e)-(f) Development of a thrust model from propeller geometrical data and static thrust mea-
surement on ground using dedicated software such as QPROP.

(g)-(h) First in-�ight validation of the open-loop aircraft model by performing simple longitu-
dinal and lateral maneuvers.
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(a) 3D modeling for stability derivatives estimation (b) 3D modeling for inertia matrix computation
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Figure E.21: Di�erent modeling steps of a �xed-wing UAV
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Triming and linearization routines have then been developed, and a whole control architecture has
�nally been designed using the robust nonlinear compensation technique of Section E.1. The next
steps are to improve the open-loop model thanks to enhanced identi�cation techniques [Bucharles
et al., 2012], to �ne-tune the control laws, and to implement them in the avionics, before �nal
closed-loop validation can be performed in �ight.

Remark E.6 The microprocessor used on the Avion Jaune is an ARM Cortex-M41, which is
composed of two cores with a frequency of 80MHz. There is a built-in Float Processing Unit, so
that �oats operations do not need additional libraries. The tasks are currently run at a time period
of 20ms, within which at least 10ms are available for control (the other tasks being e.g. sensors
acquisition and data fusion). This is more than enough to perform the operations required by the
robust nonlinear compensation technique of Section E.1: 2× 2 nonsingular matrix inversion for
the linearizing inner loop, third-order controller computation for the robust outer loop. Finally,
the inevitable discretization process prior to the control laws implementation should not be a
problem. Simulations were successfully carried out with a time step of up to 50ms, which is
much larger that the 20ms mentioned above.

5 Summary of the contributions

The main contributions presented in this chapter are brie�y summarized below, and a selec-
tion of related publications is given:

• Section E.1: robust nonlinear compensation technique based on a partial feedback lin-
earization of the plant combined with a �xed-structure multi-model H∞ design tech-
nique ; application to the approach phase of a commercial aircraft [Biannic et al., 2017;
Lesprier et al., 2014].

• Section E.2: robust multi-model and multi-channelH∞ design for the �are phase [Biannic
and Roos, 2018; 2015].

• Section E.3: control oriented modeling of an aircraft during the ground phase, including
an original saturation-based representation of the slip forces ; adaptive anti-windup design
technique for low speed maneuvers ; robust dynamic allocation method for runway axis hold
at high speed despite contaminated runway and crosswind [Sadien et al., 2018; Biannic et
al., 2006a; Roos et al., 2010; Roos and Biannic, 2007; Cassaro et al., 2018].

• Section E.4: practical approach to �xed-wing UAV modeling and preliminary control laws
implementation in a real avionics system developed by ONERA [Lesprier et al., 2015a].

1https://www.arm.com/products/processors/cortex-m4-processor.php
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The �nal chapter of this manuscript brie�y summarizes my research perspectives, which are
organized along three lines:

• Development of enhanced robustness analysis tools,

• Computation of simple yet accurate linear fractional representations,

• Design and implementation of advanced control architectures.

Each of these lines is described in more detail below.

Development of enhanced robustness analysis tools

As emphasized in this manuscript, a lot of work has already been done during the last three
decades in the �eld of µ-analysis, and this technique is now well recognized as mature and
e�cient by the control community. In most cases, stability margins and performance levels can
be computed with both a very good accuracy and a reasonably low computational time, as shown
in Chapter A. But we can always go further! Here are a few ideas:

• In the same way as for the µ lower bound, perform an extensive comparison of all practical
µ upper bound algorithms, and propose some combinations to take the most out of them,

• Improve the branch-and-bound algorithms when they do not converge in a reasonable
number of iterations, for example by better dividing the uncertainty domain (use other
criteria than the highest µ-sensitivity, create subdomains of di�erent sizes. . . ),

• Focus on numerical issues (for example, when reducing ε in Algorithm A.1 to improve
precision, the size of the interval Iv sometimes becomes smaller and smaller around certain
frequencies, and many iterations are needed to validate the whole frequency range, which
signi�cantly slows down the algorithm),

• Compare several optimization tools (notably LMI solvers). . .

The objective is to continually improve the SMART Library until all real-world applications can
be solved.

But despite the good results achieved on many benchmarks, µ-analysis based tools are only
marginally used in industry. This is mostly because they are developed within a deterministic
framework. In this context, the robustness margins can be too conservative, since the associated
worst-case con�gurations sometimes correspond to non-physical operating points or to situations
that are unlikely to occur in practice. As an example, if some �ight control laws fail to stabilize
an aircraft for a parametric con�guration whose probability of occurrence is below 10−9 per
�ight hour, the proposed control system might be wrongly rejected. This is in stark contrast
with industrial practices, where Monte Carlo methods are commonly used by control engineers to
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assess stability and performance of many kinds of aerospace systems in a probabilistic framework.
These methods are easy to implement and do not pose any speci�c constraint on the representa-
tion of the system to be analyzed. But on the other hand, their high computational complexity
makes them time-consuming and costly. In this context, there is a real need to bridge the gap
between Monte Carlo simulations and deterministic optimisation-based methods, by developing
new validation tools which combine the advantages of both approaches. The main objective is to
provide fast and computationally e�cient tools able to capture the probability of occurrence of
worst-case events, thus speeding up the control laws validation process. To do so, the idea is to
con�ne the system uncertainties in a set as in the deterministic case, but also to consider them
as random variables with given multivariate probability distributions. Probabilistic µ-analysis
could be investigated �rst, since it is a fairly direct extension of classical µ-analysis, and the
algorithm introduced in Section IV of [Roos and Biannic, 2010] would be a good starting point.
A more prospective study could then be conducted to evaluate the applicability of other proba-
bilistic and randomized techniques (see e.g. [Cala�ore et al., 2011]) to high-order systems with
many uncertainties. Beyond control laws validation, these techniques could also be integrated in
the design process and used to optimize the controller gains, a context to which classical Monte
Carlo methods cannot be directly applied. The ambition is to shorten the development time
by avoiding a tedious iterative process between design and validation, and to better handle the
trade-o� between robustness margins and performance levels. We have proposed a PhD position
on this topic in collaboration with Politecnico di Milano.

We have spent a considerable amount of time working on µ-analysis, which is essentially
based on the H∞ norm. This can be a little restrictive. Consider for example the clearance of
�ight control laws process mentionned in the introduction. Several criteria must be evaluated,
among which some of them are formulated in terms of the H2 norm. This is typically the case of
comfort and loads requirements [Papageorgiou et al., 2012]. An upper bound on the worst-case
H2 performance level was proposed in [Paganini and Feron, 2000] and could be useful in this
context. But its practical computation is a challenging issue with an in�nite number of frequency-
domain constraints, each of them being an LMI involving scaling matrices with a large number of
decision variables in case of highly repeated uncertainties. Fortunately, it should be possible to
adapt some of the methods presented in Chapter A to cope with the H2 framework. For example,
Algorithm A.1 was already adapted in [Garulli et al., 2013] to avoid solving the problem on a
�nite frequency grid, and thus to get a guaranteed upper bound on the worst-case performance
level. But it is still restricted to small and medium size problems due to the limited capabilities
of LMI solvers. An idea to get a more tractable algorithm could be to use a gradient descent
technique as in the H∞ case to obtain a solution that would probably be slightly suboptimal, but
with a much shorter computational time. Moreover, in the spirit of [Ferreres and Biannic, 2001;
Roos, 2010], it should be investigated whether an accurate lower bound on the worst-case H2

performance level could be obtained.

Several methods have been proposed in Chapter B to deal with both LTI and time-varying
uncertainties. But when bounded rates of variation have to be considered (which is the most
common in practice), existing techniques are usually based on LMI characterizations involving
the optimization of square matrices with n(n + 1)/2 decision variables, where n is the order of
the considered system. This is typically the case when IQC-based analysis is coupled with the
KYP lemma, or when parameter-dependent Lyapunov functions are used as in Section B.2. In
case of high-order systems, the computational time can be prohibitive and a frequency-domain
approach is a valuable alternative. In this context, generalizing the approach of [Ferreres and
Roos, 2007] presented in Section B.2 could be relevant.
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Finally, a more complicated problem is to consider both structured uncertainties and satu-
rations when assessing the robustness properties of a feedback system. IQC-based analysis is a
natural way to address this issue, see e.g. [Ge et al., 2012; Ferreres and Biannic, 2007]. But satu-
rations are usually treated as classical sector-bounded nonlinearities, which can be conservative.
And the computational time can become prohibitive in case of highly repreated parametric un-
certainties. A better solution could be to characterize the saturations using the modi�ed sector
condition introduced in [Gomes da Silva Jr and Tarbouriech, 2005] instead of the classical one to
reduce conservatism, and to handle the uncertainties in the µ framework to master computational
time. But combining both approaches is not obvious. . .

Computation of simple yet accurate LFR

Before an LFR can be generated from tabulated data, it is important to ensure that the
latter are consistent and can be approximated. But experience shows that there is currently no
method that works all the time, especially when a set of MIMO LTI systems must be turned
into an LFR. A �rst solution is to �nd polynomial or rational approximations of the state-space
matrices, but it is di�cult to guarantee that the state vector is consistent across all models. So
the eigenvalues and the frequency responses of the resulting LFR may not evolve smoothly on
the whole parametric domain, leading to some unrealistic behavior. Strategies to constrain them
in prescribed intervals could be investigated. Another solution is to generate an LFR, which only
preserves the input-output behavior, without considering the eigenvalues. This can be achieved
by minimizing an H∞ or an H2 criterion, see e.g. [Petersson and Lofberg, 2009] for the H2 case.
But computational time often becomes an issue when the size of the problem increases. Keeping
in mind that our objective is to provide robustness analysis tools, which are much faster than
classical simulation-based techniques, more research has to be done to fasten the LFR generation
step. Indeed, it becomes useless to have analysis tools which run in a few seconds if it takes hours
or days to get the LFR! Recently, non-smooth optimization techniques have been developed and
could help minimizing the H∞ norm at a reasonable cost ([Apkarian et al., 2009]).

As already highlighted in Chapter B, a particular attention must also be paid to the size of
the LFR when applying robustness analysis tools, so as to avoid conservatism, or even numerical
intractability. A �rst strategy is to create a high-�delity LFR without trying to master com-
plexity, so as to closely match the behavior of the considered system. But checking whether it is
minimal of not (i.e. whether the size of ∆ is as small as possible) and computing the associated
minimal representation is a very di�cult open problem. An alternative to reduce complexity
is to apply reduction techniques such as the ones proposed in [D'Andrea and Khatri, 1997;
Ferreres, 2004]. Recently, parametric model reduction has gained a lot of interest and several
techniques dedicated to parameterized dynamical systems have been proposed [Benner et al.,
2015]. It would be interesting to investigate the relevance of these algorithms when applied to
the LFR framework to see whether better results could be obtained.

A second strategy is to act upstream and to directly generate a simple yet accurate LFR.
This question arises primarily when trying to obtain an LFR from tabulated data. Most of the
time, the user simply adjusts by trial and error the maximum degrees of the polynomial and
rational approximations, which can lead to solutions that are far from being optimal. Attempts
have been made to automate this procedure (see e.g. [Roos et al., 2014; P�fer and Hecker, 2011])
but much remains to be done. What are the best size and structure of ∆ (i.e. the number de
repetitions of each parameter and uncertainty)? Is it relevant to add delays, nonlinearities. . . ?
What is the best way to take into account the approximation errors? These are all questions that
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remain largely unanswered for the moment. And what is the best way to choose the samples used
for approximation, i.e. which parametric con�gurations of the system have to be considered? A
solution based on the ν-gap metric is proposed in [Vizer and Mercère, 2014], but it seems tedious
to implement when several parameters are considered.

To sum up, plenty of interesting contributions exist in the �eld of LFR generation, but there
is still much to be done to combine the most relevant ones, so as to obtain both reliable and
generic methodologies.

Design and implementation of advanced control architectures

Many real-world applications can be cited, where strong cost constraints or weight limitations
dictate the use of potentially low performance hardware (such as actuators, sensors and onboard
computers). For example, the access to space is becoming signi�cantly easier and cheaper with
the advent of nanosats. To promote this new economic model, low-cost launchers must be
developed. In the military domain, the need for guided projectiles has continuously increased
during the last years with several such systems in development or in operational use. One
of the most topical issues is to improve the precision and to enhance the range of traditional
artillery shells in the modern battle�eld, while signi�cantly reducing costs. And UAV are now
widely used to perform a large number of demanding missions. So there is a real need to control
various kinds of systems on extended operational domains in the presence of hardware limitations,
uncertainties, varying parameters as well as actuator saturations.

Many e�cient analysis tools are now available, but in most cases they are applied only once
the control laws have been computed. However, it could be bene�cial to better integrate them
into the design step, so as to anticipate the tedious validation inherent to any industrial process.
The methodology presented in Section E.1 is a �rst step in that direction. It uses µ-analysis
to compute worst-case con�gurations, which are used to enrich the bank of design models and
to iteratively improve the robustness properties of the closed-loop system. When applied to the
approach phase of an aircraft, it could be extended by using evolutionary algorithms to optimize
some high-level parameters such as the altitudes at which the �are and the decrab are initiated,
in order to maximize the probability of safe landing. When applied to the aforementioned
projectiles, it could be coupled with an anti-windup device to cope with actuator saturations or
with aerodynamic nonlinearities at high angles, so as to increase the operational domain. We
have proposed a PhD project in collaboration with the French German Institute of Saint Louis
(ISL) to go one step further in the development of novel control architectures able to cope with
demanding speci�cations such as those mentioned above, and to develop generic computational
tools that could be passed to control engineers.

But it must be paid attention not to make the laws too complicated. And for this, there is
nothing like facing implementation constraints. Thanks to our growing involvement in ONERA's
UAV lab, the proposed control architectures will be implemented on a 4m wide aircraft and
validated �rst by hardware-in-the-loop simulations and then by �ight tests. The feedback will
allow us to take a fresh look at our design methodologies and to further improve them. We are
currently setting up an ambitious research project on this topic.
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Advanced control laws design and validation - A set of methods and tools to bridge the gap
between theory and practice

Many real-world applications suffer from strong cost constraints or weight limitations, which dictate the use of potentially low 
performance hardware (actuators, sensors, onboard computers). For example, the access to space is becoming significantly 
easier and cheaper with the advent of nanosats, and low-cost launchers must be developed to promote this new economic 
model. In the military domain, one of the most topical issues is to improve the precision and to enhance the range of traditional 
artillery shells in the modern battlefield, while significantly reducing costs. And UAV are now widely used to perform a large 
number of demanding missions. So there is a real need to control various kinds of systems on extended operational domains in 
the presence of hardware limitations, uncertainties, varying parameters as well as actuator saturations. In this context, our 
contribution lies at the frontier between research and engineering. Based on known theories and results in the fields of LFR 
modeling, µ/IQC/Lyapunov-based analysis, as well as analysis of saturated systems, we first try to develop validation methods 
that can be applied to real-world issues with a reasonable computational cost. Heuristics sometimes replace rigorous 
mathematical proofs, but we believe this is the price to pay for bridging the gap between theory and practice. Many efforts are 
also invested in the development of generic computational tools designed for control engineers. Then, we show how these 
methods and tools can be directly integrated into the control laws design process, so as to reduce a little bit the number of 
iterations between design and validation in an industrial context. The next step will be to face the implementation constraints. 
Thanks to our growing involvement in ONERA’s UAV lab, the proposed control architectures will be implemented and validated 
first by hardware-in-the-loop simulations and then by flight tests. The feedback will allow us to take a fresh look at our design 
and validation methodologies, and to further improve them.

Keywords : ROBUSTNESS ANALYSIS ; ROBUST CONTROL ; ANTI-WINDUP DESIGN ; LFT MODELING ; AEROSPACE APPLICATIONS

Synthèse et validation de lois de commande avancées - Un ensemble de méthodes et d'outils
pour faire le lien entre théorie et pratique.

De nombreuses applications dans le monde réel souffrent de fortes contraintes de coût ou de poids, qui dictent l'utilisation de du 
matériel potentiellement peu performant (actionneurs, capteurs, ordinateurs de bord). Par exemple, l'accès à l'espace devient 
nettement plus facile et moins cher avec l'avènement des nanosats, et les lanceurs à bas prix doivent être de ce nouveau modèle 
économique. Dans le domaine militaire, l'une des questions les plus d'actualité est d'améliorer la précision et la portée des obus 
d'artillerie traditionnels sur le champ de bataille moderne, avec une réduction significative des coûts. Et les drones sont maintenant 
largement utilisés pour effectuer un grand nombre de missions exigeantes. Il y a donc un réel besoin de contrôler différents types 
de systèmes sur des domaines opérationnels étendus en présence de limitations matérielles, d'incertitudes, de paramètres 
variants ainsi que de saturations d'actionneurs. Dans ce contexte, notre travail se situe à la frontière entre la recherche et 
l'ingénierie. D'après des théories et des résultats connus dans les domaines de la modélisation LFR, de l'analyse µ/IQC/Lyapunov, 
ainsi que de l'analyse des systèmes saturés, nous essayons d'abord d'élaborer des méthodes de validation qui peuvent être 
appliquées à des problèmes du monde réel avec un temps de calcul raisonnable. L'heuristique remplace parfois des preuves 
mathématiques rigoureuses, mais nous pensons que c'est le prix à payer pour faire le lien entre la théorie et la pratique. De 
nombreux efforts sont également investis dans le développement d'outils de calcul génériques conçus pour les ingénieurs 
automaticiens. Ensuite, nous montrons comment ces méthodes et outils peuvent être directement intégrés dans le processus de 
conception des lois de commande, de manière à réduire le plus possible le nombre d'itérations entre la conception et la validation 
dans un contexte industriel. La prochaine étape consistera à faire face aux contraintes de mise en œuvre. Grâce à notre 
implication croissante dans le labo drones de l'ONERA, les architectures de contrôle proposées seront mises en œuvre et validées 
d'abord par des simulations Hardware-in-the-Loop, puis par des essais en vol. Le retour d'expérience nous permettra de jeter un 
regard neuf sur nos méthodologies de conception et de validation, et de les améliorer encore davantage.

Mots-clés :  ANALYSE DE ROBUSTESSE ; COMMANDE ROBUSTE ; SYNTHESE ANTI-WINDUP ; MODELISATION LFT ; APPLICATIONS
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