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Introduction

It all started 13 years ago. I was a young PhD student with no precise idea what direction I was heading to. I had few other options than carefully listening to my supervisor singing the praises of robustness analysis in general, and of µ-analysis in particular. I also saw my close colleagues working on the same topic. And I noticed the growing interest among control engineers from the aerospace industry. So I naturally took this path. At that time, it was already known for a long time that computing the exact value of the structured singular value µ is NP hard. So people were trying to develop polynomial-time algorithms to compute tight lower and upper bounds instead. And my colleagues were playing a key role with signicant contributions that remain references even today [Ferreres and Biannic, 2001; Ferreres et al., 2003], as evidenced by the Skew-Mu Toolbox for Matlab which was widely used during a whole decade [Ferreres et al., 2004]. It was in this environment that I took my rst steps.

Then I started thinking a little bit on my own. The rst major project I was involved in dealt with the clearance of ight control laws. Before an aircraft can be tested in ight, it has to be proven to the authorities that the ight control system is reliable, i.e. it has to go through a certication and qualication process. It must notably be shown that the control laws provide sucient stability margins to guarantee a safe operation of the aircraft over the entire ight envelope and for all admissible parametric variations. In the aeronautical industry, this is usually achieved using intensive Monte-Carlo simulations. A major drawback of this strategy is that clearance is restricted to a nite number of samples and nothing can in principle be assessed for the rest of the parametric domain. Moreover, signicant time and money is frequently spent on this task. Fortunately, many stability, handling, loads and performance criteria can be formulated as robustness analysis problems, which can then be solved using modern analysis techniques, such as µ-analysis, IQC-based analysis or Lyapunov-based analysis. At that point, I realized that these techniques were not just research topics tailored to control theorists, but that they could be of signicant practical importance to improve the eciency and the reliability of the certication process, and more generally to enhance the validation of any feedback system. My conviction was reinforced when I noticed that the aerospace industry was following the subject closely: Airbus [Puyou et al., 2012], Boeing [Dailey, 1990], Astrium Satellites [Beugnon et al., 2003], Astrium Space Transportation [Ganet-Schoeller et al., 2009], Deimos & ESA [Pulecchi et al., 2012], Thales Alenia Space [Charbonnel, 2010] and others were all evaluating the potential benets of µ-analysis on real-world applications. But they were also very critical. As I had already invested quite a lot of time on this subject, I was cut to the quick, and I decided to try making my own contribution to address the issues raised by our industrial partners.

A rst recurrent criticism was that the gap between the bounds on µ was often too large. The resulting robust stability margin was thus too pessimistic, and it was sometimes impossible to conclude about stability even though the considered system was indeed stable. In this context, my coworkers and I performed a thorough comparison of all pratical algorithms to compute lower bounds on µ, and we proposed some strategies to take the most out of them (Section A.2).

Introduction

Noting that the µ upper bound was generally responsible for the conservatism, we tried to improve the accuracy of existing algorithms, while maintaining a reasonable computational time (Section A.3). And as it was sometimes not sucient, we proposed some enhanced branchand-bound algorithms to further tighten the gap up to a user-dened precision (Section A.4). Evaluation on a wide set of real-world benchmarks available in the literature shows that nonconservative robust stability margins can be obtained in almost all cases. So we believe now that computing the exact value of µ is no longer an issue from a practical point of view.

Another criticism was that very few criteria could be evaluated with µ-analysis compared to other techniques such as Monte-Carlo simulations. It was true, and despite our eorts, it will remain partially. We proposed several algorithms to compute tight bounds on the skewed robust stability margin, the worst-case H ∞ performance level, the worst-case gain/phase/modulus/delay margins (Section A.5). . . So µ-analysis clearly allows to go beyond stability and to address many other practical issues. Nevertheless, it must be kept in mind that only parametric uncertainties and neglected dynamics can be considered (although a few applications to nonlinear systems have been reported in the literature). Other techniques must be used to go further, such as IQC-based analysis or evolutionary algorithms, which allow uncertainties, varying parameters and various kinds of nonlinearities to be considered at the same time. But even so, the size of the considered models is limited to avoid high conservatism and prohibitive computational time. µ-analysis and similar methods thus prove useful in the early validation stages, but there comes a time when simulations are inevitable at the moment. It seems therefore obvious that there is much to be gained from combining both approaches. And this is the message we are trying to convey to control engineers.

µ-analysis was nally criticized for being dicult to apply by non-expert users, which I can understand. I believe good theories only reveal their true potential when they become applicable to realistic problems. That is why I spend a lot of time developing tools to help both researchers and engineers get the most out of the methods I am working on. The SMART Library of the Systems Modeling Analysis and Control (SMAC) Toolbox for Matlab is one of them (Section A.6). It implements most of the µ-analysis based algorithms developed at ONERA during the last two decades, and it symbolizes the way I position myself as a research engineer. I am not a pure control theorist, others do that much better than me. And I am not an engineer either. I am somehere between the two, trying to bridge the gap between these two worlds. This is how my contribution should be understood. I sometimes propose heuristics without any theoretical proof. But I prefer a heuristic which works on most real-world applications, than a more rigorous approach which can only be applied to simple examples.

As can be seen in the literature, much has been done in the eld of µ-analysis, and this technique is now quite mature. Unfortunately, the same observation cannot be made for all robustness analysis techniques, and I could be criticized for having been primarily interested in µ-analysis at the expense of other methods. But many projects during and after my PhD thesis dealt with this subject, so I naturally continued along this path. And anyway, I am still young and I have quite a lot of time left to investigate other approaches! More seriously, I began considering time-varying parameters and uncertainties as well a long time ago because most aerospace vehicles are characterized by parameters that vary more or less rapidly. We rst proposed generalizations of the aforementioned µ-analysis tools to evaluate the stability and the performance properties of linear systems in the presence of both LTI and arbitrarily fast varying uncertainties. Two complementary solutions were developed: the rst one (in the frequency domain) is suitable for high-order models with few uncertainties (Section B.1), while the second one (in the time domain using an extended version of the KYP lemma) is better for low-order models with many uncertainties (not detailed in this manuscript due to space constraints). It Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice should be noted that beyond analysis, these techniques also allow to design a robust feedforward controller in order to improve performance. Nevertheless, in many practical applications, it is desirable to consider the rate of variation of time-varying uncertainties and parameters to get more accurate results. In this context, we proposed later a completely dierent strategy based on parameter-dependent Lyapunov functions (Section B.2). Several kinds of dependence can be considered, but the resulting optimization problem always boils down to solving an innite number of linear matrix inequalities. Rather than introducing some relaxation variables and working on sucient conditions, we proposed to solve the problem on a nite parametric grid and to check the result on the whole parametric domain using a fast and reliable µ-analysis based test. This strategy is symbolic of our work. Most of the aforementioned methods were not new, but the previously existing algorithms often had two major drawbacks when high-order systems were considered, namely a high computational time and a high conservatism. The central concern of our work and our main contribution have been to provide solutions to these problems.

Another issue that makes it dicult to convince control engineers to use modern robustness analysis techniques is that the considered systems must often be modeled using Linear Fractional Representations (LFR). Unfortunately in most industrial applications, physical systems are described using a mix of nonlinear analytical expressions and tabulated data, which are far from being in linear fractional form. . . But as no LFR means no µ-analysis, we had no other choice than developing dedicated tools that can be used by non-expert users. In general, a two-step procedure has to be implemented to obtain a suitable LFR: a linear model with a polynomial or a rational dependence on the system parameters is rst generated, and then converted into a linear fractional form. Several techniques already existed to perform the latter transformation and to overcome complexity. Following the same motivations as for the SMART Library, we implemented state-of-the-art algorithms in the GSS Library and proposed an intuitive yet very general way to describe LFR, as well as a user-friendly Simulink interface (Section C.1.4). This is not what we might call research, but sometimes you have to be pragmatic. We will have taken a major step forward if engineers are no longer afraid to turn their models into LFRs. On the other hand, the preliminary issue of converting the tabulated or irrational data into simple yet accurate polynomial or rational expressions had been paid much less attention, although it is of signicant practical importance. Most of the methods that existed at that time have two drawbacks: they only produce polynomial approximations, and all admissible monomials are usually nonzero regardless of their real ability to model the data. Yet, the additional degrees of freedom oered by rational expressions can lead to simpler expressions, and thus to avoid unnecessarily complex LFRs, which are usually source of conservatism and can even lead to numerical intractability. Moreover, computing approximations with sparse structure is benecial, since it is a natural way to prevent data overtting and to ensure a smooth behavior of the model between the points used for approximation. In this context, we developed several methods to ll this gap (Section C.1.3), and in the spirit of what we did before, we implemented the whole set of tools in the APRICOT Library, well organized for non-expert users (Section C.1.4). Finally, we proposed extensions to generate a reduced-order LFR from a set of large-scale MIMO state-space representations, representing for example an aerospace vehicle at various operating conditions (Section C.2).

While we are at it, let us take a closer look at aerospace vehicles. They depend on many parameters and are aected by plenty of uncertainties, varying or not, for which we now have a bunch of analysis tools at our disposal. But we are not out of the woods yet: they are also full of nonlinearities, among which saturations gure prominently. And this is a major issue. By limiting both the amplitude and the rate of the control signals, saturations induce particularly disturbing nonlinear phenomena (such as limit cycles), that can impair the closed loop performance or even jeopardise its stability. We tried to model saturations with time-varying gains to apply the aforementioned tools, but the results obtained in practice are most often disappointing. Thus, we decided to focus on more appropriate analysis tools. Based on the Lyapunov theory, they allow to compute a stability domain and to quantify performance degradation. But beyond analysis, there is also the problem of taking saturations into account during the design step. Two strategies are possible. Either stay in the linear domain at the price of a lower level of performance, by computing unsaturating control laws. Or be more adventurous by allowing saturations and adapting control signals as soon as one of them is active, so as to return as quickly as possible to the linear domain guaranteeing a well-controlled nominal behavior of the system. The second approach, known as anti-windup, had already proved successful in the past and we decided to go on in that direction. Indeed, aerospace applications cannot tolerate an unnecessary loss of performance in the nominal case. Our contribution was again pragmatic and was mainly twofold. First, we developed a methodology to design a reduced-order anti-windup controller of low complexity (Section D.2). Then we introduced modal constraints during the design to avoid too slow or too fast dynamics likely to lower performance or to cause implementation issues (Section D.3). And unsurprisingly, the resulting algorithms were grouped together with a Simulink interface in the AWAS Toolbox for Matlab, which was later updated and became the SAW Library of the SMAC Toolbox (Section D.4).

Plenty of ecient tools are now available to analyze robustness and to validate control laws, and those we have developed so far are just a drop in the ocean. But in most cases, they are mainly applied once the controllers have been computed. Yet it could be advisable to better integrate them into the design process, in the hope of reducing a little bit the number of iterations between design and validation in an industrial context. And this is what we are trying to do now. We have proposed several methodologies, among which one is inspired by dynamic inversion techniques and looks promising (Chapter E). It combines partially linearizing inner-loops with structured and robust outer-loops, which are designed using a non-smooth multi-model H ∞ optimization approach. It also includes a robustness analysis scheme providing worst-case congurations, which are then used to enrich the bank of design models and thus to iteratively improve the robustness properties of the designed outer-loops. And it seems simple enough to be implemented in a ight computer. But for the moment, it is more a prospect than an achievement, and we will talk about it again later.

This manuscript is deliberately concise and mainly contains personal contributions. It is not exhaustive in the sense that I decided to highlight only certain methods, either because they are important to me or because they are little known although they may have a practical interest. Chapter A is signicantly longer than the others. Robustness analysis, and µ-analysis in particular, has indeed been central to my work since day one. I do not always spend a lot of time on it, but I come back to it regularly. Moreover, I decided to focus on methods and tools rather than on their application. My philosophy is to propose general methods that can be applied to dierent kinds of systems. One could maybe do better by developing a specic technique for each application. But my experience is that control engineers do not have much time, so it is better to have few well-used methods than many ignored ones.

Remark: Chapters 1 and 3 present the topics I spent most of my time on. I cannot go into too much detail because of space constraints, so I simply present a summary with the main results. Chapters 2 and 4, on the other hand, deal with issues that I addressed several years ago, and which I have now put aside (but maybe not forever!). Finally, Chapter 5 illustrates my current desire to go further towards the development of advanced design methods and their implementation on xed wing UAVs.

Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice Chapter A µ-analysis based robustness tools Despite evermore powerful design tools and increasing computer power, control laws are still designed based on mathematical models, which signicantly simplify reality. A necessary but costly task consists in thoroughly validating them before they can be implemented. This involves numerous simulations of generally nonlinear and nonstationary models, which are as representative as possible of the real behavior of the considered physical system. However, it is certainly possible to signicantly reduce the number of simulations by directing them towards worst-case parametric congurations detected through a series of simplied robust stability and performance tests.

Several approaches can be considered in this perspective: µ-analysis [Ferreres, 1999], integral quadratic constraints [Megretski and Rantzer, 1997], Lyapunov-based techniques [Garulli et al., 2012], sum of squares [Chesi, 2010], evolutionary methods [Menon et al., 2009], randomized algorithms [Tempo et al., 2013]. . . The objective of this chapter is not to perform an extensive comparison of their advantages and drawbacks, but to focus on one of them, namely µ-analysis. This is the approach I have been working on most for a certain number of reasons already discussed in the introduction. And it is commonly accepted that this is the most suitable way to compute stability margins and performance levels for LTI systems aected by structured time-invariant uncertainties. The exact computation of the structured singular value µ being NP-hard [START_REF] Braatz | [END_REF], only lower and upper bounds on these quantities can usually be obtained with a reasonnable computational eort. Until recently, it was quite common with the available software to obtain a non-zero gap between the bounds, which could even be large in some cases (typically exible systems aected by real parametric uncertainties). This is undesirable, as it may be impossible to conclude whether the required level of robustness is guaranteed or not.

We have invested a great deal of eort in proposing solutions to this problem, as well as to the various recurrent criticisms mentioned in the introduction. This chapter summarizes our contributions. A complete strategy is rst described to compute accurate bounds on µ in Sections A.2 and A.3, and to bring the resulting gap to (almost) zero with a reasonable computational cost in Section A.4. A brief overview of what can be done with µ is then presented in Section A.5, where a series of pratical methods and computational tools are described to compute the (almost) exact value of the (skewed) robust stability margin, the worst-case H ∞ performance level, as well as the worst-case gain, phase, modulus and time-delay margins. Finally, Section A.6 briey presents the SMART Library for Matlab, which implements most of the µanalysis based tools we developed at ONERA during the last two decades.

A brief introduction to µ-analysis

Let us consider the standard interconnection of Figure A.1. M (s) is a continuous-time stable and proper real-rational transfer function representing the nominal closed-loop system. ∆(s) is a continuous-time block-diagonal operator:

∆(s) = diag(∆ 1 (s), . . . , ∆ N (s)) (A.1)
which gathers all model uncertainties. Each ∆ i (s) can be:

• either a time-invariant diagonal matrix ∆ i (s) = δ i I n i , where δ i is a real or a complex parametric uncertainty, and I n i is the n i × n i identity matrix,

• or a stable and proper real-rational unstructured transfer function of size n i × n i usually representing neglected dynamics.

-∆(s)

M (s) Let n = N i=1 n i . The set of all n × n matrices with the same block-diagonal structure and the same nature (real or complex) as ∆(jω) is denoted by ∆. Let then kB ∆ = {∆ ∈ ∆ : σ(∆) < k}, where σ (∆) denotes the largest singular value of ∆. To simplify notation, ∆(s) ∈ ∆ is used to specify that ∆(jω) ∈ ∆ for all ω ∈ Ω, where Ω denotes the frequency range of interest (equal to R + in the sequel without loss of generality). ∆(s) ∈ kB ∆ means in addition that ∆(s) ∞ < k. In other words, ∆ is the set of all admissible uncertainties, whose size is measured in terms of the H ∞ norm. In the sequel, the expression real problem is used when ∆(s) is only composed of real blocks corresponding to real parametric uncertainties. Conversely, the expression complex problem is used when ∆(s) is only composed of unstructured transfer functions, which become complex blocks when evaluated at a particular frequency.

The most ecient technique to analyze the stability of the interconnection of Figure A.1 in the H ∞ framework is certainly µ-analysis [Doyle, 1982], especially when high-dimensional systems are considered. The underlying theory [Ferreres, 1999; Zhou et al., 1996] is not broached as such in this document due to space limitations, but a few useful denitions and results are recalled below. Denition A.1 (structured singular value) Let ω ∈ R + be a given frequency. If no matrix ∆ ∈ ∆ makes I -M (jω)∆ singular, then the structured singular value µ ∆ (M (jω)) is equal to zero. Otherwise: 

sup ω∈R + µ ∆ (M (jω)) ≤ 1 k (A.3)
Denition A.2 (robust stability margin) The robust stability margin k r is dened as the largest value of k for which equation (A.3) holds. In other words, k r is the inverse of the largest value of µ ∆ (M (jω)) over the whole frequency range:

k r = sup ω∈R + µ ∆ (M (jω))
-1

(A.4)

The following conclusions can be drawn from the small gain theorem:

• the interconnection is stable for all admissible uncertainties ∆(s) of size less than k r ,

• there exists at least one admissible uncertainty ∆(s) of size k r for which the interconnection is unstable.

Problem A.1 (robust stability margin) With reference to Figure A.1, compute the robust stability margin k r dened in equation (A.4) for a given block structure ∆.

The exact computation of k r is known to be NP hard in the general case [Braatz et al., 1994],

so both lower and upper bounds k r and k r are computed instead. But even computing these bounds is a challenging problem with an innite number of frequency-domain constraints, since it requires to compute lower and upper bounds µ ∆ (M (jω)) and µ ∆ (M (jω)) on µ ∆ (M (jω)) for each ω ∈ R + . On the one hand, a wide number of very dierent approaches exist to compute upper bounds on k r (i.e. µ lower bounds). They are summarized and compared in Section A.2 on a wide set of real-world benchmarks. A strategy is also proposed to combine them, so as to improve accuracy while keeping a reasonable computational time. On the other hand, most of the computationally tractable methods to compute lower bounds on k r (i.e. µ upper bounds) rely on the so-called D and G scaling matrices. The problem is usually solved on a nite frequency grid with the risk to miss a critical frequency and to over-evaluate k r . An algorithm is presented in Section A.3 to address this issue, and applied to the aforementioned benchmarks. Unfortunately, the gap between the bounds on k r is sometimes large and concluding about robust stability is not always straightforward. Assume, for instance, that the uncertainties are normalized. Stability has to be investigated ∀∆(s) ∈ B ∆ and is guaranteed if and only if k r > 1. But if k r < 1 and k r > 1, no conclusion can be drawn. Strategies can then be implemented to tighten the gap between the bounds, among which branch-and-bound seems to be the most eective one, as shown in Section A.4.

2 µ lower bound computation

Survey of existing methods

This section is exhaustive in the sense that all methods that can reasonably be applied to real-world benchmarks are mentioned. Only a few exponential-time algorithms are omitted, as well as techniques with a very limited range of application. In all cases, both µ lower bounds and associated destabilizing values of the uncertainties are obtained. For most methods, frequency µ-analysis based robustness tools is xed during optimization. In this case, M (jω) and ∆(jω) are constant matrices, which are simply denoted by M and ∆.

Exponential-time methods

The rst methods to compute µ lower bounds were proposed in the 1980's and most of them are exponential-time. One of the best known was introduced in [De Gaston and Safonov, 1988] for non-repeated (n i = 1) real uncertainties and later generalized in [Sideris and Sanchez Pena, 1990]. It uses the mapping theorem of [Zadeh and Desoer, 1963]: the image of kB ∆ by the operator ∆ → det(I -∆M ) is included into the convex hull of the images of the 2 N vertices of kB ∆ . A µ lower bound is obtained by considering the position of these images with respect to the origin in the complex plane. Like the mapping theorem, the Kharitonov's theorem [START_REF] Barmish | [END_REF] and the edge theorem [Bartlett et al., 1988] can also be interpreted in a frequency domain approach and used to derive µ lower bound algorithms. These are not detailed here, but a few interesting references can be found in [Sideris and Sanchez Pena, 1990].

Then, the algebraic method proposed in [Dailey, 1990] for non-repeated real uncertainties searches for a destabilizing uncertainty ∆ ∈ kB ∆ such that all the δ i except 2 attain the maximal magnitude k, which can be achieved by simple matrix algebra operations. A one-dimensional halving search on k is performed to compute a µ lower bound. There are N (N -1)/2 ways to choose 2 uncertainties among N and 2 N -2 ways to set each of the N -2 others to -k or k, so N (N -1)2 N -3 searches are performed for each value of k. The method presented in [Elgersma et al., 1996] is quite similar. It is based on the computation of the smallest common real root of a system of linear polynomials using the Sylvester's theorem [van der Waerden, 1991]. The main dierence with [Dailey, 1990] is that both k and the two δ i which do not attain the maximal magnitude are computed in a single step. The optimal value of k is thus determined directly and no halving search is required.

More recently, a method was presented in [Matsuda et al., 2009] for (possibly repeated) real uncertainties. It consists of introducing b = N i=1 (n i + 1) -1 ctitious uncertainties δ 1 , . . . , δ b and rewriting the numerator of det(I -M (s)∆) as f (s) = p(s) + δ 1 . . . δ b [p 1 (s) . . . p b (s)] T , where p(s), p 1 (s), . . . , p b (s) are xed real polynomials. The stability of f (s) is then evaluated using the stability feeler introduced in [Matsuda and Mori, 2009], which leads to µ upper and lower bounds.

The algorithms mentioned in this section have dierent theoretical foundations. But they are all exponential-time, which means that they cannot be applied to most real-world benchmarks with a reasonable computational time. Thus, only polynomial-time algorithms are considered in the sequel.

Power algorithm

This technique can be used for all kinds of uncertainties. It is based on the following characterization [Young and Doyle, 1997]:

µ ∆ (M ) = max Q∈Q ρ R (QM ) (A.5)
where ρ R (QM ) is the largest magnitude of the real eigenvalues of QM , while Q is the set of all .5) denes a non-concave optimization problem, which is solved in [Young and Doyle, 1997] using a xed point iteration usually referred to as the power algorithm. No theoretical convergence guarantee exists. But if the algorithm converges, a local maximum, i.e. a µ lower bound, is obtained. In practice, convergence is usually ensured for purely complex Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice and mixed real/complex uncertainties. But in the purely real case, limit cycles often appear and no µ lower bound can be obtained. Nevertheless, a technique is proposed in [Young et al., 1995] to get a nontrivial µ lower bound when the power algorithm does not converge but returns nonzero values. Further improvements are also reported in [START_REF] Tierno | [END_REF][START_REF] Cheng | [END_REF][START_REF] Newlin | [END_REF].

∆ = diag(∆ 1 , . . . , ∆ N ) ∈ ∆ such that δ i ∈ [-1, 1] if ∆ i = δ i I n i is real and ∆ * i ∆ i = I n i if ∆ i is complex. Equation (A
A dierent way to solve problem (A.5) is proposed in [Dehaene et al., 1997] in the particular case of purely complex uncertainties (ρ R is then replaced with the spectral radius ρ). The steepest ascent and the conjugate gradient algorithms are used instead of a xed-point iteration. Unlike the power algorithm, which only provides a µ lower bound in case of convergence, a nontrivial bound is obtained at each iteration at the price of a higher computational cost.

Gain-based algorithm

This method was introduced in [Seiler et al., 2010] to address the convergence issues of the power algorithm when purely real uncertainties are considered. The initial µ problem is replaced with a series of worst-case H ∞ performance problems, which are eciently solved using the approach of [Packard et al., 2000]. In the mixed real/complex case, the real blocks of the destabilizing uncertainties are obtained using the aforementioned technique, while the complex blocks are computed using the power algorithm described above.

Poles migration techniques

These techniques are mainly dedicated to purely real problems, although they can in some cases be extended to handle mixed and complex uncertainties. The idea is to move an eigenvalue of the interconnection between M (s) and ∆ towards the imaginary axis, which requires to work in the time domain. The state matrix of the interconnection of Figure A.1 is A 0 = A + B∆(I -D∆) -1 C, where (A, B, C, D) is a state-space representation of M (s). An equivalent denition of the robust stability margin (A.4) can thus be derived:

k r = min ∆∈∆ {σ(∆), λ max (A 0 ) = 0} (A.6)
where λ max (A 0 ) = max i (λ i (A 0 )) and λ i (A 0 ) denotes the ith eigenvalue of A 0 .

A rst approach is to use a rst-order characterization of the variation dλ i of λ i (A 0 ) caused by a small variation d∆ of ∆. This can be expressed as dλ i = (uB+tD)d∆(Cv+Dw), where u/v are the left/right eigenvectors associated to λ i (A 0 ), t = uB∆(I-D∆) -1 and w = ∆(I-D∆) -1 Cv. A series of perturbations d∆ are computed, which progressively move the eigenvalues of A 0 towards the imaginary axis. Two algorithms exist. On the one hand, a series of quadratic programming problems are solved in [Magni et al., 1999] for each λ i (A 0 ). The uncertainty with minimum Froebenius norm which brings λ i (A 0 ) on the imaginary axis is rst determined, and then the one with minimum σ norm such that the interconnection remains at the limit of stability. On the other hand, [Ferreres and Biannic, 2001] notes that the power algorithm of [Young and Doyle, 1997] is quite fast, but often suers from convergence problems when purely real uncertainties are considered. A three-step procedure is proposed in this case. The initial problem is rst regularized by adding a small amount 1 of complex uncertainty, i.e. ∆ is replaced with ∆ + ∆ C , where ∆ C has the same structure as ∆ but can take on complex values [Packard and Pandey, 1993]. The power algorithm is then run at each point of a rough frequency grid, usually with good convergence properties. Using the resulting uncertainties as an initialization, a series or linear programming problems are nally solved, so as to nd the value ∆ of ∆ with minimum σ norm for which one of the eigenvalues of the initial interconnection becomes unstable. The resulting µ lower bound is equal to σ( ∆) -1 .

µ-analysis based robustness tools

More recently, a direct approach has been proposed by [START_REF] Iordanov | [END_REF]Iordanov et al., 2003]. It considers the optimization problem:

min ∆∈∆ σ(∆) such that λ max (A 0 ) = 0 (A.7)
which can be recast as a sequential quadratic programming problem and solved for example using the Matlab Optimization Toolbox [The Mathworks, 2017a]. In practice, a relaxed condition is considered to avoid convergence issues: the equality constraint is replaced with |λ max (A 0 )| ≤ , where is a small user-dened threshold. Problem (A.7) is non-convex and the result thus strongly depends on the initial value of ∆. Several strategies are combined in [Iordanov and Halton, 2015] to improve the resulting µ lower bounds.

Even more recently, problem (A.7) was considered again in [Apkarian et al., 2016] and solved this time with a nonsmooth bundle trust-region algorithm.

Direct optimization-based techniques

These algorithms are directly inspired by the denition of µ given in (A.2). A rst approach consists of directly solving the following non-convex optimization problem using standard nonlinear optimization tools such as the fmincon function of the Matlab Optimization Toolbox:

min ∆∈∆ σ(∆) such that det(I -M ∆) = 0 (A.8)
In practice, a relaxed condition is considered to avoid convergence issues: the equality constraint is replaced with σ(I -M ∆) ≤ in [Hayes et al., 2001; Bates and Mannchen, 2004], and with |det(I -M ∆)| ≤ in [Halton et al., 2008], where is a small user-dened threshold. Any kind of uncertainties can be considered, but this approach is especially relevant for purely real problems, since the number of decision variables signicantly increases when complex uncertainties are considered.

A formulation similar to (A.8) is considered in [Yazc et al., 2011] in the case of (possibly repeated) real uncertainties:

min ∆∈∆ λ 1 ,λ 2 ∈ R σ(∆) + (λ q 1 + λ q 2 )λ such that (det(I -M ∆)) = λ p 1 (det(I -M ∆)) = λ p 2 (A.9)
where p and q are odd and even positive integers respectively, and λ is a large penalty parameter. This optimization problem is solved using the modied subgradient algorithm based on feasible values (F-MSG) introduced in [Kasimbeyli et al., 2009].

Another variation is proposed in [START_REF] Brito | [END_REF]. The following optimization problem is rst solved for dierent values of k using the fmincon function of the Optimization Toolbox:

g(k) = min ∆∈kB ∆ (det(I -M ∆)) such that | (det(I -M ∆)) | ≤ (A.10)
where is a user-dened threshold. A function g is thus dened. A modication of the Newton-Raphson method called the secant method is then applied to determine the smallest value k of k such that g(k) = 0. A µ lower bound is nally obtained as the inverse of k.

A common feature of the previous optimization-based algorithms is that they all use standard nonlinear optimization tools, although the objective to be minimized is a nonsmooth function. Breakdowns might thus be encountered at points that are not local optima, because the latter are typically nonsmooth points in practice. In this context, [Lemos et al., 2014] proposes a nonsmooth optimization technique to solve (A.8), whose convergence to a local minimum is ensured.
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Geometrical approach

This method dedicated to (possibly repeated) real uncertainties combines randomization and nonlinear optimization [Kim et al., 2009]. The signs of the real and the imaginary parts of det(I -M ∆) are computed for randomly selected points on the surface of a given hyperbox in the uncertainty space R N . This hyperbox is enlarged until the four possible sign combinations are found, which means that it might contain values of δ 1 , . . . , δ N such that det(I -M ∆) = 0. A series of contractions and expansions are then performed to approach the singular region until the size of the box becomes smaller than some tolerance value.

Remark A.1 Except for the poles migration techniques, a classical strategy is to compute µ lower bounds on a predened frequency grid. An alternative is to compute bounds on a set of frequency intervals whose union covers the whole frequency range. This can be achieved by considering frequency as an additional uncertainty δ ω . An augmented interconnection M -∆ is obtained, where ∆ = diag(δ ω I m , ∆), m is the state dimension of M (s), and the frequency interval of interest is covered when δ ω ∈ R varies between -1 and 1 (see e.g. [Halton et al., 2008;[START_REF] Lemos | [END_REF]). A skew-µ problem (see Section A.5.2) is then to be solved, since δ ω is bounded.

Testing framework

Considered algorithms

The most relevant µ lower bound algorithms are summarized in Table A.1 and compared in Section A.2.3. The rst two are implemented in the function mussv of the Robust Control Toolbox for Matlab [The Mathworks, 2017b]. The fourth one is implemented in the SMAC Toolbox for Matlab (see [Roos, 2013] To compute the best possible upper bounds on k r , grid-based methods (1-2-6-7-8) are applied at each point of a 100-point frequency grid, composed of 50 logarithmically-spaced points within the system bandwidth and 50 additional points used to rene the grid in some frequency regions corresponding to weakly damped modes. Interval-based implementations are available for methods 6 and 7 (see Remark A.1). For these algorithms, the system bandwidth is divided into 6 and 4 frequency intervals of equal size on a logarithmic scale respectively. A coarse 10-point frequency grid is used for method 4. Finally, methods 3 and 5 do not require any frequency grid.
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List of benchmarks

As shown in Table A.2, 36 challenging benchmarks are considered here, corresponding to various elds of application, system dimensions and structures of the uncertainties. Some of them contain poorly damped modes, which often produce extremely sharp peaks on the µ plot, while others are characterized by large state vectors as well as numerous and/or highly repeated uncertainties. Purely real uncertainties are majority (benchmarks 1-29), since they are more common in engineering problems than complex or mixed ones (benchmarks 30-36). Moreover, the presence of complex uncertainties usually simplies the computation of µ upper and lower bounds, making them of less interest in the present study. All these benchmarks are described in the litterature and the associated references are provided in [START_REF] Roos | [END_REF] 

Numerical results

Computations were performed in 2014 using Matlab R2010b on a Windows 7 Workstation with a CPU Intel Xenon W3530 running at 2.8 GHz and 6 GB of RAM. Computational time would certainly be lower with a state-of-the-art computer, but this is not an issue here. Indeed, the main objective is to compare the algorithms, and it should be emphasized that all tests have been performed with the same computer. More detailed numerical results can be found in [START_REF] Roos | [END_REF].

Purely real problems

All algorithms are applied to benchmarks 1-29 and results are summarized in Table A.3, where μ∆ and µ ∆ denote the highest µ lower bound (i.e. the lowest upper bound on k r ) for the considered algorithm and the highest µ lower bound out of all algorithms respectively. The notations (g) and (i) denote the grid-based and the interval-based implementations of the algorithms (see Remark A.1). The mean computational time is computed for each algorithm over all benchmarks except the biochemical network (benchmark 29), which is signicantly more complicated than the others and requires a high computational eort. The poles migration technique of [Ferreres and Biannic, 2001] is the most ecient algorithm, with the highest accuracy (less than 1% on average for all 29 benchmarks) and also the lowest computational time (less than 1 second on average for benchmarks 1-28 and 47 seconds for the biochemical network). The poles migration technique of [START_REF] Iordanov | [END_REF] gives very good results too for all except 3 benchmarks, and the computational time remains reasonable (but still 20 times higher). This shows that poles migration is probably the most ecient way to compute accurate µ lower bounds for purely real problems. Moreover, an attractive feature of this approach is that frequency is not xed, which allows to detect critical frequencies corresponding to peak values of µ more easily. The gain-based algorithm of [Seiler et al., 2010], the direct nonlinear optimization technique (grid-based version) of [Halton et al., 2008] and the direct nonsmooth optimization technique (interval-based version) of [Lemos et al., 2014] also give quite satisfactory results in most cases, since the accuracy is about 10% on average. Nevertheless, these algorithms are much slower (especially the last two). This is partly explained by the fact that they compute a µ lower bound as a function of frequency, whereas the poles migration techniques focus on the peak values. Note also that the nonsmooth technique gives the best results in most cases but sometimes proves very conservative, whereas the nonlinear one usually produces bounds which are not the best ones but yet good ones. Moreover, µ-analysis based robustness tools interval-based versions allow to drastically reduce the computational time, but do not bring any signicant improvement in terms of accuracy. Then, the poles migration technique of [Magni et al., 1999] exhibits both a reasonable accuracy (less than 20% on average for all 29 benchmarks) and a very low computational time (about 1.0 seconds on average for benchmarks 1-28 and only 63 seconds for the biochemical network). Finally, the power algorithm of [Young and Doyle, 1997] often suers from convergence problems, especially for frequencies corresponding to peak values of µ ∆ (M (jω)). This is in stark contrast to the complex and mixed cases for which the convergence properties are excellent (see below).

Purely complex and mixed real/complex problems

The poles migration technique of [Ferreres and Biannic, 2001] and the geometrical approach of [START_REF] Kim | [END_REF] cannot be applied in the presence of complex uncertainties. Moreover, the gain-based algorithm of [Seiler et al., 2010] is not relevant when purely complex uncertainties are considered, since it reduces to the power algorithm of [Young and Doyle, 1997], and no improvement over the power algorithm is observed for the considered mixed real/complex problems. Therefore, these methods are not considered in The power algorithm of [Young and Doyle, 1997] is the most ecient algorithm, with the highest accuracy and almost the lowest computational time. This conrms its good convergence properties when mixed or complex uncertaintes are considered. The direct nonlinear optimization technique (grid-based version) of [Halton et al., 2008] also gives very accurate results, but the mean computational time is 2400 times higher. More generally, optimization-based techniques (algorithms 5-6-7) are not attractive in terms of computational time, since full complex blocks generate a large number of optimization variables (2n 2 i variables for a n i × n i block).

Results improvement

Purely real problems

The results presented in Section A.2.3 show that the best µ lower bounds are obtained for 26 purely real benchmarks out of 29 with the poles migration technique of [Ferreres and Biannic, 2001]. Moreover, the bounds computed for the other 3 benchmarks (20/26/29) are not very far from the highest values over all algorithms. Improving the poles migration technique to obtain the best results in all cases does not seem to be a trivial issue. A more promising idea is to combine dierent algorithms to get the most out of them. Apart from the poles migration techniques, the most ecient methods are the gain-based algorithm of [Seiler et al., 2010] and the global optimization tools of [Halton et al., 2008] and [Lemos et al., 2014]. The following three-step strategy is thus proposed in [START_REF] Roos | [END_REF]:
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2. The gain-based algorithm of [Seiler et al., 2010] (algorithm 2) is then executed for a few selected frequencies only using the previous results as an initialization. These frequencies can be those for which the uncertain system becomes unstable after algorithm 4 is applied or if a single uncertainty is considered. The frequency for which the lower bound on k r (i.e. the highest µ upper bound) is obtained is also a good candidate.

3.

A global optimization tool is nally applied using the previous results as an initialization.

Particle swarm optimization is implemented here, since it oers a bunch of tuning parameters (numbers of swarms, of particles in each swarm, of topologies. . . ), which allows to easily handle the trade-o between accuracy and computational time.

The improved µ lower bounds so obtained for benchmarks 20/26/29 are shown in The best upper bound on k r is obtained in all cases with the proposed combination.

The computational time is of course larger than if algorithm 4 is applied alone. Nevertheless, it remains much smaller than with algorithms 2 and 7, which produced the best results so far for benchmarks 20/26/29. The bound is even improved for benchmarks 26 and 29, for which a single application of any algorithm cannot bring the best value. The proposed strategy is implemented in the SMART Library of the SMAC Toolbox (see [Roos, 2013] and Section A.6).

Remark A.2 The method of [START_REF] Apkarian | [END_REF] was published after our comparative study was conducted. It is therefore not evaluated in this work. Nevertheless, it was applied by the authors to benchmarks 1-29 and results are very consistent with the strategy proposed in [START_REF] Roos | [END_REF]. It conrms once again that solving problem (A.7) is probably the best way to compute accurate upper bounds on k r , i.e. µ lower bounds.

Purely complex and mixed real/complex problems

The results presented in Section A.2.3 show that the power algorithm of [Young and Doyle, 1997] is the most relevant technique for purely complex and mixed real/complex problems. Nevertheless, the resulting upper bounds on k r are conservative in some cases: the power algorithm is slightly outperformed by other techniques for benchmarks 33/34/35. A careful investigation of several benchmarks shows that the main reasons for this are threefold:

• The power algorithm is applied at each point of a xed frequency grid. Unless by some stroke of luck, the critical frequency corresponding to the exact value of k r is usually not part of this grid, even if the latter is very tight.
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• The power algorithm almost always converges in the presence of complex uncertainties, but it sometimes requires a quite large number of iterations.

• Optimization problem (A.5) is non-concave. Thus, the accuracy of the resulting µ lower bound strongly depends on the way the power algorithm is initialized.

In this context, the following strategy introduced in [START_REF] Roos | [END_REF] can be implemented to improve the results of Section A.2.3. First, the power algorithm of [Young and Doyle, 1997] is classically applied at each point of a xed frequency grid. In most cases, the µ plot does not exhibit very sharp peaks in the presence of complex uncertainties. Thus, a reasonably rough grid (e.g. 20 frequency points) is usually enough to capture approximately the main peaks. Then, the grid is gradually tightened around the frequencies of these peaks until improvement in the µ lower bound becomes marginal. This strategy allows to address the rst two issues highlighted before. Indeed, the grid becomes very tight in the most critical frequency regions and the frequency corresponding to the exact value of k r can be detected with a very good accuracy. Moreover, repeatedly applying the power algorithm with a limited number of iterations (e.g. 100 iterations) at very close frequencies is roughly equivalent to applying it once with a large number of iterations, provided that it is initialized every time with the result obtained at the previous frequency. Finally, in order to address the third issue, the power algorithm is not only applied with the latter initialization, but also with one or more random initializations. The improved µ lower bounds so obtained for benchmarks 33/34/35 are shown in Table A The best upper bound on k r is obtained in all cases with the proposed strategy. The mean computational time over all purely complex & mixed real/complex benchmarks is 1.1 s.

It is exactly the same as with the standard call to mussv (see Table A .4). Indeed, the initial frequency grid is quite rough and it is only tightened in a few frequency intervals. Moreover, the number of power iterations performed at each frequency is quite low. The total computational time thus remains very reasonable. The enhanced call to the power algorithm is implemented in the SMART Library of the SMAC Toolbox (see [Roos, 2013] and Section A.6).

Remark A.3 Several techniques have been proposed to improve the convergence properties of the power algorithm in case of purely real problems [START_REF] Tierno | [END_REF][START_REF] Cheng | [END_REF][START_REF] Newlin | [END_REF]. But convergence is usually not an issue in the presence of complex uncertainties. These techniques are thus of little help in the present context.

Conclusion

The main contribution of this section is to provide a thorough comparative analysis of all practical methods to compute upper bounds on the robust stability margin k r , i.e. lower bounds on the structured singular value µ. It appears that the tradeo between accuracy and computational time is best handled by the poles migration technique of [Ferreres and Biannic, 2001] for Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice purely real problems and by the power algorithm of [Young and Doyle, 1997] for purely complex and mixed real/complex problems. Based on these conclusions, simple improvements and combinations are proposed to further improve the bounds with a reasonable computational eort. The resulting Matlab tools are evaluated on a wide set of 36 real-world benchmarks available in the literature. Results are conclusive, since the best bounds are obtained in all cases. The next step is to compute lower bounds on k r , i.e. guaranteed µ upper bounds on the whole frequency range.

3 µ upper bound computation 3.1 Classical (D, G)-scalings formulation

Most of the algorithms which can reasonably be applied to real-world benchmarks are based on the following result [Young et al., 1995; Fan et al., 1991]: Theorem A.2 Let M be a complex matrix and β > 0. If there exist matrices D ∈ D and G ∈ G which satisfy one of the following relations:

M * DM + j(GM -M * G) ≤ β 2 D (A.11) σ (I + G 2 ) -1 4 DM D -1 β -jG (I + G 2 ) -1 4 ≤ 1 (A.12)
where

D = {D = D * > 0 : ∀∆ ∈ ∆, D∆ = ∆D} and G = {G = G * : ∀∆ ∈ ∆, G∆ = ∆ * G}, then µ ∆ (M ) ≤ β.
The problem of minimizing β can be solved either optimally using an LMI solver or faster but suboptimally using a gradient descent algorithm.

Computing a lower bound on k r , i.e. an upper bound on µ ∆ (M (jω)) on the whole frequency range R + , is a challenging problem with an innite number of frequency-domain constraints and optimization variables, since Theorem A.2 must be applied for each ω ∈ R + . In practice, it is usually solved on a nite frequency grid only. However, a crucial problem appears in this procedure: the grid must contain the frequency for which the maximal value of µ ∆ (M (jω)) is reached. If not, the resulting lower bound on k r can be over-evaluated, i.e. be larger than the real value of k r . Unfortunately, the aforementioned critical frequency is usually unknown! To overcome this issue, several approaches have been proposed to compute µ upper bounds, which are guaranteed on the whole frequency range. One of the rst solutions was introduced in [Sideris, 1992] and then further investigated in [Helmersson, 1995;[START_REF] Ferreres | Direct computation of the maximal s.s.v. over the frequency range using the ν tool[END_REF]Ferreres et al., 1996;[START_REF] Ferreres | [END_REF]Young, 2001;Halton et al., 2008]. It consists of considering the frequency as an additional parametric uncertainty δ ω . An augmented operator ∆(s) = diag(δ ω I m , ∆(s)) is considered, where m is the order of M (s). A recursive application of Theorem A.2 then provides a guaranteed lower bound on k r . Alternatively, the problem can be solved by computing a single skew-µ upper bound, which is computationally cheaper and can be achieved using a rather straightforward generalization of Theorem A.2 (see Section A.5.2).

Unfortunately, this approach is intractable for high-order systems. Indeed, the number of decision variables associated to δ ω I m in the D and G matrices increases quadratically with m, and it can be quite large in real-world applications.

Another approach was proposed in [Ferreres et al., 2003] and improved in [Biannic and Ferreres, 2005; Roos and Biannic, 2010]. A µ upper bound β and associated matrices D and G are rst computed for a given frequency ω by setting M = M (j ω) in Theorem A.2. It is then slightly increased, i.e. β ← (1 + )β, so as to enforce a strict inequality:

σ (I + G 2 ) -1 4 DM (j ω)D -1 β -jG (I + G 2 ) -1 4 < 1 (A.13)
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The objective is then to compute the largest frequency interval I v containing ω, for which the increased upper bound β and the associated matrices D and G remain valid, i.e. such that ∀ω ∈ I v :

σ (I + G 2 ) -1 4 DM (jω)D -1 β -jG (I + G 2 ) -1 4 ≤ 1 (A.14)
Proposition A.1 shows that the determination of I v boils down to an eigenvalues computation.

Proposition A.1 Let (A M , B M , C M , D M ) be a state-space representation of M (s). Build the Hamiltonian-like matrix:

H = A H 0 -C H * C H -A H * + B H -C H * D H X D H * C H B H * (A.15)
where X = (I -D H * D H ) -1 and:

A H B H C H D H =    I 0 0 (I + G 2 ) -1/4 √ β    A M -j ωI B M D -1 DC M DD M D -1 -jβG    I 0 0 (I + G 2 ) -1/4 √ β   
Dene δ ω-and δ ω+ as follows:

δ ω-= max{λ ∈ R -: det(λI + jH) = 0} = -ω if jH has no positive real eigenvalue δ ω+ = min{λ ∈ R + : det(λI + jH) = 0}
= ∞ if jH has no negative real eigenvalue Then inequality (A.14) holds ∀ω ∈ I v where:

I v = [ω + δ ω-, ω + δ ω+ ] (A.16)
An iterative algorithm is nally implemented, which mainly consists of repeatedly applying the previous strategy to a list of intervals. A guaranteed µ upper bound, i.e. a lower bound on k r , is obtained as soon as the union of all intervals covers the whole frequency range. 3. A guaranteed lower bound on k r is given by 1/β max .

Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice The proposed algorithm is implemented in the SMART Library of SMAC Toolbox (see [Roos, 2013] and Section A.6). It is not based on a frequency grid to be dened a priori, with the risk of missing a critical frequency. On the contrary, the list of frequency intervals is updated automatically during the iterations, and no tricky initialization is required.

Remark A.4 A fairly similar approach is proposed in [START_REF] Kendall | [END_REF] and implemented in the function munorm of the Subroutine Library in Systems and Control Theory (SLICOT) for Matlab.

Numerical results

A lower bound k r on k r is computed using Algorithm A.1 for each of the 36 benchmarks listed in Table A.2. The same computer is used as in Section A.2.3. For the moment, the objective is to get the most accurate results, i.e. to ensure that the gap with respect to the best upper bound k r on k r computed in Section A.2.3 is as low as possible. Computational time is not an issue here and an LMI solver is used in step 2(b) of Algorithm A.1 whenever possible, i.e. when the number of repetitions of the uncertanties is not too large.

Purely real problems

For 19 benchmarks out of 29, the gap between k r and k r is less than 0.01%, which means that the exact value of k r is obtained. For the other 10 benchmarks, the gap is less than 10% in 4 cases, between 20% and 40% in 5 cases, and up to 215% for benchmark 27 (which has 28 uncertainties, 12 of them being repeated). The mean value of the gap over all benchmarks is 12.71%.

Purely complex and mixed real/complex problems For 6 benchmarks out of 7, the gap between k r and k r is less than 0.01%, which means that the exact value of k r is obtained. For the last one, the gap is 2.68%. The mean value of the gap over all benchmarks is 0.39%.

Use of the µ-sensitivities

The gap between the bounds on k r can have several causes. The most obvious ones are mentioned below:

1. The µ lower bound algorithms are conservative and they only provide an upper bound on k r , 2. A suboptimal result is obtained when the minimization of β in step 2(b) of Algorithm A.1 is performed with a gradient descent algorithm instead of an LMI solver, 3. The sucient characterizations of Theorem A.2 are not necessary, and they only provide a lower bound on k r .

In other words, is it the lower or the upper bound on k r which is responsible for this gap? Although there is no theoretical proof, it is observed in practice that the best k r upper bound obtained using the strategies proposed in Section A.2.4 almost always equals the exact value of k r . This will be highlighted in the next sections. So item 1 above is not really an issue. In contrast, two solutions are proposed in Sections A.3.4 and A.3.5 to address items 2 and 3 respectively, and to improve the accuracy of the µ upper bound. They both use the µ-sensitivities. The latter were introduced in [START_REF] Braatz | [END_REF], and they allow to quantify the extent to which a µ upper bound µ ∆ changes when a single uncertainty slightly varies in ∆.
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Pre-and post-multiply ∆ by a diagonal matrix A( j ) = diag(I n 1 , . . . , (1 -j )I n j , . . . , I n N ), so that the jth uncertainty is multiplied by (1j ) 2 while the others stay at their nominal values. Let then M j = A( j )M A( j ) (note that M 0 = M ). The jth µ-sensitivity is dened as:

S µ j = ∂ ∂ j µ ∆ (M j ) = lim j →0 + |µ ∆ (M ) -µ ∆ (M j )| j
Using the above formulation is numerically sensitive and the algorithm proposed in [START_REF] Douglas | [END_REF] is preferred here. The µ-sensitivities can be very useful to identify which uncertainties have the greatest inuence on stability. This can be interesting when the µ upper bound computation is based on solving large LMI problems. In such a case, only selected parts of the LMIs corresponding to the uncertainties with the largest µ-sensitivities are solved with a dedicated solver, while the others are solved using suboptimal and faster methods. This is illustrated for the (D, G)-scalings based formulation of Theorem A.2 in Section A.3.4, and for the more general and less conservative multiplier based formulation of [Fu and Barabanov, 1997] in Section A.3.5. Branch-and-bound techniques can also benet from this approach by iteratively cutting the uncertainty domain along the edges with the largest µ-sensitivities only, as described in Section A.4.

Partial LMI optimization of the scaling matrices

As already emphasized, the µ upper bound of [Young et al., 1995; Fan et al., 1991] can be computed either with an LMI solver or with a gradient descent algorithm. The rst approach allows to compute the minimum value of β such that (A.12) is satised, at the price of a large (and sometimes dissuasive) computational eort in case of highly repeated uncertainties (n i 1). In contrast, the second approach only gives a suboptimal result in most cases, but it is much faster. In order to master the numerical complexity while preserving the accuracy of the LMI-based technique, step 2(b) of Algorithm A.1 is adapted as follows. Initial values of D and G are rst obtained using the gradient descent algorithm. Selected parts of these matrices are then reoptimized using an LMI solver, based on the µ-sensitivities computation and on a user-dened maximum number of decision variables n opt , as described in [Lesprier et al., 2015c]. Remark A.5 The parameter n opt allows to handle the tradeo between accuracy and computational time at step 2(b) of Algorithm A.1. A small value makes the algorithm faster but does not signicantly increase the lower bound k r GD on k r obtained with the gradient descent method. On the contrary, a large value increases the computational time but makes the lower bound on k r tend to the optimal value k r LMI obtained with the full LMI optimization approach.

This technique is especially useful when both the gap between k r LMI and k r GD and the computational time required to compute k r LMI are large. The results obtained on selected benchmarks satisfying these conditions are summarized in Table A.7, where k r pLMI denotes the lower bound on k r computed using the aforementioned procedure. The maximum number of decision variables is set to n opt =80, so that the computation time to apply Algorithm A.1 is reasonable (ideally around 30 seconds). It can be observed that the gap between k r LMI and k r pLMI is usually quite low (third column) compared to the initial gap between k r LMI and k r GD (fth column), and that the computational time remains quite reasonable. Note that the last benchmark is not part of the list of Table A.2. It corresponds to a exible satellite model with 95 states and a 34×34 ∆ operator composed of 15 parametric uncertainties with the following structure: 3×1+8×2+1×3+3×4. For this benchmark, the gap is still high, but the improvement is nonetheless substantial since Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 3 µ upper bound computation 29 the initial gap between k r LMI and k r GD is very large. These results prove the capability of the method to compute an upper bound close to k r LMI with a computation time close to the gradient descent algorithm. The previous section deals with the case where the gap between k r LMI and k r GD is large. The case where the gap between k r and k r LMI is large is now considered. In this perspective, the multiplier based µ upper bound introduced in [Fu and Barabanov, 1997] is rst reviewed, which is a generalization of the (D, G)-scalings based µ upper bound of [Young et al., 1995]. The main results are based on the following lemma.

Lemma A.1 A matrix family A is nonsingular if there exists another matrix C (called a multiplier) such that He CA < 0 for all A ∈ A, where He X is the hermitian part of the matrix X.

In this section, it is assumed for simplicity reasons but without loss of generality that ∆ is only composed of parametric uncertainties, i.e. ∆ = diag(δ 1 I n 1 , . . . , δ N I n N ). This assumption is realistic anyway, since the gap between k r and k r LMI is usually quite low as soon as there is at least one complex block in ∆. The following theorem derives from Lemma A.1 and Denition A.1.

Theorem A.3 [Fu and Barabanov, 1997] Let M be a complex matrix and α > 0. If there exists a multiplier C ∈ C n×n such that:

He C * (I n -∆M ) < 0 (A.17) for all ∆ ∈ 1 α B ∆ , then µ ∆ (M ) ≤ α.
Equation (A.17) is linear in δ i , so B ∆ can be equivalently replaced with

B ∆ = {∆ ∈ ∆ : δ i = ±1}.
The aim is thus to nd the minimum value of α > 0 such that (A.17) holds for each of the 2 N matrices ∆ ∈ (1/α)B ∆ , which can be formulated as a GEVP (Generalized EigenValue minimization Problem): .18) where ν ∆ (M ) is called the multiplier based µ upper bound. If M has the following structure:

ν ∆ (M ) = min α∈R + ,C∈C n×n α subject to He C * (αI n -∆M ) < 0, ∀∆ ∈ B ∆ (A
M = AB * (A.19)
where A, B ∈ C n×q and q = rank(M ) ≤ n, then (A.17) can be equivalently replaced with:

He Ĉ * (I q -B * ∆A) < 0 (A.20)
µ-analysis based robustness tools where Ĉ ∈ C q×q . Hence, if M does not have full rank, solving (A.20) is obviously advantageous since the size of the multiplier is q × q, rather than n × n in (A.17). The following theorem then shows that ν ∆ (M ) is less conservative than the (D, G)-scalings based upper bound µ LM I ∆ (M ).

Theorem A.4 (adapted from [Fu and Barabanov, 1997]) For every structure ∆ and matrix M , ν ∆ (M ) ≤ µ LM I ∆ (M ). The multiplier-based method is thus attractive, since it allows to get a more accurate µ upper bound. Nevertheless, it suers from two main drawbacks:

1. This is an exponential-time method. Indeed, the GEVP (A.18) involves 2 N LMIs, which can be computationally very costly if the number of uncertainties is large.

2. It only provides a µ upper bound at a given frequency. Thus, a lower bound on the robust stability margin k r is usually computed on a frequency grid and can be over-evaluated, as already emphasized in Section A.3.1.

A way to address the rst issue is to solve (A.18) only for a limited number of uncertainties r < N and to use the (D, G)-scalings based formulation for the N -r others. The obtained upper bound ν r ∆ (M ) lies between ν ∆ (M ) and µ LM I ∆ (M ), yielding a slightly looser but more computationally-friendly bound than ν ∆ (M ). Moreover, the µ-sensitivities can be used to select the r uncertainties of ∆ with the greatest inuence on stability, as explained in Section A.3.3. M and ∆ are thus reordered, so that ∆ = diag(∆ 1 , ∆ 2 ), where ∆ 1 ∈ ∆ 1 ⊂ R p×p contains the selected r blocks (p = r i=1 n i ) and ∆ 2 the other N -r blocks. Let D ∈ D 2 and G ∈ G 2 be the scaling matrices associated to ∆ 2 , as dened in Theorem A.2. A rank decomposition

M = A 1 A 2 B * 1 B *
2 is also performed to reduce the number of decision variables, where A 1 , B 1 ∈ C p×q , A 2 , B 2 ∈ C (n-p)×q and q = rank(M ). The following problem must now be solved:

ν r ∆ (M ) = min α∈R + , Ĉ∈C q×q ,D∈D 2 ,G∈G 2 α subject to L 11 Ĉ * B * 2 + jA * 2 G B 2 Ĉ -jGA 2 -α 2 D < 0, ∀∆ 1 ∈ 1 α B ∆ 1 where L 11 = 2He Ĉ * (I q -B * 1 ∆ 1 A 1 ) + A * 2 DA 2 (A.21)
With this new formulation there are only 2 r LMIs to solve instead of 2 N , and thanks to the µsensitivities, only the most relevant ones are considered. Note that the solution to problem (A.21) is also a solution to the initial problem (A.20), as shown below.

Theorem A.5 (adapted from [Fu and Barabanov, 1997]) Suppose that there exist α > 0 and Ĉ ∈ C q×q such that (A.21) is satised. Then He Ĉ * (I q -B * ∆A) < 0 for all ∆ ∈ (1/α)B ∆ .

Let us now focus on the second issue. A method is proposed to determine on which frequency intervals the multiplier C (or Ĉ) computed at one particular frequency remains valid. It is based on the following theorem.

Theorem A.6 [Lesprier et al., 2015b] 

Let (A M , B M , C M , D M ) be a state-space representation of M (s). Let α > 0, ∆ ∈ 1 α B ∆ and C ∈ C n×n such that X = 2He C * (I n -∆D M ) is nonsingu- lar. Then He C * (I n -∆M (jω))
is singular if and only if jω is an eigenvalue of the following Hamiltonian matrix:

H = A M 0 0 -A * M + B M C * M ∆C X -1 C * ∆C M -B *

M

Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice Theorem A.6 can be used to compute the list of frequency intervals I v on which: .22) i.e. on which the multiplier C remains valid for a given uncertainty matrix ∆ ∈ 1 α B ∆ . Let jω 1 , . . . , jω k be the purely imaginary eigenvalues of H such that 0 < ω

He C * (I n -∆M (jω)) < 0 (A
1 < . . . < ω k . It is obvious that [0 ω 1 ] ∪ [ω 1 ω 2 ] ∪ . . . ∪ [ω k-1 ω k ] ∪ [ω k + ∞[= R + .
So it suces to pick a frequency ω t inside each of these k + 1 intervals and to test whether He C * (I n -∆M (jω t )) < 0. I v is composed of all the invervals for which this condition is satised. Remark A.6 The nonsingularity condition on X in Theorem A.6 is not restrictive in practice. Indeed, the feedthrough matrix D M is generally a null matrix when real systems are considered. In this case, X is always nonsingular, since X = 2He C * < 0. Moreover, several benchmarks have been studied, for which D M was not zero, and the condition on X was always satised.

Theorem A.6 is only valid for a multiplier C with full rank n. For the case where a multiplier Ĉ ∈ C q×q , q < n, is computed (e.g. using (A.20) or (A.21)), the following theorem is applied rst to derive a valid full-rank multiplier C ∈ C n×n so that Theorem A.6 can then be used.

Theorem A.7 [Lesprier et al., 2015b] Let M = M (jω) denote the frequency response of M (s) at a given frequency ω. Consider the reduced-rank structure M = AB * , where A, B ∈ C n×q and q = rank(M ). Assume that there exist Ĉ ∈ C q×q and α > 0 such that:

He Ĉ * (I q -B * ∆A) < 0, ∀∆ ∈ 1 α B ∆ (A.23) Let C = B ĈB * -EE * ∈ C n×n
, where > 0 is small enough and E ∈ C n×(n-q) is such that B E has full rank. Then:

He C * (I n -∆M ) < 0, ∀∆ ∈ 1 α B ∆ (A.24)
Remark A.7 Numerically speaking, a full-rank multiplier C is thus quickly computed from Ĉ using the above theorem. Indeed it suces to choose a small enough and a random complex matrix E such that B E has full rank. Note that the latter assumption is not restrictive and that a suitable E can be easily obtained.

The following algorithm is now proposed to compute a guaranteed multiplier based µ upper bound on the whole frequency range R + , i.e. a lower bound on k r .

Algorithm A.2 (computation of a lower bound on k r )

1. Initialization:

(a) Compute a µ lower bound α max (see Section A.2.4). (b) Let I = {R + } be the initial list of frequency intervals to be investigated. (c) Dene the number r of uncertainties with the highest µ-sensitivities to be put in ∆ 1 . µ-analysis based robustness tools (c) If q < n, apply Theorem A.7 to nd the corresponding full-rank multiplier C ∈ C n×n . Otherwise, set C = Ĉ. (d) Set α ← max(α, α max ). Apply Theorem A.6 for each uncertainty matrix ∆ j ∈

While

(1/α)B ∆ to compute the list of frequency intervals I v j on which (A.22) holds. (e) Set α max ← α. Update the intervals in I by eliminating the frequencies contained in j I v j . 3. A guaranteed lower bound on k r is given by 1/α max .

The results obtained on several benchmarks are summarized in Table A.8. These benchmarks are interesting, since the (D, G)-scalings based approach of [Young et al., 1995] Conservatism is drastically reduced with a reasonable computation time. Note that for benchmark 22, the use of the reduced-rank structure of M greatly decreases the computational burden. This property can be exploited for many realistic systems. It is also interesting to notice that the number of iterations to validate the multiplier based µ upper bound on the whole frequency range is reasonable, and even very small for benchmark 22. On the contrary, solving the problem on a frequency grid would require to consider a signicantly larger number of frequencies to get reasonably accurate results. This would imply a much larger computation time in addition to an impossibility to ensure that no critical frequency has been missed. Finally, 50 runs of Algorithm A.2 are performed on benchmarks 10 and 22. At each iteration, the r uncertainty blocks handled by the multiplier-based µ upper bound are randomly chosen at step 2(b) instead of being selected using the µ-sensitivities. The corresponding results are presented in Table A.9. The latter displays the minimum, the mean and the maximum values of the gap between k r MULT and k r , and compares them with the gap previously obtained in Table A.8. This clearly shows the relevance of using the µ-sensitivities.

Benchmark r

Gap between kr MULT and kr using the µ-sensitivities min/mean/max values (50 runs) Remark A.8 The method of [Fu and Barabanov, 1997] was extended in [START_REF] Chen | [END_REF] by considering a parameter dependent multiplier C(∆). The resulting µ upper bounds are necessarily less conservative than the ones computed using a constant multiplier C, but the LMI problem to be solved becomes more demanding. This extension is thus restricted to small-size problems and has not been considered in this work.

Conclusion

A practical method is rst proposed to compute lower bounds on the robust stability margin k r , i.e. upper bounds on the structured singular value µ. Unlike classical grid-based methods, the results are guaranteed on the whole frequency range, and there is no risk of missing a critical frequency. Moreover, the algorithm is computationally ecient and can be applied to high-order models with highly repeated parametric uncertainties. The resulting Matlab tools are evaluated on the same set of benchmarks as in Section A.2. The exact value of k r is obtained in 25 cases out of 36, and the mean gap over all benchmarks between the bounds on k r is only 10%. Some strategies are then proposed to improve the accuracy of the lower bounds on k r , while keeping a reasonable computational time. Firstly, the µ-sensitivities are used to identify the uncertainties, which have the greatest inuence on stability. When the classical (D, G)-scalings based µ upper bound is computed, the corresponding blocks of the matrices D and G are optimized with an LMI solver, while the other ones are determined using a suboptimal and faster method. Secondly, the multiplier-based µ upper bound of [Fu and Barabanov, 1997] is revisited. An algorithm is proposed to compute a guaranteed robust stability margin on the whole frequency range, and not only on a nite frequency grid. To alleviate the computational cost, the µ-sensitivities are also used to decide whether each uncertainty is treated with the more accurate multiplier based characterization or the cheaper (D, G)-scalings based one. Signicantly less conservative µ upper bounds are obtained for many benchmarks, but computational time becomes prohibitive for the most complicated ones. The next step is to further tighten the gap between lower and upper bounds on k r using branch-and-bound techniques, so as to approach the exact value in all cases and with a moderate computational eort.

Remark A.9 Several other techniques exist to compute µ upper bounds (see e.g. [De Gaston and Safonov, 1988;Ly et al., 1998;Lee and Edgar, 2003;[START_REF] Scorletti | [END_REF]). It could be worthwhile to perform a detailed comparison of all existing algorithms and to propose ecient combinations to get the most out of them. This would probably further improve the results reported in Section A.3.

4 Branch-and-bound to reduce conservatism

Standard algorithm

Conservatism is dened here as the relative gap η between the lower and the upper bounds on the robust stability margin:

η = k r -k r k r (A.25)
Despite the eorts reported in Sections A.2 and A.3 to improve the bounds on k r , η sometimes reaches unacceptable values, notably in the presence of highly repeated real parametric uncertainties (see Section A.3.2). To overcome this issue, a branch-and-bound algorithm can be used to ensure that conservatism remains below a specied threshold η tol [Balemi et al., 1991; Newlin and Young, 1997]. The idea is to partition the real parametric domain in more and more

Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice µ-analysis based robustness tools subsets until the relative gap between the highest lower bound and the highest upper bound computed on all subsets becomes less than η tol . This algorithm is known to converge for uncertain systems with only real parametric uncertainties [Newlin and Young, 1997], i.e. η can be reduced to an arbitrarily small value. However, it suers from an exponential growth of computational complexity as a function of the number of real uncertainties. The choice of η tol thus allows to handle the tradeo between accuracy and computational time.

A standard version of this branch-and-bound algorithm is rst applied to the benchmarks listed in Table A.2. Upper bounds on k r are computed using the strategies described in Section A.2.4, and lower bounds on k r are obtained using Algorithm A.1. Algorithm A.2 could have been used for some benchmarks to compute better lower bounds, but it has not been considered here, since it cannot be applied to all benchmarks with a reasonable computational time.

Purely real problems

For 19 benchmarks out of 29, the gap between k r and k r is already less than 0.01%, so no further improvement is needed (see Section A.3.2). For the other 10 benchmarks, branch-andbound allows to increase k r , leading to a gap less than 0.01% in 7 cases, and of 0.12%, 1.99% and 10.00% in the last 3 cases. The mean value of the gap over all 29 benchmarks is reduced from 12.71% to only 0.42%. And the exact value of k r is (almost) obtained in all but one case.

Purely complex and mixed real/complex problems For 6 benchmarks out of 7, the gap between k r and k r is already less than 0.01%, so no further improvement is needed (see Section A.3.2). For the last one, branch-and-bound allows to increase k r , leading to a gap less than 0.01%. The mean value of the gap over all 29 benchmarks is reduced from 0.39% to less than 0.01%. And the exact value of k r is obtained in all cases.

Remark A.10 In all cases where branch-and-bound is applied, k r is improved while k r is not. Although there is no theoretical proof, this shows that the k r upper bounds obtained in Section A.2.4 almost always equal the exact value of k r , i.e. that the best µ lower bound algorithms are almost always non-conservative. This justies the claim of Section A.3.3. However, despite these good results, computational complexity grows exponentially as a function of the number N of uncertainties. Thus, computing tight lower bounds on k r can be extremely long (it can take hours and even days for some benchmarks).

Improved algorithm

Two solutions are proposed in this section to improve the computational time, while maintaining the same level of accuracy. A strategy based on the progressive validation of the frequency range is rst proposed in [Roos et al., 2011]. Assume for example that a subset S and a frequency domain Ω are considered at step k of the branch-and-bound scheme. Algorithm A.1 is applied to compute a validated frequency domain Ω v ⊂ Ω such that det (I -M (jω)∆) = 0 holds ∀∆ ∈ S and ∀ω ∈ Ω v . During the next step, the analysis performed on each subset of S only considers the frequencies Ω nv = Ω Ω v which have not been validated at step k. Consequently, after a few steps, the analysis is restricted to very narrow frequency intervals corresponding to critical frequencies. This results in a drastic reduction of the computational load induced by a classical branch-and-bound procedure.

It is then proposed to use the µ-sensitivities to cut the uncertainty domain in a relevant way, so as to reduce the number of iterations and to decrease the computational time. The following algorithm is introduced in [Lesprier et al., 2015c]:
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Initialization:

(a) Choose the maximum allowable gap η between the lower and the upper bounds on k r . (b) Compute an upper bound k r on k r (see Section A.2.4). Let the candidate lower bound

k test r on k r be dened as k r = (1 + η)k test r . (c) Let E = {(S 0 , Ω 0 )}
be the initial list of elements to be tested, where S 0 = k test r B ∆ and

Ω 0 = R + . 2. While E = ∅: (a) Take an element (S, Ω) from E. (b) Compute M (s) such that the interconnections (M (s), ∆ ∈ S) and ( M (s), ∆ ∈ B ∆ ) are equivalent. (c) Apply Algorithm A.1 to determine the frequencies Ω v ⊂ Ω such that the µ upper bound is less than 1 for the normalized interconnection ( M (s), ∆ ∈ B ∆ ) computed at step 2(b). (d) If Ω v = Ω, compute the µ-sensitivities for a frequency ω ∈ Ω nv = Ω Ω v . Partition
S along the edge with the largest µ-sensitivity to get two subdomains S 1 and S 2 . Add (S 1 , Ω nv ) and (S 2 , Ω nv ) to E.

Remark A.11 A new upper bound on k r , i.e. a µ lower bound, is also computed occasionally, for example every 10 or 20 iterations. This is enough, since upper bounds on k r are usually very close or even equal to k r , as highlighted in Section A.4.1. If the new upper bound is smaller,

k test r
is updated as described in step 1(b) of Algorithm A.3 and the domain S associated to each element of E is adjusted accordingly.

Numerical results

Algorithm A.3 is applied to all benchmarks for which the gap between the lower and the upper bounds on k r is larger than 0.1%. The nal results obtained for all 36 benchmarks are summarized below:

• For 26 benchmarks out of 36, the computational time is negligible: less than 5 s for a gap less than 0.1%.

• For 8 benchmarks, the computational time is low: between 8 s and 80 s for a gap less than 1%, and between 10 s and 158 s for a gap less than 0.1%.

• Only 2 benchmarks (among the most complex ones with many uncertainties, some of them being highly repeated) require a larger but still reasonable computational eort:

benchmark 27 (launcher model with 30 states and a 45×45 ∆ matrix): 9 min 30 s for a gap less than 1%, much longer for a gap less than 0.1%.

benchmark 29 (biochemical network with 7 states and a 507×507 ∆ matrix): 22 min 30 s for a gap less than 10%, 3 h 04 min for a gap less than 5%, 14 h 54 min for a gap less than 1%, much longer for a gap less than 0.1%.

µ-analysis based robustness tools

Therefore, computing the exact value of the robust stability margin k r , i.e. the exact value of the structured singular value µ, is no longer an issue. Beyond this rather provocative claim stands a conclusion supported by 20 years of research, software development and practical validation. With very few exceptions, k r can be computed for all real-world applications with both an excellent accuracy (less than 1%) and a low computational time (less than 5 minutes and usually just a few seconds) [Roos and Biannic, 2018]. This is illustrated in Figure A.2, which must be interpreted as follows. Let (x, y) be the coordinates of any star sign. Then x corresponds to the number of benchmarks for which the computational time is lower than y. Note that benchmarks 27 and 29 are not represented, since it is not possible with the current tools to reduce the gap to 0.1% with a reasonable computational time. The most common use of µ-analysis is to compute the robust stability margin k r . But other criteria of practical importance can be evaluated. Modal performance is rst considered in Section A.5.1. The skewed structured singular value is then introduced. It serves as a basis to compute the skewed robust stability margin in Section A.5.2, the worst-case H ∞ performance level in Section A.5.3, and the worst-case input-output margins in Section A.5.4. All the associated algorithms are implemented in the SMART Library of SMAC Toolbox for Matlab, which is nally presented in Section A.6.

Modal performance

It is often desirable to quantify the performance degradations, which are induced by model uncertainties and appear before instability. In this context, the objective is not only to check that the poles of the uncertain system are stable, but also that they are suciently fast and well damped. In other words, the largest size of the uncertainties is to be computed, for which it can be guaranteed that the poles of the interconnection between M (s) and ∆ are located to the left of the truncated sector depicted in Figure A.3. The structured singular value µ is thus Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 5 What can be done with µ 37 computed along the boundary of this truncated sector instead of the imaginary axis, i.e. along the two following segments:

• segment 1: s = -α + jω for ω ≤ ω c , • segment 2: s = jωz for ω ≥ ω c , where z = [1 + j tan(φ)] and ω c = α/ tan(φ). Let (A M , B M , C M , D M ) be a state-space repre- sentation of M (s). Then: • M (-α + jω) = M 1 (jω) on segment 1, where (A M + αI, B M , C M , D M ) is a state-space representation of M 1 (s). • M (jωz) = M 2 (jω) on segment 2, where (A M /z, B M / √ z, C M / √ z, D M ) is a state-space representation of M 2 (s).
Therefore, the adaptation of Algorithm A.1 to handle modal performance is rather straightforward by considering M 1 (s) and M 2 (s) instead of M (s) [Roos et al., 2011]. The µ lower bound algorithm proposed in Section A.2.4 is modied in the same way. A perturbation ∆ is computed, which brings an eigenvalue of the interconnection of 

, i.e. ∆ = diag(∆ 1 , ∆ 2 ). Let ∆ s = diag(B ∆ 1 , ∆ 2 ) and kB ∆s = diag(B ∆ 1 , kB ∆ 2 ).
The skewed structured singular value is dened as follows [START_REF] Fan | A measure of worst-case H ∞ performance and of largest acceptable uncertainty[END_REF].

Denition A.4 (skewed structured singular value) Let ω ∈ R + be a given frequency. If no matrix ∆ = diag(∆ 1 , ∆ 2 ) ∈ ∆ s makes I -M (jω)∆ singular, then the skewed structured singular value ν ∆s (M (jω)) is equal to zero. Otherwise:

ν ∆s (M (jω)) = min ∆∈∆s {σ(∆ 2 ), det(I -M (jω)∆) = 0} -1 (A.26)
Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice µ-analysis based robustness tools Lemma A.2 (skewed robust stability margin) The interconnection of Figure A.1 is stable ∀∆(s) ∈ k s B ∆s , where the skewed robust stability margin k s is dened as the inverse of the largest value of ν ∆s (M (jω)) over the whole frequency range:

k s = sup ω∈R + ν ∆s (M (jω)) -1 (A.27)
In other words, k s is the H ∞ norm of the smallest uncertainty ∆ 2 (s) ∈ ∆ 2 such that there exists ∆ 1 (s) ∈ B ∆ 1 for which the interconnection between M (s) and ∆(s) = diag(∆ 1 (s), ∆ 2 (s)) ∈ ∆ s is unstable. ∆ 1 (s) and ∆ 2 (s) thus correspond to xed range and unbounded uncertainties respectively. ν-analysis is a more general framework than µ-analysis, since the classical structured singular value is recovered in Denition A.4 if ∆ 1 is empty. It also proves very useful in practice. For example, it allows to compute the maximal allowable amount of parametric uncertainties in the presence of neglected dynamics [Ferreres and Fromion, 1996]. And it provides a solution to several analysis problems, such as computing the worst-case H ∞ performance level (see [Roos, 2010; Fan and Tits, 1992] and Section A.5.3) and the worst-case gain, phase, modulus and delay margins (see [Lescher and Roos, 2011] and Section A.5.4). Similarly to k r , the exact computation of k s is NP hard in the general case, so both lower and upper bounds are computed instead. 

Skew-µ lower bound computation

Most of the µ lower bound algorithms surveyed in Section A.2.1 can be extended more or less easily to handle skew uncertainties. The objective here is not to study these generalizations in details, but to show that the most relevant methods highlighted in Section A.2.4 still perform very well in the skew case.

Purely complex and mixed real/complex problems

The power algorithm of [Young and Doyle, 1997] is the most ecient way to compute µ lower bounds. It can be easily extended as explained in [Ferreres and Fromion, 1996;Glavaski and Tierno, 1998;[START_REF] Holland | [END_REF]. Combined with the strategy detailed in Section A.2.4, it usually provides very good ν lower bounds. A signicant number of tests have indeed revealed that the exact value of ν can be obtained in many cases. This improved version of the power algorithm is implemented in the SMART Library of the SMAC Toolbox (see [Roos, 2013] and Section A.6).

Purely real problems

The poles migration technique of [Ferreres and Biannic, 2001] is the most ecient µ lower bound algorithm. It can be easily extended (see [START_REF] Roos | [END_REF]), and the main lines are summarized below. Similarly to the original algorithm briey described in Section A.2.1, the considered skew-µ problem is rst regularized by adding a small amount of complex uncertainty. In this perspective, a new block structure ∆ sc ⊂ C n×n is introduced, which satises ∆ s = ∆ sc ∩ R n×n [Packard and Pandey, 1993]. The power algorithm of [Ferreres and Fromion, 1996] is then applied at a given frequency ω i to the augmented interconnection between M a (jω i ) and

∆ a ∈ diag(∆ s , ∆ sc ), where M a (s) = M (s) √ M (s) √ M (s) M (s)
. Good convergence properties are usually observed in practice. Nevertheless, the resulting ν lower bound is not a lower bound for the original skew-µ problem. Indeed, an uncertainty ∆ 0 a = diag(∆ 0 , ∆ 0 c ) is obtained, which renders the matrix I -M a (jω i )∆ 0 a singular, but it cannot be claimed that I -M (jω i )∆ 0 is itself singular. Nevertheless, if is small enough, an eigenvalue λ 0 of the interconnection of Figure A.1 is usually located near the point jω i of the imaginary axis when ∆ = ∆ 0 . Starting from this good initial guess ∆ 0 = diag(δ 0 1 I n 1 , . . . , δ 0 N I n N ) ∈ ∆ s , the idea is now to move λ 0 through the imaginary axis to obtain a destabilizing uncertainty for the initial skew-µ problem. A solution is to introduce a perturbation d∆ = diag( δ1 I n 1 , . . . , δN I n N ) ∈ ∆. The problem is then to nd the uncertainty ∆ = ∆ 0 + d∆ = diag( ∆1 , ∆2 ) ∈ ∆ s with minimum σ( ∆2 ), which brings λ 0 on the imaginary axis. In this perspective, the rst-order relationship between the variation dλ of λ 0 due to a variation d∆ of ∆ 0 (see the subsection on poles migration techniques in Section A.2.1) is reformulated as:

dλ = N i=1 α i δi (A.28)
where

α i = (uB + tD) ∂∆ ∂δ i (Cv + Dw) and ∂∆ ∂δ i = diag 0 n 1 +•••+n i-1 , I n i , 0 n i+1 +•••+n N . A simple
linear programming problem is nally obtained:

min δi η s.t.              -1 ≤ δ 0 i + δi ≤ 1 for xed-range uncertainties -η ≤ δ 0 i + δi ≤ η for unbounded uncertainties λ 0 + N i=1 α i δi = 0 (A.29)
In the above formulation, the inequality constraints ensure that ∆ ∈ ∆ s , while the equality constraint forces λ 0 + dλ to lie on the imaginary axis once the perturbation d∆ is applied (or very near since a rst-order approximation is used here). Problem (A.29) can be eciently solved using existing softwares [The Mathworks, 2017a]. The minimum value η opt of η can thus be computed with a very low computational cost, as well as the corresponding values dλ opt and d∆ opt of dλ and d∆. Moreover, det(I -M (j ω) ∆) ≈ 0, where ω = λ 0 + dλ opt and ∆ = ∆ 0 + d∆ opt . This quantity is not exactly equal to 0, since (A.29) is just a linearized version of the problem to be solved. A solution to achieve equality is to replace ∆ with diag( ∆1 , α ∆2 ) and to perform a dichotomy search on α until |det(I -M (j ω)diag( ∆1 , α ∆2 ))| becomes small enough. An upper bound on k s is then given by αη opt , where α is usually very close to 1. The resulting ν lower bound is equal to (αη opt ) -1 . Remark A.12 If λ 0 is not suciently close to the imaginary axis, the rst order development (A.28) may not be accurate enough to directly move the eigenvalue onto the imaginary axis. A solution consists in partitioning the real segment which separates λ 0 from the imaginary axis, and to iteratively perform the migration on each sub-segment.

Remark A. 13 The frequency at which the interconnection of Figure A.1 becomes unstable is left free during optimization and it can be very far from the initial one. Thus, applying the aforementioned algorithm at each point of a rough initial grid is usually sucient to capture the most critical frequencies.

The above method is implemented in the SMART Library of the SMAC Toolbox (see [Roos, 2013] and Section A.6). It has been applied to the realistic examples proposed in [Lemos et al., 2014], and compared to the nonlinear and the nonsmooth optimization techniques of [Halton et al., 2008] and [Lemos et al., 2014]. Results are similar as in the classical µ case: the proposed algorithm gives the best upper bounds on k s for both examples with a very low computational time (a few seconds on average).

µ-analysis based robustness tools

Skew-µ upper bound computation

Theorem A.2 can be extended to handle skew uncertainties. The matrices D and G are split into two distinct blocks associated to the xed range and the unbounded uncertainties respectively, i.e. D = diag(D 1 , D 2 ) andG = diag(G 1 , G 2 ). If the following inequality derived from (A.11) holds:

M * D 1 0 0 D 2 M + j G 1 0 0 G 2 M -M * G 1 0 0 G 2 ≤ D 1 0 0 β 2 D 2 (A.30)
then ν ∆s (M ) < β. A skew-µ upper bound can thus be computed by directly minimizing β in (A.30) using an LMI solver. To alleviate the computational cost, another solution rst consists of reformulating inequality (A.12) in the same way as above. A dichotomic search on β is then applied (or equivalently a xed-point algorithm), and at each iteration a gradient descent algorithm is used to check quickly whether it can be satised or not. This is not detailed here for the sake of brevity, but more details can be found in [START_REF] Ferreres | [END_REF]. The resulting adapted version of Algorithm A.1 is implemented in the SMART Library of the SMAC Toolbox (see [Roos, 2013] and Section A.6). It has been applied to the examples of [Lemos et al., 2014]. In both cases, the lower bounds on k s are very good, and even equal to the upper bounds computed in Section A.5.2.2. The exact value of k s is thus obtained in both cases, which conrms the good results already obtained in the classical µ case.

Worst case H ∞ performance

Once robust stability is ensured, another question of interest is to determine whether the worst-case H ∞ performance of the system is satisfactory. Assuming the uncertainties are normalized, i.e. ∆(s) ∈ B ∆ , this can be formulated as follows: Problem A.3 (worst-case H ∞ performance level) With reference to Figure A.4 and assuming that k r > 1, compute the highest value k ∞ of the H ∞ norm T e→y (M (s), ∆(s)) ∞ of the map from e to y when ∆(s) takes all possible values in B ∆ .

---

∆(s) M (s) y e Figure A.4: Standard interconnection for worst-case H ∞ performance analysis
The following proposition is a direct consequence of the main loop theorem [Packard and Doyle, 1993] and allows to reformulate Problem A.3 as a specic skew-µ problem. It is assumed without loss of generality that both e and y are p-dimensional signals. Proposition A.2 The following statements are equivalent:

1. max ∆(s)∈B ∆ T e→y (M (s), ∆(s)) ∞ ≤ γ
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41 2. µ ∆a diag(I n , I p / √ γ)M (jω)diag(I n , I p / √ γ) ≤ 1 ∀ω ∈ R + , where ∆ a = diag(∆, C p×p )
Therefore, it appears that checking whether k ∞ is less than a given value γ amounts to computing the robust stability margin of the interconnection between diag(I n , I p / √ γ)M (s)diag(I n , I p / √ γ)

and an augmented uncertainty ∆ a ∈ ∆ a . The computation of k ∞ can be performed using a dichotomic search on γ. But a better solution is to note that a skew-µ problem can be solved instead. Indeed, statement 2. of Proposition A.2 is in turn equivalent to:

3. ν ∆a (M (jω) ≤ γ ∀ω ∈ R + , where ∆ a = diag(∆ 1 , ∆ 2 ) = diag(∆, C p×p )
Thus, an upper bound on k ∞ can be computed using a slightly modied version of Algorithm A.1. At step 2(b), γ is minimized under the following LMI constraint derived from (A.30):

M * D 1 0 0 I p M + j G 1 0 0 0 M -M * G 1 0 0 0 ≤ D 1 0 0 γ 2 I p (A.31)
Two strategies can be used to compute a lower bound on k ∞ depending on the nature of ∆(s):

• For purely real problems, a two-step procedure is implemented at each frequency ω i of a rough grid, in the spirit of the skew-µ lower bound algorithm described in Section A.5.2.2:

1. The unit ball B ∆ is investigated by iteratively:

computing the gradient of σ(T e→y (M (jω i ), ∆)), performing a line search to maximize this quantity (which boils down to computing the eigenvalues of a Hamiltonian-like matrix), until the problem is roughly solved at ω i .

2. Using the value of ∆ computed at step 1 as an initialization, a linear (if p = 1) or a quadratic (if p > 1) programming problem is repeatedly solved until convergence, so as to locally maximize σ(T e→y (M (jω), ∆)) with respect to both ∆ and ω.

A lower bound on k ∞ is nally obtained, as well as the associated value of ∆. The whole algorithm is thoroughly described in [Roos, 2010] and implemented in the SMART Library of the SMAC Toolbox (see [Roos, 2013] and Section A.6). Numerical results obtained on several high-dimensional systems show that the proposed algorithm compares very favorably with previously existing ones, and almost non-conservative bounds are obtained with a low computational time. Note that another approach was published recently in [Apkarian and Noll, 2017] after our comparative study was conducted. It is therefore not evaluated in this work, but very accurate results are reported.

• For purely complex and mixed real/complex problems, the skew version of the power algorithm presented in Section A.5.2.2 is applied.

Remark A.14 Problem A.3 assumes that there is a single performance channel between e and y. However, it is possible to consider several channels by splitting e = [e 1 . . . e q ] T and y = [y 1 . . . y q ] T . This leads to the following optimization problem:

k ∞ = max ∆(s)∈B ∆ max 1≤k≤q T e k →y k (M (s), ∆(s)) ∞ (A.32)
It suces to structure ∆ 2 and to solve a more general skew-µ problem using the algorithms presented in Section A.5.2.2 and A.5.2.3.

µ-analysis based robustness tools

Worst-case input-output margins

Structured robustness analysis considers that the systems uncertainties are perfectly identied and localized, which can be unrealistic. So in addition to the robust stability margin, it is often desirable to compute some worst-case gain, modulus, phase and delay margins to evaluate the eective robustness. In this perspective, the uncertain closed-loop model is rst opened at the point where those margins are to be calculated. It is then rearranged to obtain the interconnection of Figure A.4, in such a way that the uncertain closed-loop model can be recovered by directly connecting y to e. The following problem can then be stated.

Problem A.4 (worst-case input-output margins) With reference to Figure A.4 and assuming that k r > 1, compute the worst-case gain, modulus, phase and delay margins k g , k m , k p and k d , i.e. the highest value of the real gain, the complex gain, the phase shift and the time delay respectively that can be inserted between y and e without destabilizing the system when ∆(s) takes all possible values in B ∆ .

To address this issue, some additional uncertainties ∆ m (s) = diag (δ m,1 , . . . , δ m,p ) are introduced between e and y, such that e = ∆ m (s) y. The δ m,i correspond to real gains, complex gains, phase shifts or time delays. Their expressions are given hereafter:

• real gain: δ m,i = 1 + δi , δi ∈ R • complex gain: δ m,i = 1 + δi , δi ∈ C • phase shift: δ m,i = e jφ i , φ i ∈ [-π , π] • time delay: δ m,i = e -τ i s , τ i ∈ R +
For the gain and the modulus margins, the expressions of δ m,i are polynomial and can be written directly in linear fractional form. For the phase and the delay margins, however, the non-rational elements e jφ i and e -τ i s must be transformed rst. A bilinear transform is applied to replace e jφ i with 1-j δi 1+j δi

, where δi ∈ R. Similarly to e jφ i , this new expression has a unitary modulus. Moreover, its phase variation covers the whole interval [-π , π] when δi ∈ R. On the other hand, the case of the delay e -τ i s is more complicated because of the Laplace variable s. A solution proposed in [Lescher and Roos, 2011] consists of replacing it with a static rational complex function f ( δi ), where the range of variation of δi ∈ R depends on ω.

The structured uncertainties ∆(s) and the additional real or complex parametric uncertainties δi are nally stacked into a single block-diagonal operator ∆(s) in feedback loop with an augmented plant M (s), leading to an interconnection similar to that in Figure A.1. In this context, Problem A.4 can be reformulated as a skew-µ problem: nd the highest amplitude of the δi for which the interconnection is stable for all ∆ ∈ B ∆ . On the one hand, upper bounds on k g , k m , k p or k d are obtained using the algorithms described previously:

• the poles migration technique of Section A.5.2.2 for purely real problems where the gain, phase or delay margin is to be computed,

• the two-step procedure of Section A.5.3 for purely real problems where the modulus margin is to be computed,

• the power algorithm of Section A.5.2.2 for purely complex or mixed real/complex problems whatever the margin to be computed.
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On the other hand, lower bounds on k g , k m or k p can be computed using the adapted version of Algorithm A.1 presented in Section A.5.2.3. The case of the delay margin k d must be dealt with separately, since the range of variation of δi ∈ R depends on ω. This dependence can be treated using some results from [START_REF] Tits | [END_REF]]. The whole process is quite tedious and is not presented here for the sake of brevity. All details can be found in [Lescher and Roos, 2011], where an extension of Algorithm A.1 is proposed and validated on a realistic application.

6 An insight into the SMART library Despite numerous contributions to µ-analysis from many researchers during the past three decades, only few practical algorithms have been implemented. Some routines are available in the Robust Control Toolbox [The Mathworks, 2017b], but they cannot address all the aforementioned issues, although progress has been made recently with a new routine based on Algorithm A.1 to compute a guaranteed µ upper bound on the whole frequency range. In this context, the main purpose of the Skew-Mu Analysis based Robustness Tools (SMART) Library of the Systems Modeling, Analysis and Control (SMAC) Toolbox is to help bridging this gap between theory and practice. As already highlighted in the previous sections, it implements most of the µ-analysis based algorithms developed at ONERA during the last two decades [Roos, 2013; Roos et al., 2011]. It provides a complete suite of routines to compute the (skewed) structured singular value, the (skewed) robust stability margin, the worst-case H ∞ performance level, as well as the worst-case gain, modulus, phase and delay margins for linear time-invariant systems aected by time-invariant uncertainties. A full version can be freely downloaded from the SMAC website http://w3.onera.fr/smac/smart, which also provides a complete documentation as well as applicative examples. It has been evaluated on a large set of challenging benchmarks, corresponding to various elds of application, system dimensions and structures of the uncertainties.

Summary of the contributions

The main contributions presented in this chapter are briey summarized below, and a selection of related publications is given:

• Section A.2: detailed comparison of all existing methods to compute upper bounds on the robust stability margin k r , i.e. lower bounds on the structured singular value µ ; improvements and combinations of existing algorithms to further rene the bounds with a reasonable computational eort [Roos and Biannic, 2015; Fabrizi et al., 2014].

• Section A.3: computation of lower bounds on k r , i.e. µ upper bounds, which are guaranteed on the whole frequency range ; use of the µ-sensitivities to better handle the tradeo between computational time and accuracy ; improvement of the multiplier-based approach of Fu and Barabanov to make it reliable and computationally more attractive [Roos and Biannic, 2010;Lesprier et al., 2015b;2015c].

• Section A.4: branch-and-bound algorithms to further reduce the gap between the bounds up to the desired accuracy [Lesprier et al., 2015c; Roos et al., 2011].

• Section A.5: extensions to modal performance, skewed robust stability, worst-case H ∞ performance and worst-case gain/phase/modulus/delay margins [START_REF] Roos | [END_REF]Roos, 2010;Lescher and Roos, 2011].

µ-analysis based robustness tools

• Section A.6: implementation of all algorithms in the SMART Library of the SMAC Toolbox [Roos, 2013;Roos et al., 2011].

• all along Chapter A: validation of the proposed algorithms on a large set of realistic benchmarks [START_REF] Roos | [END_REF].

A few other issues have also been addressed over the past decade, but they have not been discussed in this chapter due to space constraints: determination of a guaranteed stability domain for (possibly uncertain) parameter dependent plants [Roos and Biannic, 2010], evaluation of specic clearance criteria using µ tools [Biannic and Roos, 2012], use of a probabilistic framework (see the future prospects at the end of this manuscript), extension of the proposed tools to discrete-time systems. . . Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice Chapter B Extensions to time-varying uncertainties µ-analysis is now well recognized as mature and ecient by the control community. Several practical issues can be adressed, as emphasized in Chapter A. Nevertheless, only time-invariant uncertainties can be considered, which may be restrictive in some applications, for example in the aerospace domain. It is thus desirable to develop some methods and tools to handle time-varying uncertainties and parameters as well.

In this perspective, the µ-analysis framework was extended in [Meinsma et al., 2000; Paganini, 1996; Shamma, 1994]. It is shown in these papers that the D and G scaling matrices classically used to compute a lower bound on the robust stability margin in the LTI case can still be used in the presence of mixed time-invariant and arbitrarily fast time-varying uncertainties. The idea is to consider either frequency dependent or constant blocks according to the nature of the uncertainties. The resulting optimization problem is convex, but it involves an innite number of both decision variables and constraints. Moreover, it cannot be solved independently at each frequency because of the constant blocks, and this can be computationally demanding.

Another approach has aroused a growing interest in the last twenty years. It consists of characterizing the uncertainties using integral quadratic constraints (IQC) [START_REF] Megretski | [END_REF]. In addition to time-invariant and arbitrarily fast time-varying uncertainties, this technique allows to consider uncertainties with bounded rates of variation [Jonsson and Rantzer, 1996;Helmersson, 1999;[START_REF] §lu | [END_REF]Pfer and Seiler, 2016]. Computing a robust stability margin or a worst-case performance level is usually achieved by transforming an innite set of frequency-domain constraints into a single state-space based LMI using the Kalman-Yakubovich-Popov lemma. But a special attention must be paid to computational complexity. The resulting optimization problem may indeed become intractable when the size of the system and the number of IQC used to characterize the uncertainties increase.

The main alternative to IQC analysis is to use parameter-dependent Lyapunov (PDL) functions [Gahinet et al., 1996;Haddad and Kapila, 1998;Amato et al., 1997;[START_REF] Montagner | [END_REF][START_REF] Chesi | [END_REF]. Indeed, this approach allows to introduce bounds on the rates of variation of the uncertain parameters in a relatively simple and natural fashion. Several kinds of dependence to the parameters can be considered: ane, multi-ane, quadratic, polynomial, rational. . . In practice, the ane case is often preferred to avoid an excessive increase in computational complexity. But whatever the form used, the resulting optimization problem almost always boils down to solving an innite number of LMI. Various techniques can be implemented to address this issue, but the large number of decision variables usually makes it dicult to consider high-order systems. Most of the above techniques can be used to assess the robustness properties of a linear system in the presence of mixed time-invariant and time-varying uncertainties. Nevertheless, when the dimension of the system increases, they usually suer the same drawback: a dramatic increase in the computational time. In this context, two methods are proposed in this chapter to alleviate the computational eort, while keeping the same level of accuracy. The rst one builds upon the (D, G)-scalings based characterization of [Meinsma et al., 2000; Paganini, 1996]. A twostep procedure is described in Section B.1. Some scaling matrices are rst computed on a nite frequency grid. A validation is then performed on the whole frequency range using a µ-analysis based technique inspired from Algorithm A.1. This procedure is repeated until all frequencies are validated. The second method, presented in Section B.2, is also a two-step procedure. A PDL function is rst optimized on a nite parametric grid. Its validity is then checked on the whole parametric domain using a fast and reliable µ-analysis based test. In case the validation fails, a worst-case conguration is added to the grid and the whole process is repeated.

The objective of this chapter is not to make an extensive comparison of all practical algorithms to analyze LTI systems in the presence of mixed time-invariant and time-varying uncertainties. The primary concern is to show how µ-analysis can sometimes play a key role in making the computation of robust stability margins and worst-case performance levels more ecient.

1 A µ-analysis based approach 1.1 Problem statement Let us consider the standard interconnections of Figure B.1. M (s) is a continuous-time stable and proper real-rational transfer function representing the nominal closed-loop system, exactly as in Chapter A. For the sake of simplicity and because this is often sucient in practice, ∆ is restricted to be a linear time-varying memoryless multiplication operator, i.e. w(t) = ∆(t)z(t) for all t ≥ 0. Moreover, it has a block-diagonal structure of the form:

∆(t) = diag(δ [1] (t)I n 1 , . . . , δ [N ] (t)I n N ) (B.1)
where n v = N i=1 n i and each δ [i] is a real-valued scalar function corresponding to a time-varying parameter or uncertainty. The set of all such operators is denoted by ∆, and kB ∆ = {∆ ∈ ∆ : ∆ i2 ≤ k}, where i2 denotes the induced L 2 norm.

-

∆ M (s) (a) w z $y$ - - - ∆ M (s) (b)
w z e y The following theorem provides a sucient condition of stability when the δ [i] are allowed to vary arbitrarily fast, i.e. when no assumption is made on their rates of variation [Paganini, 1996; Meinsma et al., 2000].

Theorem B.1 Let β > 0. If there exist matrices D ∈ D T V and G ∈ G T V such that the following relation holds for all ω ∈ R + :

M * (jω)DM (jω) + j(GM (jω) -M * (jω)G) ≤ β 2 D (B.2)
where

D T V = {0 < D = D T ∈ R nv×nv : ∀∆ ∈ ∆, D∆ = ∆D} and G T V = {G = G * ∈ jR nv×nv : ∀∆ ∈ ∆, G∆ = ∆ * G}, then the interconnection of Figure B.1(a) is stable for all time-varying uncertainties ∆ ∈ 1 β B ∆ .
The inverse of the smallest value of β such that (B.2) holds is a lower bound on the robust stability margin k r .

The characterization of Theorem B.1 is quite similar to the one dedicated to time-invariant uncertainties (see Section A.3). But a main dierence is worth being mentioned: the matrices D and G are constant on the whole frequency range. This is in stark contrast to the time-invariant case, where D and G can be dierent at each frequency.

Computing k r using Theorem B.1 involves an innite number of frequency-domain constraints. There are two classical ways to address this issue. A rst method consists of solving (B.2) on a frequency grid instead of the whole frequency range. But as already discussed in Chapter A, there is a risk to miss a critical frequency and to over-evaluate the robust stability margin. Another approach is to apply the KYP lemma, so as to transform the innite number of frequency-dependent inequalities (B.2) into a unique LMI. In this case, no critical frequency can be missed, but the computational time may be prohibitive for high-order systems.

Assume now that ∆ = diag(∆ T I , ∆ T V ) ∈ ∆ is a block-diagonal operator with time-invariant uncertainties ∆ T I ∈ ∆ TI as in Chapter A, i.e. real parametric uncertainties and/or neglected dynamics, but also real time-varying parameters or uncertainties ∆ T V ∈ ∆ TV as above. The associated scaling matrices are dened for all ω ∈ R + as

D(ω) = diag(D T I (ω), D T V ) ∈ diag(D T I , D T V ) and G(ω) = diag(G T I (ω), G T V ) ∈ diag(G T I , G T V ), where D T I , G T I ∈ C n i ×n i are dened as in Theorem A.2, and D T V , G T V ∈ C nv×nv are dened above. Theorem B.1 is modied as follows: Proposition B.1 Let β > 0. If there exist matrices D(ω) = diag(D T I (ω), D T V ) and G(ω) = diag(G T I (ω), G T V )
such that the following relation holds for all ω ∈ R + :

M * (jω)D(ω)M (jω) + j(G(ω)M (jω) -M * (jω)G(ω)) ≤ β 2 D(ω) (B.3)
then the interconnection of Figure The previous result can be extended to worst-case performance analysis. Proposition B.2 Let γ > 0 and M γ (s) = diag(I n i , I nv , γ -1 I p )M (s). If there exist matrices D(ω) = diag(D T I (ω), D T V , I p ) and G(ω) = diag(G T I (ω), G T V , 0 p ) such that one of the following relation holds for all ω ∈ R + :

M * γ (jω)D(ω)M γ (jω) + j(G(ω)M γ (jω) -M * γ (jω)G(ω)) ≤ D(ω) (B.4) σ D(ω)M γ (jω)D(ω) -1 -jG(ω) I + G(ω) 2 -1 2 ≤ 1 (B.5)
then T e→y i2 ≤ γ for all mixed time-invariant / time-varying uncertainties ∆ ∈ B ∆ . The smallest value γ * of γ such that (B.4) holds is an upper bound on the worst-case performance level k i2 .

A practical method is proposed in this section to solve the innite dimensional optimization problems of Proposition B.2, and to avoid the disadvantages of the classical grid-based and KYPbased techniques. Section B.1.2 is rst devoted to the computation of an upper bound on k i2 (i.e. a guaranteed worst-case performance level). A nontrivial extension to the design of robust feedforward controllers is then highlighted in Section B.1.3. Note that the extension to the computation of a lower bound on k r (i.e. a guaranteed robust stability margin) is straightworward, so it is not detailed here. Indeed, it suces to work with (B.3) instead of (B.4).

Remark B.1 (B.3) and (B.4) are only sucient conditions, that is why only a lower bound on k r and an upper bound on k i2 are obtained. We do not focus on computing upper bounds on k r and lower bounds on k i2 (see e.g. [START_REF] §lu | [END_REF]Peni and Seiler, 2016]).

Remark B.2 The uncertainties in ∆ T V can vary arbitrarily fast, i.e. no bounds on their rates of variation are taken into account. A Lyapunov-based approach which addresses this issue is proposed in Section B.2.

Performance analysis 1.2.1 Computation of a worst-case performance level

Proposition B.2 requires minimizing a linear objective γ under the LMI constraints (B.4). This problem has an innite number of optimization variables, namely the matrices D T I (ω) and G T I (ω). Let γ * be the global minimum solution. As already emphasized in Section B.1.1, there are two classical ways to compute γ * , which is the best upper bound on k i2 that can be computed using Proposition B.2.

The rst one is a state-space solution. It consists of applying the KYP lemma to transform the constraints (B.4) into a single LMI, so as to obtain an augmented nite dimensional optimization problem. This requires turning the frequency dependent scaling matrices D T I (ω) and

G T I (ω) into LTI systems D T I (s) = i α i D i (s) and G T I (s) = i β i G i (s),
where the lters D i (s) and G i (s) are xed while α i and β i are the optimization parameters. This approach has three drawbacks. First, only an upper bound on γ * is computed, since nite dimensional bases of D T I (s) and G T I (s) are used, which cannot cover the whole set of possible scaling matrices D T I (ω) and G T I (ω). Second, the choice of the bases is not obvious. Third, the order of the augmented state-space representation resulting from the application of the KYP lemma can be very high, since it contains M (s) as well as the D i (s) and the G i (s). This can lead to an excessive computational burden for the LMI solver.

The second approach consists of solving (B.4) on a frequency grid instead of the whole frequency range, which is a nite dimensional optimization problem. This was proposed in [Lind Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 1 A µ-analysis based approach 49 et al., 1995;Sparks et al., 1996;Paganini, 1996], but the result can be unreliable for reasons already discussed in Chapter A and in Section B.1.1. Only a lower bound γ on γ * is obtained, since the optimization problem is less constrained than on the whole frequency range, and it cannot be guaranteed that γ > k i2 . Moreover, the computational time can become prohibitive if a ne grid is considered to reduce the risk of missing a critical frequency. The idea here is to go one step further by rst solving the problem on a rough grid and then validating the result on the whole frequency range using a fast and reliable Hamiltonian-based technique, in the spirit of Algorithm A.1. The computational time will be much lower, but still larger than in the time-invariant case because of the constant matrices D T V and G T V , which make it impossible to independently solve the problem at each frequency. The inequalities (B.4) to be considered on the grid must indeed be stacked into a single one before an LMI solver can be used. The following algorithm is introduced in [Ferreres and Roos, 2007] to compute γ * with the desired accuracy.

Algorithm B.1 (optimal computation of an upper bound on k i2 ) 1. Dene an initial frequency grid (ω i ) i composed of a few points (or even a single one).

2. Solve the optimization problem of Proposition B.2 on the grid with respect to the frequency dependent matrices D T I (ω i ), G T I (ω i ) and to the constant matrices D T V , G T V . Let γ be the minimized value of γ. It is a lower bound on γ * .

3. Let γ = (1 + )γ, where > 0 is a user-dened threshold. For the values of D T V and G T V computed at step 2, check whether there exist frequency dependent matrices D T I (ω) and

G T I (ω) such that inequality (B.4) is satised ∀ω ∈ R + (see Section B.1.2.2)
. If the answer is yes, stop the algorithm since γ = (1 + )γ is an upper bound on γ * and γ * has been computed with a precision . Otherwise, let ω be a frequency where (B.4) is not satised.

Add ω to the grid and go back to step 2.

Algorithm B.1 eliminates most disadvantages of the classical grid-based techniques:

• the value of γ * is obtained, and not only a lower bound,

• the validation performed at step 3 guarantees that no worst-case frequency is missed,

• to some extent, the size of the frequency grid is minimized, as well as the computational time.

Validation with a frequency elimination technique

At the end of step 2 of Algorithm B.1, the constant matrices D T V and G T V are xed. Some matrices D T I (ω i ) and G T I (ω i ) are known, which satisfy inequality (B.4) at each point of the grid (ω i ) i for γ = γ. The objective is now to determine whether there exist matrices D T I (ω) and G T I (ω) such that inequality (B.4) holds on the whole frequency range for γ = (1 + )γ. The following proposition reformulates this problem as a µ test, which can then be solved eciently with Algorithm A.1.

Proposition B.3 [START_REF] Ferreres | [END_REF] 

Let D2 = D 1/2 2 and G2 = D -1/2 2 G 2 D -1/2 2
. Let:

F (jω) =     I 0 0 0 D2 0 0 0 I   M * γ (jω)   I 0 0 0 D-1 2 0 0 0 I   -j   0 0 0 0 G2 0 0 0 0       I 0 0 0 (I + G2 2 ) -1 2 0 0 0 I  
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Extensions to time-varying uncertainties

The following two assertions are equivalent:

1. There exist matrices D T I (ω) and G T I (ω) satisfying inequality (B.4) for all ω ∈ R + , where

D(ω) = diag(D T I (ω), D T V , I p ), G(ω) = diag(G T I (ω), G T V , 0 p ) and γ = (1 + )γ.
2. There exist matrices D T I (ω) and G T I (ω) satisfying for all ω ∈ R + :

σ D(ω)F (jω) D-1 (ω) -j G(ω) I + G2 (ω) -1 2 ≤ 1 (B.6)
where

D(ω) = diag(D T I (ω), I nv , I p ), G(ω) = diag(G T I (ω), 0 nv , 0 p ) and γ = (1 + )γ.
The rst assertion is the one to be checked at step 3 of Algorithm B.1. The second one consists of checking whether µ ∆c (F (jω)) ≤ 1 for all ω ∈ R + , i.e. whether the robust stability margin of

F (s) is larger than 1. The corresponding block structure is ∆ c = diag(∆ TI , C (nv+p)×(nv+p) ),
where n v and p are the size of ∆ T V and of the performance channel, i.e. the map between e and y, respectively. Algorithm A.1 can now be applied with β max = 1 as an initialization. It is interrupted if β max becomes strictly larger than 1, which means that a worst-case frequency has been found such that the test (B.6) cannot be satised. This frequency is added to the grid and another iteration of Algorithm B.1 is performed.

Convergence of the algorithm

Algorithm B.1 converges in a nite number of iterations. The proof is quite technical and it is omitted here, but all details can be found in [START_REF] Ferreres | [END_REF]. Moreover, it has been observed on several practical applications that the number of iterations is usually quite low.

A suboptimal but faster algorithm

The LMI optimization performed at step 2 of Algorithm B.1 can be very demanding. Moreover, the number of decision variables and the computational time increase with the number of frequencies, since D T I (ω) and G T I (ω) have to be determined at each point of the grid. So instead of performing a single LMI step, it can be worthwhile to compute D T I (ω) and G T I (ω) using a gradient descent algorithm as it is classically done when computing µ upper bounds (see Section A.3.1). In this context, a suboptimal but faster algorithm is introduced, which consists of iteratively optimizing with respect to the frequency dependent matrices D T I (ω) and G T I (ω) on the one hand, and to the constant matrices D T V and G T V on the other hand.

Algorithm B.2 (suboptimal computation of an upper bound on

k i2 )
1. Dene an initial frequency grid (ω i ) i as for Algorithm B.1. Let D T V = I nv and G T V = 0 nv . 2a. Let D T V and G T V be xed. At each frequency ω i , minimize γ with respect to D T I (ω i ) and G T I (ω i ) under the constraint (B.4). This can be achieved by performing a dichotomy search on γ and iteratively applying the gradient descent algorithm of [Young et al., 1995].

2b. Let D T I (ω i ) and G T I (ω i ) be xed. Minimize γ with respect to D T V and G T V such that (B.4) is satised at all grid points. This can be achieved by stacking all constraints into a single one and then using an LMI solver. If the decrease in γ after steps 2a and 2b have been applied is larger than a given threshold, return to step 2a to go on with the γ minimization process. Otherwise, let γ be the minimized value of γ, and continue to step 3.

3. Same as step 3 of Algorithm B.1.

Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 1 A µ-analysis based approach 51 Unlike Algorithm B.1, the value of γ at the end of iteration 2b is not guaranteed to be a lower bound of γ * . Thus it is not possible to quantify the accuracy of the nal upper bound γ on γ * . Nevertheless, Algorithms B.1 and B.2 can be combined to determine guaranteed lower and upper bounds of γ * with a given accuracy , while keeping a reasonable computational time.

Algorithm B.3 (combination of optimal and suboptimal algorithms)

1. Perform Algorithm B.2 to determine an upper bound γ of γ * .

2. Perform Algorithm B.1 to compute a lower bound γ of γ * and stop as soon as γ > (1 -ξ)γ, where ξ > 0 is the desired accuracy. Algorithm B.1 can be initialized with the frequency grid and the values of D T V and G T V obtained at the end of step 1. To reduce the computational time, this frequency grid can be reduced by keeping only critical frequencies corresponding to peak values of the µ upper bound.

These algorithms have been applied in [START_REF] Ferreres | [END_REF]] to a realistic missile example with 2 time-varying parameters and 8 time-invariant uncertainties, some of them being repeated up to 6 times. All algorithms perform well, and the suboptimal one allows to decrease the computational time with no loss of accuracy.

Extension to robust feedforward design

In many industrial applications, badly damped exible modes and interactions among the various degrees of freedom of the system can result in large tracking errors. Although this can be accounted for by an inverse-based feedforward controller, exible modes are often highly uncertain, which may result in a large degradation of performance caused by the feedforward components [Devasia, 2002]. This is a strong motivation to design robust feedforward controllers for systems that are aected by structured time-invariant and time-varying uncertainties. In this perspective, Proposition B.2 is now adapted, so that the methodology developed in Section B.1.2 can be further used. . Proposition B.2 can now be applied to M (s). However, the considered feedforward design problem is more complex than the worst-case performance problem solved in Section B.1.2, since inequality (B.4) is no longer convex. The rst step to recover convexity in order to apply the algorithms of Section B.1.2 is to set:

H(s) = n H i=1 θ i H i (s) (B.7)
where the lters H i (s) are xed, while the real parameters θ i are to be optimized. The orthonormal lters basis of [START_REF] Akcay | [END_REF]] is chosen to reduce numerical issues:

H i (s) = 2 (a i ) s + a i i-1 k=1 s -a k s + a k (B.8)
where a k is the conjugate of a k . So both the order n H and the poles -a k of the feedforward controller H(s) must be xed, but there is no constraint on the choice of n H . Proposition B.2 can then be reformulated as follows.

Proposition B.4 [START_REF] Ferreres | [END_REF] Let γ > 0. If there exist real parameters

(θ i ) 1≤i≤n H and matrices D(ω) = diag(D T I (ω), D T V ) and G(ω) = diag(G T I (ω), G T V ) such that the following relation holds for all ω ∈ R + :          D -N 11 DN * 11 + j (N 11 G -GN * 11 ) -(N 11 D + jG)N * 21 N 12 + N 13 n H i=1 θ i H i γI -N 21 DN * 21 N 22 + N 23 n H i=1 θ i H i γI          ≥ 0 (B.9)
where denotes the conjugate part of the hermitian matrix and where the dependence on ω is removed to simplify notation, then T e→y i2 ≤ γ for all mixed time-invariant and time-varying uncertainties ∆ ∈ B ∆ .

The proof of Proposition B.4 is omitted here for the sake of brevity, but it shows that inequalities (B.4) and (B.9) are equivalent. The latter being convex in D(ω), G(ω) and θ i , il can be handled by an LMI solver. All the algorithms detailed in Section B.1.2 can thus be applied.

The only dierence concerns step 2, which now consists of solving the optimization problem of Proposition B.4 with respect to the frequency dependent matrices D T I (ω), G T I (ω) and the constant matrices D T V , G T V as previously, but also to the real parameters θ i of the feedforward controller.

Remark B.3 Another method is proposed in [START_REF] Giusto | [END_REF], which does not require to write H(s) as in (B.7)-(B.8). Frequency responses H(jω i ) are rst computed independently at each point of a frequency grid (ω i ) i . They are then approximated so as to obtain a transfer function H(s). However, this last step is a delicate one, as a high-order feedforward controller may be necessary to get a good approximation. Moreover, there is no guarantee that performance is satisfactory on the whole frequency range.

Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 2 A Lyapunov based approach 53 Remark B.4 Another design method allowing to consider both time-invariant and time-varying uncertainties is proposed in [START_REF] Köse | Robust L 2 -gain feedforward control of uncertain systems using dynamic IQCs[END_REF][START_REF] Scorletti | Further results on the design of robust H ∞ feedforward controllers and lters[END_REF]. The main advantage is that the poles of the feedforward controller do not have to be chosen a priori. The counterpart is that the scaling matrices are restricted to a set of real rational transfer functions, whose order and denominator are xed. Moreover, the design problem is convex only in case a full-order feedforward controller is computed. The order of H(s) is thus greater than or equal to the order of the closed-loop system N (s), which can be quite large. A strategy could be to combine this method and the one presented in this section, in the spirit of what is proposed in Section D.2 to design anti-windup controllers. A full-order feedforward controller is rst designed. Its poles are analyzed and the ones which are too slow or too fast compared to the system dynamics are eliminated. The remaining ones are then used to dene the lters H i (s) in equation (B.8).

Conclusion

A practical approach is proposed in this section to compute guaranteed stability margins and performance levels in the presence of mixed time-invariant and arbitrarily fast time-varying uncertainties. It is shown that µ-analysis can be used both to handle the time-invariant uncertainties with a low computational time, and to validate on the whole frequency range the results initially obtained on a rough frequency grid. A convex extension to robust feedforward design is also highlighted. An application to realistic missile models is reported in [START_REF] Ferreres | [END_REF], which shows that computational time remains very reasonable despite the complexity of the problem.

Another method (not detailed in this manuscript due to space constraints) is proposed in [Roos and Biannic, 2006a] to address exactly the same issue. A state-space characterization of the robust stability margin k r is obtained thanks to an extended version of the KYP lemma. It involves the search for an extended Lyapunov matrix Z = R + jS where R = R * and S = S * , and for scaling matrices D and G that are assumed to be constant but nevertheless complex in the case of time-invariant uncertainties. Applications to several benchmarks of Table A.2 show that almost non-conservative results are obtained in the purely time-invariant case. Moreover, numerical results and computational time are similar to the ones obtained with the method of Section B.1 on the aforementioned missile example. Extensions to robust feedforward design, as well as to combined robust feedback/feedforward design, are also described in [Roos and Biannic, 2006b].

Finally, it is worth being emphasized that both approaches are complementary. On the one hand, the frequency-domain technique described in Section B.1 is adapted to high-order systems with a limited number of uncertainties. On the other hand, the time-domain method of [Roos and Biannic, 2006a] is better suited to low-order systems with a large number of uncertainties. 

A Lyapunov based approach

∆(t) = diag(δ [1] (t)I n 1 , . . . , δ [N ] (t)I n N ) (B.10)
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where n v = N i=1 n i and each δ [i] is a real-valued scalar function corresponding to a time-varying parameter or uncertainty. The set of all such operators is denoted by ∆. It is assumed in the sequel that ∆ is bounded:

∆ i2 ≤ 1 (B.11)
which means that δ(t) = (δ [1] (t), . . . , δ [N ] (t)) belongs to the unit hypercube I for all t ≥ 0. Note that any bounded operator (as dened above) can be normalized. Thus, imposing δ [k] (t) ≤ 1 for all k is not restrictive. It is also assumed that the rate of variation of each δ [k] is bounded: ] , ν [N ] ] (B.12) for all t ≥ 0. The set of all operators ∆ ∈ ∆ such that δ(t) ∈ I and δ(t) ∈ J for all t ≥ 0 is denoted by B ∆ (same denition as in Section B.1.1 plus the constraint on δ).

δ(t) ∈ J = [ν [1] , ν [1] ] × • • • × [ν [N
Remark B.5 The method proposed here can be applied to a wider class of operators (including for example time-invariant uncertainties as in Section B.1.1), but extensions are not presented here for the sake of simplicity. is stable for all operators ∆ ∈ B ∆ , i.e. whether the robust stability margin k r is larger than 1.

As already emphasized in the introduction, these problems can be addressed in dierent ways. The rst one consists of using IQC to characterize the uncertainties. The calculations can then be carried out in the time domain using the KYP lemma, or in the frequency domain by generalizing the method of Section A.1: the time-invariant uncertainties are handled by µ-analysis based tools, while the IQC characterization of [Helmersson, 1999] is used for time-varying ones. The second way, proposed in [Roos et al., 2012] and summarized here, is to use PDL functions.

Rather than introducing some relaxation variables or trying to deal with an innite dimensional problem, a two-step procedure is proposed in Section B.2.2 to solve Problem B.3 with a reasonable computational cost. The stability conditions are rst formulated in Section B.2.2.1 as an LMI feasibility problem involving the search of a suitable parameter-dependent Lyapunov function. This problem is then solved in Section B.2.2.2 for a nite number of parametric congurations and the validity of the resulting Lyapunov function is checked on the whole parametric domain using a µ-analysis based test in Section B.2.2.3. In case the validation fails, a worst-case conguration is determined using particle swarm optimization in Section B.2.2.4 and the whole process is repeated using an augmented set of parametric congurations. Extension of the method to performance analysis is nally described in Section B.2.3. and ∀(δ, ν) ∈ I × J :

Stability analysis

LMI-based formulation of the stability analysis problem

Φ(δ, ν) = A(δ) T P (δ) + P (δ)A(δ) + N k=1 ν [k] ∂P (δ) ∂δ [k] < 0 (B.16) Lemma B.
1 is a direct consequence of the Lyapunov's stability theorem in which the Lyapunov function is dened as:

V (x, δ) = x T P (δ)x (B.17)
Indeed, inequality (B.16) clearly implies that V is negative along any trajectory of the plant (characterized by δ(t) ∈ I and δ(t) ∈ J for all t ≥ 0). Unfortunately, this characterization of P (δ) is numerically intractable, since it involves an innite number of both variables and constraints. The rst problem is easily solved by restricting the parameter dependence to a polynomial expression: where:

P (δ) = x(d,N ) i=1 f i (δ)P i (B.
Ψ(δ) = diag   - x(d,N ) i=1 f i (δ)P i , Φ(δ, ν 1 ), . . . , Φ(δ, ν 2 N )   (B.20)
and for all j ∈ [1 , 2 N ]:

Φ(δ, ν j ) = x(d,N ) i=0 f i (δ)(A(δ) T P i + P i A(δ)) + N k=1 ν [k] j ∂f i (δ) ∂δ [k] P i (B.21) In equation (B.21), ν [k]
j is equal to either ν [k] or ν [k] for each k ∈ [1 , N ], thus leading to 2 N combinations. Indeed, equation (B.16) is linear in the variables ν [k] , which means that it is satised for all ν ∈ J if and only if it is satised on the 2 N vertices of J .

Grid-based resolution

Let us now focus on the second problem related to the innite number of constraints. Two options are typically available here. The rst one consists of using the Kalman-Yakubovic-Popov lemma [Iwasaki and Hara, 2005]. By introducing some additional variables, this technique allows Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 56 Extensions to time-varying uncertainties to convert the innite set of parameterized inequalities (B.19) into a unique LMI. Unfortunately, as soon as either the order of the plant or the degree of the polynomial Lyapunov function increases, the latter becomes too large for existing softwares. The second option is denitely more intuitive. It simply consists in gridding the hypercube I, so as to replace (B.19) with:

Ψ(δ l ) < 0 ∀ l ∈ [1 , M ] (B.22)
where δ l denotes the value of δ at the l th grid point. Checking whether there exists a PDL function which satises (B.22) is numerically tractable. Moreover, no conservatism is introduced, since (B.19) clearly implies (B.22). Of course, the converse is not necessarily true. The validity of the PDL function must then be checked a posteriori between the grid points.

Validity of the parameter-dependent Lyapunov function

At this stage, a PDL function P (δ) has been computed such that Ψ(δ l ) < 0 for all l ∈ [1 , M ]. The objective is now to check whether this function also satises Ψ(δ) < 0 for all δ ∈ I. By combining (B.14), (B.20) and (B.21), it can be easily checked that Ψ(δ) depends rationally on the δ [k] and can thus be written in linear fractional form as follows (see Chapter C):

Ψ(δ) = L 22 + L 21 ∆(I -L 11 ∆) -1 L 12 (B.23)
where ∆ = diag(δ [1] I n 1 , . . . , δ [N ] I n N ) is a structured matrix. Let us now assume that Ψ(0) < 0.

Using a continuity argument, there exists > 0 such that for all δ ∈ R N which satisfy δ ∞ < , then Ψ(δ) < 0 and thus det(Ψ(δ)) = 0. The following lemma is introduced in this context.

Lemma B.2 Let Ψ(δ) be dened by equation (B.23). Assume that

Ψ(0) = L 22 < 0. Let X = L 11 -L 12 L -1 22 L 21 .
The following two statements are equivalent:

1. det(Ψ(δ)) = 0 2. det(I -X ∆) = 0
The largest value of for which det(I -X ∆) = 0 for all δ ∈ R N such that δ ∞ < is by denition equal to 1/µ ∆ (X), where µ ∆ (X) denotes the structured singular value of X. If µ ∆ (X) < 1, then (B.19) is satised and the interconnection of Figure B.1(a) is stable for all ∆ ∈ ∆, i.e.

k r > 1. The validity of the PDL function can thus be checked using a single structured singular value computation. In practice, computing the exact value of µ ∆ (X) is known to be NP-hard in the general case (see Chapter A), but both upper [Young et al., 1995] and lower [Seiler et al., 2010] bounds µ ∆ (X) and µ ∆ (X) can be determined using polynomial-time algorithms. The following strategy can thus be implemented:

1. If µ ∆ (X) < 1, then µ ∆ (X) < 1 and stability is proved by the current PDL function.

2. If µ ∆ (X) > 1, then µ ∆ (X) > 1 and stability cannot be proved by the current PDL function, since there exists at least one value δ0 ∈ I such that Ψ( δ0 ) is not negative denite.

3. If µ ∆ (X) < 1 and µ ∆ (X) > 1, no conclusion can be drawn. In such a case, a recursive algorithm is implemented. It consists in splitting the unit hypercube I in more and more subsets until either the µ lower bound computed on one of the subsets becomes larger than 1 (stability cannot be proved) or the highest µ upper bound computed on all subsets becomes lower than 1 (stability is proved). Such an algorithm is described in [Roos and Biannic, 2010] and in Section A.4. It is guaranteed to converge if the size of the subsets is allowed to become arbitrarily small.
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In case the PDL function determined in Section B.2.2.2 does not satisfy Ψ(δ) < 0 for all δ ∈ I, a worst-case parametric conguration δ is determined, for which Ψ( δ) is not negative denite. Intuitively, a relevant choice is to compute the value of δ for which the constraint Ψ(δ) < 0 is the most violated, which can be formulated as follows:

δ = arg max δ∈I λ(Ψ(δ)) (B.24)
where λ(Ψ(δ)) denotes the maximum eigenvalue of the real symmetric matrix Ψ(δ). Problem (B.24) is nonconvex, which makes it dicult to compute the global maximum. Nevertheless, the objective here is not to capture exactly this maximum, but to quickly explore the parametric domain I to nd a conguration δ for which λ(Ψ( δ)) is as positive as possible. Particle swarm optimization [Clerc, 2006] is well adapted to address this issue. It is based on the swarm behavior of birds or shes around food, and consists in moving a set of particles in the continuous parametric domain I according to simple mathematical formulas. The movement of each particle is inuenced by its own best known position, and by the ones found by the neighboring particles. Such a strategy is expected to move the swarm towards the best solutions. It has been observed in practice that only a few iterations are necessary to nd a suitable worst-case conguration.

Once the latter has been computed, it is added to the grid, and a new PDL function is computed. Note that the search for a conguration δ such that λ(Ψ( δ)) > 0 is necessarily successful. Indeed, the optimization is initialized with the conguration δ0 obtained during the µ lower bound computation, for which λ(Ψ( δ0 )) ≥ 0 (see Section B.2.2.3).

Description of the algorithm

The results obtained in the previous sections are now combined. The following algorithm is introduced, which provides a solution to Problem B.1.

Algorithm B.4 (robust stability check)

1. Select the initial degree d and the maximum degree d max of the polynomial Lyapunov function. Choose the maximum number of iterations i max .

2. Dene an initial grid G 1 = (δ l ) 1≤l≤M of the unit hypercube I. Set i = 1. An LMI feasibility problem has to be solved, whose complexity increases with the degree of the PDL function and the number of grid points. To reduce the computational cost, it is then recommended to start with a low-order PDL function at step 1 (d = 1) and a rough grid at step 2 (M = 1).

If

Extension to performance analysis

The method described in Section B.2.2 can be easily adapted to solve Problem B.2. Let 

(A, [B 1 B 2 ], C 1 C 2 , D 11 
A(δ(t)) = A + B 1 ∆(t)(I -D 11 ∆(t)) -1 C 1 B(δ(t)) = B 2 + B 1 ∆(t)(I -D 11 ∆(t)) -1 D 12 C(δ(t)) = C 2 + D 21 ∆(t)(I -D 11 ∆(t)) -1 C 1 D(δ(t)) = D 22 + D 21 ∆(t)(I -D 11 ∆(t)) -1 D 12
Lemma B.3 Under the assumption that x(0) = 0, robust stability of system (B.25)-(B.26) is guaranteed and γ is an upper bound on k i2 if there exists a parameter-dependent Lyapunov function P (δ) such that ∀δ ∈ I:

P (δ) = P (δ) T > 0 (B.27)
and ∀(δ, ν) ∈ I × J : 

Φ(δ, ν) =      A(δ) T P (δ) + P (δ)A(δ) + N k=1 ν [k] ∂P (δ) ∂δ [k] + C(δ) T C(δ) P (δ)B(δ) + C(δ) T D(δ) B(δ) T P (δ) + D(δ) T C(δ) -γ 2 I + D(δ) T D(δ)      < 0 (B.

Conclusion

A practical method is proposed to assess the robustness properties of a system in the presence of linear time-varying perturbations with bounded rates of variation. A parameter-dependent Lyapunov function is rst optimized on a nite parametric grid. Its validity is then checked on the whole parametric domain using a fast and reliable µ-analysis based test. In case the validation fails, a worst-case conguration is added to the grid and the whole process is repeated. The proposed method is applied to a satellite in [Biannic et al., 2011] and to a ghter aircraft in [Roos et al., 2012]. Numerical results show that it compares favorably to IQC based analysis: for the same computational time, the results are less conservative. This demonstrates the benet of using Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 3 Summary of the contributions 59 µ-analysis to speed up the analysis process. Nevertheless, it should be kept in mind that an LMI problem must be solved at each iteration, which might lead to a prohibitive computational cost if the order of the system or the number of uncertainties is too large.

Summary of the contributions

The main contributions presented in this chapter are briey summarized below, and a selection of related publications is given:

• Section B.1: frequency-domain approach to compute guaranteed stability margins and worst-case performance levels in the presence of mixed time-invariant and arbitrarily fast time-varying uncertainties ; extension to robust feedforward design [START_REF] Ferreres | [END_REF].

• Section B.1: time-domain approach to compute guaranteed stability margins and worstcase performance levels in the presence of mixed time-invariant and arbitrarily fast timevarying uncertainties ; extensions to robust feedforward design and combined robust feedback/feedforward design [Roos and Biannic, 2006a;2006b].

• Section B.2: Lyapunov-based technique to compute guaranteed stability margins and worst-case performance levels in the presence of time-varying uncertainties with bounded rates of variation [Roos et al., 2012; Biannic et al., 2011].

The guiding line between these dierent methods is to demonstrate that µ-analysis can play a key role in assessing the robustness properties of a system even if some uncertainties are time-varying, and to provide computational tools that can be applied to realistic applications. Remark B.7 It would be interesting to compare all existing techniques to solve the aforementioned issues, in terms of both accuracy and computational time. And also to evaluate their conservatism on a large set of real-world benchmarks as in Chapter A, by computing worst-case uncertainties (see e.g. [START_REF] §lu | [END_REF]Peni and Seiler, 2016]).
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Generation of low-order LFR

A Linear Fractional Representation (LFR) is a model in which all known and xed dynamics of a given system are put together in a linear time-invariant plant M , while the uncertain and varying parameters are stored in a block-diagonal operator ∆, as shown in Figure C.1. LFR modeling is an essential step before the robustness properties of uncertain closed-loop systems can be evaluated, e.g. using the µ-analysis based tools implemented in the SMART Library of the SMAC Toolbox (see Chapter A and [Roos, 2013]). It can also be useful to design robust control laws (especially using H ∞ approaches) or gain-scheduled controllers. But the eciency of the aforementioned analysis and synthesis techniques strongly depends on the complexity of the considered LFR, which is measured in terms of both the size of the operator ∆ and the order of the plant M . An increase in complexity is usually source of conservatism, and can even lead to numerical intractability. In most industrial applications, physical systems are described using a mix of nonlinear analytical expressions and tabulated data. Therefore, a two-step procedure has to be implemented to obtain a suitable LFR: a linear model with a polynomial or a rational dependence on the system parameters is rst generated, and then converted into a linear fractional form. Several techniques such as object-oriented realization exist to perform the latter transformation. Although the minimality of the resulting LFR cannot be guaranteed, symbolic preprocessing techniques as well as numerical reduction usually permit to overcome complexity. Moreover, ecient software are available such as the LFR Toolbox for Matlab [Magni, 2006], which was recently replaced by the GSS Library of the SMAC Toolbox [START_REF] Biannic | [END_REF]. On the other hand, the preliminary issue of converting the tabulated or irrational data into simple yet accurate polynomial or rational expressions has been paid much less attention, although it is of signicant practical importance. In the aeronautic eld for example, most aircraft models include tabulated aerodynamic coecients determined by CFD (Computational Fluid Dynamics), wind tunnel experiments or ight tests, and several controller gains depend on the ight parameters in a tabulated fashion.

The motivations for developing enhanced computational tools dedicated to tabulated data approximation are twofold. The rst one is of physical nature. Computing sparse expressions, for which the number of terms in the numerator and the denominator is as low as possible, is a natural way to prevent data overtting and to ensure a smooth behavior of the model between the points used for approximation. On the other hand, building an LFR from a polynomial or a rational expression f (x 1 , . . . , x n ) results in a block diagonal matrix ∆ = diag(x 1 I p 1 , . . . , x n I pn ). The number p j of repetitions of each parameter x j in ∆ is strongly linked to the number of occurrences of x j in f . Indeed, although this is not an exact rule, the trend is as follows: the fewer the occurrences of x j in f (x 1 , . . . , x n ), the smaller the size of ∆. In other words, no matter how ecient the LFR generation tools can be, they are of little help if the expressions to be converted are unnecessarily complex. Hence, the need to get tractable LFR for analysis and design purposes is another strong motivation for generating sparse expressions.

The issue of converting tabulated or irrational data into polynomial or rational expressions is the core of this chapter. The case of scalar samples is considered in Section C.1. The problem is rst stated in Section C.1.1 and an overview of existing approximation methods is provided in Section C.1.2. Those allowing to get sparse expressions are then detailed in Section C.1.3 and implementation issues to obtain a low-order static LFR are nally discussed in Section C.1.4. The case of a set of MIMO LTI models is considered next, and a whole methodology is described in Section C.2 to obtain a low-order dynamic LFR.

1 From a set of scalar samples to a static LFR

Problem statement

Let {y k , k ∈ [1, N ]} be a set of samples (measurements, tabulated data. . . ) corresponding to dierent parametric congurations or operating points {x k , k ∈ [1, N ]} of a given system. More precisely, each x k = x 1 k , . . . , x n k ∈ R n contains the values of the n explanatory variables x 1 , . . . , x n for which the sample y k ∈ R was obtained. The main objective is to compute a polynomial or a rational function f : R n → R of reasonable complexity which approximates these data, i.e. such that f (x k ) is close to y k for all k ∈ [1, N ] in the sense of a certain criterion (root-mean-square error, maximum local error. . . ). Another objective is to ensure that the denominator of f has no root in the considered parametric domain, which is assumed here to be the smallest hyper-rectangle D ⊂ R n containing every sampled data (x k ) k∈ [1,N ] . This requirement guarantees that well-posed LFR are obtained.

Remark C.1 The case where an analytical expression f A : R n → R is available instead of N samples is not considered here (see e.g. [START_REF] Petrushev | [END_REF]). Moreover, this work only deals with approximation (or regression) and not with interpolation, which would aim at nding a rational function f such that the equalities f (x k ) = y k are strictly satised for a large number N of samples (see [Floater and Hormann, 2007] and references therein).

Overview of existing methods

For a given precision, an intuitive idea is to determine a rational function for which the numerator P and the denominator Q are two polynomials of the lowest possible degrees. This fairly simple strategy is followed by most existing methods. A classical linear least-squares Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 1 From a set of scalar samples to a static LFR 63 technique is usually applied in case the rational function is restricted to be polynomial [Magni, 2006]. In the general case, a nonlinear least-squares technique can be implemented to minimize the approximation error [The Mathworks, 2014], whereas a quadratic programming problem can be solved to ensure that the resulting rational function intersects a set of intervals containing the data [START_REF] Celis | [END_REF]. But all those techniques suer from the same drawback: all admissible monomials of P and Q are usually nonzero, regardless of their real ability to model the data. More generally, the question of which terms should be included in the model is often addressed by trial-and-error, or even ignored in practice. A way to deal with this question is to use orthogonal least-squares. This allows to evaluate the ability of each monomial to eciently model the data and therefore to select only the most relevant ones, leading to sparse expressions. This approach is applied in [Poussot-Vassal and Roos, 2012; Roos, 2009; Döll et al., 2008; Morelli and DeLoach, 2003] to model aeronautical data with polynomials, but until recently, practical methods to compute rational functions were still missing. Yet, the additional degrees of freedom can lead to simpler expressions and thus to smaller LFR. Consequently, two algorithms have recently been developed to obtain rational expressions with sparse structure, i.e. with as few monomials in P and Q as possible. A direct approach computing a rational expression in a single step thanks to a symbolic regression technique is proposed in [Hardier et al., 2013a], while an indirect approach creating a rational model by means of an intermediate surrogate modeling is introduced in [Hardier et al., 2013b]. All these methods are now briey presented in Sections C.1.2.1 and C.1.2.2.

Polynomial case

The most common approach consists in restricting f to be a polynomial function, that is:

f (x) = P (x) = n P i=0 a i r i (x) (C.1)
where (r i ) i∈[0,n P ] is a set of polynomial regressors and (a i ) i∈[0,n P ] are coecients to be determined.

• A classical solution consists in solving a linear least-squares (LS) problem with respect to the coecients (a i ) i∈[0,n P ] , i.e. to minimize the following criterion [Magni, 2006]:

C = N k=1 [y k -P (x k )] 2 (C.2)
• A well-known improvement to that approach relies on a preliminary orthogonalization process to decouple the regressors. As a result, the ability of each new regressor to reduce the criterion C can be evaluated regardless of those already selected. Hence, only the most relevant ones are considered, which amounts to a certain extent to minimizing the complexity of the polynomial approximation while still guaranteeing a low approximation error. This orthogonal least-squares (OLS) based variant was successfully applied by [Morelli and DeLoach, 2003]. It was later improved, allowing to compute a sparse polynomial expression satisfying the following global and local constraints:

C/N ≤ 1 |y k -P (x k )| ≤ 2 ∀k ∈ [1, N ] (C.3)
where 1 and 2 are some user-dened tolerances [Poussot-Vassal and Roos, 2012;Roos, 2009;Döll et al., 2008]. More details are given in Section C.1.3.1.
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Generation of low-order LFR

Rational case

The more general case where f is a rational function is now considered:

f (x) = P (x) Q(x) = n P i=0 a i r P i (x) n Q i=0 b i r Q i (x) (C.4)
where (r P i ) i∈[0,n P ] and (r Q i ) i∈[0,n Q ] are two sets of polynomial regressors, while (a i ) i∈[0,n P ] and (b i ) i∈[0,n Q ] are coecients to be determined.

• A rst method consists of solving a nonlinear least-squares (NLS) problem with respect to the coecients (a i ) i∈[0,n P ] and (b i ) i∈[0,n Q ] , that is to minimize the following criterion:

C = N k=1 y k - P (x k ) Q(x k ) 2 (C.5)
It is notably implemented in the Curve Fitting Toolbox of Matlab [The Mathworks, 2014], where several optimization tools can be used to compute a solution (Levenberg-Marquardt algorithms, trust-region methods...). One of its major drawbacks is that several local minima may exist due to the non-convexity. Hence, the results strongly depend on the initialization, which is not a trivial issue.

• A second method was introduced by [Markov et al., 1996] in the context of polynomial approximation and then generalized by [Celis et al., 2007] to the rational case. An uncertainty interval y k , y k is rst dened around each y k . A rational function is then determined which intersects all those intervals, i.e.

y k ≤ P (x k )/Q(x k ) ≤ y k ∀k ∈ [1, N ].
This can be achieved by solving a quadratic programming (QP) problem in the coecients (a i ) i∈[0,n P ] and (b i ) i∈[0,n Q ] with a strictly convex objective function.

Those two algorithms suer from the same drawback: all admissible monomials of P and Q are usually nonzero, regardless of their real ability to model the data. In this context, two additional methods have recently been developed to generate sparse rational approximations, which avoid data overtting and lead to simple yet accurate LFR.

• A third method proposed in [Hardier et al., 2013a] and described in Section C.1.3.2 looks for a rational approximation in a single step thanks to a symbolic regression technique.

Genetic programming (GP) is implemented to select sparse monomials and coupled with a nonlinear iterative procedure to estimate the coecients of the rational function.

• A fourth method proposed in [Hardier et al., 2013b] and described in Section C.1.3.3 creates a rational expression by means of an intermediate surrogate modeling (SM). It performs the data approximation by building a sparse modeling based on neural networks, before translating the result into a fractional form. A stepwise selection algorithm is used, combining the benets of forward orthogonal least-squares to estimate the regression parameters, and of particle swarm optimization to determine the best location of the regressors.

Remark C.2 Rational approximation is also considered in linear systems theory, for example in the elds of model reduction [START_REF] Karlsson | [END_REF] and system identication [START_REF] Deschrijver | [END_REF], where least-squares methods are usually implemented.

Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 1 From a set of scalar samples to a static LFR 65

Focus on sparse approximation techniques

Our main contribution consists of developing some approximation methods which produce sparse polynomial or rational expressions, with the ambition of limiting as much as possible the size of the resulting LFR. In this context, the emphasis is put in this section on the OLS, GP and SM methods presented in Section C.1.2. Note that the last two make use of techniques which are a little outside the main topics of this manuscript, but they are the result of a successful collaboration with a colleague specialized in modeling and identication. So it seems relevant to describe them briey.

Polynomial approximation using orthogonal least-squares

Let us assume for the moment that the polynomial regressors (r i ) i∈[0,n P ] are xed. A classic way of doing this is to choose n positive integers d 1 , . . . , d n and to consider all monomials such that the degree of x i is less than or equal to d i , in which case n P = (d 1 + 1) . . . (d n + 1) -1. The quadratic criterion (C.2) then only depends on the coecients (a i ) i∈[0,n P ] and the optimization problem to be solved can be reformulated as:

A opt = arg min A∈R n P +1 C(A) (C.6)
where:

C(A) = (Y -RA) T (Y -RA) (C.7) R =    r 0 (x 1 ) . . . r n P (x 1 ) . . . . . . . . . r 0 (x N ) . . . r n P (x N )    = R 0 . . . R n P (C.8)
A T = a 0 . . . a n P (C.9)

Y T = y 1 . . . y N (C.10)
and (R i ) i∈[0,n P ] are called the modeling functions. This is a classical linear least-squares problem, whose solution is given by:

A opt = (R T R) -1 R T Y (C.11)
Assume now that the modeling functions which compose the matrix R are made orthogonal, i.e. R T i R j = 0 for all i = j, as proposed in [Morelli and DeLoach, 2003] and [Roos, 2009]. The components of A opt are then expressed as:

a i,opt = R T i Y R T i R i , i ∈ [0 , n P ] (C.12)
and the corresponding value C opt of C(A) is given by:

C opt = Y T Y - n P i=0 (R T i Y ) 2 R T i R i (C.13)
Using orthogonal modeling functions is relevant for several reasons. First, R T R becomes diagonal and can be trivially inverted. Then, it can be observed in (C.13) that the reduction in the leastsquares criterion C(A) resulting from the inclusion of R i does not depend on R j whatever j = i. This allows to evaluate each orthogonal modeling function (an thus each monomial) in terms of its ability to reduce C(A), regardless of which other functions are selected. This property is exploited in [Roos, 2009;Poussot-Vassal and Roos, 2012], where an iterative algorithm is introduced. By progressively releasing some tolerances, the most relevant set of monomials is determined, for which the approximation error remains lower than a given user-dened threshold. All the other monomials are eliminated, thus leading to sparse polynomial expressions. This amounts to a certain extent to minimizing the complexity of the approximation formulas, and then the size of the resulting LFR. Some recent applications can be found e.g. in [Iannelli et al., 2017; Biannic et al., 2016].

Rational approximation using genetic programming

In the rational case, when the model structure has to be determined as a whole (numerator and denominator degrees, number and type of monomials), the approximation problem cannot generally be solved by means of classical techniques. Over a few variables, a sequential and systematic exploration cannot be carried out either: for example, with 2 explanatory variables and a maximum degree of 10, there are not less than 10 15 rational candidates available. Moreover, the dual-purpose optimization (model structure and coecients) is complicated by the fact that a rational model is no more Linear in its Parameters (LP). Fortunately, some promising techniques have recently appeared for global optimization, with the purpose of solving symbolic regression problems close to this one. This is especially the case of Genetic Programming (GP), and after a short description of its main principles, the way it can be adapted to rational approximation will be examined.

GP is part of the evolutionary family, as Genetic Algorithms (GA) are. It uses the principles of natural evolution to evolve a population of individuals randomly created, until a satisfactory solution is found. Opposite to GA, it is not based on a binary coding of information, but it uses a structured representation in the form of syntax trees. These trees are well adapted to solve structural or symbolic optimization problems, since they can have dierent sizes and shapes. The associated alphabet is also exible enough to encode mathematical equations, behavior models or computer programs. The rst works date back to the early 60s, but GP was really implemented and brought up to date only in the early 90s, thanks also to an increase in computing power [Koza and Poli, 2005]. An iterative process breeds a population and transforms the individuals generation after generation by applying Darwinian mechanisms: reproduction, mutation, crossover, but also gene duplication or deletion. These are applied to the hierarchically structured trees of the individuals, comprising a set of nodes which fall into two categories: the set F of internal nodes called functions or operators, and the set T of tree leaves called terminals.

All types of functions are acceptable in F: mathematical (+, -, ×, /, √ , exp . . . ), logical, conditional (tests) or user-dened. On the other hand, the terminals correspond to the function arguments but can also include some internal parameters or predened constants. The content of T is a central issue for the problem of a joint structural/parameter optimization. With LP models, a good choice is to take the regression coecients away and to include only the explanatory variables x i and possibly some predened constants. Hence, the individuals just represent the functional relationships between the x i . At each GP iteration, the regressor functions r j (and their number m ≤ n P + n Q ) are derived by analyzing the tree structure of any individual from its root. The numerical values of the regression coecients (a j , b j ) are then adapted afterwards, by applying any minimization technique to the squared error. Moreover, coupling GP with an OLS algorithm allows to solve the optimization of the (a j , b j ) very eciently. GP allows to produce polynomials by setting F = {+, ×} and T = {x 0 = 1, x 1 , x 2 , . . . , x n }, hence restricting the regressors to monomials. The modeling complexity can also be controlled Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 1 From a set of scalar samples to a static LFR 67 by penalizing some internal GP parameters like the tree depth, the number of branches/leaves, or by favoring the selection of the simplest operators. Practically, this can be achieved thanks to the tness function which is used to handle the GP mechanisms of evolution. Similarly to what is done in ridge regression, a penalty component can be added to the tness function to favor the simplest models and to prevent overtting.

Let us now move on to the considered rational approximation problem. The following considerations come to mind:

• the rational case extends the polynomial one (structured modeling expressed as the quotient of two polynomials),

• GP is fully justied since there is no other classical option available for jointly optimizing the structure of the numerator and the denominator (e.g. a brute-force search does not minimize the number of monomials),

• although a rational model is not LP, the numerator and the denominator remain LP when considered separately, and it would be a pity not to take advantage of that.

Hence, GP appears as a promising alternative for rational modeling, but a prior adaptation of the method is required to use it with maximum eciency. A dedicated tool named TRACKER (Toolbox for Rational Approximation Computed by Knowing Evolutionary Research) was thus developed, and it is briey described below (see also [Hardier et al., 2013a]).

Each component of the rational function (numerator or denominator) is represented by a single separate chromosome, which comes in a syntax tree form as usual and a priori includes several genes. The sets T and F are chosen as for the polynomial case, and a specic syntax rule is dened to ensure that all the non-terminal nodes located below a ×-type node are also ×-type nodes. This trick avoids creating useless branching, which could result in splitting and multiplying some monomials. Thanks to this architecture, a gene appears as a subtree linked to the root node of its chromosome through one or several ×-type nodes. A parse analysis of the dierent genes composing a chromosome also permits to avoid the creation of spurious genes by identifying and grouping them if any. To solve the parametric optimization, i.e. to estimate the regression coecients (a j , b j ) of any created tree, a well-known technique used to identify transfer functions in the frequency domain is implemented [Sanathanan and Koerner, 1963]. It consists of iteratively linearizing the quadratic cost function C dened in equation (C.5) and computing estimates of (a j , b j ) until convergence. At a given iteration, the coecients b i in the denominator are replaced by their most recent estimates bi , so they are xed during optimization. And the denominator is arbitrarily normalized by choosing b 0 = 1 and r Q 0 (x k ) = 1. Therefore, the kth term of C becomes linear in (a j , b j ) and reads:

n P i=0 a i r P i (x k ) - n Q i=1 b i y k r Q i (x k ) -y k 1 + n Q i=1 bi r Q i (x k ) (C.14) Let D(x k ) = 1 + n Q i=1 bi r Q i (x k
) be the estimate of the denominator. The vector of normalized outputs is written as y * = y 1 / D(x 1 ) . . . y N / D(x N )

T , and the kth row R k of the regression matrix

follows D(x k )R k = 1 r P 1 (x k ) . . . r P n P (x k ) -y k r Q 1 (x k ) • • • -y k r Q n Q (x k )
. With these notations, some estimates ŵ of the coecients w = a 0 a 1 . . . a n P b 1 . . . b n Q T are obtained by solving a linear LS problem, whose solution is ŵ = (R T R) -1 R T y * . This method relies on the fact that the approximation D(x k ) ≈ D(x k ) becomes fully justied when the iterative process has converged.

In practice, the latter is initialized with D(x k ) = 1, and 2 or 3 iterations are usually sucient to ensure convergence. In case of ill-conditioning, a few iterations of Levenberg-Marquardt optimization are used to recover a satisfactory result. Introduced into the selection process, this technique enables to evaluate the performance of each individual very easily, by coming down to a short series of ordinary LS problems. The overcost remains limited because the major part of the computations required by matrix R can be stored and reused through the loop.

Rational approximation using surrogate modeling

The use of surrogate modeling is becoming widespread in many scientic domains to replace the system or the reference model, when the latter is too restrictive to achieve some tasks like optimization, modeling, parameter identication. . . Hence, a wide range of techniques have been developed to build surrogate models eciently, i.e. with both accuracy and parsimony. For example, Neural Networks (NN) are recognized nowadays as an ecient alternative to represent complex nonlinear systems, and methods are available to model static nonlinearities such as those encountered when confronted with the considered approximation problem. The idea consists of using such methods to derive a rational model. In this perspective, an existing tool has been adapted. It was initially developed for aircraft modeling and identication purposes and is named KOALA (Kernel Optimization Algorithm for Local Approximation), see [Bucharles et al., 2012; Seren et al., 2011] for more details.

Let us rst briey describe the standard version of KOALA. Forward selection is used to choose the regressors, starting with an empty set and adding them one at a time in order to gradually improve the approximation. A preliminary orthogonalization technique is used to speed up this constructive process, allowing to evaluate each regressor regardless of those previously selected. Particle Swarm Optimization (PSO) is then used to optimize the regressors positioning [Clerc, 2006]. The coupling of this PSO algorithm with the constructive technique Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 1 From a set of scalar samples to a static LFR 69 detailed in [Seren et al., 2011] allows to perform structural and parametric optimizations jointly for dierent types of regressors, typically Radial Basis Function (RBF) networks, but also more general Local Linear Models (LLM) networks. The latter are obtained by replacing the RBF linear weightings w by ane expressions depending on the model inputs. It is thus expected that fewer regressors are required to achieve the same accuracy in most applications. For LLM, the following generic formulation is used for the approximating function f :

f (x) = m j=1 n i=0 w ji x i r j (x) (C.15)
where r j (x) represents the kernel value of the jth regressor function, and where x 0 = 1 to include the constant terms of the ane modeling into the second sum. By choosing Gaussian radial functions for r j , the jth term of f becomes:

f j (x) = n i=0 w ji x i exp - n i=1 (x i -c ji ) 2 σ 2 ji (C.16)
With this choice, KOALA optimizes both the ellipsoid centers c ji and radii σ ji associated to the radial functions (structure) and the weightings w ji (parameters).

A rst idea to use KOALA in the context of rational modeling is to convert equation (C.16) a posteriori into a rational form, i.e. once c ji , σ ji and w ji have been computed. A Pade approximation of the exponential function is used, so as to replace it with a rational function in reduced form. The latter is expressed as the quotient of two polynomials of degrees p and q, and the corresponding approximation of f j (x) becomes a rational function of degrees 2p + 1 and 2q for each explanatory variable x i . However, getting high quality approximations requires large values for q. Hence, the degree of the resulting rational function is penalized, with no guarantee about the accuracy of the global regression f (x).

A more relevant approach proposed in [Hardier et al., 2013b] consists of replacing the exponential function straight away with a Pade approximation, before optimizing c ji , σ ji and w ji using this new kind of regressors. The simplest transformation corresponds to the reduced form of degrees p = 0 and q = 1. Therefore, the resulting approximating function f is the sum of m components given by:

f j (x) = n i=0 w ji x i 1 + n i=1 (x i -c ji ) 2 σ 2 ji (C.17)
This solution is preferred here, since it leads to simpler and more accurate rational functions. Hence, another class of models based on Pade approximation is included into KOALA, in addition to the aforementioned RBF and LLM kernels.

A post-processing of the resulting rational function f is nally performed before an LFR can be computed, using for example the Matlab Symbolic Toolbox. Several options can be considered for gathering the m components f j (x) into a single rational function: global expansions of numerator and denominator, factorization of the denominator, sum of elementary rational terms. . . The latter appears to be the most relevant one, since it allows some simplications, and a factor of two can usually be gained in the nal LFR size.

Generation of low-order LFR 1.4 Implementation issues

Non singularity of the rational function

The coecients (b i ) i∈[1,n Q ] being determined, an important issue is now to check whether the denominator Q of f has no roots in the considered parametric domain, i.e. Q(x) = 0 for all x ∈ D. Such a requirement is indeed a prerequisite to build a well-dened LFR. Unfortunately, checking whether a multivariate polynomial of degree 4 or higher with real coecients has a real zero is NP-hard in the general case [Blum et al., 1998]. A classical strategy is therefore to focus on sucient conditions, and some methods based on parameter-dependent slack variables [Sato, 2009] or sum-of-squares [Shor, 1987] have been proposed. They give quite accurate results, but they are likely to become computationally demanding if some multivariate polynomials of high degrees are considered.

An ecient alternative based on µ-analysis is proposed here. In this perspective, Q(x) is rst converted into an LFR as depicted in Figure C.1, where M is a xed matrix and p+1) is partitioned in accordance with this interconnection, the following relation holds:

∆ = diag(x 1 I p 1 , . . . , x n I pn ) ∈ R p×p . If M = M 11 M 12 M 21 M 22 ∈ R (p+1)×(
Q(x) = M 22 + M 21 ∆ (I p -M 11 ∆) -1 M 12 (C.18)
It is assumed here without loss of generality that D is the unit hypercube, i.e.

x i ∈ [-1, 1] for all i ∈ [1, n]
, which can always be achieved using a suitable ane transformation. The following technical lemma is then introduced, where M 22 = Q( 0) is assumed to be nonzero (otherwise, it could directly be concluded that Q has a real zero in D).

Lemma C.1 Let X = M 11 -M 12 M -1 22 M 21 . Then for all x ∈ D:

Q(x) = 0 ⇔ det(I p -X∆) = 0 (C.19)
This result shows that the considered nonsingularity check is strongly linked to the notion of structured singular value (see Chapter A). Computing the exact value of µ ∆ (X) is NP-hard, but ecient polynomial-time algorithms allow to compute both lower and upper bounds µ ∆ (X) and µ ∆ (X) [Seiler et al., 2010; Young et al., 1995]. The following algorithm can then be implemented:

• If µ ∆ (X) > 1, a value x ∈ D has been computed, for which Q(x) = 0.
• Else, if µ ∆ (X) < 1, it can be concluded that Q(x) = 0 for all x ∈ D.

• Otherwise, nothing can be assessed. A strategy is then to divide D recursively and to apply the whole procedure again on each subdomain until one of the two aforementioned scenarios occurs.

Remark C.3 Such a procedure is heuristic. Nevertheless, its convergence properties appear quite good in practice. Indeed, it can usually be observed that the smaller a subdomain, the smaller the gap between the bounds (see [Roos and Biannic, 2010] for a detailed study of such a behavior). A conclusion is thus often obtained after only a few iterations, sometimes even after a single one.

Each time a worst-case value x ∈ D is identied for which Q(x) = 0, the rational approximation algorithms presented in Section C.1.2.2 are applied again with the additional constraint Q(x) ≥ > 0 (where is a user-dened tolerance), until a nonsingular rational function is computed (or a maximum number of iterations is reached).

Remark C.4 The non-singularity check presented here is useful only for the QP-based and the GP-based methods. Indeed, the SM-based approach described in Section C.1.3.3 cannot produce a singular solution, since the denominator of f j (x) in (C.17) is always strictly positive.

Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 1 From a set of scalar samples to a static LFR 71 1.4.2 A Matlab library for polynomial and rational approximation Despite several theoretical contributions to polynomial and rational approximation, only few practical algorithms have been implemented. Those available are mainly based on linear leastsquares in the polynomial case and nonlinear least-squares in the rational one [Magni, 2006;The Mathworks, 2014]. However, none of them is able to produce sparse expressions, where only the most relevant monomials are selected. In this context, the Approximation of Polynomial and Rational-type for Indeterminate Coecients via Optimization Tools (APRICOT) Library of the SMAC Toolbox has been developed to help bridging this gap between theory and practice [START_REF][END_REF]. As shown in Table C The APRICOT library was evaluated on a number of challenging problems [Roos et al., 2014; Iannelli et al., 2017; Biannic et al., 2016; Döll et al., 2012], which allowed us to gain good experience. Based on this, the main features of the dierent rational approximation methods are summarized below. The QP-based method implemented in the routine olsapprox is quite fast and usually gives good results. But there are two main limitations. First, only full expressions with a large number of monomials are obtained, which can result in large-size LFR. Then, numerical problems are frequently encountered for degrees larger than 10. The GP-based algorithm implemented in the routine tracker gives very sparse expressions with only few nonzero monomials, and it exhibits good numerical properties. The size of the resulting LFR can thus be signicantly reduced. However, it is computationally demanding. Finally, the SM-based approach implemented in the routine koala also produces reduced-size LFR, but not for the same reason as tracker. Indeed, the rational expressions are composed of a large number of monomials, but they directly come in factorized form. Computational cost is quite low, so very accurate approximations (with high degrees) can be obtained. Moreover, the non-singularity of the resulting rational functions is guaranteed implicitly, so the iterative procedure described in Section C.1.4.1 can be avoided. To conclude, GP and SM prove quite complementary: GP is more accurate for low degree approximations, while SM gives better results for degrees larger than 10.

Towards low-order LFR

Once a suitable rational function with no pole in the considered parametric domain is obtained, it is nally converted into an LFR. Several techniques such as object-oriented realization exist to perform this transformation. Although the minimality of the resulting LFR cannot be guaranteed, symbolic preprocessing techniques as well as numerical reduction usually permit to overcome complexity. Moreover, ecient software are available such as the LFR Toolbox for Matlab (see [Magni, 2006] and references therein). This software oers many functionalities and has been widely used, but it suers from two main drawbacks. First, it is not maintained anymore, so compatibility with new versions of Matlab is increasingly dicult to ensure. Moreover, it is not easily accessible to non-expert users, due to a rather complicated way of describing LFR. This motivated the development of the Generalized State-Space (GSS) Library of the SMAC Toolbox. It implements the new Matlab class gss, which allows to model uncertain and nonlinear systems as Linear Fractional Representations [START_REF] Biannic | [END_REF]. Several tools are proposed to manipulate gss objects (addition, multiplication, inversion, concatenation, feedback. . . ), to obtain gss objects from symbolic models, to ensure compatibility with Matlab uss objects, to manipulate the uncertainties and the nonlinearities (normalization, reordering, random sampling. . . ) and to perform order reduction or approximation. It is designed to be more user-friendly and it allows to handle a large class of continuous-and discrete-time systems with real or complex uncertain or varying parameters, polytopic-type uncertain or varying elements, linear time-invariant uncertainties, sector nonlinearities, saturations and deadzones. . . It is still under development, and it will ultimately include the state-of-the-art realization and reduction techniques. Finally, it is compatible with most libraries of the SMAC Toolbox: APRICOT (see Section C.1.4.2), SMART (see Section A.6), IQC [Demourant, 2013], SAW (see Section D.4). . . A full version can be freely downloaded from the SMAC website http://w3.onera.fr/smac/gss, which also provides a complete documentation as well as applicative examples.

Conclusion

In an industrial context, physical systems are usually represented by a mix of nonlinear analytical expressions and tabulated data. A two-step procedure has to be implemented to obtain a suitable linear fractional representation: a linear model with a polynomial or a rational dependence on the system parameters is rst generated, and then converted into a linear fractional form. In this work, three methods are proposed to generate sparse polynomial and rational approximations from a set of scalar or matrix samples, based on orthogonal least squares, genetic programming and surrogate modeling respectively. They usually compare very favorably to classical ones. For a given precision, the symbolic expressions are indeed more compact, and hence the size of the resulting LFR is smaller. Good numerical properties are also observed. All existing algorithms have been implemented in the APRICOT Library of the SMAC Toolbox. The new Matlab class gss has also been dened and implemented in the GSS Library. It replaces and improves the LFR Toolbox, which is no longer maintained, and it can be used in conjunction with the APRICOT Library to model uncertain and nonlinear systems as Linear Fractional Representations. Several improvements are possible, among which two are worth being mentioned. The rst one is to improve the computational time of the tracker routine by using gene expression programming instead of genetic programming. The second one deals with rational approximation of matrix samples. Currently, all coecients are approximated independently of the others. This results in completely dierent denominators, which strongly penalizes the size of the resulting LFR. A better trade-o between accuracy and complexity could probably be achieved by imposing (partly) identical denominators for all coecients.

2 From a set of MIMO LTI models to a dynamic LFR

Motivations

A prerequisite to apply certain modern control techniques is to build a representative LPV or LFT model of the system, see e.g. [Leith and Leithead, 2000]. This can be done in two different ways. On the one hand, if a nonlinear analytical model derived from physical equations is available, either symbolic [START_REF][END_REF] or numerical [START_REF] Pfer | [END_REF] linearizations are usually performed around equilibrium points. In the rst case, an LPV model Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 2 From a set of MIMO LTI models to a dynamic LFR 73 is directly obtained, whereas in the second one, the resulting set of LTI models has to be approximated by an LPV model. On the other hand, the initial nonlinear model is sometimes overly complex or does not even exist, see e.g. [Ferreres, 2011]. Global or local identication techniques are thus applied provided a (possibly reduced-scale) prototype of the considered system exists. Global techniques allow to obtain an LPV model in a single step, but they require the control inputs and the scheduling parameters to be excited simultaneously and persistently during a single experiment, which is not always possible. In contrast, local techniques consist of performing several experiments during which the scheduling parameters remain constant, leading once again to a set of LTI models to be approximated. An alternative to local identication is to replace each experiment by a numerical analysis of the system using for example nite element techniques, which is commonly done in the aerospace industry. In this context, this section focuses on the generation of low-order LPV/LFT models from a set of large-scale LTI models. This can be seen as a generalization of what is done in Section C.1 for a set of scalar samples.

This question arises in particular when exible dynamics are to be taken into account. For example, the issue of representing the aeroelastic behavior of an aircraft in linear fractional form has already been addressed in several papers, but most of them assume that a reasonable-size analytical expression is available [Bennani et al., 2005; Baldelli et al., 2005]. Nevertheless, this assumption does not always hold in practice. We have indeed been confronted a few years ago with purely numerical models of huge complexity, which describe both the rigid and the exible dynamics of an Airbus aircraft for dierent mass congurations. They were obtained in an industrial context, rst by combining a structural nite element model with a complete representation of the aerodynamic forces and moments acting on the aircraft, and then by removing the less relevant modes and making several adjustments to improve accuracy [START_REF] Puyou | [END_REF]. The resulting large-scale LTI models have about 300 states and no specic structure. Moreover, they cannot be directly approximated because of their size and of the non-consistency of their state vectors. And this example is not an isolated case, because we have also been confronted with large-scale aeroelastic bizjet aircraft models developped by Dassault Aviation, for which the problem is roughly the same [Poussot-Vassal et al., 2014]. First attempts to obtain accurate and tractable LFR from such sets of large-scale LTI models were made in [Ferreres, 2011;Roos, 2009]. Good results are reported in these papers, but the dynamics to be included in the LFR are chosen empirically in both cases. The two aforementioned examples as well as this limitation were our motivation to go one step further and to propose a systematic approach in [Poussot-Vassal and Roos, 2012], which can be applied to any set of purely numerical (and possibly unstructured) models. The resulting two-step strategy is briey described in this section. All algorithms are omitted for the sake of simplicity, since reading them is a bit tedious.

Generation of reduced and consistent models

The rst step is to generate a set of N reduced-order models, which all have the same modal content and are as representative as possible of the N initial large-scale models. In [Fer- reres, 2011] and [Roos, 2009], some empirical criteria combined with the physical knowledge of the plant are used to generate reduced A matrices, and a biconvex optimization then produces some suitable B, C and D matrices. These approaches assume that the most relevant modes can be selected by hand, which is quite questionable in the general case. In contrast, a purely numerical method using a projection-based approach is proposed in [Poussot-Vassal and Roos, 2012]. An algorithm built on the work of [Gallivan et al., 2004; Gugercin, 2008; Van-Dooren et al., 2008] is implemented to obtain reduced-order models with consistent modal content and accurate frequency responses.

Let us rst assume that a single LTI model H = (A, B, C, D), where A ∈ R n×n , has to be reduced. The objective is to compute state-space matrices Ĥ = ( Â, B, Ĉ, D), where  ∈ R r×r and r n, such that H and Ĥ are close in the sense of a given norm (usually H 2 or H ∞ ). The projection-based approach consists of nding left and right projectors W and V such that  = W T AV , B = W T B, Ĉ = CV and D = D. Several iterative procedures have been proposed, where the projectors are computed based on so-called interpolation points and directions (see e.g. [Vuillemin et al., 2013]). The latter are updated at each iteration, for example by taking the eigenvalues of the current reduced-order model and the associated right eigenvectors respectively. This kind of algorithm works well in practice when a single LTI model has to be reduced. But in the multi-model case, scattered sets of eigenvalues are usually obtained if reduction is performed independently for each model, as can be seen in Figure C.3 (left). This is a critical issue, which can lead to unrealistic modal trajectories after the state-space representations of the reducedorder LTI models are approximated with polynomial or rational function and converted into an LPV/LFT model in Section C.2.4. In this context, a multi-model reduction algorithm is proposed in [Poussot-Vassal and Roos, 2012], which forces the eigenvalues of the reduced-order models to remain within the same areas of the complex plane. A three-step procedure is applied. First, each full-order model is approximated independently of the others using the algorithm of [Vuillemin et al., 2013]. Then, the modes of the resulting reduced-order models are sorted and new interpolation points and directions are selected. More precisely, let (λ i k ) k∈[1,N ] denote the eigenvalues corresponding to the ith mode for all reduced-order models (represented by the same symbol and color in Fig-

Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 2 From a set of MIMO LTI models to a dynamic LFR 75 ure C.3 (left)). If the variance of (λ i k ) k∈[1,N ] is larger than a user-dened threshold, the mean value of (λ i k ) k∈[1,N ] is used as the new interpolation point for all models. Otherwise, the interpolation point for model number k is simply λ i k . The new interpolation directions are chosen in a similar way. Finally, a single iteration of the algorithm of [Vuillemin et al., 2013] is performed on each full-order model using these new interpolation points and directions as initialization.

A set of N rth-order LTI models is thus generated, whose modal content is now much more consistent, as shown in Figure C.3 (right). The way of selecting the new interpolation points and directions has the advantage to keep the eigenvalues of all the reduced-order models in the same areas of the complex plane if it was already the case after step 2, and to force them to belong to the same areas if it was not initially the case. The counterpart is that the optimality conditions may no longer be guaranteed, and the approximation error may be higher than if each model was reduced independently of the others. Nevertheless, this leads to reduced-order models, whose modal content is more appropriate in the perspective of approximating their state-space representations by polynomial or rational expressions.

Remark C.5 This reduction step is omitted in most existing works, where small-scale models are often directly considered (see e.g. [START_REF] De Caigny | [END_REF]Paijmans et al., 2006]). However, it is of signicant practical importance, as shown by the two examples mentioned in Section C.2.1.

Choice of a suitable state-space form

The second step is to approximate the reduced-order models, and a necessary condition to obtain a suitable LPV/LFT model is to use the same state-space form for all of them. Several solutions have been proposed: the balanced state-space realization in [Lovera and Mercère, 2007],

the series interconnection of rst-and second-order systems in [de Caigny et al., 2011], the scaled companion form in [Ferreres, 2011] and the modal form in [Roos, 2009]. An intuitive way to compute a simple LPV/LFT model is to limit the number of varying elements in the state-space matrices of the reduced-order models [Steinbuch et al., 2003], which speaks in favor of the last two representations. In this work, the emphasis is put on the modal form, although it does not appear to be the easiest choice. Indeed, it requires to exactly pair the modes of the reduced-order models. This is not an obvious task, but an algorithm is proposed in [Poussot-Vassal and Roos, 2012], based on the natural pairing obtained with the companion form. The main reason for this choice is that each element of the state-space matrices of the resulting models can be associated to a single mode. This allows to use an approximation formula with a specic structure and complexity for each mode. A whole procedure that makes the best use of this property is then introduced in Section C.2.4 to select only the most relevant monomials during the approximation step and thus to prevent data overtting. This signicantly reduces the LFR complexity, while maintaining a satisfactory accuracy.

Generation of a low-order LFR

Once all reduced-order models are written in modal form, an element-wise polynomial or rational approximation of their state-space matrices is performed to obtain an LPV model. This can be achieved by applying any of the techniques described in Section C.1 and implemented in the APRICOT Library of the SMAC Toolbox. The structured tree decomposition of [START_REF] Cockburn | [END_REF] implemented in the GSS Library is nally applied to build an LFR. This fairly simple strategy often works well in practice [Poussot-Vassal and Roos, 2012; Poussot-Vassal et al., 2014], but it sometimes results in overly complicated representations. A three-step procedure is described in [Poussot-Vassal and Roos, 2012] to address this issue and to master the complexity of the resulting LFR:

1. An iterative procedure is rst implemented. The state-space coecients with the lowest inuence on the frequency responses are determined (in the sense of a certain norm, usually H 2 or H ∞ ). They are progressively replaced by their mean value over the whole set of models until the error with respect to the initial full-order models becomes larger than a given threshold 1 , which allows to limit the number of varying elements to be approximated. The B and C matrices of the resulting models are then optimized alternatively until convergence, so as to reduce the H 2 error with respect to the initial full-order models. This is quite fast, since each of these problems is convex [Roos, 2009]. Note that the elements of B and C which are constant over the whole set of models are not modied. The whole algorithm is repeated until no more element can be replaced with its mean value.

2. The coecients which are not constant are now considered one after the other. An algorithm is rst applied to determine the smallest degrees d 1 , . . . , d n of the n explanatory variables, for which a maximum admissible error 2 > 1 is guaranteed. One of the sparse approximation techniques of Section C.1.3 is then applied, which identies the most relevant monomials for which the approximation error remains lower than a given threshold Remark C.6 The acceptable error is gradually relaxed thanks to the increasing tolerances 1 , 2 and 3 . This allows to better handle the trade-o between the accuracy and the complexity of the resulting LFR.

Remark C.7 If the number N of available models is large enough, only some of them are usually considered for approximation, the other ones being used to evaluate the accuracy of the resulting LFR. Such an approach is relevant, since it provides quantitative information to validate the behavior of the LFR between the parametric congurations used for approximation.

Remark C.8 This element-wise strategy is quite ecient in terms of computational time and usually leads to low-order LFR, which are tractable for control laws design and validation. But two issues should be kept in mind. First, nothing can be assessed outside the parametric congurations used for approximation, and a thorough validation is thus necessary. A common strategy to address this issue is to evaluate the stability and the performance properties of the LPV/LFT model at each point of a very ne grid of the operating domain, as suggested in [START_REF] Steinbuch | [END_REF]. A more rigorous approach is to use the µ-analysis based tools described in Chapter A [Roos et al., 2011], which usually solve the problem very eciently. Then, no input/output criterion is considered during approximation. A solution to this problem is proposed in [Petersson and Lofberg, 2009]. It consists of solving an SDP problem to minimize the H 2 error between the desired LPV model and the local LTI models. Nevertheless, such an approach can only be applied to loworder systems due to a prohibitive computational cost. Fortunately, recent work reported in [Vizer and Mercère, 2014] shows that non-smooth optimization techniques developed in [Apkarian et al., 2009] could help solving the problem in the H ∞ framework at a reasonable cost.
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Analysis & control of saturated systems

In the previous chapters, a linear framework was generally considered. But most physical systems, and especially aerospace ones, are also subject to nonlinearities, among which saturations gure prominently. And this is a major issue. By limiting both the amplitude and the rate of the control signals, saturations induce particularly disturbing nonlinear phenomena (such as limit cycles), that can impair the closed loop performance or even jeopardise its stability. Several strategies are possible to cope with this issue. One of them consists of staying in the linear domain by computing unsaturating control laws, at the price of a lower level of performance. Another one is to allow saturations and to adapt the control signals as soon as one of them is active, so as to return as quickly as possible to the linear domain guaranteeing a well-controlled nominal behavior of the system. The second approach is often preferred, since many applications cannot tolerate an unnecessary loss of performance in the nominal operating domain. In this case, the controller can be designed in one or two steps. The latter solution is more intuitive and exible. A nominal controller is rst designed using any linear technique to ensure that the nominal specications are met. An anti-windup controller is then computed, which becomes active only when a saturation is reached and modies the closed-loop behavior such that it is more resilient to saturations. Such a strategy is reassuring for control engineers, who can keep their usual control architectures and simply connect an additional block.

The origins of anti-windup are rather vague. Practioners were already aware of the problems caused by saturations a long time ago, and they developed empirical solutions dedicated in particular to PID controllers. Researchers began to consider saturations a few years after. They managed to explain how saturations could create problems with integrators in PI controllers [Lozier, 1956], but it is only later that they proposed the rst well-documented antiwindup techniques, e.g. [Fertik and Ross, 1967; Åström and Rundqwist, 1989]. Among the rst modern contributions, let us mention [Kothare et al., 1994], where a unifying framework inspired by the famous standard forms from robust control theory was developed. The study of saturated systems then became very popular, as evidenced by the large number of papers in this eld (see [Zaccarian and Teel, 2011; Tarbouriech and Turner, 2009; Galeani et al., 2009; Bernstein and Michel, 1995] and references therein).

Many LMI-based approaches exist to adjust the anti-windup gains in a systematic way.

Most often, these are based on the optimization of either a stability domain [Cao et al., 2002; Tarbouriech et al., 2006c; Gomes da Silva Jr and Tarbouriech, 2005], or a nonlinear L 2 -induced performance level [Castelan et al., 2004; Lu et al., 2005; Hu et al., 2005]. Based on the LFT/LPV framework, extended anti-windup schemes were introduced in [START_REF] Saeki | [END_REF][START_REF] Turner | [END_REF][START_REF] Wu | [END_REF]Lu et al., 2005]. In these contributions, the saturations are viewed as sector nonlinearities and the anti-windup control design issue is recast into a convex optimization problem under LMI constraints. Following a similar path, alternative techniques using a less conservative representation of the saturation function based on a modied sector condition [Gomes da Silva Jr and [START_REF] Da | Antiwindup design with guaranteed regions of stability: an LMI-based approach[END_REF] were then proposed to compute either static [Biannic et al., 2006b;[START_REF] Da | Antiwindup design with guaranteed regions of stability: an LMI-based approach[END_REF] or dynamic [Tarbouriech et al., 2006a; Hu et al., 2005; Kiyama and Sawada, 2004] anti-windup controllers. These techniques are further exploited in this chapter, and it is shown in Section D.1 that the design problem is convex when the order of the anti-windup controller coincides with that of the nominal closedloop model. Unfortunately, this order can be quite large in some cases. Moreover, it is not easy to constrain the dynamics of the anti-windup controller, which usually has some very slow or very fast poles likely to lower performance or to cause implementation issues. Finally, it is generally observed in practice that reduced-order controllers can be as ecient as full-order ones, provided their poles are chosen appropriately. In this context, a convex characterization is proposed in Section D.3 to compute dynamically-constrained anti-windup controllers. More precisely, an upper bound is introduced on the real part of their poles. An algorithm is also given in Section D.2 to compute a reduced-order anti-windup controller based on the poles obtained in the full-order case. The resulting tools are all implemented in the AWAS Toolbox, which has recently been updated and integrated into the SMAC Toolbox, as explained in Section D.4.

1 Full-order anti-windup design The saturated plant G(s) to be controlled is written in a standard LFT form, for example using the GSS Library of the SMAC Toolbox (see [START_REF] Biannic | [END_REF] and Chapter C):

G(s) :          ẋG = A G x G + B G Φ(z) u z y = C G x G + D G Φ(z) u (D.1)
where u and y denote the control inputs and the measured outputs respectively. The nonlinear operator Φ : R m → R m is characterized as follows:

Φ(z) = φ(z 1 ) . . . φ(z m ) T (D.2)
where φ(.) is a normalized deadzone nonlinearity dened as:

φ(z i ) = 0 if |z i | ≤ 1 z i -sign(z i ) if |z i | > 1 (D.3)
This formulation is not restrictive, since any saturation sat L (.) with lower and upper limits ±L can be converted into a normalized deadzone φ(.) as follows:

sat L (z i ) = z i -Lφ z i L (D.4)
Remark D.1 Nested saturations are not considered here for the sake of simplicity. Therefore, it is assumed that

D G = 0 0 D G 21 D G 22
, see e.g. [Tarbouriech et al., 2006b] for more details. Suppose that a nominal linear controller K(s) has been rst designed, so as to stabilize the plant G(s) and ensure good performance properties in the linear region. To mitigate the adverse eects of saturations, additional signals v 1 and v 2 are injected both at the input and output of this controller [Grimm et al., 2003; Wu and Soto, 2004]. A state-space representation of the resulting controller K(s) is then given by:

G(s) K(s) J(s) Φ R(s) L(s) z v 1 v 2 u y = [y T r . . .] T r y r z p y r lin M (s) K(s)
K(s) :          ẋK = A K x K + B K r y + v 1 u = C K x K + D K r y + v 2 (D.5)
The signals v 1 and v 2 are obtained as the outputs v = v 1 v 2 ∈ R nv of the dynamic anti-windup controller J(s) to be determined:

J(s) : ẋJ = A J x J + B J Φ(z) v = C J x J + D J Φ(z) (D.6)
where the input signal Φ(z) can be interpreted as an indicator of the saturations activity. This nonlinear closed-loop plant can be aected by some exogenous input signals r such as perturbations (wind, turbulences) or commanded inputs. In terms of performance analysis, a classical problem is to ensure that for these inputs, some outputs y r of the saturated plant remain as close as possible to the outputs y r lin of the corresponding nominal unsaturated behavior L(s), which amounts to minimizing the energy of the error signal z p . On the one hand, step inputs are usually considered in practice to assess performance, and considering any kind of input signals can lead to conservative results. On the other hand, it is convenient from a theoretical point of view to work with nite-energy signals, for which LMI characterizations based on the induced L 2 norm exist. Unfortunately, step inputs are not L 2 -bounded. . . The performance level introduced in [Biannic et al., 2006b] allows to address this issue by restricting r to the set of slowly decreasing exponential signals W (ρ) dened as:

W (ρ) = r : R → R , r(t) = r 0 e -t ∀t ≥ 0 , |r 0 | ≤ ρ (D.7)
where is chosen small enough compared to the system dynamics. The elements of W (ρ) are both L 2 -bounded and representative of step inputs, as can be seen in Figure D.2. A stable autonomous system R(s) with a non-zero initial state r 0 is thus inserted into the interconnection of Figure D.1 to generate r(t). For the sake of simplicity, it has been assumed that r is a scalar signal, but the generalization to vector signals does not raise any technical diculties. Let us now dene the augmented state vector ξ obtained by merging the states of the reference model (r), the nominal (linear) closed-loop system (x L ), the open-loop plant (x G ) and the nominal controller (x K ):

ξ =     r x L x G x K     ∈ R n M (D.8)
The resulting system M (s) connected with the anti-windup controller is illustrated in Figure D.3 and can be dened as follows: Finally, by adding the state x J ∈ R n J of the anti-windup controller, the following augmented state vector is dened, where n = n M + n J :

M (s) :      ξ = A ξ + B φ Φ(z) + B a v z = C φ ξ z p = C p ξ + D pφ Φ(z) + D pa v = y r -y r lin ∈ R p
ν = ξ x J ∈ R n (D.10)
Therefore, the nonlinear closed-loop interconnection shown in Figure D.4 reads: 

P (s) :            ν = A B a C J 0 A J ν + B φ + B a D J B J w z = C φ 0 ν z p = C p D pa C J ν + D pφ + D pa D J w w = Φ(z) (D.11) P (s) 
ζ = [x T L x T G x T K x T J ] T ∈ R n-1
. The anti-windup design problem to be solved can then be summarized as follows:

Problem D.1 (anti-windup design) Compute a dynamic anti-windup controller J(s) (i.e. matrices A J , B J , C J , D J ) and a domain E(ρ) as large as possible such that, for a given positive scalar ρ and any reference signal r ∈ W (ρ), the following properties hold:

• the nonlinear closed-loop plant (D.11) is stable for all initial condition ζ 0 inside E(ρ),

• some outputs y r of the saturated plant remain as close as possible to the linear reference outputs y r lin (associated with the nominal unsaturated behavior), i.e. the energy of the error signal z p is minimized.

Performance analysis of saturated systems

Let us rst assume that an anti-windup controller J(s) is available. The following proposition introduced in [Biannic et al., 2006b] [START_REF] Da | Antiwindup design with guaranteed regions of stability: an LMI-based approach[END_REF] to describe the saturations, which is less conservative than the classical one given in [Khalil, 1996].

Proposition D.1 (performance characterization) Let γ and ρ be some positive scalars, and

u(ρ) = [ρ 0] T ∈ R n . If there exist matrices Q = Q T ∈ R n×n , S = diag(s 1 , . . . , s m ) > 0, Z ∈ R m×n such that the following LMI conditions hold: Q u(ρ) T 1 > 0 (D.12)         A B a C J 0 A J Q + Q A B a C J 0 A J T S B φ + B a D J B J T -Z -2S C p D pa C J Q D pφ + D pa D J S -γI p         < 0 (D.13) Q Z i + C φ i 0 Q 1 > 0 , i = 1 . . . m (D.14)
where Z i and C φi denote the i th rows of Z and C φ respectively, and where the symmetric terms in the above matrices are replaced by , then for all ρ ≤ ρ, the interconnection of Figure D.1 is stable for all reference signals r ∈ W (ρ) and all initial condition ζ 0 in the domain:

E(ρ) = ζ ∈ R n-1 : ρ ζ T P ρ ζ ≤ 1 (D.15)
where P = Q -1 . Moreover, the output energy satises: On the contrary, it is also possible to maximize ρ, or more generally the volume of the ellipsoid E(ρ), for a given γ, in which case inequality (D.12) has to be adapted.

Convex characterization of full-order anti-windup design

Let us now focus on the anti-windup design issue stated in Problem D.1. In this case, the matrix Q introduced in Proposition D.1 and the state-space matrices of J(s) have to be computed simultaneously. As a result, inequality (D.13) becomes a BMI and is no longer convex. However, in the full-order case (i.e. n J = n M ), convexity can be recovered thanks to the following theorem [START_REF] Biannic | [END_REF].

Theorem D.1 (full-order anti-windup design) Let v(ρ) = [ρ 0] T ∈ R n M . Let Γ = diag(N a , I m , N pa ),
where N a and N pa denote any basis of the null-spaces of B T a and D T pa respectively.

There exists an anti-windup controller J(s) such that the conditions of Proposition D.1 are satised i there exist matrices

X = X T , Y = Y T ∈ R n M ×n M , S = diag(s 1 , . . . , s m ) > 0 and W = U V ∈ R m×(n M +n M )
such that the following LMI conditions hold:

v(ρ) T Xv(ρ) < 1 (D.17) A T X + XA C p -γI p < 0 (D.18) Γ T   AY + Y A T SB T φ -V -2S C p Y 0 -γI p   Γ < 0 (D.19)   X I n M Y U i V i + C φ i Y 1   > 0 , i = 1 . . . m (D.20)
The most classical way to apply Theorem D.1 consists of xing ρ and minimizing γ with respect to the matrices X, Y , S, U and V under the linear constraits (D.17)-(D.20). This can be done easily using an LMI solver.

Remark D.2 The matrix Q of Theorem D.1 is obtained from X and Y as described in [Gahinet and Apkarian, 1994]:

Q = Y I n M N 0 I n M X 0 M -1
where

M T N = I n M -XY (D.21)
Q being xed, inequality (D.13) becomes convex with respect to A J , BJ = B J S, C J , DJ = D J S, S and Z. These matrices can be computed with an LMI solver, and the anti-windup controller A J , B J = BJ S -1 , C J , D J = DJ S -1 is nally obtained, since S is invertible.

2 Fixed-order anti-windup design

The order of the anti-windup controller J(s) computed in Section D.1.3 is equal to n M , and it may be quite large in some cases. Moreover, it is not easy to constrain the poles of J(s), since the state matrix A J does not appear in equations (D.17)-(D.20), and unfortunately some of them are usually very slow or very fast. Finally, it is generally observed in practice that reduced-order controllers can be as ecient as full-order ones, provided their poles are chosen appropriately. So the objective now is to develop an eective procedure to design an anti-windup controller of order n J < n M . Fixing A J is a convenient way to control precisely the dynamics of J(s). Moreover, as stated in Proposition D.2 below, when C J is also xed, the anti-windup problem becomes convex even if n J < n M , and an algorithm can be implemented [Roos et al., 2010]. Proposition D.2 The BMI constraint (D.13) is convex if the matrices A J and C J are xed. 1. Choose appropriate A J and C J matrices (see below).

2. Fix ρ and minimize γ under the LMI constraints (D.12)-(D.14) w.r.t. Q, S, Z, BJ , DJ .

3. Compute B J = BJ S -1 and D J = DJ S -1 .
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The main diculty in the above algorithm consists of choosing the matrices A J and C J . This may appear more intuitive by considering the following decomposition:

J(s) = M 0 + n 1 i=1 M i1 s + λ i + n 2 i=1 M i2 s 2 + 2η i ω i + ω 2 i (D.22)
where D J = M 0 and B J contains the matrices M i1 and M i2 . For this decomposition, the xed matrices A J and C J can be chosen as:

A J = diag (-λ 1 , . . . , -λ n 1 , A 1 , . . . , A n 2 ) where A i = 0 1 -ω 2 i -2η i ω i C J k = 1 . . . 1 n 1 [1 0] . . . [1 0] n 2 , k = 1, . . . , n v (D.23)
where C J k denotes the kth row of C J . From this observation, the rst step of Algorithm D.1 simply boils down to choosing a list of poles for the anti-windup controller, whose matrices A J and C J are then immediately deduced from (D.23). This choice can be made by rst computing a full-order controller, as suggested by the following algorithm [Roos et al., 2010]: Algorithm D.2 (xed-order anti-windup design)

1. Compute a full-order anti-windup controller using Theorem D.1.

2. Analyze the controller poles and keep only those that are neither too fast nor too slow.

Compute A J and C J as explained above.

3. Run Algorithm D.1 to compute a reduced-order anti-windup controller.

Remark D.3 Alternatively, an iterative procedure can be implemented at step 3. Starting from the static case, the list of poles is progressively enriched until the gap between the full and the reduced-order cases becomes small enough.

This is a heuristic approach and there is no guarantee that the optimal anti-windup controller is obtained, but satisfactory results have been reported in [Biannic et al., 2007].

3 Dynamically-constrained anti-windup design

The fast anti-windup poles can generally be eliminated without consequences in step 2 of Algorithm D.2. They are indeed not desirable from a practical point of view, since they make it dicult to implement the anti-windup controller, as is mentioned in [START_REF] Turner | [END_REF]. Moreover, their contribution to the enlargment of the stability domain or the improvement of the performance level is often negligible, which is notably conrmed by [START_REF] Hencey | [END_REF]. The same cannot be said of slow anti-windup poles. Removing them can indeed signicantly reduce the stability domain. But on the other hand, keeping them introduces slow dynamics, which may remain visible on certain plant outputs even when the saturations are no longer active. This issue can be partly addressed by choosing a good tradeo between ρ and γ when applying Theorem D.1, but this is not always obvious. Another option is to constrain the dynamics of the full-order anti-windup controller in step 1 of Algorithm D.2. In this context, Proposition D.1 and Theorem D.1 are modied in this section: an upper bound is introduced on the real part of the controller poles, while maintaining convexity [Roos and Biannic, 2008]. There are no longer any slow poles to remove in step 2, and the aforementioned dilemma is avoided.
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              A B a C J 0 A J Q + Q A B a C J 0 A J T + 2λ 0 0 0 I n J Q 0 0 0 I n J S B φ + B a D J B J T -Z -2S C p D pa C J Q D pφ + D pa D J S -γI p               < 0 (D.24)
in Proposition D.1, then in addition to other conclusions, the poles λ 1 , λ 2 , . . . , λ n J of the antiwindup controller J(s) satisfy:

(λ j ) < -λ for all j ∈ [1 , n J ] (D.25)
Theorem D.2 (modication of Theorem D.1) If (D.18) and (D.20) are replaced with:

  AX + XA T -2λX 2λY -2λY C p 0 -γI p   < 0 (D.26)   X X Y U i V i + C φ i Y 1   > 0 , i = 1 . . . m (D.27)
in Theorem D.1, then in addition to other conclusions, the poles λ 1 , λ 2 , . . . , λ n J of the anti-windup controller J(s) satisfy:

(λ j ) < -λ for all j ∈ [1 , n J ] (D.28)
The most classical way to apply Theorem D.2 consists of minimizing γ with respect to matrices X, Y , S, U and V under the linear constraits (D.17), (D.26), (D.19) and (D.27). This can be done easily using an LMI solver.

Remark D.4 The matrix Q of Theorem D.2 is obtained from X and Y as follows:

Q = Y I n M N 0 I n M X -1 0 M -1
where

M T N = I n M -X -1 Y (D.29)
Q being xed, the anti-windup controller J(s) can be computed as in Remark D.4.

Remark D.5 Adding 2λ 0 0 0 I n J Q 0 0 0 I n J
in Proposition D.3 allows to constrain only the poles of the anti-windup controller and not the whole closed-loop plant dynamics as it is the case in other contributions (see notably [START_REF] Hencey | [END_REF]).

Proposition D.3 and Theorem D.2 can now be combined in the same way as in Section D.2 to compute a reduced-order anti-windup controller with pole contraints. The only dierence is that there is no slow pole to remove in step 2 of Algorithm D.1. They are indeed avoided in step 1 thanks to the introduction of λ in Theorem D.2. Moreover, it is often observed that only a few poles of J(s) lie within the bandwidth of the closed-loop plant M (s), the other ones being signicantly faster. Thus it is possible to design low-order anti-windup controllers, which are almost as ecient as full-order ones. An application to a ghter aircraft model in [Roos and Biannic, 2008] conrms it. A second-order controller is obtained, which guarantees the same stability domain and performance level as the initial full-order controller with 6 states.

4 From the AWAS Toolbox to the SAW Library Anti-windup controllers are widely used to mitigate the negative eects of actuators saturations on stability and performance. But despite recent theoretical advances in this eld, their computation remains a rather dicult and time-consuming task from a control engineer perspective, which is often realized by a trial-and-error simulation-based approach. This can be partly explained by the lack of user-friendly tools to help the designer dene and modify the anti-windup structure, perform the optimization of the gains by simply calling an appropriate routine, and test the results with simulations. In this context and similarly to other libraries already mentioned in this manuscript (SMART, GSS, APRICOT. . . ), the ambition of the Anti-Windup Analysis and Synthesis Toolbox for Matlab [START_REF] Biannic | [END_REF] is to contribute to bridging the gap between theory and practice. It implements the Lyapunov-based approach described in this chapter, which is rigorous since guaranteed stability domains or performance levels can be computed, but remains limited to medium-order models (less than 20 states) due to the high number of decision variables involved in the associated LMI problems. Based on this observation, the AWAS Toolbox has recently been updated and integrated into the SMAC Toolbox under the name of Saturated systems analysis & Anti-Windup design (SAW) Library [Biannic and Roos, 2017]. Now the H ∞ -based approach of [Biannic and Apkarian, 2011] is also available. Recently developed nonsmooth optimization techniques are used to compute xed-order feedback and anti-windup controllers in a single step by minimizing the weighted transfer seen by the deadzone nonlinearities. This approach is complementary to that described above. It does not allow directly to maximise a stability domain or a performance level, but it can be applied to high-order systems.

Summary of the contributions

The main contributions presented in this chapter are briey summarized below, and a selection of related publications is given:

• Section D.1 -D.2: convex characterization of full-order continuous-time anti-windup controllers ; practical algorithm to design reduced-order controllers, whose poles are a subset of those obtained in the full-order case [Roos et al., 2010; Biannic et al., 2007].

• Section D.3: introduction of an upper bound on the real part of the anti-windup controller poles to avoid slow dynamics ; convex characterization of full-order continuous-time controllers with pole constraints [Roos and Biannic, 2008].

• Section D.3: implementation in the AWAS Toolbox, which is now embedded in the SAW Library of the SMAC Toolbox [START_REF] Biannic | [END_REF]2017].

An extension of this methodology to parameter-varying saturated systems is proposed in [Roos et al., 2010;Roos, 2007], but it has not been discussed in this chapter due to space constraints. A non-standard anti-windup design strategy is also presented in [Biannic et al., 2006a; Roos et al., 2010] to improve the on-ground control system of a civilian aircraft. A linear fractional representation of the system (see Chapter C) is combined with an original approximation of the nonlinear ground forces by saturation-type nonlinearities. The resulting design method delivers low-order and robust controllers, which are automatically adapted to the runway state and to the aircraft longitudinal velocity (see Chapter E).
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Control laws design and implementation

As illustrated in Figure E.1, automatic landing of a commercial aircraft can be divided into three main phases in the vertical plane: the nal (or glide-slope) approach during which the aircraft must follow a predened descent path, the are segment which is activated when the landing gear height H falls below a threshold value H F LA ≈ 15 m (50 ft), and the deceleration on the runway where the aircraft velocity must be reduced up to taxi speed. Similarly, in the horizontal plane, the aircraft trajectory must coincide with the runway axis (localizer phase) as long as H ≥ H DEC ≈ 10 m (30 ft). The alignment phase (or decrab mode) is then activated in order to minimize the lateral eorts on the landing gears at touchdown. Finally, once on the runway, the lateral deviation with respect to the centerline must be maintained below a given threshold (usually 16 meters) despite crosswind, varying runway state, comfort constraints. . . The steady growth of air trac in recent years has led to drastic safety standards with the goal of limiting the number of accidents. Since approach and landing remain the most critical phases (almost 50% of fatal accidents and 75% of non-fatal hull losses between 1997 and 2016 [Airbus, Technical Report 2017]), particular attention has recently focused on improving autoland systems in adverse conditions. With the help of CAT III instrument landing systems (ILS), which are now available in a rapidly growing list of airports, automatic landing control laws allow to better secure these phases, notably in degraded weather conditions such as fog and crosswind. However, despite numerous methodological works over the past two decades (see e.g. [Kaminer and Khargonekar, 1990; Biannic and Apkarian, 2001; Looye and Joos, 2006; Sadat-Hoseini et al., 2013]), the design, tuning and validation process of nal approach and are control systems remains a challenging and time-consuming task, which requires rather tricky multi-objective optimization.

Once on ground, the motion of the aircraft is usually controlled manually by the pilot using throttle levers, rudder pedals, handwheels and brake pedals. This is especially demanding in case of contaminated runway and severe crosswind. According to a study carried out by the International Civil Aviation Organization (ICAO), the number of runway excursions has not decreased over the last 20 years [START_REF] Eurocontrol | Eurocontrol. European action plan for the prevention of runway excursions[END_REF]. So a rst benet of developing enhanced on-ground control functionalities would be to improve safety during airport operations. But it would also allow for an increase in airport trac capacity. Most existing solutions focus on low speed and taxiway maneuvers, where the nose-wheel steering system is sucient to control the aircraft (see e.g. [Duprez et al., 2004; Roos et al., 2010; Lemay et al., 2011; Bihua et al., 2013]). However, the main issue after landing is runway axis hold at high speed despite varying conditions and external perturbations. This gives rise to a dicult control allocation problem, where dierential braking must be used in conjunction with classical control devices (nose wheel steering system and rudder).

In the eld of ight control design, the most popular methods are still based today on eigenstructure assignment [Magni, 1999] or Linear Quadratic Regulator (LQR) control [START_REF] Sadat-Hoseini | [END_REF]. Both approaches have been successfully used by Airbus and Boeing, and they have contributed to signicant improvements in the ight control design process for nearly 30 years. But they reach their limits when it comes to tackling the above issues. In the meantime, H ∞ control techniques have been progressively developed and evaluated on various ight control problems, see for example [START_REF] Kaminer | Design of the are control law for longitudinal autopilot using H ∞ synthesis[END_REF][START_REF] Biannic | [END_REF] where the are phase receives a particular attention. But despite promising results even in ight tests [Dorobantu et al., 2012], this third approach has not become as popular as the other two in the industry. Things are, however, likely to change in the near future with the emergence of new tools based on nonsmooth optimization techniques [Apkarian and Noll, 2006; Burke et al., 2006]. The latter allow to impose constraints on the structure and the order of the controller. Although convexity is unfortunately lost in that case, the aforementioned algorithms converge to local solutions, which are in a large majority of standard applications not so far from the global (non-structured) optimum. Another interesting feature of these new tools is their capacity to handle multiple models and multiple separate channels [Apkarian et al., 2014].

In this context, the objective of this chapter is to show how such powerful control techniques can be eciently combined with the analysis and design tools developed in Chapters A to D, in order to solve challenging control problems such as automatic landing, for which classical methods do not allow anymore to satisfy increasingly constrained specications. More precisely, three methodology are proposed in Sections E.1, E.2 and E.3 to deal respectively with the approach, are and gound phases. The resulting control architectures comply with several stringent requirements. Moreover, their complexity is compatible with implementation in ight computers. This will be demonstrated in a near future by means of ight tests performed with xed-wing UAVs (see Section E.4).

1 Robust nonlinear compensation for the approach phase 1.1 Description of the methodology Robust feedback linearization techniques [Isidori, 1995] have proved their eciency in many aerospace applications, especially to control highly maneuverable aircraft or UAVs in large operating domains [Snell et al., 1992; Adams and Banda, 1993; Reiner et al., 1995; 1996; Kara Mohamed and Lanzon, 2012; Biannic et al., 2014]. Interestingly, such techniques do not only permit to linearize and decouple a large class of nonlinear systems, but also to adapt the Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 1 Robust nonlinear compensation for the approach phase 91 control laws to the operating point. Therefore, they become a competitive alternative to standard gain-scheduling techniques which often imply many adjustments, or to LPV control design strategies which require high delity LPV models [START_REF][END_REF].

However, standard dynamic inversion methods are often criticized for their lack of robustness and the need of an accurate model. This drawback is generally bypassed via robust linear outer loops [START_REF] Blaise | Robustness analysis of dynamic inversion control laws applied to nonlinear aircraft pitch-axis models[END_REF]], which still require dicult and possibly time-consuming robustness evaluation a posteriori [Papageorgiou and Glover, 2004; 2005]. Severe problems are also likely to occur when the actuators dynamics and limitations prevent an exact cancellation of the nonlinear terms. As emphasized in [START_REF] Mohamed | [END_REF], it is then essential to take these dynamics into account in the design process. As observed in [Franco et al., 2006], one of the main reasons why standard dynamic inversion schemes exhibit poor robustness properties is due to the fact that the linearizing inner loops are designed to convert the nonlinear system into a generic Brunovsky's form. Following an intuitive path, it is then proposed in [Franco et al., 2006] to design the inner loops so that for given operating conditions, the nonlinear system will converge to its Jacobian linearization. Hence, the design of the linear robust outer loops is no longer based on a generic model but now explicitly depends on the linearized dynamics of the initial plant.

A similar method is presented in this section, which consists of promoting interactions between the inner and outer loops. More precisely, a feedback linearization is rst applied so that in some enlarged neighborhood of given trim conditions, the nonlinear plant behaves like its linearization. Then, a robust outer loop is designed. The originality of this approach lies in the particular structure of the H ∞ -based outer controller, which uses a nonlinear signal as a key input to further enlarge the operating domain of the closed-loop system. Various uncertainties are also taken into account thanks to a µ-based robustness analysis step, during which worst-case congurations are identied and then used in an iterative multi-objective and multi-model H ∞ design process.

Robust nonlinear compensation based on dynamic inversion

Consider a continuous-time parameter-dependent nonlinear input-ane system described as:

ξ(t) = f (ξ(t), θ p (t)) + G(ξ(t), θ p (t))u(t) u(t) = L A (u c (t)) (E.1)
where ξ(t) ∈ R n denotes the physical states evolving in the admissible operating domain X ⊂ R n . The realized control inputs u(t) ∈ R m are derived from the commanded inputs u c (t) ∈ R m via LTI actuator models L A with unitary static gains. The nonlinearities and parametric variations of the system are captured by functions f and G, which both depend nonlinearly on the state vector and on a set of parameters θ p (t) ∈ Θ ⊂ R r .

Notation 1 Let ( ξ, θp , ū) ∈ R n × R r × R m be an equilibrium point for system (E.1):

f ( ξ, θp ) + G( ξ, θp )ū = f + Ḡū = 0 (E.2)
Then f (ξ(t), θ p (t)) is rewritten as follows:

f (ξ(t), θ p (t)) = f + Ax(t) + ∆ f (t) (E.3)
where:

A = ∂f ∂ξ ξ, θp and x(t) = ξ(t) -ξ (E.4)
and ∆ f (t) denotes the deviation between the nonlinear function f and its linear approximation.
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Control laws design and implementation Assumption E.1 There exists a constant matrix B ∈ R n×m such that ∀(ξ(t), θ p (t)) ∈ X × Θ, a nonsingular matrix Λ ∈ R m×m and a residual error matrix ∆ G ∈ R n×m can be found, which satisfy:

G(ξ(t), θ p (t)) = BΛ + ∆ G (E.5) L A (Λ -1 υ(t)) ≈ Λ -1 L A (υ(t)) ∀υ(t) ∈ R m (E.6)
The square matrix Λ typically represents the control inputs eciency. When considering aerospace systems evolving in standard operating domains, the above non-singularity assumption connected to the notion of controllability is not restrictive. Moreover, the variations of this diagonal-dominant matrix are mainly induced by slowly-varying terms such as the dynamic pressure. This observation justies the commutative property (E.6) between Λ -1 and the fast dynamics L A of the actuators. Yet, a possible relaxation of (E.6) is proposed in Section E. 

u c (t) = Λ(ξ(t), θ p (t)) -1 (v(t) -ζ(t)) + ū (E.7)
With the above notation in mind, combining equations (E.7) and (E.1) leads to:

ẋ = Ax + BL A (v) + w f + w u (E.8)
where parametric-and time-dependence have been omitted for clarity and:

w f = ∆ f -BL A (ζ) (E.9) w u = (G -Ḡ)ū + ∆ G Λ -1 L A (v -ζ) (E.10)
Equation (E.8) shows that the parameter-dependent nonlinear system (E.1) has been reduced to a linear model with a new control input v and two measured perturbations w f and w u . As usual in dynamic inversion schemes, w f can be partly canceled by an optimal choice of the auxiliary input signal ζ(t):

ζ(t) = arg min ζ(t)∈R m ∆ f (t) -BL A (ζ(t)) (E.11)
Remark E.1 In the special case of square systems with ideal actuators, i.e. L A (u(t)) = u(t), w f = 0 is easily obtained with ζ(t) = B -1 ∆ f (t).

Let w = w f + w u be the vector of remaining input perturbations which cannot be canceled, and assume that it is available for feedback, via estimation, at least on a limited bandwidth. The following structure for the linear outer loop can thus be considered:

v = K(s)   ŵ w c y   (E.12)
where ŵ, w c and y denote respectively the estimation of w, the reference inputs and the measured outputs. Without signicant loss of generality in most applications, both y(t) = Cx(t) ∈ R p and z(t) = Lx(t) ∈ R q are assumed to depend linearly on the state vector x, where z are the variables to be tracked. The output feedback controller K(s) in (E.12) is to be designed so as to satisfy the following requirements:

1. good tracking properties by minimizing the error between z and the reference outputs z r = R(s)w c , where the LTI model R(s) describes the nominal closed-loop dynamics, Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 1 Robust nonlinear compensation for the approach phase 93 2. reasonable control activity, which is indirectly obtained by limiting v to avoid control inputs saturations, 3. good rejection of the perturbations w = w u + w f which could not be entirely removed by the linearizing inner loop, so as to enlarge the operating domain.

Let Σ A (s) and Σ(s) = L C (sI -A) -1 I B denote the transfer functions associated to the linear operator L A and to the linearized model (E.8) respectively. The above outer loop design issue can be recast as a multi-objective H ∞ minimization problem. More precisely, considering the linear interconnection of Figure E.2, it is proposed to compute K(s) by solving:

K(s) = arg min K(s) T wc→zp (s) ∞ (E.13)
under the constraints:

T wc→zu (s) ∞ ≤ γ u T w→zp (s) ∞ ≤ γ r (E.14) Figure E.2: H ∞ design-oriented scheme
The H ∞ -norm minimization of equation (E.13) corresponds to the nominal tracking requirement. A weighting function W p (s) typically a low-pass lter is used to specify the frequency domain where this tracking should be the most ecient. Next, the second and third requirements are respectively taken into account by the two additional constraints in (E.14). The rst one involves a high-pass weighting function W u (s) to minimize the control activity in the highfrequency domain. Finally, a low-pass transfer function F (s) is introduced and can be viewed as an approximation of the estimation process, i.e. ŵ ≈ F (s)w.

Problem (E.13)-(E.14) is a dicult nonconvex and nonsmooth optimization problem. However, it can be eciently solved thanks to recent advances in nonsmooth optimization techniques [Apkarian and Noll, 2006;Burke et al., 2006]. Moreover the structure of the controller as well as its order can be xed a priori, which makes the implementation easier. And last but not least, multiple models can be considered simultaneously during the design process. This exibility will be used below to improve the robustness properties of the proposed design scheme.

Preliminary LTI robustness analysis

Now that an initial controller has been designed, let us focus more closely on the validity of the approximations made in Section E.1.1.1 and on their potential impact on the closed-loop behavior. More precisely, it is shown below how µ-analysis can be used to detect possible problems induced by the three main sources of uncertainties.

Plant uncertainties

When combining equations (E.1) and (E.7) to get (E.8), it is assumed that both f and G are well-known. But in practice, uncertainties δ are always present so that equation (E.8) reads:

ẋ = A(δ)x + B(δ)L A (v) + w (E.15)
where δ = δ 1 . . . δ l T ∈ R l . Assuming that both A and B depend rationally on δ, Σ(s) is replaced with Σ(s, δ) and written as follows:

Σ(s, δ) = F u (M (s), ∆ M ) (E.16)
where F u denotes the upper Linear Fractional Transformation (LFT, see Chapter C), M (s) is an LTI system and:

∆ M ∈ ∆ M = {diag(δ 1 I n 1 , . . . , δ l I n l ), δ i ∈ R} (E.17)

Actuators uncertainties

In Assumption E.1, the commutative property (E.6) may not be valid in all cases. Following [Biannic et al., 2012], it is then proposed to relax it as follows.

Assumption E.2 There exist a nonlinear bounded operator Γ(.) and a positive bound Estimation uncertainties

k Γ ∈ R + such that ∀υ(t) ∈ R m : L A (Λ -1 υ(t)) = Λ -1 L A (
Finally, it should be emphasized that only an estimate ŵ of the nonlinear input perturbations w is available to the outer loop controller K(s). The estimation process has been taken into account in the design phase through the approximation ŵ ≈ F (s)w, but it might be too optimistic in practice. Therefore, a diagonal perturbation block ∆ w corresponding to multiplicative uncertainties is added to the robustness analysis diagram of Figure E.3, so that ŵ is replaced with (I + ∆ w ) ŵ.

The three operators described above are then normalized, merged into a single block-diagonal operator ∆ = diag (∆ M , Γ(.), ∆ w ) and pulled out to generate an augmented linear model P (s), as depicted in Figure E.4. This can be achieved using the APRICOT and the GSS Libraries of the SMAC Toolbox (see [Roos et al., 2014; Biannic and Roos, 2016] and Chapter C).

Figure E.4: LFT-based representation for robustness analysis

Assuming for the moment that ∆ is a time-invariant operator, µ-analysis can be used to assess the robustness properties of the uncertain closed-loop interconnection depicted in Figure E.4. The SMART Library of the SMAC Toolbox (see [Roos, 2013] and Chapter A) can be used for this purpose. Since ∆ is normalized, the system is robustly stable if the resulting µ upper bound is lower than 1. Otherwise, if the µ lower bound is larger than 1, there exists a destabilizing worst-case uncertainty matrix ∆ * such that σ(∆ * ) < 1.

Multi-model design

There exist two main ways to improve the initial controller K(s) using the above robustness analysis results. Since it was designed in the H ∞ framework, it seems natural to use a µ-synthesis approach. Existing software [The Mathworks, 2017b] is based on [Young, 1996] and references therein. It works well in the case of complex-valued uncertainties, but numerical diculties are often reported with real-valued uncertain parameters. Moreover, results may be quite conservative in that case. A potentially more ecient technique is proposed in [Apkarian, 2011], but no practical implementation is currently available. For these reasons, an alternative is preferred here, which consists of performing a multi-model design. First considered in [Ackermann, 1985], this intuitive approach leads to nonconvex optimization problems. However, as already pointed out in Section E.1.1.1, it has regained interest recently thanks to the exibility of nonsmooth H ∞ optimization algorithms. The latter indeed oer new perspectives, since multiple models can be considered simultaneously. From this observation, a simple iterative algorithm is proposed below. Starting from a single-model design, the idea is to alternate robustness analysis and multi-model design. During the analysis step, worst-case congurations ∆ * are isolated to enrich the bank of models to be considered in the next design step.

Algorithm E.1 (robust multi-model design)

1. Choose a parametric conguration θp and apply the linearizing inner loop control law (E.7) to the nonlinear system (E.1), so as to get a linear nominal model Σ 0 (s) described by (E.8). 2. Set i = 0. Solve problem (E.13)-(E.14) to compute an initial controller K0 (s).

3. Perform a µ-analysis based robustness test as described in Section E.1.1.2. If the µ upper bound is less than 1, stop since the controller stabilizes the system on the whole parametric domain. If the µ lower bound in larger than one, extract the corresponding destabilizing matrix ∆ * and compute the associated model Σ(s, δ * ). 4. Set i ← i + 1. Add Σ(s, δ * ) to the bank of models. Compute Ki (s) via multi-model H ∞ design and go back to step 3.

Towards a global robustness analysis

In the simplied robustness analysis approach of Section E.1.1.2, the nonlinear input signal w is considered as an external perturbation. However, in view of (E.8) and (E.9), it is clear that w may depend on x and θ p in a quite complicated way. Robustness analysis thus becomes tricky in the most general case. Fortunately, with a good knowledge of the considered system, such as the one discussed in Section 1.2, reasonably simpler approximations can be obtained in practice, for example:

w = H(θ p )x + W (x) (E.20)
with the following assumptions:

• H(.) depends rationally on θ p and can be written in LFT form,

• the nonlinear operator W (.) satises Lipschitz conditions.

Hence, the LFT model F u (P (s), ∆) of Figure E.4 is modied to include additional blocks in ∆, so that w no longer appears as an external perturbation:

∆ = diag (∆ M , Γ(.), ∆ w , W (.), Θ p ) (E.21)
The operator (E.21) now contains uncertainties ∆ M and ∆ w , time-varying parameters Θ p , as well as memoryless nonlinearities Γ(.) and W (.). Robustness analysis must then be performed with more general tools based for example on the IQC framework [START_REF] Megretski | [END_REF].

Application to the approach phase

The robust nonlinear compensation technique of Section E.1.1 is now applied to a commercial aircraft during the approach phase. A full description of the considered benchmark is out of the scope of this manuscript, but detailed equations are available in the appendix of [START_REF] Biannic | [END_REF] and the whole Matlab package can be downloaded from the SMAC website http://w3.onera.fr/smac/aircraftModel. This section only focuses on the longitudinal behavior of the aircraft. The lateral behavior is described in [Biannic et al., 2017].

Nonlinear longitudinal aircraft model

Let us consider the following fourth-order longitudinal aircraft model:

           m V = -qSC D (α) -mg sin γ + F cos α mV γ = qSC L (α, q, V, δ e ) -mg cos γ + F sin α J q = qSLC m (α, q, V, δ e ) + z e F θ = q (E.22)
Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 1 Robust nonlinear compensation for the approach phase 97 with V the airspeed, γ the ight path angle, q the pitch rate, θ the pitch angle, q = 1 2 ρV 2 the dynamic pressure, J the longitudinal inertia, m the mass, S the reference surface, L the reference length, ρ the air density, α the angle of attack, F the engine thrust on the longitudinal axis and z e the vertical shift between the position of the center of gravity and the thrust application point. The drag, lift and pitching moment coecients C D , C L and C m can be expressed as follows: Remark E.2 Using rst-order models for the actuators is common practice in the aeronautical industry, and it is suciently representative here. Rate limitations are neglected, but it would be possible to add an anti-windup controller (see Chapter D) to take them into account.

C D (α) = C D0 + C Dα α + C Dα2 α 2 C L (α, q, V, δ e ) = C L0 + C Lα α + C Lq q V CL +C Lδe δ e C m (α, q, V, δ e ) = C m0 + C mα α + C mq L q V Cm +C mδe δ e (E.
Equation (E.22) is rewritten as in (E.1), (E.5) and (E.6), where:

f =      -qS m C D -g sin γ qS mV CL -g V cos γ qSL J Cm q      , B =     1 0 0 0 0 1 0 0     , Λ = cos α m 0 ze J qSL J C mδe , ∆ G =     0 0 sin α mV qS mV C Lδe 0 0 0 0    
Remark E.3 Given the operating domain of the system, Λ is nonsingular. Moreover, Λ is slowly varying, since its dynamics mainly comes from the dynamic pressure q. Therefore, Assumption E.1 is satised.

Remark E.4 The choice of B was made based on the maximum control eciency. Indeed, as can be seen in (E.22), the thrust F mainly aects the airspeed V , while the elevator deection δ e has a large impact on the pitch rate q.

Nonlinear compensation technique

The method described in Section E.1.1.1 can now be applied. The inner loop control law (E.7) is rst implemented, which leads to the linearized system (E.8). ζ is chosen to cancel the nonlinear dynamics on V a and q, so that only the nonlinear terms on γ are kept in w f . The nominal conguration θp corresponds to a mass of 150 tons, a center of gravity position at 21% and an initial airspeed of 70 m/s. This is a central conguration in terms of the location of the linearized system poles. Choosing an extreme conguration may also be an option, but nominal performance is severely degraded in this case and it is dicult to control the opposite extreme congurations. Finally, the frequency weighting functions W p (s) and W u (s) as well as the lter F (s) are dened as explaind in Section E.1.1.1 (see [Biannic et al., 2017] for numerical values).
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The optimization problem (E.13)-(E.14) is solved. A third-order controller K0 (s) proves to be a good compromise, since it oers a satisfactory performance level and it is suciently simple to be implemented in a ight computer. Simulations are performed with this controller on the full nonlinear benchmark, and a few results are displayed in Figure E.5. The upper plots show the aircraft response to a 3 deg step demand on the ight path angle γ for various parametric congurations: m ∈ {120, 150, 180} tons, x cg ∈ {15, 20, 40} % and V 0 ∈ {60, 70, 80} m/s. Similarly, the lower plots show the response to a 3 m/s step demand on the airspeed V . The red plots correspond to the reference signals z r to be tracked, i.e. to the outputs of the reference model R(s). These simulations conrm the good stability and performance properties of the robust nonlinear compensation scheme, which maintains near-nominal performance in a large ight domain. Moreover, the controller follows the reference models quite well and a good decoupling between γ and V is also ensured.

Robustness analysis and multi-model design

The controller K0 (s) has been designed to cope with a large operating domain in nominal conditions. Therefore, the uncertain operators represented by the gray boxes in Figure E.3 have not yet been taken into account. The objective of this section is twofold. First, the eect of these uncertainties is evaluated with µ-analysis tools. Next, the resulting worst-case congurations are used in the multi-model design strategy of Algorithm E.1 to compute a more robust controller.

Multiplicative uncertainties δ C D , δ C L , δ Cm are introduced on the aerodynamic coecients C D , C L , C m , as well as additive uncertainties δ V , δ m , δ xcg on the airspeed, the mass and the center of gravity location. Equations (E.22) are linearized and a set of LTI models is obtained.

Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 1 Robust nonlinear compensation for the approach phase 99 An LFR is then generated as in equations (E.16)-(E.17) using the APRICOT and the LTI2LFR Libraries presented in Chapter C. Thanks to sparse approximation techniques, the size of ∆ M is reasonable, so that µ-analysis tools can be easily applied:

∆ M = diag δ C D I 2 , δ C L I 3 , δ Cm I 2 , δ V I 6 , δ m , δ xcg ∈ R 15×15 (E.24)
As a result, the size of the operator

∆ = diag (∆ M , Γ(.), ∆ w ) ∈ ∆ in Figure E.4 is 20×20.
A normalization step is performed, so that ±30% of uncertainties are introduced when ∆ is restricted to the unit ball, i.e. σ(∆) < 1. Upper and lower bounds on the structured singular value µ are nally computed with the SMART Library of the SMAC Toolbox. With the nominal controller K0 (s), a lower-bound µ ∆ > 1 is obtained as well as a worst-case conguration ∆ * such that σ(∆ * ) = µ -1 ∆ < 1. ∆ * is used to initialize the multi-model design procedure of Algorithm E.1. A new controller K(s) is obtained after 5 iterations. Robustness is signicantly improved, since µ ∆ < 1 thanks to the branch-and-bound technique implemented in the SMART Library.

The same nonlinear simulations as in Section E.1.2.2, i.e. without uncertainties, are now performed with K(s) instead of K0 (s). Results are displayed in Figure E.6. As expected, performance has slightly decreased, since K0 (s) was optimized for the nominal case: responses are a little bit slower and decoupling is not as good. Results are not presented for ±30%. Parametric congurations can indeed be found, for which the nominal controller K0 (s) is unstable (unlike K(s) which is always stable). This demonstrates the eciency of the proposed methodology.

Remark E.5 The lateral controller design is not presented here for the sake of brevity, but the whole process is described in [Biannic et al., 2017]. 1.2.4 Final approach simulations PID-based guidance laws are designed in addition to the control laws described above, so as to bring to zero the lateral and the vertical deviations with respect to the glide and the localizer beams respectively. Basic are and debrab laws are also implemented, whose robustness will be improved in Section E. 

Conclusion

Inspired by dynamic inversion techniques, an original methodology is proposed to design nonlinear controllers over possibly large operating domains. A partial feedback linearization of the plant is combined with a xed-structure multi-model H ∞ design technique. A preliminary µ-based validation step is then performed, during which worst-case congurations are identied and used to progressively enrich the set of design models. A global nonlinear validation strategy is nally sketched. The resulting algorithm is evaluated on a realistic aircraft landing problem. Future work will focus on its application to a small xed-wing UAV, including ight tests, as explained in Section E.4.

2 Robust multi-model H ∞ design for the are phase 2.1 Overall structure of the are control system

The nominal slope during approach is generally xed to γ gld = -3 deg, and for the considered aircaft the nominal approach airspeed is around V = 70 m/s (see Section E.1.2). Therefore, the vertical speed V z remains above 3.5 m/s. The objective of the are phase is to provide enhanced vertical speed control capacities, so that the aircraft hits the runway about 400 m after threshold with a much lower vertical speed of 0.76 m/s (2.5 ft/s). During this short maneuver, rarely exceeding 7 s, the engines are set to the idle position and the thrust δ th is constant. Therefore, the only control input along the longitudinal axis is the elevator deection δ e . Basic are control laws were already used in Section E.1.2.4 to perform full landing simulations, but they are not robust enough. A more ecient structure is shown in Figure E.9, which consists of two nested loops. A reference vertical speed prole is generated by the outer loop, which sends a commanded vertical speed V zc to the inner loop. This prole depends on both the initialization altitude H F LA ≈ 15 m (50 ft) and the airspeed. It must be tracked despite external perturbations and model uncertainties thanks to an appropriate tuning of the inner loop vertical speed controller, whose design is described in this section. 

Vertical speed control via multi-channel structured H ∞ optimization

The central objectives and constraints of the are phase are fundamentally dierent from those encountered during the nal approach. From a control viewpoint, the design problem appears to be simpler since only one variable (the vertical speed) is being tracked and only one control input (the elevator deection) is being managed. However, the uctuations of V (which is no longer controlled) and the engines deceleration generate perturbations. In addition to the ground and wind eects, this nally makes the control problem quite dicult. Fortunately, the latter falls within the scope of H ∞ techniques.

The key issue is to dene an appropriate design scheme, which begins with the choice of relevant linear approximations of the aircraft longitudinal dynamics near the ground. Such models are obtained using trimming and linearization tools for various points of the two-dimensional are trajectory. A set of third-order models Σ(s, H) parameterized by the landing gear height H is obtained, whose state-space representation is of the following form:

  Vz q θ   = A(H)   V z q θ   + B 1 (H) δ e + B 2 (H)   V δ th w   wpert (E.25)
In these models, V and δ th are no longer viewed as a state and a control input respectively, but as external perturbations. However, unlike wind inputs w, they are measured and can be used for feedback. This is illustrated in the design diagram of Figure E.10. The controller to be optimized is a static gain K ∈ R 7 . The proposed vertical speed control law then reads:

δ ec = K V zr V zc (V zc -V z ) V z q θ V T (E.26)
where δ ec is the commanded elevator deection and V zr is the output of a linear reference model R(s) to be tracked. The main interest of the proposed structure is to remain close to the one used during the approach phase, which not only simplies the switching strategy but also contributes to an improved safety level.

ff Let us now focus on the optimization criteria. Beyond the standard closed-loop stability requirements, the objective is to determine the best controller K such that:

V zr w 1 =V zc K W u W pert W Є z 11 z 2 V z W Vz Є Vz z 12 δ e w 2 w pert V V , δ th , w V z V z , q , θ X = [V z q θ] T R(s)
• the norm of the error Vz = V zr -V z is minimized,

• the control activity is such that magnitude and rate saturations are avoided,

• the perturbations w pert have a negligible eect on the vertical speed variations.

In the H ∞ framework [Zhou et al., 1996] and using the notation of Figure E.10, the rst two objectives are realized through the H ∞ norm minimization of the map from w 1 to [z 11 z 12 ] T . The latter can be written as:

T w 1 →[z 11 z 12 ] T (s) = F l (P 1 (s, H), K) (E.27)
where F l stands for the lower linear fractional transformation and P 1 (s, H) is a parameterized (height dependent) weighted LTI model. Following standard rules, the weighting functions W (s) and W u (s) can be chosen as a high-gain low-pass lter and a static gain respectively. The third objective is achieved by the H ∞ norm minimization of the map from w 2 (where w pert = W pert (s)w 2 ) to z 2 = W Vz (s)V z , which can be written as:

T w 2 →z 2 (s) = F l (P 2 (s, H), K) (E.28)
The three-dimensional lter W pert (s) is used to shape the input perturbations. As (E.28) is considered independently of (E.27), it is not restrictive to choose a static function W pert (s) = diag(W V , W δth , W w ), where the gains W V , W δth and W w are used to adjust the relative weights of each input perturbation. The three corresponding transfer functions are then weighted by a single scalar dynamic lter W Vz (s). In order to remove any static error on V z (mostly induced by the speed variations), which could be critical near ground, a high-gain low-pass lter must be used. To summarize the above discussion, the controller optimization can be stated as the following multi-model and multi-channel structured H ∞ control design problem:

K = arg min K max H≤H F LA i=1,2 F l (P i (s, H), K) ∞ (E.29)

Robustness against parametric uncertainties and modeling errors

By simultaneously considering several design models for dierent values of the landing gear height H, robustness against ground eects modeling errors is enforced in the proposed design process. This is, however, not sucient in practice, where parametric robustness against mass and center of gravity location is also required. To this end, the above multi-objective H ∞ design framework is generalized to take these additional uncertainties into account. Therefore, the design problem (E.29) becomes:

K = arg min K max H≤H F LA i=1,2 j=1...N F l (P i,j (s, H), K) ∞ (E.30)
In this formulation, N models are selected in the (mass × centering) domain, which typically correspond to the vertices. Problem (E.30) is then solved using the same H ∞ design tools as in Section E.1.1.1. A total of 2 × 4 × 2 = 16 design models are used, corresponding to: A deterministic wind step occurs at 30 s during the approach phase. Strong turbulence as well as ILS noise are also introduced. The upper left plot shows the aircraft trajectory in the vertical plane during the whole maneuver, and it appears that the proposed guidance and control system behaves well. The impact point is slightly after the 400 m threshold and meets the requirements.

A zoom on the are trajectory reveals that the vertical speed V z remains close to the reference one (upper right plot). Next, the robustness of the proposed controller is assessed for extreme values of the mass (120 tons and 180 tons) and the center of gravity location (15% and 40%).
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Results are presented in Figure E.13. A reasonable dispersion of the impact point is observed (between 400 and 600 m), and the vertical speed is well tracked whatever the ight condition. More detailed simulation results can be found in [START_REF] Biannic | [END_REF]. 

Conclusion

A multi-model H ∞ -based design approach is proposed to improve and shorten the tuning process of are control systems. A fast and accurate tracking of the vertical speed is achieved despite measured (longitudinal speed variations) and external (wind, gust, ILS noise) perturbations. Parametric uncertainties and modeling errors are also taken into account thanks to the exibility of the multi-model design tools, which are used here to improve robustness against inaccurate modeling of the ground eects and signicant variations of the mass and the center of gravity location. The resulting are control laws are combined with the glide and the outer loop controllers designed in Section E.1.2 to provide a complete control architecture that can be used during nal approach and until touchdown.

3 Adaptive anti-windup design for the ground phase Safety and economy are the primary concerns during the ground phase for commercial aircraft, the ultimate goals being the automation and the optimization of taxi operations. But for now, most aircraft are still controlled manually by the pilot before landing and after touchdown. One of the main reasons for this is that the on-ground motion is quite complex due to the coupling of aerodynamic eects and tire-road interactions. The latter are indeed highly nonlinear and depend on several parameters (runway characteristics and condition, tires characteristics, antiskid braking system, longitudinal speed of the aircraft. . . ). Advanced control techniques thus prove necessary to reach satisfactory performance levels. In this context, an adaptive antiwindup approach is presented in Section E.3.2 to control the aircraft at low speed with the nose-wheel steering system. It is based on an original approximation of the nonlinear ground forces by saturation-type nonlinearities, which is described in Section E.3.1. But one of the most challenging on-ground control problems occurs at intermediate speed between 40 and 80 kts.

The main objective is to follow the runway centreline in the worst possible conditions, i.e. on a contaminated runway and in the presence of crosswind. Achieving good robustness and performance requires to combine all available actuators, and notably to use dierential braking in conjunction with classical control devices, such as nose-wheel steering system and rudder. If dierential braking should be used sparingly in dry weather to avoid excessive tire and brake wear, it could signicantly reduce the lateral deviation on a wet or snowy runway. In this context, a dynamic control allocation scheme combined with a robust outer loop is briey outlined in Section E.3.3 to address this issue.

Design oriented modeling of an on-ground aircraft

High-delity models with 6 or more degrees of freedom, such as the ones presented in [Rankin et al., 2009;Jeanneau, 2007], are more convenient for analysis and validation than for control. Therefore, simplied design-oriented models have been developed. However, they generally focus only on the lateral behavior of the aircraft [Lemay et al., 2011; Bihua et al., 2013; Looye, 2007].

A few ones consider also the longitudinal behavior, but most of the time they do not discuss the coupling eects or do not provide a complete modeling of the tire-road interactions [Biannic et al., 2006a; Turbuk and Paglione, 2010; Georgieva and Serbezov, 2017]. Moreover, the operational domain is often limited to low speed, and if higher speed is considered, only the rudder is usually taken into account in addition to the nose-wheel steering system [Bihua et al., 2013; Biannic et al., 2006a; Looye, 2007].

In order to bridge the gap between high-delity and oversimplied representations, a simple Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 3 Adaptive anti-windup design for the ground phase 107 but accurate design-oriented model with 3 degrees of freedom is proposed in [Sadien et al., 2018].

It includes both the longitudinal and the lateral aerodynamic eects and tire-ground interactions, as well the dependence on runway conditions. The on-ground dynamics can be controlled by engines thrust, rudder deection, nose wheel steering and (dierential) braking, whose physical limitations are taken into account. It can be used up to 100 kts, which makes it suitable to address the above control issue. All equations are not described here, but a particular emphasis is placed on the slip force model, which is the key point that will be used in Sections E.3.2 and E.3.3.

A rst simplied model was proposed in [Biannic et al., 2006a]. The slip force F sy is represented by a saturated linear function in the case of pure lateral slip:

F sy = N t sat [μFsy max ] (G y β s ) (E.31)
where the saturation level depends on the runway state μ and the maximum lateral force F symax for a dry runway. N t denotes the number of tires in the considered landing gear, β s is the sideslip angle, and the cornering gain G y = ∂Fsy ∂βs βs=0

is computed for a mean value of the normal reaction F z . No explicit dependence on F z is considered, but an uncertainty is introduced on G y , whose bounds are determined by extensive simulations of the high-delity model of [Jeanneau, 2007]. This is illustrated in Based on [Biannic et al., 2006a], an improved model is proposed in [Sadien et al., 2018], which accounts for combined slip, runway state and normal load variation. The combined longitudinal and lateral slip force F s = F 2 sx + F 2 sy generated by an isotropic tire, under non-zero sideslip and longitudinal slip, cannot exceed µF z , where µ = μµ max denotes the tire-road friction coecient and µ max its maximum value corresponding to a dry runway [Brach and Brach, 2011]. The maximum force boundary is illustrated by the pink circle in Figure E.15. The key idea to avoid this coupling between F sx and F sy is to assume that the sideslip angle β s remains small during the roll-out phase, typically less than 5 deg in practice. Furthermore, the anti-skid system prevents the longitudinal slip ratio of becoming too large. In this context, it is reasonable to assume that the resultant of the slip forces lies inside the pink area in The following decoupled model is then assumed:

F sx = N t sat μλsx Fz N t (K x T brk ) (E.32) F sy = N t sat μλsy Fz N t K y F z N t β s (E.33)
T brk is the braking torque. K x and K y correspond to the inverse of the eective rolling radius and to the reduced lateral cornering gain respectively, while λ sx and λ sy denote the longitudinal and the lateral friction fractions, dened for a dry runway and satisfying λ sx 2 + λ sy 2 = µ max 2 . K y does not depend on speed in the considered operational domain, but it is function of the runway state according to [Mitchell, 2006]:

K y = K ymax 2 3 + 1 3μ (E.34)
where K ymax is the maximum value of K y , obtained for a dry runway. The whole on-ground aircraft model is described in [Sadien et al., 2018] and compared to a high-delity Airbus simulator [Goupil et al., 2014]. One of the considered maneuvers is represented in Figure E.16. It corresponds to a 3 deg deection of the brake pedal to the right and then to the left on a wet runway at medium speed. The lateral behavior of the proposed model is close to that of the simulator, and similar results are obtained for all maneuvers. Hence, it is well-suited for the development of ground control laws.

Adaptive anti-windup for low speed maneuvers

The control objectives depend on the aircraft velocity. Let us rst focus on low speed (below 40 kts), where the main concern is maneuverability. The challenge is to design a control architecture, which ensures a good tracking of the yaw rate r and the heading Ψ:

• with as fast a response as possible,

• without overshoot (especially in heading),

• whatever the runway state (dry, wet or icy),

• for any aircraft longitudinal speed. The only control input is the nose-wheel deection θ N W . Typical maneuvers are runway exit at the right speed while minimizing the occupation time, or autonomous motion along the taxiways towards the selected gate. A methodology based on the on-ground aircraft model presented in Section E.3.1 is described in [Roos et al., 2010]. The main steps are briey outlined below.

The huge variation of the lateral slip forces with respect to the runway state (see Figure E.14) suggests that standard robust control methods would yield conservative results and reduced performance. On the opposite, the proposed approach is to perform an on-line estimation of these forces. This information can then be used to maintain the sideslip angle β s just below the optimal value for which F sy is the highest, so that the aircraft turns quickly without for all that slipping on the runway. In this perspective, it is necessary to capture the nonlinear behavior of the slip forces. Very accurate models are for example used in [Falcone et al., 2007], but the resulting model predictive control approach is computationally demanding and cannot be reasonably implemented in ight computers. Therefore, a simpler model seems preferable, such as the one proposed in Section E.3.1. And the associated saturations strongly suggest to design an anti-windup controller using the techniques described in Chapter D, which becomes active only when the sideslip angle reaches a certain limit. With this strategy, there is no need to modify the nominal control laws, which is a strong industrial requirement.

The proposed ground control architecture is represented in Figure E.17. A nominal controller depending on the aircraft longitudinal velocity V x is rst designed, so as to ensure good stability and performance in the linear operating domain. It is composed of a rst-order inner loop controller K r (s) for yaw rate tracking and a rst-order outer loop controller K Ψ (s) for heading tracking. The commanded yaw rate r c is followed without steady-state error, but an important overshoot occurs when the saturations involved in the slip forces model are active, as shown by the dotted line in Figure E.19(a). Therefore, a parameter-varying static anti-windup controller J r function of V x is designed to counter the adverse eects of these nonlinearities. The overshoot becomes negligible, which is conrmed by the solid line in The input of the anti-windup controller J r is computed as the dierence between the unsaturated and the saturated lateral slip forces. However, it is not available on a real aircraft and has to be estimated on-line. This is a dicult issue, since the saturation levels depend on the runway state (see equation (E.31)), which is unknown and can change rapidly. An estimation procedure is implemented, based on the dynamic inversion of the lateral aircraft model. Estimates Fsy of the lateral slip forces are obtained, and the signals:

N W = sign (β s N W ) | Fsy N W -G y N W β s N W | M G = sign (β s M G ) | Fsy M G -G y M G β s M G | (E.35)
can be used by the anti-windup device, where the subscripts N W and M G stand for the nosewheel and the main landing gears respectively (see [Roos et al., 2010] for details).

The resulting adaptive controller is composed of the parameter-varying nominal and antiwindup compensators as well as the estimator. It is implemented on the nonlinear high-delity model of [Jeanneau, 2007] It can be seen that the control objectives are satised. In particular, the heading is well tracked whatever the runway state, which demonstrates the ability of the on-line estimator to identity the slip forces.

Finally, an extensive validation is performed in [START_REF] Roos | [END_REF]. Stability and performance are rst evaluated using the µ-analysis based tools presented in Chapter A. The analysis techniques of Chapter B are then applied to take into account time-invariant uncertainties (aerodynamic coecients) as well as time-varying uncertainties (cornering gains) and parameters (aircraft longitudinal velocity). 

Robust dynamic allocation for runway axis hold

The methodology presented in Section E.3.2 is limited to low speed maneuvers, where a single actuator is sucient to control the lateral behavior of the aircraft. At higher speed, the main objective is to follow the runway centreline whatever the runway condition and despite strong crosswind. All actuators must be combined to meet safety, performance and comfort requirements, which raises a control allocation problem (see e.g. [Johansen and Fossen, 2013; Zaccarian, 2009; Härkegård, 2004] for a review of dynamic allocation techniques). However, dierential braking is systematically ignored in the on-ground control literature, and even the rudder is rarely mentioned. One of the very few works facing the above control allocation problem is [Looye, 2007], which presents a simple solution depending on the aircraft velocity V x : only the nose wheel or the rudder is used if V x < V low or V x > V high , and in between a linear blend is applied. This kind of approach is typically implemented by aircraft manufacturers due to its simplicity, but it is clearly suboptimal. Work is underway to improve these results. A two-step strategy is proposed in [Cassaro et al., 2018], based on the on-ground aircraft model developed in [Sadien et al., 2018] and briey reviewed in Section E.3.1. A robust outer loop controller designed using structured H ∞ tools allows to cope with severe crosswind and to limit the aircraft lateral deviation, even on a contaminated runway. It produces a single output, which corresponds to a dierential braking command. Among the three available control actions, dierential braking is indeed the only one to be eective across the entire speed range. A dynamic control allocation scheme is then implemented based on the method of [Zaccarian, 2009], so as to account for abrupt changes in the actuators eectiveness due to the fast variations of velocity and loads during deceleration. Promising simulations are presented in [Cassaro et al., 2018], although further validation is required.

Control laws implementation

A wide variety of military and civilian tasks can be assigned to xed-wing UAV: search and rescue, exploration and detection, surveillance, imaging. . . Many of them take place in hazardous and remote environments, and their success often relies on ecient and robust control systems. However, the design of such systems is challenging because many specications have to be taken into account with a limited computing power.

The objective in this context is twofold. First, apply advanced control techniques such as those presented in the previous sections to improve performance and increase the operating domain of xed-wing UAV. Then, prove that the resulting control architectures are simple enough to be implemented on low-performance avionics. Work is still in progress, but the ambition is to carry out ight tests on some of the UAV operated by ONERA, which are shown in The nal chapter of this manuscript briey summarizes my research perspectives, which are organized along three lines:

• Development of enhanced robustness analysis tools,

• Computation of simple yet accurate linear fractional representations,

• Design and implementation of advanced control architectures.

Each of these lines is described in more detail below.

Development of enhanced robustness analysis tools

As emphasized in this manuscript, a lot of work has already been done during the last three decades in the eld of µ-analysis, and this technique is now well recognized as mature and ecient by the control community. In most cases, stability margins and performance levels can be computed with both a very good accuracy and a reasonably low computational time, as shown in Chapter A. But we can always go further! Here are a few ideas:

• In the same way as for the µ lower bound, perform an extensive comparison of all practical µ upper bound algorithms, and propose some combinations to take the most out of them,

• Improve the branch-and-bound algorithms when they do not converge in a reasonable number of iterations, for example by better dividing the uncertainty domain (use other criteria than the highest µ-sensitivity, create subdomains of dierent sizes. . . ),

• Focus on numerical issues (for example, when reducing in Algorithm A.1 to improve precision, the size of the interval I v sometimes becomes smaller and smaller around certain frequencies, and many iterations are needed to validate the whole frequency range, which signicantly slows down the algorithm),

• Compare several optimization tools (notably LMI solvers). . .

The objective is to continually improve the SMART Library until all real-world applications can be solved.

But despite the good results achieved on many benchmarks, µ-analysis based tools are only marginally used in industry. This is mostly because they are developed within a deterministic framework. In this context, the robustness margins can be too conservative, since the associated worst-case congurations sometimes correspond to non-physical operating points or to situations that are unlikely to occur in practice. As an example, if some ight control laws fail to stabilize an aircraft for a parametric conguration whose probability of occurrence is below 10 -9 per ight hour, the proposed control system might be wrongly rejected. This is in stark contrast with industrial practices, where Monte Carlo methods are commonly used by control engineers to assess stability and performance of many kinds of aerospace systems in a probabilistic framework. These methods are easy to implement and do not pose any specic constraint on the representation of the system to be analyzed. But on the other hand, their high computational complexity makes them time-consuming and costly. In this context, there is a real need to bridge the gap between Monte Carlo simulations and deterministic optimisation-based methods, by developing new validation tools which combine the advantages of both approaches. The main objective is to provide fast and computationally ecient tools able to capture the probability of occurrence of worst-case events, thus speeding up the control laws validation process. To do so, the idea is to conne the system uncertainties in a set as in the deterministic case, but also to consider them as random variables with given multivariate probability distributions. Probabilistic µ-analysis could be investigated rst, since it is a fairly direct extension of classical µ-analysis, and the algorithm introduced in Section IV of [Roos and Biannic, 2010] would be a good starting point. A more prospective study could then be conducted to evaluate the applicability of other probabilistic and randomized techniques (see e.g. [Calaore et al., 2011]) to high-order systems with many uncertainties. Beyond control laws validation, these techniques could also be integrated in the design process and used to optimize the controller gains, a context to which classical Monte Carlo methods cannot be directly applied. The ambition is to shorten the development time by avoiding a tedious iterative process between design and validation, and to better handle the trade-o between robustness margins and performance levels. We have proposed a PhD position on this topic in collaboration with Politecnico di Milano.

We have spent a considerable amount of time working on µ-analysis, which is essentially based on the H ∞ norm. This can be a little restrictive. Consider for example the clearance of ight control laws process mentionned in the introduction. Several criteria must be evaluated, among which some of them are formulated in terms of the H 2 norm. This is typically the case of comfort and loads requirements [Papageorgiou et al., 2012]. An upper bound on the worst-case H 2 performance level was proposed in [Paganini and Feron, 2000] and could be useful in this context. But its practical computation is a challenging issue with an innite number of frequencydomain constraints, each of them being an LMI involving scaling matrices with a large number of decision variables in case of highly repeated uncertainties. Fortunately, it should be possible to adapt some of the methods presented in Chapter A to cope with the H 2 framework. For example, Algorithm A.1 was already adapted in [Garulli et al., 2013] to avoid solving the problem on a nite frequency grid, and thus to get a guaranteed upper bound on the worst-case performance level. But it is still restricted to small and medium size problems due to the limited capabilities of LMI solvers. An idea to get a more tractable algorithm could be to use a gradient descent technique as in the H ∞ case to obtain a solution that would probably be slightly suboptimal, but with a much shorter computational time. Moreover, in the spirit of [Ferreres and Biannic, 2001;Roos, 2010], it should be investigated whether an accurate lower bound on the worst-case H 2 performance level could be obtained.

Several methods have been proposed in Chapter B to deal with both LTI and time-varying uncertainties. But when bounded rates of variation have to be considered (which is the most common in practice), existing techniques are usually based on LMI characterizations involving the optimization of square matrices with n(n + 1)/2 decision variables, where n is the order of the considered system. This is typically the case when IQC-based analysis is coupled with the KYP lemma, or when parameter-dependent Lyapunov functions are used as in Section B.2. In case of high-order systems, the computational time can be prohibitive and a frequency-domain approach is a valuable alternative. In this context, generalizing the approach of [START_REF] Ferreres | [END_REF] presented in Section B.2 could be relevant.

Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice Finally, a more complicated problem is to consider both structured uncertainties and saturations when assessing the robustness properties of a feedback system. IQC-based analysis is a natural way to address this issue, see e.g. [Ge et al., 2012; Ferreres and Biannic, 2007]. But saturations are usually treated as classical sector-bounded nonlinearities, which can be conservative. And the computational time can become prohibitive in case of highly repreated parametric uncertainties. A better solution could be to characterize the saturations using the modied sector condition introduced in [Gomes da Silva Jr and [START_REF] Da | Antiwindup design with guaranteed regions of stability: an LMI-based approach[END_REF] instead of the classical one to reduce conservatism, and to handle the uncertainties in the µ framework to master computational time. But combining both approaches is not obvious. . .

Computation of simple yet accurate LFR

Before an LFR can be generated from tabulated data, it is important to ensure that the latter are consistent and can be approximated. But experience shows that there is currently no method that works all the time, especially when a set of MIMO LTI systems must be turned into an LFR. A rst solution is to nd polynomial or rational approximations of the state-space matrices, but it is dicult to guarantee that the state vector is consistent across all models. So the eigenvalues and the frequency responses of the resulting LFR may not evolve smoothly on the whole parametric domain, leading to some unrealistic behavior. Strategies to constrain them in prescribed intervals could be investigated. Another solution is to generate an LFR, which only preserves the input-output behavior, without considering the eigenvalues. This can be achieved by minimizing an H ∞ or an H 2 criterion, see e.g. [Petersson and Lofberg, 2009] for the H 2 case. But computational time often becomes an issue when the size of the problem increases. Keeping in mind that our objective is to provide robustness analysis tools, which are much faster than classical simulation-based techniques, more research has to be done to fasten the LFR generation step. Indeed, it becomes useless to have analysis tools which run in a few seconds if it takes hours or days to get the LFR! Recently, non-smooth optimization techniques have been developed and could help minimizing the H ∞ norm at a reasonable cost ( [Apkarian et al., 2009]).

As already highlighted in Chapter B, a particular attention must also be paid to the size of the LFR when applying robustness analysis tools, so as to avoid conservatism, or even numerical intractability. A rst strategy is to create a high-delity LFR without trying to master complexity, so as to closely match the behavior of the considered system. But checking whether it is minimal of not (i.e. whether the size of ∆ is as small as possible) and computing the associated minimal representation is a very dicult open problem. An alternative to reduce complexity is to apply reduction techniques such as the ones proposed in [D'Andrea and Khatri, 1997;Ferreres, 2004]. Recently, parametric model reduction has gained a lot of interest and several techniques dedicated to parameterized dynamical systems have been proposed [Benner et al., 2015]. It would be interesting to investigate the relevance of these algorithms when applied to the LFR framework to see whether better results could be obtained.

A second strategy is to act upstream and to directly generate a simple yet accurate LFR. This question arises primarily when trying to obtain an LFR from tabulated data. Most of the time, the user simply adjusts by trial and error the maximum degrees of the polynomial and rational approximations, which can lead to solutions that are far from being optimal. Attempts have been made to automate this procedure (see e.g. [Roos et al., 2014; Pfer and Hecker, 2011]) but much remains to be done. What are the best size and structure of ∆ (i.e. the number de repetitions of each parameter and uncertainty)? Is it relevant to add delays, nonlinearities. . . ? What is the best way to take into account the approximation errors? These are all questions that remain largely unanswered for the moment. And what is the best way to choose the samples used for approximation, i.e. which parametric congurations of the system have to be considered? A solution based on the ν-gap metric is proposed in [Vizer and Mercère, 2014], but it seems tedious to implement when several parameters are considered.

To sum up, plenty of interesting contributions exist in the eld of LFR generation, but there is still much to be done to combine the most relevant ones, so as to obtain both reliable and generic methodologies.

Design and implementation of advanced control architectures

Many real-world applications can be cited, where strong cost constraints or weight limitations dictate the use of potentially low performance hardware (such as actuators, sensors and onboard computers). For example, the access to space is becoming signicantly easier and cheaper with the advent of nanosats. To promote this new economic model, low-cost launchers must be developed. In the military domain, the need for guided projectiles has continuously increased during the last years with several such systems in development or in operational use. One of the most topical issues is to improve the precision and to enhance the range of traditional artillery shells in the modern battleeld, while signicantly reducing costs. And UAV are now widely used to perform a large number of demanding missions. So there is a real need to control various kinds of systems on extended operational domains in the presence of hardware limitations, uncertainties, varying parameters as well as actuator saturations.

Many ecient analysis tools are now available, but in most cases they are applied only once the control laws have been computed. However, it could be benecial to better integrate them into the design step, so as to anticipate the tedious validation inherent to any industrial process. The methodology presented in Section E.1 is a rst step in that direction. It uses µ-analysis to compute worst-case congurations, which are used to enrich the bank of design models and to iteratively improve the robustness properties of the closed-loop system. When applied to the approach phase of an aircraft, it could be extended by using evolutionary algorithms to optimize some high-level parameters such as the altitudes at which the are and the decrab are initiated, in order to maximize the probability of safe landing. When applied to the aforementioned projectiles, it could be coupled with an anti-windup device to cope with actuator saturations or with aerodynamic nonlinearities at high angles, so as to increase the operational domain. We have proposed a PhD project in collaboration with the French German Institute of Saint Louis (ISL) to go one step further in the development of novel control architectures able to cope with demanding specications such as those mentioned above, and to develop generic computational tools that could be passed to control engineers. But it must be paid attention not to make the laws too complicated. And for this, there is nothing like facing implementation constraints. Thanks to our growing involvement in ONERA's UAV lab, the proposed control architectures will be implemented on a 4m wide aircraft and validated rst by hardware-in-the-loop simulations and then by ight tests. The feedback will allow us to take a fresh look at our design methodologies and to further improve them. We are currently setting up an ambitious research project on this topic.
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Figure A. 1 :

 1 Figure A.1: Standard interconnection for robustness analysis

  µ ∆ (M (jω)) = min ∆∈∆ {σ(∆), det(I -M (jω)∆) = 0} -1 (A.2) Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 2 µ lower bound computation 15 Theorem A.1 (small gain theorem for structured uncertainties) The interconnection of Figure A.1 is stable for all uncertainties ∆(s) ∈ kB ∆ if and only if:

  Algorithm A.1 (computation of a lower bound on k r ) 1. Initialization: (a) Compute a µ lower bound β max (see Section A.2.4). (b) Let I = {R + } be the initial list of frequency intervals to be investigated. 2. While I = ∅, repeat: (a) Choose an interval I ∈ I and a frequency ω ∈ I. (b) Compute the minimum value of β and the associated matrices D and G such that inequality (A.12) holds with M = M (j ω). (c) Set β ← max((1 + )β, β max ). Apply Proposition A.1 to compute I v . (d) Set β max ← β. Update the intervals in I by eliminating the frequencies contained in I v .

  I = ∅, repeat: (a) Choose an interval I ∈ I and a frequency ω ∈ I. (b) Compute the minimum value of α and the associated matrices Ĉ ∈ C q×q , D and G such that inequality (A.21) holds with M = M (j ω).

Figure A. 2 :

 2 Figure A.2: Computational time to compute tight bounds on the robust stability margin

  Figure A.3: Truncated sector used for modal performance assessment

  Problem A.2 (skewed robust stability margin) With reference to Figure A.1, compute the skewed robust stability margin k s dened in equation (A.27) for a given block structure ∆ s .

Figure B. 1 :

 1 Figure B.1: Interconnections for robust stability (a) and worst-case performance (b) analysis Denition B.1 (stability) The interconnection of Figure B.1(a) is stable with respect to a set S of bounded operators ∆ if there exists α > 0 such that (I -∆M ) -1 i2 < α for all ∆ ∈ S.Two analysis problems are considered in this chapter. They are similar to Problems A.1 and A.3, except that ∆ contains time-varying parameters. Note that the induced L 2 norm reduces to the H ∞ norm when only time-invariant uncertainties are considered, and thus k i2 = k ∞ in this case.

  Figure B.2: Interconnection for robust feedforward design

2. 1

 1 Problem statement The framework is roughly the same as in Section B.1.1. Let us consider the standard interconnections of Figure B.1. M (s) is a continuous-time stable and proper real-rational transfer function representing the nominal closed-loop system. ∆ is a linear time-varying memoryless multiplication operator, i.e. w(t) = ∆(t)z(t) for all t ≥ 0. It has a block-diagonal structure of the form:

  Two analysis problems are considered: robust stability and worst-case performance. The latter exactly corresponds to Problem B.2. The former is a slight variation of Problem B.1: Problem B.3 (robust stability check) Check whether the interconnection of Figure B.1(a)

  Let (A, B, C, D) denote a state-space representation of M . The dynamics of the interconnection depicted in FigureB.1(a) are described for all t ≥ 0 by:ẋ = A(δ(t))x (B.13)where:A(δ(t)) = A + B∆(t)(I -D∆(t)) -1 C (B.14) Assumption B.1 A(δ) is well-posed ∀δ ∈ I, i.e. µ ∆ (D) < 1.Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 2 A Lyapunov based approach 55 Lemma B.1 Stability of system (B.13) is guaranteed for all operators ∆ ∈ B ∆ if there exists a parameter-dependent Lyapunov function P (δ) such that ∀δ ∈ I: P (δ) = P (δ) T > 0 (B.15)

  18) where x(d, N ) denotes the dimension of the vector space of all N -variate polynomial functions of degree d and (f i ) 1≤i≤x(d,N ) is any associated basis, while (P i ) 1≤i≤x(d,N ) are constant symmetric matrices to be determined. Using this polynomial expression, nding a PDL function P (δ) which satises inequalities (B.15) and (B.16) boils down to a standard LMI feasibility problem, which can be stated as follows. Do there exist symmetric matrices (P i ) 1≤i≤x(d,N ) such that: Ψ(δ) < 0 ∀δ ∈ I (B.19)

  D 12 D 21 D 22 denote a state-space representation of M . The dynamics of the interconnection depicted in Figure B.1(b) are described for all t ≥ 0 by: ẋ = A(δ(t))x + B(δ(t))e (B.25) y = C(δ(t))x + D(δ(t))e (B.26) where:

  Figure C.1: Linear Fractional Representation

  Figure C.2 shows the architecture of a tree corresponding to a simple f (x) example. 5 genes related to the dierent monomials are highlighted by colors (except the constants a 0 and b 0 which are an integral part of the structure).

Figure C. 2 :

 2 Figure C.2: Parse tree example for rational modeling

  Figure C.3: Eigenvalues with classical (left) and multi-model (right) reduction algorithms

1. 1

 1 Problem statement Consider the nonlinear interconnection of Figure D.1.
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Figure D. 1 :

 1 Figure D.1: Standard interconnection with a general anti-windup architecture

  Figure D.2: Approximation of a step input with a slowly decreasing L 2 -bounded signal

  Figure D.3: A synthetic view of Figure D.1

  Figure D.4: Nonlinear closed-loop interconnection including the anti-windup controller

  allows to compute a performance level for the saturated interconnection of Figure D.4 when step-like input signals W (ρ) are considered. It makes use of the modied sector condition of [Gomes da Silva

∞ 0 z

 0 p (t) T z p (t) dt ≤ γ (D.16) Inequality (D.13) guarantees that the interconnection of Figure D.1 is stable if the internal states ζ are initialized inside the ellipsoid E(ρ), and that (D.16) is satised. Inequality (D.12) enforces stability for all reference signals r ∈ W (ρ). Finally, inequality (D.13) is a technical condition, which ensures that the modied section condition of [Gomes da Silva Jr and Tarbouriech, 2005] is satised. Proposition D.1 is formulated as a feasibility problem, but there are several ways to turn it into an optimization problem. A classical one consists of minimizing the performance index γ for a given amplitude of the input signals r, i.e. for a xed ρ.

  Algorithm D.1 (xed-dynamics anti-windup design)

Figure E. 1 :

 1 Figure E.1: Approach, landing and ground phases in the vertical plane

  23)where δ e is the elevator deection angle and the C xy are xed stability derivatives aected by ±30 % of multiplicative uncertainties. Here ξ = [V γ q θ] T , u = [F δ e ] T and θ p = [m x cg V 0 ] T , where x cg and V 0 are the center of gravity position and the initial airspeed respectively. The operating domain for the considered approach phase is m ∈ [123 180] tons, x cg ∈ [15 41] % and V 0 ∈ [60 80] m/s, dening the admissible set Θ. First-order linear actuators Σ A (s) are introduced.

Figure E. 5 :

 5 Figure E.5: Nonlinear simulations with the initial controller K0 (s)

Figure E. 6 :

 6 Figure E.6: Nonlinear simulations with the more robust controller K(s)However, major improvements are obtained with K(s) in the presence of uncertainties. This can be observed in Figure E.7, where ±25% uncertainties are allowed on the aerodynamic coecients C D , C L and C m . Results are not presented for ±30%. Parametric congurations can indeed be found, for which the nominal controller K0 (s) is unstable (unlike K(s) which is always stable). This demonstrates the eciency of the proposed methodology.

  Figure E.7: Comparison between K0 (s) (left) and K(s) (right)

  2. Several landing simulations are then run. Results are displayed in Figure E.8 for dierent initial values of mass, center of gravity position, uncertainties and ight path angle. Two lateral wind gusts are generated at 35 sec and 55 sec.

  Figure E.8: Landing simulations in the presence of lateral wind for dierent initial conditions

  Figure E.9: Flare control system

Figure

  Figure E.10: H ∞ design scheme

  Figure E.11: Nonlinear closed-loop simulation model

Figure

  Figure E.12: Final approach and are trajectory (upper left plot) and zoom on the are phase (other plots) with deterministic wind step, strong turbulence and ILS noise

  Figure E.14, where the nominal model (E.31) is shown in green, while the bounds on the uncertain cornering gain are displayed in brown.

  Figure E.14: Lateral slip model proposed in[Biannic et al., 2006a] 

  Figure E.15 instead of the pink circle, where the longitudinal and lateral maximum forces are represented in green and blue respectively. Advanced control laws design and validation -A set of methods and tools to bridge the gap between theory and practice 108 Control laws design and implementation

  Figure E.15: Main landing gear wheel seen from above

  Figure E.16: Model validation -dierential braking order

Figure

  Figure E.17: Ground control architecture

  for validation, as shown in Figure E.18, where x N L = [r N L V yN L ] T . Selected simulation results are presented in Figure E.19(a) for the inner loop and E.19(b) for the outer loop.

  Figure E.18: Controller implementation

  Figure E.20: Fixed-wing UAV operated by ONERAFairly accurate models of these UAV have already been obtained, as reported in[Lesprier et al., 2015a]. A few key steps of the process are illustrated in Figure E.21: (a)-(b) 3D modeling of the aircraft to compute the stability derivatives using software such as XFLR5, AVL or Tornado, but also the inertia matrix using CATIA. (c) Identication of the dynamics as well as the rate and magnitude saturations of the actuators thanks to ground tests.(d) Application of the APRICOT Library of the SMAC Toolbox to ight test data, so as to express the engine speed as a polynomial function of the thrust command and the airspeed.

  Figure E.21: Dierent modeling steps of a xed-wing UAV

Table A

 A and Section A.6). For the other ve algorithms, Matlab functions provided by the respective authors are used. It is worth being emphasized that each of the eight considered algorithms is called in a similar fashion for all considered benchmarks.

	Algorithm	Description	Reference	Admissible uncertainties
	1	Power algorithm	[Young and Doyle, 1997]	all
	2	Gain-based algorithm	[Seiler et al., 2010]	real & mixed real/complex
	3	Poles migration technique	[Magni et al., 1999]	all
	4	Poles migration technique	[Ferreres and Biannic, 2001]	real
	5	Poles migration technique	[Iordanov and Halton, 2015]	all
	6	Direct nonlinear optimization	[Halton et al., 2008]	all
	7	Direct nonsmooth optimization	[Lemos et al., 2014]	all
	8	Geometrical approach	[Kim et al., 2009]	real

.1: Considered µ lower bound algorithms

  . A complete Matlab implementation is also available at http://w3.onera.fr/smac/smart_bench.

	Benchmark	Description	Number of states	Size	Uncertainty block ∆ Structure
	1	Academic example	5	1	1×1
	2	Academic example	4	3	3×1
	3	Academic example	4	4	2×2
	4	Inverted pendulum	4	3	3×1
	5	Anti-aliasing lter	2	5	3×1 + 1×2
	6	DC motor	4	5	3×1 + 1×2
	7	Bus steering system	9	5	1×2 + 1×3
	8	Satellite	9	4	2×1 + 1×2
	9	Bank-to-turn missile	6	4	4×1
		Aeronautical vehicle	8	4	4×1
		Four-tank system	10	4	4×1
		Re-entry vehicle	6	8	1×2 + 2×3
		Missile	14	4	4×1
		Cassini spacecraft	17	4	4×1
		Mass-spring-damper	7	6	6×1
		Spark ignition engine	4	7	7×1
		Hydraulic servo system	8	8	8×1
		Academic example	41	5	3×1 + 1×2
		Drive-by-wire vehicle	4	16	2×1 + 7×2
		Re-entry vehicle	7	13	3×1 + 1×4 + 1×6
		Space shuttle	34	9	9×1
		Rigid aircraft	9	14	14×1
		Fighter aircraft	10	27	7×1 + 1×2 + 1×3 + 1×15
		Flexible aircraft	46	20	20×1
		Telescope mockup	70	20	20×1
		Hard disk drive	29	27	19×1 + 4×2
		Launcher	30	45	16×1 + 10×2 + 1×3 + 1×6
		Helicopter	12	120	4×30
		Biochemical network	7	507	13×39
		Himat ghter aircraft	16	4	2×2(c)
		F14 ghter aircraft	52	8	1×2(c) + 1×6(c)
		DC motor	4	6	3×1 + 1×2 + 1×1(c)
		Four-tank system	12	6	4×1 + 1×2(c)
		Missile	19	6	4×1 + 2×1(c)
		Hydraulic servo system	9	9	8×1 + 1×1(c)
		Space shuttle	46	18	9×1 + 1×9(c)
	The notation m×p in the last column means that ∆ contains m blocks of size p×p.
	All blocks are real unless (c) is specied. All real/complex blocks are diagonal/full.
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Table A

 A Algorithm Number of benchs for which (µ∆ - μ∆)/µ∆ is Mean value of Mean CPU time

		=0%	≤1%	≤5%	≤25%	<100%	(µ∆ -	
	1	6	6	9	13	25	μ∆)/µ∆ 44.10%	1.7 s
	2	2	8	19	24	29	11.87%	27.1 s
	3	5	6	16	22	27	18.81%	1.0 s
	4	26	26	27	29	29	0.88%	0.9 s
	5	22	25	26	26	29	8.95%	22.8 s
	6 (g)	5	13	18	24	29	11.09%	448.8 s
	6 (i)	9	18	20	23	29	15.72%	97.8 s
	7 (g)	8	15	17	23	27	17.44%	1694.9 s
	7 (i)	24	25	25	25	29	9.36%	124.3 s
	8	0	4	8	17	28	24.38%	749.4 s

.3: Synthetic results for purely real problems (benchmarks 1-29)

Table A

 A Table A.4.

		=0%	≤1%	≤5%	≤25%	<100%	(µ∆ -	
	1	4	7	7	7	7	μ∆)/µ∆ 0.10%	1.1 s
	3	0	2	4	6	7	16.60%	0.9 s
	5	2	2	2	3	4	57.12%	140.8 s
	6 (g)	1	6	7	7	7	0.34%	2648.8 s
	6 (i)	0	4	5	7	7	4.26%	874.2 s
	7 (g)	4	4	4	6	7	10.63%	3972.6 s
	7 (i)	2	4	5	6	7	7.91%	249.5 s

Algorithm Number of benchs for which (µ∆ - μ∆)/µ∆ is Mean value of Mean CPU time .4: Synthetic results for purely complex & mixed real/complex problems (benchmarks 30-36)

Table A

 A Table A.5. They are compared with the bounds computed in Section A.2.3 by independently applying all algorithms one at a time.

	Benchmark Algorithm 4 only Other algorithms one at a time Proposed combination value time best value time algorithm value time
	20	0.9380	0.5 s	0.9947	41.6 s	7	0.9947	5.5 s
	26	0.9881	2.2 s	1.2134	184.9 s	7	1.2144	18.0 s
	29	724.15	46.9 s	733.86	2864.8 s	2	753.10	580.0 s

.5: Improved µ lower bounds for purely real benchmarks

  .6. They are compared with the ones computed in Section A.2.3 using the power algorithm of mussv on a xed frequency grid, but also the other available algorithms.

	Benchmark Standard power algo Other algorithms one at a time Improved power algo value time best value time algorithm value time
	33	0.4346	0.7 s	0.4362	1380.1	7 (g)	0.4362	0.6 s
	34	0.9587	1.1 s	0.9604	565.8	7 (g)	0.9606	1.3 s
	35	0.9910	1.7 s	0.9927	12.3	5	0.9927	2.1 s
	Table A.6: Improved µ lower bounds for purely complex & mixed real/complex benchmarks

  i < i max , solve the LMI feasibility problem (B.22). If i = i max or (B.22) is infeasible, then stop the algorithm if d = d max (stability not proved) or increase d and go back to step 2 otherwise.4. ComputeX and µ ∆ (X). If µ ∆ (X) < 1, stop the algorithm (stability proved). Otherwise, compute µ ∆ (X). → If µ ∆ (X) > 1, solve problem (B.24). Set G i+1 = G i ∪ {δ}, increase i and go back to step 3. → If µ ∆ (X) < 1, apply the recursive algorithm described at the end of Section B.2.2.3. If the highest µ upper bound computed on all subsets is lower than 1, stop the algorithm (stability proved). If the µ lower bound computed on one of the subsets is larger The numerically most demanding step in Algorithm B.4 is clearly the third one.

	Extensions to time-varying uncertainties
	Remark B.6

than 1 or if the stopping criterion is reached and no conclusion can still be drawn, then stop the algorithm if d = d max (stability not proved) or increase d and go back to step 2 otherwise.

  can be introduced to facilitate the validation of the PDL function and to improve the convergence of the algorithm: the value of γ determined at step 3 is simply replaced with (1 + α)γ at step 4. The increase in conservatism remains reasonable if α is small enough.

28) Algorithm B.4 can be applied with minor modications. The optimization problem at step 3 now consists of minimizing the linear objective γ under the LMI constraints (B.22), where Ψ(δ) is dened as in (B.20) and Φ(δ, ν j ) is obtained by combining (B.28) and (B.18). Moreover, a parameter α > 0

  .1, it is composed of ve main approximation routines, which implement most of the techniques surveyed in Sections C.1.2 and C.1.3. A full version can be freely downloaded from the SMAC website http://w3.onera.fr/smac/apricot, which also provides a complete documentation as well as applicative examples.

	Matlab routine	Description

lsapprox Polynomial approximation using linear least-squares olsapprox Polynomial approximation using orthogonal least-squares qpapprox Rational approximation using quadratic programming tracker Rational approximation using genetic programming koala Rational approximation using surrogate modeling Table C.1: Main approximation routines of the APRICOT Library

  1.1.2. Given any two signals v(t) ∈ R m and ζ(t) ∈ R m , let us now dene the intermediate, input linearizing, control law:
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> 2 . All the other monomials are eliminated, thus leading to sparse polynomial or rational expressions, which amounts to a certain extent to minimizing the complexity of the approximation formulas. The structured tree decomposition is nally applied to get an LFR.3. The H 2 error between the resulting LFR and the initial full-order models is minimized.More precisely, the matrices B and C of the LFR are optimized alternatively using the method presented in[Torralba et al., 2009], which is a generalization to the LFR framework of the biconvex optimization applied at step 1.
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Presentation of the LTI2LFR Library for Matlab

All the tools and algorithms presented in Section C.2 have been implemented in the LTI2LFR Library for Matlab, which allows to convert a set of large-scale MIMO LTI models describing the behavior of the considered system at various operating points into a single reduced-order parameterized model (LPV model or LFR). Only a few high-level tuning parameters have to be dened, which makes it possible to use the toolbox without mastering all the underlying theory, and to eciently handle the trade-o between accuracy and complexity. A detailed documentation is available in [Roos, 2012; Poussot-Vassal et al., 2013], as well as several applications on challenging Airbus and Dassault benchmarks already mentioned in Section C.2.1. The LTI2LFR Library will be integrated in the SMAC Toolbox in a near future.

Summary of the contributions

The main contributions presented in this chapter are briey summarized below, and a selection of related publications is given:

• Section C.1.3.1: orthogonal least squares based method to compute sparse polynomial approximations from a set of scalar or matrix samples [Poussot-Vassal and Roos, 2012;Roos, 2009].

• Section C.1.3.2: genetic programming based method to compute sparse rational approximations from a set of scalar or matrix samples [Hardier et al., 2013a].

• Section C.1.3.3: surrogate modeling based method to compute sparse rational approximations from a set of scalar or matrix samples [Hardier et al., 2013b].

• Section C.1.4.1: µ-analysis based approach to check whether the denominator of a rational function is non-singular, i.e. to ensure that the resulting LFR is well-posed [Hardier et al., 2013a].

• Section C.1.4.2: implementation of all polynomial and rational approximation algorithms in the APRICOT Library of the SMAC Toolbox [Roos et al., 2014].

• Section C.1.4.3: implementation of a new Matlab class in the GSS Library of the SMAC Toolbox, which allows to model uncertain and nonlinear systems as Linear Fractional Representations [START_REF] Biannic | [END_REF].

• Sections C.2.1 -C.2.4: whole methodology to generate low-order LPV/LFT models from a set of large-scale MIMO LTI models describing the behavior of a dynamical system at various operating points [Poussot-Vassal and Roos, 2012; Poussot-Vassal et al., 2014; Roos, 2009].

• Section C.2.5: implementation of all related tools and algorithms in the LTI2LFR Library [Roos, 2012;Poussot-Vassal et al., 2013].
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• 2 values of the landing gear height (H = 5 m and H = 15 m),

• 4 models (indexed by j) corresponding to the minimum and maximum values of the mass and the center of gravity location,

• 2 separate optimization channels (indexed by i).

Numerical values of the reference model and weighting functions can be found in [START_REF] Biannic | [END_REF]. A static controller composed of 7 gains is computed, and the resulting minimized H ∞ norm is around 1, which means that the requirements are satised. Such a design can be followed by an analysis step in order to detect any potential worstcase conguration that could appear inside the operating domain. An iterative design process similar to the one described in Section E.1.1.3 can therefore be considered by incorporating the worst-case scenarios into the initial selection of design models.

Nonlinear implementation and simulation results

The structured are control law resulting from the above optimization process is implemented in the nonlinear aircraft benchmark already used in Section E.1.2, as shown in Figure E.11. It is highlighted in green and activated as soon as the landing gear height H is lower than a threshold value H F LA ≈ 15 m.

Control laws design and implementation

Triming and linearization routines have then been developed, and a whole control architecture has nally been designed using the robust nonlinear compensation technique of Section E.1. The next steps are to improve the open-loop model thanks to enhanced identication techniques [START_REF] Bucharles | [END_REF], to ne-tune the control laws, and to implement them in the avionics, before nal closed-loop validation can be performed in ight.

Remark E.6 The microprocessor used on the Avion Jaune is an ARM Cortex-M4 1 , which is composed of two cores with a frequency of 80 MHz. There is a built-in Float Processing Unit, so that oats operations do not need additional libraries. The tasks are currently run at a time period of 20 ms, within which at least 10 ms are available for control (the other tasks being e.g. sensors acquisition and data fusion). This is more than enough to perform the operations required by the robust nonlinear compensation technique of Section E.1: 2 × 2 nonsingular matrix inversion for the linearizing inner loop, third-order controller computation for the robust outer loop. Finally, the inevitable discretization process prior to the control laws implementation should not be a problem. Simulations were successfully carried out with a time step of up to 50 ms, which is much larger that the 20 ms mentioned above.

Summary of the contributions

The main contributions presented in this chapter are briey summarized below, and a selection of related publications is given:

• Section E.1: robust nonlinear compensation technique based on a partial feedback linearization of the plant combined with a xed-structure multi-model H ∞ design technique ; application to the approach phase of a commercial aircraft [Biannic et al., 2017; Lesprier et al., 2014].

• Section E.2: robust multi-model and multi-channel H ∞ design for the are phase [Biannic and Roos, 2018; 2015].

• Section E.3: control oriented modeling of an aircraft during the ground phase, including an original saturation-based representation of the slip forces ; adaptive anti-windup design technique for low speed maneuvers ; robust dynamic allocation method for runway axis hold at high speed despite contaminated runway and crosswind [Sadien et al., 2018; Biannic et al., 2006a; Roos et al., 2010; Roos and Biannic, 2007; Cassaro et al., 2018].

• Section E.4: practical approach to xed-wing UAV modeling and preliminary control laws implementation in a real avionics system developed by ONERA [Lesprier et al., 2015a].

Part II

Detailed curriculum vitae
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Many real-world applications suffer from strong cost constraints or weight limitations, which dictate the use of potentially low performance hardware (actuators, sensors, onboard computers). For example, the access to space is becoming significantly easier and cheaper with the advent of nanosats, and low-cost launchers must be developed to promote this new economic model. In the military domain, one of the most topical issues is to improve the precision and to enhance the range of traditional artillery shells in the modern battlefield, while significantly reducing costs. And UAV are now widely used to perform a large number of demanding missions. So there is a real need to control various kinds of systems on extended operational domains in the presence of hardware limitations, uncertainties, varying parameters as well as actuator saturations. In this context, our contribution lies at the frontier between research and engineering. Based on known theories and results in the fields of LFR modeling, µ/IQC/Lyapunov-based analysis, as well as analysis of saturated systems, we first try to develop validation methods that can be applied to real-world issues with a reasonable computational cost. Heuristics sometimes replace rigorous mathematical proofs, but we believe this is the price to pay for bridging the gap between theory and practice. Many efforts are also invested in the development of generic computational tools designed for control engineers. Then, we show how these methods and tools can be directly integrated into the control laws design process, so as to reduce a little bit the number of iterations between design and validation in an industrial context. The next step will be to face the implementation constraints. Thanks to our growing involvement in ONERA's UAV lab, the proposed control architectures will be implemented and validated first by hardware-in-the-loop simulations and then by flight tests. The feedback will allow us to take a fresh look at our design and validation methodologies, and to further improve them. 
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