
HAL Id: tel-01788885
https://hal.science/tel-01788885

Submitted on 9 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Tierless Web programming in ML
Gabriel Radanne

To cite this version:
Gabriel Radanne. Tierless Web programming in ML. Programming Languages [cs.PL]. Université
Paris Diderot (Paris 7), 2017. English. �NNT : �. �tel-01788885�

https://hal.science/tel-01788885
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Thèse de doctorat de l’Université Sorbonne Paris Cité
Préparée à l’Université Paris Diderot au Laboratoire IRIF

Ecole Doctorale 386 — Science Mathématiques De Paris Centre

Tierless Web programming in ML

par

Gabriel Radanne

Thèse de Doctorat d’informatique

Dirigée par
Roberto Di Cosmo et Jérôme Vouillon

Thèse soutenue publiquement le 14 Novembre 2017 devant le jury constitué de

Manuel Serrano Président du Jury
Roberto Di Cosmo Directeur de thèse
Jérôme Vouillon Co-Directeur de thèse
Koen Claessen Rapporteur
Jacques Garrigue Rapporteur
Coen De Roover Examinateur
Xavier Leroy Examinateur
Jeremy Yallop Examinateur

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Abstract Eliom is a dialect of OCaml for Web programming in which server and client
pieces of code can be mixed in the same file using syntactic annotations. This allows to
build a whole application as a single distributed program, in which it is possible to define
in a composable way reusable widgets with both server and client behaviors.

Eliom is type-safe, as it ensures that communications are well-behaved through novel
language constructs that match the specificity of Web programming. Eliom is also
efficient, it provides static slicing which separates client and server parts at compile time
and avoids back-and-forth communications between the client and the server. Finally,
Eliom supports modularity and encapsulation thanks to an extension of the OCaml
module system featuring tierless annotations that specify whether some definitions should
be on the server, on the client, or both.
This thesis presents the design, the formalization and the implementation of the Eliom

language.

Résumé Eliom est un dialecte d’OCaml pour la programmation Web qui permet, à
l’aide d’annotations syntaxiques, de déclarer code client et code serveur dans un même
fichier. Ceci permet de construire une application complète comme un unique programme
distribué dans lequel il est possible de définir des widgets aisément composables avec des
comportements à la fois client et serveur.

Eliom assure un bon comportement des communications grâce à un système de type et
de nouvelles constructions adaptés à la programmation Web. De plus, Eliom est efficace :
un découpage statique sépare les parties client et serveur durant la compilation et évite
de trop nombreuses communications entre le client et le serveur. Enfin, Eliom supporte
la modularité et l’encapsulation grâce à une extension du système de module d’OCaml
permettant l’ajout d’annotations indiquant si une définition est présente sur le serveur,
le client, ou les deux.
Cette thèse présente la conception, la formalisation et l’implémention du langage

Eliom.

Remerciements

Ceux qui me connaissent savent que je ne suis pas particulièrement expansif, je serai
donc bref: je remercie ma famille, mes amis, mes collègues et l’univers.

5

Remerciements, Deuxième essai

Je voudrais tout d’abord remercier mes deux directeurs de thèse, Roberto et Jérôme, qui
ont formé une paire remarquablement complémentaire et m’ont beaucoup aidé dans tous
les aspects de ma recherche, scientifiques ou non.
Je remercie l’équipe Ocsigen et les membres de l’Irill pour leur compagnie, conseils et

pour avoir pris le temps d’écouter mes idées farfelues sur les prochaines fonctionnalités
révolutionnaires qui vont faire d’Eliom le langage de programmation Web le plus mieux
au monde!
Je remercie Jacques, pour cette petite remarque pendant ICFP 2015: “Tu devrais

parler avec Oleg, ce que tu fais ressemble à MetaOCaml”. Merci également à Oleg, pour
ses remarques et ses encouragements.
Avant de commencer cette thèse, j’ai eu la chance de faire de nombreux stages. Je

voudrais remercier tous les gens avec qui j’ai pu interagir à Édimbourg, Gotheborg et
Grenoble. Ces stages m’ont beaucoup appris et surtout, je m’y suis énormément amusé!
Merci également aux membres d’OCamllabs qui m’ont donné l’occasion de m’échapper
de ma thèse pendant 3 mois pour faire joujou avec Mirage et boire du cidre dans les pubs
de Cambridge.
En parlant de cidre, merci à tous les potes de promo de Rennes: Benoit, Simon, Nicolas,

Clément, Gael et tous les autres. Merci également à David pour son encadrement pendant
mes études et pour m’avoir orienté vers d’excellents stages.
Merci aux membres de l’IRIF avec qui j’ai pu interagir, notamment Vincent, Ralf,

Jean-Baptiste et Michele avec qui j’ai eu le plaisir de faire mes enseignements et Alexis
et Delia, pour leurs discussions et coups de pouce occasionnels. Je remercie particulière-
ment Odile, sans qui, soyons honnête, je n’aurais jamais réussi à faire quoi que ce soit.
Merci à tous les doctorants de PPS, en particulier la folle équipe du bureau 3026: Clé-
ment, Yann, Rémi, Pierre, Amina, Charles, Léo, mon quotidien aurait été nettement plus
terne sans vous.

Enfin, je remercie ma famille, pour à peu près tout.

7

Contents

1 Introduction 13
1.1 On Web programming languages . 15

1.1.1 The client-server dichotomy . 15
1.1.2 Tierless programming languages . 16
1.1.3 Functional programming . 16
1.1.4 Static type systems . 17
1.1.5 Modularity and encapsulation . 17

1.2 Eliom . 19
1.2.1 The Ocsigen project . 19
1.2.2 Principles of the Eliom language 19

1.3 Plan . 20
1.4 Contributions . 21

2 Programming with Eliom 23
2.1 Core concepts . 23

2.1.1 Sections . 23
2.1.2 Client fragments . 24
2.1.3 Injections . 24

2.2 Client-server behaviors . 24
2.2.1 Introducing side effects . 25
2.2.2 Communication and execution scheme 26

2.3 Heterogeneous datatypes . 26
2.3.1 Remote procedure calls . 27
2.3.2 Converters . 28
2.3.3 Client-server reactive broadcasts 29

2.4 Modules and signatures . 30
2.4.1 A primer on OCaml modules . 30
2.4.2 Modules and locations . 32
2.4.3 OCaml integration . 33
2.4.4 Heterogeneous implementations . 33

2.5 Mixed client-server data structures . 34
2.5.1 HTML . 34

2.6 Shared values . 35
2.6.1 Shared data-structures . 36
2.6.2 Mixed functors . 37

2.7 A sophisticated example: accordions . 37
2.8 Going further . 40

9

3 The ML programming language 41
3.1 Syntax . 41
3.2 Type system . 43

3.2.1 The expression language . 43
3.2.2 The module language . 45
3.2.3 Inference . 49

3.3 Semantics . 49
3.3.1 Traces and Printing . 52
3.3.2 Modules . 53
3.3.3 Notes on Soundness . 56

3.4 Related works . 56

4 The Eliom programming language 59
4.1 Syntax . 60

4.1.1 Locations . 60
4.1.2 Expression language . 61
4.1.3 Module language . 61

4.2 Type system . 62
4.2.1 Expressions . 62
4.2.2 Modules . 65

4.3 Interpreted semantics . 72
4.3.1 Generated client programs . 72
4.3.2 Base, Client and Server declarations 73
4.3.3 Mixed modules . 77

4.4 Results on locations . 81
4.4.1 Relation between ML and Eliom 81
4.4.2 Notes on soundness . 83

5 Compilation of Eliom programs 85
5.1 Target languages MLs and MLc . 85

5.1.1 Converters . 85
5.1.2 Injections . 86
5.1.3 Fragments . 87
5.1.4 Modules . 88
5.1.5 Type system rules . 89
5.1.6 Semantics rules . 90

5.2 Compilation . 93
5.2.1 Sliceability . 95
5.2.2 Slicing rules . 96

5.3 Typing preservation . 99
5.4 Semantics preservation . 101

5.4.1 Hoisting . 101
5.4.2 Preliminaries . 102
5.4.3 Server expressions and structures 105

10

5.4.4 Mixed structures . 107
5.4.5 Proof of the main theorem . 117

5.5 Discussion around mixed functors . 119

6 Implementation 121
6.1 The OCaml compiler . 121
6.2 The Eliom compiler . 122

6.2.1 Notes on OCaml compatibility . 123
6.3 Converters . 123

6.3.1 Modular implicits . 124
6.3.2 Wrapping . 124

6.4 Typechecking and Slicing . 125
6.4.1 Technical details . 127

6.5 Runtime and Serialization . 129
6.5.1 Primitives . 129
6.5.2 Serialization format . 131
6.5.3 Optimized placement of sections 131

7 State of the art and comparison 133
7.1 Web programming . 133

7.1.1 Code and data location . 134
7.1.2 Slicing . 135
7.1.3 Communications . 136
7.1.4 Type systems . 136
7.1.5 Details on some specific approaches 137

7.2 Staged meta-programming . 142

8 Conclusion 145

Bibliography 148

11

1 Introduction

At the beginning, there was nothing. Suddenly, a burst of light, information and heated
discussions: the Internet was born. And for a time, it was enough: Plain text information
was exchanged between researchers, computers had 10Mb of RAM and there was no time
for frivolous graphical Web pages. In 1989, Tim Berners-Lee disagreed and created the
Encyclopedia Of Cats. To make his masterpiece accessible to everyone, he also created
the World Wide Web: each page of the encyclopedia was accessed using the HyperText
Transfer Protocol (HTTP). Pages were written using the HyperText Markup Language
(HTML) and viewed through a Web browser. Related Web pages could be accessed by
using Hyperlinks. Web pages could be easily published on the Internet using a Web
server. This initiative was so successful that the World Wide Web now counts several
billions of Web pages and consolidated cats as the dominant species on Earth.

Figure 1.1: Tim Berners-Lee’s first website (http://info.cern.ch/) as seen on a mod-
ern Web browser. A line-browser simulator is also available, for a more vin-
tage experience.

13

http://info.cern.ch/

Early websites such as Tim Berners-Lee’s encyclopedia were static: the Web pages
were written by hand and didn’t contain any form of dynamic content. Quickly, people
wrote programs to generate Web pages dynamically. In this case, pages are created when
the user tries to access them. The programming of Web pages, or Web programming,
has been done using a wide array of methods: CGI scripts, dedicated languages such as
PHP, but also more generic languages using Web libraries such as Java, C# or Ruby.
In all these cases, the idea is the same: a program written in the language in question
receives a request from a client, usually a Web browser, and answers it by generating an
HTML Web page. The Web page is then sent back to the client. This form of server-
side dynamic website was embraced by early dedicated Web programming languages
such as PHP (1994) and led to the creation of many popular “Web applications” such
as Web search engines (1993), Web forums (around 19941), Wikis (1995), etc. Many
modern popular websites still mostly rely on this form of Web programming, for example
Wikipedia and Google search.
An important limitation of these websites is that their dynamic behavior is limited to

the server. Once the Web page is generated and sent to the client, it doesn’t change until
the client requested a new page. To obtain a more dynamic behavior, it was necessary
to run programs inside the user’s Web browser. Around 1995, multiple solutions for
client-side scripting were developed: Java applets, Flash, and JavaScript. Numerous
websites took advantage of these new capabilities to create interactive experiences avail-
able directly in the browser. In particular, Flash and Java allowed the developments of
many browser-based games but also more serious applications such as interactive Web
maps, music streaming websites, etc.
The combination of both server-side dynamic Web page generation and client-side

scripting expanded the capability of websites and allowed to create rich Web applications
that rival traditional desktop applications. This paved the way for many modern Web
sites such as email clients, browser-based chats, collaborative text editors and more
complex websites such as Facebook.
Unfortunately, this situation didn’t come without some complexity. Consider the com-

position of an email in a Web client such as Gmail: While you type your message, a
JavaScript program provides a rich text editor with bold, italic and emojis. The rich
text is rendered in your browser using HTML for the content and CSS for the appear-
ance. When you hit the send button, a dynamic AJAX request, which does not load
a new page Web, sends a message containing your email to Google servers. On these
servers, a Java program will store the content of the email in a database and send it to
the desired recipient. This single task used two programming languages (JavaScript
and Java), at least two description languages (HTML and CSS), all of it spread over
two code bases and several distinct communication protocols. While Web applications
grew more and more complex, with some subtle interplay of client and server behaviors
and very large website with millions of line of code, the way we write Web application
stayed similar: a client program, usually called “the frontend”, handles the interactive
part and communicates, usually through loosely structured text messages, to a server

1Although grumpy old-timer will say that Usenet and BBS did it all before.

14

program called “the backend”. These two programs usually do not share code, not even
the definition of the messages communicated, and are usually written by different teams
in different programming languages, despite the fact that features used by users usually
span client and server side indiscriminately.

1.1 On Web programming languages

The core of this issue is, of course, programming languages themselves. While the design
of early Web programming languages might have been adapted to how the Web was
used at the time, this is not the case anymore. We shall now explore some of the issues
prevalent with existing Web languages.

1.1.1 The client-server dichotomy

Websites are usually split in two parts, also called “tiers”: a backend that runs on a
Web server and a frontend that runs in a browser. Hence, Web programmers must deal
with communications between the backend and the frontend. These communications are
often static: the backend generates (dynamically or not) a Web page associated with its
frontend code and sends it to the browser, which then shows and executes it. Already
with this simple scheme, problems can arise: the backend and the frontend should agree
about the type and the shape of the generated Web page. For example, if the JavaScript
program tries to find the HTML element named “user”, the backend must have generated
it; if the client program is generated dynamically, it should be correct; and so on.
Communications between frontend and backend can also be more complex. Consider

the email client example given above: the request to send an email from the client to
the server is dynamic and does not generate a new Web page. Communications can
be done arbitrarily between client and server through various protocols (AJAXs, Web
sockets, Comet, . . .). In all these cases, the frontend and the backend must agree on
which kind of data is sent. If the backend sends potatoes, the frontend should not
expect tomatoes. All these guarantees are difficult to provide statically in today’s Web
programming languages and are usually enforced manually by the programmer. This is
both time-consuming and error-prone.
This separation of Web applications as separate client and server programs is also

problematic from a modularity point of view. Code must now be organized according to
where it should run, and not what it does. Indeed, client and server functions can not
be mixed arbitrarily, they can not even be in the same file! While this poses significant
constraints on how a Web application is organized, it also severely restricts encapsula-
tion. Internal details regarding communications must be accessible to the other side of
the application, which often involves exposing them as a protocol to the whole applica-
tion thus preventing the construction of good abstraction boundaries around individual
libraries.

15

1.1.2 Tierless programming languages

Tierless Web programming languages aim to solve these issues by allowing programmers
to build dynamic Web pages in a composable way. They allow programmers to define
on the server functions that create fragments of a Web page together with their associ-
ated client-side behavior. This is done by allowing to freely intersperse client and server
expressions with seamless communication in a unique programming language. A tierless
program is then sliced in two: a part which runs on the server and a part which is com-
piled to JavaScript and runs on the client. This slicing can be done either dynamically,
by generating JavaScript code at runtime, or statically, by cutting the program in two
during compilation. Such tierless languages can also leverage both functional program-
ming and static typing. Functional programming provides increased expressiveness and
flexibility while static typing gives strong guarantees about client-server separation, in
particular ensuring that communications are consistent across tiers.

1.1.3 Functional programming

Functional programming languages place the function at the center of the art of program-
ming. Such languages allow to manipulate functions as first class values. More concretely,
they offer the programmer the ability to create and manipulate functions seamlessly, al-
lowing functions to return or take as argument other functions and enabling functions to
be created, composed, stored, copied, etc, in arbitrary manners. Functional programming
languages also favor immutable values: values that can not change during the lifetime
of the program. To provide new information, new values must be created. Functional
programming and immutable data-structures have been proven to provide great benefits
in term of expressivity, safety and the ability to create extremely powerful abstractions
for a wide variety of use cases as described most elegantly in the seminal essay “Why
Functional Programming Matters” by Hughes [1989].
Functional programming was first introduced with the Lisp language by McCarthy

[1960]. Since then, numerous languages provided support for functional programming:
Scheme, OCaml, Haskell, Scala, but also more recently Swift and even Java and C++.
Notably, JavaScript, the language of choice for frontend Web programming, provides
support for functional programming which was leveraged to great effect in a large number
of libraries such as Immutable or Reactjs. In a client-server context, functional program-
ming was also used as a tool to structure the control flow across client-server boundaries
[Balat, 2013, Queinnec, 2003, 2004, 2000].
Of particular interest is the ML language. ML, short for Meta Language [Milner, 1978],

aimed to provide a new statically-typed functional programming language tailored for
writing theorem provers. This language turned out to be very powerful and useful for
a lot more than theorem proving. It inspired numerous languages which now form the
larger “ML family”. Some of its direct descendants, such as SML and OCaml, even
enjoy large usage today. The main idea common to the numerous members of the ML
family is to provide functional, sometimes impure, programming constructs along with a
very rich static type system with type inference.

16

1.1.4 Static type systems

Type systems are an essential component of programming languages. They allow to label
each element of the language by its “type” in order to ensure that it is used properly.
This can be done dynamically at runtime, statically during a preliminary typechecking
phase at compilation, or a mix of both. The choice between dynamically and statically
typed languages is a long standing and very heated debate among programmers and
numerous essays on the topic can be found online. In the context of this thesis, we will
mostly consider the use of statically typed languages as the programming tool of choice.
One reason is simply a strong preference from the author of this thesis. More objectively,
static typing has been used to great effect in numerous contexts both to prevent bugs, but
also to guide and inform the design of programs. Static typing can be further improved
through type inference, which allows the programmer to partially or completely omit
types annotations. This is notably the case of the ML family of functional programming
languages, which combines static typing with a very powerful type inference mechanism
to provide both the safety of statically typed languages and the flexible programming
style of the more dynamic approaches.
In the context of tierless programming languages, a type system can also provide

location information such as “where this code should run” and communication information
such as “what am I sending”. Combined with a strong static typing discipline, this
ensures that the correctness of communications and library usage is checked statically
by the compiler. This can even be done in a fairly non-intrusive way by leveraging type
inference, ensuring that client and server expressions can be nested without the need for
too many annotations.

1.1.5 Modularity and encapsulation

Mixing tiers directly inside expressions provides a very fined-grained notion of composi-
tion. However, programming large-scale software and libraries also requires the capacity
for modularity and encapsulation at larger scale.
Modularity is a property ensuring that software can be constructed much like LEGO:

by using independent bricks together to build a bigger structure. Each brick, or module,
can use other modules but should be independent and self-contained from other non-
related modules. Such modularity is also highly desirable in a tierless Web programming
contexts. Indeed, parts of a library could be entirely on the server or on the client and
programmers should be able to manipulate them freely. Unfortunately, most tierless
languages do not support such modular approach to program architecture. Even in tra-
ditional Web programming languages such as JavaScript, support for proper modular
programming is very recent (JavaScript modules were introduced in ES6, in 2015) and
does not allow manipulating modules directly nor provides proper encapsulation.
Encapsulation is the complementary aspect of modularity: it allows to hide internal

details of a library. Encapsulation improves the flexibility of a complex application: by
hiding how each part works internally, the programmer should be able to swap them
around as long as their external capabilities are the same. Encapsulation also improves

17

safety by ensuring that programmers can not misuse the internal details of a library by
mistake. Encapsulation is essential for tierless Web programming: the details of how
the server and client parts of a widget communicate with each other should not matter,
as long as it provides the intended functionality. Communications should only be an
internal implementation detail.

To solve these problems, we propose to leverage a well-known tool: ML-style modules.

ML modules On top of providing powerful functional programming constructs and
static typing, modern ML languages feature a very expressive module system. In these
languages, the module language is separate from the expression language. While the
language of expression allows to program “in the small”, the module language allows to
program “in the large”. In most languages, modules are compilation units: a simple
collection of type and value declarations in a file. The SML module language [Mac-
Queen, 1984] uses this notion of collection of declarations (called structure) and extends
it with types (module specifications, or signatures), functions (parametrized modules, or
functors) and function application, forming a small typed functional language.

In the history of ML languages, ML-style modules have been informally shown to be
very expressive tools to architect software. Functors, in particular, allow to write generic
implementations by abstracting over a complete module. Furthermore, ML modules
provide very good encapsulation through the use of module signatures and abstract
datatypes [Leroy, 1995, Crary, 2017]. Module signatures allow to restrict which members
of a module are exposed to the outer world while abstract datatypes allow to hide the
definition of a given type. Together, they allow to finely control the external interface of
a library in order to enforce numerous properties. Another very desirable feature, called
separate or incremental compilation, is the ability of the compiler to handle each module
separately without needing to recompile all the dependent modules. This allows only the
minimal amount of modules to be recompiled after a change which is essential for a fast
development cycle. Separate compilation also improves modularity: indeed, checking
that a module can indeed be compiled in isolation ensures that compilation can not fail
later, in the context of a bigger program. Rich module systems such as ML’s have been
shown to provide excellent support for separate compilation [Leroy, 1994, Swasey et al.,
2006].

Modular and tierless Associating a module language supporting proper modularity,
encapsulation and separate compilation in a tierless programming setting is, however,
quite delicate. Indeed, while separate compilation is available for languages with rich
module systems such as ML, most tierless programming languages rely on whole pro-
gram compilation to do the slicing. Furthermore, functors are very expressive and raise
numerous issues when combined with tierless features that allows to interleave client and
server sections.

18

1.2 Eliom

The Eliom language proposes to solve both fine-grained and large-scale modularity is-
sues. Eliom is an extension of OCaml, an industrial-strength programming language
of the ML family, for tierless web programming. Through the use of new syntactic
constructs, it allows to create complete web applications as a single Eliom program
describing both the client and the server behaviors. These new constructions allow
statically-checked client-server communications, along with the ability to express rich
client-server behaviors in a modular way. Although this increased expressivity could
induce significant performance penalties, this is not the case thanks to an efficient com-
pilation and execution scheme. Eliom programs are compiled statically in two parts: the
first part runs on the server while the second part is compiled to JavaScript and runs
on the client. Eliom also inherits the powerful type system and module system from
OCaml, along with a rich ecosystem. This allows us to take advantage of numerous
OCaml libraries, such as the rest of the Ocsigen project.

1.2.1 The Ocsigen project

Eliom is part of the larger Ocsigen project [Balat et al., 2009]. Ocsigen provides
a comprehensive set of tools and libraries for developing Web applications in OCaml,
including the compiler js_of_ocaml [Vouillon and Balat, 2014], a Web server, and
libraries for concurrency [Vouillon, 2008], HTML manipulation [TyXML] and database
interaction [Scherer and Vouillon, 2010]. Ocsigen libraries take deep advantage of the
OCaml type system to provide guarantees about various aspects of client- and server-
side Web programming. For example, HTML validity is statically guaranteed by the type
system [TyXML]. These guarantees are complementary to the ones that Eliom provides.
Although this thesis will focus on the language extension, Eliom also comes with a

large set of libraries for client and/or server programming that leverages the powerful
new constructs introduced by the language. This notably includes RPCs; a functional
reactive library for Web programming; a GUI toolkit [Ocsigen Toolkit]; a powerful ses-
sion mechanism and an advanced service identification mechanism [Balat, 2014]. Some
examples of these libraries, and how to implement them, are given in Chapter 2.

1.2.2 Principles of the Eliom language

All of the modules and libraries in Ocsigen, and in particular in the Eliom framework,
are implemented on top of a unique core language. The design of this core language is
guided by a set of six properties.

Explicit communications. Eliom uses manual annotations to determine whether a
piece of code is to be executed server- or client-side. This design decision stems from
our belief that the programmer must be well aware of where the code is to be executed,
to avoid unnecessary remote interaction. Explicit annotations also prevent ambiguities
in the semantics, allow for more flexibility, and enable the programmer to reason about

19

where the program is executed and the resulting trade-offs. Programmers can thus ensure
that some data stays on the client or on the server, and choose how much communication
takes place.

A simple and efficient execution model. Eliom relies on a novel and efficient execution
model for client-server communication that avoids back-and-forth communication. This
model is simple and predictable. Having a predictable execution model is essential in the
context of an impure language, such as OCaml.

Leveraging the type system. Eliom introduces a novel type system that allows com-
position and modularity of client-server programs while preserving type-safety and ab-
straction. This ensures, via the type-system, that client functions are not called by
mistake inside server code (and conversely) and ensures the correctness of client-server
communications.

Integration with the host language. Eliom is an extension of OCaml. Programmers
must be able to leverage both the language and the ecosystem of OCaml. OCaml
libraries can be useful on the server, on the client or on both. As such, any OCaml
file, even when compiled with the regular OCaml compiler, is a valid Eliom module.
Furthermore, we can specify if we want to use a given library on the client, on the server,
or everywhere.

Modularity and encapsulation. Module and type abstractions are very powerful pro-
gramming tools. By only exposing part of a library, the programmer can safely hide
implementation details and enforce specific properties. Eliom leverages module abstrac-
tion to provide encapsulation and separation of concern for widgets and libraries. By
combining module abstraction and tierless features, library authors can provide good
APIs that do not expose the fine-grained details of client-server communication to the
users.

Composition. The Eliom language allows to define and manipulate on the server, as
first class values, fragments of code which will be executed on the client. This gives us
the ability to build reusable widgets that capture both the server and the client behaviors
transparently. This makes it possible to define client-server building blocks (and libraries
thereof) without further explicit support from the language.

This thesis will explore the consequences of these properties by presenting the design,
the formalization and the implementation of the Eliom language.

1.3 Plan

Eliom aims to be a usable programming language. As such, we introduce Eliom from
a programming perspective in Chapter 2. Tierless programming goes further than just

20

gluing client and server pieces of code together. Through the various examples, we show
that Eliom enables new programming idioms that allows to build web applications and
libraries safely and easily while providing very good encapsulation and modularity prop-
erties.

As an extension of OCaml, Eliom is a compiled language. As for all compiled lan-
guages, there is a certain tension between the “intuitive” semantics, explained in term of
syntactic reduction over the source language, which is easy to grasp by beginners, and the
“real” semantics, which is expressed in term of compilation to a target language and the
semantics of this target language. While the interpreted semantics is easier to explain,
the implementation of Eliom uses the compiled semantics. The goal of the formalization
of Eliom was precisely to resolve that tension by ensuring that both semantics agree.
For this purpose, we proceed in several steps.

Eliom is not a language created in isolation, it extends the OCaml programming
language. Similarly, our formalization of Eliom is based on a simpler ML language.
The ML family of programming language is quite large and contains many different
flavors. Our first step is to describe a simple ML language with modules which forms a
reasonable subset of the OCaml language. This is done in Chapter 3.
In Chapter 4, we define the Eliomε language, a subset of Eliom which is amenable to

formalization, and describe its type system and interpreted semantics, along with various
properties with relation to the base ML language. Eliom is compiled by producing two
regular OCaml programs for each Eliom program. Similar, our compilation scheme for
Eliomε emits two ML programs with additional primitives. The compilation scheme
and the target languages are described in Chapter 5, along with the simulation theorem
which ensure that the interpreted semantics and the compiled semantics correspond.

This theorem, however, is not the end of the story. The implementation of program-
ming languages rarely fits directly to the idealized formalization. This certainly applies
to OCaml, and thus also to Eliom. In Chapter 6, we present the implementation of
Eliom as an extension of OCaml. We expose its challenges and the choices we made
to make the implementation possible. One particularly important property is the inte-
gration between Eliom and the vanilla OCaml compiler.

Finally, Chapter 7 explores the competitors and inspirations of the Eliom language,
both in the field of tierless Web programming but also in various other domains such
as distributed programming and staged meta-programming. Chapter 8 concludes with
various remarks on tierless Web programming.

1.4 Contributions

Eliom, and the Ocsigen project, were initiated by Vincent Balat and Jérôme Vouil-
lon several years ago. It enjoyed the input of many contributors along the years, who
participated to the improvement and the refinement of various ideas you will find in this

21

thesis. In particular, fragments and sections and their compilation were already present
in Eliom before this thesis started.
My contribution can be summarized as follows:

• A new type system for the Eliom constructs as an extension of the OCaml type
system, including the notion of converters. Previous attempts at typing were limited
at best, and unsound and hackish at worst.

• A new module system which fits the programming model of Eliom while preserving
the good properties of the OCaml module system such as abstraction and modularity.

• A formalization of the type system, the interpreted semantics and the compilation
scheme.

• A new implementation of the type checker, the compiler and the runtime of Eliom
which more closely reflects the formalization.

More precisely, many examples and libraries presented in Chapter 2 have been de-
veloped along the years as part of the Ocsigen ecosystem, most recently by Vasilis
Papavasilieou, Vincent Balat and Jérôme Vouillon. Furthermore, the compilation
of sections, fragments and injections, along with the basic primitives that are presented
in Chapter 5, are distilled versions of the original Eliom implementation due to Pierre
Chambart, Grégoire Henry, Benedikt Becker and Vincent Balat.

22

2 Programming with Eliom

"A training course." I look at him. "What in? Windows NT
system administration?"
He shakes his head. "Computational demonology for dummies."

Charles Stross, The Atrocity Archive

One of the goal of the Eliom language is to provide the essential building blocks for
type-safe, efficient, tierless web programming. In order to demonstrate this, we first
introduce Eliom’s core concept in Section 2.1, then provide numerous examples. Our
examples are extracted from code that appears in the Ocsigen tutorial [Tutorial] and
in the Eliom library [Eliom]. Each example was chosen to illustrate a particular new
programming pattern that is used pervasively in the Eliom ecosystem.
For clarity, we add some type annotations to make the meaning of the code clearer.

These annotations are not necessary. While we use the OCaml language, we only assume
some familiarity with functional languages.

2.1 Core concepts

Eliom only adds a few new constructions. The aim here is to provide constructions
that are sufficiently minimal to be implemented on top of OCaml but also sufficiently
expressive to provide convenient implementations of all the Web programming idioms as
libraries.

2.1.1 Sections

In Eliom, we explicitly mark where a definition should be executed through the use of
section annotations. We can specify whether a declaration is to be performed on the
server or on the client as follows:

1 let%server s = ...
2 let%client c = ...

A third kind of section, written shared, is used for code executed on both sides. Sections
allow the programmer to group related code in the same file, regardless of where it is
executed.
In the rest of this thesis, we use the following color convention: client is in yellow,

server is in blue and shared is in green. Colors are however not mandatory to understand
the rest of this thesis.

23

2.1.2 Client fragments

While section annotations allow programmers to gather code across locations, it doesn’t
allow convenient communication. For this purpose, Eliom allows to include client-side
expression inside a server section: an expression placed inside [%client ...] will be
computed on the client when it receives the page; but the eventual client-side value of
the expression can be passed around immediately as a black box on the server. These
expressions are called client fragments.

1 let%server x : int fragment = [%client 1 + 3]

For example, here, the expression 1 + 3 will be evaluated on the client, but it’s possible
to refer server-side to the future value of this expression (for example, put it in a list).
The variable x is only usable server-side, and has type int fragment which should be
read “a fragment containing some integer”. The value inside the client fragment cannot
be accessed on the server.

2.1.3 Injections

Fragments allow programmers to manipulate client values on the server. We also need
the opposite direction. Values that have been computed on the server can be used on
the client by prefixing them with the symbol ~%. We call this an injection.

1 let%server s : int = 1 + 2
2 let%client c : int = ~%s + 1

Here, the expression 1 + 2 is evaluated and bound to variable s on the server. The
resulting value 3 is transferred to the client together with the Web page. The expression
~%s + 1 is computed client-side.
An injection makes it possible to access client-side a client fragment which has been

defined on the server:

1 let%server x : int fragment = [%client 1 + 3]
2 let%client c : int = 3 + ~%x

The value inside the client fragment is extracted by ~%x, whose value is 4 here.

Fragments and injections are not novel to this thesis. They draw inspiration from
the very rich history of quotations for staging and macros [Bawden, 1999, Taha, 1999,
Sheard and Peyton Jones, 2002] and have been used for several years in various tierless
Web programming languages such as Hop [Serrano et al., 2006] and Eliom. These
constructions are quite powerful and allow to express complex client-server interactions
in convenient and safe ways, as we see in the rest of this section.

2.2 Client-server behaviors

The hint_button function below creates a button labeled “Show hint” that pops up
a dialog box when activated. The message contained in the dialog box is a server-side

24

string that is given as argument to the function hint_button. One additional property
is that the HTML is generated server-side and sent to the client as a regular HTML page.
For this purposes, we use an HTML DSL [TyXML] that provides combinators such

as button and a_onclick (which respectively create an HTML tag and an HTML
attribute). See Section 2.5.1 for more details on this DSL. The ~a is the OCaml syntax
for named arguments. Here, it is used for the list of HTML attributes.
Our function is implemented using a handler for the onclick event: since clicks are

performed client-side, this handler needs to be a client function inside a fragment. Inside
the fragment, an injection is used to access the argument msg that contains the string
to be showed to the user. The produced HTML fragment is shown in Example 2.1b
and the inferred type in Example 2.1a. As we can see, this type does not expose the
internal details of the widget’s behavior. In particular, the communication between
server and client does not leak in the API: This provides proper encapsulation for client-
server behaviors. Furthermore, this widget is easily composable: the embedded client
state cannot affect nor be affected by any other widget and can be used to build larger
widgets.

1 let%server hint_button msg =
2 button
3 ~button_type:‘Button
4 ~a:[a_onclick [%client fun _ -> alert ~%msg]]
5 [pcdata "Show hint"]

1 val%server hint_button : string -> Html.element

(a) Implementation and interface

1 <button onclick="...">
2 Show hint
3 </button>

(b) Emitted HTML

Example 2.1: A button that shows a message

2.2.1 Introducing side effects

We now want to generalize our button widget by creating a button that increments a
client-side counter and invokes a callback each time it is clicked. This is implemented
by the counter function, shown below. This client function modifies the widget’s state
(the client-side reference state) and then calls the user-provided client-side callback
action. This demonstrates that the higher-order nature of OCaml can be used in our
client-server setting, and that it is useful for building server-side Web page fragments
with parameterized client-side behaviors. In addition, note that the separation between
state and action makes it straightforward to extend this example with a second button
that decrements the counter while sharing the associated state.

1 let%server counter (action: (int -> unit) fragment) =
2 let state = [%client ref 0] in
3 button
4 ~button_type:‘Button
5 ~a:[a_onclick
6 [%client fun _ -> incr ~%state; ~%action !(~%state)]]

25

7 [pcdata "Increment"]

2.2.2 Communication and execution scheme

Our counter widget showcases complex patterns of interleaved client and server code,
including passing client fragments as arguments to server functions, and subsequently to
client code. This would be costly if the communication between the client and the server
were done naively.

Eliom employs an efficient communication mechanism. Specifically, the server only
ever sends data along with the initial version of the page. This is made possible by the fact
that client fragments are not executed immediately when encountered inside server code.
Intuitively, the semantics, presented formally in Section 4.3, is the following. When the
server code is executed, the encountered client code is not executed right away; instead it
is just registered for later execution once the Web page has been sent to the client. Only
then is the client code executed. We also guarantee that client code, be it either client
sections or fragments, is executed in the order that it was encountered on the server.
Let us consider the counter example above. When calling the counter function, we

first encounter the [%client ref 0] fragment. We generate a fresh identifier that will
be used to identify the result of the execution on the client. We store in a queue the
fact that this piece of code should be run later. We also return the generated identifier.
Later on, we encounter the fragment containing the callback called when the button is
pressed: [%client fun _ -> incr ~%state; ~%action !(~%state)]]. As before,
we generate a fresh identifier and register this piece of code to be run on the client. We
also send the content of injections ~%state and ~%action. Note that since action is
a fragment, it is only represented by an identifier that will be used to find the value on
the client. Once the server code has been executed, we send the information necessary
for the client-side execution to the client. For example, that the identifier previously
generated is associated to the result of ref 0. We can then execute the client-side part
of the Eliom program. Using the sent information, we can execute client fragments and
injections in the order expected by the programmer.
This presentation might make it seem as if we dynamically create the client code during

execution of the server code. This is not the case. Like OCaml, Eliom is statically
compiled and separates client and server code at compile time. During compilation, we
statically extract the code included inside fragments and compile it as part of the client
code to JavaScript. This allows us to provide both an efficient execution scheme that
minimizes communication and preserve side effect orders while still presenting an easy-to-
understand semantics. We also benefits from optimizations done by the js_of_ocaml
compiler, thus producing efficient and compact JavaScript code.

2.3 Heterogeneous datatypes

Some datatypes are represented in fundamentally different ways on the server and on
the client. This is a consequence of the different nature of the server and the client

26

environments. Eliom properly models this heterogeneous aspect by allowing to relate
a client and a server datatype that share a similar semantics while having different
definitions. We use this feature to present a safe and easy to use API for remote procedure
calls (RPCs).

2.3.1 Remote procedure calls

When using fragments and injections, the only communication taking place between the
client and the server is the original HTTP request and response. However, further com-
munication is sometimes desirable. A remote procedure call is the action of calling, from
the client, a function defined on the server. We present here an RPC API implemented
using the Eliom language. The API is shown in Figure 2.1 and an example in Figure 2.2.

1 type%server (’i,’o) t
2 type%client (’i,’o) t = ’i -> ’o
3

4 val%server create : (’i -> ’o) -> (’i, ’o) t

Figure 2.1: Rpc signature

1 let%server plus1 : (int, int) Rpc.t =
2 Rpc.create (fun x -> x + 1)
3

4 let%client f x = ~%plus1 x + 1

Figure 2.2: Usage of the Rpc module

In Figure 2.2, we first create server-side an RPC endpoint using the function Rpc.create.
Our example RPC adds 1 to its argument. The endpoint is therefore a value of type
(int,int)Rpc.t, i.e., an RPC whose argument and return values are both of type int.
The type Rpc.t is abstract on the server, but is a synonym for a function type on the
client. Of course, this function does not contain the actual implementation of the RPC
handler, which only exists server-side.
To use this API, we leverage injections. By using an injection in ~%plus1, we obtain

on the client a value of type Rpc.t. We describe the underlying machinery that we
leverage for converting RPC endpoints into client-side functions in Section 2.3.2. What
matters here is that we end up with a function that we can call like any other; calling it
performs the remote procedure call.
We can now combine the RPC API with the counter widget defined in Section 2.2.1 to

create a button that saves the value of the counter on the server. This is presented in Ex-
ample 2.2. We assume the existence of a save_counter function, which saves the counter
in a database, and of the counter function defined previously. The signature of these
functions are shown in Example 2.2a. We then proceed to define save_counter_rpc
(i.e., the server-side RPC interface for save_counter), and inject it into a fragment f.
This fragment is subsequently used as the user-provided callback for counter. This way,
each time the counter is incremented, its new value is saved server-side.
The RPC API we proposed is “blocking”: the execution waits for the remote call to

finish before pursuing, thus blocking the rest of the client program. Remote procedure
calls should, on the contrary, be made asynchronously: the client program keeps running
while the call is made and the result is used when the communication is done. In the
actual implementation, we use the Lwt library [Vouillon, 2008] to express asynchronous
calls in a programmer-friendly manner through promises. The use of Lwt is pervasive in

27

the Eliom ecosystem both on the server and on the client. In this thesis, we will simply
omit mentions of the Lwt types and operators for pedagogic purposes.

2.3.2 Converters

In the RPC API, we associate two types with different implementation on the server
and on the client. We rely on injections to transform the datastructure when moving
from one side to the other. This ability to transform data before it is sent to the client
via an injection is made possible by the use of converters. Figure 2.3 broadly presents
the converter API. Given a serialization format serial, a converter is a pair of a server
serialization function and a client de-serialization function. Note that the client and
server types are not necessarily the same. Furthermore, we can arbitrarily manipulate
the value before returning it. Several predefined converters are available for fragments,
basic OCaml datatypes, and tuples in the module Conv. Implementation details about
converters can be found in Section 4.2.1.
We can use converters to implement the RPC API (Example 2.3). The server imple-

mentation of Rpc.t is composed of a handler, which is a server function, and a URL to
which the endpoint answers. Our serialization function only sends the URL of the end-
point. The client de-serialization function uses this URL to create a function performing
an HTTP request to the endpoint. This way, an RPC endpoint can be accessed simply
with an injection. Thus, for the create function, we assume that we have a function
serve of type string -> (request -> answer)-> unit that creates an HTTP han-
dler at a specified URL. When Rpc.create is called, a unique identifier id is created,
along with a new HTTP endpoint "/rpc/id" that invokes the specified function.
This implementation has the advantage that code using the Rpc module is completely

independent of the actual URL used. The URL is abstracted away. Converters preserve
abstraction by only exposing the needed information.

1 val%server save_counter :
2 int -> unit
3 val%server counter :
4 (int -> unit) fragment -> Html.t

(a) Environment

1 let%server save_counter_rpc : (int, unit) Rpc.t =
2 Rpc.create save_counter
3

4 let%server widget_with_save : Html.element =
5 let f = [%client ~%save_counter_rpc] in
6 counter f

Example 2.2: Combination of the counter widget and the RPC API.

1 type serial (* A serialization format *)
2 type%server (’a, ’b) converter = {
3 serialize : ’a -> serial ;
4 deserialize : (serial -> ’b) fragment
5 }

Figure 2.3: Schematized API for converters

28

2.3.3 Client-server reactive broadcasts

In the previous example, we used converters on rather simple datatypes: only a URL
was sent, and a closure was created client-side. In this example, we use converters for
a more ambitious API: lift Functional Reactive Programming (FRP) to be usable across
client-server boundaries.
FRP is a paradigm that consists in operating on streams of data, either discrete (events)

or continuous (signals). It has been used successfully to program graphical interfaces in
a functional fashion, and can also be used to implement Web interfaces. Here, we show
how to create an API that allows broadcasting server reactive events to a set of clients.
We assume pre-existing libraries implementing the following two APIs: An untyped

broadcast API (Figure 2.4) and an FRP event API (Figure 2.5). Both of these APIs
are orthogonal to Eliom’s primitives; we can implement broadcast with standard Web
techniques, and use the OCaml library React for FRP events. The broadcast API
operates on messages of type serial, the serialization type introduced in Figure 2.3.

Let us now implement the typed broadcast API shown in Figure 2.6. It is quite similar
to the RPC API: we have a type t with different implementations on the client and
the server, and a server function create that takes a converter and an event stream as
argument and produces a value of type t. Here, we use a converter explicitly in order to
transfer elements on the broadcast bus.
The implementation of the Broadcast module is shown in Figure 2.7. On the server, a

BroadcastEvent.t is composed of a converter that is used to transfer elements together
with a URL. The create function starts by creating an untyped broadcast endpoint. We
then use Event.iter to serialize and then send each occurrence of the provided event.

1 type%server (’i,’o) t = {
2 url : string ;
3 handler: ’i -> ’o ;
4 }
5

6 type%client (’i, ’o) t = ’i -> ’o
7

8 let%server serialize t = serialize_string t.url
9 let%client deserialize x =

10 let url = deserialize_string x in
11 fun i -> XmlHttpRequest.get url i
12

13 let conv = {
14 serialize = serialize ;
15 deserialize = [%client deserialize] ;
16 }
17

18 let%server create handler =
19 let url = "/rpc/" ^ generate_new_id () in
20 serve url handler ;
21 { url ; handler }

Example 2.3: Simplified RPC implementation corresponding to Figure 2.1.

29

We now need to create a converter for BroadcastEvent.t. We need to transmit two
values: the URL of the broadcast endpoint, so that the client can subscribe, and the
deserialization part of the provided converter, so that the client can decode the broad-
casted messages. raw_conv provides a converter for a pair of a URL and a fragment. In
addition to receiving this information, the client deserializer creates a new event stream
and subscribes to the broadcast endpoint. We connect the broadcast output to the event
stream by passing along all the (deserialized) messages.
As we can see in this example, we can use converters explicitly to setup very sophis-

ticated communication schemes in a safe and typed manner. We also use the client
deserialization step to execute stateful operations as needed on the client. Note that
using a converter here allows effective use of resources: the only clients that subscribe to
the broadcast are the ones that really need the event stream, since it has been injected.

2.4 Modules and signatures

In the previous examples, we declared simple Eliom modules containing client and server
functions, along with signatures for such modules. We also used “pure” OCaml declara-
tions that are neither client nor server such as the serial type (Figure 2.3) or the Event
module (Figure 2.5). We now give a quick description of the OCaml module system and
some of the Eliom extensions.

2.4.1 A primer on OCaml modules

The OCaml module system forms a second language separate from the expression lan-
guage. While the language of expressions allows to program “in the small”, the module

1 val%server t
2 val%server create : url -> t
3 val%server send : t -> serial -> unit
4

5 val%client subscribe :
6 url -> (serial -> unit) -> unit

Figure 2.4: Broadcast: Untyped API

1 type ’a event
2 (** Events with occurrences of type [’a] *)
3

4 val create : unit -> ’a event * (’a -> unit)
5 (** [create ()] returns an event [e] and a
6 [send] function *)
7

8 val iter : (’a -> unit) -> ’a event -> unit
9 (** [iter f e] applies [f] to

10 [e]’s occurrences *)

Figure 2.5: Event: Reactive events API

1 type%server (’i, ’o) t
2 type%client (’i, ’o) t = ’o Event.event
3

4 val%server create :
5 (’i, ’o) converter -> ’i event -> (’i, ’o) t

Figure 2.6: BroadcastEvent: Shared reactive events API

30

language allows to program “in the large”. In most languages, modules are compila-
tion units: a simple collection of type and value declarations in a file. The ML module
language uses this notion of collection of declarations (called structure) and extends it
with types (module specifications, or signatures), functions (parametrized modules, or
functors) and function applications, forming a small typed functional language.
In the previous examples, we already implicitely used the module system: each .ml

file form a structure containing the list of declarations included in the file. It is also
possible to specify a signature for such module by adding a .mli file. Let us now give
a very simple example of functors. For a longer (and better) introduction to modules
and functors, please consult the manual [Leroy et al., 2016] or the Real World OCaml
book [Minsky et al., 2013].
Functors are simply functions that take a module and return another module. They

1 type%server (’i,’o) t = {
2 conv : (’i, ’o) converter ;
3 url : string ;
4 }
5 type%client (’i,’o) t = ’o Event.event
6

7 let%server create
8 (conv : (’i, ’o) conv) (event : ’i Event.event) =
9 let url = "/broadcast/" ^ generate_new_id () in

10 let t = Broadcast.create url in
11 let send x =
12 Broadcast.send t (conv.serialize x)
13 in
14 let () = Event.iter send event in
15 { conv ; url }
16

17 let%server raw_conv
18 : (url * ’a fragment, url * ’a) converter
19 = Conv.pair Conv.url Conv.fragment
20

21 let%server serialize t =
22 raw_conv.serialize (t.url, t.conv.deserialize)
23 let%client deserialize s =
24 let url, deserial_msg =
25 ~%raw_conv.deserialize s
26 in
27 let event, send = Event.create () in
28 let handler msg = send (deserial_msg msg) in
29 Broadcast.subscribe url handler ;
30 event
31

32 let%server conv = {
33 serialize ;
34 deserialize = [%client deserialize] ;
35 }

Figure 2.7: BroadcastEvent: Shared reactive events. API shown in Figure 2.6.

31

can be used for a large variety of purposes. Here, we use them to build up data structure
based on some primitive operations. Let us say we want to create dictionaries with
keys of type t. One method to implement efficient dictionaries is to use Binary Search
Trees, which requires a comparison function for values of type t in order to search in
the tree. Map.Make is a pre-defined functor in the OCaml standard library that takes
a module implementing the COMPARABLE signature as argument and returns a module
that implements dictionaries whose keys are of the type t in the provided module. In
Figure 2.9, we use this functor to create the StringMap module which defines dictionaries
with string keys. We then define d, a dictionary which associates "foo" to 3.

1 module type COMPARABLE = sig
2 type t
3 val compare : t -> t -> int
4 end
5

6 module Make (Key : COMPARABLE) : sig
7 type ’a t
8 val add : Key.t -> ’a -> ’a t -> ’a t
9 (* ... *)

10 end

Figure 2.8: the Map module

1 module StringComp = struct
2 type t = string
3 let compare = String.compare
4 end
5 module StringMap = Map.Make(StringComp)
6

7 let d : int StringMap.t =
8 StringMap.add "foo" 3 StringMap.empty

Figure 2.9: Dictionaries from strings to ints

2.4.2 Modules and locations

Section annotations are also available on module declarations, which allows to define
client and server modules. One can also use regular OCaml modules and functors inside
client and server code. For example, in Figure 2.10, we use Map.Make on the client to
define maps whose keys are JavaScript strings. JavaScript strings are fairly different
from OCaml strings, as they are represented by ropes instead of mutable byte arrays,
hence the need for a different type. Note here that a functor from vanilla OCaml is
applied to a client module and returns a client module.
As we saw in the previous examples, we can mix declarations from multiple locations

inside the same module. Such modules are called “mixed”. An important constraint
is that, as you go down inside sub modules, locations should be properly included: A
client module can not contain server declarations and conversely, but mixed modules can
contain everything.

1 module%client JStr = struct
2 type t = Js.string
3 let compare = Js.compare_string
4 end
5

6 module%client JStrMap = Map.Make(JStr)

Figure 2.10: Map of js strings

32

2.4.3 OCaml integration

We consider an additional location, “base”, which can only contain OCaml constructs.
Pure OCaml declarations such as serial, including pure OCaml modules, are consid-
ered of location base and are usable both on the client and on the server. Side-effecting
base code will be executed on both the client and the server. Eliom guarantee that
pieces of code inside base locations can only contain pure OCaml code, without any of
the additional Eliom constructs. The semantics of base code is guaranteed to be exactly
the same as the vanilla OCaml semantics. Furthermore, OCaml library can be im-
ported and linked inside Eliom projects freely. It is even possible to use the compilation
output of the regular OCaml compiler.
Additionally, it is possibly to decide that a given OCaml library should be imported

in Eliom only client or server side. For example, we might want to use a vanilla OCaml
database library in our Eliom project. We can simply specify that this library should
only be loaded on the server and the Eliom type system will prevent its use it in client
code.

2.4.4 Heterogeneous implementations

Shared sections make it possible to write code for the client and the server at the same
time. This provides a convenient way of writing terse shared implementations, without
duplicating logic and code. This does not necessarily entail that everything is shared. In
particular, base primitives might differ between client and server, though the overall logic
is the same. Just as we can implement heterogeneous datatypes with different client- and
server-side representations, we can also provide interfaces common to the client and the
server, with different client- and server-side implementations. We consider the case of
database access. We first assume the existence of a server function get_age of type
string -> int that performs a database query and returns the age of a person.

We can easily create a client version of that function via our RPC API of Figure 2.1.

1 let%server get_age_rpc = Rpc.create get_age
2 let%client get_age = %get_age_rpc

The API is then:

1 val%shared get_age : string -> int

We can use this function to write widgets that can be used either on the client or on the
server:

1 let%shared person_widget name =
2 div ~a:[a_class "person"] [
3 text (name^" : "^string_of_int(get_age name))
4]

This technique is used pervasively in Eliom to expose implementations than can be used
either on the client or on the server with similar semantics, in a very concise way.

33

2.5 Mixed client-server data structures

We can readily embed client fragments inside server data structures. As a simple example
of such a mixed data structure, consider a list of button names (standard server-side
strings) and their corresponding client-side actions. Example 2.4 presents a function
that takes such a list and builds an unordered HTML list of buttons.

Eliom makes such mixed data-structure particularly easy to write. Having explicit
annotations with the usage of fragments is essential here. This would be quite difficult
to achieve if the delimitation between client and server values were implicitly inferred.

1 let%server button_list
2 (lst : (string * handler fragment) list) =
3 ul (List.map (fun (name, action) ->
4 li [button
5 ~button_type:‘Button
6 ~a:[a_onclick ~%action]
7 [pcdata name]])
8 lst)

Example 2.4: Function generating a list of buttons

2.5.1 HTML

A common idiom in Web programming is to generate the skeleton of a Web page on
the server, then fill in the holes on the client with dynamic content, or bind dynamic
client-side behaviors on HTML elements. In order to do that, the usual technique is to
use the id or class HTML properties to identify elements, and to manually make sure
that these identifiers are used in a coherent manner on the client and the server.

Eliom simplifies this process by mean of a client-server HTML library that allows
injections of HTML elements to the client. Figure 2.11 shows a simplified API, which
is uniform across clients and servers. The API provides combinators such as the div
function shown below, which builds a div element with the provided attributes and child
elements. We already used this HTML API in several previous examples.
On the server, HTML is implemented as a regular OCaml datatype. When sending

the initial HTML document, this datatype is converted to a textual representation. This
ensures compatibility with JavaScript-less clients and preserves the usual behavior of
a Web server.
On the client, we represent HTML nodes directly as DOM trees. The mismatch

between client and server implementations does not preclude us from providing a uniform
API. However, to permit injections of HTML nodes from the server to the client, special
care must be taken. In particular, we equip each injected node with an id, and id is the
only piece of data sent by the serialization function. The deserialization function then
finds the element with the appropriate id in the page. The a_onclick function finds
the appropriate HTML element on the client and attaches the specified handler.

The fact that we use a uniform API allows us to abstract the specificities of the

34

1 type%shared attribute
2 type%shared element
3

4 val%shared div :
5 ?a:(attribute list) -> element list -> element
6

7 val%server a_onclick :
8 (Event.t -> bool) fragment -> attribute
9

10 module%server Client : sig
11 val node : element fragment -> element
12 end

Figure 2.11: Html: The simplified HTML API

DOM and to provide other kinds of representations, such as a virtual DOM approach.
A further improvement that fits in our design is nesting client HTML elements inside
server HTML documents without any explicit DOM manipulation. This is done by the
Client.node function (Figure 2.12), which takes a client fragment defining an HTML
node and converts it to a server-side HTML node that can be embedded into the page.
This function works by including a placeholder element server-side. The placeholder is
later replaced by the actual element on the client.

1 let%server node (x: element fragment) : element =
2 let placeholder = span [] in
3 let _ = [%client
4 let placeholder = ~%placeholder in
5 let x = ~%x in
6 Option.iter
7 (Dom.parent placeholder)
8 (fun parent ->
9 Dom.replaceChild parent placeholder x)

10] in
11 placeholder

Figure 2.12: Implementation of Client.node

2.6 Shared values

We presented in Section 2.4.4 how we can use shared sections to write code that is used
both on the client and on the server. Using the Eliom features we have described, we
can also create shared values, which have a similar dual meaning, but at the level of
expressions. The API is described in Figure 2.13 while the implementation is shown in
Figure 2.14. Implementation of the converter for shared values is shown in Figure 2.15.
The server-side implementation of a shared value clearly needs to contain a fragment

that can be injected on the client. On the other hand, the client cannot possibly in-
ject a value on the server, so the client-side representation only consists of a fragment.

35

1 type%server (’a, ’b) shared_value =
2 { srv : ’a ; cli : ’b fragment }
3 type%client (’a, ’b) shared_value = ’b
4

5 val%server local : (’a, ’b) shared_value -> ’a
6 val%client local : (’a, ’b) shared_value -> ’b
7

8 val%server cli :
9 (’a, ’b) shared_value -> ’b fragment

10 val%client cli : (’a, ’b) shared_value -> ’b

Figure 2.13: Shared values API

1 let%server local x = x.srv
2 let%client local x = x
3

4 let%server cli x = x.cli
5 let%client cli x = x

Figure 2.14: Shared values Imple-
mentation

1 let%server shared_conv
2 : ((’a, ’b) shared_value, (’a, ’b) shared_value) converter
3 = {
4 serialize = (fun x -> Conv.fragment.serialize x.cli);
5 deserialize = Conv.fragment.deserialize
6 }

Figure 2.15: Converter for shared values

For injecting a server-side shared value on the client, we use a converter whose server-
side portion serializes only the fragment, and whose client-side portion deserializes this
fragment.

2.6.1 Shared data-structures

Shared values are very useful when a given operation needs to be performed both on
the server and on the client, but in a way that matches the specific requirement of each
side. As an example, we present a cached dictionary API for storing data of interest on
both the server and the client. This dictionary API should be well-adapted for Eliom’s
client-server style of programming. On the server, the dictionnary is to be used while
serving a request, e.g., for locally caching data obtained from complex database queries.
It is frequently the case that the client needs access to the same data; in that case, it
is desirable that we avoid performing multiple RPCs. To achieve this, the semantics of
the server-side addition operation (function add) is such that the value does not only
become available for future server-side lookups, but also for client-side lookups. Of course,
additional items may be added client-side, but then there is no expectation of server-side
addition; the server-side dictionnary may not even exist any longer, given that it was
local to the code handling the request.
As with the Map module, we want to define our dictionary over arbitrary keys. Let

us first review what we need to define such a data-structure: We want two comparison
function: one on the server and one on the client. We also need a converter that ensures
we can transmit values from the server to the client. For simplicity, we consider that
the type of our keys is an OCaml base type. The type of our shared dictionaries
(’a, ’b)table contains two type variables ’a and ’b, corresponding to the server-

36

and client-side contents respectively. The API in Figure 2.16a provides add and find
operations, as is typical for association tables, which are available on both sides. The
implementation is shown in Figure 2.16b. A dictionnary is implemented as a pair of a
server-side dictionary and a client-side one. The server-side add implementation stores
a new value locally in the expected way, but additionally builds a fragment that has the
side-effect of performing a client-side addition. The retrieval operation (find) returns a
shared value that contains both the server side version and the client side. On the client,
however, we can directly use the local values. Note that since the client-side type exactly
corresponds to a regular map, we can directly use the usual definitions for the various
map operations. This is done by including the M module on the client.
Several extensions of this API are possible. For pedagogic purposes, the type of key we

used here is a pure OCaml type on the base location (Section 2.4.3). We could also have
two different kinds of keys on the server and on the client, for example OCaml strings on
the server and JavaScript strings on the client, which would ensure better efficiency.
The function would then need two comparison functions and a converter between the
two types. Alternatively, we could also easily create a full blown replicated dictionary:
by using the RPC API, the client can require the server dictionary to be updated and
by using the broadcast API, we can distribute new additions to all clients.
Going further, shared values empower an approach to reactive programming that is

well-adapted for Eliom’s client-server paradigm [Shared reactive programming]. This
approach is the subject of ongoing work. One notable possible improvement is the notion
of shared fragment, the analogous of shared declarations for expressions, which allow to
avoid some code duplication present in the implementation in Figure 2.16b.

2.6.2 Mixed functors

In the previous example, we defined a functor which creates a module containing both
client and server declarations. Such functors are called mixed. As we saw, mixed functors
are fairly powerful and can be used for a wide variety of purposes. However, contrary to
client and server functors, mixed functors are limited: arguments must be mixed modules,
mixed structures and functors can not be nested arbitrarily and injections inside client-
side bindings can only reference elements out of the functor. Injections inside client
fragments can be used in arbitrary ways. A more precise description of these limitations
is provided in Section 4.2.2.

2.7 A sophisticated example: accordions

We now demonstrate how to implement the well-known widget accordion. An accordion
is a kind of application menu that displays collapsible sections in order to present infor-
mation in a limited amount of space. The section titles are always visible. The content
of a section is shown when the user clicks on its title. Only one section is open at a time.
This widget can be used in numerous contexts such as the body of news articles, trip
details in a train ticket search, etc.

37

1 module type T = sig
2 type t
3 val comparable : t -> t -> int
4 val%server conv : (t, t) conv
5 end
6

7 module Cache (Key : T) : sig
8 module M = Map.Make(Key)
9

10 type%shared (’a, ’b) table =
11 (’a M.t, ’b M.t) Shared.t
12

13 val%shared add :
14 Key.t -> (’a, ’b) Shared.t ->
15 (’a, ’b) table -> (’a, ’b) table
16

17 val%shared find :
18 Key.t -> (’a, ’b) table ->
19 (’a, ’b) Shared.t
20

21 (* ... *)
22 end

(a) Signature

1 module Cache (Key : T) = struct
2 module M = Map.Make(Key)
3

4 type%shared (’a, ’b) table =
5 (’a M.t, ’b M.t) Shared.t
6

7 include%client M
8

9 let%server add id v tbl =
10 [%client M.add ~%id ~%v ~%tbl];
11 M.add id v.srv tbl.srv
12

13 let%server find id tbl =
14 { srv = M.find id tbl ;
15 cli = [%client M.find ~%id ~%tbl]
16 }
17

18 (* ... *)
19 end

(b) Implementation

Figure 2.16: The SharedTable module

In our example, sections are implemented independently and attached to the accordion
given as parameter. The distinctive characteristic of our implementation, made possible
by the two-level language, is that a section can be generated freely either on the server
or on the client, and attached to an existing accordion. The example contains three
sections, two generated server-side and one added dynamically client-side to the same
accordion.
The code is shown in Figure 2.17. The data structure representing the accordion

contains only a reference to a client-side function that closes the currently open section.
Functions new_accordion and accordion_section are included in both the server and
client programs (shared sections). Function switch_visibility is implemented client-
side only. It just adds or removes an HTML class to the element, which has the effect
of hiding or showing the element through CSS rules. Function my_accordion builds
a server-side HTML page containing an accordion with two sections. It also sends to
the client process, together with the page, the request to create the accordion (client
fragment in function new_accordion) and to append a new section to the accordion.
For this purpose, we use function Client.node on line 40.

38

1 let%client switch_visibility elt =
2 if Class.contain elt "hidden"
3 then Class.remove elt "hidden"
4 else Class.add elt "hidden"
5

6 type%shared toggle =
7 (unit -> unit) ref fragment
8

9 let%shared new_accordion () : toggle =
10 [%client ref (fun () -> ())]
11

12 let%shared accordion_section
13 (accordion : toggle) s1 s2 =
14 let contents =
15 div ~a:[a_class ["contents"; "hidden"]]
16 [text s2]
17 in
18 let handler = [%client fun _ ->
19 let toggle = ~%accordion in
20 !toggle (); (*close previous section*)
21 toggle :=
22 (fun () -> switch_visibility ~%contents);
23 switch_visibility ~%contents
24]
25 in
26 let title =
27 div
28 ~a:[a_class ["title"]; a_onclick handler]
29 [text s1]
30 in
31 div ~a:[a_class ["section"]]
32 [title; contents]
33

34 let%server my_accordion () =
35 let accordion = new_accordion () in
36 div [
37 accordion_section
38 accordion
39 "Item 1" "Server side generated" ;
40 Client.node [%client
41 accordion_section
42 ~%accordion
43 "Item 2" "Client side generated"
44] ;
45 accordion_section
46 accordion
47 "Item 3" "Server side generated" ;
48]

Figure 2.17: The accordion widget

Figure 2.18: Resulting web page

39

2.8 Going further

Our examples demonstrate how the combination of fragments, injections and converters,
along with the abstraction and modularity provided by the module system, can be used
to build rich Web development libraries that provide convenient programming interfaces.
While the module system and the notion of converter presented here are novel to this
thesis; fragments, injections and abstraction have been leveraged in the Eliom library for
many years to build very rich structures. In particular, the Eliom library provides uni-
and bi-directional channels, progressive fetching of data, correct-by-construction links,
and client-server reactive programming. Interestingly, a common pattern arising across
these examples (just like for our RPC and HTML examples of Sections 2.3.1 and 2.5.1)
is relating server and client datatypes that differ in their structure and APIs, but that
have related intuitive meaning. Of course, the same building blocks and patterns can be
used by the programmer to implement additional components outside the Eliom library,
thus catering for their specific use cases.

40

3 The ML programming language

When I was a child, I was told that Santa Claus came in through
the chimney, and that computers were programmed in binary code.
Since then, I have learned that programming is better done in
higher-level languages, more abstract and more expressive.

Xavier Leroy, Polymorphic typing of an algorithmic language

Programming languages of the ML family are like curry: everyone cook them differently
and nobody agrees on the perfect ingredients, but they all end up being delicious. For
ML, the original ingredients [Milner, 1978] are first class functions, parametric polymor-
phism, let bindings, algebraic datatypes and mutable references. With the years, several
new ingredients have been added to the mix; in particular pattern matching and a mod-
ule system; which form the base of many languages in the ML family [Milner et al., 1990,
Leroy et al., 2016].
Our version of ML contains the minimal amount of ingredients that allows us to

describe the Eliom extensions: a core calculus with polymorphism, let bindings and
parametrized datatypes in the style of Wright and Felleisen [1994], accompanied by a
fully featured module system in the style of Leroy [1995]. We first present the syntax
of the language in Section 3.1 and its type system in Section 3.2. We then present the
semantics of this language in Section 3.3. Finally we indicate some relevant work in
Section 3.4.

3.1 Syntax

Let us first define some notations and meta-syntactic variables. As a general rule, the
expression language is in lowercase (e) and the module language is in uppercase (M).
Module types are in calligraphic letters (M). More precisely: x are variables, p are
module paths, X are module variables, τ are type expressions and t are type constructors.
xi, Xi and ti are identifiers (for values, modules and types). Identifiers (such as xi) have a
name part (x) and a stamp part (i) that distinguish identifiers with the same name. Only
the name part of identifiers is exposed in module signature. α-conversion should keep
the name intact and change only the stamp, which allow to preserve module signatures.
Sequences are noted with a star; for example τ∗ is a sequence of type expressions. Indexed
sequences are noted (τi), with an implicit range. Substitution of a by b in e is noted
e[a 7→ b]. Repeated substitution of each ai by the corresponding bi is noted e[ai 7→ bi]i.
The syntax is presented in Figure 3.1.

41

Expressions The expression language is a fairly simple extension of the lambda calculus
with a fixpoint combinator Y and let bindings let x = e1 in e2. The language is
parametrized by a set of constants Const. Variables can be qualified by a module path
p. Paths can be either module identifiers such as Xi, a submodule access such as Xi.Y ,
or a path application such as Xi(Yj .Z). Note that, as said earlier, that fields of modules
are only called by their name, without stamp.

Types Types are composed of type variables α, function types τ1→ τ2 and parametrized
type constructors (τ1, τ2, . . . , τk)ti. Type constructors can have an arbitrary number of
parameters, including zero. Type constructors can be qualified by a module path p. Type
schemes, noted σ, are type expressions that are universally quantified by a list of type

Expressions
e ::= c (Constant)
| xi | p.x (Variables)
| Y (Fixpoint)
| (e e) (Application)
| λx.e (Function)
| let x = e in e (Let binding)

c ∈ Const (Constants)

Path
p ::= Xi | p.X | p1(p2)

Type Schemes
σ ::= ∀α∗.τ

Type Expressions
τ ::= α (Type variables)
| τ→ τ (Function types)
| (τ∗)ti | (τ∗)p.t (Type constructors)

(a) The expression language

Module Expressions
M ::= Xi | p.X (Variables)

| (M :M) (Type constraint)
| M1(M2) (Functor application)
| functor(Xi :M)M (Functor)
| struct s end (Structure)

Structure body
S ::= ε | D;S

Structure components
D ::= let xi = e (Values)

| type (α∗)ti = τ (Types)
| module Xi = M (Modules)

Programs
P ::= prog S end

Module types
M ::= sig S end (Signature)

| functor(Xi :M1)M2 (Functor)
Signature body
S ::= ε | D;S

Signature components
D ::= val xi : τ (Values)

| type (α∗)ti = τ (Types)
| type (α∗)ti (Abstract types)
| module Xi :M (Modules)

Environments
Γ ::= S

(b) The module language

Figure 3.1: ML grammar

42

variables. Type schemes can also have free variables. For example: ∀α.(α, β)ti.

Modules The module language is quite similar to a simple lambda calculus: Functors
are functions over module (except that arguments are annotated with their types). Mod-
ule application is noted M1(M2). Modules can also be constrained by a module type:
(M :M). Finally, a module can be a structure which contains a list of value, types or
module definitions: struct let xi = 2 end. Programs are lists of definitions.

Module types Module types can be either the type of a functor or a signature, which
contains a list of value, types and module descriptions. Type descriptions can expose their
definition or can be left abstract. Typing environments are simply module signatures.
We note them Γ for convenience.

3.2 Type system

We now present the ML type system. For ease of presentation, we proceed in two
steps: we will first forget that the module language exists, and present a self-contained
type system for the expression language. We then extend the typing relation to handle
modules.

3.2.1 The expression language

We introduce the following judgments:
Γ . e : τ The expression e has type τ in the environment Γ. See Figure 3.3.
Γ . τ1≈ τ2 Types τ1 and τ2 are equivalent in environment Γ. See Figure 3.4.
Γ� τ The type τ is well formed in the environment Γ. See Figure 3.2.

We note TypeOf(c) the type scheme of a given constant c. The instanciation relation
is noted σ� τ for a type scheme σ and a type τ . The converse operation which closes a
type according to an environment is noted Close(Γ, τ). We use (D) ∈ Γ to test if a given
type or value is declared in the environment Γ. Note that for types, (type (αi)t) ∈ Γ
holds also if t is not abstract in Γ.

Polymorphism One of the main benefit of programming language of the ML family is
the ability to easily define and use functions that operate on values of various types. For
example, the map function can applies to all lists, regardless of the type of their content.
Indeed, the type of map is polymorphic:

map : ∀αβ. (α→β)→ (α)list→ (β)list

From a type checking point of view, this is possible thanks to two operations: instan-
ciation and abstraction. Instanciation takes a type scheme, which is a type where some
variables have been universally quantified, and replace all the quantified type variables by

43

some type. It is used when looking up a variable (rule Var) or typechecking a constant
(rule Const). For example, the type of map can be instantiated to the following type.

(int→bool)→ (int)list→ (bool)list

Once instantiated, the map function can be applied on a list with concretes types. Nat-
urally, we also need the converse operation: constructing a type scheme given a type
containing some type variables. Closing a type depends on the current typing envi-
ronments, we only abstract type variables that have not been introduced by previous
binders. Close(Γ, τ) returns the type scheme ∀α1 . . . αn.τ where the αi are free variables
of τ that are not present in Γ. While it is possible to apply the closing operation at any
step of a typing derivation, it is only useful at the introduction point of type variables,
in let bindings (rule LetIn). In the following example, we derive a polymorphic type
for a function that constructs a pair with an element from the environment. We first
use the close operation to obtain a type scheme for f . Note that since α is present in
the environment, it is not universally quantified. We then use the instance operation to
apply f to an integer constant.

...
(val a : α; val b : β) .(a, b) :α ∗ β
(val a : α) . λb.(a, b) :β→α ∗ β

∀β. β→α ∗ β� int→α ∗ int

Γ . f : int→α ∗ int

Const(3)� int
Γ . 3 : int

(val a : α; val f : ∀β. β→α ∗ β) . f 3 : (α ∗ int)

(val a : α) . let f = λb.(a, b) in f 3 : (α ∗ int)

Parametric datatypes Parametric polymorphism introduces type variables in type ex-
pressions. In the presence of type definitions, it is natural to expect the ability to write
type definitions which can contain type variables. This leads us to parametric datatypes:
datatypes which are parametrized by a set of variables. (α)list is of course an example
of such datatype. Note that care must be taken when deciding the equivalence of types.
It the type is not abstract, i.e., its definition is available, we can always unfold the defi-
nition, as shown in rule DefTypeEq. However, when considering an abstract type, we
cannot unfold the type definition. Instead, we check that head symbols are compatible
and that parameters are equivalent pairwise1 . This is done in rule AbsTypeEq.

TypeVal
(type (αi)t) ∈ Γ ∀i, Γ� τi

Γ�(τi)t

ArrowVal
Γ� τ1 Γ� τ2

Γ� τ1→ τ2

VarVal

Γ� α

Figure 3.2: Type validity rules – Γ� τ

1This is similar to the handling of free symbols in the unification literature.

44

Var
(val x : σ) ∈ Γ σ� τ

Γ . x : τ

Lambda
Γ; (val x : τ1) . e : τ2

Γ . λx.e : τ1→ τ2

Const
TypeOf(c)� τ

Γ . c : τ

LetIn
Γ . e1 : τ1 Γ; (val x : Close(τ1,Γ)) . e2 : τ2

Γ . let x = e1 in e2 : τ2

Equiv
Γ . e : τ1 Γ . τ1≈ τ2

Γ . e : τ2

App
Γ . e1 : τ1→ τ2 Γ . e2 : τ1

Γ .(e1 e2) : τ2

Y

Γ . Y : ((τ1 → τ2)→ τ1 → τ2)→ τ1 → τ2

Close(τ,Γ) = ∀α0 . . . αn.τ with {α0, . . . , αn} = FreeTypeVar(τ)\FreeTypeVar(Γ)

Figure 3.3: ML expression typing rules – Γ . e : τ

ReflEq

Γ . τ ≈ τ

TransEq
Γ . τ1≈ τ2 Γ . τ2≈ τ3

Γ . τ1≈ τ3

CommEq
Γ . τ2≈ τ1
Γ . τ1≈ τ2

FunEq
Γ . τ1≈ τ ′1 Γ . τ2≈ τ ′2
Γ . τ1→ τ2≈ τ ′1→ τ ′2

DefTypeEq
(type (αi)t = τ) ∈ Γ

Γ .(τi)t≈ τ [αi 7→ τi]i

AbsTypeEq
(type (αi)t) ∈ Γ ∀i, Γ . τi≈ τ ′i

Γ .(τi)t≈(τ ′i)t

Figure 3.4: Type equivalence rules – Γ . τ ≈ τ ′

3.2.2 The module language

We introduce the following judgments:
ΓIM :M The module M is of typeM in Γ. See Figure 3.5.
ΓIM <:M′ The module typeM is a subtype ofM′ in Γ. See Figure 3.6.
Γ�M The module typeM is well-formed in Γ. See Figure 3.7.

The typing rules for OCaml-style modules are quite complex. In particular, the inner
details of the rules are not well known, even by OCaml programmers. Before presenting
the typing rules in details, we will attempt to give insight on why some features are
present in the languages and what are their advantages. For this purpose, we present two
examples illustrating the need for applicative functors and strengthening, respectively.
We assume that readers are familiar with simpler usages of ML modules.

Applicative Functors Let us consider the following scenario: we are given a module
G implementing a graph data-structure and would like to implement a simple graph
algorithm which takes a vertex and returns all the accessible vertices. We would like the

45

returned module to contain a function of type G.graph→G.vertex→ set_of_vertices.
How to implement set_of_vertices? An easy but inefficient way would be to use lists. A
better way is to use proper sets (implemented with balanced binary tree, for example).
In OCaml, this is provided in the standard library by the functor Set.Make, presented
in Section 2.4.1, which takes a module implementing comparison functions for the given
type. We would obtain a signature similar to the one below.

module Access(G : Graph) : sig

module V erticesSet : sig . . . end

val run : G.graph→G.vertex→VerticesSet.set

end

However, this means we need to expose a complete module implementing set of vertices
that is independent from any other set module. This prevents modularity, since any
usage of our new function must use this specific set implementation. Furthermore, this
make the signature bigger than strictly necessary. What we really want to expose is that
the return type comes from an application of Set.Make. Fortunately, we can do so by
using the following signature.

module Access(G : Graph) : sig

val run : G.graph→G.vertex→Set.Make(G.Vertex).set

end

Here, we export the fact that the set type must be the result of a functor application
on a module that is compatible with G.V ertex. The type system guarantees that any
such functor application will produces types that are equivalent. In particular, if mul-
tiple libraries uses the Access functor, their sets will be of the same types, which make
composition of libraries easier. This behavior of functors is usually called applicative.

Strengthening Let us now consider the program presented in Example 3.1. We assume
the existence of two modules, presented in Example 3.1a. The module Showable exposes
the abstract type t, along with a show function that turns it into a string. The module Elt
exposes a type t equal to Showable.t and a value that inhabits this type. The program is
presented in Example 3.1b. We define a functor F taking two arguments E and S whose
signature are similar to Elt and Showable, respectively. The main difference is that E
comes first and S.t is defined as an alias of E.t. The functor uses the show function
on the element in E to create a string. It is natural to expect the functor application
F (Elt)(Showable) to type check, since Elt.t = Showable.t. We must, however, check
for module inclusion. While Elt is clearly included in the signature of the argument
E, the same is not clear for Showable. We first need to enrich its type signature with
additional type equalities. We give Showable the type sig type t = Showable.t . . . end.
It makes sense to enrich the signature in such a manner since Showable is already in

46

module Showable : sig
type t
val show : t→ string

end

module Elt : sig
type t = Showable.t
val v : elt

end

(a) Typing environment

module F
(E : sig type t val v : t end)
(S : sig type t = E.t val show : t→ string end)

= struct

let s = (S.show E.v)
end

module X = F (Elt)(Showable)

(b) Application of multi-argument functor using manifests

Example 3.1: Program using functors and manifest types

the environment. Given this enriched signature, we can now deduce that I(type t =
Showable.t) <: (type t = E.t) since E.t = Elt.t = Showable.t.
The operation that consists in enriching type signatures of module identifiers with new

equalities by using elements in the environment is called strengthening [Leroy, 1994].

Typing rules

In the previous two examples, we showcased some delicate interactions between functor,
type equalities and modularity in the context of an ML module system. We now see in
details how the rules presented in Figures 3.5 to 3.7 produce these behaviors.

Qualified access Unqualified module variables are typechecked in a similar manner than
regular variables in the expression language, with the ModVar typing rule. Qualified
access (of the form X.a), both for the core and the module language, need more work.
As with the expression language, the typing environment is simply a list of declaration.
In particular, typing environments do not store paths. This means that in order to prove
Γ . p.a : τ , we must first verify that the module p typechecks in Γ: ΓI p :M. We then
need to verify that the module typeM contains a declaration (val a : τ). This is done in
the QualModVar rule for the module language. The rules for the expression language
are given in Figure 3.8.
Let us now try to apply these rules to the module X with the following module type.

X contains a type t and a value a of that type. We note that module type X .

X : sig type t; val a : t end

We wish to typecheck X.a. One expected type for this expression is X.t. However,
the binding of v in X gives the type t, with no mention of X. We need to prefix the
type variable t by the access path X. This is done in the rule QualModVar by the
substitution M[ni 7→ p.n | ni ∈ BV(S1)] which prefixes all the bound variables of S1,
noted BV(S1), by the path p. Note here that we substitute only by the names declared
before the variable a. Indeed, a variable or a type can only reference names declared

47

previously in ML. To prove that X.a has the type X.t, we can write the following type
derivation.

QualVar

ModVar
(module X : X) ∈ (module X : X)

(module X : X)IX : sig type t; val a : t end

(module X : X) . X.a : X.t
with X.t = t[t 7→ p.t]

Strengthening The strengthening operation, notedM/p, is defined in Figure 3.9 and
is used in the Strength rule. It takes a module type M and a path p and returns a
module typeM′ where all the type declarations, abstract or not, have been replaced by
type aliases pointing to the path p. These type aliases are usually called “manifest types”.
This operator relies on the following idea: if p is of type M, then p is available in the
environment. In order to expose as many type equalities as possible, it suffices to give
p a type where all the type definition point to definitions available in the environment.
This way, we preserve type equalities even for abstract types. This also mean that type
equalities can be deduced by only looking at the path and the module type. In particular,
we do not need to look at the implementation of p, which is important for the purpose
of separate compilation.

Applicative functors Let us consider a functor F with the following type. It takes a
module containing a single type t and return a module containing an abstract type t′

and a conversion function.

F : functor(X : sig type t end)(sig type t′; val make : X.t→ t′ end)

If we consider two modules X1 and X2, does X1 = X2 imply F (X1).t = F (X2).t ? If
that is the case, we say that functors are applicative. Otherwise, they are generative2.
Here, we consider the applicative behavior of functors. This is implemented with the
last strengthening rule which ensures that the body of functors is also strengthened. For
example, ifM is the type of the functor above,M/F is the following module type:

functor(X : sig type t end)(sig type t′ = F (X).t; val make : X.t→ t′ end)

This justifies the presence of application inside paths. Otherwise, such type manifests
inside functors could not be represented. A more type-theoretic description of generative
and applicative functors can be found in Leroy [1996].

Separate compilation Separate compilation is an important properties of program-
ming languages. In fact, almost all so-called “mainstream” languages support it. We
can distinguish two aspects of this property: separate typechecking and separate code
generation. In both cases, it means that in order to process the file (either to type check

2SML only supports generative functors. OCaml originally only supported applicative functors, but
also supports the generative behavior since version 4.03.

48

it or to transform it into another representation), we only need to look at the type of its
dependencies, not their implementation.
It turns out that the ML module system with manifest types lends itself very well

to separate typechecking [Leroy, 1994]. Indeed, let us consider a program as a list of
modules. Each module represents a compilation unit (i.e., a file). Since module bindings
in the typing environment only contains module types, and not the actual module, type-
checking a file only needs the module type of the previous files, which ensure that we
can typecheck each file separately, as long as all its dependencies have been typechecked
before. This is expressed more formally in Theorem 1.

Theorem 1 (Separate Typechecking). Given a list of module declarations that form a
typed program, there exists an order such that each module can be typechecked with
only knowledge of the type of the previous modules.
More formally, given a list of n declarations Di and a signature S such that

I(D1; . . . ;Dn) :S

then there exists n definitions Di and a permutation π such that

∀i < n, D1; . . . ;DiIDi+1 :Di+1 IDπ(1); . . . ;Dπ(n) <: S

Proof. It is always possible to reorder declarations in a signature using the SubStruct
rule. This means we can choose the appropriate permutation of definitions that matches
the order of declarations. The rest follows by definition of the typing relation.

3.2.3 Inference

Full inference is one of the greatest strength of the ML programming language. While
we do not address inference formally in this thesis, here are some remarks. Inference
is of course decidable for the core language using the well known W algorithm. It is
“efficient”, which means here that it is fast for usual programs, though pathological cases
can be constructed. The typechecking rules for modules are not syntax directed. The
Strength rule, in particular, is free floating. Leroy [1994] presents how to turn this
into a syntax-directed type system, which allows inference as long as functor arguments
are annotated.

3.3 Semantics

We now define the semantics of our ML language. We use a rule-based big step semantics
with traces. Traces allows us to reason about execution order in a way that is compatible
with modules, as we will see in Section 3.3.1.
We note v for values in the expression language and V for values in the module lan-

guage. Values are defined in Figure 3.11. Values in the expression language can be either
constants or lambdas. Module values are either structures, which are list of bindings of

49

ModVar
(module Xi :M) ∈ Γ

ΓIXi :M

QualModVar
ΓI p :(sig S1; module Xi :M;S2 end)

ΓI p.X :M[ni 7→ p.n | ni ∈ BV(S1)]

Strength
ΓI p :M

ΓI p :M/p

ΓIM :M′ ΓIM′ <:M
ΓIM :M

ΓIM1 : functor(Xi :M)M′ ΓIM2 :M
ΓIM1(M2) :M′[Xi 7→ M2]

Γ�M Xi /∈ BV(Γ) Γ; (module Xi :M)IM :M′

ΓI functor(Xi :M)M : functor(Xi :M)M′
Γ�M ΓIM :M

ΓI(M :M) :M

Γ . e : τ xi /∈ BV(Γ) Γ; (val xi : Close(τ,Γ))I S :S
ΓI(let xi = e; s) :(val xi : τ ;S)

Γ� τ ti /∈ BV(Γ) Γ; (type (α∗)ti = τ)I S :S
ΓI(type (α∗)ti = τ ; s) :(type (α∗)ti = τ ;S)

ΓIM :M Xi /∈ BV(Γ) Γ; (module Xi :M)I S :S
ΓI(module Xi = M ; s) :(module Xi :M;S)

ΓI S :S
ΓI struct S end : sig S end ΓI ε : ε

Figure 3.5: Module typing rules – ΓIm :M

SubStruct
π : [1;m]→ [1;n] ∀i ∈ [1;m], Γ;D1; . . . ;DnIDπ(i) <: D′i

ΓI(sig D1; . . . ;Dn end) <: (sig D′1; . . . ;D′m end)

Γ . τ1≈ τ2
ΓI(val xi : τ1) <: (val xi : τ2)

ΓIM1 <:M2

ΓI(module Xi :M1) <: (module Xi =M2)

ΓIM′a <:Ma Γ, (module X :M′a)IMr <:M′r
ΓI functor(X :Ma)Mr <: functor(X :M′a)M′r

Γ . τ1≈ τ2
ΓI(type (α∗)ti = τ1) <: (type (α∗)ti = τ2) ΓI(type (α∗)ti) <: (type (α∗)ti)

Γ .(α∗)ti≈ τ
ΓI(type (α∗)ti) <: (type (α∗)ti = τ) ΓI(type (α∗)ti = τ1) <: (type (α∗)ti)

Figure 3.6: Module subtyping rules – ΓIM <:M′

50

Γ� S
Γ� sig S end Γ� ε

Γ�Ma xi /∈ BV(Γ) Γ; (module Xi :Ma)�Mr

Γ� functor(Xi :Ma)Mr

ti /∈ BV(Γ) Γ; (type (α∗)ti)� S
Γ� type (α∗)ti; S

Γ�M xi /∈ BV(Γ) Γ; (module Xi :M)� S
Γ� module Xi :M; S

Γ� τ ti /∈ BV(Γ) Γ; (type (α∗)ti = τ)� S
Γ� type (α∗)ti = τ ; S

Γ� τ xi /∈ BV(Γ) Γ; (val xi : τ)� S
Γ� val xi : τ ; S

Figure 3.7: Module type validity rules – Γ�M

QualVar
ΓI p :(sig S1; val xi : τ ;S2 end)

Γ . p.x : τ [ni 7→ p.n | ni ∈ BV(S1)]

QualDefTypeEq
ΓI p :(sig S1; type (α∗)ti = τ ;S2 end)

Γ .(τi)p.t≈ τ [ni 7→ p.n | ni ∈ BV(S1)][αi 7→ τi]i

QualAbsTypeEq
ΓI p :(sig S1; type (α∗)ti;S2 end) ∀i, Γ . τi≈ τ ′i

Γ .(τi)p.t≈(τ ′i)p.t

Figure 3.8: Additional typing rules for the expression language

ε/p = ε

(sig S end)/p = sig S/p end

(module Xi =M;S)/p = module Xi =M/p;S/p
(type (α∗)ti = τ ;S)/p = type (α∗)ti = (α∗)p.t;S/p

(type (α∗)ti;S)/p = type (α∗)ti = (α∗)p.t;S/p
(val xi : τ ;S)/p = val xi : τ ;S/p

(functor(Xi :M)M′)/p = functor(Xi :M)(M′/p(Xi))

Figure 3.9: Module strengthening operation –M/p

51

values, or functors. We note ρ the execution environment. Execution environments are
a list of value bindings. Note here that the execution environment is not mutable, since
reference cells are not in the language. We note the concatenation of environment +.
Environment access is noted ρ(x) = v where x has value v in ρ. The same notation is
also used for structures. Traces are lists of messages. For now, we consider messages
that are values and are emitted with a print operation. The empty trace is noted 〈〉.
Concatenation of traces is noted @.
Given an expression e (resp. a module m), an execution environment ρ, a value v

(resp. V) and a trace θ,
e

ρ
=⇒ v, θ

means that e reduces to v in ρ and prints θ. The reduction rules are given in Figure 3.12.
The rules for the expression language are fairly traditional. Variables and paths must
be resolved using the Var and QualVar rules. Applications are done in two steps:
first, we reduce both the function and the argument with the App rule, then we apply
the appropriate reduction rule for the application: Beta for lambda expressions, Y for
fixpoints and Delta for constants. The δ operation gives meaning to application of a
constant to a value. δ(c, v) = v′, θ means that c applied to v returns v′ and emits the
trace θ. Let bindings are treated in a similar manner than lambda expressions: the left
hand side is executed, added to the environment, then the right hand side is executed.
The module language has similar rules for identifiers and application. In this case, the

Beta and App rule have been combined in ModBeta. Additional rules for declarations
are also present. Type declarations are ignored (TypeDecl). Values and module dec-
larations (ValDecl and ModDecl) are treated similarly to let bindings: the body of
the binding is executed, added to the environment and then the rest of the structure is
executed.

3.3.1 Traces and Printing

Traces allow us to visualize the execution order of programs. In particular, if we prove
that code transformation preserves traces, it ensures that the execution order is preserved.
Traces allow us to reason about execution without introducing references and other side-
effecting operations in our language, which would make the presentation significantly
more complex.
One example of operation using traces is the print constant. Typing and semantics

of print are provided in Figure 3.10. print accepts any value, prints it, and returns it.
From a typing point of view, print has the same type as the identity: a polymorphic
function which returns its input. We make use of the fact that the Const typing rule
also uses the instanciation for type schemes. The semantics of print is provided via the
Delta rule: it returns its argument directly but also emits a trace containing the given
argument.
We now present an example using print. We assume the existence of the type int, a

set of constant corresponding to the integers and an associated operation +. We wish to
type and execute the expression e defined as let x = (print 3) in (print (x+ 1))

52

PrintTy
TypeOf(print) = ∀α.(α→α)

PrintExec
δ(print, v) = v, 〈v〉

Figure 3.10: Typing and execution rules for print

Let us first show that e is of type int. The type derivation is provided in Example 3.2.
The typing derivation is fairly direct: we use the Const rule to type print as int→ int

and apply it to integers with the rule App. We can now look at the execution of e, which
returns 4 with a trace 〈3; 4〉. The execution derivation is shown in Example 3.3. The
first step is to decompose the let-binding. We first reduce (print 3), which can be
directly done with the Delta rule. This gives us 3 with a trace 〈3〉. We then reduce
(print (x + 1)) in the environment where x is associated to 3. Before resolving the
application of print with the Delta rule, we need to reduce its argument with the App
rule. We obtain 4 with a trace 〈4〉. We return the result of the right hand side of the left
and the concatenation of both traces by usage of the LetIn rule, which gives us 4 with
a trace 〈3; 4〉.

LetIn

App

Const
TypeOf(print)� int→ int

. print : int→ int

TypeOf(3) = int

. 3 : int

.(print 3) : int

...
. print : int→ int

...
. x+ 1 : int

(val x : int) .(print (x+ 1)) : int
App

. let x = (print 3) in (print (x+ 1)) : int
LetIn

Example 3.2: Typing derivation for e – . e : int

Let

Delta
δ(print, 3) = 3, 〈3〉
(print 3) =⇒ 3, 〈3〉

print=⇒ print, 〈〉

...

x+ 1
{x7→3}

=====⇒ 4, 〈〉
δ(print, 4) = 4, 〈4〉
(print 4) =⇒ 4, 〈4〉

Delta

(print (x+ 1))
{x7→3}

=====⇒ 4, 〈4〉
App

let x = (print 3) in (print (x+ 1)) =⇒ 4, 〈3; 4〉
Let

Example 3.3: Execution derivation for e – e=⇒ 4, 〈3; 4〉

3.3.2 Modules

We now present an example of reduction involving modules. Our example program P is
presented in Example 3.4a. It consists of two declarations: a module declaration X which
contains a single declaration a, and the return value of the program, which is equal to
X.a. It is fairly easy to see that the program P return a value of type int, hence we focus
on the execution of P , which is presented in Example 3.4b. The derivation is slightly
simplified for clarity. In particular, rules such as EmptyStruct are elided. The first
step is to apply the Program and ModuleDecl rules in order to execute the content of

53

each declaration. The declaration of X, on the left side, can be reduced by first applying
the Struct rule in order to extract the content of the module structure, then ValDecl,
to reduce the declaration of a. These reductions give us the structure value {a7→3}. We
now execute the declaration of return. According to the ModuleDecl rule, we must
do so in a new environment containing X: {X 7→{a7→3}}. In order to reduce X.a, we
must use the QualModVar rule, which reduces qualified variables. This means we first
reduce X, which according to the environment gives us {a 7→3}, noted V . We then look
up a in V , which returns 3. To return, we first compose the resulting structure value
from both declaration: {X 7→{a 7→3}} + {return7→3}. We then lookup return in this
structure, which gives us 3.

prog

module X = struct let a = 3 end

let return = X.a
end

(a) The program P

Program

ModuleDecl

Struct

ValDecl
3 =⇒ 3, 〈〉

let a = 3 =⇒{a7→3} , 〈〉struct

let a = 3

end

=⇒{a7→3} , 〈〉

ModVar
ρ(X) = V

X
ρ

=⇒ V ≡ {a7→3} , 〈〉 V (a) = 3

X.a
{X 7→{a7→3}}

=========⇒ 3, 〈〉
QualModVar

let return = X.a
{X 7→{a7→3}}

=========⇒{return7→3} , 〈〉
ValDecl

(
module X = struct let a = 3 end

let return = X.a

)
=⇒{X 7→{a7→3}}+ {return7→3} , 〈〉

ModuleDecl

P =⇒ 3, 〈〉
Program

(b) Execution of P

Example 3.4: Example of execution with modules

Why big steps? One might wonder why use a big step semantics with traces, instead
of a small step semantics. Indeed, small step usually make proofs easier, especially for
simulations which we will use on Eliom later. A first remark is that modules are not
stable by substitution since (struct . . . end).x is not valid (and is problematic to type).
Hence we need to use a semantics with environments and closures. Let us now consider
doing one step deep inside a structure using a small step semantics. The previously eval-
uated declarations in the structure should be available in the local environment which
mean we would need to rebuild environments as we explore a context to execute a small
step. We would also need to manipulate partially evaluated structures as we execute
declarations. Furthermore, typing preservation for small steps would be difficult to ex-
press in the presence of abstract types. While this is all possible, big steps semantics
with environments is, by comparison, fairly straightforward.

54

Expressions
v ::= c (Constant)
| λx.ρ.e (Function)

Modules
V ::= { Vb∗ } (Structure)

| functor(ρ)(Xi :M)M

Bindings
Vb ::= {xi 7→v} (Values)

| {Xi 7→V } (Modules)

Figure 3.11: ML values

Var
ρ(x) = v

x
ρ

=⇒ v, 〈〉

QualVar

p
ρ

=⇒ V , θ V (x) = v

p.x
ρ

=⇒ v, θ

Constant

c
ρ

=⇒ c, 〈〉

Closure

λx.e
ρ

=⇒ λx.ρ.e, 〈〉

LetIn

e′
ρ

=⇒ v′, θ e
ρ+{x 7→v’}

=======⇒ v, θ′

(let x = e′ in e)
ρ

=⇒ v, θ@ θ′

App
e

ρ
=⇒ v, θ e′

ρ
=⇒ v′, θ′ (v v′)

ρ
=⇒ v′′, θ′′

(e e′)
ρ

=⇒ v′′, θ@ θ′@ θ′′

Beta

e
ρ’+{x 7→v}

=======⇒ v′, θ

(λx.ρ′.e v)
ρ

=⇒ v′, θ

Y
(v λx.(Y v x))

ρ
=⇒ v′, θ

(Y v)
ρ

=⇒ v′, θ

Delta
δ(c, v) = v′, θ

(c v)
ρ

=⇒ v′, θ

ModVar
ρ(X) = V

X
ρ

=⇒ V , 〈〉

QualModVar

p
ρ

=⇒ V ′, θ V ′(X) = V

p.X
ρ

=⇒ V , θ

Struct
S

ρ
=⇒ Vs, θ

(struct S end)
ρ

=⇒ Vs, θ

EmptyStruct

ε
ρ

=⇒{}, 〈〉

ModClosure

functor(X :M)M
ρ

=⇒ functor(ρ)(X :M)M, 〈〉

ModConstr
M

ρ
=⇒ V , θ

(M :M)
ρ

=⇒ V , θ

ModBeta

M
ρ

=⇒ functor(ρ′)(X :M)Mf , θ M ′
ρ

=⇒ V ′, θ′ Mf
ρ’+{X 7→V’}

========⇒ V ′′, θ′′

M(M ′)
ρ

=⇒ V ′′, θ@ θ′@ θ′′

TypeDecl
S

ρ
=⇒ Vs, θ

(type (α∗)ti = τ ;S)
ρ

=⇒ Vs, θ

ModuleDecl

M
ρ

=⇒ V , θ S
ρ+{Xi 7→V}

========⇒ Vs, θ
′

(module Xi = M ;S)
ρ

=⇒{X 7→V }+ Vs, θ@ θ′

ValDecl

e
ρ

=⇒ v, θ S
ρ+{xi 7→v}

=======⇒ Vs, θ
′

(let xi = e;S)
ρ

=⇒{x7→v}+ Vs, θ
′

Program
S

ρ
=⇒ Vs, θ

prog S end
ρ

=⇒ Vs(return), θ

Figure 3.12: Big step semantics – e ρ
=⇒ v, θ

55

3.3.3 Notes on Soundness

Soundness properties, which correspond to the often misquoted “Well typed programs
cannot go wrong.”, have been proven for many variants of the ML language. Unfor-
tunately, stating and proving the soundness property for big step semantics and ML
modules requires a fairly large amount of machinery which we do not attempt to provide
in this thesis. Instead, we give pointers to various relevant work containing such proofs.
Soundness for a small step semantics of our expression language is provided in Wright

and Felleisen [1994]. At a larger scale, Owens [2008] proves the soundness of a small step
semantics for a very large portion of the OCaml expression language using the Locally
Nameless Coq framework [Aydemir et al., 2008]. Soundness of a big step semantics has
been proved and mechanized for several richer languages [Amin and Rompf, 2017, Tofte,
1988, Owens et al., 2016, Lee et al., 2007, Garrigue, 2009].
Unfortunately, as far as we are aware, soundness of Leroy’s module language with

higher order applicative functors has not be proved directly and is a fairly delicate subject.
The most recent work of interest is Rossberg et al. [2014], which presents an elaboration
scheme from ML modules, including applicative OCaml-style modules, into System
Fω. Soundness then relies on soundness of the elaboration (provided in the article) and
soundness of System Fω. In this work, the applicative/generative behavior of functors
is decided depending on its purity, which is much more precise than what is done in
OCaml. Notes that our language does not contain side-effects, which means that our
language has a chance to be sound. The same cannot be said about OCaml in general.

3.4 Related works

Our formalization of the expression language is inspired by Wright and Felleisen [1994]
which contains a small step semantics for the core language and extensions for references
and exceptions, along with their soundness proofs. A discussion around the various styles
of semantics in the context of traces is also provided by Nakata and Uustalu [2009]. The
big step semantics takes inspiration from Owens et al. [2016] and Amin and Rompf [2017].
Tofte [1988] also presents a big-step semantics for ML and proves the soundness in the
context of polymorphic type inference. A gentle introduction to soundness for big step
semantics can be found in Siek [2013].
The landscape of ML modules is extremely rich, we only point to several key work

that are directly relevant. Our module language is almost directly taken from Leroy
[1994, 1995] which is the basis of the OCaml module language [Leroy et al., 2016].
The SML module system employs a different mechanism for propagating type equalities
based on a sharing annotation [Milner et al., 1990]. Such annotation does not lend
itself immediately to separate compilation [Swasey et al., 2006]. However, the SML
module system has been (partially) mechanized [Lee et al., 2007]. A thorough and very
instructive comparison between the various modules systems was done by Dreyer [2005,
Chapter 1 and 2].
The module system we presented here is expressed directly in term of the syntax of

the language. This is on purpose for two reasons. First, this is how it is implemented

56

in OCaml, making it possible to reason both about the formal system and the eventual
implementation. Second, it makes the various extensions of Eliom fairly easy to model.
In particular, we shall see that our compilation scheme for Eliom preserves the typing
relation. Such results would be more delicate to express if the module system were
expressed by elaboration. However, if such constraints were not considered, Rossberg
et al. [2014] define an ML module system, including first class modules and applicative
functors, in term of System Fω. This yields a simple yet feature-full system that could
prove easier to extend.

57

4 The Eliom programming language

Write a paper promising salvation, make it a ’structured’
something or a ’virtual’ something, or ’abstract’, ’distributed’ or
’higher-order’ or ’applicative’ and you can almost be certain of
having started a new cult.

Edsger W. Dijkstra, My hopes of computing science

We now present the formalization of Eliom, a high-order applicative language for dis-
tributed client-server programming with strong support for abstraction and structured
programming through modules1. The goal of this formalization is not to capture the
complete Eliom language, nor the larger Ocsigen framework. Instead, we simply aim
to capture the specific additions to the OCaml language from a typing and execution
perspective. As such, we propose a new tierless calculus: Eliomε. In the Eliomε lan-
guage, programs are series of bindings returning a single client value which symbolizes the
web page showed to the user. In particular, we do not try to capture the non-terminating
aspect of a complete web server, nor the back-and-forth interactions of a web browser
making HTTP requests to a server.
This might seem like a very limited formalism. However, when a browser requests a

web page, each request follows a similar pattern: an HTTP request is made, the server
executes a specific handler to answer this HTTP request and to send a web page and
a client program to the browser, this client program is then executed. The cycle starts
again when the user clicks on another link. Each handler can then be considered as
its own individual program. In the practical context of Eliom and Ocsigen, this little
program is executed in the context of a larger program: the web server, which can contain
some state and be non-terminating. Our formalization, however, focuses on modeling
the typing, execution and compilation of each little program that are run in handlers2.
Eliomε nevertheless captures several difficult points of Eliom, namely the handling of
distinct type universes, the transmission of values between server and client stages, the
detailed semantics, its interaction with side effects, the module system in the presence
of stages, and a compilation process that supports separate compilation. This should
hopefully keep most readers entertained and give us a stable foothold before attempting
an implementation. While Eliom is an extension of OCaml, Eliomε is an extension
of the simple ML calculus with modules presented in Chapter 3. We first present the
Eliomε language in Section 4.1 and its type system in Section 4.2. We then present the
semantics in Section 4.3 before stating various useful properties in Section 4.4

1Donations to the Cult of the Oxygenated Camel can be made by joining the OCaml consortium.
2Or, said in another way, Eliomε is the calculus of modular tierless CGI scripts.

59

4.1 Syntax

We now present Eliomε, a core language for Eliom. Eliomε is an extension of the
minimal ML language presented in Chapter 3, with both an expression and a module
language. To emphasis the new elements introduced by Eliom, these additional ele-
ments will be colored in blue. This is only for ease of reading and is not essential for
understanding the formalization.
The syntax is presented in Figure 4.4. It extends the syntax presented in Figure 3.1.

4.1.1 Locations

Before describing the syntax of Eliomε, let us introduce the notation of locations. The
grammar of locations is given in Figure 4.1. A location is “a place where the code runs”.
There are three core locations: server, client or base. The base side represents expressions
that are “location-less”, that is, which can be used everywhere. We use the meta-variable
` for an unspecified core location. There is a forth location that is only available for
modules: mixed. A mixed module can have client, server and base components. We use
the meta-variable ς for locations that are either m or one of the core locations. In most
contexts, locations are annotated with subscripts.
We also introduce two relations. ς � ς ′, defined in Figure 4.2, means that a variable

(either a value, a type or a module) defined on location ς can be used on a location
ς ′. For example, a base type can be used in a client context. Base declarations are
usable everywhere, while mixed declarations are not usable in base code. ς <: ς ′, defined
in Figure 4.3, means that a module defined on location ς can contain component on
location ς ′. In particular, the mixed location m can contain any component, while other
location can contain only component declared on the same location. Note that both
relations are reflexive: For instance, it is always possible to use client declarations when
you are on the client.

` ::= s | c | b ς ::= m | `

Figure 4.1: Grammar of locations – ` and ς

m� s m� c b� s b� c b�m ∀ς ∈ {s, c,m, b} ς � ς

Figure 4.2: “can be used in” relations on locations – `� `′

m<: s m<: c m<: b ∀ς ∈ {s, c,m, b} ς <: ς

Figure 4.3: “can contain” relation on locations – ς <: ς ′

60

Expressions
e ::= . . .

| {{ e }} (Fragment)
| f%v (Injection)

f ::= p.x | xi | c (Converter)
Module Expressions

m ::= . . .

| functorm(Xi :M)M
(Mixed functor)

Structure components
d ::= let` xi = e

| type` (α∗`j)ti = τ

| moduleς Xi = M

Type Expressions
τ ::= . . .

| α` (Type variables)
| {τ} (Fragment types)
| τ τ (Converter types)

Module types
M ::= . . .

| functorm(Xi :M1)M2

(Mixed functor)
Signature components

D ::= val` xi : τ

| type` (α∗`j)ti = τ

| type` (α∗`j)ti

| moduleς Xi :M
Figure 4.4: Eliomε’s grammar

4.1.2 Expression language

The expression language is extended with two new constructs: fragments and injections.
A client fragment {{ e }} can be used on the server to represent an expression that will
be computed on the client, but whose future value can be manipulated on the server.
An injection f%v can be used on the client to access values defined on the server. An
injection must make explicit use of a converter f that specifies how to send the value. In
particular, this should involve a serialization step, executed on the server, followed by a
deserialization step executed on the client. For ease of presentation, injections are only
done on variables and constants. In the implementation, this restriction is removed by
adding a lifting transformation. For clarity, we sometimes distinguish injections per se,
which occur outside of fragments, and escaped values, which occur inside fragments.
The syntax of types is also extended with two constructs. A fragment type {τ} is

the type of a fragment. A converter type τs τc is the type of a converter taking a
server value of type τs and returning a client value of type τc. All type variables α` are
annotated with a core location `. There are now three sets of constants: client, server
and base.

4.1.3 Module language

The main change in the module language of Eliomε is that structure and signature
components are annotated with locations. Value and type declarations can be anno-
tated with a core location ` which is either b, s or c. Module declarations can also
have one additional possible location: the mixed location m. Only modules on location

61

m can have subfields on different locations. We also introduce mixed functors, noted
functorm(X :M)M, which body can contain both client and server declarations. A
program is a list of declarations including a client value declaration return which is the
result of the program.

4.2 Type system

Judgments are now annotated with a location that specifies where the given code should
be typechecked. Judgments on the expression language can accept any core location `
while module judgments accept mixed locations ς. We note TypeOf`(c) the type of a given
constant c on the location `. Binding in typing environments, just like in signatures, are
annotated with a location. The first three kind of bindings, corresponding to the core
language, can only appear on core locations: s, c or b. Modules can also be of mixed
location m. Names are namespaced by locations, which means it is valid to have both a
client and a server value with both the same name.

4.2.1 Expressions

The new typing rules for expressions are presented in Figures 4.5 to 4.7. We introduce
two typing rules for the new constructions. Rule Fragment is for the construction of
client fragments and can only be applied on the server. If e is of type τ on the client,
then {{ e }} is of type {τ} on the server. Rule Injection is for the communication from
the server to the client and can only be applied on the client. If e is of type τs on the
server and f is of type τs τc on the server, then f%e is of type τc on the client. Since
no other typing rules involves client fragments, it is impossible to deconstruct them.
The last difference with usual ML rules are the visibility of variable. As described

earlier, bindings in Eliomm are located. Since access across sides are explicit, we want
to prevent the use of client variables on the server, for example. In rule Var, to use on
location ` the variable v which is bound on location `′, we check that `′� `, defined in
Figure 4.2, which means that the definition on ` can be used in `′. Base elements b are
usable everywhere. Mixed elementsm are usable in both client and server. Type variables
are also annotated with a location and follow the same rules. Using type variables from
the client on the server, for example, is disallowed.
The validity judgement on types presented in Figure 4.6 is extended to check that

locations are respected both for type constructors and type variables. This judgement is
used in type declaration, which are presented in the module system.

Converters

To transmit values from the server to the client, we need a serialization format. We
assume the existence of a type serial in Constb which represents the serialization format.
The actual format is irrelevant. For instance, one could use JSON or XML.
Converters are special values that describe how to move a value from the server to

the client. A converter can be understood as a pair of functions. A converter f of type

62

Common rules

Var
(val`′ x : σ) ∈ Γ `′� ` σ� τ

Γ .` x : τ

Lam
Γ; (val` x : τ1) .` e : τ2

Γ .` λx.e : τ1→ τ2

Const
TypeOf`(c)� τ

Γ .` c : τ

LetIn
Γ .` e1 : τ1 Γ; (val` x : Close(τ1,Γ)) .` e2 : τ2

Γ .` let x = e1 in e2 : τ2

Equiv
Γ .` e : τ1 Γ .` τ1≈ τ2

Γ .` e : τ2

App
Γ .` e1 : τ1→ τ2 Γ .` e2 : τ1

Γ .`(e1 e2) : τ2

Y

Γ .` Y : ((τ1 → τ2)→ τ1 → τ2)→ τ1 → τ2

QualVar
ΓI` p :(sig S1; val`′ xi : τ ;S2 end) `′� `

Γ .` p.v : τ [ni 7→` p.n | ni ∈ BV`(S1)]

Server rules

Fragment
Γ .c e : τ

Γ .s{{ e }} : {τ}

Client rules

Injection
Γ .s f : τs τc Γ .s e : τs

Γ .c f%e : τc

Close(τ,Γ) = ∀α0 . . . αn.τ with {α0, . . . , αn} = FreeTypeVar(τ)\FreeTypeVar(Γ)

Figure 4.5: Eliomε expression typing rules – Γ .` e : τ

TypeVal
(type` (α`i)t) ∈ Γ ∀i, Γ�`i τi

Γ�`(τi)t

ArrowVal
Γ�` τ1 Γ�` τ2

Γ�` τ1→ τ2

VarVal

Γ�` α`

FragVal
Γ�c τ

Γ�s{τ}

QualifiedVal
ΓI` p :(sig S1; type`′ (α`i)t;S2 end) ∀i, Γ�`i τi `′� `

Γ�`(τi)p.t

ConvVal
Γ�s τ1 Γ�c τ2

Γ�s τ1 τ2

Figure 4.6: Type validity rules – Γ�` τ

63

ReflEq

Γ .` τ ≈ τ

TransEq
Γ .` τ1≈ τ2 Γ .` τ2≈ τ3

Γ .` τ1≈ τ3

CommEq
Γ .` τ2≈ τ1
Γ .` τ1≈ τ2

FunEq
Γ .` τ1≈ τ ′1 Γ .` τ2≈ τ ′2

Γ .` τ1→ τ2≈ τ ′1→ τ ′2

DefTypeEq
(type`′ (α`i)t = τ) ∈ Γ `′� `

Γ .`(τi)t≈ τ [αi 7→`i τi]i

AbsTypeEq
(type`′ (α`i)t) ∈ Γ ∀i, Γ .`i τi≈ τ

′
i `′� `

Γ .`(τi)t≈(τ ′i)t

QualDefTypeEq
ΓI` p :(sig S1; type`′ (α`i)t = τ ;S2 end) ∀i, Γ .`i τi≈ τ

′
i `′� `

Γ .`(τi)p.t≈ τ [ni 7→` p.n | ni ∈ BV`(S1)][αi 7→`i τi]i

QualAbsTypeEq
ΓI` p :(sig S1; type`′ (α`i)t;S2 end) ∀i, Γ .`i τi≈ τ

′
i `′� `

Γ .`(τi)p.t≈(τ ′i)p.t

FragmentEq
Γ .c τ ≈ τ ′

Γ .s{τ}≈{τ ′}

ConvEq
Γ .s τs≈ τ ′s Γ .c τc≈ τ ′c

Γ .s τs τc≈ τ ′s τ ′c

Figure 4.7: Type equivalence rules – Γ .` τ ≈ τ ′

τs τc is composed of a server-side encoding function of type τs→ serial, and a client-
side decoding function of type serial→ τc. We assume the existence of two built-in
converters:

• The serial converter of type serial serial. Both sides are the identity.
• The frag converter of type ∀αc.({αc} αc).

Type universes

It is important to note that there is no identity converter (of type ∀α.(α α)). Indeed the
client and server type universes are distinct and we cannot translate arbitrary types from
one to the other. Some types are only available on one side: database handles, system
types, JavaScript API types. Some types, while available on both sides (because they
are in base for example), are simply not transferable. For example, functions cannot
be serialized in general. Another example is file handles: they are available both on the
server and on the client, but moving a file handle from server to client seems adventurous.
Finally, some types may share a semantic meaning, but not their actual representation.

This is the case where converters are used, as demonstrated in Section 2.3.

64

Mixed datatypes

In Sections 3.2.1 and 3.2.2, we saw that the version of ML we consider supports an
interesting combination of three features: abstract datatypes, parametrized datatypes
and separate compilation at the module level. Eliomε, as an extension of ML, also
supports these features. These three features have non-trivial interactions that need to
be accounted for, in particular when introducing properties on types, such as locations.
Let us consider the module shown in Example 4.1. We declare a server datatype t

with two parameters and we hide the definition in the signature. We now want to check
that (t1, t2)t is a correct type expressions. However, without the type definition, we
don’t know if t1 and t2 are base, client or server types. In order to type check the type
sub-expressions, we need more information about the definition of t. The solution, much
like variance, is to annotate type variables in datatypes with extra information. This is
done in the syntax for type declarations given in Figure 4.4. Each type parameters is
annotated with a location. Type variables can only be used on the right location. This
ensures proper separation of client and server type variables and their proper usage.
These annotations can be though as a simplistic kind system. One could also considered

’a as a constrained type variable, in the style of MLF [Botlan and Rémy, 2003].

1 module M : sig
2 type%server (’a, ’b) t
3 end = struct
4 type%server (’a, ’b) t =
5 ’a fragment * ’b
6 end

(a) Incorrect abstract datatype

1 module M : sig
2 type%server (’a[@client], ’b) t
3 end = struct
4 type%server (’a[@client], ’b) t =
5 ’a fragment * ’b
6 end

(b) Correct abstract datatype

Example 4.1: A module with an abstract datatype.
Example 4.1a does not exposes information about acceptable sides for ’a and ’b. In Ex-
ample 4.1b, annotations specifying the side of type variables are exposed in the interface.

4.2.2 Modules

We now detail Eliom’s module system. In the expression language, location transitions
can only happen in very specific constructions: fragments and injections. This allow us to
keep most of the ML type system unchanged. This is not the case anymore for modules:
we allow users to create base, client and server modules, but also mixed modules that
can contain base, client and server declarations, including other modules. This means
we need to track locations quite precisely.
We first introduce the various feature of our module system along with some motivating

examples. We then detail how those features are enforced by the typing rules.

Base location and specialization

In Section 2.4, we presented an example where a base functor Map.Make, is applied to a
client module to obtain a new client module. As Map.Make is a module provided by the

65

standard library of OCaml, it is defined on location b. In particular, its input signature
has components on location b, thus it would seem a module whose components are on the
client or the server should not be accepted. We would nevertheless like to create maps
of elements that are only available on the client. To do so, we introduce a specialization
operation, defined in Figure 4.8, that allows to use a base module in a client or server
scope by replacing instances of the base location with the current location.
The situation is quite similar to the application of a function of type ∀α.α→ α to an

argument of type int: we need to instantiate the function before being able to use it.
Mixed modules only offer a limited version of polymorphism for locations: there is only
one “location variable” at a time, and it’s always called b. The specialization operation
simply rewrites a module signature by substituting all instances of the location b or m
by the specified c or s location. Note that before being specialized, a module should be
accessible according to the “can be used” relation defined Figure 4.2. This means that
we never have to specialize a server module on the client (or conversely). Specialization
towards location b has no effect since only base modules are accessible on location base.
Specialization towards the location m has no effect either: since all locations are allowed
inside the mixed location, no specialization is needed. Mixed functors are handled in a
specific way, as we see in the next section.

Mixed Functors

Mixed functors are functors declared in a mixed scope. We note functorm(Xi :M)M the
mixed functor that takes an argument Xi of typeM and return a module M . They can
contain both client and server declarations (or mixed submodules). Mixed functors and
regular functors have different types that are not compatible. We saw in Section 2.6.2 an
example of usage for mixed functors. Mixed functors have several restrictions compared
to regular functors which we now detail using various examples.

Specialization A naive implementation of specialization of mixed functors would be
to specialize on both side of the arrow and apply the resulting functor. Let us see on
an example why this solution does not work. In Example 4.2, the functor F takes as
argument a module containing a base declaration and uses it on both sides. If the type
of the functor parameter were specialized, the functor application in Example 4.2b would
be well-typed. However, this makes no sense: M.y is supposed to represent a fragment
whose content is the client value of b, but this value doesn’t exist, since b was declared
on the server. There would be no value available to inject in the declaration of y’.
The solution here is that specialization on mixed functors should only specialize the

return type, not the argument.

Injections Injections inside client sections (as opposed to escaped values inside client
fragments) are fairly static: the value might be dynamic, but the position of the injection
and its use sites are statistically known and does not depend on the execution of the
program. In particular, injections are independent of the control flow. We can just give
a unique identifier to each injection, and use that unique name for lookup on the client.

66

1 module%mixed F (A : sig val b : int end)
2 = struct
3 let%server x = A.b
4 let%server y = [%client A.b]
5 end

(a) A mixed functor using a base declaration

1 module%server M =
2 F(struct let%server b = 2 end)
3 let%client y’ = ~%M.y

(b) An ill-typed application of F

Example 4.2: A mixed functor using base declaration polymorphically

This property comes from the fact that injected server identifiers cannot be bound in a
client section.
Unfortunately, this property does not hold in the presence of mixed functor when

we assume the language can apply functor at arbitrary positions, which is the case in
OCaml. Let us consider Example 4.3. The functor F takes a structure containing a
server declaration x holding an integer and returns a structure containing the same inte-
ger, injected in the client. In Example 4.3b, the functor is used on A or B conditionally.
The issue is that the client integer depends both on the server integer and on the local
client control flow. Lifting the functor application at toplevel would not preserve the
semantics of the language, due to side effects. Thus, we avoid this kind of situation by
forbidding injections that access dynamic names inside mixed functors.

1 module%mixed F
2 (A : sig val%server x : int end)
3 = struct
4 let%client x’ = ~%A.x
5 end

(a) An problematic mixed functor with
an injection

1 module%mixed A = struct let%server x = 2 end
2 module%mixed B = struct let%server x = 4 end
3 let%client a =
4 if Random.bool ()
5 then let module M = F(A) in M.x’
6 else let module M = F(B) in M.x’

(b) A pathological functor application

Example 4.3: Problematic example of injection inside a mixed functor

In order to avoid this situation, we add the constraints that injections inside the body
of a mixed functors can only refer to outside of the functor. Escaped values, which are
injections inside client fragments, are still allowed. The functor presented in Example 4.4a
is not allowed while the one in Example 4.4b is allowed. Formally, this is guaranteed
by the MixedFunctor rule, where each injection is typechecked in the outer typing
environment.

Functor application Mixed functors can only be applied to mixed structures. This
means that in a functor application F(M), M must be a structure defined by a modulem
declaration. Note that this breaks the property that the current location of an expression
or a module can be determined syntactically: The location inside F(struct ... end)
can be either mixed or not, depending on F. This could be mitigated by using a differ-
ent syntax for the application of mixed functor. The justification for this restriction is
detailed in Section 4.3.

67

1

2 module%mixed F
3 (A:sig val%server x : int end)
4 = struct
5 let%client y = ~%A.x + 2
6 end
7

(a) An ill-typed mixed functor using
an injection

1 let%server x = 3
2 module%mixed F
3 (A:sig val%server y : int end)
4 = struct
5 let%client z = ~%x
6 let%server z’ = [%client ~%A.y + 1]
7 end

(b) A well-typed mixed functor using an injec-
tion

Example 4.4: Mixed functor and injections

Type rules

We now review how these various language constructs are reflected in the rules of our
type system. As before, the Eliom module system is built on the ML module system.
We extend the typing, validity and subtyping judgments by a location annotation that
specifies the location of the current scope. The program typing judgments don’t have a
location, since a program is always considered mixed. Most rules are fairly straightfor-
ward adaptations of the ML rules, annotated with locations.
The typing rules ModVar and QualModVar follow the usual rules of ML modules

with two modifications: We first check that the module we are looking up can indeed
be used on the current location. This is done by the side condition ς ′� ς where ς is the
current location and ς ′ is the location where the identifier is defined. This allows, for
instance, to use base identifiers in a client scope. We also specialize the module type of
the identifier towards the current location ς. The specialization operation, which was
described in Section 4.2.2, is noted bMcς and is defined in Figure 4.8.
There are two new typing rules compared to ML: the rules MixedFunctor and

MixedApplication define mixed functor definition and application. We use INJS(·)
which returns the set of all injections in client declarations.

Subtyping and equivalence of modules

Subtyping rules are given in Figure 4.11. For brevity, we note ς <:(ς1� ς2) as a shorthand
for ς <: ς1 ∧ ς <: ς2 ∧ ς1� ς2, that is, both ς1 and ς2 are valid locations for components of
a module on location ς and location ς1 encompasses location ς2. Note that the following
holds:

ΓIς struct valb ti : int end <: struct valc ti : int end

This is perfectly safe, since for any identifier xi on base, letc x′j = xi is always valid.
This allows programmers to declare some code on base (and get the guarantee that the
code is only using usual OCaml constructs) but to expose it as client or server in the
module type.

68

bMcb =M bMcm =M

bsig S endcι = sig bScι end bfunctorm(Xi :M)M′cι = functorm(Xi :M)bM′cι
bεcι = ε bfunctor(Xi :M)M′cι = functor(Xi :bMcι)bM′cι

bval` xi : τ ;Scι =

{
valι xi : τ ; bScι when `� ι
bScι otherwise

btype` (α∗`j)ti = τ ;Scι =

{
typeι (α∗`j)ti = τ ; bScι when `� ι
bScι otherwise

btype` (α∗`j)ti;Scι =

{
typeι (α∗`j)ti; bScι when `� ι
bScι otherwise

bmoduleς Xi :M;Scι =

{
moduleι Xi : bMcι; bScι when ς � ι
bScι otherwise

Where ι is either c or s.

Figure 4.8: Module specialization operation – bMcς

ε/p = ε

(sig S end)/p = sig S/p end

(moduleς Xi =M;S)/p = moduleς Xi =M/p;S/p
(type` (α∗`j)ti = τ ;S)/p = type` (α∗`j)ti = (α∗)p.t;S/p

(type` (α∗`j)ti;S)/p = type` (α∗`j)ti = (α∗)p.t;S/p
(val` xi : τ ;S)/p = val` xi : τ ;S/p

(functor(Xi :M)M′)/p = functor(Xi :M)(M′/p(Xi))

(functorm(Xi :M)M′)/p = functorm(Xi :M)(M′/p(Xi))

Figure 4.9: Module strengthening operation – M/p

69

ModVar
(moduleς′ Xi :M) ∈ Γ ς ′� ς

ΓIς Xi : bMcς

QualModVar
ΓIς p :(sig S1; moduleς′ Xi :M;S2 end) ς ′� ς

ΓIς p.X : bM[ni 7→ς′ p.n | ni ∈ BVς’(S1)] cς

Strength
ΓIς p :M

ΓIς p :M/p

ΓIςM :M′ ΓIςM′ <:M
ΓIςM :M

ΓIςM1 : functor(Xi :M)M′ ΓIςM2 :M
ΓIςM1(M2) :M′[Xi 7→ς M2]

Γ�`M Xi /∈ BV`(Γ) Γ; (module` Xi :M)I`M :M′

ΓI` functor(Xi :M)M : functor(Xi :M)M′

Γ�ςM ΓIςM :M
ΓIς(M :M) :M

MixedFunctor
Γ�m sig S end xi /∈ BVm(Γ)
Γ; (modulem Xi : sig S end)ImM :M′ ∀fj%Xj ∈ INJS(M),Γ .c fj%Xj : τj

ΓIm functorm(Xi : sig S end)M : functorm(Xi : sig S end)M′

MixedApplication
ΓIςM1 : functorm(Xi :M)M′ ΓImM2 :M m� ς

ΓIςM1(M2) :M′[Xi 7→ς M2]

Γ .` e : τ xi /∈ BV`(Γ) Γ; (val` xi : Close(τ,Γ))Iς S :S ς <: `

ΓIς(let` xi = e; s) :(val` xi : τ ;S)

Γ�` τ ti /∈ BV`(Γ) Γ; (type` (α∗`j)ti = τ)Iς S :S ς <: `

ΓIς(type` (α∗`j)ti = τ ; s) :(type` (α∗`j)ti = τ ;S)

ΓIςM :M Xi /∈ BVς(Γ)
Γ; (moduleς Xi :M)Iς′ S :S ς ′<: ς ∀ς ′′ ∈ locations(M). ς ′′� ς

ΓIς′(moduleς Xi = M ; s) :(moduleς Xi :M;S)

ΓIς S :S
ΓIς struct S end : sig S end ΓIς ε : ε

Figure 4.10: Module typing rules – ΓIς m :M

70

SubStruct
π : [1;m]→ [1;n] ∀i ∈ [1;m], Γ;D1; . . . ;DnIς Dπ(i) <: D′i

ΓIς(sig D1; . . . ;Dn end) <: (sig D′1; . . . ;D′m end)

Γ .`2 τ1≈ τ2 ς <:(`1� `2)
ΓIς(val`1 xi : τ1) <: (val`2 xi : τ2)

ΓIς2M1 <:M2 ς <:(ς1� ς2)
ΓIς(moduleς1 Xi :M1) <: (moduleς2 Xi =M2)

ΓI`M′a <:Ma Γ, (module` X :M′a)I`Mr <:M′r
ΓI` functor(X :Ma)Mr <: functor(X :M′a)M′r

ΓImM′a <:Ma Γ, (modulem X :M′a)ImMr <:M′r
ΓIm functorm(X :Ma)Mr <: functorm(X :M′a)M′r

Γ .`2 τ1≈ τ2 ς <:(`1� `2)
ΓIς(type`1 (α∗`j)ti = τ1) <: (type`2 (α∗`j)ti = τ2)

ς <:(`1� `2)
ΓIς(type`1 (α∗`j)ti) <: (type`2 (α∗`j)ti)

Γ .`2(α∗`j)ti≈ τ ς <:(`1� `2)
ΓIς(type`1 (α∗`j)ti) <: (type`2 (α∗`j)ti = τ)

ς <:(`1� `2)
ΓIς(type`1 (α∗`j)ti = τ1) <: (type`2 (α∗`j)ti)

Figure 4.11: Module subtyping rules – ΓIςM <: M ′

71

4.3 Interpreted semantics

While Eliom, just like OCaml, is a compiled language, it is desirable to present a
semantics that does not involve complex program transformation. The reason is two-fold:
First, this simple semantics should be reasonably easy to explain to users. Indeed, this
semantics is the one used to present Eliom in Chapter 2. However, we must also show
that this semantics is correct, in that it does actually corresponds to our compilation
scheme. This is done in Section 5.4. As presented in Chapter 2, Eliom execution
proceeds in two steps: The server part of the program is executed first. This creates a
client program, which is then executed.
Let us first introduce a few notations. Generated client programs are noted µ. Server

expressions (resp. declarations) that do not contain injections are noted e (resp. D).
Values are the same as for ML: constants, closures, structures and functor closures. We
consider a new class of identifiers called “references” and noted in bold, such as r or
R. We assume the existence of a name generator that can create arbitrary new fresh r
identifiers at any point of the execution. References are used as global identifiers that
ignore scoping rules. References can also be qualified as “reference paths”, noted X.r.
This is used for mixed functors, in particular. We use γ to note the global environment
where such references are stored.
We now introduce a new reduction relation, =⇒ς , which is the reduction over Eliom

constructs on side ς. The notation =⇒ς actually represents several reduction relations
which are presented in Figures 4.13, 4.16 and 4.17. Four of these relations reduce the
server part of the code and emit a client program. We note e ρ

=⇒ι v, µ, θ the reduction
of a server expression e inside a context ι in the environment ρ. It returns the value v,
the client program µ and emits the trace θ. The context ι can be either base (b), server
(s), server code inside client contexts (c/s) or server code inside mixed contexts (m). We

also have a client reduction, noted e
ρ | γ→γ’

======⇒c v, θ which reduces a client expression e
inside an environment ρ, returns a value v and emits a trace θ. It also updates a global
environment from γ to γ′.
Note that the first family of relation executes only the server part of a program and

returns a client program, which is then executed by =⇒c. This is represented formally by
the Program rule. In order to reduce an Eliom program P , we first reduce the server
part using =⇒m. This returns no value and a client program µ which we execute. We
now look into each specific feature in greater detail

4.3.1 Generated client programs

Let us first describe evaluation rules for generated client programs. Generated client
programs are ML programs with some additional constructions which are described in
Figure 4.12. The new evaluation rules are presented in Figure 4.13. The construction
bind env f binds the current accessible environment to f in the global environment
γ. This is implemented by the BindEnv rule. bind r = e with f computes e in
the environment previous associated to f . The results is then stored as r in γ. This
construction is also usable for module expressions and is implemented by the Bind and

72

Bindm rules. All these constructions also accept paths of references such as R.f .
The new bind constructs are similar to the ones used in languages with continuations

in the catch/throw style. Instead of storing both an environment and the future compu-
tation, we store only the environment. This will allow us to implement closures across
locations, in particular the case where fragments are used inside a server closure.
The client reduction relation also inherits the ML rules (rule ClientCode). In such a

case, the global environment is passed around following an order compatible with traces.
For example, the LetIn rule for let expression would be modified like so:

e′
ρ | γ→γ’

======⇒c v
′, θ e

ρ+{x7→v’} | γ’→γ”
============⇒c v, θ

′

(let x = e′ in e)
ρ | γ→γ”

======⇒c v, θ@ θ′

Here, e′ is evaluated first (since θ is present first in the resulting traces), hence it uses
the initial environment γ and returns the environment γ′, which is then passed along.
In the rest of this thesis, we use f to denote the reference associated to fragments

closures and r to denote the reference associated to a specific value of a fragment.

p ::= (X.)∗x (Reference path)
Dc ::= DML

| bind env p (Env binding)
| bind p = e with p′ | bind p = M with p′ (Global binding)

Figure 4.12: Grammar of client programs

Bind

e
γ(pf) | γ→γ’

========⇒c v, θ S
ρ |(γ’+{p7→v})→γ”

=============⇒c V, θ
′

(bind p = e with pf ;S)
ρ | γ→γ”

======⇒c V, θ@ θ′

BindEnv

S
ρ |(γ+{pf 7→ρ})→γ’

=============⇒c V, θ

(bind env pf ;S)
ρ | γ→γ’

======⇒c V, θ

Bindm

M
γ(pF) | γ→γ’

=========⇒c V, θ S
ρ |(γ’+{p7→V})→γ”

=============⇒c V
′, θ′

(bind p = M with pF;S)
ρ | γ→γ”

======⇒c V
′, θ@ θ′

ClientCode
Inherit the rules
from ML

Figure 4.13: Semantics for client generated programs – e
ρ | γ→γ’

======⇒c v, θ

4.3.2 Base, Client and Server declarations

We now consider the case of base, client and server declarations. The rules are presented
in Figure 4.16. Let us first describe the execution of complete Eliomε programs (rule
Program). A program P reduces to a client value v if and only if we can first create
a server reduction of P that produces no value, emits a client program µ and a trace
θs. We can then create a reduction of µ that reduces in v with a trace θc. The trace
of the program is the concatenation of the traces. We see that the execution of Eliomε

73

program is split in two as described earlier. Let us now look in more details at various
construction of the Eliomε language.

Base The base reduction relation corresponds exactly to the ML reduction relation, and
always returns empty programs (rule BaseCode). When reducing a base declaration in
a mixed context, we both reduce the declaration using =⇒b, but also add the declaration
to the emitted client program (rule BaseDecl). As we can see, base declarations are
executed twice: once on the server and once on the client.

Client contexts and injections The goal of the client reduction relation =⇒c/s is not
to reduce client programs. It only reduces server code contained by injections inside
client code. It returns a client expression without injections, a client program and a
trace. Since we don’t want to execute client code, it does not inherit the reduction rules
for ML. Given an injection f%e, the rule Injection reduces the server side expression
(fs e) to a value v. We then transform the server value v into a client value using the ↓
operator presented Figure 4.15. We then returns the client expression (f c ↓v) without
executing it. This expression will be executed on the client side, to deserialize the value.
The value injection operator, noted ↓ represents the serialization of values from the server
to the client and is the identity over constants in Constb and references, and fail on any
other values. According to the definition of converters, if f is a converter τs τc, then
fs is the server side function of type τs→ serial and v should be of type serial. Since
serial is defined on b, the injection of values should be the identity.
The rule ClientContext defines the evaluation of server expression up to client

contexts. Client contexts are noted E[e1, . . . , en] and are defined in Figure 4.14. A client
context can have any number of holes which must all contain injections. The rest of the
context can contain arbitrary ML syntax that are not injections. Evaluation under a
multi-holed context proceed from left to right. The resulting programs and traces are
constructed by concatenation of each program and trace.
In order to evaluate client declarations, the rule ClientDecl uses =⇒c/s to evaluate

the server code present in the declaration Dc which returns a declaration without injec-
tions Dc and a client program µ. We then return the client program composed by the
concatenation of the two. We demonstrate this in Example 4.5. The Eliomε program is
presented on the left side. It first declares the integer a on the server then inject it on
the client and returns the result. The emitted code, shown in the middle, contains an
explicit call to the intc deserializer while the rest of the client code is unchanged. The
returned value is shown on the right.

lets a = 3
letc return = int%x+ 1

==⇒m let return = (intc 3) + 1 ==⇒c 4, 〈〉

Example 4.5: Execution of a client declaration

Server code and fragments The server reduction relation reduces server code and emits
the appropriate client program associated to client fragments. Since client program are

74

Ee ::= [f%e] | e | (Ee Ee) | λx.Ee | let x = Ee in Ee

EM ::= M | (EM :M) | EM (EM)

| functor(Xi :M)EM | struct (ED)∗ end

ED ::= D | letc xi = Ee | modulec Xi = EM

Figure 4.14: Execution contexts for injections – E[·]

↓c = c when c ∈ Constb
↓p = p

↓v = ⊥ otherwise

Figure 4.15: Injections
of values – ↓v

mostly ML programs, it inherits the ML reduction rules (rule ServerCode) where client
programs are concatenated in the same order as traces. Client fragments are handled by
the rule Fragment. Let us consider a fragment {{ e }}, this evaluation proceeds in two
steps: first, we evaluate all the injections inside the client expression e using the relation
=⇒c/s described in the previous section. We thus obtain an expression without injection
e and a client program µ.
The second step is to register e to be evaluated in the client program. One could

propose to simply consider client fragments as values. This is however quite problematic,
as it could lead to duplicated side effects. Consider the program presented on the left side
of Example 4.6. If we were simply to simply pass fragments along, the print statement
would be evaluated twice. Instead, we create a fresh identifier r that will be globally
bound to e in the client program, as shown in rule Fragment. This way, the client
expression contained inside the fragment will be executed once, in a timely manner. The
execution rule for fragment is demonstrated in Example 4.6. As before, the Eliomε

program is presented on the left, the emitted client program in shown in the middle and
the returned value is on the right. Note that both frags and fragc are the identity
function.

lets x = {{ (print 3) }}
letc return =
frag%x+ frag%x

==⇒m

bind env f
bind r = (print 3) with f
let return =

(fragc r) + (fragc r)

==⇒c 6, 〈3〉

Example 4.6: Execution of a fragment containing side-effects

Closures and fragments In the client program above, we also use a reference f and
the bind env construct. To see why this is necessary, we now consider a case where
fragments are used inside closures. This is presented in Example 4.7. The Eliomε

program, presented on the left, computes 1 + 3 + 2 on the client (although in a fairly
obfuscated way). We first define the client variable a as 1. We then define a server closure
f containing a client fragment capturing a. We then define a new variable also named a
and call (f 3), inject the results and returns. When evaluating the definitions of f , since
it contains syntactically a client fragment, we will emit the client instruction bind env f ,
where f is a fresh identifier. This will capture the local environment, which is {a 7→1}
at this point of the client program. When we execute (f 3), we will finally reduce the
client fragment and emit the (bind r = (intc 3) + a with f) instruction. On the client,

75

this will be executed in the f environment, hence a is 1 and the result is 4. Once this is
executed, we move back to the regular environment, where a is 2, and proceed with the
execution.
Thanks to this construction, the capturing behavior of closures is preserved across

location boundaries. The bind env construct is generated by the ServerDecl rule.
FRAGS(Ds) returns the fragments syntactically present in Ds. For each fragment, the
local environment is bound to the associated reference.

letc a = 1
lets f x = {{ int%x+ a }}
letc a = 2
lets y = (f 3)
letc return = frag%y + a

==⇒m

let a = 1
bind env f
let a = 2
bind r = (intc 3) + a with f
let return = (fragc r) + a

==⇒c 6, 〈〉

Example 4.7: Execution of a fragment inside a closure

Server code inside client contexts

Injection
(fs e)

ρ
=⇒s v, µ, θ

f%e
ρ

=⇒c/s(f
c ↓v), µ, θ

ClientContext
∀i, ei

ρ
=⇒c/s vi, µi, θi

E[e1, . . . , en]
ρ

=⇒c/sE[v1, . . . , vn], µ1; . . . ;µn,@i θi

Server code

Fragment
e

ρ
=⇒c/s e, µ, θ r fresh

{{ e }}f
ρ

=⇒s r, (µ; bind r = e with f), θ

ServerCode
Inherit the rules
from ML

Base code

BaseCode
ρ

=⇒ ≡ ρ
=⇒b

Declarations

BaseDecl

Db
ρ

=⇒b V , ε, θ S
ρ+V

====⇒m V
′, µ′, θ′

Db;S
ρ

=⇒m V + V ′, (Db;µ
′), θ@ θ′

ClientDecl
Dc

ρ
=⇒c/sDc, µ, θ S

ρ
=⇒m V , µ

′, θ′

Dc;S
ρ

=⇒m V , (µ;Dc;µ
′), θ

ServerDecl

FRAGS(Ds) = {{ ei }}fi Ds
ρ

=⇒s V , µ, θ S
ρ+V

====⇒m V
′, µ′, θ′

Ds;S
ρ

=⇒m V + V ′, (bind env fi;µ;µ′), θ@ θ′

Program

P
ρ

=⇒m(), µ, θs µ
ρ | ε→γ

=====⇒c v, θc

P
ρ

=⇒ v, θs @ θc

Figure 4.16: Semantics for base, client and server sections – e ρ
=⇒ς v, µ, θ

76

Fragment annotations In the previous examples, we presented the server reduction
rules where, for each syntactic fragment, a fresh reference f is generated and bound to
the environment. In the rest of this thesis, we will simply assume that all fragments
syntactically present in the program are annotated with a unique reference. Such anno-
tation is purely syntactic and can be done by walking the syntax tree of the program.
Annotated fragments are noted {{ . . . }}f .
Mixed structures syntactically present in the program are also annotated in a sim-

ilar manner with a unique module reference. Annoted mixed structures are noted
struct . . . endF.

4.3.3 Mixed modules

Let us now describe the reduction relation for mixed modules. The mixed reduction
relation is presented in Figure 4.17 and, just like the server relation, has for goal to
evaluate all the server code and emit a client program to be later evaluated by the client
relation. Mixed modules can be composed of either mixed functors, functor applications
or structures. The mixed relation contains various rules that are similar to the ML
reduction rules for modules. The notable novel aspect of mixed functor is that they both
have a client part and a server part. This is different from client fragments, which only
have a client part that can be manipulated on the server via an identifier. The server part
of mixed modules also need to indicate its client part. In order to do this, each mixed
structure will contains an additional field called Dyn which contains a module identifier.
The identifier points to a globally bound module on the client which is the result of the
client-side evaluation.
Let us first demonstrate these features in Example 4.8. In this example, we declare

a mixed module X containing a fragment x and an integer y. We then declare another
mixed module Y containing a submodule. The structure of the emitted client code mimics
closely the structure of the server code. In particular, the bind operation is nested
inside the mixed module X that is emitted on the client. The exact same names are
reused on the client. We also register each structure in the global environment using the
annotated identifier of the structure. Here, we use the bind construct as a shorthand for
bind with that doesn’t change the environment. The shape of the program is kept intact
thanks to the MixedModVar, MixedQualModVar and MixedStruct rules. The
first two are similar to the non mixed version, but the last one deserves some explanation.
First, it prefixes all the fragment references inside the body of the structure. This is for
consistency with functors, as we will see later. It then adds the Dyn field to the returned
structure, as discussed before. Finally, it emits a bind on the client and returns the
module reference. Each structure is thus bound appropriately, even when nested.
Module identifiers are not used in the present program, but they are used in the case

of mixed functors, as we will see now.

Mixed functors, injections and client side application Before exposing the complex
interaction of mixed functors and fragment, let us illustrate various details about mixed
functors in Example 4.9. The server code proceed in the following way: we first define a

77

modulem X = struct

lets x = {{ 1 }}
letc y = 2 + frag%x

endX
modulem Y = struct

modulem A = X
endY
letc return = Y.A.y

==⇒m

bind X = struct

bind env X.f
bind r = 1 with X.f
let y = 2 + (fragc r)

end

module X = X
bind Y = struct

module A = X
end

module Y = Y
let return = Y.A.y

==⇒c 3, 〈〉

Example 4.8: Execution of mixed modules

server variable x followed by a mixed functor F containing an injection. We then define
a mixed module Y and executes on the client the functor application F (Y).
First, let us recall that injections inside mixed functors can only refer to elements

outside the functor. This means that injections inside functors can be reduced as soon
as we consider a functor. In particular, we do not wait for functor application. This
can be seen in the ModClosure rule which returns a functor closure on the server side
and emit the client part of the functor on the client side. We then take the client part
of the body of the functor (noted M |c) and applies the =⇒c/s reduction relation, which
executes injections inside client code. In this example, it results in the injection int%x
being resolved immediately in the client-side version of the functor.
Mixed functor application can be done in client and server contexts. When it is done

in a client context, we simply call the client-side definition and omits the server-side
execution completely. Hence we can simply emit the client-code F (Y). Execution is
done through the usual rules for client sections. This is always valid since each mixed
declaration emits a client declaration with the same name and the same shape.

lets x = 1
modulem F (X :M) = struct

letc b = X.a+ int%x
endY
modulem Y = struct

letc a = 2
endY
modulec Z = F (Y)
letc return = Z.b

==⇒m

module F (X :M) = struct

let b = X.a+ (intc 1)
endY
bind Y = struct

let a = 2
end

module Y = Y
module Z = F (Y)
let return = Z.b

==⇒c 3, 〈〉

Example 4.9: Execution of mixed functors with injections

78

Mixed functors and fragments The difficulty of the reduction of mixed functor con-
taining fragments is that the server-side application of a mixed functor should result in
both server and client effects. This makes the reduction rules for mixed functor appli-
cation quite delicate. We illustrate this with Example 4.10. In this example, we define
a functor F contains only the server declaration x. The argument of the functor simply
contains two integers, one on the server and one on the client. In the fragment bound to
x, we add the two integers (using an escaped value). The interesting aspect here is that
the body of the client fragment depends on both the client and the server side of the
argument, even if there is no actual client side for the functor F . The rest of the program
is composed of a simple mixed module Y and the mixed functor application F (Y).
The first step of the execution is to define the client side part of F and Y , as demon-

strated in the previous example. In this case, since F only contains a server side declara-
tion, the client part of the functor returns an empty structure. We then have to execute
F (Y). This is done with the StructBeta rule. When reducing a mixed functor appli-
cation, we first generate a fresh identifier (RZ here) and prefix all the fragment closure
identifiers. We then evaluate the body of the functor on the server, which gives us both
the server module value and the generated client code. In this case, we simply obtain the
binding of rx. Note that this reference is not prefixed by RZ since it is freshly generated
at runtime. If the functor was applied again, we would simply generated a new one. In
order for functor arguments to be properly available on the client, we need to introduce
additional bindings. For this purpose, we lookup the Dyn field for each module argument
and insert the additional binding. In this case, module X = Y. This gives us a complete
client structure which we can bind to RZ.

modulem F (X :M) = struct

lets x = {{ X.a+ int%X.b }}fx
endF
modulem Y = struct

letc a = 4
lets b = 2

endY

modulem Z = F (Y)

letc return = frag%Z.x

=⇒m

bind env F
module F (X :M) = struct end

bind Y = struct

let a = 4
end

module Y = Y

bind RZ = struct

module X = Y
bind env RZ.fx
bind rx = Y.a+ (intc 2)
with RZ.fx

end with F
module Z = F (Y)

let return = (fragc rx)

=⇒c 6, 〈〉

Example 4.10: Execution of mixed functors with fragments

79

We see here that the body of functors allows to emit client code in a dynamic but
controlled way. Generated module references used on the client are remembered on the
server using the Dyn field while closure identifiers ensure that the proper environment is
used. One problematic aspect of this method is that it leads to two executions of the
client side. We shall discuss this in Section 5.5.

Mixed module expressions

MixedStruct
S[fi 7→ X.fi]i

ρ
=⇒m V , µ, θ V ′ = V + {Dyn 7→X}

struct S endX
ρ

=⇒m V
′,X, bind X = struct µ end, θ

MixedModVar
ρ(X) = V

X
ρ

=⇒m V ,X, ε, 〈〉

App
M

ρ
=⇒m V ,Mc, µ, θ M ′

ρ
=⇒m V

′,M ′c, µ
′, θ′ V (V ′)

ρ
=⇒m V

′′, µ′′, θ′′

M(M ′)
ρ

=⇒m V
′′,Mc(M

′
c), µ;µ′;µ′′, θ@ θ′@ θ′′

StructBeta
R fresh Vf = functorm(ρ′)(Xi :Mi)istruct S endF

Vi(Dyn) = Ri S[fi 7→ R.fi]i
ρ’+{Xi 7→Vi}i=========⇒m V , µ, θ

Vf (V1) . . . (Vn)
ρ

=⇒m V + {Dyn 7→R} ,

bind R = struct

(module Xi = Ri;)i
µ

end with F

, θ
NotStructBeta
V = functorm(ρ′)(Xi :Mi)iM

M
ρ’+{Xi 7→Vi}i=========⇒m Vr, µ, θ

V (V1) . . . (Vn)
ρ

=⇒m Vr, µ, θ,

MixedQualModVar

p
ρ

=⇒m V , µ, θ

p.X
ρ

=⇒m V (X), p.X, µ, θ

Empty

ε
ρ

=⇒m{}, ε, 〈〉

ModClosure
M |c

ρ
=⇒c/sM,µ, θ

functorm(X :M)M
ρ

=⇒m functorm(ρ)(X :M)M, functor(X :M|c)M,µ, θ

Mixed declarations

MixedModDecl

MixedStructIds(M) = Fi M
ρ

=⇒m V ,M
c, µ, θ S

ρ+{X 7→V}
========⇒m V

′, µ′, θ′

modulem X = M ; S
ρ

=⇒m {X 7→V }+ V ′, (bind env Fi;µ; module X = M c;µ′), θ@ θ′

Figure 4.17: Semantics for mixed modules – M ρ
=⇒ς V , µ, θ

80

4.4 Results on locations

The behavior of locations and specialization in the presence of the various language
constructs is not obvious, even with various examples. We now present various elementary
results related to locations that should make the behavior of some constructions easier
to grasp and inform the design of our compilation scheme. Let us note M[`7→`′] the
substitution on locations in an Eliom module typeM.

Proposition 1. Given an Eliom module typeM and a location ` ∈ {b, c, s}, if Γ�`M,
then bMc` =M.

Proof. By definition of <:, M can only contain declarations on `. This means that,
by reflexivity of �, only specialization rules that leave the declaration unchanged are
involved.

Proposition 2. Given an Eliom module typeM and a location ` ∈ {c, s}, if Γ�bM,
then bMc` =M[b 7→`].

Proof. We remark that for all ` ∈ {c, s}, b� `. Additionally, mixed functors cannot
appear on base (since m� b). We can then proceed by induction over the rules for
specialization.

4.4.1 Relation between ML and Eliom

Eliom is an extension of ML. However, we also want Eliom to be well integrated in its
host language. We now detail the relation between ML and Eliom. In particular, we
show that ML can be completely embedded in Eliom without changes.

Given an ML module M , we note M[ML 7→`] the Eliom module where all the module
components have been annotated with location `. Given en Eliom module M , we note
M[7→ML] the ML module where all the location have been erased. We extend these
notations to module types and environments.

Proposition 3. Given ML type τ , expression e, module m and module type M and
locations `, `′:

Γ�ML τ =⇒ Γ[ML 7→`′] �` τ Where `′� `
Γ .ML e : τ =⇒ Γ[ML 7→`′] .` e : τ Where `′� `
Γ�MLM =⇒ Γ[ML 7→`′] �`M[ML 7→`] Where `′� `

ΓIMLM :M =⇒ Γ[ML 7→`′]I`M[ML 7→`] :M[ML 7→`] Where `′� `

Proof. We remark that each syntax, typing rule or well formedness rule for ML has
a direct equivalent rule in Eliom. We can then simply rewrite the proof tree of the
hypothesis to use the Eliom type and well-formedness rules. We consider only some
specific cases:

• By Proposition 1 and since the modules are of uniform location, the specialization
operation in Var and ModVar are the identity.

81

• The side conditions `′<: ` are always respected since the modules are of uniform
location and by reflexivity of <:.

• The side conditions `′� ` are respected by hypothesis.

Proposition 4. Given ML type τ , expression e, module m and module typeM:

Γ�b τ =⇒ Γ[7→ML] �ML τ Γ�bM =⇒ Γ[7→ML] �MLM[7→ML]

Γ .b e : τ =⇒ Γ[7→ML] .ML e : τ ΓIbM :M =⇒ Γ[7→ML]IMLM[7→ML] :M[7→ML]

Proof. We first remark that the following features are forbidden in the base part of the
language: injections, fragments, mixed functors and any other location than base. The
rest of the language contains no tierless features and coincides with ML. We can then
proceed by induction over the proof trees.

Proposition 5. Given an ML moduleM (resp. expression e), an execution environment
ρ, a location `, a value V (resp. v) and a trace θ:

M
ρ

=⇒ V , θ ⇐⇒ M[ML 7→`]
ρ[ML 7→`]

======⇒` V[ML 7→`], ε, θ

e
ρ

=⇒ v, θ ⇐⇒ e[ML 7→`]
ρ[ML 7→`]

======⇒` v[ML 7→`], ε, θ

Furthermore, given an ML program P , an execution environment ρ, a value v and a
trace θ:

P
ρ

=⇒ v, θ ⇐⇒ P[ML 7→ι]
ρ[ML 7→ι]

======⇒ v[ML 7→ι], θ ι ∈ {c, s}

P
ρ

=⇒ v, θ ⇐⇒ P[ML 7→b]
ρ[ML 7→b]

======⇒ v[ML 7→b], θ@ θ

Proof. Let us first note that the ML reduction relation is included in the base, the
server and the client-only relations. Additionally, the considered programs, modules or
expressions can not contain fragments, injections or binds. The additional rules in the
server and client-only relations are only used for these additional syntactic constructs.
For the first three statements, we can then proceed by induction. For the last statement,
we remark that base code is completely copied to the client during server execution.
Using rule Program, we execute the program twice, which returns the same value but
duplicates the trace.

Theorem 2 (Base/ML correspondance). Eliom modules, expressions and types on base
location b correspond exactly to the ML language.

Proof. By Propositions 3 to 5.

Thanks to Theorem 2, we can completely identify the language ML and the part of
Eliom on base location. This is of course by design: the base location allows us to reason
about the host language, OCaml, inside the new language Eliom. It also provides the
guarantee that anything written in the base location does not contain any communication

82

between client and server. In the rest of the thesis, we omit location substitutions of the
form [ML 7→b] and [b 7→ML].

Proposition 3 also has practical consequences: Given a file previously typechecked by
an ML typechecker, we can directly use the module types either on base, but also on
the client or on the server, by simply annotating all the signature components. This give
us the possibility, in the implementation, to completely reuse compiled objects from the
OCaml typechecker and load them on an arbitrary location. In particular, it guarantees
that we can reuse pure OCaml libraries safely and freely.

4.4.2 Notes on soundness

We do not give a complete proof of soundness for Eliomε. One of the reason is that
a soundness proof for our version of ML is already out of the scope of this thesis (See
Section 3.3.3). The Eliomε semantics is mostly implemented in terms of the ML one.
Here we will assume that the ML semantics is sound, and give some arguments towards
the soundness of Eliomε.

Server and Base semantics Since base code exactly corresponds to ML code, and
can not depend on server and client identifiers, the soundness of the base reduction
relation is equivalent to the soundness of ML. The server reduction relation only adds
the Fragment rule. If a fragment is well typed and the various injection can be reduced,
it is easy to see that this rule always applies. Since references r are opaque values on the
server and can only be used in injections, they do not compromise the soundness of the
server reduction relation.

Client emitted code In our presentation, we do not give typing rules for the bind env

and the bind with constructs. Such typing rules can simply be given by typing fi
references similarly to environments: with a module type. With this addition, it should
be possible to show that client emitted programs are always well typed. We can then
rely on the soundness of ML equipped with bind. The difficult point here are fragments,
due to the delayed nature of the bind constructs. However, the content of a fragment is
always executed in an environment with a type compatible with its typing environment,
which should ensure correctness.

Mixed modules The client-side behavior of a mixed module is fairly easy to model,
since it is equivalent to a client module. The server-side behavior is mostly the same as
the one of a pair composed by a server-side module and a fragment containing a client-
side module. As such, the soundness arguments should be the same that the one used
for fragments.

83

5 Compilation of Eliom programs

In Chapter 4, we gave a tour of the Eliomε language from a formal perspective, providing
a type system and an interpreted semantics. Eliom, however, is not an interpreted
language. The interpreted semantics is here both as a formal tool and to make the
semantics of the language more approachable to users, as demonstrated in Chapter 2. In
the implementation, Eliom programs are compiled to two programs: one server program
(which is linked and executed on the server) and a client program (which is compiled to
JavaScript and executed in a browser). The resulting programs are efficient and avoid
unnecessary back-and-forth communications between the client and the server.
Description of the complete compilation toolchain, including emission of JavaScript

code, is out of scope of this thesis (see Vouillon and Balat [2014]). Instead, we describe
the compilation process in term of emission of client and server programs in an ML-like
language equipped with additional primitives. Hence, we present the typing and execu-
tion of compiled programs, in Section 5.1 and the compilation process, in Section 5.2.
However, we also want to ensure that the interpreted semantics, which is explained to
users, corresponds to the compiled semantics1. This is done in Section 5.4. Finally, we
discuss the design of mixed functors from a compilation perspective in Section 5.5.

5.1 Target languages MLs and MLc

We introduce the two target languages MLc and MLs as extensions of ML. The addi-
tions in these two new languages are highlighted in Figure 5.1. Typing is provided in
Section 5.1.5. The semantics is provided in Section 5.1.6. As before, we use globally
bound identifiers, which we call “references” and note in bold: r. References can also be
paths, such as X.r. In some contexts, we accept a special form of reference path, noted
Dyn.x which we explain in Section 5.1.4. In practice, these references are implemented
with uniquely generated names and associative tables. Contrary to the interpreted se-
mantics, references are also used to transfer values from the server to the client and can
appear in expressions. A reference used inside an expression is always of type serial.

5.1.1 Converters

For each converter f , we note fs and f c the server side encoding function and the client
side decoding function. If f is of type τs τc, then fs is of type τs→ serial and f c

is of type serial→ τc. We will generally assume that if the converter f is available
in the environment, then f c and fs are available in the client and server environment
respectively.

1Thus, the main result of this chapter is that you do not need to read it to understand Eliomε programs!

85

MLs grammar
p ::= Dyn.f | (X.)∗f (Reference path)
τ ::= . . . | frag (Fragment type)
v ::= . . . | r (Reference)
e ::= . . .

| fragment p e∗ (Fragment call)
M ::= . . .

| p.Dyn (Dynamic field)
| fragmentm p (M∗) (Fragment)

D ::= . . .

| injection x e (Injection)
| end () (End token)

MLc grammar
p ::= Dyn.f | (X.)∗f (Reference path)
e ::= . . . | x (Reference)
M ::= . . . | X (Module reference)
D ::= . . .

| bind p = e (Fragment closure)
| bindm p = M (Functor fragment)
| exec () (Fragment execution)

Figure 5.1: Grammar for MLs and MLc as extensions of MLε

5.1.2 Injections

For injections, we associate server-side the injected value e to a reference v using the
construction injection v e, where e is of type serial. When the server execution is
over, a mapping from references to injected values is sent to the client. v is then used
client-side to access the value.
An example is given in Example 5.1. In this example, two integers are sent from the

server to the client and add them on the client. We suppose the existence of a base
abstract type int, a converter int of type (int int) and the associated encoding and
decoding functions. The server program, in Example 5.1a, creates two injections, v1 and
v2 and does not expose any bindings nor return any values. These injections hold the
serialized integers 4 and 2. The client program, in Example 5.1b, uses these two injections,
deserialize their values, adds them, and returns the result. Note that injection is not
a network operation. It simply stores a mapping between references (i.e., names) and
serialized values. The mapping generated at the end of the server execution is shown in
Example 5.1c. After the execution of the server code, this mapping is sent to the client,
and used to execute the client code.

injection v1 (ints 4);
injection v2 (ints 2);

(a) Server program

let return =
(intc v1) + (intc v2);

(b) Client program

v1 7→ 4
v2 7→ 2

(c) Mapping of injections

Example 5.1: Client-server programs calling and using injections

86

5.1.3 Fragments

The primitive related to fragments also relies on shared references between the server
program and the client program. However, these references allow to uniquely identify
functions that are defined on the client but are called on the server. To implement this,
we use the following primitives:

• In MLc structures, bind p = e declares a new client function bound to the reference
p. The function e takes an arbitrary amount of argument of type serial and
returns any type.

• In MLs expressions, fragment p e1 . . . en is a delayed function application which
registers that, on the client, the function associated to p will be applied to the
arguments ei. All the arguments must be of type serial. It returns a value of
type frag, which holds a unique identifier refering to the result of this application.

Here again, none of these primitives are network communication primitives. While the
API is similar to Remote Procedure Calls, the execution is very different: fragment only
accumulates the function call in a list, to be executed later. When the server execution is
over, the list of calls is sent to the client, and used during the client execution. OCaml,
and consequently Eliom, are impure languages: the order of execution of statement
is important. In order to control the order of execution, we introduce two additional
statements: end (), on the server, introduces an end marker in the list of calls. exec (),
on the client, executes all the calls until the next end token.
Example 5.2 presents a pair of programs which emit the client trace 〈2; 3; 3〉, but in

such a way that, while the client does the printing, the values and the execution order
are completely determined by the server. The server code (Example 5.2a) calls f with 2
as argument, injects the result and then calls f with 3 as argument. The client code, in
Example 5.2b, declares a fragment closure f , which simply adds one to its arguments, and
exec both fragments. In-between both executions, it prints the content of the injection
v. During the execution of the server, the list of calls (Example 5.2c) and the mapping of
injections (Example 5.2d) are built. First, when fragment f (ints 2) is executed, a fresh
reference r1 is generated, the call to the fragment is added to the list and r1 is returned.
The injection adds the association v1 7→ r1 to the mapping of injections. The call to
end () then adds the token end to the list of fragments. The second fragment proceeds
similarly to the first, with a fresh identifiers r2. Once server execution is over, the newly
generated list of fragments and mapping of injections are sent to the client. During the
client execution, the execution of the list is controlled by the exec calls. First, (f 2) emits
〈2〉 and is evaluated to 3, and the mapping r1 7→ 3 is added to a global environment.
Then v1 is resolved to r1 and printed (which shows 〈3〉). Finally (f 3) emits 〈3〉 and is
evaluated to 4.
The important thing to note here is that both the injection mapping and the list of

fragments are completely dynamic. We could add complicated control flow to the server
program that would drive the client execution according to some dynamic values. The
only static elements are the names f and v1, the behavior of f and the number of call

87

to exec (). We cannot, however, make the server-side control flow depend on client-side
values, since we obey a strict phase separation between server and client execution.
Finally, remark that we do not need the bind env construct introduced in Section 4.3.1.

Instead, we directly capture the environment using closures that are extracted in advance.
We will see how this extraction works in more details while studying the compilation
scheme, in Section 5.2.

let x1 = fragment f (ints 2);
injection v1 (frags x1);
end ();
let x2 = fragment f (ints 3);
end ();

(a) Server program

bind f = λx.((print (intc x)) + 1);
exec ();
let a = (print (fragc v1));
exec ();
let return = a

(b) Client program

{r1 7→(f 2)} ; end;
{r2 7→(f 3)} ; end;

(c) List of fragments

v1 7→ r1

(d) Mapping of injections

Example 5.2: Client-server program defining and calling fragments

5.1.4 Modules

We introduce three new module-related construction that are quite similar to fragment
primitives:

• bindm p = M is equivalent to bind for modules. It is a client instruction that
associates the module or functor M to the reference p.

• fragmentm p (R1) . . . (Rn) is analogous to fragment p e for modules. It is a
delayed functor application that is used on the server to register that the functor
associated to p will have to be applied to the modules associated to Ri. It returns
a fresh reference that represents the resulting module. Contrary to fragment, it
can only be applied to module references.

• p.Dyn returns a reference that represents the client part of a server module p. This
is used for Eliomε mixed structure that have both a server and a client part.

The first argument of fragment, fragmentm, bind and bindm can also be a reference
path Dyn.f , where Dyn is the locally bound Dyn field inside a module. This allows us to
isolate some bound references inside a fresh module reference. This is useful for functors,
as we will now demonstrate in Example 5.3.
In this example, we again add integers2 on the client while controlling the values and

the control flow on the server. We want to define server modules that contain server
values but also trigger some evaluation on the client, in a similar way to fragments. The
first step is to define a module X on the server and to bind a corresponding module X
on the client. Similarly to the interpreted semantics presented in Section 4.3, we add a

2But better! or at very least, more obfuscated.

88

Dyn field to the server module that points to the client module. Plain structures such as
X are fairly straightforward, as we only need to declare each part statically and add the
needed reference. bindm allows to declare modules globally.
We then declare the functor F on the server and bind the functor F on the client. The

server-side functor contains a call to a fragment defined in the client-side functor. The
difficulty here is that we should take care of differentiating between fragment closures
produced by different functor applications. For this purpose, we use a similar technique
than the one presented in Section 4.3.3, which is to prefix the fragment closure identifier
f with the reference of the client-side module. This reference is available on the server
side as the Dyn field and is generated by a call to fragmentm. When F is applied to X
on the server, we generate a fresh reference R and add {R1 7→F X0} to the execution
queue. When exec () is called, We introduce the additional binding {Dyn 7→R1} in the
environment and apply F to X0, which will register the R1.f fragment closure. Since it
is the result of this specific functor application, the closure R1.f will always add 4 to its
argument. The rest of the execution proceed as shown in the previous section: we call a
new fragment, which triggers the client-side addition 2 + 4 and use an injection to pass
the results around.

module X = struct

module Dyn = X0;
let a = 2

end;
module F (Y :Ms) = struct

module Dyn = fragmentm F (Y.Dyn);
let b = fragment Dyn.f (ints Y.a);

end;
module Z = F (X);
end ();
injection v1 (frags Z.b);

(a) Server program

bindm X0 = struct

let c = 4
end;

bindm F(Y :Mc) = struct

bind Dyn.f =
λa.((intc a) + Y.c);

end;

exec ()
let return = (fragc v1);

(b) Client program

{R1 7→F X0} ;
{r2 7→R1.f 2} ;
end

(c) List of fragments

v1 7→ r2

(d) Mapping of in-
jections

Example 5.3: Client-server program using module fragments

5.1.5 Type system rules

The MLs and MLc typing rules are presented in Figures 5.2 and 5.3 as a small extension
over the ML typing rules presented in Section 3.2. Note that the typing rules for the
new primitives are weakly typed and are certainly not sound with respect to serialization
and deserialization. Given arbitrary MLs and MLc programs, there is no guarantee that
(de)serialization will not fail at runtime. This is on purpose. Indeed, all these guarantees
are provided by Eliom itself. MLs and MLc are target languages that are very liberal by
design, so that all patterns permitted by Eliom are expressible with them. Furthermore,
from an implementation perspective. MLs and MLc are simply OCaml libraries and do
not rely on further compiler support. Note that Dyn fields are not reflected in signatures.

89

The fragment Fragmentm rule does not enforce that the Dyn field is present in all the
arguments. This is enforced by construction during compilation.

5.1.6 Semantics rules

We define two reduction relations as extensions of the ML reduction rules (see Sec-
tion 3.3). The =⇒MLs reduction for MLs server programs is presented in Figure 5.4. The
=⇒MLc reduction for MLc client programs is presented in Figure 5.5. Let us consider a
server structure Ss and a client structure Sc. A paired execution of the two structures is
presented below:

Ss
ρs

==⇒MLs Vs, ξ, ζ, θs Sc, ξ
ρc | γ∪ζ→γ’

========⇒MLc Vc, ξ
′, θc

Let us now detail these executions rules. As with the ML reduction, ρs and ρc are the
local environments of values while θs and θc are the traces for server and client executions
respectively. Vs and Vc are the returned values. Similarly to the interpreted semantics
for Eliomε, the client reduction uses global environments noted γ.
As we saw in the previous examples, server executions emits two sets of information

during execution: a queue of fragments and a map of injections. Mapping of injection
is a traditional (global) environment where bindings are noted {v 7→. . . }. The queue of
fragments is noted ξ and contains end tokens end and fragment calls {r7→f v1 . . . vn}.
Concatenation of fragment queues is noted ++. We now see the various rules in more
details.

Injections Injection bindings are collected on the server through the Injection rule.
When creating a new injection binding, we inject the server-side value using the injection
of value operator, noted ↓v and presented in Figure 4.15. This models the serialization

Fragment
∀i, Γ .MLs ei : serial

Γ .MLs fragment p e1 . . . en : frag

Injection
Γ .MLs e : serial

ΓIMLs injection v e : ε

End

ΓIMLs end () : ε

Fragmentm

∀i, Γ .MLs pi :Mi

ΓIMLs module Dyn = fragmentm p p1.Dyn . . . pn.Dyn : ε

Figure 5.2: Typing rules for MLs

Bind
Γ .MLc e : τ

ΓIMLc bind p = e : ε

Bindm

ΓIMLc M :M
ΓIMLc bindm p = M : ε

Reference

Γ .MLc x : serial

Exec

ΓIMLc exec () : ε

Figure 5.3: Typing rules for MLs

90

of values before transmission from server to client by ensuring that only base values
and references are injected. Other kinds of values should be handled using converters
explicitly.
The injection environment ζ forms a valid client-side global environment. When exe-

cuting the client-side program, we simply assume that ζ is included in the initial global
environment γ.

Fragments and functors On the server, fragments and functors calls are added to the
queue through the Fragment and Fragmentm rules. In both rules, the reference of
the associated closure or functor is provided, along with a list of arguments. A fresh
reference symbolizing the fragment is generated and the call is added to the queue ξ.
Note that in the case of regular fragments, the arguments are expressions which can
themselves contains fragment calls. The module rule Fragmentm is similar, the main
difference being that it only accept module references as arguments of the call.
Fragment closures and functors are bound on the client through the Bind and Bindm

rules, which simply binds a reference to a value or a module value in the global environ-
ment γ. Since bind accepts references of the form Dyn.f , it must first resolves Dyn to the
actual reference. This is done through the Dyn rule.

Segmented execution In MLs and MLc programs, the execution of fragments is seg-
mented through the use of the exec ()/end () instructions. On the server, end instruc-
tions are handled through the End rule, which simply adds an end token to the execution
queue ξ. On the client, we use the Exec rule, associated to the Frag and Fragm rules.
When exec is called, the Exec rule triggers the execution of the segment of the queue
until the next end token. Each token {r 7→f v1 . . . vn} is executed with the Frag rule as
the function call (f v1 . . . vn). The result of this function call is bound to r in the global
environment γ. Similarly, functor calls are executed using the Fragm rule. Note that
for functors we also introduce the Dyn field in the local environment, which allows local
bind definitions. Once all the tokens have been executed in the considered fragment
queue, we resume the usual execution.

91

Injection
e

ρ
=⇒MLs v, ξ, ζ, θ S

ρ
=⇒MLs V, ξ

′, ζ ′, θ′

injection x e;S
ρ

=⇒MLs V, ξ++ξ′, (ζ ∪ {x 7→↓v} ∪ ζ ′), θ@ θ′

Fragment
p

ρ
=⇒MLs p

′ ∀i, ei
ρ

=⇒MLs vi, ξi, ζi, θi r fresh

fragment p e1 . . . en
ρ

=⇒MLs r, (ξ1++. . . ξn++
{
r7→p′ ↓v1 . . . ↓vn

}
),∪iζi,@i θi

Fragmentm

p
ρ

=⇒MLs p
′ ∀i, pi.Dyn

ρ
=⇒MLs Ri, ε, ε, 〈〉 R fresh

fragmentm p p1.Dyn . . . pn.Dyn
ρ

=⇒MLs R,
{
R7→p′ R1 . . .Rn

}
, {}, 〈〉

End
S

ρ
=⇒MLs V, ξ, ζ, θ

end ();S
ρ

=⇒MLs V, end++ξ, ζ, θ

Dyn
ρ(Dyn) = R

Dyn.f
ρ

=⇒MLs R.r

ServerCode
Inherit the rules
from ML

Figure 5.4: Semantics rules for MLs– S
ρ

=⇒MLs V, ξ, ζ, θ

Bind

p
ρ

=⇒MLs p
′ e, ξ

ρ | γ→γ’
======⇒MLc v, ξ

′, θ S, ξ′
ρ | γ’+{p’7→v}→γ”

============⇒MLc V, ξ
′′, θ′

(bind p = e;S), ξ
ρ | γ→γ”

======⇒MLc V, ξ
′′, θ@ θ′

Bindm

p
ρ

=⇒MLs p
′ M, ξ

ρ | γ→γ’
======⇒MLc Vp, ξ

′, θ S, ξ′
ρ | γ’+{p’ 7→Vp}→γ”

=============⇒MLc V, ξ
′′, θ′

(bindm p = M ;S), ξ
ρ | γ→γ”

======⇒MLc V, ξ
′′, θ@ θ′

Reference
γ(r) = v

r, ξ
ρ | γ→γ

=====⇒MLc v, ξ, 〈〉

Exec

ξ
ρ | γ→γ’

======⇒MLc{}, θ S, ξ′
ρ | γ’→γ”

======⇒MLc V, ξ
′′, θ′

(exec ();S), ξ++end++ξ′
ρ | γ→γ”

======⇒MLc V, ξ
′′, θ@ θ′

Frag

(f v1 . . . vn)
ρ | γ→γ’

======⇒MLc v, θ ξ
ρ | γ’+{r7→v}→γ”

============⇒MLc{}, θ′

{r 7→f v1 . . . vn}++ξ
ρ | γ→γ’

======⇒MLc{}, θ@ θ′

Dyn
ρ(Dyn) = R

Dyn.f
ρ

=⇒MLc R.r

Fragm

F(R1) . . . (Rn)
ρ∪{Dyn7→R} | γ→γ’

=============⇒MLc V, θ ξ
ρ | γ’+{R7→V}→γ”

=============⇒MLc{}, θ′

{R7→F R1 . . .Rn}++ξ
ρ | γ→γ’

======⇒MLc{}, θ@ θ′

ClientCode
Inherit the
ML rules

Figure 5.5: Semantics rules for MLc– S, ξ
ρ | γ→γ’

======⇒MLc V, ξ
′, θ

92

5.2 Compilation

In Section 5.1, we presented the two target languages MLs and MLc. We now present
the compilation process transforming one Eliomε program into two distinct MLs and
MLc programs. Before giving a more formal description in Section 5.2.2, we present the
compilation process through three examples of increasing complexity.

Injections and fragments Example 5.4 presents an Eliomε program containing only
simple declarations involving fragments and injections without modules. The Eliomε

program is presented on the left, while the compiled MLs and MLc programs are pre-
sented on the right. In this example, a first fragment is created. It only contains an
integer and is bound to a. A second fragment that uses a is created and bound on the
server to b. Finally, b is used on the client via an injection. The program returns 4.
For each fragment, we emit a bind declaration on the client. The client expression

contained in the fragment is abstracted and transformed in a closure that is bound to
a fresh reference. The number of arguments of the closure corresponds to the number
of injections inside the fragment. Similarly to the interpreted semantics, we use the
client part of the converter on the client. In this case, {{ 1 }} is turned into λ().1 and
{{ frag%a + 1 }} is turned into λv.((fragc v) + 1). On the server, each fragment is
replaced by a call to the primitive fragment. The arguments of the call are the identifier
of the closure and all the injections that are contained in the fragment. The fragment

primitive, which was presented in Section 5.1.3, registers that the closure declared on
the client should be executed later on. Since all the arguments of fragment should be
of type serial, we apply the client and server parts of the converters at the appropriate
places. The exec and end primitives synchronize the execution so that the order of side
effects is preserved. When exec is encountered, it executes queued fragment up to an
end token which was pushed by an end primitive. We place an exec/end pair at each
server section. This is enough to ensure that client code inside server fragment and client
code in regular client declaration is executed in the expected order.
Note that injections, which occur outside of fragments, and escaped values, which

occur inside fragments, are compiled in a very different way. Injections have the useful
property that the use site and number of injections is completely static: we can collect
all the injections on the server, independently of the client control flow and send them to
the client. This is the property that allows us to avoid communications from the client
to the server.

Eliomε MLs MLc

lets a = {{ 1 }};

lets b = {{ frag%a+ 1 }};

letc return = frag%b+ 2;

let a = fragment f0 ();
end ();
let b = fragment f1 (frags a);
end ();
injection x (frags b);

bind f0 = λ().1;
exec ();
bind f1 = λv.((fragc v) + 1);
exec ();
let return = (fragc x) + 2;

Example 5.4: Compilation of expressions

93

Sections and modules We now present an example with client and server modules in
Example 5.5. The lines of the various programs have been laid out in a way that should
highlight their correspondence.
We declare a server module X containing a client fragment, a client functor F contain-

ing an injection, a client functor application Z and finally the client return value, with
another injection. The compilation of the server module X proceeds in the following
way: on the server, we emit a module X similar to the original declaration but where
fragments have been replaced by a call to the fragment primitive. On the client, we only
emit the call to bind, without any of the server-side code structure. Compilation for the
rest of the code proceeds in a similar manner.
This compilation scheme is correct thanks to the following insight: In client and server

modules or functors, the special instructions for fragments and injection can be freely
lifted to the outer scope. Indeed, the fragment closure bound in f0 can only reference
client elements. Since the server X can only introduce server-side variables, the body
of the fragment closure is independent from the server-side code. A similar remark can
be made about the client functor F : the functor argument must be on the client, hence
it cannot introduce new server binding. The server identifier that is injected must have
been introduced outside of functor and the injection can be lifted outside the functor.
Using this remark, the structure of the MLs and MLc programs is fairly straight-

forward: Code on the appropriate side has the same shape as in the original Eliomε

program and code on the other side only contains calls to the appropriate primitives.

Eliomε MLs MLc

modules X = struct

lets a = {{ 2 }}
lets b = 4

end;

modulec F (Y :M) = struct

letc a = Y.b+ int%X.b
end;
modulec Z =
F (struct letc b = 2 end);

letc return =
frag%X.a+ Z.a;

module X = struct

let a = fragment f0 ()
let b = 4

end;
end ();

injection x0 (ints X.b);

injection x1 (frags X.a);

bind f0 = λ().2;

exec ();
module F (Y :M) = struct

let a = Y.b+ (intc x0)
end;
module Z =
F (struct let b = 2 end);

let return =
(fragc x1) + Z.a;

Example 5.5: Compilation of client and server modules and functors

Mixed modules Finally, Example 5.6 presents the compilation of mixed modules. In
this example, we create a mixed structure X containing a server declaration and a client
declaration with an injection. We define a functor F that takes a module containing a
client integer and use it both inside a client fragment, and inside a client declaration.
We then apply F to X and use an injection to compute the final result of the program.
The compilation of the mixed module X is similar to the procedure for programs: we

compile each declaration and use the injection primitive as needed. Additionally, we

94

add a Dyn field on the server-side version of the module. The content of the Dyn field is
determined statically for simple structures (here, it is X0). The client-side version of the
module is first bound to X0 using the bindm primitive. We then declare X as a simple
alias. This alias ensures that X is also usable in client sections transparently.
For functors, the process is similar. One additional complexity is that the Dyn field

should be dynamically generated. For this purpose, we add a call to the fragmentm
primitive. Each call to fragmentm generates a new, fresh identifier. We also prefix each
call to fragment by the Dyn field. On the client, we emit two different functors. The
first one is called F and contains only the client declarations to be used inside the rest of
the client code. It is used for client-side usage of mixed functors. An example with the
interpreted semantics was presented in Section 4.3.3. The other one is bound to a new
reference (here F1) and contains both client declaration, along with calls to the bind

and exec primitives. This function is used to perform client side effects: when the server
version of F is applied, a call to F1 is registered and will be executed when the client
reaches the associated exec call (here, the last one).

Eliomε MLs MLc

modulem X = struct

lets a = 2
letc b = 4 + int%a

end;

modulem F (Y :M) = struct

lets c = {{ Y.b }}
letc d = 2 ∗ Y.b

end;

modulem Z = F (X);

letc return =
frag%Z.c+ Z.d;

module X = struct

module Dyn = X0;
let a = 2; end ();
injection x0 (ints a);

end;

module F (Y :M) = struct

module Dyn =
fragmentm F1 (Y.Dyn);

let c = fragment Dyn.f0 ();
end ();

end;

module Z = F (X);
end ();

injection x1 (frags Z.c);

bindm X0 = struct

exec ();
let b = 4 + (intc x0)

end;
module X = X0;

bindm F1(Y :M) = struct

bindm Dyn.f0 = λ().(Y.b);
exec ();
let d = 2 ∗ Y.b

end;
module F (Y :M) = struct

let d = 2 ∗ Y.b
end;

module Z = F (X);
exec ()

let return =
(fragc x1) + Z.d;

Example 5.6: Compilation of a mixed functor

5.2.1 Sliceability

In order to simplify our presentation of mixed functors, both in the slicing rules and in
the simulation proofs, we consider a sliceability constraint which dictates which programs
can be sliced.
A program is said sliceable if mixed structures are only defined at top level, or directly

inside a toplevel mixed functor. We demonstrate this constraint in Example 5.7. The

95

program presented on the left is not sliceable, since it contains a structure which is
nested inside a structure in a functor. The semantically equivalent program on the right
is sliceable, since structures are not nested.
We discuss this restriction and explain how to partially relax this restriction in Sec-

tion 5.5.

modulem F (X :M) = struct

modulem Y = struct

. . .
end

end

(a) An unsliceable functor

modulem Y ′(X :M) = struct

. . .
end

modulem F (X :M) = struct

modulem Y = Y ′(X)
end

(b) A sliceable functor

Example 5.7: The sliceability constraint

5.2.2 Slicing rules

Given an Eliomε module M (resp. module type M, structure S, . . .) and a location
ι that is either client or server, we note 〈M〉ι the result of the compilation of M to the
location ι. The result of 〈M〉s is a module of MLs and the result of 〈M〉c is a module in
MLc.
Let us defines a few notation. As before, we use e[a 7→ b] to denote the substitution

of a by b in e. e[ai 7→ bi]i denotes the repeated substitution of ai by bi in e. We note
FRAGS(e) (resp. INJS(e)) the fragments (resp. injections) present in the expression e.
We note (ei)i the list of elements ei. For ease of presentation, we use Dς (resp. Dς) for
definitions (resp. declarations) located on location ς.
In the rest of this section, we assume that all the considered programs are well typed

and sliceable.
We now describe how to slice the various constructions of our language. The slicing

rules for modules and expressions are defined in Figure 5.6. The slicing rules for structures
and declarations are presented in Figure 5.7.
Base structure and signature components are left untouched. Indeed, according to

Proposition 4, base elements are valid MLε elements. We do not need to modify them
in any way. Signature components that are not valid on the target location are simply
omitted. Signature components that are valid on the target have their type expressions
translated. The translation of a type expression to the client is the identity: indeed,
there are no new Eliomε type constructs that are valid on the client. Server types,
on the other hand, can contains pieces of client types inside fragments {τc} and inside
converters τs τc. Fragments in MLs are represented by a primitive type, fragment,
without parameters. The type of converters is represented by the type of their server part,
which is τs→ serial. Module and module type expressions are traversed recursively.

96

Type expressions
〈{τ}〉s = frag 〈τs τc〉s = 〈τs〉s→ serial

Signature components
〈Db;S〉ι = Db; 〈S〉ι 〈Dς ;S〉ι = 〈S〉ι when ς � ι

= 〈Dς〉ι ; 〈S〉ι when ς � ι

Declarations and Definitions
〈typeι ti〉ι = type ti 〈typeι ti = τ〉ι = type ti = 〈τ〉ι

〈valι xi : τ〉ι = val xi : 〈τ〉ι 〈moduleς Xi :M〉ι = module Xi : 〈M〉ι
〈letι xi = e〉ι = let xi = e 〈moduleι Xi = M〉ι = module Xi = 〈M〉ι

Module Expressions
〈struct S end〉ι = struct 〈S〉ι end〈

M(M ′)
〉
ι

= 〈M〉ι (
〈
M ′
〉
ι
)

〈functor(Xi :M)M〉ι = functor(Xi : 〈M〉ι) 〈M〉ι
〈functorm(Xi :M)M〉ι = functor(Xi : 〈M〉ι) 〈M〉ι

Module Type Expressions
〈sig S end〉ι = sig 〈S〉ι end〈

functor(Xi :M)M′
〉
ι

= functor(Xi : 〈M〉ι)
〈
M′
〉
ι〈

functorm(Xi :M)M′
〉
ι

= functor(Xi : 〈M〉ι)
〈
M′
〉
ι

Figure 5.6: Slicing – 〈·〉ι

Functors and functor applications have each part sliced. Mixed functors are turned into
normal functors.

Slicing of structure components inserts additional primitives that were described in
Section 5.1. In client structure components, we need to handle injections. We associate
each injection to a new fresh reference noted x. In MLs, we use the injection primitive
to register the fact that the given server value should be associated to a given reference. In
MLc, we replace each injection by its associated reference. This substitution is applied
both inside expressions and structures. Note that for each injection f%x, we use the
encoding part fs and decoding part f c for the server and client code, respectively. For
server structure components, we apply a similar process to handle fragments. For each
fragment, we introduce a reference noted f . In MLs, we replace each fragment by a call
to fragment with argument the associated reference and each escaped value inside the
fragment (with the encoding part of the converters). We also add, after the translated
component, a call to end which indicates that the execution of the component is finished.
In MLc, we use the bind primitives to associate to each reference a closure where all the
escaped values are abstracted. We also introduce the decoding part of each converter for
escaped values. We then call exec, which executes all the pending fragments until the

97

〈Db;S〉ι = Db; 〈S〉ι 〈Dm;S〉ι = 〈Dm〉ι ; 〈S〉ι

〈Dc;S〉s = (injection xi (fsi xi);)i 〈S〉s

〈Dc;S〉c =
Dc

[
fi%xi 7→ (f ci xi)

]
;

〈S〉c

Where{
fi%xi = INJS(Dc)

xi is a list of fresh variables.

〈Ds;S〉s =
〈Ds〉s

[
{{ ei }}fi 7→ fragment fi (fsi,j ai,j)

]
i
;

end ();
〈S〉s

〈Ds;S〉c =

(
bind Dyn.fi = λxi,j .ei

[
fi,j%ai,j 7→ (f ci,j xi,j)

]
;
)
i

exec ();
〈S〉c

Where
{{ ei }}fi = FRAGS(Ds)

∀i, fi,j%ai,j = INJS(ei)

∀i, xi,j are fresh variables

〈
modulem Fi(Xik :Mk) = struct
S

endF

〉
s

=

module Fi(Xik : 〈Mk〉s) = struct

module Dyn = fragmentm F (Xik .Dyn);
〈S〉s

end〈
modulem Fi(Xik :Mk) = struct
S

endF

〉
c

=
bindm F(Xik : 〈Mk〉c) = struct 〈S〉c end;

module Fi(Xik : 〈Mk〉c) = struct S|c end;

〈modulem Xi = struct S endX〉s =

module Xi = struct
module Dyn = X;
〈S〉s

endF

〈modulem Xi = struct S endX〉c =
bindm X = struct 〈S〉c end;
module Xi = X;

〈module Xi = M〉s =
module Xi = 〈M〉s ;
end ();

〈module Xi = M〉c =
module Xi = 〈M〉c ;
exec ();

Figure 5.7: Slicing of declarations – 〈D〉ι

98

next end (). This allows to synchronize interleaved side effects between fragments and
client components.
Given the constraint of sliceability, a mixed module is either a multi-argument functor

returning a structure, or it does not contain any structure at all. For each structure, we
use the reference annotated on structures, as described in Section 4.3.2. Mixed modules
without structures can simply be sliced by leaving the module expression unchanged.
Mixed module types are also straightforward to slice. Mixed structures (with an arbitrary
number of arguments) need special care. In MLs, we add a Dyn field to the structure.
The value of this field is the result of a call to the primitive fragmentm with arguments F
and all the Dyn fields of the arguments of the functor. In MLc, we create two structures
for each mixed structure. One is simply a client functor where all the server parts have
been removed. Note here that we don’t use the slicing operation. The resulting structure
does not contain any call to bind and exec. We also create another structure that uses
the regular slicing operation. This structure is associated to F with the bindm primitive

5.3 Typing preservation

One desirable property is that the introduction of new elements in the language and
the compilation operation does not compromise the guarantees provided by the host
language. To ensure this, we show that slicing a well typed Eliomε program provides
two well typed MLc and MLs programs.
We only consider typing environments Γ containing the primitive types frag and

serial i.e., (types frag) ∈ Γ and (typeb serial) ∈ Γ. We also extend the slicing
operation to typing environments. Slicing a typing environment is equivalent to slicing a
signature with additional rules for converters. Converters, in Eliomε, are not completely
first class: they are only usable in injections and not manipulable in the expression
language. As such, they must be directly provided by the environment. We add the
two following slicing rules that ensures that converters are properly present in the sliced
environment:

〈val f : τs τc〉s = val fs : 〈τs〉s serial

〈val f : τs τc〉c = val f c : serial τc

Theorem 3 (Compilation preserves typing). Let us consider M and M such that
ΓImM :M. Then 〈Γ〉sI 〈M〉s : 〈M〉s and 〈Γ〉cI 〈M〉c : 〈M〉c

Proof. We proceed by induction over the proof tree of ΓImM :M. The only difficult
cases are client and server structure components and mixed structures. For brevity, we
only detail the case of client structure components with one injection.
Let us consider Dc such that ΓIm(Dc;S) :S and INJS(Dc) = f%x. We note x the

fresh reference. By definition of the typing relation on Eliomε, there exists Γ′ and τc,
τs such that Γ ⊂ Γ′, Γ′ .s f : τs τc and Γ′ .s x : τs. We observe that there cannot be any
server bindings in Dc, Hence we can assume Γ′ = Γ. This is illustrated on the proof tree

99

below.

Γ .s f : τs τc Γ .s x : τs

Γ .c f%x : τc
··

ΓIm(Dc;S) :S

By definition of slicing on typing environments, (val f s : 〈τs〉s→ serial) ∈ 〈Γ〉s and
(val f c : serial→ τc) ∈ 〈Γ〉c. By definition of MLc and MLs typing rules, we have
〈Γ〉s .MLs(f

s x) : serial and 〈Γ〉c .MLc(f c x) : τc.
We easily have that 〈Γ〉sIMLs injection x (fs x) : ε, as seen on the proof tree below.

(val fs : 〈τs〉s→ serial) ∈ 〈Γ〉s
〈Γ〉s .MLs f

c : 〈τs〉s serial 〈Γ〉s .MLs x : 〈τs〉s
〈Γ〉sIMLs injection x (f s x) : ε

By induction hypothesis on Γ, (valc xj : τc) .m dc[f%x 7→ xj] : ε where vj is fresh, we
have
〈Γ〉c , (val xj : τc) .MLc dc[f%x 7→ xj] : ε. We can then replace the proof tree of vj by the
one of (f c x). We simply need to ensure that the environments coincide. This is the case
since f c cannot be introduced by new bindings. We can then remove the binding of vj
from the environment, since it is unused. We obtain that 〈Γ〉cIMLc dc[f%x 7→ (f c x)] : ε
which allows us to conclude.

(val f c : serial→ τc) ∈ 〈Γ〉c
〈Γ〉c .MLc f

c : serial τc 〈Γ〉c .MLc x : serial

〈Γ〉c .MLc(f c x) : τc
··

〈Γ〉cIMLc Dc[f%x 7→ (f c x)] ;S :S

100

5.4 Semantics preservation

We now prove that the compilation process preserves the semantics of Eliomε programs.
In order to do that, we show that, given an Eliomε program P , the trace of its execution
is the same as the concatenation of the traces of 〈P 〉s and 〈P 〉c.

First, let us put some constraints on the constants of the Eliomε, MLs and MLc
language:

Hypothesis 1 (Well-behaved converters). Converters are said to be well-behaved if for
each constant c in Const such that TypeOf(c) = τs τc, then cs ∈ Consts and cc ∈ Constc.

We now assume that converters in Eliomε, MLs and MLc are well-behaved. We can
then state the following theorem.

Theorem 4 (Compilation preserves semantics). Given sets of constants where converters
are well-behaved, given an Eliomε program P respecting the slicability hypothesis and

such that P
{}

==⇒ v, θ then

〈P 〉s
{}

==⇒MLs(), ξ, ζ, θs 〈P 〉c , ξ
{} | ζ→γ

======⇒MLc v, ξ
′, θc θ = θs @ θc

5.4.1 Hoisting

In Section 5.2, we mentioned that a useful property of injections and fragments is that
they can be partially lifted outside sections. This property can be used to simplify
the simulation proofs. We consider the code transformation that hoists the content of
injections out of fragments, client declarations and mixed functors in a way that preserve
semantics. This transformation can be decomposed in two parts.

Injections We decompose injections inside fragments and client declarations into sim-
pler components. For example, the Eliomε piece of code presented in Example 5.8a is
decomposed in Example 5.8b by moving out the application of the converter and leaving
only a call to the serial converter. All injections using a converter than is not serial
nor frag can be decomposed in such a way.
Since injections can only be used on variables or constants and that no server bindings

can be introduced inside a fragment, scoping is preserved. Furthermore, by definition of
converters and their client and server components, this transformation preserves typing.
It also preserves the dynamic semantics as long as the order of hoisting correspond to
the order of evaluation. This can be seen by inspecting the reduction relation for server
code under client contexts =⇒c/s. Finally, it trivially preserves the semantics of the
compiled program since it corresponds exactly to how converters are decomposed during
compilation.
This allows us to assume that reduction of server code in client context only uses vari-

able lookup and never leads to any evaluation. In particular, this will avoid having to deal
with the case of fragments being executed inside the reduction of another fragment (to see
why this could happen, consider the case of a converter of type ∀αc.(unit→{αc}) αc).

101

let a = 1 + 2 in

{{ 3 + int%a }}

(a) Fragment with injections

let a = 1 + 2 in

let a′ = (ints a) in

{{ 3 + (intc serial%a′) }}

(b) Fragment with hoisted injections

Example 5.8: Hoisting on fragments

In the rest of this section, we assume that reductions of the Eliomε rule Fragment
are always of the following shape:

e
ρc

==⇒c/s e, ε, 〈〉
{{ e }} ρs

==⇒s r, (bind r = e), 〈〉
where e = e[fi%xi 7→ ρs(xi)]i and fi ∈ {serial, frag}

and that reductions of the Eliomε rule ClientDecl are always of the following shape:

Dc
ρs

==⇒c/sDc, ε, 〈〉
where Dc = Dc[fi%xi 7→ ρs(xi)]i and fi ∈ {serial, frag}

Injections inside mixed modules We also hoist injections completely out of mixed
contexts to the outer englobing scope. For example in the functor presented in Exam-
ple 5.9a, we can lift the injection out of the functor, as show in Example 5.9b. This is
valid since injections can only reference content outside of the functor, by typing. Se-
mantics is similarly preserved since injections inside functors are reduced immediately
when encountering a functor, as per rule ModClosure in Figure 4.16.

This allows us to assume that the reduction of a mixed module will never lead to the
reduction of an injection.

lets x = . . .

modulem F (X :M) = struct

letc y = f%x

end

(a) Mixed functor with injections

lets x = . . .

letc y
′ = f%x

modulem F (X :M) = struct

letc y = y′

end

(b) Mixed functor with hoisted injections

Example 5.9: Hoisting on mixed modules

5.4.2 Preliminaries

Let us start with some naming conventions. Identifiers with a hat, such as γ̂, are related
to the compiled semantics. For example, while the server environment for the interpreted

102

semantics is noted ρs, the environment for the execution of the target language MLs is
noted ρ̂s. This naming convention is only for ease of reading and does not apply a formal
relation between the objects with and without hats, unless indicated explicitly.

Remarks about global environments

Let us make some preliminary remarks about global environments in the Eliomε client
generated programs and in MLc.
Given a global environment γ resulting of =⇒c, it contains only two kinds of references:

• Closure fragments, noted f , which come from the execution of bind env. The
associated value is always a environment (i.e., a signature).

• Fragment values, noted r, which come from the execution of bind with.

In the rest of this section, we consider that we can always decompose global environments
γ in two parts: a fragment value environment γr containing all the references r that were
produced by bind with and a fragment closure environment γf containing only binding
of the form {f 7→ρ} that were produced by bind env.

Similarly, given a global environment γ̂ used in MLc. There are only three kind of
references:

• Closure fragments, noted f , which come from the slicing of syntactic fragments in
the source program. The associated value is always a closure.

• Fragment values, noted r come from the execution of fragments in the fragment
queue.

• Injections, noted x. The associated values must be serializable, and hence can only
be references or constants in Constb.

In the rest of this section, we consider that we can always decompose global compiled
environment γ̂ into a fragment closure environment γ̂f , a fragment value environment γ̂r
and an injection environment ζ.

Client equivalence

Definition 1 (Client values equivalence). Given v an Eliom client value, v′ an MLc
value and ζ an environment of references, v and v′ are equivalent under ζ, noted v 'cζ v′,
if and only if they are equals after substitution by ζ: v[ζ] = v′[ζ].
We extend this notation to environments and traces.

Definition 2 (Global environment equivalence). We say that an Eliomε global envi-
ronment γ = γf ∪ γr and an MLc global environment γ̂ = γ̂f ∪ γ̂r ∪ ζ are synchronized
if and only if the following conditions hold.

• The reference environments are equivalent: γr 'cζ γ̂r

103

• The domains of γf and γ̂f coincides, and:

– For each f in these environments such that γf (f) = ρ and that γ̂f (f) = λx0 . . . xn.ρ̂.e,
then the following property must hold.

We must have that ρ 'cζ ρ̂ and that for all v0, . . . , vn, v̂0, . . . , v̂n such that for all
i, vi 'cζ v̂i; then:

e[xi 7→ vi]i
ρ | γ→γ

=====⇒c v, θ =⇒ (λxi.ρ̂.e v̂0 . . . v̂n)
| γ̂→γ̂

====⇒MLc v̂, θ̂

with v 'cζ v̂ and θ 'cζ θ̂

– For each F in these environments such that γf (F) = ρ and that γ̂f (F) =
functor(ρ̂)(Yi :Mi)iM , we have ρ 'cζ ρ̂.

Definition 3 (Fragment closure environment). We consider that γ̂f is a fragment clo-
sure environment for the Eliomε server expression es, noted FCE(γ̂f , es), if for each
{f 7→λxi.ρ̂.e′} in γ̂f , for each {{ e }}f in FRAGS(es) we have e′ = e[fi%xi 7→ xi]i.

Definition 4 (Functor closure environment). We consider that γ̂f is a functor clo-
sure environment for the Eliomε module expression M , noted FCE(γ̂f ,M), if for each{
F 7→functor(ρ̂)(Yi :Mi)iŜ

}
in γ̂f , for each (struct S endF) in Ms we have Ŝ = 〈S〉c.

Additionally, we require that γ̂f be a fragment closure environment for each expression
contained in S.

In the rest of this section, we use the same notation for both properties. We extend
this notation to server declarations, server values (by looking under closures) and server
environments.

Lemma 1 (Reduction up to equivalence). Given ρ, ρ̂, γ = γf ∪ γr, γ̂ = γ̂f ∪ γ̂r ∪ ζ, e
and ê such that:

ρ 'cζ ρ̂ γ 'cζ γ̂ e[ζ] = ê[ζ] e
ρ | γ→γ

=====⇒c v, θ

Then we have:

ê
ρ̂ | γ̂→γ̂

=====⇒MLc v̂, θ̂ v 'cζ v̂ θ 'cζ θ̂

Proof. The only difference between Eliomε client expressions and MLc expressions are
the presence of extra references for injections in MLc. Indeed, syntactic injections have
been removed either by the server execution or by compilation and bind constructs are
only accessible at the module level. Since we assume that the original expression e and
the compiled expression ê are the same up to the injection environment ζ, we can trivially
mimic the execution of e in ê by induction.

104

Server equivalence

Definition 5 (Server value equivalence). Given v an Eliom server value, v̂ an MLs
value. We say they are equivalent, noted v 's v̂ if and only if

v[{{ ei }}f 7→ fragment f xi,j]i = v̂ where xi,j = INJS(ei)

We extend this notation to environments and traces.

5.4.3 Server expressions and structures

We first look at server expressions and structures. By definition of the server reduction
relation for Eliomε, the emitted program is a series of binds.

Lemma 2 (Server expressions are simulable). We consider an Eliomε server expression
e; the Eliomε environments ρs, ρc and γ = γf ∪ γr; the target environment ρ̂s, ρ̂c and
γ̂ = γ̂f ∪ γ̂r ∪ ζ.

If the expression e has valid server and client executions:

e
ρs

==⇒s v, µ, θs µ
ρc | γ→γ’

======⇒c{}, θc

and the following invariants hold:

ρ̂c 'cζ ρc ρ̂s 's ρs γ̂ 'c γ FCE(γ̂f , e) FCE(γ̂f , ρs)

Then ê = e[{{ ei }}f 7→ fragment f xi,j]i has an equivalent execution.

ê
ρ̂s

==⇒MLs v̂, ξ•, {}, θ̂s exec (), ξ•++end
ρ̂c | γ̂→γ̂’

======⇒MLc ε, [], θ̂c

with the following invariants:

γ̂′ 'c γ′ FCE(γ̂′f , v) v̂ 's v θ̂s 's θs θ̂c 'cζ θc

Proof. We consider an expression e; the Eliomε environments ρs, ρc and γ = γf ∪ γr;
the target environment ρ̂s, ρ̂c and γ̂ = γ̂f ∪ γ̂r ∪ ζ. such that

γ̂ 'c γ ρ̂c 'cζ ρc ρ̂s 's ρs FCE(γ̂f , e) FCE(γ̂f , ρs)

We will proceed by induction over the executions of e and µ. The only case of interest
is when the server expression is a fragment.

• Case {{ e }}f .
We assume that the following executions hold:

ρs(xi) = vi

{{ e }}f
ρs

==⇒m r, bind r = e with f , 〈〉
γ(f) = ρ e

ρ | γ→γ
=====⇒c vc, θc

(bind r = e with f)
ρc | γ→γ’

======⇒c{}, θc

105

where e = e[fi%xi 7→ ↓vi]i and γ′ = γ∪{r7→vc}. We have ê equal to fragment f x1 . . . xn.
We first consider the execution of ê. We can easily construct the following execution.

ρ̂s(xi) = v̂i

fragment f x1 . . . xn
ρ̂s

==⇒MLs r, {r 7→f ↓v̂1 . . . ↓v̂n} , {}, 〈〉

By hypothesis, for each i, vi 'sγ̂ v̂i. This gives us that ↓vi 'cγ̂ ↓v̂i. We trivially have
that r 'sγ̂ r

Let us now look at the client execution. By client execution of µ, γ(f) = ρ. Since γ 'cζ
γ̂, we have {f 7→λx0 . . . xn.ρ̂.e′} ∈ γ̂ and ρ 'cγ̂ ρ̂. Furthermore, since FCE(γ̂f , {{ e }}f),

we know that that e′ = e[fi%xi 7→ xi]i. We have by hypothesis that e
ρc | γ→γ

======⇒c vc, θc.
Since e = e′[xi 7→ ↓vi] and since for all i, ↓vi 'cγ̂ ↓v̂i, we can use Lemma 1 to build the
following reduction:

e′
ρ̂c∪{xi 7→v̂i}i | γ̂→γ̂=============⇒MLc v̂, θ̂c

λx1 . . . xn.ρ̂.e
′ ↓v̂1 . . . ↓v̂n

ρ̂c | γ̂→γ̂
======⇒MLc v̂, θ̂c

f ↓v̂1 . . . ↓v̂n
ρ̂c | γ̂→γ̂

======⇒MLc v̂, θ̂c

exec (), {r 7→f ↓v̂1 . . . ↓v̂n}
ρ̂c | γ̂→γ̂’

======⇒MLc ε, [], θ̂c

Where γ̂′ = γ̂ ∪ {r 7→v̂}. By Lemma 1, we have that v 'cγ̂ v̂ and θc 'cγ̂ θ̂c. The only part
that is changed in γ′ and γ̂′ is the fragment reference environment, hence we easily have
that γ̂′ 'c γ′, which concludes. �

• Other cases.

In other cases, we first note that references manipulated inside server code can only
fragment references r. By hypothesis, the same references are considered before and after
compilation. Since the fragment closure environment hypothesis ranges over all server
expressions, including the one in closures, it is easy to preserve it during execution. The
rest is a very simple induction. �

Corollary 1 (Server module declarations are simulable). We consider an Eliomε server
declaration Ds; the Eliomε environments ρs, ρc and γ = γf ∪γr; the target environment
ρ̂s, ρ̂c and γ̂ = γ̂f ∪ γ̂r ∪ ζ.

If the expression e has valid server and client executions:

D
ρs

==⇒s V, µ, θs µ
ρc | γ→γ’

======⇒c{}, θc

and the following invariants hold:

ρ̂c 'cζ ρc ρ̂s 's ρs γ̂ 'c γ FCE(γ̂f , D) FCE(γ̂f , ρs)

106

Then D̂ = D[{{ ei }}f 7→ fragment f xi,j]i have an equivalent execution.

D̂
ρ̂s

==⇒MLs V̂ , ξ•, {}, θ̂s exec (), ξ•++end
ρ̂c | γ̂→γ̂’

======⇒MLc ε, [], θ̂c

with the following invariants:

γ̂′ 'c γ′ FCE(γ̂′f , V) V̂ 's V θ̂s 's θs θ̂c 'cζ′ θc

5.4.4 Mixed structures

Lemma 3 (Structures are simulable). We consider a slicable structure S; the Eliomε

environments ρs, ρc and γ = γf ∪ γr; the target environment ρ̂s, ρ̂c and γ̂ = γ̂f ∪ γ̂r ∪ ζ.
If the structure has valid server and client executions:

S
ρs

==⇒m Vs, µ, θs µ
ρc | γ→γ’

======⇒c Vc, θc

and the following invariants hold:

ρ̂c 'cζ ρc ρ̂s 's ρs γ̂ 'c γ FCE(γ̂f , S) FCE(γ̂f , ρs)

then for any ξ, the compiled structures have equivalent executions

〈S〉s
ρ̂s

==⇒MLs V̂s, ξ•, ζ•, θ̂s 〈S〉c , ξ•++ξ
ρ̂c | ζ•∪γ̂→γ̂’

=========⇒MLc V̂c, ξ
′, θ̂c

with the following invariants:

γ̂′ 'c γ′ V̂s 's Vs θ̂s 's θs
FCE(γ̂′f , Vs) V̂c 'cγ̂′ Vc θ̂c 'cγ̂′ θc

Proof. We consider a slicable structure S; the Eliomε environments ρs, ρc and γ =
γf ∪ γr; the target environment ρ̂s, ρ̂c and and γ̂ = γ̂f ∪ γ̂r ∪ ζ. such that

ρ̂c 'cγ̂ ρc ρ̂s 's ρs γ̂ 'c γ FCE(γ̂f , S) FCE(γ̂f , ρs)

We will now proceed by induction over the execution of S.

• Case S = Db;S
′ – Base declaration.

We assume that the following executions hold:

Db
ρs

==⇒b Vs, ε, θs S′
ρs+Vs

=====⇒m V
′
s , µ, θ

′
s

Db;S
′ ρs
==⇒m Vs + V ′s , (Db;µ), θs @ θ′s

Db
ρc | γ→γ

======⇒c Vc, θc µ
ρc+Vc | γ→γ’

=========⇒c V
′
c , θ
′
c

Db;µ
ρc | γ→γ’

======⇒c Vc + V ′c , θc @ θ′c

Let us consider the executions of Db. By definition of base, it contains neither in-

jections nor fragments. By Proposition 5, Db
ρ

=⇒b Vs, ε, θs and Db
ρc | γ→γ

======⇒c Vb, θc both

107

correspond to Db
ρs

==⇒ Vs, ε, θs and Db
ρc

==⇒ Vc, ε, θc respectively. By definition, base frag-
ments can’t be present, hence we also have FCE(γ̂f , Vs)

Additionally, the compilation functions are the identity on base, which mean that
〈Db〉s and 〈Db〉c contains only ML constructs. The reduction relation over MLs and
MLc coincide with the ML one on the ML fragment of the language. Hence, for any ξ,

we have 〈Db〉s
ρs

==⇒MLs V̂s, [], {}, θ̂s and 〈Db〉c , ξ
ρc | γ̂→γ̂

======⇒MLc V̂c, ξ, θ̂c with

V̂s 's Vs V̂c 'cγ̂ Vc θ̂s 's θs θ̂c 'cγ̂ θc

Let us consider the execution of S′ and µ. We easily have the following properties:

ρ̂c + V̂c 'cζ ρc + Vc ρ̂s + V̂s 's ρs + Vs γ̂ 'c γ FCE(γ̂f , S) FCE(γ̂f , ρs + Vs)

hence, by induction on the execution of S′ and µ′, we have 〈S′〉s
ρ̂s+V̂s

=====⇒MLs V̂
′
s , ξ•, ζ•, θ̂

′
s

and 〈S′〉c , ξ•++ξ
ρ̂c+V̂c | γ̂∪ζ•→γ̂’

===========⇒MLc V̂
′
c , ξ, θ̂

′
c for any ξ, with

γ̂′ 'c γ′ V̂ ′s 's V ′s θ̂s 's θs
FCE(γ̂′f , V

′
s) V̂ ′c 'cγ̂′ V

′
c θ̂′c 'cγ̂′ θ

′
c

We can then build the following derivations:

〈Db〉s
ρ̂s

==⇒MLs V̂s, [], {}, θs
〈
S′
〉
s

ρ̂s+V̂s
=====⇒MLs V̂

′
s , ξ•, ζ•, θ̂

′
s〈

Db;S
′〉
s

ρ̂s
==⇒MLs V̂s + V̂ ′s , ξ•, ζ•, θ̂s @ θ̂′s

〈Db〉c , ξ•++ξ
ρ̂c | γ̂∪ζ•→γ̂∪ζ•

==========⇒MLc V̂c, ξ•++ξ, θ̂c
〈
S′
〉
c
, ξ•++ξ

ρ̂c+V̂c | γ̂∪ζ•→γ̂’
===========⇒MLc V̂

′
c , ξ, θ̂

′
c

〈Db;S〉c , ξ•++ξ
ρc | γ̂∪ζ•→γ̂’

=========⇒MLc V̂c + V̂ ′c , ξ, θ̂c @ θ̂′c

and the following invariants are easily verified:

γ̂′ 'c γ′ V̂s + V̂ ′s 's Vs + V ′s θ̂s @ θ̂′s 's θs @ θ′s
FCE(γ̂′f , Vs + V ′s) V̂c + V̂ ′c 'cγ̂′ Vs + V ′c θ̂c @ θ̂′c 'cγ̂′ θc @ θ′c �

• Case S = Ds;S
′ – Server declaration.

We assume that the following executions hold:

Ds
ρs

==⇒s Vs, µ, θs S′
ρs+Vs

=====⇒m V
′
s , µ
′, θ′s

Ds;S
′ ρs
==⇒m Vs + V ′s , (bind env fi)i;µ;µ′, θs @ θ′s

(bind env fi)i
ρc | γ→γ’

======⇒c{}, 〈〉 µ
ρc | γ’→γ”

=======⇒c Vc, θc µ′
ρc | γ”→γ”’

========⇒c V
′
c , θ
′
c

(bind env fi)i;µ;µ′
ρc | γ→γ”

=======⇒c Vc + V ′c , θc @ θ′c

108

Let us note {{ ei }}fi the fragments syntactically present in Ds. let us note {{ ej }}fj
the fragments executed during the reduction of Ds and rj the associated fresh variables.

We have the following compilations:〈
Ds;S

′〉
s

= 〈Ds〉s[{{ ei }}fi 7→ fragment fi xi,k]i ; end ();
〈
S′
〉
s〈

Ds;S
′〉
c

= (bind fi = λxi,k.ei[fi,k%xi,k 7→ xi,k] ;)i ; exec ();
〈
S′
〉
c

After hoisting, converters can only be the serial or frag. Its server and client parts
are the identity, hence we simply omit them. We also note that 〈Ds〉s differs with Ds

only on type annotations and type declarations which are ignored by reduction relations.
We note D̂s = 〈Ds〉s[{{ ei }} 7→ fragment fi xi,k]i.

Let us consider the reduction of (bind fi = λxi.êi)i. Let us note e′i = ei[fi,j%xi,j 7→ xi,j].
For any queue ξ, we have the following reduction:

∀i,

λx1 . . . xm.e
′
i, ξ

ρ̂c | γ̂i→γ̂i
=======⇒MLc λxi.ρ̂c.e

′
i, ξ, 〈〉

bind fi = λxi.e
′
i, ξ

ρ̂c | γ̂i→γ̂i+1
========⇒MLc{}, ξ, 〈〉

(bind fi = λxi.e
′
i)i, ξ

ρ̂c | γ̂1→γ̂n+1
=========⇒MLc{}, ξ, 〈〉

where γ̂1 = γ̂ and γ̂i+1 = γ̂i ∪ {fi 7→λx1 . . . xm.ρ̂c.e′i}. Let γbind be {fi 7→λx1 . . . xm.ρ̂c.e′i}i.
We note γ̂′ = γ̂n+1 = γ̂ ∪ γbind and γ̂′f = γ̂f ∪ γbind.

Since (bind env fi)i
ρc | γ→γ’

======⇒c{}, 〈〉, we have γ′ = γ∪{fi 7→ρc}i. and ρc 'c ρ̂c, we have
that γ′ 'c γ̂′. Furthermore, given one of the fi in γbind, each fragment annotated with
this fi syntactically appear in Ds by uniqueness of the annotation function. This also
holds inside functors, since each fi will be prefixed by a unique module reference. Hence
FCE(γ̂′f , Ds) and FCE(γ̂′f , ρs).

We now have all the ingredients to uses Corollary 1 on the execution of Ds and µ.
This gives us the following reductions:

D̂s
ρ̂s

==⇒MLs V̂s, ξ•, {}, θ̂s exec (), ξ•++end
ρ̂c | γ̂’→γ̂”

=======⇒MLc ε, [], θ̂c

with the following invariants:

γ̂′′ 'c γ′′ FCE(γ̂′′f , V) V̂ 's V θ̂s 's θs θ̂c 'cζ θc

We remark that ζ ′′ = ζ since no injection took place during a server section and that
γ̂′′f = γ̂′f , by definition of the reduction for exec.

We now consider the execution of S′. The following invariants holds:

ρ̂c 'cζ ρc ρ̂s + V̂s 's ρs + Vs γ̂′′ 'c γ′′ FCE(γ̂′′f , S
′) FCE(γ̂′′f , ρ

′
s + Vs)

109

By induction on the execution of S′ and µ′, we have 〈S′〉s
ρ̂s+V̂s

=====⇒MLs V̂
′
s , ξ
′
•, ζ
′
•, θ̂
′
c and

〈S′〉c , ξ′•++ξ′
ρ̂c | γ̂”∪ζ’•→γ̂”’

==========⇒MLc V̂
′
c , ξ
′, θ̂′c where

γ̂′′′ 'c γ′′′ V̂ ′s 's V ′s θ̂′s 's θ′s
FCE(γ̂′′′f , V

′
s) V̂ ′c 'cγ̂′ V

′
c θ̂′c 'cγ̂′ θ

′
c

Finally, we can construct the following executions:

D̂s
ρ̂s

==⇒MLs V̂s, ξ•, {}, θ̂s
〈
S′
〉
s

ρs+Vs
=====⇒MLs V̂

′
s , ξ
′
•, ζ
′
•, θ̂
′
s

D̂s; end ();
〈
S′
〉
s

ρ̂s
==⇒MLs V̂s + V̂ ′s , ξ•++end++ξ′•, ζ

′
•, θ̂s @ θ̂′s

µ̂, ξ
ρ̂c | γ̂∪ζ’•→γ̂’∪ζ’•

============⇒MLc{}, ξ, 〈〉

〈
S′
〉
c
, ξ′•++ξ′

ρ̂c | γ̂”∪ζ’•→γ̂”’
==========⇒MLc V

′
c , ξ
′, θ̂′c

exec ();
〈
S′
〉
c
, ξ

ρ̂c | γ̂’∪ζ’•→γ̂”’
==========⇒MLc V̂

′
c , ξ
′, θ̂c @ θ̂′c

µ̂; exec ();
〈
S′
〉
c
, ξ

ρ̂c | γ̂∪ζ’•→γ̂”’
==========⇒MLc V̂

′
c , ξ
′, θ̂c @ θ̂′c

where ξ = ξ•++end++ξ′•++ξ′ and µ̂ = (bind fi = λxi.e
′
i)i. We verify the following

invariants:

γ̂′′′ 'c γ′′′ V̂s + V̂ ′s 's Vs + V ′s θ̂s + θ̂′s 's θs + θ′s
FCE(γ̂′′′f , Vs + V ′s) V̂ ′c 'cγ̂′′′ V

′
c θ̂c + θ̂′c 'cγ̂′′′ θc + θ′c �

• Case S = Dc;S
′ – Client declaration.

We assume that the following executions hold:

Dc
ρs

==⇒c/sDc, ε, 〈〉 S′
ρs

==⇒m V
′
s , µ
′, θ′s

Dc;S
′ ρs
==⇒m V

′
s , (Dc;µ

′), θ′s

Dc
ρc | γ→γ

======⇒c Vc, θc µ′
ρc+Vc | γ→γ’

=========⇒c V
′
c , θ
′
c

Dc;µ
′ ρc | γ→γ’
======⇒c Vc + V ′c , θc @ θ′c

Let us note fi%xi the injections in Dc and xi the associated fresh variables. Since
hoisting has been applied, all the fi are either serial or frag. Furthermore, no fragments
are executed due to the execution of injections and Dc = Dc[fi%xi 7→ ρs(xi)]i.

We have the following compilations:

〈Dc;S〉s = (injection xi xi;)i end (); 〈S〉s
〈Dc;S〉c = exec ();Dc[fi%xi 7→ xi]i ; 〈S〉c

In the rest of this proof, we note D̂c = Dc[fi%xi 7→ xi]i.
We consider the server reductionDc =⇒c/sDc. We know thatDc = Dc[fi%xi 7→ ↓ρs(xi)]i.

Let us note vi = ρs(xi). We can build the following MLs reduction:

∀i.

ρ̂s(xi) = v̂i

injection xi xi
ρ̂s

==⇒MLs ε, [], {xi 7→↓v̂i} , 〈〉

(injection xi xi;)i; end ()
ρ̂s

==⇒MLs ε, end, {xi 7→↓v̂i}i , 〈〉

110

Since ρ̂s 's ρs, we also have that v̂i 's vi and ↓v̂i 'cζ ↓vi for each i. We note
ζ• = {xi 7→↓v̂i}i. By definition of the slicing relation, the xi are fresh, hence they are not
bound in γ̂. We can thus construct the global environment γ̂′ = γ̂ ∪ ζ•. Since we only
extend the part with injection references, we still have that γ 'c γ̂′.

We now consider the client reduction Dc
ρc | γ→γ

======⇒c Vc, θc. We know that Dc is equal to

Dc[fi%xi 7→ ↓vi]i, hence the reduction tree contains for each i a reduction ↓vi
| γ→γ

====⇒c ↓vi, 〈〉.
To obtain a reduction of D̂c = Dc[fi%xi 7→ xi]i, we simply substitute each of these sub-

reduction by one of the form xi, ξ
| γ̂’→γ̂’

=====⇒MLc ↓v̂c, ξ, 〈〉. for any queue ξ. By Lemma 1,
we can build the following reduction:

D̂c, ξ
ρ̂c | γ̂’→γ̂’

=======⇒MLc V̂c, ξ, θ̂c

where V̂c 'cζ′ Vc and θ̂c 'cζ′ θc, for any queue ξ.

We now consider the execution of S′. We have the following properties:

ρ̂c + V̂c 'cζ′ ρc + Vc ρ̂s 's ρs γ̂′ 'c γ FCE(γ̂f , S
′) FCE(γ̂f , ρs)

By induction on the execution of S′ and µ′, we have 〈S′〉c
ρ̂c+V̂c

=====⇒MLs V̂
′
s , ξ
′
•, ζ
′
•, θ̂
′
c and

〈S′〉s , ξ′•++ξ′
ρ̂s | ζ’•∪γ̂’→γ̂”

==========⇒MLc V̂
′
c , ξ
′, θ̂′c where

γ̂′′ 'c γ′ V̂ ′s 'sζ′′ V ′s θ̂′s 'sζ′′ θ′s
FCE(γ̂′′f , V

′
s) V̂ ′c 'cζ′′ V ′c θ̂′c 'cζ′′ θ′c

Finally, we can build the following derivations:

∀i, injection xi xi
ρ̂s

==⇒MLs ε, [], ζ•, 〈〉
〈
S′
〉
s

ρ̂s
==⇒MLs V̂

′
s , ξ
′
•, ζ
′
•, θ̂
′
s

(injection xi (fsi xi);)i end ();
〈
S′
〉
s

ρ̂s
==⇒MLs V̂

′
s , end++ξ′•, ζ• ∪ ζ ′•, θ̂′s

D̂c, ξ
′
•++ξ′

ρ̂c | γ̂’∪ζ’•→γ̂’∪ζ’•
============⇒MLc V̂c, ξ

′
•++ξ′, θ̂′c

〈
S′
〉
c
, ξ′•++ξ′

ρ̂c+V̂c | γ̂’∪ζ’•→γ̂”
============⇒MLc V̂

′
c , ξ
′, θ̂′c

D̂c;
〈
S′
〉
c
, ξ′•++ξ′

ρ̂c | γ̂’∪ζ’•→γ̂”
==========⇒MLc V̂c + V̂ ′c , ξ

′, θ̂c @ θ̂′c

exec (); D̂c;
〈
S′
〉
c
, end++ξ′•++ξ′

ρ̂c | γ̂∪ζ•∪ζ’•→γ̂”
============⇒MLc V̂c + V̂ ′c , ξ

′, θ̂c @ θ̂′c

We verify the following invariants:

γ̂′′ 'c γ′ V̂s 's Vs θ̂s 's θs
FCE(γ̂′′f , Vs + V ′s) V̂c + V̂ ′c 'cγ̂′′ Vc + V ′c θ̂c + θ̂′c 'cγ̂′′ θc + θ′c �

111

• Case modulem X = M ;S′ – Declaration of a mixed module.

We assume that the following executions hold:

M
ρs

==⇒m Vs,M
c, µ, θs

modulem X = M
ρs

==⇒m {X 7→Vs} , module X = M c;µ, θs S′
ρs+{X 7→Vs}

=========⇒m V
′
s , µ
′, θ′s

modulem X = M ;S′
ρs

==⇒m {X 7→Vs}+ V ′s , (µ; module X = M c;µ′), θs @ θ′s

µ
ρc | γ→γ’

======⇒c{}, θc

M c ρc | γ’→γ”
=======⇒c Vc, θ

′
c

module X = M c ρc | γ’→γ”
=======⇒c {X 7→Vc} , θ′c µ′

ρc+{X 7→Vc} | γ”→γ”’
==============⇒c V

′
c , θ
′′
c

µ; module X = M c;µ′
ρc | γ→γ”’

=======⇒c {X 7→Vc}+ V ′c , θc @ θ′c @ θ′′c

Let us assumes that we can build the following reductions

〈modulem X = M〉s
ρ̂s

==⇒MLs

{
X 7→V̂s

}
, ξ•, ζ, θ̂s

〈modulem X = M〉c , ξ•++ξ
ρ̂c | ζ∪γ̂→γ̂’

========⇒MLc

{
X 7→V̂c

}
, ξ, θ̂c

for any ξ, and that the following invariants hold:

γ̂′ 'c γ′′ V̂s 's Vs θ̂s 's θs
FCE(γ̂′f , Vs) V̂c 'cγ̂′′ Vc θ̂c 'cγ̂′ θc + θ′c

By induction on the execution of S′ and µ′, we can build the following reduction:

〈S′〉s
ρ̂s+{X 7→V̂s}

=========⇒MLs V
′
s , ξ
′
•, ζ
′, θ′s and 〈S′〉c , ξ′•++ξ

ρ̂c+{X 7→V̂c} | ζ’∪γ̂’→γ̂”
================⇒MLc V

′
c , ξ, θ

′
c, which

allows us to conclude.
To build the compiled reduction, we will operate by case analysis over M .

• Subcase M = struct S endX – Declaration of a mixed structure.

We have µ = bind X = (struct µ0 end) and M c = X with the following reductions:

S
ρs

==⇒m Vs, µ, θs

struct S end
ρs

==⇒m Vs + {Dyn7→X} ,X, µ, θs

µ0
ρc | γ→γ’

======⇒c Vc, θc

γ′′(X) = Vc

X
ρc | γ”→γ”

=======⇒c Vc, 〈〉

(bind X = struct µ0 end; module X = X)
ρc | γ→γ”

=======⇒c, θc

where γ′′ = γ′ ∪ {X 7→Vc}.

112

We have the following compilations:

〈modulem X = struct S endX〉s =

module X = struct

module Dyn = X;

〈S〉s
end

〈modulem X = struct S endX〉c =
bindm X = struct 〈S〉c end;

module X = X;

By induction on the execution of S and µ, we have 〈S〉s
ρ̂s

==⇒MLs V̂s, ξ•, ζ•, θ̂s and

〈S〉c , ξ•++ξ
ρ̂c | γ̂∪ζ•→γ̂’

=========⇒MLc V̂c, ξ, θ̂c with the following invariants:

γ̂′ 'c γ′ V̂s 's Vs θ̂s 's θs
FCE(γ̂′f , Vs) V̂c 'cγ̂′ Vc θ̂c 'cγ̂′ θc

We can then build the following executions:

〈S〉s
ρ̂s

==⇒MLs V̂s, ξ•, ζ•, θ̂s

〈modulem X = struct S endX〉s
ρ̂s

==⇒MLs

{
X 7→{Dyn 7→X}+ V̂s

}
, ξ•, ζ•, θ̂s

〈S〉c , ξ•++ξ
ρ̂c | γ̂∪ζ•→γ̂’

=========⇒MLc V̂c, ξ, θ̂c

module X = struct 〈S〉c end, ξ•++ξ
ρ̂c | γ̂∪ζ•→γ̂’

=========⇒MLc

{
X 7→V̂c

}
, ξ, θ̂c

〈modulem X = struct S end〉c , ξ•++ξ
ρ̂c | γ̂∪ζ•→γ̂”

=========⇒MLc

{
X 7→V̂c

}
, ξ, θ̂c

Where γ̂′′ = γ̂′ ∪
{
X 7→V̂c

}
. We verify the following invariants:

γ̂′′ 'c γ′ V̂s + {Dyn 7→X} 's Vs + {Dyn 7→X} θ̂s 's θs
FCE(γ̂′′f , Vs) V̂c 'cγ̂′ Vc θ̂c 'cγ̂′ θc

which concludes. �

• Subcase M = functor(Xi :Mi)istruct S endF – Declaration of a mixed functor.

In this case, we have the client program µ = bind env F and the module expression

113

M c = functor(Xi :Mi)istruct S|c end. The following reductions hold:

modulem F (Xi :Mi)i = struct

S

endF

 ρs
==⇒m {F 7→Vs} ,

bind env F

modulem F (Xi :Mi)i = struct

S|c
end

 , 〈〉

bind env F

modulem F (Xi :Mi)i = struct

S|c
end

 ρc | γ→γ’
======⇒c {F 7→Vc} , 〈〉

Where γ′ = γ ∪ {F 7→ρc} and the following values:

Vs = functor(ρs)(Xi :Mi)istruct S end

Vc = functor(ρc)(Xi :Mi)istruct S|c end

We recall that by hoisting, the body of the functors contains no injection, hence we don’t
need to evaluate server code in the client part.
We have the following compilations:

〈modulem F (Xi :Mi)i = struct

S

endF

〉
s

=

module F (Xi : 〈Mi〉s)i = struct

module Dyn = fragmentm F (Xi.Dyn)i;

〈S〉s
end〈modulem F (Xi :Mi)i = struct

S

endF

〉
c

=
bindm F(Xi : 〈Mi〉c)i = struct 〈S〉c end;

module F (Xi : 〈Mi〉c)i = struct S|c end;

We trivially have the following execution:

〈modulem F (Xi :Mi)i = struct

S

endF

〉
s

ρ̂s
==⇒MLs

{
F 7→V̂s

}
, ξ•, {}, 〈〉

〈modulem F (Xi :Mi)i = struct

S

endF

〉
c

, ξ
ρ̂c | γ̂→γ̂’

======⇒MLc

{
F 7→V̂c

}
, ξ, 〈〉

114

Where γ′ = γ ∪
{
F 7→V̂F

}
with the following values:

V̂s = functor(ρ̂s)(Xi :Mi)istruct 〈S〉s end

V̂c = functor(ρ̂c)(Xi :Mi)istruct S|c end
V̂F = functor(ρ̂c)(Xi :Mi)istruct 〈S〉c end

We now need to show that the invariants still hold. We easily have that V̂c 'cγ̂ Vc.
By definition of equivalence over mixed functors, we have V̂s 's Vs. Indeed, the body
of the functor in V̂s is the server compilation of the body of the mixed functor Vs and
the captured environments corresponds. Finally, we have that the body of V̂F is the
client compilation of the body of the mixed functors and that the capture environment
corresponds to γ′(F). Thus we get that FCE(γ̂′f , Vs). By definition of the annotation
function, the reference F could not have appeared on a previously executed structure,
hence we still have that FCE(γ̂′f , ρ̂s).

Hence, all the following invariants are respected, which concludes.

γ̂′ 'c γ′ V̂s 's Vs
FCE(γ̂′f , Vs) V̂c 'cγ̂′′ Vc �

Otherwise, M is a module expression. By definition of slicability, M does not syn-
tactically contain any structure. In the general case, we should proceed by induction
over module expressions. We will simply present the case of a mixed functor application
where the functor returns a mixed structure.

We consider M = F (X1) . . . (Xn). We have M c = F (X1) . . . (Xn) with the following
executions:

F
ρs

==⇒m functorm(ρ′s)(Yi :Mi)istruct S endF, ε, 〈〉 Xi
ρs

==⇒m V
s
i , ε, 〈〉

V s
i (Dyn) = Ri R fresh S[fi 7→ R.fi]i

ρ’s+{Yi 7→Vs
i}i==========⇒m V, µ0, θ

F (X1) . . . (Xn)
ρs

==⇒m Vs + {Dyn 7→R} , µ =

bind R = struct

(module Yi = Ri;)i
µ0

end with F

 , θ

modulem X = F (X1) . . . (Xn)
ρ

=⇒m Vs, (µ; module X = F (X1) . . . (Xn)) , θs

115

γ(F) = ρF γ(Ri) = V c
i µ0

ρF+{Yi 7→Vc
i }i | γ→γ’==============⇒c Vc, θc

bind R = struct

(module Yi = Ri;)i
µ0

end with F

 ρc | γ→γ’∪{R7→Vc}
=============⇒c ε, θc

F
ρs |···→···

======⇒c functor(ρ′c)(Yi :Mi)istruct Sc end, 〈〉

Xi
ρc |···→···

======⇒c Vi, 〈〉 Sc
ρ’c+{Yi 7→Vi}i | γ’∪{R7→Vc}→γ”

=====================⇒c V
′
c , θ
′
c

module X = F (X1) . . . (Xn)
ρc | γ’∪{R7→Vc}→γ”

=============⇒c

{
X 7→V ′c

}
, θ′c

We note VF the value of F in γs, which is functor(ρ′s)(Yi :Mi)istruct S end.
We have the following compilations:

〈modulem X = F (X1) . . . (Xn)〉s =
module X = F (X1) . . . (Xn);

end ();

〈modulem X = F (X1) . . . (Xn)〉c =
module X = F (X1) . . . (Xn);

exec ();

Let us now look at the execution of the server application F (X1) . . . (Xn). By hypoth-
esis, VF is a mixed functor. By equivalence, we know that ρ̂s(F) = V̂F where V̂F 's VF .
By definition of the equivalence on server values, V̂F is of the following shape:

V̂F =

functor(ρ̂′s)(Yi :Mi)istruct

module Dyn = fragmentm F (Yi.Dyn)i;

〈S〉s
end

where ρ̂′s 'sγ̂ ρ

′
s. For each i we note V̂ s

i = ρ̂s(Xi). By equivalence, we have V̂ s
i 's V s

i .
Furthermore, since γ̂ 'c γ and by hypothesis, F is also bound in γ̂. We note VF the

corresponding value. Since FCE(γ̂, Vc) (via ρs), then V̂F is of the following shape:

V̂F =

functor(ρ̂F)(Yi :Mi)istruct

〈S〉c
end

where ρ̂F 'cγ̂ ρF = γ(F). Additionally, for each i we note V c

i = γ̂(Ri). By equivalence,
we have V̂ c

i 's V c
i .

We can now proceed by induction on S and µ0 in the environment γ̂, ρ̂c ∪ {Yi 7→Ri}
and ρ̂s ∪ {Dyn 7→R} ∪

{
Yi 7→V̂ s

i

}
i
. We obtain the following reductions:

〈S〉s
ρ̂’s∪{Yi 7→V̂s

i}i==========⇒MLs ξ•, ζ•, θ̂s, and 〈S〉c , ξ•++ξ
ρ̂c∪{Yi 7→Ri}i | ζ•∪γ̂→γ̂’================⇒MLc V̂c, ξ, θ̂c

116

with the usual invariants. We can now build the following executions:

fragmentm F (Yi.Dyn)i
ρ̂’s∪{Yi 7→V̂s

i}i==========⇒MLs R, ξR, ε, 〈〉

ρ̂s(F) = V̂f ρ̂s(Xi) = V̂ s
i 〈S〉s

ρ̂’s∪{Dyn7→R}∪{Yi 7→V̂s
i}i=================⇒MLs ξ•, ζ•, θ̂s,

module X = F (X1) . . . (Xn); end ()
ρ̂s

==⇒MLs

{
X 7→V̂s

}
, ξR++ξ•++end, ζ•, θ̂s

γ̂(F) = V̂F 〈S〉c , ξ•++end++ξ
ρ̂F∪{Yi 7→Ri}i | ζ•∪γ̂→γ̂’================⇒MLc V̂c, end++ξ, θ̂c

exec (), ξR++ξ•++end++ξ
ρ̂c | ζ•∪γ̂→γ̂’∪{R7→V̂c}

===============⇒MLc ε, ξ, θ̂c

where ξR = {R7→F(R1) . . . (Rn)}. We respect the following invariants:

γ̂′ 'c γ′ V̂s 's Vs θ̂s 's θs
FCE(γ̂′f , Vs) V̂c 'cγ̂′ Vc θ̂c 'cγ̂′ θc

Let us now consider the client application. Since ρc 'cγ̂ ρ̂c, we have that the body of
the functor F is equivalent. We can thus build the following reduction:

ρ̂c(F) = functor(ρ̂′c)(Yi :Mi)istruct Ŝc end

ρ̂c(Xi) = V̂ c
i Ŝc

ρ̂’c+{Yi 7→V̂c
i }i | γ̂’∪{R7→V̂c}→γ̂”

======================⇒MLc V̂
′
c , θ̂
′
c

module X = F (X1) . . . (Xn), ξ
ρ̂c | γ̂’∪{R7→V̂c}→γ̂”

==============⇒MLc

{
X 7→V̂ ′c

}
, ξ, θ̂′c

By equivalence of F and Xi in ρc and ρ̂c, we have that γ̂′ 'c γ′, V̂ ′c 'cγ̂′ V
′
c and θ̂c 'cγ̂′ θc.

We already built the reduction for the compiled server program. We can now build
the compiled client program:

exec (), {R7→F(R1) . . . (Rn)}++ξ•++end++ξ
ρ̂c | ζ•∪γ̂→γ̂’∪{R7→V̂c}

===============⇒MLc ε, ξ, θ̂c

module X = F (X1) . . . (Xn), ξ
ρ̂c | γ̂’∪{R7→V̂c}→γ̂”

==============⇒MLc

{
X 7→V̂ ′c

}
, ξ, θ̂′c

〈modulem X = F (X1) . . . (Xn)〉c , ξR++ξ•++end++ξ
ρ̂c | ζ•∪γ̂→γ̂”

=========⇒MLc

{
X 7→V̂ ′c

}
, ξ, θ̂c @ θ̂′c

where the invariants still hold. This concludes. �

5.4.5 Proof of the main theorem

Finally, we prove Theorem 4. This is a direct consequence of Lemma 3.

117

Proof of Theorem 4. We have that P
{}

==⇒ v, θ. By definition of an Eliomε program
execution, we can decompose this rule as following:

P
{}

==⇒m(), µ, θs µ
{} | ε→γ

======⇒c v, θc

P
{}

==⇒ v, θs @ θc

We trivially have the following invariants:

{} 'c{} {} {} 's {} γ̂ 'c γ FCE({}, P) FCE({}, {})

which allow us to apply Lemma 3 and conclude.

118

5.5 Discussion around mixed functors

In this thesis, we presented the notion of “mixed functors”, which are functors that take as
argument and return mixed module composed of both client and server code. As we saw,
those functors, while quite expressive, have several limitations. In this section, we will
try to explore a little bit the design space around mixed functors and which limitations
we think could be lifted.
First, let us recall the design constraints of Eliom: typing and slicing are done stati-

cally and separate compilation is supported. This prevents us from “erasing” functors by
inlining them and also prevents us from dynamically generating the code contained in
functors. Furthermore, we want to support languages extensions such as OCaml, where
functor application can depend on the control flow (notably, first class modules).
One alternative solution would be fully separable functors: mixed functors such that

client and server execution are completely independent. While this would be easy to
implement, it would also mean preventing any meaningful usage of fragments inside
functors. Our version of mixed functors is slightly more expressive: the client part of
the functor is indeed independent from the server part, but the server part is not. The
cost is that we must do some extra book-keeping to ensure that for each server-side
application of a mixed functors, all the client side effects are performed. We believe this
expressive power is sufficient for most use cases. There are however several limitations
to our approach, which we shall discuss point-by-point now.

Mixed functors arguments An important restriction of mixed functors is that their
arguments can only be mixed structures. The reason for this restriction is that the Dyn

field is used in order to keep track of client applications from the server. In the semantics
presented in this thesis, the Dyn field is represented simply as a regular structure field,
which means only structures can be passed as argument. A first step would be to allow a
similar field to be added to functors. While it is a bit delicate to formalize, it should be
possible to implement it in OCaml by simply adding an additional field to the closure.
A second step would be to allow base, client and server modules as arguments. As with
usual mixed functors, care must be taken during typechecking to not specialize eagerly.
Given that this constraint is respected, one possibility would be to introduce a new
module-level operation that can take a base, server or client structure and turn it into
a mixed structure. Given a client module A, this could be done by inserting a structure
of the form (struct include%client A end). This could even be done transparently,
since the location of modules is always known.

Injections Injections inside mixed functors can only refer to identifiers outside of the
functor. This restriction seems particularly difficult to lift, as demonstrated by the
example in Section 4.2.2. One would need to evaluate the usefulness of mixed functors in
first-class contexts. It might be possible to rewrite usages of injections to escaped values
in fragments. In all cases, these changes would be invasive and of limited usefulness.

119

Sliceability constraints The sliceability requirement presented in Section 5.2.1 is quite
restrictive. Its goal is to ensure that bindm expressions are not nested and that module
references are unique. This requirement can be relaxed in different manners. For mixed
structures without functors, this requirements can be completely removed trivially, since
internal modules are known.
For functors, there are two possibilities. A first idea would be to apply lambda-lifting

to functors. By simply lifting mixed functors to the outer scope, we ensure that bind
operations are noted nested. Another possibility would be to use a similar technique to
the one used for fragments inside functors: by prefixing each statically generated reference
with the locally available Dyn field, we ensure uniqueness while allowing arbitrary nesting.

Double application of the client side of mixed functors As mentioned in Section 4.3.3,
the client-side part of a mixed functor, when applied in a mixed context, might be
called twice. While this is not so problematic in the context of applicative and pure
functors, it might prove more troublesome with generative or impure functors. This
problem is difficult to solve in general. In particular, it is in fairly direct conflict with the
design decision, justified by Section 4.2.2, to make the client and server side of a mixed
functor application independent. One potential solution would be to provide a special
interpretation of mixed application in mixed contexts that would ensure that the result
of the client-side functor application is properly reused. Notably, this might be doable
by generating at compile time an identifier for each known returned client module.

120

6 Implementation

Its black gates are guarded by more than just orcs. There is evil
there that does not sleep. The great eye is ever watchful. It is a
barren wasteland, riddled with fire, ash, and dust. The very air
you breathe is a poisonous fume.

J. R. R. Tolkien, The Fellowship of the Ring

The main goal of the formalization of Eliomε was to inform the design and the implemen-
tation of Eliom as a real extension of OCaml usable to develop real Web applications.
As a consequence, everything presented in Chapter 4 except for mixed functors is also
implemented in a fork of the OCaml compiler. This fork supports the complete OCaml
language. OCaml is quite a large language and a lot of aspects of a real programming
language are not covered by the formal specification.
This chapter presents how Eliom is implemented, the various design decisions that

were made related to compilation, interaction with OCaml and tooling, along with the
few compromises that were occasionally made. Some sections are quite technical and
assume knowledge of the inner workings of the OCaml compiler.
Everything developed in relation to this thesis is published as free software1 under the

GPL and LGPL licence (with the OCaml linking exception):

• https://github.com/ocsigen/ocaml-eliom is the fork of the compiler;
• https://github.com/ocsigen/eliomlang contains the Eliom runtime and a

collection of associated tools.

6.1 The OCaml compiler

Let us start by a quick reminder of the architecture of the OCaml compiler. The compiler
pipeline is presented in Figure 6.1a. Figure 6.1b summarizes the numerous files involved
in the OCaml compilation. The C files are also presented, for comparison.
Due to separate compilation and typechecking, the OCaml compiler uses many files.

.cmi files are compiled versions of interfaces, or module types. They are used for the
purpose of separate compilation: when subsequent compilations need an already compiled
module, the compiler loads the file in the typing environment. Bytecode (resp. Native)
compilation of a module produces a .cmo (resp. .cmx) object file. Several of these files
can be grouped together in libraries as .cma (resp. .cmxa) files. Compiled objects and
libraries can be linked to produce a bytecode or native executable. The compiler also

1I would certainly not deserve Roberto as my advisor otherwise!

121

https://github.com/ocsigen/ocaml-eliom
https://github.com/ocsigen/eliomlang

.ml Typed AST

.cmi
. . . .cmo

. . . .cmx

Typing

Bytecode

compilation

Native
compilation

(a) The OCaml pipeline

Byte Native C
Sources .ml .c

Interfaces .mli .h
Compiled Interfaces .cmi
Compiled Modules .cmo .cmx .o
Compiled Libraries .cma .cmxa .a

(b) The OCaml file extensions

Figure 6.1: The OCaml compilation

produces several other files such as .cmt and .cmti for documentation and .cmxs for
inlining.
The pipeline is composed of three parts: bytecode compilation, native compilation and

a common part, which we simply call “frontend”, composed of parsing and typechecking.
An interface source file (.mli) is the text format for module types. After parsing and
verification of well-formedness, it is transformed into a compiled interface and produces
a standalone .cmi file. A source file (.ml) is treated in several steps. Parsing produces
an abstract syntax tree (or AST) with no typing information. Typechecking produces
a Typed AST and a compiled interface. The typed AST is an AST where all the types
have been made completely explicit: each node of the AST is annotated with its type
and its local environment. The interface is the inferred module type of the file. If a
corresponding module type is present (as a .mli file), inclusion of the two interfaces is
checked. If no module type is present, a .cmi file is produced. After typechecking, the
compiler proceeds to bytecode or native code generation. For our purpose, everything
after typechecking is a black box that produces the desired compiled files.

6.2 The Eliom compiler

We now look at our modified Eliom compiler. The pipeline for OCaml file is identical
to the regular pipeline. The pipeline for Eliom file is presented in Figure 6.2.

Eliom files are either .eliom or .eliomi, which corresponds to .ml and .mli re-
spectively. The pipeline is similar to the regular OCaml one. Each Eliom file is first
typechecked using a modified typechecker presented in Section 6.4. This creates an Eliom
typed AST, which still contains both side of the program. A unique compiled interface
(.cmi) is created. We then slice the typed AST according to the procedure presented
in Section 5.2, with returns two untyped AST, one for the client part and one for the
server part. After slicing, we obtain two pure OCaml programs that can be compiled
with the regular OCaml compiler which return two compiled objects .server.cm[ox]
and .server.cm[ox]. The MLs and MLc primitives introduced in Section 5.1 are
implemented in two libraries which are presented in Section 6.5.
One might wonder why the slicing is implemented in such a convoluted way: we first

122

Slicing Regular OCaml toolchain

js_of_ocaml
toolchain

.eliom Eliom
Typed AST

.cmi

Server
OCaml AST .server.{cmo,cmx}

Client
OCaml AST .client.cmo JavaScript

program

Modified
Typing

Figure 6.2: The Eliom pipeline

type using a modified typechecker, then slices on the typed program and return two
untyped programs which are typed again using the regular typechecker. The first reason
is safety: By using the regular typechecker, we increase trust in our modified typechecker.
The second reason is more pragmatic: The OCaml typed AST is a complex datastructure
which is highly optimized for fast type inference and contains non trivial invariants. Doing
transformations on such datastructure while preserving its invariants is a difficult task.
Emission of untyped AST, on the other hand, is well supported. Thanks to the PPX
ecosystem, numerous tools are available and the compiler is robust against ill-formed
ASTs which makes developing such transformations easier.

6.2.1 Notes on OCaml compatibility

One of the important results on the Eliom module system given Section 4.4.1 is that
any vanilla OCaml module is also an Eliomε module, located either on base, client or
server. This is also true for the implementation. We can even go further.
Compiled interfaces created by the regular compiler can be loaded by the Eliom com-

piler. A compiler flag allows to specify on which location to load the given interfaces.
Compiler interfaces created by the Eliom compiler, which contains extra location in-
formation, cannot be loaded by the OCaml compiler (as it would not be able to make
sense of them). Server and Client object files are compatible with the regular compilers
(and can be linked together with object files emitted by the regular compiler). The con-
sequence is that the OCaml and Eliom compilers can live graciously side by side and
any OCaml library can be used directly in Eliom.
The various files used by external tools (such as .cmt files) are also similarly compat-

ible.

6.3 Converters

In the formalization, injections are modeled as the application of a converter; i.e., a pair
of a serialization and a deserialization function; to a value available on the server (See
Section 4.2.1). Furthermore, converters are global constants introduced by the typing

123

environment. This formalization, however, is inconvenient to program with: it would
mean the programmer needs to specify which converter to use for each injection, even
the most trivial ones. We also need a way to define new converters easily. One promising
idea would be to use ad-hoc polymorphism to infer which converter to use based on
type information. We explore this lead in Section 6.3.1 and how it interacts with our
module system. Unfortunately, ad-hoc polymorphism is not yet available in OCaml. In
Section 6.3.2 we present what is currently implemented in Eliom instead.

6.3.1 Modular implicits

Modular implicits [White et al., 2014] are an extension of OCaml that adds ad-hoc poly-
morphism in a way that is compatible with OCaml’s module system. An introduction
to modular implicits can be found in White et al. [2014]. The main idea is that we can
use modules themselves as implicit arguments. Converters would then be mixed modules
satisfying the signature CONV presented in Figure 6.3. The String module satisfies the
CONV signature and exports that the client and the server type are equal to the base type
string. We can also specify converters for parametrized datatypes using functors, as
presented by the List mixed functor. The injection operator ~% will then take an im-
plicit module C satisfying the CONV signature, take an element of type C.t on the server
and returns an element of type C.t on the client. Finally, we can also easily implement
the frag converter by using a functor taking a module with just a datatype. Note that
we only need a client datatype and no serialization method.
This implementation has several advantages. First, it means that injections are prop-

erly parametric: Inference will work on implicit modules in parametric functions and it
plays well with polymorphism. Additionally, defining a new converter is very easy: it is
simply a module respecting a fairly simple signature. Finally, the projection functions
f s and f c used in the target languages MLs and MLc (Section 5.1.1) are very easy to
define: given a converter module M, they are M.serialize and M.deserialize. Note
that implementing such a signature is not completely trivial. We discuss serialization
techniques in Section 6.5.2.

6.3.2 Wrapping

Unfortunately, at the time of writing of this thesis, modular implicits are not yet inte-
grated in OCaml. Eliom uses instead a method that was originally devised by Pierre
Chambart and Gregoire Henry and relies on value introspection. The main idea is the
following: most values can be serialized simply by using the module Marshal from the
OCaml standard library [marshal]. As shown on multiple occasions in Chapter 2, it can
be useful to transform data before serializing it. In this case, a transformation function
is attached to the value. Before serializing, the function is applied to the value and the
result is serialized. For customized deserialization, a similar technique is applied using
tags and a client-side association table from tag to functions.
While this has the advantage of leveraging Marshal, which works for any data struc-

ture, is very fast and preserves sharing, it also has significant disadvantages. First, it is

124

1 module type CONV = sig
2 type%server t
3 type%client t
4 val%server serialize : t -> serial
5 val%client deserialize : serial -> t
6 end
7

8 implicit%mixed String : CONV
9 with type%server t = string

10 and type%client t = string
11

12 implicit%mixed List {M : CONV} : CONV
13 with type%server t = M.t list
14 and type%client t = M.t list
15

16 implicit%mixed Fragment {M : sig type%client t end} : CONV
17 with type%server t = M.t fragment
18 and type%client t = M.t
19

20 val%client (~%) : {C : CONV} -> C.t(*server*) -> C.t(*client*)

Figure 6.3: A signature for converters

not type-directed. Closures for example cannot be serialized, which will not be detected
by the type system. Furthermore, defining converters is quite delicate: the programmer
must create a function operating on values in a fairly untyped way and attach it to the
value being converted. This is an expert task that is very error-prone.

6.4 Typechecking and Slicing

Most of the differences between the Eliom compiler and the OCaml compiler are mod-
ifications of the typechecker. A formal account of the difference between the two type
systems was given in Section 4.2. We now give a practical account of these differences
and explain how the OCaml type checker was modified.
The OCaml language is much larger than our ML language. In particular it con-

tains intrusive features such as first class modules and Generalized Algebraic Datatypes
which affect many parts of the language. Our modified typechecker handles most of
these features correctly thanks to the fact that most additional typing rules for Eliom
are at the boundaries between locations. By being conservative in the type conversions
across location boundaries (in particular, by prohibiting existential and universal types),
we avoid difficulties related to complex features of the OCaml type system. In other
aspects, the implementation follows the formalization closely: there are now distinct
namespaces for each location, with visibility rules that correspond to the relations pre-
sented in Section 4.1.1. The use of explicit locations allows to provide good error messages
for missing identifiers and wrongly located declarations such as client declarations inside
server modules.
One notable new feature of the implementation is the inference of some location in-

125

formation. In particular declarations inside base, client and server modules do not need
any annotations. Similarly, most mixed annotations on modules can be elided. These
elisions are based on the fact that in those cases, declaration can only have one location,
which make it superfluous.

Shared declarations Another significant addition is the shared annotation. This an-
notation has no equivalent in the formalization. In particular, it does not correspond to
mixed modules. Shared sections were presented in Section 2.4.4 and are implemented
simply by duplicating the code between client and server, as demonstrated in Exam-
ple 6.1. Note that this is a purely syntactic transformation done before typechecking.
From a typechecking perspective, y is not a singular variable to which can be assigned a
type. There are two variables, one client and one server, with two different types. This is
different from mixed annotation where a structure contains both client and server parts.
This slightly schizophrenic nature of shared declarations does not lead itself to being
internalized in the type system. Nevertheless, it avoids repetitive code patterns where a
similar tasks is done both client and server side with a few distinct values, which makes
it very useful in practice.

1 let%client x = 2
2 let%server x = "foo"
3 let%shared y = x
4

(a) Original code

1 let%client x = 2
2 let%server x = "foo"
3 let%client y = x
4 let%server y = x

(b) Desugared code

Example 6.1: A shared declaration

Slicing Slicing is also identical to the formalization. An example of sliced programs is
given in Example 6.2. References are represented by unique generated strings.
A notably difficult point is the generation of fresh identifiers. Indeed, in our slicing

formalization, we rely on generating fresh identifiers for each injection and each fragment
closure. These identifiers should be globally unique in the complete program. However,

Server Client

let%client c =
~%s + 1

push_injection "A.s1" s let c = get_injection "A.s1" + 1

let%server y =
[%client 2 + ~%x]

let y =
fragment "B1" (x)

push_fragments "B"

register_closure "B1"
(fun x -> 2 + x)

execute_fragments "B"

Example 6.2: Client-server code slicing

126

compilation units are sliced separately. The list of identifiers generated by slicing other
modules is not available. To overcome this limitation, we rely on the property that, in
a given OCaml program, top level module names are unique. This property is enforced
by the OCaml compiler at link time. Consequently, we can generate locally unique
identifiers prefixed by the current module path, which produces globally unique name in
a way that is compatible with separate compilation.

6.4.1 Technical details

We now present a technical account of the modifications made to the compiler. This
section is targeted at ambitious readers who are willing to gaze into the typechecker2 in
order to modify or improve the Eliom language. We assume that the reader is familiar
with the implementation of the OCaml typechecker. For a more gentle introduction to
the typechecker, please consult the file typing/HACKING.adoc in the standard OCaml
distribution.
The typechecker is both complex and frequently updated. Consequently, changes to the

implementation must be made with the smallest footprint possible, in order to avoid con-
flicts with future modifications. One of the important early design decision for the Eliom
compiler was complete compatibility with standard OCaml tools. OCaml files format
such as .cmi correspond to serializations of the internal data structure of the compiler
(notably, the typedtree). Any changes to the typedtree, type environment or representa-
tion of type expressions would lead to changes in the compiler files which would break bi-
nary compatibility. This leads to the following programming rule: “Thou shall not change
data structures”, of which we will now explore the consequences.3 Some techniques used
by this implementation are partially inspired by the MetaOCaml patches4. MetaO-
Caml [Kiselyov, 2014] is an extension of OCaml for meta-programming which employs
quotations and slicing constructions that are similar to Eliom’s fragments and injec-
tions. Notably, MetaOCaml manages to add a quotation mechanism to the OCaml
type system in a remarkably lean way (less than 1000 lines of changes on existing files).

Locations, fragments and injections The first task the modified typechecker need to do
is to keep track of the local location of the considered code. In order to avoid passing this
information around by additional arguments, we simply use a global reference. While this
is not particularly elegant, there are various precedents in the OCaml typechecker (levels,
notably). One additional difficulty is that the typechecker occasionally uses exception
for control flow, which means we need to ensure that our global reference is put back
in order. For this purpose, we use the traditional functional pattern of closure-based
handler. While this approach sacrifices tail-recursion, it has not proved problematic on
concrete programs.

1 val in_location : location -> (unit -> ’a) -> ’a

2No, it does not gaze back. Typecheckers do not gaze. They do however inflict 2d6 sanity damage on
failed bootstraps.

3Naturally, as demonstrated by the Oulipo, programming constraints only encourage creativity.
4http://okmij.org/ftp/ML/MetaOCaml.html

127

https://github.com/ocaml/ocaml/blob/trunk/typing/HACKING.adoc
https://en.wikipedia.org/wiki/Oulipo
http://okmij.org/ftp/ML/MetaOCaml.html

In order to typecheck injections and fragments, we simply leverage in_location to
typecheck the inner expression and use unification to reflect the inferred type upward.
Unfortunately, it is not possible to introduce additional nodes in the typedtree, but it is
possible to add extra PPX annotations. Thus we simply return the typedtree of the inner
expression with custom annotations ([@eliom.fragment] and [@eliom.injection],
notably). We then use these annotations to drive the slicing phase.
Note that in_location is not only used for typechecking. Indeed, locations must

also be tracked when walking type expressions for validation and unification due to the
presence of mixed datatypes (Section 4.2.1).

Identifiers and bindings In the formalization, bindings are annotated with location
information. This is, unfortunately, difficult to achieve in the current implementation
of the typechecker without large changes to the Env module. An alternative solution is
used: instead of annotating binders, we annotate identifiers. Identifiers are represented
by the Ident.t datatype, whose definition is given in Figure 6.4. The name field is
the name of the identifier given in the source file. The stamp is a unique identifier.
The flag field is a bitfield collecting certain flags necessary for the compiler. Only two
bits are used in this integer (one to recognize top level module names, one for built in
exceptions) which leaves at least 29 free bits. Fortunately, we can use this free space to
store locations information! The Eliom compilers then uses two additional bits which
we will call “c” and “s” in order to determine the location of a given identifier according
to the table presented Figure 6.5. The typechecker maintains a set of association tables
of identifiers to values. This is implemented by Ident.tbl, which implements lookup
by identifiers, stamp but also lookup by name. We re-purpose these lookup functions
by making them respect the “can be used” relation (Figure 4.2). This can be achieved
easily (although hackily) by simply accessing the current location via the global reference
during lookup. Thanks to this addition to the Ident.t datatype and the changes in the
lookup function, almost all the Eliom location mechanisms can be implemented without
touching the typechecker’s code itself.

Specialization Specialization is the action of taking a base type expression and bringing
it to the current location. In the formalization, specialization only acts on binders,
which is where location information is stored. Due to the fact that location is stored
inside identifiers, the implementation is significantly more complex: we need to change
the location annotations in the identifiers of the specialized expression. This is made

1 type t = {
2 stamp: int;
3 name: string;
4 mutable flags: int
5 }

Figure 6.4: The Ident.t datatype

flag “c”
1 0

flag “s” 1 mixed server
0 client base

Figure 6.5: Encoding of locations

128

even more delicate by the use of physical equality and mutations in the typechecker
(the typechecker implements unification using a union-find algorithm embedded in the
typedtree). The solution used for this purpose is to simulate copy of type expressions (as
already done in the typechecker), except each identifier is copied with its flag corrected.

Binary compatibility Thanks to the various modifications made, the typedtree for
Eliom is compatible with the OCaml one, but with some additional information embed-
ded in PPX attributes and identifiers flags. In order to prevent the original typechecker
to misuse this additional information, we use a different magic number for cmi files.
We hope that such binary compatibility will mean that the numerous OCaml tools,

notably ocp-index, ocp-browser, odoc and merlin, can eventually be adapted to present
Eliom’s additional typing information.

6.5 Runtime and Serialization

We now present some practical consideration regarding the Eliom runtime. There are
mainly two points of interest: the implementation of the Eliom primitives, Section 6.5.1,
and the serialization format used for client-server communication, Section 6.5.2. We also
discuss a small improvement to the slicing scheme in Section 6.5.3.

6.5.1 Primitives

The primitives used by the slicing scheme are presented formally in Section 5.1. The
external signature for the primitives is shown in Figure 6.6. The main difference is that
the notion of references has been further divided in closure_id and inj_id for fragment
closure and injections references.

1 type closure_id
2 type inj_id
3

4 val%server fragment :
5 closure_id -> ’injs -> ’a fragment
6 val%server push_fragments :
7 id -> unit
8 val%server push_injection :
9 inj_id -> ’a -> unit

10

11 val%client get_injection :
12 inj_id -> ’a
13 val%client register_closure :
14 closure_id -> (’a -> ’b) -> unit
15 val%client execute_fragments :
16 id -> unit

Figure 6.6: API for Eliom primitives

fragment "B1"(x)

push_fragments "B"

[(id0,"B1",(x)); ...]

:
:

[(id0,"B1",(x)); ...]
:
:

Server
Client

Fragment
Queue

execute_fragments "B"

register_closure "B1"(fun x -> 2 + x)

"B1"7→ . . .
:

Closure
Table

Execution!
id0 7→ . . .

:
Fragment
Table

Figure 6.7: Execution of fragments

129

Transmitted data is represented by internal data structures which are shown in Fig-
ure 6.8. First, we use the type poly to (unsafely) represent arbitrary values. Similarly to
closures and injections, fragments have their own kind of identifiers. Fragments on the
server are represented by their identifier. The queue of fragments contains records of type
fragment, which contains the unique identifier, the identifier of the associated closure
and a tuple containing all the arguments. Injections are represented by the injection
type, which is a pair of an identifier and the transmitted value. Finally, the transmitted
information, which corresponds to the injection mapping ζ and the fragment queue ξ are
represented by global_data and request_data.

The mapping of injection is represented as an array of id/values pairs. Instead of using
an explicit end token in the queue of injection, we segment the queue for each section
by using an array of array. The usage is very similar. Note that we use fairly basic data
structures on purpose here, as they result in more compact serialized representations.

Global data is sent for all requests while request data is local to the request currently
considered. More precisely, we can consider that the execution of a web server proceeds
in two steps. First, we start the application: services are launched, database is accessed
and so on. Fragments and injections executed during this start-up period are considered
global. Then, the request handler is installed and start listening and responding to
requests. Fragments executed during a request are of course local to it. This scheme
allows to avoid recomputing things (global data is kept around and can be sent along the
client program when needed) and also allows to avoid replaying some side effects. For
example, the Eliom framework will reload only the minimum necessary when changing
page inside a web application and thus only send new request data. Request data can
only contain fragments (since injections are always global) and do not need end token
(since everything is executed in one shot).

After executing the server program, we extract the resulting data, serialize it and add
it to the generated HTML page. The client runtime will deserialize it, load it and use it
to run the client program.

1 type poly (** Arbitrary values *)
2 val inject: ’a -> poly
3 val project: poly -> ’a
4

5 type fragment_id
6

7 type fragment = {
8 closure : closure_id;
9 args : poly;

10 value : fragment_id
11 }

12 type injection = {
13 id : inj_id;
14 value : poly;
15 }
16

17 type global_data = {
18 frags : fragment array array;
19 injs : injection array;
20 }
21 type request_data = fragment array

Figure 6.8: Internal data structures for the Eliom runtime

130

6.5.2 Serialization format

Eliom typing and semantics are agnostic with regard to the serialization format, which
means we can choose any of the numerous serialization methods available. Serialization
methods usually are a compromise between several aspects: safety, composition, size and
speed.
In our case, serialized messages are transmitted on the network, so we need a very

compact serialization method. Furthermore, it should also be very fast, since serialization
is one of the contention points of our system. Safety properties, on the other hand, are
less important: type safety of serialization and deserialization is guaranteed by the Eliom
type system. Messages could also be modified en-route. This is mitigated by two facts:
HTTPS should always be used and, in case modifications are made, the worst outcome is
a failure in the JavaScript client program, which is far less problematic than a crash in
the server program. Finally, proper composition is not strictly needed. Indeed, Given our
execution scheme for compiled program in Section 5.2, the complete arrays of injections
can be serialized at once, after the execution of the server part of the program. The
definition of converters, as discussed in Section 6.3, should be modular.
Marshal [marshal] is very fast and produces compact messages. The downside is

that incompatible types at deserialization point might cause runtime errors. As detailed
above, this is mitigated by Eliom’s type system. Its distinct feature, compared to most
other serialization formats, is that it preserves the sharing of OCaml values. This is
extremely important to properly handle HTML across client-server boundaries (pointers
to HTML elements on the server should point to the relevant DOM elements on the
client). A safer and more modular alternative could be to use the “generic” library5 by
Balestrieri and Mauny [2016]. It leverages Marshal but provides improved safety checks
by combining generic programming as popularized by approaches such as “Scrap Your
Boilerplate” [Lämmel and Peyton Jones, 2003] with typed unmarshalling [Henry et al.,
2012].

6.5.3 Optimized placement of sections

In Section 5.2, we present the slicing scheme for Eliomε programs. In particular, we
present how to place section annotations exec () and end (). While this scheme is
correct, it is also very wasteful.
Let us consider Figure 6.9. We see that the first exec is not necessary: all the fragments

can be executed at once at the boundary between the set of server section and the
following client section. Furthermore, since x is a value, it could not even lead to a
fragment execution to begin with! While this has little impact on efficiency, the high
number of sections can lead to issues in some browsers6. Additionally, it can produces
bigger messages than necessary by introducing many end tokens.
Fortunately, this can be solved in a principled way with the following remarks:

5https://github.com/balez/generic
6Notably Safari. See https://github.com/ocsigen/eliom/pull/387 .

131

https://github.com/balez/generic
https://github.com/ocsigen/eliom/pull/387

• If a server declaration does not lead to any evaluation of client fragment, a end/exec
pair is not needed.

• In a succession of server declarations, only one pair of end/exec is needed, after
the last successive server declaration.

The first remark can be approximated by looking if the declaration contains something
that is not a value. If that is the case, we need a section, otherwise we do not. Given
that OCaml and Eliom code mostly consist of function and type declarations, this is
sufficient to eliminates more than two thirds of end/exec calls in medium-sized websites6.
The second remark can easily be implemented by operating slicing only on the longest
sequences of declarations with a common location.

1 let%server x = 1
2 let%server y =
3 [%client ~%x + 1]
4

5 let%client res =
6 ~%y

(a) Original Eliom code

1 execute_fragment "A"
2 register_closure "A1"
3 (fun x -> x + 1)
4 execute_fragment "A"
5 let res =
6 get_injection "A.z1"

(b) Naive client compilation

1

2 register_closure "A1"
3 (fun x -> x + 1)
4 execute_fragment "A"
5 let res =
6 get_injection "A.z1"

(c) Optimized version

Figure 6.9: Optimized placement of sections for a simple Eliom program

132

7 State of the art and comparison

Togusa: How great is the sum of thy thoughts? If I should count
them, they are more in number than the sand.
Batou: Psalms 139, Old Testament. The way you spout these
spontaneous exotic references, I’d say your own external memory’s
pretty twisted.

Mamoru Oshii, Ghost in the Shell 2: Innocence (2004)

Eliom takes inspiration from many sources. The two main influences are, naturally, the
extremely diverse ecosystem of web programming languages and frameworks, which we
explore in Section 7.1, and the long lineage of ML programming languages, which we
described in Section 3.4. One of the important contributions of Eliom is the use of a
programming model similar to languages for distributed systems (Section 7.1.5) while
using an execution model inspired by staged meta-programming (Section 7.2).

7.1 Web programming

Various directions have been explored to simplify Web development and to adapt it to
current needs. Eliom places itself in one of these directions, which is to use the same
language on the server and the client. Several unified client-server languages have been
proposed. They can be split in two categories depending on their usage of JavaScript.
JavaScript can either be used on the server, with Node.js, or as a compilation target,
for example with Google Web Toolkit for Java or Emscripten for C. The approach
of compiling to JavaScript was also used to develop new client languages aiming to
address the shortcomings of JavaScript. Some of them are new languages, such as
Haxe, Elm or Dart. Others are only JavaScript extensions, such as TypeScript or
CoffeeScript.1

However, these proposals only address the fact that JavaScript is an inadequate
language for Web programming. They do not address the fact that the model of Web
programming itself – server and client aspects of web applications are split in two distinct
programs with untyped communication – raises usability, correctness and efficiency issues.
A first attempt at tackling these concerns is to specify the communication between client
and server. Such examples includes SOAP2 (mostly used for RPCs) and REST3 (for
Web APIs). A more recent attempt is the GraphQL [GraphQL] query language which

1A fairly exhaustive list of languages compiling to JavaScript can be found in https://github.com/
jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS

2https://en.wikipedia.org/wiki/SOAP
3https://en.wikipedia.org/wiki/Representational_state_transfer

133

https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffeescript/wiki/List-of-languages-that-compile-to-JS
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/Representational_state_transfer

attempts to describe, with a type system, the communications between the client and
server parts of the application. These proposals are very powerful and convenient ways to
check and document Web-based APIs. However, while making the contract between the
client and the server more explicit, they further separate web applications into distinct
tiers.
Tierless languages attempt to go in the opposite direction: by removing tiers and

allowing web applications to be expressed in one single program, they make the develop-
ment process easier and restore the possibility of encapsulation and abstraction without
compromising correctness. In the remainder of this section, we attempt to give a fairly ex-
haustive taxonomy of tierless programming languages. We first give a high-level overview
of the various trade-offs involved, then we give a detailed description of each language.

7.1.1 Code and data location

In Eliom, code and data locations are specified through syntactic annotations. Other
approaches for determining locations have been proposed. The first approach is to in-
fer locations based on known elements through a control flow analysis (Stip.js, Opa,
Ur/Web): database access is on the server, dynamic DOM interaction is done on the
client, etc. Another approach is to extend the type system with locations information
(Links, ML5). Locations can then be determined by relying on simple type inference
and checking.
These various approaches present a different set of compromises:

• We believe that the semantics of a language should be easy to predict by looking at
the code, which is why Eliom uses syntactic annotations to specify locations. This fits
well within the OCaml language, which is specifically designed to have a predictable
behavior. On the other end of the spectrum, languages with inferred location sacrifice
predictability for a very light-weight syntax which provides very little disruption over
the rest of the program. Typed based approaches sit somewhere in the middle: loca-
tions are not visible in the code but are still accessible through types. Such approaches
benefit greatly from IDEs allowing exploring inferred types interactively.

• Naturally, explicit approaches are usually more expressive than implicit approaches.
Specifying locations manually gives programmers greater control over the performance
of their applications. Furthermore, it allows to express mixed data structures, i.e.,
data structures that contain both server and client parts as presented in Section 2.5.
Such idioms are difficult to express when code locations are inferred. We demonstrate
this with an example in the Ur/Web description.

• Type-directed approaches to infer code location is an extremely elegant approach. It
can be employed either in an algebraic effect setting (Links) or as modal logic an-
notations (ML5). By its type-directed nature, error messages can be expressed in
term of the source language and it should lend itself naturally to separate compilation
(although this has not yet been achieved). However, such novel type systems signifi-
cantly extend traditional general purpose type systems (the ML one, in this case) to

134

the point where it seems difficult to retrofit them on an existing languages. One lead
would be to provide a tight integration using a form of Foreign Function Interface.
Such integration has yet to be proposed.

• Eliom, as a language based on OCaml, is an effectful language. Marrying inference
of locations and a side-effecting semantics is delicate. The Stip.js library [Philips
et al., 2014] attempts to solve this by automatically providing replication and eventual
consistency on shared references. This might cause many more communications that
necessary if not done carefully. We believe that such decision is better left in the hands
of the programmer.

7.1.2 Slicing

Once code location has been determined, the tierless program must be sliced in (at least)
two components. In Eliom, slicing is done statically at compile time in a modular
manner: each module is sliced independently. Another common approach is to use a
static whole-program slicing transformation (Ur/Web, Stip.js). This is most common
for languages where code location is inferred, simply due to the fact that such inference
is often non-modular. This allows precise analysis of location that can benefit from
useful code transformations such as CPS transformation [Philips et al., 2016], inlining
and defunctionalization. However, this can make it difficult for the users to know where
each piece of code is executed and hinder error messages,. It also prevents any form of
separate compilation.
Finally, slicing can be done at runtime simply by generating client JavaScript code

“on the fly” during server execution (Links, Hop, php). Such solution has several ad-
vantages: it is easier to implement and provides a very flexible programming style by
allowing programmers to compose the client program in arbitrary ways. The downside
is that it provides less guarantees to the users. Furthermore, it prevents generating
and optimizing a single JavaScript file in advance, which is beneficial for caching and
execution purposes.

Separate and incremental compilation Most current mainstream compiled language
support some form of incremental compilation. Indeed, incremental compilation avoids
recompiling files of which no dependency has changed. This accelerates the feedback loop
between development and testing greatly and allow very fast recompilation times. In the
case of statically typed languages, it also allows immediate checking of the modified
file thus providing developers very fast iteration cycles. The easiest way to implement
incremental compilation is through separate compilation, where each file can be compiled
completely independently. Furthermore, separate compilation is compatible with link-
time optimization and thus does not prevent generation of heavily optimized code, as
demonstrated by nearly every C compiler. As a consequence, we consider languages that
do not support incremental compilation completely unusable for practical usages.

135

7.1.3 Communications

Eliom uses asymmetric communication between client and server (see Section 2.2.2):
everything needed to execute the client code is sent during the initial communication that
also sends the Web page. It also exposes a convenient API for symmetric communications
using RPC (Section 2.3.1) and broadcasts (Section 2.3.3), which must be used manually.
We thus distinguish several kind of communications. First, manual communications

are exposed through normal APIs and are performed explicitly by programmers. Of
course, the convenience and safety of such functions vary a lot depending on the frame-
work. Then, we consider automatic communications, that are inserted automatically by
the language at appropriate points, as determined by code locations and slicing. We can
further decompose automatic communications further in two categories. In static asym-
metric communications, information is sent from the server to the client automatically,
when sending the page. In dynamic symmetric communications, information is sent back
and forth between the client and the server dynamically through some form of channel
(AJAX, websockets, Comet, . . .).
While symmetric communications are very expressive, they impose a significant effi-

ciency overhead: a permanent connection must be established and each communication
imposes a round trip between client and server. Furthermore, such communication chan-
nel must be very reliable. On the other hand, asymmetric communications are virtually
free: data is sent with the web page (and is usually much smaller). Only a thin instru-
mentation is needed. Of course, the various communication methods can be mixed in
arbitrary manner. Eliom, for example, uses both automatic asymmetric and manual
communications.

Offline usage Many web applications are also used on Mobile phones, where connection
is intermittent at best. As such, we must consider the case where the web application
produced by a tierless language is used offline. In this context, asymmetric communi-
cation offer a significant advantage: given the initially transmitted information by the
server, the client program can run perfectly fine without connection. This guarantee,
however, does not extend to dynamic manual communications done by the use of RPCs
and channels. Philips et al. [2014] explore this question for symmetric communications
through their R5 requirement.

7.1.4 Type systems

Type safety in the context of tierless languages can encompass several notions. The first
notion is the traditional distinction between weakly and strongly typed languages. In
the interest of avoiding a troll war among the jury, we will not comment further. A
more interesting question is whether communication errors between client and server are
caught by the typechecker. This is, surprisingly, not the case of Ur/Web since location
inference and slicing is done very late in the compilation process, far after type checking.
One consequence of this is that slicing errors are fairly difficult to understand [Chlipala,

136

2015a, page 10].4 While the Eliom formalization is type safe, the Eliom implementation
is not, due to the use of wrapping and Marshall (Section 6.3.2), which will fail at runtime
on functional values.
Another remark is the distinction between client and server universes.5 Eliom has sep-

arate type universes for client and server types (see Section 4.2.1). Most tierless languages
do not provide such distinction, notably for the purpose of convenience. Distributed sys-
tems such as Acute, however, do make such distinction to provide a solution for API
versionning and dynamic reloading of code. In this case, there are numerous distinct
type universes.

Module systems The notion of module system varies significantly depending on the
language. In Eliom we consider an ML-style module system composed of a small typed
language with structures and functors. We believe modules are essential for building
medium to large sized programs: this has been demonstrated for general purpose lan-
guages but also holds for web programming languages, as demonstrated by the size of
large modern websites (the web frontend of facebook alone is over 9 millions lines of
code). Even JavaScript recently obtained a module system in ES6. In the context of
tierless languages, an interesting question is the interaction between locations and mod-
ules. In particular, can modules contain elements of different locations and, for statically
typed languages, are locations reflected in signatures?

Types and documentation Type systems are indisputably very useful for correctness
purposes, but they also serve significant documentation purposes. Indeed, given a func-
tion, its type signature provides many properties. In traditional languages, this can range
from very loose (arguments and return types) to very precise (with dependent types and
parametricity [Wadler, 1989]). In the context of tierless languages, important questions
we might want to consider are “Where can I call this function?” and “Where should this
argument come from?”. The various languages exposes this information in different ways:
Eliom does not expose location in the types, but it is present in the signature. ML5
exposes this information directly in the types. Ur/Web and Links do not expose that
information at all.

7.1.5 Details on some specific approaches

We now provide an in-depth comparison with the most relevant approaches. A summary
in Figure 7.1 classifies each approach according to the main distinctive features described
in the previous paragraphs. Each language or framework is also described below.

Ur/Web [Chlipala, 2015a,b] is a new statically typed language especially designed
for Web programming. It features a rich ML-like type and module system and a fairly

4 “However, the approach we adopted instead, with ad-hoc static analysis on whole programs at compile
time, leads to error messages that confuse even experienced Ur/Web programmers.”

5Or, more philosophically: Is your favorite language platonist or nominalist ?

137

Locations Slicing Communications Type safe Host language
Eliom Syntactic Modular Asymmetric X OCaml
Links Type-based* Dynamic* Symmetric X -

Ur/Web Inferred Global (A)symmetric∼ X* -
Haste Type-based Modular Symmetric X Haskell
Hop Syntactic Dynamic* (A)symmetric∼ × JavaScript*

Meteor.js Syntactic Dynamic Manual × JavaScript
Stip.js Inferred Global Symmetric* × JavaScript
ML5 Type-based Global* Symmetric X -
Acute Syntactic Modular Distributed X OCaml

Figure 7.1: Summary of the various tierless languages
See previous sections for a description of each headline. A star * indicates that details are available in
the description of the associated language. A tilde ∼ indicates that we are unsure, either because the

information was not specified, or because we simply missed it.

original execution model where programs only execute as part of a web-server request
and do not have any state (the language is completely pure). While similar in scope
to Eliom, it follows a very different approach: Location inference and slicing are done
through a whole-program transformation operated on a fairly low level representation.
Notably, this transformation relies on inlining and removal of high-order functions (which
are not supported by the runtime). The advantages of this approach are twofold: It
makes Ur/Web applications extremely fast (in particular because it doesn’t use a GC:
memory is trashed after each request) and it requires very little syntactic overheads,
allowing programs to be written in a very elegant manner.
The downsides, however, are fairly significant. Ur/Web’s approach is incompatible

with any form of separate compilation. Many constructs are hard-coded into the lan-
guage, such as RPCs and reactive signals and it does not seem possible to implement
them as libraries. The language is clearly not general and has a limited expressivity,
in particular when trying to use mixed data-structures (see Section 2.5). For example,
Example 7.1. presents the server function button_list which takes a list of labels and
client functions and generates a list of buttons. We show the Eliom implementation and
a tentative Ur/Web implementation. The Ur/Web version typechecks but slicing fails.
We are unable to write a working version and do not believe it to be possible: indeed, in
the Eliom version we use a client fragment to build the list l as a mixed data-structure.
This annotation is essential to make the desired semantics explicit. Other examples, such
as the accordion widget (Section 2.7) are expressible only using reactive signals, which
present a very different semantics.

Hop [Serrano et al., 2006] is a dialect of Scheme for programming Web applications.
Its successor, Hop.js [Serrano and Prunet, 2016], takes the same concepts and brings
them to JavaScript. The implementation of Hop.js is very complete and allow them
to run both the JavaScript and the scheme dialect while leveraging the complete node.js
ecosystem. Hop uses very similar language constructions to the one provided by Eliom:

138

1 let%client handler _ = alert "clicked!"
2 let%server l =
3 [("Click!", [%client handler])]
4

5 let%server button_list lst =
6 ul (List.map (fun (name, action) ->
7 li [button
8 ~button_type:‘Button
9 ~a:[a_onclick action]

10 [pcdata name]])
11 lst)
12

13 let main () =
14 body (button_list l)

(a) Eliom version

1 fun main () : transaction page =
2 let
3 fun handler _ = alert "clicked!"
4 val l = Cons (("Click!", handler), Nil)
5

6 fun button_list lst =
7 case lst of
8 Nil => <xml/>
9 | Cons ((name, action), r) =>

10 <xml>
11 <button value={name}
12 onclick={action}/>
13 {button_list r}
14 </xml>
15 in
16 return <xml>
17 <body>{button_list l}</body>
18 </xml>
19 end

(b) Tentative Ur/Web version. Typechecks
but does not compile.

Example 7.1: Programs building a list of buttons from a list of client side actions

∼-expressions are fragments and $-expressions are injections. All functions seem to be
shared by default. Communications are asymmetric when possible and use channels
otherwise. However, contrary to Eliom, slicing is done dynamically during server exe-
cution [Loitsch and Serrano, 2007]. In the tradition of Scheme, Hop only uses a minimal
type system for optimizations and does not have a notion of location. In particular Hop
does not provide static type checking and does not statically enforce the separation of
client and server universes (such as preventing the use of database code inside the client).
The semantics of Hop has been formalized [Serrano and Queinnec, 2010, Boudol et al.,
2012] and does present similarities to the interpreted Eliom semantics (Section 4.3).
Hop is however significantly more dynamic than Eliom: it allows dynamic communi-
cation patterns through the use of channels and allows nested fragments in the style of
Lisp quotations which allows to generate client code inside client code.
For dynamically-typed inclined programmers, Hop currently presents the most con-

vincing approach to tierless Web programming. In particular given its solid implemen-
tation, great flexibility and support for the JavaScript ecosystem.

Links [Cooper et al., 2006] is an experimental functional language for client-server
Web programming with a syntax close to JavaScript and an ML-like type system. Its
type system is extended with a notion of effects, allowing a clean integration of database
queries in the language [Lindley and Cheney, 2012]. In Example 7.2, we highlight two
notable points of Links: the function adults takes as argument a list l and returns
the name of all the person over 18. This function has no effect and can thus run on the

139

client, the server, but can also be transformed into SQL to run in a database query. On
the other hand, the print function has an effect called “wild” which indicates it can’t be
run inside a query. Effects are also used to provide type-safe channel-based concurrency.

Links also allows to annotate functions by indicating on which location they should
run. Those annotations, however, are not reflected in the type system. Communications
are symmetric and completely dynamic through the use of AJAX. Client-server slicing
is dynamic (although some progress has been made towards static query slicing [Cheney
et al., 2014]) and can introduce “code motion”, which can moves closures from the server
to the client. This can be extremely problematic in practice, both from an efficiency
and a security point of view. The current implementation of Links is interpreted but a
compilation scheme leveraging the Multicore-OCaml efforts has been recently added.
Although Links is very seducing, the current implementation presents many short-

comings given its statically typed nature: slicing is dynamic and produces fairly large
JavaScript code and the type system does not really track client-server locations.

1 links> fun adults(l) { for (x <- l) where (x.age >= 18) [(name = x.name)] } ;;
2 adults = fun : ([(age:Int,name:a|_)]) -> [(name:a)]
3

4 links> print ;;
5 print : (String) {wild}-> ()

Example 7.2: Small pieces of Links code

Meteor.js [Meteor.js] is a framework where both the client and the server sides of
an application are written in JavaScript. It has no built-in mechanism for sections
and fragments but relies on conditional if statements on the Meteor.isClient and
Meteor.isServer constants. It does not perform any slicing. This means that there
are no static guarantees over the respective execution of server and client code. Besides,
it provides no facilities for client-server communication such as fragments and injections.
Compared to Eliom, this solution only provides coarse-grained composition.

Stip.js [Philips et al., 2014] allows to slice tierless JavaScript programs with a mini-
mal amount of annotations. It emits Meteor.js programs with explicit communications.
Annotations are optionally provided through the use of comments, which means that
Stip.js are actually perfectly valid JavaScript programs. Location inference and slic-
ing are whole-program static transformations. Communications are symmetric, through
the use of fairly elaborate consistency and replication mechanisms for shared references.
This approach allows the programmer to write code with very little annotations. As
opposed to Ur/Web, manual annotations are possible, which might allow to express
delicate patterns such as mixed data-structures and prevents security issues.

140

Distributed programming

Tierless languages in general are very inspired by distributed programming languages.
The main difference being that distributed programs contain an arbitrary number of
locations while tierless web programs only have two: client and server. Communications
are generally symmetric and dynamic, due to the multi-headed aspect of distributed
systems. There are of course numerous programming languages dedicated to distributed
programming. We present here two relevant approaches that put greater emphasis on
the typing and tierless aspects.

Ekblad [2017] proposes an EDSL of Haskell for distributed programming. This DSL
allows to express complex orchestrations of multiple nodes and external components
(for example databases and IoT components), with handling of distinct type universes
when necessary. Instead of using syntactic annotations, locations are determined through
typing. This approach works particularly well in the context of Haskell, thanks to the
advanced type system and the syntactic support for monads and functors. Multiple
binaries are produced from one program. Slicing relies on type information and dead
code elimination, as provided by the GHC compiler. Explicit slicing markers similar
to Eliom’s section annotations are the subject of future work. Communications are
dynamic and symmetric through the use of websockets. One notable feature of this DSL
is that it offers a client-centric view: The control flow is decided by the client which pilots
the other nodes. This is the opposite of Eliom where the server can assemble pieces of
client code through fragments. This work also inherits the Haskell and GHC features
in term of modules, data abstraction and separate-compilation. A module language has
been developed for Haskell by Kilpatrick et al. [2014].
An earlier version, Haste.App [Ekblad and Claessen, 2014], was limited to only one

client and one server and used a monadic approach to structure tierless programs.

ML5 [Murphy VII et al., 2007] is an ML language that introduces new constructs
for type-safe communication between distributed actors through the use of location an-
notations inside the types called “modal types”. It is geared towards a situation where
all actors have similar capabilities. It uses dynamic communication, which makes the
execution model very different from Eliom. ML5 provides a very rich type system that
allows to precisely export the capabilities of the various locations. For example, it is
possible to talk about addresses on distant locations and pass them around arbitrary.
Eliom only supports such feature through the use of fragments, for client code.
Unfortunately, ML5 does not have a module system. However, we believe that ML5’s

modal types can play a role similar to Eliom’s location annotations on declarations,
including location polymorphism. ML5 uses a global transformation for slicing. Given
the rich typing information present in ML5’s types, it should lend itself fairly well to a
modular slicing approach, but this has not been done.

Acute [Sewell et al., 2007] is an extension of OCaml for distributed programming.
It provides typesafe serialization and deserialization and also allows arbitrary loading of

141

modules at runtime. Like Eliom, it provides a full-blown module system. However, it
takes an opposite stance on the execution model: each actor runs independent programs
and communications are completely dynamic.
Handling of multiple type universes is done by providing a description of the type with

each message and by versioning APIs. In particular, great care is taken to provide type
safe serialization by also transmitting the type of messages alongside each message. This
gives Acute very interesting capabilities, such as reloading only part of the distributed
system in a type-safe way.

7.2 Staged meta-programming

An important insight regarding Eliom is that, while it is a tierless programming language
and tries to disguise itself as a distributed programming language, Eliom corresponds
exactly to a staged meta-programming language. Eliom simply provides only two stages:
stage 0 is the server, stage 1 is the client. Eliom’s client fragments are the equivalent of
stage quotations.
Most approaches to partial evaluation are done implicitly (not unlike tierless languages

with implicit locations). We take inspiration from several approaches that combine staged
meta-programming with explicit stages annotations that are reflected in the type system.
We only look at the most relevant approaches but a longer description of the history of
staged meta-programming approaches can be found in Taha [1999, Chapter 7].

MetaOCaml [Kiselyov, 2014] is an extension of OCaml for meta programming. It
introduces a quotation annotation for staged expressions, whose execution is delayed.
Quotations and antiquotations corresponds exactly to fragments and injections. The
main difference is that MetaOCaml is much more dynamic: quoted code does not have
to be completely closed when produced and well-scopedeness is checked dynamically, just
before running the quoted code. This allows very dynamic behaviors such as automatic
insertion of let-bindings [Kiselyov, 2015] and dynamically determining staged stream
pipelines [Kiselyov et al., 2017]. One difference is the choice of universes: Eliom has two
universes, client and server, which are distinct. MetaOCaml has a single type universe
but a series of scopes, for each stage, included in one another.

MetaOCaml itself provides no support for modules and only leverages the OCaml
module system. Staging annotations are only on expressions, not on declarations.

Modular macros [Nicole, 2016, Yallop and White, 2015] are another extension of
OCaml. It uses staging to implement macros. It provides both a quotation-based
expression language along with staging annotations on declarations. It also aims to sup-
port modules and functors. The slicing can be seen as dynamic (since code is executed at
compile time to produce pieces of programs). In particular, this allows to lift most of the
restriction imposed on multi-stage functors. They also use a notion similar to converters,
except that the serialization format here is simply the OCaml AST.

142

The main difference compared to Eliom is how the asymmetry between stage 0 and
stage 1 is treated. Only one type universe is used and there is no notion of slicing that
would allow a distant execution.

Feltman et al. [2016] presents a slicing technique for a two-staged simply typed lambda
calculus. Their technique is similar to the one used in Eliom. They distinguish their
language it three parts: 1G, which corresponds to base code; 1M, which corresponds to
server code; and 2M, which corresponds to client code. They also provide a proof of
equivalence between the dynamic semantics and the slicing techniques. This proof has
been mechanized in Twelf. While their work is done in a more general settings, they do
not specify how to transfer rich data types across stages (which is solved in Eliom using
converters). They also do not propose a module system.

143

8 Conclusion

To the designer of programming languages, I say: unless you can
support the paradigms I use when I program, or at least support
my extending your language into one that does support my
programming methods, I don’t need your shiny new languages; [..]
To persuade me of the merit of your language, you must show me
how to construct programs in it.

Robert W. Floyd, The paradigms of programming

In this thesis, I presented the Eliom language, its design, formalization and implemen-
tation. Through Eliom, I also presented several related notions, such as ML languages,
tierless web programming and staged meta-programming. At its core, Eliom combines
the various insights made by staged meta-programming languages and the very powerful
OCaml language in order to provide a safe and efficient programming language that
allows to write client-server tierless programs in a convenient way.
One might note that, for most of this thesis, we do not talk about the Web all that

much. Indeed, while Ocsigen is a Web programming framework, the language con-
structs we presented are not specific to Web programming. In fact, the minimal runtime
developed during this thesis only needs the OCaml standard library to run, and can be
compiled to any targets! Given the static nature of the Eliom programming language,
the server and the client part are separated and compiled statically, so Eliom could be
used to write more general client-server applications. Similarly, we believe that several
techniques developed in the context of this thesis are of more general use. Notably,
converters are a generic solution to make cross-stage persistence manipulable in a first
class manner by programmers. From this perspective, Eliom can be seen as a general
approach for type-safe client-server communications. Indeed Eliom does not force a spe-
cific programming style on the user. The additional primitives can be used for traditional
Web programming techniques, as well as Model-View-Controller architectures or a more
modern Functional Reactive approach. It simply turns out that combining those primi-
tives with a programming language that supports modularity and encapsulation such as
OCaml yields a powerful Web programming language.
Another focus of this thesis is to make Eliom usable in practice. Chapter 2 was

dedicated to presenting the Eliom programming language from a user’s perspective,
with numerous examples demonstrating its usefulness for building Web applications and
libraries. Chapter 6 presents how Eliom can be implemented as an actual extension
of the OCaml compiler. In general, many design choices of Eliom were inspired by
practical concerns. Indeed, in order to be useful, a language must have an ecosystem.
The simplest way to have an ecosystem is to reuse the one of an existing language, hence
the development of Eliom as an extension of OCaml. Since incremental compilation is

145

indispensable for any non-trivial programming projects, our design must be compatible
with it. Given the existence of the OCaml module system, we needed good interaction
between modularity, abstraction and the tierless annotations. All this led us to develop
the various features presented in this thesis such as fragments, converters and location
annotations inside modules.
Of course, there is still significant work to be done on the Eliom language. From

a practical point of view, the new implementation needs to be improved and tested by
more users. On the more theoretical aspects, mixed functors are still very much work in
progress, as noted in Section 5.5. Instead of dwelling on these unfinished tasks, I would
like, after three and a half years working on the subject, to offer my personal vision for
the perfect tierless statically typed Web programming language.

My ideal tierless programming language Eliom is, as said above, very practically-
minded. By extending OCaml, it leverages its many strengths but also inherits its
design choices and weaknesses. As such, it represents a local optimum in the design
space of tierless Web programming languages. I believe we can do better, and I will
attempt here to give my ideas on how.
Before considering the tierless aspects, let me settle the kind of language I will consider

here. As should be apparent by now, I strongly prefer statically-typed strict-by-default
languages. Dynamic languages do have numerous advantages, for example in the context
of distributed systems like Erlang or in very dynamic settings where the Scheme family
excels. Indeed, Hop already provides a very convincing solution for dynamically-typed
tierless Web programming. My personal taste1, however, goes to static typing, both for
the numerous benefits it provides in term of soundness and convenience, but also because
the discipline it offers help me organize my own thoughts on how and what to do while
exploring the complicated maze of design decisions that is programming.
Given this context, I believe that the modularity and encapsulation properties of a

strong module system with abstract datatypes are one of the best programming tools
available in modern programming languages. Modules give the programmer the ability
to manipulate structured programs directly inside the language and allows to enforce
invariants inside module boundaries, as demonstrated on multiple occasions in Chap-
ter 2. These capabilities are essential for any kind of modular programming, including
Web programming. A module system providing these capabilities can take many forms:
the “classical” ML module system, the more practical OCaml one; more experimental
module systems such as 1ML [Rossberg et al., 2014] or even something quite different,
such as Backpack [Kilpatrick et al., 2014]. All these module systems provide the ability
to hide internal details through abstraction and to manipulate modules in very powerful
ways, thus providing the necessary tools for modular large scale programming.
On the tierless aspects, syntactic annotations are essential to provide finer control, as

argued in several occasions in this thesis. However, I believe a type-and-effect system in
the style of Eff [Bauer and Pretnar, 2015] could provide a tighter integration between

1For the willing, I can propose other lively debates: Vim vs. Emacs; Zelazny vs. Sanderson, K. Dick
vs. Asimov; Tomatoes vs. Potatoes.

146

the type system and the tierless annotations. Indeed, we would have two effects: “client”
and “server”. Fragments would only contain code that has no “server” effect, but would
produce a server effect themselves. This could allow to elide some of the most obvious
annotations, hence allowing a programming style similar to Ur/Web’s implicitness while
still providing the necessary control when needed. Furthermore, location information
would be exposed at the module level directly through the effects systems, thus replacing
the need for annotations in module types. Effects would then play a similar role than
modalities in ML5. Links already demonstrated that such an effect-based language can
be compiled down to quotations [Cheney et al., 2014], which would allow to keep the
efficient execution model of Eliom.
Finally, while there is a rather large tooling ecosystem surrounding Web languages,

the same cannot be said about tierless languages (except maybe Hop.js). In particular, a
REPL for a statically sliced tierless language would both be technically challenging and
provide a more exploratory style of programming.

This design can be decomposed in a combination of powerful general-purpose features
(here, modularity, abstraction and effect systems) and a few selected specific-purpose
primitives (our two new effects). This combination allows to build up new idioms for
a chosen domain and provides good integration into existing languages. By exposing
orthogonal features that interact well instead of baking complex constructions in the lan-
guage, we can provide tools that are more flexible and easier to extend by programmers.
I believe this is a nice way of designing programming languages, and I hope to pursue it
in other domains in the future.

147

Bibliography

N. Amin and T. Rompf. Type soundness proofs with definitional interpreters. In
G. Castagna and A. D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 666–679. ACM, 2017. ISBN 978-1-4503-4660-3. doi:
10.1145/3009837. URL http://dl.acm.org/citation.cfm?id=3009866.

B. E. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering
formal metatheory. In G. C. Necula and P. Wadler, editors, Proceeding of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 3–15. ACM, 2008. URL http://arthur.chargueraud.org/research/2007/
binders/.

V. Balat. Rethinking Traditional Web Interaction. In Proceedings of the Eighth In-
ternational Conference on Internet and Web Applications and Services, Rome, Italy,
2013.

V. Balat. Rethinking traditional web interaction: Theory and implementation. Inter-
national Journal on Advances in Internet Technology, 2014. ISSN 1942-2652. URL
http://www.iariajournals.org/internet_technology/.

V. Balat, J. Vouillon, and B. Yakobowski. Experience report: Ocsigen, a Web program-
ming framework. In G. Hutton and A. P. Tolmach, editors, ICFP, pages 311–316.
ACM, 2009. ISBN 978-1-60558-332-7.

F. Balestrieri and M. Mauny. Generic programming in OCaml. OCaml Workshop, 2016.

A. Bauer and M. Pretnar. Programming with algebraic effects and handlers. J. Log.
Algebr. Meth. Program., 84(1):108–123, 2015.

A. Bawden. Quasiquotation in lisp. In PEPM, pages 4–12. University of Aarhus, 1999.

D. L. Botlan and D. Rémy. Mlf: raising ML to the power of system F. In ICFP, pages
27–38. ACM, 2003.

G. Boudol, Z. Luo, T. Rezk, and M. Serrano. Reasoning about Web applications: An
operational semantics for HOP. ACM Trans. Program. Lang. Syst., 34(2):10, 2012.

J. Cheney, S. Lindley, G. Radanne, and P. Wadler. Effective quotation: relating ap-
proaches to language-integrated query. In W. Chin and J. Hage, editors, Proceedings
of the ACM SIGPLAN 2014 workshop on Partial evaluation and program manipula-
tion, PEPM 2014, January 20-21, 2014, San Diego, California, USA, pages 15–26.

149

http://dl.acm.org/citation.cfm?id=3009866
http://arthur.chargueraud.org/research/2007/binders/
http://arthur.chargueraud.org/research/2007/binders/
http://www.iariajournals.org/internet_technology/

ACM, 2014. doi: 10.1145/2543728.2543738. URL http://doi.acm.org/10.1145/
2543728.2543738.

A. Chlipala. Ur/Web: A simple model for programming the Web. In Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 153–165, New York, NY, USA, 2015a. ACM. ISBN 978-
1-4503-3300-9. doi: 10.1145/2676726.2677004. URL http://doi.acm.org/10.1145/
2676726.2677004.

A. Chlipala. An optimizing compiler for a purely functional Web-application language.
In ICFP, 2015b.

E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming without tiers.
In FMCO, pages 266–296, 2006.

K. Crary. Modules, abstraction, and parametric polymorphism. In G. Castagna and A. D.
Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 100–
113. ACM, 2017. URL http://dl.acm.org/citation.cfm?id=3009892.

D. Dreyer. Understanding and Evolving the ML Module System. PhD thesis, CMU, May
2005. URL https://people.mpi-sws.org/~dreyer/thesis/main.pdf.

A. Ekblad. A meta-edsl for distributed web applications. In I. S. Diatchki, editor,
Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell, Oxford,
United Kingdom, September 7-8, 2017, pages 75–85. ACM, 2017. doi: 10.1145/3122955.
3122969. URL http://doi.acm.org/10.1145/3122955.3122969.

A. Ekblad and K. Claessen. A seamless, client-centric programming model for type safe
web applications. In Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell,
Haskell ’14, pages 79–89, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3041-
1. doi: 10.1145/2633357.2633367. URL http://doi.acm.org/10.1145/2633357.
2633367.

Eliom. Eliom web site. https://ocsigen.org/eliom, 2017.

Immutable. Immutable. Facebook, https://facebook.github.io/immutable-js/,
2017.

Reactjs. Reactjs. Facebook, https://reactjs.org/, 2017.

N. Feltman, C. Angiuli, U. A. Acar, and K. Fatahalian. Automatically splitting a
two-stage lambda calculus. In Thiemann [2016], pages 255–281. ISBN 978-3-662-
49497-4. doi: 10.1007/978-3-662-49498-1_11. URL http://dx.doi.org/10.1007/
978-3-662-49498-1_11.

J. Garrigue. A Certified Interpreter for ML with Structural Polymorphism, 2009.

GraphQL. Graphql, 2016. URL http://graphql.org/.

150

http://doi.acm.org/10.1145/2543728.2543738
http://doi.acm.org/10.1145/2543728.2543738
http://doi.acm.org/10.1145/2676726.2677004
http://doi.acm.org/10.1145/2676726.2677004
http://dl.acm.org/citation.cfm?id=3009892
https://people.mpi-sws.org/~dreyer/thesis/main.pdf
http://doi.acm.org/10.1145/3122955.3122969
http://doi.acm.org/10.1145/2633357.2633367
http://doi.acm.org/10.1145/2633357.2633367
https://ocsigen.org/eliom
https://facebook.github.io/immutable-js/
https://reactjs.org/
http://dx.doi.org/10.1007/978-3-662-49498-1_11
http://dx.doi.org/10.1007/978-3-662-49498-1_11
http://graphql.org/

G. Henry, M. Mauny, E. Chailloux, and P. Manoury. Typing unmarshalling without
marshalling types. In P. Thiemann and R. B. Findler, editors, ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP’12, Copenhagen, Denmark,
September 9-15, 2012, pages 287–298. ACM, 2012. ISBN 978-1-4503-1054-3. doi:
10.1145/2364527.2364569. URL http://doi.acm.org/10.1145/2364527.2364569.

J. Hughes. Why functional programming matters. Comput. J., 32(2):98–107, 1989. doi:
10.1093/comjnl/32.2.98. URL https://doi.org/10.1093/comjnl/32.2.98.

S. Kilpatrick, D. Dreyer, S. L. Peyton Jones, and S. Marlow. Backpack: retrofitting
haskell with interfaces. In S. Jagannathan and P. Sewell, editors, The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014, pages 19–32. ACM, 2014. doi: 10.1145/
2535838.2535884. URL http://doi.acm.org/10.1145/2535838.2535884.

O. Kiselyov. The design and implementation of BER metaocaml - system description.
In M. Codish and E. Sumii, editors, Functional and Logic Programming - 12th In-
ternational Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceed-
ings, volume 8475 of Lecture Notes in Computer Science, pages 86–102. Springer,
2014. ISBN 978-3-319-07150-3. doi: 10.1007/978-3-319-07151-0_6. URL http:
//dx.doi.org/10.1007/978-3-319-07151-0_6.

O. Kiselyov. Generating code with polymorphic let: A ballad of value restriction, copying
and sharing. In J. Yallop and D. Doligez, editors, Proceedings ML Family / OCaml
Users and Developers workshops, ML Family/OCaml 2015, Vancouver, Canada, 3rd &
4th September 2015., volume 241 of EPTCS, pages 1–22, 2015. doi: 10.4204/EPTCS.
241.1. URL https://doi.org/10.4204/EPTCS.241.1.

O. Kiselyov, A. Biboudis, N. Palladinos, and Y. Smaragdakis. Stream fusion, to com-
pleteness. In G. Castagna and A. D. Gordon, editors, Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 285–299. ACM, 2017. URL http://dl.acm.org/
citation.cfm?id=3009880.

R. Lämmel and S. L. Peyton Jones. Scrap your boilerplate: a practical design pat-
tern for generic programming. In Z. Shao and P. Lee, editors, Proceedings of
TLDI’03: 2003 ACM SIGPLAN International Workshop on Types in Languages De-
sign and Implementation, New Orleans, Louisiana, USA, January 18, 2003, pages
26–37. ACM, 2003. ISBN 1-58113-649-8. doi: 10.1145/604174.604179. URL http:
//doi.acm.org/10.1145/604174.604179.

D. K. Lee, K. Crary, and R. Harper. Towards a mechanized metatheory of standard ML.
In M. Hofmann and M. Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice,
France, January 17-19, 2007, pages 173–184. ACM, 2007. ISBN 1-59593-575-4. doi:
10.1145/1190216.1190245. URL http://doi.acm.org/10.1145/1190216.1190245.

151

http://doi.acm.org/10.1145/2364527.2364569
https://doi.org/10.1093/comjnl/32.2.98
http://doi.acm.org/10.1145/2535838.2535884
http://dx.doi.org/10.1007/978-3-319-07151-0_6
http://dx.doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.4204/EPTCS.241.1
http://dl.acm.org/citation.cfm?id=3009880
http://dl.acm.org/citation.cfm?id=3009880
http://doi.acm.org/10.1145/604174.604179
http://doi.acm.org/10.1145/604174.604179
http://doi.acm.org/10.1145/1190216.1190245

X. Leroy. Manifest types, modules, and separate compilation. In H. Boehm, B. Lang, and
D. M. Yellin, editors, Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Portland, Oregon, USA, Jan-
uary 17-21, 1994, pages 109–122. ACM Press, 1994. doi: 10.1145/174675.176926. URL
http://doi.acm.org/10.1145/174675.176926.

X. Leroy. Applicative functors and fully transparent higher-order modules. In R. K.
Cytron and P. Lee, editors, Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Francisco, Cali-
fornia, USA, January 23-25, 1995, pages 142–153. ACM Press, 1995. doi: 10.1145/
199448.199476. URL http://doi.acm.org/10.1145/199448.199476.

X. Leroy. A syntactic theory of type generativity and sharing. J. Funct. Program., 6
(5):667–698, 1996. doi: 10.1017/S0956796800001933. URL http://dx.doi.org/10.
1017/S0956796800001933.

X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The OCaml
system release 4.04, Documentation and user’s manual. Projet Gallium, INRIA, Nov.
2016.

S. Lindley and J. Cheney. Row-based effect types for database integration. In B. C.
Pierce, editor, Proceedings of TLDI 2012: The Seventh ACM SIGPLAN Workshop on
Types in Languages Design and Implementation, Philadelphia, PA, USA, Saturday,
January 28, 2012, pages 91–102. ACM, 2012. doi: 10.1145/2103786.2103798. URL
http://doi.acm.org/10.1145/2103786.2103798.

F. Loitsch and M. Serrano. Hop client-side compilation. In M. T. Morazán, editor, Pro-
ceedings of the Eighth Symposium on Trends in Functional Programming, TFP 2007,
New York City, New York, USA, April 2-4. 2007., volume 8 of Trends in Functional
Programming, pages 141–158. Intellect, 2007.

D. B. MacQueen. Modules for standard ML. In LISP and Functional Programming,
pages 198–207, 1984.

marshal. OCaml Standard Library – Marshal. http://caml.inria.fr/pub/docs/
manual-ocaml/libref/Marshal.html, 2016.

J. McCarthy. Recursive functions of symbolic expressions and their computation by
machine, part I. Commun. ACM, 3(4):184–195, 1960. doi: 10.1145/367177.367199.
URL http://doi.acm.org/10.1145/367177.367199.

Meteor.js. Meteor.js. http://meteor.com, 2017.

R. Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci., 17
(3):348–375, 1978. doi: 10.1016/0022-0000(78)90014-4. URL http://dx.doi.org/
10.1016/0022-0000(78)90014-4.

152

http://doi.acm.org/10.1145/174675.176926
http://doi.acm.org/10.1145/199448.199476
http://dx.doi.org/10.1017/S0956796800001933
http://dx.doi.org/10.1017/S0956796800001933
http://doi.acm.org/10.1145/2103786.2103798
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Marshal.html
http://doi.acm.org/10.1145/367177.367199
http://meteor.com
http://dx.doi.org/10.1016/0022-0000(78)90014-4
http://dx.doi.org/10.1016/0022-0000(78)90014-4

R. Milner, M. Tofte, and R. Harper. Definition of standard ML. MIT Press, 1990. ISBN
978-0-262-63132-7.

Y. Minsky, A. Madhavapeddy, and J. Hickey. Real World OCaml - Functional Pro-
gramming for the Masses. O’Reilly, 2013. ISBN 978-1-4493-2391-2. URL https:
//realworldocaml.org/.

T. Murphy VII, K. Crary, and R. Harper. Type-safe distributed programming with ML5.
In G. Barthe and C. Fournet, editors, TGC, volume 4912 of Lecture Notes in Computer
Science, pages 108–123. Springer, 2007. ISBN 978-3-540-78662-7.

K. Nakata and T. Uustalu. Trace-based coinductive operational semantics for while.
In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving in
Higher Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Ger-
many, August 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer
Science, pages 375–390. Springer, 2009. doi: 10.1007/978-3-642-03359-9_26. URL
https://doi.org/10.1007/978-3-642-03359-9_26.

O. Nicole. Bringing typed, modular macros to ocaml, 2016. URL https://
oliviernicole.github.io/about_macros.html.

Ocsigen Toolkit. Ocsigen Toolkit. http://ocsigen.org/ocsigen-toolkit/, 2017.

S. Owens. A sound semantics for ocamllight. In S. Drossopoulou, editor, Programming
Languages and Systems, 17th European Symposium on Programming, ESOP 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4960
of Lecture Notes in Computer Science, pages 1–15. Springer, 2008. doi: 10.1007/
978-3-540-78739-6_1. URL https://doi.org/10.1007/978-3-540-78739-6_1.

S. Owens, M. O. Myreen, R. Kumar, and Y. K. Tan. Functional big-step seman-
tics. In Thiemann [2016], pages 589–615. ISBN 978-3-662-49497-4. doi: 10.1007/
978-3-662-49498-1_23. URL https://doi.org/10.1007/978-3-662-49498-1_23.

L. Philips, C. De Roover, T. Van Cutsem, and W. De Meuter. Towards tierless Web
development without tierless languages. In Proceedings of the 2014 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software, Onward! 2014, pages 69–81, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-3210-1. doi: 10.1145/2661136.2661146. URL http://doi.acm.org/10.
1145/2661136.2661146.

L. Philips, J. D. Koster, W. D. Meuter, and C. D. Roover. Dependence-driven delimited
CPS transformation for javascript. In B. Fischer and I. Schaefer, editors, Proceedings
of the 2016 ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences, GPCE 2016, Amsterdam, The Netherlands, October 31 -
November 1, 2016, pages 59–69. ACM, 2016. doi: 10.1145/2993236.2993243. URL
http://doi.acm.org/10.1145/2993236.2993243.

153

https://realworldocaml.org/
https://realworldocaml.org/
https://doi.org/10.1007/978-3-642-03359-9_26
https://oliviernicole.github.io/about_macros.html
https://oliviernicole.github.io/about_macros.html
http://ocsigen.org/ocsigen-toolkit/
https://doi.org/10.1007/978-3-540-78739-6_1
https://doi.org/10.1007/978-3-662-49498-1_23
http://doi.acm.org/10.1145/2661136.2661146
http://doi.acm.org/10.1145/2661136.2661146
http://doi.acm.org/10.1145/2993236.2993243

C. Queinnec. The influence of browsers on evaluators or, continuations to program web
servers. In M. Odersky and P. Wadler, editors, Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000., pages 23–33. ACM, 2000. doi: 10.1145/351240.351243. URL
http://doi.acm.org/10.1145/351240.351243.

C. Queinnec. Inverting back the inversion of control or, continuations versus page-centric
programming. SIGPLAN Notices, 38(2):57–64, 2003. doi: 10.1145/772970.772977.
URL http://doi.acm.org/10.1145/772970.772977.

C. Queinnec. Continuations and web servers. Higher-Order and Symbolic Computation,
17(4):277–295, 2004. doi: 10.1007/s10990-004-4866-z. URL https://doi.org/10.
1007/s10990-004-4866-z.

React. React. http://erratique.ch/software/react, 2017.

A. Rossberg, C. V. Russo, and D. Dreyer. F-ing modules. J. Funct. Program., 24(5):
529–607, 2014. doi: 10.1017/S0956796814000264. URL https://doi.org/10.1017/
S0956796814000264.

G. Scherer and J. Vouillon. Macaque : Interrogation sûre et flexible de base de données
depuis OCaml. In Ving et unième journées francophones des langages applicatifs,
Studia Informatica Universalis, pages –, La Ciotat, France, Jan. 2010. Hermann. URL
https://hal.archives-ouvertes.fr/hal-00495977.

M. Serrano and V. Prunet. A glimpse of hopjs. In J. Garrigue, G. Keller, and E. Sumii,
editors, Proceedings of the 21st ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, pages 180–
192. ACM, 2016. ISBN 978-1-4503-4219-3. doi: 10.1145/2951913.2951916. URL
http://doi.acm.org/10.1145/2951913.2951916.

M. Serrano and C. Queinnec. A multi-tier semantics for Hop. Higher-Order and Symbolic
Computation, 23(4):409–431, 2010.

M. Serrano, E. Gallesio, and F. Loitsch. Hop: a language for programming the Web 2.0.
In OOPSLA Companion, pages 975–985, 2006.

P. Sewell, J. J. Leifer, K. Wansbrough, F. Z. Nardelli, M. Allen-Williams, P. Habouzit,
and V. Vafeiadis. Acute: High-level programming language design for dis-
tributed computation. J. Funct. Program., 17(4-5):547–612, 2007. doi: 10.1017/
S0956796807006442. URL http://dx.doi.org/10.1017/S0956796807006442.

Shared reactive programming. Shared React. https://ocsigen.org/eliom/5.0/
manual/clientserver-react, 2017.

T. Sheard and S. L. Peyton Jones. Template meta-programming for haskell. SIGPLAN
Notices, 37(12):60–75, 2002.

154

http://doi.acm.org/10.1145/351240.351243
http://doi.acm.org/10.1145/772970.772977
https://doi.org/10.1007/s10990-004-4866-z
https://doi.org/10.1007/s10990-004-4866-z
http://erratique.ch/software/react
https://doi.org/10.1017/S0956796814000264
https://doi.org/10.1017/S0956796814000264
https://hal.archives-ouvertes.fr/hal-00495977
http://doi.acm.org/10.1145/2951913.2951916
http://dx.doi.org/10.1017/S0956796807006442
https://ocsigen.org/eliom/5.0/manual/clientserver-react
https://ocsigen.org/eliom/5.0/manual/clientserver-react

J. Siek. Type safety in three easy lemmas, May 2013. URL https://siek.blogspot.
fr/2013/05/type-safety-in-three-easy-lemmas.html.

D. Swasey, T. Murphy VII, K. Crary, and R. Harper. A separate compilation extension
to standard ML. In A. Kennedy and F. Pottier, editors, Proceedings of the ACM
Workshop on ML, 2006, Portland, Oregon, USA, September 16, 2006, pages 32–42.
ACM, 2006. doi: 10.1145/1159876.1159883. URL http://doi.acm.org/10.1145/
1159876.1159883.

W. Taha. Multi-stage Programming: Its Theory and Applications. PhD thesis, Oregon
Graduate Institute of Science and Technology, 1999.

P. Thiemann, editor. Programming Languages and Systems - 25th European Symposium
on Programming, ESOP 2016, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
2-8, 2016, Proceedings, volume 9632 of Lecture Notes in Computer Science, 2016.
Springer. ISBN 978-3-662-49497-4. doi: 10.1007/978-3-662-49498-1. URL http:
//dx.doi.org/10.1007/978-3-662-49498-1.

M. Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis, University
of Edinburgh, 1988.

Tutorial. Ocsigen Tutorial. https://ocsigen.org/tuto/manual, 2017.

TyXML. TyXML. http://ocsigen.org/tyxml/, 2017.

J. Vouillon. Lwt: a cooperative thread library. In E. Sumii, editor, Proceedings of
the ACM Workshop on ML, 2008, Victoria, BC, Canada, September 21, 2008, pages
3–12. ACM, 2008. ISBN 978-1-60558-062-3. doi: 10.1145/1411304.1411307. URL
http://doi.acm.org/10.1145/1411304.1411307.

J. Vouillon and V. Balat. From bytecode to JavaScript: the Js_of_ocaml compiler.
Software: Practice and Experience, 44(8):951–972, 2014. ISSN 1097-024X. doi: 10.
1002/spe.2187. URL http://dx.doi.org/10.1002/spe.2187.

P. Wadler. Theorems for free! In J. E. Stoy, editor, Proceedings of the fourth international
conference on Functional programming languages and computer architecture, FPCA
1989, London, UK, September 11-13, 1989, pages 347–359. ACM, 1989. doi: 10.1145/
99370.99404. URL http://doi.acm.org/10.1145/99370.99404.

L. White, F. Bour, and J. Yallop. Modular implicits. In O. Kiselyov and J. Garrigue,
editors, Proceedings ML Family/OCaml Users and Developers workshops, ML/OCaml
2014, Gothenburg, Sweden, September 4-5, 2014., volume 198 of EPTCS, pages 22–63,
2014. doi: 10.4204/EPTCS.198.2. URL http://dx.doi.org/10.4204/EPTCS.198.
2.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information
and computation, 115(1):38–94, 1994.

155

https://siek.blogspot.fr/2013/05/type-safety-in-three-easy-lemmas.html
https://siek.blogspot.fr/2013/05/type-safety-in-three-easy-lemmas.html
http://doi.acm.org/10.1145/1159876.1159883
http://doi.acm.org/10.1145/1159876.1159883
http://dx.doi.org/10.1007/978-3-662-49498-1
http://dx.doi.org/10.1007/978-3-662-49498-1
https://ocsigen.org/tuto/manual
http://ocsigen.org/tyxml/
http://doi.acm.org/10.1145/1411304.1411307
http://dx.doi.org/10.1002/spe.2187
http://doi.acm.org/10.1145/99370.99404
http://dx.doi.org/10.4204/EPTCS.198.2
http://dx.doi.org/10.4204/EPTCS.198.2

J. Yallop and L. White. Modular macros. OCaml Workshop, 2015. URL http://www.
lpw25.net/ocaml2015-abs1.pdf.

156

http://www.lpw25.net/ocaml2015-abs1.pdf
http://www.lpw25.net/ocaml2015-abs1.pdf

	Introduction
	On Web programming languages
	The client-server dichotomy
	Tierless programming languages
	Functional programming
	Static type systems
	Modularity and encapsulation

	Eliom
	The Ocsigen project
	Principles of the Eliom language

	Plan
	Contributions

	Programming with Eliom
	Core concepts
	Sections
	Client fragments
	Injections

	Client-server behaviors
	Introducing side effects
	Communication and execution scheme

	Heterogeneous datatypes
	Remote procedure calls
	Converters
	Client-server reactive broadcasts

	Modules and signatures
	A primer on OCaml modules
	Modules and locations
	OCaml integration
	Heterogeneous implementations

	Mixed client-server data structures
	HTML

	Shared values
	Shared data-structures
	Mixed functors

	A sophisticated example: accordions
	Going further

	The ML programming language
	Syntax
	Type system
	The expression language
	The module language
	Inference

	Semantics
	Traces and Printing
	Modules
	Notes on Soundness

	Related works

	The Eliom programming language
	Syntax
	Locations
	Expression language
	Module language

	Type system
	Expressions
	Modules

	Interpreted semantics
	Generated client programs
	Base, Client and Server declarations
	Mixed modules

	Results on locations
	Relation between ML and Eliom
	Notes on soundness

	Compilation of Eliom programs
	Target languages MLs and MLc
	Converters
	Injections
	Fragments
	Modules
	Type system rules
	Semantics rules

	Compilation
	Sliceability
	Slicing rules

	Typing preservation
	Semantics preservation
	Hoisting
	Preliminaries
	Server expressions and structures
	Mixed structures
	Proof of the main theorem

	Discussion around mixed functors

	Implementation
	The OCaml compiler
	The Eliom compiler
	Notes on OCaml compatibility

	Converters
	Modular implicits
	Wrapping

	Typechecking and Slicing
	Technical details

	Runtime and Serialization
	Primitives
	Serialization format
	Optimized placement of sections

	State of the art and comparison
	Web programming
	Code and data location
	Slicing
	Communications
	Type systems
	Details on some specific approaches

	Staged meta-programming

	Conclusion
	Bibliography

