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Resumé 

 

La détection et la quantification de chocs sur une structure mécanique reste une 

attente majeure dans de nombreuses thématiques, notamment celle du contrôle de 

santé structurel (Health monitoring). Les domaines les plus demandeurs sont sans nul 

doute l’aéronautique et l’aérospatiale où l’utilisation de plus en plus fréquente de 

structures composites rend leur suivi et leur contrôle de santé indispensables pour 

d’évidentes raisons de performances et de sécurités de fonctionnement. 

Savoir détecter et localiser des chocs, c’est avant tout savoir dresser un historique des 

impacts générés sur la structures et permettre ainsi de gérer au mieux le risque 

d’apparition d’endommagements structurels (casse, délaminage, déformation…). 

L’objectif central de ces travaux de thèse a porté sur la détection d’impact par 

l’estimation du flux d’énergie élastique induit (vecteur de Poynting) lors du choc. 

Ces estimateurs sont déduits des tensions électriques fournies par des éléments 

piézoélectriques collés sur la structure. 

 

Le chapitre introductif dresse un état de l’art des techniques de détection d’impact. 

La pertinence des présents travaux est alors justifiée en premier lieu par le besoin de 

disposer de techniques simples à mettre en œuvre et basées sur des estimateurs 

mathématiques ne nécessitant pas de systèmes de calculs complexes. Ceci dans le but 

ultime de pouvoir proposer des techniques à très faibles besoins énergétiques, pouvant 

donc être autoalimentables. 

 

Dans le 1
er

 chapitre, la méthode à été évaluée théoriquement et expérimentalement 

sur une structure 1D (poutre) accueillant un réseau de capteurs piézoélectriques 

uniformément répartis. Le flux énergétique peut alors être estimé à partir de la 

différentielle de l’énergie électrique extraite par 2 capteurs consécutifs. Cette 

différentielle s’annule si l’impact a eu lieu sur la zone délimitée par les 2 capteurs, 

sinon son signe indique la localisation (i.e. gauche ou droite) de l’impact.  

Cette technique simple à mettre en oeuvre et totalement passive, possède néanmoins 

une résolution faible car limitée à la distance inter-capteurs du réseau. 

La suite des travaux à consister à étendre ce concept de détection à des 

structures 2D (type plaques ou coques) plus représentatives des structures 
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communément utilisées dans les domaines d’application visés. 

 

Afin d’avoir les outils théoriques requis, le 3
eme

 chapitre est consacré au calcul de la 

réponse impulsionnelle liant la force d’impact à la tension sur les éléments 

piézoélectriques en considérant une plaque mince infinie. La réponse à un choc 

quelconque s’obtient en convoluant la réponse impulsionnelle par une force 

représentative du choc.  

 

Dans le 4
eme 

chapitre, un estimateur de la direction du vecteur de Poynting est 

d’abord théoriquement établi à partir de la tension d’éléments piézoélectriques. 

Ceux-ci adoptent ici un arrangement géométrique en maille, délimitant ainsi une 

surface fermée unitaire. Si le choc a lieu à l’ extérieur de la maille, l’ estimateur est 

nul car l’ intégrale temporelle du flux au travers de la surface est nul ( flux entrant = 

flux sortant). Dans le cas contraire, l’estimateur est non nul.  

Cette approche est validée par des résultats expérimentaux obtenus sur une plaque 

métallique de grande dimension (120 x 80 cm
2
).  

 

Le chapitre 5 introduit un nouvel estimateur du vecteur de Poynting plus performant 

que celui introduit précédemment. 

Le but ici est de disposer non seulement d’une information concernant la direction du 

flux, mais également d’estimer l’amplitude de ce flux, et de pouvoir au final 

quantifier pleinement l’impact. 

Une nouvelle approche théorique est donc développée pour approximer au mieux le 

vecteur de Poynting, toujours à l’aide des tensions générées par les capteurs 

piézoélectriques. 

Les simulations et les résultats expérimentaux obtenus sont concordants et ouvrent 

d’intéressantes perspectives.  

 

En conclusion, ces travaux ont montré qu’il est envisageable de développer des 

estimateurs du flux d’énergie élastique induit par un choc sur une structure élastique 

et de pouvoir en tirer des informations concernant sa localisation ,voire son amplitude. 

L’approche théorique est complexe et nécessite une connaissance globale des divers 

couplages mis en jeu.  

Quoi qu’il en soit, ces techniques, de part leur simplicité de mise ne œuvre et leur 
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faible demande de moyens de calcul, constituent une proposition intéressante pour de 

futures techniques de détection d’impact passives ayant de plus la faculté d’ être 

autoalimentables ; autrement dit, ayant la faculté de puiser directement dans les 

vibrations de la structure l’énergie suffisante pour assurer le calcul de l’estimateur et 

sa transmission par liaison sans fils. 
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Nomenclature 

 

P         polarization 

T         stress 

D         piezoelectric strain constant 

E         electric field 

S         strain 

Dd         electrical displacement 

s
E
         elastic compliance 

k         coupling factor 

M         lineic mass 

K         lineic stiffness 

ux         longitudinal displacement 

zu          flexural displacement  

C0         clamped capacitance 

S         
permittivity of the piezoelement 

e         voltage coefficient 

A         surface of the piezoelement 

l         thickness of the piezoelement 

L         length of the plate 

W         width of the plate 

uz         structural displacement (deflection) 

Iout         outgoing current from the piezo-element 

          Laplacian poerator 

m         surface density 

D         bending stiffness 

          damping factor 

q         applied load 

),( txFext        applied force 

x
k ,

y
k         spatial frequency along the x and y axis 

Y         Young modulus 

          Inclination angle 

          Poisson ratio 
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H         Plate thickness 

          Damping coefficient 

Px , Py        Poynting vector in x and y direction 

EE          Electric field 

V         piezovoltage 

pM          lineic mass of the part of the beam where a 

piezoelement is bonded 

pK    stiffness of the part of the beam where a 

piezoelement is bonded 

pc          blocked pizo capacitance. 
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Introduction 

Detection and quantification of impacts on elastic structure stays a major 

preoccupation in many fields, especially for Structural Health Monitoring (SHM). 

Aerospace and aeronautic are probably the more applicant industry sectors because 

the increasingly use of composite material enforces an obligatory monitoring for 

security survey. 

Detecting impacts permits to prevent and supervise the risk of structural damage such 

as deformation, delamination, breakage… 

 

This work concerns with the impact detection based on induced elastic energy flow 

estimators. These quantities are here deduced from voltage of a piezoelements 

network embedded on the structure. 

 

The introduction is a state of the art in impact detection techniques. The basic 

common idea in these works is to indirectly estimate the impact force (amplitude and 

location) by convolution techniques from measurements of mechanical responses 

such as displacement, acceleration, and strain. These techniques generally require 

high computation capabilities, noise treatments and an estimation of the transfer 

function.  

The pertinence of the present work is then justified by the need of a simplest approach 

using light calculation mathematical estimators in order to develop a low-power 

technique.   

 

In chapter 2, a new method is theoretically introduced and experimentally evaluate 

for a 1D structure (beam), exploiting electric response of a piezoelectric sensors 

network. The energy flow is estimated from the energy differential of 2 consecutive 

sensors. This differential is nil if the impact is inside of the area delimited by the 2 

sensors, otherwise its sign indicates the impact location (i.e. left or right of the area). 

This simple technique, easy to implement and totally passive, has a low spatial 

resolution limited by the inter-sensors distance. 

 

The 3
rd

 chapter is devoted to the impulse response determination of an infinite plate 

in order to have the theoretical tools useful to estimate the impact force from the 
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piezoelectric sensor voltage. The response from a particular impact is derived from 

the convolution of this impulse response by the representative impact force. 

. 

In chapter 4, an estimator of the Poynting vector direction is theoretically established 

from the voltage of piezoelectric elements for a 3D structure. These elements have a 

specific geometrical meshed arrangement, thus delimiting an unitary closed surface of 

energy flow integration. If the impact is outside of this closed area, the estimator is nil 

because the integration in time of the flow is nil (ingoing flow=outgoing flow). 

In the contrary case, the estimator is not nil. 

This approach is validated by experimental results obtained with a large metallic plate 

(120 x 80 cm
2
). 

 

In chapter 5, a new estimator of the Poynting vector is introduced. In addition of the 

energy flow direction, this estimator gives additional information on the energy flow 

amplitude in order to fully quantify the impact.  

A new theoretical approach is developed here in order to refine the approximation of 

the Poynting vector by the piezoelectric sensor voltage. Simulations issues from this 

new model and experiments are in good agreement and then open new design 

perspectives. 

 

In conclusion, these works show that new estimators of the energy flow induced by 

an impact can give informations on its location and even on its amplitude. The 

theoretical approach stays complex and needs a global knowledge of the relating 

mutiphysic couplings. 

However, these techniques are simples, easy to implement and do not have a high 

calculation capacity requirement. They are a new interesting offer for future passive 

impact detection techniques with moreover the capacity to be self-powered.  
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Chapter 1 Generalities 

1.1 Introduction  

 

This chapter introduces the generalities concerning the impact detection techniques.  

The existing ways of research on this topic are presented and finally the principle of 

our approach, based on the energy flow estimation, is introduced. 

At the end, some basics generalities on piezoelectric systems are given.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 General 

 - 9 -- - - 

1.2 Motivation for impact identification 

Damage due to an external impact is a major preoccupation for structure design in 

many domains (aerospace, aircraft, automobile, building engineering…). Detecting 

damages is then essential to guarantee performances and security in such structures. 

In that way, many Structural Health Monitoring (SHM) approaches
1
 have been 

developed. For example, ultrasonic inspections such as A-Scan, B-Scan ,C-Scan or 

Lamb Wave techniques
2-3-4-5

 detect damages in metallic or composite structures with 

high efficiency. But most of these techniques are built around time-consuming and/or 

high need of memory algorithms and finally, they cannot be performed in real-time. To 

lighten the process, the structure health monitoring is often operated by periodical 

inspections rather than a continuous inspection. Another drawback of the SHM 

techniques is that an only eventual damage caused by impact is detected and not the 

impact itself. Yet it is important to have an impact history, even if they don’t induced 

detectable damage, because it permit to predict damage occurrence. This point largely 

justify the need of impact detection techniques, not for supplant SHM ones but rather 

to complete them.  

Numerous works have been carried out on impact location estimation. The basic 

concept relies on a combination of innovative sensors, advanced analytical techniques 

and artificial intelligence to provide a continual real time health assessment of a 

structure. When an impact occurs, these smart structures using information from the 

sensors can determine its location and eventually its amplitude. Exploiting the 

structural response to infer other information about the structure is referred to as an 

inverse problem. Before introduce our new technique, an overview of the various 

types of inverse problem is introduced in following part.  

1.3 Overview of impact detection techniques 

When considering the mechanics of structures deformations, the variation of the 

applied force is one of the most critical factors. The force applied to a structure cannot 

be measured directly but indirectly by the induced deformations variations. In order to 

overcome this difficulty, lots of researchers have studied this subject during several 

decades. This section will present a review of methods of inverse analysis for the 

indirect measurement of impact force.  
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The basic idea is to indirectly estimate the impact force from measurements of 

mechanical responses such as displacement, acceleration, and strain...  

To completely define the impact force, it requires knowing its temporal response and 

its location. 

 

1.3.1 Identification of temporal response of an impact force  

The simplest approaches generally employed are based on deconvolution techniques. 

1.3.1.1  Deconvolution technique 

If the elastic behaviour of the structure can be considered as linear during the impact 

process, the response e(t, r) at a particular point is given by the linear convolution of 

the impact force f(t) by the impulse response function of the linear system h(t) : 

 
t

dfrthrte
0

)(),(),(   
(1.1) 

It is assumed here that f(t),h(t),e(t) equal to zero when t < 0. This supposed that the 

impulse response h(t) is known and that the response e(t) can be measured. In that 

case, the impact force f(t) is obtained by the deconvolution of (1.1).  

1.3.1.1.1  Deconvolution in the time domain 

The equation (1.1) is expressed in the time domain as 

fhe   (1.2) 

where e and f are vectors composed of discrete values of e(t) and f(t). h is a matrix 

composed of discrete values of h(t). The impact force history can be obtained by 

solving equation (1.2). From this approach, Goodier et al
6
 obtained the impact force 

from the strain measured at a point on the surface of structure. Doyle
7
 (1984) also 

estimated the impact force acting on a beam from the bending strain measured by 

strain gauges. In these studies, the impact force is obtained by solving equation (1.2) 

using Gaussian elimination. But these conventional Gaussian elimination methods can 

lead to severely noisy or unstable measurements. The h-matrix coefficients is often 

ill-conditioned, small errors in the response vector e induces large errors in vector f. 

For this reason the above approach is not so effective to obtain an accurate and stable 
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estimation of the impact force. 

To overcome this problem of noise amplification, the least-squares method had 

been used in several works. Chang and Sun
8
 made the number of equations greater 

than the number of unknowns in equation (1.2) by imposing a response duration 

measurement longer than the impact force one. They solved this least-squares 

problem by the conjugate gradient method, which is an iterative optimization 

technique. But, too much iteration may cause an unstable estimation for the same 

reason as in conventional methods. Chang and Sun did not specify the iteration 

number. 

The least-squares method was also used in Wu et al
9
 works. They considered several 

responses records at multiple locations simultaneously. To get a stable estimation, 

they consider the non-negative impact force (compressive or zero force). This 

problem with the non-negativity constraint was solved by an iterative optimization 

technique named the gradient projection method. Yen and Wu
10

 demonstrated the 

efficiency of the non-negativity constraint. In their next works, Wu et al carried a 

numerical simulation for a laminated plate and showed that this technique can 

improve the estimation pertinence, even when the response records are very noisy. 

They also showed that too many iterations cause an unstable estimation. They 

proposed a criterion for the optimal iteration number, which makes an accurate and 

stable estimation. But, the criterion is only qualitative. 

Tanka and Ohkami
11

 proposed a technique using Truncated Singular Value 

Decomposition (TSVD) to detect the impact force acting on a pipe from its response 

measured by an accelerometer. 

Fan Jiangling et al proposed a technique which estimates multiple periodical impact 

force from single point response in time domain
12

.  

1.3.1.1.2  Deconvolution in the frequency domain 

Another basic technique is to transform the convolution in the time domain into 

frequency domain using Fourier transforms as: 

)()()( wFwHwE   （1.3） 

When the transfer function H(w) is known, the impact force can be estimated by 

evaluating the Fourier Transform of the measured response. The advantage of this 

technique is to reduce the computational task compared to that required in time 
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domain. 

Holzer
13

 is the one of precursor to use the frequency domain deconvolution. His 

method involves the use of a short load cell and a fiber optics displacement transducer. 

The analysis of the force/time data allows signal correction for the effect of the 

dynamic characteristic of the force measurement system. The method involves 

frequency transformation of the force data by a Fast Fourier Transform algorithm, and 

can correct the dynamic ringing of the load cell and the phase lag of the recording 

system 

Doyle
14

 claimed that frequency domain is better than time domain deconvolution 

because of simplicity. Some researchers also applied this technique on various 

structural components (Doyle
15-16-17 

Martim and Doyle
18 

Rizzi and Doyle
19

). 

In practical computation, the data vector has a finite length, but Fourier Transforms 

are defined by infinite integrals. Thus, it causes a discontinuity at the end of the data, 

which is leakage. An exponential window exp(- t ) applied to the data can reduce the 

leakage. 

Inoue et al
20-21

 have used this technique to estimate impact force on a beam and plate. 
 

A Fourier transform with an exponential window is the same as Laplace transform
22-23

. 

Inoue & al
24

 used Tikhonov regularization to numerical Laplace inversion to improve 

the accuracy of the estimation. 

It should be note that a small noise involved in the response data may cause a large 

change in deconvolution results. Wiener filter was used to overcome this problem by 

Inoue et al
25

. Wiener filter is an optimal inverse system to reduce the amount of noise 

by comparison with an estimation of the desired noiseless signal. They demonstrated 

the effectiveness of the Wiener filter by numerical simulations on a rod.  

Kishimoto & al
26

 also showed the effectiveness of the Wiener filter on cantilever 

beam impact detection.  
 

In addition, lots of researchers have used deconvolution in the frequency domain such 

as Whiston
27

, Jordan and Whiston
28

, Bateman et al
29

 Kim and Lyon
30

, Lin and 

Bapat
31

, McCarthy and Lyon
32

 

1.3.1.1.3 Identification of the transfer function 

The perfect knowledge of the transfer function h(t) is essential to obtain a precise 

estimation of the impact force. 
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There are basically three approaches to have the transfer function: by theoretical 

analysis, by experimental analysis, or by numerical analysis. Each of them has some 

advantages and disadvantages. 

The theoretical analysis approach needs a precise modelling of the structure including 

significant parameters (shape, size, boundaries conditions, etc...). This generally stays 

a difficult approach because numerous parameters are hard to identify, and generally 

many approximations are indispensable. 

In experimental identification, the transfer function is obtained by a calibration 

procedure, as described fro example in
33-34-35

. However, this also has many difficulties 

because small errors in the calibration data cause significant errors in the transfer 

function. Thus, it makes an unstable estimation of impact force. 

The numerical analysis is another way for the transfer function estimation. This 

approach also needs experimental investigations and is difficult to carry
36

. 

1.3.1.2  Other techniques 

Other techniques exist for the impact force detection. The most significant are given 

here:  

The Sum of Weighted Acceleration Technique (SWAT) was proposed by Bateman et 

ai
37

. However, the main disadvantage of SWAT is the difficulty of determining the 

weighting factors. 

A Neural network technique was also proposed
38

. It can be easily applied in the case 

of nonlinear response. The estimation process is very simple. The parameters of the 

network must be determined appropriately to get an accurate estimation. In addition, a 

larger number of data are required to train the network adequately. 

1.3.2 Estimation of impact force location 

To estimate the impact location is basically a nonlinear problem even in elastic 

structures. In most of the researches, the main approach is that the impact location can 

be obtained from the velocities of stress waves and from their arrival times at several 

points of the structure. However, it is not easy to determinate the wave velocities and 

arrival time in complex shapes because of waves reflections and dispersions. The 

majority of the proposed methods are developed for basic structures as beams or 
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plates. 

1.3.2.1  Impact location in beams  

In the field of estimation of force location, some effective methods have been 

proposed. For example, the identification methods based on infinite beam using 

Timoshenko theory
39

.  

 

Figure 1.1. Beam acceleration response under impulse force. 

The beam response to an impulse force is shown in Figure 1.1 (from
40

). The high 

frequency compounds (fast wave) propagate velocity close to the shear velocity cs in 

Timoshenko theory. Information on impact location are carried by the slowest 

significant component velocity c(w0). This component is observed at the 

pseudo-pulsation w0 ( = 
0t

 ) where to is roughly estimated as shown in Figure 1.1. 

The response to impulse force of 1 -duration can be calculated as: 

1

0


sw c

x

c

x
 （1. 4） 

where x is the distance from the impact location to the measuring point. 

Solving Equation （1. 4), x can be obtained as: 

 
 0

0

1
wcc

wcc
x

s

s


   

（1. 5） 
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Relation（1. 5) provides the distance from the impact location. However, the main 

restriction of this approach is that the impact force must be pulse-type and that human 

intervention is required for determinate the slowest pulsation component and the 

duration time 1 , which makes the approach not so simple. Based on Bernoulli-Euler 

beam theory, Doyle
41

 proposed other technique to determine the impact location. The 

phase information obtained from a spectral analysis of the dispersive waves is used 

here to locate the source of the waves. Choi & Chang
42

 have proposed an impact load 

identification method using distributed built-in sensors. The identification system 

consists of a system model and a response comparator. The system model 

characterizes the dynamic response of the structure subject to a known impact force. 

The comparator compares the measured sensor outputs with the estimated 

measurements from the model and predicts the location and force history of the 

impact.  If the given experimental results are satisfactories, there are a large number 

of variables to optimize, which might cause difficulties in the optimization process. 

To overcome the shortcoming of the above techniques, Doyle
43

 improved his initial 

technique based on the spectral-element method by combined it with a stochastic 

genetic algorithm to give a scheme that can locate the source of structural impacts.  

In this approach, two independent estimations are carried from two responses by 

deconvolution where the transfer function is predicted by Timoshenko theory. These 

two estimations were well coinciding if the impact location estimation is correct.  

A genetic algorithm was considered to search for a global maximum of the correlation. 

A genetic algorithm (GA) is a research technique used in computing to find exact or 

approximate solutions to optimization and search problems.  

Martin & Doyle
44

 used this technique on a frame structure. First, they developed a 

method to predict the transfer function as a function of estimated impact location. 

Second, they proposed another objective function based on the differences between 

two estimations of the impact force. However, an appropriate tuning of parameters is 

essential for obtaining a sufficient fast convergence of the searching process.  

Inoue & al
45

 proposed a technique that did not rely on beam theory. In the prior 

research
46

, it was shown that if a propagating pulse in a dispersive medium is 

recorded at a point, the arrival time of each frequency component of the pulse at that 

point can be estimated by a time-frequency analysis with the help of wavelet 

transform. The main advantage of this approach is that the impact location estimation 

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Approximation
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Problem
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is only performed from experimental records without using beam theory. That is the 

reason this approach is easy to apply in other structures. Inoue & al. proposed a 

technique, which employs the arrival time of each frequency component of a pulse 

detected by means of wavelet, transform
47

. There is also an energy extraction-based 

algorithm has been proposed
.48-49

. 

 

1.3.2.2 Impact location in plates 

The oldest works on impact location in plate must probably be attributed to Yen and 

Wu
50-51

. They proposed a technique from the strain responses at particular points on 

isotropic plates based on Greens’s functions. The impact location can be obtained to 

transverse impact from strain responses measured at multiple points on the plate.  

Ohkami and Tanaka
52

 developed a two-step technique based on classical plate theory. 

First, they determine an elliptic region that may contain the true impact location. 

Secondly, it is linked with the estimation on the impulse force history. Unfortunately, 

human interventions are required both in determining the elliptic region and in 

selecting a final estimation of the impact location. 

Gaul & Hurlebaus
53

 proposed an experimental method for detecting flexural waves in 

plates by the use of piezoelectric films. They solved a simple system of nonlinear 

equations based on arrival times of flexural waves at several points of a plate. The 

advantages of the approach are its accuracy. However, it should be possible to extend 

this approach to composite material.  

A triangulation procedure incorporating a Genetic Algorithm (GA) to localize the 

impact location was proposed by Coverly & Staszewski
54

 and Haywood & al
55

. They 

demonstrated the promising potential of GA in impact load identification. 

Unfortunately, they only considered the impact location in these researches. There 

was no mention about how to identify the temporal impact force.  

Gang Yan and Li Zhou
56

 provide a GA-based approach to identify the impact location 

and reconstruct the impact force history simultaneously in composite panel. 

Base on minimizing the error between measured strains responses in PZT sensors and 

numerically evaluated ones, a technique for force location was proposed
57

. Not only 

these theoretical approaches have been developed, many experimental works also 

exist, mainly acoustic or stress-strain methods using optical fibers or PZT as sensor 
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materials
58-59

.
 
  

Shin
60

 proposed a technique using modal displacement and accelerometers 

information. 

Another method introduced by Akhavan & al 
61

.use fiber optic strain sensor data as 

inputs to a neural network to obtain contact force history. They had designed and built 

an instrumented drop-weight impact tower to facilitate the measurement of contact 

force during an impact event. The impact head assembly incorporates a load cell to 

measure the contact forces experimentally. An in-house finite-element program is 

used to establish the validity of the fiber optic sensor contact force response. The 

finite-element model is based on a higher-order shear deformation theory and 

accounts for geometric nonlinearity.  

1.4 Motivation of the present works 

The previously introduced existing approaches for impact detection generally require 

high capabilities for computation, noise treatments and sometimes human 

interventions. Moreover, they have high electric power consumption, which is not the 

actual tendency for low-power systems especially for the embedded systems domain. 

The motivation of present work gives raise in the need for a simple, low -power 

method to identify impact. The main goal here is not to increase the resolution of 

detection, but rather to have a method making the compromise between an acceptable 

detection resolution, an easy to implement computation algorithm and a low power 

requirement. The principle of the approach is to estimate the elastic energy flow 

induced by an impact in a structure with the help of piezoelectric sensors network. 

Previous works
62-63-64

 discuss on the energy flow in the structure but have not 

extended the work to impact location estimation. 

The main difficulty in our approach is to reasonably estimate the power flow 

characterised by the Pointyng vector with the help of the electrical response of the 

embedded piezoelements. 

This work has been done through various progressive steps:  

In a first step, the work focuses on simple 1D problem. It has been shown that a 

specific shunted piezoelectric network bonded on the structure (Figure 1.2) could 

permit to determine the energy flow direction. 
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PZT1 PZT2 PZTi 

x 

Ein 

Ep1 Ep2 Epi 

… 

Eb1- Eb1
+ 

Eb2+ Ebn+ Eb2- 

impact 

A 

 

Figure 1.2 sensor network for the detection of the energy flow direction in a 1D 

structure. 

 

In the second step, the problem is extended to a 2D problem (infinite plate). 

Considering a closed surface (S) (Figure 1.3a), when the impact is located inside 

frame surface S (I-point), the mechanical energy flows out the structural surface. The 

time domain integral of this outgoing energy is then positive with energy.  

In the case of an outside frame impact (O-point), the induced energy quantity flows in 

and out through the closed surface (S). The out going energy quantity and energy  

losses in the structure consist ingoing energy. The time domain integral is then nil, 

considering a lossless plate.  
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Figure 1.3: principle of the energy flux expressed by Poynting vector in an infinite 

structure (a) without consideration of losses. Sum of energy flux trough the surface (S) 

is null for an outside impact (O-point) and not null for an inside impact (I-point). For 

a finite structure (b), reflection on the boundaries induce secondary sources (s1..si) 

with a null associated energy flow. 

 

In the case of a finite plate, the reflection phenomenon on plate edges has to be taken 

into account (Figure 1.3b) by considering them as secondary external sources. The 

flow associated to the reflected energy leads to a null value and hence does not 

degrade the initial information carried by the energy flow associated to the initial 

impact. Our works had thus focused on the development of a technique based on this 

approach. The basic idea is firstly to use a closed piezoelectric sensor and secondly, to 

estimate the energy flow trough this closed sensor from the piezoelectric sensor 

voltage induced by impact. 
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1.5 Generalities on piezoelectric systems 

Many books and papers deal with piezoelectricity and we don’t give here more 

details. We just give here the useful relation for the present work. After introducing 

the general constitutive equations for a piezoelectric element, main equations for a 

sensor deforming in bending mode is given, because it corresponds to the case funded 

in this work: piezoelectric sensors embedded on a bending beam or plate. 

We finally show the interest in using piezoelectric technology for impact detection in 

terms of integration and performances. 

1.5.1 Constitutive equations 

The general constitutive equations for an anisotropic piezomaterial are given in (1.6) 

and –1.7). 

 

mmij

T

iji TgDE    （1.6） 

mmij

E

iji EdTsS   （1.7） 

Where 

• S is the vector of deformations  

• T is the vector of stress consists of 6 components Ti = 1 .. 6 

• E is the electric field vector with 3 components Ei = 1 .. 3 

• Dd is the electric displacement field vector of 3 components Di = 1 .. 3 

• s
E
 is compliance of 6X6 matrix at constant electric field. 

• d is 3X6 matrix of piezoelectric charge coefficients. 

• g is 3X6 matrix of piezoelectric voltage coefficients. 

•
1T

T



  where T  is the 3X3 matrix of dielectric constants measured at 

constant stress 

 

The Equation (1.6) denotes the direct piezoelectric effect, where an electric field E 

arises under a mechanical solicitation T. This direct effect is exploited in sensing 

applications.The reverse piezoelectric effect is represented by (1.7): when an external 

electric field E is applied on the piezoelement, it deformed itself. This indirect effect 
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is exploited in actuation applications. 

Our task mainly concerns with bending sensors (Figure 1.4). The piezoelement is poled 

in the 3-direction. The 2 electroded faces are parallel arranged along the 1-direction. 

We supposed here that the strain in the 3-direction are negligible compared to the 

1-direction one. This permits to say that only lateral deformation (1-direction) induces 

the electric field E. 

 

 

 

1 

3 

P 

V=E3 e 

T1 
T1 

I 

 

 

Figure 1.4. Piezoelectric element used as bending sensor. 

 

In that case, the relation (1.6) becomes:  

3 33 3 31 1 32 2 33 3

TE D g T g T g T     
（1. 8） 

 

It should be note that T3 equals to zero for flexural wave.  

If the sensor is in open-circuit condition, the open voltage is:  

 

3 31 1 V g T e  
（1. 9） 
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1.5.2 A wide range of forms  

Piezoelectric materials exist under four primary forms: massive ceramics, single 

crystals, fibbers or films. These 4 primary forms can be directly integrated into the 

structure or they can be used in advanced systems such as summarized Figure 1.5 

 
 

 

massive 

Ceramic 

 

 

Single crystal 
 

 

 

piezo fibers 
 

PVDF films 

 

multilayers 
 

Composites 

(patches..) 

 

(Bimorphs..) 

Structure 

primary 

materials 

advanced 

systems  

 

Figure 1.5. primary forms of piezoelectric material 

 

 

This large choice of piezoelectric materials or systems permits to have an adapted 

response in terms of integration for the wanted applications. This point is crucial for 

impact detection techniques because the piezoelectric sensors are the core of the 

detection system. If massive ceramics are often an adapted solution, piezofibers, films 

or composites floppy patches are very promising alternatives, especially for 

integration in structures deforming in bending mode.  

 

We focus here on the 2 common used piezoelement for sensing applications:  

 Massive ceramics 

These materials exist under a multitude of geometries. Columns, tubes, plates are 

hence commonly available in industry standards (figure 1.9).  
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Figure 1.6: Massive ceramic: industrial standard materials.  

 

Thus, there are widely application. There are hard and soft ceramics. Hard ceramics 

are more difficulty changed by electrical fields than soft ceramics. The piezoelectric 

properties depend upon the thermoelectric treatment by sintering and then polarization 

under the influence of an electrical direct current field. The most common 

piezoelectric ceramic is lead zirconate titanate, Pb(Zr,Ti)O3 (PZT). Because of many 

years of practical using, it can be made to almost any shape, high stiffness, and high 

dielectric constant. In addition, PZT is relatively inexpensive compared with PVDF. It 

is sensitive to low tensile. 

 

 Piezoelectric fibers 

 

Piezoelectric fibers are manufactured by various methods, e.g. extrusion, viscous 

suspension spinning process. Basic applications of piezoelectric fibers include 1-3 

composites, which are aligned fibers embedded in a polymer matrix (figure 1.10). 

The advantages of fibers are low acoustic impedance and high piezoelectric 

coefficients. In addition, many works focus on a newly developed active fiber 

composites (AFC), which have a big potential benefits over conventional 

piezoelectric sensing and actuating devices. 
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Figure 1.7. piezoelectric fibers (a) and an example of integration (b)  

 

These kinds of piezoelectric systems are a very seductive solution for impact 

detection sensor network because they can be directly integrated in structures, 

especially in composites structures. The average values of the piezoelectric 

characteristics for the various primary forms are summarized in Table 1.1. Only 

characteristics are linked to the 31-mode (lateral mode) because it is generally the 

solicited mode in structural bending deformations, which directly concerns the present 

work.  

 

Table 1.1. Average values of piezoelectric charge coefficient d31, piezoelectric voltage 

coefficient g31 coupling coefficient k31 and mechanical factor quality Qm for primary 

materials in 31-mode (lateral mode) 

type d31 

10
-12 

m/V 

g31 

10
-3

V.m/N 

k31 

% 

Qm 
33  

hard PZT  -100 -10 -35 >1000 1150 

soft PZT  -200 -15 -37 100 1850 

PVDF Film -30 -200 - 10 2 ~ 5 

fiber -60 -10    

Single crystals PMN-PT -1500  85 100~200 3000~5000 

Cellulose electroactive 

paper  EAPap
65

 

- -0.03 - -  

 

If the d31 coefficient denotes the actuation material abilities, the g31 coefficient 

characterizes the sensing material abilities. Even if PVDF film is a good candidate for 

sensing applications, massive PZT ceramics are used in the current work due to their 

easy implementation for experimental set-up. 
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1.6 Conclusion 

This chapter presents the objectives of this thesis and the some basic generalities on 

piezoelectric systems.  

In order to develop an easy to implement low power technique, a new method is 

introduced. 

The starting point of our work is that the impact detection can be given by an 

estimation of the pointing vector, which represents the energy flow in an elastic 

structure. This new estimator is deduced from voltage response of piezoelectric sensor 

embedded or bonded on the structure. 
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2 Preliminary results on beam  

2.1 Introduction 

In this chapter, the possibility to detect impact by estimating the energy flow is 

validated in a simple 1D problem. The proposed technique consists in estimating the 

energy flow evolution in a monitored beam through a network of resistively shunted 

piezoelectric inserts.. These sensors do not need any external power supply.  

The impact location is simply deduced from a dissipated energy comparison given by 

the shunted resistor voltage. 

The first part of this chapter presents the principle of this method. Second part 

introduces the theoretical approach. Final part, theoretical and experimental 

measurements are carried out to demonstrate the method. 
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2.2 Principle 

This study considers a one-dimensional beam with resistively shunted 

piezoelectric elements bonded on the structure as shown Figure 2.1. Besides, the 

beam is considered as lossless and infinite. The piezoelements are uniformly bonded 

on the beam with a x  step. Considering an impact at the point A on the beam, the 

longitudinal waves, as well as the induced energy (Ein) flow generated by this force 

would propagate in opposite directions (Ein+ and Ein-) along the beam. Going through 

a piezoelectric insert (PZTi ), a part of the mechanical energy (Ei) is extracted and 

converted into electrical energy (Epi) and finally dissipated in the resistor. Thus, the 

energy of the wave decreases each time it passes a piezoelectric insert i and can be 

estimated as, assuming that each shunted piezoelectric insert has the same conversion 

ratio:  

Ebn-=En-1 - Epi  (2.1) 

 

Considering that the 2 induced energy flows are identical (Ein1+ = Ein1-), the 

force location can be estimated by simply comparing the dissipated energy by 

each resistor. Effectively, the gradient energy (Ep1-Ep2) of 2 consecutive 

piezoelements would be nil only in the case where they surrounded the impacted 

area.   

The impact spatial resolution of the proposed technique stays lower than x its 

performance relies on its fast processing and on the fact that the sensors do not need 

any external power. 

 

PZT1 PZT2 PZTi 

x 

Ein 

Ep1 Ep2 Epi 

… 

Eb1- Eb1
+
 

Eb2+ Ebn+ Eb2- 

impact 

A 

 

Figure 2.1: The studied structure. The PZT elements are uniformly bound on the beam 

with a x – step. Ein is the stored energy in the beam due to the impact at the point A. 

Epi is the energy extracted by the i-element and dissipated in the resistor. Eb is the mechanical 

energy in the beam. 
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2.3 Modelling 

2.3.1  Lumped model 

The nondispersive wave propagation in an infinite lossless beam can be modeled 

using spring-mass systems as shown in Figure 2. 2. These simple assumptions are 

sufficient to enlighten the basic principles of the detection technique. The beam is 

split in 2 kind of section:  

 Simple mechanical section corresponding to the beam area without 

bonded piezoelement 

 Composite section corresponding to the beam area with bonded 

piezoelement 

 

 composite section simple section simple section 

beam beam beam 
piezoelement 

 

 

Figure 2. 2: Spring-Mass representation of an infinite beam. 

K and M are respectively the stiffness and the lineic mass of an simple (mechanical) 

section (only beam) 

Kp and Mp are respectively the stiffness and the lineic mass of a composite section 

(beam + piezoelement). 
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Table 2.1: Nomenclature of the lumped model  

M  lineic mass 

K  stiffness 

ux longitudinal displacement 

V piezovoltage 

pM  
lineic mass where a piezoelement is 

bonded 

pK  
stiffness where a piezoelement is 

bonded 

 

 

Considered that the piezoelectric inserts does not significantly modify the local 

stiffness and mass of the structure, one can assume that pM and Kp are equals to M  

and K  respectively. Applying the fundamental dynamic equation and using Taylor 

expansion thus yields Equation (2.2) for non-piezoelectric parts and Equation (2.3) for 

piezoelectric parts, with  the force factor of the piezoelement defined as Equation 

(2.4), where e, A and l are defined as the voltage coefficient, the surface and the 

thickness of the piezoelement. Because there are the second derivative of x with 

respect to displacement u, Figure 2. 2 has ux, u(x-dx)), u(x+ds) three part in composite 

section. 
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The current flowing out of the piezoelements can be derived from the 

macroscopic piezoelectric equations yielding Equation (2.5), with 0C  the clamped 

capacitance defined as Equation (2.6), with S
 the permittivity of the piezoelement. 

The resistive shunt thus leads to Equation (2.7), with R the value of the resistor.  

 

l

A
C

s
0  

(2.6) 

 

R

V
uVC

x
 

.

0  
(2.7) 

2.3.2 Energetic balance 

The purpose of this section is to expose the dissipated energy over the two 

different sections of the system. The energy stored by the structure is given by 

Equation (2.8), where ),( txFext  are the external applied force.  
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Because a resistor is connected to the piezoelement (giving Equation (2.7)), the 

energy Ep can be written as Equation (2.9). Consequently this energy extraction 

reduces the wave energy available for the next parts of the beam. 

Differentiating the energy over two consecutive piezoelements thus gives 

Equation (2.10). Therefore, the Equation (2.10) that performs a differentiation of the 

energy is almost null considering the two shunted patches that are closed to the impact 

location. The location estimation of the wave source can be done by determining the 

zero crossing of that the first criterion. The reason is the first two shunted patches 
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absorb more energy than the other patches. Therefore, from the origin of the wave, the 

energy dissipated through the shunt resistor is a decreasing value of the distance from 

the patch to the energy source. Therefore, the criterion (2.10) that performs a 

differentiation of the dissipated energy is null considering the two shunted patches 

that are closest to the impact source. Because, the energy decrease with the distance 

and the each patch absorbs a part of the mechanical energy of the wave, the criterion 

reaches a minimal and a maximal value for the next set of patches, then the absolute 

value decreases as shown in Figure 2.3.  

 

 

 

Figure 2.3 Energy flow in the beam, differentiating the energy over sensor 1 to 2 

is negative ( 012  pE ), sensor 2 to 3 is null ( 023  pE ), 3 to 4 and 4 to 5 is positive 

( 453423 ppp EEE  ) 

 

 

 

Figure 2.4 Normalized evolutions of the extracted energy (dotted) and the 

proposed criterion (plain)—force location at x0=7.5. 

 

It should be note that the signum of the criterion depends both on the wave direction 

and the direction the estimation is performed. If the wave and the criterion are the 

same direction (resp. opposite), the criterion is positive (resp. negative). Figure 2.4 
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shows the evolution of the extracted energy and the criterion (2.10) for a wave 

propagating from the point x0=7.5. 

The patches are assumed to be placed at integer values of x. As expected, the criterion 

is null near impact location, then reaches a minimal and maximal values, and starts 

decreasing in absolute value, with a signum depending on the wave direction and 

criterion direction.  

 

2.4 Performance Discussion 

This technique is not so precise compared to standard method because the impact 

location estimation accuracy is given by the inter-piezo size x. But, it is much faster 

and computationally efficient. It is necessary to note that all received signals are not 

processed by any filters. The noise influence is quite limited. In addition, there is no 

need of external power supply to the sensors. Finally, taking into account drifts in the 

coupling coefficient caused by the bonding is simple by adjusting the associated 

shunted resistance the energy extraction ration for each piezoelectric insert. 

 

 

2.5 Numerical analysis-finite element simulation 

Simulations using numerical Finite Element Analysis have been carried out in 

order to confirm the model. The modeled beam (Figure 2.5) received by five identical 

bonded piezoelectric patches. The dimensions and the physical properties are given in 

Table 2.2. The poling direction for the PZT patches is on the y-direction. 

The beam with surface mounted piezoelectric patches is meshed (zoomed view in 

Figure 2.6) using the commercial FE code ANSYS 9.0. The structure is meshed with 

six nodes plane quadratic elements. The patches are meshed with PLANE13, and the 

beam with PLANE42 (Figure 2.6). PLANE13 is defined by four nodes with up to four 

degrees of freedom per node (x and y directions and the electric potential V for 

piezoelectric elements). Moreover, CIRCU94 elements are used to model the resistors, 

which are connected to each piezoelement electrode. The mechanical boundary 

conditions of the structure are clamped at both end of the beam (all degrees of 
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freedom equal to zero). Moreover, the electrical potential is forced to zero on interface 

between PZT and the beam. A force with a frequency band of 500 kHz in is applied to 

the beam. As illustration, the Figure 2.7 shows the PZT2 voltage when an impact is 

applied in part 0.  

 

Table 2.2: FEM simulation parameters 

Parameter Value (SI) Parameter Value (SI) 

Resistivity 1 Density 7850  

Length of the 

piezoelements 

210.2 

 Length of the beam 74.4  

Thickness of the 

piezoelements 

410.3 

 Thickness of the beam 210.3 

 

Relative permittivity 1142 Elasticity 910.195  

Voltage coefficient 18.6    

 

 

 

Figure 2.5: The simulated model. Dimensions are in mm 

 

1
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Figure 2.6: Meshing of the structure (Zoomed area) 
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In order to evaluate the force location, the criterion Equation (2.10) is calculated 

along the x-axis. The force is applied on nodes of parts 0 to 5, and the results are 

shown in Figure 2.5. The black dots represent the energy differentiation over sensor n 

and sensor n+1. As expected, the source of the impact is quite well estimated by the 

zero crossing of the criterion. Moreover, if all the values of 1,  nnE  are positive (resp. 

negative), the force location is found to be within part 5 (resp. part 0). When the 

impact source is within the scanning range, the criterion crosses the zero value in the 

impact area, and then reaches an extremum and decrease in absolute value, with the 

signum depending on the criterion and energy flow directions (Figure 2.8). 

 

 

 

 

 

Figure 2.7: Example of a sensor (PZT2) response for an impact in part 0. 
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(a) Force is applied at part 0, all the ),1( npnE  is negative, minimal value is 

21pE  and the absolute value decreases with distance. 
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(b) Force is applied at part 1, 021 E , others npnE ,1 are negative, minimal value is 

32pE  and the absolute value decreases with distance. 
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(ｃ) Force is applied at part 2, 021  pE , 032  pE ; The others npnE ,1 are 

negative, minimal value is 32pE  and maximum value is 21pE . 
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（ｄ）Force is applied at part 3, 02132  pp EE , 043  pE . The others 

npnE ,1 are negative, minimal value is 54pE  and maximum value is 32pE . 
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（ｅ）Force is applied at part 4, 0213243  ppp EEE , 054  pE  
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（ｆ）Force is applied at part 5, all the npnE ,1  are positive. The maximum value is 

54pE  and decreases with the distance. 

 

Figure 2.8: simulation results：2-1 means 21pE (the differentiating energy over 

sensor 2 and 1 (Figure 2.5)). As the same, 3-2, 4-3, 5-4 mean ( 32pE , 43pE , 54pE ) 
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2.6 Experimental Results 

2.6.1  Experimental Set-up 

Experimental measurements were done considering a 350×50×3mm
3
 Bulk 

Molding Compound (BMC) beam to confirm the proposed method. Seven resistively 

shunted piezoelectric inserts (PZT P-18 Saint -Gobain9) are bonded onto the upper 

surface of the beam (Figure 2.9). The dimension of inserts is 30×3×0.5 mm
3 

and 

each separated by a distance x=40mm. Because of the variability of the bonding 

condition, the coupling of each piezoelectric insert is quite different. The value of 

each resistor has been tuned to have the same ratio of extracted energy for each 

piezoelectric patch. The experimental parameters are shown in Table 2.3, except for 

the value of the resistance, which is tuned to equalize the energy extraction ration due 

to the bonding. 

 

 

Figure 2.9  Experimental set-up 

 

Table 2.3: Experimental parameters 

 

 

 

 

 

Beam parameters Piezoelectric parameters 
Other 

parameters 

M K l S  e 0S    

1.210 mg  2.75,1 mMN  mm3  0.1142   1.18.6  mC  2510.12 m  310.1000 1. srad  
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2.6.2 Results & Discussion 

The impact is generated by a source moveable piezoelectric patch excited in a 

sinus-burst-mode (10 periods at a frequency of 530 KHz), corresponding to the beam 

first flexural mode. Experiment results are shown in Figure 2.10. Results demonstrate 

that the location of impact is quite well estimated by the zero crossing of the criterion, 

and follows theoretical predictions in a similar fashion, with a response depending on 

criterion and wave directions. In addition, although the internal damping coefficient 

can be quite small, it gives rather precise information of the impact location. 

Comparison between experimentally with simulation results, these results shows a 

good agreement to accurately estimate the impact location.  

 

 

(a) 

 

(b) 
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(c) 

Figure 2.10: Experimental (plain) and results for the proposed criterion using a- 

530KHz piezoelectric moveable source. 

 

2.7 Conclusion 

We suggest here that impact location can be performed by estimating the energy 

flow in the structure with the help of a network of piezoelectric sensors. 

The principles of the method rely on the comparison of the extracted electrical energy 

by each sensor. The piezoelectric elements can be perceived as local 

electromechanical dampers that give insight of the energy flow. This research 

considers infinite lossless and 1-D beam. Following chapter would consider 2-D 

structure, which is more useful in reality situation. In addition, there are also some 

other field of investigative such as multiple impacts, resistive shunts, inductive or 

nonlinear shunts. This study considers infinite lossless beam, as well as resistive shunt. 

Future work considering a lossy finite beam would lead to a more realistic model, and 

therefore to a finer impact location estimation. Besides, it is believed that taking into 

account internal losses in the beam can predict more accurately the impact location by 

extrapolation.  
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3 Transient bending wave modeling in an 

infinite plate with bonded piezoelectric 

inserts 

3.1 Introduction 

In previous chapter proposed a simple efficient technique to evaluate the impact 

location in a 1D structure (beam). Estimating the location and energy of impacts in 

plate can be obtained with the same approach, that is to say in estimating the energy 

flow in the structure. But, the knowledge of the piezoelement electric response is a 

non trivial problem for a 2D structure. However, when dealing with mechanical wave 

propagation, a common approach consists in using numerical methods that are often 

time-consuming.  

This chapter proposes a new approach using a Fourier transform for modeling the 

impulse response of an infinite plate with surface-bonded piezoelectric elements. This 

step is requisite to deduce the relationship between energy flow and piezoelectric 

response. 

The proposed analytical formulation therefore allows bypassing numerical 

analysis drawbacks, in this specific case, while giving the response for the whole time 

and space domains. The proposed model relies on flexural wave decomposition over 

the spatial frequency domain and corresponds to a time generalization of the angular 

spectrum theory, thus introducing flexural wave propagation as a time-varying spatial 

filter. The inverse Fourier transform is then applied and leads to the impulse response 

in the physical domain. From this model is also derived an analytical expression of 

the impulse voltage response of piezoelectric transducers. The predicted impulse 

response is then compared to FEM simulation and experimental measurements in 

order to asses the model. 
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3.2 Impulse response modelling: theoretical approach 

In this study, a two-dimensional lossy plate with piezoelement bonded on its surface 

as shown in Figure 3.1 is considered. This Section leads to establish the solution of the 

flexural traveling wave generated by a pulse force. 

 

Infinite plate 

 x 

 y 

 z 
pulse force 

flexural wave 

 

 

Figure 3.1: Schematics of the considered infinite plate 

 

3.2.1 Determination of the displacement under pulse force 

The general equation for linear flexural wave in thin undamped plates is well-known 

and can be found in Timoshenko
66

 for example and follows the equation: 

),,(2 tyxquDum zz   (3.1) 

where 

zu  is the flexural displacement  

),,( tyxq  is the applied load. 

  is the Laplacian operator 

m is defined as the surface mass density 

D represents the bending stiffness that can be expressed as a function of the Young 

modulus Y, the Poisson ratio v and the plate thickness h by: 

)1(12 2

3




Yh
D  

(3.2) 

We may also consider that losses occur in the plate. Assuming loses that depend only 
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on the displacement time derivative leads to the modified motion equation: 

),,(2 tyxquDuum zzz     (3.3) 

where   is the damping factor. 

In order to get the impulse response of the system, the space-domain Fourier 

transform is applied to Equation (3.3), along the x and y axis, which leads to 

(Guyomar and Powers, 1984
67

, Guyomar and Power, 1985
68

): 

),,(~~)(
~~ 222 tkkqukkDuum yxzyxzz     (3.4) 

where : 

zu~  and ),,(~ tKKq yx  are respectively the expression of the flexural 

displacement and the load in the space-domain Fourier transform 

xk , yk  are the wave vectors along the x and y axis, 

Therefore, if the applied load is a pulse excitation, q(x, y, t) can be expressed as: 

)()()(),,( tyxtyxq   (3.5) 

where   is the delta distribution. This leads to the spatial Fourier decomposition of 

the load: 

)(),,(~ ttkkq yx   (3.6) 

 

Therefore the spatial frequency domain equation of motion (3.4) turns to: 

)(~)(
~~ 222 tukkDuum zyxzz     (3.7) 

 

Such equation is a well-known second order system, whose elementary solution is 

given by: 

)1sin(
1

11
),,(~ 22

22

2




 


  tke
km

tkku tk

yxz
 

(3.8) 

with the coefficients  , 2k  and   defined as: 

m

D
  ; 

222

yx kkk   ; 
22 km


   

(3.9) 

 

It is interesting to note that Equation (3.8) shows that the propagation acts as a spatial 

low-pass filter, with a strong reduction of high spatial frequency components, and 

whose the cut-off frequency is decreasing with the time. This last observation partly 
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expresses the dispersive nature of the wave. 

We knowing the expression of ( , , )x yu K K t . A 2D inversed Fourier transform leads to 

the expression of the flexural wave in the physical space (x, y, t).  

 








 


 )1sin(
1

1

2

1
),,( 22

22

2




 tke
km

tyxu tk

z
 

yx

ykxki
dkdke yx )( 

 

(3.10) 

 

Consequence, this integral can be done by switching from Cartesian coordinates 

( xy kk , ) and ),( yx  to cylindrical coordinates ),( k and ),( r  respectively: 

 

 
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dkkde ki  )sin( 
 

(3.11) 

where   and   are obtain from: 

)cos(rx    ;  )sin(ry   

)sin(kk x    ;  )cos(kk y   

(3.12) 

 

Using Bessel functions of the first kind, Equation (3.11) becomes: 
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(3.13) 

 

Expanding the sine term of this expression using Euler's formula and deriving 

according to the time leads to: 
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)1(2
22


 

 dkrkkJej
jtk   

(3.14) 

 

Therefore, referring to [Abramowitz and Stegun, 1964]
 69

 (Equation (11.4.29)), the 
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expression of the flexural phase velocity yields: 
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(3.15) 

 

The flexural displacement resulting from a pulse force can be obtained by integrating 

Equation (3.15) over the time domain ( , )
t

z zu u r z dt 0 . The response 
arbzu  for any 

arbitrary excitation q(t) is then simply obtained using a straight convolution between 

the impulse response ( )z impu  and the arbitrary driving. 

),,(),,(),,( )( trqtrutru impzarbz     (3.16) 

 

One can note that the impulse response is independent from the angular value , 

which is a logical consequence of the wave propagation through an isotropic structure. 

This can also be observed in Equation (3.15) where the wave instantaneous frequency 

depends on the product )(
22 tr , demonstrating the dispersive nature of the wave. 

Particularly, as 0t  the instantaneous frequency tends to  . This is a strong 

limitation when using classical numerical analysis due to the fine spatial and time 

meshing required.  

The wave expression may also be rewritten as: 
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(3.17) 

where 

2
2 2 2

24

2

1 2
( ) sin( (1 ))

2 (1 ) 4

r m

t D
r r m r m

f e
t t m D t D









 


. 

When t tends to zero, the term 

2

4

r m

t De


 tends to zero too and the sign of term 

2
2sin( (1 ))

r m

t D
  change quickly.  

It is interdependence between space and time domains (which is not the case when 

dealing with classical propagation). The coefficient 
21 r expresses the energy 

conservation theorem. 
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As well, this expression shows that the wave propagation is dependent to the scaling 

factor tr 2 , and consequently it is possible to obtain the whole response in the spatial 

and time domain as soon as the response at a given location or for a given time instant 

is known. 

As shown in the Figure 3.1, when an impact is applied at the origin (0, 0), two points of 

the phase velocity are obtained in Figure 3.2 (0.2, 0.2) and Figure 3.3 (0.4, 0.4). The 

time to reach maximum value in Figure 3.2 is close to 0.01 second and that in Figure 3.3 

is close to 0.04 second. The reason is that the distance between impact location and 

measure point is two times different. Because of the scaling factor tr 2 , the Figure 3.2 

scale down Figure 3.3. 
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Figure 3.2: Impulse response at the point (0.2, 0.2) 

-- impact is applied at origin (0, 0)  
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Figure 3.3: Impulse response at the point (0.4, 0.4) 

                       impact is applied at origin (0, 0)  

 

 

Equation (3.15) can also be expressed in the Cartesian coordinates as a function of x 

and y as: 
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(3.18) 

 

3.2.2 Derivation of the piezoelectric sensor voltage 

 

This part exposes the derivation of the voltage of a piezoelectric element bonded on 

the structure. The principles of the analysis consist in using the previously calculated 

flexural displacement velocity in order to estimate the piezovoltage in Cartesian 

coordinates. It will also be assumed that the piezoelement does not modify the local 

behavior of the structure (negligible effect of the added mass and stiffness). 

The piezoelectric voltage can be derived considering the constitutive piezoelectric 
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equations and the previous assumptions, giving the electric induction field Dd along 

the z-axis as a function of the electric field EE  along the z-axis and the strain as: 

 

)(3133 zzyyxxE

S

Ed SSSeED   (3.19) 

with
S

33  and 31e  defined as the permittivity of the piezoelement and piezoelectric 

coefficient respectively. For bending wave, we assume that the strain is zero inside the 

plate ( 0zzS  )  

Let us now consider the specific arrangement of the piezoelectric sensor, as given 

Figure 3.4 
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Figure 3.4: Schematics of the considered structure with surface-bonded piezoelectric 

element 

 

Considering a constant electric field over the piezoelectric element, Equation (3.19) 

therefore turns this expression to: 
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(3.20) 

with V the voltage across the piezoelectric element and l its thickness. 

The current I flowing out the piezoelectric element is obtained using the relationship 

between the electric induction field and the current: 

 A
d dADI   (3.21) 

where A is the surface of the piezoelectric element. 

In open-circuit condition the current I is null, and considering null initial conditions of 
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the voltage and the second-order derivative of xu  and yu  leads to the expression of 

the voltage as  
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 (Assuming electric quantity is null with time is zero 0 0Q  ): 
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 pc is blocked pizo capacitance. 

Finally, the impulse response is calculated in 2 steps: knowing the impact characteristics, the 

displacement is firstly derived from Eq.(3.18). The resulting piezoelectric voltage is then 

calculated with the help of Eq.(3.21) and (3.22).  

3.3 Simulations-Numerical analysis 

The propagation of impulse bending waves is simulated with the help of Matlab® 

software in a infinite plate (Figure 3.4) with the physical properties and dimensions 

given in Table 3.1and Table 3. 2 The sensor is a square piezoelectric element poled in 

the Oz direction. 

 

Table 3.1: Simulation parameters of the plate 

Parameter Value 

Surface density m 6.4 2. mKg  

Young modulus Y 195 GPa 

Thickness h 0.8 mm 

Poisson ration   0.33 

Damping coefficient   0.08 
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Table 3. 2: Simulation parameters of the piezoelectric element 

Parameter Value 

Length L 180 mm 

Width W 20 mm 

Thickness l 1 mm 

Voltage coefficient 
31

e  1.3.4  mC  

Relative permittivity 

033  S
 

1142 

 

The Figure 3.5 depicts the evolution of the voltage as a function of the time when a 

unitary pulse force is applied at the origin. Other excitation cases in different locations 

can of course be considered. The instantaneous frequency decreases as a function of 

time due to the presence of the dispersive 
1

sin
t

 
 
 

term in Eq (3.18). However, the 

spatial filtering performed by the insert (and represented by the surface integral in 

Equation (3.22) significantly changes the envelope of the response. From the time 

delay in Figure 3.5, it can also be shown that the propagation nature is also well 

described by the model. 

 

(a) Voltage response to for pulse force excitation at the origin (0, 0) 

                                --force inside surface of the structural  
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(b) Voltage response to a pulse force excitation at the (0.25, 0.25) 

                                 --force outside surface of the structural  
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(c) Voltage response to a pulse force excitation at the (0.35, 0.3) 

                                 --force outside surface of the structural  

Figure 3.5: Voltage response to a pulse force excitation at different location 

 

In the general case, the excitation force is a low-velocity impact, and therefore the 

high frequency components of the impulse response edge are filtered. Finally we 
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choose here an n-period burst waveform as a representative impact. 
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Figure 3.6: Simulated sensor voltage for a half period-burst impact (a), 1 period-burst 

impact (b) and 2 periods-burst impact (c). The impact location coordinates are (0, 0). 
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3.4 Comparison with finite element simulation 

In order to validate the model, this Section proposes a comparison between predicted 

voltage response from the model with the one obtained by numerical analysis through 

the use of Finite Element Method (FEM) with the commercial software ANSYS. The 

plate and the piezoelectric elements are modeled using the SOLID5 and SOLID45 

elements, respectively. As well, performance discussion about computation 

requirements of the proposed method will be exposed. 

In the case of the FEM analysis, the infinite dimension condition is fulfilled by the use 

of a plate with very large dimensions, preventing reflection phenomena in the 

transient stage in the considered spatial domain.  

Secondly, the ratio a/h (ratio between length and thickness of the plate) is chosen high 

[Ventsel and Krauthammer, 2001]
 70

, to respect thin plate conditions (Kirchhoff ’s 

plate theory). In this way, the vertical shear strains xy and yz are negligible. The 

dimensions of the plate FEM model are summarized in table Table 3.3 

Table 3.3  Dimensions (in mm) of the FEM model 

plate (Length X Width X Thickness H) 2500 X 2000 X 1 

piezoelement square size (side L X Width W X 

Thickness l) 

40 X 40 X 1 X 0.5 

 

 

The simulated model is shown in Figure 3.7. Other parameters are those used in the 

previous simulations.  

Transient analysis was achieved considering a burst impact force located at point I 

(inside frame) or point O (outside frame). As example, the evolution of the plate 

deformation is shown in Figure 3. 8 for an outside impact at different time. Finally, 

the piezovoltage evolution can be deduced from these simulations. Figure 3.9and 

Figure 3.10 respectively show the comparison between the two resolutions methods 

when the excitation is a 5-kHz, one cycle sine burst applied at the location (13mm, 

-13mm) (i.e. inside the piezoelectric element location) and when the excitation is a 

5-kHz, one cycle sine burst applied at the location (-110mm, 38mm) (i.e. outside the 
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piezoelectric element location). The analytical solution is obtained by convolution of  

40 

2500 

2
0

0
0

 

40 

4
0

 

10 

I 

O 

 

Figure 3.7: Meshed plate and piezoelectric element-I point is the inside point impact 

and O point is the output point impact 

 

the force waveform with the impulse response at the given position. These Figures 

show a good agreement between the predicted voltage from the FEM analysis and 

from the proposed analytical model, both in terms of frequencies and magnitude. In 

Figure 3.10, the divergence at t=0.7 ms is explained by the finite FEM meshing that 

induces a reflection. 

In terms of computational requirements, the FEM resolution takes more than 10 

minutes for 60 points, while the derivation of the voltage using the analytical model 

lasts only 30 seconds for 3000 points, demonstrating the performances of the exposed 

analysis. 
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Figure 3. 8: Deformation of the plate obtained with the FEM for an outside impact at 

different time (t =0.228ms (a); 1.2ms (b); 2.15ms (c) and 5ms (d)) 
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Figure 3.9: Comparison between FEM and analytical model for a burst force inside 

the piezo frame 
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Figure 3.10: Comparison between FEM and analytical model for a burst force outside 

the piezo frame 

 

 

3.5 Comparison with experimental measurement 

This Section exposes the comparison of resolution using the previously exposed 

analytical model, FEM predictions, and experimental measurements made on a thin 

plate. 

3.5.1 Experimental set-up 

The experimental set-up consists of a steel thin plate with surface-bonded 

piezoelectric devices. The plate is suspended vertically at its four corners by elastic 

fasteners. Experimental parameters are the same to the ones of previous simulations 

except for the following factors. The plate is finite with dimensions of 1.2m 0.8m. 

The piezoelectric sensor thickness is 0.5mm. The frame formed by the piezoelectric 

sensors is made of 16 pieces, 4 on each side. The 16 elements are connected to each 

other in parallel. These elements are used as sensors. Therefore, they should not 

modify the behavior of the structure. Actually, the voltage sensors are composed by 

several parts so that there is flexibility on bending mode. Each part is small enough 



Chapter 3 Transient bending wave modeling in an infinite plate with 

bonded piezoelectric inserts 

 - 60 -- - - 

compared to plate dimensions and the mass is negligible. Thus, the modification of 

structure factors might be ignored. The driving force is generated by the use of an 

impulse hammer (Dytran~5850B). The range of force is 50-8000 lbs. The output 

voltage of the connected piezoelectric sensors is observed and recorded using an 

oscilloscope. The signals are not processed by any filters or the environmental noises 

handled. 

 

 

Piezoelectric sensor 
Rigid 

support 

Elastic 

fastener 
Plate 

a b 

c d 

 

(a) schema  

 

(b) experiment set up 

Figure 3.11: the experimental set-up. Plate dimension is 1200x800x0.1 mm
3
. 
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3.5.2 Results & Discussion 

The Figure 3.12 depicts the comparison between FEM and analytical predictions with 

the experimentally measured voltage on the square sensor. This Figure shows a good 

agreement between predictions and experimental results on the transient stage. 

At mst 281  , the reflections on the plate boundaries make the analytical model 

diverging from other responses. In a first approximation, this is not a blocking point 

because it is considered that reflections induce a nil wave flow through a closed 

surface (Figure 3.11 abcd). So we can consider here that only transient response (for 

t<t1) gives information about wave flow. 

 

 

Figure 3.12: Experimental results and analytical and FEM prediction for a force 

applied at location (0, 0) 

 

 

3.6 Conclusion 

This chapter introduces a new analytical model for the wave propagation problem 

using the Fourier transform formalism. This model allows a computationally efficient 

way for determining the displacement response of an infinite thin plate submitted to a 

given force excitation, as well as an analytical formulation of the voltage response 

when piezoelectric element are bonded to the plate.  

This model is valid for arbitrary time signal and arbitrary sensor shapes whatever the 
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spectrum of the excitation. Comparison with FEM analysis and experimental 

measurements shows that the proposed model gives a good prediction of the transient 

state of the wave propagation, taking into account phenomena such as dispersion and 

time of travel. 
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4 Force detection using energy flow 

direction estimator with piezoelectric 

sensors 

4.1 Introduction 

The last chapter proposed a model of an analytical expression of the piezoelectric 

transducers impulse voltage response in the whole time and space domains. 

This chapter proposes to develop a new detection technique exploiting this 

piezoelectric output voltage. 

As well known in the three-dimensional theory of
 
elasticity, the

 
Poynting vector 

(P-vector) represents the three-dimensional energy flow in a elastic media. 

Here, the basic idea is to deduce in a first step an estimator of the power flow (i.e. 

P-vector) direction from the sensor voltage response. 

We voluntary limit the analysis to the P-vector direction estimation.  

This approach is conducted in three different steps: 

 First, the energy flow theoretical analysis is proposed with the Poynting vector. 

Then, knowing this theoretical expression, an estimator is derived from the 

electric response. It should be note that this new estimator does not estimate 

the energy flow amplitude (i.e. Poynting vector amplitude) but only its 

direction. 

 Secondly, numerical simulations are performed to verify the above theory with 

piezoelectric sensor outputs. 

Finally, the experimental confirmation of the theory is demonstrated using 

piezoelectric sensors integrated on a thin steel plate. All the received signals here are 

not processed by any filters and no environmental noises need to be handled with 

special care. The most important advantages of the present method are the low energy 

requirement and the simplicity. Besides, there is another important advantage. Any 

boundary limit must be concerned. It means that the structural change does not effect 

for identification.  
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4.2 Principle 

For lossy system, the value of the energy density is a decreasing function of the 

distance from the impact location. Considering a 1D-propagation, the energy flow 

direction can be obtained from the sign value of the energy density difference 

estimated by piezoelectric sensors, as shown in Figure 4.1a. On can easily appreciate 

that an arrangement in 2 sensor clusters (1&2; 3&4) permits to localize an impact, in 

considering again a 1D propagation (Figure 4.1b). In other word, if an impact occurs 

inside of the area delimiting by the 2 clusters (I-point), the energy density differences 

E12 and E34 of the 2 clusters are opposite sign terms. Effectively, cluster (1&2) sees 

a Right impact where cluster (3&4) sees a Left impact. 

Conversely, an outside impact (O-point) leads to energy density differences E12 and 

E34 of the same sign. 

The sum of this 2 energy density differences then gives information (Inside or Outside) 

on the impact localization. Effectively, an Inside impact induces a sum result leading 

to zero where an Outside impact leading to no-zero result. 

The extension to a 2D propagation (Figure 4.1c) can be intuitively done by placing 2 

others clusters (5&6; 7&8) perpendicular to the 2 primary clusters. 

It will be shown thereafter that this specific arrangement permits to detect the 

direction of the flow energy. 
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21E  means energy loss from sensor 2 to 1 

34E  means energy loss from sensor 3 to 4 

 

Figure 4.1. (a) detection of energy flow direction for 1D propagation; 

(b) impact detection ( Inside or Outside) for 1D propagation. When force is applied in 

the area I, energy loss from sensor 2 to 1 and 3 to 4 are positive. When force is 

applied in the area O, energy loss from sensor 2 to 1 is negative, sensor 3 to 4 is 

positive.    

(c) extension for a 2D propagation . 

 Eij is the energy density difference from sensor i to sensor j. 
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4.3 Theoretical approach 

Two main theoretical steps are needed to obtain the link between the impact location 

(inside or outside) and the piezoelectric sensor electric outputs:  

 Express the energy density difference by the Poynting vector approach.  

 link this energy density difference with the piezoelectric sensor outputs.  

 

4.4  Expression of the energy density difference 

In order to estimate the spatial derivative of the Poynting vector, the energy flow 

vector for a lossy infinite isotropic plate is firstly established. The strain components 

in cylindrical coordinates are given by :: 
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(4.1) 

 

Where si is the strain component in the i direction 

ui is the displacement component in the i direction 

r, the radial distance 

  is the incident angle of the Poynting vector ( i.e energy lfux) 

 

The stress components are: 
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where E is the Young modulus and   is the Poisson ratio. 

The general equation of energy flow vector for an isotropic elastic medium can be 

expressed by the Poynting vector rP as (Romano et al, 1990
71

) : 
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)( zrzrrrrr uTuTuTP     (4.3) 

 

 

we consider here an axisymmetric problem to simplify the theoretical approach. This 

involves that the components rT  and rzT  are zero. 

Assuming the strain zzT is zero:  
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where z is the half thickness of the plate. Thus, from Equations (4.2) (4.3) (4. 4) the 

Poynting vector can be expressed as a function of plate deflection: 
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The value of the derivative of the displacement in the space domain 
2

z

2
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assumed to be larger than the displacement divided by distance
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u

r
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1
.  

Besides, the energy flow can be considered as parallel lines as shown in Figure 4.2. 

Because the incident angle   is minuteness changed. Since incident angle   is 

constant when radial distance r is great, the first term of Equation (4.5) becomes much 

larger than the second one. By neglecting this second term, Equation (4.5) becomes: 
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(4.6) 
 

 

The Figure 4.2 shows an example of a force effect to a certain area abcd, when the 

force is applied at the far bottom left outside. The ingoing energy can be expressed as:  

 
b

a

d

a rrin
drPdrPP  sincos  

(4.7) 
 

with  )
2

0(


  .  
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Figure 4.2: Integrated surface-1 

 

As well, the outgoing energy flow can be expressed:  
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(4.8) 

 

 

The ingoing energy minus the outgoing energy equals the total energy difference: 
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The right term of Equation (4.9) has two components;  
b

a

c

d rr
drPdrP  coscos  

and  
d

a

c

b rr
drPdrP  sinsin  

For clarity reasons, only the first one will be investigated. It is possible because the 2 

components are independent and the second one can be obtained by a similar analysis. 

As Figure 4.3 shows, Equation (4.10) can be obtained from Equation (4.9) when 

inclination angle  equals to 0. 
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Where :  

 abl is the vertical length of the considered surface. 

 the coefficient A is : 
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(4.11) 
 

 

 

Figure 4.3: Integrated surface for an incident angle 0  
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(4.12) 
 

The case when incident angle  is different to 0 is explained in following section. 

 

4.5 Poynting vector and piezoelectric sensor outputs 

How to link Poynting vector with piezoelectric sensor outputs is an open issue. If the 

spatial derivative of Equation (4.12) can be linked from piezoelectric sensor outputs, 

the energy flow direction can be obtained with a simple expression from the sensor 

voltages.  
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Let us consider two piezoelements and the surface S, abcd arranged as shown in 

Figure 4.4. The sensor centers are placed in parallel on a-b and c-d lines. 

 

The voltages of these sensors are then given by (the value of the derivative of the 

displacement in the space domain 
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Lpie, lpie , Spie , 31e , hpla, 
s

33 are respectively defined as the piezoelectric sensor length, 

the piezoelectric sensor thickness, the piezoelectric sensor surface, the voltage 

coefficient, the plate thickness and the piezoelement permittivity. 

 

 

Figure 4.4: Integrated surface with 2 piezoelectric sensors. 
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If the sensor half width w and the distance between two sensors lad are small enough 

compared to the wavelength of bending wave, the two piezoelectric sensor voltages 

become:  
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The voltage difference is : 
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The spatial integral of the time derivative of the displacement as a function of the 

voltage can be expressed from Equation (4.13) as: 
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where S is the surface between these two sensors corresponding to the covered area 

shown in Figure 4.4 which is the surface of the abcd parallelogram. 
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From Equations (4.17) (4.18) and, the Equation (4.19) can be obtained as: 
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Assuming that the distance lad between the two center lines of the piezoelements is 

small enough compared to the bending wavelength, the output voltage of the 

piezoelectric can be approximated by a linear function of the radial distance, so that 
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the term 

21 ,
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becomes almost constant over the considered distance. 

The term 
4

4

r

u z




 is nil and it is therefore possible to obtain the derivative of the first 

term of the right member of Equation (4.12) from Equations (4.16) and (4.19):  
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As well, the derivative of the second term of the right member of Equation (4.12) is 

given as:  
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The spatial derivative of the energy difference outinP
r
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
 expressed by Poynting 

vector can be rewritten as: 
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If lad is small enough as the assumption before, Spiezo becomes equal to S, and the 

Equation (4.22) can be rewritten as : 
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Integrating Equation (4.23) in the time domain, the energy density difference is 

expressed by: 
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We finally obtain here an expression between the energy difference initially expressed 

from the pointing vector (cf (4.10) and the piezoelements voltage V1 and V2. 

The left term of Equation (4.24) decreases with the distance from the impact location. 

When an impact is applied to the left area of piezoelectric sensor 1 the energy density 

decrease from piezoelectric sensors 1 to 2. Thus, the right term of Equation (4.24) will 

be negative. On the other hand, when an impact is applied to the right area of sensor 2 

the energy density increase from sensor 1 to 2. Thus, the right term of Equation (4.24) 

will be positive.  

4.6 Impact area location detection with piezoelectric 

sensors output 

Let us consider now the specific arrangement in 2 clusters of 2 sensors as introduced 

in figure 1b. This arrangement, reminded in Figure 4.5 permits to evaluate the impact 

location by the areas related to the location of piezoelectric sensors1 to 4. Area 1 is 

located as the left side of sensor 1. Area 2 is located between sensor 2 and 3. Area 3 is 

located as the right area of sensor 3.  

 

 

Figure 4.5: Integrated surface with 4 piezoelectric sensors-four outputs 

 

Because of the system symmetry, it is possible to connect sensor 2 with 3 and 1 with 4 

(Figure 4.6) to reduce computational requirements. When an impact is applied 

between these pairs, area 2, the right term of Equation (4.24) becomes positive. On the 

other hand, the cases of impact applied in outer of these pairs, area 1 or 3, the right 

1 3 4 
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term of Equation (4.24) becomes negative.  

 

 

Figure 4.6: Integrated surface with 4 piezoelectric sensors-two output 

Let us consider now the specific arrangement using eight sensors and electrically 

connected as shown in Figure 4.7. 

Two pairs of sensors are used in each vertical and horizontal direction. Area 1 is 

defined the inner surface of these sensors. This arrangement defines 9 areas (1 to 9) 

and permits to know if the impact is located in area 1 or not.  

The disadvantage of this structure (Figure 4.7) is that it needs four sensor outputs. If 

the object is only to know if the force location is inside or outside the integrated 

surface, it is possible to reduce computational requirements. Two vertical directions 

are considered at the same time. They are independent from each other because of the 

far field assumption. When the inner surface width lad (Figure 4.3) is small enough 

compared to radial distance r, it is possible to define the energy density difference 

estimator 21 QQQ  within the surface in the time domain from Equation (4.9) and 

(4.24) as: 

 
T

dtVVVVVVVVQ
0 112221121

)))((
2

1
(   

dtVVVVVVVVQ
T

 
0 443343432

)))((
2

1
(   

  

(4.25) 

 

 

piezoelectric 

sensor 2 

piezoelectric 

sensor1 

 

piezoelectric 

sensor 3 

piezoelectric 

sensor 4 

area 1 
area 2 area 3 

V2 

V1 



Chapter 4 Force detection using energy flow direction estimator with 

piezoelectric sensors 

 - 75 -- - - 

 

 

Figure 4.7: Integrated surface with eight piezoelectric sensors-four outputs 

where  and  equal to cos
)(
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22

0 aS
A and sin
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0 aS
A , respectively. If the 

impact is applied in area 8 )
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0(


  ,  and   becomes positive. The signs of  

1Q  and 2Q , however, do not depend on   and.  Here, 1Q  and 2Q  values are 

negative, which lead to a negative value of Q. Analogous results can be obtained 

when the impact is applied in area 2, 4 or 6. Moreover, if the impact is applied in left 

area to that surface, area 5, or right area, area 9, the absolute 1Q value becomes higher 

than 2Q value because of the great radial distance. Thus, the value of Q becomes 

negative. The same operation can be applied for the area 3 and 7. Based on the above 

results, we can simplify the energy density difference as (Figure 4.8), where only two 

sensor outputs are necessary: 
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In other words, 1Q  and 2Q  depend on the 1V , 2V  and 3V , 4V voltages 

respectively. It is therefore possible to know the impact location whether inside or 

outside with the sign of q simply from two piezoelectric sensors output. When an 

impact is applied inside of the structure (Figure 4.8), q value is positive. 

When an impact is applied outside of the structure, q value becomes negative. The 
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absolute value of q increases with the force magnitude (and same impact location if 

the impact is outside), because more energy flows through the sensors. When an 

impact is applied outside, the q amplitude also decreases with the distance of impact 

location for the same magnitude impact, since less energy flows to the sensors. 

However, it seems that this technique has limited sensitivity for low damping.  

 

 

Figure 4.8: Integrated surface with 8 piezoelectric sensors-2 

 

 

 

4.7 Numerical simulation validation 

4.7.1  Impact location and q value determination 

In order to validate the theoretical model, simulations using Matlab ® software were 

carried out.The modelled infinite plate is shown in Figure 4.9. Two piezoelectric 

framed sensors are glued on the plate. Coordinate origin is on the centre of the sensors 

contour. The physical properties and dimensions are given in Table 4.1. The impact as 

shown in Figure 4.10 is applied near the centre of the contour (coordinate (0.01, 

0.01)), inside the sensors contour. To avoid symmetry problem, the impact was not 

applied in the coordinate origin. When the energy flows from inside to outside of the 

contour, q value becomes positive. When all the energy pass the sensors, there are no 

energy flow anymore so that q becomes a constant value. The simulated result which 
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is shown in Figure 4.11 gives a good agreement. 
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Figure 4.9: Schematics of the considered structure-infinite plate 

 

On the other hand, when the same impact force is applied outside of the contour, the q 

becomes negative as shown in Figure 4.12 and Figure 4.13. 

In Figure 4.12, the force is applied at location (0.38, 0.35), outside area of the 

contours. In Figure 4.13 the force is applied at location (0.40, 0.40), father distance 

from contours than the force of Figure 4.12 q tends to a constant value from a certain 

time tout as there is no more energy flow through the sensors from that time. tout is 

greater than tin  because of the distance. It is also seen that the absolute value of q 

magnitude decreases with the distance of impact location. It is because less energy 

flows through the sensors when the distance increases. 
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Table 4.1: Matlab simulation parameters 

Parameter Value Parameter Value 

Plate surface 

density m  

26.4 /Kg m  Outside sensor surface length 

L2    

m14.0  

Plate elastic 

modules E  

111.95 10 Pa  Outside sensor surface width 

W2    

m003.0  

Plate thickness 

H  

48.10 m  Inside sensor surface length 

L1    

m132.0  

Poisson ratio   0.33 Inside sensor surface width 

W1    

m003.0  

Damping ratio n  0.1 
Relative permittivity 

033
/ s

 
1142 

Voltage coefficient 

31
e  

14.3 .C m    

Sensor thickness 

l  

45.10 m    
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Figure 4.10: Impact force applied to the considered-infinite plate 
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Figure 4.11: q value response to an impact excitation 

at the (0.01,0.01)-location inside-1 
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Figure 4.12: q value response to a pulse force excitation 

at (0.38, 0.35)-location outside 
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Figure 4.13: q value response to a pulse force excitation 

at (0.40, 0.40)-location outside 

 

The impact force in the simulated data from Figure 4.11to Figure 4.13 has a 100N 

magnitude.  

With a 200N impact magnitude, simulation results are shown Figure 4.14 when 

applied at (0.01, 0.01) and in Figure 4.15 when applied at (0.40, 0.40). They 

correspond to Figure 4.11 and Figure 4.13, respectively.  
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Figure 4.14: q value response to a pulse force excitation 

at the origin (0.01,0.01)-location inside-2 with a 200 N force 
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Figure 4.15: q value response to a pulse force excitation 

at (0.40, 0.40)-location outside-2 with a 200 N force 

 

It is clearly seen that the max/min peak q value increases with the force magnitude. 

The reason is that more energy flows through the sensors. The value of q is four times 

greater since the energy depends on the squared force magnitude. Finally the 

q-estimator is sensitive to the impact amplitude. Thus, this approach can estimate 

quantity of the input energy. 

4.7.2 q-estimator value with different location inside  

A same impact applied at different locations in the inside area (Figure 4.16) leads to 

the results shown in Figure 4.17 and Figure 4.18. The peak value of q stays constant 

with different the impact inside location. Hence, this shows that the criterion also 

gives an idea of the relative impact force magnitude for the same impact location 

when outside, and whatever the location inside. 
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Figure 4.16: Schematics of different location inside 
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Figure 4.17: peak of q value response to different location inside from point o to a 
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Figure 4.18: peak of q value response to different location inside from point o to b 

  

4.8 Experimental validation 

4.8.1  Experimental set-up 

Experiments have been carried out to confirm the previously introduced model. The 

infinite dimension condition is fulfilled by using a plate with very large dimensions, 

preventing reflection phenomena in the transient state in the considered spatial 

domain. A 1.2m   0.8m steel thin plate was used whose four corners were 

suspended by elastic fasteners. The piezoelectric sensors were bonded to its surface 

(Figure 4.19). The experimental parameters were those used in the previous 

simulations (Table 4.1). 16 unitary elements were connected each other to determine 

one closed contour. There are 4 in each line (in the same way than Figure 4.9).  

An impulse hammer (Dytran 5850B) was used for applying the impact. The hammer 

had a flat head of 6mm in diameter and the impact force exerted by this hammer was 

approximated as a localized load. It is important to note that all received signals were 

not processed by any filters, nor were the environmental noises handled with special 

care.  
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Figure 4.19: Experimental structure 

4.8.2 Result & Discussion  

Four impact tests were performed. One was performed using a steel hammer tip and 

three using plastics hammer tip, which gives lower pseudo-frequency impacts. First, 

the steel tip was used with impact waveforms shown in Figure 4.20. This impact is 

applied both inside and outside of area delimited by the sensors. The coordinate origin 

is placed at the centre of the surface. The results are given in Figure 4.21. These 

results demonstrate that the positive (resp. negative) value of q effectively 

corresponds to an impact applied inside surface of sensor (resp. outside), allowing an 

effective impact monitoring as expected. 
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Figure 4.20: Impact force to the considered structure-finite plate-1 
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Figure 4.21: q value response to the pulse force outside and inside-1 

force outside at (0.4, 0.4)-force inside at (0, 0.01) 

 

Then the plastic tip is used to give another type of force as shown in Figure 4.22. The 

plastic tip, which is not as stiff as the steel tip, gives lower pseudo-frequency impacts. 

The results are given from Figure 4.23 to Figure 4.25. These Figures clearly 

demonstrate that the impact location can be efficiently detected from the value of the 

proposed criterion. 

These figures also show good agreement between simulation and experimental results. 

From these results, it seems that high pseudo-frequencies have more reflections due to 

fewer losses. Thus, the reflection on the plate boundaries makes the value of q 

oscillating. 

As well, these series of tests show that the force magnitude can also be estimated by 

the value of q. The peak value gives the impact energy received by the sensor (if the 

impact is applied inside). All these results show that the value of q decreases with the 

time because of the reflection in the plate and dielectric losses of the piezoelectric 

sensors. The reflections can besides be thought as the outside impact. 
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Figure 4.22: Impact force to the considered structure-finite plate-2 
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Figure 4.23: q value response to the pulse force - force outside 

at (0.25, 0.3)-force inside at (0, 0.01) 
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Figure 4.24: q value response to the pulse force - force outside 

at (0.4, 0.4)-force inside at (0.01, 0.01) 
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Figure 4.25: q value response to the pulse force - force outside 

at (0.4, 0.35)-force inside at (0.02, 0.01) 

 

 

4.9 Conclusion  

This chapter introduced a new model for detecting impact location by estimating the 

energy flow direction with piezoelectric sensors.  

Based on a Poynting vector approach, we show that the energy flow difference can be 

approximated from the electric response of piezoelectric sensors with a specific 

geometric arrangement. 

This approach is a low cost technique with low computational requirements and it is 

easy to embed in structures.  

Simulations and experimental measurements show that the proposed model gives a 

interesting tool for estimating impact location and eventually impact force magnitude.  
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5 Force detection using energy flow 

estimator with piezoelectric sensors 

5.1 Introduction 

As the before chapters introduce, we can identify the force using energy flow 

direction with piezoelectric sensors. It is seems that the approach proposed in before 

chapter is not sensitive in few energy density derivative case. Therefore, this chapter 

proposes an approach using energy flow with piezoelectric sensors. This approach is 

more responsive for low loss system.   

The present chapter is organized as follow. First, energy flow analysis is proposed in 

bending wave. Secondly, numerical simulation is shown to verify the theoretical 

approach. Thirdly, an approach using piezoelectric outputs to express the energy flow 

is proposed. Finally, simulation and experimental confirmation is demonstrated using 

some piezoelectric devices put on a thin steel plate. 
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5.2 Principles 

Application of Poynting vector for power flow expression has been investigated in the 

previous sections. Extension for impact energy transmission will be developed in this 

chapter. To obtain the impact location and history, the estimation of the power flux 

through the closed surface (S) is considered as shown in Figure 5. 1a. The structure 

here is, first of all, infinite plate. Integral energy from inside surface (S) to outside in 

time domain is defined as name of Q. When the impact is located inside the frame (for 

example, point I), the mechanical energy flows out of the structural surface. The value 

Q becomes positive with outgoing power flow. In the case of an impact outside the 

frame as see in point O, the induced energy quantity flows in and out through the 

closed surface (S). The outgoing energy quantity and the energy losses in the structure 

consists ingoing energy. The value Q turns to negative. The reflexion phenomenon by 

each plate edges has to be taken into account. It behaves as secondary external 

sources. Reflected waves arrive latter on as shown in Figure 5. 1b, the first power 

flow are not modified if we see in time domain. Consequently, the value Q associated 

to the first transition carries direct information with the impact location. The reflexion 

does not change the value Q. Thus, this approach is able to use in a finite plate as 

shown in Figure 5. 1b. 
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Figure 5. 1: principle of the energy flux expressed by Poynting vector in an infinite 

structure (a) without consideration of losses. Sum of energy flux trough the surface (S) 

is null for an outside impact (O-point) and not null for an inside impact (I-point). For 

a finite structure (b), reflexion phenomena induce secondary sources (s1..si) which are 

the associated null energy flux total 

 

5.3 Poynting vector applied with bending wave 

The Poynting vector associated with the bending equation is calculated by a standard 

procedure that consists to start from the propagation general equation to get the 

energy equation. We start from the bending equation72,  

),,(2 tyxfuDum zz   (5.1) 

 

where   is the flexural displacement, f  is the applied load,   is the Laplacian 
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operator and m is defined as the surface mass density. D  represents the bending 

stiffness that can be expressed as a function of the Young modulus Y , the Poisson 

ratio   and the plate thickness h . 

)1(12 2

3


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Yh
D  

(5.2) 

In order to get the energy flow in the plates, Equation (5.1) is multiplied by the 

displacement yields: 
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We are now going to transform the equation to introduce the Poynting vector. 
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where the second right member term is given by: 
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Equation (5.4) turns to;  
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We can get the same result for the y coordinates since the plate is isotropic. 

2

2

2

2

2

3

3

4

4

2

1















































y

u

ty

u

y

u
u

y

u

y
u

y

u zzz
z

z
z

z


  

(5.8) 

One term in Equation (5.3) z
z u
yx

u

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
is still rest to solve. It can be written as 

following. 
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The last right term of Equation (5.9) can be given as: 
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It yields the expression: 
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Therefore, the Equation (5.9) can be developed as:  
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Equation (5.3) can be, thus, rewritten as: 
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(5.14) 

where w is the energy supplied to the plate. 

The volume integral of Equation (5.14) leads to: 
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(5.15) 
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where C is the surface closing the volume V. 

The P corresponds to power flow. pE , cE  correspond to potential and kinetic 

energy of the bending wave. If there are no losses, the second left term of Equation 

(5.15) equals to zero. The right term of Equation (5.15) corresponds supplied energy.  

Thus, the Poynting vector expressed by following two equations: 
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It is should note that this Poynting vector expression is not same with the general 

one
73

 because we calculated from flexural wave equation in thin plate. Other methods 

derive express directly from the stress and strain expression. It seems that the 

expression of the Poynting vector is not unique. 

Four terms in Equation (5.16) and (5.17) correspond to three wave types. 
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 correspond to shearing wave, bending 

waves and twisting waves respectively. 

It can be clearly seen that the Poynting vector is related only to the flexural 

displacement u  of the plate. 

Let’s see again the Equation (5.15). We assume that the system is static state at the 

beginning time. If the impact is applied to the integral volume; the first left term equal 

to the supplied energy. If the impact is not applied to the integral volume, the first left 

term equal to zero. The vertical coordinate (Pz) is zero since we consider a flectional 

structure coupling. The integral volume can be considered as integral surface (A) 

shown in Figure 5.2    

 

Now, the integral Poynting vector from inside surface to outside in time domain can 

be obtained as: 
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(5.18) 

where A is the integral surface shown Figure 5.2.  
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When an impact is applied inside of the structure (see Figure 5.2), the value Q 

becomes positive, with an outside impact, Q becomes negative 

 

Force 

Plate 
integral surface A 
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l 

H 
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O W 

 

Figure 5.2: Schematics of the considered structure-infinite plate 

5.4 Numerical simulation based on Poynting vector 

Simulations using Matlab R2006a are carried out in order to confirm the present 

theoretical model. The plate presented in Figure 5.2 is modeled using Matlab. The 

physical properties and dimensions of the target plate are given in Table 5. 1. The 

impact as shown in Figure 5.3 is supposed to be applied in the center of the contour 

(the coordinate is (0, 0), see Figure 5.2). The energy flows from inside to outside the 

contour, Q value becomes positive. When all the energy pass the contour, there are not 

energy flow anymore, Q becomes a constant value. The simulated result which is 

shown in Figure 5.4 gives a good correspondence. 

Table 5. 1: Matlab simulation parameters 

Parameter Value Parameter Value 

Plate surface 

density m  

26.4 /Kg m  Integral surface 

length L    

m18.0  

Plate elastic 

modules E  

111.95 10 Pa  Integral surface 

width W    

m18.0  

Plate thickness 

H  

48.10 m
   

Poisson ratio   0.33   

Damping ratio n  0.1   
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Figure 5.3: Impact force to the considered structure-infinite plate 

 

On the other hand, when the same impact force is applied outside of the contours, Q 

becomes negative as shown in Figure 5.5. It can be read that Q tends to a constant 

value. It will be discussed later. 
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Figure 5.4: energy response to a pulse force excitation 

at the origin (0, 0)-location inside 
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Figure 5.5: energy response to a pulse force excitation 

at (0.14, 0.14)-location outside 

 

The time of occurrence of the maximum value of Q increases with the propagation 

distance between the impact location and the contour, and the magnitude of the 

maximum value of Q decreases with the distance. The reason of is that, due to 

damping, the longer the distance the less energy goes through the integration surface 

as shown in Figure 5. 6. This figure shows the relation between Poynting vector vs 

time with some different locations of the impact source. All impacts were outside of 

contour. The wave propagation distance effects two factors: one is in time and the 

other is in amplitude. It is clearly seen that Q achieves quickly to its first peak when 

the distance is smaller. It is also clearly demonstrated that the amplitude of Q is bigger 

when the distance is smaller. As it was mentioned above, the reason for the second 

case is supposed that there is damping effect. It seems that longer the distance, less 

energy propagate through the surface. To verify it, the relation between Poynting 

vector Q and damping coefficient variation are investigated. Figure 5. 7 shows its 

result.  

It is seems that saturated Q value decreases with increase of damping factor. This 

simulation result verifies well that the overall magnitudes of Q curves would be 

decreased if the magnitude of the damping ratio increases.  
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Figure 5. 6: Energy for various force locations outside 

 (damping coefficient is 0.1) 
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Figure 5. 7: Energy for various damping coefficient 

-force locations at the origin (0, 0). 

In a similar way, Figure 5.8 shows that the overall magnitudes of Q curves would be 

increased if we increase the force peak as shown in Figure 5.3. The reason is that 

more energy flows through the contour. The value of Q is four times greater since the 

energy depends on the squared force magnitude. Needless to say, Figure 5.8 shows Q 
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increase with higher energy given in the structure as expected. 
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Figure 5.8: Energy for various force curve peak-force locations  

at the origin (0, 0). 

 

5.5 Approximation of Poynting vector and piezoelectric 

sensors outputs 

How to link Poynting vector with piezoelectric sensor outputs is an open issue. If the 

Equation (5.18) can be linked from piezoelectric sensor outputs, the energy flow can 

be obtained with easy expression from the sensor voltages. This section proposes the 

connection between the Poynting vector and piezoelectric output voltage.  

From the simulation result, the third and fourth terms of Equation (5.16) are 

negligible compare to the first and second terms. 

The velocity of flexural deflection can be expressed by: 
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From the Equation (5.19), we can be obtained: 
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(5.20) 

 

Because   equals to 0.05~0.1, that, the first right term of Equation (5.20) is 

negligible compare to the second term. 

Equation (5.20) turns to: 
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From the Equation (5.21), we can obtain: 
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(5.22) 

 

Because it is transient problem, when time t turns to zero and r is big enough compare 

to the time t, the velocity of deformation can be simple as: 
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As the same assumption,  
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From the Equations (5.19), (5.23) and (5.20) (5.24) we can obtain: 
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Thus, The Poynting vector can be express by: 

 

))1(
4

2
()1()( 2

2

2

3

3

2

2

2

2

3

3




















D

m

t

x

x

u

x

u

x

u

x

u
P zzzz

x


 

(5.27) 

 

 

On the other hand, two piezoelectirc sensors and the surface S, abcd, between them 

are considered as shown in Figure 5.9. Sensor centre is put on a-b and c-d in parallel. 

The voltages of these sensors are given as: 

 

 

Figure 5. 9: Integrated surface with 2 piezoelectric sensors 
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The spatial integral of the time derivative of the displacement as a function of the 

voltage can be expressed as: 
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From the Equation (5.27), (5.30) and (5.31), the Poynting vector Px can be express by: 
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Integrating the Equation (5.32) in the time domain, the energy flow is given: 
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is a positive value, hence, the signs of xP do not 

depend of this term. Based on the above results, we can simplify the energy flow as: 
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When an impact is applied the area 1 (in Figure 5.9), the Q value is positive (resp. 

negative).  

When 4 piezoelectric sensors is used as shown in Figure 5.10，using Equation (5.34), 

the impact location can be obtained in area 1, 2 or 3. 

 

Figure 5.10: Integrated surface with 4 piezoelectric sensor-1 
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Because of the symmetry of the system, it is possible to connect sensor 2 with 3 and 1 

with 4 shown in to reduce computational requirements.  

 

 

 

Figure 5.11: Integrated surface with 4 piezoelectric sensor-2 

 

When an impact is applied in the area 2, the Q value is positive. Otherwise, for the 

case of an impact applied in area 1 or 3, the Q value is negative. 

When eight sensors are connected shown in Figure 5.12, the impact location can be 

known in area 1 or not with the energy flow value 
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Figure 5.12: Integrated surface with 8 piezoelectric sensors-1 

However, this necessitates four sensors output. In order to reduce computational 

requirements, xP and
yP are considered together and independent from each other 

because of the far field assumption. In the other word, 1Q  and 2Q  depend on the 1V , 

2V  and 3V , 4V  respectively. 

Thus, we can simplify the energy flow as shown in Figure 5.13. 

 

 

 

 

Figure 5.13: Integrated surface with 8 piezoelectric sensors-2 
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inside (resp. outside) of the structure (Figure 5.13), Q is positive (resp. negative). The 

absolute value of Q increases with the force magnitude (and same impact location if 

the impact is outside), because more energy flows through the sensors. When 

applying a force outside, the absolute value of Q also decreases with the distance of 

impact location for the same magnitude impact, since less energy flows to the sensors. 

5.6 Numerical simulation and experimental results based on 

piezoelectric sensors outputs 

5.6.1 Numerical simulation 

The simulation parameters are those used in the previous simulations (Table 5. 1) 

except for the piezoelectric sensor bonded in the integral surface seen Figure 5.14. 

The other parameters are shown in Table 5.2. 
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Figure 5.14: Schematics of the considered structure-infinite plate with surface-bonded 

piezoelectric element 
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Table 5.2: Matlab simulation parameters of the piezoelectric element 

 

Parameter Value Parameter Value 

Plate surface 

density m  

26.4 /Kg m  Integral surface length L2    m14.0  

Plate elastic 

modules E  

111.95 10 Pa  Integral surface width W2    m003.0  

Plate thickness h  48.10 m  Integral surface length L1    m138.0  

Poisson ratio   0.33 Integral surface width W1    m003.0  

Damping ratio n  0.1 
Relative permittivity 

033
/ s

 
1142 

Voltage coefficient 

31
e  

14.3 .C m    

5.6.2 Experimental set-up 

The experimental set-up consists of a steel thin plate with surface-bonded 

piezoelectric device, it is suspended at its four corners by elastic fasteners. 

Experimental parameters are the same in the Table 5. 1 and Table 5.2. The plate 

dimension is 2.18.0  m. The squared piezoelectric sensor of size is made of 16 

elements. They are connected separately, the one of inside and the one of outside. 

The impact force was exerted at the target by an instrumented hammer (Dytran 

company, 5850B, minimum force 50 lbs, maximum force 8000 lbs, three impact tips) 

which contained a force transducer to measure the impact force directly. The 

Integrated Circuit Piezoelectric (ICP) Conditioning Module M32 provided the 

necessary power supply for the electronic circuit of the sensor. The hammer had a flat 

head of 6mm in diameter and the impact force exerted by this hammer was 

approximated as a point load. It is important to note that all received signals were not 

processed by any filters, nor were the environmental noises handled with special care. 

Based these reasons, the approach can easily use as self-power system. 

5.6.3 Result & Discussion 

A simple impact force as shown in Figure 5.15 is applied to the plates. Because the 

impact is given by hammer, the impact amplitude and the instantaneous frequency are 
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not the exactly same every times, thus, it is not care about the amplitude. 

The approximation results based on the simulation and experimental data are given in 

Figure 5.16 and Figure 5.19. In both of these figures, two locations of impact force in 

side and outside are given. The inside force location is at (0, 0). The outside force 

location is at (0.2, 0.2).  

These figures show good agreements between previous theory and approximation 

based on simulation and experiment data from piezoelectric sensors.  
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Figure 5.15: Impact force to the structure (with piezoelectric sensor) 
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Figure 5.16: approximation energy response to a pulse force (simulation) 

 

The max peak of Poynting vector increases with the force amplitude, because the 

more energy flows through the sensors and the energy depends on the squared force 

magnitude. The simulation results as shown in Figure 5.17 correspond to the theory 

very well. It is interesting because it mean that we can quantity the energy of the 

impact. 

The pointing vector decreases with increase of damping factor, because the less 

energy flows through the sensors. The simulation results verify well that the overall 

magnitudes of Poynting vector would be decreased if the magnitude of the damping 

ratio increases. 
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Figure 5.17: approximation energy response to different peak pulse force 
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Figure 5.18: approximation energy for various damping coefficient 

-force location at the origin (0,0) 
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Figure 5.19: approximation energy response to a pulse force-1 (experimental, steel tip 

of hammer) 

 

First, the steel tip was used. Coordinate origin is placed at the centre of the surface. 

The results are given in Figure 5.19 and Figure 5.20. These results demonstrate that 

the positive (resp. negative) value of Poynting vector corresponds to an impact 

applied inside surface of sensor (resp outside). The steel tip generates an impact that 

leads to short time duration. Its spectrum is broad band and consequently lamb waves 

modes higher that the bending mode one generated: That might explain the oscillating 

behaviour of the curves. 
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Figure 5.20: energy response to a pulse force -2 (experimental, steel tip of hammer) 

 

When the pseudo-frequency of impact is decrease, if there are bending wave in the 

plate, the approach can detect the force location area inside the sensor or not. Based 

on above ideal, the plastic tip is used to give low frequency impact because is not as 

stiff as the steel tip. Figure 5.21-Figure 5.23 show the results. These results clearly 

demonstrate that the impact location area can be efficiently detected from the value of 

the proposed criterion. 
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Figure 5.21: energy response to a pulse force -1 (experimental, plastic tip of hammer) 
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Figure 5.22: energy response to a pulse force -2 (experimental, plastic tip of hammer) 
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Figure 5.23: energy response to a pulse force -3 (experimental, plastic tip of hammer) 

 

It should be note that this technique can estimate the time history of input energy. The 

several forces are applied to the inside of structural at different time, which means 

several mechanical energies are input to the system. The schema of Poynting vector 

will show several levels as shown in Figure 5. 24. For example, in Figure 5. 24 b, when 
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time is close to 0, 0.18, and 0.36 second, there are the force input to the inside of the 

structure. The value of Poynting vector is increase quickly. 
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Figure 5. 24 energy response to different pulse force 

 

As the same reason we discuss before, this approach can estimate the force amplitude.  

The Poynting vector depends on the squared force magnitude, when the input force 
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increases two times, the Poynting vector increases four times. As it is shown in Figure 

5.25 (a) and (b), when the force amplitude increases close to two times (from 7N to 

15N), the max peak of Poynting vector increases four times (from 90 to 350). The 

same result can be obtained from Figure 5.25 (b) and (c). 
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(c) 

Figure 5.25 energy response to different amplitude pulse force (force inside of frame) 

5.7 Conclusion & Further Work 

A simple, fast and efficient technique for identifying the impact location and force 

amplitude using Poynting vector is proposed and an approximation way to calculate 

the Poynting vector is given in this research. The present work demonstrates that it is 

quite easy to estimate whereas the impact location is inside or outside the chosen 

contour. When the value of the energy flow Q is positive, the impact location is inside 

of the contour, and the opposite. In the future, the model of piezoelectric sensors will 

be empirical in theory, or maybe find another better approach.  

Future work may be considering anisotropic materials. 

 

5.8 Anisotropic plate 

Using the approach (5.35) and (5.36), we also do some investigation in anisotropic 

plate. We have good experiment result, and the theory approach is developing. 

A composite plate (fabric 0 / 90, rate of fibre 60%, Density: 1600 kg/m3) is 

considered in current research as shown in Figure 5.26.  
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(a) 

 

(b) 

Figure 5.26 experiment set-up for composite plate-1 

 

The plastic tip is used in this experiment. The result is shown in Figure 5.27. This 

result demonstrates that the positive (resp. negative) value of approximation vector 

corresponds to an impact applied inside frame. This result also show that the impact 

location area can be efficient detected from the value of the proposed criterion. 
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Figure 5.27 energy response to a pulse force -1(composite plate) 

 

We also change the boundary limit in Figure 5.28. The result is shown in Figure 5. 29. 

This result show proposed model gives a interesting tool for estimating location and 

magnitude impact.  

 

 

 

Figure 5.28 experiment set-up for composite plate-2 
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Figure 5. 29 energy response to a pulse force -2(composite plate) 
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6 Conclusions 

The objective of this work was to develop a technique to detect the location of an 

impact on a structure (plate) and quantity the shock energy. The identification should 

be simple enough to lead to a self power wireless system. This construct restrict the 

data processing to basic mathematic operation. 

 

We selected piezoelectric elements to detect the shock history. To get these 

requirements, we followed several routes that are presented in chapter 2, 4, 5. The 

basic idea of the research was to extract energy, by means of a resistance in parallel 

with the piezo elements, bonded on a beam (1D) and aligned with a constant spacing. 

A straight comparison between succinct piezoelemets response leads to the impact 

location on the beam. This processes can be self power quite easily (Energy can be 

harvested on the beam or the plate shunt) 

.  

In chapter 3, we develop a modelling of the mechanical impulse response between a 

force applied at some location in an infinite plate ant the displacement (or the 

displacement speed) at a different location. We consider the bending mode and ignore 

all the other bands modes. This modelling, based on a 2D Fourier transform of the 

bending equation lead to a closed form expression of the displacement speed. The 

modelling allows getting the displacement response to any arbitrary signals and 

overcome the problem encountered with the finite element approach. Once the 

impulse response knowing, the voltage on element bonded to the plate can be easily 

calculated. It must be stressed that we consider the piezoelement as a pure that we 

neglect the coupling between the piezoelectment and the plate structure. 

 

The method presented in chapter 4 is based on the variation of the global wave energy 

measured successive points. Clearly the energy variation is directly related to the 

wave losses deriving into the propagation. Using a set of piezoelement measuring the 

voltage different, the wave propagating direction can be estimated. Four sets of these 

set of piezoelement can be used to form a squared frame thus the generating the wave 
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direction detect in 2D. Based on this simple concept, we can derive an approximate 

relating the power flow (Poynting vecter) to the voltage on the piezoelements. These 

approximate takes a positive value when the impact occurs inside the piezo frame and 

negative when the impact is located outside the piezo frame, thus providing an easy 

way to locate the impact location. Clearly the impact location revolution is of the 

order of the frame dimension but the processing is very simple and demands small 

energy requirement since only basic operation involved. 

 

In chapter 5, we introduced a technique based on the power flow for the impact 

location and energy quantification. We first derived an expression of the Poynting 

vector from the equation supporting bending wave propagation. Then approach leads 

to a theoretical energy equation and clearly shows that the power flow is different 

from zero if the impact occurs inside the frame and zero if it occurs outside. A parallel 

with the Gauss theorem applied to location of an electrical charge can be made. 

From the above mentioned approach, we can derive a new estimation that relates the 

power to the piezo voltage of the elements constituting the frame. It leads to 

experimental results that confirm the detection scheme. In this case also, the power 

requirements to drive the system are low. The approach developed for isotropic plate 

was used on anisotropic plate (composite). The experimental results show that 

detection is also quite straightforward in this case. 

 

To conclude, we would say that we developed a set of method to estimate the impact 

location and quantification on a plate structure. The three proposed approaches show 

the feasibility of the impact location with detection schemes that requires a small 

amount of energy to be self-powered and wireless. Extension of this work will 

concern a more precise quantification estimation. So far we worked with plate 

structure. It would be very interesting to develop an approach for 3D structure or plate 

with variable thickness.    
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