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Abstract

This thesis studies the role of intrinsic motivation in the emergence and develop-
ment of communicative systems in populations of artificial agents. To be more
specific, our goal is to explore how populations of agents can use a particular mo-
tivation system called autotelic principle to regulate their language development
and the resulting dynamics at the population level.

To achieve this, we first propose a concrete implementation of the autotelic
principle. The core of this system is based on the balance between challenges,
tasks to be done to achieve a goal, and skills, the abilities the system can employ
to accomplish the different tasks. The relation between the two elements is not
steady but regularly becomes destabilised when new skills are learned, which al-
lows the system to attempt challenges of increasing complexity. Then, we test the
usefulness of the autotelic principle in a series of language evolution experiments.
In the first set of experiments, a population of artificial agents should develop a
language to refer to objects with discrete values. These experiments focus on how
unambiguous communicative systems can emerge when the autotelic principle is
employed to scaffold language development into stages of increasing difficulty. In
the second set of experiments, agents should agree on a language to communicate
with about colour samples. In this part, we explore how the motivation system
can regulate the linguistic complexity of interactions for a continuous domain and
examine the value of the autotelic principle as a mechanism to control several
language strategies simultaneously.

To summarise, we have shown through our work that the autotelic principle
can be used as a general mechanism to regulate complexity in language emergence
in an autonomous way for discrete and continuous domains.





Résumé

Dans cette thèse nous étudions le rôle de la motivation intrinsèque dans l’émer-
gence et le développement des systèmes communicationnels. Notre objectif est
d’explorer comment des populations d’agents artificiels peuvent utiliser un sys-
tème de motivation computationnel particulier, appelé l’autotelic principle, pour
réguler leur développement linguistique et les dynamiques qui en résultent au
niveau de la population.

Nous proposons d’abord une mise en œuvre concrète de l’autotelic princi-
ple. Le noyau de ce système repose sur l’équilibre des défis, des tâches à ac-
complir afin d’atteindre un objectif, et des compétences, les capacités que le
système peut utiliser pour accomplir les différentes tâches. La relation entre les
deux éléments n’est pas stable mais se déstabilise régulièrement lorsque de nou-
velles compétences sont acquises, ce qui permet au système de tenter des défis
de plus grande complexité. Ensuite, nous testons l’utilité de ce système de moti-
vation dans une série d’expériences sur l’évolution du langage. Dans le premier
ensemble d’expériences, une population d’agents artificiels doit développer une
langue pour se référer à des objets ayant des caractéristiques discrètes. Ces expé-
riences se concentrent sur la façon dont les systèmes communicatifs non ambigus
peuvent émerger lorsque l’autotelic principle est utilisé pour réguler le développe-
ment du langage en étapes de difficulté croissante. Dans le deuxième ensemble
d’expériences, les agents doivent créer un langage artificiel pour communiquer
sur des couleurs. Dans cette partie, on explore comment le système de motiva-
tion peut contrôler la complexité linguistique des interactions pour un domaine
continu et on examine aussi la validité de l’autotelic principle en tant que mé-
canisme permettant de réguler simultanément plusieurs stratégies linguistiques
de difficulté similaire.

En résumé, nous avons démontré à travers de notre travail que l’autotelic
principle peut être utilisé comme un mécanisme général pour réguler la complexi-
té du langage développé de manière autonome en domaines discrets et continus.
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Chapter 1

Introduction

This thesis studies the role of intrinsic motivation in the emergence and develop-
ment of communicative systems in populations of artificial agents. To be more
specific, it studies how populations of agents can use a motivation system to
regulate their language development and the resulting dynamics at the popula-
tion level. The core of the thesis consists on linking two different fields of study:
evolutionary linguistics and computational approaches to motivation.

Evolutionary linguistics tries to explain the evolution of language as a process
of cultural negotiation. Researchers in this field study the emergence and change
of human-like communicative systems in a controlled environment through re-
current peer-to-peer interactions in a population of artificial agents [116, 129].
The different communicative systems presented in this thesis follow the language
game paradigm [125, 128], based on the notion of language games first introduced
by Wittgenstein [160], and assume that language is a complex adaptative system.

Researchers in evolutionary linguistics have used language games to tackle
different language phenomena. It was first applied to the study of self organisa-
tion of vocabularies [125, 126, 127, 108], but during the last two decades it has
shed light on a variety of domains such as colour [15, 24], space [124], quantifiers
[92], flexible word meaning [157, 156], case systems [154], agreement [19, 94], as-
pect [48] or syntax [37, 46]. Despite the fact that this approach has successfully
provided insights for these domains, in most of these experiments the control of
the complexity relies on the experimenter, who usually explores a certain domain
in different experimental setups.

How could agents manage the complexity of experiments themselves? Re-
searchers in artificial intelligence (AI) and developmental robotics, inspired by
psychological studies on motivation, have proposed different models that allow
agents to deal with the complexity of their actions autonomously. The idea be-
hind it consists of providing agents with mechanisms that evaluate the outcome
of an action and use this feedback to decide on the next action to execute. These
mechanisms let agents evaluate how well an action is performed, for example by
comparing the expected and the actual result, and use this information to predict
the behaviour of actions, decide on next actions to perform, explore the space of
possible actions or improve their performance on a specific one.

This work contributes to the understanding of the role of intrinsic motivation
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2 Introduction

in the emergence and development of language in two ways. Firstly, it presents a
detailed description of a computational model of motivation called the Autotelic
Principle. Secondly, it tests its role in language development by applying this
model to language games on different language domains. The thesis argues that
complexity in language games can be managed by the artificial agents that take
part in them and demonstrates that the autotelic principle can be used as a
general mechanism in language games.

The work presented in this thesis is the result of a CIFRE fellowship (agree-
ment no. 2013/0730) and has been developed with the authorization and agree-
ment of Sony Computer Science Laboratory Paris. Sony wanted to re-investigate
the notion of the autotelic principle as this mechanism has important relevant
potential applications for the company, although the goal of the thesis was not
to investigate these applications directly. Previous work by Luc Steels and col-
leagues [131, 145] were thus important but not fully satisfactory as (a) they did
not explore the problem of dealing with several challenges simultaneously, (b)
they did not integrate it in a continuous domain, which resembles better the
kind of input a robotic agent may face, and (c) their implementation was not
operational anymore. Part of my research objectives were to build on this initial
work to make it really operational and take into account a number of features
that were not addressed.

This chapter continues with an introduction to language evolution (Section
1.1) and to the specific approach used in this thesis: the selectionist theory to
language evolution (Section 1.2). It then follows with a brief introduction on
complexity management (Section 1.3). The chapter ends explaining the main
hypothesis (Section 1.4), objectives (Section 1.5) and the structure of the thesis
(Section 1.6).

1.1 Situating this work: language evolution

The origins and evolution of human language are difficult questions to address
from a scientific point of view. The main reason for this is that there is no direct
evidence of when it started or what it looked like. The lack of direct evidence has
been a serious obstacle for this topic and led it to an ostracism in linguistics for
more than a century. For instance, la Société de Linguistique de Paris banned the
study of language origins in the second article of its statutes from 1866: “ART. 2.
- La Société n’admet aucune communication concernant, soit l’origine du langage
soit la création d’une langue universelle.”1.

The question of the origins of human languages was raised again during the
1950s when ideas such as mass comparison [55] or universal grammar [29] ap-
peared, but it is not until the late 1980s that it was established as a subfield of
psycholinguistics. Nowadays, research on the origins and evolution of language
is a highly interdisciplinary field that during the last 25 years has progressively
gained attention from linguists, biologists, anthropologists and psychologists.

1ART. 2. - The Society doesn’t admit any communication regarding the origins of language
or the creation of a universal language.



1.1. SITUATING THIS WORK: LANGUAGE EVOLUTION 3

As the interdisciplinary field that it is, a theory of language evolution should
provide an explanation for the biological, social and cultural perspectives in-
volved in human language evolution [137]. Researchers that take the biological
perspective try to understand the underlying biological capacities required for
human language. Evolutionary biologists work to answer which neurobiologi-
cal structures are needed for language, what are its genetic basis and when and
how these bases appeared. They tackle these research questions employing the
Darwinian approach to the human language.

Language cannot be disconnected from its social component. Language is a
social phenomenon, a mechanism of symbolic communication that is learned and
used in a context of social interaction and cooperation. Furthermore, its usage
varies depending on the social setting of the interaction. What are the ecolog-
ical changes in earlier human societies that entailed the necessity of symbolic
communication? Which other mechanisms, such as joint attention or trust, were
necessary for this to happen? These questions can be addressed from an anthro-
pological approach, which may consist in studying hunter-gatherer societies or
comparing the social structures and social cooperation between humans and our
closest species.

Still, human languages are not fixed but in a state of continuous change.
Languages exhibit cross-cultural variation at different levels, from morphemes to
syntactic and semantic structures. These changes stimulate the emergence of new
linguistic items and the loss of others. The cultural approach to the evolution of
language tries to identify and analyse the mechanisms that trigger these changes.
Once these cultural processes have been identified researchers can explain certain
phenomena recognised in languages, either observed or ongoing changes, and use
the same cultural mechanisms to understand the origins of language.

These different evolutionary forces are strongly interconnected. For instance,
language was crucial for the origin of human society [65] as much as social groups
were necessary for the emergence of language. Also, these forces get involved into
what Steels [137] identifies as spiral forces: an increase in complexity of one force
requires a complexity raise in the other forces. For instance, an increase of social
complexity requires an increase in both language complexity and brain capacities.

The time span of these changes, though, differs between the different forces.
We know that Germanic languages, which include German, English, Dutch, Dan-
nish, Icelandic or Yiddish, are all descendants from Proto-Germanic, which re-
searchers situate around 500 BC [73]. Another example can be found in Romance
languages, which evolved from Vulgar Latin in a shorter time span [2]. Changes
in languages occur every day. Day after day new words are incorporated into
human languages, due to the rise of new concepts and fields. For instance,
computer-related terms did not exist a century ago. Another example is the
emergence of a communicating system of a particular social group. A good ex-
ample is Louchébem, an argot used by butchers in Lyon and Paris that consist
of camouflaging existing words according to a set of rules [109]: in Louchébem
the word couteau (French for knife) becomes louteaucé, or the name of the argot
(Louchébem) comes from applying the same rules to the word boucher (French
for butcher).
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The experiments presented as case studies for this thesis focus on the cultural
mechanisms that can lead to the emergence of a shared language, not in its
biological or social basis. It follows the selectionist theory of language evolution
[137], by means of applying the same principles of natural selection used in biology
to explain evolution into the language domain.

1.2 Selectionist theory of language evolution

Natural Selection states that living organisms exist in environments in contin-
uous change. These organisms have a set of traits that allow them to prevail
in the environment. But by the changeable conditions of the environment, a
very advantageous characteristic in a specific context can become useless or even
harmful if the environmental conditions change. Evolution solves this problem by
introducing a small quantity of variants and selecting those variants that provide
high survival in the environment. If a new variant that increases the chances of
survival can be passed to the offspring, it will be replicated among the population
in future generations.

Selectionism, therefore, consists of (a) the generation of variants, generally
from an already existing variant, and (b) a process of choice among these variants
according to selection criteria. As it happens continuously, a selected variant can
be used to generate new variants, which will be chosen again according to the
same selection criteria, entering into a self-enforcing loop. The selectionist theory
of language evolution maps this selectionist process to the linguistic domain in
order to study human language evolution from a cultural perspective. What can
the variants be and how can they be introduced into a language? How are these
variants selected? In order to answer these questions, it is important first to
clarify what language is.

1.2.1 Language as a Complex Adaptive System

The view that language is a complex adaptive system has gained support during
the last two decades [26, 128, 14, 42, 5, 138]. Complex as the set of different
cognitive processes that allow humans to learn, use and adapt language are de-
pendent on one another and adaptive because individuals shape their language
based on these cognitive processes but also on their past and current interactions.
A shared language in a population is, therefore, the result of the interactions of
all its individuals.

This cognitive-functional approach to language is at the core of cognitive
linguistics [34], which studies language investigating the relation between se-
mantics, pragmatics, conceptualisation, syntax and language use. The principal
approach to grammar development in cognitive linguistics is Construction gram-
mar [44, 49, 70]. In construction grammar, all knowledge of a language is made
of a collection of linguistic conventions that pair form and meaning, called con-
structions. Constructions range from specific units such as words or morphemes
to more general ones, as phrasal patterns. The learning and creation of construc-
tions are driven by cognitive mechanisms and language use, which is known as
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the usage-based theory of language learning [61].

1.2.2 Language systems and language strategies

As there is no central control on language, an individual can only discover what
the best way to communicate is by interacting with other individuals of the
population. An individual doesn’t know the way to communicate about new
objects or conceptualisations, or if a hearer will be able to understand the message
she is conveying. In other words, there is no individual with a complete view
of the communicative system of the population, which is built in a bottom-up
fashion.

Through interactions, individuals learn language systems, which capture the
regularities and systematicity of language domains. Language systems are spe-
cific realisations of language strategies, which can be described as a particular
procedure to express one subarea of meaning. A language strategy can lead to
different language systems. For example, if we consider the colour domain we
can appreciate that a common language strategy consists in dividing the colour
space into different basic colour terms. Although this language strategy is used
by all languages, its particular realisation into language systems differs among
them. For instance, Russian has two different terms for the English term blue,
sinij and goluboj, which can be translated as "dark blue" and "light blue" [101].

A language system is divided into the conceptual system, the semantic distinc-
tions of a language system used for conceptualisation, and the linguistic system,
the lexical or grammatical structures used to convert a specific conceptualisation
into an utterance. Taking the previous example on colour, in a language system
of basic colours terms (a) the conceptual system corresponds to the semantic dis-
tinctions that separate a colour space into categories (e.g. eleven for English) and
(b) the linguistic system consists of the terms used to express these categories.

1.2.3 Linguistic selection

Assuming that language use in the form of interactions between individuals of a
population is part of the core for language learning points us to the selectionist
force in language: communicative success. Communicative success occurs when
the speaker realises his or her communicative goal. For instance, if the speaker
wants to draw the attention of the hearer to a certain object in the context, the
interaction will be a communicative success only when the hearer has identified
the object and showed to the speaker that he or she understood the message (for
instance, by pointing to the intended object).

Several features influence communicative success, acting as selection criteria
for language systems and language strategies. For instance, one of these features
is expressive adequacy, which is determined by the set of conceptual distinctions
and the linguistic items to refer to these conceptual differences that a language
system has. Another feature is cognitive effort : how hard it is to come up with
a satisfactory conceptualisation, construct a sentence or comprehend it has an
impact on the success of a language system.
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Figure 1.1: Visual representation of the relation between language strategies and
language systems (taken from [137]). Language systems are specific realisations
of language strategies, which are particular procedures to express one subarea of
meaning. The communicative outcome has an impact on the language system
used, and in the language strategies in the long-term, selecting language variants
with a better outcome.

Variants, in the form of new words, categories or grammar, are introduced by
language users when a language system does not allow them to convey a certain
meaning. Among these language variants, those that lead to a higher communica-
tive success have a higher probability to spread in the population. As linguistic
selectionism occurs in every interaction, language enters into a self-enforcing loop,
similar to the one observed in biology. The same linguistic selection forces that
have spread a language variant in the population will again select new variants
generated from that variant, therefore continuously affecting and shaping the
language system and its associated language strategy in the long-term (Figure
1.1).

1.2.4 Self-organisation of language systems

So far the theory accounts for how variants are introduced, namely for expressing
a meaning that the current language system of an individual cannot express, and
for how these variants are selected using communicative success as a selection-
ist force. We still need to understand how these variants are spread over the
population.

In the previous subsection it is mentioned that individuals can create new
variants in order to express a meaning when their current language system cannot
refer to that meaning. In order to spread these new words and concepts in
the population, individuals can also learn them. A new variant, introduced by
an individual, will be more or less spread to the population depending on how
useful it is (if it allows to reference to a specific meaning successfully) and, in
consequence, increase the communicative success.

With these cognitive mechanisms, each individual keeps a different inven-
tory of conceptualisations and constructions for a language system, sometimes
containing competing constructions: either having different ways to express the
same meaning or having constructions that refer to multiple meanings. How can
a population create cohesion in its language system? This process is done with
another cognitive mechanism named alignment. Alignment consists of bringing
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the language system and language strategies of both speaker and hearer after
each interaction closer. These dynamics not only affect interlocutors in a short-
term period, as psychological studies have shown for the alignment of linguistic
conventions [162, 47], but it also has an effect on the long-term, shaping language
systems and their related language strategies.

This results in the self-organisation of language systems, as a language system
is a distributed system formed by multiple elements that behave autonomously.
These elements are influenced by (a) external factors, communicative success and
its selection criteria, and (b) the behaviour of the other elements in the system,
in particular variants introduced by individuals.

Alignment not only provokes that the more a particular variant is used by an
individual, the more likely other individuals in the population will employ it, but
also means that the more a particular variant is used, the fewer its competing
variants will be employed. As a consequence, a self-enforcing loop is produced
in the language system, as the more language users are aligned, the more the
resulting language system is coherent. In the same way, the more consistent a
language system is, the stronger disposition towards alignment it has.

1.2.5 Semiotic cycle: the importance of context

There is a last element that plays a role in language emergence: the external
ecological conditions of the interaction, that is, the context in which interactions
between two or more individuals take place. Spoken language occurs within a
physical context, and the configuration of this context influences which language
strategies are used, as the expressivity of different language strategies depends
on the context in which interactions occur, shaping the language system that will
emerge. Therefore, a theory of language evolution should also take into account
the ecological conditions in which interactions happen.

This can be nicely illustrated with examples from spatial language, as there
is variation in how absolute frames of reference are used across languages [75].
For example, some languages in Nepal and Meso America, such as Tzeldal, due
to the nature of their ecological situation, employ concepts such as ’uphill’ and
’downhill’ as landmarks to specify directions. Similarly, other languages use
the river drainage as a landmark, making use of concepts like ’upstream’ and
’downstream’, as has been observed in languages from Arnhem Land and Alaska.

The existing relationship between the speaker, the hearer and the context of
an interaction is captured in the semiotic cycle (Figure 1.2). Three different levels
of processing are involved: sensorimotor, conceptual and linguistic. Both speaker
and hearer perceive the context through their sensorimotor systems, building
a world model. The speaker uses this model and her communicative goal to
conceptualise a meaning or semantic structure. This meaning representation
acts as the input of the linguistic system that formulates it into an utterance.

The hearer comprehends the utterance and reconstructs a semantic structure.
This structure, together with her world model, is used to interprete the input
utterance, that is grounding the reconstructed meaning representation to the
actual context. Depending on the interpretation, the hearer can perform an
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Figure 1.2: The semiotic cycle illustrates the relation between the speaker (left)
and hearer (right) of an interaction and the context in which it takes place
(adapted from [130]). It involves the sensorimotor systems and the conceptual
and linguistic processing levels.

action, which allows the speaker to detect if her communicative goal has been
achieved.

Notice that the semiotic cycle requires (a) joint attention to the interlocu-
tors, as if it will not be the case their world models would differ and consequently
the conceptualisation and interpretation processes would unlikely result in a suc-
cessful communication, and that (b) the relation between communicative goals,
meaning structures and formulated utterances is not unique. Even in interac-
tions with simple contexts, the same communicative goal can be conceptualised
into different meaning representations. Similarly, a particular semantic structure
can be expressed using different utterances, or an utterance can lead to multi-
ple interpretations when the language system of an individual is not completely
aligned. Some conceptualisations and utterances have a higher chance of achiev-
ing the communicative goal, depending on the particular language systems of the
interlocutors and the context in which the interaction takes place.

This is a particularly interesting problem in language emergence, as individu-
als want to maximise the odds of being understood while they continue to develop
and align their language systems. How can individuals manage the dichotomy
between maximising communicative success while continuously improving their
expressivity? In other words, how do humans manage language complexity?

1.3 Managing complexity

Researchers have been looking at different mechanisms that humans adopt in
order to deal with complexity. Developmental psychologists have studied the
scaffolding in child development and how this affects their acquisition of abili-
ties. They have identified two key features in developmental scaffolding: Firstly,
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incremental learning usually occurs in stages, that is, points of stability (see [20])
or “fitness barriers” in developmental performance. Secondly, the reduction of
points of stability makes available the development of new skills that, in turn,
become self-scaffolding of later development performances [159]. In other words,
the development of skills or capacities at a certain stage builds on the skills devel-
oped by the child in earlier stages: id est, the development of more sophisticated
skills depends on skills learned before.

In the case of child development sometimes it is an external person, for in-
stance the mother, who restricts and simplifies the context of the interaction to
facilitate the development of certain abilities. For example, she can set up a safer
context in which to develop the ability to walk to incite this skill. But sometimes
the scaffolding is made by the child herself: some psychologists have shown that
children choose to focus their attention on particular features which are deter-
mined by the context when the learning of new words for objects occurs [117].
Other researchers point to the fact that infants maintain intermediate rates of
information attention when paying attention to their environment, avoiding too
complicated or too simple stimulus [72].

1.3.1 Motivation as a force

Scaffolded learning can, therefore, respond to external or internal forces, but
this does not provide any answer as to what induces humans to learn skills or
abilities. Psychologists have extensively studied the role of motivation since the
1930s [62, 115, 158, 52], which can be defined as “to be moved to do something”
[99]. Researchers have focused not only on differences in motivation levels be-
tween individuals, why some people are more motivated than others, but also on
different types of motivation.

Regarding the goals to perform an action, that is, what moves us to do
something, it is commonly accepted that motivation can be subdivided into two
classes. On the one hand extrinsic motivation, when external forces influence
the motivated behaviour, and on the other hand intrinsic motivation, when an
activity is performed because it is inherently enjoyable or interesting. There are
several reasons why an activity may result in interest to an individual, such as
an intrinsic search for novelties or challenges, a willing to explore or discover new
abilities or simply to exercise her capacities.

1.3.2 Computational approaches to motivation

AI researchers and developmental roboticists have shown a growing interest in
motivation and, in particular, intrinsic motivation [3, 13, 91, 79]. They use
insights from psychology to come up with mechanisms to manage active learning
and spontaneous exploration, proposing different models to allow artificial agents
to autonomously develop their skills while carefully managing the complexity of
their actions (see [7] for an overview). How do these models work?

The main idea is to use the outcome of actions as feedback for the agents,
providing them with mechanisms to perceive the result of their actions. This
information, together with their experience (built from all previous actions),
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permits agents to judge how well an action has been executed and decide on
which actions they should perform next. Agents can employ this information to
predict the behaviour of actions, explore possible actions or focus on a particular
action in order to ameliorate their performance. The latter is extremely relevant
for this thesis, as computational models of motivation are related to autonomous
skill development. It not only allows agents to discover abilities to be acquired
but also provides mechanisms to help agents decide which ability to train next.
Moreover, these models often rely on a cumulative acquisition of a repertoire of
skills, similar to what has been observed in developmental scaffolding.

In this thesis, a particular computational model of intrinsic motivation, called
Autotelic Principle, is studied. This model is inspired by the theory of Flow
proposed by Csíkszentmihályi [36], who studied intrinsic motivation and found
an existing relationship between challenge, a particular activity to be done, and
skills, the abilities that an individual has to confront that task. He observed
that unequal configurations of these two elements lead to mental states such as
boredom or anxiety. Interestingly, the balance between both challenge and skills,
which he identifies as the optimal state of experience or flow, provides the best
conditions to learn and develop new skills. People try to stay in flow state but
the fact that it is in continuous change, as skills evolve over time, triggers them to
become self-motivated. The term autotelic principle was first used in the context
of learning by More and Anderson [85].

The autotelic principle was conceived by Steels [131, 133] and applies the
central idea of the theory of Flow (i.e., the relationship between skills and chal-
lenges) to allow artificial agents to autonomously manage the complexity of their
actions in order to regulate their development. An earlier implementation of this
system was previously used in a language evolution experiment by Steels and
Wellens [145]. This thesis extends their work by providing a detailed implemen-
tation of the autotelic principle redesigned for language interactions and present
a collection of experiments to further analyse its impact in the development of
communication systems.

1.3.3 Linguistic complexity

This model will be used by a population of agents to regulate the complexity in
the emergence and development of language. It is, therefore, necessary to define
what complexity means in language development. Different researchers have
addressed this question and have proposed models identifying different steps or
stages in language evolution [66, 132]. All these models share the assumption
that language started in a stage without no grammar and progressively gained
complexity up to the grammar systems that human languages exhibit today.

The increase of linguistic complexity adopted in this thesis corresponds to the
three stages presented in [121]. Spranger identified relevant linguistic stages for
language evolution experiments in the model proposed by [132]: (a) single-word
utterances, when all the conceptual information is conveyed using one word, (b)
multiple-word utterances, when different words are used to express information of
several semantic categories or referents in the context, and (c) grammatical utter-
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ances, when grammar is used to disambiguate different semantic interpretations
of an utterance.

1.4 Main hypothesis

This thesis explores the role of intrinsic motivation in the emergence and develop-
ment of artificial language systems. The hypothesis of this thesis is that artificial
agents are able to successfully manage the development of successive stages of a
language system by regulating the complexity of their interactions with a par-
ticular computational model of motivation called the autotelic principle. This
hypothesis is then validated in computational experiments where a population of
agents collaborate to create language systems for both discrete and continuous
domains.

1.5 Objectives

The objectives of this thesis are twofold:

1. Firstly, to present a complete description of a computational model of mo-
tivation called the autotelic principle redesigned for language evolution ex-
periments, explaining its different components and providing detailed in-
formation about how it has been implemented.

2. Secondly, to demonstrate that the autotelic principle can be used as a
general mechanism to regulate complexity in language emergence by testing
it in experiments on different language domains.

The work presented in this thesis is inspired on Steels and Wellens [145] and
aims to extend their work in order to explore in detail the impact the autotelic
system has as a mechanism to regulate the linguistic complexity in language
evolution experiments. Section 5.7 enumerates the contributions made in the
discrete domain in comparison to the work by Steels and Wellens.

In order to provide evidence for the second objective of the thesis, the set
of experiments carried out (a) study how agents can use the motivation system
to successfully regulate the complexity of linguistic interactions in several stages
in an autonomous way, (b) test the autotelic principle in multiple challenge di-
mensions on discrete and continuous domains and (c) integrate the creation and
learning of several conceptual prototypes to these experiments and explore the
impact of perceptual deviation in the resulting communicative system.

1.6 Structure of the thesis

The thesis has been organised into four parts. The first part (Chapter 2) focuses
on the approach taken to study the emergence and development of language in
a population of artificial agents and how it has been implemented. Among the
different methodologies proposed to perform computer simulations of language
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evolution I have chosen to use language games, as it takes into account both the
agents that take part in a linguistic interaction (speaker and hearer) and also the
context in which the interaction takes place.

Language games have been implemented using Babel, a framework written
in Common Lisp specially designed for language-game experiments. This frame-
work contains two especially important core systems: Incremental Recruitment
Language, a computational system that allows agents to build complex meaning
representations, and Fluid Construction Grammar, a bidirectional constructional
grammar formalism that is used to formulate and comprehend utterances.

The second part of the thesis is devoted to the motivational system and
comprises two chapters. The first of them (Chapter 3) presents an overview of the
different psychological theories on motivation and the computational models they
have inspired. The chapter is structured around the distinction between extrinsic
and intrinsic motivation. The first type of motivation occurs when the motivated
behaviour is caused by external forces, while the second type happens when the
activity is inherently interesting. After a review of the psychological literature the
chapter focuses on different computational models of motivation, first explaining
reinforcement learning, the most common technique used in this field, and then
continues with an overview of the most influential computer motivation systems.

The following chapter (Chapter 4) describes the autotelic principle, the mo-
tivational system implemented in this thesis. This system is used by artificial
agents language evolution experiments as a mechanism to manage the complexity
of their linguistic interactions, regulating their development in an autonomous
way. Inspired by the psychological theory of Flow, the core of the autotelic prin-
ciple consists of the balance between challenges and skills. The main idea is that
this balance is systematically destabilised, as agents improve their skills while
attempting challenges, and, in consequence, agents periodically have to adjust
their challenges in order to match their skill level. Artificial agents are able to
set their own challenges and use monitors to identify the evolution of their per-
formance for those tasks. This information is used to decide when they should
change the challenges in order to further develop their skills.

The third part of the thesis presents the different experiments conducted to
test the role of intrinsic motivation in language emergence. In these experiments,
a population of artificial agents engaged in language games is provided with the
autotelic principle. It is composed of two chapters, one devoted to experiments
on a discrete domain and the other to experiments on a continuous domain. The
first one (Chapter 5) describes the first set of agent-based experiments in which
a population of artificial agents has to develop a language to communicate about
a set of objects in the scene. These objects have discrete properties, that is,
fixed values for certain physical characteristics. Agents start using single word
utterances but eventually their communicative skills progress. By the end of the
simulations they are able to produce multi-word utterances, which reduces the
ambiguity in communication.

The second chapter of this part (Chapter 6) explains the second set of ex-
periments, in which agents become engaged in linguistic interactions in order to
self-organise a vocabulary to refer to colour samples. This set of experiments
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extends the previous ones in that agents not only have to agree on the words
associated with properties or their order but also on the values associated to
those properties. It starts explaining fundamental concepts of the domain, such
as colour prototypes and colour categories, and how different conceptualisations
of colour samples can be modelled using IRL as a network of cognitive opera-
tions. The second part of this chapter describes the three experiments conducted.
In the first one the autotelic principle is tested as a mechanism to regulate the
complexity of linguistic interactions. In the second experiment agents should
manage several challenges of equal complexity, which requires them to develop a
vocabulary for multiple conceptualisations. Finally, a third experiment studies
the impact of perceptual deviation in the communicative system resulting from
the second experiment.

Finally, the last part of the thesis presents the conclusions (Chapter 7) and
future research paths. The last chapter (Chapter 8) enumerates possible continu-
ations for the research on the autotelic principle. Its first part argues that moving
to embodied, multi-dimensional environments would test the motivation system
in situations where several language domains are relevant in order to communi-
cate information about the context. Moreover, it will be interesting to explore,
in such experimental conditions, the possibility of letting the agents expand the
vector used for challenge configuration autonomously if they encounter relevant
features in the context which are not present in the challenge dimensions. The
second part of the chapter mentions three potential uses of the autotelic principle
outside language evolution experiments: Intelligent Tutoring Systems, develop-
mental robotic experiments and to model non-player controlled characters in
video games.
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Chapter 2

Language games and technical
background

The linguistic experiments of emergence and development of language carried out
in this thesis are based on computational simulations. More specifically, these
experiments consist of recurrent situated interactions between individuals in a
population of artificial agents with a communicative task to accomplish. Among
the different existing approaches, this work takes the perspective of language
games (Section 2.1), as it considers the agents that take part of the linguistic
interaction (speaker and hearer) but also the context in which the interaction
takes place.

The chapter continues introducing Babel, a language-game framework written
in Common Lisp. It focuses on two of its core systems: Incremental Recruitment
Language (Section 2.2), a computational system used to represent and build com-
plex meaning structures, and Fluid Construction Grammar (Section 2.3), a fully
operational constructional grammar formalism used to formulate and compre-
hend utterances.

2.1 Language games

The approach taken in this work to study the emergence and development of
language in a population is that of computational simulations of linguistic in-
teractions. The basic idea is to implement a set of functions to create, learn
and align words and concepts and provide them to artificial agents in order to
simulate the emergence of language systems [137].

These simulations have been implemented using the language game approach1

[125, 126, 138], based on the notion of language games first introduced byWittgen-
stein [160]. There are other approaches in the study the evolution of language
using computational modelling articulated in terms of (a) adaptive behaviour [1],
(b) iterated learning [116], focused on cultural transmission between generations,

1See [136] for a review of how this approach has been applied to study different language
domains.
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Figure 2.1: The semiotic cycle represents an interaction between a speaker and a
hearer within a context (Figure adapted from [156]). It involves three processing
levels: sensorimotor, used to perceive and interact with the context, conceptual,
in charge of the mapping between perceived objects and their meaning representa-
tions, and linguistic, responsible of the pairing between meaning representations
and utterances.

or (c) grammatical acquisition as a combination of Generalised Categorial Gram-
mar and the echo framework [27, 60], among others (see for [88] for a review).

Language games are recurrent, simplified interactions between two agents of
a population with a communicative goal [137, p. 71]:

A language game is embedded in a cooperative activity in which com-
munication is useful. It attempts to model situated dialogue in con-
trast to the isolated sentences that are commonly used today in formal
linguistics. Consequently, language games introduce a population of
individuals (instead of an idealized speaker), a context and a commu-
nicative purpose, so that pragmatics is part of the modelling effort
from the start.

These interactions between a speaker and a hearer within a context are repre-
sented using the semiotic cycle (Figure 2.1). It involves three levels of processing:
(a) sensorimotor, as both agents perceive the world and interact with it through
its sensorimotor system, (b) conceptual, responsible of the mapping between the
elements in the context and their meaning representations and (c) linguistic, in
charge of pairing meaning representations into utterances and vice versa.

There are different existing implementations of language games. In order
of increasing complexity: (a) naming game [144], when the meaning is certain
but there is competition at form level, (b) guessing game [38], when there is
competition at both meaning and form levels, (c) description games [153], when
the speaker formulates a description of an event in a scene and the hearer may
or may not agree with it, or (d) syntax games [142], an extension to the naming
game that allows meanings with multiple categories and relations between objects
which is used to study the emergence of a shared grammar.
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In all language games, though, an interaction follows a standard design: at the
beginning, both the hearer and the speaker build their world models using their
sensorimotor systems. This information is utilised by the speaker to conceptualise
its goal into a meaning representation, which in turn is employed to formulate an
utterance. The hearer comprehends the utterance to reconstruct the interpreted
meaning representation by the speaker. It then uses the world model to interpret
that meaning representation and performs an action. When the hearer’s action
corresponds to the goal of the speaker the interaction is considered a success. In
all other cases, the interaction is not successful and therefore it is labelled as a
failure. Agents are provided with different learning mechanisms that they use at
the end of interactions to align their vocabularies.

The different language games presented in this work have been implemented
using Babel [77, 143], an open-source, multi-agent language game experiment
framework written in Common Lisp2. Importantly, this framework allows re-
searchers to design and implement the whole semiotic cycle in computational
experiments of language emergence. The rest of the chapter introduces the two
core computational systems of Babel, used to model the conceptual and linguistic
levels of processing.

2.2 Incremental Recruitment Language

Incremental Recruitment Language (IRL) [141, 152, 122, 123] is a computational
system designed to work with grounded data that allows agents to create discrim-
inating meaning representations of objects in their context or identify objects in
their scene given a particular meaning representation.

2.2.1 Meaning as a network

IRL represents meanings in semantic constraint networks called IRL-networks.
An IRL-network is built combining two different meaning predicates: (a) cogni-
tive operations, methods that represent some cognitive activity that the agent
has to perform (such as categorising, filtering or selecting), and (b) semantic
entities, predicates that refer to an entity (for instance, prototypes, concepts or
categories).

How do these components interact in order to represent a meaning structure?
On the one hand, cognitive operations are represented as predicates with a set
of arguments. They are identified by their name (for instance, filter-set) and
introduce a set of variables (noted as elements starting with a ?). Semantic enti-
ties, on the other hand, introduce only one variable that is used as an argument
by cognitive operators. They are introduced by a special operator called bind.
An IRL-network, therefore, consists of a set of meaning predicates that are linked
using variables.

An example of an IRL-network for the Catalan utterance "la taula" (the ta-
ble) is shown in Figure 2.2. This meaning network contains two semantic entities:

2The Babel framework is released under an Apache Licence and is freely downloadable from
www.emergent-languages.org/Babel2/.
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Figure 2.2: Example of an IRL-network for the Catalan utterance "la taula"
(the table). Cognitive operations and semantic entities (predicates that start
with bind) build a meaning network by connecting their variables.

an object prototype table and a selector unique. It also includes three cognitive
operations: get-context, filter-set-prototype and select-element. Mean-
ing predicates are connected using variables.

2.2.2 Execution of an IRL-network

Agents need to relate their internal representation of objects to their context.
They do so by assigning values to the variables of an IRL-network in a process
called execution. This process leads to a solution when (a) all the variables of
the IRL-network are bound to a value and (b) all the cognitive operations have
been executed. The dynamics of evaluating an IRL-Network are the following
[123, p. 161]:

Execution of the network proceeds by executing all cognitive opera-
tions in the network. In each step, a random operation is picked from
the list of not yet executed operations and it is checked whether the
operation can be executed given the current set of bindings for its
arguments, i.e. whether it has implemented a case for that particular
combination of bound and unbound arguments. If such a case exists,
then the operation is executed and newly established bindings are
added to the list of bindings. If not, then another operation is tried.

It can occur that the execution of an operation (a) binds a variable to more
than one possible value or (b) it is incompatible with the values of the IRL-
network. In the first situation, IRL splits the search into multiple hypotheses
and explores them at the same time. In the second, IRL judges the values of the
meaning structure erroneous and abandon that hypothesis.

Execution is used both in conceptualisation and interpretation. In the for-
mer the speaker executes its IRL-network to judge if its meaning structure leads
to a discriminative conceptualisation of its communicative goal, a process called
re-entrance [130]. In the latter, the hearer recovers the IRL-network from an ut-
terance and executes it in order to identify the communicative goal of the speaker.
A detailed example of the execution of an IRL-network in conceptualisation and
interpretation is presented in Appendix A.
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2.2.3 Building meaning

IRL-networks are built with the composer, an algorithm responsible of assembling
cognitive operations into semantic structures [123, p. 164]:

The composer is implemented as a standard best first search algo-
rithm. Starting from an initial (usually empty) network, cognitive
operations are recursively added and linked until a useful network is
found. Moreover, the composer can also use complete or incomplete
networks in the process of composition.

This algorithm is used in conceptualisation, with the goal of finding an ade-
quate IRL-network that represents the communicative goal of the speaker, and
employed by the hearer when it has an incomplete meaning structure (when
the IRL-network has free, unlinked meaning predicates), where it tries to use
the partial meaning recovered and its world model to identify possible commu-
nicative goals of the speaker. In every interaction, the composer (a) checks if
the actual IRL-network is a good conceptualisation of the communicative goal
(a solution) and (b) extends the present meaning structure with an additional
cognitive operation if it is not a solution.

A significant feature of IRL is that it is omnidirectional. We have seen that
cognitive operations introduce several arguments in the form of variables (Sub-
section 2.2.1). When an IRL-network is executed, the arguments that are already
bound to values are the input of the cognitive operation, responsible for finding
new bindings for its variables. Note that, depending on how the execution has
been developed, the bound arguments of a cognitive operation may be different.
IRL is a constraint language in the sense that it manages to execute these opera-
tions with different inputs. In other words, IRL’s machinery permits the system
to execute a cognitive operation with different entries.

2.3 Fluid Construction Grammar

Fluid Construction Grammar (FCG) [134, 135, 139] is an operational construc-
tional grammar formalism that can be used either (a) to build and develop a
grammar or (b) in experiments of language evolution. One of the most impor-
tant features of FCG is that it is bidirectional : the same grammar can be used
to formulate an utterance from a meaning structure or comprehend an utterance
in order to recover the meaning it conveys.

2.3.1 Representing linguistic structures

In FCG, linguistic structures are represented as a set of units, each one containing
a feature structure. Units are abstract groupings of linguistic information that
usually correspond to individual words, morphemes or constituents. They have
a unit name, which has to be unique, and a feature structure. Feature structures
are abstract representations of linguistic information. They are formed by a set
of feature-value pairs.
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la-1
args: [?x-85]
sem-cat:

sem-class: selector
syn-cat:

lex-class: article
gender: fem
number: singular

form: {string(la-1, "la")}
meaning: {bind(selector, ?x-85, [unique])}

Figure 2.3: A possible linguistic structure for the Catalan article "la". The
information is grouped in one unit called la-1. It contains five feature-value
pairs: meaning and form are both sets of predicates that store an IRL-predicate
and the string of the unit respectively, sem-cat and syn-cat are feature-sets that
store the semantic and syntactic information of the unit and args keeps the set
of arguments used in the unit.

Both units and feature structures are the outcomes of a combination of three
different elements:

• Symbols: symbols are used at different levels of the linguistic representa-
tion, such as naming a unit, a feature or a value. An example of symbols are
np-unit or fem. With some exceptions, symbols do not have any mean-
ing in the FCG syntax. Nevertheless, it is useful to choose the name of
the symbols according to the function they have in the grammar for com-
prehension reasons (for instance, using np-unit as a name of a unit that
represents a noun-phrase).

• Values: the values of features can be of different types. The default one
is an atomic value, but other kinds are also allowed. For instance, sets
(represented with curly brackets: {arg1, ..., argn}), sequences (represented
with square brackets: [arg1, ..., argn]), feature-sets (complex values that
contain a set of feature-values), or predicate expressions (represented as a
predicate with a set of arguments: predicate(arg1, ..., argn)), etc. [139,
p. 8]. The non-default types must be explicitly declared, otherwise the
FCG-interpreter will classify them as atomic values.

• Variables: variables start with a ?3 and may be used to represent units,
feature-values or values that have not been identified yet in the linguistic
structure. As symbols, variables have no meaning in the FCG syntax, but it
is recommended to name them according to their function in the grammar.

An example of a linguistic structure in FCG is shown in Figure 2.3. The
information corresponding to the Catalan article "la" is grouped in a unit called
la-1. Its feature structure contains five features-value pairs: meaning has as
a value a set of predicates containing one IRL-predicate, form (also a set of
predicates) contains the corresponding string to the article, sem-cat and syn-cat

3Variables in FCG share the same representation with IRL, see Subsection 2.2.1.
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are both feature-sets that store the semantic and syntactic information of the
unit, respectively, and args stores the set of arguments used in the unit (in this
example, just the variable ?x-85).

2.3.2 Transient Structures

The process of formulating or comprehending an utterance is seen as "a chain of
consecutive operations over a linguistic structure, called the transient structure"
[139, p. 5]. Transient structures (abbreviated as TS) as any other linguistic struc-
ture in FCG, are represented as a set of units that contain feature-value pairs.
The result of applying an operation on a TS is a new transient structure TS′

containing the information of TS and the information added by the operation.
TS have a special unit, called root, that acts as an input buffer: it carries the

input information needed to start the execution of operations. In formulation the
root unit contains the set of meaning predicates (if FCG is used as a component of
the semiotic cycle these meaning predicates are the output of conceptualisation)
and, in comprehension, it has syntactic information about the utterance to parse
(normally its words and information about how they are ordered).

As "FCG is as neutral as possible with respect to the linguistic theory a
linguist may want to explore" [139, p. 2], it does not impose any hierarchy on the
units of a TS. However, if wanted, it is possible to express multiple hierarchical
relations between units. A unit can use features that refer to other units using
their unit names. For example, a np-unit can have a feature that specifies as its
set of subunits art-unit and noun-unit.

2.3.3 Constructions

The operations that can be executed in a TS are called construction schemes
or simply constructions. Constructions are linguistic structures that contain se-
mantic and syntactic information, although they may also carry pragmatic or
phonological information too. Their function is to expand the transient struc-
ture by adding information to it. This information depends on the construction,
but it ranges from variable bindings or new-feature values for existing units in the
TS to even enlarge the transient structure with new units. Constructions vary
from particular operations that introduce words or morphemes to more general
ones that carry more complex information, such as verbal or phrasal patterns.

Constructions are divided into a contributing and a conditional part. On
the one hand, the contributing part stores the information (in the form of a set
of units) that will be added to the TS. On the other hand, the conditional
part contains the information that has to be in the transient structure in order
to apply. Both conditional and contributing parts may involve one or several
units. As a construction is bidirectional, the conditional part is split into two
locks, named formulation lock and comprehension lock. Figure 2.4 illustrates the
different parts of a construction.

The application of a construction consist of two phases, called match and
merge:



24 Language games and technical background



?la-word
args: [?x]
sem-cat:

sem-class: selector
syn-cat:

lex-class: article
gender: fem
number: singular


←

 ?la-word
# meaning: {bind(selector, ?x, [unique])}
# form: {string(?la-word, "la")}

 (la-cxn)

Figure 2.4: A possible construction for the Catalan article "la" (the.F.SG). In
FCG, constructions are divided into a contributing (left-side) and a conditional
(right-side) part. The former contains the linguistic information that should be
added to the TS and the latter the information that should be in the transient
structure before the construction is applied. The conditional part is further split
into two locks, separated by a bold line. They store the information that needs
to be present in the TS in formulation or comprehension in order to apply.

• Match: during this phase, a test is performed to check if the TS contains
the information required by the construction. The information to test is
stored either in the formulation or the comprehension lock, depending on
which direction the construction is being applied.

• Merge: if the previous condition is fulfilled, the application proceeds by
adding the information that the construction carries (the contributing part
and the other conditional lock) to the transient structure. When the infor-
mation is not contradictory (that is, there are no variable or value conflicts),
the merge is successful and it generates a new transient structure which is
the result of expanding the previous TS with that construction.

There are two significant characteristics of constructions that are not present
in transient structures. Firstly, the name of the units in constructions are vari-
ables, not values. The reason is that during the match phase a construction looks
for units in the TS that fulfil its requirements, but it cannot know in advance
which are the exact units that will match its conditions or even if these units are
present in the TS or not. Therefore, every time a construction is tried on a TS,
it has to find the subset of units in that TS that match the conditions of the set
of units of the conditional part of the construction.

Secondly, constructions need a way to interact with the root, as it stores
the initial information necessary to start to apply constructions (for instance,
the set of meaning predicates that should be used to formulate an utterance).
Constructions use the reserved symbol # for this purpose: this symbol indicates
that whatever follows should be found in the root unit during the match phase and
moved from there to the unit where the # was located during the merge phase.
For example, the lexical construction la-cxn (Figure 2.4), uses # two times:
one in the formulation lock (for the meaning predicate bind(selector, ?x,
[unique])) and the other in the comprehension lock (imposing the restriction
that the string "la" has to be in the root unit).
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Figure 2.5: Construction application process (adapted from [134]). When a
construction matches a TSi, it merges its information with TSi (adding new
variable bindings, features-values or units) and generates a new TSi+1. This
permits other constructions to apply to the new TSi+1 in a recursive process,
until the termination condition is reached.

An FCG grammar consists of a collection of constructions. This collection is
stored in the construction inventory. Additionally, constructions can have a la-
bel assigned, useful in linguistic processing (see the following subsection). When
FCG is used in experiments of language evolution, each agent in the population
has its own construction inventory, which is never shared with the other individ-
uals. Agents are then provided with mechanisms that help them modify their
construction inventories.

2.3.4 Construction application process

How does the FCG grammar engine interact with the construction inventory or,
in other words, how does the construction application process work? Given a
construction set and an initial transient structure (TS0), composed only of the
root unit (which contains either (a) a set of meaning predicates in formulation
or (b) a set of words and information about its order in comprehension), the
construction application process iterates through the collection of constructions
and tries to match them with TS0. If there is a construction that could match
and merge, a new transient structure (TS1) is created. The grammar engine then
repeats the process for TS1: it tries to match all the constructions with TS1, and
if it finds one that matches and merges will generate a new transient structure
(TS2), and so on and so forth.

The construction application process (Figure 2.5) is recursive (it will try to
apply the constructions of the construction inventory at every step) and keeps
executing until it reaches the termination conditions. By default, there is only
one termination condition that is achieved when there are no more constructions
to apply, that is, there is no construction in the construction inventory that could
match with TSn. The termination conditions can be modified by the FCG user to
feed their needs. For instance, another common condition is to have a connected
meaning (a meaning network where all predicates are linked through variables).
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Figure 2.6: Example of construction application using a depth-first search: the
grammar engine explores one path as far as possible until it reaches a solution
(bold TS) or cannot continue (dotted TS), in which case it backtracks to a
previous TS to search for other possible paths to explore.

It is important to remark that by iterating over all the constructions in the
construction inventory for every intermediate TS, the FCG grammar tries to
match constructions multiple times. This behaviour of the FCG engine is nec-
essary because, in some cases, constructions may require information that at a
certain time is still not in the TS but that other constructions may add later
on. This behaviour has a drawback, namely that the computational cost of the
construction application process rapidly grows and can become unmanageable
with bigger grammars. How can the search space be reduced in order to speed
up this process?

One way is to add labels to constructions. By doing this, the construction
inventory is organised in subsets. The grammar engine can use labels to restrict
the number of constructions that should be tested at every step and therefore
speed up the construction application. The choice of which labels use is entirely
on the FCG user’s hands. A set of labels commonly employed is {morph, lex,
phrase}, which is used to assign morphological, lexical and grammatical con-
structions, respectively. When using labels, it must be explicitly stated the order
in which they should go, which can be different in formulation and comprehen-
sion. For instance, a possible order for the previous set could be {lex, phrase,
morph} in formulation and {morph, lex, phrase} in comprehension.

The construction application process is implemented as a depth-first search
(Figure 2.6): when a construction has been applied to a TSn and generated a
new TSn+1 the algorithm continues testing which constructions can be applied
to TSn+1, without trying all constructions in TSn. If the path followed by the
grammar engine does not lead to a solution (a TS that fulfils the termination
conditions), it recursively backtracks to the transient structures of that path until
(a) it finds one TS that can be expanded with another construction, exploring
this new path also in a depth-first fashion, or (b) there are no constructions that
can expand any known TS which stops the process.

This process by default stops when it has found a solution. However, it may
be useful to let it find more or even all the solutions possible. FCG can be
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asked to retrieve the n-first solutions or even all the solutions of a process. These
options should be used wisely, as they entail a higher computational cost.

After the construction application process, when one or more solutions are
found, the FCG grammar engine renders (in formulation) or de-renders (in com-
prehension) the set of solutions. On the one hand, rendering a TS consists
of using the information stored in the form features of units (which introduce
strings and order constraints) to construct an utterance. De-rendering a TS, on
the other hand, consists of using the information stored in the meaning features
of units (which introduce meaning predicates) to recover the meaning of an input
utterance.

2.3.5 An example of how FCG works

I will illustrate how FCG operates with a simple noun-phrase example in Catalan.
In this case, FCG has to formulate an utterance from using as an input the IRL
meaning from Figure 2.2, replacing the variables with values. Let’s assume that
the construction inventory consists of three constructions: a lexical construction
for the article "la" (introduced in Figure 2.4), a lexical construction for the noun
"taula" (table.F ) and a simple noun phrase construction4:



?article
args: [?x-art]
sem-cat:

sem-class: selector
syn-cat:

lex-class: article
gender: ?gender
number: ?number




?det-noun-phrase
args: [?np-referent]
sem-cat:

sem-class:
referring-expression

syn-cat:
lex-class: nominal-phrase
gender: ?gender
number: ?number

subunits: [?article, ?noun]


←



?noun
args: [?x-noun]
sem-cat:

sem-class: referent
syn-cat:

lex-class: noun
gender: ?gender
number: ?number


(np-cxn)

?det-noun-phrase
# meaning: {filter-set-prototype

(?set, ?context, ?x-noun),
get-context(?context),
select-element

(?element, ?set, ?x-art)}
# form: {meets(?article, ?noun)}


4As in other Latin languages, Catalan nouns and articles have associated a gender value.

Their gender values should coincide in a noun-phrase. This behaviour is captured by the np-cxn
with the restriction that the gender values should be the same for ?det-noun-phrase, ?article
and ?noun units.
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?taula-word
args: [?x]
sem-cat:

sem-class: referent
syn-cat:

lex-class: noun
gender: fem
number: singular


←

 ?taula-word
# meaning: {bind(prototype, ?x, [table])}
# form: {string(?taula-word, "taula")}



(taula-cxn)

The initial transient structure TS0 only contains the root unit with the input
meaning network. At this point only la-cxn or taula-cxn can apply, as (a)
their formulation lock can match with the information in the root unit and (b)
np-cxn requires that there are two units in the transient structure. Assuming
that la-cxn applies, a new transient structure, TS1, is created in which the
construction has added the information it carries (see Figure 2.3, with unique
bound to ?x-85). At this point only taula-cxn can apply to TS1, as it contains
only the unit la-1. After applying the construction, the resulting TS2 contains
the following information:

la-2
args: [unique]
sem-cat:

sem-class: selector
syn-cat:

lex-class: article
gender: fem
number: singular

form: {string(la-2, "la")}
meaning:

{bind(selector, unique, [unique])}

taula-2
args: [table]
sem-cat:

sem-class: referent
syn-cat:

lex-class: noun
gender: fem
number: singular

form: {string(taula-2, "taula")}
meaning:

{bind(prototype, table, [table])}

Note that at this point the values introduced by the meaning features of the
two constructions (table and unique) are not linked. However, at this moment
TS2 contains two units, so np-cxn can try to match. As it should match in the
formulation lock, the noun-phrase construction requires that (a) one unit has
the feature sem-class: selector and the other has the feature sem-class:
referent, (b) both units have one argument and (c) a set of meaning predicates
to be available in the root. As the three conditions are met, the construction
matches and can merge with TS2:
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taula-2
args: [taula]
sem-cat:

sem-class: referent
syn-cat:

lex-class: noun
gender: fem
number: singular

form: {string(taula-2, "taula")}
meaning: {bind(prototype, taula, [table])}

la-2
args: [unique]
sem-cat:

sem-class: selector
syn-cat:

lex-class: article
gender: fem
number: singular

form: {string(la-2, "la")}
meaning: {bind(selector, unique, [unique])}

noun-phrase-11
args: [?np-referent-4]
sem-cat:

sem-class: referring-expression
syn-cat:

lex-class: nominal-phrase
gender: fem
number: singular

subunits: [la-2, taula-2]
form: {meets(la-2, taula-2)}
meaning: {filter-set-prototype(set, context, table),

get-context(context),
select-element(element, set, unique)}

The resulting TS3 is a solution, as there are no more constructions that can
apply. FCG can now render the transient structure using the information in the
form features in units (string(taula-2, "taula"), string(la-2, "la") and
meets(la-2, taula-2)), which results in the utterance "la taula" (the table).
The other possible construction application path consists of alternating the order
in which la-cxn and taula-cxn are applied. The resulting structure, however,
will render the same utterance.

The same construction inventory can be used to comprehend "la taula". In
this case, the construction application process will build a meaning representation
equivalent to the one in Figure 2.2 with different variable names. If this process
would be part of an interaction, the resulting meaning network would be then
used by IRL (together with the hearer’s world model) to interpret the meaning
conveyed and would allow the hearer to identify the object in its context.

2.4 Summary

This chapter has introduced language games, the particular approach to study
the emergence and evolution of language used in this thesis. Language games
consist of recurrent communicative interactions between two agents (speaker and
hearer) of a population that also take into account the context in which it takes
place and can be used in computational simulation experiments.

As the experiments consist of computer simulations, it is important to un-
derstand the framework used to implement them. The general architecture of an
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interaction involves several components that can be classified into three levels:
sensorimotor (how agents can interact and perceive their surroundings), con-
ceptual (how elements in the context can be internally represented as meaning
structures) and linguistic (how meaning structures can become utterances and
vice versa). This chapter has continued with a description of the two computa-
tional systems responsible for the conceptual and linguistic levels.

On the one hand, Incremental Recruitment Language is a computational sys-
tem designed to provide agents with mechanisms to create discriminating mean-
ing representations of elements in their context or identify objects in their scene
from a meaning representation. It represents meaning as a semantic constrained
network of predicates that are linked using variables.

Fluid Construction Grammar, on the other hand, is a constructional grammar
formalism that consists of the process of applying a collection of constructions
into a linguistic structure to map between meaning and linguistic structures.
One of its principal features is that it is bidirectional: the same set of construc-
tions can be used in formulation (build an utterance based on an input meaning
representation) or comprehension (recover the meaning from a given utterance).



Part II

The Autotelic Principle
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Chapter 3

History of Motivation:
psychological and AI approaches

Despite the fact that it is a term widely used, it is not clear what motivation
means. Psychologists have been studying the role of motivation since the 1930s
and different definitions and classifications have been proposed. Inspired by
these findings, artificial intelligence (AI) and robotics researchers have proposed
several systems to provide agents with mechanisms to manage complexity and
its development in an autonomous way.

So what is motivation? Are there different kinds of motivation? How can
it be modelled? This chapter addresses these questions reviewing the major
psychological theories of motivation and the computational models they inspired.
We start by reviewing the psychological literature on motivation (Section 3.1),
focusing on the distinction between extrinsic, where external forces influence the
motivated behaviour, and intrinsic motivation, when an activity is inherently
interesting and enjoyable. We then review the literature on computational models
of motivation (Section 3.2), explaining reinforcement learning, the most popular
technique used in computational models of motivation, and then focusing on
those models that propose different approaches to intrinsic motivation.

3.1 Psychological theories on motivation

Psychologists have been studying the role of motivation for almost a century.
During this time several theories have been proposed and various definitions
of motivation have been suggested. This section reviews the most influential
theories on motivation1 in a chronological order and classifies them into different
types.

1It is important to make explicit that this section does not present a detailed overview of all
motivation theories in psychology but rather a brief introduction to the most influential ones
during the twentieth century.
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3.1.1 Drive-reduction theory

Before the 1930s, psychologists were mainly interested in behaviour and condi-
tioning. They thought that behaviour was the result of associations between
stimulus and response [93]. Psychologists studied animals and animal behaviour
as if they were inactive organisms unless special conditions of arousal appeared,
such as hunger, pain or sexual excitement. It was under these assumptions that
the first influential theory on motivation, the drive-reduction theory, was pro-
posed by Hull in his book Principles of behaviour: an introduction to behaviour
theory [62]. Heavily inspired by the notion of homeostasis from biology, which
can be defined as a property of a system in which a set of variables is actively
regulated to remain in equilibrium, Hull suggested that all behaviour of all or-
ganisms can be explained as a result of biological needs and lack of balance.

A need is a biological requirement of organisms. For example, thirst is seen
as the need for more water, hunger as the need for more energy or tiredness as
the need for some rest. Organisms are therefore motivated to perform actions
as a response to their biological needs. Hull reasoned that behaviour could be
regarded as an expression of the organism’s goal of biological health.

Hull used the term drive to define the resulting state triggered by biolog-
ical needs in organisms. In other words, drives are the forces that command
behaviour. Organisms seek to eliminate these states, as any state coming from
a biological need is experienced as discomfort. Following the previous example,
when an organism is hungry it undergoes a need for energy. This necessity of
energy acts as a drive to carry out a behaviour such as looking for food. If the
same need occurs again, an animal would repeat any behaviour that previously
reduced that drive. This behaviour reinforcement will eventually result in the
learning of that behaviour (Figure 3.1). Hull defined this process as follows [62,
p. 71]:

"Whenever a reaction (R) takes place in temporal contiguity with
an afferent receptor impulse (ṡ) resulting from the impact upon a
receptor of a stimulus energy (Ṡ), and this conjunction is followed
closely by the diminution in a need (and the associated diminution
in the drive, D, and in the drive receptor discharge, sD),there will
result an increment, ∆ (ṡ → R), in the tendency for that stimulus
on subsequent occasions to evoke that reaction. This is the "law" of
primary reinforcement."

Hull wanted to make psychology as scientific in its predictions as physics or
chemistry. Therefore, he proposed precise formulas to model behaviour. In its
simplest form, Hull stated that behaviour (B) is the result of multiplying drive by
habit (H): B = D×H. But he also provided detailed formulas for more particular
behaviours. For example, he defined (a) the increment of habit strength (∆sHR)
as ∆sHR = 1− 1/100.0305N , where N is the number of successive reinforcements
that strengthen the stimulus and response, or (b) the reaction potential (∆sER)
as the product of habit strength and drive: ∆sER = sHR ×D.

His theory rapidly spread with other psychologists, becoming the most cited
psychologist in the 1940s and 1950s. However, many predictions based on Hull’s
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Figure 3.1: Visual representation of the Drive-reduction theory by Hull. Drives
are experienced as uncomfortable by organisms. When a drive occurs, organisms
react to it adopting a behaviour that reduces it. Organisms repeat behaviours
that reduce drives and eventually learn them in a process called behaviour rein-
forcement.

equations were not correct and some of the most prominent researchers at the
time proposed modifications to the theory in order to improve it. For exam-
ple, Spence demonstrated how fundamental principles of conditioning could be
applied to the analysis of complex learning tasks [119], Crespy suggested that
reinforcement affects performance instead of learning [33] or Mowrer proposed
avoidance learning, which also accounts for the fact that an organism can acquire
a response to prevent unpleasant stimuli from happening [86].

In the 1950s researchers started to look at the relationship between drive,
curiosity and learning, inspired by the pioneering work on curiosity by Nissen
[87]. Montgomery carried out a series of studies on the exploratory behaviour
of rats [84] and proposed the exploratory drive, stating that animal exploration
of its environment is determined by the opposition of two motivations: curiosity
and the fear of novelty. Another example is the research conducted by Harlow
and his colleagues, who carried out several investigations on the manipulation
and visual exploration observed on monkeys [54], where they found a strong drive
of manipulation when learning how to solve puzzles in the absence of rewards.

3.1.2 Operant conditioning

Skinner proposed another behaviourist theory to explain behaviour, called oper-
ant conditioning [114, 115]. According to this theory, organisms operate in their
environment, that is, act in a certain way with their surroundings. They are
exposed to different external stimulus and one specific kind, called reinforcing
stimulus or reinforcer, influences their behaviour. He called this operant condi-
tioning, as reinforcing stimulus determine the behaviour of organisms.

Skinner identifies two kinds of reinforcers: positives and negatives. A positive
reinforcer increases the probability of a behaviour to occur in the future. A neg-
ative reinforcer or punishment has the opposite effect, decreasing the possibility
of observing that behaviour in the future. Based on Skinner’s work behaviour
modification emerged, a technique used to modify the behaviour of organisms.
This method consists in using stimulus to reinforce or punish certain behaviours.
It has been used to treat, for instance, addictions or depression [81, 118].
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3.1.3 Reconsidering motivation

Drive-reduction theory dominated psychology in the 1940s and 1950s. In the
1950s some psychologists started to criticise Hull’s emphasis on drive-reduction.
Their main criticism was that this theory left out many factors that influence
human behaviour by focusing only on biological factors.

White, like other psychologists, thought that drive-reduction theory could not
successfully account for human behaviour and in 1959 he proposed a different ap-
proach to the study of motivation around the concept of effectance motivation
[158], which he described as a "tendency to explore and influence one’s environ-
ment". He suggested that the master enforcer for human beings is competence,
the ability to successfully interact with the environment. Feeling competent (a)
make humans experience a positive feeling and (b) asserts our capabilities within
particular domains.

Competence motivation differs from biologically driven motivation in that
it improves the abilities of an individual instead of regulating a process of need,
such as hunger or thirst. Importantly, White not only decoupled motivation from
biological needs but stated that competence based motivations help individuals
to improve themselves. In his view, people do not only do activities because they
need something but also to experience competence.

Another theory that took distance from the dominant behaviourist approach
to motivation in those years was cognitive dissonance, proposed by Festinger
[43]. The central hypothesis is that psychological tension acts as a motivational
force. This theory is concerned with the conditions that cause dissonance in an
individual and the ways it can be reduced.

The core of the theory relies on two relations in human cognition: dissonance
and consonance. On the one hand, dissonance occurs when two internal cognitive
structures such as opinions, behaviours or beliefs are inconsistent, meaning that
these two items do not follow one from each other. In other words, dissonance is
experienced when these cognitive structures are incompatible with the situations
perceived. Consonance, on the other hand, is established when the relationship
between two items is consistent. For example, a driver that thinks that private
transportation is not good for the environment has an opinion that is dissonant
with him continuing to drive. The existing dissonance between these two items
(being a driver and thinking that private transport is negative for the climate)
does not invalidate that possibly other items can be consonant with him driving,
such as time efficiency or self-autonomy.

Festinger used the notion of dissonance to explain motivation. He argued that
experiencing dissonance produces discomfort and therefore motivates humans to
eliminate it or reduce it2. According to him, attempts to reduce dissonance can
take three forms (Figure 3.2): (a) try to change one or more beliefs, opinions
or behaviours associated to the dissonance, (b) acquire new information that
increases the existing consonance (and consequently reducing the dissonance) or
(c) forget or reduce the cognitions that are dissonant. Moreover, Festinger found

2Note that Festinger used a similar argument to drive-reduction theory, where organisms
are motivated to perform actions in order to reduce their needs.
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Figure 3.2: Visual representation of the Cognitive Dissonance Theory by Fes-
singer (adapted from [53]). Two inconsistent items (incompatible cognitive struc-
tures) are experienced as dissonant. Organisms are motivated to reduce disso-
nances, which can be achieved by changing beliefs, acquiring new information or
reducing dissonant cognitions.

a correlation between the magnitude of a dissonance and the motivation to reduce
it: "The strength of the pressures to reduce the dissonance is a function of the
magnitude of the dissonance" [62, p. 18].

3.1.4 Motivation and balance

Curiosity was usually assumed as an internally stimulated or homeostatic drive
within the drive-theoretic view. In the 1950s Berlyne proposed an alternative
drive-based perspective on curiosity called Curiosity-drive theory, suggesting that
it is externally stimulated [17]. According to him, the curiosity drive is the result
of external stimuli, particularly "stimulus conflict" or "incongruity", which is re-
lated to properties such as complexity or novelty. These stimuli cause unpleasant
experiences of "uncertainty" which lead to a loss of cognitive and perceptual co-
herence. Coherence can be gained again by gathering new information about the
stimulus and therefore reducing the incongruity. Interestingly, Berlyne proposed
that curiosity drive is activated with intermediate levels of incongruity and not
entirely new or familiar situations [17, p. 189]:

"Our theory of curiosity implies that patterns will be most curiosity
arousing at an intermediate stage of familiarity. If they are too unlike
anything with which the subject is acquainted, the symbolic response-
tendencies aroused will be too few and too feeble to provide much
conflict, while too much familiarity will have removed conflict by
making the particular combination as an expected one."

The idea of intermediate incongruity by Berlyne, who was strongly influenced
by behaviourism at the beginning of his career, was also shared with other theories
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Figure 3.3: Visual representation of the Optimal Incongruity Theory by Hunt.
Organisms seek situations that provide an optimal amount of incongruity. This
motivates organisms to change their situation if its current situation provides
them too much or too little "stimulus conflict". The incongruity level of a situ-
ation decreases when organisms have gathered more information about it.

that took more cognitive approaches. For instance, Hunt [63] proposed that
humans search for optimal incongruity. Hunt used an information-processing
approach to motivation. His central hypothesis is that organisms need an optimal
amount of incongruity and look for situations that can provide them with that
level (Figure 3.3).

Hunt suggested that organisms react to insufficient incongruity searching for
situations that increase it. Similarly, organisms look for situations that decrease
incongruity when there is too much of it. A situation loses incongruity after an
organism has repeatedly been exposed to it, in a similar way to what Berlyne
proposed with the information gathering concept, where having more information
about a "stimulus conflict" reduces its incongruity. The main difference between
both approaches is that in Hunt’s view organisms look for incongruity, while in
Berlyne’s approach incongruity was caused by external stimuli. In other words,
Hunt changes the perspective on motivation from external to internal causes.

Another related approach is that of Hebb [56], who put the focus on the
need of optimal arousal in the central nervous system. This parallel approach
to motivation puts its focus at the physiological instead of the psychological
level, differing from optimal incongruity and curiosity-drive theories. The main
idea is that organisms have a need for an optimal level of arousal and responses
that conduct them towards that optimal level of arousal are reinforced. Optimal
level are gratifying, while being over-aroused or under-aroused is experienced as
unpleasant.

According to this model, stimuli too intense (such as being exposed to a
new situation) introduce high levels of physiological arousal in organisms and
motivate them to behave in a way that the arousal level decreases (for example
by taking distance from a particular stimulus). On the contrary, organisms are
motivated to increase their arousal level when it is too low, looking for more
thrilling stimuli in their environment.
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Despite their differences, the three approaches share the idea that motivation
requires intermediate levels of stimuli, which means that organisms look for bal-
anced situations, avoiding those that provide too low or too high a stimulus. This
idea also entails an interesting effect, namely that organisms continuously look
for the optimal level of stimuli. This level changes over time as organisms collect
information about new stimulus, which results in a reduction of the incongruity
or arousal it provokes.

3.1.5 Personal causation, or the opposition of intrinsic and ex-
trinsic motivation

deCharms explicitly opposed the notions of extrinsic and intrinsic motivation
in the Personal causation theory [28]. He defined personal causation as "the
initiation by an individual of behaviour intended to produce a change in his
environment" [28, p. 6]. In other words, he stated that people are motivated to
modify their surroundings and the source or origin of this behaviour arises from
the individuals themselves. That is, individuals cause things to happen.

In his view human beings continuously strive to remain the cause of their
behaviour, fighting against being restricted or inhibited by external forces. Fur-
thermore, he stated that individuals must be active and in control of their own be-
haviour instead of being controlled by other factors. Consequently, for deCharms
there is a direct opposition between intrinsic and extrinsic forces for the control of
human behaviour. To illustrate this differentiation between internal and external
control he used the metaphor of origin and pawn [28, p. 273]:

"We shall use the terms "Origin" and "Pawn" as shorthand terms
to connote the distinction between forced and free. An Origin is a
person who perceives his behaviour as determined by his own choos-
ing; a Pawn is a person who perceives his behaviour as determined
by external forces beyond his control."

This distinction entails differences in the feelings that individuals experience:
an Origin person has a feeling of personal causation, which is reinforced by the
changes he or she causes in the environment. On the one hand, an origin person
determines his or her behaviour based on intrinsic motivation. That human
has freedom of action (as he or she has the control of his or her actions) and
perceives the environment as challenging. On the other hand, the behaviour
of a Pawn is induced by external forces and he or she experiences a feeling of
powerlessness. This means that the behaviour of a Pawn person is determined by
extrinsic motivation factors that regulate his or her actions. The "subordination"
to external factors makes individuals perceive the environment as threatening
instead of challenging.

3.1.6 Flow Theory

The explicit confrontation between intrinsic and extrinsic forces in personal cau-
sation together with deCharms’ unambiguous view that intrinsic motivation is
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Figure 3.4: Visual representation of the Flow Theory by Csíkszentmihályi
(adapted from [35]). A person enters a state of flow when opportunities for
action are in balance with her skills. When the challenge is too demanding for
her capabilities she experiences anxiety. Boredom is experienced when skills are
greater than the current challenge.

more desirable for human wellness had an impact in the psychological study on
motivation, increasing the focus of researchers towards intrinsic motivation. His
influence can be seen in the work of Csíkszentmihályi, whose research on intrinsic
motivation lead to the Flow theory [35, 36].

Csíkszentmihályi started studying creative processes in painters. He noticed
that they greatly enjoyed their work and, sometimes, they were so concentrated
that they could lose the notion of time. But what impressed him is that, once
the painting was finished, they completely lost interest in it. He was intrigued by
this and wanted to understand why people could get immersed in goal-focused,
complex activities that do not provide any external reward.

He found that the reason was that participants found these activities in-
herently enjoyable. In other words, they were intrinsically motivated because
becoming engaged in these activities was rewarding for them. He called these
activities autotelic, as the motivational driving force (telos) comes from the in-
dividual itself (auto). It is necessary to distinguish autotelic activities such as
playing chess or rock climbing from directly amusing activities like sliding down
a hill on a toboggan. Autotelic activities are challenging and provoke a feeling
of achievement and fulfilment once the individual has overcome its obstacles.
In addition, these activities usually present challenges with progressively higher
levels of difficulty. So, what makes an activity autotelic?

Autotelic activities can be explained as the interaction of two dimensions:
challenges or action opportunities, a certain task to perform in order to achieve
a goal, and skill or action capabilities, the capacity that an individual has to cope
with the demands of that challenge. The relationship between them determines
a range of different mental states that people experience when involved in an au-
totelic activity (Figure 3.4). According to him, boredom is experienced when the
skills are greater than the current challenge and anxiety appears in the opposite
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case, when the challenge is too difficult for the current action capabilities of an
individual. Notably, a third state, named flow, can be experienced when there is
a balance between both challenge and skills. Csíkszentmihályi identified flow as
the optimal state of experience, as it provides optimal challenges for the skills of
the participant in the autotelic activity [35, p. 36]:

"In the flow state, action follows upon action according to an internal
logic that seems to need no conscious intervention by the actor. He
experiences it as a unified flowing from one moment to the next, in
which he is in control of his actions, and in which there is little distinc-
tion between self and environment, between stimulus and response,
or between past, present, and future."

For example, an experienced rock climber will experience boredom climbing
a route of average difficulty, whereas an inexpert climber will experience anxiety
when attempting to climb the same route. Both climbers will look for routes
that match their skills, as it is in this equilibrium that they could experience the
flow state.

Importantly, the flow state provides the best scenario to develop one’s capa-
bilities or skills. As a consequence, the state of flow is not stable but in continuous
motion, as participants of an autotelic activity which are in a flow state continu-
ously extend their skills and therefore unbalance their challenge-skill relation. As
the flow state is enjoyable participants strive to remain in it, therefore becoming
self-motivated [35, p. 48]:

"A flow activity allows people to concentrate their actions and ignore
distractions. As a result, they feel in potential control of the envi-
ronment. Because the flow activity has clear and non contradictory
rules, people who perform in it can temporarily forget their identity
and its problems. The result of all these conditions is that one finds
the process intrinsically rewarding."

The Flow theory explains intrinsic motivation using the notions of interme-
diate levels of stimuli that first appeared in the 1960s (see Subsection 3.1.3) and
the idea of perceiving the environment as challenging of deCharms (Subsection
3.1.5).

3.1.7 Self-determination theory

In the mid-1980s Edward L. Deci and Richard M. Ryan proposed a framework to
study human motivation called the Self-Determination Theory (SDT) [39, 40].
SDT takes into account both intrinsic and extrinsic motivational forces and the
influence of social conditions in order to explain motivation and its role in human
development and wellness. The theory maintains that there are three universal
psychological needs:
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• Autonomy. People seek to feel free to set their own goals and behaviour.
Extrinsic rewards undermine autonomy, as in such cases behaviour is con-
trolled by external factors. Therefore, people feel more independent when
their behaviour is intrinsically motivated.

• Competence. People need to satisfy their need for competence. This
occurs when they feel challenged but also able to cope with the task. In
these situations people experience positive feedback that increases their
intrinsic motivation while reducing the extrinsic motivation for the task.

• Relatedness. It is essential for human well-being to develop and maintain
satisfactory close personal relationships, both at sentimental and friendship
levels.

According to SDT, conditions in which humans experience a fulfilment of
these needs increase motivation and stimulate the engagement in activities. Equa-
lly, a situation in which some of these three psychological needs are not satisfied
has a negative impact on wellness and decreases intrinsic motivation. SDT is
articulated in six "sub-theories" that address different aspects of motivation:

• Cognitive Evaluation Theory (CET) addresses how social contexts impact
intrinsic motivation.

• Organismic Integration Theory (OIT) addresses extrinsic motivation, its
subtypes (external regulation, introjection identification and integration)
and how it is influenced by social contexts.

• Causality Orientations Theory (COT) is concerned with individual differ-
ences in behaviour.

• Basic Psychological Needs Theory (BPNT) addresses the concept of psy-
chological needs and their relation to wellness.

• Goal Contents Theory (GCT) focus on differences between intrinsic and
extrinsic goals and their relationship to wellness.

• Relationships Motivation Theory (RMT) studies the relationship between
close personal relationships and wellness.

SDT makes a distinction between autonomous, when someone acts according
to his or her will, and controlled motivation, when someone acts conditioned by
external forces. SDT states that the former provides better results in terms of
quality of performance and well-being. This psychological framework has been
applied in different domains such as education [40, 41], psychotherapy [100] or
marketing [151].

SDT closes the overview of the different psychological theories of motivation.
By presenting them chronologically, one can observe that the conception of mo-
tivation shifted from a purely external driving force in the first half of the XXth
century to notions that progressively took into consideration the importance of
intrinsic forces, which introduced concepts such as challenges, competence or
balance.
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3.2 AI approaches to motivation

This review was necessary to understand the psychological ideas that inspired
computational motivation systems (CMS). The rest of the chapter continues with
a description of reinforcement learning, the most common technique used in
CMS, followed by an overview of some of the most relevant computational mo-
tivation systems3. This will provide a background to situate the autotelic prin-
ciple, the motivational system implemented in this thesis, within the different
computational models proposed in the literature. Interested readers on various
typological classifications of computational motivational systems are referred to
[13, 91, 90, 107, 82, 57].

3.2.1 Computation Reinforcement Learning

The most popular technique used in computational models of motivation is re-
inforcement Learning (RL). This technique consists in providing agents with a
mechanism to decide which actions they should take according to their environ-
ment. The agent obtains a reward, either positive or negative, after each action
has taken place. The decision process is based on the idea of maximising the
cumulative reward. A more detailed definition can be found in the introduction
of the 1998 book on RL by Sutton and Barto [150, p. 4]:

"Reinforcement learning is learning what to do —how to map sit-
uations to actions— so as to maximize a numerical reward signal.
The learner is not told which actions to take, as in most forms of
machine learning, but instead must discover which actions yield the
most reward by trying them. In the most interesting and challenging
cases, actions may affect not only the immediate reward but also the
next situation and, through that, all subsequent rewards. These two
characteristics—trial-and-error search and delayed reward—are the
two most important distinguishing features of reinforcement learn-
ing."

Sutton and Barto [150] stated that RL is based on four elements:

• Policy: It defines the behaviour of the agent. It consists of a mapping
between a set of actions and a set of conditions in the environment. The
stronger a relationship is, the more likely a particular action will be per-
formed by an agent when its associated environmental conditions are per-
ceived.

• Reward function: It provides a number (reward) for each environment
condition that represents the worth of an action. This value is received
after each action the agent has performed. Rewards can be external, when
they are provided by an external entity, internal, when they are computed
by the agent itself, or a mix of both.

3As in the case of psychological theories on motivation, this section should not be taken as a
detailed overview of all computational motivational systems, but rather as a summary of some
of the most influential ones.
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Figure 3.5: Schema of the basic elements of a Reinforcement Learning system.
Given a goal, an agent learns a set of policies, a map between actions and envi-
ronment conditions, by maximising a cumulative reward. Rewards are numbers
that represent the worth of an action and can be positive or negative. They are
used to estimate the long-term value of actions. Values can be combined with
environment models to choose which actions should be performed given the en-
vironment conditions. It is important to stress that rewards can be computed by
the system itself (internal) or by an external entity (external).

• Value function: it provides an estimation of the reward that a given state
will provide in the future. In other words, it is a measure of the value of a
particular action in the long-term. Values are evaluated and re-estimated
based on the experience of the agent, namely the different observations it
can gather. The decision process uses values to evaluate and decide which
are good or bad actions and which actions should be attempted in the
future.

• Environment model: it predicts (a) the outcome environment conditions
of performing a particular action and (b) its associated reward. It is used
for planning, taking into account the possible future environment conditions
of performing an action to decide which action should be executed next.
In early RL systems there were no environment models and the decision of
which action to perform was based on trial-and-error.

It is important to point out that RL is designed as a goal-directed learning
mechanism that does not require any supervision by the experimenter. Although,
it is still possible that the learning is partially or entirely supervised in some
cases, for instance when the agent interacts with a teacher (either human or
another agent) that is present in its environment. Also, in RL the learning
occurs without relying on a previous set of pre-processed examples, but rather
from the data obtained performing actions and observing the changes that these
actions produce in an agent’s environment.

In AI and robotic research, RL is mainly used to develop intrinsically mo-
tivated agents, which are computational systems that can autonomously learn
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and interact with their environment. Intrinsic motivation, though, is a difficult
concept to define in computational motivation systems. As has been mentioned
above, rewards can be intrinsic, extrinsic, or both, depending on how the reward
is computed. A reward is external when its numerical value is calculated outside
the system, and internal when it is generated by the system itself [90, p. 3]. This
distinction makes it technically hard to establish a clear cut between intrinsi-
cally and extrinsically motivated systems, as reward functions usually combine
information from the external environment with internal evaluations of the sys-
tem, due to the fact that an activity can be both intrinsically and extrinsically
motivated at the same time.

3.2.2 Classifying computational motivation systems

What should, therefore, be a good way to establish differences between CMS?
Instead of following the most common classification used in psychological liter-
ature, articulated in terms of intrinsic and extrinsic motivation, Oudeyer and
Kaplan [90] proposed that computational motivational systems should be classi-
fied according to their differences in the operational approaches they take.

Knowledge vs competence motivation systems

The most widely adopted classification is based on the distinction between knowl-
edge and competence [90, 82]. Knowledge based motivation systems are those that
evaluate the knowledge of the system. They can be further classified between
prediction and novelty based. The former relies on the contrast between predic-
tions of actions and the resulting environmental outcomes, while the latter ranks
new situations on a scale from novel to already known, where novel is usually
linked to being more interesting for the system. This classification is then used
to drive the action selection process.

On the other hand, Competence based motivation systems measure the com-
petence of the system to achieve self-determined goals, that is, they measure how
well the system performs certain tasks. This information can be then used to
select which tasks should be attempted in future actions.

Fixed vs adaptive motivation systems

According to Oudeyer and Kaplan [90], a motivational system is fixed when the
resulting reward for an executed action is constant, that is, it does not change
over time. Contrary to this, a motivational system is adaptive when the reward
value, when performing an action, is not static but changes, usually depending
on the learned skills of the agent and on how much that action has been executed.

Homeostatic vs heterostatic motivation systems

Computational motivation systems can also be classified according to their in-
ternal dynamics [90, 71]. A system is homeostatic when its goal is to maintain
the system within a comfortable zone. Usually, these systems keep track of a
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set of system variables that monitor the internal state of the system and strive
to maintain them within a comfort range. An analogy can be made with the
drive-reduction theory by Hull (Subsection 3.1.1), as an alteration of the system
equilibrium will push the agent to execute actions to return to the comfort range.

Inversely, a system is identified as heterostatic when it avoids its equilibrium,
moving out from a balanced situation. Such a system will consistently reward
new situations and can be very useful if the system is designed to explore the
different environmental conditions or states.

The section continues with an overview of some of the most influential CMS,
explaining the key points of their architecture, situating them using the differ-
ent classifications introduced in Subsection 3.2.2 and establishing links with the
distinct psychological theories of motivation.

3.2.3 From Predictor Error to Compression Driven Progress

In 1991, Schmidhuber presented a motivational system based on prediction error
[105]. The main idea is to develop a system that can learn to map between
actions and consequences in the environment. The system improves by focusing
on actions with a high prediction error.

The architecture of the system consists of (a) a predictor P of the states of an
environment to a set of actions that the system can execute and (b) a confidence
module C that evaluates the predictor reliability (both P and C implemented as
Recurrent Neural Networks (RNN)). The system’s goal is to improve P , that is,
the mapping between actions and their consequences in the environment. The
action selection is driven by the system’s adaptive curiosity, probably inspired
by Berlyne’s notion of curiosity (see Section 3.1.4). This mechanism chooses the
next action to execute based on its reliability, selecting those actions that present
lower reliability in order to improve P .

This action selection algorithm sometimes pushed the system to continuously
address actions for which the system could not improve P . Schmidhuber sug-
gested that the system could be enhanced with the addition of a module to
measure the improvement of P as a solution [104] or measuring the predictor’s
information gain [146].

Later, Schmidhuber reformulated his motivational system in terms of Com-
pression Driven Progress (CDP) [106, 107]: the system stores the data obtained
through interactions with the environment. This data is analysed in order to de-
tect regularities and allows the system to compress it. More stored data increases
the possibility to identify patterns in it and therefore improves its compression.
The system monitors the improvements of the predictor P , which is seen as a
data compressor module. It generates rewards in proportion to the compression
progress and uses them in the action selector. The decision process maximises
the expected reward, which can be seen as the expectation of augmenting the
compression of the data. CDP can be classified as a prediction based, adap-
tive and heterostatic (as it continuously looks for new situations that permit the
compression of data) motivation system.



3.2. AI APPROACHES TO MOTIVATION 47

3.2.4 Intrinsically Motivated Reinforcement Learning

The goal of Intrinsically Motivated Reinforcement Learning (IMRL) [13, 111, 148,
112] is to implement a system that can develop itself in a set of different situations
without requiring problem specific reward functions. Within this system agents
can develop skills or options, which are closed-loop control policies. The different
options of an agent determine how it can interact with its environment. Each
option has an initialisation set, which is a set of environment conditions or states
of which an option can apply, and a termination condition, the set of environment
conditions in which this option stops. For instance, an option grasp(something)
may require that at least one articulated extremity of the agent should be free
in order to perform that option and may have as a terminate condition that the
extremity used is not available.

Importantly, options may involve other options, meaning that this structure
provides a set-up that allows the rise of hierarchical control architectures, where
complex options may reuse more basic options already known by the agent. Fol-
lowing the previous example, the option hammer(something) will initially require
the option grasp(hammer).

When a new option is discovered, it is added to a set of known options. In
IMRL the decision-making component is formalised as a semi-Markov Decision
Process (SMDP) to decide which options to execute. It learns probabilistic rela-
tions between options and the effects of running policies, which are called option
models. Option models are learned and improved using the outcome of performed
options. As the architecture permits hierarchical relations between options in or-
der to keep consistency in the system, it is possible to update several policies at
the same time that involve a certain option, even when these policies were not
determining the behaviour of the agent at that point [13].

The development of a collection of options is driven by a surprise factor.
It consists in a decrease of the reward that the system provides for executing
an option when it has repeatedly been performed. The surprise factor takes
into consideration (a) if the probabilistic relationship between the option and
its effects has been learned and (b) it incentivises the agent to attempt lesser
known options. Therefore, IMRL can be classified as a knowledge based (more
specifically prediction based)4, adaptive, homeostatic motivation system.

The IMRL architecture was modified by Stout and Barto into a competence-
based motivation system named Competence Progress Intrinsic Motivation (CPIM)
[147]. The system is initialised with a set of options or skills for which it has
to learn the appropriate policies. The system measures its competence in a sim-
ilar way as option models in IMRL and combines it with a small penalty that
increases over time to compute the reward obtained when performing that op-
tion. The system uses the expected improvement in competence, the estimated

4IMRL can be classified as a prediction based motivation system because the system focuses
on addressing options for which the probabilistic relation with their effects is less known. The
system reduces the probabilistic error on known options and therefore improving its predictions
on what executing options cause in the environment. This view is shared with Oudeyer and
Kaplan [90] but not with Mirolli and Baldassarre [82], who classified IMRL as competence
based.
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progress of an option’s reward, to decide the future options to explore.

3.2.5 Temporal Difference Competence-Based Intrinsic Motiva-
tion

Temporal Difference Competence-Based Intrinsic Motivation (TD-CB-IM) [103,
102, 6] is a system developed within the IMRL framework that learns a set of
skills based on the system’s estimation of the improvement of its skills. The
architecture of the system consists of (a) a given set of experts, which are RL
components that can control its behaviour (in other words, components used to
choose which action the system should execute) and (b) a selector component
that decides which expert use for every interaction. Both are implemented as an
actor-critic RL model [150].

Interestingly, TD-CB-IM proposes to split the system into two phases: child-
hood and adulthood. During childhood, the system is in an exploration phase
where it tries to discover and improve skills without any particular goal. This
differs from the adulthood phase, where the system has a clear task and uses the
skills developed during its childhood to achieve it. While the selector learns in
both phases, experts only learn during the childhood phase.

Experts learn to improve their predictions computing its TD-error. When an
expert has been selected to perform an action, it improves its predictions using
a TD learning algorithm [150] that takes into account the two last successive
estimations of the expert’s critic component and an expert reinforcer’s reward.
During childhood, the selector learns which expert it should use with a similar TD
learning algorithm that considers the last two estimations of the selector’s critic
component and the resulting TD-error of the selected expert, which makes the
system adaptive. At each interaction, the selector chooses to use the expert with
the highest expected learning improvement (the expert with a maximum TD-
error value of the set of experts). The goal of this phase is to allow the system to
develop a set of skills, distributed over its set of experts, and to discover which
expert the selector should choose depending on the environmental state.

The developed skills are used in the adulthood phase, where the system has
to perform a specific task. In contrast with the expert components, the selector
continues to learn with the same learning algorithm it used during the childhood
phase but taking into account an external reward related to the system instead
of using the TD-error of the selected expert. This allows the system to keep
improving the selector with the feedback of how well it is performing. Although
the authors stress the fact that it is a competence-based motivation system, this
classification is not evident as the system’s focus is to improve the predictions of
the experts.

3.2.6 Intelligent Adaptive Curiosity

Intelligent Adaptive Curiosity (IAC) [89, 91, 69] is a motivation system created
by Oudeyer and Kaplan inspired in the notion of curiosity drive by Berlyne
(see Subsection 3.1.4). The main idea is that the system must maximize an
abstract cognitive variable called learning progress. Repeating actions decrease
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the learning progress of the system and therefore pushes it to explore new actions.
It is a knowledge-based, adaptive, homeostatic motivation system.

The system stores all its interactions with the environment (called experi-
ences) in the form of vector exemplars. Each vector represents the sensorimotor
context in time t, which stores the concrete values of both its motor parameters
M(t) and its sensors S(t) (noted SM(t)). Experiences are recursively grouped
into regions of the sensorimotor space of the system. Each region Ri has an
expert Ei, a learning component, which is trained with the experiences of that
region. The function of Ei is to predict the outcome of SM(t+ 1) when SM(t)
corresponds to the range of values of the sensorimotor space associated with the
region Ri. New regions are created when a region surpasses the maximum num-
ber of vector exemplars. When this occurs, Ri is split into R′i and R

′′
i , and two

new experts E′i and E
′′
i are associated to the new regions, respectively.

When an action SM(t) covered by the region Ri is executed, the system
stores the error difference between the predicted outcome S(t+ 1) by Ei and the
resulting outcome. All prediction errors are stored by Ri in a list. This list is
then used to evaluate the learning progress of Ei, which calculates the decrease
of its mean error rate in prediction. This way, the system has an estimation
of the learning progress for each region. These evaluations are used to guide
the development of the system: it selects the next action to perform taking into
account the region where the expert has the highest learning progress estimation.

IAC presents some similarities with prediction error motivational systems.
The fact of splitting the sensorimotor space and using the estimated learning
progress of experts in the action selection mechanism, though, permits the sys-
tem to focus on actions that are not or too complicated (as these actions will
present a low learning progress) and therefore overcome the problems faced by
Schmidhuber where the action selection is based on direct evaluations of the
predictor.

Baranès and Oudeyer [8] proposed a novel formulation called Robust-IAC
or simply R-IAC and demonstrated that it performes better than IAC. In this
implementation, a novel action selection and region creation mechanisms were
introduced. In R-IAC regions are still split into subregions, but the system also
keeps the original regions active, instead of getting rid of them. This allows the
system to estimate the learning progress of regions on different scales.

3.2.7 Self-Adaptive Goal Generation R-IAC

Baranès and Oudeyer also proposed an alternative competence-based motivation
system called Self-Adaptive Goal Generation - R-IAC (SAGG-RIAC) [9, 10]. The
system’s architecture is similar to R-IAC, where the sensorimotor space of the
agent is split into regions, but the focus of the system has changed. Instead of
improving M(t) so that the prediction error of S(t+ 1) diminishes, SAGG-RIAC
fixes as a goal a certain Sg(t + 1) and it explores the possible actions in M(t)
that produce a resulting state S(t+ 1) that approximates Sg(t+ 1).

When executing an action to accomplish a goal, the system measures its com-
petence as the similarity between the goal and the resulting state. This informa-
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tion is stored and used to compute the competence progress of a region Ri, which
is a measure that evaluates the evolution of the different actions performed and
their outcome. The local competence progress can be positive, which indicates
that the expected competence gain is substantial, or negative, which designates
that the system cannot reach the fixed goal in that region and suggests that it
could potentially be achieved in a subregion of Ri.

Additionally, the system computes the interest value of a region Ri as the
absolute value of the evolution of the local competence progress in a time window.
This value is used in the goal selection process. Similarly to the action selection
process in IAC, the system chooses new goals among those regions for which its
associated interest value is higher.

As IAC and R-IAC, this motivation system is adaptive, as the reward for an
action (in this case, the competence progress) decreases over time, and homeo-
static, as the system continuously searches for situations with a higher expecta-
tion for competence improvement. Other researchers have proposed extensions
to this system, such as the FIMO framework by Hervouet [58, 57].

3.2.8 The Autotelic Principle

Despite being explained in detail in the next chapter, the overview of computa-
tional motivation systems should also account for the autotelic principle. This
motivational system, proposed by Steels [131], operationalises the Flow Theory
by Csíkszentmihály [35] (see Subsection 3.1.6). It is a competence-based, adap-
tative and homeostatic model of intrinsic motivation.

As in the psychological theory it is based on, the core of the system relies on
the relationship between challenges and skills. Agents can self-determine their
own goals (called challenges) and indirectly evaluate their abilities measuring
their competence for these challenges. This evaluation is based on their perfor-
mance in successive actions while attempting a challenge.

After each action for a specific challenge agents receive a reward, which is
computed taking into account the outcome of the action5. The system employs
the resulting reward to update the evaluation of the challenge attempted.

This information is used to decide the internal state the system has associated
with each challenge, which corresponds to the mental states identified by Csík-
szentmihály when people are involved in an autotelic activity: anxiety, boredom
and flow. The anxiety and boredom states indicate that the relationship between
challenge and skills is unbalanced. In these situations, the system tries to return
to a balanced situation by addressing challenges that match its abilities. The flow
state indicates that the system can continue to attempt that challenge. Similarly
to people engaged in an autotelic activity, the flow state allows the system to
develop its skills. As a consequence, its abilities may improve over time and the
system can sequentially address challenges of increasing complexity.

5In the original proposal, Steels calculates the reward considering only the result of an
action. In the implementation presented in this thesis, however, the system also performs an
internal evaluation of its abilities.
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3.3 Summary

This chapter has first presented an overview of the major psychological theories
of motivation. For almost a century, psychologists have proposed various expla-
nations of what motivation is and how it can be formalised. Since the 1930s a
shift from pure extrinsic accounts to motivation (as such of Hull or Skinner) to
theories that progressively focus more on the intrinsic aspects of it (as de Charms
or Csíkszentmihályi). More recently, these two (sometimes opposed) views have
been articulated as complementary within the self-determination theory by Ryan
and Deci.

Psychological theories have profoundly influenced computational motivation
systems, designed to provide agents with an architecture to autonomously inter-
act with their environment. The second part of the chapter has started intro-
ducing Computational Reinforcement Learning, the most common technique in
CMS. It has continued presenting a selection of some of the most influential com-
putational motivation systems and classified them according to their operational
approaches.

Recently there have been some attempts to come up with a unified theory on
motivation [50], that takes into account insights from psychology, neuroscience
and machine learning. The question of what motivation is, however, has not been
resolved yet and remains open.
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Chapter 4

The Autotelic Principle

This chapter describes the computational motivational system studied in this
thesis, the Autotelic Principle. This motivational system was proposed by Steels
[131, 133] and is an operational version of the Flow Theory by Csíkszentmihály
[35, 36]. It is used by artificial agents to manage the complexity of their actions
and autonomously regulate their development. An earlier implementation of this
system was used by Steels and Wellens [145] in a language evolution experiment.
This chapter extends the previous contributions regarding the autotelic principle
in that it presents a detailed implementation of the motivation system, explaining
not only its general principles but also the different algorithms and the parameters
associated to them that determine how it operates.

Although the basic principles of the autotelic principle are shared by both
implementations (Sections 4.1 - 4.3), the algorithms that control the autotelic
principle (Sections 4.5 and 4.6) have been specifically designed to regulate the
complexity in linguistic interactions. The chapter includes a specific descrip-
tion of the process of challenge generation, a explicit characterization of how the
improvement for each challenge is monitored after a series of simulations to de-
termine the best parameter values for the system (see Appendix B), the addition
of an internal evaluation in order to take into account the differences in knowl-
edge between the interacting agents and a precise description of the challenge
selection mechanism for both speaker and hearer. The resulting implementa-
tion is the outcome of an exhaustive redesign to adjust the motivation system to
autonomously manage linguistic complexity in language evolution experiments.

Following the classification proposed by Oudeyer and Kaplan [90], the au-
totelic principle can be categorised as a competence-based model of intrinsic mo-
tivation, as agents (a) self-determine their own goals or challenges and (b) base
the evaluation of these challenges on a measure of competence. It is an adaptive
motivation system, as the resulting rewards for an executed action depend on
the learned skills (taking into account how well it performs and the degree of
certainty it has on its skills) and homeostatic, as it tries to maintain the system
in a flow state (balancing the challenges it attempts with its skills).

As in the Flow theory, the core of the autotelic principle relies on the relation
between challenges and skills. Artificial agents are able to set their own challenges
and use this relation to identify how well they are performing for that certain
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task. They do so by monitoring its evolution and use this information to decide
when they should change the challenges to address in order to further develop
their skills.

The chapter continues with a general view of the system, introducing the
definition of challenge (Section 4.1) and its architecture (Section 4.2). It then
presents the details of how it has been implemented (sections [4.3 - 4.6]), including
a specific description of how the different values associated to a challenge allow
the system to identify its internal state, how this information is used to navigate
through the space of possible challenges, how the system sets its current challenge
and how it generates new challenges.

4.1 The notion of challenge

The autotelic principle1 (AP) permits agents to define their own challenges, which
are certain tasks to be done in order to achieve a goal. Being a computational
motivational model inspired by the ideas from the Flow theory, the AP must pro-
vide agents with mechanisms that allow them to (a) define their own challenges
and (b) be able to evaluate their performance for each challenge in order to decide
if they are capable or not of successfully achieving a certain task. For example, a
robotic agent can have the goal of moving itself around its context or a linguistic
agent the goal of communicate about objects in its context. In order to do so,
it needs to coordinate the movement of different parts of its body or, in the case
of a linguistic agent, be able to produce and understand utterances. Moreover,
identifying that it is succeeding in its task requires a proper interpretation of the
feedback that its various sensors provide.

In the autotelic principle, challenges are specific configurations of a set of
parameters in a parameter space. Formally, given a multi-dimensional parameter
space P , a challenge pi is defined as a vector < pi,1, pi,2, ..., pi,n >, where pi,j
corresponds to the value of the parameter j in the challenge i. Agents are able to
generate different challenges by changing the specific configuration of a challenge
pi. Given pi, agents can create a set of new challenges {p1i , p2i , ..., pni } by modifying
one or more parameters pi,j of that challenge. The space of possible challenges
depends on the number of parameters used to define a challenge and the potential
different values of each parameter. The particular parameter space (the set of
parameters that defines a challenge) depends on the nature of the ultimate goal
an agent has to achieve and the different components involved in reaching that
task.

Additionally, Each challenge has associated a level value li, which is an integer
number in a range of [1, lmax]. This number represents the difficulty associated
to that challenge. In the implementation used in the experiments in this thesis,
this number corresponds to the sum of the values of its parameters. This relation

1The term autotelic principle was first used in the context of learning by More and Anderson
[85].
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Figure 4.1: Visual representation of the Flow theory in terms of challenges and
performance. An agent identifies that it is in a state of flow when its performance
is neither too high or low for its current challenge. Agents undergo a state of
boredom or anxiety when their performance is consistently too elevated or too
poor for their actual task, respectively.

can be formalised as:

li =

n∑
j=1

pi,j

4.2 Architecture of the autotelic principle

In the Flow theory, the concepts of challenge and skill and their relationship are
used to determine the mental state of people involved in autotelic activities. We
have already introduced how challenges are defined in its operational version,
we therefore need to determine how the other element of the relation, skill, is
modelled.

Unfortunately, skill cannot be directly measured, as there is no way to es-
timate the proficiency of an agent carrying out an action before it has been
executed. Alternatively, the system can evaluate how well an agent is perform-
ing. Performance is an indirect measure of skill, as it uses the information of
the outcome of an action to determine if the goal of a particular challenge was
achieved or not in that particular attempt. For example, a robotic agent cannot
evaluate how proficient it is in moving. Instead, it can use its sensors to evaluate
how much its position changed doing a certain action (in this case, a particular
set of signals executed in a set of motor controllers in a certain time span). As
the different experiments presented in this manuscript use the autotelic principle
to regulate the complexity of their linguistic interactions, the system evaluates
the performance of a linguistic agent based on the outcome of the linguistic inter-
actions it participates in and an internal evaluation of the agent’s capacities to
also consider the differences in knowledge between the interacting agents (Section
4.5).

We can now rephrase the general schema of the Flow theory in terms of
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challenges and performance. This relation determines a range of different states,
internal situations that agents undergo using this motivational system which
are equivalent to the mental states that people experience when involved in an
autotelic activity identified by Csíkszentmihály [35, 36] (Figure 4.1). An agent
identifies that it is in a state of flow when its performance is neither too high
or low for its current challenge. Agents undergo a state of boredom when their
performance is constantly too elevated and go through a state of anxiety when
their performance is too poor for their actual task.

4.2.1 Agent as a set of components

A component is an element or constituent of an agent in charge of a distinct,
determined subtask. When an agent performs an action, its outcome (the result
of its action) is determined by the resulting outputs of the components involved
in that particular operation. In consequence, agents can be seen as a set of
different components that interact in order to perform actions.

For example, in order to move a robotic agent different components are re-
quired, such as motors to control the specific position of the articulated members
attached to its joints or sensors used to identify a variation of its position. The
components used depend on the nature of the task to perform. If the goal is to
move, the agent does not require components to communicate with other agents.
These components, in charge of subtasks such as conceptualisation, formulation
or interpretation, are essential when agents need to communicate about their
context, as in the experiments reported in this thesis.

4.3 Development of skills

A central component of the Flow theory is that a state of flow (which may occur
only when there is a balance between the challenge someone is addressing and
his or her skills) facilitates the development or learning of skills. An improve-
ment of skills unbalances the challenge-skill relationship andmotivates the person
to attempt a new challenge that will counterbalance his or her amelioration of
capacities, seeking to experience the state of flow another time.

Similarly, an agent must be able to learn or develop new capabilities. In the
autotelic principle, an action is the result of a chain of components (a subset of
the elements that compose an agent), where the output of one is the input for
the next one. It may occur that one or more components cannot provide the
appropriate output, which affects the resulting action.

To overcome this problem, the system takes into account the outcome of the
performed action as feedback, and uses this feedback to detect possible failures
in components and repair them. The autotelic principle does not establish how
the learning must take place [131, p. 10]:

They could range from methods to increase needed resources (for ex-
ample increase the memory available to a component), simple learning
mechanisms (such as various forms of neural networks), or sophisti-
cated symbolic machine learning techniques.
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The learning methods that have been implemented in this thesis are a col-
lection of diagnostics, mechanisms used to identify problems during and after an
action has taken place, and repairs, processes that attempt to solve diagnosed
problems. These learning methods are common in language evolution experi-
ments [120, 46] and were also used in the previous experiment on the autotelic
principle by Steels and Wellens [145]. The specificities of the diagnostics and
repairs used are explained in the description of the experimental set-ups.

4.4 Deciding what to do next

After an action has been executed, the system identifies the state of the current
challenge (either flow, anxiety or boredom). This information is then used to
determine the current phase, that is, the current situation of the system. De-
pending on its phase, the system will decide to either (a) keep attempting the
current challenge or (b) address a different one. Changing the current challenge
can be done in two ways: (a) attempt a challenge already known or (b) address
a new one created by adjusting the current challenge parameter configuration.

The phase in which the system chooses to continue with the same challenge
is called operational phase and occurs when the system is in a state of flow
for its actual challenge. In this phase, the system tests itself in a particular
parameter configuration. It executes actions and uses the feedback from the
resulting actions to improve the performance of the components involved in those
actions. If it accomplishes a stable high performance for its current task, the
system will eventually turn into a state of boredom. It is also possible that the
actual challenge is too difficult for the system, which means that the system failed
in developing skills to cope with its current challenge. This results in a steady
low performance for that task and ultimately leads the system into a state of
anxiety. In both states, the system enters into a shake-up phase.

The system enters into the shake-up phase when there is no balance between
its current challenge and its performance. The system attempts to re-establish an
equilibrium again moving to a different challenge. When the system undergoes a
state of anxiety for a challenge pi with an associated level li, it first explores if it
can move to an already known challenge for which it achieved high performance.
Alternatively, it will generate a set of possible choices {p1i , ..., pni } by modifying
the parameter configuration of pi. In both cases, the challenge that the agent
will attempt in future actions has an associated level lk, where lk < li.

In a state of boredom the system will seek a more challenging task. It will
first go through the known challenges and will select one challenge among those
that presents a higher difficulty than the current one for which it had a track of
low performance in the past. If it cannot find any, it will generate a set of new
challenges adjusting the parameter configuration of pi and will select one of them
as the new challenge to attempt. In both cases, the chosen challenge to attempt
pii will have an associated level lk, where lk > li.

The combination of these two phases allows the system to self-regulate its own
development, as it provides the system with tools to decide when it should con-
tinue addressing a task in order to develop its skills and improve its performance
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but also a mechanism to adjust its challenge when there is a steady imbalance
between challenge and performance.

When the system is used by agents that interact between them, as in the
experiments reported in this thesis where agents play language games, the re-
sulting performance of an action depends on the skills of the agents involved in
that interaction. In these cases, as a consequence, the autotelic principle controls
the skill development and the increase of complexity in the attempted tasks by
the population. An agent will fail in more complex challenges if the other agents
in the population are still struggling in less complex tasks, even when it has a
high performance level for those tasks. Therefore, when this system is used by
the interacting agents, it self regulates the development at both individual and
population levels.

4.4.1 Generating new challenges

The system could potentially generate all challenges in the challenge space (that
is, all the different parameter configurations possible) every time it is in the
shake-up phase. In order to regulate this space, the system uses some heuristics
to restrict the number of possible challenges that will be created from its current
parameter configuration. The problem of how many challenges to create is linked
with a second one, namely how to select which challenge to address from the set
of known challenges. How can the system then (a) limit the set of new challenges
it may generate and (b) how it determines the new challenge to attempt?

Steels [131] did not propose an explicit mechanism of how to restrict the
number of new challenges. This implementation of the autotelic principle follows
Steels and Wellens [145], restricting the number of new challenges created in
a shake-up phase using its associated level. The set of new challenges will
be formed only by parameter configurations where (a) its associated level value
is one unit lower or higher than source challenge, depending on the state of
the system (anxiety or boredom, respectively), and (b) the new challenges are
created changing only one parameter from the reference challenge, increasing or
decreasing its value by one unit. Formally, all the generated new challenges must
fulfil two conditions:

• |lk − li| = 1, where li corresponds to the level of the current challenge and
lk to the level of the challenge candidate.

• 1 =
∑n

j=1 |pk,j − pi,j |, where pi,j and pk,j correspond to the value of the
parameter j in pi and pk, respectively.

Challenges that fit these restrictions are added into a list of known challenges
by the system. This list is used to determine the current challenge of the system
(see Subsection 4.6.1).

4.5 Updating the internal state

So far, the chapter has explained how the system can create challenges and move
between them depending on its associated internal state. This section describes
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Figure 4.2: Visual representation of the relation between the confidence and
persistence values of a challenge and its association to the different internal states.
Challenges are initialised with a maximum value of persistence and a minimum
value of confidence. The system reaches a state of anxiety when both persistence
and confidence values are minimum, and a state of boredom when the confidence
value has reached its maximum. In both cases, the system enters in a shake-up
phase in order to change the challenge to attempt. In all other cases the system
stays in the operational phase, which is identified as the state of flow.

how the internal state of a particular challenge is computed and updated. The
system monitors the evolution of a challenge and uses the information it gathers
to determine how well it performs and, eventually, resolve if it has achieved the
goal of that challenge or not. This is done by assigning to each challenge two
values that are updated after every action the challenge is attempted and oscillate
on range of values [min,max]2:

• Confidence: it represents the certainty the agent has of being proficient
in a specific task, and it is related to its performance. The higher this value
is, the higher the average performance attempting that challenge is.

• Persistence: it is a measure to ensure a minimum number of attempts
before the system can decide to change its current task. The reason for
such a measure is that usually it takes some time before the system is able
to develop skills that increase its performance for its current task. This
measure prevents the system from continuously entering into the shake-up
phase.

Together, these two parameters are used to determine the internal state of
a challenge (Figure 4.2). The first time a challenge is attempted it is initialised
with a minimum value for confidence, as the system has no experience for that
particular task, and a maximum value of persistence, to prevent the system from
entering the shake-up phase during the first trials. These values were already
part of the implementation of the autotelic principle by Steels and Wellens [145].

2In the experimental results reported in this thesis, the range has been set to [0.0, 1.0] for
both confidence and persistence values.
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However, the way that the confidence value is updated in this implementation
has been improved (a) incorporating an internal evaluation measure to the algo-
rithm (see Section 5.5 for an analysis of the impact that performing an internal
evaluation has in the development of a shared language) and (b) performing a
series of simulations to determine the best parameter values (see Appendix B).

Both values are updated after each time the system performs an action in
a given challenge. Confidence is updated taking into account the result of the
action carried out. Additionally, the current implementation also considers an
evaluation of the different components involved in that action.

Algorithm 1 Challenge update
procedure UpdateChallenge(agent, chali, success?)

confi ← Confidence(chali)
persi ← Persistence(chali)
if success? then

confi ← confi + δinc_conf

else
confi ← confi−δdec_conf+InternalEvaluation(agent, chali, success?)
if confi = minconf then

persi ← persi − δdec_pers

end if
end if

end procedure

On the one hand, persistence is decreased by a δdec_pers when (a) the outcome
of the interaction is a failure and (b) the confidence value is in its minimum. In
all other cases (when at least one condition is not satisfied) its value remains
the same. When persistence reaches its minimum it triggers the anxiety state
and the system enters into the shake-up phase. When this occurs its value is set
to −max. A negative persistence value blocks the challenge to the system for a
certain time span, that is, prevents the system from attempting it until it has
a positive value again. While it has a negative value, persistence is updated at
the end of every action as persi(t) = persi(t− 1) + δdec_pers, where persi(t) and
persi(t − 1) are the current and previous persistence values of the challenge pi.
Once it reaches the minimum value, the challenge becomes available again and
the persistence is reset to its maximum value.

In all the experiments reported in this thesis the value of δdec_pers is set to
0.02. The reason for this is to provide agents with enough time to acquire the
necessary skills for a particular challenge. This value forces agents to attempt
a particular challenge configuration at least 50 times before considering it too
difficult and thus triggering the anxiety state. Nevertheless, if the persistence
value gets to its minimum, the same value is used to block this challenge for 50
interactions, in order to allow agents to explore other challenge parametrisations.

Confidence, on the other hand, is updated after every action. In this imple-
mentation, the system takes into account both (a) the outcome of an action and
(b) an internal evaluation of the individual competences of the agent that per-



4.5. UPDATING THE INTERNAL STATE 61

Figure 4.3: Illustration of the evolution of the confidence and persistence values
of a challenge, obtained from data from the experimental results. Persistence
and confidence values are initialised with its maximum and minimum values,
respectively. After every interaction, both values are updated. In this example,
during the first interactions when the system is developing new skills there is no
stable confidence gain and the persistence value decreases. At some point this
tendency changes, there is a stop of the persistence decline and the system starts
increasing its confidence.

formed that action when updating the confidence value. The internal evaluation
was not part of the original proposal by Steels [131] or the previous implemen-
tation of the motivation system [145] and its inclusion is a consequence of the
field in which the autotelic principle is employed. The fact that in this thesis the
system is used by a population of artificial agents that engage in language games
(recurrent communicative interactions) means that the outcome of an interac-
tion, which can be either communicative success or failure, depends on the skills
of the two interacting agents (speaker and hearer). Therefore, the result depends
on the abilities of both agents, which may have different linguistic abilities. An
internal evaluation has been added for this reason, as it provides agents with a
better evaluation of their skills3.

Confidence is updated differently depending on the result of an interaction.
When the interaction is a success, meaning that the topic conveyed by the
speaker as a sequence of words was correctly interpreted by the hearer4, the
confidence value is updated as follows: confi(t) = confi(t − 1) + δinc_conf ,
where confi(t) and confi(t − 1) are the current and previous confidence val-
ues. When the interaction is a failure, the confidence value is updated in this
way: confi(t) = confi(t− 1)− δdec_conf + indcomp, where indcomp corresponds

3See Section 5.5 for an analysis of the impact of performing an internal evaluation has in
language evolution experiments.

4See "Language games and technical background" (Chapter 2) for an introduction to lan-
guage games.
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to the internal evaluation of the individual competences by the agent and al-
ways has a value inferior to δdec_conf . Formally, For every interaction I(t),
| indcomp |<| δdec_conf |. An example of the evolution of confidence and per-
sistence values of a challenge is presented in Figure 4.3.

In all the experiments reported in this thesis the values of δinc_conf and
δdec_conf have been set to 0.005 and 0.02, respectively. These values were deter-
mined after testing different parameter configurations in the first experimental
set-up (Section 5.3). These parameter configuration demonstrated to provide the
best conditions for the development of language abilities. Appendix B presents
the results of the different simulations carried out to determine the values for
δinc_conf and δdec_conf .

The internal evaluation, indcomp, differs depending of the role agent in the
interaction, as speaker and hearer have access to different information. If the
agent acted as a speaker, the evaluation considers (a) the number of possible
utterances that can be formulated given the conceptualised meaning, (b) if the
speaker could express all meaning predicates in formulation and (c) a measure of
how compact the lexicon of the agent is. In the case of the hearer, the evaluation
takes into account (a) if the agent could comprehend all the words of the utterance
and (b) if the recovered meaning was ambiguous. Each of these measures can get
a maximum value of 0.01. The indcomp value resulting of the addition of these
measures, however, always has a value inferior or equal to δdec_conf . Therefore,
the indcomp value in a range of [0.0, 0.02]. The internal evaluation is shared
among all the experiments reported in this thesis where agents make use of the
autotelic principle.

4.6 Initialisation of the system

A key component of the system is how it is initialised. It may start with any chal-
lenge configuration possible and, by the dynamics explained in Section 4.4 and
appropriate learning methods for its task, it will eventually attempt a challenge
from which the system can begin developing its skills. Moreover, the system can
start with a set hard-coded skills and the goal of further developing them.

In this implementation agents are initialised without any hard-coded skills.
They are provided with a set of learning mechanisms that can be recruited and
used when needed in order to acquire or develop skills. This is due to the fact
that the system is used in language emergence experiments as a way to manage
linguistic complexity, which is widely assumed to have developed across different
stages 5. In other words, it is used as a tool to scale the complexity of recurrent
communicative interactions between autonomous agents, where more complex
descriptions of a topic reuse skills which have been developed in earlier stages.

Consequently, the system adopts a bottom-up approach. It is provided only
with those challenges that are associated to the lowest challenge level possible.
This approach is shared with the implementation by Steels and Wellens. This
permits agents to develop the fundamental skills that will be required in further,

5 See Subsection 1.3.3.
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more complex challenges later on without losing time (interactions) finding a good
initial challenge. Once these skills have been learned the system can then move
to more difficult challenges, which results in an incremental development of the
agent’s capabilities and a optimisation of the interactions needed to accomplish
the main task of the experiment.

4.6.1 Deciding the current challenge

Given the set of known challenges by the system at a certain time, how does
it decide which one should be addressed? In the implementation by Steels and
Wellens [145] the speaking agent does not perform an evaluation to decide which
challenge use in the next action but, instead, it randomly selects one from the
list of known challenges that have a positive persistence value. In some cases, the
agent may select to address a challenge below the highest level known, slowing
down the development of the agent’s skills. The algorithm implemented in this
thesis (Algorithm 2) aims to improve this decision process and makes use of the
level, confidence and persistence values to determine the challenge in the next
action.

Algorithm 2 Challenge decision
procedure SelectCurrentChallenge(system)

knownchal ← Challenges(system) . List of known challenges
poschal ← ∅ . List of possible challenges initialised to ∅
candchal ← ∅ . List of candidate challenges initialised to ∅
for each chali ∈ knownchal do

confi ← Confidence(chali) . Current value of conf for chali
persi ← Persistence(chali) . Current value of pers for chali
if conf < maxconfi and pers > minpersi then

poschal ← poschal + chali . Add chali to poschal
end if

end for
if poschal then

candchal ←MinLevel(poschal) . return challenges with lowest level
else

candchal ←MaxLevel(knownchal) . return challenges with highest
level

end if
return Random(candchal)

end procedure

This algorithm first restraints the selection to those challenges that are avail-
able, that is, that have a positive persistence value, and a confidence value below
its maximum (those challenges for which the system does not undergo a state of
boredom). It then ranks the resulting set of challenges according to their chal-
lenge level, and randomly selects one of the challenges with the lowest challenge
level from the set. When the resulting set is empty the algorithm randomly



64 The Autotelic Principle

chooses one of the challenges with the highest value level from the set of known
challenges.

A problem has to be considered when applying the autotelic principle to
language games: the speaker selects its current challenge at the beginning of the
interaction, which has an impact on the topic it may select or in the resulting
utterance it produces. It is not straightforward, however, how the hearer should
decide which is the communicative challenge for that interaction.

There are different ways to solve this problem. In the one used by Steels and
Wellens [145] the hearer uses the same algorithm to select its current challenge
and actualises its confidence and persistence values as the speaker does. This
procedure, however, can easily misidentify the challenge of the interaction and,
therefore, update the wrong challenge. For example, it could be that the hearer
knows one challenge pi that it is still unknown by the speaker, or that the hearer
has not yet discovered the challenge the speaker is attempting. If the hearer
chooses pi as the communicative challenge of the interaction, it will update a
challenge that does not correspond to the one of the speaker.

This implementation has taken an alternative approach. The hearer makes
a guess of the communicative challenge of the speaker based on its known chal-
lenges, the meaning representation it could retrieve from the interaction and the
context of the scene. In the reported experiments, relevant meaning components,
such as different meaning classes and their number in the recovered meaning rep-
resentation are related to (a) the different parameters that define a challenge and
(b) the different challenge levels. The system uses the reconstructed meaning to
identify its relevant meaning components. This information is then compared to
the list of known challenges by the hearer in order to identify the known challenge
most likely to have been picked by the speaker as the communicative challenge
of that interaction.

4.7 Summary

This chapter has introduced the autotelic principle, a computational motivation
system inspired by the Flow theory, and the implementation details of the version
used in this thesis, explaining the specific algorithms that operate it.

The motivational force of the system consist in a continuous attempt to bal-
ance two elements: the current challenge of the system, which is defined with a
specific configuration in the set of parameters that determine the space of possi-
ble challenges, and its performance, which is an indirect measure of the system’s
skills. The system is provided with learning mechanisms that enable the develop-
ment of skills, which destabilizes the challenge-performance relation and allows
the system to progressively attempt and succeed in more difficult, complex tasks.
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Chapter 5

Experiments on the discrete
domain

This chapter describes the first set of agent-based experiments in which a pop-
ulation of artificial agents self-organises a vocabulary to refer to objects in their
context and extends it into multi-word utterances with primitive syntactic or-
der using the autotelic principle. The autotelic principle allows agents to au-
tonomously explore different communicative goals (varying the level of descrip-
tion of the objects described from the scene) and decide which of these tasks
is better suited for their current skill level, which facilitates the development of
communicative abilities. The group of experiments presented in this chapter is
inspired by the pioneer work by Steels and Wellens [145]. They were the first to
use this motivational system in a language evolution experiment. Regrettably,
their code was not maintained and cannot be used anymore. The different ex-
periments reported in this chapter are the result of a new implementation of the
motivation system (explained in Chapter 4) and the experimental set-up, which
includes the context, the interaction script and the different diagnostics and re-
pairs used. Although a direct comparison between the experiment of Steels and
Wellens and the current experimental set-up is not possible, this chapter includes
an experiment (Section 5.5) that examines the effect of performing an internal
evaluation when employing the autotelic principle in a language evolution exper-
iment. Section 5.7 lists how the different experiments in this chapter extend the
experiment by Steels and Wellens [145].

The chapter starts by describing the language game played, the set of different
diagnostics and repairs that agents have available during the experiment and the
mechanism that the population use to align their vocabularies (Section 5.1). The
chapter continues with the baseline experiment in which the population does not
use the autotelic principle to autonomously regulate their development (Section
5.2), followed by a second experiment with a similar experimental set-up in which
agents do have access to the intrinsic motivation system (Section 5.3). Section
5.4 compares the results obtained in both experiments and Section 5.5 analyses
the impact that performing an internal evaluation in the motivation system has
on language development. It then presents a last experiment (Section 5.6) where
the challenge parametrisation has been extended to express the existing spatial
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relations between objects and concludes with a list of the contributions of this
chapter to the previous work by Steels and Wellens (Section 5.7).

5.1 Description of the experiment

The goal of the experiment is to develop a shared language in a population of
artificial agents in order to communicate about objects. The communication
occurs in the form of interactions between two agents randomly picked from the
population, one acting as a speaker and the other as a hearer.

5.1.1 World and context

In each interaction, both speaker and hearer have the goal to communicate about
one topic (one or two objects) from the context or scene, the environment in which
interactions take place. The set of all possible scenes in an experiment is called
world. Objects have three different physical feature values which are divided
between prototypes and properties (shape and colour):

• prototype. A discrete value that specifies the class of the object. It has
seven possible values: table, chair, glass, window, lamp, clock and box.

• shape. A discrete value that specifies the shape of the object. It has
six possible values: squared, round, triangular1, pentagonal, hexagonal and
octagonal.

• colour. A discrete value that specifies the colour of the object. It has eight
possible values: blue, green, red, yellow, orange, purple, white and black.

Objects are unique, which means that in the world there is not a pair of
objects that share the same feature values for the three physical characteris-
tics. Both prototypes and properties are formally described using first order
predicates. For example, an object obji with values table, squared and green is
represented as follows:

obji = {prototype(obji, table), shape(obji, squared), colour(obji, blue)}

A scene is composed of two different objects and a spatial relation between them,
also in the form of a first order predicate, which is restricted to next-to, far-from
and left-to (the latter is equivalent to right-to changing the order of the elements).
For instance, a possible scene sk involving obji and objj (with values table, round
and blue) and a spatial relation of the two objects of closeness could be described
as follows:

sk = {prototype(obji, table), shape(obji, squared), colour(obji, blue),

prototype(objk, table), shape(objk, round), colour(objk, green),

next− to(obji, objk)}
1This value is not present in the objects used in the different experiments of this chapter

(see Table 5.1) but it is present in the objects used in Appendix A, where the obj7 has as values
{prototype(obji, chair), shape(obji, triangular), colour(obji, black).
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Although objects and scenes can be randomly generated at the beginning of
each experimental run, in order to be able to analyse better and compare the
results reported in this chapter, both the number of objects and the number
of scenes that form the world have been fixed to ten (see Table 5.1). In the
experiment, the context of the interaction is one randomly selected scene from
the set of possible scenes Table 5.2.

object prototype shape colour
obj0 glass round blue
obj1 lamp pentagonal red
obj2 window round red
obj3 box round green
obj4 glass squared orange
obj5 clock pentagonal white
obj6 clock round blue
obj7 chair pentagonal black
obj8 table octagonal purple
obj9 lamp hexagonal yellow

Table 5.1: Feature values of the different objects of the experiment in the discrete
domain.

scene 0 1 2 3 4
objects obj6, obj9 obj7, obj5 obj4, obj0 obj3, obj2 obj0, obj1
relation far-from left-to next-to next-to next-to
scene 5 6 7 8 9
objects obj9, obj1 obj6, obj4 obj8, obj2 obj0, obj6 obj5, obj4
relation left-to next-to left-to far-from next-to

Table 5.2: Scenes of the world. This table contains the objects and the spatial
relation for every scene.

5.1.2 Multi-word guessing game

The specific language game that the population of agents plays is a multi-word
guessing game. In this game, the speaker produces an utterance containing one
or more words with the goal of describing the selected topic of the scene and the
hearer has to use this information to identify it. The dynamics of interactions in
this language game work as follows:

1. Before starting the interaction, two agents are randomly chosen from the
population, one assigned with the role of speaker and the other the role
of hearer. Both agents share the same context, which consists of a scene
randomly selected from the world.

2. The speaker chooses a topic from its context (either one or the two objects of
it). It conceptualises the topic into a meaning network that the speaker uses
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to formulate2 an utterance (transmitted as text) which conveys information
about the topic. Each word of the utterance either refers to one feature
value of an object (prototype, shape or colour) or refers to the existing
spatial relation between two objects. In this experiment the speaker has
to, at least, refer to one prototype value.

3. The hearer comprehends3 the utterance and uses its world model to inter-
pret it, creating hypotheses about what the topic may be. If it has only one
hypothesis, it points to the hypothesised topic. If the hearer has multiple
hypotheses, it communicates to the speaker that it could not identify the
topic.

4. If the hearer’s pointing turns out to be right, the speaker signs the hearer
that the interpreted topic is correct. In this situation the game is successful.
In all the other cases (when there is no pointing by the hearer or it does not
correspond with the intended topic by the speaker) the game is a failure
and the speaker provides feedback by pointing to the intended topic.

5. At the end of the interaction both agents align their vocabularies based
on the outcome of the interaction (success or failure) and the feedback
provided by the speaker.

5.1.3 Diagnostics and repairs

Each agent in the population starts the experiment with an empty lexicon.
Agents can extend their vocabulary employing different diagnostics, used to iden-
tify problems during an interaction, and repairs, procedures to solve diagnosed
problems.

Diagnostics and repairs allow agents to create and learn FCG constructions.
Constructions are stored in the construction inventory or lexicon of the agent,
which contains its vocabulary and grammar. The construction inventory is used
to formulate, that is to verbalise a conceptualised meaning, and to comprehend,
that is to extract a meaning representation from an input utterance.

The first two diagnostics and repairs available to agents correspond to the
processes of creating and learning lexical words. These learning mechanisms are
usually found in language evolution experiments [136] and were already present
in the experiment by Steels and Wellens [145]. Nevertheless, they were reimple-
mented in the current version of Babel [143].

Create a word: the speaker does not have a word to refer to (a) a par-
ticular feature value of an object or to (b) a spatial relation between objects in
formulation.

• Diagnostic: the speaker cannot express a meaning predicate that specifies
a feature-value or a spatial relation in the topic conceptualisation.

2Formulation is the process by which an agent conveys a meaning network as an utterance,
which may be composed of one or more words, using the constructions of its construction
inventory.

3In comprehension an agent tries to reconstruct the meaning conveyed in an utterance using
the constructions in its construction inventory.
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?gumoze-word
args: [?x]
sem-cat:

sem-class: referent
syn-cat:

lex-class: noun

←
 ?gumoze-word

# meaning: {bind(prototype, ?x, [table])}
# form: {string(?gumoze-word, "gumoze")}


(gumoze-cxn)

Figure 5.1: Example of a construction C that results from a process of word
creation or adoption. In this case, C relates the feature-value prototype-table to
the word "gumoze". Additionally to this meaning-form relation, the agent can
infer from the feature type (prototype) that the semantic and syntactic classes
should be referent and noun, respectively.

• Repair : the speaker invents a new term t for the unexpressed meaning
predicate m and creates a new construction C that relates m with t.

Adopt a word: the hearer cannot identify the meaning predicate associated
to an unknown word t, which may refer to (a) a feature value of an object or to
(b) a spatial relation between objects.

• Diagnostic: the hearer encounters an unknown word in the input utterance.

• Repair : the hearer uses the feedback from the speaker and tries to deter-
mine the meaning predicate m linked to the word t. When it can identify
m it creates a new construction C that relates m with t.

These two processes (creating or adopting a word) produce constructions with
the same structure. An example relating the feature value prototype-table to the
word gumoze is shown in Figure 5.1. Note that the resulting construction C does
not only contain information about form and meaning but also about semantic
and syntactic classes. These classes differ whether C refers to a prototype or a
property (colour and shape). For mnemonic reasons these classes have compre-
hensible labels ({referent, noun} and {modifier, adjective}, respectively).

It is important to note that adopting a word is only possible when the hearer
can unequivocally deduce the meaning associated to that word. In certain cases
this would not be possible. For example, if the hearer fails to comprehend an
n word utterance because certain or all words are unknown it will not be able
to infer the meaning associated to each word unambiguously and, therefore, will
not learn any new lexical construction.

In addition to these two processes, agents can also detect grammatical prob-
lems. Problems can be of word order, how multiple words should be sequentially
organised in an utterance, or of variable equality, how to identify which words
refer to which object.

Grammatical problems are linked to a lack of information on different features
of the resulting transient structure4 (TS) when formulating or comprehending an

4See Section 2.3 on FCG.
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utterance. Agents can solve these problems by creating or learning grammatical
constructions, which introduce additional semantic and syntactic information
to the transient structure that is used to relate different lexical units. These
constructions make use of (a) the different semantic and syntactic labels assigned
to lexical units that refer to properties (colour and shape) and prototypes of
objects and (b) the args feature-value, used to identify which object in the scene
each lexical construction refers to.

On the one hand, a problem of word order will occur when there is not
enough information in the form features of the TS about how the different lex-
ical elements (words) should be sequenced. For example, it may be that the
form features in the resulting TS of the speaker have the following information:
{string(?x, ”gumoze”), string(?y, ”wizake”)}. At this point, the speaker does
not know how these words must be sequenced and can formulate two utterances:
"gumoze wizake" and "wizake gumoze". This uncertainty can be solved with a
construction that introduces information about how these two words should be
ordered, for instance meets(?x, ?y)5.

On the other hand, a problem of variable equality will take place when
the variables are not correctly connected in the meaning predicates of the TS.
For example, it may be that a hearer has retrieved the following meaning:
{prototype(?x, table), colour(?y, blue), prototype(?z, chair)}. With this informa-
tion the hearer ignores which prototype should be linked to the colour "blue".
It will be only in the interpretation phase that the agent will be able to infer
this information, as long as the scene does not contain two objects with colour
blue. It can use the information gathered in the interpretation process and the
feedback from the speaker to add a grammatical construction to its lexicon that
correctly links the args values of the lexical constructions in the TS. An example
of a grammatical construction is shown in Figure 5.2.

Grammatical problem during formulation phase: the speaker formu-
lates an utterance that contains two or more words and does not know how to
sequence them.

• Diagnostic: the speaker can formulate multiple utterances with the same
lexical elements, as the information about the form is not explicit enough
about how these elements should be ordered.

• Repair : the speaker invents a new syntactic construction C that imposes
new form restrictions on the lexical elements of the utterances.

The same problem may occur in comprehension. The order of the words of an
utterance may be incorrect according to the grammatical constructions known
by the hearer or the recovered meaning may be not correctly linked. In this case,
the hearer can diagnose a problem and learn the grammatical construction used
by the speaker in that interaction.

Grammatical problem during comprehension phase: an input utter-
ance containing two or more words (a) does not match the grammatical order

5Note that another possible order may be meets(?y, ?x).
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?unit-1
args: [?x]
sem-cat:

sem-class: referent
syn-cat:

lex-class: noun


[

?unit-1
form: {meets(?unit-1, ?unit-2)}

]
←



?unit-2
args: [?x]
sem-cat:

sem-class: modifier
syn-cat:

lex-class: adjective


(meets-cxn)

Figure 5.2: Example of a construction C that introduces a restriction in the word
order between two lexical units. In this case, C will introduce a meets relation
between units ?unit-1, ?unit-2 when (a) the first has as semantic and syntactic
classes referent, noun and the second modifier, adjective and (b) both refer to
the same object ?x (denoted by using the same variable in the args feature in
two different lexical units).

known by the hearer or (b) the args values in the lexical units are not correctly
related.

• Diagnostic: the input utterance is not grammatically correct according to
the hearer’s knowledge, as the lexical elements are ordered in an unknown
way or there the resulting meaning structure is not properly linked.

• Repair : the hearer creates a new syntactic construction C with the form
and meaning restriction information observed gathered from (a) the input
utterance, (b) its interpretation process and (c) the speaker’s feedback.

5.1.4 Alignment

The mechanisms explained in the previous subsection allow agents to create and
learn new lexical and grammatical constructions. The collection of form-meaning
mappings known by an agent determines its construction inventory or lexicon.
Within a lexicon it may happen that some of its constructions are in competi-
tion. This problem occurs when (a) constructions with different form convey the
same meaning (meaning competitors) or (b) the same form is used in distinct
constructions to express different meanings (form competitors).

We can illustrate this competition with an example: suppose that an agent
has in its lexicon two lexical constructions, C1 and C2, that refer to the same
meaning [table] but have different form values (for instance "gumoze" and "tepa-
li"). In formulation the agent will have to decide which one to use to convey the
meaning of [table], which makes the two constructions meaning competitors. The
same problem will occur with form competitors in comprehension, as the same
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form will convey different meanings. The agent, which in this case is acting as a
hearer, will not know which was the intended meaning by the speaker.

Agents have a mechanism to avoid competition among constructions, called
alignment. The goal of alignment is to drive the preference of agents on which
constructions they should use. Each construction is assigned with a score, a
number in the range [0.0, 1.0]. The score is initialised at 0.5, independently of
whether the construction has been created or learned. When the lexicon contains
competing constructions, their score is used to decide which one should be used,
selecting that with the highest score. After each interaction, the interacting
agents update the scores of the constructions used (and their competitors). When
the score of a construction reaches its minimum (set to 0.0), that construction is
removed from the construction inventory of the agent.

The alignment used in this experiment takes into account the outcome of the
interaction (whether it is a communicative success or a failure) and the role of
the interacting agents (speaker or hearer) to update the scores of constructions,
according to the dynamics of lateral inhibition [155]. When the interaction is
a communicative success, both agents increase the constructions used by δinc
and decrease their competing constructions by δdec. If the interaction was a
communicative failure, the speaker will decrease the score associated with the
constructions used by δdec only when the utterance was of length one, as it is the
only situation in which it can undoubtedly identify that the lexical construction
used was not comprehended. In the case of the hearer, it aligns its lexicon in an
unsuccessful interaction as it will do if it was a communicative success when the
speaker’s topic was among its hypotheses. In the experiment both δinc and δdec
are set to 0.1. A pseudo code of the algorithm used in alignment is presented in
Algorithm 3.

Algorithm 3 Alignment
procedure Alignment(agent)

usedcxns ← Constructions-used(agent)
commsucc ← Communicative-success?(agent)
role← Role(agent) . Role in the interaction: speaker or hearer
if commsucc or

{role = hearer and Topic-among-hypotheses?(agent)} then
for each cxni ∈ usedcxns do

compcxni ← Competitors(cxni)
Increase-score(cxni, 0.1)
Decrease-score(compcxni , 0.1)

end for
else if role = speaker and One-word-utterance?(agent) then

for each cxni ∈ usedcxns do
Decrease-score(cxni, 0.1)

end for
end if

end procedure
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5.2 Baseline experiment

In order to analyse the impact of a motivational system that permits agents
to regulate the complexity of their linguistic interactions and thus their shared
language development we need first to establish a baseline experiment. In this
case, we study how many interactions it takes in a population to converge on a
shared language for different communicative tasks.

The baseline experiment consists of a population of agents playing the guess-
ing game described in the previous section. These agents start with an empty
lexicon. They enlarge it by adding lexical and grammatical constructions using
the different diagnostic and repair mechanisms explained in the Subsection 5.1.3.
They align their construction inventories as in Algorithm 3, converging into a
minimal, shared number of form-meaning mappings.

In each interaction the speaker formulates a multi-word utterance that refers
to one or two objects in the scene that, at least, expresses the prototype of the
object(s). The speaker may additionally refer to several properties of the objects
to describe. The learning tasks (also named communicative tasks) are defined
by the maximum number of properties that an agent can refer to in its topic
description:

• Learning task 1: agents can describe up to two objects only referring to
their prototypes.

• Learning task 2: agents can describe up to two objects only referring to
their prototypes and one property of a described object.

• Learning task 3: agents can describe up to two objects only referring to
their prototypes and two properties of the described object(s).

• Learning task 4: agents can describe up to two objects only referring to
their prototypes and three properties6 of the described object(s).

• Learning task 5: agents can describe up to two objects only referring to
their prototypes and four properties of the described object(s).

The complexity of the communicative tasks is determined by the maximum
number of physical features agents can refer to. Therefore, in the list of commu-
nicative tasks these are ordered according to their complexity, from the lowest to
the most complex task. Importantly, a higher communicative task includes the
previous ones. For example, the communicative task 4, where agents can describe
one or two objects referring to their prototypes and up to three properties also
includes the communicative tasks 1, 2 and 3, as agents can refer to fewer prop-
erties than the maximum allowed (that is none, one or two, which corresponds
to the previous communicative tasks).

6An object has three different physical values (one prototype and two properties). A topic
description containing more than two properties obligatorily (a) describes two objects and (b)
refers to properties of both objects.
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Figure 5.3: Results of a population of 10 agents attempting the different learn-
ing tasks, averaged over ten runs. The x-axis represents the number of guessing
games played by the population and the y-axis the resulting communicative suc-
cess, which is smoothed by a sliding window of 100 interactions.

It is also important to note that the number of objects of the topic is un-
specified (agents can choose to refer to one or two objects) and, in consequence,
the number of prototypes of the resulting utterance may vary. This is important
for communicative tasks that allow agents to express more than one property, as
in these cases the hearer will have to decide to which prototype each property
expressed refers to. For example, an agent can refer to two properties in three
cases: (a) describing one object using one prototype and two properties, (b) de-
scribing two objects using two prototypes and two properties, both referring to
the same prototype or (c) describing two objects using two prototypes and two
properties, each one referring to a different prototype.

5.2.1 Experimental results

Each learning task has been tested in a population of ten agents and the results
have been averaged over ten runs. The outcome of these runs is shown in Fig-
ure 5.3. The x-axis represents the number of interactions in the population (that
is the number of guessing games that have been played) and the y-axis represents
the percentage of communicative success, which can be either 1 (success) or 0
(failure). In order to better understand the image, communicative success has
been smoothed by a sliding window of 100 interactions.

From our analysis it can be said, on the one hand, that communicative tasks
with lower complexity (those that allow the population to refer to a smaller
number of properties) arise faster at a shared language, in contrast to higher
complexity ones, where more interactions are required to achieve a stable, shared
language. But converging rapidly to a common language does not mean that the
resulting language is better in terms of communication: those communicative
tasks that converge faster to a shared language present a lower percentage of
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Communicative task LT 1 LT 2 LT 3 LT 4 LT 5
Communicative success 85.82% 94.95% 96.98% 98.06% 98.30%

Table 5.3: Percentage of communicative success obtained in the last 2000 in-
teractions for each learning task. As at this point the population has already
converged to a shared language, the reason why some interactions fail is due to
ambiguous description of the topic by the speaker.

communicative success. In other words, there is a relation between the maximum
number of properties that can be expressed by the population and the resulting
performance of that language.

There is an explanation for such behaviour: shorter utterances consist of a
smaller number of lexical words (and therefore are built using a smaller number
of constructions). This facilitates agents to learn and agree on the different form-
meaning mappings used to create those utterances. As it has been explained in
Subsection 5.1.3, agents can only adopt a construction when there is no ambiguity
on its meaning-form association. Interactions with long utterances have a bigger
chance that the hearer does not know the meaning of some of its words. In such
cases, when there are two or more unknown words, the hearer cannot learn any
new construction. As a consequence it takes more time for the population to
converge to a shared language for more complex communicative tasks.

On the other hand, the possibility to refer to more properties of objects
reduces the ambiguity in the topic descriptions. Consequently, longer utterances
have more discriminative power than shorter ones. For example, referring only
to one prototype to discriminate one object in scene five (Table 5.2) will not be
sufficient to identify the topic of the scene, as both objects are lamps (one with
properties hexagonal, yellow and the other pentagonal, red).

In order to analyse this effect we have tracked the ambiguity of the scenes
described in each learning task (Table 5.3). The results show that there is a direct
relation between the ambiguity of a topic description and the percentage of games
where communicative success could not be achieved. For example, for the first
communicative task around 14,2% of topic descriptions were ambiguous for only
1.7% in the communicative task 5. These results correspond to the percentage
of unsuccessful interactions at the end of the simulations for each communicative
task.

Descriptions that refer to all properties of the topic (two if it consists of only
one object or four if the topic is composed of two objects) are unambiguous. The
reason then for small percentages of ambiguity in all learning tasks is due to
the fact that each learning task also includes the lower ones. As a consequence
some of the utterances formulated will not include all properties of the topic,
producing ambiguities in some cases.

5.3 Addition of the autotelic principle

We have seen (a) that more complex communicative tasks are harder, as they
require more interactions between the agents in the population to develop a
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shared language, and (b) how a bigger discriminative power leads to a higher
percentage of communicative success in the population. In this section we study
the case of agents provided with the autotelic principle7 and test how the learning
tasks in the previous section can act as challenges of increasing complexity.

How are these challenges formalised? In the autotelic principle, challenges are
defined as a particular instance of a vector made of parameters. In the baseline
experiment, learning tasks are defined on the basis of the maximum number of
properties that an agent can refer to in its topic description. Challenges can,
therefore, be formalised as a vector of one parameter that represents the number
of properties that should be used in a topic description (< numprop >), going
from no properties at all (level 1) to a maximum of four properties (level 5). Table
5.4 presents the existing relation between challenges and the learning tasks of the
baseline experiment.

It is important to note that there is a difference in the number of properties
that agents refer to in learning tasks and communicative challenges: in the former
the number of properties that a speaker can express addressing a learning task
varies from zero to the maximum number of properties allowed, while in the latter
the number of properties to express is fixed. There is an important exception to
this restriction associated to the number of objects of the topic: if the speaker
refers to only one object the maximum number of properties it can refer to is
two, as objects have a fixed number of physical features (one prototype and two
properties values).

Learning Task LT 1 LT 2 LT 3 LT 4 LT 5
Challenge < 0 > [1] < 1 > [2] < 2 > [3] < 3 > [4] < 4 > [5]

< numprop > [level]

Table 5.4: Conversion of the learning tasks of the baseline experiment into chal-
lenges, in this case a vector of one parameter with an associated level of com-
plexity.

The goal of the experiment is the same as in the previous section, namely that
the population develops a shared language to refer to objects in its environment.
The experiment starts with all agents in the population attempting the less com-
plex challenge (level 1), as the results obtained in the baseline experiment show
that it is the easiest one to learn.

After each interaction, each interacting agent updates their confidence and
persistence values associated to the challenge used as explained in Section 4.5.
Confidence is updated taking into account the outcome of the interaction (whether
it was successful or not) and an internal evaluation of each agent’s performance
(see Algorithm 1).

While attempting a challenge Ci, agents will autonomously decide to address
a more complex challenge Ci+1 when they experience boredom (when they have
reached a maximum value of confidence for the challenge Ci) or decide to move
back to a less complex task Ci−1 when Ci results in a too difficult target, undergo-
ing a state of anxiety (when both confidence and persistence values associated to

7See Chapter 4 on the autotelic principle.
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Figure 5.4: Result of ten runs for a population of ten agents provided with the
autotelic principle. The x-axis represents the number of guessing games played by
the population, the left y-axis the rate of communicative success (smoothed by a
sliding window of 100 interactions) and the right y-axis the number of challenges
mastered by the population (computed as the average confidence score of each
agent in the population over all possible challenges).

Ci are at their minimum). If none of these situations occurs, agents will continue
attempting Ci.

5.3.1 Experimental results

The results of ten runs for a population of ten agents provided with the autotelic
principle are shown in Figure 5.4. The x-axis represents the number of inter-
actions in the population. The left y-axis represents the rate of communicative
success (smoothed by a sliding window of 100 interactions) and the right y-axis
indicates the number of challenges that the population masters, measured as the
average confidence score of each agent in the population over all challenges.

As was expected from the results obtained in the baseline experiment, the
goal of developing a shared language in order to refer to the objects in their
environment is achieved. At the end of the runs the population reaches a 100%
communicative success, which differs from the outcome obtained in the baseline
experiment. It is a consequence of the way challenges are defined, as in each chal-
lenge the number of properties that the speaker should express is fixed. Therefore,
when (a) agents address and master the higher complexity communicative tasks
and (b) their lexicons are aligned, their utterances are not ambiguous and the
outcome of all interactions is a communicative success.

The initial challenge for the population is set to the challenge of level 1, which
consists of developing a shared language to refer to prototypes. They successfully
generate such lexicon in approximately 1200 interactions. At that moment (a)
the population has agreed on a shared lexicon for prototypes, (b) the average
communicative success of the population is set to a value around 85% (similar
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to the resulting communicative success for the first learning task in the baseline
experiment) and (c) some agents reach the maximum confidence score for their
first challenge, experience boredom and move to the second challenge.

The change of the current challenge in some agents results in a drop of the
communicative success in the population. This is due to the fact that, when
attempting the challenge of level 2, agents not only refer to prototypes of objects
anymore but also to one property. In order to communicate successfully they
have to develop a vocabulary for shapes and colours.

Additionally, multi-word utterances present reference issues that can only
be managed by developing grammatical constructions that introduce restrictions
in the word order and the meaning network. When agents reach maximum
confidence for the second challenge (a) their lexicon, which allows them to also
refer to both colour and shape properties, is entirely developed and (b) they have
also developed and agreed on a grammatical construction to prevent reference
problems. Agents thus have a shared lexicon for both properties and prototypes,
which will drastically speed up learning the remaining challenges. They will
only need to develop other constructions that will introduce new grammatical
constraints to refer to multiple properties of objects.

Figure 5.4 presents the results at the population level, but it must be kept
in mind that the language development process of each agent is shaped only
by the interactions it participates in. This means that some agents can reach
maximum confidence for a particular challenge faster and, therefore, move to
higher challenges at different times than other agents. For instance, it may
be that some agents are still on the first challenge while others have already
moved to the second one. This mismatch of current challenge in agents produces
interactions in which the communication has a high chance to fail and decreases
the confidence score gain in phases where the population gradually shifts from
one challenge to another. This effect is best visible at the transition between
the two first challenges (see interactions 1500-2500 in Figure 5.4), as it is this
transition that requires the most time.

The evolution of the competition between the different terms created by the
population and its lexicon size is shown in Figure 5.5. During the initial inter-
actions there is an explosion of words created by agents. This is due to the fact
that (a) agents start with an empty lexicon and (b) the interactions between
them are still quite limited, which causes that agents are continually creating
new terms and learning them from their interaction peers to name the different
prototypes in the world. By interaction 500 (around 100 interactions per agent)
this tendency stops and the number of words per meaning starts to decrease as
a consequence of the alignment process, which reduces the size of the lexicon of
agents by deleting the less used constructions.

At approximately the interaction 2000 the competition among constructions
rises again as can be seen from the shape of the green line in Figure 5.5. This
growth is caused by the population gradually moving to the second challenge:
at this point new competing terms are introduced to refer to properties (colour
and shape) of objects. This tendency continues until interaction 3000, where a
second peak in the number of words per meaning is observed and the average
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Figure 5.5: Result of ten runs for a population of ten agents provided with the
autotelic principle. The x-axis represents the number of guessing games played
by the population, the left y-axis the rate of names per meaning and the right
y-axis the average lexicon size. Initially the population creates competing names
for the concepts to express, but by the end of the runs they have aligned their
lexicon to a minimum set. As a consequence, the number of words per meaning
decreases until one, which means that there is no lexicon competition.

lexicon size of an agent has 30 constructions.
After this point both the number of words per meaning and the lexicon size

gradually decrease, as the alignment process slowly removes the less utilised
word-meaning mappings in the population. At the end of the runs the lexicon
size has been reduced to a minimal set, causing the number of words per meaning
to descend to one, as there is no lexical competition anymore.

5.4 Incremental learning of skills

So far the results obtained, both in the baseline experiment and in the experiment
that includes the autotelic principle, have shown that a population of agents
is able to develop a shared language (that includes lexical concepts as well as
primitive syntactic restrictions) in order to communicate about their context in
the form of multi-word utterances. In the previous section we have seen how
agents can autonomously manage the complexity of their linguistic interactions
by trying to stay in a state of flow. Despite the fact that each agent independently
decides when to change the communicative challenge to address, by the end of
the runs all agents in the population have maximum confidence for all challenges.

The fact that by using the autotelic principle agents can gradually increase
the complexity of their language in a step by step fashion prevents them from
attempting utterances that are too complex for their current skill level. This
avoids interactions in which the resulting utterance would be too difficult for the
hearer and, as a result, it would not be able to infer information from them.
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Figure 5.6: Average number of interactions required for reaching maximum con-
fidence in the different learning tasks of the baseline experiment. The results
show a relation between the complexity of a learning task and the number of
interactions needed to be mastered. LT 1 only requires about 400 interactions,
while LT 5 requires almost 1000.

These kinds of interactions occur much more often in the baseline experiment, as
some utterances may contain two or more words unknown to the hearer. In such
situations the hearer cannot establish the meaning associated to each unknown
word and it will not be able to infer the correct word-meaning mappings (see
subection 5.1.3). This poses the following question: do the staging of skills speed
up the development of more complex communicative tasks, in comparison to the
baseline experiment where the learning of the skills required for a certain task is
not organised?

In order to answer this question we have computed how many interactions
are required by each learning task in the baseline experiment (Figure 5.6) and in
each challenge (Figure 5.7) to reach maximum confidence. The results presented
here have been obtained computing the confidence gain for each learning task
in the same way as it is calculated in the autotelic principle, despite the fact
that confidence is a value associated to each challenge generated in the autotelic
principle and it is not used at all in the baseline experiment.

The results obtained show that more complex learning tasks require more
interactions to reach maximum confidence than less complex ones and therefore
are more difficult tasks to learn. This relation is incremental, as an agent at-
tempting the first learning task only needs around 400 interactions to achieve
maximum confidence, while an agent addressing the fifth one requires nearly
1000 interactions to master that task.

In contrast, when agents regulate the complexity of their interactions with the
autotelic principle this relation is inverted. It is during the first challenges that
agents need more interactions to reach maximum confidence. As this motivational
system allows them to stage skill learning, in more complex challenges they can



5.5. ANALYSING THE IMPACT OF INTERNAL EVALUATION 83

�

���

���

���

���

�

� ��� ��� ��� ��� ����

�
��
��
��
��

��
�
��
���
��
�

������������ ���� ������
���� � ���� � ���� � ���� � ���� �

Figure 5.7: Average number of interactions required for reaching maximum con-
fidence for each challenge in the experiment where agents are provided with the
autotelic principle. The results show an inverse relation between the time re-
quired to reach maximum confidence for a challenge and its complexity. This
is a consequence of (a) the reuse of skills learned in previous challenges and (b)
the reduction of interactions where the utterance would be too difficult for the
hearer to learn from.

reuse the skills previously learned, which speeds up the confidence gain for such
challenges. For instance, while the first challenge requires as many interactions
as the first learning task (400), the challenge of level 5 only takes 200 interactions
to be mastered.

5.5 Analysing the impact of internal evaluation

After examining (a) the impact that the intrinsic motivation system has in the
process of language development and (b) how its usage reduces the time de-
voted to more complex linguistic tasks as agents can rely on skills developed in
previous challenges, the question of how the results obtained with the current
implementation compare to the ones presented in Steels and Wellens [145] arises.

Unfortunately, the results of both implementations cannot be directly com-
pared. The reasons that do not allow the contrast between both experiments are
threefold:

• Firstly, the experimental set-up is not the same in both experiments. These
differences are not only the result of using different implementations of the
autotelic principle, but also differences in (a) the contexts the linguistic
agents should communicate about (including the physical feature values of
objects and the composition of scenes), (b) the specific communicative chal-
lenges and (c) the kind of language game played: in Steels and Wellens the
population plays a description game, while in all the experiments reported
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in this chapter agents play multi-word guessing games8.

• Secondly, despite being developed in an earlier version of Babel [143], the
framework used to implement the experiments of this thesis, the code by
Steels and Wellens was not maintained and cannot be run anymore.

• Thirdly, the data used in their experiment is lost, which means that even
if the current experimental set-up is modified to match the one used by
Steels and Wellens there is no data available to compare the performance
of both motivation system implementations.

However, there is a feature in the current implementation of the autotelic
principle that was not present in the implementation used by Steels and Wellens
and its impact can be analysed: the addition of an internal evaluation measure.
This measure has been introduced in the current implementation to take into
account the differences in knowledge between the interacting agents, as the out-
come of a linguistic interaction is determined by the skills of the agents that
participate in it. This section compares the experimental results obtained in
Sections 5.3 and 5.4 to an experimental set-up that only differs from the previ-
ous one in that it does not perform an internal evaluation when updating the
internal state of challenges (Section 4.5). The results of ten runs for a popula-
tion of ten agents provided with the autotelic principle with and without internal
evaluation are shown in Figure 5.8a. The x-axis represents the number of guess-
ing games played by the population, the left y-axis the rate of communicative
success (smoothed by a sliding window of 100 interactions) and the right y-axis
the average confidence value associated to the different challenge levels.

As was expected from the results obtained in the previous sections, the pop-
ulation manages to develop a shared language in both experimental set-ups (i.e.,
when an internal evaluation is performed and when it is not taken into account).
The shape of the communicative success rates for both experimental set-ups are
similar: in both cases the communicative success grows during the experiment,
presents a drop in the transition between the communicative challenges of level
1 and 2 and reaches a 100% rate by the end of the interactions. However, the
results show that performing an internal evaluation increases the communicative
success of the population during the experiment, excluding the before mentioned
transition from challenges of level 1 and 2.

In addition, performing an internal evaluation allows the interacting agents
to gain confidence in the communicative challenges they address faster, which
speeds up the development of the shared language. This finding is confirmed by
the evolution of lexicon size and the rate of names per meaning during the experi-
ment (Figure 5.8b). As the population makes the transition between challenges of
level 1 and 2 faster when an internal evaluation is performed, the different terms
to refer to object properties are created and learned earlier. This allows the pop-
ulation to start aligning their inventories sooner. As a consequence, their lexicon
reaches a minimal set of word-meaning mappings faster and the population gets
rid of lexical competition in less interactions.

8See Section 2.1 for a description of the existing language games.
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(a) The x-axis represents the number of guessing games played by
the population, the left y-axis the rate of communicative success
(smoothed by a sliding window of 100 interactions) and the right y-
axis the average confidence value associated to the different challenge
levels.
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(b) The x-axis represents the number of guessing games played by the
population, the left y-axis the rate of names per meaning and the right
y-axis the average lexicon size.

Figure 5.8: Comparison of the result of ten runs for a population of ten agents
provided with the autotelic principle with and without performing the internal
evaluation. The results show that when performing the internal evaluation the
population (a) gains confidence in the different communicative challenges faster
and (b) achieve a higher rate of communicative success during the experiment.

It can be concluded that the inclusion of an internal evaluation measure
to the autotelic principle is advantageous when the motivation system is used
in language evolution experiments, as it (a) allows the population to move to
higher level communicative challenges faster and (b) speeds-up the creation and
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alignment of words and the convergence of the shared lexicon to a minimal set.

5.6 Increasing the challenge dimensions

The experiments have focused, so far, on the development of a language to
describe objects in a context, where agents can refer to both prototypes and
properties. In this experimental set-up, challenges have been defined as a one-
dimensional vector, where their only parameter is the number of properties to
verbalise. The expressing power of the resulting language can be extended by
including the notion of spatial relationship between the objects in the scene9.
In order to do this, we need to extend the definition of challenges to a two-
dimensional vector(< numprop, numrel >), where one extra parameter is used to
specify if the spatial relation between two objects should be expressed or not.

Extending the number of dimensions that determine a challenge configuration
requires a new definition of complexity that takes into account both parameters.
As the specific parameter values of a challenge determine the number of meaning
predicates of the conceptualised meaning to be formulated by the speaker, the
complexity of a certain challenge (and consequently its associated level) must be
computed based on these meaning predicates.

Level [1] [2] [3] [4] [5]
Challenge < 0, 0 > < 1, 0 > < 2, 0 > < 3, 0 > < 4, 0 >

< numprop, numrel > < 0, 1 > < 1, 1 > < 2, 1 >

Table 5.5: Challenges and its associated level as a vector of two parameters:
number of properties and if a relation between two objects is expressed. The
level associated to a specific challenge is determined by the number of linked
variables of the conceptualised meaning network it will generate.

We have chosen to define the complexity based on the number of linked vari-
ables in the meaning network, as it is a measure that reflects not only the number
of meaning predicates of a meaning network but also how interconnected they
are. There are two kinds of meaning predicates: while those introducing a pro-
totype or property introduce one variable (for example prototype(?vari, table)
or shape(?vari, squared)), relations express spatial associations between two dif-
ferent variables (as in next − to(?vari, ?vark)). Following this definition, the
different challenge configurations can be classified in relation to the complex-
ity of the meaning networks they generate (see Table 5.5). For example, two
challenges correspond to level 3, as there are two possible challenge parametrisa-
tions of equal complexity10: one introducing meaning predicates that refer to two

9As the physical properties of objects, the number of different spatial relations is prede-
termined. During a scene the spatial relation between two objects does not change. More
information can be found in Subsection 5.1.1.

10Note the number of linked variables in the resulting meaning structures of both chal-
lenge parametrisations of level 3 is the same. In < 2, 0 >, either if the properties re-
fer to the same (prototype(X, table), colour(X, blue), shape(X, squared)) or to different ob-
jects (prototype(X, table), colour(X, blue), prototype(Y, chair), colour(Y, green)) the number of
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?xitize-word
args: [?x, ?y]
sem-cat:

sem-class: event
syn-cat:

lex-class: verb

←
 ?xitize-word

# meaning: {bind(left-to, ?x, ?y)}
# form: {string(?xitize-word, "xitize")}

 (xitize-cxn)

Figure 5.9: Example of a lexical construction C that results from a process of
word creation or adoption of a spatial relation. In this case, C introduces a
spatial relation left-to to the word "xitize". Note that two arguments, ?x, ?y, are
introduced which latter should be linked to the objects of the relation.

properties of the topic and another that expresses the existing spatial relation
between two objects.

As in the case of properties and prototypes, agents need lexical constructions
in order to refer to spatial relations. Agents can create and learn these lexi-
cal constructions with the diagnostics and repairs presented in Subsection 5.1.3.
There is a small difference between a lexical construction to express a spatial
relation in comparison to those that refer to a prototype or a property, since its
meaning predicate will introduce two arguments instead of one (see Figure 5.9).

Additionally, agents also need to learn new grammatical constructions in or-
der to (a) link the variables introduced by lexical constructions that express spa-
tial relations and (b) insert word-order constraints that facilitate the formulation
and comprehension of the resulting utterance. As in the previous grammatical
constructions the word order constraints are not fixed but rather randomly de-
cided when the construction is created, which introduces competition between
grammatical constructions at the word-order level. An example of such construc-
tions is shown in Figure 5.10.

5.6.1 Experimental results

The challenge configuration and the ability to create and learn lexical and gram-
matical constructions to refer to spatial relations are the only additions made
with respect to the previous experiment configuration. The results of ten runs
for a population of ten agents provided with the autotelic principle for a two-
dimensional challenge configuration are shown in Figure 5.11. The x-axis rep-
resents the number of interactions in the population. The left y-axis represents
the rate of communicative success (smoothed by a sliding window of 100 interac-
tions) and the right y-axis indicates the number of challenges that the population
masters grouped by levels, measured by calculating the average confidence score
of each agent in the population for each challenge level.

The shape of the resulting communicative success resembles the ones ob-
tained in the former experiment configurations. As in the previous experiments,

linked variables is two. The same happens in < 0, 1 >, as the meaning predicate express-
ing the spatial relation introduces two variable linkings (prototype(X, table), left − to(X,Y ),
prototype(Y, chair)).
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?unit-1
args: [?x]
sem-cat:

sem-class: referent
syn-cat:

lex-class: noun


 ?unit-rel

form: {precedes(?unit-1, ?unit-rel),
precedes(?unit-rel, ?unit-2)}

←


?unit-rel
args: [?x, ?y]
sem-cat:

sem-class: event
syn-cat:

lex-class: verb


(relation-cxn)



?unit-2
args: [?y]
sem-cat:

sem-class: referent
syn-cat:

lex-class: noun



Figure 5.10: Example of a grammatical construction C that (a) links the variables
introduced by a relation to two prototype units and (b) introduces word-order
restrictions between these units. In this case, C will introduce two precedes
relations between units ?unit-1, ?unit-2 and ?unit-rel when (a) both ?unit-1
and ?unit-2 have as semantic and syntactic classes referent, noun and (b) their
variables refer to different objects which correspond to the arguments of the
relation unit ?unit-rel.

agents start with an empty construction inventory and with the goal of develop-
ing a shared language to refer to prototypes as a first challenge. They generate
it rapidly, increasing their confidence on the first challenge up to its maximum
value around interaction 2000. Note that the communicative success starts to
drop before the average confidence value in the population has reached its max-
imum, as observed in the results of the first experiment using the motivation
mechanism. This is due to the fact that some agents have already reached the
highest confidence score for the first challenge and they have moved to the next
one, where they start to refer to the properties of objects. In order to achieve its
new communicative task, these agents need to create new lexical and grammat-
ical constructions to refer to the different colours and shapes in their context.
This also causes a decrease in the average confidence gain for the first challenge,
as agents that have not yet reached maximum confidence are exposed to more
complex utterances, which reduces the number of successful interactions and has
an impact on how the confidence score associated to the first challenge is updated.

The communicative success rate rises again once the population starts to
share the lexical constructions to refer to colour and shape as a response to the
second communicative task, and so does the average confidence value associated
with the challenge of level two. As in the previous transition between challenges,
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Figure 5.11: Result of ten runs for a population of ten agents provided with
the autotelic principle attempting the challenges described in Table 5.5. The
x-axis represents the number of guessing games played by the population, the
left y-axis the rate of communicative success (smoothed by a sliding window of
100 interactions) and the right y-axis the average confidence value associated
to the different challenge levels. The results show that communicative success
rate increases as the population attempts more complex challenges, as the shared
language progressively gains expressive power. There are two drops in the com-
municative success gain, which correspond to the periods where the population
is enlarging its lexicon to refer to (a) properties and (b) spatial relations. By
the end of the simulations all utterances formulated are unambiguous, reaching
100% communicative success.

a drop of communicative success rate and confidence gain is observed again when
the first agents move to the challenges of level three. At this point agents can
address two challenges: one allows them to increase the expressive power of
their lexicon by stating more properties of the topic, while the other extends
their construction inventory with new lexical and grammatical constructions to
express spatial relations between objects. As long as both challenges have not
reached maximum confidence, the decision of which of the two challenges should
be attempted is randomly chosen at the beginning of the interaction11. The
percentage of communicative success increases again when the population has
reached a consensus on how to name the new lexical and grammatical concepts,
plateauing to a percentage above 95% by the time that the average confidence
score in challenges of level three has reached its maximum.

The four remaining challenges (two of level four and two of level five) extend
the construction inventory of the population by adding new grammatical con-
structions that allow more complex topic descriptions. Once these constructions
have been learned and spread over the population, the percentage of ambigu-
ous utterances is reduced to zero, which means that the population can now

11See Subsection 4.6.1 in the chapter on the autotelic principle.
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unambiguously describe topics. This can be observed in the percentage of com-
municative success, which reaches 100% by the end of the simulations. Soon after
interaction 7000 all agents in the population reach the maximum confidence value
for each possible challenge.

5.7 Contribution to previous experiments

As already mentioned before, Steels and Wellens [145] carried out the first exper-
iment in which the autotelic principle was used in a language evolution experi-
ment. The set of experiments presented in this chapter are inspired on their work
and are the result of a new design and implementation of both the motivation
system and the experimental set-up, including the scenes, the interaction script
and the different diagnostics and repairs used.

Although a direct comparison between the two experimental set-ups is not
possible because there is no data available of their experiment, it cannot be
run anymore and the experimental set-ups are different (e.g., the population do
not play the same language game: a description game in Steels and Wellens and
multi-word guessing games in the experiments of this chapter), both experimental
set-ups explore the role of intrinsic motivation in language evolution experiments
in a discrete world, where objects have discrete property values. The goal of this
chapter was not to reimplement the experiment by Steels and Wellens, but to
extend their findings.

This chapter accomplishes this goal by (a) explicitly analysing and comparing
the results obtained without using the autotelic principle in a language evolu-
tion experiment to those when the motivation system is used (Sections 5.2 and
5.3, respectively), (b) investigating the impact the autotelic principle has in the
learning of communicative skills (Section 5.4), (c) proving that the addition of an
internal evaluation to the autotelic principle has a positive impact in the devel-
opment of a shared language (Section 5.5) and (d) testing the motivation system
in a bi-dimensional challenge configuration which increases the expressive power
of the resulting communication system (Section 5.6).

5.8 Summary

This chapter presented a series of experiments where a population of agents made
use of the autotelic principle to self-regulate the complexity of their linguistic
interactions while developing a shared language to describe objects in a scene.
The first part of the chapter describes the specificities of the world and the
language game played: the set of physical features per object, the set of scenes
that conform the world, the different mechanisms to create and learn new lexical
and grammatical constructions and the way agents can align their vocabularies.

In the second part, the results of a baseline experiment are compared to those
obtained when the population is provided with the autotelic principle. The results
show that in both experimental configurations the population manages to create
a language to describe objects in the scenes. The results obtained in the second
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experimental set-up show that agents successfully increase the complexity of the
communicative tasks they attempt, as a result of trying to stay in a state of flow,
which reduces the number of ambiguous utterances they formulate. Additionally,
the number of interactions to achieve maximum confidence for each challenge
decreases for more complex tasks, as (a) they can rely on skills developed in
previous challenges and (b) reduce the number of utterances that are too complex
to learn from. A comparative analysis on the impact of internal evaluation in the
motivation system has shown that it improves the development and convergence
of the shared lexicon to a minimal set.

Finally, a third experiment is reported where the challenge definition has been
extended in order to allow the population to express relations between objects.
This case is interesting because, for certain levels of complexity, agents have two
communicative challenges to master. As in the results obtained in the second
part, agents progressively develop their communicative skills when trying to stay
in a state of flow, increasing the communicative success of their interactions until
they reach 100%.
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Chapter 6

Experiments on a continuous
domain: a case study on colour

This chapter describes the second set of agent-based experiments, where a popu-
lation of artificial agents becomes engaged in linguistic interactions with the goal
of developing a shared language for the domain of colour. Similar to the previous
chapter, agents need to self-organise a vocabulary to successfully refer to colour
samples in their context. They manage the complexity of their interactions us-
ing the autotelic principle, starting with simple colour sample descriptions and
extending them into multi-word utterances making use of different colour strate-
gies.

The first part of the chapter (sections 6.1 and 6.2) is devoted to the research
on the colour domain, explaining what colour prototypes and colour systems
are, introducing the different colour strategies used in the experiments and how
they can be modelled as a network of cognitive operations. It continues with a
description of the experiments carried out (Section 6.3), explaining the different
diagnostic and repairs available to the population and the alignment process that
agents use to adjust their different sets of prototypes. The last part of the chap-
ter presents three experiments that test the motivation system under different
situations. In the first one (Section 6.4) agents use the autotelic principle as a
mechanism to regulate the complexity of their utterances. The second experi-
ment (Section 6.5) evaluates the motivation system as a mechanism to control
several colour strategies at the same time. Finally, the third experiment (Section
6.6) evaluates the impact of perceptual deviation in the emerged communicative
system.

6.1 The domain of colour

The domain of colour has been and still is of great interest to a lot of researchers.
This attention is caused by the observed differences in how colours are described
in human languages [16]. It is commonly accepted that a colour space, the space
of colours that can be perceived, is organised in different colour categories, subsets
of this space (Figure 6.1). Colour prototypes are points in the colour space that
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Figure 6.1: A colour space is divided into colour categories that represent subsets
of that space. These categories are usually represented by colour prototypes,
which are points in the colour space. Image extracted from Bleys [21].

represent a particular colour category in a colour space [98]. It is important to
stress that, despite the fact that all human languages divide the colour space
into colour categories, the number of colour prototypes and their position in the
colour space differs among languages. For instance, while English has eleven
basic colours (red, blue, green, yellow, pink, purple, orange, brown, black, white
and grey), Himba has only five (serandu, zoozu,dumbu, vapa and burou) [95].

Formally, human languages divide the colour space into a set of colour proto-
types {c1, c2, ..., cn}. Given the colour prototype ck, its associated cell Rk, which
determines the associated colour category, contains every point whose distance
to ck is shorter or equal to the distance to any other prototype ci (Figure 6.1).

Different colour systems have been proposed to represent colour spaces1. In all
the experiments reported in this chapter I use the CIE 1976 L*a*b* [96] reference.
In this colour system, colour samples (also named colour chips) are represented
in three dimensions: the L* dimension represents lightness, the a* dimension
roughly redness-greenness and the b* approximately yellowness-blueness. The
difference between two colour samples is determined by their Euclidean distance.
The values of the L* dimension range from 0 (black) to 100 (white), while both a*
and b* can have positive or negative values and are only limited by the physical
properties of materials [21, p. 192].

Most of the studies on colour have focused on how languages use single terms
to refer to colours samples. However, usually this is not the preferred way to
describe them: experiments by Simpson and Tarrant [110] and Lin et al. [76]
have shown that only 15% of colour samples are characterised using a single
colour term when human subjects are asked to describe colour samples without
any restriction. These results provide evidence to the fact that commonly people
choose to express more information about colour samples than what is possible
by using only single terms.

Researchers working on artificial language evolution have shown a particular
1Interested readers are referred to the Appendix "Colour Spaces and Systems" in [21] for

an overview of different colour systems.
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interest in the domain of colour. Most of the models proposed have focused on
the emergence of single colour terms [140, 15, 11, 12], although there have been
some attempts to model more complex colour descriptions.

In this respect, the most advanced contribution to the domain of colour has
been made by Bleys. In his doctoral thesis [21] he explains and studies different
language strategies, a particular method to express one area of meaning. These
language strategies are then tested in artificial language evolution experiments,
showing how these models can emerge and be learned by a population of artificial
agents.

The research reported in this chapter stands on his work, as Joris Bleys kindly
gave me access to the original implementation of the language strategies he used
in his research in order to do my own experiments. Readers interested in Joris
Bleys’ research are referred to his multiple articles in conferences and books [24,
25, 22, 23]. In the next section the different language strategies to describe colour
samples used in the experiments reported in this chapter are presented. The basic
colour, graded membership and colour combination strategies (subsections 6.2.1,
6.2.2 and 6.2.3, respectively) have been adapted from Joris Bleys’ code.

6.2 Language strategies for the domain of colour

Human languages employ different methods to describe a colour sample, ranging
from the usage of a single term to more elaborate descriptions that involve colour
modifiers or combination of colour prototypes. This section does not present an
exhaustive record of all language strategies observed in natural languages but
rather the part of them which is used in the computer simulations of this chapter.

6.2.1 Basic colour strategy

In the basic colour strategy, a single term is used to describe a colour sample.
In this strategy, the speaker first (a) identifies the colour prototype that is the
closest to the colour sample he or she wants to mention and (b) uses the term
associated with that category to characterise the chosen colour sample (Figure
6.2a).

For instance, English splits the colour space into eleven basic colour cat-
egories, represented by the prototypes {c1, c2, ..., c11}. When using the basic
colour strategy, English speakers employ the term associated to the closest pro-
totype ck to the colour sample they want to refer to. For example, colour samples
will be described using the word "blue" when their closest colour prototype cor-
responds to the blue colour category (L*a*b* values of [51.576, -0.41787, -52.648]
according to [149]).

6.2.2 Graded membership strategy

The graded membership strategy (see Figure 6.2b) characterises a colour sample
by expressing both the closest colour prototype and the distance between the
colour sample to it. As in the basic colour strategy, the speaker has to (a) identify
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(a) Colour classification operation (b) Graded membership operation

(c) Category combination operation

Figure 6.2: Visual representations of different operations used in colour strategies.
The basic colour strategy (Figure 6.2a) describes a colour sample referring only
to its closest basic colour prototype. In the graded membership strategy (Figure
6.2b) the distance between the colour sample and the closest colour prototype
is also expressed. In a category combination operation (Figure 6.2c) the colour
space is transformed towards the main colour prototype of the colour sample in
order to perform a second classification. Images adapted from Bleys [21].

the colour prototype closer to the colour sample to describe but additionally (b)
he or she also refers to the distance between them, which is captured by a set of
modifiers.

This strategy is also observed in English, where it is possible to describe
a colour sample by combining a basic colour term with adverbs such as “very”
(when the sample is close to the basic colour prototype) or the suffix “-ish” (when
the distance between the two points is bigger), as in “very blue” or “greenish”.

6.2.3 Colour combination strategy

Another strategy observed in human languages is colour combination. As its
name suggests, this strategy consists of describing a colour sample using two
basic colours known by the speaker. Different models have been proposed [74, 83],
but I chose to use a strategy originally proposed by Bleys [21], that consists in
classifying colour samples twice, the second classification being done after a colour
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space transformation.
In this model, speakers first (a) identify the closest colour prototype to the

colour sample, as in the basic colour strategy, and then (b) transform the colour
space towards that prototype (Figure 6.2c). Finally, they (c) classify the colour
sample again on the transformed colour space, obtaining a second colour proto-
type. The colour space transformation shrinks the area of the colour category
identified in (a) but does not remove its prototype from the colour space, allowing
the classification of the colour sample to the same colour prototype twice, before
and after the colour space transformation.

As for the previous language strategies, this one also exists in English. English
speakers can describe a colour sample using two colour terms, as in "green-blue"
or "yellow-green".

6.2.4 Lightness strategy

The lightness strategy describes a colour sample expressing its closest colour pro-
totype and the variance in lightness between the colour sample and the prototype.
There are different approaches to model this strategy. For instance, Bleys [21]
modelled it as a combination of colour categories with white and black colour
prototypes. For example, "light blue" would be the resulting utterance of the
combination of the colour categories "blue" and "white". I opted for a different
approach, in order to be able to specify the difference in the value of the lightness
dimension between the colour sample and the closest colour prototype.

Similar to the basic colour strategy, the speaker first has to (a) identify the
closest colour prototype to the colour sample to describe, but additionally (b)
he or she also needs to make explicit the difference in lightness between them,
represented as a float number, which is captured by a set of modifiers. In the
CIE 1967 L*a*b* colour system the L* dimension is used to express the lightness
of colour chips. Using a lightness modifier on a colour sample changes its value
for the L* dimension, increasing or decreasing it within the range of L* possible
values. Taking this approach the lightness modifier in the utterance "light blue"
performs an operation that increases the value of the L* dimension of the colour
category "blue".

6.2.5 Chromaticity strategy

This strategy states how saturated a colour sample is. The level of saturation
is expressed by a modifier and has been implemented in a way similar to the
lightness strategy. First, the speaker (a) identifies the colour category of the
colour sample to describe, and additionally (b) uses a modifier to express the
difference in chroma, which is a float number as in the lightness strategy, between
the colour category and the colour sample.

The main difference with the lightness strategy is that chromatic modifiers
act on the values of two dimensions (a* and b* ) instead of only one. What
a chromatic modifier does is to increase or decrease the chroma (C∗ab) value of
a colour sample while keeping the same hue (h∗ab) value. These values are not
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directly represented in the L*a*b* colour system, but can be computed using
the following formulas [21, 192]:

C∗ab =
√
a∗2 + b∗2

h∗ab = arctan
b∗

a∗

This strategy is also observed in English. For example, "pale blue" decreases
the saturation of the colour category associated to "blue", while "bright blue"
increases it. This operation, although, cannot be performed on all basic colours
of English, as the colour categories "brown" and "orange" have very similar hue
values.

6.2.6 Colour strategies as a network of meaning predicates

Language strategies have been implemented as semantic constraint networks us-
ing the Incremental Recruitment Language (see Section 2.2). These networks
contain meaning predicates that perform cognitive operations such as object se-
lection, categorisation or filter, and semantic entities, which in this experimental
set-up correspond to prototypes of different kind (colour, membership, lightness
or chromaticity). This section briefly describes the cognitive operations used in
the different colour strategies:

• equal-to-context: this operation introduces a variable containing the set
of objects in the context, which in the experiments reported in this chapter
consists of a set of colour samples.

• get-XXXX-category-set: this primitive introduces a variable containing
the prototypes of the specified category. Depending on the chosen category,
the variable may contain a set of colour, lightness, membership or chromatic
prototypes.

• profile-XXXX-dimensions: this operation gets a set of colour samples
and filters them on particular dimensions of the colour system, returning a
filtered set. As the CIE 1967 L*a*b* is the colour system used in all the
experiments of this chapter, profiling according to (a) lightness will block
the a*b* dimensions of each colour sample (producing a set of samples on
the grey scale as an outcome), (b) chromaticity will filter the set cutting
off the L* dimension and (c) colour will return the original set.

• categorise-by-XXXX: this primitive filter takes as input a set of entities
and a given category, and returns the set of entities having the given cate-
gory as their prototype. For instance, categorising a set of colour samples
according to a colour category cn will return the subset of samples that
have cn as their closest category with an activation value for each of them
representing how similar the colour sample is to the colour category.
When categorising according to lightness or chromaticity an additional ar-
gument is required, as these prototypes have different dimension values
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depending on the entity they are applied to. Taking an example from En-
glish, the lightness modifier "dark" will correspond to different L* values
when applied to the colour categories "yellow" or "brown".

• draw-category-set-to-category: this operation transforms category sets,
shrinking them towards a specified category. It returns a transformed cat-
egory set where the prototypes values of each category have been modified
in the direction of the input category. This cognitive operation is used in
the colour combination strategy (Subsection 6.2.3) to transform a colour
category set after a first classification of a colour sample in order to perform
a second categorisation of it.

• select-most-activated: this primitive selects the highest activated entity
from a given set. It uses the activation values obtained in the cognitive
operations of categorisation to determine the most prominent entity from
the input set.

These meaning predicates are then combined into IRL-networks that cap-
ture the different cognitive operations involved in colour strategies. We illus-
trate the relationship between the different meaning predicates in a network
taking as example the basic colour strategy (Figure 6.3). The meaning predicate
equal-to-context introduces the colour samples of the context, represented by
the variable ?s1, in the agent’s meaning representation. This set is profiled on the
colour dimensions (variable ?s2 ). The colour prototypes known by the agent are
obtained with the get-basic-colour-category-set operation (variable ?bccs).
On the one hand, when this strategy is used in formulation the speaker must find
the colour category ?cc in its colour category set that is most activated given
?topic, and will use the word associated with it to describe the topic. On the
other hand, in comprehension the hearer makes use of the colour category ?cc
recovered from the utterance and uses it to identify the colour sample on the
context that is more activated.

6.3 Description of the experiments

The goal of the experiments is, as in the experiments presented in the previous
chapter, to make a population of artificial agents develop a shared language to
communicate about objects in their environment (in this case colour samples).
Agents face different communicative challenges and decide which one to address
making use of the autotelic principle. A shared language emerges from successive
interactions between two agents randomly picked from the population, one acting
as a speaker and the other as a hearer.

6.3.1 World and context

In each interaction, both the speaker and the hearer aim to communicate about
one colour sample from their shared context or scene, the environment in which
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(equal-to-context ?s1)

(profile-colour-dimensions ?s2 ?s1)

(categorise-by-colour ?s3 ?s2 ?cc ?bccs)

(get-basic-colour-category-set ?bccs)(select-most-activated ?topic ?s3)

Figure 6.3: Example of a colour strategy as a connected network of meaning
predicates. This example corresponds to the basic colour strategy. The context
of the interaction and the colour categories known by the agent are captured
in the ?s1 and ?bccs variables. In formulation, a topic ?topic is described with
the word associated to the colour category ?cc, which corresponds to the most
activated colour category for that colour sample.

interactions take place, which consists of a set of colour samples. The set of all
possible colour samples in an experimental set-up is called the world.

In each interaction, the speaker selects the context, which is a subset of the
colour samples present in the world. It chooses both the size of the context
and the different colour samples that are part of it. The choice depends on the
communicative challenge the speaker wants to attempt. For example, if the world
consists of the focal colour samples for English [149], a possible context could
contain the colour samples "red", "green" and "blue" if contexts are generated
by randomly picking colour samples of the world.

6.3.2 Multi-word guessing game

The particular language game that the population of agents plays, as in the ex-
periments on the discrete domain, is a multi-word guessing game. The speaker
produces an utterance containing one or more words describing the selected colour
sample of the context and the goal of the hearer is to use this information to iden-
tify the colour chip the speaker refers to. A detailed description of interactions
in this language game can be found in the previous chapter (Subsection 5.1.2).

6.3.3 Diagnostics and repairs

Agents start the simulations with an empty lexicon and no prototypes. They can
expand their construction inventory using different diagnostics, methods to iden-
tify problems during an interaction, and repairs, procedures to correct problems,
and also enlarge the list of known prototypes by creating or adopting new ones.
Constructions are stored in the construction inventory or lexicon of the agent,
which defines its vocabulary and grammar. Agents make use of their lexicon to
formulate, verbalise a conceptualised meaning, and to comprehend, extract the
meaning representation of an input utterance.
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As in the previous chapter, the two first diagnostics and repairs that agents
need in order to build a shared language are those that allow them to create and
learn lexical constructions (Figure 6.4):

Create a word: the speaker does not have a word precise enough to refer
to a colour, membership, lightness or chromatic prototype during the process of
conceptualisation.

• Diagnostic: the speaker cannot come up with a discriminative conceptual-
isation of the topic.

• Repair for lack of relevant colour prototype: the speaker creates a new
colour prototype C and sets the colour sample as its value. Additionally,
the speaker invents a new term t for the colour prototype and creates a
new construction relating C with t.

• Repair for lack of relevant membership prototype: the speaker creates a
new membership prototype M and sets its value to the distance between
the colour sample and the prototype of its closest colour category (see
Subsection 6.2.2). Additionally, the speaker invents a new term t for the
membership prototype and creates a new lexical construction relating M
with t.

• Repair for lack of relevant lightness prototype: the speaker creates a new
lightness prototype L and sets its value to the difference between the L*
dimension values of the colour sample and its closest colour prototype.
Additionally, the speaker invents a new term t for the lightness prototype
and creates a new lexical construction relating L with t.

• Repair for lack of relevant chromatic prototype: the speaker creates a new
chromatic prototype Ch and sets its value to the difference in chroma (see
Subsection 6.2.5) between the colour sample and its closest colour proto-
type. Additionally, the speaker invents a new term t for the chromatic
prototype and creates a new lexical construction relating Ch with t.

Adopt a word: the hearer cannot identify the meaning predicate associated
with an unknown word t, which may refer to a colour, membership, lightness or
chromatic prototype.

• Diagnostic: the hearer encounters an unknown word in the input utterance.

• Repair for unknown word that refers to a colour prototype: the hearer uses
the feedback from the speaker to create a new colour prototype C with the
colour sample of the topic as its value. Additionally, the hearer creates a
new construction relating C with t.

• Repair for unknown word that refers to a membership prototype: the hearer
uses the feedback from the speaker to create a new membership prototype
M and sets its value to the distance between the colour sample and its
closest colour prototype. Additionally, the hearer creates a new lexical
construction relating M with t.
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?xotubo-unit
sem-cat:

sem-colour-cat
syn-cat:

syn-colour-cat
ref: [?cat]

←
 ?xotubo-unit

# meaning: {bind(colour-category, ?cat, cc-1)}
# form: {string(?xotubo-unit, xotubo)}


(xotubo)

Figure 6.4: Example of a lexical construction C resulting of the process of cre-
ating or adopting a word. In this case, C expresses a relation between the colour
category cc-1 and the word "xotube". From the meaning-form relation the agent
can infer that "xotube" will be used to refer to a colour prototype and therefore
assigns the corresponding semantic and syntactic classes to it.

• Repair for unknown word that refers to a lightness prototype: the hearer
uses the feedback from the speaker to create a new lightness prototype L
and sets its value to the difference in the L* dimension between the colour
sample and its closest colour prototype. Additionally, the hearer creates a
new lexical construction relating L with t.

• Repair for unknown word that refers to a chromatic prototype: the hearer
uses the feedback from the speaker to create a new chromatic prototype Ch
and sets its value to the difference in chroma between the colour sample
and its closest colour prototype. Additionally, the hearer creates a new
lexical construction relating Ch with t.

These diagnostics and repairs allow agents to build a repertoire of different
prototypes and lexical constructions. However, only with lexical constructions
agents cannot express or reconstruct the complete meaning network issued from
the process of conceptualisation of the topic. Moreover, in some contexts, lexical
items alone could not carry enough discriminative information about the topic.
This problem occurs especially when different colour strategies can be used to
describe a colour sample.

As an example, in English a topic description combining the graded mem-
bership and the colour combination strategies could describe a colour sample as
"blueish green". This utterance contains two lexical words ("blue" and "green")
and one suffix ("-ish"). Without any further information the hearer would not
know how to combine these prototypes to reconstruct the meaning network. For
instance, which colour prototype refers to the first classification of the colour
sample or to which colour prototype the speaker is expressing its membership
with the suffix. Grammatical constructions are needed to solve this uncertainty,
as they convey non-lexical information in colour sample descriptions.

Grammatical constructions introduce additional semantic and syntactic infor-
mation to the transient structure, the linguistic structure in Fluid Construction
Grammar on which constructions are applied in order to formulate an utterance
from a meaning conceptualisation or comprehend the meaning conveyed given an
input utterance, while connecting the open variables introduced by lexical units
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?unit
sem-cat: sem-colour-category
ref: [?cc]
syn-cat: syn-colour-category




?new-unit
sem-cat: sem-colour-entity
syn-cat: syn-colour-entity
ref: [?topic]
subunits: {?unit}

←



?new-unit
# meaning: {select-most-activated(?topic, ?s3),

get-basic-colour-category-set(?bccs),
categorise-by-colour(?s3, ?s2, ?cc, ?bccs),
profile-colour-dimensions(?s2, ?s1),
equal-to-context(?s1)}

∅


(basic-colour-strategy-cxn)

Figure 6.5: Example of a grammatical construction: C captures the missing
semantic information of a colour sample conceptualised using the basic colour
strategy. It introduces a new unit ?new-unit with four meaning predicates to
the transient structure. Note that, in order to apply, C requires that a unit
expressing a colour category is already present in the TS.

to other meaning predicates, resulting in a linked meaning network. Whenever
problems of word-order or unconnected meaning network are detected, agents
will try to solve them creating a new grammatical construction (Figure 6.5):

Unconnected meaning network: This problem occurs when the resulting
meaning structure in the transient structure is not connected. This problem may
occur in both communicative roles.

• Diagnostic for the speaker : the resulting transient structure after formula-
tion does not contain all the meaning predicates of the meaning network
resulting from the conceptualisation process.

• Diagnostic for the hearer : the variables of the meaning predicates in the
resulting transient structure after comprehension are unlinked.

• Repair for the speaker : the speaker (a) identifies the unexpressed mean-
ing predicates comparing the meaning networks in the resulting transient
structure to those in conceptualisation and (b) randomly determines the
word order of the lexical items. It then stores this additional semantic and
syntactic information into a new construction that is added to its lexicon.

• Repair for the hearer : the hearer uses the feedback from the speaker to
(a) determine the intended topic and, based on the utterance, identify
the missing meaning predicates in its recovered meaning and (b) the word
order of the sentence. It then stores this additional semantic and syntactic
information into a new construction that is added to its lexicon.

Unknown word order: This problem occurs when the order of words in
the utterance is not recognised by the hearer, preventing it from reconstructing
a connected meaning structure.
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• Diagnostic: The word order of the input utterance is not known by the
hearer, impeding it from applying a grammatical construction that will
lead to a linked meaning network.

• Repair : as in the repair for an unconnected meaning network, the hearer
uses the feedback from the speaker to (a) determine the intended topic,
based on the utterance, (b) identify the missing meaning predicates in
its recovered meaning and (b) detect the word order in the utterance. It
then stores this additional semantic and syntactic information into a new
construction that adds to its lexicon2.

6.3.4 Alignment

These lexical and grammatical constructions are stored in the construction inven-
tories of agents.Similar to what was observed in the experiments on the discrete
domain, it may happen that some of these constructions are in competition, either
because two or more constructions (a) convey the same meaning with different
forms or (b) use the same form to refer to different meanings.

This competition is dealt with a mechanism called alignment, which is used
to tune the preference of agents on which constructions are used. Construc-
tions have a score, a number that ranges from 0.0 to 1.0, and is initialised at
0.5. Agents use this score to decide which constructions to employ when there is
competition in their lexicon, picking the competing construction with the highest
score. After each interaction, the interacting agents update the scores of the con-
structions used and their competitors following the dynamics of lateral inhibition
[155]. When the score of a construction gets to its minimum value (set to 0.0),
the construction is removed from the lexicon of the agent. The details of the
alignment used are explained in the previous chapter (Subsection 5.1.4).

When adopting a lexical construction, the hearer also has to decide when it
should add a new prototype to one of its sets (colour, membership, lightness and
chromatic) or associate the unknown word to an already existing prototype. This
decision is taken based on how close the observed prototype is to the closest pro-
totype in the inventory. The hearer will add a new prototype when the Euclidian
distance to the closest prototype in the inventory is bigger than 0.05. This check
is done to prevent the creation of new prototypes each time an unknown word
is heard. When the distance is equal or smaller, the hearer introduces compe-
tition in its construction inventory, as at least two lexical constructions refer to
the same prototype. For example, if an agent has two lexical constructions, one
for the English term “blue" and the other Spanish term “azul", these would be
competitors if they are associated to the same colour prototype.

Additionally, the different prototypes involved in a successful interaction also
undergo a process of alignment (see Figure 6.6). The idea is that the dimension
values of prototypes change over time, as agents are exposed to more occurrences
of those prototypes. For example, when an agent learns a new colour prototype

2Note that it may be the case that the hearer already has a grammatical construction to
express the same semantic information. In this case, the repair will introduce a competitor at
the grammatical level.
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Figure 6.6: Example of the alignment of membership prototypes in a population
of 5 agents. Initially each agent creates prototypes with different values. After
each successful interaction the involved membership values of the interacting
agents are adjusted. At the end of the simulation the population converges to a
shared set of membership prototypes.

associated with an unknown word wi, its value corresponds exactly to the values
of the colour sample named using wi in that interaction. The value of this colour
prototype, however, should represent the average colour sample that is labelled
with that word instead of having its value fixed to the values of the first colour
sample named using that word. Therefore, the value of a prototype changes as
it is used in more interactions.

The value of a prototype is computed slightly different depending on the na-
ture of the prototype. In the case of membership prototypes, the value m associ-
ated to a membership prototype M is updated by both speaker and hearer with
the following equation: mi = mi−1 − δrate(mi−1 − acti), where mi and mi−1 are
the current and previous values of M and acti the activation of the topic. In the
case of the other two unidimensional prototypes (lightness and chromatic), the
same formula is used, replacing acti for the values of the L* dimension or h∗ab,
respectively. This formula is also used to update colour prototypes. For each
dimension of the prototype (L*, a* and b* ), the same computation is made,
changing acti for the current dimension value of the colour sample. In the ex-
periment the δrate is set to 0.05 for all prototypes.

Finally, as it has been explained in the previous chapter, after each interaction
the interacting agents update their confidence and persistence values associated
with the challenge used in that interaction. The process of how challenges are
updated is described in Section 4.5.

6.4 Experiment 1: regulating linguistic complexity

This experiment mirrors the baseline experiment in which the autotelic principle
is used by a population of agents to autonomously regulate the linguistic com-
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Level [1] [2] [3]
Challenge < 1, 0 > < 1, 1 > < 2, 1 >

< numcol, nummemb >

Table 6.1: Challenges of the the first experiment and their associated level as a
vector of two parameters that correspond to the maximum number of colour and
membership categories expressed. The level value designates the complexity of a
specific challenge, which is computed based on its number of cognitive operations.

plexity of their interactions in the preceding chapter (see Section 5.3). However,
the two experiments differ as the one reported here takes place in a continuous
domain, that of colour, while the other occurs in a discrete world, where object
features and spatial relations are predetermined. This difference has a direct
impact on the sensori-motor and conceptual levels of the linguistic interactions
(see Chapter 2), as agents not only create and learn lexical and grammatical
constructions but they also need to create and learn prototypes of different kinds
that encode the meaning associated to lexical constructions.

Agents play a multi-word guessing game in which they communicate about
colour samples. They start the experimental runs with an empty lexicon, and en-
large it making use of three language strategies: basic colour, graded membership
and graded category combination, which are identified by agents as communica-
tive challenges of increasing complexity. The complexity of a communicative
task is determined by the number of cognitive operations it requires. This num-
ber differs among the different challenges and is used to establish its level : the
basic colour strategy has the smallest meaning network, as it involves less mean-
ing predicates than the other strategies, while the graded category combination
strategy the biggest one. Agents initially address the less complex challenge,
and use the level value to move between them, depending on the internal state
(boredom, anxiety or flow) associated to each challenge.

Moreover, more complex colour descriptions can reuse skills developed at ear-
lier stages. When addressing the basic colour strategy agents need to converge
both on a classification of the colour space into colour prototypes and on the
terms associated to each colour prototype. Once this has been achieved agents
can move to the second challenge, which corresponds to the graded membership
strategy. Since at this point the colour prototypes and their associated terms are
already known, the population will focus on the creation and alignment of mem-
bership prototypes and the terms related to them. Lastly, in the graded category
combination, a combination of the graded membership and the colour combination
strategies3, both colour and membership prototypes need to be known. Table 6.1
presents the different communicative challenges as a vector of two parameters.

3In the graded category combination agents first identify the closest colour prototype to the
colour sample and transform the colour space towards that prototype. Agents then classify
the colour sample again on the transformed colour space, obtaining a second colour prototype.
Finally, they express how close the colour sample is to the identified colour prototype in the
transformed colour space using a graded membership term.
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6.4.1 Context

In this experiment, the world consist of 268 different colour samples in the CIE
1967 L*a*b* colour space (see Figure 6.7). The world contains the focal colours
and the consensus samples4 for English and colour samples created by combining
two focal colours in different percentages: 25%, 45%, 55% and 75%, respectively.

Figure 6.7: The world of the first experiment consist of 268 different colour
samples in the CIE 1967 L*a*b* colour space: the focal and consensus colours
for English (see [149]) and colour samples created combining two focal colours
with percentages 25%, 45%, 55% and 75%.

The context of the interaction consists of a subset of the colour samples
present in the world. It is determined at each interaction by the speaker, both
its size and the colour samples that are part of it, depending on its current
challenge. In the basic colour challenge, the context is created by randomly
picking three focal colours of English. In the graded membership challenge,
the speaker chooses five random samples from the consensus samples for English.
Lastly, in the graded category combination challenge, the speaker picks six colour
samples that correspond to the combination of two focal colours for English.
Figure 6.8 provides an example of each context.

4Colour samples that were consistently named in English by all participants. See Sturges &
Whitfield [149].

(a) Example of a context
for the basic colour language
strategy

(b) Example of a context for
the graded membership lan-
guage strategy

(c) Context for the graded
category combination lan-
guage strategy

Figure 6.8: Example of the different contexts speakers can create for the first
experiment, depending on their current challenge.
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6.4.2 Experimental results

To ensure the consistency of the results, they have been tested over ten runs.
In each trial, a population of ten artificial agents starts with an empty lexicon,
colour and membership inventories. They enlarge and adjust it to the other
agents using diagnostics, repairs and alignment (see sections 6.3.3 and 6.3.4).
We report four measures:

• Communicative success measures the average performance of the pop-
ulation in the communicative challenge. When the communication is suc-
cessful a value of 1.0 is recorded, 0.0 otherwise.

• Alignment success measures the average cohesion of the lexicon in the
population. A value of 1.0 is recorded when (a) there was communicative
success and (b) both agents would have used the same constructions to
refer to the topic of that interaction, 0.0 otherwise.

• Lexical stability measures the average score of lexical constructions of
the population. A value of 1.0 means that all lexical constructions on each
agent have the maximum score. This measure shows how stable the lexicon
is, independently of its size.

• Confidence in challenge measures the average confidence value of the
population for a particular challenge level. It has a value between 0.0 and
1.0.

The resulting dynamics of the experiment are shown in Figure 6.9. Agents
start addressing the first challenge, for which the population has to create and co-
ordinate its (a) lexicon for basic colour terms and (b) a set of colour prototypes.
Agents gain confidence for this challenge rapidly, as both the communicative
success and the confidence value for the first challenge increase quickly. Around
interaction 2000 a sudden drop on both measures is observed as a result of agents
starting to reach maximum confidence. As this situation corresponds to the inter-
nal state of boredom, agents enter in the shake-up phase and move to the second
challenge, in which agents need to develop lexical constructions and membership
prototypes in order to express the distance between colour samples and basic
colour prototypes.

In the course of the second challenge, agents are exposed to a bigger diversity
of contexts, which makes the alignment of membership prototypes and its asso-
ciated lexical constructions more difficult. This is also reflected in the evolution
of lexical stability, as the average score of lexical constructions drops despite the
fact that agents are converging to an optimal lexicon for basic colour terms.

By interaction 5000 a fraction of the population has already reached maxi-
mum confidence for the second challenge, causing an overlap of the current chal-
lenge in the population. At this point, some agents identify their internal state as
boredom and are motivated to start attempting the third challenge while another
part of the population is still addressing the second one. Eventually, all agents
move to the third challenge, and communication success progressively improves
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Figure 6.9: Resulting dynamics of the experiment for a population of 10 agents
averaged over 10 runs of 30000 interactions. By the end of the simulation all
agents in the population reach a steady communicative success value above 90%
and maximum confidence for the three challenges. Error bars represent the max-
imum and minimum across the different experimental runs.

as the population succeeds in aligning its lexicon and membership prototypes.
As a consequence, the alignment success rate also increases until it reaches the
same percentage as communicative success. By interaction 30000 all agents in
the population have reached maximum confidence for the three challenges and a
steady communicative success value above 90%.

The fact that 100% communicative success is not achieved even when all
agents got maximum confidence scores for all challenges is due to the fact that
the language strategies available (basic colour, graded membership and graded
category combination) are not discriminative enough in certain situations, causing
the speaker to fail occasionally when trying to conceptualise a topic in particular
contexts. This effect was also observed by Bleys [21] when he looked at each
language strategy independently.

However, lexical stability also stabilises to a value around 95% (not reaching
100%), which means that some of the lexical constructions in the population have
not achieved a score of 1.0. In order to explain this outcome it is necessary to look
at the lexicon and membership categories that agents have by the end of an exper-
imental run: some agents keep membership categories and their associated lexical
constructions that are no longer used in the linguistic interactions. Therefore,
population has not fully converged to a minimal lexicon although agents manage
to communicate successfully in most contexts. As already pointed before, by the
end of the simulations the observed failures in communication are caused by an
unsuccessful conceptualisation of the topic and not by a problem of alignment.

This effect (the lack of convergence to a minimal lexicon) was unexpected
and, in order to understand it better, I looked at the relation between lexical
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stability and communicative success, testing the same configuration on different
population sizes. Figure 6.10a presents the resulting communicative success,
alignment and lexical stability for a population of two, five, ten and twenty
agents (3000, 10000, 50000 and 150000 interactions, respectively). Results show
a slight reduction of communicative success as the population size increases.
Additionally, a little disparity between communicative success and alignment is
observed in bigger populations.

This effect can be explained by the fact that larger populations converge to
systems with more membership prototypes (Figure 6.10b). An increased num-
ber of membership prototypes requires more time to align: this helps prototypes
which are not spread over the population to stay longer in individual invento-
ries as they are less used. The decrease in communicative success is therefore
explained by (a) a lower alignment of agents’ construction inventories and mem-
bership prototypes and (b) longer presence of non-spread membership prototypes
among the population which are still used in conceptualisation. These results
suggest that smaller populations could be able to develop more consistent com-
municative systems for the domain of colour.

6.5 Experiment 2: Managing multiple challenges

For the second experiment I wanted to test the usefulness of the motivation
system to choose not only when agents change their current challenge but also to
select which challenge an agent should address next, based on the challenges it
already knows and the characteristics of the contexts in which interactions take
place. In order to do so I have integrated the basic colour, colour combination,
lightness and chromatic language strategies for the domain of colour presented
in Section 6.2 (and the possible combinations of two of these strategies) into one
experimental set-up.

As in the first experiment (Section 6.4), agents play a multi-word guessing
game in which they have to communicate about colour samples. The population
starts the experimental runs with an empty lexicon (no lexical or grammatical
constructions) and no colour, lightness or chromatic categories. They enlarge
their construction inventory and the number of different categories using sev-
eral language strategies, identified by agents as communicative challenges of a
particular complexity.

The complexity of a communicative task is again computed based on its num-
ber of cognitive operations. This number differs among the different challenges
and is used to determine its level. Agents start attempting the less complex
challenge, and make use of the level value to move between them, depending
on the internal state (boredom, anxiety or flow) associated with each challenge.
However, in this experiment, some language strategies have the same number of
cognitive operations and therefore are assigned with the same level of complexity.
This entails that agents can address multiple challenges and, in order to be able
to develop a shared language, must be able to manage various communicative
tasks at the same time successfully.

As in the previous experiment, the first level of complexity corresponds to
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(a) Resulting communicative success, alignment and lexical stability
for different population sizes averaged over 10 runs.
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(b) Resulting number of membership and colour categories for different
population sizes averaged over 10 runs.

Figure 6.10: Experimental results for different population sizes. Figure 6.10a
shows the resulting communicative success, alignment and lexical stability scores
in a population of two, five, ten and twenty agents are. The scale on the y-
axis is set to the range [0.8,1.0]. Figure 6.10b displays the average number of
membership and colour prototypes for the same populations.

the basic colour strategy (see Subsection 6.2.1), as it has the smallest meaning
network. The second level of complexity is assigned to three different language
tasks: colour combination, lightness and chromaticity language strategies (see
subsections 6.2.3, 6.2.4 and 6.2.5, respectively), as they involve the same number
of meaning predicates. Finally, the third level of complexity corresponds to a
combination of two language strategies of the second level. Once an agent has
reached a maximum confidence value for a challenge of level 2, it generates two
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Level [1] [2] [3]
Challenge < 1, 0, 0 > < 1, 1, 0 > < 2, 1, 0 >

< numcol, numlight, numchrom > < 1, 0, 1 > < 2, 0, 1 >
< 2, 0, 0 > < 1, 1, 1 >

Table 6.2: Challenges and their associated level for the second experiment on the
continuous domain. Challenges are defined as a vector of three parameters that
correspond to the maximum number of colour, lightness and chromatic properties
expressed. The level associated to a specific challenge designates its complexity,
which is computed based on the number of cognitive operations.

new challenges introducing and mixing another language strategy of the same
level to that challenge.

For example, from the colour combination strategy (level 2) an agent will gen-
erate two challenges combining it with the lightness and chromaticity strategies.
As a result, two challenges of level 3 are created: the lightness colour combi-
nation and the chromaticity colour combination. An example of these language
strategies on the English language would be "dark yellow green" or "bright blue
green". Table 6.2 presents the different communicative challenges as a vector of
three parameters.

6.5.1 Context

In this experiment, the world consists of 335 different colour samples in the CIE
1967 L*a*b* colour space. The world contains the focal colours for English
and colour samples obtained (a) modifying the L* value of these focal colours
(increasing or decreasing it by 20.0 within its limits: [0.0,100.0]), (b) modifying
the chroma dimension (see Subsection 6.2.5) of the focal colours (increasing or
decreasing it by 0.2), (c) combining two focal colours for English in different
percentages (25%, 45%, 55% and 75%, respectively) and (d) combining two of the
previous modifications ((a), (b) and (c)). The colour samples from (d) are created
by performing either the lightness and chroma modifications to the focal colours
for English or by applying lightness or chroma modifications to the resulting
colour samples of (c).

(a) Example of a context for
the lightness strategy

(b) Context for the chro-
maticity strategy

(c) Context for the colour
combination strategy

(d) Example of a context for
the lightness-colour combi-
nation strategy

(e) Context for the
chromaticity-colour combi-
nation strategy

(f) Example of a context for
the lightness-chromaticity
strategy

Figure 6.11: Example of the contexts speakers create for the second experiment
when addressing the different challenges of level 2 and 3.
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The speaker selects the context, which is a subset of the colour samples
present in the world, at the beginning of each interaction. The agent chooses
both the size of the context and the different colour samples that are part of
it. This choice depends on the current challenge of the speaker. In the basic
colour challenge the context is created by randomly picking three focal colours
of English. When addressing challenges of level 2 the speaker composes differ-
ent contexts of three colour samples depending on which challenge it wants to
attempt. For the lightness strategy the agent selects colour samples that vary
in their L* value, for the chromaticity strategy colour samples with similar hue
values and for the colour combination strategy the speaker randomly picks three
colour samples from the combination of two focal colours.

Finally, for the challenges of level 3 the speaker puts together four colour sam-
ples. For the lightness-colour combination strategy the colour samples consist of
lightness modifications on combinations of two focal colours, for the chromaticity-
colour combination chromatic modifications on combinations of two focal colours
and for the lightness-chromaticity strategy both lightness and chromatic modi-
fications to focal colours of English. Figure 6.11 provides an example of each
context.

6.5.2 Misestimation of the speaker’s challenge

One of the main difficulties in applying the autotelic principle to language games
is to decide which challenge the hearer should select as the communicative chal-
lenge of the interaction. This is due to the fact that the interacting agents may
differ in (a) the communicative challenges they know and (b) the selection of
their current challenges.

This problem is particularly relevant for this experimental set-up, as agents
must deal with several communicative challenges of similar complexity at the
same time. As explained in the chapter devoted to the autotelic principle (subec-
tion 4.6.1), the hearer tries to guess what challenge was attempted by the speaker
based on (a) the challenges it knows and (b) the information it can gather from
the interaction, focusing on the utterance produced by the speaker and the mean-
ing representation it could retrieve from it.

Despite using all the information at its disposal, the hearer has to face two
situations in which it cannot successfully identify the communicative challenge
attempted by the speaker. It is important to highlight these cases, as misinterpre-
tations of the challenge attempted by the speaker have an impact on the agent’s
confidence gain for the different communicative challenges in the experiment.

The first one occurs when the recovered meaning network is not fully con-
nected. This happens when the hearer does not know how to combine all the
lexical items (in the experiment words used to refer to colour, chromatic or light-
ness categories) of the input utterance. This indicates that the hearer does not
know the challenge used by the speaker. In this situation, the hearer identi-
fies among its known challenges those that provide the more connected meaning
network possible and randomly selects one of them as the challenge to update
(Subsection 4.6.1). For example, the speaker uses the lightness-chromatic strat-
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egy to describe a topic and produces a three-word utterance that refers to one
colour, chromatic and lightness category. The hearer, however, does not know
this strategy yet as it only knows the communicative challenges of level 1 and
2 and therefore it is not able to build a connected meaning network. Among
these four strategies, the lightness and chromaticity strategies are the ones that
minimise the number of unconnected meaning predicates given the input utter-
ance. The hearer then randomly selects one of them as the challenge to update,
which does not correspond with the communicative challenge attempted by the
speaker.

The second situation where the challenge addressed by the speaker is misiden-
tified by the hearer is a consequence of agents having multiple conceptualisations
possible for a topic. In an interaction, the speaker first selects the communicative
challenge and then creates a context in which the language strategy associated
with that challenge may be used. Sometimes it occurs that the most discrimina-
tive conceptualisation for the topic is not the one corresponding to the attempted
communicative challenge but a conceptualisation already known before. In these
situations, the speaker produces an utterance that uses less lexical words than
the maximum allowed by the challenge, as the goal of interactions in language
games is to communicate about colour samples successfully. However, this affects
the hearer’s guess of the challenge attempted by the speaker, as the agent will
identify a less complex challenge instead of the actual challenge addressed by
the speaker. For example, the speaker decides to attempt the lightness strat-
egy (level 2) and creates a context for it. However, it may occur that the most
discriminative conceptualisation for the topic in this context corresponds to the
basic colour strategy (level 1). The speaker will then use the basic colour strat-
egy to formulate an utterance, which will contain only one word referring to a
colour category. In this case, the hearer will identify the basic colour strategy as
the communicative challenge of the interaction, which differs from the attempted
challenge by the speaker.

6.5.3 Experimental results

In the same manner as in the other experiments reported in this thesis and in
order to ensure the consistency of the results, the experimental set-up has been
tested on ten runs. In each trial, a population of ten artificial agents start with
empty lexicon, colour, lightness and chromatic inventories, which are gradually
increased and adjusted using diagnostics, repairs and alignment. Similarly to the
first experiment of this chapter, we analyse four measures: communicative and
alignment success, lexical stability and the confidence values for each challenge.

The resulting dynamics of the experiment are shown in Figure 6.12. Agents
start addressing the basic colour challenge (level 1), for which they need to cre-
ate and coordinate a set of prototypes and lexical items to refer to basic colour
terms. As in the first experiment of this chapter (Section 6.4), the population
accomplish this task quite fast. They require around 500 interactions to success-
fully communicate about the English focal colours in the 80% of the cases, and
by interaction 1000 (about 200 interactions per agent) it has raised up to more
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than 95%. As a consequence of this, the average confidence value of the first
challenge increases rapidly and, quickly after the 2000th interaction, all agents
in the population have reached maximum confidence for this task.

In parallel, a drop in the communicative and alignment success is observed.
This is a consequence of agents experiencing an internal state of boredom as
the basic colour challenge is not challenging anymore. This causes agents to
enter into the shake-up phase and generate three more demanding communicative
tasks (those labelled with a complexity of level 2), that correspond to the colour-
combination, lightness and chromaticity strategies.

With the aim of recovering from the reduction of communicative success and
being able to cope with the new challenges, the population creates lightness
and chromatic prototypes in order to discriminate the colour samples in the
new contexts successfully. However, facing three communicative challenges at
once slows down the alignment of these prototypes and their associated lexical
items, partially because of the problems hearers undergo when they estimate the
challenge attempted by the speaker, explained in Subsection 6.5.2. Nevertheless,
the population manages to increase the communicative success above 80% once
the population starts to align their lightness and chromatic inventories.

A similar behaviour is observed in the evolution of lexical stability. Although
the population is converging to an optimal lexicon for basic colour terms, the
creation of new lightness and chromatic terms produces a decrease in the average
score of lexical constructions5, which progressively rises as agents start aligning
these terms.

When an agent reaches maximum confidence for a challenge of level 2 it
undergoes a state of boredom and uses this challenge to generate new ones of
increased complexity, in the way explained in the introduction of this section.
However, it chooses to focus on the remaining challenges of level 2 for which
it has not gained maximum confidence yet instead of addressing the recently
created ones of level 3. It is not until interaction 15000 that some agents in the
population have already reached maximum confidence for the three challenges of
the second level of complexity and start addressing challenges of level 3.

This situation results in an overlap of challenges of level 2 and 3 attempted
by the population. Notice that it is not until the end of the simulations that the
population reaches highest confidence values for challenges belonging to these two
levels. In order to understand this behaviour we need to look at the evolution of
the average confidence for each communicative task, presented in Figure 6.13.

It turns out that those strategies that involve chromatic categories are more
difficult for agents than the other communicative tasks. It is particularly interest-
ing in the case of the chromaticity strategy (which corresponds to the challenge
parametrisation < 1, 0, 1 >), as the population does not reach a maximum con-
fidence value for this challenge but stabilises to a value around 90%. Besides,
the fact of being aware of more communicative tasks makes the hearer’s decision
of which challenge to update at the end of an interaction more difficult, leading

5A score is associated with each construction which is used to drive the preference of the
constructions that agents will use when there is competition. See Subsection 5.1.4 for detailed
information about how the alignment of constructions has been implemented in this thesis.



116 Experiments on a continuous domain: a case study on colour

�

���

���

���

���

�

� ����� ����� ����� ����� ����� ����� ����� ����� ����� ������
������������

������������� �������
��������� �������

������� ���������

��� ����� �� ���������� �� ����� �
��� ����� �� ���������� �� ����� �
��� ����� �� ���������� �� ����� �

(a) Resulting dynamics of the experiment for a population of 10 agents
averaged over 10 runs of 100000 interactions.
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(b) Zoom in on the first five thousand interactions of the population.

Figure 6.12: Resulting dynamics of the experiment for a population of 10 agents
averaged over 10 runs of 100000 interactions (Figure 6.12a). By the end of the
simulation all agents in the population reach a steady communicative success
value above 85% and high confidence values for all the communicative chal-
lenges. Error bars represent the maximum and minimum across the different
experimental runs. Figure 6.12b shows the same results zooming in on the first
five thousand interactions.

to a higher number of misestimations. These errors also have an impact on the
confidence value associated with challenges of level 2, slowing down the confi-
dence gain of the population and even decreasing it in a recurrent manner for
short periods, as is observed for the lightness strategy (challenge parametrisation
< 1, 1, 0 >). Eventually, the population overcomes these difficulties, ending the
simulations with high confidence values for all challenges.
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Figure 6.13: Evolution of the average confidence value in the population for each
communicative challenge. The population achieves maximum confidence for all
challenges except for < 1, 0, 1 >, for which it only reaches a value around 90%.

The chromaticity strategy (challenge parametrisation < 1, 0, 1 >), however,
presents a different behaviour. As can be seen in Figure 6.13, the population
starts gaining confidence for this task at a slower pace when agents start ad-
dressing the communicative challenges of level 2. Contrary to the other com-
municative tasks, for this challenge the population does not reach a maximum
confidence value but instead its value stabilises around 90%. This outcome was
unexpected but can be explained by the combination of two factors. First, the
set of colour samples speakers choose when addressing this challenge result, in
some cases, in conflicting contexts. As a consequence, this strategy cannot pro-
duce discriminative utterances in some interactions, as the English focal colours
"orange" and "brown" have similar hue values. Secondly, the misestimation of
the speaker’s attempted challenge by the hearer, as most interactions in which
speakers attempted challenges < 2, 0, 1 > and < 1, 1, 1 > that result in a com-
munication failure are identified by hearers as the challenge < 1, 0, 1 >.

As already seen with the first experiment, at the end of the experimental runs
the emerging language does not allow the population to reach 100% communica-
tive success in their linguistic interactions but reaches a steady value slightly
below 90% (specifically 88.40%). This outcome is caused by a failure in the
conceptualisation of the selected topic of the interaction, which implies that in
some cases the different language strategies of the experiment cannot come up
with discriminative meaning networks for specific colour samples in particular
contexts.

Similarly, the alignment success stabilises to a value slightly below the com-
municative success (86.00%). The fact that both measures do not settle to the
same percentage means that by the end of the simulations the population has
slight variances in their lexicon and prototypes as they keep lexical constructions
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and prototypes no longer used. These differences are presented in Table 6.3.

Constructions Value SD (σ) Entities Value SD (σ)
Colour cxns 11.56 0.91 Colour entities 11.56 0.91

Chromatic cxns 4.59 1.09 Chromatic entities 3.51 0.44
Lightness cxns 8.52 1.65 Lightness entities 5.95 0.54
Lexical cxns 24.67 2.42 Entities 21.02 1.34

Grammatical cxns 6.96 0.07

Table 6.3: Results for different construction and entity measures for the second
experiment on the continuous domain.

While the colour constructions and prototypes match completely, the results
exhibit a mean number of lightness and chromatic constructions higher than their
associated prototypes. This mismatch is particularly pronounced in the case of
lightness constructions, as in average the population has around 2.5 more con-
structions than prototypes. This divergence implies that the resulting language
is not entirely aligned and explains why the lexical stability gets a steady value
of 87.2% by the end of the experimental runs.

6.6 Experiment 3: Simulating an embodied experi-
ment

The experiments reported so far have all taken place in a simulated world, in
which all agents perceive the objects and colour samples of their context in the
same way. This differs from our personal experience, as we usually get involved
in linguistic interactions in which each participant observes its surroundings from
different points, causing different perceptions of the spacial, dimension, light and
colour dimensions of the objects in our environment.

We wanted to study the impact that embodiment would cause to our experi-
mental results. Unfortunately, during my research I did not have access to robots
and did not have enough time to be able to design and execute an experiment
with embodied agents. What I did, however, was to simulate differences in how
the interacting agents perceive the objects in the context.

6.6.1 Perceptual deviation

This experiment reproduces the experiment carried out in Section 6.5, introduc-
ing variance in how colour samples are perceived by the agents taking part in
a linguistic interaction. This is done by modifying the L*a*b* values of each
colour sample in the context at the start of the interaction by pdev, a value in the
range [0.0,1.0] where 0.0 means no deviation and 1.0 a random number for each
dimension of the colour sample. This value represents the percentage of maxi-
mum value modification for the L*a*b* values, which is directly related to the
range of possible values for each dimension6. The pseudo code of how perceptual
deviation is computed is presented in Algorithm 4.

6In the CIE L*A*B* colour system only the L* has a delimited range (see Section 6.1). The
limits for the a*b* dimensions have been set to the maximum and minimum values observed in
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Algorithm 4 Perceptual deviation
procedure PerceptualDeviation(pdev,inputcs)

MaxChangedev ← RangeOfPossibleValueChangePerDimension(pdev)
rescs ← inputcs . Resulting colour sample set to input colour sample
for each maxV aluei ∈MaxChangedev, rescs−i ∈ rescs do

actChangei ← Random(maxV aluei) . Uniformly distributed
rescs−i ← rescs−i ± actChangei

end for
return rescs

end procedure

We can illustrate how the perceptual deviation algorithm works with an ex-
ample. The focal colour of English "purple" has [41.22, 42.83, -39.57] as L*a*b*
values and we want to modify its perception using a pdev of 0.05. First, we need
to compute how much the value can change for each dimension. This is done by
multiplying the range of each dimension by pdev, which corresponds to the ranges
[0.0, 5.0], [0.0, 6.60] and [0.0, 8.04] for the L*, a* and b* dimensions respectively.

Secondly, the actual variance for each dimension should be determined, which
is computed by applying the random function X ∼ U(dr), where dr corresponds
to the ranges for the L*a*b* dimensions computed in the previous step. This
operation could give, for example, the values 3.93, 2.75 and 5.49 for each dimen-
sion. Finally, the values of the dimensions that will be perceived by the agent
consist of the randomly chosen addition or subtraction of the values obtained
in the second step to the original values of the colour sample. In this example,
the resulting perceived colour sample could have [45.14, 40.08, -45.06] as L*a*b*
values. The effect of different perceptual deviation values on the English focal
colour "red" is shown in Figure 6.14.

Figure 6.14: Effect of perceptual deviation on the English focal colour "red"
(L*a*b* values of [41.22, 67.38, 45.36]). The first colour sample corresponds to
the focal colour without deviation. The following chips correspond to the same
colour sample modified with pdev values of 0.01, 0.025, 0.05, 0.075, 0.10, 0.125,
0.15, 0.175 and 0.20, respectively.

6.6.2 Experimental results

We have run a series of experimental set ups over ten runs, which vary in the
value of pdev used to create the perceptual deviation. The values of pdev tested

the colour samples that conform the world, which in this experiment correspond to [-64.59,67.38]
for a* and [-52.65,108.06] for b*.



120 Experiments on a continuous domain: a case study on colour

are 0.01, 0.025, 0.05, 0.075, 0.10, 0.125, 0.15, 0.175 and 0.20. As in the previ-
ous experiments, a population of ten artificial agents start with empty lexicon,
colour, lightness and chromatic inventories, which increase and adjust it using
diagnostics, repairs and alignment. We also report four measures: communica-
tive and alignment success, lexical stability and the confidence values for each
challenge.
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(a) Resulting communicative success, alignment success and lexical
stability for different pdev values.
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(b) Resulting average confidence for the different challenge levels for
different pdev values.

Figure 6.15: Results of the experiment for a population of 10 agents averaged
over 10 runs of 100000 interactions for different pdev values. As can be seen in
Figure 6.15a the average communicative success, alignment success and lexical
stability decrease as the pdev value increases. Figure 6.15b shows the average
confidence for the different challenge levels, which present a similar tendency, as
higher pdev entail lower confidence values.
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The results of the experiment are shown in Figure 6.15. As expected, the
higher the pdev value is, the harder results to communicate successfully about
colour samples. As can be seen in 6.15a even a perceptual deviation of 2.5% re-
duces the average communicative and alignment success of the population. The
communicative success, alignment success and lexical stability scores progres-
sively decrease as the pdev tested increases, with a sudden drop in the average
score of the three measures in the change of a pdev value of 0.125 to 0.15. This
effect is a consequence of a perceptual deviation that is so high that the popula-
tion is not even able to agree on a lexicon for basic colours, ending up with less
than 10% of communicative success for a perceptual deviation of 20%.

A similar cause-effect is observed in the average confidence score for the differ-
ent challenge levels (Figure 6.15b). Even small differences in perceptual deviation
have an enormous impact on the experimental outcome. A pdev value of 0.025
reduces the average confidence for challenges of level 3 from almost 100% to less
than 30%. This number is further reduced to less than 1% for a pdev value of
0.05. The most sensible challenges to perceptual deviation are < 1, 1, 1 > and
< 2, 0, 1 >, as the population almost does not gain any confidence for these tasks
with a pdev value of 0.025.

This effect is also noticeable in the average confidence for challenges of level 2.
A pdev value of 0.025 reduces the confidence value for these challenges to a number
around 80%, and a pdev value of 0.05 to one third. The impact is considerable for
the challenges < 1, 0, 1 > and particularly < 1, 1, 0 >, for which the population
does not even reach 1% confidence values with a perceptual deviation of 5%. For
higher pdev values this trend persists, leading to less than 10% confidence score
on average for the communicative tasks of level 2 for a pdev of 0.10.

Finally, for bigger perceptual deviation values communicating about colour
samples becomes too difficult for the population. The last pdev value for which
agents manage to develop a shared language for basic colours is 0.125. For
pdev values of 0.15 or higher the population cannot gain confidence for the first
communicative task.

Challenge Average confidence for different pdev values
0.01 0.025 0.05 0.075 0.10 0.125 0.15 0.175 0.20

Level 1
< 1, 0, 0 > 1.00 1.00 1.00 1.00 0.99 0.99 0.01 0.00 0.00

Level 2
< 1, 0, 1 > 0.95 0.84 0.06 0.02 0.01 0.00 0.00 0.00 0.00
< 1, 1, 0 > 0.87 0.53 0.01 0.01 0.01 0.00 0.00 0.00 0.00
< 2, 0, 0 > 1.00 1.00 0.92 0.77 0.11 0.02 0.00 0.00 0.00

Level 3
< 1, 1, 1 > 0.79 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00
< 2, 0, 1 > 0.74 0.24 0.01 0.00 0.00 0.00 0.00 0.00 0.00
< 2, 1, 0 > 0.83 0.32 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.4: Resulting confidence value for each communicative challenge for dif-
ferent pdev values.

Table 6.4 presents the average confidence for each communicative task in-
dividually. The perceptual deviation affects the confidence value for challenges



122 Experiments on a continuous domain: a case study on colour

Measure Average number for different pdev values
0.01 0.025 0.05 0.075 0.10 0.125 0.15 0.175 0.20

Constructions
Col. cxns 11.97 16.82 14.84 13.20 16.09 13.63 21.99 22.21 22.64

Chrom. cxns 6.98 6.86 5.64 5.00 6.65 6.43 0.00 0.00 0.00
Light. cxns 15.45 11.69 7.07 6.05 5.74 5.20 0.00 0.00 0.00
Lex. cxns 34.40 35.38 27.54 24.26 27.48 25.26 21.99 22.21 22.64
Gram. cxns 6.96 6.98 6.73 5.96 4.06 4.00 1.00 1.00 1.00

Entities
Col. ent. 11.97 13.12 13.49 12.63 14.99 12.32 9.27 9.11 9.04

Chrom. ent. 4.36 4.26 3.28 3.40 3.82 4.19 0.00 0.00 0.00
Light. ent. 8.74 8.05 4.93 4.53 4.76 4.56 0.00 0.00 0.00

Total 25.07 25.43 21.70 20.56 23.57 21.07 9.27 9.11 9.04

Table 6.5: Results for different construction and entity measures for different pdev
values.

of level 3 evenly, as they a portion similar values for each pdev value tested. In
contrast, it has more impact on specific challenges of level 2. While the confi-
dence value for < 2, 0, 0 > does not vary for pdev values of 0.01 and 0.025, the
confidence value for < 1, 1, 0 > gets reduced to fifty percent for a pdev value of
0.025. With a perceptual deviation of 7.5% the population almost does not gain
any confidence for the challenges < 1, 0, 1 > and < 1, 1, 0 > but it still reaches
a value above 75% for challenge < 2, 0, 0 >. With a pdev of 0.125 all confidence
values for challenges of level 2 are almost zero, but agents still manage to gain
confidence for the first challenge. For pdev values of 0.15 or higher the population
fails to master the basic colour challenge.

Table 6.5 shows several construction and entity measures for the pdev values
tested. While the number of chromatic and lightness constructions and entities
gets reduced for low pdev values (0.01, 0.025, 0.005 and 0.075), the number of
colour constructions and entities increases. These numbers become steady for
pdev values of 0.10 and 0.125, despite the fact that the population almost does
not gain any confidence for challenges of level 2. For higher perceptual deviations
agents only create and learn constructions and entities for colours.

6.7 Summary

This chapter presented a series of experiments where a population of agents make
use of the autotelic principle to self-regulate the complexity of their linguistic in-
teractions while developing a shared language to describe colours. The first part
introduces the subject of study, a domain of particular interest given the differ-
ences that human languages present when communicating about colour samples.
It also presents the colour system employed to represent colour spaces in this
chapter (the CIE 1967 L*a*b* system), the set of language strategies that are
used by agents in the different experiments reported and how they have been
implemented using IRL as semantic constraint networks composed of meaning
predicates that perform cognitive operations.

It then defines the various worlds considered in the different experimental
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setups, a set of all possible colour samples in the experiment, and the language
game played, which is a multi-word guessing game. Agents start with an empty
lexicon and no prototypes and try to communicate about one colour sample in
the context, a subset of the world chosen by the speaker at the beginning of each
interaction. They enlarge the size of their lexicon and prototypes using several
diagnostics and repairs and employ alignment to tune their preference on which
constructions to use.

The second part reports on three different experiments. The first one explores
the usefulness of the autotelic principle as a mechanism to regulate linguistic com-
plexity. Agents face challenges of increasing difficulty and successfully manage
to develop an artificial language of increasing expressive power to refer to colours
when trying to remain in a state of flow: they start (a) converging on a language
for colour prototypes and then extend it developing (b) membership categories,
which express the degree of similarity between a colour sample and a colour pro-
totype, and eventually (c) combining colour prototypes. In addition, simulations
with different population sizes show that bigger populations converge to systems
with more membership prototypes on average.

The second experiment studies the performance of the motivation system
when it is required to manage several language strategies simultaneously. In this
set up the population develops chromatic and lightness prototypes while learning
to combine colours at the same time, and later combine them into more complex
conceptualisations. The population can handle these multiple challenges and
successfully develops a shared language to communicate about colour samples.
Interestingly, the population does not reach maximum confidence for every chal-
lenge, as the chromaticity strategy stabilises to a value around 90% by the end
of the interactions.

Finally, a third experiment was conducted to study the impact of perceptual
deviation on the second experimental set-up. The results obtained show that
the higher the perceptual deviation is, the more difficult it is for agents to com-
municate successfully about colour samples. The average confidence value for
the more complex challenges is significantly affected by perceptual variance, but
for low deviation values the population still manages to develop and align their
colour, chromatic and lightness inventories to some degree. However, for percep-
tual deviations of 15% or higher agents the communication becomes extremely
difficult and they fail to gain confidence even for the basic colour strategy.
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Chapter 7

Conclusion

The hypothesis of this thesis was that artificial agents are capable of successfully
managing the development of successive stages of a language system by regulating
the complexity of their interactions with a particular computational model of
motivation called autotelic principle (see Section 1.4). The thesis achieved the
two objectives defined in Section 1.5:

• The first achievement of this thesis is the concrete implementation of the
autotelic principle for its usage in language evolution experiments, after
presenting an overview of different psychological theories on motivation
and a review of the computation models they have inspired. The core of
this motivation system relies on the relation between challenges and skills:
agents keep track of their performance for a set of challenges and use this
information to decide which communicative tasks to address in order to
continue developing their skills.

• The second achievement of this thesis is the demonstration that the au-
totelic principle can be used as a general mechanism to regulate complexity
in language emergence in an autonomous way. The experiments carried out
for both discrete and continuous domains have shown that the motivation
system successfully regulates the complexity of linguistic interactions by
allowing the population of artificial agents to progressively increase the ex-
pressive power of the shared language, going from one word to multi-word
utterances. Moreover, Section 6.5 has provided evidence that the autotelic
principle can manage several language strategies of similar complexity at
the same time.

These two achievements have demonstrated that the autotelic principle is a
useful mechanism in the development of language systems by a population of ar-
tificial agents. This thesis has extended the previous experiments on the autotelic
principle by (a) providing experimental results that prove that the motivation
system can be used by agents to successfully regulate the complexity of linguis-
tic interactions in several stages in an autonomous way, proving that it allows
agents to coordinate multiple challenges and its associated learning mechanisms
in order to improve their shared language, (b) testing the motivation system in
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multiple challenge dimensions for both discrete and continuous domains and (c)
the integration of concept creation (prototypes) to these experiments (Chapter
6) and how differences in perception affect the creation and learning of these
prototypes.

Together, the experiments reported in Chapters 5 and 6 have shown that the
motivation system is capable of managing communicative tasks of various levels
of complexity in both discrete and continuous environments. It has also demon-
strated that it is a valid mechanism to coordinate distinct language strategies of
the same complexity level. As a consequence, in all experimental set-ups the re-
sulting shared language allows the population to communicate about the objects
in their environment successfully.

Future research on the role of the autotelic principle in the emergence and
development of communicative systems in populations of artificial agents should
focus on the strengths and weaknesses of the autotelic principle, in order to
better understand the limitations and preconditions of the system. Once this
is achieved, research an interesting path to follow is the impact of embodied
experiments in open-ended environments. Such experimental set-ups provide the
ideal conditions to examine the autotelic principle managing multiple language
strategies of different language domains. In addition, such experiments would
allow the removal of certain constraints in the current implementation. Moreover,
they will allow to observe the performance of the motivation system within a
dynamic challenge extension and the resulting language strategies that could
derive from this process.

7.1 Overview of publications

The work carried out during this thesis has led to three peer-reviewed publications
that have been published during my time as a PhD student. The first two of them
report on my experiments on the usage of the autotelic principle in the discrete
domain. In these papers, I investigated how this motivational system could be
employed by a population of artificial agents to set their own communicative
challenges in order to develop their linguistic skills autonomously and how this
mechanism allows them to make faster transitions between different learning
phases.

The third publication studies the usefulness of the motivation system in a con-
tinuous domain. It shows how several language strategies of different complexity
can be managed by a population of artificial agents using the autotelic principle
in order to develop a shared language for the domain of colour, increasing the
expressive power of the resulting system.

• Miquel Cornudella, Paul Van Eecke, and Remi van Trijp. How intrin-
sic motivation can speed up language emergence. In Proceedings of the
European Conference on Artificial Life, pages 571–578, 2015.

• Miquel Cornudella and Thierry Poibeau. Language emergence in a pop-
ulation of artificial agents equipped with the autotelic principle, in Proceed-
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ings of the Sixth Workshop on Cognitive Aspects of Computational Language
Learning, pages 40–44. Association for Computational Linguistics, 2015.

• Miquel Cornudella, Thierry Poibeau, and Remi van Trijp. The role
of intrinsic motivation in artificial language emergence: a case study on
colour. In Proceedings of COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers, pages 1646–1656. The
COLING 2016 Organizing Committee, 2016.
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Chapter 8

Future Directions

In the experiments reported in this thesis, we have studied the performance of
the autotelic principle as a mechanism to regulate the complexity of linguistic
interactions, facilitating the development of language systems of increasing com-
plexity. The next research step should focus on the strenghts and weaknesses of
the current implementation, in order to better understand the limitations of the
system. Once this is done, there have been issues that have not been addressed
in these experiments but would be, however, highly interesting as future research
paths. This concluding chapter explores some of these potential continuations,
explaining their importance and sketching how they could be implemented.

The first part of the chapter (Section 8.1) addresses possible extensions to
language evolution experiments that make use of the autotelic principle. This re-
search could be continued in embodied experiments in open-ended environments,
where different language domains are involved in the linguistic interactions. In
such experimental set-ups, a dynamic challenge extension could be explored,
where agents can autonomously extend the dimensions of the vector used for
challenge configuration, and also the resulting language strategies that could
emerge from this process.

The second part of the chapter (Section 8.2) enumerates other potential uses
of the motivation system. They range from incorporating it into Intelligent Tu-
toring systems to improve language learning, exploring its performance in de-
velopmental robotic experiments and employing it to model the behaviour of
computer-controlled characters in video games.

8.1 Open-Ended Learning Environments

This thesis has tested the autotelic principle on different environmental condi-
tions. Despite the existing differences in the experimental design for artificial
language emergence in discrete and continuous domains, namely the need of ad-
ditionally creating, learning and aligning prototypes of different classes for the
latter, both experimental set-ups differ in the kind of contexts in which the lin-
guistic interactions occur:

• Externally-imposed contexts: In the chapter on the discrete domain,
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the population has faced externally-imposed contexts. In these experi-
ments, there was a predefined set of possible environments (a fixed set
of scenes) in which the interacting agents were randomly situated. The
speaker randomly chose the topic of the interaction, but neither of the
interacting agents had any influence on the composition of the scene.

• Individually-selected contexts: The motivation system has also been
studied in individually selected contexts, as in the experiments on the con-
tinuous domain of colour. In this second set of experiments, the speaker
actively selects the colour samples that determine the context of the inter-
action depending on the communicative challenge that the agent wants to
attempt. As in the first set of experiments, the topic is randomly chosen:
one colour chip among the set of colour samples in the composed context.

In both cases, the population is exposed to a limited set of stimuli. Since the
context is defined as (a) a randomly picked scene from a predetermined group
for the experiments on the discrete domain or (b) a number of colour samples
selected from a fixed set of colour chips by the speaker for the experiments on the
domain of colour, there is always a maximum number of possible scenes in which
agents can interact. This restriction should be lifted up in future experiments if
agents interact in the real world.

8.1.1 Multi dimensional environments

So far, all experiments carried out have occurred in simulated environments where
the relevant properties of objects for the emerging language system are deter-
mined in advance. For instance, in the experiments on the continuous domain,
the environment is made up only of colour samples. These contexts do not con-
tain any information about the size, the position, the distance, the sound, the
temperature or the shape of the objects in the scene, as they are not important
for the language strategies tested and therefore are not present in the emerging
communication system.

These kinds of environments do not correspond with the situations in which
human language developed, despite having been proved as appropriate for ex-
periments on the evolution of language [136]. This restriction can be removed
if agents are situated in multi dimensional environments where objects have at-
tributes on several perception domains.

These type of situated interactions would enable experiments in which agents
could analyse the context, determine the most relevant dimensions of the topic
and describe it referring to the values of these significant dimensions. An exper-
imental set-up of this kind would remove a limitation present in all the experi-
ments reported in this thesis, namely the exploration of the autotelic principle
as a mechanism to develop complex language systems that produce concepts for
several domains.

Such experiments, however, require (a) a perception system to provide infor-
mation about several cognitive domains and (b) a mechanism to decide which
communicative challenges are relevant and worth exploring given the internal
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state of an agent, its lexicon and the contexts it has been exposed to. The first
requirement is already met by state-of-the-art robots used in research, like the
SoftBank’s NAO [51] and Pepper [97], the SONY QRIO [64] or the humanoid
MYON [59]. All of these robots have (a) vision systems, mandatory for devel-
oping a communication system for colour, spatial categories, shapes or sizes, (b)
microphones and speakers for perceiving and producing sounds and (c) a set of
motors combined with several degrees of freedom that allow them to produce
gestures and allow them to move in the given environment. The information ob-
tained from the different sensors can then be processed using different algorithms
(such as contour detection and image segmentation [4], edge detection [78], dis-
crete differentiation [68] or anchoring identified objects [30] for the input images)
to identify the most salient characteristics of the objects in the environment. It
may be that for specific domains other sensors may be required, such as heat,
temperature, humidity, distance or orientation detectors, but all current robots
used in research are equipped with sensors to retrieve information from multiple
cognitive domains.

Concerning the second requirement, the choice of the communicative chal-
lenges to explore can be addressed by modifying the algorithm used for challenge
selection. In the experiments reported in this thesis speakers base their election
on the complexity measure (level value) associated with each communicative
task: agents choose to attempt the less complex challenges for which they have
not yet achieved maximum confidence. This mechanism could be problematic in
language evolutionary experiments that tackle multiple language domains, as it
could get stuck attempting communicative challenges that address non-relevant
dimensions (dimensions not salient in the different contexts it has interact so far)
in the environment instead of trying more difficult challenges for significant do-
mains. This problem can be solved if agents make use of their perception systems
to identify important dimensions in the environment. As this decision determines
the "challenge path" to be explored, it should not be based only on the current
interaction, but it should also take into account (a) the different contexts the
agent has been exposed to and (b) the confidence levels associated by the agent
with each communicative challenge.

8.1.2 Dynamic challenge configuration

In the autotelic principle, challenges are defined as vectors of several parameters
that additionally are associated with a complexity level value. These parameters
have a relation with some of the dimensions in the environment. For exam-
ple, among the communicative challenges for the colour domain both colour and
membership parameters introduce categories that act on the three colour dimen-
sions perceived (L*a*b* ), while lightness or chromatic parameters do it only on
a subset of these dimensions (L* and a*b*, respectively). Nevertheless, both in
the experiments for the discrete and colour domains this parametrisation was
fixed and settled by the experimenter.

The dimensions that agents can perceive depend on their sensors and the
algorithms they apply to the input data. For example, in order to be able to
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perceive shapes, agents need an input stream of images and an algorithm to
detect contours. Each algorithm provides information about different features
of the input data. Depending on the environment, these features may capture
potentially distinctive characteristics of objects, and therefore may be relevant
to achieve successful communication. This information can be used to dynam-
ically modify the dimension vector that determines the possible communicative
challenges. The idea is that agents can extend the parametrisation values used
to determine the different challenges once they identify important features not
captured by their current challenge dimensions.

There are two possible situations in which the dynamic parametrisation can
be explored: (a) one in which agents are initialised with a given set of parame-
ters as a basis to explore different challenge configurations and (b) another where
the population starts with no parameters identified. The latter increments the
difficulty of the experiment, as it may be that agents start identifying different
salient features in the environment. I would start exploring the first experimen-
tal set-up, providing agents with a basic set of parameters to generate challenges
that they could extend afterwards, to study the resulting dynamics of such con-
figuration. If this first set of experiments prove to be successful I would then
move onto testing the second situation in which the population starts with no
parameters in the challenge vector.

Either way, a dynamic challenge configuration may change completely the
behaviour of the autotelic principle in comparison to the implementation used in
this thesis, and therefore should be carefully studied before being implemented.
So far new challenges are generated only when agents enter into the shake-up
phase for an already known challenge. If agents can modify the challenge config-
uration once they identify a new relevant characteristic, they may then change
the parametrisation at any time, messing up their current challenges without
being in the shake-up phase.

To prevent this problem, I would create a list of unexplored features in the
context. When a new salient feature in the environment is identified by an agent
as potentially salient, it is stored in that list together with an associated value,
a number that represents the estimation of how relevant a feature is in the envi-
ronment. The relevant values of the "candidate" features (the potential features
to extend the challenge parameters) would be updated after every interaction,
increasing or decreasing their value in function of how prominent they have been
in the contexts the agent has been exposed to so far.

This list would allow agents to rank potential features to add to the vector
of parameters and use this information to extend the challenge dimensions under
certain conditions. It is hard to determine these conditions in advance, but in
order to stop an explosion of possible challenge configurations I would (a) force
the agents to first focus on the different challenge paths, the different unexplored
challenge parametrisations they can generate from their current vector of pa-
rameters, before exploring new ones and (b) allow them to add a new feature
to the vector of parameters when they can no longer progress in any of their
communicative tasks, selecting the one with the highest relevant value.



8.1. OPEN-ENDED LEARNING ENVIRONMENTS 135

8.1.3 Generation of new language strategies

A dynamic challenge configuration modifies the initial vector of parameters and
permits agents to create new challenges based on the new challenge configuration.
As a consequence, agents need to create language strategies to associate to the
new challenges. Each communicative task is associated with a particular language
strategy. These strategies do not (a) impose any restriction to how or when
lexical items should be created or (b) enforce certain word-order constraints in
multi-word utterances, but provide agents with means to cope with the different
communicative challenges. However, if agents can autonomously increase the
vector of parameters used to define challenges, they also need a mechanism to
generate new strategies to handle these new communicative tasks dynamically.

In this thesis language strategies have been implemented as semantic con-
straint networks using the Incremental Recruitment Language (IRL) (see Section
2.2). Language strategies are represented in IRL as meaning networks that com-
bine several cognitive operations using variable linking. Cognitive operations are
sequences of coded instructions, programmed by the experimenter, that perform
some cognitive activity such as categorise, classify or filter. Such networks con-
tain unconnected variables that are linked by agents to semantic entities from
their inventories in order to build good conceptualisations and interpretations for
the topic of the interaction.

It should be mentioned that a language strategy specifies the kind of semantic
entities it can be combined with but does not impose any restriction on the
number or the characteristics of these entities. The resulting semantic entities
that will be part of an agent’s lexicon do not depend only on a language strategy
but also on the environment in which it is used. For example, all human languages
use the basic colour strategy to split the colour space into colour categories, but
the particular categories created differ among languages [149, 67, 45]. An example
of a language strategy as a meaning network was already introduced in Figure
6.3 for the basic colour strategy. This meaning network contains several cognitive
operations and one unconnected variable, ?cc. This open variable allows agents
to link the meaning network to the different colour categories in their inventory
through a semantic entity.

How could agents be able to create new language strategies that were not
planned in advance by the experimenter? IRL can generate new semantic net-
works as the result of a combinatorial search process of cognitive operations
[122, 123]. This mechanism has already been used to study the origins of lan-
guage strategies for the domain of colour by Bleys ([21], Chapter 11). The idea is
to provide agents with a pool of basic cognitive operations. When they face a new
challenge configuration for which they do not have any language strategy, agents
can build a new one through a process of combinatorial search of these cognitive
operations. When this process leads to a successful semantic network it can be
stored by the agent as a language strategy for that challenge configuration.

It is important to stress that the more general the distinct cognitive opera-
tions are, the more useful they would be. Taking the meaning network for the
basic colour strategy previously mentioned as an example, we observe that it is
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composed of five cognitive operations. Some of these predicates1 can be trans-
formed into more general cognitive operations if an additional argument is added.
For instance, the meaning predicate profile-colour-dimensions can be trans-
formed into profile-dimensions if an extra argument ?dimensions is provided.
With such transformations, cognitive operations could become more powerful, as
they could employ the same operations to different perceptual dimensions.

As previously stated, each dimension in the vector employed to determine
challenges corresponds to a distinct feature in the environment. A communica-
tive challenge is defined as a particular configuration of these vector dimensions,
with a specific value associated with each feature. Features stand for distinct
kinds of semantic entities. These values are used to determine the number of
times each kind of semantic entity should appear in the language strategy asso-
ciated with that challenge. For example, from the language strategies studied
for the domain of colour, the basic colour strategy is associated to challenge con-
figurations that only refer to one colour category, the membership strategy is
associated to challenge configurations that may involve one membership and one
colour strategy or the colour combination strategy to challenge configurations
that include at least two colour categories.

Accordingly, a language strategy for a new challenge configuration should
combine the set of different semantic entities associated with that challenge into
a connected meaning network. Such meaning networks are obtained through a
combinatorial search process that uses the pool of cognitive operations. A proper
design of such operations should allow agents to build discriminative meaning
networks for several language domains, but it may happen that agents are unable
to build successful semantic networks for specific communicative challenges. This
problem will occur when the cognitive operations available cannot be combined
to create a connected meaning network for the set of semantic entities of the
challenge. Unfortunately, in the current implementation agents do not have a
way to autonomously create new cognitive operations when their set of cognitive
operations fails to assemble a connected meaning network. It will be fascinating
to explore this issue in the future but at this moment it constitutes a restriction
of the system.

8.2 Other applications

Apart from exploring the usage of the autotelic principle in open-ended exper-
imental set-ups, where some of the restrictions in the experiments carried out
in this thesis can be removed, there are other applications in which this moti-
vation system can be useful. For instance, in its origins, the autotelic principle
was proposed as an alternative to the behaviourist approaches to developmental
robotics [131] or, more recently, Beuls suggested to use it to model the knowledge
of second language learners ([18], Chapter 9). This section briefly discusses three
of these applications.

1Cognitive operations are IRL predicates that represent a cognitive activity that the agent
has to perform. IRL contains another kind of meaning predicates, named semantic entities.
See Subsection 2.2.1.
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8.2.1 Intelligent tutoring systems

In her thesis, Beuls [18] point out that language learning applications, despite
presenting several advantages in contrast to learning a language in a classroom,
lack a proper personalised analysis of the language abilities of their users. In
order to solve this problem, she proposed to build artificial tutors with which
second language learners could interact in an individualised way. Such system
would analyse the performance of students and provide exercises adapted to their
current knowledge, facilitating their language improvement.

Her idea is that artificial tutors build a model of each user of the application
to identify his level, strengths and flaws when learning a second language. With
this information, the system can select the best exercises to increase the level
of the student while avoiding falling into repetitive, tedious activities. Part of
this task lies in identifying exercises that are challenging enough for the current
knowledge of the user but not too much: in other words, that allow students to
stay in a state of flow as much as possible during the lesson.

The autotelic principle can be used by artificial tutors in the learner’s knowl-
edge model of a user. Similarly to other autotelic activities, such as rock climbing
or learning to play chess, in order to develop our proficiency for a second language
we need to address exercises of different complexity. The set of different lessons
of a language program can be labelled and ranked according to their difficulty,
assigning a level value to each task. The artificial tutor can evaluate the level
of a new student after an initial test consisting of exercises of different complex-
ity. It can use the results to identify the proficiency of the student and create
a knowledge model for him. With this model, the tutor can propose exercises
according to the level of the student. This model is continually updated with
the user’s feedback, keeping track of his evolution and adapting the estimation
of the student’s level over time.

The model mimics the dynamics of a course in a language school: when
students start, they have to face an exam to evaluate their level. The school uses
these results to assign each student to different groups, which are usually split
up according to various proficiency levels. The level of the students is regularly
evaluated in class and they eventually change their course when they have learned
the set of language skills taught in that classroom. The same approach can also
be applied to other educational areas. For instance, the same architecture can
be used to implement an application to learn mathematics, biology, physics or
chemistry.

8.2.2 Developmental robotics

As stated in the introduction of this section, the autotelic principle was first pro-
posed by Steels as an alternative to the behaviourist approaches to developmental
robotics [131]. However, the research carried out so far has explored its utility as
a mechanism to regulate the complexity of linguistic interactions [145, 32, 31].

The idea is to use the motivation system to self-regulate the developmental
process of an embodied agent. As already explained in Chapter 4, the autotelic
principle assumes that agents are a set of interconnected components, each of
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them responsible for a particular task. In order to produce an action, such as
move or point, the agent needs to combine a subset of its components. For
example, in order to point to an object, an agent needs first to process the input
images to identify the object and then coordinate the group of motors with which
it can modify the position of its arm to the direction of that object.

It is possible for agents to achieve such goals if they can explore their sensori-
motor space in order to build a mapping between instructions on a set of compo-
nents and the resulting actions. The system can first monitor the performance of
each component individually. For instance, the ability of the agent to use a motor
to move an articulated member into the direction chosen and then evaluate the
performance of a set of components to perform actions, as in the pointing exam-
ple. This approach allows agents to first focus on simpler challenges and later
move to more complex ones that require the interaction of several components.

8.2.3 Character modelling in video games

Recently, Artificial Intelligence researchers have looked at the possible application
of motivation systems to model the behaviour of computer-controlled characters
in video games. They aim to use AI techniques to improve the game experience,
providing a personal, more enjoyable gameplay. Their attention is linked to the
boost that this industry has undergone for the last three decades.

Nowadays, video games have become one of the most popular and fruitful
businesses among the entertaining industries, with associated incomes that have
been consistently growing between 9% and 15% annually for a period of 25 years
[161]. The number of players has increased accordingly, with around 1.8 billion
gamers worldwide [113].

The idea, as explained by Merrick [80] in the introduction of her book, is to
"use information gathered by game data mining researchers about players to in-
form the design of novel self-motivated game-playing agents to control non-player
characters". In other words, the goal of this research is to design algorithms that
adapt the behaviour of the characters controlled by the game, both those that
help the player and those that play against the player, to the style and level of
the user of the game in order to achieve more enjoyable, diversified, involving
gaming experiences.

Usually, such computer programs require players to develop a set of skills that
they must use correctly in order to advance through the story. In some cases, the
game may become repetitive and boring once the player has acquired those skills.
In order to avoid this, the game can keep track of the level of proficiency of the
player for each ability required. This information can then be used to react to
her improvements, adapting the situations the player has to undergo to provide
more exciting scenarios and also facilitate the improvement of her less developed
skills.

The autotelic principle can be used for this purpose, as it already has a way to
monitor the performance of an agent for different challenges. It will be necessary
to determine the different game challenges, which may correspond to the mastery
of different abilities, and the appropriate monitors to follow the evolution of those
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skills during the gameplay. All this information can be processed by the game
engine to dynamically adjust the game conditions to the advances of the player.

8.3 Summary

This chapter mentioned future paths for extending the research on the autotelic
principle. The first part focused on what I think the next generation of language
evolution experiments using the AP should explore. I argue that the next step
should be embodied experiments primarily because it will allow the testing of
the motivation system in environments where several language domains (space,
colour, form, size, etc.) are prominent for communication, despite the difficulties
that may arise from differences in perceptual deviation. Such experimental set-
ups are also interesting to investigate (a) a dynamic extension of the challenge
dimensions and (b) the language strategies agents will need to come up in order
to communicate about new challenges. The former would allow agents to modify
the vector of parameters used to define challenges when they identify a relevant
feature in the environment not captured with their current challenge configura-
tion, while the latter would consist of generating new meaning networks by a
combinatorial search process that uses the pool of cognitive operations available
to agents.

The second part focused on research routes aside from experiments of lan-
guage development. The usage of the autotelic principle in developmental robotic
experiments is maybe the most straight forward to apply, as the system was orig-
inally designed for such experiments. Recently, artificial intelligence researchers
have explored the utility of motivation systems as mechanisms to provide precise
information about users of large scale applications. The idea is to use the infor-
mation gathered to personalise the user experience, facilitating the learning of
second languages in Intelligent Tutoring systems or adapting the conditions of a
video game dynamically to match the player’s skill.
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Appendix A

Example of execution of an
IRL-network

This appendix demonstrates how an IRL-network is executed. I illustrate the
execution of an IRL-network using as example the basic colour strategy used in
the experiments in Chapter 6.

As the other language strategies in Chapter 6, the basic colour strategy has
been modelled as a connected network of meaning predicates. The corresponding
IRL-network for basic colour strategy is shown in Figure 6.3. Nevertheless, it is
reproduced in Figure A.1 in order to help the reader. This network combines five
cognitive operations: equal-to-context, profile-colour-dimensions, cate-
gorise-by-colour, get-basic-colour-category-set and select-most-acti-
vated (see Subsection 6.2.6 for a description of each operation).

In IRL-networks meaning predicates are connected using variables. For ex-
ample, in the basic colour strategy the meaning predicate equal-to-context
introduces the variable ?s1, which represents the colour samples in the context,
and profile-colour- dimensions gets a set of colour samples (?s1 ) and filters
them according to colour dimensions, which in this case returns the original set
on a new variable ?s2.

(equal-to-context ?s1)

(profile-colour-dimensions ?s2 ?s1)

(categorise-by-colour ?s3 ?s2 ?cc ?bccs)

(get-basic-colour-category-set ?bccs)(select-most-activated ?topic ?s3)

Figure A.1: Example of a language strategy as a connected network of cognitive
operations. This example corresponds to the basic colour strategy.
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The goal execution of an IRL-network is to bind the different variables to ac-
tual objects (see Subsection2.2.2). In conceptualisation, the meaning structure
is executed to determine if the IRL-network leads to a discriminative concep-
tualisation of the topic (in the example a colour sample from the context). In
interpretation, the hearer reconstructs the IRL-network from an utterance, which
introduces different semantic entities linked to lexical constructions, and executes
it in order to identify the communicative goal of the speaker. The rest of the ap-
pendix illustrates the execution of the IRL-network for the basic colour strategy
in both conceptualisation and interpretation.

Execution of an IRL-network in conceptualisation

Both conceptualisation and interpretation are parts of the semiotic cycle (see
Section2.1). In order to show the execution of the basic colour strategy we de-
termine that the context of the interaction between two agents consist of three
different colour samples, which correspond to the following focal colours for En-
glish1: green, black and pink (Figure A.2). The speaker has chosen as a topic of
the interaction the black colour sample.

Figure A.2: Context in which for the basic colour strategy will be executed.
In this case, the context contains three colour samples that correspond to the
English focal colours green, black and pink.

The goal of the speaker is to find if the basic colour strategy is able to cre-
ate a discriminative conceptualisation of the topic. In other words, the speaker
will execute the IRL-network in order to find a colour category (variable ?cc)
that successfully conceptualise the topic ?topic (the colour sample black in the
example). The first primitives that are evaluated are those that introduce only
one variable in the network. For instance, it may start executing the cognitive
operation equal-to-context, which binds the variable ?s1 to the colour samples
in the context (Figure A.2).

The execution can continue evaluating the primitive profile-colour-dimen-
sions. A profiling primitive filters on certain dimensions of colours and returns
a filtered set. However, profiling on colour dimensions returns the original set.
Therefore, the resulting variable ?s2 contains the same colour samples as ?s1.

Before categorising by colour, the network must execute the get-basic-cate-
gory-set to obtain the set of basic colour categories of the speaker. This prim-
itive binds this set to the variable ?bccs. In this case, ?bccs contains the eleven
basic colours for English (Figure A.4).

So far, the execution of the IRL-network has bound the variables ?s1 and
?s2 to sets containing the colour samples in the context (Figure A.2) and the

1See Sturges & Whitfield [149]
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Figure A.3: Visual representation of the execution process for the basic colour
strategy in conceptualisation. The variables in the meaning network get bound
as the different cognitive operations are evaluated. The categorisation by colour
leads to three different hypotheses. The only hypothesis that fulfils that the most
activated entity in colour-entity-set-3i corresponds to the topic black-entity leads
to a solution.

Figure A.4: Basic colour categories known by the speaker. In this case, the set
contains colour samples that correspond to all English focal colours.

variable ?bccs to the set of basic colour categories known by the agent. The
categorise-by-colour primitive categorises the input set ?s2 according to a
colour category ?cc, which can be one of the colour categories in ?bccs. The
variable ?cc introduces a semantic entity to the IRL-network, which can only be
one of the basic colour categories known by the agent.

At this point the execution process splits the search into three hypotheses,
as there are three possible bindings to semantic entities for the variable ?cc
for which the resulting set ?s3 is not empty: green, black and pink. For each
hypothesis, ?s3 contains the set of colour samples in ?s2 that have as a closest
colour prototype the colour category ?cc with an associated activation value that
represents how similar the colour sample is to the colour category introduced by
?cc. Therefore, the resulting set of each hypothesis only contains one colour
sample. For example, ?s3 contains the colour sample green when ?cc is bound to
the colour category of the agent that represents the English focal colour labelled
as "green".

There is only one cognitive operation that has not been evaluated yet: select-
most-activated. This primitive selects the colour sample in ?s3 with the high-
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est activation value. As in each of the three hypotheses ?s3 only has one colour
sample, it returns that colour sample. From the three hypotheses, the only one
that fulfils that ?topic is bind to the selected topic (the colour sample black) is
when ?cc is bound to the colour category "black".

As the IRL-network of the basic colour strategy can successfully discriminate
the colour sample chosen by the speaker in the context referring to the colour
category "black", the execution lead to a solution. In the semiotic cycle, the
speaker will use this information as the meaning for which it has to formulate
an utterance. A visual representation of the execution just described is shown in
Figure A.3.

Figure A.5: Visual representation of the execution process for the basic colour
strategy in interpretation. The network is initialised with the variable ?cc bound
to the colour category "black". The variables of the meaning network get bound
as the different meaning predicates are evaluated. At the end of the execution
?topic is bound to the colour sample black of the context, and therefore to a
solution for this IRL-network. In this example, the ?topic corresponds to the
intended topic of the speaker.

Execution of an IRL-network in interpretation

The goal in interpretation is to execute the recovered meaning (in the form of an
IRL-network) from the input utterance in order to identify the communicative
goal of the speaker. In the current example, as we are focusing on the basic colour
strategy, the goal is to identify the topic of the interaction (the colour sample
bound to ?topic) given the colour category expressed by the speaker. Therefore,
assuming that the interpretation process is part of the same interaction, the
IRL-network is initialised with the ?cc bound to the colour category "black".

The execution start with these cognitive operations that introduce only one
variable in the network: equal-to-context binds textit?s1 to a set containing
the colour samples in the context, and get-basic-colour-category-set binds
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textit?bccs to a set composed of the colour categories known by the hearer.
The execution continues with the evaluation of profile-colour-dimensions.
This cognitive operation binds ?s2 to a set containing the colour samples in the
context, as it occurred in conceptualisation.

At this point the cognitive operation categorise-by-colour can be exe-
cuted, as the only unbound variable is ?s3. As in the initialisation of the network
the variable?cc is bind to the colour category "black", the result of evaluating
this meaning predicate is a resulting set, bind to the variable ?s3, that contains
only the colour sample black with the associated activation value. Therefore,
evaluating select-most-activated binds the colour sample black to the vari-
able ?topic, which in this case corresponds to the topic chosen by the speaker at
the beginning of the interaction. A visual representation of the execution just
described is shown in Figure A.5.

Conclusion

This appendix has presented an example of how an IRL-network is executed
in both conceptualisation and interpretation. The interested reader on IRL is
referred to [141, 152, 122, 123] for further information on the system.
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Appendix B

Parametrization of the autotelic
principle

This appendix explains how the different parameters in the implementation of the
autotelic principle used in this thesis have been selected. When Steels proposed
the autotelic principle in 2004 [131] he mentioned two characteristics about how
the motivation system should be implemented:

• "In our experiments to date we have found that the system should start with
the lowest challenge levels possible for all components (instead of starting
with a random configuration) so as to build up steadily in a bottom-up
fashion." [131, p. 11]

• "We also know from our experiments that a conservative strategy (where
only one repair is executed in the Operation Phase, and one parameter is
changed in the Shake Up Phase) is much more desirable than drastic and
rapid change." [131, p. 14]

In other words, he identified two situations that facilitate the development
of skills: (a) agents should start attempting those challenges with the lowest
complexity levels instead of random parameter configurations and (b) during
both operation and shake-up phases, slight changes are preferred over drastic
modifications. The latter suggests that the system performs better with limited
changes.

I adapted these pieces of advice to employ the autotelic principle in experi-
ments of language emergence. During the operation phase of a challenge, agents
only use one repair for each time they participate in an interaction: (a) when
the speaker has to conceptualise a topic to produce an utterance, (b) when the
hearer comprehends an input utterance in order to determine the topic of the
interaction or (c) when the hearer receives feedback from the speaker. Also,
in the shake-up phase new challenges are generated increasing or decreasing by
one unit one parameter in the challenge parametrisation, instead of randomly
creating new challenge configurations.

However, despite Steels stating that (a) the internal state of a challenge should
be determined by monitors that track the performance of the system over a time
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span and (b) this period should be long enough for letting the system acquire the
skills to reach a certain performance level for that challenge, he did not specify
how it should be implemented [131, p. 10]:

The cost of a parameter configuration cannot simply be computed by
applying a simple function (as in the travelling sales man for example,
where cost is basically the length of a path) but must be derived from
monitoring actual performance of the system over a particular period
of time, including enough time to achieve the acquisition of the nec-
essary skills to reach a certain performance level, (2) this monitoring
period must include enough time for the system to acquire the neces-
sary skills to reach a certain performance level. It is to be noted that
the objective is not to get optimal performance, but rather to explore
the landscape of possibilities in such a way that a higher degree of
complexity is reached.

In the implementation used in this thesis, there are two parameters associated
with each challenge: confidence, the certainty the system has of being proficient
in a particular task, and persistence, a measure to ensure a minimum number
of attempts before the system decides to change its current task. Section 4.5
describes how these parameters are captured by a set of variables (δinc_conf ,
δdec_conf and δdec_pers) and explains how the system updates these variables
after it performs an action in a given challenge.

The value δdec_pers, related to the parameter persistence limits the minimum
number of interactions the system will attempt on a particular challenge. This
value has been set to 0.02 in order to provide enough time to acquire the necessary
skills for a particular challenge.

The values used to update the parameter confidence, δinc_conf and δdec_conf ,
have been determined after testing their performance in 400 different configura-
tions of these values on the experiment described in Section 5.31. To ensure the
consistency of the results each configuration has been tested on four runs of 7000
interactions. The outcome of these simulations is presented in table B.1, which
present the resulting communicative success, alignment success, the average cu-
mulative confidence in challenges and the average number of grammatical and
lexical constructions for each pair of δinc_conf and δdec_conf values examined.

The results show that for most configurations the system obtains considerably
good results, with almost perfect outcomes for each measure. These results are
related to the experimental set-up: the different communicative challenges are
pretty easy to achieve when addressed as learning tasks of increasing complexity,
as agents have to agree on how to name a set of 21 possible characteristics
of objects (during the first two learning tasks) and a small set of grammatical
constructions.

However, from all configurations tested the values 0.005 for δinc_conf and
0.020 for δdec_conf provide the best results. With these values, the population of

1The objects and scenes used correspond to the ones described in Subsection 5.1.1, except for
the shape value of obj7, which has been modified to triangular (obj7 = {prototype(obji, chair),
shape(obji, triangular), colour(obji, black)).
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agents achieves 100% communicative and alignment success and the maximum
number of cumulative confidence for the five communicative challenges. More-
over, it is the only configuration for which all agents converge to the minimum
set of lexical and grammatical constructions. As a consequence, δinc_conf and
δdec_conf have been set to [0.005, 0.020] in all the experiments reported in this
thesis.

It is necessary to point out that there are other combinations that also provide
extremely good results, specifically those with δinc_conf and δdec_conf value pairs
of [0.010, 0.025] , [0.035, 0. 095], [0.085, 0.075] and [0.100, 0.095]. Such configu-
rations have been discarded for two reasons. The first one is that [0.005, 0.020]
is, as has been set before, the only configuration that allows the population to
converge to a minimal set of lexical and grammatical constructions. The second
reason is that gaining confidence at a lower pace provides the system with more
time to properly develop the skills required for that challenge. This is particularly
relevant for more challenging communicative challenges, such as developing a lex-
icon (and its associated prototypes) for the different colour language strategies
used in chapter 6.

δinc_conf δdec_conf Comm. succ. Align. succ. Chall. mast. Gram. cxns. Lex. cxns.
0.005 0.005 0.997 0.991 5.0 4.0 21.187
0.005 0.010 0.999 0.996 5.0 4.0 21.207
0.005 0.015 0.998 0.995 5.0 4.0 21.183
0.005 0.020 1.0 1.0 5.0 4.0 21.0
0.005 0.025 0.992 0.977 4.992 4.0 21.597
0.005 0.030 0.995 0.983 4.937 4.0 21.655
0.005 0.035 0.984 0.958 4.626 3.999 22.094
0.005 0.040 0.975 0.940 4.112 3.934 22.324
0.005 0.045 0.965 0.935 3.078 3.51 21.263
0.005 0.050 0.929 0.908 1.627 2.732 19.806
0.005 0.055 0.865 0.865 0.472 1.949 16.017
0.005 0.060 0.871 0.871 0.242 1.233 9.113
0.005 0.065 0.869 0.869 0.117 1.0 7.0
0.005 0.070 0.862 0.862 0.067 1.0 7.0
0.005 0.075 0.869 0.869 0.059 1.0 7.0
0.005 0.080 0.863 0.863 0.047 1.0 7.0
0.005 0.085 0.868 0.868 0.048 1.0 7.0
0.005 0.090 0.865 0.865 0.041 1.0 7.0
0.005 0.095 0.874 0.873 0.044 1.0 7.062
0.005 0.100 0.860 0.860 0.037 1.0 7.0
0.010 0.005 0.989 0.985 5.0 4.0 21.235
0.010 0.010 0.988 0.986 5.0 4.0 21.237
0.010 0.015 0.996 0.989 5.0 4.0 21.385
0.010 0.020 0.999 0.998 5.0 4.0 21.155
0.010 0.025 1.0 1.0 5.0 4.0 21.007
0.010 0.030 0.995 0.986 4.999 4.0 21.448
0.010 0.035 0.998 0.994 4.999 4.0 21.21
0.010 0.040 0.993 0.984 4.999 4.0 21.506
0.010 0.045 0.991 0.980 4.999 4.0 21.496
0.010 0.050 0.994 0.981 4.999 4.0 21.487
0.010 0.055 0.995 0.985 4.999 4.0 21.535
0.010 0.060 0.990 0.966 4.996 4.0 21.848
0.010 0.065 0.990 0.968 4.980 4.0 21.527
0.010 0.070 0.994 0.979 4.851 3.993 21.359
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δinc_conf δdec_conf Comm. succ. Align. succ. Chall. mast. Gram. cxns. Lex. cxns.
0.010 0.075 0.984 0.968 4.400 3.894 22.024
0.010 0.080 0.954 0.921 3.259 3.551 21.792
0.010 0.085 0.949 0.935 2.848 3.411 21.064
0.010 0.090 0.871 0.862 0.868 2.264 16.072
0.010 0.095 0.877 0.877 0.648 2.684 17.728
0.010 0.100 0.863 0.863 0.403 2.209 15.413
0.015 0.005 0.989 0.987 5.0 4.0 21.230
0.015 0.010 0.986 0.979 5.0 4.0 21.435
0.015 0.015 0.998 0.996 5.0 4.0 21.185
0.015 0.020 0.999 0.999 5.0 4.0 21.071
0.015 0.025 0.998 0.996 4.999 4.0 21.193
0.015 0.030 0.999 0.996 4.999 4.0 21.149
0.015 0.035 0.997 0.992 4.999 4.0 21.314
0.015 0.040 0.999 0.997 4.999 4.0 21.131
0.015 0.045 0.996 0.991 4.999 4.0 21.395
0.015 0.050 0.995 0.988 4.999 4.0 21.312
0.015 0.055 0.997 0.991 4.999 4.0 21.382
0.015 0.060 0.996 0.989 4.999 4.0 21.353
0.015 0.065 0.999 0.996 4.999 4.0 21.171
0.015 0.070 0.993 0.985 4.999 4.0 21.621
0.015 0.075 0.996 0.991 4.999 4.0 21.411
0.015 0.080 0.992 0.977 4.997 4.0 21.482
0.015 0.085 0.995 0.986 4.998 4.0 21.311
0.015 0.090 0.993 0.978 4.996 4.0 21.778
0.015 0.095 0.996 0.992 4.998 4.0 21.285
0.015 0.100 0.995 0.989 4.988 4.0 21.234
0.020 0.005 0.903 0.898 5.0 4.0 21.524
0.020 0.010 0.990 0.990 5.0 4.0 21.037
0.020 0.015 0.988 0.987 5.0 4.0 21.127
0.020 0.020 0.997 0.998 4.999 4.0 21.139
0.020 0.025 0.996 0.989 4.999 4.0 21.432
0.020 0.030 0.997 0.992 4.999 4.0 21.320
0.020 0.035 0.997 0.993 4.999 4.0 21.271
0.020 0.040 0.995 0.988 4.999 4.0 21.468
0.020 0.045 0.999 0.999 4.999 4.0 21.023
0.020 0.050 0.998 0.993 4.999 4.0 21.248
0.020 0.055 0.999 0.997 4.999 4.0 21.114
0.020 0.060 0.996 0.990 4.999 4.0 21.367
0.020 0.065 0.995 0.989 4.999 4.0 21.492
0.020 0.070 1.0 0.999 5.0 4.0 21.046
0.020 0.075 0.998 0.996 4.998 4.0 21.152
0.020 0.080 0.995 0.986 4.999 4.0 21.380
0.020 0.085 0.998 0.995 4.999 4.0 21.222
0.020 0.090 0.995 0.986 4.997 4.0 21.409
0.020 0.095 0.999 0.999 4.999 4.0 21.067
0.020 0.100 0.987 0.967 4.993 4.0 21.995
0.025 0.005 0.946 0.942 5.0 4.0 21.520
0.025 0.010 0.975 0.965 5.0 4.0 21.789
0.025 0.015 0.997 0.992 5.0 4.0 21.395
0.025 0.020 0.995 0.990 4.999 4.0 21.386
0.025 0.025 0.999 0.999 4.999 4.0 21.094
0.025 0.030 0.989 0.989 4.999 4.0 21.076
0.025 0.035 0.997 0.992 4.999 4.0 21.295
0.025 0.040 0.999 0.998 4.999 4.0 21.094
0.025 0.045 0.995 0.989 4.999 4.0 21.402
0.025 0.050 0.988 0.973 4.999 4.0 21.990
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δinc_conf δdec_conf Comm. succ. Align. succ. Chall. mast. Gram. cxns. Lex. cxns.
0.025 0.055 0.999 0.999 4.999 4.0 21.080
0.025 0.060 0.995 0.991 4.999 4.0 21.383
0.025 0.065 0.998 0.995 4.999 4.0 21.152
0.025 0.070 0.997 0.990 4.999 4.0 21.344
0.025 0.075 0.995 0.984 4.999 4.0 21.380
0.025 0.080 0.999 0.998 4.999 4.0 21.093
0.025 0.085 0.999 0.998 4.999 4.0 21.104
0.025 0.090 0.997 0.992 4.996 4.0 21.342
0.025 0.095 0.990 0.972 4.998 4.0 21.786
0.025 0.100 0.999 0.999 4.999 4.0 21.069
0.030 0.005 0.970 0.968 5.0 4.0 21.350
0.030 0.010 0.972 0.960 5.0 4.0 21.623
0.030 0.015 0.939 0.930 5.0 4.0 21.658
0.030 0.020 0.995 0.990 4.999 4.0 21.504
0.030 0.025 0.996 0.991 4.999 4.0 21.447
0.030 0.030 0.998 0.996 4.999 4.0 21.176
0.030 0.035 0.987 0.981 4.999 4.0 21.490
0.030 0.040 0.998 0.995 4.999 4.0 21.267
0.030 0.045 0.993 0.985 4.999 4.0 21.500
0.030 0.050 0.998 0.996 4.999 4.0 21.204
0.030 0.055 0.999 0.999 4.999 4.0 21.051
0.030 0.060 0.996 0.992 4.999 4.0 21.401
0.030 0.065 0.997 0.992 4.999 4.0 21.298
0.030 0.070 0.992 0.980 4.999 4.0 21.663
0.030 0.075 0.998 0.995 4.999 4.0 21.257
0.030 0.080 0.999 0.998 4.999 4.0 21.104
0.030 0.085 0.998 0.994 4.999 4.0 21.204
0.030 0.090 0.9989 0.996 4.998 4.0 21.179
0.030 0.095 0.997 0.991 4.999 4.0 21.255
0.030 0.100 0.999 0.996 4.999 4.0 21.145
0.035 0.005 0.947 0.942 5.0 4.0 21.621
0.035 0.010 0.976 0.970 5.0 4.0 21.593
0.035 0.015 0.977 0.972 5.0 4.0 21.701
0.035 0.020 0.977 0.976 4.999 4.0 21.379
0.035 0.025 0.989 0.989 4.999 4.0 21.072
0.035 0.030 0.997 0.992 4.999 4.0 21.354
0.035 0.035 0.978 0.973 4.999 4.0 21.504
0.035 0.040 0.998 0.995 4.999 4.0 21.265
0.035 0.045 0.995 0.989 4.999 4.0 21.574
0.035 0.050 0.998 0.996 4.999 4.0 21.186
0.035 0.055 0.996 0.990 4.999 4.0 21.432
0.035 0.060 0.993 0.982 4.999 4.0 21.735
0.035 0.065 0.999 0.997 4.999 4.0 21.113
0.035 0.070 0.999 0.999 4.999 4.0 21.073
0.035 0.075 0.997 0.992 4.999 4.0 21.341
0.035 0.080 0.998 0.995 4.999 4.0 21.176
0.035 0.085 0.999 0.997 4.999 4.0 21.164
0.035 0.090 0.997 0.990 4.999 4.0 21.383
0.035 0.095 1.0 1.0 5.0 4.0 21.012
0.035 0.100 0.999 0.999 4.999 4.0 21.045
0.040 0.005 0.890 0.884 5.0 4.0 21.930
0.040 0.010 0.956 0.949 5.0 4.017 21.434
0.040 0.015 0.907 0.901 5.0 4.0 21.554
0.040 0.020 0.990 0.989 4.999 4.0 21.104
0.040 0.025 0.999 0.998 4.999 4.0 21.140
0.040 0.030 0.968 0.956 4.999 4.001 21.663
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δinc_conf δdec_conf Comm. succ. Align. succ. Chall. mast. Gram. cxns. Lex. cxns.
0.040 0.035 0.996 0.991 4.999 4.0 21.304
0.040 0.040 0.979 0.977 4.999 4.0 21.275
0.040 0.045 0.997 0.993 4.999 4.0 21.266
0.040 0.050 0.994 0.984 4.999 4.0 21.580
0.040 0.055 0.976 0.973 4.999 4.0 21.310
0.040 0.060 0.996 0.990 4.999 4.0 21.397
0.040 0.065 0.999 0.998 4.999 4.0 21.122
0.040 0.070 0.997 0.991 4.999 4.0 21.313
0.040 0.075 0.997 0.993 4.999 4.0 21.240
0.040 0.080 0.997 0.992 4.998 4.0 21.315
0.040 0.085 0.998 0.994 4.999 4.0 21.324
0.040 0.090 0.997 0.993 4.99 4.0 21.332
0.040 0.095 0.994 0.982 4.999 4.0 21.462
0.040 0.100 0.999 0.999 4.998 4.0 21.081
0.045 0.005 0.882 0.879 5.0 4.0 21.584
0.045 0.010 0.969 0.964 5.0 4.0 21.439
0.045 0.015 0.980 0.979 5.0 4.0 21.224
0.045 0.020 0.975 0.962 4.999 4.0 21.608
0.045 0.025 0.979 0.972 4.999 4.0 21.491
0.045 0.030 0.998 0.994 4.999 4.0 21.222
0.045 0.035 0.993 0.983 4.999 4.0 21.767
0.045 0.040 0.998 0.996 4.999 4.0 21.177
0.045 0.045 0.987 0.984 4.999 4.0 21.352
0.045 0.050 0.989 0.989 4.999 4.0 21.089
0.045 0.055 0.999 0.997 4.999 4.0 21.096
0.045 0.060 0.990 0.989 4.999 4.0 21.060
0.045 0.065 0.992 0.980 4.999 4.0 21.461
0.045 0.070 0.998 0.994 4.999 4.0 21.217
0.045 0.075 0.997 0.992 4.999 4.0 21.289
0.045 0.080 0.998 0.997 4.999 4.0 21.171
0.045 0.085 0.999 0.996 4.999 4.0 21.127
0.045 0.090 0.999 0.997 4.999 4.0 21.126
0.045 0.095 0.995 0.990 4.999 4.0 21.348
0.045 0.100 0.997 0.993 4.999 4.0 21.290
0.050 0.005 0.922 0.920 5.0 4.0 21.426
0.050 0.010 0.986 0.979 5.0 4.0 21.450
0.050 0.015 0.968 0.959 5.0 4.0 21.529
0.050 0.020 0.959 0.952 4.999 4.0 21.566
0.050 0.025 0.999 0.999 4.999 4.0 21.045
0.050 0.030 0.968 0.964 4.999 4.0 21.421
0.050 0.035 0.987 0.982 4.999 4.0 21.457
0.050 0.040 0.999 0.999 4.999 4.0 21.072
0.050 0.045 0.987 0.986 4.999 4.0 21.200
0.050 0.050 0.981 0.980 4.999 4.0 21.220
0.050 0.055 0.992 0.979 4.999 4.0 21.736
0.050 0.060 0.996 0.988 4.999 4.0 21.173
0.050 0.065 0.994 0.983 4.999 4.0 21.292
0.050 0.070 0.999 0.996 4.999 4.0 21.171
0.050 0.075 0.998 0.996 4.998 4.0 21.175
0.050 0.080 0.996 0.988 4.999 4.0 21.556
0.050 0.085 0.995 0.991 4.998 4.0 21.320
0.050 0.090 0.999 0.998 4.999 4.0 21.093
0.050 0.095 0.999 0.998 4.999 4.0 21.086
0.050 0.100 0.998 0.996 4.999 4.0 21.161
0.055 0.005 0.863 0.855 5.0 4.0 22.125
0.055 0.010 0.938 0.933 5.0 4.0 21.497
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δinc_conf δdec_conf Comm. succ. Align. succ. Chall. mast. Gram. cxns. Lex. cxns.
0.055 0.015 0.950 0.946 5.0 4.0 21.423
0.055 0.020 0.997 0.993 4.999 4.0 21.335
0.055 0.025 0.912 0.906 4.999 4.0 21.543
0.055 0.030 0.989 0.986 4.999 4.0 21.303
0.055 0.035 0.977 0.972 4.999 4.0 21.392
0.055 0.040 0.978 0.976 4.999 4.0 21.166
0.055 0.045 0.985 0.980 4.999 4.0 21.380
0.055 0.050 0.997 0.992 4.999 4.0 21.370
0.055 0.055 0.999 0.999 4.999 4.0 21.045
0.055 0.060 0.996 0.990 4.999 4.0 21.335
0.055 0.065 0.998 0.994 4.999 4.0 21.299
0.055 0.070 0.996 0.993 4.999 4.0 21.407
0.055 0.075 0.993 0.981 4.999 4.0 21.814
0.055 0.080 0.996 0.988 4.999 4.0 21.507
0.055 0.085 0.998 0.995 4.999 4.0 21.162
0.055 0.090 0.997 0.994 4.999 4.0 21.304
0.055 0.095 0.989 0.989 4.999 4.0 21.102
0.055 0.100 0.998 0.995 4.997 4.0 21.290
0.060 0.005 0.906 0.906 5.0 4.0 21.507
0.060 0.010 0.956 0.951 5.0 4.0 21.679
0.060 0.015 0.955 0.948 5.0 4.0 21.797
0.060 0.020 0.937 0.937 4.999 4.0 21.142
0.060 0.025 0.976 0.969 4.999 4.0 21.551
0.060 0.030 0.983 0.978 4.999 4.0 21.605
0.060 0.035 0.9845 0.977 4.999 4.0 21.683
0.060 0.040 0.987 0.983 4.999 4.0 21.298
0.060 0.045 0.997 0.991 4.999 4.0 21.401
0.060 0.050 0.994 0.987 4.999 4.0 21.636
0.060 0.055 0.999 0.997 4.999 4.0 21.144
0.060 0.060 0.987 0.981 4.999 4.0 21.418
0.060 0.065 0.991 0.980 4.999 4.0 21.699
0.060 0.070 0.998 0.994 4.999 4.0 21.242
0.060 0.075 0.957 0.947 4.900 4.004 21.523
0.060 0.080 0.998 0.996 4.999 4.0 21.169
0.060 0.085 0.989 0.985 4.999 4.0 21.350
0.060 0.090 0.996 0.989 4.998 4.0 21.372
0.060 0.095 0.995 0.989 4.999 4.0 21.489
0.060 0.100 0.990 0.990 4.999 4.0 21.104
0.065 0.005 0.937 0.930 5.0 4.0 21.717
0.065 0.010 0.947 0.946 5.0 4.0 21.329
0.065 0.015 0.937 0.934 5.0 4.0 21.396
0.065 0.020 0.957 0.948 4.999 4.0 21.627
0.065 0.025 0.950 0.949 4.999 4.0 21.174
0.065 0.030 0.932 0.928 4.999 4.0 21.557
0.065 0.035 0.996 0.992 4.999 4.0 21.287
0.065 0.040 0.982 0.980 4.999 4.0 21.146
0.065 0.045 0.994 0.986 4.999 4.0 21.666
0.065 0.050 0.999 0.997 4.999 4.0 21.179
0.065 0.055 0.999 0.999 4.999 4.0 21.070
0.065 0.060 0.988 0.986 4.999 4.0 21.166
0.065 0.065 0.989 0.988 4.998 4.0 21.160
0.065 0.070 0.987 0.982 4.998 4.0 21.418
0.065 0.075 0.999 0.996 4.999 4.0 21.161
0.065 0.080 0.987 0.985 4.999 4.0 21.275
0.065 0.085 0.997 0.992 4.995 4.0 21.248
0.065 0.090 0.990 0.987 4.997 4.0 21.317
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δinc_conf δdec_conf Comm. succ. Align. succ. Chall. mast. Gram. cxns. Lex. cxns.
0.065 0.095 0.996 0.988 4.999 4.0 21.429
0.065 0.100 0.990 0.978 4.999 4.0 21.991
0.070 0.005 0.874 0.871 5.0 4.035 21.538
0.070 0.010 0.852 0.850 5.0 4.0 21.734
0.070 0.015 0.975 0.965 4.999 4.001 21.825
0.070 0.020 0.923 0.920 4.999 4.0 21.439
0.070 0.025 0.969 0.965 4.999 4.0 21.352
0.070 0.030 0.984 0.977 4.999 4.0 21.600
0.070 0.035 0.985 0.979 4.999 4.0 21.504
0.070 0.040 0.989 0.984 4.999 4.0 21.307
0.070 0.045 0.989 0.986 4.999 4.0 21.360
0.070 0.050 0.995 0.986 4.999 4.0 21.407
0.070 0.055 0.964 0.954 4.999 4.0 21.810
0.070 0.060 0.939 0.935 4.97 4.0 21.426
0.070 0.065 0.970 0.969 4.998 4.0 21.195
0.070 0.070 0.995 0.983 4.999 4.0 21.460
0.070 0.075 0.994 0.984 4.999 4.0 21.703
0.070 0.080 0.997 0.991 4.999 4.0 21.439
0.070 0.085 0.964 0.958 4.974 4.0 21.359
0.070 0.090 0.997 0.994 4.998 4.0 21.337
0.070 0.095 0.995 0.987 4.999 4.0 21.448
0.070 0.100 0.997 0.991 4.999 4.0 21.164
0.075 0.005 0.859 0.858 5.0 4.0 21.571
0.075 0.010 0.768 0.767 5.0 4.0 21.870
0.075 0.015 0.904 0.898 5.0 4.0 21.690
0.075 0.020 0.914 0.910 4.999 4.0 21.695
0.075 0.025 0.815 0.809 4.999 4.0 21.922
0.075 0.030 0.931 0.929 4.999 4.0 21.416
0.075 0.035 0.990 0.988 4.999 4.0 21.226
0.075 0.040 0.968 0.961 4.999 4.0 21.582
0.075 0.045 0.997 0.993 4.999 4.0 21.373
0.075 0.050 0.997 0.992 4.999 4.0 21.335
0.075 0.055 0.991 0.991 4.999 4.0 21.049
0.075 0.060 0.987 0.984 4.999 4.0 21.393
0.075 0.065 0.985 0.977 4.999 4.0 21.710
0.075 0.070 0.999 0.997 4.999 4.0 21.172
0.075 0.075 0.996 0.991 4.999 4.0 21.318
0.075 0.080 0.993 0.984 4.999 4.0 21.632
0.075 0.085 0.985 0.978 4.999 4.0 21.399
0.075 0.090 0.993 0.983 4.999 4.0 21.544
0.075 0.095 0.999 0.997 4.999 4.0 21.199
0.075 0.100 0.997 0.993 4.999 4.0 21.326
0.080 0.005 0.769 0.765 5.0 4.082 22.227
0.080 0.010 0.868 0.867 5.0 4.003 21.349
0.080 0.015 0.936 0.931 5.0 4.0 21.621
0.080 0.020 0.943 0.934 4.999 4.0 21.985
0.080 0.025 0.876 0.870 4.999 4.0 21.747
0.080 0.030 0.904 0.901 4.998 4.0 21.458
0.080 0.035 0.978 0.966 4.999 4.0 21.928
0.080 0.040 0.960 0.948 4.999 4.0 22.016
0.080 0.045 0.979 0.975 4.999 4.0 21.397
0.080 0.050 0.980 0.978 4.999 4.0 21.252
0.080 0.055 0.997 0.993 4.999 4.0 21.299
0.080 0.060 0.987 0.985 4.999 4.0 21.285
0.080 0.065 0.998 0.996 4.999 4.0 21.214
0.080 0.070 0.988 0.985 4.999 4.0 21.350
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δinc_conf δdec_conf Comm. succ. Align. succ. Chall. mast. Gram. cxns. Lex. cxns.
0.080 0.075 0.985 0.981 4.999 4.0 21.398
0.080 0.080 0.989 0.986 4.999 4.0 21.241
0.080 0.085 0.998 0.995 4.999 4.0 21.272
0.080 0.090 0.998 0.995 4.999 4.0 21.216
0.080 0.095 0.980 0.977 4.998 4.0 21.215
0.080 0.100 0.995 0.986 4.999 4.0 21.614
0.085 0.005 0.857 0.852 5.0 4.018 21.656
0.085 0.010 0.914 0.906 5.0 4.0 21.829
0.085 0.015 0.864 0.860 4.999 4.030 21.757
0.085 0.020 0.923 0.917 4.999 4.045 21.772
0.085 0.025 0.966 0.960 4.999 4.0 21.559
0.085 0.030 0.982 0.968 4.999 4.0 21.742
0.085 0.035 0.978 0.971 4.999 4.0 21.601
0.085 0.040 0.958 0.955 4.999 4.0 21.597
0.085 0.045 0.987 0.981 4.999 4.0 21.396
0.085 0.050 0.963 0.957 4.982 4.0 21.669
0.085 0.055 0.989 0.988 4.999 4.0 21.237
0.085 0.060 0.989 0.986 4.999 4.0 21.263
0.085 0.065 0.976 0.970 4.999 4.0 21.549
0.085 0.070 0.972 0.961 4.998 4.0 21.763
0.085 0.075 1.0 1.0 5.0 4.0 21.017
0.085 0.080 0.986 0.979 4.999 4.0 21.323
0.085 0.085 0.998 0.995 4.999 4.0 21.255
0.085 0.090 0.997 0.992 4.999 4.0 21.327
0.085 0.095 0.995 0.987 4.999 4.0 21.329
0.085 0.100 0.999 0.997 4.999 4.0 21.163
0.090 0.005 0.881 0.871 5.0 4.0 22.097
0.090 0.010 0.876 0.870 5.0 4.042 21.498
0.090 0.015 0.851 0.848 5.0 4.0 21.897
0.090 0.020 0.915 0.915 4.999 4.0 21.25
0.090 0.025 0.913 0.908 4.999 4.0 21.628
0.090 0.030 0.985 0.973 4.999 4.0 21.900
0.090 0.035 0.855 0.852 4.996 4.0 21.529
0.090 0.040 0.986 0.979 4.999 4.0 21.601
0.090 0.045 0.981 0.981 4.99 4.0 21.121
0.090 0.050 0.966 0.958 4.998 4.0 21.892
0.090 0.055 0.979 0.975 4.999 4.0 21.438
0.090 0.060 0.995 0.986 4.999 4.0 21.553
0.090 0.065 0.986 0.980 4.999 4.0 21.456
0.090 0.070 0.967 0.964 4.978 4.0 21.356
0.090 0.075 0.987 0.982 4.998 4.0 21.456
0.090 0.080 0.999 0.995 4.999 4.0 21.220
0.090 0.085 0.977 0.974 4.998 4.0 21.314
0.090 0.090 0.997 0.991 4.999 4.0 21.322
0.090 0.095 0.992 0.979 4.999 4.0 21.805
0.090 0.100 0.999 0.998 4.999 4.0 21.165
0.095 0.005 0.766 0.762 5.0 4.002 22.172
0.095 0.010 0.918 0.912 5.0 4.039 21.730
0.095 0.015 0.902 0.896 4.999 4.044 21.934
0.095 0.020 0.931 0.929 4.999 4.0 21.290
0.095 0.025 0.930 0.925 4.899 4.007 21.477
0.095 0.030 0.986 0.982 4.999 4.0 21.361
0.095 0.035 0.929 0.921 4.999 4.0 21.802
0.095 0.040 0.986 0.979 4.999 4.0 21.451
0.095 0.045 0.958 0.947 4.999 4.0 21.710
0.095 0.050 0.980 0.979 4.999 4.0 21.307
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δinc_conf δdec_conf Comm. succ. Align. succ. Chall. mast. Gram. cxns. Lex. cxns.
0.095 0.055 0.998 0.995 4.999 4.0 21.328
0.095 0.060 0.982 0.973 4.999 4.0 21.715
0.095 0.065 0.983 0.973 4.999 4.0 21.700
0.095 0.070 0.957 0.951 4.998 4.0 21.493
0.095 0.075 0.989 0.985 4.998 4.0 21.363
0.095 0.080 0.954 0.947 4.997 4.0 21.458
0.095 0.085 0.995 0.990 4.999 4.0 21.576
0.095 0.090 0.997 0.992 4.999 4.0 21.292
0.095 0.095 0.998 0.994 4.999 4.0 21.270
0.095 0.100 0.997 0.992 4.999 4.0 21.282
0.100 0.005 0.783 0.776 5.0 4.058 22.247
0.100 0.010 0.875 0.865 5.0 4.026 21.871
0.100 0.015 0.947 0.944 5.0 4.0 21.446
0.100 0.020 0.882 0.876 4.975 4.021 21.610
0.100 0.025 0.946 0.933 4.999 4.0 21.658
0.100 0.030 0.916 0.911 4.992 4.017 21.490
0.100 0.035 0.916 0.906 4.995 4.002 21.626
0.100 0.040 0.939 0.932 4.998 4.0 21.562
0.100 0.045 0.989 0.987 4.999 4.0 21.188
0.100 0.050 0.960 0.958 4.999 4.0 21.251
0.100 0.055 0.985 0.977 4.999 4.0 21.497
0.100 0.060 0.982 0.982 4.999 4.0 21.048
0.100 0.065 0.979 0.976 4.999 4.0 21.351
0.100 0.070 0.986 0.981 4.999 4.0 21.459
0.100 0.075 0.977 0.970 4.998 4.0 21.608
0.100 0.080 0.972 0.969 4.997 4.0 21.347
0.100 0.085 0.999 0.999 4.999 4.0 21.054
0.100 0.090 0.959 0.947 4.904 4.005 21.727
0.100 0.095 1.0 1.0 4.998 4.0 21.021
0.100 0.100 0.984 0.976 4.998 4.0 21.620
Table B.1: Experimental results of 400 different configurations of δinc_conf and
δdec_conf values for the experimental set-up in Section 5.3. The table shows
the resulting values for communicative success, alignment success, the average
cumulative confidence in challenges and the average number of grammatical and
lexical constructions.
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Remarque liminaire

Ce document constitue une présentation en français des travaux contenus dans
la thèse. Cette présentation n’est pas exhaustive : elle est au contraire limitée
à certains résultats qui nous semblent les plus intéressants et les plus carac-
téristiques parmi ceux obtenus. Le manuscrit en anglais est évidemment plus
complet et rapporte l’essentiel des expériences effectuées pendant la thèse dans
les domaines discrets et continus, ainsi qu’un état de l’art des systèmes de mo-
tivation computationnels, une description des outils utilisés dans les expériences
et une réflexion sur les possibles continuations des travaux présentés ici. Nous
espérons cependant que cette présentation rapide permettra au lecteur franco-
phone qui ne pourrait lire la version anglaise d’avoir une vision synthétique et
précise des travaux effectués.

Introduction

Cette thèse étudie le rôle de la motivation intrinsèque dans l’émergence et le
développement des systèmes de communication dans des populations d’agents
artificiels. Plus précisément, nous avons étudié comment les populations d’agents
peuvent utiliser un système de motivation pour réguler le développement d’un
langage partagé qui devient de plus en plus élaboré. Le cœur de cette recherche
consiste à relier deux domaines d’études différents : la linguistique évolutive et
les approches computationnelles de modélisation de la motivation.

La linguistique évolutive essaye d’expliquer l’évolution du langage en tant que
processus de négociation culturelle. Dans ce domaine, les chercheurs étudient
l’émergence et le changement de systèmes de communication similaires à ceux
qu’on observe dans les langues humaines, sur la base d’interactions récurrentes
entre pairs, dans une population d’agents artificiels, dans un environnement con-
trôlé et délimité [116, 129]. Les différents systèmes de communication présentés
dans cette thèse suivent le paradigme des jeux du langage ("language games" en
anglais) [125, 128], notion introduite par [160]. Cette approche postule que le
langage est un système adaptatif complexe.

Avec cette approche, les chercheurs en linguistique évolutive ont examiné
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différents phénomènes linguistiques. Ils ont d’abord appliqué cette méthode pour
étudier l’auto-organisation du vocabulaire [125, 126, 127], mais pendant les vingt
dernières années elle a aussi été utilisée dans une variété de domaines tels que
la couleur [15, 24], l’espace [124], la notion de quantité [92], le changement des
sens associés aux mots [157, 156], les systèmes casuels [154], l’accord grammatical
[19, 94], l’aspect [48] ou la syntaxe [37, 46]. Bien que cette approche ait aidé à
éclairer ces domaines, le contrôle de la complexité des systèmes de communication
qui en résultent est la plupart du temps aux mains de l’expérimentateur, qui
normalement explore un certain domaine en utilisant plusieurs configurations
expérimentales.

La question suivant se pose alors : comment les agents peuvent-ils gérer la
complexité des expériences eux-mêmes. Une solution possible est proposée par les
chercheurs en intelligence artificielle (IA) et en robotique développementale, qui,
inspirés par des études de psychologie sur la notion de motivation, ont proposé
différents modèles qui permettent aux agents de gérer de façon autonome la
complexité de leurs actions. L’idée de base consiste à pourvoir les agents de
mécanismes qui évaluent le résultat d’une action et utilisent cette information
pour décider la prochaine action à exécuter. Ces mécanismes permettent aux
agents d’évaluer la précision d’une action, par exemple en comparant le résultat
attendu et le résultat réel, et d’utiliser ce renseignement pour prédire l’effet des
actions, décider des prochaines actions à réaliser, explorer l’espace des différentes
actions possibles ou améliorer leur performance sur une action spécifique.

Ce travail contribue à la compréhension du rôle de la motivation intrinsèque
dans l’émergence et le développement du langage de deux façons. Tout d’abord,
il présente une description détaillée d’un modèle computationnel de motivation
appelé Autotelic principle (principe autotélique). Deuxièmement, il teste son rôle
dans le développement du langage en appliquant ce modèle de motivation dans
des expériences de linguistique évolutive appliquées à différents domaines linguis-
tiques. La thèse soutient que la complexité du langage résultant peut être gérée
par les agents artificiels qui y participent et montre que le principe autotélique
peut être utilisé comme un mécanisme général dans ce genre d’expériences.

Jeux de langage (Language Games)

L’approche adoptée dans ce travail pour étudier l’émergence et le développe-
ment du langage au sein d’une population d’agents artificiels consiste à procéder
au moyen de simulations computationnelles d’interactions linguistiques. L’idée
de base est (a) d’implémenter un ensemble de fonctions pour créer, apprendre
et aligner des mots et des concepts et (b) de fournir aux agents artificiels ces
fonctions afin de simuler l’émergence de systèmes de communication [137].

Les jeux de langage sont des interactions récurrentes et simplifiées entre deux
agents d’une population qui ont un but communicationnel [137, p. 71] :

A language game is embedded in a cooperative activity in which com-
munication is useful. It attempts to model situated dialogue in con-
trast to the isolated sentences that are commonly used today in formal
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Figure B.1: Le cycle sémiotique représente une interaction entre un locuteur et
un auditeur dans un contexte (figure adaptée de [156]). Cette représentation
implique trois niveaux de processus différents : sensorimoteur, conceptuel et
linguistique.

linguistics. Consequently, language games introduce a population of
individuals (instead of an idealized speaker), a context and a commu-
nicative purpose, so that pragmatics is part of the modelling effort
from the start.2

La manière dont les interactions entre un locuteur et un auditeur dans un
contexte sont modélisées est définie par le cycle sémiotique (figure B.1). Cette
représentation implique trois niveaux de processus différents : (a) le niveau sen-
sorimoteur, car les deux agents perçoivent le monde et interagissent avec lui en
utilisant leur système sensorimoteur, (b) le niveau conceptuel, responsable de
la correspondance entre les éléments dans le contexte et leurs représentations
conceptuelles et (c) le niveau linguistique, en charge de faire la liaison entre les
représentations conceptuelles et les phrases que les agents peuvent formuler, et
vice versa.

Il y a différentes implémentations des jeux de langage, qui vont des naming
games aux syntax games. Dans toutes les expériences présentées dans cette thèse,
les agents prennent part à des guessing games [38], un jeu de langage particulier
dans lequel il y a compétition au niveau du signifiant (un mot peut signifier
plusieurs choses) et au niveau de la forme (plusieurs mots peuvent être utilisés
pour transmettre un sens).

Dans tous les jeux de langage, cependant, chaque interaction suit un même
schéma : au début, l’auditeur et le locuteur construisent leurs modèles du con-

2Un language game fait partie d’une activité coopérative dans laquelle la communication
est utile. Il essaye de modéliser une situation de dialogue, par opposition aux phrases isolées
qui sont couramment utilisées aujourd’hui en linguistique formelle. Par conséquent, les jeux de
langage introduisent une population d’individus (au lieu d’un locuteur idéalisé), un contexte
et un but communicationnel, de sorte que la pragmatique a été partie prenante de l’effort de
modélisation depuis le début.
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texte en utilisant leurs systèmes sensorimoteurs. Cette information est utilisée
par le locuteur pour conceptualiser son but communicationnel dans une représen-
tation conceptuelle du sens a transmettre. Cette représentation est utilisée pour
formuler un énoncé. L’auditeur comprend l’énoncé pour reconstituer la représen-
tation conceptuelle que le locuteur a essayé de transmettre. Il utilise ensuite le
modèle du contexte pour interpréter le sens de la représentation conceptuelle
dans cet environnement et exécute une action. Si l’action de l’auditeur corres-
pond au but du locuteur, l’interaction est considérée comme un succès. Dans
tous les autres cas, l’interaction n’est pas satisfaisante et, donc, elle est con-
sidérée comme un échec. Les agents sont équipés avec différents mécanismes
d’apprentissage qu’ils utilisent à la fin des interactions pour aligner leur vocabu-
laire.

Implémentation du cycle sémiotique

Les différents guessing games qui font partie de cette thèse ont été implémentés
avec Babel [77, 143], une plateforme d’expérimentation open-source qui permet de
concevoir et d’implémenter l’ensemble du cycle sémiotique dans des expériences
informatiques d’émergence du langage. Parmi les multiples systèmes computa-
tionnels de Babel il y en a deux qui sont particulièrement importants pour cette
thèse : Incremental Recruitment Language (IRL), qui est utilisé pour modéliser le
niveau conceptuel, et Fluid Construction Grammar (FCG), qui sert a modéliser
le niveau linguistique.

Incremental Recruitment Language

IRL [141, 152, 122, 123] est un système qui permet aux agents (a) de créer des
représentations sémantiques discriminantes des objets dans leur contexte ou (b)
d’identifier des objets dans leur scène en utilisant une représentation sémantique
particulière. Ce système représente le sens comme des réseaux de contraintes sé-
mantiques appelés IRL-networks. Ces réseaux sont construits en combinant deux
types différents de prédicats. Il existe d’une part des méthodes qui représentent
une certaine activité cognitive que l’agent doit exécuter (par exemple catégoriser,
filtrer ou sélectionner des objets dans le contexte). Ces méthodes s’appellent
opérations cognitives. D’autre part il y a des entités sémantiques, c’est-à-dire des
prédicats qui font référence à une entité particulière (par exemple une caractéris-
tique distinctive des objets ou spécifique d’un objet donné).

Les opérations cognitives sont représentées comme des prédicats munis d’un
ensemble d’arguments. Ils sont identifiés par leur nom (par exemple, filter-set)
et introduisent un ensemble de variables (éléments commençant avec ?). Les en-
tités sémantiques, par contre, n’introduisent qu’une seule variable qui est utilisée
comme argument par les opérations cognitives. Ce deuxième type de prédicats
est introduit par un opérateur spécial appelé bind. Un réseau de contraintes
sémantiques est donc constitué d’un ensemble de prédicats qui sont liés entre eux
en utilisant des variables.
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Fluid Construction Grammar

Le niveau linguistique est modélisé avec FCG [134, 135, 139], un formalisme
de grammaire de construction opérationnel qui peut être utilisé soit (a) pour
construire et développer une grammaire ou (b) dans des expériences d’évolution
du langage. L’une des caractéristiques les plus importantes de FCG est que ces
grammaires sont bidirectionnelles : la même grammaire peut être utilisée pour
formuler un énoncé à partir d’une représentation sémantique ou pour comprendre
un énoncé afin de modéliser le sens qu’il contient.

Le processus de formulation ou de compréhension d’un énoncé est considéré
comme une chaîne d’opérations consécutives sur une structure linguistique [139,
p. 5] appelée transient structure (structure transitoire). Les structures tran-
sitoires (dite TS), comme toute autre structure linguistique dans FCG, sont
représentées comme un ensemble d’unités formées de paires de caractéristiques
et de valeurs.

En FCG, les unités sont des groupes abstraits d’information linguistique qui
correspondent habituellement aux mots, aux morphèmes ou à d’autres éléments
linguistiques. Elles contiennent un nom, qui doit être unique, et une struc-
ture de caractéristiques. Ces structures sont des représentations abstraites de
l’information linguistique. Elles sont formées de paires {caractéristique / valeur}.

Les opérations qui peuvent être exécutées sur une TS s’appellent construc-
tions. Les constructions sont des structures linguistiques ayant la fonction d’élar-
gir la structure transitoire en y ajoutant une information, qui peut être séman-
tique, syntaxique, pragmatique ou phonologique. L’information ajoutée à une TS
dépend de la construction et peut juste lier les variables dans la structure tran-
sitoire ou introduire de nouvelles unités dans la TS. Le résultat de l’application
d’une opération sur une TS est une nouvelle structure transitoire TS′ qui contient
l’information de TS et l’information ajoutée par la construction.

Les constructions sont divisées en deux parties : une partie contributive et
une partie conditionnelle. La partie contributive contient l’information (sous
forme d’un ensemble d’unités) qui sera ajoutée à la TS. La partie conditionnelle
contient les informations qui doivent se trouver dans la structure transitoire pour
que la construction puisse être appliquée. Les deux parties (conditionnelle et con-
tributive) peuvent contenir une ou plusieurs unités. Comme une construction est
bidirectionnelle, la partie conditionnelle est divisée en deux locks (serrures), nom-
més formulation lock et comprehension lock. Chaque lock présente l’information
qui doit se trouver dans la TS quand la construction est utilisée pour formuler
ou comprendre un énoncé. La figure B.2 illustre les différentes parties d’une
construction.

Les structures transitoires ont une unité spéciale, appelée root, qui est utilisée
pour sauvegarder l’information d’entrée nécessaire pour commencer l’exécution
d’opérations sur une TS. En formulation, cette unité contient le réseau de
contraintes sémantiques à partir duquel on veut construire un énoncé (ce réseau
correspond au résultat du processus de conceptualisation dans dans le cycle
sémiotique). En compréhension, par contre, cette unité encode l’information
syntaxique sur l’énoncé à analyser (normalement les mots et leur ordonnance-
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?table-word
args: [?x]
sem-cat:

sem-class: référent
syn-cat:

lex-class: substantif
genre: fém
nombre: sing


←

 ?table-word
# signifiant: {bind(prototype, ?x, [table])}
# forme: {string(?table-word, "table")}



(table-cxn)

Figure B.2: Une construction possible pour "table". Dans FCG, les construc-
tions sont divisées en une partie contributive (côté gauche) et une partie condi-
tionnelle (côté droit). La première contient l’information linguistique qui doit
être ajoutée a la TS et la seconde l’information qui devrait se trouver dans la
structure transitoire avant l’application de la construction. La partie condition-
nelle est ensuite divisée en deux locks, séparés par une ligne noire. Chaque lock
contient l’information qui doit se trouver dans la TS quand la construction est
utilisée pour formuler ou comprendre un énoncé.

ment dans l’énoncé) afin d’identifier le sens qu’il véhicule.
Cette première partie du résumé a présenté la notion de jeu de langage, ap-

proche fondée sur la notion de cycle sémiotique pour modéliser les interactions
linguistiques. Nous avons ensuite introduit la notion de guessing game, le jeu de
langage employé dans les différentes expériences présentées dans cette thèse. On
a conclu avec une explication en quelques mots des deux systèmes computation-
nels clés dans l’implémentation de ce cycle : Incremental Recruitment Language
et Fluid Construction Grammar. La section suivante définit le système de moti-
vation computationnel étudié, l’autotelic principle.

Autotelic principle

Ce système de motivation a été proposé par Steels [131, 133] comme une version
opérationnelle de la théorie du flow de Csíkszentmihály [35, 36]. Dans cette thèse
le système est utilisé par des agents artificiels pour gérer la complexité de leurs
actions et réguler de façon autonome leur développement.

Csíkszentmihály voulait comprendre ce qui motive les gens à être absorbés
dans des activités complexes qui ne comportent pas de récompense extérieure,
comme par exemple l’escalade, la peinture ou la sculpture. Sa conclusion est que
ces activités sont intrinsèquement agréables pour ceux qui les pratiquent. Il a
appelé ces activités autotéliques, parce que la source de la force motivationnelle
(telos) provient de l’individu lui-même (auto).

À partir de ces observations, Csíkszentmihály a élaboré la théorie du flow
[36]. Selon lui, les activités autotéliques peuvent être décrites en considérant la
relation entre deux dimensions. D’une part le défi (challenge), une certaine tâche
à accomplir. D’autre part la compétence (skill), les capacités qu’une personne a
pour aborder cette tâche. Cette relation explique l’éventail d’états mentaux que
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Figure B.3: Représentation visuelle de la théorie du flow de Csíkszentmihályi
(adaptée de [35]). Une personne entre dans un état de flow quand les challenges
sont en équilibre avec ses compétences. Lorsque le défi est trop exigeant pour ses
capacités, elle ressent de l’anxiété. Par contre, elle expérimente l’ennui quand
ses compétences sont plus grandes que le défi actuel.

les personnes ressentent lorsqu’elles sont impliquées dans une activité autotélique
(figure B.3) : l’ennui, lorsque les compétences d’un individu sont trop élevées
pour son défi actuel, l’anxiété, lorsque le défi est trop difficile par rapport aux
compétences de la personne et, finalement, le flow, quand il y a un équilibre entre
les valeurs des deux dimensions.

Csíkszentmihály a estimé que la dernière situation correspond à l’état optimal
d’expérience, car c’est l’état qui fournit le meilleur scénario pour développer
davantage les compétences des participants d’activités autotéliques. L’état de
flow est en mouvement continu car les compétences des individus évoluent avec
le temps. Les participants cherchent à rester dans l’état de flow, restant ainsi
motivés.

L’autotelic principle est une une version opérationnelle de cette théorie [131,
133]. Comme dans la théorie psychologique sur laquelle il se fonde, le noyau de ce
système de motivation repose sur la relation entre les défis et les compétences. Les
agents peuvent déterminer eux-mêmes leurs propres objectifs (appelés challenges)
et évaluer indirectement leurs capacités (skills) en mesurant leurs performances
pour ces défis. Cette évaluation est basée sur leur rendement dans des actions
successives lors d’un défi donné.

Après chaque action faite pour un défi particulier les agents reçoivent une
récompense. Dans la proposition originale [131], Steels calcule la récompense en
considérant seulement le résultat de l’action, mais dans l’implémentation pro-
posée dans cette thèse, la récompense est établie en tenant compte aussi de
l’évaluation interne des capacités de l’agent. Cette récompense est employée
pour actualiser l’évaluation du défi tenté, ce qui permet aux agents de décider
quand il faut changer d’objectif afin de développer davantage leurs compétences.
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Définition des notions de défi et de performance

Dans le système de motivation défini dans notre thèse, les défis correspondent
à des configurations spécifiques d’un ensemble de paramètres dans un espace de
paramètres. Formellement, étant donné un espace de paramètres multidimen-
sionnel P , un défi pi est défini comme un vecteur < pi,1, pi,2, ..., pi,n >, où pi,j
correspond à la valeur du paramètre j dans le défi i. Les agents sont capables de
générer différents défis en changeant la configuration spécifique d’un challenge pi.
Prenant pi, les agents peuvent créer un ensemble de nouveaux défis {p1i , p2i , ..., pni }
en modifiant un ou plusieurs paramètres pi,j de ce défi (pi). L’espace des défis
possibles dépend (a) du nombre de paramètres utilisés pour définir un défi et (b)
des différentes valeurs potentielles de chaque paramètre.

De plus, chaque défi est associé à une valeur du niveau (level en anglais) li,
qui est un nombre entier dans une gamme de valeurs [1, lmax] et représente la
difficulté associée à ce défi. Dans l’implémentation utilisée dans cette thèse, ce
nombre correspond à la somme des valeurs des paramètres. La relation entre un
défi et son niveau peut être formalisée comme suit :

li =

n∑
j=1

pi,j

En regard des défis, la compétence ne peut pas être mesurée directement, car
on ne peut pas estimer la compétence d’un agent qui exécute une action avant
qu’elle ne soit exécutée. Le système peut, par contre, évaluer le rendement d’un
agent. La performance est donc la mesure indirecte de la compétence, car le
système peut utiliser l’information obtenue à la suite d’une action particulière
pour déterminer si le but a été atteint ou non.

On peut donc reformuler la théorie du flow en termes de défis et de perfor-
mances. La relation entre ces deux termes permet aux agents d’identifier une
gamme d’états différents, c’est-à-dire des situations internes équivalentes aux
états mentaux identifiés par Csíkszentmihály. Un agent identifie qu’il se trouve
dans un état de flow quand sa performance n’est ni trop élevée ni trop faible
pour son défi actuel. Les agents se trouvent dans un état d’ennui lorsque leur
performance est constamment trop élevée et passent par un état d’anxiété lorsque
leur performance est trop faible pour leur tâche actuelle.

Développement des compétences

Un élément central de la théorie est qu’un état de flow facilite le développement
et l’apprentissage des compétences. De la même façon, un agent artificiel doit
être capable d’apprendre ou développer des nouvelles capacités.

Les méthodes d’apprentissage qui ont été mises en place dans cette thèse sont
une collection de diagnostics, des mécanismes utilisés pour identifier les problèmes
pendant et après qu’une action a eu lieu, et une collection de réparations, des
processus qui essayent de résoudre les problèmes diagnostiqués. Comme le sys-
tème de motivation est utilisé dans des expériences d’évolution du langage, les
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diagnostics et réparations que les agents ont à leur disposition dans les simula-
tions leur permettent de créer ou apprendre des mots, des prototypes différents
(par exemple des couleurs) ou des constructions grammaticales.

Phases du système

Après qu’une action a été exécutée, le système identifie l’état associé au défi tenté
(qui peut être flow, anxiété ou ennui). Cette information est ensuite utilisée pour
déterminer la phase ou situation actuelle du système. En fonction de sa phase,
le système décidera de (a) continuer à tenter le défi actuel ou (b) d’aborder un
autre défi.

La phase dans laquelle le système choisit de continuer avec le même défi
s’appelle phase opérationnelle et se manifeste quand le système est dans un état
de flow pour son défi actuel. Dans cette phase, le système exécute les actions
et utilise le feedback, l’information obtenue après l’exécution d’une action, pour
améliorer sa performance.

S’il arrive à obtenir une haute performance pour son défi actuel, le système
finira par tomber dans un état d’ennui. Par contre, si le défi se révèle être trop
difficile le système n’arrive pas à développer les compétences nécessaires, ce qui
peut conduire le système à un état d’anxiété. Dans les deux états le système
entre dans une phase de réorganisation.

Dans cette phase le système essaye de rétablir l’équilibre entre défis et com-
pétences en changeant le défi actuel. Quand le système se trouve dans un état
d’anxiété pour un challenge pi avec un niveau associé li, il explore d’abord s’il
peut tenter un défi déjà connu pour lequel il a obtenu une haute performance.
Sinon, il générera un ensemble de choix possibles {p1i , ..., pni } en modifiant la
configuration des paramètres de pi. Dans les deux cas, le défi que l’agent tentera
de relever dans les actions futures présente un niveau associé lk, où lk < li.

Par contre, si le système se trouve dans un état d’ennui il cherchera une tâche
plus difficile. D’abord il examinera les défis déjà connus et sélectionnera un défi
qui présente une difficulté plus élevée que le défi actuel pour lequel il a obtenu une
mauvaise performance dans le passé. S’il n’en trouve aucun, le système générera
un ensemble de nouveaux défis en ajustant la configuration des paramètres de
pi puis en sélectionnera un comme nouveau défi à tenter. Dans les deux cas, le
nouveau défi choisi aura un niveau associé supérieur au niveau du défi antérieur.

La combinaison de ces deux phases permet au système d’autoréguler son
propre développement, car elles permettent au système de décider quand il doit
continuer avec un défi afin de développer ses compétences ou changer le défi
lorsqu’il y a un déséquilibre constant entre le défi et la performance.

Génération des nouveaux défis

Le système pourrait potentiellement générer tous les défis possibles (c’est-à-dire
toutes les configurations de paramètres différentes) à chaque fois qu’il est en phase
de réorganisation.On examine ici comment le système (a) limite l’ensemble des
nouveaux défis qu’il peut créer et (b) sélectionne le nouveau challenge à tenter.
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Figure B.4: Représentation visuelle de la relation entre les valeurs de confiance
et de persistance d’un défi et sa relation aux différents états internes. Les défis
sont initialisés avec une valeur maximale de persistance et une valeur minimale
de confiance. Le système atteint un état d’anxiété quand les deux valeurs sont
au minimum, et un état d’ennui quand la valeur de confiance a atteint son
maximum. Dans ces deux cas le système entre dans la phase de réorganisation
afin de modifier le défi à tenter. Si aucune de ces conditions n’est remplie, le
système reste en phase opérationnelle, qui correspond à l’état de flow.

Dans l’implémentation proposée dans notre thèse, le nombre de nouveaux
défis créés dans une phase de réorganisation est limité en fonction du niveau
associé. L’ensemble de nouveaux défis ne sera formé que par des configurations
de paramètres où (a) la valeur de niveau associée à un nouveau défi est une unité
inférieure ou supérieure au défi source, selon l’état du système (anxiété ou ennui,
respectivement), et (b) les nouveaux défis sont créés en ne changeant qu’un seul
paramètre du défi de référence, augmentant ou diminuant la valeur du paramètre
d’une unité. Formellement, tous les nouveaux défis générés doivent remplir deux
conditions :

• |lk − li| = 1, où li correspond au niveau du défi actuel et lk au niveau du
challenge candidat.

•
∑n

j=1 |pk,j−pi,j | = 1, où pi,j et pk,j correspondent à la valeur du paramètre
j dans pi et pk, respectivement.

Les défis qui satisfont ces restrictions sont ajoutés dans la liste des défis connus
par le système. Cette liste est utilisée pour déterminer le défi actuel.

Actualisation de l’état interne

Le système surveille l’évolution d’un défi et utilise l’information qu’il recueille
après chaque action pour évaluer son rendement et, finalement, déterminer s’il a
atteint ou non le but visé. Ce processus est fait en assignant à chaque défi deux
valeurs qui sont actualisées après chaque action que le défi est tenté et oscillent
sur une plage de valeurs [min,max] :
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• Confiance : c’est une valeur liée à la performance de l’agent qui représente
la certitude qu’il a d’être compétent dans une tâche spécifique. Plus la
valeur est élevée, plus le rendement moyen pour le défi est élevé.

• Persistance : c’est une mesure pour assurer un nombre minimum de tenta-
tives avant que le système puisse décider de changer sa tâche actuelle. Cette
mesure répond au fait que normalement il faut un certain temps avant que
le système développe les compétences nécessaires pour une nouvelle tâche.
Grâce à cette mesure, le système est empêché d’entrer en continu dans la
phase de réorganisation.

Ces deux paramètres sont utilisés pour déterminer l’état interne d’un défi
(figure B.4). La première fois qu’un défi est essayé, il est initialisé avec une
valeur minimale de confiance, parce que le système n’ a aucune expérience pour
cette tâche particulière, et une valeur maximale de persistance, pour prévenir le
système d’entrer dans la phase de réorganisation dès les premières actions.

Les deux valeurs sont actualisées chaque fois que le système exécute une action
pour un défi donné, comme suit :

Algorithme 5 Actualisation du défi
procedure Actualisation du défi(agent, chali, succ?)

confi ← Confiance(chali)
persi ← Persistance(chali)
if succ? then

confi ← confi + δinc_conf

else
confi ← confi− δdec_conf +Évaluation interne(agent, chali, succ?)
if confi = minconf then

persi ← persi − δdec_pers

end if
end if

end procedure

D’une part, la persistance est diminuée par la valeur δdec_pers lorsque (a) le
résultat de l’interaction est un échec et (b) la valeur de confiance est dans son
minimum. Dans les autres cas cette valeur reste la même. Lorsque la persistance
atteint son minimum, elle déclenche l’état d’anxiété et le système entre dans la
phase de réorganisation. Lorsque cela se produit, la valeur de persistance est
mise à −max. Une valeur de persistance négative bloque le défi pour le système
pendant une certaine période de temps jusqu’à la persistance ait à nouveau une
valeur positive. Tant qu’elle a une valeur négative, la persistance est actualisée
à la fin de chaque action avec persi(t) = persi(t − 1) + δdec_pers, où persi(t)
et persi(t − 1) sont les valeurs de persistance actuelle et précédente associés au
défi pi. Une fois que la persistance atteint la valeur minimale, le défi redevient
disponible et la persistance est réinitialisée à sa valeur maximale.

Par contre, la valeur de confiance est mise à jour après chaque action. Pour
actualiser cette valeur le système tient compte à la fois (a) du résultat d’une
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action et (b) d’une évaluation interne des compétences individuelles de l’agent
qui a réalisé l’action. La confiance est actualisée différemment selon le résultat de
l’interaction linguistique : lorsque l’interaction est un succès (le sens transmis par
le locuteur sous la forme d’une séquence de mots a été correctement interprété
par l’auditeur) la valeur de confiance est mise à jour comme suit : confi(t) =
confi(t− 1) + δinc_conf , où confi(t) et confi(t− 1) sont les valeurs de confiance
actuelle et précédente. Quand l’interaction est un échec, la valeur de confiance
est mise à jour de cette façon : confi(t) = confi(t− 1)− δdec_conf + indcomp,
où indcomp correspond à l’évaluation interne des compétences individuelles par
l’agent et a toujours une valeur inférieure à δdec_conf . Formellement, pour chaque
interaction I(t), | indcomp |<| δdec_conf |.

Initialisation

Le système adopte une approche ascendante. Il est initialisé uniquement avec les
défis qui ont associé un niveau li le plus bas possible. Cela permet aux agents
de développer les compétences fondamentales qui seront nécessaires pour faire
face à d’autres défis plus complexes plus tard sans perdre de temps (interactions)
pour trouver un bon défi initial. Une fois ces compétences acquises, le système
peut passer à des tâches plus difficiles. En conséquence, le système est fondé
sur (a) un développement incrémental des capacités de l’agent et (b) une opti-
misation des interactions nécessaires à l’accomplissement des tâches principales
de l’expérience.

Déterminer le défi actuel

Étant donné l’ensemble des défis connus par le système à un moment donné,
comment décide-t-il lequel devrait être abordé? Cette décision est prise par
un algorithme (algorithme 6) qui prend en compte le niveau et les valeurs de
persistance et confiance pour choisir le défi de la prochaine interaction.

L’algorithme limite d’abord la sélection du défi à choisir aux défis associés
à un état de flow, c’est-à-dire ceux qui ont une valeur de persistance positive
et une valeur de confiance inférieure à son valeur maximale. Après, il classe
l’ensemble des défis qui en résultent selon le niveau du défi courant et sélectionne
aléatoirement un des défis parmi ceux qui présentent une valeur inférieure. S’il
n’y a aucun défi candidat, l’algorithme choisit aléatoirement un des défis parmi
l’ensemble des défis connus avec une valeur supérieure.

Un problème se pose lorsque l’autotelic principle est appliqué aux jeux de
langage : le locuteur choisit son défi actuel au début de l’interaction, ce qui
a un impact sur le but communicationnel et aussi sur l’énoncé qu’il produit.
Par contre, ion ne sait pas comment l’auditeur doit déterminer quel est le défi
communicationnel de cette interaction. Ceci est dû au fait que le locuteur et
l’auditeur peuvent différer (a) sur les défis qu’ils connaissent et (b) sur leurs défis
actuels.

Dans l’implémentation présentée dans notre thèse, l’auditeur essaie de deviner
le défi du locuteur sur la base des défis qu’il connaît, de la représentation du sens
qu’il a pu récupérer de l’énoncé et du contexte. Les différents paramètres utilisés
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Algorithme 6 Détermination du défi actuel
procedure Détermination du défi actuel(sys)

connusdef ← Défis(sys)
potdef ← ∅
canddef ← ∅
for each defi ∈ connusdef do

confi ← Confiance(defi)
persi ← Persistance(defi)
if conf < maxconfi and pers > minpersi then

potdef ← potdef + defi
end if

end for
if potdef then

canddef ← NiveauMin(potdef )
else

canddef ← NiveauMax(connusdef )
end if
return Random(canddef )

end procedure

dans l’espace de paramètres pour définir les défis communicationnels et le niveau
associé a un défi sont liés à plusieurs caractéristiques du sens, parmi lesquelles
les différentes catégories de signification et leur nombre. Le système utilise la
représentation du sens qu’il a pu récupérer de l’énoncé pour identifier les éléments
de sens pertinents. Cette information est comparée à la liste des défis connus de
l’auditeur afin d’identifier le défi le plus proche de la tâche communicative que le
locuteur a probablement choisi comme défi pour cette interaction.

Expériences

Les différentes simulations expérimentales réalisées dans ce travail testent le rôle
de la motivation intrinsèque dans l’émergence du langage. Dans ces expériences,
une population d’agents artificiels qui participent aux guessing games est équipée
avec l’autotelic principle. Ce système de motivation leur permet de déterminer
leurs compétences actuelles pour un ensemble de tâches communicationnelles,
c’est-à-dire une estimation de leur performance pour chaque tâche. L’autotelic
principle est utilisé pour auto-réguler les buts communicationnels de chaque agent
afin d’améliorer leurs compétences, alors que dans le même temps la population
converge vers une langue partagée.

Ces expériences ont été divisées en fonction de la nature du contexte dans
lequel elles se réalisent. La première série d’expériences concerne le domaine
discret, à partir duquel une population d’agents artificiels doit développer un
langage pour communiquer à propos de l’ensemble d’objets de la scène. Ces
objets ont des propriétés discrètes, c’est-à-dire des valeurs définies pour certaines
caractéristiques physiques.
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La deuxième série d’expériences concerne le domaine continu de la couleur.
Comme dans les simulations précédentes, le but des expériences est de déterminer
un langage partagé pour communiquer sur les objets dans leur contexte (dans
ce cas, des échantillons de couleurs). Ces expériences prolongent les précédentes
dans la mesure où les agents doivent non seulement se mettre d’accord sur les
mots associés aux propriétés ou à leur ordre dans l’énoncé, mais aussi sur la
valeur associée à ces propriétés.

Expériences dans le domaine discret

La première série d’expériences est inspirée des travaux antérieurs de Steels et
Wellens [145]. Ils ont été les premiers à utiliser un système de motivation compa-
rable au nôtre dans une expérience d’évolution du langage. Dans cette section,
nous présentons deux expériences : dans la première ou "expérience de base" la
population n’utilise pas le mécanisme de motivation interne pour réguler de façon
autonome son développement. Le deuxième expérience a la même configuration
expérimentale que la précédente, avec la différence que cette fois les agents sont
pourvus d’un système de motivation intrinsèque.

Dans chaque interaction, le locuteur et l’auditeur ont pour but de communi-
quer sur un sujet (un ou deux objets) qui se trouvent dans le contexte ou scène,
l’environnement dans lequel se situent les interactions. L’ensemble de toutes les
scènes possibles d’une expérience s’appelle un monde. Les objets ont trois ca-
ractéristiques physiques différentes qui se divisent entre prototypes et propriétés
(forme et couleur) :

• prototype. Une valeur discrète qui spécifie la classe de l’objet, à choisir
parmi sept valeurs possibles : table, chair, cup, window, lamp, drawer et
box.

• forme. Une valeur discrète qui spécifie la forme de l’objet, à choisir parmi
six valeurs possibles : squared, round, triangular, pentagonal, hexagonal et
octagonal.

• couleur. Une valeur discrète qui spécifie la couleur de l’objet, à choisir
parmi huit valeurs possibles : blue, green, red, yellow, orange, purple, white
et black.

Les objets sont uniques, ce qui veut dire que dans le monde il n’y a pas
deux paires d’objets qui partagent les mêmes valeurs pour les trois caractéris-
tiques physiques. Les prototypes et les propriétés sont formellement décrits par
des prédicats de premier ordre. Par exemple, un objet obji avec les valeurs de
caractéristiques table, squared et green est représenté de la façon suivante :

obji = {prototype(obji, table), shape(obji, squared), colour(obji, blue)}

Une scène est composée de deux objets différents et d’une relation spatiale
entre eux, également sous la forme d’un prédicat du premier ordre, qui se limite
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à trois choix possibles : next-to, far-from and left-to3. Par exemple, une scène
possible sk comprenant l’objet que nous venons de décrire obji et objj (avec les
valeurs table, round et blue) et une relation spatiale de proximité est décrite
comme suit :

sk = {prototype(obji, table), shape(obji, squared), colour(obji, blue),

prototype(objk, table), shape(objk, round), colour(objk, green),

next− to(obji, objk)}

Bien que des objets et des scènes puissent être générés aléatoirement au début
de chaque simulation, afin de pouvoir mieux analyser et comparer les résultats
obtenus, le nombre d’objets et le nombre de contextes qui composent le monde
ont été fixés à dix.

Diagnostics, réparations et alignement

Dans la description de l’autotelic principle, il a été mentionné que les agents
sont dotés de deux mécanismes, appelés diagnostics et réparations, qui leur per-
mettent de créer et d’apprendre des constructions lexicales et grammaticales. Les
constructions créées sont stockées dans l’inventaire de constructions ou lexicon. Il
est possible que certaines de ces constructions soient en compétition. Ce problème
se produit lorsque (a) des constructions avec des formes différentes véhiculent le
même sens (compétiteurs au niveau du sens) ou (b) la même forme est utilisée
dans plusieurs constructions pour transmettre un sens différent (compétiteurs au
niveau de la forme).

Les agents ont un mécanisme pour éviter la compétition entre les construc-
tions qui s’appelle l’alignement. Le but de l’alignement est de guider la préférence
des agents vers les constructions à utiliser. Chaque construction est dotée d’un
score, un nombre dans l’intervalle [0.0,1.0]. Le score est initialisé à 0.5, que la
construction ait été créée ou apprise. Lorsque le lexique contient des construc-
tions en compétition, ce nombre est utilisé pour décider laquelle doit être uti-
lisée, c’est-à-dire que le système choisit celle avec le score le plus élevé. Après
chaque interaction, les agents mettent à jour les scores des constructions uti-
lisées (et de leurs concurrents) en appliquant la dynamique de l’inhibition latérale
[155]. Lorsque le score d’une construction atteint son minimum (fixé à 0.0), cette
construction est retirée de l’inventaire des constructions de l’agent.

Expérience de base

Pour analyser l’impact du système de motivation intrinsèque sur la régulation
de la complexité des interactions linguistiques, il faut d’abord établir une expé-
rience de base. Cette expérience étudie le nombre d’interactions nécessaires pour
qu’une population converge vers un langage commun pour différentes tâches de
communication.

3La relation left-to équivaut à right-to en changeant l’ordre des éléments du prédicat.
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La population des agents joue un guessing game et le jeu commence sans
qu’aucune construction ne soit connue. Dans chaque interaction, le locuteur
formule un énoncé composé de plusieurs mots qui désignent un ou deux objets
de la scène. Cette énoncé doit faire référence, au minimum, au prototype de
l’objet (ou objets) sélectionné(s). le locuteur peut également désigner plusieurs
caractéristiques des objets à décrire. Les différentes tâches de communication
sont définies par le nombre maximum de propriétés auxquelles un agent peut se
référer dans la description du but communicationnel :

• Tâche de communication 1 : les agents peuvent décrire jusqu’à deux
objets uniquement en faisant référence à leurs prototypes.

• Tâche de communication 2 : les agents peuvent décrire jusqu’à deux
objets uniquement en faisant référence à leurs prototypes et à une propriété
d’un objet décrit.

• Tâche de communication 3 : les agents peuvent décrire jusqu’à deux ob-
jets uniquement en faisant référence à leurs prototypes et à deux propriétés
de l’objet ou des objets décrits.

• Tâche de communication 4 : les agents peuvent décrire jusqu’à deux
objets uniquement en faisant référence à leurs prototypes et à trois4 pro-
priétés de l’objet ou des objets décrits.

• Tâche de communication 5 : les agents peuvent décrire jusqu’à deux
objets uniquement en faisant référence à leurs prototypes et à quatre pro-
priétés de l’objet ou des objets décrits.

La complexité des tâches de communication est déterminée par le nombre
maximal d’éléments physiques que les agents peuvent désigner. Par conséquent,
les tâches communicationnelles sont ordonnées en fonction de leur complexité,
allant de la plus simple à la plus complexe. Il est important de souligner qu’une
tâche plus élevée englobe les tâches précédentes. Par exemple, la tâche de commu-
nication 4, où les agents peuvent décrire un ou deux objets en faisant référence
à leurs prototypes et jusqu’à trois propriétés, comprend également les tâches
de communication 1, 2 et 3, puisque les agents peuvent se référer à moins des
propriétés que le maximum autorisé (c’est-à-dire aucune, une ou deux, ce qui
correspond aux tâches de communication précédentes).

Chaque tâche a été testée avec une population de dix agents et les résultats ont
été calculés sur une moyenne de dix simulations. Le résultat de ces simulations est
présenté sur la figure B.5. L’axe des abscisses représente le nombre d’interactions
dans la population (c’est-à-dire le nombre de guessing games qui ont été joués)
et l’axe des ordonnées représente le pourcentage de réussite de la communication,
qui peut se situer entre 1 (succès) et 0 (échec).

4Un objet a trois caractéristiques physiques différentes (un prototype et deux propriétés).
Une description contenant plus de deux propriétés obligatoirement (a) décrit deux objets et (b)
se réfère aux propriétés des deux objets.
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Figure B.5: Résultats d’une population de 10 agents effectuant les différentes
tâches de communication, sur une moyenne de 10 répétitions. L’axe des abs-
cisses représente le nombre de guessing games joués par la population et l’axe
des ordonnées le succès communicationnel résultant.

D’une part, on peut observer que les tâches moins complexes (celles qui per-
mettent à la population de se référer à un plus petit nombre de propriétés)
génèrent plus rapidement une langue partagée, contrairement aux tâches plus
complexes, où plus d’interactions sont nécessaires pour obtenir une langue com-
mune. Mais une convergence rapide vers une langue commune n’implique pas que
la langue résultante soit plus efficace en termes de communication : les tâches
communicationnelles qui convergent plus rapidement vers une langue partagée
présentent un pourcentage plus faible de réussite communicative.

Il existe une explication à ce comportement : les énoncés plus courts sont
composés d’un plus petit nombre de mots. Cela permet aux agents d’apprendre
et de convenir des différentes correspondances entre forme et sens, c’est-à-dire des
constructions, utilisées pour créer ces énoncés. Les agents ne peuvent adopter une
construction que s’il n’y a pas d’ambiguïté sur l’association entre sens et forme.
Pourtant, les énoncés longs ont une probabilité plus grande que l’auditeur ne
connaisse pas le sens de certains mots. Dans ces situations, quand il y a deux mots
inconnus ou plus, l’auditeur ne peut apprendre aucune nouvelle construction.
Par conséquent, la population a besoin de plus de temps pour converger vers une
langue commune pour des tâches de communication plus complexes.

Par contraste, la possibilité de faire allusion a plusieurs propriétés des ob-
jets considérés réduit l’ambiguïté dans les énoncés. En conséquence, les énon-
cés plus longs ont un pouvoir descriptif plus grand que les énoncés plus courts.
Afin d’analyser cet effet, nous avons mesuré l’ambiguïté des scènes décrites pour
chaque tâche (tableau B.2). Les résultats indiquent qu’il y a une relation directe
entre l’ambiguïté de l’énoncé et le pourcentage de jeux où la réussite communica-
tive n’a pas pu être atteinte.

La raison pour laquelle certaines interactions sont un échec est causée par
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Tâche de communication LT 1 LT 2 LT 3 LT 4 LT 5
Réussite communicative 85.82% 94.95% 96.98% 98.06% 98.30%

Tableau B.2: Pourcentage de réussite communicative obtenue dans les 2000
dernières interactions pour chaque tâche de communication.

une description ambiguë du but communicationnel par le locuteur. Les descrip-
tions qui font référence à toutes les propriétés du but communicationnel (deux
propriétés si le but communicationnel ne comprend qu’un seul objet ou quatre
si le sujet de la communication concerne deux objets) n’ont pas d’ambiguïté. La
raison pour laquelle il y a de faibles pourcentages d’ambiguïté dans toutes les
tâches est liée au fait que chaque tâche de communication inclut également les
tâches moins complexes. Conséquemment, quelques uns des énoncés formulés ne
comprendront pas toutes les propriétés du but communicationnel, ce qui produit
des ambiguïtés dans certaines situations.

Intégration du principe d’auto-motivation dans l’architecture

Dans cette expérience nous étudions comment les tâches de communication dans
l’expérience précédente peuvent agir comme défis d’une complexité croissante
pour une population d’agents dotés d’un système de motivation intrinsèque.

Les défis peuvent être formalisés sous la forme d’un vecteur de paramètres qui
représente le nombre de propriétés (< nomprop >) à utiliser dans la description
d’un but communicationnel, allant d’aucune propriété (niveau 1) à un maximum
de quatre propriétés (niveau 5) (tableau B.3).

Tâche de communication LT 1 LT 2 LT 3 LT 4 LT 5
Défi < 0 > [1] < 1 > [2] < 2 > [3] < 3 > [4] < 4 > [5]

< nomprop > [niveau]

Tableau B.3: Conversion des tâches de communication de l’expérience de base
en défis sous la forme d’un vecteur de paramètres avec un niveau de complexité
associé.

L’objectif de l’expérience est le même que dans la section précédente : il
faut que la population développe un langage partagé pour se référer aux objets
de son environnement. Les agents de la population n’ont aucune construction
et s’intéressent d’abord au défi le moins complexe (niveau 1). Après chaque
interaction, les agents en interaction actualisent les valeurs de confiance et de
persistance associées au défi abordé (voir algorithme 5).

Pendant qu’ils tentent un challenge Ci, les agents décident de manière au-
tonome d’aborder un challenge plus complexe Ci+1 quand ils entrent dans un
état d’ennui ou décident de revenir à une tâche moins complexe Ci−1 lorsque Ci

se révèle être un défi trop complexe, ce qui provoque un état d’anxiété. Si aucune
de ces situations ne se produit, les agents poursuivent leur tentative de Ci.

Les résultats obtenus sur une série de dix simulations pour une population
de dix agents munis avec l’autotelic principle sont présentés dans la figure B.6a.
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L’axe des abscisses représente le nombre de guessing games jouées par la pop-
ulation, l’axe des ordonnées à gauche indique le pourcentage de succès commu-
nicationnel et l’axe des ordonnées à droite montre le nombre de défis maîtrisés
par la population, nombre qui correspond à l’addition de la valeur de confiance
moyenne des agents dans la population pour tous les défis possibles. La figure
B.6a présente les résultats au niveau de la population, mais il faut prendre en
compte le fait que le processus de développement du langage de chaque agent
n’est déterminable que par les interactions auxquelles il participe. Cela implique
que certains agents peuvent atteindre plus rapidement une confiance maximale
pour un défi particulier que d’autres agents et, par conséquent, passer à des défis
plus complexes à des moments différents.

Comme on pouvait s’y attendre à partir des résultats obtenus dans l’expé-
rience de base, l’objectif de développer un langage commun pour faire référence
aux objets dans leur environnement est accompli. À la fin des simulations, la
population obtient un pourcentage de réussite communicative de 100%, ce qui
est différent des résultats obtenus dans la première expérience. Cette différence
est une conséquence de la façon dont les défis sont définis, car le nombre de
propriétés que le locuteur doit décrire est fixé pour chaque défi. Ainsi, quand
(a) les agents maîtrisent les défis communicationnels plus complexes et (b) leurs
lexiques sont alignés, les énoncés qu’ils formulent ne sont pas ambigus et toutes
les interactions aboutissent à un succès communicationnel.

Le défi initial consiste à développer un langage partagé pour faire référence
aux prototypes. Ce défi est accompli après environ 1200 interactions. À ce
moment-là (a) la population s’est mise d’accord sur un lexique commun pour les
prototypes et (b) le succès communicationnel moyen des interactions est établi à
une valeur d’environ 85%, taux similaire au succès communicationnel résultant
pour la première tâche de communication dans l’expérience de base. Certains
agents atteignent la valeur de confiance maximum pour leur premier défi, entrent
dans un état d’ennui et passent au second défi.

Le changement du défi actuel de certains agents provoque une baisse de la
réussite communicationnelle dans la population. Ce phénomène est causée par
le fait que, quand les agents tentent le défi du niveau 2, ils ne désignent plus
seulement les prototypes des objets mais aussi une de ses propriétés (soit la
forme ou la couleur). Afin de communiquer avec succès, ils doivent développer
un vocabulaire pour les formes et les couleurs.

De plus, les énoncés de plusieurs mots présentent des problèmes de référence
(à quel prototype une propriété fait référence) qui ne peuvent être gérés qu’en
développant des constructions grammaticales qui introduisent des restrictions
dans l’ordre des mots et la représentation sémantique. Une fois que les agents
ont acquis une confiance maximale pour le deuxième défi (a) leur lexique leur
permet de faire référence avec efficacité aux différentes couleurs et formes et
(b) ils ont également développé et adopté une construction grammaticale pour
éviter certains problèmes de référence. A ce stade, les agents ont donc un lexique
commun pour les propriétés et les prototypes, ce qui accélère considérablement le
développement des compétences liées aux derniers défis. Ils ont seulement besoin
de développer d’autres constructions qui introduiront de nouvelles contraintes
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(a) L’axe des abscisses représente le nombre de guessing games jouées par la population,
l’axe des ordonnées à gauche indique le pourcentage de succès communicationnel et l’axe
des ordonnées à droite montre le nombre de défis maîtrisés par la population.
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(b) L’axe des abscisses représente le nombre de guessing games jouées par la population,
l’axe des abscisses à gauche le nombre de termes par sens et l’axe des ordonnées à droite
la taille moyenne du lexicon de la population.

Figure B.6: Résultats obtenus sur une série de dix simulations pour une popula-
tion de dix agents muni de l’autotelic principle

grammaticales pour faire référence aux multiples propriétés des objets.
L’évolution de la concurrence entre les différentes constructions créées par

la population et la taille du lexique est montrée dans la figure B.6b. Au cours
des premières interactions il y a une prolifération de mots créés par les agents.
Cette situation est attribuable au fait que (a) les agents commencent sans au-
cune construction et (b) les interactions entre eux sont encore très limitées, ce
qui fait que les agents créent et apprennent continuellement de nouveaux termes
auprès de leurs interlocuteurs pour nommer les différents prototypes existants.
Autour de l’interaction 500 (environ 100 interactions par agent) cette tendance
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cesse et le nombre de mots par sens commence à diminuer à cause du proces-
sus d’alignement, qui réduit la taille du lexique des agents en supprimant les
constructions les moins utilisées.

À l’interaction 2000 environ, la compétition entre les constructions s’intensifie
à nouveau. Cette situation s’explique par la bascule progressive de la population
vers le second défi : à ce stade, de nouveaux termes concurrents apparaissent
pour désigner les propriétés (couleur et forme) des objets. Cette tendance se
maintient jusqu’à l’interaction 3000, où un deuxième pic correspondant à un
nombre important de mots par sens est observé et l’inventaire de constructions
d’un agent a alors en moyenne 30 constructions.

Après ce point, le nombre de mots par sens et la taille du lexique diminuent
progressivement, à mesure que le processus d’alignement élimine lentement les
constructions les moins utilisées. À la fin des simulations, la taille du lexique a
été réduite au minimum. Ceci fait descendre le nombre de mots par sens à un,
parce qu’il n’ y a plus de compétition entre les constructions.

Acquisition progressive de compétences

En utilisant l’autotelic principle, les agents peuvent augmenter graduellement
la complexité de leur système de communication, tout en évitant les tenta-
tives de formulation d’énoncés trop complexes pour leur niveau de compétence
actuel. Cela permet d’éviter les interactions autour d’un énoncé trop difficile
pour l’auditeur, qui ne serait pas capable d’extraire l’information utile. Ce genre
d’interactions se produit beaucoup plus souvent dans l’expérience de base. Dans
ces situations, l’auditeur ne peut pas établir le sens associé à chaque mot inconnu
et il n’est pas capable de déduire les correspondances correctes entre les mots et
les sens. Est-ce que l’organisation des tâches de communication en étapes de com-
plexité croissante accélère le développement des compétences, par comparaison
avec l’expérience de base où l’apprentissage des compétences requises pour une
tâche n’est pas organisé ?

Afin de répondre à cette question, nous avons calculé le nombre d’interactions
nécessaires pour chaque tâche de communication dans l’expérience de base (figure
B.7a) et dans chaque défi (figure B.7b) pour obtenir une confiance maximale. Ces
résultats ont été obtenus en calculant le gain de confiance pour chaque tâche de
communication de la même façon qu’il est calculé dans le système de motivation,
bien que la valeur de confiance soit associée à chaque défi généré dans le cas
de l’expérience implémentant l’autotelic principle et que cette valeur n’est pas
utilisé du tout dans l’expérience de base.

Les résultats obtenus montrent que les tâches de communication plus com-
plexes nécessitent plus d’interactions que les tâches moins complexes pour obtenir
un niveau de confiance maximal et, par conséquent, ce sont des tâches plus dif-
ficiles à réaliser. Cette relation est incrémentale, parce qu’un agent qui tente la
première tâche de communication n’a besoin que d’environ 400 interactions pour
arriver à une confiance maximale, alors qu’un agent qui effectue la cinquième
tâche aura besoin de près de 1000 interactions pour la maîtriser.

En comparaison, cette relation est inversée quand les agents contrôlent la
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(a) Nombre moyen d’interactions nécessaires pour obtenir une valeur de confiance maxi-
male pour les différentes tâches de communication de l’expérience de base.
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(b) Nombre moyen d’interactions nécessaires pour obtenir une valeur de confiance maxi-
male pour chaque défi de l’expérience où les agents sont dotés de l’autotelic principle.

Figure B.7: Nombre moyen d’interactions nécessaires pour obtenir une confiance
maximale pour les différentes tâches de communication (figure B.7a) et les défis
(figure B.7b).
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complexité de leurs interactions avec l’autotelic principle. C’est au cours des
premiers défis que les agents ont besoin de plus d’interactions pour arriver à une
valeur de confiance maximale. Comme ce système de motivation leur permet
d’organiser le développement des compétences en étages, ils peuvent réutiliser
les compétences acquises dans des situations moins complexes, ce qui accélère le
gain de confiance pour les défis plus exigeants. Par exemple, si le premier défi
demande autant d’interactions que la première tâche (400), celui du niveau 5 ne
nécessite que 200 interactions pour être maîtrisé.

Ces résultats expérimentaux montrent que les agents qui essayent de rester
dans un état de flow réduisent le nombre d’énoncés ambigus formulés. De plus, le
nombre d’interactions qui permettent d’atteindre une valeur de confiance maxi-
male pour chaque défi diminue pour les tâches plus complexes, car (a) les agents
disposent des compétences acquises lors des défis précédents et (b) le nombre
d’énoncés trop complexes pour l’apprentissage diminue.

Expériences dans un domaine continu : les couleurs

Dans la deuxième série d’expériences, la population des agents a pour objec-
tif de développer un langage commun pour le domaine de la couleur. Comme
dans le cas des expériences précédentes, les agents doivent organiser eux-mêmes
un vocabulaire pour faire référence aux différentes couleurs dans leur contexte.
Ils gèrent la complexité de leurs interactions linguistiques avec l’autotelic prin-
ciple. Les agents commencent par produire des descriptions de couleurs simples
et les complexifient progressivement en énoncés de plusieurs mots afin de pouvoir
désigner des réalités plus complexes.

Avant de présenter les simulations réalisées, il faut d’abord introduire quelques
notions de ce domaine. Il est communément admis qu’un espace de couleurs,
l’espace de couleurs qui peut être perçu, est organisé en plusieurs catégories de
couleurs, différentes subdivisions dans cet espace. Les prototypes de couleur sont
des points dans l’espace de couleurs qui représentent une catégorie de couleur
particulière dans cet espace [98]. Il faut souligner que, malgré le fait que toutes
les langues humaines divisent l’espace de couleurs en catégories de couleurs, le
nombre de prototypes et leur position dans l’espace de couleurs varient d’une
langue à l’autre.

Formellement, les langues humaines séparent l’espace de couleurs en un en-
semble de prototypes de couleurs {c1, c2, ..., cn}. Étant donné le prototype de
couleur ck, sa cellule associée Rk, qui détermine la catégorie de couleur corres-
pondante, contient tous les points pour lesquels la distance à ck est plus courte
ou égale à la distance à tout autre prototype ci (figure B.8).

Différents systèmes de couleurs ont été proposés pour représenter les espaces
de couleurs5. Dans toutes les expériences dans ce domaine nous utilisons le
système CIE 1976 L*a*b* [96]. Dans ce système, les couleurs sont représentées
selon trois dimensions : la dimension L* représente la luminosité, la dimension a*
la proportion de "rouge-vert" et la dimension b* la proportion de "jaune-bleu".

5Les lecteurs intéressés sont invités à consulter l’annexe "Colour Spaces and Systems" dans
[21] pour un récapitulatif des différents systèmes de couleurs.



182 Résumé en français

Figure B.8: Un espace de couleurs est divisé en catégories qui représentent des
sous-ensembles de cet espace. Ces catégories sont généralement représentées par
des prototypes, qui sont des points dans cet espace (figure extraite de Bleys [21]).

La différence entre deux couleurs est déterminée par leur distance euclidienne.
Les valeurs de la dimension L* vont de 0 (noir) à 100 (blanc), mais les deux
valeurs des dimensions restantes peuvent avoir des valeurs positives ou négatives
et ne sont limitées que par les propriétés physiques des matériaux [21, 192].

Stratégies linguistiques pour le domaine de la couleur

Les langues humaines emploient différentes méthodes pour décrire les couleurs,
allant de l’utilisation d’un seul terme à des descriptions plus élaborées qui im-
pliquent des modifieurs ou une combinaison de prototypes. Cette section présente
les stratégies linguistiques utilisées dans les simulations informatiques. Les straté-
gies de couleur basique, d’appartenance graduée et de combinaison de couleurs
ont été adaptées du code de Joris Bleys, qui m’a généreusement donné accès
à l’implémentation originale des stratégies linguistiques qu’il a utilisées pour
réaliser mes propres expériences.

Stratégie de couleur basique

Dans la stratégie de couleur basique, un seul terme est utilisé pour décrire une
couleur. Dans cette stratégie, le locuteur (a) identifie d’abord le prototype de
couleur qui est le plus proche de la couleur qu’il veut désigner et (b) il ou elle
utilise le terme associé à cette catégorie pour désigner la couleur choisie. Un
exemple est l’utilisation des mots "blue" ou "green" pour décrire une couleur en
anglais.

Stratégie d’appartenance graduée

La stratégie d’appartenance graduée décrit une couleur en exprimant à la fois le
prototype de couleur le plus proche et la distance existante entre la couleur et le
prototype. Comme dans la stratégie précédente, le locuteur doit (a) identifier le
prototype de couleur qui est le plus proche de la couleur à décrire et (b) il ou elle
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doit également rapporter la distance entre la couleur et le prototype de couleur le
plus proche, qui est désignée par un ensemble de modifieurs. Un exemple de cette
stratégie est l’utilisation des énoncés "very green" ou "blue-ish" pour décrire une
couleur en anglais.

Stratégie de combinaison de couleurs

Une autre stratégie observée dans les langues humaines est la combinaison de
couleurs. Comme le nom le suggère, cette stratégie consiste à décrire une couleur
en utilisant deux couleurs choisies par le locuteur. Différents modèles ont été
proposés, mais j’ai choisi d’utiliser la stratégie proposée par Bleys [21] qui consiste
à classer deux fois une couleur, la seconde classification ayant lieu après une
transformation de l’espace des couleurs.

Dans ce modèle, les locuteurs (a) identifient d’abord le prototype de couleur le
plus proche de la couleur à décrire, puis (b) transforment l’espace de couleurs vers
ce prototype (c’est-à-dire ils modifient les valeurs associées à chaque prototype
de couleur vers le prototype sélectionné) et, finalement, ils (c) classifient à nou-
veau la couleur sur l’espace de couleurs transformé, obtenant ainsi un deuxième
prototype. La transformation de l’espace de couleurs réduit la surface de la caté-
gorie de couleur identifiée en (a) mais n’enlève pas son prototype de l’espace
de couleurs, ce qui permet de classer la couleur deux fois par rapport au même
prototype, avant et après la transformation de l’espace. Un exemple de cette
stratégie en anglais est l’énoncé "yellow-green" pour décrire une couleur.

Stratégie de luminosité

La stratégie de luminosité décrit une couleur par rapport à son prototype de
couleur le plus proche en y intégrant la différence de luminosité entre la couleur
et le prototype. Il y a différentes approches pour modéliser cette stratégie. Par
exemple, Bleys [21] l’a modélisé comme une combinaison de catégories de couleurs
avec les prototypes de couleurs blanc et noir. Dans cette implémentation, l’énoncé
"bleu clair" serait l’expression résultante de la combinaison des catégories "bleu"
et "blanc". L’approche utilisée ici spécifie la différence de valeur de luminosité
entre la couleur et le prototype de couleur le plus proche.

De façon similaire à la stratégie de couleur basique, le locuteur doit d’abord
(a) identifier le prototype le plus proche de la couleur à décrire, mais en plus
(b) il ou elle doit aussi indiquer la différence de luminosité entre le prototype
et la couleur à décrire, qui dans l’implémentation prend la forme d’un nombre
décimal et qui est exprimé par un ensemble de modifieurs. Dans le système de
couleurs CIE 1976 L*a*b*, la dimension L* indique la luminosité des couleurs.
L’utilisation d’un modificateur de luminosité sur une couleur modifie la valeur de
cette dimension, l’augmentant ou la diminuant dans la plage des valeurs possibles
de L*. Dans cette approche, le modificateur de luminosité dans l’énoncé "bleu
clair" effectue une opération dans laquelle la valeur de la dimension L* de la
catégorie de couleur "bleu" est augmentée.
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Stratégie de chromaticité

Cette stratégie indique la saturation d’une couleur. Le niveau de saturation est
indiqué par un modifieur (aussi modelé sous la forme d’un nombre décimal) et a
été implémenté d’une façon similaire à la stratégie de luminosité. Tout d’abord,
le locuteur (a) identifie la catégorie de couleur la plus proche à la couleur à
décrire et (b) utilise un modificateur pour décrire la différence de chroma entre
la catégorie et la couleur.

La principale différence par rapport à la stratégie de luminosité est que les
modificateurs chromatiques opèrent sur les valeurs à deux dimensions (a* et b* )
au lieu d’une seule (L* ). Ce qu’un modificateur chromatique fait est augmenter
ou diminuer la valeur de chroma (C∗ab) d’une couleur tout en conservant la même
valeur de hue (h∗∗ab). Ces valeurs ne sont pas directement représentées dans
le système de couleurs CIE 1976, mais peuvent être calculées en utilisant les
formules suivantes [21, 192] :

C∗ab =
√
a∗2 + b∗2

h∗ab = arctan
b∗

a∗

Cette stratégie est également observée en anglais. Par exemple, l’énoncé "pale
blue" diminue la saturation de la catégorie associée à "blue", alors que l’énoncé
"bright blue" l’augmente.

Stratégies linguistiques en tant que réseaux de contraintes séman-
tiques

Les différentes stratégies linguistiques ont étés implémentées en tant que réseaux
de contraintes sémantiques utilisant le système computationnel Incremental Re-
cruitment Language. Ces réseaux contiennent (a) des prédicats qui exécutent
des opérations cognitives telles que la sélection, la catégorisation ou le filtrage
d’objets, et (b) des entités sémantiques, qui dans ce groupe d’expériences corres-
pondent à des prototypes de différents types (couleur, appartenance, luminosité
ou chromaticité). Cette section décrit succinctement les opérations cognitives
utilisées dans les différentes stratégies linguistiques des expériences :

• equal-to-context : cette opération introduit une variable qui contient
l’ensemble des objets dans le contexte, ce qui dans ces expériences consiste
en un ensemble de couleurs.

• get-XXXX-category-set : cette opération introduit une variable contenant
les différents prototypes de la catégorie spécifiée. Selon la catégorie choisie,
la variable peut contenir un ensemble de prototypes de couleur, de lumi-
nosité, d’appartenance ou chromatiques.

• profile-XXXX-dimensions : cette fonction prend un ensemble de couleurs
et les filtre sur certaines dimensions du système de couleurs, retournant
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un ensemble filtré. Comme nous utilisons le système de couleurs CIE 1967
L*a*b*, le profilage selon (a) la luminosité bloquera les dimensions a*b* de
chaque couleur (ayant pour résultat un ensemble d’échantillons de couleur
sur l’échelle des gris), (b) la chromaticité filtrera l’ensemble de couleurs en-
levant les valeurs de la dimension L* et (c) la couleur retournera l’ensemble
original.

• categorise-by-XXXX : cette fonction prend comme entrée un ensemble
d’entités et une catégorie donnée, et retourne l’ensemble des entités ayant
la catégorie donnée comme prototype. Par exemple, classer un ensemble
d’échantillons de couleur selon une catégorie de couleur cn renverra le
sous-ensemble d’échantillons dont la catégorie la plus proche est cn et une
valeur d’activation pour chacun d’entre eux qui représente la similarité
entre l’échantillon de couleur et la catégorie de couleur.
Lors de la catégorisation selon la luminosité ou chromaticité, un argument
supplémentaire est nécessaire, car ces prototypes ont des valeurs dimen-
sionnelles différentes en fonction de l’entité sur laquelle ils sont appliqués.
Prenant un exemple en anglais, le modificateur de luminosité "dark" corres-
pondra à différentes valeurs de la dimension L* lorsqu’il est appliqué aux
catégories "yellow" ou "brown".

• draw-category-set-to-category : cette opération transforme les groupes
de catégories en les réduisant vers une catégorie spécifiée. Elle renvoie
un ensemble de catégories transformées où les valeurs de leurs prototypes
ont été modifiées vers la catégorie d’entrée. Cette opération cognitive est
utilisée dans la stratégie de combinaison des couleurs pour transformer un
ensemble de catégories après une première classification d’une couleur afin
de réaliser une seconde classification.

• select-most-activated : cette fonction sélectionne l’entité la plus activée
parmi un ensemble donné. Elle utilise les valeurs d’activation obtenues dans
les opérations cognitives de catégorisation pour déterminer l’entité la plus
prédominante de l’ensemble d’entrée.

Ces prédicats sont ensuite combinés dans des réseaux IRL qui représentent les
différentes stratégies linguistiques pour décrire les couleurs. Nous illustrons ces
réseaux en prenant comme exemple la stratégie de couleur basique (figure B.9).
Le prédicat de signification equal-to-context introduit les couleurs présents
au contexte, représentés par la variable ?s1, dans la représentation du sens
de l’agent. Cet ensemble est filtré sur les dimensions L*a*b* (variable ?s2 ).
Les prototypes de couleur que l’agent connaît sont obtenus avec l’opération
get-basic-colour-category-set (variable ?bccs). Quand cette stratégie est
utilisée en formulation, le locuteur doit trouver la catégorie ?cc dans son en-
semble de catégories qui est la plus activée étant donné le ?topic, et utilisera le
mot associé à cette categorie pour décrire la couleur. En compréhension, par
contre, l’auditeur utilise la catégorie de couleur ?cc obtenue à partir de l’énoncé
et l’utilise pour identifier l’échantillon de couleur dans le contexte qui est le plus
actif.
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(equal-to-context ?s1)

(profile-colour-dimensions ?s2 ?s1)

(categorise-by-colour ?s3 ?s2 ?cc ?bccs)

(get-basic-colour-category-set ?bccs)(select-most-activated ?topic ?s3)

Figure B.9: Exemple d’une stratégie linguistique en tant que réseau connecté de
prédicats.

Figure B.10: Exemple d’alignement de prototypes d’appartenance dans une pop-
ulation de 5 agents.

Alignement des prototypes

Outre le processus d’alignement des constructions, les différents prototypes im-
pliqués dans une interaction réussie suivent également un processus d’alignement
(figure B.10). L’idée est que les valeurs dimensionnelles des prototypes changent
au fil du temps, à mesure que les agents sont exposés à un plus grand nombre de
situations concernant ces prototypes. Par exemple, lorsqu’un agent apprend un
nouveau prototype de couleur associé à un mot inconnu wi, sa valeur correspond
exactement aux valeurs dimensionnelles de l’échantillon de couleur dans cette
interaction. La valeur de ce prototype de couleur doit néanmoins représenter
la couleur moyenne qui est identifiée par ce mot wi au lieu d’être fixée par les
valeurs du premier échantillon de couleur nommé avec mot. Par conséquent, la
valeur d’un prototype change au fur et à mesure qu’il est utilisé dans un plus
grand nombre d’interactions.
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Régulation de la complexité linguistique

Cette expérience reproduit l’expérience de base dans laquelle l’autotelic prin-
ciple est utilisé par une population d’agents pour réguler de façon autonome la
complexité linguistique de leurs interactions. Cependant, les deux expériences
diffèrent car l’expérience décrite ici se déroule dans un domaine continu, celui de
la couleur, alors que l’autre se déroulait dans un monde discret, où les caractéris-
tiques des objets et les relations spatiales sont prédéterminées. Cette différence a
un impact direct sur les niveaux sensorimoteur et conceptuel des interactions lin-
guistiques, car les agents ont non seulement à créer et à apprendre des construc-
tions lexicales et grammaticales, mais ils doivent aussi créer et apprendre des
prototypes différents qui représentent le sens associé aux constructions lexicales.

Les agents participent à un guessing game dans lequel ils communiquent sur
des échantillons de couleurs. Ils commencent les simulations avec un inventaire
de constructions vide et y ajoutent des constructions grâce à trois stratégies lin-
guistiques, celles de couleur basique, d’appartenance graduée et une combinaison
de catégories graduées, qui sont identifiés par les agents comme des défis com-
municationnel d’une complexité croissante. La complexité d’une tâche de com-
munication est déterminée par le nombre d’opérations cognitives requises. Ce
nombre diffère selon les différents défis et est utilisé pour établir son niveau. La
stratégie de couleur basique a le plus petit réseau de contraintes sémantiques, car
elle nécessite moins de prédicats que les autres stratégies, alors que la stratégie
combinaison de catégories graduées a le plus grand réseau de contraintes séman-
tiques. Les agents commencent par adresser le défi moins complexe, et utilisent
la valeur de niveau pour se déplacer entre les différents défis, en fonction de l’état
interne (ennui, anxiété ou flow) associé par chaque agent à chaque défi.

Une description de couleur plus complexe peut en plus réutiliser les compé-
tences acquises à un stade plus précoce. En abordant la stratégie de couleur
basique, les agents doivent converger à la fois sur une classification de l’espace
de couleurs en différents prototypes et sur les termes associés à chaque proto-
type. Une fois que cela a été réalisé, les agents peuvent passer au deuxième défi,
qui correspond à la stratégie d’appartenance graduée. Comme les prototypes de
couleurs et les termes associés sont déjà connus, la population peut se concen-
trer sur la création et l’alignement des prototypes d’appartenance et leurs termes
associés. Finalement, dans la stratégie combinaison de catégories graduées, une
combinaison des stratégies d’appartenance graduée et de combinaison de couleurs,
il est nécessaire de connaître les prototypes de couleurs et d’appartenance. Le
tableau B.4 présente les différents défis communicationnels comme vecteur de
deux dimensions.

Dans cette expérience, le monde est fait de 268 échantillons de couleurs dif-
férents dans l’espace de couleurs CIE 1967 L*a*b. Le monde contient les couleurs
focales6 et les échantillons consensuels7 pour l’anglais ainsi que des échantillons

6Une couleur focale est une valeur d’une certaine catégorie de couleur qui représente le
meilleur exemple de cette catégorie.

7Échantillons de couleurs qui ont été nommés de façon uniforme en anglais par tous les
participants. Voir Sturges et Whitfield [149].
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Niveau [1] [2] [3]
Défi < 1, 0 > < 1, 1 > < 2, 1 >

< nomcol, nomapp >

Tableau B.4: Défis encodés sous la forme de vecteurs de dimension deux
qui correspondent au nombre maximum de couleurs et de modificateurs
d’appartenance exprimés. La valeur de niveau désigne la complexité d’un défi,
qui est calculée sur la base de son nombre d’opérations cognitives.

de couleurs créés par la combinaison de deux couleurs focales selon des pourcen-
tages différents : 25%, 45%, 55% et 75%, respectivement.

Le contexte de l’interaction se compose d’un sous-ensemble des couleurs
présents dans le monde. Le contexte est déterminé à chaque interaction par le lo-
cuteur, qui choisit sa taille et les couleurs qui en font partie en fonction de son défi
actuel. Dans le défi de couleur basique, le contexte est créé en choisissant aléa-
toirement trois couleurs focales de l’anglais. Dans le défi d’appartenance graduée,
le locuteur choisit cinq échantillons au hasard parmi les échantillons consensuels
pour l’anglais. Enfin, dans le défi de combinaison de catégories graduées, le lo-
cuteur choisit six échantillons de couleurs qui correspondent à la combinaison de
deux couleurs focales pour l’anglais.

Les résultats de l’expérience sont présentés sur la figure B.11. Les agents
commencent par aborder le premier défi, pour lequel la population doit créer et
coordonner son lexique pour (a) les termes pour désigner les couleurs et (b) un
ensemble de prototypes de couleur. Les agents acquièrent rapidement confiance
pour ce défi, car le succès communicationnel et la valeur de confiance augmentent
rapidement. Autour de l’interaction 2000, une diminution brusque de ces deux
mesures est observée lorsque certains agents atteignent une valeur de confiance
maximale. Dans cette situation les agents entrent dans un état interne d’ennui,
passent à la phase de réorganisation et abordent le deuxième défi. Dans ce défi,
les agents doivent développer des constructions lexicales et des prototypes pour
pouvoir indiquer la distance entre les échantillons et les prototypes de couleur.

Autour de l’interaction 5000, une fraction de la population a déjà atteint une
valeur de confiance maximale pour le second défi, ce qui entraîne un chevauche-
ment du défi actuel dans la population. À ce point, certains agents sont de
nouveau dans un état interne d’ennui et sont motivés pour tenter le troisième
défi alors que l’autre partie de la population s’occupe encore du second défi. Fi-
nalement, tous les agents passent au troisième défi et le pourcentage de succès
communicationnel s’améliore graduellement à mesure que la population parvient
à aligner son lexique et ses prototypes. En conséquence, le taux de réussite de
l’alignement, qui mesure la cohésion moyenne du lexique dans la population, aug-
mente également jusqu’à atteindre le même pourcentage que le taux de réussite
de la communication. À la fin des simulations, tous les agents de la population
ont une valeur de confiance maximale pour les trois défis et une valeur de succès
communicative constante supérieure à 90%.

Le fait qu’un pourcentage de succès communicationnel de 100% n’est pas
obtenu même quand tous les agents ont des valeurs de confiance maximales pour
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Figure B.11: Résultats de l’expérience pour une population de 10 agents sur une
moyenne de 10 répétitions de 30000 interactions chacune.

tous les défis est attribuable au fait que les stratégies linguistiques disponibles
(couleur basique, d’appartenance graduée et combinaison de catégories graduées)
ne sont pas assez discriminatoires dans certaines situations. Cela est dû au
fait que le locuteur ne peut pas conceptualiser une couleur dans des contextes
particuliers. Cet effet est également observé par Bleys [21] quand il examine
chaque stratégie linguistique indépendamment.

Gestion de défis multiples

Pour cette expérience, nous voulons tester l’utilité du système de motivation
pour choisir non seulement quand les agents changent leur défi actuel, mais aussi
quel défi un agent doit aborder ensuite, en fonction des défis qu’il connaît et des
caractéristiques des contextes où se déroulent les interactions. Dans ce but, nous
avons intégré les stratégies de couleur basique, de combinaison de couleurs, de
luminosité et chromaticité dans une seule expérience.

Comme dans l’expérience précédente, les agents participent à un guessing
game dans lequel ils communiquent sur des échantillons de couleurs. La popula-
tion commence les simulations avec un inventaire de constructions vide (pas de
constructions lexicales ou grammaticales) et pas de catégories de couleurs, de lu-
minosité ou de chromaticité. Les agents augmentent leur inventaire de construc-
tions et de catégories en utilisant plusieurs stratégies linguistiques, identifiées
comme des défis communicationnels d’une complexité croissante.

La complexité d’une tâche de communication est de nouveau calculée en fonc-
tion du nombre d’opérations cognitives nécessaires pour la réaliser. Ce nombre
diffère selon les différents défis et est utilisé pour déterminer le niveau de la tâche
en question. Les agents commencent par tenter le défi le moins complexe, et
utilisent la valeur du niveau associée aux tâches pour se déplacer entre elles, en
fonction de l’état interne (ennui, anxiété ou flow) associé par chaque agent à
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Niveau [1] [2] [3]
Défi < 1, 0, 0 > < 1, 1, 0 > < 2, 1, 0 >

< nomcol, nomlum, nomchrom > < 1, 0, 1 > < 2, 0, 1 >
< 2, 0, 0 > < 1, 1, 1 >

Tableau B.5: Les défis sont définis comme un vecteur de trois dimensions qui
correspondent au nombre maximum de prototypes de couleur, de luminosité et
de chromaticité exprimés.

chaque défi. Néanmoins, dans cette expérience, certaines stratégies linguistiques
ont le même nombre d’opérations cognitives et sont donc assignées au même
niveau de complexité. Cela implique que les agents peuvent affronter plusieurs
défis en même temps et, afin de pouvoir développer un langage commun, ils
doivent être capables de gérer simultanément diverses tâches de communication.

Comme dans l’expérience précédente, le premier niveau de complexité cor-
respond à la stratégie de couleur basique, car elle a le plus petit réseau de
contraintes sémantiques. Le deuxième niveau de complexité correspond à trois
stratégies différentes : celles de combinaison de couleurs, de luminosité et de chro-
maticité, parce que ces trois stratégies nécessitent le même nombre de contraintes
sémantiques. Finalement, le troisième niveau de complexité correspond aux
stratégies formées à partir d’une combinaison de deux stratégies linguistiques du
deuxième niveau. Une fois qu’un agent a atteint une valeur de confiance maxi-
male pour un défi de niveau 2, il génère deux nouveaux défis en mélangeant une
autre stratégie linguistique du même niveau à ce défi. Le tableau B.5 présente les
différents défis communicationnels sous la forme d’un vecteur de trois dimensions.

Le monde est composé de 335 échantillons de couleurs dans l’espace de couleur
CIE 1967 L*a*b*. Le monde contient les couleurs focales pour l’anglais et
les couleurs obtenus (a) en modifiant la valeur L* de ces couleurs focales (en
l’augmentant ou en la diminuant de 20.0 dans ses limites :[0,0,100,0]), (b) en
modifiant la valeur chromatique C∗ab des couleurs focales (en l’augmentant ou
en la diminuant de 0.2), (c) en combinant deux couleurs focales pour l’anglais
en pourcentages différents (25%, 45%, 55% et 75% respectivement) et (d) en
combinant deux des modifications précédentes ((a), (b) et (c)). Les échantillons
de couleurs de (d) sont créés en effectuant soit les modifications de luminosité
et de chromaticité aux couleurs focales pour l’anglais, soit en appliquant des
modifications de luminosité ou de chromaticité aux échantillons de couleurs de
(c).

Le locuteur sélectionne le contexte, qui est un sous-ensemble des couleurs
présents dans le monde, au début de chaque interaction. L’agent choisit la taille
du contexte et les différents échantillons de couleurs qui en font partie. Ce choix
dépend du défi actuel du locuteur. Pour le défi de niveau 1, le contexte est
créé en choisissant aléatoirement trois couleurs focales pour l’anglais. Quand il
aborde les défis de niveau 2, le locuteur compose des contextes différents de trois
échantillons en fonction du défi qu’il veut tenter. Pour la stratégie de luminosité,
l’agent sélectionne des couleurs qui varient dans leur valeur associée à la dimen-
sion L*, pour la stratégie de chromaticité le locuteur sélectionne des échantillons
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de couleur avec valeurs de h∗∗ab similaires et pour la stratégie de combinaison
de couleurs le locuteur choisit au hasard trois échantillons de couleur parmi les
couleurs résultantes d’une combinaison de deux couleurs focales.

Finalement, pour les défis du niveau 3 le locuteur confectionne un con-
texte avec quatre échantillons de couleurs. Pour la stratégie de combinaison
de couleurs-luminosité, ces échantillons sont choisis parmi les couleurs résultants
d’une modification de luminosité sur une combinaison de deux couleurs focales.
Pour la stratégie de combinaison de couleurs-chromaticité sur des combinaisons
de deux couleurs focales après une modification chromatique et pour la stratégie
de luminosité-chromaticité sur des couleurs focales auxquelles une modification
chromatique et de luminosité a été effectué.

Les résultats de l’expérience sont présentés sur la figure B.12. Les agents
commencent par aborder le défi de niveau 1, pour lequel ils doivent créer et co-
ordonner un ensemble de prototypes et de mots pour se référer aux couleurs.
Comme dans l’expérience précédente, la population accomplit cette tâche assez
rapidement. Ils ont besoin d’environ 500 interactions pour communiquer avec un
pourcentage de succès du 80%, et autour de l’interaction 1000 (environ 200 inter-
actions par agent) ce pourcentage a augmenté à plus du 95%. En conséquence, la
valeur de confiance moyenne du premier défi augmente rapidement et, peu après
l’interaction 2000, tous les agents de la population ont une valeur de confiance
maximale pour cette tâche.

Simultanément, on observe une baisse du succès communicationnel et de
l’alignement. C’est une conséquence de l’ennui interne des agents, car le défi
de niveau 1 n’est plus stimulant. Cela provoque l’entrée des agents dans la phase
de réorganisation et cause la génération de trois tâches communicationnelles plus
exigeantes (celles associées à un niveau 2 de complexité), qui correspondent aux
stratégies de combinaison des couleurs, de luminosité et de chromaticité.

Dans le but de se remettre de la réduction du succès communicationnel et
de pouvoir faire face aux nouveaux défis, la population crée des prototypes de
luminosité et des prototypes chromatiques afin de distinguer les échantillons de
couleurs dans les nouveaux contextes. Cependant, la confrontation avec trois
défis communicationnels à la fois ralentit l’alignement de ces prototypes et des
constructions lexicales qui leur sont associés. Cela est dû en partie aux problèmes
que les auditeurs rencontrent lorsqu’ils doivent estimer le défi tenté par le locu-
teur. Néanmoins, la population parvient à augmenter le succès communicationnel
au-delà du 80% une fois qu’elle commence à aligner ces prototypes.

Quand un agent arrive à une valeur de confiance maximale pour un défi de
niveau 2, il éprouve un état d’ennui pour ce défi et l’utilise pour générer de nou-
veaux défis d’une complexité supérieure. Cependant, il choisit de se concentrer
sur les défis restants du niveau 2 pour lesquels il n’ a pas encore acquis une
confiance maximale au lieu de s’attaquer aux défis récemment créés du niveau
3. Ce n’est qu’autour de l’interaction 15000 que certains agents de la population
ont déjà acquis une confiance maximale pour les trois défis du deuxième niveau
de complexité et commencent à affronter les défis du troisième niveau.

Cette situation entraîne un chevauchement des défis de niveaux 2 et 3 que la
population tente de maîtriser. Il faut noter que ce n’est qu’à la fin des simulations
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(a) Résultats de l’expérience pour une population de 10 agents sur une
moyenne de 10 répétitions de 100.000 interactions chacune.
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(b) Détail des 5.000 premières interactions de la population.

Figure B.12: Résultats de l’expérience pour une population de 10 agents sur
une moyenne de 10 répétitions de 100.000 interactions chacune (figure B.12a) et
détail des 5.000 premières interactions (figure B.12b).

que la population atteint les valeurs de confiance les plus élevées pour les défis de
ces deux niveaux. Afin de comprendre ce comportement, nous devons examiner
l’évolution de la confiance moyenne pour chaque tâche de communication (figure
B.13).

Il apparaît que les stratégies qui impliquent des catégories chromatiques sont
plus difficiles pour les agents que les autres tâches de communication. Le cas
de la stratégie de chromaticité (qui correspond à la paramétrisation < 1, 0, 1 >)
est particulièrement intéressant, car la population n’atteint pas une valeur de
confiance maximale pour ce défi mais se stabilise à une valeur d’environ 90%.
Ce résultat est inattendu, mais s’explique par la combinaison de deux facteurs.
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Figure B.13: Évolution de la valeur de confiance moyenne dans la population
pour chaque défi.

Premièrement, l’ensemble d’échantillons de couleur que les locuteurs choisissent
lorsqu’ils abordent ce défi résulte dans certains cas en contextes trop difficiles,
dans la mesure où les couleurs focales anglaises "orange" et "marron" ont des
valeurs de h∗∗ab similaires. Deuxièmement, la mauvaise estimation de la tentative
de défi du locuteur par l’auditeur, car la plupart des interactions dans lesquelles
les locuteurs ont tenté les défis de type < 2, 0, 1 > et < 1, 1, 1 > et qui ont pour
résultat un échec communicationnel ont été perçus par les auditeurs comme un
défi de type < 1, 0, 1 >.

De plus, le fait de devoir faire face à plusieurs tâches communicationnelles
rend plus difficile pour l’auditeur la décision visant à déterminer quel défi doit
être mis à jour à la fin d’une interaction, ce qui conduit à un plus grand nombre
de mauvaises assignations. Ces erreurs ont également un impact sur la valeur de
confiance associée aux défis de niveau 2, en ralentissant le gain de confiance de la
population et même en le diminuant de façon récurrente sur de courtes périodes,
comme on peut le constater pour la stratégie de luminosité (paramétrisation
< 1, 1, 0 >). Finalement, la population surmonte ces difficultés et termine les
simulations par des valeurs de confiance élevées pour tous les défis.

Comme on l’a déjà constaté dans l’expérience précédente, à la fin des simu-
lations la langue résultante ne permet pas à la population d’atteindre un taux
de réussite communicative de 100% dans ses interactions linguistiques, mais at-
teint une valeur stable légèrement inférieure à 90% (plus précisément 88,40%).
De la même façon, le succès de l’alignement se stabilise à une valeur légèrement
inférieure au succès de la communication (86.00%). Le fait que les deux mesures
ne s’ajustent pas au même pourcentage signifie qu’à la fin des simulations la pop-
ulation présente de légères variations dans son lexique et ses prototypes. Ceci
est dû au fait que les agents conservent des constructions lexicales et des proto-
types qui ne sont presque jamais utilisés. Ces différences sont présentées dans le
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Constructions Valeur SD (σ) Prot. Valeur SD (σ)
Cxns de couleur 11.56 0.91 Prot. de couleur 11.56 0.91

Cxns chromatiques 4.59 1.09 Prot. de chromaticité 3.51 0.44
Cxns de luminosité 8.52 1.65 Prot. de luminosité 5.95 0.54

Cxns lexicales 24.67 2.42 Prot. 21.02 1.34
Cxns grammaticales 6.96 0.07

Table B.6: Résultats pour différentes mesures relatives aux constructions et pro-
totypes pour la deuxième expérience dans le domaine des couleurs.

tableau B.6.
Bien que les constructions de couleur et leurs prototypes concordent parfaite-

ment, les résultats montrent un nombre moyen de constructions de luminosité
et chromatiques supérieur à celui des prototypes associés. Ce décalage est parti-
culièrement prononcé dans le cas des constructions de luminosité, car la popula-
tion a en moyenne environ 2.5 constructions de plus par rapport aux prototypes.
Cette différence suppose que la langue résultante n’est pas entièrement alignée à
la fin des interactions.

Conclusion

Les différentes expériences ont montré que la notion d’auto-motivation est un
mécanisme utile pour le développement de systèmes de communication par une
population d’agents artificiels. Les expériences menées dans la thèse ont montré
que le système de motivation est capable de gérer des tâches de communication
de différents niveaux de complexité dans des environnements discrets et continus.
Nous avons également montré que ce mécanisme est intéressant pour coordonner
plusieurs stratégies linguistiques de même niveau de complexité. En conséquence,
le langage commun résultant de chaque expérience permet à la population de
communiquer avec succès sur les objets présents dans son environnement.
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Résumé

Dans cette thèse nous étudions com-
ment des populations d’agents ar-
tificiels peuvent utiliser un système
de motivation computationel partic-
ulier, appelé l’autotelic principle, pour
réguler leur développement linguis-
tique et les dynamiques qui en résul-
tent au niveau de la population.
Nous proposons d’abord une mise en
œuvre concrète de l’autotelic princi-
ple. Le noyau de ce système repose
sur l’équilibre des défis, des tâches
à accomplir afin d’atteindre un ob-
jectif, et des compétences, les ca-
pacités que le système peut utiliser
pour accomplir les différentes tâches.
La relation entre les deux éléments
n’est pas stable mais se déstabilise
régulièrement lorsque de nouvelles
compétences sont acquises, ce qui
permet au système de tenter des dé-
fis de plus grande complexité. En-
suite, nous testons l’utilité de ce sys-
tème de motivation dans une série
d’expériences sur l’évolution du lan-
gage.
Nous avons démontré à travers de
notre travail que l’autotelic principle
peut être utilisé comme un mécan-
isme général pour réguler la com-
plexité du langage développé de
manière autonome en domaines dis-
crets et continus.

Mots Clés

Évolution du language. modélisation
multi-agents, intelligence artificielle,
systémes de motivation.

Abstract

This thesis explores how populations
of agents can use a particular moti-
vation system called autotelic princi-
ple to regulate their language devel-
opment and the resulting dynamics at
the population level.
We first propose a concrete imple-
mentation of the autotelic principle.
The core of this system is based
on the balance between challenges,
tasks to be done to achieve a goal,
and skills, the abilities the system
can employ to accomplish the differ-
ent tasks. The relation between the
two elements is not steady but regu-
larly becomes destabilised when new
skills are learned, which allows the
system to attempt challenges of in-
creasing complexity. Then, we test
the usefulness of the autotelic princi-
ple in a series of language evolution
experiments.
We have shown through our work
that the autotelic principle can be
used as a general mechanism to reg-
ulate complexity in language emer-
gence in an autonomous way for dis-
crete and continuous domains.

Keywords

Language Evolution, agent-based
modelling, artificial intelligence, mo-
tivation systems.


	Introduction
	Situating this work: language evolution
	Selectionist theory of language evolution
	Language as a Complex Adaptive System
	Language systems and language strategies
	Linguistic selection
	Self-organisation of language systems
	Semiotic cycle: the importance of context

	Managing complexity
	Motivation as a force
	Computational approaches to motivation
	Linguistic complexity

	Main hypothesis
	Objectives
	Structure of the thesis

	I Technical Background
	Language games and technical background
	Language games
	Incremental Recruitment Language
	Meaning as a network
	Execution of an IRL-network
	Building meaning

	Fluid Construction Grammar
	Representing linguistic structures
	Transient Structures
	Constructions
	Construction application process
	An example of how FCG works

	Summary


	II The Autotelic Principle
	History of Motivation: psychological and AI approaches
	Psychological theories on motivation
	Drive-reduction theory
	Operant conditioning
	Reconsidering motivation
	Motivation and balance
	Personal causation, or the opposition of intrinsic and extrinsic motivation
	Flow Theory
	Self-determination theory

	AI approaches to motivation
	Computation Reinforcement Learning
	Classifying computational motivation systems
	From Predictor Error to Compression Driven Progress
	Intrinsically Motivated Reinforcement Learning
	Temporal Difference Competence-Based Intrinsic Motivation
	Intelligent Adaptive Curiosity
	Self-Adaptive Goal Generation R-IAC
	The Autotelic Principle

	Summary

	The Autotelic Principle
	The notion of challenge
	Architecture of the autotelic principle
	Agent as a set of components

	Development of skills
	Deciding what to do next
	Generating new challenges

	Updating the internal state
	Initialisation of the system
	Deciding the current challenge

	Summary


	III Experiments on Language Emergence
	Experiments on the discrete domain
	Description of the experiment
	World and context
	Multi-word guessing game
	Diagnostics and repairs
	Alignment

	Baseline experiment
	Experimental results

	Addition of the autotelic principle
	Experimental results

	Incremental learning of skills
	Analysing the impact of internal evaluation
	Increasing the challenge dimensions
	Experimental results

	Contribution to previous experiments
	Summary

	Experiments on a continuous domain: a case study on colour
	The domain of colour
	Language strategies for the domain of colour
	Basic colour strategy
	Graded membership strategy
	Colour combination strategy
	Lightness strategy
	Chromaticity strategy
	Colour strategies as a network of meaning predicates

	Description of the experiments
	World and context
	Multi-word guessing game
	Diagnostics and repairs
	Alignment

	Experiment 1: regulating linguistic complexity
	Context
	Experimental results

	Experiment 2: Managing multiple challenges
	Context
	Misestimation of the speaker's challenge
	Experimental results

	Experiment 3: Simulating an embodied experiment
	Perceptual deviation
	Experimental results

	Summary


	IV Conclusion and Future Directions
	Conclusion
	Overview of publications

	Future Directions
	Open-Ended Learning Environments
	Multi dimensional environments
	Dynamic challenge configuration
	Generation of new language strategies

	Other applications
	Intelligent tutoring systems
	Developmental robotics
	Character modelling in video games

	Summary

	Example of execution of an IRL-network
	Parametrization of the autotelic principle
	Résumé long de la thèse en français
	Introduction
	Jeux de langage (Language Games)
	Implémentation du cycle sémiotique

	Autotelic principle
	Définition des notions de défi et de performance
	Développement des compétences
	Phases du système
	Génération des nouveaux défis
	Actualisation de l'état interne
	Initialisation
	Déterminer le défi actuel

	Expériences
	Expériences dans le domaine discret
	Diagnostics, réparations et alignement
	Expérience de base
	Intégration du principe d'auto-motivation dans l'architecture
	Acquisition progressive de compétences
	Expériences dans un domaine continu : les couleurs
	Stratégies linguistiques pour le domaine de la couleur
	Stratégies linguistiques en tant que réseaux de contraintes sémantiques
	Alignement des prototypes
	Régulation de la complexité linguistique
	Gestion de défis multiples

	Conclusion

	Bibliography


