
HAL Id: tel-01764529
https://hal.science/tel-01764529

Submitted on 12 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-criteria Batch Scheduling under Time-of-Use
Tariffs

Junheng Cheng

To cite this version:
Junheng Cheng. Multi-criteria Batch Scheduling under Time-of-Use Tariffs. Operations Research
[math.OC]. Université Paris-Saclay; Northwestern Polytechnical University (Chine), 2017. English.
�NNT : 2017SACLE035�. �tel-01764529�

https://hal.science/tel-01764529
https://hal.archives-ouvertes.fr

Ordonnancement multicritère par
lots avec tarifs d'électricité

différenciés

Thèse de doctorat de l'Université Paris-Saclay
préparée à l'Université d'Evry-Val-d'Essonne

et Université Polytechnique du Nord-Ouest

École doctorale N°580 - Sciences et technologies de l'information et
de la communication (STIC)

Spécialité de doctorat: Mathématiques et Informatique

Thèse présentée et soutenue à Evry de soutenance, le 07 Décembre 2017, par

 Junheng Cheng

Composition du Jury :

Xiaolan XIE
Professeur des Université, Ecole des Mines de Saint Etienne Président
Lyes BENYOUCEF
Professeur des Université, Aix-Marseille University Rapporteur
Antoine JOUGLET
Maître de Conférences, Université de Technologie de Compiègne Rapporteur
Imed KACEM
Professeur des Université, Université de Lorraine Rapporteur
Eric ANGEL
Professeur des Université, Université Evry Val d'Essonne Examinateur
Feng CHU
Professeur des Université, Université d'Evry-Val-d'Essonne Directrice de thèse
Weili XIA
Professeur, Northwestern Polytechnical University Co-Directeur de thèse
Ming LIU
Professeur associé, Tongji university Co-Directeur de thèse

N
N

T
 :

 2
0

1
7
S

A
C

L
E

0
3
5

THÈSE DE DOCTORAT

DE

L’UNIVERSITÉ PARIS SACLAY

Spécialité: Mathématique et Informatique

préentée et soutenue par

Junheng CHENG

pour obtenir le grade de

Docteur de l’Université Paris Saclay

Titre de la thèse :

Ordonnancement multicritère par lots avec tarifs
d’électricité différenciés

soutenue le 07 Décembre 2017

JURY:

M. L. BENYOUCEF Professeur des Universités Rapporteur

M. A. JOUGLET Mâıtre des Conférences - HDR Rapporteur

M. I. KACEM Professeur des Universités Rapporteur

M. E. ANGEL Professeur des Universités Examinateur

M. X. XIE Professeur des Universités Examinateur

Mme. F. CHU Professeur des Universités Directrice de thèse

M. W. XIA Professeur Co-encadrant de thèse

M. M. LIU Professeur associé Co-encadrant de thèse

1

2

Multi-criteria Batch Scheduling under

Time-of-Use Tariffs

by

Junheng CHENG

Laboratoire d’Informatique, Biologie Intègrative et Systèmes
Complexes (IBISC)

Université d’Evry Val d’Essonne, France

Supervisors: Prof. Feng CHU, Prof. Weili XIA and Prof. Ming LIU

December 07, 2017

Acknowledgements

I am honored to have this opportunity to show my appreciation to those

who have helped me over the years of my thesis.

Firstly, I would like to express my sincerest gratitude to Professors Lyes

Benyoucef, Antoine Jouglet, Imed Kacem, Eric Angel and Xiaolan Xie

who kindly agree to spend time on evaluation of my work and participation

in my defense.

My deepest gratitude goes to my supervisor Professor Feng Chu who led

me into the operations research area and helped me throughout all the

stages of completing this thesis. During the past three years, Professor

Chu spent tremendous time guiding me how to identify, analyse and solve

specific scientific research issues and how to better demonstrate the ideas

and results. When I encountered barriers, she was always there to pro-

vide me insightful suggestions. She read the manuscript carefully and

corrected the errors word by word. Her rigorous working styles and con-

tagious enthusiasm towards science research influenced me deeply, and

these treasured characteristics will accompany me in the future.

I am very grateful to my co-supervisors Professors Weili Xia and Ming

Liu for their precious encouragements and helpful advice. Though they

work in China, they always kept in touch with me and gave me continuous

help, guidance and support whenever I needed.

Special gratitude is extended to Professors Chengbin Chu and Mengchu

Zhou for their valuable suggestions and comments on improving a part of

this thesis.

I would like to particularly thank Professors Franck Delaplace, Hanna

Klaudel, Jean-Marc Delosme, Jean-Christophe Janodet, Madame Murielle

Bourgeois, Doctor Laurent Poligny, Monsieur Thierry Millant in Lab.

IBISC for their enthusiastic help during my study in France. Many thanks

to all my friends and colleagues for their unceasing help and for sharing

the happy time in France.

Finally, I would like to owe my special appreciation to my beloved family

for their unwavering support and great confidence in me. My parents and

sisters give me all their unselfish love, and always stand by me whatever

I am facing. I am especially grateful to my husband and comrade Doctor

Peng Wu who gave me unconditional love, meticulous caring, and contin-

uous support on the thesis with numerous helpful discussions and useful

suggestions.

6

Résumé

L’industrie est le plus grand consommateur d’énergie dans le monde et

la majeure partie de sa consommation est électrique. Pour moduler la

consommation et équilibrer les périodes creuses et de pic, les producteurs

d’électricité dans de nombreux pays pratiquent une tarification différenciée,

en anglais “time-of-use (TOU) policy”, afin d’encourager les industriels et

les particuliers à adapter leur consommation. Cette stratégie incite les gros

consommateurs industriels, en particulier le secteur semi-conducteur où

la fabrication se fait souvent par lots, à réduire leurs factures d’électricité

en adaptant leur production. Dans ce travail, nous étudions plusieurs

problèmes d’ordonnancement de production par lots avec tarification différenciée

d’électricité. Nous nous intéressons d’abord à l’ordonnancement d’une ma-

chine par lots pour minimiser le coût total d’électricité et le makespan.

Le deuxième problème étudié généralise le premier en considérant le coût

d’électricité pendant les périodes inactives de la machine telles que les

périodes de réglage ou d’attente. Enfin, nous traitons l’ordonnancement

sur machines parallèles par lots avec des pièces non identiques. Pour

chacun de ces problèmes, nous construisons des modèles mathématiques

appropriés, et évaluons sa complexité. Pour la résolution, nous proposons

plusieurs méthodes de ε-contrainte dans lesquelles des sous-problèmes

sont transformés en problèmes de sac-à-doc, de sacs-à-doc multiples et

ou de bin packing. Nous développons aussi une méthode itérative à deux

étapes. Les performances des méthodes développées sont évaluées à l’aide

d’un grand nombre d’instances représentatives générées au hasard. Les

résultats numériques montrent l’efficacité de ces méthodes par rapport au

logiciel commercial CPLEX.

Mots clés: Optimisation bi-objectif; Ordonnancement par lots; Tarifi-

cation d’électricité différenciée; Programmation mathématique; Méthodes

de ε-contrainte; Heuristiques.

Abstract

The industrial sector is the largest consumer of the world’s total energy

and most of its consumption form is electricity. To strengthen the grid’s

peak load regulation ability, time-of-use (TOU) electricity pricing policy

has been implemented in many countries to encourage electricity users to

shift their consumption from on-peak periods to off-peak periods. This

strategy provides a good opportunity for manufacturers to reduce their

energy bills, especially for energy-intensive ones, where batch scheduling is

often involved. In this thesis, several bi-objective batch scheduling prob-

lems under TOU tariffs are studied. We first investigate a single machine

batch scheduling problem under TOU tariffs with the objectives of mini-

mizing total electricity cost and makespan. This primary work is extended

by further considering machine on/off switching. Finally, a parallel batch

machines scheduling problem under TOU tariffs with non-identical job

sizes to minimize total electricity cost and number of enabled machines is

studied. For each of the considered problems, appropriate mathematical

models are established, their complexities are demonstrated. Different bi-

objective resolution methods are developed, including knapsack heuristic

based ε-constraint method, multiple knapsack heuristic based ε-constraint

method, bin packing heuristic based ε-constraint method and two-stage

heuristic based iterative search algorithm. The performance of the pro-

posed methods is evaluated by randomly generated instances. Extensive

numerical results show that the proposed algorithms are more efficient

and/or effective for the studied problems than the commercial software

CPLEX.

Keywords: Bi-objective optimization; Batch scheduling; Time-of-use

electricity tariffs; Mathematical programming; ε-constraint method; Heuris-

tics.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Content and contribution . 2

2 Literature review 5

2.1 Batch scheduling . 5

2.1.1 Variety of batch scheduling problems 6

2.1.2 Single batch machine scheduling 8

2.1.3 Parallel batch machine scheduling 9

2.2 Energy-saving scheduling . 10

2.2.1 Scheduling considering energy consumption saving 11

2.2.2 Scheduling considering energy cost saving 12

2.3 Multi-objective combinatorial optimization 13

2.3.1 Principles of multi-objective optimization 14

2.3.2 Intelligent optimization algorithms 16

2.3.3 Scalarization methods . 17

2.3.3.1 Weighted sum method 17

2.3.3.2 Goal programming 17

2.3.3.3 ε-constraint method 19

2.3.4 Performance metrics . 20

2.3.4.1 Cardinality-based PIs 21

2.3.4.2 Distance-based PIs 21

2.3.4.3 Volume-based PIs 24

2.4 Conclusions . 25

3 Single batch machine scheduling under TOU tariffs 27

3.1 Introduction . 27

3.2 Problem formulation . 28

i

3.3 Property analysis and problem complexity 31

3.3.1 An equivalent simplified model 33

3.4 Solution approaches . 34

3.4.1 The ε-constraint method based framework 34

3.4.2 Design of KH . 35

3.4.3 Design of MKH . 36

3.4.4 Select the most preferable Pareto optimal solution 38

3.5 Computational results . 39

3.5.1 Comparison results of the models 40

3.5.2 Performance of KH-ECM and MKH-ECM 40

3.5.3 Sensitivity analysis . 45

3.6 Conclusions . 49

4 Single machine batch scheduling with machine on/off switching un-

der TOU tariffs 51

4.1 Introduction . 51

4.2 Problem formulation . 52

4.2.1 Mathematical formulation . 53

4.2.2 Optimal batch rule analysis 55

4.2.3 An improved MILP model . 58

4.3 Resolution approach . 59

4.3.1 Framework of ε-constraint method 60

4.3.2 Main steps of the BPH . 61

4.3.3 Overall algorithm . 62

4.4 Computational results . 63

4.5 Conclusions . 74

5 Parallel machine batch scheduling under TOU tariffs 75

5.1 Introduction . 75

5.2 Problem formulation and complexity 76

5.2.1 Mathematical Modelling . 77

5.2.2 Further improvement of model P ′Q 80

5.2.3 Problem complexity . 80

5.3 Solution method . 81

5.3.1 Methods for sub-problem 1: batch formation 81

5.3.1.1 Linear programming model based batch formation . 82

5.3.1.2 Successive knapsack based batch formation 82

ii

5.3.2 Method for sub-problem 2: batch allocation 84

5.4 Computational results . 85

5.4.1 A case study . 86

5.4.2 Random test instances . 88

5.5 Conclusions . 91

6 Conclusions and perspectives 93

Bibliography 96

My publications 114

iii

iv

Notation

j: index of jobs

b: index of batches

m: index of machines

i: index of time intervals

J : set of all jobs, i.e., J = {1, 2, ..., |J |}

B: set of all batches, i.e., B = {1, 2, ..., |B|}

M : set of all machines, i.e., M = {1, 2, ..., |M |}

I: set of time intervals on the planning horizon, i.e., I = {1, 2, ..., |I|}

pj: processing time of job j, ∀j ∈ J

cj: size of job j, ∀j ∈ J

C: capacity of each batch

vm: processing speed of machine m, ∀m ∈M

qm: power rate of machine m when processing, ∀m ∈M

ei: electricity cost of time interval i, ∀i ∈ I

si: starting time of time interval i, 1 ≤ i ≤ |I|+ 1

Si: duration of time interval i, ∀i ∈ I

L: a sufficiently large integer

v

vi

List of Figures

2.1 An example of Time-of-Use tariffs (Source: Ontario Energy Board) . 13

2.2 An example of Pareto front, ideal and nadir points 15

2.3 Distribution and spacing metric 4 [43] 23

2.4 e-dominance metric [46] . 23

2.5 Hypervolume indicator [46] . 24

3.1 An example of batches formed with the LPT-based method 31

3.2 The ε-constraint method based framework for the SBS-TOU 36

3.3 KH: solution method for a given ε-constraint problem Ps(εk) 37

3.4 KH′: solution method for P2
s . 37

3.5 MKH: solution method for a given ε-constraint problem Ps(εk) 38

3.6 MKH′: solution method for P2
s . 38

3.7 Computational time for sensitivity analysis of |I|, |I| = αmax1≤j≤J{pj×
|B∗|/Si} . 47

3.8 Computational time for sensitivity analysis of ei 48

4.1 The BPH-ECM for solving Pf . 63

4.2 Computational time of BPH-ECMs for the instances with pj ∈ (50, 100],

|B∗|=5-70 . 69

4.3 Computational time of BPH-ECMs for instances with pj ∈ (50, 100],

|B∗|=80-5000 . 70

4.4 Dicovered Pareto solutions by different methods 73

5.1 An illustration of a batch processed in multiple periods 80

5.2 Structure of problem decomposition and two-stage heuristic approaches 81

5.3 An illustration of WSb . 83

5.4 successive knapsack based method . 83

5.5 ε-constraint method for model PQa 85

5.6 Two-stage Heuristic approach for PBMS-TOU 85

5.7 The examples of batch combinations of the four job types [138] 86

vii

5.8 The schedules for the formed batches 88

viii

List of Tables

3.1 Comparison results of models P ′s and Ps 41

3.2 Comparison results for middle sized instances with pj ∈ (100, 200] . . 42

3.3 Comparison results for middle sized instances with pj ∈ (50, 100] . . . 42

3.4 Comparison results for large-size instances with pj ∈ (100, 200] 43

3.5 Comparison results for large-size instances with pj ∈ (50, 100] 44

3.6 Comparison for sensitivity analysis of |I|, |I| = αmax1≤j≤J{pj×|B∗|/Si}
46

3.7 Comparison for sensitivity analysis of ei 47

3.8 Computational results for the instances with Ei = {30, 15, 5}, rm ∈
[0.6, 1.0], C = 5, pj ∈ (100, 200] . 49

4.1 Comparison results with model Pf for small-size instances 65

4.2 Comparison results with model P ′f for small-size instances 66

4.3 Comparison results for the instances with pj ∈ (50, 100] and |B∗| =5-70 67

4.4 Comparison results for the instances with pj ∈ (50, 100] and |B∗|=80-

5000 . 70

4.5 Comparison results for the instances with pj ∈ (100, 200] and |B∗|=5-20 71

4.6 Comparison results for the instances with pj ∈ (100, 200] and |B∗|=21-

2000 . 72

5.1 The detailed data of the case . 86

5.2 The solutions and computation time of each method 87

5.3 The detailed batch information . 87

5.4 Comparison results for small sized instances 89

5.5 Comparison results for small sized instances 89

5.6 Comparison results for larger sized instances 90

ix

x

Chapter 1

Introduction

This thesis investigates a new class of scheduling problem: batch scheduling un-

der time-of-use electricity tariffs (BS-TOU). It mainly concerns designing production

plans for batch processing machines under variable electricity prices environment to

create economic benefits for manufactures and promote sustainable development. In

this chapter, the research background is firstly introduced, and then the contributions

and outline of the thesis are stated.

1.1 Background

In accordance of the Energy Information Administration [3], the total world’s en-

ergy consumption is forecasted to expand from 575 quadrillion Btu in 2015 to 736

quadrillion Btu in 2040. Meanwhile, majority of them is generated from nonrenew-

able natural resources, such as coal, fossil oil, and natural gas. Facing the pressure

of increasing energy demand and diminishing nonrenewable natural resources, saving

energy has come into a public interest.

Globally, the industrial sector is the largest energy consumer, which contributes

about 50% of the world’s total energy consumption [53]. Electricity plays an impor-

tant role in industrial production with rapidly economic development. For example,

electricity contributes approximately 30% to total industrial energy consumption in

APEC area [9]. However, electricity cannot be efficiently stored, such that it has to

be generated, transmitted and consumed instantly. Moreover, electricity demand and

supply are imbalanced over time. To meet the customer demand during peak periods,

the electricity suppliers have to construct and enable costly backup facilities that are

usually less efficient thereby more greenhouse gases can be generated [139]. To reduce

the backup facilities investments as well as carbon emissions, demand response (DR)

strategy has been carried out by many electricity suppliers due to its flexibility and

1

inexpensiveness [110]. Time-of-use electricity (TOU) pricing is the most prevalent

DR strategy [139], which offers variable electricity prices over time, i.e., high price

during on-peak periods and low price during off-peak periods. This provides a good

opportunity for electricity consumers to save their electricity cost by shifting their

use from on-peak periods to off-peak periods.

Batch processing manufacturing system representing a typical production envi-

ronment has been widely encountered in modern manufacturing industries, such as

steel manufacturing, semiconductor manufacturing, and aircraft industry, and most

of them are energy-intensive ones. A specific feature of batch processing is that a

processing machine can process multiple jobs at a time. As a result, batch scheduling

is usually more complex than traditional production scheduling, because it needs to

optimally group the jobs into batches and schedule the formed batches. Majority

of batch scheduling problems have been proved to be NP-hard, even under single-

machine environments. The existing researches on batch scheduling problems are

mainly concerned with improving production efficiency such as optimizing makespan,

total completion time or maximum tardiness, while energy cost optimization is usually

ignored.

In light of the above analysis, production efficiency is a primary target that deci-

sion makers have always been pursuing, while minimizing total electricity cost can also

be economically and environmentally beneficial in the context of sustainable develop-

ment. However, production efficiency optimization and electricity cost minimization

are usually conflicting with each other, since the former requires processing “as soon

as possible” and the later prefers processing during low-price periods. In other words,

there is a trade-off between the total electricity cost and the production efficiency.

Batch scheduling under TOU tariffs can be considered as multi-criteria combinatorial

optimization problems and their optimization can be achieved by advanced technol-

ogy and optimization techniques. To the best of our knowledge, there are very few

studies on multi-objective batch scheduling under TOU tariffs. This thesis aims to

develop new mathematical models and solution approaches for the multi-objective

BS-TOU.

1.2 Content and contribution

This thesis mainly focuses on batch scheduling problem under TOU tariffs to min-

imize total electricity cost and production efficiency. Three BS-TOU problems are

investigated successively. We firstly concentrate on single batch processing machine

2

scheduling with identical job size under TOU tariffs. Then we extend it by consid-

ering machine on/off switching to further save the electricity cost when the machine

is idling. Finally, we devote our attention to parallel batch machines scheduling with

non-identical job sizes under TOU tariffs. For each investigated problem, we develop

the mathematical model, analyse the problem property and complexity, and design

solution approach based on the characteristics of the problem.

The main contributions of the thesis are summarized as follows.

1) Study three new bi-objective batch scheduling problems under TOU tariffs: a

single batch machine scheduling problem with identical job size; a single batch

machine scheduling problem with identical job size and machine on/off switching

strategy; and a parallel batch machine scheduling problem with non-identical

job sizes.

2) For all three problems, effective mathematical models are established, their

properties and complexities are analysed, then efficient heuristics are developed

based on the characteristics of the problems. The results from computational

experiments on extensive randomly generated instances exhibit the well perfor-

mance of the proposed algorithms.

The remainder of this thesis is organized as below.

Chapter 2 is devoted to literature review on batch scheduling under TOU tariffs

and multi-objective optimization methods. We first review the research on batch

scheduling, and important research works on scheduling considering energy saving

and TOU pricing policy. Then the basic concepts, main solution approaches and

performance metrics of multi-objective optimization are explained.

Chapter 3 addresses a bi-objective single batch machine scheduling problem with

identical job size under TOU tariffs to minimize total electricity cost and makespan.

The problem is first formulated as a bi-objective mixed integer linear programming

(MILP) model and is proved to be NP-hard. Then a tighter MILP model is pro-

posed based on property analysis. Two efficient heuristic based ε-constraint methods

(ECM), i.e., knapsack heuristic based ECM and multiple knapsack heuristic based

ECM (KH-ECM and MKH-ECM in brief), are respectively developed for the prob-

lem. The two methods both transform the bi-objective problem into a series of

single-objective problems (SOPs). Then knapsack heuristic and multiple knapsack

heuristic are respectively developed for each SOP. Finally, the computational results

of numerical experiments are presented to evaluate their performance.

3

In Chapter 4, we extend the studied problem in Chapter 3 to a single batch

machine scheduling problem with identical job size and machine on/off switching un-

der TOU tariffs, which aims to simultaneously minimize total electricity cost and

makespan. For the problem, we first develop a bi-objective MILP model. Based on

optimal batch rule analysis, an improved model is further provided which greatly

reduces a Pareto optimal solution search space. A bin-packing heuristic based ε-

constraint method (BPH-ECM) is developed for the problem, which first transform

the bi-objective problem into a series of SOPs then resolve each SOP through heuris-

tics inspired by assignment rules for bin packing problems. The results of extensive

computational experiments confirm the effectiveness and efficiency of the proposed

model and algorithm.

Chapter 5 investigates a bi-objective parallel batch processing machine scheduling

problem with non-identical job sizes under TOU tariffs to minimize total electricity

cost and number of enabled machines. We first establish a bi-objective MILP model

for the problem. Then by reformulating the constraints of non-preemption require-

ment, an improved MILP model is developed. To fast solve the problem, a two-stage

heuristic approach is designed to quickly obtain an approximation Pareto front, where

the first stage focus on grouping jobs into batches and the second stage allocates the

formed batches to parallel machines under TOU tariffs. The computational results

on a case study and randomly generated instances show the well performance of the

proposed methods.

Chapter 6 concludes this thesis and discusses perspectives for future work.

4

Chapter 2

Literature review

In this chapter, we first review batch scheduling models and their research progress.

Then, energy-saving scheduling studies and time-of-use (TOU) tariffs strategy are

recalled, respectively. Subsequently, we present multi-objective combinatorial opti-

mization methods and their performance evaluation metrics.

2.1 Batch scheduling

Scheduling, which distributes and orders tasks to scarce resources, is widely applied

in many different areas, e.g. production systems [1], personnel management [17],

hospital services [118] and project management [84]. The scheduling for a production

system is to make a production plan for a set of jobs (tasks) to be processed on

machines (resources), such that one or more production efficiency metrics are achieved

on respecting all conditions [60]. Scheduling plays an important role in manufacturing

since it can improve the efficiency of resource utilization and reduce the production

cost.

Processing jobs in a batch may be cheaper or faster than to process them indi-

vidually [114], since batching can help to avoid setups or facilitate material handling.

There are two types of batching in the literature: serial batching and parallel batch-

ing [143]. In serial batching, the processing time of a batch equals the total processing

times of its jobs, and a setup time that reflects tool changing or machine cleaning is

required for each batch [14], [114]. While in parallel batching, a machine can simulta-

neously processing multiple jobs at a time, and the length of a batch is its largest job

processing time. This thesis focus on the latter one, which is extensively involved in

manufacturing industries, e.g. semiconductor industry [101], steel industry [115], air-

craft industry [131], shoe manufacturing industry [56]. Most of them are high energy

5

consuming ones, where the reduction of energy cost makes important contribution to

the enterprise’s profit [63], [97].

2.1.1 Variety of batch scheduling problems

A classic scheduling problem can be described by a triplet α|β|γ [59]. α states the

scheduling environments, β indicates the job characteristics and the restrictive re-

quirements, and γ expresses the objective functions to be optimized. A batch schedul-

ing problem can be described with the triplet notation by adding B in the β field.

For example, 1|B|Cmax means scheduling a single (α = 1) batch machine (β = B)

with the objective of minimizing makespan (γ = Cmax). Next, we introduce the three

fields more specifically.

(1) α describing the the scheduling environments as follows:

Single machine: denoted by 1. It is the simplest machine environment and a

basis of more complicated machine environments.

Identical parallel machines (P): There are M identical machines. A job has

to be processed on one of the M identical machines with the same processing time.

Uniform parallel machines (Q): There are M machines with different machine

speed rates vm, where m = 1, 2, ...,M . The processing time of nonpreemptive job j on

machine m is pm,j = pj/vm, where pj denotes the processing time of job j on machine

with vm = 1. If all the machines have the same speed, the environment reduces to

identical parallel machines.

Unrelated parallel machines (R): There are M parallel machines, where ma-

chine m can process job j with speed rate vm,j. The processing time of job j on

machine m equals to pj/vm,j. If the speed of each machine is independent on the

jobs, then the unrelated parallel machines can be reduced to the uniform parallel

machines.

Flow shop (F): There are M machines in series. Each job has to be sequentially

processed on each machine. The processing route of all jobs on the machines are the

same.

Job shop (J): There are M machines. Each job has to be processed on M ′

machines (1 ≤ M ′ ≤ M), and the processing route of job on the M ′ machines is

pre-known.

Open shop (O): There are M machines. Each job has to be processed on M ′

machines (1 ≤ M ′ ≤ M), and there is no restriction on the processing route of each

job. In addition, a job can be processed on a machine once or multiple times. Note

6

that in the previous machine environments, each job is processed at most once on a

given machine.

Except the machine environment, time of use tariffs provide a scheduling en-

vironment with variable prices. It is denoted as TOU in the α field. For example,

TOU, 1|B|E denotes scheduling a single batch machine under TOU tariffs to minimize

total electricity cost (α = TOU, 1; β = B; γ = E).

(2) The β field specifying the following processing constraints

Processing time (pm,j): The processing time of job j on machine m. If the

processing times of job j are identical on different machines, pm,j can be replaced by

pj.

Preemption (prmp): The processing of jobs is allowed to be interrupted at

any time, and then continued later or processed on another machine. The jobs are

preemptive when prmp appears in the β field. Otherwise, the jobs are nonpreemptive.

Release time (rj): the earliest available time of job j for processing.

Due date (dj): the date that job j is promised to the customer, or to say the

desired date that the processing of job j is completed.

Batch processing (B): Multiple jobs can be simultaneously processed on a

machine. We record the capacity of a batch as C.

Job size (cj): cj denotes the space occupied by job j in a batch with capacity C.

It is assumed that total size of the jobs in a batch, i.e.,
∑

j∈b cj, is not larger than C.

If job sizes are identical, cj can be equal to 1 and C corresponds to the number of

jobs.

(3) The optimized objectives in the γ field are usually regular objective func-

tions that often meet two features: a) they are in minimization form; b) objectives

are a non-decreasing function of jobs’ completion times. Some commonly regular

objective functions include:

Makespan (Cmax): It states the completion time of the last job, i.e., maxj∈J{Cj},
where Cj denotes the completion time of job j. In batch scheduling, Cmax refers to

the completion time of the last batch. This objective indicates the machine utilization

or throughput of the schedule.

Total completion time (
∑
Cj): the total completion times of all jobs. This

objective implies the inventory cost incurred by the schedule.

Maximum lateness (Lmax): the maximum lateness of all jobs, i.e., maxj∈J{Lj},
where Lj = Cj − dj.

Number of tardy jobs (
∑
Uj): Uj is a binary, which equals to 1 if Cj > dj, 0

otherwise.

7

Total tardiness (
∑
Tj): the sum of the tardiness of all jobs, where Tj =

max{Lj, 0}. It reflects the customer dissatisfaction.

Total earliness/tardiness (
∑
|Cj − dj|): the total deviation of job completion

times from their due dates. A large earliness implies a high inventory cost.

Besides, in a multiple machine environment, the number of enabled machines

may be minimized when the machines are scarce resources. We denote the number

of enabled machines as N in the γ field.

In the context of energy saving, total energy cost E minimization has been

involved in many works, which reflects economical and ecological consideration of

enterprises.

Based on the above notations, the studies on batch scheduling can be classified

from three perspectives: machine environment, processing properties or objective

functions. This thesis studies single and parallel batch machine scheduling, which

will be reviewed in the following subsections.

2.1.2 Single batch machine scheduling

For a single batch machine with identical job size, the first study was probably done

by Ikura and Gimple [67]. They investigated makespan minimization and provided a

greedy-adjusted-bunching algorithm to determine whether a feasible schedule exists

for the case with agreeable release times and due dates (i.e., rj ≤ rj′ indicates dj ≤
dj′). The algorithm can give optimal makespan if a feasible schedule exists. Lee

et al. [81] studied a batch problem with agreeable job release times and due dates

to respectively minimize maximum lateness and the number of tardy jobs. Efficient

dynamic programming-based algorithms were proposed for the problems. Later, Li

and Lee [85] proved the problems are strongly NP-hard.

Considering jobs with identical size and different processing times, Chandru et al.

[21] presented an exact method and several heuristics for a batch machine to minimize

total completion time. Then they extended their own work by considering different

job families [22]. Sung and Choung [123] studied a batch machine scheduling with

release times and presented several heuristics to minimize makespan. For the same

problem, Li et al. [88] proposed an approximation algorithm with worst-case ratio

2 + ε, where ε can be made arbitrarily small.

For batch scheduling with non-identical job size, Uzoy [129] was the first re-

searcher who investigated Cmax and
∑
Cj minimization, respectively. Both problems

were proved to be NP-hard and efficient heuristics were provided. Zhang et al. [148]

demonstrated that the worst-case ratio of first fit longest processing time (FFLPT)

8

rule proposed by Uzoy [129] is not larger than 2. Furthermore, they presented an

approximation algorithm with worst-case ratio 7/4. Later, Uzoy and Yang [130]

proposed a branch-and-bound method for a single batch scheduling problem with ob-

jective of minimizing total weighted completion time. For the same problem, Azizoglu

and Webster [12] proposed another branch-and-bound method which is able to find

optimal solutions for instances up to 25 jobs within reasonable time. To minimize

makespan, Dupont and Ghazvini [51] presented a successive knapsack problems (SKP)

based heuristic and a best fit longest processing time (BFLPT) heuristic. Dupont and

Dhaenens-Flipo [50] proposed a branch-and-bound method based on some dominance

properties. Kashan et al. [74] proposed an algorithm with asymptotic worst-case ratio

4/3 for the instances with agreeable job sizes and job processing times. A simulated

annealing (SA) approach, a genetic algorithm (GA) and a hybrid GA were respec-

tively developed for the same problem by Melouk et al. [103], Damodaran et al. [41]

and Kashan et al. [73]. Later, Chen et al. [30] proposed a clustering algorithm for

the problem based on the definition of waste ratio of batch (WAB). Xu et al. [143]

further developed an ant colony optimization (ACO) based on the definition of WAB.

Zhou et al. [153] proposed some constructive heuristics for a single batch scheduling

problem with release times. To minimize earliness-tardiness, Li et al. [92] developed

a hybrid genetic algorithm.

In addition, a number of scholars addressed single machine batch scheduling prob-

lems with some specific factors, such as incompatible job families [72], [78], penalty

of rejected jobs [66], [96], multiple agents [126], integration of manufacture and trans-

portation [31], [79], etc.

2.1.3 Parallel batch machine scheduling

In a parallel machine environment, a job has to be processed by one available machine

[89]. If the machines are batch processing ones, the scheduling requires to batch the

jobs and determine the batch processing sequence on different machines.

For identical parallel batch scheduling problem, Chang and Damodaran [23] pro-

posed a simulated annealing (SA) approach to minimize makespan for identical job

size and release time. Chandru et al. [21] presented several heuristics to minimize∑
Cj. Considering non-identical job sizes, Lu and Yuan [95] addressed makespan op-

timization on unbounded parallel batch machines and proposed a heuristic method.

Damodaran and Chang [38] proposed several two-step heuristics to minimize makespan.

For the same problem, Kashan et al. [75] and Damodaran et al. [40] developed a hy-

brid genetic algorithm (HGA) and a genetic algorithm, respectively. Considering job

9

release times, mixed-integer linear programming (MILP) approaches, heuristics or

meta-heuristics (e.g. GA, ACO, SA) were developed to optimize makespan (Mathi-

rajan et al. [100], Chung et al. [33], Chen and Du [29], Damodaran et al ?,?, Chen

et al. [29], Zhou et al. [152]). Considering incompatible job families, where jobs from

different families cannot be processed in the same batch, Koh et al. [77] proposed con-

structive heuristics and genetic algorithm to optimize Cmax and
∑
Cj, respectively.

Malve and Uzsoy [99] proposed a genetic algorithm to minimize maximum lateness.

For parallel machines scheduling with non-identical capacities, random-key genetic

algorithm (RKGA), particle swarm optimization algorithm (PSO), max-min ant sys-

tem (MMAS) heuristic and polynomial time approximation scheme were proposed to

minimize makespan (Xu and Bean [144], Damodaran et al. [39], Jia et al. [69] and

Li [87]).

For uniform parallel batch scheduling problems, Mor and Mosheiov [107] addressed

it with identical jobs and setup times to minimize total completion time. For non-

identical job sizes, Suhaimi et al. [122] presented a Lagrangian Relaxation (LR) ap-

proach to minimize makespan. Further considering non-identical machine capacities,

Zhou et al. [154] proposed a discrete differential evolution algorithm to optimize the

makespan. Li et al. [90] investigated the same objective by considering non-identical

job release times.

Relatively few works have addressed problems with unrelated parallel batch schedul-

ing. The optimization criterion of the existing works is makespan, and different pro-

cessing properties are considered. Specifically, Li et al. [91] addressed non-identical

job sizes and Zhang et al. [151] considered non-identical job release times. Arroyo

and Leung [10], [11] and Shahidi-Zadeh et al. [120] simultaneously took non-identical

job sizes and release times into account.

Most of the early research focused on the single and parallel batch machine envi-

ronment with conventional production efficiency objectives, such as makespan, total

completion time. Batch scheduling problems closely related to environmental impacts

have not been studied.

2.2 Energy-saving scheduling

Recent years, energy-saving scheduling has attracted public’s growing attention due

to energy shortage, greenhouse effect and increasing energy cost [37], [98]. Statistical

data shows that the total energy demand has been doubled within the last 40 years

and it will be double again till 2030 [104]. Moreover, industrial sector contributes

10

about one-half of the world’s total energy consumption [53]. Hence, improving the

ratio between energy input and economic output during the industrial manufacturing

process, namely, improving energy efficiency of manufacturing systems, plays an im-

portant role for sustainable development [57] and can be achieved by technological or

organizational measures [116]. The technological measures concentrate on efficiency

improvements through machine or product innovations [4],[37],[48],[61],[82],[94], and

their main drawbacks are the considerable investment of financial and human re-

sources. The organizational measures aim to improve the energy efficiency via more

rationalized planning and scheduling strategies, which are cheaper, faster and more

flexible than technological measures. These scheduling strategies can be grouped into

saving energy consumption or saving energy cost, which are respectively presented in

subsection 2.2.1 and 2.2.2.

2.2.1 Scheduling considering energy consumption saving

Energy saving scheduling can be divided into saving non-processing energy (NPE)

consumption and saving processing energy consumption [57].

NPE consumption arises when energy is consumed but is not directly related

to the production operation. For example, the energy consumed by machine being

turned on, turned off or idling. The most famous strategy for saving NPE con-

sumption is to power down the machine when it is idle, which was firstly arose in

computer systems [5],[124]. In production systems, Mouzon et al. [109] observed that

a large amount of energy is consumed for non-processing operations and proposed

a machine turn-on and turn-off strategy (on-off strategy in brief) to minimize total

energy consumption. In this strategy, if the turn-on/turn-off cost is lower than idle

machine running cost, a machine will be turned off and then turned on when the next

processing starts. Later, Mouzon and Yildirim [108] extended the work of [109] to

find a trade-off between the total energy consumption and total tardiness. Yildirim

and Mouzon [145] proposed to better sequence processing orders to reduce energy-

intensive setups. Recently, Che et al. [27] proposed to simultaneously optimize energy

consumption and maximum tardiness with the power down strategy. For flow shop

scheduling, Dai et al. [37] applied the on-off strategy to simultaneously optimize total

energy consumption and makespan. Bruzzone et al. [19] considered peak power con-

sumption saving by adjusting the timetable for a given schedule with pre-determined

job processing sequence. Mokhtari and Hasani [104] developed a mathematical model

and an evolutionary algorithm to minimize total energy consumption for production

and maintenance activities.

11

Processing energy consumption occurs when energy input directly impacts on

the desired output. The processing energy can be saved by speed scaling or job

allocation. Speed scaling saves energy by dynamically changing the speed/frequency

of the machine for processing, which has been widely investigated in computer systems

to extend the battery life [6]–[8], [13]. In production scheduling area, Che et al. [26]

minimized energy consumption on a single machine with speed scaling strategy and

formulated two mixed-integer linear programming models. For parallel machines, Ji

et al. [68] scheduled jobs with the consideration of their different energy requirements

to minimize total resource consumption. For flow shops environment, Fang et al. [54]

proposed a speed scaling framework to minimize energy cost. Liu et al. [93] and Ding

et al. [48] considered energy consumption saving via selecting more efficient machines

in flexible flow shops. Halim and Srinivasan [64] proposed to improve energy efficiency

for a serial batch processing machine by exploiting energy recovery potential.

2.2.2 Scheduling considering energy cost saving

Nowadays, electricity plays an increasingly important role in human’s society. Ac-

cording to Energy Information Administration of US [2], the electricity consumption

in U.S. is expected to keep increasing at an average rate of 0.8% each year through

2040, among which the industrial sector accounts for approximate 25% of the total

consumption [86]. However, the distribution of the electricity demand is unbalanced

over time. To alleviate the peak load of power grid, demand response (DR) strategy

has been carried out in many coutries due to its flexibility and inexpensiveness [110],

such as the United States, Canada, France and China [76]. DR strategy aims to

guide the electricity users in changing their consumption patterns via providing vari-

able prices, so that reducing the demand when generation cost is high or generation

system is jeopardized [57], [76]. Time-of-use (TOU) electricity pricing policy (see

Fig. 2.1) is one of the most important and popular DR strategies [139]. It provides

high electricity price in on-peak periods and low price in off-peak periods, thus to

balance grid’s demand and improve peak load regulation ability [49]. Under TOU

policy, manufacturing industries, especially power-intensive ones, are motivated to

improve their competitiveness by reducing energy cost, for example, processing high

energy consumption operations in off-peak periods. Certainly, considering electric-

ity cost together with production efficiency criteria will be of huge significance for

manufacturing industry.

In recent years, there has been a growing number of studies on production schedul-

ing to save energy cost under time-of-use tariffs. For single machine environment,

12

1
2

3

4

5

6

7

8

9

10
11

11
10

9

8

7

6

5

4

3

2
1

Midnight

Noon

1
2

3

4

5

6

7

8

9

10
11

11
10

9

8

7

6

5

4

3

2
1

Midnight

Noon

P.M. A.M.

1
2

3

4

5

6

7

8

9

10
11

11
10

9

8

7

6

5

4

3

2
1

Midnight

Noon

A.M.

Summer
（May 1-Oct.31）

weekdays

Weekends and
Statutory Holidays

Winter
（Nov.1-Apr.30）

weekdays

7.7

¢/kWh

11.4

¢/kWh

14.0

¢/kWh

Off-peak

Mid-peak

On-peak

P.M A.M. P.M.

Fig. 2.1: An example of Time-of-Use tariffs (Source: Ontario Energy Board)

Shrouf et al. [121] proposed a genetic algorithm for jobs with a given processing order

to optimize total electricity cost with turn-on/off strategy. Fang et al. [55] consid-

ered energy cost saving for uniform-speed and speed-scalable machines and proposed

several heuristics to obtain near-optimal solution. Che et al. [28] developed a mixed-

integer linear programming (MILP) model and a greedy insertion heuristic to mini-

mize total electricity cost. For parallel machines, Moon et al. [106] developed a hybrid

inserted GA to minimize weighted sum of the makespan and time-dependent electric-

ity cost. Ding et al. [49] presented a MILP model and a column generation based

heuristic to minimize total electricity cost respecting a given makepsan. For flow

shops, Luo et al. [98] developed a novel ant colony optimization based meta-heuristic

to minimize both electricity cost and makespan. Zhang et al. [149] formulated a time-

indexed MILP model to minimize total electricity cost and carbon emissions while

ensuring the production throughput at the same time.

It can be found that the existing research taking into account TOU pricing is

mainly concerned with classical shop scheduling, e.g., single machine [55], [121], par-

allel machine [49], [105], and flow shop [98], [149], and most of them mainly focus on

single-objective optimization, i.e., minimizing the total energy cost.

2.3 Multi-objective combinatorial optimization

Facing the complicated processing environments, a modern production system has

to be evaluated by several criteria, such as maximum machine utilization, minimum

inventory cost, high customer service and energy saving. To help decision makers find

a balance among the multiple targets, the corresponding problems should be modelled

and solved by the multi-objective optimization models and methods. In the following

subsections, we state the principles of multi-objective optimization and their solution

approaches and evaluation measures.

13

2.3.1 Principles of multi-objective optimization

In general, a multi-objective optimization problem (MOP) can be stated as follows:

(MOP) : min{f1(x), f2(x), . . . , fn(x)}, s.t.x ∈ χ

where n is the number of the objectives to be optimized simultaneously. x denote the

vector of decision variables and f(x) is the objective vector. χ represents the feasible

solution space.

Generally, due to the conflicting nature of the objectives, a MOP does not have

a unique optimal solution that is better than all other solutions as a single objective

optimization problem. Thus, in order to define the preferred solutions, the principles

of Pareto dominance is widely endorsed in the multi-objective optimization area.

Definition 1 (Pareto Dominance) A solution x is said to weakly dominate (�) an-

other solution x′ if fi(x) ≤ fi(x
′), i = {1, 2, ..., n}. solution x dominate (�) solution

x′ if and only if fi(x) ≤ fi(x
′), i = {1, 2, ..., n} with at least one inequality is strict;

solution x strongly dominate (��) solution x′ if fi(x) < fi(x
′), i = {1, 2, ..., n}.

Definition 2 (Weakly Pareto Optimal solution) x∗ is a weakly Pareto optimal solu-

tion if and only if no x ∈ χ exists such that fi(x) < fi(x
∗) for i ∈ {1, 2, . . . , n}.

Definition 3 (Pareto Optimal solution) x∗ is a Pareto optimal solution (non-dominated

solution or efficient solution) if and only if no x ∈ χ exists such that fi(x) ≤ fi(x
∗) for

i ∈ {1, 2, . . . , n} with at least one inequality being strict. And f(x∗) in the objective

space is called a Pareto optimal objective vector or a non-dominated point.

Definition 4 (Pareto optimal set) All Pareto optimal solutions in the feasible solu-

tion space constitute the Pareto optimal set.

Definition 5 (Pareto front) All non-dominated points in the objective space form the

Pareto front, denoted by F .

Fig 2.2 provides an example of Pareto front for a bi-objective minimization prob-

lem. To define the range of the Pareto front, two special objective vectors are often

used in multi-objective optimization methods, which are ideal point and nadir point.

The ideal point representing the lower bound of each objective in the entire feasible

solution space, can be expressed as follows for the n conflicting objectives:

Definition 6 The vector f I = (f I1 , f
I
2 , ..., f

I
n)T with f Ii = min fi(x), s.t.x ∈ χ, i =

{1, 2, ..., n} represents the ideal point.

14

f2

f1

f I=(f1I,f2I)

(f1N,f2I)

(f1I,f2N) f N=(f1N,f2N)

f M=(f1max,f2max)

Pareto
front

Fig. 2.2: An example of Pareto front, ideal and nadir points

According to the definition, the ideal objective vector consists of the individual opti-

mal objective values. Since the objectives are conflicting in general, their correspond-

ing minimum solutions are often not the same. Thus, the ideal point is a non-existent

solution in the feasible solution space.

The nadir point fN is constructed from the upper bound of each objective in

the Pareto optimal set. fN must not be confused with another point fM (shown in

Fig 2.2) formed by the worst function value of each objective. The nadir point may

represent an existent or non-existent solution, which depends on the convexity and

continuity of the Pareto optimal set [44]. Unlike the ideal point which can be easily

obtained by individually optimizing each objective over the feasible solution space,

the computation of a nadir point is much more complex [15]. However, for a bi-

objective optimization problem (BOP), the ideal and nadir points can be calculated

according to the following definition (see Fig 2.2) [18].

Definition 7 The vector (f I1 , f
I
2) with f I1 = min{f1(x), x ∈ χ}, and f I2 = min{f2(x),

x ∈ χ}, denotes the ideal point; and the vector (fN1 , f
N
2) with fN1 = min{f1(x) :

f2(x) = f I2 , x ∈ χ}, and fN2 = min{f2(x) : f1(x) = f I1 , x ∈ χ}, denotes the nadir

point.

Definition 8 (Extreme points) The Vector (f I1 , f
N
2) and (fN1 , f

I
2) are two extreme

points on the Pareto front for a bi-objective optimization problem.

15

In many cases, due to the high complexity of the underlying application, gener-

ating the Pareto optimal set can be very time-consuming or even infeasible. A good

approximtion of the Pareto front is an alternative.

Definition 9 (Approximation set) Let A be a set of objective vectors in the objective

space. A is called an approximation set if no element of A is weakly dominated by

any other objective vector in A.

Up to now, an optimization problem mainly can be solved by analytical method or

numerical method. The analytical method that can reach the exact optimal solution

requires strict mathematical proofs and deduction. It can only be effective for some

special problems. The numerical method involves appropriate formulas and multiple

iterations to calculate the optimal or near-optimal objective values. Over the past few

decades, many numerical methods have been proposed to solve MOPs in literature.

Based on the different techniques of handling the multiple objectives, these methods

mainly can be grouped into two categories: intelligent optimization algorithms and

scalarization methods. The former one employs appropriate heuristic search rules to

achieve different objective optimization simultaneously; and the latter one generally

transforms a MOP into a series of single objective optimization problems and solve

them successively to obtain the exact or approximate Pareto front.

2.3.2 Intelligent optimization algorithms

The intelligent optimization algorithms, also known as meta-heurstics, are a class

of search methods that inspired by animal or human behaviour patterns, reaction

modes or communication mechanisms [35]. Most multi-objective intelligent optimiza-

tion algorithms employ Pareto-based ranking schemes to classify the individuals in

the evolution population and use a mechanism to allocate appropriate fitness to pro-

mote the individual dispersion in the population [71], [141]. Two most well-known

multi-objective intelligent optimization algorithms are non-dominated sorting genetic

algorithm-II (NSGA-II) [16], [43], [47] and strength Pareto evolutionary algorithm 2

(SPEA-2) [158]. Other multi-objective intelligent optimization algorithms include

multi-objective ant colony system algorithm [58] and multi-objective particle swarm

optimization algorithm [34], etc.

The major advantage of the intelligent optimization algorithms for MOPs is their

high efficiencies in generating approximative Pareto front, since multiple solutions can

be simultaneously obtained in one iteration. However, the optimality of the solutions

16

are not guaranteed, and the performance of the solution quality often highly depends

on the parameters setting and the initial population generation. In addition, these

algorithms usually perform no better than random blind search when they are directly

applied without considering problem characteristics [48].

2.3.3 Scalarization methods

Scalarization methods are usually applied to find efficient solutions for MOPs. In

this subsection, three most widely and prevalent scalarization techniques: weighted

sum method, goal programming approach and ε-constraint method are presented,

respectively.

2.3.3.1 Weighted sum method

A MOP is often solved by combining the multiple objective functions into a single

one. The most popular and straightforward one is weighted sum method [147].

More specifically, this approach minimizes a positively weighted convex sum of the

objectives:

Pω : y = min
n∑
i=1

ωifi(x), s.t.x ∈ χ

where ωi ≥ 0, i = {1, 2, ..., n} is a set of weighted coefficients, and
∑n

i=1 ωi = 1. Then

an efficient solution of the original MOP can be obtained by optimally solving the

single objective problem Pω [62]. By appropriately changing the weight parameters,

a set of tangent points of the single objective function line and the Pareto curve can

be obtained by minimizing the single objective problems. That is, a set of efficient

solutions can be acquired.

Although the weighted-sum method is easy to implement, it has several technical

shortcomings. Firstly, it is a hard task to determine appropriate weights of objectives,

since setting a uniform spread of weight parameters generally cannot produce a uni-

form spread of solutions on the Pareto front [20]. Secondly, a part of non-dominated

points cannot be obtained when the Pareto curve is non-convex [42]. Thirdly, the

weighted-sum method is not appropriate to the case where the linear combination is

not suitable for integrating different objectives into a single one.

2.3.3.2 Goal programming

Goal programming was first introduced by Charnes et al. [24], [25]. In this approach,

decision makers firstly set the a desired value vi, i = {1, 2, ..., n} for each objective,

17

and then find a solution whose objective vector is as closer as possible to the desired

value vector. This can be achieved by formulating a new single-objective problem,

which is to minimize the deviation of the original objectives from their desired values,

and subjects to original constraints as well as new constraints transformed from the

original objectives. Take a three objective optimization problem for an example.

min fi(x), i = 1, 2, 3

s.t. x ∈ χ

The desired values of the objectives are as follows.

f1(x) ≤ v1

f2(x) = v2

f3(x) ≥ v3

To find the solution that is closest to desired value vector (v1, v2, v3)T , slack variables

d−i , i = {1, 2, 3} (resp. surplus variables d+
i , i = {1, 2, 3}) are introduced to calculate

the negative (resp. positive) deviation from desired objective value vi, i = {1, 2, 3}.
For each constraint of the type 1

f1(x) ≤ v1,

a positive deviation variable d+
1 is introduced to form the following constraints:

f1(x)− d+
1 ≤ v1.

For each constraint of the type 2

f2(x) = v2,

both positive and negative deviation variables are introduced form the new constraints

as follows:

f2(x)− d+
2 + d−2 = v2.

For the constraint of the type 3

f3(x) ≥ v3,

a negative deviation variable d−3 is introduced, and the above constraint becomes

f3(x) + d−3 ≥ v3.

18

There are several approaches to optimize the introduced variables, Archimedean

goal programming is one of the most popular. It is also called as weighted goal

programming, where the slack and surplus variables are assigned weights based on

their relative importance to the decision maker and minimized as an Archimedian

sum. Let ω−i and ω+
i be the weights of d−i and d+

i , respectively. The problem to be

optimized can be formulated as follows.

min ω+
1 d

+
1 + ω+

2 d
+
2 + ω−2 d

−
2 + ω−3 d

−
3

s.t. f1(x)− d+
1 ≤ v1

f2(x)− d+
2 + d−2 = v2

f3(x) + d−3 ≥ v3

d+
1 , d

+
2 , d

−
2 , d

−
3 ≥ 0

x ∈ χ

For more formulating methods, such as lexicographical goal programming, the refer-

ence goal programming and the interactive goal programming, please refer to [127].

For linear programming problem, goal programming approach has been proved to

be effective to obtain satisfactory solution. However, it is difficult in setting appro-

priate desired objective values without preference informaton of decision makers [35].

2.3.3.3 ε-constraint method

The ε-constraint method is a well-known technique for solving multi-criteria optimiza-

tion problems. It aims to optimize a single preferred objective function while formu-

lating the other objectives as constraints, called ε-constraints. For the bi-objective

case, the ε-constrained problem can be illustrated as follows if the first objective is

considered as the preferred one:

P(ε) : min f1(x), s.t.f2(x) ≤ ε, x ∈ χ

where ε progressively varies from fN2 to f I2 . Based on the different ways of modifying ε,

the ε-constraint methods can be classified into two subsets: equidistant ε-constraint

method and exact ε-constraint method [142].

In the equidistant ε-constraint method, the range of ε is uniformly divided into

a number of K subintervals and each subinterval’s upper limit is taken as the value

of ε [83], [117], [155]. Mathematically, we first calculate the iteration step of ε by the

following formula:

δ = (fN2 − f I2)/K,

19

where K is given by the decision maker in advance. Then the value of εk for the k-th

ε-constraint problem P(εk) is defined as follows:

εk = εk−1 − δ, k ∈ {1, ..., K}.

Especially, ε0 is initialized as fN2 . Thus, the K ε-constraint problems are determined.

This method cannot guarantee to obtain the Pareto front but a set of non-dominated

solutions can be efficiently obtained by successively solving the K problems. The

performance of this method has been widely examined by many works [70],[128],[155].

In the exact ε-constraint method, the value of ε at iteration k′ equals to the

optimal value of f2(x) at iteration k′ − 1 minus parameter δ′, i.e.,

εk′ = f2(xk
′−1)− δ′,

where xk
′

denotes the solution vector at iteration k′, f2(x0) = fN2 . The iteration of

the method terminates if εk′ = f I2 . In the work of Bérubé et al. [18], δ′ is set as 1

for the problems with integer objective values. Then Wu et al. [142] proposed setting

δ′ as the minimum unit value of f2(x) for the problems with integer or fractional

objective values. By progressively reducing ε and solving a series of ε-constraint

problems, then removing dominated solutions from the obtained solution set, exact

ε-constraint method has been proved to be able to generate the Pareto front for BOPs

for travelling-salesman problem [18], vehicle routing problem [117], lane reservation

problem [142] and prize-collecting Steiner tree problem [83], etc.

2.3.4 Performance metrics

Unlike the single-objective optimization whose effectiveness can be directly evaluated

by comparing the obtained solution with the lower or upper bounds, the solution

quality evaluation of multi-objective optimization is less straightforward for the ap-

proximation sets. Generally, the quality of an approximation set A can be evaluated

from three aspects [111]. The first is cardinality, which is the number of the obtained

non-dominated solutions; the second is accuracy, which reflects the closeness of the

obtained frontier to the Pareto front or a reference set (see Definition 10); the third

is distribution and spread, which indicates the evenness and covering breadth of the

solutions distribute along the obtained front.

Definition 10 (Reference set) It is an artificial or desired reference solution set in

the feasible solution space [111], denoted by R. It is used to evaluate the obtained

solution set for the cases where the Pareto optimal set is unknown.

20

To evaluate the obtained frontier, diverse performance indices (PIs) have been

proposed [111],[157],[161] and they can be divided into the following three categories:

cardinality-based PIs, distance-based PIs, volume-based PIs. A PI from the three

categories may reflect one or more aspects of the solution set quality. For example,

e-dominance indicator, which is a distance-based PI, can indicate the accuracy and

distribution of a solution set. In the following subsections, we detail some widely used

PIs of the three categories.

2.3.4.1 Cardinality-based PIs

A basic index of cardinality is overall non − dominated solutions (Q) in appromi-

mation set A [132], [133].

Q = |A| (2.1)

Q is closer to the number of Pareto optimal solutions |F|, the better the solution set.

Furthermore, overall non-dominated solutions ratio (RQ) is proposed by Veldhuizen

et al. [133] as follows.

RQ = |A|/|F| (2.2)

Based on the cardinality, error ratio [133], [134] and ratio of the reference points

found [36], [65] were proposed to compare the obtained solution set to the Pareto

optimal set or reference set. Error ratio indicates the number of the points that

belong to set A but are not in set P . Conversely, ratio of the reference points found

implies the points that exist in both A and R. To compare two solution sets obtained

by different algorithms, coverage of two sets [156], [159], [160] is often involved. It

reflects the dominance relationship between two solution sets.

More cardinality-based PIs details that include generational non-dominated vector

generation, generational non-dominated vector generation ratio and non-dominated

vector addition, etc., can be referred to the works of [111], [156], [161]. The PIs in this

category are easy to be implemented. However, they provide very limited information

about the distribution of the solutions.

2.3.4.2 Distance-based PIs

Here, distance-based PIs are shown, which include distribution and spread PIs and

accuracy PIs. Spacing (SP) is a widely used PI for describing the distribution of an

obtained solution set [119].

SP (A) =

√√√√ 1

|A − 1|

|A|∑
k=1

(dk − d̄)2 (2.3)

21

dk = min
xj∈A,xj 6=xk

n∑
i=1

|fi(xk)− fi(xj)| (2.4)

where d̄ means the average value of dk, k = 1, ..., |A|, and xk is the k-th solution

vector in set A. SP (A) aims to indicate distributing evenness of approximation

set A. However, the distance dk is computed by the sum of absolute difference along

each objective, and only the shortest distance is used for each objective vector without

sorting.

Later, metric 4′ is proposed based on sorted solutions by Deb et al. [45]. More-

over, dk is calculated by the Euclidean distance between consecutive solutions in A.

4′(A) =

|A|−1∑
k=1

|dk − d̄|
|A| − 1

(2.5)

dk =

√√√√ n∑
i=1

[fi(xk)− fi(xk+1)]2 (2.6)

Further taking spread quality into account, the 4′ has been extended to 4 PI as

follows [43], [44].

4(A) =
df + dl +

∑|A|−1
k=1 |dk − d̄|

df + dl + (|A| − 1)d̄
(2.7)

where df and dl represent the Euclidean distance between the extreme solutions of

Pareto front and the boundary solutions of A, shown as Fig.2.3.

Considering the quality of both distribution and accuracy, the e-dominance in-

dicator [161] is proposed, which measures the average distance from A to R. An

illustration of e-dominance indicator in the bi-objective case is depicted in Fig.2.4.

A point (f1(x), f2(x)) ∈ A is said to e-dominate a point (f1(x∗), f2(x∗)) ∈ R if

f1(x) ≤ e(x∗) · f1(x∗) and f2(x) ≤ e(x∗) · f2(x∗). Then, the e-dominance indicator for

a given point (f1(x∗), f2(x∗)) ∈ R can be calculated as:

e(x∗) = min
(f1(x),f2(x))∈A

max

{
f1(x)

f1(x∗)
,
f2(x)

f2(x∗)

}
(2.8)

e(x∗) < 1 indicates that (f1(x∗), f2(x∗)) is dominated by (f1(x), f2(x)). e(x∗) = 1

reveals that at least one dimension of the two points are overlapping. With the above

definition, each point in the reference set has a value of e-dominance indicator. To

illustrate the comparison results of the entire frontiers, the average, maximum and

22

f2

f1

(f1N,f2I)

(f1I,f2N)
Extreme solution

Extreme solution

Obtained
solutions

df

d1

d2

d|A|-1

dl

Fig. 2.3: Distribution and spacing metric 4 [43]

f1

f2

Reference set

Approximation set

(f1(x
*
), f2(x

*
))

min

e-dominance ()

= max{ f1(x)/f1(x
*
),f2(x)/f2(x

*
)}

(f1(x), f2(x))

Fig. 2.4: e-dominance metric [46]

23

minimum e-dominance indicators (Dav, Dmax and Dmin) are selectively used. The

closer the metrics getting to 1 suggests A being closer to R.

Dav =
1

|R|
·

∑
(f1(x∗),f2(x∗))∈R

e(x∗) (2.9)

Dmax = max
(f1(x∗),f2(x∗))∈R

e(x∗) (2.10)

Dmin = min
(f1(x∗),f2(x∗))∈R

e(x∗) (2.11)

More distance-based PIs such as generational distance, seven points average dis-

tance, maximum spread, overall Pareto spread, can be referred to [36], [111], [125].

2.3.4.3 Volume-based PIs

The most famous volume-based PIs is hypervolume, which computes the area in the

objective space that the solution set can dominate [156], [159]. Such area is formed

by all points in the solution set and a reference point (generally the Nadir point). As

depicted in Fig.2.5, the hypervolume is composed of all shaded rectangles. The larger

the hypervolume value, the better the derived solution set.

Nadir Point

f1

f2

Solution set

Fig. 2.5: Hypervolume indicator [46]

The hypervolume ratio, denoted by H, is the ratio of the hypervolumes of A and

24

R, denoted by HVA and HVR, respectively [140]. It is calculated as:

H = HVA/HVR (2.12)

Obviously, H > 1 (resp. H < 1) indicates that A is better (resp. worse) than R;

H = 1 implies they have the same quality.

In summary, each PI has its advantages and disadvantages, no existing metric can

account for all aspects of the quality of solution sets for MOPs. Therefore, multiple

PIs are usually simultaneously employed to appropriately evaluate and compare the

performance of multi-objective optimization algorithms. In this thesis, overall non-

dominated solutions (Q), average e-dominance indicator (Dav) and hypervolume ratio

(H) that represent the three different aspects of PIs will be used to evaluate the

proposed methods.

2.4 Conclusions

In this chapter, we first introduced batch processing machine that is widely applied

in modern manufacturing and many of them are energy intensive ones. By review-

ing variety of batch scheduling problems and the literature on single and parallel

batch machine environments, it can be found that considerable studies have been

conducted on optimizing production efficiency objectives, such as makespan, total

completion time or maximum tardiness. Batch scheduling problems concentrate on

environmental impacts have not been studied. Then, we reviewed the literature on

scheduling considering energy consumption saving and energy cost saving under time-

of-use(TOU) tariffs. However, the existing scheduling works under TOU tariffs mainly

concentrate on classical machine environment, such as single machine, parallel ma-

chines or flow shop, and most of them are single objective optimization oriented.

It is economical and ecological to consider production efficiency optimization and

electricity cost minimization together for batch processing machines. This is the

motivation of this thesis. Finally, we presented some multi-objective optimization

methods and their performance metrics. In this thesis, overall non-dominated solu-

tions (Q), e-dominance indicator (D) and hypervolume ratio (H) that respectively

reflects cardinality-, distance- and volume-based PIs are employed to evaluate the

proposed bi-objective optimization methods.

25

26

Chapter 3

Single batch machine scheduling
under TOU tariffs

3.1 Introduction

As reviewed in Chapter 2, majority of batch scheduling problems have been proved

to be NP-hard, even for single batch machine environments. Under TOU tariffs,

the complexity of the batch scheduling problems will further increase due to vari-

able electricity cost on the scheduling horizon. Single machine is a basis of more

complicated machine systems and has been widely encountered in real production

environments, such as shoe manufacturing industry [56], semiconductor manufactur-

ing industry [81], [135]. As a beginning work, this chapter focuses on single batch

processing machine scheduling under TOU tariffs with bi-objective of total electricity

cost and makespan minimization (called SBS-TOU in short after).

The considered problem SBS-TOU aims to group the jobs into batches, sequence

the formed batches on the horizon, such that the two objectives are simultaneously

minimized. For this new problem, we first provide a mixed-integer linear program-

ming (MILP) model. Then the problem complexity and an simplified MILP model

based on the analytic property are proposed. Subsequently, two fast effective heuris-

tics based on exact ε-constraint method are developed for the problem, in which the

transformed single objective problem in each iteration is considered as a series of

knapsack problems and multiple knapsack problems to construct the two heuristics,

respectively. Finally, numerical experiments are presented to evaluate the perfor-

mance of the proposed methods.

The rest of the chapter is structured as follows. Section 3.2 gives the problem

description and mathematical formulation. In Section 3.3, the problem property and

complexity are analysed and then an simplified model is proposed. In Section 3.4,

27

two efficient heuristic based ε-constraint methods, i.e., KH-ECM and MKH-ECM,

are developed for the problem. Computational results are presented in Section 3.5.

Section 3.6 is devoted to the conclusion.

3.2 Problem formulation

A bi-objective single batch machine scheduling problem under TOU tariffs can be

represented as TOU, 1|B|E,Cmax by using the triplet notation proposed by Graham

[59]. The problem can be described as follows:

A given set J = {1, 2, . . . , |J |} jobs are to be processed on a single batch processing

machine within a horizon I = {1, 2, . . . , |I|}. The duration of period i ∈ I is denoted

as Si. Job j ∈ J is nonpreemptive and has a processing time pj. Any pj is less than

the duration of any period i; i.e., Si � pj,∀j ∈ J,∀i ∈ I. Without loss of generality,

we assume that the jobs are numbered in nonincreasing order of the processing times;

i.e.,

p1 ≥ p2 ≥ · · · ≥ p|J |.

The jobs can be regrouped to |B| (to be optimized) batches and each batch can

contain at most C jobs. Therefore, we must have d|J |/Ce ≤ |B| ≤ |J | [67]. The

processing time of a batch is determined by the longest processing time of the jobs

in the batch.

The processing of a batch should be completed before the end of a period or it must

wait the beginning of another period. The periods can be defined by electricity prices

or work shifts. If the periods are defined by electricity prices, that means a batch may

need to wait a new electricity price period to be processed. This is not appropriate

and appreciated in manufacturing industry. While a job has to be completed in a

single work shift exists in some production environments, for example, French Atomic

Energy Industry, CEA. Therefore, a work shift is regarded as a period in this thesis

and its average unit electricity cost is calculated according to electricity prices and

work shifts. One work day is often composed of two or three work shifts according to

the types of products, so-called two-shift and three-shift, respectively. The average

unit electricity cost ei,∀i ∈ I for each work shift can be calculated according to the

tariffs information. Take the TOU tariffs of Ontario (see Fig 2.1) for an example, for

a three-shift in a work day: 8h-16h, 16h-0h, 0h-8h, the corresponding unit electricity

costs are as follows, e8h−16h = (11.4 ∗ 3 + 14.0 ∗ 5)/8 �/kWh ∗ 1kWh/h = 13.0250 �/h,

e16h−0h = 9.4125 �/h, and e0h−8h = 8.1625 �/h.

28

Before formulating the problem, the parameters and decision variables are sum-

marized as follows.

Indices:

j: index of jobs; j ∈ J = {1, 2, . . . , |J |}
b: index of batches; b ∈ B = {1, 2, . . . , |B|}
i: index of periods; i ∈ I = {1, 2, . . . , |I|}

Parameters:

J : set of all jobs, i.e., J = {1, 2, ..., |J |};

B: set of batches, i.e., B = {1, 2, ..., |B|};

I: set of time periods on the planning horizon, i.e., I = {1, 2, ..., |I|};

C: capacity of a batch;

pj: processing time of job j, ∀j ∈ J ;

si: starting time of period i, ∀i ∈ I;

Si: duration of period i, ∀i ∈ I, in which Si = si+1 − si;

ei: unit electricity cost of period i, ∀i ∈ I;

Decision V ariables:

|B|: number of the batches;

xj,b,i: xj,b,i = 1, if job j is assigned to batch b and processed in period i; otherwise

xj,b,i = 0; ∀j ∈ J, ∀b ∈ B, ∀i ∈ I;

yb,i: yb,i = 1, if batch b is assigned to period i; otherwise yb,i = 0; ∀b ∈ B, ∀i ∈ I;

zi: zi = 1, if at least one batch is assigned to period i; otherwise zi = 0; ∀i ∈ I;

Pb,i: Pb,i = Pb = max{pj | j ∈ b}, if batch b is processed in period i, where Pb is the

processing time of batch b; and otherwise Pb,i = 0; ∀b ∈ B, ∀i ∈ I;

E: total electricity cost for completing all jobs;

Cmax: completion time of the last job.

29

In the work, the number of batches |B| is initially set as |J |. A batch is opened

if there is at least one job allocated to the batch. On the contrary, a batch is closed

without any job and its corresponding processing time equals to 0, i.e., Pb = 0. The

considered problem can be formulated as the following bi-objective MILP model P ′s.

P ′s : minE (3.1)

min Cmax (3.2)

s.t.
∑
i∈I

∑
b∈B

xj,b,i = 1,∀j ∈ J (3.3)∑
i∈I

yb,i = 1,∀b ∈ B (3.4)∑
j∈J

xj,b,i ≤ Cyb,i,∀b ∈ B, ∀i ∈ I (3.5)

xj,b,ipj ≤ Pb,i,∀j ∈ J,∀b ∈ B, ∀i ∈ I (3.6)∑
b∈B

Pb,i ≤ Sizi, ∀i ∈ I (3.7)∑
i∈I

ei
∑
b∈B

Pbi ≤ E (3.8)

sizi +
∑
b∈B

Pb,i ≤ Cmax,∀i ∈ I (3.9)

xj,b,i, yb,i, zi ∈ {0, 1},∀j ∈ J,∀b ∈ B, ∀i ∈ I (3.10)

Pb,i ≥ 0, E ≥ 0, Cmax ≥ 0,∀b ∈ B, ∀i ∈ I (3.11)

Objective (3.1) is to minimize the total electricity cost E on the horizon I. Ob-

jective (3.2) is to minimize the makespan Cmax, which is the completion time of the

last batch. Constraint (3.3) ensures that job j, ∀j ∈ J , is assigned to only one batch.

Constraint (3.4) guarantees that each batch b, ∀b ∈ B, is processed in only one period.

Constraint (3.5) assumes that the number of jobs assigned to any batch should not

exceed the batch capacity C, and any job j,∀j ∈ J , cannot be assigned to period i if

its corresponding batch is not processed in this period. Constraint (3.6) determines

the batch processing time. Constraint (3.7) ensures that the total processing time of

batches in period i, ∀i ∈ I, should not exceed its duration, and zi = 1 if there is at

least one batch assigned to period i. Constraint (3.8) calculates the total electricity

cost. Constraint (3.9) defines the makespan Cmax. Constraint (3.10) -(3.11) enforce

the restrictions on decision variables.

30

3.3 Property analysis and problem complexity

As mentioned above, the number of batch |B| equals to the number of jobs |J | in

model P ′s. According to the preliminary results, it is very time consuming to directly

solve model P ′s. This section is devoted to reducing the search space via problem

property analysis. We show that the formation of batches can be solved independent

of the scheduling of batches, with two objectives we consider in this paper.

A solution of the problem is uniquely defined by (|B|, {Jb, 1 ≤ b ≤ |B|}, {τb, 1 ≤
b ≤ |B|}), where |B| is the number of batches, Jb and τb are the set of jobs involved

in the batch b and the period the batch is processed in, respectively.

We consider in particular those solutions where the batches are formed with a

so-called LPT-based method. In this method, any job j with (b − 1)C < j ≤ bC

and 1 ≤ b ≤ d|J |/Ce − 1 is put into batch b, and the remaining jobs, to batch

d|J |/Ce, where dxe denotes the smallest integer greater than or equal to x. Thus,

the processing time of batch b equals to that of job (b− 1)C + 1. Figure 3.1 gives a

simple example to illustrate the method.

p1=10

p2=9

p3=8

p4=7

p5=6

p6=5

p7=4

p8=3

Batch 2Batch 1 Batch 3
Batch capcity C = 3 Job processing times = {10,9,8,7,6,5,4,3}

P1=p(1-1)C+1=p1=10 P3=p(3-1)C+1=p7=4P2=p(2-1)C+1=p4=7

Fig. 3.1: An example of batches formed with the LPT-based method

The following theorem shows that we only need to consider such solutions in order

to find the Pareto front.

Theorem 1 Any solution in which the batches are different from those formed with

the LPT-based method is (at least weakly) dominated.

Proof : To facilitate the proof, the following notations are used.

Jb: the set of jobs contained in batch b, Jb ⊆ J ;
n(Jb): the serial number of the least indexed job (thus with the largest processing

time) in set Jb, i.e., n(Jb) = min{j|j ∈ Jb};
P (Jb): the processing time of batch b (the processing time of the least indexed job in

Jb), i.e., P (Jb) = maxj∈Jb pj = pn(Jb).

Let |B∗| and J∗b represent the number of batches formed with LPT-based method
and the set of jobs involved in batch b (1 ≤ b ≤ |B∗|), respectively. We have

|B∗| = d|J |/Ce,

31

J∗b = {(b− 1)C + 1, (b− 1)C + 2, . . . , bC}, b = 1, 2, . . . , |B∗| − 1,

J∗|B∗| = {(|B∗| − 1)C + 1, (|B∗| − 1)C + 2, . . . , |J |}.

With the above construction, we have the following equations for batch b, 1 ≤
b ≤ |B∗|:

n(J∗b) = (b− 1)C + 1, (3.12)

P (J∗b) = p(b−1)C+1. (3.13)

Consider a feasible solution Ŝ with (ˆ|B|, {Ĵb, 1 ≤ b ≤ ˆ|B|}, {τ̂b, 1 ≤ b ≤ ˆ|B|})
in which the batches are different from those formed with the LPT-based method.
Obviously, we must have

ˆ|B| ≥ d|J |/Ce = |B∗| (3.14)

In other words, there are at least as many batches as those formed with the LPT-
based method. Without loss of generality, we renumber the batches in an increasing
order of n(Ĵb)’s; i.e.,

n(Ĵ1) < n(Ĵ2) < · · · < n(Ĵ ˆ|B|) (3.15)

Then for any batch b such that 1 ≤ b ≤ |B̂|, there exists

n(Ĵb) = n(J̃),where J̃ = Ĵb ∪ Ĵb+1 ∪ · · · ∪ Ĵ|B̂|. (3.16)

Owing to the fact that for any subset J̃ belonging to set J = {1, 2, ..., |J |}, we have

n(J̃) ≤ |J | − |J̃ |+ 1, ∀J̃ ⊆ J, (3.17)

where |J | denotes the number of jobs contained in set J . As for schedule Ŝ, in which
the job set has |B̂| disjoint subsets that are sorted as (3.15). According to (3.16) and
(3.17), we must have:

n(Ĵb) = n(J̃) ≤ |J | −
|B̂|∑
β=b

|Ĵβ|+ 1, J̃ ⊆ J. (3.18)

Due to J/J̃ = J/{Ĵb ∪ Ĵb+1 ∪ · · · ∪ Ĵ|B̂|} = Ĵ1 ∪ Ĵ2 ∪ · · · ∪ Ĵb−1, Equation (3.18) can
further written as:

n(Ĵb) ≤
b−1∑
β=1

|Ĵβ|+ 1 ≤
b−1∑
β=1

C + 1 = (b− 1)C + 1. (3.19)

Since the jobs are indexed in nonincreasing order of their processing times, thus
Equation (3.19) implies that

P (Ĵb) = pn(Ĵb) ≥ p(b−1)C+1 = P (J∗b), 1 ≤ b ≤ |B∗|. (3.20)

32

In other words, the processing time of the batches are at least as long as those formed
with the LPT-based method.

Construct a new solution by removing batches |B∗| + 1, . . . , ˆ|B|, if any, and
replacing each batch Ĵb (1 ≤ b ≤ |B∗|) by the corresponding one formed with the
LPT-based method (i.e., batch J∗b), without changing starting time. In other words,
consider solution (|B∗|, {J∗b , 1 ≤ b ≤ |B∗|}, {τ̂b, 1 ≤ b ≤ |B∗|}). Relation (3.20)
implies that this new solution is also feasible. Furthermore, due to the fact that some
batches are removed and the processing times of the remaining batches are reduced,
neither the electrical consumption cost nor the makespan is increased, which means
that the initial solution is (at least weakly) dominated by the new one. �

As a consequence, by considering batches formed with the LPT-method as new

jobs, the problem is transformed into a classical production scheduling problem with-

out batching machine. Due to the fact that each batch (new job) should be entirely

executed in one period, these new jobs are nonpreemptive. There is an (infinitely

short) unavailability period between two successive periods. This latter problem has

been proved to be NP-hard in the strong sense, even when the single objective is to

minimize the makespan. Hence, we have the following theorem.

Theorem 2 The TOU, 1|B|E,Cmax is strongly NP-hard.

3.3.1 An equivalent simplified model

According to Theorem 1, we can focus on scheduling problems of the batches. There-

fore, the decision variables can be restricted to yb,i’ and zi’s. And Pb = p(b−1)C+1 with

the LPT-based method. The initial model can be simplified into following model Ps.

Ps : minE

minCmax

s.t.
∑
i∈I

yb,i = 1,∀b ∈ B∗ (3.21)∑
b∈B∗

Pbyb,i ≤ Sizi, ∀i ∈ I (3.22)∑
i∈I

∑
b∈B∗

eiPbyb,i ≤ E (3.23)

sizi +
∑
b∈B∗

Pbyb,i ≤ Cmax,∀i ∈ I (3.24)

yb,i, zi ∈ {0, 1},∀b ∈ B, ∀i ∈ I, E ≥ 0, Cmax ≥ 0 (3.25)

where B∗ = {1, 2, . . . , |B∗|} denotes the set of batches formed with the LPT-based

method. Constraint (3.21) ensures that a formed batch b, ∀b ∈ B∗ is allocated into

33

exactly one period. Constraint (3.22) guarantees that the total processing time of

the batches in period i does not exceed its duration and zi = 1 if there is at least one

batch allocated to period i, ∀i ∈ I. Constraints (3.23) and (3.24) restrict the total

electricity cost and makespan, respectively. Constraint (3.25) specifies the restrictions

on the variables.

Remark 1 Compared with the initial model P ′s, the improved model Ps reduces |I| ·
|J |2 + (|J | − d|J |/Ce) · |I| binary variables and |I| · |J | real variables as well as (2 +

|I| · |J |+ |I|) · |J | − (|J | · |I|+ |I|+ 1) · d|J |/Ce constraints.

Taking an instance with |J | = 100, C = 10 and |I| = 10 as example, Ps can reduce

100900 binary variables, 1000 real variables and 91090 constraints compared with

P ′s. Owing to such reduction of variables and constrains, the search space for Pareto

optimal solutions via the improved model Ps is significantly reduced.

3.4 Solution approaches

Since the two objectives E and Cmax of the SBS-TOU are conflicting in general, there

may not exist a single optimum that simultaneously optimizes both objectives but

a set of Pareto optimal solutions. As mentioned in Chapter 2, ε-constraint method

is one of the most prevalent methods and achieves good performance for solving bi-

objective problems [18], [102], [155]. Thus, ε-constraint method is selected to solve

the SBS-TOU in this chapter. In what follows, two efficient heuristics based on the

framework of ε-constraint method are developed for the studied problem.

3.4.1 The ε-constraint method based framework

The core idea of ε-constraint method is to transform a bi-objective problem into a

series of single objective problems and limiting the another by some given values ε’s,

known as ε-constraints. Since this thesis focuses on energy-saving, total electricity

cost E is selected as the preferred objective. Then, the ε-constraint problem of SBS-

TOU can be formulated as follows.

Ps(εk) : minE

s.t. Constraints (3.21) - (3.25), and Cmax ≤ εk

where εk is a parameter bounded by Ideal point (EI , CI
max) and Nadir point (EN , CN

max),

which are obtained by optimally solving the following four single objective problems.

P1
s : EI = minE s.t. Constraints (3.21) - (3.25)

34

P2
s : CI

max = minCmax s.t. Constraints (3.21) - (3.25)

P3
s : EN = minE s.t. Constraints (3.21) - (3.25), and Cmax = CI

max

P4
s : CN

max = minCmax s.t. Constraints (3.21) - (3.21), and E = EI

where the constraint Cmax = CI
max in P3

s (resp. E = EI in P4
s) ensures that the

nadir value of total electricity cost (resp. makespan) is obtained with restricting the

makespan (resp. total electricity cost) as its ideal value. Here, the iteration way of

the exact ε-constraint method is implemented. That is, ε is initialized as CN
max in

the first iteration. Then the value of ε in k-th (k > 1) iteration εk is updated as

Ck−1
max− M, where Ck−1

max is obtained from (k− 1)-th iteration, and M is a constant that

is set as 1 in this work [142].

Due to the NP-hardness of the problem, the computational time will increase

exponentially if we exactly solve Ps(εk) and P1
s to P4

s . According to our prelimi-

nary results, the commercial solver CPLEX cannot generate even a feasible solution

for any above single objective problem within 3600s for instances with 80 batches.

Meanwhile, decision makers may desire to rapidly obtain a set of near-optimal so-

lutions that approximates the Pareto front F [136], [137], [146]. Let A denote the

approximative Pareto solution set. Thus, this work resorts to developing heuristics

to efficiently and effectively solve each single objective problem Ps(εk). The com-

plete framework of the bi-objective method for the SBS-TOU can be summarized as

Fig.3.2. In the framework, KH is the first proposed heuristic for the single objective

problems. Replacing KH by MKH, we can obtain the framework of solving SBS-TOU

with the second proposed heuristic. In what follows, we present the details of the two

heuristics.

3.4.2 Design of KH

As mentioned in Section 3.2, the scheduling for the SBS-TOU needs to assign each

batch to one period without exceeding the period duration. That is, we can regard

the periods as a series of independent knapsacks and the batches as items. The batch

scheduling is to allocate all items to available knapsacks where εk is set as a scheduling

horizon for each Ps(εk). Its number of available knapsacks nk can be determined by

nk = i, where i satisfies si ≤ εk ≤ si+1, and the capacity of nk-th knapsack equals to

εk − si. The capacity of knapsack i, 1 ≤ i ≤ nk − 1, is the duration of period i. A

knapsack problem can be formulated as:

PKP : max
∑
b∈B

Pbyb

35

The ε-constraint method based framework for the SBS-TOU

1: set A′ = ∅, k = 1 and Cmax = +∞;
2: solve P1

s ,P2
s by KH and KH′, respectively, to obtain their near optimal values EI′

and CI′
max; replace EI and the decision variables of P4

s by EI′ and the correspond-
ing solution to obtain CN ′

max;
3: set A′ = A′ ∪ (EI′, CN ′

max), and εk = CN ′
max− M (M= 1);

4: while εk ≥ CI′
max do

5: solve Ps(εk) by KH to obtain Ek, calculate Ck
max with the solution of Ps(εk),

and set A′ = A′ ∪ (Ek, Ck
max);

6: reset k = k + 1, εk = Ck−1
max− M;

7: end while
8: remove dominated points from the A′ if any and obtain the approximation Pareto

front A.

Fig. 3.2: The ε-constraint method based framework for the SBS-TOU

s.t. Pbyb ≤ S,∀b ∈ B

yb ∈ {0, 1},∀b ∈ B.

where yb = 1 if item b is selected to fill in the knapsack, otherwise yb = 0; and S

denotes the capacity of the knapsack; the weight and value of each item both equal

to the batch processing time Pb.

For solving problem Ps(εk), an intuitive idea is to fill in the cheaper knapsacks as

full as possible. This inspires us to develop KH as Fig.3.3.

Note that P1
s can be regarded as a special ε-constraint problem with ε = s|I|+1.

That is, P1
s can be solved by directly implementing KH. P2

s is solved by KH′.

3.4.3 Design of MKH

This heuristic is also developed based on regarding the periods as knapsacks and

batches as items. Different from the previous heuristic KH, this heuristic aims to fill

the most expensive available knapsack at first with as less total processing time items

as possible for a Ps(εk). It can be achieved by solving a series of multiple knapsack

problems, denoted by MKH. A general multiple knapsack problem can be stated as

below:

PMKP : max
λ∑
i=1

∑
b∈B

Pbyb,i

36

KH: solution method for a given ε-constraint problem Ps(εk)

1: consider batch tasks to be scheduled b ∈ B as items, and a horizon εk with the
corresponding periods i = 1, ..., nk as available knapsacks. Set the total energy
consumption cost as Ek = 0;

2: order the nk knapsacks (periods) with its non-decreasing unit electricity cost ei
in a list L, denote sequence number of period i in list L as li, and then we have
li = {1, ..., nk};

3: select the knapsack with li = 1;
4: if B = ∅, go to Step 7; otherwise, fill in the available knapsack li by items in B,

which corresponds to exactly solving an above PKP problem; obtain the batches
with yb = 1, set yb,i = 1;

5: calculate the energy consumption cost of knapsack li in list L (period i) as Ei;
update Ek = Ek + Ei;

6: remove scheduled tasks from B, update li = li + 1, go to Step 4;
7: calculate the corresponding makespan Ck

max with yb,i.

Fig. 3.3: KH: solution method for a given ε-constraint problem Ps(εk)

KH′: solution method for P2
s

1: consider the batches b ∈ B as items, and the entire horizon with |I| periods as
available knapsacks. Keep the |I| knapsacks in increasing order of their starting
times as list L, and denote the sequence number of period i as li.

2: implement Steps 3, 4, 6 and 7 of KH.

Fig. 3.4: KH′: solution method for P2
s

37

MKH: solution method for a given ε-constraint problem Ps(εk)

1: implement Steps 1 and 2 of KH;
2: determine the number of candidate periods λ with First-fit rule: sequentially

assign batch b ∈ B to the first period in list L where it is fit until all the batches
are assigned, then record the number of enabled periods as λ;

3: set li = λ, λ = λ− 1;
4: if λ = 0, go to Step 7; otherwise, select the first λ periods in list L as multiple

knapsacks, and fill in them by items in B, which is equivalent to exactly solving
an above PMKP problem; obtain the batches with

∑λ
l=1 yb,l = 0, and set yb,i = 1,

where i is the li-th period in list L;
5: calculate electricity cost of period i as Ei with yb,i, set Ek = Ek + Ei;
6: remove the scheduled batches (with yb,i = 1) from B, go to Step 3;
7: calculate the corresponding makespan Ck

max with yb,i.

Fig. 3.5: MKH: solution method for a given ε-constraint problem Ps(εk)

MKH′: solution method for P2
s

1: implement Step 1 of KH′;
2: implement Steps 2, 3, 4, 6 and 7 of MKH.

Fig. 3.6: MKH′: solution method for P2
s

s.t.
∑
b∈B

Pbyb,i ≤ Si, 1 ≤ i ≤ λ

λ∑
i=1

yb,i ≤ 1, ∀b ∈ B

yb,i ∈ {0, 1},∀b ∈ B, 1 ≤ i ≤ λ

where i is the index of knapsacks; yb,i = 1 if item b is selected to fill in knapsack

i, otherwise yb,i = 0; and λ denotes the number of knapsacks. MKH is detailed in

Fig.3.5.

Similarly, P1
s is directly solved with MKH via setting ε as s|I|+1. Then, P2

s is

solved with MKH′.

3.4.4 Select the most preferable Pareto optimal solution

Among all the obtained nondominated points, a decision maker may desire to select

a preferable one. In this subsection, the fuzzy-logic-based approach [52] is employed

38

to recommend a preferable solution, since it can not only take into account the pref-

erences of the decision maker, but also indicate the optimality degree each obtained

nondominated point for each objective.

With the fuzzy-logic-based approach, the membership function δi(f
s
i), which rep-

resents the optimality degree of the s-th Pareto optimal solution for the i-th objective

function, is presented as follows [52]:

δi(f
s
i) =


1, if f si ≤ f Ii
fNi −fsi
fNi −fIi

, if f Ii < f si < fNi , 1 ≤ i ≤ n, 1 ≤ s ≤ S

0, if f si ≥ fNi

(3.26)

where f Ii and fNi represent the lower and upper limits of the ith objective function, re-

spectively, and f si expresses the value of the i-th objective of the s-th Pareto solution.

S denotes the total number of Pareto solutions.

On the basis of the membership functions δi(f
s
i), the membership degree δs of

the s-th solution can be calculated as follows [52]:

δs =

∑n
i=1 ωiδi(f

s
i)∑n

i=1 ωi
(3.27)

where ωi denotes the weight of objective i. It can be determined according to the

preferences about the objectives of the decision maker. The most preferable solution

is the one giving the maximum value of δs.

3.5 Computational results

In this section, computational results of 510 instances (102 sets × 5 instances) are re-

ported and analysed to show the performance of the proposed models and algorithms.

The algorithms were coded in C++ and the experiments were implemented on a PC

with 1.7 GHz Intel i5-3317U CPU and 3.12 GB RAM under windows 7 operating

system. The bi-objective models are solved with ε-constraint framework using com-

mercial optimization software CPLEX 12.4, which is achieved with the algorithm in

Fig. 3.2 and replacing KH by CPLEX. For each instance, the total completion time

and the computational time for each single-objective problem are limited to 18000s

and 3600s, respectively.

The instances are randomly generated as follows. Two generation schemes for job

processing times are considered, namely pj ∈ (50, 100] and pj ∈ (100, 200], ∀j ∈ J ,

to evaluate the performance of the proposed method in different scenarios. Batch

39

capacity C is set as 10 [80]. The duration of each period Si,∀i ∈ I, is taken as

480, which corresponds to one period of three work shifts in each day, i.e., 8*60

minutes. The number of periods |I| is set as|I| = αmaxj∈J{pj × |B∗|/Si}, where α

representing the production urgency extent is randomly generated from the interval

[0.6, 1.0] in the default case to avoid overmuch idle periods in scheduling horizon and

to make it closer to reality. Since the the gap of the electricity prices in on-peak and

off-peak period can be 5 to 7 times (such as TOU tariffs in Italy and Beijing [49]),

combined with the machine power rate, we set the electricity cost of the three work

shifts as 30, 15, 5, respectively. Considering the both objectives are very important

in industrial production, the weights in fuzzy-logic-based method are set to be equal,

i.e., ω1 = ω2 = 0.5, to select the most preferable solution.

The computational results are presented in Tables 3.1-3.8. We successively evalu-

ate the performance of the models and the developed heuristics, then the sensitivity

analysis for input parameters is reported. The solution quality of the near opti-

mal solution set is evaluated by three performance metrics that has been reviewed in

Chapter 2: number of solutions Q, hypervolume ratio H and the average e-dominance

indicator D. The solution time of each method is denoted by CT.

3.5.1 Comparison results of the models

We first compare the performance of models Ps and P ′s with small sized instances in

Table 3.1, where the number of jobs varies from 20 to 40 and number of intervals

varies from 3 to 5. The computational results show that the solutions obtained by

the two models are the same, i.e., both models have found the Pareto front with the

exact ε-constraint method. In terms of computational time, we can see that CT of P ′s
varies from 0.369s to 892.205s, while CT of Ps varies from 0.25 to 2.17s. Averagely,

the computational time spent by Ps is only 17% of that by P ′s, which indicates

that model Ps is much more efficient than P ′s. This is because the derived properties

significantly reduce the search space for Pareto optimal solutions. In summary, model

Ps can obtain the Pareto front and its solution efficiency dramatically outperforms P ′s.
Thus, we only use the computational results of Ps to evaluate the performance of the

proposed heuristics and implement the sensitivity analysis of the input parameters.

3.5.2 Performance of KH-ECM and MKH-ECM

Now we compare the computational results of the proposed algorithms, i.e., KH-ECM

and MKH-ECM, with that of model Ps directly solved by the commercial software

40

Table 3.1: Comparison results of models P ′s and Ps

Set |J | |I| P ′s Ps CT(Ps)/CT(P ′s)Q CT Q CT
1 20 3.0 0.369 3.0 0.246 0.667
2 25 6.2 1.898 6.2 0.347 0.183
3 30 3 4.6 2.475 4.6 0.328 0.133
4 35 7.0 7.905 7.0 0.658 0.083
5 40 9.0 87.552 9.0 0.797 0.009

6 20 3.0 0.724 3.0 0.278 0.384
7 25 6.2 2.344 6.2 0.449 0.192
8 30 4 11.2 2.531 11.2 0.747 0.295
9 35 16.2 24.627 16.2 1.320 0.054
10 40 18.2 489.426 18.2 1.526 0.003

11 20 8.6 2.294 8.6 0.446 0.194
12 25 14.8 6.196 14.8 0.983 0.159
13 30 5 16.0 8.155 16.0 1.161 0.142
14 35 24.2 37.346 24.2 1.912 0.051
15 40 26.4 892.205 26.4 2.172 0.002
Average 11.640 104.403 11.640 0.891 0.170

CPLEX 12.4. Since the jobs can be pre-formed as batches in model Ps, we use |B∗|
instead of |J | to state the scale of the instances. Four scenarios of instances are

involved, which have different sizes (middle and large) with different range of job

processing times (pj ∈ (100, 200] and pj ∈ (50, 100]). Many thanks to David Pisinger,

who developed fast exact algorithms for KP [112] and MKP [113], by which a large

problem can be solved in very short time. In this section, we will call their codes to

solve the KPs and MKPs embedded in our algorithms.

Tables 3.2 and 3.3 present the comparison results for middle sized instances. Since

Ps obtained the Pareto front, we select its solutions as the reference set. It is un-

derstandable that both H and D of the reference set itself equal to 1, thus the two

indicators of Ps are omitted in the tables.

Table 3.2 reports the computational results of the instances with job processing

time ranging from 100 to 200. By comparing the number of non-dominated solutions

Q derived by the three methods, it can be seen that the performance of KH-ECM

is a bit worse than that of Ps, but MKH-ECM has found almost the same Q as

Ps. Meanwhile, the hyper volume ratio H of both KH-ECM and MKH-ECM is very

close to 1, which states the two fronts have similar quality as Pareto front in terms

of dominated space. Moreover, the average e-dominance value D of both proposed

methods almost equals to 1, which indicates that the solutions sets are very near to

Pareto front. It is worth pointing out that in several sets, D equals to 1, which means

41

Table 3.2: Comparison results for middle sized instances with pj ∈ (100, 200]

Set |B∗| |I| Ps KH-ECM MKH-ECM
Q CT Q H D CT Q H D CT

16 5 2.0 12.0 1.122 12.0 1.000 1.000 0.244 12.0 1.000 1.000 0.140
17 6 2.6 16.0 2.114 15.8 0.998 1.000 0.411 13.0 0.990 1.000 0.190
18 7 3.0 34.8 4.942 35.4 0.994 1.040 0.829 33.8 1.000 1.000 0.391
19 8 3.0 43.4 7.197 43.4 0.998 1.003 1.008 40.8 1.000 1.000 0.506
20 9 3.8 45.2 8.569 32.0 0.985 1.035 0.749 43.4 0.999 1.000 0.618
21 10 4.0 61.0 10.127 38.2 0.960 1.058 0.952 60.4 1.000 1.000 0.744
22 11 4.2 89.6 14.730 54.2 0.987 1.013 1.301 82.8 0.999 1.001 1.165
23 12 4.6 76.2 15.242 50.6 0.932 1.031 1.370 66.4 0.997 1.001 0.983
24 13 5.0 120.2 27.363 73.0 0.956 1.034 1.906 107.8 1.000 1.001 1.494
25 14 5.2 148.2 43.454 88.2 0.978 1.021 2.231 130.4 1.000 1.000 2.011
26 15 6.0 211.4 80.817 150.0 0.996 1.004 3.588 184.8 0.998 1.003 3.354
27 16 6.6 246.6 215.775 120.0 0.974 1.042 2.977 204.2 0.998 1.002 7.374
28 17 6.6 253.0 1461.130 121.2 0.968 1.044 3.138 246.0 0.999 1.002 7.055
29 18 7.0 320.0 3169.854 153.6 0.987 1.015 3.739 279.4 0.998 1.002 9.478
30 19 7.6 304.2 6996.100 154.4 0.968 1.033 3.944 269.2 0.998 1.001 56.598
31 20 7.8 353.4 16390.878 169.0 0.988 1.021 4.469 325.4 1.000 1.001 49.094
Average 4.9 145.950 1778.088 81.938 0.979 1.025 2.053 131.238 0.998 1.001 8.825

the obtained solutions all lie in the Pareto front. Considering the three metrics, it

can be concluded that Ps performs best in terms of solution quality, and MKH-ECM

have very similar performance as Ps. In terms of solution efficiency, we can find that

computational time CT of Ps ranges from 1.122s to 16390.878s with its average value

being 1778.088s, which grows 14608 times (16390.878/1.122) from set 16 to 31. While

KH-ECM (resp. MKH-ECM) spent less than 5 seconds (resp. 60 seconds) for any

set, which demonstrates that the developed heuristics are much more efficient than

Ps.

Table 3.3: Comparison results for middle sized instances with pj ∈ (50, 100]

Set |B∗| |I| Ps KH-ECM MKH-ECM
Q CT Q H D CT Q H D CT

32 5 1.2 6.8 0.494 6.8 1.000 1.000 0.005 6.8 1.000 1.000 0.006
33 10 2.2 229.4 21.576 229.2 1.000 1.002 4.240 229.4 1.000 1.000 2.408
34 15 3.0 280.6 43.826 277.8 1.000 1.001 5.772 280.6 1.000 1.000 2.896
35 20 4.0 370.8 207.734 302.8 0.991 1.029 6.052 370.8 1.000 1.000 4.192
36 25 4.2 101.8 205.057 87.6 0.994 1.004 2.046 101.8 1.000 1.000 1.508
37 30 5.0 104.2 55.265 102.6 0.999 1.002 2.609 104.2 1.000 1.000 1.478
38 35 7.0 617.0 505.571 580.2 1.000 1.010 12.680 617.0 1.000 1.000 9.641
39 40 7.4 502.2 1283.992 452.6 0.997 1.005 10.041 501.6 1.000 1.000 8.132
40 45 8.6 660.8 1424.866 612.0 0.999 1.001 13.033 660.6 1.000 1.000 11.599
41 50 9.4 554.4 2357.996 549.4 1.007 1.004 12.270 554.4 1.000 1.000 11.799
42 55 9.8 386.8 4066.906 402.2 1.022 1.001 9.305 386.8 1.000 1.000 8.977
43 60 11.4 676.4 11323.212 631.2 1.001 1.002 13.640 676.4 1.000 1.000 14.637
44 65 12.0 659.8 16353.410 570.6 0.971 1.002 13.075 659.8 1.000 1.000 13.979
Average 6.6 396.231 2911.531 369.615 0.999 1.005 8.059 396.169 1.000 1.000 7.019

42

In Table 3.3, we report the results on instances with shorter pj that varies from 50

to 100. It can be seen that Ps averagely found 396.231 non-dominated solutions, and

analogously, KH-ECM and MKH-ECM obtained 369.615 and 396.169 non-dominated

solutions on average, respectively. Moreover, both H and D of KH-ECM are very close

to 1, which indicates all the obtained solution points are very near to the Pareto front.

Furthermore, this two metrics of MKH-ECM both equal to 1 over all sets 32 to 44,

which implies the obtained solutions are on the Pareto front. That is, the MKH-ECM

has found the Pareto front of the set where its number of obtained solutions equals

to that of Ps, i.e., sets 32-38 and 41-44. While by observing CT, we can see that the

proposed methods spent far less time than Ps. Meanwhile, CT of Ps exponentially

grows with the problem size, whereas CT of both KH-ECM and MKH-ECM increases

very slightly. This shows the significant efficiency of the proposed methods.

In addition, we can find that the three solution quality metrics as well as CT in

Table 3.3 are better than that in Table 3.2. This indicates that the proposed methods

are more effective and efficient for the instances with shorter job processing time.

Table 3.4 and 3.5 give the computational results for large sized instances. Since it

is very time consuming to obtain the Pareto front, to evaluate the performance of the

proposed method in reasonable time, we limit the CT of each instance to 3600 CPUs

and the CT of each iteration of Ps to 30 CPUs. According to our pretest, KH-ECM

is more efficient and can obtain more solutions, thus we set its results as the reference

solution set. In addition, due to all the methods provide approximative Pareto fronts,

metric D is omitted in the two tables. Besides, H of reference set obtained by KH-

ECM equals to 1, which is also omitted. In the tables, “-” expresses that no feasible

solution is generated by the method within the time limit for the five instances.

Table 3.4: Comparison results for large-size instances with pj ∈ (100, 200]

Set |B∗| |I| Ps KH-ECM MKH-ECM
Q H CT Q CT Q H CT

45 25 9.8 126.6 0.427 2891.720 216.6 2.786 20.0 0.396 3600.000
46 30 11.4 93.2 0.493 2166.440 227.8 2.957 18.4 0.217 3600.000
47 35 13.6 166.4 0.671 2807.090 369.8 4.678 - - -
48 40 15.4 49.2 0.163 3600.000 397.4 5.119 - - -
49 50 19.4 46.2 0.232 2184.060 514.2 7.068 - - -
50 80 31.6 - - - 1016.0 14.948 - - -
51 100 39.6 - - - 1105.4 19.319 - - -
52 200 79.8 - - - 2778.6 66.550 - - -
53 300 114.4 - - - 3772.8 114.545 - - -
54 400 143.0 - - - 2797.0 116.733 - - -
55 500 170.4 - - - 2121.2 105.225 - - -
Average 58.945 - - - 1392.4 41.812 - - -

43

Table 3.4 illustrates the results for instances with pj ∈ (100, 200] and number

of batches |B∗| varying from 25 to 500. It can be found that Ps can obtain a set of

solutions for set 45 to 49 within the time limit. Meanwhile, MKH-ECM can only yield

solutions for set 45 and 46. This is because that MKP is also NP-hard, it becomes

difficult to solve a series of large-size MKPs. Fortunately, KH-ECM averagely found

1392.4 solutions for instances with batches up to 500. Both number of solutions and

hyper volume ratio of KH-ECM are better than that of Ps, which indicates that KH-

ECM has better performance on solution quality than Ps. Moreover, KH-ECM only

consumes less than 120s to find the solutions for all the instances, which shows great

time efficiency.

Table 3.5: Comparison results for large-size instances with pj ∈ (50, 100]

Set |B∗| |I| Ps KH-ECM MKH-ECM
Q H CT Q CT Q H CT

56 70 13.6 330.8 0.767 3006.000 475.6 6.117 609.4 1.013 8.918
57 80 14.8 244.2 0.614 3600.000 652.0 7.621 697.6 1.002 10.736
58 90 17.0 179.6 0.521 3600.000 656.4 10.829 738.8 1.008 44.291
59 100 19.8 123.8 0.403 3600.000 558.0 7.071 614.2 1.003 166.375
60 120 22.4 38.0 0.565 3600.000 1031.2 22.575 732.8 0.830 2168.747
61 140 23.0 32.2 0.353 3600.000 355.4 6.421 144.0 0.592 2882.333
62 150 28.0 31.8 0.320 3600.000 1402.0 20.033 321.6 0.390 2887.449
63 160 30.4 26.0 0.108 3600.000 1577.6 31.072 241.2 0.214 3600.000
64 200 35.6 - - - 1229.8 19.459 - - -
65 300 56.0 - - - 2480.2 48.476 - - -
66 500 87.0 - - - 2251.6 66.737 - - -
Average 31.600 - - - 1151.8 22.401 - - -

Table 3.5 provides the computational results for instances with pj ∈ (50, 100] and

|B∗| increasing from 70 to 500. We find that both Ps and MKH-ECM can obtain

a set of non-dominated solutions for the instances with |B∗| ≤ 160 within 3600s.

While KH-ECM can generate the solution sets for instances with batches up to 500

within 70s. This shows KH-ECM is the most time efficient one. In terms of solution

quality, we can observe that both MKH-ECM and KH-ECM obtain better Q and H

than Ps, which implies that the two proposed methods have better performance than

Ps. Moreover, it can be seen from set 56 to 59, MKH-ECM performs better than

KH-ECM since it gets best Q and H.

By comparing Table 3.4 and 3.5, similar to Table 3.2 and 3.3, we can find that

the proposed methods perform better on the instances with shorter processing time,

especially MKH-ECM. This is because that the called MKP code is more efficient for

the instances where the quotient |B∗|/λ is relatively large [113].

44

Summing up, both proposed heuristic methods can find a set of solutions that

very close to the exact Pareto front. Especially, MKH-ECM almost found the Pareto

front for the middle sized instances. While the heuristics are much more efficient than

Ps. Moreover, KH-ECM outperforms Ps in terms of solution quality for larger sized

instances.

3.5.3 Sensitivity analysis

This subsection aims to test the impact of different input parameters on the problem

via analysing the information of Pareto front. The sensitive analysis experiments

of α and ei are conducted with middle size instances solving with model Ps. The

computational results are reported in Tables 3.6 - 3.8 and Fig.’s 3.7 and 3.8. In the

tables, CT denote the average computational time of each non-dominated point, i.e.,

CT =CT/Q. Let (CS
max, EC

S) represent the objective vector of the selected preferable

solution calculated by fuzzy-logic-based approach. To evaluate the electricity cost

reducing effectiveness of the selected solution, we will compare its objective value

vector with the vector (CI
max, EC

N), where CI
max can be regarded as the optimal

makespan without constraint of electricity cost and ECN is the corresponding cost.

Thus, we calculate the reduced electricity cost by the proposed approach REC as

(ECN − ECS)/ECN . Similarly, the increased makespan is calculated as (CS
max −

CI
max)/C

I
max, denoted by INCmax .

Table 3.6 reports the computational results for three scenarios regrading number

of periods |I|. |I| is defined as αmaxj∈J{pj×|B∗|/Si}. Parameter α is generated from

[0.6, 1.0], which is regarded as the baseline. Other two cases α are generated from

[1.1, 1.5] and [1.6, 2.0], respectively, and the other parameters remain unchanged.

From Table 3.6, we can see that for each type of α, the computational time CT

and number of nondominated points Q increase with |B∗| and |I|. Moreover, we

can see in Fig. 3.7 that the changing trends of CT and Q are more obvious for

larger α. More precisely, we can observe that given the number of batches |B∗|, the

computational time increases with the number of periods |I|. Take sets 80 and 87 as

an example, both sets have 15 batches but different periods, while CT of set 87 is

greater than that of set 80, which is mainly because that Q increases from 322.6 to

413.6. This shows that the increasing of |I| adds the complexity of the problem, since

more periods result in more non-dominated points. On the other hand, we can also

find that given |I|, CT increases with |B∗|. Take sets 76 and 71 for example, both of

them have five periods, but CT are 21.40 and 29.60s, respectively. This implies that

the complexity of the problem increases with the number of jobs.

45

Table 3.6: Comparison for sensitivity analysis of |I|, |I| = αmax1≤j≤J{pj × |B∗|/Si}

Set α |B∗| |I| Q CT CT REC(%) INCmax
(%)

67 9 3.6 45.0 8.321 0.183 31.03 21.73
68 10 4.0 65.0 12.942 0.200 33.50 20.79
69 11 4.2 91.0 19.332 0.210 23.81 15.44
70 [0.6, 1.0] 12 4.8 116.4 22.567 0.196 31.49 21.63
71 13 5.0 119.0 29.596 0.249 27.39 16.49
72 14 5.4 166.2 62.309 0.367 24.74 19.28
73 15 5.8 193.6 102.540 0.527 25.71 20.54
Average 113.743 36.801 0.276 28.24 19.41

74 9 4.0 64.4 9.578 0.149 49.55 34.36
75 10 4.8 106.8 17.086 0.161 32.89 28.87
76 11 5.0 134.0 21.403 0.160 35.27 28.05
77 [1.1,1.5] 12 5.8 197.0 34.427 0.175 46.17 46.50
78 13 7.0 220.6 54.315 0.252 35.40 33.26
79 14 7.4 248.4 67.485 0.273 26.07 22.69
80 15 8.4 322.6 104.918 0.321 16.05 11.93
Average 184.829 44.173 0.213 34.49 29.38

81 9 5.0 85.4 12.966 0.152 25.83 31.17
82 10 5.2 119.4 19.031 0.159 32.89 37.00
83 11 6.0 140.8 24.971 0.179 30.72 26.98
84 [1.6,2.0] 12 6.8 165.2 24.532 0.151 13.17 12.90
85 13 7.8 222.8 52.482 0.239 37.18 32.02
86 14 8.6 345.4 79.176 0.235 30.51 25.65
87 15 9.4 413.6 145.823 0.355 37.01 32.65
Average 213.229 51.283 0.210 29.62 28.34

In addition, we can see that REC distributes between 13.17% and 49.55% with

its average value being 30.78%. In other words, the total electricity cost under the

TOU policy can reduced from 13.17% up to 49.55% with appropriate scheduling. This

shows that appropriate scheduling under TOU policy can offer great benefits to reduce

energy cost for industrial users. INCmax varies from 11.93% to 46.50% with its average

value being 25.71%, which means that the total electricity cost and the makespan are

two conflicting objectives. However, note that REC is greater than INCmax for almost

all the problem sets, which indicates that industrial users can benefit more than loss

with the selected preferable solution. Besides, by comparing REC and INCmax under

three different scenarios, we can find that they slightly increases when α increases.

This shows that more periods may result in more electricity cost reduction, but may

incur a longer makespan.

46

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

90 100 110 120 130 140 150

C
o

m
p

u
ta

ti
o

n
a

l
ti

m
e
(s

)

 [0.6, 1.0]

 [1.1, 1.5]

 [1.6, 2.0]

 α 

 α 

 α 

Fig. 3.7: Computational time for sensitivity analysis of |I|, |I| = αmax1≤j≤J{pj ×
|B∗|/Si}

Table 3.7: Comparison for sensitivity analysis of ei

Set ei |B∗| |I| Q CT CT REC(%) INCmax(%)
75 9 3.0 32.2 4.274 0.153 5.00 4.35
76 10 4.0 86.0 12.858 0.150 33.30 27.38
77 11 4.0 57.0 9.752 0.168 6.20 4.69
78 {20, 12, 5} 120 5.0 92.8 16.382 0.180 22.64 19.36
79 13 5.0 109.8 25.377 0.230 13.55 11.55
80 14 5.0 99.4 43.517 0.360 12.10 9.21
81 15 6.0 148.4 64.410 0.409 18.28 16.33
Average 89.371 25.224 0.236 15.87 13.27

82 9 3.0 21.0 2.705 0.129 3.82 2.58
83 10 4.0 68.4 11.928 0.175 35.21 21.58
84 11 4.0 64.0 11.353 0.178 17.62 10.35
85 {30, 15, 5} 12 5.0 113.0 23.687 0.210 37.85 25.62
86 13 5.0 124.4 29.671 0.239 28.09 17.25
87 14 5.0 123.0 36.473 0.296 17.77 10.59
88 15 6.0 217.2 92.663 0.441 29.06 23.40
Average 104.429 29.783 0.238 24.20 15.91

89 9 3.0 21.0 2.824 0.135 4.29 2.58
90 10 4.0 68.6 11.148 0.163 40.02 21.58
91 11 4.0 64.4 10.477 0.166 20.47 10.47
92 {50, 25, 5} 12 5.0 114.0 20.486 0.280 42.03 25.62
93 13 5.0 124.2 27.214 0.219 31.53 17.25
94 14 5.0 124.5 35.885 0.287 20.51 10.85
95 15 6.0 218.0 92.543 0.439 31.89 23.40
Average 104.957 28.654 0.227 27.25 15.96

Table 3.7 presents the results of sensitivity analysis of unit electricity cost ei, which

are set as {20, 12, 5}, {30, 15, 5} and {50, 25, 5}, respectively. The computational

time of the three scenarios range between 4.27 and 64.41s, 2.71 and 92.66s, 2.82

47

and 92.54s, respectively. Moreover, it can be found in Fig. 3.8 that the changing

trends of CT for the three scenarios are almost the same. Furthermore, the average

computational time of the proposed algorithm for all scenarios are 25.22s, 29.78s

and 28.65s, respectively, which are almost the same. These results indicate that our

proposed algorithm is insensitive to the changes of unit electricity cost.

Besides, by comparing REC of the three scenarios, we can see that given the

number of jobs and periods, in general the greater difference of unit electricity cost

among different periods, the more electricity cost can be reduced. Take sets 81 and

95 for example, both problem sets have 15 batches and six periods, set 81 reduces

18.28% electricity cost while the electricity cost in the latter set is reduced up to

31.89%. This demonstrates that industrial users may benefit more from the TOU

policy when the differences of electricity prices among different periods are bigger.

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

90 100 110 120 130 140 150

C
o

m
p

u
ta

ti
o

n
a

l
ti

m
e
(s

)

 = 20, 10, 5

 = 30, 15, 5

 = 50, 25, 5

 ei

 ei

 ei

Fig. 3.8: Computational time for sensitivity analysis of ei

In addition, it would be significative to observe the impact of different batch

capacity on the problem. Thus we set the batch capacity as 5 and other parameters in

Table 3.3 remain unchanged. Note that the optimal number of batches |B∗| = d|J |/Ce
has increased due to the reduction of batch capacity C, which leads that it is necessary

to increase the number of periods |I| such that all the jobs can be completed in the

scheduling horizon. Thus, |I| is regenerated according to αmaxj∈J{pj×|B∗|/Si}. The

computational results are presented in Table 3.8. By comparing the two Tables, it can

be observed that for the instances with the same number of jobs, CT increases when

the batch capacity reduces. This is because the number of batches increases. Take

sets 16 and 96 for example, both sets have 50 jobs while their computational time

are 1.122s and 11.616s, respectively. Moreover, we can find from Tables 3.3 and 3.8

48

that computational time of most instances with same number of batches are almost

the same, such as sets 21 and 96, sets 27 and 99, etc.

Table 3.8: Computational results for the instances with Ei = {30, 15, 5},
rm ∈ [0.6, 1.0], C = 5, pj ∈ (100, 200]

Set |J | |I| Q CT CT REC(%) INCmax(%)
96 50 4.0 74.4 11.616 0.156 35.51 21.52
97 60 5.6 136.8 24.231 0.181 35.17 31.28
98 70 6.0 277.8 63.971 0.229 38.74 35.34
99 80 6.2 239.8 226.190 1.003 28.47 22.00

100 90 6.8 276.6 2488.884 8.638 25.94 18.70
101 100 7.8 436.4 16954.372 38.851 20.46 17.09
102 110 8.2 − − − − −
Average 240.300 3294.877 8.176 30.71 24.32

3.6 Conclusions

This chapter investigates a bi-objective NP-hard problem: single batch processing ma-

chine scheduling considering time-of-use tariffs problem. Two multi-objective heuris-

tic algorithms were developed for the problem. Their core idea is to transform the

bi-objective problem into a series of single objective problems with the framework of

ε-constraint method. Then, each single objective problem was efficiently resolved by

solving successive knapsack problems (KP) or multiple knapsack problems (MKP).

Denote the two methods as KH-ECM and MKH-ECM, respectively. The computa-

tional results demonstrate that the proposed heuristics can efficiently solve large-size

problems with up to 500 batches. The computational results demonstrate that the

proposed approaches can obtain a set of good quality solutions and are much more

efficient and effective than the commercial solver Ps for the studied problem. To be

more specific, MKH-ECM is almost able to find the Pareto front for a middle sized

instance within one minute and KH-ECM is more effective and efficient than Ps in

solving larger sized instances. The corresponding work has been published in the

following paper.

J. Cheng, F. Chu, C. Chu, and W. Xia. Bi–objective optimization of single–machine

batch scheduling under time–of–use electricity prices. RAIRO – Operations Research,

50(4–5):715–732, 2016.

J. Cheng, F. Chu, M. Liu, and W. Xia. Effective heuristics for single machine batch

scheduling under time-of-use tariffs. Sustainability, under review.

49

50

Chapter 4

Single machine batch scheduling
with machine on/off switching
under TOU tariffs

4.1 Introduction

We can observe that an idle duration may exist in some periods for the single batch

processing machine scheduling problem studied in Chapter 3 in which machine turn-

on and -off are assumed to not consume energy. Consequently, the machine is always

turned off when finishing processing in each period and is restarted when needed.

However, turning on machines can consume a great amount of energy in some manu-

facturing environments, e.g., steel manufacturing. As indicated by [109], the resulted

non-processing energy (NPE) consumption related to machine turn-on, turn-off and

idling constitutes a significant part (over 30%) of the total energy consumption for cer-

tain scheduling environments. Remarkably, it has been shown in [108],[109],[145], the

NPE consumption can be significantly reduced by rationalized machine turn-on/off.

The above statement motives us to optimize the whole electricity consumption cost

considering machine on/off switching that is a natural extension of the work in Chap-

ter 3.

In this chapter, we investigate a new bi-objective single machine batch scheduling

problem under TOU tariffs with machine on/off strategy. The objectives are to

minimize total electricity cost and makespan. Compared with the existing work, we

assume that the machine has different energy consumption states: processing, running

idle, and turning on. For each idling duration, a decision that leaving machine running

idle or turning it off has to be made. The work in this chapter has to determine batch

composition, batch sequencing and machine on/off status, which is more complex

51

than that in Chapter 3. In the following, we first describe the problem and formulate

it as an MILP model. Then an improved model is further proposed based on optimal

batch rule analysis, which greatly reduces Pareto optimal solution space. A bin-

packing heuristic based ε-constraint method (BPH-ECM) is developed to effectively

and fast solve the problem. Finally, computational results on randomly generated

instances are presented to evaluate the effectiveness of the proposed method.

The remainder of this chapter is organized as follows. Section 4.2 describes and

mathematically formulates the problem, proves its complexity, and proposes an im-

proved MILP based on analysed properties. In Section 4.3, a bin-packing heuristic

based ε-constraint method is developed to fast solve the problem. Computational

results are reported in Section 4.4. Finally, Section 4.5 summarizes this work and

indicates future research directions.

4.2 Problem formulation

This study considers a bi-criteria single machine batch scheduling problem with ma-

chine on/off switching under TOU pricing. With the three-field notation proposed

by Graham [59], the studied problem can be denoted by TOU, 1|on/off,B|E,Cmax,
which is described in detail as follows.

A batch processing machine with C jobs’ capacity consumes P proc (resp. P idle)

units of electricity per unit time when processing (resp. staying idle), and P proc >

P idle. Turning on the machine is in a relatively short time and is assumed to require

P on units electricity. Note that turning off the machine does not consume energy. A

given set J = {1, 2, . . . , |J |} independent nonpreemptive jobs have to be processed

on the single batch processing machine within a scheduling horizon with |I| periods,

where we use I to denote the set of all periods. Each job j is available at time 0 and

has a processing time pj. Without loss of generality, we assume that all the jobs are

numbered in nonincreasing order of the processing times, i.e., p1 ≥ p2 ≥ · · · ≥ p|J |. All

jobs can be regrouped into |B| (to be determined) batches, where d|J |/Ce ≤ |B| ≤ |J |
and B is the set of batches. The processing time of a batch is determined by the largest

job processing time in the batch.

In this paper, a period i ∈ I is considered as a work shift with duration Si. Let

si denote the starting time of period i, respectively. The length of the scheduling

horizon is s|I|+1. Any pj is less than the period duration Si,∀i ∈ I. The unit

electricity price of period i, denoted by Pri, is calculated as the average price of

period i based on the tariffs information as TOU, 1|B|E,Cmax in Chapter 3. Thus,

52

the unit electricity cost for processing jobs in period i, denoted by epi , is calculated

as epi = P proc × Pri. Similarly, we can compute the unit electricity cost of machine

staying idle as esi = P idle×Pri and turn-on eoi = P on×Pri, respectively. To determine

the NPE cost, we need to analyze the turn-on/off strategies between any two adjacent

periods. All cases are analyzed as follows.

Case 1: there exists processing in period i ∈ I\{|I|} while period i + 1 has not,

then the machine will be turned off when finishing processing in period i and thus

the machine idling cost in period i as well as the NPE cost in period i+ 1 are 0;

Case 2: no processing exists in period i ∈ I\{|I|} while period i + 1 has, then the

machine will be turned on in period i+ 1 as it is in a shut-down state in period i and

thus the NPE cost in period i is 0 and there exists turn-on energy cost eoi+1 in period

i+ 1;

Case 3: there exists processing in both periods i ∈ I\{|I|} and i+1, then if esid
idle
i >

eoi+1, where didlei denotes the idling duration in period i, then the machine will be

turned off in period i when finishing processing and thus the machine idling cost in

period i is 0 and there exists turn-on energy cost eoi+1 in period i+ 1; and otherwise

the machine will be kept idling in period i and thus the machine idling cost in period

i is esid
idle
i and there is no turn-on energy cost in period i+ 1.

The objective of the problem is to find an optimal schedule that consists of batch-

ing the jobs, allocating the batches to periods, and deciding whether the machine to

be turned off or kept running idle for an idle duration in order to optimize the total

electricity cost (E) and the makespan (Cmax) simultaneously.

4.2.1 Mathematical formulation

To formulate the model of the problem, we first denote indices, parameters and define

decision variables as follows.

Indices:

j: index of jobs; j ∈ J = {1, 2, . . . , |J |}
b: index of batches; b ∈ B = {1, 2, . . . , |B|}
i: index of periods; i ∈ I = {1, 2, . . . , |I|}

Paremeters:

C: capacity of the machine;

pj: processing time of job j,∀j ∈ J ;

si: starting time of period i, ∀i ∈ I;

Si: duration of period i;

53

epi : electricity cost for processing jobs per unit time in period i , ∀i ∈ I;

esi : electricity cost for machine idling per unit time in period i, ∀i ∈ I;

eoi : electricity cost produced by turning on the machine in period i, ∀i ∈ I;

Decision V ariables:

xj,b,i: 1 if job j is allocated to batch b and processed in period i; 0 otherwise, ∀j ∈
J,∀b ∈ B, ∀i ∈ I;

yb,i: 1 if batch b is allocated to period i; 0 otherwise, ∀b ∈ B, ∀i ∈ I;

zi: 1 if at least one batch is allocated to period i; 0 otherwise, ∀i ∈ I;

|B|: number of the batches;

Pb,i: max{pj | j ∈ b} if batch b is processed in period i; 0 otherwise, ∀b ∈ B, ∀i ∈ I;

vi: 0 if the machine is turned off or no job is processed in period i, or no job is to

be processed in period i+ 1; 1 otherwise, ∀i ∈ I, v0 = 0;

ui: > 0 if the machine is not turned off in period i; 0 otherwise, ∀i ∈ I\{|I|};
E: total electricity cost for completing all jobs;

Cmax: completion time of the last job in J .

With the notations and variables defined above, the investigated problem can be

formulated as the following model P ′f .

P ′f : min f1 = E (4.1)

min f2 = Cmax (4.2)

s.t.
∑
i∈I

∑
b∈B

xj,b,i = 1, ∀j ∈ J (4.3)∑
i∈I

yb,i = 1,∀b ∈ B (4.4)∑
j∈J

xj,b,i ≤ yb,iC, ∀b ∈ B, ∀i ∈ I (4.5)

xj,b,ipj ≤ Pb,i,∀j ∈ J,∀b ∈ B, ∀i ∈ I (4.6)

zi ≤
∑
b∈B

yb,i,∀i ∈ I (4.7)∑
b∈B

Pb,i ≤ Sizi,∀i ∈ I (4.8)

ui ≥ esi (Sivi −
∑
b∈B

Pb,i),∀i ∈ I (4.9)

vi ≤ zi+1,∀i ∈ I\{|I|} (4.10)

vi ≤ zi, ∀i ∈ I (4.11)∑
i∈I

∑
b∈B

epiPb,i +
∑
i∈I

eoi (zi − vi−1) +
∑
i∈I/|I|

ui ≤ E (4.12)

54

sizi +
∑
b∈B

Pb,i ≤ Cmax,∀i ∈ I (4.13)

xj,b,i, yb,i, zi, vi ∈ {0, 1}, ∀j ∈ J,∀b ∈ B, ∀i ∈ I (4.14)

Pb,i ≥ 0, ui ≥ 0, E ≥ 0, Cmax ≥ 0,∀b ∈ B, ∀i ∈ I (4.15)

Objectives (4.1) and (4.2) are to minimize total electricity cost E and makespan

Cmax, respectively. Equation (4.3) ensures that any job j ∈ J is allocated to one

batch and one period. Equation (4.4) ensures that any batch b ∈ B is processed in

one period. Equation (4.5) restricts that the number of jobs in any batch does not

exceed the capacity C and ensures that any job j ∈ J is processed in period i only if

its formed batch is processed in this period. Equation (4.6) states that the processing

time of any batch is determined by the longest time of its involved jobs. Equation

(4.7) states that variable zi takes value 0 if no batches are processed in period i ∈ I.

Equation (4.8) ensures that the total batch processing time in period i ∈ I will not

exceed the duration of this period. Equation (4.9) calculates the idling electricity cost

in period i ∈ I. Equation (4.10) states that the machine is turned off in period i ∈ I
if there is no jobs to be processed in period i + 1. Equation (4.11) ensures that the

machine keeps being shut down in period i ∈ I if there is no jobs to be processed in

period i. Equation (4.12) calculates the total electricity cost. Equation (4.13) defines

the makespan. Equations (4.14) and (4.15) are the restrictions on decision variables.

Note that the number of batches |B| is initially considered as its upper bound |J | to

derive a linear model.

4.2.2 Optimal batch rule analysis

In this section, we devote our attention to reducing the search space of the proposed

model for optimal solutions by analyzing the properties of the problem. In what

follows, we demonstrate that job batching and batch scheduling can be solved with

two independent steps without loss of optimality for the considered problem.

A solution of the problem TOU, 1|on/off,B|E,Cmax can be uniquely defined by

(|B|, {Jb, 1 ≤ b ≤ |B|}, {τb, 1 ≤ b ≤ |B|}, {νi, i ∈ I}), where |B|, Jb and τb are the

number of batches, the set of jobs allocated into batch b (J1 ∪ J2... ∪ J|B| = J), and

the period in which batch b is processed, respectively. νi denotes the machine status

in the idle duration of period i, i.e., the machine is kept idling or turned off.

We particularly consider those solutions where the batches are formed with a

so-called LPT-based method. With such method, jobs in the nonincreasing order

55

are put into batches in the following way: job j with (b − 1)C < j ≤ bC and

1 ≤ b ≤ d|J |/Ce− 1 is allocated to batch b, and the remaining jobs to batch d|J |/Ce.
Theorem 3 shows that we only need to consider such solutions to derive the Pareto

front of the considered problem.

Theorem 3 Any solution of TOU, 1|on/off,B|E,Cmax in which the batches differ

from those formed with the LPT-based method is (at least weakly) dominated.

Proof : Similarly to the proof for problem TOU, 1|B|E,Cmax studied in Chapter 3,
we first define the following notations.

Jb: the set of jobs contained in batch b, Jb ⊆ J ;
n(Jb): the serial number of the least indexed job (thus with the largest processing

time) in set Jb, i.e., n(Jb) = min{j|j ∈ Jb};
P (Jb): the processing time of batch b (the processing time of the least indexed job in

Jb), i.e., P (Jb) = maxj∈Jb pj = pn(Jb).

Let |B∗| and J∗b represent the number of batches formed with LPT-based method
and the set of jobs involved in the batch b (1 ≤ b ≤ |B∗|), respectively. We have

|B∗| = d|J |/Ce,
J∗b = {(b− 1)C + 1, (b− 1)C + 2, . . . , bC}, b = 1, 2, . . . , |B∗| − 1,

J∗|B∗| = {(|B∗| − 1)C + 1, (|B∗| − 1)C + 2, . . . , n}.

With the above construction, we have

n(J∗b) = (b− 1)C + 1, (4.16)

P (J∗b) = p(b−1)C+1. (4.17)

Suppose there is a feasible schedule Ŝ with solution (|B̂|, {Ĵb, 1 ≤ b ≤ |B̂|}, {τ̂b, 1 ≤
b ≤ |B̂|}, {ν̂i, i ∈ I}), in which the batches differ from those formed with LPT-based
method. With similar proof to Theorem 1 in Chapter 3 (from formulas 3.14 to 3.19),
we can conclude that the processing time of the batches are at least as long as those
formed with the LPT-based method, i.e.,

P (Ĵb) = pn(Ĵb) ≥ p(b−1)C+1 = P (J∗b), 1 ≤ b ≤ |B∗|. (4.18)

Renew schedule Ŝ to S∗ with the batches formed with LPT-based method, the new
solution (|B∗|, {J∗b , 1 ≤ b ≤ |B∗|}, {τ̂b, 1 ≤ b ≤ |B̂|}, {ν̂i, i ∈ I}) can be achieved by
removing batches |B∗|+ 1, . . . , |B̂|, if any, and replacing each batch Ĵb(1 ≤ b ≤ |B∗|)
by the corresponding one formed with the LPT-based method (i.e., batch J∗b) without
changing the starting time. Relation (4.18) indicates that the new schedule S∗ is also
feasible. Because some batches are removed and the processing time of the rest
batches are reduced, the makespan is not increased. Next, we prove that the total
electricity cost is also not increased.

56

For any period i ∈ I that involves job-processing, i.e., zi = 1, according to (4.18),

the total processing time in period i of schedule Ŝ, calculated by
∑|B̂|

b=1 P̂b,i, and that

of schedule S∗, calculated by
∑|B∗|

b=1 P
∗
b,i, must have the following relation.

|B̂|∑
b=1

P̂b,i ≥
|B∗|∑
b=1

P ∗b,i (4.19)

Let Êi (resp. E∗i) denote the total processing and idling cost of period i, and the
turn-on cost of period i + 1 of schedule Ŝ (resp. S∗). Since zi = 1, the magnitude
relationship of Êi and E∗i can be analyzed through the following three cases.

Case 1: zi+1 = 0, then, Êi − E∗i = epi
∑|B̂|

b=1 P̂b,i − e
p
i

∑|B∗|
b=1 P

∗
b,i ≥ 0.

Case 2: zi+1 = 1 and esi (Si −
∑|B̂|

b=1 P̂b,i) > eoi+1, then, we have

Êi = epi

|B̂|∑
b=1

P̂b,i + eoi+1. (4.20)

According to (4.19), we have

esi (Si −
|B∗|∑
b=1

P ∗b,i) ≥ esi (Si −
|B̂|∑
b=1

P̂b,i) > eoi+1,

thus, for the solution of E∗i , we have

E∗i = epi

|B∗|∑
b=1

P ∗b,i + eoi+1. (4.21)

Comparing (4.20) with (4.21), it is obvious that Êi − E∗i ≥ 0.

Case 3: zi+1 = 1 and esi (Si −
∑|B̂|

b=1 P̂b,i) ≤ eoi+1, then we have

Êi − E∗i

= epi

|B̂|∑
b=1

P̂b,i + esi (Si −
|B̂|∑
b=1

P̂b,i)− (epi

|B∗|∑
b=1

P ∗b,i + min{esi (Si −
|B∗|∑
b=1

P ∗b,i), e
o
i+1})

≥ epi

|B̂|∑
b=1

P̂b,i + esi (Si −
|B̂|∑
b=1

P̂b,i)− (epi

|B∗|∑
b=1

P ∗b,i + esi (Si −
|B∗|∑
b=1

P ∗b,i))

= (epi − esi)(
|B̂|∑
b=1

P̂b,i −
|B∗|∑
b=1

P ∗b,i).

Since epi > esi and
∑|B̂|

b=1 P̂b,i ≥
∑|B∗|

b=1 P
∗
b,i, thus we have Êi − E∗i ≥ 0.

The above results of the three cases indicate that the total electricity cost of
the new schedule S∗ is not greater than that of schedule Ŝ. Consequently, neither

57

electricity cost nor makespan is increased in the schedule with batches formed with
LPT-based method, which means that the initial schedule Ŝ is (at least weakly)
dominated by the new one. �

From Theorem 3, we can conclude that the solution from the LPT-based method

(at least weakly) dominates other solutions for the studied problem, where the jobs

are nonresumable and of non-identical processing times. Moreover, Theorem 3 holds

for any time-of-use pricing strategy. However, for problems involving other types of

jobs, for example, the jobs with non-identical size or non-identical release time, the

solution from the LPT-based method might not be able to dominate other solutions,

and it needs more research efforts.

Besides, the following theorem also holds.

Theorem 4 The batch scheduling problem TOU, 1|on/off,B|E,Cmax is strongly NP-

hard.

Proof : For the special case that esi = 0,∀i ∈ I and eoi = 0, ∀i ∈ I, the problem
TOU, 1|B|E,Cmax has been proved to be NP-hard in the strong sense [32], even
when the single-objective is to minimize the makespan. Therefore, the problem
TOU, 1|on/off,B|E,Cmax is also strongly NP-hard. �

4.2.3 An improved MILP model

By pre-processing the batches of TOU, 1|on/off,B|E,Cmax with the LPT-method

according to Theorem 3, we have Pb = p(b−1)C+1 and |B∗| = d|J |/Ce, a new MILP

model, denoted by Pf , can be derived as follows.

Pf : min f1 = E

min f2 = Cmax

s.t.
∑
i∈I

yb,i = 1,∀b ∈ B∗ (4.22)∑
b∈B∗

Pbyb,i ≤ Sizi,∀i ∈ I (4.23)

zi ≤
∑
b∈B∗

yb,i,∀i ∈ I (4.24)

ui ≥ esi (Sivi −
∑
b∈B∗

Pbyb,i),∀i ∈ I (4.25)∑
i∈I

epi
∑
b∈B∗

Pbyb,i +
∑
i∈I

eoi (zi − vi−1) +
∑
i∈I/|I|

ui ≤ E (4.26)

sizi +
∑
b∈B∗

Pbyb,i ≤ Cmax,∀i ∈ I (4.27)

58

yb,i, zi, vi ∈ {0, 1},∀b ∈ B∗,∀i ∈ I (4.28)

ui ≥ 0, Cmax ≥ 0, E ≥ 0,∀i ∈ I (4.29)

and constraints (4.10) and (4.11)

where B∗ = {1, 2, . . . , |B∗|} is the set of batches formed with the LPT-based method,

Pb = p(b−1)C+1. Equation (4.22) states that a formed batch b,∀b ∈ B∗ should be

entirely processed in one period. Equation (4.23) ensures that the total processing

time in period i ∈ I can not exceed its duration. Equation (4.24) ensures that variable

zi takes the value of 1 only if there are batches to be processed in period i, ∀i ∈ I.

Equation (4.25) denotes the total electricity cost when the machine is left running

idle. Equations (4.26) and (4.27) define the total electricity cost E and makespan

Cmax, respectively. Equations (4.28) and (4.29) enforce the restrictions on decision

variables. Since part of variables and constraints are removed, the search space for

Pareto optimal solutions of the initial problem is significantly reduced. To be more

specific, model Pf reduces |I| · |J |2 + (|J | − d|J |/Ce) · |I| binary variables, |I| · |J |
real variables and (2 + |I| · |J | + |I|) · |J | − (|J | · |I| + |I| + 1) · d|J |/Ce constraints

comparing to model P ′f .

4.3 Resolution approach

In this section, we consider to implement the framework of ε-constraint method for

the understudied problem since the method has good performance on the bi-objective

problems. That is, TOU, 1|on/off,B|E,Cmax is solved by being transformed into a

series of single objective problems (SOP) and then resolving each SOP. However, for

a sequence of SOPs, although commercial optimization softwares, e.g., CPLEX, can

solve them optimally, it would be very time-consuming and even impractical for solv-

ing medium- and large-size problems due to their strong NP-hard nature. As shown

in our computational results in Section 4.4, CPLEX fails to find optimal solution

of even one single objective problem for an instance with 40 batches (see set 61 in

Table 4.6) within 18000s. Alternatively, to rapidly provide a set of Pareto optimal

or near-optimal solutions A, which approximates F , may be desired by decision-

makers. Although the KPH-ECM and MKPH-ECM proposed in Chapter 3 are able

to generate approximation Pareto fronts, they become slow for larger sized instances

since the embedded series of knapsack problems and multiple knapsack problems

are also NP-hard, and the problem TOU, 1|on/off,B|E,Cmax is more complicated

59

than the TOU, 1|B|E,Cmax studied in Chapter 3. Consequently, to quickly pro-

vide good approximation Pareto front for the considered problem, a Bin Packing

Heuristic based ε-constraint method (BPH-ECM) is developed in this section.

The BPH-ECM consists of transforming the studied bi-objective problem into

a series of single objective problems (SOPs) with the framework of equidistant ε-

constraint method, and then each SOP is solved with Bin packing heuristic that

inspired by analysing the characteristics of Pf . We can find that one of the key

decisions for TOU, 1|on/off,B|E,Cmax is to determine the period in which each batch

will be processed. Such decision can be considered as a bin packing process, where

a period (resp. batch) is regarded as a bin (resp. item). With such observation, we

propose a heuristic to obtain an optimal or near-optimal solution for each SOP in the

BPH-ECM based on the inspiration of assignment rules for bin packing problems and

the characteristics of the studied problem. In subsections 4.3.1 and 4.3.2, we detail

the framework of ECM and the main steps of Bin packing heuristics, respectively.

4.3.1 Framework of ε-constraint method

The ε-constraint problem for TOU, 1|on/off,B|E,Cmax can be formulated as follows

by selecting total electricity cost minimization as the preferred objective.

Pf (εk) : minE

s.t. Constraints (4.10), (4.11), (4.22)-(4.29), and Cmax ≤ εk

where the range of εk is determined by the ideal point (EI , CI
max) and nadir point

(EN , CN
max). The two points are calculated as follows according to Definition 7.

P1
f : EI = minE s.t. Constraints (4.10), (4.11) and(4.22)-(4.29)

P2
f : CI

max = minCmax s.t. Constraints (4.10), (4.11) and(4.22)-(4.29)

P3
f : EN = minE s.t. Constraints (4.10), (4.11), (4.22)-(4.29) and Cmax = CI

max

P4
f : CN

max = minCmax s.t. Constraints (4.10), (4.11),(4.22)-(4.29), and E = EI

From our preliminary results, we found that CPLEX failed to obtain even a feasible

solution of any problem of P1
f to P4

f with 40 batches within 3600s due to its NP-hard

nature. Therefore, the BPH-ECM is first to determine the range of ε by heuristically

solving the four problems. Let (EI′, CI′
max) and (EN ′, CN ′

max) be the obtained objective

value vectors.

60

To determine a set of ε-constraint problems, equidistant ε-constraint method is

implemented to provide desired number of solutions for decision makers to avoid over-

much decision information. In this method, the iteration step is first calculated as

follows:

δ = (CN ′
max − CI′

max)/K (4.30)

where K is a given number of iterations. Then, the value of εk, for the k-th ε-

constraint problem Pf (εk) is defined as follows:

εk = εk−1 − δ, k ∈ {1, ..., K} (4.31)

where ε0 is initialized as CN ′
max. Thus, the K ε-constraint problems, i.e., Pf (εk), k ∈

{1, 2, ..., K}, are determined.

By observing Pf (εk), it is not hard to find that all batches have to be completed

within the allowable scheduling horizon [0, εk], which is less than the scheduling hori-

zon of the original problem Pf . For each Pf (εk), a period i is said to be available if

its start time is less than εk, i.e., si < εk,∀i ∈ I, and the duration of the last period

is εk−si where i satisfies si ≤ εk ≤ si+1. Let (Ek, Ck
max) denote the solution obtained

by heuristically solving problem Pf (εk).

4.3.2 Main steps of the BPH

The bin packing heuristic (BPH) is composed of five steps: 1) batch ordering, 2)

period sequencing, 3) batch assignment, 4) batch adjustment, 5) machine turn-on/off

determination, which are are detailed as follows, respectively.

1) In the batch ordering step, all the batches are arranged in nonincreasing order

of their processing times in a list, i.e., P1 ≥ P2 ≥ ... ≥ P|B∗|.

2) All available periods are ordered by considering the characteristics of the SOP

to be solved. More specifically, i) for the SOPs with the objective of minimizing

makespan, all available periods are arranged in chronological order, such that earlier

periods are firstly considered to process batches to reduce Cmax; ii) for the SOPs with

the objective of minimizing total electricity cost E, all available periods are arranged

in nondecreasing order of their electricity prices, such that available periods with

lower prices are preferentially considered to process batches to reduce the E.

3) In the batch assignment step, three fundamental assignment rules: first fit

(FF), best fit (BF) and best two fit (B2F), initially used for solving bin packing

problems, are respectively adapted in this study to assigning batches in the list to

the ordered periods. They are presented as follows:

61

FF: each batch in the list is sequentially assigned to the first period in which it

can be accommodated for processing.

BF: each batch in the list is sequentially assigned to the period with the smallest

residual capacity among the periods having sufficient capacities.

B2F: i) consider the first empty period in the order, and allocate the batches in the

unassigned list one by one to the current period until no batch can be accommodated;

ii) (a) if all batches are assigned in the current period, end; otherwise, (b) check

whether the assigned batch with the shortest processing time in the period can be

replaced by two unassigned batches with longer total processing time. If yes, the

shortest processing time batch is replaced by such two batches with the largest total

processing time and it is put back to the unassigned batch list. Go back to i).

After the assignment, let Bi and di denote the set of batches processed in period

i (batch set i in short) and its total processing time, respectively.

4) The batch adjustment is to further adjust the formed batch sets, i.e., Bi’s, with

longer total processing times, i.e., di’s, to periods with higher priorities, since the

assignment in 3) might not ensure that a period with higher priority involves a batch

set with longer processing time.

5) Finally, we determine the machine turn-on/off strategy according to Case 1-3

in the Section 4.2.

Through the above five steps, the values of all decision variables are determined,

thus a feasible solution is obtained. With different assignment rules, the solution

may be different. Thus, in the computational results presented in Section 4.4, the

solutions with different assignments: FF, BF and B2F, will be evaluated, and the

corresponding versions of BPH-ECM are denoted by BPH-ECM1, BPH-ECM2 and

BPH-ECM3, respectively.

4.3.3 Overall algorithm

Based on the above statement, the BPH-ECM for TOU, 1|on/off,B|E,Cmax that

described by model Pf can be outlined as Fig. 4.1.

Moreover, the BPH-ECM can be adapted to solving the original model P ′f . Ac-

cording to Theorem 3, model P ′f can be equivalently transformed into Pf by pre-

forming the batches with the LPT-based method. Thus, we can obtain the framework

of BPH-ECM for P ′f after adding a batch formation step before the initialization of

Algorithm 4.1.

62

The BPH-ECM for solving Pf

1: initialize set A = ∅ and the value of K;
2: compute points (EI′, CI′

max), (EN ′, CN ′
max) by heuristically solving problems P1

f to
P4
f ;

3: define the iteration step size δ = (CN ′
max − CI′

max)/K;
4: set A = {(EI′, CN ′

max), (EN ′, CI′
max)} and let ε1 = CN ′

max − δ;
5: for k = 1; k < K do
6: obtain εk and define problem P(εk);
7: obtain (Ek, Ck

max) by heuristically solving P(εk);
8: add (Ek, Ck

max) to A if the solution is feasible;
9: let εk+1 = εk − δ;

10: end for
11: remove dominated points if existing and derive final set A.

Fig. 4.1: The BPH-ECM for solving Pf

4.4 Computational results

In this section, computational results of 335 randomly generated instances (67 sets ×
5 instances) are reported to evaluate the performance of the proposed methods. All

algorithms were coded in C++. To evaluate their effectiveness, the set of points A ob-

tained by the BPH-ECM is compared with a reference set, denoted as R, obtained by

CPLEX (Version 12.6). To be more specific, R are obtained by Algorithm 4.1, where

each single-objective optimization problem is solved by CPLEX instead of heuristics.

The solution quality of the BPH-ECMs are evaluated by overall non-dominated solu-

tions (Q), e-dominance indicator (D) and hypervolume ratio (H), which respectively

reflect the cardinality-, distance- and volume-based PIs. Besides, the efficiency of

the BPH-ECM in terms of computational time (CPU seconds) is compared with that

shown by CPLEX. For each instance, the total computational time and the com-

putational time for each single-objective problem are limited to 18000s and 3600s,

respectively. All experiments were conducted on a PC with 1.7 GHz processor and

3.12 GB RAM under windows 7 operating system.

All test instances are randomly generated in a similar way to those in Chapter 3.

The processing times pj, ∀i ∈ J , are randomly and uniformly generated from (100,

200] and (50, 100] respectively. Batch capacity C is set to be 10. Under the work

shift, the period duration T is set to be 480 min, which reflects one of the three

work shifts in a workday, i.e., 8× 60 min. The number of periods |I| is generated as

63

|I| = α|I|maxj∈J{pj × |B∗|/T}, where α|I| is randomly and uniformly generated in

the interval [0.6, 1.0]. Pidle, Pproc, and Pon are set to be 0.1 kWh/min, 0.3 kWh/min,

0.5 kWh [109]. The electricity price of each period is randomly generated from the

uniform distribution on the interval of [1,7] �/kWh [55]. Both in the ε-constraint

method implemented by CPLEX and BPH-ECM, K is set to be 50 in this study. The

computational results are reported in Tables 4.1-4.6, in which each value is its average

value of five instances. In the tables, Pf and P ′f denote the results of two models

solved by CPLEX, respectively. Q, H and D (resp. CT) denote the performance

metrics of solution quality (resp. computational time).

Table 4.1 reports the computational results of the small-size instances that solved

with model Pf . By comparing the computational results of BPH-ECMs with that

of CPLEX, we can see that the number of Pareto solutions found are similar for the

BPH-ECMs and CPLEX, and both the hypervolume ratio and average e-dominance

indicators of the three BPH-ECMs are equal to or close to 1. These results indicate

that the solution sets of BPH-ECMs are very close to R. Especially, BPH-ECM3

yields the same set of solutions with CPLEX. In terms of computational time, we can

observe from Table 4.1 that CT of the BPH-ECMs is far less than that of CPLEX.

This confirms the efficiency of the proposed methods. Moreover, BPH-ECM3 yields

the best performance among the BPH-ECMs in terms of solution quality. This may

be because B2F assignment rule performs better than FF and BF for solving bin

packing problems.

Table 4.2 presents the computational results of the instance sets 1-16 solved with

model P ′f . From the table, we can obtain similar conclusion as Table 4.1. Specifically,

BPH-ECMs can generate good quality solutions that very close to R, and they are

much more efficient than CPLEX. From the comparison results of Pf and P ′f solved

by CPLEX in the two tables, we can see that the obtained points by both models

are the same. This implies both models can yield solutions of same quality over the

small-size problem sets 1-16. However, we can find that CT of Pf is far less than

that of P ′f on each problem set, which indicates that the improved model Pf is much

more efficient than model P ′f in terms of computational time. This can be attributed

to the derived properties that significantly reduce the search space. In the following,

the computational results of Pf solved by CPLEX are taken as the reference set R
to evaluate the performance of the BPH-ECMs.

64

T
ab

le
4.

1:
C

om
p
ar

is
on

re
su

lt
s

w
it

h
m

o
d
el
P
f

fo
r

sm
al

l-
si

ze
in

st
an

ce
s

S
et

|J
|
|I
|

P
f

B
P
H
-E

C
M

1
B
P
H
-E

C
M

2
B
P
H
-E

C
M

3

Q
C
T

Q
H

D
C
T

Q
H

D
C
T

Q
H

D
C
T

1
12

2
4.
0

1.
19
5

4.
0

1
.0
0
0

1
.0
0
0

0
.2
3
4

4
.0

1
.0
0
0

1
.0
0
0

0
.2
3
1

4
.0

1
.0
0
0

1
.0
0
0

0
.2
2
3

2
14

2
4.
0

1.
17
9

4.
0

1
.0
0
0

1
.0
0
0

0
.1
9
4

4
.0

1
.0
0
0

1
.0
0
0

0
.2
2
9

4
.0

1
.0
0
0

1
.0
0
0

0
.2
3
5

3
16

2
4.
0

1.
21
7

4.
0

1
.0
0
0

1
.0
0
0

0
.2
0
8

4
.0

1
.0
0
0

1
.0
0
0

0
.2
3
0

4
.0

1
.0
0
0

1
.0
0
0

0
.2
3
6

4
18

2
4.
0

1.
28
5

4.
2

1
.0
0
0

1
.0
0
0

0
.2
1
9

4
.0

1
.0
0
0

1
.0
0
0

0
.2
2
8

4
.0

1
.0
0
0

1
.0
0
0

0
.2
0
7

5
20

2
4.
0

1.
22
6

4.
0

1
.0
0
0

1
.0
0
0

0
.2
2
7

4
.0

1
.0
0
0

1
.0
0
0

0
.2
3
4

4
.0

1
.0
0
0

1
.0
0
0

0
.2
7
2

6
22

2
8.
0

2.
10
3

7.
4

1
.0
0
0

1
.0
0
8

0
.2
3
1

7
.0

0
.9
2
2

1
.0
1
6

0
.2
4
5

8
.0

1
.0
0
0

1
.0
0
0

0
.2
6
1

7
24

2
8.
0

2.
02
8

7.
0

1
.0
0
0

1
.0
0
7

0
.2
7
5

6
.8

0
.9
2
1

1
.0
1
5

0
.2
4
8

8
.0

1
.0
0
0

1
.0
0
0

0
.2
3
9

8
26

2
7.
2

2.
05
6

6.
2

1
.0
0
0

1
.0
0
6

0
.3
0
3

6
.2

0
.9
1
0

1
.0
1
1

0
.2
5
7

7
.2

1
.0
0
0

1
.0
0
0

0
.2
5
0

A
ve
ra
ge

5.
4

1.
53
6

5.
1

1
.0
0
0

1
.0
0
3

0
.2
3
6

5
.0

0
.9
6
9

1
.0
0
5

0
.2
3
8

5
.4

1
.0
0
0

1
.0
0
0

0
.2
4
0

9
12

3
7.
0

1.
75
3

7.
0

1
.0
0
0

1
.0
0
0

0
.2
1
6

7
.0

1
.0
0
0

1
.0
0
0

0
.2
4
0

7
.0

1
.0
0
0

1
.0
0
0

0
.2
5
5

10
14

3
7.
0

1.
86
6

7.
0

1
.0
0
0

1
.0
0
0

0
.2
2
4

7
.0

1
.0
0
0

1
.0
0
0

0
.3
0
1

7
.0

1
.0
0
0

1
.0
0
0

0
.2
4
8

11
16

3
7.
0

1.
90
9

7.
0

1
.0
0
0

1
.0
0
0

0
.2
0
2

7
.0

1
.0
0
0

1
.0
0
0

0
.2
5
1

7
.0

1
.0
0
0

1
.0
0
0

0
.2
4
4

12
18

3
7.
0

1.
90
6

7.
2

1
.0
0
0

1
.0
0
0

0
.2
0
9

7
.0

1
.0
0
0

1
.0
0
0

0
.2
4
6

7
.0

1
.0
0
0

1
.0
0
0

0
.2
1
4

13
20

3
7.
0

1.
96
2

7.
0

1
.0
0
0

1
.0
0
0

0
.2
7
2

7
.0

1
.0
0
0

1
.0
0
0

0
.2
4
1

7
.0

1
.0
0
0

1
.0
0
0

0
.2
3
0

14
22

3
15
.0

2.
50
5

13
.0

1
.0
0
0

1
.0
0
7

0
.2
2
5

1
3
.0

0
.9
7
1

1
.0
1
2

0
.2
1
8

1
5
.0

1
.0
0
0

1
.0
0
0

0
.2
7
5

15
24

3
13
.2

2.
64
3

11
.4

1
.0
0
0

1
.0
0
5

0
.2
4
1

1
0
.8

0
.9
7
0

1
.0
0
8

0
.2
8
3

1
3
.2

1
.0
0
0

1
.0
0
0

0
.2
6
8

16
26

3
14
.4

2.
65
2

12
.4

1
.0
0
0

1
.0
0
6

0
.2
9
1

1
1
.6

0
.9
6
6

1
.0
1
2

0
.2
6
2

1
4
.4

1
.0
0
0

1
.0
0
0

0
.2
8
6

A
ve
ra
ge

9.
7

2.
15
0

9.
0

1
.0
0
0

1
.0
0
2

0
.2
3
5

8
.8

0
.9
8
8

1
.0
0
4

0
.2
5
5

9
.7

1
.0
0
0

1
.0
0
0

0
.2
5
3

65

T
ab

le
4.2:

C
om

p
arison

resu
lts

w
ith

m
o
d
elP

′f
for

sm
all-size

in
stan

ces

|J|
|I|

P
′f

B
P
H
-E

C
M

1
B
P
H
-E

C
M

2
B
P
H
-E

C
M

3

Q
C
T

Q
H

D
C
T

Q
H

D
C
T

Q
H

D
C
T

12
2

4
.0

1
5.672

4.0
1.000

1
.0
0
0

0
.2
3
8

4
.0

1
.0
0
0

1
.0
0
0

0.234
4.0

1.000
1.000

0.222

14
2

4
.0

1
9.326

4.0
1.000

1
.0
0
0

0
.2
0
0

4
.0

1
.0
0
0

1
.0
0
0

0.230
4.0

1.000
1.000

0.239

16
2

4
.0

2
2.937

4.0
1.000

1
.0
0
0

0
.2
1
0

4
.0

1
.0
0
0

1
.0
0
0

0.235
4.0

1.000
1.000

0.238

18
2

4
.0

2
6.053

4.2
1.000

1
.0
0
0

0
.2
1
9

4
.0

1
.0
0
0

1
.0
0
0

0.230
4.0

1.000
1.000

0.209

20
2

4
.0

2
9.904

4.0
1.000

1
.0
0
0

0
.2
3
0

4
.0

1
.0
0
0

1
.0
0
0

0.237
4.0

1.000
1.000

0.276

22
2

8
.0

5
19.68

0
7
.4

1.00
0

1
.0
0
8

0
.2
3
7

7
.0

0
.9
2
2

1
.0
1
6

0.247
8.0

1.000
1.000

0.263

24
2

8
.0

6
03.97

3
7
.0

1.00
0

1
.0
0
7

0
.2
8
2

6
.8

0
.9
2
1

1
.0
1
5

0.251
8.0

1.000
1.000

0.241

26
2

7
.2

1
5
96.23

1
6
.2

1.00
0

1
.0
0
6

0
.3
0
9

6
.2

0
.9
1
0

1
.0
1
1

0.260
7.2

1.000
1.000

0.253

5
.4

354
.2
2
2

5
.1

1.000
1
.0
0
3

0
.2
4
1

5
.0

0
.9
6
9

1
.0
0
5

0.241
5.4

1.000
1.000

0.243

12
3

7
.0

1
7.436

7.0
1.000

1
.0
0
0

0
.2
1
8

7
.0

1
.0
0
0

1
.0
0
0

0.241
7.0

1.000
1.000

0.254

14
3

7
.0

2
1.891

7.0
1.000

1
.0
0
0

0
.2
3
0

7
.0

1
.0
0
0

1
.0
0
0

0.305
7.0

1.000
1.000

0.250

16
3

7
.0

2
6.643

7.0
1.000

1
.0
0
0

0
.2
0
6

7
.0

1
.0
0
0

1
.0
0
0

0.270
7.0

1.000
1.000

0.247

18
3

7
.0

3
0.769

7.2
1.000

1
.0
0
0

0
.2
1
1

7
.0

1
.0
0
0

1
.0
0
0

0.245
7.0

1.000
1.000

0.217

20
3

7
.0

3
6.328

7.0
1.000

1
.0
0
0

0
.2
7
5

7
.0

1
.0
0
0

1
.0
0
0

0.243
7.0

1.000
1.000

0.229

22
3

1
5
.0

2
796

.5
4
0

1
3.0

1
.0
00

1
.0
0
7

0
.2
2
6

1
3
.0

0
.9
7
1

1
.0
1
2

0.220
15.0

1.000
1.000

0.278

24
3

1
3
.2

3
397

.2
8
9

1
1.4

1
.0
00

1
.0
0
5

0
.2
4
0

1
0
.8

0
.9
7
0

1
.0
0
8

0.285
13.2

1.000
1.000

0.266

26
3

1
4
.4

1
2
053

.4
7
4

1
2.4

1
.0
00

1
.0
0
6

0
.2
9
5

1
1
.6

0
.9
6
6

1
.0
1
2

0.267
14.4

1.000
1.000

0.288

9
.7

2
297

.5
4
6

9
.0

1.000
1
.0
0
2

0
.2
3
8

8
.8

0
.9
8
8

1
.0
0
4

0.260
9.7

1.000
1.000

0.254

66

T
ab

le
4.

3:
C

om
p
ar

is
on

re
su

lt
s

fo
r

th
e

in
st

an
ce

s
w

it
h
p j
∈

(5
0,

10
0]

an
d
|B
∗ |

=
5-

70

S
et

|B
∗ |

|I
|

P
f

B
P
H
-E

C
M

1
B
P
H
-E

C
M

2
B
P
H
-E

C
M

3

Q
C
T

Q
H

D
C
T

Q
H

D
C
T

Q
H

D
C
T

17
5

1.
2

5.
2

0.
66
8

3
.4

0
.9
5
6

1
.0
0
2

0
.1
5
4

3
.4

0
.9
5
6

1
.0
0
2

0
.1
3
7

4
.6

0
.9
8
4

1
.0
0
1

0
.1
2
5

18
10

2.
2

49
.4

5.
59
4

1
6
.8

0
.9
2
8

1
.0
1
2

0
.3
2
8

1
6
.6

0
.9
3
4

1
.0
1
2

0
.3
6
5

2
7
.4

0
.9
7
4

1
.0
0
8

0
.3
8
1

19
15

3.
0

50
.0

18
.4
52

2
5
.6

0
.8
3
8

1
.0
1
5

0
.3
3
1

2
5
.6

0
.8
3
8

1
.0
1
5

0
.3
8
7

4
2
.2

0
.9
5
0

1
.0
0
7

0
.4
1
6

20
20

4.
0

49
.8

72
.6
25

2
3
.0

0
.7
3
8

1
.0
2
2

0
.3
4
7

2
3
.0

0
.7
3
8

1
.0
0
7

0
.3
2
1

4
4
.2

0
.9
1
5

1
.0
0
9

0
.5
0
0

21
25

4.
2

26
.0

63
.7
42

6
.8

0
.8
8
3

1
.0
3
9

0
.3
0
9

6
.8

0
.8
8
3

1
.0
3
9

0
.4
0
7

1
4
.8

0
.9
5
2

1
.0
1
3

0
.4
2
8

22
30

5.
0

50
.0

12
9.
23
1

1
5
.8

0
.5
8
2

1
.0
0
7

0
.3
5
0

1
5
.6

0
.5
8
2

1
.0
0
7

0
.5
0
8

2
3
.6

0
.7
0
8

1
.0
0
5

0
.5
2
8

23
35

7.
0

47
.2

39
49
.3
50

2
7
.8

0
.8
4
8

1
.0
1
5

0
.4
3
6

2
7
.6

0
.8
4
9

1
.0
1
4

0
.5
5
7

4
5
.8

0
.9
6
4

1
.0
0
3

0
.6
7
2

24
40

7.
4

49
.2

14
15
.9
30

2
5
.6

0
.8
0
2

1
.0
1
3

0
.5
7
3

2
5
.8

0
.8
0
5

1
.0
1
3

0
.5
7
9

4
7
.2

0
.9
4
3

1
.0
0
4

0
.7
5
4

25
45

8.
6

44
.2

13
45
7.
90
0

2
7
.0

0
.8
9
7

1
.0
1
1

0
.6
3
4

2
7
.0

0
.8
9
7

1
.0
1
1

0
.7
0
3

4
8
.2

1
.0
0
1

1
.0
0
4

0
.8
2
9

26
50

9.
4

37
.0

14
71
7.
00
0

2
8
.0

0
.9
5
4

1
.0
1
1

0
.6
9
9

2
8
.0

0
.9
5
4

1
.0
1
1

0
.7
8
2

4
7
.4

1
.0
7
7

1
.0
0
3

0
.9
6
6

27
55

9.
8

43
.6

88
30
.7
60

3
0
.2

0
.8
3
3

1
.0
1
2

0
.7
1
9

3
0
.0

0
.8
3
3

1
.0
1
2

0
.8
1
1

4
5
.4

0
.9
6
9

1
.0
0
3

0
.9
4
7

28
60

11
.4

36
.0

13
75
3.
80
0

2
7
.6

0
.8
7
9

1
.0
1
0

0
.7
9
6

2
7
.2

0
.8
8
1

1
.0
1
0

0
.9
3
5

4
5
.2

1
.0
0
3

1
.0
0
4

1
.0
6
2

29
65

12
.0

32
.8

13
51
5.
20
0

3
0
.8

0
.9
6
2

1
.0
1
2

0
.8
1
8

3
0
.8

0
.9
6
2

1
.0
1
2

1
.0
7
6

4
6
.0

1
.1
2
5

1
.0
0
3

1
.1
5
8

30
70

13
.2

18
.6

18
00
0.
00
0

2
9
.8

1
.4
3
4

1
.0
1
1

0
.9
9
1

2
9
.8

1
.4
3
4

1
.0
1
1

1
.0
8
8

4
4
.2

1
.7
4
4

1
.0
0
3

1
.2
7
5

A
ve
ra
ge

38
.5

62
80
.7
32

2
2
.7

0
.8
9
5

1
.0
1
4

0
.5
3
5

2
2
.7

0
.8
9
6

1
.0
1
3

0
.6
1
8

3
7
.6

1
.0
2
2

1
.0
0
5

0
.7
1
7

67

In addition, by comparing the results of P ′f and Pf solved by BPH-ECMs in the

two tables, it can be found that Q, D, and H of P ′f are equal to that of Pf . This

indicates that the BPH-ECMs can obtain the same solutions for the two models.

While computational time for P ′f is a little bit longer than that for Pf . This is due to

the computational time for sorting the jobs with LPT-based method and obtaining

the values of batch processing times. Since the computational results of BPH-ECMs

for solving model Pf and P ′f are very close, we only present the former in the following

tables.

According to our preliminary experiments, we find that the computational com-

plexity of the studied problem is affected by the instance scale as well as the length of

job processing time. In what follows, we test larger sized instances with two genera-

tion schemes of job processing time times to examine the performance of the proposed

methods. Tables 4.3 and 4.4 show the results for the instances with job processing

time pj ∈ (50, 100], and Tables 4.5 and 4.6 illustrate the results for the instances with

pj ∈ (100, 200]. In addition, we use the number of batches |B∗| instead of the number

of jobs |J | in the following tables, since the batches are pre-formed with LPT-based

method.

We can see from Table 4.3 that in terms of cardinality, BPH-ECM1 and BPH-

ECM2 performs a bit worse than CPLEX but BPH-ECM3 obtains almost the same

number of points with CPLEX on average. The hypervolume ratios are close to or

exceed 90% and the average e-dominance indicators are slightly greater than 1, which

implies the solution sets obtained by the proposed methods are very near to R. It is

worth pointing out that BPH-ECM1 and BPH-ECM2 derive more solutions and higher

hypervolume ratio than CPLEX for problem set 30, and BPH-ECM3 achieves better

performance in terms of the two indicators than CPLEX over sets 25-30. These results

show that the proposed BPH-ECMs can obtain good-quality solutions. In addition,

we can also find that BPH-ECM3 exhibits the best performance in the three BPH-

ECMs. This may be because the procedure of replacing the assigned batch with

two proper ones in B2F is effective to improve the solution quality. Moreover, Q,

H and D of BPH-ECM1 are respectively very close to that of BPH-ECM2 in the

same set, this indicates that BPH-ECM1 and BPH-ECM2 obtain roughly equivalent

performance. On the other hand, we can observe that computational time of Pf solved

by CPLEX varies from 0.668s to 18000s with its average value being 6280.732s, which

increases 26946 times (18000/0.668) from set 17 to 30. However, CT of BPH-ECMs

varies between 0.125s and 1.275s with its average value being less than 1s. This

demonstrates that the proposed methods significantly outperform CPLEX in terms

68

of computational time. Moreover, Figure 4.2 provides an graphical comparison of the

BPH-ECMs, we can find that computational time of BPH-ECM1 is almost less than

those of BPH-ECM2 and BPH-ECM3, which indicates that BPH-ECM1 performs best

in computational efficiency.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Time (s)

|B|

BPH-ECM1

BPH-ECM2

BPH-ECM3

Fig. 4.2: Computational time of BPH-ECMs for the instances with pj ∈ (50, 100],
|B∗|=5-70

Table 4.4 presents the results for the instances with pj ∈ (50, 100], |B∗| and |I|
increasing from 80 to 5000 and 16.8 to 896.4, respectively. It can be observed from

Table 4.4 that CPLEX almost loses power to solve the large-size problem instance

sets due to the strong NP-hardness of the problem. It can only obtain very few Pareto

solutions for the smallest-size sets 31 and 32 and fails to find even one Pareto solution

for the rest larger-size instances, whereas the BPH-ECMs can obtain considerable

Pareto solutions for all problem sets within 5 minutes. Moreover, CT of BPH-ECMs

varies very slightly with the problem size, which suggest the proposed methods are

relatively stable. This shows the effectiveness and efficiency of the proposed methods

in solving large-size problems. Furthermore, it can be seen that numbers of non-

dominated solutions Q found by BPH-ECM1 and BPH-ECM2 is slightly less than Q of

BPH-ECM3, which once again indicates that BPH-ECM3 yields the best performance

in terms of solution quality. While its computational time increases faster than those

of BPH-ECM1 and BPH-ECM2 (see Figure 4.3), which shows that BPH-ECM1 and

BPH-ECM2 perform better in terms of computational time.

In Table 4.5, we report the results for the instances with pj ∈ (100, 200] and |B∗|
varying from 5 to 20. From the table, we can find similar results to those reported

in Table 4.3. BPH-ECM3 performs better than BPH-ECM1 and BPH-ECM2, with

29.1 Pareto solutions (slightly less than that of CPLEX), H being greater than 0.951

69

Table 4.4: Comparison results for the instances with pj ∈ (50, 100] and |B∗|=80-5000

Set |B∗| |I| Pf BPH-ECM1 BPH-ECM2 BPH-ECM3

Q CT Q CT Q CT Q CT
31 80 16.8 5.2 18000.0 33.8 1.147 34.2 1.158 34.8 1.394
32 100 19.8 5.2 8086.0 34.8 1.308 34.8 1.490 38.0 1.653
33 120 21.2 - - 30.6 1.559 30.4 1.642 39.0 1.894
34 150 26.2 - - 31.4 1.966 30.6 2.307 43.6 2.384
35 200 36.4 - - 37.6 2.694 37.4 2.938 36.2 3.313
36 500 89.0 - - 35.2 5.039 35.0 5.990 35.0 8.453
37 1000 174.4 - - 38.8 11.384 38.6 14.032 33.0 18.619
38 2000 384.0 - - 35.6 27.409 34.2 35.294 41.0 49.078
39 3000 537.4 - - 35.4 38.506 35.0 46.984 38.6 120.412
40 4000 699.6 - - 35.2 57.325 35.2 69.468 39.2 199.197
41 5000 896.4 - - 34.8 70.438 34.6 98.092 38.8 289.675
Average - - 34.8 19.889 34.5 25.400 37.9 63.279

0

50

100

150

200

250

300

350

80 100 120 150 200 500 1000 2000 3000 4000 5000

Time (s)

|B|

BPH-ECM1

BPH-ECM2

BPH-ECM3

Fig. 4.3: Computational time of BPH-ECMs for instances with pj ∈ (50, 100],
|B∗|=80-5000

and D being 1.006 on average. Although the cardinalities and hypervolume ratios of

BPH-ECM1 and BPH-ECM2 are not as good as BPH-ECM3, both values of D and

H are slightly greater than 1, which implies the approximated Pareto fronts derived

by BPH-ECM1 and BPH-ECM2 are also close to R. In addition, it can be seen in

Table 4.5 that CT of BPH-ECMs is far less than that of CPLEX over all sets 42-

57. Moreover, CT of CPLEX exponentially increases with the problem size, whereas

that of BPH-ECMs varies very slightly. This shows the remarkable advantage of

BPH-ECMs in terms of computational time compared with CPLEX.

70

T
ab

le
4.

5:
C

om
p
ar

is
on

re
su

lt
s

fo
r

th
e

in
st

an
ce

s
w

it
h
p j
∈

(1
00
,2

00
]

an
d
|B
∗ |=

5-
20

S
et

|B
∗ |

|I
|

P
f

B
P
H
-E

C
M

1
B
P
H
-E

C
M

2
B
P
H
-E

C
M

3

Q
C
T

Q
H

D
C
T

Q
H

D
C
T

Q
H

D
C
T

42
5

2.
0

11
.4

3.
20
4

2
.0

0
.7
2
3

1
.0
5
1

0
.2
7
8

2
.0

0
.7
2
3

1
.0
5
1

0
.2
7
9

7
.4

0
.8
3
4

1
.0
0
8

0
.3
2
4

43
6

2.
6

14
.4

3.
90
0

8
.0

0
.9
1
1

1
.0
2
3

0
.2
4
4

8
.0

0
.8
9
4

1
.0
2
3

0
.2
8
4

1
0
.6

0
.9
5
2

1
.0
0
6

0
.3
6
8

44
7

3.
0

29
.6

6.
28
7

8
.0

0
.7
9
0

1
.0
3
7

0
.3
6
2

8
.0

0
.7
8
9

1
.0
3
7

0
.3
8
5

2
0
.6

0
.9
3
6

1
.0
0
5

0
.4
3
5

45
8

3.
0

36
.0

7.
77
5

4
.0

0
.6
4
0

1
.0
3
7

0
.3
5
3

4
.0

0
.6
4
0

1
.0
3
7

0
.3
9
2

1
8
.0

0
.9
4
0

1
.0
0
5

0
.4
5
0

46
9

3.
8

31
.4

10
.1
90

12
.6

0
.7
5
3

1
.0
3
4

0
.3
5
0

1
2
.6

0
.7
5
4

1
.0
3
4

0
.3
9
9

2
3
.0

0
.9
3
9

1
.0
0
8

0
.4
5
6

47
10

4.
0

39
.6

13
.2
41

10
.2

0
.6
9
1

1
.0
4
0

0
.3
8
9

1
0
.4

0
.6
9
2

1
.0
4
0

0
.4
7
3

2
6
.6

0
.9
3
1

1
.0
0
6

0
.4
9
8

48
11

4.
2

44
.8

63
.4
05

8
.4

0
.6
2
7

1
.0
3
6

0
.4
0
3

7
.8

0
.6
0
9

1
.0
3
8

0
.4
6
6

2
5
.4

0
.9
4
4

1
.0
0
5

0
.4
7
4

49
12

4.
6

38
.0

59
.6
99

11
.6

0
.6
6
3

1
.0
2
5

0
.3
9
7

1
1
.8

0
.6
6
4

1
.0
2
5

0
.4
7
2

2
3
.0

0
.9
1
9

1
.0
0
6

0
.4
8
8

50
13

5.
0

47
.2

67
.4
83

13
.6

0
.5
3
6

1
.0
4
1

0
.4
5
2

1
3
.4

0
.5
3
5

1
.0
4
1

0
.4
8
0

3
7
.2

0
.9
0
1

1
.0
0
7

0
.5
2
6

51
14

5.
2

47
.8

98
.2
81

8
.8

0
.6
7
7

1
.0
2
9

0
.4
3
8

8
.6

0
.6
7
7

1
.0
2
9

0
.4
8
1

3
0
.4

0
.9
3
0

1
.0
0
5

0
.5
8
7

52
15

6.
0

40
.6

26
0.
34
1

20
.2

0
.6
3
7

1
.0
3
5

0
.4
1
5

1
9
.4

0
.6
3
4

1
.0
3
5

0
.4
7
6

3
7
.0

0
.9
7
1

1
.0
0
3

0
.5
6
9

53
16

6.
6

45
.8

76
7.
33
8

19
.0

0
.6
6
3

1
.0
3
2

0
.4
6
6

1
8
.8

0
.6
5
9

1
.0
3
3

0
.4
7
6

4
1
.8

0
.9
5
6

1
.0
0
4

0
.6
0
3

54
17

6.
6

45
.6

28
40
.2
80

17
.0

0
.6
5
7

1
.0
3
0

0
.4
6
5

1
6
.6

0
.6
5
7

1
.0
3
0

0
.6
5
0

4
0
.2

0
.9
5
4

1
.0
0
6

0
.6
8
3

55
18

7.
0

40
.8

93
06
.5
10

21
.2

0
.6
8
4

1
.0
2
6

0
.5
0
7

2
0
.2

0
.6
8
3

1
.0
2
6

0
.6
0
8

4
0
.0

0
.9
8
6

1
.0
0
5

0
.6
7
2

56
19

7.
6

43
.6

10
36
2.
50
0

19
.0

0
.6
3
1

1
.0
3
6

0
.5
6
2

1
8
.8

0
.6
3
1

1
.0
3
6

0
.6
1
1

4
3
.2

0
.9
8
8

1
.0
0
6

0
.6
9
4

57
20

7.
8

26
.8

15
61
6.
60
0

18
.2

0
.7
1
3

1
.0
3
4

0
.6
1
3

1
8
.2

0
.6
8
4

1
.0
3
6

0
.6
9
0

4
0
.4

1
.1
4
1

1
.0
0
3

0
.7
7
2

A
ve
ra
ge

36
.5

24
67
.9
40

12
.6

0
.6
8
7

1
.0
3
4

0
.4
1
8

1
2
.4

0
.6
8
3

1
.0
3
4

0
.4
7
6

2
9
.1

0
.9
5
1

1
.0
0
6

0
.5
3
7

71

Table 4.6 reports the computational results for the larger sized instances with

pj ∈ (100, 200] and |B∗| (resp. |I|) varying from 21 to 2000 (resp. 8.0 to 799.6). Here,

we kept the two generation schemes with approximately equivalent scheduling horizon

and test the instances with up to 2000 batches. From Table 4.6, we can find that

CPLEX almost loses power to solve these large-size instances within 18000s but the

BPH-ECMs can obtain a set of Pareto solutions for all instances within 80 seconds.

Furthermore, the BPH-ECM3 still performs best in solution quality.

Table 4.6: Comparison results for the instances with pj ∈ (100, 200] and |B∗|=21-2000

Set |B∗| |I| Pf BPH-ECM1 BPH-ECM2 BPH-ECM3

Q CT Q CT Q CT Q CT
58 21 8.0 19.8 17160.7 16.2 0.563 16.6 0.601 36.6 0.828
59 25 9.2 5.8 18000 17.0 0.550 16.4 0.625 35.0 0.850
60 30 10.6 3.4 18000 18.8 0.607 19.0 0.636 40.0 0.963
61 40 16.2 - - 23.2 0.988 23.6 1.056 35.2 1.325
62 50 19.4 - - 24.2 1.046 24.6 1.159 38.4 1.544
63 100 39.6 - - 29.8 2.358 29.8 2.623 36.0 2.991
64 200 75.0 - - 34.6 4.794 34.6 5.768 35.8 5.900
65 500 178.6 - - 28.6 9.697 28.6 11.573 35.2 15.372
66 1000 392.4 - - 32.2 25.966 34.6 28.944 40.6 31.788
67 2000 799.6 - - 28.4 44.116 28.2 45.489 45.8 79.144
Average - - 25.3 9.068 25.6 9.847 37.9 14.070

By comparing the results of the BPH-ECMs for the instances with different gener-

ation schemes, we can observe that BPH-ECMs perform better for the instances with

less job processing time in terms of both solution quality and solution time. Taking

the average values in Tables 4.3 and 4.5 for example, we can see from Q, H and D

of the BPH-ECMs that the Pareto solutions found in the former table are more and

closer to R than that in the latter one. For the same batch number instances, we

can also observe that BPH-ECMs consume less time for the instances with less job

processing time, such as sets 19 and 52, sets 24 and 61, sets 38 and 67.

To facilitate the visualization of the solution quality comparison results, the fronts

generated by CPLEX and BPH-ECMs for different scale instances are illustrated in

Figure 4.4. Since as many as 67 different scales are involved in the study, we only

present the graphical results of three instances from sets 14, 20 and 36, respectively.

They are represented as small-, medium- and large-size instances. As shown in Figure

4.4(a) and (b), the BPH-ECMs can obtain good quality solutions that are very close

to R. Meanwhile, BPH-ECM3 achieves the best performance among the BPH-ECMs

in solution quality. From these figures, we can find a clear tradeoff between the total

electricity cost and the makespan. Such tradeoff can provide some decision-making

basis for manufactures to balance the electricity cost and production efficiency.

72

(a) small-size instance (22 jobs with pj(50,100])

(b) medium-size instance (200 jobs with pj(50,100])

(c) large-size instance (5000 jobs with pj(50,100])

400

600

800

1000

1200

1400

2300 4300 6300 8300 10300 12300

M
a
k

e
sp

a
n
 (
m

in
)

Total electricity cost (Euro cent)

CPLEX
HECM
HECM
HECM

2600

2800

3000

3200

3400

29000 31000 33000 35000 37000 39000 41000 43000 45000

M
a
k

e
sp

a
n
 (
m

in
)

Total electricity cost (Euro cent)

CPLEX
HECM
HECM
HECM

38000

38500

39000

39500

40000

595000 600000 605000 610000 615000 620000

M
a
k

e
sp

a
n
 (
m

in
)

Total electricity cost (Euro cent)

HECM
HECM
HECM

1

2

3

1

2

3

1

2

3

CPLEX
BPH-ECM1

BPH-ECM2

BPH-ECM3

CPLEX
BPH-ECM1

BPH-ECM2

BPH-ECM3

BPH-ECM1

BPH-ECM2

BPH-ECM3

Fig. 4.4: Dicovered Pareto solutions by different methods

Summing up, (1) model Pf is much more CPLEX-effective than model P ′f ; (2) the

three BPH-ECMs, taking within 80s for any given instance, is much more efficient

and stable than CPLEX in terms of running time overall instance sets; (3) the three

BPH-ECMs outperform CPLEX in terms of solution quality on large-size instances;

(4) the three BPH-ECMs perform better in the scenario with less job processing

time and BPH-ECM3 perfoms more stable than the other two methods in different

scenarios; (5) BPH-ECM3 has the best solution quality among the three methods; (6)

BPH-ECM1 and BPH-ECM2 have less running time than BPH-ECM3. Furthermore,

73

since the BPH-ECMs all are constructive, they are very easy to implement.

4.5 Conclusions

In this chapter, we have addressed a new bi-criteria single-machine batch scheduling

problem with machine on/off switching under TOU electricity prices, which aims to

minimize the TEC and makespan simultaneously. A bi-objective MILP model is pre-

sented for the problem. Then, an improved model is derived based on optimal batch

rule analysis, with which the search space for Pareto optimal solutions is greatly re-

duced. The problem is demonstrated to be strongly NP-hard. To efficiently solve the

problem, especially for medium- and large-size problem instances, a heuristic based

ε-constraint method is devised. Computational results show that the improved model

is much more efficient and that the proposed method can effectively and efficiently

solve instances with up to 5000 batches and 896 periods within relatively short time.

The corresponding work has been published in the following paper.

J. Cheng, F. Chu, M. Liu, P. Wu, and W. Xia. Bi–criteria single–machine batch

scheduling with machine on/off switching under time–of–use tariffs. Computers &

Industrial Engineering, 112:721–734, 2017.

74

Chapter 5

Parallel machine batch scheduling
under TOU tariffs

5.1 Introduction

Parallel batch processing systems representing a typical production environment are

extensively encountered in manufacturing industry [150]. As reviewed in Chapter 2,

parallel batch machine scheduling problems, which are basis of studying more compli-

cated shop scheduling problems, have been widely investigated over the past decades.

In realistic parallel batch machine systems, old manual machines and advanced new

machines are often simultaneously used by the manufacturers to reduce investment.

This leads to the different processing speed and energy consumption [98]. Under

time-of-use tariffs, designing effective scheduling schemes for parallel batch machine

systems to save energy cost can be of huge theoretical and practical significance.

Moreover, the problems studied in Chapters 3 and 4 both assumed each job has

to be completed in one work shift. However, continuously processing manufacturing

systems are more widespread and practical in real production environments. In this

Chapter, we consider a parallel batch scheduling problem where a nonpreemptive job

is allowed to be processed in multiple periods. The problem is motivated by the

scheduling challenges of ceramization operations in glass manufacturing, which also

involves different sized jobs [138]. Consequently, jobs characteristic with non-identical

sizes is incorporated to the considered problem.

In a parallel batch machine system, less number of enabled machines can help to

cut down material and labour resources investment. However, more enabled machines

may reduce total electricity cost under TOU tariffs, since more jobs can be processed

during the off-peak periods on the different machines. So there is a trade-off between

total electricity cost and number of enabled machines, which may be desired by the

75

decision makers. According to the literature, this type of problem has not been

investigated in literature.

The work in this chapter investigates a bi-objective uniform parallel batch process-

ing machine scheduling problem with non-identical job size under time-of-use tariffs

(PBMS-TOU). The objectives are to simultaneously minimize total electricity cost

and number of enabled machines. The problem consists of batching non-identical

sized jobs and allocating formed batches to parallel machines on the variable elec-

tricity pricing horizon, such that the total electricity cost and number of enabled

machines are minimized. For the problem, we firstly establish a mixed-integer lin-

ear programming model. To efficiently obtain the approximation Pareto front, we

decompose the original problem into two subproblems: batch formation and batch

allocation. Then a two-stage heuristic approach is designed, where the first (resp.

second) stage focuses on batch formation (resp. allocation).

The remainder of the chapter is organized as follows. Section 5.2 describes and

mathematically formulates the problem and demonstrates its complexity. In Section

5.3, a two-stage heuristic approach is proposed. Computational results on a case study

and random generated instances are reported in Section 5.4. Section 5.5 concludes

this work.

5.2 Problem formulation and complexity

The bi-objective uniform parallel batch scheduling problem with non-identical job

sizes under time-of-use tariffs (PBMS-TOU) can be expressed as TOU,Q|cj, B|E,N ,

where N denote the number of enabled machines. The scheduling horizon can be

divided into |I| time periods according to electricity prices and each period i is as-

sociated with a starting time si, a duration Si and a unit electricity cost ei, where

Si = si+1 − si. The unit electricity costs of two adjacent periods are different.

A set of jobs J with job j characterized by processing time pj and size cj is to

be processed on a set of available uniform batch processing machines M within the

|I| periods. The processing of each job cannot be interrupted. All the jobs can be

grouped to |B| batches (to be determined) and the capacity of each batch is C. The

processing time of batch Pb is determined by the longest processing time job in the

batch. Machine m with processing speed vm consumes amount of qm energy per unit

time. The processing time of job j on machine m is pj,m = pj/vm, and the processing

time of batch b on machine m is Pb,m = max{pj,m|j ∈ b} = max{pj|j ∈ b}/vm.

76

The objectives are to optimize the total electricity cost and number of the enabled

machines, where the electricity cost is determined by the real-time power rate of the

machine and the TOU prices. The number of the enabled machines is the used

machines for completing all jobs.

The scheduling of the problem needs to determine job assignment to batches,

batch allocation to machines and their orders on corresponding machines, such that

both electricity cost and number of enabled machines are simultaneously optimized.

5.2.1 Mathematical Modelling

To formulate the problem, we first define the following notations.

Indices:

j: index of jobs;

b: index of batches;

m: index of machines;

i: index of periods.

Parameters:

J : set of all jobs, i.e., J = {1, 2, ..., |J |};
B: set of all batches, i.e., B = {1, 2, ..., |B|};
M : set of all machines, i.e., M = {1, 2, ..., |M |};
I: set of all periods on the planning horizon, i.e., I = {1, 2, ..., |I|};
pj: processing time of job j, ∀j ∈ J ;

cj: size of job j, ∀j ∈ J ;

C: capacity of each batch;

vm: processing speed of machine m, ∀m ∈M ;

qm: power rate of machine m when processing, ∀m ∈M ;

ei: electricity cost of period i, ∀i ∈ I;

si: starting time of period i, 1 ≤ i ≤ |I|+ 1;

Si: duration of period i, ∀i ∈ I;

L: a sufficiently large integer.

Decision variables:

|B|: number of formed batches;

77

xj,b: equal to 1 if job j is processed in batch b (or to say, job j is assigned to batch

b), 0 otherwise, ∀j ∈ J,∀b ∈ B;

yb: equal to 1 if batch b is formed (or to say, batch b is not empty), 0 otherwise;

zb,m,i: equal to 1 if (any part of) batch b is processed on machine m in period i, 0

otherwise;

rb,m: equal to 1 if batch b is processed on machine m, 0 otherwise;

tb,m,i: processing time of batch b on machine m in period i;

wb,m,i: equal to 1 if batch b is processed on machine m in both periods i and i + 1, 0

otherwise;

um: equal to 1 if any batch is processed on machine m, 0 otherwise;

Pb: the processing time of batch b;

E: total energy cost for completing all jobs;

N : number of enabled machines.

Based on the above description and notations, problem PBMS-TOU can be for-

mulated as the following mixed-integer linear programming(MILP) model P ′Q.

P ′Q : min f1 = E (5.1)

min f2 = N (5.2)

s.t.
∑
b∈B

xj,b = 1, ∀j ∈ J (5.3)

Pb ≥ pjxj,b, ∀j ∈ J, ∀b ∈ B (5.4)∑
j∈J

xj,bcj ≤ Cyb, ∀b ∈ B (5.5)

tb,m,i ≤ zb,m,iL, ∀b ∈ B, ∀m ∈M, ∀i ∈ I (5.6)

rb,m ≥ zb,m,i, ∀b ∈ B, ∀m ∈M, ∀i ∈ I (5.7)∑
m∈M

rb,m = 1, ∀b ∈ B (5.8)∑
i∈I

tb,m,i ≥ Pb/vm − (1− rb,m) ∗ L, ∀b ∈ B, ∀m ∈M (5.9)∑
b∈B

tb,m,i ≤ Si, ∀m ∈M, ∀i ∈ I (5.10)

wb,m,i ≥ zb,m,i + zb,m,i+1 − 1, ∀b ∈ B, ∀m ∈M, 1 ≤ i ≤ |I| − 1 (5.11)

2 ∗ wb,m,i ≤ zb,m,i + zb,m,i+1, ∀b ∈ B, ∀m ∈M, 1 ≤ i ≤ |I| − 1 (5.12)∑
b∈B

wb,m,i ≤ 1, ∀m ∈M, 1 ≤ i ≤ |I| − 1 (5.13)

tb,m,i + tb,m,i′ + si′zb,m,i′ − si+1zb,m,i ≤ Pb + (2− zb,m,i − zb,m,i′)L,

78

∀m ∈M,∀b ∈ B, 1 ≤ i < i′ ≤ |I| (5.14)

um ≥ zb,m,i, ∀b ∈ B, ∀m ∈M, ∀i ∈ I (5.15)

E ≥
∑
i∈I

∑
m∈M

∑
b∈B

qmeitb,m,i (5.16)

N ≥
∑
m∈M

um (5.17)

xj,b, yb, zb,m,i, wb,m,i, um ∈ {0, 1} (5.18)

Pb ∈ Z+, tb,m,i, E,N ≥ 0 (5.19)

Expression (5.1) is to minimize the total electricity cost E and expression (5.2) aims

to minimize the number of enabled machines N . The constraints include two aspects:

batch formation (5.3)-(5.5) and allocating the batches to the machines on the horizon

(5.6)-(5.19). The link between batch formation and allocation is the batch processing

time Pb. The key of the batch allocation is to assign the batches on available machines

to the periods with different unit electricity cost and guarantee processing contiguity

and completion. In what follows, we detail the meaning of each constraint.

Equation (5.3) ensures that each job is assigned exactly to one batch. Equations

(5.4) presents the batch processing time and (5.5) means the batch capacity must be

respected. Equation (5.6) ensures that batch processing time equal to 0 on machine m

in period i if it is not processed on the machine in this period. Equations (5.7) means

that batch b cannot be processed on machine m in periods i if it is not processed

on this machine. Equation (5.8) guarantee that a batch is only processed on one

machine. Equation (5.9) ensures that the processing of a batch is completed within

the horizon and is equal to Pb. Equation (5.10) states that total processing time in a

period does not exceed the period’s duration if one or several batches are processed

in a period. Equations (5.11) - (5.13) are to ensure that at most one batch can be

processed across any two adjacent periods. Constraint (5.14) restricts that a batch

processed in multiple periods is not interrupted. Specifically, it states that if a batch

b is simultaneously processed in period i and i′ on machine m, i.e., zb,m,i = 1 and

zb,m,i′ = 1, then the sum of its processing times in the two periods (i.e., tb,m,i and

tb,m,i′) and the distance between i and i′ (i.e., si′ − si+1) should not be larger than

the batch processing time Pb. Equation (5.15) expresses that machine m is used if at

least one batch is processed on it. Equations (5.16) and (5.17) calculates the total

electricity and the number of enabled machines, respectively. Equations (5.18) and

(5.19) define the restrictions on the variables. Notably, the number of batches |B| is

initially set as its upper bound |J | to derive a linear model.

79

5.2.2 Further improvement of model P ′Q
Model P ′Q provided a correct mathematical formulation for the understudied problem.

However, we can observe that equation (5.14), which restricts non-preemption of the

batches that processed in multiple periods, has 0.5|M ||B|(|I|2 − |I|) constrains. The

number of constraints grows fast with the number of periods, which leads to difficulty

of solving large sized instances. This motivates us to better formulate this restriction.

By analysing the characteristics of non-preemption of a given batch b processed on a

given machine m, we find that its total number of processed periods must be less than

its total number of crossed periods plus 1 (equation 5.20). Fig. 5.1 gives an general

example, where a batch is processed in periods i to i+3. Then we have
∑i+3

l=i zb,m,l = 4

and
∑i+2

l=i wb,m,l = 3, where the difference is 1. Further guaranteeing that if a batch b

is processed in periods i− 1 and i+ 1 on a certain machine, period i on the machine

must be entirely occupied by b (equation 5.21). Then the non-preemption requirement

can be reformulated as follows.∑
i∈I

zb,m,i ≤
∑
i∈I/|I|

wb,m,i + 1, ∀b ∈ B, ∀m ∈M (5.20)

tb,m,i ≥ (zb,m,i−1 + zb,m,i+1 − 1)Si,∀b ∈ B, ∀m ∈M, 2 ≤ i ≤ |I| − 1 (5.21)

In equation (5.20), I/|I| means set I excludes period |I|. In the new formulation,

there are only |B||M |(|I| − 1) constraints.

Batch b

i i+1 i+2 i+3

... ...

Fig. 5.1: An illustration of a batch processed in multiple periods

Now the improved model PQ can be formulated as follows.

PQ : min f1 = E

min f2 = N

s.t. Constraints (5.3)-(5.13),(5.15)-(5.21).

5.2.3 Problem complexity

Theorem 5 The problem PBMS-TOU is NP-hard in the strong sense.

Proof : Consider a special case of problem PBMS-TOU that with identical machines
and only a unique pricing period in the scheduling horizon. For such a special case,

80

to optimize the single objective of total electricity cost is to obtain a batch set with
shortest total processing time. This batch formation problem corresponds to the
problem of minimizing makespan on a single batch processing machine with non-
identical job sizes, which has been proved to be NP-hard by Uzsoy [129]. Since the
special case is strongly NP-hard, the theorem holds. �

5.3 Solution method

In model PQ, there are |J |2+(2|M ||I|+1)|J |+|M | binary variables, (|M ||I|+1)|J |+2

real variables and |J |2 + |J ||M |(6|I| − 2) + 4|J |+ 2|M ||I| − |M | constraints. Take an

instance with |J | = 10, |M | = 10 and |I| = 10 for an example, there are 2120 binary

variables, 1012 real variables and 6130 constraints. According to our preliminary

experiments, it is computationally expensive to solve model PQ due to its complexity.

Moreover, it can be observed from the model that tb,m,i and Pb are two key variables for

PBMS-TOU optimization. To determine tb,m,i, we have to know the batch processing

time Pb and its allocation to machine. This inspires us to decompose model problem

into two sub-problems: batch formation and batch allocation. The former focuses on

grouping job into batches; and the second stage allocates the formed batches to the

parallel machines on the scheduling horizon. The structure of problem decomposition

and the resulting two-stage heuristic approaches are illustrated in Fig. 5.2. Note that

the two-stage heuristic approaches have two version, i.e., PQf -PQa and SKM-PQa,
which are different with each other in the solution methods for batch formation.

Sub-problem 1:
Batch Formation

Problem
decomposition

Sub-problem 2:
Batch Allocation

Methods for each
sub-problem

PQf linear
programming
based method

Successive
knapsack based
method (SKM)

PQa linear
programming
based method

Two-stage heuristic
approaches

PQf-PQa

SKM-PQa

Fig. 5.2: Structure of problem decomposition and two-stage heuristic approaches

5.3.1 Methods for sub-problem 1: batch formation

Two batch formation methods are developed in this work. The first one is based

on linear programming optimization model that solved by CPLEX; the second is

81

successive knapsack based method (SKM).

5.3.1.1 Linear programming model based batch formation

For batching the jobs, we can observed from model PQ that batch processing time

Pb is a crucial element, and lower total batch processing time may help for using less

number of enabled machine N . Consequently, we set the objective for the first sub-

problem as minimizing total batch processing time, denoted by T . Then the linear

programming model for batch formation can be expressed as PQf :

PQf : minT =
∑
b∈B

Pb (5.22)

s.t. Constraints (5.3)-(5.5).

by exactly solving model PQf , we can obtain the minimum total batch processing

time T and corresponding batch set B.

5.3.1.2 Successive knapsack based batch formation

Successive knapsack based method (SKM) is a heuristic method for batch formation

with the objective of minimizing total batch processing time, i.e., heuristically solve

problem PQf . By observing PQf , we find that it can be regarded as minimizing

maximum completion time of batches in single machine environment where jobs are

available at time 0, i.e., no machine idle time will exist between processing batches.

Further considering constraints (5.3)-(5.5), batch formation problem in this work can

be equivalent to optimizing makespan on a single batch processing machine with

non-identical job sizes, i.e., 1|cj, B|Cmax. This latter problem has been proved to be

equivalent to minimizing total waste space of all batches, i.e.,
∑

b∈B(WSb) [30], [143],

where waste space of batch b (WSb) is defined by formula 5.23 and illustrated with

an example in Fig. 5.3.

WSb = C · Pb −
∑
j∈b

cj · pj (5.23)

Inspired by the idea of minimizing
∑

b∈B(WSb), we propose to obtain the minimum

total batch processing time by solving successive knapsack problems. It aims to

maximize the occupied area of assigned jobs, i.e.,
∑

j∈b cj · pj, in batch b, b ∈ B.

Consequently, the jobs can be regarded as items with weight cj and value cj · pj. The

batches are considered as knapsacks. Each knapsack has to be firstly filled by the

82

Job1

Job2
Job4

Job5

Job6

Job3
WS1 WS2 WS3

C
Batch 1 Batch 2 Batch 3

Processing time

Size

0
P2P1 P3

Fig. 5.3: An illustration of WSb

unassigned longest processing time job f , then the residual capacity of the knapsack

is C − cf . The corresponding 0-1 knapsack problem can be expressed as follows:

PKPb
: max

∑
j∈J\f

(pjcj)xj

s.t.
∑
j∈J\f

cjxj ≤ C − cf

xj ∈ {0, 1}

where xj is a binary variable which equals to 1 if job j is filled to batch b, 0 otherwise.

The knapsacks will be sequentially used until all the jobs are assigned. Then the total

number of used knapsacks, i.e., number of constructed batches |B|, can be obtained.

The successive knapsack based method is presented in Algorithm 5.4.

Algorithm 5.4: successive knapsack based method

1: consider job j, j ∈ J to be batched as an item with value pj · cj and weight cj,
sort them in non-decreasing order of pj; and set batch index b = 1;

2: select the first job f from set J , solve the knapsack problem PKPb
with residual

capacity C − cf ;
3: form batch b that has processing time Pb = pf with selected jobs in PKPb

;
4: update set J by removing the selected jobs;
5: if J 6= ∅, let b = b + 1 and go to step 2; otherwise, output formed batches and

their processing Pb.

Fig. 5.4: successive knapsack based method

Denote the batch set obtained by Algorithm 5.4 as B′ and its total processing

time as T ′, then we have T ′ =
∑

b∈B′ Pb. Next, we focus on assign the formed batches

to the scheduling horizon on the available machines.

83

5.3.2 Method for sub-problem 2: batch allocation

With the solution results of sub-problem 1, batch formation is determined. Each

batch can be considered as a job and its processing time as a parameter. Then

sub-problem 2 can be formulated as model PQa.

PQa : min f1 = E

min f2 = N

s.t. Constraints (5.6)-(5.8),(5.10)-(5.13), (5.15)-(5.21) and∑
i∈I

tb,m,i ≥ rb,mPb/vm,∀b ∈ B, ∀m ∈M (5.24)

Constraint (5.24) is a modified version of constraint (5.9) since Pb is considered as a

parameter. To solve the bi-objective model PQa, an ε-constraint method is adapted

in this work. By selecting total electricity cost E as the preferred objective, PQa can

be transformed into a series of single objective problems PQa(ε)’s.

PQa(ε) : minE

s.t. Constraints (5.6)-(5.8),(5.10)-(5.13), (5.15)-(5.21), (5.24) and

N ≤ ε (5.25)

where the range of ε is limited by the ideal and nadir values of N , i.e., N I ≤ ε ≤ NN .

N I and NN can be calculated by solving the following three problems presented in

Definition 7 of Chapter 2.

P1
Qa : EI = minE s.t. Constraints (5.6)-(5.8), (5.10)-(5.13), (5.15)-(5.21) and (5.24)

P2
Qa : N I = minN s.t. Constraints (5.6)-(5.8),(5.10)-(5.13), (5.15)-(5.21) and (5.24)

P3
Qa : NN = minN s.t. Constraints (5.6)-(5.8),(5.10)-(5.13), (5.15)-(5.21), (5.24)

and E = EI

The value of ε is initialized as NN − 1 in the first iteration. Then in (k + 1)-th

iteration, εk+1 is set as Nk − 1, where Nk is obtained from the solution of PQa(ε) in

k-th iteration.

Now the ε-constraint method for model PQa can be summarized as Algorithm 5.5.

With the above models and Algorithm 5.5, the completed two-stage heuristic

approach can be concluded as Algorithm 5.6.

84

Algorithm 5.5: ε-constraint method for model PQa

1: set A′ = ∅ and k = 1;
2: exactly solve the models P 1

Qa, P
2
Qa and P 3

Qa to obtain EI , N I and NN ;
3: set A′ = (EI , NN), and εk = NN − 1;
4: while εk ≥ N I do
5: solve problem PQa(εk) exactly to obtain Ek, and calculate Nk with the solution

of PQa(εk);
6: add (Ek, Nk) to set A′, and let εk+1 = Nk − 1, reset k = k + 1;
7: end while
8: remove dominated points from A′ if any and obtain the Pareto optimal set A.

Fig. 5.5: ε-constraint method for model PQa

Algoirthm 5.6: Two-stage Heuristic approach for PBMS-TOU

1: form the batches with model PQf (resp. SKM) and output formed batch b and
its processing time Pb, where b ∈ B (resp. b ∈ B′);

2: construct model PQa with b and Pb, where b ∈ B (resp. b ∈ B′); then call
Algorithm 5.5 to obtain batch schedules and the corresponding approximation
set A for problem PBMS-TOU.

Fig. 5.6: Two-stage Heuristic approach for PBMS-TOU

5.4 Computational results

In this section, a real-life case and random generated instances are tested to validate

the effectiveness of the proposed models and two-stage heuristic approach. The for-

mulated models are coded in C++ and solved by commercial optimization software

CPLEX 12.6. The algorithms are coded in C++ and the embedded 0-1 knapsack

problem is solved by calling the exact algorithm developed by David Pisinger [112].

All the experiments are implemented o a PC with 1.7 GHz Intel i5-3317U CPU and

3.12 GB RAM. The quality of the obtained solution sets are evaluated with the num-

ber of solutions Q, hypervolume ration H and the average e-dominance indicator D.

CT denotes the CPU time consumed by the proposed methods. The computational

time for each instances is limited in 3600 s.

85

5.4.1 A case study

The example is originated from a glass production company in Shanghai, China [138],

where furnaces (batch machines) are a key resource of the manufacturing process.

They have a fixed capacity that can contain different sized glasses for simultaneous

processing. The furnaces that can complete the same operation have different speeds

and energy consumption rates, which is corresponding to a batch processing parallel

machines scheduling problem.

In the case, there are 30 glasses need to be ceramization in two furnaces within

300 minutes, where three pricing periods are involved. The detailed job information

and period information are presented in Table 5.1. Fig. 5.7 provide a visualization

of the jobs. The jobs are batched on a pallet then put into the furnace. The capacity

of each pallet is 24. The power rate of the first furnace is 90 kW with speed rate

equalling to 2, and the second one has speed rate equalling to 1 and consume 66 kW

power each unit time.

Table 5.1: The detailed data of the case
Job type pj cj Number of jobs Period No. Si ei

1 20 3 14 1 120 0.7
2 40 6 10 2 100 1.2
3 80 12 3 3 80 0.3
4 100 18 3 - - -

Type 1 Job Type 2 Job
Type 4 Job

Type 3 Job

Pallet

Fig. 5.7: The examples of batch combinations of the four job types [138]

86

The computational results are shown in Table 5.2, where (E,N) denotes the ob-

tained objective vectors. Note that the bi-objective model P ′Q and PQ are solved by

adapting the framework of exact ε-constraint method. We can find that model PQ
is much efficient than P ′Q, which owes to the effective reformulation that has much

less constraints. By decomposing the problem into two stages, the computational

time is further reduced since PQf -PQa consumes 60 seconds less than PQ. Moreover,

batching the jobs with successive knapsack based method (SKM) is much faster than

directly solving the linear programming model PQf . In terms of solution quality, the

four methods obtain the same solutions. That is, the two-stage heuristic methods,

i.e., PQf -PQa and SKM-PQa, have obtain the Pareto front for the studied case. Com-

paring the two solutions, we can find that enabling two machines can reduce 3360

RMB Yuan electricity cost than the circumstance where only one machine is involved

for processing.

Table 5.2: The solutions and computation time of each method
P ′Q PQ PQf -PQa SKM-PQa

CT 65.81 65.36 5.29 0.30
(E,N) (15000,2) (15000,2) (15000,2) (15000,2)

(18360,1) (18360,1) (18360,1) (18360,1)

The detailed solution information is illustrated in Table 5.3 and Fig. 5.8. Table 5.3

shows that there are 8 formed batches, whose total processing time equals to 560 min.

All the batches can be completed processing either on one machine or two machines.

The two schedules are graphically described by Fig. 5.8. Note that since the speed

rate of the first machine is 2, the processing time of batch b, b = 1, 2, ..., 8, on the

machine is Pb/2. For example, in solution 1, batch 8 consumes 20 minutes on machine

2; while in solution 2, its processing can be completed in 10 minutes on machine 1. In

addition, when only one machine is enabled, the first furnace is selected, which has

higher speed and lower cost for completing a unit processing time.

Table 5.3: The detailed batch information
Batch No. Job type in the batch Batch size Pb

1 4,2 24 100
2 4,2 24 100
3 4,2 24 100
4 3,3 24 80
5 3,2,2 24 80
6 2,2,2,2 24 40
7 2,1,1,1,1,1,1 24 40
8 1,1,1,1,1,1,1,1 24 20

87

8 6 7

4 51 2 3

86 7 4 51 2 3

Solution 1: E=15468, N=2

Solution 2: E=18360, N=1

0 120 220 300

Machine 1

Machine 2

Machine 1

Machine 2

b Batch b

Fig. 5.8: The schedules for the formed batches

5.4.2 Random test instances

In this section, random test instances are used to examine the performance of the

proposed methods, which are generated according to the characteristics of the studied

case. The number of jobs increases from 10 to 40. The characteristics of the jobs, i.e.,

processing time and size, are generated as the four types of jobs in the studied case.

The length of the scheduling horizon s|I|+1 is set as 300 min. The electricity pricing

scheme are the same as the studied case. The number of machines is generated as

|M | = α
∑

j∈J pjcj/(Cs|I|+1), where α is a positive factor that reflects the resource

scarcity and randomly generated between 2 to 5. The processing speed rate vm of

machine m varies from 1 to 3. After generating the speeds for all machines, we sort

all the machines in non-increasing order of their speed, i.e., v1 ≥ v2 ≥ ... ≥ v|M |.

Since higher speed generally results in greater power consumption in real-life, the

power consumption is generated as qm−1 = qm + rdm, where q|M | = 66kw/h according

to the real-life example and rdm is a random parameter generated between 0 to 30.

The computational results are reported in Tables 5.4 to 5.6. In the tables, the bi-

objective models P ′Q and PQ are transformed into single objective problems with

exact ε-constraint method, and each single objective problem is solved by CPLEX

12.6.

The computational results for small sized instances are shown in Tables 5.4 and

5.5. Comparing the results obtained by the two models in Table 5.4, it can be

observed that the improved model is more efficient than the basic one, and model P ′Q
even fails to find a solution for the instances with up to 15 jobs. Q, H, D are the

performance metrics for evaluating the solution equality, and the Pareto optimal set

obtained by the improved model PQ is set as the reference set. From the table, we can

find that number of solutions find by different method is the same, and hypervolume

88

ratio H and average e-dominance indicator D both equal to 1. This indicates that

all the methods have obtained the same solutions, i.e., found the Pareto front. In

terms of solution efficiency, we can find that for each method, the computational

time increases with the problem size. Both two-stage heuristic approaches consume

far less time than the models, which demonstrates the effectiveness of the problem

decomposition. Moreover, SKM-PQa can solve most of the problems faster than

PQf -PQa, because successive knapsack based method is more efficient than the linear

programming model.

Table 5.4: Comparison results for small sized instances

|J | P ′Q PQ PQf -PQa SKM-PQa

Q CT Q CT Q H D CT Q H D CT
10 3 5.05 3 2.03 3 1.000 1.000 0.45 3 1.000 1.000 0.52
11 2 0.48 2 0.55 2 1.000 1.000 0.31 2 1.000 1.000 0.16
12 3 99.98 3 1.56 3 1.000 1.000 0.50 3 1.000 1.000 0.33
13 3 333.70 3 1.81 3 1.000 1.000 0.66 3 1.000 1.000 0.34
14 4 364.16 4 30.53 4 1.000 1.000 1.03 4 1.000 1.000 0.78
15 - 3600.00 3 211.86 3 1.000 1.000 2.53 3 1.000 1.000 1.55

Average 733.90 41.39 1.000 1.000 0.91 1.000 1.000 0.61

Table 5.5 reports the obtained solutions of the instances in Table 5.4. N and

E denote the number of enabled machines and total electricity cost. It is obvious

that there is a trade-off between the two objective values. Specifically, lower total

electricity cost can be obtained when more machines are enabled.

Table 5.5: Solutions for small sized instances
|J | N E |J | N E
10 1 15000 13 1 13200

2 12959 2 10984
3 12472 3 10868

11 1 7238 14 1 11880
2 7051 2 8949

3 8424
4 8259

12 1 11484 15 2 15475
2 9762 3 14768
3 9393 4 14680

Table 5.6 presents the computational results on larger sized instances. Since there

are limited number of solutions for each set of instances, the detail information of

the obtained solution set is provided. In the table, UB is the upper-bound of model

PQ obtained by CPLEX within the limited computational time. CT(*) denote the

89

Table 5.6: Comparison results for larger sized instances

|J | N PQ PQf -PQa SKM-PQa

UB CT E CT(PQf) CT(PQa) CT E CT(SKM) CT(PQa) CT
16 1 - 3600 11232 0.23 0.72 0.95 11232 0.00 0.72 0.72

2 - 7881 7881
3 - 6225 6225
4 6204 6204 6204

20 2 - 3600 39390 1.09 5.59 6.69 39390 0.02 4.86 4.88
3 - 34238 34238
4 - 32573 32573
5 - 31292 31292
6 30824 30824 30824

24 2 - 3600 50328 1.89 12.28 14.17 50328 0.00 13.78 13.78
3 - 40380 40380
4 - 36256 36256
5 - 34664 34664
6 - 33815 33815
7 33515 33515 33515

28 2 - 3600 50544 3.17 10.31 13.48 50544 0.00 10.80 10.80
3 - 39804 39804
4 - 37074 37074
5 - 35460 35460
6 - 34560 34560
7 34380 34320 34320

32 2 - 3600 47040 1.86 21.38 23.23 47040 0.00 15.45 15.45
3 - 37072 37072
4 - 35082 35082
5 - 33491 33491
6 - 32296 32296
7 31672 31672 31672

36 2 - 3600 32790 21.95 22.75 44.70 32790 0.00 20.11 20.11
3 - 28840 28840
4 - 26365 26365
5 - 24831 24831
6 24720 24720 24720

40 3 - 3600 52988 231.68 40.92 272.61 52988 0.00 42.00 42.00
4 - 47083 47083
5 - 44194 44194
6 - 42521 42521
7 - 41177 41177
8 - 40490 40490
9 40065 40065 40065

90

computational time spent by method *. Due to the complexity of problem PBMS-

TOU, the improved model is failed to obtain the Pareto front for any set of the

instances. According to our observation on the experiments, it is because the lower

bound converges very slow. However, the two-stage heuristic approaches are able to

find the solutions within 280 s. The solution set obtained by both two-stage heuristic

methods are the same, and SKM-PQa spent less time than PQf -PQa, because the

SKM is more efficient than PQf .

5.5 Conclusions

This chapter investigates a parallel batch processing machine scheduling problem un-

der TOU tariffs with non-identical job sizes and processing contiguity requirement.

The objectives are to minimize total electricity cost and number of enabled machines.

We first formulated a mixed integer linear programming model for the problem. Then

the model is further improved with processing contiguity reformulation. A two-stage

heuristic approach is developed to efficiently find the optimal or near optimal solu-

tions, where the first stage aims to form the batches and the second stage allocates the

batches to the machines on the scheduling horizon. For the first stage, a linear pro-

gramming based method (PQf) and a successive knapsack based method (SKM) are

developed to construct the batches; then the batches are scheduled to the machines by

solving a bi-objective linear programming model PQa with ε-constraint method. Thus

two versions of heuristic approach are resulted, i.e., PQf -PQa and SKM-PQa. The per-

formance of the proposed methods is evaluated by a case study and random generated

instances. The computational results show that the improved model is more efficient

than the original one, and the two-stage heuristic approach can find the very good

quality solutions. In addition, SKM-PQa is much efficient than PQf -PQa, especially

for large sized instances. Part of this work has been published in the following papers.

J. Cheng, F. Chu, and M. Zhou. An improved model for parallel machine scheduling

under time–of–use electricity price. IEEE Transactions on Automation Science and

Engineering, DOI:10.1109/TASE.2016.2631491, 2017.

J. Cheng, F. Chu, M. Liu , and W. Xia. Single–machine batch scheduling under

time–of–use tariffs: new mixed–integer programming approaches. In 2016 IEEE In-

ternational conference on Systems, Man, and Cybernetics, Budapest, Hungary, pages

3498–3503, 2016.

91

92

Chapter 6

Conclusions and perspectives

This thesis investigates several bi-objective batch scheduling problems under time-of-

use (TOU) electricity tariffs, which aim to design production plans for batch process-

ing machines under fluctuating electricity prices, with the objectives of simultaneously

optimizing total electricity cost and production efficiency or resource. For each of the

considered problems, appropriate mathematical models were formulated, the problem

complexities were demonstrated, and problem characteristic based solution methods,

including knapsack heuristic based ε-constraint method, multiple knapsack heuris-

tic based ε-constraint method, bin-packing heuristic based ε-constraint method and

two-stage heuristic based iterative search algorithm, were developed. The problem

properties were also analysed to help resolve the problems. Computational results

on randomly generated instances showed that the proposed methods outperform the

state-of-the-art solver CPLEX.

We first considered scheduling a single batch processing machine under time-of-

use tariffs with the objectives of minimizing total electricity cost and makespan. A

mixed-integer linear programming (MILP) model was formulated for the problem.

Then the model was tightened based on property analysis and the studied problem

was proved to be NP-hard. Two efficient heuristic based ε-constraint methods (ECM),

i.e., knapsack heuristic based ECM (KH-ECM) and multiple knapsack heuristic based

ECM (MKH-ECM), were respectively developed to find approximation Pareto fronts

for the problem. The computational results on random generated instances show the

effectiveness and efficiency of the proposed methods compared with the commercial

solver CPLEX. Specifically, the first algorithm spends less than two minutes for all

instances and achieved better quality solutions than CPLEX for large-size problems.

The second one can almost find exact Pareto front within one minute, while CPLEX

consumed near five hours for a medium-size instance.

93

Subsequently, to further optimize non-processing energy consumption, the previ-

ous problem was extended to a single batch machine scheduling problem with machine

on/off switching under TOU tariffs. The objectives are to optimize total electricity

cost and makespan. The problem was firstly formulated as a bi-objective MILP model.

Then an improved model was proposed based on the optimal batch rule demonstra-

tion, which significantly reduced solution search space. A bin-packing heuristic based

ε-constraint method (BPH-ECM) was developed for the problem. The proposed

method can find a set of efficient solutions within 5 minutes for the instance up to

5000 batches, while CPLEX failed to find any solution for instances with 120 batches.

Finally, we studied a bi-objective parallel batch processing machine scheduling

problem with non-identical job sizes under TOU tariffs to minimize total electricity

cost and number of enabled machines. A bi-objective MILP model was formulated

for the problem and then a two-stage MILP model was further proposed to quickly

generating optimal or near-optimal solutions. A two-stage heuristic based iterative

search algorithm was developed to find the approximation Pareto front. The compu-

tational results on a case study and randomly generated instances demonstrated the

well performance of the proposed methods.

Batch scheduling considering energy saving is receiving increasing attention due

to the necessity of environmental protection and sustainability development. This

dissertation is an attempt and exploration of energy cost savings under time-of-use

electricity pricing, which can help enterprises reduce their energy bills. However,

there is still enough space for conducting further research.

1) In the present works, the proposed solution methods find the approximation

Pareto fronts by transforming a multi-objective problem into a series of single objec-

tive ones with the framework of scalarization methods, and then heuristically solving

the single objective problems successively. In the future, we may combine the pro-

posed problem characteristics with other sophisticated meta-heuristics (e.g. NSGA-II,

SPEA2) to further improve the solution quality for the problem. Especially for the

problem studied in Chapter 5, it is necessary to develop more efficient method for

large sized problems. By analysing the problem property, an intuitive idea is to assign

the batches to the periods with lower processing cost while ensuring the continuous

processing and non-preemption.

2) For large sized batch scheduling problems under TOU tariffs, the solution

quality evaluation is always a question since MILP models failed to obtain optimal

solutions. Consequently, it is meaningful to continue developing exact multi-objective

optimization methods that can efficiently find the exact Pareto fronts for large sized

94

problems. Alternatively, proposing good lower bound for the bi-objective problems

also can be useful to evaluate how far the obtained solution set from the Pareto

optimal solution set.

3) The technique of the mathematical formulation and heuristic approaches can

be adapted to more complicated problems, such as the problems involving other

machine environments (e.g., unrelated parallel machines, flow shop, job shop), and

job characteristics (e.g., dynamic release times, non-identical due dates). More regular

objective functions (e.g., total completion time, maximum lateness) and production

features (e.g., serial batching, maintenance activity) also deserve investigation under

TOU tariffs.

4) In many countries, other Demand Response strategies, such as Peak Load Pric-

ing (PLP) and Real-Time Pricing (RTP), are also extensively encountered. Different

from TOU tariffs that set the prices and pricing periods in advance, RTP provides

volatile prices that may hourly or daily change. It is a challenge to explore schedul-

ing approaches for production enterprises under such electricity pricing scheme, where

stochastic optimization methods can be one possible option for solving the problems.

5) In the context of sustainable development, it would be significant to incorporate

other environmental related criteria into the optimization framework. These criteria

can be carbon emissions reduction, liquid consumption minimization, and material

loss optimization, etc.

95

96

Bibliography

[1] Hamid Abedinnia, Christoph H. Glock, Michael Schneider, and Eric H. Grosse.

Machine scheduling problems in production: A tertiary study. Computers &

Industrial Engineering, 2017.

[2] Energy Information Administration. Annual energy outlook 2015 - with pro-

jections to 2040. Technical report, Energy Information Administration, 2015.

[3] Energy Information Administration. International energy outlook 2017. Tech-

nical report, EIA, 2017.

[4] Paolo Albertelli. Energy saving opportunities in direct drive machine tool spin-

dles. Journal of Cleaner Production, 165:855–873, 2017.

[5] Eric Angel, Evripidis Bampis, and Vincent Chau. Low Complexity Scheduling

Algorithm Minimizing the Energy for Tasks with Agreeable Deadlines. Springer

Berlin Heidelberg, 2012.

[6] Eric Angel, Evripidis Bampis, Vincent Chau, and Dimitrios Letsios. Through-

put Maximization for Speed–Scaling with Agreeable Deadlines. Springer Berlin

Heidelberg, 2013.

[7] Eric Angel, Evripidis Bampis, Vincent Chau, and Nguyen Kim Thang. Through-

put Maximization in Multiprocessor Speed–Scaling. Springer International Pub-

lishing, 2014.

[8] Eric Angel, Evripidis Bampis, Fadi Kacem, and Dimitrios Letsios. Speed scaling

on parallel processors with migration. Lecture Notes in Computer Science,

7484(1):128–140, 2011.

[9] Asia Pacific Energy Research Centre APERC. Apec energy demand and supply

outlook – 5th edition. Technical report, Asia–Pacific Economic Cooperation,

2013.

97

[10] José Elias C. Arroyo and Y. T. Leung. An effective iterated greedy algorithm

for scheduling unrelated parallel batch machines with non–identical capacities

and unequal ready times. Computers & Industrial Engineering, 105:84–100,

2017.

[11] José Elias C. Arroyo and Y. T. Leung. Scheduling unrelated parallel batch pro-

cessing machines with non–identical job sizes and unequal ready times. Com-

puters & Operations Research, 78:117–128, 2017.

[12] Meral Azizoglu and Scott Webster. Scheduling a batch processing machine

with non–identical job sizes. International Journal of Production Research,

38(10):2173–2184, 2000.

[13] Evripidis Bampis, Dimitrios Letsios, Ioannis Milis, and Georgios Zois. Speed

Scaling for Maximum Lateness. Springer Berlin Heidelberg, 2013.

[14] Philippe Baptiste and Antoine Jouglet. On minimizing total tardiness in a serial

batching problem. RAIRO-Operations Research, 35(1):107–115, 2001.

[15] S Bechikh, L Ben Said, and K Ghedira. Estimating nadir point in multi–

objective optimization using mobile reference points. In Evolutionary Compu-

tation, pages 1–9, 2010.

[16] Abderrahmane Bensmaine, Mohammed Dahane, and Lyès Benyoucef. A non-

dominated sorting genetic algorithm based approach for optimal machines se-

lection in reconfigurable manufacturing environment. Computers & Industrial

Engineering, 66(3):519–524, 2013.

[17] Jorne Van Den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeule-

meester, and Liesje De Boeck. Personnel scheduling: A literature review. Eu-

ropean Journal of Operational Research, 226(3):367–385, 2013.

[18] Jean-François Bérubé, Michel Gendreau, and Jean-Yves Potvin. An exact ε–

constraint method for bi–objective combinatorial optimization problems: Ap-

plication to the traveling salesman problem with profits. European Journal of

Operational Research, 194(1):39–50, 2009.

[19] AAG Bruzzone, D Anghinolfi, M Paolucci, and F Tonelli. Energy–aware

scheduling for improving manufacturing process sustainability: A mathemat-

ical model for flexible flow shops. CIRP Annals–Manufacturing Technology,

61(1):459–462, 2012.

98

[20] Massimiliano Caramia and Paolo DellÂ´Olmo. Multi–objective Management in

Freight Logistics. Springer London, 2008.

[21] Vijaya Chandru, C-Y Lee, and Reha Uzsoy. Minimizing total completion time

on batch processing machines. International Journal of Production Research,

31(9):2097–2121, 1993.

[22] Vijaya Chandru, Chung-Yee Lee, and Reha Uzsoy. Minimizing total completion

time on a batch processing machine with job families. Operations Research

Letters, 13(2):61–65, 1993.

[23] P.-Y. Chang, P. Damodaran, and S. Melouk. Minimizing makespan on paral-

lel batch processing machines. International Journal of Production Research,

42(19):4211–4220, 2004.

[24] A. Charnes and W. W. Cooper. Management models and industrial applications

of linear programming. John Wiley & Sons volumes I and II, New York, 1961.

[25] A. Charnes, W. W. Cooper, and R. O. Ferguson. Optimal estimation of execu-

tive compensation by linear programming. Management Science, 1(2):138–151,

1955.

[26] Ada Che, Ke Lv, Eugene Levner, and Vladimir Kats. Energy consumption

minimization for single machine scheduling with bounded maximum tardiness.

In IEEE International Conference on Networking, Sensing and Control, pages

146–150, 2015.

[27] Ada Che, Xueqi Wu, Jing Peng, and Pengyu Yan. Energy–efficient bi–objective

single–machine scheduling with power–down mechanism. Computers & Opera-

tions Research, 85:172–183, 2017.

[28] Ada Che, Yizeng Zeng, and Ke Lyu. An efficient greedy insertion heuristic for

energy–conscious single machine scheduling problem under time–of–use elec-

tricity tariffs. Journal of Cleaner Production, 129:565–577, 2016.

[29] Huaping Chen, Bing Du, and George Q Huang. Metaheuristics to minimise

makespan on parallel batch processing machines with dynamic job arrivals.

International Journal of Computer Integrated Manufacturing, 23(10):942–956,

2010.

99

[30] Huaping Chen, Bing Du, and George Q Huang. Scheduling a batch processing

machine with non–identical job sizes: a clustering perspective. International

journal of production research, 49(19):5755–5778, 2011.

[31] Ba Yi Cheng, Y T. Leung, and Kai Li. Integrated scheduling on a batch machine

to minimize production, inventory and distribution costs. European Journal of

Operational Research, 258(1):104–112, 2016.

[32] Junheng Cheng, Feng Chu, Chengbin Chu, and Weili Xia. Bi–objective op-

timization of single–machine batch scheduling under time–of–use electricity

prices. RAIRO – Operations Research, 50(4–5):715–732, 2016.

[33] S.H. Chung, Y.T. Tai, and W.L. Pearn. Minimising makespan on parallel batch

processing machines with non–identical ready time and arbitrary job sizes. In-

ternational Journal of Production Research, 47(18):5109–5128, 2009.

[34] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga. Handling multiple objec-

tives with particle swarm optimization. IEEE Transactions on Evolutionary

Computation, 8(3):256–279, 2004.

[35] Yunfei Cui, Zhiqiang Geng, Qunxiong Zhu, and Yongming Han. Review: Multi–

objective optimization methods and application in energy saving. Energy,

125:681–704, 2017.

[36] Piotr Czyz˙zak and Adrezej Jaszkiewicz. Pareto simulated annealing–a meta-

heuristic technique for multiple –objective combinatorial optimization. Journal

of Multi–criteria Decision Analysis, 7, 1998.

[37] Min Dai, Dunbing Tang, Adriana Giret, Miguel A. Salido, and W. D. Li.

Energy–efficient scheduling for a flexible flow shop using an improved genetic–

simulated annealing algorithm. Robotics & Computer Integrated Manufacturing,

29(5):418–429, 2013.

[38] Purushothaman Damodaran and Ping Yu Chang. Heuristics to minimize

makespan of parallel batch processing machines. International Journal of Ad-

vanced Manufacturing Technology, 37(9–10):1005–1013, 2008.

100

[39] Purushothaman Damodaran, Don Asanka Diyadawagamage, Omar Ghrayeb,

and Mario C. Vélez-Gallego. A particle swarm optimization algorithm for min-

imizing makespan of nonidentical parallel batch processing machines. Inter-

national Journal of Advanced Manufacturing Technology, 58(9–12):1131–1140,

2012.

[40] Purushothaman Damodaran, Neal S Hirani, and Mario C Velez-Gallego.

Scheduling identical parallel batch processing machines to minimise makespan

using genetic algorithms. European J of Industrial Engineering, 3(2):187–206,

2009.

[41] Purushothaman Damodaran, Praveen Kumar Manjeshwar, and Krishnaswami

Srihari. Minimizing makespan on a batch–processing machine with non–

identical job sizes using genetic algorithms. International Journal of Production

Economics, 103(2):882–891, 2006.

[42] Indraneel Das and John E Dennis. A closer look at drawbacks of minimizing

weighted sums of objectives for pareto set generation in multicriteria optimiza-

tion problems. Structural optimization, 14(1):63–69, 1997.

[43] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist mul-

tiobjective genetic algorithm: Nsga-II. IEEE Transactions on Evolutionary

Computation, 6(2):182–197, 2002.

[44] Kalyanmoy Deb. Multiobjective optimization using evolutionary algorithms.

Computational Optimization & Applications, 39(1):75–96, 2001.

[45] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A Fast

Elitist Non-dominated Sorting Genetic Algorithm for Multi–objective Optimiza-

tion: NSGA–II. Springer Berlin Heidelberg, 2000.

[46] Emrah Demir, Tolga Bektaş, and Gilbert Laporte. The bi–objective pollution–

routing problem. European Journal of Operational Research, 232(3):464–478,

2014.

[47] Hongwei Ding, Lyès Benyoucef, and Xiaolan Xie. A simulation-based multi-

objective genetic algorithm approach for networked enterprises optimization.

Engineering Applications of Artificial Intelligence, 19(6):609–623, 2006.

101

[48] Jian Ya Ding, Shiji Song, and Cheng Wu. Carbon–efficient scheduling of flow

shops by multi–objective optimization. European Journal of Operational Re-

search, 248(3):758–771, 2016.

[49] Jian Ya Ding, Shiji Song, Rui Zhang, Raymond Chiong, and Cheng Wu. Par-

allel machine scheduling under time–of–use electricity prices: New models and

optimization approaches. IEEE Transactions on Automation Science and En-

gineering, 13:1138 – 1154, 2016.

[50] Lionel Dupont and Clarisse Dhaenens-Flipo. Minimizing the makespan on a

batch machine with non–identical job sizes: an exact procedure. Computers &

Operations Research, 29(7):807–819, 2002.

[51] Lionel Dupont and Fariborz Jolai Ghazvini. Minimizing makespan on a single

batch processing machine with non–identical job sizes. Journal européen des

systèmes automatisés, 32(4):431–440, 1998.

[52] Masoud Esmaili, Heidar Ali Shayanfar, and Nima Amjady. Multi–objective

congestion management incorporating voltage and transient stabilities. Energy,

34(9):1401–1412, 2009.

[53] Kan Fang, Nelson Uhan, Fu Zhao, and John W Sutherland. A new approach

to scheduling in manufacturing for power consumption and carbon footprint

reduction. Journal of Manufacturing Systems, 30(4):234–240, 2011.

[54] Kan Fang, Nelson A Uhan, Fu Zhao, and John W Sutherland. Flow shop

scheduling with peak power consumption constraints. Annals of Operations

Research, 206(1):115–145, 2013.

[55] Kan Fang, Nelson A Uhan, Fu Zhao, and John W Sutherland. Scheduling on

a single machine under time–of–use electricity tariffs. Annals of Operations

Research, 238(1–2):199–227, 2016.

[56] MP Fanti, B Maione, G Piscitelli, and B Turchiano. Heuristic scheduling of

jobs on a multi–product batch processing machine. International Journal of

Production Research, 34(8):2163–2186, 1996.

[57] Christian Gahm, Florian Denz, Martin Dirr, and Axel Tuma. Energy–efficient

scheduling in manufacturing companies: A review and research framework. Eu-

ropean Journal of Operational Research, 248(3):744–757, 2015.

102

[58] Carlos Garćiamart́inez, Oscar Cordón, and Francisco Herrera. An empirical

analysis of multiple objective ant colony optimization algorithms for the bi–

criteria tsp. European Journal of Operational Research, 180(1):116–148, 2007.

[59] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy

Kan. Optimization and approximation in deterministic sequencing and schedul-

ing: a survey. Annals of Discrete Mathematics, 5:287–326, 1979.

[60] Stephen C. Graves. A review of production scheduling. Operations Research,

pages 646–675, 1981.

[61] Timothy Gutowski, Cynthia Murphy, David Allen, Diana Bauer, Bert Bras,

Thomas Piwonka, Paul Sheng, John Sutherland, Deborah Thurston, and Egon

Wolff. Environmentally benign manufacturing: Observations from japan, eu-

rope and the united states. Journal of Cleaner Production, 13(1):1–17, 2005.

[62] Isermann H. Proper efficiency and the linear vector maximum problem. Oper-

ations Research, 22:189–191, 1974.

[63] Hubert Hadera and Iiro Harjunkoski. Continuous–time batch scheduling ap-

proach for optimizing electricity consumption cost. In 23rd European Sympo-

sium on Computer Aided Process Engineering, volume 32, page 403. Elsevier,

2013.

[64] Iskandar Halim and Rajagopalan Srinivasan. Sequential methodology for

scheduling of heat–integrated batch plants. Industrial & Engineering Chem-

istry Research, 48(18):8551–8565, 2009.

[65] Michael Pilegaard Hansen and Andrzej Jaszkiewicz. Evaluating the quality of

approximations to the non-dominated set. Journal Für Die Reine Und Ange-

wandte Mathematik, 405(2):352–4, 1998.

[66] Cheng He, Y. T. Leung, Kangbok Lee, and Michael L. Pinedo. Scheduling a

single machine with parallel batching to minimize makespan and total rejection

cost. Discrete Applied Mathematics, 204(C):150–163, 2016.

[67] Yoshiro Ikura and Mark Gimple. Efficient scheduling algorithms for a single

batch processing machine. Operations Research Letters, 5(2):61–65, 1986.

103

[68] Min Ji, Jen Ya Wang, and Wen Chiung Lee. Minimizing resource consump-

tion on uniform parallel machines with a bound on makespan. Computers &

Operations Research, 40(12):2970–2974, 2013.

[69] Zhao Hong Jia, Kai Li, and Y. T. Leung. Effective heuristic for makespan mini-

mization in parallel batch machines with non–identical capacities. International

Journal of Production Economics, 169:1–10, 2015.

[70] Nicolas Jozefowiez, Frédéric Semet, and El Ghazali Talbi. The bi–objective

covering tour problem. Computers & Operations Research, 34(7):1929–1942,

2007.

[71] Imed Kacem, Slim Hammadi, and Pierre Borne. Approach by localization and

multiobjective evolutionary optimization for flexible job-shop scheduling prob-

lems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-

tions and Reviews), 32(1):1–13, 2002.

[72] A H Kashan and B. Karimi. Scheduling a single batch–processing machine with

arbitrary job sizes and incompatible job families: An ant colony framework.

Journal of the Operational Research Society, 59(9):1269–1280, 2008.

[73] A. H. Kashan, B. Karimi, and F. Jolai. Effective hybrid genetic algorithm for

minimizing makespan on a single–batch–processing machine with non–identical

job sizes. International Journal of Production Research, 44(12):2337–2360,

2006.

[74] Ali Husseinzadeh Kashan, Behrooz Karimi, and S. M. T. Fatemi Ghomi. A note

on minimizing makespan on a single batch processing machine with nonidentical

job sizes. Theoretical Computer Science, 410(27):2754–2758, 2009.

[75] Ali Husseinzadeh Kashan, Behrooz Karimi, and Masoud Jenabi. A hybrid ge-

netic heuristic for scheduling parallel batch processing machines with arbitrary

job sizes. Computers & Operations Research, 35(4):1084–1098, 2008.

[76] David Kathan. Assessment of demand response and advanced metering: Staff

report 2012. Washington: Federal Energy Regulatory Commission, 2012.

[77] S G Koh, P H Koo, and J W Ha. Scheduling parallel batch processing machines

with arbitrary job sizes and incompatible job families. International Journal of

Production Research, 42(19):4091–4107, 2004.

104

[78] Shie Gheun Koh, Pyung Hoi Koo, Dong Chun Kim, and Won Suk Hur. Schedul-

ing a single batch processing machine with arbitrary job sizes and incompatible

job families. International Journal of Production Economics, 98(1):81–96, 2005.

[79] Liulin Kong, Hanbin Luo, and Heng Li. Optimal single–machine batch schedul-

ing for the manufacture, transportation and jit assembly of precast construction

with changeover costs within due dates. Automation in Construction, 81:34–43,

2017.

[80] C-Y Lee. Minimizing makespan on a single batch processing machine with

dynamic job arrivals. International Journal of Production Research, 37(1):219–

236, 1999.

[81] Chung-Yee Lee, Reha Uzsoy, and Louis A Martin-Vega. Efficient algorithms for

scheduling semiconductor burn–in operations. Operations Research, 40(4):764–

775, 1992.

[82] Wonkyun Lee, Seong Hyeon Kim, Jaesang Park, and Byung Kwon Min.

Simulation–based machining condition optimization for machine tool energy

consumption reduction. Journal of Cleaner Production, 150:352–360, 2017.

[83] Markus Leitner, Ivana Ljubić, and Markus Sinnl. Solving the bi–objective prize–

collecting steiner tree problem with the ε–constraint method. Electronic Notes

in Discrete Mathematics, 41:181–188, 2013.

[84] Pieter Leyman and Mario Vanhoucke. A new scheduling technique for the

resource–constrained project scheduling problem with discounted cash flows.

International Journal of Production Research, 53(9):2771–2786, 2015.

[85] Chung Lun Li and Chung Yee Lee. Scheduling with agreeable release times

and due dates on a batch processing machine. European Journal of Operational

Research, 96(3):564–569, 1997.

[86] Lin Li, Zeyi Sun, and Zhijun Tang. Real time electricity demand response for

sustainable manufacturing systems: challenges and a case study. In 2012 IEEE

International Conference on Automation Science and Engineering (CASE),

pages 353–357. IEEE, 2012.

[87] Shuguang Li. Parallel batch scheduling with inclusive processing set restric-

tions and non–identical capacities to minimize makespan. European Journal of

Operational Research, 260:12–20, 2016.

105

[88] Shuguang Li, Guojun Li, Xiaoli Wang, and Qiming Liu. Minimizing makespan

on a single batching machine with release times and non–identical job sizes.

Operations Research Letters, 33(2):157–164, 2005.

[89] Xiaolin Li. Research on Scheduling Batch Processing Machines in Parallel.

CNKI, 2012.

[90] XiaoLin Li, HuaPing Chen, Bing Du, and Qi Tan. Heuristics to schedule uni-

form parallel batch processing machines with dynamic job arrivals. Interna-

tional Journal of Computer Integrated Manufacturing, 26(5):474–486, 2013.

[91] Xiaolin Li, YanLi Huang, Qi Tan, and HuaPing Chen. Scheduling unrelated

parallel batch processing machines with non–identical job sizes. Computers &

Operations Research, 40(12):2983–2990, 2013.

[92] Zhongya Li, Huaping Chen, Rui Xu, and Xueping Li. Earliness–tardiness mini-

mization on scheduling a batch processing machine with non–identical job sizes.

Computers & Industrial Engineering, 87:590–599, 2015.

[93] Cheng-Hsiang Liu and Ding-Hsiang Huang. Reduction of power consumption

and carbon footprints by applying multi–objective optimisation via genetic al-

gorithms. International Journal of Production Research, 52(2):337–352, 2014.

[94] Peiji Liu, Fei Liu, and Hang Qiu. A novel approach for acquiring the real–time

energy efficiency of machine tools. Energy, 121:524–532, 2017.

[95] Lingfa Lu and Jinjiang Yuan. Unbounded parallel batch scheduling with job

delivery to minimize makespan. Operations Research Letters, 36(4):477–480,

2008.

[96] Shenpeng Lu, Haodi Feng, and Xiuqian Li. Minimizing the makespan on a

single parallel batching machine. Theoretical Computer Science, 411(7):1140–

1145, 2010.

[97] Shyi-Min Lu, Ching Lu, Kuo-Tung Tseng, Falin Chen, and Chen-Liang Chen.

Energy–saving potential of the industrial sector of taiwan. Renewable and Sus-

tainable Energy Reviews, 21:674–683, 2013.

[98] Hao Luo, Bing Du, George Q Huang, Huaping Chen, and Xiaolin Li. Hybrid flow

shop scheduling considering machine electricity consumption cost. International

Journal of Production Economics, 146(2):423–439, 2013.

106

[99] Sujay Malve and Reha Uzsoy. A genetic algorithm for minimizing maxi-

mum lateness on parallel identical batch processing machines with dynamic

job arrivals and incompatible job families. Computers & Operations Research,

34(10):3016–3028, 2007.

[100] M. Mathirajan, V. Chandru, and A. I. Sivakumar. Heuristic algorithms

for scheduling heat–treatment furnaces of steel casting industries. Sadhana,

32(5):479–500, 2007.

[101] M Mathirajan and AI Sivakumar. A literature review, classification and simple

meta–analysis on scheduling of batch processors in semiconductor. The Inter-

national Journal of Advanced Manufacturing Technology, 29(9–10):990–1001,

2006.

[102] George Mavrotas. Effective implementation of the ε–constraint method in

multi–objective mathematical programming problems. Applied Mathematics

and Computation, 213(2):455–465, 2009.

[103] Sharif Melouk, Purushothaman Damodaran, and Ping Yu Chang. Minimiz-

ing makespan for single machine batch processing with non-identical job sizes

using simulated annealing. International Journal of Production Economics,

87(2):141–147, 2004.

[104] Hadi Mokhtari and Aliakbar Hasani. An energy–efficient multi–objective op-

timization for flexible job–shop scheduling problem. Computers & Chemical

Engineering, 104:339–352, 2017.

[105] Joon-Yung Moon, Kitae Shin, and Jinwoo Park. Optimization of production

scheduling with time–dependent and machine–dependent electricity cost for in-

dustrial energy efficiency. The International Journal of Advanced Manufacturing

Technology, 68(1–4):523–535, 2013.

[106] Joon-Yung Moon, Kitae Shin, and Jinwoo Park. Optimization of production

scheduling with time–dependent and machine-dependent electricity cost for in-

dustrial energy efficiency. The International Journal of Advanced Manufacturing

Technology, 68(1–4):523–535, 2013.

[107] Baruch Mor and Gur Mosheiov. Batch scheduling on uniform machines to

minimize total flow–time. Computers & Operations Research, 39(3):571–575,

2012.

107

[108] Gilles Mouzon and Mehmet B Yildirim. A framework to minimise total energy

consumption and total tardiness on a single machine. International Journal of

Sustainable Engineering, 1(2):105–116, 2008.

[109] Gilles Mouzon, Mehmet B Yildirim, and Janet Twomey. Operational methods

for minimization of energy consumption of manufacturing equipment. Interna-

tional Journal of Production Research, 45(18–19):4247–4271, 2007.

[110] Mehdi Nikzad, Babak Mozafari, Mahdi Bashirvand, Soodabeh Solaymani, and

Ali Mohamad Ranjbar. Designing time–of–use program based on stochastic

security constrained unit commitment considering reliability index. Energy,

41(1):541–548, 2012.

[111] Tatsuya Okabe, Yaochu Jin, and Bernhard Sendhoff. A critical survey of perfor-

mance indices for multi–objective optimisation. In Evolutionary Computation,

2003. CEC’03. The 2003 Congress on, volume 2, pages 878–885. IEEE, 2003.

[112] David Pisinger. A minimal algorithm for the 0–1 knapsack problem. Operations

Research, 45(5):758–767, 1997.

[113] David Pisinger. An exact algorithm for large multiple knapsack problems. Eu-

ropean Journal of Operational Research, 114(3):528–541, 1999.

[114] Chris N Potts and Mikhail Y Kovalyov. Scheduling with batching: a review.

European Journal of Operational Research, 120(2):228–249, 2000.

[115] Marco Pranzo. Batch scheduling in a two–machine flow shop with limited buffer

and sequence independent setup times and removal times. European Journal of

Operational Research, 153(3):581–592, 2004.

[116] Markus Rager, Christian Gahm, and Florian Denz. Energy–oriented scheduling

based on evolutionary algorithms. Computers & Operations Research, 54:218–

231, 2015.

[117] Peter Reiter and Walter J Gutjahr. Exact hybrid algorithms for solving a

bi–objective vehicle routing problem. Central European Journal of Operations

Research, 20(1):19–43, 2012.

[118] Atle Riise, Carlo Mannino, and Edmund K. Burke. Modelling and solving

generalised operational surgery scheduling problems. Computers & Operations

Research, 66:1–11, 2016.

108

[119] Jason R Schott. Fault tolerant design using single and multicriteria genetic al-

gorithm optimization. Technical report, Massachusetts Institute of Technology,

1995.

[120] B. Shahidi-Zadeh, R. Tavakkoli-Moghaddam, A. Taheri-Moghadam, and

I. Rastgar. Solving a bi–objective unrelated parallel batch processing machines

scheduling problem: A comparison study. Computers & Operations Research,

88:71–90, 2017.

[121] Fadi Shrouf, Joaquin Ordieres-Meré, Alvaro Garćıa-Sánchez, and Miguel

Ortega-Mier. Optimizing the production scheduling of a single machine to min-

imize total energy consumption costs. Journal of Cleaner Production, 67:197–

207, 2014.

[122] Nurul Suhaimi, Christine Nguyen, and Purushothaman Damodaran. La-

grangian approach to minimize makespan of non–identical parallel batch pro-

cessing machines. Computers & Industrial Engineering, 101:295–302, 2016.

[123] Chang S Sung and YI Choung. Minimizing makespan on a single burn–in oven

in semiconductor manufacturing. European Journal of Operational Research,

120(3):559–574, 2000.

[124] Vishnu Swaminathan and Krishnendu Chakrabarty. Energy–conscious, deter-

ministic i/o device scheduling in hard real–time systems. IEEE Transactions

on Computer–Aided Design of Integrated Circuits and Systems, 22(7):847–858,

2003.

[125] K. C. Tan, C. K. Goh, Y. J. Yang, and T. H. Lee. Evolving better popula-

tion distribution and exploration in evolutionary multi–objective optimization.

European Journal of Operational Research, 171(2):463–495, 2006.

[126] Lixin Tang, Xiaoli Zhao, Jiyin Liu, and Y. T. Leung. Competitive two–agent

scheduling with deteriorating jobs on a single parallel–batching machine. Eu-

ropean Journal of Operational Research, 2017.

[127] Vincent T’Kindt and Jean Charles Billaut. Multicriteria Scheduling: Theory,

Models and Algorithms. Springer–Verlag, Berlin, Heidelberg, 2005.

[128] Fabien Tricoire, Alexandra Graf, and Walter J. Gutjahr. The bi–objective

stochastic covering tour problem. Computers & Operations Research,

39(7):1582–1592, 2012.

109

[129] Reha Uzsoy. Scheduling a single batch processing machine with non–identical

job sizes. International Journal of Production Research, 32(7):1615–1635, 1994.

[130] Reha Uzsoy and Yaoyu Yang. Minimizing total weighted completion time on

a single batch processing machine. Production & Operations Management,

6(1):57–73, 1997.

[131] DJ Van De Rzee, A Van Harten, and PC Schuur. Dynamic job assignment

heuristics for multi–server batch operations–a cost based approach. Interna-

tional Journal of Production Research, 35(11):3063–3094, 1997.

[132] David A Van Veldhuizen and Gary B Lamont. On measuring multiobjective

evolutionary algorithm performance. In Proceedings of the Congress on Evolu-

tionary Computation, volume 1, pages 204–211. IEEE, 2000.

[133] David Allen Van Veldhuizen. Multiobjective evolutionary algorithms: classifi-

cations, analyses, and new innovations. Evolutionary Computation, 8(2):125 –

147, 1999.

[134] David A. Van Veldhuizen and Gary B. Lamont. Multiobjective evolutionary

algorithm test suites. In ACM Symposium on Applied Computing, pages 351–

357, 1999.

[135] Cheng Shuo Wang and Reha Uzsoy. A genetic algorithm to minimize maximum

lateness on a batch processing machine. Computers & Operations Research,

29(12):1621–1640, 2002.

[136] Shijin Wang and Ming Liu. A genetic algorithm for two–stage no–wait hybrid

flow shop scheduling problem. Computers & Operations Research, 40(4):1064–

1075, 2013.

[137] Shijin Wang and Ming Liu. A heuristic method for two–stage hybrid flow shop

with dedicated machines. Computers & Operations Research, 40(1):438–450,

2013.

[138] Shijin Wang, Ming Liu, Feng Chu, and Chengbin Chu. Bi–objective optimiza-

tion of a single machine batch scheduling problem with energy cost considera-

tion. Journal of Cleaner Production, 137:1205–1215, 2016.

[139] Yong Wang and Lin Li. Time–of–use based electricity demand response for

sustainable manufacturing systems. Energy, 63:233–244, 2013.

110

[140] Jin Wu and Shapour Azarm. Metrics for quality assessment of a multiobjective

design optimization solution set. Journal of Mechanical Design, 123(1):18–25,

2001.

[141] Peng Wu. A study on lane reservation problems in transportation networks.

Ph.D thesis, University of Paris–Saclay, France, 2016.

[142] Peng Wu, Ada Che, Feng Chu, and MengChu Zhou. An improved

exact–constraint and cut–and–solve combined method for biobjective robust

lane reservation. IEEE Transactions on Intelligent Transportation Systems,

16(3):1479–1492, 2015.

[143] Rui Xu, Huaping Chen, and Xueping Li. Makespan minimization on single

batch–processing machine via ant colony optimization. Computers & Operations

Research, 39(3):582–593, 2012.

[144] Shubin Xu and James C. Bean. A genetic algorithm for scheduling parallel non–

identical batch processing machines. In IEEE Symposium on Computational

Intelligence in Scheduling, pages 143–150, 2007.

[145] Mehmet Bayram Yildirim and Gilles Mouzon. Single–machine sustainable pro-

duction planning to minimize total energy consumption and total completion

time using a multiple objective genetic algorithm. Engineering Management,

IEEE Transactions on, 59(4):585–597, 2012.

[146] Yunqiang Yin, Tai Chiu Edwin Cheng, Dujuan Wang, and Chin Chia Wu.

Improved algorithms for single–machine serial–batch scheduling with rejection

to minimize total completion time and total rejection cost. IEEE Transactions

on Systems Man & Cybernetics Systems, pages 1–11, 2015.

[147] L. Zadeh. Optimality and non–scalar–valued performance criteria. IEEE Trans-

actions on Automatic Control, 8(1):59–60, 1963.

[148] Guochuan Zhang, Xiaoqiang Cai, C-Y Lee, and Chak Kuen Wong. Minimizing

makespan on a single batch processing machine with nonidentical job sizes.

Naval Research Logistics (NRL), 48(3):226–240, 2001.

[149] Hao Zhang, Fu Zhao, Kan Fang, and John W Sutherland. Energy–conscious

flow shop scheduling under time–of–use electricity tariffs. CIRP Annals–

Manufacturing Technology, 63(1):37–40, 2014.

111

[150] Rui Zhang, Pei-Chann Chang, Shiji Song, and Cheng Wu. A multi–objective

artificial bee colony algorithm for parallel batch–processing machine scheduling

in fabric dyeing processes. Knowledge–Based Systems, 116:114–129, 2017.

[151] Yuzhong Zhang, Zhigang Cao, and Qingguo Bai. A ptas for scheduling on agree-

able unrelated parallel batch processing machines with dynamic job arrivals. In

International Conference on Algorithmic Applications in Management, pages

162–171, 2005.

[152] Shengchao Zhou, Huaping Chen, and Xueping Li. Distance matrix based heuris-

tics to minimize makespan of parallel batch processing machines with arbitrary

job sizes and release times. Applied Soft Computing, 52:630–641, 2017.

[153] Shengchao Zhou, Huaping Chen, Rui Xu, and Xueping Li. Minimising

makespan on a single batch processing machine with dynamic job arrivals

and non–identical job sizes. International Journal of Production Research,

52(8):2258–2274, 2014.

[154] Shengchao Zhou, Ming Liu, Huaping Chen, and Xueping Li. An effective dis-

crete differential evolution algorithm for scheduling uniform parallel batch pro-

cessing machines with non–identical capacities and arbitrary job sizes. Inter-

national Journal of Production Economics, 179:1–11, 2016.

[155] Zhen Zhou, Feng Chu, Ada Che, and MengChu Zhou. ε–constraint and fuzzy

logic–based optimization of hazardous material transportation via lane reserva-

tion. IEEE Transactions on Intelligent Transportation Systems, 14(2):847–857,

2013.

[156] Eckart Zitzler. Evolutionary algorithms for multiobjective optimization: Meth-

ods and applications. Ph.D. Thesis., 1999.

[157] Eckart Zitzler, Joshua Knowles, and Lothar Thiele. Quality assessment of pareto

set approximations. In Multiobjective Optimization, pages 373–404, 2008.

[158] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2: Improving the

strength pareto evolutionary algorithm for multiobjective optimization. In Evo-

lutionary Methods for Design, Optimization and Control with Applications To

Industrial Problems. Proceedings of the Eurogen’2001. Athens. Greece, Septem-

ber, 2001.

112

[159] Eckart Zitzler and Lothar Thiele. Multiobjective Optimization Using Evolu-

tionary Algorithms – A Comparative Case Study. Springer Berlin Heidelberg,

1998.

[160] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a

comparative case study and the strength pareto approach. IEEE Transactions

on Evolutionary Computation, 3(4):257–271, 1999.

[161] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca, and Vi-

viane Grunert Da Fonseca. Performance assessment of multiobjective optimiz-

ers: an analysis and review. IEEE transactions on evolutionary computation,

7(2):117–132, 2003.

113

114

My publications

Journal papers
J. Cheng, F. Chu, and M. Zhou. An improved model for parallel machine schedul-

ing under time–of–use electricity price. IEEE Transactions on Automation Science

and Engineering, DOI:10.1109/TASE.2016.2631491, 2017.

J. Cheng, F. Chu, C. Chu, and W. Xia. Bi–objective optimization of single–

machine batch scheduling under time–of–use electricity prices. RAIRO – Operations

Research, 50(4–5):715–732, 2016.

J. Cheng, F. Chu, M. Liu, P. Wu, and W. Xia. Bi–criteria single–machine batch

scheduling with machine on/off switching under time–of–use tariffs. Computers &

Industrial Engineering, 112:721–734, 2017.

J. Cheng, F. Chu, M. Liu, and W. Xia. Effective heuristics for single machine

batch scheduling under time-of-use tariffs. Sustainability, under review.

Conference papers
J. Cheng, F. Chu, M. Liu, and W. Xia. Electricity cost and makespan opti-

mization on a single batch processing machine under time–of–use pricing policy. In

45th International Conference on Computers & Industrial Engineering, Metz, France,

pages 236–241, 2015.

J. Cheng, F. Chu, M. Liu , and W. Xia. Single–machine batch scheduling under

time–of–use tariffs: new mixed–integer programming approaches. In 2016 IEEE In-

ternational conference on Systems, Man, and Cybernetics, Budapest, Hungary, pages

3498–3503, 2016.

J. Cheng, F. Chu, and W. Xia. Single machine batch scheduling under time–of–use

policy. 16ème Conférence ROADEF Société Française de Recherche Opérationnelle

et Aide à la Décision, 2015.

J. Cheng, F. Chu, W. Xia, J. Ding, and X. Ling. Bi–objective optimization for

single–machine batch scheduling considering energy cost. In 2014 IEEE International

Conference on Control, Decision and Information Technologies, 236–241, 2014.

115

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Ordonnancement multicritère par lots avec tarifs d'électricité différenciés

Mots clés : Optimisation bi-objectif, Ordonnancement par lots, Tarification d’électricité
différenciée, Programmation mathématique, Méthodes de ε-contrainte.

Résumé : L'industrie est le plus grand
consommateur d'énergie dans le monde et la
majeure partie de sa consommation est
électrique. Pour moduler la consommation
et équilibrer les périodes creuses et de pic,
les producteurs d'électricité dans de
nombreux pays pratiquent une tarification
différenciée, en anglais "time-of-use (TOU)
policy", afin d’encourager les industriels et
les particuliers à adapter leur consomma-
tion. Cette stratégie incite les gros
consommateurs industriels, en particulier le
secteur semi-conducteur où la fabrication se
fait souvent par lots, à réduire leurs factures
d’électricité en adaptant leur production.
Dans ce travail, nous étudions plusieurs
problèmes d’ordonnancement de production
par lots avec tarification différenciée
d'électricité. Nous nous intéressons d’abord
à l’ordonnancement d’une machine par lots
pour minimiser le coût total d’électricité et
le makespan. Le deuxième problème étudié

généralise le premier en considérant le coût
d’électricité pendant les périodes inactives
de la machine telles que les périodes de
réglage ou d'attente. Enfin, nous traitons
l’ordonnancement sur machines parallèles
par lots avec des pièces non identiques.
Pour chacun de ces problèmes, nous
construisons des modèles mathématiques
appropriés, et évaluons sa complexité. Pour
la résolution, nous proposons plusieurs
méthodes de -contrainte dans lesquelles
des sous-problèmes sont transformés en
problèmes de sac-à-doc, de sacs-à-doc
multiples et ou de bin packing. Nous
développons aussi une méthode itérative à
deux étapes. Les performances des
méthodes développées sont évaluées à l'aide
d'un grand nombre d'instances
représentatives générées au hasard. Les
résultats numériques montrent l'efficacité de
ces méthodes par rapport au logiciel
commercial CPLEX.

Title : Multi-criteria Batch Scheduling under Time-of-Use Tariffs

Keywords : Batch scheduling, Multi-objective combinatorial optimization, Time-of-use electricity
tariffs, Mixed-integer linear programming, Algorithms.

Abstract : The industrial sector is the largest
consumer of the world's total energy and most of
its consumption form is electricity. To strengthen
the grid's peak load regulation ability, time-of-use
(TOU) electricity pricing policy has been
implemented in many countries to encourage
electricity users to shift their consumption from
on-peak periods to off-peak periods. This strategy
provides a good opportunity for manufacturers to
reduce their energy bills, especially for energy-
intensive ones, where batch scheduling is often
involved. In this thesis, several bi-objective batch
scheduling problems under TOU tariffs are
studied. We first investigate a single machine
batch scheduling problem under TOU tariffs with
the objectives of minimizing total electricity cost
and makespan. This primary work is extended by
considering machine on/off switching. Finally, a

parallel batch machines scheduling problem
under TOU tariffs with non-identical job sizes to
minimize total electricity cost and number of
enabled machines is studied. For each of the
considered problems, appropriate mathematical
models are established, their complexities are
demonstrated. Different bi-objective resolution
methods are developed, including knapsack
problem heuristic based ɛ-constraint method,
multiple knapsack problem heuristic based ɛ-
constraint method, bin packing heuristic based ɛ-
constraint method and two-stage heuristic based
iterative search algorithm. The performance of
proposed methods is evaluated by randomly
generated instances. Extensive numerical results
show that the proposed algorithms are more
efficient and/or effective than the commercial
software CPLEX.

