
HAL Id: tel-01764394
https://hal.science/tel-01764394

Submitted on 11 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Synthesizing Open Systems: Tableaux For
Multi-Agent Temporal Logics

Amélie David

To cite this version:
Amélie David. Towards Synthesizing Open Systems: Tableaux For Multi-Agent Temporal Logics.
Computation and Language [cs.CL]. Université Paris-Saclay; Université d’Evry-Val-d’Essonne, 2015.
English. �NNT : 2015SACLE020�. �tel-01764394�

https://hal.science/tel-01764394
https://hal.archives-ouvertes.fr

Université Paris-Saclay, Technical University of Denmark

École doctorale STIC N°580
Sciences et technologies de l’information et de la communication

Laboratoire IBISC – Équipe COSMO

THÈSE
préparée à l’Université d’Évry-Val d’Essonne,

présentée et soutenue publiquement le 30 septembre 2015
pour l’obtention du grade de

Docteur de l’Université Paris-Saclay

Discipline ou Spécialité: Informatique

par

Amélie David

TOWARDS SYNTHESIZING OPEN SYSTEMS:
TABLEAUX FOR MULTI-AGENT TEMPORAL LOGICS

COMPOSITION DU JURY

Président: M. MARCHÉ Claude Université Paris-Sud
Directeurs: Mme CERRITO Serenella Université d’Évry Val d’Essonne

M. GORANKO Valentin Technical University of Denmark
Rapporteurs: M. GORÉ Rajeev The Australian National University

M. DEMRI Stéphane LSV, CNRS & ENS de Cachan
Examinateurs: M. DIMA Catalin Université Paris-Créteil

M. POMMEREAU Franck Université d’Évry Val d’Essonne

TABLE OF CONTENTS

Page

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Open Systems / Multi-Agent Systems . 2

1.2 Temporal Logics and ATL . 4

1.3 Verification of Multi-Agent Systems Using ATL . 6

1.4 The Satisfiability Problem . 7

1.5 Tableau Methods . 8

1.6 Our Contribution . 9

I Preliminaries 11

2 Open Systems: Models and Logics 13
2.1 Modelling of Multi-Agents / Open Systems . 13

2.1.1 Alternating Transition Systems . 14

2.1.2 Concurrent Games Models . 14

2.2 ATL: A Logic for Multi-Agents Systems . 18

2.2.1 Syntax of Different ATL Versions . 18

2.2.2 Semantics . 20

2.2.3 Satisfiability and Validity . 22

2.2.4 Different Variations on ATL . 22

2.3 Conclusion . 25

3 Tableau-Based Decision Procedure for ATL 27
3.1 General Description of the Procedure of V. Goranko and D. Shkatov 28

3.2 Construction Phase . 30

3.2.1 Decomposition of ATL Formulae . 31

3.2.2 Saturation of Prestates . 32

iii

TABLE OF CONTENTS

3.2.3 Dynamic Analysis of Successor Formulae . 33

3.3 Elimination Phase . 37

3.4 Conclusion . 39

II Deciding ATL+ and ATL∗ Satisfiability by Tableaux 41

4 Tableau-Based Decision Procedures for ATL+ and ATL∗ 43
4.1 New Kind of Formulae = New Decomposition . 45

4.1.1 Decomposition Function for ATL+ γ-Formulae 46

4.1.2 Decomposition Function for ATL∗ γ-Formulae 47

4.1.3 Decomposition of ATL+ and ATL∗ Formulae 49

4.2 Saturation of Prestates . 54

4.3 Rule Next . 56

4.4 Realization of Eventualities . 57

4.4.1 Realization of Eventualities for ATL+ . 57

4.4.2 Realization of Eventualities for ATL∗ . 60

4.5 Complexity . 63

4.5.1 Complexity of the Procedure for ATL+ . 63

4.5.2 Complexity of the Procedure for ATL∗ . 64

4.6 Conclusion . 65

5 Implementation 67
5.1 The Application TATL . 67

5.1.1 Web Application . 67

5.1.2 Command Line Application . 70

5.2 General Organisation of the Application . 71

5.3 Data Structures . 71

5.4 Relevant Algorithms: State and Prestate Elimination 74

5.5 Test of the Implementation . 75

6 Conclusion & Perspectives 79
6.1 Model Extraction . 79

6.1.1 Smaller Models for ATL∗ . 80

6.1.2 Smaller Models for ATL and ATL+ . 81

6.2 Comparison of Methods for Deciding Satisfiability of ATL∗ Formulae 82

A Additional Definitions for Proofs 85
A.1 Actions and Outcomes . 85

A.2 Trees . 85

iv

TABLE OF CONTENTS

A.3 Additional Definitions for Tableaux . 86

A.3.1 States and Prestates . 86

A.3.2 Outcomes . 86

A.3.3 Realization Witness Tree for Tableaux . 87

A.4 Hintikka Structures . 87

A.4.1 Realization Witness Tree for General Hintikka Structure 88

A.4.2 Concurrent Game Hintikka Structure . 88

B Proofs 91
B.1 Proof of Theorem A.1 . 91

B.2 Soundness . 92

B.3 Completeness . 96

C Notation List 101

Bibliography 105

v

LIST OF TABLES

TABLE Page

1.1 Classification of agents depending on their relation with the environment and their

behaviour . 3

2.1 The mappings of possible sets of choices for Hugo and Bob at each state 15

2.2 The mappings actH and actB defining the actions available to Hugo and Bob at each

state . 16

3.1 Decomposition of α-formulae and β-formulae for ATL . 31

4.1 Modification for the adaptation of the tableau-based decision procedure for ATL to the

extensions ATL+ and ATL∗ . 45

5.1 Comparison of TATL with the CTL∗ reasoner of M. Reynolds 77

vii

LIST OF FIGURES

FIGURE Page

1.1 Partial model of the French railway company’s booking automaton 1

1.2 The operators “always” � and “eventually” ♦ . 4

1.3 The operators Next © and Until U . 4

1.4 Different temporal logics . 6

1.5 A chronology of tableau methods . 9

2.1 Transitions in the CGM Mticket . 17

2.2 The temporal operators
∞
♦ ("Infinitely often") and

∞
� (“Sometime always”) 19

2.3 Influence of other agents on satisfiability . 24

2.4 Model for the formula θ = 〈〈a〉〉(p∧〈〈a〉〉♦q)∧�a�♦(�¬p∨�¬q) with memoryless strategy 24

3.1 General structure of the tableau-based decision procedure 29

3.2 Application of the rule SR on prestate Γ0 = {θ1} . 33

3.3 No intersection between coalitions in the rule Next . 34

3.4 Initial tableau for θ1 . 36

3.5 Initial tableau for θ2 . 38

4.1 The three cases for disjunctive path objectives in a γ-formula 47

4.2 Successor states of Γ0 = {θ+1 } . 55

4.3 Successor states of Γ0 = {θ∗3 } . 55

4.4 Initial tableau for θ+3 . 58

4.5 Initial tableau for θ∗4 . 61

5.1 Home page of the application TATL . 68

5.2 Result page of the application TATL . 69

5.3 Initial tableau tabulation . 69

5.4 Structure of the code of the application . 72

6.1 Construction of a Hintikka structure eventualities by eventualities 80

6.2 Suppression of the node > from a model . 81

ix

C
H

A
P

T
E

R

1
INTRODUCTION

Several years ago, Hugo1 was at the train station, when a guy, let us call him Bob, asked to

help him cheat the French railway company. Hugo accepted to do it. Note that we do not

approve this behaviour, but it is a good introductory case for this thesis. What had been

asked from Hugo was that he logged into a booking automaton with a given booking number in

order to print the ticket. At the same time, the cheater also logged to another booking automaton

with the same booking number, and asked for the reimbursement of the ticket. And it worked

perfectly, the cheater managed to get both the ticket travel and the reimbursement. Clearly,

this unwilling behaviour of the booking system is not possible when using only one automaton.

Indeed, this automaton seems to have been designed as follows: a user enters a booking number

on the automaton and gets access to his ticket. The user can then print the ticket, which disables

the booking number, or, after being logged, the user can ask the reimbursement of the ticket,

which also disables the booking number, as depicted in Figure 1.1.

Logging

ticket printing

booking number

unavailable

ticket

reimbursement

Figure 1.1: Partial model of the French railway company’s booking automaton

1Name has been changed to preserve the protagonist’s anonymity.

1

CHAPTER 1. INTRODUCTION

But in this design, what has not been taken into account is the fact that the booking automaton

is not the only one with the same functionalities in the station. This is a typical case of multi-agent

systems, where the behaviour of the system depends on the behaviour of the components of the

system. A special case of multi-agent systems are open systems, that is systems that interact

with their environment. In this case, the environment can be considered as an agent. In our

introductory case, the damage was not very important: the French railway company has lost a few

hundred Euros. But on more critical systems, the consequences of such a bug can be disastrous.

Given the generalisation of mobile terminals, such as smartphones or tablets, the number of

applications based on open systems increases, and therefore the risk of severe bugs increases.

This thesis is about designing safe open systems. This field of research is very wide, since it

refers to both multi-agent systems and formal verification. In this introduction, we give some

background about open systems and multi-agent systems, temporal logics, verification and the

satisfiability problem.

1.1 Open Systems / Multi-Agent Systems

Until the early 80’s, computer science was mainly dealing with closed systems, that is systems

whose behaviour only depends on the system itself. The behaviour of such systems is entirely

controlled and there are no interactions with the environment. A typical example of closed system

is, for instance, a vehicle control system.

Open systems interact with their environment, so the system (or the components of the

system) can be seen as an agent evolving in an environment. We will see with ATL that the

environment is also considered as an agent. Therefore the notion of open system is strongly

linked to the notion of multi-agent systems.

There exist various kinds of multi-agent systems used in various domains such as economy [5,

34], social science [6], ecology [45, 49], epidemiology [59], robotics [12, 43], and of course, computer

science. Nevertheless, the common point between all multi-agent systems is that their agents

interact with their environment in order to achieve their objectives, where the environment may

be constituted by other agents. For that purpose, agents have to resolve their internal choices

no matter how the environment behaves, that is whichever way the environment resolves the

external choices [4].

Multi-agent systems can be more or less complex. In [67], M. Wooldrigde explains that the

complexity of a multi-agent system is linked to the “complexity of the action selection process” by

an agent, which is “affected by a number of different environmental properties”. These properties

have been first described in [60]. Following this classification, we then describe the environment

of the multi-agent systems in which we are interested in this thesis as:

• fully accessible: agents have a complete information about the current state of the environ-

ment and in our case, the current state of the system.

2

1.1. OPEN SYSTEMS / MULTI-AGENT SYSTEMS

• non-deterministic: an action of an agent does not necessary have a single guaranteed effect.

The result depends on the action of the other agents and on the environment.

• non-episodic: the current decisions made by agents are likely to affect future decisions.

• static: The environment stays unchanged during the decision process of the agent.

• discrete: the treatment of time is discrete. The number of distinct states of the environment

and the number of distinct actions are finite.

Agents themselves can be classified depending on their relation with the environment:

cognitive agents or reactive agents. Cognitive agents have the ability to reason about the world

in which they are evolving, and by consequence, each agent can be asked complex tasks that it

can solve by itself. On the contrary, reactive agents, as the name suggests, react to stimuli or to

the state of the system and the environment. This classification of agents can be refined by their

behaviour as in [25] and leads to the Table 1.1. The behaviour of agents is said to be teleonomic if

the source of agents’ motivation comes from the agents themselves, whereas the behaviour of

agents is said to be reflex if the source of motivation comes from the environment.

In this thesis, we are interested in reactive agents.

hhhhhhhhhhhhhhhhhhhhhBehaviours

Relation with environment
cognitive agents reactive agents

teleonomic intentional agents instinctual agents

reflex/reaction “module” agents tropic agents

Table 1.1: Classification of agents depending on their relation with the environment and their

behaviour [25]

Finally, we can say that agents have different ways to interact with each other. In [25], J.

Ferber makes a distinction between situations where the goals of the agents are compatible:

collaboration, coordination; and situations where the goals of the agents are incompatible:

competition or conflict. Situations are also affected by the available resources: are there enough

resources for all agents?, and by the competences owned by agents: is an agent able to achieve

its goal by itself? In our introductory example, we have seen that the goals of Bob and Hugo are

compatible, and that there are enough resources, but that Bob is not able to achieve its goal alone.

This is why Bob needs to cooperate with Hugo to get both the ticket and his reimbursement.

Properties of the multi-agent systems in which we are interested can easily be catched by

temporal logics. The temporal logic ATL was precisely introduced for that purpose in 1997, to

specify and verify open systems [3].

3

CHAPTER 1. INTRODUCTION

�ϕ

0

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

♦ϕ

0

ϕ

Figure 1.2: The operators “always” � and “eventually” ♦

©ϕ

0

ϕ

ϕUψ

0

ϕ ϕ ϕ ϕ ϕ ψ

Figure 1.3: The operators Next © and Until U

1.2 Temporal Logics and ATL

Temporal logics are variants of modal logics where the operators � (Necessarily) and ♦ (Possibly)

have received different meanings reflecting the notion of linearity of time, that is Always and

Sometime, respectively. In temporal logics, when we write �ϕ, we mean that ϕ is true at all

moments in the future including the current state, and when we write ♦ϕ, we mean that there is

a moment, which can be the current state, where ϕ is true, as represented in Figure 1.2. This

modification of meanings was introduced by A.N. Prior in 1957 [54] and is considered as the start

of modern temporal logics. A chronology of the introduction of the other temporal operators is

given in [39]. In 1965, G. von Wright introduced the ancestor of the unary operator Next [64],

whose symbol is ©, which was a binary operator called And Next. Then, in 1968, H.W. Kamp

introduced the binary temporal operator Until [36], whose symbol is U. Today, when we write

©ϕ, we mean that ϕ is true at the next moment and when we write ϕUψ, we mean that there

is a moment, which can be the current state, where ψ is true and ϕ is true at all the preceding

moments, as represented in Figure 1.3. While during that period, different logics based on these

temporal operators appeared in the literature, the most important one, still intensively studied,

is the linear temporal logic, in short LTL. It is not very clear when LTL was first defined as we

know it today. Indeed, in [51], which is considered as the foundation paper for LTL, the operations

4

1.2. TEMPORAL LOGICS AND ATL

Next and Until are absent. Even in [38, 52, 53], while the operator Next is used, the operator

Until is still missing.

Temporal linear logics, including LTL, allow one to define properties on a sequence (or a path)

of states, so that these logics and most particularly LTL, have soon been employed with the idea

of verifying programs, first in [11] by R. Burstall and then in [51, 52] by A. Pnueli.

It is worth noticing that, with LTL, it is possible to express properties that we want to be true

in every possible execution of a program. But, in the early 1980’s, the idea of expressing temporal

properties that can be true only on some execution of the program appeared, and we then talked

about temporal branching logics. The most famous representative of this kind of logics is CTL

introduced in 1981 by E. Clarke and E. Emerson [18], which allows to combine a path quantifier E,

meaning “there exists a path such that”, or A, meaning “all paths are such that”, and a temporal

operator. However, CTL was not the first branching temporal logic; we can mention its ancestor

CTF, also introduced by E. Emerson in [23], where fixed point characterisations of temporal

operators are also defined. In 1986, E. Clarke and E. Emerson then proposed a more powerful

version of CTL, namely CTL∗ [24], which combines features from CTL and LTL.

In 1997 [3] and again in 2002 [4], a new paradigm for branching temporal logic is proposed by

R. Alur, T. Henzinger and O. Kupferman in order to described reactive open systems and multi-

agent systems. They introduced both a way to model multi-agent systems, namely concurrent

game models and a logic to describe properties on these models, namely ATL and its extension

ATL∗. concurrent game models are transition systems where each transition to a unique successor

state results from the combination of actions chosen by all the agents (components and/or

environment) of the system. ATL and ATL∗ can be seen as a generalisation of CTL and CTL∗,

respectively, where the notion of path quantifiers is replaced by the notion of strategic quantifiers.

These strategic quantifiers are 〈〈A〉〉 and �A�, where A is a coalition of agents. The expression

〈〈A〉〉F means that the coalition A has a strategy to enforce the property F, while �A�F means

that the coalition A cannot cooperate to make the property F false, that is, the coalition A cannot

avoid the property F. It is worth noticing that every CTL (respectively CTL∗) formula can be

written in ATL (respectively ATL∗), by considering only one agent a, then the path quantifier A is

equivalent to 〈〈;〉〉 and the path quantifier E is equivalent to 〈〈{a}〉〉. The inclusions of the logics

LTL, CTL, CTL *, ATL and ATL∗ are illustrated in Figure 1.4.

Around that time, M. Pauly introduced the coalition logic in order to make a link between

logic and game theory, and also to show that the coalition logic could be used to specify and verify

social choice procedures [47]. The coalition logic is strictly included in ATL, in fact, coalition logic

can be written in ATL using only the temporal operator © (♦ and � are not necessary).

5

CHAPTER 1. INTRODUCTION

Figure 1.4: Different temporal logics

1.3 Verification of Multi-Agent Systems Using ATL

The objective of the verification of systems in general, and multi-agent systems in particular, is to

obtain the safest possible systems, and to avoid problems during utilization of the system such as

the one seen in our introductory case, or in more critical systems in aeronautics for instance. In

order to achieve this, we first need a) to model the system that we want to create or that we have

already created, and then b) to define the properties we want the system to have in an adequate

language in order to obtain a specification. We have seen several logics in the previous section

that can describe different kinds of systems and different kinds of temporal properties.

Next, we need some, preferably automated, tools to check that the model that we have

designed respects the given specification. This corresponds to the method called model checking,

which was developed simultaneously by E. Emerson and E. Clarke in the USA [18, 23] and by

J.P. Queille and J. Sifakis in France [55, 62]. It is worth noticing that the expression “model

checking” appeared for the first time in [18]. These works are at the origin of an important field of

research in computer science, which is still very dynamic, and in 2007, E. Clarke, E. Emerson and

J. Sifakis received the Turing Award “for their role in developing model checking into a highly

effective verification technology”2.

A model checking algorithm for ATL is given in [4], and runs in polynomial time. However,

the model checking problem for ATL∗ is 2EXPTIME-complete [4], which is the same complexity

as that of the satisfiability problem for ATL∗ [61], which is described in next section.

Therefore, for ATL∗, it might be interesting to see the problem of designing safe systems the

2A.M. Turing Award: http://amturing.acm.org/award_winners/clarke_1167964.cfm

6

http://amturing.acm.org/award_winners/clarke_1167964.cfm

1.4. THE SATISFIABILITY PROBLEM

other way round. That is, instead of verifying a specification on an already existing model, why

not create a model directly from the specification, which ensures that the specification is met?

This second method is called model synthesis [40, 50]. A way to transform a specification into a

model is to use constructive procedures to solve the satisfiability problem, such as tableau-based

decision procedures. With this method, we kill two birds with one stone, since we can check that

there is at least one model for the given specification, and if it is the case, we can obtain one of

these models.

1.4 The Satisfiability Problem

The notion of satisfiability has existed informally from the beginning of the history of logic with

Aristotle (384–322 B.C.) to the 1930’s and 1940’s when A. Tarski clearly enunciated the difference

between syntax and semantics and then worked out a precise notion of satisfiability. Indeed,

satisfiability is the semantic version of consistency: {p1, . . . , pn} is consistent iff {p1, . . . , pn} is

satisfiable.

A set of formulae is said to be satisfiable if there is some structure in which all its

component formulae are true: that is, {p1, . . . , pn} is satisfiable if and only if, for some

structure A , A |= p1 and . . . and A |= pn. [27]

The dual problem of satisfiability is validity:

Intuitively, an argument is valid if whenever the premises are true, so is the con-

clusion. More precisely, the argument from p1, . . . , pn to q is valid (in symbols,

p1, . . . , pn |= q) if and only if, for all structures A , if A |= p1, . . .A |= pn, then A |= q.

[27]

Therefore, the argument from p1, . . . , pn to q is valid if and only if the set {p1, . . . , pn,¬q} is

unsatisfiable.

In our case, we want to check that, for a given formula θ in ATL or one of its extensions, there

exists at least one concurrent game model in which θ is true, and when possible, we want to

extract one of these concurrent game models.

In order to test satisfiability, several methods have been developed. We give a non-exhaustive

list of these methods. First we can mention the method known by all students in computer science,

which is the truth table, that the value of the formula computes for each combination of values

for every proposition. The drawbacks of this method is that it is applicable only to Boolean logic,

since we need to know all the possible values taken by the variables, and it is not efficient, indeed

this method is exponential in the number of variables, whereas the problem of satisfiability for

Boolean logic, known as SAT, is NP-complete. A large community works on this problem and

manages to find very powerful solvers for SAT, which are used to solve a wide range of problems,

including model checking of linear temporal logic [17].

7

CHAPTER 1. INTRODUCTION

Another method to test satisfiability is resolution, which consists in an inference rule for

Boolean logic and several inference rules for more complex logics like the coalition logic [44],

leading to a refutation theorem-proving technique. This technique is attributed to M. Davis

and H. Putman [21], and was improved by J. Robinson [58]. This last method has eliminated

the combinatorial explosion of its predecessors. The resolution method is at the origin of the

programming language Prolog.

We can also mention automata-based decision procedures, which are widely used for both

model checking and satisfiability of temporal logics. In particular, there exists an automata-based

decision procedure for ATL, proposed by V. Goranko and G. van Drimmelen [32] and one for

ATL∗ [61], proposed by S. Schewe. Finally, we mention the tableaux, on which this thesis is based.

It is worth noting that tableaux and automata are sometimes used together to decide satisfiability,

as in [28] for CTL∗.

1.5 Tableau Methods

Tableaux have the great advantage of being intuitive, as they follow the semantics of the logic for

which they are developed, and easily implementable. These are two reasons among others that

make us focus on tableau methods.

Even if tableaux have different forms, as we will see, they all try, by applying different rules,

to decompose formulae into “simpler” ones in order to get a contradiction at one point or another.

If a contradiction is found, this means that the formula is unsatisfiable.

First, tableaux have been developed simultaneously by Beth, Hintikka and Schütte in the

middle the 1950’s for the Boolean logic and similar logics.

Beth tableaux [7, 8] are represented as tables, where the left part contains valid expressions

and the right part contains invalid ones. To obtain a positive result in terms of satisfiability, the

same expression must not appear in both sides of the tableaux. It is worth noticing that the

French translation of the word “table” is, in this context, “tableau” and that it also appears that

E. Beth spoke French, so we think that is probably the reason why tableaux are called tableaux.

Hintikka tableaux [33] are trees, whose nodes are a set of formulae and the root is the set

that contains only the input formula. The input formula is unsatisfiable if for every branch of the

tree, there exists an inconsistent node, that is, a node which is not a Hintikka set.

In 1968, R. Smullyan improved the tableau methods of Beth and Hintikka, and also adapted

them to first order logic [63]. Its tableaux are also represented as trees, where each node contains

a formula preceded by “T” or “F”. The formula is unsatisfiable if for every branch of the tree, the

same proposition is preceded by “F” on some node of the branch and by “T” on another node of this

same branch. When talking about modal logics, the tableau method has been widely developed

by M. Fitting [26].

Then, in 1985, P. Wolper transformed Smullyan tableaux for LTL [66]. In that purpose, he

8

1.6. OUR CONTRIBUTION

Figure 1.5: A chronology of tableau methods

employed fixed point equivalences to deal with temporal operators. One step is needed to make

time moves one step forward, which is done by a dynamic rule, called next. Also, because of the

linear and infinite semantics of LTL, the construction phase, where formulae are decomposed,

is followed by an elimination phase to get rid of paths where formulae of the form ♦ϕ or ψUϕ

are not fulfilled, which are paths where ϕ never appears. It is worthwhile to remark that with P.

Wolper, tableaux become graphs, because of the need of dealing with cycling operators such as �

(Always).

Tableaux for ATL were introduced in 2009, by V. Goranko and D. Shkatov [31]. The structure

of these tableaux is slightly different from the one of Wolper, since decomposition of formulae

is condensed in one step. However, the main difference comes from the treatment of coalitions

and in particular from the dynamic rule, which is needed to compute the different actions and

transitions for agents involved in the analysed formula. This method is presented with full details

in Chapter 3. This tableau-based decision procedure for ATL is the basis of our tableau procedures

for ATL+ and ATL∗.

1.6 Our Contribution

The aim of this thesis is to give tools for the design of open systems. The more refined idea

behind this ambitious goal is to use constructive procedures for deciding satisfiability of a given

specification (that is, in our case, a formula in ATL or in its extensions) first to make sure that the

specification is coherent and therefore implementable, and second to be able to directly produce a

model corresponding to the specification. This refined goal is partially achieved in [31] by giving

a procedure to decide satisfiability for ATL formulae using tableaux and also by giving a way to

extract models from the tableau, in the case where the formulae are satisfiable. However, this

tableau procedure only works for ATL formulae and the extracted models are awfully huge. This

gives us two areas of improvement:

9

CHAPTER 1. INTRODUCTION

• extend the tableau-based procedure for ATL to its extensions ATL+ and ATL∗;

• improve the extraction of models from tableaux.

This thesis focuses on the first point, as it was a good start to fully understand the concurrent

game models and the logic. The second point is an ongoing work and will be discussed in the

conclusion and perspectives of this thesis.

This thesis is composed of two parts: Preliminaries and Deciding ATL+ and ATL∗ satisfiability

by tableaux. In Part I, Chapter 2, we describe models adapted to multi-agent systems, and in

particular concurrent game models. Then we present the syntax and semantics of ATL and its

extensions. Therefore Chapter 2 gives key notions to specify multi-agent systems.

In Chapter 3, we present the tableau-based decision procedure introduced by V. Goranko and

D. Shkatov [31] to check satisfiability of ATL formulae.

In Part II, Chapter 4, we present our contribution, consisting in sound, complete, and op-

timal tableau-based decision procedures for ATL+ and ATL∗. In Chapter 5, we present the

implementation of the procedure for ATL∗, which includes the procedure for ATL+.

Finally, Appendices contain additional definitions that are needed for proofs, proofs of sound-

ness and completeness of our tableau-based decision procedure for ATL∗, and the list of all

symbols that are used in this thesis.

10

Part I

Preliminaries

11

C
H

A
P

T
E

R

2
OPEN SYSTEMS: MODELS AND LOGICS

In this chapter, we present two appropriate models for multi-agent systems, namely the

alternating transition system (ATS) and the concurrent game models (CGM). These models

have been elaborated as support for the semantics of the alternating-time temporal logic

(ATL)[4] and its extensions ATL∗ [4], ATL+ [41] and EATL [42]. Within the family of alternating-

time temporal logics, one can express properties such as 〈〈A〉〉F, which means “the coalition A

of agents has a strategy, no matter what the agents outside the coalition do, to achieve the goal

F”. In ATL, every temporal operator is directly associated to a path quantifier 〈〈A〉〉, the EATL

version of ATL adds fairness constraints, whereas the ATL+ version allows Boolean combination

of temporal operators. Finally, ATL∗ is the full version of ATL, and allows Boolean combination

and nesting of temporal operators. After having given syntaxes and semantics of these different

extensions, we present different variations of the semantics of ATL based on the set of agents

considered in the model or the size of the memory agents have. All these variations have an

impact on the class of satisfiable formulae.

2.1 Modelling of Multi-Agents / Open Systems

Two main formalisms have been described to model multi-agent systems:

• alternating transition system, in short ATS, introduced in [3], and

• concurrent game models, in short CGM, introduced in [4].

In the following, we give their formal definitions, as well as some examples based on our

booking automata case. Although they are different formalisms, one can easily transform an

ATS into a CGM in exponential time, and it has been shown that a CGM can be transformed

into an ATS in cubic time [30, 42]. The tableaux-based decision procedures for the family of

13

CHAPTER 2. OPEN SYSTEMS: MODELS AND LOGICS

alternating-time temporal logics try to build a CGM like structure of a given input formula (see

Chapters 3 and 4), so the semantics of ATL and its extensions will be given over CGM.

Note that another model for multi-agent system is the game frame introduced in [48] for

coalition logic, and extended into multi-player game models (MGM) in [29] by adding a labelling

function in order to associate propositions with states. The semantics of ATS, CGM and MGM

are compared in [30].

2.1.1 Alternating Transition Systems

Definition 2.1 (Alternating Transition System). An alternating transition system [3], in short

ATS, is a structure where, at a given state, each agent can choose among several sets of states.

The intersection of all selected sets of states gives a transition to a unique state.

An alternating transition system (ATS) is a tuple 〈A,S,C ,P,L〉 where:

• A is a non-empty set of agents;

• S is a non-empty set of states;

• C :A×S→P (P (S)) provides for each agent a ∈A and state s ∈S a set of actions playable

by a at s. Note that for all states s ∈S the intersection
⋂
a∈AC (a, s) must be a singleton in

order to get a deterministic ATS;

• P is a non-empty set of atomic propositions

• L :S→P (P) is a labelling function.

Example 2.1. Let us model the booking automata of the introductory case as an alternating

transition system:

A = 〈A,S,C ,P,L〉, where

• A= {H,B}, with H corresponds to Hugo and B to the cheater Bob;

• S= {s1, s2, s3, s4, s′4, s5, s′5, s6, s7, s8, s9, s10, s11};

• the mapping C is given in Table 2.1;

• P= {logged,ticket_printed,ticket_reimbursed,ticket_unavailable};

• the labelling function is

– L(s0)=;
– L(s1)= L(s2)= L(s3)= {logged}

– L(s4)= L(s′4)= L(s6)= L(s8)= {ticket_printed,logged}

– L(s5)= L(s′5)= L(s7)= L(s9)= {ticket_reimbursed,logged}

– L(s10)= {ticket_printed,ticket_reimbursed,logged}

– L(s11)= {ticket_unavailable}.

2.1.2 Concurrent Games Models

A concurrent game model [4], in short CGM, is a state space over which a game between (one

or) several agents is played. At each step of the game, independently and synchronously, every

14

2.1. MODELLING OF MULTI-AGENTS / OPEN SYSTEMS

C H (Hugo) B (Bob)

s0 {{s0, s1}, {s2, s3}} {{s0, s2}, {s1, s3}}

s1 {{s1, s4, s5}, {s3, s6, s7}} {{s1, s3}, {s4, s6}, {s5, s7}}

s2 {{s2, s3}, {s4, s8}, {s5, s9}} {{s2, s4, s5}, {s3, s8, s9}}

s3 {{s3, s4, s5}, {s′4, s10}, {s′5, s10}} {{s3, s′4, s′5}, {s4, s10}, {s5, s10}}

s4 / s′4 {{s11}} {{s11}}

s5 / s′5 {{s11}} {{s11}}

s6 / s7 {{s2}} {{s2}}

s8 / s9 {{s1}} {{s1}}

s10 / s11 {{s11}} {{s11}}

Table 2.1: The mappings of possible sets of choices for Hugo and Bob at each state

agent chooses an action available to him. A state transition in a CGM is the combination of every

agent’s choices. More specifically, a CGM is a directed graph whose vertices represent states of

the game and are labelled by a (possibly empty) set of propositions which are true at these states,

and edges are labelled by a vector containing every agent’s actions.

Over time, different terms have appeared in the literature to describe concurrent game

models. In addition to concurrent game models, we may find concurrent game structures (CGS)

or concurrent game frames (CGF). Definitions of these three notions sometimes overlap. In this

thesis, we discard the term of concurrent game frame and define the two others as follows:

Definition 2.2 (Concurrent Game Structure). A concurrent game structure (CGS) is a tuple

S = 〈A,S, {Acta}a∈A, {acta}a∈A,out〉 where:

• A= {1, . . . ,k} is a finite non-empty set of agents (or players);

• S is a non-empty set of states;

• for each agent a ∈A, Acta is a non-empty set of actions. For any coalition A ⊆A we denote

ActA :=∏
a∈AActa and use σA to denote a tuple from ActA . Let us call this tuple an A-action.

In particular, ActA is the set of all possible action vectors in S . Also, we denote by σA(a) the

action of the agent a in the A-action σA;

• for each agent a ∈A, acta :S→P (Acta)−; is a map defining for each state s the actions

available to a at s. Moreover, actA :S→P (ActA)−; maps a set of A-actions to every state

s, i.e. actA(s)=∏
a∈A acta(s);

• out is a transition function that assigns to every state s ∈ S and every action vector

σA = 〈σ1, . . . ,σk〉 ∈ actA(s) a state out(s,σA) ∈S that results from s if every agent a ∈A plays

action σa.

Notation 2.1. we will often use the expressions “s ∈S ” and “s ∈M ” instead of “s ∈S in S ” and

“s ∈S in M ”, respectively.

15

CHAPTER 2. OPEN SYSTEMS: MODELS AND LOGICS

Definition 2.3 (Outcome of σA). Let S be a CGS and s ∈S a state . Let A ⊆A and σA ∈ actA(s)

be an A-action. The outcome of σA at s, denoted Out(s,σA), is the set of states out(s,σA) for all σA
such that σA(a)=σA(a) for every a ∈ A.

Definition 2.4 (Concurrent Game Model). A concurrent game model (CGM) is a tuple M =
〈A,S, {Acta}a∈A, {acta}a∈A,out,P,L〉 where :

• 〈A,S, {Acta}a∈A, {acta}a∈A〉 is a concurrent game structure;

• P is a non-empty set of atomic propositions;

• L :S→P (P) is a labelling function.

Example 2.2. Let us model the booking automata of the introductory case with the following

concurrent game model:

Mticket = 〈A,S, {Acta}a∈A, {acta}a∈A,out,P,L〉, where

• A= {H,B}, where H corresponds to Hugo and B to the cheater Bob;

• S= {s1, . . . , s11};

• for both agents Hugo and Bob, the actions are “idle” (do nothing), “login” (enter a booking

number), “ask_print” (ask for the printing of the ticket) and “ask_reimbursement” (ask for

the reimbursement of the ticket);

• the mapping defining the actions available at each state for Hugo and Bob is given in Table

2.2;

actH actB

s0 idle, login idle, login

s1 idle, login idle, ask_print, ask_reimbursement

s2 idle, ask_print, ask_reimbursement idle, login

s3 idle, ask_print, ask_reimbursement idle, ask_print, ask_reimbursement

s4 /. . . /s11 idle idle

Table 2.2: The mappings actH and actB defining the actions available to Hugo and Bob at each

state

• the transition function is given in Figure 2.1.

• P= {logged,ticket_printed,ticket_reimbursed,ticket_unavailable};

• the labelling function is

– L(s0)=;
– L(s1)= L(s2)= L(s3)= {logged}

– L(s4)= L(s6)= L(s8)= {ticket_printed,logged}

– L(s5)= L(s7)= L(s9)= {ticket_reimbursed,logged}

– L(s10)= {ticket_printed,ticket_reimbursed,logged}

– L(s11)= {ticket_unavailable}

16

2.1. MODELLING OF MULTI-AGENTS / OPEN SYSTEMS

S0

S1

S6

S7

S2

S4S10S5

S11

S3

i, l
l, l

l, i

i, i

l,ap

l,ar
i,a

p

l, i
i, i

i,ar

i, i

i, i

i, i i, ii, i

i, i

i,a
r

ar, i

ar,a
r

ar
,a

p
a

p,
ar

ap, i
i,ap

ap,ap

i, i

In order to keep this CGM readable, we haven’t represented the transitions

from s2, since they are symmetric to the outgoing transitions from s1. Indeed

these transitions are as follows:

– out(s2,〈idle, idle〉)= S2

– out(s2,〈idle, login〉)= S3

– out(s2,〈ask_print, idle〉)= S4

– out(s2,〈ask_print, login〉)= S8

– out(s2,〈ask_reimbursement, idle〉)= S5

– out(s2,〈ask_reimbursement, login〉)= S9

– out(s8,〈ask_reimbursement, idle〉)= S1

– out(s9,〈ask_reimbursement, login〉)= S1

Figure 2.1: Transitions in the CGM Mticket

17

CHAPTER 2. OPEN SYSTEMS: MODELS AND LOGICS

2.2 ATL: A Logic for Multi-Agents Systems

The alternating-time temporal logic, in short ATL, was first introduced in 1997 [3] by Alur,

Henzinger and Kupferman, and then modified in 2002 [4]. The first version was based on

alternating transition systems, whereas the second was based on concurrent game models. ATL

is a member of the temporal logics’ family, as LTL and CTL. In fact, it directly extends CTL with

the notions of agents and coalitions of agents.

Different versions of the alternating-time temporal logic exist, increasing or decreasing the

expressiveness of the logic and therefore also increasing or decreasing its complexity [41, 61]. For

instance, the version EATL allows one to express fairness constraints.

The next subsection describes the syntax and specificity of several versions of ATL.

2.2.1 Syntax of Different ATL Versions

Although the syntax of ATL, ATL+ or ATL∗ is similar to the one of LTL or CTL, the new kind of

path quantifiers, called strategic quantifiers, makes a big difference. It is now possible to specify

which coalition of agents must achieve a given property. In our game, agents of the coalition

are considered as proponents and all the other agents of the game as opponents. There are two

different path quantifiers. The first one, denoted 〈〈A〉〉 where A is a coalition of agents, means

that the coalition A has a strategy no matter the actions chosen by opponents. When we write

〈〈A〉〉Φ, we mean that the coalition A can enforce the property (or goal) Φ. On the contrary, the

strategic quantifier �A� means that the opponents have at least a riposte to any strategy of the

coalition A that enforces Φ. So a formula �A�Φ means that the coalition A cannot avoid the

property Φ.

First, we recall the meaning of several temporal operators and equivalences between them.

The main operators in temporal logic are ©, �, U whose significance is “Next”, “Always" and

“Until” respectively. Other operators exist and can be defined with the previous three ones as

follows: “True” > := p∨¬p, “False” ⊥ := ¬>, “Sometime” ♦ϕ := >Uϕ (but also ♦ϕ := ¬�¬ϕ),

“Release” ψRϕ := �ϕ∨ϕU(ϕ∧ψ). In the literature, the symbols ©, � and ♦ are sometimes

replaced by X, G and F respectively.

We now give the syntax of different members of the family of alternating-time temporal

logics. The first one is ATL, also known as “vanilla ATL”. In this version, temporal operators

are immediately preceded by a strategic quantifier. The second one is ATL∗, also known as “full

ATL”: in the scope of a strategic quantifier, temporal operators can be combined with Boolean

connectors and nested one inside another. Between ATL and full ATL, there are several versions

reducing possibilities of combination and/or nesting. We will particularly focus on ATL+ and also

give as an example the syntax of EATL. Both versions are presented in [42]. The fragment ATL+

only allows Boolean combinations of temporal operators, while the fragment EATL allows two

sorts of temporal operator’s nesting: “Infinitely often”
∞
♦ (or GF) and “Sometime always”

∞
� (or FG),

18

2.2. ATL: A LOGIC FOR MULTI-AGENTS SYSTEMS

∞
♦

0

ϕ ϕ ϕ ϕ

∞
�

0

ϕ ϕ ϕ ϕ ϕ

Figure 2.2: The temporal operators
∞
♦ ("Infinitely often") and

∞
� (“Sometime always”)

see Figure 2.2.

Let A be any finite set of agents. In the following syntaxes, p is an atomic proposition from a

given set P, l is a literal, that is p or ¬p, and A is a coalition of agents from A, that is A ranges

over P (A).

Syntax of ATL:

(2.1) ATL-formula ϕ := p | (¬ϕ) | (ϕ∧ϕ) | 〈〈A〉〉©ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕUϕ

Ex. Hugo and Bob do not have a strategy to enforce the system to be in a state where a ticket is

printed and the ticket is reimbursed, is expressed by

¬〈〈H,B〉〉♦(ticket_printed∧ ticket_reimbursed)

Remark 2.1. To have more readable formulae, we omit parentheses where there is no ambiguity.

Also, in examples, we write 〈〈H,B〉〉 as a shortcut of 〈〈{H,B}〉〉.

Syntax of EATL:

(2.2) EATL-formula ϕ := p | (¬ϕ) | (ϕ∧ϕ) | 〈〈A〉〉©ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕUϕ | 〈〈A〉〉
∞
♦ϕ | 〈〈A〉〉 ∞

�ϕ

Ex. Hugo gets log infinitely often with a booking number to the booking automaton:

〈〈H〉〉
∞
♦ logged

Differently from ATL or EATL, the syntax for ATL+ or ATL∗ is expressed in term of state

formulae evaluated at a given state and path formulae evaluated on a given path (see subsection

2.2.2).

Notation 2.2. In order to differentiate state formulae from path formulae, we use the lower case

Greek letters ϕ, ψ, θ, ξ to denote state formulae, and the capital Greek letters Φ, Ψ for path

formulae.

19

CHAPTER 2. OPEN SYSTEMS: MODELS AND LOGICS

In order to simplify the description of the tableau-based decision procedure for ATL+ and

ATL∗, we give the syntax in negation normal form, that is all negations are pushed next to

propositions. Therefore ¬〈〈A〉〉Φ is transformed into �A� ∼Φ, and ¬�A�Φ into 〈〈A〉〉 ∼Φ, where

∼Φ is the negation normal form of ¬Φ.

Remark 2.2. The syntax of ATL cannot be put into negation normal form using the symbol ��,
because ∼ϕUψ≡¬ϕR¬ψ≡�¬ψ∨¬ψU(¬ψ∧¬ϕ) is not well-formed in ATL.

Syntax of ATL+:

ATL+- state formula ϕ := l | (ϕ∧ϕ) | (ϕ∨ϕ) | 〈〈A〉〉Φ | �A�Φ
ATL+- path formula Φ :=ϕ | (Φ∧Φ) | (Φ∨Φ) |©ϕ |�ϕ | (ϕUϕ)

(2.3)

Ex. Hugo has a strategy to print his ticket once he is logged with the booking number to the

automaton:

〈〈H〉〉(logged→♦ticket_printed)

Syntax of ATL∗:

ATL∗- state formula ϕ := l | (ϕ∧ϕ) | (ϕ∨ϕ) | 〈〈A〉〉Φ | �A�Φ
ATL∗- path formula Φ :=ϕ | (Φ∧Φ) | (Φ∨Φ) |©Φ |�Φ | (ΦUΦ)

(2.4)

Ex. Hugo should infinitely often be allowed to print his ticket after he is logged to the automaton,

and Bob should infinitely often be allowed to reimburse his ticket after being logged to the

automaton.

〈〈H〉〉�♦(logged→©♦ticket_printed)∧〈〈B〉〉�♦(logged→©♦ticket_reimbursed)

Remark 2.3. The grammar of state formulae is the same for ATL+ and ATL∗, and it is the

definition of path formulae which makes the difference.

2.2.2 Semantics

In this section, we will see how to interpret ATL formulae over a concurrent game model.

First we need to define what are a play, a history and a strategy in concurrent game models.

A play, denoted by λ, in a CGM is an infinite sequence s0, s1, s2, . . . of states such that there

exists an action vector σA such that Out(si,σA)= si+1 for each i ≥ 0.

On a given play λ, we denote by λ0 its initial state, by λi its (i+1)th state, by λ≤i the prefix

λ0 . . .λi of λ, by λ≥i the suffix λiλi+1 . . . of λ, and in general by λi∼ j the sub-sequence λi . . .λ j,

where 0≤ i ≤ j. For any sub-sequence λi∼ j, we say that its length is `= j−i and we write |λi∼ j| = `
and last(λi∼ j)=λ j. A history, denoted h, is a finite sub-sequence of a play.

Given a CGM M , we denote by PlaysM the set of plays, and for a state s ∈S, by PlaysM (s) the

set of plays with initial state s.

20

2.2. ATL: A LOGIC FOR MULTI-AGENTS SYSTEMS

For a given coalition A, an A-strategy, denoted FA, associates an action vector σA ∈ ActA

with each state s ∈S and each possible history at that state. The kind of history on which the

strategy is based may consist of only the current state, in that case we said that the strategy is

memoryless or positional. On the opposite side, agents may be able to remember all the history of

the play up to the current state s, we then speak of perfect-recall strategy. Between these two

extremes, we find bounded-recall strategies: if b is a given bound on the memory, then agents are

able to remember the b previous states in addition to the current state. In the extreme cases of

memoryless and perfect-recall strategies, b = 1 and b =ω respectively. Then the set of all histories

in M is defined as HistM [b]=⋃
1≤n<1+bS

n.

Formally, we define an A-strategy by FA[b] :HistM [b]→ActA such that FA[b](h) ∈ actA(last(h))

for every h ∈HistM [b]. We also denote by StratM (A)[b] the set of collective strategies bounded

by b of a coalition A in M . The set of plays starting at s consistent with an A-strategy FA[b],

denoted PlaysM (s,FA[b]), is the set of all plays λ ∈PlaysM (s) such that λi+1 ∈Out(λi,FA[b](λ j∼i))

for all i ≥ 0, where j =max{i−b+1,0}.

For any coalition A ⊆A, a given CGM M and a state s ∈ M , an A-co-action at s in M is a

mapping ActcA :ActA →ActA−A. An A-co-action assigns to every collective action of A at state s

in M a collective action at s for the complementary coalition A− A.

Also, we define an A-co-strategy in M as a mapping F c
A [b] : StratM (A)[b]×HistM [b]→ActA−A

that assigns to every collective strategy of A and every history h ∈HistM [b] a collective action at

last(h) for A− A. The set of plays starting at s consistent with an A-co-strategy F c
A [b], denoted

PlaysM (s,F c
A [b]), is the set of all plays λ ∈ PlaysM (s) such that λi+1 ∈Out(λi,F c

A [b](FA[b],λ j∼i))

for all i ≥ 0, where j =max{i−b+1,0}.

We usually write FA, StratM (A), F c
A and HistM instead of FA[b], StratM (A)[b], F c

A [b] and

HistM [b] respectively when b is understood from the context.

The semantics of the different versions of ATL is defined over a given CGM M , a state s ∈M ,

and if necessary, a play λ ∈M .

Semantics of ATL

• M , s |= p iff p ∈ L(s), for any proposition p ∈P;

• M , s |= ¬ϕ iff M , s 6|=ϕ;

• M , s |=ϕ∧ψ iff M , s |=ϕ and M , s |=ψ;

• M , s |= 〈〈A〉〉©ϕ iff there exists an A-action σA ∈ actA(s) such that M , s′ |= ϕ for all s′ ∈
Out(s,σA);

• M , s |= 〈〈A〉〉�ϕ iff there exists an A-strategy FA such that M ,λi |=ϕ for all λ ∈PlaysM (s,FA)

and all i ≥ 0;

• M , s |= 〈〈A〉〉ϕUψ iff there exists an A-strategy FA such that, for all λ ∈PlaysM (s,FA), there

exists an i ≥ 0 with M ,λi |=ψ and M ,λ j |=ϕ for all 0≤ j < i.

21

CHAPTER 2. OPEN SYSTEMS: MODELS AND LOGICS

Remark 2.4. In the case of the next operator, the strategic quantifier 〈〈A〉〉 still denotes the

existence of a A-strategy, but in this particular case a A-strategy is specified by a single local

A-action at s.

Semantics of ATL∗ Here, we generalize the semantics for ATL to ATL∗, which covers the

semantics of EATL and ATL+.

• M , s |= p iff p ∈ L(s), for any proposition p ∈P;

• M , s |= ¬p iff M , s 6|= p, for any proposition p ∈P;

• M , s |=ϕ∧ψ iff M , s |=ϕ and M , s |=ψ;

• M , s |=ϕ∨ψ iff M , s |=ϕ or M , s |=ψ;

• M , s |= 〈〈A〉〉Φ iff there exists an A-strategy FA such that, for all λ ∈PlaysM (s,FA), M ,λ |=Φ;

• M , s |= �A�Φ iff there exists an A-co-strategy F c
A such that, for all λ ∈PlaysM (s,F c

A),

M ,λ |=Φ;

• M ,λ |=ϕ iff M ,λ0 |=ϕ;

• M ,λ |=Φ∧Ψ iff M ,λ |=Φ and M ,λ |=Ψ;

• M ,λ |=Φ∨Ψ iff M ,λ |=Φ or M ,λ |=Ψ;

• M ,λ |=©Φ iff M ,λ≥1 |=Φ;

• M ,λ |=�Φ iff M ,λ≥i |=Φ for all i ≥ 0;

• M ,λ |=ΦUΨ iff there exists an i ≥ 0 where M ,λ≥i |=Ψ and for all 0≤ j < i, M ,λ≥ j |=Φ.

2.2.3 Satisfiability and Validity

We give a general definition of the notion of satisfiability and validity for ATL and its extensions.

This definition will be refined in the next subsection.

Let ϕ be an ATL∗ formula, then ϕ is satisfiable if there exists a CGM M and a state s ∈M

such that M , s |=ϕ.

Let ϕ be an ATL∗ formula, then ϕ is valid if for any CGM M and any state s ∈M , M , s |=ϕ.

The satisfiability problem consists in answering the following question:

Given a formula ϕ, is ϕ satisfiable ?

2.2.4 Different Variations on ATL

By modifying some parameters, the answer to the satisfiability problem for a given ATL formula

may differ, and the problem may also become undecidable. These parameters concern

• the set of agents that is considered in the model [31, 65]. That is, do we consider only the

agents that occurs in the given formula or more agents?

• the type of memory held by agents. That is, in order to decide a strategy to apply, agents

may refer only to the current state (memoryless strategies) or to the history of the play. We

22

2.2. ATL: A LOGIC FOR MULTI-AGENTS SYSTEMS

say that agents use bounded-recall strategy if they remember only a part of the history, and

use perfect-recall strategy if they remember the whole history of the play.

• how much information is available to the agents [35]. That is, do agents always know what

is the current state of the system?

2.2.4.1 Which Sets of Agents are Considered?

Three types of satisfiability for ATL have been defined in [65] and named in [31] as tight-

satisfiability, A-satisfiability and general satisfiability. They are formally defined as follows:

Notation 2.3. Let θ be a formula of the family of alternating-time temporal logics, we denote by

Aθ the set of agents occurring θ.

Definition 2.5. A formula θ is tightly-satisfiable if θ is satisfiable in a CGM M = 〈Aθ,S,

{Acta}a∈A, {acta}a∈A,out,P,L〉.

Definition 2.6. A formula θ is A-satisfiable, for some A ⊇ Aθ, if θ is satisfiable in a CGM

M = 〈A,S, {Acta}a∈A, {acta}a∈A,out,P,L〉.

Definition 2.7. A formula θ is generally-satisfiable if θ is satisfiable in a CGM

M = 〈A′,S, {Acta}a∈A, {acta}a∈A,out,P,L〉 for some A′ with Aθ ⊆A′.

As far as the problem of satisfiability for ATL or its extensions is concerned, tight-satisfiability

may return different results compared to the two other types of satisfiability, whereas A-

satisfiability and general satisfiability can be reduced to the same A-satisfiability where A =
Aθ∪ {a}. This special kind of A-satisfiability is called loose satisfiability.

Example 2.3. Let us consider the following formula:

¬〈〈a〉〉©p∧¬〈〈a〉〉©q∧〈〈a〉〉©(p∨ q)

which means that the agent a does not have any strategy to make p true at next state, the agent

a does not have any strategy to make q true at next state, and the agent a has a strategy to make

either p or q true at the next state.

If the agent a is the only agent of the model (tight satisfiability), it is impossible to make this

formula satisfiable. However, if another agent is added to the model (loose satisfiability), the

formula becomes satisfiable as shown in Fig. 2.3, where 0 and 1 are the two actions available to

agent 1 and 2.

2.2.4.2 What Memory do Agents Have ?

As seen in the semantics, there exist different kinds of strategies depending on the memory of

agents. In the case of ATL and EATL, the class of satisfiable formulae does not depend on the type

of memory that agents can use. This is not true when we deal with ATL+ and ATL∗ formulae.

The following example [35] illustrates this difference.

23

CHAPTER 2. OPEN SYSTEMS: MODELS AND LOGICS

s0;

s1 {p}

s2 {q}

(a)

0

1

s0;

s1 {p}

s2 {q}

(b)

0,0

0,1

Figure 2.3: Influence of other agents on satisfiability. (a) An attempt to make the formula

¬〈〈a〉〉© p∧¬〈〈a〉〉© q∧〈〈a〉〉© (p∨ q) satisfiable with only one agent, which, of course, fails. (b) A

model for the formula ¬〈〈a〉〉© p∧¬〈〈a〉〉© q∧〈〈a〉〉© (p∨ q) when an agent is added.

s0

s1

{p}

s2

{q}

0 1
0 0

Figure 2.4: Model for the formula θ = 〈〈a〉〉(p ∧ 〈〈a〉〉♦q)∧ �a�♦(�¬p ∨�¬q) with memoryless

strategy

Example 2.4. Let us consider the formula

θ = 〈〈a〉〉♦(p∧〈〈a〉〉♦q)∧�a�(�¬p∨�¬q)

which means that the agent a has a strategy to eventually make p true while having some

strategy for a that eventually makes q true, and the agent a cannot avoid making p always false

or making q always false.

This formula is satisfiable if the agent a uses memoryless strategies, indeed a model for this

formula is given in Fig. 2.4. Strategies for the different occurrences of the agent a in order to

satisfy the formula θ are the following:

• for the first of a: Fa(s0)= 0, Fa(s1)= 0, Fa(s2)= 0;

• for the second occurrence of a: Fa(s0)= 1, Fa(s1)= 0, Fa(s2)= 0;

• for the third occurrence of a: Fa(s0) = 0, Fa(s1) = 0, Fa(s2) = 0 or Fa(s0) = 1, Fa(s1) = 0,

Fa(s2)= 0, indifferently.

With perfect-recall strategies, the strategies for the third occurrence of the agent a can be

transformed as Fa(. . . , s1, s0)= 1 and Fa(. . . , s2, s0)= 0. In this way, the agent a can avoid making

p (resp. q) always true. Actually, the formula θ is unsatisfiable with perfect-recall strategies.

24

2.3. CONCLUSION

Indeed, to satisfy both 〈〈a〉〉♦(p∧〈〈a〉〉♦q) and �a�(�¬p∨¬q), the properties p and q must be on

two different “branches” of a graph, as done in Fig. 2.4, but this gives the possibility to the agent

a to change the branch it comes across each time it goes through the state s0.

If we delve a little bit further, we see that this difference, w.r.t. satisfiability according

to the kind of memory taken into account, comes from the possibility of connecting temporal

operators with Boolean operators and of applying different strategies to different occurrences

of the same agent. The first possibility is not allowed in ATL and EATL. The second possibility

can be suppressed from ATL∗ by using irrevocable strategies [2] or strategy contexts [9] where

agents must decide the same unique choice for all strategies in a given formula or a given part of

a formula, respectively. In these cases, satisfiability is independent of the size of agent’s memory.

In this thesis, we will focus on perfect-recall strategies, and when we will use the term

“strategy”, we will implicitly refer to “perfect-recall strategy”.

2.2.4.3 What Information do Agents Have?

In the model we are interested in, agents have a full knowledge of the system. That is agents

always know in which state of the system they are. On the contrary, in case of imperfect informa-

tion, two states of the system may be indistinguishable from the point of view of the agents. To

work with imperfect information, one needs to work with a different model, namely imperfect

information concurrent game models (iCGM) [35]. Up to now, it is not known whether the satisfi-

ability problem is decidable or not with imperfect information. In this thesis, we work always

under the hypothesis of perfect information.

2.3 Conclusion

In this chapter, we have presented two models for describing multi-agent systems: alternating

transition systems and concurrent game models. In the rest of this thesis, we will focus on the

latter. We have given the syntax and semantics of ATL and of several of its extensions, namely

EATL, ATL+ and ATL∗. Finally, we have discussed different variants of ATL and have seen that

the set of agents considered in the models and the memory of agents have an impact on the class

of satisfiable formulae for ATL+ and ATL∗. In the following, we will consider the tight and loose

satisfiability problem for ATL and its extensions where agents use perfect-recall strategies and

have perfect information about the system.

We are now ready to present a tableau-based decision procedure for ATL that will be the basis

for our tableau procedures for ATL+ and ATL∗.

25

C
H

A
P

T
E

R

3
TABLEAU-BASED DECISION PROCEDURE FOR ATL

In this chapter we describe the two-phase tableau-based decision procedure for the version

ATL proposed in [31]. Introduced in 2009, historically this procedure is the third method

that has been proposed to decide satisfiability of an ATL formula. The first method is an

automata-based decision procedure [22, 32], while the second is a top-down tableau-like decision

procedure [65] that was proposed to prove that the complexity of the satisfiability problem for

ATL is EXPTIME regardless tight or loose satisfiability. The top-down approach exhaustively

creates all the consistent subsets of the closure of the input formula, connects them according

to the semantics, and, finally, tests if a model can be extracted. Obviously, a lot of redundant

nodes can be created, in such an approach, that resumes to a sort of exhaustive search on the

whole space of possible states. We recall that the kind of memory used by agents to answer the

satisfiability question for ATL has no consequence on the class of satisfiable formulae and on

the complexity of the problem. Indeed, in that case, memoryless and perfect-recall strategies are

equivalent.

We present the procedure here with slight modifications w.r.t. [31] in order to be coherent

with the new procedures we propose for ATL+ and ATL∗. This procedure is illustrated by the

following examples:

θ1 = 〈〈H〉〉©logged∧¬〈〈H,B〉〉♦(ticket_printed∧ ticket_reimbursed)∧
¬〈〈H〉〉©ticket_printed∧¬〈〈B〉〉©ticket_reimbursed

which means that Hugo can log at the next step, that Hugo and Bob do not have the possibility to

print and reimburse a ticket at the same time, that Hugo cannot be sure to be able to print a

ticket at the next step, and that Bob cannot be sure to be able to reimburse a ticket at the next

27

CHAPTER 3. TABLEAU-BASED DECISION PROCEDURE FOR ATL

step. In order to save space in examples, we rewrite this formula as

(3.1) θ1 = 〈〈H〉〉©l∧¬〈〈H,B〉〉♦(p∧ r)∧¬〈〈H〉〉©p∧¬〈〈B〉〉©r

This formula can be seen a specification of the booking automata where we want to avoid the fact

that two people can make a coalition to get a ticket and also to get it reimbursed. Of course, this

is only a part of the specification, as we want to be able to compute it by hand. Moreover, this

specification could be improved, using for instance ATL+ or ATL∗ formulae, but it is sufficient to

illustrate the first phase of the procedure for ATL.

Since the above formula is satisfiable and the second phase is better illustrated with unsatis-

fiable formulae, we will also use the following formula:

θ2 = 〈〈H〉〉�¬ticket_reimbursed∧〈〈B〉〉♦ticket_reimbursed

abbreviated as

(3.2) θ2 = 〈〈H〉〉�¬r∧〈〈B〉〉♦r

which means that Hugo has a strategy to never reimburse a ticket and that Bob has a strategy to

reimburse a ticket.

3.1 General Description of the Procedure of V. Goranko and D.
Shkatov

This tableau-based decision procedure attempts to build, step-by-step, from an initial formula θ,

a rooted directed graph from which it is possible to extract a CGM satisfying θ. If the construction

of such graph is possible, we say that the formula θ is satisfiable. Otherwise the formula θ is

unsatisfiable.

In this directed graph, nodes are labelled by set of formulae (state formulae in the case of

ATL+ and ATL∗, see Chapter 4) and edges can be either of the form =⇒ or of the form σ−→ where

σ is an action vector. Nodes of the graph are partitioned in two categories: prestates and states.

Prestates can be seen as nodes where the information contained in its formulae is “implicit”.

When we decompose all the formulae of a prestate and saturate the prestate, we obtain one or

several states, that is prestates are treated in a static manner that just spells out the truth of the

formulae they contain. States have the particularity of containing formulae of the form 〈〈A〉〉©ϕ

or ¬〈〈A〉〉©ϕ from which it is possible to compute the next steps of the tableau construction.

Intuitively, a state is handled in a dynamical way, creating possible successors to the state (world)

in the candidate model M one is trying to build. All prestates have states as successors and

directed edges from prestates to states are of the form =⇒; on the other hand, all states have

prestates as successors and directed edges from states to prestates are of the form σ−→, where σ

is an action vector.

28

3.1. GENERAL DESCRIPTION OF THE PROCEDURE OF V. GORANKO AND D. SHKATOV

Init: Γ= {θ}Initial
formula θ

rule (SR)
on prestates

New
states?

rule (Next)
on states

New
prestates?

Initial
tableau T θ

0

rule ER1

rule ER2

New
elimi-

nation?

Final
tableau T θ

Is T θ

open ?

θ is not
satisfiable

θ is
satisfiable

C
onstruction

P
hase

E
lim

ination
P

hase

no

no

yes

no

no

yes

no

no yes

yesno

Figure 3.1: The general structure of the tableau-based decision procedure for the family of

alternating-time temporal logics. The procedure starts with an initial formula θ and answers to

the question: is θ satisfiable?

29

CHAPTER 3. TABLEAU-BASED DECISION PROCEDURE FOR ATL

Figure 3.1 represents the different steps of the procedure. The procedure is in two phases: the

construction phase and the elimination phase. First, we create an initial node, that is a prestate

containing the initial formula θ to be tested w.r.t. satisfiability, and we construct the graph by

expanding prestates into states via a static rule called SR, and by computing prestates from

states with a dynamic rule called Next. The rule SR decomposes each formula of a prestate, and

then saturates the prestate into new states. Explanations of the rules SR and Next can be found

in Section 3.2.

The procedure avoids creation of duplicated nodes (a form of loop check), and consequently,

ensures the termination of the procedure since the number of formulae that can appear in a node

is finite (see Subsection 3.2). The construction phase ends when no new nodes can be added to

the graph. The graph obtained at the end of the construction phase is called the initial tableau

for θ, and is denoted by T θ
0 .

The second phase of the procedure eliminates via the rule ER1 all nodes with missing

successors, that is prestates with no more successors at all, or states with at least one missing

action vector among its outcome edges, that is at least one missing successor. Also, by means of

a rule called ER2, it eliminates all states with “unrealized eventualities”, that is states which

cannot ensure that all the objectives it contains will be fulfilled eventually. The graph obtained at

the end of the elimination phase is called the final tableau for θ, also noted T θ. An explanation

of the elimination phase is given in Section 3.3.

The impact of the difference between tight satisfiability and loose satisfiability on the tableau

procedure is only noticeable in the rule Next, see Section 3.2.3. When using the symbol A we

refer to the set Aθ of agents mentioned in θ in case of tight satisfiability and to the set Aθ∪{k+1},

where k is the number of agents in θ, in case of loose satisfiability.

It is worth noting that CGMs are defined as having a non-empty set of agents, and that

formula mentioning no agents may give wrong results if we want to decide tight satisfiability. For

instance, the formula ¬〈〈;〉〉©p∧¬〈〈;〉〉©¬p, corresponding to the CTL formula ¬AX p∧¬AX¬p,

will be wrongly declared unsatisfiable. Therefore, in that special case, one must necessarily check

loose satisfiability to obtain the good result.

3.2 Construction Phase

The construction phase starts with a prestate containing the initial formula θ. The construction

phase consists in the alternation of static analyses and dynamic analyses of formulae. The static

analysis of formulae consists in extracting all the information encapsulated in prestate’s formulae,

in particular, information about the possible future, which is used during the dynamic analysis to

build next states of the tableau.

30

3.2. CONSTRUCTION PHASE

α α1 α2

¬¬ϕ ϕ ϕ

ϕ1 ∧ϕ2 ϕ1 ϕ2

¬〈〈A〉〉©ϕ 〈〈;〉〉©¬ϕ 〈〈;〉〉©¬ϕ
〈〈A〉〉�ϕ ϕ 〈〈A〉〉©〈〈A〉〉�ϕ

β β1 β2

¬(ϕ1 ∧ϕ2) ¬ϕ1 ¬ϕ2

〈〈A〉〉(ϕ1Uϕ2) ϕ2 ϕ1 ∧〈〈A〉〉©〈〈A〉〉(ϕ1Uϕ2)

¬〈〈A〉〉(ϕ1Uϕ2) ¬ϕ1 ∧¬ϕ2 ¬ϕ2 ∧¬〈〈A〉〉©〈〈A〉〉(ϕ1Uϕ2)

¬〈〈A〉〉�ϕ ¬ϕ ¬〈〈A〉〉©〈〈A〉〉�ϕ
Table 3.1: Decomposition of α-formulae and β-formulae for ATL

3.2.1 Decomposition of ATL Formulae

The preliminary step towards prestate saturation and the rule SR consists in decomposing

semantically complex ATL formulae into simpler ones. The simplest ATL formulae we can obtain

are called primitive formulae (or basic formulae) and correspond to >, p, ¬p, 〈〈A〉〉©ϕ and

¬〈〈A′〉〉©ψ where p ∈ P and A′ 6= A. Formulae of the form 〈〈A〉〉©ϕ and ¬〈〈A〉〉©ψ are called

positive successor formulae and proper negative successor formulae respectively. Moreover, ϕ and

¬ψ are called the positive successor component and negative successor component, respectively.

These successor formulae have a major role in the dynamic stage of the construction phase, see

Subsection 3.2.3.

Non-primitive formulae are partitioned in two categories: α-formulae and β-formulae. We

will see in Chapter 4 a third category for ATL+ and ATL∗ formulae. The α-formulae correspond

to formulae for which the decomposition is conjunctive (α≡α1 ∧α2) and the β-formulae to the

ones for which the decomposition is disjunctive (β ≡ β1 ∨β2). Decomposition of α-formulae is

called α-decomposition and decomposition of β-formulae is called β-decomposition. Both kinds of

decomposition are given in the table 3.1.

Each formula appearing in a tableau node whose initial formula is θ belongs to the so called

closure of θ:

Closure Let θ be an ATL formula. The closure of θ, denoted by cl(θ), is the least set of formulae

such that

• θ ∈ cl(θ);

• cl(θ) is closed under sub-formulae;

• cl(θ) is closed under α-decomposition and β-decomposition;

• if ϕ ∈ cl(θ) then ϕ,¬ϕ ∈ cl(θ), and ¬¬ϕ is always replaced by ϕ;

• >,〈〈A〉〉©>∈ cl(θ).

31

CHAPTER 3. TABLEAU-BASED DECISION PROCEDURE FOR ATL

Let us observe that, for any θ, cl(θ) is finite and cl(θ) < c.|θ| where c ≥ 1 and |θ| is the size of θ

[31].

Example 3.1. The closure of θ1 (Formula 3.1) is

cl(θ1)={θ1,〈〈H〉〉©l,¬〈〈H〉〉©l, l,¬l,¬〈〈H,B〉〉♦(p∧ r),〈〈H,B〉〉♦(p∧ r),

¬〈〈H,B〉〉©〈〈H,B〉〉♦(t∧ r),〈〈H,B〉〉©〈〈H,B〉〉♦(p∧ r), p∧ r,¬(p∧ r),

¬〈〈H〉〉©p,〈〈H〉〉©p,¬〈〈B〉〉©r,〈〈B〉〉©r, p, r,¬p,¬r}

and the closure of the θ2 (Formula 3.2) is

cl(θ2)={θ2,〈〈H〉〉�¬r,¬〈〈H〉〉�¬r,〈〈H〉〉©〈〈H〉〉�¬r,¬〈〈H〉〉©〈〈H〉〉�¬r,

〈〈B〉〉♦r,¬〈〈B〉〉♦r,〈〈B〉〉©〈〈B〉〉♦r,¬〈〈B〉〉©〈〈B〉〉♦r, r,¬r}

3.2.2 Saturation of Prestates

Once we are able to decompose every non-primitive ATL formulae, it is possible to saturate a

given set of ATL formulae using the following definition:

Definition 3.1 (full saturated sets of ATL formulae). Let Γ, ∆ be sets of ATL formulae and

Γ⊆∆⊆ cl(Γ).

1. ∆ is patently inconsistent if it contains a pair of formulae ϕ and ¬ϕ.

2. ∆ is a full saturated set of Γ if it is not patently inconsistent and satisfies the following

closure conditions:

• if ϕ∧ψ ∈∆ then ϕ ∈∆ and ψ ∈∆;

• if ϕ∨ψ ∈∆ then ϕ ∈∆ or ψ ∈∆;

The family of all full saturated sets of a set Γ is denoted FS(Γ).

The rule SR adds to the tableau all the full saturated sets of a prestate Γ as successor states

of Γ, avoiding duplicated states.

Rule SR: Given a prestate Γ, do the following:

1. For each full saturated set ∆ of Γ add to the initial tableau a state with label ∆.

2. For each of the added states ∆, if ∆ does not contain any formulae of the form 〈〈A〉〉©ϕ or

¬〈〈A〉〉©ϕ, add the formula 〈〈A〉〉©> to it;

3. For each state ∆ obtained at steps 1 and 2, link Γ to ∆ via a =⇒ edge;

4. If, however, the pretableau already contains a state ∆′ with label ∆, do not create another

copy of it but only link Γ to ∆′ via a =⇒ edge.

Example 3.2. We start the construction of the tableau for θ1 (Formula 3.1) by the creation of the

initial node Γ0 = 〈〈H〉〉©l∧¬〈〈H,B〉〉♦(p∧ r)∧¬〈〈H〉〉©p∧¬〈〈B〉〉©r. Then we apply the rule SR
on Γ0, which results in the successor states shown in Figure 3.2:

32

3.2. CONSTRUCTION PHASE

Γ0 : {θ1}

∆1 : {θ1,〈〈H〉〉©l,¬〈〈H〉〉©p,¬〈〈B〉〉©r,

¬〈〈H,B〉〉♦(p∧ r),¬(p∧ r),¬p, ¬〈〈H,B〉〉©
〈〈H,B〉〉♦(p∧ r), 〈〈;〉〉©¬〈〈H,B〉〉♦(p∧ r)}

∆2 : {θ1,〈〈H〉〉©l,¬〈〈H〉〉©p,¬〈〈B〉〉©r,

¬〈〈H,B〉〉♦(p∧ r),¬(p∧ r),¬r, ¬〈〈H,B〉〉©
〈〈H,B〉〉♦(p∧ r), 〈〈;〉〉©¬〈〈H,B〉〉♦(p∧ r)}

Figure 3.2: Application of the rule SR on prestate Γ0 = {θ1}

3.2.3 Dynamic Analysis of Successor Formulae

In a tableau for LTL [66], the third construction rule creates one prestate from a state by keeping

only ©-formulae (successor formulae) and removing their outermost ©, which gives a simple

dynamic rule:

(3.3)
E,©ϕ1, . . . ,©ϕn

ϕ1, . . . ,ϕ1

where E is a set of “marked formulae”, that is formulae already statically analysed.

For ATL the problematic is different since transitions are labelled by action vectors and lead

to different prestates. First, we provide each agent with enough available actions at the current

state ∆. Then we appropriately define the outcome prestate of each action vector resulting from

these actions.

First, we arrange all successor formulae of ∆ into a list L where all formulae of the form

〈〈A〉〉©ϕ (positive successor formulae) precede all formulae of the form ¬〈〈A〉〉©ϕ (proper negative

successor formulae). The idea here is to consider the enforcing of each formula of L as an action

available to every agent at the current state, the position of the formula being the number of

that action. Each resulting action vector can be seen as a program encoding which successor

components will be in the corresponding prestate. Note that in [31, 65], any action vector is seen

as a “collective vote” made by all agents. This program (or “vote”) ensures that for each 〈〈A〉〉©ϕ

from L there is a respective A-action at ∆ that guarantees ϕ in the label of every corresponding

successor prestate, and that for every ¬〈〈A′〉〉©ϕ from L, there is an A′-co-action at ∆ that ensures

¬ϕ in the label of the corresponding successor prestates.

In order to have coherence between the action vectors and the properties we want to obtain

on the linked prestates, the program selects successor components such that coalitions of the

corresponding positive successor formulae and counter-coalition of the corresponding negative

successor formulae do not intersect, as illustrated in Figure 3.3.

33

CHAPTER 3. TABLEAU-BASED DECISION PROCEDURE FOR ATL

Figure 3.3: Coalitions A i, A j and Ak corresponding to positive successor formulae and the

counter-coalition A− A′ corresponding to the selected proper negative successor formula must

not intersect.

This is why the rule Next ensures for any successor prestate Γ of ∆ that

• at most one negative successor formula is present in any successor prestate;

• if {〈〈A i〉〉©ϕi,〈〈A j〉〉©ϕ j}⊆∆ and {ϕi,ϕ j}⊆Γ, then A i ∩ A j =;;

• if {〈〈A i〉〉©ϕi,�A′�©ψ}⊆∆ and {ϕi,ψ}⊆Γ, then A i ⊆ A′.

(See [31], Remark 4.3)

Selection of a positive successor formula 〈〈A〉〉©ϕ in a given prestate is pretty natural: the

rule Next must ensure that there is at least one A-action enforcing each positive formula of the

form 〈〈A〉〉©ϕ. This A-action is composed for each agent of the coalition of the action number

attributed to 〈〈A〉〉©ϕ in L. Therefore if an action vector σA extends such an A-action, then ϕ is

added to the prestate corresponding to σA.

Selection of the proper negative successor formula ¬〈〈A′〉〉©ϕ is trickier and more technical:

first, all the agents of the counter-coalition, that is agents belonging to A− A′, must choose

an action corresponding to a proper negative successor formula. This allows a given function

co, defined below, to distribute the different negative successor components over each prestate

resulting from action vectors corresponding to such criteria. For each successor formula ¬〈〈A′〉〉©ψ,

and for each A′-action σA′ possible from ∆, the agents of the counter-coalition can synchronise to

extend σA′ in a dedicated action vector σA such that ∆
σA−→Γ and ψ is the only negative component

in Γ. Indeed, for each coalition A′, there exists a player b ∈ A− A′ that is able to enforce, no

matter the choices of the agents in A′, the value of co to the number corresponding to a given

successor formula ¬〈〈A′〉〉©ψ ∈ L. Then all the other agents of the counter-coalition choose the

first proper negative successor formula of the list L. In this way, their choices correspond to add 0

in the computation of the function co, making unchanged the result decided by the agent b.

34

3.2. CONSTRUCTION PHASE

Rule Next Given a state ∆, do the following, where σ is a shorthand for σA:

1. List all primitive successor formulae of ∆ in such a way that all positive successor formulae

precede all proper negative ones; let the result be the list

L= [〈〈A0〉〉©ϕ0, . . . ,〈〈Am−1〉〉©ϕm−1,¬〈〈A′
0〉〉©ψ0, . . . ,¬〈〈A′

l−1〉〉©ψl−1]

We recall that A′
j 6= A for all 0 ≤ j ≤ l −1 by definition of primitive formulae. We also

recall that in case of tight satisfiability A = Aθ, and that in case of loose satisfiability

A=Aθ∪ {k+1}, assuming there are k agents in Aθ.

Let r∆ = m + l; denote by D(∆) the set {0, . . . , r∆ − 1}|A|. Then, for every σ ∈ D(∆), de-

note N(σ) := {i | σi > m}, where σi is the ith component of the tuple σ, and let co(σ) :=
[Σi∈N(σ)(σi −m)] mod l.

2. For each σ ∈ D(∆) create a prestate:

Γσ = {ϕp | 〈〈Ap〉〉©ϕp ∈∆ and σa = p for all a ∈ Ap}

∪ {¬ψq | ¬〈〈A′
q〉〉©ψq ∈∆,co(σ)= q and A− A′

q ⊆ N(σ)}
(3.4)

If Γσ is empty, add > to it. Then connect ∆ to Γσ with σ−→.

If, however, Γσ =Γ for some prestate Γ that has already been added to the initial tableau,

only connect ∆ to Γ with σ−→.

We repeat iteratively the rule SR and the rule Next until no new state or prestate can be

added to the structure. The so obtained structure is called the initial tableau for the formula θ,

and is denoted by T θ
0 .

Example 3.3 (Continuation of Example 3.2). For both states ∆1 and ∆2, the list of successor

formulae is the following:

L= [
0

〈〈H〉〉©l,
1

〈〈;〉〉¬〈〈H,B〉〉♦(p∧ r),

0
2

¬〈〈H〉〉©p,

1
3

¬〈〈B〉〉©r]

Note that the numbers on the upper line correspond to positions among proper negative successor

formulae, and the numbers on the lower line correspond to positions among all successor formulae.

So, m = 2, l = 2, r∆1 = r∆2 = 4, and
σ N(σ) co(σ) Γσ σ N(σ) co(σ) Γσ

0,0 ; 0 l, ¬〈〈H,B〉〉♦(p∧ r) 2,0 {H} 0 ¬〈〈H,B〉〉♦(p∧ r)

0,1 ; 0 l, ¬〈〈H,B〉〉♦(p∧ r) 2,1 {H} 0 ¬〈〈H,B〉〉♦(p∧ r)

0,2 {B} 0 l, ¬p, ¬〈〈H,B〉〉♦(p∧ r) 2,2 {H,B} 0 ¬p, ¬〈〈H,B〉〉♦(p∧ r)

0,3 {B} 1 l, ¬〈〈H,B〉〉♦(p∧ r) 2,3 {H,B} 1 ¬r, ¬〈〈H,B〉〉♦(p∧ r)

1,0 ; 0 ¬〈〈H,B〉〉♦(p∧ r) 3,0 {H} 1 ¬r, ¬〈〈H,B〉〉♦(p∧ r)

1,1 ; 0 ¬〈〈H,B〉〉♦(p∧ r) 3,1 {H} 1 ¬r, ¬〈〈H,B〉〉♦(p∧ r)

1,2 {B} 0 ¬p, ¬〈〈H,B〉〉♦(p∧ r) 3,2 {H,B} 1 ¬r, ¬〈〈H,B〉〉♦(p∧ r)

1,3 {B} 1 ¬〈〈H,B〉〉♦(p∧ r) 3,3 {H,B} 0 ¬p, ¬〈〈H,B〉〉♦(p∧ r)

35

CHAPTER 3. TABLEAU-BASED DECISION PROCEDURE FOR ATL

which lead to five successor prestates for both ∆1 and ∆2:

Γ1 : {l, ¬〈〈1,2〉〉♦(p∧ r)} Γ2 : {l, ¬p, ¬〈〈1,2〉〉♦(p∧ r)}

Γ3 : {¬〈〈1,2〉〉♦(p∧ r)} Γ4 : {¬p, ¬〈〈1,2〉〉♦(p∧ r)}

Γ5 : {¬r, ¬〈〈1,2〉〉♦(p∧ r)}

By applying two more times the rules SR and Next, we obtain the initial tableau of Figure 3.4.

Γ0 = {θ1}

∆1 ∆2

Γ3 Γ4 Γ5Γ2Γ1

∆3∆4 ∆5 ∆6 ∆7 ∆8 ∆9

Γ6

. 0,0

. 0,1
0,3 0,2

1,0 2,0
1,1 2,1
1,3

.1,2

. 2,2

. 3,3

2,3
. 3,0
. 3,1
. 3,2

0,0

0,0
0,0

0,0
0,0

0,0

0,0

Figure 3.4: Initial tableau for θ1 = 〈〈H〉〉©l∧¬〈〈H,B〉〉♦(p∧ r)∧¬〈〈H〉〉©p∧¬〈〈B〉〉©r

with ∆1 and ∆2 as in Figure 3.2 and:

∆3 : {l, ¬〈〈1,2〉〉♦(p∧ r), ¬(p∧ r), ¬p, ¬〈〈1,2〉〉©〈〈1,2〉〉♦(p∧ r),〈〈;〉〉¬〈〈1,2〉〉♦(p∧ r)}

∆4 : {l, ¬〈〈1,2〉〉♦(p∧ r), ¬(p∧ r), ¬r, ¬〈〈1,2〉〉©〈〈1,2〉〉♦(p∧ r),〈〈;〉〉¬〈〈1,2〉〉♦(p∧ r)}

∆5 : {l, ¬p, ¬〈〈1,2〉〉♦(p∧ r), ¬(p∧ r), ¬r, ¬〈〈1,2〉〉©〈〈1,2〉〉♦(p∧ r),〈〈;〉〉¬〈〈1,2〉〉♦(p∧ r)}

∆6 : {¬〈〈1,2〉〉♦(p∧ r), ¬(p∧ r), ¬p, ¬〈〈1,2〉〉©〈〈1,2〉〉♦(p∧ r),〈〈;〉〉¬〈〈1,2〉〉♦(p∧ r)}

∆7 : {¬〈〈1,2〉〉♦(p∧ r), ¬(p∧ r), ¬r, ¬〈〈1,2〉〉©〈〈1,2〉〉♦(p∧ r),〈〈;〉〉¬〈〈1,2〉〉♦(p∧ r)}

∆8 : {¬p, ¬〈〈1,2〉〉♦(p∧ r), ¬(p∧ r), ¬r, ¬〈〈1,2〉〉©〈〈1,2〉〉♦(p∧ r),〈〈;〉〉¬〈〈1,2〉〉♦(p∧ r)}

∆9 : {¬r, ¬〈〈1,2〉〉♦(p∧ r), ¬(p∧ r), ¬p, ¬〈〈1,2〉〉©〈〈1,2〉〉♦(p∧ r),〈〈;〉〉¬〈〈1,2〉〉♦(p∧ r)}

Γ6 : {¬〈〈1,2〉〉♦(p∧ r)}

36

3.3. ELIMINATION PHASE

3.3 Elimination Phase

As we have already observed, T θ
0 is a finite graph. The elimination phase applies to T θ

0 and also

works step-by-step. In order to go through one step to another we apply by turns two elimination

rules, called ER1 and ER2, until no more nodes can be eliminated. The rule ER1 detects and

deletes nodes with missing successors, while the rule ER2 detects and deletes states that do not

realize all their eventualities. At each step, we obtain a new intermediate tableau, denoted by

T θ
n . We denote by Sθ

n the set of nodes (states and prestates) of the intermediate tableau T θ
n .

Remark 3.1. Contrary to the tableau-based decision procedure in [31], we present a version where

prestates are eliminated with the rule ER1 only when necessary. This does not have any effect

on the result of the procedure, nor any relevant modification in the soundness and completeness

proofs, but it makes implementation quicker and easier.

Rule ER1 Let Ξ ∈ Sθ
n be a node (prestate or state).

• In the case where Ξ is a prestate: if all nodes ∆ with Ξ=⇒∆ have been eliminated at earlier

stages, then obtain T θ
n+1 by eliminating Ξ from T θ

n .

• In the case where Ξ is a state: if, for some σ ∈ D(Ξ), the node Γ with Ξ σ−→ Γ has been

eliminated at earlier stage, then obtain T θ
n+1 by eliminating Ξ from T θ

n .

Before stating the rule ER2, we first define what is an eventuality and how to check that

eventualities are realized.

Realization of eventualities In vanilla-ATL, eventualities are formulae of the form 〈〈A〉〉ϕUψ
or of the form ¬〈〈A〉〉�ϕ. With this kind of formulae, one can express properties that must occur

eventually, even if we don’t know when. The danger when we construct a tableau, is to postpone

the moment when the property holds forever. Therefore, if an eventuality is not immediately

realized, we need to check in the future whether it is indeed realized or not. In order to obtain

the set of successor prestates (and therefore the associated successor states) involved in the

realization of a given eventuality, we introduce the following notation:

Notation 3.1. Let ∆ ∈ Sθ
n and let L= [〈〈A0〉〉©ϕ0, . . . ,〈〈Am−1〉〉©ϕm−1,¬〈〈A′

0〉〉©θ0, . . . ,¬〈〈A′
l−1〉〉©

θl−1] be the list of all primitive successor formulae of ∆, induced as part of application of (Next).
Succ(∆,〈〈Ap〉〉©ϕp) := {Γ |∆ σ−→Γ,σa = p for every a ∈ Ap}

Succ(∆,¬〈〈A′
q〉〉©θq) := {Γ |∆ σ−→Γ,co(σ)= q and A− A′

q ⊆ N(σ)}

Definition 3.2 (Realization of eventuality of the form 〈〈A〉〉ϕUψ). The eventuality 〈〈A〉〉ϕUψ is

realized at ∆ in T θ
n when:

1. If {ψ,〈〈A〉〉ϕUψ}⊆ Sθ
n, then 〈〈A〉〉ϕUψ is realized at ∆ in T θ

n ; or

2. If {ϕ,〈〈A〉〉©〈〈A〉〉ϕUψ,〈〈A〉〉ϕUψ} ⊆ ∆ and for every Γ ∈ Succ(∆,〈〈A〉〉©〈〈A〉〉ϕUψ), there

exists ∆′ ∈ Sθ
n such that

37

CHAPTER 3. TABLEAU-BASED DECISION PROCEDURE FOR ATL

Γ0 : 〈〈H〉〉�¬r∧〈〈B〉〉♦r

∆1 : θ2,〈〈H〉〉�¬r,〈〈B〉〉♦r,¬r

〈〈H〉〉©〈〈H〉〉�¬r,〈〈B〉〉©〈〈B〉〉♦r

Γ2 : 〈〈H〉〉�¬r,〈〈B〉〉♦rΓ1 : 〈〈H〉〉�¬r Γ3 :> Γ4 : 〈〈B〉〉♦r

∆2 : 〈〈H〉〉�¬r,¬r

〈〈H〉〉©〈〈H〉〉�¬r
∆3 : 〈〈H〉〉�¬r,〈〈B〉〉♦r,¬r,

〈〈H〉〉©〈〈H〉〉�¬r,〈〈B〉〉©〈〈B〉〉♦r

∆4 : >,

〈〈H,B〉〉©>
∆5 : 〈〈B〉〉♦r, r,

〈〈H,B〉〉©>
∆6 : 〈〈B〉〉♦r,

〈〈B〉〉©〈〈B〉〉♦r

0,0 0,1 1,0
1,1

0,10,0
0,0 1,0

0,0

0,0
0,0

1,1

Figure 3.5: Initial tableau for θ2 = 〈〈H〉〉�¬r∧〈〈B〉〉♦r

• Γ=⇒∆′ and,

• 〈〈A〉〉ϕUψ is realized at ∆′ in T θ
n ,

Definition 3.3 (Realization of eventuality of the form ¬〈〈A〉〉�ϕ). The eventuality ¬〈〈A〉〉�ϕ is

realized at ∆ in T θ
n when:

1. If {¬ϕ,¬〈〈A〉〉�ϕ}⊆ Sθ
n, then ¬〈〈A〉〉�ϕ is realized at ∆ in T θ

n ; or

2. If {¬〈〈A〉〉©〈〈A〉〉�ϕ,¬〈〈A〉〉�ϕ}⊆∆ and for every Γ ∈ Succ(∆,¬〈〈A〉〉©〈〈A〉〉�ϕ), there exists

∆′ ∈ Sθ
n such that

• Γ=⇒∆′ and,

• ¬〈〈A〉〉�ϕ is realized at ∆′ in T θ
n ,

Rule ER2 If ∆ ∈ Sθ
n is a state and contains an eventuality that is not realized at ∆ ∈T θ

n , then

obtain T θ
n+1 by removing ∆ from Sθ

n.

Example 3.4 (Elimination phase for θ2). The initial tableau for the formula θ2 (Formula 3.2)

is given in Fig. 3.5. The state ∆1 of the initial tableau for θ2 contains one eventuality, namely

〈〈B〉〉♦r. The state ∆1 does not contain the proposition r, therefore, the eventuality 〈〈B〉〉♦r is not

immediately realized in ∆. The set of successors of ∆1 for this eventuality is Succ(∆1,〈〈B〉〉©
〈〈B〉〉♦r)= {Γ2,Γ4}.

Let us study Γ2. The successor of Γ2 is ∆3, which does not contain the proposition r either. This

means that the eventuality 〈〈B〉〉♦r is not immediately realized in ∆3. Moreover, Succ(∆3,〈〈B〉〉©
〈〈B〉〉♦r)= {Γ2,Γ4} and ∆3 is the only successor of Γ2, so we conclude that the eventuality 〈〈B〉〉♦r

cannot be realized from ∆1 or ∆3. Therefore, according to rule ER2, we eliminate these two states,

which implies, according to rule ER1, the elimination of Γ2 and Γ0.

38

3.4. CONCLUSION

At the end of the elimination phase, we obtain the final tableau for θ, denoted by T θ. The

set of nodes (prestates and states) in T θ is denoted by Sθ. It is declared open if the initial node

belongs to Sθ, and closed otherwise . The procedure for deciding satisfiability of θ returns “No” if

T θ is closed, “Yes” otherwise.

Example 3.5 (Continuation of Examples 3.4 and 3.3). The initial node Γ0 of the tableau for

θ2 has been eliminated during the elimination phase. Therefore, the tableau is closed and the

formula θ2 is unsatisfiable.

On the other hand, no node can be eliminated from the initial tableau for θ1, so the tableau is

open and θ1 is satisfiable.

3.4 Conclusion

In our opinion, this tableau-based decision procedure is relatively intuitive. Indeed it follows

the semantic of ATL formulae, and it is possible to easily represent the resulting tableau for

small formulae. This tableau-based decision procedure for ATL is sound, complete and runs

in EXPTIME[31]. In next chapter, we will see that it is possible to extend this procedure for

deciding satisfiability of ATL+ and ATL∗ without distorting the underlying basic structure. These

new procedures are also sound and complete, but runs in 2EXPTIME, which is the optimal

complexity.

39

Part II

Deciding ATL+ and ATL∗ Satisfiability
by Tableaux

41

C
H

A
P

T
E

R

4
TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

In Chapter 3 we have described the tableau-based decision procedure for ATL introduced

in [31]. However, with the syntax of ATL, one cannot express properties where several

objectives have to be achieved by a same strategy, or fairness constraints, for instance.

The extensions ATL+ and ATL∗ of ATL allow one to express such properties, but in return,

bring additional difficulties.

First, as seen in Subsection 2.2.4, memoryless strategies and perfect-recall strategies are not

equivalent, regarding the class of satisfiable formulae. Here, we present a tableau procedure

using perfect-recall strategies. In the conclusion of this chapter, we discuss why it is difficult, not

to say impossible, to build a tableau using memoryless strategies.

Also, the possibility to use Boolean combination and nesting of temporal operators complicates

the decomposition of formulae; fixed-point equivalences cannot be used directly to decompose

formulae containing temporal properties, as done for the ATL tableau procedure. This is because

the strategic quantifiers 〈〈A〉〉 and �A� cannot distribute over Boolean connectors. For example,

〈〈A〉〉(�Φ1 ∨�Φ2) 6≡ 〈〈A〉〉�Φ1 ∨〈〈A〉〉�Φ2.

Last, it is not clear whether a formula is an eventuality or not. For instance, should we

consider the formula 〈〈A〉〉(�ϕ∨♦ψ) as an eventuality? Once having decided which formulae are

eventualities, it then remains the problem of determining when an eventuality is realized.

Nevertheless, it is possible to deal with all these difficulties inherent to ATL+ and ATL∗, and

construct a tableau for formulae of these extensions without modifying the general structure

of the tableau-based decision procedure for ATL. Therefore, we present our tableau procedures

for ATL+ and ATL∗ by highlighting the differences with respect to the procedure presented in

Chapter 3. These differences are outlined in Table 4.1 and treated in detail in the rest of this

chapter. We end by analysing the complexity of these procedures. We have figured out the two

43

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

tableau procedures incrementally by first solving problems in ATL+ [13], and then dealing with

problems only occurring in ATL∗ [20].

In order to illustrate our new procedures, let us first modify the example formula θ1 into the

following ATL+ formula:

θ+1 = 〈〈H〉〉©logged∧¬〈〈H,B〉〉(♦ticket_printed∧♦ticket_reimbursed)∧
¬〈〈H〉〉(©ticket_printed∨©ticket_reimbursed)

which means that Hugo can log at next step, that Hugo and Bob are not sure to have the possibility

to print and reimburse a ticket, and that Hugo is not sure to be able to print or reimburse a ticket

at next step. We abbreviate and put into negation normal form θ+1 , and we obtain:

(4.1) θ+1 = 〈〈H〉〉©l∧�H,B�(�¬p∨�¬r)∧�H�(©¬p∧©¬r)

We also take as an additional example the ATL+ formula θ+3 :

θ+3 = 〈〈H〉〉(((¬ticket_printed∧¬ticket_reimbursed)Ulogged)∧♦ticket_reimbursed)∧〈〈B〉〉�¬logged

which means that Hugo has a strategy to not be able to print or reimburse a ticket until being

logged and eventually reimburse a ticket, and Bob has a strategy to never be logged. This

unsatisfiable formula is abbreviated as

(4.2) θ+3 = 〈〈H〉〉(((¬p∧¬r)Ul)∧♦r)∧〈〈B〉〉�¬l

For ATL∗, we take as example the formula θ∗3 :

θ∗3 = 〈〈H〉〉(¬loggedU(logged∧♦�ticket_unavailable))∧〈〈B〉〉�¬ticket_unavailable

which means that Hugo has a strategy to be unlogged until being logged and eventually get to a

point where the ticket is unavailable for ever, and Bob has a strategy to always have the ticket

available. This unsatisfiable formula is abbreviated as

(4.3) θ∗3 = 〈〈H〉〉(¬lU(l∧♦�u))∧〈〈B〉〉�¬u

We also use the following formula, extracted and adapted from [57]:

(4.4) θ∗4 = �1��((p∧©¬p)∨ (¬p∧©p))∧�1��(¬p∨¬q)∧
�1��(¬p∨¬r)∧�1��(¬q∨¬r)∧�1��(♦q∧♦r)∧ q

This formula shows interesting properties linked to the simultaneous nesting and Boolean

combination of temporal operators, that have an impact on the elimination phase.

The proofs concerning our procedure for deciding the satisfiability of ATL+ formulae can be

found in [14, 15]. In appendix B, we give the proofs of our tableau procedure for ATL∗ formulae.

44

4.1. NEW KIND OF FORMULAE = NEW DECOMPOSITION

Step ATL+ ATL∗

Decomposition treatment of Boolean combination

of temporal operators: new kind

of formulae, namely γ-formulae, to

be decomposed

treatment of Boolean combination

and nesting of temporal operators:

new kind of formulae, namely γ-

formulae, to be decomposed

Saturation take into account γ-formulae

rule SR no modifications

rule Next take into account negation normal form

rule ER1 No modifications

Realization of

eventualities

treatment of γ-formulae as eventu-

alities: new function (Realized) to

compute immediate realization of

eventualities + link between even-

tualities

treatment of γ-formulae as even-

tualities: new function (WF) to

compute immediate realization of

eventualities + link between even-

tualities

rule ER2 no modifications

Table 4.1: Modification for the adaptation of the tableau-based decision procedure for ATL to the

extensions ATL+ and ATL∗

4.1 New Kind of Formulae = New Decomposition

In section 3.2.1, we have seen that we can partition ATL formulae into primitive formulae,

α-formulae and β-formulae. In ATL+ and ATL∗, we encounter formulae of the form 〈〈A〉〉Φ or

�A�Φ where Φ can be as complicated as we want, with the limitation that they do not have © as

main operator, and for ATL+ they do not contain nesting of temporal operators. Therefore, we

are not able to describe all the possibilities of decomposition of non-primitive formulae as we

did with Table 3.1. We need a specific way to decompose this new kind of formulae, that we call

γ-formulae. Nevertheless, we still keep the notion of primitive formulae, which corresponds to the

formulae >, ⊥, p, ¬p, 〈〈A〉〉©ϕ and �A�©ϕ, where p is a proposition and ϕ is a state formulae,

as well as the notion of α-formulae, which corresponds to the formulae of the from ϕ1 ∧ϕ2, and

β-formulae, which corresponds to the formulae of the form ϕ1 ∨ϕ2, where ϕ1 and ϕ2 are state

formulae. We then define γ-formulae as non-primitive formulae different from α- and β-formulae,

that is formulae of the form 〈〈A〉〉Φ and �A�Φ where Φ 6=©ϕ.

Let us see how to decompose γ-formulae. To understand how it works, we need to return to

the source of this type of tableaux for temporal logic, that is the tableaux for LTL described in

[66]. We must remember that, for LTL, decomposition of temporal operators aims at having on

one side “a requirement on the current state” and on the other side “a requirement on the rest of

the sequence”. Since ATL and its extensions are branching logics, we cannot keep talking about

45

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

sequences, but this kind of decomposition can be adapted to strategies. In our case, properties

are evaluated on branches resulting from the execution of a given strategy. Thus our objective

is to decompose γ-formulae in order to obtain the same separation between the current state

and the rest of the branches. In other words, for each possibility embedded in the path formula Φ

associated to a γ-formula of the form 〈〈A〉〉Φ or �A�Φ, we want to obtain a pair 〈ψ,Ψ〉 where ψ

is a state formula that represents a requirement on the current state, and Ψ is a path formula

that represents a requirement on the rest of the branches. In this purpose, we propose two new

functions dec+ : ATL+p →P (ATL+s ×ATL+p) and dec∗ : ATL∗p →P (ATL∗s ×ATL∗p ×P (ATL∗p)), where

ATL+p is a set of ATL+ path formulae, ATL+s is a set of ATL+ state formulae, ATL∗p is a set of ATL∗

path formulae, and ATL∗s is a set of ATL∗ state formulae. The definition of the function dec∗ is

slightly different from the one of dec+. This difference will be explained in Section 4.1.2.

4.1.1 Decomposition Function for ATL+ γ-Formulae

We define the function dec+ recursively on the structure of the path formula Φ as follows:

• dec+(ϕ)= {〈ϕ,>〉} and dec+(©ϕ)= {〈>,ϕ〉} for any ATL+ state formula ϕ.

• dec+(�ϕ)= {〈ϕ,�ϕ〉}
• dec+(ϕUψ)= {〈ϕ,ϕUψ〉,〈ψ,>〉}
• dec+(Φ1 ∧Φ2)= dec+(Φ1)⊗+ dec+(Φ2), where

S1 ⊗+ S2 := {〈ψi ∧ψ j,Ψi ∧Ψ j〉 | 〈ψi,Ψi〉 ∈S1,〈ψ j,Ψ j〉 ∈S2}

• dec+(Φ1 ∨Φ2)= dec+(Φ1)∪dec+(Φ2)∪ (dec+(Φ1)⊕+ dec+(Φ2)), where

S1 ⊕+ S2 := {〈ψi ∧ψ j,Ψi ∨Ψ j〉 | 〈ψi,Ψi〉 ∈S1,〈ψ j,Ψ j〉 ∈S2,Ψi 6= >,Ψ j 6= >}

where the operators ⊗+ and ⊕+ are associative, up to logical equivalence.

The first three items of the definition are directly derived from decomposition and fixed-point

equivalences for LTL. The novelty comes from the treatment of Boolean connectors in path

formulae. The conjunctive case is clear: every path that satisfies Φ1 ∧Φ2 combines a type of path

that satisfies Φ1 with a type of path that satisfies Φ2. To understand the disjunctive case, we

recall that the construction of the tableau is step-by-step. Therefore, for a given prestate under

construction, when we have a formula of the form 〈〈A〉〉(Φ1 ∨Φ2), where, for instance Φ1 =�ϕ1

and Φ2 =�ϕ2, we do not know in advance which of �ϕ1 or �ϕ2 would be completed for each

possible path; so it is important to keep both possibilities at the current state, if possible. This

idea is expressed by the use of dec+(Φ1)⊕+ dec+(Φ2) in the above union, where we keep both

disjuncts true at the present state and delay the choice. This is why, in ⊕+ definition, the state

formulae ψi and ψ j are connected by ∧ but the path formulae Ψi and Ψ j are connected by ∨.

Moreover, the ⊕+ operation avoids the construction of a pair 〈ψi ∧ψ j,Ψi ∨Ψ j〉 where either Ψi

or Ψ j is >, because that case is already included in dec+(Φ1) or in dec+(Φ2). The three cases for

paths that satisfy the disjunction Φ1 ∨Φ2 can be illustrated by the picture in Figure 4.1.

46

4.1. NEW KIND OF FORMULAE = NEW DECOMPOSITION

dec(Φ1)

•
ϕ1

Ψ1

Ψ1

Ψ1

Ψ1

Ψ1

dec(Φ2)

•
ϕ2

Ψ2

Ψ2

Ψ2

Ψ2

Ψ2

dec(Φ1)⊕+ dec(Φ2)

•
ϕ2

ϕ1

Ψ1

Ψ2

Ψ2

Ψ1

Ψ1

Figure 4.1: The three cases for disjunctive path objectives in a γ-formula

Example 4.1 (function dec+ applied to �H,B�(�¬p∨�¬r)). For this example, the path formula

to be studied is Φ=�¬p∨�¬r, therefore

dec+(Φ)= dec+(�¬p)∪dec+(�¬r)∪ (dec+(�¬p)⊕+ dec+(�¬r))

dec+(Φ)= {〈¬p,�¬p〉}∪ {〈¬r,�¬r〉}∪ ({〈¬p,�¬p〉}⊕+ {〈¬r,�¬r〉})
dec+(Φ)= {〈¬p,�¬p〉}∪ {〈¬r,�¬r〉}∪ {〈¬p∧¬r,�¬p∨�¬r〉}
dec+(Φ)= {〈¬p,�¬p〉,〈¬r,�¬r〉,〈¬p∧¬r,�¬p∨�¬r〉}

4.1.2 Decomposition Function for ATL∗ γ-Formulae

The decomposition function dec∗ is similar to the decomposition function dec+, but we also need

to go one step further into the recursion to deal with nesting of temporal operators. Therefore we

need to analyse sub path formulae coming after temporal operators. This is why the two cases

�Φ and ΦUΨ are now recursive steps in the definition of dec∗.

In temporal logics, e.g. LTL, the operator U is considered as an eventuality operator, that is an

operator that promises to verify a given formula at some instant/state. When we write λ |=ϕ1Uϕ2,

where ϕ1 and ϕ2 are state formulae, we mean that there is a state λi of the computation λ where

ϕ2 holds and ϕ1 holds for all the states of λ preceding λi. So, once the property ϕ2 is verified, we

do not need to take care of ϕ1, ϕ2 and ϕ1Uϕ2 any more. We say that ϕ1Uϕ2 is realized. However,

if ϕ1 and ϕ2 are path formulae, e.g. �Φ1 and �Φ2 respectively, there is a state λi from which

Φ2 must hold forever — we say that �Φ2 is “initiated” at λi, in the sense that we start to make

�Φ2 true at λi —, and for every computation λ≥ j, where j < i, �Φ1 must hold. So Φ1 has to be

true forever, that is even after �Φ2 had been initiated. This explains the fact that at a state s

the path formula ϕ1Uϕ2 may become ϕ1Uϕ2 ∧ϕ1 when ϕ1 is a path formula and we postpone ϕ2.

Note that ϕ1 is then also initiated at s. We now face the problem of memorizing the fact that a

path formula Φ is initiated. Indeed, path formulae cannot be stored directly in a state that, as for

ATL, is a set of state formulae. In order to deal with this problem, during the decomposition of

γ-formulae, we add a new set of path formulae linked to a γ-component and the current state.

In order to take into account this third element, the operators ⊗+ and ⊕+ are modified into the

two operators ⊗∗ and ⊕∗, respectively, and whose definition is as follows:

47

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

• S1 ⊗∗ S2 := {〈ψi
.∧ψ j,Ψi

.∧Ψ j,Si ∪S j〉 | 〈ψi,Ψi,Si〉 ∈S1,〈ψ j,Ψ j,S j〉 ∈S2}

• S1 ⊕∗ S2 := {〈ψi
.∧ψ j,Ψi

.∨Ψ j,Si ∪S j〉 | 〈ψi,Ψi,Si〉 ∈S1, 〈ψ j,Ψ j,S j〉 ∈S2,Ψi 6= >,Ψ j 6= >}

where ⊗∗ and ⊕∗ are associative, up to logical equivalence.

The definition of the function dec∗ is recursive on the structure of the path formula Φ:

• dec∗(ϕ)= {〈ϕ,>,;〉} for any ATL∗ state formula ϕ

• dec∗(©Φ1)= {〈>,Φ1,;〉} for any path formula Φ1

• dec∗(�Φ1)= {〈>,�Φ1, {Φ1}〉}⊗∗ dec∗(Φ1)

• dec∗(Φ1UΦ2)= ({〈>,Φ1UΦ2, {Φ1}〉}⊗∗ dec∗(Φ1))∪ ({〈>,>, {Φ2}〉}⊗∗ dec∗(Φ2))

• dec∗(Φ1 ∧Φ2)= dec∗(Φ1)⊗∗ dec∗(Φ2)

• dec∗(Φ1 ∨Φ2)= dec∗(Φ1)∪dec∗(Φ2)∪ (dec∗(Φ1)⊕∗ dec∗(Φ2))

It is worth noticing that the function dec∗ subsumes the function dec+.

Remark 4.1. The operators
.∧ and

.∨ correspond respectively to the operators ∧ and ∨ where the

associativity, commutativity, idempotence and identity element properties are embedded in the

syntax. The aim of both
.∧ and

.∨ is to automatically transform resultant formulae in conjunctive

normal form without redundancy, and therefore ensures the termination of our tableau-based

decision procedure. For instance, when applying the function dec∗ on �♦Φ∧♦Φ we may obtain

a path formula �♦Φ∧♦Φ∧♦Φ and applying again the function dec∗ on the so obtained path

formula may return �♦Φ∧♦Φ∧♦Φ∧♦Φ, and so on forever. Without caution, the closure of the

initial formula might be infinite, and therefore also the corresponding tableau. Moreover when

the formula is complicated with ∧ and ∨ embedded in temporal operators, we may not be able to

define which parts of the path formula are identical. We avoid these unwanted behaviours with

our use of
.∧ and

.∨ and the transformation of any new path formula in conjunctive normal form

without redundancies.

Example 4.2 (function dec∗ applied to 〈〈H〉〉(¬lU(l∧♦�u))). For this example, the path formula

to be studied is Φ=¬lU(l∧♦�u) therefore

dec∗(Φ)= ({〈>,¬lU(l∧♦�u), {¬l}〉}⊗∗ dec∗(¬l))∪ ({〈>,>, {l∧♦�u}〉}⊗∗ dec∗(l∧♦�u))

dec∗(Φ)= ({〈>,¬lU(l∧♦�u), {¬l}〉}⊗∗ {〈¬l,>,;〉})∪ ({〈>,>, {l∧♦�u}〉}⊗∗ dec∗(l)⊗∗ dec∗(♦�u))

dec∗(Φ)= {〈¬l,¬lU(l∧♦�u), {¬l}〉}∪
({〈>,>, {l∧♦�u}〉}⊗∗ {〈l,>,;〉}⊗∗ ({〈>,♦�u, {>}〉}⊗∗ dec∗(>))∪ ({〈>,>, {�u}〉}⊗∗ dec∗(�u)))

dec∗(Φ)= {〈¬l,¬lU(l∧♦�u), {¬l}〉}∪ ({〈l,>, {l∧♦�u}〉}⊗∗ ({〈>,♦�u, {>}〉}∪ {〈u,�u, {�u,u}〉}))
dec∗(Φ)= {〈¬l,¬lU(l∧♦�u), {¬l}〉}∪ ({〈l,>, {l∧♦�u}〉}⊗∗ {〈>,♦�u, {>}〉,〈u,�u, {�u,u}〉})
dec∗(Φ)= {〈¬l,¬lU(l∧♦�u), {¬l}〉}∪ {〈l,♦�u, {l∧♦�u}〉,〈l∧u,�u, {l∧♦�u,�u,u}〉}
dec∗(Φ)= {〈¬l,¬lU(l∧♦�u), {¬l}〉,〈l,♦�u, {l∧♦�u}〉,〈l∧u,�u, {l∧♦�u,�u,u}〉}

48

4.1. NEW KIND OF FORMULAE = NEW DECOMPOSITION

4.1.3 Decomposition of ATL+ and ATL∗ Formulae

Let ζ = 〈〈A〉〉Φ or ζ = �A�Φ be a γ-formula to be decomposed. All pairs 〈ψ,Ψ〉 ∈ dec+(Φ) are

converted to a γ-component γ(ψ,Ψ) of the form:

γ(ψ,Ψ)=ψ if Ψ=>
γ(ψ,Ψ)=ψ∧〈〈A〉〉©〈〈A〉〉Ψ if ζ= 〈〈A〉〉Φ
γ(ψ,Ψ)=ψ∧�A�©�A�Ψ if ζ= �A�Φ

in the case of ATL+;

or all triples 〈ψ,Ψ,S〉 ∈ dec∗(Φ) are converted to a γ-set γs(ψ,Ψ,S) = S and a γ-component

γc(ψ,Ψ,S) as follows:

γc(ψ,Ψ,S)=ψ if Ψ=>
γc(ψ,Ψ,S)=ψ∧〈〈A〉〉©〈〈A〉〉Ψ if ζ= 〈〈A〉〉Φ,

γc(ψ,Ψ,S)=ψ∧�A�©�A�Ψ if ζ= �A�Φ

in the case of ATL∗.

Note that the sets γs(ψ,Ψ,S) will be used during the elimination phase in order to determine

whether eventualities are realized or not (see Section 4.4)

Example 4.3 (Continuation of Example 4.1 and 4.2). The γ-components of �H,B�(�¬p∨�¬r)

are

γ(¬p,�¬p)=¬p∧�H,B�©�H,B��¬p

γ(¬r,�¬r)=¬r∧�H,B�©�H,B��¬r

γ(¬p∧¬r,�¬p∨�¬r)=¬p∧¬r∧�H,B�©�H,B�(�¬p∨�¬r)

The γ-components and γ-sets of �H�(¬lU(l∧♦�u) are

γc(¬l,¬lU(l∧♦�u), {¬l})=¬l〈〈H〉〉©〈〈H〉〉(¬lU(l∧♦�u)) and

γs(¬l,¬lU(l∧♦�u), {¬l})= {¬l}

γc(l,♦�u, {l∧♦�u})= l∧〈〈H〉〉©〈〈H〉〉♦�u and

γs(l,♦�u, {l∧♦�u})= {l∧♦�u}

γc(l∧u,�u, {l∧♦�u,�u,u})= l∧u∧〈〈H〉〉©〈〈H〉〉�u and

γs(l∧u,�u, {l∧♦�u,�u,u})= {l∧♦�u,�u,u}

Closure The closure cl(ϕ) of an ATL+ or ATL∗ state formula ϕ is the least set of ATL∗ formulae

such that ϕ,>, ⊥∈ cl(ϕ), and cl(ϕ) is closed under taking successor, α-, β- and γ-components of ϕ.

For any set of state formulae Γ we define

(4.5) cl(Γ)=⋃
{cl(ψ) |ψ ∈Γ}

49

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

For both ATL+ and ATL∗, each formula in the initial tableau for the formula θ belongs to cl(θ)

and |cl(θ)| is finite (see Section 4.5). This ensures the termination of the construction procedure.

We prove with lemma 4.1 that each disjunction of γc(ψ,Ψ,S) obtained from the function

dec∗(Φ) is equivalent to the analysed formula 〈〈A〉〉Φ (or �A�Φ). This key property is item 3 of the

lemma (the first two items being just auxiliary claims), and it is the core distinction between the

proposed calculus for ATL+ in this thesis and the tableau calculus for ATL.

We only give the following lemma with its proof for ATL∗, the case of ATL+ being very similar.

Lemma 4.1. For any ATL∗ γ-formula ζ= 〈〈A〉〉Φ or ζ= �A�Φ, the following properties hold:

1. Φ≡∨
{ψ∧©Ψ | 〈ψ,Ψ,S〉 ∈ dec∗(Φ)}

2. 〈〈A〉〉Φ≡∨
{〈〈A〉〉(ψ∧©Ψ) | 〈ψ,Ψ,S〉 ∈ dec∗(Φ)}, and

�A�Φ≡∨
{�A�(ψ∧©Ψ) | 〈ψ,Ψ,S〉 ∈ dec∗(Φ)}

3. 〈〈A〉〉Φ≡∨
{γc(ψ,Ψ,S) | 〈ψ,Ψ,S〉 ∈ dec∗(Φ)}

Proof.

Claim 1) We will prove the claim by induction on the path formula Φ. It is equivalent to the

following property P(Φ):

For every CGM M and a play λ in it, M ,λ |=Φ iff there exists 〈ψ,Ψ,S〉 ∈ dec∗(Φ) such

that M ,λ0 |=ψ and M ,λ≥1 |=Ψ.

The base cases is Φ=ϕ: the property P(Φ) follows immediately from the definition of dec∗.

For the inductive steps, there are five cases to consider:

Case 1 [Φ=Φ1 ∧Φ2] We have that:

M ,λ |=Φ iff M ,λ |=Φ1 and M ,λ |=Φ2 iff by the inductive hypothesis on Φ1 and Φ2

(i) there exists 〈ψ1,Ψ1,S1〉 ∈ dec∗(Φ1) such that M ,λ0 |=ψ1 and M ,λ≥1 |=Ψ1

(ii) there exists 〈ψ2,Ψ2,S2〉 ∈ dec∗(Φ2) such that M ,λ0 |=ψ2 and M ,λ≥1 |=Ψ2

These two are the case iff

M ,λ0 |=ψ1 ∧ψ2 and M ,λ≥1 |=Ψ1 ∧Ψ2

iff M ,λ0 |= ψ and M ,λ≥1 |= Ψ where ψ = ψ1 ∧ψ2, Ψ = Ψ1 ∧Ψ2 and 〈ψ,Ψ,S〉 ∈ dec∗(Φ) with

S = S1 ∪S2.

This completes the proof of P(Φ) for Φ=Φ1 ∧Φ2.

Case 2 [Φ=Φ1 ∨Φ2] We have that M ,λ |=Φ iff M ,λ |=Φ1 or M ,λ |=Φ2.

By inductive hypothesis for Φ1 and Φ2 and from the fact that dec∗(Φ1)∪dec∗(Φ2) ⊆ dec∗(Φ), we

obtain the direction from left to right in property P(Φ).

For the converse direction, we only need to consider the case that does not follow directly from

the inductive hypothesis for Φ1 and Φ2, viz. when there exists 〈ψ,Ψ,S〉 ∈ (dec∗(Φ1)⊕∗ dec∗(Φ2))

such that M ,λ0 |= ψ and M ,λ≥1 |= Ψ. In this case, ψ = ψ1 ∧ψ2 and Ψ = Ψ1 ∨Ψ2 for some

〈ψ1,Ψ1,S1〉 ∈ dec∗(Φ1) and 〈ψ2,Ψ2,S2〉 ∈ dec∗(Φ2) such that Ψ1 6= > and Ψ2 6= >.

50

4.1. NEW KIND OF FORMULAE = NEW DECOMPOSITION

Suppose M ,λ≥1 |=Ψ1. Since we also have M ,λ0 |=ψ1, by inductive hypothesis for Φ1, it follows

that M ,λ |=Φ1, hence M ,λ |=Φ.

Likewise, when M ,λ≥1 |=Ψ2.

Case 3 [Φ=©Φ′] The property P(Φ) follows immediately from the definition of dec∗.

Case 4 [Φ=�Φ1]

• Left to right

If M ,λ |= �Φ1 then using the well-known fixed-point LTL equivalences, we have that

M ,λ |=Φ1 and M ,λ≥1 |=�Φ1. By the inductive hypothesis for Φ1, we have that M ,λ |=Φ1

only if there is 〈ψ1,Ψ1,S1〉 ∈ dec∗(Φ1) such that M ,λ0 |=ψ1, M ,λ≥1 |=Ψ1.

Therefore M ,λ0 |=ψ1, M ,λ≥1 |=Ψ1 ∧�Φ1, that is M ,λ0 |=ψ, M ,λ≥1 |=Ψ where ψ=ψ1 =
ψ1∧>,Ψ=Ψ1∧�Φ1. As Φ1 is initiated at λ0, we can set that S = S1∪{Φ1}. The so obtained

triple 〈ψ,Ψ,S〉 belongs to dec∗(Φ) by definition of dec(�Φ) and ⊗∗.

• Right to left

If there exists 〈ψ,Ψ,S〉 ∈ dec∗(�Φ1) such that M ,λ0 |=ψ and M ,λ≥1 |=Ψ, then by construc-

tion of dec∗, there exists 〈ψ1,Ψ1,S1〉 ∈ dec∗(Φ1) such that 〈ψ,Ψ,S〉 = 〈ψ1,Ψ1∧�Φ1,S1∪{Φ1}〉.
So M ,λ0 |=ψ1, M ,λ≥1 |=Ψ1∧�Φ1, that is M ,λ≥1 |=Ψ1 and M ,λ≥1 |=�Φ1. So, by inductive

hypothesis, M ,λ |=Φ1. Thus, M ,λ |=Φ1 and M ,λ≥1 |=�Φ1, that is M ,λ |=�Φ1.

Case 5 [Φ=Φ1UΦ2]

• Left to right

If M ,λ |=Φ then

(i) M ,λ |=Φ1 and M ,λ≥1 |=Φ1UΦ2, or

(ii) M ,λ |=Φ2

For the case (i), by the inductive hypothesis for Φ1, we have that

there exists 〈ψ1,Ψ1,S1〉 ∈ dec∗(Φ1) such that M ,λ0 |= ψ1 and M ,λ≥1 |= Ψ1. Therefore

M ,λ0 |=ψ1 and M ,λ≥1 |=Ψ1 ∧Φ1UΦ2, that is M ,λ0 |=ψ and M ,λ≥1 |=Ψ where ψ=ψ1 =
ψ1 ∧>, Ψ =Ψ1 ∧Φ1UΦ2. As Φ1 is initiated at λ0, we can set that S = S1 ∪ {Φ1}. The so

obtained triple 〈ψ,Ψ,S〉 belongs to dec∗(Φ) by definition of dec∗(�Φ) and ⊗∗.

For the case (ii), by the inductive hypothesis for Φ2, we have that

there exists 〈ψ2,Ψ2,S2〉 ∈ dec∗(Φ2) such that M ,λ0 |= ψ2 and M ,λ≥1 |= Ψ2. Therefore

M ,λ0 |=ψ2 and M ,λ≥1 |=Ψ2, that is M ,λ0 |=ψ and M ,λ≥1 |=Ψ where ψ =ψ2 =ψ2 ∧>,

Ψ =Ψ2. As Φ2 is initiated at λ0, we can set that S = S2 ∪ {Φ2}. The so obtained triple

〈ψ,Ψ,S〉 belongs to dec∗(Φ) by definition of dec∗(�Φ) and ⊗∗.

• Right to left

If there exists 〈ψ,Ψ,S〉 ∈ dec∗(Φ) such that M ,λ0 |=ψ and M ,λ≥1 |=Ψ then by definition of

the function dec∗, 〈ψ,Ψ,S〉 ∈ dec∗(Φ) is either

(i) 〈ψ1,Ψ1 ∧Φ1UΦ2,S∪ {Φ1}〉 where 〈ψ1,Ψ1,S1〉 ∈ dec∗(Φ1), or

(ii) 〈ψ2,Ψ2,S2 ∪ {Φ2}〉 where 〈ψ2,Ψ2,S2〉 ∈ dec∗(Φ2).

The first case (i) means that M ,λ0 |=ψ1 and M ,λ≥1 |=Ψ1 ∧Φ1UΦ2. Therefore M ,λ0 |=ψ1

51

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

and M ,λ≥1 |=Ψ1. So by the inductive hypothesis on Φ1, we have M ,λ |=Φ1. Thus, since

we also have M ,λ≥1 |=Φ1UΦ2, M ,λ |=Φ1UΦ2.

The second case (ii) means that M ,λ0 |=ψ2 and M ,λ≥1 |=Ψ2. By the inductive hypothesis

on Φ2, M ,λ |=Φ2. Thus M ,λ |=Φ1UΦ2.

Claim 2) We will consider the case of Θ= 〈〈A〉〉Φ; the case of �A�Φ is analogous.

• The implication from right to left of the claimed equivalence follows from Claim 1.a) and

the monotonicity of 〈〈A〉〉 (in the sense that if Ψ |=Φ then 〈〈A〉〉Ψ |= 〈〈A〉〉Φ).

• To prove the converse direction, we take any CGM M and state s in it such that M , s |=
〈〈A〉〉Φ. We also take and fix any collective strategy FA of A such that M ,λ |=Φ for every

play λ starting at s and consistent with FA. We denote that set of such plays by Out(s,FA).

What we need to prove is equivalent to the following property P(Φ) by induction on Φ:

For all plays λ ∈Out(s,FA) satisfying Φ, there exists one 〈ψ,Ψ,S〉 ∈ dec∗(Φ) such

that M ,λ |=ψ∧©Ψ.

We then recall that every ATL∗ path formula Ξ is a positive Boolean combination of sub-

formulae of the types ϕ, ©Φ′
1, �Φ′

1 and Φ′
1UΦ

′
2, where ϕ is a state formula and Φ′

1, Φ′
2 are

path formulae.

Let the set of these sub-formulae be S(Ξ). Now, we introduce some ad hoc notation for

special sets of formulae in S(Ξ).

– L(Ξ) is the set of all state formulae in S(Ξ);

– N(Ξ) := {
Φ′

1 |©Φ′
1 ∈ S(Ξ)

}
;

– B(Ξ) := {
Φ′

1 |�Φ′
1 ∈ S(Ξ)

}
;

– U(Ξ) := {
Φ′

1UΦ
′
2 |Φ′

1UΦ
′
2 ∈ S(Ξ)

}
;

– U1(Ξ) := {
Φ′

1 |Φ′
1UΦ

′
2 ∈ S(Ξ)

}
;

– U2(Ξ) := {
Φ′

2 |Φ′
1UΦ

′
2 ∈ S(Ξ)

}
.

Without loss of generality we can assume that Φ is in a D.N.F over the set of formulae in

S(Φ), i.e. Φ=Φ1 ∨·· ·∨Φm, where each Φi is a conjunction of formulae from S(Φ).

For every play λ ∈Out(s,FA), there is a set {Φ1, . . . ,Φn} such that M ,λ |= {Φ1, . . . ,Φn} for

some n6m.

Let Φi be one of them. We will associate with it a pair 〈ψi,Ψi,Si〉 ∈ dec∗(Φ) as follows:

First note that all formulae from L(Φi) are true at s and all formulae of B(Φi) are true on

λ. Further, let E i(s,FA) be the subset of those formulae from U2(Φi) which are true on all

paths λ ∈Out(s,FA) satisfying Φi.

Thus, for every play λ ∈Out(s,FA) satisfying Φi the following holds:

(i) M ,λ |=ϕ for every ϕ ∈ L(Φi)

(ii) M ,λ |=©Φ′
1 for each ©Φ′

1 ∈ S(Φi)

(iii) M ,λ |= ψ′∧©(Ψ′∧�Φ′
1) for each �Φ′

1 ∈ S(Φi) and some appropriate 〈ψ′,Ψ′,S′〉 ∈
dec∗(Φ′

1)

52

4.1. NEW KIND OF FORMULAE = NEW DECOMPOSITION

(iv) M ,λ |=ψ′∧©Ψ′ for each Φ′
2 ∈ E i(s,FA) and some appropriate 〈ψ′,Ψ′,S′〉 ∈ dec∗(Φ′

2)

(v) M ,λ |= Φ′
1 ∧©(Ψ′ ∧Φ′

1UΦ
′
2) for each Φ′

2 ∈ U2(Φi)− E i(s,FA) and some appropriate

〈ψ′,Ψ′,S′〉 ∈ dec∗(Φ′
1)

Properties (iii)-(v) come respectively from

a) M ,λ |=Φ′
1∧©�Φ′

1 for each �Φ′
1 ∈ S(Φi), so M ,λ |=Φ′

1 and M ,λ |=©�Φ′
1. By applying

the inductive hypothesis on Φ′
1 we have that

M ,λ |=ψ′∧©Ψ′ for some 〈ψ′,Ψ′,S′〉 ∈ dec∗(Φ′
1), thus M ,λ |=ψ′∧©(Ψ′∧�Φ′

1)

b) M ,λ |=Φ′
2 for each Φ′

2 ∈ E i(s,FA). By applying the inductive hypothesis on Φ′
2 we have

that M ,λ |=ψ′∧©Ψ′ for some 〈ψ′,Ψ′,S′〉 ∈ dec∗(Φ′
2).

c) M ,λ |=Φ′
1∧©Φ′

1UΦ
′
2 for eachΦ′

2 ∈U2(Φi)−E i(s,FA), so M ,λ |=Φ′
1 and M ,λ |=©Φ′

1UΦ
′
2.

By applying the inductive hypothesis on Φ′
1 we have that M ,λ |=ψ′∧©Ψ′ for some

〈ψ′,Ψ′,S′〉 ∈ dec∗(Φ′
1), thus M ,λ |=Φ′

1 ∧©(Ψ′∧Φ′
1UΦ

′
2)

Now, suppose Φi =Ψi1∧·· ·∧Ψik for some Ψi1∧·· ·∧Ψi j ∈ S(Φ). Then dec∗(Φ)= dec∗(Ψi1)⊗∗
· · ·⊗∗dec∗(Ψik). (Recall that the operators ⊗∗ and ⊕∗ are associative, up to logical equivalence,

so there is no need to put parentheses.) As seen with properties (i)-(v), every sub-formula

Ψi j of the form �Φ′
1 or Φ′

1UΦ
′
2 is associated with a triple 〈ψ′,Ψ′,S′〉 ∈ dec∗(Φ′

1) or ∈ dec∗(Φ′
2).

Let G(Ξ) be the union of all S′ associated to each Ψi j ∈Ψi1 ∧·· ·∧Ψik =Φi.

Thus, for every 〈ψi,Ψi,Si〉 ∈ dec∗(Φi), Si is the union of all formulae from L(Ξ), B(Ξ), G(Ξ)

and, for every conjunct of Φi of the type Φ′
1UΦ

′
2, at least one of the respective formulae

coming for U1(Φi) and U2(Φ2).

Now, we select 〈ψi,Ψi,Si〉 ∈ dec∗(Φi) to be the one where the conjuncts taken from U2(Φi)

are exactly those in E i(s).

Then, we claim that for every play λ ∈Out(s,FA) satisfying Φi, it is the case that M ,λ |=
ψi∧©Ψi. Indeed, this follows from the list of properties (i)-(v) above and from the definition

of dec∗(Ψi1)⊗∗ · · ·⊗∗ dec∗(Ψik). Note further, that if Ψi above is >, then M ,λ |=ψi ∧©Ψi for

all paths λ starting at s and following the strategy FA, so we can assume without affecting

what follows that no Ψi above is >.

After having selected such a pair 〈ψi,Ψi,Si〉 ∈ dec∗(Φi) for each Φi ∈ {Φ1, . . . , Φn}, we use

these n pairs (or, those of them for whichΨi 6= >) to construct the pair 〈ψ,Ψ,S〉 ∈ dec∗(Φ1)⊕∗
· · ·⊕∗ dec∗(Φn) such that ψ=ψ1 ∧·· ·∧ψn, Ψ=Ψ1 ∨·· ·∨Ψn and S = S1 ∪·· ·∪Sn.

Finally we claim by virtue of the construction, M ,λ |=ψ∧©Ψ for every play λ ∈Out(s,FA)

satisfying Φ. Therefore, the strategy FA is a witness of the truth of M , s |= 〈〈A〉〉(ψ∧©Ψ),

hence M , s |=∨
{〈〈A〉〉(ψ∧©Ψ) | 〈ψ,Ψ,S〉 ∈ dec∗(Φ)}.

This completes the proof of the implication from left to right of Claim 2.

Claim 3 This claim follows easily from Claim 2 respectively by noting that:

• 〈〈A〉〉(ψ∧©Ψ)≡ψ∧〈〈A〉〉©Ψ≡ψ∧〈〈A〉〉©〈〈A〉〉Ψ, because ψ is a state formula. Note that

the second equivalence is due to the fact that the semantics of 〈〈〉〉 is based on perfect-recall

strategies, that can be composed. More precisely, it essentially assumes that any strategy

53

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

at s ensuring that every successor satisfies 〈〈A〉〉Ψ can be decomposed with the family

of strategies, one for every such successor s′ witnessing the truth of 〈〈A〉〉Ψ on all plays

starting at s′, into a perfect-recall strategy that guarantees the truth of ©Ψ on all plays

starting at s. (This, in general, cannot be done if only positional strategies are considered,

as those applied at the different successors of s may interfere with each other).

• Likewise, �A�(ψ∧©Ψ)≡ψ∧�A�©Ψ≡ψ∧�A�©�A�Ψ.

�

4.2 Saturation of Prestates

Decomposition of γ-formulae for ATL+ and ATL∗ gives γ-components that we need to take into

account during the saturation of prestates. Therefore, we give a new definition of full saturated

sets of formulae.

Definition 4.1 (full saturated sets of ATL+ (resp. ATL∗) formulae). Let Γ, ∆ be sets of ATL+

(resp. ATL∗) formulae and Γ⊆∆⊆ cl(Γ).

1. ∆ is patently inconsistent if it contains ⊥ or a pair of formulae ϕ and ¬ϕ.

2. ∆ is a full saturated set of Γ if it is not patently inconsistent and satisfies the following

closure conditions:

• if ϕ∧ψ ∈∆ then ϕ ∈∆ and ψ ∈∆;

• if ϕ∨ψ ∈∆ then ϕ ∈∆ or ψ ∈∆;

• if ϕ ∈∆ is a γ-formula, then at least one γ-component of ϕ is in ∆ and exactly one of

these γ-components, say γ(ψ,Ψ) (resp. γc(ψ,Ψ,S)), in ∆, denoted γl(ϕ,∆), is designated

as the γ-component in ∆ linked to the γ-formula ϕ, as explained below. In the case of

ATL∗, we also denote by γsl(ϕ,∆) the set of path formulae γs(ψ,Ψ,S), which is linked

to the γ-component γl(ϕ,∆).

For ATL∗ (resp. ATL+), the family of all full saturated sets of a set Γ is denoted FS∗(Γ) (resp.

FS+(Γ)).

Proposition 4.1. For any finite set of ATL+ or ATL∗ state formulae Γ:

∧
Γ≡∨{∧

∆ |∆ ∈FS∗(Γ)
}
.

Proof. Lemma 4.1 implies that every step of extension of a set of ATL∗ state formulae applied

to a family of sets F preserves the formula
∨

{
∧
∆ |∆ ∈F } up to logical equivalence. At the

beginning, that formula is
∧
Γ. �

Example 4.4. The saturation of the prestate Γ0 = {θ+1 } gives three successor states

54

4.2. SATURATION OF PRESTATES

Γ0 : {θ+1 }

∆1 : {θ+1 ,〈〈H〉〉© l,¬p,

�H,B�(�¬p ∨�¬q),

�H,B�©�H,B��¬p,

�H,B�(©¬p ∧©¬r),

�H,B�©(¬p∧¬r)}

∆2 : {θ+1 ,〈〈H〉〉© l,¬r,

�H,B�(�¬p ∨�¬q),

�H,B�©�H,B��¬r,

�H,B�(©¬p ∧©¬r),

�H,B�©(¬p∧¬r)}

∆3 : {θ+1 ,〈〈H〉〉© l,

�H,B�(�¬p ∨�¬q),

�H,B�©�H,B�(�¬p∨�¬r),

�H,B�(©¬p ∧©¬r),

�H,B�©(¬p∧¬r)}

Figure 4.2: Successor states of Γ0 = {θ+1 }

Moreover:

γl(�H,B�(�¬p∨�¬r),∆1)= γ(¬p,�¬p)=¬p∧�H,B�©�H,B��¬p

γl(�H,B�(�¬p∨�¬r),∆2)= γ(¬r,�¬r)=¬r∧�H,B�©�H,B��¬r

γl(�H,B�(�¬p∨�¬r),∆3)= γ(¬p∧¬r,�¬p∨�¬r)=¬p∧¬r∧�H,B�©�H,B�(�¬p∨�¬r)

Example 4.5 (Saturation of the prestate Γ0 = {θ∗3 }). The saturation of the prestate Γ0 = {θ∗3 } gives

two successor states

Γ0 : {θ∗3 }

∆1 : {θ∗3 ,〈〈H〉〉©(¬lU(l ∧♦�u)),

〈〈B〉〉�¬u, l,¬u,〈〈H〉〉©〈〈H〉〉♦�u,

〈〈B〉〉©〈〈B〉〉�¬u}

∆2 : {θ∗3 ,〈〈H〉〉©(¬lU(l ∧♦�u)),

〈〈B〉〉�¬u,¬l,¬u,〈〈B〉〉©〈〈B〉〉�u,

〈〈H〉〉©〈〈H〉〉(¬lU(l∧¬♦�u))}

Figure 4.3: Successor states of Γ0 = {θ∗3 }

Moreover:

γl(〈〈H〉〉(¬lU(l∧♦�u)),∆1)= γc(l,♦�u, {l∧♦�u})= l∧〈〈1〉〉©〈〈1〉〉♦�u, and

γsl(〈〈H〉〉(¬lU(l∧♦�u)),∆1)= γs(l,♦�u, {l∧♦�u})= {l∧♦�u}

γl(〈〈H〉〉(¬lU(l∧♦�u)),∆2)= γc(¬l,¬lU(l∧♦�u), {¬l})=¬l∧〈〈1〉〉©〈〈1〉〉(¬lU(l∧♦�u)), and

γsl(〈〈H〉〉(¬lU(l∧♦�u)),∆2)= γs(¬l,¬lU(l∧♦�u), {¬l})= {¬l}

55

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

4.3 Rule Next

In order to take into account the negation normal form of the ATL+ and ATL∗ syntax, we slightly

modify the rule Next. Besides taking into account negation normal form, this new rule Next no

longer considers formulae of the form �A�©ϕ as actions available to agents. Indeed, for these

particular successor formulae, ϕ has to be present in all successor prestates and therefore the

“program” or “vote” of the agents does not really enter in consideration. However, a special case is

to be considered when all successor formulae in L are of the form �A�©ϕ. Indeed, in this case,

we apply the rule Next with one dummy action, ensuring that at least one action is available to

agents, this is why we have r∆ =max{m+ l,1}, below.

Given a state ∆, do the following, where σ is a shorthand for σA:

1. List all primitive successor formulae of ∆ in such a way that all successor formulae of the

form 〈〈A〉〉©ϕ precede all formulae of the form �A′�©ϕ, where A′ 6=A and put at the end of

the list, all formulae of the form �A�©ϕ; let the result be the list

L=[〈〈A0〉〉©ϕ0, . . . ,〈〈Am−1〉〉©ϕm−1, �A′
0�©ψ0, . . . ,�A′

l−1�©ψl−1,

�A�©µ0, . . . ,�A�©µn−1
](4.6)

Let r∆ =max{m+ l,1}.

We denote by d(∆) the set {0, . . . , r∆−1} and by D(∆) the set {0, . . . , r∆−1}|A|.
Then, for every σ ∈ D(∆), denote N(σ) := {i |σi >m}, where σi is the ith component of the

tuple σ, and let co(σ) := [∑
i∈N(σ)(σi −m)

]
mod l.

2. For each σ ∈ D(∆) create a prestate:

Γσ = {ϕp | 〈〈Ap〉〉©ϕp ∈∆ and σa = p for all a ∈ Ap}

∪ {ψq | �A′
q�©ψq ∈∆,co(σ)= q and A− A′

q ⊆ N(σ)}

∪ {µr | �A�©µr ∈∆}

(4.7)

If Γσ is empty, add > to it. Then connect ∆ to Γσ with σ−→.

If, however, Γσ =Γ for some prestate Γ that has already been added to the initial tableau,

only connect ∆ to Γ with σ−→.

Example 4.6 (Continuation of Example 4.4). For the state ∆1 of the tableau for θ+1 , the list of

successor formulae is the following:

L= [
0

〈〈H〉〉©l,

0
1

�H�©�H�(¬p∧¬r), �H,B��¬p]

So, m = 1, l = 1, r∆1 = 2, and

56

4.4. REALIZATION OF EVENTUALITIES

σ N(σ) co(σ) Γσ

0,0 ; 0 l, �H,B��¬p

0,1 {B} 0 l, �H�(¬p∧¬r), �H,B��¬p

1,0 {H} 0 �H,B��¬p

1,1 {H,B} 0 �H�(¬p∧¬r), �H,B��¬p

4.4 Realization of Eventualities

In the context of ATL+ and ATL∗, we consider as potential eventualities all γ-formulae containing

at least one eventuality operator (U or ♦). We recall that a γ-formula is of the form 〈〈A〉〉Φ or �A�Φ
where Φ 6=©ϕ. When constructing a tableau step-by-step as we do in our approach, it is possible

to postpone forever promises encapsulated in eventuality operators as far as we keep promising

to satisfy them. In order to check realization of potential eventualities, we first introduce a

Boolean-valued function called Realized for ATL+, and a slightly different function called WF for

ATL∗, which returns a path formula. Then, we define what is a descendant potential eventuality,

which is next used to decide whether a potential eventuality is realized or not.

4.4.1 Realization of Eventualities for ATL+

In the case of ATL+, the function Realized takes as arguments two elements: an ATL+ path

formula Φ and a set Θ of ATL+ state formulae. This function allows us to check the immediate

realization of a potential eventuality of the form 〈〈A〉〉Φ and �A�Φ (where Φ is the first argument

of Realized) at a given state labelled by Θ (where Θ is the second argument of Realized). The

definition of Realized for ATL+ is given by recursion on the structure of Φ as follows:

• Realized(ϕ,Θ)= true iff ϕ ∈Θ
• Realized(Φ∧Ψ,Θ)=Realized(Φ,Θ)∧Realized(Ψ,Θ)

• Realized(Φ∨Ψ,Θ)=Realized(Φ,Θ)∨Realized(Ψ,Θ)

• Realized(©ϕ,Θ)= true

• Realized(�ϕ,Θ)= true

• Realized(ϕUψ,Θ)= true iff ψ ∈Θ

Example 4.7. The initial tableau T θ
0 of θ+3 is given in Figure 4.4.

Applications of the function Realized with the eventuality 〈〈H〉〉(((¬p∧¬r)Ul)∧♦r) give the

following results:

Realized(((¬p∧¬r)Ul)∧♦r,∆1)= f alse since l 6∈∆1 (and r 6∈∆1)

Realized(((¬p∧¬r)Ul)∧♦r,∆5)= f alse since l 6∈∆5

Realized(((¬p∧¬r)Ul)∧♦r,∆6)= true since l ∈∆6 and r ∈∆6

Realized(((¬p∧¬r)Ul)∧♦r,∆7)= f alse since l 6∈∆7 (and r 6∈∆7)

57

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

Γ0 : 〈〈H〉〉(((¬p∧¬r)Ul)∧♦r) ∧〈〈B〉〉�¬l

∆1 : 〈〈H〉〉(((¬p∧¬r)Ul)∧♦r),

〈〈B〉〉�¬l,¬l,¬r,¬p,

〈〈H〉〉©〈〈H〉〉(((¬p∧¬r)Ul)∧♦r),

〈〈B〉〉©〈〈B〉〉�¬l

∆2 : 〈〈B〉〉�¬l,¬l,

〈〈B〉〉©〈〈B〉〉�¬l

Γ1 : 〈〈H〉〉(((¬p∧¬r)Ul)∧♦r)

Γ2 : 〈〈H〉〉(((¬p∧¬r)Ul)∧♦r),

〈〈B〉〉�¬l

Γ3 : 〈〈B〉〉�¬l

∆5 :

〈〈H〉〉(((¬p ∧¬r)Ul)∧♦r),

l, r,〈〈H,B〉〉©>

∆4 :

〈〈H〉〉(((¬p ∧¬r)Ul)∧♦r),

l,〈〈H〉〉©〈〈H〉〉♦r

∆6 :

〈〈H〉〉(((¬p ∧¬r)Ul)∧♦r),

¬p,¬r,

〈〈H〉〉©〈〈H〉〉(((¬p∧¬r)Ul)∧♦r)

Γ4 :>

∆3 : >,

〈〈H,B〉〉©>
Γ5 : 〈〈H〉〉♦r

∆7 : 〈〈H〉〉♦r,

〈〈H〉〉©〈〈H〉〉♦r

∆8 : 〈〈H〉〉♦r, r,

〈〈H,B〉〉©>

0,00,0

0,0

0,0

0,0

0,0

0,1

1,1

0,0

1,0

0,0

Figure 4.4: Initial tableau T θ
0 of θ+3 = 〈〈H〉〉(((¬p∧¬r)Ul)∧♦r)∧〈〈B〉〉�¬l

We will see later, with Definition 4.3, that if the function Realized declares that, at a given

state, a formula does not immediately realize all its eventualities, then we look if it is the case

in its successor states. But, because of the way γ-formulae are decomposed, an eventuality may

change its appearance from one state to another. Therefore, we define the notion of Descendant

potential eventuality in order to define a parent/child link between potential eventualities and

keep track of not yet realized eventualities, and finally check whether the potential eventualities

are realized at a given moment.

Definition 4.2 (Descendant potential eventualities). Let ∆ be a state and let ξ ∈∆ be a potential

eventuality of the form 〈〈A〉〉Φ or �A�Φ. Suppose the γ-component γl(ξ,∆) in ∆ linked to ξ

is, respectively, of the form ψ∧〈〈A〉〉©〈〈A〉〉Ψ or ψ∧�A�©�A�Ψ. Then the successor potential

eventuality of ξ w.r.t. γl(ξ,∆) is the γ-formula 〈〈A〉〉Ψ (resp. �A�Ψ) and it will be denoted by ξ1
∆.

The notion of descendant potential eventuality of ξ of degree d, for d > 1, is defined inductively as

follows:

• any successor eventuality of ξ (w.r.t. some γ-component of ξ) is a descendant eventuality of

ξ of degree 1;

• any successor eventuality of a descendant eventuality ξn of ξ of degree n is a descendant

eventuality of ξ of degree n+1.

58

4.4. REALIZATION OF EVENTUALITIES

We will also consider ξ to be a descendant eventuality of itself of degree 0.

In order to give the definition of Realization of potential eventualities, we first adapt the

Notation 3.1.

Notation 4.1. Let L = [〈〈A0〉〉©ϕ0, . . . ,〈〈Am−1〉〉©ϕm−1,�A′
0�©ψ0, . . . ,�A′

l−1�©ψl−1,�A�©ψ0, . . . ,

�A�©ψn−1] be the list of all primitive successor formulae of ∆ ∈ Sθ
0, induced as part of application

of (Next).

1. Succ(∆,〈〈Ap〉〉©ϕp) := {Γ |∆ σ−→Γ,σa = p for every a ∈ Ap}

2. Succ(∆,�A′
q�©ψq) := {Γ |∆ σ−→Γ,co(σ)= q and A− A′

q ⊆ N(σ)}

3. Succ(∆,�A�©ψr) := {Γ |∆ σ−→Γ}

Definition 4.3 (Realization of potential eventualities for ATL+). Let a state ∆ ∈ Sθ
n be a state

and ξ ∈∆ be a potential eventuality of the form 〈〈A〉〉Φ or �A�Φ. Then:

1. If Realized(Φ,∆)= true then ξ is realized at ∆ in T θ
n .

2. Else, let ξ1
∆ be the successor potential eventuality of ξ w.r.t. γl(ξ,∆). If for every Γ ∈

Succ(∆,〈〈A〉〉©ξ1
∆) (resp. Γ ∈ Succ(∆,�A�©ξ1

∆)), there exists ∆′ ∈ T θ
n with Γ =⇒ ∆′ and

ξ1
∆ is realized at ∆′ in T θ

n , then ξ is realized at ∆ in T θ
n .

Example 4.8 (Continuation of example 4.7). Let us consider the two eventualities ξ= 〈〈H〉〉(((¬p∧
¬r)Ul)∧♦r) and ζ= 〈〈H〉〉♦r. We have that

γ(ξ,∆1)=¬p∧¬r∧〈〈H〉〉©〈〈H〉〉(((¬p∧¬r)Ul)∧♦r) so ξ1
∆1

= 〈〈H〉〉(((¬p∧¬r)Ul)∧♦r)

γ(ξ,∆4)= l∧〈〈H〉〉©〈〈H〉〉♦r so ξ1
∆4

= 〈〈H〉〉♦r

γ(ξ,∆6)=¬l∧¬r∧〈〈H〉〉©〈〈H〉〉(((¬p∧¬r)Ul)∧♦r) so ξ1
∆6

= 〈〈H〉〉(((¬p∧¬r)Ul)∧♦r)

γ(ζ,∆8)= 〈〈H〉〉©〈〈H〉〉♦�u so ζ1
∆8

= 〈〈H〉〉♦�u

and

Succ(∆1,〈〈H〉〉©〈〈H〉〉(((¬p∧¬r)Ul)∧♦r))= {Γ1,Γ2}

Succ(∆4,〈〈H〉〉©〈〈H〉〉♦r)= {Γ5}

Succ(∆6,〈〈H〉〉©〈〈H〉〉(((¬p∧¬r)Ul)∧♦r))= {Γ1}

Succ(∆8,〈〈H〉〉©〈〈H〉〉♦r)= {Γ5}

From these facts, we can deduce that ξ is not realized in ∆1. Indeed, one of the successor of ∆1 is

Γ2, whose only successor is ∆1. So ∆1 is eliminated by Rule ER2. Then, Γ0 is eliminated by Rule

ER1, since ∆1 was the only successor of Γ0. Note that the rules ER1 and ER2 are kept unchanged

comparing to the procedure for ATL (see Table 4.1). Therefore, we can conclude that the tableau

for θ+3 is closed and that θ+3 is unsatisfiable.

59

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

4.4.2 Realization of Eventualities for ATL∗

In the case of ATL∗, a promise is a path formula, and we consider that it is immediately satisfied

(or realized) once it is initiated at the current state. This corresponds to an engagement to keep it

true if necessary, for any computation starting at that state and consistent with the considered

strategy. It might happen that even if an ATL∗ formula is satisfiable, we will not be able to find a

node where an adaptation to ATL∗ of the function Realized returns true. This is because promises,

nested in an operator � for instance, and contained in potential eventualities can be regenerated

faster than they can all be realized. This can be illustrated by Example 4.9. Therefore, instead of

deciding if a given potential formula ξ= 〈〈A〉〉Φ is immediately realized at a given state ∆, we

define the function WF, that reduces the path formula Φ so to keep only the elements that make

Φ not immediately realized at ∆. If ξ is immediately realized, then the function WF applied to Φ

will return the path formula >. To check that a potential eventualities is realized, we check that

it is possible to reduce Φ to > in some nodes that contain its descendant potential eventuality, see

Definitions 4.4 and 4.5. Indeed, we want to look forward along the computation consistent with

the strategy for ξ that the objectives inside Φ are realized. Note that the definition of descendant

potential eventualities (Def. 4.2) stays unchanged for ATL∗.

Therefore we define the function WF : ATL∗p ×P (ATL∗s)×P (ATL∗p) → ATL∗p as follows. The

first argument of the function WF is the path formula to study, the second argument is a set of

state formulae Θ, and the third argument is a set of initiated path formulae. This third argument

is exactly what is added with respect to ATL+ treatment, and corresponds in practice to the set

S = γsl(Φ,Θ) obtained during the decomposition of Φ and the full expansion of Θ. This last set

S is computed in Subsection 4.1.3 and corresponds to the set of path formulae initiated in the

current state Θ. The definition of WF for ATL∗ is given by recursion on the structure of Φ as

follows:

• WF(ϕ,Θ,S)=
{

> if ϕ ∈Θ
ϕ else

• WF(Φ1 ∧Φ2,Θ,S)=WF(Φ1,Θ,S)∧WF(Φ2,Θ,S)

• WF(Φ1 ∨Φ2,Θ,S)=WF(Φ1,Θ,S)∨WF(Φ2,Θ,S)

• WF(©Φ1,Θ,S)=>
• WF(�Φ1,Θ,S)=>
• WF(Φ2UΦ1,Θ,S)=

{
> if Φ1 ∈Θ∪S

Φ1UΦ2 else
At the end, we can reduce the result of the function WF by applying the two equivalences

Φ∧>≡>∧Φ≡Φ and Φ∨>≡>∨Φ≡>.

Remark 4.2. In the last item, we use the set Θ∪S for the case when Φ1 is a state formula that is

already in the set Θ because of the behaviour of another coalition of agents.

Example 4.9. The initial tableau T θ
0 of θ∗4 is given in Figure 4.5. We first define the two sets Ξ1 =

{�1��(¬p∨¬q),�1��(¬p∨¬r),�1��(¬q∨¬r)} and Ξ2 = {�1��(¬p∨¬q),�1��(¬p∨¬r),�1��(¬q∨

60

4.4. REALIZATION OF EVENTUALITIES

Γ0

∆1

∆2

Γ1

Γ2

∆3

∆4

Γ3

∆7
∆6

∆5

∆8

∆9

Γ4

∆10

0

0

0

0

0

0

0

0

0

0

Figure 4.5: Initial tableau T θ
0 of θ∗4 = �1��((p∧©¬p)∨ (¬p∧©p))∧�1��(¬p∨¬q)∧�1��(¬p∨

¬r)∧�1��(¬q∨¬r)∧�1��(♦q∧♦r)∧ q

¬r),�1�©�1��(¬p∨¬q),�1�©�1��(¬p∨¬r),�1�©�1��(¬q∨¬r)}. Also, in order to save space, we

denote by Φ1 the path formula �((p∧©¬p)∨(¬p∧©p)), and by Φ2 the path formula �(♦q∧♦r).

Therefore we label prestates and states in T θ
0 of θ∗4 as follows:

Γ0 = {θ∗4 }

Γ1 =Ξ1 ∪ {�1�(p∧Φ1),�1�(Φ2 ∧♦q∧♦r)} Γ2 =Ξ1 ∪ {�1�(p∧Φ1),�1�(Φ2 ∧♦r)}

Γ3 =Ξ1 ∪ {�1�(¬p∧Φ1),�1�(Φ2 ∧♦q∧♦r)} Γ4 =Ξ1 ∪ {�1�(p∧Φ1),�1�(Φ2 ∧♦q)}

and

∆1 =Ξ2 ∪ {θ∗4 ,¬p, q,¬r,�1�Φ1,�1�Φ2,�1�©�1�(p∧Φ1),�1�©�1�(Φ2 ∧♦q∧♦r)}

∆2 =Ξ2 ∪ {θ∗4 ,¬p, q,¬r,�1�Φ1,�1�Φ2,�1�©�1�(p∧Φ1),�1�©�1�(Φ2 ∧♦r)}

∆3 =Ξ2 ∪ {p,¬q,¬r,�1�(p∧Φ1),�1�(Φ2 ∧♦q∧♦r),�1�©�1�(¬p∧Φ1),�1�©�1�(Φ2 ∧♦q∧♦r)}

∆4 =Ξ2 ∪ {p,¬q,¬r,�1�(p∧Φ1),�1�(Φ2 ∧♦r),�1�©�1�(¬p∧Φ1),�1�©�1�(Φ2 ∧♦q∧♦r)}

∆5 =Ξ2 ∪ {¬p,¬q,¬r,�1�(¬p∧Φ1),�1�(Φ2 ∧♦q∧♦r),�1�©�1�(p∧Φ1),�1�©�1�(Φ2 ∧♦q∧♦r)}

∆6 =Ξ2 ∪ {¬p,¬q,�1�(¬p∧Φ1),�1�(Φ2 ∧♦q∧♦r),�1�©�1�(p∧Φ1),�1�©�1�(Φ2 ∧♦q∧♦r)}

61

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

∆7 =Ξ2 ∪ {¬p,¬r,�1�(¬p∧Φ1),�1�(Φ2 ∧♦q∧♦r),�1�©�1�(p∧Φ1),�1�©�1�(Φ2 ∧♦q∧♦r)}

∆8 =Ξ2 ∪ {¬p,¬q, r,�1�(¬p∧Φ1),�1�(Φ2 ∧♦q∧♦r),�1�©�1�(p∧Φ1),�1�©�1�(Φ2 ∧♦q)}

∆9 =Ξ2 ∪ {¬p, q,¬r,�1�(¬p∧Φ1),�1�(Φ2 ∧♦q∧♦r),�1�©�1�(p∧Φ1),�1�©�1�(Φ2 ∧♦r)}

∆10 =Ξ2 ∪ {p,¬q,¬r,�1�(p∧Φ1),�1�(Φ2 ∧♦q),�1�©�1�(¬p∧Φ1),�1�©�1�(Φ2 ∧♦q∧♦r)}

In the following, we denote by

ξ1 = �1��(♦q∧♦r) ξ2 = �1��(♦q∧♦r)∧♦q

ξ3 = �1��(♦q∧♦r)∧♦r ξ4 = �1��(♦q∧♦r)∧♦q∧♦r

So we have

γsl(ξ1,∆1)= γsl(ξ4,∆3)= γsl(ξ3,∆4)= γsl(ξ2,∆10)= {♦q∧♦r}= γ1
s

γsl(ξ1,∆2)= γsl(ξ4,∆9)= {♦q∧♦r, q}= γ2
s

γs(ξ4,∆8)= {♦q∧♦r, r}= γ3
s

Let us see some applications of the function WF with the initial tableau T θ
0 .

WF(�(♦q∧♦r),∆1,γ1
s)=>

WF(�(♦q∧♦r),∆2,γ2
s)=>

WF(�(♦q∧♦r)∧♦q∧♦r,∆3,γ1
s)=WF(�(♦q∧♦r),∆3,γ1

s)∧WF(♦q∧♦r,∆3,γ1
s)

=>∧WF(♦q,∆3,γ1
s)∧WF(♦r,∆3,γ1

s)

=♦q∧♦r since q 6∈ γ1
s and r 6∈ γ1

s

WF(�(♦q∧♦r)∧∧♦r,∆4,γ1
s)=WF(�(♦q∧♦r),∆4,γ1

s)∧WF(♦r,∆4,γ1
s)

=>∧♦r since r 6∈ γ1
s

WF(�(♦q∧♦r)∧♦q∧♦r,∆8,γ3
s)=♦q since q ∈ γ1

s and r 6∈ γ3
s

WF(�(♦q∧♦r)∧♦q∧♦r,∆9,γ2
s)=♦r since q 6∈ γ1

s and r ∈ γ3
s

WF(�(♦q∧♦r)∧♦q,∆8,γ3
s)=♦q since q ∈ γ1

s and r 6∈ γ3
s

In this example, from the state ∆3, there is no successor states that follows the linked

potential eventualities of ξ = 〈〈H〉〉(�(♦q∧♦r)∧♦q∧♦r) where the function WF returns > as

result, which would have correspond to the result of the function Realized being true. Therefore,

applying definition 4.3 for ATL+, would have lead to remove all the states of T θ
0 and declares θ∗4

unsatisfiable, which is wrong as we will see with example 4.10.

Definition 4.4 (Path-realization). Let ∆ ∈ Sθ
n be a state and ξ ∈∆ be a potential eventuality of

the form 〈〈A〉〉Φ or �A�Φ. Let S = γsl(ξ,∆). Let Ψ be a path formula1.

1. If WF(Ψ,∆,S)=> then Ψ is path-realized at ∆ w.r.t ξ in T θ
n .

1Differently from Definition 4.3, here Ψ is any path formula.

62

4.5. COMPLEXITY

2. Else, let ξ1 be the successor potential eventuality of ξ w.r.t γsl(ξ,∆). If for every Γ ∈
Succ(∆,〈〈A〉〉©ξ1

∆) (resp. Γ ∈ Succ(∆,�A�©ξ1
∆), there exists ∆′ ∈ T θ

n with Γ ⇒ ∆′ and

Ψ′ = WF(Ψ,∆,S) is path-realized at ∆′ w.r.t ξ1
n at ∆ in T θ

n , then Ψ is path-realized at

∆ w.r.t ξ in T θ
n .

Definition 4.5 (Realization of potential eventualities for ATL∗). Let ∆ ∈ Sθ
n be a state, and ξ ∈∆

be a potential eventuality of the form 〈〈A〉〉Φ or �〈〈A〉〉�Φ. Then ξ is realized at ∆ in T θ
n if Φ is

path-realized at ∆ w.r.t ξ in T θ
n .

Remark 4.3. In Definition 4.4, we use the descendant potential eventuality ξ1 to follow the

strategy that has been deployed during the construction phase to satisfy ξ. Therefore, it is

possible to check if the objective Ψ is fully realized with regards to that strategy, even if Ψ is at

that level independent of ξ (the link is made in Definition 4.5).

Example 4.10 (Continuation of Example 4.9). Let us consider the eventuality ξ= �1�(�(♦q∧
♦r)∧♦q∧♦r) in the state ∆. As seen in Example 4.9, this eventuality is not immediately realized.

First have that γ(ξ,∆3) = �1�©�1�(�(♦q∧♦r)∧♦q∧♦r, so ξ1
∆3

= �1�(�(♦q∧♦r)∧♦q∧♦r) and

Succ(∆3,�1�©�1�(�(♦q∧♦r)∧♦q∧♦r))= {Γ3}. Then let us consider the successor ∆8 of Γ3 where

we obtain WF(♦q∧♦r,∆8,γsl(ξ1
∆3

,∆8))=♦q.

Then, we repeat the same process with the only state successor of ∆8, that is ∆10, where

WF(♦q,∆10,γsl(ξ1
∆8

,∆10))=♦q, and whose prestate successor is again Γ3. So, here, we continue by

visiting another successor of Γ3, say ∆9, and we compute WF(♦q,∆9,γsl(ξ1
∆10

,∆9)) which returns

>. Therefore, we can conclude that ξ is realized at ∆3 in T θ
0 .

In the same way, we can conclude that ξ is realized at ∆8 and ∆9 in T θ
0 , and that ξ′ =

�1�(�(♦q∧♦r)∧♦r) is realized at ∆4 in T θ
0 and that ξ′′ = �1�(�(♦q∧♦r)∧♦q) is realized at ∆10

in T θ
0

Thus, we can conclude that the tableau for θ∗4 is open and that θ∗4 is satisfiable.

4.5 Complexity

In the following, we denote by |ψ| the length of the formula ψ, and by ‖Γ‖ the cardinality of the

set or list Γ.

4.5.1 Complexity of the Procedure for ATL+

Lemma 4.2. For any ATL+ state formula ϕ, ‖cl(ϕ)‖ < 2|ϕ|2 .

Proof. Every formula in cl(ϕ) has length less than 2|ϕ|,and is built from symbols in ϕ, so there

can be at most |ϕ|2|ϕ| = 22|ϕ| log2 |ϕ| < 2|ϕ|2 such formulae. �

The estimate above is rather crude, but ‖cl(ϕ)‖ can reach size exponential in |ϕ|. Indeed,

consider the formulae φk = 〈〈1〉〉(p1Uq1 ∧ (p2Uq2 ∧ (. . .∧ pkUqk) . . .) for k = 1,2, . . . and distinct

63

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

p1, q1, . . . , pk, qk, . . . ∈P. Then |φk| =O(k), while the number of different γ-components of φk is 2k,

hence ‖cl(φk)‖ > 2k.

Theorem 4.1. The tableau-based procedure for ATL+ runs in at most 2EXPTIME.

Proof. The argument generally follows the calculations computing the complexity of the tableau

method for ATL in Section 4.7 of [31], with one essential difference: ‖cl(θ)‖ for any ATL formula θ

is linear in its length |θ|, whereas ‖cl(θ)‖ for an ATL+ formula θ can be exponentially large in |θ|,
as shown after Lemma 4.2. This exponential blow-up, combined with the worst-case exponential

in ‖cl(θ)‖ number of states in the tableau, accounts for the 2EXPTIME worst-case complexity

of the tableau method for ATL+, which is the expected optimal lower bound. It is also an upper

bound for the tableau method, because no further exponential blow-ups occur in the elimination

phase. �

4.5.2 Complexity of the Procedure for ATL∗

If we apply the same reasoning for ATL∗ procedure, we obtain a 3EXPTIME complexity, which

is suboptimal. But, in an ongoing work with Sven Schewe, we manage to obtain a 2EXPTIME

complexity.

Theorem 4.2. The tableau-based procedure for ATL∗ runs in at most 2EXPTIME.

Proof. Let θ be the initial formula of a tableau. We now consider each occurrence of the block

〈〈. . .〉〉 or �. . .� as a unique symbol.

First, we count the number of possible prestates in a graph, and then the maximum number

of successor states that a prestate may have.

Number of prestates: With the exception of the initial prestate, we can consider that all

prestates are sets that contain formulae of the form 〈〈A〉〉Φ or �A�Φ. This choice is without loss of

generality, because state formulae different from 〈〈A〉〉Φ or �A�Φ can easily be transformed into

that form without modifying the satisfiability of the initial formula. It suffices to add the path

quantifier linked to the successor formula from which they derive. Also note that in the path

formula Φ the inner state formulae are not decomposed by dec∗(Φ).

Let Ξ be the list of all the sub-expressions of θ that have as main operator a temporal operator,

ordered by their position in the formula tree of θ. Also, let Λ be the list of occurrences of all

path quantifiers ordered in the same way. The size of Ξ and the size of Λ are at most |θ|. For

example, if θ = 〈〈1〉〉(�♦p∨♦〈〈2〉〉(pUq))∧〈〈1〉〉〈〈1〉〉♦p), then Ξ= [�♦p,♦p,♦〈〈2〉〉(pUq), pUq,♦p]

and Λ= [〈〈1〉〉,〈〈2〉〉,〈〈1〉〉].
In the initial formula θ, all the elements of Ξ are in the scope of an element of Λ. Let Ξ[i] be

the sub-list of Ξ in the scope of a Λ(i) (the ith element of Λ). Let cnf(Ξ(i)) be the set of possible

conjunctions of disjunctions of elements of Ξ(i), without redundancy, as described in Remark 4.1.

64

4.6. CONCLUSION

The number of elements in the set cnf(Ξ(i)) is at most 22‖Ξ(i)‖
. Moreover, each prestate is composed

of at most ‖Λ‖ formulae of the form Λi(cnf(Ξi)). Therefore, there are at most

(4.8)
∏

1≤i≤‖Λ‖
22‖Ξi‖ = (22‖Ξ‖

)‖Λ‖ = 2‖Λ‖2‖Ξi‖ < 2|θ|2|θ| < 22(|θ|2)

prestates.

Number of successor states for each prestate Γ: In each successor state, we have

• that each atomic proposition can be either present or absent from the state, which gives at

most n1 = 2|θ| possibilities, since there are at most |θ| atomic propositions.

• that each state formula of the form 〈〈A〉〉Φ or �A�Φ in the prestate Γ can be either present

or absent from the state, which gives at most n2 = 2|θ| possibilities, since there are at most

|θ| such state formulae.

• that each successor formula is linked to a state formula of the form 〈〈A〉〉Φ or �A�Φ present

in the state, and this successor formula is taken among 22|θ|
possible successor formulae,

which gives at most n3 = (22|θ|
)|θ| = (2|θ|2|θ|

)< 22(|θ|2)
possibilities.

Therefore, there are at most

(4.9) n1 ×n2 ×n3 = 2|θ|×2|θ|×22(|θ|2) = 22|θ|×22(|θ|2) < 22(|θ|2)+2|θ|

successor states for each prestate.

Thus the size of the initial tableau (and therefore of the final tableau, which is smaller or

equal to the initial tableau) is at most doubly exponential in the size of θ.

Elimination phase: Each node of the tableau can potentially contain at most |θ| eventualities.

In the worst case, it will be needed to go through all edges of the tableau to check whether the

eventuality is realized or not. There are at most 22|θ|
nodes in the tableau (as seen just above)

and therefore there are at most (22|θ|
)2 = 22|θ|+1

edges in the tableau. So, to check realization of all

the eventualities in the tableau is at most

(4.10) |θ|×22|θ| ×22|θ|+1 < 22|θ|+2|θ|+1 < 22|θ|+2
.

�

4.6 Conclusion

We manage to extend the tableau-based decision procedure for ATL to ATL+ and ATL∗ by mainly

modifying the decomposition of non-primitive formulae and dealing with more complex eventu-

alities. These procedures are optimal, since they run in 2EXPTIME, which is the complexity of

the satisfiability problem for both ATL+ and ATL∗. These procedures provide a solution to the

satisfiability problem only for agents having perfect-recall strategies. Up to our knowledge, it is

not known if this problem can be solved using memoryless strategies. In our opinion, it is at least

65

CHAPTER 4. TABLEAU-BASED DECISION PROCEDURES FOR ATL+ AND ATL∗

very difficult to find a solution, indeed by looking to example 2.4, it seems that we need to define

several sets of formulae to be satisfied at the same state, but which are not active at the same

moment. To be more precise, at state s0, at instant t0 we want to satisfy 〈〈a〉〉♦(p∧〈〈a〉〉♦q) – note

that the first eventuality cannot immediately be realized–, whereas at the instant t2, after having

visited s1 at t1, we want to satisfy the formula 〈〈a〉〉♦q, and no more the formula 〈〈a〉〉♦(p∧〈〈a〉〉♦q)

which has been realized in t1. Therefore, the difficulty seems to be able to detect that two or more

sets of formulae must be joined into the same state of the tableau.

In the next Chapter, we present our implementation of the tableau-based decision procedure

for ATL∗.

66

C
H

A
P

T
E

R

5
IMPLEMENTATION

In order to test our tableau-based decision procedure for ATL∗, we have developed a prototype

in Ocaml. This prototype1 is the extension of the one that we proposed in 2013 to decide

satisfiability of ATL [19]. These prototypes are, up to our knowledge, the first available

tools to decide satisfiability of ATL+/ATL∗ and ATL formulae, respectively. We have called these

prototypes TATL which stands for “Tableaux for ATL(∗)”. Note that these prototypes test tight

satisfiability of ATL and ATL∗.

TATL is available as a command line application, and also as a web application. Web ap-

plications have the advantage to be directly usable without download and installation, and to

be user-friendly. On the other side, the command line version allows one to benefit from the

functionalities of Unix commands.

We first describe how one can use our prototype, then the different data structures we use, as

well as some relevant algorithms. Finally, we make some comparison with the CTL∗ reasoner2

developed by M. Reynolds [56].

5.1 The Application TATL

5.1.1 Web Application

Our prototype to decide satisfiability of formulae of the alternating-time temporal logic’s family

is very simple to use. It suffices to enter an ATL∗ formula in the editor (#1 on Figure 5.1), and

click on the button "Launch" (#2). Different buttons have been added to help the user to input a

formula (#3). Remember that ATL∗ formulae cover ATL and ATL+ formulae. In this prototype,

1http://atila.ibisc.univ-evry.fr/tableau_ATL_star/
2http://www.csse.uwa.edu.au/~mark/research/Online/quicktab/

67

http://atila.ibisc.univ-evry.fr/tableau_ATL_star/
http://www.csse.uwa.edu.au/~mark/research/Online/quicktab/

CHAPTER 5. IMPLEMENTATION

Figure 5.1: Home page of the application TATL

68

5.1. THE APPLICATION TATL

Figure 5.2: Result page of the application TATL

Figure 5.3: Initial tableau tabulation

69

CHAPTER 5. IMPLEMENTATION

we use the following convention for the syntax of formulae:

State formula S := p | S | (S1/\S2) | (S1\/S2) | (S1−> S2) | (S1 <−> S2) |<< A >> P | [[A]]P

Path formula P := S | (P1/\P2) | (P1\/P2) | (P1−> P2) | (P1 <−> P2) | X P |GP | FP | P1UP2

It is also possible to enter several formulae at the same time by separating them with the

character “;”.

In order to give some example formulae to the user, we provide two lists of formulae that can

be selected (#4 in Fig. 5.1). The first list contains ATL formulae that have been used to test the

first version of TATL, and the second list contains the CTL∗ formulae proposed by M. Reynolds3

that we have transformed into ATL∗ formulae. Once a formula is selected, it is written in the

editor and the user has the possibility to modify it before clicking on the button "launch" to start

the computation.

Once the computation is done, the so obtained result is displayed on the interface on three

tabs: Results, Initial Tableau (#5) and Tableau (#6)(Figure 5.2).

The tab “Results” displays data about the computation:

• the negation normal form of the given formula (#1);

• the main result, that is whether the given formula is satisfiable or not (#2);

• the number of prestates displayed in the tab “ Final Tableau” and the number of states

displayed in the tab “Tableau”(#3);

• the execution time of the computation. Note that time for network traffic and time for

displaying data on the interface are not taken into account in this execution time (#4).

The tabs “Initial Tableau” and “Tableau” are structured in the same way (Figure 5.3). In the

middle part, we can find the tableau itself: each line corresponds to a prestate (#1) if its name

begins with “P”, or a state (#2) if its name begins with “S”. Then each line is composed of the

corresponding set of state formulae and of its successors. Successors of states are formatted as

follows

(action vector 1) . . . (action vector j)→ name of the successor (prestate)

It is also possible to filter the lines of the tableau by using the simple or advanced filter tool (#3,

Fig. 5.3) and to extract data of the tableau into a csv file (#4).

Note that, at any time, the button “help” (#5 on Figure 5.1) can be clicked to obtain some

explanation on how to use the web version of TATL.

5.1.2 Command Line Application

Binaries of the application can be downloaded from the web site (#6 on Figure 5.1). The two

commands to use TATL are given in Listing 5.1. The syntax used to enter a formula is the same as

3http://www.csse.uwa.edu.au/~mark/research/Online/quicktab/quicktablong.pdf

70

http://www.csse.uwa.edu.au/~mark/research/Online/quicktab/quicktablong.pdf

5.2. GENERAL ORGANISATION OF THE APPLICATION

the one for the web version. With the command line version, it is possible to choose the verbatim

mode or not. In the verbatim mode (option -v), the application displays the initial tableau and

the final tableau, in addition to the statistic data. The way to read the result is the same as for

the web version.

Listing 5.1: commands for TATL

. / t a t l . native [−v]

. / t a t l . native −o [−v] [− f s tr ing]

5.2 General Organisation of the Application

For the web version, the connexion with the Ocaml program is done by using PHP and Ajax. The

web interface is based on the jQuery framework jQwidgets4.

The Ocaml program, which represents about 1900 lines, is divided in several modules, each

one having its proper role. Figure 5.4 gives an overview of the general organisation of the

application and the role of each module.

All data structures, as well as global functions and exception type declarations are included

in the modules “Modules.ml”, “Global.ml” and “Except.ml”, respectively.

Formulae received by the Ocaml program are parsed into an Ocaml type formulae with

the modules “Lexer_formula.mll” and “Parser_formula.mly”, which are based on Ocamllex and

Ocamlyacc5, as well as the module “Transformation_frm.ml” to transform the formula into the

ATL∗ grammar (Equation 2.4). The module “Pretty_printer.ml” transforms Ocaml type formulae,

as well as states, the other way around.

The module “Vertex_states.ml” is the backbone of the application, indeed it is this module

that organizes the construction of the tableau.

The modules “Construction.ml”, “Decomposition.ml” and “Elimination.ml”, contain respec-

tively the code that corresponds to the construction rules, namely rule SR and rule Next, the

code to decompose non-primitive formulae and the code that corresponds to the elimination rules,

namely rule ER1 and rule ER2.

There are two main programs: “Tatl.ml” for the command line version and “One_shot.ml” for

the web version of TATL.

5.3 Data Structures

The main data structure of our application is the directed graph that represents the tableau. To

encode this structure, we use the Ocamlgraph API6 and, in particular, the package “Imperative”

4http://www.jqwidgets.com/
5http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html
6http://ocamlgraph.lri.fr/

71

http://www.jqwidgets.com/
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual026.html
http://ocamlgraph.lri.fr/

CHAPTER 5. IMPLEMENTATION

Figure 5.4: Structure of the code of the application

72

5.3. DATA STRUCTURES

which allows us to easily make many modifications on the graph in order to add and remove

vertices or edges. The graph is then composed of vertices (the nodes) and edges, each of them

having, amongst other things, a type describing their specific data structure. Listing 5.2 gives the

type for nodes and edges of our tableau.

Listing 5.2: type for nodes and vertex of ATL∗ tableau

1 type vertex =

2 {

3 name : str ing ;

4 category : categ ;

5 ens_frm : State_Formulae . t ;

6 event : (formula_tuple) l i s t ;

7 assoc_movecs : Movecs . t ;

8 lst_next_pos : (int * state_formula) l i s t ;

9 lst_next_neg : (int * state_formula) l i s t ;

10 lst_next_agents : state_formula l i s t ;

11 nb_pos : int ;

12 nb_neg : int ;

13 }

14 type edge = Movecs . t

Remark 5.1. We use several sets in our data structure. Our sets are built with the Set.Make

functor as implementations of the Set module in Ocaml. Sets have the advantages of ordering

data and avoiding duplicated elements automatically.

For each vertex, we define:

line 3 a name, which consists in a “S” if the vertex is a state and a “P” if the vertex is a prestate

plus a number incremented each time we add a vertex.

line 4 a category: prestate or state.

line 5 the set of state formulae associated to the node.

line 6 the list of eventualities associated to the node. Each eventuality ξ at a given state ∆ is

represented as a triple composed of the γ-formula corresponding to ξ, a set of path formulae

resulting from the γ-decomposition of ξ at ∆ that is γsl(ξ,∆), and the successor formula

associated to ξ, that is the successor formula in γl(ξ,∆).

line 7 the set of action vectors associated to the state. This set depends exclusively of the number

of successor formulae in the state and the number of agents A. During the elimination

phase, it will be used for comparison with the set of action vectors associated to the outgoing

edge of the state, and to check that no action vectors are missing.

lines 8, 9 & 10 a list of enforceable successor formulae, a list of proper unavoidable successor

formulae with their position number in the list, as well as the list of successor formulae

73

CHAPTER 5. IMPLEMENTATION

whose coalition is the set of all agents. These position numbers correspond to the ordering

defined in the rule Next, and will be used, as well as information on lines 11 and 12, to

create the successor edges and vertices of the node.

lines 11 & 12 the number of positive successor formulae and the number of negative formulae.

Each edge is defined by a set of actions vectors (line 14).

It is worthwhile noticing that we also use several hashtables in order to easily refer to

elements of the computation that have been done previously. For instance, we keep in memory

the results of every decomposition function, so if one of these decompositions is again needed, we

do not have to compute it a second time.

5.4 Relevant Algorithms: State and Prestate Elimination

In this section, we will give more details about the implementation of the phase of elimination.

In our opinion, it is the less intuitive part of the implementation.

A source of increased execution time comes from the search of nodes to delete in the graph

each time we need to apply the rule ER1 or ER2. Therefore, in the implementation, we have mixed

the two rules in one algorithm. We check both the rules ER1 and ER2 for each node (Algorithm

1). Also when we delete a node, if some successor node becomes disconnected from the graph, we

also remove this successor node (Algorithm 2). This allows us in the next steps to avoid checking

nodes that are irrelevant to test satisfiability. In the case of elimination of a prestate, we also

eliminate the predecessor states, since the condition that a state must have all its successors is

not fulfilled. As it may take time between the moment we decide to delete a node and when we

effectively delete it, we use a hashtable to store all the eliminated node. In this way, we can refer

to this hashtable to know whether a node has to be considered removed or not.

In Algorithm 1 (line 13), we need to check whether eventualities are realized or not. This part

of the implementation differs between ATL+ and ATL∗. For ATL+, we keep track of the evolution

of the search for realization of a given eventuality with the three following status:

• realized: the eventuality is realized at that node.

• in treatment: we don’t know whether the eventuality can be realized or not from that

node, and we try to realize it.

• not realized: the eventuality cannot not be realized.

For a given eventuality, when we go through a node which is declared in treatment for the second

time, that is the status of the node is in treatment, this means that this eventuality cannot be

realized from this state. The state has therefore to be removed from the graph. This is operational

only for ATL+. For ATL∗, the treatment is more subtle. When a prestate has already been visited,

we need to check whether it is possible to continue the play by choosing another successor state.

In that purpose, we keep a list of successor states that have not yet been visited from this prestate

for a given path.

74

5.5. TEST OF THE IMPLEMENTATION

Algorithm 1: state and prestate elimination

1 foreach vertex v in the tableau do
2 if v is a prestate then
3 if v has no successors then
4 remove v

5 end
6 else

// v is a state

7 make a set with all the action vectors of the outgoing edges of v;

8 compare this set with the set of move actions in v;

9 if the two sets are different then
// the state has at least one missing action vectors

10 remove v

11 else
12 get all the eventualities that are not immediately realized in v;

13 if one of these eventualities is not realized in successor states then
14 remove the state

15 end
16 end
17 end
18 end

5.5 Test of the Implementation
As the main difference between ATL and ATL∗ comes from path formulae, we mainly focus our

tests on that point. Therefore, we use and adapt the list of tests proposed by Reynolds for CTL∗7.

This allows us to check that our application gives the same results in term of satisfiability and

that the running times we obtain for these examples are satisfactory. Moreover, other tests using

formulae with non trivial coalitions have been done. The result of these tests are given in Table

5.1.

Others ATL∗ formulae have been tried, and it appears that the execution time blows up when

�, ♦ and ∨ are combined and nested in the same formula. This seems normal, since it corresponds

to cases where a lot of possible futures are generated by the function dec∗. For example, we have

not a reasonable time to obtain the result for the formula 〈〈1〉〉(�♦p∨�♦q∨�♦r).

7http://www.csse.uwa.edu.au/~mark/research/Online/quicktab/quicktablong.pdf

75

http://www.csse.uwa.edu.au/~mark/research/Online/quicktab/quicktablong.pdf

Algorithm 2: node removal

1 Function remove_state(v)

2 if v is not registered as deleted then
3 register that v is deleted; remove every incoming edge of v; foreach successor

prestate w of v do
4 if w has only one predecessor state // (that is v)

5 then
6 remove_prestate(w);

7 end
8 end
9 remove v;

10 end
11 Function remove_prestate(v)

12 if v is not registered as deleted then
13 register that v is deleted; foreach predecessor state u of v do
14 remove_state(u)

15 end
16 foreach successor prestate w of v do
17 if w has only one predecessor state // (that is v)

18 then
19 remove_state(w);

20 end
21 end
22 remove v;

23 end

5.5. TEST OF THE IMPLEMENTATION

Sat? ATL∗ time(ms) CTL∗ time(ms) Sat? ATL∗ time(ms) CTL∗ time(ms)

θ1 yes 7 22 ¬θ1 no 0 58

θ2 yes 0 7 ¬θ2 no 0 14

θ3 yes 156 15 ¬θ3 no 7 31

θ4 yes 7 1 ¬θ4 no 0 13

θ5 yes 0 0 ¬θ5 no 0 3

θ6 yes 0 1 ¬θ6 no 0 3

θ7 yes 0 1 ¬θ7 no 5 2

θ8 yes 0 0 ¬θ8 no 0 1

θ9 yes 46 2 ¬θ9 no 6 82

θ10 yes 7 3 ¬θ10 no 50 12

θ11 yes 4660 6 ¬θ11 no 24 40003

θ12 yes 0 2 ¬θ12 no 4 671

θ13 yes 0 8 ¬θ13 no 39 2351

θ14 yes 2 7 ¬θ14 no 39 40003

θ15 yes 0 0 ¬θ15 yes 0 0

θ16 yes 0 1 ¬θ16 yes 0 0

θ17 yes 23 114 ¬θ17 yes 17 16

θ18 yes 29 309 ¬θ18 yes 11 5

θ19 no 7 343 ¬θ19 yes 0 3

θ20 yes 31 68 ¬θ20 yes 3 29

θ1 = 〈〈1〉〉(�(p → q)→ (�p →�q))

θ2 = 〈〈1〉〉(�p → (p∧©p∧©�p))

θ3 = 〈〈1〉〉((pUq)↔ (q∨ (p∧©(pUq))))

θ4 = 〈〈1〉〉((pUq)→♦q)

θ5 = 〈〈1〉〉(p →〈〈〉〉(〈〈1〉〉p))

θ12 = 〈〈〉〉�(p →〈〈1〉〉©p)→ (p →〈〈1〉〉�p)

θ6 = 〈〈〉〉p →〈〈〉〉(〈〈〉〉p)

θ7 = 〈〈1〉〉(〈〈〉〉©p →©(〈〈〉〉p))

θ8 = 〈〈1〉〉(p →〈〈〉〉p)

θ9 = 〈〈1〉〉(pU(〈〈1〉〉(pUq)))→〈〈1〉〉(pUq)

θ10 = 〈〈1〉〉((〈〈〉〉(�(p → (qUr)))∧ (qUp))→ (qUr))

θ11 = 〈〈1〉〉(�(〈〈1〉〉♦p →©♦(〈〈1〉〉♦p))→ (〈〈1〉〉♦p →�♦(〈〈1〉〉♦p)))

θ13 = 〈〈〉〉�(〈〈1〉〉p →〈〈1〉〉©((〈〈1〉〉q)U(〈〈1〉〉p)))→ (〈〈1〉〉p−> 〈〈1〉〉�((〈〈1〉〉q)U(〈〈1〉〉p)))

θ14 = (〈〈〉〉�(p →〈〈1〉〉©r)∧〈〈〉〉�(r →〈〈1〉〉©p))→ (p →〈〈1〉〉�(♦p∧♦r))

θ15 = p θ16 = 〈〈1〉〉(p∧©p∧♦¬p)

θ17 = 〈〈〉〉�((p∧©¬p∧¬q∧¬r)∨ (¬p∧©p∧ q∧¬r)∨ (¬p∧©p∧¬q∧ r))∧〈〈1〉〉(♦q∧♦r)

θ18 = 〈〈〉〉�(〈〈1〉〉©p∧〈〈1〉〉©¬p)∧〈〈〉〉�(�p∨ ((¬r)U(r∧¬p)))

θ19 =¬(〈〈〉〉♦〈〈〉〉�q →〈〈〉〉♦�q)

θ20 = 〈〈〉〉�(p ↔©¬p)∧〈〈〉〉�(p →¬q)∧〈〈〉〉�(p →¬r)∧〈〈〉〉�(q →¬r)∧〈〈〉〉�(♦q∧♦r)∧ q

Table 5.1: Comparison of TATL with the CTL∗ reasoner of M. Reynolds

77

C
H

A
P

T
E

R

6
CONCLUSION & PERSPECTIVES

In this thesis, we have provided the first two tableau-based decision procedures for ATL+ and

for ATL∗. These procedures are sound, complete and optimal. They both run in 2EXPTIME,

which corresponds to the complexity of the satisfiability problem for ATL+ and ATL∗. We

have also provided an implementation for ATL∗ in Ocaml, which is available as a web application

and a command line application. Up to our knowledge, it is the first running tool to decide

satisfiability of ATL formulae, ATL+ formulae and ATL∗ formulae. This implementation is still a

prototype and improvement can be done to decrease execution time of the procedure.

In the introduction, we have said that one of the goal of this thesis was to provide tools

to design safe systems, and one way to do it was to directly generate a model from a given

specification. Due to lack of time, this part of this thesis has just begun and in the following, we

outline some ongoing works as perspectives.

6.1 Model Extraction

All the tableau-based decision procedures presented in this thesis (including the already existing

one for ATL) are constructive. A method to extract a model from an open tableau of an input for-

mula is given in each completeness proof (for ATL [31], for ATL+ [15] and for ATL∗ Appendix B.3).

The methods of extraction are almost the same for the three versions of ATL. Nevertheless, these

methods of extraction give very big models that are not easy to read by a human person in most

cases. Moreover, this model could be used to model check additional properties, for instance

inferred properties, and the smaller is the model, the better model checking works. The method

extracts a Hintikka structure that can be easily transformed into a model. A Hintikka structure

is a tree-like graph where nodes are labelled by states of the corresponding open tableau. A

79

CHAPTER 6. CONCLUSION & PERSPECTIVES

ξ3

ξ2

ξ1

Figure 6.1: Construction of a Hintikka structure eventualities by eventualities

Hintikka structure for a given formula θ has properties (specific to each logic) that ensures

to satisfy θ, and in particular, the realization of the eventualities contained in θ. So, in order

to satisfy all the eventualities, we construct the Hintikka structure level by level, each level

corresponding to an eventuality, as illustrated in Figure 6.1. In the case of ATL∗, it may be

necessary to treat the same eventuality several times, that is on several different levels.

Once we are sure that all eventualities are fulfilled, it is possible to close the so obtained

tree-like structure by looping on the adequate nodes in order to obtain a graph. This graph is

then transformed into a CGM by keeping in the label of each node only the propositions that are

true at that node.

But, it often happens that several eventualities are realized simultaneously, and this should

mean that it is not necessary to treat them on next levels.

Hintikka structures are constructed in this way to be sure that if an eventuality needs to

realize two different objectives with two different branches of a prestate, then both branches can

be selected one after the other. This is the case in Example 4.10, where in order to realize the

eventuality ξ= �1��((p∧©¬p)∨ (¬p∧©p)) we need to choose first the branch starting from Γ3,

and leading to a state ∆8 where r is true, and then when we come back to Γ3 choose the branch

leading to ∆9 where q is true (or vice-versa). But, we think that this situation can only happen

with ATL∗ where Boolean combination and nesting of temporal operators are simultaneously

allowed. For ATL and ATL+, some work already done seems to support the conjecture that this

situation cannot happen.

So to obtain smaller models, we plan to proceed differently with ATL∗ on one side, and with

ATL and ATL+ on the other side. Let us start with ATL∗.

6.1.1 Smaller Models for ATL∗

For ATL∗, we have seen above that it is necessary to construct a Hintikka structure. We then need

to find a way to reduce the number of nodes of the CGM obtained from the Hintikka structure.

80

6.1. MODEL EXTRACTION

Here the idea is to use coarsest partition refinement [37, 46] and bisimulation [1] that are

already used to reduce transition system and Kripke structure for CTL∗ [10, 16] .

In that purpose, an ongoing work with two master students Eloïse Billa and Adrien Cotte,and

Serenella Cerrito gives some results on how to adapt the Kannelakis & Smolka procedure or the

Page & Tarjan procedure for CGM. Then, we will have to prove that a given model and its refined

models are bisimilar. We hope that this will give us a solution that preserves satisfiability of all

formulae in all the nodes of a CGM. But, what we really want is to preserve satisfiability of the

initial formula. So, it seems that some heuristics can be found to reduce the numbers of nodes

in a given Hintikka structure while preserving the truth of the initial formula, and therefore

leading to a smaller model. For example, a lot of open tableaux contains the following state:

>,

〈〈;〉〉©> 0, . . . ,0

which intuitively means that, from this point, any proposition can be true (or false). Therefore this

state can be removed and its ingoing edges can be redirected to their source state, as exemplify

in Figure 6.2.

s0

s1 s2

>

0,0 0,1

0,0

0,1

0,0

1,0

0,0

s0

s1 s2

0,0 0,1

0,0
0,1

0,0
1,0

Figure 6.2: Suppression of the node > from a model. We can obtain the model on the right from

the one on the left.

6.1.2 Smaller Models for ATL and ATL+

Here the idea is to benefit from the fact that all eventualities can be realized by choosing only

one option from each prestate. Therefore, it seems that by making the “good choice” at each

non-deterministic fork starting from a prestate, we can directly extract a CGM for the open

tableau without constructing the Hintikka structure. This will ensure us to obtain a CGM for a

81

CHAPTER 6. CONCLUSION & PERSPECTIVES

given formula θ of at most the size of the open tableau for θ. This is a ongoing work with Fabio

Papacchini from the university of Manchester.

Of course, after, methods to reduce the number of nodes can also be applied to reduce the

model we have obtained, but in most cases, we will start with a smaller structure than the one

extracted via Hintikka structures.

6.2 Comparison of Methods for Deciding Satisfiability of ATL∗

Formulae

Another ongoing work concerns the tableau-based decision procedure for ATL∗ itself. Our pro-

cedure is not the only one for deciding satisfiability of ATL∗ formulae. There also exists an

automata-based decision procedure proposed by S. Schewe [61] to show that the complexity of

the satisfiability problem for ATL∗ was 2EXPTIME-complete.

Therefore, we plan to make both a theoretical and a practical comparison between the tableau-

based and the automata-based decision procedures for ATL∗. In order to make a theoretical

comparison of both tools, we will need to first implement the automata-based procedure, and

then propose a benchmark for ATL∗, if we want to be really informative. This will be a joint work

with Sven Schewe from the University of Liverpool.

82

Appendices

83

A
P

P
E

N
D

I
X

A
ADDITIONAL DEFINITIONS FOR PROOFS

A.1 Actions and Outcomes

First, we recall that, for a given state s in a CGS, actA(s) denotes the set of all A-actions that can

be played by the coalition A at state s, i.e. actA(s)=∏
a∈A acta(s). Let σA ∈ actA(s). We say that an

action vector σA extends an A-action σA, denoted by σA wσA, if σA(a)=σA(a) for every a ∈ A.

We use actcA(s) to denote the set of all A-co-actions available at state s and σc
A for an element

of this set. We also use Out(s,σA) to denote the set of all states s′ for which there exists an action

vector σA ∈ actA(s) that extends σA and such that out(s,σA)= s′. We define in a same way w and

Out(s,σc
A) for an A-co-action σc

A ∈ actcA(s).

A.2 Trees

In the following definitions and proofs, we make use of the notion of tree. In our context, we use

this term as a synonym of “directed, connected, and acyclic graph, each node of which, except one,

the root, has exactly one incoming edge”. We note a tree as a pair (R,→), where R is the set of

nodes and → is the parent-child relation (the edges).

Given sets X , Y , Z and mappings c : X → Y and d : X → Y ×Z, we sometimes say that the

set X is Y -coloured by c and that for any x ∈ X , the value c(x) is the Y -colour of x under the

colouring c. Moreover, we sometimes say and that the set X is Y -Z-coloured by d, that for any

x ∈ X , the value d(x) is the X -Y -colour of x under the colouring d.

Definition A.1. Let R = (R,→) be a tree and X be a non-empty set. An X -colouring of R is a

mapping c : R 7→ X . When such mapping is fixed, we say that R is X -coloured. Moreover, let Y

85

APPENDIX A. ADDITIONAL DEFINITIONS FOR PROOFS

be a non-empty set. An X -Y -colouring of R is a mapping d : R 7→ X ×Y . When such mapping is

fixed, we say that R is X -Y -coloured.

A.3 Additional Definitions for Tableaux

A.3.1 States and Prestates

We denote by prestates(∆) the set of prestate successors of a state ∆, and by states(Γ) the set

of state successors of a prestate Γ. We recall that T θ
n , Sθ

n, T θ and Sθ correspond to the n-th

intermediate tableau for the formula θ during the construction phase, the set of nodes of the

intermediate tableau T θ
n , the final tableau for the formula θ and the set of nodes of the final

tableau T θ
n , respectively.

A.3.2 Outcomes

Let A ⊆A be a coalition and ∆ be a state in a tableau. We denote by DA(∆) the set d(∆)|A| and

by Dc
A(∆) the set d(∆)|A−A|. See Section 4.3 for definition of d(∆). Let σA ∈ DA(∆). We say that

σA ∈ D(∆) extends σA, denoted by σA wσA, if σA(a)=σA(a) for every a ∈ A. We define in the same

way w for σc
A ∈ Dc

A(∆).

Definition A.2 (Outcome set of σA ∈∆). Let ∆ ∈ Sθ
n be a state and σA ∈ DA(∆). An outcome set

of σA at ∆ is a minimal set of states X ⊆ Sθ
n such that for every σA wσA there exists exactly one

state ∆′ ∈ X such that ∆
σA−→Γ=⇒∆′.

Definition A.3 (Outcome set of σc
A at ∆). Let ∆ ∈ Sθ

n be a state and σc
A ∈ Dc

A(∆). An outcome set

of σc
A at ∆ is a minimal set of states X such that for every σA ∈ Dc

A(∆), there exists exactly one

∆′ ∈ X such that ∆
σc

A (σA)−→ Γ=⇒∆′.

Some notation. Let ∆ ∈ Sθ
n be a state.

1. Whenever we write 〈〈Ap〉〉©ϕp ∈Θ, we mean that 〈〈Ap〉〉©ϕp is the p-th successor formula of

the form 〈〈A〉〉©ϕ according to the ordering of successor formulae induced by the application

of rule Next to ∆.

We use the notation �A′
q�©ψq ∈Θ likewise.

2. Given 〈〈Ap〉〉©ϕp ∈Θ, we denote by σAp [〈〈Ap〉〉©ϕp] the unique tuple σAp enforcing ϕp

such that σAp (a)= p for every a ∈ Ap.

3. Likewise, given a formula �A′
q�©ψ ∈Θ,

• if A′
q 6=A then we denote by σc

A′
q
[�A′

q�©ψ] the unique A′
q-co-action σc

A′
q

enforcing ψ

such that co(σc
A′

q
(σA′

q
))= q and A− A′

q ⊆ N(σc
A′

q
(σA′

q
));

• if A′
q =A then we denote by σc

A′
q
[�A′

q�©ψ] the unique A′
q-co-action σc

A′
q

enforcing ψ,

that is by definition the identity function.

86

A.4. HINTIKKA STRUCTURES

A.3.3 Realization Witness Tree for Tableaux

Intuitively, a realization witness tree for a tableau is a tree that witnesses the satisfaction of a

given potential eventuality ξ at a state and simulates a tree of runs in a tableau.

To define realization witness trees, we use the notion of descendant potential eventuality of

degree d and its associate notation as seen in Definition 4.2. We recall that, given a potential

eventuality ξ = 〈〈A〉〉Φ (�A�Φ), by convention ξ itself is taken to be its (unique) descendant

potential eventuality of degree 0 and that if ξi is a descendant eventuality of degree i of ξ then a

γ-component of ξi will have the form ψ∧〈〈A〉〉©〈〈A〉〉Φi+1 (respectively, ψ∧�A�©�A�Φi+1) and

〈〈A〉〉Φi+1 (respectively, �A�Φi+1) will be a descendant potential eventuality of ξ having degree

d = i+1.

Definition A.4 (Realization Witness Trees for Tableaux). A realization witness tree for a poten-

tial eventuality (a) ξ = 〈〈A〉〉Φ or (b) ξ = �A�Φ at state ∆ ∈ Sθ
n is a finite Sθ

n-ATL∗p-coloured tree

R = (R,→) such that:

1. the root of R is coloured with ∆ and Φ, and is of depth 0;

2. if an interior node w of depth i of R is coloured with ∆′ and Φ′, then there exists a

successor ξi such that ξi ∈∆′ and there exists ξi+1 of ξi such that (a) 〈〈A〉〉©ξi+1 ∈∆′ or (b)

�A�©ξi+1 ∈∆′;
3. for every interior node w ∈ R of depth i coloured with ∆′ and Φ′, the children of w are

coloured bijectively with vertices from an outcome set of (a) σA[〈〈A〉〉©ξi+1] or (b) σc
A′

q
[�A′

q�©
ψ], and by Φ′′, where for each children w′ of w so coloured by ∆′′ and Φ′′, ξi+1 = 〈〈A〉〉Φi+1

or ξi+1 = �A�Φi+1 respectively, and Φ′′ =WF(Φ′,∆′′,γsl(ξi+1,∆′′));
4. if a leaf of depth i of R is coloured with ∆′ and Φ′, then (a) ξi = 〈〈A〉〉Φi ∈ ∆′ or (b) ξ =

�A�Φi ∈∆′ is such that WF(Φ′,∆′,γsl(ξi,∆′))=>.

A.4 Hintikka Structures

We define the notion of concurrent game Hintikka structure, in short CGHS, in two steps. First,

we define a structure, that we call general Hintikka structure without constraints on the labelling

function. Then, after having defined the notion of realization witness tree for this structure, we

give the full definition of CGHS. Moreover we give the definition of a CGHS for a given ATL∗

formula θ and set that a CGM for θ can be extracted from this structure.

Definition A.5 (General Hintikka Structure). A general Hintikka structure is a tuple H =
(A,S, {Acta}a∈A, {acta}a∈A,out,H) where (A,S, {Acta}a∈A, {acta}a∈A,out) is a CGS and H is a la-

belling function H :S 7→P (Γ), where Γ is a set of ATL∗ formulae.

87

APPENDIX A. ADDITIONAL DEFINITIONS FOR PROOFS

A.4.1 Realization Witness Tree for General Hintikka Structure

Here, we adapt the notation introduced for tableaux to general Hintikka structures. Consider a

general Hintikka structure H and a state s such that H(s)=Θ and suppose that the elements of

Θ are listed by the enumeration E defined in the rule Next where successor formulae of the form

〈〈A〉〉©ϕ appear before successor formulae of the form �A′�©ϕ, where A′ 6=A, and formulae of

the form �A�©ϕ are at the end of the list.

1. Whenever we write 〈〈Ap〉〉©ϕp ∈Θ, we mean that 〈〈Ap〉〉©ϕp is the p-th successor formula

of the form 〈〈A〉〉©ϕ according to the enumeration E.

We use the notation �A′
q�©ψq ∈Θ likewise.

2. Given 〈〈Ap〉〉©ϕp ∈Θ, we denote by σAp [〈〈Ap〉〉©ϕp] the unique Ap-action σAp enforcing

ϕp such that σAp (a)= p for every a ∈ Ap

3. Likewise, given a formula �A′
q�©ψq ∈Θ,

• if A′
q 6=A then we denote by σc

A′
q
[�A′

q�©ψq] the unique A′
q-co-action σc

A′
q

enforcing ψq

such that co(σc
A′

q
(σA′

q
))= q and A− A′

q ⊆ N(σc
A′

q
(σA′

q
));

• if A′
q =A then we denote by σc

A′
q
[�A′

q�©ψq] the unique A′
q-co-action σc

A′
q

enforcing ψq,

that is, by definition, the identity function.

Realization witness trees for general Hintikka structure have the same objective as the ones

for tableaux. However, the definition is slightly different since structures are different.

Definition A.6 (Realization Witness Trees for General Hintikka Structure). Let s be a state of a

general Hintikka structure. A realization witness tree for a potential eventuality (a) ξ= 〈〈A〉〉Φ or

(b) ξ= �A�Φ at state ∆ ∈ Sθ
n is a finite S-ATL∗p-coloured tree R = (R,→) such that:

1. the root of R is coloured with s and Φ, and is of depth 0;

2. if an interior node w of depth i of R is coloured with s′ where H(s′) = Θ and Φ′, then

there exists a successor ξi such that ξi ∈Θ and there exists ξi+1 of ξi such that the set (a)

〈〈A〉〉©ξi+1 ∈Θ or (b) �A�©ξi+1 ∈Θ;

3. for every interior node w ∈ R of depth i coloured with s′ and Φ′, the children of w are

coloured bijectively with vertices from (a) Out(s′,σA[〈〈A〉〉©ξi+1]) or (b) the set Out(s′,σc
A′

q
[�A′

q�
©ψ]),and by Φ′′, where for each children w′ of w so coloured by ∆′′ and Φ′′, ξi+1 = 〈〈A〉〉Φi+1

or ξi+1 = �A�Φi+1 respectively, and Φ′′ =WF(Φ′,∆′′,γsl(ξi+1,∆′′));
4. if a leaf of depth i of R is coloured with s′ where H(s′)=Θ and Φ′, then (a) ξi = 〈〈A〉〉Φi ∈Θ

or (b) ξ= �A�Φi ∈Θ is such that WF(Φ′,Θ,γsl(ξi,Θ))=>.

A.4.2 Concurrent Game Hintikka Structure

When defining concurrent game Hintikka structure, we aim at giving constraints on the labelling

function H.

88

A.4. HINTIKKA STRUCTURES

Definition A.7 (Concurrent Game Hintikka Structure). A concurrent game Hintikka structure

(for short, CGHS) is a general Hintikka structure H = (A,S, {Acta}a∈A, {acta}a∈A,out,H) where

the labelling function H satisfies the following constraints:

H1 If ¬p ∈ H(s) then p 6∈ H(s) for all p ∈P;

H2 If an α-formula belongs to H(s), then its both α-components do;

H3 If a β-formula belongs to H(s), then one of its β-components does;

H4 If a γ-formula belongs to H(s), then one of its γ-components does;

H5 If 〈〈A〉〉©ψ ∈ H(s), then there exists an A-action σA ∈ actAs such that ψ ∈ H(s′) for all

s′ ∈Out(s,σA). Likewise, if �A�©ψ ∈ H(s), then there exists an A-co-action σc
A ∈ actcA(s)

such that ψ ∈ H(s′) for all s′ ∈Out(s,σc
A).

H6 If a potential eventuality ξ = 〈〈A〉〉Φ (resp. ξ = �A�Φ) belongs to H(s), then there exists a

realization witness tree, rooted at s in H for ξ= 〈〈A〉〉Φ (resp. ξ= �A�Φ) at s.

Definition A.8. Let H = (A,S, {Acta}a∈A, {acta}a∈A,out,H) be a CGHS and θ be an ATL∗-formula.

We say that H is a concurrent game Hintikka structure for θ, if θ ∈ H(s) for some s ∈S.

The next theorem sets that from any CGHS for a given formula θ a CGM satisfying θ can be

obtained.

Theorem A.1. Let H = (A,S, {Acta}a∈A, {acta}a∈A,out,H) be a CGHS for a given ATL∗-formula

θ. Let further M = (A,S, {Acta}a∈A, {acta}a∈A,out,P,L) be the CGM obtained from H by setting,

for every s ∈S, L(s)= H(s)∩P. Then, for every s ∈S and every ATL∗ formula ϕ, ϕ ∈ H(s) implies

M , s |=ϕ. In particular, M satisfies θ.

The proof of this theorem can be found in appendix B.1.

89

A
P

P
E

N
D

I
X

B
PROOFS

Here, we present proofs for our ATL∗ tableau-based decision procedure. The proofs for our ATL+

tableau-based decision procedure are relatively similar and can be found in [14].

B.1 Proof of Theorem A.1

Proof. Suppose ϕ ∈ H(s). We will prove that M , s |=ϕ by induction on the structure of the state

formula ϕ.

Base. If ϕ= p or ϕ=¬p, with p ∈P , it is immediate that M , s |=ϕ, by definition of L and H1.

Inductive Step.

• ϕ is ψ1∧ψ2. By H2 we get that ψ1 ∈ H(s) and ψ2 ∈ H(s) . By inductive hypothesis M , s |=ψ1

and M , s |=ψ2. Therefore M , s |=ϕ.

• ϕ is ψ1 ∨ψ2. By H3 we get that either ψ1 ∈ H(s) or ψ2 ∈ H(s) . By inductive hypothesis

either M , s |=ψ1 or M , s |=ψ2. Therefore M , s |=ϕ.

• ϕ is 〈〈A〉〉©ψ or �A�©ψ. An application of H5 and the inductive hypothesis to ψ imply

that M , s |=ϕ.

• ϕ is 〈〈A〉〉Φ or ϕ is �A�Φ, where Φ is not of the form ©ϕ, that is ϕ is a γ-formula. Here we

only present in detail the first case, the second one being similar. We need to prove the

existence of a (perfect-recall) strategy FA such that, for each branch λ in M stemming from

s and consistent with that strategy, M ,λ |=Φ. This will imply that M , s |= ϕ. Below, we

show how to construct the strategy FA recursively on the Hintikka structure, proceeding

step-by-step, possibly an infinite number of times, starting from s and ξ= 〈〈A〉〉Φ ∈ H(s).

The step for the construction of FA: the step is applied to a given node s′ ∈ H and a

γ-formula ξ′ = 〈〈A〉〉Ψ ∈ H(s′). Since ξ′ belongs to H(s′), then H6 guarantees the existence of

91

APPENDIX B. PROOFS

a realization witness tree T rooted at s′ in H for ξ′. By construction, T provides a partial

finite strategy FPA . Next, let us consider any path in T of the form λ≤n, where λ0 = s′ and λn

is a leaf. By construction of T, each node λi, for 0≤ i ≤ n, is a node of H and each labelled

edge of T is a labelled edge of H . The descendant potential eventuality ξn = 〈〈A〉〉Ψn of ξ′

belongs to the first part of the colour of λn by construction of T. Since λn is a node of H

and ξn ∈ H(λn), by H4 some γ-component χ of ξn belongs to H(λn). This formula χ is either

of the form ψ or of the form ψ∧〈〈A〉〉©ξn+1 (the second case occurs, for instance, when ξ

has the form 〈〈A〉〉�♦θ).

– In the first case, any extension of the partial strategy FPA and any extension of λ≤n to

an infinite path will do.

– In the second case, we compute Ψn+1 =WF(Ψn,H(λn),γsl(ξn,H(λn))).

* IfΨn+1 6= >, then we apply the step for the construction for FA to λn and ξn ∈ H(λn)

* else, we apply H2 to get ψ ∈ H(λn) and 〈〈A〉〉©ξn+1 ∈ H(λn). By H5, there exists an

A-action σA ∈ actA(H(λn)) such that ξn+1 ∈ H(s′) for all s′ ∈Out(λn,σA). Playing

this A-action σA after the partial strategy FPA gives us a new partial strategy F ′
PA

.

The set of successors of λn for T ′ is the set Out(λn,σA). For any s′ ∈Out(λn,σA),

we apply the step for the construction of FA to s′′ and ξn+1 ∈ H(s′′).
�

B.2 Soundness

Soundness of the tableau procedure with respect to unsatisfiability means that if a formula is

satisfiable then its final tableau is open. To prove that, we essentially follow the same procedure

as in the soundness proof for the tableau-based decision procedure for ATL in [31] and ATL+

in [13].

The soundness proof establishes three main claims. First, we show that when a prestate Γ is

satisfiable then at least one of the states in states(Γ) is satisfiable. Then, we prove that when

a state ∆ is satisfiable then all the prestates in prestates(∆) are satisfiable. Finally, we show

that no satisfiable nodes are eliminated during the elimination phase. Below, we take the input

formula of the tableau procedure to be θ.

The first step of the proof consists in showing that SR is sound:

Lemma B.1. Let Γ be a prestate of T θ
0 and let M , s |=Γ for some CGM M and some s ∈M . Then,

M , s |=∆ holds for at least one ∆ ∈ states(Γ).

Proof. Straightforward from Proposition 4.1. �

The aim of the next two lemmas is to show that the rule Next creates only satisfiable prestates

from satisfiable states.

92

B.2. SOUNDNESS

The following lemma states a semantic property, independent of the tableau construction.

Lemma B.2. LetΘ= {〈〈A1〉〉©ϕ1, . . . ,〈〈Am〉〉©ϕm,�A′�©ψ,�A�©µ1, . . . ,�A�©µn} be a set of formulae

such that A i ∩ A j =; for every 16 i, j6m, i 6= j and A i ⊆ A′ for every 16 i6m. Let M , s |=Θ
for some CGM M and s ∈M . Let σA i ∈ actA i (s) be an A i-action witnessing the truth of 〈〈A i〉〉©ϕi

at s, for each 16 i 6m, and let, finally, σc
A′ ∈ actcA′(s) be an A′-co-action witnessing the truth

of �A′�©ψ at s. Then there exists s′ ∈Out(s,σA1)∩·· ·∩Out(s,σAm)∩Out(s,σc
A′) such that M , s′ |=

{ϕ1, . . . ,ϕm,ψ,µ1, . . . ,µn}.

Proof. Let A = A1∪. . .∪Am. Since A i∩A j =; for every 16 i, j6m, i 6= j, the actions σA1 , . . . ,σAm

can be combined to get an A-action σA. This last can be arbitrarily extended to an A′-action

σA′ because A i ⊆ A′ for every 16 i 6 m. Finally, the so obtained σA′ can be completed by the

A′-co-action σc
A′ since A i ⊆ A′ for every 16 i6m. Moreover, for formulae of the form �A�©µi,

16 i6 n, the A-co-action is always the identity function. The resulting action vector σA leads

from s to the desired s′. �

The next lemma states that satisfiability propagates from states to their successor prestates

created via rule Next.

Lemma B.3. If ∆ ∈T θ
0 is a satisfiable state then all the prestates Γ obtained by applying the rule

Next are satisfiable.

Proof. Follows from Lemma B.2 and from the fact that rule Next ensures that every prestate

Γ of ∆, that is every element of the finite set of prestates that are targets of σ−→ edges outgoing

from ∆, satisfies the following:

• if {〈〈A i〉〉©ϕi,〈〈A j〉〉©ϕ j}⊆∆ and {ϕi,ϕ j}⊆Γ, then A i ∩ A j =;;

• Γ contains at most one formula of the form ψ such that �A�©ψ ∈∆ where A 6=A, since the

number co(σ) is uniquely determined for every σ ∈ D(∆);

• if {〈〈A i〉〉©ϕi,�A′�©ψ}⊆∆ and {ϕi,ψ}⊆Γ, then A i ⊆ A′.
�

Thus, the rule SR generates at least one satisfiable state from a satisfiable prestate and that

the rule Next generates only satisfiable prestates from a satisfiable state. Hence, we can conclude

that the construction phase of the tableau procedure is sound.

We now move to the elimination phase.

Lemma B.4. Let Θ be a node in T θ
n . If Θ is satisfiable then rule ER1 cannot eliminate Θ from

T θ
n .

Proof. By Lemma B.3, a satisfiable state ∆ generates only satisfiable successor prestates, and,

by Lemma B.1, a satisfiable prestate Γ generates at least one satisfiable state. Therefore, by

definition of rule ER1, if a node Θ is satisfiable then it cannot be eliminated. �

93

APPENDIX B. PROOFS

It remains to prove that a satisfiable state cannot be eliminated by rule ER2, either. We recall

that rule ER2 eliminates each state containing an eventuality that is not realized at that state.

So we need to prove that if a state ∆ is satisfiable, then every eventuality ξ ∈∆ is realized at ∆ at

each step of the elimination phase.

Lemma B.5. Let ∆ ∈ Sθ
n be a state and 〈〈Ap〉〉©ϕp ∈∆ and let M , s |=∆ for some CGM M and

state s ∈M . Let, furthermore, σAp ∈ actAp (s) be an Ap-action witnessing the truth of 〈〈Ap〉〉©ϕp at

s. Then, there exists in T θ
n an outcome set X of σAp [〈〈Ap〉〉©ϕp] such that for each ∆′ ∈ X there

exists s′ ∈Out(s,σAp) such that M , s′ |=∆′.

Proof. We consider the following set of prestates:

Y = {Γ ∈prestates(∆) |∆ σA−→Γ for some σA wσAp [〈〈Ap〉〉©ϕp]}

For every Γ ∈ Y , it follows immediately from the rule Next that Γ (which must contain ϕp) is

either of the form

{ϕ1, . . . ,ϕm,ψ,µ1, . . . ,µn}, where {〈〈A1〉〉©ϕ1, . . . ,〈〈Am〉〉©ϕm,�A′�©ψ,�A�©µ1,�A�©µn}⊆∆,

or of the form

{ϕ1, . . . ,ϕm,µ1, . . . ,µn} where {〈〈A1〉〉©ϕ1, . . . ,〈〈Am〉〉©ϕm,�A�©µ1,�A�©µn}⊆∆.

Since M , s |= ∆, by Lemma B.2, there exists s′ ∈Out(s,σAp) with M , s′ |= Γ. Then Γ can be

extended, in the tableau, to a fully expanded set ∆′ containing at least one successor formula

(〈〈A〉〉©>, if nothing else) such that M , s′ |=∆′. This is done by choosing, for every β- or γ-formula

to be processed in the procedure that computes the family of full expansions, a disjunct, resp.

a γ-component, that is actually true in M at s′ (if there are several such options, the choice is

arbitrary) and adding it to the current set. �

Corollary B.1. Let ∆ ∈ Sθ
n be a state and 〈〈Ap〉〉©ϕp ∈ ∆. Let M , s |= ∆ for some CGM M and

state s ∈M . Let, furthermore, σAp ∈ actAp (s) be an Ap-action witnessing the truth of 〈〈Ap〉〉©ϕp

at s and let χ ∈ cl(θ) be a β-formula (resp. a γ-formula) and ψ be one of its β-components (resp.

γ-components). Then there exists in T θ
n an outcome set Xψ of σAp [〈〈Ap〉〉©ϕp] such that for every

∆′ ∈ Xψ there exists s′ ∈Out(s,σAp) such that M , s′ |=∆′, and moreover, if M , s′ |=ψ, then ψ ∈∆′.

Proof. Construct Xψ just like X was constructed in the proof of the preceding lemma, with a

single modification: when dealing with the formula χ, instead of choosing arbitrarily between the

different options for ψ, choose ψ which is true at s′. �

Likewise, we obtain the following for successor formulae of the form �A�©ϕ:

Lemma B.6. Let ∆ ∈ Sθ
n be a state, �A′

q�©ψq ∈ ∆ and M , s |= ∆ for some CGM M and state

s ∈M . Let, furthermore, σc
A′

q
∈ actcA′

q
(s) be an A′

q-co-action witnessing the truth of �A′
q�©ψq at s.

Then, there exists in T θ
n an outcome set X of σc

A′
q
[�A′

q�©ψq] such that for each ∆′ ∈ X there exists

s′ ∈Out(s,σc
A′

q
) such that M , s′ |=∆′.

94

B.2. SOUNDNESS

The proof is analogous to the proof of Lemma B.5.

Corollary B.2. Let ∆ ∈ Sθ
n be a state and and �A′

q�©ψq ∈∆. Let M , s |=∆ for some CGM M and

state s ∈M . Let, furthermore, σc
A′

q
∈ actcA′

q
(s) be an A′

q-co-action witnessing the truth of �A′
q�©ψq

at s and let χ ∈ cl(θ) be a β-formula (resp. a γ-formula), whose βi-associate (i ∈ {1,2}) (resp. i-th

γ-component (i> 1)) is χi. Then there exists in T θ
n an outcome set Xχi of σc

A′
q
[�A′

q�©ψq] such that

for every ∆′ ∈ Xχi there exists s′ ∈Out(s,σc
A′

q
) such that M , s′ |=∆′, and moreover, if M , s′ |= χi, then

χi ∈∆′.

Lemma B.7. Let R = (R,→) be a realization witness tree for a potential eventuality ξ at ∆ ∈ Sθ
n.

Then ξ is realized at ∆ in T θ
n .

Proof. Straightforward from the definition of realization witness tree Section (Definition A.4)

and the definitions 4.4 and 4.5. �

We now prove the existence of a realization witness tree for any satisfiable state of a tableau

containing a potential eventuality.

Lemma B.8. Let ξ ∈∆ be a potential eventuality and ∆ ∈ Sθ
n be satisfiable. Then there exists a

realization witness tree R = (R,→) for ξ at ∆ ∈ Sθ
n. Moreover, every ∆′, colouring a node of R, is

satisfiable.

Proof. We will only give the proof for potential eventualities of the type 〈〈A〉〉Φ. The case of

potential eventualities of type �A�Φ is similar.

When dealing with realization of potential eventualities, we have two cases:

1. WF(Φ,∆,γsl(ξ,∆))=>. This case is straightforward, the realization witness tree consists of

only the root, coloured with ∆.

2. WF(Φ,∆,γsl(ξ,∆)) 6= >.

We start building the realization witness tree R with a simple tree whose root r is coloured

with ∆ and Φ. We construct the rest of the realization witness tree R step-by-step starting

from ∆, ξ, Φ and r.

Step applied from a given satisfiable state ∆0, a given eventuality ξ0, a given path
formula Φ0 and a node of R:
Let Φ′

0 = WF(Φ0,∆0,γsl(ξ0,∆0)). There is a successor potential eventuality ξ1
∆0

of ξ0 such

that 〈〈A〉〉©ξ1
∆0

∈∆0.

As ∆0 is satisfiable, there exists a CGM M and a state s ∈ M such that M , s |= ∆0, and

in particular, M , s |= 〈〈A〉〉©ξ1
∆0

. Thus, there exists an A-action σA ∈ actA(s) such that

M , s′ |= ξ1
∆0

for all s′ ∈Out(s,σA), that is an A-action witnessing the truth of 〈〈A〉〉©ξ1
∆0

at s.

We know that ∆0 is satisfiable and that 〈〈A〉〉©ξ1
∆0

is a successor formula of the form 〈〈A〉〉©ϕ.

Let p be the position of 〈〈A〉〉©ξ1
∆0

in the list built from the application of the rule Next on

∆0. Note that ξ0 = 〈〈A〉〉Φ0 is a γ-formula ∈ cl(θ), where at least one of its γ-components,

95

APPENDIX B. PROOFS

obtained from a triple 〈ψ,Ψ,S〉, is such that WF(Φ0,FS(ψ),S)=>, by the structure of the

decomposition of γ-formula. Let χ be such a γ-component. So Corollary B.1 is applicable to

∆0, and according to that corollary, there exists an outcome set Xχ of σA[〈〈A〉〉©ξ1
∆0

] at ∆0

such that, for every ∆′ ∈ Xχ, there exists s′ ∈Out(s,σ) such that M , s′ |=∆′, and moreover, if

M , s′ |= χ, then χ ∈∆′. Thus the leaves of R are coloured bijectively with a node from Xχ

and Φ′. The so obtained tree respects items 1 to 3 of Definition A.4; it is not necessarily

that all leaves respect item 4 of this definition. For every such leaf l, we apply again the

step from the corresponding ∆′, ξ1, Φ′
0 and l.

This step cannot be repeated ad libitum since M , s |=∆, and in particular M , s |= ξ.
Thus, the so constructed realization witness tree conforms to Definition A.4.

�

Lemma B.9. Let ∆ be a state in T θ
n . If ∆ is satisfiable then rule ER2 cannot eliminate ∆ from

T θ
n .

Proof. Let ∆ ∈T θ
n be a satisfiable state.

If ∆ contains no eventuality, then rule ER2 is not applicable.

If ∆ contains an eventuality ξ, then Lemma B.8 ensures that there exists a realization witness

tree for ∆ and, by Lemma B.7, we know that ξ is realized at ∆ in T θ
n . Therefore, ER2 cannot

eliminate ∆ for T θ
n . �

Theorem B.1 (Soundness). The tableau-based procedure for ATL∗ is sound with respect to

unsatisfiability, that is if a formula, say θ, is satisfiable, then its final tableau T θ is open.

Proof. Lemmas B.3–B.9 ensure that if a node is satisfiable, then it cannot be eliminated from

T θ
n due to rule ER1 or rule ER2. Therefore the initial node of the tableau cannot be eliminated

and therefore the final tableau T θ is open. �

B.3 Completeness

In order to obtain a model from an open final tableau, we first extract from it Hintikka structures

whose definition is given in subsection A.4. The proof of completeness for ATL∗ is very similar to

the one for ATL+, but we can notice that we will have to be sure that every formula with many

often temporal operators, e.g. �Φ1UΦ2, is satisfied at the end of the construction of the Hintikka

structure.

Completeness of the procedure means that the existence of an open tableau implies existence

of a CGM. So, we start with an open tableau T θ for θ and we want to prove that θ is indeed

satisfiable. The proof is constructive, as we will build from T θ a Hintikka structure Hθ that can

be turned into a model for θ. In order to construct that Hintikka structure, first we will extract

special trees associated with potential eventualities, that can be seen as building modules to be

96

B.3. COMPLETENESS

used to construct the entire structure. Eventually, we show that the so constructed structure is a

Hintikka structure for θ.

First, we need to define edge-labelling of a tree.

Definition B.1 (Edge-labelling). Let W = (W ,) be a tree and Y be a non-empty set. An edge-

labelling of W by Y is a mapping l from the set of edges of W to the set of non-empty subsets of

Y .

Definition B.2 (Tree conditions). Given a tableau T θ, a tree W = (W ,) is a T θ-tree if the

following conditions hold:

• W is Sθ-coloured, by some colouring mapping c.

• W is edge-labelled by
⋃

(∆∈Sθ)act∆, by some edge-labelling mapping l;

• l(w w′)⊆ act∆ for every w ∈W with c(w)=∆;

• For every interior node w ∈W with c(w)=∆, every successor Γ ∈T θ of∆ and every successor

∆′ ∈T θ of Γ, there exists exactly one w′ ∈W such that l(w w′)= {σ |∆ σ−→Γ}.

Definition B.3 (Rooted tree). Let ∆ ∈ Sθ. A T θ-tree W is rooted at ∆ if the root r of W is coloured

with ∆.

For the purpose of our construction, we distinguish two kinds of T θ-trees: simple or real-

izing. Their definitions are given below. Realizing T θ-trees will deal especially with potential

eventualities.

Definition B.4 (Simple tree). A tree W = (W ,) is simple if it has no interior nodes except the

root.

Simple T θ-trees can be seen as one-step modules.

Definition B.5 (Realizing tree). Let W = (W ,) be a T θ-tree rooted at ∆ and ξ ∈∆ a potential

eventuality. The tree W is a realizing T θ-tree for ξ, denoted Wξ, if there exists a subtree Rξ of

W rooted at ∆ such that Rξ is a realization witness tree for ξ rooted at ∆ ∈T θ, where T θ is an

open tableau for θ.

Lemma B.10. Let ∆ ∈ Sθ. Then, there exists a simple T θ-tree rooted at ∆.

Proof. We construct a simple T θ-tree W rooted at ∆ as follows. The root of W is a node r such

that c(r)=∆. For every Γ, we select one successor state ∆′ of Γ and add a successor t to W such

that c(t)=∆′ and l(r t)= {σ |∆ σ−→Γ}. �

To show the existence of a realizing T θ-tree for ξ at ∆, we first prove the existence of a

realization witness tree Rξ for ξ at ∆.

Lemma B.11. Let T θ be an open tableau for θ and ξ be a potential eventuality realized at ∆ ∈T θ.

Then, there exists a realization witness tree Rξ for ξ at ∆ in T θ.

97

APPENDIX B. PROOFS

Proof. Straightforward from Definition 4.4 and Definition 4.5. �

Lemma B.12. Let T θ be an open tableau for θ. Let ξ ∈∆ ∈ Sθ be a potential eventuality. Then,

there exists a finite realizing T θ-tree for ξ rooted at ∆.

Proof. Since T θ is open, ξ is realized at ∆ in T θ. To construct the realizing T θ-tree Wξ for ξ

rooted at ∆, we start from the realization witness tree Rξ, whose existence is given by Lemma

B.11 and provisionally we take Wξ to be Rξ. The problem with Rξ is that for some σ ∈ act(∆) at

some node w of Rξ , there is no edge w w′ such that l(w w′) 3σ. Therefore, to extend Wξ into

a realizing T θ-tree, for every such node w, we pick one of the successor states of c(w) via σ, say

∆′ and add a node w′ to Wξ such that c(w′)=∆′ and l(w w′) 3σ. �

We now construct a final structure, denoted by F, from simple and realizing T θ-trees. This

construction is made step-by-step. At the end of the construction, we prove that F is indeed a

Hintikka structure.

Step 1. We define a grid F of size m×n, where m is the number of eventualities occurring in

T θ and n the number of states of T θ. Each row of that grid is labelled by one of the eventualities

and each column by a state of T θ previously ordered by name (∆i <∆ j if i < j). We denote by ξi

the eventuality associated to row 0≤ i ≤ m, we denote by ∆ j the state associated to the column

0 ≤ j ≤ n. The content F (i, j) of each intersection between a row i and a column j of F is as

follows: if ξi ∈∆ j, then F (i, j) is the realizing T θ-tree for ξi rooted at ∆ j; otherwise, F (i, j) is the

simple T θ-tree rooted at ∆ j.

Step 2. We make a queue Q that will contain eventualities occurring in T θ. The first element of

Q is either θ, if θ is an eventuality, or the eventuality associated to the first row of the grid defined

just above. Let ξi be the first element of the queue, so that Q(0)= ξi. Then we add to Q all the

eventualities following the order of grid’s rows and cycling if necessary, that is Q(k)= ξ((i+k) mod m)

for k ∈ [1,m−1].

Step 3. Let ∆ be one of the states containing θ. Next, we take the element F (Q(0),∆) of the grid.

The root of F (Q(0),∆) is then the root of F. Then we take one-by-one in order all the elements of

the rest of the queue and do the following:

Let Q(i) be the current element of the queue to be treated. For every dead-end state w ∈F,

that is a state without successors, such that c(w)=∆ j, we add the tree F (Q(i),∆ j) by merging

the dead-end state w with the root of F (Q(i),∆ j);

Step 4. Finally, we ensure that F finite. While there is a dead-end state in F, say w with

c(w)=∆ j, we choose a component from the row F (∆ j) as follows:

98

B.3. COMPLETENESS

• With priority we choose a component F (i,∆ j),0≤ i ≤ m already occurring in F. Let r be the

root of the component F (i,∆ j),0≤ i ≤ m inside F. Then we add an arrow between every

predecessor v of w and the root r and labelled this arrow with l(v w). Then we delete the

node w ∈F.

• Otherwise, if the chosen component F (i,∆ j) is not already occurring in F then we add the

new component to F as usual by merging the root of the component with the dead-end state

w.

When there are no longer dead-ends in F, the structure is completed and we have obtained

our final structure.

The next lemma will be used to prove that the structure F obtained at the end of the

construction is indeed a Hintikka structure.

Lemma B.13. Let T be a T θ-tree rooted at ∆= c(w). Then, the following holds:

1. If 〈〈A〉〉©ϕ ∈ ∆, then there exists an A-action σA ∈ actA(∆) such that ϕ ∈ c(w′) = ∆′ where

l(w w′) 3σ for every σwσA.

2. If �A�©ϕ ∈ ∆, where A 6= A, then there exists a A-co-action σc
A ∈ actcA(∆) such that ϕ ∈

c(w′)=∆′ where l(w w′) 3σ for every σwσc
A(σA).

Proof. We recall that all successor formulae of ∆ ∈ Sθ are ordered at the application of the rule

Next to ∆.

(1) Suppose that 〈〈A〉〉©ϕ ∈∆. Then the required A-action is σA[〈〈A〉〉©ϕ]. Indeed, it immedi-

ately follows from the rule Next that for every σwσA in the initial tableau T θ
0 , if ∆ σ−→Γ, then

ϕ ∈Γ and ϕ ∈∆′ since ∆′ is a full expansion of Γ. The statement (1) of the lemma follows.

(2) Suppose that �A�©ϕ ∈∆, Case 1:A 6=A. We consider an arbitrary σA ∈ actA(∆). Then σA can

be extended to an action vector σ′ wσ. Let N(σA) be the set {i |σA(i)≥ m}, where m is the number

of successor formulae of the form 〈〈A〉〉©ϕ in ∆, and let co(σA) = (∑
i∈N(σA)(σA(i)−m))

)
mod l,

where l is the number of successor formulae of the form �A�©ϕ in ∆. Now, we consider σ′ wσA

defined as follows: σ′
b = ((q−co(σA)) mod l+m and σ′

a′ = m for any a′ ∈A−(A∪{b}), where b ∈A−A.

Thus, we have A− A ⊆ N(σ) and also co(σ′)= (co(σA)+ (q−co(σA))) mod l)+m = q. Therefore, for

this arbitrarily chosen σA there exists at least one state, say ∆′, such that ∆ σ−→ Γ =⇒ ∆′ and

ϕ ∈∆′.
Case 2: A =A. Then, by virtue of (H2), 〈〈;〉〉©¬ϕ ∈∆ and thus, by the rule Next, ¬ϕ ∈ Γ for

every successor Gamma of ∆. Then, ¬ϕ ∈∆′ for every ∆′ that is a successor of ∆ in T θ and hence

the colouring set of every leaf of T . Then, the (unique) co-A-actions, which is an identity function,

has the required properties.

The statement (2) of the lemma follows. �

Theorem B.2. The tableau-based decision procedure for ATL∗ is complete with respect to unsat-

isfiability, that is if a tableau for an input formula θ is open, then the formula θ is satisfiable.

99

APPENDIX B. PROOFS

Proof. The structure F constructed from T θ is a Hintikka structure. Indeed, H1-H4 of Definition

A.7 are satisfied since the nodes of F are nodes of T θ. H5 of the same definition essentially

follows from Lemma B.13. Whenever a node w of F contains a potential eventuality ξ, this means

that this eventuality will stay in the queue (see construction of F above) until realized. Moreover,

if the T θ-tree W chosen to complete F from w does not realize ξ, either ξ or one of its descendants

is present in each newly generated dead-end of F. So, when it is the turn to realize ξ we add to

each dead-end state the realizing T θ-tree for ξ. This, together with Lemma B.13, guarantees that

there exists a realization witness tree for ξ on F at w. Thus, H6 of Definition A.7 is satisfied, too.

By construction, the structure F is a concurrent game Hintikka structure for θ, thus Theorem

A.1 can be applied to obtain from it a model for θ. Thus θ is satisfiable. �

100

A
P

P
E

N
D

I
X

C
NOTATION LIST

Notation Description Section
� (or G) temporal operator “Always” 1.2; 2.2.1

♦ (or F) temporal operator “Sometime” 1.2; 2.2.1

© (or X) temporal operator “Next” 1.2; 2.2.1

U temporal operator “Until” 1.2; 2.2.1
∞
♦ (or GF) temporal operator “Infinitely often” 2.2.1
∞
� (or FG) temporal operator “Sometime always” 2.2.1

θ, ϕ, ψ, . . . state formula; θ is an initial formula 2.2.1

Φ, Ψ, . . . path formula 2.2.1

⊕+, ⊗+ operators for the dec+ function 4.1.1

⊕∗, ⊗∗ operators for the dec∗ function 4.1.2
.∧,

.∨ version of the operators ∧ and ∨ respectively where the

associativity, commutativity, idempotence and identity ele-

ment properties is embedded in the syntax

4.1.2

w extension of vector A.1

 relation on W B.3:Def. B.2

A non-empty set of all agents of a CGM 2.1

Aθ set of agents that are mentioned in θ 3.1

A a coalition of agents 1.2

A CTL path quantifier “for all paths” 1.2

〈〈A〉〉 Strategic quantifier “the coalition A has a strategy to en-

force”

1.2

�A� Strategic quantifier “the coalition A cannot avoid” 1.2

101

APPENDIX C. NOTATION LIST

Notation Description Section
acta map acta : S → P (Acta) \;. Define for each state s the

actions available to a at s

2.1:Def. 2.2

actA map actA : S→ P (ActA) \;. Define for each state s the

actions available to the coalition A at s

2.1:Def. 2.2

Acta non-empty set of actions for a given agent a 2.1:Def. 2.2

ActA non-empty set of actions for a given coalition A 2.1:Def. 2.2

ActcA an A-co-actions ActcA :ActA →ActA\A 2.2.2

ATL+p the set of ATL+ path formulae 4.1

ATL+s the set of ATL+ state formulae 4.1

ATL∗p the set of ATL∗ path formulae 4.1

ATL∗s the set of ATL∗ state formulae 4.1

B Bob 1

cl(θ) closure for the formula θ 3.2.1

co(σ) function used for the rule next 3.2.3; 4.3

dec+ decomposition function of a path formula for ATL+ 4.1.1

dec∗(Φ) decomposition function of a path formula for ATL∗ 4.1.2

D(∆) the set of action vectors starting from a state ∆ in a tableau 3.2.3; 4.3

DA(∆) the set of A-actions starting from a state ∆ in a tableau A.3.2;

Dc
A(∆) the set of A-co-actions starting from a state ∆ in a tableau A.3.2

∆ state in a tableau

E CTL path quantifier “for some path” 1.2

F grid for the construction of the Hintikka structure B.3 (P.91)

F structure to get Hintikka structure B.3 (P.91)

FA an A-strategy 2.2.2

F c
A an A-co-strategie F c

A : StratM (A)×HistM →ActA\A 2.2.2

FPA a partial A-strategy B.1

FS(Γ) full saturated sets of the set Γ for ATL 3.2.2

FS+(Γ), FS∗(Γ) full saturated sets of the set Γ for ATL+ and ATL∗ 4.2

Γ prestate in a tableau

γ(ψ,Ψ) the γ-component for ATL+ associated to the pair 〈ψ,Ψ〉 4.1.3

γc(ψ,Ψ,S) the γ-component for ATL∗ associated to the triple 〈ψ,Ψ,S〉 4.1.3

γs(ψ,Ψ,S) the γ-set associated to the triple 〈ψ,Ψ,S〉 4.1.3

γl(ξ,∆) γ-component linked to an eventuality ξ and a state ∆ 4.2

γsl(ξ,∆) γ-set linked to an eventuality ξ and a state ∆ 4.2

h history in a CGM 2.2.2

H Hugo 1

H Hintikka structure A.4

102

Notation Description Section
Hθ a Hintikka structure for the formula θ B.3 (P.89)

H1. . . H6 conditions in Hintikka structures A.4.2:Def.

A.7

HistM the set of all histories in the CGM M 2.2.2

L CGM labelling function L :S→P (P) 2.1

λ play in a CGM 2.2.2

|λ| the length of λ when λ is finite 2.2.2

last(λ) the final state of λ when λ is finite 2.2.2

λ0 the initial state of the play λ 2.2.2

λi the (i+1)th state of the play λ 2.2.2

λ≤i the prefix λ0, . . . ,λi of the play λ 2.2.2

λ≥i the suffix λi,λi+1, . . . of the play λ 2.2.2

λi∼ j the subsequence λi, . . . ,λ j of the play λ 2.2.2

M a CGM 2.1:Def. 2.4

out(s,σA) transition function in a CGM 2.1:Def. 2.2

Out(s,σA) outcome of an A-action at a given state s 2.1:Def. 2.3

Out(s,σc
A) outcome of an A-co-action at a given state s 2.1:Def. 2.3

P non-empty set of atomic propositions 2.1

PlaysM the set of plays in the CGM M 2.2.2

PlaysM (s) the set of plays in the CGM M with initial state s 2.2.2

PlaysM (s,FA) the set of plays in the CGM M starting at s and consistent

with FA

2.2.2

Q queue of eventualities to realize B.3 (P.91)

R realization tree A

Rξ realization tree for the eventuality ξ B.3:Def. B.5

Realized function that determines if an eventuality is immediately

realized (ATL+)

4.4.1

S a CGS 2.1:Def. 2.2

S non-empty set of states 2.1

Sθ set of nodes (states and prestates) in T θ 3.3

Sθ
n set of nodes (states and prestates) in T θ

n 3.3

StratM (A) the set of strategies for the coalition A in the CGM M 2.2.2

Succ(∆,〈〈A〉〉©ϕ),

Succ(∆,�A�©ϕ)

function to get successors of ∆ associated to 〈〈A〉〉©ϕ and

�A�©ϕ respectively

3.1; 4.1

T θ (final) tableau for the formula θ 3.1

T θ
0 initial tableau for the formula θ 3.1

T θ
n nth intermediate tableau for the formula θ 3.1

103

APPENDIX C. NOTATION LIST

Notation Description Section
σA an A-action 2.1:Def. 2.2

σA an action vector 2.1:Def. 2.2

σc
A an A-co-Action A.1

σA[〈〈A〉〉©ϕ] the unique A-action enforcing ϕ from a given state of a

tableau

A.3.2

σc
A[�A�©ϕ] the A-co-Action enforcing ϕ from a given state of a tableau A.3.2

W a T θ-tree B.3:Def.B.1

Wξ a T θ-tree for ξ B.3:Def. B.5

WF function that determines which objectives of a path for-

mula are not immediately realized (ATL∗)

4.4.2

ξ a potential eventuality 4.4.1:Def. 4.2

ξi ith descendant potential eventuality of the eventuality ξ 4.4.1:Def. 4.2

ξ1
∆ the descendant potential eventuality of the eventuality ξ

with regards to γl(ξ,∆)

4.4.1:Def. 4.2

Xψ outcome set that is relative to the formula ψ B.2:Cor. B.1

104

BIBLIOGRAPHY

[1] L. ACETO, A. INGOLFSDOTTIR, AND J. SRBA, The algorithmics of bisimilarity, in Advanced

Topics in Bisimulation and Coinduction, D. Sangiorgi and J. Rutten, eds., Cambridge

University Press, 2011, pp. 100–172.

[2] T. ÅGOTNES, V. GORANKO, AND W. JAMROGA, Alternating-time temporal logics with ir-

revocable strategies, in Proceedings of the 11th Conference on Theoretical Aspects of

Rationality and Knowledge (TARK-2007), Brussels, Belgium, June 25-27, 2007, D. Samet,

ed., 2007, pp. 15–24.

[3] R. ALUR, T. A. HENZINGER, AND O. KUPFERMAN, Alternating-time temporal logic, in

38th Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,

Florida, USA, October 19-22, 1997, IEEE Computer Society, 1997, pp. 100–109.

[4] R. ALUR, T. A. HENZINGER, AND O. KUPFERMAN, Alternating-time temporal logic, Journal

of the ACM (JACM), 49 (2002), pp. 672–713.

[5] W. B. ARTHUR, On designing economic agents that behave like human agents, Journal of

Evolutionary Economics, 3 (1993), pp. 1–22.

[6] R. AXTELL, Why agents?: on the varied motivations for agent computing in the social sciences,

Center on Social and Economics Dynamics - The Brookings Institution, (2000), pp. 1–23.

[7] E. W. BETH, Semantic Entailment and Formal Derivability, vol. 18 of Nieuwe Reeks, Med.

Konkl. Nederl. Akad. v. Wetensch, 1955.

[8] , The foundations of mathematics: a study in the philosophy of science, Studies in logic

and the foundations of mathematics, North-Holland Pub. Co., 1959.

[9] T. BRIHAYE, A. D. C. LOPES, F. LAROUSSINIE, AND N. MARKEY, ATL with strategy

contexts and bounded memory, in Logical Foundations of Computer Science, International

Symposium, LFCS 2009, Deerfield Beach, FL, USA, January 3-6, 2009. Proceedings,

2009, pp. 92–106.

[10] M. BROWNE, E. CLARKE, AND O. GRÜMBERG, Characterizing finite Kripke structures in

propositional temporal logic, 1988.

105

BIBLIOGRAPHY

[11] R. M. BURSTALL, Program proving as hand simulation with a little induction, in IFIP

Congress, 1974, pp. 308–312.

[12] C. E. G. CENA, P. F. CÁRDENAS, R. S. PAZMIÑO, L. PUGLISI, AND R. A. SANTONJA, A

cooperative multi-agent robotics system: Design and modelling, Expert Syst. Appl., 40

(2013), pp. 4737–4748.

[13] S. CERRITO, A. DAVID, AND V. GORANKO, Optimal tableaux-based decision procedure for

testing satisfiability in the alternating-time temporal logic ATL+, Automated Reasoning -

7th International Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer of

Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, 8562 (2014), pp. 277–

291.

[14] , Optimal tableaux method for constructive satisfiability testing and model synthesis in

the alternating-time temporal logic ATL+, CoRR, abs/1407.4 (2014).

[15] , Optimal tableau method for constructive satisfiability testing and model synthesis in

the alternating-time temporal logic ATL+, Transactions On Computational Logic, To be

published (2015).

[16] E. CLARKE, O. GRUMBERG, AND D. PELED, Model Checking, MIT Press, 1999.

[17] E. M. CLARKE, A. BIERE, R. RAIMI, AND Y. ZHU, Bounded model checking using satisfia-

bility solving, Formal Methods in System Design, 19 (2001), pp. 7–34.

[18] E. M. CLARKE AND E. A. EMERSON, Design and synthesis of synchronization skeletons using

branching-time temporal logic, in Logics of Programs, Workshop, Yorktown Heights, New

York, May 1981, D. Kozen, ed., vol. 131 of Lecture Notes in Computer Science, Springer,

1981, pp. 52–71.

[19] A. DAVID, TATL: implementation of ATL tableau-based decision procedure, in Automated

Reasoning with Analytic Tableaux and Related Methods - 22th International Conference,

TABLEAUX 2013, Nancy, France, September 16-19, 2013. Proceedings, D. Galmiche and

D. Larchey-Wendling, eds., vol. 8123 of Lecture Notes in Computer Science, Springer,

2013, pp. 97–103.

[20] , Deciding ATL* satisfiability by tableaux, in Automated Deduction - CADE-25 - 25th

International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015,

Proceedings, A. P. Felty and A. Middeldorp, eds., vol. 9195 of Lecture Notes in Computer

Science, Springer, 2015, pp. 214–228.

[21] M. DAVIS AND H. PUTNAM, A computing procedure for quantification theory, J. ACM, 7

(1960), pp. 201–215.

106

BIBLIOGRAPHY

[22] G. V. DRIMMELEN, Satisfiability in alternating-time temporal logic, 18th Annual IEEE

Symposium of Logic in Computer Science, 2003. Proceedings., (2003).

[23] E. A. EMERSON AND E. M. CLARKE, Characterizing correctness properties of parallel

programs using fixpoints, in Automata, Languages and Programming, 7th Colloquium,

Noordweijkerhout, The Netherland, July 14-18, 1980, Proceedings, J. W. de Bakker and

J. van Leeuwen, eds., vol. 85 of Lecture Notes in Computer Science, Springer, 1980,

pp. 169–181.

[24] E. A. EMERSON AND J. Y. HALPERN, “sometimes” and “not never” revisited: on branching

versus linear time temporal logic, Journal of the ACM, 33 (1986), pp. 151–178.

[25] J. FERBER, Les Systèmes multi-agents: vers une intelligence collective, I.I.A. Informatique

intelligence artificielle, InterEditions, 1995.

[26] M. FITTING, Proof methods for modal and intuitionistic logics, Synthese library ; v. 169., D.

Reidel ; Sold and distributed in the U.S.A. and Canada by Kluwer Boston, Dordrecht,

Holland ; Boston, U.S.A. Hingham, MA, 1983.

Melvin Fitting. Includes index. Bibliography: p. 526-539.

[27] J. FRANCO AND J. MARTIN, A history of satisfiability, in Handbook of Satisfiability, A. Biere,

M. Heule, H. van Maaren, and T. Walsh, eds., vol. 185 of Frontiers in Artificial Intelli-

gence and Applications, IOS Press, 2009, pp. 3–74.

[28] O. FRIEDMANN, M. LATTE, AND M. LANGE, A decision procedure for CTL* based on

tableaux and automata, Automated Reasoning, (2010), pp. 331–345.

[29] V. GORANKO, Coalition games and alternating temporal logics, in Proceedings of the 8th

conference on Theoretical aspects of rationality and knowledge, Morgan Kaufmann

Publishers Inc., 2001, p. 259–272.

[30] V. GORANKO AND W. JAMROGA, Comparing semantics of logics for multi-agent systems,

Synthese, (2004), pp. 77–116.

[31] V. GORANKO AND D. SHKATOV, Tableau-based decision procedures for logics of strategic

ability in multiagent systems, ACM Transactions on Computational Logic, 11 (2009),

p. 3:1–3:51.

[32] V. GORANKO AND G. VAN DRIMMELEN, Complete axiomatization and decidability of

alternating-time temporal logic, Theoretical Computer Science, 353 (2006), pp. 93–117.

[33] K. J. J. HINTIKKA, Two papers on symbolic logic: Form and content in quantification theory

and Reductions in the theory of types, Acta philcsophica Fennica. Fasc. 8, 1955.

107

BIBLIOGRAPHY

[34] J. H. HOLLAND AND J. H. MILLER, Artificial adaptive agents in economic theory, American

Economic Review, 81 (1991), pp. 365–371.

[35] W. JAMROGA AND N. BULLING, Comparing variants of strategic ability, IJCAI, (2011),

p. 252–257.

[36] H. W. KAMP, Tense Logic and the Theory of Linear Order, PhD thesis, 1968.

[37] P. C. KANELLAKIS AND S. A. SMOLKA, CCS expressions, finite state processes, and three

problems of equivalence, Inf. Comput., 86 (1990), pp. 43–68.

[38] F. KRÖGER, A uniform logical basis for the description, in Formal Description of Program-

ming Concepts, E. Neuhold, ed., North Holland, Amsterdam, 1978, pp. 441–459.

[39] , Temporal Logic of Programs, vol. 8 of {EATCS} Monographs on Theoretical Computer

Science, Springer, 1987.

[40] O. KUPFERMAN, Recent challenges and ideas in temporal synthesis, in SOFSEM 2012:

Theory and Practice of Computer Science - 38th Conference on Current Trends in Theory

and Practice of Computer Science, Špindlerův Mlýn, Czech Republic, January 21-27,

2012. Proceedings, M. Bieliková, G. Friedrich, G. Gottlob, S. Katzenbeisser, and G. Turán,

eds., vol. 7147 of Lecture Notes in Computer Science, Springer, 2012, pp. 88–98.

[41] F. LAROUSSINIE, N. MARKEY, AND G. OREIBY, On the expressiveness and complexity of

ATL, Foundations of Software Science and Computational Structures, 10th International

Conference, FOSSACS 2007, Held as Part of the Joint European Conferences on The-

ory and Practice of Software, ETAPS 2007, Braga, Portugal, March 24-April 1, 2007,

Proceedings, 4423 (2007), pp. 243–257.

[42] F. LAROUSSINIE, N. MARKEY, AND G. OREIBY, On the expressiveness and complexity of

ATL, Logical Methods in Computer Science, 4 (2008).

[43] J. LIU AND J. WU, Multi-agent Robotic Systems, CRC Press, Inc., 1st ed., 2001.

[44] C. NALON, L. ZHANG, C. DIXON, AND U. HUSTADT, A resolution-based calculus for coalition

logic, J. Log. Comput., 24 (2014), pp. 883–917.

[45] C. L. PAGE, P. D’AQUINO, M. ETIENNE, AND F. BOUSQUET, Processus participatif de

conception et d’usage de simulations multi-agents. application à la gestion des ressources

renouvelables, in Systèmes Multi-Agents Défis scientifiques et nouveaux usages - JFSMA

04 - Douxièmes journées francophones sur les systèmes multi-agents, Paris, France,

November 24-26, 2004, O. Boissier and Z. Guessoum, eds., Lavoisier, 2004, pp. 33–46.

[46] R. PAIGE AND R. TARJAN, Three partition refinement algorithms, SIAM Journal on Com-

puting, 16 (1987), pp. 973–989.

108

BIBLIOGRAPHY

[47] M. PAULY, Logic for Social Software, PhD thesis, 2001.

[48] , A modal logic for coalitional power in games, Journal of Logic and Computation, 12

(2002), pp. 149–166.

[49] A. PEREIRA, L. P. REIS, AND P. DUARTE, EcoSimNet: A multi-agent system for ecological

simulation and optimization, in Progress in Artificial Intelligence, 14th Portuguese

Conference on Artificial Intelligence, EPIA 2009, Aveiro, Portugal, October 12-15, 2009.

Proceedings, L. S. Lopes, N. Lau, P. Mariano, and L. M. Rocha, eds., vol. 5816 of Lecture

Notes in Computer Science, Springer, 2009, pp. 473–484.

[50] N. PITERMAN, Synthesis from temporal specifications: New applications in robotics and

model-driven development, Mathematical Foundations of Computer Science 2013, (2013),

pp. 45–49.

[51] A. PNUELI, The temporal logic of programs, in 18th Annual Symposium on Foundations

of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977,

{IEEE} Computer Society, 1977, pp. 46–57.

[52] , The temporal semantics of concurrent programs, in Semantics of Concurrent Com-

putation, Proceedings of the International Symposium, Evian, France, July 2-4, 1979,

G. Kahn, ed., vol. 70 of Lecture Notes in Computer Science, Springer, 1979, pp. 1–20.

[53] , The temporal semantics of concurrent programs, Theoretical Computer Science, 13

(1981), pp. 45–60.

[54] A. PRIOR, Time and Modality, Oxford University Press, 1957.

[55] J.-P. QUEILLE AND J. SIFAKIS, Specification and verification of concurrent systems in cesar,

in Proceedings of the 5th Colloquium on International Symposium on Programming,

vol. 137, 1982, pp. 337–351.

[56] M. REYNOLDS, A faster tableau for CTL*, arXiv preprint arXiv:1307.4468, 119 (2013),

pp. 50–63.

[57] , A faster tableau for CTL* - long report, tech. rep., 2013.

[58] J. A. ROBINSON, A machine-oriented logic based on the resolution principle, J. ACM, 12

(1965), pp. 23–41.

[59] B. ROCHE, J.-F. GUÉGAN, AND F. BOUSQUET, Multi-agent systems in epidemiology : a first

step for computational biology in the study of vector-borne disease transmission, Bmc

Bioinformatics, 9 (2008), p. 435.

109

BIBLIOGRAPHY

[60] S. J. RUSSELL AND P. NORVIG, Artificial Intelligence - A Modern Approach (3. internat. ed.),

Pearson Education, 2010.

[61] S. SCHEWE, ATL* satisfiability is 2ExpTime-complete, Automata, Languages and Program-

ming, 5126 (2008), pp. 373–385.

[62] J. SIFAKIS, The control of asynchronous systems: concepts, properties, static analysis, PhD

thesis, 1979.

[63] R. M. SMULLYAN, First-order logic, Ergebnisse der Mathematik und ihrer Grenzgebiete,

Springer-Verlag, 1968.

[64] G. H. VON WRIGHT, And Next, Acta philosophica Fennica, 18 (1965), pp. 293–304.

[65] D. WALTHER, C. LUTZ, F. WOLTER, AND M. WOOLDRIDGE, ATL satisfiability is indeed

EXPTIME-complete, Journal of Logic and Computation, 16 (2006), pp. 765–787.

[66] P. WOLPER, The tableau method for temporal logic: An overview, Logique et Analyse, 28

(1985), pp. 119–136.

[67] M. WOOLDRIDGE, Intelligent agents, in Multiagent Systems, G. Weiss, ed., MIT Press, 2013,

ch. 1, pp. 3–50.

110

TOWARDS SYNTHESIZING OPEN SYSTEMS:

TABLEAUX FOR MULTI-AGENT TEMPORAL LOGICS

Keywords: Alternating-time temporal logic, ATL∗, Satisfiability, Tableaux, Auto-
mated theorem prover.

In this thesis, we try to provide automated tools to design safe open systems. Open systems,

which can be viewed as multi-agent systems, may be specified in ATL. The logic ATL has

been especially introduced for that purpose. There exist two relevant extensions of ATL,

namely ATL+ and ATL∗ (ATL+ being a restriction of ATL∗). ATL+ allows Boolean combination

of temporal operators, and ATL∗ also allows nesting of temporal operators. The tableau-based

decision procedure for ATL is a constructive method to test the satisfiability of a given specification.

It is constructive in the sense that it is possible to extract a model from the obtained tableau,

whenever the root formula is indeed satisfiable.

In this thesis, we propose two tableau-based decision procedures for ATL+ and ATL∗, as well

as an implementation of these procedures. Our procedures are sound, complete and optimal.

Indeed, our two procedures run in 2EXPTIME. Up to our knowledge our implementation is the

first running tool to decide satisfiability of both ATL and ATL∗ formulae.

In the perspectives of this thesis, we discuss how it is possible to improve the extraction of

models from tableaux for ATL, ATL+ and ATL∗. We would like to obtain relatively small models

at the end.

Dans cette thèse, nous essayons de fournir des outils automatisés pour élaborer des

systèmes ouverts sûrs. Les systèmes ouverts, qui peuvent être vus comme des systèmes

multi-agents, peuvent être spécifiés en ATL. La logique ATL a été introduite dans ce but

précis. Il existe deux extensions intéressantes d’ATL, à savoir ATL+ et ATL∗ (ATL+ étant une

restriction d’ATL∗). ATL+ permet la combinaison Booléenne d’opérateurs temporels, et ATL *

permet également l’imbrication d’opérateurs temporels.

La procédure de décision basée sur les tableaux pour ATL est une méthode constructive

pour tester la satisfiabilité d’une spécification donnée. Elle est constructive dans le sens qu’il

est possible d’extraire un modèle depuis le tableau obtenu, lorsque la formule de départ est

satisfiable.

Dans cette thèse, nous proposons deux procédures de décision basées sur les tableaux pour

ATL+ and ATL∗, ainsi qu’une implémentation de ces procédures. Nos procédures sont correctes,

complètes et optimales. En effet, nos deux procédures s’exécutent en 2EXPTIME. A notre connais-

sance, notre implémentation est le premier exécutable pour décider la satisfiabilité des formules

ATL et ATL∗.

En perspective de cette thèse, nous discutons de la possibilité d’améliorer l’extraction de

modèles depuis les tableaux pour ATL, ATL+ and ATL∗. Nous aimerions obtenir à la fin des

modèles relativement petits.

	List of Tables
	List of Figures
	Introduction
	Open Systems / Multi-Agent Systems
	Temporal Logics and ATL
	Verification of Multi-Agent Systems Using ATL
	The Satisfiability Problem
	Tableau Methods
	Our Contribution

	Preliminaries
	Open Systems: Models and Logics
	Modelling of Multi-Agents / Open Systems
	Alternating Transition Systems
	Concurrent Games Models

	ATL: A Logic for Multi-Agents Systems
	Syntax of Different ATL Versions
	Semantics
	Satisfiability and Validity
	Different Variations on ATL

	Conclusion

	Tableau-Based Decision Procedure for ATL
	General Description of the Procedure of V. Goranko and D. Shkatov
	Construction Phase
	Decomposition of ATL Formulae
	Saturation of Prestates
	Dynamic Analysis of Successor Formulae

	Elimination Phase
	Conclusion

	Deciding ATL+ and ATL* Satisfiability by Tableaux
	Tableau-Based Decision Procedures for ATL+ and ATL*
	New Kind of Formulae = New Decomposition
	Decomposition Function for ATL+-Formulae
	Decomposition Function for ATL*-Formulae
	Decomposition of ATL+ and ATL* Formulae

	Saturation of Prestates
	Rule Next
	Realization of Eventualities
	Realization of Eventualities for ATL+
	Realization of Eventualities for ATL*

	Complexity
	Complexity of the Procedure for ATL+
	Complexity of the Procedure for ATL*

	Conclusion

	Implementation
	The Application TATL
	Web Application
	Command Line Application

	General Organisation of the Application
	Data Structures
	Relevant Algorithms: State and Prestate Elimination
	Test of the Implementation

	Conclusion & Perspectives
	Model Extraction
	Smaller Models for ATL*
	Smaller Models for ATL and ATL+

	Comparison of Methods for Deciding Satisfiability of ATL* Formulae

	Additional Definitions for Proofs
	Actions and Outcomes
	Trees
	Additional Definitions for Tableaux
	States and Prestates
	Outcomes
	Realization Witness Tree for Tableaux

	Hintikka Structures
	Realization Witness Tree for General Hintikka Structure
	Concurrent Game Hintikka Structure

	Proofs
	Proof of Theorem A.1
	Soundness
	Completeness

	Notation List
	Bibliography

