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Abstract

Consider a sensor network with IV sensors observing 7" successive snapshots
of K source signals. The aim is to derive parameter estimators considering
two main difficulties arising in modern sensor networks. Usually scenarios
with large dimensional systems and fast dynamics where T is limited and is
generally of the same order of magnitude as N are considered. Therefore,
it is natural to assume the asymptotic regime denoted by T'— oo, where T’
converges to infinity while N/T — ¢ > 0. Therefore, the classical parameter
estimation methods fail. In this regime, large dimensional random matrix
theory tools allow to construct (IV,T')-consistent estimators for the system
parameters. The second difficulty comes from the fact that usually the re-
ceived signals are embedded in a temporally (or spatially) correlated noise,
1.e., there is a dependency between the noise data across successive obser-
vations (or across the sensors). Such scenarios are usually met for instance
in radar systems. The aim of this thesis is to develop consistent parameter
estimators under this setting.

The studies in this thesis follow two different axes. According to the first
axis, we do not make any assumption on the statistics of the noise samples.
We propose a detection algorithm of the number of sources and estimation
methods for their powers and the directions-of-arrival which are based on
the sample covariance matrix of the signal-plus-noise model. Within the
second axis, we assume that the noise is a stationary process whose covari-
ance matrix has a Toeplitz structure. We revisit the known approaches for
estimation of such matrices based on a Toeplitzified version of the sample
covariance matrix. The main contribution of this work consists in establish-
ing concentrations inequalities on the spectral norm of the noise covariance
matrix, whether or not the signal is present. The well-known “whitening”
procedure leads back to the white noise case.
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T(CU—(T—l), . waTfl)
diag(wxo, ..., 27-1)
XT

XH

det(X)

Tr(X)

rank(X)

X[l

”'Hfro

XoY

C,R,Z, N

R(2)

3(2)

[1£lloo
rt

N x N identity matrix
Toeplitz matrix formed from the coefficients
x—(T—l)a ey T 1

Diagonal matrix with entries zg, ...
Transpose of X

Hermitian transpose of X
Determinant of X

Trace of X

Rank of X

Spectral norm of X

Frobenius norm

Hadamard product of X and Y

Set of complex, real, rational, and natural
numbers

Real part of z

Imaginary part of z

sup of the function f

Right-limit of the real x

Left-limit of the real x

For z € R, max(z,0)

Floor function

Indicator function on the set A

y LT—1

Kronecker delta function (= 1if k =¢and 0

otherwise)

Distance from = to y
Landau’s big-O

Landau’s small-o
Cardinality of the set A
Statistical expectation of X
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supp ()
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I~ ]» [5
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i

Probability of the event X

Support of the measure p

Real Gaussian distribution with mean a and
variance o2

Complex circular Gaussian distribution with
mean ¢ and variance o2
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Convergence in probability
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With probability one
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Résumé en francais

1 Introduction

1.1 Modéle du systéme

Nous considérons un réseau linéaire constitué de IV capteurs observant des
signaux issus de K sources pendant une fenétre d’observation de taille T'. Le
signal recu y; € CN*1 a4 I'instant t =0,...,7 — 1 est donné par

yr = Hsy +wy

ott 5y € CE*1 est le vecteur de symboles aléatoires transmis de matrice de
covariance I', H € CVN*K est la matrice de canal déterministe et w;, € CN*!
est le vecteur de bruit additif & éléments i.i.d. complexes gaussiens de vari-
ance 2. Nous allons supposer dans la suite que tous les paramétres du
systéme, & l'exception du nombre de capteurs N et la taille de la fenétre
d’observation 7', sont inconnus au récepteur. Un probléme fondamental en
traitement d’antennes consiste & développer des algorithmes d’inférence sur
la partie signal Hs; & partir de la matrice de covariance empirique unique-
ment. Le but est en particulier de détecter le nombre de sources émettrices et
d’estimer certains parameétres, par exemple, les puissances des sources et les
directions d’arrivée. Les méthodes proposées dans la littérature sont basées

sur la structure de la matrice de covariance du signal recu :
S =HTH" + 0’1y

ott HTHM correspond a la partie signal et o2y est la matrice de covariance
du bruit. En pratique, nous n’avons pas d’accés a la matrice X et elle est
estimée par la matrice de covariance empirique

T—
1
T

—_

Y = ytyl';'.
t=



Dans le cas du régime classique pour lequel N est fixe quand T — oo, par
la loi des grands nombres, la matrice de covariance empirique est un estima-
teur consistant de la matrice de covariance de la population. D’o11, beaucoup
de méthodes de détection existantes sont basées sur l'utilisation de la ma-
trice de covariance empirique, en particulier, sur son spectre. Ces approches
exploitent le fait que quand T° — oo, les plus petites valeurs propres sont
proches les unes des autres et convergent vers o>. Parmi les méthodes de dé-
tection classiques, nous avons le célébre critére d’information d’Akaike (AIC)
et la longueur de description minimale (MDL) (voir 'approche de Wax et
Kailath [67]).

1.2 Régime de grandes dimensions

Les dimensions des vecteurs d’observations dans les systémes de communi-
cations modernes deviennent de plus en plus grandes. Souvent les change-
ments de la dynamique du systéme étant trés rapides, la taille de la fenétre
d’observation est de méme ordre de grandeur que les dimensions du sys-
téme. Dans ce cas il est pertinent de supposer que N et T convergent vers
Iinfini & la méme vitesse. Dans ce contexte, N et T étant grands tels que
N/T — ¢ > 0 quand T' — o0, la matrice de covariance empirique n’est pas
un estimateur consistant de la vraie matrice de covariance. Par conséquent,
les méthodes de détection et d’estimation classiques basées sur la matrice
de covariance empirique ne permettent pas d’obtenir des estimateurs consis-
tants. Dans ce régime, les outils de grandes matrices aléatoires permettent
de construire des estimateurs des paramétres (N, T')-consistants. En con-
caténant tous les vecteurs recus dans la matrice de dimensions N x T, le
modéle de transmission s’écrit sous forme matricielle :

Yy = Ap + Wy (1)

ou Ap = HTS¥ est la matrice correspondante & la partie signal avec Sp =
[s0,...,87 1" € CT*E et Wr = [wo,...,wr_1] € CVXT est la matrice du
bruit. La matrice Ar est supposée de petit rang K quand T — oo. La
matrice de rang plein Yr peut étre vue comme une version perturbée de la
matrice de bruit Wrp, la perturbation Ar étant de petit rang. FEn théorie
de grandes matrices aléatoires le modeéle de transmission (1) correspond au
modele de spikes [35], [9]. Les détecteurs et les estimateurs proposés sont
basés sur 1’étude du comportement limite des plus grandes valeurs propres
de la matrice de covariance empirique f]T = %YTYTH.
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1.3 Bruit blanc

Les approches basées sur les tests d’hypothése testent ’hypothése nulle Hy
(le signal est absent) contre I’hypothése H; (le signal est présent). Sous
I’hypothese Hy, la matrice de covariance empirique s’écrit = %WTW;‘
Quand N et T convergent vers 'infini, Wr étant a entrées i.i.d., la distri-
bution des valeurs propres de E’T converge vers la célébre loi de Marcéenko—
Pastur [44]. La matrice de covariance empirique forme ce qu’on appelle le «
paquet » correspondant aux valeurs propres de bruit qui sont toutes asymp-
totiquement situées dans l'intervalle [a,b], le support de la distribution de
Marcenko—Pastur. Sous 'hypothése Hi, le spectre de la matrice de covari-
ance empirique est composé du « paquet » de bruit et de quelques valeurs
propres éventuelles isolées situées a droite du « paquet » qui sont dues &
la présence du signal. La condition de présence des valeurs propres isolées
est liée & la puissance du signal correspondante et au parameétre c. Beau-
coup de méthodes de détection qui se basent sur la théorie des spikes ont été
étudiées au cours de ces derniéres années. L’une des premiéres contributions
appartient a Nadakuditi et Edelman [46] qui ont amélioré les algorithmes
basés sur les critéres AIC et MDL dans le contexte des grandes dimensions.
Pour le cas d’une seule source un test statistique a été proposé par Bianchi
et al. [14] qui est basé sur le ratio de la plus grande valeur propre de X
sur sa trace normalisée. Dans la littérature ce test se référe au test du rap-
port de vraisemblance généralisé (GLRT). Pour le cas de sources multiples,
une approche basée sur des tests d’hypothéses multiples a été proposée par
Kritchman et Nadler [40]. Toutefois, I’hypothése de bruit blanc ne peut pas
s’appliquer dans de nombreuses situations pratiques.

1.4 Bruit corrélé

Les observations successives du vecteur de bruit peuvent ne pas étre in-
dépendantes d’une observation & autre ce qui correspond au bruit corrélé
temporellement. De facon alternative, du au fait de la proximité des cap-
teurs, le vecteur de bruit pourrait présenter des corrélations spatiales. Dans
le scénario de corrélations temporelles, la matrice de bruit est de la forme
Vi = I/VTR%F/2 ol W est une matrice aléatoire N x T & éléments 1.1.d. et
Ry est une matrice de covariance inconnue qui capte les corrélations tem-
porelles des échantillons de bruit regues par une antenne. Quand Rp est
connue, la matrice de covariance empirique peut étre blanchie par l'inverse
de Rr et nous retrouvons la situation classique de signal altéré par un bruit
blanc. Dans le cas de détection d’une seule source, le test GLRT [14] est
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utilisé. Quand Ry est inconnue, on suppose en général l'existence d'une
séquence indépendante d’échantillons de bruit pur de taille 77. A partir de
cette séquence une matrice de covariance empirique de bruit est construite
qui est supposée de représenter la vraie matrice de covariance. La matrice
de covariance sous le test est « blanchie » par la matrice empirique de bruit
pur pour donner lieu & ce qu’on appelle « F-matrix » [58] perturbée par un
signal hypothétique. Cette approche a été étudiée par Nadakuditi et Sil-
verstein [47]. L’hypothése d’existence d'une séquence de bruit seul est trés
forte et nous proposons de I’éviter. Dans cette thése nous considérons une
séquence contenant potentiellement le signal.

1.5 Contributions de la thése

Nos études ont été menées suivant deux axes de recherche différents :

e Axe 1 : Nous proposons un algorithme de détection du nombre de
sources basé sur les espacements entre les valeurs propres successives
de la matrice de covariance empirique. Cet algorithme ne fait aucune
hypothése sur les statistiques des échantillons de bruit. En outre, nous
proposons une méthode d’estimation de puissances de sources et un
algorithme d’estimation de directions d’arrivée basé sur ’adaptation
de 'approche MUSIC [57]| au contexte des grandes matrices aléatoires.

e Axe 2 : Nous supposons que Ry est structurée, étant la matrice de
covariance d’un processus de bruit stationnaire. Dans ce contexte, nous
réexaminons les approches d’estimation de Ry connues basées sur une
version « Toeplitzifiée » de la matrice de covariance empirique. Apreés
avoir estimé Ry, le « blanchiment » nous fait revenir au test GLRT.
L’idée est de dire que méme si le signal est présent, & ce stade il est
considéré comme une nuisance, ’estimée de la matrice de covariance
reste consistante. Cela est du au petit rang du signal. L’originalité
de notre travail consiste en établissement d’inégalités de concentration
sur 'erreur en norme spectrale de la matrice de covariance de bruit,
que le signal soit présent ou non.

1.6 Résumé du contenu du manuscrit

Ce manuscrit est composé de deux parties principales. La premiére partie in-
troduit le contexte, présente des résultats importants en théorie de grandes
matrices aléatoires utilisés par la suite et parcourt ’état de ’art dans les
chapitres 1, 2 et 3, respectivement. Les contributions sont données dans les
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chapitres 3 et 4 et dont le contenu est le suivant :

Chapitre 4 suppose que la structure de la matrice de covariance de bruit
n’est pas connue. Un détecteur de sources et des estimateurs de puissances
et d’angles d’arrivée sont proposés d’abord pour un modéle général puis pour
un exemple spécifique de traitement d’antennes en bande étroite.

Chapitre 5 suppose que R est la matrice de covariance d’un processus
stationnaire gaussien ayant une structure Toeplitz. Des inégalités de con-
centration sur la norme spectrale sont obtenues en absence du signal et sous
sa présence. Finalement, un test de détection sur la matrice de covariance «
blanchie » est proposé.

1.7 Publications

Les publications suivantes sont associées a cette thése :

Articles de revue

e J. Vinogradova, R. Couillet, W. Hachem, “Estimation of Toeplitz co-
variance matrices in large dimensional regime with application to source
detection,” accepté dans IEEE Transactions on Signal Processing, novem-
bre 2014.

e J. Vinogradova, R. Couillet, W. Hachem, “Statistical inference in large
antenna arrays under unknown noise pattern,” IEEE Transactions on
Signal Processing, 61 (22), 2013, pages 5633-5645.

Articles de congrés

e J. Vinogradova, R. Couillet, W. Hachem, “Estimation of large Toeplitz
covariance matrices and application to source detection,” EUSIPCO’2014,
Lisbonne, Portugal.

e J. Vinogradova, R. Couillet, W. Hachem, « Nouvelle méthode de dé-
tection de sources, d’estimation de puissances et de localisation dans

un systéme de communication sans fil avec des statistiques de bruit
inconnues », GRETSI’2013, Brest, France.
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e J. Vinogradova, R. Couillet, W. Hachem, “A new method for source de-
tection, power estimation, and localization in large sensor networks un-
der noise with unknown statistics,” ICASSP’2013, Vancouver, Canada.

2 Détection/estimation d’un signal de petit rang en
présence d’un bruit corrélé

2.1 Modéle général

Considérons le modéle de transmission général :
Yr=Apr+Vp (2)

ou A7 est une matrice aléatoire de rang fixe K quand T — oo représen-
tant le nombre de signaux, Vpr = WTR%F/ % est la matrice de bruit corrélé
temporellement avec Wr € CV*T 4 entrées i.i.d. standard gaussiennes et
R est une matrice semi-définie positive et hermitienne & norme spectrale
bornée. Dans toute la suite nous notons le régime asymptotique par 7' — oo,
N/T — ¢ > 0. Rappelons que la matrice de covariance empirique est donnée
par

1
T
Le modele (4.1) correspond également au modéle de spikes. La matrice Ap
est vue comme une perturbation de rang fini de Vp. Comme dans le cas
du bruit blanc, le spectre de X7 est composé d'un « paquet » de valeurs
propres correspondant au bruit et, éventuellement, de quelques valeurs pro-
pres isolées a droite du support de la mesure spectrale limite de %VTVTH
[9]. Les estimateurs présentés ici sont basés sur I’étude du comportement
asymptotique de ces valeurs propres isolées. Nous réalisons une inférence
statistique sur la partie information Ap et fournissons des estimateurs du
nombre de signaux, des puissances de ces signaux et de quelques formes bil-
inéaires faisant intervenir la matrice de projection orthogonale sur l'espace
signal (voir chapitre 4, section 4.3). Sous plus de contraintes, ces résultats
sont utilisés dans le cas pratique de traitement d’antennes en bande étroite
pour effectuer des algorithmes de détection et d’estimation.

Sr==YrYH (3)

2.2 Traitement d’antennes en bande étroite
2.2.1 Modéle
Nous considérons des signaux issus de K sources recus par un réseau de N

capteurs pendant T observations successives. Le signal recu y, € CN*1 3
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I'instant ¢ est donné par

K-1
ye =Y /Drhr(0k)sks + vy

k=0

ou pg est la puissance de la source k avec pg > ... > pg_1, O € [-7/2,7/2]

. i, T
\}N [1’ €—2z7rdsm9k’ o e—2z7rd(N—1) sin Qk] c
est le vecteur directionnel avec d > 0. Le signal transmis par la source

k & 'instant ¢ est représenté par s;; et le bruit par le vecteur v;. La rela-
tion entre entrées-sorties du systéme en concaténant 7' réalisations du signal
successives s’écrit

est son angle d’arrivée, hp(6y) =
CNXl

Yy = HpPY2SH + v (4)
ou Yr = [yo,- - -, TflJ(y Hr = [hr(60), ..., hr(0k-1)], P = diag(po, . .., pK-1),
Sr = Tﬁl/Q[S;k]?k_:lb ~!avec sy aléatoires i.i.d. de moyenne nulle, vari-
ance unité et le moment d’ordre huit fini et Vp = [vg,...,vp—1]. Nous

supposons que le bruit est corrélé temporellement, i.e., les colonnes de Vp
ne sont pas indépendantes. On suppose ici que le bruit est un processus
stationnaire causal ARMA (autoregressive moving average), mais cette hy-
pothése n’est pas nécessaire pour la validité des résultats. Chaque colonne
de Vp est la réponse d’un filtre dont la fonction de transfert est donnée
par p(z) = Y iS¢z~ et dont l'entrée est le bruit blanc. On écrit alors
Vi = WTR1T/2 ot [Wrlij ~ CN(0,1/T) et Ry € CT*T est une matrice de
Toeplitz semi-définie positive de mesure spectrale vp. Dans le cadre du bruit
ARMA, la matrice Ry a la forme suivante :

To T1 cee TT1
r—1
Ry =
1
-1 ... T_-1 To

avec 1y £ 50 Yipktf et k € Z. D’apres [30, Lemma 6], v converge vers v
dont le support est un intervalle compact et toutes les valeurs propres de Ry
sont asymptotiquement contenues dans le support de v. Il est aussi possible
de caractériser la mesure spectrale de la matrice %VTVQ':i qui converge vers
la mesure limite notée p dont la transformée de Stieltjes est la solution
d’une équation a point fixe [59]. Le but est d’estimer le nombre de sources
émettrices, leurs puissances et leurs angles d’arrivée. Les fluctuations des
estimateurs de puissance sont également étudiées.
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2.2.2. Préliminaires

Donnons d’abord une caractérisation du comportement limite du spectre
correspondant & la partie bruit. Dans le cadre du modéle (4) et le régime
asymptotique T' — oo, N/T — ¢ > 0 et K fixe, la transformeée de Stieltjes
de p, la mesure spectrale limite de %VTVI'Z', est donnée par la solution de
I’équation

27rz'u)|2

)= (o / T c%)m(émnzdu)_l ®)

avec, pour z € Ct m(z) € CT. Ce résultat est un corollaire de |59] et |30,
Lemme 6].

La borne supérieure du support de p est caractérisée par la proposition
suivante :

Proposition 1. Soit u la mesure spectrale dont la transformée de Stieltjes
est la solution de l’équation (5) et dont le support est lintervalle [a,b]. Alors,

1 1 2miu |2
b:—+/ p(e™)*
mp  Jo 1+ cmy|p(e2miv)|2

ot my est la solution unique dans (—(cmax{|p(e?™™)2})~1,0) de I’équation
u

/1< m‘p(ezmu)‘z >2d B 1
2miu |2 u=-.
o \ 14 cm|p(e?miv)] c

La fonction m(z), z € CT, est prolongeable par continuité sur (b, c0) et

Iim+m(:c) = my. Le comportement des K plus grandes valeurs propres de
z—b

la matrice f)T est décrit par la proposition suivante :

en variable m

Proposition 2. Soit m la transformée de Stieltjes limite de la mesure
de support [a,b]. Soient my et b définis comme dans la Proposition 1 et la
fonction g(xz) = m(z)(xem(x) + ¢ — 1) est décroissante de my(cbmy + ¢ — 1)
Jusqu’a zéro sur (b,00). Soit k € N le plus grand entier pour lequel
Pk > DPlim
o
Piim = 1/my(cbmy, + ¢ — 1). (6)
Soient 5\0771 > e > 5\N—1,T les waleurs propres de iT. St po < Plim,
alors Xo, 1 Ta—s> b. Sinon, pour i = 0,....k, soit p; la solution unique de
— 00

l’équation p;g(x) = 1 sur (b,00). Alors,

< a.s. < a.s. A a.s.
A0, T = P05 N7 —— p; et A1 —— b.
T—00 T—o00 T—o0
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D’aprés cette proposition, si la puissance d'une source est assez grande,
la valeur propre correspondante est située & droite du « paquet ». Plus pré-
cisément, si k + 1 sources ont leurs puissances plus grandes que pjj, alors
les k + 1 valeurs propres correspondantes seront situées & 'extérieur du sup-
port de pu. Chacune de ces valeurs propres /A\LT converge vers p; qui est une
fonction de la puissance p;. Ainsi, la position d’une valeur propre isolée peut
étre associée a la puissance de la source correspondante.

2.2.3 Résultats
Détection du nombre de sources

Un algorithme de détection du nombre de sources émettrices qui satisfont la
condition de détectabilité est donné ci-aprés. Cette méthode est basée sur
I’étude des espacements entre les plus grandes valeurs propres de la matrice
de covariance empirique.

Proposition 3 (Estimateur du nombre de sources). Soit L la borne supérieure
du nombre de sources. Soit k=0,..., K —1 le plus grand entier tel que

Pk > Dlim

0t prm est défini par (6). Soient 5\07T > ... > /A\N_LT les valeurs propres de
Y. Pour L > K et e >0, on définit (avec \_1 = 00)

~ Am—1,T
kr =arg  max

= >1+4e.
me{0,...,L—1} )\m,T

Alors kp = k avec probabilité 1 pour tout T grand et € suffisamment petit.

D’apreés ce résultat, nous avons un estimateur consistant du nombre de
sources émettrices si la puissance pg_1 > Plim, ¢’est-a-dire, lorsque k+1 = K.
Toutefois cette méthode présente un probléme de choix du seuil de détection.
Il est connu que dans le cas du bruit blanc, en absence de signal, la plus
grande valeur propre de X7 centrée réduite suit la loi de Tracy—Widom [34].
D’ot, le seuil de détection, qui dépend de la probabilité de fausse alarme,
peut étre fixé théoriquement en utilisant la distribution de Tracy—Widom.

Estimation de puissances

Le résultat suivant permet d’estimer les puissances p; pour ¢ > k en rem-
plagant py. et g(z) par leurs estimées basées sur \; 1 et cr = N/T.
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Proposition 4 (Estimateur des puissances). Soit kr défini par la proposi-
tion 3 avec pour tout T grand et € suffisamment petit. Soit

QT((IZ) = mT(x)(a:chT(a:) +cr — 1)

ot Ty (x) est donné par

) 1 N-1 ]
() = o7
—hr =L O AT
Pouri1=0,..., l%T, soit
DiT = <
gr(\iT)
Alors,
~ a.s.
DiT —pi — 0
T—o00
et

A L
VT (pi — pi) —— N (0,01»2)
T—o00
ol 0? a une expression connue en fonction de m(x).

D’aprés ce théoréme, 'erreur de I'estimateur de puissance suit la loi cen-
trale limite et la variance est d’ordre 1/7.

Localisation

La méthode de localisation proposée est basée sur "approche MUSIC [57].
Soit £ =0, ..., K—1le plus grand entier tel que py > piim et soit Il 7 le pro-
jecteur orthogonal sur I'espace des colonnes de Hy 1 = [hr(6), ..., hr(0k)].
Les angles 6y, . . ., 0, sont les solutions de I'équation ar(0) (Iny — I, 1) ar(OHH
= 0. On définit par y7(0) = ar(0)"y rar(d) la fonction de localisa-
tion, Oy, ..., 0 étant les arguments des maximums locaux de yr(#). Soient
U0, T -,

uk T les vecteurs propres de ET associés respectivement a Ao /A j‘kT T
Pour I’algorithme de MUSIC classique, ’estimateur de la fonction de locali-
sation est donné par :

T
0) = ho(0) i rif ph (6).

Dans le contexte des grandes dimensions, ’estimateur de la fonction de lo-
calisation est donné par la proposition suivante :
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Proposition 5. Soient g, ... s Upr les vecteurs propres de X associés

respectivement d Ao, - . . S‘ET r- Pour 0 € [—m/2,7/2], soit

0) = (M) (0) iy, il b (6)
k=0

ol CT(.Z’) _ (:pﬁLT(w)(cmT x)— )52)

arivy (2)? (e () - ( )
a.s.

vr(0) —Ar(0) ——— 0.

T—oo

Alors,

Dans la suite, nous avons effectué une série de simulations afin d’observer
les performances des estimateurs proposés.

2.2.4 Résultats numériques

Pour ces simulations les signaux s; ; sont modulés QPSK. La puissance du
signal py définit le rapport du signal au bruit (RSB). Le bruit est supposé
autorégressif d’ordre 1 et de parameétre a avec [Rrlp; = al*=U. Tous les
autres parameétres sont précisés dans la légende.

Les probabilités de fausse alarme (PFA) et les probabilités de détection
correcte (PDC) pour une seule source sont évaluées dans la figure 1 pour
des valeurs de ¢ différentes et pour les taux cp croissants. Nous observons
I'impact d’un choix inapproprié de € qui, s’il est trop petit, génére une grande
probabilité de fausse alarme lorsque les valeurs propres du bruit tendent a se
disperser (i.e., pour ¢y grand). Au contraire, si € est trop grand, il ne permet
pas de détecter correctement la source dont la puissance est trop proche du
seuil de détectabilité (i.e., pour ¢p grand).

Les erreurs quadratiques moyennes normalisées (EQMN) E[(po—po)?/pg 2]
de 'estimateur de puissance donné par la proposition 4 sont tracées dans la
figure 2 et comparées a la variance théorique donnée par la loi centrale lim-
ite de cet estimateur. Ces courbes de 'estimateur proposé sont comparées
& celles de I'estimateur obtenu aprés le blanchiment du modéle par la vraie
matrice du bruit. Nous observons que lorsqu’on est proche du seul de dé-
tectabilité la variance théorique diverge. Toutefois, & dimensions finies, les
erreurs de l'estimateur restent bornées a petit RSB. Ceci est expliqué par
le fait qu’« & ’horizon fini », le comportement des valeurs propres n’est pas
aussi brutal. Le gap entre les courbes de l'estimateur proposé et celui avec
le blanchiment est du & la corrélation du bruit. Plus le paramétre de corréla-
tion est grand et plus le gap est grand. Les erreurs quadratiques moyennes
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E[(4(00) — v(60))?] de la fonction de localisation en §p = 10° sont données
par la figure 3 et sont comparées avec les performances de I'estimateur or-
acle et & Destimateur MUSIC traditionnel avec la fonction de localisation
Ytrad, 7 (0) = ZZio h(0)Miig 705 . h(0). Nous notons que I'estimateur proposé
donne bien de meilleurs perforfnances que l'estimateur traditionnel. Le gap
entre la version blanchie est toujours du aux corrélations.

1g & & & & M\é\?
{1
0.8 /,5
/O//
< 06 £ .
= —-—PDCe=05
E —o-PFA =05
g —=—PDCe=1
- 0'47—£}—PFA5:1
—PDCe=2 o
% -PFA e =2

Figure 1: Probabilité de détection correcte et probabilité de fausse alarme
(en pointillé) en fonction de ¢y avec K =1, N =20, RSB=10dB, L =5 et
a = 0.6.
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Figure 2: Erreurs quadratiques moyennes normalisées en fonction du rapport
du signal au bruit avec K =1, N =20, cr = 0.5 et a = 0.6.
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Figure 3: Erreurs quadratiques moyennes de la fonction de localisation en
fonction du rapport du signal au bruit avec K = 1, N = 20, ¢r = 0.2 et
a = 0.6.

3 Estimation de matrices de covariance de Toeplitz
et application i la détection de source

3.1 Modéle et résultats

Soit (v¢)tez un processus complexe symétrique gaussien stationnaire avec
une moyenne nulle et une fonction de covariance (ry)rez avec 1, = E[vgq 0]
et 1, — 0 quand k& — 0o. Nous observons N copies indépendantes de (v¢)ez
sous une fenétre de taille ¢ € {0,...,7 —1}, et nous concaténons les observa-

. . N-1,7-1 . .
tions dans la matrice Vi = [vp 4], t:(’)T . Cette matrice peut étre écrite sous

la forme Vp = WTR%F/ 2, ou Wy € CN*T 3 des entrées indépendantes stan-

. . o . 1/2 .
dard circulaires symétriques complexes gaussiennes et RT/ est la matrice
carrée de la matrice de Toeplitz T' x T semi-définie positive et hermitienne :

To ™ rT—1
A . _ | "t
Ry = [TZ*J]Ogi,ng—l = )
1
ri_T r-1 7o



Récemment ce probleme d’estimation a attiré une nouvelle attention dans
le contexte des grandes dimensions. En général, les méthodes d’estimation
de Rp se basent sur les estimateurs des coefficients r; biaisé et non biaisé
classiques f,l;,T et 7 p, définis respectivement par :

| N-1T-1

N *
"T T NT Z Z Unt+kVn,t Lo<t+k<T-1

n=0 t=0

1 N-1T-1
Fop = —— v vl 1 _
kT N(T— |]€’) Z Z n,t+kUn t L0<t+k<T-1

n=0 t=0

ou 14 est la fonction indicatrice de ’ensemble A. En fonction du taux
de convergence de N et T les estimées RY. = [f?—j,T]Oﬁi,jST—l et RY. =
[ff—j,T]OSi,jéTfl peuvent ne pas étre consistantes. Les approches d’estimations
développées pendant la derniére décennie proposent toutes de construire des
versions « fenétrées » de la matrice estimée Rp en réduisant ou en met-
tant & zéro les entrées qui sont suffisamment loin de la diagonale principale
[71, 15, 72, 19, 18]. Ces méthodes donnent lieu & un estimateur consis-
tant R, 1 = [[Rr]i j1};—j|<,] pour une fonction v(7') bien choisie satisfaisant
Y(T) = oo et y(T')/T — 0. Toutefois, elles présentent les limitations suiv-
antes :

(i) Elles supposent la connaissance a priori du taux de décroissance des ry
(en restreignant ces taux a des classes spécifiques) ;

(i) Les résultats sont asymptotiques par nature et ne donnent pas de régles
explicites pour choisir le parameétre v(7") pour des valeurs finies de N et
de T ;

(i) Les opérations de « fenétrage » ne garantissent pas la positivité de
I'estimateur de covariance résultant.

Nous proposons de considérer des estimateurs de Ry sans fenétrage. La seule
hypothese sur les ry est leur sommabilité Y22 |rg| < oo.
On définit la fonction de covariance pour A € [0, 27)

o0

T2 D e (7)

k=—o00

Nous supposons que les coefficients r; sont absolument sommables et
que 79 # 0. D’ou, Y () est continue sur Uintervalle [0, 27]. Comme ||Rp|| <
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|T|loo (voir |30, Lemma 4.1]), la sommabilité absolue des 7 implique que
supy ||Rr|| < oco. Nous rappelons le régime asymptotique noté « T — oo
» pour lequel N/T — ¢ > 0 quand T" — oco. Les résultats principaux sont
donnés par les théorémes 1 et 2 sous forme d’inégalités de concentration sur
Hﬁl’T — Ryl et Hﬁ% — Ry|| et sont présentés par :

Theorem 1 (Estimateur biaisé). Soil ['estimée biaisée de Ry

b b N

Ry =Ty ps - Flr—1yr)
on TOﬂi(T—l),T’ . ,f’é’T_l)’T) est la matrice Toeplitz formée des coefficients
fli(TA),T? cees fé’Til)’T. Alors, pour tout x >0, on a :

e[| - o > o] < o (e (g (14 57 ) + o) )

Theorem 2 (Estimateur non biaisé). Soit l’estimée non biaisée de Ry

T = T(ﬁ(TA),Tv s 7727(JT71),T)
on T(Wi(T—l),T""vf’?T—l),T) est la matrice de Toeplitz formée des coeffi-
cients Wi(T—l),Tv ... ’f(T—l),T' Alors, pour tout x >0, on a :
P |5 - e > 2] < exp (—F o (1401)
— x| <exp|— — 0 )
R R A W T Y T

D’aprés ces résultats, erreur en norme spectrale est bornée par une
fonction qui décroit exponentiellement quand 7' converge vers infini. La
conséquence directe de ces théorémes est que Hﬁé’p — Ryl — 0 et ||§}; —
Rr|| — 0 presque surement 7" — oo. Un taux de décroissance plus petit
T/log(T) pour l'exposant de l’estimateur non biaisé peut étre interprété
par une imprécision plus accrue des estimateurs de r; pour les valeurs de
k proches de T — 1. La figure 4 trace les courbes de P[|Ry — Ry|| > 2]
(les courbes notées biaisé et non biaisé), avec Rr € {E%,E%}, T = 2N,
x = 2. Ces courbes sont comparées aux bornes exponentielles théoriques
données par les théoremes 1 et 2 (les courbes notées biaisé théorie et non
biaisé théorie). Nous observons que les taux donnés par les théorémes sont
asymptotiquement proches des taux optimaux.
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Figure 4: Probabilité d’erreur en norme spectrale pour z = 2, ¢ = 0.5,
[Rr)ry = a*~! avec a = 0.6.

3.2 Résultats pour le modéle perturbé

Considérons maintenant le modéle signal-plus-bruit :

Y7 = [Yntlocn<n—1 = Pr+ Vr (8)

0<t<T—1
ou la matrice Vi = WTR;/ 2 € CNXT gt 1a matrice de bruit définie comme
précédemment et Pr £ hTstﬂFlT/ % avec hr € CN un vecteur déterministe
tel que supy ||hr| < 0o, s7 = (S0,...,57-1)" € CT un vecteur aléatoire

indépendant de Wy avec la distribution CN(0,I7) et T'p = [%‘j}gj_:lo une
matrice hermitienne semi-définie positive telle que supp ||T'r|| < co. Nous
avons ici un modéle de bruit gaussien blanc spatialement et corrélé tem-
porellement perturbé par un signal de rang un. Le signal est aussi corrélé
temporellement. Notre but est toujours d’estimer la matrice de covariance
de bruit Rr. Pour cela, les observations du bruit pur v,; sont a présent
remplacées par les échantillons y, ;. Il se trouve que les estimées obtenues
sont toujours consistantes en norme spectrale. Intuitivement, la matrice Pp
ne casse pas la consistance de ces estimées car elle peut étre vue comme une
perturbation de rang un du terme de bruit Vp dans laquelle le sous espace
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1/2

vectoriel engendré par (I'// Ms7 est « délocalisé » assez pour ne pas trop
perturber les estimateurs de Ry. Nous avons le résultat suivant :

Theorem 3 (Estimateurs pour le modéle « signal-plus-bruit »). On consid-
ére les estimées

;] NoiTl
b
ka -~ NT Z Z yn,t+kyz,tﬂ0§t+k§T4
n=0 t=0
et
—17-1
o = i Z Z Yn,t+kYn t10<t+k<T 1-
| | n=0 t=0
it R — nop ~bp HpUp __ AUp FUP
Soit RT o T(T—(T—l),T7 T ’T(T—l),T) et RT - T(T—(T—l),T’ B (T 1), T)

Alors pour tout x >0, on a :

P [HEpr - RTH > x} < exp (—cT <H‘rx”oo — log (1 + H,ﬁ,@) + 0(1)>>

et

CZL’2

~ T
] > ] <ol
o P\ log T4 Y,

(1+0(1)).
Notons que nous avons les mémes taux de convergence que précédem-
ment.

3.3 Application a la détection

Aprés avoir estimé la matrice de covariance du bruit, I'estimée est utilisée
pour « blanchir » le modéle :

YrR;

1/2 _ { WTR;/QE;UQ’ HO (9)

hTSI;wﬁ;lm + WTR;ﬂﬁ;l/Q, H;.

Comme la quantité HRTJ%;1 — I7|| — 0 presque surement (par le théoréme 3
quand infyg(p,2r) Y (A) > 0), pour T grand, la décision sur 'hypothese (9)
peut étre résolue par le GLRT [14]| en approximant WTR1/2RT1/2

bruit blanc. Nous avons le résultat suivant :

par le

Theorem 4 (Détection de source). Considérons Ry correspondant soit
Rg? soit a Ry’ strictement défini dans le théoréme 3 pour Yp du modéle (8).
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Supposons que infygjgor) Y(A) > 0 et que limTinf |hr|? Tr (R;l) /T > +/c.
Le test est défini par :

Ny RE | s
= <

= P~ S v (10)
T (veRp'Yl)

a

ot v € RT satisfait v > (1 + +/c)%. Alors, quand T — oo,

0, Hp
>
P{Q—V]%{L H,.

Rappelons que le seuil de détection (1 + /¢)? correspond & la limite
presque sure de la plus grande valeur propre de %I/VTVV:'F'| qui est en fait le
bord droit du support de la loi de Marc¢enko—Pastur.

3.4 Résultats numériques

Nous effectuons des simulations pour montrer les performances du test (5.24).
Le vecteur de canal est un vecteur directionnel hy = /p/T|[1,. .., e* 0(T=1)]
avec § = 10° I'angle d’arrivée et p le paramétre de puissance. La matrice Ry
rrllodﬁzlise un bruit autorégressif d’ordre 1 et de parameétre a tel que [Ryp|,; =
alk=tl.

La figure 5 trace les erreurs de détection 1 — Pl > | H;] du test (5.24)
pour la PFA égale a Pla > ~|Hp] = 0.05 pour Ry = RY (non biaisé) ou
Rr = ﬁg‘? (biaisé) et les compare aux erreurs de 'estimateur dit oracle pour
lequel Ry est supposée parfaitement connue (oracle), i.e., on pose Rr =Ry
dans (5.24). On compare les résultats également au GLRT qui suppose
faussement que le bruit est blanc (blanc), i.e., en supposant Rp = I dans
Pexpression (5.24). La puissance de la source est fixée & p = 1, pour laquelle
le ratio du signal au bruit (RSB) est égal & 0 dB, N varie de 10 & 50 et
T = N/cr pour ¢ = 0.5. Comme plus haut, le nombre de capteurs est fixé
aN=20,T=N/cr =40 et le RSB (d’ou p) varie de —10 dB a 4 dB.

Les puissances des différents tests sont présentées dans la figure 6 et com-
parées aux méthodes de détection qui estiment Rp & partir d’'une séquence
de bruit pur appelé biaisé BP (bruit pur) et non biaisé BP. Les résultats
de la méthode proposée sont proches de ceux de biaisé/non biais¢ BP, le
dernier présentant le désavantage de supposer qu’'une séquence de bruit pur
est disponible au récepteur qui est une hypothése trés forte.

Les deux figures suggérent que les deux méthodes proposés biaisé et
I'oracle ont des performances trés proches, alors que le non biaisé présente des
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performances moins bonnes. Le gap entre le biaisé et le non biaisé confirme
bien les prévisions théoriques.

10° * % = = = g #

107

T T T TTTTT
Ll

=
= | i
A —2 | |
= 1077 ¢ ]
A I ]
| I ]
— |-
10~% || —— Biaisé
|| —o— Non biaisé
Hl —=— Blanc
|| —«— Oracle
1074 T T | | 1 1 1
10 15 20 25 30 35 40 45 50
N

Figure 5: Erreurs de détection en fonction de N avec PFA= 0.05, p = 1,
RSB=0dB, ¢=0.5 et a = 0.6.
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Figure 6: Puissances de test de détection en fonction du rapport du signal
au bruit (dB) avec PFA= 0.05, N =20, c=0.5 et a = 0.6.

4 Conclusion

Dans cette thése nous avons traité deux difficultés souvent rencontrées dans
les réseaux de capteurs modernes : (i) le nombre de capteurs et la taille de la
fenétre d’observation sont grands tous les deux et de méme ordre de grandeur
et (ii) les capteurs sont situés dans un environnement de bruit corrélé avec
une matrice de covariance inconnue. Compte tenu ’hypothése sur la ma-
trice de covariance de bruit deux approches ont été élaborées. La premiére
a consisté & estimer les paramétres du systéme sans hypothése quelconque
sur les statistiques des échantillons de bruit. La seconde approche a sup-
posé que le bruit est un processus stationnaire et a proposé des estimateurs
consistants pour la matrice de covariance de bruit conduisant a la procédure
de « blanchiment ». La premiére approche ne peut étre appliquée dans les
scénarios ol le bruit et le signal sont simultanément temporellement ou spa-
tialement corrélés. En faisant une hypothése sur la structure de la matrice
de covariance de bruit nous permet d’éviter cette restriction. En paralléle
avec la structure de cette thése deux directions de recherche pourraient étre
envisagées.
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4.1 Matrices non structurées

Concernant le comportement des valeurs propres isolées de grandes matrices
aléatoires et les algorithmes de détection et d’estimation qui leur sont as-
sociés, des modéles de matrices plus sophistiqués que ceux considérés dans
cette thése pourraient étre exploités. Ce qu’on appelle le modeéle bi-corrélé
pourrait étre étudié, pour lequel la matrice de bruit présente des corréla-
tions spatiales et temporelles en méme temps. La matrice de bruit pour ce
modéle s’écrit Vp = ﬁ;ﬂWTR;/Q ou Wr a des entrées i.i.d. et ﬁT et Rp
sont des matrices de covariance. De point de vue d’applications, ce modéle
présente un intérét particulier dans les systémes de radar ot les corrélations
temporelles et spatiales surviennent simultanément.

I’analyse en composantes parcimonieuses est devenu récemment un su-
jet de grand intérét puisqu’il trouve des applications dans de nombreux do-
maines d’analyse multivariée et de traitement de signal. Une perspective
intéressante consisterait & exploiter le lien entre les modeéles de spikes et les
méthodes d’acquisition comprimée dans le cas ol les vecteurs propres as-
sociés aux spikes ont une structure creuse. Dans ce cadre, la détection en
composantes parcimonieuses a été par exemple explorée dans [12].

4.2 Matrices structurées

Dans cette thése, la matrice de covariance d’un processus stationnaire a
été estimée sans avoir recours a un fenétrage. L’utilisation d’un fenétrage
optimal pourrait donner lieu & un estimateur plus efficace. Toutefois, la
connaissance a priori du taux de décroissance des coefficients de Toeplitz
est requise afin de construire un fenétrage optimal. Une des directions a
prendre pour résoudre ce probléme serait la méthode itérative.

Le contexte d’application des résultats de la thése concerne principale-
ment les radars otl les bruits a queue lourde sont souvent rencontrés. Dans le
cadre du travail de [23], nous supposons que la matrice de covariance de bruit
est de Toeplitz et nous nous proposons de l'estimer. L’estimation se fait en
deux étapes. Tout d’abord nous procédons a ’estimation robuste de la ma-
trice de covariance en nous basant sur ’algorithme appelé M-estimation de
Maronna. Puis, une régularisation est appliquée en toeplizifiant la matrice
estimée. L’objectif est de démontrer la consistance de la matrice estimée
que le signal soit présent ou non. Comme exemple d’application, on devrait
proposer un test de détection dans le contexte des grandes dimensions avec
le bruit corrélé spatialement.

XXXI



Chapter 1

Introduction

1.1 Model and problem statement

1.1.1 System model

Consider a linear array composed of up to K possibly emitting sources and N
sensors embedded in an additive noise. Consider an observation window of
size T'. The received signal vector y; € CV*! at time interval t = 0,...,T—1
is given by

yr = Hsy +wy

where s; € CE*! is the vector of random transmitted signal symbols of
covariance matrix I, H € CNXK is a deterministic channel matrix, and
wy € CN*1ig the noise vector with i.i.d complex Gaussian entries of variance
o2. It will be assumed in the following that all the parameters of the system
are unknown at the receiver side, excepted the number of the sensors N
and the size of the observation window 7. A fundamental problem in array
processing consists in developing algorithms to infer on the signal part H s,
using the sample covariance matrix only. In particular, the purpose is to
detect the number of the emitting signals and to estimate some of their
parameters, as for instance, their powers and the directions-of-arrival. The
methods proposed in the literature relay on the structure of the received
covariance matrix given by

Y = HTH" + 6%y

where HT' HH corresponds to the signal part and oIy is the noise covariance
matrix. In practice we do not access to X which is estimated by the sample
covariance matrix
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It is known that for the classical regime where N is fixed and T" — oo
from the law of large numbers the sample covariance matrix is a consistent
estimator of the population covariance matrix. Therefore, many existing
detection methods are based on the use of the sample covariance matrix,
more particularly on its spectrum. They exploit specifically the fact that
as T' — oo, the smallest eigenvalues are close to each other and converge
to 02. Among classical detection approaches, we find the famous Akaike
Information Criterion (AIC) and the Minimum Description Length (MDL)
(see the method of Wax and Kailath in [67]).

1.1.2 Large dimensional regime

Modern communication systems usually deal with large dimensional vectors
of observations. Usually the system dynamics change very fast, the size
of the observation window being of the same order of magnitude as that
the system dimension. In this case it is relevant to assume that N and T
converge to infinity at the same speed. In this setting as N and T are large,
such that N/T — ¢ > 0 as T — oo, the sample covariance matrix is not a
consistent estimator of the true covariance matrix. Therefore, the classical
detection and estimation methods fail. In this regime, large dimensional
random matrix theory tools allow to construct (INV,T')-consistent estimators
for the system parameters. Stacking all the received signal vectors into the
N x T matrix, the transmission model can be written in the matrix form

Yr =Ar + Wy (1.1)
where Ar = HTS¥ is the signal matrix with Sy = [sq,...,sp_1]" € CT*K,
and Wz = [wo, ..., wr_1] € CV*T is the noise matrix. The signal matrix A

is assumed to be of small rank K as T' — oo. The full rank matrix Y7 can be
viewed as a perturbed version of the noise matrix Wr, the additive pertur-
bation A7 having a small rank. In large dimensional random matrix theory
the model (1.1) belongs to the class of spiked models [35], [9]. The proposed
detectors/estimators are based on the study of the limiting behavior of the
largest eigenvalues of the sample covariance matrix Sr= %YTYTH.
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1.1.3 White noise setting

The hypothesis testing approaches test the null hypothesis Hy (the signal
is absent) against the hypothesis H; (the signal is present). Under Hy, the
sample covariance matrix is written as = %WTVV}‘i As N and T con-
verge to infinity, Wr being of i.i.d. entries, the distribution of eigenvalues
of E’T converges to the celebrated Marcenko—Pastur law [44]. The sample
covariance matrix eigenvalues form actually a so-called “bulk” corresponding
to the noise eigenvalues which are all asymptotically located in the inter-
val [a, b], the support of the Mar¢enko—Pastur distribution. Under Hj, the
spectrum of the sample covariance is composed of the main “bulk” and may
present some isolated eigenvalues called outliers due to the signal presence.
The condition of apparition of these outliers is related to the power of the
signal and the parameter c.

Based on the spiked models theory there exist many detection methods
studied during these last years. One of the first contributions belongs to
Nadakuditi and Edelman in [46] who improved the AIC and MDL-based
algorithms in the large dimensional context. For the single source case, a
suboptimal statistical test was derived by Bianchi et al. in [14] and is based
on the ratio of the largest eigenvalue of Sr to its trace. In the literature,
it is referred to as the Generalized Likelihood-Ratio Test (GLRT). For a
multiple source case, a multiple hypothesis testing approach was provided
by Kritchman and Nadler in [40]. However, the hypothesis of white noise
environment does not hold in many practical situations.

1.1.4 Correlated noise

The successive observations of the noise samples may not be independent
from one observation to another corresponding to the temporally correlated
noise. Alternatively, due to the closeness of the sensors, the noise vector may
present spatial correlations. In the case of a temporally correlated scenario,
the noise matrix is of the form Vp = VVTR;/2 where Wy is an N x T random
matrix with i.i.d. entries and R is an unknown covariance matrix capturing
the temporal correlations of the noise samples received by one antenna.

When Rr is known, the sample covariance matrix can be whitened by the
inverse of Ry, and we fall back to the classical situation of a signal corrupted
by a white noise. In this case, when a single source is possibly present and
the noise is Gaussian, the GLRT procedure of [14] is applied in order to
perform source detection.

When Ryp is unknown, one generally assumes the existence of an inde-
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pendent sequence of T” pure-noise samples. From this independent sequence
an empirical noise covariance matrix is constructed which is supposed to
represent the true noise covariance matrix. The empirical noise covariance
matrix is then used to “whiten” the observations from which one wants to
perform detection. The covariance matrix under testing which is “whitened”
by the pure-noise empirical covariance matrix gives rise to the so-called F-
matrix [58], perturbed by an hypothetical signal. This approach was studied
by Nadakuditi and Silverstein in [47].

The existence of a pure noise sequence is a strong hypothesis that we
propose to avoid. In this thesis we consider a sequence which potentially
contains the signal.

1.2 Contributions of this thesis
Our studies lead two different axes:

e Axis 1: we propose a detection algorithm of the number of sources
based on the spacings between the successive eigenvalues of the em-
pirical covariance matrix. This algorithm does not make any assump-
tion on the statistics of the noise samples. We proposed in addition a
source power estimation method and a direction-of-arrival estimation
algorithm based on the adaptation of the well-known MUSIC approach
to the context of random matrices.

o Axis 2: we assume that Rr is structured as being the covariance ma-
trix of a stationary noise process. Within this context, we revisit the
known approaches for estimation of such matrices based on a Toeplitz-
ified version of the sample covariance matrix. After having estimated
this matrix, “whitening” is performed which leads back to the GLRT.
The idea is that even if the signal is present, considered as a nuisance
at this stage, the estimator of the covariance matrix remains consis-
tent. This is due to the small rank of the signal. The originality of our
work consists in establishing concentrations inequalities on the spec-
tral norm of the noise covariance matrix, whether or not the signal is
present.

1.3 Outline

The remainder of this thesis is composed of four chapters.
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Chapter 2 introduces first the basic tools of random matrix theory
and presents some important results on asymptotic spectrum analysis of
large dimensional random matrices which will be necessary in the following
chapters. It provides also the important theoretical results on the advanced
spiked models which are used in the remaining chapters.

Chapter 3 overviews the existing signal detection and localization meth-
ods. Detection/localization algorithms are presented for the white and cor-
related noise models.

Chapter 4 assumes that the noise covariance matrix structure is not
known. A source detector, power and direction-of-arrival estimators are pro-
vided for a generic model first, then for a specific narrow processing example.
Second order statistics of some estimators are also studied.

Chapter 5 assumes that R is the covariance matrix of a stationary
Gaussian process having a Toeplitz structure. Concentration inequalities on
the spectral norm are derived in a signal free case and under its presence. A
detection test on the “whitened” sample covariance matrix is also proposed.

1.4 Publications

The following publications are associated with this thesis:

1.4.1 Journal papers

e “Estimation of Toeplitz covariance matrices in large dimensional regime
with application to source detection,” J. Vinogradova, R. Couillet, W.
Hachem, submitted to IEEE Transactions on Signal Processing, March
2014, revised on June 2014.

e “Statistical inference in large antenna arrays under unknown noise pat-
tern,” J. Vinogradova, R. Couillet, W. Hachem, IEEFE Transactions on
Signal Processing, 61 (22), 2013, pages 5633-5645.

1.4.2 Conference papers

e “Estimation of large Toeplitz covariance matrices and application to
source detection,” J. Vinogradova, R. Couillet, W. Hachem, EUSIPCO’2014,
Lisbonne, Portugal.
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e “Nouvelle méthode de détection de sources, d’estimation de puissances
et de localisation dans un systéme de communication sans fil avec
des statistiques de bruit inconnues,” J. Vinogradova, R. Couillet, W.
Hachem, GRETSI'2013, Brest, France.

e “A new method for source detection, power estimation, and localiza-
tion in large sensor networks under noise with unknown statistics,”
J. Vinogradova, R. Couillet, W. Hachem, ICASSP’2013, Vancouver,
Canada.



Chapter 2

Some results of random matrix
theory

This chapter provides a theoretical background useful in the remaining chap-
ters. After introducing the necessary tools from the random matrix theory,
we overview the classical results in asymptotic spectral behavior of large
random matrices, in particular for some covariance matrix models. They
include the famous Marcenko—Pastur law as well as a characterization of
the limiting spectral measure by using Stieltjes transform for some advanced
models. Further, the limiting behavior of the extreme eigenvalues is pro-
vided. The models where the sample covariance matrix is perturbed by a
small rank matrix are related to the so-called spiked models. Under these
models, the study of the limiting behavior of the sample covariance matrix
isolated eigenvalues is of main importance in this thesis.

2.1 Basic tools

We consider sequences of random matrices X1, Xo, ... with X7 € CT*T The
limiting spectral behavior of Hermitian random matrices will be studied. We
give first the definition of the spectral measure:

Definition 1. The spectral measure pr of the Hermitian matriz X € CT*T
is defined by

1 T—1
t=0

where Xg, ..., Ar_1 are the eigenvalues of Xr.
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Definition 2. The sequence of random measures pr is said to converge
weakly to a deterministic probability measure p in the almost sure sense if
for every bounded and continuous real function f, we have

[ fonrta =2 [ soutan

where a.s. stands for the almost sure convergence.

We introduce now an important tool called Stieltjes transform and give
some of its useful properties.

Definition 3. Let p be a probability measure defined on R. The Stieltjes
transform m(z) of p, for z € C — supp(u) where supp(u) is the support of

W, is defined by
1
mi2) 2 [ o)

Rt—z

Any measure p is uniquely defined by its Stieltjes transform from the
following property:

Property 1. For any continuous real function ¢ with compact support in

R

[ ettt = 2t [ @3 miz + i)

Ty—0

Equivalently, for any a and b continuity points of p, we have

1 b
u([a,b]) = = lim S[m(x + iy)|de.

Ty—0t
The Stieltjes transform presents the following properties:

Property 2. Let m(z) be the Stieltjes transform of a probability measure
defined on R. Then

o m(z) is analytic on C — supp(p)
e 2 € C" implies that m(z) € CT

e sup,.o [ym(iy)| = 1.

The Stieltjes transform of the spectral measure pr of the Hermitian ma-
trix Xp € CT*7T is

1
/ 7MT dt Ttl‘(XT — ZIT)_I
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2.2 Asymptotic spectrum analysis

2.2.1 Basic results on asymptotic spectrum

The first result on limiting spectral measure of large dimensional random
matrices was given by Wigner [69], [68]. He considered a T x T' symmetric
matrix Wr whose diagonal entries are equal to 0 and whose upper-triangle
entries [Wr]; ; are independent and take the values 1 with equal probability.
In [69] it was shown that, as T' — oo, the spectral measure of the eigenvalues
of T—12Wp converges to the semi-circle law whose density f is defined as

1
o

f(z) (4—a?)*.

Later, in |68] it was shown that the same result holds if the elements of
Wr are drawn from a zero-mean (real or complex) Gaussian distribution.
A generalization of this result was provided by Bai and Silverstein [5] who
considered a T'x T Hermitian matrix W with independent zero-mean entries
[Wr]i; of unit variance and finite moment of order 2 + ¢, for € > 0. We are
interested into the study of the matrix models of the type %WTRTW;' where
Wr has i.i.d. entries and Rp is a deterministic covariance matrix. In the
particular case where Ry = I, the asymptotic spectral measure is given by

the Marcenko—Pastur law [44], provided by the following theorem:

Theorem 5 ([44], [59]). Consider a matriz Wy € CN*T with zero mean i.i.d.
entries of unit variance. As T, N — oo with N/T — ¢ > 0, the empirical
measure of %VVTVVZ'F'| converges weakly and almost surely to a nonrandom
measure [ with density f. given by

o) = (1 = ¥ o) + 5w - b —a)*

where a = (1 —+/¢)?, b= (1+ /¢)?, and §(z) = 1{oy(x).

The histogram of the eigenvalues of %VVTVV;I and their limit law are
depicted in Figure 2.1.
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Figure 2.1: Histogram of the empirical eigenvalues of %VVTW;I and the
Marcéenko—Pastur law for N = 100, T' = 200, ¢ = 0.5.

As the population covariance matrix associated with the random column
vectors of Wr is the identity matrix, its spectrum is a Dirac mass at one.
Observe that, when N is fixed while T' converges to infinity, by a simple
application of the law of large numbers we can show that the spectral measure
of %VVTVV;I converges to a Dirac mass at one. In our regime where N and T’
converge to infinity at the same rate, Theorem 2.2.1 shows that the support
of p is an interval around one which is small when ¢ is small as one can
expect intuitively (see Figure 2.2).

10
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Figure 2.2: Marcenko—Pastur law for different limiting ratios c.

2.2.2 Further results on asymptotic spectrum

Many applications use the matrix models for which either the columns or
the rows of the matrix W are not independent. Specifically throughout the
manuscript we will consider the matrix under study is written as a product
of two matrices Vp = VVTR%F/2 where Wy has i.i.d. entries of mean zero and
unit variance and Rp is a covariance matrix. Note that for this case, Vp
has dependent columns but its rows are independent. In practical models,
this model corresponds to the temporally correlated noise. We would like to
characterize the limiting spectral behavior of the sample covariance matrix
%VTVTH. The following result was derived by Marc¢enko and Pastur in [44]

and generalized by Silverstein and Bai in [59]:

Theorem 6 ([44], [59]). Let S = FWrRrWH, where Wy € CN*T' has
i.4.d. entries of mean zero and unit variance and Ry is a deterministic
Hermitian nonnegative matriz whose spectral measure v converges weakly
tov as T — oco. Assume that as T — oo, N/T — ¢ > 0. Then, the
spectral measure ur of f)T converges weakly and almost surely to p whose
Stieltjes transform m(z), z € CT, is given by the unique solution in CT of

11
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the equation

m(z) = (z—/Wu(dt})l (2.1)

where CT = {2z € C : Sz > 0}.

These results concern the limiting behavior of the spectrum. However,
from this we cannot say anything about the asymptotic behavior of the
sample covariance matrix extreme eigenvalues (i.e., the smallest and the
largest eigenvalues). The following theorem provided by Bai and Silverstein
in |4] gives the conditions under which there is no eigenvalue that can be
found away from the limiting support. The following statement is slightly
more restrictive than in its original form:

Theorem 7 ([4]). Let ¥y = AWrRrWH € CVN | where Wy € CNXT
has i.4.d. entries with mean zero, unit variance, and finite fourth order mo-
ment. Let Ry € CT*T be a deterministic Hermitian nonnegative matriz
with uniformly bounded spectral norm |Ry| whose spectral measure vp con-
verges weakly to v as T — oo. Let ag,T,...,U%LLT be the eigenvalues of

Rr. Assume that maxeqo . 713 d (afT,supp(V)> — 0 as T — oo, where
d(aﬁT,supp(l/)-) is the distance from Uf,T to supp(v). Let Ao, ..., AN—1,T
be the eigenvalues of f]T with spectral measure denoted by ur converging

weakly and almost surely to p. Assume that as T — oo, N/T — ¢ > 0. For
any interval [x1,z2] C R — supp(u),

#{i : X\ir € [x1,22]} =0 a.s. for all large T.

2.2.3 Some background on the limiting support

Consider the model f)T = %WTRTW}" from Theorem 7. We are looking
for a characterization of the limiting support of u. A procedure for its
determination from the knowledge of ¢ and v is provided by Silverstein and
Choi in [60] and is presented hereafter.

As Equation (2.1) has a unique solution in C*, it admits an inverse

expressed by
1 t

fm+ 1+cmty

(dt)

for m € C*.
We present the following theorems [60]:

12
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Theorem 8 (|60]). Let Sp = FWrRrWH € CV*N be defined as above with
the limit measure . Then, for x € R*
lim m(z) £ mo(x)

zZ—T
zeCt

exists. The function mq is continuous on R — {0}. Hence, F, the limit
eigenvalue distribution function of iT, has a continuwous derivative f on
R — {0} given by f(z) = L1S(mo(x)). The density f is analytic for every
x € R* for which f(x) > 0.

By studying the function myg it is possible to characterize the complete
support of u. The following theorem provides its precise description.

Theorem 9 ([60]). Let E = {m s.&. m # 0,—1/m € supp(v)°}, with
supp(v)¢ the complementary of supp(v), and let x(m) be the function de-

fined on E by

(m) 1+ t
r(m)=—— v
m 1+cmt

(dt). (2.2)

Then for m € E, if 2'(m) > 0, then x(m) € supp(u)©. Conversely, for any
x € supp(u)© there exists m € E such that v = x(m) and x'(m) > 0.

The support of the limiting spectral measure of f‘,T is determined by
using these rules, in particular, the fact that the function x(m) is increasing
outside the support of u. For practical application, we are rather interested
in determining the right-edge b. The next proposition specifies this point

Proposition 6. Assume that v is compactly supported and let
b, = max(supp(v)). Then b < oo and it coincides with the infimum of
xz(m) on the interval (—1/b,,0). In particular if the infimum is achieved
then b = x(my) where my, is the unique solution in (—1/b,,0) of the equation
z'(m) = 0.

2.2.4 Fluctuations of the largest eigenvalue

Many detection and estimation methods in array processing rely on the
largest eigenvalues of a random matrix. When we need to study the per-
formance of such estimators, a study of fluctuations of these eigenvalues is
required. The first results on the fluctuations of the largest eigenvalue of
a Wigner Hermitian matrix with i.i.d. Gaussian entries above the diagonal
were introduced by Tracy and Widom [62|. The fluctuations of the largest
eigenvalue of a Wishart matrix were provided later by Johansson in [34]. We

13
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recall that the N x N matrix XTX§| is a central complex Wishart matrix
with IV degrees of freedom and covariance matrix Ry if the rows of the N xT
matrix X are zero-mean independent real or complex Gaussian vectors with
covariance matrix Rr. We have the following theorem:

Theorem 10 ([34]). Let Wr € CV*T have i.i.d. compler Gaussian entries
of mean zero and unit variance. Denote by Ao the largest eigenvalue of
%WTW{J, Assume that cp = N/T < 1. Define:

br = (1+ er)’
or = (1+ ver)* er.

Then, as T — oo, for any real x in a compact set

A —b
P <NTT > ) s Frw(x)
or

with the Tracy-Widom law distribution function Fry defined as

oo
Prvto) = eap (= [ "o PPy )
t
where q is the Painlevé II function that solves the differential equation

¢"(z) = zq(z) + 2¢° ()
q(z) ~ Ai(z)

T—00

with Ai(z) the Airy function defined by, for any x € R

1 o itS
Ai(x) / et L,

T or

In Figure 2.3 we see that the histogram of the properly centered and
scaled largest eigenvalue of %WTWY'Z' converges to the Tracy—Widom law.

14
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Figure 2.3: Histogram of N3 % and the Tracy-Widom law for N = 100,
T = 300.

A more general result, when the covariance matrix is not identity was
proposed by El Karoui in [26]. Let Vp be an N x T matrix, and let its rows
be i.i.d. complex normal vectors with mean zero and covariance Rp. The
fluctuation behavior of the centered and scaled largest eigenvalue of a sample
covariance matrix is given by the following theorem:

Theorem 11 ([26]). Let Vp = T/VTR%F/2 be a matriz product where Wy €
CN*T has i.i.d. compler Gaussian entries with zero mean and unit variance,
and Ry € CT*T is g deterministic nonnegative matriz with spectral measure
vy converging to v. Let U&T > .2 O'%_LT be the eigenvalues of Rp. We
assume that cp = N/T < 1 is uniformly bounded. Let my be the unique
solution in (—1/0(2)’T,0) to the equation in m

/(1T:nt>2w(dt) _ ClT

Assume that lim sup a&T < 00, liminf U%ile > 0, and lim sup U&Tmb < 1.

15
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We call

1 t
by — —— dt
T +/1+mtiT( )

or = nib <1+CT/ <1+tmbt>3VT(dt)>

Let Mo be the largest eigenvalue of %VTVF, Then, as T — oo, for any real
T in a compacl set

1/3

No7 —b
p (m/sz . ) s Frw(a).
or

We will not provide a comprehensive interpretation of the crucial con-
dition lim sup aaTmb < 1. Let us simply say that it will be satisfied if v “de-
creases” sufficiently fast at the left of b and if maxycqo. . 7-1y

d (afyT, supp(u)) — 0 as T' — oo. Actually, the condition lim sup ag,Tmb <
1 will be satisfied in most cases of practical interest.

From this result we see that the error follows the Tracy—Widom law but
the scaling and centering factors do not depend only on the limiting ratio ¢
but on the limit spectral measure v of the covariance matrix.

2.3 Spiked models

2.3.1 Background on spiked models

Spiked models refer to the models where the full rank random matrix Wy €
CNXT with i.i.d. entries of zero mean and unit variance is perturbed by a
small rank matrix. The matrices of the type f]T = T_1WT(IT—|—PT)W:'F" with
Pr € CT*T of small rank K or Sp = (T—Y2Wp+ Pp)(T—Y/2Wrp+ Pp)H with
Pr € CNXT of small rank K, correspond respectively to the multiplicative
and additive spiked models. As T' — oo such that N/T — ¢ > 0, the
spectrum of f]T still converges to the Marcenko—Pastur law. However, under
some conditions that will be specified later, some isolated eigenvalues called
outliers may be found outside the Mar¢enko—Pastur law support. This is
observed in Figure 2.4 where Sy = (T=Y2Wp + Pp)(T~Y2Wp + Pr)H with
Wr with 1.i.d. complex Gaussian zero mean entries of variance one, and
Pr is of rank 2. Two eigenvalues of S are found outside the interval [(1-—
V)%, (1 4+ 4/c)?]. A fundamental task is to analyze the limiting behavior of
these isolated eigenvalues, as N and T go to infinity. In many applications

16
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we are interested in finding their limiting positions and in characterizing
their fluctuations.
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Figure 2.4: Histogram of the empirical eigenvalues of $7 and the Mar&enko—
Pastur law for N = 100, T' = 200, Pr of rank 2.

One of the first contributions on spiked belongs to the work of John-
stone [35]. He considered the population covariance matrix whose all the
eigenvalues equal to one, except a fixed and relatively small number among
them. Noticing that few eigenvalues of the sample covariance matrix can
be separated from the bulk formed from the rest of eigenvalues, he raised
the question under which condition on the population eigenvalues, isolated
sample covariance matrix eigenvalues can be observed. A further contribu-
tion on this model was provided by Baik and Silverstein in [9] who gave the
limiting position of the spikes for all N and T large. This is presented in the
following theorem [9]

Theorem 12 ([9]). Let Y7 = (Br —|—IN)1/2WT where Wy € CNXT has 4.3.d.
entries of mean zero, unit variance, and finite fourth order moment and
Br € CN*N s a Hermitian nonnegative matriz of fived rank K as T — oo.
Let wg > ... > w%(_l and 5\0,T > ... > S\N—l,T be the ordered eigenvalues of
Br and %YTYH, respectively. Then
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o If w,% >\ /c
S\k,T % (1 +w,%) (1 + C2>
Wi
o Otherwise R
Ao =25 (14 Ve)2

This theorem typically says under which condition an isolated eigenvalue
/A\k;r of the sample covariance matrix can be observed outside the limiting
support of the Marcenko—Pastur law. We note that this condition depends
on the corresponding (k + 1)th largest eigenvalues of By and on the limiting
ratio c.

A further study of spiked models was provided by Baik et al. in [10]
where the fluctuations of the K largest sample covariance eigenvalues were
studied. This is provided in the following theorem:

Theorem 13 ([10]). Let Yp = (Br + In)Y?*Wr where W € CNXT has
1.4.d. complexr Gaussian enitries of mean zero and unit variance. Let Br be
a matriz of fired rank K as T — oo. Denote by j\o,T > ... > S\N—l,T and
w% > ... > w%@l the ordered eigenvalues of %YTYQ'I' and Br, respectively.
As T — o0, assume N/T — c € (0,1]. The following holds for any real x:

(i) If w3 < \/c then

Xor —b
P <N2/30’T > l’) —)FTw(l‘)

g

(i1) When for some 0 <k < K —1,

w%z...:w£>\/5

then

g

P (\/N)\O’T/_po > x) — Gp(z)

where

— 2 £
po = (14 wg) (1+ w%)
C
A4

o' =(1+wd), /1 -
“o

18



CHAPTER 2. SOME RESULTS OF RANDOM MATRIX THEORY

and Gy, is the distribution function of the largest eigenvalue of the (k+
1) x (k+1) GUE".

From this theorem if w3, the largest eigenvalue of By, is below the limit
given by +/c, the largest eigenvalue of %YTYTH, follows the Tracy—Widom
law. If w% > +/c, then the centered and scaled 5\0,T fluctuates as a Gaussian
variable with a slower convergence rate than the Tracy-Widom variable.

A further contribution on the second order largest eigenvalue analysis
when Wy is a real Gaussian matrix were provided by Paul in [53]. A non-
Gaussian case of the entries of W was considered in [8] and then extended in
[7] to the generalized spiked population model for which the limiting spectral
measure of %VVTW;I is not restricted to the Marcenko—Pastur law. A rank
one deformation of a Wigner matrix was studied by [28] and small rank
perturbations of Hermitian Wigner matrix by [25], [54]. The work of [2§]
was extended to the non Wigner case when the sample distribution has
some conditions on its moments in [29].

2.3.2 Advanced spiked models

We have presented the important results for spiked models when the full-
rank matrix has i.i.d. entries. In practical applications, the models for which
the rows or the columns of the perturbed matrix are not independent is of
main importance. The results of this thesis are based on the model:

Yr=Pr+Vp (23)

where Yp € CV*T Pr € CN*T is a random signal matrix of small rank K
such that supy || Pr||/T is bounded, Vp = WTRIT/2 is the noise matrix with
Wr € CNXT with i.i.d. standard complex Gaussian entries and Ry € CT*7T
is a covariance matrix.

The limiting position of the outliers and their fluctuations in this set-
ting depend on the interaction between the small rank matrix Pr and the
covariance matrix Rp. In order for the outliers to converge, we shall make
an additional technical assumption which will be met in practice.

Assumption 1. Let Pr = Up(Br)" be the Gram-Schmidt factorization
of Pr where Up € CN*K s an isometry matriz and By € CT*K is an
upper triangular matriz whose first nonzero coefficient of each row is positive.

'The matrix M is a GUE matrix if M;; ~ A(0,1) and M;; ~ CN(0,1) for i < j, these
random variables being independent.
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Define the K x K Hermitian nonnegative matriz-valued measure Ap(dt) as

5,2, (dh)

Ar(dt) = (Br)" " Br. (2.4)
0,2 T@ﬁ)

or_1,

The accumulation points of A1, denoted by A, are of the form v(dt) x UQ2U
where
w%fm
0% = ,w(2)>...>wt2,j0+...+jt:K
W?Iﬁ
and where U is a unitary matriz.

The following result was proved by Chapon et al. in [21] and gives the
limiting behavior of the spikes:

Theorem 14 ([21]). Consider the model (2.3). Assume that N/T — ¢ > 0
as T — oo. Let U%,Ta"'aa%—lT be the eigenvalues of Rr with spectral

measure vy converging to v with a compact support such that v({0}) = 0.

Assume that max,eqy, 713 d (GZT,supp(V)> — 0 as T — oo. Let Assump-

tion 1 hold. Let [a,b] be the compact support of . Let 5\07T > > /A\N_LT
be the ordered eigenvalues of %YTYYH, Define the function

1—
ole) £ om(a) (cmlo) -+
which is positive and decreases from g(b*) to zero on (b,00). If wi3g(b™) <1,
then S\O,T 2% b. Otherwise, let g € {0,...,t} be the largest index for which
wég(b*) > 1. For k=0,...,q, let pi be the unique solution x in (b,c0) of
wpg(x) = 1. Then, for k=0,...,q,

5\ 5\ a.s.
ot A ie— 11T -+ s Ajotn, T ? Pk
T—o0
~ a.s.
Ajot-tjor1, 7 —— b.
Jo+ +]q+ ) T—00

This theorem shows in particular that the number of isolated eigenvalues
of %YTYQ':' is upper bounded by the rank K of Pr and it reaches this rank if
w2, is large enough.

The following assumption is required for the second order result:
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Assumption 2. The following hold true:

sup ﬁ|cT—c\ < 00,
T

limsup\/f‘/ ! VT(dt)—/tl
T

t—«x —x

I/(dt)‘ < 00, for all x € R — supp(v).

Moreover, there exists a sequence of factorizations of Pr such that the mea-
sures Ap defined by (2.4) converge to v(dt) x Q and such that

1 1
lim sup\/TH/AT(dt) —/
T t—w t

— X

vp(dt) x QH < 00, for allz € R—supp(v).

Define the following matrix-valued function, for z € C — supp(u),

mr(2)
H = [ ————————Ar(dt).
7(2) / 1+ ermyp(2)t r(dt)
Denote by Hyo1(2), ..., Hqr(2) the first upper left diagonal blocks of Hrp(z)
where H; r(z) € C/i*Ji. The following theorem provides the fluctuations of
the outliers.

Theorem 15 (|21]). Keeping the conditions of Theorem 22, let

)\j0+~~-+jk71+1,T 1
M, =VT : — Pk

Njo+...+jr.T 1

where the eigenvalues 5\k,T of %YTY:,'J' are arranged in decreasing order. Let
Go, . ..,Gy be independent GU E matrices such that Gy, is a ji X ji+1 matriz.
Then, for any bounded continuous f : RIoT+ia 5 R,

E[f(Mo, ..., M) — E[f(xo0; - - > Xq)] —2 0

T—o00

where xi € Rk s the random vector of the decreasingly ordered eigenvalues
of the matrix

W(aka + VT (Her(pr) + 1)

with

o m*(pr) 2 + 2wit , My 2
N Alpr) [/ (1 +em(pp)t)? (d) + e (/ (14 em(pr)t)? (dt)> ]
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and

Mo =1-c | <W> v(dt)

1+ em(pg)t

is positive for every k =0,...,q.

From these results, the errors S\kj — pi, are normally distributed and have
a variance of order 1/T.
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Chapter 3

Detection techniques of a small
rank signal

3.1 Problem statement and motivation

Consider a wireless sensor network composed from K possibly emitting
sources and N sensors observing the sources during 7' successive snapshots.
The sensors are supposed to be embedded in an additive noise. The received
signal vector y; € CV*1 at the sample t is given by:

Yt = Hsy + vt (3.1)

where s; € CE*1 is the signal vector, H € CV*X is the channel matrix, and
v; € CNX1 is the noise vector of covariance matrix R. A key question in
array processing is estimation of parameters from the signal part Hs; such a
detection of the number of the emitting signals or their direction-of-arrival
estimation from the T' observations.

We propose in this thesis to deal with two main difficulties usually arising
in modern sensor networks. The first difficulty is the large dimensions of
the systems which in our setting means that the dimension of the received
signal vector is assumed to be large. Due to the fast changing propagation
environment occurring in the network, the scenarios such that 7' >> N
are no longer met. The size of the observation window 7' is usually of the
same order of magnitude that N. Therefore, the regime that is going to
be assumed is N/T — ¢ > 0 as N, T — oo. The second difficulty comes
from the noise model. It is mostly assumed that the noise is an additive
white Gaussian noise with some known or unknown variance. However, in
reality it does not correspond to a lot of practical situations where spatial
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or temporal correlation can occur. Such a noise model finds its applications
in different fields as wireless communications and signal processing. In civil
radar processing the received signal is usually superposed to echoes coming
from a scattering environment. The scattering is due to earth’s (woods,
mountains) or sea surfaces, buildings in urban area, weather scatters as,
e.g., rain clouds, etc.. Interference in such dense scattering environments
may contain multi-path and the induced noise is correlated in time. Stacking
all the independent observations of the noise vectors into the matrix V =
[vo, ..., vr—1], we can write V = WRY? where W € CV*T has i.i.d. entries
and R € CT*T is a deterministic matrix.

When the sensors are too close to each other the noise is often corre-
lated along the sensor arrays, and then the elements of the vector v; are not
independent. The resulting noise is spatially correlated, and we can write
V = RY2W where R € CVN*V is a deterministic matrix. The aim is to es-
timate the number of the emitting sources and the angle-of-arrival from the
received signal estimations yg,...,yr—1 only, under temporally or spatially
correlated noise.

This chapter is organized as follows. In Section 3.2 the state-of-art of the
existing detection techniques is provided. Section 3.3 overviews the MUSIC-
based localization algorithms.

3.2 Detection techniques

In this section we provide an overview of the existing signal detection meth-
ods in different noise environments. Firstly, the white noise model is con-
sidered. The classical techniques for estimation of the number of unknown
signals are provided followed by the approaches applied in the large dimen-
sional setting. Secondly, signal detection in the presence of an uncorrelated
noise model is studied assuming that a pure noise sequence is available at
the receiver. Finally, the model of our interest is presented rising the prob-
lem of the so-called block detection, ¢.e. without assumption that a pure
noise sequence is available. Further, the MUSIC-based direction-of-arrival
estimation methods are discussed.

3.2.1 White noise environment

Recall the transmission model (3.1) and assume that the vector v; has i.i.d.
Gaussian entries with zero mean and variance o2. Depending on the avail-
able information on the noise and signal characteristics at the receiver side,
there exist different detection approaches. When the noise variance o? is
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assumed to be known, for a single transmitter-receiver case with unknown
deterministic signal, a classical technique is the energy detection method
proposed by Urkowitz in [63] consisting in evaluation of the total received
power. It is based on the fact that knowing the noise variance, although
the signal is assumed to be unknown, the decision statistic at the output
of the energy detector follows a non central chi-squared law. Using an ap-
proximation based on a modified central chi-square distribution, a detection
threshold is fixed as a function of a target false alarm rate. The decision
test consists then in comparing the total received power to this threshold.
In the same setting an extension to the random signal case was considered
in [38] and [24] making this applicable to the fading channel scenarios. How-
ever, the main limitation of such methods is that the knowledge of the noise
variance is a quite unrealistic assumption. Further, information theoretic
criteria-based methods are presented.

Information theoretic criteria-based methods

When the noise variance is assumed unknown and the number of the sig-
nals to be detected is equal to K > 1, one of the first historically known
approaches was provided by Wax and Kailath in [67] and is based on the
famous Akaike Information Criterion (AIC) [1] and the Minimum Descrip-
tion Length (MDL) [56]. We recall the transmission model with the received
signal vector y; € CN*!

v = Hsy + vy (32)

where H = [h(), ..., h(0x_1)] € CN*E is the channel matrix with h(6},) €
CN*1 a complex vector parameterized by an unknown parameter 6, s; €
CEX1 and v; € CV*1! are respectively the signal and the noise vectors mod-
eled as zero mean stationary ergodic Gaussian vector processes, independent
of each other with respective covariance matrices I' € CK*K and R = 021y
where 02 is unknown. The detection is based on the received signal covari-
ance matrix structure given by

Y = HTHM + o%1y.

Assuming that the channel matrix H is of full rank K and that the signal
covariance matrix I' is nonsingular, then the matrix HT' H" is of rank K.
Denote by A\g > ... > Ay_1 the eigenvalues of ¥. The smallest N — K
eigenvalues of ¥ are all equal to o2 and correspond to the noise eigenvalues:

A = Aigs1 = ... = Ay_1 = 0.
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Hence, the number of signals can be obtained from the multiplicity of the
smallest eigenvalue of 3. However, in practice we do not have access to the
true covariance matrix > but only to the sample covariance matrix which is
obtained from the T' observations of the received signal vector and defined
by

1=

T

—_

Y= Yiyp -

t=

Denote the decreasingly ordered eigenvalues of ) by o> M > Anog.
The detection method of [67] relies on the closeness of the N — K mnoise
eigenvalues of S. Given T observations Yo, - - -, Y71, the Akaike’s infor-
mation criteria consists in selecting the model which best fits the data by
minimizing the function

AIC = —2log (yo, e yT_1|@)> + 2k

where O is the maximum likelihood estimate of the parameter vector © and
k is the number of the parameters in the model. After computation of the
maximum likelihood function of the unknown parameters, the source number
estimation is given by

Kaje = arg min AIC(k)
N—1}{1/(N—k—1)
. A
Hlj’“ e > + 2k(2N — k)
N Dick N
for k = 0,...,N — 1. The MDL-based estimator proposed as well in [67]
differs by the penalty term and given by

= arg min —2(N — k)T log <

I?MDL = arg min MDL(k)
[ ALk )
= arg min —(N — k)T log ( 1_1]“ VRS ) + Qk(ZN —k)logT
NF ink A

for k =0,...,N — 1. It was shown in [67] that as N is fixed and 7" — oo,
the estimator K AIc tends to overestimate the number of signals while IA(MDL
is consistent. An alternative consistent information theoretic criterion based
algorithm was established in [75]. As an extension of the work of [67], more
general expressions for the AIC and the MDL-based estimators are provided

for which the observations yg, ..., yr_1 are not necessarily independent and
the noise vector vy is not necessarily Gaussian.
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In many works, the performances of the AIC and the MDL estimators
were studied (see among others [67], [75], [73], [43]). In the large dimensional
setting for which N, T' — oo with N/T" — ¢ > 0, both of these algorithms
underestimate the real number of the signals (see for instance [46]). This
is due to the fact that the eigenvalues of the sample covariance matrix cor-
responding to the noise part are not concentrated around o2 anymore but
spread and this depends on the parameter ¢ [44] (see also Chapter 2 for more
details). The noise spectrum spreading increases with the increase of ¢. In
this setting the random matrix theory tools are used in order to estimate
consistently K as T — oco. One of the first studies of signal detection in
the the framework of large random matrix theory was considered by Silver-
stein and Combettes in [61]. The detection method is based on the fact that
the noise eigenvalues corresponding to the N — K smallest eigenvalues of
the sample covariance matrix are asymptotically close to each other. They
showed that with probability one the spectrum of the sample covariance ma-
trix splits into two distinct intervals corresponding to the noise eigenvalues
and the signal eigenvalues with respective proportions close to (N — K)/N
and K /N with high probability. However, the condition under which the
splitting phenomenon occurs have been not investigated in their work. A
more accurate detection is related to the study of the extreme sample co-
variance matrix eigenvalue behavior and, particularly, to the results on the
spiked models. We stack now all the received-vector T" observations into the
matrix:

Yr = HpSH + Wi (3.3)

where Y7 = [yo,...,yr_1] € CVXT S = [s0,...,s7_1]7 € CT*K is the sig-

nal matrix whose columns are independent with zero mean complex Gaussian
entries and K x K covariance matrix ', and Wy = [wy, ..., wp_1] € CNXT
is the noise matrix with i.i.d. zero mean complex Gaussian entries with vari-
ance o2, Hp is an unknown N x K deterministic channel matrix. In the
model (3.3), the full-rank matrix Y7 can be viewed as a perturbed version
of the noise matrix Wy, the additive perturbation HTSF having a small
rank K. This is referred to as the additive spiked models (see Chapter 2).
Based on this model signal detection was extensively studied during the last
decade and is related to the limiting spectrum behavior analysis of the sam-
ple covariance matrix Sr o= %YTYCF'. Consider the decreasingly ordered
eigenvalues of ET denoted by 5\0,T > ... > 5\N_17T. Under the hypothesis
that only noise is present, the spectrum of the sample covariance matrix
converges to the Mar¢enko—Pastur law [44] and from [4] with probability one
no eigenvalues can be found outside the support of the Marcenko-Pastur
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distribution given by the interval [02(1 — /c)?,02(1 4+ /c)?]. Under the hy-
pothesis that K signals are present such that K is fixed as T — oo, the
eigenvalues of St converge as well to the Mar¢enko—Pastur law [3]. How-
ever, under some conditions on the signal power and the parameter ¢, up to
K isolated eigenvalues can be observed on the right side of the Marcenko—
Pastur law support. The condition under which isolated eigenvalues are ob-
served is based on the K signal eigenvalues of the matrix HTFHF denoted by
wg > ... > w% _|. From the relevant results on spiked models such as [9], [53],
[10], for k = 0,..., K — 1, if the signal eigenvalue satisfies w? > 02/c, then
as T — oo the corresponding eigenvalue of the sample covariance matrix e
converges almost surely to the limit p; = (1 + Z—g) (1 + i‘)’—;) > 02(1++/c)?
and hence the corresponding signal can be detected. Wher’f the signal power
is below the detectability level, i.e., w,%, < o2,/c, then the corresponding
eigenvalue S\k,T converges almost surely to the right edge of the limiting
support A — 02(1 + 1/c)%.

In large dimensional regime, most of the detection methods are based on
the results on spiked models. In this context, based on the above discus-
sions, an improved version of the information theoretic approach of [67] was
proposed by Nadakuditi and Edelman in [46]. It is assumed that the signal
and the noise matrices have i.i.d. real Gaussian entries. The signal number
estimator is given by

. T2
KNE:argmin{i) [N] ozi}+2(k‘+1) for k=0,...,min(N,T) — 1,

with g =1 if y, € RV*! and 8 =2 if y, € CV*!, and ay, defined by

N—-1132
= (N—k)%— <1+N> N- (2—1> N
(Zfi;l ;\ZT> T I5; T
Recall that w(Q) > ... > w%fl are the eigenvalues of the covariance matrix of
the signal part HTFH% From the discussions on the spiked model results,
if w,% is above the detectability level, the corresponding eigenvalue is asymp-
totically located outside the Marcenko—Pastur law support and hence, the
corresponding signal is detectable. If not all the signal eigenvalues satisfy

the detectability condition, the underestimation of the number of signals in
unavoidable. The number of effective signals is heuristically defined by

N
Keff:#{k‘i wk>02 T}.
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It is conjectured that as N, T' — oo, the estimator IA(NE is a comnsistent
estimate of Keg. Although the derivation of the estimator of [46] is based

on the test statistic Zfi;l X?T/ Zfi;l 5\¢7T)2, it does not consider the set-
ting of the threshold level. However, when the signal has a low power, the
information criterion based methods do not provide a good detection per-
formance. Indeed, it was shown in [39], [40] that the detectability level for
the MDL algorithm is significantly larger (by approximately v/2logT) than
the asymptotic limit given by o2/c. Therefore, a finer statistical analysis
is needed. It consists in hypothesis testing approaches principally involving
the statistical behavior of the sample covariance matrix largest eigenvalues
under hypothesis where only noise is present versus the hypothesis of the

signal presence.

Hypothesis testing based detection methods

Hypothesis testing based approaches consider testing an hypothesis Hy ver-
sus its alternative H;. For a single signal detection this is presented by the
following decision:

Hy : no signal

H, : signal present.

Regarding the above discussions, an heuristic method for single signal
detection was proposed by Cardoso et al. in [20] assuming that the noise
variance o2 is unknown. Recall that 5\07’_]“ > ... > S\N_LT are the ordered
eigenvalues of the sample covariance matrix iT. Under Hy they are all
asymptotically located in the interval [0%(1 — 1/c)?, o2(1 + /c)?] with prob-
ability one. The test statistic consists in rejecting the null hypothesis for
large values of the statistics given by the ratio of the largest to the smallest
eigenvalues of f]T:

Mo Ho (144/)?
Avorr o (1= Vo2

The above ratio test is referred in the literature to as the condition number
of the sample covariance matrix. Note that the detection threshold given by
(14 1/¢)?/(1 — y/e)? is independent of the unknown noise variance. How-
ever, this approach tests the finite dimension based ratio 5\07T/5\N,1,T (it is

obtained from Sr with N and T large but finite) against an asymptotic de-
tection threshold. The threshold approximation turns out to be inaccurate
in many practical situations. This approach can be improved by using the
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limiting law of the ratio 5\07T/5\N_]_7T allowing to set the detection threshold
as a function of the false alarm probability. Taking into account the limit-
ing statistics of the largest eigenvalue 5\07T which follows the Tracy—Widom
distribution and making an approximation on the minimum eigenvalue by
considering its limit, a detection method with a control of a false alarm rate
was proposed in [74]. With the result on the smallest eigenvalue limiting
distribution derived in [27], an analytical expression of the limiting distri-
bution of the ratio test 5\07T/5\N,17T is given in [55] and a more accurate
threshold, which is a function of an admissible probability of false alarm, is
calculated. This method gives better detection performances in comparison
to the asymptotic or semi-asymptotic threshold based methods of [20] and
[74], respectively.

In was shown by Bianchi et al. in [14] that the condition number based
test of [55] is asymptotically outperformed by an improved method of [14]
based on the ratio of the largest eigenvalue of S7 to its normalized trace.
The hypothesis Hy is rejected for high values of the test:

Ao Ho y
v = S T
+TrEr i

where ~p is the detection threshold to be defined later. The above test
refers in the literature to as the so-called Generalized Likelihood-Ratio Test
(GLRT). It is based on the commonly used Neyman-Pearson detection pro-
cedure (see e.g. [42]) and consists in replacing the unknown parameters by
their maximum likelihood estimates in the likelihood-ratio test. Hereafter
we provide the main steps of the derivation of the test (¢f. [14]). Recall the
matrix based transmission model under two hypotheses:

Vi — Wr under Hy,
r= hTSIi'w + Wp under Hy

where hy € CN*! is the deterministic channel vector, sp € CT*1 is the
signal vector with i.i.d. standard complex Gaussian entries, and the noise
is defined as previously. It is known that if the channel vector hr and the
noise variance o2 are known at the receiver, then the optimal test is the
Neyman-Pearson detector based on the Likelihood-Ratio Test (LRT)

_ p1(Yr; hr,0?)

LRT
po(Y7;02)

where the likelihood functions po(Y7;0?) and p1(Yr; hr,o?) under Hy and
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H; hypotheses respectively are defined as
_ T ~
po(Yr;0°) = (7r02) NT exp (—2 Tr ET>
o
2 N H, 2 -T
p1(Yr;hp,0%) = (7r det <hThT +o IN))

—~ —1
X exp (—T Tr <2T (hTh¥ + 021N> )) .

When the channel and the noise variance are unknown at the receiver as it
is the case in our model setting, it is necessary to integrate over all possible
channel realizations and the noise variances. A suboptimal GLRT is then
obtained and is given by the ratio:

Supp,. 2 P1(Y7; b, o?)

GLRT = 34
supy2 po(Yr; 0?) (34)
A closed-form expression for (3.4) is given by
(1 _ l)(l*T)N
_ T
GLRT = — oW
()N (1- %)
where )
A
Tr = .
N Tr ET
This leads to an equivalent detection test:
A Hy
Tr=1"%= S r (35)
N Tr ET Hy

where yr is the detection threshold whose setting is provided hereafter.
There exist two types of detection errors. The error of the first kind is an
incorrect rejection of the hypothesis Hy when it is true. The probability of
this error is called the probability of false alarm and is given by Po(T7 > 1)
for a given detection threshold 7. The error of the second type is an incor-
rect rejection of the hypothesis H; when it is true and called the probability
of missed detection and given by P1(77 < 7). Based on that the detec-
tion threshold 7 is defined such that the power of the test Py (77 > ~vr),
1.e., the probability to detect the signal under hypothesis Hi, is maximized
while keeping the probability of false alarm Py(77 > ) under a fixed level
a e (0,1).
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The asymptotic detection threshold as a function of the probability of
false alarm is closely related to the distribution of the largest eigenvalue of the
sample covariance matrix in the signal-free case given by %W/TI/V;I As the
test Tr does not depend on the noise variance, in the following it is assumed
that 02 = 1. The largest eigenvalue limiting behavior of the Wishart matrix
+WrWH has been already introduced in Chapter 2 (see Theorem 10). It was
shown that under Hj the centered and scaled largest eigenvalue fluctuations
follow the Tracy—Widom distribution [35] and, hence, we have, for any real
x:

Ao —b
P[NQ/?)O’TT<$ — Friy ()

ar

where Fryy is the Tracy-Widom cumulative distribution function (c.d.f.)
and by and op are the centering and the scaling parameters, respectively,
depending on the ratio ¢y = N/T and defined by

br = (14 er)? (3.6)
o = (1 + \/CT)4/3\/CT. (37)
The key point assumed in [14] is that asymptotically the fluctuations of

= Tr ZT are negligible compared to those of )\0 7. Therefore, under Hy, the
test Tr approximately fluctuates as a Tracy—Widom variable:

p |y T —0r

< x| — FTw(.T)
ar

for any real x. Making use of this result the limiting behavior of the test is
given in the following theorem:

Theorem 16 ([14]). Consider a fized level of the probability of false alarm
€ (0,1) and let yp be the threshold for which the power of test (3.5) is
mazimum. Then the following convergence holds true

Tr —br _
2/3 1
N / orT T—o00 FTW(a)

where F:Fvlv = 1—Frw is the complementary Tracy—Widom c.d.f.. Moreover,
the probability of false alarm of the following test

—1
Tr I—% bT+N2/3FTW( @)

converges to o.
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Note that from this result the threshold 7 can be approximated by
br + %FE‘}V(O&) The detection threshold actually depends on the tail
probability of the variable 77. A tuner result on the distribution of the
variable T was derived in [48] and, for any real x, given by

- 2
1 br
= Frw(x) — NT ((}T> F:%W(fﬁ)

where by and G7 are centering and scaling parameters derived for the real
noise model. Note that using this result may lead to a finer detection per-
formance instead of the approximation by the largest eigenvalue which have
been not yet studied in the literature.

Assuming K > 1 and o2 unknown, consider now a sequence of hypothesis
tests. In this case there is no optimal detector for a specific false alarm rate.
Only suboptimal solutions can be derived. A multiple hypothesis testing
approach was proposed by Kritchman and Nadler in [40] which considers
the following hypothesis testing:

<z

P[TT—ET

or

Hy : at most k signals present
Hj : at least k + 1 signals present (3.8)

for K = 0,...,min(N,T) — 1. At each sequence of hypothesis test, the
significance level Pf the kth largest eigenvalue is considered and rejects the
hypothesis Hy if A\, 7 is too large:

“ Hy

M S T (3.9)
Hy

The testing is stopped at the smallest index k such that 5\k7T < &p. As
previously, the detection threshold is set as a function of the probability of
false alarm from the distribution of Ay 7. It was shown in [39] that for NV and

T large enough, 5\k’T approximately follows the Tracy—Widom law. Hence,
the detection threshold & can be approximated by

=1
& ~ 62 (k) (bT T W)

where by and op are defined by (3.6) and (3.7), respectively, « is the proba-
bility of false alarm, and 62(k) is an consistent estimate of the noise variance
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estimated by analyzing the interactions between signal and noise eigenvalues
(see [40]). The estimator of the number of signals is then defined by

~ . - R F=t (a)o
Kgn = arg min {)\k,T < 62(k) (bT + 7“Jw<7(2/2T> } -1

for k=0,...,min(N,T) — 1. It was shown in [40] that as 7" — oo, Kxy is a
consistent estimate of K if the smallest signal eigenvalue w1 satisfies the
detectability condition, i.e. wx_1 > az\ﬁ. Assume now K = 1. Note that
the test (3.9) is equivalent to

F;‘}V(a)JT
N2/3

Hy
S br+
H,

2

Hence, the difference with the test 1/\;&1% is that the noise variance o
~N T

is estimated by the normalized trace % Tr £ which was shown to be less
accurate that the estimate 62 in [40]. However, it was noticed in [14] that
both tests are asymptotically equivalent in terms of error exponent which is
the limit as T" — oo of a function of the probability of missed detection at a
given probability of false alarm.

3.2.2 Correlated noise environment

Regarding the discussions at the beginning of the chapter, we assume now
that the noise samples v, . . . , vp_1 are independent complex N-variate Gaus-
sian variables with IV x N covariance matrix Rp which is positive semidefi-
nite (see [2, Theorem 2.3.1]) and hence, invertible. Stacking all the observed

. . . . 1/2
noise vectors into the matrix Vp = [vg, ..., vp_1], we can write Vp = RT/ W

where RIT/ % s any square root of the matrix Ry and Wy has i.i.d. complex
Gaussian with zero mean entries with unit variance. If Ry is known at the
receiver we can whiten the received data:

R;*Yy = R7MPHpSH + W (3.10)
The signal number estimation problem is then equivalent to that in a white
noise environment and the methods exposed previously can be applied.

We assume now that the noise covariance R is unknown at the receiver.
Recall that both the AIC and the MDL algorithms are based on the close-
ness of the noise eigenvalues and the model order is estimated when a gap
between the noise and the signal eigenvalues is displayed. When N is fixed
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and T — oo, it was shown that both the AIC and the MDL detectors tend
to overestimate the number of sources [73]. The overestimation of the model
order comes from the fact that when the noise is not white, the eigenval-
ues of the noise covariance matrix are not all equal and when they are not
sufficiently clustered an overestimation occurs as was heuristically observed
in [43]. Moreover, the probability of overestimation increases as 7' increases
[73].

Pure noise sequence available

Most of the existing methods assume that a noise only sequence is available
from which the matrix Rp is estimated. Then the received signal matrix
is “whitened” by the estimate Rp. One of the first works using this setting
belongs to Zhao et al. [76] and is based on the information theoretic criteria.
They considered the following model at time interval ¢:

yr = Hsy + oy

where y; € CVN*1, 5 is an unknown scalar, s; € CX*! and v; € CV*! are

distributed independently as complex multivariate normal with respective
covariance matrices I' and R, and H is a deterministic channel matrix. Since
the signal and the noise vectors are independent, the covariance matrix of y;
can be decomposed as
Y. = HTH" + #°R.
The “whitened” covariance matrix is then defined by
Yr=R'S =R 'HTH" + Iy.

Denote by A\g > ... > Ay_1 the ordered eigenvalues of ¥r. Assuming that
the rank of R-VHTH" is equal to K, the N — K smallest eigenvalues of X
are all equal to one:

/\K:)\K—l—Z:-n:)\N—l:l-

It is further assumed that 77 independent observations of the noise-only data
Vo, ..., —1 are available. The noise sample covariance matrix is given by

=
p_ * H
R = T Z vy
t=0
Note that R is the noise-only sample covariance matrix having the Wishart

distribution [70] is nonsingular if T} > N. Hence, R is invertible with proba-
bility one [2, Chapter 7.7|. Further, it is assumed that a second independent
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sequence of data yo, ..., yr,—1 containing the signal is available. The sample
covariance matrix is given by

=
A
2 %0

Denote by 5\0 > ... > ;‘ N-1 the ordered eigenvalues of the “whitened” sam-
ple covariance matrix R~1'Y. The logarithm of the likelihood-ratio statistic
derived by Zhao et al. in [76] for k =0,..., N — 1 is given by

N—-1 ) 1 T
Tlgk + To)\; 1
log Ly, = —*10g H ( OT > ST T (3.11)
i=k 7 ko

where T' = T1 + 15, 620 is the solution of the equation

The estimate of K given in [76] is
KZKB = max{k :0<EkE<N -1, IOng —long_l > CT}
where log Ly, is defined by (3.11) and Cp is a constant satisfying the following
(i) lim Cr/T =0
T—00
(ii) lim Cr/log logT = oc.
T—o00

It was established that the estimate IA(ZKB is strongly consistent and the
proof is based on the fact that hm )\z =1 for ¢ > K — 1. However, the

problem of this method is that the threshold setting of C'r is heuristic. It is
set taking into account the spacing between the eigenvalues of X p and ) B

which is of order \/% (see [76]).

The large dimensional setting was considered by Nadakuditi and Sil-
verstein in [47]. Similarly to the method of [76], the detection is per-
formed into two steps. First, it is assumed that we have access to the
pure noise sequence and the noise sample covariance matrix as above is
given by Ry = ZtTlOl vl We consider the sample covariance matrix
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ET = i 5201 vyt where the samples y; contain possibly a signal. Then

the matrlx ET is “whitened” giving rise to
Sg, = Bp'Sr.

The detection is based on the limiting spectral behavior of ZA which refers
in the literature to as the so-called multivariate F-matrix Whose limiting
eigenvalue distribution was derived in [58]. The first step is to consider
the signal-free case. The following theorem describes the limiting spectral
behavior of iﬁ:r'

Theorem 17 ([58]). Consider Ry = ZtTlolvtvt and assume the sig-

nal free received sample covariance matmx ZT = ZtTlO L ytyt where vy ~
CN(0,Rr) and y ~ CN(() Rr) are independent. Then the empirical spec-
tral measure of E By = R ET denoted by pur converges almost surely to the
limit measure p, as N, Tl(N) — 00, N, T5(N) = oo, N/T1 = 1 < 1,
N/Ty — ¢ >0, for all x € R, with

du(x) = (1= 61;7;2((20_1 Z_l)c()bQ —2) Ly, py) (z)dx + max <0, (1 — 1)) o(x)
where
2
- <1—\/1—(1—c)(1—01)> (312)
1—¢
2
b <1—|—\/1—1(1—c)(1—61)> | (313)
—a

Recall that from the result of [4], for any matrix X7 with i.i.d. zero mean
unit variance entries with finite fourth moment, and any deterministic matrix
A7 with bounded spectral norm, asymptotically no eigenvalue can be found
outside the support of the limiting spectral distribution of T%th' A7 Xp. This
result was extended in [47] for a random matrix Ar. In our setting Ar is
replaced by R;/ 2RT1R /2 and X7 by Wr withiid. complex Gaussian entries
of zero mean and unit variance. The matrix 75 WTRl/QR 1Rl/2I/V'T'| has the
same eigenvalues as EA = R 1ET, hence, with probability one for all N,

T1, Ts large no elgenvalue of ZA can be found outside the limiting support
[b1,b2) with by and be defined by (3.12) and (3.13), respectively. Therefore,
if an isolated eigenvalue appears outside the interval [by, bo] it is due to the
presence of the signal. The condition of the presence of an isolated eigenvalue
is presented in the following theorem:
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Theorem 18 ([47]). Consider now the signal-plus-noise model with the set-
ting of Theorem 17. Let \g > A > ... 2 Agk—1 > Agx = ... = Ay_1 =1
be the eigenvalues of ¥ r,. Denote by 5\j the (j + 1)th largest eigenvalue
of EET. Then as N, Ty(N) — oo, N, To(N) — oo and N/T, — ¢; < 1,
N/T5 — ¢ > 0, we have

(c1=1)222=2(c1+1)A\j+1—(c1+1)A;+1 )
FUPRLER Aj <1—c—c\/ 1 2 2c1>\j] ’ ) if A\j > 71(c,c1),
.77

b2 Zf )\j < T(C, Cl).

forj=0,...,K —1 and 7(c,c1) 1is defined by

(cc1 —c—2¢1)y/c+el —cietec? —c—cp —c2
((c1 =De—e1)(er = 1)? ‘

T(c,c1) =

From this theorem, the behavior of the jth largest eigenvalue of ) Br de-

noted by j\j;r and corresponding to the signal is similar to that presented pre-
viously. When A; is larger then the detectability threshold given by 7(c, ¢1)
then \jr converges to the limit outside the interval [by,bo]. Tt is known
that the fluctuations of Aj7 follow the Gaussian law (see [10], [26]), the
exact expression of the asymptotic variance was derived in [49]. When A;
is below the detectability limit then 5\j7T converges to by and fluctuates as
a Tracy~Widom variable [10], [26]. An heuristic definition of the effective
number of identifiable signals Kyg is given by the number of the eigenvalues
of ¥, greater than 7(N/T2, N/T7). If not all the signal eigenvalues satisfy
the condition of detectability then underestimation of the number of signals
is unavoidable. Similarly to the method of [40], the test statistic is based
on the kth largest eigenvalue of S Br and performs the multiple hypothesis
testing as defined by (3.8). For k = 0,..., min(N, T5)—1, the hypothesis Hy,
meaning that at least k + 1 signals are present, is accepted for large values
of the test:

“ Hy
AT S XT
H,y

where the detection threshold xr is approximated by
Pry(@)oy
N2/3
with the scaling parameter o7, different from or defined by (3.7)(see [47] for

X1 =~ ba +

the exact expression). The first value for which A\; 7 < x7 gives the estimate
for the number of signal Kys.
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When the noise covariance is unknown it was assumed in the above ap-
proaches that a pure noise sequence is available in order to estimate the noise
covariance matrix. However, in practical systems such assumption is not re-
alistic, especially, in large dimensional regime. Indeed, usually there is not
enough time to sense infinitely large number of the noise samples. There-
fore, the detection has to be performed directly from the observed signals
Yo, - - -, Y7—1, ¢.€. without assumption that a pure-noise sequence is available.
This is called block detection approach.

Block detection approach

In this thesis we do not make assumption that a pure-noise is available. We
start by recalling the transmission model for which it is only assumed that
the noise is white in space but correlated in time. The system model is
written in the following matrix form
Yy = HpSY 12

T = HrSp +WrRy (3.14)
where Hyp and Sy are defined as in (3.3), Wy has i.i.d. zero mean complex
Gaussian entries with unit variance, and Ry € CT*7 is an unknown covari-
ance matrix. The model (3.14) corresponds to the additive spiked model.
Note that if the spectral norm of Rp is bounded, then with probability
one there is no eigenvalue of %WTRTWI'?' outside the support of its limit-
ing eigenvalue distribution and the same discussions as in Section 3.2.1 are
applicable.

Under the hypothesis where only signal is present, the work of [26] char-
acterizes the limiting behavior of the largest eigenvalue of the empirical noise
covariance matrix %VTVFF. We recall that from Theorem 2.2.4 (see Chap-
ter 2), the centered and scaled largest eigenvalue of %VTV:,H has the Tracy-
Widom distribution:

N /
N2/3A0’T,_bT £ L TW.

o T—o0

where b/, and o/, are the centering and the scaling parameters depending
not only on the limiting ratio ¢ (as in the white noise case) but also on the
spectral measure vy of Rp. If Ry is known then the statistics of the largest
eigenvalue of the noise covariance matrix can be fully described. Based on
this property, the detection threshold can be expressed as a function of the
probability of false alarm. However, when Ry is assumed to be unknown
the expression of the detection threshold is unknown. It should be noted
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that one can imagine to estimate the upperbound of the limiting support
corresponding to the noise from the empirical spectrum. However, this is a
challenging problem. In this thesis we propose a detection algorithm based
on the spectrum of empirical eigenvalues only.

3.3 Direction-of-arrival estimation

In this section we assume that the number of sources K is known. Recall
the transmission model

Y =H@©)S"+V

where the channel matrix is equal now to H(O) = [h(6y),...,h(0k_1)] €
CN*K with the steering vectors h(fy) = N~Y2[1 ¢ .. e0x(N=D] ¢ CNx1,
the columns of S" and V are zero mean complex Gaussian vectors, inde-
pendent of each other with respective covariance matrices I' € CK*K and
R = %Iy where 02 is unknown. The problem is to estimate the directions-
of-arrival 0y, ..., 0k _1 from the sample covariance matrix. The most famous
approach is a subspace-based method proposed in [57] and called MUSIC
(MUltiple SIgnal Classification) algorithm. It is based on the structure of
the covariance matrix of the columns of Y given by

> = HO)THO)! + 21y.

Let ug,...,un—1 be the eigenvectors of % corresponding respectively to the
decreasingly ordered eigenvalues \g > ... > Ay_1. Let Ag = diag(\o,...,
M¢—1) and Ay = diag(Ag,...,An_1) = 02In_k be the diagonal matrices
containing the signal and the noise eigenvalues, respectively. Denoting by
Es = [ug,...,ux—1] and Ex = [ug,...,un—1] the signal and the noise
spaces respectively, the covariance matrix > can be rewritten as

As OKX(N—K):| [EE} '

Y= [ES EN] |:O(N—K)><K O'QIN E]I;l[

Define the orthogonal projector matrix on the signal subspace generated by
the vectors h(fy),...,h(0x—-1) by:

K-1
I=EsEf =) wuj.
k=0

The MUSIC algorithm is based on the orthogonality of the noise and sig-
nal subspaces. Hence, the vectors h(fy) lying in the signal subspace are
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orthogonal to the null space of IT and for any 0 < k < K — 1 we have:
h(6)" (I — T)h(6)) = 0.
The arguments of the local maxima of the localization function
v(0) & h(0)N1IR(0) (3.15)

correspond to the angles-of-arrival 0, ...,0x_1. In practice we do not have
access to the signal eigenvectors uo, ..., ux—1 and they are estimated from
the sample covariance matrix ¥ = %YYH. Denote by dg,...,un—_1 the

eigenvectors of 5 corresponding to the eigenvalues X > ... > Ay_1. The
localization function is estimated by

7(6) = h(0)"TIR(0)

where II = £<:—01 ﬁkﬁg is the orthogonal projection matrix on the signal
subspace of 5.

In large dimensional setting the sample covariance matrix is not a consis-
tent estimate of the true one and, therefore, this conducts to a non accurate
eigenvector estimates. It was shown by Mestre and Lagunas in [45] that the
classical MUSIC algorithm is not consistent in this regime and presents an
asymptotic bias. A so-called G-MUSIC algorithm is provided in [45] making
assumption that the observations of the received signal are random multi-
variate Gaussian variables i.i.d. in the time domain. The method of Vallet
et al. in [64] deals with a deterministic signal part and the model is referred
to as the signal-plus-noise model. We are interested in a different approach
based on the results of [11] and proposed by Hachem et al. in [32]. It was
shown in [64] that as NV and T" — oo, the estimator proposed in [32] converges
almost surely to that of [64].

We present now the result of [32], the proof of which is based on the
convergence of some bilinear forms and with assumption that K is fixed
when T — oo, N/T — ¢ > 0. It is assumed that the signal matrix St is
deterministic such that %S:,'?'ST converges to a diagonal matrix. The noise
matrix Vr is assumed to be bi-unitarily invariant. Let pp be the spectral
measure of %VTV:F' with Stieltjes transform my converging almost surely to
the limit measure p with the Stieltjes transform m. Let [a, b] be the support
of u. Recall that m is the Stieltjes transform of the limiting measure of
+VHAVr. Define the function g(z) = zm(z)m(z) which is decreasing on
(b, >0) and denote by g(b™) = lim,_,;+ g(x). The following theorem provides
an estimator of the localization function ~(6) defined by (3.15).
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Theorem 19 (|32]). Let ¢ € N be the largest integer for which
wo > 1/9(0").

Denote o, ..., Ug—11 the eigenvectors of %YTY;:| belonging respectively to

Moty Agorr. For 0 € [—m/2,7/2], let

q—1
A7(0) = C()hr (0) i il ph (0)
k=0
where )
(@m(z)m(z))
((z) = xm(x)?m(z)
Then,

1(6) = 47(6) 72 0.
T—o00

Note that this theorem allows to estimate the angles-of-arrival of the
sources whose power is larger than the detectability threshold 1/g(b") de-
pending on the limiting ratio ¢ and m. When the entries of the matrix Vp
are i.i.d. with zero mean and unit variance, then the limiting measure p is
the Maréenko—Pastur law. For other noise models such that Vp is unitarily
bi-invariant, this method requires the knowledge of the noise statistics.
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Chapter 4

Detection /estimation of a
small rank signal in the
presence of correlated noise

4.1 Introduction
In this chapter we consider the general signal-plus-noise model
Yr = Ap + WyRY? (4.1)

where Ar is a random matrix of fixed rank K representing the number of
signals, Vpr = WTR;/ 2 is the time correlated noise where Wy € CNXT hag
ii.d. standard Gaussian entries, and Ryp is a IHermitian nonnegative matrix
with a bounded spectral norm. Remark that, up to studying Y:'p" instead of
Y7, the noise correlation can be either in time or in space. This model is
related to the spiked models introduced in Chapter 2, Section 2.3. Define
the sample covariance matrix by

S = lYTYTH. (4.2)
T

The results of this chapter are based on the study of the K largest eigenvalues
of ET under a crucial assumption involving the relationship between the noise
and signal eigenspaces. It assumes in some sense that the signal subspace

has an “isotropic” behavior towards the noise subspace.
We perform statistical inference on the information part Ar and provide
an estimator of the number of signals K, the powers of these signals, and
some bilinear forms involving the orthogonal projection matrix on the signal
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subspace. The results are used to perform detection/estimation in a concrete
application example of narrow band array processing. In this scenario, show-
ing that the model (4.1) satisfies the set of assumptions, estimators of the
number of emitting sources, their powers, and the MUSIC-based direction-
of-arrival are provided. The fluctuations of the power estimates are also
studied.

4.2 System model and assumptions

Considering a sequence of integers N = N(T'), T'=1,2,... and matrices
Yr = Ap + WrRY? (4.3)

we assume the following asymptotic regime:

Assumption 3. As T — oo, cr £ N/T — ¢ > 0.

In the following we present first the hypothesis on the noise part then on
the signal part.

4.2.1 Hypotheses on the noise matrix

Assumptions and some known results

We first characterize the assumptions on the noise matrix Vp £ WTRlT/ 2,
. N-1T-1 . ‘ ‘
Assumption 4. Wy = [wn,t]n,t:() , with (wnt)ne>1 an infinite array of

independent CN (0, 1) variables.

Assumption 5. Ry € CTxT

2 2 i
o0 0711 satisfying:

1s Hermitian nonnegative with eigenvalues

(i) vp =T7! ZtT;()l ang £ v, a probability measure with support supp(v) =
[ay,b,] C Ry = [0,00). Moreover, v({0}) = 0.

(i) The distances from the O'ZT to supp(v) satisfy:

ma d (o2, supp(v)) —— 0.
te{l,.“,%(fl} (Ut’T pp( )) T—00
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As a consequence of this assumption the matrix Rp has a bounded spec-
tral norm and asymptotically there is no spike due to R that can be found
outside the limiting support [a,, b,].

The characterization of the limiting spectrum behavior of the noise sam-
ple covariance matrix %VTVQ':' = %WTRTWQ'?' is of prime importance. De-
note by S\O,T > ... > An—1,7 the eigenvalues of %VTVTH and let 7p =
Nt vaz_ol 0y, » be its spectral measure. The asymptotic characterization
of 77 will be reviewed in the following. We recall some well known results
describing this behavior which had been already presented in Chapter 2,
Section 2.2.2: see [44, 59| for Items 1)-6), [60] for Item 4), and [4] for Item
5).

Theorem 20. Under Assumptions 3-5, the following hold true:

1. For any z € Cy = {z € C, 3z > 0}, the equation

m = <—z+ / 1 +tcmtu(dt))_1 (4.4)

has a unique solution m € C4. The function m(z) = m so defined on
C, is the Stieltjes transform of a probability measure p.

2. For every bounded and continuous real function f,

[ st 2 [ ot
and therefore p, defined by (4.4), is the limiting spectral measure of
LVrVH.
3. The function

- —1
)= [ i am”

is defined on C1 and is the Stieltjes transform of the probability mea-
sure fi = cpu+ (1 —¢)dg, limiting spectral measure of %VQL"VT. As such,
m(z) =cm(z) — (1 —c)/z.

4. p is of the form u(dt) = max(0,1 — ¢ 1)dy + f(t)dt where f(t) is
a continuous density on (0,00). The support of f(t)dt is a compact
interval [a,b] C Ry, and f(t) >0 on (a,b).

5. For any interval [x1,z2] C (0,a) U (b, 00),

#{i : N\ir € [z1,22]} =0 w.p. 1 for all large T.
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6. The function mp(x) = N2 NN\ — )" converges w.p. 1 to

n=0
m(x), and uniformly so on the compact subsets of (b, 00).

From this theorem it is particularly clear that asymptotically with prob-
ability one there is no eigenvalue of %VTVTH outside the compact support
[a,b] of the limiting spectral measure .

Characterization of the right-edge of p

We are interested here to determine the limiting position of the largest eigen-
value of %VTV:F' which corresponds to the upper bound b of the support of u
to which Ao 7 converges. A procedure for determining the interval [a, b] from
the knowledge of ¢ and v is provided in [60] and was introduced in Chapter 2,
Section 2.2.3. We recall here the main result which is presented in the follow-
ing proposition. Observe that m(z) can be extended to C— ({0} U[a, b]) and
that m(x) = [(t — x) "1 u(dt), its restriction to R, is negative and increases
to zero on (b,00). Recall that supp(v) = [ay, b,] C Ry.

Proposition 7 (see [60]). The point b defined in Theorem 20-4) coincides
with the infimum of the function
1 t

vim) ==+ | ot

(dt)

on the interval (—(cb,)~1,0). On this interval, there is a unique my (my < 0)
such that z(m) — b as m | my. The restriction of x(m) to (mp,0) coincides

with the inverse with respect to composition of the restriction of m(x) to
(b, 00).

From Proposition 7, the edge b is known to exist but does not have a
mathematical characterization as a function of v. In order to easily charac-
terize the value of b, it is necessary to make an assumption on the measure v.
Note that a similar assumption was made by El Karoui [26] to characterize
the fluctuations of the largest eigenvalues of %WTRTWQ'?'. We will get back
to this point in Section 4.4.3.

Assumption 6. If v({b,}) = 0, then there exists ¢ > 0 and a function
fu(t) > C(b, —t) on [b, —&,b,] with C > 0 such that for any Borel set A of
[a’V7 bl/];

V(AN [, —e,b)]) = / () dt.

AN[by, —e,by]
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This assumption is not restrictive in practice and says that v either has
a mass or a sufficiently sharp density edge at b,. Especially, it allows to have
an explicit definition for the value b and leads to the following corollary to
Proposition 7, proven in Appendix 4.7.1:

Corollary 1. Under Assumption 6,

1 t
=—— ——u(dt
b myp +/ 1+ Cmbty(d )

where my, is the unique solution in (—(cb,)~1,0) to the equation in m

/ <1 fctmt>2y(dt) = % (4.5)

We will see later that Assumption 6 is also important to determine the
second order behavior of the estimators close to the signal detectability limit
(cf. Section 4.4.3).

4.2.2 Hypotheses on the signal matrix

We need now to make two hypotheses on the signal matrix Ar. The first
one is on its spectral norm boundness.

Assumption 7. Let K > 0 be a fized integer. The matriz Ay € CNXT s
random, independent of Wr, with rank rank(Ar) = K w.p. 1 for all large
T. Besides, supy ||Ar||/T < oo w.p. 1.

In the following, when K < min(N,T), the notation Ay = Up B! refers
to any factorization of A where Up € CN*K gatisfies U:,HUT = Ig. By
Assumption 7, the rank of By € CT*K is equal to K, w.p. 1.

The second hypothesis is a fundamental assumption on the relationship
between the signal and noise matrices:

Assumption 8. There exists a factorization Ap = UTB;! such that, for any
z € C —supp(v),

1 _ 8.
fo (Rr — 2Ir) " Br —>Ta_joo my, (z)P (4.6)
for some
Ppolj,
P = s P0>...>D Jot .-+ =K
pelj,
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and where it is recalled that my(2) is the Stieltjes transform of the probability
measure V.

From this assumption the signal right singular vectors are in some sense
isotropic in the basis of eigenvectors of Ry. When a signal is present and is
powerful enough, isolated eigenvalues appear at the right of the bulk of the
eigenvalues of the sample covariance matrix f]T. With this assumption, the
asymptotic locations of the isolated eigenvalues of iT depend only on the
eigenvalue distribution of Ry and on the limiting ratio c.

Assumption 8 is quite strong in general. However, it holds in many prac-
tical situations. Generally, the signal matrix is written as Ap = HTS:,'Z' where
Hp € CN*E ig the channel and S € CT*X is the matrix of transmitted sig-
nals. In the case of a temporally correlated noise, i.e. under the model of the
type Yr = HTP1/25¥ + I/VTRlT/2 this assumption holds if the signals St are
isotropic, particularly, when they are right-unitarily invariant (meaning that
St can be correlated in space but not in time). In the case of the model with
spatially correlated noise given by Y = HTPl/QSrF + R;/QWT, the assump-
tion holds if Hr is left-unitarily invariant (e.g. for Gaussian fading channels)
and St is isotropic or correlated in time, up to transposition of Y7. However,
this assumption is not valid if Hp contains steering angles (not left-unitarily
invariant) and the noise is spatially correlated. Generally speaking Assump-
tion 8 does not hold if the noise and the signal simultaneously time/space
correlated.

We give two practical examples for which this assumption holds:

(i) Array Processing: Let A7 = HyPY/2SH with Hy = [h(6p), -+, h(0x—1)]
(0 distinct) the matrix of steering vectors, P = diag(ad,...,a3% ;)
the source powers, Sy € CT*X ig the signal matrix with i.i.d. of zero
mean and unit variance entries. Let Vp = VVTR%F/2 and [V Nh(0)], =
e~2mnsin@) - Writing Ay = UrBY with Ur = Hp(HpHY)™Y? and
Br = SpPY?(HpHP)Y2, we can show (HpH{)™'/? — Iy while
%SF(RT — 2I7) 7Sy 25 m, (2)Ix so that Assumption 8 holds. See
the proof of Lemma 1 for details.

(i) MIMO Communications: Let Ap = HTP1/2S¥, with Hp =
1/V/Nlho, ..., hx_1] the wireless channels (i.i.d. zero mean unit vari-
ance entries) of K transmitters, P their diagonal power matrix and
St their matrix of transmitted (i.i.d. zero mean unit variance) signals.
Taking Vp = R;/ 2VVT, i.e. spatially correlated noise, and considering
Yr_,':' instead of Y7, we may write AH = UTB{,'! with Ur = ,SYT(,S’TS:,'?')_l/2
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and By = HTP1/2(STS¥)1/2 to obtain %B?(RT — 2INy)"'Br =%
m,(2)P.

We provide first the theoretical results in the following section. The first
example is then used for the application part in Section 4.4 for which the
signals are assumed to be uncorrelated and the noise is an ARMA process.

4.3 Results on the information-plus-noise matrix

4.3.1 Preliminary results

The idea is to detect the number of signals and to estimate their powers
by studying the locations of the isolated eigenvalues of Sr. Since Sy is at
most a rank 2K perturbation of %VTV:,'?' with K fixed, Weyl’s interlacing
inequalities [33, Th. 4.3.6] show, in conjunction with Theorem 20, that the
spectral measure of iT also converges to p in the sense of Theorem 20-2).
However, a finite number of eigenvalues of iT might stay isolated away from
the support of p [21, Th. 2.2]. We need first to recall the following function,
for any z € (b, 00):

9(x) 2 am(z)m(z) (4.7)
which is positive and decreases from g(b") to zero on (b, c0).

The following theorem gives an equivalent definition of the detectability
condition pg(b*) > 1:

Theorem 21. The detectability condition prg(b™) > 1 can be equivalently
defined by the following theorem

P > (/ wy(dto - (4.8)

with my, the solution in (—(cb,)™1,0) to Equation (4.5).

Proof. Observe that g(z) = — [‘m(x)(1+cm(x)t)"tv(dt) from the definition
of m in Theorem 20-3) and recall that m(x) | m; as x | b. O

From this theorem the detectability condition actually depends on the
spectral measure v and the limiting ratio ¢. Note that in the white noise
setting, i.e., Rp = I (hence, v = d1), u is the famous Marchenko-Pastur law,
and Equation (4.8) boils down to pr > /c (see, e.g., [32]). Most of source
detection in white noise environment approaches rely on this condition (see
Chapter 3).

The behavior of the largest eigenvalues of S is described by the following
theorem:
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Theorem 22 (|21]). Under Assumptions 3-8, let pi and [a,b] be as in The-
orem 20. Let Ao > --- > An—_1,1 be the eigenvalues of X with spectral
measure 77 = N1 Zﬁgl Air. Then:

1. For every bounded and continuous real function f,

/ FEyr(de) = / F(t)u(dt).

T—o0

2. For any interval [x1,z2) C (0,a)

#{i : Nir € [z1,22]} =0 w.p. 1 for all large T.

3. If pog(b™) < 1, then 5\0,T 2% b. Otherwise, let s € {0,...,t} be the
largest index for which psg(b™) > 1 where t is defined in Assumption 8.
Fork=0,...,s, let py, be the unique solution x in (b, 00) of prg(x) = 1.
Then, fori=0,...,s,

N a.s.
)\j0+...+j2._1+1’T, RN )‘j0+“'+jz',T — Pi
T—00

5\ Qa.s. b
o+ +jst+1,7 — b.
Jotrtjs 1T

This theorem shows in particular that the number of isolated eigenvalues
of X7 is upper bounded by the rank K of Ar and it reaches this rank if p;
is large enough.

4.3.2 Signal detection

Estimation of the signal dimension in large dimensional regime is closely re-
lated to the study of the isolated eigenvalues in spiked models. Recall that if
pr. satisfies the detectability condition given by (4.8), then the corresponding
isolated eigenvalue converges to a limit outside the support of p. Otherwise,
it converges to b. Based on this we need now to establish a test that allows
us to estimate the dimension of the signal from the sample covariance eigen-
values only. Recall from Chapter 3 that in the case of single signal and a
white noise with unknown variance, the sub-optimal detector is the GLRT
consisting in testing the ratio of the largest eigenvalue of iT to its normal-
ized trace [14]. However, when the noise is not white this test cannot be
used anymore. We propose rather to test L successive close eigenvalue ratios
where L is an upper bound to the number of signals which is a common
hypothesis. This is summarized in the following theorem:
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Theorem 23. Under Assumptions 3-8, let s > —1 be the largest integer for
which Equation (4.8) holds. Let 0 < € < (ps/b) — 1 with p_1 = oo. Given
L > K, define R
. Ak—
or =arg  max T s 14e
ke{0,..L-1} N7

with 5\—1,T = o00. Then, for all T large, w.p. 1,

Proof. The result is clear for s = 0. Else, writing k = jo + ... + js, [tems
1) and 3) of Theorem 22 ensure A\g 7 2% ps > b and Ao 2% b for £ =
k+1,.... L. 0

The main problem in this detection technique is choosing the detection
threshold. Generally, when the noise is white, it is known that under Hy,
the centered and scaled largest eigenvalue of iT converges to the Tracy—
Widom law. The detection threshold can be then fixed theoretically from
this law and depends on the probability of false alarm. When the noise is
not white, under Hy, it was also shown in [26] that the centered and scaled
largest eigenvalue of f]T converges to the Tracy—Widom law with the scaling
and centering factors depending on v and c¢. When Ryp is unknown, it is not
theoretically possible to set the exact threshold and it is set heuristically.
Recall that the spacing between the noise eigenvalues is of order O(1/N)
(see e.g. [52]) and hence, 1 + € has to be greater than O(1/N). However,
has to be taken such that ¢ < (ps/b) — 1. Hence, for all large N, one may
take € such that € — 0 and Ne — oo as N — oc.

4.3.3 Parameter estimation

Let now A = UTBQH~ as in Assumption 8. Then %B?BT 2% P by mul-
tiplying each side of (4.6) by —z and taking z large. Therefore, po,...,p;
are the limiting positive eigenvalues of %ATA'I'!. We propose now to esti-
mate consistently po,...,ps which will represent the power of the sources
in the application section. In the following, for ¢ € {0,..., K — 1}, let
K@) =0if0<i<jo, K(i) =1if jo+1<i<jo+J1, ..., K@) =tif
jo+ - +ji_1+1<i< K —1. We have the following theorem:
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Theorem 24. In the setting of Theorem 23, let

a1 1
mr\xr) = = ~
Sy Z]% FY—
n=kr

gr(x) = mrp(z)(zermr(z) + er — 1)
1 .
ﬁi,Té TN i:O,...,kT—l.
gr(Nir

Then

~ a.s.

Pir = pg) 7, 0
Proof. Recall that Ao > ... > Ay_1,7 are the eigenvalues of %WTRTW:'F'.
In the proof, we restrict the elementary events to belong to the probability
one set where Ao — b, mp(z) — m(x) uniformly on the compact subsets
of (b,00) (see Theorem 20-6)), \ir — pxq) for i = 0,...,j0 + -+ + Js,
;\j0+...+j5+1,T — b, and kr — jo+ -+ js (Theorems 20-23). Observe that

~

Y7 is at most a (nonnegative) rank 2K perturbation of £VrV. In these
conditions, Weyl’s inequalities |33, Th. 4.3.6] ensure XH’T < An—2k,7 and

A1 < j\n_gK’T forn =2K,...,N — 1. Then, for any x > b and T large,

1 N-1 1 2K—1 1
ﬁlT xTr) = = -+ P
( ) N — kp n:ZQ:K )\TL,T — X ngk:T )\n,T -
N—-1-2K 2K—1
1 1 1
+ =
N —kr 7;) AnT — nz];T An, T — T

1 1 1
mr(x) = < = + -
N — kr ng};r[ AT — T n;QK AT — T
N-—1 N-—1
1 1 1
< ~ _— D ——
N —kr Z )\nT_-T+ Z AT — X
n=kr+2K n=N-2K "

= my(x) + ep(2)
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with e/.(z) — 0 uniformly on compact sets of (b,00). Hence, we have
mr(x) — m(x) — 0 uniformly on compact sets of (b,00). Recalling that

g(z) = zm(z)m(z) on (b,00), we obtain jr(Air) — g(Air) — 0 for i =

0,...,kr — 1. Clearly, g(A\ir) — g(px(i)) — 0 so that gr(Air) — g(pxc@) — 0
which, along with g(px(;)) = 1/pk(), gives the result. O

4.3.4 Subspace estimation

In this section we are interested to estimate bilinear forms involving or-
thogonal projection matrix on the signal eigenspace. Let Ap = UTBF
following Assumption 8 and write Ur = [Uyr,...,Urr|, Upr € CN*Je.
Then, the orthogonal projection matrix on the signal subspace is written
as Iy = UE,TUET € CN*N_ The goal here is to provide an estimator for
the bilinear form ajHﬂﬂgyTbT where ar and by are some N-dimensional vectors.
Denote now ﬁgvT the orthogonal projection matrix on the eigenspace corre-
sponding to the set of eigenvalues {5\j0+__+j1_1+17T, cee 5‘j0+~~+jz} of f)T, for
£=0,...,t. With these notations, we have the following estimate:

Theorem 25. Under Assumptions 3-8, let ar, by € CV be two sequences
of deterministic vectors with bounded norms and let { < s with s the largest
integer for which (4.8) holds. Then:

N 5\ .
ayﬂﬂg’TbT— - L?T( z’T)A ayﬂng’TbT —)Ta_'i;o 0.

1 (Ni7)gr(NiT)

Proof. Recall that under Assumption 8, po,...,p; are the limiting positive
eigenvalues of %ATA:'}'. For Ry = Iy, the theorem thus coincides with [32,
Theorem 2| since then Vp = Wy is a bi-unitarily invariant (here Gaussian)
matrix as requested by [32, Assumption 2]. We now reproduce the steps of
[32] under our set of assumptions. Define the resolvents:

-1
Qr(z) = GVTVF — zIN> ,

-1
QT(Z) = <;V’1|:|VT - ZIT>

and the matrix
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Define also

2URQr(2*)Ur %U;'VT@T(Z2)BT + Ik

My (z) = ~ ~
r(2) EBRQr (22)VHUr + Ik ZBRQr(2?*)Br

Defining the vectors

ar = [ 2Ur Qr(2%) ]a

FBRQr(zAv
br = [1 ZZEQT(ZQ) ] br
7 BYQr(2*)Vy!
ap = lag7,0,...,0]

by = [be.r,0,...,0]

we have the following equation:

bewﬁ&TbT = —i CNLI%QT(Z)ETCZZ + i dT]\/ZT(Z)fllA)TdZ (4.9)
17T CZ,T I 17T CZ,T

for Cy 7 a complex positively oriented contour enclosing only the eigenvalues
;\j0+...+jz_1+1,T7---,5\j0+...+j,g,T~ Let ¢ < s. From Theorem 22-2), for all
large T" w.p. 1, the first term on the right-hand side of (4.9) is null (no
pole of QT lies in Cyr for large T'), while in the second term C;7 can be
replaced by a contour Cy enclosing pg but no py, k # ¢. We must now prove
a My (2)br — a'Mp(2)br =% 0 where

r 2\rTH
ar = zm(% )UT} ar,
_ - 2\77H
bT — Zm(%)UT:| bT
— ~ [em(z?) Ik Iy
Mr(z) = | Ik zﬁz(zz)P] '

By [21, Lemmas 4.1-4.6], ||ap — ar| == 0, ||br — bp|| =2 0,

zm(zQ)IK Ik ]
-1
Ix — =Bl (Ir + em(2*)Ry) ™ Br

a.s.

HMT(Z) - [ 250,

Assumption 8 and the definition of m(z) then imply

—— B} (Ir + em(z*)Ry) ™' By — 2m(2%)P|| %0

1
2T

o4
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which finally gives
&ij]/\ZT(Z)l;T — EL%MT(Z)BT 2%0.

For z € Cy, zm(2?) and zrm(z%) are bounded by [d(Cy,supp(u))] ! Take
0 < e < d(Cg,supp(p)). Then, for all large T, 2Q7(2?) and 2Q(z?) are
bounded by €' w.p. 1. The dominated convergence theorem therefore

ensures that

N 1 _ _
alj—ivﬂg7TbT — ZTT g C_LTHT(Z)_ledZ 2%0.
7

Residue calculus of the right-hand side integrand as in [32, Equations (10)-
(11)] then gives

m(pe)g(pe)

g (pe)

Take i such that K(i) = £. Using Az == py, rr(z) 22 m(x), gr(z) 25
g(z), and gi(z) 2> ¢'(x) for = outside the support of x then concludes the
proof. O

a?H&TbT — a?H&TbT % 0.
oo

4.4 Narrow band array processing

4.4.1 System model and assumptions

We consider now a practical example of narrow band array processing. Con-
sider a uniform linear array of N antennas which captures T successive re-

alizations g, ..., yr—_1 of the random process:
K-1
Yt = Z aph(0r)sk, + v (4.10)
k=0

with g, € CV*! ag > ... > ag_;1 > 0 the amplitudes of sources 0,..., K —1,
h(6) € CN*! the steering-vector function

h(@) _ 1, e—?msian o 76—217r(N—1)sin6 T (4.11)

with 6 the angle-of-arrival of the signal from source k (the 6 are as-
sumed distinct), sp¢ € C the signal emitted by source k at time t such
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that (st,k);%fo_l is an infinite array of circular complex i.i.d. random vari-
ables with Esgg = 0, E|sgo|?> = 1, and E|soo|® < oo, and v; € CV*! the
noise received at the sensor array at time ¢.

Stacking all the received vectors into the matrix Ypr = [yo,...,yr—1] €
CN*T | (4.10) is written as

Yy = HpPY2SH 4+ vp (4.12)

where Hr = [h(60), h(61), ..., h(0x_1)] € CV*K is the channel matrix, Sp =

T—-1,K-1 . . . . )
(St k)i r=0 € CT*K ig the signal matrix, P = diag(a3,...,a% ;) is the
matrix of source powers, and Vp = [vg,...,vr_1] € CVXT corresponds to

the correlated noise matrix. We detail now the noise model. We assume
the rows of Vi to be independent snapshots of a complex Gaussian circular
causal ARMA (m,n) stationary process. Define the filter transfer function

(2) l4+aiz 4. . Famz™
zZ) = .
P 14+ Bz + ..+ Bz

The noise process can be represented as the output of a filter with the transfer
function p(z) driven by a standard complex Gaussian circular white noise.
For |z| > 1, we have

p(z) =Y 2"
=0

where Y [1)y] < 0.
The noise matrix can be hence written as Vp = WTR;/ % with Wr as in
Assumption 4 and

To 1 rr—1
r—1
Ry =
™
rn-—-r ... T_-1 To

with 7, = Y pso Yesrty; for any k € N. We note that Ry is a Toeplitz
nonnegative matrix.

It should be noted that the assumptions about circularity and the upper
moments will be used only in the second order analysis. Nevertheless, second
order analysis can be generalized to the case where the s; ;. are not circular,
and the circularity assumptions have been added only for simplicity.
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Lemma 1. Under Assumption 3, the model (4.12) satisfies Assumptions 4—8
with v defined by

1
/ g(tv(dt) = /0 9(plexp(2umu))P) du (4.13)

for every positive measurable function g, and with P defined in Assumption 8
2

the matriz of the source powers ay.
Proof. We start with Assumptions 5 and 6. If m = n = 0, then v = §;
and these assumptions are trivially satisfied. Assume max(m,n) > 0. Then
Assumption 5-i) is a well known result on the spectral behavior of large
Toeplitz matrices [30, 31]. The support of v is the compact non-singleton
interval [a,,b,] = [min, ¢(u), max, q(u )] with q(u) £ |p(exp(2uru))[?. Tt is
also well known [30, §4.2] that a, < otT < by, so that Assumption 5-ii)
is satisfied. Since p(z) is ARMA, for g(t) the indicator function on a set
of Lebesgue measure zero, the right hand side of (4.13) is zero. Hence v
has a density f, with respect to the Lebesgue measure. Let us provide the
expression of f, at a point s € (a,, b,) such that for any u for which ¢(u) =

¢’ (u) # 0. In a neighborhood of any of these u, ¢ has a local inverse that we

denote qq(fl). Then, for € > 0 small enough,

y(ss,ers):/ / dv
t:q(t)e[s—e,s—l—s] Z —s [s—

wratm=s Tsestel ¢ (gl ”(v))]
by the variable change ¢(t) = v. Letting ¢ | 0, we obtain

TG L R N o (N S

0 2 /
el : o= W)

This proves f,(s) — oo as s 1 by, implying Assumption 6.

We now turn to Assumptions 7 and 8. Since the 6; are distinct (mod-

ulo ), H?HT — Ix. By the law of large numbers, %S%ST Ta—s> Ig.
—00

ATl
T

Hence rank(Ayp) = K w.p. 1 for all large T, and supp < oo w.p. 1.
Let us write Ay = UTB¥ where Ur = I—IT(HFI-[T)*U2 and where By =
SrPY2(HR Hr)'/2. By [4, Lemma 2.7] and E|sgp|® < oo, for any 2z € C,
and any 0 <14, < K —1,

Tr[(Rr — zI7)7Y)
T

E‘ [%S;(RT R JK]

i7j

o7
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for some C' > 0. By Markov’s inequality, the argument of E| - |* converges

to zero w.p. 1, and this convergence can be extended to C — supp(p). Since
T Tx[(Rp—zI7)~ '] = m,(2) for 2 € C—supp(v), Assumption 8 is satisfied.

O
4.4.2 Detection, power estimation, and localization

We have previously proved that the model (4.12) satisfies Assumptions (4)—
(8). By direct application of Lemma 1 and Theorems 23 and 24 we get the
following inference methods of the number of sources and their powers:

Proposition 8. Consider the model (4.12). Let k > 0 be the largest integer

for which
1 -1
2 —my
d 4.14
> ([ T ampos@mar ™) 1)

with my, € (—(cmax, |p(exp(2imu))|?)~1,0) the solution of

(_mlp(expmu))? \* 1
/o <1+cmrp<exp<2m>>\2> S

Given L > K and £ > 0, define (with A_j 7 = c0)

o

. Am—
kr =arg  max L LA
med{0,...,L—1} )\m,T

Then kr = k w.p. 1 for all large T and & small enough. Moreover, for

i=0,...kp—1let

s 1
gr(\ir)

with gT(Xi,T) as in Theorem 24. Then

a3 (4.15)

A2 a8, 9
a”i,T — a;.

We present a source localization method based on the MUSIC approach
[57] (see Chapter 3, Section 3.3). Recall that the MUSIC algorithm ex-
ploits the fact that h(0;)"(In — Hy7)h(0;) = 0 with I, a projector on
the subspace generated by h(fp),...,h(6,—1) for any i < ¢ < K — 1. Since
lh(0)|| =1, 6, ...,0,_1 are the arguments of the local maxima of

Yr(8) £ h(0) T rh(B).

Based on Theorem 25, the following proposition provides a localization func-
tion estimate:
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Proposition 9. Let k and /;:T be as in Proposition 8 and denote tg T, . . . ’al%T—l T

the eigenvectors of f]T with respective eigenvalues j\gyT, ey /A\];Ti1 - Then,
for 0 € [—-m/2,7/2],

YH(0) — 477 (8) £ 0
where
VH(0) £ 1(0) T rh(0)
];-T,1 3

kT gy & 91(Aj,r) Ho o ~H
A7 (0) = — = ———h(0)";ri;oh().
g ]z:% 1 (A1) gr(Ajr) e

Proof. From Lemma 1 Assumptions 3-8 are satisfied, so Theorem 25 can be
applied for each i < k—1. Taking ap = by = h(0) and Uy = I-IT(H;'I-IT)*U2
as in Theorem 25, we obtain the desired result for UrJUH, J = diag(I}, 0),
instead of My r. As (HYHy)™V2J(HAHr)~Y2? — J and ()" (HpJHY —
Iy, 7)h(0) — 0, we have ()11, rh(0) — h(9)1 U7 JURK(O) — 0, completing
the proof. O

Proposition 9 ensures that 'AyéiT (0) is a consistent estimator of the localiza-
tion function 4% (). The improved MUSIC algorithm we therefore propose
consists in estimating 0, . . ., 01 as the arguments of the for highest maxima
of %ET(G). Observe that, although the system models differ in comparison to
that of [32], the MUSIC estimator proposed here takes the same form as the
estimator [32]. This remark would not hold if it were not for Assumption 8.
Note also that, as ¢ — 0, ¢’(z)m(x)"tg(x)™t — 1 for all real z # [ tv(dt),
so that the improved MUSIC algorithm proposed reduces to the standard
large T' MUSIC approach.

4.4.3 Second order performance analysis

We now provide an asymptotic second order analysis for the power estimators
under the model (4.12). We gather the source powers az in groups of equal

powers pg > ... > p; with respective multiplicities jo, ..., j.

4.4.4 Main results

In order to provide the fluctuations of the source power estimators given by
(4.15) in Proposition 4.3.2, first we study the fluctuations of the isolated
eigenvalues of Y. Denote by pi(;) 1 the “finite horizon” equivalent of the
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spike limiting position. More precisely, we provide the fluctuations of 5\2-77’ —
pr(i)T: @ < s, with s the largest integer satisfying (4.8).

We start by presenting some important quantities. Recall the definition
of vr in Assumption 5 and recall that ¢y = N/T. Let mp(z) be the Stieltjes
transform defined analogously to m(z) defined by (4.4) in Theorem 20 with
the difference that the measure v and the constant c are respectively replaced
with their “finite horizon” equivalents vy and ¢p. We have then

-1
t
= [ = ———up(dt 4.16
mp(z) < z+ / T chT(z)tVT< )> (4.16)
uniquely defines the Stieltjes transform myp(z) of a probability measure up
supported by Ry. In addition, pur converges weakly to p as T — oo; the
Hausdorff distance between the supports of these two measures converges to
zero |59, 4] and, for each b’ > b, mp(z) is analytic on C — [0, '] for all large
T. Let

mT(z)z/Z( -1 vr(dt)

1+ ermr(2)t)

-1
= Z—T TI‘(IT + chT(z)RT)_l.

Similarly to Theorem 20-3), mr(z) satisfies mr(z) = ecrmr(z) — (1 —cr) /2.
Consequently, for all T'large, gr(x) £ xmy(x)mr(x) is defined on (b, 00),

b > b, and, for any k such that prg(b*) > 1, prgr(xz) = 1 has a unique so-

lution p 7 in (b, 00). We introduce then the following important quantity:

Lemma 2. Consider the model (4.12). Then the function

Alz) = 1—0/ <%>2y(dt)

is defined and positive on (b,00). Furthermore, A(x) — 0 as x | b and
A(z) = 1 as x — o0.

Proof. See Appendix 4.7.2. O
We have then the following theorem:

Theorem 26. Consider the model (4.12). Assume in addition E[s§ ,(s()"] =
0 foru+wv < 4 and u # v, and let k = E|soo|* — 2. Let s be the largest
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integer (assumed > 0) for which (4.14) holds. For k = 1,...,s and all T
large, let py T be the unique solution in (b, 00) of prgr(x) = 1. Define

Afottji—1+1,T 1
e, = VT : —peT | ,

Ajort-jiT 1

~ m*(pr) 2 + 2pyt ,
= Alow) [/ (14 em(pr)t)? (d)

([ et ) |

pim(pr)”
/Bk :/Mwu(dﬂ, and

2
pem(pr)
= —————y(dt .
o </ Tt em(pii” >>
Let My, ..., M, My = [Mymrlo<e,m<j,, be random independent Hermitian
matrices such that { My i te<m are independent, My ~ N(0,ar + B +
ko), and My ~ CN(0,ar + Bk) for 0 < € < m < ji. Let xi be the
R7* —valued vector of the decreasingly ordered eigenvalues of (prg' (pr)) ™ M.
Then

L
(o5 -5 ms1) ——— (X0 Xs)-
T—o0
Proof. The proof is provided in Section 4.4.5. O

Theorem 26 shows that, after appropriate centering and scaling, the vec-
tor of the isolated eigenvalues of S7 that converge to pi > b tends to fluctuate
like the eigenvalues of a certain Hermitian matrix with Gaussian elements.
If k = 0, this matrix is a Gaussian Unitary Ensemble (GUE) matrix. Recall
that a GUE matrix is such that M;; ~ N(0,1) and M;; ~ CN(0,1) for i < j,

these random variables being independent. When K = 0, T2/3 <%)

converges in law to the Tracy—Widom probability distribution TW(-), where
br and or are the finite horizon equivalents of b and ¢ depending on ¢y and
vr [26]. This result can be generalized to show that for any fixed integer r,
the vector T2/ 3(5\07T —br,..., ;\T7T —br) converges in distribution to a multi-
dimensional version of the Tracy—-Widom law. These results and Theorem 26
can then be used to evaluate the error probabilities of the source detection
schemes described in Theorem 23 and Proposition 8. From Theorem 26, we

obtain the fluctuations of the source power estimates:
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Theorem 27. Consider the setup of Theorem 26 and let p; 7 = (gT(Xi,T))—l
fori=0,....50+ - +Jjs. Fork=1,... s, define

Djot+ir1+1,T 1
&y =VT : — Dk

Djot-tji,T 1

Let M, be defined as in Theorem 26 and let X, be the RIx —valued vector of
the decreasingly ordered eigenvalues of ppMy. Then

L . .
(50,T7 e ;fs,T) T—> (XU, C. ,XS).
—00
Proof. A sketch of the proof is given in Appendix 4.7.3. O
A straightforward application of the Delta method [66, Th. 3.1] on The-
orem 27 implies in particular that, for kK =0,...,s,
1 & c
T R D - . . _ WV,
\/7 (]k ZZ:;pjo—i-...-I—jk—1—|—2,T pk) T—>oo> Xk

with g ~ N(O,jk_lp%(ak + B + Kor)), independent across k.

As a corollary of Theorem 27, the following proposition provides the
behavior of the power estimates for extreme values of py, i.e. for pp — oo
and for py close to the detectability limit given by (4.14):

Proposition 10. Consider the setting of Theorem 27. Let pum be the in-
fimum of the py satisfying (4.14), My be defined as in Theorem 26, and

Uk = ag + B + Kok, Uk = o + Bi. Then

Yp ——> 00, PP —— 00

pk»l/plim pkiplim
U —— 1+ K, U —s 1.
Pl —>00 Pk —>00
Proof. See Appendix 4.7.4. O

From this result when the power is close to pim, then the variance of the
estimator converges to infinity confirming that it is not possible to estimate
the signal power close to the detectability limit.
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4.4.5 Proof of Theorem 26

The proof relies on two ingredients: an adaptation of [21, Th. 2.3| and
a result on fluctuations of quadratic forms. Let Ap = UTB%,'! with Up =
Hr(HY H7)~'/? and Br = SpPY?(HYH7)'/? = [Bor,...,Bi1|, Brr €
CT*Jx. Recall the quantity

Ajot-tji_1+1,T 1
N, T = VT : = Pk,T

Afo-te+ii,T 1

In [21], it is shown that the 7, 7 fluctuate like the ordered eigenvalues of the
matrices (prg(pr)’) " (VarGr + VT Fy, 1) where

m _
Frr= T(jpf“T)B,'j’T(IT + ermy(prr)Rr) ' Brr + I, (4.17)

and the G} are GUE matrices independent of the Fj 7. This is formalized

by Proposition 11 below. Using HZ,'Z'HT 2% Ik, the law of large numbers
and the definition of pj, 7 informally give

Fypr ~ (% Tr [mr(pe,r)I7 + ermr(per)Rr) '] + 1) I, = 0.

We thus need to study the fluctuations of \/TFk’T, which is the purpose of the
three following lemmas. Lemma 3 is a Central Limit Theorem characterizing
the fluctuations of random matrices of the type S?DTST where Dr is a
sequence of T'x T' deterministic matrices. Lemma 4 particularizes the results
of Lemma 3 to the case where Dp = pymy(pr1)Ir + chT(,ok’T)RT)_l.
In Lemma 5 these results are used to characterize the fluctuations of Fj, .
Essentially, it is shown there that the matrices By 7 can be replaced with

VPESkET.

Lemma 3. Let Dy € CT™*7T be a sequence of deterministic Hermitian ma-
trices with supy ||Dr|| < co. Assume that

1
T
Consider the matrices St defined by (4.12). Then

1
Tr D?. oo B and T Tr(diag(Dr))? o b.

G

1 H Tr Dy L
\/T(TSTDTST B T IK) T—o00
where G = [Gijlo<ij<k—1 is random Hermitian such that {G;j}i<; are in-
dependent, Gi; ~ N (0,8 + ko) for 0 <i < K —1, and G;; ~ CN(0,5) for
0<i<j<K-1.
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Proof. See Appendix 4.7.5. O

Lemma 4. Let 0 < k < s and
Dy = ppmr(pr.r) (It + ermr(pr.r)Rr)

Then limsupy || Dr|| < oo,
L n(D2) —— B, and 2 Tr(diag(Dr))? —— ¢
Tr TT—>oo k,anTrlag T T—o00 k

where B and ¢y, are given in Theorem 26.
Proof. See Appendix 4.7.6. O

Lemma 5. Let My, ..., My, My = [M¢m klo<e,m<j,, be random independent
Hermitian matrices such that the { My i }i<m are independent, My ~
N(0, B + ko), and My 1 ~ CN(0, Br) for 0 <€ <m < ji. Then

c
(VT Fyr)k=o.. .t —— (Mg)g=o, ¢

T—oo

Proof. See Appendix 4.7.7. O
Theorem 2.3 of [21] can be adapted to obtain the following result:

Proposition 11. In the setting of Theorem 26, let Go, . .., G, Gj, € CIkXJk,
be independent GUE matrices. Then, for any bounded and continuous f :
RJO++]S RN R’

E[f(n(),% ey 7757T)} - E[f(COa ceey gg)] —0

where (. is the random wvector of the decreasingly ordered eigenvalues of

(prg(pr)) Y (VoauGr + VT Fyr).

Remark 1. In fact, [21, Th. 2.3] characterizes the asymptotic fluctuations
of the random variables \/T(;\i,T—p,C(i)) instead of the \/T(S\i,T_PIC(i),T); 50
that the speed of convergence of vy towards v and of cp towards ¢ had to be
controlled through [21, Assumption 7]. By replacing py with py 1, the proof
of [21, Th. 2.3] goes on without the need for that assumption. Replacing py

by pr.1 is enough for the present purpose.

By Lemma 5, the (s+1)-uple of matrices (\/axGr+vTFy.1)i_, converges
in distribution to the (s + 1)-uple (M, ..., M) provided in the statement
of Theorem 26. Applying Proposition 11, this theorem is proven.
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4.5 Numerical results

We consider the setting of Section 4.4, with signals s; ; drawn from a QPSK
constellation for which k = —1. The signal power az defines the signal-to-
noise ratio (SNR). The noise is issued from an autoregressive (AR) process
of order 1 and parameter a, so that [Rr]x; = al*=t All other parameters
are given in the figure captions.

In Figure 4.1, the probability of correct order estimation of the estimator
proposed in Proposition 8 is compared against the MDL and AIC criteria,
for K = 2 equal power sources, for growing N, and for ¢ = 0.5 fixed.
We observe that the proposed estimator outperforms the MDL and the AIC
methods, consistently with the known inappropriateness of the latter. Note
that the AIC particularly fails to detect any source, irrespective of N.

In Figure 4.2, the false alarm rate (FAR) and correct detection rate
(CDR) for single source detection is evaluated for different values of ¢ and
for growing ratios cp. We observe here the impact of an appropriate choice
of & which, if too small, generates a high FAR when the noise eigenvalues
tend to spread (i.e. for cp large) while, if too large, does not allow for correct
source detection close to the detectability threshold (i.e. for ¢ large).

Figure 4.3 depicts the normalized mean square error (NMSE) E[(a2 —
a%)Qaa 4] of the power estimation of Proposition 8 against its theoretical
value obtained from Theorem 26. For the purpose of analysis, we assume
that the source is always detected, i.e. kr = 1, irrespective of the SNR. As
confirmed by Proposition 10, the theoretical variance diverges as pg | Plim-
We however observe that in the finite NV, T regime, the power estimator
errors remain bounded at low SNR. This is explained by the fact that, while
the theoretical error diverges due to A | 0 (see Lemma 2) as pg | Plim, its
estimator for each N, T (obtained by replacing m by 7hr) is always non-zero
even for py = pim. In the high SNR regime, here with kK = —1, the NMSE
becomes linear (in dB scale) with slope —10 dB/decade. It is easily shown
that the limiting SNR gap between the proposed and oracle estimators is
exactly

10log (/01 Ip(exp(2emu))|?du - /01 \p(exp(Zmu))|_2du) dB

which is merely due to a gain in SNR after whitening. In particular, the
larger the correlation parameter a, the bigger the limiting gap.

In Figure 4.4, the mean square error E[(¥(6y) —v(6))?] of the localization
function at position 8y = 10° is compared against the performances of the
oracle estimator (which performs pre-whitening prior to using the estimator
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of [32] or equivalently that of Proposition 9) and of the traditional MUSIC

estimator with localization function §aqr(0) £ EZiBl h(@)Hak,TﬂhTh(G)
in the notations of Proposition 8. The source is again supposed always
detected so that kr = 1 throughout the experiment. The proposed estimator
outperforms greatly the traditional MUSIC approach here, which is both
due to the large N,T regime improvement and to the consideration of the
non-white noise setting. The oracle estimator shows a huge performance
improvement in the low SNR regime, which translates the fact that condition
(4.8) (which needs to be fulfilled for either method to be valid) is extremely
demanding when £; = 0.6 (due to supp(u) being large). In the large SNR
regime, a constant gap is maintained which, although we do not provide
theoretical support, appears as a similar SNR-gap phenomenon as observed
in Figure 4.3.

In Figure 4.5, we now take K = 2 sources, with ag = a; the amplitude
of which define the SNR, and again assuming kr = 2. Here are compared
the performances of resolution of two close sources located at 8y = 10° and
fp = 12° for the localization method proposed in Proposition 9, for the
oracle estimator, and for the traditional MUSIC estimator. The figure of
merit, referred to as resolution probability, is the probability of identifying
exactly two local minima of the localization function in the window [5°,17°].
We observe that the proposed algorithm performs significantly better than
the traditional MUSIC method, confirming the results of [32] for the current
model.
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Figure 4.1: Probability of correct order estimation versus N with K = 2,
SNR= 10 dB (same power for each source), L = 5, ¢ = 0.75, ¢y = 0.5, and
a = 0.6.
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Figure 4.2: CDR (plain curve) and FAR (dashed curves) versus ¢y with
K =1, N =20,SNR=10dB, L =5, and a = 0.6.
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Figure 4.3: NMSE of the estimated power versus SNR with K =1, N = 20,
cr = 0.5, and a = 0.6.
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Figure 4.4: MSE of the localization function versus SNR with K =1, N =
20, cr = 0.2, and a = 0.6.
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Figure 4.5: Resolution probability versus SNR with K =2, N = 20, cr =
0.2, and a = 0.6.

4.6 Conclusions

This chapter proposed a set of statistical inference methods for large dimen-
sional information-plus-noise models with multiple sources, when the noise is
correlated in time while the information is correlated in space (or vice-versa),
without any assumption on the structure of the noise correlation matrix. The
estimators were proved consistent in the limiting regime where both the sys-
tem size and the number of observations go large. The proposed approach
relies on the asymptotic spectral separation between noise and signal in the
observed sample covariance matrix. The problem of signal detection is the
choice of the eigenvalue “gap parameter” €. It seems natural to be able to
evaluate the right-edge of supp(u) from the noise eigenvalues, thus resulting
in a test to compare 5\,‘7T, 1=0,...,L —1, to the estimated edge. To finely
tune the test, one can then use the results from [26] which proves Tracy—
Widom fluctuations at the edge with scaling coefficient 2" (my) (my, given by
Corollary 1). However, estimating both the edge and this coefficient remains
a challenging problem.

Under the same hypotheses, using instead prior information on the noise
structure, an alternative approach consists in estimating the noise covariance
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in the presence of signals. This is the main purpose of Chapter 5.

4.7 Appendix

4.7.1 Proof of Corollary 1

v(m) = % - C/ (1 +tcmt)2 v(dt)

of x(m) is continuous and increasing on (—(cb,)~!,0), and 2'(m) — oo
as m T 0. To establish the proposition, it will be enough to show that
2'(m) — —oo as m | —(cb,)~!. This is obvious when v(b,) > 0. Assume
then v(b,) = 0. When m | —(cb,)~!, by the monotone convergence theorem

/<1+t2 T/1—t/b V(d)

b2t?
>/[;)V_E7b } (b _t)Qfl/() =00

from the behavior of f,(¢) near b,, which proves the result.

The derivative

4.7.2 Proof of Lemma 2

Considering Equation (4.4), we obtain after some calculus that m/(z) =
m?(z)/A(x) on (b,00). Since m(z) is negative and increasing on (b, 00),
both m/(z) and m?(x) are positive on this interval so that A(z) > 0 on
(b, 0).

Proposition 7 shows that b coincides with the minimum of z(m) on ((—cb,)
Moreover, when Assumption 6 is satisfied (which is the case for the model
(4.12) by Lemma 1), the proof of Corollary 1 shows that z(m) attains its
minimum at a unique point m, € ((—cb,)~1,0), and 2'(mp) = 0. Finally,
Proposition 7 shows that x(m) is the inverse of m(x) on (b, 00). It results
that m(x) — mp and m/(x) = 1/2'(m(x)) — oo as x | b. This proves
A(x) = 0as x| b.

When z — oo, both (zm(z))? = ([z(t — ) 'u(dt))? and z’m/(z) =
[ 2?(t—x)"?u(dt) converge to 1. Hence, A(z) = (xm(z))?(z?m’(z))~! — 1,
concluding the proof.

71

—1,0).



CHAPTER 4. DETECTION/ESTIMATION OF A SMALL RANK
SIGNAL IN THE PRESENCE OF CORRELATED NOISE

4.7.3 Proof of Theorem 27

For simplicity, we focus on the fluctuations of vT(jor — po). Recall that

Por = gr(hor) "' and po = gr(por)~". Define 9(x) = mp(x)(zermp(z) +
cp — 1) with mp(x) defined in Theorem 20-6). We have

VT (por — po) = VT (gr(hor) ™" = gr(por) ")
= VT (gr(ror) " = g, (hor)™")

+ VT (g, (M) = gr(hor) ™)

+ VT (gr(o ) —gr(por)™")

Ao,

2 fur(or) + for(Ror) + far(ho).

As Ao 22, po, we can replace fl,T(S\O,T> by fLT(j\[LT)]l]()\QT) where 17 is
the indicator function on a small compact interval [ in a neighborhood of py.
Mimicking the proof of Theorem 24, we can show that sup,c; f17(z) 0.
We similarly restrict fo7 to I. On this set, it is possible to show that the
random process T'(my(x) — mp(z)) valued in the set C(I) of the contin-
uous functions on I, converges in distribution towards a Gaussian process
in C(I). This result was shown in [6] for I a compact path of C,; this
can be generalized to the interval I of interest in this proof by using the
Gaussian tools used in e.g. [21]. As a result, sup,c; for(z) P, 0. To deal
with f3 7, we start by observing that gr(prr) = g(pr) and (1/97(pr 1)) —
—d'(pr)/9*(pr) = —pig (pk). Using the result of Theorem 26 and applying
the Delta method [17, Prop. 6.1.6], we can show that f37T(5\07T) £ po[Mol11-

The generalization to the vectors &, 7 defined in the theorem shows no major
difficulty.

4.7.4 Proof of Proposition 10

From Theorem 22, pi | b as pi | pim. Hence, by Lemma 2, A(px) — 0 as
Pk 4 Piim. Moreover, the proof of this lemma shows that |m(px)| remains
bounded as pr | b. Hence, since v # §y by Assumption 5, the integrals in
the expression of «aj are lower bounded by a positive number as px | piim.
Thus, o — oo which proves the first part of the lemma.

When pp — o0, px/pr — 1 and ppm(px) — —1. Taking pr — oo into the
expressions of the integrals on the right hand sides of the expressions of ay,
Br, and ¢ and recalling that A(pg) — 1, we get ar — 0, S — 1, and
¢, — 1, which proves the lemma.
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4.7.5 Proof of Lemma 3

The fluctuations of quadratic forms of the type T*13¥ Drst where s €
CT*! hasi.i.d. entries have been well studied (e.g. [13, Th. 2.1], [37, Th. 3]).
Here, the vector st is replaced by the matrix S € CT*X which introduces
some differences in the proof. We follow here the lines of the proof of [37,
Th. 3] and stress the main differences. The following lemma is of main
importance being a direct application of the Cramér-Wold device:

Lemma 6. Cramer-Wold device: applicalion
Let X7 be a sequence of T' x T Hermitian matrices. Then

L
Xr— X
T—o00

with X taken from the GUE if and only if for all C € HI>!

TrCXr —5 TrOX. (4.18)
T—o00
Let St = [so, -+, s7-1] where s, = [s]g,.. ., SZK—l]T and let C' = [¢5] €

CE*K Hermitian matrix. Showing that
1 1
VT TrC(TSIHDTST - =T DTIK)

—£ 5 N (0, BTe(C?) + i Tr|(diag(C))?)

T—oo

and invoking Lemma 6 establishes the lemma.

Consider the sequence of increasing o-fields F; = o(so,...,8¢), t =
0,...,7 — 1, and denote E; the expectation conditional to F;. Then, with
E, =E,

1 4 1 VT = Ny
VT TrC 51 DrS — T Dyl | = = > (Biy1 — Ey) Tr CSF DSy
t=0

which is a sum of martingale increments, so that the key tool for establish-
ing Lemma 3 is martingale CLT [16, Th. 35.12]. Writing Z; = %(EH_l —
E;) Tr C’S;DTST, we need to show:

(i) Lyapunov’s condition : there exists 6 > 0 for which

T-1
T1+5/2 EZ2+6 ]
tz—; t T—00 0
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(ii) The following convergence holds

T-1
TN EZ2 —F— BTe(C?) + ka Tr[(diag(C))?).
—o T—00

Proof of (i)

The proof is based on mimicking the calculus of [37, page 5058| (based on
Burkholder’s inequality and E|sgo|® < 00). Taking § = 2, we need to show:

T-1
sup 7y EZ % 0. (4.19)
t=0

Denoting D7 = [d;;] and developing the conditional expectations, we obtain

K-1 t
TZy = dyy1441 Tr C (841801 — Ik) + 2§R< Z Cij Z Sk.j St+1,i dk,t+1)~
2,j=0 k=0
(4.20)
The Burkholder’s inequality is defined by the following lemma;:

Lemma 7. Burkholder’s inequality
Let X be a complex martingale difference sequence with respect to the in-
creasing sequence of o-fields Fj,. Then for p > 2, there exists a constant o,

for which

p
E

> %

k

p/2
ca, E(zEk_ﬂxkF) FEY xp
k k

Developing (4.20) and applying Burkholder’s inequality with the filtra-
tions Fo, ..., Fi—1, after some calculations it is shown that

T-1
1) EZ! <
t=0

Nle

with a a constant depending on E|sgo|®. From E|soo|® < oo Lyapunov’s
condition is proven.
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Proof of (ii)

From (4.20), using the independence of the s; ; and the moments Esgg = 0,

E|sool?> = 1, and E[s§0(s0,0)°] = 0 for u # v, after some calculations we
obtain
K—1 K—1 t
T?EZ} = df Tr C? ) 2 /jCn,i ; dyp1d
tZi = Oy 441 Tk Crk ) T Ci,jCni Sk.j Stn A t410¢41,0-
k=0 i,j;n=0 k,£=0

Let Dy = [dij1;>;] be the matrix consisting in the strictly lower trian-
gular part of Dp. Then we have

T—1 K—-1
1 : 2 ST
T ; EZ} = (Tr C?+k kzo czk) T Tr(diag(D7))? + T Tr CSHDEDrSrC.

Using [4, Lemma 2.7] and [37, Lemma 3| (or |51, P. 278]), we then get

1 s 1 s
— TrCSHDY DpSrC — Tr C2— Tr DHDy — 2 0.
T T T—o00

We finally get the result by observing that

1

2 1 ,
= Tr DEDy = 7T D2 — 7 Tr(diag(Dr))?.

4.7.6 Proof of Lemma 4

We recall first that from [21, Lemma 3.1], for any compact K C R—supp(u),
there exists C' > 0 such that

VT large, Vt € supp(vr), 12}:; |1+ ermp(z)t| > C.
x

From this result we then have

liminf  inf 1+ chT(phT)t] > 0.
T  tesupp(vr)

Hence, lim supy || Dr|| < co. Furthermore, since

1 pemr(pr.r)?
~ Tr(D2) = / k ’ v (dt
T ( T> (1 + chT(pk,T)t)Q T< )

the first convergence in the statement of Lemma 4 holds true.
As for the second convergence, recall that Ry = [ri—p|i<¢m<r, With ), [r] <
00. Define the Toeplitz matrix

I £ —nli<tan<r
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where v, = 8¢ + em(pg)re. Observe that Dy = pka(phT)F;l. Let [-]r be
the modulo-T operator, and let I'r = h/[t—n];p]lﬁt,nST be a circulant matrix
associated with I'p. By [21, Lemma 3.1] again,

limTinf i%fl](l + ermr(pr.r)|p(exp(2eru))[?) > 0. (4.21)
ue)|0,

Hence, supy ||I7|| < oo. It results that
o1 =
Pt T3, = 0 (4.22)

with || - |lo the Frobenius norm [30, Th. 5.2]. On the other hand, since I'p
is circulant, its eigenvector matrix is the Fourier T' x T matrix, so that we
can show

T—1
- 1 1
ity - (L Ir.
iag(C7") (Ttig1+chT@k,T)\p(exp@mm)\2) !

The lemma is obtained by combining these last two results.

4.7.7 Proof of Lemma 5

We essentially show that we can replace the By 1 by /prSk,r with Sp =
[Sor,...,S¢ 7|, similar to By. Since 6; # 6; if i # j, from the definition of
the vector function a(f), we have

[Hf Hrlie — 0k = ar(0k)Nar(0,) — ke = O(1/T).
Hence,
(HY Hp)'/? & I + B

where ||Er| = O(1/T). Given any sequence Dr of deterministic matrices
such that supy ||Dr|| < oo, it can be seen by a moment derivation with
respect to the law of S that

E = O(1/T)

1
[TE#DTBT - P1/2S¥DTSTP1/2}

k.t

for any k,¢ < K — 1. Hence, by Markov’s inequality,
1
VT <TB¥DTBT - P1/2S¥DTSTP1/2> 20

Replacing Dy with any of the matrices pymy(pk.r)(IT + crmr(prer)Rr) ™1,
we get from Lemma 4 that supy ||Dr|| < co. Therefore, the By r can be
replaced with the |/pr Sk 7. The result is then obtained upon applying Lem-
mas 3 and 4 and recalling that, for £ = 0,...,t, the S, r are independent.
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Chapter 5

Estimation of Toeplitz
covariance matrices and
application to source detection

5.1 Introduction

Let (v¢)tez be a complex circularly symmetric Gaussian stationary process
with zero mean and covariance function (rg)rez with rp = E[vivy] and
ry — 0 as k — oco. We observe N independent copies of (v)iez over the

time window ¢ € {0,...,7 — 1}, and stack the observations in a matrix
Vp = [an]?]X;:lO’T_l. This matrix can be written as Vp = WTRl/Q, where

Wr € CNXT has independent standard circularly symmetric complex Gaus-
sian entries and R;ﬂ/ %is any square root of the Hermitian nonnegative definite
Toeplitz T x T matrix

To ™ rT—1
A, _ | "
Ry = [Tl*J]Ogi,ng—l = )
r1
ri-T r-1 7o

Recently this estimation problem has drawn a renewed attention con-
sidering the high dimensional setting for which both N and T are large.
Generally estimation methods of R rely on the classical biased and unbi-



CHAPTER 5. ESTIMATION OF TOEPLITZ COVARIANCE
MATRICES AND APPLICATION TO SOURCE DETECTION

ased estimates f%T and f}éT of 7y, respectively defined by

| N-1T-1

N *

" T = NT Z Z Unt+kUn, e Lo<t+k<T-1
n=0 t=0
1 N-1T-1

Thr = v | _

kT N(T — |k]) 7;) ; nt+kUnt L0<t+k<T—-1

where 14 is the indicator function on the set A. Depending on the rela-

tive rate of growth of N and T, the estimates RY. = [ff_j rlo<ij<r—1 and

A% = [F} rlo<ij<r—1 may not be consistent. The estimation approaches
developed during the last decade propose all to build banded or tapered
versions of the estimated matrix fiT by down-scaling estimates of entries
sufficiently away from the diagonal [71, 15, 72, 19, 18|. These give rise to
the consistent estimate E%T = HET]i,j]l\i—ﬂgy] for some well-chosen func-
tions (7') usually satisfying v(7') — oo and v(T")/T — 0. These methods
however suffer from the following main limitations:

(i) they assume the a priori knowledge of the rate of decrease of r; (and
restrict these rates to specific classes);

(i) the results are asymptotic in nature and do not provide explicit rules for
selecting v(T') for practical finite values of N and T

(i) the operations of banding and tapering do not guarantee the positive
definiteness of the resulting covariance estimate.

The propose of this chapter is to consider non banded estimates of Rp.
The only assumption on ry, is that Y 2 |rg| < oo. The consistency of the

non banded estimates of Rp given by ﬁibT and }?i% is obtained thanks to the
choice N,T — oo with N/T — ¢ € (0,00). This setting is more practical
in applications as long as both the finite values N and T are large and of
the same order of magnitude. The contribution of this work consists in the
establishment of concentration inequalities for the errors in spectral norm
|Rr — ﬁbTH and ||[Rr — RY}||. The results are then generalized to the case
where Vr is replaced by Vr + Pr for a rank-one matrix Pr and we show
that the concentration inequalities remain identical. As an application of
the latter, we study a single source detection (modeled through Pr) by an
array of N sensors embedded in a temporally correlated noise (modeled by
Vr) performed in two steps. First, the matrix Ry is estimated from Vp + Pr
giving ﬁ% or ﬁi’f which are both nonnegative definite with probability one.
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Then this estimate is used as a whitening matrix, before applying a GLRT
procedure on the whitened observation.

5.2 Performance of the estimators

5.2.1 Model and assumptions

Let (rg)rez be a doubly infinite sequence of covariance coefficients. For any
T e N, let

To 1 rT—1
r—1
Ry =T(r_r—1),--m7-1) = |
1
r1-T r—1 o

a Hermitian nonnegative definite matrix. Given N = N(T') > 0, consider
the matrix model
1,7 1/2
Ve =londnizg = WrR{ (5.1

where W = [wy, 4] nN t_:l(’)T_l has independent CN'(0, 1) entries. It is clear that

7y = Elvn 410y, ] for any ¢, k, and n € {0,..., N —1}.
Define the covariance function for A € [0, 27)

[e.e]

T2 D e (5.2)

k=—00

We assume in the remainder of this chapter that the covariance coeffi-
cients ri are absolutely summable and ro # 0. Hence, Y(\) is continuous
on the interval [0,27]. Since |[|[Rr| < || Y]|eo (see e.g. [30, Lemma 4.1]),
the absolute summability of 7 implies that supy ||Rr| < co. We moreover
assume the asymptotic regime denoted as “T" — oo0” for which N/T" — ¢ > 0
as T' — oo.

The following section presents the main results presented in Theorems 28
and 29.

5.2.2 Main results

The aim is to study the performances of the estimators of the covariance
matrices. These are based on two frequently considered estimates of 7
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defined respectively by

| No1T-1
N *
o1 = NT D0 vneswvhlosirher (5.3)
n=0 t=0
1 N-1T-1
Thp = ———— v vr 1 1. 5.4
kT N(T — “{ZD r;) ; n,t+kUn t L0<t+k<T-1 ( )
Since EfY . = (1—|k|/T)ry and EfY . = ry, the estimate #? ;. is biased while
71 p is unbiased.
Define also the estimates of Ry which are Toeplitz matrices formed from
7212 o and 7} 5, respectively:

R AT (f’i(T_l),T, . ,f{’T_M) (5.5)
RuaT (fﬁ RPN ,ngil)’T) . (5.6)

A well known advantage of ﬁ% over ﬁ% as an estimate of R is its structural
nonnegative definiteness.

The results on the spectral behavior of the matrices }AEL} and 1/%% are
provided under the form of concentration inequalities on Hﬁl’} — Ry| and
||§:% — Rr|| and given in the following two theorems:

Theorem 28. Assume 1 are absolutely summable and 1o #0. Let T — ¢
and N/T — ¢ > 0. Let R} be defined as in (5.5). Then, for any x > 0,

B[~ e > o] < o (et (5 10w (14 5= ) o))

where o(1) is with respect to T and depends on x.

Theorem 29. Assume 1 are absolutely summable and ro #0. Let T — o0
and N/T — ¢ > 0. Let RY. be defined as in (5.6). Then, for any x > 0,

P[||Rs — Br|| > o] < exp (—mu +o<1>>>

where o(1) is with respect to T and depends on x.

A consequence of these theorems, obtained by the Borel-Cantelli lemma,
is that ||RS. — Rr|| — 0 and ||R% — Ry|| — 0 almost surely as T'— oo. The
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slower rate of decrease of 7'/1og(T") in the unbiased estimator exponent may
be interpreted by the increased inaccuracy in the estimates of ry for values
of k close to T — 1.

We now turn to the proofs of Theorems 28 and 29, starting with some
basic mathematical results that will be needed throughout the proofs.

5.2.3 Some basic mathematical results

Lemma 8. For z,y € C™*! and A € C™*™,
a4z — y™ay| < Al (2l + Iyl llz = vl
Proof.
‘ Az — HAy‘ ] HAz — yMAz 4y Az — HAy)
‘ Ax‘—k)yHAa:—y)‘
< |1 A] (HxH + [yl |z = yll.-

O]

Lemma 9. Let Xo,..., Xy 1 be independent CN(0,1) random wvariables.
Then, for any x > 0,

1

M-1
P [M Z (1 Xm]? = 1) > x] <exp(—M(z —log(l+x))).

m=0

Proof. This is a classical Chernoff bound. Indeed, given £ € (0,1), we have
by the Markov inequality

1 M-—1 M-—1
IP’[M S (X2~ 1) > :r] —P [exp (g 3 \Xm|2> > expEM (z + 1)
" M-1
()

m=0

< exp(—EM(x + 1))E

m=0

= exp (—M (£(z + 1) + log(1 — £)))

since E [exp(£|X,n|?)] = 1/(1 — £). The result follows upon minimizing this
expression with respect to &. O

We turn now to the proof of Theorem 28 given in the following section.
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5.2.4 Biased estimator: proof of Theorem 28

Define the following functions

k=—(T—1)
Since R, — Ry is a Toeplitz matrix, from [30, Lemma 4.1],

-
A€[0,2m)

Th) = 1r()|

< sup EYS(A) — Yr(N)] .

A€[0,2m)

Th(\) — ETZ}()\)‘ + sup
Ae[0,27)

By Kronecker’s lemma ([36, Lemma 3.21]), the rightmost term at the right-
hand side satisfies
T-1 ‘k’l“ |
ETS(\) — T )\‘< S Mo .
‘ T( ) T( ) - b= (11 T T-x 0 (5 7)

In order to deal with the term supycjo ox) ]'/be()\) - E?”T(A)L two ingredients
will be used. The first one is based on the important fact that the terms
'Y'Ir}()\) and ETQ}(A) can be written in a quadratic form. This is given in the
following lemma (proven in Appendix 5.7.1):

Lemma 10. The following facts hold:

H VI Ve
N

EY5(A) = dp(N)" Rydr(X)

Th(\) = dr(\) dr())

where dp(\) = 1/v/T [17 e L e—z(T—l)A]T'

The second ingredient is a Lipschitz property of the function ||dp(X\) —
dr(XN)|| seen as a function of A. From the inequality |e A —e | < t{]A=N|,
we indeed have

T—1
1 , TIA—= XN
J4r) = dr ()l = | 7 3 e e < TREL o)
t=0

82



CHAPTER 5. ESTIMATION OF TOEPLITZ COVARIANCE
MATRICES AND APPLICATION TO SOURCE DETECTION

In order to control the term sup
A€[0,2m)
of A we need to discretize the interval [0, 27]. Denote by |-] the floor function
and choose § > 2. Define the interval Z = {0,..., |78 — 1}. Let \; =

QWﬁ, i € Z, be a regular discretization of the interval [0, 27]. We write

;ﬂ}()\) — E'Y“bT()\)’ which is a function

sup
A€[0,27)

< max sup (ﬁ?p@\) - Yg“()‘l)
€L xe[Ai,hit1]

Th() — ETH()|

+ [ETH () — ETH()|) Smax swp |[THO) - THOw)
€T )\E[/\i,)\zurﬂ

+ max sup

+ max ‘T”T(Ai) CEYS ()] 4
€T xe[Aishit)

1€l

ETH(\) — EYH(0V)|
A
= X1+ X2+ X3-

With the help of Lemma 10 and (5.8), we need to derive concentration in-
equalities on the random terms y; and xs and to provide a bound on the
deterministic term ys. This is the purpose of the three following lemmas.
Herein and in the remainder of this chapter, C' denotes a positive constant
independent of T'. This constant can change from an expression to another.

Lemma 11. There exists a constant C' > 0 such that for any x > 0 and any
T large enough,

xTP2 xTP2
Px1 > z] <exp| —cT?| S5ae— —log S — 1| |.
ClIY oo ClIYloo

Proof. Using Lemmas 10 and 8 along with (5.8), we have

w Vi Vr wVEVr
N N

< 2N dr () — drO)| | Bl [ W W

Tr() = Th(00)

dr(X\) —dr(N:) dr(\;)

- ‘dT()\)

< O = Al Wit

From |[WHWr| < Tr(WHW7) and Lemma 9, assuming 7' large enough so
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that f(z,T) = 2T~ /(CN||Y||~) satisfies f(z,T) > 1, we then obtain

T-1N-1

ClTNoT > wne> >

t=0 n=0

P[X1>£L‘]§P

<exp(=NT(f(x,T)—log f(z,T) — 1)).

Lemma 12. The following inequality holds

T Y
Plx2 > ] < 2T exp | —eT| —— — log<1 + 7) .
[paine [paipe

Proof. From the union bound we obtain:

Plx2 > 2] < P H@}()\z‘) —ET5(\)

We shall bound each term of the sum separately. Since

P Hfl:)r()\i) — ET4(\)

> az} =P [T%(Al) —EY5 () > az}
+P [_ (TbT(/\i) . Efg(xi)) > x}

it will be enough to deal with the first right-hand side term as the second one
is treated similarly. Let nr(\;) £ Wrqr(\) = [7707T()\Z-),...,nN_l,T()\i)]T
where gr(\) 2 Ri/%dp(N;). Observe that m,r(Ai) ~ CN(0, [gr(\)]Iy).
We know from Lemma 10 that

T~ ETh 00 = - (eGP~ ElrQ0l?) . (69

From (5.9) and Lemma 9, we therefore get

P [Th(h) ~ ETHO) > 2] < exp(-N (W—log(l+ww)>>'

Noticing that [|gr(\:)||? < ||| and that the function f(z) = x—log(l—i—x)
is increasing for z > 0, we get the result. O
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Finally, the bound for the deterministic term x3 is provided by the fol-
lowing lemma:

Lemma 13. x3 < C||Y T+

Proof. From Lemmas 10 and 8 along with (5.8), we obtain

ET4()) — ETS ()

- ‘dT()\)HRTdT()\) — dr ()M Rydr ()
< 2| Rr|l |dr(X) — dr(N)]|
< O oo X = N[ T

From max sup |[A—XN|=Aiy1 — N\ = T8 we get the result. O
€T )\E[/\iy)\i+l}

We now complete the proof of Theorem 28. From (5.7) and Lemma 13,
we get
P|

‘EbT —RTH > x} =Px1+x2>z+0(1)].
Given a parameter ep € [0, 1], we can write (with some slight notation abuse)
Pxi+x2 >z +0(1)] <P[x1 > zer] +Px2 > z(1 —er) +o(1)] .

With the results of Lemmas 11 and 12, setting ep = 1/T', we get

P[X1+x2>x+0(1)]§]P’[X1 >%} +P[X2>:1:(1—%)+0(1)}

xTP=3 xTP=3
—log—n—-1
Cl|oo Cl|oo ))

T G (e e SR

= exp(—cT(ﬁ - log<1 + ﬁ) + 0(1)))

< exp (—CT2 (

since 8 > 2.

5.2.5 Unbiased estimator: proof of Theorem 29

The proof follows basically the same main steps as for Theorem 28 with an
additional difficulty due to the scaling terms 1/(T — |k|).
Defining the function

T-1
THOE S e

)

k=—(T—1)
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we have

o] <
A€[0,27)

TH) = Tr()|

= sup
A€[0,2m)

TH() — ETH(V)

since Tp(\) = ]EY’%(A), the estimates 7}, being unbiased.
In order to deal with the right-hand side of this expression, we need the

following analogue of Lemma 10, borrowed from [65] and proven here in
Appendix 5.7.2.

Lemma 14. The following fact holds:
= Vv,
TL(A) = dp(\)" < TNT ® BT> dr(N)

where ® is the Hadamard product of matrices and where

T
1 7~ ... T
T
BTé[T] ="
T —li—jl)o<ijcr—1 L T 1

In order to make Tl}()\) more tractable, we rely on the following lemma
which can be proven by direct calculation.

Lemma 15. Let z, y € C™ and A, B € C"™*™. Then
2" (A e B)y = (DY AD,BT)
where we recall D, = diag(z) and D, = diag(y).
Denoting

Dr()) £ diag(dr(})) = % diag(1, ¢, .., e{T-DA)

Qr(N) 2 RY*Dr(\) BrDr(WM(Ry/ )

we get from Lemmas 14 and 15

Tr(Dr (W (RY P WHEWrRY* Dy (N Br)

Tr(WrQr(\) W)

N
1=,
-~ Z HQr(x (5.10)
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where w!! is such that Wp = [w!,...,wh_].

Compared to the biased case, the main difficulty lies here in the fact that
the matrices By /T and Qr(\) have unbounded spectral norm as 7' — oo.
Note, that Lemma 15 allows us to deal with Q7 with a reduced spectral
norm by a factor of order T instead of Bp. The following lemma, proven in
Appendix 5.7.3, provides some information on the spectral behavior of these

two matrices that will be used subsequently.
Lemma 16. The matriz By satisfies
|Br|| < V2T(\/logT + C). (5.11)

For any X € [0,27), the eigenvalues oy, ...,or—1 of the matriz Q(\) satisfy
the following inequalities:

T—1
Y o7 < 2|73 logT +C (5.12)
t=0
max|or| < V2| Yo log T)? + C (5.13)
T—1
dle® < C((logT)*? +1) (5.14)
t=0

where the constant C is independent of \.

We shall also need the following easily shown Lipschitz property of the
function |[|[Dr(X) — Dp(N)||:

ID7(A) = Dr(X)| < VTIA = X, (5.15)

We now enter the core of the proof of Theorem 29. Choosing 8 > 2, let
Ai = 27TLT’—BJ, i € Z, be a regular discretization of the interval [0, 27] with

Z={0,...,[T?| —1}. We write

sup | T4\ — ]Ef%(/\)‘
A€[0,2m)
Smax swp |THO) - THOW)| +max ‘T%(Ai) ~ETE(N)
1€

€T N[ Ait1]

+max sup
€T Ne[Aihit1]

£ X1+ x2 + X3

ET$(\) — ET40))|

Our task is now to provide concentration inequalities on the random
terms 1 and x2 and a bound on the deterministic term xs.
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Lemma 17. There exists a constant C > 0 such that, if T is large enough,
the following inequality holds:

Th=2 xTh=2
p <oxp(—er? ([ _10g 21— 1)),
[X1>x}—em)<‘z <CMbgT ¢ 0Vlog T >>

Proof. From Equation (5.10), we have

N—

Z — Qr(\i)) wn
1 N—
N Z
< — HQT 2l Z [ wn||* .

The norm above further develops as

IN

— Qr(N\)) wy

1Q7(A) = Qr(A\)|| < Rz [ |1Dr(A\) BrDr(\)" — Dr(Xi) BrDr(\)"
+ Dp(N)BrDr(\" — Dp(N)BrDr(\)1
< 2| Dr(N)[H Bz | Br | [[Dr(A) — Dr(A)]|
< CT(V1ogT +1) |\ = Ay
where we used (5.11), (5.15), and ||Dr(\)|| = 1/V/T. Up to a change in
C, we can finally write [|Qr(\) — Qr(\)| < CT#\/logT. Assume that

f(z,T) 2 2TP~2/ (C\/logT) satisties f(z,T) > 1 (always possible for every
fixed x by taking T large). Then we get by Lemma 9

T—1N-1
Plx1 >z] <P (CNlTlﬁx/logTZ Z |wn|* > x)

t=0 n=0

1IN
~ (34 5 S sl 1) = s 1)
<exp(=NT (f(z,T) —log (f(z,T)) = 1)).
O

The most technical part of the proof is to control the term o, which we
handle hereafter.
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Lemma 18. The following inequality holds:

cx®T
P >zl <exp| ————(1+0(1 .
e > ] < p< T g+

Proof. From the union bound we obtain:

Phe>a< Y B[THO) -ETHO)

> :z:} : (5.16)

Each term of the sum can be written

P [|THO) - ETHO)

> x} —P [szp(xi) CETA(N) > x}

+P [— (T”g}(/\i) - M%(Ai)) > x} .

We will deal with the term ¢; = P ['Y"%()\Z) —E'Y"%(/\,) > x}, the term

P [— <'Y"%()\z) — E'f%(/\z)) > x} being treated similarly. Let Qr()\;) = UpSpUM
be a spectral factorization of the Hermitian matrix Qp(\;) with Yp =
diag(og,...,0r_1). Since Urp is unitary and Wy has independent CA/(0,1)
elements, we get from Equation (5.10)

=

Tu(n) £ WS () wn

2|~
3
g

2
S

-1

2| -

]wnvtlzat (517)

i
=)
~+~
I
=)

where £ denotes equality in law. Since E [e“'X‘Z} =1/(1 —a) when X ~
CN(0,1) and 0 < a < 1, we have by Markov’s inequality and from the
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independence of the variables |wy, ;|2

(1 - "LNT) - (5.18)
T

-

< ﬁ. <y o _ _z?
for any 7 such that 0 < 7 < O<Itr£71} Lo Writing log(1—x) r— %+ R3(x)

8
+
2
~—
|
=}
(S}
~—
—
|
‘ 2
\]
~—
—

with |R3(x)] < 3 ‘ 3o When |z| < e <1, we get

2

b <o mwzw w(%))
<en(-N(§ - 2et) (v Im(5)) o

We shall manage this expression by using Lemma 16. In order to control the
term exp(N Y |R3(+)|), we make the choice

axT

logT

where a is a parameter of order one to be optimized later. From (5.13) we get
oL T

max; 7 = O ((log T)_l/Z). Hence, for all T large, 7 < min, % Therefore,
(5.18) is valid for this choice of 7 and for T large. Moreover, for € fixed and
T large, % < € < 1 so that for these T'

N Z)RZ"((M) ’ = 3N2(

0 (T(log T)*3/2)

from (5.14). Plugging the expression of 7 in (5.19), we get
CLTCC2 2T2 2 —
< _ —3/2 )
Vi< eXp( N((logT) " 2N?(log T)? Zat» eXp( ( (log T) ))
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Using (5.12), we have

2
i < exp(—i?% <a — |TH}’\‘}GQT)) eXp((longj:)fi/?)

The right hand side term is minimized for a = ﬁ which finally gives
Nz?
; < ex (—— 14+ o0(1 )
o S exp(~ a0+ o)

Combining the above inequality with (5.16) (which induces additional o(1)
terms in the argument of the exponential) concludes the lemma. O

Lemma 19. x3 < CT7"2\/log T.

Proof. From Lemma 14, ||Rr © Br|| < ||Rr|| || Br|| (see [33, Theorem 5.5.1]),
and (5.8), we get:

ET$(\) — ET4(V)| < 2)ldr() - dr(\) | | Rrl | Br
< CT? A = Ail | Xl v/Tog T
O

Lemmas 17-19 show that P[x2 > x] dominates the term P[y; > z]| and
that the term yj3 is vanishing. Mimicking the end of the proof of Theorem
28, we obtain Theorem 29.

We conclude this section by an empirical evaluation by Monte Carlo
simulations of P[|Ry — Ry|| > ] (curves labeled Biased and Unbiased),
with Ry € {Rb, R%}, T = 2N, x = 2. This is shown in Figure 5.1 against
the theoretical exponential bounds of Theorems 28 and 29 (curves labeled
Biased theory and Unbiased theory). We observe that the rates obtained in
Theorems 28 and 29 are asymptotically close to optimal.
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Figure 5.1: Error probability of the spectral norm for x = 2, ¢ = 0.5,
[Rr)ry = a*! with a = 0.6.

5.3 Estimators for “signal-plus-noise” model

5.3.1 Model, assumptions, and results

Counsider now the following signal-plus-noise model:

Yr = [Yntlo<n<n—1 = Pr+Vr (5.20)
0<t<T—1
where the N x T matrix Vp is defined in (5.1) and where Pr satisfies the
following assumption:

Assumption 9. Pp £ h;ps'q'!I‘lT/2 where hp € CV is a deterministic vector
such that supy |hr|| < oo, the vector st = (sg,...,s7_1)" € CT is a random
vector independent of W with the distribution CN (0, I7), and T'p = [fyij];f':j_zlo
is Hermitian nonnegative such that supy ||T'p|| < oo.

We have here a model for a rank-one signal corrupted with a Gaussian
spatially white and temporally correlated noise with stationary temporal
correlations. Observe that the signal can also be temporally correlated. Our
purpose is still to estimate the noise correlation matrix Rp. To that end, we
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use one of the estimators (5.3) or (5.4) with the difference that the samples
vp¢ are simply replaced with the samples y, . It turns out that these esti-
mators are still consistent in spectral norm. Intuitively, Pr does not break
the consistency of these estimators as it can be seen as a rank-one pertur-
bation of the noise term Vi in which the subspace spanned by (I'/2)Hsp
is “delocalized” enough so as not to perturb much the estimators of Ry. In
fact, we even have the following strong result.

Theorem 30. Let Y be defined as in (5.20). Assume ry are absolutely
summable and g # 0. Let T — oo and N/T — ¢ > 0. Define the estimates

N-1T-1

b 1

= N 2o D el

kT = NT Yn,t+kYn,t Lo<t+k<T-1
n=0 t=0

1

1 N-1T-1
qup - *
T = N(T _ ]k\) nz:o tz; yn,t+k’yn7tﬂ0§t+k§T71

and let
b b b
Ry = T(r—p(T—l),T’ R r(’?—l),T)
Ry = T(fli]szl),T’ ey f?jszl)j).

Then for any x > 0,

P [Hﬁg? — RTH > :1:} < exp(—cT(ﬁ — 10g<1 + m) + 0(1)))

and
cTx?

P [Hﬁ%p - RTH > :c} < exp(_4||'r||iologT

(1+ 0(1))).

Before proving this theorem, some remarks are in order.

Remark 2. Theorem 30 generalizes without difficulty to the case where Pr
has a fivzed rank K > 1. This captures the situation of K < min(N,T)
sources.

Remark 3. Similar to the proofs of Theorems 28 and 29, the proof of The-
orem 30 uses concentration inequalities for functionals of Gaussian random
variables based on the moment generating function and the Chernoff bound.
Ezxploiting instead McDiarmid’s concentration inequality [41], it is possible
to adapt Theorem 30 to st with bounded (instead of Gaussian) entries. This
adaptation may account for discrete sources met in digital communication
signals.
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5.3.2 Main elements of the proof of Theorem 30

We restrict the proof to the more technical part that concerns }?i%p . Defining
the function

T-1
TP e Y Ak
k=—(T—1)
and recalling that Tr(\) = z;i(T_l) rre’®* . we need to establish a con-

centration inequality on P [SUPAG[O,%) T4 (A\) — Tr(\)| > x|. For any A €

[0,27), the term T4 (X\) can be written as (see Lemma 14)

H
T =) (Y @ Br ) el

H
= dp(W)H (VTNVT ® BT> dr(\)

PpVr + VP
+dp(M)" (TTNTT © BT> dr(A)

_|_

PHP
dp(M\)" <7}\,T © BT) dr (M)
S THO) + TF () + 17 (V)

where Bp is the matrix defined in the statement of Lemma 14. We know
from the proof of Theorem 29 that

~ cTx?
P| sup |Y5N) —=TrN)|>z| <exp| ———5——(1+0(1))
A€[0,27) ) | 4|72 log T

| (5.21)
We then need only handle the terms T5°%%(X) and T79(A).
We start with a simple lemma.

Lemma 20. Let X and Y be two independent N(0,1) random variables.
Then for any T € (—1,1),

Elexp(rXY)] = (1 — 72)~ /2.
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Proof.

1
Elexp(tXY)] = 7 /]1%2 e We 267V /2 g dy

1
N 2w R2
= (1—7%)712

=@ /2=(=TW2/2 gy g

With this result, we now have

Lemma 21. There exists a constant a > 0 such that

~ axT
P| sup |[Y7°(N)| >x| <expl— 14 0(1))).
LE[O’%J 7o) ] (= gz 1+ o)

Proof. We only sketch the proof of this lemma. We show that for any A\ €
[0, 27],

ARCross arT
P75 (V)] > a] < exp(— mw)

where C' does not depend on A € [0,27]. The lemma is then proven by a
discretization argument of the interval [0, 2] analogous to what was done
in the proofs of Section 5.2. We shall bound P[Y$°**(X) > z], the term

P[T%"Oss()\) < —z] being bounded similarly. From Lemma 15, we get
PHV: +VHP
HiT VT TT
S o DT()‘)BT>
Dr(WHTH A Hsr kAW RY2 Dy (V) By
N
Dr(WM(RY* M WHhp ST Dr(A) By
N

Teross()) = ﬂ(DT(A)

=Tr

+ Tr

_2
N

where Gr(\) = RY2Dr(\)BrDr(WHITHHH. Let Gr(\) = UrQrTUH be
a singular value decomposition of Gp(A) where Q = diag(wo,...,wr—1).
Observe that the vector zp £ W'T"hT = (20,...,27_1)" has the distribution
CN(0,||h7|*I7). We can then write

%(h?wWTGT<)\)ST)

!
_

£2

~ 2
Tgross()\) N N t wt(SR$t§RSt + C\\SItSSt).

x (:chwQTsT) =

Il
o
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Notice that {Rxy, Sy, Rsy, %st}tT:_ol are independent with ¥y,
Sap ~ N(0, ||hr||?/2) and Rsy, Ss¢ ~ N(0,1/2). Letting

0<7< (StTlp ||hTH)_1(Sl>1\p IG (NI~

and using Markov’s inequality and Lemma 20, we get
P [f/f%ross()\) > .’L'] —_P |:€NTT§IOSS(A) > eN’T:L‘]
< efNTzE |:62'r > wt(§th§R31+%xtS‘sst):|

T-1

=N I (1 - 722 | hr)?)
t=0

T-1
= exp (—NTZE - Z log(1 — Tgwf||hT|2)> .
t=0

Mimicking the proof of Lemma 16, we can establish that >, w? = O(logT)
and max; wy = O(y/logT) uniformly in A € [0,27]. Set 7 = b//log T where
b > 0 is small enough so that supy \(7[|hr| |[GT(N)|) < 1. Observing that
log(1 — ) = O(x) for & small enough, we get

IP’[T%"OSS()\) > 2] < exp(—Nbz//logT + E(A,T))
where [E(A, T)| < (C/logT) >, w? < C. This establishes Lemma 21. O

Lemma 22. There exists a constant a > 0 such that

Py T
P| su TN > x| <expl— ar 1+0(1))).
Le[o,l;r)' O] ] p(= g (1 o(1)

Proof. By Lemma, 15,
Y59(\) = N~' Tv(DY PR PrDrBr)

h 2
= H ]7\;" S?GT()\)ST

where Gp(\) = F%F/QDT()\)BTDT()\)H(F%F/Q)H. By the spectral factorization
GT(/\) = UTETUIH with X7 = diag(ao, .. ,O'Tfl), we get

9 T—1

~~ ST L h
TTQ()‘) £ H ]7\;| ;U”St’z
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and

P[T?g(/\) > ] < e~ Ntag [GTHhT”? S, Ot‘st‘2i|
T—1

= exp(—NTm — Z log(1 — UtTHhT||2))
=0

for any 7 € (0,1/(||hr||?sup, ||GT(N)|)). Let us show that

TG () < 0y 25T

Indeed, we have

. H 1| = e~ k=02, 1
TGN = N7 T DrBrDTr| = 0 30
,0=0
T-1 T-1
1 N1/2/1 1 1/2
< (L 1 o
_<Nk%::07k,€‘ ) (Nk%::O(T_“{;_g‘P)

- () (e ) s L

Moreover, similar to the proof of Lemma 16, we can show that ), o} =
O(logT) and max; |o¢| = O(y/logT) uniformly in . Taking 7 = b/\/logT
for b > 0 small enough, and recalling that log(1 — z) = 1 — z 4+ O(x?) for x
small enough, we get that

Nbz  bl|hy|?
ViegT = /logT

where |E(T,\)| < (C/logT) Y, 02 < C. We therefore get

P[TS9(N) > 2] < exp(— TeGr(\) + E(T, )\))

Ssi Nbz
PT57(A) > 2] < exp(- c)
P50 > ] < exp(— +
where C is independent of A. Lemma 22 is then obtained by the discretization
argument of the interval [0, 27]. O

Gathering Inequality (5.21) with Lemmas 21 and 22, we get the second
inequality of the statement of Theorem 30.
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5.4 Application to source detection

From an application point of view, the model (5.20) corresponds to a general
transmission model where the matrix Pr represents the signal matrix and
Vpr = WTR%F/ 2 corresponds to a temporally correlated noise. We consider
an example of a linear sensor network composed from one possibly emitting
source and NN sensors. Recall the null hypothesis Hy for which the signal is
absent and the hypothesis H; under which the source signal is present. By
stacking the T' observations into the matrix Y7 = [yo,...,yr_1] € CV*T we
have

Consider a sensor network composed of N sensors impinged by zero (hy-
pothesis Hy) or one (hypothesis Hy) source signal. The stacked signal matrix
Yr = [yo,...,yr—1] € C¥*T from time t = 0 to t = T — 1 is modeled as

|V, Hy
= { hrsi +Vr, Hi (5.22)

where sfl = [s5,..., s ] are (hypothetical) independent CA/(0, 1) signals
transmitted through the constant channel hy € (CNXl, and Vp = WTR%F/2 IS
CN*T models a stationary noise matrix as in (5.1).

As opposed to standard procedures where preliminary pure noise data
are available , we shall proceed here to an online signal detection test solely
based on Y7, by exploiting the consistency established in Theorem 30. The
approach consists precisely in estimating Ry by Ry € {ﬁg?, ﬁ%p }, which is
then used as a whitening matrix for Y. The binary hypothesis (5.22) can
then be equivalently written

5-1/2 _{ WrRyY*R,'?, Hy
e

YrR " ~ 5.23
g hrsH RV + WrRYP RV, H,y. (5.23)

Since HRTJ/%;I — Ir|]] — 0 almost surely (by Theorem 30 as long as
infygjo,2r) Y (A) > 0), for T' large, the decision on the hypotheses (5.23) can
be handled by the GLRT [14] by approximating I/VTRCI[,/QEC;I/2 as a purely
white noise. We then have the following result.
Theorem 31. Let ET be any of ]/%g? or ﬁgp strictly defined in Theorem 30 for
Yr now following model (5.22).  Assume infycpor Y(A) > 0 and
limTinf |hr|| Tr (R;") /T > \/c and define the test

ol Ry I
- < 5 (5.24)

= = >
T (YrRp'YE)
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where v € R satisfies v > (1 +/c)?. Then, as T — oo,

0, Hp
>
P[Q—V]%{L H,.

Recall from [14] that the decision threshold (1 4+ +/¢)? corresponds to the
almost sure limiting largest eigenvalue of %WTWFF, that is the right-edge of
the support of the Marcenko—Pastur law.

5.5 Numerical results

Simulations are performed hereafter to assess the performance of the test
(5.24) under several system settings. We take here hp to be the following
steering vector hy = +/p/T[1,...,e* T =] with # = 10° and p a power
parameter. The matrix R models an autoregressive process of order 1 with
parameter a, so the noise covariance matrix is expressed as [Rr|x; = alk=1l.

In Figure 5.2, the detection error 1 — Plac > «|H;] of the test (5.24) for
a false alarm rate (FAR) Pla > ~|Ho] = 0.05 under Ry = R4 (Unbiased)
or Rp = fz’;? (Biased) is compared against the estimator that assumes Rp
perfectly known (Oracle), i.e. that sets Ry = Ry in (5.24), and against the
GLRT test that wrongly assumes temporally white noise (White), i.e. that
sets Ry = Ir in (5.24). The source signal power is set to p = 1, that is a
signal-to-noise ratio (SNR) of 0 dB, N is varied from 10 to 50 and T'= N/c
for ¢ = 0.5 fixed. In the same setting as Figure 5.2, the number of sensors is
now fixed to N =20, T = N/c = 40 and the SNR (hence p) is varied from
—10 dB to 4 dB. The powers of the various tests are displayed in Figure 5.3
and compared to the detection methods which estimate Rr from a pure noise
sequence called Biased PN (pure noise) and Unbiased PN. The results of the
proposed online method are close to that of Biased/Unbiased PN, this last
presenting the disadvantage to have at its disposal a pure noise sequence
at the receiver. Both figures suggest a close match in performance between
Oracle and Biased, while Unbiased shows weaker performance. The gap
evidenced between Biased and Unbiased confirms the theoretical conclusions.
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N

Figure 5.2: Detection error versus N with FAR= 0.05, p = 1, SNR= 0 dB,
c= 0.5, and a = 0.6.
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-+ - Biased PN
--©- Unbiased PN
—— Oracle

0.8 |

0.6

0.4

Ploc > ~y|Hi]

0.2

SNR (dB)

Figure 5.3: Power of detection tests versus SNR (dB) with FAR= 0.05,
N =20, ¢=0.5, and a = 0.6.

In the same setting as Figure 5.3, in Figure 5.4 we propose to compare
the powers of the proposed detector (with the biased estimate) with different
banding parameters g going from 4 to 20. The estimated covariance matrix
used for the different detectors is given by RS%T = [[ﬁ?]mlu—ﬂg%]- From
the zoom of Figure 5.4 the best detection performance is obtained for vy =
8 in this setting. Observe that the detection performance gain obtained
by using a banded estimator in this setup is quite poor. Moreover, as its
theoretic characterization is not known for finite N and T, the banding is
arbitrary. We recall that the coefficients of the tapered estimate of Rp are

defined as in [18§]
~ [RF);,; when i :bj| < 7o,
[ rlis = (2= li—jl/m0)[RF]i; when o < |i — j| < 27,

0 otherwise.

The same conclusions as previously are drawn for Figure 5.5 where the pro-
posed detector is compared to the detectors with different tapering parame-
ters 7o going from 4 to 20.

101



CHAPTER 5. ESTIMATION OF TOEPLITZ COVARIANCE
MATRICES AND APPLICATION TO SOURCE DETECTION

0.61
0.8 |
0.6 .
T B .
< L |
A ~2142.05-2-1.95
S, 0.4 | —e— Oracle
A —— v =4
—o—7 =8
Yo = 12
0.2 o = 16

—H— "7 = 20
—+— Proposed

T

—10 —8 —6 —4 —2 0 2 4
SNR (dB)

Figure 5.4: Power of detection tests versus SNR (dB) for different banding
parameters vg with FAR= 0.05, N =20, ¢ = 0.5, and a = 0.6.
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Figure 5.5: Power of detection tests versus SNR (dB) for different tapering
parameters 79 with FAR= 0.05, N = 20, ¢ = 0.5, and a = 0.6.

5.6 Conclusions

In this chapter concentration inequalities were derived for two types of co-
variance matrix estimates. One of the main advantages of the proposed
methods is that we do not need to apply banding procedure in comparison
to all existing methods. However, the estimated coefficients which are too
far from the main diagonal do not bring much information, they rather de-
grade the estimate of the covariance matrix. Hence, intuitively, it would be
beneficial to perform banding/tapering. The choice of the banding window
is an open problem, the size of such window depends on the decrease of the
coefficients r;, and we do not assume any knowledge on their decrease.

The application to source detection turns out to be an alternative ap-
proach to the method proposed in Chapter 4. Indeed, assuming that more
prior information is available on Ry, i.e. its Toeplitz structure, we extend
the applicability of the theoretical model, allowing in particular to the noise
and the signal to have the same type of correlations (both temporal or both
spatial). A second advantage is that by whitening, the performance of the
proposed detector will outperform the performances of the detector of Chap-
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ter 4 at low SNR regime. In the high SNR regime, the covariance estimation
will instead be too degraded for this method to be beneficial. We have
therefore a trade-off between the both approaches.

5.7 Appendix

5.7.1 Proofs for Theorem 28: proof of Lemma 10

Developing the quadratic forms given in the statement of the lemma, we get

VHV 1 = r_
dr(M)" TNT = NT Z DAV
;] T-1 N-1
_ —(I'=0)A *
= NT e Z Un,lvnvll
L,I'=0 n=0
71 | N7l
_ zk)\ Z Z Un Utk Lo<t4k<T—1
k-zf(Tfl) n=0 t=0
T-1 R
— e A = Y5 (),
k=—(T—1)
and
HVTHVT
E | dr(N)"——dr (V)
nEWHW ]
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5.7.2 Proofs for Theorem 29: proof of Lemma 14

We have
VAV
dr(\)" ( T BT> dr())
T-1
1 1 T
_ i(I=1")\fyH R
NT 2. © Vr Vel 5=
Lll=—(T-1)
T-1 1 N-1T-1
ik *
= —_ irnl _
k—z(T:—ne N(T — |k 7;) tz:; Up,tUnt+kLo<t+k<T-1
T-1 ‘ R
= Y e =TE0).
k=—(T-1)

5.7.3 Proofs for Theorem 29: proof of Lemma 16

We start by observing that

T—-1 T—-1 T 2
2 _ 2
s = 3 it = 3 ()

1,7=0 4,7=0

1>]
T—1 T 2
=2 — -
Z(T_k> (T—k)+T
k=1
T—1 1
_ o722 — 972
=T ;T_k+T 212 (log T + C) .

Inequality (5.11) is then obtained upon noticing that ||Br|| < \/Tr B2.
We now show (5.12). Using twice the inequality Tr(FG) < || F|| Tr(G)
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when F,G € C™™ and G is nonnegative definite |33|, we get

!
_

o2(\) = TrQr(\)?

~
Il
o

= Tr Rp Dy (\) By Dr(M\)P Ry Dyp(\) Br Dp(M)
< ||Rr| Tr Ry (Dr(Ni) BrDr(A)")?

< T7?||Re||” Tx(B3)

< 2| Y% log T + C.

Tnequality (5.13) is immediate since |Qz||* < Tr Q3.
As regards (5.14), by the Cauchy-Schwarz inequality,

T-1 T-1 T-1 T-1
PACHIED A PO IEN D BEACH D PO
t=0 t=0 t=0 t=0

IA
Q. —~ =

106



Conclusion and perspectives

In this thesis, we dealt with two difficulties often occurring in modern sensor
networks: (i) the number of sensors and the number of observations are both
large and of the same order of magnitude and (ii) the sensors are embed-
ded in a correlated noise with unknown covariance matrix. Regarding the
assumption on the noise covariance matrix two approaches were elaborated.
The first one estimates the parameters of the system without making any
assumption on the statistics of the noise samples. The second one assumes
that the noise is a stationary process and proposes consistent estimates for
the noise covariance matrix leading then to the “whitening” procedure. We
have seen that the first approach cannot be applied to the scenarios where
the noise and the signal are not simultaneously temporally or spatially corre-
lated. Making an assumption on the noise covariance matrix structure allows
to avoid this restriction.

In parallel with the structure of this thesis two main directions of research
can be carried out.

Non structured noise covariance matrices

As regards the behavior of outliers of large random matrices and associated
detection and estimation algorithms more sophisticated matrix models than
the ones considered in this thesis can be explored. One of such models
is the so-called doubly correlated model with the noise matrix presenting
space and time correlations. The noise matrix for this model is written as
Vi = EIT/ 2WTR1T/ % where W hasi.i.d. entries and ET and Rp are covariance
matrices. This model is of particular interest in radar systems where the
noise may present simultaneous temporal and spatial correlations.

A recent subject of particular practical interest is the sparse component
analysis as it finds applications in many fields of multivariate analysis and
signal processing. An interesting perspective consists in exploring the link
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between the spiked models and compressive sensing methods in the case
where the eigenvectors associated with the spikes have a sparse structure.
In this framework, detection in sparse principal component has been for
instance explored by Berthet and Rigolet [12] who shedded some light on
the link between the spiked models and sparse small rank perturbations of
the sample covariance matrix.

Structured noise covariance matrices

In our work we estimated the covariance matrix of a stationary process with-
out banding or tapering. Finding the right banding parameter can lead to a
more efficient estimator. However, a priori knowledge on the decrease of the
Toeplitz coefficients is required in order to construct an optimal banding.
One of the directions to this problem is an iterative method.

The technique developed in the second part of the thesis based on the
estimation of the noise covariance matrix when the signal is considered as
a nuisance can be further developed. A more thorough analysis can be
performed, as for instance, a study of the fluctuations of the estimates.

In the case where the probability law of the samples of the stationary
process is heavy tailed, robust estimation methods can be used. In the
framework of the work of Couillet et al. |23], a robust estimation of Toeplitz
covariance matrices is under current study. The estimation is performed in
two steps. First, we obtain an estimate based on the robust M-estimation
giving rise to an instructed first estimate. Then, this estimate is improved by
performing a Toeplitzification of the latter. The consistency can be then ex-
tended to the case where the aggregated matrix of time samples is corrupted
by a rank one (or more generally, low rank) matrix.

Finally, from the application side, the isolated eigenvalue theory in large
random matrices can be applied to other problems than in array process-
ing. We can cite, among others, principal component analysis [35], failure
detection/diagnosis in large networks [22|, or chemometrics [50].
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