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Introduction

The HDR (Habilitation à Diriger des Recherches) is a French Degree that you get some years after
the PhD. It allows the candidate to apply for some University Professor positions and/or to apply
for a Research Director position at CNRS. Instead of explaining it in details, the selection phases
process after an HDR is summarized with a Petri Net model in Figure 1.

n

selec−n

qualification (CNU)

HDR

Professor

univ−1 univ−2 univ−nCNRS

Research Director

selec−1selection

2

Figure 1: Selection Phases after the HDR

After obtaining the HDR Thesis Degree, the candidate is allowed to apply for a Research Director
position at CNRS, after a national selection. On the other hand, in order to apply for some Univer-
sity Professor positions, the candidate should first apply for a National Qualifcation (CNU). Once
this qualification obtained, the candidate can then apply to some University Professor positions,
with a selection specific to each university.
This HDR Thesis is an extended abstract of my research work from my PhD Thesis defense in 1993
until now. This report is organized as follows.

• Chapter 1 is a Curriculum Vitae

• Chapter 2 presents the Analysis and Control of Hybrid and Switched System

• Chapter 3 is devoted to Supervisory Control of Discrete-Event Systems

• Chapter 4 gives the Conclusion and Future Work

7
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Chapter 1

Curriculum Vitae

1.1 Personal Data

Born on February 19, 1965; Married and has 2 daughters (19 and 15 years old, resp.)
Citizenship: French.

A. Affiliation

- Dept. of Automation, Production and Computer Science (DAPI)
IMT Atlantique (ex-Mines Nantes) Phone: +33 (0)2 5185 8306
4 Rue Alfred Kastler Fax: +33 (0)2 5185 8349
44307 Nantes Cedex 03 e-mail: naly.rakoto@mines-nantes.fr

France web: www.imt-atlantique.fr

- Also member of LS2N Laboratory, Nantes (UMR CNRS 6004) in the PSI Research Group
www.ls2n.fr

B. Education

1993 Ph.D. in Automatic Control (Très Honorable) LAAS-CNRS and University of Toulouse, France
1989 M.Sc. [DEA] in Automatic Control (A. Bien) LAAS-CNRS and University of Toulouse, France
1987-88 Licence + Mâıtrise EEA (Assez Bien) University of Toulouse, France
1985 DEUG A Physique-Chimie (Bien) University of Toulouse, France
1983 National Service Tananarive, Madagascar
1982 Baccalauréat série C (Assez Bien) Tananarive, Madagascar

1.2 Teaching Activities

A. Teaching

I am teaching regularly a yearly normal service i.e. 192 h eq TD since I arrived at Ecole des
Mines in September 1994. The subject and the students have a bit evolved since 1994. Here
below is a summary of the courses that I gave during the Academic year 2015-2016. What is new
compared to the beginning in 1994 are the courses given in the 2 Master of Science programs MOST
(Management and Optimization in Supply Chain and Transport) and PM3E (Project Management
for Environmental, and Energy Engineering). These 2 programs are offered entirely in English.

9
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Promo Course CM PC TD TP-MP PFE Resp Lang.
A1 Automatique 10h 10h 10h Fr.
A2 Optim. 10h 5h Fr.
A2 AII SED 10h 5h 5h Fr.
A3 AII SysHybrides 7.5h 7.5h Fr.
MSc. PM3E Control 7.5h 7.5h Eng.
MSc. MOST Simulation 5h 5h 5h Eng.
MSc. MOST Resp. MSc+UV 90h Eng.
A3 PFE superv. 36h Fr.
Masters PFE superv. 36h Eng.

Total 1 272h 10h 30h 30h 40h 72h 90h
Total 2 283up 15up 36up 30up 40up 72up 90up

Table 1.1: Teaching in 2015-2016

B. Responsabilities (Option AII, Auto-Prod, MSc MLPS, MSc MOST)

I had and am having the following administrative responsabilities at Mines Nantes:

• 1997-2000: Last Year’s Option AII (Automatique et Informatique Industrielle)

• 2001-2004: First and Second Year: Control and Industrial Eng. courses at DAP

• 2006-2012: MSc. MLPS (Management of Logistic and Production Systems)

• 2012-present: MSc. MOST (Management and Optimization of Supply Chains and Transport)

C. Courses given abroad

• May 2008: Univ. of Cagliari (Italy): Control of Hybrid Systems (10h) Erasmus

• Apr. 2009: Univ. Tec. Bolivar UTB, Cartagena (Colombia): Tutorial on DES (15h)

• May 2014: Univ. Tec. Bolivar UTB, Cartagena (Colombia): Intro. to DES (15h)

• Dec 2015: ITB Bandung (Indonesia): Simulation with Petri Nets (10h) Erasmus

• Apr. 2017: Univ. of Liverpool (UK): Course 1 (10h) Erasmus

• May 2017: ITB Bandung (Indonesia): Simulation with Petri Nets (10h) Erasmus

1.3 Research Activities

My main topics of research are the following:

1. Analysis and control of hybrid and switched systems

2. Supervisory control of discrete-event systems

These will be detailed in Chapter 2 and Chapter 3, respectively. The following other topics of
research will not be presented. However, the corresponding papers can be found in the Complete
List of Publications.

• Resource Allocation

• Holonic Systems

• Inventory Control
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1.4 Supervision of Students: PhD, MSc.

A. PhD Students:

• Santi Esteva, PhD defended in Girona in March 2003.
-Modelling, Control and Supervision for a Class of Hybrid Systems
- PhD Committee: J. Aguilar-Martin, J.L. de la Rosa, J. Colomer, J.C. Hennet, E. Garcia,
J. Melendez, V. Puig, N. Rakoto, G. Roux
- Supervision: J.L. de la Rosa (50 %), N. Rakoto (50 %)
- Publications: 1 conference paper
- Current activity: Associate Professor at University of Girona, Spain.

• Jose-Luis Villa, PhD defended in Nantes in February 2004.
-Modélisation et commande de systèmes hybrides : L’approche MLD
- PhD Committee: M. Morari, K.E. Arzen, M. Duque, A. Gauthier, J.J. Loiseau, N. Rakoto
- Supervision: M. Duque (40 %), A. Gauthier (10 %), N. Rakoto (40 %), J.J. Loiseau (10 %)
- Publications: 1 book chapter, 12 conference papers
- Current activity: Profesor Titular at Universidad Tecnologica Bolivar, Cartagena, Colombia.

• Eduardo Mojica, PhD defended in Nantes in September 2009.
-A polynomial approach for analysis and optimal control of switched nonlinear systems
- PhD Committee: P. Caines, D. Henrion, A. Gauthier, J.J. Loiseau, N. Quijano,
P. Riedinger, N. Rakoto
- Supervision: M. Quijano (40 %), A. Gauthier (10 %), N. Rakoto (40 %), J.J. Loiseau (10
%)
- Publications: 2 journal papers, 6 conference papers
- Current activity: Associate Professor at Universidad Nacional, Bogota, Colombia.

• German Obando, PhD defended in Nantes in October 2015.
-Distributed methods for resource allocation: A passivity-based approach
- PhD Committee: C. Ocampo-Martinez, H. Gueguen, A. Dolgui, A. Gauthier,
J.J. Loiseau, N. Quijano, N. Rakoto
- Supervision: M. Quijano (40 %), A. Gauthier (10 %), N. Rakoto (40 %), J.J. Loiseau (10
%)
- Publications: 1 journal paper, 2 conference papers
- Current activity: PostDoc at Universidad de los Andes, Bogota, Colombia.

B. MSc Students:

• 2017: Nawapol Yamclee (IMTA / MSc. PM3E) – Control of Smart Grids

• 2017: Dina Lavender (IMTA / MSc. MOST) – Simulation with Stochastic Petri Nets

• 2010: Amadou Sagna (ECN / Master AIA) – Model Predictive Control

• 2003: Xiaoyu Chen (EMN Nantes / MSc. MOST) – Supervisory Control

• 1996: Nadia Pariset (EMN Nantes / Option AII) – Hybrid Petri Nets

• 1994: Jean-Sebastien Besse (INSA Toulouse) – G2 Expert System

C. Member of Ph.D. Thesis Committees (other than my PhD Students)

- Ph.D. examiner of D. Fragkoulis, LAAS-CNRS, Univ. of Toulouse, France (Nov. 2008)
Detection et localisation des défauts provenant des capteurs et des actionneurs :

application sur un système non linéaire.
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- Ph.D. examiner of Aimed Mokhtari, LAAS-CNRS, Univ. of Toulouse, France (Sep. 2007)
Diagnostic de systèmes hybrides : développement d’une méthode associant la détection par

classification et la simulation dynamique.

- Ph.D. examiner of Hector Hernandez de Leon, LAAS-CNRS, Univ. of Toulouse, France (Sep. 2006)
Supervision et diagnostic des procédés de production d’eau potable.

- Ph.D. examiner of Flavio Neves-Junior, LAAS-CNRS, Univ. of Toulouse, France (Nov. 1998)
Supervision et commande des phases transitoires des processus industriels : application a une
colonne de distillation.

D. Short Research Visits

- May-June 2004: McGill University, Montreal, Canada. Host: Prof. Peter E. Caines (2 months)
- Sep. 2013: University of Michigan, Ann Arbor, MI, USA. Host: Prof. Stephane Lafortune (1 month)

E. Invited Plenary Talks

- Invited Plenary Talk, Analysis and Control of Hybrid and Switched Systems, Colombian
Control Conf., Cartagena, Colombia, April 2009.

F. Member of Conference International Program Committees

- IFAC Conf. on Analysis and Design of Hybrid Systems (ADHS 2006), Alghero, Italy, June 2006.
- IEEE Conf. on Emerging Technologies and Factory Automation (ETFA 2001) Antibes, FR, 2001
- Int. Conf. on Automation of Mixed Processes: (ADPM 1998), Reims, France, March 1998.

G. Member of Conference Organizing Committees

- 7th Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing
(SOHOMA 2017) Nantes, France, 2017.
- IFAC Conf. on Analysis and Design of Hybrid Systems (ADHS 2003), St. Malo, France, 2003.
- Conf. Int. Francophone en Automatique (CIFA 2002), Nantes, France, July 2002.
- Int. Conf. on Automation of Mixed Processes (ADPM 2000), Dortmund, Germany, Sep. 2000.

1.5 Funded and Submitted Projects

• Co-Principal Investigator (with Andi Cakravastia, ITB), LOG-FLOW, PHC
NUSANTARA France Indonesia, Project N. 39069ZJ, 2017, Accepted on 31 May 2017.

• Participant, ”Industrial Validation of Hybrid Systems”, France and Colombia ECOS Nord
Project N.C07M03, A. Gauthier and J.J. Loiseau PIs, Jan. 2007 to Dec. 2009 (3 years)
Euro 12,000.

• Participant, French ”Contrat Etat-Région” 2000-2006, CER STIC 9 / N.18036,
J.J. Loiseau PI, Euro 182,940 (US$ 182,940).

• Co-Principal Investigator (with Ph. Chevrel), Modeling and Simulation of ESP Program,
Peugeot-Citroen PSA France, Sep. 2000 - Jan 2001, FF 20,000 (US$ 3,000).

• Co-Principal Investigator (with J. Aguilar-Martin), Control and Supervision of a Distillation
Process, Conseil Régional Midi-Pyrénées, France, 1994-1995, FF 200,000 (US$ 30,000).

• Participant, European Esprit Project IPCES (Intelligent Process Control by means of
Expert Systems), J. Aguilar-Martin PI, 1989-1992, Euro 500,000 (US$ 500,000).
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1.6 Organization of Invited Sessions

- Invited Session, Diagnosis and Prognosis of Discrete-Event Systems, 48th IEEE CDC
Shanghai, China, Dec 2009
(jointly organized and chaired with Shigemasa Takai).

- Invited Session, Diagnosis of DES Systems, 1st IFAC DCDS 2007, Paris, France, June 2007
(jointly organized and chaired with Shigemasa Takai).

- Invited Session, DES and Hybrid Systems, IEICE NOLTA 2006, Bologna, Italy, Sep. 2006
(jointly organized and chaired with Shigemasa Takai).

- Invited Session, Supervisory Control, IFAC WODES, Reims, France, Sep. 2004
(jointly organized and chaired with Toshimitsu Ushio).

- Invited Session, Hybrid Systems, IEEE ISIC 2001, Mexico City, Mexico, Sep. 2001
(jointly organized and chaired with Michael Lemmon).

- Invited Session, Knowledge Based Systems, IEEE ISIC 1999, Cambridge, MA, USA, Sep. 1999
(jointly organized and chaired with Karl-Erik Årzèn).

- Workshop on G2 Expert System, LAAS-CNRS, Toulouse, France, Oct. 1995
(jointly organized and chaired with Joseph Aguilar-Martin).

1.7 Complete List of Publications

A summary of the papers, classified per year, from 1994 to 2017, is given in the following table.

Conf. Book Chap. Book Ed. Journal Total

1994 2 2

1995 2 1 1 4

1996 1 1 2

1997 1 1

1998 2 2

1999 1 1

2000

2001 4 1 5

2002 1 1

2003 5 1 6

2004 6 6

2005 1 1

2006 3 3

2007 4 4

2008 2 2

2009 1 1

2010 1 1

2011

2012 1 1

2013 2 2

2014 4 1 5

2015 2 1 3

2016 4 4

2017 1+3* 1* 1+4*

Table 1.2: Number of published papers per year (as of 30 June 2017) – where (*) means submitted
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Complete List of Publications

[] Book Edition

[B.1] Supervision de processus à l’aide du système expert G2, N. Rakoto-Ravalontsalama and J.
Aguilar-Martin (Eds.), Hermes Ed. Paris, Oct. 1995, ISBN 2-86601-499-5.

[Proceedings of Workshop on G2 Expert System, LAAS-CNRS Toulouse, France, Oct. 1995]
[Includes 4 papers in English and 6 papers in French]

International Refereed Journals

[J.sub1] F. Torres, C. Garcia-Diaz and N. Rakoto-Ravalontsalama. ”Evolutionary Dynamics of
Two-actor VMI-driven Supply Chains”, Submitted, Dec. 2016.

[J.9] G. Obando, N. Quijano, and N. Rakoto-Ravalontsalama. ”A Center-Free Approach for
Resource Allocation with Lower Bounds”, International Journal of Control, 2016. DOI:
10.1080/00207179.2016.1225167.

[J.8] C. Indriago, O. Cardin, N. Rakoto-Ravalontsalama, P. Castagna, E. Chacon. ”H2CM: A
holonic architecture for flexible hybrid control systems”’, Computers in Industry, Elsevier, 77
(2016) pp. 15–28.

[J.7] C. Indriago, O. Cardin, O. Morineau, N. Rakoto-Ravalontsalama, P. Castagna, E. Chacon.
”Performance evaluation of holonic control of a switch arrival system”’, Concurrent Engineer-
ing: Research and Applications, SAGE, 2016, DOI: 10.1177/1063293X16643568.

[J.6] C. Indriago, O. Cardin, O. Bellenguez-Morineau, N. Rakoto, P. Castagna, E. Chacon. ”Evalu-
ation de l’application du paradigme holonique à un système de réservoirs”’, Journal Européen
des Systèmes Automatisés JESA, vol. 49 N.23, pp.325-347, 2016.

[J.5] E. Mojica, N. Quijano, and N. Rakoto-Ravalontsalama A polynomial approach for optimal
control of switched nonlinear systems, Int. Journal of Robust and Nonlinear Control, Wiley,
2014, 24 (12), pp.1797-1808.

[J.4] E. Mojica, N. Quijano, N. Rakoto-Ravalontsalama, and A. Gauthier A polynomial approach
for stability analysis of switched systems, Systems and Control Letters 59 (2010) 98–104.

[J.3] N. Rakoto-Ravalontsalama, J. Aguilar-Martin, Knowledge-based modelling of a TV-tube man-
ufacturing system, IFAC Journal of Control Engineering Practice, Jan. 1996, 4(1), pp. 117–123.

[J.2] P. Bourseau, K. Bousson, P. Dague, J.L. Dormoy, J.M. Evrard, F. Guerrin, L. Leyval, O.
Lhomme, B. Lucas, A. Missier, J. Montmain, N. Piera, N. Rakoto-Ravalontsalama, J.P. Steyer,
M. Tomasena, L. Trave-Massuyes, M. Vescovi, S. Xanthakis and B. Yannou, Qualitative
reasoning: A survey of techniques and applications AICOM Journal, Sept-Dec. 1995, vol. 8,
N. 3-4, pp. 119–192.

[J.1] N. Rakoto-Ravalontsalama, A Missier, and J.S. Kikkert, Qualitative operators and process en-
gineer semantics of uncertainty. In B. Bouchon-Meunier, L. Valverde, and R.R. Yager (Eds.)
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Lecture Notes in Computer Science N. 682, IPMU’92 - Advanced Methods in Artificial Intel-
ligence, Springer Verlag 1992, pp. 284–293.

Book Chapters

[B.Ch.4] C. Indriago, O. Cardin, N. Rakoto, E. Chacon, P. Castagna, ”Application of holonic
paradigm to hybrid processes: Case of a water treatment process”’ Chapter of the book ”Ser-
vice Orientation in Holonic and Multi-agent Manufacturing”, Springer, 2015 ISBN 978-3-319-
15159-5.

[B.Ch.3] J.L. Villa, M. Duque, A. Gauthier, and N. Rakoto-Ravalontsalama, Hybrid modeling of
potable water treatment plant. In. Pumps, Electromechanical Devices and Systems Applied to
Urban Water Management, Cabrera and Cabrera Jr. Eds., 2003 Swets and Zeitlinger, Lisse,
Switzerland, ISBN 90 5809 560 6, pp. 909–917.

[B.Ch.2] Y. Quenec’hdu, J. Buisson, N. Rakoto-Ravalontsalama, Rappels sur les systèmes continus
et échantillonnés, Chapitre de l’ouvrage Modélisation et commande de systèmes dynamiques
hybrides (J. Zaytoon coord.), Hermes Ed., Paris, 2001, pp. 29–59 (in French).

[B.Ch.1] N. Rakoto-Ravalontsalama, Supervision et diagnostic de procédés industriels : IPCES,
Chapitre du livre Le raisonnement qualitatif (L. Trave-Massuyes, Ph. Dague, F. Guerin coord.),
Hermes Ed., Paris 1997, pp. 279–322 (in French).

International Conferences with Proceedings

[C.sub3] D. Lavender, A. Cakravastia, Y Lafdail, and N. Rakoto-Ravalontsalama, Modeling and
Simulation of Baggage Handling System in a Large Airport , Submitted, June 2017.

[C.sub2] N. Yamclee, C. Nicolas-Rodriguez, and N. Rakoto-Ravalontsalama, Switched LQR Control
of Interleaved Double Dual Boost Converters, Submitted, May 2017.

[C.sub1] M. Canu and N. Rakoto-Ravalontsalama. On Switchable Languages of Discrete-Event
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[C.50] Z. Michaelides, N. Rakoto, and R. Michaelides, Big Data Driven Demand Networks, Proc.
of POMS 2017 Conf., Seattle, WA, USA, May 2017.

[C.49] G. Obando, N. Quijano, and N. Rakoto-Ravalontsalama. ”Distributed resource allocation
over stochastic networks: An application in smart grids ”, Proc. of IEEE CCAC 2015, Man-
izales, Colombia, Oct 2015.

[C.48] C. Indriago, O. Cardin, O. Morineau, N. Rakoto, P. Castagna, ”Performance evaluation
of holonic-based online predictive-reactive scheduling for a switch arrival system”’ Proc. of
INCOM 2015, Ottawa, Canada, May 11-13, 2015. IFAC-PapersOnLine 48-3 (2015) pp. 1105–
1110.

[C.47] C. Indriago, O. Cardin, N. Rakoto, E. Chacon, P. Castagna, ”Application of holonic
paradigm to a water treatment process”’ Proc. of SOHOMA 2014, Nancy, France, Nov. 2014,
pp. 32–39.

[C.46] C. Indriago, O. Cardin, N. Rakoto, P. Castagna, E. Chacon. ”Application du paradigme
holonique à un système de reservoirs”’ Proc. of MOSIM 2014, Nancy, France, Nov. 2014.

[C.45] G. Obando, N. Quijano, and N. Rakoto-Ravalontsalama. ”Distributed Building Temperature
Control with Power Constraints ”, Proc. of ECC 2014, pp. 2857–2862, Strasbourg, France, June
2014.
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[C.44] F. Torres, C. Garcia-Diaz, and N. Rakoto-Ravalontsalama. ”An Evolutionary Game Theory
Approach to Modeling VMI Policies”, Proc. of IFAC World Congress 2014, pp. 10737–10742,
Capetown, South Africa, Aug. 2014.
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blocking DES. Presented at MSR’13 Workshop (Poster Session), Rennes, France, Nov 13-15,
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Chapter 2

Analysis and Control of Hybrid and
Switched Systems

2.1 Modeling and Control of MLD systems

Piecewise affine (PWA) systems have been receiving increasing interest, as a particular class of
hybrid system, see e.g. [2], [13], [11], [16], [14], [12] and references therein. PWA systems arise as
an approximation of smooth nonlinear systems [15] and they are also equivalent to some classes of
hybrid systems e.g. Linear complementarity systems [9]. On the other hand Mixed Logical and
Dynamical (MLD) systems have been introduced by Bemporad and Morari as a suitable represen-
tation for hybrid dynamical systems [3]. MLD models are obtained originally from PWA system,
where propositional logic relations are transformed into mixed-integer inequalities involving integer
and continuous variables. Then mixed-integer optimization techniques are applied to the MLD
system in order to stabilize MLD system on desired reference trajectories under some constraints.
Equivalences between PWA systems and MLD models have been established in [9]. More precisely,
every well-posed PWA system can be rewritten as an MLD system assumung that the set of fea-
sible states and inputs is bounded and a completely well-posed MLD system can be rewritten as
a PWA system [9]. Conversion methods from MLD systems to equivalent PWA models have been
proposed in [4], [5], [6] and [?]. Vice versa, translation methods from PWA to MLD systems have
been studied in [3] (the original one), and then in [8], [?]. A tool that deals with both MLD and
PWA systems is HYSDEL [17].
The motivations for studying new methods of conversion from PWA systems into their equiva-
lent MLD models are the following. Firstly the original motivation of obtaining MLD models is
to rewrite a PWA system into a model that allows the designer to use existing optimization algo-
rithms such as mixed integer quadratic programming (MIQP) or mixed integer linear programmimg
(MILP). Secondly there is no unique formulation of PWA systems. We can always address some
particular cases that introduce some differences in the conversions. Finally, it has been shown that
the stability analysis of PWA systems with two polyhedral regions is in general NP-complete or
undecidable [7]. The conversion to MLD systems may be another way to tackle this problem.

2.1.1 Piecewise Affine (PWA) Systems

A particular class of hybrid dynamical systems is the system described as follows.{
ẋ(t) = Aix(t) + ai +Biu(t)
y(t) = Cix(t) + ci +Diu(t)

(2.1)

where i ∈ I, the set of indexes, x(t) ∈ Xi which is a sub-space of the real space Rn, and R+ is the
set of positive real numbers including the zero element. In addition to this equation it is necessary
to define the form as the system switches among its several modes. This equation is affine in the
state space x and the systems described in this form are called piecewise affine (PWA) systems
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[15], [9]. The discrete-time version of this equation will be used in this work and can be described
as follows. {

x(k + 1) = Aix(k) + bi +Biu(k)
y(k) = Cix(k) + di +Diu(k)

(2.2)

where i ∈ I is a set of indexes, Xi is a sub-space of the real space Rn, and R+ is the set of positive
integer numbers including the zero element, or an homeomorphic set to Z+.

2.1.2 Mixed Logical Dynamical (MLD) Systems

The idea in the MLD framework is to represent logical propositions with the equivalent mixed
integer expressions. MLD form is obtained in three steps [3], [4]. The first step is to associate a
binary variable δ ∈ {0, 1} with a proposition S, that may be true or false. δ is equal to 1 if and only
if proposition S is true. A composed proposition of elementary propositions S1, . . . , Sq combined
using the boolean operators like AND, OR, NOT may be expressed with integer inequalities over
corresponding binary variables δi, i = 1, . . . q. The second step is to replace the products of linear
functions and logic variables by a new auxiliary variable z = δaTx where aT is a constant vector.
The variable z is obtained by mixed linear inequalities evaluation. The third step is to describe the
dynamical system, binary variables and auxiliary variables in a linear time invariant system. An
hybrid system described in MLD form is represented by Equations (2.3-2.5).

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) (2.3)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) (2.4)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5 (2.5)

where x = [xTc x
T
l ] ∈ Rnc ×{0, 1}nl are the continuous and binary states, respectively, u = [uTCu

T
l ] ∈

Rmc × {0, 1}ml are the inputs, y = [yTc y
T
l ] ∈ Rpc × {0, 1}pl the outputs, and δ ∈ {0, 1}rl , z ∈ Rrc ,

represent the binary and continuous auxiliary variables, respectively. The constraints over state,
input, output, z and δ variables are included in (2.5).

2.1.3 Converting PWA into MLD Systems

In this subsection two algorithms for converting PWA systems into MLD systems are given. The
first case consists of several sub-affine systems with switching regions are explained in detail. The
second case deals with several sub-affine systems, each of them belongs to a region which is described
by linear inequalities is a variation of the first case. Each case is applied to an example in order to
show the validity of the algorithm.

A. Case I

The PWA system is represented by the following equations:
x(k + 1) = Aix(k) +Biu(k) + fi
y(k) = Cix(k) +Diu(k) + gi
Sij = {x, u|kT1ijx+ kT2iju+ k3ij ≤ 0}

(2.6)

where i ∈ I = {1, . . . , n}. The case with jumps can be included in this representation considering
each jump as a discrete affine behavior valid during only one sample time. The switching region Sij

is a convex polytope which volume, or hypervolume, can be infinite, and the sub-scripts denotes
the switching from mode i to mode j. For this purpose we introduce a binary variable δi for each
index of the set I and a binary variable δi,j for each switching region Sij . In order to gain insight
in the following equations, we consider the hybrid the partition and the corresponding automaton
is depicted in Figure 2.1. Introductory material on hybrid automata can be found in [1] and [10].
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Figure 2.1: Partition and Automaton

The δij variables are not dynamical and, when the elements k in Sij are vectors, the binary variable
can be evaluated by the next mixed integer inequality

(δij = 1) ⇔ (kT1ijx+ kT2iju+ k3ij ≤ 0) (2.7)

which is equivalent to: {
k1ijx+ k2iju+ k3ij −M(1− δij) ≤ 0
−k1ijx− k2iju− k3ij + ϵ+ (m− ϵ)δij ≤ 0

(2.8)

When the elements k in Sij are matrices, it is necessary to introduce some auxiliary binary variables
for each row describing a sub-constraint in Sij in the next form:

δk = 1(⇔ k1,kx+ k2,ku+ k3,k ≤ 0)
δij =

∧
k δk

(2.9)

which is equivalent to:
k1ij,kx+ k2ij,ku+ k3ij,k −M(1− δij,k) ≤ 0

−k1ij,kx− k2ij,ku− k3ij,k + ϵ+ (m− ϵ)δij,k ≤ 0
δij − δij,k ≤ 0∑

k(δij,k − 1)− δij ≤ −1

(2.10)

The binary vector xδ = [δ1δ2 . . . δn]
T is such that its dynamics is given by:

xδi(k + 1) = (xδi(k) ∧
∧
j ̸=i

¬δij) ∨
∨
j ̸=i

(xδj(k) ∧ δji) (2.11)

where k is an index of time, and ∧, ∨, and ¬, are standard for the logical operations AND, OR,

NOT, respectively. This equation can be explained as follows: The mode of the system in the next
time is i if the current mode is mode i and any switching region is enabled in this time, or, the
current mode of the system is j different to i and a switching region that enables the system to
go into mode i is enabled. Considering that the PWA system is well posed, i.e. for a given initial
state [xT iT ]T0 and a given input u0,τ there exists only one possible trajectory [xT iT ]T0,x . That is
equivalent to the following conditions:∑

i∈I
xδi = 1,

∏
i∈I

xδi = 0 (2.12)

The dynamical equations for xδ vector are equivalent to the next integer inequalities:
xδj(k) + δji − xδi(k + 1) ≤ 1, ∀i, j ∈ I, i ̸= j

xδi(k)−
∑
j ̸=i

δij − xδi(k + 1) ≤ 0, ∀i, j ∈ I, i ̸= j

−xδi(k)−
∑
j ̸=i

δji − xδi(k + 1) ≤ 0, ∀i, j ∈ I, i ̸= j

(2.13)

The first inequality states that the next mode of the system should be mode i if the current mode
is j different to i and a switching region for going from mode j to mode i is enabled. The second
inequality means that the next mode of the system should be mode i if the current mode is i and
any switching region for going from mode i into mode j different to i is enabled. And the third
equation states that the system cannot be in mode i in the next time if the current mode of the
system is not mode i and any switching region for going from mode i, (j different to i), into mode
i is enabled.
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This form for finding xδ(k+1) causes a problem in the final model because it cannot be represented
by a linear equation in function of x, u, δ and Z. For this reason, xδ(k + 1) is aggregated to the
δ general vector of binary variables, and finally assigned directly to xδ(k + 1). The dynamics and
outputs of the system can be represented by the next equations:{

x(k + 1) = Ax(k) +Bu(k) +
∑

i∈I(Aix(k) +Biu(k) + fi)× xδi(k)
y(k) = Cx(k) +Du(k) +

∑
i∈I(Cix(k) +Diu(k) + gi)× xδi(k)

(2.14)

If we introduce some auxiliary variables:{
Z1i(k) = (Aix(k) +Biu(k) + fi)× xδi(k)
Z2i(k) = (Cix(k) +Diu(k) + gi)× xδi(k)

(2.15)

which are equivalent to:
Z1i ≤ Mxδi(k)
−Z1i ≤ −mxδi(k)
Z1i ≤ Aix(k) +Biu(k) + fi −m(1− xδi(k))
−Z1i ≤ −Aix(k)−Biu(k)− fi +M(1− xδi(k))

(2.16)


Z2i ≤ Mxδi(k)
−Z2i ≤ −mxδi(k)
Z2i ≤ Cix(k) +Diu(k) + gi −m(1− xδi(k))
−Z2i ≤ −Cix(k)−Diu(k)− gi +M(1− xδi(k))

(2.17)

where M and m are vectors representing the maximum and minimum values, respectively, of the
variables Z, these values can be arbitrary large. Using the previous equivalences, the PWA system
( 2.2) can be rewritten in an equivalent MLD model as follows:

x(k + 1) = Arrx(k) +Abrxδ(k) +B1ru(k) +B2rδ +B3r

∑
i∈I

Z1i(k)

xδ(k + 1) = Arbx(k) +Abbxδ(k) +B1bu(k) +B2bδ +B3b

∑
i∈I

Z1i(k)

yr(k) = Crrx(k) + Cbrxδ(k) +D1ru(k) +D2rδ +D3r

∑
i∈I

Z2i(k)

yδ(k) = Crbx(k) + Cbbxδ(k) +D1bu(k) +D2bδ +D3b

∑
i∈I

Z2i(k)

(2.18)

s.t.

E2

 xδ(k + 1)
δij
δk

+ E3Z(k) ≤ E4

 x(k)
δij
δk

+ E1u(k) + E5 (2.19)

Using this algorithm, most part of the matrices are zero, because x and y are defined by Z, and
xδ is defined by δ. This situation can be avoided by defining the next matrices at the beginning of
the procedure: 

A = 1
n(A1 + . . .+An), Ai = Ai −A, ∀i ∈ I

B = 1
n(B1 + . . .+Bn), Bi = Bi −B, ∀i ∈ I

C = 1
n(C1 + . . .+ Cn), Ci = Ci − C, ∀i ∈ I

D = 1
n(D1 + . . .+Dn), Di = Di −D, ∀i ∈ I

(2.20)

Finally, the equality matrices in (2.18) and (2.19) can be chosen as follows:
Arr = A, Abr = 0nc×n, B1r = B, B2r = 0nc×(n+m+tk),

B3r = [Inc×nc0nc×pcInc×nc0nc×pc . . . Inc×nc0nc×pc ]nc×n×(nc+pc)

Arb = 0n×nc , Abb = 0x×n, B1b = 0n×mc ,
B2b = [In×n0n×m0n×tk]n×n×(n+m+tk), B3b = 0nc×n×(nc+pc)

(2.21)
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
Crr = C, Cbr = 0pc×n, D1r = D, D2r = 0pc×(n+m+tk),

D3r = [0pc×ncIpc×pc0pc×ncIpc×pc . . . 0pc×ncIpc×pc ]pc×n×(nc+pc)

Crb = 0n×nc , Cbb = 0x×n, D1b = 0n×mc ,
D2b = [In×n0n×m0n×tk]n×n×(n+m), D3b = 0n×n×(nc+pc)

(2.22)

where nC is the number of continuous state variables, mC the number of continuous input variables,
pC the number of continuous output variables, n the number of affine sub-systems, m the number
of switching regions and tk the number of auxiliary binary variables. The algorithm for converting
a PWA system in the form of (2.1) into its equivalent MLD system can be summarized as follows:

B. Algorithm 1

1. Compute matrices A, B, C, D and Ai, Bi, Ci and Di using (2.20).

2. Initialize E1, E2, E3, E4, E5 matrices.

3. For the m switching regions Sj,i, include the inequalities defined in (2.8) or (2.10) which define the
values of the m auxiliary binary variables δj,i.

4. Generate 2 ∗ nxδi auxiliary binary dynamical variables associated with the n affine models and m
auxiliary binary variables δj,i associated with the m Sij switching regions.

5. For i = 1 to n include the inequalities using (2.13) representing the behavior on the xδ vector.

6. For i = 1 to n generate the nc-dimensional Z1i vector and pc-dimensional Z2i vector of auxiliary
variables Z.

7. For each Z1i vector introduce the inequalities defined in (2.16), by replacing Ai, and Bi by Ai, and
Bi, computed in Step 1. M and m are nc-dimensional vectors of maximum and minimum values of x,
respectively.

8. For each Z2i vector introduce the inequalities defined in (2.17), by replacing Ci, and Di by Ci, and
Di, computed in Step 1. M and m are pc-dimensional vectors of maximum and minimum values of x,
respectively (This completes the inequality matrices).

9. Compute the matrices defined in (2.21) and (2.22)

10. End.

C. Example 1

Consider the system whose behavior is defined by the following PWA model:
x(k + 1) = Aix(k), i ∈ {1, 2}
S1,2 = {(x1, x2)|(x1 ≤ 1.3x2) ∧ (0.7x2 ≤ x1) ∧ (x2 > 0)
S2,1 = {(x1, x2)|(x1 ≤ 0.7x2) ∧ (1.3x2 ≤ x1) ∧ (x2 < 0)

where A1 =

[
0.9802 0.0987
−0.1974 0.9802

]
, A2 =

[
0.9876 −0.0989
0.0495 0.9876

]
The behavior of the system is presented

in Figure 2.2. The initial points are (x10, x20) = (1, 0.8). We can see that the system switches
between the two behaviors, from A1 to A2 in the switching region S1,2, and from A2 to A1 in the
switching region S2,1, alternatively. The switched system is stable.

D. Case 2

Consider now the system whose behavior is defined by the following PWA model:{
x(k + 1) = Aix(k) + bi +Biu(k), i ∈ I, x(k) ∈ Xi

y(k) = Cix(k) + di +Diu(k), i ∈ I, x(k) ∈ Xi
(2.23)

with conditions Xi ∩ Xj ̸=i = ∅, ∀i, j ∈ I,
∪

i∈I Xi = X, where X is the admissible space for
the PWA system, and Xi = {x, u|k1ix + k2iu + k3i ≤ 0} does not need the dynamical binary
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Figure 2.2: Phase portrait of Example 1 in PWA

 


Figure 2.3: Phase portrait of Example 1 MLD

variables and can be represented using the appropriate δ variables instead of xδ(k) variables in the
definition of Z in (2.16) and (2.17). However, note that the conditions Xi ∩Xj ̸=i = ∅ ∀i, j ∈ I and∪

i∈I Xi = X require a careful definition in the sub-spaces Xi in order to avoid a violation to these
conditions in its bounds. On the other hand, the MLD representation uses non-strict inequalities in
its representation and the ε value in (2.8) and (2.9) should be chosen appropriately. Another way
to overcome this situation and to insure an appropriated representation is the use of the following
conditions in the bounds of the sub-spaces Xi:

δij = δi ⊗ δj

which is equivalent to:

{
δi + δj − 1 ≤ 0
1− δi − δj ≤ 0

or more generally


∑
i∈I

δi − 1 ≤ 0

1−
∑
i∈I

δi ≤ 0
(2.24)

We now modify Equations (2.8), (2.10), (2.16), (2.17), (2.21), and (2.22) as follows:{
k1ix+ k2iu+ k3i −M(1− δi) ≤ 0
−k1ix− k2iu− k3i + ϵ+ (m− ϵ)δi) ≤ 0

(2.25)
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
k1i,kx+ k2i,ku+ k3i,k −M(1− δi,k) ≤ 0

−k1i,kx− k2i,ku− k3i,k + ϵ+ (m− ϵ)δi,k ≤ 0
δi − δi,k ≤ 0∑

k(δi,k − 1)− δi ≤ −1

(2.26)

The auxiliary variables Z1i become:
Z1i ≤ Mδi(k)
−Z1i ≤ −mδi(k)

Z1i ≤ Aix(k) +Biu(k) + fi −m(1− δi(k))

−Z1i ≤ −Aix(k)−Biu(k)− fi +M(1− δi(k))

(2.27)

where the matrices Ai and Bi are those previously defined in Equation (2.20).The auxiliary variable
Z2i is now modified according to the following equations:

Z2i ≤ Mδi(k)
−Z2i ≤ −mδi(k)

Z2i ≤ Cix(k) +Diu(k) + gi −m(1− δi(k))

−Z2i ≤ −Cix(k)−Diu(k)− gi +M(1− δi(k))

(2.28)

where the matrices Ci and Di are those that have been defined in Equation (2.20). Finally the
matrices from Equation (2.18) can be chosen as follows:

Arr = A, Abr = 0nc×n, B1rr = B, B2rb = 0nc×(n+tk),

B3rr = [Inc×nc0nc×pcInc×nc0nc×pc . . . Inc×nc0nc×pc ]nc×n×(nc+pc)

Crr = C, Cbr = 0pc×n, D1rr = D, D1rb = [ ], D2rb = 0pc×(n+tk),

D3rr = [0pc×ncIpc×pc0pc×ncIpc×pc . . . 0pc×ncIpc×pc ]pc×n×(nc+pc)

(2.29)

We give now an algorithm that converts a PWA system in the form of (2.23) into its equivalent
MLD system.

E. Algorithm 2

1. Compute matrices A, B, C, D and Ai, Bi, Ci and Di using (2.20).

2. Initialize E1, E2, E3, E4, E5 matrices.

3. For i = 1 to n include the inequalities using (2.25) or (2.26) that represent the behavior on the n affine
regions of the PWA system.

4. For all affine regions include the inequalities in (2.24).

5. For i = 1 to n generate the nc-dimensional Z1i vector and pc -dimensional Z2i vector of auxiliary
variables Z.

6. For each Z1i vector introduce the inequalities defined in (2.27). M and m are nc-dimensional vectors
of maximum and minimum values of x, respectively.

7. For each Z2i vector introduce the inequalities defined in (2.28). M and m are pc-dimensional vectors
of maximum and minimum values of x, respectively (This completes the inequality matrices).

8. Compute the matrices defined in (2.29) where the binary state variables are removed.

9. End.

F. Example 2

Consider the system whose behavior is defined by the following PWA model:
x(k + 1) = Aix(k), i ∈ {1, 2}

i = 1 if x1x2 ≥ 0
i = 2 if x1x2 < 0
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where A1 =

[
0.9960 0.0199
−0.1995 0.9960

]
, A2 =

[
0.9960 0.1995
−0.0199 0.9960

]
The behavior of the system is presented

in Figure 2.4. The PWA system with linear constraints has 4 sub-affine systems. Algorithm 2
produces an MLD system with 12 binary variables (4 variables for the affine sub-system, and 8
auxiliary variables), 16 auxiliary variables Z and 94 constraints.

 


Figure 2.4: Phase portrait of Example 2 in PWA

The behavior of the equivalent MLD system is shown in Figure 2.5. We can notice that the behavior
of the MLD system is exactly the same as the original PWA model.

 


Figure 2.5: Phase portrait of Example 2 in MLD
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2.2 Stability of Switched Systems

A polynomial approach to deal with the stability analysis of switched non-linear systems under
arbitrary switching using dissipation inequalities is presented. It is shown that a representation
of the original switched problem into a continuous polynomial system allows us to use dissipation
inequalities for the stability analysis of polynomial systems. With this method and from a theo-
retical point of view, we provide an alternative way to search for a common Lyapunov function
for switched non-linear systems. We deal with the stability analysis of switched non-linear sys-
tems, i.e., continuous systems with switching signals under arbitrary switching. Most of the efforts
in switched systems research have been typically focused on the analysis of dynamical behavior
with respect to switching signals. Several methods have been proposed for stability analysis (see
[53], [19], and references therein), but most of them have been focused on switched linear systems.
Stability analysis under arbitrary switching is a fundamental problem in the analysis and design
of switched systems. For this problem, it is necessary that all the subsystems be asymptotically
stable. However, in general, the above stability condition is not sufficient to guarantee stability
for the switched system under arbitrary switching. It is well known that if there exists a common
Lyapunov function for all the subsystems, then the stability of the switched system is guaranteed
under arbitrary switching. Previous attempts for general constructions of a common Lyapunov
function for switched non-linear systems have been presented in [20], [21] using converse Lyapunov
theorems. Also in [22], a construction of a common Lyapunov function is presented for a particular
case when the individual systems are handled sequentially rather than simultaneously for a family
of pairwise commuting systems. These methodologies are presented in a very general framework,
and even though they are mathematically sound, they are too restrictive from a computational
point of view, mainly because it is usually hard to check for the set of necessary conditions for a
common function over all the subsystems (it could not exist). Also, these constructions are usu-
ally iterative, which involves running backwards in time for all possible switching signals, being
prohibitive when the number of modes increases.

The main contribution of this topic of stability of switched systems is twofold. First, we present a
reformulation of the switched system as an ordinary differential equation on a constraint manifold.
This representation opens several possibilities of analysis and design of switched systems in a con-
sistent way, and also with numerical efficiency [C.39], [C.38], which is possible thanks to some tools
developed in the last decade for polynomial differential-algebraic equations analysis [8,10]. The
second contribution is an efficient numerical method to search for a common Lyapunov function
for switched systems using results of stability analysis of polynomial systems based on dissipativity
theory [23], [C.39]. We propose a methodology to construct common Lyapunov functions that pro-
vides a less conservative test for proving stability under arbitrary switching. It has been mentioned
in [26] that the sum of squares decomposition, presented only for switched polynomial systems,
can sometimes be made for a system with a non-polynomial vector fields. However, those cases are
restricted to subsystems that preserve the same dimension after a recasting process.

2.3 Optimal Control of Switched Systems

2.3.1 Switched Linear Systems

A polynomial approach to solve the optimal control problem of switched systems is presented. It
is shown that the representation of the original switched problem into a continuous polynomial
systems allow us to use the method of moments. With this method and from a theoretical point of
view, we provide necessary and sufficient conditions for the existence of minimizer by using partic-
ular features of the minimizer of its relaxed, convex formulation. Even in the absence of classical
minimizers of the switched system, the solution of its relaxed formulation provide minimizers.

We consider the optimal control problem of switched systems, i.e., continuous systems with switch-
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ing signals. Recent efforts in switched systems research have been typically focused on the analysis
of dynamic behaviors, such as stability, controllability and observability, etc. (e.g., [19], [53]). Al-
though there are several studies facing the problem of optimal control of switched systems (both
from theoretical and from computational point of view [37], [36], [27], [39], there are still some prob-
lems not tackled, especially in issues where the switching mechanism is a design variable. There,
we see how these difficulties arise, and how tools from non-smooth calculus and optimal control can
be combined to solve optimal control problems. Previously, the approach based on convex analysis
have been treated in [36], and further developed in [27], considering an optimal control problem for
a switched system, these approaches do not take into account assumptions about the number of
switches nor about the mode sequence, because they are given by the solution of the problem. The
authors use a switched system that is embedded into a larger family of systems and the optimal
control problem is formulated for this family. When the necessary conditions indicate a bang-bang-
type of solution, they obtain a solution to the original problem. However, in the cases when a
bang-bang type solution does not exist, the solution to the embedded optimal control problem can
be approximated by the trajectory of the switched system generated by an appropriate switching
control. On the other hand, in [36] and [34] the authors determine the appropriated control law by
finding the singular trajectory along some time with non null measure.

2.3.2 Switched Nonlinear Systems

The nonlinear, non-convex form of the control variable, prevents us from using the Hamilton
equations of the maximum principle and nonlinear mathematical programming techniques on them.
Both approaches would entail severe difficulties, either in the integration of the Hamilton equations
or in the search method of any numerical optimization algorithm. Consequently, we propose to
convexify the control variable by using the method of moments in the polynomial expression in
order to deal with this kind of problems. In this paper we present a method for solving optimal
control for an autonomous switched systems problem based on the method of moments developed
in for optimal control, and in [28], [29], [30] and [32] for global optimization. We propose an
alternative approach for computing effectively the solution of nonlinear, optimal control problems.
This method works properly when the control variable (i.e., the switching signal) can be expressed
as polynomials. The essential of this paper is the transformation of a nonlinear, non-convex optimal
control problem (i.e., the switched system) into an equivalent optimal control problem with linear
and convex structure, which allows us to obtain an equivalent convex formulation more appropriate
to be solved by high performance numerical computing. To this end, first of all, it is necessary
to transform the original switched system into a continuous non-switched system for which the
theory of moments is able to work. Namely, we relate with a given controllable switched system, a
controllable continuous non-switched polynomial system.
Optimal control problems for switched nonlinear systems are investigated. We propose an alterna-
tive approach for solving the optimal control problem for a nonlinear switched system based on the
theory of moments. The essence of this method is the transformation of a nonlinear, non-convex
optimal control problem, that is, the switched system, into an equivalent optimal control prob-
lem with linear and convex structure, which allows us to obtain an equivalent convex formulation
more appropriate to be solved by high-performance numerical computing. Consequently, we pro-
pose to convexify the control variables by means of the method of moments obtaining semidefinite
programs. The paper dealing with this approach is given in the Appendix 2, paper [J.5].



Chapter 3

Supervisory Control of Discrete-Event
Systems

3.1 Multi-Agent Based Supervisory Control

Supervisory control initiated by Ramadge and Wonham [56] provides a systematic approach for
the control of discrete event system (DES) plant. The discrete event system plant be is modeled
by a finite state automaton [50],[43]:

Definition 1 (Finite-state automaton). A finite-state automaton is defined as a 5-tuple

G = (Q,Σ, δ, q0, Qm,C)

where

• Q is the finite set of states,

• Σ is the finite set of events,

• δ : Q× Σ → Q is the partial transition function,

• q0 ⊆ Q is the initial state,

• Qm ⊆ Q is the set of marked states (final states),

Let Σ∗ be the set of all finite strings of elements in Σ including the empty string ε. The transition
function δ can be generalized to δ : Σ∗ ×Q → Q in the following recursive manner:

δ(ε, q) = q

δ(ωσ, q) = δ(σ, δ(ω, q)) for ω ∈ Σ∗

The notation δ(σ, q)! for any σ ∈ Σ∗ and q ∈ Q denotes that δ(σ, q) is defined. Let L(G) ⊆ Σ∗ be
the language generated by G, that is,

L(G) = {σ ∈ Σ∗|δ(σ, q0)!}

Let K ⊆ Σ∗ be a language. The set of all prefixes of strings in K is denoted by pr(K) with
pr(K) = {σ ∈ Σ∗|∃ t ∈ Σ∗;σt ∈ K}. A language K is said to be prefix closed if K = pr(K).
The event set Σ is decomposed into two subsets Σc and Σuc of controllable and uncontrollable
events, respectively, where Σc ∩ Σuc = ∅. A controller, called a supervisor, controls the plant by
dynamically disabling some of the controllable events.

A sequence σ1σ2 . . . σn ∈ Σ∗ is called a trace or a word in term of language. We call a valid trace a
path from the initial state to a marked state (δ(ω, q0) = qm where ω ∈ Σ∗ and qm ∈ Qm).

31
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In this section we will focus on the Multi-Agent Based Supervisory Control, introduced by Hubbard
and Caines [64]; and the modified approach proposed by Takai and Ushio [65]. The two approaches
have been applied to the supervisory control of the EMN Experimental Manufacturing Cell. This
cell is composed of two robotized workstations connected to a central conveyor belt. Then, three
new semi- automated workstations have been added in order to increase the flexibility aspects of
the cell. Indeed, each semi-automated workstation can perform either manual of robotized tasks.
These two aspects correspond to the two different approaches of multi-agent product of subsystems,
for supervisory control purpose. The results can be found in [C.25].

Figure 3.1: EMN Cell

3.2 Switched Discrete-Event Systems

The notion of switched discrete-event systems corresponds to a class of DES where each au-
tomaton is the composition of two basic automata, but with different composition operators. A
switching occurs when there is a change of the composition operator, but keeping the same two
basic automata. A mode behavior, or mode for short, is defined to be by the DES behavior for a
given composition operator. Composition operators are supposed to change more than once so that
each mode is visited more than once. This new class of DES includes the DES in the context of
fault diagnosis where different modes such as e.g., normal, degenerated, emergency modes can be
found. The studied situations are the ones where the DES switch between different normal modes,
and not necessary the degenerated and the emergency ones.
The most common composition operators used in supervisory control theory are the product and
the parallel composition [43], [63] However many different types of composition operators have been
defined, e.g., the prioritized synchronous composition [49], the biased synchronous composition [52],
see [61] for a review of most of the composition operators. Multi-Agent composition operator [57],
[58] is another kind of operator, which differs from the synchronous product in the aspects of
simultaneity and synchronization.
The new class of DES that we define in this paper includes the class of DES in the context of fault
diagnosis, with different operating modes. Furthermore this new class addresses especially the
DES for which the system can switch from a given normal mode, to another normal mode. More
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precisely this new class of DES is an automaton which is the composition of two basic automata,
but with different composition operators. A switching corresponds to the change of composition
operator, but the two basic automata remains the same. A mode behavior (or mode for short)
is defined to be the DES situation for a given composition operator. Composition operators are
supposed to change more than once so that each mode is visited more than once.

We give here below some examples of switched DES:

• Manufacturing systems where the operating modes are changing (e.g. from normal mode to
degenerated mode)

• Discrete event systems after an emergency signal (from normal to safety mode)

• Complex systems changing from normal mode to recovery mode (or from safety mode to
normal mode).

We can distinguish, like for the switched continuous-time systems, the notion of autonomous switch-
ing where no external action is performed and the notion of controlled switching, where the switching
is forced. The results for this section can be found in [55].

3.3 Switchable Languages of DES

The notion of switchable languages has been defined by Kumar, Takai, Fabian and Ushio in [Kumar-
et-al. 2005]. It deals with switching supervisory control, where switching means switching between
two specifi- cations. In this paper, we first extend the notion of switchable languages to n languages,
(n ≥ 3). Then we consider a discrete-event system modeled with weighted automata. The switching
supervisory control strategy is based on the cost associated to each event, and it allows us to
synthesize an optimal supervisory controller. Finally the proposed methodology is applied to a
simple example.

We now give the main results of this paper. First, we define a triplet of switchable languages.
Second we derive a necessary and sufficient condition for the transitivity of switchable languages
(n = 3). Third we generalize this definition to a n-uplet of switchable languages, with n > 3. And
fourth we derive a necessary and sufficient condition for the transitivity of switchable languages for
n > 3.

3.3.1 Triplet of Switchable Languages

We extend the notion of pair of switchable languages, defined in [51], to a triplet of switchable
languages.

Definition 2 (Triplet of switchable languages). A triplet of languages (K1,K2,K3), Ki ⊆ Lm(G)
with Hi ⊆ Ki, i = {1, 2, 3} are said to be a triplet of switchable languages if they are pairwise
switchable languages, that is,

SW (K1,K2,K3) := SW (Ki,Kj), i ̸= j, i, j = {1, 2, 3}.

Another expression of the triplet of switchable languages is given by the following lemma.

Lemma 1 (Triplet of switchable languages). A triplet of languages (K1,K2,K3), Ki ⊆ Lm(G)
with Hi ⊆ Ki, i = {1, 2, 3} are said to be a triplet of switchable languages if the following holds:

SW (K1,K2,K3) = {(H1,H2,H3) | Hi ⊆ Ki ∩ pr(Hj), i ̸= j, and Hi controllable}.
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3.3.2 Transitivity of Switchable Languages (n = 3)

The following theorem gives a necessary and sufficient condition for the transitivity of switchable
languages.

Theorem 1 (Transitivity of switchable languages, n = 3) . Given 3 specifications (K1,K2,K3),
Ki ⊆ Lm(G) with Hi ⊆ Ki, i = {1, 2, 3} such that SW (K1,K2) and SW (K2,K3).
(K1,K3) is a pair of switchable languages, i.e. SW (K1,K3), if and only if

1. H1 ∩ pr(H3) = H1, and

2. H3 ∩ pr(H1) = H3.

The proof can be found in [42].

3.3.3 N-uplet of Switchable Languages

We now extend the notion of switchable languages, to a n-uplet of switchable languages, with
(n > 3).

Definition 3 (N-uplet of switchable languages, n > 3). A n-uplet of languages (K1, ...,Kn), Ki ⊆
Lm(G) with Hi ⊆ Ki, i = {1, ..., n}, n > 2, is said to be a n-uplet of switchable languages if the
languages are pairwise switchable that is,

SW (K1, ...,Kn) := SW (Ki,Kj), i ̸= j, i, j = {1, ..., n}, n > 2.

As for the triplet of switchable languages, an alternative expression of the n-uplet of switchable
languages is given by the following lemma.

Lemma 2 (N-uplet of switchable languages, n > 3). A n-uplet of languages (K1, . . . ,Kn), Ki ⊆
Lm(G) with Hi ⊆ Ki, i = {1, ..., n}, n > 3 are said to be a n-uplet of switchable languages if the
following holds:

SW (K1, ...,Kn) = {(H1, ..., Hn) | Hi ⊆ Ki ∩ pr(Hj), i ̸= j, and Hi controllable}.

3.3.4 Transitivity of Switchable Languages (n > 3)

We are now able to derive the following theorem that gives a necessary and sufficient condition for
the transitivity of n switchable languages.

Theorem 2 (Transitivity of n switchable languages, n > 3) . Given n specifications (K1, ...,Kn),
Ki ⊆ Lm(G) with Hi ⊆ Ki, i = {1, ..., n}. Moreover, assume that each language Ki is at least
switchable with another language Kj , i ̸= j.
A pair of languages (Kk,Kl) is switchable i.e. SW (Kk,Kl), if and only if

1. Hk ∩ pr(Hl) = Hk, and

2. Hl ∩ pr(Hk) = Hl.

The proof is similar to the proof of Theorem 6 and can be found in [42]. It is to be noted that the
assumption that each of the n languages be at least switchable with another language is important,
in order to derive the above result. The results can be found in [C.sub1].



Chapter 4

Conclusion and Future Work

4.1 Summary of Contributions

In this HDR Thesis, I have presented a summary of contribution, in Analysis and Control of Hybrid
Systems, as well as in Supervisory Control of Discrete-event Systems.

• Analysis and Control of Hybrid and Switched Systems

– Modeling and Control of MLD Systems

– Stability of Switched Systems

– Optimal Control of Switched Systems

• Supervisory Control of Discrete-Event Systems

– Multi-Agent Based Supervisory Control

– Switched Discrete-Event Systems

– Switchable Languages of DES

I have chosen to not present some work like the Distributed Resource Allocation Problem,
the Holonic Systems, and the VMI-Inventory Control work. However the references of the
corresponding papers are given in the complete list of publications. My perspectives of research in
the coming years are threefold: 1) Control of Smart Grids, 2) Simulation with Stochastic
Petri Nets and 3) Planning and Inventory Control.

4.2 Perspective 1: Control of Smart Grids

According to the US Department of Energy’s Electricity Advisory Committee, ”A Smart Grid
brings the power of networked, interactive technologies into an electricity system, giving utilities and
consumers unprecedented control over energy use, improving power grid operations and ultimately
reducing costs to consumers.”

The transformation from traditional electric network, with centralized energy production to com-
plex and interconnected network will lead to a smart grid. The five main triggers of Smart grid,
according to a major industrial point of view, are 1) Smart energy generation, 2) Flexible distribu-
tion, 3) Active energy efficiency, 4) Electric vehicles, and 5) Demand response.
From a control point of view, a smart grid is a system of interconnected micro-grids. A micro-
grid is a power distribution network where generators and users interact. Generators technologies
include renewable energy such as wind turbines or photovoltaic cells.
The objective of this project is to simulate and control a simplified model of a micro-grid
that is a part of a Smart Grid. After a literature review, a simplified model for control will be
chosen. Different realistic scenarios will be tested in simulation with MATLAB. Finally different
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Figure 4.1: Smart Grid

control strategies e.g. LQ/LQR Control, MPC and Hybrid Control will be tested in simulation
with MATLAB.

4.3 Perspective 2: Simulation with Stochastic Petri Nets

The Air France CDG Airport Hub in Paris-Roissy is dealing daily with 40,000 transfer luggages
and 30,000 local luggages (leaving from or arriving at CDG Airport). For this purpose Air France
is exploiting the Sorting Infrastructure of Paris Aeroport, and has to propose a Logistical Scheme
Allocation for each luggage in order to optimize the sorting and to minimize the number of failed
luggages. By failed luggages, we mean a luggage that does not arrive in time for the assigned flight.
The KPI Objective for 2017 is to have less than 20 failed luggages out of 1000 passengers.

Figure 4.2: CDG Airport Paris-Roissy

4.4 Perspective 3: Planning/Inventory Control

The strategy of integration known as VMI (Vendor-Managed Inventory) allows the coordination of
inventory policies between producers and buyers in supply chains. Based on a new proposed model
for the implementation of VMI in a chain of two links composed of a producer and a buyer, this
paper studies the evolution of individual strategies of the producer and the buyer by a formalism
derived from the theory of evolutionary games. The conditions that determine the stability of
evolutionarily stable strategies are derived and analyzed. Work results specify analytical conditions
that favor the implementation of VMI on traditional chains without VMI.
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Abstract − This paper presents a new algorithm for 

translating Mixed Logical and Dynamical (MLD) systems 
into PieceWise Affine (PWA) systems. The presented 
algorithm uses an enumeration technique and solves several 
linear programming problems in order to obtain the 
equivalence. The obtained model is equivalent to the MLD 
model meaning that given an initial state and an input 
sequence, the trajectory of the state vector and output vector 
are the same. The technique is applied to three  examples. 
The computation time and the simulation results for these 
examples are given. 

 
I. INTRODUCTION 

Mixed and Logical Dynamical (MLD) models 
introduced by Bemporad and Morari in [2] arise as a 
suitable representation for Hybrid Dynamical Systems 
(HDS), in particular for solving control-oriented problems. 
MLD models can be used for solving a model predictive 
control (MPC) problem of a particular class of HDS and it 
is proved that MLD models are equivalent to PieceWise 
Affine Models in [6]. In the paper by Heemels and co-
workers, the equivalencies among PieceWise Affine (PWA) 
Systems, Mixed Logical and Dynamical (MLD) systems, 
Linear Complementarity (LC) systems, Extended Linear 
Complementarity (ELC) systems and Max-Min-Plus-
Scaling (MMPS)  systems are proved, these relations are 
transcribed here in Fig. 1. 

This equivalences are based on some propositions (see 
[6] for details) 

 

 
Fig. 1. Equivalence relation between hybrid systems 
 
Every well-posed PWA system can be re-written as an 

MLD system assuming that the feasible states and inputs 
are bounded [6, proposition 4*]. 
A completely well-posed MLD system can be rewritten as a 
PWA system [6, proposition 5*]. 

A more formal proof can be found in [3], where an 
efficient technique for obtaining a PWA representation of a 
MLD model is proposed.  

The technique in [3] describes a methodology for 
obtaining, in an efficient form, a partition of the state-input 
space. The algorithm in [3] uses some tools from polytopes 
theory in order to avoid the enumeration of the all possible 
combinations of the integer variables contained in the MLD 
model. However, the technique does not describe the form 
to obtain a suitable choice of the PWA model, even though 
this part is introduced in the implementation provided by 
the author in [4]. The objective of this paper is to propose 
an algorithm of the suitable choice of the PWA description 
and use the PWA description for obtaining some analysis 
and control of  Hybrid Dynamical Systems. 
 

II. MLD SYSTEMS AND PWA SYSTEMS 

A. Mixed and Logical Dynamical (MLD) Systems 
The idea in the MLD framework is to represent logical 

propositions as equivalent integer expressions. MLD form 
is obtained by three basic steps [5]. The first step is to 
associate a binary variable δ ∈{0,1} with a proposition S, 
that may be true or false. δ is 1 if and only if proposition S 
is true. A composed proposition of elementary propositions 
S1,…,Sq combined using the boolean operators like 
AND(^), OR (∨), NOT(~) may be expressed like integer 
inequalities over corresponding binary variables δi, 
i=1,…,q.  

The second step is to replace the products of linear 
functions and logic variables by a new auxiliary variable z = 
δaTx where aT is a constant vector. The z value is obtained 
by mixed linear inequalities evaluation. 

The third step is to describe the dynamical system, 
binary variables and auxiliary variables in a linear time 
invariant (LTI) system.  

A hybrid system MLD described in general form is 
represented by  (1). 
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binary states, u u  are the inputs, 
the outputs, and  , , 

represent the binary and continuous auxiliary variables, 
respectively. The constraints over state, input, output, z and 
δ variables are included in the third term in  (1). 
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B. PieceWise Affine Systems 

A particular class of hybrid dynamical systems is the 
system described as follows, 

 (2) 

where I is a set of indexes, Xi is a sub-space of the real 

space Rn, and R+ is the set of positive real numbers 

including the zero element.  
In addition to this equation it is necessary to define the 

form as the system switches among its several modes. This 
equation is affine in the state space x and the systems 
described in this form are called PieceWise Affine Systems 
(PWA). In the literature of hybrid dynamical systems the 
systems described by the autonomous version of this 
representation are called Switched Systems.  

If the system vanishes when x brings near to zero, i.e. ai 
and bi are zero, then the representation is called PieceWise 
Linear (PWL) system. 

The discrete-time version of this equation will be used in 
this work and can be described as follows, 

 (3) 

where I is a set of indexes,  Xi is a sub-space of the real 

space Rn. 

 
III. MLD SYSTEMS INTO PWA SYSTEMS 

The MLD framework is a powerful structure for 
representing hybrid systems in an integrated form. 
Although E1, E2, E3, E4 and E5 matrices are, in general, 
large matrices, they can be obtained automatically. An 
example is the  HYSDEL compiler [10].  

However, some analysis of the system with the MLD 
representation are computationally more expensive with 
respect to some tools developed for PWA representations. 
Exploiting the MLD and PWA equivalencies, it is possible 
to obtain analysis and control of a system using this 
equivalent representations. Nevertheless, as it is underlined 
in [3], this procedure is more complex with respect to the 
PWA into MLD conversion, and there exist more 
assumptions. To our knowledge, the only previous 
approach has been proposed by Bemporad [3]. We propose 
then a new approach of translating MLD into PWA 
systems. 

The MLD structure can be rewritten as follows, 

1 1 2 3

1 1 2 3

2 3 2 1 1 5

( )
( 1) ( ) ( ) (

( )

( )
( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )

c
c l

l

c
c l

l

c
c l

l

u k
x k Ax k B B B k B z k

u k

u k
y k Cx k D D D k D z k

u k

u k
E k E z k E x k E E E

u k

δ

δ

δ

      + = + + +              = + + +             + ≤ + +         
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Here, the binary inputs are distinguished from the 
continuous inputs, because they induce switching modes in 
the system, in general.  

Supposing that the system is well posed, z(k) has only 
one possible value for a given x(k) and  u(k), and can be 
rewritten as: 

1 2 3( ) ( ) ( ) | [ , ]T T T
cz k k x k k u k k m x u b= + + ≤   (5) 

Replacing this value in the original equations the system 
can be represented as, 
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If an enumeration technique is used for generating all the 
feasible binary states of the [ul

T δT]T vector, the first 
problem is to find a value of [xT uT]T feasible for the 
problem, that can be obtained solving the linear 
programming problem, 

1 3 4 5 2 1

min [ ]

. .
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c c l l
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 (7) 

The solution is a feasible value [x*T u*T]T. The next 
problem is to find k1, k2 and k3. 

The inequalities can be rewritten as, 

3 4 1 1 2 5 4 1 1 2 5c c l l c cE z E x E u E u E E E k x E k u E kδ≤ + + − + = + + 3 (8) 

where 5E  includes every constant in the problem, i.e. ul 
and δ. On the other hand, the E3 matrix reflects the 
interaction among the z variables, and we can write: 

1 2F z k x k u k3× ≤ + +   (9) 

The matrix F represents the interaction among the z 
variables, if the system is well posed F-1 should exist. 

With this last equation, for finding 3k the next linear 
programming problem is solved, 

3

* *
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k
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  (10) 

The solution to this problem is 3k , in this case we 
assume that all components in 5E are the maximum and 
minimum values of z and the only solution for the problem 
is 3k . With 3k  we can obtain the other matrices. 

For obtaining 1k  it is necessary to solve nx, i.e. the 



length of the state vector, linear programming problems,  
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where E4i represents the column i of the E4 matrix and 
1i ik k= − 3k is the column i of the matrix 1k .  

For obtaining 2k  it is necessary to solve nu, i.e. the 
length of the continuous input vector, linear programming 
problems,  

* *
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k

s t E k E E E u Eδ

 ≤ − + + 1l ci
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where E1ci represents the column i of the E1c matrix and 
2i ik k k= − 3 is the column i of the matrix 2k . 

The matrix F should be found solving nz, i.e. the length 
of the z vector, linear programming problems,  
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  (13) 

where E3i represents the column i of the E3 matrix and 
3i iF k k= − is the column i of the matrix . F

Finally, k1, k2, and k3, can be computed as, 
1
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With these equations, the algorithm for translating the 
MLD model into PWA model is given as follows, 
 
Algorithm 1 
1. Find a feasible point for the binary vector, 

composed by the binary inputs and binary 
auxiliary variables. 

2. Compute  3k  using Eq. (10). 
3. Compute 1k , 2k and F using Eq. (11), (12) and 

(13). 
4. Compute k1, k2, and k3  using  Eq. (14). 
5. Using Eq. (6), compute Ai, Bi, fi, Ci, Di and gi and 

the valid region for this representation. 
6. If there exists another feasible point go to 

step 1. 
7. End. 

Some gains in the algorithm performance can be 
obtained if the vector z is evaluated after step one, using a 
linear program for finding the maximum and the minimum 
in z, if the zmin and zmax solutions are the same, it is not 
necessary to calculate steps 3, and 4, and z = zmin = zmax can 
be assigned directly. 

 
IV. EXAMPLES 

A. The Three-Tank Benchmark Problem 
The three-tank benchmark problem has been proposed as 

an interesting hybrid dynamical system. This Benchmark 
was proposed in [7] and [8]. See [13] and references there 
in for some control results using MLD framework in this 
system. The algorithm described in the last section is used 
for obtaining a PWA representation of this system. 

This system has three tanks each of them interconnected 
with another as depicted in Fig. 2. 

 
Fig. 2. Three Tank System 

 
The model is written using binary variables (δi) and 

relational expressions, 
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The simulation of the system using the MLD framework 
and a Mixed Integer Quadratic Programming MIQP 
algorithm running in an Intel Celeron 2GHz processor and 
256MB of RAM was 592.2s, using the PWA representation 
the same simulation was 1.33s. The time for obtaining the 
PWA model using the technique described in this work is 
72.90s and the algorithm found 128 regions. Using the 
algorithm in [4] the computation time of the PWA form was 
93.88s and the total regions found was 100 and the 
simulation took 5.89s. These results are summarized in 
Table I.  

Where Computation Time is the time taken by the 
computer for computing the PWA model based in the MLD 
model, and Simulation Time is the time taken by the 



computer for computing a trajectory given a model, an 
initial state and an input sequence. 

 
Table I. Computation and Simulation Times 

 
Representation Computation  

Time (s.) 
Simulation 
 Time (s.) 

MLD - 592.20
PWA-[4] 93.88 5.89

PWA-This work 72.90 1.33
 
The simulation results with MLD model and the error 

between PWA simulation results and MLD simulation 
results,  for the same input are shown in Fig. 3, 

    
(a) MLD Model  (b) Error between MLD and PWA [4] 

 
(C) Error between MLD and PWA– This Work 

Fig. 3. Simulation Results for the Three-Tank System 
 
In this case, at t=30s, the simulation with the PWA system 
in the Figure 3.b produces a switching  to an invalid 
operation mode. 
 
B. Car with Robotized Manual Gear Shift 

The example of a Hybrid Model of a Car with Robotized 
Manual Gear Shift was reported in [9] and is used in [3] as 
example.  The car dynamics is driven by the following 
equation, 

e bmx F F xβ= − −    (15) 
where m is the car mass, x  and x  is the car speed and 

acceleration, respectively, Fe is the traction force, Fb is the 
brake force and β is the friction coefficient. The 
Transmission Kinematics are given by, 
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where ω is the engine speed, M the engine torque and i is 
the gear position. 

The engine torque M is restricted to belongs between the 
minimum engine torque C and the maximum engine 
torque C . 

( )e ω−

( )e ω+

The model has two continuous states, position and 
velocity of car, two continuous inputs, engine torque and 
breaking force, and six binary inputs, the gear positions. 
The MLD model was obtained using the HYSDEL tool.  

The translation of the MLD model took 155.73 s and the 
PWA model found 30 sub-models, using the algorithm 
proposed in this work, and the PWA model using the 
algorithm proposed in [3] took 115.52 s and contains 18 
sub-models. The simulation time with MLD model and a 
MIQP algorithm for 250 iterations took 296.25s, using the 
PWA model obtained with the algorithm proposed here 
took 0.17s, and using the PWA model obtained using the 
algorithm in [4] the simulation took 0.35s. These results are 
summarized in Table II, 

 
Table II. Computation and Simulation Times 

 
Representation Computation 

Time (s.) 
Simulation 

Time (s.) 
MLD - 296.25

PWA-[4] 115.52 0.35
PWA-This work 155.73 0.17

 
The simulation results with MLD model and the error 

between PWA simulation results and MLD simulation 
results,  for the same input are shown in Fig. 4, 

 

 
(a) MLD Model  (b) Error between MLD and PWA [4] 

 
(c) Error between MLD and PWA– This Work 

 
Fig. 4. Simulation results for robotized gear shift 

 



C. The Drinking Water Treatment Plant 
The example of a Drinking Water Treatment Plant has 

been reported in [11] and [12]. This plant was modeled 
using identification techniques for hybrid dynamical 
systems, and  its behavior includes autonomous jumps.  

The plant modeled is based in the current operation of 
drinking water plant Francisco Wiesner situated at the 
periphery of Bogotá D.C. city (Colombia), which treats on 
average 12m3/s. The volume of water produced by this 
plant is near to 60% of consumption by the Colombian 
capital. In this plant, there exist two water sources: 
Chingaza and San Rafael reservoirs which can provide till 
22m3/s of water. 

The process mixes inlet water with a chemical solution in 
order to generate aggregated particles that can be caught in 
a filter. The dynamic of the filter is governed by the 
differential pressure across the filter and the outlet water 
turbidity. An automaton associated to the filter executes a 
back-washing operation when the filter performance is 
degraded.  Because of process non-linearity, the behavior of 
the system is different with two water sources, that is the 
case for the particular plant modeled.   

The model for each water source includes a dynamic for 
the aggregation particle process which dynamical variable 
is called Streaming Current (SC) and is modeled using two 
state variables, a dynamic for the differential pressure called 
Head Loss (HL) with only one state variable, a dynamic for 
the outlet turbidity (To) with two state variables.  

The  identified model  consists of four affine models, 
two for each water source in normal operation, one model 
in maintenance operation, one model representing the jump 
produced at the end of the maintenance operation. 

 
( 1) ( ) ( )

( ) ( ) ( )

{1, if water source1andnormal operation, 

    2, if water source2andnormal operation,

    3, if maintenance operation, 

    4, change from maintenance operation 

  

i i i

i i i

x k Ax k B u k f

y k C x k D u k g

i

 + = + + = + +
∈

      to normal operation}

 

where water source is an input variables, maintenance 
operation is executed if  outlet turbidity (To) is greater than 
a predefined threshold, or, Head Loss (HL) is greater than a 
predefined threshold, or, operation time is greater than a 
predefined threshold. 

The MLD model has 7 continuous states (including two 
variables for two timers in the automaton), 4 continuous 
inputs (dosage, water flow, inlet turbidity and pH), 3 binary 
inputs (water source, back-washing operation and normal 
operation), 8 auxiliary binary variables, and 51 auxiliary 
variables. The complete model can be obtained by mail 
from the corresponding authors.  

The translation from the MLD model into PWA model 

took 572.19 s, with the algorithm proposed here, generating 
127 sub-models. The translation into PWA model took 
137.37s, with the algorithm in [3], generating 14 sub-
models. The simulation time for 300 iterations with the 
MLD model and a MIQP algorithm took 4249.301s, the 
same simulation with the PWA model obtained with the 
algorithm proposed here took 0.14s, and the same 
simulation with the PWA model obtained using the 
algorithm in [4] took 0.31s. These results are summarized in 
Table III, 

 
Table III. Computation and Simulation Times. 

 
Representation Computation 

Time (s.) 
Simulation 

Time (s.)
MLD - 4249.30

PWA-[4] 137.37 0.31
PWA-This work 572.20 0.14

 
The simulation results for the same input are shown in 

Fig. 5, 
 

 
(a) MLD Model  (b) Error between MLD and PWA [4] 
 

 
(c) Error between MLD and PWA– This Work 

Fig. 5. Simulation results for a water plant model. 
 

In this case, at t=168min, the simulation with the PWA 
system in the Figure 5.b is not valid because there exist no 
mode in the PWA representation that belongs to the state-
input vector reached in this point. Some other results can be 
found in [14].  
 

V. CONCLUSIONS 
This work presents new algorithm for obtaining a 

suitable choice of the PWA description from a MLD 
representation. The results are applied to the three-tank 



benchmark problem, to a car with robotized gear shift and 
to a drinking water plant, the three examples have been 
reported in the literature as examples of hybrid dynamical 
systems modeled with MLD formalism. The simulation 
results show that the PWA models obtained have the same 
behavior with respect to the MLD models. However in 
some cases the obtained PWA model does not have a valid 
solution for some state-input sub-spaces. 
As a consequence of the enumeration procedure, our PWA 
models have more submodels/regions than the algorithm in 
[3], however we show that the procedure does not spent 
much more computation time because of the simplicity in 
its formulation, and it ensures the covering of all regions 
included in the original MLD model. 

Ongoing work concerns the analysis of MLD Systems 
with some results from PWA systems. 
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SUMMARY

Optimal control problems for switched nonlinear systems are investigated. We propose an alternative
approach for solving the optimal control problem for a nonlinear switched system based on the theory
of moments. The essence of this method is the transformation of a nonlinear, nonconvex optimal control
problem, that is, the switched system, into an equivalent optimal control problem with linear and convex
structure, which allows us to obtain an equivalent convex formulation more appropriate to be solved
by high-performance numerical computing. Consequently, we propose to convexify the control variables
by means of the method of moments obtaining semidefinite programs. Copyright © 2013 John Wiley &
Sons, Ltd.
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KEY WORDS: method of moment; optimal control; switched systems

1. INTRODUCTION

Switched nonlinear control systems are characterized by a set of several continuous nonlinear state
dynamics with a logic-based controller, which determines simultaneously a sequence of switching
times and a sequence of modes. As performance and efficiency are key issues in modern techno-
logical system such as automobiles, robots, chemical processes, power systems among others, the
design of optimal logic-based controllers, covering all those functionalities while satisfying physical
and operational constraints, plays a fundamental role. In the last years, several researchers have con-
sidered the optimal control of switched systems. An early work on the problem is presented in [1],
where a class of hybrid-state continuous-time dynamic system is investigated. Later, a generaliza-
tion of the optimal control problem and algorithms of hybrid systems is presented [2]. The particular
case of the optimal control problem of switched systems is presented in [3] and [4]. However, most
of the efforts have been typically focused on linear subsystems [5]. In general, the optimal control
problem of switched system is often computationally hard as it encloses both elements of opti-
mal control as well as combinatorial optimization [6]. In particular, necessary optimality conditions
for hybrid systems have been derived using general versions of the Maximum Principle [7, 8] and
more recently in [9]. In the case of switching systems [4] and [6], the switched system has been
embedded into a larger family of systems, and the optimization problem is formulated. For general
hybrid systems, with nonlinear dynamics in each location and with autonomous and controlled
switching, necessary optimality conditions have recently been presented in [10]; and using these
conditions, algorithms based on the hybrid Maximum Principle have been derived. Focusing on
real-time applications, an optimal control problem for switched dynamical systems is considered,

*Correspondence to: Eduardo Mojica-Nava, Universidad de Los Andes, Cra 1 No. 18A-10, Bogotá, Colombia.
†E-mail: ea.mojica70@uniandes.edu.co

Copyright © 2013 John Wiley & Sons, Ltd.
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where the objective is to minimize a cost functional defined on the state, and where the control
variable consists of the switching times [11]. It is widely perceived that the best numerical methods
available for hybrid optimal control problems involve mixed integer programming (MIP) [12, 13].
Even though great progress has been made in recent years in improving these methods, the MIP is
an NP-hard problem, so scalability is problematic. One solution for this problem is to use the tradi-
tional nonlinear programming techniques such as sequential quadratic programming, which reduces
dramatically the computational complexity over existing approaches [6].

The main contribution of this paper is an alternative approach to solve effectively the optimal
control problem for an autonomous nonlinear switched system based on the probability measures
introduced in [14], and later used in [15] and [16] to establish existence conditions for an infinite-
dimensional linear program over a space of measure. Then, we apply the theory of moments,
a method previously introduced for global optimization with polynomials in [17, 18], and later
extended to nonlinear 0 � 1 programs using an explicit equivalent positive semidefinite program
in [19]. We also use some results recently introduced for optimal control problems with the con-
trol variable expressed as polynomials [20–22]. The first approach relating switched systems and
polynomial representations can be found in [23]. The moment approach for global polynomial
optimization based on semidefinite programming (SDP) is consistent, as it simplifies and/or has
better convergence properties when solving convex problems. This approach works properly when
the control variable (i.e., the switching signal) can be expressed as a polynomial. Essentially, this
method transforms a nonlinear, nonconvex optimal control problem (i.e., the switched system) into
an equivalent optimal control problem with linear and convex structure, which allows us to obtain
an equivalent convex formulation more appropriate to be solved by high-performance numerical
computing. In other words, we transform a given controllable switched nonlinear system into a
controllable continuous system with a linear and convex structure in the control variable.

This paper is organized as follows. In Section 2, we present some definitions and preliminaries. A
semidefinite relaxation using the moment approach is developed in Section 3. An algorithm is devel-
oped on the basis of the semidefinite approach in Section 4 with a numerical example to illustrate
our approach, and finally in Section 5, some conclusions are drawn.

2. THE SWITCHED OPTIMAL CONTROL PROBLEM

2.1. Switched systems

The switched system adopted in this work has a general mathematical model described by

Px.t/D f�.t/.x.t//, (1)

where x.t/ is the state, fi W Rn 7! Rn is the i � th vector field, x.t0/ D x0 are fixed initial values,
and � W Œt0, tf � 7! Q 2 ¹0, 1, 2, ..., qº is a piecewise constant function of time, with t0 and tf as the
initial and final times, respectively. Every mode of operation corresponds to a specific subsystem
Px.t/ D fi .x.t//, for some i 2 Q, and the switching signal � determines which subsystem is
followed at each point of time into the interval Œt0, tf �. The control input � is a measurable function.
In addition, we consider a non-Zeno behavior, that is, we exclude an infinite switching accumula-
tion points in time. Finally, we assume that the state does not have jump discontinuities. Moreover,
for the interval Œt0, tf �, the control functions must be chosen so that the initial and final conditions
are satisfied.

Definition 1
A control for the switched system in (1) is a duplet consisting of

(i) a finite sequence of modes, and
(ii) a finite sequence of switching times such that, t0 < t1 < � � �< tq D tf .

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
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2.2. Switched optimal control problem

Let us define the optimization functional in Bolza form to be minimized as

J D '.x.tf//C

Z tf

t0

L�.t/.t , x.t//dt , (2)

where '.x.tf// is a real-valued function, and the running switched costs L�.t/ W RC �Rn 7! R are
continuously differentiable for each � 2Q.

A switched optimal control problem (SOCP) can be stated in a general form as follows.

Definition 2
Given the switched system in (1) and a Bolza cost functional J as in (2), the SOCP is given by

min
�.t/2Q

J.t0, tf , x.t0/, x.tf/, x.t/, �.t// (3)

subject to the state x.�/ satisfying Equation (1).

The SOCP can have the usual variations of fixed or free initial or terminal state, free terminal
time, and so forth.

2.3. A Polynomial representation

The starting point is to rewrite (1) as a continuous non-switched control system as it has been shown
in [24]. The polynomial expression in the control variable able to mimic the behavior of the switched
system is developed using a variable v, which works as a control variable.

A polynomial expression in the new control variable v.t/ can be obtained through Lagrange
polynomial interpolation and a constraint polynomial as follows. First, let the Lagrange polynomial
interpolation quotients be defined as [25],

lk.v/D

qY
iD0
i¤k

.v � i/

.k � i/
. (4)

The control variable is restricted by the set �D ¹v 2R jg.v/D 0º, where g.v/ is defined by

g.v/D

qY
kD0

.v � k/. (5)

General conditions for the subsystems functions should be satisfied.

Assumption 3
The nonlinear switched system satisfies growth, Lipschitz continuity, and coercivity qualifications
concerning the mappings

fi WR
n 7!Rn

Li WR
n 7!R

to ensure existence of solutions of (1).

The solution of this system may be interpreted as an explicit ODE on the manifold �. A
related continuous polynomial system of the switched system (1) is constructed in the following
proposition [24].

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
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Proposition 4
Consider a switched system of the form given in (1). There exists a unique continuous state system
with polynomial dependence in the control variable v, F.x, v/ of degree q in v, with v 2 �

as follows:

Px D F.x, v/D
qX
kD0

fk.x/lk.v/. (6)

Then, this polynomial system is an equivalent polynomial representation of the switched system (1).

Similarly, we define a polynomial equivalent representation for the running cost L�.t/ by using
the Lagrange’s quotients as follows.

Proposition 5
Consider a switched running cost of the form given in (2). There exists a unique polynomial running
cost equation L.x, v/ of degree q in v, with v 2� as follows:

L.x, v/D
qX
kD0

Lk.x/lk.v/ (7)

with lk.v/ defined in (4). Then, this polynomial system is an equivalent polynomial representation
of the switched running cost in (2).

The equivalent optimal control problem (EOCP), which is based on the equivalent polynomial
representation is described next.

The functional using Equation (7) is defined by

J D '.x.tf//C

Z tf

t0

L.x, v/dt , (8)

subject to the system defined in (6), with x 2 Rn, v 2 �, and x.t0/ D x0, where lk.v/, �, and L
are defined earlier. Note that this control problem is a continuous polynomial system with the input
constrained by a polynomial g.v/. This polynomial constraint is nonconvex with a disjoint feasible
set, and traditional optimization solvers perform poorly on such equations, as the necessary con-
straint qualification is violated. This makes this problem intractable directly by traditional nonlinear
optimization solvers. Next, we propose a convexification of the EOCP using the special structure of
the control variable v, which improves the optimization process.

3. SEMIDEFINITE RELAXATION USING A MOMENTS APPROACH

3.1. Relaxation of the optimal control problem

We describe the relaxation of the polynomial optimal control problem, for which, regardless of
convexity assumptions, existence of optimal solutions can be achieved. Classical relaxation results
establish, under some technical assumptions, that the infimum of any functional does not change
when we replace the integrand by its convexification. In the previous section, a continuous represen-
tation of the switched system has been presented. This representation has a polynomial form in the
control variable, which implies that this system is nonlinear and nonconvex with a disjoint feasible
set. Thus, traditional optimization solvers have a disadvantaged performance, either by means of
the direct methods (i.e., nonlinear programming) or indirect methods (i.e., Maximum Principle). We
propose then, an alternative approach to deal with this problem. The main idea of this approach is
to convexify the control variable in polynomial form by means of the method of moments. This
method has been recently developed for optimization problems in polynomial form (see [17, 18],
among others). Therefore, a linear and convex relaxation of the polynomial problem (8) is presented
next. The relaxed version of the problem is formulated in terms of probability measures associated
with sequences of admissible controls [15].

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
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Let � be the set of admissible controls v.t/. The set of probability measures associated to the
admissible controls in � is

ƒD
®
�D ¹�tºt2Œt0,tf � W supp.�t /��, a.e., t 2 Œt0, tf �

¯
,

where � is a probability measure supported in �. The functional J.x, v/ defined on ƒ is now
given by

J.x, v/D '.x.tf//C
Z tf

t0

Z
�

L.x.t/, v/d�t .v/dt ,

where x.t/ is the solution of

Px.t/D

Z
�

F.x, v/d�t .v/, x.t0/D x0.

We have obtained a reformulation of the problem that is an infinite dimensional linear program
and thus not tractable as it stands. However, the polynomial dependence in the control variable
allows us to obtain a semidefinite program or linear matrix inequality relaxation, with finitely many
constraints and variables. By means of moments variables, an equivalent convex formulation more
appropriate to be solved by numerical computing can be rendered. The method of moments takes
a proper formulation in probability measures of a nonconvex optimization problem ([18, 23], and
references therein). Thus, when the problem can be stated in terms of polynomial expressions in
the control variable, we can transform the measures into algebraic moments to obtain a new convex
program defined in a new set of variables that represent the moments of every measure [17, 18, 22].

We define the space of moments as

� D

²
mD ¹mkº W mk D

Z
�

vkd�.v/, � 2 P.�/

³
,

where P.�/ is the convex set of all probability measures supported in �. In addition, a sequence
m D ¹mkº has a representing measure � supported in � only if these moments are restricted to be
entries on positive semidefinite moments and localizing matrices [17, 19]. For this particular case,
when the control variable is of dimension one, the moment matrix is a Hankel matrix with m0 D 1,
that is, for a moment matrix of degree d , we have

Md .m/D

2
6664
m0 m1 � � � md
m1 m2 � � � mdC1

...
... � � �

...
md mdC1 � � � m2d

3
7775 .

The localizing matrix is defined on the basis of corresponding moment matrix, whose positivity
is directly related to the existence of a representing measure with support in � as follows. Consider
the set � defined by the polynomial ˇ.v/D ˇ0C ˇ1vC � � �ˇdv� . It can be represented in moment
variables as ˇ.m/D ˇ0Cˇ1m1C� � �ˇ�m� , or in compact form as ˇ.m/D

P�
�D0 ˇ�m� . Suppose

that the entries of the corresponding moment matrix are m�, with � 2 Œ0, 1, : : : , 2d�. Thus, every

entry of the localizing matrix is defined as l� D
Pd
�D0 ˇ�m�C�. Note that the localizing matrix has

the same dimension of the moment matrix, that is, if d D 1 and the polynomial ˇ D vC 2v2, then
the moment and localizing matrices are

M1.m/D

�
1 m1
m1 m2

�
, M1.ˇm/D

�
m1C 2m2 m2C 2m3
m2C 2m3 m3C 2m4

�
.

More details on the method of moments can be found in [19, 26].
Because J is a polynomial in v of degree q, the criterion

R
Ld� involves only the moments of �

up to order q and is linear in the moment variables. Hence, we replace � with the finite sequence

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
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m D ¹mkº of all its moments up to order q. We can then express the linear combination of the
functional J and the space of moments � as follows

min
v2�

J.x, v/! min
�2P.�/

Z
�

J.x, v/d�.v/

D min
mk2	

Z tf

t0

X
i

X
k

Li .x/˛ikmk , (9)

where ˛ik are the coefficients resulting of the factorization of Equation (4). Similarly, we obtain the
convexification of the state equation

Px.t/D

Z
�

F.x, v/d�.v/D
X
i

X
k

fi .x/˛ikmk . (10)

We have now a problem in moment variables, which can be solved by efficient computational tools
as it is shown in the next section.

3.2. Semidefinite programs for the EOCP

We can use the functional and the state equation with moment structure to rewrite the relaxed for-
mulation as a SDP. First, we need to redefine the control set� to be coherent with the definitions of
localizing matrix and representation results. We treat the polynomial g.v/ as two opposite inequal-
ities, that is, g1.v/ D g.v/ > 0 and g2.v/ D �g.v/ > 0, and we redefine the compact set to be
� D ¹gi .v/ > 0, i D 1, 2º. Also, we define also a prefixed order of relaxation, which is directly
related to the number of subsystems.

Let w be the degree of the polynomial g.v/, which is equivalent to the degree of the polynomials
g1 and g2. Considering its parity, we have that if w is even (odd) then r D w=2 (r D .wC1/=2). In
this case, r corresponds to the prefixed order of relaxation. We use a direct transcription method
to obtain an SDP to be solved through a nonlinear programming (NLP) algorithm [27]. Using
a discretization method, the first step is to split the time interval Œt0, tf � into N subintervals as
t0 < t1 < t2 < : : : < tN D tf , with a time step h predefined by the user. The integral term in the
functional is implicitly represented as an additional state variable, transforming the original problem
in Bolza form into a problem in Mayer form, which is a standard transformation [27]. Therefore,
we obtain a set of discrete equations in moment variables. In this particular case, we have used a
trapezoidal discretization, but we could have used a more elaborated discretization scheme. Thus,
the optimal control problem can be formulated as an SDP.

Consider a fixed t in the time interval Œt0, tf � and let Assumption 3 holds. We can state the
following SDP of relaxation order r (SDPr ).

Semidefinite program-SDPr : For every j D ¹1, 2, : : : ,N º, a semidefinite program SDPr can
be described by

J �r D min
m.tj /

h

2

N�1X
jD0

L.x.tj /,m.tj //

s.t.

x.tjC1/D x.tj /C h
X
i

X
k

fi .x.tj //˛ikmk.tj /, x.t0/D x0,

(11)

Mr.m.tj //� 0, M0.g1m.tj //� 0, M0.g2m.tj //� 0.

Notice that in this case, the localizing matrices are linear. Let us consider the two subsystems
case, that is, we have g D v2 � v that leads to polynomials g1 D v2 � v and g2 D v � v2, thus
w D degg D 2. The localizing matrices are M0.g1m/ D m2 � m1, so M0.g2m/ D m1 � m2.
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This happens because we are using the minimum order of relaxation, r D w=2 or r D .w C 1/=2
depending on its parity. It is also known that the optimum J �r is not always an optimal solution.
However, in this case, a suboptimal solution is obtained, which corresponds to a lower bound on the
global optimum J � of the original problem. If we are interested in searching for an optimal solution,
we can use a higher order of relaxation, that is, r > w=2, but the number of moment variables will
increase, which can make the problem numerically inefficient. However, in many cases, low order
relaxations will provide the optimal value J � as shown in the next section, where we use a criterion
to test whether the SDPr relaxation achieves the optimal value J � for a fixed time. Still, suboptimal
solutions of the original problem are obtained in the iteration that can be used. In order to solve a
traditional NLP, we use the characteristic form of the moment and localizing matrices. We know that
the moment matrices, and so the localizing matrices, are symmetric positive definite, which implies
that every principal subdeterminant is positive [21]. Then, we use the set of subdeterminants of each
matrix as algebraic constraints.

3.3. Analysis of solutions

Once a solution has been obtained in a subinterval Œtj�1, tj �, we obtain a vector of moments
m�.tj / D Œm�1.tj /,m

�
2.tj /, : : : ,m

�
r .tj /�. Then, we need to verify if we have attained an optimal

solution. On the basis of a rank condition of the moment matrix [26], we can test if we have obtained
a global optimum at a relaxation order r . Also, on the basis of the same rank condition, we can check
whether the optimal solution is unique or if it is a convex combination of several minimizers. The
next result is based on an important result presented in [26] and used in [19] for optimization of
0� 1 problems.

Proposition 6
For a fixed time tj in the interval Œt0, tf �, the SDPr (11) is solved with an optimal vector solution
m�.tj /, if

�r D rankMr

�
m�.tj /

�
D rankM0

�
m�.tj /

�
, (12)

then the global optimum has been reached and the problem for the fixed time tj has �r optimal
solutions.

Note that the rank condition (12) is a sufficient condition, which implies that the global optimum
could be reached at some relaxation of order r and still the rankMr > rankM0. It should
be noted that for the particular case of minimum order of relaxation, the rank condition yields
�r D rankMr.m.tj // D rankM0.m.tj // D 1, because M0 D 1. Then, the rankM0 D 1, which
implies that when �r > 1, that is, several solutions arise. In this case, we obtain a suboptimal
switching solution.

Using the previous result, we can state some relations between solutions that can be used to obtain
the switching signal in every tj . First, we state the following result valid for the unique solution case.

Theorem 7
If Problem (11) is solved for a fixed tj 2 Œt0, tf � and the rank condition in (12) is verified with
�r D rankMr.m

�.tj // D 1, then the vector of moments m�.tj / has attained a unique optimal
global solution; and therefore, the optimal switching signal of the switched problem (3) for the fixed
time tj is obtained as

��.tj /Dm
�
1.tj /, (13)

where m�1.tj / is the first moment of the vector of moments m�.tj /.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2013)
DOI: 10.1002/rnc



E. MOJICA-NAVA, N. QUIJANO AND N. RAKOTO-RAVALONTSALAMA

Proof
Suppose the problem (11) has been solved for a fixed tj , and a solution has been obtained. Let
m�.tj / be the solution obtained and the rank condition (12) has been verified. From a result
presented in [19], it follows that

min
�2P.�/

Z
�

J.x, v/d�.v/D min
mk2	

Z tf

t0

X
i

X
k

Li .x/˛ikmk ,

where m�.tj / D
�
m�1 , : : : ,m�r

�
is the vector of moments of some measure �m. But then,

as �m is supported on �, it also follows that m�.tj / is an optimal solution and because of
rankMr

�
m�.tj /

�
D 1, this solution is unique and it is the solution of the polynomial problem

(8). Then, we know that every optimal solution v� corresponds to

m�.tj /D
�
v�.tj /,

�
v�.tj /

�2
, : : : ,

�
v�.tj /

�2d	
,

which implies that m�1.tj / D v
�.tj /. Now, using the equivalence stated in Proposition 5, we know

that the solutions of the polynomial Problem (8) are solutions of the switching system; and in this
case, it is only one. Hence, we obtain ��.tj / D v�.tj /, which implies that ��.tj / D v�.tj / D
m�1.tj /, where m�1 is the first moment of the vector of moments. �

Remark 8
Switched linear systems case. When we have a switched linear system, that is, when each subsys-
tem is defined by a linear system, results presented in Theorem (7) can be directly applied, because
Assumption (3) is satisfied for linear systems because the Lipschitz condition is satisfied globally
[28]. Also, we can notice that if the switched linear system has one and only one switching solu-
tion, it corresponds to the first moment solution of the SDPr program for all t 2 Œt0, tf �, that is,
m�1.tj / D ��.tj /, for all tj 2 Œt0, tf �. This can be verified by means of the rank condition (12),
which should be �r D 1, for all t 2 Œt0, tf �.

This result states a correspondence between the minimizer of the original switched problem and
the minimizer of the SDPr , and it can be used to obtain a switching signal directly from the solution
of the SDPr . However, it is not always the case. Sometimes, we obtain a non-optimal solution that
arises when the rank condition is not satisfied, that is, �r > 1. But, we still can use information
from the solution to obtain a switching suboptimal solution. In [29], a sum up rounding strategy is
presented to obtain a suboptimal switched solution from a relaxed solution in the case of mixed-
integer optimal control. We use a similar idea but extended to the case when the relaxed solution is
any integer instead of the binary case.

Consider the first momentm1.�/ W Œt0, tf � 7! Œ0, q�, which is a relaxed solution of the NLP problem
for tj when the rank condition is not satisfied. We can state a correspondence between the relaxed
solution and a suboptimal switching solution, which is close to the relaxed solution in average and
is given by

�.tj /D

8̂
<̂
ˆ̂:
dm1.tj /e if

Z tj

t0

m1.	/d	 � ıt

j�1X
kD0

�.tk/> 0.5ıt

bm1.tj /c otherwise

(14)

where d�e and b�c are the ceiling and floor functions, respectively.

4. A SWITCHED OPTIMIZATION ALGORITHM

The ideas presented earlier are summarized in the following algorithm, which is implemented in
Section 4.2 on a simple numerical example presented as a benchmark in [30]. The core of the
algorithm is the inter-relationship of three main ideas:
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(i) The equivalent optimal control problem
The EOCP is formulated as in Section 2, where the equivalent representation of the switched
system and the running cost are used to obtain a polynomial continuous system.

(ii) The relaxation of the EOCP – the theory of moments
The EOCP is now transformed into an SDP of order of relaxation r , which can be solved
numerically efficiently. We obtain an equivalent linear convex formulation in the control
variable.

(iii)The relationship between the solutions of the original switched problem and the SDP
solutions
The solutions of the SDPr for each tj 2 Œt0, tf � are obtained; and through an extracting
algorithm, the solutions of the original problem are obtained.

4.1. Algorithm SDPr – SOCP

The optimal control pseudo-code algorithm for the switched systems is shown in Algorithm 1.

In the next section, we present a numerical example to illustrate the results presented in this work.

4.2. Numerical example: Lotka–Volterra problem

We present an illustrative example of a switched nonlinear optimal control problem reformulated as
a polynomial optimal control problem. Then, this reformulation allows us to apply the semidefinite
relaxation based on the theory of moments. We illustrate an efficient computational treatment to
study the optimal control problem of switched systems reformulated as a polynomial expression.

We deal with the Lotka–Volterra fishing problem. Basically, the idea is to find an optimal strategy
on a fixed time horizon to bring the biomass of both predator as prey fish to a prescribed steady-
state. The system has two operation modes and a switching signal as a control variable. The optimal
integer control shows chattering behavior, which makes this problem a benchmark to test different
types of algorithms‡.

‡The problem has been used as a small-scale benchmark problem for the evaluation of algorithms [30].
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The Lotka–Volterra model, also known as the predator–prey model, is a coupled nonlinear
differential equations where the biomasses of two fish species are the differential states x1 and
x2, the binary control is the operation of a fishing fleet, and the objective is to penalize deviation
from a steady-state. The optimal control problem is described as follows:

min
u

Z tf

t0

.x1 � 1/
2C .x2 � 1/

2dt

s.t.

Px1 D x1 � x1x2 � 0.4x1u

Px2 D�x2C x1x2 � 0.2x2u

x.0/D .0.5, 0.7/>, u.t/ 2 ¹0, 1º, t 2 Œ0, 12�.

(15)

The problem can be represented by the approach described earlier. Consider a subsystem f0
when the control variable takes value 0, and a subsystem f1 when the control variable takes value
1. This leads to a two operation modes and a switching control variable �.�/ W Œ0, 12� 7! ¹0, 1º.
Thus, by means of the algorithm SDPr–EOCP, an SDP program can be stated. First, we define
the order of relaxation as r D w=2 D 1; the constraint control set as � D ¹gi .v/ > 0,g1.v/ D
v2�v, g2 D v�v2º; the moment matrix with r D 1,M1.m/; and the localizing matrices,M0.g1m/

and M0.g2m/. Using the set � and the moment and localizing matrices, we set the problem in
moment variables obtaining the positive semidefinite program .SDPr/. Solving the SDPr program
for each t 2 Œ0, 12�, with a step time h, we obtain an optimal trajectory, and the moment sequence
allows us to calculate the switching signal.

Figure 1 shows the trajectories, the relaxed moment solution, and the switching signal obtained
for an order of relaxation r D 1. It can be appreciated that when the relaxed solution has a unique
optimal solution, that is, when the rank condition is satisfied, the relaxed solution has an exact
unique solution that is integer and corresponds to the switching signal, which shows the validity of
Theorem 7. Also, it is shown that when the rank condition is not satisfied, the algorithm proposed
gives a suitable solution, that in average is close to the relaxed solution. The algorithm has shown
that even if there is no global optimal solution, a local suboptimal solution is found. Furthermore,
for the intervals where there is no optimal solution, a suboptimal solution has been found using
the relaxed solution. In comparison with traditional algorithms, where a global suboptimal solution
based on a relaxation is found, the proposed algorithm is able to detect whether an optimal solution
is found in a time interval, which implies that if the system is composed by convex functions,
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Figure 1. States and switching signal for the Lotka–Volterra example.
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a global optimal solution is found. The computational efficiency is based on the semidefinite
methods of solutions.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a new method for solving the optimal control problem of switched
nonlinear systems based on a polynomial approach. First, we transform the original problem into
a polynomial system, which is able to mimic the switching behavior with a continuous polynomial
representation. Next, we transform the polynomial problem into a relaxed convex problem using the
method of moments. From a theoretical point of view, we have provided sufficient conditions for the
existence of the minimizer by using particular features of the relaxed, convex formulation. Even in
the absence of classical minimizers of the switched system, the solution of its relaxed formulation
provides minimizers. We have introduced the moment approach as a computational useful tool to
solve this problem, which has been illustrated by means of a classical example used in switched
systems. As a future work, the algorithm can be extended to the case when an external control input
and the switching signal should be obtained.
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ABSTRACT
Since complexity and scale of systems are continuously increasing, there is a growing interest in
developing distributed algorithms that are capable to address information constraints, specially for
solving optimisation and decision-making problems. In this paper, we propose a novel method to
solve distributed resource allocation problems that include lower bound constraints. The optimisa-
tion process is carried out by a set of agents that use a communication network to coordinate their
decisions. Convergence and optimality of themethod are guaranteed under somemild assumptions
related to the convexity of the problem and the connectivity of the underlying graph. Finally, we
compare our approach with other techniques reported in the literature, and we present some
engineering applications.

1. Introduction

The increasing scale and complexity of systems have
motivated the development of distributed methods to
deal with situations where optimisation and decision-
making are required. An important issue within this
field is the optimal resource allocation over networks of
agents, a problem that is closely related to network util-
ity maximisation (NUM) problems (Palomar & Chiang,
2006; Tan, Zhu, Ge, & Xiong, 2015). Resource alloca-
tion arises when there is a limited amount of a certain
resource (e.g. electric power, computing capacity or exe-
cution time), and it is necessary to establish an opti-
mal distribution policy between some entities (e.g. loads,
processors or controllers) that are connected by a com-
munication network. This kind of problems has a large
number of applications in economics (Ayesta, Erausquin,
Ferreira, & Jacko, 2016; Conrad, 2010), smart energy sys-
tems (Hansen, Roche, Suryanarayanan, Maciejewski, &
Siegel, 2015; Pantoja & Quijano, 2012), cloud computing
(Pietrabissa et al., 2016; Pillai & Rao, 2016), and commu-
nications (H. Lee, K.J. Lee, Kim, Clerckx, & I. Lee, 2016;
Tan et al., 2015).

Although there exists an extensive literature regard-
ing distributed methods for solving resource allocation
problems, this field still attracts considerable research
attention (Cherukuri & Cortés, 2015; Obando, Pantoja, &
Quijano, 2014; Pantoja, Quijano, & Passino, 2014; Poveda
&Quijano, 2015; Ramirez-Llanos &Martinez, 2015; Tan,
Yang, & Xu, 2013). Most of the solution methods are

CONTACT Germán Obando ge-oband@uniandes.edu.co

based on multi-agent systems (e.g. a survey that deals
with the general class of NUM problems can be found
in Palomar & Chiang, 2006), where the agents make
decisions based on local information in order to obtain
a desirable global behaviour. Appropriate coordination
of agents is crucial because it avoids converging to sub-
optimal solutions. In order to ensure this coordination,
a large number of methods require either the inclusion
of a centralised agent or the use of restrictive informa-
tion structures (as it is pointed out in Mosk-Aoyama,
Roughgarden, & Shah, 2010). For instance, in classic
decomposition techniques (Bemporad, Heemels, &
Johansson, 2010; Boyd, Parikh, Chu, Peleato, & Eckstein,
2010; Palomar & Chiang, 2006), the Lagrange multiplier
related to the ‘price’ of the resource is centrally adjusted
to reach the optimum. By contrast, other methods are
fully decentralised (e.g. Barreiro-Gomez, Obando, &
Quijano, 2016; Xiao & Boyd, 2006; Zhu & Martinez,
2012). These methods exploit the communication capa-
bilities of the agents to coordinate their decisions based
on the information received from their neighbours. Fully
decentralised methodologies have important advantages,
among which we highlight the increase of the autonomy
and resilience of the whole system since the dependence
on a central authority is avoided.

In this paper, we propose a distributed resource allo-
cation algorithm that does not require a central coor-
dinator. An important characteristic of our method is
the capability of handling lower bounds on the decision
variables. This feature is crucial in a large number of
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practical applications, e.g. in Conrad (2010), Pantoja and
Quijano (2012), and Lee et al. (2016), where it is required
to capture the non-negativity of the resource allocated to
each entity. We use a Lyapunov-based analysis in order
to prove that the proposed algorithm asymptotically con-
verges to the optimal solution under some mild assump-
tions related to the convexity of the cost function, and the
connectivity of the graph that represents the communica-
tion topology. In order to illustrate our theoretical results,
we perform some simulations and compare our method
with other techniques reported in the literature. Finally,
we present two engineering applications of the proposed
algorithm. The first one seeks to improve the energy effi-
ciency in large-scale air-conditioning systems. The sec-
ond one is related to the distributed computation of the
Euclidean projection onto a given set.

Our approach is based on a continuous time version
of the centre–free algorithm presented in Xiao and Boyd
(2006). The key difference is that the method in Xiao
and Boyd (2006) does not allow the explicit inclusion of
lower bounds on the decision variables, unless they are
added by means of barrier functions (either logarithmic
or exact; Cherukuri & Cortés, 2015). The problem of
using barrier functions is that they can adversely affect
the convergence time (in the case of using exact barrier
functions) and the accuracy of the solution (in the case
of using classic logarithmic barrier functions), espe-
cially for large-scale problems (Jensen & Bard, 2003).
There are other methods that consider lower bound
constraints in the problem formulation. For instance,
Dominguez-Garcia, Cady, and Hadjicostis (2012) and
Tan et al. (2013) have developed a decentralised tech-
nique based on broadcasting and consensus to optimally
distribute a resource considering capacity constraints
on each entity in the network. Nonetheless, compared
to our algorithm, the approach in Dominguez-Garcia
et al. (2012) and Tan et al. (2013) is only applicable to
quadratic cost functions. On the other hand, Pantoja
and Quijano (2012) propose a novel methodology based
on population dynamics. The main drawback of this
technique is that its performance is seriously degraded
when the number of communication links decreases.
We point out the fact that other distributed optimisation
algorithms can be applied to solve resource allocation
problems, as those presented in Nedic, Ozdaglar, and
Parrilo (2010), Yi, Hong, and Liu (2015), and Johansson
and Johansson (2009). Nevertheless, the underlying idea
in these methods is different from the one used in our
work, i.e. Nedic et al. (2010), Yi et al. (2015), and Johans-
son and Johansson (2009) use consensus steps to refine
an estimation of the system state, while in our approach,
consensus is used to equalise a quantity that depends on
both the marginal cost perceived by each agent in the

network and the Karush–Kuhn–Tucker (KKT)multiplier
related to the corresponding resource’s lower bound. In
this regard, it is worth noting that the method studied
in this paper requires less computational capability than
the methods mentioned above. Finally, there are other
techniques based on game theory and mechanism design
(Kakhbod & Teneketzis, 2012; Sharma & Teneketzis,
2009) that decompose and solve resource allocation
problems. Nonetheless, those techniques need that each
agent broadcasts a variable to all the other agents, i.e.
a communication topology given by a complete graph
is required. In contrast, the method developed in this
paper only uses a communication topology given by
a connected graph, which generally requires lower
infrastructure.

The remainder of this paper is organised as follows.
Section 2 shows preliminary concepts related to graph
theory. In Section 3, the resource allocation problem is
stated. Then, in Section 4, we present our distributed
algorithm and the main results on convergence and opti-
mality. A comparison with other techniques reported in
the literature is performed in Section 5. In Section 6,
we describe two applications of the proposed method:
(i) the optimal chiller loading problem in large-scale air-
conditioning systems, and (ii) the distributed computa-
tion of Euclidean projections. Finally, in Sections 7 and
8, arguments and conclusions of the developed work are
presented.

2. Preliminaries

First, we describe the notation used throughout the paper
and presents some preliminary results on graph theory
that are used in the proofs of our main contributions.

In the multi-agent framework considered in this arti-
cle, we use a graph to model the communication net-
work that allows the agents to coordinate their decisions.
A graph is mathematically represented by the pair G =
(V, E ), where V = {1, . . . , n} is the set of nodes, and
E ⊆ V × V is the set of edges connecting the nodes. G is
also characterised by its adjacency matrixA = [ai j]. The
adjacency matrixA is an n × n non-negative matrix that
satisfies: aij = 1 if and only if (i, j) ∈ E , and aij = 0 if and
only if (i, j) /∈ E . Each node of the graph corresponds to
an agent of the multi-agent system, and the edges repre-
sent the available communication channels (i.e. (i, j) ∈ E
if and only if agents i and j can share information). We
assume that there is no edges connecting a node with
itself, i.e. aii = 0, for all i ∈ V ; and that the communi-
cation channels are bidirectional, i.e. aij = aji. The last
assumption implies that G is undirected. Additionally, we
denote byNi = { j ∈ V : (i, j) ∈ E}, the set of neighbours
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of node i, i.e. the set of nodes that are able to receive/send
information from/to node i.

Let us define the n × nmatrix L(G) = [li j], known as
the graph Laplacian of G, as follows:

li j =

⎧
⎨

⎩

∑

j∈V
ai j if i = j

−ai j if i ̸= j.
(1)

Properties of L(G) are related to connectivity character-
istics of G as shown in the following theorem.We remark
that a graph G is said to be connected if there exists a path
connecting any pair of nodes.

Theorem 2.1 (adapted from Godsil & Royle, 2001): An
undirected graph G of order n is connected if and only if
rank(L(G)) = n − 1.

From Equation (1), it can be verified that L(G)1 = 0,
where 1 = [1, . . . , 1]⊤, 0 = [0, . . . , 0]⊤. A consequence
of this fact is that L(G) is a singular matrix. However, we
canmodify L(G) to obtain a nonsingularmatrix as shown
in the following lemma.

Lemma 2.1: Let Lkr (G) ∈ R(n−1)×n be the submatrix
obtained by removing the kth row of the graph Lapla-
cian L(G), and let Lk(G) ∈ R(n−1)×(n−1) be the subma-
trix obtained by removing the kth column of Lkr (G). If G
is connected, then Lk(G) is positive definite. Furthermore,
the inverse matrix of Lk(G) satisfies (Lk(G))−1lkrk = −1,
where lkrk is the kth column of the matrix Lkr (G).

Proof: First, notice that L(G) is a symmetric matrix
because G is an undirected graph. Moreover, notice that
according to Equation (1), L(G) is diagonally dominant
with non-negative diagonal entries. The same holds for
Lk(G) since this is a sub-matrix obtained by removing the
kth row and column of L(G). Thus, to show that Lk(G) is
positive definite, it is sufficient to prove that Lk(G) is non-
singular.

According to Theorem 2.1, since G is connected, L(G)

has exactly n − 1 linearly independent columns (resp.
rows). Let us show that the kth column (resp. row) of
L(G) can be obtained by a linear combination of the other
columns (resp. rows), i.e. the kth column (resp. row) is
not linearly independent of the rest of the columns (resp.
rows).

Since L(G)1 = 0, notice that lik = −
∑

j∈V, j ̸=k li j, for
all i ∈ V , i.e. the kth column can be obtained by a lin-
ear combination of the rest of the columns. Furthermore,
since L(G) is a symmetric matrix, the same occurs with
the kth row. Therefore, the submatrix Lk(G) is nonsingu-
lar since its n − 1 columns (resp. rows) are linearly inde-
pendent.

Now, let us prove that (Lk(G))−1lkrk = −1. To do so,
we use the fact that (Lk(G))−1Lk(G) = I, where I is the
identity matrix. Hence, by the definition of matrix multi-
plication, we have that

n−1∑

m=1
l̄kiml

k
mj =

{
1 if i = j
0 if i ̸= j , (2)

where lki j and l̄ki j are the elements located in the ith row and
jth column of the matrices L(G) and

(
Lk(G)

)−1, respec-
tively. Thus,

n−1∑

m=1
l̄kiml

k
mi = 1, for all i = 1, . . . n − 1. (3)

Let lkrkm be the mth entry of the vector lkrk . Notice that,
according to the definition of Lk(G) and sinceL(G)1 = 0,
lkmi = −

∑n−1
j=1, j ̸=i lkm j − lkrkm . Replacing this value in Equa-

tion (3), we obtain

−
n−1∑

j=1, j ̸=i

n−1∑

m=1
l̄kiml

k
mj −

n−1∑

m=1
l̄kiml

kr
km = 1, for all i = 1, . . . n − 1.

According to Equation (2),
∑n−1

j=1, j ̸=i
∑n−1

m=1 l̄kimlkmj = 0.
This implies that

∑n−1
m=1 l̄kiml

kr
km = −1, for all i = 1,… ,

n − 1. Therefore,
(
Lk(G)

)−1 lkrk = −1. !

Theorem 2.1 and Lemma 2.1 will be used in the anal-
ysis of the method proposed in this paper.

3. Problem statement

In general terms, a resource allocation problem can be
formulated as follows (Patriksson, 2008; Patriksson &
Strömberg, 2015):

min
x

φ(x) :=
n∑

i=1

φi(xi) (4a)

subject to
n∑

i=1

xi = X (4b)

xi ≥ xi, for all i = 1, . . . , n, (4c)

where xi ∈ R is the resource allocated to the ith zone;
x= [x1,… , xn]!; φi : R (→ R is a strictly convex and dif-
ferentiable cost function; X is the available resource; and
xi, is the lower bound of xi, i.e. the minimum amount of
resource that has to be allocated in the ith zone.

Given the fact that we are interested in distributed
algorithms to solve the problem stated in Equation (4),
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we consider a multi-agent network, where the ith agent
is responsible for managing the resource allocated to the
ith zone. Moreover, we assume that the agents have lim-
ited communication capabilities, so they can only share
informationwith their neighbours. This constraint can be
represented by a graph G = {V, E} as it was explained in
Section 2.

Avoiding the individual inequality constraints (4c),
KKT conditions establish that at the optimal solution
x∗ = [x∗

1, . . . , x∗
n]⊤ of the problemgiven in Equation (4a–

4b), the marginal costs φ′
i (xi) = dφi

dxi must be equal, i.e.
φ′
i (x∗

i ) = λ, for all i = 1,… , n, where λ ∈ R. Hence, a
valid alternative to solve (4a–4b) is the use of consensus
methods. For instance, we can adapt the algorithm pre-
sented in Xiao and Boyd (2006), which is described as
follows:

ẋi =
∑

j∈Ni

(
φ′
j(x j) − φ′

i (xi)
)
, for all i ∈ V. (5)

This algorithm has two main properties: (i) at equi-
librium, φ′

i (x∗
i ) = φ′

j(x∗
j ) if the nodes i and j are con-

nected by a path; (ii)
∑n

i=1 x∗
i =

∑n
i=1 xi(0), where xi(0)

is the initial condition of xi. Therefore, if the graph G
is connected and the initial condition is feasible (i.e.∑n

i=1 xi(0) = X), x asymptotically reaches the optimal
solution of (4a–4b) under (5). However, the samemethod
cannot be applied to solve (4) (the problem that consid-
ers lower bounds in the resource allocated to each zone)
since some feasibility issues related with the constraints
(4c) arise.

In the following section, we propose a novel method
that extends the algorithm in Equation (5) to deal
with the individual inequality constraints given in
Equation (4c).

4. Centre-free resource allocation algorithm

4.1 Resource allocation among a subset of nodes in
a graph

First, we consider the following subproblem: let G =
{V, E} be a graph comprised by a subset of active nodesVa
and a subset of passive nodes Vp, such that Va

⋃
Vp = V .

A certain amount of resource X has to be split among
those nodes to minimise the cost function φ(x) subject
to each passive node is allocated with its corresponding
lower bound xi. Mathematically, we formulate this sub-
problem as:

min
x

φ(x) (6a)

subject to
n∑

i=1

xi = X (6b)

xi = xi, for all i ∈ Vp. (6c)

Feasibility of (6) is guaranteed bymaking the following
assumption.
Assumption 4.1: At least one node is active, i.e. Va ̸= ∅.

According to KKT conditions, the active nodes have
to equalise their marginal costs at the optimal solu-
tion. Therefore, a consensus among the active nodes is
required to solve (6). Nonetheless, classic consensus algo-
rithms, as the one given in Equation (5), cannot be used
directly. For instance, if all the nodes of G apply (5) and G
is connected, themarginal costs of both passive and active
nodes are driven to be equal in steady state. This implies
that the resource allocated to passive nodes can violate the
constraint (6c). Besides, if the resource allocated to pas-
sive nodes is forced to satisfy (6c) by setting x∗

i = xi, for all
i ∈ Vp, there is no guarantee that the new solution satis-
fies (6b). Another alternative, is to apply (5) to only active
nodes (in this case, the neighbourhood of node i ∈ Va
in Equation (5) has to be taken as { j ∈ Va : (i, j) ∈ E},
and the initial condition must satisfy

∑
i∈Va

xi(0) = X −∑
i∈Vp

xi). However, the sub-graph formed by the active
nodes is not necessarily connected although G is con-
nected. Hence, marginal cost of active nodes are not nec-
essarily equalised at equilibrium, which implies that the
obtained solution is sub-optimal. In conclusion, modifi-
cation of (5) to address (6) is not trivial. In order to deal
with this problem, we propose the following algorithm:

ẋi =
∑

j∈Ni

(y j − yi), for all i ∈ V (7a)

˙̂xi = (xi − xi) +
∑

j∈Ni

(y j − yi), for all i ∈ Vp (7b)

yi =
{

φ′
i (xi) if i ∈ Va

φ′
i (xi) + x̂i if i ∈ Vp.

(7c)

In the same way as in (5), the variables {xi, i ∈ V} in
Equation (7) correspond to the resource allocated to both
active and passive nodes. Notice that we have added aux-
iliary variables {x̂i, i ∈ Vp} that allow the passive nodes
to interact with their neighbours taking into account the
constraint (6c). On the other hand, the term

∑
j∈Ni

(y j −
yi), in Equations (7a)–(7b), leads to a consensus among
the elements of the vector y = [y1,… , yn]!, which are
given in Equation (7c). For active nodes, yi only depends
on the marginal cost φ′

i (xi), while for passive nodes, yi
depends on both the marginal cost and the state of the
auxiliary variable x̂i. Therefore, if the ith node is passive,
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it has to compute both variables xi and x̂i. Furthermore, it
can be seen that, if all the nodes are active, i.e. (Va = V),
then the proposed algorithm becomes the one stated in
Equation (5).

Notice that the ith node only needs to know yi and
the values {y j : j ∈ Ni} to compute

∑
j∈Ni

(y j − yi) in
(7a)–(7b). In other words, L(G)y = [

∑
j∈N1

(y j − y1),
. . . ,

∑
j∈Nn

(y j − yn)]⊤ is a distributed map over the
graph G (Cortés, 2008). This implies that the dynamics
given in Equation (7) can be computed by each node
using only local information. In fact, the message that the
ith node must send to its neighbours is solely composed
by the variable yi.

.. Feasibility
Let us prove that, under the multi-agent system proposed
in Equation (7), x(t) satisfies the first constraint of the
problem given by Equation (6), for all t" 0, provided that∑n

i=1 xi(0) = X .

Lemma 4.1: The quantity
∑n

i=1 xi(t ) is invariant under
Equation (7), i.e. if

∑n
i=1 xi(0) = X, then

∑n
i=1 xi(t ) = X,

for all t " 0.

Proof: It is sufficient to prove that #̇ = 0, where # =∑n
i=1 xi. Notice that #̇ =

∑n
i=1 ẋi = 1⊤ẋ, where ẋ =

[ẋ1, . . . , ẋn]⊤. Moreover, according to Equation (7),
1⊤ẋ = −1⊤L(G)y. Since G is undirected, 1⊤L(G) =
L(G)1 = 0. Therefore, #̇ = 0. !

The above lemmadoes not guarantee that x(t) is always
feasible because of the second constraint in Equation (6),
i.e. xi = xi, for all i ∈ Vp. However, it is possible to prove
that, at equilibrium, this constraint is properly satisfied.

.. Equilibrium point
The next proposition characterises the equilibrium point
of the multi-agent system given in Equation (7).
Proposition 4.1: If G is connected, the system in Equation
(7) has an equilibrium point x∗, {x̂∗

i , i ∈ Vp}, such that:
φ′
i (x∗

i ) = λ, for all i ∈ Va, where λ ∈ R is a constant; and
x∗
i = xi, for all i ∈ Vp. Moreover, x̂∗

i = λ − φ′
i (x∗

i ), for all
i ∈ Vp.

Proof: Let x∗, {x̂∗
i , i ∈ Vp} be the equilibrium point of

Equation (7). Since G is connected by assumption, it fol-
lows from Equation (7a) that y∗

i = λ, for all i ∈ V , where
λ is a constant. Thus, y∗

i = φ′
i (x∗

i ) if i ∈ Va, and y∗
i =

φ′
i (x∗

i ) + x̂∗
i , if i ∈ Vp. Hence, φ′

i (x∗
i ) = λ, for all i ∈ Va,

and x̂∗
i = λ − φ′

i (x∗
i ), for all i ∈ Vp. Moreover, given the

fact that
∑

j∈Ni
(y∗

j − y∗
i ) = 0, it follows from Equation

(7b) that x∗
i = xi, for all i ∈ Vp !

Remark 4.1: Proposition 4.1 states that, at the equilib-
rium point of (7), the active nodes equalise theirmarginal
costs, while each passive node is allocatedwith an amount

of resource equal to its corresponding lower bound. In
conclusion, if

∑n
i=1 x∗

i = X , then it follows from Propo-
sition 4.1, that x∗ minimises the optimisation problem
given in Equation (6). Additionally, notice that the values
{x̂∗

i , i ∈ Vp} are equal to the KKT multipliers associated
with the constraint (6c).

.. Convergence
Let us prove that the dynamics in Equation (7) converge
to x∗, {x̂∗

i , i ∈ Vp}, provided that each φi(xi) is strictly
convex.
Proposition 4.2: Assume that φi(xi) is a strictly convex
cost function, for all i ∈ V . If G is connected,

∑n
i=1 xi(0) =

X, and Assumption 4.1 holds, then x(t) converges to x∗

under Equation (7), where x∗ is the solution of the opti-
misation problem stated in Equation (6), i.e. x∗ is the same
given in Proposition 4.1. Furthermore, x̂i converges to x̂∗

i ,
for all i ∈ Vp.

Proof: According to Lemma 4.1, since
∑n

i=1 xi(0) = X ,
then x(t) satisfies the first constraint of the problem stated
in Equation (6), for all t " 0. Therefore, it is sufficient to
prove that the equilibrium point x∗, {x̂∗

i , i ∈ Vp} (which is
given in Proposition 4.1) of the system proposed in Equa-
tion (7) is asymptotically stable (AS). In order to do that,
let us express ourmulti-agent system in error coordinates,
as follows:

ė = −L(G)ey
˙̂ei = ei −

(
L(G)ey

)
i , for all i ∈ Vp

eyi =
{

φ′
i (xi) − φ′

i (x∗
i ) if i ∈ Va

φ′
i (xi) − φ′

i (x∗
i ) + êi if i ∈ Vp,

(8)

where L(G) is the graph Laplacian of G; ei = xi − x∗
i , and

eyi = yi − y∗
i , for all i ∈ V ; êi = x̂i − x̂∗

i , for all i ∈ Vp; e=
[e1,… , en]!; ey = [ey1, . . . , eyn]⊤; and

(
L(G)ey

)
i repre-

sents the ith element of the vector L(G)ey.
Since Assumption 4.1 holds, Va ̸= ∅. Let k be an active

node, i.e. k ∈ Va, and let ek, eky be the vectors obtained by
removing the kth element from vectors e and ey, respec-
tively. We notice that, according to Lemma 4.1, ek(t) =
−

∑
i # ν, i $ kei(t), for all t " 0. Therefore, Equation (8)

can be expressed as

ėk = −Lk(G)eky − lkrk eyk
ek = −

∑
i∈ν,i̸=k ei

˙̂ei = ei −
(
Lk(G)eky + lkrk eyk

)

i
, for all i ∈ Vp

eyi =
{

φ′
i (xi) − φ′

i (x∗
i ) if i ∈ Va

φ′
i (xi) − φ′

i (x∗
i ) + êi if i ∈ Vp,

(9)

where Lk(G) and lkrk are defined in Lemma 2.1. In order
to prove that the origin of the above system is AS, let us
define the following Lyapunov function (adapted from
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Obando, Quijano, & Rakoto-Ravalontsalama, 2014):

V = 1
2
ek⊤

(
Lk(G)

)−1 ek + 1
2

∑

i∈Vp

(ei − êi)2. (10)

The function V is positive definite since G is connected
(the reason of this fact is that, according to Lemma 2.1,
Lk(G) and its inverse are positive definite matrices if G is
connected). The derivative of V along the trajectories of
the system stated in Equation (9) is given by,

V̇ = −ek⊤eky − ek⊤ (L(G))−1 lkrk eyk −
∑

i∈Vp

ei(ei − êi)

Taking into account that
(
Lk(G)

)−1 lkrk = −1 (cf. Lemma
2.1), we obtain

V̇ = −ek⊤eky + eyk
∑

i∈V,i̸=k

ei −
∑

i∈Vp

ei(ei − êi)

= −
n∑

i=1

(
ei(φ′

i (xi) − φ′
i (x

∗
i ))

)
−

∑

i∈Vp

eiêi

+
∑

i∈Vp

ei(êi − ei)

= −
n∑

i=1

(
(xi − x∗

i )(φ
′
i (xi) − φ′

i (x
∗
i ))

)
−

∑

i∈Vp

e2i ,

where φ′
i is strictly increasing given the fact that

φi is strictly convex, for all i ∈ V . Therefore, (xi −
x∗
i )(φ

′
i (xi) − φ′

i (x∗
i )) ≥ 0, for all i ∈ V , and thus V̇ ≤ 0.

Since V̇ does not depend on {êi, i ∈ Vp}, it is negative
semidefinite. Let S = {{ei, i ∈ V}, {êi, i ∈ Vp} : V̇ = 0},
i.e. S =

{
{ei, i ∈ V}, {êi, i ∈ Vp} : ei = 0, for all i ∈ V

}
.

Given the fact that G is connected and V ̸= Vp (by
Assumption 4.1), then ė = 0 iff ey = 0 (see Equation
(8)). Therefore, the only solution that stays identically
in S is the trivial solution, i.e. ei(t) = 0, for all i ∈ V ,
êi(t ) = 0, for all i ∈ Vp. Hence, we can conclude that
the origin is AS by applying the Lasalle’s invariance
principle. !

In summary, we have shown that the algorithm
described in Equation (7) asymptotically solves the sub-
problem in Equation (6), i.e. (7) guarantees that the
resource allocated to each passive node is equal to its cor-
responding lower bound, while the remaining resource
X −

∑
i∈Vp

xi is optimally allocated to active nodes.

4.2 Optimal resource allocationwith lower bounds

Now, let us consider our original problem stated in
Equation (4), i.e. the resource allocation problem that

includes lower bound constraints. Let x∗ = [x∗
1, . . . , x∗

n]⊤
be the optimal solution of this problem. Notice that, if
we know in advance which nodes will satisfy the con-
straint (4c) with strict equality after making the optimal
resource allocation process, i.e.I := {i ∈ V : x∗

i = xi}, we
can mark these nodes as passive and reformulate (4) as a
subproblem of the form (6). Based on this idea, we pro-
pose a solution method for (4), which is divided in two
stages: in the first one, the nodes that belong to I are iden-
tified andmarked as passive; in the second one, the result-
ing subproblem of the form (6) is solved by using (7).

Protocol (7) can be also used in the first stage of the
method as follows: in order to identify the nodes that
will satisfy (4c) with strict equality at the optimal allo-
cation, we start marking all nodes as active and apply
the resource allocation process given by (7). The nodes
that are allocated with an amount of resource below their
lower bounds at equilibrium are marked as passive, and
then (7) is newly applied (in this way, passive nodes
are forced to meet (4c)). This iterative process is per-
formed until all nodes satisfy their lower bound con-
straints. Notice that the last iteration of this procedure
corresponds to solve a subproblem of the form (6) where
the set of passive nodes is equal to the set I . Therefore,
this last iteration is equivalent to the second stage of the
proposed method.

Summarising, our method relies on an iterative pro-
cess that uses the continuous-time protocol (7) as a sub-
routine. The main idea of this methodology is to identify
in each step the nodes that have an allocated resource out
of their lower bounds. These nodes aremarked as passive,
so they are forced to satisfy their constraints in subse-
quent iterations, while active nodes seek to equalise their
marginal costs using the remaining resource. In the worst
case scenario, the classification between active and pas-
sive nodes requires |V| iterations, where |V| is the num-
ber of nodes in the network. This fact arises when only
one active node becomes passive at each iteration.

The proposed method is formally described in Algo-
rithm 1. Notice that this algorithm is fully decentralised
since Steps 4–6 can be computed by each agent using only
local information. Step 4 corresponds to solve Equation
(7), while Steps 5 and 6 describe the conditions for con-
verting an active node into passive. Let us note that Steps
4–6 have to be performed |V| times since we are con-
sidering the worst case scenario. Therefore, each agent
needs to know the total number of nodes in the network.
This requirement can be computed in a distributed way
by using the method proposed in Garin and Schenato
(2010, p. 90). We also notice the fact that the agents have
to be synchronised (as usual in several distributed algo-
rithms; Cortés, 2008; Garin & Schenato, 2010; Xiao &
Boyd, 2006) in order to apply the Step 4 of Algorithm 1,
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i.e. all agents must start solving Equation (7) at the same
time.

Algorithm 1:Resource allocation with lower bounds

Input: – Parameters of the problem in Equation (4).
– An initial value x(0), such that

∑n
i=1 x

(0)
i =X .

Output: Optimal allocation x̃∗

1 Mark all nodes as active, i.e. Ṽa,0 ← V , Ṽp,0 ← ∅.;
2 x̃i,0 ← x(0)

i , for all i ∈ V .;
3 for l ← 1 to |V| do
4 x̃i,l ← xi(tl ), for all i ∈ V , where xi(tl ) is the

solution of Equation (7a) at time tl , with initial
conditions x(0) = [x̃1,l−1, . . . , x̃n,l−1]⊤,
Va = Ṽa,l−1, Vp = Ṽp,l−1, and
{x̂i(0) = 0, ∀i ∈ Vp}.;

5 Ṽp,l ← Ṽp,l−1
⋃

{i ∈ Ṽa,l−1 : x̃i < xi},
and Ṽa,l ← Ṽa,l−1\{i ∈ Ṽa,l−1 : x̃i < xi}.;

6 x̃∗ ← [x̃1,l, . . . , x̃n,l]⊤.;
7 return x̃∗;

According to the reasoning described at the begin-
ning of this subsection, we ideally require to know the
steady-state solution of Equation (7) at each iteration of
Algorithm 1 (since we need to identify which nodes are
allocated with an amount of resource below their lower
bounds in steady state). This implies that the time tl in
Step 4 of Algorithm 1 goes to infinity. Under this require-
ment, each iteration would demand infinite time and
the algorithm would not be implementable. Hence, to
relax the infinite time condition, we state the following
assumption on the time tl.
Assumption 4.2: Let x∗

i,l be the steady state of xi(t) under
Equation (7), with initial conditions x(0) = x̃i,l−1, Va =
Ṽa,l−1, Vp = Ṽp,l−1, and {x̂i(0) = 0, ∀i ∈ Vp}1. For each
l = 1, . . . , |V| − 1, the time tl satisfies the following con-
dition: xi(tl ) < xi if and only if x∗

i,l < xi, for all i ∈ V .

According to assumption 4.2, for the first |V| − 1 itera-
tions, we only need a solution of (7) that is close enough to
the steady-state solution. We point out the fact that, if the
conditions of Proposition 4.2 are met in the lth iteration
of Algorithm 1, then xi(t) asymptotically converges to x∗

i,l ,
for all i ∈ V , under Equation (7). Therefore, Assumption
4.2 is satisfied for large values of t1, . . . , t|V|−1.

Taking into account all the previous considerations,
the next theorem states our main result regarding the
optimality of the output of Algorithm 1.
Theorem 4.1: Assume that G is a connected graph. More-
over, assume that φi is a strictly convex function for all i =
1,… , n. If t1, . . . , t|V|−1 satisfy Assumption 4.2, and the
problem stated in Equation (4) is feasible, then the output

of Algorithm 4 tends to the optimal solution of the problem
given in Equation (4) as t|V| → ∞.

Proof: The ith component of the output of Algorithm
1 is equal to x̃i,|V| = xi(t|V|), where xi(t|V|) is the solu-
tion of Equation (7a) at time t|V|, with initial conditions
[x̃1,|V|−1, . . . , x̃n,|V|−1]⊤, Va = Ṽa,|V|, and Vp = Ṽp,|V|.
Hence, it is sufficient to prove that {x∗

1,|V|, . . . , x∗
n,|V|}

solves the problem in Equation (4). In order to do that, let
us consider the following premises (proof of each premise
is written in brackets).

P1: {x̃1,l, . . . , x̃n,l} satisfies (4b), for all l = 1, . . . , |V|
(this follows from Lemma 4.1, and form the fact that∑n

i=1 x̃i,0 = X).
P2: x∗

i,l = xi, for all i ∈ Ṽp,l−1, and for all l =
1, . . . , |V| (this follows directly from Proposition 4.2).

P3: Ṽp,l = Ṽp,l−1
⋃

{i ∈ Ṽa,l−1 : x∗
i,l < xi}, and Ṽa,l =

Ṽa,l−1\{i ∈ Ṽa,l−1 : x∗
i,l < xi}, for all l = 1, . . . , |V| (this

follows from Step 5 of Algorithm 1, and from Assump-
tion 4.2).

P4: If for some l, Ṽp,l = Ṽp,l−1, then Ṽp,l+ j = Ṽp,l−1,
for all j = 0, . . . , |V| − l (this can be seen from the fact
that if the set of passive nodes does not change from one
iteration to the next, the steady state of Equation (7a) is
the same for both iterations).

P5: Ṽa,l
⋃

Ṽp,l = V , for all l = 1, . . . , |V| (from P3,
we know that Ṽa,l

⋃
Ṽp,l = Ṽa,l−1

⋃
Ṽp,l−1, for all l =

1, . . . , |V|. Moreover, given the fact that Ṽp,0 = ∅, and
Ṽa,0 = V , (see step 1 ofAlgorithm1)we can concludeP5).

P6: Since the problem in Equation (4) is feasible
by assumption, then |Ṽp,l | < |V|, for all l = 1, . . . , |V|
(the fact that |Ṽp,l | ≤ |V|, for all l = 1, . . . ,V , follows
directly from P5. Let us prove that |Ṽp,l | ̸= |V|, for all
l = 1, . . . ,V . We proceed by contradiction: Assume that
there exists some l, such that |Ṽp,l−1| < |V| and |Ṽp,l | =
|V|. Hence, from P2 and P3, we know that x∗

i,l ≤ xi, for
all i ∈ V ; moreover, {i ∈ Ṽa,l−1 : x∗

i,l < xi} ̸= ∅. There-
fore,

∑n
i=1 x∗

i,l <
∑n

i=1 xi. According to P1, we know that∑n
i=1 x∗

i,l = X ; thus, X <
∑n

i=1 xi, which contradicts the
feasibility assumption).

P7: {x∗
1,|V|, . . . , x∗

n,|V|} satisfies the constraints (4c)
(in order to prove P7, we proceed by contradiction:
assume that {x∗

1,|V|, . . . , x∗
n,|V|} does not satisfy the con-

straints (4c). Since P2 holds, this assumption implies
that {i ∈ Ṽa,|V−1| : x∗

i,|V| < xi} ̸= ∅. Therefore, Ṽp,|V| ̸=
Ṽp,|V|−1 (see P3). Using P4, we can conclude that Ṽp,|V| ̸=
Ṽp,|V|−1 ̸= · · · ̸= Ṽp,0 = ∅, i.e. {i ∈ Ṽa,|V|− j : x∗

i,|V|− j+1 <

xi} ̸= ∅, for all j = 1, . . . , |V|. Thus, according to P3,
|Ṽp,|V|| > |Ṽp,|V|−1| > · · · > |Ṽp,1| > 0. Hence, |Ṽp,|V|| ≥
|V|, which contradicts P6).

P8:
∑

i∈Ṽa,l
x∗
i,l ≥

∑
i∈Ṽa,l

x∗
i,l+1 (we prove P8

as follows: using P1 and the result in Lemma
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4.1, we know that
∑

i∈V x∗
i,l =

∑
i∈V x∗

i,l+1 = X .
Moreover, according to P5, V can be expressed
as V = Ṽa,l

⋃
Ṽp,l , where Ṽp,l−1 ⊂ Ṽp,l (see P3).

Thus, we have that
∑

i∈Ṽa,l
x∗
i,l +

∑
i∈Ṽp,l ,i/∈Ṽp,l−1

x∗
i,l +∑

i∈Ṽp,l−1
x∗
i,l =

∑
i∈Ṽa,l

x∗
i,l+1 +

∑
i∈Ṽp,l ,i/∈Ṽp,l−1

x∗
i,l+1 +∑

i∈Ṽp,l−1
x∗
i,l+1. Furthermore, since P2 holds, we have

that
∑

i∈Ṽa,l
x∗
i,l +

∑
i∈Ṽp,l ,i/∈Ṽp,l−1

x∗
i,l +

∑
i∈Ṽp,l−1

xi =∑
i∈Ṽa,l

x∗
i,l+1 +

∑
i∈Ṽp,l ,i/∈Ṽp,l−1

xi +
∑

i∈Ṽp,l−1
xi. Therefore,∑

i∈Ṽa,l
x∗
i,l =

∑
i∈Ṽa,l

x∗
i,l+1 +

∑
i∈Ṽp,l ,i/∈Ṽp,l−1

(xi − x∗
i,l ),

where xi − x∗
i,l > 0, for all i ∈ Ṽp,l, i /∈ Ṽp,l−1 (according

to P3). Hence, we can conclude P8).
P9: There exists k, such that k ∈ Ṽa,l , for all l =

1, . . . , |V| (in order to prove P9, we use the fact that, if
k ∈ Ṽa,l , then k ∈ Ṽa,l− j, for all j = 1,… , l (this follows
from P3). Moreover, according to P5 and P6, |Ṽa,|V|| ̸= 0;
hence, there exists k, such that k ∈ Ṽa,|V|. Therefore, P9
holds). P9 guarantees that Assumption 4.1 is satisfied at
each iteration.

P10: φ′
i (x∗

i,l ) ≥ φ′
i (x∗

i,l+1), for all i ∈ Ṽa,l (we prove P10
by contradiction: assume that φ′

i (x∗
i,l ) < φ′

i (x∗
i,l+1), for

some i ∈ Ṽa,l . According to Proposition 4.2, and since
P1 and P9 hold, x∗

i,l has the characteristics given in
Proposition 4.1, for all i ∈ V , and for all l = 1, . . . , |V|.
Hence, φ′

i (x∗
i,l ) has the same value for all i ∈ Ṽa,l−1,

and φ′
i (x∗

i,l+1) has the same value for all i ∈ Ṽa,l . More-
over, since Ṽa,l ⊂ Ṽa,l−1 (according to P3), we have that
φ′
i (x∗

i,l ) < φ′
i (x∗

i,l+1), for all i ∈ Ṽa,l . Thus, x∗
i,l < x∗

i,l+1, for
all i ∈ Va,l , because φ′

i is strictly increasing (this follows
from the fact that φi is strictly convex by assumption).
Therefore,

∑
i∈Ṽa,l

x∗
i,l <

∑
i∈Ṽa,l

x∗
i,l+1, which contradicts

P8).
Now, let us prove that {x∗

1,|V|, . . . , x∗
n,|V|} solves

the Problem in Equation (4). First, the solution
{x∗

1,|V|, . . . , x∗
n,|V|} is feasible according to P1 and P7. On

the other hand, from P9, it is known that ∃k : k ∈ Ṽa,l ,
for all l = 1, . . . , |V|. Let φ′

k(x
∗
k,|V|) = λ, where λ ∈ R.

Moreover, let us define V0 = { j ∈ V : x∗
i,|V| > xi}, and

V1 = { j ∈ V : x∗
i,|V| = xi}.

If i ∈ V0, then i ∈ Ṽa,|V|−1 (given the fact that, if i /∈
Ṽa,|V−1| ⇒ i ∈ Ṽp,|V−1| ⇒ x∗

i,|V| = xi ⇒ i /∈ V0). Hence,
φ′
i (x∗

i,|V|) = φ′
k(x

∗
k,|V|) = λ (this follows from the fact that

φ′
j(x∗

j,l ) has the same value for all j ∈ Ṽa,l−1, which in
turn follows directly from step 4 of Algorithm 1, and
Proposition 4.2).

If i ∈ V1, then either i ∈ Ṽa,|V|−1 or i ∈ Ṽp,|V|−1. In the
first case, φ′

i (x∗
i,|V|) = φ′

k(x
∗
k,|V|) = λ (following the rea-

soning used when i ∈ V0). In the second case, ∃l : i ∈
(Ṽp,l\Ṽp,l−1); hence,φ′

i (x∗
i,l ) = φ′

k(x
∗
k,l ) (this follows from

the fact that, if i ∈ (Ṽp,l\Ṽp,l−1), then i ∈ Ṽa,l−1). Fur-
thermore, since i ∈ (Ṽp,l\Ṽp,l−1), x∗

i,l < xi (see P3), and

given the fact that φi is strictly increasing, we have that
φ′
i (x∗

i,l ) < φ′
i (xi). Moreover, according to P10, φ′

k(x
∗
k,l ) ≥

φ′
k(x

∗
k,|V|). Hence, φ

′
i (xi) > φ′

k(x
∗
k,|V|) = λ. In conclusion,

if i ∈ V1, then φ′
i (x∗

i,|V|) ≥ λ.
Thus, we can choose µi " 0, for all i ∈ V , such

that φ′
i (x∗

i,|V|) − µi = λ, where µi = 0 if i ∈ V0.
Hence, let us note that ∂φ

∂xi |xi=x∗
i,|V|

− µi − λ = 0, for
all i ∈ V , where ∂φ

∂xi |xi=x∗
i,|V|

= φ′
i (x∗

i,|V|). Therefore,
{x∗

1,|V|, . . . , x∗
n,|V|, µ1, . . . , µn, −λ} satisfies the KKT

conditions for the problem given in Equation (4). Fur-
thermore, since φ(x) is a strictly convex function by
assumption, then {x∗

1,|V|, . . . , x∗
n,|V|} is the optimal solu-

tion to that problem. !

Early stopping criterion
Notice that, if the set of passive nodes does not change
in the kth iteration of Algorithm 1 because all active
nodes satisfy the lower bound constraints (see step 5),
then the steady state solutions x∗

i,k and x∗
i,k+1 are the

same, for all i ∈ V , which implies that the set of pas-
sive nodes also does not change in the (k + 1)th itera-
tion. Following the same reasoning, we can conclude that
x∗
i,k = x∗

i,k+1 = · · · = x∗
i,|V|, for all i ∈ V . Therefore, in this

case, {x∗
1,k, . . . , x

∗
n,k} is the solution of our resource alloca-

tion problem. Practically speaking, this implies that Algo-
rithm 1 does not need to perform more iterations after
the kth one. Thus, it is possible to implement a flag z∗

i (in
a distributed way) that alerts the agents if all active nodes
satisfy the lower bound constraints after step 4 of Algo-
rithm 1. A way to do that is by applying amin–consensus
protocol (Cortés, 2008) with initial conditions zi(0) = 0
if the node i is active and does not satisfy its lower bound
constraint, and zi(0) = 1 otherwise. Hence, notice that
our flag z∗

i (i.e. the result of the min-consensus protocol)
is equal to one, for all i ∈ V , only if all the active nodes
satisfy the lower bound constraints, which corresponds
to the early stopping criterion described above.

5. Simulation results and comparison

In this section, we compare the performance of our algo-
rithm with other continuous-time distributed techniques
found in the literature. We have selected three techniques
that are capable to address nonlinear problems and can
handle lower bound constraints: (i) a distributed inte-
rior point method (Xiao & Boyd, 2006), (ii) the local
replicator equation (Pantoja & Quijano, 2012), and (iii)
a distributed interior point method with exact barrier
functions (Cherukuri & Cortés, 2015). The first one
is a traditional methodology that uses barrier func-
tions; the second one is a novel technique based on
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population dynamics; and the third one is a recently pro-
posed method that follows the same ideas as the first one,
but replaces classic logarithmic barrier functions by exact
penalty functions. Below, we briefly describe the afore-
mentioned algorithms.

5.1 Distributed interior point (DIP)method

This algorithm is a variation of the one presented in Equa-
tion (5) that includes strictly convex barrier functions to
prevent the solution to flow outside the feasible region.
The barrier functions bi(xi) are added to the original cost
function as follows:

φb(x) = φ(x) + ϵ

n∑

i=1

bi(xi)

bi(xi) = − ln
(
xi − xi

)
, for all i ∈ V,

where φb(x) is the new cost function, and ϵ > 0 is a con-
stant that minimises the effect of the barrier function
when the solution is far from the boundary of the feasible
set. With this modification, the distributed algorithm is
described by the following equation:

ẋi =
∑

j∈Ni

(
φ′
b j

(x j) − φ′
bi (xi)

)
, for all i ∈ V, (11)

where φ′
bi (xi) = dφi

dxi − ϵ dbi
dxi , i.e. φ′

bi (xi) is equal to the
marginal cost plus a penalty term induced by the deriva-
tive of the corresponding barrier function.

5.2 Local replicator equation (LRE)

This methodology is based on the classical replicator
dynamics from evolutionary game theory. In the LRE, the
growth rate of a population that plays a certain strategy
only depends on its own fitness function and on the fit-
ness of its neighbours. Mathematically, the LRE is given
by

ẋi =
∑

j∈Ni

(xi − xi)(x j − x j)(vi(xi) − v j(x j)),

vi = −φ′
i (xi), for all i ∈ V,

(12)

where vi is the fitness perceived by the individuals that
play the ith strategy. In this case, the strategies correspond
to the nodes of the network, and the fitness functions to
the negative marginal costs (the minus appears because
replicator dynamics are used tomaximise utilities instead
of minimise costs). On the other hand, it can be shown
that, if the initial condition x(0) is feasible for the problem
given in Equation (4), then x(t) remains feasible for all t"
0, under the LRE.

1 2 n − 1 n. . .

Figure . Single path topology for n nodes.

5.3 Distributed interior pointmethodwith exact
barrier functions (DIPe)

This technique follows the same reasoning of the DIP
algorithm. The difference is that DIPe uses exact barrier
functions (Bertsekas, 1975) to guarantee satisfaction of
the lower bound constraints. The exact barrier function
for the ith node is given by:

bei (xi) = 1
ε
[xi − xi]+,

where [·]+ = max ( ·, 0), 0 < ε < 1
2maxx∈F ∥∇φ(x)∥∞

,
and F = {x ∈ Rn :

∑n
i=1 xi = 1, xi ≥ xi} is the feasible

region of x for the problem (4). Using these exact barrier
functions, the augmented cost function can be expressed
as:

φe
b(x) = φ(x) +

n∑

i=1

bei (xi).

The DIPe algorithm is given in terms of the augmented
cost function and its generalised gradient ∂φe

b(x) =
[∂1φe

b(x), . . . , ∂nφ
e
b(x)]

⊤ as follows:

ẋi ∈
∑

j∈Ni

(
∂ jφ

e
b(x) − ∂iφ

e
b(x)

)
, for all i ∈ V, (13)

where

∂iφ
e
b(x) =

⎧
⎨

⎩

{φ′
i (xi) − 1

ε
} if xi < xi[

φ′
i (xi) − 1

ε
, φ′

i (xi)
]

if xi = xi
{φ′

i (xi)} if xi > xi

In Cherukuri and Cortés (2015), the authors show that
the differential inclusion (13) converges to the optimal
solution of the problem (4), provided that x(0) is feasible.

5.4 Comparison

In order to compare the performance of our algorithm
with the three methods described above, we use the fol-
lowing simulation scenario: a set of n nodes connected as
in Figure 1 (we use this topology to verify the behaviour
of the different algorithms in the face of few communi-
cation channels since previous studies have shown that
algorithms’ performance decreases with the number of
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Table . Distributed algorithms’performance.

Percentage decrease, computation time

Number of nodes Proposed approach DIP LRE DIPe

n=  %, . s %, . s %, . s %,  s
n=  %, . s %, . s %, . s %,  s
n=  %, . s %, . s %, . s %,  s
n=  %, . s %, . s %, . s –
n=  %, . s %, . s %, . s –

available communication links); a nonlinear cost func-
tion φ(x) =

∑n
i=1 eai(xi−bi) + e−ai(xi−bi), where ai and bi

are random numbers that belong to the intervals [1, 2]
and [− 1

2 ,
1
2 ], respectively; a resource constraint X = 1;

and a set of lower bounds {xi = 0 : i ∈ V}.
For each n, we generate 50 problems with the charac-

teristics described above. The four distributed methods
are implemented in Matlab employing the solver func-
tion ode23s. Moreover, we use the solution provided by
a centralised technique as reference. The results on the
average percentage decrease in the cost function reached
with each algorithm and the average computation time
(time taken by each algorithm for solving a problem2) are
summarised in Table 1. Results of DIPe for 100 and 200
nodes were not computed for practicality since the time
required by this algorithm to solve a 100/200-nodes prob-
lem is very high.

We notice that the algorithm proposed in this paper
always reaches the maximum reduction, regardless of the
number of nodes that comprise the network. The same
happens with the DIPe algorithm. This is an important
advantage of our method compared to other techniques.
In contrast, the algorithm based on the LRE performs far
from the optimal solution. This unsatisfactory behaviour
is due to the small number of links of the considered
communication network. In Pantoja and Quijano (2012),
the authors prove the optimality of the LRE in prob-
lems involving well connected networks; however, they
also argue that this technique can converge to subop-
timal solutions in other cases. On the other hand, the
DIP method provides solutions close to the optimum.
Nonetheless, its performance decreases when the number
of nodes increases. This tendency is due to the influence
of barrier functions on the original problem. Notice that,
the larger the number of nodes, the bigger the effect of the
barrier functions in Equation (11).

Regarding the computation time, although conver-
gence of the proposed method is slower than the one
shown by LRE and DIP, it is faster than the conver-
gence of the method based on exact barrier functions,
i.e. DIPe. Therefore, among the methods that guarantee
optimality of the solution, our technique shows the
best convergence speed. Computation time taken by

DIPe is affected by the use of penalty terms that gen-
erate strong changes in the value of the cost func-
tion near to the boundaries of the feasible set. The
drastic variations of the generalised gradient of exact
barrier functions produces oscillations of numerical
solvers around the lower bounds (a visual inspection
of the results given in Figure 3 of Cherukuri and
Cortés (2015) confirms this claim). These oscillations
are the main responsible for the low convergence speed
shown by DIPe. On the other hand, LRE and DIP
exhibit the fastest convergence. Hence, LRE and DIP are
appealing to be implemented in applications that require
fast computation and tolerate suboptimal solutions.

6. Applications

This section describes the use of the approach devel-
oped in this paper to solve two engineering problems.
First, we present an application for sharing load in mul-
tiple chillers plants. Although this is not a large-scale
application (multi-chiller plants are typically comprised
of less than ten chillers; Yu & Chan, 2007), it aims
to illustrate the essence of the proposed method and
shows algorithm’s performance in small-size problems.
One of the reasons to use a distributed approach in small-
/medium-size systems is due to the need of enhancing
systems resilience in the face of central failures (e.g. in
multiple chiller plants, central failures can occur due
to cyber-attacks (Manic, Wijayasekara, Amarasinghe, &
Rodriguez-Andina, 2016) against building management
systems (Yu&Chan, 2007)). The second application deals
with the distributed computation of the Euclidean projec-
tion of a vector onto a given set. Particularly, we use the
proposed algorithm as part of a distributed technique that
computes optimal control inputs for plants composed of
a large number of sub-systems. This application aims to
illustrate the performance of themethod proposed in this
paper when coping with large-scale problems.

6.1 Optimal chiller loading

The optimal chiller loading problem in multiple chiller
systems arises in decoupled chilled–water plants, which
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Chiller 1

Chiller 2

...

...
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Chiller n

Bypass Pipe

pump 1
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T1, f1

T2, f2
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Ts, fT

Figure . Decoupled chilled–water plant with n chillers.

are widely used in large air–conditioning systems (Chang
& Chen, 2009). The goal is to distribute the cooling load
among the chillers that comprise the plant for minimis-
ing the total amount of power used by them. For a better
understanding of the problem, below we present a brief
description of the system.

A decoupled chilled-water plant comprised by n
chillers is depicted in Figure 2. The purpose of this plant
is to provide a water flow fT at a certain temperature Ts
to the rest of the air-conditioning system. In order to do
this task the plant needs to meet a cooling load CL that is
given by the following expression:

CL = m fT(Tr − Ts), (14)

wherem> 0 is the specific heat of the water, and Tr is the
temperature of the water returning to the chillers. Since
there aremultiple chillers, the total cooling loadCL is split
among them, i.e. CL =

∑n
i=1 Qi, where Qi is the cooling

power provided by the ith chiller, which, in turn, is given
by

Qi = m fi(Tr − Ti), (15)

where fi > 0 and Ti are, respectively, the flow rate of
chilled water and the water supply temperature of the
ith chiller. As it is shown in Figure 2, we have that fT =∑n

i=1 fi. In order tomeet the corresponding cooling load,
the ith chiller consumes a power Pi that can be calculated
using the following expression (Chang & Chen, 2009):

Pi =
(
k0,i + k1,im fiTr + k2,i(m fiTr )2+

)

+
(
k3,i − k1,im fi − k4,im fiTr − 2k2,i(m fi)2Tr

)
Ti

+
(
k5,i + k6,im fi + k2,i(m fi)2

)
T 2
i ,

(16)

where kj, i, for j = 0,… , 6, are constants related to the ith
chiller. If we assume that the flow rate fi of each chiller

is constant, then Pi is a quadratic function of the tem-
perature Ti. The optimal chiller loading problem involves
the calculation of the chillers’ water supply temperatures
that meet the total cooling load given in Equation (14),
and minimise the total amount of power consumed by
the chillers, i.e.

∑n
i=1 Pi.Moreover, given the fact that each

chiller has a maximum cooling capacity, we have to con-
sider the following additional constraints:

m fi(Tr − Ti) ≤ Qi for all i = 1, . . . , n, (17)

whereQi is themaximum capacity (rated value) of the ith
chiller.

Summarising, the optimal chiller loading problem can
be expressed as follows:

min
T1,...,Tn

∑n
i=1 Pi(Ti)

s.t.
∑n

i=1 m fi(Tr − Ti) = CL

Ti ≥ Tr − Qi
m fi , for all i = 1, . . . , n.

(18)

Now, let us consider that we want to solve the afore-
mentioned problem in a distributed way by using amulti-
agent system, in which each chiller is managed by an
agent that decides the value of the water supply temper-
ature. We assume that the ith agent knows (e.g. by mea-
surements) the temperature of the water returning to the
chillers, i.e. Tr, and the flow rate of chilled water, i.e. fi.
Moreover, agents can share their own information with
their neighbours through a communication networkwith
a topology given by the graph G. If each Pi(Ti) is a con-
vex function, then the problem can be solved by using
the method proposed in Algorithm 1 (we take, in this
case, xi = fiTi). The main advantage of this approach is to
increase the resilience of the whole system in the face of
possible failures, due to the fact that the plant operation
does not rely on a single control centre but on multiple
individual controllers without the need for a centralised
coordinator.

.. Illustrative example
We simulate a chilled-water plant comprised by 7
chillers.3 The cooling capacity and the water flow rate of
each chiller are, respectively, Qi = 1406.8 kW, and fi =
65 kg.s−1, for i = 1,… , 7; the specific heat of the water
is m = 4.19 kW.s.kg−1. degC−1; the supply temperature
of the system is Ts = 11 degC; and the coefficients kj, i of
Equation (16) are given in Table 2. We operate the system
at two different cooling loads, the first one is 90% of the
total capacity, i.e. CL = 0.9

∑n
i=1 Qi, and the second one

is 60% of the total capacity, i.e.CL = 0.6
∑n

i=1 Qi. The Pi–
Ti curves are shown in Figure 3(a) for both cases, it can
be noticed that all functions are convex. In order to apply
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Table . Chillers’parameters.
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the distributed solution presented in Algorithm 1, we use
an agent per chiller (i.e. the ith agent controls the supply
temperature Ti of the ith chiller) and the communication
network shown in Figure 1. In all cases the initial condi-
tions of the chillers’ supply temperatures are Ti(0) = Ts,
for i = 1,… , 7. The results for the first cooling load, i.e.
CL = 8862.8 kW, are depicted in Figure 3(b), where it is
shown that the cooling load is properly allocated among

the chillers by adjusting the supply temperatures. More
efficient chillers (i.e. chiller 3, chiller 6, and chiller 7 in
Figure 3(a)) are more loaded than the less efficient ones
(i.e. chiller 2 and chiller 5). This can be noticed from the
fact that their supply temperatures, in steady state, reach
the minimum value. Furthermore, the energy consump-
tion is minimised and power saving reaches to 2.6%. The
results for the second cooling load, i.e. CL = 5908.6 kW,
are shown in Figure 3(c), where it can be noticed a sim-
ilar performance to that obtained with the first cooling
load. However, in this case, it is not necessary that the
supply temperatures reach the minimum value to meet
the required load. Newly, energy consumption is min-
imised and power saving reaches to 2.8%. As it is stated
in Section 4, convergence and optimality of the method
is guaranteed under the conditions given in Theorem 4.1.
In both cases we use the early stopping criterion given in
Section 4.



INTERNATIONAL JOURNAL OF CONTROL 13

Although other techniques have been applied to solve
the optimal chiller loading problem, e.g. the ones in
Chang and Chen (2009), they require centralised infor-
mation. In this regard, it is worth noting that the
same objective is properly accomplished by using our
approach, which is fully distributed.

6.2 Distributed computation of the Euclidean
projection

Several applications require computing the Euclidean
projection of a vector in a distributed way. These applica-
tions include matrix updates in quasi-Newton methods,
balancing of traffic flows, and decomposition techniques
for stochastic optimisation (Patriksson, 2008). The prob-
lem of finding the Euclidean projection of the vector ξ̂

onto a given set X is formulated as follows:

min
ξ

∥ξ̂ − ξ∥22
s.t. ξ ∈ X ,

(19)

where ∥ · ∥2 is the Euclidean norm. The vector that min-
imises the above problem, which is denoted by ξ ∗, is the
Euclidean projection. Roughly speaking, ξ ∗ can be seen
as the closest vector to ξ̂ that belongs to the set X .

In Barreiro-Gomez, Obando, Ocampo-Martinez, and
Quijano (2015), the authors use a distributed computa-
tion of the Euclidean projection to decouple large-scale
control problems. Specifically, they propose a discrete
time method to address problems involving plants com-
prised of a large number of decoupled sub-systems whose
control inputs are coupled by a constraint. The control
inputs are associated with the power applied to the sub-
systems, and the constraint limits the total power used
to control the whole plant. At each time iteration, local
controllers thatmanage the sub-systems compute optimal
control inputs ignoring the coupled constraint (each local
controller uses a model predictive control scheme that
does not use global information since the sub–systems’
dynamics are decoupled). Once this is done, the coupled
constraint is addressed by finding the Euclidean projec-
tion of the vector of local control inputs (i.e. the vector
formed by all the control inputs computed by the local
controllers) onto a domain that satisfies the constraint
associated with the total power applied to the plant.

For a better explanation of the method, consider
a plant comprised of n sub-systems. Let ûi(k) ≥ 0 be
the control input computed by the ith local controller
at the kth iteration ignoring the coupled constraint
(non-negativity of ûi(k) is required since the control
signals correspond to an applied power). Let û(k) =
[û1(k), . . . , ûn(k)]⊤ be the vector of local control inputs,

and let u∗(k) be the vector of control signals that are
finally applied to the sub-systems. If the maximum
allowed power to control the plant is U > 0, the power
constraint that couples the control signals is given by∑n

i=1 u∗
i (k) ≤ U . The vector u∗(k) is calculated by using

the Euclidean projection of û(k) onto a domain that sat-
isfies the power constraint, i.e. u∗(k) is the solution of the
following optimisation problem (cf. Equation (19)):

min
u(k)

∥û(k) − u(k)∥22 (20a)

s. t.
n∑

i=1

ui(k) ≤ U (20b)

ui(k) ≥ 0, for all i = 1, . . . , n, (20c)

where ui(k) denotes the ith entry of the vector u(k).
Notice that u∗(k) satisfies the power constraint and min-
imises the Euclidean distance with respect to the con-
trol vector ûk that is initially calculated by the local con-
trollers. Computation of u∗(k) can be performed by using
the approach proposed in this paper because the problem
stated in Equation (20) is in the standard form given in
Equation (4) except for the inequality constraint (20b).
However, this constraint can be addressed by adding a
slack variable.

.. Illustrative example
Consider a plant composed of 100 sub-systems. Assume
that, at the kth iteration of the discrete time method pre-
sented in Barreiro-Gomez, Obando, Ocampo-Martinez,
and Quijano (2015), the control inputs that are initially
computed by the local controllers are given by the entries
of the vector û(k) = [û1(k), . . . , û100(k)]⊤, where ûi(k)
is a random number chosen from the interval [0, 1] kW.
Furthermore, assume that the maximum allowed power
to control the plant is U = 40 kW. To satisfy this con-
straint, the Euclidean projection described in Equation
(20) is computed in a distributed way using Algorithm 1
with the early stopping criterion described in Section 4.
The results under a communication network with path
topology (see Figure 1) are depicted in Figure 4. The
curve at the top of Figure 4 describes the evolution of
the Euclidean distance. Notice that the proposed algo-
rithm minimises this distance and reaches the optimum
value (dashed line), which has been calculated employing
a centralised method. On the other hand, the curves at
the bottom of Figure 4 illustrate the evolution of the val-
ues

∑100
i=1 ui(k) (solid line) and min {ui(k)} (dash-dotted

line). These curves show that the constraints of the prob-
lem stated in Equation (20) are properly satisfied in steady
state, i.e.

∑100
i=1 u∗

i (k) = 40 kW and min{u∗
i (k)} = 0 kW.

As a final observation, our algorithm exhibits a suitable
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performance even considering that the communication
graph is sparse and the optimal solution is not in the
interior of the feasible domain. As shown in Section 5,
this characteristic is an advantage of Algorithm 1 over
population dynamics techniques as the one proposed in
Barreiro-Gomez, Obando, Ocampo-Martinez, and Qui-
jano (2015) to compute the Euclidean projection in a dis-
tributed way.

7. Discussion

The method developed in this paper solves the problem
of resource allocation with lower bounds given in Equa-
tion (4). The main advantage of the proposed technique
is its distributed nature; indeed, our approach does not
need the implementation of a centralised coordinator.
This characteristic is appealing, especially in applications
where communications are strongly limited. Moreover,
fully distributed methodologies increase the autonomy
and resilience of the system in the face of possible fail-
ures. In Section 5, we show by means of simulations that
the performance of the method presented in this paper
does not decrease when the number of nodes (which
are related to the decision variables of the optimisation
problem) is large, or the communication network that
allows the nodes to share information has few channels.

In these cases, the behaviour of our approach is better
than the behaviour of other techniques found in the liter-
ature, such as the DIPmethod, or the LRE.Moreover, it is
worth noting that our technique addresses the constraints
as hard. This fact has two important consequences: (i) in
all cases, the solution satisfies the imposed constraints,
and (ii) the objective function (and therefore the opti-
mum) is not modified (contrary to the DIP method
that includes the constraints in the objective function
decreasing the quality of the solution as shown in
Section 5.4).

Other advantage of the method proposed in this paper
is that it does not require an initial feasible solution of
the resource allocation problem (4). Similarly to the DIPe
technique, our method only requires that the starting
point satisfies the resource constraint (4b), i.e. we need
that

∑n
i=1 xi(0) = X . Notice that an initial solution x(0)

that satisfies (4b) is not hard to obtain in a distributed
manner. For instance, if we assume that only the kth node
has the information of the available resource X, we can
use (xk(0) = X, {xi(0) = 0 : i ∈ V, i ̸= k}) as our start-
ing point. Thus, an initialisation phase is not required. In
contrast, other distributedmethods, such asDIP and LRE
needs an initial feasible solution of the problem (4), i.e.
a solution that satisfies (4b) and (4c). Finding this start-
ing point is not a trivial problem for systems involving a
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large number of variables. Therefore, for thesemethods, it
is necessary to employ distributed constraint satisfaction
algorithm (as the one described in Domınguez-Garcıa &
Hadjicostis, 2011) as a first step.

On the other hand, we notice that to implement the
early stopping criterion presented at the end of Section 4,
it is required to perform an additionalmin–consensus step
in each iteration. Despite this fact, if the number of nodes
is large, this criterion saves computational time, because
inmost of the cases, all passive nodes are identified during
the first iterations of Algorithm 1.

8. Conclusions

In this paper, we have developed a distributed method
that solves a class of resource allocation problems with
lower bound constraints. The proposed approach is based
on a multi–agent system, where coordination among
agents is done by using a consensus protocol. We have
proved that convergence and optimality of the method
is guaranteed under some mild assumptions, specifically,
we require that the cost function is strictly convex and the
graph related to the communication network that enables
the agents to share information is connected. The main
advantage of our technique is that it does not need a
centralised coordinator, which makes the method appro-
priate to be applied in large–scale distributed systems,
where the inclusion of centralised agents is undesirable or
infeasible. As future work, we propose to use a switched
approach in order to eliminate the iterations in Algo-
rithm 1. Moreover, we plan to include upper bound con-
straints in our original formulation.

Notes

1. As well as in Step 4 of Algorithm 1, we have initialised the
auxiliary variables x̂i to zero by convention. If these vari-
ables are initialised to other value, convergence of (7) is not
affected (cf. Proposition 4.2).

2. Algorithms were implemented in a computer with an Intel
Core i5 processor.

3. Simulation parameters are adapted from Chang and Chen
(2009).
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On Switchable Languages of Discrete-Event Systems with Weighted Automata

Michael Canu and Naly Rakoto-Ravalontsalama

Abstract— The notion of switchable languages has been
defined by Kumar, Takai, Fabian and Ushio in [11]. It
deals with switching supervisory control, where switching
means switching between two specifications. In this paper,
we first extend the notion of switchable languages to n
languages, (n ≥ 3). Then we consider a discrete-event
system modeled with weighted automata. The use of
weighted automata is justified by the fact that it allows
us to synthesize a switching supervisory controller based
on the cost associated to each event, like the energy for
example. Finally the proposed methodology is applied to
a simple example.

Keywords: Supervisory control; switching control;
weighted automata.

I. INTRODUCTION

Supervisory control initiated by Ramadge and Wonham
[15] provides a systematic approach for the control of
discrete event system (DES) plant. There has been a
considerable work in the DES community since this
seminal paper. On the other hand, from the domain of
continuous-time system, hybrid and switched systems
have received a growing interests [12]. The notion of
switching is an important feature that has to be taken
into account, not only in the continuous-time domain
but for the DES area too.

As for non-blocking property, there exist different
approaches. The first one is the non-blocking prop-
erty defined in [15]. Since then other types of non-
blocking properties have been defined. The mutually
non-blocking property has been proposed in [5]. Other
approaches of mutually and globally nonblocking su-
pervision with application to switching control is pro-
posed in [11]. Robust non-blocking supervisory control
has been proposed in [1]. Other types of non-blocking
include the generalised non-blocking property studied
in [13]. Discrete-event modeling with switching max-
plus systems is proposed in [17], an example of mode

M. Canu is with Univ. los Andes, Bogota, Colombia, e-
mail: m.canu134@uniandes.edu.co

N. Rakoto-Ravalontsalama is with IMT Atlantique and LS2N,
France, e-mail: naly.rakoto@mines-nantes.fr

switching DES is described in [6] and finally a modal
supervisory control is considered in [7].

In this paper we will consider the notion of switching
supervisory control defined by Kumar and Colleagues
in [11] where switching means switching between a
pair of specifications. Switching (supervisory) control
is in fact an application of some results obtained in the
same paper [11] about mutually non blocking prop-
erties of languages, mutually nonblocking supervisor
existence, supremal controllable, relative-closed and
mutually nonblocking languages. All these results led
to the definition of a pair of switchable languages [11].

In this paper, we first extend the notion of switchable
languages to n languages, (n ≥ 3). Then we consider a
discrete-event system modeled with weighted automata.
The switching supervisory control strategy is based on
the cost associated to each event, and it allows us to
synthesize an optimal supervisory controller. Finally
the proposed methodology is applied to a simple ex-
ample.

This paper is organized as follows. In Section II, we
recall the notation and some preliminaries. Then in
Section III the main results on the extension of n
switchable languages (n ≥ 3) are given. An illustrative
example of supervisory control of AGVs is proposed in
Section IV, and finally a conclusion is given in Section
V.

II. NOTATION AND PRELIMINARIES

Let the discrete event system plant be modeled by a
finite state automaton [10],[4] to which a cost function
is added.
Definition 1: (Weighted automaton). A weighted au-
tomaton is defined as a sixtuple

G = (Q,Σ, δ, q0, Qm,C)

where
• Q is the finite set of states,
• Σ is the finite set of events,
• δ : Q× Σ→ Q is the partial transition function,



• q0 ⊆ Q is the initial state,
• Qm ⊆ Q is the set of marked states (final states),
• C : Σ→ N is the cost function.

Let Σ∗ be the set of all finite strings of elements in Σ
including the empty string ε. The transition function δ
can be generalized to δ : Σ∗×Q→ Q in the following
recursive manner:

δ(ε, q) = q
δ(ωσ, q) = δ(σ, δ(ω, q)) for ω ∈ Σ∗

The notation δ(σ, q)! for any σ ∈ Σ∗ and q ∈ Q denotes
that δ(σ, q) is defined. Let L(G) ⊆ Σ∗ be the language
generated by G, that is,

L(G) = {σ ∈ Σ∗|δ(σ, q0)!}

Let K ⊆ Σ∗ be a language. The set of all prefixes
of strings in K is denoted by pr(K) with pr(K) =
{σ ∈ Σ∗|∃ t ∈ Σ∗;σt ∈ K}. A language K is
said to be prefix closed if K = pr(K). The event
set Σ is decomposed into two subsets Σc and Σuc

of controllable and uncontrollable events, respectively,
where Σc ∩Σuc = ∅. A controller, called a supervisor,
controls the plant by dynamically disabling some of the
controllable events.

A sequence σ1σ2 . . . σn ∈ Σ∗ is called a trace or a
word in term of language. We call a valid trace a path
from the initial state to a marked state (δ(ω, q0) = qm
where ω ∈ Σ∗ and qm ∈ Qm). The cost is by definition
non negative. In the same way, the cost function C is
generalized to the domain Σ∗ as follows:

C(ε) = 0
C(ωσ) = C(ω) + C(σ) for ω ∈ Σ∗

In other words, the cost of a trace is the sum of the
costs of each event that composes the trace.

Definition 2: (Controllability) [15]. A language K ⊆
L(G) is said to be controllable with respect to (w.r.t.)
L(G) and Σuc if

pr(K)Σuc ∩ L(G) ⊆ pr(K).

Definition 3: (Mutually non-blocking supervisor) [5]. a
supervisor f : L(G)→ 2Σ−Σu is said to be (K1,K2)-
mutually non-blocking if

Ki ∩ Lm(Gf ) ⊆ pr(Kj ∩ Lm(Gf )), for i, j ∈ {1, 2}. (1)

In other words, a supervisor S is said to be mutually
non-blocking w.r.t. two specifications K1 and K2 if
whenever the closed-loop system has completed a task
of one language (by completing a marked trace of that

language), then it is always able to continue to complete
a task of the other language [5].

Definition 4: (Mutually non-blocking language) [5]. A
language H ⊆ K1∪K2 is said to be (K1,K2)-mutually
non-blocking if H∩Ki ⊆ pr(H∩Kj) for i, j ∈ {1, 2}.

The following theorem gives a necessary and sufficient
condition for the existence of a supervisor.

Theorem 1: (Mutually nonblocking supervisor exis-
tence) [5]. Given a pair of specifications K1,K2 ⊆
Lm(G), there exists a globally and mutually non-
blocking supervisor f such that Lm(Gf ) ⊆ K1 ∪ K2

if and only if there exists a nonempty, controllable,
relative-closed, and (K1,K2)-mutually non-blocking
sublanguage of K1 ∪K2.

The largest possible language (the supremal element)
that is controllable and mutually non-blocking exists,
as stated by the following theorem.

Theorem 2: (SupMRC(K1 ∪ K2) existence) [5]. The
set of controllable, relative-closed, and mutually non-
blocking languages is closed under union, so that
the supremal such sublanguage of K1 ∪ K2, denoted
supMRC(K1 ∪K2) exists.

Recall that a pair of languages K1,K2 are mutually
nonconflicting if pr(K1 ∩ K2) = pr(K1) ∩ pr(K2)
[18]. K1,K2 are called mutually weakly nonconflicting
if Ki, pr(Kj) (i ̸= j) are mutually nonconflicting [5].

Another useful result from [5] is the following. Given
a pair of mutually weakly nonconflicting languages
K1,K2 ⊆ Lm(G), the following holds ([5], Lemma
3). If K1,K2 are controllable then K1 ∩ pr(K2),K2 ∩
pr(K1) are also controllable.

The following theorem is proposed in [11] and it gives
the formula for the supremal controllable, relative-
closed, and mutually nonblocking languages.

Theorem 3: (SupMRC(K1 ∪ K2)) [11]. For
relative-closed specifications K1,K2 ⊆ Lm(G),
supMRC(K1 ∪K2) = supRC(K1 ∩K2).

The following theorem, also from [11] gives another
expression of the supremal controllable, relative-closed,
and mutually nonblocking languages.
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Theorem 4: [11] Given a pair of controllable, relative-
closed, and mutually weakly nonconflicting languages
K1,K2 ⊆ Lm(G), it holds that supMRC(K1∪K2) =
(K1 ∩K2).

And finally the following theorem gives a third for-
mula of the supremal controllable, relative-closed, and
mutually nonblocking languages.

Theorem 5: [11] For specifications K1,K2 ⊆ Lm(G),
supMRC(K1 ∪K2) = supMC(supRC(K1 ∩K2)).

In order to allow switching between specifications, a
pair of supervisors is considered, such that the super-
visor is switched when the specification is switched.
The supervisor fi for the specification Ki is designed
to enforce a certain sublanguage Hi ⊆ Ki. Suppose
a switching in specification from Ki to Kj is induced
at a point when a trace s ∈ Hi has been executed
in the fi-controlled plant. Then in order to be able
to continue with the new specification Kj without
reconfiguring the plant, the trace s must be a prefix of
Hj ⊆ Kj . In other words, the two supervisors should
enforce the languages Hi and Hj respectively such that
Hi ⊆ pr(Hj). Hence the set of pairs of such languages
are defined to be switchable languages as follows.

Definition 5: (Pair of switchable languages) [11]. A
pair of specifications K1,K2 ⊆ Lm(G) are said to be
switchable languages if
SW (K1,K2) := {(H1,H2)|Hi ⊆ Ki ∩ pr(Hj), i ̸= j,
and Hi controllable}.

The supremal pair of switchable languages exists and
is given by the following theorem.

Theorem 6: (Supremal pair of switchable languages)
[11]. For specifications K1,K2 ⊆ Lm(G),
supSW (K1,K2) =
(supMC(K1 ∪K2) ∩K1, supMC(K1 ∪K2) ∩K2).

III. MAIN RESULTS

We now give the main results of this paper. First,
we define a triplet of switchable languages. Second
we derive a necessary and sufficient condition for the
transitivity of switchable languages (n = 3). Third we
generalize this definition to a n-uplet of switchable
languages, with n > 3. And fourth we derive a
necessary and sufficient condition for the transitivity
of switchable languages for n > 3.

A. Triplet of Switchable Languages

We extend the notion of pair of switchable languages,
defined in [11], to a triplet of switchable languages.

Definition 6: (Triplet of switchable languages). A
triplet of languages (K1,K2,K3), Ki ⊆ Lm(G) with
Hi ⊆ Ki, i = {1, 2, 3} are said to be a triplet of
switchable languages if they are pairwise switchable
languages, that is,

SW (K1,K2,K3) := SW (Ki,Kj), i ̸= j, i, j =
{1, 2, 3}.

Another expression of the triplet of switchable lan-
guages is given by the following lemma.

Lemma 1: (Triplet of switchable languages). A triplet
of languages (K1,K2,K3), Ki ⊆ Lm(G) with Hi ⊆
Ki, i = {1, 2, 3} are said to be a triplet of switchable
languages if the following holds:

SW (K1,K2,K3) = {(H1,H2,H3) | Hi ⊆ Ki ∩
pr(Hj), i ̸= j, and Hi controllable}.

B. Transitivity of Switchable Languages (n = 3)

The following theorem gives a necessary and sufficient
condition for the transitivity of switchable languages.

Theorem 7: (Transitivity of switchable languages, n =
3) . Given 3 specifications (K1,K2,K3), Ki ⊆ Lm(G)
with Hi ⊆ Ki, i = {1, 2, 3} such that SW (K1,K2)
and SW (K2,K3).
(K1,K3) is a pair of switchable languages, i.e.
SW (K1,K3), if and only if

1) H1 ∩ pr(H3) = H1, and
2) H3 ∩ pr(H1) = H3.

Proof: The proof can be found in [3].

C. N-uplet of Switchable Languages

We now extend the notion of switchable languages, to
a n-uplet of switchable languages, with (n > 3).

Definition 7: (N-uplet of switchable languages, n >
3). A n-uplet of languages (K1, ...,Kn), Ki ⊆ Lm(G)
with Hi ⊆ Ki, i = {1, ..., n}, n > 2, is said to be
a n-uplet of switchable languages if the languages are
pairwise switchable that is,

SW (K1, ...,Kn) := SW (Ki,Kj), i ̸= j, i, j =
{1, ..., n}, n > 2.

As for the triplet of switchable languages, an alternative
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expression of the n-uplet of switchable languages is
given by the following lemma.

Lemma 2: (N-uplet of switchable languages, n > 3).
A n-uplet of languages (K1, . . . ,Kn), Ki ⊆ Lm(G)
with Hi ⊆ Ki, i = {1, ..., n}, n > 3 are said to be a
n-uplet of switchable languages if the following holds:

SW (K1, ...,Kn) = {(H1, ..., Hn) | Hi ⊆ Ki ∩
pr(Hj), i ̸= j, and Hi controllable}.

D. Transitivity of Switchable Languages (n > 3)

We are now able to derive the following theorem
that gives a necessary and sufficient condition for the
transitivity of n switchable languages.

Theorem 8: (Transitivity of n switchable languages,
n > 3) . Given n specifications (K1, ...,Kn), Ki ⊆
Lm(G) with Hi ⊆ Ki, i = {1, ..., n}. Moreover,
assume that each language Ki is at least switchable
with another language Kj , i ̸= j.
A pair of languages (Kk,Kl) is switchable i.e.
SW (Kk,Kl), if and only if

1) Hk ∩ pr(Hl) = Hk, and
2) Hl ∩ pr(Hk) = Hl.

Proof: The proof is similar to the proof of
Theorem 6 and can be found in [3].
It is to be noted that the assumption that each of the n
languages be at least switchable with another language
is important, in order to derive the above result.

IV. EXAMPLE: SWITCHING SUPERVISORY

CONTROL OF AGVS

The idea of switching supervisory control is now ap-
plied to a discrete-event system, modeled with weighted
automata. We take as an illustrating example the su-
pervisory control of a fleet of fleet automated guided
vehicles (AGVs) that move in a given circuit area.
The example is taken from [9]. A circuit is partitioned
into sections and intersections. Each time an AGV
moves in a new intersection or a new section, then the
automaton will move to a new state in the associated
automaton. An example of an area with its associated
basic automaton is depicted in Figure 1.

The area to be supervised is the square depicted in
Figure 1 (left). The flow direction with the arrows
are specified the four intersections {A,B,C,D} and
the associated basic automaton are given in Figure
1 (right). The basic automaton is denoted Gbasic =
(Qb,Σb, δb, ∅, ∅) where the initial state and the final

Fig. 1. An AGV circuit (left) and its basic automaton (right)

state are not defined. The initial state is defined ac-
cording to the physical position of the AGV and the
final state is defined according to its mission, that is his
position target. A state represents and intersection or a
section. Each state corresponding to a section is named
XYi where X is the beginning of the section, Y its end
and i the number of the AGV. For each section, there
are two transitions, the first transition CXY is an input
which is controllable and represents the AGV moving
on the section from X to Y . The second transition is
an output transition UY which is uncontrollable and
represents the AGV arriving to the intersection Y .
For example the basic automaton depicted in Figure 1
(right) can be interpreted as follows. If AGVi arrives at
section A, then it has two possibilities, either to go to
section B with the event CABi, or the go section D with
the event CADi. If we choose to go to section B, then
the next state is ABi. From this state, the uncontrollable
event UAB is true so that the following state is Bi. And
from Bi, the only possibility is to exit to Point F with
the uncontrollable event exiti.
Now consider for example that 2 AGVs are moving in
the circuit of Figure 1 (left). Assume AGV1 is in D
and AGV2 is in AB so that the state is in (D1, AB2).
AGV1 is leaving the area when the event exit1 is true
so that the system will be in state (E1, AB2). And since
AGV1 is out of the considered area, then the new state
will be (E1, AB2) = (∅1, AB2) = (AB2) since AGV1

is out of the area.

We give here below the synthesis algorithm for calcu-
lating the supervisor Sc as it aws proposed by Girault
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et Colleagues in [9]. For more details on the synthesis
algorithm, the reader is referred to the above paper.

Algorithm 1 – Synthesis algorithm of SC [9]

Data: Gw,1, . . . Gw,n

Result: Supervisor SC

Gw ← {Gw,1, . . . Gw,n}
Gu ← {∅}
forall Gw,i ∈ Gw do

Gu ← Gu ∪ Uγi
(Gw,i)

end
SC ← S(Gu,i)
Gu ← Gu\{Gu,1}
while Gu ̸= ∅ do

x← get(Gu)
SC ← S(SC ||x)
Gu ← Gu\{x}

end

V. CONCLUSIONS

The notion of switchable languages has been defined by
Kumar and Colleagues in [11]. It deals with switching
supervisory control, where switching means switching
between two specifications. In this paper, we have
extended the notion of switchable languages to a triplet
of languages (n = 3) and we gave a necessary and
sufficient condition for the transitivity of two switch-
able languages. Then we generalized the notion of
switchable languages of a n-uplet of languages, n > 3
and we gave also necessary and sufficient condition for
the transitivity of two (out of n) switchable languages.
Finally the proposed methodology is applied to a sim-
ple example for the supervisory control of a fleet of
AGVs. Ongoing work deals with a) the calculation of
the supremal of n-uplet of switchable languages, and
b) the optimal switching supervisory control of DES
exploiting the cost of the weighted automata for the
synthesis strategy.
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