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A B S T R A C T

In this thesis we study scalable methods to perform regression with
Operator-Valued Kernels in order to learn vector-valued functions.

When data present structure, or relations between them or their
different components, a common approach is to treat the data as
a vector living in an appropriate Hilbert space rather than a collec-
tion of real numbers. This representation allows to take into account
the structure of the data by defining an appropriate space embbed-
ing the underlying structure. Thus many problems in machine learn-
ing can be cast into learning vector-valued functions. Operator-Valued
Kernels and vector-valued Reproducing Kernel Hilbert Spaces provide a
theoretical and practical framework to address the issue of learn-
ing vector-valued functions by naturally extending the well-known
framework of scalar-valued kernels. In the context of scalar-valued
functions learning, a scalar-valued kernel can be seen a similarity
measure between two data points. A solution of the learning prob-
lem has the form of a linear combination of theses similarities with
respect to weights (to determine), in order to have the best “fit” of the
data. When dealing with Operator-Valued Kernels, the evaluation of
the kernel is no longer a scalar similarity, but a function (an operator)
acting on vectors. A solution is then a linear combination of operators
with respect to vector weights.

Although Operator-Valued Kernels generalize strictly scalar-
valued kernels, large scale applications are usually not affordable
with these tools that require an important computational power along
with a large memory capacity. In this thesis, we propose and study
scalable methods to perform regression with Operator-Valued Kernels.
To achieve this goal, we extend Random Fourier Features, an approx-
imation technique originally introduced for scalar-valued kernels, to
Operator-Valued Kernels. The idea is to take advantage of an approxi-
mated operator-valued feature map in order to come up with a linear
model in a finite dimensional space.

First we develop a general framework devoted to the approxima-
tion of shift-invariant Mercer kernels on Locally Compact Abelian
groups and study their properties along with the complexity of the
algorithms based on them. Second we show theoretical guarantees by
bounding the error due to the approximation, with high probability.
Third, we study various applications of Operator Random Fourier
Features to different tasks of Machine learning such as multi-class
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classification, multi-task learning, time series modeling, functional
regression and anomaly detection. We also compare the proposed
framework with other state of the art methods. Fourth, we conclude
by drawing short-term and mid-term perspectives.

q
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“We have at our command computers with adequate data-handling ability
and with sufficient computational speed to make use of machine-learning

techniques,
but our knowledge of the basic principles of these techniques is still

rudimentary.
Lacking such knowledge, it is necessary to specify methods of problem

solution in minute and exact detail,
a time-consuming and costly procedure.

Programming computers to learn from experience should eventually
eliminate the need for much of this detailed programming effort.”

— Arthur Samuel [145]
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Part I

I N T R O D U C T I O N





1
O U T L I N E A N D M O T I VAT I O N S

In this chapter we present our motivations as well as the structure of
the present manuscript.

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3



4 outline and motivations

1.1 motivation

This thesis is dedicated to the definition of a general and flexible
approach to learn vector-valued functions together with an efficient
implementation of the learning algorithms. To achieve this goal, we
study shallow architectures, namely the product of a (nonlinear)
operator-valued feature Φ̃(x) and a parameter vector θ such that
f̃(x) = Φ̃(x)∗θ, and combine two appealing methodologies: Operator-
Valued Kernel Regression and Random Fourier Features.

Operator-Valued Kernels [5, 34, 41, 84, 113] extend the classic
scalar-valued kernels to functions with values in some output Hil-
bert space. As in the scalar case, Operator-Valued Kernels (OVKs) are
used to build Reproducing Kernel Hilbert Spaces (RKHS) in which
representer theorems apply as for ridge regression or other appro-
priate loss functional. In these cases, learning a model in the RKHS
boils down to learning a function of the form f(x) =

∑N
i=1 K(x, xi)αi

where x1, . . . , xN are the training input data and each αi, i = 1, . . . ,N
is a vector of the output space Y, and each K(x, xi) is an operator on
vectors of Y.

However, OVKs suffer from the same drawbacks as classic (scalar-
valued) kernel machines: they scale poorly to large datasets because
they are exceedingly demanding in terms of memory and computa-
tions. We propose to approximate OVKs by extending a methodology
called Random Fourier Features (RFFs) [12, 94, 139, 144, 164, 167, 191]
so far developed to speed up scalar-valued kernel machines. The RFF
approach linearizes a shift-invariant kernel model by generating ex-
plicitly an approximated feature map φ̃. RFFs has been shown to
be efficient on large datasets and has been further improved by effi-
cient matrix computations such as [94, “FastFood”] and [61, “SORF”],
which are considered as the best large scale implementations of ker-
nel methods, along with Nyström approaches proposed in Drineas
and Mahoney [55]. Moreover thanks to RFFs, kernel methods have
been proved to be competitive with deep architectures [51, 108, 192].

1.2 outline

Chapter 2. In this introductory chapter we recall some elements of
the statistical learning theory started by Vapnik [177]. Then we recall
kernel methods [9] which are used to construct spaces of scalar-valued
functions (called RKHSs) that are used model and learn non linear
dependencies from the data. We finish by a literature review on large-
scale implementations of kernel methods based on random Fourier
features [139] and the Nyström method [185].
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Chapter 3. In this chapter, to conclude the introduction, we de-
velop briefly the mathematical tools used throughout this manuscript.
We give a full table of notations, and present elements of functional
analysis [93] and abstract harmonic analysis [65]. Then we turn our
attention to the case where the functions we want to learn are not
real-valued, but vector-valued. To learn vector-valued functions we
define Operator-Valued Kernels [41, 113] that generalize the scalar-
valued kernel presented in Chapter 2. We conclude by giving a non-
exhaustive list of Operator-Valued Kernels along with the context in
which they have been used.

Chapter 4. In this first contribution chapter we present a general-
ization of the RFF framework introduced in Chapter 2 [29]. This is
based on an operator-valued Bochner theorem proposed by Carmeli
et al. [41]. We use this theorem to show how to construct an Operator-
valued Random Fourier Feature (ORFF) from an OVK. Conversely we
also show that it is possible to construct an ORFF from the regulariza-
tion properties it induces rather than from an OVK. We give various
examples of ORFF maps such as an ORFF map for the decomposable
kernel, the curl-free kernel and the divergence-free kernel.

Chapter 5. In this contribution chapter we refine the bound on
the OVK approximation with ORFF we first proposed in [29] and
presented in [28]. It generalizes the proof technique of Rahimi and
Recht [139] to OVK on LCA groups thanks to the recent results of
Koltchinskii [92], Minsker [121], Sutherland and Schneider [167], and
Tropp [175]. As a Bernstein bound it depends on the variance of the
estimator for which we derive an “upper bound”.

Chapter 6. This contribution chapter focus on explaining how to
define an efficient implementation and algorithm to train an ORFF
model. First we recall the supervised ridge regression with OVK and
the celebrated representer theorem [182]. Then we show under which
conditions learning with an ORFF is equivalent to learn with a ker-
nel approximation. Eventually we give the gradient for the ridge re-
gression problem, useful to find an optimal solution with gradient
descent algorithms, as well as a closed form algorithm. We conclude
by showing how viewing ORFFs as linear operators rather than ma-
trices yields a more efficient implementation and finish with some
numerical applications on toy and real-world datasets.

Chapter 7. This contribution chapter deals with a generalization
bound for the a regression problem with ORFF based on the results
of Maurer [112] and Rahimi and Recht [140]. We also discuss the case
of Ridge regression presented in Chapter 6.



6 outline and motivations

Chapter 8. This contribution chapter shows how to use the ORFF
methodology for non-linear vector autoregression. It is an instanti-
ation of the ORFF framework to X = Y =

(
Rd,+

)
. We also give a

generalization of a stochastic gradient descent [51] to ORFF. This is
a joint work with Néhémy Lim and Florence d’Alché-Buc and has
been published at a workshop of ECML. It is based on the previous
work of Lim et al. [101] for time series vector autoregression with
operator-valued kernels [30].

Chapter 9. To conclude our work we present some work in
progress. We show practical applications of operator-valued kernels
acting on an infinite dimensional space Y. We give two examples. First
we show how to generalize many quantile regression to learn a con-
tinuous function of the quantiles on the data. Second we apply the
same methodology to the One-Class Support Vector Machine (OCSM)
algorithm in order to learn a continuous function of all the level sets.
We conclude by presenting Operalib, a python library developed dur-
ing this thesis which aims at implementing OVK-based algorithms in
the spirit of Scikit-learn [132].



2
O N L E A R N I N G E F F I C E N T LY S C A L A R - VA L U E D
F U N C T I O N S

“For such a model there is no need to ask the question “Is the model
true?”.

If “truth” is to be the “whole truth” the answer must be “No”.
The only question of interest is “Is the model illuminating and

useful?””.
— George Box [27]

In this chapter we recall some elements of the statistical learning the-
ory started by Vapnik [177]. Then we recall kernel methods [9] which
are used to construct spaces of real-valued functions (called RKHS)
that are used model and learn non linear dependencies from the data.
We finish by a litterature review on large-scale implementation of ker-
nel methods based on random Fourier features [139] and the Nyström
method [185].
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2.1 about statistical learning

We focus on the context of supervised learning. Supervised learn-
ing aims at building a function that predicts an output from a given
input, by exploiting a “training set” composed of pairs of observed
inputs/outputs. Denote X, an input space and Y, the output space. In
this chapter, Y ⊆ R. When Y = { 1, . . . , C }, we talk about supervised
classification. When Y = R, supervised learning corresponds to usual
regression. We are given an independent identically distributed (i. i. d.)
sample of size N of traning data s = (xi, yi)Ni=1, drawn from an un-
known but fixed joint probability law Pr. We call learning algorithm, a
function A that takes a class of functions F, a training sample s and re-
turns a function in F. The learning algorithm can be studied through
many angles, from a computational point of view to a statistical point
of view.

From a limited number of observations, we wish to build a func-
tion that captures the relationship between the two random variables
X and Y. More specifically, we search for a function f in some class
of functions, denoted F and called the hypothesis class such that the
f ∈ F makes good predictions for the pair (X, Y) distributed accord-
ing Pr. To convert this abstract goal into a mathematical definition,
we define a local loss function L : X× F× Y → R+ that evaluates the
capacity of a function f to predict the outcome y from an input x.

Hence, the goal of supervised learning is to find a function f ∈ F

that minimizes the following criterion, called the true risk associated
to L:

R(f) = EPr[L(X, f, Y)], (2.1)

using the training dataset. However, this definition comes with an im-
portant issue: we do not know Pr(X, Y) and thus we cannot compute
this risk nor minimize it. A first proposition is to replace this true risk
by its empirical counterpart, the empirical risk, i. e. the empirical mean
of the loss computed on the training data:

Remp (f, s) =
1
N

N∑

i=1

L(xi, f, yi).

Since the training data are usually supposed to be i. i. d., the cele-
brated strong law of large numbers tells us that for any given function
f in F, the empirical risk converges almost surely to the true risk.

Intuitively the empirical risk measures the performance of a model
on the training data, while the true risk measures the performance of
a model with respect to all the possible experiments (even the ones
that are not present in the training set). Although the convergence of
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the empirical risk to the true risk is guaranteed by the strong law of
large numbers, for a given value of N, the function produced by min-
imization of the empirical risk may suffer from overfitting, i. e. being
too much adapted to the training data and having a poor behavior on
new unseen data.

Generalization error bounds, first introduced by the seminal work
of Vapnik [178] in the context of supervised binary classification and
then largely studied in wider contexts (see for instance, Mohri, Ros-
tamizadeh, and Talwalkar [122]), provide a tool to understand how
the difference between the true risk and the empirical risk behaves
given N, the size of the sample used to compute the empirical risk,
and d, a measure of the capacity the hypothesis class. These bounds
usually take the following form. For any δ ∈ (0, 1), with probability
1 − δ, the following holds for any function f ∈ F of capacity |F| ∈ R:

R (f) ⩽ Remp (f, s) + C(δ,N, |F|)

Especially for the functions of interest fs returned by a learning algo-
rithm, we have

R (fs) ⩽ Remp (fs, s) + C(δ,N, |F|).

Usually it is expected from the quantity C(δ,N, |F|) to increase with
the capacity of the class of functions |F|, and to decrease when the
number of pointsN increases. This suggests to control the complexity
of the hypothesis class while minimizing the empirical risk. In other
words, is the class of functions F is not too big, we expect that a low
empirical risk implies a low true risk in particular when the number
of training points N is large. Also when δ goes to zero, it is expected
for C(δ,N, |F|) to go to infinity since 1 − δ is the probability of the
bound to be valid1.

Most of the approaches in machine learning, and specifically in su-
pervised learning, are based on regularizing approaches: in this case,
learning algorithms minimize the empirical loss while controlling a
penality term on the model f. In Subsection 2.1.1, we will choose an
hypothesis class as an Hilbert space where the penalty can be ex-
pressed as the ℓ2 norm in this Hilbert space.

There is a crucial difference between the strong law of large num-
bers and the generalization property of a learning algorithm. The
strong law of large numbers holds after a model f has been selected
and fixed in F. Thus minimizing the empirical risk does not yield
ipso facto a model that minimizes the true risk (which measures the
adequation of the model on unseen data). This can be illustrated by
an intuitive example adapted from Cornuéjols and Miclet [47, page
64] and the infinite monkey theorem.

1 We give examples of such bounds in Chapter 7.
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Figure 2.1: Borel’s strong law of large numbers.

Example 2.1 Suppose we have a recruiter (a learning algorithm) whose
task is to select the best students from a pool of candidates (the class of
functions). Given ten students the recruiter makes them pass a test with N
questions. If the exam is well constructed and there are enough questions the
recruiter should be able to retrieve the best student.

Now suppose that ten million monkeys ≫ N take the test and answer
randomly to the questions. Then with high probability a monkey will score
better or as well as the best student (strong law of large numbers). Can we
say then that the recruiter has identified the best student?

Intuitively we see that when the capacity of the class of function grows
(the number of students and random monkeys), the performance of the best
element a posteriori (minimizing the empirical risk) is not linked to the
future performance (minimizing the true risk). In the present example we
see that the capacity of the class of function is too large with respect to the
number of data and thus presents a risk of overfitting.

On the contrary the generalization property ensures that the difference
between the empirical risk and the true risk is controlled because the bound
does not depend on a single fixed model, but on the whole class of functions.
In this case if there are too many random monkeys, C(δ,N, |F|) will blow-up,
resulting in a poor generalization property.

A slightly stronger requirement is the consistency of learning algo-
rithm. Given a loss function L and a class of function F there exists a
optimal solutions that minimize the true risk.

f∗ ∈ arg min
f∈F

R (f) .

The excess risk is defined as the difference between the empirical
risk of a model returned by a learning algorithm and f∗. A learning
algorithm is said to be consistent when it is possible to bound the
excess risk uniformly over all the solutions returned by a learning
algorithm.
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be Positive Semi-definite (PSD) if for any (x1, . . . , xN) ∈ XN, the (Gram)
matrix

K =
(
k(xi, xj)

)
i=N,j=N
i=1,j=1 ∈MN,N(R)

is Symmetric Positive Semi-definite (SPSD)2.

The following proposition gives necessary and sufficient conditions
to obtain a SPSD matrix:

Proposition 2.1 (SPSD matrix). K is SPSD if and only if it is symmetric
and one of the following assertions holds:

• The eigenvalues of K are non-negative

• for any column vector c = (c1, . . . , cN)T ∈MN,1(R),

cTKc =
N∑

i,j=1

ciKijcj ⩾ 0

One of the most important property of PD kernels [122] is that a PD
kernel defines a unique RKHS. Note that the converse is also true.

Theorem 2.1 (Aronszajn [9]). Suppose k is a symmetric, positive definite
kernel on a set X. Then there is a unique Hilbert space of functions H on X

for which k is a reproducing kernel, i. e.

(2.2a)∀x ∈ X, k(·, x) ∈ H

(2.2b)∀h ∈ H, ∀x ∈ X, h(x) = ⟨h, k(·, x)⟩H.

H is called a reproducing kernel Hilbert space (Reproducing Kernel Hilbert
Space) associated to k, and will be denoted, Hk.

Another way to use Aronszajn’s results is to state the feature map
property for the PSD kernels.

Proposition 2.2 (Feature map). Suppose k is a symmetric, positive defi-
nite kernel on a set X. Then, there exists a Hilbert space H and a mapping
φ from X to H such that:

∀x, x ′ ∈ X, k(x, x ′) = ⟨φ(x), φ(x ′)⟩H.

The mapping φ is called a feature map and H, a feature space.

Remark 2.1 Aronszajn’s theorem tells us that there always exists at least
one feature map, the so-called canonical feature map and the feature space
associate, the Reproducing Kernel Hilbert Space Hk

φ(x) = k(·, x)

and H = Hk. However there exists several pairs of feature maps and features
spaces for a given kernel k.

2 Note that for historical reasons valid kernels are called “Positive Definite kernels”,
although for any sequences of points the corresponding Gram matrix needs only to
be (symmetric) Positive Semi-Definite [67].
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2.1.1.2 Learning in Reproducing Kernel Hilbert Spaces

Back to learning and minimizing the empirical risk, a fair question
is how to pick-up functions that minimize the empirical risk, in a
space Hk with infinite cardinality in polynomial time? The answer
comes from the regularization and interpolation theory. To limit the
size of the space in which we search for the function minimizing the
empirical risk we add a regularization term to the empirical risk.

Rλ(f, s) = Remp(f, s) +
λ

2
∥f∥2

Hk

=
1
N

N∑

i=1

L (xi, f, yi) +
λ

2
∥f∥2

Hk

and we minimize Rλ instead of Remp. Then the representer theorem
(also called minimal norm interpolation theorem) states the follow-
ing.

Theorem 2.2 (Representer theorem, Wahba [182]). If fs is a solution
of arg minf∈Hk

Rλ(f, s), where λ > 0 then fs =
∑N
i=1 k(·, xi)αi.

We note the vector α = (αi)Ni=1 and the matrix K = (k(xi, xk))Ni,k=1.
Because of the representer theorem, stating that a solution of the em-
pirical risk minimization is a linear combination of kernel evaluations
weighted by a vector α, with mild abuse of notation we identify the
function f ∈ Hk with the vector α. Thus we rewrite the loss L(x, f, y)
as L(x,α, y). Then we can rewrite

Rλ(α, s) =
1
N

N∑

i=1

L(xi,α, yi) +
λ

2
⟨α,Kα⟩2,

and f(xi) = (Kα)i for any xi in the training set. For instance if we
choose L(x, f, y) = 1

2 |f(x) − y|2 to be the least square loss, then

L(xi,α, yi) =
1
2
|(Kα)i − yi|

2.

In this case L is convex in α, thus it is possible to derive a polynomial
time (in N) algorithm minimizing Rλ for the least square loss, which
is called kernel Ridge regression:

(2.3)Rλ(α, s) =
1

2N

∥∥Kα− (yi)Ni=1

∥∥2
2 +

λ

2
⟨α,Kα⟩2.

As a result of the representer theorem we see that we search a min-
imizer over α ∈ RN instead of f ∈ Hk. By strict convexity and co-
ercivity of Rλ, and because K + λIN is invertible3 for any λ > 0, a
solution is αs = arg min

α∈RN
Rλ(α, s) = (K/N+ λIN)−1(yi)Ni=1. This is

an O
(
N3
)

algorithm.

3 Note that although K + λIN is always invertible if λ > 0, choosing a too small value
of λ can leads to an ill-conditioned system if the eigenvalues of K + λIN are too
small.
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Another way of describing positive definite kernels and RKHS con-
sists in defining a feature map φ : X → H where H is a Hilbert space.
Then any function in Hk can be written f(x) = ⟨φ(x), θ⟩H In a nutshell
the function φ is called feature map because it “extracts characteristic
elements from a vector”. Usually a feature map takes a vector in an
input space with low dimension and maps it to a potentially infinite
dimensional Hilbert space. Put it differently, any function in Hk is
the composition of linear functional θ∗ with a non linear feature map
φ. Thus if the feature map φ is fixed (which is equivalent to fixing
the kernel), it is possible to “learn” with a linear class of functions
θ ∈ H (see Figure 2.3). If we note

ϕ =
(
φ(x1) . . . φ(xN)

)

the “matrix” where each column represents the feature map evalu-
ated at the point xi with 1 ⩽ i ⩽ N, the regularized risk minimization
with the least square loss reads

Rλ(θ, s) =
1

2N

∥∥ϕTθ− (yi)Ni=1

∥∥2
2 +

λ

2
∥θ∥2

2.

and if λ > 0 the unique minimizer is θs =
(
ϕϕT/N + λIH

)−1
ϕ. This

is an

Ot
(
dim(H)2(N + dimH)

)
.

time complexity algorithm. This algorithm seems more appealing
than its kernel counterpart when many data are given since once
the space H has been fixed, the algorithm is linear in the number of
training points. However many questions remains. First although it
is possible to design a feature map ex nihilo, can we design systemat-
ically a feature map from a kernel? For some kernels (e. g. the Gaus-
sian kernel) it is well known that the Hilbert space corresponding to
it has dimension dim(H) =∞. Is it possible to find an approximation
of the kernel such that dim(H) <∞? If such a construction is possible
and we know that N training data are available, is it possible to have
a sufficiently good approximation 4 with dim(H)≪ N?

2.1.2 Towards large scale learning with kernels

Motivated by large scale applications, different methodologies have
been proposed to approximate kernels and feature maps. This subsec-
tion briefly reminds the main approaches based on Random Fourier
Features and Nyström techniques. Notice that another line of research
concerns online learning method such as NORMA developed in [90],
later extended to the operator-valued kernel case by Audiffren and

4 When dim(H) ⩾ N then is it is better to use the kernel algorithm than the feature
algorithm. This is called the kernel trick.
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Figure 2.3: We map the two circles in R2 to R3. In R3 it is now possible to
separate the circles with a linear functional: a plane. We used the
feature map

φ(x) = 0.82




cos(1.76x1 + 2.24x2 + 2.75)

cos(0.40x1 + 1.87x2 + 5.6)

cos(0.98x1 − 0.98x2 + 6.05)


.

Here φ : R2 → R3 has been chosen as a realization of an RFF
map (see Equation 2.5). A “cleaner” feature map adapted to this
problem could have been

φ(x) =




x1

x2

x2
1 + x2

2


.
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Kadri [10]. We start with the seminal work of Rahimi and Recht [139]
who show that given a continuous shift-invariant kernel (∀x, z, t ∈ X,
k(x + t, z + t) = k(x, z)), it is possible to obtain a feature map called
RFF that approximate the given kernel.

2.1.2.1 Random Fourier Features map

The Random Fourier Features methodology introduced by Rahimi
and Recht [139] provides a way to scale up kernel methods when
kernels are Mercer and translation-invariant. We view the input space
X as a group endowed with the addition. Extensions to other group
laws such as Li, Ionescu, and Sminchisescu [98] are described in Sub-
subsection 4.2.2.2 within the general framework of operator-valued
kernels.

Denote k : Rd ×Rd → R a positive definite kernel on X = Rd.
A kernel k is said to be shift-invariant or translation-invariant for the
addition if for for all (x, z, t) ∈

(
Rd
)3 we have k(x + t, z + t) = k(x, z).

Then, we define k0 : Rd → R the function such that k(x, z) = k0(x− z).
k0 is called the signature of kernel k. Bochner’s theorem [65] is the
theoretical result that leads to the Random Fourier Features.

Theorem 2.3 (Bochner’s theorem). Any continuous positive definite
function is the Fourier Transform of a bounded non-negative Borel measure.

It implies that any positive definite, continuous and shift-invariant
kernel k, has a continuous and positive semi-definite signature k0,
which is the Fourier Transform F of a non-negative measure µ. Hence
we have k(x, z) = k0(x− z) =

∫

Rd
exp (−i⟨ω, x− z⟩)dµ(ω) = F [k0] (ω).

Moreover µ = F−1 [k0]. Without loss of generality, we assume that µ is
a probability measure, i. e.

∫

Rd
dµ(ω) = 1 by renormalizing the kernel

since
∫

Rd

dµ(ω) =
∫

Rd

exp (−i⟨ω, 0⟩)dµ(ω) = k0(0).

and we can write the above equation as an expectation over µ. For all
x, z ∈ Rd

k0(x− z) = Eµ
[
exp(−i⟨ω, x− z⟩)

]
.

Eventually, if k is real valued we only write the real part,

k(x, z) = Eµ[cos⟨ω, x− z⟩]
= Eµ[cos⟨ω, z⟩ cos⟨ω, x⟩ + sin⟨ω, z⟩ sin⟨ω, x⟩].

Let
⊕D
j=1 xj denote the Dd-length column vector obtained by stacking

vectors xj ∈ Rd. The feature map φ̃ : Rd → R2D defined as

(2.4)φ̃(x) =
1√
D

D⊕

j=1

(
cos ⟨x,ωj⟩
sin ⟨x,ωj⟩

)
, ωj ∼ F−1 [k0] i. i. d.
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is called a Random Fourier Features (map). Each ωj, j = 1, . . . , D is in-
dependently and identically sampled from the inverse Fourier trans-
form µ of k0. This Random Fourier Features map provides the fol-
lowing Monte-Carlo estimator of the kernel: k̃(x, z) = φ̃(x)∗φ̃(z). Us-
ing trigonometric identities, Rahimi and Recht [139] showed that the
same feature map can also be written

(2.5)φ̃(x) =

√
2
D

D⊕

j=1

(
cos(⟨x,ωj⟩ + bj)

)
,

where ωj ∼ F−1 [k0], bj ∼ U(0, 2π) i. i. d.. The feature map defined
by Equation 2.4 and Equation 2.5 have been compared in Sutherland
and Schneider [167] where they give the condition under wich Equa-
tion 2.4 has lower variance than Equation 2.5. For instance for the
Gaussian kernel, Equation 2.4 has always lower variance. In practice,
Equation 2.5 is easier to program. In this manuscript we focus on
random Fourier feature of the form given in Equation 2.4.

The dimension D governs the precision of this approximation,
whose uniform convergence towards the target kernel (as defined
in Theorem 2.3) can be found in Rahimi and Recht [139] and in
more recent papers with some refinements proposed in Sutherland
and Schneider [167] and Sriperumbudur and Szabo [164]. Finally, it
is important to notice that Random Fourier Features approach only
requires two steps before the application of a learning algorithm: (1)
define the inverse Fourier transform of the given shift-invariant ker-
nel, (2) compute the randomized feature map using the spectral dis-
tribution µ. Rahimi and Recht [139] show that for the Gaussian kernel
k0(x− z) = exp(−γ∥x− z∥2

2), the spectral distribution µ is a Gaussian
distribution. For the Laplacian kernel k0(x− z) = exp(−γ∥x− z∥1), the
spectral distribution is a Cauchy distribution.

We now focus on another famous way of obtaining feature maps
for any scalar valued kernel called the Nyström method.

2.1.2.2 Nyström approximation

To overcome the bottleneck of Gram matrix computations in kernel
methods, Williams and Seeger [185] have proposed to generate a low-
rank matrix approximation of the Gram matrix using a subset of its
columns. Since this feature map is based on a decomposition of the
Gram matrix, the feature map resulting from the Nyström method is
data dependent. Let k : X2 → R be any scalar-valued kernel and let

s = (xi)Ni=1

be the training data. We note a subsample of the training data

sM = (xi)Mi=1
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whereM ⩽ N and sM is a subsequence of s. Then construct the Gram
matrix KM on the subsequence sM. Namely

KM =
(
k(xi, xj)

)
M
i,j=1.

Then perform the singular-valued decomposition KM = UΛUT. The
Nyström feature map is given by

φ̃(x) = Λ−1/2UT

(⊕M

i=1
k(x, xi)

)
.

Here M plays the same role as D in the RFF case: it controls the
quality of the approximation. Let K be the full Gram matrix on the
training data s, let

Kb =
(
k(xi, xj)

)
i=N,j=M
i=1,j=1 .

Then it is easy to verify that ϕTϕ = KbK†
MKT

b ≈ K, where K†
M is

the pseudo-inverse of KM and the quantity KbK†
MKT

b is a low rank
approximation of the Gram matrix K.

2.1.2.3 Random features vs Nyström method

The main conceptual difference between the Nyström features and
the Random Fourier Feature is that the Nyström construction is data
dependent, while the RFF is not. The advantage of random Fourier
feature lies in their fast construction. For N data in Rd, it costs
O(NDd) to featurize all the data. For the Nyström features it costs
O
(
M2(M + d)

)
. Moreover if one desires to add a new feature, the

RFF methodology is as simple as drawing a new random vector
ω ∼ F−1 [k0], compute cos(⟨ω, x⟩+ b), where b ∼ U(0, 2π) and concate-
nate it the existing feature. For the Nyström features one needs to
recompute the singular value decomposition of the new augmented
Gram matrix KM+1.

To analyse the RFF and Nyström features authors usually
study the approximation error of the approximate Gram ma-
trix and the targer kernel

∥∥ϕTϕ− K
∥∥ (see [55, 142, 190]) or the

supremum of the error between the approximated kernel and
the true kernel over a compact subset X of the support if k:
sup(x,z)∈C⊆X2

∣∣φ̃(x)Tφ̃(z) − k(x, z)
∣∣ (see Bach [12], Rahimi and Recht

[139], Rudi, Camoriano, and Rosasco [144], and Sutherland and
Schneider [167]). Because Bartlett and Mendelson [17] showed that
for generalization error to be below ϵ ∈ R>0 for kernel methods is
O(N−1/2), the number of samples M or D required to reach some ap-
proximation error below ϵ should not grow faster than O(M−1/2) for
the Nyström method orO(D−1/2) for the RFF method to match kernel
learning. Concerning the Nyström method, Yang et al. [190] suggest
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that the number of samplesM is reduced to O(M−1) to reach an error
below ϵ when the gap between the eigenvalues of K is large enough.
As a result in this specific case, one should sample M = O(

√
N)

Nyström features to ensure good generalization. On the other hand
Rahimi and Recht [140] reported that the generalization performance
of RFF learning is O(N−1/2 +D−1/2), which indicates that D = O(N)
features should be sampled to generalize well. As a result the com-
plexity of learning with the RFF seems not to decrease. However the
bounds of Rahimi and Recht [140] are suboptimal and very recently
(end of 2016) Rudi, Camoriano, and Rosasco [144] proved that in
the case of ridge regression (Equation 2.3), the generalization error
is O(N−1/2 +D−1) meaning that D = O(

√
N) random features are

required for good generalization with RFFs. We refer the interested
reader to Yang et al. [190] for an empirical comparison between the
Nyström method and the RFF method.

2.1.2.4 Extensions of the RFF method

The seminal idea of Rahimi and Recht [139] has opened a large lit-
erature on random features. Nowadays, many classes of kernels other
than translation invariant are now proved to have an efficient random
feature representation. Kar and Karnick [87] proposed random fea-
ture maps for dot product kernels (rotation invariant) and Hamid et
al. [77] improved the rate of convergence of the approximation error
for such kernels by noticing that feature maps for dot product kernels
are usually low rank and may not utilize the capacity of the projected
feature space efficiently. Pham and Pagh [135] proposed fast random
feature maps for polynomial kernels.

Li, Ionescu, and Sminchisescu [98] generalized the original RFF
of Rahimi and Recht [139]. Instead of computing feature maps for
shift-invariant kernels on the additive group (Rd,+), they used the
generalized Fourier transform on any locally compact abelian group
to derive random features on the multiplicative group (Rd>0, ∗). In the
same spirit Yang et al. [189] noticed that an theorem equivalent to
Bochner’s theorem exists on the semi-group (Rd+ ,+). From this they
derived “Random Laplace” features and used them to approximate
kernels adapted to learn on histograms.

To speed-up the convergence rate of the random features approx-
imation, Yang et al. [188] proposed to sample the random variable
from a quasi Monte-Carlo sequence instead of i. i. d. random vari-
ables. Le, Sarlós, and Smola [94] proposed the “Fastfood” algorithm
to reduce the complexity of computing a RFF –using structured
matrices and a fast Walsh-Hadarmard transform– from Ot(Dd) to
Ot(D log(d)). More recently Felix et al. [61] proposed also an algo-
rithm “SORF” to compute Gaussian RFF in Ot(D log(d)) but with bet-
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ter convergence rates than “Fastfood” [94]. Mukuta and Harada [124]
proposed a data dependent feature map (comparable to the Nystrom̈
method) by estimating the distribution of the input data, and then
finding the eigenfunction decomposition of Mercer’s integral opera-
tor associated to the kernel.

In the context of large scale learning and deep learning, Lu et
al. [108] showed that RFFs can achieve performances comparable to
deep-learning methods by combining multiple kernel learning and
composition of kernels along with a scalable parallel implementation.
Dai et al. [51] and Xie, Liang, and Song [186] combined RFFs and
stochastic gradient descent to define an online learning algorithm
called “Doubly stochastic gradient descent” adapted to large scale
learning. Yang et al. [192] proposed and studied the idea of replac-
ing the last fully interconnected layer of a deep convolutional neural
network [95] by the “Fastfood” implementation of RFFs.

Eventually Yang et al. [191] introduced the algorithm “À la Carte”,
based on “Fastfood” which is able to learn the spectral distribution
corresponding to a kernel rather than defining it from the kernel. Very
recently Kawaguchi, Xie, and Song [88] proposed to use semi-random
features which are a tradeoff between the random features based on
kernel methods (e. g. RFFs) and the trainable layer in deep learning.

q
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B A C K G R O U N D

In this chapter we introduce briefly the mathematical tools used
throughout this manuscript. We give a full table of notations, and
present elements of functional analysis [93] and abstract hamonic
analysis [65]. Then we turn our attention to the case when the func-
tions we want to learn are not real-valued, but vector-valued. To learn
vector-valued functions we define Operator-Valued Kernels that gen-
eralize the scalar-valued kernel presented in Chapter 2. We conclude
by giving a non-exhaustive list of Operator-Valued Kernels and in
which context they have been used.
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3.1 notations

In this section we summarize briefly important notions used through-
out this document. It is mainly based on books and lecture notes of
Cotaescu [49] and Kurdila and Zabarankin [93].

3.1.1 Algebraic structures

We note K any Abelian1 field and call its elements scalars. R is the1 Commutative.

Abelian field of real numbers and C is the Abelian field of complex
numbers. The unit pure imaginary number

√
−1 ∈ C is denoted i and

the Euler constant exp(1) ∈ R is denoted e. N represents the set of
natural numbers and Nn, n ∈ N the set of natural numbers smaller
or equal to n. For any space S, Sd, d ∈ N represents the Cartesian
product space Sd = S× · · ·× S. For any two algebraic structures S and
S ′ we write S ∼= S ′ if there exist an isomorphism between these two
structures. If a + ib = x ∈ C then x = a− ib ∈ C denotes the complex
conjugate. By extension if x ∈ R, x = x ∈ R.

3.1.2 Topology and continuity

In order to define a proper notion of continuity, we focus on topo-
logical spaces. A topological space is a pair of sets (X,Tx) where X

describes the points considered, and Tx describes the possible neigh-
bourhoods. The standard axioms of topology suppose that Tx ⊆ P(X)
is a collection of subsets of X such that the empty set and X itself
belongs to Tx, any (finite or infinite) union of members of Tx still
belongs to Tx and the intersection of any finite number of members
of Tx still belongs to Tx. The elements of Tx are called open sets and
the collection Tx is a topology on X. If (X,Tx) and (Y,Ty) are topo-
logical spaces, a function f is said to be continuous if for every open
set V ∈ Ty, the inverse image f−1(V) = { x ∈ X | f(x) ∈ V } is an open
subset of Tx. Since the notion of continuity depends on open sets, it
depends on the topology of the spaces X and Y.

If (X,Tx) is a topological space and x is a point in X, a neighbour-
hood of x is a subset V of X that includes an open set U containing x.
A topological space X is said to be Hausdorff (T2) when all distinct
points in X are pairwise neighbourhood-separable. i. e. if there exists
a neighbourhood U of x and a neighbourhood V of y such that U and
V are disjoint. It implies the uniqueness of limits of sequences and
existence of nets used throughout this thesis. Therefore in the whole
document we always assume that a topological space X is Haussdorff.

A topological space is said to be second countable if it has a count-
able base. Every second-countable space is separable and Lindelöf2
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(The reverse implications do not hold). A space is metrisable if and 2 Every open cover
has a countable
subcover.

only if it is second countable.

A topological space is said to be separable if there exists a sequence
(xn)n∈N∗ of elements of X such that every nonempty open subsets of
the space contains at least one element of the sequence. Separability
plays an important role in numerical analysis because many theorems
have only constructive proofs for separable spaces. Such constructive
proofs can be turned into algorithms which is the primary goal of this
work. In this document we also assume that any topological space is
separable if there is no specific mention of the contrary. Moreover we
recall that a Hilbert space is separable if and only if it has a countable
orthonormal basis (Hence separable Hilbert spaces are second count-
able). Hence an operator between two separable Hilbert spaces can
be written as an infinite dimensional matrix. In some cases we also
introduce Polish spaces which are separable topological spaces X that
have at least one metric d such that (X, d) is complete. Then d induces
the topology Tx of X. As metrisable spaces, Polish spaces are always
second countable. Moreover every second countable locally compact
Hausdorff space is a Polish space and every separable Banach space
is a Polish space.

If X and Y are two topological spaces, we denote by F(X;Y) the
topological vector space of functions f : X → Y and C(X;Y) ⊂ F(X;Y)
the subspace of continuous functions, endowed with the product
topology (topology of pointwise convergence).

3.1.3 Measure theory

A σ-algebra on X is a set M ⊆ P(X) of subsets of X, containing the
empty set, which is closed under taking complements and countable
unions. A pair (X,M) where X is a set and M is a σ-algebra is called
a measure space. The Borel σ-algebra B(X) is a σ-algebra generated
by the open sets of X. A measure on a measurable space (X,B(X)) is
a map µ : B(X) → R+ which is zero on the empty set and countably
additive, i. e. for any subset (Zn)n∈N is a sequence of pairwise disjoint
measurable sets,

µ

( ∪

n∈N

Zn

)
=

∑

n∈N

µ(Zn).

We note N(m,σ) the Gaussian distribution with mean m ∈ R and
variance σ2 ∈ R. U(a, b) is the uniform distribution with support
(a, b) and S(m,σ) is the hyperbolic secant distribution with mean m
and variance σ2.
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3.1.4 Vector spaces, linear operators and matrices

Given any vector space H over an Abelian field K, the (continuous)
dual space1 H∗ is defined as the set of all continuous linear functionals
x∗ : H → K. When H is a vector space, there is a natural duality
pairing between H∗ and H defined for all x∗ ∈ H∗ and all z ∈ H

as (x∗, z)H∗,H = x∗(z) = x∗z. The duality paring (·, ·)H∗,H is then a
bilinear form.

Let H1 and H2 be two vector spaces. We call operator any lin-
ear function from H1 to H2. The transpose (or dual) of an oper-
ator W : H1 → H2 is defined as WT : H∗

2 → H∗
1 such that

WT : x∗ 7→ x∗(W). It is characterized by the relation (x∗,Wz)H∗
2 ,H2

=(
WTx∗, z

)
H∗

1 ,H1
for all x∗ ∈ H∗

2 and all z ∈ H1. An operator is called

self-dual when WT = W.

Let H1 and H∈ be two vector space. We set L(H1;H2) to be the
space of bounded (linear) operators from H1 to H2. The vector space
H1 is called the domain, noted Dom and H2 the codomain. We use
the shortcut notation L(H) = L(H;H). Interestingly if H1 and H2

are normed vector spaces, they can be viewed as topological vector
spaces, and the notion of continuity coincides with that of bounded-
ness. We recall that the norm of a linear operator is given by

∥W∥H∞,H2
= sup
x ̸=0

∥Wx∥H2

∥x∥H1

.

If W ∈ L(H1,H2)

Ker W = { x ∈ Dom (W) |Wx = 0 }

denotes the kernel (nullspace), which is a vector subspace of the do-
main and

Im W = { y ∈ H2 | y = Wx, x ∈ Dom (W) }

the image (range) which is a vector subspace of the codomain H2.

If H is an Hilbert space on a field K we denote its scalar product
by ⟨·, ·⟩H and its norm by ∥·∥H. When the base field of H is R, ⟨·, ·⟩H
is a bilinear form. When the base field of H is C, ⟨·, ·⟩H is a sesquilinear
form.

1 The continuous dual space is also called topological dual space. This must be differ-
entiate from the algebraic dual space, which is the space of linear functionals from the
original vector-space to its base field. Hence the continuous dual space is a subset of
the algebraic dual space. The continuous and the algebraic dual space only match
when considering finite dimensional vector-spaces
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Let H be a Hilbert space. From Riesz’s representation theorem,
there is a unique isometric isomorphism ιR : H → H∗ such that for
any x and y ∈ H, (ιR(x), y)H∗,H = ⟨x, y⟩H and ∥ιR(x)∥H∗ = ∥x∥H. The
Riesz map ιR is self-dual, thus if H is a Hilbert space, H is reflexive.
i. e. H∗∗ ∼= H. When the base field of H is C, then the Riesz map ιR is
an anti-linear form since ⟨·, ·⟩H is sesquilinear and (·, ·)H∗,H is bilinear.
In the same way when the base field of H is R then ιR is linear since
both ⟨·, ·⟩H and (·, ·)H∗,H are bilinear. If H is a Hilbert space we make
the dual space H∗ a Hilbert space by endowing it with the inner
product ⟨x∗, z∗⟩H∗ = ⟨ι−1

R (x∗), ι−1
R (z∗)⟩H for all x∗, z∗ ∈ H∗.

Let H1 and H2 be two Hilbert spaces. The adjoint of an operator
W : H1 → H2 is the unique mapping W∗ : H2 → H1 such that
⟨W∗x, z⟩H1

= ⟨x,Wz⟩H2
for all x ∈ Dom (W∗), z ∈ Dom (W). Its ex-

istence is guaranteed by Riesz’s representation theorem. An operator
W : Dom (W) ⊆ H → H is said to be symmetric when W∗ = W, and
self-adjoint when W is bounded, symmetric, Dom (W∗) = Dom (W)
and Dom (W) is dense in H. If W is bounded, symmetric and
Dom (W) = H then W is self-adjoint. Notice that the transpose is
linked to the adjoint by the relation W∗ = ι−1

R W
TιR. When H is a

Hilbert space, if x ∈ H, we always define x∗ ∈ H∗ to be

x∗ = ιR(x) = ⟨x, ·⟩H.

H2 H1

H∗
2 H∗

1

W∗

ιR ιR

WT

ι−1
R

Figure 3.1: Riesz map, dual spaces and adjoints.

Let H be a separable Hilbert space and let (ei)i∈N∗ be a basis of
H. We call (e∗i )i∈N∗ the dual basis of H, the basis of H∗ such that
for all i, j ∈ N∗, e∗i (ej) = ⟨ei, ej⟩H = δij. In the whole document
we consider that H∗ is always equipped with the dual basis of H.
For a vector x ∈ H with a basis (ei)i∈N∗ we write xi = e∗i (x). For a
linear operator W : H1 → H2 where H1 and H2 are Hilbert spaces
with respective basis (ei)i∈N∗ and (e ′j)j∈N∗ , we note Wi = Wei and
Wij = e∗j (Wei). Eventually given two separable Hilbert spaces H1 and
H2, an operator W : H1 → H2, (ei)i∈N∗ a basis of H1 and (e ′i)i∈N∗ a
basis of H2 we have

(WT)ij = e∗∗j W
Te ′∗i = e∗∗j e

′∗
iW = e ′∗iWej = Wji.
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We call matrixM of size (m,n) ∈N2 on an Abelian field K a collec-
tion of elements M = (mij)1⩽i⩽m,1⩽j⩽n, mij ∈ K. We note Mm,n(K)
the vector space of all matrices. If H1 and H2 are two separable Hil-
bert spaces on an Abelian field K, any linear operator L ∈ L(H1;H2)
can be viewed as a (potentially infinite) matrix. Let n = dim(H1),
m = dim(H2) and let B = (ei)ni=1 and C = (e ′i)

m
i=1 be the respec-

tive bases of H1 and H2. We note matB,C : L(H1;H2) → Mm,n(K)
such that M = matB,C(L) = (e ′∗jLei)1⩽i⩽n,1⩽j⩽m ∈ Mm,n(K). Let
M1 ∈ Mm,n(K) and M2 ∈ Mn,l(K). The product between two matri-
ces is written M1M2 ∈Mm,l(K) and obey (M1M2)ij =

∑n
k=1MikMkj.

Given two linear operator L1 ∈ L(H1;H2) and L2 ∈ L(H2;H3) we have
L1L2 ∈ L(H1;H3) and i

matB,D(L1L2) = matB,C(L1)matC,D(L2).

The operator matB,C is a vector space isomorphism allowing us to
identify L(H1;H2) with Mmn(K) where n = dim(H1) and m =
dim(H2). All these notations are summarized in Tables 3.1 and 3.3.

3.2 elements of abstract harmonic analysis

3.2.1 Locally compact Abelian groups

Definition 3.1 (Locally Compact Abelian (LCA) group.). A group X

endowed with a binary operation ⋆ is said to be a Locally Compact Abelian
group if X is a topological commutative group w. r. t. ⋆ for which every
point has a compact neighborhood and is Hausdorff (T2).

Moreover given a element z of a LCA group X, we define the set
z ⋆X = X ⋆ z = { z ⋆ x | ∀x ∈ X } and the set X−1 =

{

x−1
∣∣ ∀x ∈ X

}

. We
also note e the neutral element of X such that x ⋆ e = e ⋆ x = e for all
x ∈ X. Throughout this thesis we focus on positive-definite functions.
Let Y be a complex separable Hilbert space. A function f : X → Y is
positive definite if for all N ∈N and all y ∈ Y,

(3.1)
N∑

i,j =1

⟨
yi, f

(
x−1
j ⋆ xi

)
yj

⟩
Y
⩾ 0

for all sequences (yi)i∈N∗
N
∈ YN and all sequences (xi)i∈N∗

N
∈ XN. If

Y is real we add the assumption that f(x−1) = f(x)∗ for all x ∈ X. A
consequence is that a positive-definite function is bounded, as shown
by Falb [60], ∥f(x)∥Y,Y ⩽ 2∥f(e)∥Y,Y for all x ∈ X, however positive-
definite functions are not necessarily continuous. This motivates the
introduction of functions of positive type which are nothing but con-
tinuous positive-definite function.
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Table 3.1: Mathematical symbols and their signification (part 1).

Symbol Meaning

:= Equal by definition.

N The semi-group of natural numbers.

K Any non-discrete Abelian field endowed with an abso-
lute value. Elements of K are called scalars.

R The Abelian field of real numbers.

C The Abelian field of complex numbers.

U The circle group of complex numbers with unit mod-
ule.

i ∈ C Unit pure imaginary number i2 := −1.

e ∈ R Euler constant.

e ∈ X The neutral element of the group X.

δij Kronecker delta function. δij = 0 if i ̸= j, 1 otherwise.

⟨·, ·⟩2 Euclidean inner product.

∥·∥2 Euclidean norm.

X Input space.

X̂ The Pontryagin dual of X when X is a LCA group.

Y Output space (Hilbert space).

H Feature space (Hilbert space).

⟨·, ·⟩Y The canonical inner product of the Hilbert space Y.

∥·∥Y The canonical norm induced by the inner product of
the Hilbert space Y.

F(X;Y) Topological vector space of functions from X to Y.

C(X;Y) The topological vector subspace of F of continuous
functions from X to Y.

L(H;Y) The set of bounded linear operator from a Hilbert
space H to a Hilbert space Y.

∥·∥Y,Y ′ The operator norm ∥Γ∥Y,Y ′ = sup∥y∥Y=1∥Γy∥Y ′ for all
Γ ∈ L(Y,Y ′)

Mm,n(K) The set of matrices of size (m,n).

L(Y) The set of bounded linear operator from a Hilbert
space Y to itself.

L+(Y) The set of non-negative bounded linear operator from
a Hilbert space H to itself.

B(X) Borel σ-algebra on a topological space X.

µ(X) A scalar positive measure of X.

Leb(X) The Lebesgue measure of X.

Haar(X) A Haar measure of X.
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Table 3.3: Mathematical symbols and their signification (part 2).

Symbol Meaning

Prµ,ρ(X) A probability measure of X whose Radon-Nikodym
derivative (density) with respect to the measure µ is
ρ.

F [·] The Fourier Transform operator.

F−1 [·] The Inverse Fourier Transform operator.

ess sup The essential supremum.

Lp(X, µ) The Banach space of |·|p-integrable function from
(X,B(X), µ) to C for p ∈ R+.

Lp(X, µ;Y) The Banach space of ∥·∥pY (Bochner)-integrable func-
tion from (X,B(X), µ) to Y for p ∈ R+. Lp(X, µ,R) :=
Lp(X, µ).

⊕D
j=1 xi The direct sum of D ∈ N vectors xi’s in the Hil-

bert spaces Hi. By definition ⟨
⊕D
j=1 xj,

⊕D
j=1 zj⟩ =

∑D
j=1⟨xj, zj⟩Hi

[11].

∥·∥p The Lp(X, µ,Y) norm. ∥f∥pp :=
∫

X
∥f(x)∥pYdµ(x). When

X = N∗, Y ⊆ R and µ is the counting measure and
p = 2 it coincide with the Euclidean norm ∥·∥2 for
finite dimensional vectors.

∥·∥∞ The uniform norm ∥f∥∞ = ess sup { ∥f(x)∥Y | x ∈ X } =
limp→∞∥f∥p.

T The transpose operator of a linear operator.
∗ The adjoint operator of a linear operator.

|Γ | The absolute value of the linear operator Γ ∈ L(Y), i. e.
|Γ |2 = Γ∗Γ .

Tr [Γ ] The trace of a linear operator Γ ∈ L(Y).

σ(Γ ) The spectrum of the bounded linear operator
Gamma ∈ L(Y) where Y is a Hilbert space, i. e. σ(Γ ) =
{ λ ∈ C | ∄s, s(λe− Γ ) = e }.

λi(Γ ) The i-th eigenvalue of Γ ∈ L(Y), ranked by increasing
modulus, where Y is a separable Hilbert space and i ∈
N∗.

ρ(Γ ) The spectral radius of the linear operator Γ i. e. ρ(Γ ) =
sup { |λ| | λ ∈ σ(Γ ) }.

∥·∥σ,p The Schatten p-norm, ∥Γ∥pσ,p = Tr [|Γ |p] for Γ ∈ L(Y),
where Y is a Hilbert space. Note that ∥Γ∥σ,∞ = ρ(Γ ) ⩽
∥Γ∥Y,Y.

≽ “Greater than” in the Loewner partial order of opera-
tors. Γ1 ≽ Γ2 if σ(Γ1 − Γ2) ⊆ R+.

R The one point compacification of the real line R ∪
{∞ }.

∼= Given two sets X and Y, X ∼= Y if there exists an iso-
morphism φ : X→ Y.
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3.2.2 The Haar measure

Measures on topological spaces which appear in practice often satisfy
the following regularity properties.

Definition 3.2 (Radon measure). A Radon measure µ = Rad on a topo-
logical measurable space X is a measure on (X,B(X)) which satisfies the
following properties.

1. The measure Rad is finite on every compact set.

Rad(K) <∞, for any compact set K ∈ B(X).

2. The measure Rad is outer regular on any Borel sets E.

Rad(E) = inf { Rad(U) | E ⊆ U } , for any open set U.

3. The measure Rad is inner regular on open sets E.

Rad(E) = sup { Rad(K) | K ⊆ E } , for any compact set K.

When dealing with topological groups it is natural to look for mea-
sures which are invariant under translation. There exists, up to a pos-
itive multiplicative constant, a unique countably additive, nontrivial
measure Haar on any LCA group. For more details and constructive
proofs see Alfsen [4], Conway [46], and Folland [65].

Definition 3.3 (The Haar measure). A Haar measure µ = Haar on a
LCA group X = (G, ⋆) is a Radon measure on (X,B(X)) which is non-zero
on non-empty open sets and is invariant under translation. Namely

1. if Z ⊆ X is open and not empty, then Haar(Z) > 0.

2. For all Z ∈ B(X) and x ∈ X, Haar(x ⋆Z) = Haar(Z).

Such a measure on a LCA group X is called a Haar measure3 . An 3 If X was not
supposed to be
Abelian, we should
have defined a left
Haar measure and a
right Haar measure.
In our case both
measure are the
same, so we refer to
both of them as Haar
measure

immediate consequence of the invariance is that for any s ∈ X,
∫

X

f(s ⋆ x)dHaar(x) =
∫

X

f(x)dHaar(x).

It can be shown that Haar(U) > 0 for every non-empty open subset
U. In particular, if X is compact then Haar(X) is finite and positive,
so we can uniquely specify a Haar measure on X by adding the nor-
malization condition Haar(X) = 1. We call measured space the space
(X,B(X),Haar). In other words the (topological) space X endowed
with its Borel σ-algebra B(X) and a measure Haar. If Haar(X) = 1
then the space (X,B(X),Haar) is called a probability space. Last but
not least, on the additive group (R,+), the Lebesgue measure noted
Leb is a valid Haar measure. For a concise introduction and impor-
tant properties we refer the reader to the lecture of Tornier [173].
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3.2.3 Even and odd functions

Let X be a LCA group and K be a field viewed as an additive group.
We say that a function f : X→ K is even if for all x ∈ X, f(x) = f

(
x−1
)

and odd if f(x) = −f
(
x−1
)
. The definition can be extended to operator-

valued functions.

Definition 3.4 (Even and odd operator-valued function on a LCA
group). Let X be a measured LCA group and Y be a Hilbert space, and L(Y)
the space of bounded linear operators from Y to itself viewed as an additive
group. A function f : X → L(Y) is (weakly) even if for all x ∈ X and all y,
y ′ ∈ Y,

(3.2)⟨y, f
(
x−1)y ′⟩Y = ⟨y, f(x)y ′⟩Y

and (weakly) odd if

(3.3)⟨y, f
(
x−1)y ′⟩Y = −⟨y, f(x)y ′⟩Y

It is easy to check that if f is odd then
∫

X⟨y, f(x)y ′⟩YdHaar(x) = 0.

Proof
∫

X

⟨y, f(x)y ′⟩YdHaar(x)

=
∫

X

⟨
y,

(
f
(
x−1
)

+ f(x)
2

)
−

(
f
(
x−1
)
− f(x)

2

)
y ′
⟩

Y

dHaar(x)

=
1
2

(
−

∫

X

⟨y, f(x)y ′⟩YdHaar(x) +
∫

X

⟨y, f(x)y ′⟩YdHaar(x)
)

= 0.

□

Besides the product of an even and an odd function is odd. Indeed
for all f, g ∈ F(X;L(Y)), where f is even and g odd. Define h(x) =
⟨y, f(x)g(x)y ′⟩. Then we have

(3.4)h
(
x−1) = ⟨y, f

(
x−1)g

(
x−1)y ′⟩Y = ⟨y, f(x) (−g(x))y ′⟩Y

= −h(x).

3.2.4 Characters

Locally Compact Abelian (LCA) groups are central to the general
definition of Fourier Transform which is related to the concept of
Pontryagin duality [65]. Let (X, ⋆) be a LCA group with e its neutral
element and the notation, x−1, for the inverse of x ∈ X. A character
is a complex continuous homomorphism ω : X → U from X to the
set of complex numbers of unit module U. The set of all characters
of X forms the Pontryagin dual group X̂. The dual group of an LCA
group is an LCA group such that we can endow X̂ with a “dual” Haar
measure noted Ĥaar. Then the dual group operation is defined by

(ω1 ⋆
′ ω2)(x) = ω1(x)ω2(x) ∈ U.
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The Pontryagin duality theorem states that ̂̂X ∼= X. i. e. there is a
canonical isomorphism between any LCA group and its double dual.
To emphasize this duality the following notation is usually adopted

(3.5)ω(x) = (x,ω) = (ω, x) = x(ω),

where x ∈ X ∼=
̂̂
X and ω ∈ X̂. The form (·, ·) defined in Equation 3.5

is called (duality) pairing. Another important property involves the
complex conjugate of the pairing which is defined as

(3.6)(x,ω) =
(
x−1,ω

)
=
(
x,ω−1).

We notice that for any pairing depending of ω, there exists a func-
tion hω : X → R such that (x,ω) = exp(ihω(x)) since any pairing
maps into U. Moreover,

(
x ⋆ z−1,ω

)
= ω(x)ω

(
z−1)

= exp (+ihω (x)) exp
(
+ihω

(
z−1))

= exp (+ihω (x)) exp (−ihω (z)) .

The following example shows how to determine the (Pontryagin)
dual of a LCA group.

Example 3.1 (Folland [65]). On the additive group X = (R,+) we have
R̂ ∼= R with the duality pairing (x,ω) = exp (ixω) for all x ∈ R and all
ω ∈ R. The Haar measure on X is the Lebesgue measure.

Proof If ω ∈ R̂ then ω(0) = 1 since ω is an homeomorphism from R

to U. Therefore there exists a > 0 such that
∫a

0 ω(t)dLeb(t) ̸= 0. Setting
Aω =

∫a
0 ω(t)dLeb(t) we have

(Aω)(x) =
∫a

0
ω(x + t)dLeb(t) =

∫a+x

x

ω(t)dLeb(t).

so ω is differentiable and

ω ′(x) = A−1(ω(a+ x)−ω(x)) = cω(x) where c = A−1(ω(a)− 1).

It follow that ω(x) = ecx, and since |ω| = 1, one can take c = iξ for some
ξ ∈ R. Hence we can identify ω with ξ and R̂ with R since ξ uniquely
determines ω, thus we identify ω = ξ. □

We also especially mention the duality pairing associated to the
skewed multiplicative LCA product group. This group together with
the operation ⊙ has been proposed by Li, Ionescu, and Sminchisescu
[98] to handle histograms features especially useful in image recog-
nition applications. Let X = (−ck; +∞)dk=1, where ck ∈ R+, endowed
with the group operation ⊙ defined component-wise for all x, z ∈ X

as follow.

x⊙ z : = ((xk + ck)(zk + ck) − ck)dk =1.
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Example 3.2 (Li, Ionescu, and Sminchisescu [98]). On the skewed
multiplicative group X = ((−c,+∞),⊙) we have ̂(−,+∞) ∼= R, with duality
pairing (x,ω) = exp(i log(x + c)ω) for all x ∈ X and all ω ∈ X̂. The Haar
measure on X is given for all Z ∈ B(X) by Haar(Z) =

∫

Z(z + c)−1dLeb(z).

Proof Let a, b ∈ (−c,+∞) and µ([a, b]) =
∫b
a(z + c)−1dLeb(z). Then for

all d ∈ (−c,+∞)

µ([d⊙ a, d⊙ b]) =
∫ (d+c)(b+c)−c

(d+c)(a+c)−c
(z + c)−1dLeb(z)

= log(d + c)(b + c) − log(d + c)(a + c)
= log(b + c) − log(a + c)

=
∫b

a

(z + c)−1dLeb(z) = µ([a, b]).

Thus µ is translation invariant, making Haar = λµ a valid Haar measure on
X for any multiplicative constant λ ∈ R∗. Let (x,ω) = exp(i log(x + c)ω)
for all x ∈ X and all ω ∈ X̂. We have for all z ∈ X

(x⊙ z,ω) = exp(i log((x + c)(z + c))ω)
= exp(i log(x + c)ω) exp(i log(z + c)ω)
= (x,ω)(z,ω)

Thus ω(x⊙ z) := ω(x)ω(z), which defines a valid pairing, therefore we can
identify X̂ = ̂(−c,+∞) ∼= R where R is the additive group endowed with the
Haar measure being the Lebesgue measure. □

It is easy to extend the Pontryagin dual of groups to dual groups, as
well as defining the pairing on the dual group using the following
proposition [65]

Proposition 3.1 (Folland [65]). Let (Xi)i∈N be a collection of LCA
groups. Then

̂(
∏

i∈N

Xi

)
∼=
∏

i∈N

X̂i

Proof Each ω = (ω1, . . . ,ωN) ∈
∏N
i=1 Xi defines a character on

∏N
i=1 Xi

by

((x1, . . . , xN), (ω1, . . . ,ωN)) = (x1,ω1) · · · (xN,ωN).

Moreover, every characterω on
∏N
i=1 Xi is of this form, whereωi is defined

by

(xi,ωi) = ((e1, . . . , ei−1, xj, ei+1, . . . , eN),ω),

where ei’s denotes the neutral elements of the LCA group Xi. □
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Hence R̂d ∼= Rd with duality pairing

(x,ω) = exp

(
i
d∑

k=1

xkωk

)
,

hence hω(x) =
∑d
k=1ωkxk = ⟨x,ω⟩2. For the skewed multiplicative

group ̂(−ck; +∞)dk=1
∼= Rd and the duality pairing is defined by

(x,ω) = exp

(
i
d∑

k=1

log(xk + ck)ωk

)
.

Hence hω(x) =
∑d
k=1 log(xk + ck)ωk = ⟨log(x + c),ω⟩2. Eventually the

natural Haar measure on a product group is the product measure.
e. g. for X = Rd, the Haar measure on Rd is the d-th power of the
Lebesgue measure on R. Table 3.5 provides an explicit list of pairings
for various groups based on Rd or its subsets. The interested reader
can refer to Folland [65] for a more detailed construction of LCA,
Pontryagin duality and Fourier Transforms on LCA.

Table 3.5: Classification of Fourier Transforms in terms of their domain and
transform domain.

X = X̂ ∼= Operation Pairing

Rd Rd + (x,ω) = exp (i⟨x,ω⟩2)
Rd∗,+ Rd · (x,ω) = exp (i⟨log(x),ω⟩2)

(−c; +∞)d Rd ⊙ (x,ω) = exp (i⟨log(x + c),ω⟩2)

3.2.5 The Fourier Transform

For a function with values in a separable Hilbert space, f ∈
L1(X,Haar;Y), we denote F [f] its Fourier Transform (FT) which is
defined by

∀ω ∈ X̂, F [f] (ω) =
∫

X

(x,ω)f(x)dHaar(x).

The Inverse Fourier Transform (IFT) of a function g ∈ L1(X̂, Ĥaar;Y)
is noted F−1 [g] defined by

∀x ∈ X, F−1 [g] (x) =
∫

X̂

(x,ω)g(ω)dĤaar(ω),

We also define the flip operator R by (Rf)(x) := f
(
x−1
)
.
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Theorem 3.1 (Fourier inversion (Folland [65])). Given a measure
Haar defined on X, there exists a unique suitably normalized dual measure
Ĥaar on X̂ such that for all f ∈ L1(X,Haar;Y) and if F [f] ∈ L1(X̂, Ĥaar;Y)
we have

(3.7)f(x) =
∫

X̂

(x,ω)F [f] (ω)dĤaar(ω), for Haar-almost all x ∈ X.

i. e. such that (RFF [f])(x) = F−1F [f] (x) = f(x) for Haar-almost all x ∈ X.
If f is continuous this relation holds for all x ∈ X.

Proof The proof is based on Bochner’s theorem and the Pontryagin duality
theorem. We refer the reader to Folland [65, theorem 4.22 page 105 and
theorem 4.33 page 111] for the full proof. □

Thus when a Haar measure Haar on X is given, the measure on X̂ that
makes Theorem 3.1 true is called the dual measure of Haar, noted
Ĥaar. Let c ∈ R∗ If cHaar is the measure on X, then c−1Ĥaar is the
dual measure on X̂. Hence one must replace Ĥaar by c−1Ĥaar in the
inversion formula to compensate. Therefore, we always take the Haar
measure Ĥaar on X̂ to be the dual of the given Haar measure Haar on X.
Whenever Ĥaar = Haar we say that the Haar measure is self-dual.
Moreover if Ĥaar is normalized, the Fourier Transform on

L1(X,Haar;Y) ∩ L2(X,Haar;Y)

extends uniquely to a unitary isomorphism from L2(X,Haar,Y) onto
L2(X̂, Ĥaar;Y) (Plancherel theorem). For the familiar case of a scalar-
valued function f on the LCA group (Rd,+), we have for all ω ∈ X̂ =
Rd

(3.8)
F [f] (ω) =

∫

X

(x,ω)f(x)dHaar(x)

=
∫

Rd

exp(−i⟨x,ω⟩2)f(x)dLeb(x),

the Haar measure being here the Lebesgue measure. Notice that the
normalization factor of Ĥaar on X̂ depends on the measure Haar on
X and the duality pairing. For instance let X = (Rd,+). In Example 3.1
we showed that X̂ ∼= Rd with pairing (x,ω) = exp(i⟨x,ω⟩2), for all
x ∈ X and ω ∈ X̂. If one endows X with the Lebesgue measure as
the Haar measure, the Haar measure on the dual is defined for all
Z ∈ B(Rd) by

Haar(Z) = Leb(Z), and Ĥaar(Z) =
1

(2π)d
Leb(Z),

in order to have F−1F [f] = f. If one usess the cleaner equivalent pair-
ing (x,ω) = exp(2iπ⟨x,ω⟩2) rather than (x,ω) = exp(i⟨x,ω⟩2), then

Ĥaar(Z) = Leb(Z).
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The pairing (x,ω) = exp(2iπ⟨x,ω⟩2) looks more attractive in theory
since it limits the messy factor outside the integral sign and makes
the Haar measure self-dual. However it is of lesser use in practice
since it yields additional unnecessary computation when evaluating
the pairing. Hence for symmetry reason on (Rd,+) and reduce com-
putations we settle with the Haar measure on Rd groups (additive
and multiplicative) defined as

Ĥaar(Z) = Haar(Z) =
1

√
2π
d

Leb(Z).

We conclude this subsection by recalling the injectivity property of
the Fourier Transform.

Corollary 3.1 (Fourier Transform injectivity (Folland [65])). Given
µ and ν two measures, if F [µ] = F [ν] then µ = ν. Moreover given two
functions f and g ∈ L1(X,Haar;Y) if F [f] = F [g] then f = g

Proof We refer the reader to the proof of Folland [65, corollary 4.34
page 112]. □

3.2.6 Representations of Groups

Representations of groups are convenient tools that allows group--
theoretic problems to be replaced by linear algebra problems. Let
Gl(H) be the group of continuous isomorphism of H, a Hilbert space,
onto itself. A representation π of a LCA group X in H is an homo-
morphism π:

π : X→ Gl(H)

for which all the maps X → H defined for all v ∈ H as x 7→ π(x)v,
are continuous. The space H in which the representation takes place
is called the representation space of π. A representation π of a group
X in a vector space H defines an action defined for all x ∈ X by

πx :







H → H

v 7→ π(x)v.

If for all x ∈ X, π(x) is a unitary operator, then the group repre-
sentation π is said to be unitary (i. e. ∀x ∈ X, π(x) is isometric and
surjective). Thus π is unitary when for all x ∈ X

π(x)∗ = π(x)−1 = π
(
x−1) .

The representation π of X in H is said to be irreducible when
H ̸= { 0 } and { 0 } and H are the only two stable invariant subspaces
under all operators π(x) for all x ∈ X. i. e. for all U ⊂ H, U ̸= { 0 },

{ π(x)v | ∀x ∈ X, ∀v ∈ U } ̸= U.
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To study LCA groups we also introduce the left regular represen-
tation of X acting on a Hilbert space of function H ⊂ F(X;Y). For all
x, z ∈ X and for all f ∈ H,

(λzf)(x) : = f(z−1
⋆ x).

The representation λ of X defines an action λx on H which is the
translation of f(x) by z−1. With this definition one has for all x, z ∈ X,
λxλz = λx−1

⋆z. Such representations are faithful, that is λx = 1 ⇐⇒
x = e.

3.3 on operator-valued kernels

We now introduce the theory of Vector Valued Reproducing Kernel
Hilbert Space (VV-RKHS) that provides a flexible framework to study
and learn vector-valued functions. The fundations of the general the-
ory of scalar kernels is mostly due to Aronszajn [9] and provides a
unifying point of view for the study of an important class of Hilbert
spaces of real or complex valued functions. It has been first applied
in the theory of partial differential equation. The theory of Operator-
Valued Kernels (OVKs) which extends the scalar-valued kernel was
first developped by Pedrick [133] in his Ph. D Thesis. Since then it
has been successfully applied to machine learning by many authors.
In particular we introduce the notion of Operator-Valued Kernels fol-
lowing the propositions of Carmeli, De Vito, and Toigo [40], Carmeli
et al. [41], and Micchelli and Pontil [113].

3.3.1 Definitions and properties

In machine learning the goal is often to find a function f belonging to
a class (space) of functions F(X;Y) that minimizes a criterion called
the true risk (see Section 2.1). The class of functions we consider are
functions living in a Hilbert space H ⊂ F(X;Y). The completeness
allows to consider sequences of functions fn ∈ H where the limit
fn → f is in H. Moreover the existence of an inner product gives rise
to a norm and also makes H a metric space.

Among all these functions f ∈ H, we consider a subset of functions
f ∈ HK ⊂ H such that the evaluation map evx : f 7→ f(x) is bounded
for all x. i. e. such that ∥evx∥HK

⩽ Cx ∈ R for all x. For scalar valued
kernel the evaluation map is a linear functional. Thus by Riesz’s rep-
resentation theorem there is an isomorphism between evaluating a
function at a point and an inner product: f(x) = evxf = ⟨Kx, f⟩K. From
this we deduce the reproducing property K(x, z) = ⟨Kx, Kz⟩K which is
the cornerstone of many proofs in machine learning and functional
analysis. When dealing with vector-valued functions, the evaluation
map evx is no longer a linear functional, since it is vector-valued.
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However, inspired by the theory of scalar valued kernel, many au-
thors showed that if the evaluation map of functions with values in
a Hilbert space Y is bounded, a similar reproducing property can be
obtained; namely ⟨y ′, K(x, z)y⟩ = ⟨Kxy ′, Kzy⟩K for all y, y ′ ∈ Y. This
motivates the following definition of a Vector Valued Reproducing
Kernel Hilbert Space (VV-RKHS).

Definition 3.5 (Vector Valued Reproducing Kernel Hilbert Spa-
ce [40, 113]). Let Y be a (real or complex) Hilbert space. A Vector Valued
Reproducing Kernel Hilbert Space on a locally compact second countable
topological space X is a Hilbert space H such that

1. the elements of H are functions from X to Y (i. e. H ⊂ F(X,Y));

2. for all x ∈ X, there exists a positive constant Cx ∈ R such that for all
f ∈ H

(3.9)∥f(x)∥Y ⩽ Cx∥f∥H.

Throughout this section we show that a VV-RKHS defines a unique
positive-definite function called Operator-Valued Kernel (OVK) and
conversely an OVK uniquely defines a VV-RKHS. The bijection be-
tween OVKs and VV-RKHSs has been first proved by Senkene and
Tempel’man [152] in 1973. In this introduction to OVKs we follow the
definitions and most recent proofs of Carmeli et al. [41].

Definition 3.6 (Positive-definite Operator-Valued Kernel acting on
a complex Hilbert space). Given X a locally compact second countable
topological space and Y a complex Hilbert Space, a map K : X×X → L(Y)
is called a positive-definite Operator-Valued Kernel if

(3.10)
N∑

i,j =1

⟨K(xi, xj)yj, yi⟩Y ⩾ 0,

for all N ∈N, for all sequences of points (xi)Ni=1 in XN and all sequences of
points (yi)Ni=1 in YN.

If Y is a real Hilbert space, a positive-definite Operator-Valued Kernel
is always self-adjoint, i. e. K(x, z) = K(z, x)∗. This gives rise to the fol-
lowing definition of positive-definite Operator-Valued Kernel acting
on a real Hilbert space.

Definition 3.7 (Positive-definite Operator-Valued Kernel acting on
a real Hilbert space). Given X a locally compact second countable topo-
logical space and Y a real Hilbert Space, a map K : X×X → L(Y) is called
a positive-definite Operator-Valued Kernel kernel if

(3.11)K(x, z) = K(z, x)∗
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and

(3.12)
N∑

i,j =1

⟨K(xi, xj)yj, yi⟩Y ⩾ 0,

for all N ∈ N, for all sequences of points (xi)Ni=1 in XN, and all sequences
of points (yi)Ni=1 in YN.

As in the scalar case any Vector Valued Reproducing Kernel Hil-
bert Space defines a unique positive-definite Operator-Valued Kernel
and conversely a positive-definite Operator-Valued Kernel defines a
unique Vector Valued Reproducing Kernel Hilbert Space.

Proposition 3.2 (Carmeli, De Vito, and Toigo [40]). Given a Vector
Valued Reproducing Kernel Hilbert Space there is a unique positive-definite
Operator-Valued Kernel K : X×X→ L(Y).

Proof Given x ∈ X, Equation 3.9 ensures that the evaluation map at x
defined as

evx :







H→ Y

f 7→ f(x)

is a bounded operator and the Operator-Valued Kernel K associated to H is
defined as

K : X× X→ L(Y) K(x, z) = evxev∗z.

Since for all (xi)Ni=1 in XN and all (yi)Ni=1 in YN,

N∑

i,j =1

⟨K(xi, xj)yj, yi⟩Y =
N∑

i,j=1

⟨ev∗xjyj, ev∗xiyi⟩Y

=

⟨
N∑

i=1

ev∗xiyi,
N∑

i=1

ev∗xiyi

⟩

Y

=

∥∥∥∥∥
N∑

i=1

ev∗xiyi

∥∥∥∥∥
Y

⩾ 0,

the map K is positive-definite. □

Given x ∈ X, Kx : Y → F(X;Y) denotes the linear operator whose
action on a vector y is the function Kxy ∈ F(X;Y) defined for all
z ∈ X by Kx = ev∗

x. As a consequence we have that

(3.13)K(x, z)y = evxev∗
zy = K∗

xKzy = (Kzy)(x).
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Some direct consequences follow from the definition.

1. The kernel reproduces the value of a function f ∈ H at a point
x ∈ X since for all y ∈ Y and x ∈ X, ev∗

xy = Kxy = K(·, x)y such
that

(3.14)⟨f(x), y⟩Y = ⟨f, K(·, x)y⟩H = ⟨K∗
xf, y⟩Y.

2. The set {Kxy | ∀x ∈ X, ∀y ∈ Y } is total in H. Namely,

(∪

x∈X

Im Kx

)⊥

= { 0 } .

If f ∈ (∪x∈XIm Kx)⊥, then for all x ∈ X, f ∈ (Im Kx)⊥ = Ker K∗
x,

hence f(x) = 0 for all x ∈ X that is f = 0.

3. Finally for all x ∈ X and all f ∈ H, ∥f(x)∥Y ⩽
√
∥K(x, x)∥Y,Y∥f∥H.

This comes from the fact that ∥Kx∥Y,H = ∥K∗
x∥H,Y =√

∥K(x, x)∥Y,Y and the operator norm is sub-multiplicative.

Additionally given a positive-definite Operator-Valued Kernel, it de-
fines a unique VV-RKHS.

Proposition 3.3 (Carmeli, De Vito, and Toigo [40]). Given a positive-
definite Operator-Valued Kernel K : X×X→ L(Y), there is a unique Vector
Valued Reproducing Kernel Hilbert Space H on X with reproducing kernel
K.

Proof Let Kx,y = K(·, x)y ∈ F(X;Y) and let

H0 = span { Kx,y | ∀x ∈ X, ∀y ∈ Y } ⊂ F(X;Y).

If f =
∑N
i=1 ciKxi,yi and g =

∑N
i=1 diKzi,y ′

i
are elements of H0 we have

that

N∑

j =1

dj⟨f(zj), y ′
j⟩Y =

N∑

i,j =1

cidj⟨K(zj, xi)yi, y ′
j⟩Y =

N∑

i =1

ci⟨yi, g(xi)⟩Y,

such that the sesquilinear form on H0 ×H0

⟨f, g⟩H0
=

N∑

i,j=1

cidj⟨K(zj, xi)yi, y ′
j⟩Y

is well defined. Since K is a positive-definite Operator-Valued Kernel, we
have that ⟨f, f⟩H0

⩾ 0 for all f ∈ H0. Because the sesquilinear form is
positive if Y is a complex Hilbert space, it is also Hermitian. If Y is a real
Hilbert space, by assumption K(x, z) = K(z, x)∗, making ⟨·, ·⟩H0

an Hermi-
tian sesquilinear form. Choosing g = Kx,y in the above definition yields for
all x ∈ X, all f ∈ H0 and all y ∈ Y

⟨f, Kx,y⟩H0
= ⟨f(x), y⟩Y.
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Besides if f ∈ H0 for all unitary vector y ∈ Y, by the Cauchy-Schwartz
inequality we have

|⟨f(x), y⟩Y| =
∣∣∣⟨f, Kx,y⟩H0

∣∣∣ ⩽
√
⟨f, f⟩H0

√
⟨Kx,y, Kx,y⟩Y

=
√
⟨f, f⟩H0

√
⟨K(x, x)y, y⟩Y ⩽

√
⟨f, f⟩H0

√
∥K(x, x)∥Y,Y,

which implies that

∥f(x)∥Y ⩽ ∥f∥H0

√
∥K(x, x)∥Y,Y

Therefore if ⟨f, f⟩H0
= 0 then f = 0. Eventually we deduce that ⟨·, ·⟩H0

is an inner product on H0. Hence H0 is a pre-Hilbert space. To make it a
(complete) Hilbert space we need to take the completion of this space. Let H
be the completion of H0. Moreover let Kx : Y → H where Kxy = Kx,y. By
construction Kx is bounded. Let W : H → F(X;Y) where (Wf)(x) = K∗

xf.
The operator W is injective. Indeed if Wf = 0 then for all x ∈ X, f ∈
Ker K∗

x = (Im f)⊥. Since the set ∪x∈XIm Kx = {Kxy | ∀x ∈ X, ∀y ∈ Y }

generates by definition H0, we have f = 0. Besides, as W is injective, we
have for all f1, f2 ∈ H0 (Wf1)(x) = (Wf2)(x) =⇒ f1(x) = f2(x) pointwise
in H so that we can identify H with a subspace of F(X;Y). Hence K∗

xf =
(Wf)(x) = f(x) = evxf, showing that H is a Vector Valued Reproducing
Kernel Hilbert Space with reproducing kernel

KH(x, z)y = (ev∗zy)(x) = K(x, z)y.

The uniqueness of H comes from the uniqueness of the completion of H0 up
to an isometry. □

The above theorem also holds if Y is a real Hilbert space provided we
add the assumption that K(x, z) is self-adjoint i. e. K(x, z) = K(z, x)∗ for
all x, z ∈ X. Then K(x, z) still defines a valid symmetric bilinear form
on Y when Y is a real Hilbert space.

Since an positive-definite Operator-Valued Kernel defines a unique
Vector Valued Reproducing Kernel Hilbert Space (VV-RKHS) and con-
versely a VV-RKHS defines a unique Operator-Valued Kernel, we
denotes the Hilbert space H endowed with the scalar product ⟨·, ·⟩
respectively HK and ⟨·, ·⟩K. From now we refer to positive-definite
Operator-Valued Kernels or reproducing Operator-Valued Kernels as
Operator-Valued Kernels whether they act on complex or real Hilbert
spaces. As a consequence, given K an Operator-Valued Kernel, define
Kx = K(·, x) we have

(3.15a)K(x, z) = K∗
xKz ∀x, z ∈ X ,

(3.15b)HK = span { Kxy | ∀x ∈ X, ∀y ∈ Y } .

Where span is the closed span of a given set. Another way to describe
functions of HK consists in using a suitable feature map.
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Proposition 3.4 (Feature Operator (Carmeli et al. [41])). Let H be
any Hilbert space and Φ : X → L(Y;H), with Φx := Φ(x). Then the
operator W : H → F(X;Y) defined for all g ∈ H, and for all x ∈ X by
(Wg)(x) = Φ∗

xg is a partial isometry from H onto the VV-RKHS HK with
reproducing kernel

K(x, z) = Φ∗
xΦz, ∀x, z ∈ X.

W∗W is the orthogonal projection onto

(Ker W) ⊥ = span {Φxy | ∀x ∈ X, ∀y ∈ Y } .

Then
(3.16)∥f∥K = inf { ∥g∥H | ∀g ∈ H, Wg = f } .

Proof The operator (Wg)(x) = Φ(x)∗g ensures that the nullspace of W is
N = Ker W = ∩x∈XKer Φ(x)∗. Since Φ(x) is bounded, Φ(x) is a contin-
uous operator, thus for all x ∈ X, Ker Φ(x)∗ is closed so that N is closed.
Moreover,

N = Ker W =
∩

x ∈X

Ker Φ(x)∗ =
∩

x ∈X

(Im Φ(x))⊥ =

(∪

x∈X

Im Φ(x)

)⊥

So that N⊥ = ∪x∈XIm Φ(x) and the restriction of W to N⊥ is injective.

Let HK = Im W be a vector space. Define the unique inner product on
HK such that W becomes a partial isometry from H onto HK. We call this
new partial isometry (again) W. We show that HK is a Vector Valued Re-
producing Kernel Hilbert Space. Since W∗W is a projection on N⊥, given
f ∈ HK, where f = Wg and g ∈ N⊥ we have for all x ∈ X

f(x) = (Wg)(x) = Φ(x)∗g = Φ(x)∗W∗Wg = (WΦ(x))∗f.

Since Ker W is closed, W is bounded, and Φ(x) is bounded by definition
such that the evaluation map

evx = (WΦ(x))∗

is bounded, thus continuous. Then the reproducing kernel is given for all x,
z ∈ X by

K(x, z) = evxev∗z = (WΦ(x))∗(WΦ(z)) =Φ(x)∗W∗WΦ(z) =Φ(x)∗Φ(z),

SinceW∗W is the identity on Im Φ(z). Hence HK is a VV-RKHS (see proof
of Proposition 3.2). □

We callΦ a feature map,W a feature operator and H a feature space. Since
W is an isometry from (Ker W)⊥ onto HK, the map W allows us to
identify HK with the closed subspace (Ker W)⊥ of H. Notice that W
is a partial isometry, meaning that there can exist multiple functions
g ∈ H, the redescription space, such thatWg = fwhere f is a function
of the VV-RKHS HK. However Equation 3.16 shows that there is a
unique function g ∈ H such that Wg = f, and ∥g∥H = ∥f∥HK

= ∥f∥K.
Among all functions g ∈ H such that Wg = f, the only one making
the norm in the VV-RKHS and the redescription space is the one with
minimal norm.
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In this work we mainly focus on the class of kernels inducing a
VV-RKHS of continuous functions. Such kernels are named Y-Mercer
kernels.

Definition 3.8 (Y-Mercer kernel (Carmeli et al. [41])). A reproducing
kernel K : X×X → L(Y) is called Y-Mercer kernel if HK is a subspace of
C(X;Y).

The following proposition characterizes Y-Mercer kernel in terms
of the properties of a kernel rather than properties of the VV-RKHS.

Proposition 3.5 (Characterization of Y-Mercer kernel (Carmeli et
al. [41])). Let K be a reproducing kernel. The kernel K is Mercer if and only
if the function x 7→ ∥K(x, x)∥Y,Y is locally bounded and for all x ∈ X and
all y ∈ Y, Kxy ∈ C(X;Y).

Proof If HK ⊂ C(X;Y), then for all x ∈ X and all y ∈ Y, Kxy is
an element of C(X;Y) (see Equation 3.15b). In addition for all f ∈ HK,
∥K∗
xf∥Y=∥f(x)∥Y ⩽ ∥f∥∞. Hence there exists a constant M ∈ R+ such

that for all x ∈ X, ∥Kx∥Y,K ⩽ M. Therefore from Equation 3.15a, for
all x ∈ X, ∥K(x, x)∥Y,Y = ∥K∗

x∥2
K,Y ⩽ M2. Conversely assume that the

function x 7→ ∥K(x, x)∥Y,Y is locally bounded and Kxy ∈ C(X;Y). For all
f ∈ HK and all x ∈ X,

∥f(x)∥Y = ∥f∥K
√
∥K(x, x)∥Y,Y ⩽M∥f∥K.

Thus convergence in HK implies uniform convergence. Since by assumption

{ Kxt | ∀x ∈ X, ∀y ∈ Y } ⊂ C(X;Y),

then the Vector Valued Reproducing Kernel Hilbert Space

HK = span { Kxy | ∀x ∈ X, ∀y ∈ Y } ⊂ C

is also a subset of C(X;Y) by the uniform convergence theorem. □

The next lemma shows that when X and Y are separable and HK
is a space of continuous functions then HK is separable. It is worth
mentioning that when the Hilbert space HK is separable, it admits a
countable orthonormal basis.

Lemma 3.1 (Separable VV-RKHS (Carmeli, De Vito, and Toigo
[40])). Let HK be a Vector Valued Reproducing Kernel Hilbert Space of
continuous function f : X→ Y. If X and Y are separable then HK is separa-
ble.

Proof The separability of X ensure that there exist a countable dense subset
X0 ⊆ X. Since Y is separable,

S =
∪

x∈X0

Im Kx = {Kxy | ∀x ∈ X0, ∀y ∈ Y } ⊂ HK

is separable too. We show that S is total in HK so that HK is separable. If
for all x ∈ X0, f ∈ S⊥, then f ∈ Ker K∗

x. Namely f(x) = evxf = 0. Since f is
continuous and X0 is dense in X, for all x ∈ X, f(x) = 0 thus f = 0. □
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Since a Y-Mercer kernel K defines a VV-RKHS HK of continuous func-
tions, HK is separable when X and Y are separable.

Proposition 3.6 (Separable VV-RKHS for Y-Mercer ker-
nel (Carmeli, De Vito, and Toigo [40])). Let K : X × X → Y be
a reproducing kernel where X and Y are separable spaces. If K is a Y-Mercer
kernel then HK is separable.

Proof From Proposition 3.5 K is a Y-Mercer kernel if and only if HK ⊂
C(X;Y). Applying Lemma 3.1 of Carmeli, De Vito, and Toigo [40], we have
that HK is separable. □

Thus since HK is also a Hilbert space and is separable it is second
countable (i. e. it has a countable orthonormal basis). An important
consequence is that if K is a Y-Mercer and X and Y are separable then
HK is isometrically isomorphic to ℓ2.

3.3.2 Shift-Invariant OVK on LCA groups

The main subjects of interest of Chapter 4 are shift-invariant Opera-
tor-Valued Kernel. When referring to a shift-invariant OVK K : X×
X → L(Y) we assume that X is a locally compact second countable
topological group with identity e.

Definition 3.9 (Shift-invariant OVK). A reproducing Operator-Valued
Kernel K : X×X→ L(Y) is called shift-invariant4 if for all x, z, t ∈ X, 4 Also referred to as

translation-
invariant
OVK.

(3.17)K(x ⋆ t, z ⋆ t) = K(x, z).

A shift-invariant kernel can be characterized by a function of one vari-
able Ke called the signature of K. Here e denotes the neutral element
of the LCA group X endowed with the binary group operation ⋆.

We recall the definition of left regular representation of X acting
on HK which is useful to study LCA groups. For all x, z ∈ X and for
all f ∈ HK,

(λzf)(x)G : = f(z−1
⋆ x).

A group representation λz describes the group by making it act on a
vector space (here HK) in a linear manner. In other words, the group
representation let us see a group as a linear operator which are well
studied mathematical objects.

Proposition 3.7 (Kernel signature (Carmeli et al. [41])). Let K : X×
X→ L(Y) be a reproducing kernel. The following conditions are equivalents.

1. K is a positive-definite shift-invariant Operator-Valued Kernel.

2. There is a positive-definite function Ke : X → L(Y) such that
K(x, z) = Ke(z−1

⋆ x).
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If one of the above conditions is satisfied, then the representation λ leaves
invariant HK, its action on HK is unitary and

(3.18a)K(x, z) = K∗
eλx−1

⋆zKe, ∀(x, z) ∈ X2,

(3.18b)∥K(x, x)∥Y,Y = ∥Ke(e)∥Y,Y, ∀x ∈ X.

Proof Assume Proposition 3.7 item 1 holds true. Given x, z ∈ X, Equa-
tion 3.13 and Equation 3.17 yields

Ke(z−1
⋆ x) = K(z−1

⋆ x, e) = K(x, z).

Since K is a reproducing kernel, Ke is of completely positive type, so that
Proposition 3.7 item 2 holds true. Besides if Proposition 3.7 item 2 holds true
obviously the definition of a reproducing kernel (definition 3.6) is fulfilled so
that Proposition 3.7 item 1 holds true.

Suppose that K is a shift-invariant reproducing kernel. Given t ∈ X and
y ∈ Y, for all x, z ∈ X,

(λxKty)(z) = (Kty)(x−1
⋆ z) = K(x−1

⋆ z, t) = K(z, x ⋆ t) = (Kx⋆ty)z,

that is λxKt = Kx⋆t. Besides for all y, y ′ ∈ Y and all x, z, t, t ′ ∈ X,

⟨λxKty, λxKt ′y ′⟩K = ⟨Kx⋆ty, Kx⋆t ′y ′⟩K = ⟨K(x ⋆ t ′, x ⋆ t)y, y ′⟩Y,Y
= ⟨K(t ′, t)y, y ′⟩Y,Y = ⟨Kty, Kt ′y ′⟩K

This means that λ leaves the set {Kxy | ∀x ∈ X, ∀y ∈ Y } invariant. Since

{ Kxy | ∀x ∈ X, ∀y ∈ Y }

is total in HK (see Equation 3.15b), λ is surjective and because it also leaves
the inner product invariant, the first two claims follow. □

The notation Ke for the function of completely positive type associ-
ated with the reproducing kernel K is consistent with the definition
given by Equation 3.13 since for all x ∈ X and all y ∈ Y

(Key)(x) = Ke(x)y.

Moreover notice that shift-invariant Y-Mercer kernels are directly
linked to functions of positive type (see Equation 3.1), since shift-
invariant Y-Mercer kernels are nothing but functions whose signature
is of positive type (continuous positive-definite functions).

3.3.3 Examples of Operator-Valued Kernels

In this subsection we list some Operator-Valued Kernels (OVKs) that
have been used successfully in the litterature. We do not recall the
proof that the following kernels are well defined and refer the inter-
rested reader to the respective authors original work.
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OVKs have been first introduced in Machine Learning to solve
multi-task regression problems. Multi-task regression is encountered
in many fields such as structured classification when classes belong
to a hierarchy for instance. Instead of solving independently p sin-
gle output regression task, one would like to take advantage of the
relationships between output variables when learning and making a
decision.

Proposition 3.8 (Decomposable kernel (Micchelli and Pontil
[113])). Let Γ be a non-negative operator of L+(Y). K is said to be a de-
composable kernel5 if for all (x, z) ∈ X2, 5 Some authors also

refer to as separable
kernels.K(x, z) : = k(x, z)Γ,

where k is a scalar kernel.

When Y = Rp, the operator Γ can be represented by a matrix which
can be interpreted as encoding the relationships between the outputs
coordinates. If a graph coding for the proximity between tasks is
known, then it is shown in Álvarez, Rosasco, and Lawrence [5], Bal-
dassarre et al. [14], and Evgeniou, Micchelli, and Pontil [59] that Γ
can be chosen equal to the pseudo inverse L† of the graph Laplacian
such that the norm in HK is a graph-regularizing penalty for the out-
puts (tasks). When no prior knowledge is available, Γ can be learned
with one of the algorithms proposed in the literature [54, 101, 158].
Another interesting property of the decomposable kernel is its uni-
versality (a kernel which may approximate an arbitrary continuous
target function uniformly on any compact subset of the input space).
A reproducing kernel K is said universal if the associated VV-RKHS
HK is dense in the space of continuous functions C(X,Y). The condi-
tions for a kernel to be universal have been discussed in Caponnetto
et al. [39] and Carmeli et al. [41]. In particular they show that a de-
composable kernel is universal provided that the scalar kernel k is
universal and the operator Γ is injective. Given (ek)pk=1 a basis of Y,
we recall here how the matrix Γ acts as a regularizer between the
components of the outputs fk = ⟨f(·), ek⟩Y of a function f ∈ HK.

Proposition 3.9 (Kernels and Regularizers (Álvarez, Rosasco, and
Lawrence [5])). Let K(x, z) := k(x, z)Γ for all x, z ∈ X be a decomposable
kernel where Γ is a matrix of size p× p. Then for all f ∈ HK,

(3.19)∥f∥K =
p
∑

i,j=1

(
Γ†
)
ij
⟨fi, fj⟩k

where fi = ⟨f(·), ei⟩Y (resp fj = ⟨f(·), ej⟩Y), denotes the i-th (resp j-th)
component of f(·).

We prove a generalized version of Proposition 3.9 to any Operator-Va-
lued Kernel in Subsection 4.3.4.
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Figure 3.2: Synthetic 2D curl-free field .

Curl-free and divergence-free kernels provide an interesting appli-
cation of operator-valued kernels [15, 109, 115] to vector field learning,
for which input and output spaces have the same dimensions (d = p).
Applications cover shape deformation analysis [115] and magnetic
fields approximations [183]. These kernels discussed in [68] allow en-
coding input-dependent similarities between vector-fields. An illus-
tration of a synthetic 2D curl-free and divergence free fields are given
respectively in Figure 3.2 and Figure 3.3. To obain the curl-free field
we took the gradient of a mixture of five two dimensional Gaussians
(since the gradient of a potential is always curl-free). We generated the
divergence-free field by taking the orthogonal of the curl-free field.

Proposition 3.10 (Curl-free and Div-free kernel (Macedo and Cas-
tro [109])). Assume X = (Rd,+) and Y = Rp with d = p. The divergence-
free kernel is defined as

Kdiv(x, z) = Kdiv0 (δ) = (∇∇T − ∆I)k0(δ)

and the curl-free kernel as

Kcurl(x, z) = Kcurl0 (δ) = −∇∇Tk0(δ),

where ∇ is the gradient operator6 , ∇∇T is the Hessian operator and ∆ is6 See
Subsection 6.2.1 for

a formal definition of
the operator ∇.

the Laplacian operator.

Although taken separately these kernels are not universal, a convex
combination of the curl-free and divergence-free kernels allows to



3.3 on operator-valued kernels 47

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Figure 3.3: Synthetic 2D divergence-free field .

learn any vector field that satisfies the Helmholtz decomposition the-
orem [15, 109]. The next class of kernels we present are transformable
kernels, whose action on each coordinate of an output vector is deter-
mined by “views” of an input data.

Proposition 3.11 (Transformable kernel (Caponnetto et al. [39])).
Let k : X ′ ×X ′ → R be a scalar-valued kernels and ψ1, . . . , ψp be a collec-
tion functions from X→ X ′. Then the transformable kernel is defined for all
(i, j) ∈ (N∗

p)2 as

K(x, z)ij = ⟨ei, K(x, z)ej⟩Y = k(ψi(x), ψj(z)),

for all x, z ∈ X.

Transformable kernels have been successfully used for network infer-
ence from time series by means of autoregressive models (Lim et al.
[102, 103]), and by Vazquez and Walter [179] for cokriging the multi-
output version of kriging7 , which takes into account the correlations 7 Gaussian process

regression.between the outputs.

We also introduce an example of Operator-Valued Kernel acting
on a function space which found applications in Kadri et al. [86].

Proposition 3.12 (Hilbert Schmidt Integral kernel (Kadri et al.
[86])). Let kX : X× X → R be a scalar valued kernel acting on the in-
puts and kT : T × T → R be a scalar valued kernel acting on the outputs.
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Define the integral operator LTg =
∫

Y kT(·, t)g(t)dµ(t). Then the Hilbert
Schmidt Integral kernel is defined as

K :







X× X → L(Y)

(x, z) 7→ kX(x, z)LT.

This kernel is useful to learn functions f that are function valued. In
other words, f ∈ F(X;F(T; R)) and the Operator-Valued Kernel K act
on a function g in the following way.

(3.20)K(x, z)g = kX(x, z)
∫

Y

kY(·, t)g(t)dµ(t).

In Kadri et al. [86], the authors studied the case where T = R with
kY(t, s) = exp(−|t− s|) and applied it to speech inversion (Which and
how Human articulators are activated from an audible speech signal).
Notice that the Hilbert Schmidt integral kernel is a particular case of
decomposable kernel, where Y = F(T; R).

3.3.4 Some use of Operator-valued kernels

We give here a non exhaustive list of works concerning Operator-Va-
lued Kernels. A good review of Operator-Valued Kernels has been
conducted in Álvarez, Rosasco, and Lawrence [5]. For a theoretical
introduction to OVKs the interested reader can refer to the papers
Caponnetto et al. [39], Carmeli, De Vito, and Toigo [40], and Carmeli
et al. [41]. Generalization bounds for OVK have been studied in Kadri
et al. [86], Maurer [112], Sangnier, Fercoq, and Buc [146], and Sind-
hwani, Minh, and Lozano [158].

Operator-valued Kernel Regression has first been studied in the
context of Ridge Regression and Multi-task learning by Micchelli and
Pontil [113].

Baldassarre et al. [15] and Macedo and Castro [109] showed the
interest of spectral algorithms in Ridge regression and introduced
vector field learning as a new multiple output task in Machine Learn-
ing community. Wahlström et al. [183] applied vector field learning
with OVK-based Gaussian processes to the reconstruction of mag-
netic fields (which are curl-free).

Multi-task regression [114] and structured multi-class classifica-
tion [54, 119, 123] are undoubtedly the first target applications for
working in Vector Valued Reproducing Kernel Hilbert Space. Oper-
ator-Valued Kernels have been shown useful to provide a general
framework for structured output prediction [34, 35] with a link to
Output Kernel Regression [83]. Beyond structured classification, other



3.3 on operator-valued kernels 49

various applications such as link prediction, drug activity prediction
or recently metabolite identification [36] and image colorization [76]
have been developed.

The works of Kadri et al. [84] and Kadri et al. [86] have been
the precursors of regression with functional values, opening a new
avenue of applications. Appropriate algorithms devoted to on-line
learning have been also derived by Audiffren and Kadri [10].

Kernel learning was addressed at least in two ways: first with us-
ing Multiple Kernel Learning in Kadri et al. [85] and second, using
various penalties, smooth ones in Ciliberto et al. [43] and Dinuzzo
et al. [54] for decomposable kernels and non smooth ones in Lim et
al. [103] using proximal methods in the case of decomposable and
transformable kernels.

Dynamical modeling was tackled in the context of multivariate
time series modelling in Lim et al. [102, 103] and Sindhwani, Minh,
and Lozano [158] and as a generalization of Recursive Least Square
Algorithm in Amblard and Kadri [6].

Sangnier, Fercoq, and Buc [146] recently explored the minimiza-
tion of a pinball loss under regularizing constraints induced by a
well chosen decomposable kernel in order to handle joint quantile
regression.

q
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4
O P E R AT O R - VA L U E D R A N D O M F O U R I E R
F E AT U R E S

In this first contribution chapter we present a generalization of the
RFF framework introduced in Chapter 2 [29]. This is based on an
operator-valued Bochner theorem proposed by Carmeli et al. [41]. We
use this theorem to construct an Operator-valued Random Fourier
Feature (ORFF) from an OVK. Conversely we also show that it is
possible to construct an ORFF from the regularization properties it
induces rather than from an OVK. We give various examples of ORFF
maps such as an ORFF map for the decomposable kernel, the curl-free
kernel and the divergence-free kernel.
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4.1 motivation

Random Fourier Features have been proved useful to implement ef-
ficiently kernel methods in the scalar case. In this work, we propose
to extend Random Fourier Feature methodology in order to approxi-
mate OVKs. As in the scalar case, we are mainly interested on explicit
approximated feature maps because they open the door to learning
linear models. Our final goal is to come up with the definition of
Φ̃ : X → L(Y,H) for some Hilbert spaces Y and H, a feature map of
some approximation K̃ of a given OVK, K. This chapter is devoted to
the construction of these approximations based on Random Fourier
Feature principles. It is followed by a non asymptotical study of the
error of approximation (Chapter 5) and the development of learning
tools based on Operator Random Fourier Feature maps with practical
and theoretical insights.

We present in this chapter a construction methodology devoted
to shift-invariant Y-Mercer operator-valued kernels defined on any
Locally Compact Abelian (LCA) group, noted (X, ⋆), for some opera-
tion noted ⋆. This allows us to use the general context of Pontryagin
duality for Fourier Transform of functions on LCA groups. Build-
ing upon a generalization of the celebrated Bochner’s theorem for
operator-valued measures, an operator-valued kernel is seen as the
Fourier Transform of an operator-valued positive measure. From that
result, we extend the principle of RFF for scalar-valued kernels and
derive a general methodology to build Operator-valued Random Fou-
rier Feature (ORFF) when operator-valued kernels are shift-invariant
according to the chosen group operation. Elements of this chapter
have been developped in Brault, Heinonen, and Buc [29].

We present a construction of feature maps called Operator-valued
Random Fourier Feature (ORFF), such that f : x 7→ Φ̃(x)∗θ is a con-
tinuous function that maps an arbitrary LCA group X as input space
to an arbitrary output Hilbert space Y. First we define a functional
Fourier feature map, and then propose a Monte-Carlo sampling from
this feature map to construct an approximation of a shift-invariant Y-
Mercer kernel. Then, we prove the convergence of the kernel approx-
imation K̃(x, z) = Φ̃(x)∗Φ̃(z) with high probability on compact subsets
of the LCA X.

4.2 theoretical study

The following proposition of Neeb [126] and Zhang, Xu, and Zhang
[193] extends Bochner’s theorem to any shift-invariant Y-Mercer ker-
nel.
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Proposition 4.1 (Operator-valued Bochner’s theorem [126, 193]). If
a function K from X×X to Y is a shift-invariant Y-Mercer kernel on X, then
there exists a unique positive operator-valued measure Q̂ : B(X) → L+(Y)
such that for all x, z ∈ X,

(4.1)K(x, z) =
∫

X̂

(x ⋆ z−1,ω)dQ̂(ω),

where Q̂ belongs to the set of all the projection-valued measures of bounded
variation on the σ-algebra of Borel subsets of X̂. Conversely, from any pos-
itive operator-valued measure M, a shift-invariant kernel K can be defined
by Equation 4.1.

Although this theorem is central to the spectral decomposition
of shift-invariant Y-Mercer OVK, the following results proved
by Carmeli et al. [41] provides more insights about this decompo-
sition that are more relevant in practice. It first gives the necessary
conditions to build shift-invariant Y-Mercer kernel with a pair (A, µ̂)
where A is an operator-valued function on X̂ and µ̂ is a real-valued
positive measure on X̂ (instead of a operator-valued measure as in
Proposition 4.1). Note that obviously such a pair is not unique and
the choice of this paper may have an impact on theoretical proper-
ties as well as practical computations. Secondly it also states that any
OVK has such a spectral decomposition when Y is finite dimensional
or X is compact.

Proposition 4.2 (Carmeli et al. [41]). Let µ̂ be a positive measure on
B(X̂) and A : X̂ → L(Y) such that ⟨A(·)y, y ′⟩ ∈ L1(X, µ̂) for all y, y ′ ∈ Y

and A(ω) ≽ 0 for µ̂-almost all ω ∈ X̂. Then, for all δ ∈ X,

(4.2)Ke(δ) =
∫

X̂

(δ,ω)A(ω)dµ̂(ω)

is the kernel signature of a shift-invariant Y-Mercer kernel K such that
K(x, z) = Ke(x⋆ z−1). The VV-RKHS HK is embed in L2(X̂, µ̂;Y ′) by means
of the feature operator

(4.3)(Wg)(x) =
∫

X̂

(x,ω)B(ω)g(ω)dµ̂(ω),

Where B(ω)B(ω)∗ = A(ω) and both integrals converge in the weak sense.
If Y is finite dimensional or X is compact, any shift-invariant kernel is of the
above form for some pair (A, µ̂).

When p = 1 one can always assume A is reduced to the scalar
1, µ̂ is still a bounded positive measure and we retrieve the Bochner
theorem applied to the scalar case (Theorem 2.3).
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Proposition 4.2 shows that a pair (A, µ̂) entirely characterizes
an OVK. Namely a given measure µ̂ and a function A such that
⟨y ′, A(.)y⟩ ∈ L1(X, µ̂) for all y, y ′ ∈ Y and A(ω) ≽ 0 for µ̂-almost
all ω, give rise to an OVK. Since (A, µ̂) determines a unique kernel
we can write H(A,µ̂) =⇒HK where K is defined as in Equation 4.2.
However the converse is not true: Given a Y-Mercer shift invariant
Operator-Valued Kernel, there exist infinitely many pairs (A, µ̂) that
characterize an OVK.

The main difference between Equation 4.1 and Equation 4.2 is that
the first one characterizes an OVK by a unique Positive Operator-Va-
lued Measure (POVM), while the second one shows that the POVM
that uniquely characterizes a Y-Mercer OVK has an operator-valued
density with respect to a scalar measure µ̂; and that this operator-
valued density is not unique.

Finally Proposition 4.2 does not provide any constructive way to
obtain the pair (A, µ̂) that characterizes an OVK. The following Sub-
section 4.2.1 is based on another proposition of Carmeli, De Vito,
and Toigo and shows that if the kernel signature Ke(δ) of an OVK
is in L1 then it is possible to construct explicitly a pair (C, Ĥaar)
from it. Additionally, we show that we can always extract a scalar-
valued probability density function from C such that we obtain a pair
(A,PrĤaar,ρ) where PrĤaar,ρ is a probability distribution absolutely con-

tinuous with respect to Ĥaar and with associated probibility density
function (p. d. f) ρ. Thus for all Z ⊂ B(X̂),

PrĤaar,ρ(Z) =
∫

Z

ρ(ω)dĤaar(ω).

When the reference measure Ĥaar is the Lebesgue measure, we note

PrĤaar,ρ = PrLeb,ρ

= Prρ.

For any function f : X× X̂× Y→ R, we also use the notation

EĤaar,ρ [f(x,ω, y)] = Eω∼PrĤaar,ρ
[f(x,ω, y)]

=
∫

X̂

f(x,ω, y)dPrĤaar,ρ(ω)

=
∫

X̂

f(x,ω, y)ρ(ω)dĤaar(ω).

where the two last equalities hold by the transfer theorem and the
fact that PrĤaar,ρ has density ρ.

4.2.1 Sufficient conditions of existence

While Proposition 4.2 gives some insights on how to build an approx-
imation of a Y-Mercer kernel, we need a theorem that provides an
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explicit construction of the pair (A,Prµ̂,ρ) from the kernel signature
Ke. Proposition 14 in Carmeli et al. [41] gives the solution, and also
provides a sufficient condition for Proposition 4.2 to apply.

Proposition 4.3 (Carmeli et al. [41]). Let K be a shift-invariant Y-
Mercer kernel of signature Ke. Suppose that for all z ∈ X and for all y,
y ′ ∈ Y, the function

⟨Ke(.)y, y ′⟩Y ∈ L1(X,Haar),

where X is endowed with the group law ⋆. Denote C : X̂ → L(Y), the
function defined for all ω ∈ X̂ that satisfies for all y, y ′ in Y:

(4.4)
⟨y ′, C(ω)y⟩Y =

∫

X

(δ,ω)⟨y ′, Ke(δ)y⟩YdHaar(δ)

= F−1 [⟨y ′, Ke(·)y⟩Y
]

(ω).

Then

1. C(ω) is a bounded non-negative operator for all ω ∈ X̂,

2. ⟨y,C(·)y ′⟩Y ∈ L1
(
X̂, Ĥaar

)
for all y, y ′ ∈ X,

3. for all δ ∈ X and for all y, y ′ in Y,

⟨y ′, Ke(δ)y⟩Y =
∫

X̂

(δ,ω)⟨y ′, C(ω)y⟩YdĤaar(ω)

= F
[
⟨y ′, C(·)y⟩Y

]
(δ).

We found that there has been confusion in the literature whether a
kernel is the Fourier Transform or Inverse Fourier Transform of a mea-
sure. However Lemma 4.1 clarifies the relation between the Fourier
Transform and Inverse Fourier Transform for a translation invariant
Operator-Valued Kernel.Here we show that inthe real scalar case the
Fourier Transform and Inverse Fourier Transform of a shift-invariant
kernel are the same as well as in the operator-valued case.

The following lemma is a direct consequence of the definition of
C(ω) as the Fourier Transform of the adjoint of Ke and also helps to
simplify the definition of ORFF.

Lemma 4.1 Let Ke be the signature of a shift-invariant Y-Mercer kernel
such that for all y, y ′ ∈ Y, ⟨y ′, Ke(·)y⟩Y ∈ L1(X,Haar) and let

⟨y ′, C(·)y⟩Y = F−1 [⟨y ′, Ke(·)y⟩Y
]
.

Then

1. C(ω) is self-adjoint and C is even.

2. F−1 [⟨y ′, Ke(·)y⟩Y] = F [⟨y ′, Ke(·)y⟩Y].
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3. Ke(δ) is self-adjoint and Ke is even.

Proof For any function f on (X, ⋆) define the flip operator R by

(Rf)(x) : = f
(
x−1) .

For any shift invariant Y-Mercer kernel and for all δ ∈ X, Ke(δ) =
Ke
(
δ−1
)∗

. Indeed from the definition of a shift-invariant kernel,

Ke
(
δ−1) = K

(
δ−1, e

)
= K (e, δ) = K (δ, e)∗ = Ke (δ)∗ .

Item 1: taking the Fourier Transform yields,

⟨y ′, C(ω)y⟩Y = F−1 [⟨y ′, Ke(·)y⟩Y
]

(ω)

= F−1 [⟨y ′, (RKe(·))∗y⟩Y
]

(ω)

= F−1 [⟨RKe(·)y ′, y⟩Y
]

(ω)

= F−1 [R⟨Ke(·)y ′, y⟩Y
]

(ω)

= RF−1 [⟨Ke(·)y ′, y⟩Y
]

(ω)
= R⟨C(·)y ′, y⟩Y(ω)

=
⟨
y ′, C

(
ω−1)∗ y

⟩
Y
.

Hence C(ω) = C
(
ω−1

)∗
. Suppose that Y is a complex Hilbert space. Since

for all ω ∈ X̂, C(ω) is bounded and non-negative so C(ω) is self-adjoint.
Besides we have C(ω) = C

(
ω−1

)∗
so C must be even. Suppose that Y is

a real Hilbert space. The Fourier Transform of a real valued function obeys
F [f] (ω) = F [f] (ω−1). Therefore since C(ω) is non-negative for all ω ∈ X̂,

⟨y ′, C(ω)y⟩Y = ⟨y ′, C
(
ω−1

)
y⟩Y = ⟨y,C

(
ω−1)∗ y ′⟩Y

= ⟨y,C (ω)y ′⟩Y.

Hence C(ω) is self-adjoint and thus C is even.

Item 2: simply, for all y, y ′ ∈ Y, ⟨y,C(ω−1)y ′⟩Y = ⟨y ′, C(ω)y⟩Y thus

F−1 [⟨y ′, Ke(·)y⟩Y
]

(ω) = ⟨y ′, C(ω)y⟩Y = R⟨y ′, C(·)y⟩Y(ω)

= RF−1 [⟨y ′, Ke(·)y⟩Y
]

(ω)
= F

[
⟨y ′, Ke(·)y⟩Y

]
(ω).

Item 3: from Item 2 we have F−1 [⟨y ′, Ke(·)y⟩Y] = F−1R⟨y ′, Ke(·)y⟩Y.
By injectivity of the Fourier Transform, Ke is even. Since Ke(δ) = Ke(δ−1)∗,
we must have Ke(δ) = Ke(δ)∗. □

While Proposition 4.3 gives an explicit form of the operator C(ω) de-
fined as the Fourier Transform of the kernel K, it is not really con-
venient to work with the Haar measure Ĥaar on B(X̂). However it
is easily possible to turn Ĥaar into a probability measure to allow
efficient (Monte-Carlo) integration over an infinite domain.
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The following proposition allows to build a spectral decomposi-
tion of a shift-invariant Y-Mercer kernel on a LCA group X endowed
with the group law ⋆ with respect to a scalar probability measure, by
extracting a scalar probability density function from C(·).

Proposition 4.4 (Shift-invariant Y-Mercer kernel spectral decom-
position). Let Ke be the signature of a shift-invariant Y-Mercer kernel.
If for all y, y ′ ∈ Y, ⟨Ke(.)y, y ′⟩Y ∈ L1(X,Haar) then there exists a positive
probability measure PrĤaar,ρ and an operator-valued function A such that
for all y, y ′ ∈ Y,

(4.5)⟨y ′, Ke(δ)y⟩Y = EĤaar,ρ

[
(δ,ω)⟨y ′, A(ω)y⟩Y

]
,

with

(4.6)⟨y ′, A(ω)y⟩Yρ(ω) = F
[
⟨y ′, Ke(·)y⟩Y

]
(ω).

Moreover

1. for all y, y ′ ∈ Y, ⟨A(·)y, y ′⟩Y ∈ L1
(
X̂,PrĤaar,ρ

)
,

2. A(ω) is non-negative for PrĤaar,ρ-almost all ω ∈ X̂,

3. A(·) and ρ(·) are even functions.

Proof This is a simple consequence of Proposition 4.3 and Lemma 4.1. By
taking ⟨y ′, C(ω)y⟩Y = F−1 [⟨y ′, Ke(·)y⟩Y] (ω) = F [⟨y ′, Ke(·)y⟩Y] (ω) we
can write the following equality concerning the OVK signature Ke.

⟨y ′, Ke(δ)y⟩(ω) =
∫

X̂

(δ,ω)⟨y ′, C(ω)y⟩YdĤaar(ω)

=
∫

X̂

(δ,ω)
⟨
y ′,

1
ρ(ω)

C(ω)y
⟩

Y

ρ(ω)dĤaar(ω).

It is always possible to choose ρ(ω) such that
∫

X̂
ρ(ω)dĤaar(ω) = 1. For

instance choose

ρ(ω) =
∥C(ω)∥Y,Y

∫

X̂
∥C(ω)∥Y,YdĤaar(ω)

Since for all y, y ′ ∈ Y, ⟨y ′, C(·)y⟩Y ∈ L1(X̂, Ĥaar) and Y is a separable
Hilbert space, by Pettis measurability theorem,

∫

X̂
∥C(ω)∥Y,YdĤaar(ω) is

finite and so is ∥C(ω)∥Y,Y for all ω ∈ X̂. Therefore ρ(ω) is the density of a
probability measure PrĤaar,ρ, i. e. conclude by taking

PrĤaar,ρ(Z) =
∫

Z

ρ(ω)dĤaar(ω),

for all Z ∈ B(X̂). □
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In the case where Y = Rp, we rewrite Equation 4.6 coefficient-wise
by choosing an orthonormal basis (ej)j∈N∗

p
of Rp.

(4.7)A(ω)ijρ(ω) = F
[
Ke(·)ij

]
(ω).

It follows that for all i and j in N∗
p,

(4.8)Ke(x ⋆ z−1)ij = F
[
A(·)ijρ(·)

]
(x ⋆ z−1)

Remark 4.1 Note that although the Fourier Transform of Ke yields a
unique operator-valued function C(·), the decomposition of C(·) into A(·)ρ(·)
is again not unique. The choice of the decomposition may be justified by the
computational cost.

Another difficulty arises from the fact that the quantity

sup
ω ∈X̂

∥A(ω)∥Y,Y

obtained in Proposition 4.4 might not be bounded. Later, when we
will focus on Monte-Carlo approximation of these integrals, we will
have to take care of the unboundedness of ∥A(·)∥Y,Y that forbids the
use of the most simple concentrations inequalities that require the
boundedness of the random variable to be controlled. Therefore in
the context of Operator-Valued Kernel concentration inequalities for
unbounded random operators should be used.

However, as pointed out by Minh [118], under some condition on
the trace of Ke(δ), it is possible to turn A(·) into a bounded ran-
dom operator for all ω in X̂. The idea is to define a sum measure
ρ =

∑

j∈N∗ ρej , which gives rise to a bounded operator A(ω) and is
independent of the

{

ej
}

j∈N∗ base, instead of constructing a measure
from the operator norm as in Proposition 4.4. Additionally with such
construction the measure associated to A(·) is independent from the
basis of Y. We present this result and in this proof we relax the as-
sumptions of Minh [118] which requires

∫

X
|TrKe(δ)|dHaar(δ) to be

well defined. We only require TrKe(e) to be well defined.

Proposition 4.5 (Bounded shift-invariant Y-Mercer kernel spectral
decomposition (adaptation of Minh [118]). Let Ke be the signature
of a shift-invariant Y-Mercer kernel (Y separable). If for all y and y ′ in Y,
⟨Ke(.)y, y ′⟩Y ∈ L1(X,Haar) and TrKe(e) ∈ R, then

(4.9)⟨y ′, Ke(δ)y⟩Y = EĤaar,ρTr

[
(δ,ω)⟨y,ATr(ω)y ′⟩Y

]
.

with
(4.10a)⟨y ′, C(·)y⟩Y = F

[
⟨y ′, Ke(·)y⟩Y

]

(4.10b)cTr = Tr [Ke(e)]
(4.10c)ATr(ω) = cTr Tr [C(ω)]−1C(ω)
(4.10d)ρTr(ω) = c−1

Tr Tr [C(ω)] .

Moreover
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1. For all y, y ′ ∈ Y, ⟨y,ATr(·)y ′⟩ ∈ L1(X̂,PrĤaar,ρTr
).

2. ATr(ω) is non-negative for all ω ∈ X̂,

3. ess sup
ω∈X̂
∥ATr(ω)∥Y,Y ⩽ cp,

4. ATr(·) and ρTr are even functions.

Proof Let
{

ej
}

j∈N∗ be a basis of Y. Notice that
∫

X̂

⟨ej, C(ω)ej⟩YdĤaar(ω) =
∫

X̂

(e,ω)
︸ ︷︷ ︸

=1

⟨ej, C(ω)ej⟩dĤaar(ω)

= ⟨ej, Ke(e)ej⟩Y.

Since C(ω) is non-negative, all the ⟨ej, C(ω)ej⟩Y. Thus using the monotone
convergence theorem,

∫

X̂

Tr [C(ω)]dĤaar(ω) =
∫

X̂

∑

j∈N∗
⟨ej, C(ω)ej⟩YdĤaar(ω)

=
∑

k∈N∗
⟨ej, Ke(e)ej⟩Y

= Tr [Ke(e)] = cTr <∞.

Let ATr(ω) and ρTr(ω) be defined as in Equation 4.10c and Equation 4.10d,
respectively. By definition,

∫

X̂
ρTr(ω)dĤaar(ω) = 1 and ATr(ω)ρTr(ω) =

C(ω). Now it remains to check the finiteness of Tr [C(ω)] for all ω ∈ X̂.
Since for all ω ∈ X̂, Tr [C(ω)] ⩾ 0,

Tr [C(ω)] ⩽
∫

X̂

Tr [C(ω)]dĤaar(ω) = Tr [Ke(e)] <∞.

Since Tr [C(ω)] is positive and its integral is finite, ρTr is a probability den-
sity function. In particular C(ω) is self-adjoint operator thus ∥C(ω)∥σ,∞ =
∥C(ω)∥Y,Y for all ω ∈ X̂. Thus the Schatten norms ∥·∥σ,p verifies Tr [|·|] =
∥·∥σ,1 ⩾ ∥·∥σ,p ⩾ ∥·∥σ,q ⩾ ∥·∥σ,∞ = ∥·∥Y,Y for all p, q ∈ N∗ such that

1 ⩽ p ⩽ q ⩽ ∞. Therefore since for all ω ∈ X̂, C(ω) is non-negative, we
have for PrĤaar,ρ-almost all ω ∈ X̂,

∥ATr(ω)∥Y,Y = cTr Tr [C(ω)]−1 ∥C(ω)∥σ,∞
⩽ cTr Tr [C(ω)]−1 ∥C(ω)∥σ,1
= cTr Tr [C(ω)]−1 Tr [|C(ω)|]
= cTr Tr [C(ω)]−1 Tr [C(ω)]
⩽ cTr <∞.

Thus ess sup
ω∈X̂
∥A(ω)∥Y,Y ⩽ cTr < ∞. As C is an even func-

tion, so are ATr and ρTr. Eventually ⟨y ′, C(·)y⟩ is in L1(X̂, Ĥaar),
thus ⟨y,ATr(·)ρTr(·)y ′⟩ is in L1(X̂, Ĥaar), hence ⟨y,ATr(·)y ′⟩ ∈
L1(X̂,PrĤaar,ρTr

). Since the trace is independent of the basis of Y, so is ρTr.□

If Y is finite dimensional then Tr [Ke(e)] is well defined hence Propo-
sition 4.5 is valid as long as Ke(·)ij ∈ L1(X,Haar) for all i, j ∈ N∗

p,
where p is the dimension of Y.
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4.2.2 Examples of spectral decomposition

In this section we give examples of spectral decomposition for various
Y-Mercer kernels, based on Proposition 4.4 and Proposition 4.5.

4.2.2.1 Gaussian decomposable kernel

Recall that a decomposable Rp-Mercer introduced in the Background
section has the form K(x, z) = k(x, z)Γ , where k(x, z) is a scalar Mercer
kernel and Γ ∈ L(Rp) is a non-negative operator. Let us focus on
K
dec,gauss
e (·) = kgausse (·)Γ , the Gaussian decomposable kernel where
K
dec,gauss
e and kgausse are respectively the signature of K and k on

the additive group X = (Rd,+) – i. e. δ = x− z and e = 0. The well
known Gaussian kernel is defined for all δ ∈ Rd as follows

k
gauss
0 (δ) = exp

(
−

1
2σ2 ∥δ∥

2
2

)

where σ ∈ R+ is an hyperparameter corresponding to the bandwidth
of the kernel. The –Pontryagin– dual group of X = (Rd,+) is X̂ ∼=
(Rd,+) with the pairing

(δ,ω) = exp (i⟨δ,ω⟩)

where δ and ω ∈ Rd. In this case the Haar measures on X and X̂ are
in both cases the Lebesgue measure. However in order to have the
property that F−1 [F [f]] = f and F−1 [f] = RF [f] one must normalize

both measures by
√

2π
−d

, i. e. for all Z ∈ B
(
Rd
)
,

√
2π
d

Haar(Z) = Leb(Z) and
√

2π
d

Ĥaar(Z) = Leb(Z).

Then the Fourier Transform on (Rd,+) is

F [f] (ω) =
∫

Rd

exp
(
−i⟨δ,ω⟩2

)
f(δ)dHaar(δ)

=
∫

Rd

exp
(
−i⟨δ,ω⟩2

)
f(δ)

dLeb(δ)
√

2π
d
.

Since kgauss
0 ∈ L1 and Γ is bounded, it is possible to apply Proposi-

tion 4.4, and obtain for all y and y ′ ∈ Y,

⟨
y ′, Cdec,gauss(ω)y

⟩
= F

[⟨
y ′, Kdec,gauss0 (·)y

⟩
Y

]
(ω)

= F
[
k
gauss
0

]
(ω)
⟨
y ′, Γy

⟩
Y
.

Thus

Cdec,gauss(ω) =
∫

Rd

exp

(
−i⟨ω, δ⟩− ∥δ∥

2
2

2σ2

)
dLeb(δ)
√

2π
d
Γ.
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Hence

Cdec,gauss(ω) =
1

√
2π 1
σ2

d
exp

(
−
σ2

2
∥ω∥2

2

)√
2π
d

︸ ︷︷ ︸

ρ(·)=N(0,σ−2Id)
√

2π
d

Γ
︸︷︷︸

A(·)=Γ
.

Therefore the canonical decomposition of Cdec,gauss is

Adec,gauss(ω) = Γ and ρdec,gauss = N(0, σ−2Id)
√

2π
d

, where
N is the Gaussian probability distribution. Note that this decomposi-
tion is done with respect to the normalized Lebesgue measure Ĥaar,
meaning that for all Z ∈ B(X̂),

Pr
Ĥaar,N(0,σ−2Id)

√
2π
d(Z) =

∫

Z

N(0, σ−2Id)
√

2π
d
dĤaar(ω)

=
∫

X̂

N(0, σ−2Id)dLeb(ω)

= PrN(0,σ−2Id)(Z).

Thus, the same decomposition with respect to the usual –non-
normalized– Lebesgue measure Leb yields

(4.11a)Adec,gauss(·) = Γ
(4.11b)ρdec,gauss = N(0, σ−2Id).

If Γ is a trace class operator, applying Proposition 4.5 yields the same

decomposition since Tr
[
K
dec,gauss
0 (0)

]
= Tr [Γ ] and

Tr
[
Cdec,gauss(·)

]
= N(0, σ−2Id)

√
2π
d

Tr [Γ ] .

4.2.2.2 Skewed-χ2 decomposable kernel

The skewed-χ2 scalar kernel [98], useful for image processing, is de-
fined on the LCA group X = (−ck; +∞)dk=1, with ck ∈ R+ and en-
dowed with the group operation ⊙. Let (ek)dk=1 be the standard basis
of X and k : x 7→ ⟨x, ek⟩. The operator ⊙ : X×X→ X is defined by

x⊙ z = ((xk + ck)(zk + ck) − ck)dk=1 .

The identity element e is (1 − ck)
d
k=1 since (1 − c)⊙ x = x. Thus the

inverse element x−1 is ((xk + ck)−1 − ck)dk=1. The skewed-χ2 scalar ker-
nel reads

(4.12)kskewed1−c (δ) =
d∏

k=1

2
√
δk + ck +

√
1

δk+ck

.

The dual of X is X̂ ∼= Rd with the pairing

(δ,ω) =
d∏

k=1

exp
(
i log(δk + ck)ωk

)
.
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The Haar measure are defined for all Z ∈ B((−c; +∞)d) and all Ẑ ∈
B(Rd) by

√
2π
d

Haar(Z) =
∫

Z

d∏

k=1

1
zk + ck

dLeb(z)

√
2π
d

Ĥaar(Ẑ) = Leb(Ẑ).

Thus the Fourier Transform is

F [f] (ω) =
∫

(−c;+∞)d

d∏

k=1

exp
(
−i log(δk + ck)ωk

)

δk + ck
f(δ)

dLeb(δ)
√

2π
d
.

Then, applying Fubini’s theorem over product space, and the fact that
each dimension is independent

F
[
kskewed0

]
(ω) =

d∏

k=1

∫+∞

−ck

2 exp
(
−i log(δk + ck)ωk

)

(δk + ck)
(√
δk + ck +

√
1

δk+ck

) dLeb(δk)
√

2π
d
.

Making the change of variable tk = (δk + ck)−1 yields

F
[
kskewed0

]
(ω) =

d∏

k=1

∫+∞

−∞

2 exp (−itkωk)
exp

( 1
2tk
)

+ exp
(
−1

2tk
) dLeb(tk)
√

2π
d

=
√

2π
d
d∏

k=1

sech(πωk).

Since kskewed
1−c ∈ L1 and Γ is bounded, it is possible to apply Proposi-

tion 4.4, and obtain

Cdec,skewed(ω) = F
[
kskewed1−c

]
(ω)Γ

=
√

2π
d
d∏

k=1

sech(πωk)

︸ ︷︷ ︸

ρ(·)=S(0,2−1)d
√

2π
d

Γ
︸︷︷︸

A(·)
.

Hence the decomposition with respect to the usual –non-normalized–
Lebesgue measure Leb yields

(4.13a)Adec,skewed(·) = Γ

(4.13b)ρdec,skewed = S
(
0, 2−1)d .
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4.2.2.3 Curl-free Gaussian kernel

The curl-free Gaussian kernel is defined as K
curl,gauss
0 =

−∇∇Tk
gauss
0 . Here X = (Rd,+) so the setting is the same than Sub-

subsection 4.2.2.1.

Ccurl,gauss(ω)ij = F
[
K
curl,gauss
1−c (·)ij

]
(ω)

= F

[
−

∂2

∂δi∂δj
k
gauss
0

]
(ω)

= −(iωi)(iωj)F
[
k
gauss
0

]
(ω)

= ωiωjF
[
k
gauss
0

]
(ω)

=

√
2π

1
σ2

d

exp
(
−
σ2

2
∥ω∥2

2

)√
2π
d
ωiωj.

Hence

Ccurl,gauss(ω) =
1

√
2π 1
σ2

d
exp

(
−
σ2

2
∥ω∥2

2

)√
2π
d

︸ ︷︷ ︸

µ(·)=N(0,σ−2Id)
√

2π
d

ωωT

︸ ︷︷ ︸

A(ω)=ωωT

.

Here a canonical decomposition is Acurl,gauss(ω) = ωωT for all

ω ∈ Rd and ρcurl,gauss = N(0, σ−2Id)
√

2π
d

with respect to the
normalized Lebesgue measure Leb. Again the decomposition with
respect to the usual –non-normalized– Lebesgue measure is for all
ω ∈ Rd

(4.14a)Acurl,gauss(ω) = ωωT

(4.14b)ρcurl,gauss = N(0, σ−2Id).

Notice that in this case
∥∥Acurl,gauss(·)

∥∥
2,2 is not bounded. However

applying Proposition 4.5 yields a different decomposition where the

quantity
∥∥∥Acurl,gaussTr (·)

∥∥∥
2,2

is bounded. First we have for all δ ∈ Rd

and for all i, j ∈N∗
d

∂2

∂δi∂δj
k
gauss
0 (δ) =

exp
(
− 1

2σ2 ∥δ∥2
2

)

σ2







δiδj
σ2 if i ̸= j
(

1 −
δiδj
σ2

)
otherwise.

Hence

−∇∇Tk
gauss
0 (δ) =

(
Id −

δδT

σ2

) exp
(
− 1

2σ2 ∥δ∥2
2

)

σ2 .

Thus

Tr
[
K
curl,gauss
0 (0)

]
= Tr

[
∇∇Tk

gauss
0 (0)

]

= dσ−2
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and

Tr [C(ω)] = ∥ω∥2
2N(0, σ−2Id)

√
2π
d
.

Apply Proposition 4.5 to obtain the decomposition
A
curl,gauss
Tr (ω) = ωωT∥ω∥−2

2 and the measure ρ
curl,gauss
Tr (ω) =

σ2d−1∥ω∥2
2N
(
0, σ−2

)√
2π
d

for all ω ∈ Rd, with respect to the
normalized Lebesgue measure. Therefore the decomposition with
respect to the usual non-normalized Lebesgue measure is

(4.15a)A
curl,gauss
Tr (ω) =

ωωT

∥ω∥2
2

(4.15b)ρ
curl,gauss
Tr (ω) =

σ2

d
∥ω∥2

2N
(
0, σ−2) (ω).

This example also illustrates that there exists many decompositions
of C(ω) into (A(ω),PrĤaar,ρ(ω)).

4.2.2.4 Divergence-free kernel

The divergence-free Gaussian kernel is defined as K
div,gauss
0 =

(∇∇T − ∆)kgauss0 on the group X = (Rd,+). The setting is the same
than Subsubsection 4.2.2.1. Hence

Cdiv,gauss(ω)ij = F
[
K
div,gauss
0 (·)ij

]
(ω)

= F

[
∂2

∂δi∂δj
k
gauss
0 − δi=j

d∑

k=1

∂2

∂δk∂δk
k
gauss
0

]
(ω)

=

(
−(iωi)(iωj) − δi=j

d∑

k=1

(iωk)2

)
F
[
k
gauss
0

]

=

(
δi=j

d∑

k=1

ω2
k −ωiωj

)
F
[
k
gauss
0

]
(ω).

Hence

Cdiv,gauss(ω) =
1

√
2π 1
σ2

d
exp

(
−
σ2

2
∥ω∥2

2

)√
2π
d

︸ ︷︷ ︸

ρ(·)=N(0,σ−2Id)
√

2π
d

(
Id∥ω∥2

2 −ωω
T

)

︸ ︷︷ ︸

A(ω)=Id∥ω∥2
2−ωω

T

.

Thus the canonical decomposition with respect to the normalized Le-
besgue measure is Adiv,gauss(ω) = Id∥ω∥2

2 −ωω
T and the measure

ρdiv,gauss = N(0, σ−2Id)
√

2π
d
.

The canonical decomposition with respect to the usual Lebesgue mea-
sure is

(4.16a)Adiv,gauss(ω) = Id∥ω∥2
2 −ωω

T

(4.16b)ρdiv,gauss = N(0, σ−2Id).
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To obtain the bounded decomposition, again, apply Proposition 4.5.
For all δ ∈ Rd,

d∑

k =1

∂2

∂δk∂δk
k
gauss
0 (δ) =

(
d−
∥δ∥2

2
σ2

)
exp

(
− 1

2σ2 ∥δ∥2
2

)

σ2 .

Thus overall,

K
div,gauss
0 (δ) =

(
δδT

σ2 +

(
(d− 1) −

∥δ∥2
2

σ2

)
Id

)
exp

(
− 1

2σ2 ∥δ∥2
2

)

σ2 .

Eventually Tr
[
K
div,gauss
0 (0)

]
= Tr

[
(∇∇T −∆)kgauss0 (0)

]
= d(d −

1)σ−2 and Tr [C(ω)] = (d − 1)∥ω∥2
2N(0, σ2Id)

√
2π
d

. As a result
the decomposition with respect to the normalized Lebesgue mea-
sure is A

div,gauss
Tr (ω) = (Id − ωωT∥ω∥−2

2 ) and ρ
div,gauss
Tr (ω) =

d−1σ2∥ω∥2
2N(0, σ2Id)

√
2π
d

. The decomposition with respect to the
normalized Lebesgue measure being

(4.17a)A
div,gauss
Tr (ω) = Id −

ωωT

∥ω∥2
2

(4.17b)ρ
div,gauss
Tr =

σ2

d
∥ω∥2

2N(0, σ−2Id).

4.2.3 Functional Fourier feature map

We introduce a functional feature map, we call Fourier Feature map, de-
fined by the following proposition as a direct consequence of Propo-
sition 4.2.

Proposition 4.6 (Functional Fourier feature map). Let Y and Y ′ be
two Hilbert spaces. If there exist an operator-valued function B : X̂ →
L(Y,Y ′) such that for all y, y ′ ∈ Y,

⟨y, B(ω)B(ω)∗y ′⟩Y = ⟨y ′, A(ω)y⟩Y
µ̂-almost everywhere and ⟨y ′, A(·)y⟩ ∈ L1(X̂, µ̂) then the operator Φx de-
fined for all y in Y by

(4.18)(Φxy)(ω) = (x,ω)B(ω)∗y,

is a feature map8 of some shift-invariant Y-Mercer kernel K. 8 i. e. it satisfies for
all x, z ∈ X,
Φ∗
xΦz = K(x, z)

where K is a
Y-Mercer OVK.

Proof For all y, y ′ ∈ Y and x, z ∈ X,

⟨y,Φ∗
xΦzy

′⟩Y = ⟨Φxy,Φzy ′⟩
L2(X̂,µ̂;Y ′)

=
∫

X̂

(x,ω)⟨y, B(ω)(z,ω)B(ω)∗y ′⟩dµ̂(ω)

=
∫

X̂

(x ⋆ z−1,ω)⟨yB(ω)B(ω)∗y ′⟩dµ̂(ω)

=
∫

X̂

(x ⋆ z−1,ω)⟨y,A(ω)y ′⟩dµ̂(ω),
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Φx ∈ L(Y;H) Y Φx ∈ L
(
Y;L2

(
X̂,Pr

Ĥaar,ρ
;Y ′
))

Y Φ̃(x) ∈ L
(
Y;H̃

)
Y

x ∈ X x ∈ X x ∈ X

Φ∗xg

fΦ

Φ∗xg

fΦ

Φ̃(x)∗θ

f̃Φ̃

  

Φ∗xΦz = K(x, z) Ke

(
x ⋆ z−1

)
K̃e

(
x ⋆ z−1

)
= Φ̃(x)∗Φ̃(x)= ≈

Fourier,

Φx(ω)y = (x,ω)B(ω)∗y.

Monte-Carlo,

Φ̃(x)y = 1√
D

⊕D
j=1(Φxy)(ωj), ωj ∼ PrĤaar,ρ

i. i. d..

Figure 4.1: Relationships between feature-maps. For any realization of ωj ∼ PrĤaar,ρ i. i. d., H̃ =
⊕D
j=1 Y

′.
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which defines a Y-Mercer according to Proposition 4.2 of Carmeli et al.
[41]. □

With this notation we have Φ : X → L(Y;L2(X̂, µ̂;Y ′)) such that Φx ∈
L(Y;L2(X̂, µ̂;Y ′)) where Φx := Φ(x).

4.3 operator-valued random fourier features

4.3.1 Building Operator-valued Random Fourier Features

As shown in Propositions 4.4 and 4.5 it is always possible to find
a pair (A,PrĤaar,ρ) from a shift invariant Y-Mercer Operator-Va-
lued Kernel Ke such that PrĤaar,ρ is a probability measure, i. e.
∫

X̂
ρdĤaar = 1 where ρ is the density of PrĤaar,ρ and Ke(δ) =

Eρ(δ,ω)A(ω). In order to obtain an approximation of K from a de-
composition (A,PrĤaar,ρ) we turn our attention to a Monte-Carlo es-
timation of the expectations in Equation 4.9 and Equation 4.5 charac-
terizing a Y-Mercer shift-invariant Operator-Valued Kernel.

Proposition 4.7 Let K(x, z) be a shift-invariant Y-Mercer kernel with sig-
nature Ke such that for all y, y ′ ∈ Y, ⟨y ′, Ke(·)y⟩ ∈ L1(X,Haar). Then one
can find a pair (A,PrĤaar,ρ) that satisfies Proposition 4.4. i. e. for PrĤaar,ρ-
almost all ω, and all y, y ′ ∈ Y,

⟨y,A(ω)y ′⟩Yρ(ω) = F
[
⟨y ′, Ke(·)y⟩

]
Y

(ω).

If (ωj)Dj=1 be a sequence of D ∈N∗ i. i. d. random variables following the
law PrĤaar,ρ then the operator-valued function K̃ defined for (x, z) ∈ X×X

as

K̃(x, z) =
1
D

D∑

j=1

(x ⋆ z−1,ωj)A(ωj)

is an approximation9 of K. 9 i. e. it satisfies for
all x, z ∈ X,
K̃(x, z) a. s.−−−−→

D→∞
K(x, z) in the weak
operator topology,
where K is a
Y-Mercer OVK.

Proof From the strong law of large numbers

1
D

D∑

j =1

(x ⋆ z−1,ωj)A(ωj)
a. s.−−−−→
D→∞

EĤaar,ρ[(x ⋆ z−1,ω)A(ω)]

where the integral converges in the weak operator topology. Then by Propo-
sition 4.4,

EĤaar,ρ

[
(x ⋆ z−1,ω)A(ω)

]
= Ke(x ⋆ z−1).

□



70 operator-valued random fourier features

Now, for efficient computations as motivated in the introduction, we
are interested in finding an approximated feature map instead of a ker-
nel approximation. Indeed, an approximated feature map will allow
to build linear models in regression tasks. The following proposition
deals with the feature map construction.

Proposition 4.8 Assume the same conditions as Proposition 4.7. Moreover,
if one can define B : X̂→ L(Y ′,Y) such that for PrĤaar,ρ-almost all ω, and
all y, y ′ ∈ Y,

⟨y, B(ω)B(ω)∗y ′⟩Yρ(ω) = ⟨y,A(ω)y ′⟩Yρ(ω) = F
[
⟨u,Ke(·)v⟩Y

]
(ω),

then the (random operator-valued) function whose realization are Φ̃ : X →
L(Y,

⊕D
j=1 Y

′) defined for all y ∈ Y as follows:

Φ̃(x)y =
1√
D

D⊕

j=1

(x,ωj)B(ωj)∗y, ωj ∼ PrĤaar,ρ i. i. d.,

is an approximated feature map10 for the kernel K.10 i. e. it satisfies
Φ̃(x)∗Φ̃(z) a. s.−−−−→

D→∞
K(x, z) in the weak

operator topology,
where K is a

Y-Mercer OVK

Proof Let (ωj)Dj=1 be a sequence of D ∈ N∗ i. i. d. random variables follow-
ing the law PrĤaar,ρ. For all x, z ∈ X and all y, y ′ ∈ Y,

⟨
Φ̃(x)y, Φ̃(z)y ′

⟩
⊕D
j=1 Y

′

=
1
D

⟨
D⊕

j=1

(
(x,ωj)B(ωj)∗y

)
,

D⊕

j=1

(
(z,ωj)B(ωj)∗y ′)

⟩

⊕d
j=1 Y

′

By definition of the inner product in direct sum of Hilbert spaces,

1
D

⟨
D⊕

j=1

(
(x,ωj)B(ωj)∗u

)
,

D⊕

j=1

(
(z,ωj)B(ωj)∗v

)
⟩

⊕D
j=1 Y

′

=
1
D

D∑

j=1

⟨
u, (x,ωj)B(ωj)(z,ωj)B(ωj)∗v

⟩
Y

=

⟨
u,


 1
D

D∑

j=1

(x ⋆ z−1,ωj)A(ωj)


 v
⟩

Y

,

Eventually apply Proposition 4.7 to obtain the convergence of the Monte-
Carlo plug-in estimator to the true kernel K. □

Remark 4.2 We find a decomposition such that A(ωj) = B(ωj)B(ωj)∗

for all j ∈ N∗
D either by exhibiting a closed-form or using a numerical

decomposition.
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Notice that an ORFF map as defined in Proposition 4.8 is also the
Monte-Carlo sampling of the corresponding functional Fourier fea-
ture map Φx : Y → L2(X̂,PrĤaar,ρ;Y ′) as defined in Proposition 4.6.
Indeed, for all y ∈ Y and all x ∈ X,

Φ̃(x)y =
D⊕

j=1

(Φxy)(ωj), ωj ∼ PrĤaar,ρ i. i. d..

Proposition 4.8 allows us to define Algorithm 1 for constructing ORFF
from an operator valued kernel.

Algorithm 1: Construction of ORFF from OVK
Input :K(x, z) = Ke(δ) a shift-invariant Y-Mercer kernel such

that ∀y, y ′ ∈ Y, ⟨y ′, Ke(·)y⟩ ∈ L1(Rd,Haar) and D the
number of features.

Output : A random feature Φ̃(x) such that Φ̃(x)∗Φ̃(z) ≈ K(x, z)

1 Define the pairing (x,ω) from the LCA group (X, ⋆);
2 Find a decomposition (A,PrĤaar,ρ) and B such that

B(ω)B(ω)∗ρ(ω) = A(ω)ρ(ω)
= F−1 [Ke] (ω);

3 Draw D i. i. d. realizations (ωj)Dj=1 from the probability
distribution PrĤaar,ρ;

4 return







Φ̃(x) ∈ L(Y, H̃) : y 7→ 1√
D

⊕D
j=1(x,ωj)B(ωj)∗y

Φ̃(x)∗ ∈ L(H̃,Y) : θ 7→ 1√
D

∑D
j=1(x,ωj)B(ωj)θj

;

We give a numerical illustration of different K̃ built from differ-
ent i. i. d. samples (ω1, . . . ,ωD). In Figure 4.2, we represent the ap-
proximation of a reference function (black line) defined as (y1, y2)T =
f(xi) =

∑250
j=1 Kijuj where uj ∼ N(0, I2) and K is a Gaussian decompos-

able kernel defined as

Kij = exp
(
−

(xi − xj)2

2(0.1)2

)
Γ , for i, j ∈N∗

250.

We took Γ = .5I2 + .512 such that the outputs y1 and y2 share some
similarities. We generated 250 points (xi)Ni=1, equally separated on the
segment (−1; 1). Then we computed an approximate kernel matrix
K̃ ≈ K for 25 increasing values of D ranging from 1 to 104. The top
row of the two graphs in Figure 4.2 shows that the more the number
of features increases the closer the model f̃(xi) =

∑250
j=1 K̃ijuj is to

f. The bottom row shows the same experiment but for a different
realization of K̃. When D is small the curves of the bottom and top
rows are very dissimilar – and sine wave like — while they both
converge to f when D increases.
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and by the strong law of large numbers,

1
D

D∑

j =1

(x ⋆ z−1,ωj)A(ωj)
a. s.−−−−→
D→∞

EĤaar,ρ[(x ⋆ z−1,ω)A(ω)]

in the weak operator topology. Now from Proposition 4.2 with µ̂ = PrĤaar,ρ

we obtain EĤaar,ρ[(x ⋆ z−1,ω)A(ω)] = Ke(x ⋆ z−1), Ke being the signature
of some shift-invariant Y-Mercer kernel. □

The difference between Proposition 4.9 and Proposition 4.8 is that in
Proposition 4.9 we do not assume that A(ω) and Pr

Ĥaar,ρ
have been

obtained from Proposition 4.4. We conclude by showing that any real-
ization of an approximate feature map gives a proper operator valued
kernel. Hence we can always view K̃(x, z) = Φ̃(x)∗Φ̃(z) —where Φ̃ is
defined as in Proposition 4.7 (construction from an OVK) or Proposi-
tion 4.9— as a Y-Mercer and thus apply all the classic results of the
Operator-Valued Kernel theory on K̃.

Proposition 4.10 Let ω ∈ X̂D. If for all y, y ′ ∈ Y

⟨y ′, K̃e
(
x ⋆ z−1)y⟩Y = ⟨Φ̃(x)y ′, Φ̃(z)y⟩

H̃

=

⟨
y ′,

1
D

D∑

j=1

(x ⋆ z−1,ωj)B(ωj)B(ωj)∗y

⟩

Y

,

for all x, z ∈ X, then K̃ is a shift-invariant Y-Mercer Operator-Valued Ker-
nel.

Proof Apply Proposition 3.4 to Φ̃ considering the Hilbert space H̃ to show
that K̃ is an OVK. Then Proposition 3.7 shows that K̃ is shift-invariant since
K̃(x, z) = K̃e

(
x ⋆ z−1

)
. Since B(ω) is a bounded operator, K̃ is Y-Mercer

because all the functions in the sum are continuous. □

Note that the above theorem does not consider the ωj’s as random
variables and therefore does not show the convergence of the kernel
K̃ to some target kernel K. However it shows that any realization of
K̃ when ωj’s are random variables yields a valid Y-Mercer operator-
valued kernel.

Indeed, as a result of Proposition 4.10, in the same way we defined
an ORFF, we can define an approximate feature operator W̃ which
maps H̃ onto H

K̃
, where

K̃(x, z) = Φ̃(x)∗Φ̃(z), for all x, z ∈ X.

Definition 4.1 (Random Fourier feature operator). Let ω =
(ωj)Dj=1 ∈ X̂D and let

K̃e =
1
D

D∑

j=1

(·,ωj)B(ωj)B(ωj)∗.
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We call random Fourier feature operator the linear application W̃ : H̃→ H
K̃

defined as

(
W̃θ

)
(x) : = Φ̃(x)∗θ =

1√
D

D∑

j=1

(x,ωj)B(ωj)θj

where θ =
⊕D
j=1 θj ∈ H̃. Then from Proposition 3.4,

(
Ker W̃

)⊥
= span

{

Φ̃(x)y
∣∣∣ ∀x ∈ X, ∀y ∈ Y

}

⊆ H̃.

The random Fourier feature operator is useful to show the relations
between the random Fourier feature map with the functional fea-
ture map defined in Proposition 4.6. The relationship between the
generic feature map (defined for all Operator-Valued Kernel) the func-
tional feature map (defining a shift-invariant Y-Mercer Operator-Va-
lued Kernel) and the random Fourier feature map is presented in
Figure 4.1.

Proposition 4.11 For any g ∈ H = L2(X̂,PrĤaar,ρ;Y ′), let

θ : =
1√
D

D⊕

j =1

g(ωj), ωj ∼ PrĤaar,ρ i. i. d. .

Then

1.
(
W̃θ

)
(x) = Φ̃(x)∗θ a. s.−−−−→

D→∞
Φ∗
xg = (Wg)(x),

2. ∥θ∥2
H̃

a. s.−−−−→
D→∞

∥g∥2
H,

Proof (of Proposition 4.11 item 1) Since (ωj)Dj=1 are i. i. d. random vec-

tors, for all y ∈ Y and for all y ′ ∈ Y ′, ⟨y, B(·)y ′⟩ ∈ L2(X̂,PrĤaar,ρ) and

g ∈ L2(X̂,PrĤaar,ρ;Y ′), from the strong law of large numbers

(W̃θ)(x) = Φ̃(x)∗θ

=
1
D

D∑

j=1

(x,ωj)B(ωj)g(ωj), ωj ∼ PrĤaar,ρ i. i. d.

a. s.−−−−→
D→∞

∫

X̂

(x,ω)B(ω)g(ω)dPrĤaar,ρ(ω)

= (Wg)(x) := Φ∗
xg. □

Proof (of Proposition 4.11 item 2) Again, since (ωj)Dj−1 are i. i. d. ran-
dom vectors and

g ∈ L2(X̂,PrĤaar,ρ;Y ′),
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from the strong law of large numbers

∥θ∥2
H̃ =

1
D

D∑

j=1

∥∥g(ωj)
∥∥2
Y ′ , ωj ∼ PrĤaar,ρ i. i. d.

a. s.−−−−→
D→∞

∫

X̂

∥g(ω)∥2
Y ′dPrĤaar,ρ(ω)

= ∥g∥2
L2
(
X̂,PrĤaar,ρ;Y ′

)
. □

We write Φ̃(x)∗Φ̃(x) ≈ K(x, z) when Φ̃(x)∗Φ̃(x) a. s.−−→ K(x, z) in the weak
operator topology when D tends to infinity. With mild abuse of nota-
tion we say that Φ̃(x) is an approximate feature map of the functional
feature map Φx i. e. Φ̃(x) ≈ Φx, when for all y ′, y ∈ Y,

⟨y, K(x, z)y ′⟩Y = ⟨Φxy,Φzy ′⟩
L2(X̂,PrĤaar,ρ;Y ′)

≈ ⟨Φ̃(x)y, Φ̃(x)y ′⟩
H̃

:= ⟨y, K̃(x, z)y ′⟩Y

where Φx is defined in the sense of Proposition 4.6.

4.3.3 Examples of Operator Random Fourier Feature maps

We now give two examples of operator-valued random Fourier fea-
ture map. First we introduce the general form of an approximated
feature map for a matrix-valued kernel on the additive group (Rd,+).

Example 4.1 (Matrix-valued kernel on the additive group). In the
following let K(x, z) = K0(x − z) be a Y-Mercer matrix-valued kernel on
X = Rd, invariant w. r. t. the group operation +. Then the function Φ̃ defined
as follow is an Operator-valued Random Fourier Feature of K0.

Φ̃(x)y =
1√
D

D⊕

j=1

(
cos ⟨x,ωj⟩2B(ωj)∗y

sin ⟨x,ωj⟩2B(ωj)∗y

)
, ωj ∼ PrĤaar,ρ i. i. d..

for all y ∈ Y.

Proof The (Pontryagin) dual of X = Rd is X̂ ∼= Rd, and the duality pairing
is (x− z,ω) = exp(i⟨x− z,ω⟩2). The kernel approximation yields

K̃(x, z) = Φ̃(x)∗Φ̃(z)

=
1
D

D∑

j=1

(
cos ⟨x,ωj⟩2 sin ⟨x,ωj⟩2

)(cos ⟨z,ωj⟩2
sin ⟨z,ωj⟩2

)
A(ωj)

=
1
D

D∑

j=1

cos ⟨x− z,ωj⟩2A(ωj)

a. s.−−−−→
D→∞

Eρ
[
cos ⟨x− z,ω⟩2A(ω)

]
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in the weak operator topology. Since for all x ∈ X, sin⟨x, ·⟩2 is an odd
function and A(·)ρ(·) is even,

Eρ
[
cos ⟨x− z,ω⟩2A(ω)

]
= Eρ

[
exp(−i⟨x− z,ω⟩2)A(ω)

]
= K(x, z).

Hence K̃(x, z) a. s.−−−−→
D→∞

K(x, z). □

In particular we deduce the following feature maps for the kernels
proposed in Subsection 4.2.2.

• For the decomposable Gaussian kernel K
dec,gauss
0 (δ) =

k
gauss
0 (δ)Γ for all δ ∈ Rd, let BB∗ = Γ . A bounded –and

unbounded– ORFF map is

Φ̃(x)y =
1√
D

D⊕

j=1

(
cos ⟨x,ωj⟩2B∗y

sin ⟨x,ωj⟩2B∗y

)

= (φ̃(x)⊗ B∗)y,

where ωj ∼ PrN(0,σ−2Id) i. i. d. and φ̃(x) =

1√
D

⊕D
j=1

(
cos ⟨x,ωj⟩2
sin ⟨x,ωj⟩2

)
is a scalar RFF map [139].

• For the curl-free Gaussian kernel, Kcurl,gauss0 = −∇∇Tk
gauss
0

an unbounded ORFF map is

(4.20)Φ̃(x)y =
1√
D

D⊕

j=1

(
cos ⟨x,ωj⟩2ωT

jy

sin ⟨x,ωj⟩2ωT

jy

)
,

ωj ∼ PrN(0,σ−2Id) i. i. d. and a bounded ORFF map is

Φ̃(x)y =
1√
D

D⊕

j=1




cos ⟨x,ωj⟩2
ωT

j

∥ωj∥y

sin ⟨x,ωj⟩2
ωT

j

∥ωj∥y


 , ωj ∼ Prρ i. i. d..

where ρ(ω) = σ2∥ω∥2

d N(0, σ−2Id)(ω) for all ω ∈ Rd.

• For the divergence-free Gaussian kernel Kdiv,gauss0 (x, z) =
(∇∇T −∆Id)kgauss0 (x, z) an unbounded ORFF map is

(4.21)Φ̃(x)y =
1√
D

D⊕

j=1

(
cos ⟨x,ωj⟩2B(ωj)Ty

sin ⟨x,ωj⟩2B(ωj)Ty

)

where ωj ∼ Prρ i. i. d. and B(ω) =
(
∥ω∥Id −ωωT

)
and ρ =

N(0, σ−2Id) for all ω ∈ Rd. A bounded ORFF map is

Φ̃(x)y =
1√
D

D⊕

j=1

(
cos ⟨x,ωj⟩2B(ωj)Ty

sin ⟨x,ωj⟩2B(ωj)Ty

)
, ωj ∼ Prρ i. i. d.,
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where B(ω) =
(
Id −

ωωT

∥ω∥2

)
and ρ(ω) = σ2∥ω∥2

d N(0, σ−2Id) for all

ω ∈ Rd.

The second example extends scalar-valued Random Fourier Features
on the skewed multiplicative group –described in Subsection 3.2.4
and Subsubsection 4.2.2.2– to the operator-valued case.

Example 4.2 (Matrix-valued kernel on the skewed multiplicative
group). In the following, K(x, z) = K1−c(x⊙ z−1) is a Y-Mercer matrix-
valued kernel on X = (−c; +∞)d invariant w. r. t. the group operation12

⊙. Then the function Φ̃ defined as follow is an Operator-valued Random 12 The group
operation ⊙ is
defined in Subsub-
section 4.2.2.2.

Fourier Feature of K1−c.

Φ̃(x)y =
1√
D

D⊕

j=1

(
cos ⟨log(x + c),ωj⟩2B(ωj)∗y

sin ⟨log(x + c),ωj⟩2B(ωj)∗y

)
,

ωj ∼ PrĤaar,ρ i. i. d., for all y ∈ Y.

Proof The dual of X = (−c; +∞)d is X̂ ∼= Rd, and the duality pairing is
(x⊙ z−1,ω) = exp(i⟨log(x⊙ z−1 + c),ω⟩2). Following the proof of Exam-
ple 4.1, we have

K̃(x, z) =
1
D

D∑

j=1

cos
⟨

log
(x + c
z + c

)
,ωj

⟩
2
A(ωj).

which converges almost surely to

Eρ
[
exp

(
−i
⟨
log(x⊙ z−1 + c)

⟩
2

)
A(ω)

]
= Eρ[(x⊙ z−1,ω)A(ω)] =K(x, z)

when D tends to infinity, in the weak operator topology. □

• For the skewed-χ2 decomposable kernel defined as
Kdec,skewed1−c (δ) = kskewed1−c (δ)Γ for all δ ∈ X, let BB∗ = Γ .
A bounded –and unbounded– ORFF map is

Φ̃(x)y =
1√
D

D⊕

j=1

(
cos ⟨log(x + c),ωj⟩2B∗y

sin ⟨log(x + c),ωj⟩2B∗y

)
, ωj ∼ Prρ i. i. d.

= (Φ̃(x)⊗ B∗)y,

where ρ = S(0, 2−1) and Φ̃(x) = 1√
D

⊕D
j=1

(
cos ⟨log(x + c),ωj⟩2
sin ⟨log(x + c),ωj⟩2

)

is a scalar RFF map [98].
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4.3.4 Regularization property

We have shown so far that it is always possible to construct a fea-
ture map that allows to approximate a shift-invariant Y-Mercer ker-
nel. However we could also propose a construction of such map by
studying the regularization induced with respect to the Fourier Trans-
form of a target function f ∈ HK. In other words, what is the norm in
L2(X̂, Ĥaar;Y ′) induced by ∥·∥K?

Proposition 4.12 Let K be a shift-invariant Y-Mercer Kernel such that for
all y, y ′ in Y, ⟨y ′, Ke(·)y⟩Y ∈ L1(X,Haar). Then for all f ∈ HK

(4.22)∥f∥2
K =

∫

X̂

⟨
F [f] (ω), A (ω)† F [f] (ω)

⟩
Y

ρ(ω)
dĤaar(ω).

where ⟨y ′, A(ω)y⟩Yρ(ω) := F [⟨y ′, Ke(·)y⟩Y] (ω).

Proof We first show how the Fourier Transform relates to the feature oper-
ator. Since HK is embedded into H = L2(X̂,PrĤaar,ρ;Y ′) by means of the
feature operator W, we have for all f ∈ Hk, for all f ∈ H and for all x ∈ X

F
[
F−1 [f]

]
(x) =

∫

X̂

(x,ω)F−1 [f] (ω)dĤaar(ω) = f(x)

(Wg)(x) =
∫

X̂

(x,ω)ρ(ω)B(ω)g(ω)dĤaar(ω) = f(x).

By injectivity of the Fourier Transform, F−1 [f] (ω) = ρ(ω)B(ω)g(ω). From
Proposition 3.4 we have

∥f∥2
K

= inf
{

∥g∥2
H

∣∣∣ ∀g ∈ H, Wg = f
}

= inf
{∫

X̂

∥g(ω)∥2
Y ′dPrĤaar,ρ(ω)

∣∣∣∣ ∀g ∈ H, F−1 [f] = ρ(·)B(·)g(·)
}

.

The pseudo inverse of the operator B(ω) – noted B(ω)† – is the unique solu-
tion of the system F−1 [f] (ω) = ρ(ω)B(ω)g(ω) w. r. t. g(ω) with minimal
norm1. Eventually,

∥f∥2
K =

∫

X̂

∥∥B(ω)†F−1 [f] (ω)
∥∥2
Y

ρ(ω)2 dPrĤaar,ρ(ω)

1 Note that since B(ω) is bounded the pseudo inverse of B(ω) is well defined for
Ĥaar-almost all ω.



4.3 operator-valued random fourier features 79

Using the fact that F−1 [·] = FR[·] and F2[·] = R[·],

∥f∥2
K =

∫

X̂

∥∥R
[
B(·)†ρ(·)

]
(ω)F [f] (ω)

∥∥2
Y

ρ(ω)2 dĤaar(ω)

=
∫

X̂

∥∥B(ω)†ρ(ω)F [f] (ω)
∥∥2
Y

ρ(ω)2 dĤaar(ω)

=
∫

X̂

⟨B(ω)†F [f] (ω), B(ω)†F [f] (ω)⟩Y
ρ(ω)

dĤaar(ω)

=
∫

X̂

⟨F [f] (ω), A(ω)†F [f] (ω)⟩Y
ρ(ω)

dĤaar(ω).

□

Note that if K(x, z) = k(x, z) is a scalar kernel then for all
ω in X̂, A(ω) = 1. Therefore we recover the well known re-
sult for kernels that is for any f ∈ Hk we have ∥f∥k =
∫

X̂
F [ke] (ω)−1F [f] (ω)2dĤaar(ω) [162, 180, 190]. Eventually from this

last equation we also recover Proposition 3.9 for decomposable ker-
nels. If A(ω) = Γ ∈ L+(Rp),

(4.23)∥f∥K =
p
∑

i,j=1

(
Γ†
)
ij
⟨fi, fj⟩k

Algorithm 2: Construction of ORFF
Input :

• The pairing (x,ω) of the LCA group (X, ⋆).

• A probability measure PrĤaar,ρ with density ρ w. r. t. the haar

measure Ĥaar on X̂.

• An operator-valued function B : X̂→ L(Y,Y ′) such that for all
y y ′ ∈ Y, ⟨y ′, B(·)B(·)∗y⟩ ∈ L1(X̂,PrĤaar,ρ).

• D the number of features.
Output : A random feature Φ̃(x) such that Φ̃(x)∗Φ̃(z) ≈ K(x, z).

1 Draw D random vectors (ωj)Dj=1 i. i. d. from the probability law
PrĤaar,ρ;

2 return







Φ̃(x) ∈ L(Y, H̃) : y 7→ 1√
D

⊕D
j=1(x,ωj)B(ωj)∗y

Φ̃(x)∗ ∈ L(H̃,Y) : θ 7→ 1√
D

∑D
j=1(x,ωj)B(ωj)θj

;

We also note that the regularization property in HK does not depends
(as expected) on the decomposition of A(ω) into B(ω)B(ω)∗. There-
fore the decomposition should be chosen such that it optimizes the
computation cost. For instance if A(ω) ∈ L(Rp) has rank r, one could
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find an operator B(ω) ∈ L(Rp,Rr) such that A(ω) = B(ω)B(ω)∗.
Moreover, in light of Equation 4.22 the regularization property of
the kernel with respect to the Fourier Transform, it is also possible
to define an approximate feature map of an Operator-Valued Kernel
from its regularization properties in the VV-RKHS as proposed in
Algorithm 2.

4.4 conclusions

We have presented a generic framework that generalizes scalar-
valued RFFs presented in Chapter 2. We first showed how to construct
an ORFF from an OVK in the very general case when X is an LCA
group and Y is an infinite dimensional space. Then, conversely, how
to use the regularization properties (Proposition 4.12) to construct an
ORFF without defining an OVK.

q



5
B O U N D I N G T H E E R R O R O F T H E O R F F
A P P R O X I M AT I O N

In this chapter we refine the bound on the OVK approximation
with ORFF we first proposed in [29] and presented in [28]. It gen-
eralizes the proof technique of Rahimi and Recht [139] to OVK on
LCA groups thanks to the recent results of Koltchinskii [92], Minsker
[121], Sutherland and Schneider [167], and Tropp [175]. As a Bern-
stein bound it depends on the variance of the estimator for which we
derive an “upper bound”.
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In order to bound the error with high probability, we turn to con-
centration inequalities devoted to random matrices [25]. The concen-
tration phenomenon can be summarized by the following sentence of
Ledoux [96]. “A random variable that depends (in a smooth way) on
the influence of many random variables (but not too much on any of
them) is essentially constant”.

A typical application is the study of the deviation of the empiri-
cal mean of independent identically distributed random variables to
their expectation. This means that given an error ϵ between the kernel
approximation K̃ and the true kernel K, if we are given enough sam-
ples to construct K̃, the probability of measuring an error greater than
ϵ is essentially zero (it drops at an exponential rate with respect to
the number of samples D). To measure the error between the kernel
approximation and the true kernel at a given point, many metrics are
possible. For instance, any matrix norm such as the Hilbert-Schmidt
norm, trace norm, the operator norm or Schatten norms. In this work
we focus on measuring the error in terms of operator norm. For all x,
z ∈ X we look for a bound on

Prρ
{

(ωj)Dj=1

∣∣∣
∥∥∥K̃(x, z) − K(x, z)

∥∥∥
Y,Y

⩾ ϵ
}

= Prρ






(ωj)Dj=1

∣∣∣∣∣∣
sup

0 ̸=y∈Y

∥∥∥(K̃(x, z) − K(x, z))y
∥∥∥
Y

∥y∥Y
⩾ ϵ







In other words, given any vector y ∈ Y we study how the residual
operator K̃− K is able to send y to zero. We believe that this way of
measuring the “error” to be more intuitive. Moreover, on contrary
to an error measure with the Hilbert-Schmidt norm, the operator
norm error does not grows linearly with the dimension of the out-
put space as the Hilbert-Schmidt norm does. On the other hand the
Hilbert-Schmidt norm makes the studied random variables Hilbert
space valued, for which it is much easier to derive concentration in-
equalities [125, 136, 161]. Note that in the scalar case (A(ω) = 1) the
Hilbert-Schmidt norm error and the operator norm are the same and
measure the deviation between K̃ and K as the absolute value of their
difference.

A raw concentration inequality of the kernel estimator gives the er-
ror on one point. If one is interesting in bounding the maximum error
over N points, applying a union bound on all the point would yield
a bound that grows linearly with N. This would suggest that when
the number of points increase, even if all of them are concentrated
in a small subset of X, we should draw increasingly more features to
have an error below ϵ with high probability. However if we restrict
ourselves to study the error on a compact subset of X (and in practice
data points lies often in a closed bounded subset of Rd), we can cover
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this compact subset by a finite number of closed balls and apply the
concentration inequality and the union bound only on the center of

each ball. Then if the function
∥∥∥K̃e −Ke

∥∥∥ is smooth enough on each
ball (i. e. Lipschitz) we can guarantee with high probability that the
error between the centers of the balls will not be too high. Eventually
we obtain a bound in the worst case scenario on all the points in a
subset C of X. This bound depends on the covering number N(C, r)
of X with ball of radius r. When X is a Banach space, the covering
number is proportional to the diameter of C ⊆ X.

Prior to the presentation of general results, we briefly recall the
uniform convergence of RFF approximation for a scalar shift invariant
kernel on the additive LCA group Rd and introduce a direct corollary
about decomposable shift-invariant OVK on the LCA group (Rd,+).

5.1.1 Random Fourier Features in the scalar case and decomposable OVK

Rahimi and Recht [139] proved the uniform convergence of Random
Fourier Feature (RFF) approximation for a scalar shift-invariant ker-
nel on the LCA group Rd endowed with the group operation ⋆ = +. In
the case of the shift-invariant decomposable OVK, an upper bound
on the error can be obtained as a direct consequence of the result
in the scalar case obtained by Rahimi and Recht [139] and other au-
thors [164, 167].

Theorem 5.1 (Uniform error bound for RFF, Rahimi and Recht
[139]). Let C be a compact subset of Rd of diameter |C|. Let k be a shift
invariant kernel, differentiable with a bounded second derivative and Prρ
its normalized Inverse Fourier Transform such that it defines a probability
measure. Let

k̃ =
D∑

j=1

cos ⟨·,ωj⟩ ≈ k(x, z) and σ2 = Eρ∥ω∥2
2.

Then we have

Prρ
{

(ωj)Dj=1

∣∣∣
∥∥k̃− k

∥∥
C×C

⩾ ϵ
}

⩽ 28
(
σ|C|

ϵ

)2

exp
(
−

ϵ2D

4(d + 2)

)

From Theorem 5.1, we can deduce the following corollary about
the uniform convergence of the ORFF approximation of the decom-
posable kernel. We recall that for a given pair x, z in C, K̃(x, z) =
Φ̃(x)∗Φ̃(z) = Γ k̃(x, z) and K0(x− z) = ΓEĤaar,ρ[k̃(x, z)].

Corollary 5.1 (Uniform error bound for decomposable ORFF). Let
C be a compact subset of Rd of diameter |C|. Let K be a decomposable kernel
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built from a positive operator self-adjoint Γ , and k a shift invariant kernel
with bounded second derivative such that

K̃ =
D∑

j=1

cos ⟨·,ωj⟩Γ ≈ K and σ2 = Eρ∥ω∥2
2.

Then

Prρ

{

(ωj)Dj=1

∣∣∣∣
∥∥∥K̃− K

∥∥∥
C×C

⩾ ϵ

}

⩽ 28
(
σ∥Γ∥Y,Y|C|

ϵ

)2

exp

(
−

ϵ2D

4∥Γ∥2
2(d + 2)

)

Proof The proof directly extends Theorem 5.1 given by [139]. Let k̃ be the
Random Fourier approximation for the scalar-valued kernel k. Since

sup
(x,z) ∈C×C

∥∥∥K̃(x, z) − K(x, z)
∥∥∥
Y,Y

= sup
(x,z)∈C×C

∥Γ∥Y,Y
∣∣∣k̃(x, z) − k(x, z)

∣∣∣,

taking ϵ ′ = ∥Γ∥Y,Yϵ gives the following result for all positive ϵ ′:

Prρ

{

(ωj)Dj=1

∣∣∣∣∣ sup
x,z∈C

∥∥∥Γ
(
k̃(x, z) − k(x, z)

)∥∥∥
Y,Y

⩾ ϵ ′
}

⩽ 28
(
σ∥Γ∥Y,Y|C|

ϵ ′

)2

exp

(
−

(ϵ ′)2
D

4∥Γ∥2
Y,Y(d + 2)

)

which concludes the proof. □

Note that a similar corollary could have been obtained for the re-
cent result of Sutherland and Schneider [167] who refined the bound
proposed by Rahimi and Recht by using a Bernstein concentration
inequality instead of the Hoeffding inequality. More recently Sripe-
rumbudur and Szabo [164] showed an optimal bound for Random
Fourier Feature. The improvement of Sriperumbudur and Szabo [164]
is mainly in the constant factors where the bound does not depend
linearly on the diameter |C| of C but exhibit a logarithmic dependency
log (|C|), hence requiring significantly less random features to reach
a desired uniform error with high probability. Moreover, Sutherland
and Schneider [167] also considered a bound on the expected max

error EĤaar,ρ

∥∥∥K̃−K
∥∥∥
∞

, which is obtained using Dudley’s entropy in-

tegral [25, 56] as a bound on the supremum of an empirical process
by the covering number of the indexing set. This useful theorem is
also part of the proof of Sriperumbudur and Szabo [164].

5.1.2 Uniform convergence of ORFF approximation on LCA groups

In this analysis, we assume that Y is finite dimensional, in Subsec-
tion 5.1.3, we discuss how the proof could be extended to infinite
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dimensional output Hilbert spaces. We propose a bound for Oper-
ator-valued Random Fourier Feature approximation in the general
case. It relies on two main ideas:

1. a matrix-Bernstein concentration inequality for random matri-
ces need to be used instead of concentration inequality for scalar
random variables,

2. a general theorem, valid for random matrices with bounded
norms (such as decomposable kernel ORFF approximation) as
well as unbounded norms (such as the ORFF approximation
we proposed for curl and divergence-free kernels, for which the
norm behave as subexponential random variables).

Before introducing the new theorem, we give the definition of the Or-
licz norm which gives a proxy-bound on the norm of subexponential
random variables.

Definition 5.1 (Orlicz norm [176]). Let ψ : R+ → R+ be a non-
decreasing convex function with ψ(0) = 0. For a random variable X on a
measured space (Ω,T(Ω), µ), the quantity

∥X∥ψ = inf { C > 0 | Eµ[ψ (|X|/C)] ⩽ 1 } .

is called the Orlicz norm of X.

Here, the function ψ is chosen as ψ(u) = ψα(u) where ψα(u) := eu
α
−

1. When α = 1, a random variable with finite Orlicz norm is called
a subexponential variable because its tails decrease at an exponential
rate. Let X be a self-adjoint random operator. Given a scalar-valued
measure µ, we call variance of an operator X the quantity Varµ[X] =
Eµ[X−Eµ[X]]2. With this convention if X is a p× p Hermitian matrix,

Varµ[X]ℓm =
p
∑

r=1

Covµ[Xℓr, Xrm].

Among the possible concentration inequalities adapted to random op-
erators [92, 97, 121, 136, 175], we focus on the results of Minsker [121]
and Tropp [175], for their robustness to high or potentially infinite
dimension of the output space Y. To guarantee a good scaling with
the dimension of Y we introduce the notion of intrinsic dimension (or
effective rank) of an operator.

Definition 5.2 Let A be a trace class operator acting on a Hilbert space Y.
We call intrinsic dimension the quantity

IntDim(A) =
Tr [A]
∥A∥Y,Y

.

Indeed the bound proposed in our first publication at ACML [29]
based on Koltchinskii [92] depends on p while the present bound
depends on the intrinsic dimension of the variance of A(ω) which
is always smaller than p when the operator A(ω) is Hilbert-Schmidt
(p ⩽∞).
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Corollary 5.2 Let K : X×X→ L(Y) be a shift-invariant Y-Mercer kernel,
where Y is a finite dimensional Hilbert space of dimension p and X a finite
dimensional Banach space of dimension d. Moreover, let C be a closed ball of
X centred at the origin of diameter |C|, A : X̂ → L(Y) and PrĤaar,ρ a pair
such that

K̃e =
D∑

j=1

cos (·,ωj)A(ωj) ≈ Ke, ωj ∼ PrĤaar,ρ i. i. d...

Let DC = C ⋆ C−1 and

V(δ) ≽ VarĤaar,ρK̃e(δ), for all δ ∈ DC

and Hω be the Lipschitz constant of the function h : x 7→ (x,ω). If the three
following constants exist

m ⩾

∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ(ω) <∞

and

u ⩾ 4

(
∥∥A(ω)∥Y,Y∥ψ1

+ sup
δ∈DC

∥Ke(δ)∥Y,Y

)
<∞

and

v ⩾ sup
δ∈DC

D∥V(δ)∥Y,Y <∞.

Define pint ⩾ supδ∈DC
IntDim(V(δ)), then for all 0 < ϵ ⩽ m|C|,

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣
∥∥K̃− K

∥∥
C×C

⩾ ϵ
}

⩽ 8
√

2
(
m|C|

ϵ

)(
pintrv/D(ϵ)

) 1
d+1







exp
(
−D ϵ2

8v(d+1)(1+ 1
p)

)
, ϵ ⩽ v

u
1+1/p
K(v,p)

exp
(
−D ϵ

8u(d+1)K(v,p)

)
, otherwise,

where K(v, p) = log
(

16
√

2p
)

+ log
(
u2

v

)
and rv/D(ϵ) = 1 +

3
ϵ2 log2(1+Dϵ/v)

.

Sketch of the proof In the following, let F(δ) = F(x ⋆ z−1) = K̃(x, z) −
K(x, z). Let DC = C ⋆ C−1 =

{

x ⋆ z−1
∣∣ x, z ∈ C

}

. Since C is supposed
compact, so is DC. Its diameter is at most 2|C| where |C| is the diameter of C.
Since C is supposed to be a closed ball of a Banach space it is then possible to
find an ϵ-net covering DC with at most T = (4|C|/r)d balls of radius r [50].
We call δi for i ∈ { 1, . . . , T } the center of the i-th ball, called anchors of
the ϵ-net. Denote LF the Lipschitz constant of F. We introduce the following
lemma proved in [139].
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Lemma 5.1 For all δ ∈ DC, if

(5.2)LF ⩽
ϵ

2r

and

(5.3)∥F(δi)∥Y,Y ⩽
ϵ

2
, for all i ∈N∗

T

then ∥F(δ)∥Y,Y ⩽ ϵ for all δ ∈ DC.

To apply the lemma, we must check assumptions Equation 5.2 and Equa-
tion 5.3.

Sketch of the proof (Equation 5.2) Lemma 5.2 Let Hω ∈ R+ be the
Lipschitz constant of hω(·) and assume that

∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ(ω) <∞.

Then the operator-valued function Ke : X→ L(Y) is Lipschitz with

(5.4)∥Ke(x) − Ke(z)∥Y,Y ⩽ dX(x, z)
∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ(ω).

In the same way, considering K̃e(δ) = 1
D

∑D
j=1 coshωj(δ)A(ωj), where

ωj ∼ PrĤaar,ρ, we can show that K̃e is Lipschitz with

∥∥K̃e(x) − K̃e(z)
∥∥
Y,Y

⩽ dX(x, z)
1
D

D∑

j=1

Hωj
∥∥A(ωj)

∥∥
Y,Y
.

Taking the expectation yields

EĤaar,ρ [LF] = 2
∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ

Thus by Markov’s inequality,

(5.5)
PrĤaar,ρ { (ωj)Dj=1 | LF ⩾ ϵ } ⩽

EĤaar,ρ [LF]

ϵ

⩽
2
ϵ

∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ.

Sketch of the proof (Equation 5.3) To obtain a bound on the anchors we
apply theorem 4 of Koltchinskii [92]. We suppose the existence of the two
constants

vi = DVarĤaar,ρ

[
K̃(δi)

]

and

ui = 4
(
∥∥A(ω)∥Y,Y∥ψ1

+ ∥Ke(δi)∥Y,Y
)
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Then ∀i ∈ { 1, . . . , T },

PrĤaar,ρ

{

(ωj)Dj=1

∣∣ ∥F(δi)∥Y,Y ⩾ ϵ
}

⩽







4IntDim(vi) exp
(
−D ϵ2

2∥vi∥Y,Y(1+ 1
p)

)
rvi/D(ϵ), ϵ ⩽

∥vi∥Y,Y
2ui

1+1/p
K(vi,p)

4IntDim(vi) exp
(
−D ϵ

4uiK(vi,p)

)
rvi/D(ϵ), otherwise.

where

K(vi, p) = log
(

16
√

2p
)

+ log
(

u2
i

∥vi∥Y,Y

)

and

rvi/D = 1 +
3

ϵ2 log2(1 +Dϵ/∥vi∥Y,Y)
.

Combining Equation 5.2 and Equation 5.3. Now applying the lemma and
taking the union bound over the centers of the ϵ-net yields

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣
∥∥K̃− K

∥∥
C×C

⩾ ϵ
}

⩽ 4


rm
ϵ

+ pint

(
2|C|
r

)d
rv/D(ϵ)







exp
(
−D ϵ2

8v(1+ 1
p)

)
, ϵ ⩽ v

u
1+1/p
K(v,p)

exp
(
−D ϵ

8uK(v,p)

)
, otherwise.




The right hand side of the equation has the form ar + br−d with

a =
m

ϵ

and

b = pint(2|C|)
drv/D(ϵ)







exp
(
−D ϵ2

8v(1+ 1
p)

)
, ϵ ⩽ v

u
1+1/p
K(v,p)

exp
(
−D ϵ

8uK(v,p)

)
, otherwise.

Following [118, 139, 167], we optimize over r. It is a convex continuous
function on R+ and achieve the minimum value

r∗ = a
d
d+1b

1
d+1

(
d

1
d+1 + d−

d
d+1

)
,

hence

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣
∥∥K̃− K

∥∥
C×C

⩾ ϵ
}

⩽ 8
√

2
(
m|C|

ϵ

)(
pintrv/D(ϵ)

) 1
d+1







exp
(
−D ϵ2

8v(d+1)(1+ 1
p)

)
, ϵ ⩽ v

u
1+1/p
K(v,p)

exp
(
−D ϵ

8u(d+1)K(v,p)

)
, otherwise,

which concludes the sketch of the proof. □
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We give a comprehensive full proof of the theorem in Appendix A.1.
It follows the usual scheme derived in Rahimi and Recht [139]
and Sutherland and Schneider [167] and involves Bernstein concen-
tration inequality for unbounded symmetric matrices (Theorem A.3).

5.1.3 Dealing with infinite dimensional operators

We studied the concentration of ORFFs under the assumption that Y
is finite dimensional. Indeed a d term characterizing the dimension
of the input space X appears in the bound proposed in Corollary 5.2,
and when d tends to infinity, the exponential part goes to zero so that
the probability is bounded by a constant greater than one. Unfortu-
nately, considering unbounded random operators [121] does not give
any tighter solution.

In our first bound presented at ACML, we presented a bound
based on a matrix concentration inequality for unbounded random
variable. Compared to this previous bound, Corollary 5.2 does not
depend on the dimensionality p of the output space Y but on the
intrinsic dimension of the operator A(ω). However to remove the de-
pendency in p in the exponential part, we must turn our attention to
operator concentration inequalities for bounded random variable. To
the best of our knowledge we are not aware of concentration inequal-
ities working for “unbounded” operator- valued random variables
acting on infinite dimensional spaces. Following the same proof than
Corollary 5.2 we obtain

Corollary 5.3 Let K : X× X → L(Y) be a shift-invariant Y-Mercer ker-
nel, where Y is a Hilbert space and X a finite dimensional Banach space of
dimension D. Moreover, let C be a closed ball of X centered at the origin of
diameter |C|, subset of X, A : X̂→ L(Y) and PrĤaar,ρ a pair such that

K̃e =
D∑

j=1

cos (·,ωj)A(ωj) ≈ Ke, ωj ∼ PrĤaar,ρ i. i. d..

where A(ωj) is a Hilbert-Schmidt operator for all j ∈ N∗
D. Let DC = C ⋆

C−1 and

V(δ) ≽ VarĤaar,ρK̃e(δ), for all δ ∈ DC

and Hω be the Lipschitz constant of the function h : x 7→ (x,ω). If the three
following constants exists

m ⩾

∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ(ω) <∞

and

u ⩾ ess sup
ω∈X̂

∥A(ω)∥Y,Y + sup
δ∈DC

∥Ke(δ)∥Y,Y <∞
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and

v ⩾ sup
δ∈DC

D∥V(δ)∥Y,Y <∞.

define pint ⩾ supδ∈DC
IntDim (V(δ)) then for all

√
v
D + u

3D < ϵ < m|C|,

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣∣∣ sup
δ∈DC

∥F(δ)∥Y,Y ⩾ ϵ

}

⩽ 8
√

2
(
m|C|

ϵ

)
p

1
d+1
int exp (−Dψv,d,u(ϵ))

where ψv,d,u(ϵ) = ϵ2

2(d+1)(v+uϵ/3) .

Again a full comprehensive proof is given in Appendix A.1 of the
appendix. Notice that in this result, The dimension p = dimY does
not appear. Only the intrinsic dimension of the variance of the esti-

mator. Moreover when d is large, the term p
1
d+1
int goes to one, so that

the impact of the intrinsic dimension on the bound vanish when the
dimension of the input space is large.

5.1.4 Variance of the ORFF approximation

We now provide a bound on the norm of the variance of K̃, required
to apply Corollaries 5.2 and 5.3. This is an extension of the proof of
Sutherland and Schneider [167] to the operator-valued case, and we
recover their results in the scalar case when A(ω) = 1. An illustration
of the bound is provided in Figures 5.2 and 5.3 for the decomposable
and the curl-free OVK.

Proposition 5.1 (Bounding the variance of K̃). Let K be a shift invari-
ant Y-Mercer kernel on a second countable LCA topological space X. Let
A : X̂→ L(Y) and PrĤaar,ρ a pair such that

K̃e =
D∑

j=1

cos (·,ωj)A(ωj) ≈ Ke, ωj ∼ PrĤaar,ρ i. i. d..

Then,

VarĤaar,ρ

[
K̃e(δ)

]
≼

1
2D

(
(Ke(2δ) + Ke(e)) EĤaar,ρ [A(ω)]

− 2Ke(δ)2 + VarĤaar,ρ [A(ω)]
)

Proof It relies on the i. i. d. property of the random vectors ωj and trigono-
metric identities (see the proof in Proposition A.3 of the appendix). □
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5.1.5 Application on decomposable, curl-free and divergence-free OVK

First, the two following examples discuss the form of Hω for the
additive group and the skewed-multiplicative group. Here we view
X = Rd as a Banach space endowed with the Euclidean norm. Thus
the Lipschitz constant Hω is bounded by the supremum of the norm
of the gradient of hω.

Example 5.1 (Additive group). On the additive group, hω(δ) = ⟨ω, δ⟩.
Hence Hω = ∥ω∥2.

Example 5.2 (Skewed-multiplicative group). On the skewed multi-
plicative group, hω(δ) = ⟨ω, log(δ + c)⟩. Therefore

sup
δ ∈C

∥∇hω(δ)∥2 = sup
δ∈C

∥ω/(δ + c)∥2.

Eventually C is compact subset of X and finite dimensional thus C is closed
and bounded. Thus Hω = ∥ω∥2/(minδ∈C∥δ∥2 + c).

Now we compute upper bounds on the norm of the variance and
Orlicz norm of the three ORFFs we took as examples.

5.1.5.1 Decomposable kernel

Notice that in the case of the Gaussian decomposable kernel, i. e.
A(ω) = A, e = 0, K0(δ) = Ak0(δ), k0(δ) ⩾ 0 and k0(δ) = 1, then we
have

D
∥∥Varµ

[
K̃0(δ)

]∥∥
Y,Y

⩽ (1 + k0(2δ))∥A∥Y,Y/2 + k0(δ)2.

5.1.5.2 Curl-free and divergence-free kernels:

recall that in this case p = d. For the (Gaussian) curl-free kernel,
A(ω) = ωω∗ where ω ∈ Rd ∼ N(0, σ−2Id) thus Eµ[A(ω)] = Id/σ

2

and Varµ[A(ω)] = (d + 1)Id/σ4. Hence,

D
∥∥Varµ

[
K̃0(δ)

]∥∥
Y,Y

⩽
1
2

∥∥∥∥
1
σ2K0(2δ) − 2K0(δ)2

∥∥∥∥
Y,Y

+
(d + 1)
σ4 .

This bound is illustrated by Figure 5.1 B, for a given datapoint. Even-
tually for the Gaussian divergence-free kernel, A(ω) = I∥ω∥2

2 −ωω
∗,

thus Eµ[A(ω)] = Id(d − 1)/σ2 and Varµ[A(ω)] = d(4d − 3)Id/σ4.
Hence,

D
∥∥Varµ

[
K̃0(δ)

]∥∥
Y,Y

⩽
1
2

∥∥∥∥
(d− 1)
σ2 K0(2δ) − 2K0(δ)2

∥∥∥∥
Y,Y

+
d(4d− 3)
σ4 .

To conclude, we ensure that the random variable ∥A(ω)∥Y,Y has a
finite Orlicz norm with ψ = ψ1 in these three cases.
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5.1.5.3 Computing the Orlicz norm

For a random variable with strictly monotonic moment generating
function (MGF), one can characterize its inverse ψ1 Orlicz norm
by taking the functional inverse of the MGF evaluated at 2 (see
Lemma A.3 of the appendix). In other words ∥X∥−1

ψ1
= MGF(x)−1

X (2).
For the Gaussian curl-free and divergence-free kernel,

∥∥Adiv(ω)
∥∥
Y,Y

=
∥∥Acurl(ω)

∥∥
Y,Y

= ∥ω∥2
2,

where ω ∼ N(0, Id/σ2), hence ∥A(ω)∥2 ∼ Γ (p/2, 2/σ2). The MGF of
this gamma distribution is MGF(x)(t) = (1 − 2t/σ2)−(p/2). Eventually

∥∥∥∥Adiv(ω)
∥∥
Y,Y

∥∥−1
ψ1

=
∥∥∥∥Acurl(ω)

∥∥
Y,Y

∥∥−1
ψ1

=
σ2

2

(
1 − 4−

1
p

)
.

5.2 conclusions

In this chapter we have seen how to bound
∥∥∥K̃−K

∥∥∥ in the opera-
tor norm with high probability (Section 5.1). We studied the case of
unbounded finite dimensional OVKs and bounded potentially infi-
nite dimensional OVKs. The current lack of concentration inequali-
ties working for both unbounded and infinite dimensional with the
operator norm (Banach space) in the literature prevents us to unify
these bounds.

q



6
L E A R N I N G W I T H F E AT U R E M A P S

This contribution chapter focuses on explaining how to define an ef-
ficient implemenation and algorithm to train an ORFF model. First
we recall the supervised ridge regression with OVK and the cele-
brated representer theorem [182]. Then we show under which con-
dition learning with an ORFF is equivalent to learning with a kernel
approximation. Eventually we give the gradient for the Ridge regres-
sion problem, in order to find an optimal solution with gradient de-
scent algorithms, as well as a closed form algorithm. We conclude
by showing how viewing ORFFs as linear operators rather than ma-
trices yields a more efficient implementation and finish with some
numerical applications on toy and real-world datasets.
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6.1 learning with ovk

Before focusing on learning function with an ORFF model, we briefly
review the context of supervised learning in VV-RKHS.

6.1.1 Supervised learning within VV-RKHS

Let s = (xi, yi)Ni=1 ∈ (X× Y)
N be a sequence of training samples.

Given a local loss function L : X× F × Y → R such that L is proper,
convex and lower semi-continuous in F, we are interested in finding
a vector-valued function fs : X→ Y, that lives in a VV-RKHS and mini-
mizes a tradeoff between a data fitting term and a regularization term
to prevent from overfitting. Namely finding fs ∈ HK such that

(6.1)fs = arg min
f∈HK

1
N

N∑

i=1

L(xi, f, yi) +
λ

2
∥f∥2

K

where λ ∈ R+ is a regularization13 parameter. We recall that the quan-13 Tychonov
regularization. tity

Remp(f, s) =
1
N

N∑

i=1

L(xi, f, yi), ∀f ∈ HK, ∀s ∈ (X× Y)
N.

is called the empirical risk of the model f ∈ HK according the local
loss L. A common choice for L is the quadratic loss L : (x, f, y) 7→
∥f(x) − y∥2

Y. We introduce a corollary from Mazur and Schauder pro-
posed in 1936 showing that Equation 6.1 –and Equation 6.3– attains a
unique mimimizer (see Górniewicz [74] and Kurdila and Zabarankin
[93]).

Theorem 6.1 (Mazur-Schauder). Let H be a Hilbert space and R : H→
R be a proper, convex, lower semi-continuous and coercive function. Then
R is bounded from below and attains a minimizer. Moreover if R is strictly
convex the minimizer is unique.

This is easily verified for Ridge regression. Define

(6.2)Rλ(f, s) =
1
N

N∑

i=1

∥f(xi) − yi∥2
Y +

λ

2
∥f∥2

K,

where f ∈ HK and λ ∈ R>0. Rλ is continuous14 and strictly con-14 Reminder, if f ∈
Hk, evx : f 7→ f(x)

is continuous, see
Proposition 3.2.

vex. Additionally Rλ is coercive since ∥f∥K is coercive, λ ∈ R>0,
and all the summands of Rλ are positive. Hence for all positive λ,
fs = arg minf∈HK

Rλ(f) exists, is unique and attained.

Remark 6.1 (Kadri et al. [86]). We consider the optimization problem
proposed in Equation 6.2 where L : (xi, f, yi) 7→ ∥f(xi) − yi∥2

Y. If given a
training sample s, we have

1
N

N∑

i =1

∥yi∥2
Y ⩽ σ2

y,
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then λ∥fs∥K ⩽ 2σ2
y. Indeed, since HK is a Hilbert space, 0 ∈ HK, thus

λ

2
∥fs∥2

K ⩽
1
N

N∑

i=1

L(xi, fs, yi) +
λ

2
∥fs∥2

K

⩽
1
N

N∑

i=1

L(xi, 0, yi) ⩽ σ2
y, by optimality of fs.

Since for all x ∈ X, ∥f(x)∥Y ⩽
√
∥K(x, x)∥Y,Y∥f∥K, the maximum value

that the solution ∥fs(x)∥Y of Equation 6.2 can reach is σy
√

2∥K(x,x)∥Y,Y
λ .

Thus when solving a Ridge regression problem, given a shift-invariant kernel
Ke, one should choose

0 < λ ⩽ 2∥Ke(e)∥Y,Y
σ2
y

C2 .

with C ∈ R>0 to have a chance to fit all the yi with norm ∥yi∥Y ⩽ C in
the train set.

6.1.1.1 Representer theorem and Feature equivalence

Regression in Vector Valued Reproducing Kernel Hilbert Space has
been well studied [5, 8, 35, 86, 113, 116, 120, 146], and a cornerstone
of learning in VV-RKHS is the representer theorem15 , which allows to 15 Sometimes

referred to as
minimal norm
interpolation
theorem.

replace the search of a minimizer in a infinite dimensional VV-RKHS
by a finite number of parameters (ui)Ni=1, ui ∈ Y.

In the following we suppose we are given a cost function c : Y×
Y → R, such that c(f(x), y) returns the error of the prediction f(x)
w. r. t. the ground truth y. A loss function of a model f with respect
to an example (x, y) ∈ X × Y can be naturally defined from a cost
function as L(x, f, y) = c(f(x), y). Conceptually the function c evaluates
the quality of the prediction versus its ground truth y ∈ Y while the
loss function L evaluates the quality of the model f at a training point
(x, y) ∈ X× Y.

Theorem 6.2 (Representer theorem). Let K be a Y-Mercer Operator-
Valued Kernel and HK its corresponding VV-RKHS.

Let c : Y× Y → R be a cost function such that L(x, f, y) = c(f(x), y) is
a proper convex lower semi-continuous function in f for all x ∈ X and all
y ∈ Y.

Eventually let λ ∈ R>0 be the Tychonov regularization hyperparameter.
The solution fs ∈ HK of the regularized optimization problem

(6.3)fs = arg min
f∈HK

1
N

N∑

i=1

c(f(xi), yi) +
λ

2
∥f∥2

K
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has the form fs =
∑N
j=1 K(·, xj)us,j where (us)j ∈ Y and

us = arg min
u∈
⊕N
i=1 Y

1
N

N∑

i=1

c



N∑

j=1

K(xi, xj)uj, yi


 +

λ

2

N∑

j,k=1

u∗jK(xj, xk)uk.

(6.4)

The first representer theorem was introduced by Wahba [182] in the
case where Y = R. The extension to an arbitrary Hilbert space Y has
been proved by many authors in different forms [34, 86, 113]. The idea
behind the representer theorem is that even though we minimize over
the whole space HK, when λ > 0, the solution of Equation 6.3 falls
inevitably into the set

HK,s =







N∑

j=1

Kxjuj

∣∣∣∣∣∣
∀(ui)Ni=1 ∈ YN






.

Therefore the result can be expressed as a finite linear combination of
basis functions of the form K(·, xk). Remark that we can perform the
kernel expansion of fs =

∑N
j=1 K(·, xj)us,j even though λ = 0. However

fs is no longer the solution of Equation 6.3 over the whole space HK
but a projection on the subspace HK,s. While this is in general not
a problem for practical applications, it might raise issues for further
theoretical investigations. In particular, it makes it difficult to perform
theoretical comparison of the “exact” solution of Equation 6.3 with
respect to the ORFF approximation solution given in Theorem 6.3.

Proof Since f(x) = K∗
xf (see Equation 3.14), the optimization problem reads

fs = arg min
f∈HK

1
N

N∑

i=1

c(K∗
xi
f, yi) +

λ

2
∥f∥2

K

Let Ws : HK →
⊕N
i=1 Y be the restriction1 linear operator defined as

Wsf =
N⊕

i=1

K∗
xi
f,

with K∗
xi

: HK → Y and Kxi : Y→ HK. Let Y =
⊕N
i=1 yi ∈ YN. We have

⟨Y,Wsf⟩⊕N
i =1 Y

=
N∑

i=1

⟨yi, K∗
xi
f⟩Y =

N∑

i=1

⟨Kxiyi, f⟩HK
.

1 Ws is sometimes called the sampling or evaluation operator as in Minh, Bazzani,
and Murino [120]. However we prefer calling it “restriction operator” as in Rosasco,
Belkin, and Vito [142] since Wsf is the restriction of f to the points in s.
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Thus the adjoint operator W∗
s

:
⊕N
i=1 Y→ HK is

W∗
s
Y =

N∑

i=1

Kxiyi,

and the operator W∗
s
Ws : HK → HK is

W∗
s
Wsf =

N∑

i=1

KxiK
∗
xi
f.

Let

Rλ(f, s) =
1
N

N∑

i=1

c(f(xi), yi)

︸ ︷︷ ︸

=Rc

+
λ

2
∥f∥2

K

To ensure that Rλ has a global minimizer we need the following techni-
cal lemma (which is a consequence of the Hahn-Banach theorem for lower-
semicontimuous functional, see Kurdila and Zabarankin [93]).

Lemma 6.1 Let R be a proper, convex, lower semi-continuous functional,
defined on a Hilbert space H. If R is strongly convex, then R is coercive.

Proof Consider the convex function G(f) := R(f) − λ∥f∥2, for some λ >
0. Since R is by assumption proper, lower semi-continuous and strongly
convex with parameter λ, G is proper, lower semi-continuous and convex.
Thus Hahn-Banach theorem apply, stating that G is bounded by below by an
affine functional. i. e. there exists f0 and f1 ∈ H such that

G(f) ⩾ G(f0) + ⟨f− f0, f1⟩, for all f ∈ H.

Then substitute the definition of G to obtain

R(f) ⩾ R(f0) + λ (∥f∥− ∥f0∥) + ⟨f− f0, f1⟩.

By the Cauchy-Schwartz inequality, ⟨f, f1⟩ ⩾ −∥f∥∥f1∥, thus

R(f) ⩾ R(f0) + λ (∥f∥− ∥f0∥) − ∥f∥∥f1∥− ⟨f0, f1⟩,

which tends to infinity as f tends to infinity. Hence R is coercive □

Since c is proper, lower semi-continuous and convex by assumption, thus
the term Rc is also proper, lower semi-continuous and convex. Moreover
the term λ

2 ∥f∥
2
K is strongly convex. Thus Rλ is strongly convex. Apply

Lemma 6.1 to obtain the coercivity of Rλ, and then Theorem 6.1 to show
that Rλ has a unique minimizer and is attained. Then let

HK,s =







N∑

j=1

Kxjuj

∣∣∣∣∣∣
∀(ui)Ni=1 ∈ YN






.

For f ∈ H⊥
K,s

16 , the operator Ws satisfies 16 H⊥
K,s ⊕HK,s =

HK because Ws is
bounded.
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⟨Y,Wsf⟩⊕N
i =1 Y

= ⟨ f
︸︷︷︸

∈H⊥
K,s

,

N∑

i=1

Kxiyi

︸ ︷︷ ︸

∈HK,s

⟩HK
= 0

for all sequences (yi)Ni=1, since yi ∈ Y. Hence,

(6.5)(f(xi))Ni =1 = 0

Now for an arbitrary f ∈ HK, consider the orthogonal decomposition f =

f⊥ + f∥, where f⊥ ∈ H⊥
K,s and f∥ ∈ HK,s. Then since

∥∥f⊥ + f∥
∥∥2
HK

=
∥∥f⊥

∥∥2
HK

+
∥∥f∥
∥∥2
HK

, Equation 6.5 shows that if λ > 0, clearly then

Rλ(f, s) = Rλ

(
f⊥ + f∥, s

)
⩾ Rλ

(
f∥, s

)

The last inequality holds only when
∥∥f⊥

∥∥
HK

= 0, that is when f⊥ = 0. As
a result since the minimizer of Rλis unique and attained, it must lies in
HK,s. □

The representer theorem shows that minimizing a functional in a VV-
RKHS yields a solution which depends on all the points in the train-
ing set. Assuming that for all xi, x ∈ X and for all ui ∈ Y it takes time
P, to compute K(xi, x)ui, making a prediction using the representer
theorem takes NP. If Y = Rp, we can view K(xi, x) as a matrix and
then P = Ot(p2) thus making a prediction cost Ot(Np2) operations.

6.1.2 Learning with Operator Random Fourier Feature maps

Instead of learning a model f that depends on all the points of the
training set, we would like to learn a parametric model of the form
f̃(x) = Φ̃(x)∗θ, where θ lives in some space H̃. We are interested in
finding a parameter vector θs such that

(6.6)θs = arg min
θ∈H̃

1
N

N∑

i=1

c
(
Φ̃(xi)∗θ, yi

)
+
λ

2
∥θ∥2

H̃

The following theorem states that when λ > 0 then learning with a
feature map is equivalent to learn with a kernel. Moreover if fs ∈ HK
is a solution of Equation 6.7 and θs ∈ H is the solution of Equa-
tion 6.8, then fs = Φ(·)∗θs. This equivalence could have been obtained
by means of Lagrange duality. However in this proof we do not use
such tool: we only focus on the representer theorem and the fact that
there exist a partial isometry W between the VV-RKHS and a feature
space H. We show that if θs is a solution of Equation 6.8, then theta
belongs to (Ker W)⊥, thus there is an isometry between θs ∈ H̃ and
H
K̃

: namely W.

Theorem 6.3 (Feature equivalence). Let K̃ be an Operator-Valued Ker-
nel such that for all x, z ∈ X, Φ̃(x)∗Φ̃(z) = K̃(x, z) where K̃ is a Y-Mercer
OVK and H

K̃
its corresponding Y-Reproducing kernel Hilbert space.
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Let c : Y× Y→ R be a cost function such that L
(
x, f̃, y

)
= c
(
f̃(x), y

)

is a proper convex lower semi-continuous function in f̃ ∈ H
K̃

for all x ∈ X

and all y ∈ Y.

Eventually let λ ∈ R>0R+ be the Tychonov regularization hyperparame-
ter. The solution fs ∈ H

K̃
of the regularized optimization problem

(6.7)f̃s = arg min
f̃∈H

K̃

1
N

N∑

i=1

c
(
f̃(xi), yi

)
+
λ

2

∥∥∥f̃
∥∥∥

2

K̃

has the form f̃s = Φ̃(·)∗θs, where θs ∈ (Ker W̃)⊥ and

(6.8)θs = arg min
θ∈H̃

1
N

N∑

i=1

c
(
Φ̃(xi)∗θ, yi

)
+
λ

2
∥θ∥2

H̃

Proof Since K̃ is an operator-valued kernel, from Theorem 6.2, Equation 6.7
has a solution of the form

f̃s =
N∑

i=1

K̃(·, xi)ui, ui ∈ Y, xi ∈ X

=
N∑

i=1

Φ̃(·)∗Φ̃(xi)ui = Φ̃(·)∗
(
N∑

i=1

Φ̃(xi)ui

)

︸ ︷︷ ︸

=θ∈
(

Ker W̃
)⊥

⊂H̃

.

Let

θs = arg min
θ∈
(

Ker W̃
)⊥

1
N

N∑

i=1

c
(
Φ̃(xi)∗θ, yi

)
+
λ

2

∥∥∥Φ̃(·)∗θ
∥∥∥

2

K̃
.

Since θ ∈ (Ker W̃)⊥ and W is an isometry from (Ker W̃)⊥ ⊂ H̃ onto H
K̃

,

we have
∥∥∥Φ̃(·)∗θ

∥∥∥
2

K̃
= ∥θ∥2

H̃
. Hence

θs = arg min
θ∈
(

Ker W̃
)⊥

1
N

N∑

i=1

c
(
Φ̃(xi)∗θ, yi

)
+
λ

2
∥θ∥2

H̃

Finding a minimizer θs over
(

Ker W̃
)⊥

is not the same as finding a mini-

mizer over H̃. Although in both cases Mazur-Schauder’s theorem guarantees
that the respective minimizers are unique, they might not be the same. Since
W̃ is bounded, Ker W̃ is closed, so that we can perform the decomposition

H̃ =
(

Ker W̃
)⊥
⊕
(

Ker W̃
)

. Then clearly by linearity of W and the fact

that for all θ∥ ∈ Ker W̃, W̃θ∥ = 0, if λ > 0 we have

θs = arg min
θ∈H̃

1
N

N∑

i=1

c
(
Φ̃(xi)∗θ, yi

)
+
λ

2
∥θ∥2

H̃
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Thus

θs = arg min
θ⊥∈(Ker W̃)

⊥
,

θ∥∈Ker W̃

1
N

N∑

i=1

c



(
W̃θ⊥

)
(x) +

(
W̃θ∥

)
(x)

︸ ︷︷ ︸

=0 for all θ∥

, yi




+
λ

2

∥∥∥θ⊥
∥∥∥

2

H̃
+

λ

2

∥∥∥θ∥
∥∥∥

2

H̃
︸ ︷︷ ︸

=0 only if θ∥=0

Thus

θs = arg min
θ⊥∈

(
Ker W̃

)⊥

1
N

N∑

i=1

c
((
W̃θ⊥

)
(x), yi

)
+
λ

2

∥∥∥θ⊥
∥∥∥

2

H̃
.

Hence minimizing over
(

Ker W̃
)⊥

or H̃ is the same when λ > 0. Eventu-
ally,

θs = arg min
θ∈H̃

1
N

N∑

i=1

c
(
Φ̃(xi)∗θ, yi

)
+
λ

2
∥θ∥2

H̃.

□

In the aforementioned theorem, we use the notation K̃ and Φ̃ because
our main subject of interest is the ORFF map. However this theorem
works for any feature maps Φ(x) ∈ L(Y,H) even when H is infinite di-
mensional.2. This shows that when λ > 0 the solution of Equation 6.4
with the approximated kernel K(x, z) ≈ K̃(x, z) = Φ̃(x)∗Φ̃(z) is the
same than the solution of Equation 6.6 up to a linear transformation.
Namely, if us is the solution of Equation 6.4, θs is the solution of
Equation 6.6 and λ > 0 we have

θs =
N∑

i=1

Φ̃(xi)(us)i ∈ (Ker W)⊥ ⊆ H̃.

If λK = 0 we can still find a solution us of Equation 6.4. By con-
struction of the kernel expansion, we have us ∈ (Ker W)⊥. However
looking at the proof of Theorem 6.3 we see that θs might not belong
to (Ker W)⊥. We can compute a residual vector

rs =
N∑

i=1

Φ̃(xi)(us)i − θs.

Since
∑N
j=1 Φ̃(xj) ∈ (Ker W)⊥ by construction, if rs = 0, it means that

λK is large enough for both representer theorem and ORFF represen-
ter theorem to apply. If rs ̸= 0 but Φ̃(·)∗rs = 0 it means that both θs

2 If Φ(x) : L(Y,H) and dim(H) = ∞, the decomposition H = (Ker W)⊕ (Ker W)⊥

holds since H is a Hilbert space and W is a bounded operator.
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and
∑N
j=1 Φ̃(xj)us are in (Ker W)⊥, thus the representer theorem fails

to find the “true” solution over the whole space H
K̃

but returns a
projection onto H

K̃,s
of the solution. If rs ̸= 0 and Φ̃(·)∗rs ̸= 0 means

that θs is not in (Ker W)⊥, thus the feature equivalence theorem fails
to apply. Since rs =

∑N
i=1 Φ̃(xi)(us)i − θ⊥s − θ

∥
s and

∑N
i=1 Φ̃(xi)(us)i

is in (Ker W)⊥, with mild abuse of notation we write rs = θ∥. This
remark is illustrated in Figures 6.1 and 6.2.

In Figure 6.1, we generated the data from a sine wave to which
we add some Gaussian noise. We learned a Gaussian kernel based
RFF model (blue curve) and a kernel model (yellow curve) where the
kernel is obtained from the RFF map. The left column represents the
fit of the model to the points for four different valued of λ (top to
bottom: 10−2, 10−5, 10e−10, 0). The middle column shows if the RFF
solution θs is in (Ker W̃)⊥. This is true for all values of λ. The right
column shows that even though θs is in (Ker W̃)⊥, when λ→ 0 learn-
ing with RFF is different from learning with the kernel constructed
from the RFF maps since the coefficients of θ∥ are all different from
0.

Figure 6.2 is the same setting than Figure 6.1 except that we de-
creased the scale parameter σ of the Gaussian kernel to make it over-
fit, and emphasize that when λ = 0, θs might not belong to (Ker W̃)⊥,
as represented on the middle column.

6.2 solving orff-based regression

In order to find a solution to Equation 6.6, we first turn our attention
to gradient descent methods. In the following we let

Rλ(θ) =
1
N

N∑

i=1

c
(
Φ̃(xi)∗θ, yi

)
+
λ

2
∥θ∥2

H̃

Then, we study the complexity in time of the proposed algorithm.

6.2.1 Gradient descent methods

Since the solution of Equation 6.6 is unique when λ > 0, a sufficient
and necessary condition is that the gradient of Rλ at the minimizer θs
is zero. We use the Frechet derivative, the strongest notion of deriva-
tive in Banach spaces17 [46, 93] which directly generalizes the notion 17 Here we view the

Hilbert space H
(feature space) as a
reflexive Banach
space.

of gradient to Banach spaces. A function f : H0 → H1 is call Frechet
differentiable at θ0 ∈ H0 if there exists a bounded linear operator
A ∈ L(H0,H1) such that

lim
∥h∥H0

→0

∥f(θ0 + h) − f(θ0) −Ah∥H1

∥h∥H0

= 0
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We write

(DFf)(θ0) =
∂f(θ)
∂θ

∣∣∣∣
θ=θ0

= A

and call it Frechet derivative of f with respect to θ at θ0. With mild
abuse of notation we write

∂f(θ)
∂θ

∣∣∣∣
θ=θ0

=
∂f(θ0)
∂θ0

.

The chain rule is valid in this context [93, theorem 4.1.1 page 140].
Namely, let H0, H1 and H2 be three Hilbert spaces. If a function f :
H0 → H1 is Frechet differentiable at θ and g : H1 → H2 is Frechet
differentiable at f(θ) then g ◦ f is Frechet differentiable at θ and for all
h ∈ H0

∂

∂θ
(g ◦ f)(θ) ◦ h =

∂g(f(θ))
∂f(θ)

◦ ∂f(θ)
∂θ
◦ h,

or equivalently,

DF(g ◦ f)(θ) ◦ h = (DFg)(f(θ)) ◦ (DFf)(θ) ◦ h.

If f : H → R then (DFf)(θ0) ∈ H∗ for all θ0 ∈ H, and by Riesz’s
representation theorem we define the gradient of f noted ∇θf(θ) ∈ H

as the the vector in H such that

⟨∇θf(θ), h⟩H = (DFf)(θ) ◦ h =
∂f(θ)
∂θ
◦ h.

For a function f : H0 → H1 we note the jacobian of f as Jθ f(θ) = ∂f(θ)
∂θ .

In this context if f : H0 → H1 and g : H1 → R the chain rule reads for
all h ∈ H0

∂

∂θ
(g ◦ f)(θ) ◦ h =

∂g(f(θ))
∂f(θ)

◦ Jθ f(θ) ◦ h.

By Riesz’s representation theorem,

⟨∇θ(g ◦ f)(θ), h⟩H0
= ⟨∇f(θ)g(f(θ)), Jθ f(θ)h⟩H0

= ⟨(Jθ f(θ))∗∇f(θ)g(f(θ)), h⟩H0

Hence
∇θ(g ◦ f)(θ) = (Jθ f(θ))∗∇f(θ)g(f(θ)).

Thus by linearity and applying the chaine rule to Equation 6.6 we
have

∇θc
(
Φ̃(xi)∗θ, yi

)
= Φ̃(xi)V∗

(
∂

∂y
c (y, yi)

∣∣∣∣
y=Φ̃(xi)∗θ

)∗

,

∇θ∥θ∥
2
H̃ = 2θ.

Provided that c(y, yi) is Frechet differentiable w. r. t. y, for all y and
yi ∈ Y we have ∇θRλ(θ) ∈ H̃ and

(6.9)∇θRλ(θ) =
1
N

N∑

i=1

Φ̃(xi)

(
∂

∂y
c (y, yi)

∣∣∣∣
y=Φ̃(xi)∗θ

)∗

+ λθ
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Example 6.1 (Naive closed form for the squared error cost). Con-
sider the cost function defined for all y, y ′ ∈ Y by c(y, y ′) = 1

2∥y− y∥
2
Y.

Then
(
∂

∂y
c (y, yi)

∣∣∣∣
y=Φ̃(xi)∗θ

)∗

=
(
Φ̃(xi)∗θ− yi

)
.

Thus, since the optimal solution θs verifies ∇θsRλ(θs) = 0 we have

1
N

N∑

i =1

Φ̃(xi)
(
Φ̃(xi)∗θs − yi

)
+ λθs = 0.

Therefore,

(6.10)

(
1
N

N∑

i=1

Φ̃(xi)Φ̃(xi)∗ + λI
H̃

)
θs =

1
N

N∑

i=1

Φ̃(xi)yi.

Suppose that Y ⊆ Rp, and for all x ∈ X, Φ̃(x) : Rr → Rp where all
spaces are endowed with the euclidean inner product. From this we can de-
rive Algorithm 3 which returns the closed form solution of Equation 6.6 for
c(y, y ′) = 1

2∥y− y ′∥2
2.

If one considers a Mahalanobis inner product, evaluation of operators
has to be done with extra care since the adjoint operator is not the
classic conjugate transpose of the operator (see Remark 6.2). Indeed
let x, z ∈ Y = Cp endowed with its standard basis B, and ⟨x, y⟩Y =
⟨x, Σ−1z⟩2 where Σ is some symmetric positive-definite operator w. r. t.
the basis B. Some simple calculations shows that given an operator
A ∈ L(Y),

(A∗)ij : = ⟨ej, Σ−1A∗ei⟩2 = ⟨Σ−1A∗ei, ej⟩2 = ⟨ei, AΣ−1ej⟩2 := (ΣAΣ−1)ji

Thus A∗ = Σ−1A
T
Σ.

Remark 6.2 Notice that the evaluation of each operator ∇θRλ(θ), V∗,
Φ̃(xi)∗’s depends on the inner product of the respective spaces in which they
are defined. Namely Y, and H̃. For instance if one chooses H̃ =

⊕D
j=1 Y

′,
Y ′ = Ru

′
endowed with the Euclidean inner product ⟨θ ′, θ⟩Y ′ = ⟨θ ′, θ⟩2, Y

endowed with a Mahalanobis inner product ⟨u ′, u⟩U = ⟨u ′, Σ−1u⟩2 where
Σ is some symmetric positive definite operator, then for all x ∈ X,

Φ̃(x)ij = ⟨ejΦ̃(x)ei⟩2 = ⟨ei, Σ−1ΣΦ̃(x)∗ej⟩2 = (ΣΦ̃(x)∗)ji.

Thus Φ̃(x)∗ = Σ−1Φ̃(x)T and then Equation 6.10 reads
(

1
N

N∑

i=1

Φ̃(xi)Σ−1Φ̃(xi)T + λI
H̃

)
θs =

1
N

N∑

i=1

Φ̃(xi)yi.
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6.2.2 Complexity analysis

Algorithm 3 constitutes our first step toward large-scale learning with
Operator-Valued Kernels. We can easily compute the time complex-
ity of Algorithm 3 when all the operators act on finite dimensional
Hilbert spaces. Suppose that p = dim(Y) < ∞ and for all x ∈ X,
Φ̃(x) : Y → H̃ where r = dim(H̃) < ∞ is the dimension of the re-
description space H̃ = Rr. Since p and r <∞, we view the operators
Φ̃(x) and I

H̃
as matrices. Step 1 costs Ot(Nr2p). Steps 2 costs Ot(Nrp).

For step 3, the naive inversion of the operator costs Ot(r3). Eventually
the overall complexity of Algorithm 3 is

Ot
(
r2(Np + r)

)
,

while the space complexity is Os(r2). This complexity is to compare
with the kernelized solution. Let

K :







YN → YN

u 7→
⊕N+U
i=1

∑N+U
j=1 K(xi, xj)uj

When Y = R,

K =




K(x1, x1) . . . K(x1, xN+U)
...

. . .
...

K(xN+U, x1) . . . K(xN+U, xN+U)




is called the Gram matrix of K. When Y = Rp, K is a matrix-valued
Gram matrix of size pN× pN where each entry Kij ∈Mp,p(R). Then
the equivalent kernelized solution us of Theorem 6.2 is

(
1
N

K + λI⊕N
i=1 Y

)
us =

N⊕

i=1

yi.

which has time complexity Ot
(
N3p3

)
and space complexity

Os
(
N2p2

)
. Suppose we are given a generic ORFF map (see Subsec-

tion 4.3.3). Then r = 2Dp, where D is the number of samples. Hence
Algorithm 3 is better than its kernelized counterpart when r = 2Dp
is small compared to Np. Thus, roughly speaking it is better to use
Algorithm 3 when the number of features, r, required is small com-
pared to the number of training points. Notice that Algorithm 3 has a
linear complexity with respect to the number of supervised training
points N, thus it is more suitable for large scale learning provided
that D does not grow linearly with N.

Yet naive learning with Algorithm 3 by viewing all the operators as
matrices is still problematic. Indeed learning p independent models
with scalar Random Fourier Features would cost Ot

(
D2p3(N +D)

)
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Algorithm 3: Naive closed form for the squared error cost.
Input :

• s = (xi, yi)Ni=1 ∈ (X×Rp)
N a sequence of supervised training

points,

• Φ̃(xi) ∈ L (Rp,Rr) a feature map defined for all xi ∈ X,

• λ ∈ R>0 the Tychonov regularization term,
Output : A model

h :







X→ Rp

x 7→ Φ̃(x)Tθs,

such that θs minimizes Equation 6.6, where c(y, y ′) = ∥y− y ′∥2
2

and Rr and Rp are Hilbert spaces endowed with the
Euclidean inner product.

1 P← 1
N

∑N
i=1 Φ̃(xi)Φ̃(xi)T ∈ L(Rr,Rr);

2 Y← 1
N

∑N
i=1 Φ̃(xi)yi ∈ Rr;

3 θs ← solveθ ((P + λIr)θ = Y) ;
4 return h : x 7→ Φ̃(x)Tθs;

since r = 2Dp. This means that learning a vector-valued function has
increased the (expected) complexity from p to p3. However in some
cases we can drastically reduce the complexity by viewing the feature-
maps as linear operators rather than matrices.

6.3 efficient learning with orff

When developing Algorithm 3 we considered that the feature map
Φ̃(x) was a matrix from Rp to Rr for all x ∈ X, and therefore that
computing Φ̃(x)φ̃(z)T has a time complexity of Ot(r2p). While this
holds true in the most generic senario, in many cases the feature maps
present some structure or sparsity allowing to reduce the computa-
tional cost of evaluating the feature map. We focus on the Operator-
valued Random Fourier Feature given by Algorithm 1, developped in
Section 4.3 and Subsection 4.3.3 and treat the decomposable kernel,
the curl-free kernel and the divergence-free kernel as an example. We
recall that if Y ′ = Rp

′
and Y = Rp, then H̃ = R2Dp ′

thus the Op-
erator-valued Random Fourier Features given in Chapter 4 have the
form







Φ̃(x) ∈ L
(

Rp,R2Dp ′
)

: y 7→ 1√
D

⊕D
j=1(x,ωj)B(ωj)Ty

Φ̃(x)T ∈ L
(

R2Dp ′
,Rp

)
: θ 7→ 1√

D

∑D
j=1(x,ωj)B(ωj)θj

,
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where ωj ∼ PrĤaar,ρ i. i. d. and B(ωj) ∈ L
(

Rp,Rp
′
)

for all ωj ∈ X̂.
Hence the Operator-valued Random Fourier Feature can be seen as
the block matrix

(6.11)Φ̃(x) =




cos⟨x,ω1⟩B(ω1)T

sin⟨x,ω1⟩B(ω1)T
...

cos⟨x,ωD⟩B(ωD)T

sin⟨x,ωD⟩B(ωD)T



∈M2Dp ′,p (R) ,

ωj ∼ PrĤaar,ρ i. i. d..

6.3.1 Case of study: the decosubmposable kernel

Throughout this section we show how the mathematical formula-
tion relates to a concrete (Python) implementation. We propose a
Python implementation based on NumPy [127], SciPy [81] and Scikit-
learn [132]. Following Equation 6.11, the feature map associated to
the decomposable kernel would be

Φ̃(x) =
1√
D




cos⟨x,ω1⟩BT

sin⟨x,ω1⟩BT

...

cos⟨x,ωD⟩BT

sin⟨x,ωD⟩BT




=
1√
D




cos⟨x,ω1⟩
sin⟨x,ω1⟩

...

cos⟨x,ωD⟩
sin⟨x,ωD⟩




︸ ︷︷ ︸

φ̃(x)

⊗BT,

ωj ∼ PrĤaar,ρ i. i. d., which would lead to the following naive python
implementation for the Gaussian (RBF) kernel of parameter γ, whose
associated spectral distribution is Prρ = N(0, 2γ).

def NaiveDecomposableGaussianORFF(X, A, gamma=1.,

D=100, eps=1e-5, random_state=0):

r"""Return the Naive ORFF map associated with the data X.

Parameters

----------

X : {array-like}, shape = [n_samples, n_features]

Samples.

A : {array-like}, shape = [n_targets, n_targets]

Operator of the Decomposable kernel (positive semi-definite)

gamma : {float},

Gamma parameter of the RBF kernel.

D : {integer}

Number of random features.

eps : {float}

Cutoff threshold for the singular values of A.

random_state : {integer}

Seed of the generator.

Returns

-------
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\tilde{\Phi}(X) : array

"""

# Decompose A=BB^\transpose

u, s, v = svd(A, full_matrices=False, compute_uv=True)

B = dot(diag(sqrt(s[s > eps])), v[s > eps, :])

# Sample a RFF from the scalar Gaussian kernel

phi_s = RBFSampler(gamma=gamma, n_components=D, random_state=random_state)

phiX = phi_s.fit_transform(X)

# Create the ORFF linear operator

return matrix(kron(phiX, B))

Let θ ∈ R2Dp ′
and y ∈ R. With such implementation evaluating a

matrix vector product such as Φ̃(x)Tθ or Φ̃(x)y have Ot(2Dp ′p) time
complexity and Os(2Dp ′p) of space complexity, which is utterly inef-

ficient. Indeed, recall that if B ∈ Mp,p ′

(
Rp

′
)

is matrix, the operator

Φ̃(x) corresponding to the decomposable kernel is

Φ̃(x)y =
1√
D

D⊕

j=1

(
cos⟨x,ωj⟩BTy

sin⟨x,ωj⟩BTy

)

=


 1√

D

D⊕

j=1

(
cos⟨x,ωj⟩
sin⟨x,ωj⟩

)
⊗ (BTy)

and

(6.12)

Φ̃(x)Tθ =
1√
D

D∑

j=1

cos⟨x,ωj⟩Bθj + sin⟨x,ωj⟩Bθj

= B


 1√

D

D∑

j=1

(
cos⟨x,ωj⟩ + sin⟨x,ωj⟩

)
θj


 .

Which requires only evaluation of B on y and can be implemented
easily in Python thanks to SciPy’s LinearOperator. Note that the com-
putation of these expressions can be fully vectorized18 using the vec- 18 See Walt, Colbert,

and Varoquaux
[184].

torization property of the Kronecker product. In the following we
consider Θ ∈ M2D,u ′(R) and the operator vec : Mp ′,2D(R) → R2Dp ′

which turns a matrix into a vector (i. e. θp ′i+j = vec(Θij), i ∈ N(2D−1)

and j ∈N∗
p ′). Then

(
φ̃(x)⊗ BT

)T
θ =

(
φ̃(x)T ⊗ B

)
vec(Θ) = vec (BΘφ̃(x)) .

with this trick, many authors [29, 142, 158] notice that the decompos-
able kernel usually yields a Stein equation [134]. Indeed rewriting
step 3 of Algorithm 3 gives a system to solve of the form

φ̃(X)φ̃(X)TΘBTB+λΘ−Y = 0⇔
(
φ̃(X)φ̃(X)T ⊗BTB + λI2Dp ′

)
θ− Y = 0.

Many solvers exist to solve efficiently this kind of systems19 , but 19 See for instance
Sleijpen, Sonneveld,
and Van Gijzen
[160].

most of them share the particularity that they are not just restricted to
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Table 6.1: Efficient linear-operator (in matrix form) for different Feature maps.

Kernel Φ̃(X)∗ Φ̃(X)

Decomposable1 Θ 7→ B (Θφ̃(X)) Y 7→ BT
(
Yφ̃(X)T

)

Gaussian curl-free2 Θc, Θs 7→
D∑

j=1

ωj
(
Θcj φ̃

c(X)j• +Θsj φ̃
s(X)j•

)
Y 7→ Θej = ωT

j

(
Yφ̃e(X)T•j

)

Gaussian divergence-free2,3 Θc, Θs 7→
D∑

j=1

(
B(ωj)Θc•j

)
φ̃c(X)j• +

(
B(ωj)Θs•j

)
φ̃s(X)j• Y 7→ Θe•j = B(ωj)

(
Yφ̃e(X)T•j

)

1 Where φ̃(X) =
(
φ̃(X•1) . . . φ̃(X•N)

)
∈ Mr,N is any design matrix, with scalar feature map φ̃ : Rd → Rr such that φ̃(x)∗φ̃(z) =

k(x, z) ∈ R for all x, z ∈ X. The input data X ∈Md,N(R), the output data U ∈Mp,N(R), the parameter matrices Θc and Θs ∈Mp ′,r(R)
and the decomposable operator B ∈Mp,p ′(R).

2 Where φ̃c(X)ji = cos⟨ωj, xi⟩ and φ̃s(X)ji = sin⟨ωj, xi⟩, j ∈N∗
D and i ∈N∗

N. Thus φ̃c(X) ∈MD,N(R) and φ̃s(X) ∈MD,N(R). The input
data X ∈ Md,N(R), the output data U ∈ Md,N(R), the parameter matrices Θc and Θs ∈ RD, ωj ∼ PrN(0,σ−2Id) i. i. d. for all j ∈ N∗

D.

Eventually e ∈ { s, c }, namely Θc =
(
Θe=c

1 . . . Θe=c
D

)T

and Θs =
(
Θe=s

1 . . . Θe=s
D

)T

.

3 Here, Θc and Θs ∈Md,D(R) thus Θc =
(
Θe=c

•1 . . . Θe=c
•D

)
, Θs =

(
Θe=s

•1 . . . Θe=s
•D

)
and B(ω) =

(
∥ω∥2Id −

ωωT

∥ω∥2

)
∈Md,d.
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handle Stein equations. Broadly speaking, iterative solvers (or matrix-
free solvers) are designed to solve any system of equation of the form
PX = C, where P is a linear operator (not a matrix). This is exactly
our case where φ̃(x) ⊗ BT is the matrix form of the operator Θ 7→
vec(BΘφ̃X).

This leads us to the following (more efficient) Python implementa-
tion of the Decomposable ORFF “operator” to be fed to a matrix-free
solvers.

def EfficientDecomposableGaussianORFF(X, A, gamma=1.,

D=100, eps=1e-5, random_state=0):

r"""Return the efficient ORFF map associated with the data X.

Parameters

----------

X : {array-like}, shape = [n_samples, n_features]

Samples.

A : {array-like}, shape = [n_targets, n_targets]

Operator of the Decomposable kernel (positive semi-definite)

gamma : {float},

Gamma parameter of the RBF kernel.

D : {integer}

Number of random features.

eps : {float}

Cutoff threshold for the singular values of A.

random_state : {integer}

Seed of the generator.

Returns

-------

\tilde{\Phi}(X) : Linear Operator, callable

"""

# Decompose A=BB^\transpose

u, s, v = svd(A, full_matrices=False, compute_uv=True)

B = dot(diag(sqrt(s[s > eps])), v[s > eps, :])

# Sample a RFF from the scalar Gaussian kernel

phi_s = RBFSampler(gamma=gamma, n_components=D, random_state=random_state)

phiX = phi_s.fit_transform(X)

# Create the ORFF linear operator

cshape = (D, B.shape[0])

rshape = (X.shape[0], B.shape[1])

return LinearOperator((phiX.shape[0] * B.shape[1], D * B.shape[0]),

matvec=lambda b: dot(phiX, dot(b.reshape(cshape),

B)),

rmatvec=lambda r: dot(phiX.T, dot(r.reshape(rshape),

B.T)))

6.3.2 Linear operators in matrix form

For convenience we give the operators corresponding to the decom-
posable, curl-free and divergence-free kernels in matrix form. Let
(xi)Ni=1, N ∈ N∗, xi’s in Rd, d ⩽ ∞ be a sequence of points in Rd.
We note

X =
(
x1 . . . xN

)
∈Md,N
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the data matrix where each column represents a data point3. Natu-
rally if Φ̃(x) : Ru → Rr1 and φ̃(x) : R → Rr2 , for all x ∈ Rd we
define

Φ̃(X) =
(
Φ̃(x1) . . . Φ̃(xN)

)
∈Mr1,Nu

and

φ̃(X) =
(
φ̃(x1) . . . φ̃(xN)

)
∈Mr2,N

and

Y =
(
y1 . . . yN

)
∈Mu,N.

Given a matrix X ∈ Mm,n(R), we note X•i the column vector corre-
sponding to the i-th column of the matrix X and Xi• the row vector
(covector) corresponding to the i-th line of the matrix X. With these
notations, if X ∈ Mm,n and Z ∈ Mn,m ′ , Xi•Z•j ∈ R is the inner
product between the i-th row of X and the j-th column of Z and
X•iZj• ∈ Mm,m ′(R) is the outer product between the i-th column of
X and j-th row of X.

For the curl-free and divergence-free kernel given in Subsec-
tion 4.3.3 we recall the unbounded ORFF maps are respectively for
all y ∈ Y

Φ̃(x)y =
1√
D

D⊕

j=1

(
cos ⟨x,ωj⟩2ωT

jy

sin ⟨x,ωj⟩2ωT

jy

)
,

and

Φ̃(x)y =
1√
D

D⊕

j=1




cos ⟨x,ωj⟩2
(∥∥ωj

∥∥
2Id −

ωjω
T

j

∥ωj∥2

)
y

sin ⟨x,ωj⟩2
(∥∥ωj

∥∥
2Id −

ωjω
T

j

∥ωj∥2

)
y


 ,

where ωj ∼ PrN(0,σ−2Id). To avoid complex index notations we decom-
pose the feature maps Φ̃(X) into two sub feature maps Φ̃c and Φ̃s

corresponding to the cosine part and the sine part of each feature
map. Namely, for the curl-free kernel, for all y ∈ Y

Φ̃(x)y =







Φ̃c(x)y = 1√
D

⊕D
j=1

(
cos ⟨x,ωj⟩2ωT

jy

)
,

Φ̃s(x)y = 1√
D

⊕D
j=1

(
sin ⟨x,ωj⟩2ωT

jy

)
.

3 In many programming language, such as Python, C, C++ or Java each data point is
traditionally represented by a row in the data matrix (row major formulation). While
this is more natural when parsing a data file, it is less common in mathematical for-
mulations. In this document we adopt the column major formulation used by Matlab,
Fortran or Julia. Moreover although C++ is commonly row major, some libraries such
as Eigen are column major. When dealing with row major formulation, one should
“transpose” all the equations given in Table 6.1.
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Table 6.3: Time complexity of efficient linear-operator (in matrix form) for
different Feature maps given in Table 6.1.

Kernel Φ̃(X)∗ Φ̃(X)

Decomposable Ot ((p ′D + p ′p)N) Ot ((pN + p ′p)D)

Curl-free Ot (pND) Ot (pND)

Divergence-free Ot
(
(p2 + pN)D

)
Ot
(
(p2 + pN)D

)

In the same way, for the divergence-free kernel,

Φ̃(x)y

=







Φ̃c(x)y = 1√
D

⊕D
j=1

(
cos ⟨x,ωj⟩2

(∥∥ωj
∥∥

2Id −
ωjω

T

j

∥ωj∥2

)
y

)
,

Φ̃s(x)y = 1√
D

⊕D
j=1

(
sin ⟨x,ωj⟩2

(∥∥ωj
∥∥

2Id −
ωjω

T

j

∥ωj∥2

)
y

)
.

We also introduce Φ̃e, e ∈ { s, c } which denotes either Φ̃s or Φ̃c. This
equivalent formulation allows us to keep the notation “lighter” and
closer to a proper Python/Matlab implementation with vectorization.
With these notations, a summary of efficient linear operators in ma-
trix form is given in Table 6.1. The complexity of evaluating all this
operators is given in Table 6.3.

It is worth mentioning that the same strategy can be ap-
plied in many different language. For instance in C++, the li-
brary Eigen [75] allows to wrap a sparse matrix with a custom
type, where the user overloads the transpose and dot product
operator (as in Python). Then the custom user operator behaves
as a (sparse) matrix — see https://eigen.tuxfamily.org/dox/

group__MatrixfreeSolverExample.html. With this implementation
the time complexity of Φ̃(x)Tθ and Φ̃(x)y falls down to Ot(Dp ′ + p ′p)
and the same holds for space complexity.

A quick experiment shows the advantage of seeing the decompos-
able kernel as a linear operator rather than a matrix. We drawN = 100
points (xi)Ni=1 in the interval (0, 1)20 and use a decomposable kernel
with matrix Γ = BBT ∈ Mp,p(R) where B ∈ Mp,p(R) is a random ma-
trix with coefficients drawn uniformly in (0, 1). We compute Φ̃(x)Tθ
for all xi’s, where θ ∈ M2D,1(R), D = 100, with the implementation
EfficientDecomposableGaussianORFF, Equation 6.12, and NaiveDe-

composableGaussianORFF, Equation 6.11. The coefficients of θ were
drawn at random uniformly in (0, 1). We report the execution time in
Figure 6.3 for different values of p, 1 ⩽ p ⩽ 100. The left plot reports
the execution time in seconds of the construction of the feature. The

https://eigen.tuxfamily.org/dox/group__MatrixfreeSolverExample.html
https://eigen.tuxfamily.org/dox/group__MatrixfreeSolverExample.html




https://github.com/operalib/operalib
http://yann.lecun.com/exdb/mnist
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images. The inputs are images represented as a vector xi ∈ [0, 255]784

and the targets yi ∈N9 are integers between 0 and 9.

First we scaled the inputs such that they take values in [−1, 1]784.
Then we binarize the targets such that each number is represented by
a unique binary vector of dimension 10. The vector yi is zero every-
where except on the dimension corresponding to the class where it is
one. For instance the class 4 is encoded(

0 0 0 0 1 0 0 0 0 0
)

T.

To predict classes, we use the simplex coding method presented in
Mroueh et al. [123]. The intuition behind simplex coding is to project
the binarized labels of dimension p onto the most separated vectors
on the hypersphere of dimension p − 1. For ORFF we can encode
directly this projection in the B matrix of the decomposable kernel
K0(δ) = BB∗k0(δ) where k0 is a Gaussian kernel. The matrix B is com-
puted via the recursion

Bp+1 =

(
1 uT

0p−1
√

1 − p−2Bp

)
, B2 =

(
1 −1

)
,

where u =
(
−p−2 . . . −p−2

)T
∈ Rp−1 and 0p−1 =

(
0 . . . 0

)T
∈

Rp−1. For Operator-Valued Kernels we project the binarized targets
on the simplex as a preprocessing step, before learning with the de-
composable K0(δ) = Ipk0(δ), where k0 is a scalar Gaussian kernel.

The second dataset is a simulated five dimensional (5D) vector field
with structure. We generate a scalar field as a random function f :
[−1, 1]5 → R, where f̃(x) = φ̃(x)∗θ where θ is a random matrix with
each entry following a standard normal distribution, φ̃ is a scalar
Gaussian RFF with bandwidth σ = 0.4. The input data x are generated
from a uniform probability distribution. We take the gradient of f̃ to
generate the curl-free 5D vector field.

The third dataset is a synthetic of data from R20 → R4 as described
in Audiffren and Kadri [10]. In this dataset, inputs (x1, . . . , x20) are
generated independently and uniformly over [0, 1] and the different
outputs are computed as follows. Let

φ(x) = (x2
1, x

2
4, x1x2, x3x5, x2, x4, 1)

and (wi) denotes the i. i. d. copies of a seven dimensional Gaussian
distribution with zero mean and covariance Σ ∈M7,7(R) such that

Σ = Diag
(

0.5 0.25 0.1 0.05 0.15 0.1 0.15
)

Then, the outputs of the different tasks are generated as yi = wiφ(x).
We use this dataset with p = 4, 105 instances and for the train set and
also 105 instances for the test set.



http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html


http://docs.scipy.org/doc/scipy/reference/optimize.html


http://www.gaussianprocess.org/gpml/data/
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N Independant (%) Laplacian (%) p-value T

50× 7 23.138± 0.577 22.254± 0.536 2.68% 4(s)

100× 7 16.191± 0.221 15.568± 0.187 < 0.1% 16(s)

150× 7 13.821± 0.115 13.459± 0.106 < 0.1% 13(s)

200× 7 12.713± 0.0978 12.554± 0.0838 1.52% 12(s)

400× 7 10.785± 0.0579 10.651± 0.0466 < 0.1% 10(s)

800× 7 7.512± 0.0344 7.512± 0.0344 100% 15(s)

1600× 7 6.486± 0.0242 6.486± 0.0242 100% 20(s)

3200× 7 5.658± 0.0187 5.658± 0.0187 100% 20(s)

Table 6.5: Error (% of nMSE) on SARCOS dataset.

6.5 conclusion

ORFF approximations open the door to the literature of efficient learn-
ing with linear models: the feature map can be seen as a function
that linearize non linear functions by embedding them in a high di-
mensional feature space in which we can learn with linear models.
Indeed, we described in this chapter how learning a non linear, non
parametric model with OVKs is converted into learning a linear and
parametric model based on ORFF.

The complexity in time of these approximations together with the
linear learning algorithm make this implementation scalable with
the data size and thus appealing compared to OVK regression as
shown in numerical experiments. Further work concerns generaliza-
tion bounds and consistency for ORFF-regression. Finally this work
opens the door to building deeper architectures by stacking vector-
valued functions while keeping a kernel view for large datasets.

q
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C O N S I S T E N C Y A N D G E N E R A L I Z AT I O N B O U N D
F O R O R F F

This short chapter deals with a generalization bound for a regres-
sion problem with ORFF based on the results of Maurer [112] and
Rahimi and Recht [140]. We also discuss the case of Ridge regression
presented in Chapter 6.
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7.1 generalization bound

In this section, we are interested in finding a function f∗ : X → Y,
where X is a Polish space and Y a separable Hilbert space such
that for all xi in X and all yi in Y that minimizes a criterion. In
statistical supervised learning, we consider a training set sequence
s = (xi, yi)Ni=1 ∈ (X × Y)N, N ∈ N∗ drawn i. i. d. from an un-
known probability law Pr. We suppose we are given a cost function
c : X× Y → R, such that c(f(x), y) returns the error of the prediction
f(x) w. r. t. the ground truth y. We define the true risk as the sum
of the cost over all possible training examples drawn from a latent
probability law Pr,

R (f) =
∫

X×Y

L(x, f, y)dPr(x, y) =
∫

X×Y

c(f(x), y)dPr(x, y)

Thus given a class of functions F, the goal of a learning algorithm is
to find an optimal model f∗ that minimizes the true risk. Namely

f∗ ∈ arg min
f∈F

R (f) = arg min
f∈F

∫

X×Y

c(f(x), y)dPr(x, y).

Since in practice we do not have access to the joint probability law
of (X, Y), we define its empirical counterpart as the empirical mean
estimate, where the sequence s = (xi, yi)Ni=1 is made of (X×Y)-valued
random vectors drawn i. i. d. from some law Pr. The empirical risk
then reads

Remp (f, s) =
1
N

N∑

i=1

c(f(xi), yi), (xi, yi) ∼ Pr i. i. d..

As a result, in practice we seek a function fs such that

(7.1)fs ∈ arg min
f∈F

Remp (f, s) = arg min
f∈F

1
N

N∑

i=1

c (f(xi), yi) .

The basic requirement for any learning algorithm is the generaliza-
tion property: the empirical error must be a good proxy of the ex-
pected error, that is the difference between the two must be “small”
when N is large. A generalization bound allows to study, for any
f ∈ F the difference between its true risk R(f) and its empirical risk,
R(f, s). This quantifies the impact of having a limited number of
observations. Generalization (upper) bounds [177] involve two com-
ponents: one being the empirical risk and the other depends on the
dataset size as well as some capacity notion that reflects the rich-
ness of the family of functions F considered. First generalization
bounds proved by Vapnik and Chervonenkis involve the dimension
of Vapnik-Chervonenkis dimension of F. In practice, generalization
bounds suggest that when learning a function from a finite dataset,
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it is necessary to control the size (richness) of the class of functions
F. Hence, a regularizer is added to the data-fitting term in order to
maintain the solution fs of Equation 7.1 unique and belong to a ball
of F. As a result if F is a Banach space, it is common to find fs such
that

fs = arg min
f∈F

Remp (f, s) +
λ

2
∥f∥2

F.

(Tychonov regularization) or

fs =







arg minf∈F Remp (f, s)

subject to ∥f∥F < M ∈ R>0

(Ivanov regularization) or

fs =







arg minf∈F Remp (f, s)

subject to ∥f∥∞ < M ∈ R>0.

7.1.1 Generalization by bounding the function space complexity

In the following we consider functions living in a Vector Valued Re-
producing Kernel Hilbert Space, with kernel K (or K̃).

Proposition 7.1 (Bartlett and Mendelson [17] and Maurer [112]).
Suppose that f ∈ HK a VV-RKHS where

sup
x ∈X

Tr[K(x, x)] < T

and ∥f∥HK
< M. Moreover let c : Y → [0, C] be a L-Lipschitz cost func-

tion and Y a separable Hilbert space. Then if we are given N i. i. d. random
variables with values in X (training samples, noted s), then we have with at
least probability 1 − δ, δ ∈ (0, 1) over the drawn training samples s that for
any f ∈ HK,

(7.2)R (f) ⩽ Remp (f, s) + 2

√
2
N

(
LMT 1/2 + C

√
ln(2/δ)

)
.

The following proof is due to Maurer [112] generalizing the work of
Bartlett and Mendelson [17, section 4.3]: we do not claim any origi-
nality for this proof.

Proof First let us introduce the notion of Rademacher complexity of a class
of functions F. We recall that the probability mass function of a uniformly
distributed Rademacher random variable is given for any k ∈ {−1, 1 } by

f(k) =







1/2 if k = −1

1/2 otherwise.
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Definition 7.1 (Bartlett and Mendelson [17]). Let X be any set. Let
ϵ1, . . . , ϵN beN independent Rademacher random variables, identically uni-
formly distributed on {−1; 1}. For any class of functions F : X → R, then
for all x1, . . . xN ∈ X the quantity

RN(F) : = E

[
sup
f∈F

N∑

i=1

ϵif(xi)

∣∣∣∣∣ x1, . . . , xN

]

is called Rademacher complexity of the class F.

In a few words the Rademacher complexity measures the richness of a class
a function by its capacity to be correlated to noise. In generalization bounds,
the Rademacher complexity of a class of functions often involves a composi-
tion between a target function to be learn and a cost function, part of the risk
we want to minimize. The idea is to bound the Rademacher complexity with
a term that does not depends on the cost function, but only on the target
function.

Proposition 7.2 (Maurer [112]). Let X be any set and (x1, . . . , xN) in
XN and let F be a class of functions f : X → Y and for i=1, . . . , N, each
function hi : Y → R be a L-Lipschitz function, where Y is a separable
Hilbert space endowed with Euclidean inner product. Then

E

[
sup
f∈F

N∑

i=1

ϵihi(f(xi))

∣∣∣∣∣ x1, . . . , xN

]

⩽
√

2LE

[
sup
f∈F

i=N∑

i=1,k

ϵikfk(xi)

∣∣∣∣∣ x1, . . . , xN

]
,

where ϵik is a doubly indexed independent Rademacher sequence and fk(xi)
is the k-th component of f(xi). We use the shortcut notation

∑N
i=1,k which

stands for
∑N
i=1

∑

k.

From now on, we consider functions f ∈ HK a Vector Valued Reproducing
Kernel Hilbert Space. Then there exists an induced feature-map Φ : X →
L(Y,H) such that for all y, y ′ ∈ Y the kernel is given by

⟨y, K(x, z)y ′⟩Y = ⟨Φxy,Φzy ′⟩H.

We say that the feature space H is embedded into the RKHS HK by means
of the feature operator (Wθ)(x) := (Φ∗

xθ). Indeed W defines a partial
isometry between H and HK. Suppose that Y is a separable Hilbert space
and let the class of Y-valued functions F be

F = { f | f : x 7→ (Wθ)(x), ∥θ∥H < M } ⊂ HK.

Let cyi = c(·− yi), for all in ∈ NN. Then from Proposition 7.2 and if K is
trace class, we have

E sup
∥θ∥H <B

N∑

i =1

ϵicyi(Φ
∗
xi
θ) ⩽

√
2LE sup

∥θ∥H<B

i=N∑

i=1,k

ϵik⟨Φ∗
xi
θ, ek⟩

=
√

2LE sup
∥θ∥H<B

⟨
θ,

i=N∑

i=1,k

ϵikΦxiek

⟩

Y

.
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Thus

(7.3)

E sup
∥θ∥H <B

N∑

i =1

ϵicyi(Φ
∗
xi
θ) ⩽

√
2LME

∥∥∥∥∥
i=N∑

i=1,k

ϵikΦxiek

∥∥∥∥∥
Y

⩽
√

2LM

√√√√
i=N∑

i=1,k

∥Φxiek∥
2
Y

⩽
√

2LM

√√√√
N∑

i=1

Tr [K(xi, xi)]

⩽
√

2LM
√
N
√

sup
x∈X

Tr [K(x, x)].

Then we apply the following theorem (Theorem 7.1) from Bartlett and
Mendelson [17] and Maurer [112] to conclude.

Theorem 7.1 Let X be any set, F a class of functions f : X → [0, C]
and let X1, . . . , XN be a sequence of i. i. d. random variables with value in X.
Then for δ ∈ (0, 1), with probability at least 1− δ, we have for all f ∈ F that

Ef(X) ⩽
1
N

N∑

i=1

f(Xi) +
2
N
RN(F) +C

√
8 ln(2/δ)
N

(7.4)

Conclude by pluging Equation 7.3 in Theorem 7.1. □

As an example, let us consider Equation 6.1, which is a solution of the
regularized empirical risk, and Algorithm 3. We first list the follow-
ing assumptions useful in the rest of the section. Let s = (xi, yi)Ni=1 ∈
XN × YN be the training samples.

Assumption 7.1 There exists a positive constant κ ∈ R⩾0 such that

max
i ∈N∗

N

∥∥∥K̃(xi, xi)
∥∥∥
Y,Y

< κ.

Assumption 7.2 There exists a positive constant T ∈ R⩾0 such that

max
i ∈N∗

N

Tr
[
K̃(xi, xi)

]
< T.

Assumption 7.3 There exists a positive constant C ∈ R⩾0 such that

max
i ∈N∗

N

∥yi∥Y ⩽ C.

Assumption 7.4 Given a Loss function L, there exists a positive constant
ξ ∈ R⩾0 such that for all x ∈ X, for all y ∈ Y and for any s ∈ XN × YN,

L(x, fs, y) ⩽ ξ.
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Under assumption 7.3, from Remark 6.1, we know that ∥f∥HK
⩽√

2
λσy = M, where

1
N

N∑

i =1

∥yi∥2
Y ⩽ σ2

y ⩽ C2.

Thus we see straight away that it is possible to choose B =√
2
λC. Let κ =

∥∥∥K̃e(e)
∥∥∥
Y,Y

the Lipschitz constant of the least

square loss c(fs(x), y) = 1
2∥fs(x) − y∥2

Y with respect to fs(x) is L =

max
(√

2κ
λ C,C

)
and the loss takes values in

[
0, 1

2L
2
]
. Hence under

assumption that λ < 2κ and assumption 7.2, and assumption 7.3,
Equation 7.2 applies especially that for any fs ∈ HK, solution of Al-
gorithm 3,

(7.5)R (fs) ⩽ Remp (fs, s) + 8
C2

λ

√
κ

N

(
T 1/2 +

√
κ ln(1/δ)

2

)
.

This bound is to be compared to the results of Kadri et al. [86] in the
context of β-stability.

7.1.2 Algorithm stability

The approach to generalization bounds presented in Proposition 7.1 is
based on controlling the complexity of the hypothesis space20 using20 Other methods

using covering
numbers [171, 194]

or VC-dimension
[178] have also been

used as a proxy on
the complexity of the

hypothesis space.

Rademacher complexity. On the other hand, the idea of stability is
that a reliable algorithm should not change its solution too much if
we modify slightly the training data. Given a training sequence

s = ((x1, y1), . . . (xN, yN)) ∈ (X× Y)N,

we note s\i the training sequence

s\i = ((x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xN, yN)) ∈ (X×Y)N,

the subsequence of s from which we removed the i-th element.

Definition 7.2 (Uniform stability Bousquet and Elisseeff [26, def-
inition 6]). A learning algorithm s 7→ fs has uniform stability β with
respect to the loss function L if the following holds

∀i ∈N
∗
N, ∀s ∈ (X× Y)N sup

x∈X,y∈Y

|L(x, fs, y) − L(x, f
s
\i , y)| ⩽ β.

As shown by Bousquet and Elisseeff [26], algorithm stability has di-
rect link with generalization. Indeed if an algorithm has β-stability,
and a “bounded” loss for all x ∈ X and y ∈ Y (assumption 7.4), it is
possible to exhibit a generalization bound.
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Theorem 7.2 (Bousquet and Elisseeff [26, theorem 12]). Let s 7→ fs
be a learning algorithm with uniform stability β with respect to a loss L that
satisfies assumption 7.4. Then ∀N ∈ N∗, ∀δ ∈ (0, 1), the following bound
holds with probability at least 1 − δ over the i. i. d. drawn training samples
s.

R (fs) ⩽ Remp (fs, s) + 2β + (4Nβ + ξ)

√
ln(1/δ)

2N
.

In their original paper on learning function-valued output data, Kadri
et al. [86] showed that under assumption 7.1, assumption 7.3, and
provided that K is weakly measurable, the algorithm is β-stable with
β = σ2κ2

2λN . Moreover assumption 7.4 holds with ξ = σ2/2, where σ =
σy(1 + κ/

√
λ). Thus another generalization bound for Algorithm 3 is

(7.6)
R (fs) ⩽ Remp (fs, s) +

κ2C2
(

1 + κ√
λ

)2

λN

+ C2
(

1 +
κ√
λ

)2(4κ2

λ
+ 1
)√

ln(1/δ)
2N

.

Although both bounds have a convergence rate in O(N1/2), an im-
portance difference between the bound Equation 7.5 and the bound
Equation 7.6 is that in Equation 7.6 C, κ and λ play a role, while Equa-
tion 7.5 add also the trace constant T . This means that Equation 7.5
is less general than Equation 7.5 because when Y is infinite dimen-
sional, κ is always well defined, while the trace T can be possibly
infinite. On the other hand Equation 7.5 is a simpler bound, with a
better behaviour in λ when λ < 1. Indeed Equation 7.5 is a bound in
O(λ−1) while Equation 7.6 is in O((λ

√
λ)−1). Thus the choice between

Equation 7.6 and Equation 7.5 has to be done according the the kind
of OVK used, as well as the regularization parameter λ.

7.2 consistency of learning with orff

In this section we are interested by measuring how R
(
f̃s

)
is close to

the smallest true risk achieved in the function class F. The quantity
of interest is:

R
(
f̃s

)
− min
f ∈F

R (f) .

In other words, we quantify the difference between the risk of the
optimal solution belonging to a given class of functions F, and the
risk given a solution fs returned by some learning algorithm. Here to
derive a consistency result, we study an algorithm slightly different
from Algorithm 3. Given a loss function L : X× F × Y → R+ and its
canonical cost function c(f(x), y) := L(x, f, y) such that c is Lipschitz
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in its first argument. We consider learning with an ORFF Φ̃(x) : Y →⊕D
j=1 Y

′ thanks to the algorithm

(7.7)θs =







arg min
θ∈
⊕D
j=1 Y

′
1
N

∑N
i=1 c(Φ̃(x)∗θ)

subject to maxj∈N∗
D

∥∥θj
∥∥
Y
⩽ M
D ,

where M ∈ R+ is some regularization hyperparameter. Then the as-
sociated output function return is f̃s = Φ̃(·)∗θs. We suppose that the
operator A(ω) used in the construction of Φ̃(x) has bounded trace
Pr
ρ,Ĥaar-almost everywhere.

Proposition 7.3 Let Φx = (x, ·)B(·) be a Fourier feature such that there
exists a constant T ∈ R+ such that

ess sup
ω ∈X̂

Tr [A(ω)] < T

and a constant u ∈ R+ such that

ess sup
ω ∈X̂

√
∥A(ω)∥2

Y,Y < u.

where A(ω) = B(ω)B(ω)∗. Let ρ be the density of a probability distribution
with respect to the Haar measure Haar and define the set

F =
{

f

∣∣∣∣ f : x 7→
∫

X̂

Φx(ω)θ(ω)∗dĤaar(ω), ∥θ(ω)∥Y < Mρ(ω)
}

⊆HK.

Eventually let c : Y2 → [0, C] be a cost function L-Lipschitz in its first
argument. Then for any δ ∈ (0, 1), given a training sequence s = (xi, yi) ∈
(X× Y)N drawn i. i. d., if f̃s is given by Equation 7.7 then we have

R
(
f̃s

)
− min
f ∈F

R (f) ⩽ 4

√
2
N

(
LMT 1/2 + C

√
ln(2/δ)

)

︸ ︷︷ ︸

Estimation error.

+
uLM√
D

(
1 +
√

2 ln(1/δ)
)

︸ ︷︷ ︸

Approximation error.

.

with probability 1 − 2δ over the training sequence and the random vectors
(ωj)Dj=1.

Proof We follow the proof idea of Rahimi and Recht [140] in the scalar case
and adapt it to the vector-valued case in the light of the results of Maurer
[112]. We first define the two following sets.

F =
{

f

∣∣∣∣ f : x 7→
∫

X̂

Φx(ω)∗θ(ω)dĤaar(ω), ∥θ(ω)∥Y < Mρ(ω), ∀ω ∈ X̂

}

and

F̃ =






f

∣∣∣∣∣∣
f : x 7→

D∑

j=1

Φx(ωj)∗θj, ∀j ∈N
∗
D,
∥∥θj
∥∥
Y
<
M

D






.
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Proposition 7.4 (Existence of an approximate function). Let
µ be a measure on X, and f∗ a function in F. Moreover let
ess sup

ω∈X̂
∥B(ω)∥2

Y,Y ⩽ u. If (ωj)Dj=1 are drawn i. i. d. from a probabil-

ity distribution of density ρ w. r. t. Ĥaar, then for any δ ∈ (0, 1), with
probability at least 1 − δ over (ωj)Dj=1, there exists a function f̃ in F̃ such
that

√
∫

X

∥∥∥f̃(x) − f∗(x)
∥∥∥

2

Y
dµ(x) ⩽

uM√
D

(
1 +
√

2 ln(1/δ)
)
.

Proof Since f∗ ∈ F, we can write f∗(x) =
∫

X (x,ω)B(ω)θ(ω)dĤaar(ω).

Construct the functions fj = (·,ωj)B(ωj)βj with βj := θ(ωj)
ρ(ω) , so that

E
ρ,Ĥaarfj = f∗ pointwise. Let

f̃(x) =
D∑

j=1

Φx(ωj)∗
βj

D

be the sample average of these functions. Then, f̃ ∈ F̃ because
∥∥βj

∥∥
Y
/D <

M/D. Also, under the inner product
∫

X⟨f(x), g(x)⟩Ydµ(x), we have almost
surely that

∥∥∥(·,ωj)B(ωj)βj
∥∥∥
L2(X,µ;Y)

⩽ ess sup
ω∈X̂

∥B(ω)∥Y,YMµ(X).

Since µ is a probability measure over X, µ(X) = 1. We introduce the follow-
ing technical lemma of Rahimi and Recht [140] for concentration of random
variable in Hilbert spaces (similar to Pinelis [136]).

Lemma 7.1 Let X1, . . . , XD be i. i. d. random variables with values in a ball
of radius R centered at the origin in a Hilbert space H. Denote the sample
average X̄ = 1

D

∑D
j=1 Xj. Then for any δ ∈ (0, 1) with probability 1 − δ,

∥∥EX̄− X̄
∥∥
Y
⩽

R√
D

(
1 +
√

2 ln(1/δ)
)
.

Eventually apply Lemma 7.1 to f1, . . . , fD under the canonical inner product
of the vector valued function space L2(X, µ;Y) to conclude the proof. □

Proposition 7.5 (Bound on the approximation error). Let L(x, f, y)
be a loss function and cy(f(x)) = L(x, f, y) be a L-Lipschitz cost function for
all y ∈ Y. Let f∗ be a function in F. Suppose there exists a constant u ∈ R+

such that

ess sup
ω ∈X̂

√
∥A(ω)∥Y,Y ⩽ u.

If (ωj)Dj=1 are i. i. d. random variables drawn from a probability distribution
of density ρ, then for any δ ∈ (0, 1) there exists, with probability 1 − δ over
(ωj)Dj=1, a function f̃ ∈ F̃ such that

R
(
f̃
)
⩽ R (f∗) +

uLM√
D

(
1 +
√

2 ln(1/δ)
)
.
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Proof Given any functions f and g in F, the Lipschitz hypothesis on cyi
followed by the concavity of the square root (Jensen’s inequality) gives

R (f) −R (g) = Eµcy(f(x)) − cy(g(x))
⩽ Eµ|cy(f(x)) − cy(g(x))|
⩽ LEµ∥f(x) − g(x)∥Y
⩽ L

√
Eµ∥f(x) − g(x)∥2

Y.

apply Proposition 7.4 to conclude. □

Proposition 7.6 (Bound on the estimation error). Let cy : Y→ [0;C]
be a L-Lipschitz cost function for all y ∈ Y. Let (ωj)Dj=1 be D fixed vectors

in X̂. If s = (xi, yi)Ni=1 ∈ (X× Y)N are i. i. d. random variables then for all
δ ∈ (0, 1), then it holds with probability 1 − δ for all f̃ ∈ F̃ that

R
(
f̃
)
⩽ Remp

(
f̃, s
)

+ 2

√
2
N

(
LMT 1/2 + C

√
ln(2/δ)

)
.

where Tr
[
K̃e(e)

]
< T ∈ R+.

Proof Since f̃ ∈ F̃ and forall j ∈ N∗
D,
∥∥θj
∥∥
Y
< B/D, Thus ∥θ∥⊕D

j=1 Y
<

M/
√
D. Moreover, if we define Φ̃(x) =

⊕D
j=1Φx(ωj), it gives birth to a

RKHS with kernel DΦ∗
xΦz for all x, z ∈ X. Thus with arguments similar

to Equation 7.3, noticing that the terms in
√
D cancels out, we obtain a

bound on the Rademacher complexity

RN

(
F̃
)
⩽
√

2BL

√
NTr

[
K̃e(e)

]
.

Eventually apply Theorem 7.1. □

We are now ready to prove the main claim. Let f∗ be a minimizer of R over
F, f̃ a minimizer of Remp over F̃ and f̃∗ a minimizer of R over F̃. Then

(7.8)R
(
f̃
)
−R (f∗) = R

(
f̃
)
−R

(
f̃∗
)

+ R
(
f̃∗
)
−R (f∗) .

The first difference in the right hand side of the equation is the estimation

error. By Proposition 7.6, with probability 1− δ, R
(
f̃∗
)
−Remp

(
f̃∗, s

)
⩽

ϵest and simultaneously, R
(
f̃
)
−Remp

(
f̃, s
)
⩽ ϵest. By optimality of f̃,

Remp
(
f̃, s
)
⩽ R

(
f̃∗
)

. Combining these facts, with probability 1 − δ,

R
(
f̃
)
−R

(
f̃∗
)
⩽ 4

√
2
N

(
LMT 1/2 + C

√
ln(2/δ)

)
= 2ϵest.

Applying Proposition 7.5 yields

R
(
f̃∗
)
−R (f∗) ⩽

uLM√
D

(
1 +
√

2 ln(1/δ)
)

= ϵapp.

Conclude by the union bound with probability 1 − 2δ Equation 7.8

is bounded by above by 2ϵest + ϵapp. Notice that Tr
[
K̃e(e)

]
=

1
D

∑D
j=1A(ωj). Thus if we have ess sup

x∈X̂
Tr [A(ω)] <∞, Tr

[
K̃e(e)

]
⩽

ess sup
x∈X̂

Tr [A(ω)]. □
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7.3 discussion

In this chapter we reviewed two ways of obtaining generalization
bounds (see Section 7.1 and Subsection 7.1.2) for OVKs by bound-
ing the function class complexity (Maurer [112]) or using algorithm
stability arguments (Kadri et al. [86]). Then we used the results of
Maurer [112] to prove the consistency of the algorithm obtained by
minimizing Equation 7.7, which is a variant of Algorithm 3, where
we replace the Tychonov regularizer by a projection in a ∥·∥∞ ball.
This bound generalizes the work of Rahimi and Recht [140] to vector-
valued learning.

Notice that we cannot directly derive a consistency bound from
Proposition 7.3 to Algorithm 3. Indeed with arguments similar to Re-
mark 6.1, we can show that f̃s = Φ̃(x)∗θ has a parameter vector θ

such that
∥∥θj
∥∥
Y
<
√

2
λDσy, where σ2

y = 1
N

∑N
i=1∥yi∥

2
Y. Thus if f̃s is

a solution of Algorithm 3, we do not have f̃s ∈ F̃, i. e. the Tychonov
regularization is not “powerful” enough to guarantee that f̃s belongs
to F̃. One could argue that we could choose λ = O(

√
D) to obtain

consistency with Tychonov regularization, however this makes little
sense since in this case if D → ∞ then λ → ∞ the Algorithm 3 will
always return f̃s = 0.

While the bound in Proposition 7.3 shows the consistency of learn-
ing with ORFF it still has low and possibly suboptimal rate. Moreover
it does not allow to derive a number of features D smaller than the
number of data since both of them decrease the error in O(D−1/2)
(respectively O(N−1/2)) as in the reference bound for scalar-valued
random features by Rahimi and Recht [140]. In the scalar-valued ker-
nel literature, recent work of Bach [13] with much more involved
analysis, gives similar results to Rahimi and Recht [140] in the case
of Tichonov regularization. Moreover it suggests that the number of
features D to guarantee an error below some constant is linked to
the decrease rate of the eigenvalues of the Mercer decomposition of
scalar-valued kernel k. If the eigenvalues decrease in O(m−2s) then
the error is in O (log(D)sD−s). Lastly the new results of Rudi, Camo-
riano, and Rosasco [144] show that for scalar-valued kernels, the ker-
nel ridge regression algorithm (which is Algorithm 3 with A = 1)
generalizes optimality with a number of features D = O(

√
N). Thus

the time complexity required for optimal generalization with RFFs in
the case of kernel ridge regression is O(ND2) = O(N2) and the space
complexity is in O(N1.5), if the random features are all stored and not
computed, on the fly, in an online fashion21 . 21 See

Subsection 6.2.2.

q





8
A P P L I C AT I O N T O T I M E S E R I E S M O D E L L I N G

This chapter shows how to use the ORFF methodology to non-linear
vector autoregression. It is an instantiation of the ORFF framework
to X = Y = (Rd,+). We also give a generalization of a stochastic
gradient descent [51] to ORFF. This is a joint work with Néhémy Lim
and Florence d’Alché-Buc and has been published at a workshop of
ECML. It is based on the previous work Lim et al. [101] for time series
vector autoregression with operator-valued kernels [30].
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8.1 introduction

Time series are ubiquitous in various fields such as climate, biomedi-
cal signal processing, videos understanding to name but a few. When
linear models are not appropriate, a generic nonparametric approach
to modelling is relevant. In this work we build on a recent work about
Vector Autoregressive models using Operator-Valued Kernels [100,
101]. Vector autoregression is addressed in a Vector Valued Reprodu-
cing Kernel Hilbert Space with the important property to allow for
couplings between outputs. Given a d-dimensional time series of N
data points { x1, . . . , xN }, autoregressive models based on operator-
valued kernels have the form x̂t+1 = h(xt) =

∑N−1
ℓ=1 K(xt, xℓ)cℓ where

coefficients cℓ ∈ Rd, ℓ = 1, . . . ,N − 1 are the model parameters. A
naive approach for training such a model requires a memory com-
plexity O(N2d2), which makes the method prohibitive for large-scale
problems.

To scale up standard algorithms, we define an approximated
operator-valued feature map Φ̃ : Rd → RD that allows to approx-
imate the aforementioned model h in the RKHS by the following
function

h̃(xt) = Φ̃(xt)∗θ ≈ h(xt).

The features maps are matrices of size D× d where D controls the
quality of the approximation, d is the dimension of the inputs and
θ is here the parameter vector to learn. This formulation allows to
reduce the memory complexity to O((N − 1)D + (N − 1)d) which is
now linear w. r. t. the number of data points (see Section 6.1). The
principle used for building the feature map extends the idea of scalar
Random Fourier Features to the operator-valued case [139, 167].

8.2 operator-valued kernels for vector autoregres-
sion

Assume that we observe a dynamical system composed of d ∈ N∗

state variables at N ∈ N∗ evenly-spaced time points. The resulting
discrete multivariate time series is denoted by x1:N = (xℓ)Ni=1 where
xℓ ∈ Rd denotes the state of the system at time tℓ, ℓ ∈N∗

N. It is gener-
ally assumed that the evolution of the state of the system is governed
by a function h, such that xt = h(xt−p, . . . , xt−1) + ut where t is a
discrete measure of time and ut is a zero-mean noise random vector.
Then h is usually referred to as a vector autoregressive model of or-
der p. In the remainder of the chapter, we consider first-order vector
autoregressive models, that is p = 1. In a supervised learning set-
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ting, the vector autoregression problem consists in learning a model
ĥ : Rd → Rd from a given training set

s = ((x1, x2), . . . , (xN−1, xN)) ∈
(
R
d ×R

d
)N
.

In the literature, a standard approach to vector autoregressive mod-
elling is to fit a VAR model. The VAR(1) model reads h(xt) = Axt
where A is an d × d matrix whose structure encodes the temporal
relationships among the d state variables.

However, due to their intrinsically linear nature, VAR models fail
to capture the nonlinearities underlying realistic dynamical systems.
In this chapter we builds upon the work of Lim et al. [101] where
the authors introduced a family of nonparametric nonlinear autore-
gressive models called OKVAR. OKVAR models rely on the theory of
operator-valued kernels [133, 152], which provides a versatile frame-
work for learning vector-valued functions [5, 41, 113]. Those models
can be regarded as natural extensions of VAR models to the nonlinear
case.

Next, we recall key elements of the theory of VV-RKHS of func-
tions from Rd to Rd (see Section 4.2 for the detailed construction).
We first introduced the matrix-valued kernel which is an instance of
OVKs.

Definition 8.1 (Matrix-valued kernels). A function K : Rd ×Rd →
Rd×d is said to be a positive Rd×d-valued kernel if :

1. ∀x, z ∈ Rd, K(x, z) = K(z, x)∗,

2. ∀N ∈ N, ∀((xi, yi))Ni=1 ∈
(
Rd ×Rd

)N
,
∑N
i,j=1 y

∗
iK(xi, xj)yj ⩾

0.

Furthermore, for a given Rd×d-valued kernel K, we associate K with
a unique VV-RKHS (HK, ⟨·, ·⟩HK

) of functions from Rd to Rd. The
precise construction of Hk can be found in Section 3.3. In this section,
we assume that all functions h ∈ HK are continuous. Then K is called
an Rd-Mercer kernel (see definition 3.8).

Similarly to the case of scalar-valued kernels, working within the
framework of VV-RKHS allows to take advantage of representer the-
orems (Theorem 6.2) for a class of regularized loss functions such
as ridge regression. More precisely, we consider h, a nonparametric
vector autoregressive model of the following form assuming we have
observed N data points. Given xt the state vector at time t, we have
x̂t+1 =

∑N−1
ℓ=1 K(xt, xℓ)cℓ where x1:N = (xi)Ni=1 ∈

(
Rd
)N is the observed

time series, K : Rd × Rd → Rd×d is a matrix-valued kernel and
(c1)N−1

i=1 ∈
(
Rd
)N−1 are the model parameters. We call OKVAR any

model of the above form. In Lim et al. [101], the authors developed a
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family of OKVAR models based on appropriate choices of kernels to
address the problem of network inference where both the parameters
cℓ, ℓ ∈ N∗

N−1 and the OVK itself are learned using a proximal block
coordinate descent algorithm 22 under sparsity constraints. In the fol-22 See for instance

Parikh and Boyd
[130] about

proximal algorithms
and Fercoq and

Peter [62], Fercoq
and Richtárik [63],
and Richtárik and

Takáč [141] for
proximal block

coordinate descent.

lowing, we will not consider the kernel learning problem and will
use a simple ridge loss. We will also illustrate our approach to a well
known class of OVK, called decomposable or separable matrix-valued
kernels [39, 113], and instance of Decomposable OVK that were orig-
inally introduced to solve multi-task learning problems [59]. Other
kernels may also be considered as developed in Subsection 3.3.3.

Proposition 8.1 (Decomposable matrix-valued kernels). Let the
function k : Rd ×Rd → R be a scalar-valued kernel and Γ ∈ Rd×d a posi-
tive semidefinite matrix of size d×d. Then function K : Rd×Rd → Rd×d

defined for all (x, z) ∈ Rd ×Rd as K(x, z) = k(x, z)Γ is a decomposable
matrix-valued kernel.

A common choice for the scalar-valued kernel is the Gaussian kernel

kGauss(x, z) = exp(−
1

2σ2 ∥x− z∥
2
2)

for any x, z ∈ Rd and σ ∈ R+. Notice that kGauss can equivalently be
written with an hyperparameter γ ∈ R+:

kGauss(x, z) = exp(−γ∥x− z∥2
2),

with σ = (2γ)−1/2. The corresponding decomposable kernel is re-
ferred to as Kdec and is as Kdec(x, z) = kGauss(x, z)Γ with Γ a positive
semidefinite matrix.

While the model parameters cℓ’s are estimated under sparsity con-
straints in Lim et al. [101], here we consider the classic kernel ridge
regression setting where the loss function to minimize is

(8.1)Rλ(h, s) =
1

N− 1

N∑

ℓ=2

∥h(xℓ−1) − xℓ∥2
2 + λ∥h∥2

HK

with λ ⩾ 0 and ∥h∥2
HK

=
∑N−1
t,ℓ=1 c

∗
tK(xt, xℓ)cℓ. The optimization prob-

lem is solved using a L-BFGS-B [37] which is well suited for optimiza-
tion problems with a large number of parameters, and is widely used
as a training algorithm on small/medium-scale problems. However,
like standard kernel methods, OKVAR suffers from unfavourable
computational complexity both in time and memory since it needs
to store the full Gram matrix, preventing its ability to scale to large
data sets and making it really slow on medium scale problem. We
argue that this obstacle can be effectively overcome: in the following
we develop a method to scale up OKVAR to successfully tackle medi-
um/large scale autoregression problems.
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8.3 operator-valued random fourier features

We now introduce our methodology to approximate OVKs. Given a
shift-invariant kernel K(x, z) = K0(x− z), we approximate K by find-
ing an explicit feature map such that Φ̃(x)∗Φ̃(z) ≈ K0(x− z). The idea
is to use a generalization of Bochner’s theorem for the OVK fam-
ily that states that any translation-invariant OVK can be written as
the Fourier transform of a positive operator-valued measure. More
precisely, we build on the following proposition first proved in [41].
More details can be found in Section 4.2.

In the following, suppose that K0 = k0(·)A is a decomposable
kernel. Decomposable kernels belong to the family of translation-
invariant OVKs. From Proposition 4.3 we see that C(ω)ij =
F−1 [k0(·)] (ω)Aij. We decompose A as A = BB∗, note that A does not
depend on ω, and we denote

⊕D
j=1 zj the Dm-long column vector ob-

tained by stacking vectors zj ∈ Rm. Then we define an approximate
feature map for K0, called Operator-valued Random Fourier Feature
(ORFF) map [30] as follows (see Subsection 4.2.2 and Section 4.3). For
all x ∈ Rd,

Φ̃dec(x) =
1√
D

D⊕

j=1

(
cos ⟨x,ωj⟩B∗

sin ⟨x,ωj⟩B∗

)
, ωj ∼ F−1 [k0],

which can also be expressed as a Kronecker product ⊗ of a scalar
feature map with a matrix (see Subsection 6.3.1): Φ̃dec(x) = φ̃(x)⊗B∗

where

φ̃(x) =
1√
D

D⊕

j=1

(
cos ⟨x,ωj⟩
sin ⟨x,ωj⟩

)
, ωj ∼ F−1 [k0]

is a scalar-valued feature map. In particular, if k0 is a Gaussian kernel
with bandwidth σ2, then F−1 [k0] = N(0, 1/σ2) as proven in Rahimi
and Recht [139]. More examples on different OVK can be found in
Subsection 4.2.2 as well as a proof of the uniform convergence of the
kernel approximation in Section 5.1 defined by K̃(x, z) = Φ̃(x)∗Φ̃(z)
towards the true kernel. In the case of vector autoregression, we con-
sider a model h̃ of the form: x̂t+1 = Φ̃(xt)∗θ. That model is referred to
as ORFFVAR in the remainder of the section. Now, given the operator-
valued feature map, we get a linear model, and we want to minimize
the regularized risk

Rλ(θ, s) =
1

N− 1

N∑

ℓ=2

∥(φ̃(xℓ−1)∗ ⊗ B)θ− xℓ∥2
2 + λ∥θ∥2

2

with λ > 0 instead of Equation 8.1 (see Theorem 6.3). In their pa-
per Brault, Lim, and Buc [30] proposed to formulate the learning
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problem as a Stein equation when dealing with decomposable ker-
nels, and then used an appropriate solver [163]. We opted here for a
more general algorithm, which is a variant of the doubly stochastic
gradient descent [51]. In a few words, this algorithm is a stochastic
gradient descent that takes advantage of the feature representation of
the kernel allowing the number of features to grow along with the
number of points. Dai et al. [51] show that the number of iterations
needed for achieving a desired accuracy ϵ using a stochastic approxi-
mation is Ω(1/ϵ), making it competitive compared to other stochastic
methods for kernels such as NORMA [90] and its OVK adaptation
ONORMA [10]. We propose here in Algorithm 4, an extension of the
doubly stochastic gradient descent of Dai et al. [51] to OVKs. Addi-
tionally we consider a batch approach w. r. t. the data and the features,
and make it possible to “cap” the maximum number of features. The
inputs of the algorithm are: X the input data, Y the targets, Ke the
OVK used for learning, γt the learning rate (see Dai et al. [51] for a
discussion on the selection of a proper learning rate), T the number
of iterations, n the size of data batch, b the size of the feature batch,
and D the maximum number of features. Note that if K0 is a scalar
kernel, D = T , b = 1 and n = 1, we recover the algorithm formulated
in Dai et al. [51].

Algorithm 4: Block-coordinate mini-batch doubly SGD.
Data: X, Y, Ke, γt, λ, T , n, D, b
Result: Find θ

1 Let Db = D/b and find (ω, x), B(ω) and µ(ω) from Ke;
2 for i = 1 to Db do
3 θ1

i,. = 0;
4 end
5 for t = 1 to T do
6 At = Xt × Yt, a random subsample of n data from X× Y;
7 h (Xt) = predict

(
Xt, θ

t, Ke
)
; // Make a prediction.

8 Ωi ∼ µ with seed i, where i = ((t− 1) mod Db) + 1 ;
// Sample b features from µ.

9 for ω ∈ Ωi // Update the parameters from the

gradient.

10 do
11 θt+1

i,ω =

θti,ω − γt


 1

|At|

∑

(x,y)∈At

B(ω)∗(ω, x)(h(x) − y)√
D

+ λθti,ω


;

12 end
13 end
14 return θt+1
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In addition, the convergence of the algorithm can be speeded-up by
preconditioning by the Hessian of the system. An experimental C++

code is available at https://github.com/RomainBrault/OV2SGD.

Algorithm 5: h (X) =predict(X, θ, Ke)
Data: X, θ, K0

1 Find (ω, x), B(ω) and µ(ω) from K0;
2 f(X) = 0;
3 for x ∈ X do
4 for i = 1 to D do
5 Ωi ∼ µ(ω) with seed i;
6 for ω ∈ Ωi do
7 h(x) = h(x) + (ω, x)B(ω)θi,ω;
8 end
9 end

10 end
11 return h(X)

8.3.1 Numerical Performance

We now apply Algorithm 4 to toy and real datasets.

8.3.2 Simulated data

To assess the performance of our models, we start our investigation
by generating discrete d-dimensional time series (xt)t⩾1 as follows

(8.2)







x1 ∼ N(0, Σx)

xt+1 = h(xt) + ut+1, ∀t > 0.

where the residuals are homoscedastic and distributed according to
ut ∼ N(0, Σu). We study two different kinds of noise: an isotropic
noise with covariance Σu = σ2

uId and an anisotropic noise with
Toeplitz structure Σu,ij = ν|i−j|, where ν lives in (0, 1). We gener-
ated N = 1000 data points and used a Sequential cross-validation
(SCV) with time windows Nt = N/2 to measure the Mean Squared
Error SCV-MSE of the different models. Next, we compare the perfor-
mances of VAR(1), OKVAR and ORFFVAR through three scenarios.
Across the simulations, the topological structures of the underlying
dynamical systems are encoded by a matrix A of size 5× 5. All entries
of A are set to zero except for the diagonal where all coefficients are
equal to 0.9 for Settings 1 and 3 and 0.5 for Setting 2. Then five off-
diagonal coefficients are drawn randomly from N(0, 0.3) for Settings

https://github.com/RomainBrault/OV2SGD
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1 and 3 and N(0, 0.5) for Setting 2. We check that all the eigenvalues
of A are less than one to ensure the stability of the system. More
specifically, we picked the following values of parameters for each
scenario.

• Setting 1: Linear model.: h(xt) = Axt, ν = 0.9 and σu = 0.9,

• Setting 2: Exponential model.: h(xt) = A exp(xt) where exp is
the element-wise exponential function, ν = 0.09 and σu = 0.09,

• Setting 3: Sine model.: h(xt) = A sin(xt) where sin is the
element-wise sine function, ν = 0.9 and σu = 0.009.

ORFFVAR is instantiated with D = 25 random features in presence
of a white noise while we set D = 50 in case of a Toeplitz noise. We
summarize the computational efficiency and the statistical accuracy
of the models in Table 8.1. Throughout all the experiments, we set B
as the identity matrix of size d×d. This reflects the absence of a prior
on the structure of the data. A further study on the influence of the
choice of B can be found in Álvarez, Rosasco, and Lawrence [5] and
Propositions 3.9 and 4.12.

In Setting 1, we observe that OKVAR does not provide any advan-
tage over VAR(1) as expected since the data were generated according
to a linear VAR(1) model. Note that OKVAR takes orders of magni-
tude more time to achieve the same performance as VAR(1) while
ORFFVAR performs equally well with a competitive timing. In nonlin-
ear scenarios (Settings 2 and 3), OKVAR and ORFFVAR consistently
outperform VAR(1). Noticeably, ORFFVAR reaches the accuracy of
OKVAR with the computation time of VAR(1).

Setting 1 2 3

model noise SVC-MSE variance time SVC-MSE variance time SVC-MSE variance time

VAR(1)
White 0.914979 0.572485 0.002467(s) 0.001275 0.000994 0.002346(s) 0.009534 0.006003 0.001697(s)

Toeplitz 1.091096 1.267880 0.004822(s) 0.017014 0.013498 0.002050(s) 0.116901 0.127396 0.001702(s)

ORFFVAR
White 0.919663 0.572936 0.000994(s) 0.001003 0.000647 0.001284(s) 0.009536 0.005998 0.002377(s)

Toeplitz 1.097183 1.268978 0.001022(s) 0.012635 0.008837 0.012144(s) 0.116964 0.127395 0.000934(s)

OKVAR
White 0.958790 0.591934 0.104706(s) 0.001100 0.000731 0.027099(s) 0.009227 0.005717 0.014458(s)

Toeplitz 1.410969 1.312243 0.289046(s) 0.013854 0.010977 1.856988(s) 0.160133 0.136570 0.019170(s)

Table 8.1: Sequential SCV-MSE and computation times for VAR(1), ORFF-
VAR and OKVAR on synthetic data (Settings 1, 2 and 3).

8.3.3 Influence of the number of random features

Here, we investigate the impact of D, the number of random features
for ORFFVAR. To this end, we generated N = 10000 data points fol-
lowing Equation 8.2, with exponential nonlinearities and white noise
as in Setting 2. We performed a sequential cross-validation on a win-
dow of N/2 data. As expected the error decreases with the number
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of random features D (Table 8.2). For the same computation time
(D = 25) as VAR(1), ORFFVAR achieves an SCV-MSE that is twice as
small.

model D = 1 D = 5 D = 10 D = 25 D = 50 D = 100 VAR(1)

SVC-MSE 0.005342 0.001111 0.000991 0.000962 0.000949 0.000944 0.001660

variance 0.008639 0.000793 0.000660 0.000618 0.000608 0.000605 0.001363

time 0.001191(s) 0.002384(s) 0.003614(s) 0.018469(s) 0.038229(s) 0.069294(s) 0.019634(s)

Table 8.2: SVC-MSE with respect to D the number of random features for
ORFFVAR.

8.3.4 Real datasets

We now investigate three real datasets. The performances of the mod-
els on those datasets are recorded in Table 8.3. Throughout the exper-
iments, the hyperparameters are set as follows: the bandwidth of the
Gaussian kernel σ is chosen as the median of the Euclidean pairwise
distances and the regularization parameter λ was tuned on a grid.
The number of random featuresD and the parameters in Algorithm 4
were picked so as to reach the level of accuracy of OKVAR/VAR.

macrodata This dataset is part of the Python library
Statmodels1. It contains 204 US macroeconomic data points
collected on the period 1959–2009. Each data point represents 12
economic features. No pre-processing is applied before learning.
We measure SCV-MSE using a window of 25 years (50 points). We
instantiated Algorithm 4 as follows: γt = 1, λ = 10−3, D = 100, T = 2
and b = 50 for ORFF and λ = 0.00025 and σ = 11.18 for OKVAR.

gesture phase . This dataset2 is constructed using features ex-
tracted from seven videos with people gesticulating. We present the
results for videos 1 and 4, consisting in 1069 data points and 31 fea-
tures. Data are normalized prior to learning. We measure SCV-MSE
using a time window of 200 points. We implemented ORFFVAR with
γt = 1, λ = 10−3, D = 100, T = 2 and b = 50.

climate . This dataset [106] contains monthly meteorological mea-
surements of 18 variables (temperature, CO2 concentration, . . . ) col-
lected at 135 different locations throughout the USA and recorded
over 13 years, thus resulting in 135 time series of dimension 18 and
length 156. Data are standardized at each station. A unique model is
learned for all stations. SCV-MSE is measured on a window of 1872
points, corresponding to the data of all the 135 stations over one year.

1 https://github.com/statsmodels/statsmodels

2 https://archive.ics.uci.edu/ml/datasets/Gesture+Phase+Segmentation

https://github.com/statsmodels/statsmodels
https://archive.ics.uci.edu/ml/datasets/Gesture+Phase+Segmentation
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Specifically, we set the parameters of ORFFVAR as follows: γt = 1,
λ = 10−6, D = 100, T = 1 and b = 100.

heart. The dataset is a multivariate time-serie recorded from a
patient in the sleep laboratory of the Beth Israel Hospital in Boston,
Massachusetts3. The attributes are the heart rate, the chest volume
(respiration force) and the blood oxygen concentration. The time-serie
contains 17000 points recorded at 2Hz during roughly 4 hours 30
minutes. We used a window of 240 points for the sequential cross-
validation (corresponding to 2 minutes of observations).

ORFFVAR VAR(1) OKVAR

Dataset N d SCV-MSE variance time SCV-MSE variance time SCV-MSE variance time

Macrodata #203 #12 445.9 84.5 0.014(s) 449.1 1021 0.0005(s) 499.8 793.0 0.641(s)

Gesture phase 1 #1743 #31 0.741 2.999 0.009(s) 0.980 3.370 0.0014(s) N. A. N. A. N. A.

Gesture phase 4 #1069 #31 0.473 2.406 0.061(s) 0.768 6.49 0.0075(s) N. A. N. A. N. A.

Climate #19375 #18 0.237 0.2128 0.396(s) 0.266 0.218 0.0124(s) N. A. N. A. N. A.

Heart #16999 #3 0.262 1.020 0.011(s) 0.259 1.040 0.0010(s) N. A. N. A. N. A.

Table 8.3: SCV-MSE and computation times for ORFFVAR, VAR(1) and OK-
VAR on real datasets.

8.4 discussion

Operator-Valued Random Fourier Feature provides a way to approx-
imate OVK and in the context of time series, allows for nonlinear
Vector Autoregressive models that can be efficiently learned both in
terms of computing time and memory. We illustrate the approach
with a simple family of Operator-valued kernels, the so-called decom-
posable kernels but other kernels may be used. While we focused on
first-order autoregressive models, we will consider extensions of our
models for higher orders. In this work, the kernel hyperparameter B
is given prior to learning, however it would be interesting to learn B
as in OKVAR. Thus, a promising perspective is to use these models
in tasks such as network inference and search for causality graphs
among the state variables for large-scale time series [100, 101].

q

3 http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html

http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html
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W O R K I N P R O G R E S S

To conclude our work we present some work in progress. We show
practical applications of operator-valued kernels acting on an infinite
dimensional space Y. We give two examples. First we show how to
generalize many quantile regression to learn a continuous function
of the quantiles on the data. Second we apply the same methodol-
ogy to the one-class SVM algorithm in order to learn a continuous
function of all the level sets. We conclude by presenting Operalib, a
python library developed during this thesis which aims at implement-
ing OVK-based algorithms in the spirit of Scikit-learn [132].

Contents
9.1 Learning function-valued functions . . . . . . . . . 150

9.1.1 Quantile regression . . . . . . . . . . . . . . 150

9.1.2 Functional output data . . . . . . . . . . . . 151

9.1.3 ORFF for functional output data . . . . . . 151

9.1.4 Many quantile regression . . . . . . . . . . 155

9.1.5 One-class SVM revisited . . . . . . . . . . . 157

9.2 Operalib . . . . . . . . . . . . . . . . . . . . . . . . . 160

149



150 work in progress

9.1 learning function-valued functions

In this section we show how to use OVK in hand with the ORFF
framework to learn function-valued functions. We focus on two ap-
plication cases: quantile regression and one-class classification. This
section is rather an informal (but detailed) discussion on ideas that
we plan to improve for future publications.

9.1.1 Quantile regression

This introduction to quantile regression is adapted from the paper of
Sangnier, Fercoq, and Buc [146]. As we have seen in the introductory
Chapter 2, a standard task in Machine Learning is to estimate the con-
ditional expectation f(x) = EPr[Y|X = x], where (X, Y) ∼ Pr with some
function belonging to a hypothesis space f ∈ F. Yet, many sensitive
applications need more than the expected valued of the relationship
between random variables. To control the “quality” of the predicted
value from an input x, fields such as economics, medicine, physics or
social science require to have access to the different quantile to model
the distribution around the mean f(x) ∈ R and strengthen their anal-
ysis.

Here we are interested in learning and predicting simultaneously
all the quantiles on the compact [0, 1], of the scalar-valued random
variable Y|X. We place ourselves in the setting of conditional quantile
regression by minimization of the pinball loss [91]. For τ ∈ [0, 1] the
pinball loss reads

Lτ(x, f, y) = max(τ (f(x) − y) , (τ− 1) (f(x) − y)).

In a nutshell, this loss has been introduced by noticing that finding
the optimal location parameter µ = f(x) in the ℓ1 loss L(x, f, y) =
|f(x) − y| yields an estimator of the unconditional median [91]. Re-
cently Sangnier, Fercoq, and Buc [146] proposed to learn simultane-
ously many quantiles by minimizing the multi-quantile loss function.
Given a vector of quantiles τ = (τ1, . . . τp) ∈ [0, 1]p

Lτ(x, f, y) =
p
∑

i=1

max(τi (f(x)i − y) , (τi − 1) (f(x)i − y)).

We see that now it is necessary for f(x) ∈ Rp to be vector-valued.
In this work we push further the idea by considering that f(x) is a
function of an arbitrary quantile τ ∈ [0, 1]. Thus we view f as a vector-
valued function f : R → ([0, 1] → R). For the sake of simplicity we
note f(x) = fx and introduce the generalized pinball loss

(9.1)L(x, f, y) =
∫

[0,1]
max(τ (fx(τ) − y) , (τ− 1) (fx(τ) − y))dτ.
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9.1.2 Functional output data

Pioneer work on learning function-valued function has been done by
Kadri et al. [86]. Inspired by them we develop an ORFF methodol-
ogy to learn functional data where the outputs are functions that we
suppose living in a RKHS.

Namely, we suppose that the image of a funtion f, has values f(x) ∈
HkT in a RKHS, where kT : T2 → R is a scalar-valued kernel and HkT
is the corresponding RKHS. From this hypothesis we see that

fx(τ) = ⟨f(x), kT(·, τ)⟩HkT

If we add the second hypothesis that f ∈ HK, where HK is a Vector
Valued Reproducing Kernel Hilbert Space for some Operator-Valued Ker-
nel K, Carmeli et al. [41] showed in example 6 page 17-18 that in this
case the operator K is given by

(9.2)K =







X× X → L(HkT )

x, z 7→ kX(x, z)IHkT
,

where k : X × X → R is another scalar-valued kernel. Moreover
Carmeli et al. [41] showed in example 7 page 18-19 that the VV-RKHS
induced by K is the same RKHS than the one induced by the kernel
K ′ defined as follow for some measure µ with support T.

K ′ =







X× X → L
(
L2(T, µ)

)

x, z 7→
(
g 7→ kX(x, z)

∫

T kT(·, τ)g(τ)dµ(τ)
)
.

This is exactly the decomposable kernel introduced in Proposi-
tion 3.12 in Chapter 2. Because the RKHSs induced by K and K ′ is the
same, we can either view its elements as functions from X into HkT
(through HK) or as functions from X into L2(T, µ) (through HK ′).

9.1.3 ORFF for functional output data

Because Y = HkT is a proper (infinite dimensional) Hilbert space, we
can apply the ORFF methodology. Let kX be a scalar Mercer kernel
and X = R. Then by Proposition 4.8 applied to the decomposable ker-
nel (see Subsection 4.3.3) we have the following approximate feature
map for K defined in Equation 9.2:

Φ̃(x)y =
1√
D

D⊕

j=1

(
cos(xωj)B∗y

sin(xωj)B∗y

)
, ωj ∼ F [kX] i. i. d.

where BB∗ = IHkT
and y ∈ HkT . At this point we could choose

B = IHkT
. However this is not really useful since it would make the
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redescription space H̃ =
⊕D
j=1 HkT , which is a direct sum of infinite

dimensional RKHS. Yet since HkT is a RKHS, according to Propo-
sition 3.4 it is possible to define a feature operator W : H → HkT
such that (Wg)(τ) = Φ∗

τg. Moreover W∗W is the identity on Im Φτ
which is here HkT . (see the proof of Proposition 3.4 and Carmeli et al.
[41]). Thus we can choose Φτ = Φ(τ) to be the functional Fourier fea-
ture map associated to kT defined in Proposition 4.6. Then we have
BB∗ = IHkT

= WW∗. Thus we can choose B = W = Φ(·)∗ and the
approximate feature map reads

Φ̃(x) ∈ L


HkT ;

D⊕

j=1

L2
(
T̂,PrĤaar,ρ

)



and

(Φ̃(x)g)(τ) =
1√
D

D⊕

j=1

(
cos(xωj)W∗g

sin(xωj)W∗g

)
, ωj ∼ F [kX] i. i. d.

Then it is easy to verify that the adjoint operator is given by
(
˜̃
Φ(x)∗θ

)
(τ) =

1√
DD ′

D∑

j=1

(
cos(xωj)

+ sin(xωj)
)


D ′⊕

k=1

(
cos(τω ′

k)

sin(τω ′
k)

)


∗

θj

=
1√
DD ′

D∑

j=1

(
cos(xωj) + sin(xωj)

)
θjk

(
cos(τω ′

k)

+ sin(τω ′
k)
)

,
ωj ∼ F [kX] i. i. d. and ω ′

k ∼ F [kT] i. i. d..

where θk ∈ RD
′
, for all k ∈ N∗

D and θjk ∈ R for all j ∈ N∗
D and all

k ∈N∗
D ′ . The above equations can be rewritten in matrix form which

results in the following conjecture.

Conjecture 9.1 If φ̃X is an RFF for k̃X such that φ̃(x) ∈ RD and φ̃T is
an RFF for k̃T , such that φ̃(τ) ∈ RD

′
then an ORFF map for

K(x, z) = kX(x, z)IHk̃T

is given for all x ∈ R, all τ ∈ R and all Θ ∈MD,D ′(R) by
(
Φ̃K(x)∗Θ

)
(τ) = φ̃X(x)∗Θφ̃T(τ)

and (
Φ̃K(x)G

)
(τ) = φ̃X(x)φ̃T(τ)∗G,

where g ∈ RD
′
.

Moreover if one defines Φ̃K(x, τ) =
(
Φ̃K(x)∗Θ

)
(τ) one have of course

Φ̃K(x, τ)∗Θ = φ̃X(x)∗Θφ̃T(τ)
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9.1.4 Many quantile regression

From the loss defined in Equation 9.1 we defined the regularized
risk using the “continuous” pinball loss for the quantile regression
problem. For all f ∈ HK,

Rλ(f, s) =
1
N

N∑

i=1

∫

[0,1]









τ (fxi(τ) − yi) if fxi(τ) ⩾ yi

(1 − τ) (yi − fxi(τ)) otherwise




+ λ∥f∥2
K.

The issue with the above risk is that the different quantile for a given
point x ∈ R may cross (see Sangnier, Fercoq, and Buc [146]). To avoid
this to happen we need to force the function fx(τ) to be increasing in τ
for any x ∈ R. Because a decreasing function has a negative derivative
we can add a penalty term to the risk to avoid fx(τ) to be decreasing
in τ.

Ωcross(fxi) = −min
(
∂fxi
∂τ

(τ), 0
)

Thus the regularized risk with the no crossing constraint is

Rλ1,λ2(f, s) =
1
N

N∑

i=1

∫

[0,1]









τ (fxi(τ) − yi) if fxi(τ) ⩾ yi

(1 − τ) (yi − fxi(τ)) otherwise

− λ1 min
(
∂fxi
∂τ

(τ), 0
)
 + λ2∥f∥2

K.

Eventually we replace the integral by a Monte-Carlo sampling with
the uniform law U([0, 1]) and plug in the approximate function of f
using the ORFF map proposed in conjecture 9.1. The final regularized
risk to be minimized reads

Rλ1,λ2(Θ, s) =
1
NT

N∑

i=1

T∑

t=1









τt

(
f̃xi(τt) − yi

)
if f̃xi(τt) ⩾ yi

(1 − τt) (yi − fxi(τt)) otherwise

− λ1 min

(
∂f̃xi
∂τ

(τt), 0

)
 + λ2∥Θ∥2

fro.

where f̃x(τ) = φ̃X(x)∗Θφ̃T(τ), τt ∼ U([0, 1]) and

∂f̃x

∂τ
(τ) = φ̃X(x)∗Θ

∂φ̃T

∂τ
(τ)

= φ̃X(x)∗Θ
D ′⊕

k=1

(
−ω ′

k sin(ω ′
kτ)

ω ′
k cos(ω ′

kτ)

)
, ω ′

k ∼ F [kT] i. i. d..
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9.1.4.1 Some results

We minimized the quantity Rλ1,λ2(Θ, s) on a toy dataset: a sine wave
with some heteroscedastic noise. First we compared our methodology
to the joint quantile regression proposed in Sangnier, Fercoq, and Buc
[146]. We generate N = 2500 for the train set and N ′ = 1000 points
for the test set and use a Gaussian kernel for both kX and kT . We
choosed σX = 0.25 and σT has been set to be the median of the pair-
wise distance of the τt’s drawn randomly from U([0, 1]). Notice that
Rλ1,λ2(Θ, s) is convex in Θ. To avoid computing complex gradients
and by lack of time, we used Tensorflow [1] to perform a gradient de-
scent (with RMSProp [172]) with automatic symbolic differentiation.
Figure 9.1 show the result for the quantile at 0.05, 0.275, 0.5, 0.775 and
0.95 using the ORFF methodology. Figure 9.2 shows the joint quan-
tile regression of Sangnier, Fercoq, and Buc [146] on the same dataset.
Not only our method matched the the performances of Sangnier, Fer-
coq, and Buc [146]1 but we cutted down the computation time from
circa 1330 seconds to circa 30 seconds (training and testing). More-
over on contrary to Sangnier, Fercoq, and Buc [146] we have access to
all the quantile of the model (see Figure 9.3).

9.1.5 One-class SVM revisited

We also propose an extension of the celebrated One-Class Support
Vector Machine (OCSM) such that it is possible to learn jointly all
the level sets. One-class classification, also known as unary classifica-
tion, tries to identify objects of a specific class amongst all objects, by
learning from a training set containing only the objects of that class.
In this framework, we assume that we only observe examples of one
class (referred to as the inlier class). The second class is called outlier
class. We turn our attention to the OCSM of Schölkopf et al. [147]
which extends the Support Vector Machine (SVM) methodology [48,
155] to handle training using only inliers.

We recall that given an hyperparameter ν ∈ [0, 1] that controls
the proportion of inlier, given as scalar kernel k, the OCSM problem
reads

arg min
f ∈Hk,τ∈R

ν

2
∥f∥2

Hk
− ντ +

1
N

N∑

i =1

max(τ− f(xi), 0)

The decision function is then

h(x, τ) = 1[τ,∞) (f(x)) .

1 We reported an error computed with the pinball loss on the test set of 0.818 for our
method and 0.817 for joint regression (note that we don’t report here an average on
many experiments to avoid randomness introduced by the random features, but the
results seems robust in practice.)
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As in Subsection 9.1.1 we can rewrite the optimization problem as an
integral over all the value of ν and suppose that f is function-valued
(a function of ν). Moreover τ must also change its value according to
ν. Thus given a kernel kX on the inputs x ∈ Rd with its approximate
feature map φ̃X and a kernel kT on the level sets with its approximate
feature map φ̃T , we define the continuous one-class SVM problem as

arg min
f ∈HK,τ∈Hkτ

1
N

N∑

i =1

∫

[0,1]
max

(
0, τ(ν) − fxi(ν)

)
dν

+
1
2

∫

[0,1]
ν∥f·(ν)∥2

HkX
dν−

∫

[0,1]
ντ(ν)dν.

Again we can compute the integral by Monte-Carlo sampling and
replace f and τ by their respective approximation. Notice that the
RKHS of τ should match the RKHS of the output space of fK. Hence

arg min
Θ ∈MD,D ′ (R),τ∈RD

1
NT

N∑

i =1

T∑

t =1

max
(

0, τ̃(νt) − f̃xi(νt)
)

+
1

2T

T∑

t =1

νt

∥∥∥f̃·(νt)
∥∥∥

2

2
−

1
T

T∑

t =1

νtτ̃(νt),

where νt ∼ U([0, 1]) i. i. d., τ̃(ν) = φ̃T(ν) and f̃x(ν) = φ̃(x)∗Θφ̃T(ν). We
also deduce that f̃·(ν) = Θφ̃T(ν). Here the natural decision function
is

(9.3)h(x, ν) = 1[τ̃(ν),∞)

(
f̃x(ν)

)
.

9.1.5.1 Proof of concept

First we ensure that the variable ν is a good proxy for the proportion
of inlier. For this we generate a dataset of points in X = R2 from a
mixture of three Gaussians. One Gaussian is located at µ1 = (0, 0),
the second at µ2 = (5, 5) and th third at µ3 = (10, 10). Each Gaussian
has unit variance and we draw 250 points from the first and third
one and 100 from the second one, so that we have 600 points in the
dataset. We take kX as a Gaussian kernel with scale parameter γX = 2
and kT another Gaussian kernel with scale parameter γT (see Subsub-
section 4.2.2.2). After training we apply the decision function to the
train test to which we add 100 points generated from a uniform dis-
tribution to model the novelty detection setting. We refer to this new
augmented set as the test set. In Figure 9.4 we show the proportion of
inliner with respect to ν. The top figure shows the result for a model
trained with γT = 100 the middle figure for γT = 1 and the bottom
figure for γT = 0.01. We see that when γT = 0.01, the proportion of
inlier on the train and test set does not follows the theoretical black
curve, because the algorithm regularize too much between the level





160 work in progress

sets. When γT = 1 or 100 the proportion of inliers almost follows the
theoretical black curve. We see that when γT = 100 the curves are
less stable than when γT = 0 especially around ν = 0. The gap be-
tween the train curve (orange) and test curve (blue) corresponds to
the “novel” points that are not distributed according to the mixture
of Gaussians.

We can give an interpretation to kT and kX. kX control the com-
plexity of the boundary of each level set and kT tells how much each
level set differ from the neighbour level sets.

We propose a second experiment in a context of outlier detec-
tion. This time the train set is polluted with outliers. We repli-
cate the example given in the documentations of Scikit-Learn
at http://scikit-learn.org/stable/auto_examples/covariance/

plot_outlier_detection.html We compare our method to three
other well known outlier detection methods from the literature: Iso-
lation Forest [105], OCSM [147] and a Robust Covariance estimator
[38, 132] on Figure 9.5. Our method achieves the state of the art on
this simple example which is encouraging. However the computation
time of our continuous OCSM is higher than the other methods. It
took circa 0.25 second for the OCSM. 10 seconds for our method, 5
seconds for isolation forest and 0.1 second for the Robust covariance
estimator. This can be due to the implementation since we used a (sub-
optimal) hand-crafted full gradient descent. Notice that however our
method is able to retrieve all the level sets after training, not only the
one presented in Figure 9.5. When one is interested in a specific level
set or range of level set one could sample the νt from another distri-
bution than the uniform distribution U[0, 1] to give more importance
to the desired range of level sets.

9.2 operalib

During this Thesis we started the development of a library named
“Operalib” implementing various machine learning algorithms based
on operator-valued kernels. We are grateful to Alexandre Gramfort
(LTCI, Télécom ParisTech) who served as a technical mentor at the
beginning of this software development and provided many advices.
Operator-valued kernels defines a framework allowing learning vec-
tor/function/structured output. To install the library it should be as
simple as

Listing 9.1: Installation of Operalib.

1 pip install operalib

The library currently features:

http://scikit-learn.org/stable/auto_examples/covariance/plot_outlier_detection.html
http://scikit-learn.org/stable/auto_examples/covariance/plot_outlier_detection.html
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Figure 9.5: Continuous OCSVM for outlier detection.
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• Quantile regression [146],

• ONORMA [10],

• semi-supervised Ridge regression [35],

• some elements of the ORFF framework [29].

The algorithms work for a selection of popular operator-valued ker-
nels such that the matrix-valued decomposable kernel, the curl-free
kernel and the divergence-free kernel. The library is structured so
that it is easy for the user to define its own operator-valued kernel
and plug it to the existing optimisation algorithms, while keeping
efficient computations thanks to the methodology presented in Equa-
tion 6.10 (i. e. by seeing operator-valued kernels as operators along
with matrix-free solver rather than plain matrices). We designed the
library in order to have a close compatibility with Scikit-learn. Code
and documentation are publicly available at https://github.com/

operalib/operalib. In a near future we plan to add the family of
works of Brouard, d’Alché-Buc, and Szafranski [35] around Input
Output Kernel Regression, the work of Lim et al. [103] about the
two learning algorithms defined in Lim et al. [103]: a sparse learning
of OVK and a learning algorithm for both kernel and weights with
a block coordinate descent scheme and a proximal gradient method
to deal with non-smooth constraints. Development for modeling time
series will be also included. We hope to expand with more algorithms
from various authors of the OVK community and welcome any new
contributor!

q

https://github.com/operalib/operalib
https://github.com/operalib/operalib
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C O N C L U S I O N

To conclude this work we would like to summarize our contributions,
and show how they answered the initial question of large-scale learn-
ing with Operator-Valued Kernels. Then we finish with some short
and mid term perspectives.
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164 conclusion

In Machine Learning, many algorithms focus on learning functions
that model dependencies between inputs and outputs where outputs
are real numbers. However in numerous application fields such as
biology, economics, physics, etc. the output data are not reals: they
can be a collection of reals, present complex structures or can even be
functions. To overcome this difficulty and take into account the struc-
ture of the data, a common approach is to see them as vectors of some
Hilbert space. From this observation, in this thesis, we took interest
in vector-valued functions. Looking at the literature we focused on
mathematical objects called Operator-Valued Kernels to learn such
functions.

10.1 contributions

OVKs naturally extend the celebrated kernel methods used to learn
scalar-valued functions, to the case of learning vector-valued func-
tions. Yet, although OVKs are appealing from a theoretical aspect,
these methods scale poorly in terms of computation time when the
number of data is high. Indeed, in order to evaluate a function on a
unknown point with an Operator-Valued Kernel, it requires to eval-
uate an Operator-Valued Kernel on all the point in the given dataset.
Hence naive learning with kernels usually scales cubicly in time with
the number of data. In the context of large-scale learning such scaling
is not acceptable. Through this work we propose a methodology to
tackle this difficulty.

Enlightened by the literature on large-scale learning with scalar-
valued kernel, in particular the work of Rahimi and Recht [139], we
propose to replace an OVK by a random feature map that we called
Operator-valued Random Fourier Feature. Our contributions start
with the formal mathematical construction of this feature from an
OVK. Then we show that it is also possible to obtain a kernel from an
ORFF. Eventually we analyse the regularization properties in terms
of Fourier Transform of Y-Mercer kernels. Then we moved on giving
a bound on the error due to the random approximation of the OVK
with high probability. We showed that it is possible to bound the error
even though the ORFF estimator of an OVK is not a bounded random
variable. Moreover we also give a bound when the dimension of the
output data infinite.

After ensuring that an ORFF is a good approximation of a kernel,
we moved on giving a framework for supervised learning with Op-
erator-Valued Kernels. We showed that learning with a feature map
is equivalent to learning with the reconstructed OVK under some
mild conditions. Then we focused on an efficient implementation
of ORFF by viewing them as linear operators rather than matrices
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and using matrix-free (iterative) solvers and concluded with some
numerical experiments. Eventually we gave a generalization bound
for ORFF learning that suggests that the number of features sampled
in an ORFF should be proportional to the number of data. We con-
cluded our contribution by applying the ORFF framework to learning
vector-valued time series.

10.2 perspectives

To start with the theoretical perspectives, following Rahimi and Recht
we gave a generalization bound for ORFF kernel ridge that suggests
that the number of features to draw is proportional to the number of
data. However new results of Rudi, Camoriano, and Rosasco [144]
suggest that the number of feature should be proportional to the
square root of the number of data. In a future work, we shall inves-
tigate this result and extend it to ORFF.

On the methodological perspectives we gave an intuition on how
Operator-Valued Kernels can be used to learn outputs that are func-
tions. We used the ORFF framework to speed up quantile regression
and at the same time obtain the full quantile function. We applied the
same methodology to the anomaly detection setting and showed that
it is possible to learn jointly all the level sets of a distribution with
an extension of a One-Class Support Vector Machine. We are con-
vinced that this will open the door to many new applications. Given
a problem with some hyperparameters, the combination of ORFF and
Operator-Valued Kernels allow to learn functions of the hyperparam-
eters.

Another nice extension would be to be able to learn the structure of
an ORFF i. e. the spectral distribution and the operator from the data,
as in Yang et al. [191] so that we avoid to inject directly ourselves a
prior on the data by the mean of an Operator-Valued Kernel.

On the implementation level, we are really enthusiastic about Op-
eralib, a library for learning with Operator-Valued Kernels started
during this thesis as a project of Paris-Saclay Center for Data Sci-
ence1, and will extend the library with other OVK-based algorithms.
Moreover much work is remaining to do concerning the implemen-
tation of efficient algorithms based on (O)RFFs. We could extend the
Multiple Kernel learning setting to OVKs to see if we can match the
performances of Deep Neural Networks as in Lu et al. [108]. We could
also improve the Doubly Stochastic Gradient descent in the light of
the recent results of Rudi, Camoriano, and Rosasco [144] on general-
ization.

1 As a collaboration with Alexandre Gramfort
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Eventually during these three years, we have witnessed the rise
of deep-learning methods with neural networks. As pointed out by
many authors, random features share deep connections with neural
networks: an ORFF-based shallow architecture can be seen as a one-
layer neural architecture. Conversely, a neural network can be seen
as a compositional feature map. As in the work of Yang et al. [192]
we could replace the last layer of a convolutional neural network [95]
with an ORFF map in order to open these architectures to the setting
offered by OVK to deal with structured and functional outputs.
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P R O O F S O F T H E O R E M S

In this appendix we detail the proofs of Corollary 5.2 and Corol-
lary 5.3. These two corollaries applying on compact subsets of Banach
spaces are the consequences of more generic propositions (Proposi-
tion A.1 and Proposition A.2) working on any compact subsets of Pol-
ish spaces. Eventually we give a proof on the variance bound given
in Proposition A.3.
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a.1 proof of the error bound with high probability

of the orff estimator

We recall the notations δ = x ⋆ z−1, for all x, z ∈ X, K̃(x, z) = Φ̃(x)
∗
Φ̃(z),

K̃j(x, z) = Φx(ωj)
∗Φz(ωj), where ωj ∼ PrĤaar,ρ and Ke(δ) = K(x, z)

and K̃e(δ) = K̃(x, z). For the sake of readabilty, we use throughout the
proof the quantities

F(δ) : = K̃(x, z) − K(x, z)

Fj(δ) : =
1
D

(
K̃j(x, z) − K(x, z)

)
.

We also view X as a metric space endowed with the distance dX :
X × X → R+. Compared to the scalar case, the proof follows the
same scheme as the one described in [139, 167], but we consider an
operator norm as measure of the error and therefore concentration
inequality dealing with these operator norm. The main feature of
Proposition A.1 is that it covers the case of bounded ORFF as well
as unbounded ORFF. In the case of bounded ORFF, a Bernstein in-
equality for matrix concentration such that the one proved in Mackey
et al. [110, Corollary 5.2] or the formulation of Tropp [174] recalled in
Koltchinskii [92] is suitable. However some kernels like the curl and
the divergence-free kernels do not have obvious bounded

∥∥Fj
∥∥
Y,Y

but exhibit Fj with subexponential tails. Therefore, we use an opera-
tor Bernstein concentration inequality adapted for random matrices
with subexponential norms.

a.1.1 Epsilon-net

Let C ⊆ X be a compact subset of X. Let DC =
{

x ⋆ z−1
∣∣ x, z ∈ C

}

with diameter at most 2|C| where |C| is the diameter of C. Since C

is supposed compact, so is DC. Since DC is also a metric space it is
well known that a compact metric space is totally bounded. Thus it
is possible to find a finite ϵ-net covering DC. We call T = N(DC, r) the
number of closed balls of radius r required to cover DC. For instance
if DC is a subspace finite dimensional Banach space with diameter at
most 2|C| it is possible to cover the space with at most T = (4|C|/r)d

balls of radius r (see Cucker and Smale [50, proposition 5]).

Let us call δi, i = 1, . . . , T the center of the i-th ball, also called
anchor of the ϵ-net. Denote LF the Lipschitz constant of F. Let ∥·∥Y,Y
be the operator norm on L(Y) (largest eigenvalue). We introduce the
following technical lemma.

Lemma A.1 ∀δ ∈ DC, if

(A.1)LF ⩽
ϵ

2r
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and

(A.2)∥F(δi)∥Y,Y ⩽
ϵ

2
, for all i ∈N∗

T

then ∥F(δ)∥Y,Y ⩽ ϵ.

Proof

∥F(δ)∥Y,Y = ∥F(δ) − F(δi) + F(δi)∥Y,Y
⩽ ∥F(δ) − F(δi)∥Y,Y + ∥F(δi)∥Y,Y

for all 0 < i < T . Using the Lipschitz continuity of F we have

∥F(δ) − F(δi)∥Y,Y ⩽ dX(δ, δi)LF ⩽ rLF

hence

∥F(δ)∥Y,Y ⩽ rLF + ∥F(δi)∥Y,Y =
rϵ

2r
+
ϵ

2
= ϵ.

To apply the lemma, we must bound the Lipschitz constant of the
operator-valued function F (Equation A.1) and ∥F(δi)∥Y,Y, for all i =
1, . . . , T as well (Equation A.2).

a.1.2 Bounding the Lipschitz constant

This proof is a slight generalization of Minh [118] to arbitrary met-
ric spaces. It differ from our first approach [29], based on the proof
of Sutherland and Schneider [167] which was only valid for a finite
dimensional input space X and imposed a twice differentiability con-
dition on the considered kernel.

Lemma A.2 Let Hω ∈ R+ be the Lipschitz constant of hω(·) and assume
that

∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ(ω) <∞.

Then the operator-valued function Ke : X→ L(Y) is Lipschitz with

(A.3)∥Ke(x) − Ke(z)∥Y,Y ⩽ dX(x, z)
∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ(ω).

Proof We use the fact that the cosine function is Lipschitz with constant 1
and hω Lipschitz with constant Hω. For all x, z ∈ X we have

∥∥K̃e(x) − Ke(z)
∥∥
Y,Y

=
∥∥∥∥
∫

X̂

(coshω(x) − coshω(z))A(ω)dPrĤaar,ρ

∥∥∥∥
Y,Y

⩽

∫

X̂

|coshω(x) − coshω(z)|∥A(ω)∥Y,YdPrĤaar,ρ

⩽

∫

X̂

|hω(x) − hω(z)|∥A(ω)∥Y,YdPrĤaar,ρ

⩽ dX(x, z)
∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ
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In the same way, considering K̃e(δ) = 1
D

∑D
j=1 coshωj(δ)A(ωj), where

ωj ∼ PrĤaar,ρ, we can show that K̃e is Lipschitz with

∥∥K̃e(x) − K̃e(z)
∥∥
Y,Y

⩽ dX(x, z)
1
D

D∑

j=1

Hωj
∥∥A(ωj)

∥∥
Y,Y
.

Combining the Lipschitz continuity of K̃e and K̃ (Lemma A.2) we
obtain

∥F(x) − F(z)∥Y,Y =
∥∥K̃e(x) − K̃e(x) − K̃e(z) + Ke(z)

∥∥
Y,Y

⩽
∥∥K̃e(x) − K̃e(z)

∥∥
Y,Y

+ ∥Ke(x) − Ke(z)∥Y,Y

⩽ dX(x, z)



∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ

+
1
D

D∑

j=1

Hωj
∥∥A(ωj)

∥∥
Y,Y




Taking the expectation yields

EĤaar,ρ [LF] = 2
∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ(ω)

Thus by Markov’s inequality,

(A.4)
PrĤaar,ρ { (ωj)Dj=1 | LF ⩾ ϵ } ⩽

EĤaar,ρ [LF]

ϵ

⩽
2
ϵ

∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ.

a.1.3 Bounding F on a given anchor point δi

To bound ∥F(δi)∥Y,Y, Hoeffding inequality devoted to matrix con-
centration [110] can be applied. We prefer here to turn to tighter
and refined inequalities such as Matrix Bernstein inequalities (Suther-
land and Schneider [167] also pointed that for the scalar case). The
first non-commutative (matrix) concentration inequalities are due to
the pioneer work of Ahlswede and Winter [3], using bound on the
moment generating function. This gave rise to many applications
Koltchinskii [92], Oliveira [128], and Tropp [174] ranging from anal-
ysis of randomized optimization algorithm to analysis of random
graphs and generalization bounds usefull in machine learning. The
following inequality has been proposed in [92].

Theorem A.1 (Bounded non-commutative Bernstein). From Theo-
rem 3 of Koltchinskii [92], consider a sequence (Xj)Dj=1 of D independent
Hermitian p × p random matrices acting on a finite dimensional Hilbert
space Y that satisfy EXj = 0, and suppose that there exist some constant
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U ⩾
∥∥Xj

∥∥
Y,Y

for each index j. Denote the proxy bound on the matrix vari-
ance

V ≽

D∑

j =1

EX2
j .

Then, for all ϵ ⩾ 0,

Pr







∥∥∥∥∥∥

D∑

j=1

Xj

∥∥∥∥∥∥
Y,Y

⩾ ϵ






⩽ p exp

(
−

ϵ2

2∥V∥Y,Y + 2Uϵ/3

)

This bound we used in our original paper [29] has the default to grow
linearly with the dimension p of the output space Y. However if the
evaluation of the operator-valued kernel at two points yields a low-
rank matrix, this bound could be improved since only a few principal
dimensions are relevant. Moreover this bound cannot be used when
dealing with operator-valued kernel acting on infinite dimensional
Hilbert spaces. Recent results of Minsker [121] consider the notion of
intrinsic dimension to avoid this “curse of dimensionality”.

Definition A.1 Let A be a trace class operator acting on a Hilbert space Y.
We call intrinsic dimension the quantity

IntDim(A) =
Tr [A]
∥A∥Y,Y

.

When A is approximately low-rank (i. e. many eigenvalues are small),
or go quickly to zero, the intrinsic dimension can be much lower than
the dimensionality. Indeed,

1 ⩽ IntDim(A) ⩽ Rank(A) ⩽ dim(A).

Theorem A.2 (Bounded non-commutative Bernstein with intrinsic
dimension [121, 175]). Consider a sequence (Xj)

D
j=1 of D independent

Hilbert-Schmidt self-adjoint random operators acting on a separable Hilbert
Y space that satisfy EXj = 0 for all j ∈ N∗

D. Suppose that there exist some
constantU ⩾ 2

∥∥Xj
∥∥
Y,Y

almost surely for all j ∈N∗
D. Define a semi-definite

upper bound for the the operator-valued variance

V ≽

D∑

j =1

EX2
j .

Then for all ϵ ⩾
√
∥V∥Y,Y +U/3,

Pr







∥∥∥∥∥∥

D∑

j=1

Xj

∥∥∥∥∥∥
Y,Y

⩾ ϵ






⩽ 4IntDim(V) exp (−ψV,U(ϵ))

where ψV,U(ϵ) = ϵ2

2∥V∥Y,Y+2Uϵ/3
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Essentially, compared to Theorem A.1, Theorem A.2 replace the di-
mension of Y by four times the intrinsic dimension of the variance of
the matrix valued random variable. The concentration inequality is
restricted to the case where ϵ ⩾

√
∥V∥Y,Y +U/3 since the probabil-

ity is vacuous on the contrary. The assumption that Xj’s are Hilbert-
Schmidt operators comes from the fact that the product of two such
operator yields a trace-class operator, for which the intrinsic dimen-
sion is well defined.

However, to cover the general case including unbounded ORFFs
like curl and divergence-free ORFFs, we choose a version of Bern-
stein matrix concentration inequality proposed in [92] that allows to
consider matrices that are not uniformly bounded but have subexpo-
nential tails. In the following we use the notion of Orlicz norm to
bound random variable by their tail behavior rather than their value.

Definition A.2 (Orlicz norm). We follow the definition given by
Koltchinskii [92]. Let ψ : R+ → R+ be a non-decreasing convex function
with ψ(0) = 0. For a random variable X on a measured space (Ω,T(Ω), µ)

∥X∥ψ := inf { C > 0 | E[ψ (|X|/C)] ⩽ 1 } .

For the sake of simplicity, we now fix ψ(t) = ψ1(t) = exp(t) − 1. Al-
though the Orlicz norm should be adapted to the tail of the distri-
bution of the random operator we want to quantify to obtain the
sharpest bounds. We also introduce two technical lemmas related to
Orlicz norm. The first one relates the ψ1-Orlicz norm to the moment
generating function (MGF).

Lemma A.3 Let X be a random variable with a strictly monotonic moment-
generating function. We have ∥X∥−1

ψ1
= MGF−1

|X|
(2).

Proof We have

∥X∥ψ1
= inf { C > 0 | E[exp (|X|/C)] ⩽ 2 }

=
1

sup
{

C > 0
∣∣ MGF|X|(C) ⩽ 2

}

X has strictly monotonic moment-generating thus C−1 = MGF−1
|X|

(2). Hence

∥X∥−1
ψ1

= MGF−1
|X|

(2).

The second lemma gives the Orlicz norm of a positive constant.

Lemma A.4 If a ∈ R+ then ∥a∥ψ1
= a

ln(2) < 2a.

Proof We consider a as a positive constant random variable, whose Mo-
ment Generating Function (MGF) is

MGFa(t) = exp(at).

From Lemma A.3, ∥a∥ψ1
= 1

MGF−1
X (2)

. Then MGF−1
|a|

(2) = ln(2)
|a|

, a ̸= 0. If

a = 0 then ∥a∥ψ1
= 0 by definition of a norm. Thus ∥a∥ψ1

= a
ln(2) . □
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We now turn our attention to Minsker [121]’s theorem to for un-
bounded random variables.

Theorem A.3 (Unbounded non-commutative Bernstein with in-
trinsic dimension). Consider a sequence (Xj)Dj=1 of D independent self-
adjoint random operators acting on a finite dimensional Hilbert space Y of
dimension p that satisfy EXj = 0 for all j ∈ N∗

D. Suppose that there exist
some constant U ⩾

∥∥∥∥Xj
∥∥
Y,Y

∥∥
ψ

for all j ∈ N∗
D. Define a semi-definite

upper bound for the the operator-valued variance

V ≽

D∑

j =1

EX2
j .

Then for all ϵ > 0,

Pr







∥∥∥∥∥∥

D∑

j=1

Xj

∥∥∥∥∥∥
Y,Y

⩾ ϵ







⩽







2IntDim(V) exp
(
− ϵ2

2∥V∥Y,Y(1+ 1
p)

)
rV (ϵ), ϵ ⩽

∥V∥Y,Y
2U

1+1/p
K(V,p)

2IntDim(V) exp
(
− ϵ

4UK(V,p)

)
rV (ϵ), otherwise.

where K(V, p) = log
(

16
√

2p
)

+ log
(
DU2

∥V∥Y,Y

)
and rV (ϵ) = 1 +

3
ϵ2 log2(1+ϵ/∥V∥Y,Y)

Let ψ = ψ1. To use Theorem A.3, we set Xj = Fj(δi). We have indeed
EĤaar,ρ[Fj(δi)] = 0 since K̃(δi) is the Monte-Carlo approximation of

Ke(δi) and the matrices Fj(δi) are self-adjoint. We assume we can
bound all the Orlicz norms of the Fj(δi) = 1

D (K̃j(δi) − Ke(δi)). In the
following we use constants ui such that ui = DU. Using Lemma A.4
and the sub-additivity of the ∥·∥Y,Y and ∥·∥ψ1

norm,

ui = 2D max
1⩽j⩽D

∥∥∥∥Fj(δi)
∥∥
Y,Y

∥∥
ψ1

⩽ 2 max
1⩽j⩽D

∥∥∥∥K̃j(δi)
∥∥
Y,Y

∥∥
ψ1

+ 2∥∥Ke(δi)∥Y,Y∥ψ1

< 4 max
1⩽j⩽D

∥∥∥∥A(ωj)
∥∥
Y,Y

∥∥
ψ1

+ 4∥Ke(δi)∥Y,Y

= 4
(
∥∥A(ω)∥Y,Y∥ψ1

+ ∥Ke(δi)∥Y,Y
)

In the same way we defined the constants vi = DV ,

vi = D
D∑

j=1

EĤaar,ρF
j(δi)2

= DVarĤaar,ρ

[
K̃(δi)

]
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Then applying Theorem A.3, we get for all i ∈N∗
N(DC,r) (i is the index

of each anchor)

PrĤaar,ρ

{

(ωj)Dj=1

∣∣ ∥F(δi)∥Y,Y ⩾ ϵ
}

⩽







4IntDim(vi) exp
(
−D ϵ2

2∥vi∥Y,Y(1+ 1
p)

)
rvi/D(ϵ), ϵ ⩽

∥vi∥Y,Y
2ui

1+1/p
K(vi,p)

4IntDim(vi) exp
(
−D ϵ

4uiK(vi,p)

)
rvi/D(ϵ), otherwise.

with

K(vi, p) = log
(

16
√

2p
)

+ log
(

u2
i

∥vi∥Y,Y

)

and

rvi/D = 1 +
3

ϵ2 log2(1 +Dϵ/∥vi∥Y,Y)
.

To unify the bound on each anchor we define two constant

u = 4

(
∥∥A(ω)∥Y,Y∥ψ1

+ sup
δ∈DC

∥Ke(δ)∥Y,Y

)
⩾ max
i=1,...T

ui

and

v = sup
δ∈DC

DVarĤaar,ρ

[
K̃e(δ)

]
⩾ max
i=1,...T

vi.

a.1.4 Union Bound and examples

Taking the union bound over the anchors yields

(A.5)

PrĤaar,ρ






(ωj)Dj=1

∣∣∣∣∣∣

N(DC,r)∪

i=1

∥F(δi)∥Y,Y ⩾ ϵ







⩽ 4N(DC, r)rv/D(ϵ)IntDim(v)






exp
(
−D ϵ2

2∥v∥Y,Y(1+ 1
p)

)
, ϵ ⩽

∥v∥Y,Y
2u

1+1/p
K(v,p)

exp
(
−D ϵ

4uK(v,p)

)
, otherwise.

Hence combining Equation A.4 and Equation A.5 gives and summing
up the hypothesis yields the following proposition

Proposition A.1 Let K : X × X → L(Y) be a shift-invariant Y-Mercer
kernel, where Y is a finite dimensional Hilbert space of dimension p and X a
metric space. Moreover, let C be a compact subset of X, A : X̂ → L(Y) and
PrĤaar,ρ a pair such that

K̃e =
D∑

j=1

cos (·,ωj)A(ωj) ≈ Ke, ωj ∼ PrĤaar,ρ i. i. d...
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Let
V(δ) ≽ VarĤaar,ρK̃e(δ), for all δ ∈ DC

and Hω be the Lipschitz constant of the function h : x 7→ (x,ω). If the three
following constant exists

m ⩾

∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ <∞

and

u ⩾ 4

(
∥∥A(ω)∥Y,Y∥ψ1

+ sup
δ∈DC

∥Ke(δ)∥Y,Y

)
<∞

and
v ⩾ sup

δ∈DC

D∥V(δ)∥Y,Y <∞.

Define pint ⩾ supδ∈DC
IntDim(V(δ)) then for all r ∈ R∗

+ and all ϵ ∈ R∗
+,

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣
∥∥K̃− K

∥∥
C×C

⩾ ϵ
}

⩽ 4


rm
ϵ

+ pintN(DC, r)rv/D(ϵ)







exp
(
−D ϵ2

8v(1+ 1
p)

)
, ϵ ⩽ v

u
1+1/p
K(v,p)

exp
(
−D ϵ

8uK(v,p)

)
, otherwise.




where

K(v, p) = log
(

16
√

2p
)

+ log
(

u2

∥v∥Y,Y

)

and

rv/D(ϵ) = 1 +
3

ϵ2 log2(1 +Dϵ/∥v∥Y,Y)
.

Proof Let m =
∫

X̂
Hω∥A(ω)∥Y,YdPrĤaar,ρ. From Lemma A.2,

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣ LF ⩾
ϵ

2r

}

⩽
4rm
ϵ
.

Thus from Lemma A.1, for all r ∈ R∗
+,

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣∣∣ sup
δ∈DC

∥F(δ)∥Y,Y ⩾ ϵ

}

⩽ PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣ LF ⩾
ϵ

2r

}

+ PrĤaar,ρ






(ωj)Dj=1

∣∣∣∣∣∣

N(DC,r)∪

i=1

∥F(δi)∥Y,Y ⩾ ϵ







= 4
rm

ϵ
+ 4N(DC, r)rv/D(ϵ)IntDim(v)







exp
(
−D ϵ2

8∥v∥Y,Y(1+ 1
p)

)
, ϵ ⩽

∥v∥Y,Y
u

1+1/p
K(v,p)

exp
(
−D ϵ

8uK(v,p)

)
, otherwise.



178 proofs of theorems

With slight modification we can obtain a second inequality for the
case where the random operators A(ωj) are bounded almost surely.
This second bound with more restrictions on A has the advantage of
working in infinite dimension as long as A(ωj) is a Hilbert-Schmidt
operator.

Proposition A.2 Let K : X × X → L(Y) be a shift-invariant Y-Mercer
kernel, where Y is a Hilbert space and X a metric space. Moreover, let C be a
compact subset of X, A : X̂→ L(Y) and PrĤaar,ρ a pair such that

K̃e =
D∑

j=1

cos (·,ωj)A(ωj) ≈ Ke, ωj ∼ PrĤaar,ρ i. i. d...

where A(ωj) is a Hilbert-Schmidt operator for all j ∈ N∗
D. Let DC = C ⋆

C−1 and

V(δ) ≽ VarĤaar,ρK̃e(δ), for all δ ∈ DC

and Hω be the Lipschitz constant of the function h : x 7→ (x,ω). If the three
following constant exists

m ⩾

∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ <∞

and

u ⩾ ess sup
ω∈X̂

∥A(ω)∥Y,Y + sup
δ∈DC

∥Ke(δ)∥Y,Y <∞

and

v ⩾ sup
δ∈DC

D∥V(δ)∥Y,Y <∞.

define pint ⩾ supδ∈DC
IntDim (V(δ)) then for all r ∈ R∗

+ and all ϵ >√
v
D + 1

3Du,

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣∣∣ sup
δ∈DC

∥F(δ)∥Y,Y ⩾ ϵ

}

⩽ 4
(rm
ϵ

+ pintN(DC, r) exp (−Dψv,u(ϵ))
)

where ψv,u(ϵ) = ϵ2

2(v+uϵ/3) .

When the covering number N(DC, r) of the metric space DC has an
analytical form, it is possible to optimize the bound over the radius r
of the covering balls. As an example, we refine Proposition A.1 and
Proposition A.2 in the case where C is a finite dimensional Banach
space.
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Corollary A.1 Let K : X×X→ L(Y) be a shift-invariant Y-Mercer kernel,
where Y is a finite dimensional Hilbert space of dimension p and X a finite
dimensional Banach space of dimension d. Moreover, let C be a closed ball of
X centered at the origin of diameter |C|, A : X̂ → L(Y) and PrĤaar,ρ a pair
such that

K̃e =
D∑

j=1

cos(·,ωj)A(ωj) ≈ Ke, ωj ∼ PrĤaar,ρ i. i. d..

Let DC = C ⋆ C−1 and

V(δ) ≽ VarĤaar,ρK̃e(δ), for all δ ∈ DC

Let Hω be the Lipschitz constant of hω : x 7→ (x,ω). If the three following
constant exists

m ⩾

∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ <∞

and

u ⩾ 4

(
∥∥A(ω)∥Y,Y∥ψ1

+ sup
δ∈DC

∥Ke(δ)∥Y,Y

)
<∞

and

v ⩾ sup
δ∈DC

D∥V(δ)∥Y,Y <∞.

Define pint ⩾ supδ∈DC
IntDim(V(δ)), then for all 0 < ϵ ⩽ m|C|,

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣
∥∥K̃− K

∥∥
C×C

⩾ ϵ
}

⩽ 8
√

2
(
m|C|

ϵ

)(
pintrv/D(ϵ)

) 1
d+1







exp
(
−D ϵ2

8v(d+1)(1+ 1
p)

)
, ϵ ⩽ v

u
1+1/p
K(v,p)

exp
(
−D ϵ

8u(d+1)K(v,p)

)
, otherwise,

where K(v, p) = log
(

16
√

2p
)

+ log
(
u2

v

)
and rv/D(ϵ) = 1 +

3
ϵ2 log2(1+Dϵ/v)

.

Proof As we have seen in Appendix A.1.1, suppose that X is a finite di-
mensional Banach space. Let C ⊂ X be a closed ball centered at the origin of
diameter |C| = C then the difference ball centered at the origin

DC = C ⋆ C−1

=
{

x ⋆ z−1
∣∣ ∥x∥X ⩽ C/2, ∥z∥X ⩽ C/2, (x, z) ∈ X2 } ⊂ X

is closed and bounded, so compact and has diameter |C| = 2C. It is possible
to cover it with

N(DC, r) =
(

2|C|
r

)d
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closed balls of radius r. Pluging back into Equation A.5 yields

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣
∥∥K̃− K

∥∥
C×C

⩾ ϵ
}

⩽ 4


rm
ϵ

+ pint

(
2|C|
r

)d
rv/D(ϵ)







exp
(
−D ϵ2

8v(1+ 1
p)

)
, ϵ ⩽ v

u
1+1/p
K(v,p)

exp
(
−D ϵ

8uK(v,p)

)
, otherwise.




The right hand side of the equation has the form ar + br−d with

a =
m

ϵ

and

b = pint(2|C|)
drv/D(ϵ)







exp
(
−D ϵ2

8v(1+ 1
p)

)
, ϵ ⩽ v

u
1+1/p
K(v,p)

exp
(
−D ϵ

8uK(v,p)

)
, otherwise.

Following [118, 139, 167], we optimize over r. It is a convex continuous
function on R+ and achieve minimum at

r =
(
bd

a

) 1
d+1

and the minimum value is

r∗ = a
d
d+1b

1
d+1

(
d

1
d+1 + d−

d
d+1

)
,

hence

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣
∥∥K̃− K

∥∥
C×C

⩾ ϵ
}

⩽Cd

(
2m|C|

ϵ

) d
d+1 (

pintrv/D(ϵ)
) 1
d+1







exp
(
−D ϵ2

8v(d+1)(1+ 1
p)

)
, ϵ ⩽ v

u
1+1/p
K(v,p)

exp
(
−D ϵ

8u(d+1)K(v,p)

)
, otherwise,

⩽ 8
√

2
(
m|C|

ϵ

)(
pintrv/D(ϵ)

) 1
d+1







exp
(
−D ϵ2

8v(d+1)(1+ 1
p)

)
, ϵ ⩽ v

u
1+1/p
K(v,p)

exp
(
−D ϵ

8u(d+1)K(v,p)

)
, otherwise,

where Cd = 4
(
d

1
d+1 + d−

d
d+1

)
. Eventually when X is a Banach space, the

Lipschitz constant of hω is the supremum of the gradient

Hω = sup
δ∈DC

∥(∇hω)(δ)∥
X̂
.

Following the same proof technique we obtain the second bound for
bounded ORFF.
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Corollary A.2 Let K : X×X → L(Y) be a shift-invariant Y-Mercer ker-
nel, where Y is a Hilbert space and X a finite dimensional Banach space of
dimension D. Moreover, let C be a closed ball of X centered at the origin of
diameter |C|, subset of X, A : X̂→ L(Y) and PrĤaar,ρ a pair such that

K̃e =
D∑

j=1

cos (·,ωj)A(ωj) ≈ Ke, ωj ∼ PrĤaar,ρ i. i. d..

where A(ωj) is a Hilbert-Schmidt operator for all j ∈ N∗
D. Let DC = C ⋆

C−1 and

V(δ) ≽ VarĤaar,ρK̃e(δ), for all δ ∈ DC

and Hω be the Lipschitz constant of the function h : x 7→ (x,ω). If the three
following constant exists

m ⩾

∫

X̂

Hω∥A(ω)∥Y,YdPrĤaar,ρ <∞

and
u ⩾ ess sup

ω∈X̂

∥A(ω)∥Y,Y + sup
δ∈DC

∥Ke(δ)∥Y,Y <∞

and
v ⩾ sup

δ∈DC

D∥V(δ)∥Y,Y <∞.

define pint ⩾ supδ∈DC
IntDim (V(δ)) then for all

√
v
D + u

3D < ϵ < m|C|,

PrĤaar,ρ

{

(ωj)Dj=1

∣∣∣∣∣ sup
δ∈DC

∥F(δ)∥Y,Y ⩾ ϵ

}

⩽ 8
√

2
(
m|C|

ϵ

)
p

1
d+1
int exp (−Dψv,d,u(ϵ))

where ψv,d,u(ϵ) = ϵ2

2(d+1)(v+uϵ/3) .

a.2 proof of the orff estimator variance bound

We use the notations δ = x ⋆ z−1 for all x, z ∈ X, K̃(x, z) = Φ̃(x)
∗
Φ̃(z),

K̃j(x, z) = Φx(ωj)
∗Φz(ωj) and Ke(δ) = Ke(x, z).

Proposition A.3 (Bounding the variance of K̃). Let K be a shift in-
variant Y-Mercer kernel on a second countable LCA topological space X.
Let A : X̂→ L(Y) and PrĤaar,ρ a pair such that

K̃e =
D∑

j=1

cos (·,ωj)A(ωj) ≈ Ke, ωj ∼ PrĤaar,ρ i. i. d..

Then,

VarĤaar,ρ

[
K̃e(δ)

]
≼

1
2D

(
(Ke(2δ) + Ke(e)) EĤaar,ρ [A(ω)]

− 2Ke(δ)2 + VarĤaar,ρ [A(ω)]
)
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Proof Let δ ∈ DC be a constant. From the definition of the variance of
a random variable and using the fact that the (ωj)Dj=1 are i. i. d. random
variables,

VarĤaar,ρ

[
K̃e(δ)

]
= EĤaar,ρ


 1
D

D∑

j=1

K̃je(δ) − Ke(δ)




2

=
1
D2 EĤaar,ρ



D∑

j=1

K̃je(δ) − Ke(δ)




2

=
1
D

EĤaar,ρ

[
K̃je(δ)2 − K̃je(δ)Ke(δ) − Ke(δ)K̃je(δ)

+ Ke(δ)2]

From the definition of K̃je, EĤaar,ρK̃
j
e(δ) = Ke(δ), which leads to

VarĤaar,ρ

[
K̃e(δ)

]
=

1
D

EĤaar,ρ

[
K̃je(δ)2 − Ke(δ)2]

A trigonometric identity gives us (cos(δ,ω))2 = 1
2 (cos(2δ,ω) + cos(e,ω)).

Thus

VarĤaar,ρ

[
K̃e(δ)

]
=

1
2D

EĤaar,ρ

[
(cos(2δ,ω) + cos(e,ω))A(ω)2

− 2Ke(δ)2] .

Also,

EĤaar,ρ

[
cos(2δ,ω)A(ω)2] = EĤaar,ρ [cos(2δ,ω)A(ω)] EĤaar,ρ [A(ω)]

+ CovĤaar,ρ [cos(2δ,ω)A(ω), A(ω)]

= Ke(2δ)EĤaar,ρ [A(ω)]

+ CovĤaar,ρ [cos(2δ,ω)A(ω), A(ω)]

Similarly we obtain

EĤaar,ρ

[
cos(e,ω)A(ω)2] = Ke(e)EĤaar,ρ [A(ω)]

+ CovĤaar,ρ [cos(e,ω)A(ω), A(ω)]

Therefore

VarĤaar,ρ

[
K̃e(δ)

]
=

1
2D

(
(Ke(2δ) + Ke(e)) EĤaar,ρ [A(ω)] − 2Ke(δ)2

+CovĤaar,ρ [(cos(2δ,ω)+cos(e,ω))A(ω), A(ω)]
)

=
1

2D

(
(Ke(2δ) + Ke(e)) EĤaar,ρ [A(ω)] − 2Ke(δ)2

+ CovĤaar,ρ

[
(cos(δ,ω))2A(ω), A(ω)

])

≼
1

2D

(
(Ke(2δ) +Ke(e)) EĤaar,ρ [A(ω)] − 2Ke(δ)2

+ VarĤaar,ρ [A(ω)]
)

q
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In this appendix chapter we present how to use ORFF framework in
the context of semi-supervised learning. We use the setting of Minh,
Bazzani, and Murino [119, 120]
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b.1 learning with semi-supervision

We present here a direct extension of Chapter 6 to semi-supervised
learning with ORFF. Semi-supervised learning in vv-RKHS has been
first presented at the same time by Brouard, d’Alché-Buc, and Szafran-
ski [34] and Minh and Sindhwani [117], and then more deeply devel-
oped in Brouard, d’Alché-Buc, and Szafranski [35] and Minh, Baz-
zani, and Murino [120]. We have chosen to adopt here the presenta-
tion of Minh, Bazzani, and Murino [120] slighlty more general, en-
compassing Vector-valued Manifold Regularization [19, 34, 119] and
Co-regularized Multi-view Learning [31, 143, 159, 166].

b.1.1 Representer theorem and feature equivalence

We suppose that we are given a training sample u = (xi)N+U
i=N ∈ XU of

unlabeled exemples. We note z ∈ (X× Y)
N×XU the sequence z = su

concatenating both labeled (s) and unlabeled (u) training examples.

Theorem B.1 (Representer theorem, Minh, Bazzani, and Murino
[120]). Let K be a U-Mercer Operator-Valued Kernel and HK its corre-
sponding U-Reproducing Kernel Hilbert space.

Let V : U → Y be a bounded linear operator and let c : Y× Y → R be
a cost function such that L(x, f, y) = c(Vf(x), y) is a proper convex lower
semi-continuous function in f for all x ∈ X and all y ∈ Y.

Eventually let λK ∈ R>0 and λM ∈ R+ be two regularization hyper-
parameters and (Mik)N+U

i,k=1 be a sequence of data dependent bounded linear
operators in L(U), such that

N+U∑

i,j =1

⟨ui,Mikuk⟩U ⩾ 0, ∀(ui)N+U
i=1 ∈ UN+U and Mik = M∗

ki.

The solution fz ∈ HK of the regularized optimization problem

(B.1)

fz = arg min
f∈HK

1
N

N∑

i=1

c(Vf(xi), yi) +
λK

2
∥f∥2

K

+
λM

2

N+U∑

i,k=1

⟨f(xi),Mikf(xk)⟩U
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has the form fz =
∑N+U
j=1 K(·, xj)uz,j where uz,j ∈ U and

(B.2)

uz = arg min
u∈
⊕N+U
i=1 U

1
N

N∑

i=1

c

(
V

N+U∑

k=1

K(xi, xj)uj, yi

)

+
λK

2

N+U∑

k=1

u∗iK(xi, xk)uk

+
λM

2

N+U∑

i,k=1

⟨
N+U∑

j=1

K(xi, xj)uj,Mik

N+U∑

j=1

K(xk, xj)uj

⟩

U

.

We present here the proof of the formulation proposed by Minh, Baz-
zani, and Murino [120]. In the mean time we clarify some elements of
the proof. Indeed the existence of a global minimizer is not trivial and
we must invoke the Mazur-Schauder theorem. Moreover the coerciv-
ity of the objective function required by the Mazur-Schauder theorem
is not obvious when we do not require the cost function to take only
positive values. However a corollary of Hahn-Banach theorem linking
strong convexity to coercivity gives the solution.

Proof Since f(x) = K∗
xf (see Equation 3.14), the optimization problem reads

fz = arg min
f∈HK

1
N

N∑

i=1

c(VK∗
xi
f, yi) +

λK

2
∥f∥2

K

+
λM

2

N+U∑

i,k=1

⟨K∗
xi
f,MikK

∗
xk
f⟩U

Let WV,s : HK →
⊕N
i=1 Y be the restriction linear operator defined as

WV,sf =
N⊕

i=1

VK∗
xi
f,

with VK∗
xi

: HK → Y and KxiV
∗ : Y → HK. Let Y =

⊕N
i=1 yi ∈ YN. We

have

⟨Y,WV,sf⟩⊕N
i =1 Y

=
N∑

i=1

⟨yi, VK∗
xi
f⟩Y =

N∑

i=1

⟨KxiV∗yi, f⟩HK
.

Thus the adjoint operator W∗
V,s :

⊕N
i=1 Y→ HK is

W∗
V,sY =

N∑

i=1

KxiV
∗yi,

and the operator W∗
V,sWV,s : HK → HK is

W∗
V,sWV,sf =

N∑

i=1

KxiV
∗VK∗

xi
f
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where V∗V ∈ L(U). Let

JλK(f) =
1
N

N∑

i=1

c(Vf(xi), yi)

︸ ︷︷ ︸

=Jc

+
λK

2
∥f∥2

K

+
λM

2

N+U∑

i,k=1

⟨f(xi),Mikf(xk)⟩U
︸ ︷︷ ︸

=JM

Since c is proper, lower semi-continuous and convex by assumption, thus
the term Jc is also proper, lower semi-continuous and convex. Moreover the
term JM is always positive for any f ∈ HK and λK2 ∥f∥

2
K is strongly convex.

Thus JλK is strongly convex. Apply Lemma 6.1 to obtain the coercivity of
JλK , and then Theorem 6.1 to show that JλK has a unique minimizer and is
attained. Then let

HK,z =







N+U∑

j=1

Kxjuj

∣∣∣∣∣∣
∀(ui)N+U

i=1 ∈ UN+U






.

For f ∈ H⊥
K,z, the operator WV,s satisfies

⟨Y,WV,sf⟩⊕N
i =1 Y

= ⟨ f
︸︷︷︸

∈H⊥
K,z

,

N+U∑

i=1

KxiV
∗yi

︸ ︷︷ ︸

∈HK,z

⟩HK
= 0

for all sequences (yi)Ni=1, since V∗yi ∈ U. Hence,

(B.3)(Vf(xi))Ni =1 = 0

In the same way,
N+U∑

i =1

⟨K∗
xi
f, ui⟩U = ⟨ f

︸︷︷︸

∈H⊥
K,z

,

N+U∑

j=1

Kxjuj

︸ ︷︷ ︸

∈HK,z

⟩HK
= 0.

for all sequences (ui)N+U
i=1 ∈ UN+U. As a result,

(B.4)(f(xi))U+N
i =1 = 0.

Now for an arbitrary f ∈ HK, consider the orthogonal decomposition f =

f⊥ + f∥, where f⊥ ∈ H⊥
K,z and f∥ ∈ HK,z. Then since

∥∥f⊥ + f∥
∥∥2
HK

=
∥∥f⊥

∥∥2
HK

+
∥∥f∥
∥∥2
HK

, Equation B.3 and Equation B.4 shows that if λK > 0,
clearly then

JλK(f) = JλK
(
f⊥ + f∥

)
⩾ JλK

(
f∥
)

The last inequality holds only when
∥∥f⊥

∥∥
HK

= 0, that is when f⊥ = 0. As
a result since the minimizer of JλK is unique and attained, it must lies in
HK,z. □

Theorem B.2 (Feature equivalence). Let K̃ be an Operator-Valued Ker-
nel such that for all x, z ∈ X, Φ̃(x)∗Φ̃(z) = K̃(x, z) where K̃ is a U-Mercer
OVK and H

K̃
its corresponding U-Reproducing kernel Hilbert space.
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Let V : U → Y be a bounded linear operator and let c : Y× Y → R be
a cost function such that L(x, f̃, y) = c(Vf̃(x), y) is a proper convex lower
semi-continuous function in f̃ ∈ H

K̃
for all x ∈ X and all y ∈ Y.

Eventually let λK ∈ R>0 and λM ∈ R+ be two regularization hyper-
parameters and (Mik)N+U

i,k=1 be a sequence of data dependent bounded linear
operators in L(U), such that

N+U∑

i,j =1

⟨ui,Mikuk⟩ ⩾ 0, ∀(ui)N+U
i=1 ∈ UN+U and Mik = M∗

ki.

The solution fz ∈ H
K̃

of the regularized optimization problem

(B.5)

f̃z = arg min
f̃∈H

K̃

1
N

N∑

i=1

c
(
Vf̃(xi), yi

)
+
λK

2

∥∥∥f̃
∥∥∥

2

K̃

+
λM

2

N+U∑

i,k=1

⟨f̃(xi),Mikf̃(xk)⟩U

has the form f̃z = Φ̃(·)∗θz, where θz ∈ (Ker W̃)⊥ and

(B.6)

θz = arg min
θ∈H̃

1
N

N∑

i=1

c
(
VΦ̃(xi)∗θ, yi

)
+
λK

2
∥θ∥2

H̃

+
λM

2

N+U∑

i,k=1

⟨θ, Φ̃(xi)MikΦ̃(xk)∗θ⟩
H̃
.

Proof Since K̃ is an operator-valued kernel, from Theorem B.1, Equation B.5
has a solution of the form

f̃z =
N+U∑

i=1

K̃(·, xi)ui, ui ∈ U, xi ∈ X

=
N∑

i=1

Φ̃(·)∗Φ̃(xi)ui = Φ̃(·)∗
(
N+U∑

i=1

Φ̃(xi)ui

)

︸ ︷︷ ︸

=θ∈
(

Ker W̃
)⊥

⊂H̃

.

Let

θz = arg min
θ∈
(

Ker W̃
)⊥

1
N

N∑

i=1

c
(
VΦ̃(xi)∗θ, yi

)
+
λK

2

∥∥∥Φ̃(·)∗θ
∥∥∥

2

K̃

+
λM

2

N+U∑

i,k=1

⟨
Φ̃(xi)∗θ,MikΦ̃(xk)∗θ

⟩
U
.
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Since θ ∈ (Ker W̃)⊥ and W is an isometry from (Ker W̃)⊥ ⊂ H̃ onto H
K̃

,

we have
∥∥∥Φ̃(·)∗θ

∥∥∥
2

K̃
= ∥θ∥2

H̃
. Hence

θz = arg min
θ∈
(

Ker W̃
)⊥

1
N

N∑

i=1

c
(
VΦ̃(xi)∗θ, yi

)
+
λK

2
∥θ∥2

H̃

+
λM

2

N+U∑

i,k=1

⟨Φ̃(xi)∗θ,MikΦ̃(xk)∗θ⟩U.

Finding a minimizer θz over
(

Ker W̃
)⊥

is not the same as finding a mini-

mizer over H̃. Although in both cases Mazur-Schauder’s theorem guarantees
that the respective minimizers are unique, they might not be the same. Since
W̃ is bounded, Ker W̃ is closed, so that we can perform the decomposition

H̃ =
(

Ker W̃
)⊥
⊕
(

Ker W̃
)

. Then clearly by linearity of W and the fact

that for all θ∥ ∈ Ker W̃, W̃θ∥ = 0, if λ > 0 we have

θz = arg min
θ∈H̃

1
N

N∑

i=1

c
(
VΦ̃(xi)∗θ, yi

)
+
λK

2
∥θ∥2

H̃

+
λM

2

N+U∑

i,k=1

⟨
Φ̃(xi)∗θ,MikΦ̃(xk)∗θ

⟩
U

Thus

θz = arg min
θ⊥∈(Ker W̃)

⊥
,

θ∥∈Ker W̃

1
N

N∑

i=1

c


V

(
W̃θ⊥

)
(x) + V

(
W̃θ∥

)
(x)

︸ ︷︷ ︸

=0 for all θ∥

, yi




+
λK

2

∥∥∥θ⊥
∥∥∥

2

H̃
+
λK

2

∥∥∥θ∥
∥∥∥

2

H̃
︸ ︷︷ ︸

=0 only if θ∥=0

+
λM

2

N+U∑

i,k=1

⟨
Φ̃(xi)∗θ⊥,Mik

(
W̃θ⊥

)
(xk)

⟩
U

+
λM

2

N+U∑

i,k=1

⟨(
W̃θ∥

)
(xi)

︸ ︷︷ ︸

=0 for all θ∥

,Mik

(
W̃θ⊥

)
(xk)

⟩

U

+
λM

2

N+U∑

i,k=1

⟨(
W̃θ⊥

)
(xi),Mik

(
W̃θ∥

)
(xk)

︸ ︷︷ ︸

=0 for all θ∥

⟩

U

+
λM

2

N+U∑

i,k=1

⟨(
W̃θ∥

)
(xi)

︸ ︷︷ ︸

=0 for all θ∥

,Mik

(
W̃θ∥

)
(xk)

︸ ︷︷ ︸

=0 for all θ∥

⟩

U

.
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Thus

θz = arg min
θ⊥∈

(
Ker W̃

)⊥

1
N

N∑

i=1

c
(
V
(
W̃θ⊥

)
(x), yi

)
+
λK

2

∥∥∥θ⊥
∥∥∥

2

H̃

+
λM

2

N+U∑

i,k=1

⟨
Φ̃(xi)∗θ⊥,Mik

(
W̃θ⊥

)
(xk)

⟩
U
.

Hence minimizing over
(

Ker W̃
)⊥

or H̃ is the same when λK > 0. Eventu-
ally,

θz = arg min
θ∈H̃

1
N

N∑

i=1

c
(
VΦ̃(xi)∗θ, yi

)
+
λK

2
∥θ∥2

H̃

+
λM

2

N+U∑

i,k=1

⟨
Φ̃(xi)∗θ,MikΦ̃(xk)∗θ

⟩
U

= arg min
θ∈H̃

1
N

N∑

i=1

c
(
VΦ̃(xi)∗θ, yi

)
+
λK

2
∥θ∥2

H̃

+
λM

2

N+U∑

i,k=1

⟨
θ, Φ̃(xi)MikΦ̃(xk)∗θ

⟩
H̃
.

This theorem is illustrated by Figure B.1. We use the classic two
moons dataset1. We first perform an unsupervised spectral cluster-
ing step [181] and construct the matrix where Cik is 1 if xi and xk are
in the same cluster, 0 otherwise. Then we take the inverse Laplacian
of this matrix and use it as the data dependent operator M. E

b.1.2 Gradients

By linearity and applying the chaine rule to Equation B.6 and since
M∗
ik = Mki for all i, k ∈N∗

N+U, we have

∇θc
(
VΦ̃(xi)∗θ, yi

)
= Φ̃(xi)V∗

(
∂

∂y
c (y, yi)

∣∣∣∣
y=VΦ̃(xi)∗θ

)∗

,

∇θ
⟨
Φ̃(xi)∗θ,MikΦ̃(xk)∗θ

⟩
U

= Φ̃(xi) (Mik +M∗
ki) Φ̃(xk)∗θ,

∇θ∥θ∥
2
H̃ = 2θ.

Provided that c(y, yi) is Frechet differentiable w. r. t. y, for all y and
yi ∈ Y we have ∇θJλK(θ) ∈ H̃ and

∇θJλK(θ) =
1
N

N∑

i=1

Φ̃(xi)V∗
(
∂

∂y
c (y, yi)

∣∣∣∣
y=VΦ̃(xi)∗θ

)∗

+ λKθ + λM
N+U∑

i,k=1

Φ̃(xi)MikΦ̃(xk)∗θ

1 Available at http://scikit-learn.org/stable/modules/generated/sklearn.

datasets.make_moons.html.

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
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Figure B.1: ORFF equivalence theorem (semi-supervised). Each row com-
pares the scalar ORFF Φ̃ method constructed from a Gaussian
with the kernel method where K̃ = Φ̃TΦ̃. The top row corre-
sponds to the case λK = 0.1 and λM = 0.075. Since λK > 0, the
solution with K̃ and Φ̃ are exactly the same (Theorem B.2 ap-
plies) and we see that θ∥ = 0. The bottom row corresponds to
the case λK = 0 and λM = 0.075. Here the solution with K̃ and Φ̃
doesn’t match (Theorem B.2 fails to apply since λK = 0). More-
over we can see that θ∥ ̸= 0 and Φ̃(x)∗θ ̸= 0, thus θ is not in
(Ker W)⊥.
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Therefore after factorization, considering λK > 0,

∇θJλK(θ) =
1
N

N∑

i=1

Φ̃(xi)V∗
(
∂

∂y
c (y, yi)

∣∣∣∣
y=VΦ̃(xi)∗θ

)∗

+ λK

(
I
H̃

+
λM

λK

N+U∑

i,k=1

Φ̃(xi)MikΦ̃(xk)∗
)
θ

We note the quantity

(B.7)M̃(λK,λM) = I
H̃

+
λM

λK

N+U∑

i,k=1

Φ̃(xi)MikΦ̃(xk)∗ ∈ L(H̃)

so that

∇θJλK(θ) =
1
N

N∑

i=1

Φ̃(xi)V∗
(
∂

∂y
c (y, yi)

∣∣∣∣
y=VΦ̃(xi)∗θ

)∗

+ λKM̃(λK,λM)θ

(B.8)

Example B.1 (Naive closed form for the squared error cost). Con-
sider the cost function defined for all y, y ′ ∈ Y by c(y, y ′) = 1

2∥y− y∥
2
Y.

Then
(
∂

∂y
c (y, yi)

∣∣∣∣
y=VΦ̃(xi)∗θ

)∗

=
(
VΦ̃(xi)∗θ− yi

)
.

Thus, since the optimal solution θz verifies ∇θzJλK(θz) = 0 we have

1
N

N∑

i =1

Φ̃(xi)V∗
(
VΦ̃(xi)∗θz − yi

)
+ λKM̃(λK,λM)θz = 0.

Therefore,

(B.9)

(
1
N

N∑

i=1

Φ̃(xi)V∗VΦ̃(xi)∗ + λKM̃(λK,λM)

)
θz =

1
N

N∑

i=1

Φ̃(xi)V∗yi.

Suppose that Y ⊆ Rp, V : U → Y where U ⊆ Ru and for all x ∈ X,
Φ̃(x) : Rr → Ru where all spaces are endowed with the euclidean inner
product. From this we can derive Algorithm 6 which returns the closed form
solution of Equation 6.6 for c(y, y ′) = 1

2∥y− y ′∥2
2.

b.1.3 Complexity

Suppose that u = dim(U) < +∞ and u ′ = dim(U ′) < ∞ and for all
x ∈ X, Φ̃(x) : U ′ → H̃ where r = dim(H̃) < ∞ is the dimension of
the redescription space H̃ = Rr. Since u, u ′, and r < ∞, we view the
operators Φ̃(x), V and M̃(λK,λM) as matrices. Computing V∗V cost
Ot(u2p). Step 1 costs Ot(r2u + ru2). Steps 5 (optional) has the same
cost except that the sum is done over all pair of N +U points thus it
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Algorithm 6: Naive closed form for the squared error cost.
Input :

• s = (xi, yi)Ni=1 ∈ (X×Rp)
N a sequence of supervised training

points,

• u = (xi)N+U
i=N+1 ∈ XU a sequence of unsupervised training points,

• Φ̃(xi) ∈ L (Ru,Rr) a feature map defined for all xi ∈ X,

• (Mik)N+U
i,k=1 a sequence of data dependent operators (see

Theorem B.2),

• V ∈ L (Ru,Rp) a combination operator,

• λK ∈ R>0 the Tychonov regularization term,

• λM ∈ R+ the manifold regularization term.

Output : A model

h :







X→ Rp

x 7→ Φ̃(x)Tθz,

such that θz minimize Equation 6.6, where c(y, y ′) = ∥y− y ′∥2
2

and Ru, Rr and Rp are Hilbert spaces endowed with
the euclidean inner product.

1 P← 1
N

∑N
i=1 Φ̃(xi)VTVΦ̃(xi)T ∈ L(Rr,Rr);

2 if λM = 0 then
3 M̃(λK,λM) ← Ir ∈ L(Rr,Rr);
4 else

5 M̃(λK,λM) ←
(
Ir + λM

λK

∑N+U
i,k=1 Φ̃(xi)MikΦ̃(xk)T

)
∈ L(Rr,Rr);

6 end
7 Y← 1

N

∑N
i=1 Φ̃(xi)VTyi ∈ Rr;

8 θz ← solveθ
((

P + λKM̃(λK,λM)

)
θ = Y

)
∈ Rr;

9 return h : x 7→ Φ̃(x)Tθz;

costs Ot((N +U)2(r2u + ru2)). Steps 7 costs Ot(N(ru +up)). For step 8,
the naive inversion of the operator costs Ot(r3). Eventually the overall
complexity of Algorithm 6 is

Ot


ru(r + u)







(N +U)2 if λM > 0

N if λM = 0
+ r3 +Nu(r + p)


 ,
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while the space complexity is Os(r2). This complexity is to compare
with the kernelized solution proposed by Minh, Bazzani, and Murino
[120]. Let

K :







UN+U → UN+U

u 7→
⊕N+U
i=1

∑N+U
j=1 K(xi, xj)uj

and

M :







UN+U → UN+U

u 7→
⊕N+U
i=1

∑N+U
k=1 Mikuk.

When U = R,

K =




K(x1, x1) . . . K(x1, xN+U)
...

. . .
...

K(xN+U, x1) . . . K(xN+U, xN+U)




is called the Gram matrix of K. When U = Rp, K is a matrix-valued
Gram matrix of size u(N + U) × u(N + U) where each entry Kij ∈
Mu,u(R). When U = Ru, M can also be seen as a matrix-valued matrix
where each entry is Mik ∈ Mu,u(R). We also introduce the matrices
VTV := IN+U ⊗ (VTV) and

P :







UN+U → UN+U

u 7→
(⊕N

j=1 uj

)
⊕
(⊕N+U

j=N+1 0
)

The operator P is a projection that sets all the terms uj, N < j ⩽ N+U
of u to zero. When U = Ru it can also be seen as the block matrix of
size u(N +U)× u(N +U) and

P =




0 . . . 0

Iu ⊗ IN
...

. . .
...

0 . . . 0

0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . 0 0 . . . 0




Then the equivalent kernelized solution uz of Theorem B.1 is given
by Minh, Bazzani, and Murino [120]

(
1
N

VTVPK +λMMK +λKI⊕N+U
i=1 U

)
uz =

(
N⊕

i=1

VTyi

)
⊕
(
N+U⊕

i=N+1

0

)
.

which has time complexity Ot(((N+U)u)3 +Nup) and space complex-
ity Os(((N +U)u)2). Notice that computing the data dependent norm
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In the following, we give minimal short samples of Python code show-
ing how to implement efficient ORFF. Each section represent an inde-
pendent snippet of code, and a simple copy-paste in a python editor
should generate the corresponding figure presented in this manus-
cipt.
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c.1 python code for figure 3.1

r"""Plot figure: Different outcomes of a Gaussian kernel approximation."""

import matplotlib

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import pairwise_kernels

def phi(x, w, D):

r"""RFF map."""

Z = np.dot(x, w)

return np.hstack((np.cos(Z), np.sin(Z))) / np.sqrt(D)

def createColorbar(lwr, upr, fig, axes):

r"""Create colorbar for multiple Pyplot plot."""

cax = fig.add_axes([.92, 0.1, 0.01, 0.8])

norm = matplotlib.colors.LogNorm(vmin=lwr, vmax=upr, clip=False)

c = matplotlib.colorbar.ColorbarBase(cax, cmap=plt.get_cmap('rainbow'),

norm=norm, label='D=')

plt.title(r'$\widetilde{K}$')

return c

def main():

r"""Plot figure: Different outcomes of a Gaussian kernel approximation."""

T = 25 # Number of curves

cm_subsection = np.linspace(0, 1, T + 1)

colors = [matplotlib.cm.rainbow(x) for x in cm_subsection]

d = 1 # Dimension of the input

N = 250 # Number of points per curves

# Generate N data in (-1, 1) and exact Gram matrix

np.random.seed(0)

X = np.linspace(-1, 1, N).reshape((N, d))

K = pairwise_kernels(X, metric='rbf', gamma=1. / (2. * .1 ** 2))

# A Matrix for the decomposable kernel. Link the outputs to some mean value

c = np.random.randn(N, 2)

A = .5 * np.eye(2) + .5 * np.ones((2, 2))

plt.close()

plt.rc('text', usetex=True)

plt.rc('font', family='serif')

f, axes = plt.subplots(2, 2, figsize=(12, 8), sharex=True, sharey=True)

# For each curve with different D

for k, D in enumerate(np.logspace(0, 4, T)):

D = int(D)

np.random.seed(0)

w = np.random.randn(d, D) / .1

phiX = phi(X, w, D)

Kt = np.dot(phiX, phiX.T)

# Generate outputs with the exact Gram matrix

pred = np.dot(np.dot(Kt, c), A)

axes[0, 0].plot(X, pred[:, 0], c=colors[k], lw=.5, linestyle='-')

axes[0, 0].set_ylabel(r'$y_1$')

axes[0, 1].plot(X, pred[:, 1], c=colors[k], lw=.5, linestyle='-')

axes[0, 1].set_ylabel(r'$y_2$')
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# Generate outputs with the a realization of the random Gram matrix

w = np.random.randn(d, D) / .1

phiX = phi(X, w, D)

Kt = np.dot(phiX, phiX.T)

pred = np.dot(np.dot(Kt, c), A)

axes[1, 0].plot(X, pred[:, 0], c=colors[k], lw=.5, linestyle='-')

axes[1, 0].set_xlabel(r'$x$')

axes[1, 0].set_ylabel(r'$y_1$')

axes[1, 1].plot(X, pred[:, 1], c=colors[k], lw=.5, linestyle='-')

axes[1, 1].set_xlabel(r'$x$')

axes[1, 1].set_ylabel(r'$y_2$')

axes[0, 0].plot(X, np.dot(np.dot(K, c), A)[:, 0], c='k', lw=.5, label='K')

axes[0, 1].plot(X, np.dot(np.dot(K, c), A)[:, 1], c='k', lw=.5, label='K')

axes[1, 0].plot(X, np.dot(np.dot(K, c), A)[:, 0], c='k', lw=.5, label='K')

axes[1, 1].plot(X, np.dot(np.dot(K, c), A)[:, 1], c='k', lw=.5, label='K')

axes[0, 0].set_title(r'$\widetilde{K}u \approx Ku$, realization 1', x=1.1)

axes[1, 0].set_title(r'$\widetilde{K}u \approx Ku$, realization 2', x=1.1)

for xx in axes.ravel():

xx.legend(loc=4)

createColorbar(1, D, f, axes)

plt.savefig('not_Mercer.pgf', bbox_inches='tight')

if __name__ == "__main__":

main()

c.2 python code for figure 5.1

r"""Plot figure: ORFF Representer theorem pt.1."""

import numpy as np

import matplotlib.pyplot as plt

import matplotlib

def phi(x, w, D):

r"""RFF map."""

Z = np.dot(x, w)

return np.hstack((np.cos(Z), np.sin(Z))) / np.sqrt(D)

def main():

r"""Plot figure: ORFF Representer theorem pt.1."""

d = 1 # dimensionality of the inputs

D = 50 # number of random features

N = 50

Nt = 200

# N training points in (0,1)

np.random.seed(0)

x = 2 * np.random.rand(N, d) - 1

y = np.sin(10 * x)

y += .5 * np.random.randn(y.shape[0], y.shape[1]) + 2. * x ** 2

# Nt testing points in (0,1)

xt = np.linspace(-1, 1, Nt).reshape((-1, 1))

yt = np.sin(10 * xt) + 2. * xt ** 2

yt += .5 * np.random.randn(yt.shape[0], yt.shape[1])
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sigma = .3

w = np.random.randn(d, D) / sigma # Realization of (\omega_j)_{j=1}^D

phiX = phi(x, w, D) # Train RFF

phiXt = phi(xt, w, D) # Test RFF

# Create plot

plt.close()

plt.rc('text', usetex=True)

plt.rc('font', family='serif')

f, axis = plt.subplots(4, 3, gridspec_kw={'width_ratios': [3, 3, 1.5]},

figsize=(16, 6), sharex='col', sharey='col')

f.subplots_adjust(hspace=.25)

formatter = matplotlib.ticker.ScalarFormatter()

formatter.set_powerlimits((-3, 4))

# For different hyperparameters \lambda

for k, lbda in enumerate([1e-2, 5e-6, 1e-10, 0]):

# Train with ORFF with kernel approximation (dual)

ck = np.linalg.lstsq(np.dot(phiX, phiX.T) + lbda * np.eye(N),

y, rcond=-1)[0]

# Train with ORFF without kernel approximation (primal)

c = np.linalg.lstsq(np.dot(phiX.T, phiX) + lbda * np.eye(2 * D),

np.dot(phiX.T, y), rcond=-1)[0]

cc = np.sum((phi(x, w, D) * ck), axis=0)

# Link dual coefficient with primal coefficients

cr = (cc - c.ravel()) / np.linalg.norm(c) * 100

err = np.array([np.linalg.norm(np.dot(phiXt, c) - yt) ** 2 / Nt,

np.linalg.norm(np.dot(np.dot(phiXt,

phiX.T),

ck) - yt) ** 2 / Nt,

np.linalg.norm(np.dot(phiXt, cr)) ** 2 / Nt,

np.linalg.norm(cr)])

# Plot

lmin = -1.8

lmax = 3.

axis[k, 0].set_xlim([-1.5, 1])

axis[k, 0].set_ylim([lmin, lmax])

axis[k, 0].plot(xt, np.dot(phiXt, c),

label=r'$\widetilde{\Phi}^* \theta$')

axis[k, 0].plot(xt, np.dot(np.dot(phiXt, phiX.T), ck),

label=r'$\widetilde{K}u$', linestyle='-.')

axis[k, 0].scatter(x, y, c='r', marker='+', label='train', lw=2)

axis[k, 0].scatter(xt, yt, c='k', marker='.', label='test')

axis[k, 0].legend(loc=3)

axis[k, 0].set_ylabel('y')

if k == 3:

axis[k, 0].set_xlabel('x')

lmin = -1.8

lmax = 3.

pred = np.dot(phi(xt, w, D), cr)

axis[k, 1].set_xlim([-1.5, 1])

axis[k, 1].set_ylim([lmin, lmax])

axis[k, 1].plot(xt, pred,

label=r'$\widetilde{\Phi}^* \theta^{\parallel}$')

axis[k, 1].scatter(x, y, c='r', marker='+', label='train', lw=2)

axis[k, 1].scatter(xt, yt, c='k', marker='.', label='test')

axis[k, 1].legend(loc=3)

if k == 3:

axis[k, 1].set_xlabel('x')

xs = np.arange(cr.size)

axis[k, 2].barh(xs, np.abs(cr), edgecolor="none", log=True)

axis[k, 2].set_ylabel(r'$j$')
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if k == 3:

axis[k, 2].set_xlabel(

r'$|\theta^{\parallel}_j|$, \% of relative error')

plt.savefig('representer.pgf', bbox_inches='tight')

return err

if __name__ == "__main__":

main()

c.3 python code for figure 5.3

r"""Efficient implementation of the Gaussian ORFF decomposable kernel."""

from time import time

from pympler.asizeof import asizeof

from numpy.linalg import svd

from numpy.random import rand, seed

from numpy import (dot, diag, sqrt, kron, zeros,

logspace, log10, matrix, eye, int, float)

from scipy.sparse.linalg import LinearOperator

from sklearn.kernel_approximation import RBFSampler

from matplotlib.pyplot import savefig, subplots, tight_layout

def NaiveDecomposableGaussianORFF(X, A, gamma=1.,

D=100, eps=1e-5, random_state=0):

r"""Return the Naive ORFF map associated with the data X.

Parameters

----------

X : {array-like}, shape = [n_samples, n_features]

Samples.

A : {array-like}, shape = [n_targets, n_targets]

Operator of the Decomposable kernel (positive semi-definite)

gamma : {float},

Gamma parameter of the RBF kernel.

D : {integer},

Number of random features.

eps : {float},

Cutoff threshold for the singular values of A.

random_state : {integer},

Seed of the generator.

Returns

-------

\tilde{\Phi}(X) : array

"""

# Decompose A=BB^T

u, s, v = svd(A, full_matrices=False, compute_uv=True)

B = dot(diag(sqrt(s[s > eps])), v[s > eps, :])

# Sample a RFF from the scalar Gaussian kernel

phi_s = RBFSampler(gamma=gamma, n_components=D, random_state=random_state)

phiX = phi_s.fit_transform(X)

# Create the ORFF linear operator

return matrix(kron(phiX, B))

def EfficientDecomposableGaussianORFF(X, A, gamma=1.,

D=100, eps=1e-5, random_state=0):

r"""Return the Efficient ORFF map associated with the data X.
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Parameters

----------

X : {array-like}, shape = [n_samples, n_features]

Samples.

A : {array-like}, shape = [n_targets, n_targets]

Operator of the Decomposable kernel (positive semi-definite)

gamma : {float},

Gamma parameter of the RBF kernel.

D : {integer},

Number of random features.

eps : {float},

Cutoff threshold for the singular values of A.

random_state : {integer},

Seed of the generator.

Returns

-------

\tilde{\Phi}(X) : Linear Operator, callable

"""

# Decompose A=BB^T

u, s, v = svd(A, full_matrices=False, compute_uv=True)

B = dot(diag(sqrt(s[s > eps])), v[s > eps, :])

# Sample a RFF from the scalar Gaussian kernel

phi_s = RBFSampler(gamma=gamma, n_components=D, random_state=random_state)

phiX = phi_s.fit_transform(X)

# Create the ORFF linear operator

cshape = (D, B.shape[0])

rshape = (X.shape[0], B.shape[1])

return LinearOperator((phiX.shape[0] * B.shape[1], D * B.shape[0]),

matvec=lambda b: dot(phiX, dot(b.reshape(cshape),

B)),

rmatvec=lambda r: dot(phiX.T, dot(r.reshape(rshape),

B.T)),

dtype=float)

def main():

r"""Plot figure: Efficient decomposable gaussian ORFF."""

N = 100 # Number of points

pmax = 100 # Maximum output dimension

d = 20 # Input dimension

D = 100 # Number of random features

seed(0)

X = rand(N, d)

R, T = 10, 10

time_Efficient, mem_Efficient = zeros((R, T, 2)), zeros((R, T))

time_naive, mem_naive = zeros((R, T, 2)), zeros((R, T))

for i, p in enumerate(logspace(0, log10(pmax), T)):

A = rand(int(p), int(p))

A = dot(A.T, A) + eye(int(p))

# Perform \Phi(X)^T \theta with Efficient implementation

for j in range(R):

start = time()

phiX1 = EfficientDecomposableGaussianORFF(X, A, D)

time_Efficient[j, i, 0] = time() - start

theta = rand(phiX1.shape[1], 1)

start = time()

phiX1 * theta

time_Efficient[j, i, 1] = time() - start
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mem_Efficient[j, i] = asizeof(phiX1, code=True)

# Perform \Phi(X)^T \theta with naive implementation

for j in range(R):

start = time()

phiX2 = NaiveDecomposableGaussianORFF(X, A, D)

time_naive[j, i, 0] = time() - start

theta = rand(phiX2.shape[1], 1)

start = time()

phiX2 * theta

time_naive[j, i, 1] = time() - start

mem_naive[j, i] = asizeof(phiX2, code=True)

# Plot

f, axes = subplots(1, 3, figsize=(10, 4), sharex=True, sharey=False)

axes[0].errorbar(logspace(0, log10(pmax), T).astype(int),

time_Efficient[:, :, 0].mean(axis=0),

time_Efficient[:, :, 0].std(axis=0),

label='Efficient decomposable ORFF')

axes[0].errorbar(logspace(0, log10(pmax), T).astype(int),

time_naive[:, :, 0].mean(axis=0),

time_naive[:, :, 0].std(axis=0),

label='Naive decomposable ORFF')

axes[1].errorbar(logspace(0, log10(pmax), T).astype(int),

time_Efficient[:, :, 1].mean(axis=0),

time_Efficient[:, :, 1].std(axis=0),

label='Efficient decomposable ORFF')

axes[1].errorbar(logspace(0, log10(pmax), T).astype(int),

time_naive[:, :, 1].mean(axis=0),

time_naive[:, :, 1].std(axis=0),

label='Naive decomposable ORFF')

axes[2].errorbar(logspace(0, log10(pmax), T).astype(int),

mem_Efficient[:, :].mean(axis=0),

mem_Efficient[:, :].std(axis=0),

label='Efficient decomposable ORFF')

axes[2].errorbar(logspace(0, log10(pmax), T).astype(int),

mem_naive[:, :].mean(axis=0),

mem_naive[:, :].std(axis=0),

label='Naive decomposable ORFF')

axes[0].set_xscale('log')

axes[0].set_yscale('log')

axes[1].set_xscale('log')

axes[1].set_yscale('log')

axes[2].set_xscale('log')

axes[2].set_yscale('log')

axes[0].set_xlabel(r'$p=\dim(\mathcal{Y})$')

axes[1].set_xlabel(r'$p=\dim(\mathcal{Y})$')

axes[2].set_xlabel(r'$p=\dim(\mathcal{Y})$')

axes[0].set_ylabel(r'time (s)')

axes[2].set_ylabel(r'memory (bytes)')

axes[0].set_title(r'Preprocessing time')

axes[1].set_title(r'$\widetilde{\Phi}(X)^T \theta$ computation time')

axes[2].set_title(r'$\widetilde{\Phi}(X)^T$ required memory')

axes[0].legend(loc=2)

tight_layout()

savefig('efficient_decomposable_gaussian.pgf', bbox_inches='tight')

if __name__ == "__main__":

main()

c.4 python code for figure 5.4

r"""Efficient implementation of the Gaussian curl-free kernel."""

from time import time
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from pympler.asizeof import asizeof

from numpy.random import rand, seed

from numpy import dot, zeros, logspace, log10, matrix, int, float

from scipy.sparse.linalg import LinearOperator

from sklearn.kernel_approximation import RBFSampler

from matplotlib.pyplot import savefig, subplots, tight_layout

def NaiveCurlFreeGaussianORFF(X, gamma=1.,

D=100, eps=1e-5, random_state=0):

r"""Return the Naive ORFF map associated with the data X.

Parameters

----------

X : {array-like}, shape = [n_samples, n_features]

Samples.

gamma : {float},

Gamma parameter of the RBF kernel.

D : {integer},

Number of random features.

eps : {float},

Cutoff threshold for the singular values of A.

random_state : {integer},

Seed of the generator.

Returns

-------

\tilde{\Phi}(X) : array

"""

phi_s = RBFSampler(gamma=gamma, n_components=D,

random_state=random_state)

phiX = phi_s.fit_transform(X)

phiX = (phiX.reshape((phiX.shape[0], 1, phiX.shape[1])) *

phi_s.random_weights_.reshape((1, -1, phiX.shape[1])))

return matrix(phiX.reshape((-1, phiX.shape[2])))

def EfficientCurlFreeGaussianORFF(X, gamma=1.,

D=100, eps=1e-5, random_state=0):

r"""Return the Efficient ORFF map associated with the data X.

Parameters

----------

X : {array-like}, shape = [n_samples, n_features]

Samples.

gamma : {float},

Gamma parameter of the RBF kernel.

D : {integer},

Number of random features.

eps : {float},

Cutoff threshold for the singular values of A.

random_state : {integer},

Seed of the generator.

Returns

-------

\tilde{\Phi}(X) : array

"""

phi_s = RBFSampler(gamma=gamma, n_components=D,

random_state=random_state)

phiX = phi_s.fit_transform(X)

return LinearOperator((phiX.shape[0] * X.shape[1], phiX.shape[1]),
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matvec=lambda b:

dot(phiX.reshape((phiX.shape[0], 1, phiX.shape[1])) *

phi_s.random_weights_.reshape((1, -1,

phiX.shape[1])), b),

rmatvec=lambda r:

dot((phiX.reshape((phiX.shape[0], 1,

phiX.shape[1])) *

phi_s.random_weights_.reshape((1, -1,

phiX.shape

[1]))).reshape

(phiX.shape[0] * X.shape[1], phiX.shape[1]).T, r),

dtype=float)

def main():

r"""Plot figure: Efficient decomposable gaussian ORFF."""

N = 1000 # Number of points

dmax = 100 # Input dimension

D = 500 # Number of random features

seed(0)

R, T = 50, 10

time_Efficient, mem_Efficient = zeros((R, T, 2)), zeros((R, T))

time_naive, mem_naive = zeros((R, T, 2)), zeros((R, T))

for i, d in enumerate(logspace(0, log10(dmax), T)):

X = rand(N, int(d))

# Perform \Phi(X)^T \theta with Efficient implementation

for j in range(R):

start = time()

phiX1 = EfficientCurlFreeGaussianORFF(X, D)

time_Efficient[j, i, 0] = time() - start

start = time()

phiX1 * rand(phiX1.shape[1], 1)

time_Efficient[j, i, 1] = time() - start

mem_Efficient[j, i] = asizeof(phiX1, code=True)

# Perform \Phi(X)^T \theta with naive implementation

for j in range(R):

start = time()

phiX2 = NaiveCurlFreeGaussianORFF(X, D)

time_naive[j, i, 0] = time() - start

start = time()

phiX2 * rand(phiX2.shape[1], 1)

time_naive[j, i, 1] = time() - start

mem_naive[j, i] = asizeof(phiX2, code=True)

# Plot

f, axes = subplots(1, 3, figsize=(10, 4), sharex=True, sharey=False)

axes[0].errorbar(logspace(0, log10(dmax), T).astype(int),

time_Efficient[:, :, 0].mean(axis=0),

time_Efficient[:, :, 0].std(axis=0),

label='Efficient decomposable ORFF')

axes[0].errorbar(logspace(0, log10(dmax), T).astype(int),

time_naive[:, :, 0].mean(axis=0),

time_naive[:, :, 0].std(axis=0),

label='Naive decomposable ORFF')

axes[1].errorbar(logspace(0, log10(dmax), T).astype(int),

time_Efficient[:, :, 1].mean(axis=0),

time_Efficient[:, :, 1].std(axis=0),

label='Efficient decomposable ORFF')

axes[1].errorbar(logspace(0, log10(dmax), T).astype(int),

time_naive[:, :, 1].mean(axis=0),

time_naive[:, :, 1].std(axis=0),
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label='Naive decomposable ORFF')

axes[2].errorbar(logspace(0, log10(dmax), T).astype(int),

mem_Efficient[:, :].mean(axis=0),

mem_Efficient[:, :].std(axis=0),

label='Efficient decomposable ORFF')

axes[2].errorbar(logspace(0, log10(dmax), T).astype(int),

mem_naive[:, :].mean(axis=0),

mem_naive[:, :].std(axis=0),

label='Naive decomposable ORFF')

axes[0].set_xscale('log')

axes[0].set_yscale('log')

axes[1].set_xscale('log')

axes[1].set_yscale('log')

axes[2].set_xscale('log')

axes[2].set_yscale('log')

axes[0].set_xlabel(r'$p=\dim(\mathcal{Y})$')

axes[1].set_xlabel(r'$p=\dim(\mathcal{Y})$')

axes[2].set_xlabel(r'$p=\dim(\mathcal{Y})$')

axes[0].set_ylabel(r'time (s)')

axes[2].set_ylabel(r'memory (bytes)')

axes[0].set_title(r'Preprocessing time')

axes[1].set_title(r'$\widetilde{\Phi}(X)^T \theta$ computation time')

axes[2].set_title(r'$\widetilde{\Phi}(X)^T$ required memory')

axes[0].legend(loc=2)

tight_layout()

savefig('efficient_curlfree_gaussian.pgf', bbox_inches='tight')

if __name__ == "__main__":

main()

c.5 python code for figure 5.5

r"""Efficient implementation of the Gaussian divergence-free kernel."""

from time import time

from pympler.asizeof import asizeof

from numpy.random import rand, seed

from numpy.linalg import norm

from numpy import dot, zeros, logspace, log10, matrix, int, eye, float

from scipy.sparse.linalg import LinearOperator

from sklearn.kernel_approximation import RBFSampler

from matplotlib.pyplot import savefig, subplots, tight_layout

def _rebase(phiX, W, Wn):

return (phiX.reshape((phiX.shape[0], 1, 1, phiX.shape[1])) *

(eye(W.shape[1]).reshape(1, W.shape[1], W.shape[1], 1) * Wn -

W * W.reshape(1, 1, W.shape[1], phiX.shape[1]) / Wn)).reshape(

(-1, W.shape[1] * Wn.shape[3]))

def NaiveDivergenceFreeGaussianORFF(X, gamma=1.,

D=100, eps=1e-5, random_state=0):

r"""Return the Naive ORFF map associated with the data X.

Parameters

----------

X : {array-like}, shape = [n_samples, n_features]

Samples.

gamma : {float},

Gamma parameter of the RBF kernel.

D : {integer},

Number of random features.
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eps : {float},

Cutoff threshold for the singular values of A.

random_state : {integer},

Seed of the generator.

Returns

-------

\tilde{\Phi}(X) : array

"""

phi_s = RBFSampler(gamma=gamma, n_components=D,

random_state=random_state)

phiX = _rebase(phi_s.fit_transform(X),

phi_s.random_weights_.reshape((1, -1, 1, D)),

norm(phi_s.random_weights_, axis=0).reshape((1, 1, 1, -1)))

return matrix(phiX)

def EfficientDivergenceFreeGaussianORFF(X, gamma=1.,

D=100, eps=1e-5, random_state=0):

r"""Return the Efficient ORFF map associated with the data X.

Parameters

----------

X : {array-like}, shape = [n_samples, n_features]

Samples.

gamma : {float},

Gamma parameter of the RBF kernel.

D : {integer},

Number of random features.

eps : {float},

Cutoff threshold for the singular values of A.

random_state : {integer},

Seed of the generator.

Returns

-------

\tilde{\Phi}(X) : array

"""

phi_s = RBFSampler(gamma=gamma, n_components=D,

random_state=random_state)

phiX = phi_s.fit_transform(X)

W = phi_s.random_weights_.reshape((1, -1, 1, phiX.shape[1]))

Wn = norm(phi_s.random_weights_, axis=0).reshape((1, 1, 1, -1))

return LinearOperator((phiX.shape[0] * X.shape[1],

phiX.shape[1] * X.shape[1]),

matvec=lambda b: dot(_rebase(phiX, W, Wn), b),

rmatvec=lambda r: dot(_rebase(phiX, W, Wn).T, r),

dtype=float)

def main():

r"""Plot figure: Efficient decomposable gaussian ORFF."""

N = 100 # Number of points

dmax = 100 # Input dimension

D = 100 # Number of random features

seed(0)

R, T = 10, 10

time_Efficient, mem_Efficient = zeros((R, T, 2)), zeros((R, T))

time_naive, mem_naive = zeros((R, T, 2)), zeros((R, T))

for i, d in enumerate(logspace(0, log10(dmax), T)):

X = rand(N, int(d))
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# Perform \Phi(X)^T \theta with Efficient implementation

for j in range(R):

start = time()

phiX1 = EfficientDivergenceFreeGaussianORFF(X, D)

time_Efficient[j, i, 0] = time() - start

theta = rand(phiX1.shape[1], 1)

start = time()

phiX1 * theta

time_Efficient[j, i, 1] = time() - start

mem_Efficient[j, i] = asizeof(phiX1, code=True)

# Perform \Phi(X)^T \theta with naive implementation

for j in range(R):

start = time()

phiX2 = NaiveDivergenceFreeGaussianORFF(X, D)

time_naive[j, i, 0] = time() - start

theta = rand(phiX2.shape[1], 1)

start = time()

phiX2 * theta

time_naive[j, i, 1] = time() - start

mem_naive[j, i] = asizeof(phiX2, code=True)

# Plot

f, axes = subplots(1, 3, figsize=(10, 4), sharex=True, sharey=False)

axes[0].errorbar(logspace(0, log10(dmax), T).astype(int),

time_Efficient[:, :, 0].mean(axis=0),

time_Efficient[:, :, 0].std(axis=0),

label='Efficient decomposable ORFF')

axes[0].errorbar(logspace(0, log10(dmax), T).astype(int),

time_naive[:, :, 0].mean(axis=0),

time_naive[:, :, 0].std(axis=0),

label='Naive decomposable ORFF')

axes[1].errorbar(logspace(0, log10(dmax), T).astype(int),

time_Efficient[:, :, 1].mean(axis=0),

time_Efficient[:, :, 1].std(axis=0),

label='Efficient decomposable ORFF')

axes[1].errorbar(logspace(0, log10(dmax), T).astype(int),

time_naive[:, :, 1].mean(axis=0),

time_naive[:, :, 1].std(axis=0),

label='Naive decomposable ORFF')

axes[2].errorbar(logspace(0, log10(dmax), T).astype(int),

mem_Efficient[:, :].mean(axis=0),

mem_Efficient[:, :].std(axis=0),

label='Efficient decomposable ORFF')

axes[2].errorbar(logspace(0, log10(dmax), T).astype(int),

mem_naive[:, :].mean(axis=0),

mem_naive[:, :].std(axis=0),

label='Naive decomposable ORFF')

axes[0].set_xscale('log')

axes[0].set_yscale('log')

axes[1].set_xscale('log')

axes[1].set_yscale('log')

axes[2].set_xscale('log')

axes[2].set_yscale('log')

axes[0].set_xlabel(r'$p=\dim(\mathcal{Y})$')

axes[1].set_xlabel(r'$p=\dim(\mathcal{Y})$')

axes[2].set_xlabel(r'$p=\dim(\mathcal{Y})$')

axes[0].set_ylabel(r'time (s)')

axes[2].set_ylabel(r'memory (bytes)')

axes[0].set_title(r'Preprocessing time')

axes[1].set_title(r'$\widetilde{\Phi}(X)^T \theta$ computation time')

axes[2].set_title(r'$\widetilde{\Phi}(X)^T$ required memory')

axes[0].legend(loc=2)

tight_layout()

savefig('efficient_divfree_gaussian.pgf', bbox_inches='tight')
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if __name__ == "__main__":

main()

c.6 python (tensorflow) code for continuous quan-
tile regression

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

from time import time

from operalib import toy_data_quantile

from sklearn.metrics.pairwise import euclidean_distances

from operalib import toy_data_quantile

def phi(X, omegas, D):

Z = tf.matmul(X, omegas)

phiX = tf.concat([tf.cos(Z), tf.sin(Z)], 1) / np.sqrt(D)

return phiX

def phigrad(X, omegas, D):

Z = tf.matmul(X, omegas)

Zc = tf.cos(Z)

Zs = tf.sin(Z)

phiX = tf.concat([Zc, Zs], 1) / np.sqrt(D)

phiXg = tf.concat([-omegas * Zs, omegas * Zc], 1) / np.sqrt(D)

return phiX, phiXg

def model(phiX, phit, theta):

return tf.matmul(tf.matmul(phiX, theta), tf.transpose(phit))

def loss(theta, X, t, y, omegas1, omegas2, D1, D2, lbda1, lbda2):

phiX = phi(X, omegas1, D1)

phit, phitg = phigrad(t, omegas2, D2)

gxp = tf.matmul(phiX, theta)

pred = tf.matmul(gxp, tf.transpose(phit))

pin = tf.reduce_mean(tf.reduce_mean(tf.where(tf.greater_equal(pred, y),

(pred - y) * tf.transpose(t),

(y - pred) *

(1 - tf.transpose(t))), 1))

cross = tf.reduce_mean(tf.reduce_mean(tf.maximum(tf.matmul(gxp,

tf.transpose(phitg)), 0), 1))

reg = tf.nn.l2_loss(theta) / (D1 * D2)

return pin + lbda1 * cross + lbda2 * reg

def main():

np.random.seed(0)

print("Creating dataset...")

N = 2000

Nt = 1000

d = 1

p = 1

probs = np.linspace(0.05, 0.95, 5) # Quantile levels of interest

x_train, y_train, z_train = toy_data_quantile(N)

x_test, y_test, z_test = toy_data_quantile(Nt, probs=probs)
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ctype = tf.float32

lbda1 = 1

lbda2 = 1e-5

ts = 100

D1 = 100

D2 = 100

sigma1 = .25

tn = np.random.rand(ts)

sigma2 = np.median(euclidean_distances(tn.reshape(-1, 1)))

with tf.device('/gpu:0'):

X = tf.placeholder(ctype, [N, d], name='input_batch')

y = tf.placeholder(ctype, [N, p], name='input_batch')

t = tf.placeholder(ctype, [ts, 1])

omegas1 = tf.Variable(tf.random_normal([d, D1],

mean=0, stddev=1 / sigma1,

dtype=ctype), trainable=False)

omegas2 = tf.Variable(tf.random_normal([d, D2],

mean=0, stddev=1 / sigma2,

dtype=ctype), trainable=False)

theta = tf.Variable(tf.random_normal([2 * D1, 2 * D2],

mean=0, stddev=1,

dtype=ctype), trainable=True)

ls = loss(theta, X, t, y, omegas1, omegas2, D1, D2, lbda1, lbda2)

opt = tf.train.RMSPropOptimizer(.00075).minimize(ls)

test_X = tf.placeholder(ctype, [Nt, d], name='input_batch')

test_t = tf.placeholder(ctype, [None, 1], name='input_batch')

phitest_X = phi(test_X, omegas1, D1)

phitest_t, phigtest_t = phigrad(test_t, omegas2, D2)

config = tf.ConfigProto(allow_soft_placement=True)

start = time()

tt5 = 1 - np.linspace(0.05, 0.95, 5).reshape(-1, 1)

with tf.Session(config=config) as session:

init = tf.global_variables_initializer()

session.run(init)

for i in range(0, 1000):

session.run(opt,

feed_dict={X: np.asarray(x_train, dtype=np.float32),

y: np.asarray(y_train.reshape(-1, 1),

dtype=np.float32),

t: np.asarray(tn.reshape(-1, 1),

dtype=np.float32)})

if i % 100 == 0:

print(session.run(ls,

feed_dict={X: np.asarray(x_train,

dtype=np.float32),

y: np.asarray(y_train.reshape(-1,

1),

dtype=np.float32),

t: np.asarray(tn.reshape(-1, 1),

dtype=np.float32)}))

pred_test = session.run(model(phitest_X, phitest_t, theta),

feed_dict={test_X:

np.asarray(x_test,

dtype=np.float32),

test_t:

np.asarray(tt5, dtype=np.float32)})

session.close()

print(time() - start)

print('done')

plt.figure(figsize=(20, 10))
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plt.gca().set_prop_cycle(None)

for i, q in enumerate(z_test):

plt.plot(x_test, q, '-', label='true quantile at ' + str(probs[i]))

plt.gca().set_prop_cycle(None)

plt.plot(x_test, pred_test, '--', label='Continuous Quantile')

plt.scatter(x_train.ravel(), y_train.ravel(), marker='.', c='k')

plt.xlabel('x')

plt.ylabel('y')

plt.legend()

plt.tight_layout()

plt.show()

if __name__ == "__main__":

main()

q
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work on anomaly detection with random forests, with other fellow
Ph. D. students of Télécom ParisTech. The following paper Goix et al.
[73] is based on a original idea of Nicolas Goix and a joint work with
Nicolas Drougard and Maël Chiapino. It is currently under review at
ECML. Our original paper can be found at https://arxiv.org/pdf/
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Anomalies, novelties or outliers are usually assumed to lie in low
probability regions of the data generating process. This assumption
drives many statistical anomaly detection methods. Parametric tech-
niques [16, 58] suppose that the inliers are generated by a distribution
belonging to some specific parametric model a priori known. Here
and hereafter, we denote by inliers the “not abnormal” data, and by
outliers/anomalies/novelties the data from the abnormal class. Clas-
sical non-parametric approaches are based on density (level set) esti-
mation [33, 138, 147, 151], on dimensionality reduction [2, 157] or on
decision trees [105, 156]. Relevant overviews of current research on
anomaly detection can be found in Chandola, Banerjee, and Kumar
[42], Hodge and Austin [79], Markou and Singh [111], and Patcha and
Park [131].

The algorithm proposed in this paper lies in the novelty detection
setting, also called one-class classification. In this framework, we as-
sume that we only observe examples of one class (referred to as the
normal class, or inlier class). The second –hidden– class is called the
abnormal class, or outlier class. The goal is to identify characteristics
of the inlier class, such as its support or some density level sets with
levels close to zero. This setup is for instance used in some –non-
parametric– kernel methods such as OCSM [147], which extends the
SVM methodology [48, 155] to handle training using only inliers. Re-
cently, LSAD [138], a kernel method similarly extends a multi-class
probabilistic classifier [165] to the one-class setting.

Random Forests (RFs) are strong machine learning tools [32], com-
paring well with state-of-the-art methods such as SVM or boosting
algorithms [66], and used in a wide range of domains [53, 69, 168].
These estimators fit a number of decision tree classifiers on different
random sub-samples of the dataset. Each tree is built recursively, ac-
cording to a splitting criterion based on some impurity measure of a
node. The prediction is done by an average over each tree prediction.
In classification the averaging is based on a majority vote. Practical
and theoretical insights on RFs are given in Biau, Devroye, and Lu-
gosi [21], Biau and Scornet [22], Genuer, Poggi, and Tuleau [70], and
Louppe [107].

Yet few attempts have been made to transfer the idea of RFs to
one-class classification [52, 105, 156]. In Liu, Ting, and Zhou [105],
the novel concept of isolation is introduced. The Isolation Forest al-
gorithm isolates anomalies, instead of profiling the inlier behavior
which is the usual approach. It avoids adapting splitting rules to the
one-class setting by using extremely randomized trees, also named
extra trees [71]: isolation trees are built completely randomly, with-
out any splitting rule. Therefore, Isolation Forest is not really based
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on RFs, the base estimators being extra trees instead of classical de-
cision trees. Isolation Forest performs very well in practice with low
memory and time complexities. In Désir et al. [52] and Shi and Hor-
vath [156], outliers are generated to artificially form a second class.
In Désir et al. [52] the authors propose a technique to reduce the
number of outliers needed by shrinking the dimension of the input
space. The outliers are then generated from the reduced space using
a distribution complementary to the inlier distribution. Thus their al-
gorithm artificially generates a second class, to use classical RFs. In
Shi and Horvath [156], two different outliers generating processes are
compared. In the first one, an artificial second class is created by ran-
domly sampling from the product of empirical marginal –inlier– dis-
tributions. In the second one outliers are uniformly generated from
the hyper-rectangle that contains the observed data. The first option
is claimed to work best in practice, which can be understood from the
curse of dimensionality argument: in large dimension [170], when the
outliers distribution is not tightly defined around the target set, the
chance for an outlier to be in the target set becomes very small, so
that a huge number of outliers is needed.

Looking beyond the RF literature, Scott and Nowak [151] proposes
a methodology to build dyadic decision trees to estimate minimum-
volume sets [57, 137]. This is done by reformulating their structural
risk minimization problem to be able to use the algorithm in Blan-
chard, Schäfer, and Rozenholc [23]. While this methodology can also
be used for non-dyadic trees pruning (assuming such a tree has been
previously constructed, e. g. using some greedy heuristic), it does not
allow to grow such trees. Also, the theoretical guaranties derived
there relies on the dyadic structure assumption. In the same spirit,
Clémençon and Robbiano [44] proposes to use the two-class split-
ting criterion defined in Clémençon and Vayatis [45]. This two-class
splitting rule aims at producing oriented decision trees with a “left-
to-right” structure to address the bipartite ranking task. Extension
to the one-class setting is done by assuming a uniform distribution
for the outlier class. Consistency and rate bounds relies also on this
left-to-right structure. building process to a recursive optimization
procedure, thus allowing Thus, these two references [44, 151] impose
constraints on the tree structure (designed to allow a statistical study)
which differs then significantly from the general structure of the base
estimators in RF. The price to pay is the flexibility of the model, and
its ability to capture complex broader patterns or structural charac-
teristics from the data.

In this paper, we make the choice to stick to the RF framework.
We do not assume any structure for the binary decision trees. The
price to pay is the lack of statistical guaranties –the consistency of
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RFs has only been proved recently [149] and in the context of regres-
sion additive models. The gain is that we preserve the flexibility and
strength of RFs, the algorithm presented here being able to compete
well with state-of-the-art anomaly detection algorithms. Besides, we
do not assume any –fixed in advance– outlier distribution as in Clé-
mençon and Robbiano [44], but define it in an adaptive way during
the tree building process.

To the best of our knowledge, no algorithm structurally extends
(without second class sampling and without alternative base estima-
tors) RFs to one-class classification. The main purpose of this work
is to introduce such a methodology. It builds on a natural adaptation
of two-class Gini-based criterion specially designed for splitting crite-
ria to the one-class setting, as well as an adaptation of the two-class
majority vote.

The basic underlying idea is the following. To split a node without
second class examples (outliers), we proceed as follows. Each time
we look for the best split for a node t, we simply replace (in the
two-class impurity decrease to be maximized going to the left child
node tL by the proportion expectation Leb(tL)/Leb(t) (idem for the
right node), Leb(t) being the Lebesgue measure, i. e. the volume of
the rectangular cell corresponding to node t. It ensures that one child
node manages to capture the maximum number of observations with
a minimal volume, while the other child looks for the opposite.

This simple idea corresponds to an adaptive modeling of the
outlier distribution. The proportion expectation mentioned above is
weighted proportionally to the number of inliers in node t. Thus, the
resulting outlier distribution is tightly concentrated around the inliers.
the latter concentrates outside, closely around but also inside the sup-
port of the normal distribution. Besides, and this attests the consis-
tency of our approach with the two-class framework, it turns out that
the one-class model promoted here corresponds to the asymptotic
behavior of an adaptive outliers generating methodology.

This paper is structured as follows. Appendix D.1 provides the
reader with necessary background, to address Appendix D.2 which
proposes an adaptation of RFs to the one-class setting and describes
a generic one-class random forest algorithm. The latter is compared
empirically with state-of-the-art anomaly detection methods in Ap-
pendix D.3. Finally a theoretical justification of the one-class criterion
is given in Appendix D.4.
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d.1 background on decision trees

Let us denote by X ⊂ Rd the d-dimensional hyper-rectangle contain-
ing all the observations. Consider a binary tree on X whose node
values are subsets of X, iteratively produced by splitting X into two
disjoint subsets. Each internal node t with value Xt is labeled with a
split feature mt and split value ct (along that feature), in such a way
that it divides Xt into two disjoint spaces XtL := { x ∈ Xt | xmt < ct }

and XtR := { x ∈ Xt | xmt ⩾ ct }, where tL (respectively tR) denotes
the left (respectively right) children of node t, and xj denotes the jth
coordinate of vector x. Such a binary tree is grown from a sample
X1, . . . , Xn (∀i ∈N∗

n, Xi ∈ X) and its finite depth is determined either
by a fixed maximum depth value or by a stopping criterion evalu-
ated on the nodes (e. g. based on an impurity measure). The external
nodes (the leaves) form a partition of X.

In a supervised classification setting, these binary trees are called
classification trees and prediction is made by assigning to each sample
x ∈ X the majority class of the leaves containing x. This is called the
majority vote. Classification trees are usually built using an impurity
measure i(t) whose decrease is maximized at each split of a node
t, yielding an optimal split (m∗

t , c
∗
t). The decrease of impurity (also

called goodness of split) ∆i(t, tL, tR) w. r. t. the split (mt, ct) and cor-
responding to the partition Xt = XtL ⊔ XtR of the node t is defined
as

(D.1)∆i(t, tL, tR) = i(t) − pLi(tL) − pRi(tR),

where pL = pL(t) (respectively pR = pR(t)) is the proportion of sam-
ples from Xt going to XtL (respectively to XtR). The impurity mea-
sure i(t) reflects the goodness of node t: the smaller i(t), the purer
the node t and the better the prediction by majority vote on this node.
Usual choices for i(t) are the Gini index [72] or the Shannon entropy
[153]. To produce a randomized tree, these optimization steps are usu-
ally partially randomized (conditionally on the data, splits (m∗

t , c
∗
t)’s

become random variables). A classification tree can even be grown to-
tally randomly [71]. In a two-class classification setup, the Gini index
is

(D.2)iG(t) = 2
(

nt

nt + n ′
t

)(
n ′
t

nt + n ′
t

)

where nt (respectively n ′
t) stands for the number of observations with

label 0 (respectively 1) in node t. The Gini index is maximal when
nt/(nt +n ′

t) = n ′
t/(nt +n ′

t) = 0.5, namely when the conditional prob-
ability to have label 0 given that we are in node t is the same as
to have label 0 unconditionally: the node t does not discriminate at
all between the two classes. For a node t, maximizing the impurity
decrease Equation D.1 is equivalent to minimizing pLi(tL) + pRi(tR).
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Since pL = (ntL + n ′
tL

)/(nt + n ′
t) and pR = (ntR + n ′

tR
)/(nt + n ′

t), and
the quantity (nt + n ′

t) being constant in the optimization problem,
this is equivalent to minimizing the following proxy of the impurity
decrease,

(D.3)I(tL, tR) = (ntL + n ′
tL

)i(tL) + (ntR + n ′
tR

)i(tR).

Note that with the Gini index iG(t) given in Equation D.2, the corre-
sponding proxy of the impurity decrease is

(D.4)IG(tL, tR) =
ntLn

′
tL

ntL + n ′
tL

+
ntRn

′
tR

ntR + n ′
tR

.

In the one-class setting, no label is available, hence the impurity mea-
sure i(t) does not apply to this setup. The standard splitting criterion
which consists in minimizing the latter cannot be used anymore.

d.2 adaptation to the one-class setting

The two reasons why RFs do not apply to one-class classification are
that the standard splitting criterion does not apply to this setup, as
well as the majority vote. In this section, we propose a one-class split-
ting criterion and a one-class version of the majority vote.

d.2.1 One-class splitting criterion

G

F naive
approach

adaptive
approach

−→
F

G
F

−→ G

Figure D.1: Outliers distribution G in the naive and adaptive approach. In
the naive approach, G does not depends on the tree and is con-
stant on the input space. In the adaptive approach the distribu-
tion depends on the inlier distribution F through the tree. The
outliers density is constant and equal to the average of F on each
node before splitting it.

As one does not observe the second-class (outliers), n ′
t needs to

be defined. In the naive approach below, it is defined as n ′
t :=

n ′Leb(Xt)/Leb(X), where n ′ is the assumed total number of –hidden–
outliers. In the adaptive approach hereafter, it is defined as n ′

t := γnt,
with typically γ = 1. Thus, the class ratio γt := n ′

t/nt is well de-
fined in both approaches and in the naive approach, goes to 0 when
Leb(Xt)→ 0 while it is maintained constant to γ in the adaptive one.

d.2.1.1 Naive approach

A naive approach to extend the Gini splitting criterion to the one-
class setting is to assume a uniform distribution for the second class
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(outliers), and to replace their number n ′
t in node t by the expectation

n ′Leb(Xt)/Leb(X), where n ′ denotes the total number of outliers (for
instance, it can be chosen as a proportion of the number of inliers).
The problem with this approach appears when the dimension is not
small. As mentioned in the introduction (curse of dimensionality),
when actually generating n ′ uniform outliers on X, the probability
that a node (sufficiently small to yield a good precision) contains at
least one of them is very close to zero. That is why data-dependent
distributions for the outlier class are often considered [52, 156]. Tak-
ing the expectation n ′Leb(Xt)/Leb(X) to replace the number of points
in node t does not solve the curse of dimensionality mentioned in the
introduction: the volume proportion Lt := Leb(Xt)/Leb(X) is very
close to 0 for nodes t deep in the tree, especially in large dimension.
In addition, we typically grow trees on sub-samples of the input data,
meaning that even the root node of the trees may be very small com-
pared to the hyper-rectangle containing all the input data. An other
problem is that the Gini splitting criterion is skew-sensitive [64], and
has here to be apply on nodes t with 0 ≃ n ′

t ≪ nt. When trying em-
pirically this approach, we observe that splitting such nodes produces
a child containing (almost) all the data (see Appendix D.4).

Example D.1 To illustrate the fact that the volume proportion

Lt : =
Leb(Xt)
Leb(X)

becomes very close to zero in large dimension for lots of nodes t (in particular
the leaves), suppose for the sake of simplicity that the input space is X =
[0, 1]d. Suppose that we are looking for a rough precision of 1/23 = 0.125
in each dimension, i. e. a unit cube precision of 2−3d. To achieve such a
precision, the splitting criterion has to be used on nodes/cells t of volume
of order 2−3d, namely with Lt = 1/23d. Note that if we decide to choose
n ′ to be 23d times larger than the number of inliers in order that n ′Lt is
not negligible w. r. t. the number of inliers, the same –reversed– problem of
unbalanced classes appears on nodes with small depth.

d.2.1.2 Adaptive approach

Our solution is to remove the uniform assumption on the outliers,
and to choose their distribution adaptively in such a way it is tightly
concentrated around the inlier distribution. Formally, the idea is to
maintain constant the class ratio γt := n ′

t/nt on each node t: before
looking for the best split, we update the number of outliers to be
equal (up to a scaling constant γ) to the number of inliers, n ′

t = γnt,
i. e. γt ≡ γ. These –hidden– outliers are uniformly distributed on
node t. The parameter γ is typically set to γ = 1, see suppl. Ap-
pendix D.6.1 for a discussion on the relevance of this choice (in a
nutshell, γ has an influence on optimal splits).
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X Xt

Xt

γ = 1 γt ≃ 0

tγ

adaptivity

Figure D.2: The left part represents the dataset under study and the underly-
ing density. The node Xt obtained after some splits is illustrated
in the right part of this figure: without the proposed adaptive
approach, the class ratio γt becomes too small and yields poor
splits (all the data are in the “inlier side” of the split, which
thus does not discriminate at all). Contrariwise, setting γ to one,
i. e. using the adaptive approach, is far preferable.

With this methodology, one cannot derive a one-class version of
the Gini index Equation D.2, but we can define a one-class ver-
sion of the proxy of the impurity decrease Equation D.4, by sim-
ply replacing n ′

tL
(respectively n ′

tR
) by n ′

tλL (resp. n ′
tλR), where

λL := Leb(XtL)/Leb(Xt) and λR := Leb(XtR)/Leb(Xt) are the volume
proportion of the two child nodes

(D.5)IOC−ad
G (tL, tR) =

ntLγntλL

ntL + γntλL
+
ntRγntλR

ntR + γntλR
.

Minimization of the one-class Gini improvement proxy Equation D.5
is illustrated in Figure D.2. Note that n ′

tλL (resp. n ′
tλR) is the expecta-

tion of the number of uniform observations (on Xt) among n ′
t (fixed

to n ′
t = γnt) falling into the left (respectively right) node.

Choosing the split minimizing IOC−ad
G (tL, tR) at each step of the

tree building process, corresponds to generating n ′
t = γnt outliers

each time the best split has to be chosen for node t, and then using
the classical two-class Gini proxy Equation D.4. The only difference is
that n ′

tL
and n ′

tR
are replaced by their expectations n ′

tλtL and n ′
tλtR

in our method.

d.2.1.3 Resulting outlier distribution

Figure D.1 shows the corresponding outlier density G (we drop the
dependence in the number of splits to keep the notations uncluttered).
Note that G is a piece-wise constant approximation of the inlier dis-
tribution F. Considering the Neyman-Pearson test X ∼ F versus X ∼ G

instead of X ∼ F versus X ∼ U may seem surprising at first sight. Let
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us try to give some intuition on why this works in practice. First,
there exists (at each step) ϵ > 0 such that G > ϵ on the entire in-
put space, since the density G is constant on each node and equal
to the average of F on this node before splitting it. If the average of
F was estimated to be zero (no inlier in the node), the node would
obviously not have been split, from where the existence of ϵ. Thus,
at each step, one can also view G as a piece-wise approximation of
Fϵ := (1 − ϵ)F + ϵU, which is a mixture of F and the uniform distribu-
tion. (ϵ depending on the step/number of splits) Yet, one can easily
show that optimal tests for the Neyman-Pearson problem H0 : X ∼ F

vs. H1 : X ∼ Fϵ are identical to the optimal tests for H0 : X ∼ F vs.
H1 : X ∼ U, since the corresponding likelihood ratios are related by a
monotone transformation, see Scott and Blanchard [150] for instance
(in fact, this reference shows that these two problems are even equiv-
alent in terms of consistency and rates of convergence of the learning
rules). An other intuitive justification is as follows. In the first step,
the algorithm tries to discriminate F from U. When going deeper in
the tree, splits manage to discriminate F from a (more and more ac-
curate) approximation of F. Asymptotically, splits become irrelevant
since they are trying to discriminate F from itself (a perfect approxi-
mation, ϵ→ 0).

Remark D.1 (Consistency with the two-class framework) Consider the fol-
lowing method to generate outliers –tightly concentrated around the support
of the inlier distribution. Sample uniformly n ′ = γn outliers on the rect-
angular cell containing all the inliers. Split this root node using classical
two-class impurity criterion (e. g. minimizing Equation D.4). Apply recur-
sively the three following steps: for each node t, remove the potential outliers
inside Xt, re-sample n ′

t = γnt uniform outliers on Xt, and use the latter
to find the best split using Equation D.4. Then, each optimization problem
Equation D.4 we have solved is equivalent (in expectation) to its one-class
version Equation D.5. In other words, by generating outliers adaptively, we
can recover (in average) a tree grown using the one-class impurity, from a
tree grown using the two-class impurity.

Remark D.2 (Extension to other impurity criteria) Our extension to the
one-class setting also applies to other impurity criteria. For instance, in the
case of the Shannon entropy defined in the two-class setup by

iS(t) =
nt

nt + n ′
t

log2
nt + n ′

t

nt
+

n ′
t

nt + n ′
t

log2
nt + n ′

t

n ′
t

,

the one-class impurity improvement proxy becomes

IOC−ad
S (tL, tR) = ntL log2

ntL + γntλL
ntL

+ ntR log2
ntR + γntλR

ntR
.
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d.2.2 Prediction: scoring function of the forest

Now that RFs can be grown in the one-class setting using the one-
class splitting criterion, the forest has to return a prediction adapted
to this framework. In other words we also need to extend the concept
of majority vote.

Figure D.3: OneClassRF with one tree, level-sets of the scoring function.

Most usual one-class (or more generally anomaly detection) algo-
rithms actually provide more than just a level-set estimate or a pre-
dicted label for any new observation, abnormal versus normal. In-
stead, they return a real valued function, termed scoring function,
defining a preorder/ranking on the input space. Such a function
s : Rd → R allows to rank any observations according to their sup-
posed “degree of abnormality”. Thresholding it provides level-set es-
timates, as well as a decision rule that splits the input space into in-
lier/normal and outlier/abnormal regions. The scoring function s(x)
we use is the one defined in Liu, Ting, and Zhou [105] in view of its
established high performance. It is a decreasing function of the aver-
age depth of the leaves containing x in the forest. An average term
is added to each node containing more than one sample, say contain-
ing N samples. This term c(N) is the average depth of an extremely
randomized tree [71] (i. e. built without minimizing any criterion, by
randomly choosing one feature and one uniform value over this fea-
ture to split on) on N samples. Formally,

(D.6)log2 s(x) = −

(
∑

t leaves

1{ x∈t }dt + c(nt)

)
/c(n),
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where dt is the depth of node t, and c(n) = 2H(n− 1) − 2(n− 1)/n,
H(i) being the harmonic number. Alternative scoring functions can
be defined for this one-class setting (see Appendix D.6.2).

d.2.3 OneClassRF: a Generic One-Class Random Forest algorithm

Let us summarize the One Class Random Forest algorithm, based
on generic RFs [32]. It has 6 parameters, namely max_samples,
max_features_tree, max_features_node, gamma, max_depth,
n_trees.

Table D.1: Original datasets characteristics

Datasets nb of samples nb of features anomaly class

adult 48842 6 class ’> 50K’ (23.9%)

annthyroid 7200 6 classes ̸= 3 (7.42%)

arrhythmia 452 164 classes ̸= 1 (features 10-
14 removed)

(45.8%)

forestcover 286048 10 class 4 (versus class 2 ) (0.96%)

http 567498 3 attack (0.39%)

ionosphere 351 32 bad (35.9%)

pendigits 10992 16 class 4 (10.4%)

pima 768 8 pos (class 1) (34.9%)

shuttle 85849 9 classes ̸= 1 (class 4 re-
moved)

(7.17%)

smtp 95156 3 attack (0.03%)

spambase 4601 57 spam (39.4%)

wilt 4839 5 class ‘w’ (diseased
trees)

(5.39%)

Each tree is classically grown on a random subset of both the input
samples and the input features [78, 129]. This random subset is a
sub-sample of size max_samples, with max_features_tree variables
chosen at random without replacement (replacement is only done
after the tree is grown). The tree is built by minimizing Equation D.5
for each split, using parameter γ (recall that n ′

t := γnt), until either
the maximal depth max_depth is achieved or the node contains only
one point. Minimizing Equation D.5 is done as introduced in Amit
and Geman [7]: at each node, we search the best split over a random
selection of features with fixed size maxfeaturesnode. The forest
is composed of a number ntrees of trees. The predicted score of a
point x is given by s(x), with s defined by Equation D.6. Remarks on
alternative stopping criteria and variable importances are available in
Appendix D.6.3.
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Figure D.3 represents the level sets of the scoring function pro-
duced by OneClassRF, with only one tree of maximal depth 4, with-
out sub-sampling, and using the Gini-based one-class splitting crite-
rion with γ = 1.

d.3 benchmarks

In this section, we compare the OneClassRF algorithm described
above to seven state-of-art anomaly detection algorithms: the IFor-
est algorithm [105], a one-class RFs algorithm based on sampling
a second class OCRFsampling [52], One-Class Support Vector Ma-
chine (OCSM) [147], Local Outlier Factor (LOF) [33], Orca [18], Least
Squares Anomaly Detection (LSAD) [138], Random Forest Clustering
(RFC) [156].

d.3.1 Default parameters of OneClassRF

The default parameters taken for our algorithm are the followings.

• max_samples is fixed to 20% of the training sample size (with a
minimum of 100);

• max_features_tree is fixed to 50% of the total number of fea-
tures with a minimum of 5 (i. e. each tree is built on 50% of the
total number of features);

• max_features_node is fixed to 5;

• γ is fixed to 1;

• max_depth is fixed to log2 (logarithm in base 2) of the training
sample size as in Liu, Ting, and Zhou [105];

• n_trees is fixed to 100 as in the previous reference.

The other algorithms in the benchmark are trained with their rec-
ommended (default) hyper-parameters as seen in their respective pa-
per or author’s implementation. See Appendix D.7 for details. The
characteristics of the twelve reference datasets considered here are
summarized in Table D.1. They are all available on the UCI reposi-
tory [99] and the preprocessing is done as usually in the literature
(see Appendix D.8).

d.3.2 Results

All the code is available at https://github.com/ngoix/OCRF. The ex-
periments are performed in the novelty detection framework, where
the training set consists of inliers only. No significance level test are

https://github.com/ngoix/OCRF
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Table D.3: Results for the novelty detection setting.

Datasets OneClassRF IForest OCRFsampling OCSM LOF Orca LSAD RFC

AUC ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

adult 0.665 0.278 0.661 0.227 N. A. N. A. 0.638 0.201 0.615 0.188 0.606 0.218 0.647 0.258 N. A. N. A.

annthyroid 0.936 0.468 0.913 0.456 0.918 0.532 0.706 0.242 0.832 0.446 0.587 0.181 0.810 0.327 N. A. N. A.

arrhythmia 0.684 0.510 0.763 0.492 0.639 0.249 0.922 0.639 0.761 0.473 0.720 0.466 0.778 0.514 0.716 0.299

forestcover 0.968 0.457 0.863 0.046 N. A. N. A. N. A. N. A. 0.990 0.795 0.946 0.558 0.952 0.166 N. A. N. A.

http 0.999 0.838 0.994 0.197 N. A. N. A. N. A. N. A. N. A. N. A. 0.999 0.812 0.981 0.537 N. A. N. A.

ionosphere 0.909 0.643 0.902 0.535 0.859 0.609 0.973 0.849 0.959 0.807 0.928 0.910 0.978 0.893 0.950 0.754

pendigits 0.960 0.559 0.810 0.197 0.968 0.694 0.603 0.110 0.983 0.827 0.993 0.925 0.983 0.752 N. A. N. A.

pima 0.719 0.247 0.726 0.183 0.759 0.266 0.716 0.237 0.700 0.152 0.588 0.175 0.713 0.216 0.506 0.090

shuttle 0.999 0.998 0.996 0.973 N. A. N. A. 0.992 0.924 0.999 0.995 0.890 0.782 0.996 0.956 N. A. N. A.

smtp 0.922 0.499 0.907 0.005 N. A. N. A. 0.881 0.656 0.924 0.149 0.782 0.142 0.877 0.381 N. A. N. A.

spambase 0.850 0.373 0.824 0.372 0.797 0.485 0.737 0.208 0.746 0.160 0.631 0.252 0.806 0.330 0.723 0.151

wilt 0.593 0.070 0.491 0.045 0.442 0.038 0.323 0.036 0.697 0.092 0.441 0.030 0.677 0.074 0.896 0.631

average 0.850 0.495 0.821 0.311 0.769 0.410 0.749 0.410 0.837 0.462 0.759 0.454 0.850 0.450 0.758 0.385

cum. train time 61s 68s N. A. N. A. N. A. 2232s 73s N. A.
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given, but experiements or each algorithm are repeated 10 times on
random training and testing datasets are performed, yielding aver-
aged ROC and PR curves whose AUCs are summarized in Table D.3
(higher is better). The training time of each algorithm has been lim-
ited (for each experiment among the 10 performed for each dataset)
to 30 minutes, where N. A. indicates that the algorithm could not
finish training within the allowed time limit. In average on all the
datasets, our proposed algorithm OneClassRF achieves both best
AUC ROC and AUC PR scores (with LSAD for AUC ROC). It also
achieves the lowest cumulative training time. For further insights on
the benchmarks c. f. Appendix D.6. It appears that OneClassRF has
the best performance on five datasets in terms of ROC AUCs, and
is also the best in average. Computation times (training plus testing)
of OneClassRF are also very competitive. Experiments in an outlier
detection framework (the training set is polluted by outliers) have
also been made (see Appendix D.9). The anomaly rate is arbitrarily
bounded to 10% max (before splitting data into training and testing
sets).

d.4 theoretical analysis

This section aims at recovering Equation D.5 from a natural model-
ing of the one-class framework, along with a theoretical study of the
problem raised by the naive approach.

d.4.1 Underlying model

In order to generalize the two-class framework to the one-class one,
we need to consider the population versions associated to empirical
quantities Equation D.1, Equation D.2 and Equation D.3, as well as
the underlying model assumption. The latter can be described as fol-
lows.

d.4.1.1 Existing Two-Class Model (n, α).

We consider a r. v. X : Ω → Rd w. r. t. a probability space (Ω,F,Pr).
The law of X depends on another r. v. y ∈ {0, 1}, verifying Pr { y = 1 } =
1 − Pr { y = 0 } = α. We assume that conditionally on y = 0, X follows
a law F, and conditionally on y = 1 a law G;

X | y = 0 ∼ F, Pr { y = 0 } = 1 − α,

X | y = 1 ∼ G, Pr { y = 1 } = α.

Then, considering

p(tL|t) = Pr { X ∈ XtL | X ∈ Xt } ,

and
p(tR|t) = Pr { X ∈ XtR | X ∈ Xt } ,
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the population version (probabilistic version) of Equation D.1 is

(D.7)∆itheo(t, tL, tR) = itheo(t) − p(tL|t)itheo(tL) − p(tR|t)itheo(tR).

It can be used with the Gini index itheoG ,

(D.8)itheoG (t) = 2Pr {y = 0 | X ∈ Xt }Pr {y = 1 | X ∈ Xt }

which is the population version of Equation D.2.

d.4.1.2 One-Class-Model (n, α).

We model the one-class framework as follows. Among the n i. i. d. ob-
servations, we only observe those with y = 0 (the inliers), namely N
realizations of (X | y = 0), where N is itself a realization of a r. v. N
of law N ∼ Bin(n, (1 − α)). Here and hereafter, Bin(n, p) denotes the
binomial distribution with parameters (n, p). As outliers are not ob-
served, it is natural to assume that G follows a uniform distribution
on the hyper-rectangle X containing all the observations, so that G
has a constant density g(·) = 1/Leb(X) on X. Note that this assump-
tion will be removed in the adaptive approach described below – which
aims at maintaining a non-negligible proportion of (hidden) outliers
in every nodes.

Let us define Lt = Leb(Xt)/Leb(X). Then, Pr {X ∈ Xt | y = 1 } =
Pr { y = 1 }Pr {X ∈ Xt | y = 1 } = αLt. Replacing Pr {X ∈ Xt | y = 0 } by
its empirical version nt/n in Equation D.8, we obtain the one-class
empirical Gini index

(D.9)iOCG (t) =
ntαnLt

(nt + αnLt)2 .

This one-class index can be seen as a semi-empirical version of Equa-
tion D.8, in the sense that it is obtained by considering empirical quan-
tities for the (observed) inlier behavior and population quantities for
the (non-observed) outlier behavior. Now, maximizing the population
version of the impurity decrease ∆itheoG (t, tL, tR) as defined in Equa-
tion D.7 is equivalent to minimizing

(D.10)p(tL|t)itheoG (tL) + p(tR|t)itheoG (tR).

Considering semi-empirical versions of p(tL|t) and p(tR|t), as for
Equation D.9, gives pn(tL|t) = (ntL + αnLtL)/(nt + αnLt) and
pn(tR|t) = (ntR + αnLtR)/(nt + αnLt). Then, the semi-empirical ver-
sion of Equation D.10 is

pn(tL|t)iOCG (tL)

+ pn(tR|t)iOCG (tR) =
1

(nt + αnLt)

(
ntLαnLtL
ntL + αnLtL

+
ntRαnLtR
ntR + αnLtR

)

(D.11)
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where 1/(nt +αnLt) is constant when the split varies. This means that
finding the split minimizing Equation D.11 is equivalent to finding
the split minimizing

(D.12)IOCG (tL, tR) =
ntLαnLtL
ntL + αnLtL

+
ntRαnLtR
ntR + αnLtR

.

Note that Equation D.12 can be obtained from the two-class impurity
decrease Equation D.4 as described in the naive approach paragraph
in Appendix D.2. In other words, it is the naive one-class version of
Equation D.4.

Remark D.3 (Direct link with the two-class framework). The two-
class proxy of the Gini impurity decrease Equation D.4 is recovered from
Equation D.12 by replacing αnLtL (resp. αnLtR) by n ′

tL
(respectively n ′

tR
),

the number of second class instances in tL (respectively in tR). When gener-
ating αn of them uniformly on X, αnLt is the expectation of n ′

t.

As detailed in Appendix D.2.1, this approach suffers from the curse
of dimensionality. We can summarize the problem as follows. Note
that when setting n ′

t := αnLt, the class ratio γt = n ′
t/nt is then equal

to

(D.13)γt = αnLt/nt.

This class ratio is close to 0 for lots of nodes t, which makes the Gini
criterion unable to discriminate accurately between the –hidden– out-
liers and the inliers. Minimizing this criterion produces splits corre-
sponding to γt ≃ 0 in Figure D.2: one of the two child nodes, say tL
contains almost all the data.

d.4.2 Adaptive approach

The solution presented Appendix D.2 is to remove the uniform as-
sumption for the outlier class. From the theoretical point of view, the
idea is to choose in an adaptive way (w. r. t. the volume of Xt) the
number αn, which can be interpreted as the number of (hidden) out-
liers. α). Doing so, we aim at avoiding αnLt ≪ nt when Lt is too
small. Namely, with γt defined in Equation D.13, we aim at avoiding
γt ≃ 0 when Lt ≃ 0. The idea is to consider α(Lt) and n(Lt) such that
α(Lt) → 1, n(Lt) → ∞ when Lt → 0. We then define the one-class
adaptive proxy of the impurity decrease by

(D.14)
IOC−ad
G (tL, tR) =

ntLα(Lt)n(Lt)LtL
ntL + α(Lt)n(Lt)LtL

+
ntRα(Lt)n(Lt)LtR

ntR + α(Lt) · n(Lt) · LtR
.

In other words, instead of considering one general model One-Class-
Model(n, α) defined in Appendix D.4.1, we adapt it to each node



D.5 conclusion 227

t, considering One-Class-Model(n(Lt), α(Lt)) before searching the best
split. We still consider the N inliers as a realization of this model.
When growing the tree, using One-Class-Model(n(Lt), α(Lt)) allows
to maintain a non-negligible expected proportion of outliers in the
node to be split, despite Lt becomes close to zero. Of course, con-
straints have to be imposed to ensure consistency between these mod-
els. Recalling that the number N of inliers is a realization of N follow-
ing a Binomial distribution with parameters (n, 1 − α), a first natural
constraint on (n(Lt), α(Lt)) is

(D.15)(1 − α)n = (1 − α(Lt)) · n(Lt), for all t,

so that the expectation of N remains unchanged.

Remark D.4 In our adaptive model One-Class-Model(n(Lt), α(Lt))
which varies when we grow the tree, let us denote by N(Lt) ∼

Bin (n(Lt), 1 −α(Lt)) the r. v. ruling the number of inliers. The number
of inliers N is still viewed as a realization of it. Note that the distribution of
N(Lt) converges in distribution to P ((1 −α)n) a Poisson distribution with
parameter (1−α)n when Lt → 0, while the distribution Bin (n(Lt), α(Lt))
of the r. v. n(Lt) − N(Lt) ruling the number of (hidden) outliers goes to in-
finity almost surely. In other words, the asymptotic model (when Lt → 0)
consists in assuming that the number of inliers N we observed is a realiza-
tion of N∞ ∼ P ((1 −α)n), and that an infinite number of outliers have
been hidden.

A second natural constraint on (α(Lt), n(Lt)) is related to the class
ratio γt. As explained in Appendix D.2.1, we do not want γt to go to
zero when Lt does. Let us say we want γt to be constant for all node
t, equal to γ > 0. From the constraint γt = γ and Equation D.13, we
get

(D.16)α(Lt)n(Lt)Lt = γnt := n ′
t.

The constant γ is a parameter ruling the expected proportion of
outliers in each node. Typically, γ = 1 so that there is as much
expected uniform (hidden) outliers than inliers at each time we
want to find the best split minimizing Equation D.14. Equation D.15
and Equation D.16 allow to explicitly determine α(Lt) and n(Lt):
α(Lt) = n ′

t/((1 −α)nLt +n ′
t) and n(Lt) = ((1 −α)nLt +n ′

t) /Lt. Re-

garding Equation D.14, α(Lt)n(Lt)LtL = n ′
t

Lt
LtL = n ′

t

Leb(XtL )
Leb(Xt)

by Equa-

tion D.16 and α(Lt)n(Lt)LtR = n ′
t

Leb(XtR )
Leb(Xt)

, so that we recover Equa-
tion D.5.

d.5 conclusion

Through a natural adaptation of both (two-class) splitting criteria and
majority vote, this paper introduces a methodology to structurally
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extend RFs to the one-class setting. Our one-class splitting criteria
correspond to the asymptotic behavior of an adaptive outliers gen-
erating methodology, so that consistency with two-class RFs seems
respected. While no statistical guaranties have been derived in this
paper, a strong empirical performance attests the relevance of this
methodology.

d.6 further insights on the algorithm

d.6.1 Interpretation of parameter gamma

In order for the splitting criterion Equation D.5 to perform well, n ′
t is

expected to be of the same order of magnitude as the number of in-
liers nt. If γ = n ′

t/nt ≪ 1, the split puts every inliers on the same side,
even the ones which are far in the tail of the distribution, thus widely
over-estimating the support of inliers. If γ ≫ 1, the opposite effect
happens, yielding an estimate of a t-level set with t not close enough
to 0. Figure D.2 illustrates the splitting criterion when γ varies. It
clearly shows that there is a link between parameter γ and the level
tγ of the induced level-set estimate. But from the theory, an explicit
relation between γ and tγ is hard to derive. By default we set γ to
1. One could object that in some situations, it is useful to randomize
this parameter. For instance, in the case of a bi-modal distribution
for the inlier/normal behavior, one split of the tree needs to separate
two clusters, in order for the level set estimate to distinguish between
the two modes. As illustrated in Figure D.4, it can only occur if n ′

t is
large with respect to nt (γ ≫ 1). However, the randomization of γ is
somehow included in the randomization of each tree, thanks to the
sub-sampling inherent to RFs. Moreover, small clusters tend to vanish
when the sub-sample size is sufficiently small: a small sub-sampling
size is used by Liu, Ting, and Zhou [105] to isolate outliers even when
they form clusters.

d.6.2 Alternative scoring functions

Although we use the scoring function defined in Equation D.6 be-
cause of its established high performance [105], other scoring func-
tions can be defined. A natural idea to adapt the majority vote to
the one-class setting is to change the single vote of a leaf node t into
the fraction nt

Leb(Xt)
, the forest output being the average of the latter

quantity over the forest, s(x) =
∑

t leaves 1{x∈t }
nt

Leb(Xt)
. In such a case,

each tree of the forest yields a piece-wise density estimate on its in-
duced partition. The output produced by the forest is then a step-wise
density estimate. We could also think about the local density of a typical
cell. For each point x of the input space, it returns the average num-
ber of observations in the leaves containing x, divided by the average
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volume of such leaves. The output of OneClassRF is then the scor-
ing function s(x) =

(∑
t leaves 1{x∈t }nt

) (∑
t leaves 1{x∈t }Leb(Xt)

)−1,
where the sums are over each leave of each tree in the forest. This
score can be interpreted as the local density of a “typical” cell (typi-
cal among those usually containing x).

d.6.3 Alternative stopping criteria

Other stopping criteria than a maximal depth may be considered. We
could stop splitting a node t when it contains less than n_min ob-
servations, or when the quantity nt/Leb(Xt) is large enough (all the
points in the cell Xt are likely to be inliers) or close enough to 0 (all
the points in the cell Xt are likely to be outliers). These options are
not discussed in this work.

d.6.4 Variable importance

In the multiclass setting, Breiman [32] proposed to evaluate the im-
portance of a feature j ∈ { 1, . . . d } for prediction by adding up the
weighted impurity decreases for all nodes t where Xj is used, aver-
aged over all the trees. The analogue quantity can be computed with
respect to the one-class impurity decrease proxy. In our one-class set-
ting, this quantity represents the size of the tail of Xj, and can be
interpreted as the capacity of feature j to discriminate between inlier-
s/outliers.

d.7 hyper-parameters of tested algorithms

Overall we chose to train the different algorithms with their (default)
hyper-parameters as seen in their respective paper or author’s imple-
mentation. Indeed, since we are in an unsupervised setting, there is
no trivial way to select/learn the hyperparameters of the different
algorithm in the training phase – the labels are not supposed to be
available. Hence the more realistic way to test the algorithms is to use
their recommended/default hyperparameters.

The OCSM algorithm uses default parameters: kernel=’rbf’ with
tol=1e-3, nu=0.5, shrinking=True and gamma=1/n_features, where
tol is the tolerance for stopping criterion.

The LOF algorithm uses default parameters: n_neighbors=5 with
the leaf_size=30 and metric=’minkowski’ and contamination=0.1

and algorithm=’auto’, where the algorithm parameters stipulates
how to compute the nearest neighbors (either ball-tree, kd-tree or
brute-force).
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X

γ = 10 γ = 1 γ = 0.1

Figure D.4: Illustration of the standard splitting criterion on two modes
when the proportion γ varies.

The IForest algorithm uses default parameters:
n_estimators=100 and max_samples=min(256, n_samples) and
max_features=1 and setting bootstrap=false, where bootstrap
states whether samples are drawn with replacement.

The OCRFsampling algorithm uses default parameters: the num-
ber of dimensions for the Random Subspace Method krsm=-1, the
number of features randomly selected at each node during the in-
duction of the tree krfs=-1, n_tree=100, the factor controlling the
extension of the outlier domain used to sample outliers accord-
ing to the volume of the hyper-box surrounding the target data
alpha=1.2, the factor controlling the number of outlier data gener-
ated according to the number of target data beta=10, whether outliers
are generated from uniform distribution optimize=0 and eventually
whether data outside target bounds are considered as outlier data
rejectOutOfBounds=0.

The Orca algorithm uses default parameter k=5 (number of nearest
neighbors) as well as N=n/8 (how many anomalies are to be reported).
The last setting, set up in the empirical evaluation of iForest in Liu,
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Ting, and Zhou [104], allows a better computation time without im-
pacting Orca’s performance.

The RFC algorithm uses default parameters: no.forests=25 with
the number of trees no.trees=3000, the Addcl1 Random Forest dis-
similarity addcl1=T, addcl2=F use the importance measure imp=T, the
data generating process oob.prox1=T, the number of features sam-
pled at each split mtry1=3.

The LSAD algorithm uses default parameters: the maximum
number of samples per kernel n_kernels_max=500, the center of
each kernel (the center of the random sample subset by default)
kernel_pos=’None’, the kernel scale parameter (using the pairwise
median trick by default [80]) gamma=’None’, the regularization param-
eter rho=0.1.

d.8 description of the datasets

The characteristics of the twelve reference datasets considered here
are summarized in Table D.1. They are all available on the UCI repos-
itory [99] and the preprocessing is done in a classical way. In anomaly
detection, we typically have data from two class (inliers/outliers) – in
novelty detection, the second class is unavailable in training in outlier
detection, training data are polluted by second class (anonymous) ex-
amples. The classical approach to adapt multi-class data to this frame-
work is to set classes forming the outlier class, while the other classes
form the inlier class.

We removed all categorial attributes. Indeed, our method is de-
signed to handle data whose distribution is absolutely continuous
w. r. t. the Lebesgue measure. The http and smtp datasets belong to
the KDD Cup ’99 dataset [82, 169], which consist of a wide variety of
hand-injected attacks (anomalies) in a closed network (normal/inlier
background). They are classically obtained as described in Yamanishi
et al. [187]. This two datasets are available on the scikit-learn library
[132]. The shuttle dataset is the fusion of the training and testing
datasets available in the UCI repository. As in Liu, Ting, and Zhou
[105], we use instances from all different classes but class 4. In the
forestcover data, the inliers are the instances from class 2 while in-
stances from class 4 are anomalies (as in Liu, Ting, and Zhou [105]).
The ionosphere dataset differentiates “good” from “bad” radars, con-
sidered here as abnormal. A “good” radar shows evidence of some
type of structure in the ionosphere. A “bad” radar does not, its sig-
nal passing through the ionosphere. The spambase dataset consists of
spam or non-spam emails. The former constitute our anomaly class.
The annthyroid medical dataset on hypothyroidism contains one nor-
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Figure D.5: Performances of the algorithms on each dataset in the novelty
detection framework: ROC AUCs are displayed on the top, PR
AUCs in the middle and training times on the bottom, for each
dataset and algorithm. The x-axis represents the datasets.

mal class and two abnormal ones, which form our outliers. The ar-
rhythmia dataset reflects the presence and absence (class 1) of car-
diac arrhythmia. The number of attributes being large considering
the sample size, we removed attributes containing missing data. Be-
sides, we removed attributes taking less than 10 different values, the
latter breaking too strongly our absolutely continuous assumption
(w. r. t. to Leb). The pendigits dataset contains 10 classes correspond-
ing to the digits from 0 to 9, examples being handwriting samples. As
in Schubert et al. [148], the outliers are chosen to be those from class
4. The pima dataset consists of medical data on diabetes. Patients suf-
fering from diabetes (inlier class) were considered outliers. The wild
dataset involves detecting diseased trees in Quickbird imagery. Dis-
eased trees (class ‘w’) is our outlier class. In the adult dataset, the
goal is to predict whether income exceeds $ 50K/year based on cen-
sus data. We only keep the 6 continuous attributes.

d.9 further details on benchmarks and outlier de-
tection results

Figure D.5 shows that the amount of time to train1 and test any
dataset takes less than one minute with OneClassRF, whereas

1 For OneClassRF, Orca and RFC, testing and training time cannot be isolated be-
cause of algorithms implementation: for these algorithms, the sum of the training
and testing times are displayed in Figure D.5 and Figure D.6.
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Figure D.6: Performances of the algorithms on each dataset in the outlier
detection framework: ROC AUCs are on the top, PR AUCs in
the middle and processing times are displayed below (for each
dataset and algorithm). The x-axis represents the datasets.

some algorithms have far higher computation times (OCRFsampling,
OCSM, LOF and Orca have computation times higher than 30 min-
utes in some datasets). Our approach yields results similar to quite
new algorithms such as IForest and LSAD. We also present experi-
ments in the outlier detections setting. For each algorithm, 10 exper-
iments on random training and testing datasets are performed. Av-
eraged ROC and PR curves AUC are summarized in Table D.4. For
the experiments made in an unsupervised framework (meaning that
the training set is polluted by outliers), the anomaly rate is arbitrarily
bounded to 10% max (before splitting data into training and testing
sets).
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Figure D.7: ROC and PR curves for OneClassRF (novelty detection frame-
work)

Figure D.8: ROC and PR curves for OneClassRF (outlier detection frame-
work)

Figure D.9: ROC and PR curves for IForest (novelty detection framework)



D.9 further details on benchmarks and outlier detection results 235

Figure D.10: ROC and PR curves for IForest (outlier detection framework)

Figure D.11: ROC and PR curves for OCRFsampling (novelty detection
framework)

Figure D.12: ROC and PR curves for OCRFsampling (outlier detection
framework)
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Figure D.13: ROC and PR curves for OCSM (novelty detection framework)

Figure D.14: ROC and PR curves for OCSM (outlier detection framework)

Figure D.15: ROC and PR curves for LOF (novelty detection framework)
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Figure D.16: ROC and PR curves for LOF (outlier detection framework)

Figure D.17: ROC and PR curves for Orca (novelty detection framework)

Figure D.18: ROC and PR curves for Orca (outlier detection framework)
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Figure D.19: ROC and PR curves for LSAD (novelty detection framework)

Figure D.20: ROC and PR curves for LSAD (outlier detection framework)

Figure D.21: ROC and PR curves for RFC (novelty detection framework)
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Figure D.22: ROC and PR curves for RFC (outlier detection framework)
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Table D.4: Results for the outlier detection setting

Dataset OneClassRF IForest OCRFsampling OCSM LOF Orca LSAD RFC

AUC ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR

adult 0.625 0.161 0.644 0.234 N. A. N. A. 0.622 0.179 0.546 0.100 0.593 0.179 0.633 0.204 N. A. N. A.

annthyroid 0.842 0.226 0.820 0.310 0.992 0.869 0.688 0.193 0.731 0.188 0.561 0.132 0.762 0.246 N. A. N. A.

arrhythmia 0.698 0.485 0.746 0.418 0.704 0.276 0.916 0.630 0.765 0.468 0.741 0.502 0.733 0.393 0.711 0.309

forestcover 0.845 0.044 0.882 0.062 N. A. N. A. N. A. N. A. 0.550 0.017 0.696 0.045 0.816 0.072 N. A. N. A.

http 0.984 0.120 0.999 0.685 N. A. N. A. N. A. N. A. N. A. N. A. 0.998 0.402 0.277 0.074 N. A. N. A.

ionosphere 0.903 0.508 0.888 0.545 0.879 0.664 0.956 0.813 0.956 0.789 0.929 0.917 0.915 0.773 0.943 0.725

pendigits 0.453 0.085 0.463 0.077 0.999 0.993 0.366 0.066 0.491 0.086 0.495 0.086 0.513 0.091 N. A. N. A.

pima 0.708 0.229 0.743 0.205 0.790 0.296 0.706 0.226 0.670 0.137 0.585 0.170 0.686 0.190 0.505 0.091

shuttle 0.947 0.491 0.997 0.979 N. A. N. A. 0.992 0.904 0.526 0.115 0.655 0.320 0.686 0.218 N. A. N. A.

smtp 0.916 0.400 0.902 0.005 N. A. N. A. 0.881 0.372 0.909 0.053 0.824 0.236 0.888 0.398 N. A. N. A.

spambase 0.830 0.300 0.799 0.303 0.970 0.877 0.722 0.192 0.664 0.120 0.603 0.210 0.731 0.229 0.684 0.134

wilt 0.520 0.053 0.443 0.044 0.966 0.554 0.316 0.036 0.627 0.069 0.441 0.029 0.530 0.053 0.876 0.472

average 0.773 0.259 0.777 0.322 0.900 0.647 0.717 0.361 0.676 0.195 0.677 0.269 0.681 0.245 0.744 0.346

cum. train time 61s 70s N. A. N. A. N. A. 2432s 72s N. A.
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